LOG NO: ACTION:	APR 2 8 1995	U	
ACHGA:			
FILE 12:	ματούμα να το ταδιού θετατούμα για ματούμα μα τη ματούμα ματούμα μα τη ματούμα μα τη ματούμα ματούμα μα τη ματο		

T

1994 ASSESSMENT REPORT

ON THE

TSACHA PROPERTY

NTS: 93F/3E,2W

Latitude 53°02'N

Longitude 125°02'W

Omineca Mining Division

Owner: Teck Corporation, 600 - 200 Burrard Street, Vancouver, B.C. V6C 3L9

Operator: Teck Exploration Ltd. 350 - 272 Victoria Street, Kamloops, B.C. V2C 2A2

GEOLOGICAL BRANCH ASSESSMENT REPORT

13, 8881 Jean Pautler December, 1994

FILMED

SUMMARY:

The 68 unit (1700 ha) TSACHA claims were staked to cover the TOMMY epithermal Au, Ag showing, discovered by the B.C. Geological Survey Branch in 1993. The property is located 125 km southwest of Vanderhoof, B.C.

The property is underlain by volcanic rocks, which include quartz phyric rhyolite flows and tuffs and augite porphyritic basaltic andesite flows, with minor volcaniclastic sedimentary rocks, all of the Jurassic Hazelton Group. An augite porphyry plug, possibly cogenetic with the basalt-andesite unit, is exposed in the southern property area. The above units are intruded by Tertiary felsite dykes and sills.

Numerous north to northeast trending veins and silicified stockwork zones are evident on the property, all hosted by the felsic volcanic unit. The most significant vein to date, in terms of size and continuity, is the Tommy Vein. The Tommy Vein trends north, dips vertically to steeply west, has been traced for 515m and remains open along strike with a probable strike length of 1.0 km.

A total of six small hand trenches and eleven excavator trenches were completed on the property to facilitate more complete mapping and sampling of the veins. Values fairly consistently ≥ 1 g/t Au were obtained along the entire exposure of the vein with maximum values of 61.9 g/t Au, 292.5 g/t Ag over 1.5m, indicating good potential for high grade ore shoots.

Although the soils were not useful in delineating the Au bearing veins, Au (and to a lesser extent, Zn, As, Pb and Ag) spot anomalies are significant and should be followed up. The potential southern extension of the Larry Vein is a prime target.

A 1500m diamond drill program is recommended to test the Tommy Vein at depth and along strike. An integrated program of geophysics, biogeochemistry and possible basal till sampling is recommended to trace the northern extension of the Tommy Vein and to explore additional veins on the property.

TABLE OF CONTENTS

			Page
SUM	MARY	, 	. i
1.	LOCA	ATION AND ACCESS	. 1
2.	LEGA	AL DESCRIPTION	. 1
3.	PHYS	SIOGRAPHY	. 1
4.	HIST	ORY	. 2
5.	1994	WORK	. 2
6.	GEO	LOGY	. 2
	a)	Regional	. 2
	b)	Property	. 3
7.	TREN	CHING	5
8.	MINE	RALIZATION AND ALTERATION	5
	a)	Mineralization	5
	b)	Alteration	7
9.	GEO	CHEMISTRY	. 8
	a)	Procedure	. 8
	b)	Results and Interpretation	. 9
10.	CONC	CLUSIONS AND RECOMMENDATIONS	13

LIST OF FIGURES

Following Page

Figure 1	Location Map (1:2,000,000) 1
Figure 2	Claim Map (1:50,000) 1
Figure 3	Regional Geology Map (1: 400,000) 2
Figure 4	Property Geology (1:10,000) back pocket
Figure 5	Grid Geology (1: 2,500) back pocket
Figure 6	Tommy Vein Detail (1:2,000) back pocket
Figure 7	Trenches 1,2,3 Detail (1:200) back pocket
Figure 8	Trenches 4,5,7 Detail (1:200) back pocket
Figure 9	Trench 8 Detail (1:200) back pocket
Figure 10	Trench 9 Detail (1:200) back pocket
Figure 11	Trench 10 Detail (1:200) back pocket
Figure 12	Trench 11 Detail (1:200) back pocket
Figure 13	Trench 13 Detail (1:200) back pocket
Figure 14	Trench 15 Detail (1:200) back pocket
Figure 15	Trench 17 Detail (1:200) back pocket
Figure 16	Soil Geochemistry - Au, Ag (1:5,000) back pocket
Figure 17	Soil Geochemistry - As, Zn (1:5,000) back pocket

LIST OF TABLES

Table 1	Tommy Vein Results		9
---------	--------------------	--	---

APPENDICES

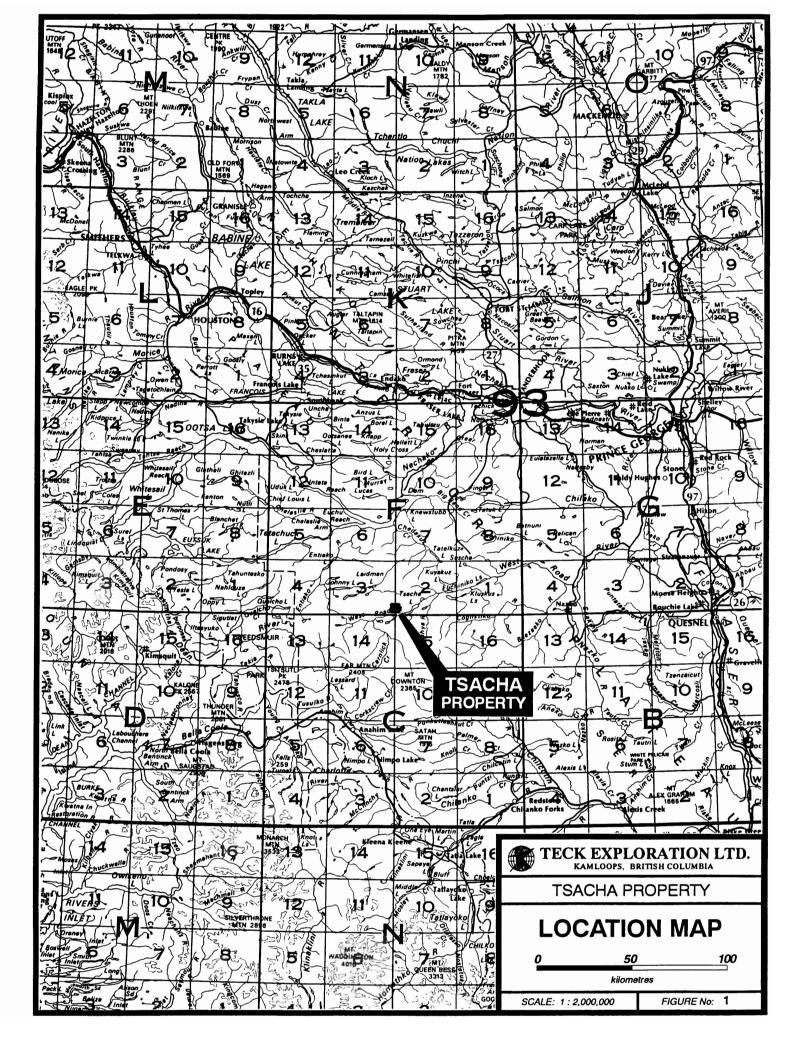
Appendix	Ι	Selected References
Appendix	II	Geochemical Procedure and Results
Appendix	III	Statement of Expenditures
Appendix	IV	Statement of Qualifications

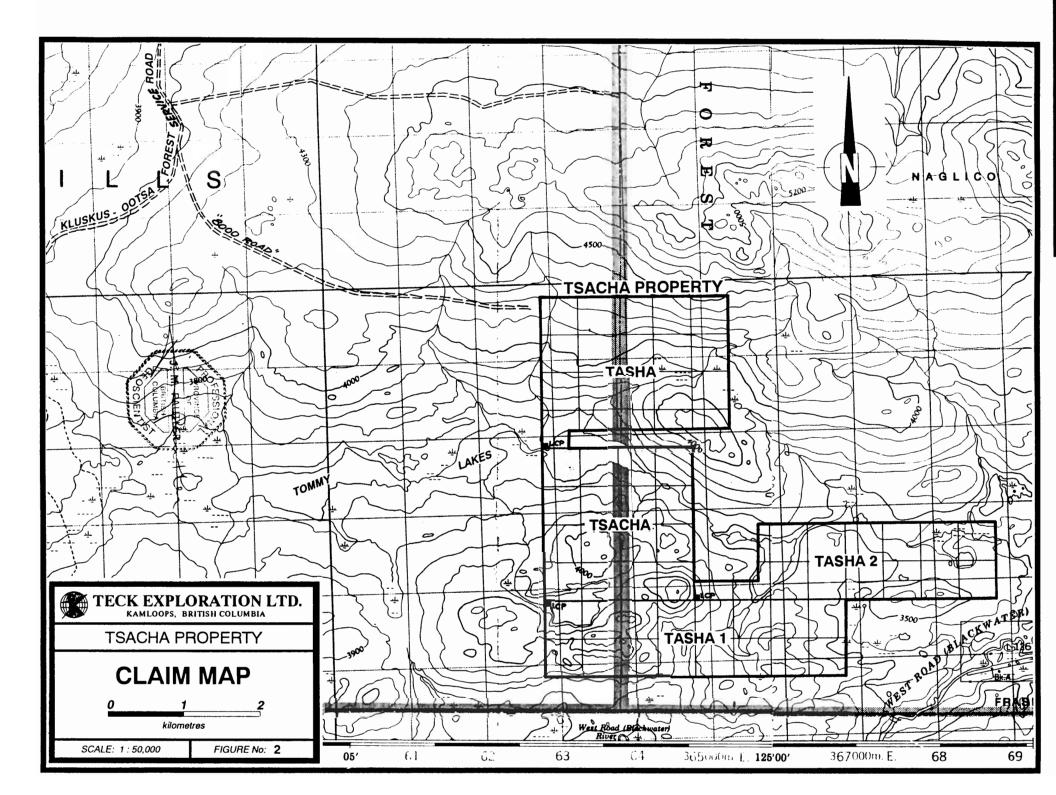
1. LOCATION AND ACCESS (Figure 1)

The TSACHA property, NTS map sheet 93F/3E,2W, is located 125 km southwest of Vanderhoof, B.C., in the Omineca Mining Division. Latitude and longitude of the property are 53°02'N, 125°02'W.

Access is by road via the Kluskus-Ootsa Forest Service Road from Vanderhoof to 162 km, where a branch road, the green 8000 Road, accesses the northwest edge of the property. A fire access road - ATV trail continues from this point to the central property area.

2. LEGAL DESCRIPTION (Figure 2)


The TSACHA Claim Group, comprising the Tsacha, Tasha, Tasha 1 and Tasha 2 MGS claims, consists of 68 contiguous units covering an area of approximately 1700 hectares. The property is owned by Teck Corporation, Vancouver, B.C. and Teck Exploration Ltd., of Kamloops, B.C., was the operator. Work on the Tasha claim did not commence until after May 30, 1994 and work on Tasha 1 and 2 did not commence until after June 3, 1994. A table showing pertinent claim data follows:


Claim Name			Expiry Date	Years to be Applied	New Expiry Date
TSACHA TASHA TASHA 1 TASHA 2	323354 325898 326061 326062	16 20 16 16	Jan. 28, 1995 May 30, 1995 June 3, 1995 June 3, 1995	6 6 6	Jan. 28, 2001* May 30, 2001* June 3, 2001* June 3, 2001*

* Note: Expiry date based on acceptance of this report.

3. PHYSIOGRAPHY

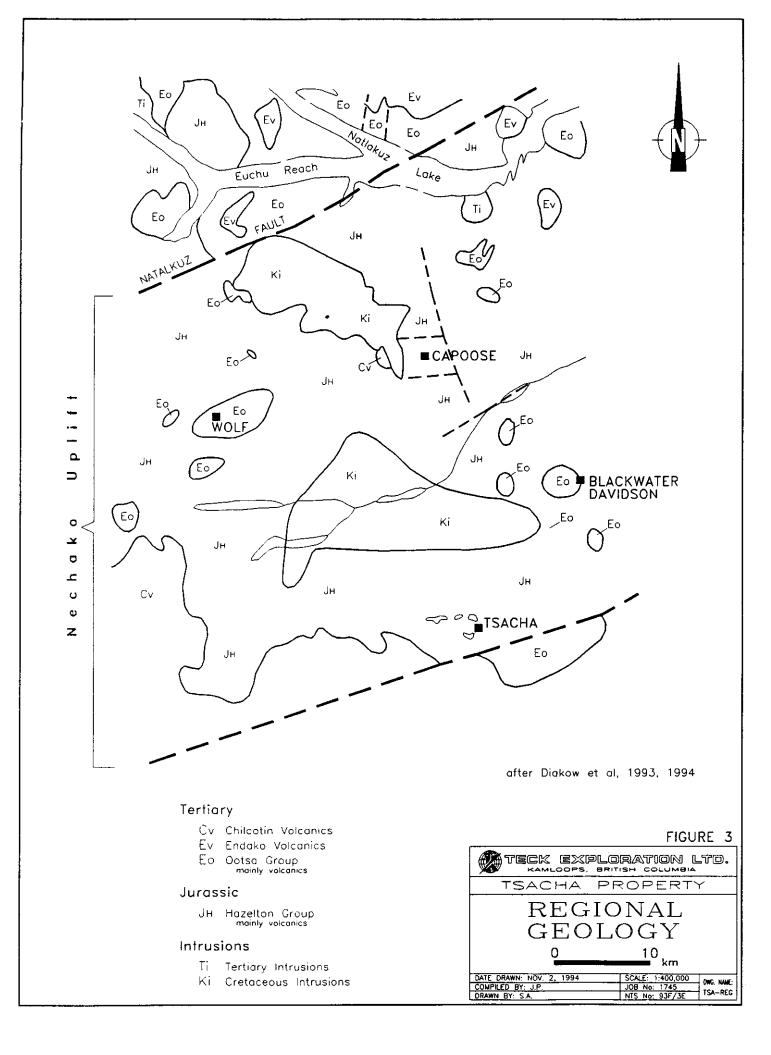
The claims lie within the Naglico Hills of the Nechako (Interior) Plateau, which consists of low rounded hills interspersed with wet lowlands and dotted by lakes. Exposure is extremely poor but does exist along low ridges and knobs. The property encompasses the eastern end of Tommy Lakes. A series of knolls provide exposure but till cover rapidly increases away from the knolls. Elevations on the property range from 1067m to 1280m.

4. HISTORY

The TSACHA property covers the Tommy epithermal Au, Ag showing, newly discovered by the B.C. Geological Survey Branch in 1993. The B.C. Geological Survey reported values up to 3.7 g/t Au and 41.8 g/t Ag from outcropping quartz veins. The showing was staked by Teck Corporation immediately following the release of this data.

5. 1994 WORK

A total of 101 man days were spent on the TSACHA property between May 19 and October 26, 1994. Work consisted of 1:10,000 property scale and detailed 1:2,500 scale grid mapping with concurrent rock sampling. A 7.7 line km soil survey was conducted over the grid. A total of 17 trenches, totalling 625m² were excavated and mapped at a scale of 1:200.


A 360° trending baseline was established and the soil samples were collected at 25m intervals on lines spaced 100m apart.

6. GEOLOGY

a) **Regional** (Figure 3)

For a thorough description of the regional geology of the Fawnie Creek Map Area, including the TSACHA occurrence, refer to Diakow and Webster, 1994.

The property occurs within an east trending, regionally extensive horst referred to as the Nechako Uplift and characterized by volcano-sedimentary rocks of the Middle to Lower Jurassic Hazelton Group. The Jurassic succession is intruded by quartz monzonite of the Late Jurassic to Early Cretaceous Capoose Batholith and overlain by volcanic outliers of the Eocene Ootsa Lake Group and younger basaltic flows.

b) Property (Figures 4 - 6)

The Tsacha property is underlain by volcanic rocks, which include quartz phyric rhyolite flows and tuffs and lesser augite porphyritic basaltic andesite flows, with minor volcaniclastic sedimentary rocks, all of the Naglico Formation of the Jurassic Hazelton Group. An augite porphyry plug, possibly cogenetic with the basalt-andesite unit, is exposed in the southern property area. The above units are intruded by Tertiary felsite dykes, sills and small plugs.

The rhyolite is the most extensive unit on the property and typically contains 3-5% quartz and 15-40% feldspar phenocrysts. It has been divided into three subunits as outlined below. Regionally, the flow unit is considered to be the oldest member of the felsic volcanic unit.

Unit 1c:	ash-flow tuffs, welded
Unit 1b:	quartz feldspar crystal ash to lapilli tuffs, unwelded
Unit 1a:	quartz, feldspar porphyritic flow

The rhyolite in the property area primarily, if not exclusively, consists of an ignimbrite succession of ash-flow tuffs (Units 1b and 1c), indicating a vent proximal environment. One flow sequence was identified which may, in fact, be a welded tuff.

Variably welded, commonly magnetic ash-flow tuffs comprise Unit 1c. The matrix is typically dark grey-green in colour and glassy with quartz and feldspar phenocrysts. Moderate to intense welding is common. The welding is defined by lighter coloured compressed lithic fragments, often resembling flow banding. The dense glassy nature of the matrix is due to welded glass shards. Outcrops are only marked as Unit 1c if welded textures were evident.

Unit 1b is characterized by unwelded to, less commonly, partially welded quartz feldspar crystal ash flow tuff to lapilli tuff. Colour varies from light grey to maroon. The lithic fragments include both felsic and basaltic andesite compositions and are generally a few mm across. Lithic fragments in the less common lapilli tuffs range up to 1-3 cm in size.

Unit 1a consists of light grey to maroon quartz, feldspar porphyritic rhyolite, sometimes exhibiting fine flow banding. Finely banded flows were only observed in float, on the property. Extremely viscous flow banded rhyolite with clay and sericite alteration was mapped at L46N/4850E and may represent the upper part of a flow dome. Massive

flows were identified at the eastern end of lines 47 and 48N. It is often difficult to differentiate between the flows and both the welded and crystal ash flow tuffs in the field.

Angular float of grey, aphanitic rhyolite with 3-5% pyrite was observed in two locations on the property. The age and extent of this unit is unknown.

The basaltic andesite unit (Unit 2) conformably overlies the felsic unit in the southwestern property area. It largely consists of green coloured, magnetic augite porphyritic flows. An augite porphyry plug (Unit 4), coarser than and probably cogenetic with the flows, is exposed in the southern portion of the claims. Outcrops of maroon coloured dacite flows in the northeastern property area have been grouped with Unit 2 since they are of limited extent and are interlayered with the basaltic andesites.

Minor volcanic sandstone of Unit 3, with abundant plagioclase phenocrysts, outcrops on the north side of the augite porphyry plug. It may be derived from Unit 1.

A Tertiary aged felsite intrusive rock (Unit 5) occurs as sills and possibly as a plug in the southern part of the property. A 100m wide sill is exposed at the north end of the grid. The felsite is fine grained, grey-green to brownish in colour, variably magnetic, blocky weathering and is characterized by vitreous biotite phenocrysts. Occasional plagioclase phenocrysts can be distinguished.

c) Structure (Figure 4)

A regional northwest trending lineament follows Tommy Creek. This lineament may have economic significance in that it passes through the Wolf and Clisbako properties and the Blackdome Mine.

The southern boundary of the Nechako Uplift follows the Blackwater River, just south of the property. Similar east-northeasterly trends are evident on the property through Timmy Lake and another north of Tommy Lake.

More local, north trends are less evident but are manifested in the north trend of the Tommy Vein. This trend is interrupted by the Tertiary felsite, just south of Tommy Lake, but continues through till cover on the north side of the lake. Throughout this regional area the north structures are believed to be related to Tertiary extension. However, the presence of older pre-existing structures cannot be ruled out.

7. TRENCHING (Figures 7 - 15)

Six small hand trenches were excavated in May and an excavator trenching program was undertaken in October to facilitate more complete mapping and sampling of the veins on the property. The excavator trenches were planned every 50 - 75m along the trend of the Tommy Vein. A John Deere 290 excavator, owned and operated by Alf Kalenith of Cache Creek, B.C., was utilized to dig $610m^2$ in 11 trenches. On completion of the job, more than $\frac{1}{3}$ of the trenches were backfilled, water bars constructed and the sites seeded. The remainder of the trenches were left open to facilitate further work on the property.

The geology, mineralization and geochemical results of the trenching program will be discussed under the appropriate headings in this report. Trench locations are outlined in Figures 5 and 6. The geology, sample locations and significant Au, Ag results from the trenches are shown on Figures 7 to 15. Trenches 6, 12, 14 and 16 did not intersect bedrock. In trenches 12,14 and 16 only a few test pits were excavated along the extent of the trench to test the overburden thickness. Lab procedures and complete results are outlined in Appendix II.

8. MINERALIZATION AND ALTERATION

a) Mineralization (Figures 5 and 6)

Numerous north to northeast trending veins and silicified stockwork zones are evident on the property, all hosted by the Jurassic felsic volcanic unit (Unit 1). The veins do not persist through and appear to be cut off by the Tertiary felsite (Unit 5).

The most significant vein to date, in terms of size and continuity, is the Tommy Vein. The Tommy Vein trends north, dips vertically to steeply west, is 1.4 - 8.3m wide, has been traced for 515m and remains open along strike.

The northernmost exposure of the Tommy Vein is in Trench 9 at 5090N, where the vein fingers into two veins of 1.9 and 2.6m wide over a distance of 6.3m. However, the vein is suspected to continue to the felsite sill at L52N. The southernmost exposure of the vein occurs at 4575N in Trench 17, but quartz float and silicification suggests that the vein continues to 4160N. Consequently, the probable strike length is 1.0 km.

5

The Tommy Vein consists of one or sometimes more veins separated by intensely silicified and stockworked wallrock. It primarily consists of bull quartz grading to chalcedonic quartz, locally with sparry calcite and minor banded chalcedony. Individual sample data from the Tommy Vein is outlined in Table 1. Classic epithermal textures are abundant, but subtle and include druses, cockscomb structures and colloform bands. Bladed silica after calcite is evident, indicating boiling.

Vein margins are generally fairly sharp except where intense silicification and stockworking occurs within the vein and occasionally along the vein margins. Parallel veinlets may extend up to 5m into the wallrock and are more pronounced on the hanging wall side. Although the vein has excellent continuity along strike, the margins are irregular with widths varying over short distances.

Visible sulfide minerals are generally absent in the vein. Minor chalcopyrite and galena occur within the northern extent of the Tommy Vein, around trenches 5 and 7. Minor pyrite was observed in Trench 17 (southern extent). Native Au or electrum as well as stephanite and argentite have been identified in thin section from grey chalcedony bands exposed in Trench 13 (centre). The Au and Ag are associated with fine pyrite in the chalcedony bands which occur adjacent to bands of adularia. Amethyst was observed in Trenches 7 and 17 and occurs within the more crystalline, vuggy quartz.

Three stages of veining appear to be evident within the Tommy Vein. The vein primarily consists of Stage 1 - white bull quartz, with minor vugs, grading to chalcedonic quartz. Local white to grey banded chalcedony occurs within the vein, particularly near vein margins. Stage 2 veins consist of dark brown weathering quartz with sparry calcite and banded chalcedony margins which invade and brecciate Stage 1. Several episodes of Stage 2 may have occurred. Minor ankerite occurs with stages 1 and 2. Late drusy veinlets up to 1-2 cm wide, represent Stage 3.

Trench 15 exposes a parallel vein, the Larry Vein, at 5075N/5135E, 135m east of the Tommy Vein (20867-70). This vein trends north, dips vertically, and is 3.5m wide at this locality. Subparallel quartz veinlets extend 2-4m into the wallrock and a quartz stringer zone extends another 4-5m. The vein has been traced in float for 75m to the south. A 0.4-0.9m wide vein and associated stockwork zone with parallel veins at 5265N/5120E (20859)may represent the northern extent of the Larry Vein. The presence of quartz float

at L48N/5150E and a rounded knoll (a typical expression of underlying veins) at 4760N/5150E suggests that the Larry Vein may continue through this region, with the possibility of the same continuity (500m + strike potential) as the Tommy Vein.

A smaller subsidiary vein to the Tommy, the Bobby Vein, trends northeasterly from the Tommy Vein at 50N/50E. The Bobby Vein generally trends 20-30°, dips 80°W, is up to 1m wide and appears to extend for over 200m. Hand trenches 1-4 expose the Bobby Vein (134923-36, 134964-66). In the Trench 1-3 area the Bobby Vein may merge with the northern extent of the Larry Vein. The composition is quite similar to the Tommy Vein with bull quartz, calcite breccia, ankerite, banded chalcedony and drusy veins.

The Ian Vein/Stockwork Zone is best exposed between L48-49N at 4825E, 175m west of the Tommy Vein. It trends northerly, dips near vertical and ranges up to 1m wide (T14-1 to -3, 134851-3). A 0.3m wide vein, exposed at L50N/4850E (134920-22), may represent the northern extension of this vein. The southern extent either lies just west of or coalesces with a large silicified/stockwork zone at L45-47N/48-4950E (20821-31, 134933,50-56,62, 134858).

The Billy Vein is another north trending vein, 0.4-1m wide, that occurs at 4750N/46E (20856-8). The vein has only been traced for 30m due to extensive till cover along its projected strike extent.

A large pervasively silicified zone, $200m \times 200m$, occurs on the northeast shore of Timmy Lake (20853). A 100m x 300m silicified zone is exposed northeast of the grid, at the edge of a large burn on Bernie Knoll (20851,52).

b) Alteration

Alteration around the veins consists of silicification and hematization, including minor amounts of specularite. Clay and sericite occur locally within the wallrock but are generally more distal and are more prevalent within the vein/stockwork/silicified zone at L45-47N/48-4950E. The host rock, here, may be a rhyolite quartz feldspar porphyry flow that may represent the upper level of a flow dome complex.

9. GEOCHEMISTRY (Figures 4 - 17)

a) Procedure

A total of 207 rock, 413 soil and 11 stream sediment samples were collected from the property. The samples were sent to Eco-Tech Labs, Kamloops, B.C. and analyzed for Al, Sb, As, Ba, Bi, Cd, Ca, Cr, Co, Cu, Fe, La, Pb, Mg, Mn, Hg, Mo, Na, Ni, P, Ag, Sr, Ti, Sn, W, U, V and Zn using a 32 element ICP package which involves a nitric-aqua regia digestion. Ba, Hg, Se, Te and Tl were analyzed from selected rock samples. Au/Ag values > 1,000 ppb Au and 30 ppm Ag were assayed. Lab procedures and results are outlined in Appendix II.

The rock samples primarily consisted of chip samples across veins, wallrock and alteration zones. Grab samples were collected from areas of float or limited subcrop. Rock sample results are plotted on Figures 4 and 5 with the geology. Samples and results from along the Tommy Vein are plotted on Figure 6. Individual trench results are plotted on Figures 7 to 15.

The soil grid was centred over the Tommy Vein to provide information on the geochemical signature of the vein, to trace the vein and to locate additional veins in areas of no rock exposure. The soil samples were collected at 25m intervals on lines spaced 100m apart. The samples were collected from the C horizon using an auger and sent to the lab in waterproof kraft bags. Complete soil sample results are listed in Appendix III and selected results are plotted on Figures 16 and 17.

The stream sediment samples consisted of moss mats and two silt samples. The moss mats were collected from the leeward side of boulders within the creek, where possible, and placed in waterproof kraft bags. Results are shown on Figure 4.

b) **Results and Interpretation**

i) **Rocks:** (Figures 4 - 15)

Initial chip sample results from the Main Tommy Vein yielded values of 2-3g/t Au, 40g/t Ag over 3-4m widths, with widths limited by exposure. The maximum values encountered were 61.9 g/t Au, 292.5 g/t Ag over 1.5m (Sample 134961), indicating good potential for high grade ore shoots. An excavator trenching program was subsequently undertaken to facilitate more complete mapping and sampling of the Tommy Vein.

Sample results from the Tommy Vein are outlined in Table 1 and are listed from north to south. The best results were obtained from the central exposure of the vein (Trench 13, 13a) near the original high grade sample and include 38 g/t Au over 1.4m and 21 g/t over 2.0m. The widest zone with significant results was returned from Trench 8, near the north end of the vein, with Au values of 3.4 g/t over 8.8m including 4.2 g/t over 6.9m from the vein itself, which also included 9.9 g/t over 2.0m. In Trench 9 (the northernmost exposure of the Tommy Vein) the values fall below 1g/t Au. Significant Au values still persist at the southernmost exposure of the vein with 3.6 g/t across 6.0m including 3.9 g/t across 5.5m from within the vein.

Au values are generally > 1g/t within the Tommy Vein and these values are generally restricted to the vein itself. Occasional values > 1g/t Au do occur in the immediate silicified, quartz veined wallrock and values within the vein may occasionally fall below 1g/tAu. Ag/Au ratios are not consistent, generally ranging from 1 to 20. However, results >7-10 g/t Ag generally correlate with > 1 g/t Au.

