-	
LOG NO:	WAY 1 8 1000
ACTION	
FILE NO:	

GEOLOGICAL, GEOCHEMICAL, GEOPHYSICAL AND DIAMOND DRILL

ASSESSMENT REPORT

ON THE

JOKER PROPERTY

Kamloops Mining Division NTS 92 I/9W Lattitude 53°34'N Longitude 120°18'W

FEMED

GEOLOGICAL BRANCH ASSESSMENT REPORT

OWNER: Teck Corporation #600-200 Burrard Street Vancouver, B.C. V6C 3L9

S. Jensen January 1995 Kamloops, B.C.

<u>SUMMARY</u>

The Joker property consists of the Joker, Ace, Ace 2 and Hull 1-3 mineral claims totalling 89 units. The property is located roughly 12 kilometres south of Kamloops, B.C.

The 1994 program consisted of 1:2,500 scale mapping, concurrent rock sampling, grid soil sampling and ground magnetics and VLF followed by diamond drilling of six holes. 1994 work concentrated in the eastern portion of the property on the Joker and Ace claims. Mapping, soil sampling and ground geophysics were carried out on the Joker grid. Diamond drilling was carried out in two areas, north and south of the grid. The purpose of the program was to test for an economic porphyry copper-gold deposit. The program was carried out between June 8 and July 31.

1994 mapping and prospecting failed to identify exposures of economic copper-gold mineralization. Mapping on the Joker grid revealed the ground to be underlain by hybrid hetereolithic breccias and Cherry Creek diorite and monzonites of the Iron Mask batholith, both overlain to the west by Kamloops Group basalts. In addition to being non-mineralized, the rocks displayed only very weak, local porphyry-style alteration.

The soil survey did not reveal significantly anomalous copper or gold metal zones. Several weakly anomalous (only a few samples greater than 200ppm), narrow, northerly trending zones were outlined.

The ground magnetometer survey outlined a magnetic high over ground underlain by hybrid breccia rocks. The survey also outlined a large, northerly-trending mag low through the central portion of the grid.

The two station VLF survey (Seattle and Annapolis) outlined numerous northerly, northwesterly and northeasterly trending conductive zones. The linear zones were narrow and somewhat discontinuous and erratic.

Drilling in the Phil Cu showing area failed to intersect the mineralized fault contact between the hybrid breccia and Sugarloaf diorite downdip. Only low grade copper mineralization in westerly dipping faults was penetrated. Drilling of the second area, south of the Greymask shaft, outlined narrow zones of 1-3% chalcopyrite and anomalous gold associated with specular hematite bands and strong epidote, potassic and carbonate alteration. Wide intervals of copper and gold mineralization was not encountered during drilling.

RECOMMENDATIONS

- In the two areas drilled to date, drilling has precluded the chance of a significant porphyry deposit.
- 2) Other areas on the Joker property may warrant further work.

TABLE OF CONTENTS

		Page
	Summary	Ī
	Recommendations	
1.		1
2.	Location and Access	1
3.	Topography and Vegetation	
4.	Claims	
5.	Previous Work and History	
6.	1994 Program	
7 .	Geology	
• •	A) Regional Geology	
	B) Property Geology	
	I) Joker Grid Area	
	II) Mineralization and Alteration	
8.	Grid Preparation	-
9.	Soil Geochemistry	
0.	A) Results	
10.	Magnetometer Survey	
10.	A) Results	
11.	VLF Survey	
• • •	A) Results	
12.	Diamond Drilling	
12.	A) Hole JK-94-01	
	B) Hole JK-94-01	
	D) Hole JK-94-04 E) Hole JK-94-05	
	F) Hole JK-94-06	-
	G) Discussion	
11.		
12.	References	. 21

LIST OF FIGURES

		Fol	owin	ig Page
Figure	1:	Joker Property Location Map (1:10,000,000)		1
Figure	2:	Joker Property Location Map (1:600,000)		1
Figure	3:	Claim Map (1:50,000)		
Figure	4:	Grid and Drill Hole Location Map (1:50,000)		7
Figure	5:	Regional Geology (1:50,000)		8
Figure	6:	Geology - Joker Grid (1:2,500)	In	Pocket
Figure	7:	Soil Geochemistry (Cu ppm) - Joker Grid (1:2,500)	In	Pocket
Figure	8:	Magnetometer Survey - Joker Grid (1:2,500)	In	Pocket
Figure	9:	VLF : Fraser Filter (Seattle) - Joker Grid (1:2,500)	In	Pocket
Figure	10:	VLF : Fraser Filter (Annapolis) - Joker Grid (1:2,500)	In	Pocket
Figure	11:	Compilation Map - Drill Areas (1:5,000)	In	Pocket
Figure	12:	Drill Section : JK-94-01,02 (1:500)	In	Pocket
Figure	13:	Drill Section : JK-94-03,04 (1:500)	In	Pocket
Figure	14:	Drill Section : JK-94-05 (1:500)	In	Pocket
Figure	15:	Drill Section : JK-94-06 (1:500)	In	Pocket

LIST OF TABLES

		Pa	ge
Table 1:	Claim Records		. 2
Table 2:	Diamond Drill Hole Data		14

APPENDICES

- Appendix I: Statement of Qualifications
- Appendix II: Cost Statement

- Appendix III: Certificates of Analysis Appendix IV: Analytical Procedures Appendix V: Rock Sample Descriptions
- Appendix VI: Soil Sample Descriptions Appendix VII: Diamond Drill Logs

1. INTRODUCTION

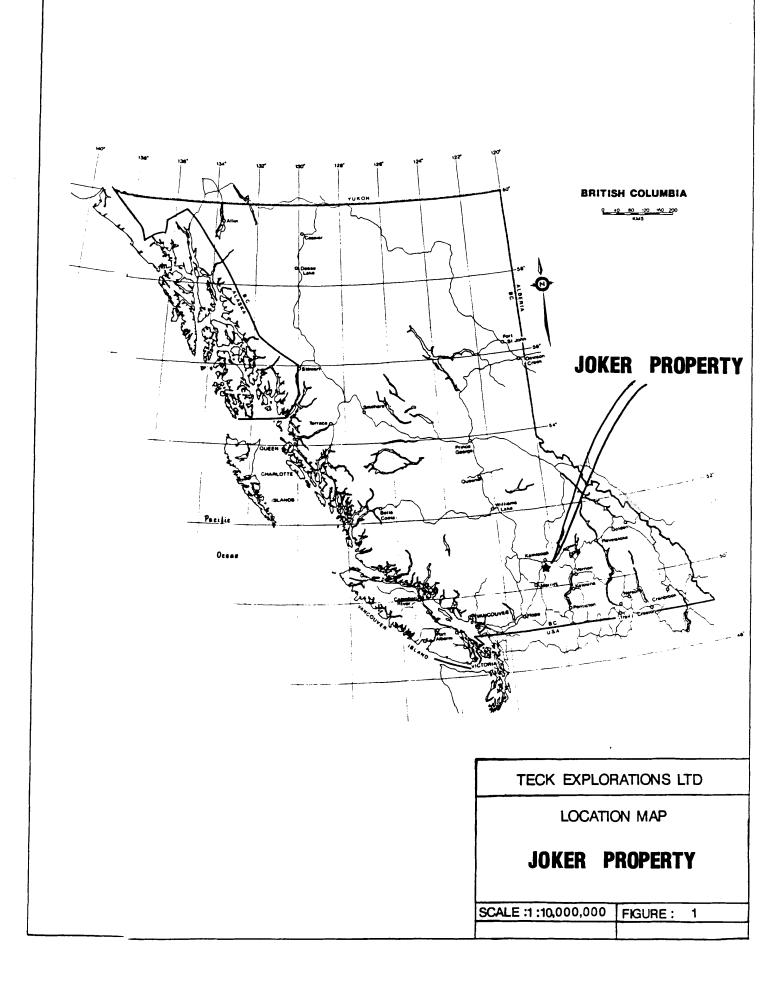
During 1994, a program consisting of 1:2,500 scale mapping, concurrent rock sampling, grid soil sampling and ground magnetics and VLF followed by diamond drilling was carried out on the Joker property. 1994 work concentrated in the eastern portion of the property on the Joker and Ace claims. The program was designed to evaluate the potential for an economic porphyry copper-gold deposit.

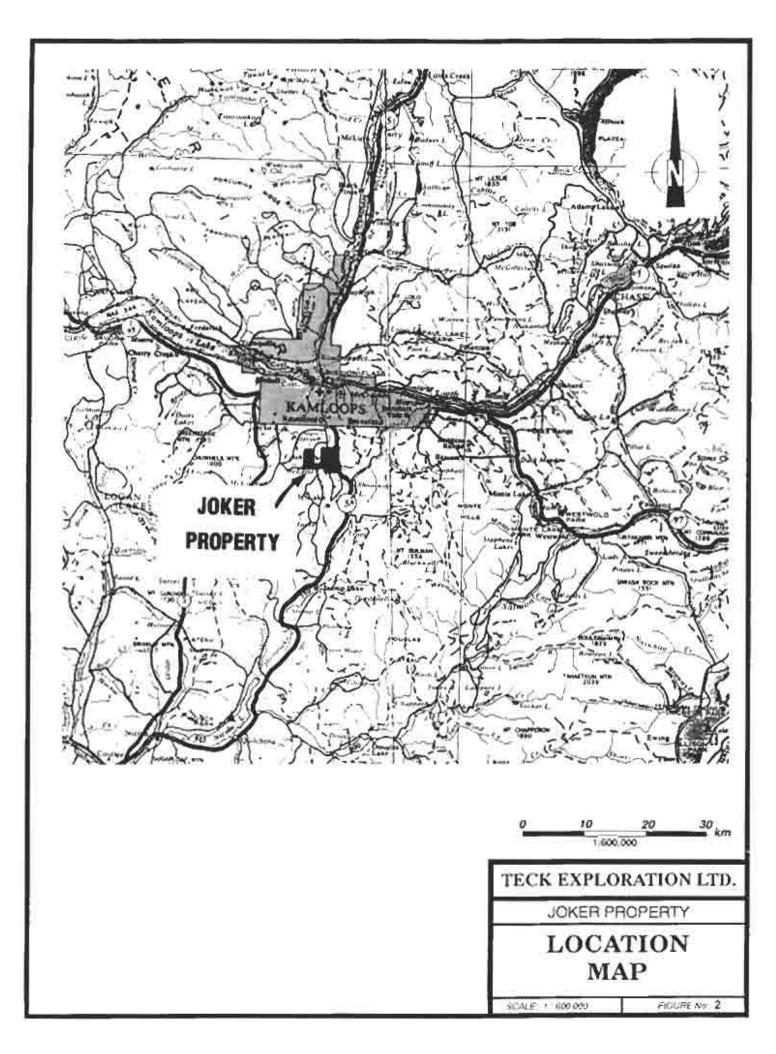
Grid installation followed by soil sampling and detailed mapping was carried out in the area between the Joker and Phil Cu showings, an area that had previously seen little work relative to the Joker and Phil Cu showing areas. A ground magnetometer and VLF survey was completed over the grid in order to better define lithologic contacts and fault zones in areas of overburden cover.

Follow-up of six (691 metre total) diamond drill holes was completed in two areas south and north of the grid; one proximal to the Phil Cu showing and the other north of the Joker adit.

This report describes the program and results.

2. LOCATION AND ACCESS (Figures 1, 2)


The Joker, Ace and Hull mineral claims are located approximately 12 kilometres south of Kamloops in southern British Columbia. Highway 5a transects the eastern portion of the property. The property is located on NTS map sheet 92I/9W, with an approximate property centre latitude and longitude of 53° 34'N and 120° 18'W, respectively.


The property, easily road accessible, is located approximately 15 kilometres south of Kamloops and five kilometres south of Knutsford along Highway 5a. Long Lake road, which branches south from Highway 5a at Knustford, provides access to the western portion of the claims while Jackson Road (8 kilometres south of Knutsford along Highway 5a) provides access to the southern portion of the property area. Local ranch roads provide further access to much of the claims.

3. TOPOGRAPHY AND VEGETATION

Topography on the property is generally moderate, ranging from well glaciated, gently rolling hills and drumlins to local rocky bluffs. Elevations range from just over 3800 feet (1158 metres) on Edith Hill in the eastern claim area to 2860 feet (872 metres) on Separation Lake in the northeastern portion of the property.

1

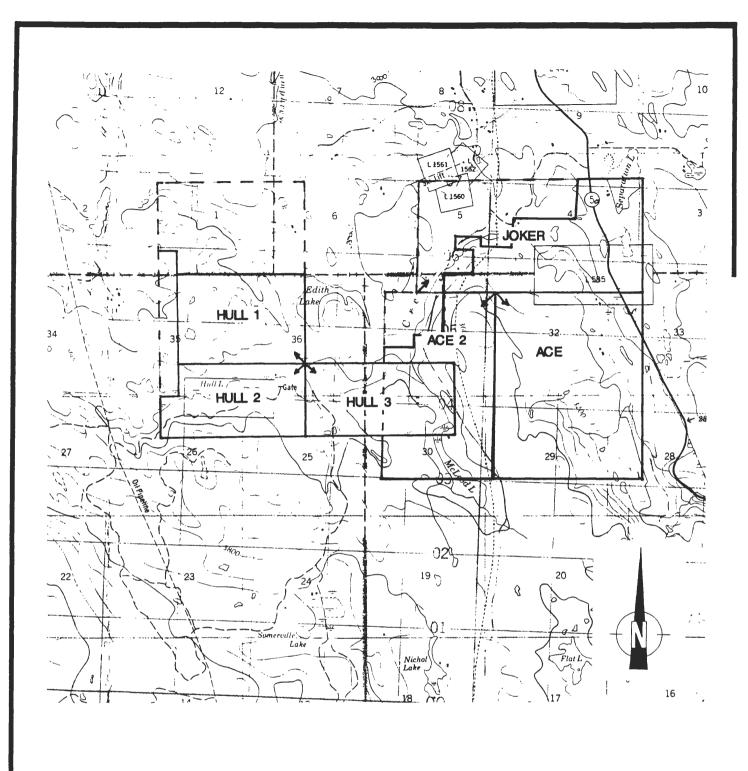
Vegetation is open to locally moderate and consists predominantly of mature pine and fir, generally located along creek valleys or ridge tops. Underbrush is generally thin to moderate and consists mostly of grass with local thick underbrush found along drainages. A large portion of the entire property area is open rangeland and used as pasture for cattle.

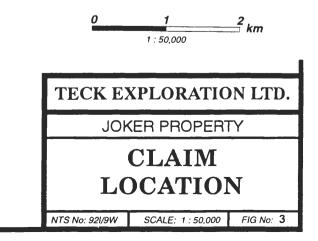
4. <u>CLAIMS</u> (Figure 3)

The property, located in the Kamloops Mining Division, consists of the Joker, Ace, Ace 2 and Hull 1-3 mineral claims totalling 89 contiguous units (\approx 2,225 hectares) and are grouped as the Joker Group. The claims are 100% owned by and registered in the name of Teck Corporation. The following table lists all pertinent claim data.

TABLE 1

CLAIM RECORDS


Claim Name	Record No.	Units	Record Date	Expiry Date *
Joker	307650	18	Feb. 10, 1995	Feb. 10, 2001
Ace	324337	20	Mar. 18, 1995	Mar. 18, 2001
Ace 2	327091	15	June 22, 1995	June 22, 2001
Hull 1	325561	20	May 5, 1995	May 5, 2000
Hull 2	325562	8	May 5, 1995	May 5, 2000
Hull 3	325801	<u>8</u>	May 11, 1995	May 11, 2000
		Total 89 units	-	-


Note * = Expiry Date based on acceptance of this report.

5. PREVIOUS WORK and HISTORY

The general Iron Mask area, south of Kamloops, has seen intermittent exploration since the late 1800's. Early efforts concentrated for the search of gold in quartz veins. Later efforts, prior to 1930, were directed towards high grade structurally-controlled copper as evidenced by the numerous pits and trenches found throughout the area. Since the discovery of Afton in the early 1970's, exploration has focussed on porphyry copper-gold targets throughout the belt.

Sporadic exploration by numerous companies has been carried out on and surrounding what is

presently known as the Joker and Ace claims since the 1950's.

In 1955, Commercial Minerals Ltd. carried out bulldozer stripping and diamond drilling in the vicinity of the Joker adit located in the northcentral portion of the Joker claim along Anderson Creek. Approximately 5500 feet (1680m) in at least nine holes was drilled with significant sections of copper mineralization (+1% Cu) encountered with reports of 65,000 tons of 0.66% Cu outlined in the vicinity of the adit. The drill pattern and resulting distribution of the +1% Cu zone depicts a east-west trend to the mineralization. The size, extent and age of the adit is unknown. Commercial Minerals then halted exploration in the area for unknown reasons.

Approximately 650 metres northwest of the Joker adit, diamond drilling and shaft construction was carried out in the Greymask shaft area located adjacent to Highway 5a and close to Separation Lake. Reported results of two drill holes proximal to the shaft are 67 metres of 0.15% Cu, 0.015 opt Au and 0.3 opt Ag and 55 metres of 0.16% Cu. The extent of the shaft is unknown and is now filled in. Several other drill holes are located in the general northeastern Joker claim area but results are unknown.

In 1965, Mineral Mountain Mines conducted 11.2 line miles of fluxgate magnetometer survey and 8.2 line miles of electromagnetic (VLF) survey on what was then the Bee group of mineral claims in the Greymask area, just west of Separation Lake (northeast corner of Joker claim). The survey (Ass. Rpt # 772) outlined several zones of northwest trending mag highs and lows with local strong EM conductors associated with the mag lows. The EM survey experienced difficulty due to power lines. The mag highs are likely due to proximal outcropping magnetic gabbros and picrites.

In 1966, Pinnacle Mines Ltd. (Fidelity Mining Investments) carried out approximately 10.5 line miles (seven lines) of IP and resisitvity survey on the Pinnacle Claim Group (A, C, CLE and PIN claims) in the general area of the Joker adit and Greymask shaft (Ass. Rpt # 965). The dipole-diploe survey (x=200 feet, n=1-3) outlined several weak and uncertain chargeability anomalies (including the Joker adit and Greymask areas) and experienced interference from highway power lines. The strongest IP response was due to the presence of a buried pipe located in the center of the survey area.

During late 1968, Pinnacle Mines Ltd. (Ass. Rpt. # 1746) conducted a large soil scale geochemical survey over the entire Pinnacle claim group. The auger survey, covering the entire Joker and Ace claim areas, outlined numerous northwest trending anomalous Cu zones, including the Joker adit and Phil Cu areas. Only copper was analysed. There are reports that Pinnacle followed up with 975 metres diamond drilling in late 1968 or early 1969, however results remain unknown and drill hole locations are uncertain.

3

However, 3 drill collars were later found by Comico just south of the Phil Cu showing and might be Pinnacles.

In 1972, Flagstone Mines Ltd. (Ass. Rpt. # 4160) carried out a program consisting of geological mapping, soil sampling and geophysics (magnetometer) in two main areas of the JD and PIN claims covering the western portion of the Joker claim and southern portion of the Ace claim. The 10 line mile fluxgate magnetometer survey of the western Joker area outlined several north and northwest trending mag highs (associated with gabbro outcrops) and lows while the geochemical survey outlined numerous north and northwest trending Cu anomalies. Geological mapping revealed weakly mineralized (chalcopyrite, malachite, pyrite) and brecciated Iron Mask intrusives and overlying Kamloops group volcanics. The Cu soil anomalies are underlain by the intrusives.

The second area, the southern portion of the Ace claim, was grid soil sampled and mapped (roughly 3.5 line km). A strong 400m x 100m Cu soil anomaly (up to 840 ppm Cu) was outlined and coincided with one of the Cu anomalies previously outlined by Pinnacle Mines. Mapping of the area revealed strong faulting and alteration within locally mineralized and brecciated Iron Mask dioritic intrusives. A grab of a float sample within the strong Cu soil anomaly returned 4.27% Cu, 0.44 opt Au and .04 opt Ag. Kamloops basalts were found to the west while picrites (Nicola) volcanics were found to the east. Flagstone recommnded further work including property wide mapping, soils and mag and localized IP.

In 1976, Cominco Ltd. (Ass. Rpt. # 6224) carried out an integrated program of geological mapping and localized magnetometer and IP surveys over the And claims. Mapping was carried out over the entire property, ranging from just south of the Joker adit south to the Flat and Shumway Lake areas (south of the Ace claim). Mapping indicated the property occupies the southeastern end of the Iron Mask batholith with coeval Nicola volcanics and sediments to the east and overlying Kamloops volcanics to the west. A major northwest trending fault is believed to extend along the southwestern side of the batholith. Mapping revealed the Iron Mask intrusives to be highly fractured and locally brecciated. A 2km x 400m to 200m wide zone of propylitic ± local k-feldspathic alteration coincides with the strongest fracturing.

At the southern end of this zone, the Phil Cu showing is located in an area of 100 x 125 metres of minerlaized outcrops and old trenches. Mineralization consists of erratic pyrite, chalcopyrite and bornite occurring mainly in narrow zones of strong faulting and brecciation with epidote, chlorite and local k-feldspar alteration. The westernmost trenches are intensely sheared and contain the best zone of copper mineralization (6 x 0.75m) hosted by the Hybrid phase of the Iron Mask intrusive in the footwall of one of the northerly trending faults. The Sugarloaf phase is believed to underly the rest of the Phil area.

Cherry Creek phase diorites and monzonites were found in the northern property area (Joker adit area) with local areas of Hybrid intrusives. A large portion of the central property area is drift covered.

The I.P. (pole-diploe, time domain, 7.5 KW transmitter, a = 92m, n = 1-4) and proton magnetometer survey was carried out on 19.5 line kilometres of grid roughly centered over the Phil Cu showing. The magnetometer survey revealed a northerly trending 1.5k long by 600-400 metre wide low occupying the central part of the grid in ground underlain by Sugarloaf and Cherry Creek intrusives. On the western side of the mag low a northwesterly trending mag high occurs and is thought to be due to gabbros. The Phil Cu showing is located on the western edge of the mag low, just south of the mag highs. The mag survey was used to define lithologic boundaries due to the differing magnetic domains of the various rock types. The I.P. survey revealed very little chargeability change (generally less than 5 milliseconds). One very slight chargeability response (7 ms) occurs at n = 4 on the northernmost line, 28+00N. Resistivity response was better and used to define possible lithologic contacts and faults. Cominco's conclusion was that the potential for a porphyry copper deposit was on the basis of the geophysics to date.

During 1977, Cominco Ltd. (Ass. Rpt. # 6717) carried out limited mapping and rock sampling (23 rock) of their newly staked Lark claims located immediately north of their And claims covering the Joker adit and Greymask shaft areas. Mapping, concentrated south of Anderson Creek, indicated the ground to be underlain by Cherry Creek diorites and monzonites with most outcrops found to be weakly to unaltered and nonmineralized (< 85ppm Cu). Sampling of the Joker adit returned 22,550 ppm Cu over 3m including 44,600 ppm Cu over 1.5m. Significant mineralization did not continue south as additional sampling returned only slightly to moderately elevated copper results (up to 1250 ppm Cu). A four metre deep shaft was located \approx 1km west-southwest of the Joker adit and returned 2300 ppm Cu over 3 metres from a chlorite and k-feldspar altered monzonite/diorite with minor pyrite, chalcopyrite and chalcocite. Barren outcrops were found just 15 metres to the north and 30 metres to the south. The Greymask shaft, located 600 metres north-northeast of the Joker adit, was not located.

During 1978, Cominco Ltd. (Ass. Rpt. # 6739) conducted a 6.5 line kilometre I.P. and proton magnetometer survey on the Lark and northern And claims on basically the same ground that was mapped and rock sampled a year earlier (ie. Joker adit - Anderson Creek area) and roughly the same area as the I.P. survey by Pinnacle Mines in 1966 (Ass. Rpt. # 965). The magnetometer survey outlined a one kilometre long by 300 metre wide northwest trending magnetic low trough 800 metres west of the Joker Adit. A limited (limited by survey size) mag high occurs on the west edge of the mag low. A limited two line survey paralleling highway 5a and Separation Lake returned a 300 metre wide zone of strong mag response. The

time-domain pole-dipole 1.P. survey (a = 90m, n = 1-4, 7.5 KW transmitter) returned similar inconclusive results as the earlier Pinnacle Mines survey. The strongest I.P. chargeability response (69mv) on line 0 is attributed to a buried pipe. Line 150 S has an anomaly of up to 22mv in the same area as line 0 and may likely be a continuation of the buried pipe. A 24mv anomaly at n = 4 remains unexplained along the northern most line.

Later in 1978, Cominco Ltd. (Ass. Rpt. # 6752) drilled two percussion holes, PH 78-2 and PH 78-3, totalling 146 metres on the west side of Shumway Lake, roughly 2 kilometres southeast of the Ace claim. The holes tested the undrilled western portion of the large I.P. anomaly (> 15ms) outlined by Joy Mining in 1972 (Ass. Rpt. # 4306). Previous drilling (21 percussion totalling 1888 metres and two diamond holes totalling 786 metres) by Joy on the I.P. anomaly returned low Cu values. Cominco's two holes drilled through pyritic (\leq 3% py) Nicola argillites and returned no significant Cu values. The pyrite was believed to be the cause of the I.P. anomaly.

Also during 1978, Cominco Ltd. (Ass. Rpt. # 6674) drilled one 106 metre percussion hole (PH 78-1) on the southeastern side of McLeod Lake (extreme southwest corner of the Ace claim) on the And 3 claim. The purpose of the hole was to determine the thickness of the overlying Kamloops Group volcanics which was found to be 55 metres. The bottom part of the hole is believed to be Nicola pyroclastics.

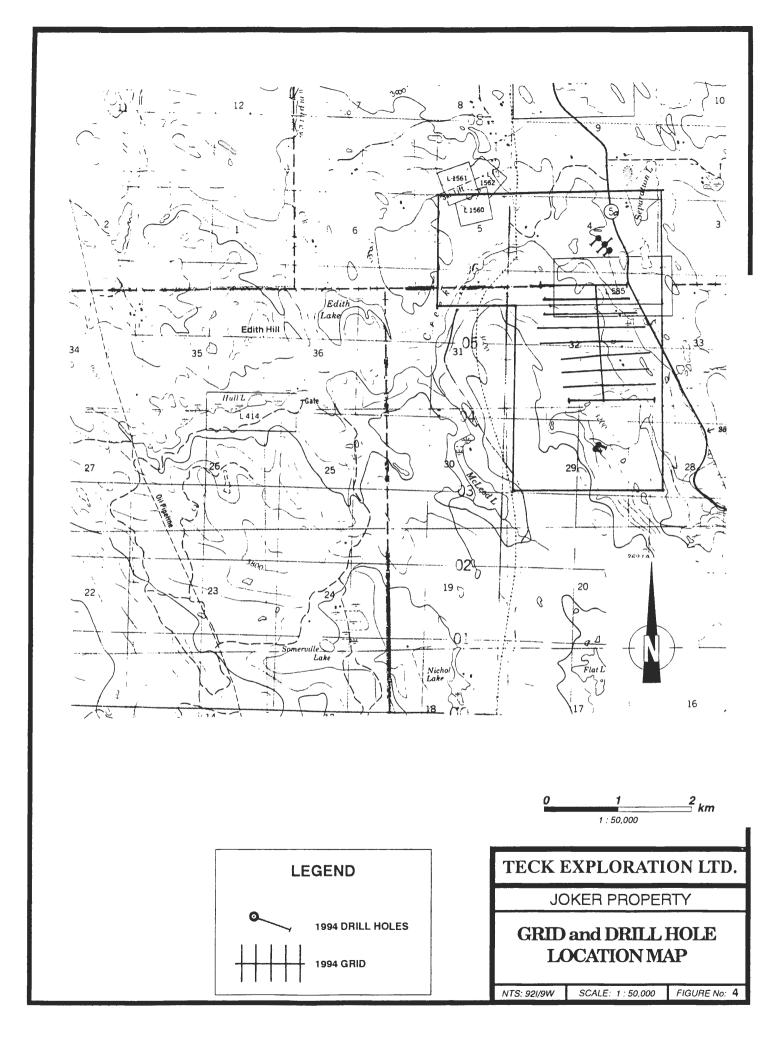
In 1983, Cominco Ltd. (Ass. Rpt. # 11336) drilled six vertical 300 foot (91.5m) percussion holes proximal to the Phil Cu showing area for a total of 1800 feet (549m). The holes, PH 83-1 to PH 83-6, were designed to test for extensions of the Phil Cu occurrence. The six holes were drilled in a northwest trending fence reaching 400 metres northwest and 300 metres southeast of the showing. Hole PH 83-4 was drilled 100 metres east of the showing. Only minor sulphide mineralization (mainly pyrite) was encountered during the program with no significant chalcopyrite intersected with the exception of the occasional short interval. One 10 foot section of hole 83-6 returned 1709 ppm Cu, all other copper values were less than 1000 ppm. Gold and silver assays, taken on 50 foot composites, also failed to return any significant results (most < 10ppb) with hole 83-5 returning slightly elevated gold (up to 156 ppb Au). Hole 83-5 was drilled within 50 metres of the location of two old drill holes, possibly from Pinnacle Mines in the late 1960's.

According to the drill logs, the holes were drilled mainly through Sugarloaf intrusives with some of the holes intersecting Cherry Creek intrusives (PH 83-1,2) and Nicola volcanics (PH 83-4) at depth. Alteration, the main form being feldspars to clay with local albite, epidote and potassium feldspar, was found to be weak overall. Albitization, strong to very strong at the Phil Showing, was found to be generally weak or absent away from the immediate area of the showing.

6

In 1989, J.E. Christoffersen (Sundial Resources Ltd.) carried out limited mapping and soil and rock sampling on the Cob 1 claim, located between Separation and Shumway lakes in the present east central Ace claim area (Ass. Rpt. #19261). Forty four soils and six rock samples were collected with no significant copper or gold results returned. Mapping indicated that the claim is underlain by dioritic Iron Mask rocks in the western portion of the claim while the eastern portion of the claim is covered by extensive glacial overburden.

Also in 1989, J.John (prospector) carried out a limited program of propsecting, rock sampling, grid installation and soil sampling on his J&J #5 and J&J #9 claims located around the northern end of McLeod Lake (Ass. Rpt. # 19132). In total, 211 soils and 37 rock samples were collected with 35 soils and all the rocks analysed for gold. No elevated results were returned (all samples < 3 ppb Au) and no surface mineralization was encountered. Most of his work was on ground underlain by Tertiary Kamloops Group volcanics.


In 1991, Naxos Resources Ltd. (Ass. Rpt. # 21604) carried out geolgic mapping, grid installation (88.8 line kilometres), soil sampling and limited magnetometer surveying on the Shumway Lake property (J&J, Ban, Road, DD1, HJ and Phoenix claims) centered west of Shumway Lake. Soil sampling of the southern J&J # 5 and J&J 12Fr and 13Fr (southern Ace claim area) revealed similar Cu soil anomalies as defined by previous workers, including the anomaly centered around the Phil Cu showing. Mapping results were similar to those of Cominco's (Ass. Rpt. # 6224) but less detailed.

6. <u>1994 PROGRAM</u>

In 1994, 101 mandays were spent on the Joker property between June 8 and July 31. The program consisted of 1:2,500 geological mapping, rock chip sampling, soil sampling and magnetic and VLF surveys followed by diamond drilling. Work was concentrated on the Joker and Ace claims.

A total of 8 rock chip samples were collected as part of the mapping program. The Joker soil grid totalled 20.85 line km's with 389 soils being collected. In addition, a ground magnetometer and VLF survey was undertaken over the same grid. Follow up consisted diamond drilling of six NQ-sized holes totalling 691 metres with concurrent core sampling was completed. Grid and diamond drill hole locations are shown on Figure 4.

Mapping was done by topofil, compass and altimeter. Outcrop exposure on the property is variable as large portions of the property are covered by southeast trending drumlin fields.

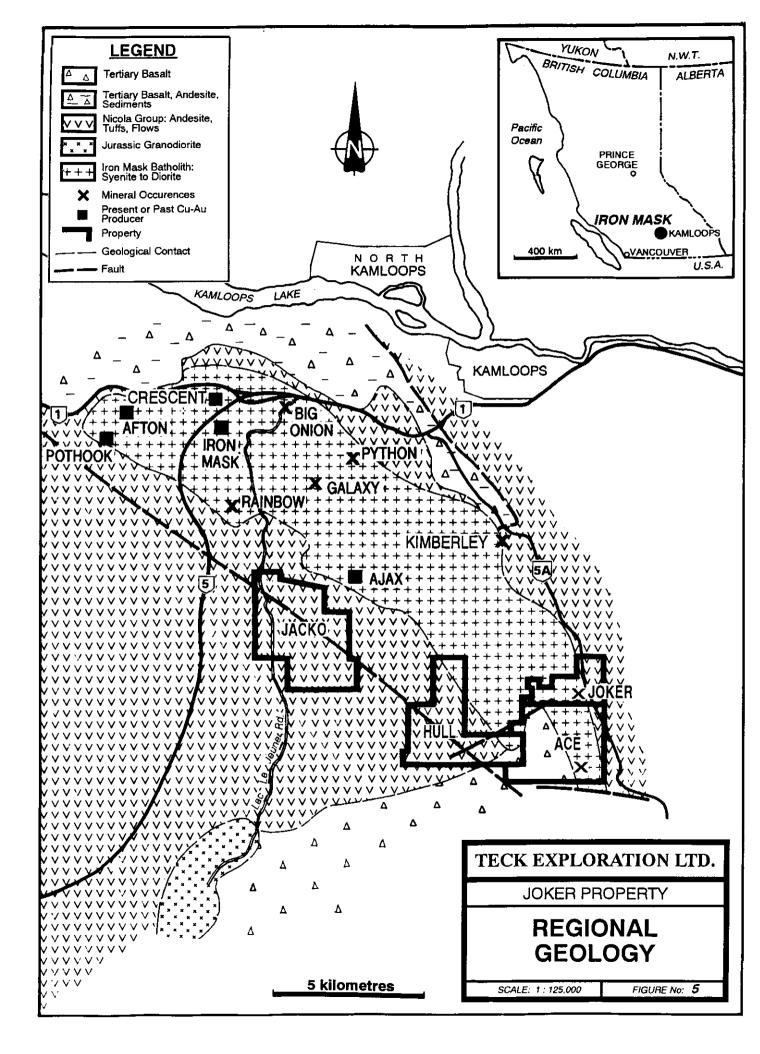
7. <u>GEOLOGY</u>

A. Regional Geology (Figure 5)

The Joker property is located in the southern part of the Quesnel Trough; a subdivision of the Intermontane structural belt of British Columbia. The Quesnel Trough consists of predominantly Lower Mesozoic volcanic and related intrusive rocks underlain by Paleozoic sedimentary rocks. The Quesnel Trough is host to numerous copper-gold enriched batholiths and stocks (eg. Afton, Mt. Polley. Mt. Milligan).

The Iron Mask Batholith consists of a Jurassic-aged multiphase alkalic intrusive complex localized along the south side of a regional northwest-trending fault. The batholith is a northwest-trending elongated composite pluton that is subvolcanic, comagmatic and coeval with surrounding Upper Triassic Nicola Group volcanics and sediments. Both the Nicola and Iron Mask lithologies are unconformably overlain by Tertiary volcanic and sedimentary rocks of the Kamloops Group.

Numerous porphyry copper deposits and occurrences are located throughout the pluton including the Afton, Pothook, Crescent and Ajax mines. Several major northwest trending faults influence contact relationships and localization of mineral deposits. The Joker property is situated on the eastern margin of the Iron Mask batholith.


B. Property Geology (Figure 6)

Geological mapping on the property was confined to the Joker Grid area. The Joker Grid area can be divided into 4 mappable units (see Figure 6 - Geology). Intrusive rocks of the Iron Mask Batholith cover the largest portion of the grid and are found within the the central part of the grid. Kamloops Group volcanics occupy the western portion of the grid area. Very little outcrop is found in the eastern portion of the grid with thick accumulations of southeast-trending glacial gravels dominating.

Units 1 to 4 (Figure 5) are described individually.

Unit 1 : HYBRID PHASE : Diorite Breccia

This unit, the oldest intrusive phase of the batholith, consists primarily of a medium to dark grey colored diorite breccia. The fragments are subangular to subrounded, millimetre to 15cm in size and are composed primarily of dark grey to black gabbro and diorite with lesser andesite volcanics. The unit ranges

from clast dominated (up to 70% by volume) to matrix dominated with little or no fragments. The matrix consists of medium to coarse grained magnetite-rich diorite. An inherent feature of the unit is the high magnetite content, commonly greater than 25% and up to 70% of the rock. Strong jointing is prevalent throughout the hybrid phase breccia. Alteration within this unit is weak overall with variable concentrations of fracture-controlled epidote and carbonate. Albite alteration is variable and ranges from locally moderate pervasive to absent. Moderate chlorite alteration is present throughout the unit. Mineralization is weak and erratic and consists of local pyrite, chalcopyrite and malachite.

Unit 2 : CHERRY CREEK PHASE : Diorite

Unit 2 is a light colored, fine to locally medium grained diorite of the Cherry Creek phase of the batholith. The unit is locally biotite pheric, containing patches of biotite up to 5mm in diameter. Magnetite content is less than 25% overall, commonly 10-15% and fine grained. Alteration is weak and consists of local fracture-controlled epidote, chlorite and carbonate. Pyrite and chalcopyrite mineralization is weak and erratic.

Unit 3 : CHERRY CREEK PHASE : Monzo-diorite to Monzonite

Rocks of unit 3 are light to medium grey colored fine to locally medium grained monzo-diorite to monzonites of the Cherry Creek phase. Potassium feldspar content is variable within the unit as the composition ranges from monzonite to monzo-diorite. Alteration is similar to the diorites (weak epidote, carbonate, chlorite) with the exception of variable amonts of secondary potassium. The amount of secondary potassic alteration is believed to be small in the unit and is concentrated in the Joker adit area on the northern part of the grid. Mineralization consists of local, weak pyrite, chalcopyrite and malachite.

Unit 4 : Kamloops Group Volcanics

This early Tertiary-aged unit consists primarily of volcanic flows of basaltic composition. The flatlying basalts are fine grained, non-magnetic, often vesicular, chocolate to dark brown and black in color. This unit is found along the western edge of the Joker Grid.

9

I. Joker Grid Area (Figure 6)

The Joker Grid area, located in the northern portion of the Ace claim and southern part of the Joker claim, is underlain predominantly by intrusive rocks of the Iron Mask Batholith. The central and southern portions of the grid contain abundant exposures of both hybrid breccia and diorite intrusives. The rocks are strongly jointed with northeasterly, northwesterly and easterly strikes with moderate to steep dips. The hybrid breccia unit is found within two zones surrounded by fine grained Cherry creek diorites. The southernmost exposure of the hybrid breccia contains weak to locally moderate albite alteration and local, trace to weak fracture-controlled pyrite and chalcopyrite mineralization. The surrounding diorites in this area are unmineralized and fresh.

The northern portion of the Joker Grid area is underlain by diorites, monzodiorites and monzonites of the Cherry Creek phase. The rocks are again strongly fractured and overall unaltered.

Roughly seventy-five metres to the north of the Joker Grid (baseline area) is the Joker adit; a caved in adit exposed along the banks of Anderson Creek. Adit mineralization consists of malachite, chalcopyrite, pyrite and bornite concentrated in a low angle fault and fracture system. Sampling of the adit by previous workers returned up to 22,550ppm Cu over 3 metres. Mineralization appears to be restricted and does not continue to surface with extensive rock sampling by previous workers in the vicinity of the adit returning very low copper values (up to 85ppm Cu). Local malachite and chalcopyrite mineralization and sporadic potassic feldspar and epidote alteration is found along the 200 metre plus long trench cut into the bank of Anderson Creek south from the adit. Due to abundant rock samples previously collected and the general lack of significant surface alteration and mineralization, no rock samples were collected in this area during the 1994 program.

II. Mineralization and Alteration

A total of 8 rock samples were collected from the property. Sample locations are shown on Figure 6 with rock sample descriptions provided in Appendix V. Samples were sent to Eco-Tech Laboratories Ltd. in Kamloops, B.C. and analysed for 29 elements by ICP (Ag,Al, As, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, La, Mg, Mn, Mo, Na, Ni, P, Sb, Sn, Ti, U, V, W, Y, Zn) and gold by fire assay and atomic absorption. Analytical Procedures are included in Appendix IV and Certificates of Analyses in Appendix III.

The limited rock samples were collected from the central grid area. No rock samples were collected from the Joker adit and immediate area as previous workers had already extensive sampled this area.

Results from 1994 rock sampling are disappointing. The highest copper value returned was 132ppm Cu from sample JOK 2 collected from carbonate altered hybrid breccia while the highest gold value returned was 50ppb Au (JOK 6).

The limited number of rock samples collected was due to the lack of surface mineralization and alteration found within the intrusive rocks. Mineralization, when found, consisted of local, weak pyrite, chalcopyrite and malachite. Alteration was equally weak and consited of local fracture-controlled epidote and carbonate. The hybrid breccias contained moderate to strong chlorite alteration and weak to locally moderate albite alteration.

8. GRID PREPARATION (Figures 4,6a,6b)

The Joker Grid was constructed in order to obtain information from the area located between the Joker adit and Phil Cu showing. General grid location is shown on Figures 4 and 11. Geological mapping, geophysical surveys (magnetometer and VLF) and soil collection was carried out within the grid. The 100 metre spaced grid lines were established by topofil and compass and slope corrected wire picket stations positioned every 50 metres and marked on the flagging. A total of 17 east-west lines averaging 1200 metres in length were constructed for a total length of 20.85 line kilometres of grid.

9. SOIL GEOCHEMISTRY (Figure 7)

A total of 389 soil samples were collected and sent to Eco-Tech Laboratories Ltd. in Kamloops, B.C. and analysed for 29 elements by ICP (Ag, Al, As, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sn, Ti, U, V, W, Y, Zn) and gold by fire assay and atomic absorption. Samples were collected every 50 metres using a shovel from the 'B' horizon, which generally occurred at a depth of 20-40 centimetres. Locally, holes had to be dug 40-60 centimetres deep in order to penetrate organic cover. All soils were collected in Kraft bags and allowed to air dry before shipment to the lab. Sample locations and copper (ppm) results are shown on Figure 7. For a complete list of results see Appendix III - Certificates of Analyses. Analytical procedures are included in Appendix IV. A complete list of soil sample descriptions is provided in Appendix VI.

A. <u>Results</u> (Figure 7)

Soil geochemical results of the Teck 1994 program failed to identify any significant anomalous copper and gold zones within the grid. Several weakly anomalous copper zones were outlined with the

central part of the grid having the greatest concentration of anomalous results. Most of the anomalous zones are outlined by copper soil values in the range of 130-199 ppm Cu with only eight results greater than 200 ppm Cu and the highest being 492ppm Cu (L26+00N, 21+00E). Gold soil results were very low overall with only several weakly (upto 50ppb Au) anomalous values returned. A majority of the weak gold anomalies are associated with elevated copper results. The anomalous zones trend northerly to northwesterly and are generally narrow (one to four stations wide). The largest anomalous zone is found in the central portion of the grid (L24+00N to L31+00N and just west of the baseline) over ground underlain by both weakly altered and mineralized Hybrid breccias and Cherry Creek diorites. Roughly two hundred metres to the east lies a narrow 200 metres (ong anomaly associated with a northerly-trending fault zone. The remainder of the grid contains several small, erratic weakly anomalous copper zones.

As a consequence of the low soil values, a statistical analysis was not undertaken.

10. MAGNETOMETER SURVEY (Figure 8)

A ground magnetometer survey was carried out within the Joker Grid (see Figure 4 for grid location). An EDA model Omni-IV Tie-Line magnetometer system was used in the magnetometer survey. The portable base station instrument provides total field intensity measurements to an accuracy of \pm 1 gammas over a range of 20,000 to 90,000 gammas. Readings were taken every 25 metres along the lines. Corrections for diurnal variations were made automatically and continuously by the base station unit.

A. <u>Results</u> (Figure 8)

Results from the survey were inconclusive. The central portion of the grid contains a wide (300 metre) northerly-trending mag low zone. The zone widens up to 800 metres wide just north of line 31+00N. This distinct mag low trend is likely due to glacial cover and underlying non-magnetic Cherry Creek diorite rocks. Flanking this low mag response zone to the east and south is a discrete magnetometer high. The anomalous mag high zone is roughly 250 metres wide by 700 metres long and covers ground underlain by strongly magnetic, unaltered and unmineralized hybrid breccia intrusive rocks. The mag low zone grades into slightly higher values to the west, over ground underlain by glacial drumlins and swamps.

11. VLF SURVEY (Figures 9 & 10)

A two station VLF survey was carried out within the Joker Grid. An EDA Omni-VLF Model PPX-406 system was used to take two station readings; Seattle (24.8 Khz) and Annapolis (21.4 KHz), every 25 metres

along the lines. The instrument recorded vertical in-phase (IP), vertical quadrature (Q) and horizontal field strength values. The recorded vertical IP values were then fraser filtered, contoured and plotted on Figures 9 (Seattle) and 10 (Annapolis). Due to technical difficulties, VLF data for both stations was not available between lines 21+00N to 25+00N.

A. <u>Results</u> (Figures 9 & 10)

Results from the 1995 VLF survey outlined numerous northerly-trending narrow, weakly anomalous zones. On the west side of the grid, the predominant trend of the zones of both stations is northeast while on the eastern portion of the grid the prominent direction is north-northwest. Overall, the anomalous fraser filtered in-phase data is only weakly anomalous (mode 10 - 25 units), narrow in width (mode 20-50 metres) and somewhat discontinuous. Results from the two different stations generally correlate well with some local discrepancies. The conductive source of the weak anomalies may be narrow fault zones.

12. DIAMOND DRILLING (Figures 4, 11-15)

Six diamond drill holes were drilled in 1994 for a total of 690.68 metres (2266 ft). The first two holes (JK-94-01 & 02) were drilled to test the down-dip potential of the Phil Cu showing (trench) while holes JK-94-03 to JK-94-06 were drilled to test geophysical anomalies located between the Joker adit and Greymask shaft areas. See Figure 4 and 11 for drill hole location and Figure 11 for compilation of the old data and anomalies around the Joker adit and Phil Cu showing areas. Drill sections are shown on Figures 12 - 15. Drilling of the NQ-sizes core was carried out between July 16 and 30, 1994 by Connors Drilling of Kamloops, B.C. Large sections of the core were split and sent to Eco-Tech Labs in Kamloops for analysis. A total of 265 samples were collected and analysed for 30 elements by ICP (Ag,Al,As,B,Ba,Bi,Ca,Cd,Co,Cr,Cu,Fe,K, La,Mg,Mn,Mo,Na,Ni,P,Pb,Sb,Sn,Sr,Ti,U,V,W,Y,Zn) and gold by atomic absorption. In addition, three of the samples were assayed for copper and one assayed for gold. Copper (ppm) and gold (ppb) results are included in the drill logs.

Drill hole locations are plotted on Figures 4 and 11 with drill logs included in Appendix VII. Core is currently being stored at Afton Mines. Core recovery was generally good (90-100%) except in some of the fault zones.

The following table lists all pertinent drill data.

Diamond Drill Hole Data

						No. of
Hole No.	Location	Elevation	Azimuth	Dip	Total Length	Samples Collected
JK-94-01	Phil Cu Area	987m	110°	-60°	72.54m	36
JK-94-02	Phil Cu Area	990m	110°	-60°	107.60m	39
JK-94-03	Greymask Shaft	937m	225°	-50°	173.74m	59
	Area					
JK-94-04	Greymask Shaft	937m	045°	-50°	121.62m	53
	Area					
JK-94-05	Greymask Shaft	934m	225°	-50°	64.90m	22
	Area					
JK-94-06	Greymask Shaft	938m	225°	-50°	<u>150.27m</u>	<u> 56</u>
	Area		Total		690.68 meters	265 Samples

A brief description of each hole follows.

A. <u>Hole JK-94-01</u> (Figure 12)

Hole JK-94-01 was collared 35 metres west of the Phil Cu showing (mineralized trench) and drilled to test the surface mineralization at depth. From the top of the hole (3.05m) to 40.70 metres, grey to black hybrid breccia was encountered. The section contained numerous fault zones up to three metres wide (core thickness) with associated fault breccia zones. Alteration consisted of local, weak epidote and potassium feldspar (potassic) fracture-fill and patches throughout with local carbonate altered (bleached) zones. Oxidation of magnetite to hematite was common. Some fragments within the hybrid breccia appeared to be albite altered (white, siliceous) with the degree of siliceousness (and thus albitization) decreasing down hole. Pervasive albite alteration was not noted. Mineralized trench zone downdip was around 30 to 35 metres and was not encountered. Copper and gold results returned for the entire hole were disappointing with the best result 1169ppm copper and 500ppb Au over 3 metres (sample 10609) from 25.70 to 28.70 metres.

From 40.70 to 46.20 metres a transition zone characterized by an overall darker and fine grained appearance with a faint and non-distinct outline of the hybrid breccia was encountered. This section likely represents a transition from the overlying hybrid breccia unit into an underlying fine grained intrusive/subvolcanic unit.

The section from 46.20 to 72.50 metres (EOH) consists of fine (to locally medium) grained diorite to monzonite and intermediate volcanic. The distinction of primary and secondary potassium feldspar was difficult; there were no potassic veins or fractures but rather wide zones of pervasive pinkish feldspars. There is some association of pinkish feldspar zones with epidote altered zones. Overall, epidote alteration is weak with local moderate to strongly altered zones (commonly associated with strong hematite alteration) from 46.20 to 47.20 metres and 52.50 to 53.55 metres. From 59.85 to 64.20 metres the core consisted of strongly epidote, hematite, chlorite, potassic and carbonate altered and brecciated fine grained intrusive or andesitic volcanic. Pyrite mineralization is weak and local. A distinctive, erratically distributed tourquoise colored oxide, carbonate or clay mineral (possibly a copper mineral) was noted in this section. However, geochemical results were disappointing however with only very low copper and gold results returned throughout the section.

B. <u>Hole JK-94-02</u> (Figure 13)

Hole JK-94-02 was collared 35 metres west of JK-94-01 and drilled to further test the downdip extension of the mineralized Phil Cu trench (further downdip than hole # 1). Hybrid breccia, similar to the first hole, was intersected from 13.10 metres to 60.70 metres. Strong oxidation (limonite) was present to a depth of 16 metres. Alteration consisted of weak epidote and hematite. Strong chlorite fracture-fill alteration was common throughout. The breccia matrix was dark, soft and strongly chloritic. Patches of bronzey-brown biotite were common and may represent an alteration feature. From 21.80 to 33.70 metres the hole becomes more siliceous with less soft, chloritic matrix and more strongly siliceous, possibly albitized fragments. From 33.70 to 36.30 metres a section of albite breccia (containing very strongly albite altered clasts) was encountered. From 36.30 metres on the degree of albitization decreases and amount of soft chlorite matrix increases. From 45.50 to 60.70 metres the section is riddled with numerous fault zones. The projected downdip intersection of the trench mineralization was from 50 to 55 metres and was not encountered as the section was dominated by faults. Local potassic alteration bands (up to 3cm wide) occur from 42.0 to 54.77 metres. Mineralization is weak overall (weak, local pyrite) with the best result being 0.17% Cu over 8 metres from 40.3 to 48.3 metres. The highest gold result (sample 10658) was 0.5 g/t over 2 metres (54.3 to 56.3 metres).

Diorite to monzonite intrusive to andesite volcanic is found from 60.7 to 107.6 metres (EOH). The section is very similar, but more altered, to that encountered in the bottom of hole # 1. Moderate to strong epidote and potassic alteration (bands up to 7cm wide) with associated 2% pyrite fracture-fill was found from 62.70 to 63.45 metres. The unknown tourquoise mineral (same as hole # 1) and 2-3% pyrite occurs from 65.30 to 65.75 metres and is associated with strong epidote, potassic, calcite and chlorite alteration. Numerous local zones of strong epidote, potassium feldspar and calcite alteration with pyrite are found from 70.33 to 107.60 metres (EOH). No significant mineralization was noted.

C. <u>Hole JK-94-03</u> (Figure 13)

Hole JK-94-03 was collared in the northeastern portion of the Joker claim, roughly 300 metres southwest of the Greymask shaft area; an area with old reported drill intercepts of 0.15% Cu and 0.015 opt Au over 67 metres and 0.16% Cu over 55 metres. The hole, together with subsequent holes JK-94-04 to JK-94-06, tested geophysical targets (IP, magnetometer) outlined by previous workers.

Fine to medium grained diorite and diorite breccia was intersected from 6.10 to 142.65 metres. The gradation from brecciated to non brecciated core is often ambiguous and irregular with a stockwork and mottled appearance common. Moderate to strong epidote and potassic alteration is common and occurs as bands, irregular patches and fracture-fills. In addition, local albite and possibly biotite alteration is present. Local coarse grained sections of diorite are present. Magnetite content is commonly high throughout. Mineralization to a depth of 77.15 metres is weak overall and consists of local fracture-fill and disseminated chalcopyrite and pyrite with the best result 0.1% Cu over 3 metres (sample 10696). Massive hematite (commonly specular hematite) bands up to 4cm wide occur from 77.15 to 142.65 metres. Commonly associated with the massive specular hematite bands is local 1-3% fracture-fill chalcopyrite and strong epidote and potassic alteration and calcite veinlets. The main mineralized sections occur at 77.15 to 79.50 metres, 92.72 to 93.16 metres, 115.20 to 118.50 metres and 126.75 to 128.95 metres. The best assay results returned include 1.1% Cu and 3.28 g/t Au over 2.35 metres from 77.15 to 79.50 metres (sample 10704) and 0.5% Cu over 1 metre at 92.72 metres (sample 10712). All other results are $\leq 0.1\%$ Cu. From 118.50 to 142.65 metres the intensity of alteration is decreased and the specular hematite bands are often associated with narrow calcite veining. Local fault zones are present. From 126.75 to 142.65 metres the core becomes darker and more chloritic and andestitic.

Pyroxene porphyritic andesitic volcanic in a semi-continuous fault zone was intersected from 142.65 to 173.74 metres (EQH). The only mineralization observed was very local trace pyrite. Strong chlorite and local weak carbonate and potassic alteration is present.

D.

Hole JK-94-04 (Figure 13)

Hole JK-94-04 was collared at the same location as hole # 3 but drilled in the opposite direction. Like hole # 3, hole JK-94-04 intersected epidote and potassic altered diorite breccias with an irregular and mottled stockwork appearance from 9.14 to 119.77 metres. Abundant irregular calcite veinlets are common and often associated with the narrow (\leq 4cm wide) semi-massive to massive specular hematite bands and zones. Mineralization occurs as narrow 1-3% chalcopyrite fracture-fills and clots associated with the specular hematite bands. Zones occur at 11.4 to 11.5 metres, 17.08 to 17.15 metres, 19.35 to 19.55 metres, 21.20 to 21.29 metres, 22.67 to 23.30 metres and 22.67 to 22.78 metres. Results include 0.25% Cu over 1 metre at 22.30 metres (sample 10744).

The section from 53.33 to 67.93 metres contains sections of fault zones alternating with non-faulted diorite breccias. Numerous narrow mineralized sections are present from 53.90 to 55.60 metres with results up to 0.16% Cu over 1 metre at 54.78 metres (sample 10757). Mineralized zones occur at 58.35 to 58.47 metres, 64.05 to 64.80 metres, 67.20 to 68.80 metres, 69.90 to 70.20 metres, 70.51 to 70.56 metres, 96.60 to 99.40 metres and 104.80 to 106.00 metres. The best result is 2.45 g/t Au and 0.36% Cu over 1 metre at 63.80 metres (sample 10762) with all other samples returning \leq 0.1% Cu.

Sections of pervasive potassic alteration occur from 56.83 to 80.02 metres. From 80.20 to 115.40 metres epidote and potassic alteration is weak overall (local moderate zones up to 10 cm wide) with moderate hematite and calcite alteration and very local trace chaicopyrite and pyrite mineralization. From 115.40 to 119.77 the core becomes more chloritic and locally faulted (transition zone?).

The zone of alternating pyroxene porphyritic andesite and fault zones (same as hole # 3) occurs from 119.77 to 121.62 metres (EOH).

E. <u>Hole JK-94-05</u> (Figure 14)

Hole JK-94-05 was collared 100 metres southeast of holes JK-94-03 and JK-94-04 to test the continuity of the mineralization intersected in holes 3 & 4. Hole JK-94-05 collared into similar stockwork looking diorite breccia but with overall weaker epidote and potassic alteration. Calcite veinlets are common. Mineralization is sparse, occurring as narrow fracture-fill chalcopyrite and pyrite commonly associated with the specular hematite / hematite bands at 43.85 to 44.63 metres, 48.05 to 48.63 metres and 52.00 to 52.02 metres. No significant copper or gold results were returned.

A fault zone was intersected from 54.90 to 62.90 metres. The section locally looks like pyroxene porphyritic andesite (dark green, chloritic, soft), similar to the bottom of holes 3 & 4. From 62.90 to 64.90 metres (EOH) a grey to black, fine grained material (different from the fault zone rock) was intersected. Because of poor recovery through this section and the above fault zone, drilling on this hole was terminated.

F. <u>Hole JK-94-06</u> (Figure 15)

Hole JK-94-06 was collared 100 metres northwest of holes JK-94-03 and Jk-94-04 to test the continuity of the mineralization intersected in holes 3 & 4. A similarly altered diorite breccia (as found in holes 3, 4 & 5) was intersected from 15.24 to 150.27 metres (EOH). The stockwork appearance is defined by abundant calcite veinlets, wispy hematite (with local specular hematite), and weak to moderate epidote and weak to strong potassic alteration. Local chalcopyrite and pyrite fracture-fill mineralization occurs at 46.68 to 46.83 metres, 49.05 metres and 69.00 to 69.03 metres with results including (sample 10820) 0.18% Cu over 3.05 metres (46.63 to 49.68 metres).

