

LOG NO:	MAY 2 6 1995	U
ACTION:		
FILE NO:	· ·	

;**'**

GEOLOGY AND GEOCHEMISTRY REPORT

on the

UNUK PROJECT (Coul Claim Groups)

SKEENA MINING DIVISION NTS 104B/9, 104B/10

Owners: Malcolm Bell, Clive Ashworth, Granges Inc.

FILMED

Operator E O LOGICAL BRANCH GRANGEAINGS ESSMENT REPORT 2230-885 WEST GEORGIA STREET VANCOUVER B.C. V6B 3 2 3 9 4 0 1 0 V.P. VAN DAMME

FEBRUARY 28, 1995

TABLE OF CONTENTS

Page

1.0	INTR	ODUCTION
	1.1	Area History
	1.2	Location
	1.3	Physiography and Vegetation
	1.4	Claim Data
	1.5	Previous Exploration
	1.6	Objectives
2.0	GEOLO	GY
	2.1	Regional Geology42.1.1Stratigraphy42.1.2Intrusive Rocks72.1.3Structure82.1.4Metamorphism92.1.5Area Deposits9
2 0		Property Geology112.2.1Stratigraphy112.2.2Intrusives132.2.3Structures142.2.4Metamorphism152.2.5Property Showings15RATION PROGRAM
3.0	3.1	
	3.2	
		-
	3.3	Geology 18 3.3.1 R Grid Geology 18 3.3.1.1 Stratigraphy 18 3.3.1.2 Structure 18 3.3.1.3 Alteration/Mineralization 18 3.3.2.1 Stratigraphy 19 3.3.2.2 Structure 19 3.3.2.3 Alteration/Mineralization 19 3.3.2.3 Alteration/Mineralization 19
	3.4	Geochemistry 19 3.4.1 Soil Geochemistry 19 3.4.2 Litho-Geochemistry 20

TABLE OF CONTENTS (continued)

<u>Paqe</u>

ŧ.

4.0	DISCUSSION	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	.•	•	•	•	21	L
5.0	CONCLUSIONS	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	22	2
6.0	STATEMENT OF	'I	IXI	en?	1D]	T	JRE	8	•	•	•	•	•	٠	•	•	•	•	٠	•	•	•	•	23	3
7.0	STATEMENTS C	F	Qt	JAI	JI	PIC	CAT	'IC	N	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	24	ł
8.0	BIBLIOGRAPHY	5	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	٠	•	26	5

APPENDIX A. CERTIFICATES OF ANALYSIS

_

_.__

LIST OF FIGURES

Location Follows Page

Figure	1.	Location Map 2
Figure	2.	Claim Map 2
Figure	3.	Tectono-Terrane Map 4
Figure	4.	Location of Grids and Showings, Scale 1:100,000
Figure	5.	R Grid Geology and Rock Sample Locations, Scale 1:2000in pocket
Figure	6a/6b.	Jeff Grid Geology and Rock Sample Locations, Scale 1:2000 in pocket
Figure	7.	R Grid Soil Geochemistry (Ag, Au, As, Cu), Scale 1:2000 in pocket
Figure	8.	R Grid Soil Geochemistry (As, Sb), Scale 1:2000 in pocket
Figure	9.	R Grid Soil Geochemistry (Pb, Zn, Mo, Cu), Scale 1:2000 in pocket
Figure	10a/10b.	Jeff Grid Soil Geochemistry (Ag, Au, As, Cu), Scale 1:2000 in pocket
Figure	11a/11b.	Jeff Grid Soil Geochemistry (As, Sb), Scale 1:2000 in pocket
Figure	12a/12b.	Jeff Grid Soil Geochemistry (Pb, Zn, Cd, Mo) Scale 1:2000 in pocket

SUMMARY

The Unuk property is located in northwest British Columbia 70 km northwest of Stewart and 950 kilometres northwest of Vancouver. The property is controlled through a joint venture between Granges Inc. and Bristol Resources and is comprised of 38 claims totalling 14,725 hectares which are in the Unuk River Area of the Skeena Mining Division. The Unuk River Area falls within the Iskut Triangle. The Iskut Triangle hosts rocks of Permian through Cretaceous and younger age that form part of the Stikine Terrane of the Intermontane Belt. Unuk or Junuch is Tlingit for `Dream'.

Upper Triassic Stuhini group lithologies are found to the east of the John Peaks Ridge lineament. Triassic and older rocks are found immediately west of the South Unuk Harrymel deformation zone. These two structures define the lateral limits in which earlier detailed exploration and the 1994 project areas occurred. Within these lateral limits occur rocks entirely of the Jurassic Hazelton Group.

Hazelton group rocks mapped are readily divisible into lower sedimentary, lower andesite, lower felsic, upper felsic, and upper mafic volcanic sequences. Previously rocks were divided into Jack, Unuk, Betty Creek, Mount Dilworth and Salmon River formations but regional type section incompatibilities curtails their meaningful application. Lowermost Hazelton stratum Group is intraformational unit and consists of locally fossiliferous conglomerate to sandstone intervals or granitoid volcaniclastic cobble conglomerate, variably overlain by arenitic sandstone. Andesite sequence rocks are monolithic ash tuff to tuff breccia with interspersing waterlain tuff and argillite. Lower felsic rocks are more varied principle units are feldspar crystal tuff, lithic tuff, and heterolithic felsic tuff. Upper felsic volcanic rocks consist of lapilli tuff, tuff breccia, autobreccia, welded ash flow, flow banded rhyolite and epiclastic rhyolitic sediments. The mafic volcanic sequence is composed of ande-basalt pillowed flows, pillow breccias, massive flow and minor tuff interbedded with black argillite and fine siltstone, the latter becoming dominant up sequence.

All lithologies are present in three regional antiforms; the Prout, Eskay and McTagg anticlinorium. They are cut by north-northeast trending normal faults and north-northwest trending reverse-high angle thrust faults. Regional features that define property limits are the South Unuk-Harrymel Fault to the west and the McTagg axis and Sulphurets thrust to the east.

Rocks underlying the claims are intruded by Jurassic diorite John Peaks and upper felsic volcanic equivalent subvolcanic at or near the base of lower felsic volcanic sequence.

Metamorphism is sub greenschist.

Soil profiles reflect no significant accumulation of glacial till.

Recent volcanic ash occurs in thin isolated pockets. An alluvial effect is present only at low elevations in areas immediately adjacent to the Unuk River. Colluvial processes are not significant and except on the R grid. Soil geochemistry is considered to effectively reflect underlying rock.

Several potential styles of mineralization exist. Porphyry related mineralization in Triassic sediments, shear and vein hosted mineralization in lower andesite sequence rocks and polymetallic volcanogenic mineralization at or near rhyolite basalt contacts.

Multi-element soil anomalies and mapping effectively delineate additional instances of upper felsic and mafic sequence lithologies on the R grid. No additional significant anomalies over the Jeff grid are delineated, the lithologies of which have been assigned to lower andesite and upper mafic sequences.

1.0 INTRODUCTION

1.1 Area History

Mineral exploration commenced in the general area about 1885 when placer miners on their way out of the Caribou prospected Observatory Inlet and its arms north of the Nass River. Subsequently, the Unuk River, Stewart, Portland Canal, Anyox and Alice Arm Destructs became targets of extensive prospecting.

The first mineral discovery in the area is credited to a prospector named O'Hara who returned from the Unuk region in 1893 with placer gold. By 1898 F.E. Gingras, H.W. Ketchum and C.W. Mitchell had established gravel workings on the mouth of Mitchell Creek at Sulphurets Creek.

In 1898 the first mineral claims, the Cumberland (Copy Property) and Globe (Doc Property) groups were staked by H.W. Ketchum and L. Brant. 1901 saw their purchase by the Unuk River Mining and Dredging Company. In 1903 a road from Tidewater on Burroughs Bay to the Cumberland Group was initiated and completed as far as the 'Landing' at the head of third canyon before efforts were abandoned. Machinery destined for the Cumberland never reached the property and operations ceased.

In 1905, F.E. Wright of the U.S. Geological Survey visited the Unuk River as an extension of his work on the Alaskan side of the nearby International border and submitted his findings to the Canadian Government. This was the first of a series of government sponsored surveys in the area.

Between 1903 and 1929 activity essentially ceased until cursory prospecting by T.J. McQuillan and T. Terwilligen resumed in the area at large.

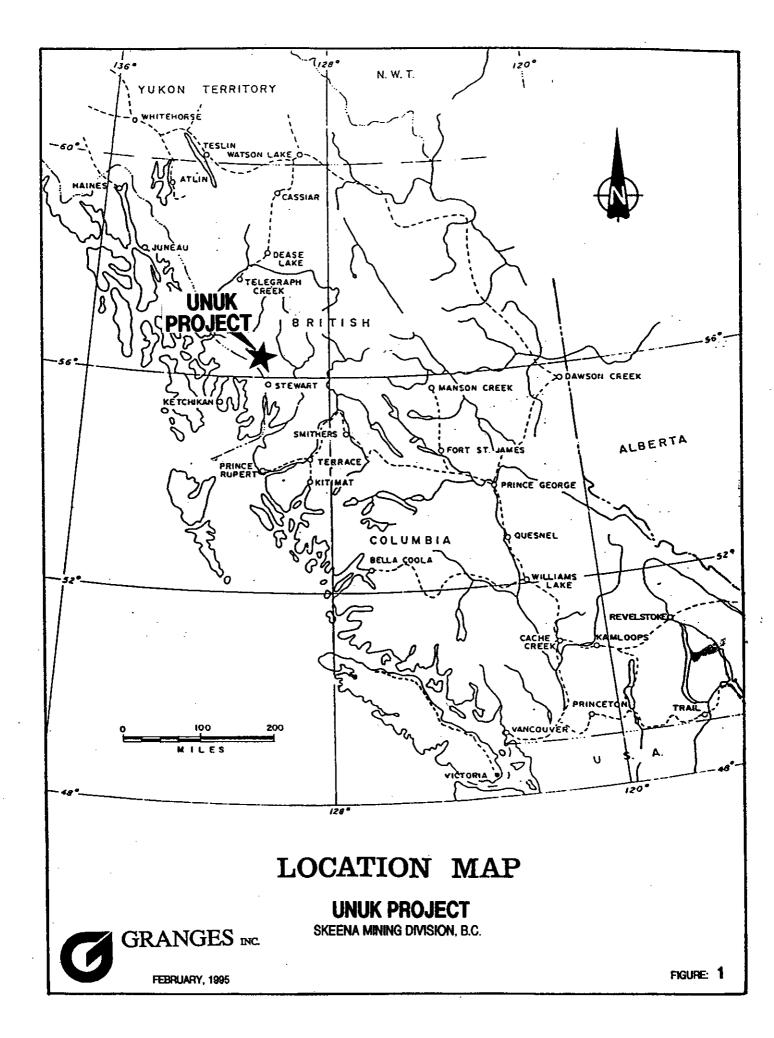
A prospecting expedition representing a Premier-backed syndicate in 1932 led by T.S. Mackay, A.H. Melville and W.A. Prout conducted exploration efforts in the Ketchum Creek area. Nearly continuous exploration was undertaken, with the exception of World War II, under numerous options but the ground always reverted back to Mackay. Work done on prospects located between 1932 and 1989 led to the definition of the prolific Eskay Creek 21A and 21B deposits. The latter recently commenced production in the fall of 1994.

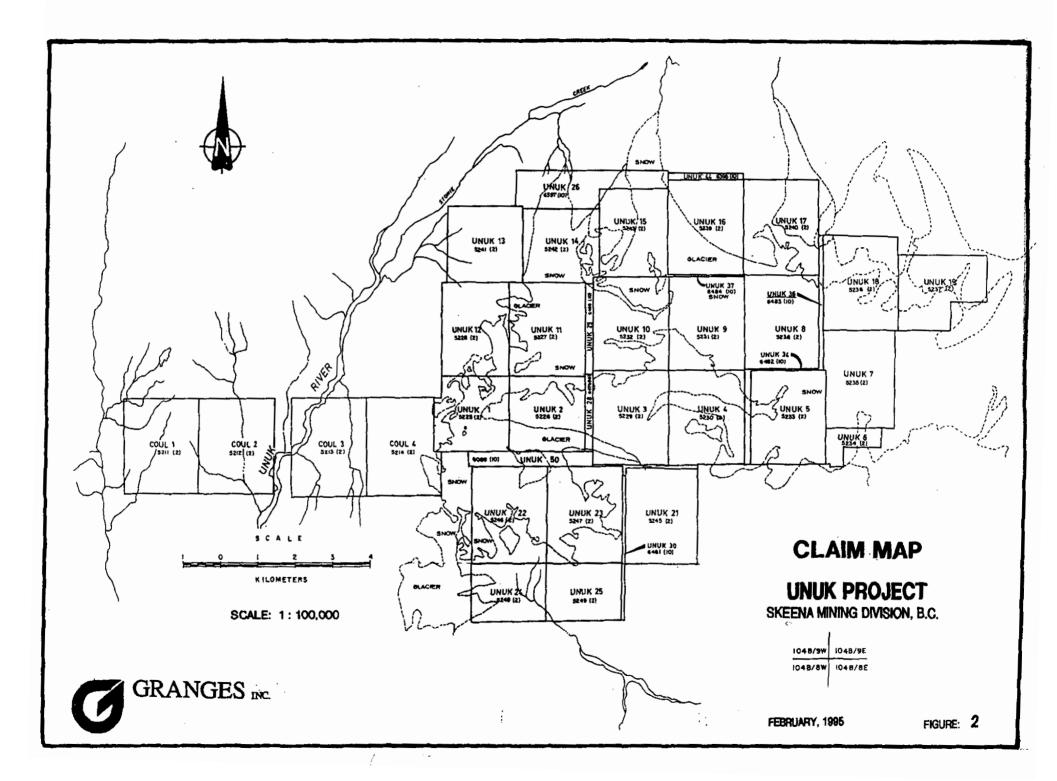
The central region had little exploration activity until the 1960's when interest in porphyry copper deposits led Newmont and Granduc to conduct a broad regional evaluation. This work, an increase in copper prices, and a series of property turnovers with the ground reverting to Newhawk led to the identification of the Kerr, Sulphurets, Snowfield and West Zones. Interest in the Globe group or present day Doc property was renewed in 1946 and intermittent activity occurred between then and termination of operations by Echo Bay in 1989 with the identification of the Q17 and Q22 veins.

1.2 Location

The Unuk property is situated in northwestern British Columbia 70 kilometres north of Stewart and 950 kilometres northwest of Vancouver (Figure 1). The property is centred at 56 degrees 35 minutes north latitude and 130 degrees 20 minutes west longitude and falls within the 104B/09E, 104B/09W and 104B/10E map sheets of the NTS series.

1.3 Physiography and Vegetation


The Unuk Property is situated within the Boundary Ranges of the Coast Mountains in northwestern British Columbia. The claims are traversed to the west by the Unuk River and Coulter Creek and fall between Harrymel Creek to the west and Treaty Glacier to the east. Elevations range from 250 metres on the Unuk River to a maximum of 2164 metres along the ridge north of twin John Peaks. Topography is flat to rolling along braided segments of the Unuk River, moderately steep with frequent cliffs along west facing slopes and extremely steep along narrow incised drainages.


Vegetation along the Unuk River flats is comprised of mature stands of spruce, fir and cottonwood. Fir and hemlock occur on slopes thinning into isolated stands at the treeline at approximately 1200 metres. On lower slopes below 500m, dense undergrowth of alder and devil's club occur concentrated on slides and along drainages. At upper elevations a large area is covered by glacier, permanent icefields and many north facing slopes which commonly have semi-permanent snow pack present throughout much of the year.

Climate is generally classified as Coast Moderate although the property falls near the boundary with the Intermontane Transitional climatic belt. Interaction across this non-static boundary results in a frequent phenomenon known as the Prout Fog between 800 and 1200 metres along the valley of major drainages. Weather is typified by cool damp snowy winters and warm wet summers. Snowfall frequently exceeds 15 metres at high elevations and 2 to 3 metres along the Unuk Valley.

1.4 <u>Claim Data</u>

The Unuk property mineral claims are comprised of 589 units or 14,725 hectares of prospective ground, all located within the Skeena Mining Division (Figure 2). The claims are operated by

Granges Inc. (63.67% interest) in joint venture with Bristol Exploration Ltd. (36.33% interest), successor to Springer Resources Ltd. Granges Inc., Malcolm Bell and Clive Ashworth are the registered owners of the claims.

The claims are recorded as follows:

<u>Claim Name</u>	Tenure	<u>Units</u>
Coul 1	251344	20
Coul 2	251345	20
Coul 3	251346	20
Coul 4	251347	20
Irv	251355	5
Unuk 1	251358	20
Unuk 2	251359	20
Unuk 11	251360	20
Unuk 12	251361	20
Unuk 3	251362	20
Unuk 4	251363	20
Unuk 9	251364	20
Unuk 10	251365	20
Unuk 5	251366	20
Unuk 6	251367	8
Unuk 7	251368	20
Unuk 18	251369	20
Unuk 19	251370	20
Unuk 8	251371	20
Unuk 16	251372	20
Unuk 17	251373	20
Unuk 13	251374	20
Unuk 14	251375	20
Unuk 15	251376	20
Unuk 21	251378	20
Unuk 22	251379	20
Unuk 23	251380	20
Unuk 24	251381	12
Unuk 25	251382	12
Unuk 26	251965	16
Unuk 44	251966	4
Unuk 28	252005	4
Unuk 29	252006	5
Unuk 30	252007	8
Unuk 34	252008	3
Unuk 36	252009	8
Unuk 37	252010	4
Unuk 50	253293	8

1.5 <u>Previous Exploration</u>

Earliest documented exploration in the area now encompassed by

the Unuk-Coul claims was by Newmont Exploration in 1960 as part of a broad regional reconnaissance mapping program. Several zones were identified as follows: Unuk Zone 1 (Jack Glacier), Unuk Zone 2 (Bruce Glacier) and Unuk Zone 4 (McTagg Creek) and Gingrass Creek.

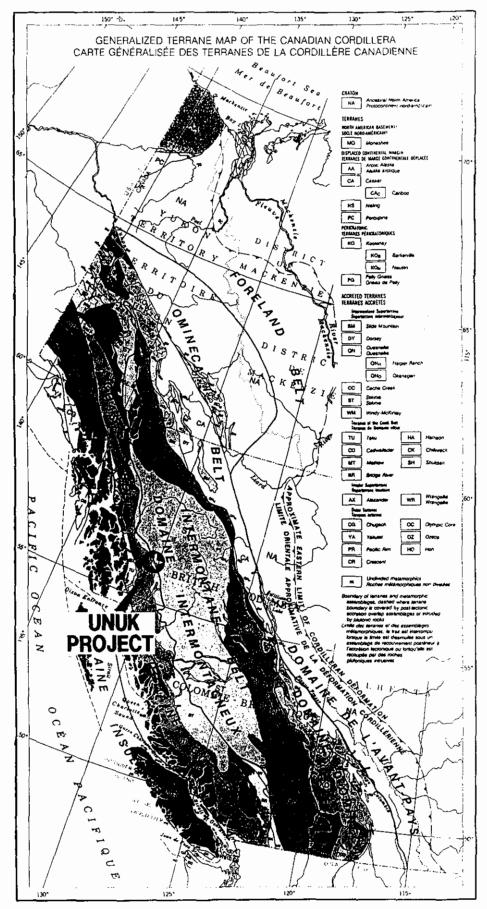
In 1986 the Coul 1-4, and Unuk 1-25 claims were staked followed by the Unuk 26-50 claims in 1987. An airborne Mag/VLF survey was flown over the property in 1986.

Both 1987 and 1988 saw reconnaissance programs to relocate and resample existing showings and outline additional localities for potential Sulphurets type mineralization, and later, in 1989 and 1990, for potential Eskay Creek stratigraphy. Six areas were identified: Zone 1 (AP), Zone 2 (U2), R grid, J grid, Bedee Zone, and Zone 4 (McTagg Creek).

In 1989 Granges Inc. entered into an option agreement with Springer Resources Ltd. and Cove Resources Corporation, and a permanent camp was established on the west bank of the Unuk River immediately above the confluence of Coulter Creek. From 1989 to 1991 Granges conducted a series of reconnaissance and grid geological, geochemical, geophysical and diamond drill surveys.

1.6 <u>Objectives</u>

The objective of the 1994 exploration program was twofold. Firstly, to test the northern half of Coul 1 for Eskay type gold silver mineralization. Mineralization at Eskay Creek is of volcanogenic massive sulphide type, occurring within mudstone at the contact of a major rhyolite unit with pillowed basalt. Secondly, to test the peripheral extension of the Coul 4 Jeff grid for extension of or additional shear hosted gold and silver. Mineralization at Sulphurets-West Zone is transitional-epithermal hosted in a lower andesite volcanic sequence.


2.0 GEOLOGY

2.1 <u>Regional Geology</u>

2.1.1 <u>Stratigraphy</u>

The project area falls within the 'Iskut Triangle' of the Stikine Terrane of the Intermontane Belt (Figure 3).

Evaluation of the regional geology of the Unuk River area is an ongoing process. The first comprehensive map published was the B.C. Department of Mines 1935 'Unuk Area Geological Map'. This was followed later by Groves (1971, 1986) and most

Compiled by J.O. Wheeler, A.J. Brookfield, H. Gabrielse, J.W.H. Monger, H.W. Tipper and G.J. Woodsworth

TECTONO-TERRANE MAP CANADIAN CORDILLERA

> UNUK PROJECT SKEENA MINING DIVISION, B.C.

Not to scale FEBRUARY, 1995

FIGURE: 3

recently by Aldrick (1989, 1992). Intensive exploration in the late 1980's early 1990's prompted the establishment of MDRU's area investigation of metallogeny which has resulted in further enhancement.

Review of documentation and associated maps over time readily indicates how interpretations have radically changed. In general, previous efforts suffered from a lack of fossil data. Where fossils were present the biostratigraphic significance of fossiliferous assemblages and, most importantly, the extensive thrust and reverse normal faults present were not recognized. Although formational nomenclature has not significantly changed, advanced bioand aeochronostratigraphic and tectono-terrane mapping techniques have led to an increasing degree of sophistication and accuracy, resulting in changed divisions, additions and reassignments of stratigraphic units.

The geology of the Unuk River area is comprised of upper Triassic through Jurassic lithologies that can be subdivided into three groups; upper Triassic Stuhini Group, lower-mid Jurassic Hazelton Group and the upper Jurassic Bowser Lake Group (Alldrick, 1992).

TRIASSIC

STUHINI GROUP

The scarcity of fossils and distinctive fossil assemblages coupled with the lack of persistent marker horizons has resulted in extreme difficulty in stratigraphic correlation. In a broad sense two facies can be assigned; a western facies comprised of a lower sedimentary sequence overlain by mafic to intermediate volcanic rocks and eastern facies consisting of interfingering sediments and intermediate volcanics.

TRIASSIC-JURASSIC

LOWER SEDIMENTARY SEQUENCE - INTRAFORMATIONAL SEQUENCE

Lower Jurassic rocks unconformably overlie folded Triassic lithologies and the base of the Hazelton group formations can be recognized in the prevalent though varied Jack formation. Ideally this sequence consists of a strongly disconcordant thin basal conglomerate containing clasts of underlying subjacent Stuhini siltstone mudstone beds or granitoid cobble to boulder conglomerate. Interbedded fossiliferous siltstone - sandstone horizons overlie the basal conglomerate and overlain in turn by carbonaceous mudstone.

LOWER-MIDDLE JURASSIC

HAZELTON GROUP

The Hazelton Group consists of the Unuk River, Betty Creek, Mount Dilworth and Salmon River Formations. Inconsistencies exist between recently evolved type sections at Eskay Creek and Treaty Creek both of the Unuk map sheet (under revision) due to gaps in coverage that link them with the original standard Stewart section of the Leduc mapsheet (not released) well to the south. The descriptive nomenclature modified after Lewis (1993) is used here.

INTERMEDIATE VOLCANIC SEQUENCE (Unuk River Formation)

Intermediate volcanic sequence lithologies are comprised of a primarily pyroclastic and lesser epiclastic and reworked volcanic sequence of andesitic tuff breccia, lapilli tuff, crystal tuff, partially welded tuff, magnetic flows and reworked tuffaceous sediments and is subaerial to waterlain. These rocks are regionally distinctive, dark green to maroon in coloration, they are monolithic feldspar hornblende phyric.

LOWER FELSIC VOLCANIC SEQUENCE (Betty Creek Formation)

This sequence can be divided into lower and upper members of epiclastic-sedimentary and volcanic composition respectively. The base of the sequence is characterized by an extensive cobble-boulder conglomerate comprised of intermediate volcanic sequence derived material and in places indistinguishable from it. Overlying it are hematitic volcaniclastic sediments. The member varies from andesitic to volcanic dacitic in composition and consists of fiamme, feldspar crystal tuff and heterolithic felsic tuff and in places topped by columnar jointed dacitic ash flow tuff. Green and maroon fluviatile siltstone argillite generally complete the sequence. This sequence is largely subaerial and units contained are highly variable and discontinuous.

UPPER FELSIC SEQUENCE (Mount Dilworth Formation)

Ryolitic to rhyodacitic in composition the Mount Dilworth formation forms a relatively thin but distinctive and continuous marker horizon through the Unuk area, although significant lateral variations exit between proximal and distal facies. Eskay type proximal facies are evidenced by a thick series of flow banded carapace brecciated effusive flows. Medial facies at John peak area are characterized by alternating lahar emplaced volcanic tuff and tuff breccia with interspersing welded ash flow tuff. Distal facies in the Treaty Creek area consist of welded ash flow tuff and dust ash tuff with extensive perlitic and spherulitic development. MAFIC VOLCANIC SEQUENCE (Salmon River Formation)

Basaltic flows of the mafic volcanic sequence overlie the upper felsic volcanic sequence. The basalt is subalkaline having transitional calcalkaline to tholeitic compositions and is comagmatic with the underlying felsic rock. Flows are variably massive, pillowed, pillow breccia, and lesser hyaloclastite, interspersed by carbonaceous argillite, tuffaceous siltstone with pyritic laminae. Eastward basinward thinning coincides with a decrease in the flow sediment ratio and in the sediments becoming more calcareous with a fossiliferous horizon marking the basalt-rhyolite contact.

MIDDLE-UPPER JURASSIC

BOWSER LAKE GROUP Ashman Formation

The Bowser Group comprised solely of the Ashman Formation, is an onlap assemblage and conformably overlies the Hazelton Group and in places it is in gradational contact with the Salmon River. The group consists of a sedimentary package comprise of repetitive successions of sandstone-siltstone, argillite, chert-felsite pebble conglomerate.

2.1.2 Intrusive Rocks

Volcano-sedimentary strata in the Unuk area have been affected by six phases of intrusion. Plutons, sills, dikes, and dike swarms correspond to episodes in the late Triassic, early Jurassic, middle Jurassic, Tertiary-Eocene, Oligocene and Quaternary.

TRIASSIC

STIKINE PLUTONIC SUITE (220-230 MA)

The Stikine Plutonic suite consists of hornblende-biotite diorite, quartz diorite intrusives and is present in the Unuk area west of the Harrymel as the Bucke glacier stock and McQuillan ridge pluton.

EARLY JURASSIC

TEXAS CREEK PLUTONIC SUITE (185-205MA)

Quartz diorite, monzodiorite, quartz monzonite represent synto post-volcanic intrusions with Hazelton Group extrusive equivalents. Examples are John Peaks Eskay porphyry and Barb Lake Dike. The latter, combined with likely equivalent Mt. Shirley sills and smaller intrusive instances between, could represent a linear trend of remnant feeder systems to pillow lava successions found in the area.

MIDDLE JURASSIC

THREE SISTERS PLUTONIC SUITE (172-177MA)

Gabbro, diorite, and outside of the Unuk area, syenitic phases comprise the Three Sisters Plutonic Suite. Instances present in the Unuk area are the Copper King and Nickel Mountain Gabbros.

TERTIARY (PALEOCENE-EOCENE)

COAST PLUTONIC COMPLEX (50-65MA)

The Coast Complex granitoid batholiths and stocks manifest as the Melville glacier and King Creek dike swarms of primarily feldspar porphyry dacite, the Lee Brant quartz monzonite stock and the Saddle Lake monzodiorite pluton.

OLIGOCENE

LATE DIKES (20-40MA)

Micro diorite andesite and lamprophyre occur as narrow dikes and dike swarms.

TERTIARY-QUATERNARY

STIKINE VOLCANIC SUITE (Recent-6MA)

The Stikine Volcanics consist of narrow basaltic dikes and are associated with a linear trend of regularly spaced volcanic centres at Volcano Creek, Cone Glacier and King Creek.

2.1.3 <u>Structure</u>

The most prominent structural element present in the Unuk area is the South Unuk-Harrymel Fault trending northwest and Significant downdip displacement has dipping northeast. resulted in the formation of a boundary between Triassic-lowermost Jurassic strata to the west and lower-mid Jurassic rock to the east. Numerous paralleling structures and arcuate splays define a dominant fabric in the area and are characteristic of strike slip fault complexes and likely relate to terrane accretion. Stratigraphic repetition and formational contacts suggest these were long-lived and periodically reactivated in a strike slip fashion during emplacement of the andesite and lower felsic sequences as part of a translational and then extensional regime during intraarc, back arc development of the upper felsic and mafic sequences.

Subsequent compression of the Bowser Assemblage during the Skeena Fold Belt duration resulted in folding of these sediments over a decollement in which more brittly behaving rocks of the Hazelton group were subject to broader folding, reverse normal faulting and lesser thrust faulting to the east.

2.1.4 Metamorphism

Regional grade metamorphism is at most lower greenschistprehnite pumpellyite facies characterized by saussuritization of plagioclase feldspars and chloritization of mafic minerals. Further to the west and outside of the project and Unuk River area the grade of metamorphism increases with proximity to the Coast Plutonic Belt.

2.1.5 <u>Area Deposits</u>

Numerous deposits occur within the Iskut Triangle, in the Stikine Arch. A number of deposit types are represented from porphyry style to meso-epithermal to volcanogenic massive sulphide type. To name a few: Silbak Premier, Big Missouri, SB, Summit Lake, Granduc, Stonehouse, Snip, Galore, Shaft Creek, E&L, West Zone, Doc, Snowfields, Kerr and Eskay Creek. The latter five fall within the Unuk River area.

Doc Property

The Doc's reserves are derived from the q17/q22 veins with 100,851 tons grading 0.258 oz/t gold. The deposit is comprised of shear hosted quartz veins with lesser calcite and clots of green-black chlorite. Mineralization consists of sporadic concentrations of sulphide with a complement of pyrite, galena, chalcopyrite, sphalerite and minor specularite as joint and fracture fillings. Veining strikes westnorthwest and are steeply dipping, occupying narrow dilatant zones associated with brittle to semi-brittle shears. Host rock is Upper Triassic Stuhini metavolcanics. Wall rock alteration consists of narrow sericitic selvage with fine grained disseminated pyrite. The age of mineralization is Tertiary, spatially related to interpreted as felsic intrusives of the Coast Plutonic Complex.

West Zone

Newhawk's West Zone reserves are contained within the R-7 and related vein structures and are reported as 854,072 tons of 0.354 oz/t gold, 22.49 oz/t silver. Mineralization is located in structurally controlled quartz vein stockwork within a silicified, sericitic alteration zone flanked by chlorite calcite alteration. The zone strikes over 600 metres and has been drilled to 500m depth. Andesitic tuff and sediments of the Lower Andesite host the deposit. Mineralization consists of pyrite, pyrargyrite, electrum, native gold, argentite, galena, sphalerite, chalcopyrite, tetrahedrite, proustite, freibergite and stephanite.

<u>Kerr</u>

Reserves stand at 386 million tons of 0.62% copper and 0.27 g/t gold. The deposit is interpreted as a deformed alkaline porphyry hosted by upper Triassic to lower Jurassic tuffaceous and sedimentary rocks. Copper-gold mineralization is contained within stockwork of veins and veinlets hosted predominantly by deformed tuff, fine grained plagioclasehornblende monzonite and sediments. Alteration is variable cored by chlorite-magnetite or chlorite-pyrite and flanked successively by chlorite-sericite-pyrite and sericite-quartzpyrite.

Snowfields Showing

Porphyry style gold occurs between Mitchell and Hanging Glaciers. Here host rocks include intermediate volcanic breccia and mafic tuff. Mineralization is associated with an alteration assemblage of sericite-chlorite-carbonate-pyritepyrophyllite. Limited drilling suggests an indicated reserve of 25 million tonnes at a gold grade of 2.74 gT gold-silver.

<u>Eskay Creek</u>

Two deposit types exist at Eskay Creek. One, the 21A deposit, is a high level near-surface epithermal deposit and the other, the 21B deposit, is a high grade polymetallic base metal, precious metal volcanogenic massive sulphide deposit. Preproduction reserves stood at 4.3 million tonnes of 28.8 gT gold, 1027 gT silver. The bulk of the reserves are contained in the 21B zone as stratiform sheets of graded and fragmental sulphide and sulphosalts dominated by sphalerite and tetrahedrite. Minable reserves stand at 1.05 million tonnes of 65.5 gT gold, 2930 gT silver, 5.7% zinc, 0.77% copper, 2.89% lead. 21A stands with an estimated 0.97 million tonnes grading 9.6 gT gold, 127 gT silver in massive stratabound lens of stibnite, realgar, cinnabar and arsenopyrite. Host rock is argillite of the Salmon River Formation in contact with footwall rhyolite of sodium and calcium Mt. Dilworth affinity. Alteration is K-spar sericite and late silicification and is confined largely to the footwall. A zone of intense magnesium chlorite alteration occurs at the interface. Basalt of the hanging wall is relatively unaltered in appearance but exhibits apparent gains in potassium and magnesium with corresponding losses of sodium and calcium relative to elsewhere. Alteration overprints suggest deposition of 21B occurred prior to 21A although likely in rapid succession.

2.2 Property Geology

The Unuk property is underlain by lithologies of Triassic and Jurassic Age. Oldest, Stuhini group, rocks occur to the east of John Peaks-Storie Creek and youngest, Hazelton group, rocks to the west.Geology can be alternately separated into three structural panels designated the Prout, Eskay, McTagg. These anticline- anticlinoriums can be traced with reasonable approximation from the Bowser Onlap south past the Sulphurets The Prout panel can be defined as the area between Creek. Harrymel-Unuk fault and the Coulter Creek-Argillite Creek lineament. The Eskay panel is central inscribed by Coulter-Argillite Creek and the East Break fault. The McTagg anticlinorium is defined by the East Break Fault and the Sulphurets thrust fault to the west. All of these are north to northeast plunging and are structurally juxtaposed by thrust fault complexes through regional reverse or foreshortening of the Skeena fold regime.

2.2.1 <u>Stratigraphy</u>

McTAGG PANEL Stuhini Group

Rocks of the Stuhini group are exposed in the core of the McTagg anticlinorium. The most dominant rock type present is sedimentary comprised mainly of clastic, rhythmic turbidite successions. Massive to poorly sorted mudstone siltstone to the northeast of Jack glacier and on Ceparly ridge contain abundant Monotis (Van Damme, Vanwermeskerken, 1989), characteristic of the Norian (late upper Triassic) (Smith 1989, pers comm). Local minor limestone beds occur elsewhere with nondiagnostic fossils.

Lesser mafic flows and breccia contain characteristic prominent phenocrysts of clinopyroxene; although diagnostic, their stratigraphic position is nevertheless unclear.

Hazelton Group rocks occur on the west limb of McTagg anticlinorium west of the ridge that traces northeast from John Peaks to the headwaters of Storie Creek and are bounded to the southwest by the Eskay panel and Bowser Group sediments of the Unuk syncline to the northwest. Lower Sedimentary Sequence:

Overlying Triassic turbidite at the base of the Hazelton group is a basal cobble-boulder conglomerate up to 20m in thickness composed of granodiorite and lesser volcanic and limestone clasts characteristic of the Lower Sedimentary sequence or Jack formation and is variably overlain by additional clastic sediments, chert and limestone. Provenance of the basal unit is unclear as the granodiorite clasts do not correspond to any documented area suite. This intraformational unit can be traced north from Gingras Creek to where it tapers out at Tarn Lake. North of Tarn Lake and at the toe of Jack glacier the unit resumes as a densely fossiliferous horizon that can be traced intermittently around the McTagg nose into the Treaty Creek section to the east.

Andesite Sequence:

Monolithic ash-crystal, lapilli and lesser block tuff, characteristically feldspar hornblende phyric, occur to the west of Johnathan Fault and east of the Unuk River. Intercalated massive argillite-siltstone are common.

Lower Felsic Sequence:

The lower felsic sequence occurs east of Johnathan Fault and consists of heterolithic lapilli to small block tuff. Components are angular massive felsic fragments, brown weathering fiammé, and lesser up to 10% lithic fragments. Overlying the tuff is either poorly bedded argillite or interbedded green and maroon cherty argillite and siltstone which display fluviatile bedding features.

Upper Felsic Sequence:

The upper felsic sequence is analogous to the 'Eskay Rhyolite' Facies present here; however, it is considered a medial or flank depositional environment. The dominant lithotype present is welded ash flow tuff similar in appearance to flow banded rhyolite but with less rhythmic, less regular laminae, and the additional presence of occasional entrained lapilli and orthogonal to flow gas venticles. These are occasionally 'fisheyed' due to the development of spherulite along laminae. Welded tuff horizons are interbedded with less common lenses of transported lapilli-block tuff which are monolithic comprised of massive and flow banded fragments.

Mafic Volcanic Sequence:

Limited massive and pillowed flows occur on the ridge above the upper felsic sequence interspersed by argillite and lesser calcilutite, locally fossiliferous. On the east bank of the Unuk River, mafic sequence lithologies are structurally interfingered with andesite sequence lithologies.

Bowser Group

Argillite and siltstone of the Bowser group are indistinguishable from those of the Mafic Volcanic Sequence and in places the contact is gradational. Bowser sediments do occur in a 'tongue' formed by the Unuk syncline but its precise southern extent is unclear as characteristic chert, felsite pebble conglomerates are not observed south of Ketchum Creek.

ESKAY PANEL

The Eskay panel defines a very narrow block between Coulter Creek and the unnamed north-south drainage that flows into the Unuk at the centre point of the gap between claims Coul 3 and Coul 4. Little field documentation of this area is available. Rocks are limited to the upper two divisions of the Hazelton group and possibly Bowser group lithologies. This panel is comprised of likely Bowser group mudstone siltstone to the east along the Unuk River. Upper felsic sequence lapilli tuff are exposed on the east side of Coulter ridge surrounded by mudstone with or without derived felsic fragments and massive flows. Pillowed flows have been identified at the top of the knoll between the Unuk and Coulter Creeks. Mafic flows and sediments are both of the overlying mafic sequence. A11 lithologies are in turn intruded by late diabase dikes.

PROUT PANEL

Prout plateau rocks are comprised entirely of upper felsic sequence and mafic volcanic sequence lithologies defining the two uppermost divisions of the Hazelton Group. Upper felsic rocks consist of a limited range of facies essentially massive and laminated ash tuff. Felsic rocks occur central to the 'Prout Plateau'. Flanking the rhyolite are massive, pillowed and columnar jointed flows and shallow sills occasionally cut by feeder dikes, and lesser tuffaceous sediments and massive argillite all of the overlying mafic volcanic sequence.

2.2.2 <u>Intrusives</u>

Three significant intrusive phases are observed on the Unuk-Coul claims. These are, in decreasing order of age: the Hope plug intrusions, synvolcanic dikes and sills, and the John Peaks Pluton.

The Hope Plug is an oval shaped body several hundred metres across. It and other smaller associated bodies are aphanitic to fine grained felsic rocks with minor often vestigial plagioclase phenocrysts. Although these intrusions cut stratigraphy their spatial distribution is consistently and preferentially located at or near the base of the lower felsic volcanic sequence and can be traced south to Sulphurets. These intrusions are hypabyssal and are analogous to the Eskay Creek subvolcanic intrusives that form prominent red bluffs through the Tok-Kay corridor.

Synvolcanic basaltic dikes and sills cut all lithologies of the Hazelton and Stuhini group at times forming dike swarms. These are likely feeders to the Mafic volcanic sequence which itself is crosscut.

The John Peaks Pluton is a medium grained hornblende phyric diorite. This singular occurrence exists at the southern property boundary as a lens between Triassic rocks to the east and Hazelton group rocks to the west. Emplacement was late producing a moderate contact aureole in surrounding fine clastic sedimentary rocks.

2.2.3 Structures

Primary Structures:

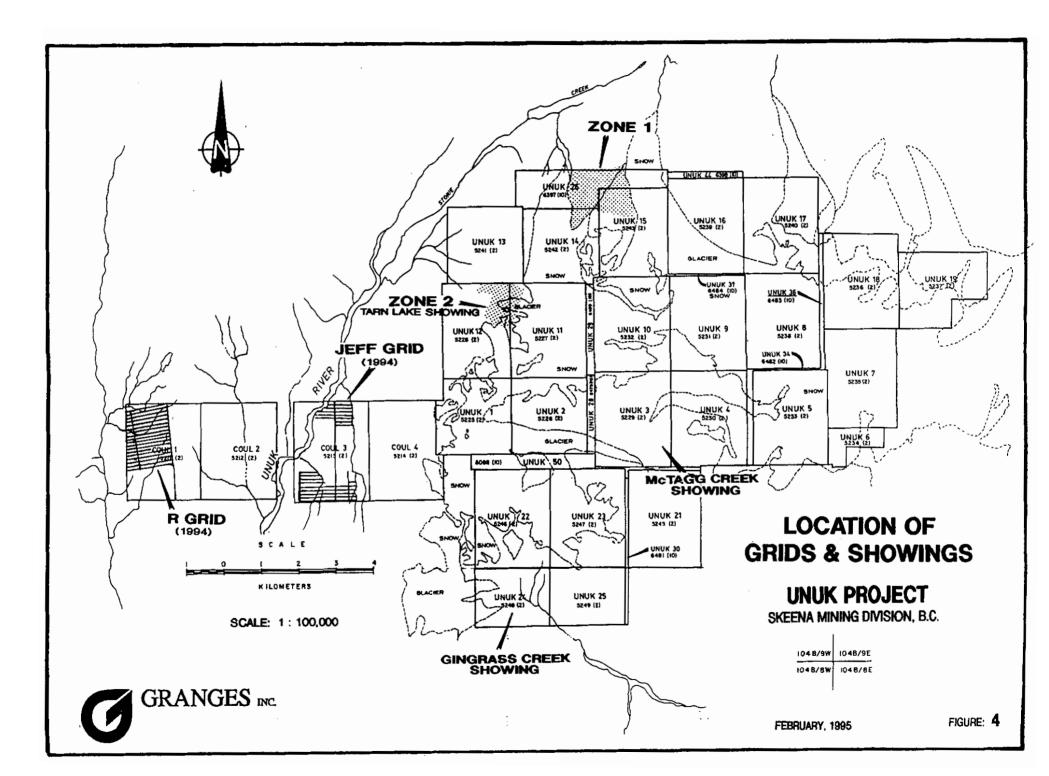
Primary features are best observed in sediments and volcanics at the higher elevations of the Unuk claims. Features observed are, bedding, cross bedding, normal grading, rip up clasts, load and penecontemporaneous structures in sediments, welding in felsic tuff and pillow tops in mafic flows. Over the bulk of the Unuk claims lithologies are primarily oriented north-northeast dipping moderately to steeply west to the toe of Bruce glacier where they begin to wrap around the nose of the McTagg anticlinorium and ultimately reverse in dip orientation to the east. In the western Coul claims bedding defines a north-northwest trend dipping moderately 30-60 degrees east. Stratigraphy strikes north-northeast with dips changing from west to east heading from west to east for both the Eskay and McTagg panels.

Secondary Structures:

The predominant structures present are northeast, 10-20 degree, vertical to steeply dipping normal faults. Offset and orientation of lithologies has in places structurally thickened portions of sections. Crosscutting structures are several; northwest to southeast approximately 135 degrees vertical to moderately northeast dipping, a possible conjugate at northeast, 50 degrees, dipping moderately 50-70 degrees southwest. These two crosscutting faults are responsible for sudden offsets of north trending lithologies. Finally, eastwest vertical to north-dipping faulting exists. The dominant terrane forming panel defining structures are high angle thrust or reverse normal faults. These generally trend N15W dipping up to 60 degrees. They are frequently coincident with and perhaps focused by sedimentary of sedimentary interspersing sequences. Reverse/thrust faulting is responsible for block rotation and formational juxtaposition providing the appearance of overturning and sectional reversals observed in the western Coul claims and to the south along the western flank of the McTagg anticlinorium.

The area has been broadly folded by the Cretaceous Skeena fold regime into three regional antiforms, with little synform preservation outside of the Bowser, in contact through additional compression via major reverse/thrust faults. Hazelton lithologies behave in a more brittle fashion than the more plastic Bowser assemblage and through decollement have deformed into broader regional folds. Intrafolial folding is common though poorly documented, but explains local apparent reversals in bedding.

Structural features observed are jointing, shear fabric, crenulation, lineations, slickensides and axial planar cleavage.


Property scale structural elements observed are the McTagg Anticlinorium with internal intrafolial folding, a reverse/thrust fault complex that runs at least through the western Coul claims, and two smaller antiforms that define the Prout and Eskay panels of the eastern Coul claims.

2.2.4 Metamorphism

Metamorphism is sub to lower greenschist facies characterized by chloritization of mafic minerals and epidotization of feldspars in mafic-intermediate volcanics. Some hornfelsing exists around John Peaks.

2.2.5 Property Showings

Figure 4 shows the location of the grids and showings on the property. Jeff Grid (Coul 3) potential for mineralization was recognized through airborne geophysics and moderate stream sediment and soil anomalies collected through reconnaissance programs. A subsequent detailed program in 1991 led to drilling, on coincident geophysical and geochemical anomalies, of 30 diamond drill holes. The area is underlain by andesitic tuff, ande-basaltic massive and pillowed amygdaloidal flows. The best results obtained were in DDH-J91-7 with 34.04 gT gold over 4.0m. Mineralization occurred as anastomosing veins, masses and disseminations of pyrite, pyrrhotite with lesser

sphalerite, galena and chalcopyrite in vesicular mafic volcanics containing quartz carbonate, veins and sericite alteration.

Coul 1 claim is underlain by upper felsic volcanic sequence lithologies that have been drilled in 1990-R-1, 1990-R-2 and 1990-R-3 and again in 1991 in R-91-1, R-91-2, R-91-3, R-91-4 and R-91-5. Mineralization is primarily fine disseminated and colloform pyrite associated with felsic mudstone contacts and possibly exhalative. Surface results returned values of up to 7.33 gT gold and 20 gT silver. Drill results were disappointing with best results reported as 1.77 gT gold.

Zone 1 is located between the Bruce and Jack glaciers on Unuk 14, Unuk 15 and Unuk 26 claims. Mineralization is hosted by tuffaceous mudstone and brecciated welded tuff characterized by galena, sphalerite, pyrite, arsenopyrite and chalcopyrite associated with shearing, brecciation, silicification, and clay-talc-sericite carbonate albite- alteration. Trench chip grabs have returned values as high as 56.5 gT gold, 32 gT silver over 0.5m. Best results returned in drilling were 7.908 gT gold, 148.6 gT silver, 0.65% zinc and 0.33% lead over 0.4m.

Zone 2 occurs on the Unuk 13, Unuk 12 and Unuk 11 claims, is centred around Tarn Lake, and encompasses both felsic and mafic lithologies and a number of showings. The Tarn Creek showing is a quartz stringer zone containing 5% pyrite, trace arsenopyrite, and sphalerite hosted in mafic to intermediate tuff, tuff breccia and tuffaceous argillite. Best surface results returned 12.8 gT over 1.0m. This structure was tested by drill hole T-91-1 was anomalous in silver but best gold returned was between 38.3 and 38.92 metres at 1240 ppb gold.

The McTagg Creek showing is a copper-gold showing hosted by shears in Triassic sedimentary rock. Documentation for this area is sparse.

3.0 EXPLORATION PROGRAM

3.1 <u>Program Summary</u>

The focus of the 1994 exploration program was two fold: to extend coverage of the Jeff grid to the north and south limits of Coul 3 and laterally from Jeff Fault to the Unuk flood plain, and to extend the R grid north to the property boundary and west to claim limits from the baseline. Jeff grid activity was designed to locate additional potential 900 and 750 zone mineralization. R grid (Coul 1) work was aimed at exploring the potential for the presence of Eskay type rhyolite to the north in extension of earlier R grid work. The program on both grids consisted of line cutting, geological mapping, and soil and litho-geochemical sampling.

Work was conducted by a crew complement of four between August 18 and September 15 on the Coul 1 and Coul 3 claims, concurrently.

3.2 <u>Program Parameters</u>

Ground Control:

On the R grid a total of 18,445 metres of line were cut. All lines are at 100m spacing and 25m stations and were horizontally corrected for topography. A tie line, TL 8+00W was turned off 12+00N at 8+00W. Major drainages were used as additional control points. In extension of the existing grid lines, 5N to 20N were defined running from 0+00 to about 10+00W.

The Jeff grid baseline was expanded north from 21+00N to 24+00N and south from 4+00N to 1+00S at 100m line spacing with 25m picketed stations. Existing grid lines were extended in the north and south grid portions. A tie line, TL 6+50W, was run from line 0+00 at 6+50W. An existing tie line, TL3+50E, was used for additional controlling the south grid. A total of 10,025 metres of slope corrected line were cut.

Geological Mapping:

Both the R and the Jeff grids were mapped at 1:2000 as shown on Figures 6,7a and 7b.

Geochemical Work:

A total of 1102 soil and 10 silt samples were collected. On the R grid 647 soil and 5 silt samples were collected. On the Jeff grid 455 soil and 5 silt samples were collected, (Figures 5, 6a and 6b).

Prospecting:

In total, 244 rock samples were collected (167 on the R grid and 77 on the Jeff grid). All samples were submitted for 31 element ICP, gold-silver assay finish and whole rock analysis. Of these, 20 were selected for Rare Earth analysis, 18 from R grid and 2 from the Jeff grid.

3.3 <u>Geology</u>

3.3.1 <u>R Grid Geology</u>

3.3.1.1 Stratigraphy

The R grid (Figure 5) is underlain by lithologies of the upper felsic volcanic sequence (map unit 3) and the mafic volcanic sequence (map unit 4). Upper felsic rocks occur central to the grid, trend north-northwest and are lateral offset at line 14+00N to the west. These are characteristically massive brecciated and strongly silicified. Fragments are jigsawed reflective of in situ brecciation and are white to pale grey in a medium dark grey matrix. The breccia occasionally displays a eutaxitic texture of fine mm-scale perfectly spaced laminae, possibly flowbanding, bedded tuff, or silicification of jointing. In the south grid rhyolite is massive and brecciated but in addition lapilli tuff in a dark argillaceous matrix are also noted. Stratigraphic contacts are rare but argillite is likely the most common contact unit. Flanking the rhyolite are mafic volcanic massive flows, pillowed flows, flows, lesser tuff, and minor poorly debris sorted argillite/siltstone. To the east along the ridge that roughly follows the baseline is a greater incidence of pillowed flows; these are blocky with poorly developed selvages and cusps. At the north and south ends of the baseline are classic columnar flows or sills lying vertical and inclined slightly to the north and west. Massive flows dominate to the west side of the grid.

3.3.1.2 Structure

Principal structures are north-northwest steeply east dipping, north-northeast moderate west dipping and east-west moderate to steeply south dipping regional faults. These are cut and offset to a limited extent by conjugate northeast and southeast trending cross faults. Rocks behave brittly with few shear zones and apparent jointing is the most common manifestation of structures. Bedding determinations are few and inconsistent. Gross lithological relationships suggest an anticline is transected by the grid along and to the east of the 8+00 W tie line.

3.3.1.3 Alteration/Mineralization

No significant mineralization or zones of alteration were observed. Rhyolite is consistently silicified obscuring whatever primary features may have been present. Mafic lithologies are generally weakly carbonate altered. Along major structures minor quartz veining and/or phyllic alteration is noted. Mineralization is sparse comprised of up to 1% disseminated pyrite and trace pyrrhotite. Some mafic flows carry magnetite.

3.3.2 Jeff Grid Geology

3.3.2.1 Stratigraphy

The Jeff grid (Figures 6a, 6b) is underlain by lithologies that correspond to the lower andesite sequence and mafic volcanic sequence and to the west along the Unuk River, possible Bowser group sediments. The lower andesite manifests as essentially ash tuff and lesser lapilli tuff with a mafic and feldspar crystal component. These are intercalated with argillite and immature siltstone-sandstone. Mafic sequence pillowed flows and argillite rarely outcrop and are only observed north and east end of the grid towards Jeff/Johnathan faults. Middle Hazelton group upper and lower felsic volcanic lithologies are notably absent. The presence of Bowser group sediments to the west along the Unuk River is unclear as they lack the identifiable chert-felsite conglomerate unit that distinguishes the Bowser from the underlying upper sedimentary member of the mafic volcanic sequence.

3.3.2.2 Structure

Structural elements present are the same as those observed on the R grid: north-northwest, north-northeast, east-west regional faults and northeast, southeast conjugate faults. An added structural component is the presence of north-northwest trending shallow east dipping thrust faults and northnortheast reverse normal faults. Rocks on the grid are invariably sheared with proto-mylonitic and mylonitic fabrics developed. Thrust and reverse faulting has effectively imbricated upper and lower Hazelton group lithologies.

3.3.2.3 Alteration/Mineralization

All rocks on the Jeff grid have been sheared and display variable phyllic alteration. This causes difficulty in discerning between upper mafic and lower mafic and derived clastic lithologies. Lower andesite often appears porphyroblastic due to chloritization of mafic minerals. Locally rocks are sericitized and carbonate altered. No significant mineralization was observed outside of previously identified zones and was limited to trace to 1% disseminated pyrite and pyrrhotite locally concentrated parallel to fabric.

3.4 <u>Geochemistry</u>

3.4.1 Soil Geochemistry

The Unuk property was previously glaciated. Icefield and glaciers with lateral and recessional moraines exist at higher elevations on the eastern half of the property and U-shaped east-west valleys and hanging glaciers are present to the west

of the property. Below treeline at lower elevations, few glacial or post glacial features remain and till deposits are poorly represented, if present at all in the survey areas addressed. Soils that have developed are essentially *in situ*, shallow and fair to well profiled. Talus cover is limited and occurs in close proximity of scarp faces. Colluvial processes manifest as slumping and scars are evident at subalpine elevations but are not extensive or broadly displacive. Fluvial deposits are limited to the immediate flood plain of the Unuk River and the braided alluvium of Coulter Creek. Soils taken are considered to effectively reflect the content of underlying rock.

B horizon samples were collected, dried, and shipped in undyed craft paper envelopes to Chemex Labs of North Vancouver B.C. Samples were dried then sieved to -80 mesh, and ring pulverised to -150 mesh. A 30g split was then analyzed by 32 element ICP and a 10g split was analyzed for gold by AA with a FA finish. Grid locations on the R and Jeff grids are shown on Figures 5, 6a and 6b. Sample coordinates, preparation, analytical procedures and certificates of analysis are given in Appendix A.

The precious, semi- and base metals, gold-silver, arsenicantimony, and lead-zinc pairs have been plotted for the Jeff and R grids as these are considered useful pathfinder elements for targeting both an Eskay or Sulphurets type deposit (Figures 7, 9, 9, 10a, 10b, 11a, 11b, 12a and 12b). Contours have been arbitrarily established.

3.4.2 <u>Litho-Geochemistry</u>

Sample numbers and locations for the R and Jeff grids are indicated on Figures 6, 7a, 7b. The analysis for metals data was carried out by ICP techniques. The multi-element Whole Rock data was collected by XRF analysis of pressed pellet samples from the ICP rejects. A description of analytical procedures and certificates of analysis are given in Appendix A.

On the R grid potassium addition has been noted in rhyolites and argillites in the central portion of the grid coincident with silver and gold soil anomalies. These anomalies may represent adularization.

On the Jeff grid all samples were of mafic lithologies, argillites and two possible gabbro samples. No large zones of potassium addition were indicated. No significant alteration has been recorded.

4.0 DISCUSSION

The R grid is underlain by lithologies of upper felsic and mafic volcanic sequence affinity. Rhyolite rocks are primarily massive in situ breccia, that appear strongly silicified and potassic altered to an unknown extent as evidenced by rare faint ghost feldspars. These breccia are white, featureless, angular fragments supported in a darker grey matrix. Lesser rhyolite facies are massive to bedded ash tuff and lapilli tuff, possibly epiclastic, in a punky dark grey to black graphitic argillaceous matrix. Flanking the rhyolite on either side are relatively unaltered, primarily mafic massive flows, lesser pillowed flow columnar jointed sills and massive argillite-siltstone. Regional through-going structures and local conjugate cross faults are observed. Lithologies have been folded into a shallow north plunging anticline. No significant mineralization was observed, generally minor 1-2% disseminated pyrite. The best results obtained were from sample 394122 at 6+05N 5+10W which returned 235 ppb gold, 9.5 ppm silver, 496 ppm arsenic. The sample taken was of a silicified, possibly hornfelsed argillite with hairline quartz veining in contact with rhyolite breccia. No sulphides were noted. Soil geochemistry effectively traces the rhyolite unit over the grid entirety and reflects the midgrid structural offset. Silver contours flank the rhyolite and contain local gold anomalies. Zinc and arsenic contours plot central to the exposed rhyolite.

Mapping of the Jeff grid extensions indicates that the grid area is underlain by lithologies of the Lower Andesite sequence structurally imbricated with lesser incidence mafic volcanic sequence lithologies. These are comprised of andesitic ash-crystal tuff, pillowed amygdaloidal flows and argillite-siltstone. All rocks are variably sheared and No rocks of the upper or lower felsic volcanic phyllitized. observed. No significant sequences were sulphide mineralization was noted. The best results came from sample 394002 taken at 21+90N 2+00W which returned 3340 ppb gold, >10,000 ppm arsenic, 6.1 ppm silver. This sample was in quartz breccia with 3-4% pyrite with chlorite stringers and graphitic shears in mylonitized argillite. Sample 294075 at 14+90N 3+75W was taken in strongly sheared and crenulated sulphidized and sericitized phyllite with lenticulate quartz veining and returned 340 ppb gold, 34.8 ppm silver, 216 ppm arsenic. Soil geochemistry from additional and add-on grid coverage provided only isolated point highs and did not result in further significant contourable anomalies outside the central northeast-southwest trend previously documented.

5.0 CONCLUSIONS

The Unuk property is underlain by rocks of the late Triassic Stuhini group and lower-mid Jurassic Hazelton group. Major structures are north-northeast normal and north-northwest reverse faults offset by east-west faults. Rocks were folded and thrust faulted during the Skeena fold belt regime into three juxtaposed antiforms; the Prout, Eskay, and McTagg. Jurassic intrusions are limited to the John Peaks diorite and Upper felsic volcanic equivalent subvolcanic intrusions. Metamorphism is sub greenschist. Soil geochemistry over gridded areas is not effected by any significant masking or displacing effects. A high degree of correlation exists between gold, silver, arsenic and zinc in soils and gold, silver and arsenic in rocks. Potential styles of mineralization on the property are porphyry, shear-vein and volcanic massive sulphide type.

There are six known areas of mineralization: Zone 1, Zone 2, Gingrass Creek, McTagg creek, Jeff grid and the R grid. The latter two were focused on during the 1994 field season.

The R grid is the only area on the property, outside of the abbreviated Eskay panel, which has potential for syngenetic volcanogenic mineralization displaying more proximal and altered felsic facies, of the upper felsic volcanic sequence.

Jeff grid gold and silver mineralization is shear vein type hosted in lower andesite and upper mafic volcanic sequence lithologies. Timing of mineralization is unclear as to whether sulphides emplaced are of Jurassic or Tertiary age.

6.0 STATEMENT OF EXPENDITURES

Linecutting	\$33,348.20
Geological Survey	34,946.25
Geochemical Survey	8,432.31
Geochemical Analysis	27,969.13
Unuk River Field Camp Costs	14,185.49
Transportation, Communications	51,874.51
Data Processing, Drafting	6,981.05
Report Preparation	5,987.08
Management Expense (10%)	18,372.40

Total ... <u>\$202,096.42</u>

7.0 STATEMENTS OF QUALIFICATION

I, Val Peter Van Damme, of 2045 Holdom Avenue, Burnaby, British Columbia DO HEREBY CERTIFY THAT:

I am a graduate of Lakehead University in Thunder Bay, Ontario, with an H.B.Sc. Geology, 1988.

I am an employee of Granges Inc. with offices at 2230-885 West Georgia, Vancouver, British Columbia.

I have practised my profession continuously since 1988

The information contained in this report was obtained through execution of the program described herein, from a review of data listed in the bibliography and personal knowledge of the area.

I consent to and authorize the use of the attached report and my name in the Company's Prospectus, Statement of Material Facts or other public document.

I have no interest direct or otherwise in the securities of Granges Inc.

DATED at Vancouver, British Columbia, this

3rd day of April, 1995.

Val\Péter Van Damme, Geologist

I, Warren Bates, of 25, 795 Noons Creek Drive, Port Moody, in the province of British Columbia DO HEREBY CERTIFY THAT:

I am a graduate of University of Manitoba with two science degrees:

1980 B.Sc. (Hons) specializing in Physical Chemistry 1985 B.Sc. (Hons) specializing in Geology.

I am an employee of Granges Inc. with offices at 2230-885 West Georgia, Vancouver, British Columbia.

I have practised my profession as a geologist in mineral exploration for 10 years.

The information contained in this report was obtained through execution of the program described herein, from a review of the data listed in the bibliography and from personal knowledge of the area.

DATED at Vancouver, British Columbia, this

3rd day of April, 1995.

Warren Bates Manager, Special Projects

8.0 BIBLIOGRAPHY

- Adamec, J.D. (1988): Geological Report on the Unuk Claim Group, Sulphurets Creek Area, B.C.; for Hi-Tec Resource Management Ltd.
- Alldrick, D.J., Britton, J.M., Webster, I.C.L. and Russel, C.W.P. (1989): Geology and Mineral Deposits of the Unuk Area (104B/7E, 8W, 9W, 10E); B.C. Ministry of Energy, Mines and Petroleum Resources, Open File 1989-10.
- Alldrick, D.J. (1989): Volcanic Centres in the Stewart Complex (103P and 104A,B); in British Columbia Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork, 1988, Paper 1989-1.
- Alldrick, D.J., Britton, J.M. (1992): Unuk Area Geology (104B/7E, 8W, 9W, 10E); B.C. Ministry of Energy, Mines and Petroleum Resources, Open File 1992-22.
- Anderson, R.G. and Thorkelson, D.J. (1990): Mesozoic Stratigraphy and Setting for some Mineral Deposits in the Iskut River Map Area, Northwestern British Columbia; in Current Research, Part E, Geological Survey of Canada, Paper 90-1F, p. 131-139, 1990.
- Barrett, T.J. and MacLean, W.H. (1994): Hydrothermal Alteration in VHMS Deposits; in Alteration and Alteration Processes Associated with Ore-Forming Systems, D.R.Lentz (ed.). Geological Association of Canada. Short Course Notes Volume II.
- Britton, J.M., Fletcher, B.A. and Alldrick, D.J. (1990): Snippaker Map Area (104B/6E, 7W, 10W, 11E); in British Columbia Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork, 1989, Paper 1990-1.
- Britton, J.M., Blackwell, J.D. and Schroeter, T.G. (1990): #21 Zone Deposits, Eskay Creek, Northwestern British Columbia; in B.C. Ministry of Energy, Mines and Petroleum Resources, Exploration in British Columbia, 1989.
- Britton, J.M., Webster, I.C.L. and Alldrick, D.J. (1989): Unuk Map Area; in British Columbia Ministry of Energy Mines and Petroleum Resources, Geological Fieldwork, 1988, Paper 1989-1.
- Britton, J.M. and Alldrick, D.J. (1988): Sulphurettes Map Area (104B/08E, 09E); in British Columbia Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork, 1987, Paper 1988-1.

- Gaboury, B.E. (1990): 1990 Summary Report on the Unuk River Project, Unuk, Coul, Icey, Knip, Bou and Irv Claim Groups, Skeena Mining Division, NTS 104B/9,104B10; for Granges Inc.
- Gaboury, B.E. (1990): Geological, Geochemical, Geophysical and Diamond Drilling Report on the Unuk, Coul, Icey, Bou, Knip, and Irv Claim Groups, Unuk River Area, Skeena Mining Division, NTS 104B/9, 104B/10; for Granges Inc.
- Grove, E.W. (1986): Geology and Mineral Deposits of the Unuk River Salmon River-Anyox Area; B.C. Ministry of Energy, Mines and Petroleum Resources, Bulletin 63.
- Lewis, P.D. et al (1993): Lower and Middle Jurassic Stratigraphy in the Treaty Glacier Area and Geological Setting of the Treaty Glacier Alteration System, Northwestern British Columbia; in Current Research, Part A, Geological Survey of Canada, Paper 93-1A, p. 75-86.
- Macdonald, A.J., Lewis, P.D. et al (1993): Metallogenesis of the Iskut River Area, Northwestern B.C., Annual Technical Report-Year 3; Mineral Deposits Research Unit, Department of Geological Sciences, University of British Columbia.
- Macdonald, A.J., Lewis, P.D. et al (1992): Metallogenesis of the Iskut River Area, Northwestern B.C., Annual Technical Report-Year 2; Mineral Deposits Research Unit, Department of Geological Sciences, University of British Columbia.
- Macdonald, A.J., Lewis, P.D. et al (1991): Metallogenesis of the Iskut River Area, Northwestern B.C., Annual Technical Report-Year 1; Mineral Deposits Research Unit, Department of Geological Sciences, University of British Columbia.
- Mandy, J.T. (1935): Unuk River Area, North-Western Mineral Survey District (No 1); in Annual Report of the Minister of Mines of the Province of British Columbia for the year ended 31st December, 1935.
- O'Donnell, A.J. (1992): Geology and Diamond Drilling Report on the Unuk River Project, Unuk and Coul Claim Groups, Skeena Mining Division, NTS 104B/9, 104B/10; for Granges Inc.
- Sherlock, R.L., Barrett, T.J. et al (1994): Geological Investigations of the 21B Deposit, Eskay Creek, Northwestern British Columbia 104B/9W; in British Columbia Ministry of Energy Mines and Petroleum Resources, Geological Fieldwork, 1993, Paper 1994-1.

- Van Damme, V.P. (1994): Geological Report, Corey Property, Corey 1-45, Dee 1-6, Dwayne 1, Carl J, Jo Jo, Tine 1, Ginger 1,2, Candy 1, DEL 1,2, Cumberland, Silver Pine, Middlesex, Ziphis, Ougma, Sul 1,2, Unuk 20, Sul 1,2; for Kenrich Mining Corp. and Ambergate Explorations Inc.
- Van Damme, V.P. (1991): Geological Report, GNC Property, GNC 1-4 Claims; for Canarc Resources and Prime Exploration.
- Van Damme, V.P. (1990): Rhyolite Stratigraphy and Transtensional Basin Structural Controls at Eskay Creek; for Stikine/Calpine Resources.

APPENDIX A.

CERTIFICATES OF ANALYSIS

. -

Chemex Labs Ltd.

Analytical Chemists ' Geochemists ' Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To:	GRANGES	INC

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

A9425913

Comments:

	С	ERTIFI	CATE	A9425913
٢	Project:	submitte	GRID -	ab in Vancouver, BC.
		SAM	PLE PREI	PARATION
	CHEMEX	NUMBER SAMPLES		DESCRIPTION
	201 229	157 157	Dry, sieve ICP - AQ I	to -80 mesh Digestion charge
(
	* NOTE	1:		

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, T1, W.

CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
100	157	Au ppb: Fuse 10 g sample	FA-AAS	5	10000
2118	157	Ag ppm: 32 element, soil & rock	ICP-AES	0.2	200
2119	157	Al %: 32 element, soil & rock	ICP-AES	0.01	15.00
2120	157	As ppm: 32 element, soil & rock	ICP-AES	2	10000
2121	157	Ba ppm: 32 element, soil & rock	ICP-AES	10	10000
2122	157	Be ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
2123	157	Bi ppm: 32 element, soil & rock	ICP-AES	2	10000
2124	157	Ca %: 32 element, soil & rock	ICP-AES	0.01	15.00
2125	157	Cd ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
2126	157	Co ppm: 32 element, soil & rock	ICP-AES	1	10000
2127	157	Cr ppm: 32 element, soil & rock	ICP-NES	1	10000
2128	157	Cu ppm: 32 element, soil & rock	ICP-ARS	1	10000
2150	157	Fe %: 32 element, soil & rock	ICP-AES	0.01 10	15.00 10000
2130	157	Ga ppm: 32 element, soil & rock	ICP-AES	10	10000
2131	157	Hg ppm: 32 element, soil & rock	icp-aes icp-aes	0.01	10.00
2132	157	K %: 32 element, soil & rock La ppm: 32 element, soil & rock	ICP-AES	10	10000
2151	157	Mg %: 32 element, soil & rock	ICP-AES	0.01	15.00
2134 2135	157	Mn ppm: 32 element, soil & rock	ICP-AES	5	10000
2136	157	Mo ppm: 32 element, soil & rock	ICP-AES	ĩ	10000
2137	157	Na %: 32 element, soil & rock	ICP-AES	0.01	5.00
2138	157	Ni ppm: 32 element, soil & rock	ICP-AES	1	10000
2139	157	P ppm: 32 element, soil & rock	ICP-AES	10	10000
2140	157	Pb ppm: 32 element, soil & rock	ICP-AES	2	10000
2141	157	sh ppm: 32 element, soil & rock	ICP-AES	2	10000
2142	157	So ppm: 32 elements, soil & rock	ICP-AES	1	10000
2143	157	Sr ppm: 32 element, soil & rock	ICP-AES	1	10000
2144	157	Ti %: 32 element, soil & rock	ICP-AES	0,01	5.00
2145	157	T1 ppm: 32 element, soil & rock	ICP-AES	10	10000
2146	157	U ppm: 32 element, soil & rock	ICP-AES	10	10000
2147	157	V ppm: 32 element, soil & rock	ICP-AES	1	10000
2148	157	W ppm: 32 element, soil & rock	ICP-AES	10	10000
2149	157	Zn ppm: 32 element, soil & rock	ICP-AES	2	10000

۰.