Significant results were also obtained from other veins on the property. The Larry Vein, exposed in Trench 15, ran 1.2g/t Au over 3.5m (20867-70). The possible northern extent of the vein contained 555 ppb Au, with 7.6 ppm Ag over 0.9m (20859). Samples from the Trench 1-3 area, where the Larry Vein may merge with the Bobby Vein, display Au values of 915 ppb/ 0.7m (Trench 1-134923) and 610 ppb/ 0.6m (Trench 2-134925). When compared to the initial results from and the fact that Au values decrease at the northern extent of the Tommy Vein, there is good potential for better grades along the buried extent of the Larry Vein.

TABLE 1: TOMMY VEIN RESULTS

* denotes weighted average

Location	Sample Number	Au g/t	Ag g/t	Width (m)	Ag/ Au	Comments
Trench 9	20877	0.67	2.4	0.9	3.5	west wall rock/vein
(5090N)	20878	0.82	1.6	0.5	2	Vein
	*	0.7	/	1.4		
	20885	0.39	4.4	0.6	11	Vein
	20886	0.58	2.2	0.6	4	Vein
	*	0.5		1.2		
5080N	134917	0.73	1.6	2.0	2	Vein, cal, bx
Trench 8	20891	0.48	3.0	0.9	6	West wallrock
(5033N)	20892	1.00	22.0	0.6	22	Vein
	20893	0.46	5.6	1.0	12	Vein
	20894	16.89	105.7	1.0	6	Vein
	20895	2.88	27.3	1.0	9	Vein, drusy section
	20896	0.54	4.2	1.0	8	Vein
	20897	1.12	15.0	1.0	13	Vein
	20898	6.45	7.2	1.0	1	Vein, banded chalcedony
	20899	1.07	7.0	0.3	7	Vein, some wallrock
	20900	0.56	1.4	1.0	2.5	East wallrock/stockwork
	*	3.4	1	8.8		Incl. 4.2/6.9 m in vein Incl. 9.9/2 m
Trench 5 (5007N)	134970	1.97	24.0	1.2	17	Vein, chalc, ga, cp, cal Incomplete exposure
Trench 7	29302	4.15	56.4	1.0	14	Vein stockwork, wallrock
(4994N)	29303	2.68	39.6	1.0	15	silicified wallrock in vein
	29304	29304 3.10 45.9 1.0 15		15	Vein	
	29305	305 1.03 16.4 1.0 16 V			Vein, cal, amethyst	
	29306	2.05	27.5	1.0	13	E. sil stockwork, cp, mal
	*	2.6	/	5.0		

Location	Sample Number	Au g/t	Ag g/t	Width (m)	Ag/Au	Comments					
Trench 10	29311	4.57	18.6	1.1	4	Vein, bx, cal, chalc					
(4950N)	29312	7.00	47.6	1.0	7	Vein, more cal					
	29313	10.58	128.4	1.0	12	Vein, chalc					
	29314	0.34	7.8	1.2	23	East wallrock, sil, vein					
	*	5.4	/	4.3		Incl. 7.3/3.1 m in vein					
4900N	134905	2.23	33.4	0.7	15	Vein, bladed cal, bx					
	134906	0.77	16.6	1.0	22	Hanging wall, stringers					
	134907	0.80	29.2	1.0	37	Footwall, stringers					
	*	1.2	/	2.7							
4866N	134913	5.09 64.2 1.6 13		Vein, carb, chalc, bl.							
	134914	1.82	13.8	0.6	8	Wallrock, stringers					
	134915	0.85	5.8	0.8	7	Vein, stringers, carb					
	134916	2.46	55.3	1.5	22	East wallrock					
	*	3.0	/	4.5		Incomplete exposure					
Trench 11	29316	0.97	12.2	0.6	13	Vein, cal					
(4863N)	29317	1.06	9.8	1.4	9	Vein, stockwork, sil					
	29318	0.79	9.2	1.0	12	Vein					
	29319	1.26	24.2	1.0	19	Vein					
	29320	2.81	36.5	1.3	13	Vein, chalc, sil					
	29321	0.50	9.8	0.8	20	Vein					
	29322	1.97	38.1	1.4	19	Vein-chalc, sil					
	29323	1.03 19.4		1.4	19	East wall, sil, stringers					
	*	1.3	1	8.3		Incl. 2.1/2.3 m					

Location	Sample Number	Au g/t	Ag g/t	Width (m)	Ag/ Au	Comments
4850N	134910	2.92	37.8	0.8	13	Vein, carb., bx
	134911	0.81	11.2	0.5	14	Eastwall, sil. stringers
	134912	1.74	9.6	0.4	5.5	West wall, sil, stringers
	*	2.0		1.7		Incomplete exposure
4825N	134949	4.72	19.0	1.0	4	Stockwork-incomplete exp.
Trench 13a	29332	6.69	30.5	1.5	4.5	Vein, cal
(4783N)	29333	1.14	72.6	1.7	63	Vein, cal
	*	3.7	/	3.2		Incomplete exposure
4780N	134961	61.9	292.5	1.5	5	Incomplete exposure
Trench 13	29329	6.48	43.0	1.0	6.5	Vein, bx, cal, sil.
(4779N)	29330	35.80	240.3	1.0	6.5	Vein, cal
	*	21.1	/	2.0		Incomplete exposure
Trench 13a (4775N)	29331	38.12	233.6	1.4	6	Vein, incomplete exp., cal
4635N	T161	8.46	52.7	1.5	6	Vein, incomplete exp., cal
4620N	134909	1.03	50.9	1.1	49	Vein, carb, bl, incompl. exp
4600N	20860	1.48	34.5	0.5	23	Vein, incomplete exposure
<u> </u>	20862	9.88	94.1	0.3	9.5	Vein, incomplete exposure
Trench 17	29337	10.76	55.8	1.0	5	Vein, tr.py
(4575N)	29338	1.06	8.6	1.2	8	Sil, py, chl, small vein
	29339	0.84	36.3	1.5	43	Sil, py chl
	29340	5.92	130.3	0.9	22	Vein, amethyst
	29341	3.21	16.0	0.9	5	Vein, amethyst
	29342	0.63	8.6	0.5	14	Sil E. wall, incomplete exp.
	*	3.6	1	6.0		Incl. 3.9/5.5 m in vein

The Bobby Vein contains a maximum of 1.36 g/t Au across 1.0 m in Trench 4 (134965). The Trench 1 and 2 values mentioned above are probably from the Bobby Vein as well.

The Ian Vein contains values up to 11.59 g/t Au, 38.6 g/t Ag over 0.55 m (T14-2). It is the only vein encountered to date that contains significant As, with 865 ppm As from the vein itself (T14-2) and 1110 ppm As from the footwall (T14-1). Vein float, probably from the Ian Vein contained 3720 ppm As (T13W-1). The northern extension of this vein contains a maximum of 770 ppb Au, 3.4 ppm Ag across 0.3 m (134921). Maximum values from the southern silicified/stockwork zone at L45-47N/48-4950E are 1.22 g/t Au, 11.8 g/t Ag (134952).

Maximum values obtained from the poorly exposed Billy Vein are 155 ppb Au, 1.0 ppm Ag over 0.3m (20857).

The large silicified zones at Timmy Lake and on Bernie Knoll were not significantly anomalous. However, quartz float at 4210N/4960E, within the Timmy Lake Zone, ran 430 ppb Au (134859). The float may be from the southern extension of the Tommy Vein.

ii) Soils: (Figures 16 - 17)

Soil sampling was of limited value. Where B and C samples were collected for comparison, results were similar. Au was the best indicator but relatively low values were obtained. For example, only 35 ppb Au in soil was associated with the high grade zone in Trench 13. Minor, but erratic As anomalies are related to some sections of the Au bearing veins. A few isolated Zn and one Pb anomaly may also reflect proximity to veins.

The following soil anomalies were obtained from along the Tommy Vein:

Location	Au(ppb)	Other(ppm)	Comments
L51N/50E	30		below vein exposure
L50N/50E	150	3.2 Ag, 209 Zn	shallow overburden near vein
L50N/5025E	25		below vein
L50N/4950E	80		below vein, 2nd vein?
L49N/50E	35	1.6 Ag	shallow overburden above vein
L49N/5025E	90		below vein exposure

Those sections of the Tommy Vein that were overburden covered or had limited subcrop exposed did not produce Au in soil anomalies.

The highest Au in soil value obtained was 180 ppb from L50N/4775E. A stringer stockwork zone with chalcedony that contains 1.02 g/t Au (134947) is exposed in subcrop at this locality. The Au value here is probably higher due to the limited overburden covering the vein.

A 30 ppb Au in soil anomaly at L50N/4850E reflects a small vein that contains up to 770 ppb Au (134921) and may represent the northern extent of the Ian Vein/Stockwork Zone. A 5 ppb Au in soil value at L49N/4650E may represent the northern extension of the Billy Vein which is exposed at 4750N/46E (20856-7).

A 40 ppb Au anomaly at L48N/51E and a 20 ppb Au with 117 ppm Zn at L48N/5125E may indicate the extension of the Larry Vein through this area. The presence of quartz float and a rounded knoll (a typical expression of underlying veins) at 4760N/5150E supports this hypothesis.

Only three soil samples had values above < 0.2 ppm Ag. Two of them, as already shown, are from the Tommy Vein. The third consists of a weak 0.4 ppm Ag anomaly from L54N/5250E with no obvious source. The area is underlain by felsite.

A few soil results in the 5 to 15 ppm As range are associated with the veins only in the southeastern grid area. Only two values (25 and 75 ppm) were greater than this and are both located at the east end of L46N. Local silicification and quartz stringers are evident here but the overall degree of alteration is minimal.

Occasionally anomalous Zn is associated with the veins. Two anomalous values were associated with the Tommy Vein (209 and 102 ppm) and two others possibly with the Larry Vein extent (117 and 104 ppm). Several Zn values >100 ppm and up to 350 ppm are associated with the Ian Vein Stockwork Zone at L45-50N/48-4950E. A 248 ppm Pb anomaly also occurs within this zone.

Although the soils were not useful in delineating the Au bearing veins, Au (and to a lesser extent, Zn, As, Pb and Ag) spot anomalies are significant and should be followed up.

iii) Stream sediment: (Figure 4)

Only one of the stream sediment samples was anomalous in Au. The sample (M134946), which consisted of a moss mat collected from just above the trail crossing on Linear Creek, contained 160 ppb Au and 3.8 ppm Ag. Anomalous ICP-Ba of 1245 ppm, 6.8% Fe and >10,000 ppm Mn were also evident. It is unknown whether Mn scavenging is a problem in this sample, so resampling should be undertaken. If the anomaly is real, the source should be close by since a large swamp is located 100m upstream.

Another moss mat sample (M20809), 500m downstream along Linear Creek, was anomalous in Ag (5.0 ppm), ICP-Ba (1100 ppm), Fe (7.4%) and Mn (>10,000 ppm). The region is extensively covered by till. Pyritic, silicified rhyolite float from the drainage area ran 50 ppb Au.

10. CONCLUSIONS AND RECOMMENDATIONS

The TSACHA property has good potential to host a bonanza style epithermal deposit of the adularia-sericite type. Values consistently ≥ 1 g/t Au have been obtained along the entire exposure of the Tommy vein with maximum values of 61.9 g/t Au, 292.5 g/t Ag over 1.5m, indicating good potential for high grade ore shoots.

The Tommy Vein has been traced for 515m, with a probable strike length of 1.0 km, south of Tommy Lake. The continuation of the vein on the north side of the lake is supported by the presence of a northerly lineament, a 160 ppb Au in stream sediment anomaly, the presence of silicified float and anomalous Au in government basal till samples down ice.

The Larry Vein contains significant Au (>1g/t) over significant widths (3.5m). It has the potential of having the same continuity as the Tommy Vein with possibilities of economic ore shoots. The strike extension of this vein constitutes a high priority for further work.

Various geophysical methods should be tested over the Tommy Vein to determine a possible method to trace the Tommy Vein and additional veins under thick till cover. Lodgepole Pine bark sampling should also be tested since this tree covers most of the property and success has been obtained with this method in the regional area. If other methods fail, basal till sampling may be necessary in the northern claim block to locate the northern extension of the Tommy Vein or locate other veins.

Additional soil sampling is generally not recommended unless used in specific detailed areas since anomalies are low order and restricted to areas of limited till cover. The Larry Vein constitutes a good candidate for infill soil sampling along its projected extent.

A 1500-2000m diamond drill program is recommended to test the Tommy Vein at depth and along strike. An integrated program of geophysics, biogeochemistry and possible basal till sampling is further recommended to trace the northern extension of the Tommy Vein and to explore additional veins on the property.

APPENDIX I

Selected References

- Diakow, L.J., Green, K., Whittles, J. and Perry, A. (1993): Geology of the Natalkuz Lake Area, Central British Columbia (NTS 93F/6); B.C. Ministry of Energy, Mines and Petroleum Resources, Open File 1993-14.
- Diakow, L.J. and Webster, I.C.L. (1994): Geology of the Fawnie Creek Map Area (NTS 93F/3); in Geological Fieldwork 1993, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1994-1, pages 15-26.
- Diakow, L.J., Webster, I.C.L., Levson, V.M., Giles, T.R. (1994), Bedrock and Surficial Geology of the Fawnie Creek Map Area (NTS 93F/3); B.C. Ministry of Energy, Mines and Petroleum Resources, Open File 1994-2.
- Giles, T.R. and Levson, V.M. (1994): Surficial Geology and Drift Exploration Studies in the Fawnie Creek Area (93F/3); in Geological Fieldwork 1993, Grant, B. and Newell, J.M., Editors, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1994-1, pages 27-37.
- Green, K.C. and Diakow, L.J. (1993): The Fawnie Range Project-Geology of the Natalkuz Lake Map Area (93F/6); in Geological Fieldwork 1992, Grant, B. and Newell, J.M., Editors, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1993-1, pages 57-67.
- Matysek, P.F. and van der Heyden, P. (1994): 1993-94 Update: Interior Plateau Program; B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1994-1, pages 9-14.
- Schroeter, T.G. and Lane, R.A. (1994): Mineral Resources (93F/3 and parts of 93F/2,6 and 7); in Geological Fieldwork 1993, Grant, B. and Newell, J.M., Editors, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1994-1, page 45-55.
- Tipper, H.W. (1963): Nechako River Map-area, British Columbia; Geological Survey of Canada, Memoir 324, 59 pages.

APPENDIX II

3

Geochemical Procedure and Results

Jan. 1990.

GEOCHEMICAL ANALYTICAL METHODS CURRENTLY IN USE AT ROSSBACHER LABORATORY LTD.

A. SAMPLE PREPARATION

Geochem. Soil and Silt:

Samples are dried and sifted to minus 80 Mesh, through stainless steel or nylon screens.

2. Geochem. Rock:

Samples are dried, crushed to minus 1/4 inch, split, and pulverized to minus 100 mesh.

B. METHODS OF ANALYSIS

1. Multi element: (Mo, Cu, Ni, Co, Mn, Fe, Ag, Zn, Pb, Cd, As): 0.50 Gram sample is digested for four hours with a 15:85 mixture of Nitric-Perchloric acid. The resulting extract is analyzed by Atomic Absorbtion spectroscopy, using Background Correction where appropriate.

2. Antimony:

0.50 Gram sample is fused with Ammonium Iodide and dissolved. The resulting solution is extracted into TOPO/MIBK and analyzed by Atomic Absorbtion spectro-scopy.

Arsenic: (Generation Method)

0.25 Gram sample is digested with Nitric-Perchloric acid. Arsenic from the solution is converted to arsine, which in turn reacts with silver D.D.C. The resulting solution is analyzed by colorimetry.

4. Barium:

0.20 Gram sample is repeatedly digested with $HClO_{a}$ - HNO_{3} and HF. The solution is analyzed by atomic absorbtion spectroscopy.

5. Biogeochemical:

Samples are dried and ashed at 550°C. The resulting ash analyzed as in *1, Multielement Analysis.

6. Bismuth:

0.50 Gram sample is digested with Nitric acid. The The solution is analysed by Atomic absorbtion spectroscopy.

METHODS OF ANALYSIS (CONT'D)

7. Chromium:

0.25 Gram sample is fused with Sodium Peroxide. The solution is analyzed by atomic absorbtion spectroscopy.

8. Fluorine:

0.50 Gram sample is fused with Carbonate Flux, and dissolved. The solution is analysed for Fluorine by use of an Ion Selective Electrode.

9. Gold AR/AAS:

10.0 Gram sample is roasted at 550°C and dissolved in Aqua Regia. The resulting solution is subjected to a MIBK extraction, and the extract is analzed for Gold using Atomic Absorbtion spectroscopy.

9A Gold FA:

10.0 Gram sample is fused with appropriate fluxes, and the resulting lead button is cupelled to produce a gold/silver bead. The bead is dissolved in Aqua Regia and analyzed for gold by AAS.

10. Mercury:

1.00 Gram sample is digested with Nitric and Sulfuric acids. The solution if analyzed by Atomic Absorbtion spectroscopy, using a cold vapor generation technique.

11. Partial Extraction and Fe/Mn oxides:

0.50 Gram sample is extracted using one of the following: hot or cold 0.5 N. HC1, 2.5% E.D.T.A., Ammonium citrate, or other selected organic acids. The solution is analyzed by use of Atomic Absorbtion spectroscopy.

12. pH:

An aqueous suspension of soil, or silt is prepared, and its pH is measured by use of a pH meter.

13. Rapid Silicate Analysis:

0.10 Gram sample is fused with Lithium Metaborate, and dissolved in HNO₃. The solution is analyzed by Atomic Absorbtion for SiO₂, Al_2O_3 , Fe_2O_3 , MgO, CaO, Na₂O, K₂O, TiO₂, TiO₂, P₂O₃, and MnO.

14. Tin:

0.50 Gram sample is sublimated by fusion with Ammonium lodide, and dissolved. The resulting solution is extracted into TOPO/MIBK and analysed by atomic absorbtion spectroscopy.

15. Tungsten:

1.00 Gram sample is sintered with a carbonate flux, and dissolved. The resulting extract is analyzed colormetrically, after reduction with Stannous Chloride, by use of Potassium Thiocyanate.

16. ICP :

0.5 Gram sample is digested with Aqua Regia, and analyzed using a JOBIN YVON MODEL JY 32 1987 ICP Emission Spectrophotometer for Ag, Al, As, Au, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, La, Mg, Mo, Mn, Ni, P, Pb, Sb, Si, Sr, Ti, U, V, W, Zn. 17-Jun-94

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 2J3

Phone: 604-573-5700 Fax : 604-573-4557

÷

Values in ppm unless otherwise reported

TECK EXPLORATION ETK 94-292 #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

ATTENTION: JEAN PAULTER

-

. . .

. •

.

33 ROCK samples received June 7,1994 PROJECT #: 1745

Et#.	Tag #	Ag	AI %	As	B	Ba	Bł	Ca %	Cd	Co	Cr	Cu	Fe %	К %	La	Mg %_	Mn	Mo	Na %	NI	P	Pb	Sb	Sn	Sr	TI %	U	v	W	Y	Zn
1	134901	>30	0.04	15	8	35	<5	8.29	5	2	142	150	0.52	0.02	<10	0.03	1805	12	<.01	4	80	200	5	120	43	<.01	<10	2	<10	6	178
2	134902	>30	0.06	20	8	45	<5	6.63	2	2	140	75	0.63	0.03	<10	0.02	2214	11	<.01	8	60	130	5	120	35	< 01	<10	2	<10	3	94
3	134903	>30	0.11	25	8	70	<5	1.76	2	2	137	45	0.65	0.07	<10	<.01	1125	11	<.01	4	120	28	<5	120	13	<.01	10	2	<10	3	85
4	134904	0.8	0.54	10	8	40	<5	0.47	<1	5	113	17	1.70	0.07	<10	0.34	483	8	0.04	9	400	10	<5	100	14	0.01	<10	9	<10	2	26
5	134905	>30	0.05	15	8	60	<5	3.34	1	1	187	19	0.44	0.03	<10	0.01	1535	15	< 01	5	50	16	<5	160	22	<.01	10	1	<10	1	31
6	134906	16.6	0.13	40	8	60	<5	0.47	<1	з	124	13	1.01	0.10	<10	0.01	655	9	<.01	7	170	8	<5	120	12	<.01	20	з	<10	3	38
7	134907	29.2	0.10	25	6	80	<5	1.44	<1	3	117	24	1.03	0.09	<10	<.01	1026	9	<.01	4	190	12	<5	100	11	<.01	<10	3	<10	3	43
8	134908	2.2	0.15	40	6	85	<5	3.56	<1	4	97	18	1.13	0.13	<10	0.03	977	10	< 01	5	200	16	<5	80	27	<.01	<10	4	<10	8	50
9	134909	>30	0.06	15	8	40	<5	0.36	1	2	161	7	0.57	0.05	<10	<.01	307	13	< 01	5	80	18	<5	160	10	<.01	20	2	<10	<1	40
10	134910	>30	0.06	30	8	45	<5	4.39	<1	2	168	20	0.42	0.04	<10	<.01	746	13	<.01	9	50	24	<5	160	33	<.01	<10	1	<10	3	19
11	134911	11.2	0.10	50	8	50	<5	0.71	<1	2	178	22	0.72	0.10	<10	<.01	260	14	< 01	6	130	14	<5	160	15	<.01	20	2	<10	3	26
12	134912	9.6	0.12	105	6	50	<5	0.69	<1	3	149	20	0.83	0.11	<10	<.01	266	12	<.01	8	160	16	<5	140	10	<.01	<10	2	<10	3	23
13	134913	>30	0.06	25	8	50	<5	1.18	<1	2	212	13	0.54	0.04	<10	<.01	483	17	<.01	6	80	48	<5	200	10	<.01	<10	1	<10	2	18
14	134914	13.8	0.13	10	6	40	<5	0.35	<1	3	139	17	0.92	0.10	<10	<.01	324	10	0.01	7	160	8	<5	140	10	< 01	<10	3	<10	4	34
15	134915	5.8	0.08	<5	6	30	<5	6.66	<1	2	128	10	0.73	0.07	<10	<.01	593	10	<.01	4	150	4	<5	120	45	< 01	<10	2	<10	4	26
16	134916	>30	0.13	20	6	70	<5	0.42	<1	3	147	14	0.93	0.11	<10	<.01	566	11	<.01	8	230	10	<5	140	9	<.01	10	2	<10	3	30
17	134917	8.0	0.05	15	12	30	<5	5.85	2	1	188	24	0.52	0.03	<10	0.06	1385	15	<.01	5	40	26	<5	160	43	<.01	<10	2	<10	5	67
18	134918	1.6	0.16	10	6	55	<5	1.12	- 4	3	140	55	0.74	0.14	<10	0.09	510	10	<.01	7	190	18	<5	120	15	<.01	<10	2	<10	4	131
19	134919	2.0	0.15	15	6	45	<5	0.34	<1	3	162	13	0.92	0.14	<10	0.01	412	12	<.01	5	190	8	<5	160	9	<.01	<10	3	<10	4	35
20	134920	2.6	0.07	30	6	45	<5	0.59	<1	2	158	11	0.58	0.04	<10	<.01	264	12	<.01	8	60	24	<5	140	6	<.01	<10	1	<10	1	21
21	134921	1.2	0.15	20	8	35	<5	3.90	<1	5	140	11	1.98	0.13	<10	0.42	1418	11	0.01	4	190	26	<5	100	41	<.01	20	6	<10	10	46
22	134922	3.4		25	6	50	<5	0.46	<1	3	159	9	0.88	0.09	<10	0.05	325	12		9	130	10	<5	140	14	<.01	20	2	<10	3	22
23	134923	10.6	0.08	15	8	265	<5	1.14	<1	2	164	7	0.46	0.04	<10	0.03	349	13	<.01	5	40	20	<5	140	28	<.01	40	1	<10	2	26
24	134924	1.0	0.20	15	Ā	65	<5	0.11	<1	3	116	14	0.79	0.13	<10	0.02	364	.9	0.01	6	240	96	<5	120	11	<.01	10	À	<10	7	79
25	134925	1.8		<5	8	75	<5	3.21	1	2	142	5	0.66	0.03	<10		1510	-	<.01	4	30	34	<5	120	39	<.01	<10	1	<10	3	67
26	134926	1.4	0.19	40	6	205	<5	0.11	2	4	112	22	0.98	0.14	<10	<.01	306	10	<.01	6	220	116	<5	100	12	<.01	<10	2	<10	5	157
27	134927	0.4		10	6	65	<5	0.11	<1	5	119	11		0.14	<10	0.04	353		0.02	4	250	12	<5	100	9	<.01	<10	4	<10	5	40
28	134929		0.19	10	6	50	<5	0.07	<1	3	100	9	0.88	0.13	<10	0.01	292	8		4	220	26	<5	100	7	<.01	<10	3	<10	3	81

Page 1

and the strange sector of the sector of t

. -

TECK EXPLORATION ETK 94-292

Eco-Tech Laboratories Ltd.

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T.

5

······

- -

B.C. Certified Assayer

Et #.	Tag #	Ag	AI %	As	B	84	BI	Ca %	Cd	Co	Cr	Cu	Fe %	К%	La	Mg %	Mn	Mo	Na %	NI	P	РЬ	Sb	Sn	Sr	TI %	U	<u>v</u>	W	Y	Zn
29	134930	0.8	0.22	<5	6	250	<5	0.18	<1	4	108	20	0.93	0.13	<10	0.03	317	8	0.01	6	240	16	<5	100	15	<.01	<10	4	<10	5	34
30	134934	0.6	0.20	10	4	90	<5	0.40	<1	3	111	17	0.76	0.12	<10	0.01	412	8	0.01	6	260	42	<5	100	10	<.01	<10	4	<10	5	29
31	134935	0.8	0.22	<5	6	65	ব	0.21	<1	3	126	8	0.86	0.14	<10	0.01	549	10	0.01	- 4	220	10	<5	120	10	<.01	<10	4	<10	4	35
32	134936	0.8	0.16	10	8	75	ব	0.83	2	3	132	13	0.90	0.11	<10	0.02	741	10	0.01	7	180	88	<5	120	12	<.01	<10	3	<10	5	146
33	R-T3-3	0.6	0.19	15	8	125	<5	0.11	<1	3	126	15	0.96	0.13	<10	0.02	317	10	0.01	5	250	26	<5	120	18	<.01	10	3	<10	6	35
QC D/ Reput 25 Stand		2.0 0.4	0.07 1.75	5 80	8	80 175	ব	3. 27 1.67	2	2 18	142 64	5 85	0.67 3.46	0.03	<10 <10	0.01 0.85	1535 659	12 <1	<.01 0.01	4 29	30 720	34 21	<5 <5	120 ∙ <20	43 55	<.01 0.05	10 <10	1 76	<10 <10	3 6	68 73

XLS/Teck

Page 2

and the second secon

and a second second

18-Jun-94

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 2J3

Phone: 604-573-5700 Fax : 604-573-4557

Values in ppm unless otherwise reported

TECK EXPLORATION ETK 94-290 #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

- ----

ATTENTION: JEAN PAUTLER

22 ROCK samples received June 7,1994 PROJECT #: 1745

. .,

Et #.	Tag #	Au(ppb)	Ag	AI %	As	8	84	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	к %	La	Mg %	Mn	Mo	Na %	NI	P	Pb	Sb	Sn	8r	TI %	U	v	w	Y	Zn
1	134851	10	0.4	0.16	35	8	40	<5	0.36	<1	4	151	83	1.43	0.13	<10	<.01	253	14	<.01	7	130	38	<5	120	10	< 01	<10	3	<10	2	228
2	134852	10	0.4	0.07	15	10	45	<5	6.29	1	2	98	21	0.68	0.05	<10	0.02	857	8	<.01	5	80	8.	<5	60	41	<.01	<10	2	<10	4	40
3	134853	>1000	24.2	0.03	<5	8	20	<5	6.89	<1	1	124	17	0.30	0.02	<10	< 01	1159	10	<.01	4	20	<2	<5	100	31	<.01	<10	<1	<10	3	24
4	134854	10	0.2	0.05	<5	8	15	<5	0.18	<1	2	155	18	0.52	0.02	<10	< 01	186	11	<.01	8	10	2	<5	140	- 4	<.01	<10	1	<10	<1	21
5	134855	90	0.6	0.15	<5	8	55	<5	0.19	<1	2	94	6	1.26	0.14	10	<.01	385	8	<.01	3	170	6	<5	60	5	< 01	<10	2	<10	4	69
6	134856	>1000	>30	0.12	35	8	85	<5	0.03	1	1	109	7	1.08	0.19	<10	<.01	49	10	<.01	6	70	60	<5	80	10	<.01	<10	1	<10	<1	46
7	134857	120	2.0	0.11	20	8	500	<5	0.36	7	3	172	16		0.08	<10	<.01	390	14	<.01	6	80	264	<5	140	11	<.01	<10	2	<10	6	350
8	134858	425	1.4	0.07	20	8	50	<5	0.02	<1	1	152	15	0.54	0.04	<10	<.01	42	14	<.01	8	50	56	<5	140	3	<.01	<10	3	<10	3	24
9	134859	430	0.8	0.13	5	8	85	<5	0.02	<1	<1	129	5	0.36	0.12	10	<.01	50	10	<.01	4	150	136	<5	120	8	<.01	<10	<1	<10	4	57
10	134937	10	<.2	0.18	15	6	55	<5	0.02	<1	<1	93	8	0.59	0.12	<10	< 01	19	14	<.01	5	20	14	<5	80	5	<.01	<10	<1	<10	1	12
11	134938	5	<.2	0.28	<5	8	50	<5	0.06	<1	3	130	9	1.06	0.11	<10	0.06	187	11	0.03	4	120	4	<5	100	7	<.01	<10	7	<10	6	26
12	134939	5	<.2	0.09	<5	8	45	<5	0.02	<1	4	72	11	1.68	0.08	<10	<.01	52	5	<.01	5	30	6	<5	20	7	<.01	<10	<1	<10	1	12
13	134940	5	0.2	0.28	5	6	20	<5	0.01	<1	2	60	8	0.52	0.02	<10	<.01	69	5	<.01	2	20	4	<5	40	26	<.01	10	9	<10	<1	5
14	134947	>1000	>30	0.1	15	8	30	<5	2.34	<1	2	144	16	0.65	0.07	<10	<.01	597	11	<.01	7	70	4	<5	120	15	<.01	<10	2	<10	3	20
15	134948	>1000	27.8	0.11	10	8	30	<5	2.39	<1	2	121	8	0.60	0.06	<10	<.01	478	12	<.01	4	60	2	<5	100	11	<.01	<10	2	<10	2	15
16	134949	>1000	19.0	0.12	25	8	45	<5	4.74	<1	2	142	10	0.75	0.11	<10	<.01	814	11	<.01	7	110	2	<5	100	20	<.01	<10	2	<10	6	22
17	134950	85	0.6	0.19	40	8	55	<5	0.06	1	2	105	7	0.76	0 15	<10	<.01	79	12	<.01	4	140	72	<5	80	5	<.01	<10	2	<10	3	58
18	134951	225	1.0	0.11	30	8	260	<5	0.07	<1	1	163	9	0.72	0.13	<10	<.01	39	16	<.01	8	90	34	<5	160	10		<10	1	<10	3	16
19	134952	>1000	11.8	0.06	20	8	85	<5	0.11	2	2	179	8	0.75	0.04	<10	<.01	350	16	<.01	5	70	62	<5	160	2	<.01	<10	2	<10	2	129
20	134953	140	3.8	0.13	30	8	80	<5	0.25	2	2	153			0.10	<10	<.01	281	12	<.01	8	120	28	<5	120	4	<.01	<10	1	<10	5	102
21	134954	550	1.4	0.12	25	8	630	<5	0.02	1	2	137	8	1.02	0.10	<10	<.01	75	16	<.01	4	130	112	<5	120	10	<.01	<10	1	<10	1	85
22	134955	125	2.0		20	8	790	<5	0.01	<1	2	120	7	0.44		<10	<.01	28	12		6	70	40	<5	100	-	<.01	<10	2	<10	2	12

.