Albite alteration is noted from 53.08 to 54.00 metres with abundant white, siliceous fragments in the diorite breccia. From 78.40 to 94.83 metres, there is a general increase in amount and intensity of potassic alteration (bands, patches and pervasive zones) with calcite veinlets and epidote alteration. From 79.60 to 82.0 metres (80.0 to 81.75 strongest), narrow zones of fracture-fill and splotchy chalcopyrite and pyrite mineralization (up to 3% locally) occur associated with strong alteration. The best result from this zone returned 2.09 g/t and 0.3% Cu over 1 metre at 80.0 metres (sample 10832). Other erratically distributed narrow mineralized zones occur from 83 to 89 metres with up to 0.43% Cu returned over 2 metres (85 to 87 metres). The best mineralized section of hole JK-94-06, from 94.85 to 96.0 metres, contains splotchy chalcopyrite (overall \approx 3%) through a strongly potassic and epidote altered zone with weak to moderate specular hematite. Assaying of the section returned 2.08% Cu and 10.21 g/t Au over 1.15 metres (sample 10843).

Weak mineralized zones occur from 96 to 98 metres with the 2 metre section returning 0.53% Cu (samples 10844 & 10845). Mineralization and alteration generally decreases downhole. A large fault zone was encountered from 101.50 to 104.65 metres. Weak mineralized zones occur at 114.10 to 114.50 metres and 130.69 to 130.92 metres. From 132.42 to 139.0 metres alteration consisted of moderate epidote, weak potassic and moderate hematite bands. From 139.0 to 150.27 metres (EOH) alteration is weak overall.

G. <u>Discussion</u>

The first two drill holes, JK-94-01 & JK-94-02, tested the possible downdip extension of high grade mineralization found in the Phil Cu trench showing. The showing contains a shallow-dipping ($\approx 30^{\circ}$) fault zone with local high grade copper mineralization in massive albite altered Iron Mask hybrid breccias in fault contact with Sugarloaf diorites. The discontinuous, exposed massive albite is up to 2 metres thick. Several other cross-cutting faults are evident in the old trench cuts.

1994 drilling failed to intersect the mineralization downdip at the projected target depths; instead numerous fault zones with local, weak copper mineralization (up to 0.17% Cu over 8 metres in hole JK-94-02) were encountered. This leads to the likely conclusion that the mineralization found in the trenches is local and erratic and not continuus downdip, at least in the area of the drill holes. The probability of a large size porphyry Cu-Au system in the immediate area is low.

Holes JK-94-03 to JK-94-06 tested old geophysical (IP, magnetics) anomalies located near the Greymask shaft area. A small dump located near the reported shaft (actual shaft no longer visible) contained massive magnetite and hematite with splashy chalcopyrite. Drilling on these four hole intersected weak to strongly potassic, epidote, carbonate and hematite altered diorite intrusive breccias. Mineralization consisted of narrow zones/bands of massive specular hematite with local 1-3% fracture-controlled chalcopyrite, similar to that of the small Greymask dump located roughly 250 metres to the northeast. Mineralized intervals containing greater than 0.5% Cu were generally narrow with the best results including 1.1% Cu and 3.28 g/t Au over 2.35 metres (JK-94-03) and 2.08% Cu and 10.21 g/t Au over 1.15 metres (JK-94-06). The bottom of holes 3,4 and possibly 5 intersected non-mineralized andesitic volcanics in fault contact with the overlying intrusive breccias.

This area has been satisfactorily tested by drilling. To the northeast previous work around the Greymask shaft outlined low grade copper and gold. Five hundred metres to the southwest, numerous old drill holes proximal to the Joker adit area outlined low grade copper mineralization (no actual intercepts found on record).

13. <u>CONCLUSION</u>

Results from the 1994 program are mixed.

Geological mapping has shown the property to be largely underlain by Iron Mask Batholith diorites and hybrid breccias with lesser Tertiary volcanics. Surface alteration and mineralization is weak with limited rock sampling failing to return economic copper-gold mineralization.

Soil sampling on Joker grid did not return significant copper-gold values. Several discontinuous weakly anomalous, northerly-trending copper zones were delineated. The magnetometer survey carried out over the grid outlined a central northerly-trending mag low flanked to the west by a mag high. The mag high corresponds to ground underlain by strongly magnetic hybrid breccia rocks. The two station VLF survey revealed numerous narrow and discontinuous northerly-trending weakly conductive zones.

Diamond drilling of two holes (JK-94-01,02) in the Phil Cu showing area failed intersect the down-dip extension of high grade copper mineralization found in the surface trenches. Diamond drilling of four holes south of the Greymask shaft area intersected several, narrow high grade copper zones within potassic, epidote and carbonate altered diorite breccias. Results include 1.1% Cu and 3.28g/t Au over 2.35 metres (hole JK-94-03) and 2.08% Cu and 10.21g/t Au over 1.15 metres (hole JK-94-06).

14. <u>REFERENCES</u>

- 1. Bruaset, R.U.(1978): Assessment Report Percussion Drilling (AND 3 M.C.), McLeod Lake Area. Ass. Rpt. # 6674.
- Bruaset, R.U.(1978): Percussion Drilling Assessment Report, AND 2, Shumway Hill Area. Ass.
 Rpt. # 6752.
- Butrenchuk, S.B.(1983): Assessment Report Percussion Drilling, AND Property, Separation Lake Area. Ass. Rpt. # 11336.
- Christoffersen, J.E. (1989): Geological and Geochemical Report on the Cob Claim. Ass. Rpt.
 # 19261.
- 5. Hallof, P.G. and Bell, R.A. (1968): Report on the Induced Polarization and Resisitivity Survey on the Pinnacle Claim Group. Ass. Rpt. # 965.
- Holcapek, F.(1991): Report on the Geological, Geochemical and Magnetic Survey, Shumway Lake Property. Ass. Rpt. # 21604.
- John, J. (1989): Assessment Report Geochemical and Prospecting Work on the Shumway #3
 Claim Group. Ass. Rpt # 19132.
- Kwong, J.T. (1987): Evolution of the Iron Mask Batholith and Its Associated Copper Mineralization : B.C. Ministry of Energy, Mines and Petroleum Resources, Bulletin 77.
- 9. Osatenko, M.J., Bruaset, R.U. and Hoddle, D.W. (1977): Assessment Report 1976 Geological Report on the AND 1 - 10 Mineral Claims in the Shumway Lake Area and Induced Polarization and Magnetic Survey, AND Claims. Ass. Rpt. # 6224.
- Osatenko, M.J. (1978): Assessment Report Geological and Rock Geochemical Work on the Lark Property, Separation Lake Area. Ass. Rpt. # 6717.
- Prendergast, J.B. (1968): Report on Property of Pinnacle Mines Limited (NPL); A, C, CLE and PIN Claims, Knutsford Area. Ass. Rpt. # 1746.

- Scott, A.R. (1978): Induced Polarization and Magnetics Survey, AND/Lark Claims. Ass. Rpt. # 6739.
- 13. Sullivan, J.(1966): Bee Group of Mineral Claims, 3 Miles South of Knutsford. Ass. Rpt. # 772.
- 14. Vallabh, R.(1973): Geological, Geochemical and Geophysical Report, JD 21-90, 103-108, PIN
 1-7, J.D. Mineral Claims. Ass. Rpt. # 4160.

APPENDIX 1

Statement of Qualifications

I, Steve Jensen, do hereby certify that:

- 1) I am a geologist and have practised my profession for the past seven years.
- I graduated from University of British Columbia, Vancouver, British Columbia with a Bachelor of Sciences degree in Geology (1987).
- 3) I was actively involved and supervised the Joker Property program and authored the report contained herein.
- 4) All data contained within this report and conclusions drawn from it are true and accurate to the best of my knowledge.
- 5) I hold no personal interest, direct or indirect in the Joker Property which is the subject of this report.

AND

Steve Jensen Project Geologist January, 1995

APPENDIX II

Cost Statement

JOKER PROPERTY

COST STATEMENT

1.		<u>Geology</u> (includes preparation,data compilation,field plotting)						
	A.	Steve Jensen, P.Geo. (Geologist) 23 days @ \$226.73/day July 1-8,10,12-14 (June 8,10-14,17,21,30, July 11,15)		\$ <u>5,214.79</u>				
		() Denotes non-field days	Subtotal	\$5,214.79				
2.	<u>Soil Si</u>	urvey and Grid Installation						
	A.	Steve Jensen, P.Geo. (Geologist) 7 days @ \$226.73/day June 23-29		\$1,587.11				
	В.	Paul Roberts, P.Geo. (Geologist) 8 days @ \$261.20/day June 22-30	Subtotal	\$ <u>2,089.60</u> \$3,676.7 1				
3.	Magne	tometer and VLF-EM Survey						
	A.	Kevin Chubb (Technician) 7 days @ \$203.50/day July 1-7		\$ <u>1,424.50</u>				
			Subtotal	\$1,424.50				
4.	<u>Core L</u>	ogging, Sampling and Drill Supervision						
	Α.	Steve Jensen, P.Geo. (Geologist) 15 days @ \$226.73/day July 16-30		\$3,400.95				
	В.	Ryan Kazakoff (Assistant) 11 days @ \$166.75/day		\$ <u>1,834.25</u>				
			Subtotal	\$5,235.20				

5. <u>Drilling Costs</u>

6.

8.

9.

•	<u>erang</u>		
	July 16 Six (6)	rs Drilling Ltd., Kamloops, B.C. -30, 1994 NQ diamond drill holes per ft include all consumables and use of water truck	
	Α.	Overburden Drilling (NW) 170 ft @ \$18.19/ft	\$3,092.30
	В.	Coring Bedrock (NQ) 2096 ft @ \$14.98/ft	\$31,398.08
	C.	Field Costs (Reaming etc.)	\$ <u>102.72</u>
			Subtotal \$34,593.10
	Analytic	cal = Eco-Tech Labs, Kamloops,B.C.	
	Α.	Rock samples 8 @ \$17.66 ea. (29 el. ICP & Au)	\$141.28
	В.	Soil samples 389 @ \$14.18 ea. (29 el. ICP & Au)	\$5,516.02
	C.	Drill Core 265 @ \$17.66 ea. (29 el. iCP & Au)	\$4,679.90
	D.	Copper assay - Drill core 1 @ \$8.03 ea.	\$8.03
	E.	Gold assay - Drill Core 3 @ \$9.10 ea.	\$ <u>27.30</u>
			Subtotal \$10,372.53
	Geophy	sical Equipment Rental - T.Hasek Associates Ltd, Vancouver	
		of Scintrex Base Station Magnetometer and VLF-EM Unit I - July 8, 1994	\$ <u>1,055.67</u>
			Subtotal \$1,055.67
	Food ar	nd Accommodation	
	A.	Food \$25.00/day x 16 days (June 22 - July 7,1994)	\$400.00

	В.	Accommodation 16 days @ \$60.00/day	\$ <u>960.00</u>
			Subtotal \$1,360.00
10.	Transp	portation	
	Α.	4x4 Toyota Forerunner truck rental 50 days @ \$70.00/day (includes fuel,insurance,repairs)	\$ <u>3,500.00</u> Subtotal \$3,500.00
11.	Freigh	t and Shipping	
	Α.	Equipment shipments, correspondance etc.	\$ <u>300.00</u>
			Subtotal \$300.00
12.	Field S	Supplies	
	Α.	Sample bags,flagging,topo thread,vest,compass etc.	\$ <u>1,246.65</u>
			Subtotal \$1,246.65
13.	Report	Writing and Typing	
	A.	Steve Jensen, P.Geo. (Geologist) 15 days @ \$226.73/day August	\$ <u>3,400.95</u> Subtotal \$3,400.95
14.	Draftin	g	
	A.	Base map preparation and materials (includes Trim map purch Steve Archibaid, Kamloops, B.C 6 days @ \$200.00/day	ase) \$1,925.00
	В.	Prints, enlargements, screens of maps	\$630.40
	C.	Steve Archibald (Draftsman) 13 days @ \$200.00/day	\$ <u>2,600.00</u>
			Subtotal \$5,155.40

JOKER 1994 TOTAL COST: \$76,535.50

APPENDIX III

Certificates of Analysis

19-Jul-94

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 2J3

Phone: 604-573-5700 Fax : 604-573-4557

Values in ppm unless otherwise reported

TECK EXPLORATION ETK 94-434 #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

ATTENTION: STEVE JENSEN

8 ROCK samples received July 11, 1994 PROJECT #: 1722

<u> </u>	Tag #	Au (ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Сц	Fe %	Ĺa	Mg %	Mn	Мо	Na %	Ni	P	РЬ	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
1	JOK 1	5	<.2	5.24	45	85	<5	5.19	<1	26	76	43	6.83	<10	0.75	424	5	0.05	5	850	<2	<5	<20	297	0.14	<10	376	<10	<1	23
2	JOK 2	10	1.0	2.28	25	125	<5	4.24	<1	11	99	132	1.11	<10	0.79	434	7	0.02	3	1130	<2	<5	<20	53	0.13	<10	59	<10	7	12
3	JOK 3	5	<.2	5.91	35	100	<5	5.41	<1	28	82	80	8.03	<10	0.73	420	2	0.05	6	690	<2	<5	<20	343	0.13	<10	446	<10	<1	24
4	JOK 4	10	<.2	5.29	60	85	<5	5.48	<1	33	99	31	9.60	<10	0.75	465	6	0.06	8	810	<2	<5	<20	295	0.16	<10	556	<10	<1	27
5	JOK 5	15	1.8	2.34	10	35	<5	4.05	<1	13	47	101	1.54	<10	0.80	321	2	0.01	1	1200	<2	10	<20	69	0.16	<10	66	<10	6	13
6	JOK 6	50	0.8	3.14	20	55	<5	5.73	<1	16	92	114	1.53	<10	1.19	531		0.01	3	1670	<2	<5	<20	60	0.13	<10	49	<10	4	13
7	JOK 7	5	<.2	2.02	60	45	<5	2.31	<1	44	67		11.30	<10	0.78	514		0.05	15	500	10	<5	<20	98	0.19	<10	589	<10	<1	34
8	JOK 8	5	<.2	6.44	45	75	<5	5.88	<1	32	85	19	8.18	<10	0.76	357	4	0.05	6	470	<2	<5	<20	349	0.14	<10	436	<10	<1	27
QC DA Repea		-	<.2	5.43	50	85	<5	4.82	<1	25	69	45	6.57	<10	0.74	395	4	0.05	6	820	<2	<5	<20	293	0.16	<10	368	<10	<1	23
Standa	ard 1991:	-	1. 2	1.86	72	163	<5	1.91	<1	22	72	80	4.01	<10	1.06	720	1	0.01	20	730	18	<5	<20	ങ	0.11	<10	82	<10	7	73

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/Teck

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 2J3

Phone: 604-573-5700 Fax : 604-573-4557

Values in ppm unless otherwise reported

TECK EXPLORATION ETK 94-461 #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

ATTENTION: STEVE JENSEN

36 CORE samples received July 19, 1994 PROJECT #: 1722

Et #.	Tag #	Au (ppb)	Ag	AI %	As	Ва	Bi Ca	%	Cd	Co	Cr	Cu	Fe %	La N	/g %	Mn	Мо	Na %	Ni	Р	РЬ	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
1	10601	<5	< 2	2.22	<5	170	<5 3.	32 ·	<1	39	10	319	10.10	<10	2.07	426	<1	0.02	16	830	<2	<5	<20	64	0.20	<10	382	<10	4	19
2	10602	<5	<.2	2.07	<5	225	10 2.	76 •	<1	34	14	125	9.57	<10	1.66	326	<1	0.03	12	1070	<2	<5	<20	89	0.13	<10	359	<10	2	27
3	10603	5	<.2	2.39	<5	300	<5 3.	99 ·	<1	31	21	159	8.05	<10	1.68	421	<1	0.06	10	1500	<2	<5	<20	186	0.14	<10	320	<10	5	25
4	10604	5	<.2	2.09	<5	180	<5 2.	81 ·	<1	30	14	147	7.47	<10	1.48	355	<1	0.04	11	1120	<2	<5	<20	77	0.16	<10	323	<10	5	23
5	10605	15	<.2	2.51	<5	235	< 5 2 .	80 •	<1	32	7	255	6,53	<10	2.00	317	<1	0.03	11	1610	2	<5	<20	93	0.20	<10	270	<10	8	17
6	10606	10	<.2	2.43	<5	180	<5 3.	85 •	<1	31	7	602	7.39	<10	2.26	426	<1	0.03	10	1550	<2	<5	<20	104	0.16	<10	264	<10	5	20
7	10607	5	<.2	2.20	<5	95	<5 5.	14 •	<1	28	24	255	4.75		2.38	505	<1	<.01	12	680	<2	5	<20	70	0,19	<10	127	<10	10	14
8	10608	10	<.2	2.14	<5	75	<5 3.	90 •	<1	34	50	210	6.18	<10	2.39	415	<1	0.01	18	170	<2	5	<20	53	0.22	<10	201	<10	9	18
9	10609	500	<.2	2.37	<5	180	<5 4.	99 •	<1	41	25	1169	10.30	<10	2.84	473	<1	0.04	20	1060	<2	<5	<20	85	0.21	<10	311	<10	5	18
10	10610	70	<.2	2.27	<5	75	<5 5.	21	<1	29	7	362	7.07	<10	2.63	420	<1	0.05	15	850	<2	5	<20	96	0.10	<10	221	<10	3	18
11	10611	40	<.2	2.99	<5	80	<5 5.1	25 •	<1	36	8	603	8.01	<10	3.10	494	<1	0.04	19	820	<2	10	<20	118	0.18	<10	275	<10	7	25
12	10612	40	<.2	3.21	<5	75	<5 5.	25 🖣	<1	84 4	07	686	7.04	<10	6.95	613	<1	0.08	447	580	6	10	<20	102	0.08	<10	124	<10	2	30
13	10613	<5	<.2	2.83	<5	130	5 5.	15 <	<1	60 3	49	29	5.32	<10	8.89	853	<1	0.06	647	520	4	15	<20	92	0.04	<10	100	<10	2	42
14	10614	<5	<.2	1.73	<5	70	10 1.	17 🖣	<1	672	86	30	5.16	<10 1	0.20	534	<1	0.02	849	470	<2	15	<20	70	0.02	<10	71	<10	<1	62
15	10615	<5	<.2	1.82	<5	290	<5 1.	53 <	<1	65 3	29	31	5.18	<10	9.05	558	<1	0.03	780	440	<2	10	<20	65	0.03	<10	65	<10	<1	48
16	10616	<5	<.2	2.00	<5	30	<5 2.4	49 <	<1	33	18	18 1	4.52	<10	2.37	623	<1	0.02	37	780	<2	10	<20	145	0.11	<10	113	<10	5	47
17	10617	<5	<.2	2.27	<5	65	5 1.	80 <	<1	23	18	93	6.18	<10	2.21	640	<1	0.03	37	760	12	<5	<20	64	0.10	<10	158	<10	3	68
18	10618	<5	<.2	1.92	<5	40	<5 1.	95 <	<1	23	8	244	5.92	<10	1.81	525	<1	0.02	9	790	4	<5	<20	79	0.15	<10	156	<10	7	49
19	10619	<5	<.2	1.96	<5	35	5 1.	96 <	<1	27	8	76	5.32	<10	1.64	478	<1	0.02	15	740	<2	5	<20	53	0.09	<10	150	<10	5	29
20	10620	<5	<.2	2.30	<5	40	<5 2.0	65 <	<1	17	5	189	5.97	<10	1.73	588	<1	0.03	5	820	<2	<5	<20	54	0.13	<10	161	<10	7	39
21	10621	<5	<.2	2.27	<5	30	<5 2.	50 <	<1	19	5	178	6.16	<10	2.01	693	<1	0.02	6	790	<2	10	<20	69	0.12	<10	159	<10	6	45
22	10622	<5	< 2	1.94	<5	75	10 2.3			18	7	48	4.25		1.62	554	<1	0.02	5	810	<2	<5	<20	170	0.13	<10	111	<10	8	44
23	10623	<5	<.2	1.92	<5	25	10 1.4	46 <	<1	17	9	13	4.56	<10	1.59	543	<1	0.02	4	810	4	<5	<20	96	0.11	<10	112	<10	6	45
24	10624	<5	<.2	2.15	<5	25	10 1.3	39 <		19	8	53	5,56		1.70	693	<1	0.02	6	820	<2	10	<20	51	0.10	<10	129	<10	5	63
25	10625	<5	<.2	1.82	<5	20	5 1.			22	9	35	3.99		1.68	590	<1	0.03	6	860	<2	10	<20	84	0.12	<10	85	<10	7	95

"HOLE JK-94-01"

TECK EXPLORATION ETK 94-461

ECO-TECH LABORATORIES LTD.

<u>Et #.</u>	Tag #	Ац (ррь)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Мл	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zπ
26	10626	<5	<.2	1.80	<5	20	<5	2.24	<1	31	9	120	4.49	<10	1.77	590	<1	0.02	7	830	<2	10	<20	63	0.11	<10	104	<10	6	59
27	10627	<5	<.2	1.86	<5	35	<5	2.15	<1	27	11	182	5.17	<10	1.78	680	<1	0.02	8	820	<2	10	<20	52	0.11	<10	113	<10	5	54
28	10628	<5	<.2	1.71	<5	25	<5	1.41	<1	23	9	126	5.13	<10	1.66	740	<1	0.02	7	790	<2	10	<20	54	0.09	<10	103	<10	4	79
2 9	10629	<5	<.2	1.92	<5	35	<5	1.45	<1	29	12	159	5.35	<10	1.72	813	<1	0.03	7	790	<2	10	<20	96	0.11	<10	107	<10	6	75
30	10630	<5	<.2	1.62	<5	20	<5	2.50	<1	20	11	390	3.90	<10	1.48	599	<1	0.03	7	850	<2	5	<20	114	0.12	<10	96	<10	7	35
31	10631	<5	<.2	1.93	<5	25	10	1.39	<1	18	20	12	4.38	<10	1.68	739	<1	0.02	7	830	<2	<5	<20	109	0.09	<10	93	<10	5	53
32	10632	5	<.2	1.88	<5	30	10	1.18	<1	20	10	12	5.05	<10	1.61	745	<1	0.02	6	820	<2	<5	<20	52	0.08	<10	95	<10	3	61
33	10633	10	<.2	1.81	<5	25	10	1.39	<1	17	11	13	4.19	<10	1.47	687	<1	0.02	6	810	<2	<5	<20	79	0.09	<10	86	<10	5	46
34	10634	5	<.2	2.09	<5	25	10	1.52	<1	17	11	6	5.21	<10	1.52	741	<1	0.02	5	830	<2	<5	<20	46	0.07	<10	103	<10	3	46
35	10635	10	<.2	2.13	<5	40	10	1.42	<1	18	13	7	4.91	<10	1.53	714	<1	0.02	6	830	<2	<5	<20	49	0.07	<10	99	<10	3	48
36	10636	5	<.2	1.92	<5	80	10	1.99	<1	17	26	8	4.96	<10	1.33	648	<1	0.03	6	820	<2	<5	<20	42	0.07	<10	113	<10	2	40
QC DA	TA:	5																• *												
Repea	t:																													
1	10601		<.2	2.04	<5	160	<5	3.08	<1	26	9	306	9.69	<10	1.87	428	<1	0.01	10	850	<2	<5	<20	58	0.11	<10	368	<10	2	18
Standa	ard:																													
			1.0	1.71	65	155	<5	1.83	2	18	64	76	3.84	<10	0.95	691	<1	<.01	25	700	6	10	<20	56	0.07	<10	80	<10	7	70

ECO. TECH LABORATORIES L.TD. Frenk J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/Teck

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 2J3

Phone: 604-573-5700 Fax : 604-573-4557

Values in ppm unless otherwise reported

TECK EXPLORATION ETK 94-463 #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

ATTENTION: STEVE JENSEN

39 CORE samples received July 21, 1994 PROJECT #: 1722

Et	#. Tagi	¥	Au (ppb)	Ag	AI %	As	В	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	К%	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	w	Υ	Zn
	JK94-02	: 10637	65	<.2	3.00	<5	10	255	<5	3,85	2	35	19	390	9.47	0.28	<10	2.81	456	<1	0.07	21	1360	<2	20	<20	149	0.22	<10	392	<10	13	22
	JK94-02	: 10638	55	<.2	2.51	<5	10	255	<5	3.58	<1	40	18	658	11.70	0.41	<10	2.46	443	<1	0.07	22	<10	<2	5	<20	130	0.26	<10	487	<10	10	22
:	JK94-02	: 10639	45	<.2	4.03	<5	8	445	<5	6.26	<1	37	6	881	8.47	0.40	<10	3.38	683	<1	0.19	20	630	<2	20	<20	289	0.28	<10	371	<10	18	20
	JK94-02	: 10640	30	<.2	3.50	<5	10	165	5	5.10	<1	32	7	100	6.83	0.19	<10	2.52	532	<1	0.18	17	690	4	15	<20	201	0.21	<10	346	<10	13	24
:	JK94-02	: 1 064 1	35	<.2	3.01	<5	10	200	10	3.63	<1	33	12	111	7.55	0.18	<10	2.02	422	<1	0.12	17	350	6	5	<20	189	0.22	<10	378	<10	9	28
	JK94-02	: 10642	20	<.2	2.60	<5	6	165	10	3.79	<1	36	9	65	8.38	0.15	<10	2.22	503	<1	0.1	18	340	<2	10	<20	120	0.21	<10	439	<10	9	32
7	JK94-02	: 10643	25	<.2	3.47	<5	8	285	15	3.53	<1	40	24	69	8.83	0.28	<10	2.14	448	<1	0.18	15	960	6	<5	<20	244	0.25	<10	474	<10	11	31
8	JK94-02	: 10644	20	<.2	3.27	<5	10	260	10	6.25	<1	35	14	124	8.35	0.17	<10	2.70	701	<1	0,13	16	830	<2	5	<20	183	0.21	<10	383	<10	11	27
9	JK94-02	: 10645	160	<.2	3.88	<5	10	545	10	3.90	<1	30	14	96	5.71	0.33	<10	2.62	385	<1	0.16	14	640	14	10	<20	293	0.28	<10	283	<10	16	18
1) JK94-02	: 10646	25	<.2	3.30	<5	12	380	<5	3.87	<1	27	9	101	5.12	0.25	<10	2.62	459	<1	0.13	12	760	8	10	<20	216	0.22	<10	258	<10	13	23
1	JK94-02	: 10647	15	0.4	2.65	<5	8	430	<5	2.72	<1	8	20	56	1.53	0.14	<10	0.92	172	<1	0.09	5	310	<2	15	<20	186	0.13	<10	54	<10	15	5
1	2 JK94-02	: 10648	25	<.2	2.61	<5	10	410	5	3.03	<1	12	15	72	2.34	0.12	<10	1.59	221	<1	0.11	8	10	2	15	<20	209	0.19	<10	62	<10	16	8
1	JK94-02	: 10649	5	<.2	3.03	<5	10	110	<5	6.16	<1	35	11	154	8.84	0.12	<10	2.60	693	<1	0.08	27	870	<2	20	<20	108	0.21	<10	471	<10	10	26
1	JK94-02	: 10650	20	<.2	3.88	<5	8	230	<5	4.59	<1	33	8	205	5.89	0.27	<10	3.12	423	<1	0.08	27	2510	<2	20	<20	150	0.27	<10	262	<10	16	20
1	jK94-02	: 10651	130	<.2	2.53	<5	8	120	<5	6.42	<1	30	12	1961	7.37	0.11	<10	4.05	775	<1	0.07	22	200	<2	15	<20	134	0.25	<10	287	<10	16	16
1			105	<.2	3.38	<5	8	55	<5	3.48	<1	34	17	2566	8.53	0.10	<10	3.03	362	<1	0.07	17	1250	<2	15	<20	120	0.25	<10	323	<10	13	13
1			65	<.2	3.34	<5	10	90	<5	3.77	<1	35	7	1197	6.79	0.06	<10	3.57	445	<1	0.09	17	260	4	15	<20	157	0.30	<10	254	<10	16	18
1	JK94-02		100	<.2	2.96	<5	10	175	<5	6.31	<1	27	17	1175	5.38	0.21	<10	3.81	551	<1	0.08	20	570	<2	15	<20	169	0.18	<10	181	<10	11	13
1:			45	<.2	3.25	<5	8	75	<5	7.50	2	35	5	859	9.54	0.11	<10	3,39	559	<1	0.11	22	460	<2	15	<20	136	0.17	<10	372	<10	9	20
2	JK94-02	: 10656	30	<.2	3.15	<5	10	65	<5	6.51	1	31	12	383	7.58	0.10	<10	3.17	494	<1	0.11	16	580	<2	15	<20	146	0.20	<10	33 2	<10	12	18
2			50	<.2	3.41	<5	6	135	<5	7.00	<1	27	7	364	5.97	0.18	<10	4.87	630	<1	0.18	17	80	<2	20	<20	172	0.14	<10	194	<10	11	13
2	JK94-02	: 10658	580	<.2	3.29	<5	10	40	<5	6.70	<1	21	14	685	4.84	0.06	<10	3.27	691	<1	0.12	16	700	<2	15	<20	219	0.11	<10	201	<10	12	21
2	JK94-02	: 10659	25	<.2	3.70	<5	10	75	<5	6.35	<1	43	218	210	5.93	0.13	<10	5.87	649	<1	0.16	211	290	<2	15	<20	266	0.11	<10	218	<10	6	24
24	JK94-02	: 10660	15	0.8	2.81	25	12	50	<5	6.35	1	53	638	267	6.29	0.16	<10	8.04	625	<1	0.12	607	410	<2	20	<20	197	0.06	<10	98	<10	5	31
2	JK94-02	: 10661	10	<.2	3.79	<5	12	50	10	2.32	<1	34	49	57	5.85	0.37	<10	3.73	902	<1	0.05	57	740	6	20	<20	50	0.16	<10	229	<10	11	50
2	JK94-02	10662	10	0.2	2.82	<5	8	50	<5	2.27	3	94	22	68	5.63	0.06	<10	2.39	839	<1	0.04	25	640	<2	10	<20	68	0.13	<10	175	<10	9	93
2	JK94-02	10663	230	0.4	2.40	<5	6	15	5	5.94	<1	39	17	23	4.94	0.05	<10	2.09	867	<1	0.03	13	640	632	10	<20	74	0.11	<10	176	<10	11	44
28	JK94-02	10664	90	<.2	2.75	<5	10	35	10	5.23	<1	18	34	85	5.45	0.06	<10	2.17	900	<1	0.05	6	630	4	10	<20	110	0,13	<10	201	<10	10	49
29	JK94-02	10665	35	0.2	2.60	<5	10	20	<5	2.59	<1	17	29	129	5.28	0.03	<10	1.88	620	<1	0.04	8	710	<2	10	<20	121	0.12	<10	163	<10	9	37
30	JK94-02	10666	175	<.2	2.31	<5	8	30	<5	3.49	<1	21	33	164	5.68	0.05	<10	1.98	676	<1	0.05	6	680	<2	10	<20	97	0.14	<10	185	<10	9	46

Eco-Tech Laboratories Ltd.

Et #.	Tag #		Au (ppb)	Ag	AI %	As	В	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	K%	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	W	Y	Zn
31	JK94-02: 1	0667	10	<.2	2.80	<5	8	15	<5	3.16	2	27	33	162	6.14	0.04	<10	2.36	822	<1	0.05	8	660	<2	20	<20	73	0.15	<10	200	<10	11	72
32	JK94-02: 10	0668	<5	<.2	2.65	<5	12	25	<5	2.72	<1	16	21	137	5.78	0.03	<10	2.09	744	<1	0.04	8	710	4	15	<20	95	0.12	<10	178	<10	9	48
33	JK94-02: 10	0669	15	<.2	2.87	<5	12	20	<5	2.23	<1	16	27	117	5.75	0.03	<10	2.22	767	<1	0.05	7	660	<2	15	<20	90	0.13	<10	182	<10	9	48
34	JK94-02: 10	0670	20	0,8	2.62	<5	10	10	<5	1.93	<1	16	20	167	5.06	0.01	<10	2.00	716	<1	0.04	8	690	<2	20	<20	94	0.12	<10	140	<10	10	45
35	JK94-02: 10	0671	10	<.2	2.68	<5	10	40	5	3.3 9	<1	18	22	71	6.21	0.09	<10	2.27	698	<1	0.05	7	670	<2	10	<20	64	0.11	<10	200	<10	11	48
36	JK94-02: 10	0672	10	0.4	2.90	<5	10	25	<5	3.17	1	26	13	137	6.35	0.06	<10	2.43	671	<1	0.05	8	660	<2	20	<20	66	0.11	<10	205	<10	11	43
37	JK94-02: 10		15	0.6	2.87	<5	8	25	<5	2.59	1	20	21	162	5.96	0.06	<10	2.72	764	<1	0.03	9	680	<2	20	<20	63	0.07	<10	193	<10	10	58
38	JK94-02: 10		15	<.2	2.71	<5	10	210	<5	3.22	<1	19	13	162	6.12	0.09	<10	2.36	654	<1	0.05	7	670	<2	5	<20	65	0.11	<10	207	<10	11	46
39	JK94-02: 10	0675	<5	<.2	2.93	<5	8	90	<5	2.84	<1	21	19	208	5.37	0.09	<10	2.25	635	<1	0.06	5	630	<2	<5	<20	54	0.11	<10	192	<10	8	35
QC D	ATA:																																
Repe	at:																																
1	JK94-02: 10	0637		<.2	3.02	<5	10	275	<5	3.72	1	32	18	401	9.33	0.30	<10	3.01	466	<1	0.07	19	1410	<2	20	<20	150	0.23	<10	437	<10	13	16
39	JK94-02: 10	0675		0.4	3.05	<5	10	75	<5	2.84	<1	20	18	222	5.38	0.08	<10	2.36	637	<1	0.06	6	610	<2	<5	<20	50	0.10	<10	196	<10	10	34
Stano	ard 1991			1.2	1.80	70	8	160	<5	1.89	<1	19	65	80	3.77	0.39	<10	1.05	659	<1	0.01	23	700	18	<5	<20	62	0.11	<10	89	<10	8	73

XLS/Teck

.

ECO.76CH LABORATORIES Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer TD

JK-94-03

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 2J3

Phone: 604-573-5700 Fax : 604-573-4557

5-Aug-94

Values in ppm unless otherwise reported

TECK EXPLORATION ETK 94-475 #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

ATTENTION: STEVE JENSEN

58 CORE samples received July 23, 1994 PROJECT #: 1722

		Au																												
Et #.	Tag #	ppb	Ag	AI %	As	Ba	Bi	Ca 🖌	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	<u>v</u>	W	<u>Y</u>	Zn
- 1	JK-94-03 10676	5	<.2	3.16	<5	110	<5	4.64	<1	40	55	161	11.00	<10	1.78	600	<1	0.06	20	530	36	<5	<20	190	0.10	<10	392	<10	<1	48
2	JK-94-03 10677	5	<.2	4.04	<5	145	<5	5.57	<1	25	18	83	6.12	<10	1.27	496	<1	0.19	8	570	46	5	<20	383	0.05	<10	233	<10	1	34
3	JK-94-03 10678	10	<.2	> 15	<5	260	15	5.77	<1	33	19	21	8.90	<10	1.41	568	<1	0.25	11	<10	<2	<5	<20	535	0.04	<10	355	<10	<1	39
4	JK-94-03 10679	5	<.2	3.78	<5	90	<5	3.92	<1	30	34	232	7.15	<10	2.28	530	<1	0.10	10	10	42	<5	<20	221	0.06	<10	252	<10	<1	37
5	JK-94-03 10680	5	<.2	5.51	<5	145	<5	4.94	<1	29	10	319	8.20	<10	1.35	4 7 5	<1	0.41	9	1460	64	<5	<20	700	0.05	<10	308	<10	<1	33
6	JK-94-03 10681	10	<.2	> 15	<5	250	15		<1	36	16	17	9,40	<10	1.79	566	<1	0.20	10	<10	<2	5	<20	408	0.06	<10	383	<10	<1	43
7	JK-94-03 10682	25	<.2	3.82	<5	140	<5	4.62	<1	38	9	702	9.45	<10	2.28	626	7	0.16	11	470	38	<5	<20	290	0.07	<10	385	<10	<1	44
8	JK-94-03 10683	5	<.2	2.98	<5	130	15	4.62	<1	48	17	21	11.30	<10	2.62	737	<1	0.13	15	230	26	<5	<20	206	0.08	<10	477	<10	<1	61
9	JK-94-03 10684	5	<.2	3.72	<5	235	<5	4.77	<1	30	12	54	7.40	<10	1.93	654	<1	0.21	9	800	40	10	<20	374	0.08	<10	307	<10	4	45
10	JK-94-03 10685	5	<.2	4.02	<5	430	<5	4.60	1	29	24	10	7.29	<10	1.80	564	<1	0.23	10	410	44	15	<20	600	0.02	<10	296	<10	<1	37
11	JK-94-03 10686	5	<.2	3.63	<5	220	15	5.33	<1	37	16	20	8.40	<10	2.41	742	<1	0.15	13	550	36	10	<20	285	0.06	<10	344	<10	2	52
12	JK-94-03 10687	5	<.2	4.15	<5	175	<5	5.25	<1	30	62	129	7.74	<10	2.14	663	<1	0.17	25	1260	44	5	<20	333	0.09	<10	304	<10	4	40
13	JK-94-03 10688	5	<.2	3.37	<5	120	15	4.43	<1	46	27	76	11.20	<10	2.50	735	<1	0.15	20	390	32	<5	<20	242	0.10	<10	464	<10	<1	63
14	JK-94-03 10689	10	<.2	> 15	<5	210	<5	4.64	<1	34	20	874	8.94	<10	1.90	579	<1	0.24	12	50	<2	.<5	<20	361	0.03	<10	320	<10	<1	40
15	JK-94-03 10690	5	<.2	3.60	<5	80	<5	4.03	<1	46	25	209	11.20	<10	2.22	673	<1	0.13	19	330	34	<5	<20	166	0.09	<10	461	<10	<1	62
16	JK-94-03 10691	10	<.2	4.00	<5	145	<5	5.87	<1	42	8	131	9.75	<10	2.50	777	<1	0.19	12	890	40	10	<20	258	0.07	<10	382	<10	1	57
17	JK-94-03 10692	5	<.2	> 15	<5	270	5	4.95	<1	40	14	75	10.10	<10	1.74	600	<1	0.26	10	<10	<2	<5	<20	410	0,03	<10	414	<10	<1	49
18	JK-94-03 10693	5	<.2	> 15	<5	305	<5	6.11	<1	42	25	124	10.20	<10	2.01	707	<1	0.20	12	110	<2	<5	<20	300	0.08	<10	415	<10	<1	58
19	JK-94-03 10694	5	<.2	> 15	<5	240	<5	6.25	<1	39	16	97	8.96	<10	1.99	752	<1	0.21	10	250	<2	<5	<20	329	0.06	<10	372	<10	<1	57
20	JK-94-03 10695	5	<.2	4.10	<5	95	10	4.67	<1	40	12	45	9.49	<10	1.97	671	<1	0.15	11	710	42	<5	<20	195	0,08	<10	394	<10	<1	59
21	JK-94-03 10696	105	<.2	3.20	<5	150	<5	5.91	<1	34	17	1034	9.38	<10	1.38	592	2	0.12	14	550	28	<5	<20	207	0.10	<10	374	<10	2	41
22	JK-94-03 10697	5	<.2	3.40	<5	110	5	4.44	<1	36	18	36	10.10	<10	1.32	418	<1	0.07	15	100	34	<5	<20	127	0.09	<10	435	<10	<1	43
23	JK-94-03 10698	5	<.2	3.24	<5	220	<5	4.95	<1	38	17	208	9.42	<10	1.79	515	<1	0.10	14	1630	34	5	<20	162	0.10	<10	372	<10	1	36
24	JK-94-03 10699	65	<.2	2.97	<5	265	<5	2.07	<1	55	25	1092	8.77	<10	2.83	463	<1	0.04	10	1940	34	10	<20	123	0.11	<10	204	<10	2	37
25	JK-94-03 10700	5	<.2	3.36	<5	65	<5	3.68	<1	43	28	235	8.18	<10	2.68	469	<1	0.06	9	1890	36	10	<20	52	0.14	<10	221	<10	5	34
26	JK-94-03 10701	55	<.2	2.78	<5	100	5	5.80	<1	41	10	94	9.31	<10	1.53	626	<1	0.11	13	680	28	<5	<20	168	0.07	<10	348	<10	2	44
27	JK-94-03 10702	10	<.2	3.28	<5	125	15	4.37	<1	39	21	9	9.71	<10	1.05	444	<1	0.10	16	390	34	<5	<20	174	0.07	<10	395	<10	<1	44
28	JK-94-03 10703	40	<.2	2.65	<5	215	10	3.70	<1	50	16	60	11.40	<10	1.65	524	<1	0.08	21	320	26	<5	<20	89	0.15	<10	452	<10	<1	58
29	JK-94-03 10704	>1000	2.6	3.23	<5	135	<5	> 15	<1	110	29	7360	12.50	<10	2.60	929	<1	0.04	13	1570	26	<5	<20	78	0.05	<10	271	<10	2	54
30	JK-94-03 10705	>1000	2.2	3.30	<5	65	<5	> 15	1	145	12 >	10000	13.70	<10	2.86	937	8	0.03	14	1980	20	10	<20	57	0.01	<10	249	<10	<1	55

		Au																											
Et #.	Tag #	ppb	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	<u>Ti %</u>	<u> </u>	<u> </u>	<u></u>	<u>Y</u>	Zn
31	JK-94-03 10706	30	<.2	3.25	<5	145	<5	4.74	<1	34	18	311 8.74	<10		501	<1	0.12	10	1180	36	<5	<20	150	0.10	<10	353	<10	2	39
32	JK-94-03 10707	5	<.2	3.20	<5	105	10	3.24	<1	43	14	128 10.80	<10	1.33	481	<1	0.14	16	860	32	<5	<20	186	0.11	<10	470	<10	<1	51
33	JK-94-03 10708	5	<.2	> 15	<5	380	10	4.33	<1	36	21	68 9.17	<10	1.27	500	<1	0.32	13	330	<2	<5	<20	498	0.10	<10	396	<10	1	41
34	JK-94-03 10709	5	<.2	2.42	<5	95	<5	3.34	<1	24	11	24 5.59	<10	0.86	375	<1	0,17	9	210	26	<5	<20	158	0.05	<10	234	<10	<1	29
35	JK-94-03 10710	45	<.2	3.19	<5	80	<5	4.07	<1	42	15	472 9.20	<10	1.71	496	<1	0.07	12	620	34	5	<20	76	0.11	<10	364	<10	1	48
36	JK-94-03 10711	5	<.2	2.91	<5	95	<5	4.57	4	34	8	286 7.97	<10	1.45	422	<1	0.06	12	850	32	5	<20	74	0.09	<10	311	<10	2	34
37	JK-94-03 10712	185	<.2	3.03	<5	80	<5	4.78	<1	58	9	5525 11.30	<10	2.96	513	<1	0.05	10	1230	26	5	<20	59	0.12	<10	284	<10	3	34
38	JK-94-03 10713	5	<.2	3.14	<5	70	15	4.23	<1	42	4	39 9.03	<10	2.10	477	<1	0.07	11	1340	34	<5	<20	85	0.14	<10	346	<10	4	39
39	JK-94-03 10714	10	<.2	3.53	<5	135	10	4.32	<1	48	8	100 10.70	<10	2.27	603	<1	0.12	15	610	36	5	<20	162	0.14	<10	398	<10	3	52
40	JK-94-03 10715	30	<.2	2.76	<5	80	<5	7.23	<1	44	4	105 9.11	<10	2.60	739	<1	0.05	13	450	24	10	<20	84	0. 09	<10	340	<10	4	54
41	JK-94-03 10716	40	<.2	2.75	<5	55	<5	4.14	<1	54	11	614 7.22	<10	2.46	586	<1	0.04	6	2200	30	15	<20	75	0.08	<10	184	<10	4	45
42	JK-94-03 10717	5	<.2	> 15	<5	175	20	4.24	<1	44	23	37 9.72	<10	1.80	614	<1	0.25	14	<10	<2	<5	<20	331	0.15	<10	413	<10	2	51
43	JK-94-03 10718	20	<.2	3.90	<5	130	15	5.89	<1	43	18	36 10.10	<10	2.01	691	<1	0.27	13	340	40	10	<20	356	0.07	<10	422	<10	<1	48
44	JK-94-03 10719	10	<.2	3.76	<5	145	<5	5.31	<1	47	17	100 9.69	<10	1.74	587	<1	0.22	11	210	36	<5	<20	179	0.09	<10	428	<10	<1	44
45	JK-94-03 10720	5	<.2	3.07	<5	65	25	4.93	<1	45	21	20 10.10	<10	2.16	621	<1	0.14	13	50	30	15	<20	110	0.12	<10	421	<10	2	50
46	JK-94-03 10721	35	<.2	2.92	<5	75	5	5.84	<1	40	22	80 8,79	<10	2.22	625	<1	0.11	16	870	30	<5	<20	81	0.15	<10	353	<10	5	37
47	JK-94-03 10722	80	<.2	1.35	<5	75		> 15	<1	41	6	795 11.00	<10	0.62	709	<1	0.05	17	1160	2	<5	<20	59	0.01	<10	506	<10	<1	18
48	JK-94-03 10723	60	<.2	2.60	<5	80	-	7.27	<1	54	9	614 15.00	<10	1.51	565	<1	0.05	26	1810	18	<5	<20	61	<.01	<10	649	<10	<1	34
49	JK-94-03 10724	55	<,2	3.73	<5	85		12.30	1	62	7	594 > 15	<10	2.21	710	<1	0.03		>10000	26	<5	<20	97	0.01	<10	839	<10	10	45
50	JK-94-03 10725	25	<.2	> 15	<5	160	-	5.82	35	66	. 4	612 13.00	<10	2.35	714	<1	0.27	18	250	<2	<5	<20	362	0.08	<10	524	<10	<1	51
					-		-				·									_	-							•	
51	JK-94-03 10726	10	<.2	> 15	<5	155		6.47	<1	30	8	30 6.79	<10	1.60	663	<1	0.31	8	<10	<2	5	<20	341	0.03	<10	279	<10	1	43
52	JK-94-03 10727	70	<.2	3.32	<5	60		10.30	<1	24	2	57 5.41	<10	1.26	848	<1	0.32	6	710	34	10	<20	300	<.01	<10	211	<10	4	36
53	JK-94-03 10728	10	<.2	3.33	<5	45	-	9,96	<1	32	9	112 6.17	<10	2.42	1003	<1	0.22	14	600	34	10	<20	206	0.01	<10	206	<10	4	40
54	JK-94-03 10729	40	<.2	2.33	<5	60		> 15	<1	58	9	780 5.63	<10	1.57	843	<1	0.14	14	160	22	5	<20	114	0.04	<10	176	<10	3	32
55	JK-94-03 10730	25	<.2	2.34	<5	30	<5	> 15	<1	29	53	98 5.62	<10	2.04	84 2	<1	0.16	31	480	22	15	<20	129	0.03	<10	199	<10	6	35
56	JK-94-03 10731	20	<.2	2.48	<5	40	<5	> 15	<1	35	48	166 5.93	<10	2.69	890	<1	0.18	30	540	24	15	<20	132	0.05	<10	221	<10	6	37
57	JK-94-03 10732	5	<.2	> 15	<5	130	<5	5.14	<1	35	9	172 7.64	<10	3.91	927	<1	0.31	11	<10	<2	20	<20	414	0,10	<10	322	<10	6	44
58	JK-94-03 10733	5	<.2	3.61	<5	45	<5	5.23	<1	49	10	175 7.26	<10	3.56	840	<1	0.18	9	470	40	15	<20	183	0.11	<10	261	<10	8	41
59	JK-94-03 10734	5	<.2	3.99	<5	685		2.96	<1	73	664	284 6.37	<10	13.10	994	<1	0.46	919	880	44	15	<20	261	0.06	<10	130	<10	3	58
Repea				240		405	-5	450	- 4	20	FF	400 40 70	-40	4 76	506		0.06	40	550	20	-5	-00	4.04	0.00	-10	370	-10	- 4	40
	JK-94-03 10676		<.2		<5	105	<5	4.56	<1	39	55	162 10.70	<10	1.76	596	<1	0.06	18	550	30	<5	<20	181	0.09	<10	378	<10	<1	46
39	JK-94-03 10714		<.2	3.50	<5	130	10	4.26	<1	48	8	103 10.70	<10	2.12	597	<1	0.12	15	610	38	<5	<20	159	0.13	<10	402	<10	3	51
Standa	ard 1991		1.0	1.99	80	170	<5	1.92	1	22	65	82 4.00	<10	0.97	745	<1	0.01	20	740	20	<5	<20	60	0.09	~<10	81	<10	8	76
																								/	11	1			

ECO. TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc. T. B.C. Certified Assayer

XLS/Teck

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

CERTIFICATE OF ANALYSIS ETK 94-475

TECK EXPLORATION

5-Aug-94

#350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

ATTENTION: STEVE JENSEN

59 CORE samples received July 23, 1994 **PROJECT #: 1722**

			Au	Au	Cu
ET #.	De	scription	(g/t)	(oz/t)	(%)
29	JK-94-03:	10704	2.46	0.072	-
30	JK-94-03:	10705	4.39	0.128	1.52

ECO-VECH LABORATORIES LTD. Frank/J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/Teck

9-Aug-94

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Hindway

10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 2J3

Phone: 604-573-5700 Fax : 604-573-4557

Values in ppm unless otherwise reported

TECK EXPLORATION ETK 94-496 #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

ATTENTION: STEVE JENSEN

53 CORE samples received July 26, 1994 PROJECT #: 1722

		Au																												
Et #.	Tag #	(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	V	W	Y	Zn
1	JK94-04 10735	<5	<.2	3.24	30	65	<5	7.03	<1	29	17	180	7.17	<10	1.40	728	5	0.01	3	330	<2	<5	<20	182	0.06	<10	410	<10	<1	31
2	JK94-04 10736	<5	<.2	2.92	45	65	<5	4.35	1	35	44	12	9.99	<10	1.44	659	2	0.01	9	630	6	<5	<20	185	0.11	<10	603	<10	<1	45
3	JK94-04 10737	5	<.2	3.54	45	40	<5	4.91	1	34	38	11	10.20	<10	1.59	713	<1	0.02	10	340	<2	<5	<20	289	0.12	<10	609	<10	<1	41
4	JK94-04 10738	30	<.2	3.22	50	365	<5	6.07	<1	37	<1	844	12.30	<10	1.56	803	3	0.01	10	350	6	<5	<20	194	0.08	<10	655	<10	<1	45
5	JK94-04 10739	10	<.2	3.19	50	175	<5	4.42	2	33	28	27	12.20	<10	1.26	580	3	0.02	10	320	6	<5	<20	306	0.10	<10	686	<10	<1	36
6	JK94-04 10740	<5	<.2	3.17	35	70	<5	9.88	2	33	15	50		<10	1.60	969	1		8	640	4	<5	<20	174	0.07	<10	514	<10	<1	39
7	JK94-04 10741	100	<.2	2.94	45	115	-	13.20	<1	39	<1		10.50	<10	1.88	1223	4		9	430	6	<5	<20	135	0.03	<10	548	<10	<1	44
8	JK94-04 10742	<5	<.2	3.26	35	65	<5	5.15	1	30	13		10.10	<10	1.44	616	2		8	490	4	<5	<20	211	0.09	<10	601	<10	<1	38
9	JK94-04 10743	<5	<.2	3.28	45	70	<5	7.37	1	33	18		11.70	<10	1.40	791	2	0.02	10	350	4	<5	<20	203	0.10	<10	698	<10	<1	39
10	JK94-04 10744	350	<.2	3.20	55	35	<5	7.74	2	72	<1	2568	13.50	<10	2.13	947	5	<.01	10	500	8	<5	<20	98	<.01	<10	611	<10	<1	55
11	JK94-04 10745	15	<.2	3,44	45	65	<5	7.00	1	36	9	495	11.80	<10	1.77	793	1	0.02	8	670	6	<5	<20	169	0.09	<10	600	<10	<1	40
12	JK94-04 10746	<5	<.2	3.83	45	85	<5	5.28	1	31	21	123	10.10	<10	1.25	611	<1	0.04	6	730	<2	<5	<20	337	0.10	<10	561	<10	<1	34
13	JK94-04 10747	<5	<.2	3.69	35	75	<5	5.83	1	32	34	19	9.30	<10	1.18	661	<1	0.04	9	640	<2	<5	<20	368	0.10	<10	543	<10	<1	37
14	JK94-04 10748	<5	<.2	2.83	45	125	<5	3.40	1	33	37	126	10.70	<10	1.14	521	2	0.02	7	710	4	<5	<20	195	0.09	<10	617	<10	<1	36
15	JK94-04 10749	<5	<.2	2.54	45	70	<5	4.05	1	33	23	80	10.80	<10	1.16	570	2	0.01	8	490	6	<5	<20	169	0.09	<10	610	<10	<1	35
16	JK94-04 10750	5	<.2	3.28	45	80	<5	4.81	1	33	26	44	9.89	<10	1.05	611	2	0.04	7	780	2	<5	<20	381	0.11	<10	609	<10	<1	36
17	JK94-04 10751	5	<.2	3.68	45	55	<5	5.08	1	33	42	56	10.60	<10	1.19	582	2	0.03	6	770	<2	<5	<20	280	0.10	<10	637	<10	<1	35
18	JK94-04 10752	10	<.2	3.47	40	240	<5	6.22	1	35	14	116	9.30	<10	1.12	728	14	0.04	6	570	<2	<5	<20	398	0.07	<10	599	<10	<1	41
19	JK94-04 10753	5	<.2	4.39	35	110	<5	6.84	<1	28	14	17	7.15	<10	1.20	728	1	0.06	5	820	<2	<5	<20	522	0.08	<10	472	<10	<1	39
20	JK94-04 10754	10	<.2	3.70	40	115	<5	4.92	1	34	17	57	8.31	<10	1.24	702	<1	0.03	7	480	<2	<5	<20	280	0.09	<10	571	<10	<1	44
21	JK94-04 10755	55	<.2	4.41	50	45	<5	8.07	<1	39	з	253	9.51	<10	2.33	1042	2			1100	<2	<5	<20	205	0.15	<10	609	<10	<1	49
22	JK94-04 10756	40	<.2	4.11	50	25	<5	7.13	2	35	<1	1013	8.80	<10	2.46	888	4	0.02	7	1000	<2	<5	<20	223	0.10	<10	513	<10	<1	44
23	JK94-04 10757	145	<.2	4.68	60	25	<5	6.68	2	40	<1	1628	13.20	<10	2.92	1130	15	0.02	8	870	<2	<5	<20	166	0.10	<10	633	<10	<1	47
24	JK94-04 10758	10	<.2	2.88	30	55	<5	9.02	1	27	14	143	5.79	<10	2.01	1110	3	0.03	3	720	4	<5	<20	173	0.09	<10	312	<10	<1	32
25	JK94-04 10759	540	0.4	1.78	20	25	<5	7.47	<1	17	<1	1395	3.34	<10	1.23	767	3	0.02	<1	460	<2	<5	<20	111	0.01	<10	98	<10	<1	24
26	JK94-04 10760	45	<.2	1.87	15	60	<5	4.82	<1	14	14	104	1.52	<10	1.11	519	1	0.02	<1	160	<2	<5	<20	186	0. 0 9	<10	45	<10	<1	13
27	JK94-04 10761	140	<.2	2.08	20	40	<5	5.15	<1	18	11	127	3.93	<10	0.93	676	1	0.04	<1	1140	2	<5	<20	113	0.09	<10	198	<10	<1	30
28	JK94-04 10762	>1000	2.0	2.22	35	30	<5	5.96	<1	33	<1	3630	7.11	<10	0.95	731	6	0.03	<1	1330	6	<5	<20	74	<.01	<10	192	<10	<1	45
29	JK94-04 10763	30	<.2	1.47	20	40	<5	7.14	<1	16	9	133	4.34	<10	0.75	847	1	0.02	<1	1470	8	<5	<20	89	0.07	<10	244	<10	1	33
30	JK94-04 10764	55	<.2	1.43	20	25	<5	5.57	<1	15	9	213	4.14	<10	0.71	746	3	0.02	<1	1480	8	<5	<20	90	0.07	<10	236	<10	2	36

V

		Au																												
Et #.	Tag #	(ppb)	Ag	<u>AI %</u>	As	Ba	Bi	<u>Ca %</u>	Cd	Co	Cr		Fe %	La	Mg %	Mn	Mo	Na %	Ni	-	Pb	Sb	Sn	<u>Sr</u>	<u>Ti %</u>	<u> </u>	<u>v</u>	<u></u>	<u> </u>	Zn
31	· JK94-04 10765	110	<.2		25	30	<5	4.75	<1	19	<1	393	4.91	<10	0.84	685	2	0.02	<1		6	<5	<20	87	0.08	<10	244	<10	<1	29
32	JK94-04 10766	375	<.2		20	35	<5	6.34	1	24	<1	885	5.19	<10	0.97	863	3	0.02	1	1390	6	<5	<20	79	0.04	<10	220	<10	<1	30
33	JK94-04 10767	65	<.2	1.88	15	20	<5	7.13	<1	19	<1	277	2.73	<10	0.56	690	<1	0.04	<1	730	4	<5	<20	119	0.02	<10	105	<10	<1	15
34	JK94-04 10768	350	<.2	1.86	20	420	<5	8.08	1	29	<1	1213	4.50	<10	1.05	751	1	0.02	2		6	<5	<20	91	<.01	<10	118	<10	<1	30
35	JK94-04 10769	30	<.2	2.55	20	55	<5	6.99	<1	30	14	182	2.98	<10	1.53	602	<1	0.02	1	1870	<2	<5	<20	163	0.06	<10	100	<10	<1	17
36	JK94-04 10770	15	<.2	2.49	20	25	<5	8,59	<1	28	2	211	3.32	<10	1.39	735	<1	0.03	1		<2	<5	<20	162	0.03	<10	100	<10	<1	21
37	JK94-04 10771	60	<.2	1.93	20	235	<5	8.79	<1	21	15	239	3.53	<10	1.10	699	1	0.03	1		4	<5	<20	109	0.03	<10	93	<10	<1	19
38	JK94-04 10772	255	<.2	1.80	25	160	<5	7.62	<1	24	<1	938	4.96	<10	0.60	640	6	0.03	1	1520	6	<5	<20	130	0.02	<10	234	<10	<1	29
39	JK94-04 10773	5	<.2	3.53	35	930	<5	7,40	<1	27	12	21	6.65	<10	1.15	711	1	0.07	5	710	<2	<5	<20	405	0.03	<10	417	<10	<1	32
40	JK94-04 10774	<5	<.2	4.31	40	265	<5	6.04	<1	29	16	14	6.86	<10	1.44	609	4	0.08	3	2260	<2	<5	<20	480	0.05	<10	481	<10	<1	32
41	JK94-04 10775	<5	<.2	5.16	45	190	<5	8.98	1	33	3	34	7.80	<10	1.87	913	<1	0.14	6	B10	<2	<5	<20	669	0.06	<10	561	<10	<1	42
42	JK94-04 10776	15	<.2	4.17	40	35	<5	9.69	<1	42	5	29	8.64	<10	2.15	1028	<1	0.07	7	790	<2	<5	<20	274	0.07	<10	587	<10	<1	50
43	JK94-04 10777	40	<.2	5.09	40	65	<5	7.25	1	61	27	86	7.78	<10	2.17	870	1	0.10	5	1040	<2	· <5	<20	590	0.10	<10	537	<10	<1	45
44	JK94-04 10778	30	<.2	6.12	50	60	<5	6.23	1	36	8	13	7.80	<10	1,75	786	3	0.16	2	930	<2	<5	<20	1100	0.10	<10	572	<10	<1	46
45	JK94-04 10779	45	<.2	3.92	55	55	<5	6.74	1	56	<1	295	9.81	<10	2.34	828	3	0.03	5	1580	4	<5	<20	195	0.10	<10	581	<10	<1	47
46	JK94-04 10780	5	<.2	5.64	50	330	<5	7.56	<1	32	14	39	7.16	<10	2.05	867	2	0.08	3	1470	<2	<5	<20	339	0.21	<10	604	<10	<1	44
47	JK94-04 10781	10	<.2	5,35	50	85	<5	7.42	<1	35	15	95	7.68	<10	2.15	806	2	0.06	5	630	<2	<5	<20	357	0.17	<10	551	<10	<1	43
48	JK94-04 10782	50	<.2	5.29	55	520	<5	8.70	2	47	<1	926	13.10	<10	2.38	950	2	0.07	8	770	<2	<5	<20	177	0.07	<10	651	<10	<1	52
49	JK94-04 10783	15	<.2	2.22	25	255	<5	5.16	<1	21	10	187	4.11	<10	1.21	563	1	0.03	2	670	2	<5	<20	130	0.08	<10	270	<10	<1	26
50	JK94-04 10784	45	<.2	1.03	10	160	<5	5.76	<1	12	20	38	2.15	<10	1.00	506	1	0.03	<1	810	6	<5	<20	77	0.06	<10	165	<10	13	20
51	JK94-04 10785	20	<.2	4.09	40	55	<5	6.72	<1	31	18	81	6.67	<10	2.57	923	2	0.09	4	810	<2	<5	<20	395	0.08	<10	456	<10	<1	38
52	JK94-04 10786	45	<.2	2.63	30	35	<5	10.60	<1	34	<1	52	5.97	<10	1.82	1005	<1	0.04	4	1050	2	<5	<20	158	0.04	<10	372	<10	<1	36
53	JK94-04 10787	20	<.2	2.99	45	240	<5	12.80	1	38	10	54	7.53	<10	1.97	1260	1	0.06	11	780	6	<5	<20	201	0.04	<10	503	<10	<1	45
QC/DA Repea																														
1	JK94-04 10735		<.2	3.24	35	70	<5	7.60	1	31	20	178	8,13	<10	1.44	742	6	<.01	6	340	<2	<5	<20	192	0.06	<10	423	<10	<1	33
39	JK94-04 10773		<.2	3.84	40	960		7.80	1	32	17	21	6.81	<10	1.25	714	2	0.07	6	770	<2	<5	<20	426	0.03	<10	446	<10	<1	39
				0.07	-10	555	•		•				0.01	.10	1.20		•	0.01	•		-	-0		120	0.00	-10		-10	•	
Standa	rd 1991		1.2	1.88	75	170	<5	1.96	1	22	70	76	4.14	<10	1.04	720	<1	<.01	19	780	14	<5	<20	64	0.11	<10	82	<10	<1	72
XLS/Te	ck																					É	14	СНІА	BORAT		ITD			
120/10																						, r					C D .			