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

CERTIFICATE OF ANALYSIS

54. 1. 39 Page Number : 1-A Total Pages : 4 Certificate Date: 27-SEP-94 Invoice No. : 19425913 P.O. Number • BSJ Account

A9425913

#134-R-GRID SOILS Project : Comments:

9+00N 00+25W 201 9+00N 00+50W 201 9+00N 00+75W 201 9+00N 01+75W 201 9+00N 01+00W 201 9+00N 01+25W 201 9+00N 01+50W 201 9+00N 01+75W 201 9+00N 02+00W 201 9+00N 02+50W 201 9+00N 02+75W 201 9+00N 03+00W 201	DE 229 229 229 229 229 229 229 229 229	Au ppb PA+AA < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 0.6 0.4 0.6 < 0.2 < 0.2		ppm < 2 14 4 6 30 14 16 8 < 2	Ba ppm 130 30 40 70 70 70 40 80 40	Be ppm < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	Bi ppm < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	Ca % 0.14 0.04 0.28 0.11 0.03	Cđ ppm < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	Co ppm 4 2 6 3 3	Cr ppm 19 35 36 49	Cu ppm 17 13 12 9	Fe % 6.26 7.03 6.72 5.26	Ga ppm < 10 10 < 10 < 10	Hg ppm < 1 < 1 1 < 1	K % 0.04 0.08 0.04 0.07	La ppm < 10 10 < 10 < 10	Mg % 0.18 0.28 0.55 0.27	Mn ppm 225 315 175
9+00N 00+25W 201 9+00N 00+50W 201 9+00N 00+75W 201 9+00N 01+75W 201 9+00N 01+00W 201 9+00N 01+25W 201 9+00N 01+50W 201 9+00N 01+75W 201 9+00N 02+00W 201 9+00N 02+50W 201 9+00N 02+75W 201 9+00N 03+00W 201	229 229 229 229 229 229 229 229 229 229	<pre>< 5 < 5</pre>	0.4 < 0.2 < 0.2 < 0.2 < 0.2 0.6 0.4 0.6 < 0.2 < 0.2	2.74 4.42 3.07 4.17 4.16 3.40 3.01 2.08	14 6 30 14 16 8 < 2	30 40 70 70 70 40 80	< 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.04 0.28 0.11 0.03	< 0.5 < 0.5 < 0.5	2 6 3	35 36 49	13 12 9	7.03	10 < 10	< 1 1 < 1	0.08	10 < 10	0.28 0.55	315 175
9+00N 00+50W 201 9+00N 00+75W 201 9+00N 01+00W 201 9+00N 01+25W 201 9+00N 01+25W 201 9+00N 01+50W 201 9+00N 01+50W 201 9+00N 02+75W 201 9+00N 02+75W 201 9+00N 03+00W 201	229 229 229 229 229 229 229 229 229 229	<pre>< 5 < 5</pre>	< 0.2 < 0.2 < 0.2 < 0.2 0.6 0.4 0.6 < 0.2 < 0.2	4.42 3.07 4.17 4.16 3.40 3.01 2.08	4 6 30 14 16 8 < 2	40 70 70 40 80	< 0.5 < 0.5 < 0.5	< 2 < 2 < 2	0.28 0.11 0.03	< 0.5 < 0.5	2 6 3	35 36 49	13 12 9	7.03	10 < 10	< 1 1 < 1	0.08	10 < 10	0.28 0.55	315 175
9+00N 00+75W 201 9+00N 01+00W 201 9+00N 01+25W 201 9+00N 01+25W 201 9+00N 01+50W 201 9+00N 01+50W 201 9+00N 02+00W 201 9+00N 02+50W 201 9+00N 02+75W 201 9+00N 03+00W 201	229 229 229 229 229 229 229 229 229 229	<pre>< 5 < 5</pre>	< 0.2 < 0.2 0.6 0.4 0.6 < 0.2 < 0.2	3.07 4.17 4.16 3.40 3.01 2.08	6 30 14 16 8 < 2	70 70 40 80	< 0.5 < 0.5	< 2 < 2	0.11 0.03	< 0.5	3	49	9			< 1				
9+00N 01+00W 201 9+00N 01+25W 201 9+00N 01+50W 201 9+00N 01+75W 201 9+00N 02+00W 201 9+00N 02+50W 201 9+00N 02+50W 201 9+00N 02+75W 201 9+00N 03+00W 201	229 229 229 229 229 229 229 229 229 229	< 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	< 0.2 0.6 0.4 0.6 < 0.2 < 0.2	4.17 4.16 3.40 3.01 2.08	30 14 16 8 < 2	70 40 80	< 0.5	< 2	0.03		+		-	5.26	< 10		0.07	< 10	0.27	105
9+00N 01+25W 201 9+00N 01+50W 201 9+00N 01+75W 201 9+00N 02+00W 201 9+00N 02+50W 201 9+00N 02+50W 201 9+00N 02+75W 201 9+00N 03+00W 201	229 229 229 229 229 229 229 229 229 229	< 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	0.6 0.4 0.6 < 0.2 < 0.2	4.16 3.40 3.01 2.08	14 16 8 < 2	40 80	0.5			Ç.5	3									125
9+00N 01+50W 201 9+00N 01+75W 201 9+00N 02+00W 201 9+00N 02+50W 201 9+00N 02+50W 201 9+00N 02+75W 201 9+00N 03+00W 201	229 229 229 229 229 229 229 229 229	< 5 < 5 < 5 < 5 < 5 < 5 < 5	0.4 0.6 < 0.2 < 0.2	3.40 3.01 2.08	16 8 < 2	80		< 2			•	70	19	7.69	< 10	1	0.10	< 10	0.57	260
9+00N 01+75W 201 9+00N 02+00W 201 9+00N 02+50W 201 9+00N 02+75W 201 9+00N 03+00W 201	229 229 229 229 229 229 229 229	< 5 < 5 < 5 < 5 < 5 < 5	0.6 < 0.2 < 0.2	3.01 2.08	8 < 2		< 0.5		0.19	< 0.5	10	42	23	6.48	< 10	1	0.09	< 10	0.49	680
9+00N 02+00W 201 9+00N 02+50W 201 9+00N 02+75W 201 9+00N 02+75W 201 9+00N 03+00W 201	229 229 229 229 229 229 229	< 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2	2.08	< 2	40		< 2	0.11	< 0.5	6	60	26	7.09	< 10	1	0.07	< 10	0.63	310
9+00N 02+50W 201 9+00N 02+75W 201 9+00N 03+00W 201	229 229 229 229 229	< 5 < 5 < 5	< 0.2				< 0.5	< 2	0.04	< 0.5	2	50	13	5.62	10	< 1	D.07	10	0.28	150
9+00N 02+75W 201 9+00N 03+00W 201	229 229 229	< 5 < 5		4.50	14	70 90	< 0.5 1.0	< 2 < 2	0.16 0.15	< 0.5 < 0.5	3 16	31 43	10 17	5.30 5.19	< 10 < 10	< 1	0.05	< 10	0.26	115 715
9+00N 03+00W 201	229 229	< 5	A 4				1.0		0.13	< 0.5	10	• •	1/	5.19	< 10	< 1	0.13	< 10	0.48	715
	229		0.4	4.17	< 2	60	< 0.5	< 2	0.31	< 0.5	23	35	40	6.89	10	< 1	0.10	30	0.63	1410
		< 5	0.4	2.87	6	40	< 0.5	< 2	0.24	< 0.5	2	30	35	8.49	60	1	0.06	30	D.11	385
		< 5	< 0.2	2.00	4	330 50	< 0.5 < 0.5	< 2	0.47	< 0.5 < 0.5	38 8	28 47	35 14	5.27 6.01	10 < 10	< 1 < 1	0.12	10 < 10	0.38 0.63	10000 320
	229	< 5	1.2	3.30	22	30	< 0.5	< 2	0.12	< 0.5	ĩ	18	10	7.39	< 10	1	0.08	< 10	0.13	315
9+00N 04+00W 201 9+00N 04+50W 201		< 5 < 5	0.6	3.22	18	40	< 0.5	< 2	0.02	< 0.5	3	48	22	9.68	10	1	0.06	< 10	0.18	230
9+00N 04+75W 201	229	< 5	4.0	1.30	12 32	180 60	< 0.5	< 2 < 2	0.15 0.09	< 0.5	3	10 45	8 20	4.37 6.03	< 10 < 10	< 1 < 1	0.11 0.13	< 10 < 10	0.22	650 1255
9+00N 05+00W 201		~ š	1.2	3.00	36	230	0.5	< 2	0.17	0.5	23	83	40	4.93	< 10	< 1	0.13	< 10	1.01	1205
	229	< 5	1.2	2.36	142	170	1.0	< 2	0.42	0.5	15	21	44	5.07	< 10	ĩ	0.15	< 10	0.29	925
9+00N 05+50W 201	220	< 5	2.4	6.82	32	130	3.0	< 2	0.69	0.5	25	45	32	4.96	< 10		0.05		0.21	2280
9+00N 05+75W 201		< 5	< 0.2	2.26	16	20	< 0.5	< 2	0.06	< 0.5	2	32	34	5.11	< 10	1 < 1	0.04	10 10	0.31 0.18	135
9+00N 06+00W 201		< 5	< 0.2	2.58	92	90	< 0.5	< 2	0.04	< 0.5	6	18	12	5.36	< 10	< 1	0.10	< 10	0.16	500
9+00N 06+25W 201		< 5	< 0.2	3.05	24	320	0.5	< 2	0.25	< 0.5	17	83	41	4.36	< 10	1	0.18	< 10	1.33	665
9+00N 06+50W 201	229	< 5	0.8	2.06	22	110	< 0.5	< 2	0.38	< 0.5	1	22	6	8.97	10	1	0.06	< 10	0.12	250
9+00N 06+75W 201	229	< 5	0.6	4.26	126	50	0.5	< 2	0.12	< 0.5	15	32	14	7.51	< 10	1	0.07	10	0.25	1280
9+00N 07+00W 201		< 5	< 0.2	1.24	4	70	< 0.5	< 2	1.23	< 0.5	4	17	7	4.68	< 10	< 1	0.05	< 10	0.32	180
9+00N 07+25W 201		< 5	1.2	6.36	12	170	3.5	< 2	1.32	< 0.5	13	28	22	3.15	< 10	2	0.04	10	0.50	1970
9+00N 07+50W 201 9+00N 07+75W 201		< 5 < 5	< 0.2	3.52	10 14	190 60	1.0	< 2	1.12 0.26	< 0.5	10 7	23 27	9	5.88	< 10	< 1	0.06	10	0.67	345
3400B 07473W 201	449		1.4	4.03	14	6U	< 0.5	< 4	0.20	< 0.5	·	11	13	7.34	< 10	1	0.04	< 10	0.60	225
9+00N 08+00W 201		< 5	0.8	2.72	8	50	< 0.5	< 2	0.09	< 0.5	4	29	15	7.73	< 10	< 1	0.07	< 10	0.43	330
9+00N 08+25W 201		< 5	0.4	3.24	12	80	< 0.5	< 2	0.27	< 0.5	6	34	11	6.69	< 10	< 1	0.05	< 10	0.43	260
9+00N 08+50W 201 9+00N 08+75W 201		< 5 < 5	0.2	2.80	14		< 0.5	< 2	0.09	< 0.5	6	54	14	6.58	< 10	< 1	0.08	< 10	0.42	195
9+00N 08+75W 201 9+00N 09+00W 201		< 5	< 0.2	1.73 3.63	20 8	40 40	< 0.5 < 0.5	< 2 < 2	0.11 0.21	< 0.5 < 0.5	7	37 27	13 9	5.07 7.86	< 10 < 10	< 1 1	0.04	< 10 < 10	0.18 0.43	170 230
																		· 10		
9+00N 10+00W 201		< 5	< 0.2	3.70	26		< 0.5	< 2	0.03	< 0.5	4	97	17	7.76	< 10	< 1	0.06	< 10	0,61	215
9+00N 10+25W 201			< 0.2	5.74	30		< 0.5	. < 2	0.03	< 0.5	. 8	. 91	35	.6.52	< 10	. < 1	0.07	< 10	0.63	225
9+00N 10+50W 10+00N 00+50W 201	220	miss. 1 < 5	miss. 2.4	miss. 2.56	miss. 1 22	miss. 1 200	des. : 0.5	miss. : < 2	1155. 1 0.14	miss. : < 0.5	miss. m 12	198. m 25	1 55. 1 58	niss. 1 5.61						1250
10+00N 00+75W 201		< 5	0.4	3.39	14		< 0.5	< 2	0.14	< 0.5	12	25	58 10	5.61	< 10 < 10	< 1 1	0.12	< 10 < 10	0.21	1350 175
		•••									-		10		. 10	-	0.02	. 10		2,3

CERTIFICATION: Stanty Buchles

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

Page Number : 1-B Total Pages :4 Certificate Date: 27-SEP-94 Invoice No. : 19425913 P.O. Number : BSJ Account

Project : Comments: #134-R

										CE	RTIF	ICATE	OF	ANALY	rsis	A9425913
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	SD ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U mqq	V ppm	W Mqq	Zn ppm	
9+00N 00+00W 9+00N 00+25W 9+00N 00+50W 9+00N 00+75W 9+00N 01+00W	201 229 201 229 201 229 201 229 201 229 201 229	8 2 2	0.02 0.02 0.04 0.01 0.01	7 14 10 9 31	920 710 730 430 580	4 4 6 8 6	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	2 3 5 4 5	21 7 22 15 8	0.29 0.19 0.61 0.31 0.10	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	144 58 131 153 80	< 10 < 10 < 10 < 10 < 10 < 10	44 68 50 36 70	
9+00N 01+25W 9+00N 01+50W 9+00N 01+75W 9+00N 02+00W 9+00N 02+50W	201 229 201 229 201 229 201 229 201 229 201 229	4	0.05 0.01 0.01 0.02 0.03	12 26 8 8 19	940 790 440 460 780	12 8 16 6 8	< 2 < 2 < 2 < 2 < 2 < 2	8 5 6 3 5	17 16 7 20 16	0.41 0.26 0.37 0.34 0.15	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	129 160 126 118 89	< 10 < 10 < 10 < 10 < 10 < 10	76 80 52 42 78	
9+00N 02+75W 9+00N 03+00W 9+00N 03+25W 9+00N 03+25W 9+00N 03+75W	201 229 201 229 201 229 201 229 201 229 201 229	< 1 2 3 4 7	0.06 0.03 0.05 0.06 0.06	10 4 10 17 4	1240 700 1090 600 900	18 28 22 2 8	8 8 6 < 2 < 2	9 6 4 5 2	27 15 38 25 12	0.51 0.26 0.23 0.55 0.22	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 30 < 10 < 10	163 71 128 147 42	< 10 < 10 < 10 < 10 < 10 < 10	94 64 88 48 76	
9+00N 04+00W 9+00N 04+50W 9+00N 04+75W 9+00N 05+00W 9+00N 05+25W	201 229 201 229 201 229 201 229 201 229 201 229	4 < 3 4 2 7	0.01 0.04 0.01 0.01 0.02	7 4 15 70 22	440 690 2090 700 1010	14 14 20 16 20	< 2 < 2 < 2 6 2	5 2 4 3	4 23 9 18 37	0.33 0.23 0.18 0.02 0.02	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	177 82 88 60 45	< 10 < 10 < 10 < 10 < 10 < 10	54 76 80 146 160	
9+00N 05+50W 9+00N 05+75W 9+00N 06+00W 9+00N 06+25W 9+00N 06+50W	201 229 201 229 201 229 201 229 201 229 201 229	2 12 6 1 8	0.03 0.01 0.01 0.01 0.01 0.01	27 7 8 95 7	1230 320 650 460 610	8 6 16 12 6	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	8 4 2 5 2	28 8 6 26 39	0.30 0.47 0.04 0.03 0.33	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	64 129 65 59 82	< 10 < 10 < 10 < 10 < 10 < 10	100 48 50 152 68	
9+00N 06+75W 9+00N 07+00W 9+00N 07+25W 9+00N 07+50W 9+00N 07+75W	201 229 201 229 201 229 201 229 201 229 201 229	8 7 5 2 2	0.02 0.06 0.03 0.08 0.04	7 6 17 11 10	1090 560 1940 670 740	14 2 12 2	4 < 2 < 2 < 2 < 2	8 2 4 6 6	12 106 90 86 23	0.37 0.47 0.20 0.60 0.70	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	90 110 65 115 130	< 10 < 10 < 10 < 10 < 10 < 10	98 58 102 50 44	
9+00N 08+00W 9+00N 08+25W 9+00N 08+50W 9+00N 08+75W 9+00N 09+00W	201 229 201 229 201 229 201 229 201 229 201 229 201 229	8 < 6 4 3 1	0.01 0.03 0.02 0.02 0.02 0.03	10 9 18 12 9	530 510 520 420 510	12 10 8 8 2	< 2 6 < 2 < 2 2	4 5 3 4	30 22 13 18 20	0.40 0.57 0.32 0.35 0.52	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	146 145 155 156 127	< 10 < 10 < 10 < 10 < 10 < 10	68 58 60 48 48	
9+00N 10+00W 9+00N 10+25W 9+00N 10+50W 10+00N 00+50W 10+00N 00+75W	201 229 201 229 201 229 201 229 201 229 201 229	3 3 < miss. m 3 3		38 41 155. m 14 7	330 350 iss. m: 1610 790	6 12 18 18 6	2 < 2 iss. m: < 2 2	4 7 iss. mi 3 4	9 10 18s. m 19 19	0.13 0.12 1	< 10 < 10 hiss. m < 10 < 10	< 10 < 10 miss. m < 10 < 10	77 103 186. 8 66 129	< 10 < 10 tiss. m < 10 < 10	66 96 1ss. 142 46	
					<u> </u>							<u> </u>	c	ERTIFIC		HartBichler

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

Project : #134-R Comments: Page Number :2-A Total Pages :4 Certificate Date: 27-SEP-94 Invoice No. :19425913 P.O. Number : Account :BSJ

$ \begin{array}{c} 0.000 \ 0.1-28M \\ $											CE	RTIFI	CATE	OF /		YSIS		49425	5913		
$ \begin{array}{c} 0.000 \ 0.1-28M \\ 0.1-28M $	SAMPLE			_							-										
$ \begin{array}{c} 0.000 \ 11-501 \\ 0.000 \ 12-501 \\ 210 \ 228 \\ 210 \ 228 \\ < 5 & (1.2 \ 1.5 \ 0.4 \ 1.5 \ 0.4 \ 1.5 \ 0.4 \ 0.1 \ 0.21 \ 115 \\ 0.00 \ 0.5$	10+00N 01+00W	201 229	< 5	0.6	3.46	22	60	< 0.5	< 2	0.06	< 0.5	3	56	21	8.05	< 10	< 1	0.03	< 10	0.46	280
$ \begin{array}{c} 0.000 \ 0.0175M \\ \textbf{200} \ 0.020M \ 0.20M \ 0.$	10+00N 01+25W				-				-			-					_				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																	_				
$ \begin{array}{c} 0 - 0.00 \ 22+50'' \\ 0$	10+00N 02+00W																_				
$ \begin{array}{c} 0 - 0.00 \ 22+50'' \\ 0$	10+00N 02+25W	201 229	(5	< 0.2	3 08		10	< 0.5	(2	0 12	< 0.5	9	12	20	6 61	< 10	1	0.05	< 10	0.39	225
0+000 02+75W 201 229 5 0.6 0.77 32 20 0.75 20 29 8.77 10 0.58 205 0+000 03-05W 201 225 < 2.2 2.3 0 0.5 < 2 0.16 < 5 1 2.5 1 5 1 0.5 < 10 0.35 < 10 0.5 < 10 0.35 < 0.2 0.35 < 0.2 0.3 0.5 < 0.2 0.35 < 0.2 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35	10+00N 02+50W																				
$ \begin{array}{c} 0-000 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	10+00N 02+75W					32															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10+00N 03+00W		< 5	< 0.2					< 2	0.21	< 0.5			37		< 10					
$ \begin{array}{c} 0.000 \ 03.475M \\ 0.000 \ 03.475M \\ 201 \ 2229 \\ c 5 \\ c 0.01 \ c 4.000 \ c 4.0000 \ c$	10+00N 03+25W	201 229	< 5	< 0.2	2.96	22	50	< 0.5	< 2	0.04	< 0.5	2	50	16	5.23	< 10	< 1	0.05	< 10	0.26	120
$ \begin{array}{c} 0 + 000 & 04 + 000 \\ 0 + 000 & 04 + 50W \\ 201 & 229 \\ 0 + 000 & 04 + 50W \\ 201 & 229 \\ 0 + 000 & 04 + 50W \\ 201 & 229 \\ 0 + 000 & 04 + 50W \\ 201 & 229 \\ 0 + 000 & 04 + 50W \\ 201 & 229 \\ 0 + 000 & 04 + 50W \\ 201 & 229 \\ 0 + 000 & 04 + 50W \\ 201 & 229 \\ 0 + 000 & 04 + 50W \\ 201 & 229 \\ 0 + 000 & 04 + 50W \\ 201 & 229 \\ 0 + 00 & 05 + 00W \\ 201 & 229 \\ 0 + 00 & 00 + 00W \\ 201 & 229 \\ 0 + 00 & 00 + 00W \\ 201 & 229 \\ 0 + 00 & 00 + 00W \\ 201 & 229 \\ 0 + 00 & 00 + 00W \\ 201 & 229 \\ 0 + 00 & 00 + 00W \\ 201 & 229 \\ 0 + 00 & 00 + 00W \\ 201 & 229 \\ 0 + 00 & 00 + 00W \\ 201 & 229 \\ 0 + 00 & 00 + 00W \\ 201 & 229 \\ 0 + 00 & 00 + 00W \\ 201 & 229 \\ 0 + 0 & 00 & 00 + 00W \\ 201 & 229 \\ 0 + 0 & 00 & 00 + 00W \\ 201 & 229 \\ 0 + 0 & 00 & 00 + 0W \\ 201 & 229 \\ 0 + 0 & 00 & 00 + 0W \\ 201 & 229 \\ 0 + 0 & 00 & 00 + 0W \\ 201 & 229 \\ 0 + 0 & 0 & 00 & 00 \\ 201 & 229 \\ 0 + 0 & 0 & 00 & 00 \\ 201 & 229 \\ 0 + 0 & 0 & 00 & 00 \\ 201 & 200 & 00 & 00 \\ 201 & 229 \\ 0 + 0 & 0 & 00 & 00 \\ 201 & 229 \\ 0 + 0 & 0 & 00 & 00 \\ 201 & 229 \\ 0 + 0 & 0 & 00 & 00 \\ 201 & 229 \\ 0 + 0 & 0 & 00 & 00 \\ 201 & 229 \\ 0 + 0 & 0 & 00 & 00 \\ 201 & 229 \\ 0 + 0 & 0 & 00 & 00 \\ 201 & 229 \\ 0 + 0 & 0 & 00 & 00 \\ 201 & 229 \\ 0 + 0 & 0 & 00 & 00 \\ 201 & 229 \\ 0 + 0 & 0 & 00 & 00 \\ 201 & 229 \\ 0 + 0 & 0 & 00 & 00 \\ 201 & 200 \\ 0 & 00 & 00 & 00 \\ 201 & 200 \\ 0 & 00 & 00 & 00 \\ 201 & 200 \\ 201 & 200 \\ 0 & 00 & 00 &$	10+00N 03+50W	201 229	< 5	0.4	2.57	14	40	< 0.5	< 2	0.16	< 0.5	7	34	18	4.77	< 10	1	0.06	< 10	0.39	180
$\begin{array}{c} 0 + 000 \ 004 + 25M \\ 0 + 000 \ 004 + 5W \\ 201 \ 229 \\ 0 + 5 \\ 0 + 000 \ 004 + 5W \\ 201 \ 229 \\ 0 + 5 \\ 0 + 000 \ 005 + 5W \\ 201 \ 229 \\ 0 + 5 \\ 0 + 000 \ 005 + 5W \\ 201 \ 229 \\ 0 + 5 \\ 0 + 000 \ 005 + 5W \\ 201 \ 229 \\ 0 + 5 \\ 1.4 \\ 3.12 \\ 2.29 \\ 0 + 5 \\ 1.4 \\ 3.12 \\ 2.2 \\ 0 + 0.5 \\ 0.6 \\ 2.7 \\ 0 + 0.5 \\ 0 + 0 \\ 0 + 0 + 0 \\ 0$	10+00N 03+75W		< 5			_			< 2		< 0.5						< 1		_		
$\begin{array}{c} 0.000 \ 04+500 \\ 0-000 \ 05+750 \\ 201 \ 229 \\ 0.1 \ 229 \\ 0$	10+00N 04+00W																				
0-000 0-475W 201 229 < 5 0.8 0.87 22 70 0.5 2 0.66 0.5 2 12 16 4.22 10 0.11 < 10 0.14 295 0-000 055-00W 201 229 < 5 1.4 3.32 22 70 0.5 < 2 0.05 0.5 14 49 33 5.33 < 10 < 10 0.14 0.10 0.44 120 0-000 055-50W 201 229 < 5 0.6 2.70 20 2.0 2.0 0.5 7 23 13 5.91 2.0 0.0 1.6 0.15 0.15 2.5 2.5 0.0 1.0 0.16 0.75 120 120 2.0 1.0 0.10 0.0 0.16 2.0 0.16 1.0 1.0 0.0 0.0 0.16 2.0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						-			-			-	-	-							
$ \begin{array}{c} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$																					
$\begin{array}{c} 0.000 & 0.5 \times 2517 \\ 0.01 & 0.5 \times 2517 \\ 0.01 & 225 \\ 0.02 & 25 \\ 0.01 & 225 \\ 0.02 & 25 \\ 0.01 & 225 \\ 0.05 & 201 & 225 \\ 0.05 & 201 & 225 \\ 0.05 & 201 & 225 \\ 0.05 & 201 & 225 \\ 0.05 & 201 & 225 \\ 0.05 & 201 & 225 \\ 0.05 & 201 & 225 \\ 0.05 & 201 & 225 \\ 0.05 & 201 & 225 \\ 0.05 & 201 & 225 \\ 0.00 & 0.575W \\ 201 & 225 \\ 0.10 & 0.55 \\ 201 & 225 \\ 0.10 & 0.55 \\ 201 & 225 \\ 0.10 & 0.55 \\ 201 & 225 \\ 0.10 & 0.55 \\ 201 & 225 \\ 0.10 & 0.55 \\ 201 & 225 \\ 0.10 & 0.55 \\ 201 & 225 \\ 0.10 & 0.55 \\ 201 & 225 \\ 0.10 & 0.55 \\ 201 & 225 \\ 0.10 & 0.74 \\ 1.0 & 0.05 \\ 201 & 225 \\ 0.10 & 0.74 \\ 1.0 & 0.05 \\ 201 & 225 \\ 0.10 & 0.74 \\ 1.0 & 0.05 \\ 201 & 225 \\ 0.5 \\ 1.1 & 3.71 \\ 8 & 240 \\ 0.05 & 0.2 \\ 1.10 & 0.5 \\ 0.10 & 0.5 \\ 0.10 & 0.5 \\ 0.10 & 0.5 \\ 0.10 & 0.5 \\ 0.10 & 0.5 \\ 0.10 & 0.5 \\ 0.10 & 0.5 \\ 0.10 & 0.74 \\ 1.0 & 0.5 \\ 0.10 & 0.74 \\ 1.0 & 0.5 \\ 0.10 & 0.74 \\ 1.0 & 0.5 \\ 0.10 & 0.74 \\ 1.0 & 0.5 \\ 0.10 & 0.74 \\ 1.0 & 0.5 \\ 0.10 & 0.74 \\ 1.0 & 0.5 \\ 0.10 & 0.74 \\ 1.0 & 0.5 \\ 0.10 & 0.74 \\ 1.0 & 0.6 \\ 1.0 & 0.74 \\ 1.0 & 0.6 \\ 1.0 & 0.74 \\ 1.0 & 0.6 \\ 1.0 & 0.5 \\ 1.0 & 0.5 \\ 2.0 & 0.1 \\ 0.000 & 0.5 \\ 0.10 & 0.5 \\ 0.10 & 0.5 \\ 0.10 & 0.5 \\ 0.10 & 0.5 \\ 0.10 & 0.5 \\ 0.10 & 0.5 \\ 0.10 & 0.5 \\ 0.10 & 0.5 \\ 0.10 & 0.5 \\ 0.10 & 0.5 \\ 0.10 & 0.5 \\ 0.10 & 0.10 \\ 0.000 & 0.5 \\ 0.10 & 0.5 \\ 0.10 & 0.5 \\ 0.10 & 0.10 \\ 0.10 & 0.10 \\ 0.000 & 0.5 \\ 0.10 $	10+00N 04+75W								_								_				
0.000 0.05+50W 201 229 < 5 2.00 12 110 < 0.5 2 13 5.91 < 10 < 165 0+00N 05+75W 201 229 < 5 0.6 2.70 20 120 < 5 29 12 6.84 < 0 < 10 0.16 305 0+00N 06+50M 201 229 < 5 1.4 3.88 20 180 1.0 < 2 0.10 < 15 55 25 5.00 < 10 0.16 305 0+00N 06+50M 201 229 < 5 1.2 1.8 20 155 25 25 5.00 < 10 0.10 0.16 305 0+00N 0757W 201 229 < 5 1.2 1.3 0.5 2 0.11 0.00 10 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>_</td> <td></td> <td></td>									_							_			_		
0+00x 05+75w 201 229 < 5 0.6 2.70 20 120 < 0.5 < 2 0.16 < 0.5 5 29 12 6.84 < 10 < 1 0.07 < 10 0.16 305 0+00x 06+0x 229 < 5							• -														
0.0000 66+50M 201 225 < 5	10+00N 05+75W																				
0+00N 0+50N 201 223 1.4 3.88 20 180 1.0 20 0.88 10 11	10+00N 06+00M	201 229	< 5	1.2	2.80	52	90	0.5	< 2	0.10	< 0.5	15	55	25	5.00	< 10	< 1	0.13	< 10	0.76	935
$ \begin{array}{c} 0.000 \ 0.6+75M \\ 0.000 \ 0.7+25M \\ 0.000 \ 0.7+25M \\ 0.000 \ 0.7+25M \\ 0.000 \ 0.7+25M \\ 0.000 \ 0.7+5W \\ 0.01 \ 229 \\ 0.5 \\ 0.000 \ 0.7+5W \\ 0.01 \ 229 \\ 0.5 \\ 0.000 \ 0.7+5W \\ 0.01 \ 229 \\ 0.5 \\ 0.000 \ 0.7+5W \\ 0.01 \ 229 \\ 0.5 \\ 0.000 \ 0.7+75W \\ 0.01 \ 229 \\ 0.5 \\ 0.000 \ 0.7+75W \\ 0.01 \ 229 \\ 0.5 \\ 0.000 \ 0.7+75W \\ 0.01 \ 229 \\ 0.5 \\ 0.2 \\ 0.10 \ 0.6 \\ 0.5 \\ 0.5 \\ 0.2 \\ 0.10 \ 0.5 \\ 0.5 \\ 0.1 \\ 0.000 \ 0.7+5W \\ 0.01 \ 229 \\ 0.5 \\ 0.2 \\ 0.10 \ 0.6 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.1 \\ 0.000 \ 0.5 \\ 0.5 \\ 0.1 \\ 0.000 \ 0.5 \\ 0.5 \\ 0.1 \\ 0.000 \ 0.5 \\ 0.5 \\ 0.1 \\ 0.000 \ 0.5 \\ 0.5 \\ 0.1 \\ 0.000 \ 0.5 \\ 0.5 \\ 0.1 \\ 0.000 \ 0.5 \\ 0.5 \\ 0.1 \\ 0.000 \ 0.5 \\ 0.5 \\ 0.1 \\ 0.000 \ 0.5 \\ 0.5 \\ 0.1 \\ 0.000 \ 0.5 \\ 0.5 $	10+00N 06+50W															< 10	1	0.08	10	0.62	2630
0+000 07+50W 201 225 < 5 0.8 3.95 22 70 < 0.5 < 2 0.41 < 0.5 6 35 13 5.81 < 10 1 0.07 < 10 0.62 235 0+00N 07+75W 201 229 < 5	10+00N 06+75W					112	250		< 2	0.86	1.0	25	37	37	5.47	< 10	1	0.10	10		
0x0000 07+75W 201 229 < 5 1.4 3.01 18 60 < 0.5 < 2 0.22 < 0.5 4 36 14 6.30 < 10 < 1 0.07 < 10 0.42 275 0x0000 021 229 < 5 0.2 1.60 8 50 < 0.5 < 2 0.10 0.40 0.5 5 331 10 5.55 < 10 < 1 0.07 < 10 0.42 275 0x0000 08+25W 201 229 < 5 0.2 3.31 10 0.55 4 31 11 6.35 < 10 < 1 0.07 < 10 0.42 275 0x0000 08+50W 201 229 < 5 <0.2 3.31 14 30 <0.5 <2 0.13 <0.5 2 20 12 0.07 <10 0.52 230 0.55 <10 1 0.05 <10 0.52 10 0.52 10 0.55 10 0.55 <10 0.55 <10 0.55 <10 0.55 <10 0.55 <10 <	10+00N 07+25W			1.2																	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10+08N 07+50W	201 229	< 5	0.8	3.95	22	70	< 0.5	< 2	0.41	< 0.5	6	35	13	5.81	< 10	1	0.07	< 10	0.62	235
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10+00N 07+75W			1.4					_	+											
0.0 + 00N 0.0 + 50M 201 229 < 5 < 0.2 3.31 14 30 < 0.5 < 2 0.13 < 0.5 2 20 12 7.34 10 1 0.06 < 10 0.29 170 0.0 + 00N 08+75W 201 229 < 5 < 0.2 3.31 14 30 < 0.5 < 2 0.13 < 0.5 2 20 12 7.34 10 1 0.06 < 10 0.29 170 0.00N 08+75W 201 229 < 5 0.6 1.79 6 50 < 0.5 < 2 0.24 < 0.5 6 16 8 2.87 < 10 < 1 0.06 < 10 0.42 175 0+00N 99+25W 201 229 < 5 0.6 1.79 6 50 < 0.5 < 2 0.10 < 0.5 5 32 12 7.12 < 10 < 1 0.06 < 10 0.43 245 0+00N 10+75W 201 229 < 5 0.6 3.58 12	10+00N 08+00W					•			-												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									_												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10+00N 08+50W											-					_				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10.00V 00.00V	201 220		0.6	1 70			< 0 F	<u> </u>	0.24	< 0.5		16	R	2 87	< 10	- <u> </u>	0.07	< 10	0.42	175
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-			-			_					-							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10+00N 09+50W											•									
0+00N 11+00W 201 229 < 5	10+00N 10+00W					-			-				34		6.03		_				
0+00N 11+50W 201 229 < 5	10+00N 10+75W	201 229	< 5	0.6	3.58	12	130	< 0.5	< 2	0.27	< 0.5	3	39	14	5.79	< 10	< 1	0.04	< 10	0.36	210
0+00N 11+50W 201 229 < 5	10+00N 11+00W	201 229	< 5	0.4	4.66	14	110	< 0.5	< 2	0.12	< 0.5	4	25								
1+00N 00+25W 201 229 < 5 1.2 3.00 18 90 < 0.5 < 2 0.07 < 0.5 3 52 17 6.30 < 10 < 1 0.06 < 10 0.38 520 1+00N 00+25W 201 229 < 5	10+00N 11+50W	201 229	< 5	0.4						* · ·		-		-							
1+00X 00+50W 201 229 < 5 0.6 3.97 16 30 < 0.5 < 2 0.05 < 0.5 3 43 10 6.61 < 10 < 1 0.03 < 10 0.20 200	11+00N 00+00W						+ -										_				
	11+00N 00+25W		-						_								_				
	11+00N 00+50W	201 229	< 5	0.6	3.97	16	30	< 0.5	< 2	0.05	< 0.5	3	• 3	10	0.01	< 10		0.03	10	0.40	200
	L																()		<u> </u>		

CERTIFICATION: Haut Buchler

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

Page Number :2-B Total Pages :4 Certificate Date: 27-SEP-94 Invoice No. : 19425913 P.O. Number : Account BSJ

Project : Comments: #134-R

										CE	RTIF		OF		rsis	A9425913
SAMPLE	PREP CODE	Мо ррш	Na %	NÍ ppm	P mqq	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U mqq	V ppm	W	Zn ppm	
0+00N 01+00W	201 229	5	< 0.01	29	520	6	2	4	10	0.21	< 10	< 10	74	< 10	78	
0+00N 01+25W	201 229	5	0.02	12	540	8	< 2	9	7	0.42	< 10	< 10	92	< 10	62	
0+00N 01+50W 0+00N 01+75W	201 229	3	0.01 0.01	8 10	440 570	16 4	< 2 < 2	6 7	9 10	0.41 0.34	< 10 < 10	< 10 < 10	124 10B	< 10 < 10	48 46	
0+00N 02+00W	201 229	7	0.04	4	560	6	< 2	3	4	0.21	< 10	< 10	44	< 10	64	
0+00N 02+25W	201 229	2	0.02	9	550	6	< 2	9	15	0.46	< 10	< 10	197	< 10	44	
0+00N 02+50W 0+00N 02+75W	201 229	2	0.04	12	1630	8	< 2	6	28	0.23	< 10	< 10	111	< 10	86	
0+00N 03+00W	201 229	1	< 0.01 0.01	35 9	400 1400	14	< 2	6	12 17	0.16 0.11	< 10 < 10	< 10 < 10	120 150	< 10 < 10	82 72	
0+00N 03+25W	201 229		< 0.01	12	490	12	< 2	4	6	0.22	< 10	< 10	120	< 10	52	
0+00N 03+50W	201 229	2	0.04	14	640	8	< 2	5	19	0.35	< 10	< 10	122	< 10	56	
0+00N 03+75W 0+00N 04+D0W	201 229	2 -	< 0.01 0.01	9 13	1760 1330	1 <u>2</u> 6	< 2	5 5	6 16	0.13 0.09	< 10 < 10	< 10 < 10	96 109	< 10 < 10	60 64	
0+00N 04+25W	201 229	8	0.02	3	890	Å	2	ĩ	14	0.03	< 10	< 10	37	< 10	60	
0+00N 04+50W	201 229	5	0.02	10	1010	14	< 2	2	16	0.12	< 10	< 10	68	< 10	72	
0+00N 04+75W	201 229	9	0.01	7	1390	14	< 2	2	16	0.19	< 10	< 10	80	< 10	88	<u> </u>
0+00N 05+00W 0+00N 05+25W	201 229 201 229	5 13 -	0.01 < 0.01	29 12	1530 2490	8 44	< 2	5 4	8	0.11 0.01	< 10 < 10	< 10 < 10	81 30	< 10 < 10	104 142	
0+00N 05+50W	201 229	2	0.06	8	420	8	2	3	28	0.16	< 10	< 10	104	< 10	38	
0+00N 05+75W	201 229	3	0.01	9	800	18	< 2	2	17	0.28	< 10	< 10	102	< 10	44	
0+00N 06+00W 0+00N 06+50W	201 229	3	0.01	54	940	10	< 2	37	13	0.18	< 10	< 10	71	< 10	128	
0+00N 06+75W	201 229	3	0.08	18 26	1150 1650	4	< 2	8	51 65	0.59 0.40	< 10 < 10	< 10 < 10	117 98	< 10 < 10	104 134	
0+00N 07+25W	201 229	6	0.05	14	1520	4	< 2	ă.	129	0.43	< 10	< 10	83	< 10	128	
0+00N 07+50W	201 229	2	0.06	11	710	2	< 2	6	30	0,67	< 10	< 10	132	< 10	46	
0+00N 07+75W	201 229	5	0.03	18	590	6	< 2	3	20	0.31	< 10	< 10	88	< 10	68	
0+00N 08+00W	201 229	6 · 5	0.01 0.01	7 10	290 420	18 6	2 < 2	23	14 31	0.55 0.30	< 10 < 10	< 10 < 10	165 136	< 10 < 10	56 60	
+00N 08+50W	201 229	7	0.03	6	700	6	< 2	6	12	0.53	< 10	< 10	157	< 10	54	
)+00N 08+75W	201 229	3	0.03	8	640	6	< 2	6	17	0.71	< 10	< 10	144	< 10	52	
+00N 09+00W	201 229	1	0.07	6	640	8	< 2	3	30	0.30	< 10	< 10	98	< 10	40	
+00N 09+25W	201 229 201 229	47	0.03 0.02	12 18	570 570	12 16	< 2 < 2	3	19 12	0.58 0.31	< 10 < 10	< 10 < 10	126 81	< 10 < 10	56 52	
+00N 10+00W	201 229	í	0.03	10	520	4	< 2	1	18	0.53	< 10	< 10	142	< 10	48	
+00N 10+75W	201 229	4	0.01	13	510	8	< 2	4	30	0.19	< 10	< 10	123	< 10	46	
	201 229	2	0.01	8	960	12	< 2	5	20	0.24	< 10	< 10	146	< 10	56	
	201 229	7 2	0.01	10 13	410 1310	8	< 2 < 2	1 3	29 17	0.80 0.40	< 10 < 10	< 10 < 10	207 112	< <u>1</u> 0 < 10	48 70	
	201 229	i	0.01	18	1500	12	< 2	3	13	0.21	< 10	< 10	96	< 10	56	
+00N 00+50W	201 229	3	0.01	11	690	6	4	3	8	0.22	< 10	< 10	77	< 10	48	
																11 10 00
														ERTIFIC		Hart Buchler

(

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GRANGES INC.

2230 - 885 W, GEORGIA ST. VANCOUVER, BC V6C 3E8 Page Number : 3-A Total Pages :4 Certificate Date: 27-SEP-94 Invoice No. : 19425913 P.O. Number : Account : BSJ

Project : #134-R Comments:

Г

		_								CE	RTIFI	CATE	OF A	NAL	YSIS		49425	5913		
SAMPLE	PREP CODE	λu ppb Fλ+λλ	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Со ррш	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
11+00N 00+75W 11+00N 01+00W 11+00N 01+25W	201 229 201 229 201 229	<pre> < 5 < 5</pre>	1.6 1.4 1.2	4.83 3.89 3.28	20 14 6	450 30 30	0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2	1.19 0.22 0.22	0.5 < 0.5 < 0.5	15 8 4	29 36 26	16 16 10	5.76 6.34 5.63	< 10 < 10 < 10	1 1 < 1	0.09 0.07 0.07	10 < 10 < 10	0.87 0.46 0.52	1295 420 170
11+00N 01+50W 11+00N 01+75W	201 229		< 0.2 0.6	4.40 4.19	20 12	40 40	< 0.5 < 0.5	< 2 < 2	0.32 0.10	< 0.5 < 0.5	8 4	25 48	15 19	6.58 7.77	< 10 < 10	1 1	0.07 0.04	< 10 < 10	0.73	270 250
11+00N 02+00W 11+00N 02+50W 11+00N 02+75W 11+00N 03+00W	201 229 201 229 201 229 201 229 201 229	< 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2	2.11 3.84 2.34 2.12	2 16 6 18	80 160 200 40	< 0.5 2.0 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.11 0.79 0.65 0.08	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 15 13 1	43 43 31 35	23 45 27 9	5.17 4.89 5.99 9.23	10 < 10 < 10 < 10 10	< 1 < 1 1 < 1	0.09 0.12 0.12 0.06	10 20 10 10	0.42 0.66 0.37 0.12	250 1375 1085 265
11+00N 03+25W	201 229		< 0.2	2.70	8	110	< 0.5	≺ 2	0.22	< 0.5	12	20	64	6.86	< 10	< 1 	0.16	< 10	0.46	525
11+00N 03+50W 11+00N 03+75W 11+00N 04+00W 11+00N 04+25W 11+00N 04+50W	201 229 201 229 201 229 201 229 201 229 201 229	< 5	0.2 0.8 1.6 1.6 1.4	1.71 2.76 1.79 0.88 2.70	26 20 22 20 16	70 70 60 60 80	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	× × × × × ×	0.04 0.05 0.08 0.07 0.10	0.5 < 0.5 < 0.5 < 0.5 < 0.5	8 6 4 3	59 61 46 21 32	38 53 24 34 22	7.18 6.23 8.52 4.23 4.76	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 1	0.14 0.16 0.09 0.12 0.12	< 10 < 10 < 10 < 10 < 10	0.45 0.41 0.33 0.11 0.31	515 405 260 260 195
11+00N 04+75W 11+00N 05+00W 11+00N 05+25W 11+00N 05+50W 11+00N 05+75W	201 229 201 229 201 229 201 229 201 229 201 229	< 5 < 5	0.2 5.4 1.6 < 0.2 2.4	1.30 2.91 2.86 1.79 3.10	20 34 26 16 20	80 50 240 100 160	< 0.5 < 0.5 1.0 < 0.5 1.0	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.12 0.07 0.69 0.08 0.29	< 0.5 < 0.5 2.0 < 0.5 0.5	10 15 21 10 16	30 51 56 74 65	16 35 57 34 43	6.97 9.22 4.88 5.89 5.36	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 1 < 1 < 1 < 1	0.11 0.09 0.22 0.15 0.14	< 10 10 < 10 < 10 < 10 < 10	0.27 0.21 0.95 0.56 0.79	1935 925 1810 1155 1185
11+00N 06+00W 11+00N 06+50W 11+00N 06+75W 11+00N 07+00W 11+00N 07+50W	201 229 201 229 201 229 201 229 201 229 201 229	< 5 < 5 < 5	1.2 0.6 0.8 0.8 0.2	2.21 3.22 2.52 2.26 2.17	20 14 14 2 4	140 120 50 200 100	0.5 < 0.5 < 0.5 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.47 0.06 0.11 1.20 0.15	0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 5 4 7 6	48 81 39 28 43	21 10 15 17 13	6.03 5.32 7.69 5.13 5.39	< 10 < 10 < 10 < 10 < 10 < 10	< 1 1 < 1 < 1 < 1 < 1	0.11 0.14 0.05 0.06 0.07	< 10 < 10 < 10 < 10 < 10 < 10	0.53 0.87 0.37 0.28 0.24	465 295 250 805 150
11+00N 07+75W 11+00N 08+00W 11+00N 08+25W 11+00N 08+50W 11+00N 08+75W	201 229 201 229 201 229 201 229 201 229 201 229	<pre>< 5 < 5</pre>	0.2 0.2 0.2 < 0.2 0.4	2.72 3.46 2.26 1.18 2.19	36 12 14 4 12	40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.04 0.03 0.15 0.08 0.16	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 4 3 < 1 7	61 94 73 18 34	30 29 24 5 4	5.45 5.65 3.38 3.59 8.72	< 10 < 10 < 10 10 < 10	< 1 < 1 1 < 1 < 1 < 1	0.12 0.09 0.14 0.06 0.09	< 10 < 10 < 10 10 < 10	0.61 0.65 0.81 0.09 0.27	265 230 205 100 550
11+00N 09+00W 11+00N 09+25W 11+00N 09+50W 11+00N 10+00W 11+00N 10+25W	201 229 201 229 201 229 201 229 201 229 201 229	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	< 0.2 < 0.2 0.6 0.8 0.2	2.21 4.00 3.14 3.49 3.70	12 12 12 12 12 26	40 40 100	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.17 0.28 0.07 0.13 0.05	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	1 4 2 6 6	30 44 39 66 37	6 12 14 14 20	5.82 6.56 7.98 7.82 6.95	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 1 < 1 < 1 < 1	0.04 0.05 0.04 0.04 0.06	< 10 < 10 < 10 < 10 < 10 < 10	0.20 0.35 0.12 0.30 0.17	130 200 125 400 740
11+00N 10+50W 11+00N 10+75W 11+00N 11+00W	201 229		< 0.2	4.01	20		< 0.5	< 2	0.24	< 0.5	10	41	30 10	5.25	< 10 < 10	1 	0.08	< 10 < 10	0.74	770
11+00N 11+00W 11+00N 11+25W 13+00N 00+00W	201 229 201 229 201 229 201 229	< 5	< 0.2 < 0.2 < 0.2	3.23 2.77 3.81	12 16		< 0.5 < 0.5 0.5	< 2 < 2 < 2	0.07	< 0.5 < 0.5 < 0.5	3 11	9 50	10 11 19	5.10 6.33	< 10 < 10 < 10	< 1 < 1 1	0.08	< 10 10	0.23 0.37	225 775
							_									11	10			

CERTIFICATION: StartBuchler

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

Page Number :3-B Total Pages :4 Certificate Date: 27-SEP-94 Invoice No. :19425913 P.O. Number : Account :BSJ

Project : #134-R Comments:

										CE	RTIF	ICATE	OF /	NAL	/SIS	A9425913
SAMPLE	PREP CODE	Mo ppm	Na %	Nİ ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	ti %	T1 ppm	U ppm	V ppm	W ppm	Zn ppm	
1+00N 00+75W 1+00N 01+00W 1+00N 01+25W 1+00N 01+50W	201 229 201 229 201 229 201 229 201 229	2 3 2 2	0.10 0.06 0.05 0.06	19 8 9 11	820 680 750 870	4 16 4 12	< 2 < 2 < 2 < 2 < 2	8 8 5 8	100 19 18 25	0.67 0.54 0.61 0.68	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	83 123 149 138	< 10 < 10 < 10 < 10 < 10	108 56 44 46	
1+00N 01+75W 1+00N 02+00W 1+00N 02+50W 1+00N 02+75W	201 229 201 229 201 229 201 229 201 229	4	0.01	8 22 33 15	800 470 2530 1240	14 10 12 18	2	8 3 13 6	9 16 55 47	0.29 0.15 0.14 0.23	< 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10	133 108 65 91	< 10 < 10 < 10 < 10 < 10	52 54 102 98	
+00N 03+00W +00N 03+25W	201 229 201 229 201 229 201 229	82	0.01 0.03 < 0.01	8 11 30	620 1260 4120	12 12	< 2 < 2 < 2	3 6 3	11 20 6	0.38 0.03 0.04	< 10 < 10 < 10	< 10 < 10 < 10 < 10	119 128 116	< 10 < 10 < 10 < 10	62 52 64	
+00N 03+75W +00N 04+00W +00N 04+25W +00N 04+50W	201 229 201 229 201 229 201 229 201 229	- 4	< 0.01 0.01 < 0.01 0.01	24 19 17 21	2210 1040 800 1140	10 8 8 20	< 2 < 2 < 2 < 2	7 4 3 2	6 8 11 13	0.03 0.25 0.14 0.03	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	94 124 95 36	< 10 < 10 < 10 < 10 < 10	70 54 56 72	
+00N 04+75W +00N 05+00W +00N 05+25W +00N 05+50W	201 229 201 229 201 229 201 229 201 229		0.01 0.01 0.04 < 0.01	14 22 89 44	690 1850 1330 7650	28 14 18 20	< 2 8 < 2 < 2	2 6 8 3	14 8 67 16	0.38 0.07 0.06 0.06	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	99 63 50 83	< 10 < 10 < 10 < 10 < 10	62 76 316 74	
+00N 05+75W +00N 06+00W +00N 06+50W +00N 06+75W	201 229 201 229 201 229 201 229 201 229	3	0.01 0.02 < 0.01 0.01	56 48 18	980 560 630	16 10 6 4	< 2 < 2 < 2 < 2 < 2	6 4 4 3	40 11 13	0.10 0.39 0.20 0.43	< 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	72 120 98 131	< 10 < 10 < 10 < 10	128 74 90 54	
+00N 07+00W +00N 07+50W +00N 07+75W	201 229 201 229 201 229 201 229		0.03 0.02	18 13 39	870 410 320	8	< 2 2 < 2	3 4	13 95 18 12	0.44 0.41	< 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10	103 150 	< 10 < 10 < 10 < 10	86 50 76	
+00N 08+00W +00N 08+25W +00N 08+50W +00N 08+75W	201 229 201 229 201 229 201 229 201 229	< 1	< 0.01 0.01 < 0.01 0.03	38 47 5 6	360 440 280 490	8 6 16 8	< 2 < 2 < 2 < 2 < 2	7 4 1 3	7 17 10 19	0.14 0.01 0.31 0.62	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10	136 64 83 147	< 10 < 10 < 10 < 10 < 10	68 60 38 64	
+00N 09+00W +00N 09+25W +00N 09+50W +00N 10+00W	201 229 201 229 201 229 201 229 201 229	3 7 4	< 0.01 0.03 < 0.01 < 0.01	6 9 9 18	330 620 550 590	12 16 10 10	< 2 < 2 2 < 2	3 6 3 4	17 19 9 17	0.39 0.69 0.30 0.48	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	194 140 102 143	< 10 < 10 < 10 < 10 < 10	32 46 52 44	
+00N 10+25W +00N 10+50W +00N 10+75W +00N 11+00W	201 229 201 229 	²	0.01	12 25 2	760 1470 370	10 10 10	< 2 < 2 < 2	3 5 4	22 74	0.17	< 10 < 10	< 10 < 10	61 103 119	< 10 < 10	74 66 30	
+00N 11+00W +00N 11+25W +00N 00+00W	201 229 201 229 201 229	1 4		2 15	410 790	12 12	< 2 < 2 < 2	2 7	11 9	0.04	< 10 < 10 < 10	< 10 < 10 < 10	76 114	< 10 < 10 < 10	30 40 78	

CERTIFICATION: HartBuchler

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8 Page Number :4-A Total Pages :4 Certificate Date: 27-SEP-94 Invoice No. : 19425913 P.O. Number : Account :BSJ

Project : Comments:	#134-R

										CE	RTIFI	CATE	OF	ANAL	YSIS		A942	5913		<u></u>
SAMPLE	PREP CODE	ли ppb Гл+лл	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
13+00N 00+25W	201 229	< 5	< 0.2	3.18	8	40	< 0.5	< 2	0.10	< 0.5	3	30	13	4.41	< 10	< 1	0.04	< 10	0.21	170
13+00N 00+50W	201 229		0.8	3.51	22	60	< 0.5	< 2	0.06	< 0.5	4	59	17	7,52	< 10	< 1	0.04	< 10	0.30	285
13+00N 00+75W	201 229		1.6	2.42	2	90	< 0.5	< 2	0.15	< 0.5	2	25	7	7.26	< 10	< 1	0.03	< 10	0.16	180
13+00N 01+00W 13+00N 01+25W	201 229 201 229		0.8 1.0	3.06 3.69	18 16	80 70	< 0.5 1.0	< 2 < 2	0.07 0.18	< 0.5 < 0.5	8 37	39 39	30 37	4.92 5.71	< 10 < 10	1 < 1	0.11 0.09	< 10 < 10	0.42 0.42	1035 2430
13+00N 01+50W	201 229	< 5	< 0.2	4.49	12	30	< 0.5	< 2	0.10	< 0.5	4	24	18	5.86	< 10	< 1	0.06	10	0.13	645
13+00N 01+75W	201 229		0.4	3.64	16	50	< 0.5	< 2	0.07	< 0.5	4	62	17	7.11	< 10	< 1	0.04	< 10	0.23	205
13+00N 02+00W	201 229		0.2	5.39	26	40	< 0.5	< 2	0.04	< 0.5	< 1	35	42	12.75	10	1	0.03	< 10	0.04	200
13+00N 02+25W 13+00N 02+50W	201 229		1.0 < 0.2	3.74 4.80	16 16	60 140	< 0.5 0.5	< 2 < 2	0.32 0.08	< 0.5 < 0.5	7 8	35 48	23 41	6.94 5.14	< 10 < 10	1 < 1	0.08	< 10 < 10	0.63 0.47	300 375
13+00N 02+75W	201 229	< 5	1.2	1.19	22	60	< 0.5	< 2	0.04	< 0.5	7	27	49	6.33	< 10	<u> </u>	0.17	< 10	0.17	530
13+00N 03+00W	201 229		1.2	1.14	12	60	< 0.5	< 2	0.16	< 0.5	10	20	45	6.29	< 10	< 1	0.14	< 10	0.33	1150
13+00N 03+25W	201 229	< 5	1.8	2.15	18	70	< 0.5	< 2	0.06	< 0.5	8	68	34	5.87	< 10	< 1	0.11	< 10	0.74	450
13+00N 03+50W 13+00N 03+75W	201 229	< 5	0.1	2.85	20	70	< 0.5	< 2	0.06	0.5	15	70	37	4.49	< 10	1	0.11	< 10	1.01	760
13+00N 04+00W	201 229	< 5	< 0.2	1.02	20	80	< 0.5	< 2	0.07	< 0.5	3	34	30	10.00	10	< 1	0.13	10	0.10	695
13+00N 04+25W	201 229		0.2	3.03	24	80	0.5	< 2	0.09	< 0.5	21	55	52	3.94	< 10	< 1	0.14	< 10	0.84	1160
13+00N 04+50W	201 229		< 0.2	4.02	36	80	0.5	< 2	0.06	0.5	17	45	38	5.84	< 10	1	0.11	10	0.39	1670
13+00N 05+00W	201 229		0.8	2.30	18	50	< 0.5	< 2	0.07	< 0.5	9 3	39 30	29 20	5.93 5.33	< 10 < 10	< 1	0.10 0.08	< 10 < 10	0.29 0.35	805 175
13+00N 05+25W	201 229	<u> </u>	0.6	1.64	14	50	< 0.5	< 2	0.11	< 0.5		_				< 1				
13+00N 05+50W	201 229		0.2	1.13	14	70	< 0.5	< 2	0.13	< 0.5	4	34	30	4.25	< 10	< 1	0.09	< 10 10	0.14 0.23	160 395
13+00N 05+75W 13+00N 06+00W	201 229		0.6 0.4	1.61 1.77	12 12	20 30	< 0.5 < 0.5	< 2 < 2	0.13 0.21	< 0.5 < 0.5	4	28 28	14	5.79 6.57	< 10 < 10	1 < 1	0.07 0.05	< 10	0.31	260
13+00N 06+25W	201 229		< 0.2	2.56	26	60	< 0.5	< 2	0.14	0.5	6	29	24	7.16	< 10	< 1	0.06	< 10	0.12	1105
13+00N 06+50W	201 229		1.2	1.63	36	60	< 0.5	< 2	0.04	< 0.5	7	36	41	5.95	< 10	< 1	0.13	< 10	0.14	955
13+00N 06+75W	201 229		< 0.2	2.13	50	80	0.5	< 2	0.09	0.5	14	31	28	4.41	< 10	< 1	0.15	< 10	0.41	1450
13+00N 07+00W	201 229		0.2	2.25	40	150 100	0.5	< 2 < 2	0.28	0.5	13 6	34 17	29 28	4.12	< 10 < 10	< 1 < 1	0.13 0.18	< 10 < 10	0.47 0.21	1755 355
13+00N 07+25W 13+00N 07+75W	201 229		0.6 0.2	1.20	30 16	20	< 0.5	< 2	0.10	< 0.5	2	29	20	8.80	10	1	0.05	10	0.23	220
13+00N 08+00W	201 229		1.0	9.25	26	30	0.5	< 2	0.04	< 0.5	3	38	30	4.07	< 10	2	0.04	10	0.14	120
13+00N 08+25W	201 229		< 0.2	2.20	14	30	< 0.5	< 2	0.06	< 0.5	1	27	8	5.49	10	< 1	0.08	10	0.16	160
13+00N 08+50W	201 229		0.8	2.09	30	100	< 0.5	< 2	0.09	0.5	6 5	55	21	6.91	< 10	< 1	0.08	< 10 < 10	0.40 0.35	240 175
13+00N 09+00W 13+00N 09+25W	201 229		< 0.2	2.68 3.29	14 42	60 300	< 0.5	< <u>2</u> < 2	0.13 0.33	< 0.5 1.0	28	57 63	16 37	6.39	< 10 < 10	< 1 < 1	0.04	< 10	0.35	1690
13+00N 09+50W	201 229		< 0.2	2.71	14	40	< 0.5	< 2	0.16	< 0.5	4	34	13	6.53	< 10	< 1	0.06	< 10	0.39	180
13+00N 09+75W	201 229	< 5	< 0.2	2.94	12	60	< 0.5	< 2	0.13	< 0.5	4	36	10	5.05	< 10	< 1	0.04	< 10	0.35	140
13+00N 10+00W	201 229		0.4	3.80	16	30	< 0.5	< 2	0.12	0.5	3	38	14	8.81	< 10	< 1	0.04	< 10	0.23	120
13+00N 10+25W	201 229	< 5	0.4	1.96	4	50 90	< 0.5 < 0.5	< 2 < 2	0.13	< 0.5 < 0.5	2	25 21	8 8	8.23 5.34	< 10 < 10	< 1 < 1	0.04	< 10 < 10	0.16 0.25	130 220
13+00N 10+50W 13+00N 10+75W	201 229		< 0.2 < 0.2	2.41 2.17	2 14	80	< 0.5	< 2	0.09	< 0.5	4	28	8	5.11	< 10	< 1	0.04	< 10	0.18	250
				,		•••					_									
																1.				

CERTIFICATION: But Prehlen

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8 Page Number :4-B Total Pages :4 Certificate Date:27-SEP-94 Invoice No. :19425913 P.O. Number : Account :BSJ

Project : #134-R Comments:

										CE	RTIF	CATE	OF A	NAL	rsis	A9425913
SAMPLE	PREP CODE	M ppi		Nİ ppm	q mqq	Pb ppm	SD ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	W ppm	Zn ppm	
13+00N 00+25W	201 22	,	0.01	7	850	8	< 2	3	15	0.21	< 10	< 10	103	< 10	46	
13+00N 00+50W	201 22		0.01	15	480	4	< 2	4	10	0.26	< 10	< 10	133	< 10	66	
13+00N 00+75W 13+00N 01+00W	201 22		0.01	5 19	640 1180	< 2	< 2 < 2	2	21 11	0.55 0.18	< 10 < 10	< 10 < 10	149 96	< 10 < 10	46 70	
13+00N 01+25W	201 22		0.02	19	1300	14 12	< 2	4	18	0.30	< 10	< 10	93	< 10	88	
13+00N 01+50W	201 22		0.04	7	990	6	< 2	3	6	0.19	< 10	< 10	38	< 10	64	
L3+00N 01+75W	201 22			13	610	10	< 2	5	10	0.20	< 10	< 10	130	< 10	66	
L3+00N 02+00W L3+00N 02+25W	201 229			э 11	260 740	30 8	< 2 < 2	47	8 30	0.26 0.68	< 10 < 10	< 10 < 10	94 150	< 10 < 10	64 62	
13+00N 02+50W	201 229		0.01	25	710	20	< 2	7	13	0.06	< 10	< 10	75	< 10	86	
13+00N 02+75W	201 229		< 0.01	13	2850	22	< 2	5	6	0.08	< 10	< 10	135	< 10	76	
L3+00N 03+00W L3+00N 03+25W	201 229			13 50	3030 930	18 10	< 2 < 2	6	18 12	0.18 0.18	< 10 < 10	< 10 < 10	154 119	< 10 < 10	68 76	
13+00N 03+50W																
13+00N 03+75W	201 229		< 0.01	69	980	14	< 2	4	11	0.01	< 10	< 10	46	< 10	104	
13+00N 04+00W	201 229				>10000	20	< 2	1	11	0.04	< 10	< 10	86	< 10	76	
13+00N 04+25W 13+00N 04+50W	201 229		< 0.01 0.01	73 41	940 1030	24 20	< 2 4	5	13 8	0.01 0.07	< 10 < 10	< 10 < 10	38 47	< 10 < 10	200 170	
13+00N 05+00W	201 229			20	1550	14	< 2	4	8	0.15	< 10	< 10	73	< 10	82	
13+00N 05+25W	201 225	3	0.01	16	600	14	< 2	3	11	0.36	< 10	< 10	105	< 10	56	
13+00N 05+50W	201 225			18	740	6	< 2	1	17	0.04	< 10	< 10	74	< 10	62	
13+00N 05+75W	201 229			9 7	620	12	< 2	3	14	0.46 0.92	< 10 < 10	< 10	106 144	< 10 < 10	74 60	
L3+00N 06+00W L3+00N 06+25W	201 229		0.02 < 0.01	12	440 1220	6 22	< 2 < 2	2	25 17	0.44	< 10	< 10 < 10	111	< 10	110	
13+00N 06+50W	201 229			18	1750	24	2	3	7	0.10	< 10	< 10	61	< 10	128	
3+00N 06+75W	201 229			32	1430	20	4	4	12	0.03	< 10	< 10	39	< 10	170	
L3+00N 07+00W L3+00N 07+25W	201 229			39	900 860	16	8 4	4	38 28	0.04	< 10 < 10	< 10 < 10	39 49	< 10 < 10	152 94	
13+00N 07+75W	201 229			13 6	550	14 20	< 2	6	11	0.56	< 10	< 10	126	< 10	62	
13+00N 08+00W	201 229		< 0.01	11	1680	12	< 2	5	4	0.10	< 10		37	< 10	58	
3+00N 08+25W	201 229			7	330	16	< 2	3	8	0.3B	< 10	< 10	108	< 10	60	
13+00N 08+50W	201 229		0.02	26 19	650 360	4	< 2 < 2	3	17 17	0.21 0.35	< 10 < 10	< 10 < 10	113 150	< 10 < 10	68 58	
3+00N 09+25W	201 229		0.01	90	1140	14	< 2	6	27	0.04	< 10	< 10	53	< 10	216	
3+00N 09+50W	201 229			9	430	16	< 2	Å.	16	0.51	< 10	< 10	122	< 10	50	
3+00N 09+75W	201 229	2	0.01	9	460	4	< 2	4	14	0.49	< 10	< 10	149	< 10	48	
3+00N 10+00W	201 229		0.03	5	300	14	< 2	62	16 23	0.33 0.38	< 10 < 10	< 10	95 137	< 10 < 10	44 38	
.3+00N 10+25W .3+00N 10+50W	201 229		0.02	4	210 360	8	6	2	16	0.38	< 10	< 10 < 10	139	< 10	52	
3+00N 10+75W	201 229		0.01	7	200	16	< 2	3	13	0.48	< 10	< 10	166	< 10	58	

CERTIFICATION: Jan HBuchle

34 -41 -29

A9425917

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

	C	ERTIF	CATE	A9425917
r	· ·	RANGES #134-R	INC. - GRID	Sils
۲				lab in Vancouver, BC. on 29-SEP-94.
		SAM	PLE PRI	EPARATION
	CHEMEX	NUMBER SAMPLES		DESCRIPTION
	201 203 205 217 229	123 56 56 27 206	Dry, sie Geochem Geochem	ve to -80 mesh ve to -35 mesh ring to approx 150 mesh ring entire sample Digestion charge
(
	* NOTE	1:		

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, T1, W. To: GRANGES INC.

2230 - 885 W, GEORGIA ST. VANCOUVER, BC V6C 3E8

Comments:

		ANALYTICAL P	ROCEDURES	6	
CHEMEX NUME		DESCRIPTION	METHOD	DETECTION LIMIT	UPPEF
100 200 2118 200 2120 200 2121 200 2122 200 2123 200 2124 200 2125 200 2126 206 2127 206 2128 206 2130 206 2131 206 2132 206 2133 206 2134 206 2135 206 2136 206 2137 206 2138 206 2139 206 2140 206 2141 206 2142 206 2143 206 2144 206 2145 206 2146 206 2147 206 2148 206 2149 206	Ag ppm: 32 Al %: 32 e As ppm: 32 Be ppm: 32 Be ppm: 32 Bi ppm: 32 Ca %: 32 e Cd ppm: 32 Co ppm: 32 Co ppm: 32 Cr ppm: 32 Cr ppm: 32 Cr ppm: 32 Fe %: 32 e Ga ppm: 32 Hg ppm: 32 Hg ppm: 32 Mg %: 32 e Mn ppm: 32 Mg %: 32 e Mn ppm: 32 Fp ppm: 32 Fp ppm: 32 Fp ppm: 32 Sr ppm: 32 Sr ppm: 32 Sr ppm: 32 Sr ppm: 32 Sr ppm: 32 Sr ppm: 32 V ppm: 32 V ppm: 32 V ppm: 32 V ppm: 32 V ppm: 32 V ppm: 32	Se 10 g sample element, soil & rock lement, soil & rock element, soil & rock	FA-AAS ICP-AES	5 0.2 10 0.5 2 0.01 0.5 1 1 1 0.01 10 0.01 10 0.01 10 10 2 2 1 1 0.01 10 10 10 10 10 10 10 10 2 2 2 1 1 10 2 2 2 10 10 0.5 2 0.01 0.5 2 0.01 0.5 2 0.01 0.5 1 1 1 0.01 1 0 0.01 1 0 0.01 1 0 0.01 1 0 0.01 1 0 0.01 1 0 0.01 1 0 0.01 1 0 0.01 1 0 0.01 1 0 0.01 1 0 0.01 1 0 0.01 1 0 0.01 1 0 0.01 1 0 0.01 1 0 0.01 1 0 0.01 1 0 0.01 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 0 1 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0	10000 200 15.00 10000 10000 15.00 10000

1.4.041.011

0

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

#134-R GRID Soils Project : Comments:

Page Number :1-A Total Pages :6 Certificate Date: 29-SEP-94 Invoice No. : 19425917 P.O. Number : Account : BSJ

										CE	RTIF	CATE	OF A	NAL	YSIS		A9428	5917		
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg mqq	K %	La ppm	Mg %	Mr ppi
600N 0000W	201 229	< 5	< 0.2	3.77	6	80	1.0	< 2	0.51	0.5	20	27	24	3.89	10	< 1	0.14	10	0.71	1000
600N 0025W	201 229	< 5	0.2	2.41	4	80	< 0.5	< 2	0.13	< 0.5	10	34	17	5.41	20	< 1	0.10	10	0.29	805
.600N 0050W .600N 0075W	203 205 217 229	< 5 < 5	0.2	2.47	8 16	170 30	< 0.5 < 0.5	< 2 < 2	0.46 0.14	< 0.5 0.5	7	63 28	20 9	3.68 8.76	10	< 1	0.18 0.08	< 10	0.85	390
600N 0100W	217 229	< 5	< 0.2	1.70	< 2	80	< 0.5	< 2	0.86	< 0.5	12	23	10	3.47	60 < 10	< 1 < 1	0.18	20 < 10	0.15 1.06	350 320
600N 0125W	217 229	< 5	0.4	1.60	4	80	< 0.5	< 2	0.21	0.5	4	29	9	4.08	10	< 1	0.09	< 10	0.39	170
600N 0150W	201 229	< 5	1.2	2.15	< 2	80	< 0.5	< 2	0.22	< 0.5	4	40	10	4.38	20	< 1	0.06	10	0.34	12
600N 0175W 600N 0200W	201 229 201 229	< 5 < 5	0.6	3.43	14	110 110	< 0.5 < 0.5	< 2	0.06	< 0.5	4	70	21	6.07	10	< 1	0.10	10	0.54	180
600N 0225W	201 229	< 5	0.2	2.90	4	70	< 0.5	< 2 < 2	0.91 1.59	< 0.5 < 0.5	13 20	13 19	9 13	3.83 5.08	< 10 10	< 1 < 1	0.16 0.26	< 10 < 10	1.03 1.63	345 980
600N 0250W	201 229	< 5	< 0.2	1.81	2	110	< 0.5	< 2	0.30	< 0.5	8	20	10	3.67	10	< 1	0.08	10	0.56	265
600N 0275W	217 229	< 5	0.8	1.45	2	100	< 0.5	< 2	0.60	< 0.5	11	15	15	3.39	< 10	< 1	0.14	< 10	0.86	330
600N 0300W	201 229	< 5	3.0	3.43	12	60	< 0.5	< 2	0.31	< 0.5	6	25	12	5.31	10	< 1	0.05	10	0.48	180
600N 0325W 600N 0350W	203 205	< 5 < 5	0.8 1.8	1.47 2.45	24	170 80	< 0.5 < 0.5	< 2 < 2	0.09 0.98	< 0.5 < 0.5	3 15	36 23	31 13	4.02 3.80	< 10 < 10	< 1 < 1	0.20 0.20	< 10 10	0.33 1.45	400 385
600N 0375W 600N 0400W	217 229 201 229	< 5 < 5	1.6 2.0	1.89 2.88	2	90 70	< 0.5 < 0.5	< 2 < 2	0.27 0.15	1.0	6 3	30 28	9 12	4.64	10 10	< 1 < 1	0.09	10 < 10	0.35	381 120
600N 0425W	217 229	< 5	0.2	1.94	2	60	< 0.5	22	1.09	< 0.5	16	15	7	3.65	< 10	< 1	0.20	< 10	1.40	425
600N 0450W	201 229	< 5	0.6	2.86	6	30	< 0.5	< 2	0.21	0.5	5	28	13	5.75	10	< 1	0.06	10	0.57	165
600N 0475W	203 205	< 5	< 0.2	1.88	8	70	< 0.5	< 2	0.82	< 0.5	12	27	8	3.96	10	< 1	0.17	< 10	1.10	305
600N 0500W	217 229	< 5	0.2	1.35	< 2	60	< 0.5	< 2	0.68	< 0.5	10	20	6	2.69	< 10	< 1	0.14	< 10	0.85	240
600N 0525W	201 229	< 5	0.2	2.28	22	40	< 0.5	< 2	0.03	< 0.5	3	60	14	6.17	10	< 1	0.06	10	0.15	230
600N 0550W	201 229	< 5	0.6	3.35	20	60	< 0.5	< 2	0.06	< 0.5	2	60	18 7	6.59	10	< 1	0.05	10	0.31	165
600N 0575W 600N 0600W	201 229 203 205	< 5 < 5	< 0.2 0.2	1.98 1.40	4 32	70 70	< 0.5 < 0.5	< 2 < 2	0.78 0.59	< 0.5 < 0.5	13 9	12 23	4	3.90 2.76	< 10 < 10	< 1 < 1	0.14 0.18	< 10 10	1.06 0.76	320 280
600N 0625W	203 205	< 5	1.0	1.65	206	100	< 0.5	< 2	0.06	< 0.5	1	23	8	5.13	10	< 1	0.15	10	0.07	270
600N 0650W	201 229	< 5	1.0	1.11	128	80	< 0.5	< 2	0.19	< 0.5	5	15	15	3.65	< 10	< 1	0.10	10	0.27	840
600N 0675W	201 229	< 5	1.4	1.96	96	80	< 0.5	< 2		< 0.5	6	79	35	7.85	10	< 1	0.15	10	0.71	380
600N 0700W 600N 0725W	203 205 217 229	< 5 < 5	3.4	0.99 1.35	86 6	90 130	< 0.5 < 0.5	< 2	0.17 0.77	< 0.5	4	23 20	37 15	2.94 3.54	< 10 < 10	< 1 < 1	0.25 0.10	10 10	0.24 0.58	195 335
600N 0750W	201 229	< 5	4.2	3.87		110	3.5	< 2	0.35	1.0							0.12	20	0.35	3690
600N 0800W	217 229	< 5	1.0	1.42	110	70	< 0.5	< 2	0.35	< 0.5	58 9	21 22	47 9	5.19 3.20	< 10 10	< 1 < 1	0.11	< 10	0.35	230
600N 0825W	217 229	< 5	0.6	1.77	8	90	< 0.5	< 2	0.47	0.5	8	21	11	4.00	10	< 1	0.10	< 10	0.56	220
600N 0850W	217 229	< 5	0.2	1.30	2	70	< 0.5	< 2	0.57	0.5	11	12	6	2.44	< 10	< 1	0.12	< 10	0.68	200
600N 0875W	217 229	< 5	1.0	2.52	6	220	0.5	< 2	0.63	< 0.5	5	54	16	5.85	20	< 1	0.08	10	0.25	210
500N 0900W	217 229	< 5	0.6	2.22	< 2		< 0.5	2	0.70	0.5	10	44	13	6.25	10	< 1	0.12	< 10	0.77	335
500N 0925W	217 229	< 5	0.2	0.98	< 2		< 0.5	< 2	0.38	< 0.5	7	11	6	1.58	< 10	< 1	0.09	< 10	0.48	115
500N 0950W 500N 0975W	217 229	< 5 < 5	0.6	1.62	4		< 0.5 < 0.5	< 2 < 2	0.68 0.19	< 0.5 0.5	8	14 48	8 16	2.73 4.72	< 10 10	< 1 < 1	0.11 0.06	< 10 < 10	0.71 0.49	205 255
500N 1000W	201 229	< 5	0.2	2.59	14	- · ·	< 0.5	< 2		< 0.5	8	32	10	4.75	10	< 1	0.09	< 10	0.62	250

CERTIFICATION: Contraction

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

Project : #134-R Comments:

Page Number :1-B Total Pages :6 Certificate Date: 29-SEP-94 Invoice No. :19425917 P.O. Number : Account :BSJ

										CE	RTIF	ICATE	OF A	NALY	/SIS	A9425917
SAMPLE	PREP CODE	Mo ypm	Na %	in Magg	ppm	Pb ppm	SD DDm	Sc ррш	Sr ppm	Ti %	T1 ppm	D mdđ	V ppm	W ppm	Zn ppm	
1600N 0000W 1600N 0025W 1600N 0050W 1600N 0075W 1600N 0100W	201 229 201 229 203 205 217 229 217 229	2 4 1 8 1	0.21 0.02 0.11 0.07 0.28	20 12 26 7 20	1440 630 930 590 890	12 14 16 14 4	<	3 3 4 2 4	53 17 51 17 86	0.18 0.39 0.16 0.36 0.31	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	62 125 106 86 74	< 10 < 10 < 10 20 < 10	84 60 60 82 62	
1600N 0125W 1600N 0150W 1600N 0175W 1600N 0200W 1600N 0225W	217 229 201 229 201 229 201 229 201 229 201 229	< 1 < 1	0.06 0.04 < 0.01 0.40 0.67	13 14 37 15 21	580 370 570 680 820	10 16 14 4 6	< 2 < 2 < 2 < 2 < 2 < 2 < 2	3 4 4 6 9	32 33 16 109 143	0.33 0.35 0.16 0.31 0.44	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	109 135 90 81 122	< 10 < 10 < 10 < 10 < 10 < 10	38 56 62 48 82	
1600N 0250W 1600N 0275W 1600N 0300W 1600N 0325W 1600N 0350W	201 229 217 229 201 229 203 205 217 229	2 1 3 3 < 1	0.11 0.24 0.07 0.02 0.48	10 14 11 25 20	500 970 570 1230 970	14 6 6 2	< 2 < 2 < 2 < 2 < 2	4 4 5 4 6	35 69 36 25 102	0.38 0.23 0.56 0.05 0.35	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	148 71 126 59 82	< 10 < 10 < 10 < 10 < 10 < 10	48 60 48 86 64	
1600N 0375W 1600N 0400W 1600N 0425W 1600N 0425W 1600N 0475W	217 229 201 229 217 229 201 229 201 229 203 205	2 < 1 1 1	0.06 0.02 0.43 0.03 0.38	12 12 18 12 16	670 480 910 560 610	16 4 12 6	2 < 2 < 4 < 2	2 3 5 4 5	31 20 104 20 89	0.43 0.63 0.37 0.62 0.38	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	113 146 77 128 117	< 10 < 10 < 10 < 10 < 10 < 10	60 46 64 42 54	
1600N 0500W 1600N 0525W 1600N 0550W 1600N 0575W 1600N 0600W	217 229 201 229 201 229 201 229 201 229 203 205		0.27 < 0.01 < 0.01 0.33 0.26	13 11 19 15 11	570 640 520 870 650	5 20 8 4 8	< 2 4 < 2 2	3 3 5 6 3	74 5 8 90 71	0.40 0.23 0.26 0.49 0.27	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	89 109 124 95 57	< 10 < 10 < 10 < 10 < 10 < 10	50 40 56 44 34	
1600N 0625W 1600N 0650W 1600N 0675W 1600N 0775W 1600N 0725W	203 205 201 229 201 229 203 205 217 229	7 5 3 6 1	0.02 0.07 < 0.01 0.04 0.15	5 10 53 14 16	990 920 3000 1370 1090	38 16 24 14 8	8 < 2 < 2 < 2	1 2 3 3 3	19 25 9 20 74	0.11 0.21 0.05 0.05 0.40	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	34 79 75 39 85	< 10 < 10 10 < 10 < 10	26 46 138 112 90	
1600N 0750W 1600N 0800W 1600N 0825W 1600N 0850W 1600N 0875W	201 229 217 229 217 229 217 229 217 229 217 229 217 229	14 < 1 < 1 < 1 3	0.07 0.16 0.15 0.18 0.02	24 12 13 12 22	2260 640 890 890 460	18 8 2 12	< 2 2 < 2 2 2	7 3 3 4	46 59 54 59 59	0.16 0.49 0.37 0.31 0.33	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	72 135 87 52 119	< 10 < 10 < 10 < 10 < 10	190 58 62 44 86	
1600N 0900W 1600N 0925W 1600N 0950W 1600N 0975W 1600N 1000W	217 229 217 229 217 229 217 229 217 229 201 229	3 1 1 2 2	0.24 0.14 0.20 0.02 0.16	15 9 12 24 14	530 830 810 480 630	18 4 8 16	< 2 < 2 < 2 < 2 < 2 < 2 < 2	4 2 4 3 4	80 79 78 33 43	0.64 0.20 0.37 0.30 0.39	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	160 32 84 112 109	< 10 < 10 < 10 < 10 < 10 < 10	64 50 64 60 48	•
													с	ERTIFIC	ATION:_	Haut Bichler

(-

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brocksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

Page Number :2-A Total Pages :6 Certificate Date: 29-SEP-94 Invoice No. : 19425917 P.O. Number : Account :BSJ

Project : #134-R Comments:

										CE	RTIF	CATE	OF A	NAL'	YSIS		A9425	5917		
SAMPLE	PREP CODE	Ац ррр ГА+АА	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga. ppm	Eg pp#	K %	La ppm	Mg %	Mn ppm
1600N 1025W 1600N 1050W 1600N 1075W 1600N 1100W 1700N 0000W	201 229 201 229 201 229 201 229 201 229 201 229	< 5 < 5 < 5	1.2 0.8 0.8 1.8 1.0	5.47 3.86 5.26 4.40 2.10	14 2 6 4 6	200 190 140 170 90	0.5 < 0.5 0.5 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.21 0.22 0.23 0.17 0.21	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 3 6 4	21 20 26 23 39	13 10 11 10 24	6.63 4.03 5.90 5.48 3.81	10 10 10 10 < 10	< 1 < 1 < 1 < 1 < 1	0.09 0.07 0.08 0.09 0.10	< 10 10 10 10 < 10	0.48 0.31 0.36 0.35 0.32	400 230 310 295 615
1700N 0025W 1700N 0050W 1700N 0075W 1700N 0100W 1700N 0125W	201 229 201 229 203 205 201 229 201 229 201 229	< 5 < 5	0.2 0.4 0.4 0.2 0.2	1.82 2.67 2.19 1.72 2.73	< 2 8 6 < 2	70 180 110 120 180	< 0.5 0.5 < 0.5 < 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.31 0.39 0.23 0.34 1.02	< 0.5 < 0.5 0.5 0.5 1.0	7 14 9 8 18	29 34 74 29 33	15 21 18 25 35	5.63 5.17 5.81 5.61 4.68	10 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.09 0.15 0.15 0.07 0.22	10 10 40 30 10	0.50 0.45 0.92 0.43 1.17	270 1195 465 545 1315
1700N 0150W 1700N 0175W 1700N 0200W 1700N 0225W 1700N 0225W	203 205 201 229 203 205 201 229 203 205 203 205	< 5 < 5 < 5 < 5 < 5 < 5	2.0 0.2 < 0.2 0.6 < 0.2	3.21 3.70 2.42 2.21 1.96	14 6 < 2 12 < 2	70 110 110 80 90	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.13 0.06 1.23 0.09 0.54	0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 7 17 3 11	47 85 18 42 21	22 36 13 12 13	4.67 5.78 4.25 5.11 3.54	< 10 10 < 10 20 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.10 0.12 0.23 0.04 0.17	10 10 < 10 10 < 10	0.74 1.00 1.56 0.23 0.87	330 380 495 165 370
1700N 0275W 1700N 0300W 1700N 0375W 1700N 0400W 1700N 0425W	203 205 201 229 203 205 203 205 203 205 203 205	< 5 < 5 < 5 < 5 < 5 < 5	0.4 0.8 0.2 0.6 2.8	1.06 3.12 1.43 1.44 3.05	< 2 10 < 2 < 2 4	60 180 90 90 100	< 0.5 1.0 < 0.5 < 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.44 0.37 1.42 1.16 0.98	0.5 0.5 < 0.5 < 0.5 < 0.5 2.5	4 18 6 8 10	20 48 15 17 30	7 32 9 6 10	2.26 5.63 1.82 2.55 4.69	< 10 10 < 10 < 10 10	< 1 < 1 < 1 < 1 < 1	0.04 0.16 0.14 0.12 0.13	< 10 10 < 10 < 10 10	0.20 0.60 0.42 0.63 0.81	80 3390 165 250 435
1700N 0450W 1700N 0475W 1700N 0500W 1700N 0500W 1700N 0525W 1700N 0550W	203 205 203 205 203 205 201 229 203 205	< 5 < 5 < 5 < 5 < 5 < 5	2.0 0.8 1.4 0.4 < 0.2	3.45 2.78 1.61 2.52 0.70	8 4 6 12 < 2	40 60 40 100 70	< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.31 0.20 0.18 0.31 0.28	0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 3 2 7 2	31 36 22 53 11	11 8 8 12 6	6.73 4.97 1.91 5.06 1.19	20 30 10 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.07 0.08 0.06 0.10 0.04	10 20 10 < 10 < 10	0.59 0.28 0.21 0.69 0.07	210 295 80 215 40
1700N 0575W 1700N 0600W 1700N 0625W 1700N 0625W 1700N 0650W	201 229 203 205 203 205 203 205 203 205 203 205	< 5 < 5 < 5 < 5 < 5 < 5	0.2 < 0.2 0.4 < 0.2 4.4	1.57 1.42 1.02 0.78 0.58	24 2 12 66 22	60 110 120 70 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.22 0.43 0.28 0.29 0.13	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	3 9 4 4 2	32 15 16 34 18	7 10 4 2 4	2.19 2.20 2.84 2.12 1.17	20 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.13 0.14 0.07 0.17 0.08	10 < 10 < 10 10 10	0.39 0.63 0.35 0.37 0.13	235 235 110 200 95
1700N 0700W 1700N 0725W 1700N 0750W 1700N 0775W 1700N 0800W	203 205 203 205 203 205 203 205 203 205 201 229	< 5 < 5 < 5 < 5 < 5 < 5	0.8 1.0 < 0.2 0.6 0.8	1.04 1.75 0.25 1.90 2.21	68 6 < 2 4 6	90 140 20 180 50	< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 2 < 2 < 2	0.57 1.43 0.86 0.88 0.34	< 0.5 1.0 < 0.5 < 0.5 < 0.5	6 5 1 13 3	21 20 4 15 36	6 16 3 11 3	2.66 3.45 0.41 3.07 3.64	< 10 < 10 < 10 < 10 < 10 30	< 1 < 1 < 1 < 1 < 1 < 1	0.14 0.05 0.07 0.21 0.12	10 10 < 10 < 10 20	0.57 0.30 0.22 1.28 0.50	1065 435 45 315 165
1700N 0825W 1700N 0850W 1700N 0850W 1700N 0875W 1700N 0900W 1700N 0925W	201 229 203 205 201 229 201 229 201 229 201 229		1.2 2.2 0.6 < 0.2 < 0.2	2.58 1.48 2.33 2.37 0.85	4 2 36 54 8	30 80 60 220 80	< 0.5 < 0.5 < 0.5 1.0 < 0.5	< 2 < 2 < 1 < 2 < 2 < 2 < 2	0.08 0.29 0.09 0.48 0.26	< 0.5 0.5 0.5 0.5 < 0.5 < 0.5	2 7 3 24 5	45 25 40 15 5	13 9 17 166 9	9.77 2.60 9.15 7.65 1.91	70 < 10 60 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.04 0.09 0.07 0.12 0.07	10 < 10 10 10 < 10	0.17 0.56 0.30 0.46 0.21	180 160 315 1100 210
L			.														1 [5.0	00.	