. . .

TECK EXPLORATION ETK	94-290																						Eco-Te	h Labor	atories	s Ltd.		
Et#. Tag#	Ag Al %	As	B	Ba	BI Ca%	Cd	Co	Cr	Cu	Fe %	<u>K %</u>	L	Mg %	Mn	Mo	Na %	Ni	Р	РЬ	8b	Sn	8r	TI %	<u> </u>	<u>v</u>	w	Y	Zn
QC DATA: Repost: 10 134937	<.2 0.19	15	6	55	<5 0.02	<1	<1	97	7	0.62	0.12	<10) <.01	20	14	<.01	5	20	14	<5	80	5	<.01	<10	<1	<10	2	12
Standerd 1991:	1.0 1.78	60	10	160	<5 1.75	2	18	60	84	3.47	0.33	<10	0.64	682	<1	<.01	24	690	14	5	<20	58	0.06	<10	80	<10	8	76
																									~			

XLS/Teck

ì

.

_ ...

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

•

Page 2

n Berke Support of State St

17-Jun-94

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 2J3

Phone: 604-573-5700 Fax : 604-573-4557

Values in ppm unless otherwise reported

TECK EXPLORATION ETK 94-291 #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

ATTENTION: JEAN PAUTLER

16 ROCK samples received June 7,1994 PROJECT #: 1745

ECO-TECH LABORATORIES LTD. Frank J. Pozzotti, A.Sc.T.

B.C. Certified Assayer

,

Et #.	Tag #	Au(ppb)	Ag	AI %	As	B	Ba	BI	Ca %	Cd_	Co	Cr	Cu	Fe %	К %	LA	Mg %	Mn	Mo	Na %	NI	P	Pb	Sb	S n	Sr	TI %	U	V	W	Y	Zn
1	134956	150	0.4	0.10	25	8	50	<5	2.72	4	2	128	4	0.57	0.05	<10	<.01	503	10	<.01	4	90	8	<5	120	20	<.01	<10	1	<10	2	103
2	134957	120	1.2	0.10	25	8	55	<5	0.09	<1	1	182	7	0.48	0.04	<10	<.01	91	16	<.01	9	40	22	<5	180	5	<.01	<10	1	<10	<1	22
3	134958	220	2.8	0.03	5	8	15	<5	0.03	<1	<1	154	3	0.30	<.01	<10	<.01	39	13	<.01	4	20	10	<5	160	3	<.01	<10	<1	<10	<1	9
4	134959	65	1.2	0.15	40	8	140	<5	0.03	<1	2	156	5	1.06	0.23	<10	<.01	88	12	<.01	8	100	12	<5	140	14	<.01	<10	<1	<10	<1	31
5	134960	95	10.2	0.05	5	8	175	<5	0.02	<1	1	223	3	0.40	0.01	<10	<.01	44	16	<.01	6	20	8	<5	220	- 4	<.01	<10	1	<10	<1	11
6	134961	>1000	>30	0.05	15	8	30	<5	8.73	<1	<1	105	11	0.26	0.04	<10	<.01	1558	8	<.01	5	50	<2	<5	100	49	<.01	<10	<1	<10	3	10
7	134962	705	4.0	0.16	20	8	40	<5	0.25	<1	1	196	7	0.63	0.13	<10	< 01	118	15	<.01	5	30	70	<5	200	5	<.01	<10	3	<10	<1	37
8	134963	520	2.0	0.15	40	8	40	<5	0.30	2	2	113	24	0.88	0.09	<10	0.03	259	8	<.01	5	140	42	<5	100	5	<.01	<10	2	<10	4	48
9	134964	55	1.0	0.25	10	8	50	<5	0.09	<1	3	115	14	1.06	0.15	<10	0.01	402	8	0.01	3	200	10	<5	100	7	<.01	<10	4	<10	5	22
10	134965	>1000	23.4	0.08	10	8	50	<5	4.11	<1	1	164	7	0.55	0.04	<10	<.01	1335	12	<.01	8	40	- 4	<5	140	15	<.01	<10	2	<10	4	17
11	134966	450	6.6	0.18	10	8	65	<5	0.29	<1	3	125	12	1.08	0.13	<10	0.01	851	9	<.01	3	180	8	<5	100	7	<.01	10	3	<10	6	24
12	134967	50	1.0	0.25	15	8	60	<5	0.42	1	3	114	- 14	0.86	0.13	<10	0.01	751	8	<.01	6	170	34	<5	100	8	<.01	<10	3	<10	5	74
13	134968	80	1.8	0.14	10	8	50	<5	2.53	<1	2	148	· 9	0.65	0.09	<10	<.01	873	11	<.01	- 4	100	20	<5	140	14	<.01	<10	2	<10	5	57
14	134969	800	4.0	0.08	<5	4	55	<5	10.50	66	5	123	18	1.69	0.03	<10	0.34	3406	10	<.01	6	30	3736	<5	60	72	<.01	10	- 4	<10	12	3124
15	134970	>1000	24.0	0.04	20	8	30	<5	0.67	3	1	180	227	0.52	<.01	<10	0.01	463	17	<.01	5	30	348	5	180	5	<.01	10	1	<10	<1	160
16	134971	250	2.4	0.14	75	8	40	<5	0.36	2	2	113	57	0.71	0.09	<10	<.01	262	8	<.01	6	130	56	<5	100	4	<.01	<10	2	<10	3	88
00.00																																
Repe					_			-			•		_								-			_								
10	134965	-	23.8	0.08	5	8	55	<5	4.12	<1	2	166	8	0.54	0.05	<10	<.01	1335	12	<.01	8	30	6	<5	160	17	<.01	<10	1	<10	4	21
Stand	wd 1991:																								•							
		-	1.0	1.76	60	8	155	<5	1.72	4	20	62	79	3.50	0.34	<10	1.02	713	<1	0.01	21	720	18	<5	<20	58	0.08	<10	75	<10	8	70
																												-11	1	1		

XLS/Teck

ан талан алтыр жылдакк көзөрө жекекеке какериа таларык жана керекаке жекекекеке жана какериалары жана кыргазат

...

20-Oct-94

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 2J3

Phone: 604-573-5700 Fax : 604-573-4557

Values in ppm unless otherwise reported

TECK EXPLORATION ETK 94-834 #350-272 VICTORIA STREET KAMLOOPS, B C V2C 2A2

ATTENTION: J. PAUTLER

34 Rock samples received October 11, 1994 Sample Run Date: 20 October, 1994 Project: 1745

• • •

. . .

		Au																												
Et #.	Tag #	(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	8n	8r	TI %	ບ	V	W	Y	Zn
1	20807	5	<.2	0.09	5	65	ৰ	0.02	<1	2	55	7	1.89	<10	<.01	17	14	< 01	<1	20	2	<5	<20	11	<.01	10	3	<10	<1	2
2	20810	5	<.2	0.09	<5	20	<5	0.02	<1	<1	96	2	0.28	<10	0.01	177	- 4	<.01	<1	10	<2	<5	<20	<1	<.01	<10	<1	<10	<1	1
з	20811	10	<.2	0.73	10	70	<5	0.51	<1	4	229	6	1.60	<10	0.35	266	16	0.05	4	280	4	<5 `	<20	19	0.02	<10	17	<10	5	19
4	20816	5	<.2	0.10	<5	75	<5	0.02	<1	<1	15	<1	1.15	<10	<.01	23	2	<.01	<1	110	<2	<5	<20	25	<.01	<10	2	<10	<1	<1
5	20817	5	<.2	0.07	<5	260	<5	<.01	<1	<1	171	<1	0.25	<10	<.01	25	8	<.01	3	30	<2	<5	<20	17	<.01	10	1	<10	<1	2
6	20818	50	<.2	0.07	10	25	<5	0.02	<1	3	57	2	1.88	<10	<.01	9	6	<.01	<1	20	8	<5	<20	3	<.01	10	<1	<10	<1	<1
7	20819	10	<.2	0.14	30	105	<5	0.08	2	2	108	2	1.05	<10	<.01	142	6	<.01	1	200	22	<5	<20	<1	<.01	10	2	<10	2	71
8	20820	30	0.4	0.18	15	25	<5	0.02	<1	2	108	5	1.13	<10	<.01	88	10	0.01	<1	140	8	<5	<20	<1	<.01	<10	3	<10	2	41
9	20821	10	<.2	0.12	20	35	<5	<.01	<1	<1	100	1	0.46	<10	<.01	19	6	<.01	<1	50	2	<5	<20	2	<.01	10	2	<10	1	4
10	20822	5	0.4	0.12	45	50	<5	0.24	1	3	123	5	1.35	<10	<.01	185	10	<.01	<1	200	6	<5	<20	<1	<.01	20	2	<10	2	71
11	20823	40	0.6	0.06	40	15	<5	4.67	°2	1	86	3	0.66	<10	<.01	490	6	<.01	<1	90	10	<5	<20	37	<.01	<10	1	<10	2	75
12	20824	90	0.2	0.12	60	25	- ৩	-1.60	2	1	115	5	0.65	<10	<.01	245	12	<.01	<1	140	40	<5	<20	4	<.01	10	1	<10	1 /	119
13	20825	35	0.4	0.12	35	35	حە	0.07	<1	2	97	5	1.04	<10	<.01	111	9	<.01	1	160	50	<5	<20	3	<.01	10	1	<10	- 1 (120 🔍
14	20826	10	0.8	0.15	20	40	<5	0.03	<1	<1	94	5	1.01	<10	<.01	63	12	0.01	<1	170	82	<5	<20	2	<.01	10	2	<10	<1	99
15	20827	5	<.2	0.14	20	25	<5	0.02	<1	<1	118	3	1.04	<10	<.01	54	10	0.01	2	150	78	<5	<20	<1	<.01	<10	2	<10	<1	66
16	20828	5	<.2	0.15	15	25	<5	0.09	1	2	100	3	1.09	<10	<.01	195	10	0.01	<1	160	38	<5	<20	<1	<.01	20	3	<10	1	66
17	20829	5	0.6	0.13	40	55	- 4	0.23	3	3	106	9	1.39	<10	<.01	301	5	<.01	1	170	22	<5	<20	2	<.01	10	3	<10	2	161 🥄
18	20630	10	0.8	0.18	45	65	<5	0.02	1	2	66	8	1.66	<10	<.01	73	9	<.01	<1	210	70	<5	<20	<1	<.01	10	2	<10	<1	205 1
19	20831	25	0.2	0.18	65	40	<5	0.03	<1	2	119	5	1.14	<10	<.01	92	10	0.01	1	190	10	<5	<20	2	<.01	10	2	<10	3	-41
20	20832	5	7.6	0.14	55	350	<5	0.02	1	2	104	(38)	0.77	<10	<.01	37	10	<.01	<1	150	80	15	<20	11	<.01	20	2	<10	2	90
21	20833	20	1.4	0.13	60	, 125	<5	0.01	<1	<1	99	6	0.65	<10	<.01	18	20	<.01	<1	120	< 110	<5	<20	6	<.01	<10	1	<10	1	16
22	20834	100	0.4	0.12	70	່ 30	<5	0.05	<1	1	115	5	0.88	<10	<.01	46	13	<.01	<1	120	14	<5	<20	3	<.01	10	2	<10	1	13
23	20835	470	4.2	0.15	- 55	45	<5	1.34	<1	3	102	8	1.13	<10	<.01	467	5	0.01	1	230	16	<5	<20	7	<.01	10	3	<10	4	50
24	20836 1./	5 >1000	7.0	0.06	25	80	<5	2.37	3	2	118	6	1.40	<10	0.18	1086	11	<.01	1	90	78	<5	<20	18	<.01	10	7	<10	3	263
25	20837	750	2.2	0.12	15	25	<5	0.20	<1	2	112	5	1.09	<10	<.01	272	6	0.01	1	130	16	<5	<20	<1	<.01	<10	3	<10	<1	40

Page 1

يمار المحمد المحمد بالمحمد المحمد المحمد المحمد المحمد المحمد والمحمد والمحمول والمحمد والمحمد المحمد المحمد والمحمد

TECK EXPLORATION ETK 94-834

Au

ECO-TECH LABORATORIES LTD.

.

Et#.	Tag #	(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	SÞ	Sn	Sr	TI %	<u> </u>	v	W	Y	Zn
26	20851	5	<.2	0.16	15	55	<5	0.05	<1	2	115	13	0.75	<10	<.01	242	9	<.01	<1	170	112	<5	<20	1	< 01	10	4	<10	2	90
27	20852	5	<.2	0.19	<5	25	<5	0.11	<1	1	108	<1	0.85	<10	<.01	134	5	<.01	1	220	12	<5	<20	<1	< 01	<10	2	<10	3	33
28	20853	105	0.6	0.12	10	195	<5	0.02	2	<1	100	<1	0.27	10	<.01	19	8	< 01	<1	140	162	<5	<20	11	< 01	<10	<†	<10	3	143
29	20854	95	0.6	0.16	105	35	<5	0.01	<1	<1	105	5	1.02	<10	<.01	32	18	0.01	1	150	18	<5	<20	2	< 01	10	2	<10	2	23
30	20855	75	0.6	0.19	145	30	<5	0.02	<1	1	88	5	1.09	<10	<.01	33	21	0.01	<1	160	22	<5	<20	3	<.01	<10	2	<10	2	24
31	20856	60	0.4	0.16	35	55	<5	0.12	<1	2	115	8	0.72	<10	0.01	117	16	< 01	2	120	14	<5	<20	<1	<.01	<10	1	<10	2	42
32	20857	155	1.0	0.09	95	95	<5	0.02	<1	2	135	- 4	0.69	<10	<.01	158	23	<.01	1	30	52	<5	<20	<1	< 01	20	2	<10	<1	43
33	20858	45	<.2	0.07	70	35	<5	<.01	<1	<1	129	2	0.64	<10	<.01	30	15	<.01	1	80	36	<5	<20	3	< 01	<10	1	<10	<1	26
34	20859	555	7.6	0.25	20	25	<5	0.21	<1	2	134	20	0.83	<10	0.36	506	10	<.01	<1	80	28	<5	<20	2	0.01	10	4	<10	2	43

QC/DATA:	=																												
<i>Repeat #;</i> 1 20807		<.2	2 0.08	10	65	<5	0.02	<1	2	54	7	1.83	<10	<.01	15	14	<.01	<1	20	4	<5	<20	8	<.01	10	2	<10	<1	2
Standard 1991	155	1.0) 1.74	70	160	<5	1.89	<1	19	69	85	3.99	<10	1.02	664	<1	0.02	25	650	22	5	<20	60	0.10	<10	75	<10	4	72

 \mathcal{T} C

ECO-TECH LABORATORIES LTD Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/Teck df#854

Page 2

19-0ct-94

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 2J3

Phone: 604-573-5700 Fax : 604-573-4557

Values in ppm unless otherwise reported

A.,

TECK EXPLORATION ETK 94-847 #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

ATTENTION JEAN PAUTLER

۰.

23 Rock samples received October 12, 1994 Sample Run Date: 18 October, 1994 PROJECT #: 1745 Samples Submitted By: J. Pautler

والمحد ووردي فرود المعراري محير والمترو والمتحر والمتعود والمحدة المحادة الماد والمتحد

				Au																												
	E	#.	Tag #	(ppb)	Ag	AI %	As	Ba	Bł	<u>Ca %</u>	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	<u>P</u>	РЬ	Sb	Sn	Sr	TI %	U	<u>v</u>	<u>w</u>	<u>Y</u>	Zn
		1	20838	80	1.8	0.64	70	35	-	0.14	<1	6	186	10	2.07			435	7	0.02	3	310	10	5	80	1	< 01	<10	18	<10	6	44
	_	2	20839	10	<.2	0.31	15	50	<5	0.53	<1	4	195	8	1.73	<10	0.05	518	12	0.02	<1	260	6	<5	80	4	< 01	<10	9	10	7	36
1-	T157	3	20840	70	<.2	0.27	25	90	<5	0.15	<1	4	141	10	1.44	<10	0.02	597	6	< 01	<1	240	16	<5	60	<1	<.01	<10	6	<10	5	64
L	·~)	4	20841	5	<.2	0.29	10	80	<5	0.37	<1	4	161	3	1.67	<10	0.01	748	10	D.01	<1	280	6	<5	80	<1	<.01	<10	7	<10	7	46
l	$\sum_{i=1}^{n}$	5	20842	5	<.2	0.25	10	85 -	<5	0.10	<1	4	165	4	1.50	<10	<.01	786	6	0.01	1	230	12	<5	90	3	<.01	<10	8	<10	7	30
		6	20843	10	<.2	0.32	10	70	<5	0.13	<1	5	225	7	1.71	<10	0.01	577	13	0.02	<1	280	12	<5	100	2	<.01	<10	· 11	<10	7	50
	- L	7	20844	5	<.2	0.30	10	60	<5	0.13	<1	4	171	4	1.53	<10	<.01	611	10	<.01	<1	280	26	<5	80	4	<.01	<10	9	20	6	58
+	15035	805	20860 1.48	>1000	>30	0.05	15	890	<5	0.22	<1	3	264	4	0.46	<10	<.01	146	16	<.01	<1	40	26	<5	120	9	<.01	<10	2	<10	<1	27
			20861	400	12.2	0.09	30	65	<5	4.85	<1	2	168	4	0.64	<10	<.01	523	7	<.01	<1	140	22	5	60	33	<.01	<10	2	10	<1	31
	· 1	00.3	20862 9.88	>1000		0.15	55	85	\$	4.16	<1	3	147	6	1.01	<10	<.01	1129	9	<.01	<1	190	4	5	60	15	<.01	<10	5	<10	2	61
L	- 7	-																4000	-		-	~~~	48					-10	-	-10	•	
1	15	1	20663	15	0.6		15	55	<5	0.10	<1	4	118	9	1.40	<10	<.01	1066		<.01	<1	230	16	<5	40	<1	<.01	<10		<10	2	64
		2	20664	10	0.8		15	45	<5	0.08	<1	3	131	4	1.38	<10	0.01	758	6	<.01	<1	210	8	<5	60	<1	<.01	<10	8	<10	2	45
1			20865	40	<.2		10	45	<5	0.05	<1	3	149		1.06	<10	<.01	701	8	<.01	<1	160	10	<5	80	2	<.01	<10		10	2	43
	{1		20866	35	<.2		20	40	<	0.05	<1		160	11	1.23	<10	<.01	647	8	<.01	1	210	10	<5	60	<1	<.01	<10	6	20	3	43
ł	- }'	5.18	20867	710	7.6	0.12	15	25	4	0.96	<1	1	200	1	0.42	<10	<.01	594	11	<.01	1	50	28	<5	100	4	<.01	<10	3	<10	<1	30
ŀ	1	610	20868 2.47	>1000	21.6	0.16	15	35	<5	0.59	<1	2	322	10	0.60	<10	0.01	541	12	<.01	4	70	28	<5	160	<1	<.01	<10	5	10	<1	28
	1/1	7 1.0	20869	155	2.4	0.07	10	45	<5	2.64	<1	2	196	9	0.39	<10	<.01	891	12	<.01	1	20	28	<5	80	12	<.01	<10	3	<10	<1	59
1	11	8.75	20870 1.64	>1000	11.0	0.12	10	20	<5	1.03	<1	2	245	4	0.45	<10	<.01	327	9	<.01	2	50	32	<5	120	5	<.01	<10	3	10	<1	24
	11	9	20871	10	0.2	0.30	25	35	<5	0.11	<1	5,	194	9	1.29	<10	<.01	561	10	<.01	2	290	<u>66</u> 8	<5	80	<1	<.01	<10	7	20	4	102
1	1		20872	5	<.2		15	60	<5	0.09	<1	4	179	2	1.45	<10	<.01	541	6	<.01	2	280	-8	<5	80	1	<.01	<10	12	10	4	<u>102</u> 31
			20873	50	4.6	0.32	30	265	<5	0.18	<1	6	188	11	1.30	<10	0.02	632	11	<.01	<1	280	64	<5	80	2	<.01	<10	8	10	5	98
		2_	20874	5	<.2	0.34	25	70	<5	0.12	<1	4	168	12	1.24	<10	0.03	403	6	<.01	1	290	20	<5	80	2	<.01	<10	6	<10	5	65
		3	T# T12	5	<.2	1.55	5	130	10	1.54	<1	20	80	22	4.32	<10	0.68	705	<1	0.06	10	1260	16	<5	<20	70	0.22	<10	68	<10	9	73

TECK EXPLORATION ETK 94-847

ECO-TECH LABORATORIES LTD.

Et#. Tag#	Au (ppb)	Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	<u>Mg %</u>	Mn	Mo	Na %	NI	P	РЬ	Sb	Sn	Sr	TI %	<u> </u>	v	w	Y	Zn
QC/DATA: Repet #: 1 20838	90	2.2	0.66	70	40	<5	0.15	<1	6	193	11	2.14	<10	0.37	453	7	0.02	3	300	10	<5	80	3	<.01	<10	19	20	6	44
Standerd 1991	150	1.0	1.91	70	160	<5	1.97	<1	23	70	85	4.02	<10	0.93	746	<1	0.02	24	810	22	5	<20	62	0.15	<10	89	<10	3	75

XLS/Teck4 df# 3122

ECO-TECHTLABORATORI Frank J Pezzotti, A Sc.T., B C. Certified Assayer ATORIES LTD

ري موردي و مراجع و مراجع المراجع الم

28-Oct-94

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 2J3

Phone: 604-573-5700 Fax : 604-573-4557

.

.

....

Values in ppm unless otherwise reported

TECK EXPLORATION ETK 94-862 #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

ATTENTION: Fred Daley

41 Rock samples received October 18, 1994 Sample Run Date. October 25, 1994 Samples Submitted By: Jean Pautler (per H.S.) Project: 1745

				A																			•	i ojeci. i									
	-		× 4	Au						Di	C - N	~	6 -		C	F		14- W	Mn	м.	N		Р	РЬ	Sb	Sn	e.	TI %	U	v	w	Y	Zn
	두		Tag #	ррь		g A		As	Ba		Ca %	Cd	Co	Cr		Fe %		<u>Mg %</u>	_	_	Na %	<u>Ni</u>					_	_		<u> </u>			and the second se
	(20845	65		2 0		20	185		0.19	1	3	149		1.27	<10	0.01	635	11	< 01	5	120	54	<5	<20	3		<10	4	<10	3	91
			20846	20	0.1		.22	10	60	<5	0.07	<1	3	117	13	1.09	<10	0.02	439	9	< 01	3	150	14	<5	<20	<1	< 01	<10	4	<10	3	26
\vdash			20847	35	1.3		22	5	60	<5	0.17	<1	3	142	13	1.25	<10	0.01	424	10		5	180	10	<5	<20	2		<10	6	<10	4	25
	3)	4 2	20848	40	0.4	4 0	0.27	5	55	<5	0.44	<1	4	116	10	1.25	<10	0.02	522	9	<.01	3	170	6	<5	<20	1	< 01	<10	6	<10	3	29
	1	52	20849	40	0.0	80	22	10	45	<5	0.11	<1	3	-114	9	1.09	<10	0.01	399	8	0.01	4	200	8	<5	<20	2	< 01	<10	8	<10	5	22
	1	62	20850	5	0.4	4 0	24	10	60	<5	0.07	<1	3	135	13	1.15	<10	0.01	391	10	0.01	3	200	12	<5	<20	1	< 01	<10	8	<10	4	26
	ſ	7 2	20875	5	0.0	60	.24	25	375	<5	3.25	1	3	114	13	0.99	<10	0.23	910	10	< 01	3	190	20	5	<20	61	< 01	<10	3	<10	5	68
		8 2	20876	5	0.	6 0	24	25	375	<5	0.84	2	3	110	10	0.91	<10	0 14	484	11	< 01	3	180	72	<5	<20	17	<.01	<10	4	<10	5	142
	_)	92	20877	665	2.	4 0	0.14	15	595	<5	2.56	6	2	174	9	0.62	<10	0.06	775	14	< 01	5	90	138	<5	<20	81	<.01	<10	3	<10	з	243
1	511	0 2	20878	815	1.0	6 0	0.06	5	275	<5	2.18	2	1	171	15	0.44	<10	0.02	709	15	<.01	4	20	164	<5	<20	45	< 01	<10	2	<10	2	. 80
	1			••••																													
	1	1 2	20879	5	1.	0 0	0.12	25	85	<5	5.35	4	2	153	21	0.59	<10	0.06	1241	16	<.01	4	90	298	<5	<20	100	<.01	10	3	<10	5	175
	1 1		20880	5	0.		0.19	20	85	<5	3.92	2	2	134	20	0.91	<10	0.07	1484	11	<.01	4	170	68	<5	<20	106	<.01	<10	5	<10	6	71
	1		20681	5	0.	-	0.15	5	400	<5	9.03	2	3	101	6	1.27	<10	0.10	2933	8	<.01	5	160	18	<5	<20	219	< 01	10	6	<10	8	64
			20882	10			0.17	5	80	<5	3.40	<1	3	170	7	1.11	<10	0.13	1151	13	<.01	Ă	150	12	5	<20	34	< 01	<10	6	<10	5	37
	· ~		20883	10			0.20	<5	90	<5	0.77	1	2	138	5	0.84	<10	0.02	651	10	<.01	5	190	6	<5	<20	6	< 01	<10	5	<10	5	40
		•		10	0.	2 0		~5			0.77	•	-	130	5	0.04		0.02			5.01	5	150	•		-10	Ŭ					Ũ	
		6 3	20684	5	<		0.22	<5	70	<5	0.80	<1	2	176	4	0.69	<10	0.02	453	13	< 01	4	170	4	<5	<20	5	<.01	<10		<10		32
	1		20885	-				5	75	<5	3.15		2	176	6	0.69	<10	0.02	1140	13	<.01	5	80	8	<5	<20	23	0.01	<10	5	<10	3	41
			20886	390			0.10	-			1.39		ź	172	-	0.66	<10	0.02	640			5	140	•	<5	<20	23	< 01	<10		<10	3	
				580			0.18	5	85	<5		<1	2 ·		6					13	<.01	4		10			-	<.01		4		4	37
	<u>۱</u>		20687	50	_		0.21	5	105	<5	2.61	1	2	118	5	0.74	<10	0.03	773	8	< 01	4	200	8	<5	<20	15		<10	5	<10	5	38
	~	20 2	20688	35	<.	2 0	0.29	10	280	<5	2.00	<1	3	134		1.07	<10	0.06	827	10	<.01	4	210	6	<5	<20	21	0.02	<10	9	<10	5	42
ŀ	Tis :		~~~~				_												-		-											-	
			20689	155		-	0.15	15	145	<5	1.26	1	3	174	17	1.02	<10	0.02	734	14	<.01	4	130	8	<5	<20	4	<.01	<10	4	<10	3	34
			20890	5	-		D.17	25	40	<5	0.09	<1	3	99	8	0.93	<10	<.01	275	5	<.01	3	180	12	<5	<20	1	<.01	<10	4	<10	3	43
	۱		20891	480		-	D. 19	30	75	<5	0.07	<1	3	177	21	1.02	<10	<.01	435	14	<.01	- 4	160	42	<5	<20	<1	<.01	<10	5	<10	3	74
r			20892	995		0 0	0.09	20	105	<5	0.25	1	2	155	70	0.71	<10	<.01	530	8	<.01	5	70	54	<5	<20	1	<.01	<10	4	<10	2	59
Ľ	2)2	5 2	20893	460	5.	6 0	0.21	40	65	<5	0.12	<1	2	188	20	0.77	<10	0.02	361	15	0.02	3	140	50	<5	<20	4	<.01	10	4	<10	3	62
	1																																
			20894	>1000		o o	D.10	15	100	<5	0.98	2	2	144	13	0.81	<10	<.01	1007	8	<.01	6	60	110	<5	<20	5	<.01	<10	5	<10	2	127
			20895	>1000	>3	юс	0.07	<5	70	<5	0.83	2	2	197	6	0.77	<10	0.01	1688	16	< 01	4	20	40	<5	<20	1	<.01	10	3	<10	2	71
		28 2	20896	535	4.	2 0	0.06	<5	70	<5	0.69	2	2	255	6	0.70	<10	<.01	718	20	<.01	5	10	54	<5	<20	5	<.01	<10	3	<10 [·]	<1	95
	~																	D															

Page 1

TECK EXPLORATION ETK 94-862

.