ECD-TECH LABORATORIES | Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

4-Aug-94

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

"JK-94-04" CERTIFICATE OF ANALYSIS ETK 94-496

TECK EXPLORATION #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

ATTENTION: STEVE JENSEN

53 CORE samples received July 27, 1994 PROJECT #: 1722

		Au	Au	
<u>ET #.</u>	Description	(g/t)	(oz/t)	
28	JK94-04 10762	2.45	0.071	

ne

ECO-TECH LABORATORIES LTD. Frank J Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/Teck

August 16, 1994

.

"JK -94-05"

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 2J3

Phone: 604-573-5700 Fax : 604-573-4557

Values in ppm unless otherwise reported

TECK EXPLORATION ETK 94-504 #350-272 VICTORIA STREET KAMLOGPS, B.C. V2C 2A2

ATTENTION: STEVE JENSEN

22 CORE samples received July 28, 1994 PROJECT #: 1722

		Au																												
Et #.	Tag #	(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Сц	Fe %	La	Mg %	Mn	Mo	Na %	Ni	Р	Pb	Sb	Sn	Sr	<u>T</u> i %	U	V.	w	Y	Zn
1	JK94-05 10788	<5	<.2	5.28	<5	170	25	4.63	<1	37	27	22	9.70	<10	1.59	460	<1	0.32	7	180	80	5	<20	408	0.16	<10	422	<10	4	37
2	JK94-05 10789	<5	<.2	3.25	<5	180	15	6.72	1	31	18	68	8.27	<10	1.51	438	<1	0.06	6	1860	46	15	<20	107	0.18	<10	289	<10	10	26
3	JK94-05 10790	<5	<.2	> 15	<5	245	<5	8.12	<1	31	5	266	7.44	<10	1.87	626	<1	0.38	8	<10	<2	25	<20	734	0.12	<10	302	<10	6	38
4	JK94-05 10791	<5	<.2	> 15	<5	200	20	5.90	<1	32	22	87	8.85	<10	1.45	521	<1	0.98	11	<10	<2	20	<20	1564	0.16	<10	383	<10	5	40
5	JK94-05 10792	<5	<.2	> 15	<5	225	20	5.94	<1	32	18	87	8.17	<10	1.71	488	<1	0.36	5	180	<2	10	<20	732	0.21	<10	351	<10	9	34
6	JK94-05 10793	<5	<.2	6.08	<5	120	5	5.17	<1	29	11	57	7.47	<10	1.39	444	<1	0.47	4	1050	56	<5	<20	885	0.23	<10	32 2	<10	8	29
7	JK94-05 10794	<5	<.2	8.00	<5	85	15	5.91	<1	33	18	78	8.21	<10	1.33	552	<1	0.94	6	430	124	15	<20	1768	0.14	<10	357	<10	4	40
8	JK94-05 10795	<5	<.2	7.50	<5	90	30	5.66	1	41	16	83	10.00	<10	1.61	588	<1	0.81	9	410	112	15	<20	1495	0,18	<10	446	<10	5	47
9	JK94-05 10796	<5	<.2	7.24	<5	90	5	5.97	<1	31	10	135	8.60	<10	1.57	531	<1	0.59	9	30	110	10	<20	1082	0.17	<10	381	<10	6	38
10	JK94-05 10797	130	<.2	> 15	<5	180	20	5.26	<1	36	17	93	9.31	<10	1.95	590	<1	0.54	8	<10	<2	25	<20	998	0.18	<10	403	<10	7	40
11	JK94-05 10798	<5	<.2	> 15	<5	180	20	4.93	<1	36	13	122	9.12	<10	1.97	573	<1	0.52	9	<10	<2	15	<20	908	0.17	<10	396	<10	5	38
12	JK94-05 10799	<5	<.2	> 15	<5	150	<5	6.68	<1	29	17	206	6.73	<10	1.80	595	<1	0.37	7	<10	<2	15	<20	723	0.13	<10	283	<10	6	41
13	JK94-05 10800	<5	<.2	> 15	<5	180	20	5.30	<1	32	18	56	7.61	<10	2.12	733	<1	0.83	5	<10	<2	20	<20	1305	0.21	<10	380	<10	10	44
14	JK94-05 10801	<5	<.2	3.61	<5	35	<5	6.65	<1	64	33	273	6.28	<10	1.51	595	<1	0.22	8	390	56	15	<20	306	0.08	<10	209	<10	8	39
15	JK94-05 10802	<5	<.2	2.47	<5	55	<5	7.93	<1	28	13	125	3.36	<10	1.05	546	<1	0.08	3	600	38	20	<20	146	0.09	<10	113	<10	16	27
16	JK94-05 10803	<5	<.2	2.59	<5	40	<5	6.64	<1	24	14	81	4.14	<10	1.05	510	<1	0.07	6	540	40	15	<20	101	0.07	<10	172	<10	10	29
17	JK94-05 10804	<5	<.2	3.20	<5	60	<5	7.28	<1	68	11	228	5.22	<10	1.14	571	<1	0.09	4	6 10	50	20	<20	154	0.09	<10	159	<10	11	26
18	JK94-05 10805	<5	<.2	> 15	<5	160	5	7.33	1	41	4	68	6.01	<10	2.42	667	<1	0.28	7	<10	<2	3 5	<20	485	0.09	<10	216	<10	8	36
19	JK94-05 10806	240	<.2	3.38	5	190	<5	1.81	<1	76	1010	577	5.77	<10	14.60	1224	<1	0.27	1027	910	52	30	<20	179	0.06	<10	114	<10	2	65
20	JK94-05 10807	<5	<.2	2.75	5	265	<5	0.79	<1	94	1817	597	7.07	<10	> 15	1 904	<1	0.10	1321	830	42	15	<20	7 3	0.07	<10	110	<10	<1	94
21	JK94-05 10808	<5	<.2	3.37	10	310	<5	1.07	<1	78	1568	1489	6.85	<10	> 15	1421	<1	0.13	1097	690	54	25	<20	126	0.09	<10	139	<10	2	84
22	JK94-05 10809	<5	<.2	1.95	10	205	15	0.94	<1	90	804	9	6.09	<10	> 15	741	<1	0.15	1332	360	30	35	<20	64	0.04	<10	57	<10	<1	118

Page 1

V

Et #. Tag #	Ag A	1%	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb_	Sn	Sr	Ti %	U	v	w	Y	Zn
QC/DATA: Repeat #: 1 JK94-05 10788	<.2 6.	.30	<5	175	20	4.66	1	38	28	22	9.86	<10	1.63	466	<1	0.33	11	140	<2	5	<20	416	0.16	<10	428	<10	4	37
Standard 1991	1.2 1.	.86	70	180	<5	1.97	<1	23	70	80	4.03	<10	1.04	742	<1	0.01	24	690	20	<5 N	<20	63	0.10	<10	86	<10	12	76
XLS/Teck																				ا	rahk J.	Pezzo	ABORA ABORA Atti, A.So Assayer	.Т.	S LTD.			

XLS/Teck df/6209

August 15, 1994

ECO-TECH LABORATORIES LTD.

10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 2J3

Phone: 604-573-5700 Fax : 604-573-4557

Values in ppm unless otherwise reported

"JK-94-06"

TECK EXPLORATION ETK 94-515 #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

ATTENTION: STEVE JENSEN

55 CORE samples received August 2, 1994 PROJECT #: 1722

		Αu																													
Et #.	Tag #	(ppb)	Α	g ,	Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Ρ	Рb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
1	10810	170	<.	2	4.72	35	200	<5	7.17	1	27	9	228	6.69	<10	1.51	688	1	0.04	4	820	<2	<5	<20	383	0.09	<10	401	<10	<1	35
2	10811	40	<.	2	4.74	25	300	<5	5.09	1	23	21	96	6.74	<10	1.13	553	1	0.09	2	1420	<2	<5	<20	652	0.09	<10	381	<10	<1	30
3	10812	50	<.	2	4.03	30	150	<5	5.19	1	31	<1	871	8.02	<10	1.33	563	<1	0.03	5	960	<2	<5	<20	267	0.07	<10	441	<10	<1	35
4	10813	30	<.	2	<.01	<5	<5	<5	0.03	<1	<1	<1	<1	0.03	<10	<.01	2	<1	<.01	<1	<10	10	<5	<20	1	<.01	<10	<1	<10	<1	<1
5	10814	20	<.	2	3.52	30	155	<5	5.37	1	26	16	156	7.48	<10	1.13	519	<1	0.03	5	820	<2	<5	<20	310	0.09	<10	445	<10	<1	31
6	10815	<5	<,	2	5.64	30	190		6.59	<1	25	31	68	6.78	<10	1.03	536	2		5	1410	<2	<5	<20	680	0.06	<10	434	<10	<1	31
7	10816	<5	<.	_	4.11	30	145	<5	6.11	1	25	29	55	6.75	<10	1.06	596	2		7	810	<2	<5	<20	300	0.08	<10	408	<10	<1	30
8	10817	<5	<.		3.94	25	175	<5	5.83	1	23	32	192	6.21	<10	0.93	533	1	0.04	6	640	<2	<5	<20	434	0.06	<10	358	<10	<1	26
9	10818	<5	<.		4.36	35	145	<5	5.19	<1	28	24	164	7.29	<10	1.18	408	2		5	600	<2	<5	<20	305	0.07	<10	410	<10	<1	29
10	10819	<5	<.	2	4.36	30	100	<5	5.01	1	29	38	106	7.34	<10	0.97	378	1	0.03	4	440	<2	<5	<20	296	0.07	<10	450	<10	<1	30
11	10820	60	<,	2	4.46	35	175	<5	6,11	1	26	<1	1840	7.21	<10	1.33	554	3	0.04	4	1210	<2	<5	<20	303	0.04	<10	347	<10	<1	34
12	10821	<5	<	2 ·	4.37	35	260	<5	5.57	<1	30	6	257	8.54	<10	1.31	491	<1	0.05	5	1640	<2	<5	<20	372	0.08	<10	476	<10	<1	32
13	10822	<5	<	2 ·	4.20	30	225	<5	6.16	<1	28	11	101	7,88	<10	1.09	452	<1	0.03	6	530	<2	<5	<20	324	0.07	<10	444	<10	<1	28
14	10823	<5	<	2 ·	4.22	40	155	<5	5.32	<1	38	4	118	9.87	<10	1.67	496	1	0.03	6	460	<2	<5	<20	293	0.10	<10	524	<10	<1	36
15	10824	<5	<	2	4.01	40	150	<5	5.07	2	37	<1	608	10.30	<10	1.75	523	<1	0.04	6	930	<2	<5	<20	274	0.0 7	<10	484	<10	<1	37
16	10825	<5	<	2 3	3.79	40	255	<5	4.95	1	28	2	110	9.20	<10	1.25	392	<1	0.04	7	380	<2	<5	<20	363	0.09	<10	499	<10	<1	28
17	10826	<5	<	2 3	3.58	35	230	<5	5.92	1	29	<1	373	8.17	<10	1.46	512	<1	0.05	5	920	<2	<5	<20	342	0.11	<10	417	<10	<1	27
18	10827	20	<.	2 3	2.67	30	115	<5	5.12	<1	27	26	277	6.54	<10	1.08	414	2	0.02	5	480	<2	<5	<20	194	0.08	<10	343	<10	<1	25
19	10828	20	<.	2 3	3.43	45	120	<5	5.52	<1	38	3	238	9.79	<10	1.45	520	<1	0.02	9	480	<2	<5	<20	232	0.09	<10	541	<10	<1	39
20	10829	<5	<.	2 3	3.54	25	95	<5	6.25	<1	27	5	393	6.26	<10	1.27	446	<1	0.03	5	370	<2	<5	<20	249	0.05	<10	325	<10	<1	28
21	10830	75	<.	2 3	3.15	25	70	<5	6.44	1	33	11	264	8.25	<10	1.53	600	<1	0.03	8	1030	<2	<5	<20	176	0.09	<10	452	<10	<1	37
22	10831	110	<.;	2 3	3.39	35	140	<5	6.64	2	36	<1	266	8,99	<10	1.62	536	3	0.02	7	410	<2	<5	<20	244	0.07	<10	455	<10	<1	31
23	10832	>1000	<.;	2 3	3.42	40	115	<5	7.51	1	35	<1	3187	10.40	<10	1.99	686	1	0.03	5	830	2	<5	<20	242	<.01	<10	403	<10	<1	43
24	10833	295	<:	2	2.92	30	95	<5	11.00	1	26	<1	1962	6.32	<10	1.35	751	1	0.03	<1	830	<2	<5	<20	241	<.01	<10	286	<10	<1	30
25	10834	110	<.	2 3	3.23	35	265	<5	5.70	<1	27	<1	282	7.24	<10	1.06	371	<1	0.04	5	470	<2	<5	<20	422	0.08	<10	409	<10	<1	26
26	10835	600	<	2 3	3.50	40	180	<5	5.73	1	31	<1	1490	8.07	<10	1.62	522	2	0.03	4	1110	<2	<5	<20	288	0.05	<10	366	<10	<1	35
27	10836	105	<.	2 2	2.98	30	150	<5	6.03	<1	27	з	579	7.00	<10	1.26	530	2	0.03	4	1350	<2	<5	<20	236	0.10	<10	372	<10	<1	29
28	10837	490	<.	2 2	2.76	45	65	<5	4.41	1	33	<1	4872	11.60	<10	1.51	566	56	0.02	3	1450	8	<5	<20	135	<.01	<10	352	<10	<1	45
29	10838	330	<.	2 3	3.06	40	35	<5	6.02	1	44	<1	3707	10.50	<10	2.18	696	2	<.01	8	390	4	<5	<20	85	<.01	<10	397	<10	<1	50
30	10839	50	<.2	2 3	3.29	35	100	<5	6.35	1	28	<1	518	7.15	<10	1.40	558	2	0.03	3	1290	<2	<5	<20	229	0.06	<10	372	<10	<1	30

Eco-Tech Laboratories Ltd.

		Au									_		_																		_
<u>Et #.</u> 31	Tag #	(ppb)	<u> </u>	<u> </u>	Al %	As	Ba	Sector	Ca %	Cd	Co	Cr		Fe %		Mg %	Мп		Na %	Ni	P	Pb	Sb	Sn	_	<u>Ti %</u>	<u>U</u>	<u>v</u>	W	<u>Y</u>	Zn
	10840	260	<.		3.65	40	35		10.60	<1	36	<1	1312	8.57	<10	2.14	853	<1	0.01	5		<2	<5	<20	156	0.04	<10	454	<10	<1	43
32 33	10841 10842	30	<		3.03	30	35	<5		<1	29	10	74	7.22	<10	1.35	535	<1	0.02	6	420	<2	<5	<20	127	0.09	<10	445	<10	<1	35
33 34	10842	20	<		3.89	35	85	<5		1	20	4	96	5.66	<10	1.08	483	2	0.07	2	1210	<2	<5	<20	271	0.08	<10	315	<10	<1	25
34	10844	>1000 265	13. <:		1.52 3.52	30 55	20 25	<5 <5		1	32 48	<1	>10000 4554	9.13 > 15	<10 <10	1.15 2.54	468 651	40 134	<.01 <.01	5 10	1250 1110	10 12	<5 <5	<20 <20	53 69	<.01 <.01	<10 <10	187 525	<10 <10	<1 <1	64 58
36	10845	730	1.	4	3,31	40	45	<5	4.88	<1	37	<1	6130	12 20	<10	2.08	521	7	0.02	6	1310	4	<5	<20	114	<.01	<10	359	<10	<1	48
37	10846	40	<		3.59	35	105	<5		<1	28	10	274	7.35	<10	1.50	429	i	0.04	5	1020	<2	<5	<20	241	0.09	<10	374	<10	<1	27
38	10847	10	<	_	4.23	40	30	<5		<1	27	<1	249	7.83	<10	1.92	723	2	0.06	6	480	<2	<5	<20	251	0.05	<10	445	<10	<1	35
39	10848	<5	<		2.66	35	30	-	11.70	1	35	1	36	8.05	<10	1.72	1185	<1	0.07	10	470	4	<5	<20	213	0.02	<10	488	<10	<1	48
40	10849	<5	<		3.29	40	415	<5		<1	38	9	107	8.39	<10	1.78	746	2	0.04	9	540	<2	<5	<20	159	0.11	<10	525	<10	<1	51
41	10850	<5	<.	2	2.72	30	415	<5	3.93	2	38	8	53	9.02	<10	1.57	604	<1	0.03	7	730	2	<5	<20	159	0.06	<10	586	<10	<1	45
42	10851	<5	<.	2	3.67	35	180	<5	5.51	1	37	25	43	7.89	<10	1.91	735	1	0.04	7	1190	<2	<5	<20	184	0.08	<10	527	<10	<1	44
43	10852	<5	<.	2	3.55	45	155	<5	5.23	1	42	<1	330	8.77	<10	2.04	726	1	0.02	5	570	<2	<5	<20	154	0.09	<10	573	<10	<1	48
44	10853	<5	<	2	4.52	45	35	<5	5.31	1	43	9	37	8.30	<10	2.88	877	<1	0.03	8	600	<2	<5	<20	202	0.11	<10	562	<10	<1	57
45	1 08 54	<5	<:	2	5.24	35	40	<5	6.02	<1	36	7	35	6.62	<10	2.60	930	<1	0.02	6	540	<2	<5	<20	196	0.10	<10	465	<10	<1	53
46	10855	<5	<.	2	4.00	40	200	<5	4.38	1	38	5	375	7.77	<10	2.93	858	<1	0.03	7	1240	<2	<5	<20	219	0.11	<10	473	<10	<1	51
47	10856	<5	<.	2	4.42	45	195	<5	5.30	1	41	14	36	8.20	<10	2.98	904	<1	0.02	7	900	<2	<5	<20	201	0.12	<10	571	<10	<1	57
48	10858	305	<:	2	6.26	50	145	<5	9.95	1	46	<1	1558	8.46	<10	3.33	1247	25	0.03	7	670	<2	<5	<20	408	0.14	<10	497	<10	<1	59
49	10859	15	<.:		4.97	35	560	<5	4.78	1	33	7	302	7.11	<10	3.12	949	2	0.01	7	2460	<2	<5	<20	183	0.10	<10	426	<10	<1	36
50	10860	10	<.:	2	5.73	35	180	<5	6.32	<1	33	3	125	6.37	<10	3.37	1046	<1	0.02	6	1770	<2	<5	<20	216	0.08	<10	435	<10	<1	46
51	10861	20	<:		5.22	40	25	<5		1	43	18		8.22	<10	3.70	1094	<1	0.03	9	480	<2	<5	<20	240	0.11	<10	556	<10	<1	60
52	10862	<5	<.2		5.04	35	100	<5	6.50	<1	28	16	38	5.40	<10	2.51	880	2	0.05	4	1600	<2	<5	<20	367	0.11	<10	401	<10	<1	42
53	10863	15	<.	2	4.61	30	40	<5		1	28	14	24	5.87	<10	2.37	824	1	0.04	5	1060	<2	<5	<20	247	0.06	<10	410	<10	<1	40
54	10864	<5	<.		4.44	25	125	<5	6.89	<1	23	14	33	5.02	<10	1.75	663	<1	0.05	4	590	<2	<5	<20	293	0.04	<10	342	<10	<1	31
55	10865	10	<.2	2	3.87	35	345	<5	7.29	2	29	32	24	6.09	<10	1.51	725	2	0.04	5	420	<2	<5	<20	241	0.06	<10	410	<10	<1	40
QC/DAT																															
Repeat																															
1	10810		<.2		4.78	30	210	<5		1	28	12	236	6.94	<10	1.57	756	<1	0.05	5	840	<2	<5	<20	405	0.09	<10	424	<10	<1	36
39	10848		<.2	2	2.60	40	35	<5	12.60	<1	39	2	39	8.82	<10	1.82	1210	<1	0.05	12	510	8	<5	<20	234	0.01	<10	510	<10	<1	52
Standar	d 1991		1.4		2.00	80	180	<5	2.00	1	23	70	81	4.17	<10	1.10	740	<1	<.01	21	730	14	<5	<20	70	0.13	<10	92	<10	<1	73
			1.4	ŧ	1.97	70	175	<5	1.95	1	21	76	79	3.88	<10	1.05	730	<1	<.01	17	760	16	<5	<20	68	0.11	<10	86	<10	<1	69
XLS/Tec	k																						(ī	Д. (=	CH L	ABORA		S LTD.			

EQO-TECH LABORATORIES I Prank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

16-Aug-94

.

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

"JK-HOLE 94-06" CERTIFICATE OF ANALYSIS ETK 94-515

TECK EXPLORATION #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

ATTENTION: STEVE JENSEN

55 CORE samples received August 2, 1994 PROJECT #: 1722

		Au	Au	Cu	
ET #	Description	(g/t)	(oz/t)	<u>%</u>	
23	10832	2.09	0.061		
34	10843	10.21	0.298	2.08	

D-TECH LABORATORIES LTD. E

ECD-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/Teck

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 2J3

Phone: 604-573-5700 Fax : 604-573-4557

Values in ppm unless otherwise reported

TECK EXPLORATION ETK 94-396 #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

ATTENTION: STEVE JENSEN

Sample Run Date: July 9, 1994 241 SOIL samples received June 29,1994 PROJECT #: 1722

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	к%	La	Mg %	Mn	Mo	Na %	Ni	P	РЬ	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
1	L20N:15+00E	<5	<.2	1.86	15	200	<5	0.90	<1	15	48	90	3.55	0.20	<10	0.73	595	1	0.01	44	1100	4	<5	<20	62	0.10	<10	128	<10	7	65
2	L20N:15+50E	35	<.2	1.76	15	265	<5	1.33	<1	13	34	92	2.84	0.22	<10	0.56	696	1	0.01	33	1170	<2	<5	<20	89	0.07	<10	101	<10	7	59
3	L20N:16+00E	<5	<.2	1.47	15	100	<5	1.27	<1	17	156	85	2.82	0.10	<10	2.07	390	1	0.01	181	740	<2	<5	<20	87	0.07	<10	81	<10	3	38
5	L20N:16+50E	<5	<.2	1.86	15	205	<5	1.06	<1	14	38	100	3.39	0.23	<10	0.62	668	<1	0.01	35	1030	2	<5	<20	76	0.08	<10	127	<10	7	62
6	L20N:17+00E	<5	<.2	1.75	15	255	<5	1.56	<1	14	40	95	3.21	0.31	<10	0.58	695	<1	0.01	38	1170	<2	<5	<20	84	0,06	<10	111	<10	6	6 5
7	L20N:17+50E	5	<.2	2.28	20	310	<5	1.42	<1	15	29	98	3.46	0.24	<10	0.70	697	<1	0.01	30	1040	<2	<5	<20	83	0.07	<10	115	<10	7	59
8	L20N:18+00E	<5	<.2	1.96	15	260	<5	1.36	<1	13	42	89	2.92	0.28	<10	0.87	710	<1	0.01	45	940	<2	<5	<20	128	0.05	<10	91	<10	6	49
9	L20N:18+50E	5	<.2	2.10	15	290	<5	1.29	<1	13	40	75	3.15	0.15	<10	0.68	685	<1	0.01	36	990	<2	<5	<20	105	0.06	<10	108	<10	6	64
	L20N:19+00E	10	<.2	2.34	20	275	<5	1.15	<1	14	44	88	3.56	0.14	<10	0.70	657	<1	0.01	39	890	<2	<5	<20	82	0.07	<10	125	<10	7	58
	L20N:19+50E	10	<.2	1,98	15	325	<5	1.92	<1	11	33	78	2.73	0.20	<10	0.61	537	<1	0.01	33	1060	<2	<5	<20	126	0.06	<10	97	<10	6	63
12	L20N:20+00E	<5	<.2	2.10	15	215	<5	0.88	<1	15	53	72	3.46	0.26	<10	0.67	647	1	0.01	44	930	2	<5	<20	75	0.08	<10	122	<10	7	61
	L20N:20+50E	5	<.2	1.85	15	105	<5	3.02	<1	13	46	103	3.74	0.39	<10	1.70	419	<1	0.02	44	1370	<2	<5	<20	131	0.06	<10	95	<10	6	53
15	L20N:21+00E	30	<.2	1.77	25	170	<5	1.16	<1	17	93	118	3.46	<.01	<10	1.69	492	<1	0.01	115	1110	<2	<5	<20	88	0.06	<10	100	<10	4	47
16	L20N:21+50E	<5	<.2	1.74	15	225	<5	1.24	<1	13	44	78	3.21	0.14	<10	0.71	661	<1	0.01	42	1120	2	<5	<20	75	0.07	<10	105	<10	6	57
	L20N:22+00E	5	<.2	1.76	10	195	<5	1.38	<1	14	42	104	3.25	0.26	<10	0.91	661	<1	0.01	51	1170	2	<5	<20	87	0.06	<10	106	<10	6	59
	L20N:22+50E	10	<.2	1.59	20	215	<5	1.27	<1	16	58	118	3.75	<.01	<10	1.16	609	<1	0.01	59	1180	<2	<5	<20	89	0.08	<10	112	<10	5	51
	L20N:23+00E	<5	<.2	2.05	15	220	<5	0.89	<1	14	58	101	3.65	0.11	<10	0.85	655	<1	0.01	55	990	<2	<5	<20	61	0.07	<10	104	<10	6	53
	L20N:23+50E	<5	<.2	1.85	15	205	<5	1.07	<1	15	67	125	3.34	0.09	<10	1.07	659	<1	0.01	76	890	<2	<5	<20	65	0,06	<10	99	<10	6	47
21	L20N:24+00E	5	<.2	2.00	15	250	<5	1.17	<1	14	49	78	3.17	0.21	<10	0.82	718	<1	0.01	56	870	<2	<5	<20	82	0.07	<10	114	<10	6	51
22	L20N:24+50E	5	<.2	2.00	15	150	<5	0.82	<1	14	72	73	3.39	0.41	<10	1.08	485	1	0.02	74	820	<2	<5	<20	73	0.08	<10	107	<10	5	49
23	L20N:25+50E	30	<.2	1.78	15	195	<5	0.88	<1	20	146	80	3.31	0.02	<10	1.69	457	<1	0.01	172	740	<2	<5	<20	43	0.06	<10	91	<10	4	37
4	L20N:26+00E	<5	<.2	1.81	20	225	<5	1.17	<1	16	42	120	3.72	0.28	<10	0.74	627	1	0.01	46	1130	4	<5	<20	67	0.08	<10	128	<10	7	68
25	L20N:26+50E	<5	<.2	1.76	15	205	<5	0.98	<1	13	67	83	3.15	0.66	<10	1.09	373	<1	0.02	47	940	<2	<5	<20	80	0.09	<10	64	10	4	55
26	L20N:27+00E	<5	<.2	1.73	15	145	<5	0.81	<1	14	73	71	3.09	0.50	<10	1.18	470	<1	0.02	87	750	<2	<5	<20	81	0.07	<10	89	<10	4	52

ECO-TECH LABORATORIES LTD.

Et #.	. Tag #	Au(ppb)	Aa	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Си	Fe %	К%	La	Ma %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
27	L21N:15+00E	<5	<.2		10	170	<5	1.30	<1	14	41	95	3.54	0.21	<10	0.77	543	1	0.01	41	1130	<2	<5	<20	72	0.09	<10	113	<10	6	61
28	L21N:15+50E	5	<.2		20	140	<5	1.39	<1	15	43	150	3.93	0.16	<10	0.77	530	2	0.01	42	850	2	<5	<20	72	0.09	<10	143	<10	8	53
29	L21N:16+00E	<5	<.2		15	205	<5	2.33	<1	12	29	100	2.89	0.38	<10	0.66	587	1	0.01	30	1030	2	<5	<20	114	0.06	<10	107	<10	6	58
30	L21N:16+50E	<5	<.2		15	195	<5	1.74	<1	14	40	102	3.47	0.13	<10	0.65	674	1	0.01	38	1100	4	<5	<20	85	0.07	<10	110	<10	6	59
31	L21N:17+00E	<5	<.2	1.77	20	225	<5	1.41	<1	16	44	110	3.82	0.23	<10	0.87	648	1	0.01	48	1220	4	<5	<20	81	0.08	<10	120	<10	7	62
-	L21N:17+50E	<5	< 2		15	200	<5	1.26	<1	15	46	98	3.67	0.21	<10	0.71	600	1	0.01	45	910	4	<5	<20	78	0.08	<10	117	<10	7	57
33	L21N:18+00E	<5	<.2	2.08	20	295	<5	1.13	<1	14	41	95	3.43	0.28	<10	0.67	660	<1	0.01	40	1110	2	<5	<20	70	0.08	<10	128	<10	7	68
	L21N:18+50E	<5	<.2		15	160	<5	2.03	<1	14	51	78	3.50	0.22	<10	1.70	561	2	0.04	45	1100	4	<5	<20	106	0.09	<10	114	<10	5	57
35	L21N:19+00E	<5	<.2		15	175	<5	2.72	<1	11	40	62	2.77	0.27	<10	4.83	345	<1	0.03	37	1050	<2	<5	<20	340	0.09	<10	116	<10	5	58
36	L21N:19+50E	<5	<.2	1.38	15	170	<5	1.74	<1	13	49	98	3.26	0.16	<10	1.49	517	<1	0.02	57	830	2	<5	<20	114	0.07	<10	99	<10	4	43
37	L21N:20-00E	<5	<.2	1.56	10	160	<5	<.01	<1	9	39	78	2.77	0.20	<10	1.95	218	<1	0.01	38	810	<2	<5	<20	350	0.07	<10	82	<10	4	52
38	L21N:20+50E	<5	<.2	1.82	15	150	<5	1.16	<1	15	79	74	3.39	0.39	<10	1.52	529	<1	0.01	79	1130	<2	<5	<20	91	0.06	<10	80	<10	5	58
	L21N:21+00E	-5	<.2	1.70	20	150	<5	0.76	2	14	53	60	3.51	0.30	<10	0.75	661	2	0.02	41	1080	4	<5	<20	55	0.10	<10	103	<10	7	59
40	L21N:21+50E	<5	<.2	1.72	15	110	<5	1.52	<1	15	47	68	3.52	0.40	<10	1.32	586	4	0.04	45	1100	4	<5	<20	142	0.11	<10	132	<10	6	62
	L21N:22+00E	5	<.2	1.65	20	170	<5	1.80	<1	16	49	88	3.78	0.01	<10	1.01	587	<1	0.01	51	1070	4	<5	<20	82	0.10	<10	105	<10	6	61
	L21N:22+50E	20	<.2	2.19	20	205	<5	1.02	<1	17	77	114	4.22	0.07	<10	1.01	678	<1	0.01	75	1000	<2	<5	<20	57	0.10	<10	126	<10	7	59
	L21N:23+00E	<5	<.2	1.51	10	140	<5	2.33	<1	13	47	94	3.16	0.40	<10	1.12	467	<1	0.01	51	1140	2	<5	<20	137	0.08	<10	90	<10	6	55
	L21N:23+50E	15	<.2	1.61	15	150	<5	<.01	<1	12	54	98	2.74	0.39	<10	3.90	417	<1	0.01	62	1000	<2	<5	<20	552	0.06	<10	88	<10	5	50
	L21N:24+00E	<5	<.2	1.86	10	140	<5	0.96	<1	16	87	84	3.21	0.46	<10	1.40	517	<1	0.01	105	870	<2	<5	<20	73	0.06	<10	92	<10	5	44
	L21N:24+50E	<5	<.2	2.08	15	225	<5	0.74	<1	17	105	67	3.25	0.20	<10	1.14	572	<1	0.01	101	780	<2	<5	<20	56	0.08	<10	107	<10	š	49
	L21N:25+00E	<5	<.2	1.57	10	80	<5	0.55	<1	18	132	45	2.87	0.30	<10	1.78	437	1	0.02	168	590	<2	<5	<20	48	0.07	<10	84	<10	š	40
	L21N:25+50E	-5	<.2	1.93	15	80	<5	0.58	<1	21	156	42	2.82	0.04	<10	2.40	422	<1	0.01	199	430	<2	<5	<20	34	0.07	<10	80	<10	3	31
	L21N:26+50E	5	<.2	1.22	15	125	<5	1.08	<1	15	107	79	2.74	<.01	<10	2.16	374	<1	0.01	139	820	<2	<5	<20	155	0.06	<10	78	<10	3	35
	L21N:27+00E	<5	<.2	1.46	10	55	<5	0.90	<1	19	167	56	2.48	0.12	<10	2.98	333	<1	0.01	228	570	<2	<5	<20	143	0.06	<10	72	<10	2	29
		-5	~.2	1.40	10	30	-5	0.50	-	15	107		2.40	0.12	10	2.50	~~~	-1	0.01	220	5/0	~2	-5	~20	140	0.00	10	12	-10	-	29
51	L22N:15+00E	<5	<.2	1.90	15	195	<5	1.33	<1	12	31	98	3.11	0.36	<10	0.69	534	1	0.01	32	970	2	<5	<20	91	0.07	<10	103	<10	6	60
52	L22N:15+50E	<5	<.2	1.78	15	230	<5	1.44	<1	14	36	127	3.46	0.21	<10	0.58	695	1	0.01	33	1210	2	<5	<20	88	0.07	<10	113	<10	7	61
53	L22N:16+00E	<5	<.2	1.89	15	205	<5	1.02	<1	14	39	88	3.53	0.22	<10	0.59	699	1	0.01	34	1080	2	<5	<20	74	0.08	<10	126	<10	7	64
54	L22N:16+50E	5	<.2	1.79	15	225	<5	1.29	<1	13	35	84	3.18	0.23	<10	0.54	722	1	0.01	32	1050	4	<5	<20	81	0.08	<10	113	<10	7	65
55	L22N:17+00E	10	<.2	1.75	15	190	<5	1.28	<1	16	42	124	4.00	0.20	<10	0.73	655	1	0.01	38	960	4	<5	<20	75	0.07	<10	123	<10	7	65
56	L22N:17+50E	<5	<.2	1.82	15	295	<5	1.97	<1	14	47	98	3.44	0.26	<10	0.74	783	1	0.01	49	1380	2	<5	<20	96	0.07	<10	105	<10	7	75
57	L22N:18+00E	<5	<.2	2.02	15	330	<5	2.42	<1	13	31	1 07	2.92	0.17	<10	0.54	862	<1	<.01	36	1310	2	<5	<20	123	0.05	<10	107	<10	7	90
58	L22N:18+50E	5	<.2	1.70	15	220	<5	2.04	<1	11	34	88	2.82	0.32	<10	0.79	528	<1	<.01	36	1320	<2	<5	<20	128	0.05	<10	75	<10	6	91
59	L22N:19+00E	5	<.2	1.64	10	200	<5	1.86	<1	13	38	80	3.04	0.36	<10	0.97	607	1	0.01	43	1070	2	<5	<20	108	0.06	<10	99	<10	5	66
60	L22N:19+50E	<5	<.2	1.59	20	220	<5	<.01	<1	13	49	70	3.34	0.37	<10	2.61	521	3	0.03	47	1180	2	<5	<20	237	0.09	<10	127	<10	4	60
61	L22N:20+00E	5	<.2	1.89	15	155	<5	0.76	<1	16	70	76	3.51	0.18	<10	1.05	580	<1	0.01	79	920	2	<5	<20	60	0.08	<10	113	<10	5	58
14	L22N:20+50E	<5	<.2	2.04	15	260	<5	1.27	<1	14	63	77	3.08	0.22	<10	0.89	651	<1	0.01	67	880	<2	<5	<20	97	0.06	<10	104	<10	5	52
62	L22N:21+00E	<5	<.2	2.02	15	150	<5	0.75	<1	15	82	72	3.15	0.36	<10	1.38	499	<1	0.01	97	680	2	<5	<20	123	0.07	<10	95	<10	5	49
63	L22N:21+50E	10	<.2	1.89	15	200	<5	1.26	<1	12	38	77	2.91	0.28	<10	0.78	656	<1	0.01	38	1000	<2	<5	<20	121	0.06	<10	95	<10	6	50
64	L22N:22+00E	5	<.2	1.87	15	145	<5	0.82	<1	15	58	73	3.28	0.15	<10	0.93	623	1	0.02	63	980	2	<5	<20	71	0.08	<10	110	<10	5	50
65	L22N:22+50E	<5	<.2	1.76	20	195	<5	1.07	<1	15	63	90	3.93	0.16	<10	0.89	581	<1	0.01	65	940	2	<5	<20	75	0.07	<10	123	<10	6	50
66	L22N:23+00E	5	<.2	2.21	20	295	<5	1.21	<1	15	39	109	3.18	0.21	<10	0.67	777	<1	0.01	50	1080	2	<5	<20	76	0.07	<10	126	<10	8	63
67	L22N:23+50E	<5	<.2	1.94	15	310	<5	1.57	<1	15	40	109	3.02	0.14	<10	0.68	904	<1	0.01	62	1220	2	<5	<20	82	0.06	<10	116	<10	8	57
	L22N:24+00E	<5	<.2	1.36	15	180	<5	1.04	<1	14	65	62	3.72	0.08	<10	0.92	525	<1	0.01	74	950	2	<5	<20	67	0.06	<10	114	<10	5	47
	L22N:24+50E	5	<.2	1.60	20	140	<5	2.45	<1	16	75	83	3.20	0.15	<10	1.43	497	1	0.01	93	870	2	<5	<20	126	0.09	<10	101	<10	5	48
	L22N:25+00E	<5	<.2	1.57	15	100	<5	1.53	<1	17	128	54	2.48	0.44	<10	2.83	434	<1	0.02	185	750	<2	<5	<20	133	0.05	<10	71	<10	3	49
	L22N:25+50E	<5	<.2	2.06	20	215	<5	0.89	<1	16	81	97	3.30	0.06	<10	1.28	576	<1	0.01	109	800	<2	<5	<20	54	0.07	<10	93	<10	5	59
• •	L22N:26+00E	<5	<.2	1.81	15	170	<5	0.87	<1	16	85	60	2.68	0.32	<10	1.41	514	<1	<.01	129	840	<2	<5	<20	73	0.07	<10	75	<10	4	50
	L22N:26+50E	<5	<.2	1.60	10	140	<5	0.71	<1	16	132	50	2,83	0.24	<10	1.47	456	<1	0.01	145	640	<2	<5	<20	51	0.08	<10	85	<10	3	46
	L22N:27+00E	<5	<.2	1.46	10	115	<5	0.85	<1	19	165	67	2.36	0.09	<10	3.03	330	<1	<.01	233	600	<2	<5	<20	196	0.05	<10	63	<10	2	31
		-0		1.40				5.00				0.	2.00			5.00								-20	100	5.00	-10			-	

ECO-TECH LABORATORIES LTD.

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	к%	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
75 L23N:	15+00E	5	<.2	2.06	15	220	<5	1.11	<1	14	35	108	3.31	0.30	<10	0.67	689	1	0.01	33	1020	2	<5	<20	90	0.08	<10	126	<10	7	68
76 L23N:	:15+50E	<5	<.2	1.95	20	195	<5	0.86	<1	14	42	90	3.46	0.29	<10	0.66	649	<1	0.01	37	930	4	<5	<20	68	0.09	<10	124	<10	7	72
77 L23N:"	16+00E	<5	<.2	1.85	20	235	<5	1.31	<1	14	39	88	3.36	0.29	<10	0.60	686	1	0.01	35	1000	4	<5	<20	76	0.08	<10	121	<10	7	63
73 L23N:1	16+50E	<5	<.2	1.88	15	210	<5	1.04	<1	14	42	94	3.35	0.25	<10	0.69	666	<1	0.01	39	930	4	<5	<20	70	0.08	<10	128	<10	7	61
79 L23N:1	17+00E	<5	<.2	1.68	15	275	<5	1.77	<1	13	45	84	3.00	0.22	<10	0.64	735	1	<.01	46	1140	4	<5	<20	88	0.06	<10	95	<10	6	68
80 L23N:1	17+50E	<5	<.2	1.63	15	265	<5	2.01	<1	13	41	90	2.84	0.12	<10	0.56	621	<1	0.01	42	1100	4	<5	<20	84	0.06	<10	87	<10	6	55
81 L23N:1	18+00E	<5	<.2	1.72	15	245	<5	1.69	<1	13	41	83	3.01	0.39	<10	0.72	595	1	0.01	42	1090	4	<5	<20	104	0.06	<10	102	<10	6	64
82 L23N:1	18+50E	<5	<.2	1.92	20	200	<5	0.82	<1	15	48	70	3.31	0.27	<10	0.68	653	1	0.01	44	840	4	<5	<20	72	0.08	<10	125	<10	7	66
83 L23N:1	19+00E	<5	<.2	1.77	15	205	<5	1.17	<1	15	47	68	3.64	0.22	<10	0.85	624	<1	0.01	47	1060	4	<5	<20	77	0,10	<10	118	<10	6	63
84 L23N:1	19+50E	5	<.2	1.78	15	175	<5	0.81	<1	15	69	68	3.14	0.28	<10	1.04	593	<1	0.01	80	840	2	<5	<20	57	0.08	<10	114	<10	5	60
85 L23N:2	20+00E	5	<.2	1.39	20	35	<5	<.01	<1	13	44	69	3.11	<.01	<10	1,53	467	2	0.02	44	1150	2	<5	<20	271	0,10	<10	119	<10	4	50
86 L23N:2	20+50E	<5	<.2	1.50	20	200	<5	1.28	<1	15	48	99	3.69	0.13	<10	0.75	610	1	0.01	45	1000	6	<5	<20	70	0.07	<10	103	<10	5	48
87 L23N:2	21+00E	<5	<.2	1.79	15	230	<5	1.24	<1	13	51	73	3.00	0.20	<10	0.84	607	<1	0.01	56	810	2	<5	<20	82	0.07	<10	109	<10	6	51
88 L23N:2	21+50E	5	<.2	1.81	20	160	<5	0.93	<1	14	48	133	3.46	0.15	<10	0.88	590	<1	0.02	47	1090	4	<5	<20	68	0.07	<10	109	10	6	50
89 L23N:2	22+00E	<5	<.2	1.70	15	245	<5	1.40	<1	14	51	105	3.25	0.12	<10	0.73	671	<1	0.01	58	1080	4	<5	<20	69	0.06	<10	107	<10	6	52
90 L23N:2	22+50E	<5	<.2	1.29	15	190	<5	1.47	<1	13	45	68	3.29	0.43	<10	0.75	577	1	0.01	46	1190	4	<5	<20	58	0.07	<10	108	<10	5	51
91 L23N:2	23+00E	<5	<.2	2.19	20	315	<5	1.23	<1	15	45	137	3.64	0.23	<10	0.87	684	<1	<.01	60	1150	4	<5	<20	62	0.08	<10	124	<10	8	133
92 L23N:2	23+50E	<5	<.2	1.83	15	280	<5	1.00	<1	17	63	131	3.02	0.14	<10	1.17	708	<1	0.01	111	1040	4	<5	<20	54	0.06	<10	97	<10	7	60
93 L23N:2	24+00E	<5	<.2	1.65	10	145	<5	0.97	<1	20	155	60	2.56	0.06	<10	2.68	378	<1	<.01	236	550	<2	<5	<20	52	0.05	<10	69	<10	2	37
94 L23N:2	24+50E	5	<.2	1.57	10	110	<5	0.75	<1	19	166	44	2.50	0.07	<10	2.55	397	<1	<.01	231	600	<2	<5	<20	45	0.05	<10	62	<10	2	38
95 L23N:2	25+00E	<5	<.2	1.43	15	210	<5	2.65	<1	18	136	76	2.89	0.10	<10	2.36	379	<1	<.01	176	720	<2	<5	<20	107	0.07	<10	90	<10	2	38
96 L23N:2	25+50E	5	<.2	1.53	15	105	<5	0,76	<1	16	98	55	2.98	0.35	<10	1.19	495	1	0.01	111	740	4	<5	<20	56	0.08	<10	82	<10	4	50
97 L23N:2	26+00E	5	<.2	1.52	10	90	<5	0.67	<1	16	110	43	2.75	0.26	<10	1,36	453	<1	0.01	136	590	4	<5	<20	37	0.08	<10	92	<10	з	43
98 L23N:2	26+50E	<5	<.2	1.57	15	105	<5	1.17	<1	17	131	62	2.85	0.22	<10	1.85	435	<1	0.01	164	660	4	<5	<20	58	0.07	<10	86	<10	з	42
99 L23N:2	27+00E	<5	<.2	1.91	10	175	<5	0.86	<1	17	127	43	2.63	0.06	<10	1.80	459	<1	<.01	164	600	<2	<5	<20	62	0.06	<10	69	<10	4	38
100 L24N:1		5	<.2	1.82	15	215	<5	1.84	<1	11	32	99	2.90	0.34	<10	0.79	433	<1	0.01	36	1040	4	<5	<20	106	0,06	<10	95	<10	6	63
101 L24N:1		<5	<.2	1.98	20	235	<5	1.47	<1	14	38	113	3.35	0.32	<10	0.69	618	1	0.01	38	1000	4	<5	<20	86	0.07	<10	115	<10	7	65
102 L24N:1		<5	<.2	2.02	20	235	<5	1.24	<1	14	37	106	3.37	0.26	<10	0.64	711	1	0.01	36	1000	6	<5	<20	85	0.08	<10	129	<10	7	72
103 L24N:1		<5	<.2	1.66	15	240	<5	1.48	<1	14	50	94	3.21	0.22	<10	0.70	665	<1	0.01	50	1110	2	<5	<20	74	0.06	<10	98	<10	6	65
104 L24N:1		5	<.2	1.61	15	230	<5	1.45	<1	13	43	86	3.27	0.12	<10	0.63	685	<1	0.01	38	990	4	<5	<20	80	0.07	<10	113	<10	6	67
105 L24N:1		<5	<.2	1.88	15	175	<5	1.68	<1	12	36	83	2.90	0.37	<10	1.01	475	<1	0.01	39	860	4	<5	<20	111	0.06	<10	94	<10	6	62
106 L24N:1		5	<.2	1.95	20	240	<5	1.34	<1	15	68	80	3.26	0.17	<10	0.85	639	<1	0.01	66	1030	2	<5	<20	79	0.07	<10	102	<10	6	58
107 L24N:1		5	<.2	1.93	20	200		1.15	<1	16	44	130	4.10	0.21	<10	0.79	631	<1	0.01	42	900	4	<5	<20	67	0.07	<10	120	<10	6	58
108 L24N:1		5	<.2	1.98	15	240	<5	1.27	<1	15	36	120	3.71	0.09	<10	0.69	671	<1	0.01	37	880	2	<5	<20	67	0.07	<10	131	<10	6	62
109 L24N:1	-	<5	<.2	1.55	15	235	<5	1.39	<1	14	45	84	3.45	0.19	<10	0.75	645	<1	0.01	46	1220	4	<5	<20	69	0.07	<10	111	<10	5	61
110 L24N:2		5	<.2	1.58	15	175	<5	1.47	<1	16	53	89	3.79	0.03	<10	1.02	546	<1	0.01	60 67	1160	4	<5	<20	57	0.09	<10	118	<10	5	58
111 L24N:2		10	<.2	1.39	15	185		1.30	<1	15	54	86	3.76	<.01	<10	1.02	503	<1	0.01	65	1050	4	<5	<20	57	0.08	<10	120	<10	5	49
112 L24N:2		15	<.2	1.82	15	190	<5	1.46	<1	16	39	210	4.05	0.07	<10	1.01	653	<1	0.01	47	1000	4	<5	<20	64	0.07	<10	105	<10	<i>′</i>	50
113 L24N:2		<5	<.2	1.44	15	195	<5	1.16	<1	14	44	87	3.36	0.06	<10	0.72	568	<1	0.01	51	1110	4	<5	<20	53	0.07	<10	100	<10	5	56
114 L24N:2	-	<5	<.2	1.67	20	225	<5	2.27	<1	14	42	120	3.60	<.01	<10	0.88	596	<1	0.01	49	1090	4	<5	<20	55	0.07	<10	112	<10	5	61
115 L24N:2		<5	<.2	2.22	15	345	<5	1.84	<1	13	32	93	2.87	0.44	<10	0.56	783	<1	<.01	44	1310	4	<5	<20	81	0.06	<10	110	<10	8	70
116 L24N:2		<5		1.86	15	320		1.73	<1	13	32	109	2.79	0.16	<10	0.61	832	<1	<.01	48	1330	2	<5	<20	75	0.05	<10	95 70	<10	7	57 45
117 L24N:2		<5	<.2	1.70	15	145	<5	1.01	<1	19	132	56	2.72	0.41	<10	2.27	440	<1	<.01	202	890	2	<5	<20	47	0.06	<10	76	<10	3	45
118 L24N;24		<5	<.2	1.58	10	210	<5	1.03	<1	17	112	54	2.58	0.09	<10	1.45	514	<1	<.01	152	610	<2	<5	<20	62	0.06	<10	63 00	<10	3	43
119 L24N:24		<5		1.58	25	125	<5	2.51	<1	17	93	58	2.97	0.13	<10	1.81	443	<1	0.01	137	810	2	<5 - 5	<20	75	0.07	<10	89	<10	4	55 ~~~~
120 L24N:2		5	<.2	1.89	20	125		0.78	<1	16	56	91	3.59	0.34	<10	0.94	561	<1	0.01	68	740	4	<5	<20	51	0.09	<10	122	<10	5	62
121 L24N:2		<5	<.2	1.54	15	100	<5	0.76	<1	16	113	54	2.70	0.14	<10	1.75	393	<1	0.01	164	660	<2	<5	<20	44	0.07	<10	79 70	<10	3	39
122 L24N:20		<5	<.2	1.54	10	75	-	0.73	<1	18	144	50	2.74	0.21	<10	1.95	412	<1	0.01	189	570	2	<5	<20	36	0.08	<10	73	<10	3	38
123 L24N;20	(0+50E	5	<.2	1.88	10	140	<5	0.80	<1	18	145	53	2.67	0.11	<10	2.08	404	<1	<.01	195	570	<2	<5	<20	62	0.07	<10	84	<10	3	39

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	К%	ها	Mg %	Mn	Мо	Na %	Ni	<u>P</u>	Pb	Sb	Sn	Sr	<u>Ti %</u>	U	v	w	Y	Zn
124 L	25N:16+50E	<5	<.2	1.68	15	265	<5	1.71	<1	13	40	86	3.03	0.14	<10	0.60	694	<1	0.01	42	1190	4	<5	<20	89	0.06	<10	101	<10	6	72
125 L	_25N:22+50E	<5	<.2	1.53	10	315	<5	1.99	<1	12	36	74	2.07	0.50	<10	0.67	644	<1	<.01	58	2150	6	<5	<20	150	0.04	<10	75	<10	5	92
126 L	25N:24+00E	<5	<.2	1.82	15	200	<5	0.94	<1	17	97	69	2.74	0.22	<10	1.45	494	<1	<.01	144	890	2	<5	<20	60	0.06	<10	75	<10	4	50
127 L	25N:24+50E	<5	<.2	1.59	10	115	<5	0.64	<1	18	107	54	2.70	0.18	<10	1.76	422	<1	0.01	177	660	<2	<5	<20	44	0.07	<10	80	<10	3	47
128 L	25N:25+00E	15	<.2	1.53	10	105	<5	0.64	<1	15	80	47	2.89	0.34	<10	0.99	474	<1	0.01	94	660	4	<5	<20	39	0.09	<10	106	<10	5	52
129 L	25N:25+50E	<5	<.2	1.74	15	130	<5	0.78	<1	18	133	55	2.77	0.23	<10	1,89	422	<1	<.01	186	580	<2	<5	<20	38	0.07	<10	75	<10	3	42
130 L	25N:26+00E	<5	<.2	1.49	10	135	<5	1.13	<1	20	166	70	2,32	<.01	<10	3,15	338	<1	<.01	257	530	<2	<5	<20	71	0.05	<10	61	<10	2	29
131 L	25N:26+50E	5	<.2	1.68	10	200	<5	1.25	<1	20	161	68	2.38	0.18	<10	3.06	359	<1	<.01	246	470	<2	<5	<20	136	0.05	<10	64	<10	2	32
132 L	25N:27+00E	<5	<.2	0.99	5	255	<5	1.13	<1	12	66	80	1.34	0.14	<10	1.85	1352	<1	<.01	108	2020	<2	<5	<20	359	0.03	<10	59	<10	2	54
133 L	26N:15+50E	<5	<.2	1.80	20	265	<5	1.87	<1	14	36	99	3.19	0.20	<10	0.62	770	1	0.01	40	1310	4	<5	<20	107	0.05	<10	79	<10	7	73
	26N:18+00E	<5	<.2	2.32	20	220	<5	1.32	<1	15	30	110	4.08	0.26	<10	0.92	686	<1	0.02	30	1050	4	<5	<20	66	0.07	<10	132	<10	7	60
														0.20		0.01						•	-							•	
135 L	30N:12+00E	<5	<.2	1.91	20	240	<5	1.47	<1	15	38	98	3.58	0.18	<10	0.68	631	<1	0.01	41	1050	4	<5	<20	78	0.08	<10	119	<10	7	63
136 L	30N:12+50E	<5	<.2	2.45	20	280	<5	1.47	<1	15	35	92	3.71	0.16	<10	0.61	648	1	0.01	35	980	4	<5	<20	92	0.08	<10	134	<10	8	63
137 L	30N:13+00E	5	<.2	1.98	20	295	<5	2.02	<1	13	32	86	3.11	0.21	<10	0.56	667	<1	<.01	34	1130	4	<5	<20	97	0.06	<10	117	<10	6	69
138 L	30N:13+50E	<5	<.2	2.39	20	260	<5	1.28	<1	14	44	92	3.48	0.21	<10	0.64	621	<1	0.01	45	980	4	<5	<20	69	0.08	<10	123	<10	7	63
139 L	30N:14+00E	10	<.2	2.06	20	280	<5	1.57	<1	14	39	94	3.07	0.24	<10	0.62	686	1	0.01	39	1050	4	<5	<20	89	0.07	<10	103	<10	6	64
140 L	30N:14+50E	<5	<.2	2.03	20	255	<5	1.50	<1	13	38	105	3.01	0.23	<10	0.60	627	<1	0.01	41	900	4	<5	<20	81	0.07	<10	115	<10	7	58
	30N:15+00E	5	<.2	2.13	20	240	<5	1.31	<1	14	39	122	3.32	0.20	<10	0.63	643	1	0.01	37	1090	4	<5	<20	76	0.07	<10	127	<10	7	62
	30N:15+50E	<5	<.2	1.67	20	225	<5	1.48	<1	14	39	118	3.17	0.18	<10	0.63	714	1	0.01	39	1040	4	<5	<20	73	0.07	<10	115	<10	6	64
143 L	30N:16+00E	<5	<.2	2.01	20	225	<5	1.48	<1	14	36	98	3.47	0.30	<10	0.70	656	1	0.01	32	940	4	<5	<20	91	0.07	<10	129	<10	6	59
144 L	31N:13+00E	<5	<.2	2.03	20	295	<5	1.72	<1	13	33	92	2.95	0.31	<10	0.55	649	<1	0.01	36	1100	4	<5	<20	90	0.07	<10	106	<10	6	65
145 L	31N:13+50E	<5	<.2	2.12	25	220	<5	1.10	<1	15	45	146	3.51	0.19	<10	0.77	559	1	0.01	51	800	4	<5	<20	65	0.08	<10	123	<10	7	61
146 L	31 N:14+00E	5	<.2	1.94	15	270	<5	1.62	<1	14	37	113	3.20	0.13	<10	0.58	712	<1	0.01	37	1070	4	<5	<20	83	0.07	<10	125	<10	7	68
147 L	31N:14+50E	5	<.2	1.86	20	205	<5	1.33	<1	14	40	130	3.41	0.23	<10	0.65	680	1	0.01	38	1010	6	<5	<20	69	0.07	<10	119	<10	7	62
148 L:	31N:15+00E	<5	<.2	1.81	20	270	<5	1.72	<1	13	40	101	3.16	0.15	<10	0.53	689	<1	0.01	39	1290	4	<5	<20	80	0.06	<10	98	<10	7	67
149 L	31N:15+50E	<5	<.2	2.28	20	230	<5	1.35	<1	14	38	123	3.70	0.19	<10	0.66	617	<1	0.01	35	880	4	<5	<20	77	0.08	<10	138	<10	8	64
1 50 L3	31N:16+00E	<5	<.2	1.98	15	225	<5	1.51	<1	14	36	110	3.55	0.19	<10	0.65	647	<1	0.01	32	1020	4	<5	<20	79	0.07	<10	113	<10	7	59
151 L	32N:13+00E	-5	<.2	2.02	20	245	<5	1.41	<1	14	38	109	3.15	0.21	<10	0.63	655	<1	0.01	38	990	4	<5	<20	84	0.07	<10	121	<10	7	65
152 L	32N:13+50E	10	<.2	1.92	20	205	<5	1.00	<1	14	44	101	3.62	0.25	<10	0.74	619	1	0.01	37	770	6	<5	<20	64	0.09	<10	125	<10	7	70
153 L3	32N:14+00E	5	<.2	1,96	20	260	<5	1.14	<1	15	42	118	3.46	0.17	<10	0.62	764	2	0.01	45	1260	6	<5	<20	68	0.09	<10	123	<10	7	74
154 L	32N:14+50E	<5	<.2	1.74	15	270	<5	2.10	<1	11	28	114	2.78	0.53	<10	0.56	627	1	<.01	30	1520	4	<5	<20	103	0.06	<10	115	<10	6	67
155 L:	32N:15+00E	<5	<.2	1.90	15	275	<5	1.67	<1	12	31	96	2.94	0.14	<10	0.56	737	<1	0.01	29	1090	4	<5	<20	92	0.06	<10	106	<10	6	66
156 L:	32N:15+50E	<5	<.2	2.05	25	225	<5	1.31	<1	15	41	120	3.93	0.16	<10	0.66	640	<1	0.01	36	900	6	<5	<20	72	0.08	<10	135	<10	8	74
157 L:	32N:16+00E	5	<.2	1.98	20	275	<5	1.73	<1	12	31	82	2.95	0.08	<10	0.47	615	<1	0.01	31	1220	2	<5	<20	84	0.06	<10	103	<10	6	60

ECO-TECH LABORATORIES LTD.