CERTIFICATION: Hart Buchler

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GRANGES INC.

2230 - 885 W, GEORGIA ST. VANCOUVER, BC V6C 3E8

Page Number :2-B Total Pages :6 Certificate Date: 29-SEP-94 Invoice No. :19425917 P.O. Number : Account :BSJ

Project : Comments: #134-R

	_									CERTIFICATE OF ANALYS					YSIS	A9425917
SAMPLE	Prep Code	Мо Мо	Na. %	Ni ppm	bbw đđ	Pb ppm	SD ppm	Sc ppm	Sr ppm	ti %	T1 pp#	U ppm	V ppm	M M	Zn ppm	
1600N 1025W 1600N 1050W 1600N 1075W 1600N 1075W 1600N 1100W 1700N 0000W	201 229 201 229 201 229 201 229 201 229 201 229	3 1 1 1 2	0.03 0.01 0.02 0.02 0.03	9 6 9 8 15	950 630 660 760 1710	12 8 12 14 16	2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 <	6 4 6 4 3	20 19 20 16 20	0.25 0.23 0.33 0.36 0.18	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	153 122 151 139 123	10 < 10 10 < 10 < 10 < 10	74 58 74 62 36	
1700N 0025W 1700N 0050W 1700N 0075W 1700N 0100W 1700N 0125W	201 229 201 229 203 205 201 229 201 229 201 229	2 3 1 3 2	0.10 0.03 0.02 0.07 0.31	16 21 35 18 31	930 1810 510 950 1100	10 16 6 12 10	< 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 2 4 4 6	44 34 17 36 91	0.29 0.13 0.31 0.33 0.20	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	175 108 116 163 89	< 10 < 10 10 < 10 < 10 < 10	36 104 58 44 124	
1700N 0150W 1700N 0175W 1700N 0200W 1700N 0225W 1700N 0250W	203 205 201 229 203 205 201 229 203 205 203 205	2 2 < 1 6 1	0.03 0.01 0.54 0.01 0.20	30 59 21 14 15	760 550 770 330 920	12 14 4 8 4	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	6 4 6 3 4	15 12 134 14 65	0.28 0.05 0.41 0.33 0.19	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	99 66 101 148 75	< 10 < 10 < 10 < 10 < 10 < 10	62 70 52 40 42	
1700N-0275W 1700N 0300W 1700N 0375W 1700N 0400W 1700N 0425W	203 205 201 229 203 205 203 205 203 205 203 205	1 4 1 < 1 2	0.03 0.01 0.33 0.21 0.25	12 33 11 11 19	530 1420 930 690 930	6 18 4 6 6	< 2 4 < 2 < 2 < 2 < 2	1 7 4 3 6	63 32 130 114 100	0.35 0.13 0.32 0.39 0.48	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	88 104 57 73 108	< 10 10 < 10 < 10 < 10 < 10	30 136 38 34 68	
1700N 0450W 1700N 0475W 1700N 0500W 1700N 0525W 1700N 0550W	203 205 203 205 203 205 201 229 203 205	< 1 2 1 < 1	0.09 0.06 0.06 0.10 0.01	13 11 7 29 4	400 630 810 800 710	12 20 22 6 2	< 1 2 < 2 < 2 2 2 2	4 4 2 4 1	31 23 24 36 40	0.43 0.48 0.35 0.20 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	127 115 63 91 25	10 < 10 < 10 < 10 < 10 < 10	34 46 18 36 16	
1700N 0575W 1700N 0600W 1700N 0625W 1700N 0650W 1700N 0650W	201 229 203 205 203 205 203 205 203 205 203 205	1 < 1 1 2 1	0.06 0.14 0.09 0.11 0.03	15 14 9 7 4	620 1490 710 640 730	8 6 4 14 8	2 < 2 < 2 6 4	3 2 1 2 1	27 57 62 36 25	0.15 0.20 0.44 0.14 0.22	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	91 39 82 30 41	< 10 < 10 < 10 < 10 < 10 < 10	24 34 22 16 14	
700N 0700W 700N 0725W 700N 0750W 700N 0750W 700N 0775W 700N 0800W	203 205 203 205 203 205 203 205 203 205 201 229	2 2 < 1 < 1 2	0.19 0.04 0.05 0.43 0.14	11 17 3 16 20	750 1390 790 940 340	6 8 2 4 28	4 < 2 < 2 < 2 2 2	2 4 < 1 5 4	57 91 51 112 42	0.18 0.31 0.05 0.35 0.51	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	47 63 9 71 101	< 10 < 10 < 10 < 10 < 10 < 10	42 124 30 40 58	
1700N 0825M 1700N 0850W 1700N 0875W 1700N 0900W 1700N 0925W	201 229 203 205 201 229 201 229 201 229 201 229	4 1 10 < 2 2	0.03 0.13 0.01 0.09 0.03	10 15 20 27 5	390 640 420 1160 770	18 6 24 28 2	< 2 < 2 < 2 12 < 2	2 3 3 8 2	14 43 12 46 28	0.39 0.41 0.31 0.05 0.13	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	106 94 94 47 57	40 < 10 30 < 10 < 10	40 26 90 138 26	

CERTIFICATION: Janta Suchler

ĺ

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8 Page Number :3-A Total Pages :6 Certificate Date: 29-SEP-94 Invoice No. : I9425917 P.O. Number : Account :BSJ

Project : #134-R Comments:

										CE	RTIF	CATE	OF A	NAL	YSIS		49425	917		
SAMPLE	PREP CODE	Ац ррb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi pom	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mr ppn
1700N 0950W	201 229	< 5	0.4	1.92	< 2	80	< 0.5	< 2	0.90	< 0.5	14	13	21	3.46	10	< 1	0.20	< 10	1.14	300
1700N 0975W	203 205	< 5	0.2	2.42	< 2	70	< 0.5	< 2	1.01	< 0.5	14	16	19	3.68	< 10	< 1	0.15	< 10	1.20	300
1000 1000W	203 205	< 5	0.6	2.83	< 2	90	< 0.5	< 2	1.60	< 0.5	23	23	22	5.27	10	1	0.28	10	2.33 0.95	550 240
700N 1025W 800N 0000W	203 205 203 205	< 5 < 5	0.4 1.4	1.46 3.11	< 2 4	200 40	< 0.5 < 0.5	< 2 < 2	0.92 0.29	< 0.5 0.5	12 16	11 37	14 24	2.54 5.57	< 10 20	< 1 < 1	0.13 0.11	< 10 10	0.52	1370
800N 0025W	201 229	< 5	0.6	2.92	14	BO	< 0.5	< 2	0.06	< 0.5	6	60	31	7.46	10	< 1	0.06	10	0.55	260
800N 0050W	201 229	< 5	< 0.2	1.99	10	70	< 0.5	< 2	0.09	< 0.5	8	17	143	5.48	10	< 1	0.06	10	0.18	85
800N 0075W	201 229	< 5	< 0.2	2.54	4	90	< 0.5	< 2	0.19	< 0.5	6	29	32	3.60	< 10	< 1	0.10	< 10	0.50	440
.800N 0100W .800N 0125W	201 229 203 205	< 5 < 5	0.6	1.54 0.29	2 < 2	40 120	< 0.5 < 0.5	< 2 < 2	0.11	< 0.5 < 0.5	6 1	38 3	41 23	4.94 0.49	10 < 10	< 1 < 1	0.06 0.03	10 < 10	0.15 0.11	265 40
800N 0150W	201 229	< 5	0.2	2.22	2	110	< 0.5	< 2	0.32	< 0.5	9	45	36	5.44	10	< 1	0.13	10	0.52	775
800N 0175W	201 229	< 5	0.6	1.82	< 2	120	< 0.5	< 2	0.63	< 0.5	12	10	16	3.03	< 10	< 1	0.11	< 10	0.97	250
800N 0200W	201 229	< 5	0.2	2.61	6	120	< 0.5	< 2	0.13	< 0.5	4	42	32	4.44	10	< 1	0.09	10	0.41	150
.800N 0225W .800N 0250W	203 205	< 5	0.2 < 0.2	2.37 2.63	16 16	360 70	< 0.5 < 0.5	< 2 < 2	1.99 0.07	0.5 < 0.5	12 10	65 58	51 40	3.44 6.97	10 10	< 1 < 1	0.20 0.16	30 10	0.85 0.68	2010 985
800N 0275W	203 205	< 5	0.2	1.98	< 2	210	< 0.5	< 2	3.47	0.5	12	38	23	2.66	< 10	< 1	0.19	10	1.17	91
800N 0300W	201 229	< 5	0.8	1.82	< 2	120	< 0.5	< 2	0.49	< 0.5	7	29	17	3.54	10	< 1	0.11	< 10	0.64	20
800N 0325W	201 229	< 5	< 0.2	2.55	6	60	< 0.5	< 2	0.14	< 0.5	3	55	21	5.97	20	< 1	0.08	10	0.51	170
.800N 0350W .800N 0375W	201 229 203 205	< 5 < 5	0.4	2.97 1.44	< 2 < 2	80 90	< 0.5 < 0.5	< 2 < 2	0.23 0.47	< 0.5 < 0.5	7 10	48 29	25 20	4.48 3.70	10 10	< 1 < 1	0.08 0.10	10 < 10	0.65 0.61	345
800N 0400W	203 205	< 5	0.2	0.99	2	110	< 0.5	< 2	0.25	< 0.5	3	43	19	2.38	10	1	0.09	< 10	0.16	195
800N 0425W	201 229	< 5	0.2	0.73	6	40	< 0.5	< 2	0.07	< 0.5	5	26	34	4.92	20	< 1	0.10	30	0.12	480
800N 0450W	201 229	< 5	0.2	2.32	8	80	< 0.5	< 2	0.13	< 0.5	7	74	26	5.54	10	< 1	0.12	20	0.96	380
800N 0475W 800N 0500W	201 229 201 229	< 5 < 5	2.4	2.48 2.46	8 14	40 90	< 0.5 < 0.5	< 2	0.11 0.11	< 0.5 < 0.5	3 2	36 43	35 23	6.54 6.57	10 20	< 1 < 1	0.1D 0.05	10 < 10	0.43 0.25	205 105
800N 0525W	203 205	< 5	0.4	1.93	< 2	70	< 0.5	2	0.87	1.0	16	21	19	3.73	< 10	< 1	0.17	< 10	1.31	33
800N 0550W	201 229	< 5	< 0.2	2.15	< 2	80	< 0.5	2	1.09	0.5	17	13	18	4.05	< 10	< 1	0.18	< 10	1.45	430
800N 0575W	203 205	< 5	< 0.2	1.46	B	80	< 0.5	2	0.58	0.5	12	22	13	3.17	< 10	< 1	0.13	< 10	0.78	220
800N 0600W 800N 0625W	203 205 201 229	< 5 < 5	0.4	1.51 2.93	< 2 < 2	70 40	< 0.5 < 0.5	22	0.69 0.06	1.0 1.0	13 3	11 50	15 20	2.83 5.98	< 10 10	< 1 < 1	0.14 0.07	< 10 10	0.93 0.41	200
800N 0650W	201 229	< 5	< 0.2	1.01	68	70	< 0.5	2	0.09	0.5	3	10	10	2.47	< 10	< 1	0.06	10	0.15	6
800N 0675W	201 229	< 5	3.6	4.13	592	440	< 0.5	< 2	0.03	3.0	3	23	29	7.72	10	1	0.60	10	0.04	165
800N 0700W	203 205	< 5	2.4	1.30	14		< 0.5	< 2	3.08	12.0	16	11	28	3.74	< 10	< 1	0.04	20		>1000
800N 0725W 800N 0750W	203 205 203 205	< 5 < 5	< 0.2 0.6	2.22 1.78	< 2 < 2	170 60	< 0.5 < 0.5	2	2.48 0.57	4.5 1.0	18 12	14 28	23 19	3.63 4.76	< 10 < 10	< 1 < 1	0.19 0.14	< 10 < 10	1.20 0.93	171 37(
800N 0775W	201 229	< 5	0.6	1.94	36	80	< 0.5	2	0.12	0.5	4	31	16	4.25	< 10	< 1	0.07	10	0.30	11
800N 0800W	203 205	< 5	0.2	1.72	4	120	< 0.5	< 2	0.11	1.0	7	76	17	4.10	10	< 1	0.17	10	0.54	19
800N 0825W	203 205	< 5	1.0	3.51	< 2	260	< 0.5	< 2	0.54	3.5	61	43	21	9.89	< 10	< 1	0.06	10		>10000
800N 0850W 800N 0875W	203 205	< 5 < 5	0.6	2.29 2.13	< 2 6		< 0.5 < 0.5	2 < 2	1.13 0.23	1.0	20 16	16 37	17 55	3.96 5.16	< 10 < 10	< 1 < 1	0.21 0.12	< 10 < 10	1.55 0.63	500 121

CERTIFICATION: How 2. Bullo

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

Page Number :3-B Total Pages :6 Certificate Date: 29-SEP-94 Invoice No. : 19425917 P.O. Number : :BSJ Account

Project : Comments: #134-R

									CERTIFICATE OF ANALYSI					YSIS	A9425917	
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	P PPm	Pb ppm	SD ppm	Sc ppm	Sr ppm	Tİ %	T1 ppm	U ppm	V ppm	W ppm	Zn ppm	
1700N 0950W 1700N 0975W 1700N 1000W 1700N 1025W	201 229 203 205 203 205 203 205	< 1 < 1 < 1 1	0.35 0.35 0.68 0.26	13 14 22 11	670 960 840 720	6 8 12 4	< 2 < 2 < 2 < 2 < 2	6 7 10 4	102 114 172 109	0.43 0.43 0.66 0.32	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10	83 73 118 60	< 10 < 10 10 < 10	50 44 62 44	
800N 0000W 800N 0025W 800N 0050W 800N 0075W 800N 0100W	203 205 201 229 201 229 201 229 201 229 201 229	6 3 3	0.08 < 0.01 0.01 0.05 0.01	13 31 6 11 11	1000 870 420 910 640	16 14 24 14 16	< 2 < 2 4 2 < 2	4 4 3 4	27 10 13 21 14	0.36	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	105 149 210 91 115	< 10 10 < 10 < 10 < 10	86 58 46 48 64	
300N 0125W 300N 0175W 300N 0275W 300N 0200W 300N 0225W 300N 0250W	203 205 201 229 201 229 201 229 201 229 203 205 201 229	< 1 3 1 2 2 6	0.01 0.02 0.26 0.02 0.11 0.02	8 18 13 16 20 30	770 1840 880 890 1640 1300	< 2 18 8 14 6 16	< 2 < 2 2 2 2 2 2	< 1 <u>4</u> 6 4 14 6	49 31 76 22 198 9	0.04 0.18 0.41 0.17 0.14 0.07	< 10 < 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10 < 10	10 117 70 96 92 83	< 10 < 10 < 10 < 10 < 10 < 10 < 10	34 68 36 50 126 76	
000N 0275W 000N 0300W 000N 0325W 000N 0350W 000N 0350W	203 205 201 229 201 229 201 229 201 229 203 205	2 2 2 1 1	0.40 0.18 0.03 0.07 0.13	14 12 23 25 11	1010 630 630 680 720	6 10 16 10 10	- - - - - - - - - - - - - -	B 5 4 6 3	452 64 17 27 56	0.28 0.43 0.27 0.32 0.53	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10 < 10	67 116 107 104 100	< 10 < 10 < 10 < 10 < 10 < 10	BO 38 48 70 64	
000N 0400W 000N 0425W 000N 0450W 000N 0475W 000N 0500W	203 205 201 229 201 229 201 229 201 229 201 229	2 5 3 2 2	0.01 0.01 0.03 0.02 0.02	7 12 50 10 10	710 1330 760 590 470	14 18 14 28 20	< 2 2 2 4	3 2 4 5 3	23 8 16 13 15	0.21 0.23 0.16 0.44 0.37	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	121 76 72 143 112	< 10 < 10 < 10 < 10 < 10 < 10	36 80 84 68 46	
00N 0525W 00N 0550W 00N 0575W 00N 0600W 00N 0600W	203 205 201 229 203 205 203 205 201 229	< 1 < 1 < 1 < 1 2	0.35 0.41 0.20 0.24 0.01	15 15 10 13 20	1090 1060 910 800 710	8 8 16 6 16	2 2 2 4	6 7 3 4 3	95 107 63 80 8	0.49 0.55 0.39 0.40 0.21	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	81 93 66 64 86	< 10 < 10 < 10 < 10 < 10	68 70 56 56 46	
00N 0550W 00N 0675W 00N 0700W 00N 0725W 00N 0750W	201 229 201 229 203 205 203 205 203 205	3 7 13 1 1	0.03 0.01 0.07 0.52 0.25	4 3 97 25 12	600 2340 1450 1150 600	14 48 6 6 10	6 22 4 < 2 2	1 3 3 7 4	16 25 347 266 72	0.16 0.02 0.06 0.44 0.49	< 10 < 10 20 < 10 < 10 < 10	< 10 < 10 60 < 10 < 10	62 17 25 81 108	< 10 < 10 < 10 < 10 < 10 < 10	34 42 1420 402 54	
00N 0775W 00N 0800W 00N 0825W 00N 0850W 00N 0850W	201 229 203 205 203 205 203 205 203 205 201 229	3 1 6 < 1 1	0.04 0.02 0.06 0.48 0.06	9 33 15 17 34	610 510 2610 930 3700	22 8 10 6 16	8 < 2 4 2 4	3 3 4 7 4	19 15 55 125 26	0.28 0.07 0.18 0.50 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 30 < 10 < 10	93 85 121 89 51	< 10 < 10 < 10 < 10 < 10 < 10	30 48 126 58 88	
800N 0875W	201 229	1	0.06	34	3700	16	4	4	26	0.12	< 10	< 10		< 10 		Hartbuchler

I

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assavers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

Page Number :4-A Total Pages :6 Certificate Date: 29-SEP-94 Invoice No. : 19425917 P.O. Number : BSJ Account

Project : Comments: #134-R

r								_		CE	RTIF	CATE	OF /	NAL	YSIS		49425	917		
SAMPLE	PREP CODE	Ац ррб ГА+АА	Ag ppm	A1 %	As ppm	Ba. ppm	Be ppm	Bİ ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
1800N 0900W 1800N 0925W 1800N 0950W	203 205 217 229 217 229	< 5 < 5	0.4 1.4 0.2	2.39 2.65 1.98	18 < 2 < 2	90 40 110	< 0.5 < 0.5 0.5	< 2 < 2 < 2		< 0.5 < 0.5 < 0.5	9 7 16	49 27 14	26 9 9	5.46 5.87 3.32	10 10 < 10	< 1 < 1 < 1	0.16 0.06 0.19	10 < 10 < 10	0.69 0.43 1.35	430 205 340
1800N 0975W 1800N 1025W	217 229 217 229	< 5 < 5	0.4 0.2	2.33 1.62	< 2 < 2	120 80	< 0.5 < 0.5	< 2 < 2	1.16 0.87	< 0.5 < 0.5	17 13	15 16	10 9	3.93 2.77	< 10 < 10	< 1 < 1	0.24 0.16	< 10 < 10	1.59 1.10	400 295
1050W 1900N 0000W 1900N 0025W	217 229 201 229 201 229	< 5	0.6 1.2 2.4	0.86 4.83 4.52	< 2	130 30 80	< 0.5 0.5 0.5	< 2 < 2 < 2	0.28	< 0.5 < 0.5 < 0.5	4 8 4	13 42 23	7 19 48	2.08 5.01 4.38	< 10 20 < 10	< 1 < 1 < 1	0.07 0.07 0.06	< 10 10 < 10	0.18 0.78 0.38	90 205 130
1900N 0050W 1900N 0075W	201 229 203 205	< 5	0.6	2.45	6 14	60 30	< 0.5 < 0.5	< 2 < 2	0.16 0.10	< 0.5 < 0.5	4	42 35	23 17	4.22 7.29	10 30	< 1 < 1	0.09 0.04	10 10	0.53 0.26	205 280
1900N 0100W 1900N 0150W 1900N 0175W 1900N 0175W	201 229 201 229 201 229 201 229 201 229	<pre>< 5 < 5 < 5 < 5 < 5 < 5</pre>	0.2 0.8 0.2 0.6	1.49 2.37 1.68 1.94	8 4 6	70 160 80 100	< 0.5 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.11 0.84 0.20 0.24	< 0.5 0.5 0.5 0.5	6 15 5 7	30 28 15 32	43 64 25 30	5.04 5.03 3.84 7.46	10 < 10 < 10 10	< 1 < 1 < 1 < 1 < 1	0.09 0.14 0.10 0.10	20 10 < 10 10	0.17 0.75 0.26 0.43	150 1890 435 675
1900N 0225W	201 229 201 229	< 5	2.2	4.24	4	60 50	0.5	< 2	0.39	0.5	11	25 41	32	4.31	10	< 1	0.09	10	0.62	570 410
1900N 0275W 1900N 0300W 1900N 0325W 1900N 0350W	201 229 201 229 201 229 201 229 201 229	< 5 < 5 < 5 < 5	0.8 < 0.2 1.4 1.0	1.44 2.13 3.55 2.54	6 4 4 6	30 90 100 30	< 0.5 < 0.5 4.5 0.5	< 2 < 2 < 2 < 2	0.07 0.21 0.54 0.27	0.5 < 0.5 0.5 0.5	4 26 12	32 47 43 30	16 18 61 15	7.91 3.69 5.70 6.78	30 < 10 10 20	<1 <1 <1 <1	0.04 0.08 0.08 0.09	20 < 10 90 10	0.11 0.56 0.59 0.39	470 245 2600 1070
1900N 0375W 1900N 0400W 1900N 0425W 1900N 0450W 1900N 0450W	201 229 201 229 201 229 201 229 201 229 201 229	< 5 < 5 < 5 < 5 < 5 < 5	1.4 < 0.2 0.6 < 0.2 0.2	5.03 1.95 2.17 1.51 1.18	28 2 10 2 12	60 160 100 110 100	0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.12 0.39 0.31 0.39 0.23	< 0.5 < 0.5 0.5 0.5 < 0.5	2 11 6 6 9	67 36 26 17 17	18 24 12 14 34	7.47 5.29 6.86 4.07 4.83	20 10 20 10 < 10	< 1 1 < 1 < 1 < 1	0.04 0.11 0.05 0.07 0.08	10 < 10 10 < 10 10	0.21 0.39 0.36 0.28 0.16	150 1140 360 185 485
1900N 0525W 1900N 0550W 1900N 0550W 1900N 0575W 1900N 0600W	201 229 201 229 201 229 201 229 201 229 201 229 201 229	< 5 < 5 < 5 < 5 < 5 < 5 < 5	0.8 0.4 0.6 0.2 0.4	1.02 0.83 0.93 0.95 2.93	<pre></pre>	30 50 140 110 120	< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.25 0.05 0.16 0.04 0.14	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 19 9 5 12	8 81 26 22 52	29 168 55 55 45	2.47 7.91 5.63 6.27 5.19	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.04 0.08 0.18 0.23 0.08	< 10 10 10 10 10	0.35 0.11 0.19 0.12 0.57	175 690 1250 605 655
900N 0650W 900N 0675W 900N 0700W 900N 0725W 900N 0725W	201 229 201 229 201 229 201 229 217 229 201 229	<pre>< 5 < 5</pre>	0.2 0.2 0.2 1.6 < 0.2	2.43 1.00 2.10 1.54 1.29	18 6 30 < 2 < 2	190 230 340 70 80	1.0 0.5 1.0 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.50 0.80 0.99 0.31 0.34	0.5 0.5 1.0 0.5 < 0.5	14 9 17 6 6	33 17 37 17 14	40 32 46 9 7	4.16 2.28 4.48 3.16 4.20	< 10 < 10 < 10 < 10 < 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.13 0.11 0.18 0.06 0.08	10 < 10 10 < 10 < 10	0.56 0.30 0.72 0.33 0.33	1565 780 2310 135 140
900N 0775W 900N 0800W 900N 0825W 900N 0850W 900N 0850W	201 229 217 229 217 229 201 229 201 229 201 229	<pre>< 5 < 5 < 5 < 5 < 5 < 5</pre>	0.4 0.2 2.4 0.4 0.2	0.74 1.99 2.09 1.85 1.12	< 2 4 < 2 6 10	40 110 40 70 150	< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.70 0.94 0.38 0.36 0.58	< 0.5 0.5 0.5 < 0.5 < 0.5	3 18 5 8 8	4 14 23 19 7	7 9 12 7 16	0.79 2.78 6.30 5.02 2.34	< 10 < 10 10 10 < 10	1 < 1 < 1 < 1 < 1 < 1	0.07 0.16 0.09 0.08 0.08	< 10 < 10 < 10 < 10 < 10 < 10	0.21 1.00 0.44 0.56 0.36	60 680 135 205 120
			_ .											ERTIFIC		5	whi	24	<u>). 0</u> ,	·

chemex Laps Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 GR .S INC

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 358

A9425946

Comments:

134.041.009

CERTIFICATE

A9425946

(BSJ) - GRANGES INC.

Project: #134-JEFF Soils P.O. # :

Amples submitted to our lab in Vancouver, BC. As report was printed on 26-SEP-94.

	SAM	PLE PREPARATION
CHEMEX	NUMBER SAMPLES	DESCRIPTION
201 217 229	131 85 216	Dry, sieve to -80 mesh Geochem ring entire sample ICP - AQ Digestion charge
* NOTE	1.	

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W.

DETECTION UPPER CHEMEX NUMBER METHOD LIMIT LIMIT SAMPLES DESCRIPTION CODE 100 216 Au ppb: Fuse 10 g sample FA-AAS 5 10000 2118 Ag ppm: 32 element, soil & rock TCP-ARS 0.2 200 216 2119 TCP-ARS 0.01 15.00 216 Al %: 32 element. soil & rock As ppm: 32 element, soil & rock 2120 216 ICP-AES 2 10000 10 2121 216 Ba ppm: 32 element, soil & rock ICP-AES 10000 TCP-AES 0.5 2122 216 Be pom: 32 element, soil & rock 100.0 ICP-AES 2123 216 Bi ppm: 32 element, soil & rock 2 10000 ICP-AES 2124 216 Ca %: 32 element, soil & rock 0.01 15.00 2125 ICP-AES 0.5 100.0 216 Cd ppm: 32 element, soil & rock Co ppm: 32 element, soil & rock ICP-AES 10000 2126 216 1 Cr DDm: 32 element, soil & rock 2127 216 ICP-ARS 10000 1 212B 216 Cu ppm: 32 element, soil & rock TCP-AES 10000 1 15.00 2150 216 Fe %: 32 element, soil & rock TCP-ARS 0.01 2130 216 Ga ppm: 32 element, soil & rock ICP-AES 10 10000 Hg ppm: 32 element, soil & rock 2131 216 ICP-AES 1 10000 2132 216 K %: 32 element, soil & rock ICP-ARS 0.01 10.00 2151 La ppm: 32 element, soil & rock ICP-ARS 10000 216 10 2134 ICP-ARS 15.00 Mg %: 32 element, soil & rock 0.01 216 2135 Mn ppm: 32 element, soil & rock TCP-AES 10000 216 5 2136 216 Mo ppm: 32 element, soil & rock ICP-AES 1 10000 2137 Na %: 32 element, soil & rock ICP-AES 0.01 5.00 216 2138 216 Ni ppm: 32 element, soil & rock ICP-NES 10000 • 2139 216 P ppm: 32 element, soil & rock ICP-AES 10 10000 2140 216 Pb ppm: 32 element, soil & rock ICP-AES 2 10000 2141 216 Sb ppm: 32 element, soil & rock ICP-AES 2 10000 2142 216 Sc ppm: 32 elements, soil & rock ICP-AES 1 10000 2143 216 Sr ppm: 32 element, soil & rock ICP-AES 1 10000 Ti %: 32 element, soil & rock ICP-AES 0.01 2144 216 5.00 2145 216 T1 ppm: 32 element, soil & rock ICP-AES 10 10000 ICP-AES 10000 2146 216 U ppm: 32 element, soil & rock 10 V ppm: 32 element, soil & rock 2147 216 ICP-AES 1 10000 2148 216 W ppm: 32 element, soil & rock ICP-AES 10 10000 2149 216 Zn ppm: 32 element, soil & rock ICP-AES .2 10000

ANALYTICAL PROCEDURES

To: GRANGES INC.

Project :

Comments:

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver

British Columbia, Canada V7J 2C1

PHONE: 604-984-0221

2230 - 885 W, GEORGIA ST. VANCOUVER, BC V6C 3E8

#134-JEFF

Soils

Page Number :1-A Total Pages :6 Certificate Date: 26-SEP-94 Invoice No. :19425946 P.O. Number : Account :BSJ

> Mn ppm

134.041.009

										CE	RTIFI	CATE	OF A	ANAL	YSIS		49425	946		
SAMPLE	PREP CODE	Ац ррb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bİ ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	
000N 0000W 000N 0025W 000N 0050W 000N 0075W 000N 0100W	217 229 217 229 201 229 201 229 201 229	< 5	0.8 0.6 1.6 < 0.2 1.2	0.73 0.72 1.00 1.88 4.55	< 2 < 2 6 12 28	70 60 50 90	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	1.44 1.27 0.14 0.13 0.02	0.5 0.5 < 0.5 0.5 0.5	4 6 8 9	4 6 15 15 41	8 8 41 105	1.02 1.36 3.21 4.63 7.44	< 10 < 10 < 10 < 10 < 10 < 10	1 2 < 1 < 1 < 1	0.06 0.11 0.04 0.06 0.04	< 10 < 10 10 < 10 10	0.26 0.27 0.31 0.82 0.55	
000N 0125W 000N 0150W 000N 0175W 000N 0200W 000N 0225W	201 229 201 229 201 229 201 229 201 229 201 229	< 5 < 5 < 5 < 5 < 5 < 5 < 5	0.4 < 0.2 0.4 0.6 0.6	2.53 3.87 1.77 2.51 1.59	14 18 16 12 2	100 150 170 80 90	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.16 0.04 0.69 0.07 0.58	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 0.5	6 9 4 4 11	19 36 16 20 23	28 63 36 49 14	3.84 4.63 3.40 4.27 4.49	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.11 0.08 0.08 0.06 0.11	< 10 < 10 < 10 < 10 10	0.95 0.63 0.28 0.64 0.72	
000N 0250W 000N 0275W 000N 0300W 000N 0325W 000N 0350W	217 229 217 229 217 229 217 229 217 229 201 229	<pre></pre>	2.2 1.2 1.2 3.2 0.B	0.84 1.20 1.41 1.92 1.22	< 2 < 2 2 4 12	70 60 140 110 100	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	1.19 0.51 0.56 0.96 0.16	0.5 0.5 1.5 0.5	6 10 4 17 4	8 8 24 19 20	11 8 6 14 18	1.49 2.25 2.82 3.73 4.17	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.10 0.14 0.07 0.18 0.05	< 10 < 10 < 10 10 < 10	0.39 0.71 0.31 0.86 0.20	
000N 0375W 000N 0400W 000N 0425W 000N 0450W 000N 0450W	217 229 201 229 201 229 201 229 201 229 201 229	< 5 < 5 < 5 < 5 < 5 < 5	1.4 1.8 0.8 1.0 0.6	1.05 0.56 2.03 1.01 2.61	4 < 2 20 12 18	150 60 90 40 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.34 0.34 0.10 0.17 0.04	0.5 0.5 < 0.5 < 0.5 < 0.5	644 44 6	28 4 24 14 23	13 6 19 16 40	3.22 1.11 4.81 2.07 6.16	< 10 < 10 < 10 < 10 < 10	< 1 1 < 1 < 1 < 1	0.06 0.08 0.04 0.06 0.03	< 10 < 10 < 10 < 10 < 10 < 10	0.27 0.23 0.26 0.20 0.33	
000N 0500W 000N 0525W 000N 0550W 000N 0575W 000N 0575W 000N 0600W	201 229 217 229 201 229 201 229 201 229 217 229	< 5 < 5 < 5 < 5 < 5	0.8 2.4 1.4 < 0.2 1.2	2.39 1.03 5.09 1.26 1.12	20 < 2 38 24 < 2	40 60 40 70 40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.02 0.35 0.02 0.20 0.56	0.5 0.5 0.5 0.5 < 0.5	4 8 4 9	21 8 52 13 11	52 7 39 23 6	6.91 2.13 7.09 4.01 2.52	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.03 0.09 0.04 0.06 0.11	< 10 < 10 < 10 < 10 < 10 < 10	0.27 0.61 0.27 0.36 0.71	
000N 0625W 000N 0650W 000N 0675W 000N 0775W 000N 0700W 100N 0000W	217 229 217 229 217 229 217 229 217 229 217 229 217 229	< 5 < 5 < 5 < 5 < 5 < 5	0.6 0.2 0.2 0.2 0.8	0.54 0.36 0.54 0.67 0.69	2 < 2 < 2 < 2 < 2 < 2 < 2	70 60 50 50 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.33 0.33 0.32 0.36 0.52	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	3 2 3 4 4	15 4 3 5 6	9 2 2 2 6	1.46 0.44 0.77 1.12 1.33	< 10 < 10 < 10 < 10 < 10 < 10	1 2 1 < 1 < 1	0.07 0.02 0.04 0.06 0.11	< 10 < 10 < 10 < 10 < 10 < 10	0.12 0.16 0.25 0.32 0.39	
100N 0025W 100N 0050W 100N 0075W 100N 0100W 100N 0125W	217 229 201 229 217 229 217 229 217 229 201 229	< 5 < 5 < 5 < 5 < 5	0.6 0.2 0.2 < 0.2 0.2	0.42 2.27 0.68 0.26 1.41	< 2 14 < 2 < 2 4	60 30 60 80 30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 8 < 2 < 2 < 2 < 2	0.20 0.12 2.87 2.71 0.15	< 0.5 < 0.5 0.5 0.5 < 0.5	3 6 2 < 1 3	4 26 6 3 12	3 71 11 8 6	0.80 4.35 0.63 0.16 1.20	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.06 0.07 0.02 0.09 0.05	< 10 < 10 < 10 < 10 < 10 < 10	0.15 1.27 0.10 0.10 0.17	:
100N 0150W 100N 0175W 100N 0200W 100N 0225W 100N 0250W	201 229 201 229 217 229 217 229 217 229 217 229	< 5 < 5 < 5 < 5 < 5 < 5	0.8 0.2 0.2 0.8 0.6	1.84 3.53 1.29 1.23 1.22	6 22 < 2 < 2 < 2 < 2	60 90 140 80 80	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.19 0.10 2.87 2.03 0.65	< 0.5 < 0.5 4.0 < 0.5 < 0.5	5 10 6 7 9	17 32 9 10 10	28 50 10 6 7	3.37 4.85 1.48 2.73 2.30	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.08 0.08 0.10 0.10 0.12	< 10 < 10 < 10 < 10 < 10 < 10	0.74 1.01 0.45 0.52 0.72	

tart Sichler

 \bigcap

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

Page Number : 1-B Total Pages : 6 Certificate Date: 26-SEP-94 Invoice No. : 19425946 P.O. Number : Account : BSJ

Project : Comments: #134-JEFF

										CE	RTIF	CATE	OF /	NALY	(SIS	A9425946
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	9 Ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	D D	¥ ppm	W	Zn ppm	
000N 0000W 000N 0025W 000N 0050W 000N 0075W 000N 0100W	217 229 217 229 201 229 201 229 201 229 201 229	< 1 9 1	0.04 0.08 0.06 0.01 < 0.01	7 9 10 15 25	780 1060 580 1130 640	2 4 12 22 28	< 2 < 2 < 2 < 2 < 8	1 2 2 2 8	137 123 21 18 3	0.11 0.17 0.39 0.07 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	18 29 113 59 104	< 10 < 10 < 10 < 10 < 10 < 10	40 54 54 94 154	
000N 0125W 000N 0150W 000N 0175W 000N 0200W 000N 0225W	201 229 201 229 201 229 201 229 201 229 201 229	1 1 4 1 4	0.04 < 0.01 0.01 0.02 0.23	13 20 12 13 14	760 650 630 1090 610	14 22 10 16 18	< 2 < 2 2 < 2 < 2 < 2 < 2	3 6 3 3 4	17 4 63 8 56	0.06 0.07 0.07 0.04 0.53	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	66 95 98 70 137	< 10 < 10 < 10 < 10 < 10 < 10	54 102 100 80 60	
000N 0250W 000N 0275W 000N 0300W 000N 0325W 000N 0350W	217 229 217 229 217 229 217 229 217 229 201 229	1 1 4 1 5	0.08 0.19 0.08 0.26 0.03	9 11 8 15 11	1020 920 710 1360 430	< 2 6 8 8 6	< 2 < 2 < 2 < 2 < 2 < 2	2 3 2 3 2	164 67 57 91 31	0.21 0.30 0.36 0.26 0.24	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	30 47 75 60 127	< 10 < 10 < 10 < 10 < 10 < 10	44 42 60 82 82	
000N 0375W 000N 0400W 000N 0425W 000N 0425W 000N 0450W 000N 0450W	217 229 201 229 201 229 201 229 201 229 201 229	2 1 3 2 2	0.04 0.04 0.02 0.04 0.01	10 5 10 7 11	470 1010 490 520 1070	8 4 14 6 20	< 2 < 2 < 2 < 2 < 2 < 2	3 1 4 3 2	50 42 9 16 12	0.46 0.16 0.27 0.24 0.02	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	155 24 185 111 76	< 10 < 10 < 10 < 10 < 10 < 10	68 62 54 38 52	
000N 0500W 000N 0525W 000N 0550W 000N 0575W 000N 0600W	201 229 217 229 201 229 201 229 201 229 217 229	2 · 1 6 4 < 1	< 0.01 0.15 0.01 0.07 0.18	12 10 16 12 10	1180 860 1250 770 630	18 4 24 6 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2	2 3 5 4 3	9 54 7 38 55	0.03 0.26 0.02 0.13 0.35	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	108 43 49 92 53	< 10 < 10 < 10 < 10 < 10 < 10	58 54 120 94 38	
000N 0625W 000N 0650W 000N 0675W 000N 0675W 000N 0700W 100N 0000W	217 229 217 229 217 229 217 229 217 229 217 229 217 229	1 < 1 < 1 < 1 1	0.03 0.02 0.06 0.08 0.10	4 3 6 7	620 410 650 720 940	4 < 2 < 2 2 < 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1 < 1 1 1 1	37 85 62 49 37	0.15 0.07 0.10 0.15 0.17	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	47 11 17 24 27	< 10 < 10 < 10 < 10 < 10 < 10	36 64 40 34 48	
100N 0025W 100N 0050W 100N 0075W 100N 0100W 100N 0100W	217 229 201 229 217 229 217 229 217 229 201 229	< 1 1 - 1 < 1 < 1	0.03 0.01 0.03 0.02 0.02	4 29 17 10 7	850 790 1260 1190 540	< 2 16 4 2 4	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1 2 < 1 < 1 3	32 12 251 224 < 21	0.11 0.02 0.03 0.01 0.10	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	16 47 11 5 75	< 10 < 10 < 10 < 10 < 10 < 10	32 90 70 108 28	
100N 0150W 100N 0175W 100N 0200W 100N 0225W 100N 0250W	201 229 201 229 217 229 217 229 217 229 217 229 217 229	< 1 < 1 1 1 1	0.04 0.02 0.28 0.20 0.21	9 23 15 9 12	920 860 1090 870 840	12 20 < 2 4 4	< 2 2 < 2 < 2 < 2 < 2 < 2	3 3 3 4 3	17 11 268 193 78	0.09 0.03 0.24 0.41 0.30	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	61 59 41 59 54	< 10 < 10 < 10 < 10 < 10 < 10	45 84 78 66 50	_
													, c	ERTIFIC	ATION:	Hant Bichler

.

L

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

Page Number 2-A Total Pages :6 Certificate Date: 26-SEP-94 Invoice No. : 19425946 P.O. Number : Account :BSJ

Project : Comments; #134-JEFF

r

										CE	RTIFIC	CATE	OF A	NAL	YSIS		49425	946		
SAMPLE	PREP CODE	λu ppb γλ+λλ	Ag ppm	A1 %	ks ppm	Ba	Be	Bi ppm	Ca %	Cd mqq	Co ppm	Cr pp≖	Cu	Fe %	Ga ppm	ррт Нд	R %	La ppm	Mg %	Mn ppm
100N 0275W 100N 0300W 100N 0325W 100N 0350W 100N 0375W	201 229 217 229 201 229 201 229 201 229 217 229	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5 </pre>	0.4 0.4 < 0.2 0.4 3.4	1.15 1.07 0.76 2.06 1.78	< 2 < 2 < 2 12 6	40 50 30 80 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.36 0.49 0.12 0.73 0.70	< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 9 1 15 12	9 9 8 12 19	11 4 2 17 10	1.93 2.11 0.73 4.12 3.48	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.08 0.10 0.03 0.14 0.14	< 10 < 10 10 < 10 < 10	0.40 0.68 0.11 1.01 0.98	690 190 110 515 335
100N 0400W 100N 0450W 100N 0475W 100N 0500W 100N 0525W	201 229 201 229 217 229 201 229 201 229 201 229	<pre>< 5 < 5</pre>	0.6 1.6 3.2 0.8 1.2	1.75 1.94 0.30 1.10 3.45	24 22 < 2 30 40	220 40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.33 0.11 0.77 0.12 0.01	0.5 < 0.5 0.5 < 0.5 0.5	10 3 2 8 11	25 24 5 10 31	18 12 86 100	3.97 2.95 0.54 4.93 8.25	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 2 < 1 1	0.11 0.04 0.04 0.05 0.04	< 10 < 10 < 10 < 10 < 10 < 10	0.38 0.27 0.12 0.21 0.24	2060 85 115 210 380
100N 0550W 100N 0575W 100N 0600W 100N 0625W 100N 0650W	201 229 201 229 201 229 201 229 201 229 201 229	<pre>< 5 < >	0.8 1.0 0.6 0.2 0.8	1.09 1.17 0.95 0.54 3.96	8 < 2 26 10 28	40 30 30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.32 0.41 0.18 0.03 0.07	< 0.5 < 0.5 < 0.5 < 0.5 0.5	9 B 10 3 11	12 8 8 8 35	16 9 29 12 87	3.42 2.70 3.66 2.33 6.81	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.09 0.10 0.07 0.03 0.08	< 10 < 10 < 10 < 10 10 < 10	0.42 0.55 0.32 0.07 0.62	780 210 200 140 240
100N 0675W 100N 0700W 1005 0000W 1005 0025W 1005 0025W	201 229 217 229 217 229 201 229 201 229 201 229	< 5 < 5 < 5 < 5 < 5 < 5	1.0 0.8 0.8 1.4 0.8	3.35 0.88 0.73 2.61 1.38	28 < 2 6 16 8	40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.04 0.35 0.07 0.07 0.15	0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	9 5 2 2 4	34 12 11 26 9	72 5 12 14 23	8.44 1.56 2.91 6.25 2.15	< 10 < 10 < 10 < 10 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.07 0.08 0.03 0.03 0.05	< 10 < 10 10 < 10 < 10	0.49 0.26 0.11 0.22 0.21	200 100 155 125 160
1005 0075W 1005 0100W 1005 0125W 1005 0150W 1005 0175W	201 229 201 229 201 229 201 229 201 229 217 229	< 5 < 5 < 5 < 5 < 5 < 5	0.4 0.6 1.4 1.4 1.0	2.57 2.82 3.77 2.66 2.77	22 26 24 34 24	90 70 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 14	0.02 0.07 0.07 0.30 0.37	< 0.5 < 0.5 0.5 < 0.5 < 0.5 < 0.5	3 5 8 8 10	24 26 45 26 69	43 43 69 30 32	7.46 5.32 6.60 4.76 4.59	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.04 0.07 0.07 0.07 0.19	10 < 10 < 10 < 10 < 10 < 10	0.24 0.55 0.83 0.60 1.38	305 250 315 260 395
1005 0200W 1005 0225W 1005 0250W 1005 0275W 1005 0300W	201 229 201 229 201 229 201 229 201 229 201 229	< 5 < 5 < 5 < 5 < 5 < 5	1.4 2.0 2.0 1.4 1.6	2.66 3.39 3.68 2.35 2.38	8 124 30 22 14	60 80 40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.06 0.07 0.04 0.15 0.25	< 0.5 0.5 < 0.5 0.5 0.5 0.5	4 9 5 4 8	25 26 35 31 25	30 110 55 33 25	4.78 7.25 6.38 8.43 5.08	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.06 0.06 0.04 0.03 0.06	< 10 10 10 < 10 < 10	0.51 0.31 0.20 0.29 0.48	375 660 470 395 320
1005 0325W 1005 0350W 1005 0375W 1005 0400W 1005 0425W	201 229 201 229 217 229 217 229 217 229 201 229	<pre>< 5 < 5</pre>	0.8 0.6 < 0.2 0.4 1.2	1.13 2.03 0.82 1.06 2.76	16 16 < 2 < 2 26	90 40 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.16 0.31 1.14 0.45 0.10	< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 5 6 5	20 43 7 8 63	10 22 4 10 29	2.51 5.13 1.44 1.93 7.43	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.04 0.09 0.07 0.07 0.07	< 10 < 10 < 10 < 10 < 10 < 10	0.27 0.41 0.39 0.28 0.46	165 160 105 95 385
1008 0450W 1008 0475W 1008 0500W 1008 0525W 1008 0525W	217 229 201 229 201 229 201 229 201 229 217 229	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	0.6 0.8 1.2 0.2 1.4	3.22 1.23 3.00 1.99 1.82	34 20 22 20 < 2	40 70 80	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.27 0.09 0.08 0.08 0.91	0.5 < 0.5 0.5 < 0.5 0.5	12 8 3 4 17	34 16 46 26 17	56 20 33 26 26	5.57 2.40 7.97 5.88 2.91	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.08 0.05 0.03 0.06 0.11	< 10 10 < 10 10 < 10	0.83 0.16 0.14 0.25 0.73	480 100 235 130 745
L	<u> </u>												Ċ	ERTIFIC	CATION:_	140	wh	3.2.0	<u>`J</u> _,	

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GRANGES INC.

2230 - 885 W, GEORGIA ST. VANCOUVER, BC V6C 3E8

Project : Comments: #134-JEFF Page Number : 2-B Total Pages :6 Certificate Date: 26-SEP-94 Invoice No. : 19425946 P.O. Number : Account : BSJ

										CE	RTIF	CATE	OF A		rsis	A9425946
SAMPLE	PREP CODE	Мо ррш	Na. %	Ni ppm	Р ррш	РЪ ррш	Sb Þ pm	Sc ррщ	Sr ppm	Ti %	T1 ppm	D D	V ppm	W ppm	Zn ppm	
100N 0275W 100N 0300W 100N 0325W 100N 0350W 100N 0375W	201 229 217 229 201 229 201 229 201 229 217 229		0.08 0.17 0.02 0.33 0.29	8 10 2 14 14	910 650 330 860 860	2 4 2 18 8	< 2 < 2 < 2 < 2 < 2 < 2 < 2	3 3 1 5 4	27 58 11 74 76	0.13 0.26 0.09 0.37 0.41	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	55 46 31 87 99	< 10 < 10 < 10 < 10 < 10 < 10	42 38 12 52 46	
100N 0400W 100N 0450W 100N 0475W 100N 0500W 100N 0525W	201 229 201 229 217 229 201 229 201 229 201 229	4 3 < 1 3 5	0.03 0.02 0.01 0.02 < 0.01	12 8 5 14 18	790 520 1340 980 1680	12 14 < 2 16 22	< 2 2 < 2 2 2 2 2 2 2	4 5 < 1 4 7	46 15 108 13 3	0.18 0.16 0.02 0.05 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	109 127 4 43 56	< 10 < 10 < 10 < 10 < 10 < 10	76 38 56 102 120	
100N 0550W 100N 0575W 100N 0600W 100N 0625W 100N 0650W	201 229 201 229 201 229 201 229 201 229 201 229	3 1 4 3	0.11 0.14 0.08 0.01 < 0.01	9 10 12 5 27	1150 1390 690 280 1000	10 < 2 4 2 16	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 3 4 1 6	30 45 25 14 6	0.28 0.33 0.12 0.12 0.02	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	103 67 85 74 58	< 10 < 10 < 10 < 10 < 10 < 10	50 50 54 60 162	
100N 0675W 100N 0700W 100S 0000W 100S 0025W 100S 0025W	201 229 217 229 217 229 201 229 201 229 201 229	1 9	< 0.01 0.07 0.01 < 0.01 0.04	24 6 8 8	960 800 290 610 630	10 2 10 16 4	< 2 < 2 < 2 < 2 < 2	4 2 1 3 2	5 46 11 11 16	0.05 0.14 0.25 0.21 0.03	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	80 40 98 139 78	< 10 < 10 < 10 < 10 < 10 < 10	126 46 54 48 38	
100S 0075W 100S 0100W 100S 0125W 100S 0125W 100S 0150W 100S 0175W	201 229 201 229 201 229 201 229 201 229 217 229	4	< 0.01 0.01 < 0.01 0.09 0.11	12 15 14 14 21	1050 960 1620 1770 1180	18 22 24 16 8	2 < 2 < 2 < 2 < 2 < 2	3 4 5 6	3 12 8 41 44	0.10 0.04 0.15 0.17 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	93 88 140 100 104	< 10 < 10 < 10 < 10 < 10 < 10	84 74 70 58 72	
1005 0200W 1005 0225W 1005 0250W 1005 0275W 1005 0300W	201 229 201 229 201 229 201 229 201 229 201 229	3 8 6 5 3	0.01 0.01 0.01 0.01 0.08	11 17 16 14 15	2280 1640 1970 1930 1040	14 30 20 20 16	< 2 < 2 < 2 < 2 < 2	4 3 2 3	9 8 4 15 24	0.09 0.10 0.10 0.12 0.27	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	87 59 63 121 100	< 10 < 10 < 10 < 10 < 10 < 10	60 126 86 70 80	
1005 0325¥ 1005 0350¥ 1005 0375¥ 1005 0400¥ 1005 0425¥	201 229 201 229 217 229 217 229 217 229 201 229	3 6 1 < 1 4	0.04 0.01 0.08 0.10 0.01	13 24 7 7 11	440 860 760 840 650	6 12 4 < 2 14	< 2 < 2 < 2 < 2 < 2 < 2	3 3 2 3 8	17 34 112 71 14	0.43 0.14 0.17 0.25 0.23	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	131 84 26 36 247	< 10 < 10 < 10 < 10 < 10 < 10	40 126 36 38 66	
1008 0450W 1008 0475W 1008 0500W 1008 0525W 1008 0525W	217 229 201 229 201 229 201 229 201 229 217 229	4 3 8 < 6 1	0.08 0.02 0.01 0.02 0.13	26 11 11 12 15	810 260 1270 1230 1040	20 8 22 8 8	< 2 < 2 < 2 < 2 < 2 < 2 < 2	6 4 3 2	27 14 11 23 111	0.15 0.18 0.12 0.09 0.14	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	89 160 114 138 43	< 10 < 10 < 10 < 10 < 10 < 10	140 52 74 54 58	·
	<u>L</u>												Ċ	ERTIFIC	ATION:	Haut Sichler

(

(

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

Page Number :3-A Total Pages :6 Certificate Date: 26-SEP-94 Invoice No. :19425946 P.O. Number : Account :BSJ

Project : #134-JEFF Comments:

										CE	RTIFI	CATE	OF /	ANAL	YSIS		49425	5946		
SAMPLE	PREP CODE	Ац ррb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co mqq	Cr ppm	Cu ppm	Fe %	Ga ppm	Eg ppm	K %	La ppm	Mg %	Mn ppm
1005 0575W 1005 0600W 1005 0625W 1005 0625W 1005 0650W 1005 0675W	217 229 201 229 217 229 217 229 217 229 217 229	< 5 < 5	1.6 0.8 1.8 0.6 0.6	0.75 1.55 0.84 0.64 0.74	14 10 < 2 < 2 < 2 < 2	60 70 180 40 40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.16 0.06 0.32 0.11 0.26	< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	3 7 6 4 8	11 16 11 4 8	26 31 3 3	1.96 5.95 1.49 1.16 2.19	< 10 < 10 < 10 < 10 < 10 < 10	1 < 1 1 1 < 1	0.11 0.05 0.05 0.04 0.06	< 10 < 10 < 10 < 10 < 10 < 10	0.09 0.33 0.38 0.21 0.55	65 670 115 65 150
1005 0700W 200N 0000W 200N 0025W 200N 0050W 200N 0075W	217 229 217 229 201 229 217 229 217 229 201 229	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	0.8 0.4 1.2 0.8 0.6	0.80 1.07 3.45 0.72 1.34	< 2 < 2 18 < 2 8	50 70 30 50 80	< 0.5 < 0.5 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.15 0.54 0.15 0.33 0.17	< 0.5 < 0.5 0.5 0.5 < 0.5	6 11 3 6 4	6 11 19 7 9	4 6 20 4 20	1.55 2.42 5.07 1.37 2.23	< 10 < 10 10 < 10 < 10 < 10	1 < 1 < 1 < 1 < 1 < 1	0.05 0.12 0.09 0.10 0.07	< 10 < 10 30 < 10 < 10	0.30 0.79 0.11 0.40 0.38	90 225 275 120 150
200N 0100W 200N 0125W 200N 0150W 200N 0175W 200N 0175W 200N 0225W	201 229 201 229 201 229 201 229 201 229 201 229	<pre>5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</pre>	0.4 1.6 2.2 0.8 2.2	1.74 3.33 0.92 1.37 1.45	10 32 < 2 < 2 22		< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.0B 0.03 0.23 0.59 0.37	< 0.5 0.5 0.5 0.5 < 0.5	3 4 6 4	17 45 9 11 19	24 38 6 21 26	2.52 9.11 2.18 2.13 3.88	< 10 < 10 < 10 < 10 < 10 < 10	1 < 1 < 1 < 1 < 1 < 1	0.05 0.04 0.09 0.10 0.05	< 10 < 10 < 10 < 10 < 10 < 10	0.33 0.36 0.27 0.42 0.18	115 255 335 230 175
200N 0250W 200N 0275W 200N 0300W 200N 0325W 200N 0325W 200N 0375W	217 229 217 229 217 229 201 229 201 229 201 229	< 5 < 5 20 10 < 5	0.4 0.4 1.0 0.4 < 0.2	1.63 0.94 1.52 2.39 2.04	4 < 2 4 4 52	30 60 90	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.50 0.40 0.66 0.04 0.37	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 1.0	6 8 11 4 21	22 8 16 15 24	13 5 9 21 54	2.58 1.98 3.04 4.04 5.31	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 1 < 1	0.10 0.10 0.13 0.04 0.07	< 10 < 10 < 10 < 10 < 10 < 10	0.56 0.58 0.79 0.34 0.83	135 185 260 310 2240
200N 0400W 200N 0425W 200N 0450W 200N 0450W 200N 0475W 200N 0500W	201 229 201 229 217 229 201 229 201 229 201 229	< 5 < 5 < 5 < 5 < 5 < 5 < 5	0.2 1.2 2.2 < 0.2 0.2	2.19 2.24 1.88 1.85 2.23	66 40 < 2 10 8	120 170 100	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.49 0.24 0.47 0.13 0.29	0.5 0.5 0.5 < 0.5 < 0.5	20 11 12 10 8	25 22 17 13 19	50 37 34 43 27	5.28 4.75 3.70 6.07 6.66	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.08 0.06 0.11 0.06 0.08	< 10 < 10 < 10 < 10 < 10 < 10	0.81 0.78 0.73 0.37 0.54	2650 605 395 580 610
200N 0525W 200N 0550W 200N 0575W 200N 0600W 200N 0600W	201 229 201 229 201 229 201 229 201 229 201 229 201 229	<pre>< 5 < 5</pre>	0.2 < 0.2 0.4 0.2 1.4	1.06 0.78 1.24 1.82 2.29	26 2 < 2 10 32	60 60 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.07 0.07 0.26 0.95 0.25	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 2 7 14 4	9 7 10 14 12	18 8 15 30 18	4.99 2.61 4.20 4.14 4.56	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 1	0.07 0.05 0.08 0.07 0.07	< 10 10 < 10 < 10 < 10 < 10	0.16 0.10 0.40 0.89 0.69	270 65 215 1900 210
200N 0650W 200N 0675W 200N 0700W 300N 0000W 300N 0020W	217 229 201 229 201 229 217 229 217 229 217 229	<pre>< 5 < >	0.4 < 0.2 0.2 0.6 0.6	2.19 3.04 1.24 0.73 1.78	66 12 < 2 16 12	130 60 250	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.10 0.28 0.07 1.29 0.41	< 0.5 < 0.5 < 0.5 3.0 < 0.5	4 22 4 4 7	32 9 7 7 30	37 59 21 16 19	5.24 6.82 4.78 2.45 3.71	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 1 < 1	0.10 0.06 0.06 0.02 0.14	< 10 < 10 < 10 < 10 < 10 < 10	0.64 0.91 0.16 0.06 0.90	230 1810 140 300 195
300N 0050W 300N 0075W 300N 0100W 300N 0125W 300N 0150W	201 229 201 229 201 229 217 229 201 229 201 229	<pre>< 5 < 5</pre>	0.2 2.8 0.8 1.8 0.8	3.11 3.31 3.32 0.93 6.78	34 50 82 < 2 22	40 90	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 0.5	10 < 2 < 2 < 2 < 2 < 2 < 2	0.10 0.04 0.04 0.16 0.04	< 0.5 0.5 0.5 < 0.5 0.5	5 6 13 5 16	27 44 29 16 23	41 53 125 9 94	5.11 7.13 7.48 2.10 5.03	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 1 < 1	0.05 0.07 0.06 0.04 0.06	< 10 < 10 < 10 < 10 < 20	1.29 0.27 0.35 0.28 0.15	485 345 540 90 510
L	<u>_</u> _												c	ERTIFIC	ATION:	100	35	<u>~~</u>]

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

Project : Comments: #134-JEFF Page Number :3-B Total Pages :6 Certificate Date: 26-SEP-94 Invoice No. :19425946 Invoice No. P.O. Number : Account :BSJ

										CE	RTIF		OF A	NAL	YSIS	A9425946
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	P	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	U ppm	V ppm	W ppm	Zn ppm	
1005 0575¥ 1005 0600¥ 1005 0625¥ 1005 0650¥ 1005 0675¥	217 229 201 229 217 229 217 229 217 229 217 229	1 < 1	0.01 < 0.01 0.09 0.04 0.09	6 11 8 5 10	860 890 570 810 850	6 16 4 < 2 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1 5 1 2	22 7 55 35 51	0.02 0.03 0.29 0.15 0.29	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	77 92 58 25 46	< 10 < 10 < 10 < 10 < 10 < 10	34 90 38 44 42	
1005 0700W 200N 0000W 200N 0025W 200N 0050W 200N 0075W	217 229 217 229 201 229 217 229 217 229 201 229	< 1 1 6 < 1 2	0.06 0.21 0.02 0.10 0.06	7 11 10 7 10	890 920 940 1020 740	2 2 20 2 6	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	2 3 2 1 3	37 80 11 52 31	0.19 0.30 0.15 0.17 0.08	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	34 51 27 27 45	< 10 < 10 < 10 < 10 < 10 < 10	34 38 100 40 64	
200N 0100W 200N 0125W 200N 0150W 200N 0150W 200N 0175W 200N 0225W	201 229 201 229 201 229 201 229 201 229 201 229	1 1	0.02 < 0.01 0.05 0.13 < 0.01	11 20 8 9 12	700 1170 1020 770 840	6 20 8 4 8	< 2 < 2 < 2 < 2 < 2 < 2 < 2	4 4 2 3 3	15 6 34 56 45	0.03 0.09 0.38 0.19 0.22	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	67 108 78 63 127	< 10 < 10 < 10 < 10 < 10 < 10	86 132 44 64 112	
200N 0250W 200N 0275W 200N 0300W 200N 0325W 200N 0325W 200N 0375W	217 229 217 229 217 229 201 229 201 229 201 229	1 < 1 < 1 2 2	0.08 0.14 0.24 0.01 0.01	12 9 12 4 22	840 880 980 540 1370	6 2 2 6 24	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	3 2 4 2 3	55 51 71 9 29	0.16 0.28 0.39 0.06 0.03	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	62 43 72 82 54	< 10 < 10 < 10 < 10 < 10 < 10	36 34 38 38 158	
200N 0400W 200N 0425W 200N 0450W 200N 0450W 200N 0475W 200N 0500W	201 229 201 229 217 229 201 229 201 229 201 229	3 1 1 3 3	0.03 0.07 0.19 < 0.01 0.11	22 17 12 6 11	1540 1110 820 1310 890	20 18 10 8 14	< 2 2 < 2 < 2 < 2 < 2 < 2	3 3 4 3 4	39 28 52 8 31	0.04 0.10 0.31 0.19 0.18	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	59 71 93 128 110	< 10 < 10 < 10 < 10 < 10 < 10	154 92 48 72 64	
200N 0525W 200N 0550W 200N 0575W 200N 0575W 200N 0600W 200N 0625W	201 229 201 229 201 229 201 229 201 229 201 229	3 < 1 < 1 1 1	0.02 0.02 0.09 0.07 0.05	6 2 7 11 10	1710 200 590 1370 840	6 < 2 8 8 12	< 2 < 2 < 2 < 2 < 2 < 2 < 2	3 1 4 6 3	23 14 28 44 30	0.11 0.06 0.25 0.10 0.26	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	90 77 126 90 102	< 10 < 10 < 10 < 10 < 10 < 10	44 18 34 84 62	
200N 0650W 200N 0675W 200N 0700W 300N 0700W 300N 0000W 300N 0025W	217 229 201 229 201 229 217 229 217 229 217 229	< 1 1 15 2	0.01 0.01 0.02 0.01 0.14	14 9 3 7 13	660 1720 330 1750 1010	8 6 2 2 10	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	2 8 4 < 1 3	14 11 < 10 65 44	0.05 0.01 0.10 0.01 0.23	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	70 80 121 23 92	< 10 < 10 < 10 < 10 < 10 < 10	62 104 24 48 56	
300N 0050W 300N 0075W 300N 0100W 300N 0125W 300N 0125W 300N 0150W	201 229 201 229 201 229 217 229 201 229 201 229		0.02 0.01 0.01 0.04 0.04	16 20 21 7 18	1730 2270 1540 860 610	20 18 22 2 24	< 2 < 2 4 < 2 6	3 3 4 2 5	9 7 3 29 3	0.02 0.07 0.04 0.17 0.08	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	44 89 68 58 15	< 10 < 10 < 10 < 10 < 10 < 10	108 104 144 22 124	

CERTIFICATION: HartBuchler

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8 Page Number :4-A Total Pages :6 Certificate Date: 26-SEP-94 Invoice No. : 19425946 P.O. Number : Account :BSJ

Project : #134-JEFF Comments:

				_						CE	RTIF	CATE	OF A	ANAL	YSIS		49425	946		
SAMPLE	PREP CODE	ли ppb Рд+дд	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca	Cđ ppm	Co ppm	Cr ppz	Cu	Fe %	Ga ppm	Hg ppm	K	La ppm	Mg %	Mn ppm
300N 0175W 300N 0200W 300N 0225W 300N 0250W 300N 0250W	217 229 217 229 217 229 217 229 201 229 201 229	< 5	0.4 0.6 2.2 1.6 1.2	0.22 2.66 3.25 4.88 4.10	< 2 6 < 2 18 28	40 150 250 40 50	< 0.5 0.5 1.0 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1.07 0.40 2.64 0.06 0.05	1.0 2.5 7.0 0.5 0.5	1 17 14 3 5	2 30 24 74 42	8 55 62 25 39	0.28 4.53 2.02 6.61 8.78	< 10 < 10 < 10 10 30	< 1 < 1 < 1 < 1 < 1 < 1	0.03 0.10 0.06 0.04 0.03	< 10 10 40 < 10 < 10	0.11 0.50 0.40 0.23 0.26	75 2810 8390 285 210
300N 0300W 300N 0325W 300N 0350W 300N 0350W 300N 0375W 300N 0400W	201 229 201 229 201 229 217 229 201 229 201 229	< 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2.4 0.8 < 0.2 < 0.2 0.2	2.79 4.04 2.53 2.17 1.94	14 22 14 16 20	230 340 240 220 70	< 0.5 1.0 0.5 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.03 0.07 0.28 0.30 0.13	0.5 0.5 0.5 1.0 0.5	7 21 13 17 14	26 32 22 33 21	38 106 55 127 43	6.55 6.49 4.41 4.60 4.91	10 10 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.03 0.07 0.05 0.19 0.07	10 40 10 10 < 10	0.21 0.50 0.63 0.69 0.56	350 1195 720 1315 1085
300N 0425W 300N 0450W 300N 0475W 300N 0525W 300N 0525W	201 229 201 229 201 229 201 229 201 229 201 229	15 < 5 < 5 < 5 < 5	0.8 1.0 0.8 0.4 0.2	1.40 1.10 1.86 2.63 1.54	24 2 26 20 22	60 50 110 40 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.39 0.03 0.06	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 9 12 13	19 17 22 21 15	24 9 21 86 63	3.86 2.82 4.19 8.45 6.75	10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.04 0.07 0.07 0.02 0.05	< 10 < 10 < 10 < 10 < 10 < 10	0.26 0.58 0.53 0.15 0.15	315 270 275 220 300
300N 0575W 300N 0600W 300N 0625W 300N 0650W 300N 0675W	201 229 201 229 201 229 201 229 201 229 217 229	90 25 < 5 < 5 < 5 < 5	1.2 < 0.2 0.4 0.2 0.8	2.82 1.62 2.42 1.43 0.72	64 < 2 36 < 2 < 2	410 1190 60 40 170	0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.08	< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	10 13 8 1 6	21 8 70 8 6	152 42 26 4 6	5.11 3.95 7.46 1.91 1.68	< 10 < 10 10 10 < 10	< 1 < 1 < 1 < 1 < 1	0.03 0.10 0.03 0.06 0.12	< 10 < 10 < 10 < 10 < 10	0.75 0.80 0.76 0.09 0.32	650 820 205 80 125
300N 0700W 400N 0350W 400N 0400W 400N 0425W 400N 0450W	217 229 201 229 217 229 201 229 201 229 201 229	< 5 < 5 < 5 < 5 < 5	0.8 0.4 0.2 0.4 0.2	0.52 1.39 1.70 1.33 2.16	< 2 < 2 < 2 < 2 < 2 24	150 110 200 110 140	< 0.5 < 0.5 < 0.5 < 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.27 0.91	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 1.0	4 8 19 7 16	6 13 16 17 24	7 18 33 13 75	1.09 4.01 4.03 4.35 4.45	< 10 10 < 10 10 < 10	1 < 1 < 1 < 1 < 1 < 1	0.11 0.05 0.13 0.04 0.07	< 10 < 10 < 10 < 10 < 10 < 10	0.31 0.47 1.07 0.44 0.81	155 420 1880 455 1570
400N 0475W 400N 050DW 400N 0525W 400N 0550W 400N 0555W	217 229 217 229 217 229 217 229 217 229 217 229	<pre>< 5 < < 5 < < 5 < < 5 </pre>	0.8 1.4 0.6 0.4 0.6	0.46 1.68 0.60 1.27 0.90	< 2 < 2 6 2	50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.87 0.21 0.16	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 9 3 5 9	4 9 20 22 16	6 9 9 8 9	0.82 3.15 1.89 4.29 2.89	< 10 < 10 10 < 10 < 10	2 < 1 < 1 < 1 < 1 < 1	0.07 0.09 0.06 0.12 0.08	< 10 < 10 < 10 < 10 10 < 10	0.15 0.65 0.14 0.25 0.69	90 210 160 1495 285
400N 0600W 400N 0625W 400N 0650W 400N 0675W 400N 0700W	217 229 201 229 201 229 201 229 201 229 201 229	<pre>< 5 < 5 < 5 15 < 5</pre>	0.6 1.6 0.6 1.4 1.8	2.26 6.57 1.59 4.64 2.32	48 32 6 20 2	50	< 0.5 1.0 < 0.5 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.15	< 0.5 0.5 < 0.5 < 0.5 0.5	8 4 7 16 4	20 24 11 27 16	8 15 38 123 20	5.59 6.98 3.93 7.66 4.73	< 10 20 10 < 10 20	< 1 < 1 < 1 < 1 < 1 < 1	0.10 0.05 0.04 0.04 0.06	10 10 < 10 10 10	0.48 0.28 0.22 0.47 0.27	1500 295 145 335 250
500N 0325W 500N 0350W 500N 0375W 500N 0400W 500N 0425W	201 229 201 229 201 229 201 229 201 229 201 229 201 229	<pre>< 5 < 5 < 5 25 < 5 < 5</pre>	1.2 0.6 2.0 0.4 0.6	1.15 2.43 1.45 1.53 2.38	6 16 4 < 2 2	110	< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 16	0.14 0.08 0.15	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 10 3 9 18	18 18 11 8 14	10 106 44 30 9	4.96 6.54 3.65 3.60 4.82	20 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.04 0.05 0.04 0.04 0.22	< 10 < 10 < 10 < 10 < 10 < 10	0.29 0.57 0.23 0.61 1.65	150 605 195 530 675
						_												· · · · · ·		j

CERTIFICATION: Hart Buchler

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8 Page Number :4-B Total Pages :6 Certificate Date: 26-SEP-94 Invoice No. : 19425946 P.O. Number : Account :BSJ

Project : Comments:	#134-JEFF
------------------------	-----------

										CE	RTIF	CATE	OF	ANAL	YSIS	A9425946
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	P ppm	РЬ ррш	Sb ppm	Sc ppm	Sr ppm	Tİ %	T1 ppm	U ppm	V Pomi	W ppm	Zn ppm	
300N 0175W 300N 0200W 300N 0225W 300N 0250W 300N 0275W	217 229 217 229 217 229 217 229 201 229 201 229	< 1 2 6 7	0.02 0.01 0.08 0.01 c 0.01	3 41 33 20 17	490 1200 1710 450 450	< 2 16 4 18 18	< 2 4 < 2 < 2 < 2	< 1 3 1 4 3	129 46 209 9 6	0.03 0.10 0.11 0.07 0.17	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	8 48 33 80 67	< 10 < 10 < 10 < 10 < 10 < 10	38 314 130 144 126	
800N 0300W 800N 0325W 800N 0350W 800N 0375W 800N 0400W	201 229 201 229 201 229 217 229 201 229 201 229		<pre>< 0.01 < 0.01 0.03 0.02 0.02</pre>	10 27 24 24 19	620 820 710 1400 1360	14 14 18 16 18	6 2 < 2 < 2 < 2 < 2	4 9 4 3 2	7 7 30 24 12	0.10 0.08 0.06 0.05 0.06	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	99 92 62 57 62	< 10 < 10 < 10 < 10 < 10 < 10	122 198 188 152 140	
00N 0425W 00N 0450W 00N 0475W 00N 0525W 00N 0550W	201 229 201 229 201 229 201 229 201 229 201 229 201 229	4 1 2 1 2	0.01 0.13 0.06 0.01 0.01	11 12 13 11 11	460 560 810 1390 1540	12 6 14 18 16	2 4 < 2 < 2 < 2 < 2	3 4 3 6 6	11 36 43 6 14	0.21 0.37 0.10 0.07 0.02	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	161 117 66 75 101	< 10 < 10 < 10 < 10 < 10 < 10	68 46 60 76 76	
00N 0575W 00N 0600W 00N 0625W 00N 0650W 00N 0675W	201 229 201 229 201 229 201 229 201 229 217 229	1 2	0.01 0.15 0.02 0.01 0.07	16 11 19 2 7	1120 1200 760 160 690	20 6 32 6 4	2 < 2 4 < 2 2	4 3 6 1 2	7 148 11 5 48	0.02 0.23 0.33 0.31 0.25	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	51 69 292 93 37	< 10 < 10 < 10 < 10 < 10 < 10	106 62 46 10 16	
00N 0700W 00N 0350W 00N 0400W 00N 0425W 00N 0450W	217 229 201 229 217 229 201 229 201 229 201 229	< 1 < 1 < 1 < 1 < 1 3	0.07 0.08 0.23 0.08 0.02	5 7 15 7 32	900 830 1600 830 1370	4 8 12 10 18	< 2 4 < 2 < 2 < 2 < 2	1 2 5 2 3	49 25 73 25 71	0.15 0.27 0.32 0.36 0.05	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	23 111 83 128 47	< 10 < 10 < 10 < 10 < 10 < 10	18 52 82 50 212	
00N 0475W 00N 0500W 00N 0525W 00N 0550W 00N 0575W	217 229 217 229 217 229 217 229 217 229 217 229 217 229	1 1 6 4 2	0.02 0.20 0.03 0.01 0.13	3 12 10 4 11	1150 1240 600 1270 1140	4 8 6 32 4	< 2 2 < 2 < 2 2 2	1 4 2 1 2	29 85 24 11 33	0.11 0.37 0.24 0.13 0.28	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	16 59 108 76 64	< 10 < 10 < 10 < 10 < 10 < 10	40 60 148 58 46	
00N 0600W 00N 0625W 00N 0650W 00N 0675W 00N 0700W	217 229 201 229 201 229 201 229 201 229 201 229 201 229	4 4 1 4 3	0.08 0.08 0.05 0.01 0.06	7 10 8 22 7	980 670 460 1030 780	18 32 6 28 14	< 2 4 2 < 2 2	2 4 2 8 2	22 14 15 7 28	0.10 0.16 0.15 0.10 0.25	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	70 44 94 70 64	< 10 < 10 < 10 < 10 < 10 < 10	62 92 38 140 40	
00N 0325W 00N 0350W 00N 0375W 00N 0400W 00N 0425W	201 229 201 229 201 229 201 229 201 229 201 229	4 3 < 2 < 1 < 1	0.06 0.01 0.01 0.01 0.56	10 17 7 7 19	680 2670 3200 1430 1110	6 14 6 6 14	4 < 2 < 2 < 2 < 2 < 2	2 3 1 1 7	19 10 8 9 102	0.27 0.15 0.05 0.09 0.49	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	114 82 39 62 107	< 10 < 10 < 10 < 10 < 10 < 10	46 128 42 64 58	

CERTIFICATION: Haut Buckler

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

Page Number :5-A Total Pages :6 Certificate Date: 26-SEP-94 Invoice No. : 19425946 P.O. Number : BSJ Account

Project : Comments: #134-JEFF

2200N 000E 201 229 < 5											CE	RTIFI	CATE	OF	ANAL	YSIS		A942 5	5946		
$ \begin{array}{c} \text{Sour Garger} \\ \text{Sour Garger} $	SAMPLE			+																	
Solve Goodyn 117 229 < \$						30		0.5			< 0.5		39		7.85	30	< 1	0.08	10	0.33	900
$ \begin{array}{c} 5000 \ 052501 \\ 2010 \ 025501 \\ 2010 \ 0250$																					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									_												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																					
$ \begin{array}{c} \text{Sour of Sour} & \text{201} & 229 \\ \text{Sour of Sour} & \text{217} & 229 \\ \text{Sour of Sour} & \text{217} & 229 \\ \text{Sour of Sour} & \text{217} & 229 \\ \text{Sour of Sour} & \text{217} & 229 \\ \text{Sour of Sour} & \text{217} & 229 \\ \text{Sour of Sour} & \text{217} & 228 \\ \text{Sour of Sour} & \text{217} & 228 \\ Sour of Sour$			-										17	7			< 1	0.12			
$ \begin{array}{c} \text{5000} \ 6550\text{W} \\ 127 \ 229 \\ < 5 \\ 1.2 \\ 0.29 \\ < 5 \\ 0.2 \\ 0.50 \\ 0.5 \\ 0.6 \\ 0.5 \\ 0.6 \\ 0.5 \\ 0.6 \\ 0.5 \\ 0.6 \\ 0.5 \\$														•							
$ \begin{array}{c} 5000 \ \ 0675w \\ 217 \ 229 \\ < 5 \\ 1.8 \\ 1.08 \\ < 2 \\ < 5 \\ 1.8 \\ 1.08 \\ < 2 \\ < 5 \\ 1.08 \\ < 2 \\ < 5 \\ 1.00 \\ < 0.5 \\ < 2 \\ 1.00 \\ < 0.5 \\ < 2 \\ 1.00 \\ < 0.5 \\ < 2 \\ 0.47 \\ < 0.5 \\ < 0.5 \\ < 2 \\ 0.47 \\ < 0.5 \\ 20 \\ 1.2 \\ 21 \\ 21 \\ 21 \\ 21 \\ 22 \\ < 5 \\ 0.4 \\ 1.2 \\ 21 \\ 22 \\ < 5 \\ 0.4 \\ 2.1 \\ 22 \\ 22 \\ < 5 \\ 0.4 \\ 2.1 \\ 22 \\ 22 \\ < 5 \\ 0.4 \\ 2.1 \\ 22 \\ 22 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 $														_							
$ \begin{array}{c} 6000 \ 0325W \\ 0201 \ 0325W \\ 201 \ 229 \\ 217 \ 229 \\ 229 \\ c 5 \\ c 0.2 \\ 207 \ c 5 \\ c 0.2 \\ c 0.2 \\ c 5 \\ c 0.2 \\ c $																	_				
$ \begin{array}{c} 6 \ 0 0 \ 0 \ $												28	53			< 10	< 1	0.17	< 10	1.17	2210
$ \begin{array}{c} 6000 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $						-		• •													
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						-															
$ \begin{array}{c} \text{conv} 0525W \\ \text{conv} 0525W \\ \text{201} 229 \\ \text{cs} 5 \\ 0.6 \\ 217 \\ 229 \\ cs 5 \\ 0.6 \\ 217 \\ 229 \\ cs 5 \\ 0.6 \\ 1.7 \\ 229 \\ cs 5 \\ 0.6 \\ 1.7 \\ 229 \\ cs 5 \\ 0.6 \\ 1.7 \\ 229 \\ cs 5 \\ 0.6 \\ 1.7 \\ 229 \\ cs 5 \\ 0.6 \\ 1.7 \\ 229 \\ cs 5 \\ 0.6 \\ 1.7 \\ 229 \\ cs 5 \\ 0.6 \\ 1.7 \\ 229 \\ cs 5 \\ 0.6 \\ 1.7 \\ 229 \\ cs 5 \\ 0.6 \\ 1.7 \\ 229 \\ cs 5 \\ 0.6 \\ 1.7 \\ 229 \\ cs 5 \\ 0.6 \\ 1.7 \\ 229 \\ cs 5 \\ 0.6 \\ 1.7 \\ 229 \\ cs 5 \\ 0.6 \\ 1.7 \\ 229 \\ cs 5 \\ 0.6 \\ 1.7 \\ 229 \\ cs 5 \\ 0.6 \\ 1.7 \\ 229 \\ cs 5 \\ 0.6 \\ 1.7 \\ 229 \\ cs 5 \\ 0.6 \\ 1.7 \\ 229 \\ cs 5 \\ 0.6 \\ 1.14 \\ 0.10 \\ cs 60 \\ 0.5 \\ cs 2 \\ 0.11 \\ cs 60 \\ 0.5 \\ cs 2 \\ 0.11 \\ cs 60 \\ 1.7 \\ 1.3 \\ 4.87 \\ 20 \\ 1.1 \\ 1.3 \\ 1.3 \\ cs 60 \\ 1.7 \\ 2.4 \\ 1.3 \\ 1.1 \\ $																					
$ \begin{array}{c} \text{cosn} 0550W \\ 2010 229 \\ 0500 0625W \\ 217 229 \\ 05 \\ 0.4 \\ 1.229 \\ 0.5 \\ 0.4 \\ 1.24 \\ 24 \\ 40 \\ 0.5 \\ 0.$	600N 0500W	201 229	< 5	0.8	2.98	62	130	0.5	< 2	0.70	1.5	23	29	68	6.21	< 10	< 1	0.11	10	0.89	2150
$ \begin{array}{c} 6000 & 0575W \\ 217 & 223 \\ 6000 & 0500W \\ 217 & 223 \\ 217 & 223 \\ 223 $																	_				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																					
$ \begin{array}{c} 600 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$								-													
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	600N 0625W	217 229	< 5	0.2	1.14	6	60	< 0.5	< 2	0.11	< 0.5	3	17			10	< 1	0.11	10	0.09	195
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $														-							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$												-									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																	_				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									_												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													-								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												-					-				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												+									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2200N 100W											-									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2200N 000E																				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												-		-							
$2200N \ 100E \ 217 \ 229 \ < 5 \ 0.2 \ 0.68 \ < 2 \ 60 \ < 0.5 \ < 2 \ 1.21 \ 0.5 \ 4 \ 7 \ B \ 1.20 \ < 10 \ < 1 \ 0.08 \ < 10 \ 0.16 \ 610 \ $	2200N 075E							+					-								
CEPTIFICATION: StartBuchler	2200N 100E																				
CEPTIEICATIONI Stanty Secoler	l																1		· · · · ·		
														1	COTICIC		00	itut	Sec	Le	

CERTIFICATION:_

1

.