Eco-Tech Laboratories Ltd

			Au	Au																												
	Et#	Tag #	31+	ppb	Ag	AI %	As	Ba	BI	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	Р	Pb	Sb	Sn	Sr	TI %	U	v	w	Y	Zn
	29	20897	112	>1000	15.0	0.08	<5	30	<5	0.86	<1	1	274	6	0.43	<10	< 01	608	21	< 01	5	20	26	<5	<20	3	< 01	<10	2	<10	<1	34
	2 30	20898	645	>1000	7.2	0.15	20	70	<5	0.26	<1	2	145	20	0.78	<10	<.01	606	7	< 01	4	110	30	<5	<20	3	<.01	<10	3	<10	2	48
Ē) 31	20899	1.67	>1000	7.0	0.12	5	45	<5	0.05	<1	1	193	5	0.47	<10	<.01	229	15	<.01	5	60	44	<5	<20	<1	<.01	<10	2	<10	<1	31
Ŭ	(32	20900)	555	1.4	0.18	20	395	<5	0.04	<1	3	131	10	0.87	<10	<.01	404	7	<.01	4	120	52	<5	<20	6	<.01	<10	3	<10	2	46
	33	29301		130	1.8	0.22	20	80	<5	0.09	<1	3	185	77	1.10	<10	<.01	339	15	<.01	4	180	14	<5	<20	1	<.01	<10	5	<10	4	43
(
	. 34	29302	415	>1000	∠≥30	0.05	10	35	<5	0.83	<1	1	205	15	0.69	<10	<.01	12937	17	<.01	4	20	14	<5	<20	3	<.01	10	2	<10	<1	22
トノ	1.35	29303	268	>1000	, ≥30) ,> 30)	0.10	20	40	<5	1.53	<1	2	173	26	0.67	<10	<.01	1215 2	8	<.01	5	60	22	<5	<20	5	< 01	10	3	<10	3	24
77	36	29304	31	>1000	>30	0.04	15	25	<5	2.47	2	<1	124	105	0.55	<10	<.01	1137	7	<.01	3	20	70	5	<20	7	<.01	10	1	<10	2	52
	37	29305	103	>1000	16.4	0.04	5	15	<5	10.80	<1	<1	124	23	0.31	<10	0.01	1789	10	<.01	2	20	70 12	<5	<20	48	< 01	<10	2	<10	3	17
	38	29306	2.05	>1000	>30 (27.5)	0.13	10	40	<5	2.27	<1	2	150	13	0.89	<10	<.01	821/	7	<.01	4	120	4	<5	<20	10	<.01	<10	4	<10	4	19
					(27.5))												2														
1	39	29307		240	3.8	0.13	15	35	<5	> 15	<1	2	99	10	0.81	<10	0.02	2295	8	<.01	2	110	<2	5	<20	110	< 01	<10	5	<10	7	18
	40	29308		110	3.0	0.15	5	50	<5	8.05	<1	2	110	11	0.87	<10	0.01	1515	6	<.01	3	120	2	<5	<20	30	<.01	<10	4	<10	5	16
	41	29309)	20	1.2	0.23	10	70	<5	0.31	<1	3	123	17	1.06	<10	<.01	624	10	<.01	3	170	6	<5 [°]	<20	2	<.01	<10	4	<10	5	26
	QC/I	DATA:																														
n	Rep		a new particular and the second s																													
	1	20845	i	55	1.0	0.23	20	185	<5	0.19	1	3	154	36	1.26	<10	0.01	624	12	<.01	5	120	54	<5	<20	3	<.01	<10	4	<10	3	90
	39	29307			4.2	0.14	10	40	<5	> 15	<1	2	105	10	0.85	<10	0.02	2411	8	<.01	2	120	<2	5	<20	115	<.01	<10	5	<10	7	19
																							-						•		•	
	Stan	dard 19	991	150	1.4	1.79	70	170	<5	1.89	<1	19	62	82	3.98	<10	0.92	688	<1	0.02	22	700	22	10	<20	64	0.12	<10	80	<10	4	68
																															,	

XLS/Teck4 df#862

...

.

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc. T. B.C. Certified Assayer

Page 2

3-Nov-94

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 2J3

Values in ppm unless otherwise reported

TECK EXPLORATION ETK 94-902 #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

ATTENTION: Fred Daley

Phone: 604-573-5700 Fax : 604-573-4557

1 2

З

5

6

7

8

9

10

11

12

13

14

QC/DATA: Repeat #: 1

C 4

17

14 Rock samples received October 27, 1994 Samples Submitted By: Jean Pautler (per H.S.) Project: 1745

Υ Ζπ

9 185

4 148

6 117

4 77

5 157

2 45

З 46

6 56

3 41

6 65

5 60

з 81

3 28

6 37

4 79

<10

9 188

Et #. Tag # Ag Al % As Bi Ca % Cd Co Cu Fe % La Mg % Mn Mo Na % Ni РЬ Sb Sr Ti% υ ν 54 Au(ppb) Ba Cr p Sn w 29310 50 1.40 0.27 60 220 <5 6.31 5 4 116 30 1.47 <10 0.08 2168 7 < 01 5 200 84 <5 <20 78 < 01 <10 <10 29311 457 >1000 18.60 0.16 55 445 <5 5.50 3 4 200 111 1.15 <10 0.06 17057 14 <.01 6 1002 150 10 <20 66 0 01 <10 6 <10 29312 7 0 >1000 >30 0.14 20 85 <5 4.74 2 2 170 34 0.88 <10 0.06 1332 8 < 01 6 100 124 10 <20 46 0 02 <10 6 <10 >30 0.12 15 80 2 2 277 083 <10 0.04 1277 18 < 01 7 60 138 <5 <20 34 <10 29313 / sé >1000 <5 3.61 15 <.01 5 <10 1408 760 118 <5 <20 29314 340 7.80 0.26 15 195 <5 0.83 4 133 11 1.04 <10 0.04 6 < 01 5 10 0.01 <10 7 4 <10 29334 250 0.60 0.21 45 30 <5 0.05 <1 3 123 1.45 <10 <.01 161 7 <.01 220 16 <5 <20 2 <.01 <10 8 4 4 <10 29335 <5 1.00 0.30 50 105 <5 0.09 <1 3 154 17 1.72 <10 0.02 137 12 <.01 5 230 36 <5 <20 13 < 01 <10 4 <10 35 29336 20 0.80 0.28 95 <5 0.18 125 13 1.77 <10 0.03 322 8 0.01 5 260 16 <5 <20 7 < 01 <1 5 <10 5 <10 110) <5 29337 10.7% >1000 >30 0.18 25 65 <5 2.55 <1 3 208 20 1.00 <10 0.02 646 13 <.01 6 18 <20 14 <.01 <10 5 <10 29338 / 07 >1000 8,60 0.30 25 80 <5 0.42 <1 5 182 18 1.75 <10 0.06 575 10 0.02 7 240 14 <5 <20 7 <.01 <10 7 <10 29339 いとイ >1000 <5 0.15 5 167 1.81 <10 0.02 520 12 0.02 6 230 24 <5 <20 < 01 >30 0.24 35 175 <1 19 8 <10 7 <10 29340 5.92 >1000 >30 0.12 35 570 <5 1.17 2 3 202 32 0.83 <10 0.01 525 9 < 01 5 90 140 <5 <20 38 < 01 <10 4 <10 29341 3 21 >1000 16.00 0.12 20 345 <5 4.31 2 163 9 0.58 <10 0.02 736 10 < 01 5 50 10 <5 <20 31 < 01 <10 <1 4 <10 <5 2.05 29342 625 8.60 0.25 90 120 5 169 23 1.39 <10 0.03 615 8 <.01 6 230 12 <5 <20 14 < 01 <10 1 7 <10 29310 7 <.01 55 1.40 0.26 60 220 <5 6.45 5 4 118 30 1.49 <10 0.08 2218 5 200 86 <5 <20 80 <.01 <10 7 <10 Standard 1991 140 1.20 1.83 75 165 <5 1.77 <1 20 66 87 4.18 <10 0.94 674 <1 0.03 28 670 24 5 <20 64 0.13 <10 81

ECO-TECH LABORATORIES LTD Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/Teck4 df/6446

1-Nov-94

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B C V2C 2J3

Phone: 604-573-5700 Fax : 604-573-4557

Values in ppm unless otherwise reported

TECK EXPLORATION ETK 94-881 #350-272 VICTORIA STREET KAMLOOPS, B.C V2C 2A2

ATTENTION Fred Daley

19 Rock samples received October 24, 1994 Samples Submitted By. Jean Pautler (per H.S.) Project: 1745

•

	Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi Ca %	Cd	Co	Cr	Cu	Fe %	Lai	Mg %	Mn	Мо	Na %	Ni	P	Рb	Sb	Sn	Sr	Ti %	υ	v	W	Y	Zn
	71	29315	100	1.6	0.25	105	45	<5 0.12	<1	4	108	18	1.58	<10	0.02	406	6	0.01	4	230	8	<5	<20	<1	< 01	10	5	<10	5	38
	2	2931 6	970) 12.2	0.09	85	25	<5 6.50	<1	1	131	10	0.64	<10	0.02	956	9	<.01	3	90	64	5	<20	27	< 01	<10	2	<10	5	14
	3	29317	106 >1000	9.8	0,17	60	30	<5 0.98	<1	3	173	17	1.08	<10	0.02	421	7	<.01	5	160	14	<5	<20	2	<.01	10	4	<10	3	28
	24	29318	785	9.2	0.08	70	25	<5 1.69	<1	1	200	17	0.61	<10	<.01	555	13	<.01	5	90	36	<5	<20	1	<.01	<10	2	<10	2	15
11) 5	29319	1.26 >1000	24.2	0.08	60	45	<5 0.28	<1	2	301	11	0.75	<10	<.01	352	20	<.01	8	70	12	<5	<20	<1	<.01	10	3	<10	1	26
	6	29320	3.61 >1000	>30	0.09	60	95	<5 0.58	1	3	203	7	1.08	<10	<.01	1000	13	<.01	5	90	20	<5	<20	<1	<.01	10	4	<10	5	54
11	17	29321	500	9.8	0.08	70	65	<5 1.06	<1	2	349	8	0.75	<10	<.01	871	23	< 01	7	60	20	<5	<20	<1	< 01	20	2	<10	1	35
	8	29322	197 >1000	>30	0.12	50	50	<5 0.58	<1	3	158	15	0.99	<10	<.01	938	10	<.01	4	180	36	<5	<20	<1	<.01	10	5	<10	3	47
11	9	. 29323	1.03 >1000	19.4	0.17	60	50	<5 0.25	<1	3	204	13	1.14	<10	<.01	947	13	<.01	4	190	12	<5	<20	<1	<.01	20	4	<10	3	34
	(10	29324	60	1.6	0.22	90	70	<5 0.09	<1	5	151	12	1.54	<10	<.01	841	8	<.01	4	240	8	<5	<20	<1	<.01	20	6	<10	6	27
II	/ 11	29325	25	1.2	0.21	8 5	55	<5 0.06	<1	4	140	15	1.17	<10	<.01	420	11	<.01	3	250	10	<5	<20	<1	<.01	<10	4	<10	5	20
11,2	5 12	29326	20	1.0	0.21	60	45	<5 0.82	<1	4	119	14	1.19	<10	0.01	991	5	<.01	4	240	8	<5	<20	<1	<.01	<10	5	<10	11	27
	´)13	29327	400	2.6	0.26	35	55	<5 0.65	<1	3	141	9	1.23	<10	0.01	726	10	0.01	3	240	6	<5	<20	- 4	<.01	<10	6	<10	9	24
	/ 14	29328	30	3.0	0.26	45	105	<5 0.37	<1	4	117	9	1.15	<10	0.01	1026	5	<.01	4	270	10	<5	<20	2	<.01	10	6	<10	9	43
	15	29329	6.48 >1000	>30	0.17	60	35	<5 13.30	2 <1	3	116	9	0.92	<10	0.01	2684	8	<.01	2	150	<2	<5	<20	49	<.01	10	4	<10	2	35
11	16	293303	5.8 >1000	>30	0.05	45	15	<5 13.30	(<1	<1	101	5	0.34	<10	0.01	1819	5	<.01	3	40	<2	5	<20	66	<.01	<10	2	10	<1	6
	17	29331 3	38.12 >1000	>30	0.04	35	25	<5 14.50) <1	<1	83	11	0.23	<10	<.01	2776	6	<.01	2	50	<2	10	<20	61	<.01	<10	1	<10	2	6
	18	29332 (6.69 >1000	>30	0.13	60	30	<5 10.40	ノ <1	2	109	7	0.66	<10	0.02	2855	5	<.01	4	120	8	<5	<20	36	<.01	20	3	<10	12	30
	\ 19	29333	1 14 >1000) >30	0.12	4 D	50	<5 4.70	<1	2	161	8	0.62	<10	<.01	1527	10	<.01	4	120	<2	<5	<20	14	<.01	<10	3	<10	2	17
	\sim	-																									-		-	••

Page 1

المحاج المحاج الرواد المرود المحاج المحاج ومرور المحاج والمحاج المحاج ومحاج ومرور المحاج المرور المحاج المحاج ا المحاج المحاج الرواد المحاج المحاج ومحاج المحاج ومرور المحاج ومحاج ومحاج ومحاج المحاج المحاج المحاج المحاج المح

Et#. Tag# Au	(ppb) Ag Al	% As		BiCa%		Co	Cr		La Mg %		Mo Na %	Ni	Р	РЬ	Sb	Sn	Sr Ti%		v	w		Zn
QC/DATA: Repeat #:																						
1 29315	95 2.2 0.2	5 30	50	<5 0.15	<1	4	106	18 156	<10 0.02	402	6 0.01	4	240	8	<5	<20	<1 <.01	<10	5	<10	5	37
Standard 1991	- 1.2 1.8	295	160	<5 1.81	<1	21	65	79 4.19	<10 0.97	699	<1 0 02	26	730	22	10	<20	61 0.12	10	79	<10	1	72

XLS/Teck4 df/6430

TECK EXPLORATION ETK 94-881

pose ECO-TECH LABORATORIES LTD. Frank J. Pezzott, A.Sc.T. B.C. Gertified Assays

5

Eco-Tech Laboratories Ltd.

Page 2

8-Nov-94

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 2J3

Phone: 604-573-5700 Fax : 604-573-4557

TECK EXPLORATION ETK 94-922 #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

ATTENTION: Jean Pautier

5 Rock samples received November 2, 1994 Project: 1745

Values in ppm unless otherwise reported

Et#.	Tag #	Au (ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	РЬ	Sb	Sn	Sr	TI %	U	v	w	Y	Zn
1	T13W-1	785	5.0	0.12	3720	85	10	2.28	19	4	110	35	2.04	<10	0.40	987	5	< 01	5	90	120	10	<20	34	< 01	<10	11	<10	3	971
2	T14W-1	70	1.8	0.19	1110	40	<5	0.13	4	3	148	18	1 44	<10	0 02	192	14	< 01	4	150	24	<5	<20	5	< 01	<10	5	<10	3	243
3	T14W-2	>1000	>30	0.15	865	35	<5	2.54	8	3	146	15	1.08	<10	0 01	499	15	< 01	4	130	16	<5	80	12	< 01	<10	5	<10	3	170
4	T14W-3	425	3.6	0.17	360	40	<5	1.03	1	3	145	9	1.07	<10	0.01	341	9	< 01	4	120	8	<5	<20	8	< 01	<10	4	<10	2	80
5	T16-1	>1000	>30	011	190	50	<5	1.21	1	2	205	8	0.65	<10	0.01	572	16	< 01	3	90	6	<5	<20	7	< 01	<10	3	<10	1	75
QC/DA Repeat	#:	_																	_											
1	T13W-1		5.2	0.11	3640	85	10	2.27	19	4	111	33	1.98	<10	0.39	981	6		5	90	118	10	<20	32	< 01	<10	11	<10		961
3	T14W-2		>30	0.16	870	35	<5	2.63	9	3	156	15	1.11	<10	0.01	516	16	<.01	4	130	18	<5	80	11	<.01	<10	5	<10	3	175
Standa	rd 1991		1.6	1.82	75	165	<5	1.80	<1	19	64	80	4.11	<10	0.95	687	<1	0.01	27	700	20	15	<20	65	0.10	<10	80	<10	4	76

XLS/Teck4 df/6446a

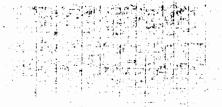
EOO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. 8.0. Certified Assayer

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

CERTIFICATE OF ASSAY ETK292

TECK EXPLORATION #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2 15-Jun-94


ATTENTION: JEAN PAUTLER

16 ROCK samples received June 7,1994 PROJECT #: 1745

		Au	Au	Ag	Ag
<u>ET #.</u>	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)
1	134901	1.20	0.035	31.2	0.91
2	134902	5.29	0.154	81.6	2.38
3	134903	1.01	0.029	31.3	0.91
5	134905	2.23	0.065	33.4	0.97
9	134909	1.03	0.030	50.9	1.48
10	134910	2.92	0.085	37.8	1.10
12	134912	1.74	0.051	64.2	1.87
13	134913	5.09	0.148	-	-
14	134914	1.82	0.053	-	-
16	134916	2.46	0.072	55.3	1.61
22	134922	0.77	0.022	-	-

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C.Certified Assayer

TECK EXPLORATION ETK 94-292

June 17, 1994

		Au
ET #.	Tag #	(ppb)
30	134934	45
31	134935	10
32	134936	205
33	R-T3-3	30

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C.Certified Assayer

XLS/Teck

•

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

CERTIFICATE OF ASSAY ETK290

TECK EXPLORATION #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2 17-Jun-94

ATTENTION: JEAN PAUTLER

22 ROCK samples received June 7,1994 PROJECT #: 1745

		Au	Au	Ag	Ag
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)
3	134853	1.22	0.036		
6	134856	4.51	0.132	83.4	2.43
14	134947	1.02	0.030	41.2	1.20
15	134948	6.44	0.188		
16	134949	4.72	0.138		

ECO-TECH CABORA TORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C.Certified Assayer

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

CERTIFICATE OF ANALYSIS ETK292

TECK EXPLORATION #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

ATTENTION: JEAN PAUTLER

33 ROCK samples received June 7,1994 **PROJECT #: 1745**

		Au	Hg	
ET #.	Tag #	(ppb)	(ppb)	
1	134901	>1000	±	
2	134902	>1000	40	
3	134903	>1000	25	
4	134904	5	-	
5	134905	>1000	15	
6	134906	770	-	
7	134907	800	-	
8	134908	150	-	
9	134909	>1000	-	
10	134910	>1000	-	
11	134911	805	•	
12	134912	>1000	-	
13	134913	>1000	-	
14	134914	>1000	-	
15	134915	850	-	
16	134916	>1000	-	
17	134917	725	-	
18	134918	65	-	
19	134919	75	-	
20	134920	560	10	
21	134921	60	5	
22	134922	775	-	
23	134923	915	5	
24	134924	90	-	
25	134925	610	-	
26	134926	85	-	
	134927	15	-	
28	134929	10	-	
29	134930	5	-	

17-Jun-94

19-Oct-94

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 2J3

Phone: 604-573-5700 Fax : 604-573-4557 TECK EXPLORATION ETK 94-845 #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

ATTENTION: J.Pautler

4 Moss Mat and 1 Silt sample received October 12, 1994 Project: 1745

••		•	

Values in pom unless otherwise reported

Et #. Tag #	Au (ppb)	Ag	AI %	As	Ba	BI	Ca %	Cd_	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	<u> </u>	Pb	Sb	Sn	Sr	<u>TI %</u>	U	<u>v</u>	W	<u>Y</u>	Zn
1 M20809	<5	5.0	0.97	<5	1100	5	1.95	<1	24	31	15	7.40	<10	0.33	>10000	<1	0.02	11	1340	14	<5	<20	111	0.16	190	55	10	4	64
2 M20812*	-		-	-	-	-	-	-	-	-	-		-	-	•	-	-	-	•	-	. -	-	-	•	-	•	-	-	-
2 L20813 **	<5	<.2	1.54	10	245	10	0.96	<1	22	70	21	5.06	<10	0.81	3327	<1	0.06	15	1570	24	5	<20	46	0.15	10	72	<10	6	74
3 M20814	<5	<.2	1.62	10	130	15	0.95	<1	16	19	20	4.08	<10	0.46	633	<1	0.02	12	980	28	<5	<20	56	0.16	<10	65	<10	10	58
4 M20815	<5	<.2	0.97	10	85	10	0.63	<1	11	9	10	2.87	<10	0.41	609	<1	0.02	7	690	16	<5	<20	30	0.11	<10	42	10	6	56
QC/DATA: Repeat II: 1 20809	<5	4.6	0.95	<5	1115	5	1.98	1	24	31	15	7.43	<10	0.33	>10000	<1	0.02	11	1320	12	<5	<20	113	0.16	180	54	<10	4	63
Standard 1991	145	1.2	1.91	70	175	<5	2.06	<1	24	71	87	4.06	<10	0.94	720	<1	0.02	27	710	24	15	<20	66	0.12	<10	83	20	4	74

Insufficient -80 fraction for analysis

** Insufficient -80 fraction: sample pulverized for analysis

XLS/Teck df#3124

ECO-TECHLABORATORIES LTD. Frank J. Pezzoti, A.Sc.T. B.C. Certified Assayer

and the second second

ىت مەر بەيغەن ، امايكىش

20-Oct-94

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 2J3

Phone: 604-573-5700 Fax: : 604-573-4557 TECK EXPLORATION ETK 94-848 #350-272 VICTORIA STREET KAMLOOPS, B C V2C 2A2

ATTENTION, J. Pautler

1 SOIL & 1 MOSS MAT sample received October 12, 1994 Sample Run Date: 20 October, 1994

Values in ppm unless otherwise reported

		Au																											
Et#.	Tag #	(PPb)	Ag	AI %	As	Ba	BI	Ca %	Cd	Co	Cr	Cu	Fe %	La Mg %	Ma	Mo	Na %	NI	P	Pb	Sb	Sn	Sr	TI %	<u> </u>	<u>v</u>	W	<u>Y</u>	Zn
1	S-20808	<5	<.2	2.39	<5	125	<5	0.25	<1	12	28	34	3.99	20 0.98	622	<1	< 01	20	270	10	5	<20	18	0.04	<10	55	<10	4	92
2	M-20812	<5	<.2	2.64	<5	70	<5	0.08	<1	10	28	27	4.20	<10 0.38	434	<1	< 01	17	470	22	[.] <5	<20	4	0.06	<10	51	<10	<1	72

QC/DATA:

Repeat #: 1 S-20808	<5 <.2 2.39	<5 120 <5 0.24	<1 12 28	34 3.95 20 0.98 5	527 <1 <.01 20 260 10) 10 <20 16 0.04 <10 55 <10 4 9 [.]	1
Standard 1991	145 1.0 1.74	70 160 <5 1.89	<1 19 69	85 3.99 <10 1.02 6	664 <1 0.02 25 650 22	2 5 <20 60 0.10 <10 75 <10 4 7	2

<

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

.

•

and the second sec

XLS/Teck4 df#854

Page 1

and prove the second

. .

a a construction of the second statement of the statement is subscription of the second statement of the second

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY **ENVIRONMENTAL TESTING**

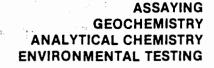
10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

CERTIFICATE OF ASSAY ETK291

TECK EXPLORATION

15-Jun-94

#350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2


ATTENTION: JEAN PAUTLER

16 ROCK samples received June 7,1994 **PROJECT #: 1745**

ET #.	Tag #	Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)
6	134961	61.90	1.805	292.5	8.530
10	1 34 965	1.36	0.040	-	-
15	134970	1.97	0.057	-	-

XLS/Teck

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C.Certified Assayer

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

CERTIFICATE OF ANALYSIS ETK291

TECK EXPLORATION #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2 17-Jun-94

ATTENTION: JEAN PAUTLER

16 ROCK samples received June 7,1994 PROJECT #: 1745

		Ba
ET #.	Tag #	(%)
12	134967	0.06
13	134968	0.03
14	134969	<.01
15	134970	<.01
16	134971	0.06

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C.Certified Assayer

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

CERTIFICATE OF ASSAY ETK359

TECK EXPLORATION

30-Jun-94

#350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

ATTENTION: JEAN PAUTLER

10 ROCK samples received June 22,1994 PROJECT #: 1389-7

	•	•		Au	Au	· · · · · ·		•
ET #.	Tag #	:		(g/t)	(0z/t)		en de la sterio de la seconda de la second	
5	134987			1.10	0.032			

ECO/TECH LABORATORIES LTI Frank/J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/Teck

4	
	FEED FAX THIS END
	FAV
To:	
Dept.:	TRAL
	52.
No. of Pag	Solution
Company: . Fax No.:	
Comments:	Results
Poet-It"	350
	fax pad 7903E

DECELUED EROM 404 573 4557

06.30.1994 17::

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

19-Oct-94

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

CERTIFICATE OF ASSAY ETK 94-834

TECK EXPLORATION LTD. #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

ATTENTION: J.Pautler

34 Rock samples received October 11, 1994 Project: 1745

		Au	Au	
ET #.	Tag #	(g/t)	(oz/t)	
24	20836	1.15	0.034	

ECO-TECH LABOR LTD

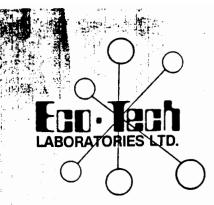
Frank J Pezzotti, A.Sc.T. B.C. Certified Assayer

ASSAYING Pe 192 GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamioops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

CERTIFICATE OF ASSAY ETK 94-847

TECK EXPLORATION LTD. #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2


ATTENTION: J.Pautler

23 Rock samples received October 12, 1994 Project: 1745

ET #	. Tag #	Ag (g/t)	Ag (oz/t)	Au (g/t)	Au (oz/t)	- - - - -
- 8	20860	34.5	1.01	1.48	0.043	23:1
10	20862	94.1	2.74	9.88	0.288	9.5
T 1616	20868	21.6-	-	2.47	0.072	9
1,518	20870	11.0 -	-	1.64	0.048	7

21-Oct-94

ECO-TECH LAB ES LTD. Frank J Pezzotti, A.Sc.T., B.C. Certified Assayer

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

CERTIFICATE OF ASSAY ETK 94-862

TECK EXPLORATION LTD.