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	К%	La	Mg %	Mn	Мо	Na %	Ni	P	РЬ	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
158 L	L33N:13+00E	5	<.2	1.79	15	235	<5	1.46	<1	13	30	123	2.75	0.29	<10	0.64	676	1	<.01	34	920	4	<5	<20	93	0.06	<10	109	<10	6	67
164 L	_33N:13+50E	<5	<.2	1.68	20	260	<5	1.69	<1	13	35	118	3.00	0.14	<10	0.55	681	1	0.01	36 /	1090	4	<5	<20	83	0.06	<10	98	<10	6	64
160 L	_33N:14+00E	<5	<.2	1.85	20	300	<5	1.74	<1	13	29	110	3,16	0.18	<10	0.55	885	1	<.01	29	1190	6	<5	<20	95	0.06	<10	109	<10	8	97
161 L	_33N:14+50E	<5	<.2	1.70	25	270	<5	1.67	<1	14	31	144	3.41	0.09	<10	0.58	898	1	<.01	32	1220	6	<5	<20	82	0.06	<10	103	<10	7	102
162 L	_33N:15+00E	10	<.2	1.40	20	135	<5	1.33	<1	17	52	130	3.94	0.02	<10	1.05	588	1	0.01	62	960	4	<5	<20	50	0.07	<10	115	<10	6	65
163 L	.33N:15+50E	<5	<.2	1.27	15	210	<5	<.01	<1	12	47	73	2.71	0.01	<10	3.26	381	<1	0.01	47	1140	2	<5	<20	395	0.06	<10	92	<10	4	47
165 L	_33N:16+00E	<5	<.2	1.58	15	155	<5	1.05	<1	14	41	79	3.57	0.27	<10	1.19	561	<1	0.01	44	940	4	<5	<20	62	0.07	<10	95	<10	6	59
166 L	.33N:16+50E	<5	<.2	2.00	15	245	<5	<.01	<1	5	14	49	1.29	0.21	<10	<.01	305	<1	0.01	15	950	<2	<5	<20	618	0.05	<10	70	<10	4	60
167 L	.33N:17+00E	<5	<.2	2.61	25	300	<5	1.20	<1	16	44	113	3.75	0.13	<10	0.81	684	<1	0.01	67	840	4	<5	<20	64	0.09	<10	135	<10	10	70
168 L	.33N:17+50E	15	<.2	2.16	20	220	<5	1.30	<1	18	42	104	3.86	0.33	<10	0.90	799	1	0.01	48	880	4	<5	<20	73	0.08	<10	124	<10	7	70
169 L	.33N:18+00E	<5	<.2	2.11	20	295		1.75	<1	16	30	145	3.81	0.09	<10	0.72	836	<1	0.01	46	1310	4	<5	<20	72	0.06	<10	128	<10	9	61
170 L	.33N:18+50E	5	<.2	2.43	20	320		1.12	<1	15	37	109	3.40	0.10	<10	0.65	764	<1	0,01	51	960	4	<5	<20	54	0.09	<10	132	<10	8	69
	.33N:19+00E	<5	<.2	2.23	20	330		1.38	<1	15	31	127	2.99	0.22	<10	0.66	836	<1	<.01	50	1080	4	<5	<20	63	0.07	<10	111	<10	8	64
	.33N:19+50E	<5	<.2	2.00	15	295	<5	1.41	<1	15	32	104	3.06	0.22	<10	0.63	871	<1	<.01	46	1130	4	<5	<20	71	0.08	<10	127	<10	7	76
	.33N:20+00E	5	<.2	2.35	20	230	<5	0.81	<1	16	41	77	3.73	0.08	<10	0.67	656	<1	0.01	49	350	4	<5	<20	36	0.11	<10	134	<10	5	51
	.33N:20+50E	<5	<.2	3.78	40	130	<5	2.33	<1	28	16	69	7.74	0.10	<10	2.44	812	1	0.02	36	970	2	<5	<20	72	0.12	10	220	10	2	91
	.33N:21+00E	<5	<.2	2.15	15	155	<5	0.98	<1	21	154	98	3.33	0.31	<10	2.37	442	<1	0.01	184	750	<2	<5	<20	52	0.05	<10	86	<10	3	43
	33N:21+50E	<5	<.2	1.86	15	120	<5	0.76	<1	20	129	65	2.89	0.15	<10	2.07	463	<1	0.01	175	650	<2	<5	<20	49	0.06	<10	77	<10	3	46
	33N:22+00E	<5	<.2	2.20	20	285		1.11	<1	16	44	178	3,36	0.06	<10	0.94	671	<1	0.01	62	950	4	<5	<20	60	0.07	<10	110	<10	8	61
	.33N:22+50E	<5	<.2	1.77	15	245	<5	1.56	<1	15	50	102	2.54	0.26	<10	0.93	698	<1	<.01	74	1170	4	<5	<20	98	0.05	<10	96	<10	5	58
	33N:23+50E	<5	<.2	2.18	15	265		1.35	<1	18	80	118	2.61	0.15	<10	1.62	567	<1	<.01	147	820	<2	<5	<20	59	0.05	<10	92	<10	5 7	56
	33N:24+20E	<5	<.2	2.07	15	325	<5	1.42	<1	15	43	135	2.53	0.19	<10	0.87	7 34 744	<1	<.01	77 48	1130	2	<5	<20	69 70	0.05	<10	98	<10 <10	/ 8	61 60
181 L	33N:24+50E	5	<.2	2.13	10	335	<5	1.71	<1	13	29	111	2.47	0.11	<10	0.55	744	<1	<.01	40	1200	2	<5	<20	72	0.06	<10	112	<10	•	00
182 L	34N:13+00E	<5	<.2	1.61	15	215	<5	1.06	<1	20	67	132	3.80	0.03	<10	1.89	545	<1	0.01	152	750	<2	<5	<20	40	0.06	<10	106	<10	4	55
183 L	34N:13+50E	<5	<.2	1.63	20	245	<5	1.18	<1	21	68	156	3.90	0.13	<10	1.45	624	<1	0.01	155	820	4	<5	<20	48	0.05	<10	104	<10	5	63
184 L	34N:14+00E	<5	<.2	1.85	20	240	<5	1.16	<1	16	56	123	4.01	0.05	<10	0.87	552	<1	0.01	88	880	4	<5	<20	56	0.06	<10	119	<10	7	65
185 L	34N:14+50E	<5	<.2	2.05	20	295	<5	1.35	<1	15	40	138	3.40	0.23	<10	0.75	705	<1	0.01	63	1050	4	<5	<20	65	0.07	<10	126	<10	9	65
186 L	34N:15+00E	5	<.2	1.81	15	240	<5	1.23	<1	15	41	138	3.25	0.18	<10	0.72	593	<1	<.01	71	970	6	<5	<20	60	0.06	<10	107	<10	7	66
187 L	34N:15+50E	<5	<.2	1.89	15	255	<5	1.01	<1	14	38	107	3.10	0.13	<10	0.75	537	<1	0.01	59	860	4	<5	<20	55	0.07	<10	113	<10	7	55
188 Li	34N:16+00E	<5	<.2	2.18	20	290	<5	0.99	<1	15	40	1.4	3.52	0.12	<10	0.81	661	<1	0.01	63	870	4	<5	<20	52	80.0	<10	134	<10	9	59
189 L	34N:16+50E	<5	<.2	2.37	20	320	<5	1.25	<1	16	36	128	3.50	<.01	<10	0.74	732	1	0.01	49	960	6	<5	<20	58	0.09	<10	128	<10	8	67
190 L	34N:17+00E	<5	<.2	1.91	20	240		1.34	<1	14	36	102	3.38	0.15	<10	0.70	689	1	0.01	44	1160	6	<5	<20	53	0.07	<10	110	<10	8	59
191 L:	34N:17+50E	<5	<.2	1.93	25	320		1.60	<1	23	28	104	4.19	<.01	<10	1.04	965	1	0.01	45	1210	8	<5	<20	72	0.05	<10	100	<10	9	59
	34N:18+00E	<5	<.2	2.50	20	275		1.32	<1	14	20	73	3.23	0.10	<10	0.84	733	<1	0.01	21	770	4	<5	<20	58	0.06	<10	109	<10	7	62
	34N:18+50E	<5	<.2	2.04	20	255		1.12	<1	15	41	120	3.86	0.10	<10	0.74	664	<1	0.01	52	940	6	<5	<20	53	0.08	<10	114	<10	8	67
	34N:19+00E	5	<.2	1.89	20	245		1.21	<1	15	29	111	3.69	0.22	<10	0.63	717	<1	0.01	35	1100	8	<5	<20	63	0.08	<10	127	<10	8	62
	34N:19+50E	<5	<.2	1.79	15	240		1.15	<1	13	31	94	3.10	0.15	<10	0.52	641	<1	0.01	38	1080	4	<5	<20	59	0.08	<10	105	<10	7	57
	34N:20+00E	<5	<.2	1.88	15	260		1.18	<1	15	35	110	3.28	0.21	<10	0.67	696	<1	0.01	48	1000	6	<5	<20	58	0.08	<10	117	<10	7	63
	34N:20+50E	<5	<.2	1.33	15	190	-	1.35	<1	14	43	107	3.63	0.02	<10	0.88	537	<1	0.01	59	1060	6	<5	<20	48	0.06	<10	99	<10	6	53
	34N:21+00E	<5	<.2	1.01	15	185		<.01	<1	11	29	90	2.56	0.12	<10	1.31	382	<1	<.01	31	1100	4	<5	<20	384	0.05	<10	87	<10	4	51
	34N:21+50E	5	<.2	1.20	15	170		1.07	<1	13	44	71	3.31	0.13	<10	0.54	562	<1	0.01	42	960	8	<5	<20	49	0.07	<10	92	<10	5	54
	34N:22+50E	<5	<.2	1.63	20	220		1.13	<1	14	41	80	3.31	0.20	<10	0.57	611	<1	0.01	42	940	6	<5	<20	57	0.08	<10	108	<10	6	62
	34N:23+50E	5	<.2	1.42	20	180		1.20	<1	13	42	91	3.26	0,19	<10	0.54	499	<1	0.01	44	1120	6	<5	<20	56	0.07	<10	92 07	<10	6	64 62
	34N:24+00E	<5	<.2	1.53	20	210		1.13	<1	13	41	60	3.21	0,19	<10	0.48	609	<1	0.01	36	970	6	<5	<20	54 50	0.08	<10	97	<10	6	62 70
203 L3	34N:24+50E	<5	<.2	1.74	25	210	<5	1.19	<1	16	55	225	3.88	0.14	<10	0.71	690	1	0.01	52	1030	8	<5	<20	59	0.09	<10	121	<10	7	70

ECO-TECH LABORATORIES LTD.

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	К%,	La	Mg %	Mn	Мо	Na %	Ni	<u>P</u>	Pb	Sb	Sn	Sr	Ti %	U	v	W	Y	Zn
204	L35N:13+00E	5	<.2	1.83	20	265	<5	<.01	<1	20	54	184	4.13	<.01	<10	1.75	604	<1	0.01	118	920	4	<5	<20	59	0.08	<10	108	<10	5	62
205	L35N:13+50E	5	<.2	1.79	20	230	<5	1.20	<1	18	55	165	3.49	0.07	<10	1.36	575	<1	0.01	135	920	4	<5	<20	46	0.06	<10	93	<10	6	58
206	L35N:14+00E	<5	<.2	2.62	20	335	<5	1.39	<1	13	31	91	3.04	0.25	<10	0.60	683	<1	0.01	58	1180	4	<5	<20	60	0.09	<10	128	<10	10	58
207	L35N:14+50E	5	<.2	1.36	15	170	<5	0.97	<1	14	56	85	3.49	0.17	<10	0.81	472	<1·	0.01	67	900	6	<5	<20	47	0.08	<10	86	<10	6	57
208	L35N:15+00E	<5	<.2	2.11	25	285	<5	1.63	<1	18	45	227	4.17	<.01	<10	1.16	761	1	0.01	74	1050	6	<5	<20	46	0.08	<10	116	<10	8	70
209	L35N:15+50E	<5	<.2	2.02	20	275	<5	1.11	<1	15	38	101	3.37	0.10	<10	0.76	667	<1	0.01	53	850	6	<5	<20	56	0.09	<10	115	<10	7	66
210	L35N:16+00E	<5	<.2	1.95	20	220	<5	1.12	<1	17	63	122	4.08	0.13	<10	0.90	631	<1	0.01	89	960	6	<5	<20	50	0.08	<10	121	<10	8	72
	L35N:16+50E	<5	<.2	1.44	15	150	<5	1.24	<1	15	51	101	3.28	0.31	<10	1.17	503	<1	<.01	75	920	4	<5	<20	57	0.07	<10	93	<10	5	63
212	L35N:17+00E	<5	<.2	1.44	10	190	<5	<.01	<1	9	26	75	2.20	0.47	<10	3.40	324	<1	<.01	36	950	4	<5	<20	350	0.06	<10	53	<10	4	57
	L35N:17+50E	<5	<.2	1.99	20	260	<5	1.25	<1	17	40	121	3.63	0.09	<10	0.78	790	<1	0.01	57	950	6	<5	<20	56	0.09	<10	105	<10	7	69
214	L35N:18+00E	10	<.2	2.07	15	225	<5	1.53	<1	13	21	134	3.78	0.12	<10	0.56	835	<1	0.01	21	1010	8	<5	<20	56	0.07	<10	116	<10	9	61
	L35N:18+50E	5	<.2	1.51	20	160	<5	1.02	<1	13	32	105	3.65	0.19	<10	0.77	549	<1	0.01	32	1010	6	<5	<20	50	0.08	<10	100	<10	6	53
	L35N:19+00E	<5	<.2	2.00	25	235	<5	1.48	<1	15	28	129	4.03	0.17	<10	0.74	731	1	0.01	30	1050	8	<5	<20	67	0.09	<10	115	<10	10	61
	L35N:19+50E	<5	<.2	1.56	20	180	<5	1.27	<1	14	38	136	3.87	0.04	<10	0.70	564	<1	0.01	37	850	8	<5	<20	54	0.08	<10	104	<10	7	54
	L35N:20+00E	<5	<.2	1.82	20	180	<5	0.99	<1	14	46	86	4.05	0.07	<10	0.52	648	1	0.01	32	930	8	<5	<20	46	0.10	<10	116	<10	7	58
	L35N:20+50E	<5	<.2	1.57	25	145	<5	1.17	<1	14	35	126	3.81	0.13	<10	0.73	556	1	0.01	36	1060	8	<5	<20	65	0.09	<10	110	<10	7	54
	L35N:21+00E	<5	<.2	1.25	15	130	<5	0.85	<1	13	42	68	3.38	0.14	<10	0.64	493	<1	0.01	42	840	8	<5	<20	46	0.09	<10	105	<10	6	48
	L35N:22+00E	5	<.2	1.21	20	170	<5	1.24	<1	15	46	112	3.96	0.08	<10	0.60	574	<1	0.01	45	990	6	<5	<20	48	0.07	<10	94	<10	6	58
	L35N:22+50E	<5	<.2	1.82	20	210	<5	1.17	<1	15	50	68	3.59	0.22	<10	0.63	624	<1	0.01	54	980	6	<5	<20	56	0.07	<10	116	<10	7	75
	L35N:23+00E	<5	<.2	2.14	20	215	<5	1.07	<1	16	51	65	4.13	0.27	<10	0.68	732	<1	0.01	47	1130	8	<5	<20	65	0.11	<10	145	<10	9	86
	L35N:23+50E	<5	<.2	1.85	20	320	<5	1.97	<1	16	44	88	3.73	0.33	<10	0.59	932	1	0.01	45	1500	8	<5	<20	87	0.08	<10	115	<10	7	79
225	L35N:24+00E	5	<.2	1.40	15	175	<5	1.71	<1	13	41	73	3.14	0.38	<10	0.75	657	1	<.01	42	1110	6	<5	<20	89	0.06	<10	90	<10	6	63
	L36N:13+00E	<5	<.2	1.63	15	190	<5	1.37	<1	13	40	104	3.69	0.18	<10	0.73	489	<1	0.01	59	970	6	<5	<20	55	0.06	<10	105	<10	8	68
	L36N:13+50E	10	<.2	2.06	20	270	<5	1.17	<1	15	41	116	3.89	0.04	<10	0.75	611	<1	0.01	58	880	8	<5	<20	55	0.08	<10	128	<10	7	66
	L36N:14+00E	<5	<.2	2.36	25	310	<5	1.37	<1	18	50	142	4.54	<.01	<10	1.07	771	<1	0.01	76	1000	6	<5	<20	59	0.10	<10	138	<10	9	77
	L36N:14+50E	<5	<.2	2.26	20	310	<5	1.19	<1	15	34	115	3.52	0.02	<10	0.76	695	<1	0.01	52	820	6	<5	<20	57	0.09	<10	128	<10	8	60
	L36N:17+50E	<5	<.2	1.77	20	240	<5	1.24	<1	15	43	135	3.97	0.10	<10	0.86	634	<1	0.01	60	910	8	<5	<20	48	0.06	<10	101	<10	8	66
	L36N:18+00E	<5	<.2	1.90	20	240	<5	1.26	<1	14	34	100	3.49	0.26	<10	0.67	655	<1	0.01	52	980	6	<5	<20	59	0.07	<10	113	<10	9	58
	L36N:18+50E	<5	<.2	1.73	20	210	<5	1.05	<1	13	36	106	3.67	0.21	<10	0.60	588	1	0.01	34	810	6	<5	<20	56	0.09	<10	125	<10	8	58
	L36N:19+00E	<5	<.2	1.59	20	200	<5	1.29	<1	13	34	86	3.49	0.23	<10	0.61	616	1	0.01	32	1050	8	<5	<20	58	0.09	<10	99	<10	6	61
	L36N:19+50E	<5	<.2	1.57	20	210	<5	1.32	<1	13	33	152	3.30	0.25	<10	0.54	628	<1	0.01	33	1040	8	<	<20	56	0.08	<10	94	<10	6	58
	L36N:20+00E	<5	<.2	1.98	20	230	<5	1.13	<1	15	31	119	3.55	0.16	<10	0.49	738	<1	0.01	27	920	8	-5	<20	52	0.09	<10	103	<10	8	61
_	L36N:20+50E	<5	<.2	2.22	15	230	<5	0.95	<1	14	29	93	3.53	0.05	<10	0.46	601	<1	0.01	23	580	8	<5	<20	47	0.11	<10	138	<10	8	53
	L36N:21+50E	<5	<.2	1.41	20	190	<5	1.34	<1	14	46	95	3.55	0.12	<10	0.65	551	<1	0.01	47	1020	6	<5	<20	54	0.07	<10	93	<10	6	56
	L36N:22+00E	<5	<.2	1.10	10	215	<5	1.05	<1	11	32	62	2.82	0.23	<10	0.45	548	<1	<.01	37	980	6	<5	<20	43	0.05	<10	90	<10	6	51
	L36N:22+50E	<5	<.2	1.04	10	175	<5	0.96	<1	10	24	49	2.26	0.16	<10	0.35	463	<1	<.01	29	780	6	<5	<20	44	0.05	<10	72	<10	5	51
	L36N:23+00E	<5	<.2	1.03	15	175	<5	1.04	<1	11	25	54	2.48	0.19	<10	0.39	545	<1	<.01	30	830	10	<5	<20	49	0.05	<10	62	<10	5	56
241	L36N:23+50E	<5	<.2	1.10	15	180	<5	1.06	<1	11	28	49	2.44	0.29	<10	0.41	560	<1	<.01	31	780	6	<5	<20	54	0.05	<10	72	<10	5	55

<u>Et #.</u>	Tag #	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	К%	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Tī %	U	v	w	Y	Zn
QC DATA:																														
Repeat:																														
1 L20N	:15+00E	<.2	1.73	15	185	<5	0.88	<1	14	44	89	3.50	0.19	<10	0.69	559	<1	0.01	41	1000	4	<5	<20	58	0.09	<10	126	<10	7	61
39 L21N	:21+00E	<.2	1.65	15	140	<5	0.77	<1	14	53	64	3.36	0.31	<10	0.73	645	1	0.02	39	1030	4	<5	<20	53	0.10	<10	105	<10	6	57
77 L23N	:16+00E	<.2	1.76	15	225	<5	1.33	<1	14	38	91	3.24	0.28	<10	0.57	660	1	0.01	36	980	4	<5	<20	73	0.08	<10	119	<10	7	62
115 L24N:	:22+50E	<.2	2.15	15	335	<5	1.86	<1	13	30	91	2.83	0.41	<10	0.55	767	<1	<.01	44	1280	4	<5	<20	79	0.06	<10	101	<10	8	69
153 L32N:	:14+00E	<.2	1.80	20	240	<5	1.12	<1	15	39	111	3.30	0.19	<10	0.58	725	1	0.01	42	1200	6	<5	<20	63	0.08	<10	121	<10	6	71
191 L34N:	17+50E	<.2	1.82	25	305	<5	1.67	<1	23	26	102	4.30	0.02	<10	1.01	964	1	0.01	48	1190	8	<5	<20	67	0.05	<10	85	<10	9	58
229 L36N:	:14+50E	<.2	2.16	15	295	<5	1.10	<1	12	32	110	3.40	<.01	<10	0.73	685	<1	<.01	50	780	8	<5	<20	54	0.07	<10	120	<10	6	55
Standard 1	991:																													
		1.2	1.91	80	160	<5	1.95	<1	22	68	82	4.39	0.36	<10	1.02	658	<1	0.01	23	700	22	<5	<20	56	0.10	<10	83	<10	6	74
		1.3	1.88	75	160	<5	1.93	<1	20	66	80	4.32	0.36	<10	1.02	647	<1	0.01	23	690	18	<5	<20	56	0.11	<10	83	<10	5	91
		1.2	1.81	80	155	<5	1.94	<1	20	65	83	4.16	0.36	<10	1.00	634	<1	0.01	23	680	18	<5	<20	55	0.11	<10	82	<10	5	76
		1.2	1,73	80	150	<5	1.94	<1	17	64	87	4.05	0.36	<10	1.00	706	<1	0.01	23	660	20	-5	<20	56	0.10	<10	82	<10	5	76
		1.2	1.69	80	150	<5	1.94	<1	20	70	83	4.12	0.36	<10	1.02	708	<1	0.01	22	670	22	<5	<20	54	0.10	<10	82	<10	5	76
		1.2	1,78	80	160	<5	1.96	<1	20	65	88	4.40	0.35	<10	1.04	710	1	0.01	23	670	20	<5	<20	60	0.11	<10	83	<10	7	76
		1.2	1.84	65	160	<5	1.93	<1	20	67	72	3.96	0.39	<10	1.02	706	<1	<.01	24	690	22	<5	<20	58	0.09	<10	79	<10	7	76

* No sample

+ Results to follow A.S.A.P.

XLS/teck

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

Page 7

Teck Exploration ETK 94-378

Eco-Tech Laboratories Ltd.

ebs L2SN:15+50c 2 100 11 2 11 2 12 10 11 13 2 266 0.33 <10	_Et #.	Tag #	Au(ppb)	Ag	AI %	As	в	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	К%	La	Mg %_	Mn	Мо	Na %	Ni	₽	Pb	Sb	Sn	Sr	<u>Ti %</u>	U	v	W	Y	Zn
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	68	L25N:15+00E	5	<.2	1.94	<5	10	245	<5	1.07	<1	15	37	100	3.11	0.30	<10	0.58	636	<1	0.01	29	890	6	<5	<20	83	0.07	<10	76	<10	11	50
1 128N:7*00E 5 <2 179 <5 111 113 37 00 20 00 030 100 6 15 <20 107 0.05 <10 0.05 100 6 15 <00 107 0.05 <00 107 0.05 <00 107 0.05 <00 107 0.05 <00 107 0.05 <00 107 0.05 <00 107 107 0.05 <00 107 107 0.05 <00 107 107 0.05 <00 107 107 0.05 <00 107 107 0.05 <00 107 107 0.05 <00 107 107 0.05 <00 107 107 0.05 <00 107 107 0.05 <00 107 108 <00 100 200 107 100 107 108 107 100 107 108 107 100 107 108 107 1007 108 107 1007 108 107 1007 108 107	69	L25N:15+50E	<5	<.2	1.69	<5	12	210	<5	1.30	<1	12	31	93	2.66	0.33	<10	0.71	510	<1	0.02	26	850	6	5	<20	109	0.05	<10	64	<10	9	48
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	70	L25N:16+00E	<5	<.2	1.95	<5	10	300	<5	1.09	<1	14	34	81	2.64	0.22	<10	0.57	770	<1	0.01	30	1230	8	<5	<20	107	0.04	<10	61	<10	9	68
74 L28N:18+00E <5 <20 <5 <20 <5 <20 <5 <20 <5 <20 <5 <20 <5 <20 <5 <20 <5 <20 <5 <20 <5 <20 <5 <20 <5 <20 <5 <20 <5 <20 <5 <20 <5 <20 <5 <20 <5 <20 <5 <20 <5 <20 <5 <20 <5 <20 <1 17 35 <20 <5 <20 <5 <20 <5 <20 <5 <20 <5 <20 <5 <20 <5 <20 <5 <20 <5 <20 <5 <20 <5 <20 <5 <20 <5 <20 <5 <20 <5 <20 <5 <20 <5 <20 <5 <20 <5 <20 <5 <20 <5 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <00 <td></td> <td></td> <td>5</td> <td><.2</td> <td>1.79</td> <td><5</td> <td>14</td> <td>170</td> <td><5</td> <td>1.11</td> <td><1</td> <td>13</td> <td>37</td> <td>90</td> <td>2.60</td> <td>0.30</td> <td><10</td> <td>1.11</td> <td>518</td> <td><1</td> <td>0.06</td> <td>30</td> <td>1100</td> <td>6</td> <td>15</td> <td><20</td> <td>107</td> <td>0.05</td> <td><10</td> <td>51</td> <td><10</td> <td>9</td> <td>57</td>			5	<.2	1.79	<5	14	170	<5	1.11	<1	13	37	90	2.60	0.30	<10	1.11	518	<1	0.06	30	1100	6	15	<20	107	0.05	<10	51	<10	9	57
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	72	L25N:17+50E	<5	<.2	1,76	<5	14	175	5	0.64	<1	15	43	85	3.08	0.36	<10	0.63	628	<1	0.03	31	980	6	<5	<20	68	0.07	<10	73	<10	11	52
75 L28N:19+00E -5 <2 2.31 <5 100 <5 5.22 <1 7 12 350 <2 100 2 100 <1 10 200 200 200 200 7 100 4 100 300 4 100 300 4 100 300 4 100 4 100 4 100 4 100 4 100 4 100 100 4 100 100 4 100 100 4 100 100 4 100 100 4 100 100 4 100 100 4 100 100 4 100 100 4 100 100 4 100 100 4 100 100 4 100 100 4 100 100 4 100 100 100 100 4 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100<	73	L25N:18+00E	<5	<.2	1.93	<5	10	215	<5	0.66	<1	15	41	110	3.26	0.24	<10	0.68	621	<1	0.03	31	910	6	5	<20	65	0.07	<10	85	<10	11	45
76 L28N:19+50E 10 <2 15 205 <5 2.20 <1 15 44 102 3.08 0.19 <1 10.02 42 12.00 <2 10 <2 10 <2 10 <2 10 10 <2 10 10 <2 10 10 <2 10 10 <2 10 10 <2 10 10 <2 10 10 <2 10 10 <2 10 10 <2 10 10 <2 10 10 <2 10 10 <2 10 15 5 29 11 18 60 85 75 (100 74 10 85 5 <20 75 0.07 <10 85 <20 75 0.07 <10 85 <20 75 0.07 <10 85 <20 75 0.07 <10 85 <20 75 0.07 <10 85 <20 75 0.07 <10 75 <	74	L25N:18+50E	5	<.2	2.37	<5	10	295	<5	1.03	<1	19	42	187	4.04	0.23	<10	1.00	700	<1	0.02	36	1170	6	5	<20	81	0.07	<10	112	<10	11	49
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75	L25N:19+00E	<5	<.2	2.31	<5	10	295	<5	1.09	<1	17	37	121	3.50	0.26	<10	0.71	746	<1	0.02	28	1040	6	<5	<20	71	0.06	<10	92	<10	11	53
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	76	L25N:19+50E	10	<.2	1.50	<5	12	205	<5	5.02	<1	15	44	102	3.08	0.19	<10	1.20	503	<1	0.02	42	1240	<2	10	<20	169	0.07	<10	92	<10	10	39
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	77	L25N:20+00E	<5	<.2	1.61	<5	12	165	5	2.29	<1	18	60	86	3.70	0.19	<10	1.32	589	<1	0.03	46	1290	6	10	<20	88	0.11	<10	104	<10	12	46
80 L25N:21+50E -5 -5 -2 2.05 -5 1 2.50 -5 1 1 5 0 6 3.22 0.24 -10 0.62 845 <1 0.01 37 1080 6 -5 <20 14 0.00 -11 4 0.02 38 1170 6 5 <20 14 0.00 <10 2 <10 2 <10 2 <10 2 <10 2 <10 2 <10 2 <10 2 <10 2 <10 2 <10 2 <10 2 <10 2 <10 2 <10 2 <10 2 <10 2 <10 2 <10 2 <10 2 <10 2 <10 2 <10 2 <10 2 <10 2 <10 2 <10 2 <10 2 <10 2 <10 2 <10 2 <10 2 <10 2 <10 2 <10 2 <10 2	78	L25N:20+50E	<5	<.2	1.54	<5	10	155	<5	3.19	<1	18	63	95	3.67	0.15	<10	1.88	575	<1	0.07	54	1230	2	15	<20	151	0.11	<10	103	<10	12	42
81 L25N:22+00E <5 <2 2.11 <5 12 275 <5 1.20 <1 14 38 89 2.73 0.27 <10 0.62 681 <1 0.02 38 1170 6 5 <20 120 0.06 <10 60 <10 60 <10 72 <10 10 72 <10 0.62 681 <1 0.02 29 1180 6 <5 <20 100 71	79	L25N:21+00E	10	<.2	1.83	<5	12	230	<5	1.14	<1	16	50	216	3.40	0.18	<10	0.84	786	<1	0.02	37	1280	8	5	<20	75	0.07	<10	89	<10	11	47
82 L26N:15+00E <5	80	L25N:21+50E	<5	<.2	2.05	<5	8	250	<5	0.73	<1	15	50	96	3.22	0.24	<10	0.62	845	<1	0.01	37	1080	6	<5	<20	54	0.07	<10	72	<10	9	59
83 L26N:15+50E 10 < 2 1.98 < 5 12 230 < 5 1.03 < 1 18 60 127 3.63 0.30 < 10 0.81 679 < 1 0.02 45 1000 6 5 < 20 82 0.08 < 10 94 < 10 11 6 84 L26N:16+00E 20 < 2 2.11 < 5 16 190 < 5 0.88 < 1 17 44 95 0.56 0.60 0.73 654 < 1 0.02 37 1140 6 < 5 20 90 0.07 < 10 93 < 10 12 665 10 0.03 36 900 6 5 < 20 70 93 < 10 12 665 10 0.05 22 930 8 < 5 < 20 73 103 34 10 0.75 634 < 1 0.03 36 900 6 5 < 20 73 0.09 < 10 10.75 634 < 1 <td>81</td> <td>L25N:22+00E</td> <td><5</td> <td><.2</td> <td>2.11</td> <td><5</td> <td>12</td> <td>275</td> <td><5</td> <td>1.20</td> <td><1</td> <td>14</td> <td>38</td> <td>89</td> <td>2.73</td> <td>0.27</td> <td><10</td> <td>0.62</td> <td>681</td> <td><1</td> <td>0.02</td> <td>38</td> <td>1170</td> <td>6</td> <td>5</td> <td><20</td> <td>120</td> <td>0.06</td> <td><10</td> <td>60</td> <td><10</td> <td>10</td> <td>45</td>	81	L25N:22+00E	<5	<.2	2.11	<5	12	275	<5	1.20	<1	14	38	89	2.73	0.27	<10	0.62	681	<1	0.02	38	1170	6	5	<20	120	0.06	<10	60	<10	10	45
83 L26N:15+50E 10 < 2 1.98 < 5 1.2 2.00 < 5 1.03 < 1 18 60 127 3.63 0.30 < 10 0.81 679 < 1 0.02 45 1000 6 5 < 20 82 0.08 < 10 94 < 10 11 6 84 L26N:16+00E 20 < 2 2.33 < 5 12 305 < 5 17 44 95 16.50 10.33 11 100 6 5 < 20 90 0.07 < 10 93 < 10 12 6 85 L26N:17+50E < 2 2.14 < 5 10 200 5 0.67 < 1 16 57 101 3.49 0.25 < 10 0.03 36 900 6 5 < 20 70 0.94 < 10 12 6 86 L26N:19+50E < 2 2.04 < 5 2.01 2.55 2.04 < 10 2.02 2.03 87 8.0 8.0 </td <td></td>																																	
84 L26N:16+00E 20 <2 2.33 <5 12 305 <5 1.32 <1 16 50 123 3.64 0.32 <10 0.73 654 <1 0.02 37 1140 6 <5 <20 90 0.07 <10 93 <10 12 0 85 L26N:17+00E <5	82	L26N:15+00E	<5	<.2	2.01	<5	12	265	<5	1.33	<1	15	37	125	3.04	0.32	<10	0.62	665	<1	0.02	29	1180	6	<5	<20	104	0.07	<10	72	<10	11	55
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	83	L26N:15+50E	10	<.2	1.98	<5	12	230	<5	1.03	<1	18	60	127	3.63	0.30	<10	0.81	679	<1	0.02	45	1000	6	5	<20	82	0,08	<10	94	<10	11	51
86 L26N:17+50E <5			20	<.2	2.33	<5	12	305	<5	1.32	<1	16	50	123	3.64	0.32	<10	0.73	654	<1	0.02	37	1140	6	<5	<20	90	0.07	<10	93	<10	12	63
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			<5	<.2	2.11	<5	16	190	<5	0.88	<1	17	44	95	3.56	0.36	<10	0.91	751	1	0.03	31	1080	8	<5	<20	114	0.08	<10	91	<10	11	63
88 L26N:19+00E <5			<5	<.2	2.14	<5	10	200	5	0.67	<1	16	57	101	3.49	0.25	<10	0.75	634	<1	0.03	36	900	6	5	<20	72	0.09	<10	84	<10	12	47
89 L26N:19+50E <5			10	<.2	2.54	<5	10	250	<5	0.84	<1	16	34	141	3.82	0.24	<10	0.78	665	<1	0.05	22	930	8	<5	<20	73	0.09	<10	103	<10	12	46
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			<5	<.2	2.20	<5	12	265	<5	2.21	<1	16	26	181	3.76	0.22	<10	1.25	846	<1	0.02	21	1350	4	5	<20	85	0.05	<10	93	<10	10	43
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			<5	<.2	1.84	<5	10	210	<5	0.90	<1	17	55	109	3.62	0.28	<10	1.02		<1	0.02	44	1130	6	<5	<20	63	0.08	<10	95	<10	11	45
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			<5	<.2	1.57	<5	12	210	<5	3.37	<1	17	60		3.57	0.19	<10	1.49		<1		50	1290	2	10	<20	127	0.10	<10	103	<10	11	41
93 L26N:21+50E <5	91	L26N:20+50E	<5	<.2	2.39	<5	8	215	<5	0.71	<1	17	57	125	3.61	0.18	<10	0.76	600	<1	0.02	38	870	8	<5	<20	51	0.11	<10	86	<10	13	42
94 L26N:22+00E <5			25	<.2	2.17	<5	14	210	<5	2.03	<1	17	14	492	2.97	0.25	<10	1.14	1275	<1	0.02			4	5	<20	88	0.04	<10	59	<10	11	39
95 L26N:23+00E 5 <.2	93	L26N:21+50E	<5	<.2	1.59	<5	10	240	<5	1.02	<1	17	53	105	3.67	0.24	<10	0.71	719	<1	0.01	47	1190	4	<5	<20	53	0.07	<10	98	<10	10	46
96 L26N:24+00E <5 <2 1.98 <5 16 205 <5 0.89 <1 17 68 88 3.23 0.39 <10 1.13 560 <1 0.04 74 990 6 5 <20 123 0.08 <10 73 <10 11 5 97 L26N:24+50E <5 <2 1.96 <5 14 140 5 0.80 <1 19 113 76 3.38 0.34 <10 1.48 565 <1 0.08 104 850 6 5 <20 90 0.10 <10 77 <10 12 4 98 L26N:25+00E <5 <2 2.62 <5 16 225 10 0.99 <1 36 4,55 71 4.23 0.34 <10 4.61 616 <1 0.03 383 610 4 15 260 80 0.10 <10 87 <10 9 4 99 L26N:25+50E <5 <2 3.01 <5 14 200 5 0.93 <1 39 355 61 4.16 0.27 <10 5.03 680 <1 0.02 400 610 4 20 200 94 0.08 <10 79 <10 8 405 10 12 4 10 L26N:25+50E <5 <2 2.75 5 30 150 15 0.83 <1 34 321 51 3.95 0.68 <10 4.44 613 <1 0.15 345 720 4 15 180 79 0.10 <10 79 <10 9 4 10 120 120 120 120 120 120 120 120 120			<5	<.2	1.84	<5	12	215	<5	0.89	<1	16	59	101	3.59	0.26	<10	0.74	650	<1	0.02	52	1040	4	<5	<20	80	0.07	<10	91	<10	10	50
97 L26N:24+50E <5 <2 1.96 <5 14 140 5 0.80 <1 19 113 76 3.38 0.34 <10 1.48 565 <1 0.08 104 850 6 5 <20 90 0.10 <10 77 <10 12 4 98 L26N:25+00E <5 <2 2.62 <5 16 225 10 0.99 <1 36 4J5 71 4.23 0.34 <10 4.61 616 <1 0.03 383 610 4 15 260 80 0.10 <10 87 <10 9 4 99 L26N:25+50E <5 <2 3.01 <5 14 200 5 0.93 <1 39 355 61 4.16 0.27 <10 5.03 680 <1 0.02 400 610 4 20 200 94 0.08 <10 79 <10 8 4 10 10 L26N:26+00E <5 <.2 2.75 <5 30 150 15 0.83 <1 34 321 51 3.95 0.68 <10 4.44 613 <1 0.15 345 720 4 15 180 79 0.10 <10 79 <10 9 4	95	L26N:23+00E	5	<.2	1.86	<5	20	150	<5	2.44	<1	20	113	163	3.81	0.48	<10	1.68	561	1	0.04	100	1230	4	15	<20	130	0.06	<10	95	<10	10	42
98 L26N:25+00E <5 <.2 2.62 <5 16 225 10 0.99 <1 36 4J5 71 4.23 0.34 <10 4.61 616 <1 0.03 383 610 4 15 260 80 0.10 <10 87 <10 9 4 99 L26N:25+50E <5 <.2 3.01 <5 14 200 5 0.93 <1 39 355 61 4.16 0.27 <10 5.03 680 <1 0.02 400 610 4 20 200 94 0.08 <10 79 <10 8 4 100 L26N:26+00E <5 <.2 2.75 <5 30 150 15 0.83 <1 34 321 51 3.95 0.68 <10 4.44 613 <1 0.15 345 720 4 15 180 79 0.10 <10 79 <10 9 4			<5	<.2	1.98	<5	16	205	<5	0.89	<1	17	68	88	3.23	0.39	<10	1.13	560	<1	0.04	74	990	6	5	<20	123	0.08	<10	73	<10	11	50
99 L26N:25+50E <5 <.2 3.01 <5 14 200 5 0.93 <1 39 355 61 4.16 0.27 <10 5.03 680 <1 0.02 400 610 4 20 200 94 0.08 <10 79 <10 8 4 100 L26N:26+00E <5 <.2 2.75 <5 30 150 15 0.83 <1 34 321 51 3.95 0.68 <10 4.44 613 <1 0.15 345 720 4 15 180 79 0.10 <10 79 <10 9 4			<5	<.2	1.96	<5	14	140	5	0.80	<1	19	113	76	3.38	0.34	<10	1.48	565	<1		104	850	6	5	<20	90	0.10	<10	77	<10	12	47
100 L26N:26+00E <5 <2 2.75 <5 30 150 15 0.83 <1 34 321 51 3.95 0.68 <10 4.44 613 <1 0.15 345 720 4 15 180 79 0.10 <10 79 <10 9 4			<5	<.2	2.62	<5	16	225	10	0.99	<1	36	4J5	71	4.23	0.34	<10	4.61	616	<1	0.03	383	610	4	15	260	80	0.10	<10	87	<10	9	44
			<5	<.2	3.01	<5	14	200	5	0.93	<1	39	355	61	4.16	0.27	<10	5.03	680	<1	0.02	400	610	4	20	200	94	0.08	<10	79	<10	8	42
			<5	<.2		<5	30	150	15	0.83	<1	34	321	51	3.95	0.68	<10	4,44	613	<1	0.15	345	720	4	15	180	79	0.10	<10	79	<10	9	42
101 L26N:26+50E <5 <.2 2.28 <5 28 135 <5 0.70 <1 24 182 47 2.90 0.50 <10 4.51 567 <1 0.18 240 900 4 15 60 64 0.07 <10 52 <10 7 4	101	L26N:26+50E	<5	<.2	2.28	<5	28	135	<5	0.70	<1	24	182	47	2.90	0.50	<10	4.51	567	<1	0.18	240	900	4	15	60	64	0.07	<10	52	<10	7	44

Teck Exploration ETK 94-378

Eco-Tech Laboratories Ltd.

Et #.	Tag #	Au(ppb)	Ag	AI %	As	в	Ba_	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	К%	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	υ	v	W	Y	Zn
102 1	L27N:14+00E	<5	<.2	2.29	<5	10	245	<5	0.87	<1	17	48	116	3.59	0.31	<10	0.80	669	<1	0.02	38	910	6	<5	<20	78	0.08	<10	90	<10	12	53
103 L	L27N:14+50E	<5	<.2	2.25	<5	12	290	<5	1.24	<1	15	41	112	3,19	0.36	<10	0.65	635	<1	0.02	31	1080	8	5	<20	101	0.07	<10	77	<10	11	50
104 L	27N:15+00E	5	<.2	2.09	<5	12	280	<5	1.19	<1	17	53	111	3,43	0.32	<10	0.75	734	<1	0.02	41	1090	4	<5	<20	97	0.07	<10	87	<10	10	52
105 L	27N:15+50E	<5	<.2	2.26	<5	10	325	<5	0.91	<1	19	50	99	3.94	0.32	<10	0.74	765	<1	0.03	36	1160	6	<5	<20	94	0.08	<10	97	<10	12	74
106 L	_27N:16+00E	<5	<.2	2.15	<5	10	315	<5	1.23	<1	15	41	93	3.07	0.29	<10	0.55	766	<1	0.02	34	1340	6	<5	<20	89	0.06	<10	69	<10	10	68
107 L	27N:16+50E	<5	<.2	2.07	<5	12	270	<5	1.12	<1	21	53	125	3.80	0.32	<10	0.73	668	<1	0.02	49	1380	6	<5	<20	91	0.07	<10	90	<10	12	61
108 L	27N:17+00E	10	<.2	1.86	<5	24	150	<5	2.54	<1	14	43	115	3.00	0.50	<10	2.74	552	1	0.14	29	1660	4	15	<20	332	0.07	<10	82	<10	10	49
109 L	_27N:17+50E	5	<.2	2.38	<5	14	180	<5	1.60	<1	17	48	164	3,71	0.33	<10	1.18	636	2	0.04	37	1280	6	10	<20	111	0.09	<10	102	<10	13	44
110 L	27N:18+00E	<5	<.2	2.43	<5	24	270	<5	2.08	<1	16	34	183	3.83	0.91	<10	1.73	667	<1	0.18	24	1580	4	10	<20	155	0.07	<10	94	<10	11	53
111 L	27N:18+50E	<5	<.2	2.19	<5	14	265	<5	1.20	<1	16	37	130	3.56	0.40	<10	0.85	822	<1	0.02	25	1340	6	<5	<20	86	0.07	<10	95	<10	10	47
112 L	27N:19+00E	<5	<.2	2.31	<5	12	280	<5	1.55	<1	20	43	159	4.81	0.24	<10	1.19	709	<1	0.02	32	1290	6	5	<20	94	0.08	<10	144	<10	12	38
113 L	27N:19+50E	<5	<.2	1.42	<5	12	180	<5	0.76	<1	16	67	80	3.45	0.21	<10	0.84	531	<1	0.02	49	980	4	<5	<20	57	0.07	<10	92	<10	9	38
114 L	27N:20+00E	<5	<.2	1.50	<5	12	240	<5	1.05	<1	16	63	97	3.37	0.22	<10	0.71	568	<1	0.02	48	1100	4	<5	<20	69	0.06	<10	89	<10	8	39
115 L	27N:20+50E	<5	<.2	1.50	<5	14	215	<5	1.27	<1	14	52	103	3.07	0.29	<10	0.73	600	<1	0.02	37	1140	4	<5	<20	91	0.06	<10	78	<10	8	36
116 L	27N:21+50E	<5	<.2	1.17	<5	10	170	<5	2.18	<1	16	66	77	3.70	0.11	<10	1.01	516	<1	0.02	48	1060	<2	<5	<20	83	0.07	<10	109	<10	9	33
117 L	27N:22+00E	<5	<.2	1.46	<5	12	185	<5	1.03	<1	17	65	92	4.02	0.23	<10	0.81	605	<1	0.02	53	1110	2	<5	<20	57	0.07	<10	111	<10	9	41
118 L	27N:22+50E	5	<.2	1.76	<5	22	160	5	2.45	<1	18	81	95	3.34	0.54	<10	2.23	545	1	0.39	74	1040	2	15	<20	203	0.10	<10	78	<10	12	41
119 L	27N:23+00E	20	<.2	1.79	<5	16	205	<5	1.41	<1	18	91	134	3,78	0.29	<10	1.23	589	<1	0.15	76	1010	2	10	<20	76	0.07	<10	96	<10	10	41
120 L	27N:23+50E	10	<.2	1.89	<5	16	150	<5	0.79	<1	18	66	105	3.34	0.32	<10	0.97	610	<1	0.04	65	960	6	<5	<20	123	0.09	<10	79	<10	11	49
121 L	27N:24+00E	<5	<.2	1.79	<5	16	145	<5	0.69	<1	18	78	69	3.37	0.42	<10	1.03	612	<1	0.07	58	830	6	5	<20	82	0.10	<10	80	<10	11	48
122 L	27N:24+50E	<5	<.2	2.31	<5	16	225	<5	1.55	<1	28	190	108	3.92	0.25	<10	2.79	640	<1	0.02	230	1030	4	10	40	85	0.08	<10	93	<10	10	46
123 L	27N:25+00E	<5	<.2	2.69	<5	14	305	5	1.35	<1	23	132	67	3.01	0.29	<10	2.24	685	<1	0.02	187	1270	6	15	20	98	0.06	<10	57	<10	9	52
	28N:12+50E	<5	<.2	2.23	<5	14	290	<5	1.23	<1	16	45	96	3.21	0.39	<10	0.73	654	<1		37	1130	6	<5	<20	107	0.07	<10	80	<10	10	53
	28N:13+00E	<5	<.2	2.43	<5	10	250	<5	0.73	<1	18	55	105	3.69	0.32	<10	0.74	683	<1	0.02	39	910	8	<5	<20	80	0.10	<10	91	<10	13	57
126 L	28N:13+50E	5	<.2	2.28	<5	10	235	<5	0.90	<1	18	51	112	3.72	0.31	<10	0.77	664	<1	0.02	36	820	6	<5	<20	78	0.10	<10	90	<10	13	53
127 L	28N:14+00E	<5	<.2	2.25	<5	12	345	<5	1.16	<1	16	42	93	3.16	0.36	<10	0.61	723	<1	0.02	33	1150	6	<5	<20	105	0.07	<10	74	<10	11	54
128 L	28N:14+50E	<5	<.2	2.82	<5	10	320	5	0.89	<1	25	55	91	5.20	0.29	<10	0.87	689	2		54	1080	6	<5	<20	93	0.09	<10	115	<10	13	68
129 L	28N:15+00E	<5	<.2	2.32	<5	10	295	<5	1.06	<1	17	56	104	3.52	0.29	<10	0.65	686	<1	0.02	41	1340	6	5	<20	76	0.07	<10	84	<10	10	61
	28N:15+50E	<5	<.2	2.34	<5	12	320	<5	1.03	<1	21	45	108	3.93	0.29	<10	0.73	839	2			1150	8	<5	<20	90	0.07	<10	84	<10	11	67
	28N:16+00E	<5	<.2	1.82	<5	12	260	<5	1.06	<1	15	42	83	3.03	0.26	<10	0.56	922	1	0.01		1120	4	<5	<20	95	0.06	<10	64	<10	8	47
	28N:16+50E	<5	<.2	1.73	<5	14	175	<5	1.03	<1	13	46	106	2.82	0.27	<10	0.78	661	<1	0.02	32	990	4	10	<20	121	0.05	<10	65	<10	9	41
	28N:17+00E	5	<.2	1.81	<5	16	180	<5	1.91	<1	15	42	120	3. <u>2</u> 3	0.28	<10	0.84	599	<1	0.02	28	710	4	<5	<20	113	0.07	<10	86	<10	10	39
	28N:17+50E	50	<.2	2.98	<5	12	235	<5	1.12	<1	21	40	147	5.22	0.35	<10	1.12	598	<1	0.02	30	800	4	5	<20	90	0.09	<10	166	<10	11	50
	28N:18+00E	<5	<.2	3.16	<5	10	280	<5	1.35	<1	17	29	123	4.40	0.36	<10	0.98	627	<1	0.02	21	980	6	10	<20	98	0.08	<10	121	<10	12	46
	28N:18+50E	<5	<.2	2.11	<5	12	240	<5	1.30	<1	17	48	126	4.07	0.25	<10	0.81	683	<1	0.02	27	990	4	<5	<20	82	0.09	<10	114	<10	13	41
	28N:19+00E	<5	<.2	1.61	<5	12	220	5	4.25	<1	17	60	103	3.60	0.19	<10	2.51	563	<1	0.23	45	1210	<2	15	<20	259	0.12	<10	110	<10	12	41
	28N:19+50E	35	<.2	2.81	<5	10	340	<5	1.70	<1	22	23	377	5.61	0.30	<10		1258	<1	0.02		1470	2	<5	<20	119	0.05	<10	158	<10	21	36
	28N:20+00E	<5	<.2	1.49	<5	12	210	<5	1.17	<1	14	50	79	2.98	0.25	<10	1.12	600	<1	0.04	-	1120	2	5	<20	88	0.07	<10	76	<10	9	42
	28N:20+50E	15	.<.2	2.62	<5	10	330	<5	0.72	<1	17	56	126	3.74	0.17	<10	0.90	667	<1	0.03	53	910	6	<5	<20	69	0.10	<10	87	<10	14	56
	28N:21+00E	<5	<.2	1.87	<5	12	225	<5	0.84	<1	16	59	84	3.52	0.33	<10	0.74	597	<1	0.02		1190	4	5	<20	65	0.07	<10	89	<10	10	47
	28N:21+50E	<5		1.14	<5	12	175	<5	3.46	<1	18	77	80	4.46	0.11	<10	1.13	495	<1	0.01	62	980	<2	<5	<20	80	0.07	<10	141	<10	8	33
	28N:22+00E	<5	<.2	2.09	<5	14	195	<5	0.89	<1	21	113	149	3.73	0.39	<10	1.47	680	<1	0.06	96	500	8	15	<20	74	0.09	<10	86	<10	11	40
	28N:22+50E	<5	<.2	1.85	<5	18	210		1.13	<1	16	70	103	2.96	0.42	<10	0.96	739	1	0.02	ន	2030	12	<5	<20	99	0.07	<10	67	<10	10	71
	28N:23+00E	<5	<.2	2.03	<5	12	180	5	0.65	<1	17	88	76	3.31	0.29	<10	0.86	638	<1	0.02	63	960	8	5	<20	72	0.09	<10	75	<10	11	51
	28N:23+50E	<5	<.2	2.08	<5	14	195		0.66	<1	20	140	65	3.30	0.29	<10	1.39	622	<1	0.03	111	960	4	10	20	72	0.09	<10	71	<10	11	47
	28N:24+00E	<5	<.2	2.24	<5	16	170	-	0.57	<1	17	86	56	3.15	0.39	<10	1.02	562	<1	0.06	71	840	8	5	<20	97	0.10	<10	68	<10	11	47
	28N:24+50E	<5	<.2	1.63	<5	14	140	10	0.66	<1	17	89	52	3.13	0.27	<10	0.88	601	<1	0.06	64	800	6	5	<20	61	0.10	<10	72	<10	10	48
149 🖸	28N:25+00E	<5	<.2	2.32	<5	22	280	5	2.91	<1	27	174	79	3.80	0.28	<10	3.15	613	<1	0.04	198	1020	2	15	20	197	0.09	<10	99	<10	9	45

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 2J3

Phone: 604-573-5700 Fax : 604-573-4557

Values in ppm unless otherwise reported

TECK EXPLORATION ETK 94-378 - REVISED #350-272 VICTORIA STREET KAMLOOPS, B.C. V2C 2A2

ATTENTION: STEVE JENSEN

Sample Run Date: June 30, 1994 149 SOIL samples received June 27,1994 PROJECT #: 1722

Et #	. Tag #	Au(ppb)	Ag	AI %	As	в	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	К%	La	Mg %	Mn	Мо	Na %	Ni	Р	РЬ	Sb	Sn	Sr	Ti %	Ų	v	w	Y	Zn
1	L29N:12+00E	15	<.2	2.02	<5	10	225	<5	0.69	<1	20	50	139	3.79	0.26	10	0,96	652	<1	0.02	46	860	12	5	<20	71	0.08	<10	97	<10	12	54
2	L29N:12+50E	10	<.2	1.70	<5	14	220	<5	1.89	<1	18	43	122	3.39	0.21	10	1.03	606	<1	0.02	42	1080	8	10	<20	84	0.09	<10	79	<10	12	51
3	L29N:13+00E	10	<.2	1.83	<5	14	285	<5	1.34	<1	13	31	94	2.64	0.36	<10	0.58	565	<1	0.01	29	1170	8	5	<20	91	0.05	<10	63	<10	9	51
4	L29N:13+50E	5	<.2	2.07	<5	10	255	<5	0.81	<1	17	50	98	3.20	0.28	<10	0.76	725	<1	0.02	41	850	10	5	<20	70	0.06	<10	81	<10	11	53
5	L29N:14+00E	10	<.2	1.95	<5	10	250	<5	0.98	<1	16	42	106	3.06	0.26	10	0.68	670	<1	0.02	37	1010	10	<5	<20	74	0.07	<10	74	<10	11	49
6	L29N:14+50E	15	<.2	2.31	<5	10	340	5	1.03	<1	18	39	101	3.36	0.29	10	0.69	715	<1	0.01	35	960	10	<5	<20	87	0.08	<10	81	<10	12	62
7	L29N:15+00E	10	<.2	2.22	<5	10	340	<5	1.07	<1	19	35	86	3,73	0.30	10	0.66	681	1	0.02	36	990	10	<5	<20	87	0.07	<10	80	<10	12	64
8	L29N:15+50E	<5	<.2	1.62	<5	12	275	<5	1.22	<1	12	30	95	2.44	0.29	<10	0.53	638	<1	0.01	26	900	8	<5	<20	87	0.05	<10	60	<10	9	46
9	L29N:16+00E	5	<.2	1.80	<5	10	230	<5	0.83	<1	14	41	107	2.89	0.27	10	0.55	628	<1	0.01	30	870	8	<5	<20	68	0.06	<10	69	<10	11	42
10	L29N:16+50E	5	<.2	1.88	<5	12	215	<5	0.86	<1	15	35	112	2. 99	0.31	<10	0.64	670	<1	0.01	27	1020	8	5	<20	60	0.06	<10	75	<10	10	47
11	L29N:17+00E	15	<.2	1.92	<5	12	215	<5	1.04	<1	17	43	158	3.47	0.27	10	0.92	659	<1	0.02	37	1200	8	5	<20	71	0.07	<10	95	<10	11	47
	L29N:17+50E	<5	<.2	1.99	<5	10	270	<5	0.79	<1	17	32	107	3.75	0.20	<10	0.68	642	<1	0.02	26	780	8	<5	<20	53	0.07	<10	104	<10	10	47
	L29N:18+00E	<5	<.2	1.72	<5	10	240	<5	0.90	<1	15	38	99	3.22	0.28	<10	0.58	670	<1	0.01	29	940	6	<5	<20	60	0.07	<10	86	<10	11	45
	L29N:18+50E	30	<.2	2.17	<5	10	240	<5	1.05	<1	18	29	294	4.51	0.27	<10	0.88	640	<1	0.01	25	830	8	10	<20	ទេ	0.05	<10	136	<10	9	45
	L29N:19+00E	10	<.2	1.87	<5	10	280	5	0.98	<1	17	41	142	3.72	0.33	10	0.62	700	<1	0.01	28	1190	8	<5	<20	66	0,08	<10	97	<10	11	50
16	L29N:19+50E	10	<.2	1.23	<5	12	185	5	1.80	<1	15	45	188	3.06	0.22	<10	0.91	505	<1	0.02	40	1170	6	10	<20	69	0.07	<10	83	<10	10	39
17	L29N:BL 20+00E	10	<.2	1.60	<5	10	225	<5	0.64	<1	15	41	123	3.01	0.23	<10	0.71	569	<1	0.02	37	860	8	<5	<20	48	0.07	<10	74	<10	10	46
	L29N:20+50E	<5	<.2	1.50	<5	10	250	<5	0.85	<1	17	58	142	3.63	0.13	<10	0.89	624	<1	0.01	58	1000	6	5	<20	46	0.05	<10	97	<10	9	43
19	L29N:21+00E	<5	<.2	2.38	<5	8	335	<5	0.89	<1	16	38	85	3.08	0.14	10	0.77	802	<1	0.02	46	930	10	5	<20	61	0.07	<10	68	<10	14	43
20	L29N:21+50E	<5	<.2	1.43	<5	14	225	5	0.88	<1	18	56	102	3.64	0.32	<10	0.84	731	<1	0.01	66	730	4	<5	<20	64	0.05	<10	91	<10	10	37
21	L29N:22+00E	40	<.2	1.73	<5	14	180	<5	0.83	<1	21	90	207	3.40	0.27	<10	1.47	646	<1	0.02	102	1150	8	10	<20	69	0.07	<10	86	<10	11	46
22	L29N:22+50E	5	<.2	2.02	<5	10	285	<5	0.73	<1	18	48	108	3.22	0.30	10	0.82	771	<1	0.02	51	970	8	10	<20	60	80.0	<10	73	<10	12	52
23	L29N:23+00E	<5	<.2	1.74	<5	12	155	5	0.46	<1	17	86	60	2.88	0.29	<10	0.97	599	<1	0.03	74	740	8	5	<20	44	0.08	<10	63	<10	10	44
24	L29N:23+50E	<5	<.2	1.92	<5	12	190	5	0.50	<1	19	93	45	2.93	0.35	<10	1.16	637	<1	0.02	92	810	8	5	<20	57	0.08	<10	61	<10	10	48
	L29N:24+00E	<5	<.2	1.85	<5	12	180	<5	0.59	<1	19	89	68	3.10	0.35	<10	1.42	619	<1	0.02	100	900	8	10	<20	68	0.08	<10	68	<10	11	50
26	L29N:24+50E	5	<.2	1.93	<5	12	165	5	0.52	<1	19	112	80	2.99	0.26	<10	1.51	575	<1	0.03	120	800	8	10	<20	50	0.07	<10	65	<10	10	47

Teck Exploration ETK 94-378

Eco-Tech Laboratories Ltd.