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

Project : #134-JEFF Comments: Page Number :5-B Total Pages :6 Certificate Date: 26-SEP-94 Invoice No. : 19425946 P.O. Number : Account :BSJ

		_		_						CE	RTIF	CATE	OF A	NAL	YSIS	A9425946
SAMPLE	PREP CODE	Мо ррш	Na %	Ni ppm	р ррш	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	W ppm	Zn ppm	
500N 0450W 500N 0475W 500N 0500W 500N 0525W	201 229 217 229 217 229 217 229 217 229	8 < 1 1	0.01 0.16 0.02 0.04	20 24 26 26	3520 710 1190 1170	22 10 14 16	2 2 < 2 < 2	5 5 4 3	5 43 41 81	0.14 0.28 0.02 0.04	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	68 136 51 47	< 10 < 10 < 10 < 10 < 10	122 82 144 180	
500N 0550W 500N 0575W 500N 0600W 500N 0625W 500N 0650W 500N 0650W	201 229 201 229 201 229 201 229 201 229 217 229 217 229	2 3 2 < 1	< 0.01 0.10 0.04 0.01 0.13 0.13	8 9 4 2 10 9	2150 970 370 160 990 900	26 16 6 4 16 10	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	2 2 1 2 2	7 26 18 5 57 34	0.01 0.17 0.07 0.05 0.44 0.22	< 10 < 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10 < 10	43 58 81 87 72 68	< 10 < 10 < 10 < 10 < 10 < 10 < 10	86 58 52 28 38 40	·
600N 0300W 600N 0325W 600N 0350W 600N 0400W 600N 0475W	217 229 217 229 201 229 217 229 217 229 217 229 217 229	3 2 1	0.01 0.01 0.06 0.02 0.04	18 16 16 11 16	1770 1520 1470 1600 1560	16 14 16 8 12	2 4 < 2 < 2 4	4 5 4 4 4	41 33 78 65 40	0.03 0.02 0.06 0.02 0.07	< 10 < 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10 < 10	96 113 77 83 95	< 10 < 10 < 10 < 10 < 10 < 10 < 10	90 88 74 84 92	
600N 0500W 600N 0525W 600N 0550W 600N 0550W 600N 0575W 600N 0600W	201 229 201 229 201 229 201 229 217 229 217 229	< 1 2 < 1 5	0.08 0.24 0.01 0.08 0.04	27 29 19 10 6	2050 1280 1180 1100 550	32 24 24 8 4	< 2 4 6 < 2 4	5 6 4 3 3	49 89 11 37 16	0.08 0.21 0.01 0.19 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	73 77 47 71 141	< 10 < 10 < 10 < 10 < 10 < 10	220 160 120 52 78	
600N 0625W 600N 0650W 600N 0675W 600N 0750W 600N 0700W 700N 0550W	217 229 217 229 201 229 217 229 217 229 201 229	2 1 6 2 < 1	0.01 0.10 0.01 0.01 0.12	3 5 7 4 11	450 710 1230 1110 2790	8 4 40 26 6	< 2 < 2 < 2 2 2 < 2	1 2 2 1 3	12 35 10 13 31	0.04 0.14 0.20 0.06 0.13	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	76 63 108 48 85	< 10 < 10 < 10 < 10 < 10 < 10	46 48 96 90 58	· · · · · · · · · · · · · · · · · · ·
700N 0575W 700N 0600W 700N 0625W 700N 0650W 700N 0655W	201 229 201 229 201 229 201 229 201 229 201 229	1 1 3 8 3	0.04 0.01 0.01 0.01 0.01 0.07	8 33 28 31 11	3130 1400 1840 1210 1320	14 16 28 28 8	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	2 3 4 10 7	17 33 48 15 23	0.06 0.01 0.03 0.04 0.15	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	69 49 58 86 147	< 10 < 10 < 10 < 10 < 10 < 10	50 230 232 268 66	
700N 0700W 2200N 025W 2200N 050W 2200N 075W 2200N 075W 2200N 100W	201 229 201 229 217 229 201 229 201 229 217 229	< 1 3 1 2 4	0.03 0.01 0.09 0.15 0.03	6 7 9 12 8	1320 410 640 370 580	4 6 4 10 22	< 2 < 2 < 2 < 2 < 2 < 2 < 2	3 1 2 3 2	12 11 36 31 17	0.07 0.10 0.26 0.23 0.39	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	105 101 90 101 133	< 10 < 10 < 10 < 10 < 10 < 10	36 32 40 56 42	
2200N 050E	201 229 217 229 201 229 201 229 201 229 217 229	3 < 1 6 4 3	0.04 0.17 0.02 0.07 0.05	16 9 7 19 7	610 1080 2350 2090 1300	14 6 14 8 2	< 2 2 < 2 < 2 < 2 < 2	3 2 5 7 1	9 46 15 95 66	0.08 0.28 0.05 0.07 0.16	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	140 47 63 44 22	< 10 < 10 < 10 < 10 < 10 < 10	56 50 112 236 62	
							_									

CERTIFICATION: Hart Prichler

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

Page Number :6-A Total Pages :6 Certificate Date: 26-SEP-94 Invoice No. :19425946 P.O. Number : Account BSJ

Project : Comments: #134-JEFF

												CE	RTIFI	CATE	OF A	ANAL	YSIS		49425	946		
	SAMPLE		ep De	λu ppb Fλ+λλ	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bİ ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	К %	La ppm	Mg X	Mn ppm
	2200N 125E 2200N 150E 2200N 175E 2200N 200E 2200N 225E	201 201 201	229 229 229 229 229 229	5 5 5 5 5 5 5 5 5 5	0.8 0.2 0.4 1.2 0.6	3.09 3.24 3.50 2.79 0.41	32 70 72 54 < 2	90 140 110 30 30	0.5 0.5 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 3	0.39 0.62 1.37 0.06 0.33	< 0.5 1.0 0.5 0.5 < 0.5	39 51 38 9 2	13 9 12 15 5	25 45 27 17 6	8.92 10.70 9.68 12.30 0.75	< 10 < 10 < 10 10 < 10	< 1 < 1 < 1 < 1 < 1 1	0.06 0.02 0.03 0.02 0.08	10 20 10 < 10 < 10	0.81 1.18 0.71 0.59 0.08	4640 3620 2350 315 175
	2200N 250E 2200N 275E 2200N 300E 2200N 325E 2200N 350E	201 217 217	229 229 229 229 229 229	< 5 < 5 < 5 < 5 < 5 < 5 < 5	0.6 1.0 1.0 1.0 0.6	0.63 1.14 2.52 0.50 0.74	< 2 42 < 2 6 6	40 30 30 60 60	< 0.5 < 0.5 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.32 0.03 0.11 0.23 0.11	0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 3 3 4 6	17 9 19 28 24	7 16 22 4 8	2.21 5.70 0.71 1.62 2.18	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.09 0.02 0.03 0.08 0.07	< 10 10 10 < 10 < 10	0.36 0.03 0.05 0.22 0.14	810 110 20 105 75
	2200N 375E 2200N 400E 2200N 425E 2200N 450E 2200N 450E 2200N 475E	201	229 229 229 229 229 229 229	< 5 < 5 < 5 < 5 < 5 < 5	1.4 0.8 0.6 1.4 0.6	1.28 2.03 1.54 3.14 1,16	< 2 < 2 6 20 < 2	40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.30 0.39 0.08 0.02 0.67	0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 8 7 4 8	12 15 11 46 11	7 10 11 27 4	2.78 4.05 5.78 7.64 1.97	< 10 < 10 10 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.07 0.07 0.03 0.03 0.13	< 10 < 10 < 10 < 10 < 10 < 10	0.51 0.67 0.36 0.28 0.70	365 730 225 240 285
	2200N 500E	201	229	< 5	0.4	3.22	8	60	< 0.5	2	0.44	< 0.5	34	8	28	6.61	< 10	< 1	0.02	20	1.26	1740
ſ															Ċ	ERTIFIC		14	art	Bu	Ale	~

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

Project : #134-JEFF Comments: Page Number :6-B Total Pages :6 Certificate Date: 26-SEP-94 Invoice No. :19425946 P.O. Number : Account :BSJ

										CE	RTIF	CATE	OF A	NALY	/SIS	A9425946
SAMPLE	Prep Code	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	SD ppm	Sc ppm	Sr ppm	Tİ X	T1 ppm	D T	V ppm	W Ppm	Zn ppm	
2200N 125E 2200N 150E 2200N 175E 2200N 200E 2200N 225E	201 229 201 229 201 229 201 229 201 229 217 229	6 9 10 8 < 1	0.07 0.01 0.05 0.01 0.02	11 12 12 6 3	3090 2430 2130 990 1170	26 26 32 24 6	< 2 4 2 < 2 < 2 < 2	6 16 13 3 1	25 29 67 8 21	0.08 0.01 0.06 0.21 0.08	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	78 62 59 112 12	< 10 < 10 < 10 10 < 10	166 256 258 106 42	
2200N 250E 2200N 275E 2200N 300E 2200N 325E 2200N 350E	217 229 201 229 217 229 217 229 217 229 217 229 217 229	2 30 1 5 2	0.08 0.01 0.01 0.06 0.04	8 3 4 4 3	1060 850 2810 950 710	2 6 12 6 6	< 2 2 < 2 < 2 2 2	2 1 < 1 1 1	23 4 11 27 14	0.25 0.07 0.01 0.11 0.04	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	57 67 12 23 44	< 10 < 10 < 10 < 10 < 10 < 10	34 44 26 28 34	
2200N 375E 2200N 400E 2200N 425E 2200N 450E 2200N 450E 2200N 475E	217 229 217 229 201 229 201 229 201 229 217 229	1 < 1 5 9 < 1	0.06 0.05 0.03 < 0.01 0.25	5 6 7 19 10	1100 1610 1490 800 850	2 6 14 32 2	< 2 < 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7 6 3 4 3	43 42 15 4 85	0.11 0.10 0.08 0.10 0.26	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	56 66 131 136 44	< 10 < 10 < 10 < 10 < 10 < 10	54 106 66 180 32	
2200N 500E	201 229	5	0.01	6		34	2	9	33	0.01	< 10	< 10	65	< 10	132	
													Ċ	ERTIFIC		Haut Bichler

Cheinex Laps Ltd.

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

A9425963

Comments:

134. 041.009

CERTIFICATE

A9425963

(BSJ) - GRANGES INC.

Jeff Grid / Soils Project: P.O, # : #134-J

semples submitted to our lab in Vancouver, BC. is report was printed on 26-SEP-94.

	SAM	PLE PREPARATION
CHEMEX	NUMBER SAMPLES	DESCRIPTION
201 203 205 229	132 4 4 136	Dry, sieve to -80 mesh Dry, sieve to -35 mesh Geochem ring to approx 150 mesh ICP - AQ Digestion charge
* NOTE	1.	

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: A1, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, T1, W.

136 136			LIMIT	LIMIT
136	Au ppb: Fuse 10 g sample	Р л- ллs	5	10000
	Ag ppm: 32 element, soil & rock	ICP-AES	0.2	200
136	Al %: 32 element, soil & rock	ICP-AES	0.01	15.00
136	As ppm: 32 element, soil & rock	ICP-AES	2	10000
		ICP-AES		10000
				100.0
				10000
				15.00
				100.0
			—	10000
		-		10000 10000
				15.00
				10000
				10000
			_	10.00
		-		10000
136	Mg %: 32 element, soil & rock	ICP-AES	0.01	15.00
136	Mn ppm: 32 element, soil & rock	ICP-AES	5	10000
136	Mo ppm: 32 element, soil & rock	ICP-AES	1	10000
136	Na %: 32 element, soil & rock	ICP-AES	0.01	5.00
			1	10000
		ICP-AES		10000
				10000
				10000
			_	10000
				10000
				5.00
				10000
				10000
			_	10000 10000
· 1				10000
	136 136	 Be ppm: 32 element, soil & rock Bi ppm: 32 element, soil & rock Ca %: 32 element, soil & rock Ca %: 32 element, soil & rock Ca (ppm: 32 element, soil & rock Ca (ppm: 32 element, soil & rock Ca (ppm: 32 element, soil & rock Ca (ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Ga ppm: 32 element, soil & rock Ga ppm: 32 element, soil & rock Be ppm: 32 element, soil & rock Ma (mathematical and mathematical a	136Be ppm: 32 element, soil & rockICP-AES136Bi ppm: 32 element, soil & rockICP-AES136Ca %: 32 element, soil & rockICP-AES136Ca %: 32 element, soil & rockICP-AES136Ca ppm: 32 element, soil & rockICP-AES136Co ppm: 32 element, soil & rockICP-AES136Cr ppm: 32 element, soil & rockICP-AES136Cr ppm: 32 element, soil & rockICP-AES136Ga ppm: 32 element, soil & rockICP-AES136Ga ppm: 32 element, soil & rockICP-AES136Ga ppm: 32 element, soil & rockICP-AES136Bg ppm: 32 element, soil & rockICP-AES136Mg ppm: 32 element, soil & rockICP-AES136Mg %: 32 element, soil & rockICP-AES136Mg %: 32 element, soil & rockICP-AES136Mg %: 32 element, soil & rockICP-AES136Mo ppm: 32 element, soil & rockICP-AES136Na %: 32 element, soil & rockICP-AES136Na %: 32 element, soil & rockICP-AES136Na %: 32 element, soil & rockICP-AES136P ppm: 32 element, soil & rockICP-AES136Sc ppm: 32 element, soil & rockICP-AES136Sc ppm: 32 element, soil & rockICP-AES136Sc ppm: 32 element, soil & rockICP-AES136Sc ppm: 32 element, soil & rockICP-AES136Sc ppm: 32 element, soil & rockICP-AES136Sr ppm: 32 element, soil & rock </td <td>136Be ppm: 32 element, soil & rockICP-AES0.5136Bi ppm: 32 element, soil & rockICP-AES2136Ca %: 32 element, soil & rockICP-AES0.01136Cd ppm: 32 element, soil & rockICP-AES0.5136Co ppm: 32 element, soil & rockICP-AES1136Cr ppm: 32 element, soil & rockICP-AES1136Cr ppm: 32 element, soil & rockICP-AES1136Cu ppm: 32 element, soil & rockICP-AES1136Fe %: 32 element, soil & rockICP-AES10136Ga ppm: 32 element, soil & rockICP-AES10136Bg ppm: 32 element, soil & rockICP-AES10136Mg ppm: 32 element, soil & rockICP-AES10136Mg %: 32 element, soil & rockICP-AES10136Mg %: 32 element, soil & rockICP-AES10136Mg %: 32 element, soil & rockICP-AES1136N ppm: 32 element, soil & rockICP-AES1136N ppm: 32 element, soil & rockICP-AES1136Ni ppm: 32 element, soil & rockICP-AES1136Sr ppm: 32 element, soil & rockICP-AES1136Sr ppm: 32 element, soil & rockICP-AES1136Sr ppm: 32 element, soil & rockICP-AES1136Sr ppm: 32 element, soil & rockICP-AES1136Sr ppm: 32 element, soil & rockICP-AES1136Sr ppm: 32 eleme</td>	136Be ppm: 32 element, soil & rockICP-AES0.5136Bi ppm: 32 element, soil & rockICP-AES2136Ca %: 32 element, soil & rockICP-AES0.01136Cd ppm: 32 element, soil & rockICP-AES0.5136Co ppm: 32 element, soil & rockICP-AES1136Cr ppm: 32 element, soil & rockICP-AES1136Cr ppm: 32 element, soil & rockICP-AES1136Cu ppm: 32 element, soil & rockICP-AES1136Fe %: 32 element, soil & rockICP-AES10136Ga ppm: 32 element, soil & rockICP-AES10136Bg ppm: 32 element, soil & rockICP-AES10136Mg ppm: 32 element, soil & rockICP-AES10136Mg %: 32 element, soil & rockICP-AES10136Mg %: 32 element, soil & rockICP-AES10136Mg %: 32 element, soil & rockICP-AES1136N ppm: 32 element, soil & rockICP-AES1136N ppm: 32 element, soil & rockICP-AES1136Ni ppm: 32 element, soil & rockICP-AES1136Sr ppm: 32 element, soil & rockICP-AES1136Sr ppm: 32 element, soil & rockICP-AES1136Sr ppm: 32 element, soil & rockICP-AES1136Sr ppm: 32 element, soil & rockICP-AES1136Sr ppm: 32 element, soil & rockICP-AES1136Sr ppm: 32 eleme

ANALYTICAL PROCEDURES

Analytical Chemists * Geochemists * Registered Assayers

212 Brocksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GRANGES INC.

2230 - 885 W, GEORGIA ST. VANCOUVER, BC V6C 3E8

Jeff Griel Soils

CERTIFICATE OF ANALYSIS

Page Number :1-A Total Pages :4 Cartificate Date: 26-SEP-94 Invoice No. :19425963 P.O. Number : Account :BSJ

Project : #134-J Comments:

134,041 - 009 A9425963

	SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	-			Mg %	
	000 0+25E 000 0+50E 000 0+75E 000 1+00E 000 1+75E	201 229 201 229 201 229 201 229 201 229 201 229	< 5 < 5 < 5	< 0.2 3.2 0.4 0.2 1.8	1.98 1.91 2.20 0.86 3.52	18 18 16 24 38	80 60 50 30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.09 0.01 0.14 0.26 0.35	< 0.5 < 0.5 < 0.5 < 0.5 0.5	5 3 5 4 6	29 18 35 14 39	21 43 30 29 35	4.49 3.71 7.00 2.85 9.40	< 10 < 10 < 10 < 10 < 10		0.07 0.04 0.07 0.11 0.01	20 < 10 10 < 10 < 10	0.25 0.15 0.29 0.18 0.91	355 70 440 230 445
	00N 2+00E 00N 2+25E 00N 2+50E 00N 2+75E 00N 3+00E	201 229 201 229 201 229 201 229 201 229 201 229	< 5 < 5 < 5	1.8 1.6 0.6 0.4 1.2	2.38 6.09 3.04 3.06 3.90	52 26 28 28 16	130 50 100 130 30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 2 2 < 2	0.18 0.20 0.50 0.29 0.13	< 0.5 < 0.5 < 0.5 0.5 0.5	9 4 17 32 4	28 79 53 79 24	25 55 36 31 24	7.00 5.68 6.09 8.14 7.56	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 1 < 1 < 1 < 1	0.03 0.03 0.07 0.02 0.02	< 10 < 10 < 10 < 10 < 10 < 10	0.74 0.53 1.15 1.00 0.55	950 320 580 2020 430
	00N 3+25E 00N 3+50E 00N 3+75E 0N 4+00E 0N 4+25E	201 229 201 229 201 229 201 229 	< 5 < 5	0.8 0.2 1.2 miss. 0.6	4.86 1.85 4.86 miss. 1.59	32 14 32 miss. 1 < 2	80 100 120 Liss. 90	1.0 0.5 1.5 miss. 5 < 0.5	< 2 < 2 < 2 niss. 1 < 2	0.12 0.26 1.27 miss. 0.80	0.5 0.5 4.5 miss. 0.5	11 4 14 miss. 1	31 11 28 miss. 19	25 17 23 miss. 13	5.43 6.80 4.69 miss. 6.34	< 10 < 10 < 10 miss. < 10	< 1 < 1 < 1 miss. < 1	0.06 0.04 0.06 miss. 0.04	20 10 60 miss. 20	0.79 0.21 0.57 miss. 0.13	1280 240 2700 miss. 245
1+ 1+ 1+	00N 0+25E 00N 0+50E 00N 0+75E 00N 1+00E 00N 1+50E	203 205 203 205 201 229 201 229 201 229	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	0.2 1.4 0.4 0.6 0.8	2.10 2.69 1.11 2.89 2.89	10 48 14 14 16	110 120 110 140 100	< 0.5 0.5 < 0.5 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1.18 1.21 0.12 0.95 0.07	0.5 1.0 < 0.5 < 0.5 0.5	6 13 1 7 4	29 46 18 35 36	33 41 11 23 32	3.02 8.35 1.98 3.02 8.14	< 10 < 10 < 10 < 10 < 10 < 10	< 1 1 < 1 < 1 < 1	0.04 0.02 0.05 0.04 0.03	10 10 10 20 < 10	0.30 0.43 0.18 0.66 0.44	625 1965 60 280 210
1+ 1+ 1+	00N 1+75E 00N 3+00E 00N 3+25E 00N 3+50E 00N 3+75E	203 205 201 229 201 229 201 229 201 229 201 229	< 5 < 5 < 5 < 5 < 5 < 5	0.8 0.2 < 0.2 0.6 0.2	1.32 3.30 3.70 4.00 2.50	2 14 8 26 22	70 850 230 50 40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 10 < 2 < 2 < 2 < 2	1.03 0.64 0.30 0.03 0.03	< 0.5 < 0.5 < 0.5 0.5 0.5	11 49 10 2 3	11 73 78 51 37	8 104 57 24 18	2.46 6.60 7.18 11.60 7.24	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.16 0.03 0.05 0.02 0.03	< 10 < 10 10 < 10 10	0.88 1.29 0.82 0.24 0.50	275 2010 455 195 210
1+ 1+ 1+	00N 4+00E 00N 4+25E 00N 4+50E 00N 4+75E 00S 0+00E	201 229 201 229 201 229 201 229 201 229 201 229	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	1.0 0.8 1.2 5.2 0.6	2.86 1.72 1.40 1.33 2.91	16 18 16 88 10	90 60 90 70 140	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.44 0.23 0.11 0.09 0.03	0.5 0.5 < 0.5 0.5 < 0.5	3 2 3 2 3	25 19 18 26 25	18 12 16 77 51	6.17 5.66 5.16 11.75 4.71	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 1 1	0.02 0.04 0.04 0.04 0.05	20 20 10 < 10 10	0.26 0.23 0.14 0.28 0.46	150 205 170 135 150
1+ 1+ 1+	005 0+25E 005 0+50E 005 1+00E 005 1+25E 005 1+50E	201 229 201 229 201 229 201 229 203 205 201 229	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	0.2 0.4 0.2 < 0.2 0.8	2.53 2.46 2.21 2.55 2.10	16 24 24 14 24	120 130 40 110 60	< 0.5 0.5 < 0.5 0.5 < 0.5	< 2 6 4 < 2 < 2	0.82 0.86 0.10 1.64 0.13	< 0.5 0.5 < 0.5 0.5 < 0.5	10 30 12 19 16	27 31 23 30 32	64 128 112 67 62	5.41 5.00 4.97 4.39 4.38	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.08 0.11 0.08 0.14 0.14	< 10 10 < 10 < 10 < 10	0.62 1.01 0.98 0.78 0.56	695 1870 415 1505 665
1+		201 229 201 229 201 229 201 229 201 229 201 229	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	< 0.2 0.8 1.4 2.2 1.2	2.88 1.91 3.36 2.93 2.30	14 192 32 32 24	80 60 70 60 160	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	26 < 2 < 2 < 2 < 2 < 2 < 2	0.80 0.20 0.05 0.06 0.52	< 0.5 < 0.5 0.5 < 0.5 0.5	34 6 4 8	55 21 38 37 33	23 25 29 36 30	6.38 8.28 6.14 9.64 7.36	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 1 < 1	0.09 0.08 0.06 0.04 0.03	< 10 10 < 10 < 10 10	1.32 0.24 0.46 0.34 0.23	1895 635 350 190 390

Sant Brehler CERTIFICATION:

C

 $(\widehat{})$

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brocksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

rage Number : 1-B Total Pages :4 Certificate Date: 26-SEP-94 Invoice No. : 19425963 P.O. Number BSJ Account

Project : Comments: #134-J

										CERTIFICATE OF ANALYSIS						A9425963
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	p ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	U mqq	V ppm	W Mqq	Zn ppm	
000N 0+25E 000N 0+50E	201 229 201 229	82	0.01	9 10	470 560	34	2 < 2	32	14 6	0.33	< 10 < 10	< 10 < 10	139 95	< 10 < 10	66 58	
000N 0+75E 000N 1+00E 000N 1+75E	201 229 201 229 201 229	9	< 0.01 0.02 < 0.01	13 10 17	1990 550 1170	24 8 8	< 2 < 2 < 2	3 2 4	13 25 19	0.18 0.10 0.22	< 10 < 10 < 10	< 10 < 10 < 10	101 118 100	< 10 < 10 < 10	112 56 134	
000N 2+00E 000N 2+25E	201 229 201 229	18	0.03	22 18	1180 1190	10 12	4 < 2	3	24 8	0.15 0.10	< 10 < 10	< 10 < 10	97 60	< 10 < 10	162 78	
000N 2+50E 000N 2+75E 000N 3+00E	201 229 201 229 201 229 201 229	4 9 14	0.11 0.01 0.01	21 21 11	1150 1130 880	8 14 26	< 2 < 2 < 2	9 8 4	36 14 8	0.36 0.18 0.22	< 10 < 10 < 10	< 10 < 10 < 10	169 161 85	< 10 < 10 < 10	84 116 152	
000N 3+25E 000N 3+50E	201 229 201 229	21 30	0.01	68 18	510 530	26	< 2 < 2	7	9 14	0.18	< 10 < 10	< 10 < 10	76 58	< 10 < 10	838 166	
000N 3+75E 000N 4+00E 000N 4+25E	201 229	26 miss. r	0.06 miss. 1 < 0.01	42 miss. 1 8	1180 miss. m 630	10 iss. m 18	< 2 山明月. 加 < 2	1ss. m 2	77 188. 1 46	0.92 1188. 1 0.39	< 10 miss. 1 < 10	20 miss. : < 10	90 1155. 1 110	< 10 miss. 7 < 10	562 miss. 138	
1+00N 0+25E 1+00N 0+50E 1+00N 0+575E 1+00N 1+00E 1+00N 1+50E	203 205 203 205 201 229 201 229 201 229 201 229	7 24 14 4	0.01 0.01 0.01 0.01 0.01 0.01	13 18 6 16 18	1170 2040 190 1200 470	12 14 12 18 18	< 2 < 2 < 2 4 < 2	4 6 2 4 5	64 65 15 44 9	0.06 0.07 0.11 0.10 0.20	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	49 114 93 62 107	< 10 < 10 < 10 < 10 < 10 < 10	94 106 56 126 100	
1+00N 1+75E 1+00N 3+00E 1+00N 3+25E 1+00N 3+50E 1+00N 3+75E	203 205 201 229 201 229 201 229 201 229 201 229	< 1 2 3 < 5 <	0.29 0.01 0.01 0.01 0.01 0.01	13 38 24 11 16	1060 1390 740 450 310	6 6 14 20 20	< 2 < 2 < 2 < 2 < 2 < 2 < 2	4 7 13 5 5	76 28 15 11 7	0.31 0.18 0.26 0.19 0.17	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	53 151 184 144 112	< 10 < 10 < 10 < 10 < 10 < 10 < 10	46 82 66 78 76	
1+00N 4+00E 1+00N 4+25E 1+00N 4+50E 1+00N 4+50E 1+00N 4+75E 1+00S 0+00E	201 229 201 229 201 229 201 229 201 229 201 229 201 229	6 < 8 8 34 2	0.01 0.01 0.01 0.03 0.01	9 9 9 10 12	540 570 550 1530 550	14 14 12 28 14	< 2 < 2 < 2 2 2	4 2 2 2 5	24 18 15 13 8	0.13 0.22 0.21 0.07 0.02	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	104 80 102 92 85	< 10 < 10 < 10 < 10 < 10 < 10	92 78 68 120 54	
1+005 0+25E 1+005 0+50E 1+005 1+00E 1+005 1+25E 1+005 1+50E	201 229 201 229 201 229 201 229 203 205 201 229	2	0.01 0.01 0.01 0.08 0.02	24 43 25 31 27	1380 1460 910 1610 1500	20 30 24 12 18	< 2 < 2 < 2 < 2 < 2 < 2 < 2	3 7 3 5 2	56 61 11 < 91 11	0.01 0.02 0.01 0.10 0.04	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	46 38 39 55 52	< 10 < 10 < 10 < 10 < 10 < 10	102 140 96 128 56	
1+005 2+00E 1+005 2+25E 2+00N 0+25E 2+00N 1+00E 2+00N 1+25E	201 229 201 229 201 229 201 229 201 229 201 229 201 229		0.16 0.01 0.01 0.01 0.01	22 8 29 15 19	1370 1710 450 780 430	12 10 16 18 20	< 2 < 2 2 < 2 2 2 2 2	7 3 6 3 4	54 12 8 7 34	0.36 0.12 0.08 0.10 0.17	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	164 109 84 123 148	< 10 < 10 < 10 < 10 < 10 < 10	70 48 232 118 226	· · · · · · · · · · · · · · · · · · ·
l,													Ċ	ERTIFIC	ATION:_	Sant Bichler

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

Page Number :2-A Total Pages :4 Certificate Date: 26-SEP-94 Invoice No. :19425963 P.O. Number : :BSJ Account

Project :	#134-J
Comments:	

20+00N 2+25E 201 229 < 5		63	259	A942		SIS	L Y	ANA	OF	ATE	RTIFI	CE									_		
$ \begin{array}{c} +00m \ 1+75m \\ +00m \ 2+05m \\ 2+05m \\ 2+05m \\ $	Mg % I				-														-				SAMPLE
$ \begin{array}{c} 1 + 0 + 0 + 2 + 0 + 2 \\ 2 + 0 + 0 + 2 + 0 + 2 \\ 2 + 0 + 0 + 2 + 2 \\ 2 + 0 + 0 + 2 + 2 \\ 2 + 0 + 0 + 2 + 2 \\ 2 + 0 + 2 + 0 + 2 \\ 2 + 0 + 0 + 2 + 0 \\ 2 + 0 + 2 + 0 + 2 \\ 2 + 0 + 0 + 2 + 0 \\ 2 + 0 + 0 + 2 + 0 \\ 2 + 0 + 0 + 2 + 0 \\ 2 + 0 + 0 + 2 + 0 \\ 2 + 0 + 0 + 0 + 2 \\ 2 + 0 + 0 + 0 + 0 + 0 \\ 2 + 0 + 0 + 0 \\ 2 + 0 + 0 + 0 + 0 \\ 2 + 0 + 0 + 0 \\ 2 + 0 + 0 + 0 \\ 2 + 0 + 0 + 0 \\ 2 + 0 + 0 + 0 \\ 2 + 0 + 0 + 0 \\ 2 + 0 + 0 + 0 \\ 2 + 0 + 0 + 0 \\ 2 + 0 + 0 + 0 \\ 2 + 0 + 0 + 0 \\ 2 + 0 + 0 + 0 \\ 2 + 0 + 0 + 0 \\ 2 + 0 + 0 + 0 \\ 2 + 0 + 0 + 0 \\ 2 + 0 + 0 + 0 \\ 2 + 0 + 0 + 0 \\ 2 + 0 + 0 \\ 2 + 0 + 0 + 0 \\ 2 $	0.15 1		-								-							1.99	1.0	< 5	1 229	201	00N 1+50E
$ \begin{array}{c} 1 & 0 & 0 & 1 \\ 2 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 $	0.17 1		•		_																		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.61 4		-											_									
2+000 2+000 2+000 4+000 4+000 4+000 4+000 4+000 4+000 4+000 4+000 4+000 4+000 4+000 4+000 4+000 4+000 4+000 4+000 4+000 10 0.5 4 33 21 5.79 <10 <10 0.00 10 2+000 4+25E 201 229 < 5 1.6 3.22 26 80 <0.5 <2 0.04 0.5 2 35 38 6.68 <10 <1 0.03 <10 2+000 125 21 1.44 42 50 <0.5 <2 0.01 0.5 2 37 23 45 7.01 <10 10.03 <10 37 30 32 45 7.01 <10 0.03 <10 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30<	0.91 7	< 10	2 <	0.02	< 1	< 10	96	7.96	19	24	6	0.5	0.13	< 2	< 0.5	110	26	3.55	3.8				
2x00 4x00 2x00 4x00 2x00 4x00 xx00 4x00 xx00 4x00 xx00 x00 x	0.21 2																						
$ \begin{array}{c} 1 + 0 \text{ for } 1 + 25 \text{ for } 1 = 29 \\ 3 + 0 \text{ for } 1 + 25 \text{ for } 1 = 29 \\ 3 + 0 \text{ for } 1 + 0 \text{ for } 29 \\ 3 + 0 \text{ for } 1 + 0 \text{ for } 29 \\ 3 + 0 \text{ for } 1 + 0 \text{ for } 29 \\ 3 + 0 \text{ for } 1 + 0 \text{ for } 29 \\ 3 + 0 \text{ for } 1 + 0 \text{ for } 29 \\ 3 + 0 \text{ for } 1 + 0 \text{ for } 29 \\ 3 + 0 \text{ for } 1 + 0 \text{ for } 29 \\ 3 + 0 \text{ for } 1 + 0 \text{ for } 29 \\ 3 + 0 \text{ for } 1 + 0 \text{ for } 29 \\ 3 + 0 \text{ for } 1 + 0 \text{ for } 29 \\ 3 + 0 \text{ for } 1 + 0 \text{ for } 29 \\ 3 + 0 \text{ for } 1 + 0 \text{ for } 29 \\ 3 + 0 \text{ for } 1 + 0 \text{ for } 29 \\ 3 + 0 \text{ for } 1 + 0 \text{ for } 29 \\ 3 + 0 \text{ for } 1 + 0 \text{ for } 29 \\ 3 + 0 \text{ for } 1 + 0 \text{ for } 29 \\ 3 + 0 \text{ for } 1 + 0 \text{ for } 29 \\ 3 + 0 \text{ for } 1 + 0 \text{ for } 10 $	0.24 3																			-			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.27 1																						
5+00x 1+50x 201 223 5 3.8 2.87 34 80 <0.5 2 0.70 1+75x 201 223 < 5 5.5	0.39 2	20		0.07	< 1	< 10	08	6.08	18	22	3	1.0	0.33	< 2	0.5	100	24	1.90	0.4	< 5	1 229	201	00N 1+00E
5 + 000 1 + 75E 201 229 < 5 5.2 5.03 40 80 < 0.5 < 2 0.03 1.0 3 56 49 10.70 < 10 < 1 0.03 10 5 + 000 2+35E 201 229 < 5 2.4 2.05 2.8 70 < 0.5 < 2 0.02 0.5 3 32 26 11.10 < 10 1 0.03 < 10 5 + 000 2+35E 201 229 < 5 2.4 14 70 0.5 < 2 0.02 0.5 3 32 26 11.10 < 10 1 0.03 10 300 229 < 5 3.2 3.4 16 40 < 0.5 < 2 0.07 10 13 4.98 < 10 2 0.03 10 33 14 25 4.78 10 1 0.03 10 33 14 25 4.78 10 1 0.03 10	0.14 1 0.13 2													_									
S + ODE 2 + ODE <t< td=""><td>0.13 2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td></t<>	0.13 2								_											-			
John Jack Line John Ja	0.23 3	< 10							41	21													
$ \begin{array}{c} 3 + 007 \ 2 + 75 \ 2 + 16 \ 2 +$	0.19 7	30	i	0.05	1	< 10	10	11.10	26	32	3	0.5	0.02	< 2	0.5	20	40	4.11	3.6	< 5	1 229	201	00N 2+25E
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.12 13	÷ -											0.54	< 2	0.5	70	14	2.04	0.8	< 5	1 229	201	00N 2+50E
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.36 1					_																	
3+00N 3+50Z 201 229 < 5 4.8 4.00 22 90 < 0.5 < 2 0.03 0.5 4 42 43 8.43 < 10 1 0.04 10 3+00N 3+75E 201 229 < 5	0.10 1 0.09 1																			-			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.43 3																						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.38 4																						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.29 1 0.22 9															••							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.25 2																			-			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	iss. miss	ss. mi	mis	miss.	miss.	iss.	. mi	miss.	68.	88. mi	ss. m	aise. m	iss.		niss. H	iss.	miss. n	niss.	niss.	miss.			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.14 1										_									•			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.10 2 0.21 3				_																		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.18 4			+	_				•														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.22 8	< 10	<	0.03	< 1	< 10	93	9.93	21	18	14	< 0.5	0.16	< 2	< 0.5	30	12						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.03 9				_									•					0.2	< 5			00W 4+00E
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.00 9				_									-									
21+00N 0+50E 201 229 < 5 1.2 3.56 42 80 0.5 < 2 0.02 < 0.5 7 25 72 7.46 < 10 < 1 0.07 10 21+00N 0+50E 201 229 < 5	0.99 12													-									
21+00N 1+00E 201 229 < 5 2.0 4.26 114 60 < 0.5 < 2 0.27 0.5 7 47 26 8.83 < 10 < 1 0.04 < 10 21+00N 1+25E 201 229 < 5 6.0 4.42 106 110 1.0 < 2 0.03 0.5 14 38 165 9.17 < 10 < 1 0.11 10	0.34 3																						
21+00N 1+25E 201 229 < 5 6.0 4.42 106 110 1.0 < 2 0.03 0.5 14 38 165 9.17 < 10 < 1 0.11 10	0.50 9																		1.2	< 5			00N 0+75E
	0.35 7		<			_																	
21+00N 1+50E [201[229] < 5 6.2 4.65 84 90 0.5 < 2 0.03 0.5 4 28 97 9.88 < 10 < 1 0.06 10	0.44 14			0.11	< 1	< 10 < 10		9.17	165 97	38	14 4	0.5	0.03	< 2	1.0	110 90	106	4.42	6.0 6.2	< 5 < 5			00N 1+25E 00N 1+50E
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.03										-												
	0	<u></u>	17																				
CEPTIFICATION Haut Such	der	, when	19	wh	100	-																	
CERTIFICATION:						ATION:	IFICA	CERTIF	. (

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

Page Number :2-B Total Pages :4 Certificate Date: 26-SEP-94 Invoice No. : 19425963 P.O. Number : BSJ Account

Project : Comments: #134-J

										CE	RTIF	ICATE	OF	ANAL	rsis	A9425963
SAMPLE	PREP CODE	Mo ppm			P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	W ppm	Zn ppm	
2+00N 1+50E 2+00N 1+75E 2+00N 2+00E 2+00N 2+25E 2+00N 3+00E	201 229 201 229 201 229 201 229 201 229 201 229	11 21 7	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	10 27 29	930 990 680 540 730	16 12 24 18 22	< 2 2 2 < 2 < 2 < 2	4 3 5 8 4	9 6 4 4 14	0.08 0.21 0.03 0.08 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	135 155 74 75 127	< 10 < 10 < 10 < 10 < 10 < 10	118 96 264 240 152	
2+00N 3+50E 2+00N 3+75E 2+00N 4+00E 2+00N 4+25E 3+00N 1+00E	201 229 201 229 201 229 201 229 201 229 201 229	14 6 11		12 14 11	620 490 740 450 910	18 22 22 18 32	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	5 4 6 3	5 14 11 8 21	0.21 0.28 0.16 0.10 0.17	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	198 222 101 138 71	< 10 < 10 < 10 < 10 < 10 < 10	98 88 142 132 304	
3+00N 1+25E 3+00N 1+50E 3+00N 1+50E 3+00N 1+75E 3+00N 2+00E 3+00N 2+25E	201 229 201 229 201 229 201 229 201 229 201 229	19 16	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.02	17 13 23 41 13	560 580 800 730 820	16 28 36 14 18	2 2 < 2 < 2 < 2 < 2	3 3 9 4 5	11 6 3 4 2	0.13 0.15 0.10 0.16 0.17	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	165 146 92 84 30	< 10 < 10 < 10 < 10 < 10 < 10	276 224 234 260 160	
3+00N 2+50E 3+00N 2+75E 3+00N 3+00E 3+00N 3+25E 3+00N 3+50E	201 229 201 229 201 229 201 229 201 229 201 229 201 229	14 23 12 12 8		22	950 770 480 700 950	22 14 14 8 22	2 < 2 < 2 < 2 < 2 2	1 3 1 3 7	25 11 10 13 6	0.14 0.09 0.24 0.22 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	44 118 82 189 111	< 10 < 10 < 10 < 10 < 10 < 10	450 212 68 90 122	
3+00N 3+75E 3+00N 4+00E 3+00N 4+50E 3+00N 4+75E 3+00N 4+75E 3+00N 5+00E	201 229 201 229 201 229 201 229 201 229 	4 12 6	< 0.01 0.01 0.01 < 0.01 < 0.01 miss.	14 12 16 11 miss. 1	970 560 1420 1150 miss. m	22 20 16 18 iss. m	< 2 < 2 < 2 < 2 is#. m	4 9 7 5 1 52. m	11 10 28 8 iss. m	0.12 0.39 0.23 0.17 158. 1	< 10 < 10 < 10 < 10 niss. 1	< 10 < 10 < 10 < 10 niss. m	122 173 87 127 155. 1	< 10 < 10 < 10 < 10	86 80 200 90 iss.	
20+00N 2+25E 20+00N 2+75E 20+00N 3+00E 20+00N 3+25E 20+00N 3+50E	201 229 201 229 201 229 201 229 201 229 201 229 201 229	14 10 5 7 9	< 0.01 0.01 0.07 < 0.01 0.03	9 8 7 8 8	650 1070 670 780 1150	12 8 8 20 14	< 2 < 2 < 2 < 2 < 2 < 2 < 2	2 3 3 4 4	9 13 22 12 19	0.09 0.02 0.19 0.26 0.23	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	117 69 168 169 165	< 10 < 10 < 10 < 10 < 10 < 10	96 138 46 98 88	
20+00W 4+00E 20+00W 4+25E 20+00W 4+50E 21+00N 0+25E 21+00N 0+50E	201 229 201 229 201 229 201 229 201 229 201 229 201 229		0.01 0.01 < 0.01 < 0.01 < 0.01	30 31 30 14 12	1440 1360 1420 6500 1640	14 16 16 56 22	< 2 < 2 < 2 2 2 < 2	5 5 4 3	37 37 32 14 4	0.11 0.09 0.13 0.01 0.02	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	76 67 73 73 69	< 10 < 10 < 10 < 10 < 10 < 10	414 420 430 82 92	
21+00N 0+75E 21+00N 1+00E 21+00N 1+25E 21+00N 1+50E 21+00N 1+75E	201 229 201 229 201 229 201 229 201 229 201 229 201 229	14 8	< 0.01 0.01 < 0.01 < 0.01 0.01	22 14 21 16 6	2370 2170 2480 1660 1720	38 18 36 30 26	2 2 2 4	5 4 5 4 1	6 15 6 7 14	0.02 0.34 0.03 0.01 0.09	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	63 103 65 43 63	< 10 < 10 < 10 < 10 < 10 < 10	144 84 152 94 22	
													Ċ	ERTIFIC	ATION:_	Sant Bichler

C

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assavers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

Page Number : 3-A Total Pages : 4 Certificate Date: 26-SEP-94 Invoice No. : 19425963 P.O. Number : Account BSJ

Project : Comments: #134-J

								_		CE	RTIF	CATE	OF A	ANAL	YSIS		A9425	5963		
SAMPLE	PREP CODE	λυ ppb Fλ+λλ	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Со ррт	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	R %	La ppm	Mg %	Mn ppm
21+00N 2+00E 21+00N 2+25E 21+00N 2+50E 21+00N 2+75E 21+00N 3+00E	201 229 201 229 201 229 201 229 201 229 201 229	10 < 5 < 5 < 5 < 5	1.2 1.8 < 0.2 1.4 1.4	1.46 2.36 1.41 8.05 5.43	84 288 742 412 98	70 60 20 70 90	< 0.5 < 0.5 < 0.5 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.01 0.04 0.14 0.03 0.03	< 0.5 1.0 0.5 1.0 0.5	3 2 1 1 1	11 16 11 16 13	28 16 10 10 3	>15.00 10.55 13.30 5.59 4.81	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 2 < 1	0.03 0.01 0.01 0.02 0.03	10 < 10 < 10 < 10 < 10	0.13 0.10 0.08 0.01 0.04	145 90 245 165 80
21+00N 3+25E 21+00N 3+50E 21+00N 3+75E 21+00N 4+00E 21+00N 4+25E	201 229 201 229 201 229 201 229 201 229 201 229	< 5 < 5 < 5 < 5 < 5	0.6 0.8 1.0 2.6	1.65 1.22 1.91 4.63 4.87	100 14 22 34 32	110 30 30 30 50	< 0.5 < 0.5 < 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.36 0.09 0.12 0.04 0.01	0.5 < 0.5 < 0.5 < 0.5 < 0.5	8 6 3 6 3	9 12 10 32 34	17 14 16 17 22	8.65 5.46 7.37 10.90 9.96	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.04 0.02 0.01 0.03 0.03	< 10 < 10 < 10 20 10	0.18 0.16 0.15 0.13 0.25	275 80 90 315 520
21+00N 4+50E 21+00N 4+75E 21+00N 3+25EA 21+00N 3+75EA 21+00N 4+00EA	201 229 201 229 201 229 201 229 201 229 201 229	< 5 < 5 < 5 < 5 < 5 < 5	2.0 0.8 1.0 0.6 1.4	2.84 2.48 2.09 0.85 5.35	26 30 32 2 64	70 60 80 30 40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.08 0.04 0.04 0.01 0.04	1.0 0.5 < 0.5 < 0.5 < 0.5 0.5	4 2 4 3 4	32 36 26 14 42	37 30 26 6 17	8.88 5.29 9.95 1.67 12.15	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 1	0.04 0.06 0.03 0.01 0.02	10 10 10 10 10	0.29 0.19 0.24 0.05 0.11	290 105 155 55 210
1+00N 4+25EA 1+00N 4+50EA 1+00N 0+25W 1+00N 0+50W 1+00N 0+75W	201 229 201 229 201 229 201 229 201 229 201 229	< 5 < 5 < 5 < 5 < 5 < 5	1.6 0.4 0.6 1.2 0.8	3.01 4.14 2.52 2.27 2.49	28 42 24 28 36	60 40 80 120 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.01 0.02 0.20 0.35 0.11	0.5 1.0 < 0.5 0.5 0.5	3 16 7 6 5	28 18 59 34 25	24 21 31 44 70	11.10 10.00 7.94 6.99 6.94	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.02 0.01 0.07 0.09 0.07	10 < 10 < 10 10 < 10	0.12 0.18 0.64 0.62 0.37	165 380 345 260 355
1+00N 1+00W 1+00N 2+00W 1+00N 2+25W 1+00N 2+50W 1+00N 2+75W	201 229 201 229 201 229 201 229 201 229 201 229 201 229	< 5 120 110 < 5 < 5	2.0 4.4 7.0 1.4 3.2	4.87 2.62 2.12 3.99 4.05	36 2750 1390 32 44	50 110 90 90 100	0.5 < 0.5 < 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.10 0.12 0.11 0.05 0.04	0.5 7.0 3.0 0.5 1.0	3 5 5 3 7	52 21 27 36 36	22 22 25 44 64	6.09 7.06 7.21 5.30 5.96	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.07 0.05 0.03 0.06 0.06	10 < 10 < 10 < 10 < 10 10	0.27 0.35 0.27 0.24 0.38	365 680 480 305 475
1+00N 3+00W 3+00N 0+25E 3+00N 0+50E 3+00N 0+75E 3+00N 1+00E	201 229 201 229 201 229 201 229 201 229 201 229	< 5 225 < 5 < 5 < 5 < 5	1.4 43.4 1.2 1.0 0.4	3.87 2.02 2.30 2.65 2.45	42 3990 28 42 48	60 130 90 80 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.04 0.01 0.03 0.15 0.17	0.5 9.0 0.5 < 0.5 0.5	3 1 3 16 25	36 13 18 17 11	14 13 18 24 41	11.65 9.87 9.04 8.14 8.75	< 10 < 10 < 10 < 10 < 10 < 10	< 1 8 < 1 < 1 < 1	0.03 0.64 0.06 0.03 0.02	10 < 10 < 10 < 10 < 10 10	0.09 0.03 0.12 0.33 0.48	480 100 335 2220 2530
3+00N 1+50E 3+00N 1+75E 3+00N 2+50E 3+00N 0+25W 3+00N 0+50W	201 229 201 229 201 229 201 229 201 229 201 229 201 229	< 5 < 5 < 5 < 5 < 5 < 5 < 5	0.4 0.4 2.8 1.0	2.99 2.07 0.80 2.82 4.50	80 50 36 816 34	130 100 30 80 80	1.0 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.16 0.15 0.24 0.16 0.06	0.5 0.5 < 0.5 2.0 < 0.5	27 16 5 8 4	13 11 15 30 36	54 39 15 22 91	9.86 8.28 7.28 7.63 7.65	< 10 < 10 < 10 < 10 < 10 < 10	2 < 1 < 1 < 1 < 1 < 1	0.02 0.03 0.06 0.07 0.10	10 10 < 10 < 10 10	0.45 0.45 0.35 0.40 0.83	2090 975 280 460 240
3+00N 0+75W 3+00N 1+00W 4+00N 0+00E 4+00N 0+25E 4+00N 0+50E	201 229 201 229 201 229 201 229 201 229 201 229	< 5 < 5 < 5 < 5 < 5 < 5	3.8 1.2 5.8 1.2 1.0	2.02 4.40 2.29 1.54 2.88	164 104 140 220 60	80 130 80 110 70	< 0.5 0.5 < 0.5 < 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.02 0.08 0.03 0.04 0.02	0.5 0.5 0.5 1.0 0.5	1 6 4 6	22 32 19 25 32	21 118 22 20 31	11.00 6.68 9.19 7.24 8.50	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.03 0.08 0.07 0.09 0.10	10 10 10 10	0.06 0.47 0.09 0.08 0.25	210 205 220 510 820

CERTIFICATION: Hart Brichler

To: GRANGES INC.

Project :

Comments:

2230 - 885 W. GEORGIA ST. VANCOUVER, BC **V6C 3E8**

#134-J

Page Number (3-B) Total Pages :4 Certificate Date: 26-SEP-94 Invoice No. :[9425963 P.O. Number : BSJ Account

64

368

446

98

52

104

122

202

214

156

50

96

84

58

134

70

114

176

tartBichler

PHONE: 604-984-0221

0

21+00N 2+25W

21+00N 2+50W

21+00N 2+75W

21+00N 3+00W

23+00N 0+25E

23+00N 0+50E

23+00N 0+75E

23+00N 1+00E

23+00N 1+50E

23+00N 1+75E

23+00N 2+50E

23+00N 0+25W

23+00N 0+50W

23+00N 0+75W

23+00N 1+00W

24+00N 0+00E

24+00N 0+25E

24+00N 0+50E

201 229

201 229

201 229

201 229

201 229

201 229

201 229

201 229

201 229

201 229

201 229

201 229

201 229

201 229

201 229

201 229

201 229

201 229

1

212 Brooksbank Ave., North Vancouver

British Columbia, Canada V7J 2C1

0.01

0.01

0.01

0.01

0.04

0.01

0.04

0.01

0.01

0.01

0.10

0.03

2 < 0.01

9 < 0.01

4 0.01

8 < 0.01

10 < 0.01

11 0.01

10

34

4B

13

6

11

12

9

11

10

9

17

19

8

25

10

13

20

640

B10

660

1380

2060

840

2680

3260

2210

1740

1210

1810

1690

890

1480

1070

2320

1310

26

16

32

26

94

18

18

18

36

20

14

24

24

28

32

14

50

24

2

2

< 2

< 2

96

< 2

< 2

< 2

6

4

2

4

2

6

6

6

2

< 2

3

5

6

2

1

2

4

7

10

9

2

4

5

1

4

2

3

4

15

10

12

65

8

18

11

12

11

25

22

8

7

11

12

6

6

6

0.49

0.01

0.01

0.21

0.04

0.09

0.08

0.02

0.05

0.02

0.27

0.13

0.04

0.40

0.03

0.11

0.22

0.11

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

145

78

77

78

37

67

68

67

72

68

120

108

123

137

73

101

113

54

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

CERTIFICATION:

2

17

23

7

27

2

7

1

6

6

4

33

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assavers

										CE	RTIF		OF /	NAL	ISIS	A9425963
SAMPLE	PREP CODE	Mo ppm		Ni ppm	P Trade	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Tİ X	T1 ppm	U ppm	V mqq	W ppm	Zn ppm	
21+00N 2+00E 21+00N 2+25E 21+00N 2+50E 21+00N 2+55E 21+00N 3+00E	201 229 201 229 201 229 201 229 201 229 201 229 201 229	15 21 80 39 53	0.01	3 7 6 3 3	3580 1080 1410 2180 1110	24 14 18 26 32	< 2 2 6 14 8	4 2 2 4 4	5 13 10 7 11	0.08 0.21 0.11 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	58 103 123 27 43	10 < 10 < 10 < 10 < 10 < 10	38 44 48 38 34	
21+00N 3+25E 21+00N 3+50E 21+00N 3+75E 21+00N 3+75E 21+00N 4+00E 21+00N 4+25E	201 229 201 229 201 229 201 229 201 229 201 229	9 5 12 11	0.05 0.01 0.01 0.01 0.01	9 7 4 11 15	2360 820 2180 900 940	14 14 14 22 30	< 2 2 < 2 2 2 2	2 4 3 5 5	36 14 16 11 2	0.05 0.26 0.12 0.23 0.15	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	35 203 101 94 69	< 10 < 10 < 10 < 10 < 10 < 10	76 54 62 130 174	
21+00N 4+50E 21+00N 4+75E 21+00N 3+25EA 21+00N 3+75EA 21+00N 4+00EA	201 229 201 229 201 229 201 229 201 229 201 229 201 229	12 9	< 0.01 < 0.01 0.01 < 0.01 < 0.01	19 15 14 3 10	1580 1850 970 240 760	24 16 12 6 32	6 2 < 2 < 2 < 2 < 2	4 4 3 2 5	11 6 9 8 12	0.08 0.04 0.14 0.08 0.13	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	128 136 124 53 81	< 10 < 10 < 10 < 10 < 10 < 10	230 164 120 22 106	
21+00N 4+25EA 21+00N 4+50EA 21+00N 0+25W 21+00N 0+50W 21+00N 0+75W	201 229 201 229 201 229 201 229 201 229 201 229 201 229	15 6 3	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	11 7 43 29 17	640 1490 1070 1930 2940	18 18 18 26 26	< 2 4 < 2 < 2 < 2 < 2	3 8 2 2 2	10 4 23 37 17	0.12 0.19 0.09 0.10 0.06	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	99 97 85 77 81	< 10 < 10 < 10 < 10 < 10 < 10	78 102 125 126 76	
21+00N 1+00W 21+00N 2+00W	201 229 201 229	7	0.02	29 11	1130 700	20 150	2	4 3	16 15	0.09	< 10 < 10	< 10 < 10	36 115	< 10 < 10	140 80	

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GRANGES INC.

2230 - 685 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

CERTIFICATION:

Page Number : 4-A Total Pages :4 Certificate Date: 26-SEP-94 Invoice No. : 19425963 P.O. Number : Account : BSJ

Project : #134-J Comments:

										CE	RTIFI	CATE	OF	ANAL	YSIS		A9425	963		
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Eg ppm	K %	La ppm	Mg %	Mn ppm
24+00N 0+75E 24+00N 1+00E 24+00N 1+25E 24+00N 1+50E 24+00N 1+75E	201 229 201 229 201 229 201 229 201 229 201 229	< 5 < 5 < 5	< 0.2 0.6 2.0 0.2 < 0.2	2.90 1.50 3.13 3.07 1.76	16 84 86 108 58		< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2</pre>	0.01	1.0 < 0.5 < 0.5 < 0.5 < 0.5	26 4 18 17 36	44 16 10 7 5	47 24 24 27 33	5.28 8.42 9.33 >15.00 10.80	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 2 1	0.11 0.06 0.03 0.01 0.04	< 10 < 10 < 10 < 10 < 10 < 10	0.93 0.21 0.44 0.34 0.40	7670 925 2820 1300 980
24+00N 2+00E 24+00N 2+25E 24+00N 2+75E 24+00N 3+00E 24+00N 3+25E	201 229 201 229 201 229 201 229 201 229 201 229	<pre>< 5 < 5 < 5 < 5</pre>	0.6 0.8 0.2 1.6 1.2	4.05 1.83 1.70 3.47 1.77	36 382 4 16 36	40 60 30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 < 2 < 2 < 2 < 2 < 2	0.05 0.17 0.13	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	13 3 11 3 10	12 16 10 25 16		10.20 >15.00 5.47 10.10 8.62	< 10 < 10 < 10 30 < 10	< 1 < 1 < 1 < 1 < 1 1	0.02 0.02 0.04 0.03 0.03	< 10 < 10 < 10 < 10 < 10 < 10	0.42 0.09 0.28 0.09 0.14	765 250 235 395 235
24+00N 3+50E 24+00N 3+75E 24+00N 4+00E 24+00N 4+25E 24+00N 4+50E	201 229 201 229 201 229 201 229 201 229 201 229	< 5 < 5 < 5	0.8 0.4 1.2 1.2	0.86 2.75 4.04 3.86 2.99	< 2 < 2 20 10 20	50 60 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.19 0.12 0.07	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 8 15 9 4	9 14 17 26 45	11 12 25 23 37	4.32 5.26 9.53 6.69 8.91	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.03 0.03 0.03 0.02 0.03	< 10 < 10 < 10 < 10 < 10 < 10	0.11 0.18 0.58 0.16 0.22	185 1355 1085 985 200
24+00N 4+75E 24+00N 0+25W 24+00N 0+50W	201 229 201 229 201 229	< 5	0.4 1.0 0.6	3.32 3.58 1.01	178 56 12	70	< 0.5 < 0.5 < 0.5	< 2	<pre>0.01 0.03 0.11</pre>	< 0.5	7 5 3	8 69 20		13.00 10.20 3.99	< 10 < 10 < 10	< 1 < 1 < 1	0.01 0.04 0.05	< 10 < 10 < 10	1.59 0.30 0.16	285 175 95
																			<u> </u>	
													; c	ERTIFIC	ATION:	17	1. To	1:20	850	à.,

er .

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

Page Number :4-B Total Pages :4 Certificate Date: 26-SEP-94 Invoice No. P.O. Number : 19425963 : Account BSJ

Project :	#134-J
Comments:	

										CE	RTIF	CATE	OF A	NAL	(SIS	A9425963
SAMPLE	PREP CODE	Mo ppm	Na %	Ní ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	W ppm	Zn ppm	
24+00N 0+75E 24+00N 1+00E 24+00N 1+25E 24+00N 1+50E 24+00N 1+75E	201 229 201 229 201 229 201 229 201 229 201 229	8	0.02 0.01 0.01 0.01 0.01 0.01	44 6 3 1 11	3160 2570 2830 2060 2120	12 10 12 14 20	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7 3 4 7 10	58 27 11 2 32	0.17 0.13 0.05 0.01 < 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	73 127 58 26 40	< 10 < 10 < 10 < 10 < 10 < 10	258 118 114 216 152	
24+00N 2+00E 24+00N 2+25E 24+00N 2+75E 24+00N 3+00E 24+00N 3+25E	201 229 201 229 201 229 201 229 201 229 201 229	8 23 1 2 3	0.01 0.01 0.04 0.01 0.02	3 1 4 5	1210 2410 1150 1040 940	8 14 6 12 6	* 2 6 2 < 2	5 3 2 2	7 9 26 11 20	0.11 0.09 0.15 0.25 0.13	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	75 55 122 102 129	< 10 < 10 < 10 < 10 < 10 < 10	64 50 72 68 70	
24+00N 3+50Z 24+00N 3+75Z 24+00N 4+00E 24+00N 4+25E 24+00N 4+50E	201 229 201 229 201 229 201 229 201 229 201 229	10 <	0.01 0.01 0.02 0.01 0.01	2 2 8 8 18	950 2930 1320 1100 570	10 16 18 12 18	< 2 6 2 < 2 < 2	2 4 8 4 4	13 19 17 11 6	0.35 0.29 0.14 0.15 0.19	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	162 100 116 83 137	< 10 < 10 < 10 < 10 < 10 < 10	54 64 178 160 212	
24+00N 4+75E 24+00N 0+25W 24+00N 0+50W	201 229 201 229 201 229	15 < 6 1	0.01 0.01 0.02	4 21 3	1330 730 820	10 14 12	< 2 < 2 < 2 < 2	8 4 2	14	< 0.01 0.11 0.56	< 10 < 10 < 10	< 10 < 10 < 10	33 101 138	< 10 < 10 < 10	188 176 22	·
													Ċ	ERTIFIC	ATION:	Hart Sichler

1

1

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

5

To: GRANGES INC.

1

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

1

#134-R

Page Number :4-B Total Pages :6 Certificate Date: 29-SEP-94 Invoice No. : 19425917 P.O. Number : Account :BS I : BSJ Account

1

.

Project : Comments:

										CE	RTIF	ICATE	OF	ANAL	YSIS	A9425917
SAMPLE	PREP CODE	Мо ррт	Na %	Ni ppm	ppm P	ррт Ф	Sb ppm	Sc	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	ppm W	Zn	
1800N 0900W 1800N 0925W 1800N 0950W 1800N 0975W 1800N 1025W	203 205 217 229 217 229 217 229 217 229 217 229	4 1 1 < 1 < 1	0.09 0.10 0.47 0.58 0.36	33 11 18 20 15	750 390 820 880 920	18 8 6 6 2	< 2 2 < 2 < 2 < 2 < 2 < 2	4 3 5 6 4	22 32 116 135 88	0.13 0.43 0.41 0.47 0.34	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	77 115 72 86 62	< 10 < 10 < 10 < 10 < 10 < 10	96 46 58 54 60	
1800N 1050W 1900N 0000W 1900N 0025W 1900N 0050W 1900N 0075W	217 229 201 229 201 229 201 229 201 229 203 205	1 3 1 2 6	0.03 0.09 0.02 0.04 0.01	6 15 8 20 14	770 1110 940 1010 860	10 14 22 20 14	< 2 2 6 2 < 2	1 9 4 4 3	46 27 11 19 14	0.24 0.74 0.19 0.24 0.40	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	111 164 120 111 125	< 10 < 10 < 10 < 10 < 10 < 10	32 70 54 50 58	
1900N 0100W 1900N 0150W 1900N 0175W 1900N 0275W 1900N 0225W	201 229 201 229 201 229 201 229 201 229 201 229 201 229	2 2 2 4 2	0.01 0.17 0.01 0.06 0.10	19 21 10 20 17	740 4300 1160 3050 1770	16 18 10 14 8	2 < 2 < 2 2 < 2	3 3 1 3 6	15 82 18 22 34	0.20 0.20 0.09 0.20 0.36	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	106 105 64 139 87	< 10 < 10 < 10 < 10 < 10 < 10	54 102 40 66 68	
1900N 0250W 1900N 0275W 1900N 0300W 1900N 0325W 1900N 0350W	201 229 201 229 201 229 201 229 201 229 201 229	7 8 1 4 4	0.01 < 0.01 0.02 0.06 0.08	11 13 29 21 16	800 560 840 2120 1260	16 22 10 12 10	< 2 < 2 < 2 4 2	4 2 3 12 3	19 11 20 48 32	0.46 0.58 0.18 0.46 0.40	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	124 154 94 97 106	< 10 < 10 < 10 < 10 < 10 < 10	74 84 48 92 82	
1900N 0375W 1900N 0400W 1900N 0425W 1900N 0450W 1900N 0475W	201 229 201 229 201 229 201 229 201 229 201 229	4 1 2 1 1	0.01 0.04 0.04 0.06 0.03	16 13 11 11 10	530 1430 430 930 1130	18 16 8 8 16	< 2 2 6 1 < 2	4 7 3 10	9 54 41 48 32	0.20 0.27 0.43 0.56 0.15	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	70 150 121 128 157	< 10 < 10 < 10 < 10 < 10	58 62 58 54 70	
1900N 0525W 1900N 0550W 1900N 0575W 1900N 0575W 1900N 0600W 1900N 0625W	201 229 201 229 201 229 201 229 201 229 201 229 201 229	< 1 1 2 2	0.07 0.01 0.03 0.01 0.02	9 49 12 9 36	2030 1340 3510 5520 900	4 22 20 16 16	2 B 4 6 < 2	3 21 4 3 4	26 13 22 7 22	0.29 0.07 0.10 0.07 0.08	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	48 252 106 110 68	< 10 < 10 < 10 < 10 < 10 < 10	50 134 66 62 94	
900N 0650W 900N 0675W 900N 0700W 900N 0725W 900N 0725W	201 229 201 229 201 229 217 229 217 229 201 229	3 2 4 2 2	0.07 0.03 0.06 0.08 0.13	27 19 43 9 9	1290 1170 1160 740 520	16 12 24 8 10	2 2 < 2 2 2 < 2	6 2 6 2 2	46 92 133 43 50	0.08 0.06 0.06 0.48 0.60	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	83 35 71 99 125	< 10 < 10 < 10 < 10 < 10 < 10	112 134 192 62 36	
900N 0775W 900N 0800W 900N 0825W 900N 0850W 900N 0875W	201 229 217 229 217 229 201 229 201 229 201 229	< 1 < 1 2 1 2	0.06 0.32 0.12 0.11 0.09	6 18 11 11 12	820 1150 860 920 800	2 8 14 6 6	< 2 < 2 4 < 2 2 2	1 3 3 2	68 104 46 44 63	0.08 0.28 0.48 0.66 0.13	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	17 61 105 149 49	< 10 < 10 < 10 < 10 < 10 < 10	26 116 72 46 54	_
	┖━┶╼┚													ERTIFIC	ATION:_	Sant Bichler

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

Page Number : 5-A Total Pages :6 Certificate Date: 29-SEP-94 Invoice No. : 19425917 P.O. Number : Account : BSJ

Project : Comments: #134-R

										CE	RTIFI	CATE	OF /	ANAL	YSIS		A9425	5917		
SAMPLE	Prep Code	Au ppb FA+AA	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
1900N 0900W 1900N 0925W 1900N 0950W 1900N 0975W 1900N 1000W	203 205 203 205 203 205 203 205 203 205 203 205	< 5	0.4 2.2 0.6 0.2 1.0	1.07 2.50 1.11 0.53 1.60	< 2 12 10 < 2 14	320 70 110 120 150	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 2 < 2 < 2 < 2 < 2	0.51 0.47 0.56 1.39 1.85	< 0.5 0.5 < 0.5 < 0.5 < 0.5	3 11 3 5 9	10 30 32 9 17	16 23 26 7 11	2.06 5.59 4.87 1.29 2.95	< 10 10 10 < 10 < 10	1 < 1 < 1 < 1 < 1 < 1	0.08 0.09 0.11 0.12 0.14	< 10 10 10 < 10 < 10	0.19 0.80 0.30 0.45 0.44	145 520 385 310 420
1900N 1025W 1900N 1050W 2000N 0000W 2000N 0025W 2000N 0050W	201 229 201 229 201 229 201 229 201 229 203 205	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	0.2 0.4 1.4 1.4 0.6	1.10 1.74 3.28 3.30 2.85	2 < 2 12 4 4	70 70 140 160 60	< 0.5 < 0.5 0.5 1.0 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.09 0.25 0.49 0.18 0.24	< 0.5 0.5 < 0.5 0.5 0.5	3 8 17 17 10	19 54 44 47 56	8 11 23 24 21	6.62 8.82 5.73 6.35 6.27	30 20 10 20 10	1 < 1 < 1 < 1 < 1 < 1	0.02 0.05 0.11 0.11 0.13	< 10 < 10 < 10 20 10	0.11 0.35 0.56 0.39 0.68	135 235 1315 1625 485
2000N 0075W 2000N 0100W 2000N 0125W 2000N 0125W 2000N 0150W 2000N 0175W	201 229 201 229 201 229 203 205 201 229	< 5 < 5 < 5 < 5 < 5 < 5	3.0 1.2 0.4 1.0 1.8	2.04 3.47 3.39 2.95 3.94	< 2 < 2 6 < 2 8	100 50 140 120 130	< 0.5 < 0.5 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.28 0.26 0.12 0.71 0.52	0.5 < 0.5 < 0.5 0.5 0.5	10 15 17 11 14	37 40 37 36 35	19 23 40 14 18	5.56 6.08 5.46 5.86 6.48	10 10 < 10 10 20	< 1 < 1 < 1 < 1 < 1	0.09 0.12 0.16 0.16 0.16	< 10 10 10 10 10	0.45 0.50 0.66 0.82 0.54	895 1655 1475 845 1170
2000N 0200W 2000N 0225W 2000N 0250W 2000N 0250W 2000N 0275W 2000N 0300W	201 229 201 229 201 229 201 229 201 229 201 229	<pre>< 5 < 5 < 5 < 5 < 5 < 5</pre>	0.4 0.2 0.8 0.6 0.4	2.22 1.63 2.12 2.66 1.85	10 2 10 18 4	120 120 100 140 100	< 0.5 < 0.5 < 0.5 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.22 0.46 0.21 0.28 0.17	< 0.5 0.5 0.5 0.5 < 0.5	6 10 7 10 14	33 27 45 48 23	34 18 27 16 18	4.46 6.13 5.60 6.35 5.95	10 20 < 10 20 10	< 1 < 1 < 1 < 1 < 1 < 1	0.14 0.07 0.07 0.06 0.07	10 10 < 10 20 20	0.53 0.36 0.40 0.66 0.22	355 805 485 810 930
2000N 0325W 2000N 0350W 2000N 0375W 2000N 0400W 2000N 0425W	201 229 201 229 201 229 201 229 201 229 203 205	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	0.2 1.4 < 0.2 0.6 0.8	1.50 4.08 2.23 1.89 2.00	< 2 < 2 < 2 < 2 < 2 < 2	220 120 100 90 290	< 0.5 0.5 < 0.5 < 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.52 0.73 0.26 0.40 2.07	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 12 7 7 7	22 37 53 21 28	9 27 18 10 17	3.69 7.05 6.41 5.60 2.73	10 10 10 10	< 1 < 1 1 < 1 < 1 < 1	0.08 0.06 0.09 0.10 0.07	10 10 < 10 10 10	0.40 0.55 0.65 0.44 0.39	295 740 315 460 790
2000N 0450W 2000N 0475W 2000N 0500W 2000N 0525W 2000N 0550W	201 229 201 229 201 229 203 205 203 205 201 229	<pre>< 5 < 5 < 5 < 5 < 5 < 5</pre>	0.2 0.8 0.6 0.4 0.2	2.71 3.02 1.33 1.22 2.65	14 14 8 < 2 8	170 110 90 90 100	< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.58 0.24 0.33 0.45 0.12	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	3 13 4 9 4	30 44 28 13 78	10 32 14 8 18	7.22 5.77 5.93 2.34 5.62	20 10 20 < 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.08 0.10 0.03 0.10 0.07	10 10 10 < 10 < 10	0.31 0.52 0.12 0.53 0.66	195 920 275 165 180
2000N 0575W 2000N 0600W 2000N 0625W 2000N 0655W 2000N 0675W	201 229 201 229 201 229 201 229 201 229 201 229	< 5	< 0.2 0.2 < 0.2 0.4 < 0.2	2.18 1.77 0.95 1.11 2.66	< 2 4 2 < 2 20	110 80 50 90 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1.07 0.39 0.09 0.65 0.37	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	17 7 6 7 14	19 36 30 7 55	20 35 40 8 41	4.95 5.13 5.34 2.25 6.07	10 10 10 < 10 10	< 1 < 1 < 1 < 1 < 1	0.15 0.05 0.06 0.08 0.08	< 10 < 10 < 10 < 10 < 10 10	1.17 0.69 0.54 0.50 1.17	1490 545 865 150 690
2000N 0700W 2000N 0725W 2000N 0750W 2000N 0775W 2000N 0775W	201 229 201 229 201 229 201 229 201 229 201 229	< 5 < 5 < 5 < 5 < 5	0.4 < 0.2 0.4 0.6 0.2	2.50 0.95 1.85 2.01 1.61	22 6 4 < 2 < 2 < 2	70 90 70 100 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.33 0.31 0.36 0.62 0.73	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	18 6 10 13 9	37 18 70 30 14	49 17 42 20 19	6.17 2.12 6.66 4.88 3.05	10 < 10 10 10 < 10	< 1 < 1 < 1 < 1 < 1	0.08 0.09 0.06 0.09 0.09 0.08	< 10 < 10 < 10 < 10 < 10 < 10	1.19 0.28 0.98 0.71 0.55	1220 175 290 675 245
													c	ERTIFIC		17	aut	Bic	hle	~

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

Page Number: 5-B Total Pages: 6 Certificate Date: 29-SEP-94 Invoice No. 19425917 P.O. Number : Account :BSJ

Project : Comments: #134-R

										CE	RTIF	CATE	OF A	NAL	YSIS	A9425917
Sample	PREP CODE	Мо ррд	Na *	Ni ppm	ppm P	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Tİ %	T1 ppm	U ppm	V ppm	W ppm	Zn ppm	
1900N 0900W 1900N 0925W 1900N 0950W 1900N 0975W 1900N 1000W	203 205 203 205 203 205 203 205 203 205 203 205	1 2 8 < 1 < 1	0.01 0.14 0.01 0.10 0.19	9 19 16 9 16	1090 1010 500 1010 810	6 10 12 < 2 8	< 2 2 < 2 < 2 2 2	2 5 2 1 3	52 47 55 118 181	0.13 0.60 0.29 0.17 0.19	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	50 129 94 25 56	< 10 < 10 < 10 < 10 < 10 < 10	54 58 90 138 88	
1900N 1025W 1900N 1050W 2000N 0000W 2000N 0025W 2000N 0050W	201 229 201 229 201 229 201 229 201 229 203 205	2 1 3 5 2	0.01 0.09 0.02 0.01 0.08	7 12 29 26 27	210 130 1670 1590 870	12 12 12 16 16	< 2 < 2 < 2 < 2 < 2 < 2	1 2 4 3 4	20 33 44 21 27	0.60 0.38 0.21 0.18 0.35	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	164 110 98 99 125	< 10 < 10 < 10 < 10 < 10 < 10	50 60 138 140 78	
2000N 0075W 2000N 0100W 2000N 0125W 2000N 0125W 2000N 0150W 2000N 0175W	201 229 201 229 201 229 203 205 201 229 203 205	3 6 3 2 2	0.04 0.08 0.02 0.22 0.04	20 16 27 23 20	1080 1190 1310 1080 1230	14 12 20 14 18	2 4 < 2 2 < 2	3 5 4 5 5	33 25 17 69 41	0.43 0.38 0.07 0.35 0.46	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	152 118 87 106 116	< 10 < 10 < 10 < 10 < 10 < 10	80 102 116 112 100	
2000N 0200N 2000N 0225W 2000N 0250W 2000N 0250W 2000N 0275W 2000N 0300W	201 229 201 229 201 229 201 229 201 229 201 229	2 6 3 8 6	0.03 0.09 0.03 0.01 0.02	23 13 25 40 10	950 720 3110 1050 780	14 8 8 16 12	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 2 3 3 4	26 49 19 22 20	0.17 0.35 0.10 0.14 0.42	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	141 142 97 64 126	< 10 < 10 < 10 < 10 < 10 < 10	90 82 70 96 78	
2000N 0325W 2000N 0350W 2000N 0375W 2000N 0400W 2000N 0425W	201 229 201 229 201 229 201 229 201 229 203 205	2 3 2 4 4	0.07 0.06 0.09 0.09 0.09	10 16 32 13 17	880 1530 870 770 1430	16 12 16 12 4	< 2 < 2 < 2 < 2 < 2	3 6 3 4	48 68 33 41 244	0.43 0.45 0.17 0.76 0.37	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	114 136 90 159 64	< 10 < 10 < 10 < 10 < 10 < 10	50 70 66 52 96	
2000N 0450W 2000N 0475W 2000N 0500W 2000N 0500W 2000N 0550W	201 229 201 229 201 229 203 205 201 229	7 4 7 < 1 2	0.03 0.07 0.01 0.12 0.01	10 22 11 11 34	890 1200 390 820 430	16 10 12 4 10	< 2 4 2 < 2 < 2	3 6 2 3 5	66 31 36 54 14	0.11 0.22 0.52 0.30 0.08	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	99 111 148 56 112	< 10 < 10 < 10 < 10 < 10 < 10	52 80 68 40 52	
2000N 0575W 2000N 0600W 2000N 0625W 2000N 0650W 2000N 0650W 2000N 0675W	201 229 201 229 201 229 201 229 201 229 201 229	2 4 6 < < 1 3	0.34 0.04 0.01 0.15 0.09	16 17 11 9 27	930 990 3490 1090 790	6 10 12 2 16	< 2 < 2 2 < 2 2 2	7 4 2 3 7	88 23 8 68 28	0.33 0.23 0.14 0.31 0.30	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	141 162 175 45 168	< 10 < 10 < 10 < 10 < 10 < 10	70 52 52 30 66	
2000N 0750W 2000N 0775W	201 229 201 229 201 229 201 229 201 229 201 229	3 2 4 3 2	0.03 0.03 0.07 0.16 0.16	21 13 23 17 11	1110 1010 990 1030 1400	6 6 12 12 4	< 2 2 2 < 2 4	9 3 7 5 5	18 37 31 60 69	0.26 0.13 0.38 0.44 0.37	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	207 75 267 142 69	< 10 < 10 < 10 < 10 < 10 < 10	62 48 36 54 54	
L													c	ERTIFIC	ATION:_	Hant Parchler

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8 Page Number :6-A Total Pages :6 Certificate Date: 29-SEP-94 Invoice No. : I9425917 P.O. Number : Account :BSJ

Project : #134-R Comments:

											CE	RTIFI	CATE	OF A	NAL	YSIS		A9425	917		
SAMPLE	PR CO		λu ppb Fλ+λλ	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
2000N 0850W 2000N 0875W 2000N 0900W 2000N 0925W 2000N 0925W 2000N 0975W	201 201 217	229 229 229 229 229 229	< 5	0.2 < 0.2 1.2 0.6 0.6	2.50 2.59 2.30 1.35 1.63	8 16 < 2 < 2 2 2	140 130	0.5 < 0.5 0.5 < 0.5 < 0.5	2 < 2 < 2 < 2 < 2 < 2	0.20 0.88 3.88	< 0.5 < 0.5 < 0.5 8.5 < 0.5	39 7 16 6 7	39 47 18 10 21	35 27 16 19 8	4.70 5.25 7.26 1.20 5.62	< 10 10 < 10 < 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.21 0.12 0.09 0.07 0.08	10 < 10 20 20 < 10	1.27 0.62 0.47 0.51 0.50	1360 405 1000 1425 210
2000N 1000W	201	229	< 5	0.4	1.40	< 2	80	< 0.5	< 2	0.63	< 0.5	9	9	5	2.50	< 10	< 1	0.10	< 10	0.75	190
																	4	tu	Jul	hler	

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

Page Number :6-B Total Pages :6 Certificate Date: 29-SEP-94 Invoice No. : 19425917 P.O. Number : Account :BSJ

Project : Comments: #134-R

P											CE	RTIF	CATE	OF A	NAL	(SIS	A9425917
SAMPLE	PR CO		Mo Mgg	Na %	Nİ ppm	P mqq	Pb ppm	Sb ppm	Sc. DDm	Sr ppm	Ti %	Tl ppm	D D D	V ppm	DDm M	Zn ppm	
2000N 0850W 2000N 0875W 2000N 0900W 2000N 0925W 2000N 0925W 2000N 0975W	201 201 217	229 229 229 229 229 229	42	0.34 0.07 0.13 0.13 0.12	24 25 13 17 11	1210 530 790 1230 410	14 14 8 2 12	2 < 2 < 2 < 2 < 2 < 2 < 2	7 6 1 3	96 27 98 549 39	0.26 0.19 0.39 0.09 0.46	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	85 129 76 21 131	< 10 < 10 < 10 < 10 < 10 < 10	110 64 64 102 44	
2000M 1000W	201	229	< 1	0.19	11	860	4	< 2	3	81	0.32	< 10	< 10	53	< 10	40	
		-															
																	Sant Bichles

34 74 200

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

Comments:

CERTIFICATE

A9427164

(BSJ) - GRANGES INC.