2-Nov-94

#350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

ATTENTION: FRED DALEY

41 Rock samples received October 18, 1994 Project: 1745 Samples Submitted By: Jean Pautler (per H.S.)

			Au	Au	Ag	Ag	Ag/
	ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	Au
•	(26	20894	16.89	0.493	105.7	3.08	6
_) 27	20895	2.88	0.084	27.3	0.80	9
78	{ 29	20897	1.12	0.033	15 -	-	13
0	30	20898	6.45	0.188	7.2 -	-	1
	121	20899	1.07	0.031	7.0 -	-	7
	(34	29302	4.15	0.121	56.4	1.65	14
)35	29303	2.68	0.078	39.6	1.16	15
7-	,∕36	29304	3.10	0.090	45.9	1.34	15
	37	29305	1.03	0.030	-	-	
	(38	29306	2.05	0.060	27.5	0.80	13

P-TECH LABORATORIES LTD. EC Frank J Pezzotti, A.Sc.T., B.C. Certified Assayer

ABORATORIES LTD.

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamioops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

CERTIFICATE OF ASSAY ETK 94-902

TECK EXPLORATION LTD. #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

ATTENTION: FRED DALEY

14 Rock samples received October 27, 1994 Samples Submitted By: Jean Pautler (per H.S.) Project: 1745

CHAR AND IN Au Ag (o<u>z/t)</u> ET #. "Tag # (g/t) (oz/t) (g/t) 2 29311 4.57 0.133 18.6 -· · · · · 3 29312 47.6 7.00 0.204 1.39 6.8 4 29313 0.309 12 10.58 128.4 3.75 ğ 29337 10.76 0.314 55.8 1.63 5 10 29338 1.07 ; . **. -** . 0.031 8.6 g 11 29339 0.84 0.024 36.3 43 1.06 12 23 29340 5.92 0.173 130.3 3.80 13 29341 3.21 0.094 16.0 -5

TECH LABORATORIES LTD. Fornk J Pezzotti, A.Sc.T., B.C. Certified Assayer

XLS/Teck4

20-Jun-94

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 2,J3

Phone: 604-573-5700 Fax : 604-573-4557

Values in ppm unless otherwise reported

..

.

-

. . .

TECK EXPLORATION ETK 94-293 #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

ATTENTION: JEAN PAUTLER

6 SOIL samples received June 7,1994 PROJECT #: 1745

Et #.	Tag #	Au(ppb)	Ag	AI %	As	В	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	К %	La	Mg %	Mn	Mo	Na %	NI	P	Pb	Sb	Sn	Sr	Π%	U	V	w	Y	Zn
1	S134928	35	<.2	0.41	5	4	125	<5	0.12	<1	3	3	5	1.57	0.03	<10	0.02	469	<1	<.01	1	290	40	<5	<20	4	<.01	<10	14	<10	<1	102
2	S134931	15	<.2	0.63	<5	4	150	<5	0.12	<1	3	5	- 4	1.61	0.03	<10	0.04	138	<1	<.01	1	240	26	<5	<20	5	0.04	<10	33	<10	2	37
3	S134932	5	<.2	1.18	<5	4	205	<5	0.19	<1	9	12	6	2.42	0.03	<10	0.16	608	<1	<.01	6	1160	22	<5	<20	12	0.1	<10	44	<10	5	89
4	S134933	15	<.2	1.20	<5	4	155	10	0.23	<1	6	12	7	2.53	0.04	<10	0.15	424	<1	<.01	5	810	24	<5	<20	15	0.11	<10	48	<10	5	66
5	S-T3-1	5	<.2	1.38	<5	6	170	10	0.15	<1	9	13	5	2.35	0.02	<10	0.14	372	<1	<.01	6	1210	22	<5	<20	11	0.13	<10	45	20	9	47
6	S-T3-2	<5	<.2	0.66	<5	6	145	5	0.45	<1	10	15	6	2.30	0.03	10	0.18	207	<1	0.01	6	1010	12	<5	<20	25	0.17	<10	50	<10	19	39
AC D Repa			<.2	0.39	ধ	4	125	⊲5	0.12	<1	2	2	5	1.50	0.03	<10	0.01	453	<1	<.01	1	270	38	ৎ	<20	4	<.01	<10	13	<10	1	100
Stand	lard 1991:		1.0	1.74	60	8	155	<5	1.75	1	18	62	80	3.68	0.31	<10	0.92	705	<1	<.01	21	670	20	<5	<20	55	0.05	<10	73	<10	8	73

XLS/Teck

ECO.TECH LABORATORIES LTD. Frank J Pozzoti A.Sc.T.

Frank J/Pezzotti, A.Sc.T. B.C. Certified Assayer

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

CERTIFICATE OF ASSAY ETK 94-881

TECK EXPLORATION LTD. #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

ATTENTION: FRED DALEY

19 Rock samples received October 24, 1994 Samples Submitted By: Jean Pautler (per H.S.) Project: 1745

	ET #.	Tag #	Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)	Ag/Au
•	(3	29317	1.06	0.031	9.8 -	-	9:1
) 5	29319	1.26	0.037	24.2 -	-	19
T.	56	29320	2.81	0.082	36.5	1.06	13
11	8	29322	1.97	0.057	38.1	1.11	19
	a	29323	1.03	0.030	19.4 -	-	19
	(15	29329	6.48	0.18 9	43.0	1.25	6.6
-)16	29330	35.80	1.044	240.3	7.01	6.7
Ti	s ≦17	29331	38.12	1.112	233.6	6.81	6
	18	29332	6.69	0.195	30.5	0.89	4.6
	(19	29333	1.14	0.033	72.6	2.12	63

TECH LABORATORIES LTD. Frank J Pezzotti, A.Sc.T., B.C. Certified Assayer

XLS/Teck4

2-Nov-94

÷. 34

ť

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

14-Nov-94

R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 10041 E. Trans Canada H Fax (604) 573-4557 12.2 . .

CERTIFICATE OF ASSAY ETK 94-922

TECK EXPLORATION LTD. #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

ATTENTION: Jean Pautler

5 Rock samples received November 2, 1994 Project: 1745

•			
ET #	Tag #		Au Au Ag Ag (g/t) (oz/t) (g/t) (oz/t)
3 5	T14W-2 T16-1		11.59 0.338 38.6 1.13 8.46 0.247 52.7 1.54
		Ì	
			A.L.
XLS/Teck4	L		ECO-TECH LABORATORIES LTD. Frank J Pezzotti, A.Sc.T., B.C. Certified Assaver

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

CERTIFICATE OF ANALYSIS ETK 94-862/881/902

TECK EXPLORATION LTD. #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

ATTENTION: JEAN PAUTLER

Project: 1745

Samples Submitted By: Jean Pautler (per H.S.)

		Se	Te	TI
ET #.	Tag #	(ppm)	(ppm)	(ppm)
862-26	20894	<.2	<.05	<1
881-15	2932 9	<.2	<.05	<1
881-1 6	293 30	<.2	<.05	<1
902-3	29312	<.2	<.05	<1
902-4	29313	<.2	<.05	<1
902-9	29337	<.2	<.05	<1

ECO-TECH/LABORATORIES LTD. Frank J Pezzotti, A.Sc.T., B.C. Certified Assayer

XLS/Teck4

18-Nov-94

23-Jun-94

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 2J3

Phone: 604-573-5700 Fax : 604-573-4557

Values in ppm unless otherwise reported

TECK EXPLORATION ETK 94-321 #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

ATTENTION: JEAN PAUTLER

4 MOSS AND 1 IRON SEEP samples received June 7,1994 PROJECT #: N/A

> ECOTECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. S.C. Certified Assays

Et #	Tag #	Au(ppb)	Ag	AI %	As	8	Ba	믠	Ca %	Cd	Co	Cr	Cu	Fe %	K %	La	Mg %	Mn	Mo	Na %	Ni	<u> </u>	<u>Pb</u>	86	<u>8n</u>	<u>18</u>	<u>TI %</u>	U	<u>v</u>	W	<u> </u>	Zn
1	M134941	<5	<.2	0.57	5	8	170	\$	1.92	<1	9	10	15	1.92	0.04	<10	0.33	2386	<1	<.01	8	1020	8	\$	<20	96	0.06	<10	28	<10	11	32
2	M134944	<5	<.2	1.03	<5	6	235	5	1.04	<1	10	15	32	3.05	0.07	<10	0.31	2020	<1	<.01	8	620	12	<5	<20	48	0.08	<10	50	<10	19	66
3	M134945	<5	<.2	0.8	<5	6	145	<5	1.04	<1	8	13	21	2.17	0.05	<10	0.29	1273	<1	<.01	8	430	12	<5	<20	35	0.09	<10	38	<10	13	50
4	M134946	160	3.8	0.48	<5	10	1245	<5	1.72	<1	20	28	- 14	6.79	0.05	<10	0.26	>10000	- 4	0.01	8	770	4	\$	<20	122	0.04	<10	26	<10	8	44
5	F134942	<	D.4	0.18	15	12	370	20	2.73	2	27	5	18	13.2	0.07	<10	0.28	5848	<1	0.01	7	2760	4	<	<20	60	<.01	<10	34	<10	2	40
	DATA:		1.0	1.74	60	8	155	ধ	1.75	1	18	62	80	3.68	0.31	<10	0.92	705	<1	<.01	21	670	20	ধ	<20	55	0.05	<10	73	<10	6	73
																										1.		the	(\mathbf{a}	und	

XLS/Teck

.

الا الـ 100 م. ويود ووقد المدينة المحدة وسنية من يربو بولوها ومنها ومرود والمعاد الما والمعاد الما ا

23-Jun-84

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 2J3

Phone: 604-573-5700

Fax : 604-573-4557

Values in ppm unless otherwise reported

TECK EXPLORATION ETK 94-294 #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

ATTENTION: JEAN PAUTLER

405 SOIL samples received June 7,1994 PROJECT #: 1746

k. -

Eta	K. Tag#		Au(ppb)	Ag	AI %	As	В	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	К%	La	Mg %	Mn	Mo	Na %	NI	P						_U	v	w	Y	Zn
1	L-45+00N	45+00E(A)	<u>م</u>	<.2	1.81	\$	10	150	25	0.66	<1	19	26	21	4.13	0.06	10	0.48	433	<1	0.03	15	1000	30	¢	<20	56	0.30	<10	79	<10	31	63
2	L-45+00N	45+00E(B)	4	<.2	1.30	4	8	85	25	0.43	<1	15	21	13	2.83	0.05	<10	0.29	265	<1	0.02	9	360	22	4	<20	34	0.31	<10	58	<10	27	51
3	L-45+00N	45+25E	4	<.2	1.36	4	8	105	25	0.50	<1	18	27	14	3.57	0.04	<10	0.33	318	<1	0.02	11	630	20	4	<20	38	0.31	10	82	<10	27	55
4	L-45+00N	45+50E	•	<.2	1.32	4	8	115	20	0.57	<1	14	20	13	2.81	0.05	10	0.32	239	<1	0.03	9	800	22	4	<20	43	0.30	<10	56	<10	26	49
5	L-45+00N	45+75E	4	<.2	1.33	4	8	95	25	0.55	<1	15	24	13	2.94	0.04	<10	0.32	267	<1	0.02	9	830	22	4	<20	37	0.31	<10	64	10	27	52
	L-45+00N	48.00E/A)	4	- 9	1.40	4		130	20	0.48	<1	15	22	42	2.95	0.04	~10	0.34	259	-1	0.02	11	760	24	~	<20	17	0.28	10	83	<10	24	48
	L-45+00N				1.51	4	8	135	25	0.42	<1	18	23		3.09	0.04	<10	0.32	265	4	0.02	12	680	28	\$	20		0.29	<10	68	<10	23	64
	L-45+00N		9 9		1.30	4	8		20		4	14	20		2.64	0.04		0.25	230	<1	0.02	10	590	22	3	20		0.29	<10	57	<10	24	47
-	L-45+00N		0 Q		1.32	4	8	105	15		4	15	18		3.09	0.05		0.36	373	4	0.03		900	24	3	20		0.25	<10	63	<10	26	44
	L-45+00N		-		1.32	9	-	110	25		4	15	19		3.18			0.40	414	4	0.02	10	930	24	4	20		0.25	<10	86	<10	24	45
		40+/32	4	<.2	1.30	4	•	110	20	0.38	•1	19	19	18	3,10	0.05	10	0.40	-1-	~	0.02	10	830	29	••	L	30	0.20	-10		-10	24	40
11	L-45+00N	47+00E	4	<.2	1.34	4	8	110	25	0.43	<1	17	27	13	3.27	0.04	<10	0.33	339	<1	0.02	10		22		<20		0.33	<10	78	<10	25	56
12	L-45+00N	47+25E	4	<.2	1.57	4	8	135	20	0.43	<1	18	24	14	3.24	0.04	<10		298	<1	0.01	10	770	28	4	<20	26	0.29	<10	74	<10	23	57
13	L-45+00N	47+50E	4	<.2	1.41	4	8	115	25	0.44	<1	17	26	14	3.30	0.04	<10	0.33	323	<1	0.02	11	590	32	4	<20		0.31	<10	78	10	28	56
14	L-45+00N	47+75E	4	<.2	1.31	4	8		25		<1	17	26		3.46		<10		326	<1	0.02	11	880	20		<20		0.31	20	81	<10	28	55
15	L-45+00N	48+00E(A)	4	<.2	1.11	4	8	110	20	0.43	<1	10	16	9	1.82	0.04	<10	0.25	188	<1	0.01	8	790	50	5	<20	26	0.28	<10	41	<10	23	98
	L-45+00N	48.005(8)	ব	- 0	1.43	4	8	135	20	0.35	<1	11	18		2.06	0.05	~10	0.26	212	<1	0.01	7	430	72	4	<20	26	0.23	<10	45	<10	19	125
	L-45+00N		9		1.43	5	8	180	20		2	15	23		3.33	0.05		0.24	253	1	0.01	•	1120	248		20		0.22	20	71	<10	18	164
	L-45+00N		8	_	1.03	້		170	20		4	15	24		3.33			0.29	265	<1	0.01	10		44		20	27	0.28	<10	75	<10	21	76
	L-45+00N		5		1.79	9	š	235		0.32	4	17	26		3.59			0.30	300	ব	0.01	13		30		20		0.30	<10	83	<10	21	97
	L-45+00N		6		1.57	4		165		0.32	4	17	25		3.43			0.27	266	<1		11			3			0.30	10		<10	22	77
-	L-10-100H	ABAINC	9	•.2	1,00	-		100	20	0.30	-1		20	12	3.43	0.00	-10	0.41	200	-1	0.01		300	20	~	120	20	0.30	10		-10	~	"
2	L-45+00N	49+25E	4	<.2	1.73	4	8	180	25	0.43	<1	18	26	13	3.68	0.06	<10	0.32	322	<1	0.01	12	510	26	4	<20	31	0.30	<10	84	<10	23	73
2	L-45+00N	49+50E	4	<2	1.60	15	8	215	30	0.30	2	18	23	15	4.37	0.05	<10	0.23	358	2	<.01	10	220	36	-5	<20	29	0.24	20	81	<10	17	150
2	L-45+00N	49+75E	4	<.2	1.17	4	8	120	25	0.45	<1	15	23	13	3.07	0.04	<10	0.29	267	<1	0.02	9	760	26	4	<20.	30	0.27	<10	70	<10	22	64
2	L-45+00N	50+00E(A)	4	<.2	1.46	4	8	140	25	0.39	<1	17	25	14	3.51	0.06	<10	0.30	263	<1	0.01	11	430	26	4	<20	30	0.31	<10	81	<10	23	57
2	i L -45+00N	50+00E(8)	4	<.2	1.81	4	8	185	25	0.35	<1	18	24	13	3.52	0.06	<10	0.30	266	<1	0.01	13	540	26	4	<20	27	0.27	<10	76	<10	19	65
2	L-45+00N	50+255	45		1.20	4	8	120	30	0.36	<1	18	24	14	3.33	0.05	<10	0.32	259	<1	0.02	11	420	20	4	<20	29	0.29	20	76	<10	24	56
	L-45+00N		4		1.66	3		270	25	0.47	<1	19	25		3.87	0.07	10		564	4	0.01	14	730	34	3	20		0.27	<10	78	10	23	74
	L-45+00N		4		1.00	9		150	25		<1	17	24		3.40	0.06		0.26	319	4	0.02	11	530	26		20		0.29	<10	78	<10	21	56
	L-45+00N		5 5		1.45	2 4	10	180	25		<1	19	27		3.88	0.06		0.41	360	<1	0.02	14	670	28				0.25	20	87	<10	23	30 69
	L-45+00N		9 4			5	10	205	25		<1	17	21		3.79	0.06		0.35	298	2	0.02	13	400	32	2 2	20		0.26	10	61	<10	20	67
	L-45+00N		9		1.68 1.34	5 5	8	140	25		<1	17	28		3.80	0.05	<10		318	4	0.02	13		24	9	20		0.31	10	83	<10	24	6/ 66
		51+00(A)	2	< <u>2</u>	1.34	5	9	140	20	0.43		17	20	14	3.00	0.06		0.31	310	-	0.02		340	24	5	-20	342	0.01	10	65	10	24	

Page 1

.....

ì

Eco-Tech Laboratories Ltd.

Et#. Tag#		Au(ppb)	Ag	AI %	As	8	Be	BI	Ca %	Cd	Co	Cr	Cu	Fe %	K %	La	Mg %	Mn	Mo	Na %	ŅI	P	РЬ	S b	8n		пъ	U	v	w	Y	Zn
32 L-45+00	51+50(B)	4	<2	1.59	\$	8	130	20	0.38	<1	15	22	11	3.19	0.04	<10	0.26	277	<1	0.01	12	650	26	\$	28	29	0.24	10	66	<10	18	66
33 L-45+00	51+75E	4	<2	1.53	4	8	210	25	0.43	<1	17	24	15	3.59	0.04	<10	0.38	336	<1	0.02	13	650	24	<	<20	34	0.27	<10	78	<10	22	60
34 L-45+00	52+00E	4	<2	1.78	10	8	100	25	0.38	<1	18	24	14	3.64	0.03	<10	0.37	314	<1	0.01	14	840	32	<	<20	23	0.26	<10	80	<10	22	65
35 L-45+00	52+25E	4	<2	2.29	5	8	260	25	0.44	<1	17	20	17	3.63	0.06	<10	0.38	357	2	0.01	14	390	42	<	<20	34	0.25	<10	70	10	20	64
36 L-45+00	52+50E	4	<2	1.84	4	8	185	25	0.36	<1	18	25	13	3.61	0.04	<10	0.30	265	<1	0.01	12	360	30	<	<20	32	0.30	10	81	<10	22	81
37 L-45+00	52+75E	4	<2	2.34	4	8	265	25	0.41	-1	19	28	22	3.98	0.03	<10	0.36	325	<1	0.01	13	650	36	\$	<20	32	0.30	<10	89	<10	24	79
38 L-45+00	53+00N(A)	4	<2	1.46	4	8	120	25	0.56	4	19	26	18	3.83	0.05	10	0.39	426	<1	0.02	12	780	22	4	<20	42	0.29	<10	83	<10	27	57
39 L-45+00	• • •	4	<2	2.65	10	8	185	30	0.32	<1	20	27	14	4.19	0.04	<10	0.35	293	1	0.01	18	720	40	4	<20	34	0.31	10	90	40	22	65
40 L-46+00	45+00E(A)	4	<2	1.60	4	8	130	30	0.54	<1	18	24	15	3.22	0.04	<10	0.35	266	<1	0.02	11	870	26	<	<20	36	0.31	<10	89	<10	26	53
41 L-46+00	45+00E(B)	4	<2	1.42	4	8	115	25	0.41	<1	14	21	12	2.76	0.03	<10	0.29	228	<1	0.02	9	470	26	4	<20	33	0.30	20	59	<10	24	54
42 L-46+00	45+25E	4	<.2	1.52	4	8	130	25	0.48	-1	18	24	13	3.10	0.04	<10	0.36	297	<1	0.02	11	750	28	\$	<20	32	0.31	<10	67	<10	25	55
43 L-46+00	45+50E	4	<2	1.44	4	8	125	30	0.59	4	18	25	14	3.20	0.03	10	0.33	279	<1	0.02	12	1050	24	<	<20	37	0.32	<10	71	<10	26	48
44 L-46+00	45+75E	4	<2	1.69	4	8	145	25	0.42	<1	18	25	13	3.42	0.03	<10	0.32	280	<1	0.02	12	930	24	S	<20	26	0.29	<10	74	<10	24	51
45 L-46+00	46+00E(A)	4	<2	1.62	4	8	110	25	0.49	4	15	25	13	3.22	0.03	<10	0.35	306	<1	0.02	11	820	24	<	<20	35	0.27	10	70	<10	24	58
46 L-46+00	46+00E(B)	4	<2	1.95	4	8	115	20	0.43	<1	18	24	12	3.49	0.03	<10	0.31	276	<1	0.01	13	850	26	<	<20	32	0.25	<10	74	<10	21	72
47 L-46+00	46+25E	4	<2	1.42	4	8	120	20	0.53	<1	15	22	12	2.97	0.03	10	0.34	292	<1	0.02	10	710	26	<	<20	41	0.26	20	64	<10	26	52
48 L-45+00	46+50E	4	<.2	1.80	4	8	140	25	0.42	<1	18	26	13	3.61	0.04	<10	0.31	304	<1	0.01	12	750	26	4	<20	36	0.31	10	62	<10	24	56
49 L-46+00	46+75E	4	<.2	1.60	4	8	160	20	0.43	<1	17	26	18	3.57	0.03	<10	0.32	304	<1	0.01	12	870	26	4	<20	34	0.29	<10	81	<10	24	63
50 L-46+00	47+00E	4	<2	1.46	4	8	105	25	0.38	4	17	24	13	3.31	0.03	<10	0.29	272	<1	0.01	11	580	24	4	<20	34		10	78	<10	22	48
51 L-46+00	47+25E	4	<2	1.86	4	8	150	25	0.45	-1	19	30	14	3.80	0.03	<10	0.30	295	<1	0.01	12	890	24	4	<20	36	0.32	20	90	<10	25	55
52 L-46+00	47+50E	4		1.41	4	8	100		0.41	4	17	26			0.05		0.29	298		0.01	10	620	22	4	<20		0.30	<10	81	<10	23	51
53 L-46+00	47+75E	4		1.66	4	8	115		0.51	<1	18	26		3.57	0.05	20	0.31	343	<1		11	650	26	4	<20	45	0.33	<10	77	20	30	50
	48+00E(A)	4		1.41	4	8	160		0.50	<1	17	25	• -	3.29	0.03	10	0.30	279	<1		10	750	22	4	<20	39		<10	74	<10	25	52
	48+00E(B)	4		1.85	4	8	120		0.44	4	19	25		3.58	0.03	<10	0.30	257	1		13	990	26	4	<20	35	0.26	<10	60	30	22	54
56 L-46+00	48+25E	4	<2	1.78	4	8	145	30	0.36	-1	19	26	15	3.65	0.04	<10	0.30	266	<1	0.01	13	520	26	4	<20	37	0.32	10	84	<10	24	60
		_			-	_																	~ ~		~							
57 L-46+00		4		1.83	4	8	145		0.43	4	18	24		3.46	0.06		0.31	364		0.01	13	580	24	4	<20	34		10	77	<10	24	65
58 L-45+00		4	<.2	1.56	4	8	145		0.49	4	17	27		3.58	0.02		0.34	323		0.02	13	800	22	4	<20	45	0.29	10	81	<10	24	53
59 L-46+00	· · · · · · · · · · · · · · · · · · ·	4		1.93	4	8	255		0.39	4	17	24		3.44	0.03	<10		312	<1		11	740	32	4	2 8	32	0.26	<10	76	<10	21	83
60 L-46+00		4		1.35	4	8	205		0.48	4	17	23		3.51	0.05		0.36	322	-	0.01	12	870	32	4	<20	29	0.25	10	75	<10	22	68
61 L-46+00	40+50E	4	<2	1.67	4	8	215	25	0.49	4	17	25	14	3.55	0.05	<10	0.37	354	<1	0.02	13	870	26	4	<20	31	0.27	<10	76	<10	23	136
82 L 46.00			- •	4 59				35	0.37	-	~	32		4 51	0.04	-10	0.41		~	0.01	48	810	-	4	<20	27	0.30	<10	104	<10	23	
62 L-46+00		4	-	1.58	5 5	8	145 95	25 30	0.37 0.47	ন ন	22 17	32 26	10	4.51 3.55	0.04 0.02	<10 <10	0.41	441 306	-	0.01	18 10	520	36 24	9	~ø ⊘8	34	0.30	10	83	30	23	63 56
	N 50+00E(A)	4	<.2	1.38	-	-			0.35	Ā	18	27	12	3.72	0.02	<10	0.30	318		<.01	11	190	30	9	28	29	0.30	<10	65 55	20	21	68
	N 50+00E(B)		<2		<5 10	8	105 245		0.36	4	15	21		3.78	0.03	<10	0.30	312	-	0.01	10	440	34	9	20	32	0.23	20	89	30	17	78
65 L-46+00		5	<2			-	180		0.39	Ā	17	23		3.63	0.05	10	0.34		-	0.01	12	590	26	5	20	26	0.23	لطے 10>	78	30	20	<u>99</u>
66 L-46+00	SU+SUE	4	<2	1.57	4	8	100	25	0.30	•1	17	23	15	3.03	0.00	10	0.34	340	-	0.01	12	360	20	9	-	20	0.23	<10	10	10	20	200
67 L-46+00	60.75E	4	<2	1.56	15	8	175	20	0.38	ব	17	24	13	3.62	0.03	<10	0.29	311	<1	0.01	12	430	32	4	<20	30	0.28	10	80	20	21	66
68 L-46+00		9 9	<2	1.60	5	8	135		0.38	4	23	34		5.01	0.04	<10	0.47	482	-	0.01	17	890	32	4	20	23	0.31	10	122	<10	24	78
59 L-46+00		9 19	_	1.79	5	8	120		0.36	4	19	25	•	4.28	0.04	<10	0.44	448		0.01	15	660	32	5	20	21	0.25	<10	92	<10	21	85
	N 51+50E(A)			1.82	Š	8	155		0.80	4	15	22	20	3.58	0.05	20	0.41	505	4		14	510	36	5	20	39	0.21	<10	66	<10	25	81
	N 51+50E(A)		<2	2.56	10	8	180	_	0.65	4	18	21	22		0.04	10	0.35	750	1		15	420	46	4	20	39	0.18	<10	70	20	21	115
72 L-46+00		9 6		1.66	5	8	205		0.43		16	23		3.40		• -	0.31	321	•	0.01	10	250	26	5			0.25	<10	75	<10	25	53
		2	-2	1.00				20	0.40	-	10	20	14	0.40	0.00		0.01	-	-1	0.01			20				0.20	-10	15	-10	20	3

Page 2

Eco-Tech Laboratories Ltd.