Et #	. Tag #	Au(ppb)	Ag	AI %	As	в	Ba	Bi C	Ca %	Cd	Co	Cr	Cu	Fe %	к %	La	Mg %	Mn	Мо	Na %	Ni	P	РЬ	Sb	Sn	Sr	Ti %	U	v	w	Y.	Zn
27	L30:16+50E	5	<.2	1.99	<5	12	210	<5 (0.85	<1	17	43	119	3.47	0.28	10	0.82	693	<1	0.02	35	890	8	<5	<20	87	0.07	<10	94	<10	11	49
28	L30:17+00E	<5	<.2	1.84	<5	10	245	5 (0.87	<1	14	35	155	3.06	0.25	<10	0.58	678	1	0.01	25	880	8	10	<20	69	0.06	<10	82	<10	10	44
29	L30:17+50E	5	<.2	1.74	<5	12	255	<5 ·	1.02	<1	15	36	198	3.10	0.26	10	0.64	700	<1	0.02	27	1030	6	<5	<20	75	0.06	<10	83	<10	11	47
30	L30:18+00E	10	<.2	2.01	<5	10	300	<5 (0.96	<1	17	35	112	3.76	0.22	10	0.65	676	<1	0.01	25	1040	8	<5	<20	64	0.06	<10	104	<10	10	48
31	L30:18+50E	5	<.2	2.18	<5	10	420	<5 ⁻	1.17	<1	16	23	107	3.85	0.26	<10	0.65	694	<1	0.01	19	1170	6	<5	<20	76	0.05	<10	105	<10	8	49
32	L30:19+00E	10	<.2	1.79	<5	8	290	<5 ⁻	1.21	<1	14	35	97	2.78	0.24	<10	0.59	700	<1	0.01	26	1020	6	<5	<20	68	0.05	<10	70	<10	9	43
33	L30:19+50E	<5	<.2	1.34	<5	12	185	5 (0.88	<1	16	53	78	3.15	0.23	<10	0.99	567	<1	0.01	50	1170	4	10	<20	54	0.07	<10	83	<10	9	43
34	L30:20+00E	<5	<.2	1.51	<5	10	265	<5 '	1.02	<1	16	46	92	3.05	0.26	<10	0.73	704	<1	0.01	49	1150	6	<5	<20	62	0.05	<10	75	<10	9	50
35	L30:22+00E	50	<.2	1.63	<5	10	175	<5 (0.57	<1	21	102	104	3.48	0.19	10	1.38	569	<1	0.02	102	450	8	10	<20	44	0.09	<10	87	<10	13	40
36	L30:22+50E	<5	<.2	1.69	<5	12	295	<5 ⁻	1.18	<1	17	80	79	2. 60	0.19	<10	1.13	696	<1	0.01	87	1080	6	10	<20	111	0.05	<10	56	<10	9	45
37	L30:23+00E	<5	<.2	1.62	<5	14	175	<5 (0.68	<1	16	72	63	2.64	0.26	<10	0.95	612	<1	0.02	68	950	8	5	<20	67	0.06	<10	57	<10	9	43
38	L30:23+50E	5	<.2	1.56	<5	10	150	10 (0.50	<1	16	80	44	2.74	0.23	<10	0.86	539	<1	0.04	67	820	8	5	<20	43	0.08	<10	61	<10	10	43
39	L30:24+00E	5	<.2	2.09	<5	16	195	<5 (0.65	<1	22	116	71	3.19	0.30	<10	1.62	704	1	0.03	128	960	16	10	<20	63	0.08	<10	66	<10	11	80
40	1241146.505	-		4 00			0.40					-	~	2.04	o ~~	-10	0.00	676		0.00	7	010		-5		82	0.06	-10	80	-10	40	47
	L31N:16+50E	5	<.2	1.90	<5	10	240		0.93	<1	14	36	93	3.01	0.23	<10	0.63 0.73	676 767	<1	0.02 0.02	27 28	910 1270	8	<5 5	<20 <20	82 67	0.06 0.06	<10 <10	87	<10 <10	10	47
	L31N:17+00E	10	<.2	2.33	<5	10	270		1.05 0.93	<1	17 17	34	144	3.34	0.21	10 <10	0.73	744	<1 <1	0.02	20 25	1110	10 10	5	<20 <20	62	0.08	<10	97	<10	12 12	46 51
42 43	L31N: 17+50E L31N:18+00E	15	<.2	2.23	<5	8 8	255 405		1.06	<1 <1	16	34 30	152 83	3.60 3.49	0.24 0.25	<10	0.65	767	<1	0.01	23	1020	8	5	<20	79	0.07	<10	89	<10	10	52
	L31N:18+50E	<5	<.2	2.29	<5 <5	10	405 195		0.96	<1	17	56	81	3.49	0.23	<10	1.04	581	<1	0.02	50	1150	6	10	<20	52	0.08	<10	94	<10	11	45
	L31N:19+00E	10 <5	<.2	1.58	<5 <5	10	165		0.63	<1	17	63	82	3.43	0.25	<10	1.08	502	<1	0.02	73	930	6	10	<20	51	0.00	<10	90	<10	9	39
	L31N:19+50E	-	<.2 <.2	1.42 1.58	<5	10	220	-	0.83	<1	18	60	130	3.96	0.15	<10	0.89	578	<1	0.01	59	1020	4	<5	<20	53	0.06	<10	111	<10	9	43
	L31N:BL 20+00E	10 <5		2.26	<5	10	325		0.89	<1	18	48	116	3.47	0.14	10	0.09	869	<1	0.02		1110	10	5	<20	59	0.00	<10	81	<10	13	-59
	L31N:20+50E	-5	<.2 <.2	1.63	<5	12	255		0.97	<1	20	61	143	4.02	0.24	<10	0.96	783	<1	0.01	69	1130	6	<5	<20	54	0.06	<10	105	<10	11	51
49	L31N:21+50E	۔ ج	<.2	2.08	<5	10	340		0.98	<1	17	40	136	2.91	0.27	<10	0.71	923	<1	0.01	53	1100	8	<5	<20	76	0.06	<10	62	<10	13	63
	L31N:22+00E	~ ~5	<.2	2.30	~5	10	345		1.67	<1	21	50	210	3.76	0.14	<10	1.26	918	<1	0.02		1100	ă	10	<20	60	0.07	<10	90	<10	13	60
	L31N:22+50E	5	<.2	2.17	<5	10	340		0.96	<1	18	45	135	3.24	0.23	<10	0.85	939	<1	0.02	57	1100	ă	5	<20	62	0.07	<10	72	<10	13	56
	L31N:23+00E	<5	<.2	1.97	~5 <5	12	245		0.81	<1	16	48	86	2.85	0.31	<10	0.81	771	<1	0.02	50	1020	ă	5	<20	80	0.07	<10	61	<10	11	53
	L31N:23+50E	<5	<.2	2.02	~5 <5	12	305		0.99	<1	23	126	100	3.15	0.35	<10	2.10	712	<1	0.01	167	1030	õ	15	<20	87	0.05	<10	66	<10	9	45
	20111.201002	-0		2.02	-0		000		0.00		20	,		0.10	0.00		2	• •=	·				-			•••					-	
54	L32N:16+50E	<5	<.2	1.58	<5	12	255	<5 1	1.21	<1	12	28	89	2.58	0.21	<10	0.54	699	<1	0.01	23	1130	8	5	<20	91	0.05	<10	68	<10	8	46
55	L32N:17+00E	<5	<.2	2.14	<5	8	320	<5 (0.88	<1	14	33	55	2.81	0.19	<10	0.48	749	<1	0.01	23	1260	8	<5	<20	66	0.06	<10	63	<10	10	58
56	L32N:17+50E	<5	<.2	1.97	<5	8	235	<5 (0.80	<1	13	30	75	3.06	0.20	<10	0.63	615	<1	0.02	19	960	6	<5	<20	65	0.06	<10	75	<10	11	41
57	L32N:18+00E	5	<.2	1.58	<5	10	240	<5 (0.95	<1	15	44	77	3.06	0.29	<10	0.67	620	<1	0.01	36	1240	4	<5	<20	60	0.07	<10	79	<10	10	48
58	L32N:18+50E	<5	<.2	2.26	<5	8	310	<5 (0.89	<1	16	37	108	3.10	0.27	<10	0.72	682	<1	0.01	37	990	10	<5	<20	66	0.07	<10	73	<10	12	50
59	L32N:19+00E	<5	<.2	1.77	<5	10	260	<5 (0.79	<1	15	42	98	3.02	0.27	<10	0.68	637	<1	0.01	45	1030	6	<5	<20	60	0.06	<10	72	<10	10	55
60	L32N:19+50E	<5	<.2	2.33	<5	8	320	<5 0	D.81	<1	19	42	125	3.39	0.13	<10	0.87	826	<1	0.02	51	900	10	5	<20	58	0.08	<10	79	<10	13	57
61	L32N:B/L 20+00E	5	<.2	1.78	<5	12	295	<5 1	1.01	<1	16	36	123	2.92	0.29	<10	0.71	905	<1	0.01	39	1160	6	5	<20	76	0.05	<10	67	<10	10	60
62	L32N:20+50E	<5	<.2	2.01	<5	10	340	<5 t	1.44	<1	15	32	125	2.52	0.23	<10	0.60	910	<1	0.01	47	1390	8	<5	<20	99	0.05	<10	54	<10	12	50
63	L32N:21+00E	10	<.2	1.73	<5	12	360	<5 1	1.51	<1	16	35	125	2.68	0.24	<10	0.65	1012	<1	0.01	51	1740	6	<5	<20	93	0.04	<10	58	<10	10	56
64	L32N:21+50E	5	<.2	1.86	<5	12	395	<5 1	1.55	<1	14	28	118	2.31	0.24	<10	0.64	977	<1	0.01	43	1510	6	<5	<20	117	0.04	<10	47	<10	10	54
65	L32N:22+00E	<5	<.2	2.42	<5	10	360	<5 C	3.98	<1	17	33	125	2.85	0.16	<10	0.76	936	<1	0.02	42	1250	8	10	<20	69	0.06	<10	62	<10	13	53
66	L32N:22+50E	<5	<.2	2.47	<5	10	330	<5 1	1.08	<1	16	36	114	2.74	0.28	<10	0,72	891	<1	0.01	53	1300	8	5	<20	98	0.06	<10	56	<10	13	51
67	L32N:23+00E	<5	<.2	1.54	<5	22	255	<5 1	1.61	<1	12	50	107	2.19	0.28	<10	1.08	461	<1	0.01	62	1250	16	10	<20	140	0.03	<10	44	<10	7	46

Teck Exploration ETK 94-378

Eco-Tech Laboratories Ltd.

QC DATA:	Ag	AI %	As	В	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	к %	La	Mg %	Mn	Mo	Na %	Ni	P	РЪ	Sb	Sn	Sr	Ti %	<u> </u>	<u>v</u>	w	Y	Zn
Repeat:																														
1 L29N:12+00E	<.2	1.99	<5	10	230	<5	0.67	<1	19	50	137	3.71	0.26	10	0.95	644	1	0.02	46	900	8	10	<20	69	0.08	<10	97	<10	12	53
39 L30:24+00E	<.2	2.07	<5	16	190	5	0.68	<1	21	114	68	3.20	0.29	<10	1.61	69 5	<1	0.03	126	940	14	10	<20	62	0.07	<10	66	<10	10	70
77 L25N:20+00E	<.2	1.63	<5	12	170	5	2.27	<1	18	64	87	3.74	0.19	<10	1.32	596	<1	0.03	47	1340	2	10	<20	88	0.11	<10	105	<10	12	46
112 L27N:19+00E	<.2	2.31	<5	14	270	<5	1.54	<1	20	47	155	4.87	0.23	<10	1.18	695	1	0.02	33	1240	4	10	<20	95	0.09	<10	147	<10	11	38
Standard 1991:																														
	1.0	1.75	60	10	160	<5	1.81	2	17	61	83	3.80	0.34	<10	0.95	689	<1	0.01	24	700	16	10	<20	58	0.08	<10	75	<10	10	72
	1.2	1.71	65	10	165	5	1.82	2	18	65	84	3.70	0.35	<10	0.93	690	<1	0.01	24	690	16	10	<20	63	0.09	<10	77	<10	10	67
	1.0	1.88	60	10	170	5	1.80	2	19	66	88	3.96	0.35	<10	0.91	660	<1	0.02	26	660	20	10	<20	59	0.10	<10	74	<10	11	71
	1.0	1.88	60	10	165	5	1.82	2	19	67	86	3.95	0.34	<10	0.89	682	<1	0.02	25	680	18	<5	<20	61	0.10	<10	75	<10	10	67

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc. T. B.C. Certified Assayer

XLS/Teck

APPENDIX IV

Analytical Procedures

APPENDIX V

Rock Sample Descriptions

.

.

SAMPLE NUMBER	LOCATION COMMENT	SAMPLE DESCRIPTION
JOK 1	Joker Grid, between L25N and L26N	1.5m chip across carbonate altered hybrid breccia or bleached diorite dyke, trace pyrite and chalcopyrite, strong jointing (and trend of zone) 060-080/80N
JOK 2	Joker Grid, between L25N and L26N	2.0m chip across albite altered hybrid breccia, trace pyrite, chalcopyrite and malachite, jointing 040/60NW
JOK 3	Joker Grid, between L25N and L26N	2.0m chip across albite altered hybrid breccia, jointing 100/50SW, 095/50NE
JOK 4	Joker Grid, just south of L25N	2.0m chip across albite altered hybrid breccia, jointing 130/75NE, 090/90, very local, weak epidote alteration
JOK 5	Joker Grid, between L25N and L26N	2.0m chip across strongly fractured and weathered fault zone in Cherry creek diorite, fault zone $\approx 160/74SE$, conjugate fractures 085/30SE and 060/80NW
JOK 6	Joker Grid, between L25N and L26N	1.5m chip across bleached and altered Cherry creek diorite, orange carbonate alteration, weak pyrite and trace chalcopyrite, on trend of zone of sample JOK 1, ran: 50ppb Au
JOK 7	Joker Grid, between L29N and L30N	2.0m chip across hybrid breccia, very local late stage epidote alteration, trace pyrite, jointing 165/60SW, 092/70N, 105/60SW
JOK 8	Joker Grid, just south of L30N	1.0m chip across hybrid breccia, jointing 008/80NW & 094/56S, local weak epidote alteration

APPENDIX VI

Soil Sample Descriptions

Joker area soil survey, June 1994. Data from lines L20+00N to L28+00N inclusive.

Station	Soil hor.	Soil size	Depth cm	Colour	Rockchips	Comments
L28+00N						
12+50E	BM	silt	20	dk brn	few rocks	
13+00E	BM	silt	20	med brn	glac pebs	
13+50E	BM	silt	30	med brn	glac pebs	
14+00E	BM	silt/sand	30	dk brn		
14+50E	BF	silt/sand	30	dk ora-br	v. rocky	tr. Fe-ox
15+00E	BM	silt	35	dk brn	minor diorite	
15+50E	BM	silt	25	dk brn	diorite	
16+00E	BM	silt	25	dk brn	glac pebs	
16+50E	BM	silt	30	dk brn	glac pebs	
17+00E	BM	silt	20	dk brn	glac pebs	
17+50E	BM	silt	15	dk brn	glac pebs	
18+00E	BM	silt	25	choc brn	diorite	
18+50E	BM	silt	25	choc brn	both dior/ leuco int	
19+00E	BM	silt/clay	35	buff	no rocks	
19+50E	C/regolith	silt	30	med brn	pale grn leuco int.	
20+00E	?	v.f.silt	40	med gry	glac pebs	
20+50E	BM	silt	35	med brn	glac pebs	
21+00E	BM	silt	35	med brn	glac pebs	5m N stn
21+50E	?	f.g.sand	40	buff	glac pebs	
22+00E	BM	silt	40	med brn	dior pebs	
22+50E	BM	silt	30	med brn	glac pebs	
23+00E	BM	silt	15	med brn	glac pebs	hardpan
23+50E	BM	silt/sand	30	med brn	glac pebs	poor soil
24+00E	BM	silt	30	med brn	glac pebs	
24+50E	BM	sand	15	pale brn	glac pebbles	hardpan
25+00E	BM	sand	20	pale brn	glacial	
			_			
Station	Soil hor.	Soil size	Depth cm	Colour	Rockchips	Comments
L27+00N						
14+00E	BM	silt	20	med brn	felsite/dior	
14+50E	BM	silt	35	med brn	dior	
15+00E	BM	silt	30	med brn	diorite + ass't	
15+50E	BM	silt	30	med brn	glac pebbles	
16+00E	BM	silt	35	med brn	v few rocks	

16+50E	BF?	silt	40	ora-brn	Fe-ox @ 40 cm	
		silt		med brn	-	
17+00E	BM		45 05		glacial pebs	
17+50E	BM	silt/sand	25	med brn	glac pebs	
18+00E	BM	silt	30	dk brn		
18+50E	BM	silt	30	dk brn	ulua selee	
19+00E	BM	silt/sand	30	med brn	glac pebs	
19+50E	BM	silt	40	med brn		v few rocks
20+00E	BM	silt	30	med brn		slope 25 deg E
20+50E	BM	silt	30	med brn		slope 25 deg E
21+00E		entres on a house				Flat bench
21+50E	BM	sand only	40	pale brn	v. poor soil	slope 30 deg E
22+00E	B?	f.g. sand	40	pale brn		slope 15 deg E
22+50E	BM	silt/sand	45	med brn	weakly organic	clay layer @ 45 cm
23+00E	BM	silt/sand	45	med brn		
23+50E	B?	f.g. silt	40	med brn		hardpan
24+00E	BM	f.g. silt	40	med brn		hardpan
24+50E	?	silt	20	med brn	glac pebs	
25+00E	BM	silt	30	med brn	few rocks	poor soil
25+50E	N.S. orgar	nic				
						_
Station	Soil hor.	Soil size Depth	ст	Colour	Rockchips	Comments
Station L26+00N		Soil size Depth	ст	Colour	Rockchips	Comments
		Soil size Depth silt	cm 30	Colour med brn	Rockchips glac pebs/cobs	Comments
L26+00N		•			·	Comments
L26+00N 15+00E	BM	silt	30	med brn	glac pebs/cobs	Comments
L26+00N 15+00E 15+50E	BM BM	silt silt	30 40	med brn med brn	glac pebs/cobs glac pebs/cobs	Comments
L26+00N 15+00E 15+50E 16+00E	BM BM BM	silt silt silt	30 40 40	med brn med brn med brn	glac pebs/cobs glac pebs/cobs glac pebs	Comments
L26+00N 15+00E 15+50E 16+00E 16+50E	BM BM BM	silt silt silt silt	30 40 40 40	med brn med brn med brn med brn	glac pebs/cobs glac pebs/cobs glac pebs glac pebs	Comments
L26+00N 15+00E 15+50E 16+00E 16+50E 17+00E	BM BM BM BM	silt silt silt silt silt	30 40 40 40 40	med brn med brn med brn med brn med brn	glac pebs/cobs glac pebs/cobs glac pebs glac pebs glac pebs glac pebs	Comments
L26+00N 15+00E 15+50E 16+00E 16+50E 17+00E 17+50E	BM BM BM BM BM	silt silt silt silt silt silt	30 40 40 40 40 30	med brn med brn med brn med brn med brn med brn	glac pebs/cobs glac pebs/cobs glac pebs glac pebs glac pebs glac pebs glac pebs	Comments
L26+00N 15+00E 15+50E 16+00E 16+50E 17+00E 17+50E 18+00E	BM BM BM BM BM BM	silt silt silt silt silt silt silt	30 40 40 40 40 30 30	med brn med brn med brn med brn med brn med brn med brn	glac pebs/cobs glac pebs/cobs glac pebs glac pebs glac pebs glac pebs glac pebs glac pebs/cobs	Comments
L26+00N 15+00E 15+50E 16+00E 16+50E 17+00E 17+50E 18+00E 18+50E	BM BM BM BM BM BM	silt silt silt silt silt silt silt	30 40 40 40 30 30 30	med brn med brn med brn med brn med brn med brn med brn med brn	glac pebs/cobs glac pebs/cobs glac pebs glac pebs glac pebs glac pebs glac pebs glac pebs/cobs v few rocks	
L26+00N 15+00E 15+50E 16+00E 16+50E 17+00E 17+50E 18+00E 18+50E 19+00E	BM BM BM BM BM BM BM C/regolith	silt silt silt silt silt silt silt silt	30 40 40 40 30 30 30 20	med brn med brn med brn med brn med brn med brn med brn med brn med brn	glac pebs/cobs glac pebs/cobs glac pebs glac pebs glac pebs glac pebs glac pebs/cobs v few rocks angular felsic int.	
L26+00N 15+00E 15+50E 16+00E 16+50E 17+00E 17+50E 18+00E 18+50E 19+00E 19+50E 20+00E	BM BM BM BM BM BM BM C/regolith BM	silt silt silt silt silt silt silt silt	30 40 40 40 30 30 30 20 30 40	med brn med brn med brn med brn med brn med brn med brn med brn med brn	glac pebs/cobs glac pebs/cobs glac pebs glac pebs glac pebs glac pebs glac pebs/cobs v few rocks angular felsic int. v few rockchips	
L26+00N 15+00E 15+50E 16+00E 16+50E 17+00E 17+50E 18+00E 18+50E 19+00E 19+50E 20+50E	BM BM BM BM BM BM C/regolith BM BM BM	silt silt silt silt silt silt silt silt/sand v.f. silt silt/sand	30 40 40 40 30 30 30 30 30 30 30 30 35	med brn med brn	glac pebs/cobs glac pebs glac pebs glac pebs glac pebs glac pebs glac pebs/cobs v few rocks angular felsic int. v few rockchips v few rockchips	v rocky south flank of ck.
L26+00N 15+00E 15+50E 16+00E 16+50E 17+00E 17+50E 18+00E 18+50E 19+00E 19+50E 20+00E 20+50E 21+00E	BM BM BM BM BM BM C/regolith BM BM BM C/regolith	silt silt silt silt silt silt silt silt/sand v.f. silt silt/sand silt	30 40 40 40 30 30 30 20 30 40 35 25	med brn med brn med brn med brn med brn med brn med brn med brn med brn med brn pale buff choc brn dk brn	glac pebs/cobs glac pebs glac pebs glac pebs glac pebs glac pebs glac pebs/cobs v few rocks angular felsic int. v few rockchips v few rockchips abun. angular fels int	v rocky south flank of ck.
L26+00N 15+00E 15+50E 16+00E 16+50E 17+00E 17+50E 18+00E 18+50E 19+00E 19+50E 20+50E 20+50E 21+00E 21+50E	BM BM BM BM BM BM C/regolith BM BM C/regolith BM	silt silt silt silt silt silt silt silt/sand v.f. silt silt/sand silt/sand	30 40 40 30 30 30 30 30 30 30 30 35 25 40	med brn med brn med brn med brn med brn med brn med brn med brn med brn pale buff choc brn dk brn	glac pebs/cobs glac pebs glac pebs glac pebs glac pebs glac pebs glac pebs/cobs v few rocks angular felsic int. v few rockchips v few rockchips abun. angular fels int minor glac pebs	v rocky south flank of ck.
L26+00N 15+00E 15+50E 16+00E 16+50E 17+00E 17+50E 18+00E 18+50E 19+00E 19+50E 20+00E 20+50E 21+00E 21+50E 22+00E	BM BM BM BM BM BM C/regolith BM BM C/regolith BM BM BM BM BM	silt silt silt silt silt silt silt silt/sand v.f. silt silt/sand silt	30 40 40 40 30 30 30 20 30 40 35 25	med brn med brn med brn med brn med brn med brn med brn med brn med brn med brn pale buff choc brn dk brn	glac pebs/cobs glac pebs glac pebs glac pebs glac pebs glac pebs glac pebs/cobs v few rocks angular felsic int. v few rockchips v few rockchips v few rockchips abun. angular fels int minor glac pebs glac cobbles abun.	v rocky south flank of ck. slope 30 deg. E
L26+00N 15+00E 15+50E 16+00E 16+50E 17+00E 17+50E 18+00E 18+50E 19+00E 19+50E 20+00E 20+50E 21+00E 21+50E	BM BM BM BM BM BM C/regolith BM BM C/regolith BM	silt silt silt silt silt silt silt silt/sand v.f. silt silt/sand silt/sand	30 40 40 40 30 30 30 20 30 40 35 25 40 30	med brn med brn med brn med brn med brn med brn med brn med brn med brn pale buff choc brn dk brn	glac pebs/cobs glac pebs glac pebs glac pebs glac pebs glac pebs glac pebs/cobs v few rocks angular felsic int. v few rockchips v few rockchips abun. angular fels int minor glac pebs	v rocky south flank of ck. slope 30 deg. E

23+50E	N.S.					new gravel, road, farr	m equipment
20+00E 24+00E	BM	silt	3	5 0	dk brn	v. few rocks	an oquipinom
24+50E	BM	silt	30		ned brn	mixed pebs	
25+00E	BM	silt	30		dk gry	glac pebs	W side esker
25+50E	BM	silt	40		dk gry	glac pebs	top esker
26+00E	BM	silt	4		gry-brn	glac pebs	E flank esker
26+50E	BM	silt	4(-	gry-brn	few rockchips	w organic pasture
				-		1	0
Station	Soil hor.	Soil size	Depth cr	n C	Colour	Rockchips	Comments
L25+00N							
15+00E	BM	silt	38		ned brn	ass't rockchips	rich, weakly organic
15+50E	BM	f.g. silt	4		dk brn	ass't rockchips	w organic
16+00E	BM	silt	4		jk brn	ass't rockchips	w organic
16+50E	BM	silt	45		lk brn	ass't rockchips	w organic
17+00E	BM	silt	35		ned brn	80% diorite	
17+50E	BM	silt	3		med brn	80% diorite	
18+00E	BM	silt	3		ned brn	80% diorite	
18+50E	BM	silt	30		ned brn	80% diorite	
19+00E	BM	silt	30		ned brn	80% diorite	he welle a s
19+50E	B?	f.g. silt	3		bale buff	dior.	hardpan
20+00E	BM	f.g. silt	35	•	bale buff	dior.	hardpan
20+50E	BM	silt	50	•	bale buff	v. few rocks	hardpan; leached?
21+00E	B-C/rego.		25		ned brn	f.g. greenish int.	slope 30 deg. E
21+50E	BM	silt	30		ned brn	few rocks	break-in-slope
22+00E 22+50E	BM BM	silt silt	30 30		ned brn ned brn	few glac pebs	
22+50E 23+00E	N.S.	SIIL	30		neu pin	glac pebs barnyard, slough	
23+00L 23+50E	N.S.					slough	
23+50E 24+00E	BM	silt	30) n	ned brn	glac pebs	
24+00E 24+50E	BM	silt	30		ned brn	glac pebs	
24+50E 25+00E	BM	silt	30		ned brn	glac pebs	
25+00L 25+50E	BM	silt	30		ned brn	glac pebs	W side esker
26+00E	BM	silt	30		ned brn	glac pebs	top esker
26+50E	BM	silt	25		ned brn	glac pebs	E side esker
20+30L 27+00E	BM	silt	35		gry brn	minor glac pebs	@26+75E, hardpan
		JIL	5.	. 5		minor giao pena	webt roe, narupan

L24+00N15+00EB?silt45bm-blknonemoderately organic15+50EBMsilt40med brnglac. pebblesslope 5 deg. E16+00EBMsilt40med brnglac. pebblesslope 20 deg. E17+00EBMsilt40med brnglac. pebblesslope 20 deg. E17+50EBMsilt40med brnabun. glac. bldersflat meadow18+00EBMsilt40med brnabun. glac. bldersflat meadow18+50EBMsilt40med brnabun. glac. bldersflat meadow19+00EBMsilt40med brnabun. glac. bldersflat meadow19+00EBMsilt40med brnabun. glac. bldersflat meadow19+00EBMsilt40med brnabun. glac. bldersflat meadow19+50EBMsilt40pale buffno rocksloess?20+50EBMsilt35med brnfew rocksglacial mound22+50EBMsilt35med brnfew rocksglacial mound22+50EBMsilt35med brnfew rocksnear ck; mod organi24+50EBMsilt35med brnfew rocksnear ck; mod organi24+50EBMsilt35med brnfew rocksnear ck; mod organi24+50EBMsilt35med brnfew rocksnear ck; mo	Station	Soil hor.	Soil size	Depth cm	Colour	Rockchips	Comments
15+50E BM silt 40 med brn glac. pebbles slope 5 deg. E 16+00E BM silt 40 med brn glac. pebbles slope 5 deg. E 17+00E BM silt 40 med brn glac. pebbles slope 20 deg. E 17+00E BM silt 40 med brn abun. glac. blders flat meadow 17+50E BM silt 40 med brn abun. glac. blders flat meadow 18+00E BM silt 40 med brn abun. glac. blders flat meadow 19+02E BM silt 40 med brn abun. glac. blders flat meadow 19+02E BM silt 40 med brn abun. glac. blders flat meadow 19+02E BM silt 40 med brn abun. glac. blders flat meadow 19+02E BM silt 40 med brn abun. glac. blders flat meadow 21+00E BM silt 35 med brn few rocks 25 deg. slope E 21+00E BM	L24+00N						
16+00EBMsilt40med brnglac. pebblesslope 5 deg. E16+50EBMsilt40med brnabun. glac. bldersflat meadow17+50EBMsilt40med brnabun. glac. bldersflat meadow18+00EBMsilt40med brnabun. glac. bldersflat meadow18+50EBMsilt40med brnabun. glac. bldersflat meadow18+50EBMsilt40med brnabun. glac. bldersflat meadow19+50EBMsilt40med brnabun. glac. bldersflat meadow19+50EBMsilt40med brnabun. glac. bldersflat meadow20+00EBMsilt40pale buffno rocksloess?21+00EBMsilt35med brnfew rocks25 deg. slope E21+50EBMsilt35med brnfew rocksglacial mound22+00EBMsilt35med brnfew rocksglacial mound22+50EBMsilt35med brnfew rocksnear ck; mod organi24+00EBMsilt35med brn15-20% glac pebsglacial mound24+50EBMsilt35med brn15-20% glac pebsslat25+50EBMsilt35med brn15-20% glac pebsslope 8 deg. E26+50EBMsilt35med brnfew rocksslope 8 deg. E15+50	15+00E	B?	silt	45	brn-blk	none	•••
16+50EBMsilt40med brnglac. pebblesslope 20 deg. E17+50EBMsilt40med brnabun. glac. bldersflat meadow18+00EBMsilt40med brnabun. glac. bldersflat meadow18+00EBMsilt40med brnabun. glac. bldersflat meadow18+50EBMsilt40med brnabun. glac. bldersflat meadow19+00EBMsilt40med brnabun. glac. bldersflat meadow19+50EBMsilt40med brnflat meadowflat meadow20+00EBMsilt40pale buffno rockshardpan at 40 cm20+00EBMsilt35med brnfew rocks25 deg. slope E21+00EBMsilt35med brnfew rocksglacial mound22+00EBMsilt35med brnfew rocksnear ck; mod organi24+00EBMsilt35med brnfew rocksnear ck; mod organi24+00EBMsilt35med brn15-20% glac pebsslope be25+00EBMsilt35med brn15-20% glac pebsslope be25+00EBMsilt35med brn15-20% glac pebsslope be25+00EBMsilt35med brn15-20% glac pebsslope be26+00EBMsilt35med brnfew rocksslope 8 deg. E16+00E<	15+50E	BM	silt	40	med brn	glac. pebbles	slope 5 deg. E
17+00EBMsilt40med brn abun. glac. bldersflat meadow17+50EBMsilt40med brn abun. glac. bldersflat meadow18+50EBMsilt40med brn abun. glac. bldersflat meadow19+0EBMsilt40med brn abun. glac. bldersflat meadow20+50EBMsilt40pale buff pale buffno rockshardpan at 40 cm20+50EBMsilt35med brn few rocksglac platjlat21+00EBMsilt35med brn few rocksflat meadow23+50EBMsilt35med brn few rocksnear ck; mod organi24+00EBMsilt35med brn few rocksnear ck; mod organi24+00EBMsilt35med brn few rocksnear ck; mod organi25+50EBMsilt35med brn few rocksflat meadow25+50EBMsilt35med brn few rocksflat meadow25+50EBMsilt35 </td <td>16+00E</td> <td>BM</td> <td>silt</td> <td>40</td> <td>med brn</td> <td>glac. pebbles</td> <td>slope 5 deg. E</td>	16+00E	BM	silt	40	med brn	glac. pebbles	slope 5 deg. E
17+50EBMsilt40med brnabun. glac. bldersflat meadow18+50EBMsilt40med brnabun. glac. bldersflat meadow19+50EBMsilt40med brnabun. glac. bldersflat meadow19+50EBMsilt40med brnabun. glac. bldersflat meadow19+50EBMsilt40med brnabun. glac. bldersflat meadow20+00EBMsilt40pale buffno rockshardpan at 40 cm20+50EBMf.g. silt40pale buffno rocksloess?21+00EBMsilt35med brnfew rocks25 deg. slope E21+50EBMsilt35med brnfew rocksglacial mound22+50EBMsilt35med brnfew rocksglacial mound23+50EBMsilt20grymixed glac pebshardpan24+00EBMsilt35med brnfew rockshardpan24+00EBMsilt35med brn15-20% glac pebsflat25+50EBMsilt35med brn15-20% glac pebsflat25+50EBMsilt35med brn15-20% glac pebsflat26+00EBMsilt35med brn15-20% glac pebsflat26+00EBMsilt35med brnfew rocksflat15+50EBMsilt35med brn	16+50E	BM	silt	40	med brn	glac. pebbles	slope 20 deg. E
18+00EBMsilt40med brnabun. glac. bldersflat meadow18+50EBMsilt40med brnabun. glac. bldersflat meadow19+50EBMsilt40med brnabun. glac. bldersflat meadow19+50EBMsilt40med brnabun. glac. bldersflat meadow20+00EBMsilt40pale buffno rockshardpan at 40 cm20+00EBMsilt35med brnfew rocks25 deg. slope E21+00EBMsilt35med brnfew rocksglacial mound22+00EBMsilt35med brnfew rocksglacial mound22+50EBMsilt35med brnfew rocksglacial mound23+00EBMsilt20grymixed glac pebsnear ck; mod organi24+50EBMsilt35med brnfew rocksnear ck; mod organi24+50EBMsilt35med brn15-20% glac pebssec state25+50EBMsilt35med brn15-20% glac pebssec state25+50EBMsilt35med brn15-20% glac pebssec state26+00EBMsilt35med brn15-20% glac pebssec state26+50EBMsilt35med brnfew rocksfew rocks15+00EBMsilt35med brnfew rockssec state15+50EBM<	17+00E	BM	silt	40	med brn	abun. glac. blders	flat meadow
18+50EBMsilt40med brnabun. glac. bldersflat meadow19+00EBMsilt40med brnabun. glac. bldersflat meadow19+50EBMsilt40med brnfew rockshardpan at 40 cm20+50EBMf.g. silt40pale buffno rockshardpan at 40 cm20+50EBMsilt35med brnfew rocks25 deg. slope E21+00EBMsilt35med brnfew rocksglacial mound22+00EBMsilt35med brnfew rocksglacial mound22+50EBMsilt35med brnfew rocksglacial mound23+50EBMsilt35med brnfew rocksglacial mound23+50EBMsilt35med brnfew rocksnear ck; mod organi24+00EBMsilt35med brnfew rocksnear ck; mod organi24+00EBMsilt35med brn15-20% glac pebsnear ck; mod organi24+00EBMsilt35med brn15-20% glac pebsstatee26+00EBMsilt35med brnfew rocksfew rocks26+00EBMsilt35med brn15-20% glac pebsstatee26+00EBMsilt35med brnfew rocksfew rocks15+00EBMsilt35med brnfew rocksfew rocks16+00EBMsilt <td>17+50E</td> <td>BM</td> <td>silt</td> <td>40</td> <td>med brn</td> <td>abun. glac. blders</td> <td>flat meadow</td>	17+50E	BM	silt	40	med brn	abun. glac. blders	flat meadow
19+00EBMsilt40med brnabun. glac. bldersflat meadow19+50EBMsilt40med brnfew rockshardpan at 40 cm20+00EBMsilt40pale buffno rocksloess?21+00EBMsilt35med brnfew rocksloess?21+00EBMsilt35med brnfew rocks25 deg. slope E21+50EBMsilt35med brn25% pebblesglacial mound22+00EBMsilt35med brnfew rocksglacial mound22+50EBMsilt35med brnfew rocksglacial mound23+00EBMsilt35med brnfew rocksglacial mound24+50EBMsilt35med brnfew rocksnear ck; mod organi24+50EBMsilt35med brn15-20% glac pebshardpan24+50EBMsilt35med brn15-20% glac pebsincer ck; mod organi24+50EBMsilt35med brn15-20% glac pebsincer ck; mod organi25+50EBMsilt35med brn15-20% glac pebsincer ck; mod organi26+00EBMsilt35med brnfew rocksfew rocks26+00EBMsilt35med brnfew rocksfew rocks15+00EBMsilt35med brnfew rocksslope 8 deg. E15+00EBMsilt </td <td>18+00E</td> <td>BM</td> <td>silt</td> <td>40</td> <td>med brn</td> <td>abun. glac. blders</td> <td>flat meadow</td>	18+00E	BM	silt	40	med brn	abun. glac. blders	flat meadow
19+50EBMsilt40med brnfew rocks20+00EBMsilt40pale buffno rockshardpan at 40 cm20+50EBMf.g. silt40pale buffno rocksloess?21+00EBMsilt35med brnfew rocks25 deg. slope E21+50EBMsilt35med brnfew rocks22 deg. slope E22+50EBMsilt35med brnfew rocksglacial mound22+50EBMsilt35med brnfew rocksfew rocks23+50EBMsilt35med brnfew rockshardpan24+50EBMsilt35med brnfew rocksnear ck; mod organi24+50EBMsilt35med brnfew rocksnear ck; mod organi24+50EBMsilt35med brnf5-20% glac pebssilt25+50EBMsilt35med brn15-20% glac pebssilt25+50EBMsilt35med brn15-20% glac pebssilt26+50EBMsilt35med brn15-20% glac pebssilt25+50EBMsilt35med brnfew rocksfew rocks15+00EBMsilt35med brnfew rocksfew rocks15+00EBMsilt35med brnfew rocksslope 8 deg. E16+00EBMsilt35med brnfew rocksslope 8 deg. E	18+50E	BM	silt	40	med brn	abun. glac. blders	flat meadow
20+00EBMsilt40pale buffno rockshardpan at 40 cm20+50EBMf.g. silt40pale buffno rocksloess?21+00EBMsilt35med brnfew rocks25 deg. slope E21+50EBMsilt35med brnfew rocksglacial mound22+50EBMsilt35med brnfew rocksglacial mound22+50EBMsilt35med brnfew rocksfew rocks23+50EBMsilt20grymixed glac pebshardpan23+50EBMsilt20grymixed glac pebshardpan24+00EBMsilt35med brnfew rocksnear ck; mod organi24+00EBMsilt35med brn15-20% glac pebssilt25+00EBMsilt35med brn15-20% glac pebssilt25+50EBMsilt35med brn15-20% glac pebssilt26+50EBMsilt35med brn15-20% glac pebssilt26+50EBMsilt35med brn15-20% glac pebssilt26+50EBMsilt35med brnfew rockssilt25+50EBMsilt35med brnfew rocksfex26+50EBMsilt35med brnfew rocksfex15+00EBMsilt35med brnfew rockssilt15+50E <td>19+00E</td> <td>BM</td> <td>silt</td> <td>40</td> <td>med brn</td> <td>abun. glac. blders</td> <td>flat meadow</td>	19+00E	BM	silt	40	med brn	abun. glac. blders	flat meadow
20+50EBMf.g. silt40pale buffno rocksloess?21+00EBMsilt35med brnfew rocks25 deg. slope E21+50EBMsilt35med brnfew rocksglacial mound22+00EBMsilt35med brnfew rocksglacial mound22+50EBMsilt35med brnfew rocksglacial mound23+50EBMsilt35med brnfew rocksnear ck; mod organi24+00EBMsilt20grymixed glac pebshardpan24+00EBMsilt35med brnfew rocksnear ck; mod organi24+50EBMsilt35med brn15-20% glac pebssilt24+00EBMsilt35med brn15-20% glac pebssilt25+50EBMsilt35med brn15-20% glac pebssilt26+00EBMsilt35med brn15-20% glac pebssilt26+00EBMsilt35med brn15-20% glac pebssilt25+50EBMsilt35med brnfew rockssilt15+00EBMsilt35med brnfew rockssilt15+00EBMsilt35med brnfew rocksslope 8 deg. E15+50EBMsilt35med brnfew rocksslope 8 deg. E16+50EBMsilt35med brnfew rocksslope 8	19+50E	BM	silt	40	med brn	few rocks	
21+00EBMsit35med brnfew rocks25 deg. slope E21+50EBMsilt35med brnfew rocksglacial mound22+00EBMsilt35med brnfew rocksglacial mound22+50EBMsilt35med brnfew rocksglacial mound23+00EBMsilt35med brnfew rockshardpan23+50EBMsilt20grymixed glac pebshardpan24+50EBMsilt35med brnfew rocksnear ck; mod organi24+50EBMsilt35med brn15-20% glac pebssilt25+50EBMsilt35med brn15-20% glac pebssilt26+00EBMsilt35med brn15-20% glac pebssilt26+50EBMsilt35med brn15-20% glac pebssilt26+50EBMsilt35med brn15-20% glac pebssilt26+50EBMsilt35med brn15-20% glac pebssilt26+50EBMsilt35med brnfew rocksfew rocks15+50EBMsilt35med brnfew rocksslope 8 deg. E16+00EBMsilt35med brnfew rocksslope 8 deg. E16+60EBMsilt35med brnfew rocksslope 8 deg. E17+00EBMsilt35med brnfew rocksslope 8	20+00E	BM	silt	40	pale buff	no rocks	hardpan at 40 cm
21+50EBMsilt35med brnfew rocks22+00EBMsilt35med brn25% pebblesglacial mound22+50EBMsilt35med brnfew rocksfew rocks23+00EBMsilt35med brnfew rocksfew rocks23+50EBMsilt20grymixed glac pebshardpan24+00EBMsilt35med brnfew rockshardpan24+50EBMsilt35med brn15-20% glac pebshardpan24+50EBMsilt35med brn15-20% glac pebshardpan25+50EBMsilt35med brn15-20% glac pebshardpan26+00EBMsilt35med brn15-20% glac pebshardpan26+50EBMsilt35med brn15-20% glac pebshardpan26+50EBMsilt35med brn15-20% glac pebshardpan25+50EBMsilt35med brn15-20% glac pebshardpan26+50EBMsilt35med brnfew rocksforments15+00EBMsilt35med brnfew rocksslope 8 deg. E16+00EBMsilt35med brnfew rocksslope 8 deg. E16+50EBMsilt35med brnfew rocksslope 8 deg. E17+50EBMsilt35med brnfew rocksslope 8 deg. E	20+50E	BM	f.g. silt	40	pale buff	no rocks	loess?
22+00EBMsilt35med brn25% pebblesglacial mound22+50EBMsilt35med brnfew rocks23+50EBMsilt35med brnfew rocks23+50EBMsilt20grymixed glac pebshardpan24+00EBMsilt35med brnfew rocksnear ck; mod organi24+50EBMsilt35med brn15-20% glac pebssilt25+00EBMsilt35med brn15-20% glac pebssilt25+50EBMsilt35med brn15-20% glac pebssilt26+00EBMsilt35med brn15-20% glac pebssilt26+50EBMsilt35med brn15-20% glac pebssilt26+50EBMsilt35med brn15-20% glac pebssilt25+50EBMsilt35med brn15-20% glac pebssilt26+50EBMsilt35med brn15-20% glac pebssilt25+50EBMsilt35med brnfew rocksfew rocks15+00EBMsilt35med brnfew rocksfew rocks15+50EBMsilt35med brnfew rocksslope 8 deg. E16+50EBMsilt35med brnfew rocksslope 8 deg. E17+50EBMsilt35med brnfew rocksslope 8 deg. E17+50EBM <td>21+00E</td> <td>BM</td> <td>silt</td> <td>35</td> <td>med brn</td> <td>few rocks</td> <td>25 deg. slope E</td>	21+00E	BM	silt	35	med brn	few rocks	25 deg. slope E
22+50EBMsilt35med brnfew rocks23+00EBMsilt35med brnfew rocks23+50EBMsilt20grymixed glac pebshardpan24+00EBMsilt40dk brnfew rocksnear ck; mod organi24+50EBMsilt35med brn15-20% glac pebssear ck; mod organi24+50EBMsilt35med brn15-20% glac pebssear ck; mod organi24+50EBMsilt35med brn15-20% glac pebssear ck; mod organi25+50EBMsilt35med brn15-20% glac pebssear ck; mod organi26+00EBMsilt35med brn15-20% glac pebssear ck; mod organi25+50EBMsilt35med brnfew rocksfew rocks15+00EBMsilt35med brnfew rocksfew rocks15+50EBMsilt35med brnfew rocksslope 8 deg. E16+50EBMsilt35med brnfew rocksslope 8 deg. E17+50EBMsilt35med brnfew rocksflat meadow18+50EBM	21+50E	BM	silt	35	med brn	few rocks	
23+00EBMsilt35med brnfew rocks23+50EBMsilt20grymixed glac pebshardpan24+00EBMsilt40dk brnfew rocksnear ck; mod organi24+50EBMsilt35med brn15-20% glac pebsnear ck; mod organi24+50EBMsilt35med brn15-20% glac pebsnear ck; mod organi25+50EBMsilt35med brn15-20% glac pebsnear ck; mod organi26+00EBMsilt35med brn15-20% glac pebsnear ck;26+50EBMsilt35med brn15-20% glac pebsnear ck;26+50EBMsilt35med brn15-20% glac pebsnear ck;26+50EBMsilt35med brn15-20% glac pebsnear ck;26+50EBMsilt35med brn15-20% glac pebsnear ck;23+00N	22+00E	BM	silt	35	med brn	25% pebbles	glacial mound
23+50EBMsilt20grymixed glac pebs few rockshardpan near ck; mod organi24+00EBMsilt35med brn15-20% glac pebsnear ck; mod organi24+50EBMsilt35med brn15-20% glac pebsnear ck; mod organi25+00EBMsilt35med brn15-20% glac pebsnear ck; mod organi25+50EBMsilt35med brn15-20% glac pebsnear ck; mod organi26+00EBMsilt35med brn15-20% glac pebsnear ck; mod organi26+50EBMsilt35med brn15-20% glac pebsnear ck; mod organi26+50EBMsilt35med brn15-20% glac pebsnear ck; mod organi26+50EBMsilt35med brn15-20% glac pebsnear ck;26+50EBMsilt35med brn15-20% glac pebsnear ck;26+50EBMsilt35med brn15-20% glac pebsnear ck;15+20EBMsilt35med brnfew rocksfew rocks15+50EBMsilt35med brnfew rocksslope 8 deg. E16+00EBMsilt35med brnfew rocksslope 8 deg. E16+50EBMsilt35med brnfew rocksslope 8 deg. E17+50EBMsilt35med brnfew rocksflat meadow18+00EBMsilt35med brn	22+50E	BM	silt	35	med brn	few rocks	
24+00EBMsilt40dk brnfew rocksnear ck; mod organi24+50EBMsilt35med brn15-20% glac pebsnear ck; mod organi25+50EBMsilt35med brn15-20% glac pebs26+00EBMsilt35med brn15-20% glac pebs26+00EBMsilt35med brn15-20% glac pebs26+50EBMsilt35med brn15-20% glac pebs15+50EBMsilt35med brnfew rocks15+50EBMsilt35med brnfew rocks16+00EBMsilt35med brnfew rocks16+50EBMsilt35med brnfew rocks17+00EBMsilt35med brnfew rocks17+50EBMsilt35med brnfew rocks18+00EBMsilt35med brnfew rocks18+50EBMsilt20med brnminor glac. pebs18+50EBMsilt40med brnminor glac. pebs19+00EBMsilt40med brnminor glac. pebs	23+00E	BM	silt	35	med brn	few rocks	
24+50EBMsilt35med brn15-20% glac pebs25+00EBMsilt35med brn15-20% glac pebs25+50EBMsilt35med brn15-20% glac pebs26+00EBMsilt35med brn15-20% glac pebs26+50EBMsilt35med brn15-20% glac pebs26+50EBMsilt35med brn15-20% glac pebs26+50EBMsilt35med brn15-20% glac pebsStationSoil hor.Soil sizeDepth cmColurRockchipsCommentsL23+00N	23+50E	BM	silt	20	gry	mixed glac pebs	hardpan
25+00EBMsilt35med brn15-20% glac pebs25+50EBMsilt35med brn15-20% glac pebs26+00EBMsilt35med brn15-20% glac pebs26+50EBMsilt35med brn15-20% glac pebs26+50EBMsilt35med brn15-20% glac pebsStationSoil hor.Soil sizeDepth cmColourRockchipsCommentsL23+00N	24+00E	BM	silt	40	dk brn	few rocks	near ck; mod organi
25+50EBMsilt35med brn15-20% glac pebs26+00EBMsilt35med brn15-20% glac pebs26+50EBMsilt35med brn15-20% glac pebs26+50EBMsilt35med brn15-20% glac pebsStationSoil hor.Soil sizeDepth cmColourRockchipsCommentsL23+00N	24+50E	BM	silt	35	med brn	15-20% glac pebs	
26+00EBMsilt35med brn15-20% glac pebs26+50EBMsilt35med brn15-20% glac pebsStationSoil hor.Soil sizeDepth cmColourRockchipsCommentsL23+00N15+00EBMsilt35med brnfew rocks15+50EBMsilt35med brnfew rocks16+00EBMsilt35med brnfew rocks16+00EBMsilt35med brnfew rocks16+50EBMsilt35med brnfew rocks16+50EBMsilt35med brnfew rocks17+50EBMsilt35med brnfew rocks17+50EBMsilt35med brnfew rocks17+50EBMsilt35med brnfew rocks18+00EBMsilt35med brnfew rocks18+50EBMsilt20med brnfiat meadow19+00EBMsilt40med brnminor glac. pebsflat meadow	25+00E	BM	silt	35	med brn	15-20% glac pebs	
26+50EBMsilt35med brn15-20% glac pebsStationSoil hor.Soil sizeDepth cmColourRockchipsCommentsL23+00NSilt35med brnfew rocksfew rocks15+00EBMsilt35med brnfew rocks15+50EBMsilt35med brnfew rocks16+00EBMsilt35med brnfew rocks16+50EBMsilt35med brnfew rocks16+50EBMsilt35med brnfew rocks17+00EBMsilt35med brnfew rocks17+50EBMsilt35med brnfew rocks18+00EBMsilt35med brnfew rocks18+50EBMsilt20med brnfiat meadow19+00EBMsilt40med brnminor glac. pebsflat meadow	25+50E	BM	silt	35	med brn	15-20% glac pebs	
StationSoil hor.Soil sizeDepth cmColourRockchipsCommentsL23+00N15+00EBMsilt35med brnfew rocks15+50EBMsilt35med brnfew rocks16+00EBMsilt35med brnfew rocks16+50EBMsilt35med brnfew rocks16+50EBMsilt35med brnfew rocks17+00EBMsilt35med brnfew rocks17+50EBMsilt35med brnfew rocks18+00EBMsilt35med brnfew rocksflat meadow18+50EBMsilt20med brnminor glac. pebsflat meadow19+00EBMsilt40med brnminor glac. pebsflat meadow	26+00E	BM	silt	35	med brn	15-20% glac pebs	
L23+00N15+00EBMsilt35med brnfew rocks15+50EBMsilt35med brnfew rocks16+00EBMsilt35med brnfew rocksslope 8 deg. E16+50EBMsilt35med brnfew rocksslope 8 deg. E17+00EBMsilt35med brnfew rocksslope 8 deg. E17+50EBMsilt35med brnfew rocksslope 8 deg. E18+00EBMsilt35med brnfew rocksflat meadow18+50EBMsilt20med brnminor glac. pebsflat meadow19+00EBMsilt40med brnminor glac. pebsflat meadow	26+50E	BM	silt	35	med brn	15-20% glac pebs	
L23+00N15+00EBMsilt35med brnfew rocks15+50EBMsilt35med brnfew rocks16+00EBMsilt35med brnfew rocksslope 8 deg. E16+50EBMsilt35med brnfew rocksslope 8 deg. E17+00EBMsilt35med brnfew rocksslope 8 deg. E17+50EBMsilt35med brnfew rocksslope 8 deg. E18+00EBMsilt35med brnfew rocksflat meadow18+50EBMsilt20med brnminor glac. pebsflat meadow19+00EBMsilt40med brnminor glac. pebsflat meadow							
15+00EBMsilt35med brnfew rocks15+50EBMsilt35med brnfew rocks16+00EBMsilt35med brnfew rocksslope 8 deg. E16+50EBMsilt35med brnfew rocksslope 8 deg. E17+00EBMsilt35med brnfew rocksslope 8 deg. E17+50EBMsilt35med brnfew rocksslope 8 deg. E18+00EBMsilt35med brnfew rocksflat meadow18+50EBMsilt20med brnminor glac. pebsflat meadow19+00EBMsilt40med brnminor glac. pebsflat meadow	Station	Soil hor.	Soil size	Depth cm	Colour	Rockchips	Comments
15+50EBMsilt35med brnfew rocks16+00EBMsilt35med brnfew rocksslope 8 deg. E16+50EBMsilt35med brnfew rocksslope 8 deg. E17+00EBMsilt35med brnfew rocksslope 8 deg. E17+50EBMsilt35med brnfew rocksslope 8 deg. E17+50EBMsilt35med brnfew rocksbreak-in-slope18+00EBMsilt35med brnfew rocksflat meadow18+50EBMsilt20med brnminor glac. pebsflat meadow19+00EBMsilt40med brnminor glac. pebsflat meadow	L23+00N						
16+00EBMsilt35med brnfew rocksslope 8 deg. E16+50EBMsilt35med brnfew rocksslope 8 deg. E17+00EBMsilt35med brnfew rocksslope 8 deg. E17+50EBMsilt35med brnfew rocksbreak-in-slope18+00EBMsilt35med brnfew rocksflat meadow18+50EBMsilt20med brnminor glac. pebsflat meadow19+00EBMsilt40med brnminor glac. pebsflat meadow	15+00E	BM	silt	35	med brn	few rocks	
16+50EBMsilt35med brnfew rocksslope 8 deg. E17+00EBMsilt35med brnfew rocksslope 8 deg. E17+50EBMsilt35med brnfew rocksbreak-in-slope18+00EBMsilt35med brnfew rocksflat meadow18+50EBMsilt20med brnminor glac. pebsflat meadow19+00EBMsilt40med brnminor glac. pebsflat meadow	15+50E	BM	silt	35	med brn	few rocks	
17+00EBMsilt35med brnfew rocksslope 8 deg. E17+50EBMsilt35med brnfew rocksbreak-in-slope18+00EBMsilt35med brnfew rocksflat meadow18+50EBMsilt20med brnminor glac. pebsflat meadow19+00EBMsilt40med brnminor glac. pebsflat meadow	16+00E	BM	silt	35	med brn	few rocks	slope 8 deg. E
17+50EBMsilt35med brnfew rocksbreak-in-slope18+00EBMsilt35med brnfew rocksflat meadow18+50EBMsilt20med brnminor glac. pebsflat meadow19+00EBMsilt40med brnminor glac. pebsflat meadow	16+50E	BM	silt	35	med brn	few rocks	slope 8 deg. E
18+00EBMsilt35 med brnfew rocksflat meadow18+50EBMsilt20 med brnminor glac. pebsflat meadow19+00EBMsilt40 med brnminor glac. pebsflat meadow	17+00E	BM	silt	35	med brn	few rocks	slope 8 deg. E
18+50EBMsilt20med brnminor glac. pebsflat meadow19+00EBMsilt40med brnminor glac. pebsflat meadow	17+50E	BM	silt	35	med brn	few rocks	break-in-slope
19+00E BM silt 40 med brn minor glac. pebs flat meadow	18+00E	BM	silt	35	med brn	few rocks	flat meadow
3 ,	18+50E	BM	silt	20	med brn	minor glac. pebs	flat meadow
19+50E BM silt 40 med brn minor glac. pebs flat meadow	19+00E	BM	silt	40	med brn	minor glac. pebs	flat meadow
	19+50E	BM	silt	40	med brn	minor glac. pebs	flat meadow

20+00E	B?	v.f. silt	40	pale buff	no roks	loess?
20+50E	BM	silt	35	med brn	no rocks	
21+00E	BM	silt	35	med brn	minor glac. pebs	
21+50E	BM	silt	35	med brn	glac. pebs/cobbles	slope 10 deg. E
22+00E	BM	silt	35	med brn	glac. pebs	garbage pit 8m to E
22+50E	BM	silt	35	light brn	no rocks	loess?
23+00E	BM	silt	20	med brn	15-20% pebs	hardpan
23+50E	BM	silt	35	med brn	15-20% pebs	hardpan
24+00E	BM	silt	35	med brn	glac. pebs	
24+50E	BM	silt	35	med brn	glac. pebs	8m E of stn.
25+00E	B?	silt	30	light brn	glac. pebs/cobbles	flat meadow
25+50E	BM	silt	30	med brn	glac. pebs/cobbles	slope 3 deg. W
26+00E	BM	silt	30	med brn	glac. pebs/cobbles	
26+50E	BM	silt	30	med brn	glac. pebs/cobbles	top of esker ridge
27+00E	BM	silt	30	dk brn	few pebs	slope 25 deg. E

Station	Soil hor.	Soil size	Depth cm	Colour	Rockchips	Comments
L22+00N	ł					
15+00E	BM	silt	30	med brn	v. few pebbles	slope 8 deg. E
15+50E	BM	silt	30	med brn	v. few pebbles	slope 8 deg. E
16+00E	BM	silt	25	med brn	v. few pebbles	slope 8 deg. E
16+50E	BM	silt	30	med brn	v. few pebbles	slope 8 deg. E
17+00E	BM	silt	30	med brn	v. few pebbles	slope 8 deg. E
17+50E	BM	silt	30	med brn	v. few pebbles	slope 8 deg. E
18+00E	BM	silt	30	med brn	v. few pebbles	slope 10 deg. E
18+50E	BM	silt	30	med brn	v. few pebbles	flat meadow
19+00E	BM	silt	30	med brn	v. few pebbles	flat meadow
19+50E	B?	silt	35	pale brn	v. few pebbles	flat meadow
20+00E	BM	silt	30	med brn	10% pebs	slope 2 deg. E
20+50E	BM	silt	30	med brn	glac. pebs	slope 10 deg. NE
21+00E	BM	silt	30	med brn	5% pebs	slope 10 deg. NE
21+50E	BM	silt	30	med brn	5% pebs	slope 10 deg. NE
22+00E	BM	silt	30	med brn	glac. pebs	slope 10 deg. NE
22+50E	BM	silt	30	med brn	glac. pebs	slope 5 deg. NE
23+00E	BM	silt	30	med brn	20% pebs	slope 5 deg. NE
23+50E	BM	silt	35	dk brn	glac. pebs	slope 5 deg. NE
24+00E	B?	silt	40	dk brn	v. few pebs	w.org.;flat meadow
24+50E	BM	silt	30	med brn	glac. pebs	out of gully
25+00E	BM	sìlt	30	med brn	glac. pebs	near ck.