134-JEFF Grid - Soils Project: □ 0.#:

samples submitted to our lab in Vancouver, BC. This report was printed on 5-OCT-94.

		SAM	PLE PREPARATION											
	CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION											
	20194Dry, sieve to -80 mesh2039Dry, sieve to -35 mesh2059Geochem ring to approx 150 mesh229103ICP - AQ Digestion charge													
	. 1													
Į	* NOTE	1:												

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Ba, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Ti, W.

		ANALYTICAL P	ROCEDURES		
CHEMEX	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER
100	103	Au ppb: Fuse 10 g sample	F λ-λλ <i>s</i>	5	10000
2118	103	Ag ppm: 32 element, soil & rock	ICP-AES	0.2	200
2119	103	Al %: 32 element, soil & rock	ICP-AES	0.01	15.00
2120	103	As ppm: 32 element, soil & rock	ICP-AES	2	10000
2121	103	Ba ppm: 32 element, soil & rock	ICP-AES	10	10000
2122	103	Be ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
2123	103	Bi ppm: 32 element, soil & rock	ICP-AES	2	10000
2124	103	Ca %: 32 element, soil & rock	ICP-AES	0.01	15.00
2125	103	Cd ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
2126	103	Co ppm: 32 element, soil & rock	ICP-AES	1	10000
2127	103	Cr ppm: 32 element, soil & rock	ICP-AES	1	10000
2128	103	Cu ppm: 32 element, soil & rock	ICP-AES	1	10000
2150 2130	103	Fe %: 32 element, soil & rock	ICP-AES	0.01	15.00
2131	103	Ga ppm: 32 element, soil è rock Hg ppm: 32 element, soil è rock	ICP-AES ICP-AES	10	10000
2132	103	K %: 32 element, soil & rock	ICP-AES	1 0.01	10000 10.00
2151	103	La ppm: 32 element, soil & rock	ICP-AES	10	10000
2134	103	Mg %: 32 element, soil & rock	ICP-AES	0.01	15.00
2135	103	Mn ppm: 32 element, soil & rock	ICP-AES	5	10000
2136	103	Mo ppm: 32 element, soil & rock	ICP-AES	1	10000
2137	103	Na %: 32 element, soil & rock	ICP-AES	0.01	5.00
2138	103	Ni ppm: 32 element, soil & rock	ICP-AES	1	10000
2139	103	P ppm: 32 element, soil & rock	ICP-AES	10	10000
2140	103	Pb ppm: 32 element, soil & rock	ICP-AES	2	10000
2141	103	Sb ppm: 32 element, soil & rock	ICP-AES	2	10000
2142	103	Sc ppm: 32 elements, soil & rock	ICP-AES	1	10000
2143	103 ·	Sr ppm: 32 element, soil & rock	ICP-AES	1	10000
2144	103	Ti %: 32 element, soil & rock	ICP-AES	0.01	5.00
2145	103	T1 ppm: 32 element, soil & rock	ICP-AES	10	10000
2146	103	U ppm: 32 element, soil & rock	ICP-AES	10	10000
2147	103	V ppm: 32 element, soil & rock	ICP-AES	1	10000
2148	103	W ppm: 32 element, soil & rock	ICP-AES	10	10000
2149	103	Zn ppm: 32 element, soil & rock	ICP-AES	2	10000

A9427164

1<4 1111 1×14

tauti maler

CERTIFICATION:

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

Project : 134-JEFF Grid Soils Comments: Page Number :1-A Total Pages :3 Certificate Date: 05-OCT-94 Invoice No. : 19427164 P.O. Number : Account :BSJ

CERTIFICATE OF ANALYSIS A9427164 DREP Au ppb **A**1 λs Ba Be Bi Ca Cđ Co Ga λα Cr Cu Fe Ηα ĸ La Ma Mn SAMPLE CODE FA+AA x ٦ × % % DDM DDm שממ DDM שממ DDD מסמ DDE DDM шaa maa шqq L7+00N-3+25W 201 229 0.6 2.10 0.19 < 5 18 60 < 0.5 < 2 < 0.5 4.85 < 10 165 4 13 15 < 1 0.04 < 10 0.29 L7+00N-3+50W 201 229 < 5 0.8 0.99 < 0.5 < 2 0.22 < 0.5 5 < 2 60 9 6 1.62 < 10 < 1 0.04 < 10 0.29 125 17+00N-4+00W 201 229 2.72 0.12 < 5 2.0 70 < 0.5 29 98 < 2 < 0.5 з 27 11.00 < 10 1 0.03 < 10 0.29 270 L7+00N-4+25W 201 229 < 5 1.6 2.00 122 90 < 0.5 < 2 0.11 < 0.5 3 15 47 6.71 < 10 < 1 0.03 < 10 0.20 255 L7+00N-4+75W 201 229 < 5 0.4 0.87 30 < 0.5 0.04 < 0.5 13 4 < 2 1 12 6.56 < 10 < 1 0.01 < 10 0.08 150 L7+00N-5+25W 201 229 0.4 1.00 < 5 2.40 4 **B**00 < 0.5 < 2 < 0.5 25 15 139 5.56 < 10 0.93 2 0.10 < 10 4290 L7+00N-5+50W 201 229 < 5 12 0.2 2.97 250 < 0.5 < 2 0.11 < 0.5 10 19 45 7.54 < 10 < 1 0.02 < 10 0.41 785 L7+00N-5+75W 201 229 < 5 0.4 3.83 10 140 < 0.5 < 2 0.12 0.5 12 19 8.15 < 10 41 1 0.03 < 10 0.37 5480 L8+00N-3+00W ----miss. miae. miss. miee. miee miss. mice. miss. miss. ming. mise. migg. mise. miss. mics. miss. miss. miss. miss. L8+00N-3+25W 201 229 < 5 1.4 4.74 32 70 < 0.5 < 2 0.07 < 0.5 7 27 60 7.94 < 10 0.04 < 10 0.70 270 1 L8+00N-3+50W 201 229 10 3.05 0.2 42 80 < 0.5 < 2 0.08 < 0.5 6 21 35 5.63 < 10 0.13 0.19 < 1 10 190 L8+00N-3+75W 201 229 20 3.23 26 < 0.5 0.05 1.0 80 < 2 < 0.5 3 27 50 9.12 < 10 < 1 0.04 < 10 0.42 135 L8+00N-4+00M 201 229 15 3.25 58 < 0.5 1.2 50 < 2 0.04 < 0.5 1 27 54 10.10 < 10 < 1 0.06 < 10 0.61 175 L8+00N-5+00M 201 229 10 0.2 0.97 < 0.5 6 40 < 2 0.16 < 0.5 4 8 11 2.24 < 10 < 1 0.04 < 10 0.21 120 L8+00N-5+25W 201 229 5 0.2 0.60 14 50 < 0.5 < 2 0.16 < 0.5 3 ß 7 1.71 < 10 < 1 0.03 < 10 0.16 95 201 229 L8+00N-5+50W < 5 < 0.2 3.29 44 60 < 0.5 < 2 0.10 < 0.5 9 29 46 13.75 < 10 < 1 0.03 < 10 0.25 1340 L8+00N-5+75W 201 229 < 5 0.4 2.05 8 60 < 0.5 < 2 0.44 < 0.5 10 10 25 4.79 < 10 0.08 < 10 0.61 1655 < 1 L8+00N-6+00W 201 229 < 5 0.6 1.49 112 60 < 0.5 < 2 0.07 < 0.5 28 4 17 5.28 < 10 0.03 < 10 0.11 295 < 1 201 229 < 5 L9+00N-3+25N 1.4 2.26 16 90 < 0.5 < 2 0.04 < 0.5 2 14 23 4.77 < 10 0.03 < 10 0.20 115 < 1 L9+00N-3+50M 201 229 < 5 72 14 1.0 2.60 190 0.5 < 2 0.75 0.5 21 31 7.58 < 10 0.08 < 10 0.70 1030 1 < 5 $1.9 \pm 0.0 N = 3 \pm 75 W$ 201 229 3.78 16 0.5 < 2 0.14 14 5.74 1.0 80 < 0.5 24 88 < 10 0.04 10 0.73 645 < 1 1.9+00N-4+00W miss. miss. miss. miss. ----migg. miss. miss. miss. miss. miss. mies, migs miee wige. miss. miss. miss. miss. miss. 201 229 0.4 < 0.5 L9+00N-4+25W < 5 2.28 18 60 < 2 0.05 < 0.5 3 19 50 5.79 < 10 0.02 < 10 0.36 < 1 150 L9+00N-5+25W 201 229 < 5 1.0 4.05 1260 80 1.0 < 2 0.08 < 0.5 15 25 133 6.65 < 10 0.07 10 0.76 465 1 L9+00N-5+50W 201 229 < 5 3.40 272 < 0.5 0.17 7 0.8 100 < 2 < 0.5 18 49 6.34 < 10 < 1 0.04 < 10 D.45 260 201 229 L9+00N-6+00W < 5 0.8 2.84 52 90 < 0.5 < 2 0.04 0.5 6 46 31 10.55 < 10 < 1 0.03 < 10 0.25 260 201 229 1100N-200W < 5 1.0 1.67 14 70 < 0.5 < 2 0.10 < 0.5 4 13 22 3.98 < 10 < 1 0.03 < 10 0.23 130 201 229 1100N-225W < 5 0.8 1.42 6 70 < 0.5 < 2 0.12 < 0.5 ٨ 10 16 2.93 < 10 < 1 0.04 < 10 0.24 115 201 229 1100N-250W < 5 0.8 1.46 14 90 < 0.5 < 2 0.09 < 0.5 4 12 15 3.03 < 10 < 1 0.03 < 10 0.17 100 1100N-275W 201 229 < 5 0.8 1.58 12 80 < 0.5 < 2 0.11 < 0.5 4 11 17 3.04 < 10 < 1 0.04 < 10 0.22 110 1100N-300W 201 229 < 5 1.38 80 < 0.5 0.08 < 0.5 4 10 15 2.81 < 10 0.6 4 < 2 < 1 0.03 < 10 0.17 95 201 229 < 5 0.08 12 < 10 1100N-325W 1.0 1.53 12 90 < 0.5 < 2 < 0.5 4 18 3.39 0.04 0.18 105 < 1 < 10 1100N-350W 201 229 < 5 1.4 1.01 2 70 < 0.5 < 2 0.42 < 0.5 ß 8 2 2.46 < 10 0.06 < 10 0.40 185 < 1 1100N-375W 201 229 < 5 2.82 7 17 4.58 0.6 18 70 < 0.5 < 2 0.16 < 0.5 51 < 10 1 0.06 < 10 0.46 655 1100N-400W 201 229 < 5 0.6 3.41 18 90 < 0.5 < 2 0.16 < 0.5 8 19 55 5.24 < 10 1 0.05 < 10 0.52 555 0.08 1100N-425W 201 229 < 5 0.6 2.49 16 50 < 0.5 < 2 < 0.5 5 15 48 4.51 < 10 0.05 < 10 0.43 340 < 1 1100N-450W 201 229 3.11 < 0.5 < 2 0.12 < 0.5 7 17 53 5.03 < 5 0.6 22 80 < 10 0.04 < 10 0.44 620 < 1 1100N-475W 201 229 2.79 < 0.5 0.07 < 0.5 5 15 45 4.53 0.38 < 5 14 70 < 2 < 10 0.03 < 10 395 8.0 < 1 1100N-500W 201 229 4.24 0.5 < 2 0.05 21 625 < 5 1.0 28 80 < 0.5 11 82 6.13 < 10 < 1 0.03 < 10 0.68 1100N-525W 201 229 0.6 3.35 90 < 0.5 < 2 0.13 < 0.5 8 20 55 5.30 < 10 < 1 0.04 < 10 0.51 610 < 5 16

1

1

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8 Page Number :1-B Total Pages :3 Certificate Date: 05-OCT-94 Invoice No. :19427164 P.O. Number : Account :BSJ

Project : 134-JEFF Comments:

											С	ERTIF	FICAT	E OF	ANAL	YSIS	A9427164
SAMPLE		EP DE	Mo ppm	Na %		P PPm	9b mqq	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm		V ppm	W ppm	Zn	
L7+00N-3+25W	201		2	0.03		880	2	< 2	3	20	0.20	< 10	< 10	102	< 10	32	
L7+00N-3+50W	201		< 1			880	< 2	< 2	2	37	0.15	< 10	< 10	35	< 10	24	
L7+00N-4+00W L7+00N-4+25W	201		6 5		16 13	2500 800	22 10	< 2	2	18 22	0.32	< 10 < 10	< 10 < 10	106 148	< 10 < 10	88 86	
L7+00N-4+75W	201					220	2	< 2	< 1	11	0.64	< 10		165	< 10	40	
L7+00N-5+25W	201		1			1140	8	< 2	8	80	0.22	< 10	< 10	75	< 10	62	
L7+00N-5+50W	201	229		< 0.01		1630	6	< 2	4	7	0.24	< 10	< 10	118	< 10	58	
L7+00N-5+75W L8+00N-3+00W	201	229	< <u>1</u> miss.	0.01 miss.	6 miss.	8510 miss.	12 miss.	< 2 miss.	3 miss.	13 miss.	0.05	< 10 miss.	< 10 miss.	83 miss.	< 10 miss.	72 miss.	
L8+00N-3+25W	201			< 0.01	22	1500	50	< 2	3	10	0.06	< 10	< 10	53	< 10	112	
L8+00N-3+50W		229		< 0.01	13	1110	16	< 2	4	8	0.03	< 10	< 10	104	< 10	86	
L8+00N-3+75W		229		< 0.01	14	1570	10	< 2	3	10	0.05	< 10	< 10	103	< 10	64	
L8+00N-4+00W L8+00N-5+00W	201	229 229	8	< 0.01 0.03	15 6	980 510	24 < 2	< 2 < 2	2	7 23	0.02	< 10 < 10	< 10 < 10	61 80	< 10 < 10	104	
L8+00N-5+25W		229	i	0.02	š	560	4	< 2	ī	34	0.31	< 10	< 10	63	< 10	22	
L8+00N-5+50W		229		< 0.01	5	1120	18	< 2	5	9	0.14	< 10	< 10	149	< 10	284	
18+00N-5+75W 18+00N-6+00W		229	1	0.07	.7	1630	6	< 2	3	38 7	0.34	< 10	< 10	70	< 10 < 10	92	
L9+00N-3+25W	201			< 0.01	11	420 1040	8 14	< 2	2	9	0.20	< 10 < 10	< 10 < 10	134 120	< 10	64 38	
L9+00N-3+50W	201			< 0.01	26	1570	46	< 2	2	48	0.02	< 10	< 10	48	< 10	286	
L9+00N-3+75W	201		4	0.01	20	2940	10	< 2	4	10	0.14	< 10	< 10	83	< 10	114	
L9+00N-4+00W	1	229			miss.		miss.				miss.		miss.			miss.	
L9+00N-4+25W L9+00N-5+25W	201			< 0.01	13 33	1640 1160	12 40	< 2	15	16 8	0.01	< 10 < 10	< 10 < 10	85 45	< 10 < 10	58 236	
L9+00N-5+50W		229	2	0.04	11	1040	16	< 2	4	20	0.08	< 10	< 10	82	< 10	74	
L9+00N-6+00W	201		4	0.01	11	990	B	< 2	4	8	0.10	< 10	< 10	110	10	56	
1100N-200W 1100N-225W	201		2	0.02	9	1210	8	< 2	2	16 22	0.12	< 10	< 10 < 10	83	< 10 < 10	34 28	
1100N-250W	201		1	0.03	9	1100 1100	8	< 2	2	17	0.11 0.12	< 10 < 10	< 10	68 80	< 10	28	
100N-275W	201		1	0.03	é	1130	6	< 2	2	22	0.09	< 10	< 10	71	< 10	32	
100N-300W	201		1	0.02	8	1020	4	< 2	2	17	0.11	< 10	< 10	67	< 10	26	
L100N-325W L100N-350W	201	229 229	2 1	0.02	9	1220 970	8	< 2	2	19 66	0.10 0.32	< 10 10	< 10 < 10	73 59	< 10 < 10	30 28	
L100N-375W	201	229	1	0.09	10	1800	12	< 2	2	12	0.32	< 10	< 10	53	< 10	28 66	
100N-400W	201		2	0.04	11	1590	B	< 2	2	13	0.05	< 10	< 10	53	< 10	70	
100N-425W	201	229	2	0.01	9	2220	14	< 2	1	7	0.04	< 10	< 10	53	< 10	58	
100N-450W	201		1	0.02	10	1700	12	< 2	2	10	0.02	< 10	< 10	49	< 10	66	
100N-475W 100N-500W	201 201		1		9 16	1280 1910	8 16	< 2 < 2	2	8 5	0.04	< 10 < 10	< 10 < 10	50 41	< 10 < 10	56 98	
1100N-525W	201		1	0.03	11	1680	10	< 2	2	11	0.01	< 10	< 10	54	< 10	74	
															CERTIFIC		taut Buchles

í

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

Page Number : 2-A Total Pages : 3 Certificate Date: 05-0CT-94 Invoice No. : 19427164 P.O. Number : Account BSJ

Project : 134-JEFF Comments:

		-								CE	RTIFI	CATE	OF /	ANAL	YSIS		49427	164		
SAMPLE	PREP CODE	Ац ррб Уд+дд	λg ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co mqq	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	R %	La ppm	Mg %	Mn ppm
1100N-550W	201 225		0.8	3.43	16	90	< 0.5	< 2	0.13	< 0.5	10	21	71	5.55	10	< 1	0.07	10	0.59	595
1100N-575W 1300N-200W	201 229		0.6	4.54	14 2	110 40	0.5	< 2	0.11 0.10	1.0 < 0.5	18	29 16	95 22	6.56 6.87	10 40	< 1 < 1	0.09 0.03	10 < 10	0.87	845 195
1300N-225W	201 229		0.6	3.50	20	90	0.5	< 2	0.10	< 0.5	10	25	46	6.17	10	< 1	0.03	< 10	0.66	365
1300N-250W	201 229		3.4	2.73	14	130	1.0	< 2	0.23	< 0.5	8	22	39	6.29	20	< 1	0.08	10	0.52	455
1300N-275W	201 229		0.4	2.74	30	40	< 0.5	< 2	0.03	< 0.5	10	39	45	12.75	20	< 1	0.03	< 10	0.29	300
1300N-300W 1300N-325W	201 229		0.2 1.6	2.69 1.05	28 < 2	70 60	0.5	< 2	0.27	< 0.5 < 0.5	12 11	17 8	37 15	6.30 3.14	10 < 10	< 1 < 1	0.08 0.10	< 10 < 10	0.61 0.65	2560 290
1300N-350W	201 229		11.2	1.95	48	60	0.5	< 2	0.15	< 0.5	8	30	23	9.21	30	< 1	0.07	< 10	0.35	235
1300N-375W	201 229		0.6	2.74	28	100	0.5	< 2	0.06	< 0.5	7	21	69	6.43	10	< 1	0.04	10	0.25	205
1300N-400W	201 229		0.6	2.38	22	90	0.5	< 2	0.09	< 0.5	7	18	57	5.72	10	< 1	0.05	10	0.24	200
1300N-425W	201 229		1.4	0.76	< 2	60	< 0.5	< 2	0.62	< 0.5	4	3	12	1.29	< 10	< 1	0.08	< 10	0.22	305
1300N-450W 1300N-475W	201 229 201 229		0.8	1.36	< 2 < 2	60 70	0.5	< 2	0.40	< 0.5 < 0.5	10	10	14 15	2.67	10 < 10	1 < 1	0.07 0.17	< 10 < 10	0.53 0.63	170 1235
1300N-500W	201 229		0.6	1.36	< 2	60	1.0	< 2	0.85	< 0.5	8	8	14	2.38	< 10	< 1	0.14	< 10	0.47	1600
1300N-525W	201 229	< 5	0.8	1.20	< 2	70	1.0	< 2	0.49	< 0.5	11	7	13	2.46	< 10	1	0.10	< 10	0.71	205
1300N-550W	201 229		1.0	1.22	< 2	70	1.0	6	0.48	< 0.5	10	7	15	2.94	10	1	0.09	< 10	0.57	190
1300N-575W 1300N-600W	201 229		1.2	1.03 0.98	< 2	70 30	1.0	< 2	0.33 0.66	0.5 < 0.5	9 9	8	13 21	2.34	< 10 < 10	< 1 1	0.09 0.12	< 10 < 10	0.46 0.62	165 295
1500N-225W	201 229		0.8	3.21	22	80	2.5	< 2	0.27	0.5	14	19	56	6.17	10	< 1	0.11	10	0.68	925
1500N-250W	201 229	< 5	0.4	2.79	14	170	< 0.5	< 2	0.04	< 0.5	10	22	47	3.44	10	< 1	0.11	10	0.30	550
1500N-275W	201 229		3.0	1.73	24	90	< 0.5	< 2	0.08	< 0.5	6	17	23	5.44	20	< 1	0.05	10	0.20	255
1500N-300W 1500N-325W	201 229		1.6	1.23	14 < 2	60 20	< 0.5 < 0.5	2	0.29	< 0.5 < 0.5	11 8	15 10	24 15	4.88	30 < 10	< 1 < 1	0.07 0.08	< 10 < 10	0.52	290 335
1500N-350W	201 229		2.4	1.16	< 2	130	< 0.5	4	0.58	< 0.5	10	5	12	2.56	< 10	< 1	0.09	< 10	0.64	180
500N-375W	201 229	< 5	3.8	1.57	116	60	< 0.5	< 2	0.23	< 0.5	8	14	40	4.46	< 10	< 1	0.08	< 10	0.50	310
500N-400W	201 229	95	2.0	1.18	194	50	< 0.5	< 2	0.21	< 0.5	9	8	30	3.01	< 10	< 1	0.10	< 10	0.39	285
500N-425W	201 229 201 229	< 5	0.4	1.98 5.79	22 26	70 70	< 0.5	< 2 < 2	0.18 0.11	< 0.5 0.5	8 12	22 43	35 157	4.95 8.16	10 < 10	< 1	0.12 0.05	< 10 10	0.49 0.93	620 975
L500N-450N L500N-475W	203 205	< 5 < 5	0.2	2.37	48	70	< 0.5	< 2	0.58	< 0.5	12	36	27	4.70	< 10	< 1 < 1	0.11	< 10	1.04	505
500N-500W	203 205	< 5	0.8	2.09	32	80	< 0.5	4	0.74	< 0.5	12	34	22	3.98	< 10	< 1	0.14	< 10	1.07	495
600N-200W	201 229	< 5	5.0	1.51	2	90	< 0.5	< 2	0.34	< 0.5	9	14	19	2.80	10	< 1	0.07	< 10	0.50	285
600N-225W	201 229	< 5	1.4	1.55	16	70	< 0.5	< 2	0.31	< 0.5	9	10	26	2.94	10	< 1	0.09	10	0.52	190
L600N-250W L600N-275W	201 229 203 205	< 5 < 5	0.8 3.4	1.08 0.65	12 < 2	50 20	< 0.5 < 0.5	< 2 < 2	0.22 0.42	< 0.5 < 0.5	11 7	10 10	14 11	2.57 1.72	10 < 10	< 1 < 1	0.06 0.14	10 < 10	0.41 0.40	210 805
600N-300W	201 229	< 5	0.8	1.73	12	70	< 0.5	2	0.11	< 0.5	8	11	20	1.95	10	< 1	0.04	10	0.17	80
600N-325W	201 229	< 5	0.8	1.21	< 2	40	< 0.5	< 2	0.33	< 0.5	11	10	16	3.01	< 10	< 1	0.06	< 10	0.62	235
600N-350W	201 229	< 5	1.2	1.24	< 2	70	< 0.5	2	0.48	0.5	12	7	13	2.89	< 10	1	0.10	< 10	0.77	245
600N-375W	201 229	< 5	1.0	2.62	22	100	0.5	< 2	0.13	< 0.5	7	38	36	7.63	20	< 1	0.05	< 10	0.50	220
600N-400W	201 229	< 5	1.2	3.78	42	80	1.0	< 2	0.09	< 0.5	7	40	54	7.59	10	< 1	0.07	< 10	0.51	360
											·····					-11		D	20	
													Ċ	ERTIFIC	ATION:	14	aut	Par	chle	A

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

Project : 134-JEFF Comments: Page Number :2-B Total Pages :3 Certificate Date: 05-OCT-94 Invoice No. : 19427164 P.O. Number : Account :BSJ

								_		CE	RTIF	ICATE	OF /	NAL	/SIS	A9427164
SAMPLE	PREP CODE	Mo ppm	Ne %	Ni ppm	P ppm	Pb ppm	SD ppm	Sc ррт	Sr ppm	Tİ X	T1 ppm	D mđđ	V ppm	M	Zn ppm	
1100N-550W 1100N-575W 1300N-200W 1300N-225W 1300N-250W	201 229 201 229 201 229 201 229 201 229 201 229	1 2 4 2	0.04 0.02 0.01 0.07 0.09	11 19 3 12 12	1670 2560 660 1210 700	14 20 16 18 22	2 6 10 4 6	3 6 2 7 5	13 10 14 21 28	0.06 0.03 0.46 0.16 0.35	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	71 61 142 103 107	< 10 < 10 < 10 < 10 < 10 < 10	86 130 32 76 76	
1300N-275W 1300N-300W 1300N-325W 1300N-355W 1300N-355W	201 229 201 229 201 229 201 229 201 229 201 229 201 229	3 2 1 4	< 0.01 0.06 0.14 0.06 0.01	12 9 9 10 12	1030 1530 1070 650 1380	14 B 4 22 18	14 8 4 12 6	6 5 4 3 4	4 23 41 16 7	0.14 0.11 0.42 0.22 0.04	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	135 114 73 118 99	< 10 < 10 < 10 < 10 < 10 < 10	64 54 38 62 82	
1300N-400W 3300N-425W 1300N-455W 1300N-475W 1300N-500W	201 229 201 229 201 229 201 229 201 229 201 229 201 229	3 < 1 1 1	0.02 0.06 0.14 0.29 0.21	10 4 8 9 7	1290 1140 1040 940 970	18 2 8 6 4	8 2 2 6 2	3 1 4 5 3	12 40 45 98 72	0.04 0.17 0.39 0.38 0.32	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	89 26 61 69 60	< 10 < 10 < 10 < 10 < 10 < 10	70 44 32 32 32	
1300N-525W 1300N-550W 1300N-575W 1300N-600W 1500N-225W	201 229 201 229 201 229 201 229 201 229 201 229 201 229	1 1 < 1 < 1 2	0.18 0.14 0.11 0.19 0.10	10 8 8 8 12	890 1110 1010 960 2790	6 8 < 2 < 2 22	2 6 4 4	3 4 3 3 6	67 65 56 54 25	0.36 0.47 0.34 0.28 0.17	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	57 70 57 48 89	< 10 < 10 < 10 < 10 < 10 < 10	54 38 36 36 78	
1500N-250W 1500N-275W 1500N-300W 1500N-325W 1500N-350W	201 229 201 229 201 229 201 229 201 229 201 229 201 229	1 4 6 1 < 1	< 0.01 0.02 0.09 0.09 0.13	10 10 11 8 9	850 3020 810 950 960	8 20 18 2 2	4 6 8 4	4 3 3 2 4	3 13 37 28 76	0.04 0.14 0.43 0.30 0.39	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	61 70 119 58 58	< 10 < 10 < 10 < 10 < 10 < 10	70 60 70 44 30	
1500N-375W 1500N-400W 1500N-425W 1500N-425W 1500N-450W 1500N-475W	201 229 201 229 201 229 201 229 201 229 203 205	1 1 2 2 2	0.06 0.08 0.04 < 0.01 0.17	12 9 11 36 20	2190 1020 1520 1980 870	14 4 16 20 8	6 4 12 4	3 3 3 6 6	24 23 18 7 58	0.20 0.18 0.14 0.01 0.21	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	76 65 78 61 80	< 10 < 10 < 10 < 10 < 10 < 10	50 46 78 140 100	
1500N-500W 1600N-200W 1600N-225W 1600N-250W 1600N-250W	203 205 201 229 201 229 201 229 201 229 203 205	1 2 2 3 < 1	0.23 0.11 0.12 0.09 0.07	17 10 10 10 6	890 560 700 400 1440	6 10 4 8 4	4 4 2 2	6 4 2 2	77 42 34 23 30	0.22 0.31 0.20 0.19 0.24	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	68 97 102 99 37	< 10 < 10 < 10 < 10 < 10 < 10	86 46 48 38 36	
1600N-300W 1600N-325W 1600N-350W 1600N-375W 1600N-400W	201 229 201 229 201 229 201 229 201 229 201 229 201 229	1 1 1 3 4	0.01 0.09 0.16 0.03 0.02	7 10 11 18 14	310 840 980 770 1450	2 4 22 22 22	4 2 6 6	3 3 4 4 6	10 26 54 15 11	0.06 0.27 0.38 0.12 0.10	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	95 95 68 98 99	< 10 < 10 < 10 < 10 < 10 < 10	28 34 40 78 90	

CERTIFICATION: tartBuchler

Analytical Chemists * Geochemists * Registered Assayers

212 Brocksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

Page Number :3-A Total Pages :3 Certificate Date: 05-OCT-94 Invoice No. :19427164 P.O. Number : BSJ Account

Project : Comments: 134-JEFF

_											CE	RTIFI	CATE	OF A	NAL	YSIS		A9427	164		
ſ	SAMPLE	PREP CODE	ли ррв Га+да	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co Mqq	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	К %	La ppm	Mg %	Mri ppm
17 17 17	00N-425W 00N-200W 00N-225W 00N-250W 00N-250W	201 229 201 229 203 205 203 205 203 205	< 5 < 5 < 5	2.0 3.0 3.8 1.4 4.2	1.21 1.10 1.56 0.51 1.49	14 6 4 < 2 14	120 140 110	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.38 1.03 1.71 1.32 1.91	< 0.5 0.5 0.5 0.5 0.5	9 8 14 4 13	10 12 17 6 15	11 12 15 9 14	3.27 3.38 3.01 1.04 2.91	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 1 < 1 1	0.08 0.04 0.12 0.05 0.13	< 10 < 10 < 10 < 10 < 10 < 10	0.57 0.32 0.94 0.19 0.98	245 775 1275 90 555
17 17 17	00N-300W 00N-325W 00N-350W 00N-375W 00N-200W	203 205 201 229 201 229 201 229 201 229 201 229	< 5 < 5 < 5	9.0 1.6 1.4 1.2 2.4	1.18 1.94 1.84 0.91 2.78	14 8 4 2 34	90 80	< 0.5 < 0.5 < 0.5 < 0.5 1.0	< 2 < 2 < 2 < 2 < 2 < 2	0.29	1.0 < 0.5 < 0.5 < 0.5 1.5	9 8 7 7 18	10 25 27 13 21	14 17 17 8 76	1.95 3.59 3.20 2.48 4.47	< 10 < 10 < 10 < 10 < 10 < 10	1 1 1 < 1 1	0.10 0.07 0.08 0.09 0.12	< 10 < 10 < 10 < 10 10	0.58 0.52 0.53 0.85	420 270 285 290 2450
18 18 18	00N-225W 00N-250W 00N-275W 00N-275W 00N-300W 00N-325W	203 205 201 229 201 229 201 229 201 229 201 229	< 5 < 5 < 5	1.6 3.8 0.4 1.4 0.8	1.19 3.90 0.80 0.69 1.30	< 2 10 < 2 4 4	110 40 60	< 0.5 1.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.06	1.0 1.5 < 0.5 < 0.5 < 0.5	9 4 5 4 10	10 33 12 10 7	14 103 8 11 10	2.08 2.27 1.58 1.47 2.44	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.09 0.07 0.10 0.04 0.11	< 10 10 < 10 < 10 < 10 < 10	0.56 0.41 0.44 0.08 0.71	205 620 185 65 315
18 18 19	00N-350W 00N-375W 00N-400W 00N-200W 00N-225W	201 229 201 229 201 229 201 229 201 229 201 229	< 5 < 5 < 5	1.6 1.4 1.0 3.2 1.4	0.95 0.99 1.08 0.75 1.96	< 2 10 10 26 14	60 50 40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.35	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 4 3 4 6	8 10 12 6 18	7 15 17 10 12	2.26 2.83 3.18 1.91 4.57	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.06 0.07 0.07 0.03 0.03	< 10 < 10 < 10 < 10 < 10 < 10	0.46 0.25 0.17 0.21 0.46	170 300 290 390 235
19(19) 19(19)	0 0N-250W 0 0N-275W 0 0N-300W 0 0N-325W 0 0N-350W	201 229 203 205 201 229 201 229 201 229 201 229	< 5 5 5 5 5 5 5 5 5 5	1.6 1.8 0.6 2.0 0.2	1.37 0.82 1.50 3.32 2.90	8 < 2 4 12 28	120 40 250	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.30 0.20 0.66 0.14 0.04	< 0.5 0.5 0.5 2.0 < 0.5	6 4 13 6 3	13 8 10 49 25	10 9 11 15 35	3.50 1.08 3.56 1.84 5.41	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.07 0.06 0.11 0.03 0.03	< 10 < 10 < 10 < 10 < 10 10	0.41 0.26 1.10 0.42 0.29	230 75 300 120 85
															ERTIFIC		40	J.L.	Sich	hler	

f

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8 Page Number :3-B Total Pages :3 Certificate Date:05-OCT-94 Invoice No. : I9427164 P.O. Number : Account :BSJ

Project : 134-JEFF Comments:

										CE	RTIF	CATE	OF A	NALY	SIS	A9427164
SAMPLE	PREP CODE	Mo	Na ¥	Ni ppm	p DDm	Pb ppm	Sb ppm	Sc ppm	Sz ppm	Tİ X	T1 ppm	U ppm	V mqq	W ppm	Zn ppm	
600N-425W 700N-200W 1700N-225W 700N-250W 700N-275W	201 229 201 229 203 205 203 205 203 205	1 5 1 5 < 1	0.13 0.05 0.21 0.03 0.25	10 8 14 4 13	880 820 1080 820 890	4 14 4 2 < 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	2 2 4 1 4	37 104 173 138 174	0.28 0.53 0.35 0.11 0.36	< 10 < 10 < 10 < 10 < 10 10	< 10 < 10 < 10 < 10 < 10 < 10	76 89 61 19 58	< 10 < 10 < 10 < 10 < 10 < 10	38 32 42 24 52	
700n-300W 700n-325W 700n-350W 700n-375W 800n-200W	203 205 201 229 201 229 201 229 201 229 201 229	4 3 1	0.16 0.13 0.10 0.13 0.11	10 18 20 9 34	910 770 840 780 1480	4 2 2 16	< 2 < 2 < 2 < 2 < 2 < 2 < 2	3 4 4 2 4	180 36 32 40 98	0.23 0.23 0.17 0.32 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	37 82 75 72 49	< 10 < 10 < 10 < 10 < 10 < 10	52 74 78 42 208	
800N-225W 800N-250W 800N-275W 800N-300W 800N-325W	203 205 201 229 201 229 201 229 201 229 201 229	3 < 1 2 1	0.14 0.02 0.11 0.01 0.19	10 26 6 8 9	910 3110 890 700 1070	26 < 2 2 2	< 2 < 2 < 2 < 2 < 2 < 2	2 3 2 1 3	81 37 53 25 75	0.22 0.12 0.22 0.12 0.29	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	40 49 33 53 53	< 10 < 10 < 10 < 10 < 10 < 10	42 378 34 54 34	
800N-350W 800N-375W 800N-400W 900N-200W 900N-225W	201 229 201 229 201 229 201 229 201 229 201 229	6 8 1	0.09 0.04 0.02 0.03 0.08	8 10 10 5 8	840 980 980 590 510	2 6 < 2 10 8	< 2 < 2 < 2 < 2 < 2 < 2	2 2 1 4	32 29 24 42 28	0.26 0.16 0.11 0.15 0.24	< 10 < 10 < 10 < 10 < 10 10	< 10 < 10 < 10 < 10 < 10 < 10	58 73 78 39 134	< 10 < 10 < 10 < 10 < 10 < 10	28 62 66 42 42	
900N-250W 900N-275W 900N-300W 900N-325W 900N-350W	201 229 203 205 201 229 201 229 201 229 201 229	< 1 1 9	0.07 0.05 0.26 0.01 0.01	8 5 13 20 7	590 690 810 520 570	< 2 8 2 24 8	< 2 < 2 < 2 < 2 < 2	2 1 4 6	28 48 64 13 10	0.23 0.12 0.46 0.07 0.04	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	112 29 82 106 172	< 10 < 10 < 10 < 10 < 10 < 10	32 32 40 172 48	
																tart Bickler

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

CERTIFICATE A9427165 (BSJ) - GRANGES INC. 134-R-Grid SILT Project: P.O. # : imples submitted to our lab in Vancouver, BC. this report was printed on 4-OCT-94. SAMPLE PREPARATION CHEMEX NUMBER DESCRIPTION 201 3 Dry, sieve to -80 mesh 203 2 Dry, sieve to -35 mesh 205 2 Geochem ring to approx 150 mesh 229 5 ICP - AQ Digestion charge

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: A1, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, T1, W.

* NOTE

To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

Comments:

CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	upper Limit
100 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2150 2130 2131 2132 2151 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149	S 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Au ppb: Fuse 10 g sample Ag ppm: 32 element, soil & rock Al %: 32 element, soil & rock Ba ppm: 32 element, soil & rock Ba ppm: 32 element, soil & rock Ba ppm: 32 element, soil & rock Ba ppm: 32 element, soil & rock Ca %: 32 element, soil & rock Cd ppm: 32 element, soil & rock Co ppm: 32 element, soil & rock Cr ppm: 32 element, soil & rock Cr ppm: 32 element, soil & rock Ga ppm: 32 element, soil & rock Ga ppm: 32 element, soil & rock Mg %: 32 element, soil & rock Mg %: 32 element, soil & rock Mg %: 32 element, soil & rock Mn ppm: 32 element, soil & rock Mn ppm: 32 element, soil & rock Ni ppm: 32 element, soil & rock Ni ppm: 32 element, soil & rock Ni ppm: 32 element, soil & rock Ni ppm: 32 element, soil & rock Ni ppm: 32 element, soil & rock Ni ppm: 32 element, soil & rock So ppm: 32 element, soil & rock	FA-AAS ICP-AES	5 0.2 0.01 2 0.01 0.5 2 0.01 0.5 1 1 0.01 10 0.01 10 0.01 10 2 2 1 0.01 10 2 2 1 0.01 10 2 2 1 0.01 10 2 2 1 1 0.01 10 2 2 1 1 0.01 10 2 2 1 1 0.01 10 2 2 10 0.01 10 10 10 10 0.01 10 10 10 10 10 10 10 10 10	10000 200 15.00 10000

127. wtl. wg

A9427165

To: GHANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

raye NumLer ...-A Total Pages :1 Certificate Date: 04-OCT-94 Invoice No. : 19427165 P.O. Number :____ Account BSJ

134-R Grid Project : Comments:

PLOTTED IN SOIL GEOCHEM MA.

		165	9427	4	'SIS	NAL	OF A	CATE	RTIFI	CE											
Mn ppm	Mg %	La ppm	K %	Hg ppm	Ga ppm	Fe %	Ca	Cr ppm	Co ppm	Cđ ppm	Ca %	Bi ppm	Be	Ba ppm	e de la composition de la comp	λ1 %	Ag ppm	ли ppb FA+AA		PRE	SAMPLE
3150 3030 1 4 35	0.70 0.48 0.64 0.81 0.93	10 < 10 < 10 10 10	0.10 0.13 0.13 0.10 0.17	< 1 < 1 < 1 < 1 < 1	< 10 < 10 < 10 < 10 < 10 < 10	5.85 5.28 4.86 4.78 4.52	13 56 23 46 49	20 20 40 33 46	21 20 21 15 15	0.5 5.5 2.0 < 0.5 1.0	0.77 0.69 0.47 0.57 0.64	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	300 210	206 46 72 20 28	2.48 1.41 1.93 2.16 2.04	0.4 0.8 0.2 0.2 0.4	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	229 205 229	201 201 203 201 203	4+90-5+30¥ 14+00N-3+70¥ 17+00N-8+75¥ 19+00N-7+25¥ 20+15-8+85¥
	Le.	sid	7	da	ATION:																

ſ

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

1-7. 211. 001

SILT

Analytical Chemists * Geochemists * Registered Assavers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

Page Number :6-B Total Pages :7 Certificate Date: 03-OCT-94 Invoice No. :19427173 P.O. Number : BSJ Account

Project : **UNUK #134**

ATTN: V.P. VAN DAMME CC: WARREN BATES Comments:

A9427173 CERTIFICATE OF ANALYSIS PREP Mo Na Ni ₽ ₽Ъ Sb Sc Sr Тİ т1 U v Zn Ag ppm SAMPLE CODE * ppm ppm ppm ppm ppm ppm * DDM ppm ppm ppm ppm Aqua R DDE 394104 205 226 640 29 0.14 < 10 < 10 58 < 10 54 < 0.2 < 1 0.10 1 4 394105 205 226 1 0.10 4 850 18 < 2 6 73 0.15 < 10 < 10 93 < 10 80 < 0.2 6 0.07 26 1500 14 11 27 0.06 < 10 < 10 159 < 10 108 < 0.2 394106 205 226 < 2 < 10 394107 205 226 0.02 16 150 6 6 8 45 < 0.01< 10 32 < 10 82 < 0.2 1 26 < 0.2 394108 205 226 1 0.06 1 280 12 < 2 1 14 < 0.01< 10 < 10 4 < 10 **594109** 205 226 2 0.01 1 40 40 18 < 1 3 < 0.01< 10 < 10 1 < 10 24 0.9 394110 205 226 < 1 0.05 16 940 14 2 57 < 0.01 < 10 < 10 48 < 10 76 < 0.2 6 112 < 0.0164 < 10 72 < 0.2 **b94111** 205 226 1 0.07 14 990 12 4 < 10 < 10 6 1010 14 18 44 < 0.01 39 < 10 138 < 0.2 b94112 205 226 1 0.03 4 7 < 10 < 10 1030 10 < 2 64 0.13 < 10 < 10 53 < 10 100 < 0.2 394113 205 226 1 0.06 1 4 394114 205 226 < 1 0.07 2 680 18 4 4 14 0.16 < 10 < 10 39 < 10 64 < 0.2 **b94115** 205 226 1 0.09 1 730 18 8 4 20 < 0.01< 10 < 10 61 < 10 72 < 0.2 394116 205 226 1 0.09 35 1010 4 < 2 22 106 < 0.01 < 10 < 10 188 < 10 126 < 0.2 149 < 0.01 **b94117** 205 226 1 0.08 12 490 6 13 < 10 < 10 89 < 10 90 < 0.2 4 < 10 0.07 9 550 6 < 2 7 51 < 0.01 < 10 62 74 < 0.2 **b94118** 205 226 < 1 < 10 205 226 14 2 2 49 < 0.01 < 10 < 10 7 < 10 74 < 0.2 394119 1 0.04 4 310 17 < 0.01 240 12 < 10 < 10 < 10 82 < 0.2 394120 205 226 < 1 0.06 4 2 2 8 394121 205 226 2 0.01 1 80 16 б < 1 12 < 0.01 < 10 < 10 3 < 10 4 < 0.2 205 226 10 0.01 8 40 5B 3 < 0.01 < 10 < 10 29 < 10 2 9.5 394122 6 1 394123 205 226 13 0.02 3 510 42 < 2 2 6 < 0.01 < 10 < 10 15 < 10 56 2.2 0.02 2 1590 < 2 10 43 < 0.01< 10 < 10 53 < 10 96 < 0.2 394124 205 226 < 1 8 205 226 0.08 1 1670 7 43 < 0.01< 10 < 10 112 < 10 114 < 0.2 394125 1 4 4 394126 205 226 1 0.07 1570 10 < 2 11 144 0.03 < 10 < 10 130 < 10 108 < 0.2 6 7 0.09 < 10 100 112 < 0.2 394127 205 226 < 1 0.07 1 1960 8 6 76 < 10 < 10 1650 12 4 15 152 0.12 < 10 141 < 10 136 < 0.2 394128 205 226 1 0.07 11 < 10 394129 205 226 0.09 10 1240 6 < 2 11 130 < 0.01< 10 < 10 72 < 10 106 < 0.2 < 1 2 205 226 2 7 1360 12 233 < 0.01 < 10 < 10 75 < 10 162 < 0.2 394130 0.16 14 < 10 **b94131** 205 226 1 0.07 2300 8 < 2 9 399 0.18 < 10 116 < 10 130 < 0.2 1 9 26 < 0.01< 10 114 < 0.2 494001 205 226 3 0.09 1 2360 6 2 < 10 < 10 40 205 226 6 0.07 2 630 10 2 6 21 < 0.01< 10 < 10 42 < 10 70 < 0.2 494002 494003 205 226 2 0.02 14 380 22 < 2 2 8 < 0.01 < 10 < 10 56 < 10 102 1.2 494004 205 226 1 0.08 15 820 2 10 25 23 0.42 < 10 < 10 236 < 10 94 < 0.2 494005 205 226 0.03 45 1040 18 10 10 415 < 0.01< 10 < 10 30 < 10 174 0.2 < 1 494006 205 226 2 0.03 2 90 16 4 1 10 < 0.01< 10 < 10 5 < 10 38 < 0.2 90 14 < 0.01 494007 205 226 4 0.03 2 16 6 < 1 < 10 < 10 1 < 10 14 < 0.2 205 226 1950 22 13 306 < 0.01< 10 < 10 101 < 10 104 < 0.2 494008 2 0.04 12 < 2 494009 205 226 1 0.02 1 100 20 12 < 1 4 < 0.01 < 10 < 10 1 < 10 6 < 0.2 205 226 2 8 < 0.01 < 10 2 494010 0.09 1 40 10 < 2 < 1 < 10 < 10 10 < 0.2 494011 205 226 < 1 0.04 16 850 8 < 2 4 43 < 0.01< 10 < 10 36 < 10 82 < 0.2 205 226 108 2 122 < 0.01 490 494012 4 0.02 16 2140 9 < 10 < 10 32 < 10 1.6

CERTIFICATION: Hart Buchler

C

i

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8 Page Number :/-A Total Pages :7 Certificate Date: 03-OCT-94 Invoice No. : I9427173 P.O. Number : Account :BSJ

.

Project : UNUK #134 Comments: ATTN: V.P. VAN DAMME CC: WARREN BATES

PRE COI		λu ppb Fλ+λλ	Ag ppm	A1 %	As ppm	Ba ppm	Be	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	M PP
205 205 205 205 205 205	226 226 226 226 226 226	< 5 < 5 < 5 30 10	1.6 0.8 < 0.2 < 0.2 0.2	1.06 1.03 0.76 0.57 2.63	52 78 18 20 72	190	< 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.33 0.72 6.28 6.37 1.72	< 0.5 1.0 0.5 < 0.5 0.5	3 4 9 7 13	34 47 125 35 57	34 53 19 44 40	3.18 3.86 3.97 3.33 3.99	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.47 0.44 0.40 0.31 0.78	< 10 < 10 < 10 < 10 < 10 < 10	0.04 0.23 1.53 0.76 0.96	8 25 110 114 69
											ı									
															ATION:			4		
	205 205 205	CODE 205 226 205 226 205 226 205 226 205 226	205 226 < 5 205 226 < 5 205 226 < 5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	205 226 < 5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	225 225 < 5	226 < 5	205 226 <5 1.6 1.06 52 130 0.5 <2 0.33 <0.5 3 34 34 3.18 <10 <1 0.47 205 226 <5 0.8 1.03 78 120 0.5 <2 0.72 1.0 4 47 53 3.46 <10 <1 0.47 55 <0.2 0.76 18 130 <0.5 2 6.28 0.5 9 125 13 3.97 <10 <1 0.40 205 226 30 <0.2 0.57 20 190 <0.5 <2 6.37 <0.5 7 35 44 3.33 <10 <1 0.40 205 226 10 0.2 2.63 72 210 <0.5 <2 1.72 0.5 13 57 40 3.99 <10 <1 0.78	205 226 < 5 1.6 1.06 52 130 0.5 < 2 0.33 < 0.5 3 34 34 34 3.18 < 10 < 1 0.47 < 10 205 226 < 5 0.8 1.03 78 130 0.5 2 0.72 1.0 4 47 53 3.46 < 10 < 1 0.47 < 10 205 226 30 < 0.2 0.76 18 130 < 0.5 2 0.42 0.5 9 125 19 3.97 < 10 < 1 0.40 < 10 205 226 30 < 0.2 0.57 20 130 < 0.5 < 2 6.37 < 0.5 7 35 44 3.33 < 10 < 1 0.31 < 10 205 226 10 0.2 2.63 72 210 < 0.5 < 2 1.72 0.5 13 57 40 3.99 < 10 < 1 0.78 < 10	205 226 < 5 1.6 1.06 52 130 0.5 < 2 0.33 < 0.5 3 34 34 3.18 < 10 < 1 0.47 < 10 0.04 205 226 < 5 0.8 1.03 78 120 0.5 < 2 0.72 1.0 4 47 53 3.46 < 10 < 1 0.47 < 10 0.21 205 225 30 < 0.2 0.76 18 130 < 0.5 2 6.28 0.5 9 125 19 3.97 < 10 < 1 0.40 < 10 1.21 205 225 10 0.2 2.63 72 20 190 < 0.5 < 2 6.37 < 0.5 7 35 44 3.33 < 10 < 1 0.31 < 10 0.76 10 0.2 2.63 72 210 < 0.5 < 2 1.72 0.5 13 57 40 3.59 < 10 < 1 0.78 < 10 0.56 2 10 0.2 2.63 72 210 < 0.5 < 2 1.72 0.5 13 57 40 3.59 < 10 < 1 0.78 < 10 0.56 2 10 0.2 2.63 72 210 < 0.5 < 2 1.72 0.5 13 57 40 3.59 < 10 < 1 0.78 < 10 0.56 2 10 0.2 2.63 72 210 < 0.5 < 2 1.72 0.5 13 57 40 3.59 < 10 < 1 0.78 < 10 0.56 2 10 0.2 2.63 72 210 < 0.5 < 2 1.72 0.5 13 57 40 3.59 < 10 < 1 0.78 < 10 0.56 2 10 0.2 2.63 72 210 < 0.5 < 2 1.72 0.5 13 57 40 3.59 < 10 < 1 0.78 < 10 0.56 2 10 0.2 2.63 72 210 < 0.5 < 2 1.72 0.5 13 57 40 3.59 < 10 < 1 0.78 < 10 0.56 2 10 0.2 2.63 72 210 < 0.5 < 2 1.72 0.5 13 57 40 3.59 < 10 < 1 0.78 < 10 0.56 2 10 0.2 2.63 72 210 < 0.5 13 57 40 3.59 < 10 < 1 0.78 < 10 0.56 2 10 0.2 2.63 72 210 < 0.5 13 57 40 3.59 < 10 < 1 0.78 < 10 0.56 2 10 0.2 2.63 72 210 < 0.5 13 57 40 3.59 < 10 < 1 0.78 < 10 0.56 2 10 0.2 2.63 72 210 < 0.5 13 57 40 3.59 < 10 < 1 0.78 < 10 0.56 2 10 0.2 2.63 72 2.60 0.5 0 0.

.

{

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

Page Number :7-B Total Pages :7 Certificate Date: 03-OCT-94 Invoice No. : 19427173 P.O. Number : Account :BSJ

Project : UNUK #134 Comments: ATTN: V.P. VAN DAMME CC: WARREN BATES

										CE	RTIF	CATE	OF A	NALY	(SIS	A9427173
SAMPLE	PREP CODE	Mo ppm	Na %	Nİ ppm	P ppm	Pb ppm	Sp ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U mqq	V ppm	W Mqq	Zn Ag ppm ppm Aqua R	
94013 94014 94015 94016 94017	205 226 205 226 205 226 205 226 205 226 205 226	2 3 1 2 < 1	0.02 0.02 0.02 0.05 0.05	18 32 4 6 22	2040 1000 710 800 900	28 24 14 26 14	6 12 4 < 2 2	7 6 4 3 4	73 < 235 < 221 <	0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	35 24 15 19 44	< 10 < 10 < 10 < 10 < 10	186 1.2 176 0.8 146 < 0.2	
											,					
													 C	ERTIFIC	ATION: HE	utBichler

134.041.009

DETECTION

To: GRANGES INC.

2230 - 685 W, GEORGIA ST. VANCOUVER, BC V6C 3E8

CHEMEX NUMBER

Comments:

CERTIFIC	CATE
----------	------

A9427159

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

and the second second second

PHONE; 604-984-0221

(BSJ) - GRANGES INC.

134-A Grid Sbils Project: 5.#:

Samples submitted to our lab in Vancouver, BC. This report was printed on 3-OCT-94.

		SAM	PLE PREPARATION
	CHEMEX	NUMBER SAMPLES	DESCRIPTION
	201 229	121 121	Dry, sieve to - $\beta 0$ mesh ICP - AQ Digestion charge
í			
	* NOTE	1:	

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, T1, W.

ANALYTI	CAL PROCEDURES
DESCRIPTION	METHOD

CODE	SAMPLES	DESCRIPTION	METHOD		LIMIT
100 2118 2119 2120 2121	124 124 124 124 124	Au ppb: Fuse 10 g sample Ag ppm: 32 element, soil & rock Al %: 32 element, soil & rock As ppm: 32 element, soil & rock Ba ppm: 32 element, soil & rock	ГЛ-ЛЛS ICP-ARS ICP-ARS ICP-ARS ICP-ARS	5 0.2 0.01 2 10	10000 200 15.00 10000 10000
2122	124	Be ppm: 32 element, soil & rock	ICP-ARS	0.5	100.0
2123 2124	124	Bi ppm: 32 element, soil & rock Ca %: 32 element, soil & rock	icp-aes icp-aes	2 0.01	10000
2125	124	Cd ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
2126 2127	124	Co ppm: 32 element, soil & rock Cr ppm: 32 element, soil & rock	icp-ars icp-ars	1	10000
2128	124	Cu ppm: 32 element, soil & rock	ICP-ABS	1	10000
2150	124	Fe %: 32 element, soil & rock	ICP-NES	0.01	15.00
2130	124	Ga ppm: 32 element, soil & rock Hg ppm: 32 element, soil & rock	ICP-NES	10 1	10000
2131 2132	124 124	K %: 32 element, soll & rock	icp-aes icp-aes	0.01	10.00
2151	124	La ppm: 32 element, soil & rock	ICP-ARS	10	10000
2134	124	Mg %: 32 element, soil & rock	ICP-AES	0.01	15.00
2135	124	Mn ppm: 32 element, soil & rock	ICP-AES	5	10000
2136	124	Mo ypm: 32 element, soil & rock	icp-ars Icp-ars	1 0.01	10000
2137 2138	124 124	Na %: 32 element, soil & rock Ni ppm: 32 element, soil & rock	ICP-AES	0.01	10000
2139	124	P ppm: 32 element, soil & rock	ICP-AES	10	10000
2140	124	Ph ppm: 32 element, soil & rock	ICP-AES	2	10000
2141	124	Sb ppm: 32 element, soil & rock	ICP-AES	2	10000
2142	124	Sc ppm: 32 elements, soil & rock	ICP-AES	1	10000
2143 2144	124 124	Sr ppm: 32 element, soil & rock Ti %: 32 element, soil & rock	icp-ars icp-ars	1 0.01	10000
2145	124	Ti ppm: 32 element, soil & rock	ICP-ARS	10	10000
2146	124	U ppm: 32 element, soil & rock	ICP-ARS	10	10000
2147	124	V ppm: 32 element, soil & rock	ICP-AES	1	10000
2148	124	W ppm: 32 element, soil & rock	ICP-AES	10	10000
2149	124	Zn ppm: 32 element, soil & rock	ICP-AES	2	10000
					4
					}
		-			
					ļ

A9427159

UPPER

1040 0410001

1 2

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

134-R Grid Soils Project : Comments:

Page Number : 1-A Total Pages : 4 Certificate Date: 03-OCT-94 Invoice No. : 19427159 P.O. Number : Account : BSJ

											CE	RTIF	CATE	OF /	ANAL	YSIS		A 9427	159		
SAMPLE	PR CO		Ац ррр ГА+АА	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	B1 ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
500N-000W		229	< 5	0.2	1.61	< 2	60	< 0.5	8	0.90	< 0.5	15	16	20	3.51	20	< 1	0.17	< 10	1.25	360
500N-025W	201	229	< 5	< 0.2	1.57	< 2	60	< 0.5	6	0.37	< 0.5	8	19	21	4.36	30	< 1	0.08	< 10	0.52	190
500N-050W	201	229	< 5	< 0.2	1.72	2	40	< 0.5	8	0.74	< 0.5	13	20	20	3.18	20	< 1	0.12	< 10	0.84	255
500N-075W 500N-100W	201 201	229 229	< 5 < 5	0.2 0.8	1.29 2.17	26	70 30	< 0.5 < 0.5	< 2	0.61 0.10	< 0.5 0.5	12 6	9 24	20 20	3.22 6.96	10 40	1 < 1	0.10 0.07	< 10 20	0.86 0.19	235 320
500N-125W	201	229	< 5	0.8	3.43	< 2	30	< 0.5	< 2	0.24	0.5	13	29	27	5.80	20	< 1	0.08	20	0.63	560
500N-150W	201		< 5	1.8	3.58	< 2	40	< 0.5	< 2	0.19	0.5	8	56	29	6.68	20	< 1	0.08	10	0.52	290
500N-175W	201	229	< 5	0.4	2.51	< 2	40	< 0.5	< 2	0.24	0.5	7	38	19	4.76	30	< 1	0.05	10	0.47	200
500N-200W 500N-250W	201 201	229 229	< 5 < 5	2.4 0.4	2.03 1.71	46 < 2	110 130	< 0.5 < 0.5	< 2 < 2	0.25 0.97	< 0.5 0.5	6 18	22 12	24 18	7.03 3.51	20 < 10	< 1 < 1	0.06 0.17	10 < 10	0.29	265 350
500N-275W	201	229	< 5	0.4	1.86	2	70	< 0.5	< 2	0.73	0.5	15	19	23	3.82	10	< 1	0.14	< 10	0.94	715
500N-300W	201	229	< 5	1.6	3.09	< 2	40	< 0.5	< 2	0.39	1.0	13	27	35	6.44	20	< 1	0.08	10	0.80	290
500N-325W	201	229	< 5	0.4	2.13	6	70	< 0.5	< 2	0.39	< 0.5	11	33	22	5.71	30	< 1	0.11	< 10	0.61	345
500n-350w 500n-375w	201 201	229 229	< 5 < 5	1.4 2.4	4.65	< <u>4</u> < 2	130 30	< 0.5 < 0.5	< 2 < 2	0.17 0.20	1.0 < 0.5	27 7	32 28	75 20	6.91 5.34	10 30	< 1 < 1	0.10 0.07	10 < 10	0.63 0.45	1350 165
500N-400W	201	229	< 5	0.6	1.55	2	60	< 0.5	4	0.22	0.5	7	26	23	6.13	30	< 1	0.05	< 10	0.30	180
500N-425W	201	229	< 5	0.2	1.42	6	70	< 0.5	< 2	0.04	0.5	6	33	20	5.27	30	< 1	0.03	< 10	0.16	100
500N-450W	201	229	< 5	0.8	1.47	< 2	50	< 0.5	2	0.20	0.5	10	16	19	3.62	20	< 1	0.06	< 10	0.36	200
500N-475W 500N-500W	201 201	229 229	< 5 < 5	1.8 3.0	1.01 1.32	< 2 < 2	70 70	< 0.5 < 0.5	< 2 < 2	0.58 0.52	0.5	10 12	10 13	16 18	2.42 3.72	< 10 10	< 1 1	0.09 0.10	< 10 < 10	0.48 0.63	485 465
500N-525W	201	229	45	2.0	3.69	8	20	< 0.5	< 2	0.19	< 0.5	7	33	23	6.20	20	< 1	0.06	10	0.34	215
500N-575W	201	229	< 5	1.0	1.61	4	20	< 0.5	< 2	0.31	0.5	12	34	19	5.80	30	< 1	0.08	10	0.41	850
500N-600W	201	229	< 5	0.4	1.33	32		< 0.5	< 2	0.38	0.5	8	9	12	2.23	< 10	< 1	0.13	10	0.52	255
500N-625W 500N-650W	201 201	229 229	< 5 < 5	0.2	1.09 1.13	2 < 2	30 140	< 0.5 < 0.5	< 2 2	0.29 0.29	< 0.5 0.5	9 11	15 18	19 26	3.88 4.47	20 20	< 1 < 1	0.08 0.06	< 10 < 10	0.39 0.37	245 250
500N-675W	201	229	15	2.4	1.05	148	120	< 0.5	< 2	0.17	0.5	8	29	33	5.55	< 10	< 1	0.17	10	0.31	330
500N-700W	201		< 5	0.8	2.75	< 2		< 0.5	< 2	0.36	1.0	22	31	25	6.70	20	< 1	0.09	40	0.66	1680
500N-725W	201		< 5	3.4	3.23	30		< 0.5	< 2	0.14	1.0	7	27		12.35	70	< 1	0.06	10	0.20	545
500N-750W 500N-775W	201 201		10 < 5	1.0	1.04	4		< 0.5 < 0.5	< 2 B	0.21 0.30	< 0.5 0.5	9 11	26 16	23 20	5.55 4.63	30 20	< 1 < 1	0.07 0.08	10 < 10	0.25 0.58	245 230
500N-800W	201		< 5	1.6	1.66	< 2		< 0.5	< 2	2.54	1.0	17	14	17	3.02	< 10	< 1	0.11	10	0.95	815
500N-825W	201	229	< 5	1.4	1.15	48		< 0.5	< 2	0.46	< 0.5	7	16	19	3.18	< 10	1	0.09	< 10	0.31	675
500N-850W		229	< 5	1.6	1.47	< 2		< 0.5	< 2	2.55	1.0	14	12	16	2.57	< 10	< 1	0.09	10	0.81	865
500 n-875W 500 n-9 00W		229 229	< 5 < 5	< 0.2 0.2	1.34	2 8		< 0.5 < 0.5	< 2 < 2	0.42	0.5 0.5	14 14	9 11	13 17	3.54 4.24	< 10 < 10	< 1 < 1	0.09 0.06	< 10 < 10	0.68 0.35	365 230
500N-925W	201	229	< 5	0.4	1.38	6	130	< 0.5	2	0.32	0.5	8	23	21	5.17	10	< 1	0.06	< 10	0.42	195
500N-975W		229	< 5	0.6	0.98	< 2	150	< 0.5	2	0.51	0.5	10	12	17	3.17	< 10	1	0.08	< 10	0.50	220
500N-1000W		229	< 5	0.8	1.42	< 2		< 0.5	2	0.39	0.5	10	16	19	4.49	20	< 1	0.09	< 10	0.58	215
500N-1025W 500N-1050W	201 201	229 229	< 5 140	0.4	1.25 1.21	< 2 4		< 0.5 < 0.5	< 2 2	0.64 0.44	0.5 < 0.5	12 12	9 13	16 20	2.91 3.45	< 10 10	< 1 1	0.13 0.09	< 10 < 10	0.70 0.61	435 270

CERTIFICATION: StartBuchler

C

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GRANGES INC.

- -

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

Page Number :1-B Total Pages :4 Certificate Date: 03-OCT-94 Invoice No. :19427159 P.O. Number : Account :BSJ

Project : 134-R Comments:

SAMPLE PREP CODE No. Na. Ni. P Pb Sb Sc St Ti Ti Ti V N Zn SOM-CODM SOM-CODM SOM-CODM SOM-CODM 201 225 4:1 0.13 13 1060 4:2 4:2 5 91 0.47 4:0 10 4:4 4:0 5:0 SOM-COMM 201 225 4:1 0.134 13 0:60 4:2 4:2 3:0 10:47 4:0 4:0 10:4 <											CE	RTIF	ICATE	OF /		(SIS	A9427159
1001-035M 2001 201 222 219 1 0.14 8 500 2 < 2 3 37 0.62 <10 <10 30 5001-050W 201 201 224 <1 0.13 10 850 2 <2 6 50 0.45 <10 10 10 10 42 5001-150W 201 201 229 3 0.07 10 850 <2 2 6 19 0.56 <10 11 <10 40 5001-150W 2001-25W 201 229 2 0.07 7 460 6 4 4 23 <10 <10 40 5001-150W 2001-25W 201 22 0.07 7 460 6 4 4 23 <10 <10 10 40 5001-150W 2001-25W 201 229 1 0.12 11 910 2 4 6 41 0.47 <10 13 10 13 13 10 13 13 10 10 13 10	SAMPLE																
500H-150M 201 229 3 0.07 11 800 4 8 18 0.40 <10 <10 102 <10 40 500H-150M 201 229 5 0.06 6 960 8 12 4 26 0.16 <10 127 <10 40 500H-250M 201 229 5 0.06 6 960 8 12 4 26 0.16 <10 127 <10 46 500H-250M 201 229 1 0.04 4 5 6 0.32 <10 <11 130 <1 4 6 6 6 0.32 <10 111 <10 4 500H-350M 201 229 1 0.04 4 13 10 4 4 5 40 10 111 <10 11 <10 11 <10 11 <10 11 <10 11 <10 11 <10 11 <10 11 <10 11 <10 11 <	500N-025W 500N-050W 500N-075W	201 229 201 229 201 229	1 < 1 < 1	0.14 0.23 0.18	8 13 10	580 830 860	2 2 < 2	< 2 < 2 < 2	3 6 6	37 69 58	0.62 0.45 0.46	< 10 < 10 < 10	< 10 < 10 < 10	136 110 76	< 10 < 10 < 10	30 42 38	
5008-300M 201 229 1 0.11 11 820 < 2 4 7 35 0.75 10 10 14 10 44 5008-325W 201 229 3 0.14 11 910 4 4 5 41 0.47 10 41 10 44 5008-375W 201 229 3 0.04 14 1030 2 6 13 10 44 5 41 0.47 10 41 1030 2 6 13 10 0.42 10 161 10 80 5008-150W 201 229 3 0.05 6 630 2 2 13 0.26 10 113 410 30 500 500 10 113 10 128 10 128 11 130 80 10 113 10 128 10 128 10 128 10 128 10 128 10 128 10 128 10 128	500N-150W 500N-175W 500N-200W	201 229 201 229 201 229	3 2 5	0.07 0.07 0.06	11 7 6	800 480 960	4 6 8	4 4 12	8 4 4	18 23 26	0.40 0.43 0.16	< 10 < 10 < 10	< 10 < 10 < 10	102 127 97	< 10 < 10 < 10	40 40 46	
500m-425W 201 229 1 0.02 8 630 2 2 2 1 0.26 <10 127 <10 30 500M-450W 201 229 1 0.10 9 1220 <2 2 3 23 30 <10 <10 28 500M-450W 201 229 <1 0.10 9 1220 <2 2 3 49 0.37 <10 <10 63 <10 42 500M-50W 201 229 <1 0.15 8 850 <2 2 3 49 0.37 <10 <11 3 <10 42 500M-50W 201 229 <1 0.05 <10 <10 11 <10 46 500M-50W 201 229 <10 0.07 <1000 4 2 24 35 <10 <10 13 <10 44 500M-50W 201 229 <10 0.07 <1000 <10 <10 <10 <10 <10 <td>500N-300W 500N-325W 500N-350W</td> <td>201 229 201 229 201 229</td> <td>1 3 1</td> <td>0.11 0.14 0.04</td> <td>11 11 14</td> <td>820 910 1030</td> <td>< 2 4 2</td> <td>4</td> <td>7 5 13</td> <td>35 41 18</td> <td>0.75 0.47 0.33</td> <td>< 10 < 10 < 10</td> <td>< 10 < 10 < 10</td> <td>142 131 135</td> <td>< 10 < 10 < 10</td> <td>44 42 80</td> <td></td>	500N-300W 500N-325W 500N-350W	201 229 201 229 201 229	1 3 1	0.11 0.14 0.04	11 11 14	820 910 1030	< 2 4 2	4	7 5 13	35 41 18	0.75 0.47 0.33	< 10 < 10 < 10	< 10 < 10 < 10	142 131 135	< 10 < 10 < 10	44 42 80	
500x-575W 201 229 4 0.08 9 1430 8 2 2 29 0.46 <10	500N-425W 500N-450W 500N-475W	201 229 201 229 201 229 201 229	2 1 1	0.02 0.07 0.10	8 6 9	630 700 1220	2 6 < 2	< 2 2 2	23	13 23 49	0.26 0.69 0.37	< 10 < 10 < 10	< 10 < 10 < 10	127 128 63	< 10 < 10 < 10	30 28 42	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	500N-575W 500N-600W 500N-625W	201 229 201 229 201 229	4 2 1	0.08 0.12 0.07	9 7 6	1430 650 1090	8 < 2 4	2	2 3 2	29 35 24	0.46 0.14 0.68	< 10 < 10 < 10	< 10 < 10 < 10	112 53 136	< 10 < 10 < 10	46 44 34	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	00N-700W 00N-725W 00N-750W	201 229 201 229 201 229	1 6 3	0.08 0.04 0.04	13 4 7	1470 1060 800	4 16 6	6 10 6	4 4 2	30 18 17	0.53 0.45 0.72	< 10 < 10 < 10	< 10 < 10 < 10	125 91 162	< 10 < 10 < 10	72 50 42	
300n-975W 201 229 1 0.08 9 1410 2 2 36 0.46 < 10 102 < 10 42 300n-1000W 201 229 2 0.12 9 880 6 2 3 35 0.55 < 10	00N-825W 00N-850W 00N-875W	201 229 201 229 201 229	1 < 1 1	0.04 0.16 0.15	10 10 9	2170 970 800	4 2 4	2 4 2 4 4	2 3 3	26 138 50	0.30 0.32 0.17	< 10 < 10 < 10	< 10 < 10 < 10	81 51 74	< 10 < 10 < 10	42 54 52	
	00N-975W 00N-1000W 00N-1025W	201 229 201 229 201 229 201 229	1 2 < 1	0.08 0.12 0.17	9 9 9	1410 880 1020	2 6 < 2	4 2 2 2 4 4	23	36 35 54	0.46 0.55 0.40	< 10 < 10 < 10	< 10 < 10 < 10	102 113 73	< 10 < 10 < 10	42 32 38	

CERTIFICATION: SouthBuchler

To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

OF DIFICATE OF ANALVER

134-R

Page Number :2-A Total Pages :4 Certificate Date: 03-OCT-94 Invoice No. : 19427159 P.O. Number : Account : BSJ

40407450

Project : Comments:

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

F

1

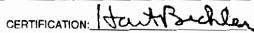
C

		-								C	ERTIF		EOF				A942	7159		
SAMPLE	PREP CODE	λu pph Fλ+λλ	-			Ba ppm			_	Cđ ppm		Cr ppm				Hg ppm	-		Mg %	Mn ppm
500N-1075W	201 229	> < 5	0.4	1.62	10	130	< 0.5			< 0.5		17				< 1		< 10	0.35	155
500N-1100W	201 229				< 2	190		< 2		B.0		37				< 1		10	0.43	7610
500N-1125W	201 229				< 2	80 40	< 0.5 < 0.5	< 2		0.5 < 0.5		14				< 1 < 1		< 10 < 10	0.71 0.29	315 175
500N-1150W 500N-1175W	201 229				2	40	< 0.5	< 2		0.5		14				1		< 10	0.29	175
6+00N-0+00W	201 229				6			2		< 0.5		24		4.19		< 1		10	0.36	155
6+00N-0+25W	201 229				2	30 20	< 0.5 < 0.5	< 2		0.5		41 46		7.07	30 20	< 1 < 1		20 10	0.28	460 200
6+00N-0+50W 6+00N-0+75W	201 229				4	70	< 0.5			< 0.5		16		3.83	10	< 1	0.09	10	0.38	225
6+00N-1+00W	201 229				8	30	< 0.5	< 2		< 0.5	6	33	21	5.23	20	< 1		20	0.39	215
6+00N-1+25W	201 229			3.84	< 2	150	< 0.5	< 2		1.0	24	21 35		6.80	20	< 1	0.06	10 30	0.56	5310
6+00N-1+50W 6+00N-1+75W	201 229			3.69	< 2	30	< 0.5 < 0.5	< 2	0.14 0.25	0.5	13 16	35	35	6.44	30 20	< 1 < 1	0.07	10	0.45	1135 805
6+00N-2+00W	201 229			3.34	6	20	< 0.5	< 2	0.11	0.5	7	39	29	10.45	60	< 1 < 1	0.04	10	0.36	205
6+00N-2+25W	201 229			2.99	12	70	< 0.5	< 2	0.08	< 0.5	6	62	28	3.58	10	< 1	0.10	10	0.92	235
6+00N-2+50W	201 229			2.41	< 2	70	< 0.5	< 2 < 2	0.13	0.5	6	44	25 40	6.47 6.81	20	1 < 1	0.05	< 10 < 10	0.47	225 245
6+00N-2+75W 6+00N-3+00W	201 229			2.68	< 2	40	< 0.5	< 2	0.12	0.5	5	51	20	5.62	30	< 1	0.04	10	0.40	195
6+00N-3+50W	201 229			2.63	< 2	20	< 0.5	< 2		0.5	8	40	26	6.79	40	< 1	0.04	10	0.43	245
6+00N-3+75W	201 229			2.17	22	80	< 0.5	< 2	0.11	0.5	7	20	30	5.33	10	< 1	0.06	10	0.16	455
6+00N-4+00W	201 229	< 5	1.8	2.44	< 2	180	< 0.5	< 2	0.25	1.0	21	30	28	6.18	20	< 1	0.10	10	0.39	3920
6+00N-4+25W	201 229			1.48	28	120	< 0.5	< 2	0.16	0.5	6	25	26	7.11	10	< 1	0.07	20	0.15	185
6+00N-4+50W	201 229		3.2	3.67	20 352	310 120	< 0.5	< 2	0.78	3.5 < 0.5	25 9	46 29	27 33	6.24 7.11	30 10	< 1 < 1	0.08	20 10	0.79 0.53	4690 230
6+00N-4+75W 6+00N-5+00W	201 229		0.8	2.22	352	30	< 0.5	< 2	0.07	0.5	6	33	18	5.48	30	< 1	0.03	10	0.15	90
6+00N-5+25W		miss.	miss.	miss.	miss.	miss.	miss.	miss.	miss.	miss.		miss.	miss.	miss.		miss.	miss.	miss.		miss.
6+00N-5+50W	201 229	35	3.4	2.59 1.96	108 126	80 90	< 0.5 < 0.5	< 2	0.09	0.5 < 0.5	10	19 25	24 24	4.61 7.34	10 20	< 1 < 1	0.15	20 10	0.29 0.31	825 200
6+00N-5+75W 6+00N-6+00W	201 229 201 229	< 5	0.6	4.83	120	180	< 0.5	< 2	0.22	0.5	18	27	26	6.06	20	< 1	0.08	20	0.57	1205
6+00N-6+25W	201 229			3.67	22	60	< 0.5	< 2	0.07	0.5	8	45	25	7.95	10	< 1	0.08	10	0.47	325
6+00N-6+50W	201 229		0.6	2.00	8	180	< 0.5	< 2	0.32	1.0	12	37	33	8.26	20	< 1	0.05	10	0.50	800
6+00N-6+75W	201 229	420 < 5	11.0	1.79 2.03	906 44	150 130	< 0.5 < 0.5	< 2 < 2	0.09	< 0.5	9 13	20 26	77 47	10.80 6.01	10 10	< 1 < 1	0.20 0.11	< 10 10	0.14 0.21	1495 1650
6+00N-7+00W 6+00N-7+25W	201 229		1.6	2.03	44 80	70	< 0.5	< 2	0.07	0.5	9	26	32	8.01	40	< 1	0.06	10	0.12	830
6+00N-7+50W	201 229	< 5	0.4	5.41	12	60	< 0.5	4	0.17	0.5	12	32	26	5.86	20	< 1	0.04	10	0.48	380
6+00N-7+75W	201 229	< 5	0.6	2.67	16	60	< 0.5	< 2	0.20	< 0.5	8	35	21	6.36	30	1	0.06	10	0.40	230
6+00N-8+00W	201 229	< 5 < 5	0.4	2.88	< 2	40 100	< 0.5 < 0.5	< 2 < 2	0.12 0.10	0.5 < 0.5	6	26 15	20 12	5.95 4.11	20 10	< 1 < 1	0.03	10 10	0.38 0.17	150 95 (
6+00N-8+25W 6+00N-8+75W	201 229	< 5	0.2	2.20	40	80	< 0.5	< 2	0.10	< 0.5	8	20	17	3.95	10	1	0.04	10	0.28	195
6+00N-9+00W	201 229	< 5	1.0	2.62	22	90	< 0.5	< 2	0.07	0.5	8	17	23	6.08	10	< 1	0.05	10	0.30	3140
										·						<u>.</u>				

CERTIFICATION: Strent & Such les

(

Chemex Labs Ltd.


Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 fo: GHANGES INU.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8 Total Pages :4 Certificate Date: 03-OCT-94 Invoice No. : 19427159 P.O. Number : Account : BSJ

Project : 134-R Comments:

											C	ERTIF	ICAT	E OF /	ANAL	YSIS	A9427159
SAMPLE		ep De	Mo ppm				Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	D D	V ppm	W mqq	Zn ppm	
500N-1075W		229	1				· 2	4	3	25	0.24	< 10	< 10	144	< 10	26	
500N-1100W		229					9	2	4	29	0.19	< 10		109	10	36	
500N-1125W	201		1	0.16			2	2	4	49	0.63	< 10		127	< 10 < 10	36 24	
500N-1150₩ 500N-1175₩	201 201	229 229	2	0.02		390 430	< 2 3	4	4	24 26	0.24 0.27	< 10 < 10	< 10 < 10	197 180	< 10	24	
6+00N-0+00W	201	229	2	0.03	7	440	< 2	2	6	11	0.38	< 10	< 10	105	< 10	28	·····
6+00N-0+25W	201	229	5				7	4	6	8	0.25	< 10		73	< 10	54	
6+00N-0+50W	201		3				5	4	7	17	0.59	< 10	< 10	118	< 10	38	
6+00N-0+75W	201		1			820	12	2	3	22	0.28	< 10	< 10	83	< 10	38	
6+00N-1+00W	201	229	4	0.07	9	820	7	< 2	5	12	0.35	< 10	< 10	82	< 10	44	
6+00N-1+25W 6+00N-1+50W	201	229	2	0.06		1480 980	12 5	2	6	30 10	0.52	< 10 < 10	< 10 < 10	127 86	10 < 10	158 62	
6+00N-1+75W	201		2	0.08		1100	< 2	2	10	20	0.62	< 10	< 10	133	10	52	
6+00N-2+00W		229	2	0.03	-4	620	< 2	8	6	10	0.53	< 10	< 10	138	< 10	40	
6+00N-2+25W		229	2	0.02		500	2	< 2	4	12	0.16	< 10	< 10	77	< 10	58	
6+00N-2+50W	201		2			520	2	6	4	15	0.30	< 10	< 10	119	< 10	38	
6+00N-2+75W		229	2	0.03	8	810	< 2	4	5	11	0.48	< 10	< 10	154	< 10	38	
6+00N-3+00W		229	4	0.01	16 8	540 570	4	4	4	9 12	0.20	< 10 < 10	< 10 < 10	97 141	< 10 < 10	40 42	
6+00N-3+50W 6+00N-3+75W		229	9	0.01	11	950	12	6	2	11	0.12	< 10	< 10	103	< 10	66	
6+00N-4+00W	201	229	3	0.03	14	2240	10	6	4	19	0.28	< 10	< 10	105	< 10	138	
6+00N-4+25¥		229	6	0.01	12	720	20	8	2	18	0.05	< 10	< 10	50	< 10	82	
6+00N-4+50W	201		4	0.03	29	2460	12	6	7	49	0.24	< 10	< 10	83	< 10	168	
6+00N-4+75W	201		6	0.04	10	870	210 6	6	10 3	18	0.49	< 10	< 10	114 140	< 10 < 10	44 28	
6+00x1-5+00W	201	229	3	0.01	7	440				10	0.34	< 10	< 10				
6+00N-5+25W	1		miss.	miss.	miss.	miss.		miss.		miss. :	miss.	miss.				des.	
6+00N-5+50W	201		6	0.02		930 710	12	2	6	10 24	0.19 0.19	< 10 < 10	< 10 < 10	80 99	< 10 < 10	64 50	
5+00N-5+75W 5+00N-6+00W	201 201		2	0.06	11 11	1060	< 2	Å	9	21	0.51	< 10	< 10	127	< 10	58	
5+00N-6+25W		229	3	0.01	21	720	10	4	Ĩ.	7	0.13	< 10	< 10	89	< 10	64	
5+0 0N-6+5 0W	201		4	0.04	22	840	8	8	4	28	0.47	< 10	< 10	139	< 10	64	
6+00N-6+75W	201		18	0.02	8	3580	1380	26	5	21	0.10	< 10	< 10	56	< 10	182	
5+00N-7+00W		229	1	0.02	14 5	1290 800	12 14	4	4	14 9	0.23 0.23	< 10 < 10	< 10 < 10	98 91	< 10 < 10	80 50	
5+00N-7+25W 5+00N-7+50W		229 229	6 3	0.02	10	860	2	4	8	14	0.43	< 10	< 10	144	< 10	62	
5+00N-7+7 SW	201	229	5	0.06	10	740	12	6	- 4	19	0.40	< 10	< 10	112	< 10	46	······
5+00N-8+00W	201	229	2	0.02	5	680	6	6	4	10	0.38	< 10	< 10	137	< 10	32	
5+00N-8+25W		229	1	0.02	2	640	2	< 2	2	13	0.17	< 10	< 10	81	< 10	24	
6+00N-8+75W		229	3	0.05	6	980	6	6 ∡	2	22 7	0.24	< 10	< 10 < 10	120 87	< 10 < 10	44 38	
5+00N-9+00W	201	229	4	0.02	4	1940	10	4	د	,	0.14	< 10	< 10	87	< 10	26	
	للمسيل																······

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

rage Number :3-A Total Pages :4 Certificate Date: 03-OCT-94 Invoice No. :19427159 P.O. Number BSJ Account

Project : Comments: 134-R

	co	ep De	Au pph	, Ag											_						
SAMPLE	201		га+ла	-			Ba ppm	Be ppm									Hg ppm		_		
5+00N-9+25W		229	< 5	0.2	2.45	2	70	< 0.5	< 2	0.22	< 0.					< 10	< 1	0.06	< 10	0.34	415
5+00N-9+50W		229	< 5			28	640	< 0.5	< 2	0.12						< 10	< 1		< 10		345
5+00N-10+00W	201	229	< 5	•••-	2.31	8	60	< 0.5	< 2		•••					< 10	< 1	••••	< 10		225
6+00N-10+25W			< 5				70	< 0.5	4	0.10						10	1		10		865
5+00N-10+50W			< 5	0.2	4.86	4	170	< 0.5	6	0.27	0.	5 17	18	51	9.01	10	1	0.11	20	0.62	2630
+00N-10+75W		229	< 5			10	50	< 0.5	< 2	0.20		-				< 10	< 1		< 10		715
5+00N-11+00W		229	< 5			22	60	< 0.5	< 2					32 15		< 10	< 1	0.04	10		550
5+00N-11+25W 5+00N-11+50W	201	229 229	< 5		2.70	< 2	40	< 0.5	< 2	0.45					5.40 5.95	< 10 < 10	< 1 < 1	0.11	10 10		380 185
200N-000W		229	< 5		1.59	6	90	< 0.5	< 2	0.15					3.63	< 10	< 1	0.04	< 10	0.21	170
200N-025W	201	229	< 5	0.2	2.48	6	120	< 0.5	< 2	0.12	< 0.	5 6	37	29	5.65	< 10	1	0.09	< 10	0.44	830
200N-050W			miss.	miss.	miss.		miss.	miss.	miss.	miss.	miss.	miss.	miss.	miss.	miss.		miss.		miss,		miss.
200N-075W			miss.	miss.	miss.		miss.	miss.	miss.	miss.	miss.	mise.	miss.	miss.	miss.	miss.	miss.	miss.	miss.	mise.	miss.
200N-100W	201	229	< 5	0.B	4.18	8	70	1.0	< 2	0.24			39	24	5.38	< 10	< 1	0.08	50	0.62	1150
200N-125W	201	229	< 5	0,8	2.08	18	50	< 0.5	< 2	0.16	< 0.	5 4	31	13	7.86	< 10	< 1	0.07	10	0.32	365
200N-150W	201		< 5		2.79	12	90	0.5	< 2	0.18				26	4.33	< 10	< 1	0.09	10	0.75	315
200N-175W		229	< 5		1.87	12	50	< 0.5	< 2	0.09			36	13	4.54	< 10	< 1	0.06	20	0.33	165
200N-200W	201		< 5		4.91	18	150	1.0	< 2	0.11	0.9			47	6.13	< 10	< 1	0.08	20	0.44	665
200N-225W	201	229	< 5		2.80	12	50 60	< 0.5	< 2	0.15			34 14	15 15	5.81 3.74	< 10 < 10	< 1	0.07	10 < 10	0.36	145 330
200N-250W	201	229	< 5	0.2	1.82	4		< 0.5		0.87					2.14	< 10 	1	0.10	< 10	1.06	330
200N-275W	201		< 5		2.75	10	190	< 0.5	< 2	0.32				17	5,52	< 10	< 1	0.10	< 10	0.43	1595
200N-300W	201	229	< 5		1.88	14	80	< 0.5	< 2	0.32		-		13	5.02	< 10	< 1	0.06	< 10	0.30	275
200N-325W	201	229	< 5	0.8	2.75	14	170	1.0	< 2	0.26			25 16	24 47	6.18 4.98	< 10 < 10	< 1	0.08	30	0.33	1765
200N-350W	201	229 229	< 5 < 5		1.45	24	170 110	< 0.5	< 2	0.33 0.67	< 0.5		7	22	2.03	< 10	< 1 < 1	0.12	10 < 10	0.26	1400 275
200N-375W	201	229	< 5 	< 0.4	1.17	4	110	< 0.5	<u> </u>		< u	, ,	·			· 10	``		< 10	0.10	215
200N-400W	201		< 5	0.6	1.94	10	70	< 0.5	< 2	0.49	< 0.		21	35	6.11	< 10	< 1	0.15	< 10	0.76	1615
200N-425W		229	< 5	0.2	0.95	< 2	340	< 0.5	< 2	2.19	< 0.5	-	7	11	2.05	< 10	< 1	0.05	< 10	0.38	175
200N-450W	201	229	< 5	0.6	1.45	4	60	< 0.5	2	0.80	< 0.5		12	16 30	4.27	< 10	< 1	0.09	< 10	0.97	320 370
200N-475W 200N-500W	201	229 229	< 5 < 5	2.4	2.99 0.46	8	100 70	< 0.5 < 0.5	< 2 < 2	0.64 0.61	0.9 < 0.9		45 7	10	5.00 1.62	< 10 < 10	< 1 < 1	0.11 0.04	20 < 10	0.67 0.20	160
										0.39		. <u> </u>	8	14	2.64	< 10		0.07	. 10	0.49	185
200N-525W	201		< 5 < 5	0.4	1.17	< 2	40 170	< 0.5	< 2	1,83	0.5		8	16	2.02	< 10	< 1	0.07	< 10 < 10	0.49	2160
200N-550W 200N-575W		229	< 5	< 0.1	0.87	2	170	< 0.5	< 2	3.05	< 0.5		1	10	0.31	< 10	< 1	0.04	< 10	0.31	35
200N-575W	201	43	mies.	miss.		. –		miss.	miss.	miss.	miss.	miss.	miss.	miss.	mise.		miss.		miss.		miss.
200N-625W	201		< 5	0.2	2.07	32	210	0.5	< 2	0.80	1.0		34	27	4.95	< 10	1	0.13	10	0.91	3440
200N-650W	201	229	< 5	0.8	1.32	8	190	< 0.5	< 2	0.46	< 0.5	8	18	12	4.22	< 10	< 1	0.08	< 10	0.48	310
200N-675W	201		25	0.4	1.87	6	80	< 0.5	< 2	0.42	< 0.5	-	21	11	4.72	< 10	< 1	0.09	< 10	0.56	285
200N-750W		229	< 5	0.2	1.24	ž	20	< 0.5	< 2	0.60	< 0.5	-	7	8	2.42	< 10	< 1	0.11	< 10	0.63	205
200N-775W		229	< 5	0.B	2.38	8	80	< 0.5	< 2	0.86	< 0.5		16	13	5.69	< 10	< 1	0.14	< 10	1.03	340
200N-800W		229	< 5	0.B	2.34	4	70	< 0.5	< 2	0.54	< 0.5	7	18	11	5.75	< 10	< 1	0.09	< 10	0.61	230

CERTIFICATION: ttr. Housen

To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

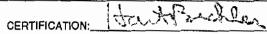
134-R

Page Number :3-B Total Pages :4 Certificate Date: 03-OCT-94 Invoice No. : 19427159 P.O. Number : Account :BSJ

Project : Comments:

1

Chemex Labs Ltd.


Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

C

 $(\$

										C	ERTIF	ICAT	EOF	ANAL	.YSIS		A94271	59	
SAMPLE	PREP CODE	Mo	_		g mgg		Sb ppm		Sr	Ti %	T1 ppm	U mqq	V ppm	M	Zn ppm				
6+00N-9+25W	201 22				860		< 2	2	27	0.57	< 10	< 10	169	< 10	36				
6+00N-9+50W	201 22			65	1010		< 2		32	0.22	< 10	< 10	163	< 10	30				
6+00N-10+00W 6+00N-10+25W	201 22	9 2		12	890 870	20	< 2	26	21 12	0.32	< 10 < 10	< 10 < 10	166 121	< 10 < 10	24 52				
6+00N-10+50W		1 7		7	2660		8	7	24	0.09	< 10	< 10	129	< 10	76				
6+00N-10+75W	201 22			8	970		< 2		18	0.39	< 10	< 10	142	< 10	30				
6+00N-11+00W	201 22			8	1190		< 2	3	9	0.19	< 10	< 10	142	< 10	28				
6+00N-11+25W	201 22			10	1110	2	< 2	3	44	0.45	< 10	< 10	119	< 10	40				
6+00N-11+50W 1200N-000W	201 229			9 10	680 650	6	< 2	3	16 21	0.55	< 10 < 10	< 10 < 10	159 134	< 10 < 10	40 30				
		1		10	650			-		0.49	× 10	< 10	134	10	30				
1200N-025W	201 229	2	0.02	17	1460	4	< 2	3	15	0.06	< 10	< 10	93	< 10	50				
1200N-050W		miss.	miss.	miss.	misø.	miss.	miss.			miss.	miss.				miss.				
1200N-075W 1200N-100W	201 229	miss.	miss. 0.06	miss. 22	miss. 1250	mise.	miss.	miss. 7	miss. 22	miss. 0.38	miss. < 10	miss. < 10	miss. 98	mimm. < 10	miss. 94				
1200N-125W	201 229			11	840	4	< 2 < 2	2	19	0.48	< 10	< 10	138	< 10	48				
																			
1200N-150W	201 229			33	1170	6	< 2	3	18	0.15	< 10	< 10	77	< 10	76				
1200N-175W 1200N-200W	201 229			15 50	680 960	18	< 2	2 8	10 11	0.28	< 10 < 10	< 10	103 89	< 10 < 10	4B				
1200N-225W	201 229			11	680	10	< 2	3	17	0.14	< 10	< 10 < 10	103	< 10	122				
1200N-250W	201 229	< 1		13	1320	2	< 2		82	0.42	< 10	< 10	83	< 10	46				
1200N-275W	201 229	1	0.07		1370	4	< 2		26	0.38	< 10	< 10	137	< 10	40				
1200N-300W	201 229			12	1440	2	< 2	2	24	0.32	< 10	< 10	121	< 10	36				
1200N-325W	201 229		0.03	13	1440	8	< 2	4	20	0.16	< 10	< 10	72	< 10	60				
1200N-350W	201 229		0.09	12	1130	8	2	6	30	0.11	< 10	< 10	105	< 10	60				
1200N-375W	201 229	< 1	0.06	8	990	< 2	< 2	3	63	0.11	< 10	< 10	53	< 10	28				
1200N-400W	201 229			15	2270	2	< 2	6	45	0.25	< 10	< 10	127	< 10	46				
1200N-425W	201 229			7	1100	< 2	< 2	2	197	0.20	< 10	< 10	40	< 10	20				
1200N-450W	201 229			13	830	< 2 8	< 2	4	75 65	0.59	< 10	< 10	89 65	< 10	38 50				
1200N-475W 1200N-500W	201 229	-	0.08	32 7	1030 900	< 2	< 2	4	57	0.13 0.23	< 10 < 10	< 10 < 10	37	< 10 < 10	26				
	┠┣	 								0.15							<u>.</u>		
1200N-525W 1200N-550W	201 229	<pre>< 1 < 1 < 1</pre>	0.11 0.12	10 11	1130 950	< 2	< 2 < 2	3 1	52 192	0.35	< 10 < 10	< 10 < 10	50 35	< 10 < 10	22 42				
1200N-575W	201 229	. –		3	640	< 2	< 2	< 1	223	0.01	< 10	< 10	35	< 10	14				
1200N-600W		miss.		_			miss.						-		miss.				
1200N-625W	201 229			40	990	6	< 2	4	78	0.16	< 10	< 10	63	< 10	100				
1200N-650W	201 229	3	0.11	12	670	8	2	2	54	0.36	< 10	< 10	98	< 10	42	<u>,, , , , , , , , , , , , , , , , , </u>			
1200N-675W	201 229		0.13	11	630	ě	< 2	3	42	0.52	< 10	< 10	118	< 10	36				
1200N-750W	201 229	< 1	0.14	8	1090	< 2	< 2	3	48	0.28	< 10	< 10	46	< 10	26				
1200N-775W	201 229	1	0.26	13	760	< 2	< 2	4	89	0.61	< 10	< 10	116	< 10	38				
1200N-800W	201 229	1	0.15	10	670	< 2	< 2	3	60	0.64	< 10	< 10	121	< 10	32				
																11	10	11	0

C

٠

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, 8C V6C 3E8

.

Page Number .4-A Total Pages :4 Certificate Date: 03-OCT-94 Invoice No. : 19427159 P.O. Number : Account :BSJ

Project : 134-R Comments:

Г

												CE	RTIF	CATE	OF A	NAL	YSIS		49427	159		
	SAMPLE	PR		Au ppb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn MQQ
	1200N-825W 1200N-850W 1200N-875W 1200N-875W 1200N-900W 1200N-925W	201 201 201	229 229 229 229 229 229	5 5 5 5 5 5 5 5 5	0.6 0.4 1.6 0.4 0.6	1.92 1.03 3.04 2.65 2.98	4 < 2 10 < 2 4	150 340	< 0.5 < 0.5 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.62 1.56 1.22	< 0.5 0.5 0.5 < 0.5 < 0.5 < 0.5	12 7 19 20 16	13 9 17 11 19	12 9 19 13 16	3.94 2.35 3.78 2.31 1.67	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 2 < 1 < 1	0.17 0.12 0.16 0.20 0.12	< 10 < 10 20 10 10	1.19 0.47 1.08 0.54 0.36	385 170 3060 640 470
	1200N-950W 1200N-975W 1200N-1000W	201	229 229 229	<pre></pre>	2.0 0.6 0.8	3.95 1.36 2.29	16 4 8		1.0 < 0.5 < 0.5	< 2 < 2 < 2		0.5 < 0.5 < 0.5	15 9 8	29 10 20	22 11 10	4.45 2.91 5.45	< 10 < 10 < 10	1 < 1 < 1	0.10 0.15 0.09	20 < 10 < 10	0.59 0.83 0.59	2100 340 210
																		,				
İ																						
																	ATION:_	da	. 7£	sict	ler	

. 1

 $(\overline{})$

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

Project : 134-R Comments: Page Number: :4-B Total Pages: :4 Certificate Date: 03-OCT-94 Invoice No.: :19427159 P.O. Number: Account: :BSJ

										Į	CE	RTIF	CATE	OFA	NAL	/SIS	A9427159
SAMPLE	PREP CODE		Mo	Na %	Ni ppm	Ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Tİ X	T1 ppm	U ppm	V Pom	W ppm	Zn ppm	
1200N-825W 1200N-850W 1200N-850W 1200N-875W 1200N-900W 1200N-925W	201 2 201 2 201 2 201 2 201 2 201 2	29	1 < 1 3 < 1 1	0.32 0.12 0.30 0.41 0.19	14 7 17 7 8	980 910 1420 1070 1420	< 2 2 2 2 2 2 2 6	< 2 < 2 < 2 < 2 < 2 < 2 < 2	4 2 5 5 3	98 55 103 109 60	0.51 0.33 0.35 0.37 0.30	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	85 57 78 72 54	< 10 < 10 < 10 < 10 < 10 < 10	38 36 48 38 38	
1200n-950W 1200n-975W 1200n-1000W	201 2 201 2 201 2	29	4 < 1 < 1	0.11 0.22 0.14	14 10 9	1760 880 390	4 < 2 4	< 2 < 2 < 2	4333	54 65 50	0.28 0.38 0.34	< 10 < 10 < 10	< 10 < 10 < 10	86 70 113	< 10 < 10 < 10	48 36 36	

CERTIFICATION: ScuttBuchler

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: IGES

Comments:

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

A9427161

134. 041. 009

CERTIFICATE

A9427161

(BSJ) - GRANGES INC.

Project: 134-R P.O. # :

? Grid /Soils

Samples submitted to our lab in Vancouver, BC. is report was printed on 3-0CT-94.

	SAMPLE PREPARATION													
0	CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION											
	201 203 205 217 229	71 5 5 6 82	Dry, sieve to -80 mesh Dry, sieve to -35 mesh Geochem ring to approx 150 mesh Geochem ring entire sample ICP - AQ Digestion charge											
{ ((NOTE													

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W.

CHEMEX CODE	NUMBER SAMPLES		METHOD	DETECTION	UPPER LIMIT
100 2118 2119 2120 2121 2122 2123 2124 2125 2126 2130 2131 2132 2131 2132 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149	82 82 82 82 82 82 82 82 82 82 82 82 82 8	Au ppb: Fuse 10 g sample Ag ppm: 32 element, soil & rock Al %: 32 element, soil & rock Be ppm: 32 element, soil & rock Be ppm: 32 element, soil & rock Ca %: 32 element, soil & rock Cd ppm: 32 element, soil & rock Co ppm: 32 element, soil & rock Co ppm: 32 element, soil & rock Co ppm: 32 element, soil & rock Cr ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Ga ppm: 32 element, soil & rock K %: 32 element, soil & rock Mg %: 32 element, soil & rock Mg %: 32 element, soil & rock Mn ppm: 32 element, soil & rock Mn ppm: 32 element, soil & rock Mn ppm: 32 element, soil & rock Mi ppm: 32 element, soil & rock Mi ppm: 32 element, soil & rock Si ppm: 32 element, soil & rock Mi ppm: 32 element, soil & rock Mi ppm: 32 element, soil & rock Mi ppm: 32 element, soil & rock Mi ppm: 32 element, soil & rock Si ppm: 32 element, soil & rock Sc ppm: 32 element, soil & rock	FA-AAS ICP-AES	5 0.2 0.01 2 10 0.5 2 0.01 0.5 1 1 1 0.01 10 0.01 10 0.01 5 1 0.01 10 2 2 2 1 1 10 2 2 2 2 1 1 10 0.01 10 10 0.01 10 10 0.01 10 0.01 10 0.01 10 0.01 10 0.01 10 0.01 10 0.01 10 0.01 10 0.01 10 0.01 10 2 2 2 2 2 1 1 10 0.01 0.00000000	10000 200 15.00 10000

ANALYTICAL PROCEDURES

1

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8 rage Number ...-A Total Pages :3 Certificate Date: 03-OCT-94 Invoice No. :19427161 P.O. Number : Account :BSJ

Project : Comments: 134-R

134. 041.009

CERTIFICATE OF ANALYSIS

R Grid Soils

A9427161

				_					_						_	_	_	_	_		
SAMPLE	PR CO		Au ppb FA+AA	Ag ppm	A1	As ppm	Ba ppm	Ве ррп		Ca	Cđ ppm		Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
1400N-000W	201	229	< 5	0.6	4.31	18	70	< 0.5	< 2	0.03	< 0.5	3	68	25	5.62	< 10	< 1	0.08	10	0.65	235
1400N-025W	201		< 5	0.2	0.79	< 2	70	< 0.5	< 2	0.31	< 0.5		13	9	1.40	< 10	< 1	0.08	< 10	0.22	100
1400N-050W	201	229	< 5	0.2	1.33	< 2	50	< 0.5		0.04	< 0.5	_	21	6	1.05	< 10	< 1	0.03	10	0.08	45
1400N-100W	201		< 5	< 0.2	1.82	6	70	< 0.5		0.16	< 0.5	3	27	9	2.00	< 10	< 1	0.06	10	0.25	95
1400N-125W	201	229	< 5	0.6	1.30	< 2	150	< 0.5	< 2	0.40	< 0.5	6	12	17	2.18	< 10	< 1	0.17	< 10	0.29	125
1400N-150W	201		< 5	0.2	1.69	8	230	< 0.5		0.49	< 0.5		15	29	3.80	< 10	1	0.19	< 10	0.55	960
1400N-175W	201	229	< 5	1.4	1.17	< 2	70	< 0.5	-	0.37	< 0.5		15	10	2.85	< 10	< 1	0.08	< 10	0.45	160
1400N-200W	201	229	< 5	2.4	4.00		40	< 0.5		0.21	< 0.5	8	34	17	6.19	< 10	1	0.06	10	0.51	510
1400N-225W 1400N-250W	201	229 229	< 5	1.8	3.17	14	70 120	1.0		0.31	0.5	13	24	21	5.56	< 10	< 1	0.13	20	0.43	2130
1400a-250w	201	229	< 5	0.2	1.14	10	140	< 0.5	< 2	0.16	< 0.5		34	16	2.66	< 10	< 1	0.10	10	0.32	250
1400N-275W 1400N-300W	201 201	229 229	< 5 < 5	1.0	2.37	10 12	90 240	< 0.5		0.47	< 0.5	19 14	29 48	15 34	5.98 3.68	< 10 < 10	< 1	0.10	10	0.68	990 635
1400N-325W	201	229	< 5	0.4	1.32	6	120	< 0.5	< 2	0.17	< 0.5	11	10	23	4.63	< 10	1 < 1	0.17	10	0.20	490
1400N-350W	201		< 5	2.0	1.48	38	170	< 0.5	< 2	0.25	< 0.5	8	14	28	4.61	< 10	< 1	0.18	< 10	0.30	565
1400N-375W		229	< 5	2.4	1.74	16	80	< 0.5	< 2	0.06	< 0.5	4	13	37	4.94	< 10	- i	0.09	< 10	0.18	205
1400N-400W	201	229	< 5	0.4	1.87	6	80	< 0.5	< 2	0.61	< 0.5	10	18	12	4.74	< 10	< 1	0.13	< 10	0.86	270
1400N-425W			< 5	0.4	1.83	16	130	< 0.5	_	0.24	< 0.5	6	25	15	2.93	< 10	< 1	0.12	10	0.25	150
1400N-450W	201	229	< 5	0.6	1.73	16	120	< 0.5	2	0.21	< 0.5	5	25	14	3.06	< 10	< 1	0.10	10	0.24	130
1400N-475W	201	229	< 5	1.6	1.73	46	210	< 0.5		0.07	< 0.5	6	28	37	4.76	< 10	1	0.15	< 10	0.23	235
1400N-500W	201	229	< 5	0.8	1.27	40	160	< 0.5	< 2	0.26	< 0.5	8	16	30	4.08	< 10	1	0.15	< 10	0.29	925
1400N-525W	201	229	< 5	1.4	0.59	10	430	< 0.5	< 2	0.14	< 0.5	3	7	16	1.61	< 10	< 1	0.08	< 10	0.09	95
1400N-550W	201	229	< 5	0.2	0.91	< 2	40	< 0.5	< 2	0.40	< 0.5	4	7	15	2.15	< 10	1	0.04	< 10	0.31	135
1400N-575W	201	229	< 5	0.4	1.77	52	170	1.0		0.51	1.0	12	28	41	3.93	< 10	< 1	0.17	10	0.38	880
1400N-600W 1400N-625W	201 201	229 229	< 5 < 5	0.4	2.32	68 < 2	110 90	1.0	< 2	0.12	< 0.5	17	41	39 15	4.27	< 10 < 10	3 < 1	0.18 0.03	20 < 10	0.63 0.18	1210 80
1400N-650W 1400N-675W	201	229	< 5 < 5	0.6	0.63	< 2	80	< 0.5	< 2	0.41	< 0.5	4	5	22	1.52	< 10	< 1	0.04	< 10	0.21	160
1400N-700W	201 201	229 229	< 5	1.2	3.07	16 26	100 50	< 0.5	< 2	0.58	< 0.5	3 12	23 25	12 22	3.60	< 10 < 10	< 1	0.07	10 20	0.40 0.99	135 550
1400N-725W	201	229	< 5	2.6	3.41	40	140	1.5	< 2	0.71	1.0	16	32	26	4.84	< 10	< 1 3	$0.11 \\ 0.10$	20	0.60	1825
1400N-750W		229	< 5	1.2	1.93	B	40	< 0.5	< 2	0.59	< 0.5	9	17	11	5.37	< 10	ĩ	0.11	< 10	0.89	275
1400N-775W			miss.	miss.	miss.	miss.	miss.	miss.	miss.	miss.	miss.	miss.	miss.	miss.	miss.		miss.	miss.	miss.	miss.	miss.
1400N-800W	201	229	< 5	0.4	1.17	2	40	< 0.5	< 2	0.35	< 0.5		14	6	3.92	< 10	< 1	0.08	< 10	0.44	220
1400N-825W	201	229	< 5	0.8	1.57	< 2	50	< 0.5	< 2	0.73	< 0.5	12	14	9	3.89	< 10	1	0.14	< 10	1.10	355
1400N-850W	201	229	< 5	0.6	1.78	6	70	< 0.5	< 2	0.97	< 0.5	14	11	12	3.55	< 10	< 1	0.17	< 10	1.29	435
1400N-875W	201	229	< 5	0.6	0.92	8	90	< 0.5	< 2	0.19	< 0.5	8	15	11	3.44	< 10	< 1	0.08	< 10	0.41	570
1400N-900W		229	< 5	0.2	0.66	8	240	< 0.5	2	1.29	0.5	8	6	16	1.74	< 10	2	0.10	< 10	0.20	4000
1400N-925W	201	229	< 5	0.6	1.30	4	30	< 0.5	< 2	0.12	< 0.5	3	21	7	4.90	< 10	< 1	0.04	< 10	0.27	115
1400N-950W		229	< 5	1.0	3.11	16	20	< 0.5	< 2	0.03	< 0.5	< 1	37	18	11.80	< 10	< 1	0.03	10	0.13	250
1400N-975W	201		< 5	1.6	3.16	30	30	< 0.5	< 2	0.04	< 0.5	4	50	20	9.35	< 10	< 1	0.03	10	0.46	315
1400N-1000W	201	229	< 5	1.2	3.15	30	40	< 0.5	< 2	0.04	< 0.5	4	57	24	9.36	< 10	< 1	0.04	10	0.55	315
																	_				

CERTIFICATION: Hant Bullon

(m

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8 Page Number :1-B Total Pages :3 Certificate Date: 03-OCT-94 Invoice No. : 19427161 P.O. Number : Account :BSJ

Project : 134-R Comments:

										CE	RTIF	ICATE	A9427161			
SAMPLE	PREP CODE	Ma			P DDm	Pb ppm		SC ppm	Sr ppm	Ti %	T1 ppm	U mgg	V ppm	W ppm	Zn ppm	
1400N-000W	201 229	3			810	6		5	5	0.09	< 10	< 10	72	< 10	70	
1400N-025W	201 229					2		1	33	0.17	< 10	< 10	49	< 10	60	
L400N-050W L400N-100W	201 229			3	230 420	12 12	< 2	1 2	8 20	0.15 0.21	< 10 < 10	< 10 < 10	61 90	< 10 < 10	30 34	
400N-125W	201 229			9	1110	4		2	51	0.16	< 10	< 10	53	< 10	84	
400N-150W	201 229				1430	8		3	39	0.08	< 10	< 10	124	< 10	70	
400N-175W	201 229			10	1040	4	< 2	2	37	0.37	10	< 10	85	< 10	58	
400N-200W 400N-225W	201 229			11 10	940 1630	< 2	< 2	43	20 28	0.49 0.22	< 10 < 10	< 10 < 10	141 81	< 10 < 10	58 78	
400N-250N	201 229			17	560	4	< 2	2	18	0.1B	< 10	< 10	89	< 10	62	
400N-275W	201 229	2		13	960	2		3	45	0.59	< 10	< 10	158	< 10	90	······································
400N-300W	201 229	2		41	1370	12	< 2	2	26	0.01	< 10	< 10	44	< 10	74 80	
400N-325W 400N-350W	201 229	3		11 13	1400 1090	6 18	< 2 < 2	23	17 29	0.07 0.10	< 10 < 10	< 10 < 10	58 56	< 10 < 10	100	
400N-375W	201 229	. ~		7	1040	10	< 2	2	14	0.04	< 10	< 10	71	< 10	72	
400N-400W	201 229	1		13	520	6		3	63	0.50	< 10	< 10	126	< 10	50	·····
400N-425W	201 229	2		10	530 540	6 4	2 < 2	3	24 23	0.08	< 10 < 10	< 10 < 10	94 85	< 10 < 10	46 46	
400N-450W 400N-475W	201 229 201 229	5		20	920	20	< 2	3		< 0.01	< 10	< 10	40	< 10	84	
400N-500W	201 229	1 7		16	1400	16	2	2	29	0.07	< 10	< 10	50	< 10	98	
400N-525W	201 229	3		7	880	2	< 2	1	23	0.10	< 10	< 10	35	< 10	56	
400N-550W	201 229			8 37	910 910	< 2 16	< 2	2	39 58	0.29 0.01	< 10 < 10	< 10 < 10	43 30	< 10 < 10	72 156	
400N-575W 400N-600W	201 229	3		48	1030	18	< 2	1	13	0.02	< 10	< 10	36	< 10	168	
400N-625W	201 229	i		7	850	4	< 2	i	62	0.15	< 10	< 10	23	< 10	54	
400N-650W	201 229	1			1310	< 2	< 2	1	43	0.20	< 10	< 10	31	< 10	62	
400N-675W	201 229			10 19	530 810	16	< 2	3	55 42	0.78 0.58	< 10 < 10	< 10 < 10	112 125	< 10 < 10	64 70	
400N-700W 400N-725W	201 229 201 229	5		29	1910	10	< 2	3	71	0.15	< 10	< 10	59	< 10	134	
400N-750W	201 229	< 1		13	580	< 2	< 2	4	58	0.78	< 10	< 10	152	< 10	44	
400N-775W		miss.	miss.	miss.	miss.	miss.	miss.		das. 1						iss.	
400N-800W	201 229	< 1		7	930	6	< 2	2	36 69	0.68 D.54	< 10 10	< 10 < 10	132 104	< 10 < 10	36 48	
400N-825W 400N-850W	201 229 201 229	1		12 13	740 990	< 2	< 2 < 2	3	87	0.41	< 10	< 10 < 10	79	< 10	48 58	
400N-875W	201 229	ì		9	1450	2	< 1	i	26	0.31	< 10	< 10	76	< 10	60	
400N-900W	201 229	1		7	1580	8	< 2	< 1	57	0.01	< 10	< 10	10	< 10	88	
400N-925W	201 229	1 8		8	520	6	< 2	2 2	13	0.70 0.43	< 10 < 10	< 10 < 10	160	< 10 10	46 64	
400N-950W 400N-975W	201 229	4	0.01	26	590 530	2 16	< 2 < 2	3	5	0.29	< 10 10	< 10	91 66	< 10	72	
400N-1000W	201 229	6	0.01	31	590	10	< 2	3	6	0.26	< 10	< 10	66	< 10	70	
												<u> </u>				IL J P DO

CERTIFICATION: StartBuchler

1

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

Page Number :2-A Total Pages :3 Certificate Date: 03-OCT-94 Invoice No. :19427161 P.O. Number : BSJ Account

Project : Comments: 134-R

										CERTIFICATE OF ANALYSIS A9427161										
SAMPLE	PREP CODE	λu ppi Fλ+λi	-	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg maqq	R %	La ppm	Mg %	Mn ppm
1400N-1025W	201 22			6.18	26	20	< 0.5	< 2	0.04	< 0.5	< 1	47	19	9.29	< 10	< 1	0.03	10	0.07	170
1400N-1050W 1500N-000W	201 22 201 22			5.09 1.68	26 6	30 60	< 0.5 < 0.5	< 2	0.03 0.20	0.5	< 1	43 28	18 12	8.88 5.08	< 10 < 10	< 1	0.03	10 10	0.07	160
1500N-025W	201 22			1.10	< 2	40	< 0.5	< 2	0.20	< 0.5	4	25 8	8	2.25	< 10	< 1 < 1	0.07 0.12	< 10	0.33	230 215
1500N-050W	201 22			3.18	8	60	< 0.5	< 2	0.20	< 0.5	9	41	24	6.22	< 10	ì	0.10	< 10	0.58	1765
500N-075W	201 22			5.10	14	90	1.5	< 2	0.15	< 0.5	13	42	38	4.12	< 10	1	0.11	30	0.52	630
500N-100W	201 22			2.41 2.01	6	90 60	0.5	< 2	0.56	< 0.5	8	29	14	4.23	< 10	1	0.13	10	0.86	260
.500N-125W .500N-150W	201 22 201 22			2.6B	4	130	0.5	< 2 < 2	0.12 1.78	< 0.5 0.5	17	32 23	15 21	6.39 4.53	< 10 < 10	< 1 < 1	0.07 0.16	10 20	0.23	205 1555
500N-175W	201 22			2.56	4	110	< 0.5	< 2	0.25	0.5	4	29	18	5.13	< 10	< 1	0.05	10	0.30	205
1500N-200W	201 22			2.04	4	70	< 0.5	< 2	0.20	< 0.5	3	30	9	3.50	< 10	< 1	0.05	< 10	0.30	100
500N-225W 500N-250W	201 22			2.47 1.95	4 18	170 220	< 0.5 0.5	< 2 < 2	0.09	< 0.5 < 0.5	3 11	31 22	19 35	4.15 3.84	< 10 < 10	1	0.08	10 10	0.24	215 425
500N-275N	201 22			2.74	18	180	0.5	< 2	1.20	< 0.5	17	25	52	4.14	< 10	1	0.22	30	1.49	560
500N-300W	203 20			2.16	8	180	< 0.5	< 2	1.56	0.5	10	53	31	2.16	< 10	< 1	0.19	10	0.80	280
500N-325W	203 20			2.58	32	210	< 0.5	< 2	0.24	0.5	9	47	52	5.32	< 10	2	0.26	< 10	0.37	860
500N-350W 500N-375W	203 20			3.37 3.08	6 12	80 40	< 0.5	< 2 < 2	0.41	< 0.5	7	5B 27	13 14	5.92 5.25	< 10 < 10	< 1	0.08 0.06	< 10	0.58	315
500N-400W	201 22			2.15	8	80	< 0.5	< 2	0.15	< 0.5	4	54	13	5.73	< 10	< 1	0.08	10 < 10	0.42	635 140
500N-425W	201 22			1.33	< 2	100	< 0.5	< 2	0.58	< 0.5	9	11	8	3.32	< 10	< 1	0.11	< 10	0.64	235
500N-450W	201 22			1.89	4	80	< 0.5	< 2	0.87	< 0.5	17	15	13	4.47	< 10	1	0.15	< 10	1.32	510
500N-475W	201 22			1.32	4	110	< 0.5	< 2	0.21 0.18	0.5	6	25	11	5.10	< 10 < 10	< 1	0.07	< 10	0.33	180
500N-500W 500N-525W	201 22			1.51	24 8	70 110	< 0.5 < 0.5	< 2 < 2	0.17	< 0.5	4	49 7	19 11	6.52 2.47	< 10	< 1 < 1	0.08	10 < 10	0.49 0.63	235 215
500N-550W	217 22			1.00	6	170	< 0.5	< 2	0.22	< 0.5	4	9	18	1.40	< 10	î	0.06	< 10	0.20	265
500N-575W	217 229			0.97	58		< 0.5	< 2	0.10	< 0.5	2	42	20	2.39	< 10	< 1	0.30	10	0.09	130
500N-600W	201 229			0.78	22		< 0.5	< 2	0.24	< 0.5	6	14	24	3.11	< 10	< 1	0.11	10	0.27	250
500N-625W 500N-650W	201 229			0.92	12 50		< 0.5	< 2 < 2	0.23	< 0.5 < 0.5	8 14	12 19	34 17	3.00	< 10 < 10	< 1 1	0.10 0.19	10 10	0.41 1.10	375 570
500M-675W	201 225			1.21	188		< 0.5	< 2	0.04	< 0.5	6	30	44	6.06	< 10	< 1	0.16	10	0.31	330
500N-700W	201 229			0.80	16		< 0.5	< 2	0.10	< 0.5	3	26	24	5.50	< 10	< 1	0.10	10	0.19	255
500N-725W	203 205		=	1.95	8 6		< 0.5 < 0.5	2 < 2	0.98	< 0.5	17	29 27	15 14	3.86 3.58	< 10 < 10	< 1	0.17	< 10	1.49	345 375
500N-750W 500N-775W	203 203			1.90 1.44	6		< 0.5	< 2	1.15 0.34	< 0.5 < 0.5	16 7	17	14	3.58	< 10	< 1 < 1	0.19 0.08	< 10 < 10	1.55 0.50	375
500N-800W	201 229		1.4	1.48	36		< 0.5	< 2		< 0.5	6	15	9	5.09	< 10	< 1	0.06	< 10	0.26	200
500N-825W	201 229		0.8	1.79	8		< 0.5	< 2		< 0.5	15	13	13	4.11	< 10	< 1	0.17	< 10	1.34	535
500N-850W	201 229		< 0.2	1.84	8		< 0.5	< 2		< 0.5	16	12	12	3.91	< 10	< 1	0.17	< 10	1.40	415
500N-875W 500N-900W	201 229		1.0 0.8	2.00	38 22		< 0.5 < 0.5	< 2 < 2		< 0.5 < 0.5	8 5	43 40	27 22	4.06	< 10 < 10	< 1 < 1	0.09 0.06	< 10 10	0.54 0.49	380 295
500N-925W	217 229		< 0.2	0.34	< 2		< 0.5	< 2	0.57		6	6	7	0.72	< 10	< 1	0.02	< 10	0.18	375
		<u> </u>											· ·					•	N 0	
													; c	ERTIFIC	ATION:	40	X.	120	hle	~

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

Project : 134-R Comments: Page Number :2-B Total Pages :3 Certificate Date: 03-OCT-94 Invoice No. : 19427161 P.O. Number : Account :BSJ

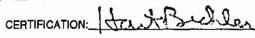
											CE	ERTIF	ICATE	0F /	ANAL	rsis	A9427161
SAMPLE		REP ODE	Mo ppm	Na %	Ni ppm	bbæ Å	Ppm Ppm	Sb ppm	Sc ppm	Sr ppm	Tİ , %	T1 ppm	D D	V ppm	N ppm	Zn ppm	
1400N-1025W	20	1 229	8	0.02	7	800	12	< 2	3	6	0.25	< 10	< 10	44	< 10	62	
1400N-1050W		1 229		0.01	5	700	22	< 2	2	7	0.35	< 10	< 10	92	< 10	44	
1500N-000W		1 229		0.04	10	750	12	< 2	2	21	0.37	< 10	< 10	140	< 10	52	
1500N-025W 1500N-050W		1 229 1 229		0.12 0.04	8 19	1580 2750	2 4	< 2 < 2	2 3	45 19	0.24 0.22	< 10 10	< 10 < 10	48 112	< 10 < 10	44 82	
1500N-075W	201	1 229		0.03	32	1650	12	< 2	5	13	0.11	< 10	< 10	66	< 10	130	
1500N-100W		2 229		0.18	18	680	4	< 2	- Ă	54	0.44	< 10	< 10	121	< 10	72	
1500N-125W	20:	1 229	3	0.02	7	540	10	< 2	3	14	0.39	< 10	< 10	138	< 10	58	
1500N-150W		L 229		0.28	20	1370	< 2	< 2	5	112	0.39	< 10	< 10	96	< 10	100	
1500N-175W	201	L 229	4	0.02	14	580	6	< 2	3	26	0.32	< 10	< 10	117	< 10	68	
1500N-200W		229		0.05	8	400	8	< 2	2	22	0.30	< 10	< 10	138	< 10	42	
1500N-225W	201			0.01	13	610 1560	16	< 2	35	13 96	0.14	< 10	< 10	85	< 10	44	
1500N-250¥ 1500N-275¥	201	229		0.43	21 25	1470	10 6	< 2 < 2	7	170	0.03 0.30	< 10 < 10	< 10 < 10	60 82	< 10 < 10	106 78	
1500N-300W	203			0.28	22	1350	6	< 2	4	136	0.21	< 10	< 10	63	< 10	62	
1500N-325W	203	205	9	0.09	19	1700	12	< 2	4	38	0.04	< 10	< 10	94	< 10	170	
1500N-350W		205	1	0.12	13	740	4	< 2	3	50	0.63	< 10	< 10	141	< 10	58	
1500N-375W	201		2	0.04	10	760	14	< 2	3	21	0.54	< 10	< 10	126	< 10	58	
1500N-400W		229	1	0.04	23	680	2	< 2	2	29	0.19	< 10	< 10	67	< 10	46	
1500N-425W	201	129	1	0.18	8	660	2	< 2	2	64	0.59	< 10	< 10	119	< 10	34	
1500N-450W		229	< 1	0.28	15	920	8	< 2	4	81	0.46	< 10	< 10	87	< 10	56	
1500N-475W 1500N-500W	201		3	0.07	9 21	400 650	6 12	< 2 < 2	23	31 20	0.61	< 10 < 10	< 10 < 10	164 72	< 10	46 58	
1500N-525W	201		< 1	0.20	1	1000	< 2	< 2	3	79	0.26	< 10	< 10	52	< 10 < 10	52	
500N-550W		229	< 1	0.04	7	1170	2	< 2	2	27	0.12	< 10	< 10	24	< 10	42	
500N-575W	217	229	4	0.02	11	790	10	2	1	15	0.01	< 10	< 10	35	< 10	100	
500N-600W	201	229	4	0.04	10	1130	12	2	1	29	0.17	< 10	< 10	65	< 10	62	
500N-625W	201		3	0.08	10	2220	2	< 2	2	21	0.11	< 10	< 10	65	< 10	64	
500N-650W	201	229	4	0.28	21	890	8	< 2	4	72	0.31	< 10	< 10	80	< 10	92	
500N-675W	201	229	9	0.02	24	2220	30	2	2	6	0.02	< 10	< 10	42	< 10	136	
500N-700W		229	3	0.01	8	2000	14	< 2	2	8	0.16	< 10	< 10	119	< 10	58	
500N-725W		205	< 1	0.38	18	940	< 2	< 2	6 5	102	0.48	< 10	< 10	93	< 10	44	
L500N-750W L500N-775W	203	205 229	< 1	0.43 0.10	17 8	990 610	< 2	< 2 < 2	2	114 33	0.45 0.48	< 10 < 10	< 10 < 10	8 <u>4</u> 126	< 10	54 44	
500N-800W		229	2	0.04	4	520	< 2	< 2	2	17	0.42	< 10	< 10	126	< 10 < 10	44	
500N-825W	201	229	1	0.34	15	1300	< 2	< 2	5	78	0.51	10	< 10	94	< 10	48	
500N-850W	201	229	< 1	0.37	15	1160	< 2	< 2	5	87	0.46	< 10	< 10	98	< 10	60	
500N-875W	201	229	2	0.03	28	740	12	< 2	2	23	0.06	< 10	< 10	69	< 10	74	
500N-900W	201	229	Ĝ	0.02	26	650	8	< 2	2	18	0.21	< 10	< 10	93	< 10	70	
	-		< 1	0.04	6		2		_								
1500N-925W	217	229	< 1	0.04	6	690	2	< 2	< 1	38	0.02	< 10	< 10	8	< 10	60	

CERTIFICATION: How Buchley

To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8 Page Number :3-A Totai Pages :3 Certificate Date: 03-OCT-94 invoice No. : I9427161 P.O. Number : Account :BSJ

Project : 134-R Comments:


C

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

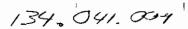
											CE	RTIFI	CATE	OF A	NAL	YSIS		A9427	161		
SAMPLE	PREP		u ppb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca	Cđ ppm	Co	Cr ppm	Cu	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
1500N-950W 1500N-975W 1500N-1000W	217 2: 217 2: 217 2:	29 29	<pre></pre>	0.2 0.2 0.4	1.81 1.76 1.51	12 < 2 2	80	< 0.5 < 0.5 < 0.5	< 2 < 2	1.19	< 0.5 < 0.5 < 0.5	16 13 11	31 30 28	13 11 11	3.25 3.09 3.34	< 10 < 10 < 10	< 1 1 < 1	0.21 0.20 0.13	< 10 < 10 < 10	1.49 1.14 0.87	370 325 225

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

Project : 134-R Comments: Page Number :3-B Total Pages :3 Certificate Date: 03-OCT-94 invoice No. : 19427161 P.O. Number : Account :BSJ

													RTIF		OF /	NAL	/SIS	A9427161
	SAMPLE		ep De	Мо ррт	Na %	N1 ppm	P P P D M	Pb ppm	SD ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U Mqq	V Ppm	¥ PP#	Zn ppm	
	1500n-950w 1500n-975w 1500n-1000w	217 217 217 217	229 229 229	< 1 < 1 < 1	0.45 0.38 0.21	16 14 13	950 1000 890	< 2 < 2 < 2	< 2 < 2 < 2	4 4 3	115 107 73	0.39 0.38 0.46	< 10 < 10 < 10	< 10 < 10 < 10	76 75 101	< 10 < 10 < 10	62 44 42	
ł																		tait Bidles


Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8 Page Number : 1-B Total Pages : 1 Certificate Date: 04-OCT-94 Invoice No. : 19427165 P.O. Number : Account : BSJ

Project : 134-R Comments:

												RTIF	CATE		NALY		A9427165	
SAMPLE	PRI COI		Mo ppm	Na %	Ni ppm	Р ррш	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	71 ppm	U PPm	V ppm	W PDM	Zn ppm		
9+00N-7+25W	201 201 203 201 203	229 205 229	4 3 4 2 3	0.18 0.01 0.02 0.03 0.04	29 74 51 42 40	1000 1350 870 1070 1120	8 34 12 22 20	< 2 < 2 < 2 4 < 2	4 6 4 5 7	79 90 52 71 49	0.25 0.01 0.01 0.07 0.06	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	53 25 34 49 63	< 10 < 10 < 10 < 10 < 10 < 10	148 380 340 120 154		
				•														

CERTIFICATION:

1

Chemex Labs Ltd.

1

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

Comments:

1

A9427171

3 I I I

(BSJ) - GRANGES INC.

Project: P.O. # :

134-JEFF Grid SILT

-	SAM	PLE PREPARATION
CHEMEX	NUMBER SAMPLES	DESCRIPTION
201 203 205 229	2 3 3 5	Dry, sieve to -80 mesh Dry, sieve to -35 mesh Geochem ring to approx 150 mesh ICP - AQ Digestion charge
* NOTE		

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: A1, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, T1, W.

		ANALYTICAL P	ROCEDURES		
CHEMEX	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
100	5	Au ppb: Fuse 10 g sample	<u> </u>	5	10000
2118	5	Ag ppm: 32 element, soil & rock	ICP-AES	0.2	200
2119	5	Al %: 32 element, soil & rock	ICP-ABS	0.01	15.00
2120	5	As ppm: 32 element, soil & rock	ICP-AES	2	10000
2121	5	Ba ppm: 32 element, soil & rock	ICP-NES	10	10000
2122	5	Be ppm: 32 element, soil & rock	ICP-ABS	0.5	100.0
2123	5	Bi ppm: 32 element, soil & rock	ICP-ABS	2	10000
2124	5	Ca %: 32 element, soil & rock	ICP-AES	0.01	15.00
2125	5	Cd ppm: 32 element, soil & rock	ICP-ABS	0.5	100.0
2126	5	Co ppm: 32 element, soil & rock	ICP-AES	1	10000
2127 2128	5	Cr ppm: 32 element, soil & rock	ICP -AES ICP -AES	1	10000 10000
2128	5	Cu ppm: 32 element, soil & rock Fe %: 32 element, soil & rock	ICP-AES	1 0.01	15.00
2130	5	Ga ppm: 32 element, soil & rock	ICP-AES	10	10000
2131	5	Hg ppm: 32 element, soil & rock	ICP-AES	1	10000
2132	5	X %: 32 element, soll & rock	ICP-AES	0.01	10.00
2151	5	La ppm: 32 element, soil & rock	ICP-AES	10	10000
2134		Mg %: 32 element, soil & rock	ICP-AES	0.01	15.00
2135		Mn ppm: 32 element, soil & rock	ICP-AES	5	10000
2136	5	No ppm: 32 element, soil & rock	ICP-AES	1	10000
2137	5	Na %: 32 element, soil & rock	ICP-AES	0.01	5.00
2138	5	Ni ppm: 32 element, soil & rock	ICP- NES	1	10000
2139	5	P ppm: 32 element, soil & rock	ICP-ABS	10	10000
2140	5	Pb ppm: 32 element, soil & rock	ICP-ASS	2	10000
2141	5	Sb ppm: 32 element, soil & rock	ICP-AES	2	10000
2142	5	Sc ppm: 32 elements, soil & rock	ICP-NES	1	10000
2143	5	Sr ppm: 32 element, soil & rock	ICP-ABS	1	10000
2144	5	Ti %: 32 element, soil & rock	ICP-AES	0.01	5.00
2145	5	T1 ppm: 32 element, soil & rock	ICP-AES	10	10000
2146	5	U pom: 32 element, soil & rock	ICP-AES	10	10000
2147	5	V ppm: 32 element, soil & rock	ICP-AES	. 1	10000
	5	W ppm: 32 element, soil & rock	ICP-AES ICP-AES	10 2	10000 10000
2148 2149		Zn ppm: 32 element, soil & rock	ICP-AKS	2	

A9427171

134. 641.004 rage Number : I-A Total Pages :1 Certificate Date: 04-OCT-94 Invoice No. : 19427171 P.O. Number :

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To:	GRAN	GES	INC.
-----	------	-----	------

2230 - 685 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

134-JEFF Grid Project : Comments:

SOIL ? PROBABLY SILT

Account BSJ PLOTTED IN SOIL GEOCHEM MAP

CERTIFICATE OF ANALYSIS A9427171

	SAMPLE	PR CO		Au ppb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Со	Cr ppm	Cu ppm	Fø %	Ga. ppm	Hg ppm	K %	La ppm	Mg %	Мл ррш
مى پ	1+003-3+75W 1+003-4+00W 1+003-6+95W L3+00N-3+75W L3+00N-3+75W	203 203 203	229 205 205 205 205 229	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 </pre>	0.2 0.2 0.2 0.2 0.2	2.12 1.98 2.25 2.12 2.47	24 38 48 10 44	160 170	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.67 0.44 0.51 0.45 0.74	0.5 < 0.5 0.5 0.5 0.5	12 15 15 13 18	36 35 31 29 21	26 55 40 51 57	4.81 4.62 5.07 4.55 5.30	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 1 < 1 1	0.13 0.11 0.10 0.09 0.04	< 10 < 10 < 10 < 10 < 10 < 10	1.04 0.89 0.91 0.96 0.95	745 790 1030 840 1420
															<u> </u>							
_																						
																	ATION:_	11		<u> </u>	0	

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brocksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

Page Number :1-B Total Pages :1 Certificate Date: 04-OCT-94 Invoice No. :19427171 P.O. Number : BSJ Account

Project : Comments: 134-JEFF

									Ì	CE	RTIF	CATE	OF /	NAL	/SIS	A9427171
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	P P P P	Pb ppm	Sb ppm	SC PPm	Sr ppm	Ti %	Т1 ррт	U ppm	V ppm	W ppm	Zn ppa	
1+005-3+75W 1+005-4+00W 1+005-6+95W L3+00N-3+75W L3+00N-3+75W	201 229 203 205 203 205 203 205 203 205 201 229	2	0.08 0.02 0.02 0.01 0.01	32 27 23 33 30	1190 1080 1120 1160 1310	10 20 12 6 16	< 2 < 2 < 2 < 2 < 2 < 2 < 2	3 4 3 3 4	57 32 34 31 58	0.08 0.03 0.03 0.02 0.03	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	45 46 40 41	< 10 < 10 < 10 < 10 < 10 < 10	198 146 146 150 174	
		1														
														ERTIFIC		tart Bichler

134. 041. 009

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

A9427172

Comments:

CERTIFICATE ANALYTICAL PROCEDURES A9427172 (BSJ) - GRANGES INC. CHEMEX NUMBER DETECTION UPPER CODE SAMPLES DESCRIPTION METHOD LIMIT LIMIT 134-R Grid - Sails Project: R.O. # : 100 78 Au ppb: Fuse 10 g sample 7እ~እእይ 5 10000 Lamples submitted to our lab in Vancouver, BC. 2118 78 Ag ppm: 32 element, soil & rock ICP-AES 200 0.2 This report was printed on 4-OCT-94. 2119 78 Al %: 32 element, soil & rock ICP-AES 0.01 15.00 2120 78 As ppm: 32 element, soil & rock ICP-ARS 10000 2 78 2121 Ba pom: 32 element, soil & rock ICP-AES 10 10000 2122 78 Be ppm: 32 element, soil & rock ICP-ARS 0.5 100.0 78 Bi ppm: 32 element, soil & rock 2123 ICP-AES 10000 2 Ca %: 32 element, soil & rock 2124 78 ICP-ARS 0.01 15.00 2125 78 Cd pom: 32 element, soil & rock ICP-AES 100.0 0.5 SAMPLE PREPARATION 2126 78 Co ppm: 32 element, soil & rock ICP-ARS 10000 1 78 2127 Cr ppm: 32 element, soil & rock ICP-AES 1 10000 2128 78 Cu ppm: 32 element, soil & rock ICP-AES 10000 CHEMEX NUMBER SAMPLES 78 Fe %: 32 element, soil & rock 2150 ICP-ARS 0.01 15.00 DESCRIPTION 78 2130 Ga ppm: 32 element, soil & rock ICP-ABS 10000 10 2131 78 Hg ppm: 32 element, soil & rock ICP-AES 1 10000 2132 78 K %: 32 element, soil & rock ICP-AES 0.01 10.00 78 2151 La ppm: 32 element, soil & rock ICP-AES 10 10000 201 78 Dry, sieve to -80 mesh 2134 78 Mg %: 32 element, soil & rock ICP-AES 229 78 0.01 15.00 ICP - AQ Digestion charge 2135 78 ICP-ABS Mn ppm: 32 element, soil & rock 5 10000 78 2136 No ppm: 32 element, soil & rock ICP-ARS 10000 1 78 2137 Na %: 32 element, soil & rock ICP-ARS 0.01 5.00 Ni ppm: 32 element, soil & rock 2138 78 ICP-AES 10000 1 2139 78 P ppm: 32 element, soil & rock ICP-AES 10 10000 78 ICP-ARS 2140 Pb ppm: 32 element, soil & rock 2 10000 78 2141 Sb ppm: 32 element, soil & rock ICP-AES 2 10000 2142 78 Sc ppm: 32 elements, soil & rock ICP-AES 1 10000 2143 78 Sr ppm: 32 element, soil & rock ICP-ARS 10000 1 2144 78 Ti %: 32 element, soil & rock ICP-ARS 0.01 5.00 T1 ppm: 32 element, soil & rock 2145 78 ICP-ARS 10 10000 U ppm: 32 element, soil & rock 2146 78 ICP-ARS 10000 10 NOTE 2147 78 V ppm: 32 element, soil & rock ICP-AES 10000 1 2148 78 W ppm: 32 element, soil & rock ICP-ABS 10 10000 The 32 element ICP package is suitable for 2149 78 Zn ppm: 32 element, soil & rock ICP-AES 10000 trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, T1, W.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GHANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

CERTIFICATE OF ANALYSIS

1-

A9427172

tart Buchle

134-R Grid Soils Project : Comments:

Mg λ1 Ra Be Bi Са Cđ Co Cr Cu Fø Ga Ħg ĸ La Mn PREP Au ppb λø Ag 2 % % ppm % ppm CODE FA+AA % ppm ppm ppm ррщ SAMPLE ppm ppm ppm ppm ppm ppm ppm 5.76 0.06 0.95 295 7+00N-0+00W 201 229 < 5 0.4 3.54 16 40 < 0.5 < 2 0.02 < 0.5 5 79 28 < 10 < 1 10 0.02 40 2.00 < 10 < 10 0.10 7+00N-0+25W 201 229 < 5 < 0.2 1.30 2 70 < 0.5 < 2 0.05 < 0.5 1 16 1 < 1 115 0.08 5.67 < 10 0.04 < 10 0.27 35 11 7+00N-0+50W 201 229 < 5 < 0.2 2.06 12 50 < 0.5 < 2 0.5 2 < 1 0.21 625 12 5.41 < 10 0.10 7+00N-0+75W 201 229 < 5 < 0.2 2.86 22 120 0.5 < 2 0.10 < 0.5 6 21 < 1 10 18 7.94 < 10 0.03 20 0.13 255 < 0.5 0.06 39 < 1 7+00N-1+25W 201 229 < 5 1.6 3.57 12 20 < 2 < 0.5 2 7+00N-1+50W 201 229 3.71 8 50 < 0.5 < 2 0.14 < 0.5 5 41 19 4.89 < 10 < 1 0.03 10 0.31 190 < 5 < 0.2 < 2 0.13 < 0.5 29 13 6.76 < 10 < 1 0.06 10 0.22 200 201 229 0.8 2.56 10 20 < 0.5 2 7+00N-1+75W < 5 20 < 0.5 0.08 < 0.5 43 17 7.05 < 10 1 0.04 10 0.16 290 7+00N-2+00W 201 229 < 5 3.19 18 < 2 2 1.2 0.08 7.63 < 10 0.03 20 0.21 190 7+00N-2+25W 201 229 < 5 4.11 38 20 < 0.5 < 2 < 0.5 2 40 14 < 1 2.8 240 201 229 2.26 30 < 0.5 0.22 < 0.5 9 31 16 6.15 < 10 < 1 0.04 10 0.94 7+00N-2+50W < 5 0.4 6 < 2 315 0.25 7+00N-2+75W 201 229 < 5 1.2 2.55 6 60 < 0.5 < 2 0.09 < 0.5 5 33 13 4.21 < 10 < 1 0.06 10 0.69 315 7+00N-3+00W 201 229 < 5 0.8 4.15 12 30 < 0.5 < 2 0.25 < 0.5 7 40 19 7.43 < 10 < 1 0.06 10 < 0.5 18 8.04 < 10 0.04 10 0.27 315 7+00N-3+25W 201 229 < 5 1.4 2.71 6 40 < 0.5 < 2 0.14 4 27 < 1 0.5 71 5.77 < 10 0.14 10 0.46 585 30 < 2 0.10 14 43 < 1 7+00N-3+50W 201 229 < 5 3.4 3.47 130 1.0 4.01 5.48 0.10 10 0.47 550 7+00N-3+75W 201 229 16 60 < 2 0.08 0.5 9 50 56 < 10 1 < 5 0.5 1.4 1370 7+00N-4+00W 12 50 0.41 27 18 5.53 < 10 1 0.08 10 0.57 201 229 < 5 0.8 2.55 < 0.5 < 2 < 0.5 16 7+00N-4+25W 0.13 48 14 7.91 < 10 < 1 0.04 20 0.46 265 201 229 < 5 1.0 3.19 20 20 < 0.5 < 2 < 0.5 3 0.35 7+00N-4+50W 201 229 < 5 2.4 1.99 22 270 0.5 < 2 0.23 0.5 17 36 20 6.60 < 10 1 0.11 < 10 3590 miss. miss. m mi miss. miss. miss. miss. miss. miss. miss. 7+00N-4+75W miss. miss. miss. miss. miss. miss. miss. miss. 69. ... ------15 6.46 < 10 0.05 10 0.57 170 7+00N-5+00W 201 229 < 5 1.0 2.67 16 40 < 0.5 < 2 0.07 < 0.5 2 5B < 1 525 0.08 10 38 26 8.88 < 10 < 1 0.07 < 10 0.20 7+00N-5+25W 201 229 < 5 1.0 2.68 4 50 < 0.5 < 2 < 0.5 6.53 < 10 0.09 10 0.22 220 201 229 2.0 24 0.5 < 2 0.03 < 0.5 35 24 < 1 7+00N-5+50W < 5 3.01 100 4 16 4.39 < 10 < 1 0.10 10 0,10 90 7+00N-5+75W 201 229 2.08 80 < 0.5 < 2 0.03 < 0.5 9 15 < 5 0.2 18 255 0.07 43 14 8.47 < 10 < 1 0.06 10 0.25 7+00N-6+00W 201 229 < 5 0.6 3.13 20 60 < D.5 < 2 < 0.5 3 0.22 >10000 17 < 10 0.09 7+00N-6+25W 201 229 < 5 2.6 1.87 132 6860 1.0 < 2 0.42 1.0 13 13 14.45 < 1 10 < 2 24 2010 7+00N-6+50W 201 229 2.79 48 220 < 0.5 0.08 < 0.5 10 28 8.17 < 10 2 0.12 10 0.36 < 5 1.6 < 0.5 < 2 0.15 0.5 9 42 19 5.29 < 10 2 0.07 10 0.55 615 7+00N-6+75W 201 229 < 5 4.10 14 70 1.8 25 6.01 < 10 0.08 < 10 0.33 495 201 229 28 80 < 0.5 < 2 0.23 < 0.5 7 26 < 1 7+00N-7+00W < 5 2.14 1.4 39 16 7.48 < 10 0.03 10 0.39 290 201 229 3.76 16 40 < 0.5 < 2 0.14 < 0.5 5 < 1 7+00N-7+25W < 5 0.6 90 150 < 2 0.14 < 0.5 3 21 7 4.51 < 10 < 1 0.03 10 0.17 7+00N-7+50W 201 229 < 5 0.2 1.83 4 < 0.5 16 5.40 < 10 0.06 0.62 550 0.32 32 1 10 7+00N-7+75M 201 229 < 5 0.8 4.28 6 60 < 0.5 < 2 < 0.5 12 4.01 < 10 0.11 10 0.61 150 7+00N-8+00W 201 229 < 5 0.2 2.47 24 180 < 0.5 < 2 0.13 < 0.5 2 39 6 < 1 < 2 0.15 0.5 2 34 11 5.76 < 10 < 1 0.07 10 0.37 215 7+00N-8+25W 201 229 < 5 0.2 2.16 6 80 < 0.5 0.25 27 17 7.20 < 10 < 1 0.06 10 0.33 310 201 229 0.5 < 2 < 0.5 5 7+00N-8+75W < 5 1.4 3.89 20 180 0.13 < 10 0.06 10 0.29 235 37 16 7.19 < 1 201 229 2.54 60 < 0.5 < 2 0.5 3 7+00N-9+00W < 5 0.4 8 < 2 0.07 16 5.09 < 10 < 1 0.04 10 0.3B 210 201 229 2.88 140 < 0.5 < 0.5 4 39 7+00N-9+25W < 5 0.6 14 0.33 175 31 14 5.67 < 10 < 1 0.02 10 7+00N-9+50W 201 229 < 5 0.8 4.00 8 90 < 0.5 < 2 0.10 < 0.5 4 0.33 205 201 229 2.82 < 0.5 < 2 0.17 < 0.5 4 36 10 5.25 < 10 < 1 0.06 10 8+00N-0+00W < 5 0.4 10 40 275 50 24 6.54 < 10 < 1 0.07 10 0.59 201 229 < 5 3.03 2B 50 < 0.5 < 2 0.06 < 0.5 4 8+00N-0+25W 0.6 0.07 590 10 38 25 5.93 < 10 < 1 30 0.34 201 229 < 5 1.2 4.27 16 20 0.5 < 2 0.14 < 0.5 8+00N-0+50W

· CERTIFICATION:

 $\overline{}$

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8 Page Number : 1-B Total Pages :2 Certificate Date: 04-OCT-94 Invoice No. : 19427172 P.O. Number : Account : BSJ

Project : 134-R Comments:

											CI	RTIF	ICAT	EOF	ANAL	YSIS	A9427172
SAMPLE	PREP CODE		Мо ррш	Na %	Ni ppm	ppm q	bb m 5p	Sp mqq	Sc ppm	Sr ppm	Ti %	Tl ppm	U ppm	v PDT	м ВЪШ	Zn ppm	
7+00N-0+00W 7+00N-0+25W 7+00N-0+50W 7+00N-0+75W 7+00N-1+25W	201 22 201 22 201 22 201 22 201 22 201 22	9 9 9	3 < 1 3 6	0.01 0.01 0.01 0.04 0.02	51 2 14 5 5	340 250 450 450 640	2 10 2 16 6	< 2 < 2 < 2 < 2 < 2 < 2	5 1 2 3 3	5 7 13 11 5	0.08 0.27 0.20 0.05 0.36	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	64 83 97 54 100	< 10 < 10 < 10 < 10 < 10 < 10	58 8 28 92 40	
7+00N-1+50W 7+00N-1+75W 7+00N-2+00W 7+00N-2+25W 7+00N-2+50W	201 22 201 22 201 22 201 22 201 22 201 22	9	2 7 5 3 2	0.03 0.05 0.03 0.03 0.03	8 7 6 5 13	550 610 640 450 490	6 < 2 12 9 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2	4 2 3 7 4	12 13 7 7 17	0.48 0.36 0.42 0.36 0.72	< 10 < 10 < 10 < 10 < 10 10	< 10 < 10 < 10 < 10 < 10 < 10	137 98 98 88 171	< 10 < 10 < 10 < 10 < 10 < 10	46 40 38 40	
7+00N-2+75W 7+00N-3+00W 7+00N-3+25W 7+00N-3+50W 7+00N-3+50W 7+00N-3+75W	201 22 201 22 201 22 201 22 201 22 201 22	9	2 3 3 6 3	0.02 0.06 0.03 0.01 0.01	6 12 9 48 28	540 830 570 1060 1490	6 4 4 14 10	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	3 8 2 6 8	10 20 13 12 8	0.42 0.69 0.43 0.03 0.03	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	126 157 122 88 75	< 10 < 10 < 10 < 10 < 10 < 10	36 48 40 164 114	
7+00N-4+00W 7+00N-4+25W 7+00N-4+50W 7+00N-4+75W 7+00N-4+75W 7+00N-5+00W	201 22 201 22 201 22 201 22 	9 9 9 mi	1 3 4 85. 1	0.06 0.03 0.01 1.55. 0.01	12 13 16 miss. 31	1660 550 1530 miss. 1 490	2 8 18 aiss. 2	< 2 < 2 < 2 * 2 * 2 * 2	3 6 2 1155. 1	31 11 24 155. 1	0.41 0.43 0.18 miss. 0.18	< 10 < 10 < 10 miss. < 10	< 10 < 10 < 10 miss. < 10	131 106 99 miss. 81	< 10 < 10 < 10 miss. < 10	66 50 74 miss. 44	
7+00N-5+25W 7+00N-5+50W 7+00N-5+75W 7+00N-6+00W 7+00N-6+25W	201 22 201 22 201 22 201 22 201 22 201 22	9 9 9	2 6 6 7 6	0.01 0.01 0.01 0.02 0.01	16 16 12 8 29	730 550 260 460 1390	< 2 12 2 8 6	< 2 < 2 < 2 < 2 < 2 < 2 < 2	8 3 1 3 4	7 7 4 8 17	0.08 0.05 0.02 0.16 0.D1	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	119 60 73 107 24	< 10 < 10 < 10 < 10 < 10 40	80 74 52 38 60	
7+00N-6+50W 7+00N-6+75W 7+00N-7+00W 7+00N-7+25W 7+00N-7+50W	201 22 201 22 201 22 201 22 201 22 201 22	9 9 9	3 1 2 4 3	0.02 0.03 0.06 0.03 0.01	26 21 14 8 5	1620 980 870 530 430	6 6 8 6 12	< 2 < 2 < 2 < 2 < 2 < 2 < 2	53262	8 15 22 13 17	0.10 0.29 0.29 0.54 0.49	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	57 85 118 127 143	< 10 < 10 < 10 < 10 < 10 < 10	72 48 44 48 20	
7+00N-7+75W 7+00N-8+00W 7+00N-8+25W 7+00N-8+75W 7+00N-9+00W	201 22 201 22 201 22 201 22 201 22 201 22 201 22	9 9	2 4 6 5 6	0.06 0.02 0.02 0.01 0.03	10 26 16 7 11	840 390 610 860 630	4 2 12 6 12	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	4 2 2 4 3	22 16 13 33 12	0.62 0.04 0.28 0.17 0.44	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	126 99 88 136 116	< 10 < 10 < 10 < 10 < 10 < 10	38 38 44 48 46	
7+00N-9+25W 7+00N-9+50W 8+00N-0+00W 8+00N-0+25W 8+00N-0+50W	201 22 201 22 201 22 201 22 201 22 201 22 201 22	9 9 9	4 3 2 4 6	0.01 0.02 0.03 0.01 0.04	16 6 8 31 11	720 570 570 590 1190	4 2 8 6 12	< 2 < 2 < 2 < 2 < 2 < 2 < 2	2 5 3 3 6	9 11 16 8 9	0.24 0.34 0.54 0.13 0.33	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	99 133 128 71 78	< 10 < 10 < 10 < 10 < 10 < 10	34 28 38 52 52	
																	11

CERTIFICATION: Start Buchler

(

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8 Page Number : 2-A Total Pages : 2 Certificate Date: 04-OCT-94 Invoice No. : 19427172 P.O. Number : Account : BSJ

Project : 134-R Comments:

										CE	RTIF	CATE	OF A	NAL	YSIS		49427	172		
SAMPLE	PREP CODE	ли ррб Ул+дд) Ag DDm	A1 %	As ppm	Ва ррш	Ве ррш	Bi ppm	Ca %	Cđ ppm	Со ррт	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
8+001-0+751	201 229		< 0.2	2.51	< 2	10	0.5	< 2	0.11	< 0.5	2	27	9	6.34	< 10	< 1	0.04	20	0.23	175
8+00N-1+00W	201 229		< 0.2	1.81	14	230	< 0.5	< 2	0.13	< 0.5	6 5	5 83	8	4.00	< 10	< 1	0.09	10 10	0.11	220 475
8+00N-1+25W 8+00N-1+50W	201 229		2.4 1.9	3.08 2.73	28 14	60 60	< 0.5	< 2 < 2	0.21	1.0	6	83 37	43 33	6.51	< 10 < 10	< 1 < 1	0.09	10	0.23	225
8+00N-1+75W	201 229		0.5	2.49	4	20	< 0.5	< 2	0.13	< 0.5	6	43	17	6.01	< 10	< 1	0.07	10	0.36	520
8+00N-2+00W	201 229		1.2	4.36	< 2	30	1.5	< 2	0.16	< 0.5	18	24	25	5.57	< 10	< 1	0.06	20	0.59	1030
8+00N-2+25W	201 229		< 0.2	2.46	8	50 30	< 0.5 1.5	< 2	0.08	< 0.5	6	62 27	20 19	7.95 5.60	< 10 < 10	< 1 < 1	0.06	10 10	0.72 0.63	280 620
8+00N-2+50W 8+00N-2+75W	201 229	< 5 10	< 0.2 < 0.2	2.75	10 10	20	2.0	< 2 < 2	0.21	< 0.5 < 0.5	11 1	36	12	8.69	< 10	< 1	0.06	10	0.21	175
8+00N-3+00W	201 229		0.3	4.73	< 2	40	< 0.5	< 2	0.32	< 0.5	12	28	19	5.66	< 10	< 1	0.07	10	0.86	320
8+00N-3+25W	201 229		0.4	2.40	< 2		< 0.5	< 2	0.22	< 0.5	6	25	26	7.62	< 10	< 1	0.06	10	0.38	385
8+00N-3+50W	201 229		< 0.2	1.42	< 2		< 0.5	< 2	0.28	< 0.5	16	16 30	72 34	7.28 7.00	< 10 < 10	< 1	0.17	10	0.21	600 2370
8+00N-3+75W 8+00N-4+00W	201 229		< 0.2	3.24	< 2		< 0.5 < 0.5	< 2 < 2	0.10	< 0.5	24 10	30	20	6.13	< 10	< 1 < 1	0.15 0.06	10 10	0.69 0.25	800
8+00N-4+25W	201 229		0.2	3.13	4		< 0.5	< 2	0.17	< 0.5	4	28	15	7.32	< 10	< 1	0.03	10	0.40	260
8+00N-4+50W	201 229		0.2	2.46	14		< 0.5	< 2	0.06	< 0.5	2	15	13	5.63	< 10	< 1	0.09	10	0.12	335
8+00N-4+75W	201 229		1.5	3.17	< 2		< 0.5	< 2	0.42	0.5	13	27	17	6.11	< 10	< 1	0.11	20	0.73	1690
8+00N-5+00W 8+00N-5+25W	201 229	< 5	0.7 0.6	4.11 2.14	< 2 26	80 50	0.5	< 2 < 2	0.43	< 0.5	6	37 16	19 12	6.04 5.00	< 10 < 10	< 1 < 1	0.07	20 20	0.60	200 70
8+00N-5+50W	201 229		2.2	1.47	146		< 0.5	< 2	0.02	< 0.5	3	10	19	4.72	< 10	< 1	0.10	10	0.06	300
8+00N-5+75W	201 229	< 5	0.7	1.93	98		< 0.5	< 2	0.07	< 0.5	1	27	10	4.90	< 10	< 1	0.06	10	0.09	100
8+00N-6+25W	201 229	< 5	0.6	1.71	6		< 0.5 < 0.5	< 2	0.06 0.13	< 0.5	5 9	15 21	14 26	4.68 5.39	< 10 < 10	< 1 < 1	0.12	10 10	0.10 0.20	125 1175
8+00N-6+50W 8+00N-6+75W	201 229 201 229	< 5 < 5	2.5 1.9	1.81 4.13	32 10		< 0.5	< 2 < 2	0.13	< 0.5 < 0.5	8	18	20	7.08	< 10	< 1	0.12	10	0.39	625
8+00M-7+00W	201 229	< 5	1.9	3.88	12		< 0.5	< 2	0.28	< 0.5	ž	20	32	6.24	< 10	< 1	0.07	10	0.53	300
8+00N-7+25W	201 229	< 5	0.3	3.42	< 2		< 0.5	< 2	0.06	< 0.5	2	35	10	4.20	< 10	< 1	0.06	10	0.17	70
8+00N-7+50W	201 229	< 5	0.2	2.42	22		< 0.5	< 2	0.09	0.5	3	27	22	7.60	< 10	< 1	0.04	10	0.10	205
8+00N-7+75W 8+00N-8+00W	201 229 201 229	< 5 < 5	0.4 0.4	3.85 3.84	< 2 6		< 0.5 < 0.5	< 2 < 2	0.34	< 0.5 < 0.5	16 19	30 36	19 20	6.05 6.71	< 10 < 10	< 1 < 1	0.06 0.07	10 20	0.78 0.59	1035 945
8+00N-8+25W	201 229	< 5	0.2	3.77	6		< 0.5	< 2	0.07	< 0.5	2	27	16	7.41	< 10	< 1	0.05	20	0.16	310
8+00N-8+50W	201 229	< 5	0.6	5.05	< 2		< 0.5	< 2	0.33	0.5	13	30	30	6.21	< 10	< 1	0.05	20	0.86	635
8+00N-8+75W	201 229	< 5	0.7	3.39	< 2		< 0.5	< 2	0.12	< 0.5	< 1	25	17	10.15	< 10	< 1	0.02	20	0.09	205
8+00N-9+00W	201 229	< 5	0.5	2.93 4.55	< 2 < 2		< 0.5 < 0.5	< 2 < 2	0.15 0.20	< 0.5 0.5	3 6	20 27	19 18	4.39 5.62	< 10 < 10	< 1 < 1	0.02 0.04	10 10	0.26	175 235
8+00N-9+25W 8+00N-9+50W	201 229 201 229	< 5 < 5	0.7	2.41	2		< 0.5	< 2	0.12	< 0.5	6	8	12	6.00	< 10	< 1	0.01	< 10	0.25	220
8+00N-9+75W	201 229	< 5	0.2	1.65	< 2		< 0.5	< 2	0.10	< 0.5	2	28	9	4.52	< 10	< 1	0.02	10	0.16	95
8+00N-10+00W	201 229	< 5	< 0.2	2.79	6		< 0.5	< 2		< 0.5	5	59	19	8.30	< 10	< 1	0.06	10	0.64	225
8+00N-10+25W	201 229	< 5	0.2	3.13	2		< 0.5 < 0.5	< 2 < 2		< 0.5 < 0.5	< 1	52 23	18 13	9.69 5.18	< 10 < 10	< 1 < 1	0.02	10 10	0.20	120 250
8+00N-10+50W	201 229	< 5	0.2	2.97	< 2	90 ·		< 4	U . 49.	. 0.3	0	43	13	5.10	10	< I	0.04	10	0.44	490
																1.	. ~			

CERTIFICATION: HartBuchley

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8 Page Number :2-B Total Pages :2 Certificate Date: 04-OCT-94 Invoice No. :19427172 P.O. Number : Account :BSJ

Project : 134-R Comments:

										CE	RTIF		OF A	NAL	(SIS	A9427172
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	p ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Tİ %	T1 ppm	mdđ T	V mqq	M M	Zn ppm	
8+00N-0+75W 8+00N-1+00W 8+00N-1+25W 8+00N-1+50W 8+00N-1+75W	201 229 201 229 201 229 201 229 201 229 201 229	4 20 15 8	0.03 0.01 < 0.01 0.01 0.03	4 2 45 28 9	470 350 5030 1100 580	14 6 14 8 16	< 2 4 2 < 2 < 2	5 2 5 4 7	9 9 13 7 10	0.37 0.01 0.04 0.03 0.58	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	68 55 236 120 115	< 10 < 10 < 10 < 10 < 10 < 10	36 58 254 100 50	
8+00N-2+00W 8+00N-2+25W 8+00N-2+50W 8+00N-2+75W 8+00N-3+00W	201 229 201 229 201 229 201 229 201 229 201 229 201 229	3 2 < 1 2 1	0.05 0.01 0.04 0.03 0.07	10 41 12 8 13	690 1170 2220 530 1000	8 6 2 14 8	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	9 3 8 5 9	12 11 16 10 23	0.47 0.13 0.54 0.37 0.72	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	95 75 114 94 107	< 10 < 10 < 10 < 10 < 10 < 10	62 52 52 38 36	
8+00N-3+25W 8+00N-3+50W 8+00N-3+75W 8+00N-4+00W 8+00N-4+25W	201 229 201 229 201 229 201 229 201 229 201 229 201 229	1 1 1 2 2	0.04 0.02 0.03 0.02 0.04	8 14 20 10 10	660 1290 2890 880 500	10 16 10 12 12	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	8 9 4 4	19 19 23 11 19	0.67 0.01 0.30 0.38 0.64	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	177 104 107 103 136	< 10 < 10 < 10 < 10 < 10 < 10	46 82 110 40 42	
8+00N-4+50W 8+00N-4+75W 8+00N-5+00W 8+00N-5+25W 8+00N-5+55W	201 229 201 229 201 229 201 229 201 229 201 229 201 229	3 4 2 4 1 11 6 4	<pre> C.01 0.14 0.06 0.01 C.01</pre>	6 13 12 4 7	820 990 750 370 410	12 8 6 20 14	2 < 2 < 2 < 2 < 2 < 2	2 7 9 2 2	4 37 29 5 3	0.03 0.62 0.64 0.12 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	60 118 104 66 23	< 10 < 10 < 10 < 10 < 10 < 10	72 70 42 50 56	
8+00N-5+75W 8+00N-6+25W 8+00N-6+50W 8+00N-6+75W 8+00N-7+00W	201 229 201 229 201 229 201 229 201 229 201 229 201 229	5 3 < 7 2 < 1	0.01 0.01 0.01 0.07 0.06	5 7 12 7 10	290 390 1020 880 800	12 8 20 8 4	<pre>< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2</pre>	3 1 3 7 6	7 7 11 20 24	0.20 0.03 0.08 0.60 0.59	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	93 54 55 107 113	< 10 < 10 < 10 < 10 < 10 < 10	34 36 112 50 56	
8+00N-7+25W 8+00N-7+50W 8+00N-7+75W 8+00N-8+00W 8+00N-8+25W	201 229 201 229 201 229 201 229 201 229 201 229 201 229	< 1 3 1 2 4	0.01 0.01 0.07 0.04 0.03	6 9 12 17 7	370 770 1030 960 850	10 20 8 12 14	< 2 < 2 < 2 < 2 < 2 < 2 < 2	3 2 7 6 4	7 8 25 17 5	0.15 0.21 0.72 0.49 0.27	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	81 71 109 95 61	< 10 < 10 < 10 < 10 < 10 < 10	28 46 50 70 62	
8+00N-8+50W 8+00N-8+75W 8+00N-9+00W 8+00N-9+25W 8+00N-9+50W	201 229 201 229 201 229 201 229 201 229 201 229 201 229	2 12 1 < 1 < 1 < 1	0.07 0.02 0.02 0.04 0.01	13 4 6 9 4	940 570 790 690 560	2 12 8 2 4	<pre>< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2</pre>	10 4 7 2	21 9 20 15 27	0.83 0.38 0.43 0.62 0.15	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	126 78 105 112 96	< 10 < 10 < 10 < 10 < 10 < 10	46 44 28 42 22	
8+00N-9+75W 8+00N-10+00W 8+00N-10+25W 8+00N-10+50W	201 229 201 229 201 229 201 229 201 229	1 < 1 2 < 1	0.02 0.03 0.01 0.06	7 33 10 6	330 410 380 630	8 4 4 6	< 2 < 2 < 2 < 2 < 2	3 4 4 5	16 16 7 28	0.52 0.30 0.29 0.37	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	123 106 111 111	< 10 < 10 < 10 < 10 < 10	20 50 32 40	
																I JB DO

CERTIFICATION: StartBuchler

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

	To:	GR/	ANG	ES	INC
--	-----	-----	-----	----	-----

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

Comments: ATTN: V.P. VAN DAMME CC; WARREN BATES

134.043.009

A9427173

с	ERTIF	ICATE A9427173			ANALYTICAL F	ROCEDURES		
(BSJ) - G Project: P.O. # :	RANGES	0	CHEMEX	NUMBER		METHOD		UPPER LIMIT
. •mples		ed to our lab in Vancouver, BC. printed on 3-OCT-94.	100 2118 2119 2120 2121 2122 2123 2124	245 245 245 245 245 245 245 245 245	Au ppb: Fuse 10 g sample Ag ppm: 32 element, soil & rock Al %: 32 element, soil & rock As ppm: 32 element, soil & rock Ba ppm: 32 element, soil & rock Bi ppm: 32 element, soil & rock Bi ppm: 32 element, soil & rock Ca %: 32 element, soil & rock	FA - AAS ICP - AES ICP - AES ICP - AES ICP - AES ICP - AES ICP - AES	5 0.2 0.01 2 10 0.5 2 0.01	10000 200 15.00 10000 10000 10000 15.00
	SAM	PLE PREPARATION	2125	245	Cd ppm: 32 element, soil & rock Co ppm: 32 element, soil & rock Co ppm: 32 element, soil & rock	ICP-AES ICP-AES ICP-AES	0.5	100.0
CHEMEX	NUMBER	DESCRIPTION	2127 2128 2150 2130 2131	245 245 245 245 245 245	Cr ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Fe %: 32 element, soil & rock Ga ppm: 32 element, soil & rock Hg ppm: 32 element, soil & rock	ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS	1 1 0.01 10 1	10000 10000 15.00 10000 10000
205 226 229 238	245 245 245 245 245	Geochem ring to approx 150 mesh 0-5 lb crush and split ICP - AQ Digestion charge Nitric-aqua-regia digestion	2132 2151 2134 2135 2136 2137 2138 2139 2140 2141 2142	245 245 245 245 245 245 245 245 245 245	K %: 32 element, soil & rock La ppm: 32 element, soil & rock Mg %: 32 element, soil & rock Mn ppm: 32 element, soil & rock Mn ppm: 32 element, soil & rock Na %: 32 element, soil & rock Ni ppm: 32 element, soil & rock Pb ppm: 32 element, soil & rock Pb ppm: 32 element, soil & rock Sb ppm: 32 element, soil & rock Sc ppm: 32 elements, soil & rock	ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	0.01 10 0.01 5 1 0.01 1 10 2 2 1	10.00 10000 15.00 10000 5.00 10000 10000 10000 10000 10000
trace m Elements digestio	etals : for wing for a for a for a for a for a for a for a formation of the second sec	ICP package is suitable for in soil and rock samples. hich the nitric-aqua regia ssibly incomplete are: Al, Ga, K, La, Mg, Na, Sr, Ti,	2143 2144 2145 2146 2147 2148 2149 6	245 245 245 245 245 245 245 245 245 245	Sr ppm: 32 element, soil & rock Ti %: 32 element, soil & rock Ti ppm: 32 element, soil & rock U ppm: 32 element, soil & rock W ppm: 32 element, soil & rock M ppm: 32 element, soil & rock Zn ppm: 32 element, soil & rock Ag ppm: HN03-aqua regia digest	ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES AAS-BKGD CORR	1 0.01 10 10 1 10 2 0.2	10000 5.00 10000 10000 10000 10000 10000 100.0

>

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GHANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8 raye Number ...-A Total Pages :7 Certificate Date: 03-OCT-94 Invoice No. : I9427173 P.O. Number : Account :BSJ

Rack UNUK #134

Project : UNUK #134 Comments: ATTN: V.P. VAN DAMME CC: WARREN BATES

CERTIFICATE OF ANALYSIS

134.043.009

A9427173

											A IICI				1313		A942/	173		
SAMPLE	PREP CODE	Au ppb FA+AA	Ag Ppm	A1 %	As ppm	Ba ppm	Ве ррш	Bi ppm	Ca.	Cđ ppm	Со руш	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
19401 22760 22761 22762 22763	205 226 205 226 205 226 205 226 205 226 205 226	85 45 < 5 < 5 < 5	1.0 1.6 0.9 < 0.2 < 0.2	2.77 1.43 2.94 0.64 1.68	232 156 106 54 2	120 130 30 90 380	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.23 0.24 0.44 0.49 0.89	< 0.5 < 0.5 0.5 < 0.5 < 0.5	5 4 9 7 13	34 62 15 114 31	12 43 23 6 4	5.33 4.85 8.45 3.76 2.88	20 10 10 < 10 10	< 1 < 1 < 1 < 1 < 1	0.44 0.63 0.47 0.22 0.34	10 < 10 < 10 < 10 10	1.63 0.28 1.56 0.06 0.23	415 380 215 140 560
22764 22765 22766 22767 22768	205 226 205 226 205 226 205 226 205 226 205 226	< 5 65 < 5 55 45	< 0.2 7.1 1.0 3.7 2,8	3.78 0.36 2.09 0.63 0.30	2 598 92 7440 668	210 20 130 30 310	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	1.75 0.10 0.52 0.26 0.01	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	14 9 14 9 < 1	9 74 21 76 153	13 10 10 11 2	6.53 5.09 4.09 3.48 1.68	20 < 10 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.11 0.33 0.57 0.47 0.48	10 10 20 10 < 10	1.85 0.03 0.58 0.03 0.01	860 15 850 15 55
22769 22770 22771 22772 22773	205 226 205 226 205 226 205 226 205 226 205 226 205 226	30 5 10 15 < 5	3.1 0.3 0.2 1.1 0.2	0.61 2.28 1.17 0.56 3.47	820 34 6 614 2	460 120 180 480 220	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.02 1.24 0.03 0.01 1.55	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 11 2 < 1 10	45 23 68 95 18	6 42 12 12 4	2.07 6.64 2.89 1.74 7.09	< 10 20 < 10 < 10 20	< 1 < 1 < 1 < 1 < 1	0.77 0.20 0.16 0.45 0.58	20 10 < 10 20 10	0.03 1.02 0.54 0.02 1.05	20 420 60 15 1300
22774 22775 22776 22777 22778	205 226 205 226 205 226 205 226 205 226 205 226	< 5 10 < 5 < 5 5	0.2 < 0.2 0.2 < 0.2 < 0.2 0.7	0.62 4.88 1.15 2.44 1.06	80 2 4 < 2 34	160 20 290 1020 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.11 2.64 0.59 0.55 0.47	< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	3 34 2 15 16	59 255 65 18 69	10 76 65 20	3.83 7.51 3.00 5.09 3.75	< 10 20 10 10 < 10	< 1 < 1 < 1 < 1 < 1	0.16 0.04 0.29 0.07 0.41	< 10 < 10 10 < 10 10	0.12 3.95 0.20 1.46 0.30	90 1195 255 1110 115
294001 294002 294003 294004 294005	205 226 205 226 205 226 205 226 205 226 205 226	< 5 < 5 < 5 < 5 < 5 < 5 < 5	< 0.2 2.8 1.0 1.4 < 0.2	3.84 6.20 1.20 1.65 0.94	< 2 4 26 14 24	750 2000 290 380 270	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	1.85 1.01 0.01 0.03 0.01	< 0.5 < 0.5 < 0.5 0.5 < 0.5	26 38 1 4 1	53 441 48 44 73	78 53 10 33 6	5.34 9.30 1.93 2.42 1.24	20 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.01 < 0.01 0.27 0.34 0.21	< 10 < 10 < 10 < 10 < 10 < 10	2.24 5.29 0.55 0.47 0.37	680 1465 155 500 135
294006 294007 294008 294009 294010	205 226 205 226 205 226 205 226 205 226 205 226	< 5 < 5 < 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 0.2 0.2	3.88 3.18 2.45 2.23 2.13	< 2 < 2 < 2 < 2 < 2 16		< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.90 3.10 0.41 2.88 1.64	< 0.5 < 0.5 < 0.5 0.5 < 0.5 < 0.5	22 12 19 22 13	28 15 29 29 15	100 50 4 204 4	6.38 4.80 6.41 3.75 4.06	20 < 10 10 < 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.12 0.24 0.38 0.25 0.22	10 < 10 10 < 10 < 10	2.92 1.35 0.77 1.03 1.09	1255 955 1315 1445 1155
294011 294012 294013 294014 294014 294015	205 226 205 226 205 226 205 226 205 226 205 226	< 5 < 5 < 5 < 5 < 5 < 5 < 5	0.2 0.2 0.2 < 0.2 < 0.2 < 0.2	2.76 1.45 2.39 4.09 2.49	6 26 20 4 < 2	140 150 170	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1.15 0.24 0.37 3.63 1.50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	29 10 17 18 15	48 28 16 69 31	8 6 29 20 68	7.30 2.68 5.01 5.33 4.00	20 10 10 30 20	< 1 < 1 < 1 < 1 < 1 < 1	0.29 0.30 0.28 0.04 0.44	10 10 10 50 20	1.40 0.41 0.69 2.22 1.24	810 710 850 830 1080
294016 294017 294018 294019 294020	205 226 205 226 205 226 205 226 205 226 205 226	< 5 < 5 < 5 < 5 75	< 0.2 < 0.2 < 0.2 0.2 1.6	1.91 2.24 2.43 0.28 2.86	< 2 16 2 142 30	150 80 110	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.48 1.22 2.52 0.03 0.52	0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	10 15 25 < 1 9	20 44 29 62 41	21 92 133 4 57	3.62 5.14 5.88 1.34 4.94	20 10 20 < 10 10	< 1 < 1 < 1 2 < 1	0.09 0.02 0.02 0.31 0.56	10 < 10 < 10 20 10	1.46 1.82 2.03 0.03 0.84	730 1040 1415 30 280

tart Buchler CERTIFICATION:_

•

(

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brookeback Ave. North Vancouver

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8 Page Number :1-B Total Pages :7 Certificate Date: 03-OCT-94 Invoice No. :19427173 P.O. Number : Account :BSJ

								_	С	ERTIF	ICATE	OF	ANAL	YSIS A9427173	
SAMPLE	PREP CODE	Мо ррт	Na %	Ni ppm	P P pm	Pb ppm	Sp Bo	Sc ррш	Sr Ti ppm %	T1 ppm	U ppm	V PPm	W Dpm	Zn Ag ppm ppm Aqua R	
19401 22760 22761 22762 22763	205 226 205 226 205 226 205 226 205 226	< 1 12 25 6 < 1	0.01 0.01 0.03 0.07 0.07	4 4 2 4 2	1410 1400 2270 1460 2270	10 68 4 2 2	< 2 < 2 2 2 < 2	8 4 7 2 8	$\begin{array}{r} 12 < 0.01 \\ 15 < 0.01 \\ 17 < 0.01 \\ 19 < 0.01 \\ 34 < 0.01 \end{array}$	< 10 < 10 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	65 5 38 9 32	< 10 < 10 < 10 < 10 < 10 < 10	66 1.2 110 1.7 138 1.0 18 0.2 174 0.2	
22764 22765 22766 22767 22768	205 226 205 226 205 226 205 226 205 226 205 226	< 1 12 1 2 3	0.05 0.01 0.01 0.01 0.01	2 1 4 2 2	2300 470 1830 1700 440	6 8 4 16 20	2 22 8 126 6	11 2 5 3 2	70 < 0.01 6 < 0.01 15 < 0.01 14 < 0.01 11 < 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	81 7 27 11 14	< 10 < 10 < 10 < 10 < 10 < 10	130 < 0.2 36 7.5 102 1.0 64 3.9 2 3.0	
22769 22770 22771 22772 22773	205 226 205 226 205 226 205 226 205 226 205 226	3 4 98 < 1	0.01 0.08 0.09 0.01 0.01	< 1 1 1 2	900 2510 410 260 2100	20 6 2 34 4	12 < 2 < 2 2 2 < 2	2 8 4 < 1 8	$\begin{array}{c} 13 < 0.01 \\ 43 < 0.01 \\ 12 < 0.01 \\ 6 < 0.01 \\ 57 0.01 \end{array}$	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	10 68 18 < 1 50	< 10 < 10 < 10 < 10 < 10 < 10	8 3.1 78 0.3 32 0.3 10 1.5 142 0.2	
22774 22775 22776 22777 22778	205 226 205 226 205 226 205 226 205 226 205 226	4 < 1 < 1 < 1 1	0.10 0.03 0.04 0.12 0.05	1 53 1 3 4	2140 560 1980 1470 2150	8 < 2 2 < 2 6	< 2 < 2 < 2 < 2 < 2 < 2 2	4 26 4 11 5	20 < 0.01 68 0.01 32 < 0.01 72 < 0.01 20 < 0.01	< 10 20 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	28 265 24 163 35	< 10 < 10 < 10 < 10 < 10 < 10	26 0.2 110 < 0.2 80 0.3 80 < 0.2 30 0.9	
294001 294002 294003 294004 294005	205 226 205 226 205 226 205 226 205 226 205 226 205 226	< 1 < 1 2 2	0.10 0.02 0.04 0.03 0.04	41 67 < 1 13 1	500 490 230 250 220	< 2 < 2 4 10 12	< 2 < 2 < 2 < 2 < 2 < 2	4 23 3 3 3	28 0.39 16 0.52 8 < 0.01 10 < 0.01 10 < 0.01	< 10 30 < 10 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	136 275 40 44 53	< 10 < 10 < 10 < 10 < 10 < 10	82 0.2 130 < 0.2 20 2.9 216 1.0 24 1.4	
294006 294007 294008 294009 294010	205 226 205 226 205 226 205 226 205 226 205 226 205 226	< 2 < 1 < 1 < 1 < 1 < 1	0.04 0.05 0.07 0.06 0.07	14 1 7 4	1470 1340 1880 1380 1530	2 < 2 < 2 < 2 < 2 < 2 < 2	< 2 < 2 < 2 < 2 < 2 2	18 5 9 5 4	25 0.33 89 < 0.01 23 0.02 91 < 0.01 49 < 0.01	10 < 10 < 10 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	169 49 90 47 59	< 10 < 10 < 10 < 10 < 10 < 10	110 < 0.2 94 < 0.2 98 < 0.2 116 0.2 92 < 0.2	
294011 294012 294013 294014 294014 294015	205 226 205 226 205 226 205 226 205 226 205 226	< 1 < 1 < 1 < 1 < 1 < 1	0.05 0.05 0.05 0.07 0.07	20 1 4 28 10	2460 1010 1580 2540 1180	2 12 < 2 10 8	< 2 < 2 < 2 2 2 < 2	8 2 10 11 10	38 0.03 13 < 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	133 18 62 148 142	< 10 < 10 < 10 < 10 < 10 < 10	132 < 0.2 60 0.2 72 < 0.2 98 < 0.2 76 < 0.2	
294016 294017 294018 294019 294020	205 226 205 226 205 226 205 226 205 226 205 226	< 1 < 1 < 1 2 5	0.09 0.09 0.08 0.03 0.02	2 11 12 1 1	800 670 600 40 2040	10 6 < 2 18 58	< 2 < 2 < 2 6 2	7 21 28 < 1 8	55 < 0.01 $34 0.30$ $97 0.01$ $5 < 0.01$ $47 < 0.01$	< 10 < 10 < 10 < 10 < 10 10	< 10 < 10 < 10 < 10 < 10 < 10	85 157 242 4 85	< 10 < 10 < 10 < 10 < 10 < 10	70 < 0.2 124 < 0.2 116 < 0.2 6 < 0.2 80 1.7	
												, c	ERTIFIC	ATION: Hant Bichlen	l

f ...

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8 Page Number .2-A Total Pages :7 Certificate Date: 03-OCT-94 Invoice No. : 19427173 P.O. Number : Account : BSJ

			CE	RTIFI	CATE	OF A	NAL	YSIS		A9427	173		
ippb Ag Al RA+AA ppm %	As Ba Be Bi ppm ppm ppm ppm	Ca *	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	<i>Hg</i> ppm	K %	La ppm	Mg %	Mn ppm
20 < 0.2 1.84		2.53	< 0.5	15	39	272	3.77	10	< 1	0.40	10	0.95	1045
< 5 < 0.2 2.92		2.43	< 0.5	26	233	47	5.01	10	< 1	0.06	10	4.39	755
< 5 < 0.2 2.68 < 5 0.2 0.32		3.44	< 0.5 < 0.5	26 < 1	68 139	110 4	6.20 1.39	20 < 10	< 1 < 1	0.14 0.16	< 10 20	2.84 0.05	835 25
< 5 1.0 2.89		1.77	< 0.5	14	11	17	5.16	< 10	< 1	0.15	10	1.90	1565
< 5 2.2 1.65		3.83	0.5	14	31	144	3.99	10	< 1	0.36	< 10	1.24	1060
< 5 < 0.2 2.29		1.97	< 0.5	12	16	25	4.35	10	< 1	0.23	10	1.23	1125
< 5 < 0.2 2.75 < 5 < 0.2 1.39		2.82	< 0.5	16 21	50 26	54 258	5.58 5.02	10 10	< 1	0.17 0.39	10 30	2.41 0.35	770 1665
< 5 < 0.2 1.39 10 < 0.2 0.3B		0.13	< 0.5	1	29	7	1.08	< 10	< 1 2	0.33	30	0.10	55
< 5 < 0.2 0.31		0.03	< 0.5	1	74	8	0.96	< 10	1	0.28	30	0.02	50
< 5 0.2 2.83	•••••••••••••••••••••••••••••••••••••••	1.30	3.0	14	13	21	4.84	10	1	0.42	10	1.68	1530
< 5 < 0.2 2.67 < 5 < 0.2 1.34		3.16 0.88	< 0.5 < 0.5	11 B	5 16	13 26	4.09 3.25	30 30	< 1 < 1	0.45 0.22	10 20	1.38 0.69	1370 970
< 5 < 0.2 3.05		2.39	< 0.5	23	23	83	5.89	20	< 1	0.26	10	2.07	1135
< 5 < 0.2 0.27		0.02	< 0.5	< 1	43	3	0.65	< 10	1	0.34	20	0.02	25
< 5 < 0.2 0.35		0.10	< 0.5	1	60	7	0.90	< 10	6	0.33	20	0.09	70
< 5 < 0.2 0.24 95 < 0.2 2.45	•••••••••••••••••••••••••••••••••••••••	0.11 0.36	< 0.5 0.5	< 1 18	71 25	11 22	0.92 3.57	< 10 10	< 1 < 1	0.27 0.60	20 10	0.01 0.74	10 825
< 5 < 0.2 2.45		0.74	< 0.5	14	41	77	4.49	10	< 1	0.40	10	1.08	335
< 5 < 0.2 1.97		0.44	< 0.5	11	33	56	3.63	10	< 1	0.40	10	0.75	305
< 5 < 0.2 2.26 < 5 0.2 1.63		2.10	< 0.5 < 0.5	18 24	54 71	119 163	3.86	20 20	< 1	0.24	10	1.51	760
< 5 0.2 1.63 < 5 < 0.2 3.02		2.97	< 0.5	27	64	89	4,96 5,88	20	< 1 1	0.20	10 10	1.88 2.43	1215 1085
5 0.4 0.77		0.04	< 0.5	3	32	28	3.07	< 10	< 1	0.34	< 10	0.06	135
< 5 < 0.2 0.41		0.14	< 0.5	2	32	6	1.26	10	4	0.36	20	0.11	65
< 5 < 0.2 0.24 < 5 < 0.2 0.63		0.01 0.07	< 0.5 < 0.5	< 1 2	90 32	4	1.18 1.09	10 10	8 < 1	0.24 0.28	30 30	0.02	20 270
< 5 0.4 2.58		2.50	< 0.5	13	15	14	4.42	20	< 1	0.31	10	1.43	1230
< 5 < 0.2 2.67		2.72	0.5	11	6	9	4.70	30	< 1	0.18	10	1.40	1435
< 5 0.2 2.40		1.29	< 0.5	18	48	74	4.27	20	< 1	0.40	10	1.11	1015
5 0.4 2.63		1.14	0.5	30	50	46	6.27	30	< 1	0.81	10	1.38	840
< 5 < 0.2 1.16		0.86	< 0.5	15	9 37	39	5.08	10	< 1	0.46	20	0.50	1085
< 5 < 0.2 0.44 < 5 < 0.2 0.51		0.02	< 0.5 < 0,5	< 1 < 1	19	2	0.98 1.30	10 10	1 < 1	0.31 0.33	30 30	0.05	60 60
< 5 < 0.2 2.95		3.03	< 0.5	16	S	13	6.18	20	< 1	0.41	10	1.22	1220
< 5 < 0.2 3.30		1.72	< 0.5	21	59	18	5.50	30	< 1	0.19	10	2.55	1250
				-		-			-				750
< 5 < 0.2 2.50 < 5 < 0.2 2.61		1.77	0.5 < 0.5	12 15	15 46	22 114	4.47	20	< 1 < 1	0.14 0.31	20 10	1.48	1200 740
< S < 0.2 < 5 < 0.2 < 5 < 0.2	1.33 2.50 2.61	2.50 < 2 240 < 0.5 < 2	2.50 < 2 240 < 0.5 < 2 1.22	2.50 < 2 240 < 0.5 < 2 1.22 0.5	2.50 < 2 240 < 0.5 < 2 1.22 0.5 12	2.50 < 2 240 < 0.5 < 2 1.22 0.5 12 15	2.50 < 2 240 < 0.5 < 2 1.22 0.5 12 15 22	2.50 < 2 240 < 0.5 < 2 1.22 0.5 12 15 22 4.47	2.50 < 2 240 < 0.5 < 2 1.22 0.5 12 15 22 4.47 20	2.50 < 2 240 < 0.5 < 2 1.22 0.5 12 15 22 4.47 20 < 1	2.50 < 2 240 < 0.5 < 2 1.22 0.5 12 15 22 4.47 20 < 1 0.14	2.50 < 2	2.50 < 2

CERTIFICATION: Jant Buchlan

(

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

Page Number :2-B Total Pages :7 Certificate Date: 03-OCT-94 Invoice No. : 19427173 P.O. Number :BSJ Account

294022 294023 294023 294024 294025 294025 294026 294027	205 205 205 205 205 205 205 205	DE 226 226 226 226 226 226 226 226	Mo ppm 2 < 1 < 1 2 < 1 2 < 1	Na % 0.04 0.09 0.02 0.16 0.08	Ni ppm 14 130 22 3	P PPm 1450 920 2840	РЬ ррт 20 4	Sb ppm < 2	Sc ppm	Sr ppm	Tİ %	T1	σ	v	W	Zn	Ag ppm	
294022 294023 294024 294025 194026 194026	205 205 205 205 205 205 205 205	226 226 226 226 226 226 226	< 1 < 1 2 < 1	0.09 0.02 0.16	130 22	920		< 2				ppm	ppm	b du	ррш	ррш	Aqua R	
294023 294024 294025 194026 194027	205 205 205 205 205 205 205	226 226 226 226 226 226	< 1 2 < 1	0.02 0.16	22		4		8	208 <	0.01	10	< 10	134	< 10	92	< 0.2	
294024 294025 294026 194027	205 205 205 205 205	226 226 226 226 226	< 1	0.16		2840		< 2	13	171	0.15	80	< 10	144	< 10	86	< 0.2	
294025 194026 194027	205 205 205 205	226 226 226	< 1		3		2	< 2	23		0.01	50	< 10	213	< 10	74	< 0.2	
94027	205 205	226	1		2	100 1520	10 2	< 2	< 1 8	15 < 188	0.01	< 10 30	< 10 < 10	4 119	< 10 < 10	22 118	0.3 1.0	
94027	205 205	226		0.04	12	1960	10	< 2	10	227 <	0.01	20	< 10	100	< 10	90	2.4	
94028		226	< 1	0.05	2	990	< 2	< 2	ě	113 <		20	< 10	107	< 10	86	< 0.2	
	305	440	< 1	0.04	16	2160	4	< 2	18	254 <	0.01	< 10	< 10	178	< 10	74	< 0.2	
			< 1	0.02	14	3090	10	< 2	27	297 <		< 10	< 10	247	< 10	B6	< 0.2	
94030	205	226	3	0.04	< 1	150	12	4	1	15 <	0.01	< 10	< 10	11	< 10	8	< 0.2	
	205		1	0.09	1	70	12	2	1		0.01	< 10	< 10	6	< 10	18	< 0.2	
			< 1	0.05	7	1470	22	6	5		0.01	< 10	< 10	80	< 10	798	0.2	
			< 1	0.04	< 1	1750	< 2	2	4	53	0.24	< 10	< 10	53	< 10	116	< 0.2	
	205		< 1	0.07	3	560	18	< 2	5	110	0.20	< 10	< 10	250	< 10	102	< 0.2	
94035	205	226	< 1	0.03	12	2260	4	< 2	16		0.01	< 10	< 10	201	< 10	118	< 0.2	
		226	2	0.02	< 1	70	12	4	< 1		0.01	< 10	< 10	4	< 10	6	< 0.2	
		226	10	0.03	4	250	18	В	1		0.01	< 10	< 10	10	< 10	10	< 0.2	
		226	2	0.04	1	90	6	2	< 1		0.01	< 10	< 10	1	< 10	26	< 0.2	
	205 205	226 226	< 1 < 1	0.03	15 21	890 1240	14 12	< 2	6 8		0.01 0.01	< 10 < 10	< 10 < 10	42 63	< 10 10	162 192	0.2 0.2	
94041 2	205	226	< 1	0.05	18	1020	6	< 2	6	32 <	0.01	< 10	< 10	43	< 10	130	0.2	
		226	< 1	0.04	33	1180	14	2	11	47	0.25	< 10	< 10	95	10	140	< 0.2	
94043 2	205	226	< 1	0.07	21	1370	< 2	< 2	16	95	0.17	< 10	< 10	183	10	84	0.2	
	205		< 1	0.03	26	2390	- 4	4	20	116	0.05	< 10	< 10	224	20	80	< 0.2	
94045 2	205	226	3	0.03	12	680	8	< 2	6	19 <	0.01	< 10	< 10	32	< 10	92	0.5	
	205		2	0.04	1	180	16	4	1	14 <		< 10	< 10	11	< 10	6	< 0.2	
	205		1	0.07	1	140	20	6	1		0.01	< 10	< 10	2	< 10	88	< 0.2	
	205		2	0.05	2	220	16	< 2	1		0.01	< 10	< 10	2	< 10	70	< 0.2	
	205 205	226 226	< 1 < 1	0.04 0.08	6 < 1	1690 1920	< 2	< 2 < 2	4		0.01 0.15	< 10 < 10	< 10 < 10	50 72	10 10	108 122	0.6 < 0.2	
4051 2	205	226	< 1	0.03	19	1740	4	< 2	11	72	0.13	< 10	< 10	97	10	98	< 0.2	
		226	< 1	0.02	25	2480	10	< 2	23		0.19	< 10	< 10	169	10	96	0.4	
4053 2	205	226	< 1	0.04	4	1080	6	< 2	8	57 <	0.01	< 10	< 10	60	10	82	< 0.2	
		226	2	0.01	< 1	170	12	6	1		0.01	< 10	< 10	3	< 10	6	< 0.2	
4055 2	205	226	3	0.03	< 1	110	4	< 2	1	4 <	0.01	< 10	< 10	1	< 10	12	< 0.2	
	205 2		< 1	0.03	1	1770	< 2	< 2	8		0.01	< 10	< 10	79	20	100	< 0.2	
		226	< 1	0.03	27	2510	< 2	< 2	10		0.21	< 10	< 10	120	10	94	< 0.2	
		226	< 1	0.06	3	610	8	< 2	5		0.14	< 10	< 10	64	< 10	60	< 0.2	
		226	< 1 < 1	0.07 0.06	2 25	1150 1430	6 10	< 2	8 13		0.28	< 10 < 10	< 10 < 10	98 119	10 10	116 104	< 0.2 < 0.2	
2000	205 2	226	< I	0.00	43	1430	10	< 4	13	•• /		10	< 10	113	10	104	₹ 0.2	

CERTIFICATION: Hart Buchler

!

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8 Page Number : 3-A Total Pages :7 Certificate Date: 03-OCT-94 Invoice No. : 19427173 P.O. Number : Account : BSJ

Project : UNUK #134 Comments: ATTN: V.P. VAN DAMME CC: WARREN BATES

										CE	RTIFI	CATE	OF A	NAL	YSIS		4942 7	173		
SAMPLE	PREP CODE	Au ppl FA+A	-	-	ya Ya	Ba ppm	Ba	Bi	Ca	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
94061	205 22			2.80	16	120	1.5	< 2	2.40	< 0.5	21	43	61	5.18	< 10	< 1	0.55	< 10	1.81	955
94062	205 22			3.15	22	270	1.0	< 2	2.66	< 0.5	14	5B 47	74	5.70 0.47	< 10 < 10	< 1 < 1	0.29 0.37	10 20	2.11 0.01	795 30
94063 94064	205 22 205 22			0.37 0.96	14 36	220 630	< 0.5 0.5	< 2 < 2	5.07	< 0.5 < 0.5	< 1 14	19	30	4.10	< 10	< 1	0.54	< 10	0.70	1120
94065	205 22			3.80	10	520	< 0.5	< 2	2.75	< 0.5	26	157	43	5.31	< 10	< 1	0.15	10	3.71	1500
94066	205 22			1.51	10	100	< 0.5	< 2	0.22	< 0.5	7	26	3	2.81	< 10	1	0.20	10	0.83	735
94067	205 22			3.09 2.65	8	70 130	< 0.5 < 0.5	< 2 < 2	2.37 0.65	< 0.5	25 15	27 14	168 121	6.44 5.46	< 10 < 10	< 1 1	0.08 0.16	< 10 10	2.26 1.30	1410 775
94068	205 22			0.84	6	390	1.5	22	0.01	< 0.5	< 1	\$1		2.28	< 10	< 1	0.45	30	0.09	160
94070	205 22			0.61	8	140	0.5	< 2	0.49	< 0.5	< 1	99	3	1.20	< 10	< 1	0.30	20	0.14	495
94071	205 22		0.2	0.66	42	60	< 0.5	< 2	0.02	< 0.5	1	30	9	1.57	< 10	< 1	0.30	< 10	0.02	60
94072	205 22			2.47	26	250	0.5	< 2	3.14	< 0.5	12	35	28	3.32	< 10	1	0.43	10	2.45	980 755
94073	205 22 205 22			1.14 2.11	< 2 6	580 210	< 0.5 < 0.5	< 2 < 2	0.64	< 0.5 < 0.5	57	33	< 1 13	2.53 4.08	< 10 < 10	< 1 1	0.38	10 10	0.29 1.07	1510
94075	205 22			1.06	216	160	< 0.5	< 2	0.14	< 0.5	2	32	49	3.38	< 10	< î	0.38	20	0.34	185
94076	205 22			2.74	24	150	0.5	< 2	3.92	< 0.5	16	28	100	4.50	< 10	1	0.32	< 10	1.45	640
94077	205 22			3.43	14	120	< 0.5	2	0.71	< 0.5	23	46	145 64	6.97 4.57	< 10	< 1	0.11	10	1.30	805 865
94001	205 22			2.85	34 >10000	130 60	< 0.5 < 0.5	< 2 < 2	1.57	< 0.5 < 0.5	17 2	34 207	33	4.26	< 10 < 10	< 1 < 1	0.37 0.19	< 10 < 10	1.80	100
94003	205 22			1.75	108	150	< 0.5	< 2	0.25	< 0.5	4	19	52	2.79	< 10	< 1	0.49	< 10	0.85	325
94004	205 22			2.68	66	190	< 0.5	< 2	0.65	1.0	13	29	20	5.55	< 10	< 1	0.48	< 10	1.12	590
94005	205 22			2.61	30	90	< 0.5	< 2 < 2	2.78 0.55	< 0.5 < 0.5	19 15	19 24	23 15	5.90 5.43	< 10 < 10	1 < 1	0.28	< 10 10	1.97 0.95	745 195
94006 94007	205 22			2.33 2.76	28 20	140 120	< 0.5 < 0.5	< 2	8.63	< 0.5	15	17	22	4.82	< 10	< 1 1	0.10	< 10	2.38	2020
94008	205 22			0.49	38	210	< 0.5	< 2	0.10	< 0.5	< 1	87	2	2.46	< 10	< 1	0.23	< 10	0.01	25
94009	205 22			0.99	24	310	< 0.5	< 2	0.33	< 0.5	3	38	7	2.09	< 10	< 1	0.32	10	0.08	105
94010	205 22	-		1.62	28	250	< 0.5	< 2	0.40	< 0.5	9	22 23	11 11	4.94	< 10 < 10	< 1	0.26	10 < 10	0.53 0.36	140 140
94011 94012	205 22			1.65	18 8	90 250	< 0.5 0.5	< 2 < 2	0.47 3.15	< 0.5 < 0.5	16 8	18	19	5.59	< 10	< 1 < 1	0.27 0.20	10	1.32	960
94013	205 22			2.66	60	100	< 0.5	< 2	1.24	< 0.5	7	32	9	6.00	< 10	< 1	0.07	10	1.34	510
94014	205 22			2.77	8	250	< 0.5	< 2	2.55	< 0.5	9	18	13	5.58	< 10	< 1	0.17	10	0.62	1840
94015	205 22			1.51	60	130	< 0.5	< 2	0.51	< 0.5	9	83	13	4.14	< 10	< 1	0.10	< 10	0.99	140
94016 94017	205 22		=	1.43 2.70	12 38	200 110	< 0.5 < 0.5	< 2 < 2	0.04	< 0.5 < 0.5	27	15 32	19 15	2.19 6.76	< 10 < 10	< 1 < 1	0.20 0.17	10 < 10	1.10 1.82	115 260
94018	205 22			1.34	8	120	< 0.5	< 2	0.70	< 0.5	6	136	6	3.31	< 10	< 1	0.07	< 10	0.28	300
94019	205 22	5 < 5	< 0.2	1.53	4	140	< 0.5	< 2	1.45	< 0.5	3	80	7	3.79	< 10	< 1	0.12	< 10	0.40	630
94020	205 22			3.50	4	110	< 0.5	< 2	2.09	< 0.5	16	16	19	6.59	< 10	1	0.03	10	1.46	1125
94021	205 22			3.27	40	300	1.5	< 2	0.09	3.5	6	33	365	6.55	< 10	< 1	0.23	50	0.48	110
94022 94023	205 22			1.55	12 8	180 230	0.5	< 2	0.07	< 0.5 < 0.5	< 1 18	89 11	24 20	1.16 5.55	< 10 < 10	1 < 1	0.23	30 10	0.97 1.58	125 1125
																11	J.B		0	

CERTIFICATION: Structor Suchlas

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8 Page Number :3-B Total Pages :7 Certificate Date: 03-OCT-94 Invoice No. : 19427173 P.O. Number : Account :BSJ

Project : UNUK #134 Comments: ATTN: V.P. VAN DAMME CC: WARREN BATES

CERTIFICATE OF ANALYSIS A9427173 PREP NÍ Pb Na ₽ Sb Sc sr Ti 71 V W Mo υ Zn Ag ppm SAMPLE CODE ۲ ppm * pp≞ ppm Aqua R DDE ppm ppm ppm ppm ppm DDE ppm ppm 294061 205 226 0.02 19 1950 < 2 < 2 19 76 0.28 < 10 < 10 192 < 10 64 < 0.2 < 1 294062 205 226 0.04 2290 < 2 14 277 < 0.01 < 10 < 10 151 < 10 90 < 0.2 17 < 2 < 1 294063 205 226 0.04 60 < 2 6 < 0.01 < 10 < 10 1 < 10 32 < 0.2 6 < 1 4 1 0.01 87 < 0.01 < 10 < 10 21 < 10 54 < 0.2 294064 205 226 1090 Ŕ 11 < 1 8 4 294065 205 226 0.04 91 1940 < 2 13 89 < 0.01 < 10 < 10 130 < 10 112 < 0.2 < 2 < 1 294066 205 226 < 1 0.08 2 720 6 < 2 2 12 < 0.01 < 10 < 10 41 < 10 66 < 0.2 294067 205 226 < 1 0.07 11 930 < 2 < 2 22 59 < 0.01 < 10 < 10 269 < 10 78 < 0.2 294068 205 226 1580 < 2 < 2 13 27 < 0.01 < 10 < 10 105 < 10 100 < 0.2 < 1 0.08 4 294069 205 226 0.03 80 10 < 2 1 11 < 0.01 < 10 < 10 < 1 < 10 90 < 0.2 1 1 205 226 1 < 10 294070 1 0.07 2 60 4 < 2 41 < 0.01 < 10 < 10 < 1 100 < 0.2 2 1 < 0.01 < 10 40 294071 205 226 0.01 1 150 12 < 1 < 10 2 < 10 0.3 1 52 205 226 970 6 < 2 54 < 0.01 < 10 < 10 < 10 52 < 0.2 294072 1 0.04 16 6 < 2 24 294073 205 226 < 1 0.07 2 890 < 2 2 39 < 0.01< 10 < 10 < 10 60 < 0.2 294074 205 226 1 0.08 1 1410 < 2 < 2 6 59 < 0.01< 10 < 10 65 < 10 98 < 0.2 294075 205 226 3 0.01 6 1220 210 10 2 13 < 0.01 < 10 < 10 18 < 10 46 34.8 24 1430 14 2 4 245 < 0.01< 10 < 10 50 < 10 112 0.2 205 226 294076 < 1 0.03 205 226 0.01 14 1990 < 2 < 2 8 25 < 0.01< 10 < 10 89 < 10 104 < 0.2 294077 < 1 1150 < 2 394001 205 226 0.03 35 16 4 80 < 0.01 < 10 < 10 44 < 10 92 < 0.2 < 1 284 3 < 0.01 2 < 10 174 394002 205 226 11 < 0.01 7 160 222 < 1 < 10 < 10 6.1 394003 205 226 2 0.01 7 1260 26 2 3 12 < 0.01 < 10 < 10 25 < 10 44 3.5 6 58 164 094004 205 226 13 0.03 3 3040 B < 2 16 < 0.01< 10 < 10 < 10 0.5 47 205 226 0.06 2590 7 104 < 0.01 < 10 < 10 < 10 66 394005 1 1 10 2 0.3 1 2850 2 < 2 8 40 < 0.01 < 10 < 10 64 < 10 60 < 0.2 394006 205 226 3 0.11 1770 8 < 2 310 < 0.01 < 10 < 10 67 < 10 116 < 0.2 205 226 0.04 1 12 b94007 < 1 205 226 23 0.09 1 1530 4 < 2 2 39 < 0.01< 10 < 10 14 < 10 10 < 0.2 394008 4 18 < 0.01 < 10 24 < 10 44 394009 205 226 2 0.06 2290 2 < 2 < 10 < 0.2 < 1 6 23 < 0.01 < 10 < 10 39 < 10 20 0.2 394010 205 226 4 0.07 < 1 3440 < 2 7 394011 205 226 4 0.11 1 2080 4 < 2 6 34 < 0.01 < 10 < 10 46 < 10 40 0.2 205 226 0.08 2210 < 2 13 94 < 0.01 < 10 < 10 94 < 10 136 < 0.2 394012 < 1 < 1 < 2 14 44 < 0.01 < 10 88 < 10 192 205 226 0.08 2 2470 < 2 < 2 < 10 < 0.2 394013 1 54 < 10 110 205 226 1920 2 2 10 131 < 0.01 < 10 < 10 < 0.2 094014 < 1 0.04 < 1 2150 10 22 < 0.01 < 10 < 10 67 < 10 58 < 0.2 394015 205 226 0.12 < 2 < 2 4 з 290 18 12 < 0.01 < 10 < 10 19 < 10 36 0.2 394016 205 226 15 0.03 1 2 2 394017 205 226 5 0.04 2 1100 4 < 2 7 14 < 0.01 < 10 < 10 49 < 10 62 0.2 205 226 0.03 2 880 < 2 < 2 4 32 < 0.01 < 10 < 10 20 < 10 64 < 0.2 394018 1 94019 205 226 0.05 1390 < 2 < 2 7 82 < 0.01 < 10 < 10 30 < 10 68 < 0.2 1 1 205 226 0.05 1860 < 2 15 120 < 0.01< 10 < 10 106 < 10 120 < 0.2 394020 1 6 1 205 226 0.05 990 24 < 2 17 12 < 0.01< 10 < 10 87 < 10 654 0.5 394021 77 84 20 < 10 118 < 0.2 394022 205 226 0.02 9 110 4 < 2 1 9 < 0.01 < 10 < 10 8 205 226 0.06 3 2220 6 < 2 14 121 < 0.01 < 10 < 10 91 < 10 126 < 0.2 394023 1

CERTIFICATION: Hart Parifler

1 ...

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

Page Number :4-A Total Pages :7 Certificate Date: 03-OCT-94 Invoice No. :19427173 P.O. Number BSJ Account

CERTIFICATION: StartBuchlon

		•								CE	RTIF	CATE	OF /	ANAL	YSIS		49427	′173		
SAMPLE	PREP CODE	Au ppb FA+AA	yd Yd	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Со ррш	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg	Mn ppm
394024 394025 394026 394027 394028	205 226 205 226 205 226 205 226 205 226 205 226	< 5 < 5	0.2 < 0.2 0.2 < 0.2 < 0.2	3.54 2.86 2.17 2.09 1.91	18 14 14 8 14	210 230 90 190 100	< 0.5 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	2.15 1.03 0.33 0.71 1.33	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	15 14 25 5 8	11 10 17 27 46	18 14 23 11 10	6.05 4.68 6.37 5.48 5.68	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.12 0.18 0.16 0.24 0.12	10 10 < 10 10 < 10	1.76 1.35 0.88 0.87 0.71	965 505 350 635 1170
394029 394030 394031 394032 394032 394033	205 226 205 226 205 226 205 226 205 226 205 226		< 0.2 < 0.2 0.2 1.2 0.2	0.81 3.75 1.19 1.54 2.19	12 6 8 16 4	100 40 130 180 320	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.12 2.07 0.02 0.06 1.52	0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 31 3 2 1.8	20 58 30 20 15	15 78 20 17 52	2.92 5.14 2.04 2.69 4.07	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.34 < 0.01 0.14 0.21 0.18	< 10 < 10 < 10 < 10 < 10 < 10	0.19 2.70 0.75 1.03 1.30	75 595 325 225 1055
394034 394035 394036 394037 394038	205 226 205 226 205 226 205 226 205 226 205 226	< 5 < 5 < 5 < 5 < 5 < 5	0.4 < 0.2 0.4 < 0.2 2.0	2.89 1.26 3.51 2.01 0.85	< 2 12 32 12 26	290 1050 110 280 160	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 2	0.76 1.55 5.06 0.42 0.30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	22 23 21 3 2	28 16 32 8 31	252 30 55 13 13	5.94 4.59 8.09 3.72 2.35	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.13 0.16 0.12 0.33 0.29	< 10 < 10 < 10 < 10 < 10 < 10	1.38 0.65 2.09 0.42 0.37	1745 1375 2070 235 165
394039 394040 394041 394042 394043	205 226 205 226 205 226 205 226 205 226 205 226	< 5 < 5 < 5 < 5 < 5 < 5	1.8 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.33 3.22 2.85 1.90 2.82	20 8 8 6 10	120 260 320 700 220	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 1.0	< 2 2 < 2 < 2 < 2 < 2	0.27 2.93 2.07 1.11 3.64	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	1 16 13 6 22	36 12 17 21 24	40 31 13 11 94	3.98 5.19 4.50 2.36 5.66	< 10 < 10 < 10 < 10 < 10 < 10	1 < 1 < 1 < 1 < 1 < 1	0.27 0.21 0.08 0.12 0.33	< 10 10 < 10 < 10 < 10 < 10	0.30 1.99 1.74 1.02 1.59	80 1870 1255 880 960
394044 394045 394046 394046 394047 394048	205 226 205 226 205 226 205 226 205 226 205 226	< 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.09 2.86 1.13 1.39 0.91	8 8 6 6 2	140 300 210 100 100	0.5 1.0 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	2.18 2.07 2.28 0.67 1.24	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 27 6 7 6	11 65 13 35 37	1 79 9 16 14	4.21 5.77 2.15 2.48 2.42	< 10 < 10 < 10 < 10 < 10 < 10	1 < 1 1 1 1	0.23 0.48 0.29 0.10 0.12	20 10 10 10 10	0.59 1.84 0.62 0.86 0.49	1045 1275 720 835 755
394049 394050 394051 394052 394053	205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.55 2.73 2.58 1.84 0.23	10 12 20 20 14	60 90 80 70 240	1.0 1.0 1.0 (0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	4.25 6.32 3.09 5.88 0.05	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	21 27 27 22 < 1	28 61 30 24 75	50 131 142 104 4	5.05 5.15 6.27 5.02 1.37	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.10 0.08 0.10 0.15 0.11	< 10 10 < 10 < 10 10	1.62 2.46 2.00 1.57 0.02	1115 1065 1070 1170 155
394054 394055 394056 394057 394058	205 226 205 226 205 226 205 226 205 226 205 226	< 5 < 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.25 0.70 1.75 1.83 4.34	10 34 20 2 18	230 70 170 260 210	< 0.5 0.5 0.5 < 0.5 1.0	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.07 0.01 3.24 0.39 3.73	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 2 10 6 12	128 25 30 39 18	3 4 22 8 23	1.15 0.86 3.85 3.09 4.65	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 1	0.13 0.34 0.30 0.25 0.07	20 10 20 20 10	0.02 0.02 1.25 0.78 1.87	140 320 1030 1110 1330
394061 394062	205 226 205 226 205 226 205 226 205 226 205 226	< 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	3.27 0.68 2.17 2.03 0.73	12 36 8 12 4	140 310 70 100 180	< 0.5 1.0 1.0 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1.86 0.32 2.41 3.48 1.88	< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	19 12 23 24 10	29 12 29 21 15	62 48 145 119 16	5.16 5.17 5.60 5.56 2.84	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 1 1	0.06 0.30 0.12 0.27 0.41	< 10 10 < 10 < 10 10	2.66 0.09 1.93 1.43 0.31	1110 445 1100 910 715

{

1.

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assavers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

Page Number :4-B Total Pages :7 Certificate Date: 03-OCT-94 Invoice No. : 19427173 P.O. Number : Account BSJ

										CE	RTIF	ICATE	OF	ANALY	(SIS	A9427173
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	P mqq	Pb ppm	SD ppm	Sc ppm	Sr ppm	Tİ %	T1 ppm	U ppm	V ppm	W Mqq	Zn Ag ppm ppm Aqua R	
394024 394025 394026 394027 394028	205 226 205 226 205 226 205 226 205 226 205 226	2 1 7 < 1 9	0,06 0.05 0,06 0.03 0,04	2 1 3 2 1	2100 3530 1730 1570 1180	< 2 < 2 6 2 6	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	11 10 8 7 11	35 -	< 0.01 < 0.01 < 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	68 69 51 38 59	< 10 < 10 < 10 < 10 < 10 < 10	120 < 0.2 124 < 0.2 52 0.2 68 0.2 78 0.2	
94029 94030 94031 94032 94033	205 226 205 226 205 226 205 226 205 226 205 226	6 1 1 9 < 1	0.03 0.03 0.01 0.02 0.01	2 49 5 4 7	370 620 200 410 1290	< 2 < 2 6 12 4	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	2 5 1 1 2	-	0.07 0.36 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	5 152 11 14 42	< 10 < 10 < 10 < 10 < 10 < 10	64 < 0.2 92 < 0.2 72 0.6 46 1.1 BB < 0.2	
94034 94035 94036 94037 94038	205 226 205 226 205 226 205 226 205 226 205 226	1 < 1 1 < 1 18	0.04 0.02 0.03 0.01 0.03	7 5 11 2 13	810 2040 1540 1700 310	16 < 2 < 2 < 2 14	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	7 8 19 3 3	97 102 <	C 0.01 0.02 C 0.01 C 0.01 0.17	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	108 69 221 21 52	< 10 < 10 < 10 < 10 < 10 < 10	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
94039 94040 94041 94042 94043	205 226 205 226 205 226 205 226 205 226 205 226 205 226	2 < 1 < 1 < 1 < 1 < 1	0.02 0.04 0.04 0.05 0.05	19 5 2 1 16	1530 1960 1650 970 2670	8 < 2 < 2 < 2 < 2	< 2 < 2 < 2 < 2 < 2 < 2	3 6 4 1 21	17 < 57 103 184 168	0.01 0.04 0.25 0.17 0.04	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	29 72 93 30 110	< 10 < 10 < 10 < 10 < 10 < 10	58 1.5 104 0.2 92 0.2 90 0.2 72 0.2	
94044 94045 94046 94047 94048	205 226 205 226 205 226 205 226 205 226 205 226 205 226	< 1 < 1 < 1 < 1 < 1 1	0.07 0.03 0.05 0.08 0.08	< 1 26 1 2 2	2980 2970 690 590 650	6 6 8 12	< 2 < 2 < 2 < 2 < 2 < 2 < 2	4 24 2 3 4	19	0.01 0.02 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	23 165 23 53 43	< 10 < 10 < 10 < 10 < 10 < 10	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
94049 94050 94051 94052 94053	205 226 205 226 205 226 205 226 205 226 205 226 205 226	< 1 < 1 < 1 < 1 < 1 1	0.04 0.03 0.03 0.03 0.03 0.05	15 25 17 12 1	2640 3320 3180 2640 160	< 2 4 < 2 4 18	< 2 < 2 < 2 < 2 < 2 < 2	27 26 29 23 1	243 261 <	0.06 0.01 0.03 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	177 243 272 154 2	< 10 < 10 < 10 < 10 < 10 < 10	60 < 0.2	
94054 94055 94056 94057 94058	205 226 205 226 205 226 205 226 205 226 205 226	<pre>4 < 1 < 2 < 1 < 1 < 1 < 1 < 1</pre>	0.06 0.01 0.04 0.06 0.04	2 2 14 3 3	100 80 920 980 1550	34 6 4 < 2 6	< 2 2 < 2 < 2 < 2 < 2	< 1 1 6 1 12	3 < 166 <	0.01 0.01 0.01 0.01 0.34	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	1 50 38 156	< 10 < 10 < 10 < 10 < 10 < 10	88 < 0.2	
04059 04060 04061 04062 04063	205 226 205 226 205 226 205 226 205 226 205 226	< 1 4 < 1 < 1 2	0.05 0.02 0.03 0.02 0.03	17 11 17 16 2	1460 1060 2640 2970 860	< 2 20 2 < 2 12	< 2 2 < 2 < 2 < 2 < 2 < 2	11 6 26 19 3	116 167	0.40 0.01 0.03 0.04 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	164 15 137 122 18	< 10 < 10 < 10 < 10 < 10 < 10	102 < 0.2 288 < 0.2 70 < 0.2 76 < 0.2 52 < 0.2	
											· · ·		Ċ	ERTIFIC	ATION: 100	utBicklan

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

Page Number :5-A Total Pages :7 Certificate Date: 03-OCT-94 Invoice No. : 19427173 P.O. Number : Account BSJ

										CE	RTIF	CATE	OF	ANAL	YSIS		A9427	7173		
SAMPLE	PREP CODE	Ац ppb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Eg ppm	K %	La ppm	Mg %	Mn ppm
394064	205 226		< 0.2	0.57	18	180	< 0.5	< 2	0.03	< 0.5	1	51	6	1.51	< 10	< 1	0.28	< 10	0.03	100
394065 394066	205 226		< 0.2 < 0.2	0.48 3.39	40 26	190 130	< 0.5 < 0.5	< 2 < 2	0.02	< 0.5 0.5	1 14	75 34	28 17	1.59 5.44	< 10 < 10	< 1 < 1	0.31 0.06	< 10 < 10	0.02 2.10	30 1455
394067	205 226		< 0.2	2.30	26	710	< 0.5	< 2	7.76	< 0.5	11	17	3	4.51	< 10	< 1	0.30	< 10	1.45	1310
394068	205 226	< 5	< 0.2	1.75	10	170	< 0.5	< 2	0.54	< 0.5	8	56	6	2.87	< 10	< 1	0.18	< 10	1.10	990
394069 394070	205 226		< 0.2	1.62	6	170 200	< 0.5	< 2	0.55	< 0.5	8	40	7	2.80	< 10 < 10	< 1 < 1	0.35	< 10 < 10	0.77	1100
394071	205 226		< 0.2	2.49	< 2	60	0.5	2	3.85	< 0.5	25	34	112	6.41	< 10	< 1	0.03	< 10	2.01	1120
394072	205 226		< 0.2	0.49	18	130	< 0.5	< 2	0.07	< 0.5	1	50	10	1.57	< 10	< 1	0.25	< 10	0.08	110
394073	205 226	< 5	< 0.2	0.60	12	280	0.5	< 2	0.07	< 0.5	< 1	42	4	1.47	< 10	< 1	0.38	10	0.08	45
394074 394075	205 226		< 0.2	0.75	14 14	220 70	0.5	< 2	0.02	< 0.5	< 1 2	25 36	2	2.03	< 10 < 10	< 1 < 1	0.33	10	0.08	215 340
394076	205 226		< 0.2	1.67	-1	520	0.5	< 2	2.26	< 0.5	11	25	24	3.56	< 10	< 1	0.46	< 10	0.87	820
394077	205 226		< 0.2	2.08	14	240	0.5	< 2	2.56	< 0.5	10	24	21	2.72	< 10	< 1	0.46	< 10	1.19	725
394078	205 226	< 5	< 0,2	3.15	18	1340	< 0.5	< 2	4.20	0.5	17	20	54	6.36	< 10	< 1	0.13	< 10	2.00	1725
394079	205 226		< 0.2	4.06	8	110	< 0.5	2	2.79	0.5	13	17	16	5.74	< 10	< 1	0.04	< 10	2.05	1450
394080 394081	205 226		< 0.2	2.44	4 32	250 260	< 0.5 < 0.5	< 2 < 2	1.39 0.93	0.5	11 13	25 43	19 149	3.92 4.61	< 10 < 10	< 1 < 1	0.27	< 10 < 10	1.05	1375 815
394082	205 226		< 0.2	2.53	12	200	< 0.5	< 2	1.53	0.5	13	20	30	4.65	< 10	< 1	0.41	< 10	1.37	1010
394083	205 226	< 5	< 0.2	2.57	4	150	< 0.5	< 2	1.20	< 0.5	15	17	40	5.00	< 10	< 1	0.13	< 10	1.46	1290
394084	205 226	< 5	< 0.2	3.75	16	250	1.0	2	0.72	0.5	29	45	176	6.00	< 10	< 1	0.65	< 10	2.10	1170
394085 394086	205 226	< 5 < 5	0.2	3.64	10 6	410	1.5	2	0.40 4.96	0.5	26 24	42	108 90	5.64 4.42	< 10 < 10	< 1	0.90 0.56	< 10 < 10	1.38	1070
394087	205 226	< 5	< 0.2	1.34	12	240 940	1.5	< 2	4.96	0.5	1	86 5	12	1.01	< 10	< 1 < 1	0.56	< 10	2.05 0.13	920 430
394088	205 226	< 5	< 0.2	1.04	6	190	1.0	< 2	1.49	< 0.5	ĩ	13	14	1.20	< 10	< 1	0,48	< 10	0.73	520
394089	205 226	< 5	< 0.2	3.65	36	90	0.5	2	1.37	0.5	23	100	48	6.70	< 10	< 1	0.21	< 10	2.73	1005
394090 394091	205 226	< 5 < 5	< 0.2 < 0.2	2.03 1.64	58 660	250 120	0.5	< 2 2	1.23 2.17	< 0.5 0.5	13 12	19 41	166 74	4.08 4.84	< 10 < 10	1 < 1	0.50 0.34	< 10 < 10	0.89 1.27	445 845
394092	205 226	< 5	< 0.2	0.86	8	520	0.5	< 2	4.54	0.5	8	15	20	3.48	< 10	< 1	0.50	< 10	0.90	1255
394093	205 226		< 0.2	0.93	52	230	0.5	< 2	4.39	0.5	14	26	103	3.62	< 10	< 1	0.50	< 10	1.05	705
394094	205 226		< 0.2	1.42	6	150	< 0.5	< 2	0.85	< 0.5	8	34	11	2.94	< 10	< 1	0.38	< 10	0.91	820
394095	205 226	< 5 < 5	< 0.2	1.49	2	120	< 0.5	< 2	0.62	< 0.5	7 29	48 103	9 117	2.80	< 10 < 10	< 1	0.17	< 10	0.87 4.12	820 1010
394096 394097	205 226		< 0.2	2.64	< 2	250 100	1.5	< 2	4.20 8.96	< 0.5	29	28	69	5.14	< 10	< 1 < 1	0.14 0.40	< 10 < 10	2.45	1245
394098	205 226		< 0.2	0.82	8	180	0.5	< 2	0.06	< 0.5	< 1	33	3	1.40	< 10	< 1	0.43	10	0.07	90
394099	205 226	145	1.4	0.60	264	80	< 0.5	< 2	0.02	< 0.5	< 1	41	3	0.39	< 10	< 1	0.35	< 10	0.04	15
394100	205 226	< 5	0.4	0.94	38	310	0.5	< 2	3.06	< 0.5	11	14	21	3.03	< 10	< 1	0.51	< 10	0.65	600
39 4101 394102	205 226		< 0.2 < 0.2	2.45 3.27	12 < 2		< 0.5 < 0.5	< 2 < 2	3.20 3.43	< 0.5 < 0.5	6 20	14 21	4 57	3.62 5.97	< 10 < 10	< 1 < 1	0.51 0.17	< 10 < 10	0.98 2.38	1390 1300
394103	205 226		< 0.2	2.23	< 2		< 0.5	< 2		< 0.5	6	20	10	2.95	< 10	< 1	0.48	< 10	0.87	970
									_									<u> </u>		
																4	utt	Sec	the	~
													C	ERTIFIC	ATION:_					

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8 Page Number :5-B Total Pages :7 Certificate Date: 03-OCT-94 Invoice No. : I 9427173 P.O. Number : Account : BSJ

Project : UNUK #134 Comments: ATTN: V.P. VAN DAMME CC: WARREN BATES

SAMPLE 94064 94065 94066 94067 94068	PREP CODE 205 226 205 226 205 226 205 226		Na %	Ni ppm	P Ppm	Pb	Sb	Sc	-							
94065 94066 94067 94068	205 226 205 226 205 226	19				ppm	ppm	ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	W ppm	Zn Ag ppm ppm Aqua R	
94066 94067 94068	205 226			2	150	16	< 2	< 1	9 < 0	0.01	< 10	< 10	3	< 10	44 < 0.2	
94067 94068	205 226		0.04	6	240	18	< 2	1		0.01	< 10	< 10	16	< 10	24 0.2	
94068			0.04	9	1370	18	2	12		0.36	< 10	< 10	170	< 10	96 < 0.2	
	205 226	2	0.04	1	1620 720	14 8	< 2 2	4		0.21 0.11	< 10 < 10	< 10 < 10	73 61	< 10 < 10	160 < 0.2 58 < 0.2	
94069	205 226	< 1	0.08	3	740	8	< 2	3		0.01	< 10	< 10	32	< 10	88 < 0.2	
94070	205 226	< 1	0.07	10	940	10	< 2	13		0.26	< 10	< 10	195	< 10	92 < 0.2	
94071	205 226	< 1 6	0.05	16	2840	14 24	2	21	170 < 0		< 10	< 10	211	< 10	114 < 0.2	
94072 94073	205 226 205 226	6 1	0.05 0.04	2	160 160	18	< 2 < 2	1 1	11 < 0 12 < 0		< 10 < 10	< 10 < 10	9	< 10 < 10	26 < 0.2 14 < 0.2	
94074	205 226	1	0.05	1	350	14	< 2	1	9 < 0		< 10	< 10	2	< 10	38 < 0.2	
94075	205 226	< 1	0.01	3	70	26	8	1	8 < 0		< 10	< 10	3	< 10	96 < 0.2	
94076 94077	205 226 205 226	1	0.05	13 13	1030 970	12 12	< 2	5	71 < 0 82 < 0		< 10 < 10	< 10 < 10	43 52	< 10 < 10	88 < 0.2 68 < 0.2	
94078	205 226	1	0.07	13	1620	8	< 2	14		0.35	< 10	< 10	166	< 10	132 < 0.2	
4079	205 226	1	0.06	3	1760	14	4	11		.44	< 10	< 10	178	< 10	154 < 0.2	
	205 226	1 2	0.07	2 27	920 1400	10 14	< 2	6		0.22 0.13	< 10 < 10	< 10 < 10	79 104	< 10	106 < 0.2 114 < 0.2	
	205 226	< 1	0.04	<u>4</u> / 5	1100	12	< 2	9		0.15	< 10	< 10	99	< 10 < 10	84 < 0.2	
4083	205 226	< 1	0.08	4	1340	6	4	9		.26	< 10	< 10	141	< 10	92 < 0.2	
94084	205 226	1	0.03	28	2080	24	2	16		.09	< 10	< 10	123	< 10	90 < 0.2	
94085 94086	205 226	1 < 1	0.02	27 71	1890 820	16 6	< 2	16 15	42 0 157 < 0	.02	< 10 < 10	< 10 < 10	104 73	< 10 < 10	86 < 0.2 102 < 0.2	
	205 226	1	0.02	8	180	10	< 2	2	43 < 0		< 10	< 10	3	< 10	72 < 0.2	
	205 226	3	0.01	3	170	16	< 2	2	32 < 0		< 10	< 10	3	< 10	74 < 0.2	
	205 225	2	0.05	25	1830	8	< 2	13	60 < 0		< 10	< 10	168	< 10	90 < 0.2	
	205 226	< 1 1	0.02	11 15	1550 1270	12 22	4	6 5	95 < 0. 135 < 0.		< 10 < 10	< 10 < 10	46 56	< 10 < 10	108 < 0.2 110 < 0.2	
	205 226	2	0.04	5	1230	12	< 2	3	150 < 0.		< 10	< 10	21	< 10	98 < 0.2	
	205 226	ī	0.02	16	1320	18	6	8	243 < 0		< 10	< 10	25	< 10	116 < 0.2	
	205 226	< 1	0.08	2	700	4	< 2	3	28 < 0.		< 10	< 10	32	< 10	60 < 0.2	
	205 226	< 1 1	0.09	2 30	670 2580	6 18	< 2	3 24	23 < 0. 678 < 0.		< 10 < 10	< 10 < 10	44 175	< 10 < 10	52 < 0.2 102 < 0.2	
	205 226	< 1	0.04	10	1930	20	10	13	267 < 0.		< 10	< 10	100	< 10	176 < 0.2	
	205 226	4	0.03	< 1	130	10	< 2	1	6 < 0.		< 10	< 10	1	< 10	42 < 0.2	
	205 226	2	0.01	1	150	16	< 2	< 1	3 < 0.		< 10	< 10	2	< 10	6 1.2 FC 0.0	
	205 226	2 < 1	0.02 0.06	13 1	950 1320	14 8	10 < 2	4	54 < 0. 128 < 0.		< 10 < 10	< 10 < 10	18 44	< 10 < 10	56 0.6 136 < 0.2	
	205 226	< 1	0.12	g	1450	8	4	15		.40	< 10	< 10	228	< 10	134 < 0.2	
	205 226	1	0.05	2	950	ě	4	2		.11	< 10	< 10	49	< 10	64 < 0.2	

CERTIFICATION: tart Porchlan

.

1

{

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

Page Number :6-A Total Pages :7 Certificate Date: 03-OCT-94 Invoice No. :19427173 P.O. Number : Account BSJ

SAMPLE	PREP										n HFT			NAL	1212		A9427	113		
	CODE	Ац ррb FA+AA	Ag ppm	A1 *	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppn	Mg %	Mn ppm
394104 394105 394106 394107 394108	205 226 205 226 205 226 205 226 205 226 205 226	< 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.39 1.59 2.80 1.28 0.86	14 20 32 22 12	110 110 210 170 290	< 0.5 < 0.5 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2	0.71 2.50 0.48 0.93 0.02	< 0.5 0.5 0.5 < 0.5 < 0.5	6 9 15 12 < 1	57 22 66 24 53	12 30 126 41 4	2.44 3.01 4.38 4.07 1.63	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.15 0.11 0.25 0.54 0.43	< 10 < 10 < 10 < 10 < 10 10	0.82 1.05 1.85 1.01 0.07	780 870 770 620 65
394109 394110 394111 394112 394113	205 226 205 226 205 226 205 226 205 226 205 226	70 < 5 < 5 < 5 < 5 < 5	0.8 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.43 2.19 2.59 0.71 2.21	682 24 16 624 12	300 430 1130 60 640	< 0.5 0.5 0.5 < 0.5 < 0.5	< 2 < < 2 < 2 < 2 < 2	2.46 2.42 0.41 3.06	< 0.5 0.5 < 0.5 0.5 < 0.5	< 1 13 11 8 8	107 40 35 79 18	9 19 23 47 12	1.29 3.03 3.39 3.80 3.49	< 10 < 10 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.43 0.45 0.46 0.35 0.39	10 < 10 < 10 < 10 < 10 < 10	<pre>< 0.01 1.88 1.66 0.16 1.03</pre>	10 745 785 335 1165
394114 394115 394116 394117 394117 394118	205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.99 1.65 2.74 2.00 2.10	12 6 < 2 6 8	160 170 140 50 160	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 0.5	< 2 < 2 < 2 2 < 2 < 2	0,50 0,47 2,58 4,20 1,35	0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	8 8 22 12 12	55 45 80 46 25	9 14 103 104 58	2.62 3.10 5.67 3.95 3.63	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.47 0.17 0.19 0.16 0.33	< 10 < 10 < 10 < 10 < 10 < 10	0.66 0.91 1.63 1.14 0.94	680 870 1250 1375 795
394119 394120 394121 394122 394122 394123	205 226 205 226 205 226 205 226 205 226 205 226 205 226	< 5 < 5 20 235 40	< 0.2 < 0.2 < 0.2 10.2 2.2	1.02 0.84 0.42 0.75 0.99	10 8 478 496 142	290 200 310 130 180	1.0 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < < 2 < < 2 < < 2 < < 2 <	0.42 0.10 0.01 0.01 0.02	0.5 < 0.5 < 0.5 < 0.5 0.5	2 1 < 1 4 1	29 24 122 62 44	12 8 2 19 26	1.55 1.79 0.81 2.01 2.92	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.55 0.43 0.43 0.53 0.55	10 10 < 10 < 10 < 10 < 10	0.34 0.36 0.01 0.02 0.05	290 170 10 25 35
994124 994125 394126 394127 394128	205 226 205 226 205 226 205 226 205 226 205 226	< 5 < 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.29 2.73 3.26 3.40 3.81	150 14 6 < 2 18	490 160 1720 550 860	0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 2 < 2 2 2 2	0.56 2.29 3.31 2.75 3.05	< 0.5 0.5 0.5 0.5 0.5	11 12 16 12 19	29 18 17 13 34	48 21 35 7 22	5.16 4.92 5.40 5.32 6.22	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.68 0.21 0.25 0.34 0.19	< 10 < 10 < 10 < 10 < 10 < 10	0.37 1.44 2.09 1.56 2.27	2410 1255 1375 1675 1345
94129 94130 94131 94001 94002	205 226 205 226 205 226 205 226 205 226 205 226 205 226	< 5 < 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.99 1.54 3.39 1.84 3.02	8 4 2 14 66	750 940 130	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 2 < 2 < 2 < 2 < 2	4.21 6.99 3.86 0.58 0.14	0.5 0.5 0.5 0.5 < 0.5	15 15 15 10 4	33 24 13 56 68	55 20 27 10 9	4.56 5.35 4.93 3.74 5.99	< 10 < 10 < 10 < 10 < 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.45 0.35 0.12 0.33 0.24	< 10 < 10 < 10 < 10 < 10 < 10	1.33 2.29 2.03 0.47 1.83	1005 1440 1290 230 240
94003 94004 94005 94006 94006 94007	205 226 205 226 205 226 205 226 205 226 205 226 205 226	< 5 < 5	1.4 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.24 2.37 1.03 0.50 0.27	32 12 208 64 156	240 540 180	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.14 0.86 7.50 0.09 0.09	0.5 0.5 0.5 < 0.5 < 0.5 < 0.5	6 19 17 < 1 < 1	55 35 61 73 134	41 114 46 7 4	2.96 5.65 4.35 1.40 1.11	< 10 < 10 < 10 < 10 < 10 < 10	< 1 1 < 1 < 1 < 1 < 1	0.06 0.03 0.39 0.44 0.36	< 10 < 10 < 10 10 < 10 <	0.75 1.97 1.57 0.06 0.01	355 845 1485 55 15
	205 226 205 226 205 226 205 226 205 226 205 226	< 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 1.8	1.58 0.35 0.43 2.02 1.30	62 384 86 40 50	140	0.5 < 0.5 < 0.5 < 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	4.85 0.02 0.02 1.07 1.72	0.5 < 0.5 < 0.5 0.5 5.5	17 < 1 < 1 14 8	42 44 107 83 58	53 2 3 55 35	4.70 1.28 0.86 3.00 3.45	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.51 0.40 0.32 0.52 0.56	< 10 10 < 10 < 10 < 10	1.26 0.01 0.01 0.57 0.41	1110 10 10 670 605

CERTIFICATION: Hout Buchlan

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

A9427180

Comments: ATTN: V.P. VAN DAMME CC: WARREN BATES Whole Reak Pg JGria

CERTIFICATE

A9427180

(BSJ) - GRANGES INC.