Et #.	Tag #		Au(ppb)	Ag	AI %	As	B	Ba	BI	Ca %	Cd	Co	Cr	Cu	Fe %	ĸĸ	La	Mg %	Mn	Mo	Na %	Ni	Р	РЬ	Sb	Sn	Sr	TI %	U	v	w	Y	Zn
73	L-46+00N	52+00E	\$	<2	1.40	15	6	260	20	0.26	<1	14	20	15	4.26	0.06	<10	0.21	873	<1	<.01	10	260	30	\$	<20	19	0.15	10	67	<10	14	77
74	L-46+00N	52+25E	4	<2	1.62	\$	6	150	20	0.34	<1	16	21	12	3.33	0.04	<10	0.27	409	<1	0.01	11	300	26	4	<20	29	0.25	10	71	<10	20	59
75	L-46+00N	52+50E	4	<2	1.81	5	8	105	25	0.28	<1	15	21	13	3.95	0.03	<10	0.31	275	<1	<.01	11	470	36	<5	<20	18	0.22	10	79	30	17	65
76	L-46+00N	52+75E	4	0.2	2.44	25	6	250	25	0.38	<1	11	19	16	3.85	0.03	10	0.28	287	1	<.01	11	420	52	4	<20	22	0.09	<10	51	30	14	76
77	L-46+00N	53+00E(A)	4	0.2	1.27	75	4	70	10	0.10	2	9	27	13	3.52	0.07	10	0.11	147	3	<.01	9	220	30	4	<20	12	0.04	<10	57	<10	3	42
																																-	-
78	L-46+00N	53+00E(B)	4	<.2	3.21	25	6	170	15	0.28	<1	14	26	15	4.31	0.06	<10	0.35	254	2	<.01	14	260	50	4	<20	22	0.11	<10	83	<10	10	91
79	L-47+00N	45+00E(A)	4	<2	1.41	4	10	100	25	0.66	<1	14	20	13	2.77	0.04	10	0.33	293	<1	0.03	10	1120	24	\$	<20	42	0.29	<10	57	10	26	44
80	L-47+00N	45+00E(B)	4	<2	1.45	4	8	85	25	0.46	<1	14	20	12	2.77	0.04	<10	0.30	331	<1	0.02	7	440	26	\$	<20	46	0.31	40	57	<10	26	55
	L-47+00N		4		1.47	4	8	100	30	0.49	<1	15	23	13	3.03	0.03	<10	0.31	256	<1	0.02	11	660	26	5	<20	35	0.31	10	68	<10	27	58
82	L-47+00N	45+50E	4	<2	1.53	4	8	125	25	0.54	<1	17	26	- 14	3.45	0.03	<10	0.34	310	<1	0.02	13	830	24	4	<20	38	0.32	<10	81	<10	26	56
	L-47+00N		4		1.70	4	8	145	25	0.55	<1	17	26		3.49	0.04		0.33	300	<1		13	810	26	<5	<20		0.30	<10	80	<10	25	57
		46+00E(A)	4		1.75	5	8	130	25	0.51	<1	18	25		3.57	0.03	10	0.32	310	2		11	920	26	4	<20	37	0.31	<10	82	20	26	67
		46+00E(B)	4		2.42	4	10	115	30	0.44	<1	18	25		3.78	0.05	<10		265	1			1180	36	4	<20	34	0.28	<10	81	10	22	82
	L-47+00N	· · · —	4		2.11	4	8	200	30	0.52	4	19	29		3.73	0.02	10	0.36	299	<1	0.01	13	780	34	\$	<20		0.34	<10	88	20	30	55
0/	L-47+00N	40+JUE	4	<2	2.04	4	8	145	25	0.37	<1	18	31	17	3.70	0.03	<10	0.35	290	<1	0.01	14	470	36	4	<20	33	0.32	<10	86	30	25	61
86	L-47+00N	AR. 755	4	- 2	1.95	4	8	110	25	0.55	<1	14	20	46	3.01	0.03	10	0.33	263	<1	0.02		1080	32	4	<20	36	0.27	<10	63	10	~	
	L-47+00N		3	<2	2.07	\$	š	155	30	0.51	4	18	25			0.03	10	0.33	291	<	0.02	12	980	34	8 6	20	42	0.31	<10	63 76	20	25 26	53 55
	L-47+00N		3		1.90	š	8	145	30	0.51	4	18	27	••	3.75	0.05	<10	0.34	318	<1	0.02	16	1080	28	<u>م</u>	<20	34	0.29	<10	70 84	10	20 24	55 65
	L-47+00N		4		1.37	4	8	105	25	0.49	<1	17	25		3.42	0.05	<10	0.27	287	4	0.02	11	700	22	4	20	35	0.33	10	81	<10	25	55
	L-47+00N		4		1.69	4	ă	135	20	0.63	<1	18	26		3.60	0.06	10	0.36	340	<1	0.02		1200	26	ð	~20	36	0.31	<10	80	10	26	50 63
							•				•												1200	~	~		~	0.01		~		20	~
\$3	L-47+00N	48+00E(A)	4	<2	1.56	4	8	110	25	0.49	<1	17	26	14	3.37	0.04	<10	0.31	291	<1	0.02	11	730	32	4	<20	33	0.31	<10	77	<10	25	53
94	L-47+00N	48+00E(B)	4	<2	1.76	\$	8	100	25	0.39	<1	18	26	11	3.59	0.05	<10	0.24	336	<1	0.01	12	1090	30	4	<20	30	0.29	<10	77	20	22	104
95 (L-47+00N	48+25E	4	<.2	1.95	4	8	135	25	0.81	<1	18	23	16	3.59	0.07	10	0.37	314	<1	0.02	13	970	32	4	<20	43	0.26	<10	74	20	22	62
96 (L-47+00N	46+50E	4	<.2	2.84	4	8	150	30	0.33	2	19	26	14	4.36	0.04	<10	0.37	418	1	0.01	14	530	54	4	<20	25	0.30	10	89	10		192
97 (L-47+00N	48+75E	\$	<.2	3.21	4	8	210	30	0.41	2	19	27	15	4.32	0.04	<10	0.36	386	<1	<.01	18	430	78	4	<20	26	0.29	<10	90	<10	22	350
GR 1	L-47+00N	40+00E	4	- 2	2.76	15	8	265	30	0.41	3	21	26	47	4.35	0.05	-10	0.35		-	0.01					~	-		~	-			
	L-47+00N		9 9		1.85	45	8	170	30	0.45	<1	20	31		4.12	0.05	<10	0.35	389 322	<1 <1	0.01	18 12	410 590	48 26	ያ ይ	<28 <29	30 32	0.33 0.38	20 <10	87 97	10	26	195
	L-47+00N		8 8		1.99	\$	8	155	30	0.57	<1	19	26		3.82	0.04	<10	0.33	377	<1	0.02	13	710	26	8 8	2 0		0.30	<10	87 81	<10 <10	27 25	85
	L-47+00N		ð		1.93	4	8	150	25	0.57	<1	18	28			0.05	<10	0.36	338	<1	0.02		1170	28	4	<20		0.26	10	79	<10	24	63 59
		50+00E(A)	4		2.20	4	8	195	30	0.58	<1	19	25	• -	3.87	0.04		0.36	383	<1	0.02	13	880	32	3	<20		0.32	<10	79	<10	27	59 64
		to beauty		-		-	-				•										0.04			~	~	-20		0.04	-10		-10	21	
103	L-47+00N	50+00E(B)	4	<2	2.45	4	8	165	20	0.55	<1	19	23	14	3.91	0.04	10	0.35	343	<1	0.02	18	1770	34	4	<20	38	0.28	10	78	<10	24	78
104 (L-47+00N	50+25E	⊲	<.2	1.95	\$	8	165	30	0.58	<1	18	24	17	3.62	0.05		0.34	422	<1	0.02	13	890	34	45	<20		0.30	<10	76	<10	30	72
105 (L-47+00N	50+50E	4	<2	1.42	4	8	135	25	0.54	<1	18	23	15	3.46	0.06	10	0.32	355	<1	0.02	12	920	24	<5	<20	34	0.27	<10	75	<10	23	63
	L-47+00N	50+75E	4	<.2	2.13	4	8	240	30	0.48	<1	19	25	19	3.82	0.06		0.35	338	<1	0.02	15	990	32	4	<20		0.31	<10	79	<10	26	71
107	L-47+00N	51+00E	4	<.2	1.18	4	8	115	25	0.43	<1	18	25	14	3.26	0.05	<10	0.29	318	<1	0.02	11	520	20	\$	<20	31	0.30	10	78	<10	26	52
105	L-47+00N	51+25E	4	< 2	0.99	4	8	100	20	0.48	<1	18	25	18	3.32	0.03	10	0.32	330	<1	0.03	10	490	16	⊲5	<20	34	0.29	<10	78	<10	26	53
		51+50E(A)	3		1.15	4	10	125	30	0.62	<1	18	26		3.85	0.06		0.30	375	<1	0.03	11	810	20	3	20		0.34	<10	81	<10	29	53 58
110	L-47+00N	51+50E(B)	\$	<2		4	8	105	25	0.45	4	17	28		3.55	0.09		0.27	309	4	0.02		1140	28	3	30		0.27	<10	75	<10	20	50 97
111	L-47+00N	51+75E	4		1.50	4	š	135	25	0.47	<1	18	28	15	3.68	0.05	<10	0.28	326	4	0.02	11	680	22	4	30		0.36	20	85	<10	26	¥/ 57
	L-47+00N		4		2.35	5	8	240		0.62	<1	20	28			0.09		0.45	667	<	0.02	17	560	40	4	30		0.26	<10	78	<10	25	ہر 72
			-	-		-	-								2.23	2.40								-			~					<i>2</i> .,	12

Page 3

Eco-Tech Laboratories Ltd.

Et#. Tag#		Au(ppb)	Ag	AI %	As	в	Ba	BI C	ia %	Cd	Co	Cr	Cu	Fe %	<u>K %</u>	La i	Mg %	Mn	Mo	Na %	NI	Ρ_	РЪ		Sn			U	v	w	Y	Zn
113 L-47+00	52+25E	ব	<2	1.65	10	8	195	25 (0.69	<1	19	29	28	4.24	0.05	10	0.41	429	<1	0.03	14	390	30	\$	<20	36	0.30	<10	8	<10	37	69
114 L-47+00	52+50E	4	<.2	0.30	4	8	36	S (0.07	<1	3	3	3	0.52	<.01	<10	0.05	66	<1	<.01	2	100	6	4	<20	8	0.04	10	9	<10	3	10
115 L-47+00	52+75E	4	<.2	2.27	4	10	170	25 (0.37	<1	19	25	19	4.04	0.06	<10	0.36	355	, 1	0.01	18	700	42	4	<20	27	0.26	<10	82	<10	20	78
116 L-47+00	53+00E(A)	4	<.2	1.94	4	8	195	25 (0.38	<1	14	21	12	3.38	0.04	<10	0.24	268	<1	0.01	9	330	32	<	<20	29	0.22	<10	70	<10	17	54
117 L-47+00			<.2	2.00	10	8	240	20 (0.38	<1	15	21	13	4.05	0.05	<10	0.29	317	1	0.01	14	480	42	4	<20	29	0.19	<10	74	<10	15	61
	· · · · · · · · · · · · · · · · · · ·			_																												
118 L-48+00	45+00E(A)	4	<.2	1.56	4	8	95	25 (0.49	<1	17	27	15	3.54	0.06	10	0.29	349	<1	0.02	12	850	24	4	<20	39	0.32	<10	80	<10	26	63
119 L-48+00	45+00E(B)	10	<2	1.93	4	8	115	25 (0.47	<1	18	26	14	3.61	0.05	<10	0.29	390	<1	0.02	14	1390	26	4	<20	34	0.29	<10	78	<10	23	88
120 L-48+00		5	<.2	1.46	4	8	105	25 (0.70	<1	14	21	13	2.84	0.05	10	0.35	311	<1	0.03	10	1310	24	4	<20	43	0.29	<10	58	<10	26	52
121 L-48+00		۵.	<.2	1.74	4	8	115	25 (0.57	<1	18	28	15	3.66	0.05	10	0.34	343	<1	0.02	13	1050	26	4	<20	41	0.31	<10	82	10	26	61
122 L-48+00		Ś		1.82	4	8	125	30 (0.62	<1	18	27	14	3.67	0.04	10	0.36	375	<1	0.02	13	850	24	4	<20	41	0.31	<10	84	<10	26	58
123 L-48+00	46+00E(A)	4	<2	1.90	4	8	155	30 (0.82	<1	19	29	13	3.82	0.03	10	0.36	360	<1	0.02	13	860	28	4	<20	46	0.33	10	89	<10	28	80
124 L-48+00	46+00E(B)	4	<.2	2.40	4	8	140	25 (0.49	<1	19	26	12	4.09	0.04	<10	0.31	340	1	0.01	13	650	34	4	<20	36	0.32	10	85	<10	24	125
125 L-48+00	46+25E	-5	<.2	1.89	ৰ	8	145	25 (0.49	<1	17	25	13	3.43	0.03	10	0.35	362	<1	0.02	12	480	30	4	<20	36	0.31	<10	76	<10	26	61
126 L-48+00	46+50E	4	<.2	1.87	⊲5	8	155	25 (0.52	<1	18	29	13	3.77	0.03	10	0.36	336	<1	0.02	15	720	26	4	<20	40	0.30	<10	86	<10	25	58
127 L-48+00	46+75E	4	<.2	1.49	4	8	120	25 (0.58	<1	18	27	13	3.84	0.04	10	0.40	376	<1	0.02	13	860	22	4	<20	41	0.30	<10	84	<10	26	55
125 L-48+00	47+00E	4	<2	1.20	4	8	115	30 (0.60	<1	18	26	14	3.43	0.03	10	0.36	343	•	0.02		1040	20	4	<20		0.30	<10	80	10	27	55
129 L-48+00	47+25E	4	<.2	2.09	4	8	165	30 (0.50	<1	18	25	17	3.58	0.03	10	0.36	310		0.02	13	880	32	5	<20	36		<10	79	<10	26	61
130 L-48+00	47+50E	4	<.2	2.12	4	8	180	25 (0.33	<1	18	26	15	3.81	0.04	<10	0.28	409	<1	0.01	13	580	38	4	<20	_	0.27	<10	79	<10	22	84
131 L-48+00	47+75E	4	<.2	1.50	4	10	125		0.55	<1	16	24			0.04	10	0.34	332		0.02	11	740	24	4	<20		0.31	<10	π	10	30	58
132 L-48+00	48+00E(A)	- 45	<.2	2.09	4	8	160	25 (0.41	<1	19	26	15	3.80	0.04	<10	0.34	363	<1	0.01	14	410	30	4	<20	34	0.32	<10	61	10	26	79
																													_			
133 L-48+00	48+00E(B)	4	<.2		4	8	120		0.29	1	20	27			0.05	<10	0.27	539	-	0.01	13	380	34	4	<20		0.32	10	87	<10		158
134 L-48+00	48+25E	4	<.2		4	8	165		0.44	<1	17	25		3.58	0.03	20	0.33	305	-	0.01	11	620	32	4	<20	-	0.29	<10	79	<10	27	59
135 L-48+00	48+50E	4		1.20		-	110	_	0.58	<1	15	24		3.21	0.04	10	0.29	359	-	0.02	11	870	22	4	<20		0.26	10	75	<10	25	52
136 L-48+00		4		2.01	4		195		0.47	1	19	26			0.05	<10	0.31	370	-	0.01	12	090	46	4	<20	34		10	82	<10	26	137
137 L-48+00	49+00E	4	<.2	1.95	4	8	160	25	0.62	<1	18	27	15	3.81	0.04	10	0.35	404	<1	0.02	11	1070	26	4	<20	47	0.32	<10	84	<10	27	72
		_	-		_																	-	~					-10		-10	~	
136 L-48+00		4		2.19	4	-	195		0.58	<1	20	27			0.06		0.35	742		0.02	14		36	0 Ø	 		0.32	<10	86	<10 <10	29 25	105 64
139 L-48+00		ব	<.2	2.03	4	6	160		0.44	<1	18	25		3.82	0.03	10	0.31	344	<1		12	650	32	-	<20		0.31	<10	60 76	<10		
140 L-48+00	· ·- ·	ব	<.2		\$	-	140		0.56	<1	17	25		3.57	0.06	10	0.30	422	<1			1130	26	5 5	<20		0.29	<10 <10	\overline{n}	<10	26	84
141 L-48+00				211	4		130		0.53	ব ব	18 17	24		3.70	0.05	<10	0.32	351		0.02 0.02		1160	36 40	0	<20 <29	30 34	0.30 0.29	<10	72	<10		102 165
142 L-48+00	1 50+00E(B)	4	<2	2.17	4	8	135	25	0.52	•1	17	24	13	3.60	0.07	<10	0.30	379	<1	0.02	15	1960	40	0	<u>م</u> ە	34	0.29	10	12	10	23	100
143 L-48+00	50+25E	36		1.84	4		160	30	0.59	<1	19	26	18	4.02	0.04	20	0.37	418	<1	0.02	13	650	30	4	<20	43	0.33	<10	89	<10	34	74
144 L-48+00			<2		ৰ	ă	155		0.49	<1	18	23		3.36	0.04	<10	0.36	379		0.02	13	540	22	6	<20	33		<10	76	<10	21	53
145 L-48+00		8 10	<2		3	-	170	30		4	18	26		3.77	0.07	<10	0.29	346	-	0.01	11	390	30	\$	<20		0.34	<10	84	<10	26	84
146 L-48+00		40	<2		ৰ		195		0.58	<1	14	22		3.20	0.05	10	0.24	390		0.02		790	30	6	<20		0.26	10	67	<10	24	67
147 L-48+00		20	<2		5	ă	225		0.49	<1	18	22		3.83	0.06	<10	0.29	448		0.02	11	490	56	3	~20		0.27	<10	72	<10		117
	1 31720C	۵	2	1.73				20		-	10		10	3,03	0.00	-10			-	0.02			~	~				-10				
148 L-48+00	1 51+50E(A)	4	<2	1.63	4	8	200	25	0.45	<1	16	24	14	3.78	0.05	<10	0.27	407	<1	0.02	10	370	38	4	<20	30	0.29	10	77	<10	25	104
149 L-48+00	1 51+50E(R)	10	<2		15		225		0.41	2	17	22		4.57	0.05	<10	0.26	708	<1		12	470	50	4	<20	29	0.26	10	74	<10		225
150 L-48+00		45	<2		4	8	155		0.55	<1	16	23		3.60	0.05	10	0.27	340	<1		9	610	32	4	<20	35	0.31	<10	75	<10	26	70
151 L-48+00		ð	<2		4	-	160		0.64	<1	16	25		3.66	0.04	10	0.37	359	<1		13	880	26	4	<20	45	0.32	<10	83	<10	27	59
152 L-48+00		5		1.61	10	-	160	20		<1	15	18			0.09		0.25	490		0.01	10	170	32	-	<20		0.22	<10	64	<10	19	84
		•				-																	_	-								

Page 4

Eco-Tech Laboratories Ltd.

Et#. Tag#		Au(ppb)	Ag	AI %	As	в	Ba	Bi (Ca %	Cd	Co	Cr	Cu	Fe %	К%	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
153 L-48+00N	52+50E	4		1.73	5	6	120	15	0.58	ব	15	22	14	3.61	0.06	<10	0.26	340	<1	0.02	6	700	10	\$	<20	20	0.25	<10	72	<10	17	45
154 L-48+00N		5	<2		-	6	160	15		<1	15	21	14	3.87	0.05	<10	0.26	429	<1	0.02	6	640	10	4	<20	21	0.23	<10	68	<10	22	57
155 L-48+00N			_	1.74	-5	6	135		0.49	<1	15	22		3.49	0.05		0.28	340	<1	0.02	6	750	10	-5	<20	20	0.27	<10	69	<10	20	47
156 L-48+00N				214	ৰ	6	115		0.44	<1	15	22	9	3.84	0.05	<10	0.26	321	<1		-	1230	10	-5	<20	19	0.24	<10	71	<10	16	79
157 L-49+00N				1.81	4	ĕ	80		0.47	<1	17	27	-	3.77	0.06		0.31	376	<1		7		4	\$	<20	22	0.27	<10	85	<10	19	62
	401002(4)	5	~4	1.01	-0	0	00	15	0.47	~!	.,	21	••	3.77	0.00	10	0.51	3/0	-1	0.01		000	-	~	-20	4	0.27	~10	85		1.	04
459 1 40.000	45 . 005 (B)		- 2	2.07	4	6	70	20	0.49	ব	17	28	•	4.02	0.05	-10	0.29	297	<1	0.01	8	1320	4	-	<20	20	0.26	<10	87	<10	16	
158 L-49+00N					-	-					18								-			1220	4	8	</th <th>23</th> <th>0.26</th> <th></th> <th></th> <th></th> <th>-</th> <th>61</th>	23	0.26				-	61
159 L-49+00N		4	<2		4	6	100	. –	0.54	<1		28		3.94	0.05		0.39	392	<1		-			-	_			<10	86	<10	21	47
160 L-49+00N		4		1.96	-	6	70		0.43	4	20	33		4.34	0.04		0.37	330	<1	0.01	10	900	2	4	<20		0.32	<10	103	<10	19	46
161 L-49+00N		4		1.89	4	6	105	15		<1	16	26		3.93	0.05	-	0.40	345	<1	0.02	9	950	2	4	<20		0.29	<10	87	<10	19	41
162 L-49+00N	46+00E	4	<2	1.84	4	6	110	20	0.48	<1	16	29	10	3.93	0.04	<10	0.35	338	<1	0.02	9	1100	2	4	<20	22	0.29	<10	90	<10	19	44
																					_			_								
163 L-49+00N	· · · ·	4		1.41	4	6	70	15		<1	17	26		3.68	0.04		0.35	376	<1	0.02	7	940	- 4	4	<20	23	0.29	<10	82	<10	21	43
164 L-49+00N	46+50E	5	<2		4	6	90		0.54	<1	17	25	10	3.70	0.04		0.35	366	<1	0.02	7	970	6	4	<20	26	0.26	<10	79	<10	20	54
165 L-49+00N	46+75E	4	<.2	1.75	4	6	90	15		<1	17	26	10	3.82	0.05		0.33	402	<1	0.02		1040	2	\$	<20	26	0.27	<10	82	<10	16	-47
166 L-49+00N	47+00E	-	<2	1.97	4	6	90		0.48	<1	19	30	11	4.11	0.06	<10	0.38	402	<1	0.02	9	900	2	4	<20	22	0.29	<10	95	<10	19	- 44
167 L-49+00N	47+25E	<	<2	1.76	4	6	70	15	0.59	<1	17	20	15	3.73	0.05	<10	0.45	621	<1	0.02	7	670	6	4	<20	27	0.23	<10	71	<10	27	43
166 L-49+00N	47+50E	4	<2	1.77	4	6	85		0.61	<1	16	30	10	4.20	0.04		0.34	363	<1	0.03	7	780	2	<5	<20	25	0.33	<10	92	<10	23	40
169 L-49+00N	47+75E	4	<.2	2.02	4	6	95		0.43	<1	19	31	10	4.04	0.04		0.33	323	<1	0.01	8	730	2	4	<20	22	0.31	<10	95	<10	19	43
170 L-49+00N	46+00E(A)	S	<2	1.16	4	6	90	15	0.90	<1	14	28	10	3.36	0.03	<10	0.32	249	<1.	0.03	5	1240	2	4	<20	28	0.29	<10	69	<10	27	33
171 L-49+00N	48+00E(B)		<2	211	4	8	95	20	0.60	<1	15	. 25	11	3.64	0.03	<10	0.27	584	<1	0.02	7	410	6	4	<20	23	0.26	<10	73	<10	23	62
172 L-49+00N	48+25E	4	<2	1.83	4	6	100	20	0.48	<1	16	25	12	3.57	0.03	<10	0.29	315	<1	0.01	7	740	6	4	<20	22	0.28	<10	80	<10	16	47
173 L-49+00N	48+50E	4	<2	2.05	4	8	115	20	0.35	<1	17	25	11	3.74	0.05	<10	0.31	329	<1	0.01	7	580	6	Ś	<20	16	0.26	<10	80	<10	17	52
174 L-49+00N	48+75E	4	<2	1.64	4	6	100	20	0.57	<1	19	31	11	4.35	0.05	<10	0.42	752	<1	0.02	9	900	4	4	<20	22	0.29	<10	90	<10	22	69
175 L-49+00N	49+00E	4	<2	1.95	4	6	100	20	0.51	<1	17	25	10	3.76	0.05	<10	0.30	363	<1	0.01	8	920	4	4	<20	25	0.27	<10	80	<10	16	43
176 L-49+00N	49+25E	4	<2	1.52	4	6	115	15	0.41	<1	15	22	10	3.54	0.05	<10	0.32	345	<1	0.01	7	620	8	4	<20	17	0.21	<10	71	<10	16	42
177 L-49+00N	49+50E	4	<2		4	4	80	15	0.40	<1	16	24	11	3.77	0.04	<10	0.25	400	<1	0.01	8	650	8	<5	<20	19	0.26	<10	80	<10	17	52
		-	-																													
178 L-49+00N	49+75E	4	<2	1.75	4	6	60	20	0.49	<1	19	32	11	4.12	0.05	<10	0.37	373	<1	0.02	9	1330	4	4	<20	19	0.32	<10	96	<10	20	47
179 L-49+00N	50+00E(A)	35	1.6	1.52	4	6	90	15	0.44	<1	16	24	10	3.87	0.05	<10	0.32	379	<1	0.02	7	490	4	4	<20	17	0.26	<10	77	<10	18	44
180 L-49+00N	50+00E(B)		1.2	1.70	4	6	75	20	0.41	<1	17	25	10	3.77	0.05	<10	0.34	409	<1	0.02	8	580	8	4	<20	18	0.26	<10	82	<10	18	55
161 L-49+00N		90	<2		-	6	90	20	0.48	<1 ·	16	27	12	3.88	0.06	<10	0.37	396	<1	0.02	9	800	4	4	<20	20	0.30	<10	85	<10	19	43
182 L-49+00N		4	<2		4	6	100		0.42	ব	17	25		3.88	0.05		0.31	336		0.01	7	420	8	-5	<20	23	0.29	<10	80	<10	18	39
		-	-		-	-				-			. 2								-		-	-			_					
183 L-49+00N	50+75E	4	<2	1.37	4	8	65	15	0.40	<	14	20	10	3.54	0.07	<10	0.25	292	<1	0.01	5	730	8	4	<20	18	0.26	<10	69	<10	16	41
184 L-49+00N		5	<2		\$	6	90	-	0.39	4	14	21	10	3.51	0.05	<10	0.23	311	<1		5	570	ă	4	<20		0.27	<10	70	<10	17	43
185 L-49+00N		4	<2		-5	6	265		0.58	<	16	21		3.78	0.05	<10	0.33	438	<1		6	330	20	-	<20		0.25	<10	73	<10	21	64
185 L-49+00N			<2		-5	6	110		0.43	<	17	26		3.73	0.05	<10	0.35	357	<1		6	680	4	\$	<20		0.29	<10	81	<10	18	39
187 L-49+00N			<2		\$	6	95		0.40	4	16	24		3.79	0.05		0.33	299		0.01	-	1620	4	4	<20		0.25	<10	78	<10	18	43
		~	~4	2.42	-	-	~		0.40			**			0.00	-10			-1		-		-	~	-24					-10	10	-
188 L-49+00N	51+75E	4	<2	1.59	4	4	120	15	0.52	<1	16	25	12	3.75	0.05	<10	0.32	350	<1	0.02	7	750	2	4	<20	24	0.26	<10	79	<10	19	42
189 L-49+00N		4	<2		4	4	105		0.48	<1	16	27		4.07	0.07		0.36	406	<1	-	ż	680	4	ৰ	<20		0.30	<10	87	<10	21	42
190 L-49+00N		2 4	<2		7 4	6	125		0.47	<1	19	28		4.24	0.07	<10	0.40	445	<1		8	550	6	ŝ	<20		0.31	<10	92	<10	20	42 48
191 L-49+00N		2 4	<2		3	6	85		0.47	<	18	29	11	3.89	0.06	<10	0.37	370	<1		8	550 580	4	3	~20	21	0.31	<10	91	<10	19	
192 L-49+00N		হ ব	<2		\$	6	95		0.39	4	17	24		3.74	0.08		0.37	377	<		7	630	4	45	~20		0.27	<10	79	<10	19	39
		~3	~4	1.13	-0			10	0.30	-1	.,	47	10	3.14	0.07	-10	J.34	an	-1	0.01	'	030	-	-2	-20	~	J.41	-10	10	10	10	42
																																``

Page 5

memory relationships and present the second of the second of the second of the second second second and the second s

Eco-Tech Laboratories Ltd.