25+50E	BM	silt	30	med brn	glac. pebs	slope 20 deg. to ck.
26+00E	BM	silt	40	med brn	few rocks	slope 3 deg. W
26+50E	B?	silt	25	med brn	glac. pebs/cobbles	slope 3 deg. W
27+00E	BM	siit	30	med brn	glac. pebs	top of esker

Station	Soil hor.	Soil size	Depth cm	Colour	Rockchips	Comments
L21+00N						
15+00E	BM	silt	30	med brn	minor glac. pebs	slope 5 deg. ESE
15+50E	BM	silt	30	med brn	10% glac. pebs	slope 5 deg. ESE
16+00E	BM	silt	30	med brn	10% glac. pebs	slope 5 deg. ESE
16+50E	BM	silt	30	med brn	10% glac. pebs	slope 5 deg. ESE
17+00E	BM	silt	30	med brn	10% glac. pebs	slope 5 deg. ESE
17+50E	BM	silt	40	med brn	10% glac. pebs	slope 5 deg. ESE
18+00E	BM	silt	35	med brn	20% glac. pebbles	slope 5 deg. ESE
18+50E	BM	silt	40	dk brn	no rocks	slope 5 deg. ESE
19+00E	BM	silt	40	dk brn	no rocks	slope 5 deg. ESE
19+50E	BM	silt	40	dk brn	no rocks	slope 5 deg. ESE
20+00E	BM	silt	40	dk gry	no rocks	slope 5 deg. ESE
20+50E	BM	silt	30	med brn	minor glac. peb/cob	slope 5 deg. ESE
21+00E	BM	silt	30	med brn	minor glac. peb/cob	slope 8 deg. E
21+50E	BM	silt	30	light brn	minor glac. peb/cob	slope 8 deg. E
22+00E	BM	silt	30	light brn	minor glac. peb/cob	slope 25 deg. S
22+50E	BM	silt	30	light brn	minor glac. peb/cob	slope 25 deg. S
23+00E	BM	silt	30	light brn	minor glac. peb/cob	hardpan; drainage
23+50E						
24+00E						
24+50E						
25+00E						
25+50E						
26+00E						
26+50E						
27+00E						
Station	Soilbor	Soil size	Depth om	Colour	Pookobing	Commente

Station	Soil hor.	Soil size	Depth cm	Colour	Rockchips	Comments
L20+00N						
15+00E	BM	silt	30	dk brn	20% pebbles	edge of treeline
15+50E	BM	silt	30	dk brn	20% pebbles	
16+00E	BM	silt	30	med brn	20% pebbles	

16+50E	ВM	silt	30	med brn	20% pebbles	slope 8 deg. E
17+00E	ВM	silt	40	med brn	10% pebbles	slope 3 deg. E
17+50E	BM	silt	40	med brn	10% pebbles	
18+00E	BM	silt	40	dk brn	few rocks	mod. organic
18+50E	BM	silt	40	med brn	5% pebbles	slope 5 deg. NE
19+00E	BM	silt	30	med brn	5% pebbles	slope 5 deg. NE
19+50E	BM	silt	30	med brn	5% pebbles	slope 5 deg. NE
20+00E	BM	silt	30	med brn	5% pebbles	slope 5 deg. NE
20+50E	ВM	silt	25	med brn	20% pebbles	stn in draugh
21+00E	BM	silt	25	pale brn	rocky	hardpan
21+50E	ВM	silt	30	med brn	5% pebbles	slope 20 deg.E
22+00E	BM	silt	30	med brn	no rocks	weakly organic
22+50E	BM	silt	25	med brn	25% pebbles	near top esker (W)
23+00E	ВM	silt	25	med brn	rocky hardpan	near top esker (E)
23+50E	BM	silt	25	pale brn	glac. pebbles	hardpan
24+00E	BM	silt	25	pale brn	glac. pebbles	hardpan, rocky
24+50E						
25+00E						
25+50E						
26+00E						
26+50E						

"121-KON" 7 "120+000"

. -

1994	SOIL	DIL SAMPLES PROPERTY PROJECT DE SAMPLER											
SAMPLE NO.	GRID LOCATION		THICK (cm)	HOR I ZON	COLOUR	PARTICLE SIZE	×	ROUND	COPP	SLOPE		CONVENTS	
1/21	TOCN "												
23tx		25		Bn	med							V. little A , graelly	
2º14cc		30		11	11							V. little F. Graelly better soil	
24+50		1		a	11							11	
JEAC	_	35		11	11							} 	
25+50	<u> </u>	30		if	med lik bin							SCAR & Greek Sully	
26+50		25		Bm?								clay rich glocial	
37 1 0	£	25		Lt								<u> </u>	
M. 2	teen ":												
					mal-		— —	┨───┨					
201+5		30		BM	lix bro			┨───┤				metthy, little A	
2570	<u>E</u>	<u> </u>		,	met- ckbn			┼──┤					
25+5		35			and and			-				base of critisly 2° alright Scill Cloyey, organic alright Scille	
26+60		25-		R. I.A	dic			-				alright scil	
26+50		5 <u>C</u>		Bm:A Bm	bin mai-			┝╌┦				Clayey joint	
27:00	<u> </u>	30		9//	CICEN							BIFRIT SONC	
								┼──┤					
								╞──┤					
								<u> </u>					
	··							┼──┤				······	
								<u> </u>					
								╞─┤					
		\vdash						╞╼╌┤					
		-						┠				· · · · · · · · · · · · · · · · · · ·	
								-	<u>.</u>				
								L				·	
						1							

8:

"(29tach"

1994	SOI	L SNPL	PROPER	TY PROJECT	۔ ک_ ۲	TOKEN	2		SAMPI			
SAMPLE NO.	GRID LOCATION	DEPTH (cm)		HOR 120N	COLOUR	PARTICLE SIZE	x	ROUND	COMP	SLOPE	SEEPAGE	COMENTS
L29tocn	12											
16tove		25		Bin	dk dk							Med. drar. freas
16+DE		30		Bm	brn							fire, dork
17+00E		30		Bm	med brn med-							fire, dork flat, mod. alie frags
17+SUE		15		BM	brn							lots frags
18ticté		20		Bm	bin.				•			divik frags (lots)
FUX XUE	<u> </u>	25		BM	ind- b.c							kts divik frags, 80
19 tooE	_	30		Bm?				<u> </u>				Surdy-sitty, side slare
MASUE		30		BM	mad b(n med-							Steep slope, sond-sit
2010E		15		Bin	bin							tire, Rivdery
JUTIE		15		Bin	11 dr.b.n.							fire, pourdery , side slope some cropnic, side slope
217000		25		p	t black			$\left \right $				Seme argonic, side store
214 50E		25		151. 114	Hodi		<u> </u>	 				tire sends peuder
2210CE		15		Binip	cllL brn cllL			┞──┦			L	Sordy frags of diante
27450F		20		Bml	brn							sendy, crester ester, facily
2340CE		(1		//	11 11		_					
23150E	 _	20- 25		<u>u</u>	1			┝──┤		_		fire, peuding, no frags fire, sandy, rock-1 Sordy, lots randed die frage
2440CE		15-		11								the scoly, rocky
24150E		15		Bin	11 med-			╞──┤				Sordy, Icts randed die trag
1210CE		151		BM	bin mat-			╞┈╶┤				Icts retties, frequents
12+SUE	<u>_</u> .	25		BM	dK d			┇────┤				Coose sord, grazel
131005		40		BM	Ined -		<u> </u>	╎──┤				sitty
13+505		Sur Cur		Bin	dKbin med- dK\$in			┼─╌┼				Some as lutace lots diarik frags, rach
14HOUF		T 1		13m	nath			-+				Some Contrags forth
14450E		25	_	~ .	CK							Some racts
15KOE		25		BM	brn			┢╌┥				Some roots rooty, lots fragments
15+50E		25		<u>BH(±A</u>)	bran							1 UUI y 1013 Tragments
		+										
		$\left\{ - \right\}$										
								\vdash				
			-+									

"L 30 tacn "

[

;

.

1994	\$01L	SNPL	ES		PROPER	TY PROJECT	<u></u>	RKE	l.		SAIP	
SANPLE NO.	GRID LOCATION	DEPTH (cm)	TNICK (cm)	HOR LZON	COLOUR	PARTICLE SIZE	x	ROUND	COMP	SLOPE	SEEPAGE	CONNENTS
12 30	toon :		_		<u> </u>		_					
12+00		40- 50cm		Bm	aren							weak frags
12+3		40		Bm	debin							()
13+0		40		Bint	dK5.n £5iauk		1					d
13+	-	30		BM	croger bran							crangestrown, wat frous
141+0		35-		Bm	dk bir							Motheycolor, 11
1417	XE	35		Bin.	med							Sitty, "
1 Stock		20-		BM	202							not and soil
15-130		30		BM	med- dkbm dkbm							± rooty,
16+cc		30		Bni	biack mid							mother cobr, rocty, organic
110+500		20		Bm	brn med			├ 				+ rooty, mother celor, rooty, organic mod-doorthe frags mother color, wom-frags some reats, mod frags
17+004		30		1.51	60			╞╾╶┦	-			nothercold, wm. frags
17450		25		BM	bm			┟╴╶┦				some routs, mod. trags
18HC		20		Bin	II dic							
18+50		30		Bin	brn			┠──┤				In little gulle, between ots lots dioret frags fire, mad-slope clax to grave / pit
197700		20		11	med		<u> </u>					lots diorik trags
19+50		25		11	bn nul-			╞─┤				time, mad. slepe
JC+CC		25		Bin?	dk & n ned			┝╼╌┥				City to Shave pit
22+00		30		Bml	di bry di bry Haile			\vdash				Sordy from road Cut.
22470		30 15		<u>A</u>	med			-				mixtue of crossic /Bin racky, fire prodery
23400		15		BM	i			╏───┤				
23+50		BE		13m	11		•	┟╌━┤				Sondy, rocky
JLIFCC												
							<u> </u>					

"L 3Han"

il.

1994/	50 1 L	SAMPL	ES		PROPER	TY PROJECT	r j	CKE/	2		SAIP	LER
SAMPLE NO.		DEPT) (CB)	THICK (cm)	HOR120N		PARTICLE		FRACHER	TS	SLOPE		COMMENTS
L 31	tuon											What froms
13700		30		BM	md-							Weak freys Weak freys Weak freys
13+501		30		4	1Kinn							Weak freqs
14+cif		30		1/	med							
147 24		25		ъf	distan							50-50 50%, 10(a) frags
Stock		40		<i>tl</i>	11							Iucal freas
157524	-	25	Ļ	Bm± BF	mad							'
16+ccf		25		Bm± A	die bin- blaik							· · · · · · · · · · · · · · · · · · ·
il true		30		Bm	dik bin mid-			<u> </u>				wak-med frags
17.4C.CF		30			tra							good soil,
17+84		20		1	nal- dkbn			 				rocky
Star		25		11	"			$ \downarrow \downarrow$				
8+504		25		11	lix- malbm			$\left \right $				······································
19tcing		30		BM+ BF?	ii			 				
19.1500		20		Bin?	11			$\left \right $				Sondy
JOHU		20		Bin	neu- bin							gravely, lots pettics
20-1-27		11		<u>t</u> [11			┝──┤				4
214501	í.	1		//	il.			 				
22.100		1		Bin	11 17			┝──┤				gravel (glacial)
22+50		Ú.		. //				<u> </u>				11
2 3tci		/f		1	(1 data			<u> </u>				·/
33150	ξ	25		13/	biacil.			<u> </u>				
								$ \vdash $				
								 				
			{			{			- 1			

have have have

					t,	123	740	CN	11			12.
1994		SNPL	ES	. <u> </u>	PROPER	TY PROJECT	r	JOKE	R.		SAIP	
SAIPLE NO.	GRID LOCATION		THICK (cm)	HORIZON	COLOUR	PARTICLE \$IZE	x	ROUND	COMP	SLOPE	SEEPAGE	COMMENTS
"L 327	ion":	Ι										
13+000		20-25		ISM	med							med. frages
13+502		25	[BAN	lite -							Mod frags
14+cce	•	30		Bm Bm	med- 5n							w-m frags
144500		40		Bm	dK							Some bark.
15+CCA		20		/i	11							racty
15+502		20-		4	Med- dkpm							racty motility color
16tect		25		11	11							
16+50E		30		Bint	dle 6m							rocty, any arganics
MACCA		25		BM	ment							Fire, scoty med. frags
17+501		25		11	11		-					fair soil
18ticf		30		11	11							Still lots relations
18750		25-		11	lik - melhin							med. frags
19tice		25		11	11t-				_			not gravelly
19+500	•	20		11	nella mella med bon							growly, on little ester. graeily, petities
JOHCER		25		^	1		-					graeily, petities
20122		20		Л	11							11
ZIACE	· · · · · · · · · · · · · · · · · · ·	25		BMA	dle							weill-mil-freess
21+5,74		25		BmIA								Wall-mal-frees
22tcc		15		Bm	med		_					grovelly (glaciai)
22+504		20		Bnj A. A,Bin	mai-							
JBACCA		25		A, Bin	cirbin							nottley, graelly
U MCCR												
										_		
							_					

:

"L 33+00~"

1994	50 1L	SAMPL	ES		PROPER	Y PROJEC	r	JCICE	R		SAIP	
SAMPLE NO.	GRID LOCATION		THICK (cm)	HORIZON	COLOUR	PARTICLE SIZE	x	RADIE	COMP	SLOPE	SEEPAGE	COMMENTS
"L 33	tocn":											
13tock		40		Bin/A	dK							
13+ SUE	-	35		Bin	ment							Week frogs
14+000		11		11	11							11
14+30	£	25		11	med- dkb:n							
15 HC	£	20		Bm/BF								Clay rich , rocky
15+524	£	25	<u> </u>	Bin	11timo			<u> </u>			· · · · · ·	charge powder mit fo
16ter		40			med- dk.bm							577 clayey
16+501		50	 	A, ±Bm								Clay rich, rocky clayer powchery, mel.fro bit clayer crossic rich, deep rottley (work), good soil
17+CE		30		BF=A				<u> </u>				nottley (work), good soil
174 20		30		Bm	<u> </u>			┞──┤				
(Stace		25		11	11			┞──┤				Changer, mad, frogs
18+50		20		13miBF	or.brn			╞──┤				crarges, mid frags
Pitce		20			med bra			├ ─┤				graelly
19+450		20		Br±BF 11								graklin
Derfect		11			il mel-			┝──┤				
2:454		X		BF	ollbr med			┝──┤				Sondy, Good Soil Graely (glacia))
2/+00		20		Bin	H H			}}				graelly (3100101)
21+50		<u></u>			/1			╞──┤				11
		25			11			╞─┤				
23+50E 23+50E		11		1(11			┠╼╾╍╋				11
FITCH	·	24.7			11							
JC1+502		يدو موتو			1				{			net as gravely
0-17-501		~??						+				let us waven
	—j							┝╼╋				
								\vdash				
											{	
{												
				1								

"L 34+cc"

-

-

Γ

;

-

1994	SOIL	SNPL	ES		PROPER	TY PROJECT	۔ کہ ۲	DKE	2	·	SAMP	LER
SAMPLE NO.	GRID LOCATION	(cm)	THICK (cm)	HORIZON	COLOUR	PARTICLE SIZE	×	ROLIND		SLOPE	SEEPAGE	CONNENTS
12 34	teon":											
Brack		30		Bin	mal- dkbn							growerly abial petters
13+50		30		Bm/F	Bin							Croonic
1LItect		35		Bm+f								mottled
144507	£	40- 50		11	h			<u> </u>				11
15+00	5	3.5		"	distin			ļ				Vey little crosnic confort
15+50	Ę	25		BM	mid							mal. pethles
16104		250		<u>A</u>	II med-							
164 50		20		11	dkbn			<u> </u>				4
17+004	·	20- 30		11	11							//
17+505		20		C, BM	likbon							regulth (diorite)
18+00		d i		1311	brind			<u> </u>				Regolith (diorite) fire graelly lets pethics week pethics
18+50		11		/1	br			┤				lets pethis
<u>19+α</u> Ε		20		(1	11			<u> </u>		<u> </u>		Wark pethics
PHISTE		1			4			╞╴┤				
20-100		./		Λ	11			-				
20+5C		25		11	"I irethm			┼╌┤				grazily (elocial) motilied,
21+00		35			ind home	·)		┝╴╶┤				monied,
214-SCA		30		Bm	bra			╉┈╼┨				Good Soil
22+502				(1	11			$\left - \right $			<u> </u>	
23-KU		75 25		Bm	11 met-			╁╼╌┥				graelly on ester
23+50		$\frac{\mathcal{H}}{\mathcal{H}}$			30.1			{}				
Jetter		20		BM	cikb-			┞┄╌╌┠				on oky
								┞──┤				
							<u>-</u>	╂───┤				
								}				
								┟╴╶┥				····
								┞──┤				
								┝━╌┽				· · · · · · · · · · · · · · · · · · ·
		-										
[

"L 35+00~"

1994	\$011	SAMPL	ES		PROPER	TY PROJEC	r	JOKE	2		SAIP	LER
SAUPLE NO.	ERID LOCATION	(cm)	тятск (св)	HORIZON	COLOUR	PARTICLE SIZE	x	ROUND	COMP	SLOPE	SEEPAGE	COMMENTS
6 35	ticn ?											
13tock		20		Bm	med							glacia / pertites resker
13+504		t		11	a .							Ky gracilly
HACE		25		BF[Bm BIM	nel hr							Ky gracily med frags congey better soil
14,50	=	25		BM	11the - med b.m							betty soil
157004		25-		nm	1 1							Graveilu
5+50.		35		11	med- lik bo							11
16+14		50		11 Britfi	dkh tchlk							mothed
16+505		Sc,		BM A/BM	ined bro							
17100		55-		A/Bm	bik							
17:54		20		B in	/ .							
18400		//		11	11							
18+5UA		25			med- likbr							
19tice		· <i>H</i>		11	ITK- malbn							graelly
PH 500		/		11	11							graelly 11
20100		55		BETA	4							only some f good Soil
70+50		23		Bin	Itt -					_		· · · · · · · · · · · · · · · · · · ·
21+00		11		$\gamma \ell$	11		_					
22+60		20		Bm	bon		_					graeily(oker)
22+504		<i>î</i> t		A	11		_					<i>ii</i>
73700		11		11	<i>,</i>		_		-			1/
23+504		4		11	4							Si Hugraelly
JUHU		25		Bmp	met- dkhn							Scoty-rooty
			T									
					1							
			1						-1			
								<u>}</u>				
+				{			_					
]											

F.

"L36+00N"

\sim				
_	 	J.	\overline{c}	

1994	5011	SAIPL	ES		PROPER	TY PROJECT	·	DKE	<u>C</u>		SAMP	LER
SAMPLE NO.	GRID LOCATION		THICK (cm)	HORIZOM	COLOR	PARTICLE SIZE	X	ROUND	CONP	SLOPE		CDIMENTS
2361	con":											
13tect	1.	25		Bm	md b.c							gravelly
13+50		25		11	ti -							9.avelly 11
14HCCE		30		11	Tix b.n							11
14+50	E.	25-		1	med bon							11
174500 1844CE	2	30		11	11							11
18tice		11		ri	1							11
18+5CA	2	<i>i</i> 1		11	cr.brn				_			not bad soil
PHACE		11		()	11							Notbad Soil
19+77	<u>}</u>	Л		11	11							11
JOtech		11		11	11			<u> </u>				
20150		4		"				\vdash				11
21+50	<u> </u>	ж- 25		et	med			┇				grovelly so-su Suil
22+506 23+506 23+506	<u> </u>	u		/1	11							Grovelly, so-su Sui/ Not bad sui/
22+50	<u> </u>	9		1/	<u></u>			$\left - \right $				(/
23100	<u> </u>	25		/1	11			$\left - \right $				Graelly Sitty
23+50	<u> </u>	25		/}	11							Sitty
		<u> </u>						 				
								┣──┤				
		L						 				
								 				
			{					\vdash				
								┟──┦				
								┟──┤				
								<u> </u>				
								<u> </u>				
								└──┤				
								├				
	·											
				{								
								i		ł		

APPENDIX VII

Diamond Drill Logs

	2	1 · · · · ·													I	ł		
						_												
		TECK EXPLORATIONS) 2 <i>1</i> /4	21.1			E No.					ENGTH	•) oi	r 6	
COMPAI PROJEC	NY . T		CLAIM ELEVATION GRID COOL	9 <u>CE</u> 1 70	37 m	ı	DATE : COLLARED JULY : COMPLETED JULY : LOGGED JULY / : LOGGED BY : S.J. CORE SIZE : NQ	<u>12/94</u> Colle	РТН 9 <u>R</u> -	·60 1	<u>10</u>	DE CA W/	SING	OF ON REMAII	/B: NING:_ ENGTH	3.05m 	ED	
DEPTH (metres) FROM	GRAPHIC	DESCRIPTION		RECOVERY	STRUC	TURE	ALTERATION	METALLIC MINERALS (%)	<u>' </u>		.				RESU			
TO	GF	CASING - In strongly broken go	and and	ŭ K		 			NO.	FROM	то 	LENGT	(CU (Spm)	Au (ppb)				_
3.05		HYBRID BRECCIA					9.7m - possibly scanding block -bran felted mag	tr. malushite	tölec l	<i>7.7</i> 0	9.7	2.0	319	45				
		For gover light to medium ga diactic intusive to Andositic value locally books like intusive borning datasteristic of the hybrid breach	nic? Lagglomerce lo unit				local ep in name ways 4.6-19-7 = ep. H - Locally moderate in 20		+									
		Very heterogeness - schoolconic ++ frogments-sometimes had to disti con badly broken to 10.50m and oxidizat to 10.70m	nguish Very strong	·			4 to Fer vide with a - ep bords at 050-050 -		603	9.7	11.7	2-0	125	<i>25</i>				
		model gran sug of folloppos 1-2 con = molectly to strongly fract fractions at all angles to C.A. Crey row mage tit = fin - mod. grd = 5-15%	sdan)		· · · · · · · · · · · · · · · · · · ·				(x 3	11.7	13.7	20	159	5				
		exidized to hematite 10.50-1250, 12.9-13.0 + for 14 - breacted Capped Actoric?) -forgments Maled Constrix? with c	3000															
		-frequents Analist (matrix) with (- frequents angular, az from m	aborat t	nenet	н¥				<u> </u>									

1

		TECK EXPLORATIONS LIMITED				HOLE	No. <u></u>	14-0	01				PA	GE Ó	7 of	6
DEPTH	v		Ł	STRUC	TURE	ALTERATION	METALLIC	SA	MPL	E DA	TA			RESUL	TS	<u> </u>
netres)	I	DESCRIPTION	OVERY	ANGLES	VEINS	1	MINERALS (%)									
ROM TO	GRAPHIC		RECO			•		SAMPLI NO.	FROM 13.7	то	LENGTH	Cy (apm)	Au (adb)		Ţ	
		130-16.3'				-local ep at llon		604	13.7	15.7	2.0	147	5			
		- breain = possibly some fult zone as 10.5	-12.5	-		woold py local (Loss										
		and 12.9-13-0		(I				1				· _				
		- dominantly white silicous (abitized?) +	room	05				605	197	17.7	20	255	15			
		- dominontly white silicous (abitized?) + with local date gray ! block from the in a do	75													
		chlontic matrix								-		L				
		- closts angular to subranded, mm to 4 cm							Į .		ł .				-+	
		- matrix - usually dominates														
		-mdook marcht + honotill						406	17.7	/9.7	2.0	602	10			_
		- not coloreus-matrix cr clasts				+ ··· ·										
		- distinctic "jig sow pizzle" appearone of	bacc	G												_
		14.3-19.7:					-week molochite									
		- passibly foult breating? similar to 10.5	12.5	m			from Ker6m-19.7	-								
		- closts not as siliceaus, not coloring	L.,													
		-local epidok alt+ - At, patchy - barrally fult 300 2 with horrow goes infant	of roc	k	L			+ -							_+-	-
		18.4-18.9 = fwH 200														T
		- definite fourt zon, fault breezing														
		- closts mode = 1cm, up to 3cm locally - angular, dioritic														T
	<u> </u>	-angulor, dioritic	L			·····										
		· Elests · variable carbonat rep, chlorik al	tn											-+-	+	-+
		- 19.70-20.70 = fartt						67	19.7	22.7	3.0	255	5			
		- faut at 030° to C.A (19.7m), 020° to C	A(20.	5m)												
		2 very broken core, gage (gray)														+
		19.7-26.70: Hybrid Broacia				Kgor alt (boods) at		608	22.7	257	30	210	10		-	
		- introve breating / agg lomeate with fine.	graind	¥		<u>22.35 r</u>		1.00								
		draite to a busicanic and site class in a d	OK E	tay to		↓		609	25.7	21.7	30	1169	50			
	_	black, chloritic, soft, very arleaneas m	tre													

and the second second

÷-

4

Ĺ

		TECK EXPLORATIONS LIMITED				HOLE	No	4-0	,/				PA	GE	3.	of	6
EPTH	<u>v</u>		OVERY	STRUC	TURE	ALTERATION	METALLIC	-	MPLE	DA	TA			RESU	LTS		-
netres)	APHIC	DESCRIPTION	Ň	ANGLES	VEINS	1	MINERALS (%)										
TO	GRAI	DESCRIPTION	RECO				ŧ	SAMPLE NO	FROM	то	LENGTH	Cu (com)	Au (pob)				
		-overall - frogments generally lighter gray		4;34		-local Kspr alta	+r-wk py (LO.	€¥)			<u> </u>	~/ <i>///////////////////////////////////</i>	<u> 4671</u>				
		and non-weakly calearas (different then				- 23-24 m2 mal. ep	-loal-nic/16	1 -			Ţ						
		- overall aler of cont = med - dork Brey				At, porthy with weat		1	t 1		1		t 1	t t		· · · · · · · · · · · · · · · · · · ·	
		- magnetik-humatik content vories		†		tomoderat Karve	Kts potches	610	28.7	31.7	3.0	362	70				
		- not fault bracia looking				tomoderat Kspruch. local 2 noty biotet?]]			I						
		- clots - subrand to randish, 1-5 cm in 2	3C.]						
				L]				[[]	Ī			
		30.0-30.65 -fault 30re			L	↓	1				Ļ. ,	.					
				L	L	1		1.			.]		
		- gry gren gage, broken core - fep contact (175° to C.A, bottom Olo" to (.A.											·			ļ
		-26-70-27.40 = fout 30ne		·		······································		÷ •									
		- fait breain, gage															
		77.40-40.7 : HYBRID BRECH.					f		·		•·						
		- some hybrid breating unit						1									
		- local seconday biotik? patches															
		- closs=generally los silicous															
		- matin - very soft, colcareas, dork															
		- matrix - very sof, coloreas, dork - verigbly fractured		ļ.,		l	· · · · ·				L				1]	
		- W-med Wisey + Af cabit veinlets - general agins to CA 20600-070"												Τ			
		- general angles to CA=060°-070°		<u> </u>	 	· · · · · ·											
		· mettled approvere					<u>↓</u>	+									
		330-40.7 :								34.4							
		- more of a gray green color -locally bloched (sockerate altered) to				L		Gll	31.7		30	603	40				
		-locally bleached Coastant altered) to	light	+ green colo	Ł												
		- after 30 - mod hem ff, bands		L	 		-	61 Z	34. 7	32-z	مک	686	40				
						L	L	.									
		- 2r. 40-29.70 - fuit 201					 .	613	37.7	40.7	30	29	45				
		-local, name Jage C 045° to CA, S	4	ļ	L		·				L						

		TECK EXPLORATIONS LIMITED				HOLE	No	94-0	01				PA	GE 1	/ 0	1
EPTH	ы С		RY	STRUC		ALTERATION	METALLIC MINERALS (%)	SA	MPLE	E DA	TA			RESU	LTS	
ом то і	GRAPH	DESCRIPTION	RECOVI	ANGLES	VEINS			SAMPLE NO.	FROM	то	LENGTH	(J Gom)	Au			
		-29.55-30-17		† – – †		acell = work ep,	731mepyEla	-								
		- quarty? catorok veiney zore + W. Cp, po	the.	tro		m-stem cobonct.	(mor acrass than	Í	1							
		(askah ekin clas)	70.7		-	-local, walk \$ spr	0-31m)	1			f					
		- main vein at 045° to C.A.							1 1	-	f					
		40.7-416-2 : TRANSITION JONE						614	40.7	427	3.0	30_	45			
		- acrot darker - dak gray, fin grain - Constill not hybrid brain autin	d				l	615	437	46-2	2.5	31	45			
		- Constill not hybrid brain autin	bet													
		often feart con-distinct				····					L			4		
		- performs = likely a transition zone for hybrid breezing Unit into inderlying	m]		<u> </u>					
		hybrid breccio unit into inderlying		4					L							
		fire grained intrusive / valcanic.	<u> </u>													
		46-20-7250 : DIQLITE / MONZONITE /2					Weak dris py. (60.5%)									
		- definitive change in awall approvence of	an				med f.grd mt		L		L					
		- definitive change in Quall appearance of - new a green gray color, fine grained,		ļ		 	(05-10%)		┟┥		L					
		non-workly colcorrows, weak-nod magnet	è.					L .	┞					_		
		with fine grained magnetite	L					L	L							
		- local conformet zono couply associated h	ith_			·····										
		endote bords/ patches - can be evalue shope t	distru	ntian		 	+		 						↓	
<u> </u>		-46.20-72.50 (Ear);	<u> </u>				<u> </u>		┠───┤			<u> </u>				
— —	 .	= offer feldsoor grains a pinky brown co	ir	↓		 	 		┟┥							
— \		(potossic) - not entirely certain whether	Kspar.	<u>}</u>			╉╍╌ <u></u> ──				├ i					
		is primay or secondary - if secondary fair	1,00	uasive:												
		-no kspr veins or bank roted havever the		 	L	<u> </u>	+		<u> </u>							
		Some association of the pinkish Kape 3000	with		ļ	↓	·				<u> </u>					
— 		Strong ep att 3000		k							┢┈					
		h	 _			+	+	.	<u> </u>							
					_										_	1

аў. С 2-

T.

1

ન્યું છે. ન્યું સ્ટીર્સ્ટા કું ડેડ્ડ હ

		TECK EXPLORATIONS LIMITED				HOLE	No. <u>JK-9</u>						PA	GE :	5 0	of (
DEPTH (metres)	2		ERY	STRUC	TURE	ALTERATION	METALLIC MINERALS (%	_	MPLE	E D4	ATA			RESU	JLTS	
FROM	APHIC	DESCRIPTION	COVERY	ANGLES	VEINS	·	HINCRAES 176		.	r —	r—	ļ	<u>г- т</u>		······	—
то	GRU		REC		_			1	FROM	1	LENGTH	(y (em)	Ay Carb)			
		46-70-47-20;				· · · ·]	616	462	47.2	1.0	R)[45			
		-pervasure moderat -storng ep boods, wisps, it patters Cirresular, motiled approaches to core	pregula						{	- 1	.	- 1				
		- bands offer 6 deg to C.A.	1				-	1		-	İ					
		-w-mod hemotite ff. Cup to 2mm wide)						1								
		-local content windets, potches, discontinuou	p						 	-	ļ., .		╞╌╴╏		· ·	
		up to 1.0 cm wide				·	1				ł		┟╴・╶┥	• •		
		- lacal Chlork H	<u>+</u>		······································	• •••• ••• ••• ••• ••• •••	f	1			+	-				
		47.20-51.2 :					· · · · · ·	617	47.2	48.2	1.0	93	45			
		- planioclose perphyritic - commonly with	l		· <u></u>		L	+	l	ļ			┝── - Å			
		plog. laths 2-5mm in length	 	┟	<u> </u>			618	48.2	49.2	1:0	244	45			<u> </u>
————		- Either a dyke or flow unit - top contact gradetional over 20cm	<u> </u>				+ ·	1.19	49.2	0.2	10	76	15			
		- top contact gradenoral out acca				······································	· ··		.(7; #- 	202	<u> </u>	/•				
		COID to C.A. distinct					1.	420	50.2	51.2	1.0	189_	45			
		- olso has patchy, wispy epidok - local			··				↓							
		- Coral fraction proviled to care					·	4	L	_	ļ		L			
		- acruil = fractus still at 045°-00° to C.	#- -		<u> </u>		+		ł	- · ·-						
		51.2-52.50: INT- VOLCANIC	<u></u>	•			≜	† ·		┣ <u></u>	<u></u> }		}}	1		
		-f. god, green grey intermediate volconic -local corbonate splots up to 3 cm wide, o				52.50-53.55	1	621	51.2	52-2	1.0	176	45]	
		-local contrante splots up to 3 cm wide, a	ng H	ł		-strong cp, hem, chi	L	622	52·2 53.2	\$3.2	10	48	45			
			ļ	L		alt mosaic appe	erc	623	53.2	51.2	1.0	13	45			
		53.55- 59.55						624	54.2	55-2	1.0	53	45			
		-fine to locally medium argined diarte-m	20300	+-				625	55.2	50-2	1.0	35	45			
		-fine to locally medium grained diart-re intermediat volconic with local ep bords,					l	626	562	57.2	1.0	120	45			
		hem. ff.							1		L					
		- 10 bords at 0 040° (5=610m), 040° (56	n),				<u> _</u>				L	l				
		035° (54.8m) - 04585 060° bonds	Ľ	ļ			ŧ				┞					
			\downarrow	ļ		L	L	627	57.2	58.2	1.0	/82	15			

		TECK EXPLORATIONS LIMITED				HOLE	No. <u>Jk</u>	-94	-01				PA	AGE	6 •	• (
ЕРТН	<u>v</u>		RY	STRUC	TURE	ALTERATION	METALLIC	1	MPLE	E D4	ATA		_	RESU	LTS	
etres)	APHIC	DESCRIPTION	Ň	ANGLES	VEINS		MINERALS (%)	1								
0M דם	GRAI		RECO				- weak At the second	SAMPLE NO.	FROM	то	LENGTH	Cu Control	Au (app)		T	
		59.85-64.20 =					- weak Af tingio	628	58.Z	59.2	1.0	126	45			
		- Stangly alkred, breaketd					Lu oxide ?	1		Į						
							- Starget (Cur?)	629	59.2	60.2	1.0	159	45			
		- breccia defined by stockwark (mottled, in	dar.				from 61.07-63.D.		í I							
		web-like appearance) of epidok, henotik,	ksor	alt				630	60.2	61.2	1.0	390	45			
		-mod-strom ep. hem. chi t carbonate (wm).						<u>ا</u>		l I	۱ I		ţ l			
		-mod-stam ep, hem, chi t corbonate (wm)	OICS					631	61.2	42.2	1.0	12	45			
		- closts not obvious, garacto be same						1					I i			
		composition as matrix hest = int-valconic for	d int	nor (dio-1	3)			632	62.2	(3.Z	1.0	12	5			
		- closes often defined by surrainday store ep			~											
		hem wisps bands outlining frogments						633	672	64.2	1.0	13	0	T		
		hem wisps, bards outlining fragments - clasts range in size from Orlan -> 6 cm														
		- breezes angle = porallel to car at 63m, 63-2m														
		020° 6 62.70-63.0m														
[Unique blue - gron (tourquose) Oxide miner	1		[T	
		- possibly on Cu acide or day minual or can	cnak						1	L			L			
		- Strongest from 61.87m-63.50m					1	L.								
		- locally locales similar to molachite						1							Ţ	
		- ff- distribution, erratic						1	L							
								L	ļ	L	ļ					
		(44.20-72.50 CEOH):	<u> </u>					6.24	1.1 7	11.4	22	6	5			
			t				tr. py locally	- <u>r</u> est-	07.2	44.7		× -	2		+-	
		- fine-med grained intermediat valiance to	f					1.20	64.5	19 =	3.0	7	10		-+	
		- Syniller to 44.20 - 59.85m	t	 			t	1027	1444	107.3		7				
								1.36	69.5	77.00	2.0	a	5		-+	
		- only weak , local ep alt, errotic						1 1 1	47.7	72.5	<u> </u>		2	+		
		-very locally med. srained	L				- †	+						-+		
		-very local wison, calife stringers (22mm					+ ··	··	+·					+	-+	
		Taxall fine grained than 46-20-64.20	-						·							
		- 1000/14 feldsports a pinky brown color - cither me	וויפיז	P 2			+	+· –						+		
		or provisione Kapr alth? fighter						+ • •	+							

TECK EXPLORATIONS	LIMITED)			но	E No.	J	K-9	4-0	02		PA	GE	/ of		>
DIAMOND DRILL LOG COMPANY <u>TECK EXHORATION</u> PROJECT <u>1722</u> PROPERTY JOKER	GRID COOR	90 90)0 m	L	DATE : COLLARED JULY : COMPLETED JULY : LOGGED JULY I : LOGGED BY : S.J. CORE SIZE : NG	<u>18/94</u> <u>Cou</u> 18-19/94 <u>107</u> 		DIP -(0) 58.5	//0 ⁶		PTH (SING) TERLI OBLE	NE LE MS: <u>S</u> MS: <u>S</u> MCE EVE	0-7-10 18:13 NING:1 ENGTH: CASAG SHIFT 1. COL	ALLA SLIPA ABLE MACIN	ED PEP E 70	_(<u>v</u>) _ _
DEPTH U (metres) I FROM Q C C C C C C C C C C C C C C C C C C C		ECOVERY	STRUC ANGLES		ALTERATION	METALLIC MINERALS (%)			r	ATA	<u>Cu</u>		RESU	LTS		_
G-9.14 CASarG - rubble		R.					NO.				(am)	(00)) 				_
9.14-13.10 CONTINUE RUBBLE																
13.10 HIBELD BRECCIA	Hart				- weak epict-k		10637	2 13.1	15-1	2.0	390	65				
Para from fine groined (Sili dorst intrasic - Sib volcan						-magnetik variable = 2-15 (f-grained)	ø									
- to commonly a breccipted	/ variety				-Stary Chlorik ff Houstant			15-1	17.1	2.0	656	55				
possibly the hybrid Knit as heterolithic, commenty bre	-content)			-chont matrix	py ff (40,59	ſ	17.1	19-1	2.0	୧୫୮	45				
Charles intrasic and volconic Charles it is fine grained as magnetic as normal by	Frogmen and not	5														
- this init indendely man	tic os						640	19.1	21.1	20	(01)	30				
- f-grained magnetic range 2-15% plocally up to 23mm Oxidized to 16-0mm (strange		-														
		1				·····										

		TECK EXPLORATIONS LIMITED				HOLE	NoJK-	94	-02	-			PA	AGE	2	or (c	>
DEPTH	<u>ບ</u>		RY	STRUC	TURE	ALTERATION	METALLIC		MPLE	E DA	TA			RESI	JLTS		
(metres)	APHIC	DESCRIPTION	Ň	ANGLES	VEINS		MINERALS (%)										
FROM TO	GRA		RECO					SAMPLE NO	FROM	то	LENGTH	(Cu (Apm)	Au (cpp)				
		- 13,00-14.30 = ful H 3012	<u> </u>								1	[
	(exidized grey gage , high age to CA	/														
		bresig fragments lille in hele 94-01 -light to grey to whitish, s. silicen subranded to storgular - good size of fragmen closts varia and ranges from Imm - 5 cm	;				· · · · · · · · · · · · · · · · · · ·	[
		-light to grey to abitish, s. silitra	<u>م</u> ,									ļ .					
+		subranded to storqular	<u>,</u>					ļ			.						
		- good Size of friguen closts varia	k	<u> </u>			ł	Į			ł	{ - {	-		· · · · •	+·	
		and ranges from Imm - 2 cm					- 	 	• • ···		+ - + · · ·		· · · · · · · · · · · ·	· · · · · · ·	· ··		
		Actrix agoin dark gray to black Char and soft	+ic)				·										
		acro 11 brains is porting dominated	· · ·	-		15m ep bard at 14.55m		t									
		(raughly 60-70%) but locally can be	,			14.55m	I	[
		Clast Zominated															
	-	lacal zones of norrow 14(m)					1	1									
		calcit veinlets, ff. irreaubr Cact				,]]									
-		local zeros of narrow (4/(m) calcit veinlets, ff, irrqular (not (ommor avell)										_					
				 				ł			<u> </u>						
		Contains taidy common branzey be	<u>~~</u>					ł			• •···					··· -·· -	-
		Contains faild, common branzey ba biotite - possibly secondary -biotite = pertony, braily in bonds		-					··	1 A. A.							
		- BIOTIE = porting, rolally in Bonds						ŧ									
	-	epidote incruso from 20.30 m on		1													
		but still only local and weak				-weak ep 3000 from 20:50-20.70	· · · · · · ·	L									
						from 20:50-20.70	l,•,			·	L				<u> </u>		
\	می ر.	= 21.80-33.70;		L		 :	10601 py ff up to 1%	641	21.1	231	2.0	$\left \mathcal{U} \right $	35			_ _	
		-generally becoming more silicears			 		Lpto 18		l		+						
		cicularole, 1055 Soft chlorite metric	,	 		+	+	642	72 1	3-57	1.0	ستر ز	20				
	<u>. </u>	- frequents strongly silicous, positi becoming albitized?	·y	<u>+</u>		+	ŧ	1042	051	<u>'' ('</u>	<u>a. 0</u>	62	<u> </u>				

i

ţ

		TECK EXPLORATIONS LIMITED				HOLE	NoJK-	74-	<u>02</u>				PA	GE	3.	• 6
	<u>v</u>		ERY	STRUC	TURE	ALTERATION	METALLIC MINERALS (%)		MPLE	E DA	ATA			RESU	ULTS	
FROM	APHIC	DESCRIPTION	Š	ANGLES	VEINS			L _				İ	,			
TO	GRA		REC					SAMPU NO	FROM	то	LENGTI	(y (ppm)	Au (ppb)			
		- more clast dominated, les soft chlorik metrik averall				· ·		643	25.1	27.1	2.0	69_	25			
	7	27.60-28.20 = faut 30ne					•	644	24.1	H. 1	2.0	124	20			
		-dk grey going , broken cone -lop contact @ 045° to C.A.					ţ	645	29.1	31-1	20	96	160			
	-/	- 27.10-33.70 - apras like tectoric breacto specings on hybrid (agglomente blicais ? - fractined roce (mon + stranger)	$\left(\right)$			increasing albert	k		31.1	-						
33-70 33.70		33-70- JA 30 = ALBITE BRECIA	7			story albite	tr-py A	647	33.70	35-0	1.3	56	15			
		- very strongly albitized (albite altered) breacto - closts mon- 8cm in diameter, angular			·	······										
		to storgular - closts = storgly citize alterd										<u>↓</u>				
		- white to creamy color, individual grains may be beally altered and non-distinguishable	_ <u>`</u>					 	<u>}</u>		<u>∤</u> ↓					
34.30		-Still chlorite metrix but 2 bordinote closts & 80%, matrix 20%						648	350	36-3	1.3	72	25			
30	_	30-37-60 = 44BRID BREACIA						649	343	38-3	2.0	154	5			<u> </u>
37.6		- dork gray to block, silver breating - mt rich (2,25%)					· ····································	670	36-3	40-3	2-0	205	æ			
37-60		- back to hybrid? unit						651	403	42	2.0	1961	130			
		- Source Similar to 1310-33.70						652	42-3	44.3	2-0	J5 6	105			

i.

and the second second

		TECK EXPLORATIONS LIMITED				HOLE	No <u>JK-</u>	74-	<u>02</u>				PA	GE	4.	of (
EPTH etres)	Ę		ERY	STRUC		ALTERATION	METALLIC		MPLE	DA	TA		_	RESU	ILTS	
MOF TO	GRAPHIC	DESCRIPTION	RECOVERY	ANGLES	VEINS				FROM	70	LENGT	(qnm)	Au (977)			
		- light to dkgray - grades gradually less stitutes downly auguster about bracio 3011 + more more - more caborat attention = chlorik	łę Tix			local weak ep		1								
		- local calculations - local calculations - local calculations, H - local weak ep - 4/1.7-4/1.9 = fourt 3000 - dk grag gage														
		42.0-5273 - local Kar alt bards (up to 3cm wide), parts				42.0-52.73 -local Kspr		-	44.3							
		45-50-60-70 - numerous fruit zones														
		-46-80-48-20 Fout 3018 -48-20-49-68 -fout 3018 -local gage , 500 Ken Con 3012						657	46.3	50-3	2.0	859	45			
		-50.0-50.40 . 100al graphite		 			·•	670	50-3	50.3	2.0	383	30			
		- 52-73-54-77 - blacked, altered zone - light green, crowny, mattled						[52 <u>3</u> 54.3							
		-tokly abodent Kapr alteration &	nts					659	56-3	56-3	20	ગણ	25			

		TECK EXPLORATIONS LIMITED				HOLE	No. <u>JK-</u>	94-	02	2			PA	AGE 🗧	5 of	6
DEPTH	υ		RY	STRUCT	TURE	ALTERATION	METALLIC		MPL	E DA	ATA	Γ		RESU	LTS	
(metres)	PHIC	DESCRIPTION	Ň	ANGLES	VEINS		MINERALS (%)	ĺ								
FROM TO	GRA		RECO					SAMPLE NO	FROM	то	LENGT	(4 (ADM)	A4 (905)			-
		57.90-58-42 - fautt 30re	•				1	60	58.3	60-7	2.4	2,7				
		- grey gage, broken care)				· · · ·				-						
		- 59.0-60-70 = FAULT 3CNE - major fruitt, gage, boken core - no angla nearmable							1	1 "	† · · ·					
		-major furth, gage, broken core								l]				
		-no angles neosmable		┞────┤		·····	·	ł	- 1	ļ .		┠ ┈┤				_
60-70		DIDRITE - SUBVOLCANC- ANDESITE		<u> </u>			-	1.61	1.7	1-7	1	57	· · · · ·	• • • • •	- +	
<u>ar ru</u>		UNATE - SUBVULLANAL - AVDEST							QUIT	1624	100		<i>"</i>			
-		- range from fine grained drank to		t{			· • · · · • •			ŧ		<u></u> † →		┟┈─╺╉╸		
		sbudkonic ardeste		1 1						1	_	1		· · •		
		= green grey curall egreoronce														-
		-nen-magnetie						L		ļ	L	_				
100		- work calcite veinlets		╉────┤				ł		┨────	 	<u> </u>				╶┼──┤
62.70		- Sinder to bottom of hole 3K-9401				······	 			 	 	· · ·				
62.70		6270-6345 = EP + KSPR ALTN														
-+		- 3 cnc cf strong to moderate epible or Kspr alkration ± cakit venilets	d.													
		KSpr alkration & cakit verifets		11					 	ļ	 	 		 		
		- In bards up to Fem wide		 	·				Ļ	 	┨	ļ			.	
63.45		-py A (t-3mm wide) up to 2% - att-band at 070 to (A 6 63-30m	<u>-</u>	╉┈─────┤		· · · · · · · · · · · · · · · · · · ·				 						
<u> </u>		- art band at 0 to to cit & 63-300		╀────┤						<u> </u>						~
63.45		DIORME-MENZOWITE - ANDESITE		1		65-30-65-75:	-py=diss.+A	(12	1.2.7	64.7	2.0	68	10			
				1		S, ep, Kap, Callite	6196					<u> </u>				
		Similarto (00-70-62-70 plus:				chiff with light	-py lacely up	643	64.7	647	20	23	230			
		- rongis from fine grained diorite -				tavarce blue Cu	402-3% in				}					
		monzanite to intermediate volcanic		ļ		oxide, clay or carbort	ep+ Kapralta	64	467	68.7	2.0	85	90			
		(subvolconic)					3000			1						
		- locally (often) medium grained with		<u>├</u> ───		6600-67-70	+	ws.	687	+0.7	20	129	25		-+-	
		gran size node 1-2mm				-co.kopc, py				L						

t

		TECK EXPLORATIONS LIMITED				HOLE	No. <u>JK-9</u>	9-0	2				PAG	ε (of	6
DEPTH	<u>ບ</u>		RY	STRUC	TURE	ALTERATION	METALLIC MINERALS (%)		MPLI	E D	ATA		R	ESUL	тs	
metres)	APHIC	DESCRIPTION	OVE	ANGLES	VEINS		MINERALS (/6)								_	
FROM TO	GRA		RECO					SAMPLI NO.	FROM	то	LENGTH	Cy (com)	A4 (Ap5)			
		f. grand magnetik thraghart, verseble	•			-66.27-67.70:		666	70.7	72 7	20	164	175		_1	
		5-10%			······	-mod- cake venlets]]	1	I	Ţ	1				
		quit cAce pinkish feldspas - either				4+ tworgle to core	l l	667	727	74-7	2-0	162	$\left[\mathcal{N} \right]$	· •	-1	
						-local hom fif up to	1		1	1	1			-		
		a manyorit - mazadiocite intrusive or maybe a perussie alteration fature				3 mm wide		1		[
		as a fear near the store earkson alt						44.8	74-7	767	2-0	137	45	- 1		
		as a fer near the strong epitspr alt zones there is an increase in pinkish felologe	r	1	7	-70-33-70.61:		{	{	}	1	1				
		Gains				musar ep with ksp	\downarrow	169	76-7	78-7	06	117	15	Ţ		T
		haven -locks lille dain jone anding				colore at 0450 to CA		1	1		ľ	Ī			T	
		mange the intrivic on other zones			\		ľ.	t i	1	· ·		[
						71.20-74.40:		67	78-7	8c-7	2-0	167	20	1-		1
		local med-strong ep+ Kspr = calcik,		<u></u>		ep, KSpr, colce, py			+1-≅ <u>-</u>	+ - · · · -	**····	<u>∼</u>				-+
		the althous						†			_					
		= py althornes - main and noted				7384-74-06 -	+ · ·	671	80-2	62-7	20	71	10		†-	
								1	1	T	T		1 1-	••••		·
		God veries between mongonik + droite		· ··· ···		Cp. Kspr. wok cakik py at 045° to C.A.		677	827	85.K	24	137	10		1	
		locking intrastuc		1			† -		1 .		t í			+		- +
				 		75-84-76-22	.	† •	+	<u>+</u> · · · · ·	†					
		90.15-691.45				-eptords up to 30	······································	673	85.1	27.1	2.0	162	75			
		- reptile and to me likel? Know		1		wide, calore vanlet	4	1	1	1	1	·			+-	
		-pinkoh cost to core , likely? Kyr alt (not in bords , ans or ff) but		t		upto Zem POP to	1.4	t -	t	ŧ	1		<u>├</u> }			+
	<u> </u>	pervisie on gradual - augul storger		1			₽<	6.10	87.1	901	3.0	162	15	{	-+	···+-·
		3010 - patchy but somewhat inlisting	4		<u></u>	85-0-86.95		14 4 1	† <u> </u>	1	1		P'			
		South pricing 201 Different incident	ŕ			ep, Kepr, lool at		1	1	f	t					-+
1.45		DIORITE to SUBVOLCANC ANDESITE		1		winks.tr.py	<u> </u>	625	90.1	93.1	3.0	202	45			
┽╧╌┖╱╶┥ ╲		Protecting to power the producting	⊢-	<u>† </u>		- ingla pattin	<u> </u>	† <u> </u>	†	<u> - </u>	<u> -~~~</u>		<u>├</u> <u>├</u> -			
7		les antish cast on feldson?	└ <u></u>	t		-Kypr grockal into	t	·	t	<u>†</u> - ·	t	<u> </u>	┝───┫╌╵			·
		-f.g.d dionk to schuckonic	ŀ	t		top(rct bards)	• • • • • • • • • • • • • • • • • • •	1	1	1	t · ···		1			-+-
		codsite	<u> </u>	1			<u>+</u>	1	t	1.	1 -			- †-	+-	
		Charles 1 lang locally 1-2 mm	├	1	├ ─── <i>,</i>	-100-33-107.60(an)	t	1-	-	† ·	†· ··	•	 			
10360		-gransize Limm, lorally 1-2mm Chiner ourall than 63.45-491.45 sochi	2	†	t/	-cottog alt	Ҟ	+ -	1	1 ~	† ·−		┞━──┍╂──			
C	5	CIGNER OURTH TO WIT 63-43-47-45 SECTION	r_		┢╍──┼	epff, kap perussia	·//	†	<u>+</u>	<u>†</u>	+		┝━╍╴╺╂┈			
CEUP	\sim			<u> </u>	L	THE LOOP DETUSIL	<u> </u>			<u> </u>	1					