Et	. Tag#		Au(ppb)	Ag	AI %	Aş	8	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	KŇ	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	8r	TIN	U	V	W	Y	Zn
193	L-49+00N	53+00E(A)	\$	<2	1.42	\$	6	110	15	0.51	<1	16	29	10	3.93	0.06	<10	0.39	473	<1	0.02	7	840	4	Ś	<20	24	0.29	<10	91	<10	21	41
194	L-49+00N	53+00E(B)	4	<2	1.93	4	6	90	20	0.42	<1	19	29	11	4.30	0.05	<10	0.38	386	<1	0.01	9	890	4	<5	<20	17	0.30	<10	100	<10	19	44
195	L-50+00N	47+00E(A)	4	<2	1.70	4	6	65	25	0.68	<1	16	27	11	3.93	0.05	<10	0.38	444	<1	0.02	6	560	4	<5	<20	25	0.31	<10	87	<10	23	40
190	L-50+00N	47+00E(B)	4	<2	1.65	4	6	75	25	0.62	<1	19	32	12	4.33	0.04	<10	0.40	475	<1	0.02	14	560	2	4	<20	24	0.34	<10	97	<10	26	43
197	L-50+00N	47+25E	4		1.70	ৰ	6	85	15	0.53	<1	17	27	10	3.61	0.05	<10	0.38	399	<1	0.02	6	850	4	<5	<20	23	0.27	<10	86	<10	16	48
190	L-50+00N	47+50E	4	<2	1.33	4	6	55	15	0.52	<1	14	23	9	3.23	0.05	<10	0.33	335	<1	0.02	6	770	4	4	<20	23	0.26	<10	74	<10	17	37
199	L-50+00N	47+75E	180	<2	2.52	4	4	125	15	0.27	<1	20	24	16	6.60	0.06	<10	0.24	2097	<1	<.01	6	540	10	-5	<20	14	0.16	<10	92	<10	16	116
200	L-50+00N	48+00E	5	<2	3.03	ৰ	6	115	15	0.35	<1	21	25	11	7.45	0.05	<10	0.23	1467	2	<.01	6	560	8	4	<20	16	0.18	<10	94	<10	16	129
201	L-50+00N	48+25E	4	<2	2.24	ৰ	6	100	15	0.55	<1	17	25	8	3.92	0.04	<10	0.30	331	<1	0.02	6	280	4	4	<20	19	0.30	<10	86	<10	17	39
202	L-50+00N	48+50E	30	<2	2.13	4	4	90	10	0.39	<1	11	15	7	4.37	0.06	<10	0.17	507	<1	<.01	3	510	6	<5	<20	15	0.05	<10	86	<10	6	89
203	L-50+00N	48+75E	4	<2	1.97	ব	4	125	15	0.59	<1	13	21	6	3.58	0.11	<10	0.23	373	<1	0.02	5	370	14	<5	<20	20	0.21	<10	64	<10	16	36
204	L-50+00N	49+00E	4	<2	1.73	<	6	140	15	0.92	<1	13	21	9	3.59	0.05	10	0.30	355	<1	0.03	5	690	10	<5	<20	28	0.21	<10	59	<10	27	31
205	L-50+00N	49+25E	4	<2	1.57	4	6	95	20	0.62	<1	17	27	11	3.87	0.04	<10	0.34	497	<1	0.02	6	450	4	4	<20	21	0.29	<10	83	<10	21	45
200	L-50+00N	49+50E	80	•	٠	٠	•	•	•	•	٠	•	٠	•	٠	•	٠	•	٠	•	•	٠	•	٠	•	٠	•	٠	•	٠	•	•	•
207	L-50+00N	49+75E	4	<2	1.89	4	6	100	15	0,38	<1	17	25	11	3.92	0.07	<10	0.29	406	<1	0.01	6	430	6	4	<20	21	0.28	<10	80	<10	17	55
206	L-50+00N	50+00E	150	3.2	2.37	4	4	275	15	0.49	2	15	20	11	4.41	0.05	<10	0.18	3274	<1	<.01	5	350	14	4	<20	14	0.17	<10	76	<10	12	209
206	L-50+00N	50+25E	25	<2	1.48	4	6	80	15	0.44	<1	14	23	9	3.33	0.05	<10	0.23	313	<1	0.01	8	800	4	<5	<20	20	0.25	<10	73	<10	16	42
210	L-50+00N	50+50E	4	<2	1.63	4	6	90	10	0.48	<1	16	28	11	3.54	0.06	<10	0.29	335	<1	0.01	7	390	8	4	<20	22	0.27	<10	77	<10	22	43
211	L-50+00N	50+75E	⊲5	<2	1.64	4	- 4	130	10	0.44	<1	18	25	11	3.46	0.04	<10	0.24	337	<1	0.01	6	750	4	4	<20	20	0.29	<10	77	<10	20	43
212	L-50+00N	51+00E	4	<2	1.81	4	6	70	15	0.38	<1	15	24	11	3.56	0.06	<10	0.26	313	<1	0.01	7	1110	10	4	<20	19	0.24	<10	74	<10	17	58
213	L-50+00N	51+25E	4	<2	2.21	4	6	105	20	0.44	<1	19	27	11	3.92	0.05	<10	0.34	360	<1	0.02	6	520	4	4	<20	26	0.30	<10	86	<10	17	39
214	L-50+00N	51+50E	4	<2	1.96	4	- 4	125	10	0.35	<1	15	24	10	3.73	0.09	<10	0.30	347	<1	0.01	7	6 20	6	4	<20	16	0.23	<10	77	<10	15	77
215	i L-50+00N	51+75E	4	<2	1.96	4	6	75	15	0.58	<1	14	20	9	3.34	0.05	<10	0.28	274	<1	0.02	6	1840	8	4	<20	21	0.23	<10	62	<10	17	39
	i l50+00N		4	<2	1.74	4	6	100	20	0.49	<1	16	27	10	3.95	0.06	<10	0.34	439	<1	0.02	6	620	- 4	4	<20	23	0.30	<10	87	<10	17	49
217	' L-50+00N	52+25E	4	<2	1.75	4	6	100	20	0.42	<1	17	25	9	3.63	0.05	<10	0.31	347	<1	0.02	7	640	6	4	<20	20	0.27	<10	61	<10	17	39
	L-50+00N		4	_	1.79	4	- 4	100	15	0.45	<1	15	24	-	3.72	0.05	<10	0.34	333	<1	0.01	6	320	6	<5	<20	22	0.24	<10	61	<10	15	46
	L-50+00N		-5		1.93	4	6	100	20	0.46	<1	16	23	10	3.55	0.07	<10	0.33	390	<1	0.01	7	690	6	4	<20	24	0.27	<10	74	<10	16	44
	L-50+00N		4	<2	1.95	4	6	115	15	0.47	<1	15	22	9	3.39	0.04	<10	0.30	473	<1	0.02	6	690	6	4	<20	23	0.28	<10	66	<10	16	54
	L-50+00N		4	<2		4	6	300	15	0,75	3	19	21	32	4.85	0.06	<10	0.36	850	<1	0.03	9	570	6	<5	<20	27	0.23	<10	68	<10	24	135
22	! L-50+00N	53+50E	4	<2	1.57	4	8	80	15	0.72	<1 ·	16	21	9	3.55	0.06	<10	0.31	448	<1	0.02	5	1110	6	4	<20	26	0.26	<10	68	<10	19	54
~~							_																										
	L-50+00N		4	_	1.79	4	6	75	15	0.49	<1	16	24	10	3.61	0.07	<10	0.30	340	<1	0.02	6	860	6	4	<20		0.26	<10	74	<10	16	40
	L-50+00N		4	<2		4	6	85	15	0.41	<1	16	24	9		0.06	<10	0.29	299	<1	0.01	6	560	6	<5	<20	25	0.29	<10	76	<10	18	37
	L-50+00N		4	_	1.68	4	6	75	20	0.39	<1	15	22	10	3.55	0.06	<10	0.24	278	<1	0.01	5	630	6	4	<20	21	0.27	<10	72	<10	16	38
20	L-50+00N	54+50E	4	<2		4	6	85	15	0.38	<1	15	23	6	3.49	0.05	<10	0.25	266	<1	0.01	6	570	6	4	<20	23	0.27	<10	75	<10	16	37
22	L-50+00N	54+75ER	4	<2	1.79	4	6	95	20	0.33	<1	14	22	6	3.21	0.06	<10	0.22	237	<1	0.01	5	550	6	4	<20	19	0.27	<10	68	<10	16	35
~			_			_	-							-											_							_	
20	L-50+00N	55+00E(A)	4	_	1.77	4	6	95	15		<1	16	25	-	3.56	0.05			292	<1	0.01	8	770	4	4	<20	20	0.29	<10	79	<10	17	41
20	L-30+00N	55+00E(B)	4	<2		4	6	95	20	0.42	<1	14	21	11	3.50	0.05	<10	0.20	301	<1	0.01			20	4	<20	30	0.23	<10	66	20	17	89
23	L-51+00N	47+00E(A)	4		1.91	4	6	115	25	0.49	<1	19	27	13	4.13	0.05	<10	0.33	335	<1	0.01	15	950	14	4	<20	35	0.29	<10	91	<10	20	56
25	L-51+00N	47+00E(B)	4		1.85	4	10	120	25	0.55	<1	20	29	15	4.30	0.07	<10	0.36	419	<1	0.02	15	880	14	4	<20	44	0.30	<10	94	<10	23	56
2.5	L-51+00N	47+25E	ৰ	<2	1.80	4	6 -	95	25	0.51	<1	17	26	13	3.91	0.06	<10	0.34	481	<1	0.02	13	540	16	<5	<20	33	0.30	<10	85	<10	23	77

ана на страна на страна Историја на страна Историја на страна на

Eco-Tech Laboratories Ltd.

Et#. 1	Tag #		Au(ppb)	Ag	A! %	As	B	Ba		Ca %	Cd	Co	<u>Cr</u>	Cu	Fe %	<u>K %</u>	La	Mg %	Mn	Mo	Na %	Ni		РЬ	Sb	Sn	Sr	TI %	U	v	W	Y	Zn
233 L-5	51+00N	47+50E	- ও	<2	1.79	\$	8	105	25	0.51	<1	18	27	12	3.99	0.05	<10	0.32	363	<1	0.02	12	630	- 14	9	<20	30	0.30	<10	87	<10	22	64
234 L-5	1+00N	47+75E	4	<2	1.85	<	8	130	25	0.46	<1	19	27	13	4.10	0.04	<10	0.34	395	<1	0.02	14	610	- 14	4	<20	34	0.30	<10	88	<10	22	76
235 L-5	51+00N	48+00E	4	<2	1.93	\$	8	145	25	0,49	<1	17	25	14	3.84	0.05	<10	0.32	415	<1	0.02	14	1710	16	4	<20	35	0.27	<10	76	<10	20	83
236 L-5	51+00N	48+25E	4	<2	1.74	4	8	165	25	0.46	<1	18	26	13	3.92	0.04	<10	0.35	336	<1	0.02	14	770	14	4	<20	35	0.28	<10	87	<10	21	55
237 L-5	i1+00N	48+50E	4	<2	1.98	4	8	130	25	0.50	<1	18	25	13	3.95	0.05	<10	0.34	319	<1	0.02	13	730	14	4	<20	41	0.30	<10	85	<10	21	56
238 L-5	1+00N	48+75E	4	<2	1.97	4	8	115	20	0.46	<1	17	25	13	3.94	0.04	<10	0.33	350	<1	0.02	14	1150	18	4	<20	30	0.28	<10	81	<10	21	69
239 L-5			4	<2	1.94	4	8	130	20	0.43	<1	18	24	13	3.62	0.03	<10	0.30	307	<1	0.01	11	600	16	4	<20	37	0.29	<10	80	<10	23	53
240 L-5			4	<2	1.94	45	8	255	25	0.47	<1	18	23	13	4.00	0.05	<10	0.27	363	<1	0.02	11	1000	18	4	<20	32	0.26	<10	76	<10	21	69
241 L-5			4	<2	2.11	4	8	-	25	0.45	<1	17	25	14	3.99	0.05	<10	0.30	304	<1	0.02	13	1520	18	4	<20	31	0.29	<10	78	<10	21	73
242 L-6			4	<2	1.95	45	8	180	20	0.45	<1	15	22			0.06		0.30	712	<1	0.01	12		18	\$	<20	26	0.28	<10	68	<10	21	82
			-	-		-	-																										
243 L-5	1+00N	50+00E	30	<2	1.63	4	6	185	20	0.46	<1	18	22	12	3.78	0.06	<10	0.32	318	<1	0.02	12	560	14	4	<20	35	0.30	<10	75	<10	22	55
244 L-5	1+00N	50+25E	45	<2	1.89	4	8	90	25	0.49	<1	17	26	15	3.98	0.05	<10	0.33	316	<1	0.02	14	1250	18	ৰ	<20	32	0.29	<10	83	<10	24	71
245 L-5	1+00N	50+50E	5	<2	1.84	4	8	135	20	0.42	<1	16	24	12	3.56	0.05	<10	0.28	338	<1	0.02	12	1100	14	4	<20	30	0.26	<10	77	<10	21	63
246 L-5	1+00N	50+75E	Ś	<2	1.81	\$	8	135	25	0.43	<1	17	27	13	3.71	0.05	<10	0.28	284	<1	0.01	12	810	12	4	<20	36	0.31	<10	84	<10	21	51
247 L-5			4	<2	2.05	4	8	195	30	0.44	<1	18	27	14	3.88	0.06	<10	0.28	314	<1	0.01	13	580	16	4	<20	32	0.33	<10	86	<10	23	54
248 L-5	1+00N	51+25E	4	<2	1.95	4	8	115	25	0.44	<1	16	24	14	3.63	0.05	<10	0.28	266	<1	0.01	12	790	14	4	<20	34	0.29	<10	79	<10	20	59
249 L-5	1+00N	51+50E	4	<2	1.73	4	8	130	25	0.46	<1	16	23	14	3.53	0.06	<10	0.29	311	<1	0.02	11	870	14	4	<20	37	0.29	<10	75	<10	23	57
250 L-5	51+00N	51+75E	4	<2	2.18	4	8	155	25	0.41	<1	16	23	15	3.67	0.05	<10	0.28	296	<1	0.01	13	910	16	4	<20	34	0.28	<10	77	<10	20	73
251 L-5	51+00N	52+00E	4	<2	1.86	4	6	180	25	0.39	<1	16	23	13	3.68	0.07	<10	0.25	299	<1	0.01	12	410	18	4	<20	31	0.31	<10	79	<10	21	56
252 L-5			4	<2	1.92	\$	8	190	25	0.39	<1	14	21		3.59	0.05		0.27	271	<1	0.01	12	980	18	4	<20	27	0.25	<10	71	<10	17	59
	-		-						-				-						-														
253 L-5	51+00N	52+50E	4	<2	1.48	4	6	145	15	0.47	<1	13	18	13	3.33	0.06	<10	0.28	428	<1	0.01	7	730	16	4	<20	30	0.22	<10	60	<10	18	62
254 L-5	51+00N	52+75E	4	<2	2.27	4	8	185	25	0.44	<1	15	22	12	3.80	0.06	<10	0.28	297	<1	0.01	13	990	22	4	<20	33	0.27	<10	70	<10	19	80
255 L-5	51+00N	53+00E	4	<2	1.67	4	8	135	20	0.65	<1	18	22	14	3.77	0.05	<10	0.31	412	<1	0.03	10	790	14	4	<20	47	0.28	<10	71	<10	25	56
256 L-5	51+00N	53+25E	4	<2	2.13	-	8	130	25	0.50	4	18	23	16	3.87	0.05	<10	0.34	323	<1	0.02	13	1500	16	4	<20	39	0.28	<10	77	<10	23	73
257 L-5	51+00N	53+50E	45	<2	1.93	4	6	130	25	0.55	<1	18	23	10	3.85	0.05	<10	0.30	278	<1	0.02	11	570	18	4	<20	39	0.28	10	79	<10	19	73
258 L-5	51 +00N	53+75E	4	<2	1.29	4	8	145	20	0.91	<1	14	21	-17	3.46	0.05	10	0.38	357	<1	0.05	9	1280	12	4	<20	83	0.27	<10	68	<10	27	82
259 L-5	51+00N	54+00E	4	<.2	1.42	-5	6	105	25	0.49	<1	14	20	12	3.13	0.04	<10	0.28	298	<1	0.02	9	860	- 14	4	<20	40	0.26	<10	65	<10	24	49
260 L-5	51+00N	54+25E	4	<2	1.65	4	6	110	25	0.39	<1	12	17	11	3.01	0.04	<10	0.23	269	<1	0.02	7	200	16	4	<20	32	0.26	<10	81	<10	19	71
261 L-5	51+00N	54+50E	4	<2	1.88	4	8	135	20	0.33	<1	14	21	10	3.55	0.04	<10	0.22	209	<1	0.01	10	1410	- 14	4	<20	29	0.25	<10	71	<10	17	55
262 L-5	51+00N	54+75E	4	<2	1.57	4	8	95	20	0.43	<1	15	23	12	3.50	0.05	<10	0.24	265	<1	0.02	9	710	16	4	<20	33	0.30	<10	75	<10	22	49
											•																						
		55+00E(A)	4	<2	1.70	4	8	95	20	0.36	<1	13	19	9	3.10	0.05	<10	0.19	297	<1	0.01	9	1470	18	4	<20	26	0.24	<10	59	<10	17	58
		55+00E(B)	4	<2	1.67	4	8	105	25	0.45	<1	14	21	10	3.32	0.07	<10	0.26	269	<1	0.02	10	1030	16	4	<20	32	0.28	<10	69	<10	20	50
		47+00E(A)	\$	<2	1.78	4	8	125	20	0.48	<1	18	27	- 14	3.94	0.04	<10	0.34	354	<1	0.02	- 14	850	12	4	<20	43	0.32	<10	66	<10	23	55
		47+00E(B)	4	<2	1.65	4	6	110	25	0.45	<1	19	28	13	4.26	0.03	<10	0.32	342	<1	0.02	15	1280	- 14	4	<20	30	0.30	<10	94	<10	21	64
267 L-5	52+00N	47+25E	4	<2	1.52	4	8	105	25	0.42	<1	18	25	13	3.60	0.04	<10	0.27	269	<1	0.02	10	580	14	4	<20	36	0.32	<10	82	<10	22	50
																								•									
268 1-5			4	<.2	1.71	4	6	125	25	0.45	<1	17	25	13	3.79	0.04	<10	0.32	339	<1	0.02	11	750	14	4	<20	40	0.30	<10	82	<10	22	54
269 L-5			4	<2	1.42	4	6	105	20	0.50	<1	12	20	12	2.79	0.02	<10	0.32	235	<1	0.02	9	420	12	4	<20	30	0.26	<10	61	<10	23	44
270 1-5	52+00N	48+00E(A)	4	<2	1.30	4	6	105	20	0.55	<1	11	17	11	2.55	0.03	<10	0.37	220	<1	0.02	9	680	14	4	<20	34	0.25	<10	50	<10	21	44
		48+00E(B)	-5	<2	1.65	4	6	110	20	0.45	<1	14	20	11	3.11	0.03	<10	0.31	261	<1	0.02	9	430	16	4	<20	31	0.27	<10	64	<10	19	51
272 L-5	52+00N	48+25E	4	<2	1.94	4	6	185	25	0.36	<1	17	21	16	4.05	0.06	<10	0.54	312	<1	0.02	12	400	12	4	<20	30	0.25	<10	93	<10	18	59
				-																													

Page 7

Eco-Tech Laboratories Ltd.

Et#. Tag#	Au(ppb)	Ag	AI %	As	B	Ba	BI	Ca %	Cd	Co	Cr	Cu	Fe %	<u>K %</u>	Ļ	Mg %	Mn	Mo	Na %	N	P	Pb	Sb	Sn	Sr	TI %	U	V	W	Y	Zn
273 L-52+00N 48+50E	\$	<2	1.52	<5	8	120	20	0.51	<1	16	27	14	3.84	0.04	<10	0.38	342	<1	0.02	13	690	12	ক	<20	36	0.30	<10	86	<10	24	57
274 L-52+00N 48+75E	<5	<2	1.57	4	8	115	25	0.41	<1	19	30	15	4.13	0.05	<10	0.36	366	<1	0.02	14	680	14	<5	<20	38	0.32	<10	95	<10	23	62
275 L-52+00N 49+00E	4	<2	1.16	4	8	100	25	0.54	<1	14	21	10	3.05	0.03	<10	0.31	328	<1	0.02	9	890	10	<5	<20	40	0.25	<10	66	<10	21	43
276 L-52+00N 49+25E	4		1.23	-5	8	170	20	0.65	<1	15	20	14	3.53	0.03	10	0.42	345	<1	0.03	10	680	14	4	<20	37	0.24	<10	76	<10	23	50
277 L-52+00N 49+50E	\$		1.09	4	10	175	25	0.58	<1	18	28		4.14	0.03	<10	0.38	428	<1		13	790	14	4	<20	35	0.29	<10	94	<10	24	81
	-						~	0.00		10				0.00	-10	0.00			0.00			17		-20	~	•	-10	•••			
278 L-52+00N 49+75E	4	< 2	1.31	4	8	170	20	0.38	<1	14	21	14	3.54	0.05	<10	0.28	262	<1	0.02	9	430	16	4	<20	24	0.25	<10	83	<10	20	51
279 L-52+00N 50+00E	4		1.62	3	Ā	145	15	0.37	<1	12	19		3.59	0.05	<10	0.23	236	<1		8	1750	16	ৰ	<20	25	0.16	<10	71	<10	11	91
280 L-52+00N 50+25E	4		1.57	4		125	20	0.36	<1	15	22	-	3.65	0.05	<10	0.28	251	<1	0.01	12	700	12	ৰ	<20	25	0.24	<10	80	<10	17	52
281 L-52+00N 50+50E	7 5		1.12	4	10	80	20	0.39	<1	13	20	15	3.41	0.05	<10	0.32	289	ব	0.02	9	410	10	ৰ	<20	27	0.22	<10	74	<10	18	46
	3 5		1.51	3	8	135	25	0.36	<1	15	23		3.51	0.04	<10	0.32	250	<1		10	480	12	3	<20	30	0.27	<10	79	<10	19	45
282 L-52+00N 50+75E	40	<.2	1.51	-0		135	20	0.30	~1	15	20	1.4	3.51	0.04	10	U.21	200	~1	0.01	10	400	14	-0	ھ-	30	0.27	10		~10	19	40
283 L-52+00N 51+00E	4		1.59	4	8	135	20	0.33	<1	15	22	13	3.46	0.04	e10	0.25	247	<1	0.01	9	320	12	ব	<20	26	0.25	<10	76	<10	18	47
284 L-52+00N 51+25E	4		1.72	ৰ	ă	210	15	0.35	<1	11	17	12	2.94	0.06	<10	0.18	263	<1	0.01	6	440	16	4	<20	20	0.23	<10	57	<10	16	90
	-		1.65	3	š	160	20	0.42	<1	14	20	13	3.33	0.05	<10	0.26	268	<1	0.02	9	450	20	، ج	<20	26	0.26	<10	70	<10	19	44
285 L-52+00N 51+50E(A				3	-								3.58	0.05	• -			-		-	730	18	ৰ	<20	26	0.26	<10	72	<10	18	56
296 L-52+00N 51+50E(E			1.87	5	8	140	20	0.44 0.58	ব ব	14	21 21	13 16			<10 <10	0.27	261	4	0.01 0.03	11	440	18	4	20	37	0.25	<10	71	<10	22	
287 L-52+00N 51+75E	4	<2	1.89	4	0	145	20	0.00	~1	18		10	4.02	0.05	<10	0.34	352	<1	0.03	10	440	10		ىم.	3/	0.20	10		NIV.		47
288 L-52+00N 52+00E	4	<2	1.62	4	8	110	20	0.49	<1	14	21	14	3.66	0.04	<10	0.31	291	<1	0.02	11	1330	14	ৰ	<20	28	0.23	<10	74	<10	20	57
259 L-52+00N 52+25E	4	<2	1.54	4	8	125	20	0.53	<1	15	20	13	3.38	0.06	<10	0.29	361	्त	0.02		940	14	4	20	35	0.27	<10	89	<10	23	48
290 L-52+00N 52+50E	4	<2	1.61	3	ă	105	20	0.35	4	15	22	11	3.50	0.05	<10	0.27	279	<1	0.01	10	380	14	4	<20	33	0.28	<10	76	<10	19	46
	-	_		-	-				4	15						-				-		14	9	20	28	0.26	<10	72	<10	19	44 - 44
291 L-52+00N 52+75E	. S	<2	1.67	4		210 190	20 15	0.35 0.54	-		21		3.34	0.05	<10	0.27	292	<u>ব</u>	0.01	10	400 710	10	3	30	50	0.23	<10	67	<10	25	47
292 L-52+00N 53+00E(/	N) 45	<2	0.92	4	8	190	15	U.04	4	14	18	12	3.18	0.04	<10	0.35	367	ব	0.03	9	/10	10	9	us>	30	U.23	<10	0/	<10	20	4/
293 L-52+00N 53+00E(6	3) <5	- 2	1.86	4	8	130	20	0.32	<1	18	22	11	3.62	0.04	<10	0.25	257	<1	0.02	12	460	14	ব	<20	30	0.29	<10	75	<10	19	53
294 L-52+00N 53+25E	" 5	<2	1.31	ৰ	š	100	25	0.55	<1	13	21	10	3.22	0.04	<10	0.25	270	4	0.03	8	700	12	4	<20	44	0.27	<10	65	<10	21	43
295 L-52+00N 53+50E	4	<2	1.12	4		105	15	0.59	्न	13	20	11	3.18	0.04	<10	0.29	314	ব	0.03	ő	860	12	ৰ	<20	43	0.26	<10	66	<10	21	43
296 L-52+00N 53+75E	4	<2	1.12	4	8	115	20	0.73	4	12	21	13	2.97	0.04	<10	0.26	239	ব	0.03		960	12	3	20	80	0.26	<10	80	<10	24	45
	**	*	1.10			#		#		#		#	*	#	#	#	1		#			#				#		<u> </u>		,	*
297 L-52+00N 54+00E														•					•				•					•			
296 L-52+00N 54+25E	4	e 2	1.55	4	6	110	20	0.46	4	14	20	10	3.20	0.04	<10	0.27	303	<1	0.02	7	540	18	4	<20	36	0.25	<10	81	<10	18	67
299 L-52+00N 54+50E	ँ	<2	1.13	4		120	15	0.58	<	14	20	32	3.12	0.04	10	0.28	370	<	0.03	å	940	32	4	20	50	0.25	<10	83	<10	23	54
300 L-52+00N 54+75E	ন ব		1.54	ৰ	8	145	20	0.38	<1	14	20	10	3.19	0.04	<10		245	<		ă	430	14	4	<20	32	0.27	<10	65	<10	19	44
301 L-52+00N 55+00E(/		_	1.49	4	8	100	20	0.50	4	15	22	17		0.04	<10	0.27	284	<1		8	690	14	3	20	37	0.29	<10	72	<10	23	48
302 L-52+00N 55+00E(1.76	Š	8	95	20	0.36	ৰ	15	21	12	3.39	0.04	<10		290	4		-	1130	16	3	~20	27	0.25	<10	86	<10	18	40 57
SHE LAZYON SOUDE	B) <5	<2	1.70	-0	9	-	لم	0.30	SI.	19	21	12	3.30	0.04	~10	0.23	200	~1	0.02	11	1130	10	-0	<u>مع</u>	41	0.20	10	00	-10	18	9/
303 L-53+00N 47+00E(/	A) <5		1.97	4	8	125	20	0.44	ব	18	22	18	3.36	0.04	<10	0.29	310	<1	0.02	12	920	12	ব	<20	40	0.25	<10	70	<10	21	47
304 L-53+00N 47+00E(ব	š	105	25	0.46	<1	18	25	13	3.91	0.04	<10		295	<		13	2300	14	4	<20	31	0.26	<10	78	<10	20	63
305 L-53+00N 47+25E	n, 13 6	_		4	š	125	20	0.30	<1	15	21	13	3.79	0.03	<10	0.36	247	1		11	440	18	4	<20	25	0.23	<10	65	<10	15	54
306 L-53+00N 47+50E	4		1.99	4		230	تم 15	0.42	ব	19	19	15	3.17	0.03		0.30	217	4	0.01	9	700	14	9 9	20	35	0.25	<10	86	<10	19	- 04 - 46
307 L-53+00N 47+75E	-			3		230		0.35	ব						<10							16	3	20	33	0.22			<10		
	ব	<.2	2.34	-	8	230	15	0.33	۲>	13	18	17	3.23	0.02	<10	0.30	199	<1	0.01	1	940	10	43	لك>	33	0.22	<10	65	<1U	19	47
306 L-53+00N 48+00E	ব	<2	1.68	4	8	300	20	0.46	<1	14	19	14	3.65	0.05	<10	0.34	391	4	0.02	9	1560	12	4	<20	34	0.24	<10	89	<10	17	77
309 L-53+00N 48+25E(/	A) <5		1.34	4	8	305	20	0.36	<1	12	18	11	3.26	0.05	<10	0.23	226	<1	0.01	8	370	10	4	<20	31	0.21	20	70	<10	15	50
310 L-53+00N 48+25E(B) <	_	1.41	-5	6	270	10	0.36	<1	11	18		3.04	0.07	<10	0.18	204	<1	<.01	12	570	12	\$	<20	24	0.13	<10	68	<10		63
311 L-53+00N 48+50E	ঁ ও	<2	1.59	4	ă	215	15	0.49	<1	13	19	12	3.46	0.05	<10	0.26	251	<1	0.02	10	1770	12	4	-20	32	0.23	<10	70	<10	17	58
312 L-53+00N 48+75E	ব		2.35	4		265	20	0.50	<1	13	18		3.76		<10		245		0.02	-	2160	16	ব	20		0.23	<10	63	<10	17	64
	~	-																~ •		.4					~					••	

Page 8

.

Eco-Tech Laboratories Ltd.