1997, 1997

		TECK EXPLORATIONS	LIMITER	•			ЦЛІ	E No.	T	K-9	74-	0R		PA	GE ,	l of	n
OMPA	NNY . CT .	ND DRILL LOG TECK 1722 Y JOKER	NTS CLAIM ELEVATION GRID COOP NORTHING	DI/9 TOKE - 93 RD	2w 18 19 pn	 	ATE : COLLARED JUL : COMPLETED JUL : LOGGED JUL : LOGGED JUL : SOGGED BY : SJ. : SORE SIZE : NQ	119/94 DE 120/94 Coll	ртн А <i>R</i> 74 <i>m</i> -	01P	AZ.	LE DE CA W/	ENGTH PTH SING ATERLI	0F 01 REMAII	/ 73. 7 v b : <u>6</u> ning : <u>7</u> ength : <i>BLOCK</i>	-10 m 9/10 m 9/11 ED	> > \/D;
ЕРТН	ы	· · · · · · · · · · · · · · · · · · ·		7	STRUC	TURE	ALTERATION	METALLIC	S/	MPL	E D/	ATA			RESUL	TS	
EPTH etres)	APHIC	DESCRIPTION		NEI N	ANGLES	VEINS		MINERALS (%	2								
юм то	GRAF	DESCRIPTION		RECOVERY					SAMPLI NO.	FROM	то	LENGT	(U (pm)	A4 (app)			
610		CASING- OVERBUICDEN, RUBBL COSINY actuded to 13.410 during day	ie														1
										L	ļ	<u> </u>		_			_
Q		FINE TO MEDIUM GRAINED D	ORTE			-	9:00-9.14 = blocket 3000 with med. Kspr, - Epidak	tr.p.	ļ		<u> </u>	ļ	ļ				
			45.2				3 ne with mod. Kspr, -	diss int up			──	<u> </u>			┞╶╴┞		
		Model quain size & 1-2mm, rong	50-3-31	nm.			Coidok	(node 1040)				┣──			┝──┾╸		
		- broken are ribbly to 10.0m	it local			$- \lambda$	13.64-14.00: 3cme	# LOVE / 10 40)	10.7	11.7	14.7	20	161	5			+
		Strong zons - us ally associat	SAN IGUI		(-12.7	12.9	of strong ep att os		YOUNG	10.7	<u>1.17</u>	<u> </u>	191				
		increased marchik contatly	4 2006		-54		patho, i may by with		+-				<u> </u>				+
		work to locally materiat color	to the second second				206m+				<u>├</u> ───				-	_ <u></u>	+
		local Kspr altas imauk	c bank is	¥				·····	<u> </u>		†	<u>├</u>					+
	-4	toral contrat att roating	5		· · · · · · · · · · · · · · · · · · ·		14.00-14.20 = banze		+								
		commen hem ff (narrow) il	Con Jair				biofite = ROSANY 2005		<u> </u>						·		+-
					· · · · ·		Storing C J		┼──	[+
		14.70-16.60 BREACH BONE					-14.60-14.70 = storg	· · ·	1:32	14.7	Kr7	2.0	83	5			+
		- bracioted diorit with Ks	x.10				to with mt						~~				+
		rich dioxite materix					7		1								1
		- closts subconcilar to subtain	rhal mai	-	[chknik alt mod-	· · · · · · · · · · · · · · · · · · ·	1		1						· ·
		atterd by Kapr, cp					Strong thrighand		†								\uparrow
		- closts range 1-6 cm							1	<u> </u>					 		1
		- no visible sulphides	/														\mp
		magnetic fine disseminated to a	tots up						†							1	1

ананынын с. Ф

		TECK EXPLORATIONS LIMITED	14.7	6-1660		HOLE	No. <u>JK-9</u>	14-	03				PJ	AGE a	2 .	or l	0
DEPTH	ų		RY	STRUC	TURE	ALTERATION	METALLIC	s/	MPL	E D/	ATA			RESI	ULTS		_
(matres)	APHIC	DESCRIPTION	OVERY	ANGLES	VEINS]	MINERALS (%)										
FROM TO	GRA		RECO					SAMPLI NO	FROM	то	LENGTH	CU (20m)	Au (ppb)				
	-	grain size of diarit errotic and charge						I]	ļ	_	ļ	[
		quickly tam fine to medium - possible	•				4	ļ				ļ	ļ.	L			
·		some changes are due to dykes					•	ļ	.	Į	ļ	 					
		· · · · · · · · · · · · · · · · · · ·		<u> </u>							<u> </u>				ļ		
 {		* 16,60 -		<u> </u>			+ 18,30 - porth	010	Kort.	10.7	2:0-	01	<u>_/Q</u>			{	
┝───┤		= fam a later the still after the s		┢─────┤		Storg ep with coase mt put his	GF Zm 7 DIOHT	}	- 1	₽ .	4	- ·	<u> </u>				
┝╼───┤		- fm. grd divit with abundant Kapr, ep talbite irregular veining be	~	<u> </u>		100se mi porcies	last py potto	624	19.7	2.2	10.0	232	5		╞─╰╺┥		
		- a stockuck appearate very imgular	•	t		Common Strong ep_	ot 19.65m	1 * ' '	/ <u>*</u>	1	f -		† ⁻		+ -	†	
		- commonly grades into a brack to		t		banks, anthis with	21.65m	t		1	1	f	t		tt		
		diorit the same as 14.70-16.60m		1	 	Cose mt	· · · · · · · · · · · · · · · · · · ·	680	20-7	20.7	2.0	319	5			· †	
		-local porteties of possibly 2004 biotet - local Ensuting (later) callete veinlets															
					•		·· ·· · ··· ···			L	_	ļ	L				
		/19.20-19.90 =						681	22.7	24.7	20	17_	10				
		- 3000 cf obordont silicons white vein				· · · · ·				Į	Į		Į		ĮĮ	Ļ	
┝━━━╌┉┤	<u> </u>	motial - possibly abit		 			-	66.5									
		- mucd with Kspr and epidot, mt		 				1002	24.7	2.1	2.0	+02	23			 	
<u> </u>		- gius a brigio aprevione									+						
┝━ ─ ──		Charles have the second share to 2						1.63	2/ 7	76 1	2.0	21	5				
r		- Stronger hungtik as wopy book up to Zam wide from 23-30-26.40 (6040° to CA at	7.7					1003	a. 6. T	10.7	00				-		
					 -			-	<u></u> + ·		t		t···			···	
		definite breacia zones at 21.55. 1			·····			t		t				• 		-1	
		definite breacia zones at 21.55, 1 20.8-29.8m, all throughout actually:															
		29.4-29.8-2						684	28.7	30.7	20	54	5				
<u> </u>		-bracio zone with abundant abanquiar						L .	ļ	ļ			L		L[
		drgry Ford dorit from the from 2-B	m	↓				ļ., .		 	┿╴─-						
<u> </u>		insize		 						 	<u> </u>	↓ ·			╞───┤		
┝────┤	·	- ato contains commen 2-3 cm spe pre	<u> </u>	<u>+</u>		 	+	<u> </u>	ł	<u> </u>	╉╴┈┥	↓					
		white stray gillions trags passibly		 		+	+	₽	+	┫	+				┝──┤		
		albitized				<u>l</u>	<u> </u>		L						i	_	

29.15-.35.

_....

ing the second second

PTH	2		Ŗ	STRUC	TURE	ALTERATION	METALLIC		MPLE	E DA	TA			RESU	LTS	
tres)	APHIC	DESCRIPTION	OVERY	ANGLES	VEINS		MINERALS (%)			.	.					
OM TO	GRA		REC					SAMPLE NO.	FROM	то	LENGTH	(4 (apr)	A4 (205)			
_		- these albitized? closts are rest dated by				32,97-33,05 +				[
Ĩ		Ksor att froctures, fuggy autline of alla				mossive ep band with					L					
		frogs				score mt				l						
			_						L	31.4	L					
		28.15-29.35				· ·					07					
		- break with Ben KSpr attad diante claster in albit? motion					30.21		31.4		3.0		L			
		claste in abite? matrix					· · · ·	686		344	3.0	\mathcal{Z}	5			
		<u>.</u>			-				-		L		┝╤┥			
		- 36,4-3735					·	687	344	34-4	30	129	5		<u> </u>	
		- med-coase grained diarite - pessibly a dyle but Still bas ep. Ksper alt and appear locally bacciated - likely just a coase place of the into	_				<u>}</u>		20.1		<u> </u>	-7/				
		- possibly a dyle but Still bas ep, Kspe					+	688	549	10.9	30	16	12	<u> </u>		
	$ \rightarrow $	att and approve locally braccioted		<u>.</u>					1	1.1.1	2 -	CTIL			<u> </u>	
	4	- likely just a coaser prose of the into	LSNC.			,,,,,,,,,		G01	[:: <u>''</u>	4 7	300	844	<i>10</i> .	-+	<u> </u>	
/		120 - 20 - 40 - 20 - E Ha	÷				+ / ····	1 60	Ru	111-4	3.0	20	2			
/		38-0-36.5; 40,36-40, 54 = fult 3013				· · · · · · · · · · · · · · · · · · ·		670	707	40-7	13.0	207	7		-	-
} }		- possible foult zones, gorygaen	ļ		_	 	+/			<u> </u>	 -		┟───┤		_ _	
{		gage + boken core, soft core					+ /+	1.91	UEI	LIGH	3.0	131	100			
		40.54 - 52.73	<u>-</u>			<u> </u>	+/-	0.7	7071	19.1	20	1.27	<i>i</i> -			
							42.52-42.59;				<u> </u>					
	$\overline{}$	- med-rece grained drank				······································	26 ff. cp	1.97	LA.U	52.4	3.0	25	5			
		- gran sige 3 mm - 8 mm - Course mt up to lom				<u></u>	at contact of	910	- ° -	1	~~	1.			-+-	
		- SHIL has KSpr, ep alt but less		· · · · · · · · · · · · · · · · · · ·		47.50-47.60:	Course + fire dio		1		f		rt			
		intere				story epwith								<u> </u>	-	
		- no obvious breeciation in coose ph	¢¥			hemotite, mt										
		+ alternates with finer, more chlore		<u> </u>	· · · · ·	_										
		divite that looks braciated only														
		locally and opprars less cp. Kspr, 9	15													
		altered averall													T	
					1	1			1	1			i . T		T	

and the second second second second second second second second second second second second second second second

		TECK EXPLORATIONS LIMITED				HOLE	NoJK-9	4-0	3				PAG	e 4	of K
DEPTH	U		Å	STRUC	TURE	ALTERATION	METALLIC		MPL	E D/	ATA		RE	SULTS	3
(metres)	APHIC	DESCRIPTION	OVERY	ANGLES	VEINS		MINERALS (%)]				Į			
FROM TO	GRAI		RECO					SAMFLI NO.	FROM 52.4	то	LENGTH	Cu (gom)	Au (app)		
		50.73-65.50					1	693	52.4	550	3.0	124	5		
		-fine to coarse grained disite (lite above) with better Kson, coart and local						{	55.4	{	1	1			
		Estil not as strong alt as topof take	5						58.4						╞
	- 1	54.70-54.93, 58.26-55.46, 14+75-674	7			······································		ſ	61.4		T	[]			╅╼╌┥
	{	54.30-54.93, 58.26-58.46, 14075-670 - possible foult # 3005 - local gage, boken core	Z			······································		Į	64.4	ļ	Į	[]			<u></u>
		65.50-60.35 - Similar to 40.54-52.73						-	664		0.0	F			
		-40 -68 208- 71.50								 	F				╞╌╂
		- f grd, many t-oth Kspr rich						699	68.40	69.9	1.5	1092	65		
		variable but awail strong in this zone - n as If or bonds but perposive. - contain dissiper? ay into thematic	er				+	to	69.90	71.5	1160	235	5		┼╌┼╴
		- contains diss cp; py, mt throughour - sulphide content history in middle of Section - definitely an unique section-possibly													
		- upp / kue contacts backen coe, top freeture at 020° to C.A.						701	71.50	73.D	20	94	55		
	-	71,50-79.50					+	702	735	752	2.0	9	/0		
		- Same as (15,70-68.35:						7.3	75.5	77-K	1.65	60	40		+
·]										L					

ţ

.

		TECK EXPLORATIONS LIMITED				HOLE	No. <u>JK-9</u>	4-0	>3	<u> </u>			PA	IGE	5 of	· /(0
DEPTH	υ		RY	STRUCT	TURE	ALTERATION	METALLIC		MPLE	E DA	ATA	ľ		RESU	LTS		
(metres)	Ē	DESCRIPTION	OVE	ANGLES	VEINS		MINERALS (%)									_ _	
FROM TO	GRA		RECOV					SAMPLE NO.	FROM	то	LENGTH	Cu (an)	AU (9/2)	2 107	TE!		
	(75-0-75-30 = Possible fault sore				·]			Į						
	<u> </u>	- broken, soft core					.				L			┝┈╶┧			
		77,16-77,22:					-	704	77-16	78.50	1.38	7	· 2146	<u>3/t</u>			
		-1-3 to coin clots up to 5 mm wide, with						[.			I	7360		[]			
		semi-mossive hem/spechem - contribution enveloped by 020 to C.A							\downarrow	···· ···		↓		┝───╁			
		- contring in enveloped by 020 to C.A					•	-	+ -					┟┄╼╍╼╇			
		Kspr (1-Zemwide) - and caterate u	ein			· · · · · · · · · · · · · · · · · · ·	f	+ · ·						┢╋			
		77.76-78.00:				<u> </u>		t	t		 			 			
		- 1-2% splotty Cp (clats up to 100 wide)												- †			
		with semi-massur brids (incoular) of						I									
		specular hematit (the realts 5-6 mm to	ね)					L			L			└──╁			
		- SPac. him occurs as clots and fine new	123				.	+			ļ	i		i			
		- 5-6 mm long and 1 mm in worth, bonds o - suppliers in a conformate vein faiture	<u>e 6 i</u>	con unde							.					·+-	
		- 34 philos in a conformate vein Jaitice		<u> </u>		······································	· · · · · ·	÷.		· · · · · -		- ···		┟────╂			
		3 one in fine grained dronite		· · · · · · · · · · · · · · · · · · ·				∔ -						┟───╂		-+	
——		78.56-78.611				· · · · · · · · · · · · · · · · · · ·	•	705	78170	7 9.5	1.0	1.58	4.39	2/4	+	+	
		- 1999 Some as 77.78-78.00					1	† `···									
		plus:						T			10	E:C	uin	90)			
		- Kspr alth yein												\square			
			r.e	1				 						\vdash			
		79.15- 2000 79.50 . MAIN SUCHICLE	U VE	 				ļ	_		 	 		┝──┤			
		79.15- 2121 79.50 : MAIN Supplie						 						i——			
		With Semi-massive Spec. nem (MOST MOSSIVE)	¥	ļ				<u> </u>						┢───╂		-+	
		the sulphide gons)		<u> </u>			-+	╊		ļ			····	├───╂		-+	
		- to p contact of responste - supplie zo		<u> </u>			+	<u> </u>	<u>}</u>		┝			┢┈┈─╋	+	+-	
		toughly 020° to C.A.	to m					<u></u> †	· · · · · · · · · · · · · · · · · · ·			<u>↓</u>		┢═╼╌╉		-+	
		THE - HERE'		[`			•	†	1		t	 					
		<i>i</i>						1			[1	

a na sana ang sana na sana na sana na sana na sana na sana na sana na sana na sana na sana na sana na sana na s

ница — не 11 г. – на 21

i

		TECK EXPLORATIONS LIMITED		T			NO		O 3			<u></u>	_	=	601	• ((
EPTH	ິ		£RΥ	STRUC		ALTERATION	MINERALS (%)		MPLE	. DA		RESULTS				
ROM	APHIC	DESCRIPTION	C S	ANGLES	VEINS											
то	GRA		REC					NO.	FROM	то	LENGT	(CU (Gpm)	Ач (905)			
		-host of opt me spe-hemetite minerals	ed				ļ .					I			· _	
		zones and rock between is weak to med.						ļ .		<u>.</u>		l				
		altered fire-mod-grained diante - weak to mod-kspr, w-ep - mod- contonant					L	! .			L	L	L			
		- weak to med. Kspr. w.ep						I				ļ				
		-mod. Carbonant		L			Į					 				
		- contains local 1th cp syletches, usual in fl with Ksp, Carbonale.	14	l		· · · · · · · ·	·		-			+	<u> </u>			
	4	in the with Kspr, contracte.					.		70		· · ·	-		⊦ . <i>—</i> . -		
							f	l	74.7	012		311			· ···-+	
		79.50 - 100.80		 		8755-86-33 =	Tr-py	106		4150	2.20	1311.	<u>~</u>			
		- med to locally fire + coose grand		<u> </u>		64.55-00-23 7		<u> </u>		<u> </u>						
		diorite with moderate Kspr atta (vens, bonds), ep (brods, patches), consorate (venlets, f. cratings)				zone of mod-story.	mt-prito	27	600	tes a	3.0	tim	6	┝┦		
		50rds), cp (bords, patches), corrora K		<u>}</u>	<u> </u>	1 to alt	manger mode	1704	01.30	03.70		120	2-		<u> </u>	-+
		- Still has stockwork notwork (of alka		<u> </u>		Some of mod-story Kepratt, imegular bords 1 patetas	20-150, 412	705	68.5	85.5	20	125	5-			
		Still has stockwork neweric 1 4 olka	400				20 round	1.00				1.40	<u>⊢́</u>			
		roke abox) with local breasing to gone	2	{		· · · · · · · · · · · · · · · · · · ·	+	29	85.5	875	200	24	5		1	- †-
	6	40-10-90-44 = pessible foult zone										472			+	
	-(-	+ broken, suff core	<u> </u>			<u>+</u>	· · · · · · · · · · · · · · · · · · ·		9.44	97.77	2.29	286	5			
				-		<u>+</u>	<u> </u>									
	•	- 92.72-93.66 = CP-SPECHEM 300	e l	1			•	712	93.72	93.72	1.0	5525	185			-+
		- 92.72-92,73= 3cm band (at 090					† _	† · ·			P					-+
		to C.A) of mossile spechen (+ m+) with					1	1		<u> </u>						
		Splothy cp (2,2%) .						L								
		- 92.73-9306 - local memory Af cp						[·						
		blebs ; local spechem blebs						1								
		-9306-93.16 - narray (4(cm) bool	f.f	£)								ļ				
		of massie spechen (+mt) with adot	iy					L								
		ep roughly porallel to core				↓		_							_	
						<u></u>										
						<u> </u>	<u></u>			<u> </u>		 		 		
								ļ								

PTH tres)	<u>ບ</u>	187 93.06.	¥	STRUCTURE ANGLES VEINS		ALTERATION	METALLIC	1	MPLE	E DA	TA	RESULTS				
	APHIC	DESCRIPTION	COVERY			1 /	MINERALS (%)	ĺ								
ом то	GRAI	DESCRIPTION	RECO					NO.	FROM	то	LENIGTH	(u (apin)	Au (495)			
		-Still locally abordent fine to coorse brenzey				-aburdant Sacordary?		713	93.7	95-70	20	39	5			
		bran secondary? biotite thrashert				biotite 97.7 - 99 m.										
_		· · · · · · · · · · · · · · · · · · ·				99.8- Kl.om		714	957	98.22	3.0	/∞	10			
		96.35-96-55, 97-53-97.73														1
		- possible Feutt gone shoken, soft con]							
		99,80-99.90				······································		715	9872	10.10	2.08	105	30			
		- narrow froctime fill spe hemotike with	<u> </u>							_	L				h	
		work cp ((19/2)						L	Į						└── ┣-	
		· · · · · · · · · · · · · · · · · · ·			<u> </u>	<u>}</u>]	
		100.80-102.50					- w-m. fire and	716	10.00	102.50	67	614	40		i	
		-some as 48.45-74.50 plus :		I		<u> </u>	P4, Cp? (14)							——-I		
		- w-med. ep alt, fine splotches									L	—		\vdash	i	-+
		103.50 - 115.20					109.25-109.35:	717	62 10	155	3.0	37	5			
		-fine to medium graned dipate with			·	······································	Semi-messic spec			1					1	· · f
		moderate Stratucal france on and Incal		1			hem with 1% cp	718	105.5	128-5	3.0	36	20	 		
		predente Staduck fraction and local breachter aldal course grained zones				<u>↓</u>	· · · · ·	p,	~~~~		- <u>-</u> -			†		
		- frock re \$11 Ksor en coloite						719	108.5	41.5	30	100	10			
		- fractive \$711 Kspr, ep, colaite - still skindont mt throughout - dist	incl	ts .				· · · · - · -	1							1
		- epewick to locally mederate	···· (*	size		T-		720	11.5	1135	20	20	5			
		-Kept-weak to locally mederate.						12-1			-					
		- local spec her thrashart, after constrate	Int	orts acres		·		721	1155	1152	1.7	60	35			
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,												
		115.20 - 118.50						722	115.20	116,20	6	795	60			
	_	- CP, Dy, Spic from, MOSSIL Mt books in		<u> </u>												
		increased Kapr carbonate altered some						723	116-20	//7.2	0.0	614	60			
		- 1/5.20-1/5.23= massix m+ bord at														
11		030° to CA.						724	117.20	115-20	1.0	91 4	55			
		- tocal solotchy co throughout sore, usigh														
		associated with some herm in A, solotchs						725	115.2		×.	612	25			
		20 - only weak control					1				1 T			I - T		

19.15.25

										120		112-	45-				
		TECK EXPLORATIONS LIMITED				HOLE	No. <u>JK-9</u>	<u>4-0</u>		#9-			PA	IGE X 0	• 10	2	
DEPTH	υ	DESCRIPTION	ERY	STRUCTURE		ALTERATION	METALLIC		MPLE	E D/	ATA	RESULTS					
(metres)	PHIC		RECOVE	ANGLES	VEINS		MINERALS (%)										
FROM TO	GRAI							SAMPLI NO.	FROM	то	LENGT	(CU)	A4 (app)				
		-averal cp 1 0.5%	-				T				Ļ		1 1				
		- calete vinkts inequier pattern, non 3 cm wide	to				· · ·				4.						
		- Still in some hast cliquik bracia						İ			<u> </u>	<u> </u>					
							ł	7-1	-			l					
		110.50-142.65					· ·	1726	12012	1232	2 3.0	t 2	10				
		-fire to medium grained dispite with moderat to locally story culcite with	<u>}</u>	-coluite ven			·	ł	1 1		1	ł					
		(mode 1-4mm wick) at rordom orientations	,	Core to 09		·	+	† ·	d		+	† ·					
		to car axis - Stock uck approared	•	Cityron	(m)			t	1		·	t. ·		···			
		- colu local known of A veining					1				T '	1		·++			
		- only local Ksorond ep A, veining - predominantly colore veinlets and local vein -locally brecciated as in hole upsection	in t	b to cm							1						
		-locally brecciated as in hole upsection						L				ļ					
		- local bears, bickle the chest - Deside					· · · · · · · · · · · · · · · · · · ·	L			·	ļ				_	
		sacodal.		ų. –	·			727	1232	2677	3.55	27	70				
		- IT, wopy to blocky spec hem thoushout	<u>-</u>	· · · ·				ł	\downarrow \downarrow		-	Į _					
		- A wopy to blothy spec hem thoushout locally anentrated and bally contains A cp.	· .					+ -				<u> </u>					
		- soc hem gut chen associated with										I					
		this colork veinlets			L			L		L	1	L					
								L	L		_	ļ					
	+	12343-125.40 FALT 300E		_	· · · ·		· · · · · · · · · · · · · · · · ·	 									
		- top contact shap, of high angle to CA(& 70°)						<u> </u>				 				_	
	{	- Soft, ethed aut core	·	+			+		-	<u> </u>	┼──	┢──				_	
	`	- soft; et no Gut core		+					┟┈╴╽		+ -						
		126.75- 128.95 . WEAK SUDANDE 30	Æ					728	124.75	128.9	2.5	112	10				
		- weat sulphile goe of spor hum A					1	1	1		1	4'.I 6					
		(in aktients) with loral role and	the				†	1			T -	1					
		(in alcite centers) with local co ff, solo -arrall co Lo. 5% and local py						[1	1					
																_	

يستعدد والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والم

مر به دي

			_	· · · · ·			128-93								0	1.	~
		TECK EXPLORATIONS LIMITED				HOLE	No. <u>JK-</u>	94-0	23				P 4	AGE	7.	, K	<u> </u>
DEPTH metres)	<u>ບ</u>		R	STRUC	TURE	ALTERATION	METALLIC		MPLE	E DA	TA			RESU	ILTS	-	_
	APHIC	DESCRIPTION	COVE	ANGLES	VEINS		MINERALS (%)	'									
ROM TO	GRA		RECO					SAMPLE NO.	FROM	то	LENGTH	(4) (1977)	Au (aph)				
		137-30-142-65:					1	729	128.95	131.95	30	790	40				
		-mod ep att Cup to 10 cm sore of stangep)		1	[]]	730	134.95	134.95	3.0	98	25				
		and Kapralt					I	731	134.95	137.15	2.2	160	20				
								732	13715	19945	215	172	5				
								.	_								
		12675-14265-		<u> </u>	└		· · ·	733	139.65	140.65	3.0	175	5				
		- general accell approvance darker, more chlorite		 				\									
		and and site volconic looking but stul a			┣			+				· ·	~·				
		diont interse , locally barrieted, connerty	Sta	Aucked				╆		· ·							
		HUDLE THE THE FOLD APA IT TO A		}	┠────┤		-very local	734	Huis	115-1	- 7-0	2011	~				
		142.65- 173.74 (EOH) - FALLT / ANDE		<u>+-</u>		· · · · · · · · · · · · · · · · · · ·	there py	737	19265	17503		204	~-				
		- Rigging materiation and the intervie		<u> </u> _──		· · · · · · · · · · · · · · · · · · ·		╂╌──								<u> </u>	—
		- Pyranene perphyritic and site ustanic (litely Nilola) in a semi-continuous faul	+ 30			······································		+								<u> </u>	
		- alterates between further volcones-so	4	I			••••••••••••••••••••••••••••••••••••••								1		
		etched core, common chlorite & hemotok	<u> </u>	1	t t						·	, 1			1	- +	
		stickensides					1	1			1						_
		- piperes non-lom, voribly catenat, ch - wak-limod-magnetic	lon#	g/tered				<u> </u>									
		- among dist have gos in and out of						T									
		Paint 302 = a assignitive that hole show	-14E	text+													
		Pourt zone = a possibility that hole show	s 🛲	clandant o	25												
			s.c.	abar!				L									
		M2.15- M7.70 :		<u> </u>		· · · · · · · · · · · · · · · · · · ·		<u> </u>									
		-fult are, only con sottons in fourth	100	<u> </u>	┞┫			ļ									
		- bottom compet 0450		 				 							ł		
		1473-147.20:		<u> </u>													~
		- pyrozene pomphyritic Androit - 147.75-147.90 - cartered blocked 30e]				
		with curbonst, Kgar attention-		L				┢									
		-bottom contact 070°		L				<u> </u>			_						

. .

		TECK EXPLORATIONS LIMITED				HOLE	No.	JK-C	14-0	23				P4	GE	10	or J	0
DEPTH	<u>∪</u>		R	STRUCT	TURE	ALTERATION	ME	TALLIC		MPLE	04	ATA			RESU	LTS		
(metres)	PHIC	DESCRIPTION	OVERY	ANGLES	VEINS		MINER	RALS (%)	L									
TO	GRA		REC						SAMPLE NO.	FROM	то	LENGTH						
		-147.90-149.25 · fout 3000					ļ –		-			ł						
		- (110 151 (m);					<u></u>				-		-		L			
		- 149.25-15140: - Pyresere parphy. And				······	<u></u> − -		f -	{ {		1 1		<u>-</u>				
		- pyre okene pupigeree					<u></u> ₹			t		<u>†</u>					-	
		-151.10-156-36					1		1_	[]		1						
·		= mixtur of Andesit and very broke	,				} .		1.	1 1								
		crumbly me (fourt) and goinge		<u> </u>			ł		$\frac{1}{2}$	-		 			· -			
		- 156.36- 158.70		{·───┤			ł	· · · · -	<u>+</u> ··	↓		+		~				
		z claminartly Andesite with long for		t					<u>+</u>			+ '			··· · -			
			<u> </u>															
		158.70-16000: fault 3000																
		-bottom contact 0450		Į	L		ł		Ļ									
		- 160.00 - 17200 = Andraite		{					ł			ł I					ļ	
		= bottom contot 060°					}			+			-					
··							†		t -	┟╵┈┥						+		
		- / -	•						1									
		-161.00-173.74 - fult 300					L		I			L						
		- Very local present proxime porpy					ļ		ļ									
		Anlesit volconic sections 4 167.17-167.45							+	}		}{						
		-bottom (antest at 04/50				<u>}</u>	ł		├									
		- present serios / chunks approx	25	<u>†</u>		······································	t		1			11					-+	
	_	breeig from the locally - le solicit	chat				· · · ·											
		brain fragments locally - le solier (In a soft, etched host (fourt)																
									ļ			ļ						
				<u></u>			+			l		<u> </u>						
							+					+						
									<u>}</u>			t						
										1		L						

	<u> </u>	TECK EXPLORATIONS	LIMITED)	· · · · · · · · · · · · · · · · · · ·		НО	LE No.	_J	K- 9	4-0	0 \$			GE .		, 5	
COMPA PROJE	NY CT	ND DRILL LOG TECK 1722 Y JOKER	NORTHING	<u>70K</u> 9 - <i>s</i> a 10. 46	ER 39m me count (cc 78-94-03	977Crv1	DATE : COLLARED JULY : COMPLETED JULY : LOGGED JULY : LOGGED BY : SJ- CORE SIZE : NQ	121/94	ртн R -	DIP /	<u>475</u> 0	LE DE CA WA	NGTH PTH SING TERLI	DF DY Remain Ne L	2/:(6 (4: /B:	9 <u>n (E</u>	<u>e</u>	• •
DEPTH (metres) FROM	RAPHIC	DESCRIPTION		ECOVERY	STRUCT		ALTERATION	METALLIC MINERALS (%)					6	A.	RESU			
то	B B B			RE					NO.	FROM	то	LENGTH	Cy (an)	(apb)			_	
0-9.140		Casad - Overbroden, rubble							-									
9.14		DIORITE BRECCIA					<u> </u>			┨┈┥				┣		}		[
/16.7		DIORTIE SKRLIM	······································		·			trap locally	10735	10.3	12.3	2.0	190	45				
		- the to medium grained diorit us	the very	,			- mad. chlorite .	11.4-11.5:				-						
		Commen stockwork congrance and Vie	bierrictic	<u>n</u>			Mashart		734	123	14.3	2-0	12	45			·	
		- Stockwork = abridget incular a	tot winlet				- weak to locally	3prc hun, Ct, CP, Ky - 11,55-17.20:	<u>c</u>					÷				
		(mode = 3 mm), epitht atta (f.F.C.	lats, diss ä j	ont	reto 4m)		maderat Istoring co		737	KI-3	<u>16.3</u>	2.0	11	5				
		Ksoro H^C ff. Londs. dots, t diss)									_							
		-basically the same as hele JK+	74-03	++	04+		with local bands,	week py	738	16.3	17.3	1.0	644	30				
		- locally about spoular hemotion	+ Tiovally				patho molecak.											
		goate conventions with carbonak	clas ff				moderat caborate	17.08-17.15:		17.3	<u>18-3</u>	/-0	27	10				
~		- furty chandent f-med. sound on	sage that the	sohar	/		alt avail.	1-26 cp in specher		1								
 	ω	h -least case blobs up to Icm	in size					bands (up to lensed)	740	18-3	19.3	1-0	50	45				
		- local op AF, class - formed in cont	orat A, ch	1			[L									
		with spechem t cp t kapr.					·	19.35-19.55:	74/	19.3	<u>20.3</u>	/.0	<u>8(2</u>	100				
·		- tr. py lorally.						work cp	L									
		- Ct versite A of all aroles t	b.C.A.					L										
		(no Hyde phoses)					↓÷_`		712	2.3	21.3	1.0	//2	45				
		- tuily common local branzey	biofit - c	an				- WOK Cp ft		$ \downarrow \downarrow$								
		possibly smandlag?]				L		743	21.3	<i>2</i>]. 3	1.0	57	45				
							···	267-330:		┞┤]]
———					<u> </u>			- bal week of fi,										
				، ^{پو} ر				c6+5					[

السورا الدمد الدياسة بالمراكب الدامين متكانية مستنف بفسيتو بمصابحه

-

ų.

EPTH netres)	<u>с</u>		ERY	STRUC	TURE	ALTERATION	METALLIC	SA	MPLE	É D4	TA			RESUL	TS	<u> </u>
	APHIC	DESCRIPTION	OVE	ANGLES	VEINS	1	MINERALS (%)									
ROM TO	GRAI		RECO					SAMFLE NO.		то	LENGTH	(cy (apm)	Ay (Aps)			_
		-local acuse grined diathe sections, ilregul	21				22.67-22.78:		22.3	23.3	1.0	2768	350			
		- bracio fragments rage in Size from Lica					- 3-4% cp clos in									
		to 78cm, subranded to subangular					spec hem bords in			[[
		- closes fine to ned crained dinite .		T		37.34-37.85:	Catarot 300									
		- close fine to not grained d'arite; - motrix = some diarite as closes with unce	k			mod exalt, needle	(Ind. ZCM Massin									
	-	Carbonate, epidok + Kspr atta				Ep xtob	hen bond (with 4) at					L				
		- closts . can be altered also not as amma	<u>a</u>			L	22169-22.71 @	Ι.		i	Į .		L			
		or as much as matrix generally					060° +0 C.A			L	L					
						248.48-48-90:			_			 			_	
		F-43.77-44.34		L		Disk Kspratter in	†	745	23.3	25.3	3.0	495	15			
		- coose sound diovite dyke?		L		breace matin		746	253	28.3	3.0	123	45			
		- top contect at acis to - CA.)				·	ļ	747	28.3	31.3	3-0	19	25			
				+				748	31.3	34.3	3.0	126	45			
		53.33 (***** 267.93		\			l l	749	34.3 37.3	37.3	3.0	<u> 60</u>	15			
		- fault zone with Soft, etched care with				·		750	37.3	40-3	3-0	94	5			-
		sections of presend, non-fouthed core and so	tans (stogia bra	en core		+ · · · · ·		40.3							
		-local fourth breck, zones				 	+	752	43.3	463	3-0	16	ĸ			
		-100/ fourt brech 30005 -107.85-107.93-500 fout 300 at 0300 to CA -107.85-107.93-500 fout 300 at 0300 to CA	* Ht , 9	at att free, s, Ka	rot frans,		ļ	753	46-3	49.3	3-0	17	5			
				}			+	754	49.3	51.3	20	5+	10			
		- 5390-55.60:		┫		↓	53-70-55-40:		51.3							
		- mineralized section with paths of 1-24	<u> </u>	┇		<u> </u>	Wark Pysep	756	53,78	54.78	1.0	1013	40			
		Sp A, blotthy in cutend veinlets, Af and		┫─────	····		(40.58 ara/1)	157	<u>44,78</u>	5570	1.0	1620	145			
		± spechem [hem. ± epidok .		ł			ł	450	55:18 [7] 76	54.70	1.0	143	10			
			-			<u> </u>		121	57.78 0.79	20+42	1.0	<u> < 77 / 1</u>	240			
		5683-68.70			<u> </u>	+		146	<u></u>	<u></u>	7		├──┨			
		- moderately to locally strongly kap altered			├───	<u> </u>	+			<u> </u>		h	╞──┤			
		ford diorik - diart baccie (som as unhole)		+		+	<u> </u>	<u>↓</u> ,	·	<u> </u>		+				
		+ Host of a Hr is perussive with bral Kan		 						'						
		bands (usually at 070-40 C.A.)		<u>+</u>			+		····-	<u>+</u>						
				t	ł		+		1	+	┣╴_──	t	l	+		

ļ

		TECK EXPLORATIONS LIMITED				HOLE	No.	JK.9	74-0)L/				PA	AGE	3 .	of 5	5
DEPTH (metres)	PHIC	DESCRIPTION	VERY	STRUCT		ALTERATION		ALLIC		MPLE	E D4	TA			RESI	JLTS		
FROM TO	GRAF	DESCRIPTION	RECOVE						SAMPLE NO.	FROM	то	LENGTH	(Cu (April)	Ач (907)				
		58.35-58.47:							760	56 H	61.87	3.09	104	45				
		- mossic - semi-messice Kep bods (080° to (A)							761	41.87	43.80	1.93	127	140	L			
		with spechemond cp (\$ 1-26)					1					L				-		~
		, ,							Hez	63.8	64.8	1.0	3630	2145	9H(*^\0	F: 9/	t)
		(4.05- (4.00: MWEARISED JONE					ļ		763	64.5	ús.8	1.0	1.13	30				
		- mineolized zore in Kspratt. zore								Į	L	l						
		- 64.05-6.4.07 = MOSSING 300 kem bod with					 		<i>F</i> 64	65-8	66.8	1.0	J1 <u>3</u>	55		┝╌╶╺┥		
		2-3% cp is clos (10 6 2cm) of 060-0500 to	<u>.</u> 0				Į.		Į	l	ļ	├ ── →						
		- 64.07-64.27= A. spr. hemice (1202)		}			.					<u>↓</u>		·		┝╼══╋		
		at low arghe to C. Q. Cright next to high angle	<u>60</u>	*/		<u> </u>			465	Cir 8	67.8	1.0	<u> 393</u>	10				··
		-64.27-64.00= wox cp ff	- ,	 			+		<u> </u>									{
		-67.20-4850=		1 - 1			+		74	67.6	68.6	1.0	865	375		┝──┦		
		* minerolized scie		1 1			f		- ·								+	
	T	- weak of co on ce 14 anall) with		11			1		767	68.8	69.8	1.0	277	65				
		Spre here , in Ksorait zone										f				1	1	
		₽					[Ī		· · · · · · · · · · · · · · · · · · ·							-1
		69.90-70.20					T		768	69.7	70.8	1.0	1213	390				
A		- minicological gore, hest wook art drank							[
4		* Semi-massive to messive KSpr book (at h					ļ		L									
		to (A) with ff, clots spechem, cp (200)	<u>66</u>	to to Zon			.l			L	L							
				[']	7		·			L		L						
———-\ 		- 70.51-70.56 - Waks	a Æ	rt H.26,	<u> +3 8-7</u>	.60, 74.11-74.13	4		769	70.8	72.8	20	182	30				
———¥		-mocolized zor		- +40. +-4	6.7		<u> </u>										+	<u> </u>
		-sam as 69.90-70.20		┝───┤		<u> </u>	┨───			<u> </u>								
	\rightarrow	68.60- 60.20		┟────┤		<u> </u>	- 		76	728	743	20	211	13		+		
+		- fine to sea lag the med god dirik					+		<u>+</u> - ·	↓								
	-	-The To Very Many Med. god all 1k -"local" persone kept alt like Slabs-64-30		<u>├</u> ───┤			1		721	74.8	1.9	5.7	229	60				1
	- 1	- not as bracilated as whole not as man					-t			1.4.	141		-2/	<u>~</u>			-+	{
		colaite rejulets ep etc.					1		T	1						+		
		-local ff consorchim zone					1		772	76.9	Baz	23	935	255				1

بە مىلەسىسىسىكە بىرى بىلىمىرىي ئەتتەر مەجمۇرىيە ئۇلىرى بۇرام 10 تۇرلىك

S. Sheen boi

		TECK EXPLORATIONS LIMITED				HOLE	No. <u>JK-</u>	94-	<u>c4</u>				P 4	GE	4	of 4	5
PTH	<u>0</u>		R	STRUC	TURE	ALTERATION	METALLIC		MPLE	E D4	ATA			RESU	JLTS		
tres)	PHIC	DESCRIPTION	Ň	ANGLES	VEINS	 	MINERALS (%)										
о м то	GRA		RECO					SAMPLE NO	FROM	то	LENGTH	(y (ppm)	Ди (985)				Ī
		80-20-115,40						773	60.2	83.2	3-0	21	5				T
		- fire to med- sod Clocally case grand) a	cut]		l _	1.	_					
		with stockick opposine and break]		Ι.							Τ
		- still med-streng ranching arentated calife	cint a	5				774	83.2	86.2	3.0	14	45				T
		- only weak , local ep+ KSpr alt averall we	the lo	al model	Hn zon	- 1) Ocm wiele				L			L]				↓
		- dark green green awall color.			Ļ	k		ľ			Į		L				4
		-S. Chlattn			ļ		ļ	775	86.2	89.2	30	34	45		4		ł
		- Still nod him, laal spechen A good-storg A	roș <i>n</i> c:	7. *	ļ		ł	ł		ł	<u></u> ⊢. ¦			· ·	l · ·		4
		- chly U. local tr. cp. 100 py ff						<u>}</u>	1		+=	-					_
			 -					776	8 <u>9.2</u>	927	30	29	15	··· ··			-
		84.88-85.45 · + weak		· · · -			+ ·	+			+					<u> </u>	_
	(- blached zone - & Kan, cabout "alteration					· · ·										_
		93.60-100;				· · · · ·	ţ	t	f		+			·			
		- a general increase in ept kaper gitt 300	<u>a (d</u>	prial Ks	er-bords,	E, penusia)		777	92.2	952	30	86_	40				_
		- still some diorite best rock.						ļ .	+								4
								778	95.2	97-2	2.0	13	30				_
		96.60-99.40:			·		• • • • • • • • • • • • • • • • • • •		<u> </u>		h 1						_
		- weakly minuralized gane			 	}		979	97.2	99.4	2.2	295	45				4
		- weak op 15 (1 10k) with spechen / hem osco with a boat veinets, often with type a then	ctd	ļ———	 -		·	1200	a.	1.0		70-					-
		with aboat winkts, often with tops atten	conte	}	+	↓ .	· · · · ·	700	99.4	10/5	1.2	27_	2				-
		(att bands well, of high angles to C.A)			<u> </u>			781	101.9	K.4.Y	2.9	9,	m				4
		104.80 - 106.00:						260	104,8	10.00	1.2	976	En l				+
	·			<u>├</u> ────		<u></u>		+02	0,70	1040	1.2	(20			┞───┤		┥
		- mireralized gove - Simla to glabo 99.40 bot this zon				<u>+</u>		+	╂──	┠╍╴╴╴	<u> </u>		┞───┨				┦
	-	e bit more CP (+2% normal gones)	<u> </u>		<u>├</u> ────	†	_ • - · · · · · · · ·	†	1 -	╉	<u>├</u> ·						ł
		- 4 DIT INDIT CP CITZTO ILA RUN SPEST	<u>.</u>		<u> </u>	<u> </u>		783	106.0	102.21	1/2	<i>R</i> 7	100				┨
	·	107.70-110.70		<u>├</u> <u>-</u> -	<u> </u>	ŧ			R7.7							<u> </u>	ł
		- abordont thick Ksort the veine sye	ndiče	H.Kes?	†		· • • · · · · · · · · · · · · · · · · ·	TOL		,	† . <u>–</u> 1	<u></u>					f
		- strange underson and the last			110			<u>†</u> .	t	t	+	t	╏────┤				†

.

and the second second second second second second second second second second second second second second second

	; ; ;	TECK EXPLORATIONS LIMITED				HOLE	No. <u>JK-</u>	<u>94-</u>	04				PA	GE (5 or	5
DEPTH (metres)	GRAPHIC	DESCRIPTION	RECOVERY	STRUCT		ALTERATION	METALLIC MINERALS (%)			E DA				RESU	LTS	
FROM TO	GRA		RECO					SAMPLE NO	FROM	то	LENGTH	(J Ger)	Au (pbb)			
		11546-119.77:						785	110.7	113.7	3-0	8/	20			
		- Sichlantic, dark green formed grand de to Andraite - abundant rolat semilets, soft aurall - fairly soft avail possibly the itd-marin						784	1137	111-7	3.0	52	45			
		- truch sont avail possibly toured-rearing	Hro	STR TOUH	gre!		. .		- 1							
		- 45 1/9.18-119.65. - Some as 107.70-110.70 - top contact 0750, sharp.)				······································	· · · · · · · · · · · · · · · · · · ·	767	14.7	119.77	3.07	-54	æ			
		- Fa H zone in Pyroxee prophyritic	3cm	ES								-		+ + +		
		Andresite - some as bottom of hole JK-94-03 - top contact 0450				······································										
······································		- alternots between fruited, soft etched con ord solid core (like tok TK-94-02)		· · · · · · · · · · · · · · · · · · ·												
12/162																
(EOH)																
							·		<u> </u>						— -	
				<u> </u>			+									
		· · · · · · · · · · · · · · · · · · ·					<u>+</u> ────────────────────────────────────		╂───					ł	 	
				┝━───┥			+	<u> </u>	<u>├</u> ─	h	<u> </u>					
				 			1	F	1							
]						· · · · · · · · · · · · · · · · ·									
		· · · · · · · · · · · · · · · · · · ·		<u></u>				ļ	L							

÷ -

EXPLORATIONS L	IMITED				ної	E No	5	TK-9	4-0	5		PA	GE	/ 。	.4
DRILL LOG	NTS CLAIM ELEVATION GRID COOR NORTHING	0	8 3 6 m		DATE : COLLARED JULY : COMPLETED JULY : LOGGED JULY23, LOGGED BY :	20/94 Cau					ENGTH PTH ASING ATERL	OF ON REMAIL	VB: NING: _ ENGTH	: <u></u>	
		VERY			ALTERATION	METALLIC MINERALS (%)		MPL	E D4	ATA			RESU	LTS	
		RECO				1	SAMPLINO.	FROM	то	LENGT	Cu Ger)	Ay (pop)			
40 DIORITE BRECC medium grained diorite Kuck and brain choose provines heles JK-94-63, C K storal ept Kspr att-	tastes 04 Magnetit														
k type but foulted as a sore, ethod imagular cakit usida wall obr. g huratik wiges, books of inclurated diank. moderat ep, kepar att boods, potchy. 3.55.	ts, dax (mule at po * as	·····	GA bet V	67.b/)			790	<i>IL-15</i>	<i>[ħ-2c</i>	3-05	20%	25			
	PTION B PTION Checkender, adde. 40: DioRitte Breach Marchander, adde. 40: DioRitte Breach 40: DioRitte	PTION Sectander, addle. PTION CLAIM GRID COOR NORTHING EASTING PTION Checked on a check Chain grained divide Checked on a brain charteris previous holes TK-94-C3, 04 Magnetic charteris previous holes the charteris previous holes the charteris previous holes the charteris previous holes the charteris previous holes the charteris previous holes the charteris previous holes the charteris previous holes the charteris previous holes the charteris pr	CLAIM CLAIM CLAIM CLAIM CLAIM CLAIM CLAIM CLAIM CLAIM CLAIM CLAIM CLAIM CLAIM CLAIM CLAIM CLAIM CREVATION CRID COORD NORTHING EASTING EASTING CALLER COORD NORTHING EASTING CLAIM COORD CALLER EASTING CALLER EASTING CALLER EASTING CALLER EASTING CALLER EASTING CALLER EASTING CALLER EASTING CALLER EASTING CALLER EASTING CALLER EASTING CALLER EASTING CALLER EASTING CALLER EASTING CALLER EASTING CALLER EASTING CALLER EASTING CALLER EASTING CALLER EASTING CALLER EASTING COORD EASTING CALLER EASTING EASTING CALLER EASTING EASTING CALLER EASTING EASTING CALLER EASTING CALLER EASTING CALLER EASTING CALLER EASTING CALLER EASTING CALLER EASTING CALLER EASTING EA	NTS 927/9W CLAIM JOKER CLAIM JOKER ELEVATION 93% m GRID COORD NORTHING R NORTHING R EASTING PTION R STRUC ANGLES Yo DIORITE STRUC ANGLES Yo DIORITE STRUC ANGLES Yo DIORITE Struct Grade <	DRILL LOG NTSIDKER CLAIMIDKER CLAIMIDKER ELEVATION 93% m GRID COORD NORTHING R EASTING PTION D Querkurden, addle. ANGLES VEINS Yo : DIORITE BRECUA	NTS $92T/9\omega$ DATE: COLLARED TH/12 CLAIM TOKER COMPLETED TH/13 CRILL LOGG CLAIM TOKER COMPLETED TH/13 CRID OORD Indicated Th/133 COMPLETED TH/13 COMPLETED TH/13 COMPLETED OUT Structure LOGGED BY: Structure R CORE SIZE: NOR NOR Structure ALTERATION PTION Structure ALTERATION ALTERATION Questurities Structure ALTERATION Yes Structure ALTERATION	NTS $\frac{72T/9\omega}{CLAIM}$ DATE: COLLARED $\frac{7ut + 72/94}{Cdut}$ Deter CLAIM $\frac{70t KER}{CLAIM}$ COMPLETED $\frac{7ut + 72/94}{Cdut}$ CompleteD $\frac{7ut + 72/94}{Cdut}$ CRIP ELEVATION $93t Km$ COMPLETED $\frac{7ut + 72/94}{Cdut}$ CompleteD $\frac{7ut + 72/94}{Cdut}$ R BRID COORD. Inorthing Logged $\frac{7ut + 72/94}{Cdut}$ CompleteD $\frac{7ut + 72/94}{Cdut}$ R NORTHING Logged $\frac{7ut + 72/94}{Cdut}$ Inorthing Inorthing R EASTING CORE SIZE: $\frac{100}{Cdut}$ METALLIC MINERALS (%) ANGLES VEINS METALLIC PTION Image: Structure ALTERATION METALLIC MINERALS (%) Image: Structure ALTERATION METALLIC Yes Image: Structure ALTERATION	DRILL LOG NTS $\frac{927/9\omega}{CLAIM}$ Date : COLLARED $\overline{UL/22/MY}$ DEPTH CLAIM \overline{IDKER} : COMPLETED $\overline{UL/23/26/9Y}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NTS $92T/9\omega$ Define $124722/94$ Define $124722/94$ Define $12722/94$ CLAIM IDDRER COMPLETED $324723/94$ Define $125725^{-1}/20/74$ CRILL LOG 935/27 CLAIM IDDRER CRILL LOG 935/27 CLAIM IDDRER CALM IDDRER COMPLETED $324/94$ IDDRER COMPLETED $324/94$ COMPLETED $324/94$ IDDRER COMPLETED $324/94$ IDDRER COMPLETED $324/94$ RE ORTHING LOGGED $8Y : SJ$ IDDRER CORE SIZE : NS PTION STRUCTURE ALTERATION METALLIC SAMPLE D/ MINERALS (%) SAMPLE D/ SAMPLE D/ OPTION Structure ALTERATION METALLIC SAMPLE D/ Structure ALTERATION METALLIC SAMPLE D/ YOU Structure ALTERATION METALLIC SAMPLE D/ Structure ALTERATION METALLIC SAMPLE D/ SAMPLE D/ YOU Structure ALTERATION METALLIC SAMPLE D/ Structure Structure ALTER	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DRILL LOG NTS 727/9W DATE : COLLARED TW/72/94 DEPTH DIP AZ LENGTH CLAIM JDKEC : COMPLETED JULY 20/94 : COMPLETED JULY 20	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NTS $\frac{722/9\omega}{100}$ DATE: COLLARED $\frac{724/9\omega}{1000}$ DEPTH DIP AZ LENGTH: $\frac{64.9c}{0000}$ ORILL LOG CLAIM $\frac{700}{100}$ $\frac{700}{100}$ $\frac{700}{100}$ $\frac{700}{100}$ DEPTH DIP AZ LENGTH: $\frac{64.9c}{0000}$ GRID COORD SRID COORD SI COARD WATERLINE LENGTH DEPTH OF OVB: DEP	NTS $22T/9LU$ Date: COLLARED $UH 22 / 24 / 20 / 24 / 2$

. . _ _

		TECK EXPLORATIONS LIMITED				HOLE	NoK	24-0	হ				P/	AGE	2 0	st '
ЕРТН	IC		٤RY	STRUC	TURE	ALTERATION	METALLIC MINERALS (%)		MPLI	E D4	ATA			RESU	ILTS	
etres)	Ŧ	DESCRIPTION	COVE	ANGLES	VEINS					_				_		
OM TO	GRAPHIC		RECO					SAMPLI NO.	FROM	то	LENGT	(CU) (April)	44 (4+)			
		ep Cff, potchy, bands) atth	•					791	19.20	27	3.05	87	45			
		- mederak randomly orientated colaite						[L	1	L			
		Veiolets							ļ	L	L	L				
							·				L					
		22,13-20-76 - Fault zone		┠		······································	• · ·	792	20.25	253	3.05	67	45			
	_	= soft, gagey + broken cor					· · · · · · · · · ·	30.2	25.7.	are	2.0	57	1			
		- top contact & allo (not proot)		<u> </u>		· · · · · · · · · · · · · · · · · · ·	trap. py at	775	<u>2</u> , 50	<u>~~??</u>	20	17-	<u></u>		┝─┈╺╋	;-
		-local normen fast = 3000 throughant - both					30-32, 31.12	794	20.3	36 39	304	78	45			
		Con sof	<u> </u>				32.15 39.00			ſ	1	1				
				<u>†</u>			43.65m	795	31.39	34.4	305	83	45			-
		loal tr. cp, py Ar		1			·····					T -				
								794	34.44	37,49	3.05	135	45			
		43.85-44.43 = Bleached for					43.85-44.63	L								
		- blocked zone some dio by rook type with		L			-weak cp, py AF.	797	37.49	40.54	305	93	130			
—— A		epilson at and her A with 4, p, A (LO.	600	e//)					Ļ		. .					
/								498	40-54	43.59	305	122	45			
- /		hem AF, bords 6 000 to C.A of 45.25m		 		<u> </u>		700	43.59	11113	2 -14		<u> </u>			
		diate	_· _	 				+11	<u>77 יגד</u>	46.67	2.07	1-06	45			<u>-</u>
— 	<u> </u>	- 45.33-4541 - Cours and dyke		 						<u></u>		╉───				
╾┼┼		- at 030° to CA, shap contact - cole t		╂						╂───		┟╸┈━				·
-++		- tr. sp. patchy, &.		1				··		1		<u>`</u>				
		46,40-46.90 = coarse god dia dight						800	463	47.03	1.0	56	45			
		- Some GD 45.33-45.41														
<u> </u>		- top/bottom contacts irreg/a/-oppor								L		l				
		low angle				<u></u>		L		 	ļ	ļ	 			
}	~	-		<u> </u>	┝────┥		+	 	┢	 	 	ļ	<u> </u> i			-
		43.85-54.46 m		├ ───	<u>├</u> ────┤		· +		┨╌────	┣ ·──	┨_`—	 -	<u> </u>			
		Weak ep, Kspr alt acrall		 	<u>∔</u> +			<u> </u>	 		 	┟───			<u> </u>	

•

		TECK EXPLORATIONS LIMITED				HOLE	No. <u>Jk-9</u>	4-0	;5				PA	GE	3 of	, L
EPTH	U U		ЕР	STRUCT	TURE	ALTERATION	METALLIC	SA	MPL	E DA	TA			RESU	LTS	<u></u>
etres) ROM	APHIC	DESCRIPTION	OVE N	ANGLES	VEINS		MINERALS (%)		.							
то	GRA		REC					SAMPLE NO	FROM	то	LENGTH	Cy (apm)	Ди (477)			
		48.05-48.63 . WEAKLY MINERALIZED 3045				48,46-48.60.		801	47.63	48.63	10	273	45			
		- coff, splothy with her / spac hern in colule				med-sterg priv. Kspr	-									
		verilets-coto Z-396 locally (ar 2-3cm))			9.4m			İ.	l						
		- 48.31-48.33 = sachen /hem - colait vein	-									L				
		- 48.31-48.33 = Spectron / tem - colait veint bend @ 030° to CA with 34 cp; stothy - 4507 how ff at 48.20 € 070° to GA	<u> </u>	L						L						
		- 4547- hen # at 48.20 € 070° to GA.		 		• • · ·	4	ļ	ļ	- 1			L			.
			├ ───	╉─────┨		· · · ·	4	0.0	140/2					· · · · • • • • • • • • • • • • • • • •		
			<u> </u>	┥─	·	 - ·		1002	7843	17.66	1.05	105	45	··· ·		
	{	51.0-51.26 = fault 30ne		╉─────				000	10/6	<u> </u>						
		-gase, broken are, no angla		·			· · · · · · · · · · · · · · · · · · ·	203	41.60	2.00	2.32	10/				
		52.00-52.02				· · · · · · · · · · · · · · · ·	52,00-5202:	604	50	53.0	1-0	228	45			
		· 2cm mossive hembord with week op					Mossic hen bood	L	·	L		L				
		-bond of 050° to CA.		↓		·	500	ļ .		i						
		· 	L	.k↓		· · · · · · · · · · · · · · · · · · ·	52.58= 9A.	805	53	54.9	1.9	Œ	45	ļ		_
			<u> </u>					1.	+ -	-		-				
		54.46-54.90	<u> </u>	╉────┤			· · · · · · · · ·	ļ	<u> </u>	 						
	·	- high density of wisay ham books/wisps at roughly 045 to C.A.	<u> </u>	+	·											
		of roughly 045 to C.A.		╉────┤		· · · · · · · · · · · · · · · · · · ·			<u> </u>							
		- hun ichi-stickusida				<u> </u>	+ ·	<u> </u>	<u> </u>	<u> </u>	 -	 -				-
		54.90-62.90 + FAULT JONE / ANDES TE				1	54.40-63.40 =	804	54.9	57.9	30	577	240			
		- Similar to bottom of here 94-03/04	L			_	Weak pyc 1-2%.			L						
		* dK green chloritic, Joff, etchal core	<u> </u>	╃━━━━━━┥		<u> </u>	pathy A.	507	579	6.9	3.0	597	65			
		Flocal dyko? - bleached, croomy sclor		╄─────			ļ	L	<u> </u>							
		at 55.43-55.59, 56.00-56.10,		<u> </u>		······································		L	I	L	L					
		56 50-56-71, 62.42-63.60(tr.4)				-	-tr-cp + 63.50	L		<u> </u>		┟				
	$-\mu$	- locally looks like prover prophys	 	┨────┤			}	₋		 	┣	 	}		<u> </u>	
		Ardesite		┢───┤		<u> </u>		 		 	↓					
	-+-	- 3crs at 0450 to. CA	 	· <u> </u>			+ · · - · · ·	- 1		ļ	├	┣	<u> </u>			·····
	\rightarrow	/_	<u> </u>	╉────┤		+			ł	 -						
				<u> </u>												

,42-60

. .