Et#. Tag#		Au(ppb)	Ag	AL N	As	8	Ba	Bi Ca	1%	Cd	Co	Cr	Cu	Fe %	K %	La	Mg %	Mn	Mo	Na %	Ni	P	РЬ	Sb	Şn .	Sr	TI %	U	V_	w	Y	Zn
313 L-53+00N	49+00E	4	<.2	1.87	ø	6	185	25 0	.38	<1	14	20	13	3.43	0.05	<10	0.26	259	°<1	0.02	10	990	14	4	<20	34	0.27	<10	70	<10	19	56
314 L-53+00N	40+25E	4	<.2	1.87	4	6	175	20 0	.44	<1	14	21	11	3.40	0.06	<10	0.26	266	<1	0.02	9	840	14	45	<20	33	0.26	<10	73	<10	20	50
315 L-53+00N	40+50E	4	<.2	1.71	4	6	145	20 0	.46	<1	15	22	13	3.64	0.06	<10	0.27	265	<1	0.02	11	610	12	4	<20	32	0.26	<10	77	<10	20	51
316 L-53+00N	49++75E	4	<.2	1.31	<5	6	120	20 0	.46	<1	15	22	14	3.59	0.05	<10	0.32	332	<1	0.02	10	650	10	4	<20	38	0.27	<10	78	<10	21	50
317 L-53+00N	50+00E(A)	• ⊲5	<2	1.16	4	8	115	20 0	.81	<1	15	21	14	3.43	0.05	<10	0.35	429	<1	0.03	9	1040	12	4	<20	46	0.26	<10	77	<10	24	51
		-	-							•						•-			·		-			-					•••		-	••
316 L-53+00N	50+00E(B)	4	<2	1.81	4	6	100	15 0	.35	<1	15	20	9	3.43	0.05	<10	0.24	419	<1	0.01	9	1150	16	4	<20	28	0.21	<10	67	<10	15	70
319 L-53+00N		4	<2		-5	8	90	•	52	<1	14	20	-	3.23	0.05	<10	0.32	353	•	0.02	9	850	10	4	<20	35	0.25	<10	73	<10	20	48
320 L-53+00N		4	<2		4	8	110		.37	<	14	21		3.39	0.04	<10	0.31	290	<1	_	10	500	10	4	20	32	0.25	<10	78	<10	18	45
321 L-53+00N		4		1.39	-5	8	120		.39	<	15	21		3.42	0.05	<10	0.32	293	-		10	570	10	4	20	32	0.25	<10	79	<10	16	46
322 L-53+00N		4		1.30	4	10	105		.41	<1	18	25	13	3.85	0.05	<10	0.33	340		0.02	12	680	12	4	<20	33	0.29	<10	86	<10	20	52
		-												0.00	0.00		0.00	••••		0.02		~~~				~	0.20	-10	~	-10	20	
323 L-53+00N	51+25E	4	<2	1.64	4	6	95	20 0	.38	<1	16	25	14	3.76	0.04	<10	0.30	266	<1	0.02	12	700	14	4	<20	29	0.29	<10	86	<10	19	50
324 L-53+00N			<2		4		130			<1	15	19		3.40	0.05	<10	0.37	392		0.02	10	750	10	4	<20	39	0.23	<10	75	<10	19	46
325 L-53+00N	• • •	-	<2		Š	8	80			<1	14	20		3.54	0.04	<10	0.27	290	<1			1580	12	4	20	28	0.23	<10	76	<10	18	59
326 L-53+00N		4		1.55	4	8	135		.37	<1	18	22		3.59	0.04	<10	0.33	323	<1		11	570	10	4	20	35	0.27	<10	85	<10	18	48
327 L-53+00N		4		1.52	4	10	155			4	14	19		3.29	0.05		0.33	267		0.02	10	740	12	5	20	27	0.24	<10	76	<10	17	42
			-		~						••				0.00	-10	0.00			0.04				•		•	0.24	-10		-10	.,	~
326 L-53+00N	52+25E	5	<2	1.49	⊲5	8	130	20 0	.38	<1	15	22	12	3.50	0.05	<10	0.31	295	<1	0.02	11	600	10	4	<20	37	0.26	<10	62	<10	18	47
329 L-53+00N		å	<2	1.50	4	8	125			<1	15	23		3.57	0.05		0.33	338	<1	0.02	11	620	10	4	20	36	0.26	<10	81	<10	19	50
330 L-53+00N		4	<2		4		120			<1	14	19	14	3.23	0.05		0.28	297	<1			480	10	4	<20	36	0.26	<10	70	<10	20	43
331 L-53+00N		-	<2		4	ă	90	_		<1	15	23	• •	3.44	0.03		0.34	315	<1			690	10	3	200	44	0.26	<10	62	<10	22	43
332 L-53+00N		-		1.99	4	-	150	15 0		4	14	21		3.58	0.03		0.24	233	•		-	1230	18	4	200	36	0.24	<10	75	<10	16	82
					~	•	100					-		0.00	0.00	-10	0.24		-1	.0.01	••	12.00	10	-0	-	30	0.24	-10	15	-10	10	02
333 L-53+00N	53+25E	4	< 2	1.13	⊲5	8	95	20 0	42	<1	16	20	12	3.48	0.04	<10	0.40	375	<1	0.02	12	600	10	4	<20	33	0.26	<10	76	<10	20	49
334 L-53+00N		4	<2	1.25	4	8	100	15 0		<1	15	19		3.37	0.04		0.40	359	<1		11	590	10	4	<20	32	0.25	<10	72	<10	18	47
335 L-53+00N		4	<2		4		205			<1	18	23		3.95	0.05		0.28	296	<1		10	660	18	4	<20	46	0.32	<10	77	<10	28	52
336 L-53+00N		4	<2		4	6	200	25 0		<1	18	23	•-	3.77	0.06		0.28	301	<1		11	720	14	4	20	36	0.31	<10	78	<10	21	53
337 L-53+00N		4	<2		4	-	105	20 0		<1	16	23	14	3.86	0.06		0.26	293	-			670	14	4	<20	40	0.31	<10	77	<10	25	53
		~	-		•	-				•	•-		•••						•		-			~					••			~
336 L-53+00N	54+50E	4	<2	1.42	4	8	95	20 0	.47	<1	15	21	13	3.35	0.04	<10	0.22	266	<1	0.02	8	810	12	4	<20	41	0.31	<10	70	<10	24	46
339 L-53+00N	54+75E	4	<.2	1.46	-5	8	80	25 0	45	<1	16	24	13	3.60	0.05	<10	0.23	260	<1	0.02	9	690	12	45	<20	36	0.32	<10	80	<10	24	50
340 L-53+00N	55+00E(A)		<2		4	8	95	20 0	42	<1	17	25	17	3.99	0.05	<10	0.38	397	<1		13	700	12	4	<20	36	0.29	<10	90	<10	24	53
341 L-53+00N			<2		4	8	145	30 0	35	<1	18	27	15	4.03	0.06	<10	0.28	313	<1	0.01		1250	14	4	<20	31	0.31	<10	64	<10	21	76
342 L-54+00N				1.75	4	8	135	20 0	.39	<1	18	22	11	4.01	0.05		0.21	290	<1	0.01		2800	18	-5	<20	40	0.22	<10	78	<10	15	90
																					•											
343 L-54+00N	48+75E	4	<.2	1.96	4	10	125	20 0	.48	<1	15	22	14	3.64	0.06	<10	0.29	312	<1	0.01	11	2220	18	4	<20	35	0.24	<10	72	<10	18	72
344 L-54+00N	49+00E	-	<.2		4	8	145	20 0	.38	<1	16	20	11	3.86	0.04	<10	0.29	257	<1			1680	18	-	<20	36	0.25	<10	71	<10	17	59
345 L-54+00N	49+25E	4	<2	1.56	-	8	120	20 0	.40	<1	14	19	11	3.05	0.04	<10	0.24	318	<1	0.02	9	940	14	-5	<20	31	0.26	<10	62	<10	20	48
345 L-54+00N	49+50E	4	<2	1.82	4	10	140	20 0	.53	<1	18	21	13	3.62	0.05	<10	0.31	326	<1	0.02	11	1240	12	-	<20	42	0.29	<10	75	<10	22	52
347 L-54+00N		-	<2		4		125			4	15	20		3.39	0.06		0.32	354	-	0.03		1050	12	4	<20	52	0.26	<10	68	<10	22	40
		-																	,		2			-								
348 L-54+00N	50+00E	4	<.2	1.59	4	8	110	25 0	.44	<1	14	20	10	2.99	0.04	<10	0.27	251	<1	0.02	9	760	14	5	<20	36	0.29	<10	62	<10	21	40
349 L-54+00N	50+25E	45	<2		4	8	95	20 0	.38	4	16	23	12	3.75	0.03	<10	0.32	301	<1	0.02	12	1110	12	4	<20	28	0.26	<10	81	<10	19	58
350 L-54+00N	50+50E	4	<2		45	8	110		.51	<1	15	22		3.35	0.03	<10	0.28	322	<1		. 9	950	10	4	20	44	0.30	<10	72	<10	24	51
351 L-54+00N	50+75E	-	<2		4	8	125			4	16	23	14	3.86	0.04	<10	0.33	327	<1		12	720	12	4	<20		0.29	<10	80	<10	21	50
352 L-54+00N		4		1.62	4	-	145	25 0		<	17	24		3.81			0.33	339	•	0.02	11	690	16	4			0.31	<10	83	<10	22	51
		-				-							•••						- •		••			-								31

...

.

......

Eco-Tech Laboratories Ltd.

•

Et #.	Tag #		Au(ppb)	Ag	AI %	As	B	Ba	Bi Ca		Cď	Co	Cr	Cu	Fe %	K %	La	Mg %	Mn	Mo	Na %	Ni	P	РЬ	Sb	Sn	Sr	TI %	U	v	w	Y	Zn
353	L-54+00N	51+25E(A)	4	<2	1.38	4	8	130	20 0	36	<1	15	21	11	3.36	0.03	<10	0.29	290	<1	0.02	11	520	10	<5	<20	31	0.27	<10	73	<10	20	48
		51+25E(B)	4	_	1.63	4	8	115	20 0	33	<1	18	23	11	3.62	0.03	<10	0.21	430	<1	0.01	10	830	14	4	<20		0.28	<10	77	<10	18	78
	L-54+00N		4		1.09	4	8	155	20 0		<1	11	16	8	2.97	0.03	<10	0.30	261	<1	0.03	5	750	12	-5	<20	41	0.22	<10	42	<10	18	51
	L-54+00N		4		1.32	4		95			<1	16	25	-	-	0.05	<10	0.36	382	<1	0.02	13	850	10	4	<20	30	0.29	<10	91	<10	20	56
	L-54+00N		4		1.60	4	8	115	_		<	16	23		3.68	0.05		0.33	334	<1	0.02	12	640	12	4	<20	42	0.28	<10	80	<10	20	51
			~				-													•			• ••		-	-						-	
358	L-54+00N	57+25E	4	< 2	1.25	4	10	105	25 0.	39	<1	20	29	15	4.48	0.04	<10	0.46	485	<1	0.02	14	770	10	4	<20	35	0.31	<10	105	<10	23	62
	L-54+00N		4	0.4	1.11	4		90			<	17	22			0.05	<10	0.38	412	<1		11	470	10	4	<20	44	0.27	<10	64	<10	22	51
	L-54+00N		ৰ	<2		ৰ	ĕ	220			<	12	18	17	2.62	0.03	<10	0.32	258	1		6	890	14	ৰ	20	98	0.21	<10	55	<10	19	44
		53+00E(A)	4	_	1.39	ৰ	8	100	20 0		<1	14	22		3.30	0.03	<10	0.23	262	-	0.02	8	850	12	4	<20	41	0.30	<10		<10	23	49
	-	53+00E(B)	3		2.23	ৰ	-	100				13	20		3.11	0.03	<10	0.20	300	<1			1770	16	3	20	39	0.23	<10	53	<10	17	114
302	L-04-00H	33400E(D)	-0	~	~~~	~		100	20 0			15	20		3.11	0.00	10	0.20			0.01	••			~	-		0.20		~	-10	.,	
363	L-54+00N	53. 36E	4	- 2	1.20	4	8	105	15 0	52	<1	12	15	٩	3.01	0.05	«10	0.35	325	<1	0.02	6	710	10	4	<20	53	0.21	<10	54	<10	20	45
	L-54+00N		4	<2		4	-	130			4	12	21	-	3.56	0.05	<10	0.27	284	<1		8	670	18	3	20	64	0.27	<10	57	<10	23	48
	L-54+00N		3	_	1.74	ৰ		140			4	15	23		4.04	0.05	10	0.34	406	4		10	960	14	3	<20	67		<10	72	<10	27	57
	L-54+00N		3	<2		3	6	95			4	14	24		3.26	0.04			312	<		6	840	10	à	<20	42		<10	75	<10	24	48
	L-54+00N		3	_	1.49	4	8	ຄິ			4	15	23	-	3.68	0.04	10	0.24	274	-	0.02	ĕ	440	12	ৰ		38	0.29	<10	79	<10	23	48
367	L-OH-OUN			~2	1.49	~	•		20 0	~	-1	15	20	13	3.00	0.04		0.44	214	-,	0.02	•		12	~	-20	~	0.20	-10		-10	20	-
365	L-54+00N	EALEDE	4	- 2	1.08	4	10	100	25 0	80	<1	15	24	14	3.58	0.04	10	0.22	359	~1	0.04	9	950	10	4	<20	45	0.30	<10	80	<10	26	54
	L-54+00N		3 5	<2	1.41	4	8	85			<1	15	22		3.55	0.04		0.23	303	<1			880	12	ৰ	<20	34		<10	74	<10	23	51
		55+00E(A)	3	<2		ন্থ ক		95			4	15	23		3.56	0.04	10	0.23	329	4			850	12	\$	20	43	0.31	<10	75	<10	26	55
		55+00E(A)	2 4	<2		\$	8	95			4	12	19			0.03		0.18	259	-	0.01	-	1430	18	3	20	30	0.25	<10	52	<10	19	72
			-	<2		5 4	ă	185				17	25		3.64	0.03	<10	0.45	326		0.03	12	580	12	3	20	74		<10	80	<10	21	80
3/2	L-00+00N	47+00E(A)	4	<2	1.37	9	•	100	30 0.	.72	•1	17	6	13	3.04	0.03	<10	0.40	328	<1	0.03	12	380	12	45	<u>م</u>	"	0.31	~10	80	10	21	æ
373	65.000	47+00E(B)	4	- 2	1.09	4	8	170	25 0	73	<1	17	31	13	4.08	0.04	~10	0.49	366	e1	0.03	13	910	10	4	<20	78	0.32	<10	97	<10	24	55
	L-55+00N		হ ব	<2		3	ă	155			<1	19	29	•	3.90	0.03		0.41	325	1		16	730	14	ৰ	<20	50	0.33	<10		<10	22	49
	L-55+00N		2 4	<2		ৰ		100			4	17	21	10	3.73	0.04	<10	0.31	266	4		12	610	12	ৰ	20	31		<10	78	<10	20	52
	L-55+00N		ব	<2	1.26	3	8	125			<1	14	21		3.37	0.04		0.42	316	<1		11	750	14	ৰ	20	51	0.27	<10	67	<10	21	48
	L-55+00N		4	<2		4	8	105			-	17	19		3.70	0.04		0.30	265	-	0.02	11		12	-	20		0.30	<10	73	<10	20	51
		HOTOLE	~	~	1.70	~	v	100	20 0		-				0.70	0.04	-10	0.00	~~~~		0.04	••			~		~	0.00			-10	20	51
376	L-55+00N	49+255	4	e 2	1.05	4	10	75	20 0	50	<1	11	14	7	2.30	0.03	<10	0.23	214	د1	0.03	5	720	10	4	<20	34	0.26	<10	49	<10	20	31
	L-55+00N		ন ক	<2		ৰ		100			4	11	18	ģ	2.71	0.03	10	0.25	236	<1		5	810	10	\$	<20	42		<10	53	<10	22	41
	L-55+00N		ৰ	<2		\$	ĕ	105			<1	12	18	10	3.12	0.05	<10	0.32	245	<1		6	510	12	4	<20	38	0.23	<10	53	<10	17	40
	L-55+00N		ন ক	<2		ৰ	8	90			<1	11	15	•-	2.82	0.04	<10	0.25	245	<		5	620	12	\$	<20	30	0.21	<10	50	<10	15	42
	L-55+00N		র	<2		ৰ	ě	65			-	10	18	-		0.03	<10	0.29	218	-	0.03	5	570	10	ৰ	<20	36	0.22	<10	44	<10	16	42
			~	-	0.20	~	•	~		~				•		0.00			210		0.00	•	0.0		•								-
383	L-55+00N	40+50F	4	e 2	1.26	4	8	110	20 0	.38	<1	14	18	7	3.24	0.03	<10	0.28	246	<1	0.02	8	370	24	4	<20	31	0.24	<10	81	<10	16	42
	L-55+00N		ন ব	<2		4	ă	75			4	18	20			0.03		0.35	344	4		-	1090	10	ৰ	<20	20	0.25	<10	74	<10	19	58
	L-55+00N		ন্ ব	<2		4	Ă	170			<1	10	13	11	2.61	0.03	10	0.22	185	<1		5	360		4	<20	33	0.21	<10	47	<10	21	36
	L-55+00N		ৰ	<2		4	6	95			<1	15	20		3.71	0.04	-	0.24	354	<		-	1290	12	4	<20	22	0.24	20	75	<10	16	63
	L-55+00N		র	<2		4	8	85			<		15		2.37	0.03		0.16	168	-	0.01	6	850	12	4		29	0.21	<10	45	<10	15	40
				-1	1.40	-	•					•			2.01	0.00	-10	0.10			0.01				~		_			~		10	-
365	L-55+00N	50+75E	5	< 2	1.06	4	6	85	20 0	42	<1	12	15	•	2.80	0.04	<10	0.27	308	<1	0.02	7	750	10	4	<20	31	0.22	<10	54	<10	18	43
	L-55+00N		ন্ট ব	<2		4	Ă	125			<1	11	18	-	3.26	0.05		0.34	242	<1		ģ	960	12	š	20	60	0.21	<10	52	<10	22	48 48
	L-55+00N		2 4	<2		ৰ	Ă	100			<	12	17	16	3.24	0.05	10	0.34	272	<1			770	14	ৰ	20		0.21	<10	53	<10	24	40 57
	L-55+00N		2 4	<2	1.43	ৰ		125			<1	14	18	•••	3.43	0.04	10		450	<1	0.03		890	14	3	20	41	0.21	<10	65	<10	24	57 53
	L-55+00N		ব	_	1.32	3		120			•	13	18		3.11			0.28	317		0.03	6	660	12	-	20		0.23	<10	59	<10	20	
			-0	-2	1.46	~		120	20 0			13	10		3.14	0.0-7	-10	0.40	317	-	0.00			14	~	-20	-	0.20	-10		10	لط	40

Page 10

•

Eco-Tech Laboratories Ltd.

Et #. Tag #	Au(ppb)	A	g .	AI %	As	в	Be	BI	Ca %	Cd	Co	Cr	Cu	Fe %	К %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	TIN	U	V	W	Y	Zn
393 L-55+00N 52+0	E S	<	2	1.01	4	8	95	15	0.45	_<1_	13	19	12	3.07	0.03	<10	0.20	278	<1	0.02	7	740	10	ঁ	<20	32	0.25	<10	65	<10	20	46
394 L-55+00N 52+2	€ <5	<	2	1.78	4	8	105	15	0.30	<1	14	19	11	3.43	0.04	<10	0.28	306	<1	0.01	10	950	14	4	<20	24	0.21	<10	66	<10	18	50
395 L-55+00N 52+5	E <5	<	2	1.42	4	8	95	15	0.33	<1	13	19	10	3.24	0.04	<10	0.24	246	<1	0.01	8	580	12	4	<20	27	0.24	<10	67	<10	17	46
396 L-55+00N 52+7	E ⊲5	<	2	1.08	4	8	90	15	0.52	<1	11	17	11	2.88	0.03	10	0.25	265	<1	0.03	8	760	10	-5	<20	51	0.22	<10	58	<10	21	42
397 L-55+00N 53+0	E <5	<	2	1.04	Ś	8	100	20	0.44	<1	12	19	11	2.99	0.04	<10	0.24	284	<1	0.02	7	820	10	4	<20	38	0.24	<10	62	<10	20	46
398 L-55+00N 53+2		<	2	0.98	4	8	95	20	0.49	<1	13	20	12	3.09	0.04	<10	0.24	301	<1	0.03	8	890	10	4	<20	39	0.28	<10	67	<10	23	47
399 L-55+00N 53+5	E <5	<	2	1.11	4	8	80	20	0.40	<1	- 14	22	12	3.26	0.03	<10	0.21	303	<1	0.02	8	730	10	4	<20	31	0.27	<10	72	<10	22	48
400 L-55+00N 53+7	€ ⊲5	<	2	1.15	4	8	95	15	0.45	<1	11	18	10	2.78	0.03	<10	0.22	251	<1	0.02	7	1000	12	4	<20	33	0.24	<10	57	<10	20	47
401 L-55+00N 54+0	€ <5	<	2	1.57	Ś	8	100	20	0.34	<1	15	20	12	3.43	0.05	<10	0.26	293	<1	0.01	9	840	- 14	4	<20	27	0.25	<10	88	<10	18	50
402 L-55+00N 54+2	E ⊲5	<	2	1.83	4	8	105	25	0.46	-1	17	23	13	3.91	0.04	<10	0.33	335	<1	0.02	12	1060	12	4	<20	38	0.26	<10	75	<10	21	55
403 L-55+00N 54+5		<	2	1.40	4	8	100	15	0.43	<1	15	20	12	3.32	0.04	<10	0.24	331	<1	0.02	8	860	12	4	<20	34	0.26	<10	67	<10	20	48
404 L-55+00N 54+7		<	2	0.93	Ś	8	95	20	0.49	<1	13	21	12	3.20	0.02	<10	0.21	312	<1	0.03	7	840	10	4	<20	- 38	0.26	<10	69	<10	21	46
405 L-55+00N 55+0	E(A) <5	<	2	0.98	4	8	95	20	0.57	<1	11	17	10	2.78	0:03	<10	0.20	263	<1	0.03	6	1420	12	4	<20	- 39	0.23	<10	58	<10	20	43
406 L-55+00N 55+0	E(B) <5	<	2	88.0	Ś	8	130	15	0.83	<1	13	19	13	3.01	0.04	<10	0.22	364	<1	0.04	7	1130	10	4	<20	- 49	0.23	<10	64	<10	21	44

.

Teck Exploration ETK294 Eco-Tech Laboratories Ltd.																																	
Et#.	Tag #		Au(ppb)	Ag	AI %	As	B	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	К%	La	Mg %	Mn	Mo	Na %	Ni	Р	РЪ	Sb	Sn	\$r	Ti%	U	V	W	Y	Zn
	TA:																																
Repeat	Ċ	-																															
		45+00E(A)	4	<2	1.81	4	8	155	25	0.66	<1	18	24	21	4.05	0.06	20	0.48	436	<1	0.03	16	1010	26	4	<20	54	0.28	<10	75	<10	31	62
59 L	-45+00N	49+00E	4	<.2	1.96	5	8	255	20	0.39	<1	17	24	16	3.53	0.03	<10	0.31	317	<1	0.01	11	740	32	4	<20	30	0.26	<10	78	<10	21	63
77 L	-45+00N	53+00E(A)	4	<.2	1.30	70	4	75	10	0.10	2	9	22	12	3.49	0.08	10	0.11	146	3	<.01	8	210	26	4	<20	10	0.04	<10	56	<10	3	42
115 L	-47+00N	52+75E	4	<.2	2.22	4	8	175	25	0.36	<1	18	23	18	3.90	0.07	<10	0.35	345	<1	0.01	16	650	36	4	<20	26	0.25	<10	78	<10	20	75
174 L	-49+00N	48+75E	4	<.2	1.85	4	8	100	20	0.57	<1	20	29	11	4.39	0.08	<10	0.43	750	<1	0.02	8	920	- 4	ৰ	<20	23	0.28	<10	90	<10	22	64
191 L	-49+00N	52+50E	4	<.2	1.59	4	6	80	20	0.44	<1	18	28	10	3.64	0.06	<10	0.36	363	<1	0.01	7	640	4	4	<20	21	0.29	<10	90	<10	18	37
229 1	-50+00N	55+00E(B)	4	<.2	2.04	4	8	100	20	0.42	<1	14	21	10	3.56	0.05	<10	0.21	307	<1	0.01	13	1760	18	4	<20	31	0.24	<10	68	<10	17	91
277 L		49+50E	4	<.2	1.13	4	8	175	25	0.59	<1	18	29	12	4.22	0.03	<10	0.39	436	<1	0.03	13	850	14	4	<20	39	0.30	<10	96	<10	24	61
331 L	-53+00N	53+00E(A)	4	<.2	1.09	4	6	90	20	0.52	<1	15	23	11	3.41	0.03	<10	0.35	317	<1	0.02	10	720	8	4	<20	41	0.27	<10	81	<10	22	- 44
360 L		52+75E	4	<2	1.46	4	6	225	15	0.83	<1	12	19	17	2.71	0.03	10	0.33	263	1	0.03	6	930	14	4	<20	104	0.22	<10	56	<10	20	46
393 L	55+00N	52+00E	ব	<.2	1.01	4	8	90	15	0.45	<1	13	19	12	3.07	0.03	<10	0.20	279	<1	0.02	7	740	10	4	<20	36	0.25	<10	66	<10	20	46
Stande	wd 1901:			1.2	2.00	65	10	165	4	1.72	2	19	65	84	3.95	0.34	<10	0.90	700	<1	0.02	23	680	18	4	<20	62	0.13	<10	75	<10	9	68
Stande	and 1991:			1.0	1.93	65	10	165	5	1.74	2	18	64	81	3.90	0.35	<10	0.96	690	<1	0.02	24	890	18	4	<20	56	0.12	<10	78	<10	10	70
Stande	nd 1901:			1.0	1.98	65	10	165	4	1.80	1	18	65	83	3.94	0.35	<10	0.90	700	<1	0.02	23	680	20	4	<20	65	0.13	<10	78	<10	10	68
Stands	nd 1901:			1.0	1.95	65	10	175	4	1.81	2	20	62	66	4.12	0.34	<10	0.94	653	<1	0.02	25	680	20	5	<20	62	0.12	<10	78	<10	10	64
Stande	and 1991:			1.0	1.74	65	10	170	4	1.78	2	18	63	84	3.80	0.35	<10	0.97	690	<1	0.01	23	690	18	4	<20	58	0.08	<10	74	<10	9	68
Stande	and 1991:			1.0	1.81	70	10	165	10	1.74	1	18	64	83	3.79	0.36	<10	0.93	895	<1	0.02	23	670	18	5	<20	57	0.10	<10	76	<10	10	- 74
Stande	and 1991:			1.0	1.97	65	6	150	4	1.70	1	19	64	75	3.97	0.37	<10	0.93	659	<1	0.02	14	680	8	4	<20	58	0.12	<10	76	<10	8	65
Stande	nd 1901:			1.2	1.89	65	10	160	4	1.80	2	19	64	80	3.78	0.36	<10	0.91	690	<1	0.02	24	690	20	4	<20	59	0.12	<10	79	<10	10	68
Stande	nd 1901:			1.0	1.86	80	10	155	4	1.84	2	19	66	79	3.75	0.34	<10	0.96	895	<1	0.02	23	680	24	4	<20	59	0.11	<10	77	<10	8	68
Stande	ard 1901:			1.0	1.92	60	10	160	4	1.62	2	19	60	60	3.75	0.35	<10	0.90	685	<1	0.02	23	670	24	4	<20	64	0.12	<10	74	<10	8	68
Standa	nd 1901:			1.0	1.93	65	10	165	4	1.72	2	19	60	80	3.75	0.35	<10	0.89	705	<1	0.02	23	890	22	4	<20	84	0.13	<10	74	<10	7	68

.

* Not enough sample # No sample sent

95 ECO-TECH LABORATORIES LTD. Frank J. Pazzotti, A.Sc.T. B.C. Certified Assayer

XLS/Teck

•

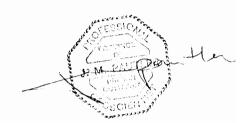
APPENDIX III

Statement of Expenditures

Wages:	J. Pautler	31 days @ 261.00/day	\$ 8,091.00							
	P. Watt	14 days @ 179.20/day	2,508.80							
	K. Chubb	14 days @ 203.50/day	2,849.00							
	H. Stewart	28 days @ 227.85/day	6,379.80							
	G. Thompson	14 days @ 225.00/day	3,150.00							
		Total: 101 n	1an-days	\$ 22,978.60						
Groceries:	89 man-days	@ \$ 15.00/md		1,335.00						
Meals, Accon		600.00								
Field Supplie	Field Supplies: (flagging tape, thread, sample bags) 89 man-days @ \$10.00									
Camp Suppli		\$ 900.00								
Equipment re	ental: Radios: ATV:	200.00 719.04								
		Total:		919.04						
Truck/Gas:		2,516.00								

Trenching: A	lf Kalenith, Cache Creek, B.C		12,264.00	
D	ouble H Carriers, Williams L	ake, B.C.	1,622.88	
		Total:		13,886.88
Air Charter:	J. Blackwell, Moose Lak	e, B.C.	600.00	
	Wilderness Air Services,	Anahim, B.C.	600.00	
		Total:		1,200.00
Geochemistry: Maps & Prints:	 413 soils @ 15.00 ea. 207 rocks @ 17.00 ea. 84 rocks @ 8.50 ea. 5 rocks @ 10.00 ea. 6 rocks @ 5.00 ea. 6 rocks @ 12.10 ea. 11 silts @ 17.00 ea. 	Au, ICP Au, ICP Au/Ag assay + Ba + Hg + Se, Te, TI Au, ICP Total:	6,195.00 3,519.00 714.00 50.00 30.00 72.60 187.00	10,767.60 \$ 1,107.31
Report & Draft	ing:			<u>\$ 6,000.00</u>
	GRAND TO	OTAL:		\$63,100.43
Total Amount A	pplied for Assessment	Contraction of the second seco	tlen.	\$ 61,200.00

APPENDIX IV


STATEMENT OF QUALIFICATION

I, Jean Marie Pautler, do hereby certify that:

- 1) I am a geologist and have worked in the Canadian Cordillera for the past fifteen years.
- 2) I am a graduate of Laurentian University, Sudbury, Ontario with an Honours B.Sc. degree in geology (May, 1980).
- 3) I am a Professional Geoscientist and a Fellow of the Geological Association of Canada.
- 4) I supervised and conducted exploration on the TSACHA Claim Group between May 19 and October 26, 1994.

Her.

Jean Pautler Project Geologist.