Į.

		TECK EXPLORATIONS LIMITED				HOLE	NoJK-9	4-0	5				PA	GE 4	/ o	• 4	1
DEPTH (metres)	HIC	DESCRIPTION	RECOVERY	STRUCT		ALTERATION	METALLIC MINERALS (%)			E DA				RESU	LTS		
FROM TO	GRAPHIC		RECO					SAMPLE NO.	FROM	то	LENGTH	Cu (April)	Аи (904)				
		- fault zone = bol sections of inducated cone - locally pyrone prophyry Andrite				· · · · · · · · · · · · · · · · · · ·		846	609	62.9	2.0	(481	45				
		- 62 64.90 (EOH) (Park Banker) - gray to black, fire grand? - gray motrix with abandont black, chloritic wisps, prototos - mod. mounts?						609	ω9	64.9	2.0	9	45				
(4.90 (EOU)		- mod. magnetic - deff. Han foutt gone moterial. - locally a blue oxide material.															
					×												

A CARLER STREET, S

1

.

÷.

-

	5	TECK EXPLORATIONS					Ног	E No.		K-9	4-00			•		/ of	
COMPA	NY . CT	ND DRILL LOG TECK 1722 Y JOKER	GRID COOR	<u>10 K</u>		i	DATE : COLLARED JULY : COMPLETED JULY : LOGGED JULY 2 LOGGED BY : CORE SIZE :	27/94 COU	A/2 -	DIP 55° 2 499	220	DE CA W4	PTH (SING) ATERLI	OF OV REMAIN NE LE	IING : INGTH :	5.24,	·/////////////////////////////////////
DEPTH (metres)	PHIC	DESCRIPTION		COVERY	STRUC ANGLES	TURE VEINS	ALTERATION	METALLIC MINERALS (%)	S/		E DA	TA			RESUL	_TS	
FROM	GRA	· · · · · · · · · · · · · · · · · · ·		REC					Sampu No.	FROM	то	LENGT	(y (apm)	Au (pp)			
0-15.24		CASING- Overhunden, nutble										-					
15.74		DIORITE BREACIA					- WOK ep, Kypr -	lad, tr.py		$\left \right $							
		- lisht to dark arey , local roare sain	why norrow 300	<u>s</u>			avall'		10510	16.15	19.20	3.05	256	170			
	(ting to medium orained diorite	hacig _					med fire to med.		<u> </u>						-+	
		Some rock as holes JK-94-03.4.	<u>.</u>				alted zon	grand manetak		19.20	2025	3.05	96	40	<u> </u>		
		- has stockwork and braciation			· · · · · · · · · · · · · · · · · · ·	:	mad Chi thrangtat	twashart (10-200)	 	╆╍╴──			·· ·-			···	
- <u> </u>		-Stockwork defined by aburabat	cokit _		h	· · · ·	hole		C17		~ .	2 ~	871		-		
<u> </u>		vernlets (mode + 2m domet,), wish	y hereaste				chooler to loit united	· · · · · · · · · · · · · · · · · · ·	814	14.0	27-90	303	0+1	2		— -------------	
		(with knal specular herestit), pott			·		J7 AG-25-20:		<u>.</u>	<u> </u>				+	-+	— —	<u> </u>
	_	3000 cf epidet alt, local top Ky Cos Veints					mad epatthe pathy			i							
·		- brain similar to other hos					bords.							+			
		-fragments= diant, 4/cm-8cm, 5/	hourday						812	25.20	223-	3.05	41	30		-+-	-+
		to sbargular					3745-38-00=	· · · · ·	807								
		- motrix - diorit, chundret coloite	Veinlets.			-	-mod.ep.alt		814	28.35	31.37	304	156	20	~		
		-							815	31.39	34.44	305	68	45			
		-43 20-44.44		$\overline{\mathbf{X}}$					816	34.44	37.41	3.05	55	45			
	$-\square$	- abundant (very) ralate veinlets, in	psado-bas	<u> </u>						28.75							
		Leto 4cm wide		<u>· </u>					817	37.49	40.91	305	192	45			
<u>-</u>		- cressenting, athist and and - here it approves low angle (= 020	page/let to a	er				2 & py 1 4. 49.05, Mar H.	88	40.54	43.57	3.05	164	45			
	-	- her it appies lan angle (= 020	e) Aset					49.05, M.A.H.	819	43.59	4663	3.04	106	45			
		by later 070-080° veniets.					<u> </u>		820	1443	49.00	5.05	1840 257	60	<u>-</u>		
	N	-					1	1	1241	4400	5275	505	154	451		1	í (

i

		TECK EXPLORATIONS LIMITED			130-67-	HOLE	No	4-0	76		90.	<u>بح</u> ر	PA	AGE	2	of (?
DEPTH metres)	с С		RY	STRUC	TURE	ALTERATION	METALLIC			E D/	ATA]		RES	ULTS	· · · · · · · · · · · · · · · · · · ·	
	APHIC	DESCRIPTION	Ň	ANGLES	VEINS		MINERALS (%)										
ROM TO	GRA		RECOVE			· · · · · · · · · · · · · · · · · · ·		SAMPLI NO.	FROM	τo	LENGT	(4) (4)	Au (pp)				I
	-	5308-54.00					4'	820	5273	55.7	3-5	101	495				Τ
		- possible albitized divite bracia					1	823	55-78	50-83	3.05	118	45				
		- whit silicous froms + making						824	58-63	61.87	3.04	600	45				Γ
							Γ	825	61.87	64-92	305	110	45				Γ
	_	•						824	6492	67.97	305 3.05	373	45				
			ļ	L				L	L _	L	L	L					
		+		Į	L			ł	+	ļ.,	↓ <u> </u>	l	L				Ŧ
		-68.80-69.03 = feu # 30ne		-			- 69.00-69.03=	877	67.97	7/-02	3.05	277	20		 		Ŧ
		- green grey gauge with conternat and petossically a thered diarut, bool of blocks		i			2% cp, sports in a tit vin	 	∔	l					L		∔
		petossically a Heard diarut, local of blocks		↓	┝───┦		in atit vein	628	71.02	74-07	505	236	20	L		L	╞
		(p+to 2% (min), (9.00-69.03) - 68.90×0+ 020 for CA 2 warps - (9.03 - 0+0450 to CA 2		k	 		+	L	 	 	┟					l	╀
		- 68.90 of 020 for CA Zuncps		ł			<u> </u>										ŧ
		- (9.03 - 0+ 045° to CA=						827	74.07	77.11	3-04	393	45		-		╀
				 		· · · · · · · · · · · · · · · · · · ·			ļ		+					<u> </u>	╀
		78-40-94,83	<u></u> /3	4		·				ł	+	-				·	╞
<u> </u>		- general increase in amount and intersity		╂─────			-+	₽	╉╾╴┈	┫	╊				+		╀
		CC achesti alter was as hade marks						620	211	79 0	1.89	211	7-		-		╀
·		of potossic alteration as bords, potets, perussive zonos, = ep alto, lots calcite u	in lat					070	7.61	71.0	4.01	044	#2				┢
		TRIVISINE JOARS + - GR. OI - , TOPS CURTER DE	<u>(112)</u>	₹		<u> </u>			+	<u> </u>	<u>† – – – – – – – – – – – – – – – – – – –</u>	<u> </u>			+		┢
		· · · · · · · · · · · · · · · · · · ·		<u>+</u>			+			<u> </u>	<u> </u>	┠────			╉┈──┥		┢
		78.80-79.40	—	╊┉╴─┥	┝ ╌ ───┤			┣	┝──	+	t	}					╀
		-inerese in py, tr. cp.ff.		1		5			1	† ·	1	<u>†</u> ∸					t
							1			<u> </u>	†				†	h	t
	1	79.60- 80.00 : Mimolized zone		T				831	720	800	1.0	266	110				t
1		- co.f. solottos co.to 3% lon 11. ± +2%. 01		11		_	·	8	1		† <u> </u>					~	t
		- cpff, splottes cp to 3% locally, + 12% p - Coscepted with Kyr, spr ben, sakit				······································	1	832	80.0	81.0	1.0	3/07	2.09	9/+	¥ 1.60	94	f
1		Vernicts, tep. alt - some as other helps						<u> </u>	1				1		F		7
		- 80.00-81.75= stronget minulaption						833	81.0	820	1.0	1962	295				Г
		226 cr acrall		T			10.24			İ.	Ľ						t
		- fractic ser roughly porallel to core															
		- Somewhat Inoschar															P

· •

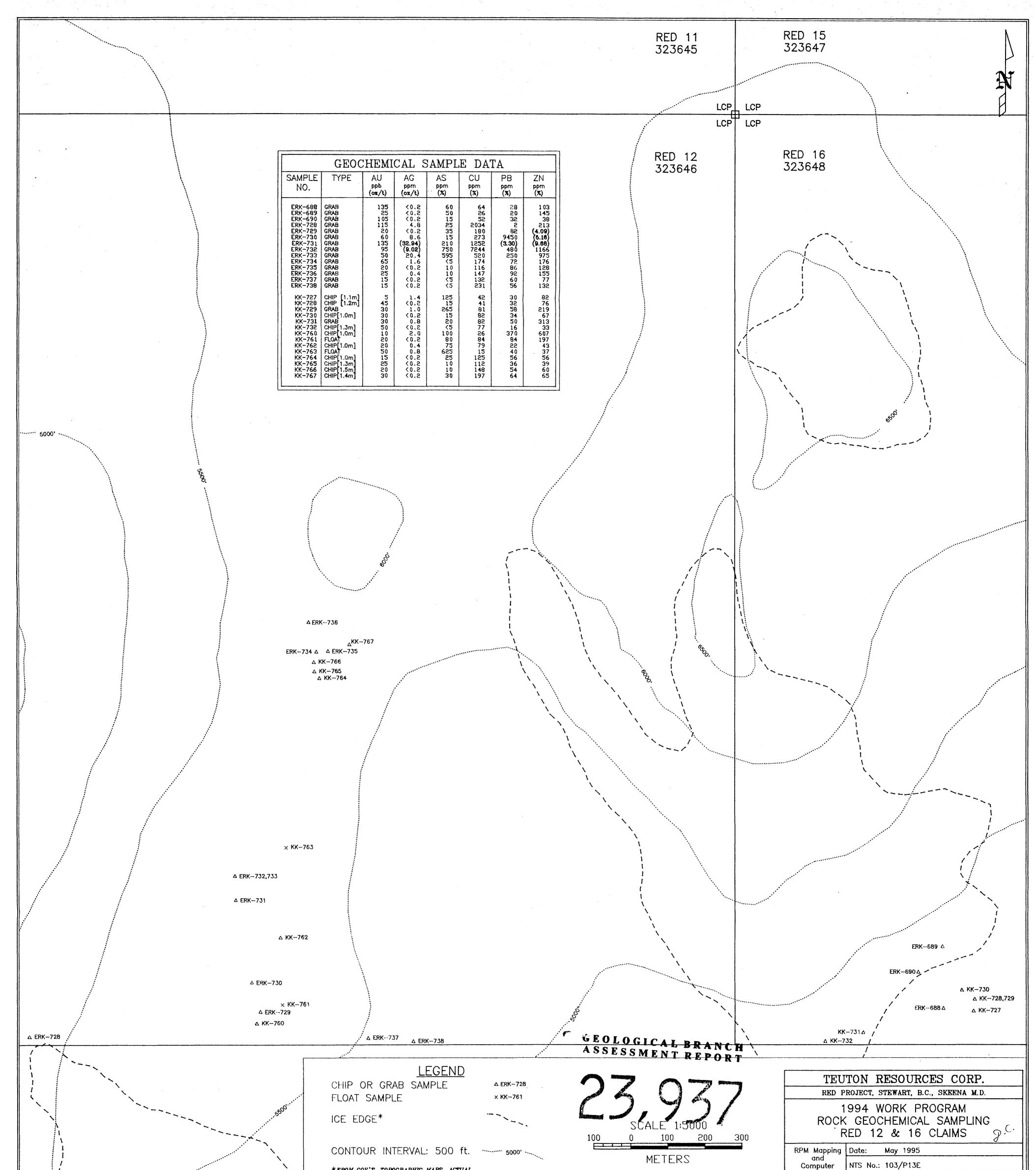
- 2

		TECK EXPLORATIONS LIMITED				HOLE	No	741-1	06				PA	GE	3 (of (
EPTH etres)	ы С		ERY	STRUCT	TURE	ALTERATION	METALLIC		MPLI	E DA	TA	[RESU	ILTS	
	I	DESCRIPTION	ž	ANGLES	VEINS		MINERALS (%)					ŀ				
MOS TD	GRAPHIC		RECOVI					SAMPLE NO	FROM	то	LENGT	(u (Arm)	Ду (дер)			
		82.00-63.00 - 4. cp, py						634	820	830	1.0	282	110			
	•	- '						ļ	Į							
		-63:00-89.00 = milreolised son						835	830	64.0	1.0	1490	600			
		- similar to 79.60-8200 plus						I	l							
		- 84.00 ms 2 cm spec hem band enveloped	4					334	84.0	850	1-0	571	105			
		- Similar to 79.60-8200 plus - 84.00 mc 2 cm spec hembord envetped Colok with splothy cp, bool at 030° to 0 - 85.85 = 9 cm wide asit, spechem, cp 3000	A	ļ		·		Car								
		- 05:05 = 9cm wide cabit, spechen, cp 3cm		<u> </u>			+	750	850	86-0	1.0	4072	490	· ·	4	┟╾╍┊╉
		at 035" to CA (\$ 2 to cp) -87.00 m - 2 cm bood (curb) with 3 to cp		<u> </u>			+	838	960 870 830	870	1.0	207	530		·	
		t.com - Zem bond (Corb) with BE cp		 				839	870	05.0	1.0	200	50			
		at 010-020° to CA.		<u>-</u>				8.70	830	10/0	-0-1	112	-200	·		
		PO-94×3= at to 2 co ula bral					+···· · ···	641	870	92.0	30	74	30			┝╼╼╉
		97-0-94.83= orly tr. py, sparty local - Vey wookly alked diorik broacis		t			+	<u> </u>	1	<u></u>		-1.1				
							+	542	9,2,0	94.85	285	96	20			
		"10:65-91.30 = coare grind diant - possible						-								+
		dyke?, no ongla mesurable.					i	[ţ	1	i 1				
		94.83 - 96.05						893								
		- strongly potossicelly altreved disrite								L	L					
		- pervessive alteration.	· ·	I			.	- 1	ļ	L]			
		- only work ep, work-mol- rakite veinlets					······································	L	• · ••• •	ļ	L					
					<u>.</u>	· · · · · · · · · · · · · · · · · · ·										
		94-83-9600 = Minualized 30-2"		 			+	CU2	04.0.2							
				╉╌╼──┥			↓	273	49.85	9600	1.15	200%	10:21	xt 4		
		splothy op thranghant good strongly		↓ i				┝───		≵	KACE.	<u>C</u>	40,1	ung	ι ε μ	
		- altered scree, week-mad spechem ff, pet - acro 11 petroly 38 cp	<u>b</u>				+			┢						
		- uero II persony 5 tep					· • · · · · · · · · · · · · · · · · · ·	-								
		9600-98.00 .		<u></u>			+ · · - · · · · · ·	GUL-	9	9.7.1	Tio-			+		
		- moderat pot-arth = as bonds, ff		<u>↓</u> ↓		├ ─────	• ••	l v 🚈		-17	<u> </u>					
		not newosily	<u> </u>	t			t	·	1	·						
		- decrease (gitte) dawn hole		1	<u> </u>	t	+	f ·	t·							

•••••

Ì	0		ž	STRUCT		ALTERATION	METALLIC	S4		E DA	TA	[RESULTS					
	APHIC	DESCRIPTION	لعا	ANGLES			MINERALS (%)					+						
M TO	GRAF		RECOV					SAMPLI NO.	FROM	то	LENGTH	(un)	Ач (997)					
		96-00-98-00 - WEALKLY MINERALISED JONE	•					844	96-0	970	1-0	4554	265		-+			
		- weak cp ff. notchy (< 16 averall)						845	970	95-0	1-0	6130	730		-			
		- A with sprc. hem, Kspr, coluite-					· · · · · · · · · · · · · · · · · · ·	ļ .		····						<u>·</u>		
		95-00 - 10 00 = weak, loca 1 CP., only local weak ef, Kapraft in dia. breasing						646	900	100-0	20	274	40					
		weak ef, Kspratt in die breaig					· · ·	<u>↓</u>	<u> </u>						-			
		KO.45-KO.90: Fault 3000					· • · · · · · · · · · · · · · · · · · ·	847	100.0	101.5	1.5	249	10					
		- green sity grige				Vile		L		ļ								
		-tep antest & OBO° (agrex, boken core)					·							+	-+			
		101. 20- 104.65- "foult zone" - 30ft, ctched core, local 305 cf				• • • • • • • • • • • • • •		648	1015	104.6	3.15	36	45					
		- soft, c-tched cure, local tos of																
		well inducated core						†										
		- moderak herrofik (not spe) thoughout						t							1			
		- load mad, eo. alta		1 - 7									1	ţ		· †		
		-Storg Chlorite thoushart					· · · · · · · · · · · · · · · · · · ·	1										
_		- Stang Chloste thoughout - most angles (footus, wijs) at 045°-01	°~a	o° € CA.				-										
		104.65 - 105.20						849	104.65	67.6	3-0	107	45					
		- weakly alkad (local) diorik braccia																
		105.20-105.75						 	<u> </u>						-+	_+		
		-abundant herrafit bards, wight at				· · · · · · · · · · · · · · · · · · ·		t	 									
		0450 to CAA to peallel to CA Cworped	5	1			1	1	1									
			<u> </u>			······································	<u>+</u>	870	107.65	1065	30	53	25	†	+			
		- 100,55 = hem. 6 and (2 cm) at 045° to 1	71			· · ·		I										
		-112.50-112.65:		<u>├</u> ────┤		· · · · · · · · · · · · · · · · · · ·		051	105	11269	5.04	73	->					
		- hankly mineralized front - and with entry					+	┼					└─── ├		-+			
		- workly minerolized fractice some with solo copies to borigination in wirzon bonded	<u>y</u>	<u>.</u>			+	t	<u> </u>						+-			

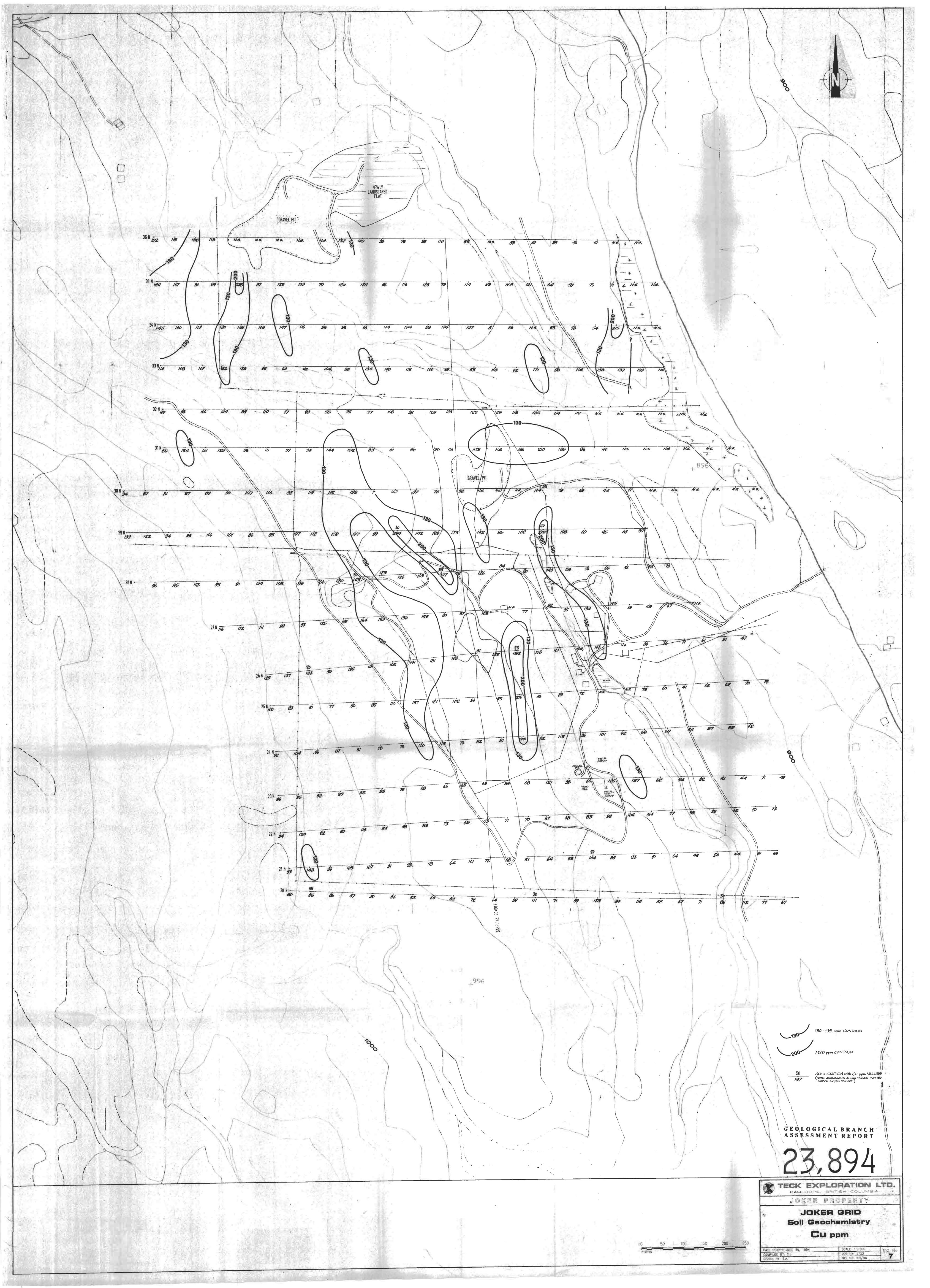
		TECK EXPLORATIONS LIMITED				HOLE	No. JK-9	14-0	26				P	AGE	5	of (, D
DEPTH (metres)	5	2	RY	STRUCTURE		ALTERATION	METALLIC		MPLE	E 0/	ATA	RESULTS					
FROM	APHIC	DESCRIPTION	COVERY	ANGLES	VEINS		MINERALS (%)						····				
TO	GR₽		REC					SAMPLE NO.	FROM	то	LENGTH	(4) (40m)	Au (195)				
		hem-spechem/ calcite waterts						T.]		
		- 30x at 045° to C.A.					·	852	1/3/69	116.74	3.05	330_	45				
		114.10-11.20						1			Ī						
		- weakly minual-zed zone					ļ	}			Į		L				
		- mod. potessic alta, local ep alta - main bands E 030 to ch-vonchle					1.	653	116 74	119.79	305	37	45				
		- main binds & 030° to ca-varichle					1	884	19.79	12283	3.04	35	45				
		- ff, splotsy cp (LICaugh) with spee	L				1.	855	120.83	125.00	3.05	375	45				
		hern and culcite		l				654	125.00	12093	3.05	36	45				
		192.50-54J/															
		- 1/200 - 132.412									T				r		
		- increase in ep atta a-often moderak locall - waps, bards, potchs	1						6				1				
		- waps, karoo, potcho						857	ļ	NO	5A 1-0	mpl	E."				
		-117-129= commonly broken core,					T · · · · -	858	129.92	130.92	1.0	1550	305				
											1						
		130.69-130.92 = Weakly mmaked 3010				*		659	12.92	1324	15	302	15	I	1 1		_
		- 1-38 Gp, Solotchy, with spac homand					1	1	1		ľ.						
		calcula veight zons, subpoorted to rore.						† -	t						1		
		(120-69-131.40= mod. hum wass, bonds)	_				······	+			1						
		(-13/18 = wat co.ff.	•				1	† '			†						
		.42		 		·		t	1		1						
		- 131.40 - 132. 2 ;		t			ł				1				<u>├</u>		
		- med. potosic alteration, inequer los	6	I				1			1	·		·			
		3ands	*				+	<u> </u>									
		13242-139.00						640	132.42	135.00	2.61	125	10				_
		- mal. on alth as bands pathis, ff. -weak Kopr., mad hern ff. bands up to som						1									
			wid	1			· · · · · · · · · · · · · · · · · · ·	661	1350	15.0	3.09	18	20				
		-139-150-27(EOH)					1				1 1						
		- weak to locally med ep. alt					L	542	1 36.07	141,12	3.05	38	25				
		- weak to local mod (nance) terrat as	and	×													
		(wrak acrall potasit)						ľ								-1	

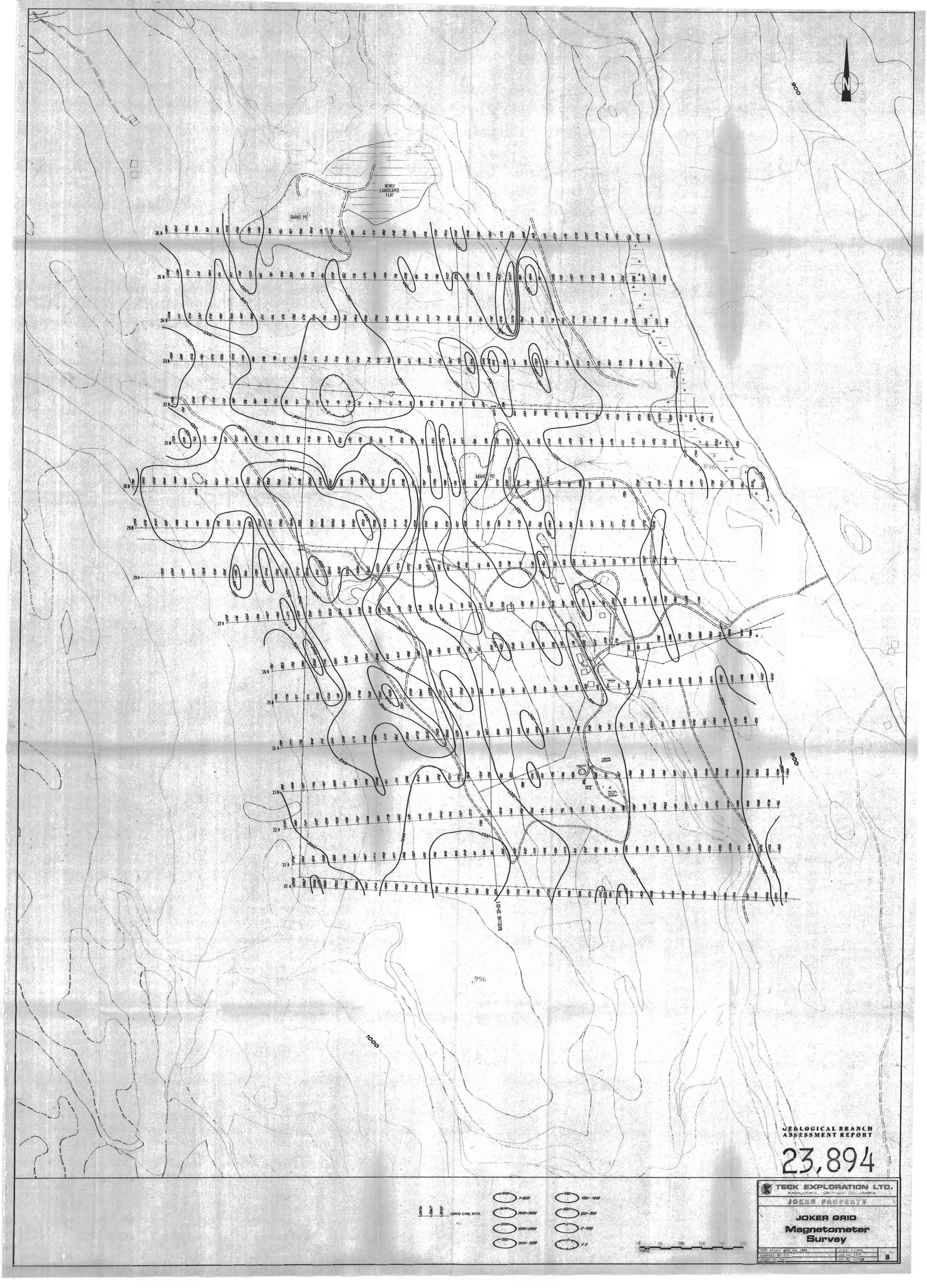

and a second second second second second second second second second second second second second second second

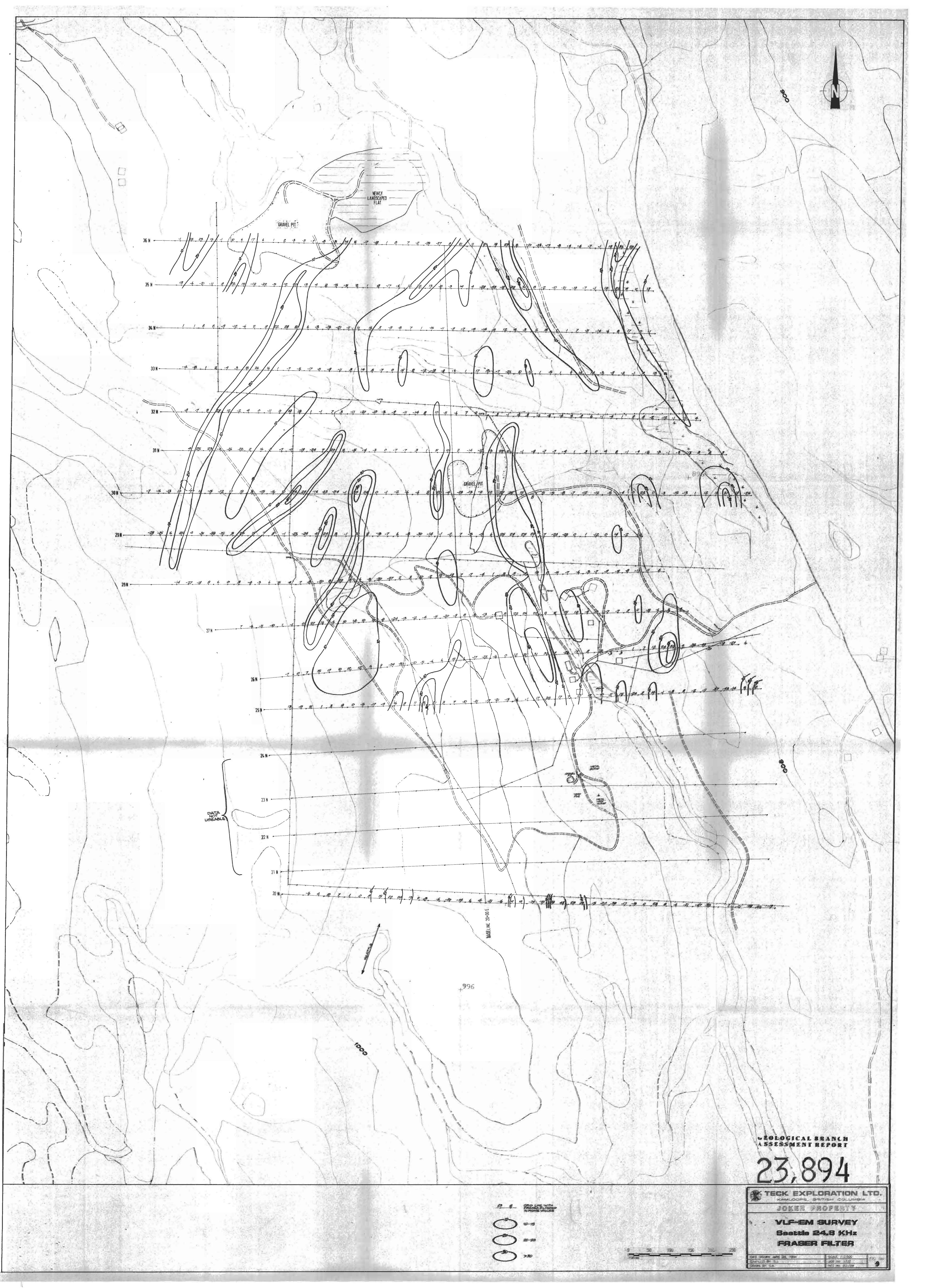
H	<u>u</u>		R	STRUCT	TURE	ALTERATION	METALLIC	S/		E DA	TA	RESULTS					
D)	H	DESCRIPTION	OVE	ANGLES	VEINS		MINERALS (%)			.							
го	GRAPHIC		RECOVERY		-			SAMPLI NO.	FROM	то	LENGTH	Cy (April	Au (Ar)				
		142.7-143.7 =fault zere -bollen ace, lacel garge	-					863	141.12	141.17	305	24	15			·	
		-boken ace, local gauge								1							
-								864	144.17	147.00	305	33	45		_		
		-144.17-144.60 - fast zore				<u> </u>	_ _	845	147.22	150.29	305	24	10				
		- gaven gruge gruge, broken core		┥────┤					↓								
		- gaze at 045° to C.A.		┠━━───┤			· + · · · · ·		┼	↓	+						
\uparrow		-en ksor him bouts cove from		<u>}</u>			4 · · · · · ·		+	h	 	· · · · ·			, -		
		-cp. Kspr, him bords: ronge from 645° to CA to & b porale 1 three bost -							1								
		-some dion't fine to medium (locally (corr) goined breating to end of hole.		├					 								
		(coox) ground breaching the and of hold.			ł		+		<u> </u>	 	┟──┤						
- {			<i>.</i>	┠───┤			-+		┨───		<u> </u>						
-+				1						† ·	t i		r i				
								È	1								
-								[
- +							· + - · - · - · - · - ·		 								
				┠╼╼──┧	⊢——-}	<u> </u>	-+		}	}	}						
-+				┟┈━╸─┥					╂──	<u> </u>	 				-+		
				1			··		t —	t	┟╌╌┥						
							1		<u> </u>								
	[
							·	ļ	 	 	 						
<u> </u>				├					l	 	ļ						
\rightarrow		<u></u>		{ 	ł		- <u></u>		+	 		- *					
-+				<u>├</u> ────						}'	<u> </u>				-+		
				 			- +		1						-+	—	
							-+		††	t							

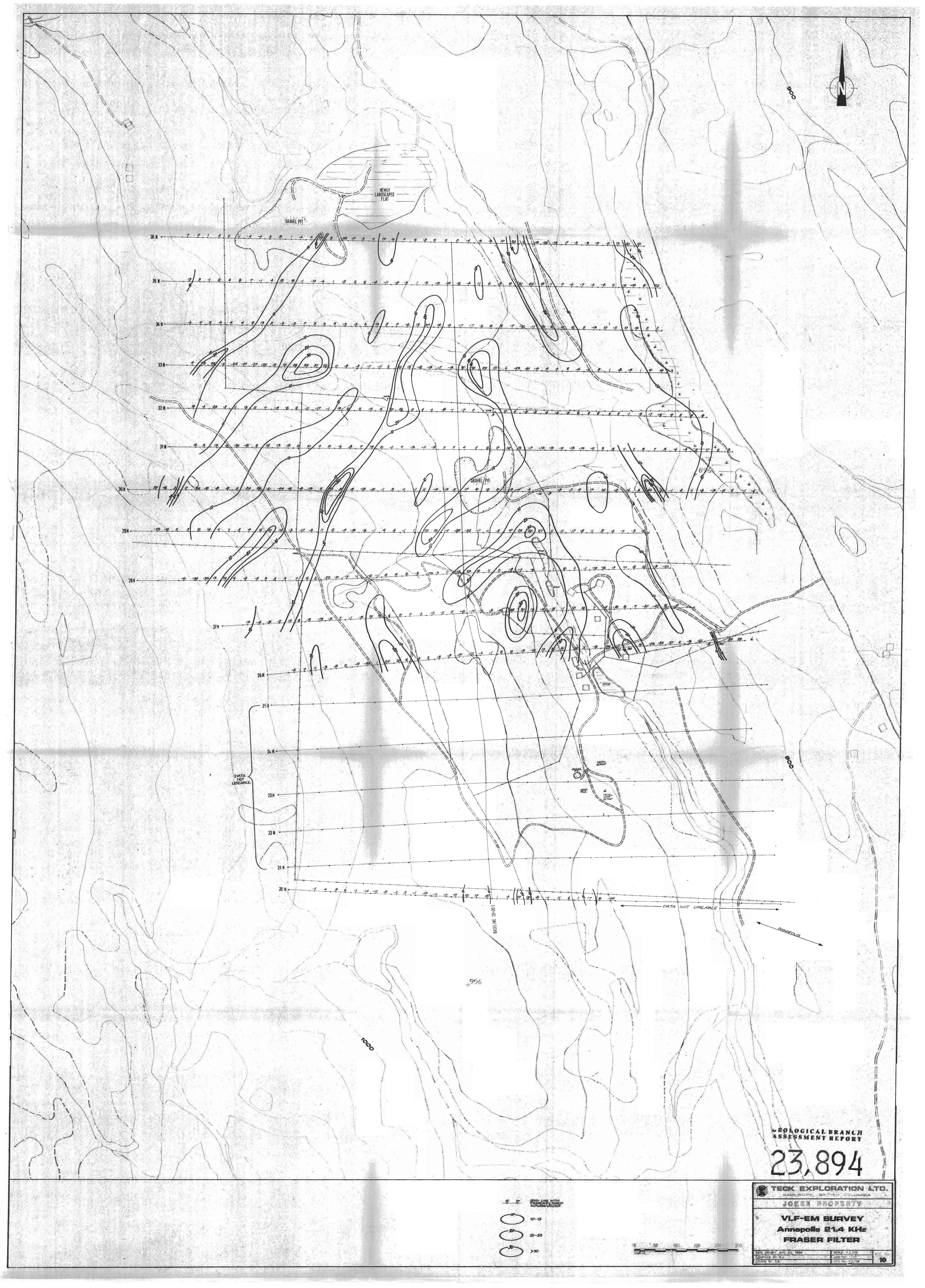
.

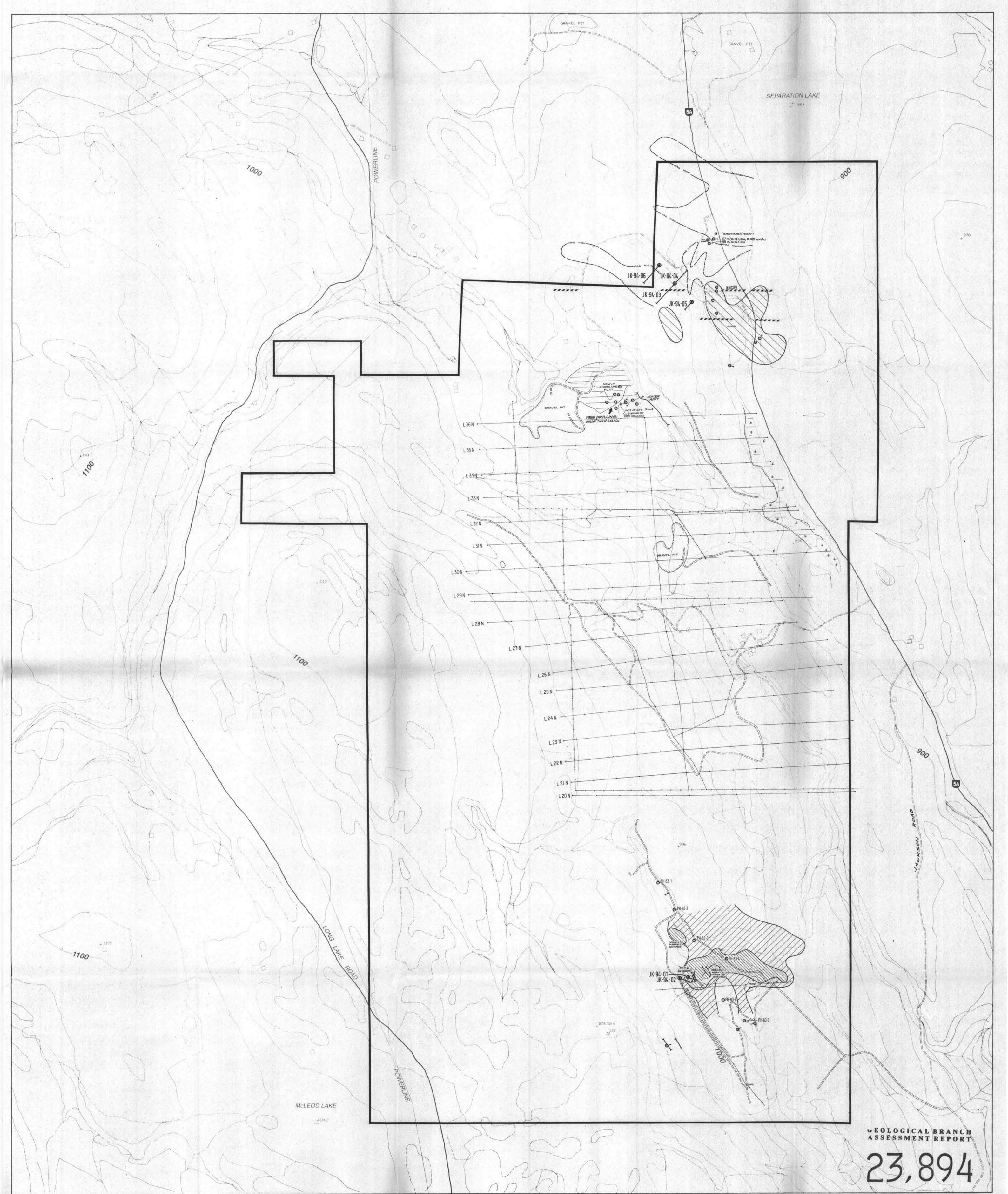
2.

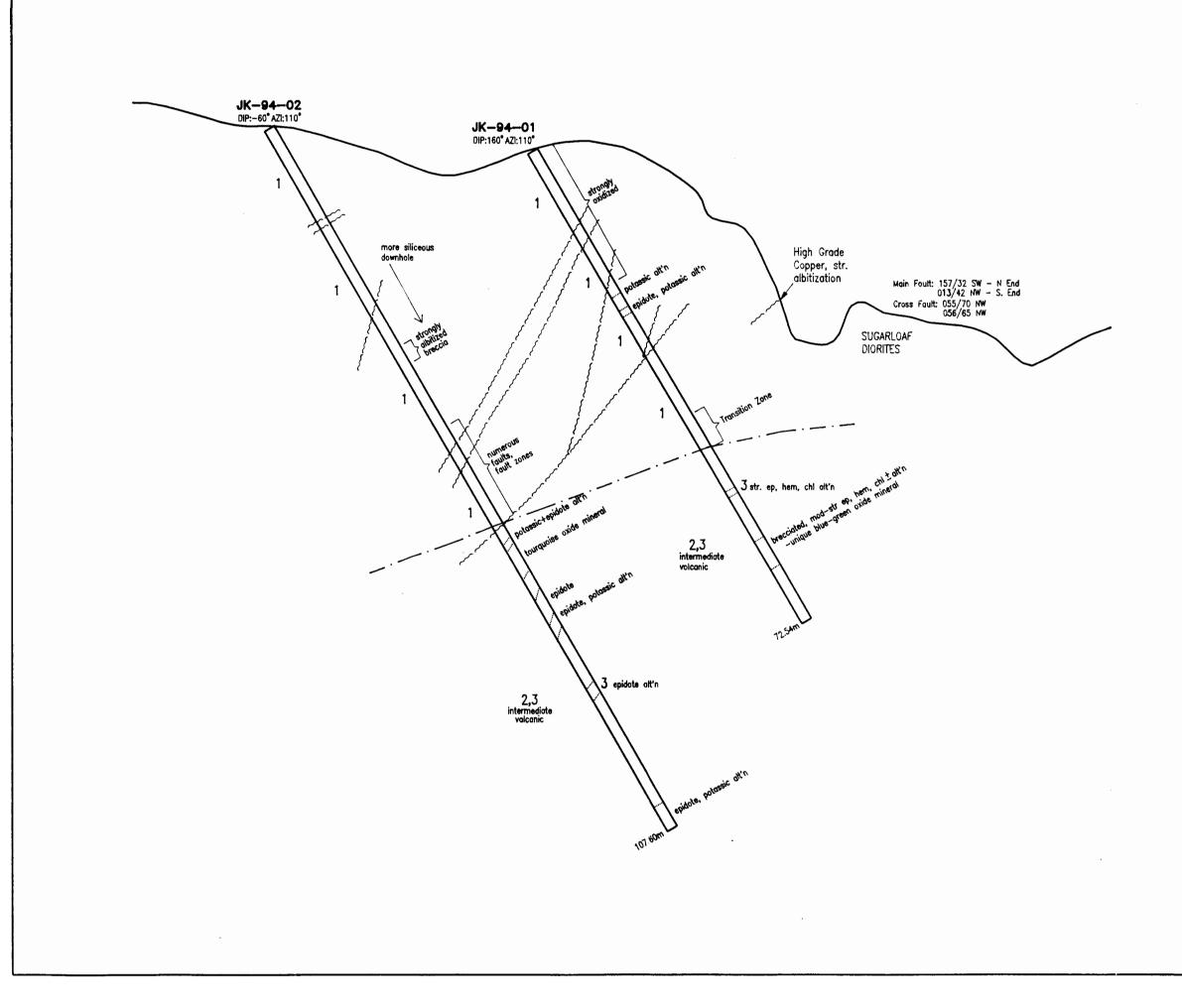

÷

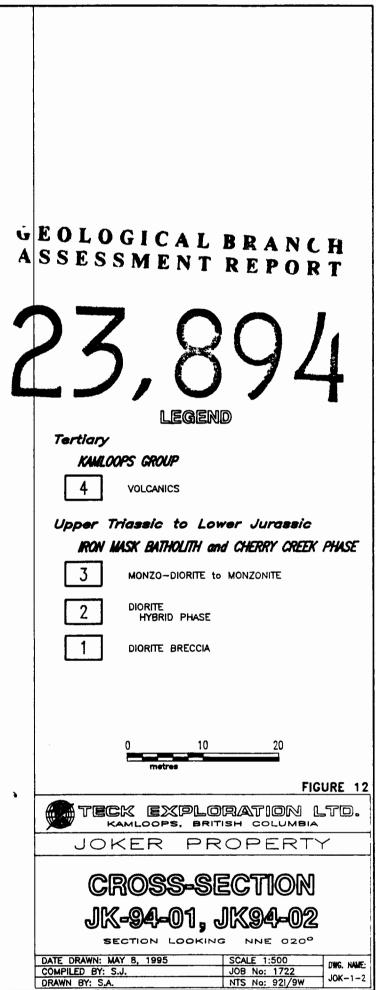


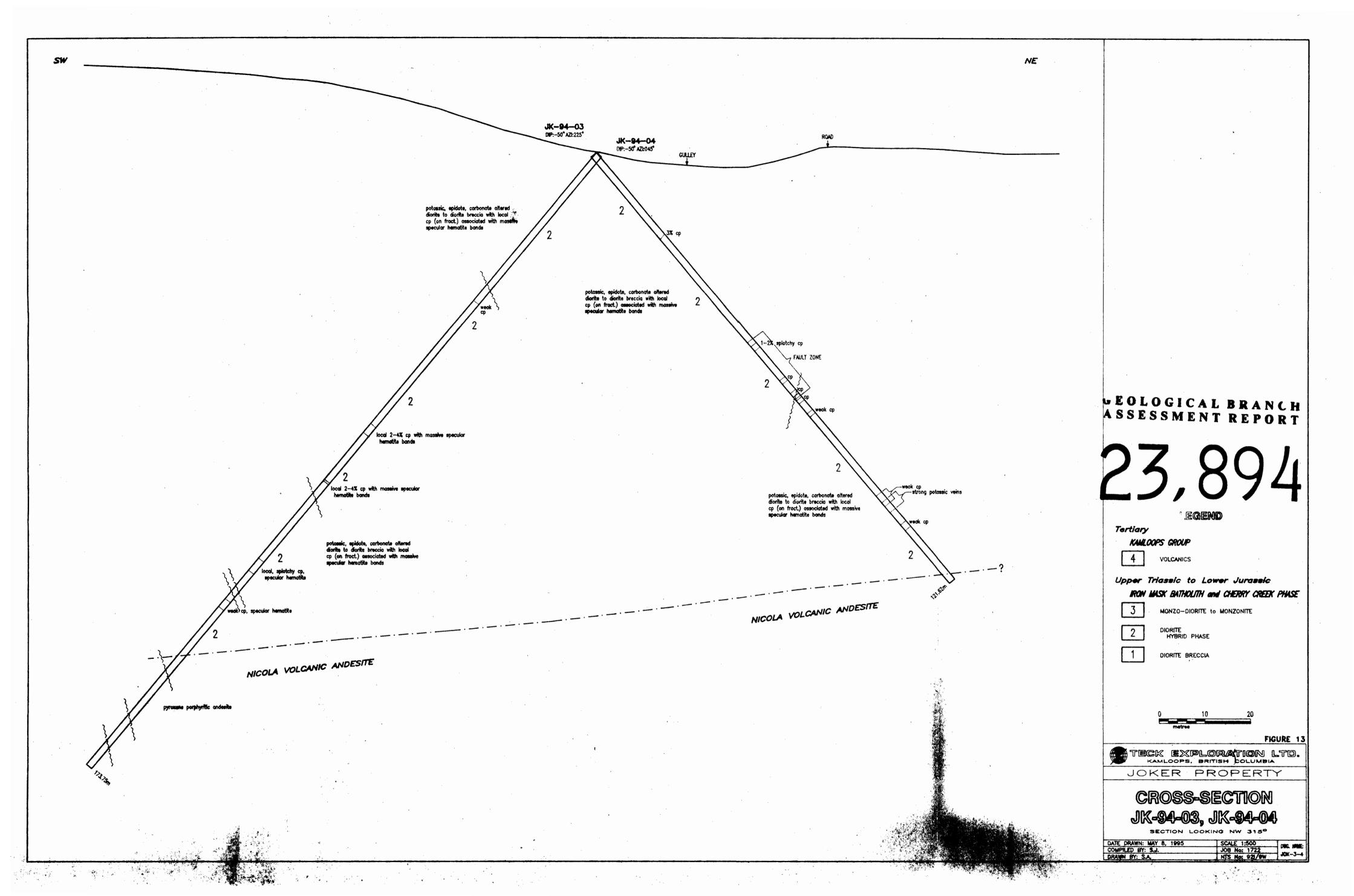


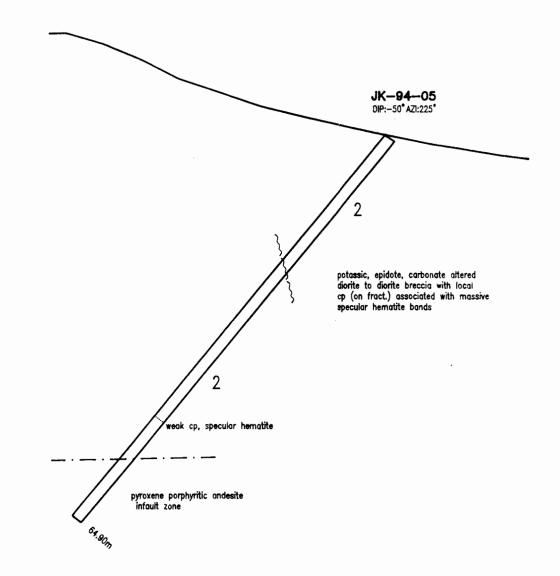


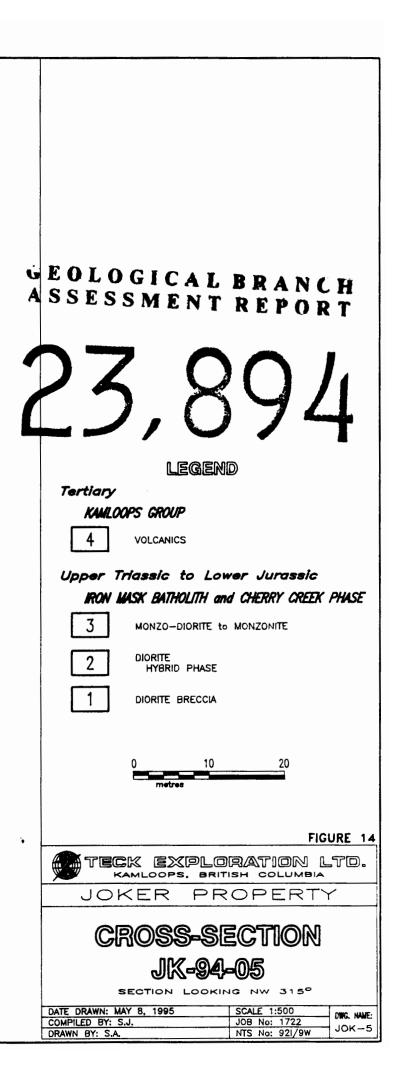

1000		
		GEOLOGICAL BRANCH ASSESSMENT REPORT 23,8994
LEGEND Tertiary Kamloops Group Image: Image	KEY OUTCROP SUBCROP, AREA of ABUNDANT TALUS GEOLOGICAL CONTACT WWW FAULT JOINTING -Inclined, vertical ROAD HOUSE/STRUCTURE FOREST COVER GRID LINE O 50 100 150 200 250 metres	JOKER PROPERTY JOKER GRID GEOLOGY DATE DRAWNE JUNE 29, 1994 COMPILED BY: 5.J DRAWN BY: 5.A. DRAWN BY: 5.A.




	MAGNETOMETER HIGH
	MAGNETOMETER LOW
	PROBABLE IP ANOMALY (ASS. REP. #965
0	100-199 ppm Cu (soll) (ASS. REP #1746)
Om	>200 ppm Cu (soll)] (ASS. REP.
Th	100-199 ppm Cu (soll) #4160)


	TECK 1994 Diamond Drill Holes	1994 TECK *Jok
0	PREVIOUS DRILL HOLES (ASS. REPs. #772, 965 6714, 11336)	==== ROAD
	SHAFT	FENCE
y	ADIT	-900-TOPO
-	TRENCH	
0	AREA of OUTCROP	DD HOUSES


N 1996 4


	di serie la	-21-	
TECK EX		RATION SH COLUMBI	
JOKER	PRO	PERT	ΓY
And the second second second second second second second second second second second second second second second	PILA	TION	
<u>0</u>	100	200 matres	100
DATE DRAWN: DEC. 30, 1994	SCALE	1.5,000	FIGURE N
COMPILED BY: S. Jensen	JOB No:	1722	11
DRAWN BY: S.A.	NTS No:	921/9W	02 (1. C. C. C. C.