Project: P.O. # : UNUK #134

mples submitted to our lab in Vancouver, BC. Sais report was printed on 8-NOV-94.

	SAM	PLE PREPARATION
CHEMEX	NUMBER	DESCRIPTION
299	245	Pulp; prepped on other workorder
1		

			ANALYTICAI	PROCEDURES		
CHEMEX CODE	NUMBER SAMPLES		DESCRIPTION	METHOD		UPPEF LIMIT
902 906 2590 903 905 1989 907 909 901 904 910 2540 2891 2067 2898 2973 2974	245 245 245 245 245 245 245 245 245 245	A1203 %: XRF CaO %: XRF Cr203 %: XRF Fe203 %: XRF MgO %: XRF MgO %: XRF Ma20 %: XRF Na20 %: XRF SiO2 %: XRF SiO2 %: XRF TiO2 %: XRF TiO2 %: XRF Total % Ba ppm: XRF Total % Ba ppm: XRF Nb ppm: XRF Xr ppm: XRF Zr ppm: XRF Y ppm: XRF		IRF IRF IRF IRF IRF IRF IRF IRF IRF IRF	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 10000 10000 10000 10000

;

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

Page Number :1 Total Pages :7 Certificate Date:08-NOV-94 Invoice No. :19427180 P.O. Number : Rig J Grid (what Rock) Account BSJ

Project : UNUK #134 K 9 J Grid [LAAF Comments: ATTN: V.P. VAN DAMME CG: WARREN BATES

CERTIFICATE OF AN

NALYSIS	A9427180
---------	----------

SAMPLE	PREP CODE	A1203 % XRF	CaO %Cr2O3 %Fe2O3 XRF XRF XI		Mg0 % XRF	Mn0 % XRF	Na20 % XRF	P205 % XRF	SiO2 % XRP	TiO2 % XRF	LOI % XRF	TOTAL %	Ba ppm	Rb ppm	Sr ppm	Nb ppm	Zr ppm	Y ppm
19401	299	11.85	0.34 0.01 8.1	••••••	3.18	0.04	0.19	0.32	65.28	1.08	4.28	98.82	1030	89	31	12	126	28
22760	299[12.96	0.36 0.01 7.6		1.23	0.04	0.17	0.34	66.87	1.00	5.12	99.80	1310	109	23	14	149	43
22761	299	20.05	0.66 < 0.01 12.		3.16	0.02	0.61	0.53	48.14	2.13		100.39	2940	96	96	15	177	69
22762	299	8.38	0.73 0.01 4.9			< 0.01	3.09	0.35	75.55	1.01	3.38	98.66	1130	25	125	9	82	21
22763	299	12.90	1.27 < 0.01 4.3	30 1.67	0.53	0.06	3.70	0.51	70.63	1.60	2.24	99.41	1500	36	159	15	139	33
22764	299	16.04	2.72 < 0.01 10.2		3.38	0.11	3.82	0.57	55.70	1.84		100.13	1380	19	269	19	165	43
22765	299 ~-	12.47	0.17 0.01 7.0			< 0.01	0.28	0.14	60.31	1.16		97.83	2180	201	58	14	147	38
22766	299	14.21	0.73 < 0.01 6.0		1.53	0.11	0.21	0.40	66.78	1.24		100.40	956	145	29	16	147	35
22767	299	13.43	0.34 0.01 4.9			< 0.01	0.32	0.34	63.61	1.27	4.03	98.12	3280	170	77	19	152	33
22768	299	9.04	0.02 0.01 2.4	6 7.97	0.21	< 0.01	0.29	0.10	74.69	0.91	2.36	98.06	2720	118	53	1.0	85	17
22769	299	17.39	0.04 0.01 3.3			< 0.01	0.25	0.19	59.02	1.75	3.75	98.52	3350	222	59	22 19	211 167	33 32
2770	299	16.01	1.93 0.01 9.7		1.87	0.04	5.07	0.58	54.76	1.97	6.47	99.65	1330	28	291		192	32
2771	299 ~~	12.27	0.14 0.01 4.0			< 0.01	4-82	0.10	71.67	0.40	2.69 2.61	98.30 98.73	990 3520	22 116	240 53	16 17	247	54
2772	299	11.69	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		0.44	< 0.01 0.17	0.20 0.19	0.51	74.18 59.87	0.24	4.59	99.98	1340	114	79	10	114	37
									<u></u>	4 50		00.54						13
2774	299	12.09	0.20 0.01 5.4		0.00	< 0.01	5.67	0.50	67.99	1.53	3.72	98.51 99.42	890 253	24	191 242	14	139 111	42
2775	299	14.95	4.37 0.04 12.4		7.16	0.17	2.80	0.17	47.75	1.67 1.41	7.44	99.59	1650	12 48		14	121	23
2776	299	10.55	0.80 0.01 4.5		0.55	0.02	1.87 8.54	0.45	74.38 54.56	0.72	3.30	99.59	3510	20	85 633	- 4	77	23
2777 2778	299	19.13	0.65 0.01 5.6			< 0.01	3.22	0.48	68.88	1.52		100.05	1550	61	101	14	137	28
94001	299	14.99	9.61 0.05 11.6	2 0.19	7.72	0.19	3.21	0.14	47.35	1.42	3.38	99.87	1070	6	310	4	92	36
94002	299	17.43	2.96 0.07 14.9		9.25	0.21	2.86	0.17	43.36	2.00	5.93	99.30	2690	2	229	6	103	45
94003	299	11.94	0.11 0.01 2.7		1.21	0.01	2.10	0.06	71.74	0.63	5.65	98.42	1370	60	143	ŝ	130	29
94004	299	12.66	0.12 0.01 3.5		1.19	0.06	1.63	0.07	71.39	0.51	5.43	98.81	1350	56	110	7	128	27
94005	299	8.33	0.09 0.01 1.7			< 0.01	1.65	0.06	79.87	0.44	4.65	98.97	1170	34	148	8	92	13
94006	299	18.63	1.91 < 0.01 9.9	1 1.68	5.08	0.17	5.53	0.39	51.27	0.88	4.03	99.48	1620	32	521	8	104	25
94007	299	17.45	4.91 < 0.01 7.9		2.55	0.13	1.64	0.36	54.09	0.73	6.94	99.53	1240	66	187	7	77	23
94008	299	18.58	0.59 < 0.01 10.4	3 3.55	1.51	0.16	2.42	0.44	57.09	0.90	4.13	99.80	2240	89	138	7	80	17
94009	299	15.49	4.45 < 0.01 6.7	5 2.43	1.97	0.20	2.48	0.36	58.70	0.60	6.16	99.59	1960	60	221	7	72	28
94010	299	18,65	2.35 < 0.01 6.5	1 2.41	1.94	0.14	4.69	0.35	57.60	0.63	4.27	99.54	1400	63	270	5	77	15
94011	299)	22.81	1.65 0.01 11.9	9 4.09	2.52	0.10	3.26	0.54	47.91	1.05		100.48	2640	110	195	10	90	22
94012	299	16.50	0.35 < 0.01 3.9		0.96	0.08	3.87	0.23	66.88	0.58	2.62	99.01	1030	67	157	12	162	20
94013	299	18.70	0.53 < 0.01 7.3		1.36	0.10	3.46	0.36	60.29	0.69	3.60	99.46	1150	65	131	8	96	15
94014	299)	16.39	6.50 0.01 8.4		4.13	0.12	4.14	0.83	52.91	1.22		100.07	1500	20	1210	25	200	30
94015	299	16.33	2.10 < 0.01 5.9	7 7.81	2.24	0,14	1.98	0.25	56.23	0.67	4.38	98.10	2420	145	966	22	142	21
94016	299	16.81	0.78 < 0.01 5.1		2.49	0.09	6.06	0.19	61.13	0,45	2.55	98.76	2550	50	348	8	113	12
94017	299	13.84	2.08 < 0.01 8.1		3.22	0.14	5.83	0.18	60.00	0.77	3.69	98.68	470	18	138	6	113	24
94018	299	15.45	4.06 0.01 9.3		3.59	0.19	6.70	0.16	51.54	1.07	5.58	98.38	450	13	182	3	105	29
01010	299	15.18	0.03 0.01 1.7	6 13.58	0.15	< 0.01	1.46	0.01	64.01	0.28	1.24	97.71	1270	249	57	24	383	36
94019 94020	299	17.80	0.86 0.01 7.3		2.01	0.03	2.25	0.50	55.64	0.69	8.29	99.63	1390	98	228	9	133	33

CERTIFICATION:

SAMPLE

294021

294022

294023

294024

294025

PREP

CODE

299 --

299 --

299 --

299 --

299 -- XRF

16.63

14.42

13.19

12.35

18.20

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assavers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

Page Number :2 Total Pages :7 Certificate Date: 08-NOV-94 Invoice No. : 19427180 P.O. Number • Account :BSJ

Project : UNUK #134 Comments: ATTN: V.P. VAN DAMME CC: WARREN BATES

CERTIFICATE OF ANALYSIS A9427180 A1203 % CaO %Cr203 %Fe203 % K20 % MgO % MnO % Na20 % P205 % SiO2 % TiO2 % LOI % TOTAL Ba Rb \mathbf{sr} Nb Zr Y XRF XRF XRF XRF XRF XRF XRF XRF XRF XRF XRF % ppm ppm ppm ppm ррш ppm 4.19 0.02 6.10 6.46 1.93 0.16 2.99 0.37 53.88 0.58 5.72 99.03 1800 140 783 14 103 13 4.67 0.08 8.42 2.15 8.04 0.12 3.86 0.30 49.24 0.92 6.90 99.12 1840 41 684 9 118 18 99.87 1880 125 5.90 0.01 10.03 5.31 5.11 0.13 0.87 0.78 49.37 0.95 8.22 1340 12 114 17 0.19 < 0.010.03 73.56 98.27 51 21 317 0.08 0.02 1.85 2.41 6.29 0.21 1.28 356 135 41 8.23 1.05 3.33 0.23 0.46 51.66 4.80 98.93 2500 28 854 10 113 3.70 0.01 6.33 0.93 34

CERTIFICATION:

294026	299	1	14.60	6.06 0.01	6.34	5.29	2.42 0.16	2.92	0.47	52.18	0.56	7.84	98.85	1230	110	635	12	90	17
294027	299		15.47	3.37 0.02	6.84	2.69	2.34 0.16	4.27	0.26	57.80	0.60	5.11	98.93	2150	61	458	7	104	17
294028	299		14.49	4.50 0.01		3.30	4.38 0.11	3.13	0.57	52.47	0.78	6.92	99.59	2040	86	614	11	98	15
294029	299		15.06	1.33 0.01		9.68	0.75 0.24	0.65	0.68	58.9B	0.99	3.37	99.20	3120	177	589	26	107	19
294030	299		13.55	0.17 < 0.01		10.94	0.25 < 0.01	1.76	0.03	68.24	0.26	1.22	97.86	965	197	77	18	339	41
294030	293		13.35	0.17 < 0.01	1.44	10.94	0.23 € 0.01	1.78	0.03	00.24	0.20	1.44	97.00	905	197		10	333	41
294031	299		14.07	0.04 0.01		7.98	0.14 < 0.01	3.92	0.02	69.81	0.25	0.92	98.42	1090	168	66	21	350	42
294032	299		17.52	2.24 0.02		2.20	3.22 0.21	4.27	0.38	55.65	0.88	5.27	99.38	2310	57	373	9	115	27
294033	299		19.34	5.62 0.03		2.99	2.94 0.21	3.63	0.47	50.14	0.95		100.23	1620	81	535	8	122	31
294034	299		17.41	1.48 < 0.01		8.46	1.29 0.14	4.17	0.14	56.38	0.62		98.09	2780	134	1580	33	168	16
294035	299		16.28	3.94 0.01	9.89	3.61	3.95 0.1B	3.53	0.61	50.56	1.06	6.35	99.97	910	69	256	10	105	22
294036	299		13.97	0.04 0.01		12.86	0.15 < 0.01	0.78	0.02	68.84	0.26	1.03	98.89	1530	248	53	19	337	38
294037	299		12.54	0.15 0.01	1.28	10.32	0.29 < 0.01	1.49	0.07	70.77	0.25	1.20	98.37	859	205	75	18	301	32
294038	299		13.53	0.02 0.02	1.28	10.40	0.09 < 0.01	2.05	0.02	69.30	0.24	1.06	98.01	1040	233	56	20	326	36
294039	299		16.24	0.60 0.03	5.77	2.83	1.70 0.11	3.24	0.22	63.61	0.62	4.30	99.27	1170	89	172	14	162	23
294040	299		16.61	1.25 < 0.01	6.87	2.49	2.16 0.04	3.77	0.29	60.45	0.63	4.85	99.41	756	67	316	10	106	13
294041	299		15.72	0.79 0.01	5.71	2.32	1.64 0.03	4.20	0.24	63.18	0.62	4.24	98.70	719	62	327	9	133	22
294042	299		15.88	3.78 0.01	6.17	3.92	2.89 0.11	3.65	0.30	55.83	0.69	5.30	98.53	1500	88	517	6	121	21
294043	299		15.69	3.59 0.02	9.25	5.18	3.95 0.20	3.85	0.54	52.60	0.80	3.34	99.01	2270	106	954	14	98	20
294044	299		14.93	4.73 0.01	9.19	4.95	4.32 0.15	1.97	0.58	52.26	0.92	5.93	99.94	1890	103	706	16	107	24
294045	299		11.95	0.08 0.01		2.75	0.49 0.01	2.23	0.17	69.05	0.50	6.59	98.58	1040	76	141	12	159	32
294046	299		16.15	0.20 < 0.01	1.69	12.55	0.28 < 0.01	2.16	0.04	62.14	0.33	2.12	97.66	1950	229	125	20	389	42
294047	299		13.92	0.03 0.01	1.54	7.79	0.11 < 0.01	3.90	0.03	69.51	0.25	1.14	98.23	1370	147	139	22	352	44
294048	299		12.70	0.10 < 0.01		2.16	0.50 0.02	4.14	0.05	74.46	0.25	2.06	98.17	515	66	50	19	295	37
294049	299		17.70	4.13 < 0.01		2.77	2.91 0.18	3.46	0.40	53.77	0.88	6.07	99.84	1630	78	439	8	102	24
294050	299		18.66	5.27 < 0.01	7.28	1.94	2.55 0.20	4.90	0.46	51.95	0.85	5.77	99.83	2070	36	844	ğ	132	32
			10100																
294051	299		14.87	2.28 0.02	7.04	3.49	2.26 0.14	2.64	0.42	61.52	0.68	4.14	99.50	1990	93	494	9	89	19
294052	299		16.67	2.03 0.01	11.33	6.71	2.90 0.13	1.64	0.83	52.51	1.08	3.87	99.71	1720	189	666	14	121	21
294053	299		17.12	1.45 < 0.01	7.73	3.82	1.22 0.15	4.65	0.25	55.90	0.63	5.72	98.64	1340	98	488	12	109	19
294054	299		15.36	0.10 0.01	1.28	13.68	0.17 < 0.01	0.57	0.04	65.19	0.31	1.52	98.23	1630	213	79	23	394	57
294055	299		16.84	0.03 0.01	1.82	12.47	0.17 < 0.01	1.57	0.03	63.71	0.33	1.30	98.28	1120	247	103	26	438	43
294056	299		18.55	4.73 < 0.01	9.48	2.86	2.32 0.17	3.23	0.42	49.57	1.02	7.64	99.99	966	71	445	8	111	26
294057	299		17.30	3.28 0.01	8.77	1.44	4.60 0.18	4.43	0.63	52.98	1.19		100.26	1040	41	580	13	157	24
294058	299		15.65	3.39 < 0.01	3.81	3.80	1.90 0.11	5.69	0.16	59.60	0.40	3.72	98.23	1430	81	475	7	109	14
294058	299		16.39	2.65 < 0.01	6.85	1.84	2.54 0.17	5.58	0.28	58.48	0.60	3.18	98.56	1580	37	469	11	122	20
294059	299		15.74	3.37 0.01	6.29	3.44	3.21 0.10	3.28	0.35	57.73	0.66	4.79	98.97	1500	BO	539	11	105	19
494000	499		121/4	3.3/ 0.01	0.49		3.21 0.10	3.40	0.33	21.13	0.00	4.13	20.21	1200	6V	222	11	103	13

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8 Page Number :3 Total Pages :7 Certificate Date: 08-NOV-94 Invoice No. : [9427180 P.O. Number : Account :BSJ

									С	ERTIF	ICAT	EOF	ANAL	YSIS		49427	180		<u> </u>
SAMPLE	PREP CODE	A1203 % XRF	CaO %Cr2O3 % XRF XRF	Fe2O3 % XRF	K20 % XRF	MgO % XRF	MnO % XRF	Na20 % XRF	P205 % XRF	SiO2 % XRF	TiO2 % XRF	LOI % XRF	total %	Ba ppm	Rb ppm	Sr ppm	Nb ppm	Zr ppm	Y ppm
294061	299	16.25	3.85 0.01	8.81	6.02	3.36	0.15	2.05	0.51	51.87	1.11	5.58	99.57	1730	146	672	15	137	18
294062	299	14.92	3.92 0.01	9.10	2.91	3.63	0.11	2.86	0.57	54.10	0.81	6.54	99.48	1700	93	562	10	114	18
294063	299	15.23	0.03 < 0.01	0.61	12.03		< 0.01	1.74	0.02	67.24 52.98	0.29	0.99	98.31	2460	182	80	21	360 137	39
294064 294065	299	14.03 16.01	7.37 < 0.01 4.24 0.04	6.58 9.09	4.18	1.52 6.31	0.17 0.23	0.22 3.87	0.25 0.51	49.92	0.73 1.17	11.18 7.46	99.21 99.80	774 797	115 33	132 389	10 12	147	15 27
294066	299	16.44	0.51 0.01	4.10	2.87	1.52	0.09	5.57	0.17	65.56	0.43	2.49	99.76	1380	80	361	B	116	15
294067	299	15.20	3.47 < 0.01	9.98	0.78	3.51	0.19	5.23	0.23	53.31	1.04	5.91	98.85	469	18	399	5	92	16
294068	299	15.84	1.00 < 0.01	8.50	0.86	2.17	0.10	5.81	0.38	59.95	1.05	3.50	99.16	440	25	257	11	191	38
294069 294070	299	13.02 10.71	0.03 0.01 0.67 0.01	3.55 1.89	4.24 1.95	0.83 0.60	0.01 0.06	2.28 3.72	0.02	70.70 75.27	0.20 0.13	2.95 2.46	97.84 97.49	1350 437	111 67	104 177	22 15	328 257	62 41
294071	299	12.12	0.02 0.01	2.38	3.65	0.48	< 0.01	0.16	0.04	75.08	0.27	3.68	97.89	516	82	14	15	266	33
294072	299	15.12	4.49 0.01	5.24	2.33	4.37	0.14	2.96	0.24	56.08	0.62	8.07	99.67	689	71	124	-9	189	20
294073	299	17.28	1.17 < 0.01	4.56	2.90	0.93	0.10	4.86	0.20	63.20	0.59	3.32	99.11	1660	87	518	13	160	20
294074	299	16.99	4.00 < 0.01	6.09	2.91	1.99	0.21	5.00	0.32	55.72	0.73	5.33	99.29	1770	79	510	8	113	20
294075	299	13.14	0.17 0.01	5.33	4.42	1.43	0.02	0.16	0.27	70.09	0.57	4.11	99.72	1110	116	20	5	87	24
294076 294077	299	16.65 17.29	5.60 0.01 0.96 0.01	7.08	2.68	2.88	0.08	3.07	0.33	51.71 57.63	0.67	8.48	99.24 99.58	841 1610	72	394	6	108	18
394001	299	15.74	2.25 0.01	7.52	2.74	3.51	0.12	2.86	0.28	58.46	0.61	5.25	99.35	763	75	71 177	6	73 117	23 24
394002	299	3.89	0.03 0.04	6.16	1.98		0.01	0.22	0.03	80.42	0.15	5.45	98.67	707	42	18	7	31	< 2
394003	299	18.10	0.34 0.01	4.86	5.71	2.56	0.04	0.15	0.30	61.71	0.79	5.41	99.98	940	143	17	8	114	14
394004	299	16.10	0.90 0.01	8.82	3.23	2.30	0.08	2.16	0.72	59.65	1.58	4.38	99.93	1210	75	55	15	137	32
394005	299	15.83	3.70 0.01	8.49	1.67	3.18	0.09	4.46	0.58	52.38	1.89	7.22	99.50	1640	36	221	17	158	46
394006	299	18.29	0.80 0.02	7.79	1.57	1.67	0.01	5.64	0.64	56.62	1.87		100.02	1700	31	318	16	180	52
394007 394008	299	10.77	12.47 < 0.01 0.15 0.02	7.59 3.34	0.60 1.78	3.91 0.15 <	0.31	2.44 4.47	0.43	46.05 71.25	1.27	13.74 3.29	99.58 98.47	512 1210	9 40	369 172	12 13	124 137	33
				<u> </u>													13	137	12
394009	299	12.57	0.45 0.01	3.02	2.21		0.01	3.29	0.49	72.34	1.60	2.72	98.98	1510	48	147	13	140	24
394010	299	18.79	0.56 < 0.01	6.33	2.37		0.01	4.91	0.71	57.14	2.38	5.30	99.51	2230	44	256	20	197	61
394011 394012	299	18.01	0.66 0.01 4.50 0.01	7.45 8.42	2.09	0.75 2.19	0.01 0.13	4.62	0.46	57.97 55.07	1.95 1.62	5.41	99.39 100.45	1990 1190	43	322 270	17	179 150	25
394013	299	15.50	1.71 < 0.01	8.71	0.48	2.15	0.06	6.12	0.55	58.12	1.76	4.42	99.58	660	22 10	274	18 16	157	41 26
394014	299	13.42	3.70 < 0.01	8.66	1.32	1.16	0.25	2.85	0.48	61.57	1.53	4.78	99.72	1460	24	268	14	139	40
394015	299	13.34	0.73 0.02	5.50	0.58	1.44 <		6.16	0.49	65.70	1.40	3.33	98.69	656	18	278	14	137	27
394016	299	16.29	0.10 < 0.01	3.14	3.06	2.00 <		1.92	0.08	65.39	0.76	5.56	98.30	2040	75	170	9	212	39
394017	299	12.98	0.38 0.01	10.59	1.44	3.00	0.02	2.25	0.28	59.81	1.58	6.75	99.09	1240	36	118	13	150	25
394018	299	5.76	0.96 0.02	4.83	0.56	0.56	0.02	1,24	0.24	82.62	0.70	1.78	99.29	652	16	76	7	72	15
394019	299	8.69	2.02 0.01	5.75	0.87	0.76	0.08	2.64	0.37	73.97	1.08	2.86	99.10	846	21	151	12	100	25
394020 394021	299	14.97	0.19 < 0.01	9,69	1.55		0.15	2.12	0.49 0.25	58.19	1.73 0.55	4.51	99.45 98.99	1380 1030	15 45	536 91	19	168	37
394021	299	10.81	0.08 0.01	1.69	2.00	1.86 <		0.35	0.03	77.83	0.55	3.72	98.99	1030	45 63	52	7 19	101 142	75 53
394023	299	15.97	2.96 < 0.01	8.52	0.97	2.59	0.15	4.43	0.53	57.00	1.85	4.43	98.50 99.40	1480	19	5∡ 365	18	172	41
							_										-		

CERTIFICATION:_

299 --

16.42

2.75 < 0.01

4.59

3.84

394063

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GRANGES INC.

2230 - 885 W, GEORGIA ST. VANCOUVER, BC V6C 3E8 Page Number :4 Total Pages :7 Certificate Date: 08-NOV-94 Invoice No. :19427180 P.O. Number : Account :BSJ

Project : UNUK #134 Comments: ATTN: V.P. VAN DAMME CC: WARREN BATES

A9427180 CERTIFICATE OF ANALYSIS PREP A1203 % CaO %Cr203 %Fe203 % K2O % MgO % MnO % Na2O % P205 % SiO2 % TiO2 % LOI % TOTAL Ba Rb Sr Nb Zr Y SAMPLE CODE XRF XRF XRF XRF XRF XRF XRF XRF XRF XRF XRF XRF ٤ ppm ppm ppm ppm ppm ppm 394024 299 --16.78 3.02 < 0.019.22 0.96 2.77 4.88 0.53 54.70 1.79 4.73 99.50 1450 21 382 184 47 0.12 18 394025 299 --20.15 1.51 < 0.017.14 1.75 2.33 0.06 5.59 0.84 55.46 2.37 3.23 100.43 2080 41 201 24 208 59 394026 299 --0.53 < 0.019.74 1.67 1.55 4.71 0.41 56.91 1.68 4.96 98.97 1410 31 215 18 156 30 16.78 0.03 394027 88 299 --11.14 0.98 < 0.018.82 1.80 1.68 0.08 2.07 0.38 66.65 0.99 4.22 98.81 1250 34 12 136 34 9.12 587 394028 299 --8.78 1.85 0.01 0.77 1.26 0.16 2.57 0.30 69.60 0.76 3.36 98.54 18 139 9 116 29 394029 299 --18.44 0.25 0.01 4.46 4.45 0.79 < 0.011.05 0.08 63.B2 0.73 5.40 99.4B 2680 99 132 8 162 27 299 ---9.59 D.04 11.20 0.15 7.61 0.16 2.92 47.56 1.51 3.76 99.34 238 3 252 98 394030 14.68 0.16 6 41 394031 2991 --0.01 3.00 2.04 1.51 0.98 0.06 76.70 0.31 3.77 98.81 1250 76 127 10.34 0.05 0.03 52 5 24 394032 299] ---12.53 0.15 < 0.01 4.02 2.54 2.08 0.02 1.24 0.10 71.35 0.47 4.18 98.68 1550 67 91 9 149 30 394033 299 --18.15 2.08 < 0.017.63 3.99 2.56 0.14 1.79 0.31 57.28 0.70 4.28 98.91 2870 97 127 6 73 23 9.31 0.57 394034 299 ---15.43 1.09 0.01 1.30 2.37 0.23 4.47 0.18 60.91 3.09 98.96 996 35 262 6 82 11 394035 299 --16.62 2.19 0.01 9.68 2.98 1.41 0.19 3.00 0.49 58.77 0.85 3.92 100.11 1940 75 186 11 86 22 299 --394036 7.83 0.02 13.56 1.36 3.62 0.32 2.10 0.37 44.59 1.37 10.69 99.66 908 28 155 13.83 7 78 22 394037 299 --0.01 6.16 6.34 0.02 0.44 0.38 56.63 0.80 3.96 100.21 3660 135 41 78 23.87 0.53 1.07 7 24 ---71 394038 299(14.00 0.61 0.01 3.44 2.71 0.94 0.01 2.89 0.07 66.14 0.72 6.66 98.20 1890 261 8 127 20 394039 299 --10.63 0.34 0.02 5.42 2.08 0.83 < 0.01 1.07 0.33 71.06 0.46 6.83 99.07 1430 63 95 37 5 106 394040 299 ---18.61 5.07 < 0.019.08 2.33 3.70 0.29 3.28 0.50 49.47 1.00 6.80 100.13 1250 57 421 92 23 9 394041 299 --19.36 7.38 0.03 9.15 1.46 3.18 0.22 4.06 0.44 49.90 0.97 4.23 100.38 1840 25 868 8 108 24 394042 299 --18.60 6.21 < 0.015.75 1.77 1.92 0.18 4.24 0.27 56.90 0.78 2.48 99.10 3220 40 1270 13 154 32 123 394043 299 ---15.87 5.64 < 0.01 10.044.55 3.09 0.15 1.89 0.67 49.53 0.91 7.55 99.88 1460 444 7 75 13 299 16,95 3.30 < 0.016.72 1.37 1.15 0.15 7.13 0.70 55.99 0.86 5.26 99.58 510 62 344 16 246 38 394044 ---394045 299 --15.91 3.13 0.01 9.79 4.30 3.07 0.19 2.15 0.59 54.60 0.B9 5.71 100.34 2590 116 681 12 108 19 61.57 78 394046 299 --15.47 3.46 < 0.01 3.72 2.70 1.47 0.10 4.72 0.17 0.39 5.15 98.92 1130 388 9 122 17 299 --3.80 3.56 1.54 0.15 63.30 0.41 98.09 1940 87 478 **b94047** 15.75 1.17 < 0.010.11 5.67 2.63 9 117 12 --423 394048 299 15.50 1.85 < 0.013.60 2.30 0.95 0.10 6.59 0.16 63.44 0.37 3.21 98.07 1020 58 9 117 12 394049 299 6.56 < 0.018.98 5.99 2.80 0.18 3.01 0.62 47.92 0.82 7.78 98.98 1400 116 800 8 17 ---14.32 84 299 --9.31 0.01 8.16 3.66 2.88 0.71 46.62 0.83 9.52 99.56 1060 57 673 394050 3.98 0.15 14 87 13.73 18 9.68 2.36 299 --4.81 0.01 5.08 0.15 0.71 51.48 0.91 6.37 99.94 1620 128 536 394051 15.05 3.33 84 17 8 299 7.93 4.86 0.18 0.61 47.08 ___ 9.59 < 0.012.77 2.44 0.75 10.18 99.68 1080 126 507 74 394052 13.29 10 18 299 0.10 0.01 1.87 3.46 0.21 0.01 3.81 0.04 75.94 0.19 1.33 97.55 1890 63 225 15 242 32 394053 --10.5B 394054 299 --9.11 0.11 0.01 1.58 1.75 0.21 < 0.01 3.81 0.03 79.59 0.15 1.41 97.76 1100 39 196 17 255 42 394055 299 --14.62 0.02 < 0.011.46 4.69 0.66 0.03 0.18 0.04 73.28 0.30 3.61 98.89 446 143 52 19 341 46 94056 299 --14.52 4.88 < 0.015.84 2.96 2.34 0.14 3.60 0.21 56.54 0.59 6.76 98.3B 1030 84 283 9 190 20 1.94 0.14 5.34 0.22 64.50 0.59 99.08 1060 52 479 14 394057 299 ---16.88 0.95 0.01 4.42 1.50 2.59 159 21 299 --7.61 1.54 3.26 0.20 3.81 0.39 52.85 0.95 4.41 99.76 1300 23 547 10 394058 17.70 7.04 < 0.01113 26 394059 299 ---17.50 7.10 < 0.019.66 2.06 4.97 0.20 3.08 0.37 49.80 1.12 4.04 99.90 1610 42 1160 7 119 27 299 --0.01 7.29 3.59 0.68 0.04 2.44 59.72 0.68 7.22 98.91 1220 102 142 394060 16.56 0.44 0.24 8 112 44 299 3.18 0.65 51.51 0.86 5.72 99.10 1510 125 469 11 77 394061 ----15.40 3.74 < 0.018.90 6.36 0.17 2.61 19 299 --10.63 2.94 48.60 0.95 99.48 500 77 394062 15.38 5.60 0.01 5.06 0.15 2.48 0.71 6.97 1260 141 11 14

0.20

60.83

0.44

0.93

0.09

4.01

CERTIFICATION:

797

123

229

114

9

17

99.14

5.04

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

raye Number 5 Total Pages :7 Certificate Date: 08-NOV-94 Invoice No. :19427180 P.O. Number Account :BSJ

UNUK #134 Project : Comments: ATTN: V.P. VAN DAMME CC: WARREN BATES

PREP CODE 	A1203 % XRF 12.13 7.98 17.44 14.66 15.60 15.80 18.39 14.94	CaO %Cr2O3 %J XRF XRF 0.06 < 0.01 0.06 0.01 3.73 < 0.01 11.00 < 0.01 0.95 < 0.01 0.91 < 0.01	XRF 2.21 2.23 7.92 6.71 3.90	R20 % XRP 2.66 2.00 2.55 2.37		MnO % XRF < 0.01 < 0.01	Na20 % XRF 2.91	XRF	SiO2 %	TiO2 % XRF	LOI % XRF	TOTAL %	Ba ppm	Rb ppm	Sr	Nb	Zr	Y
99 99 99 99 99 99 99 99	7.98 17.44 14.66 15.60 15.80 18.39 14.94	0.05 0.01 3.73 < 0.01 11.00 < 0.01 0.95 < 0.01 0.91 < 0.01	2.23 7.92 6.71 3.90	2.00 2.55 2.37	0.36		2.91							P.P.m.	ppm	ppm	ppm	ppm
9 99 99 99 99 99 99	17.44 14.66 15.60 15.80 18.39 14.94	3.73 < 0.01 11.00 < 0.01 0.95 < 0.01 0.91 < 0.01	7.92 6.71 3.90	2.55 2.37		< 0.01		0.04	74.89	0.20	2.70	98.31	718	71	157	16	263	47
9 9 9 9 9 9 9	14.66 15.60 15.80 18.39 14.94	11.00 < 0.01 0.95 < 0.01 0.91 < 0.01	6.71 3.90	2.37	7 60		1.66	0.07	79.00	0.37	4.57	98.31	603	55	114	10	109	19
9 9 9 9 9	15.60 15.80 18.39 14.94	0.95 < 0.01	3.90			0.20	4.36	0.35	53.75 48.03	0.94	3.92 9.90	98.85 99.47	2290 2110	41 53	586 494	8 7	107 81	24 18
9	18.39 14.94			3.09	2.65 1.90	0.18 0.12	2.83 5.29	0.39 0.17	64.40	0.44		98.81	2050	87	342	é	120	16
9	14.94	4 74 0 04	3.82	2.64	1.46	0.13	5.21	0.17	65.30	0.42	2.99	98.85	1010	B1	318	6	107	12
9		4.74 0.01	B.46	1.20	4.56	0.17	6.04	0.24	48.04	0.86	6.50	99.21	921	29	766	7	79	16
		5.23 < 0.01	9.27	5.42	3.27	0.15	3.03	0.63	49.56	0.84	7.10	99.44	1240	106	497	9	78	16
	11.37 13.19	$0.14 0.01 \\ 0.13 < 0.01$	2.52 2.34	2.93 4.98		< 0.01 < 0.01	3.61 2.85	0.04 0.03	73.94 71.51	0.31 0.23	2.39 2.33	97.77 98.23	676 1600	71 109	227 191	15 18	247 301	35 45
9	15.82	0.10 < 0.01	3.16	3.63	0.65	0.02	4.55	0.09	67.63	0.45	2.73	98.83	1660	95	235	19	332	51
9	12.09	0.01 < 0.01	3.08	3.62	0.53	0.03	0.14	0.06	75.78	0.25	3.57	99.16	441	90	159	17	269	33
9	15.61	3.04 0.01	5.14	2.53	1.73	0.09	4.28	0.23	59.97	0.62	5.72	98.97	764	71	361	11	198	18
9	15.64 16.34	3.31 < 0.01 6.04 < 0.01	3.88 9.05	2.82 0.95	2.24 3.17	0.09 0.21	4.21 5.50	0.22 0.38	59.74 49.96	0.63 1.04	5.61 6.56	98.39 99.20	617 2380	89 20	272 560	12 7	198 107	20 25
9	18.34	5.57 < 0.01	8.38	1.64	3.30	0.19	4.51	0.40	52.18	1.02	4.16	99.69	1790	29	893	11	136	25
9	16.88	2.55 < 0.01	5.51	2.98	1.79	0.17	4.57	0.21	60.68	0.51	3.39	99.24	2110	79	590	9	117	17
9 9	17.74	1.65 < 0.01 2.35 < 0.01	7.16 6.65	4.67 2.14	3.49 2.25	0.11 0.12	2.78 6.34	0.34	55.79 57.05	0.74 0.55	4.77 3.45	99.24 98.55	2480 2310	107 49	488 520	9 7	111 111	17 17
9	17.04	1.86 < 0.01	6.95	2.65	2.37	0.15	5.88	0.30	57.76	0.59		98.49	2160	47	398	9	87	19
9	17.75	1.13 0.01	9.64	4.99	3.94	0.17	1.43	0.50	55.07	0.91		100.40	1820	145	371	11	106	21
9	18.34	0.68 0.01	10.18	5.34	3.26	0.17	1.19	0.49	54.01	1.01		100.45	1690	166	286	11	114	25
9 9 9	16.48 15.60	7.24 0.03 0.47 < 0.01	7.14	3.32	3.98 1.05	0.13	2.41 0.95	0.21	46.04 69.26	1.06	11.69 4.10	99.73 98.40	582 1450	105 118	218 117	4 23	93 370	26 50
9	12.71	1.96 < 0.01	1.94	3.90	1.76	0.07	0.16	0.05	69.83	0.27	6.14	98.79	695	90	53	16	285	37
9	16.48	2.06 0.02	10.33	1.08	4.73	0.13	4.21	0.47	52.18	1.31	6.97	99.97	359	34	148	9	103	24
-		*** * * * * *																23
_																		18 25
9	15.79	6.11 0.01	5.94	4.60	2.22	0.10	0.67	0.32	51.59	0.68	11.46	99.49	804	124	270	9	116	22
9	16.29	1.36 < 0.01	4.28	3.49	1.66	0.10	5.29	0.16	61.77	0.43			1290	94	329	9	110	14
9 9																-		14
-																-		11 14
9	13.64	0.08 < 0.01	2.30	3.62			2.69	0.04	72.48	0.24		-	1090	100	124	18	307	46
9	9.38	0.04 < 0.01	0.65	3.01			0.13	0.04	81,47	0.24	2.50	98.07	390	88	12	12	199	27
9	16.25	4.21 < 0.01	4.79	4.69	1.51	0.08	0.93	0.23	57.61	0.67			534	170	87	11	200	20
														-				28
9 9	17.33 17.27	$\begin{array}{rrrr} 6.38 & 0.01 \\ 2.34 < 0.01 \end{array}$	10.30	2.17 2.79	4.23	0.19	3.58 4.63	0.39	49.02	1.23			1670	49 67	623 405	в 12	108	26 22
9 99999 99999 9999	 	12.71 16.48 16.29 13.06 16.16 15.79 15.65 12.97 10.30 13.64 9.38 16.25 16.25 17.72 17.33	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} & 12.71 & 1.96 < 0.01 & 1.94 & 3.90 & 1.76 & 0.07 & 0.16 & 0.05 & 69.83 & 0.27 & 6.14 & 98.79 & 695 & 90 & 53 \\ \hline & 16.48 & 2.06 & 0.02 & 10.33 & 1.08 & 4.73 & 0.13 & 4.21 & 0.47 & 52.18 & 1.31 & 6.97 & 99.97 & 359 & 34 & 148 \\ \hline & 16.29 & 1.85 & 0.01 & 6.90 & 3.80 & 2.04 & 0.06 & 0.99 & 0.38 & 60.98 & 0.71 & 6.29 & 100.30 & 956 & 120 & 160 \\ \hline & 13.06 & 3.23 < 0.01 & 7.88 & 2.78 & 2.48 & 0.11 & 1.53 & 0.31 & 60.25 & 0.68 & 6.94 & 99.25 & 943 & 93 & 275 \\ \hline & 16.16 & 6.33 < 0.01 & 5.76 & 4.13 & 1.83 & 0.17 & 2.08 & 0.28 & 51.69 & 0.77 & 10.26 & 99.46 & 1400 & 152 & 274 \\ \hline & 15.79 & 6.11 & 0.01 & 5.94 & 4.60 & 2.22 & 0.10 & 0.67 & 0.32 & 51.59 & 0.68 & 11.46 & 99.49 & 804 & 124 & 270 \\ \hline & 16.29 & 1.36 < 0.01 & 4.28 & 3.49 & 1.66 & 0.10 & 5.29 & 0.16 & 61.77 & 0.43 & 3.62 & 98.45 & 1290 & 94 & 329 \\ \hline & 15.65 & 1.06 < 0.01 & 3.94 & 2.68 & 1.45 & 0.10 & 6.05 & 0.16 & 64.51 & 0.39 & 2.51 & 98.50 & 1420 & 69 & 320 \\ \hline & 12.97 & 6.22 & 0.02 & 8.88 & 3.88 & 7.19 & 0.14 & 1.51 & 0.64 & 47.43 & 0.70 & 10.35 & 99.93 & 2820 & 76 & 938 \\ \hline & 13.64 & 0.08 < 0.01 & 2.30 & 3.62 & 0.69 < 0.01 & 2.69 & 0.04 & 72.48 & 0.24 & 2.82 & 98.60 & 1090 & 100 & 124 \\ \hline & 9.38 & 0.04 < 0.01 & 0.65 & 3.01 & 0.61 < 0.01 & 0.13 & 0.04 & 81.47 & 0.24 & 2.80 & 98.07 & 390 & 88 & 12 \\ \hline & 16.25 & 4.21 < 0.01 & 4.79 & 4.69 & 1.51 & 0.08 & 0.93 & 0.23 & 57.61 & 0.67 & 8.50 & 99.47 & 534 & 170 & 87 \\ \hline & 17.72 & 4.65 < 0.01 & 5.70 & 2.77 & 1.82 & 0.18 & 4.21 & 0.30 & 55.77 & 0.72 & 6.00 & 99.44 & 1080 & 68 & 430 \\ \hline & 17.33 & 6.38 & 0.01 & 10.30 & 2.17 & 4.23 & 0.19 & 3.58 & 0.39 & 49.02 & 1.23 & 5.74 & 100.57 & 1670 & 49 & 623 \\ \hline & 17.33 & 6.38 & 0.01 & 10.30 & 2.17 & 4.23 & 0.19 & 3.58 & 0.39 & 49.02 & 1.23 & 5.74 & 100.57 & 1670 & 49 & 623 \\ \hline & 17.33 & 6.38 & 0.01 & 10.30 & 2.17 & 4.23 & 0.19 & 3.58 & 0.39 & 49.02 & 1.23 & 5.74 & 100.57 & 1670 & 49 & 623 \\ \hline & & 17.33 & 6.38 & 0.01 & 10.30 & 2.17 & 4.23 & 0.19 & 3.58 & 0.39 & 49.02 & 1.23 & 5.74 & 100.57 & 1670 & 49 & 623 \\ \hline & & $	$\begin{array}{c} & 12.71 & 1.96 < 0.01 & 1.94 & 3.90 & 1.76 & 0.07 & 0.16 & 0.05 & 69.83 & 0.27 & 6.14 & 98.79 & 695 & 90 & 53 & 16 \\ \hline & 16.48 & 2.06 & 0.02 & 10.33 & 1.08 & 4.73 & 0.13 & 4.21 & 0.47 & 52.18 & 1.31 & 6.97 & 99.97 & 359 & 34 & 148 & 9 \\ \hline & 16.29 & 1.85 & 0.01 & 6.90 & 3.80 & 2.04 & 0.06 & 0.99 & 0.38 & 60.98 & 0.71 & 6.29 & 100.30 & 956 & 120 & 160 & 7 \\ \hline & 13.06 & 3.23 < 0.01 & 7.88 & 2.78 & 2.48 & 0.11 & 1.53 & 0.31 & 60.25 & 0.68 & 6.94 & 99.25 & 943 & 93 & 275 & 8 \\ \hline & 16.16 & 6.33 < 0.01 & 5.76 & 4.13 & 1.83 & 0.17 & 2.08 & 0.28 & 51.69 & 0.77 & 10.26 & 99.46 & 1400 & 152 & 274 & 8 \\ \hline & 15.79 & 6.11 & 0.01 & 5.94 & 4.60 & 2.22 & 0.10 & 0.67 & 0.32 & 51.59 & 0.68 & 11.46 & 99.49 & 804 & 124 & 270 & 9 \\ \hline & 16.29 & 1.36 < 0.01 & 4.28 & 3.49 & 1.66 & 0.10 & 5.29 & 0.16 & 61.77 & 0.43 & 3.62 & 98.45 & 1290 & 94 & 329 & 9 \\ \hline & 15.65 & 1.06 < 0.01 & 3.94 & 2.68 & 1.45 & 0.10 & 6.05 & 0.16 & 64.51 & 0.39 & 2.51 & 98.50 & 1420 & 69 & 320 & 8 \\ \hline & 12.97 & 6.22 & 0.02 & 8.88 & 3.88 & 7.19 & 0.14 & 1.51 & 0.64 & 47.43 & 0.70 & 10.35 & 99.93 & 2820 & 76 & 938 & 8 \\ \hline & 13.64 & 0.08 < 0.01 & 2.30 & 3.62 & 0.69 < 0.01 & 2.69 & 0.04 & 72.48 & 0.24 & 2.82 & 98.60 & 1090 & 100 & 124 & 18 \\ \hline & 9.38 & 0.04 < 0.01 & 0.65 & 3.01 & 0.61 < 0.01 & 0.13 & 0.04 & 81.47 & 0.24 & 2.50 & 98.07 & 390 & 88 & 12 & 12 \\ \hline & 16.25 & 4.21 < 0.01 & 4.79 & 4.69 & 1.51 & 0.08 & 0.93 & 0.23 & 57.61 & 0.67 & 8.50 & 99.47 & 534 & 170 & 87 & 11 \\ \hline & 17.72 & 4.65 < 0.01 & 5.70 & 2.77 & 1.82 & 0.18 & 4.21 & 0.30 & 55.77 & 0.72 & 6.00 & 99.48 & 1080 & 68 & 430 & 10 \\ \hline & 17.33 & 6.38 & 0.01 & 10.30 & 2.17 & 4.23 & 0.19 & 3.58 & 0.39 & 49.02 & 1.23 & 5.74 & 100.57 & 1670 & 49 & 623 & 8 \\ \hline & 17.33 & 6.38 & 0.01 & 10.30 & 2.17 & 4.23 & 0.19 & 3.58 & 0.39 & 49.02 & 1.23 & 5.74 & 100.57 & 1670 & 49 & 623 & 8 \\ \hline & - & - & 17.33 & 6.38 & 0.01 & 10.30 & 2.17 & 4.23 & 0.19 & 3.58 & 0.39 & 49.02 & 1.23 & 5.74 & 100.57 & 1670 & 49 & 623 & 8 \\ \hline & - & - & - & - & - & - & - & - & $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

CERTIFICATION:

.

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave. North Vancouver

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8 Page Number :6 Total Pages :7 Certificate Date: 08-NOV-94 Invoice No. :19427180 P.O. Number : Account :BSJ

Project : UNUK #134 Comments: ATTN: V.P. VAN DAMME CC: WARREN BATES

CERTIFICATE OF ANALYSIS A9427180

CERTIFICATION:

SAMPLE	PREP CODE	A1203 % XRF	CaO %Cr2O3 %Fe XRF XRF	203 % 1 XRF	K20 % XRF	Mg0 % XRF	MnO % XRF	Na20 % XRF	P2O5 % XRF	SiO2 % XRF	TiO2 % XRF	LOI % XRF	TOTAL %	Ba ppm	Rb ppm	Sr ppm	Nb ppm	Zr ppm	Y ppm
394104	299	15.70	1.30 < 0.01	3.86	3.61	1.45	0.10	5.66	0.16	63.38	0.40	2.55	98.17	2080	85	376	9	112	16
394105	299	17.01	3.96 < 0.01	4.68	3.58	1.72	0.12	6.53	0.21	55.16	0.43	4.34	97.74	1770	72	573	7	126	18
394106	299	16.70	0.92 0.01	6.72	4.19	3.25	0.10	3.87	0.35	58.04	0.68	4.15	98,98	2450	84 101	375 55	10	111	15
394107 394108	299	9.93 13.06	1.32 0.01 0.08 < 0.01	6.53 2.67	2.67 2.66	2.05 0.52	0.08 < 0.01	0.39 3.70	0,0 <u>4</u> 0,07	69.21 72.46	0.58 0.34	6.88 2.67	99.69 98.23	365 904	74	197	8 15	120 274	12 39
394109	299	11.24	0.01 0.01	1.78	9.52	0.14	< 0.01	0.29	0.02	73.31	0.21	1.56	98.09	1640	172	39	18	286	36
394110	299	15.54	3.56 < 0.01	4.84	2.50	3.51	0.10	3.50	0.23	57.36	0.61	7.22	98.97	822	70	162	13	189	19
394111	299	15.34	3.30 0.01	4.98	2.04	2.87	0.09	4.38	0.23	59.18	0.60	5.81	98.83	1260	58	310	B	187	20
394112	299	11.89	0.58 0.01	5.69	6.88	0.49	0.04	1.39	0.23	67.50	0.44	3.39	98.53	2660	167	137	9	72	13
394113	299	17.36	5.29 < 0.01	6.14	2.33	2.03	0.16	3.74	0.26	56.65	0.72	5.59	100.27	1510	56	437	10	130	24
394114	299	16.08	0.93 0.01	4.06	3.55	1.35	0.08	4.46	0.16	65.28	0.43	2.48	98.87	1600	103 83	368 361	7	111	13 16
394115 394116	299	16.26	0.79 < 0.01 3.59 0.01	4.30 8.44	3.20	1.50 2.70	0.10 0.16	5.94 6.51	0.16	53.22	0.42	2.46	98.42 98.98	2040 315	19	248	7	109 132	21
394117	299	12.20	5.84 0.01	6.03	0.69	1.96	0.18	4.78	0.12	59.09	0.73	6.80	98.43	177	17	207	5	106	24
394118	299	14.12	1.89 0.01	5.57	1.64	1.77	0.10	4.63	0.13	64.03	0.59	4.02	98.50	391	45	198	8	105	13
394119	299	13.62	0.59 0.01	2.66	3.41	1.12	0.03	2.69	0.08	70.92	0.33	3.78	99.24	1130	102	175	19	219	40
394120	299	13.56	0.16 < 0.01	2.82	2.91	1.01	0.01	4.02	0.06	69.87	0.29	3.27	97.98	1020	87	221	24	227	29
394121	299	11.09	0.01 0.01	1.21	9.23	0.16		0.32	0.03	73.76	0.20	1.64	97.66	2160	154	76	16	260	37
394122 394123	299 299	16.17 15.61	0.02 0.02 0.04 0.01	3.13 1 4.71	10.55 4.56	0.35 · 0.76 ·		0.33 1.16	0.02	61.97 65.54	0.77 0.61	5.53 6.15	98.86 99.28	1730 893	189 108	67 40	6 11	96 194	26 43
394124	299	15.24	0.80 0.01	8.13	6.74	0.98	0.34	1.06	0.36	60.54	0.73	5.16	100.09	1710	194	92	8	86	19
394125	299	18.45	3.72 < 0.01	7.36	1.18	2.44	0.16	6.14	0.39	53.57	0.87	5.63	99.91	693	28	568	9	132	28
394126	299	17.13	5.58 < 0.01	8.98	1.52	3.84	0.20	4.15	0.41	50.45	1.08	6.91	100.25	2000	43	527	11	108	25
394127	299	18.79	4.37 < 0.01	8.08	1.96	2.75	0.22	4.82	0.48	51.84	0.94		100.17	1360	42	677	9	117	27
394128	299	17.25	5.02 < 0.01	9.60	1.02	3.75	0.18	4.80	0.40	50.58	1.02	6.22	99.84	1090	27	556	7	115	25
394129	299	15.29	5.72 < 0.01	6.78	1.96	2.31	0.13	3.75	0.29	54.00	0.79		100.10	1260	46	314 284	7	111	19
394130	299	15.17	9.90 < 0.01 7.98 < 0.01	8.24 8.77	1.84	3.83 3.42	0.21 0.20	2.03 4.85	0.34	40.73 48.85	0.95 0.98	17.41	100.85	745 1070	41 20	1080	8 9	90 109	22 20
394131 494001	299	18.26 13.81	0.84 < 0.01		1.61	0.88	0.02	3.94	0.58	67.13	1.71		99.34	1450	30	191	16	141	35
494002	299	15.23	0.25 0.01	9.06	1.81	3.29	0.02	2.41	0.15	59.82	0.95	5.85	98.85	1600	39	158	19	213	21
494003	299	9.57	0.25 0.01	4.20	1.05	1.34	0.03	2.47	0.09	75.14	0.42	3.96	98.53	545	27	137	6	85	17
494004	299	14.25	1.43 < 0.01	8.81	0.31	3.33	0.11	6.39	0.21	59.51	1.01	3.83	99.19	426	7	72	7	102	23
94005	299	12.60	11.07 0.02		3.19	3.12	0.23	0.89	0.25	45.59	0.68	14.82	99.75	1010	96	423	7	98	18
194006	299	15.96	0.15 0.01		13.10	0.24 <		1.18	0.03	63.48	0.30	1.83	98.28	2440	229	58	23	383	49
94007	299	13.19	0.13 0.01	1.60 1	11.28	0.13 <	0,01	1.09	0.03	68.55	0.23	1.57	97.81	2490	202	55	17	314	30
94008	299	14.31	6.80 0.01		5.61 14.46	2.28	0.16	2.69	0.45	49.55 63.46	0.66	9.57	99.38 98.05	1120 1130	123 282	496 54	15 22	120 385	22 49
94009 94010	299 299	15.49 13.96	0.03 < 0.01 0.04 0.02		6.17	0.13 <		4.51	0.02	70.51	0.24	1.16	98.05	1040	147	163	18	346	39
94010	299	15.20	1.39 0.02		3.11	1.28	0.08	3.26	0.19	66.01	0.52	3.88	99.45	726	79	117	7	98	15
94012	299	13.16	2.04 0.01		3.28	1.04	0.07	1.13	0.46	64.97	0.65	7.85	99.52	950	87	163	7	133	41

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8 Page Number :7 Total Pages :7 Certificate Date: 08-NOV-94 Invoice No. : 19427180 P.O. Number : Account : BSJ

		 								C		ICAT	EOF	ANAL	YSIS	4	49427	180	<u>-</u>	
SAMPLE	PR CO	A1203 % XRF	CaO %C XRF	203 %F XRF	9203 % XRF	K20 % XRF	MgO % XRF	Mino % XRF	Na20 % XRF	9205 % XRF	SiO2 % XRF	TiO2 % XRF	LOI %	TOTAL %	Ba ppm	Rb ppm	Sr ppm	Nb ppm	Zr ppm	Y ppm
494013 494014 494015 494016 494016 494017	299 299 299 299 299 299	 12.49 13.33 9.93 12.36 16.24	0.45 0.92 8.59 9.04 2.28	0.01 0.01 0.02 0.01 0.01	4.86 5.76 6.05 5.29 6.62	2.73 3.51 2.70 2.08 6.44	0.58 0.86 2.64 1.56 2.28	< 0.01 0.02 0.15 0.16 0.10	1.88 1.07 0.26 3.45 0.34	0.23 0.17 0.19	69.08 64.64 55.60 54.23 58.59	0.52 0.53 0.43 0.49 0.76	6.33 8.13 13.21 10.73 5.25	99.75 99.59	691 708 314 434 1210	75 94 74 62 152	139 123 212 340 85	8 10 6 8 9	138 164 59 100 135	24 45 16 20 18

CERTIFICATION:

1-1: -13. -29

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GHANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

UNUK (134) Whate Rock

Comments: ATTN: V.P. VAN DAMME CC: WARREN BATES

CERTIFICATE

A9427181

(BSJ) - GRANGES INC.

UNUK #134

Samples submitted to our lab in Vancouver, BC. This report was printed on 17-OCT-94.

ANALYTICAL PROCEDURES DETECTION

CHEMEX	NUMBER	DESCRIPTION	METHOD	UPPER LIMIT
	NUMBER SAMPLES	Ce ppm: Trace rock, soil Dy ppm: Trace rock, soil Er ppm: Trace rock, soil Eu ppm: Trace rock, soil Gd ppm: Trace rock, soil La ppm: Trace rock, soil Lu ppm: Trace rock, soil Pr ppm: Trace rock, soil Th ppm: Trace rock, soil Th ppm: Trace rock, soil Th ppm: Trace rock, soil Th ppm: Trace rock, soil Th ppm: Trace rock, soil Th ppm: Trace rock, soil Th ppm: Trace rock, soil Th ppm: Trace rock, soil Th ppm: Trace rock, soil Th ppm: Trace rock, soil	METHOD NAA NAA NAA NAA NAA NAA NAA NAA NAA NA	
			:	

A9427181

Chemex Labs Ltd.

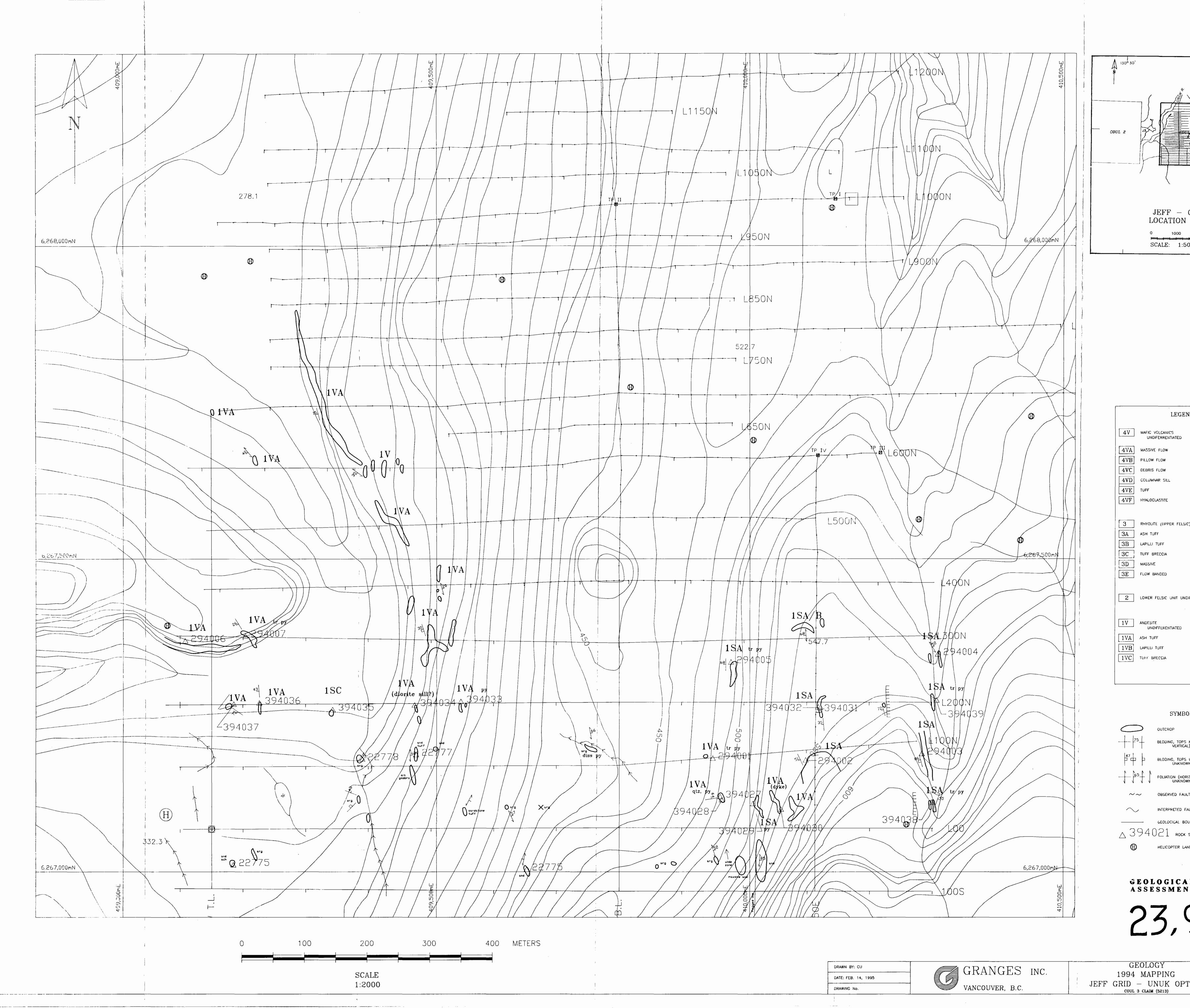
Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GRANGES INC.

2230 - 885 W. GEORGIA ST. VANCOUVER, BC V6C 3E8

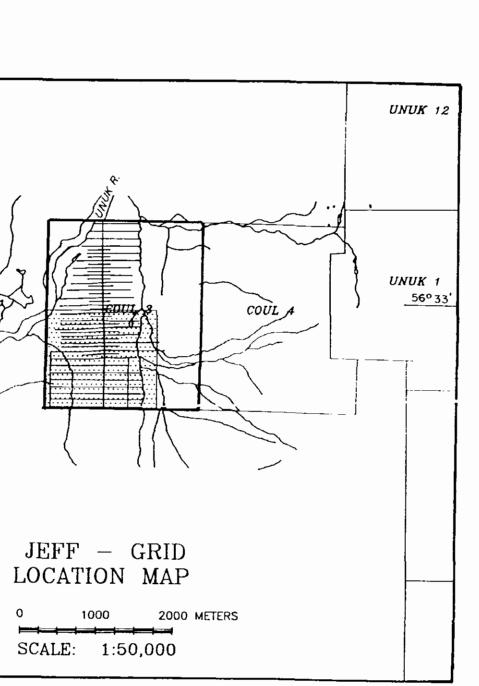
Page Number :1 Total Pages :1 Certificate Date: 17-OCT-94 Invoice No. :19427181 P.O. Number : BSJ Account

1-7. 470. 11:1


Project : UNUK #134 Whole Back REE P.O. Num Comments: ATTN: V.P. VAN DAMME CC: WARREN BATES R-GRID

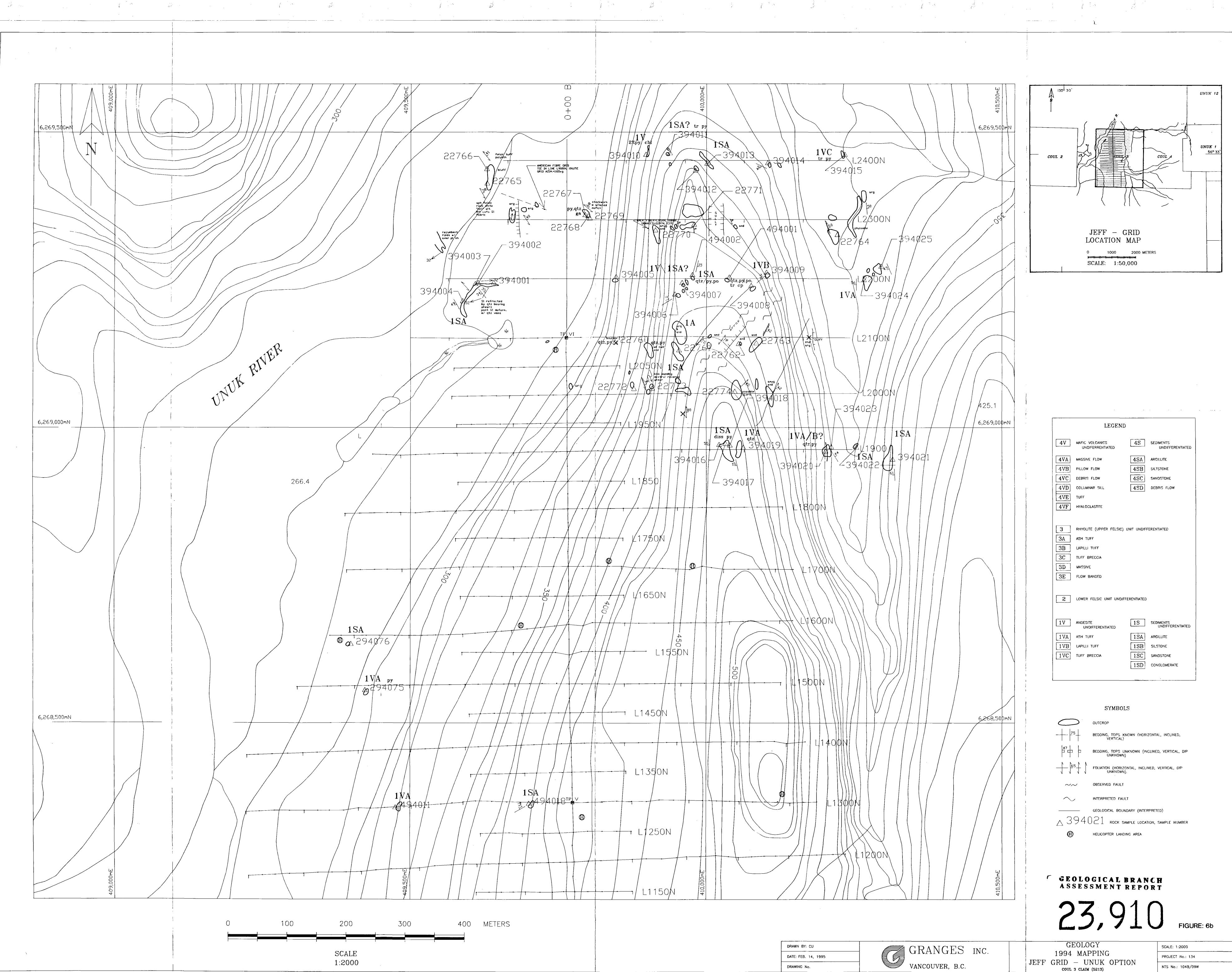
CERTIFICATE OF ANALYSIS A9427181

	SAMPLE	PREP CODE	Ce NAA ppm	Dy NAA ppm	Er NAA ppm	Eu NAA ppm	Gđ NAA 1 ppm	Ho NAA ppm	La NAA ppm	Lu NAA ppm	NG NAA ppm	Pr NAA ppm	Sm NAA ppm	To NAA ppm	Th NAA T ppm	m NAA U ppm	NAA Y ppm	fb NAA ppm		
	294019 294024 294030 294031 294036	299 288 299 288 299 288 299 288 299 288 299 288	68.0 60.0 72.0 62.0 64.0	- 5 5 6	< 20 < 20 < 20 < 20 < 20 < 20	0.50 1.50 0.50 1.00 0.50	< 50 < 50 < 50 < 50 < 50 < 50	< 1 < 1 < 1 < 1 < 1 < 1	32.0 30.0 31.0 31.0 26.0	0.70 0.60 0.70 0.80 0.80	15 5 15 10 15	< 5 < 5 15 < 5 < 5	4.20 5.40 5.10 5.40 4.20	0.80 1.10 0.20 0.60 0.80	13 12 13 13 13	2 1 1 3 1	9.0 4.0 9.0 6.0 7.0	5.40 5.00 5.10 5.30 5.10		
	294038 294046 294063 294070 394045	299 288 299 288 299 288 299 288 299 288 299 288	72.0 94.0 70.0 54.0 34.0	3 5 2 4 3	< 20 < 20 < 20 < 20 < 20 < 20	0.50 0.50 1.00 1.50 1.00	< 50 < 50 < 50 < 50 < 50 < 50	< 1 1 < 1 < 1 < 1	32.0 38.0 33.0 25.0 12.0	0.70 0.80 0.80 0.60 0.30	15 15 15 10 10	< 5 < 5 < 5 < 5 < 5 < 5	5.20 5.60 4.30 5.60 3.50	0.50 0.70 1.30 0.50 0.60	13 16 15 9 3	3 2 2 2 2	5.0 8.0 5.0 4.0 1.0	4.60 5.70 5.00 4.30 2.00		
	394064 394075 394094 394107 394112	299 288 299 288 299 288 299 288 299 288 299 288 299 288	60.0 60.0 36.0 36.0 36.0	6 3 3 2 < 1	< 20 < 20 < 20 < 20 < 20 < 20	0.50 0.50 0.50 0.50 1.00	< 50 < 50 < 50 < 50 < 50 < 50	1 1 < 1 < 1 < 1	30.0 30.0 18.0 13.0 13.0	0.90 0.70 0.30 0.30 0.20	25 25 10 10	< 5 < 5 < 5 10 < 5	5.60 4.90 2.80 3.20 2.50	0.90 0.60 0.40 0.40 0.40	9 10 5 1 3	3 2 1 1 2	4.0 4.0 2.0 1.0 3.0	4.90 4.00 1.30 1.80 1.00		
· • • • •	394124	299 288	48.0	3	< 20	1.00	< 50	< 1	19.0	0.30	15	< 5	4.00	0.90	4	2	1.0	1.60		
								,			-					$\Omega/$				
							1	13	4 (OS Nf	B]	J			M				-0
		-												Ċ	ERTIFIC	HL	ia	ua.	flexau	Ela_



GEOLOGY 1994 MAPPING JEFF GRID – UNUK OPTION coul 3 claim (5213)

· .


LEGEND 4S SEDIMENTS UNDIFFERENTIATED 4SA ARGILLITE 4SB SILTSTONE 4SC SANDSTONE 4SD DEBRIS FLOW 3 RHYOLITE (UPPER FELSIC) UNIT UNDIFFERENTIATED 2 LOWER FELSIC UNIT UNDIFFERENTIATED 1S SEDIMENTS UNDIFFERENTIATED 1SA ARGILLITE 1SBSILSTONE1SCSANDSTONE SYMBOLS

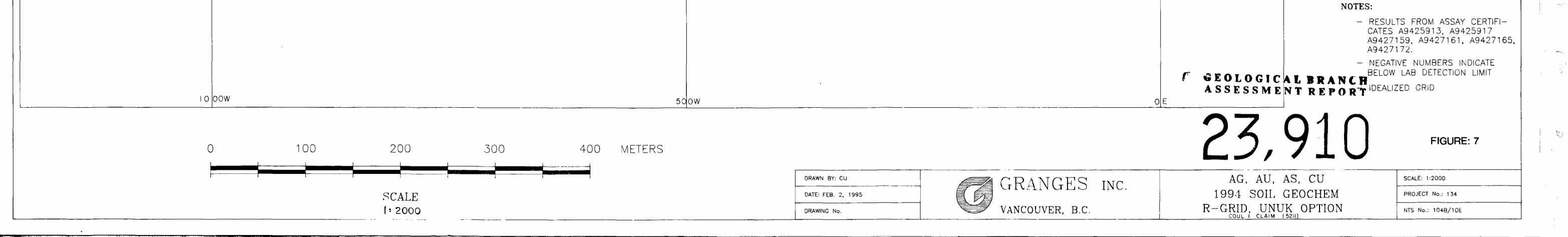
BEDDING, TOPS KNOWN (HORIZONTAL, INCLINED, VERTICAL) BEDDING, TOPS UNKNOWN (INCLINED, VERTICAL, DIP UNKNOWN) OBSERVED FAULT INTERPRETED FAULT GEOLOCICAL BOUNDARY (INTERPRETED) $\Delta 394021$ rock sample location, sample number HELICOPTER LANDING AREA GEOLOGICAL BRANCH ASSESSMENT REPORT

OUTCROP

SCALE: 1:2000 PROJECT No.: 134 NTS No.: 104B/09W

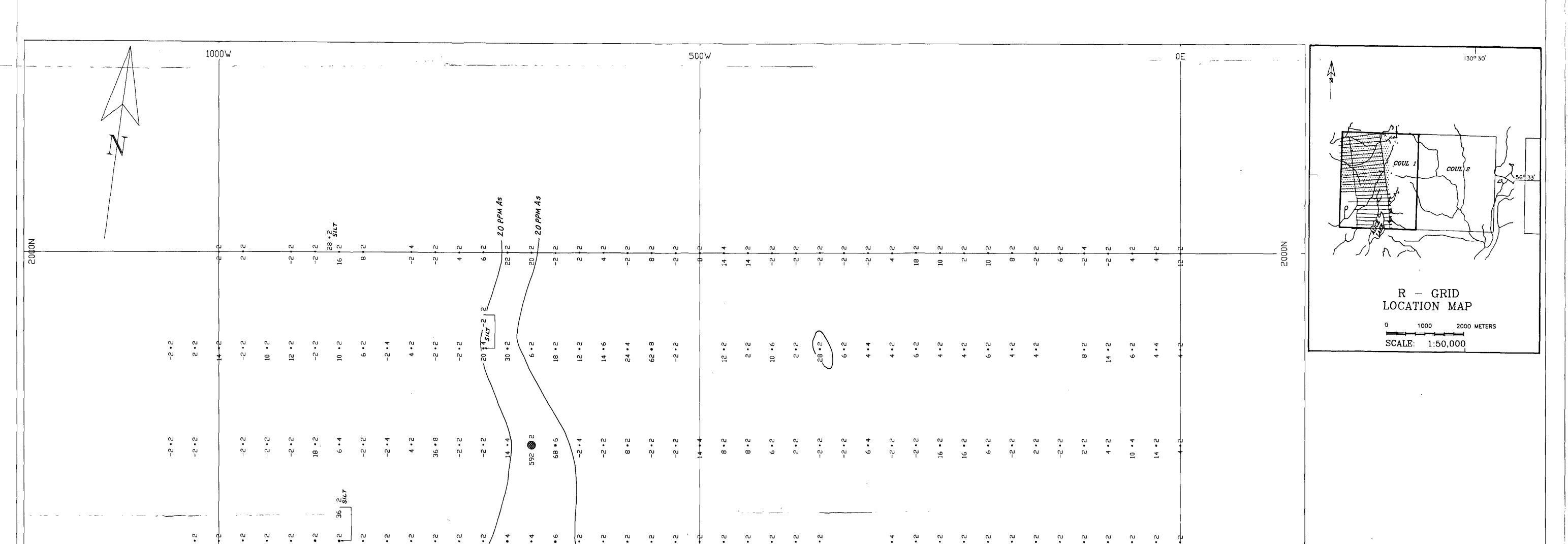
FIGURE: 6a

· /


+

))

LEGEND		
IICS INTIATED	4S	SEDIMENTS UNDIFFERENTIATED
,	4SA 4SB 4SC	ARCILLITE SILTSTONE SANDSTONE
LL	4SD	DEBRIS FLOW
E		
PER FELSIC) 1	JNIT UNDIFF	ERENTIATED
)		
: UNIT UNDIFFI	ERENTIATED	
ENTIATED	1S 1SA	SEDIMENTS UNDIFFERENTIATED ARGILLITE
N	1SB 1SC 1SD	SILSTONE SANDSTONE CONGLOMERATE
	. "?? ¥186 & gas, # 4 <u>an</u> a se	ζ
SYMBOL	S	
ROP		

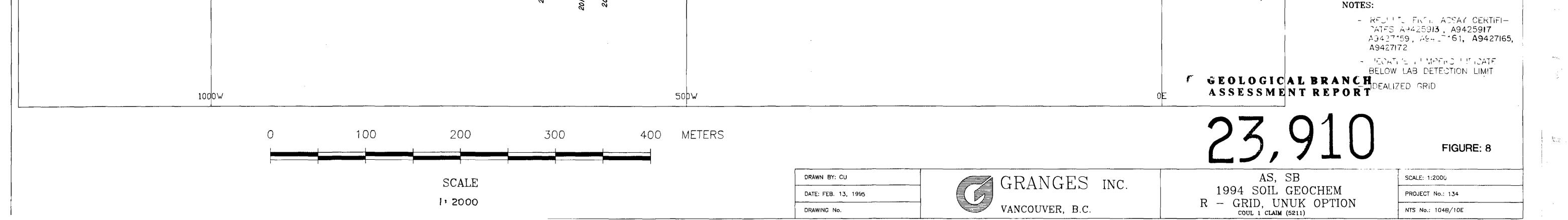

12 14 14 14 12 14 14 16 15 12 12 12 12 12 12 12 12 12 12 12 12 12		
30 - 5 35 - 0.2		
הט הט וויים הט		
		$\stackrel{\text{\tiny CEGEND:}}{\underset{\text{\tiny O}}{\overset{\text{\tiny O}}}{\overset{\text{\tiny O}}{\overset{\text{\tiny O}}}{\overset{\text{\tiny O}}{\overset{\text{\tiny O}}}{\overset{\text{\tiny O}}{\overset{\text{\tiny O}}{\overset{\text{\tiny O}}}{\overset{\text{\atop O}}{\overset{\text{\atop O}}}{\overset{\text{\atop O}}}{\overset{\text{\atop O}}{\overset{\text{\atop O}}}{\overset{\text{\atop O}}{\overset{\text{\atop O}}}{\overset{\text{\atop O}}{\overset{\text{\atop O}}}{\overset{\text{\atop O}}{\overset{\text{\atop O}}}{\overset{\text{\atop O}}{\overset{\text{\atop O}}}{\overset{\text{\atop \text{\atop O}}}{\overset{\text{\atop O}}}{\overset{}}}{\overset{}}{\overset{}}}{\overset{}}}{\overset{}}}}}}}$
		AG AG BP B AG B B AG B B B B B B B B B B B B B B
		AS PPM CU CU
26 - 5 15 - 5 15 - 5 17 - 5 26 - 5 17 - 5 26 - 5 26 - 5 26 - 5 26 - 5 26 - 5 26 - 5 26 - 5 26 - 5 26 - 5 26 - 5 26 - 5 26 - 5 27 - 5 26 - 5 27	$ \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 \\ 2 & 2 &$	
21 4 13 6 13 4 13 6 13 4 13 6 13 4 13 6 13 6		GOLD GREATER THAN 4 PPB
		ANOMALOUS SILVER (SIZE ANNOTATED)
20 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	1 1 <td>CONTOURED FOR SILVER Ippm, 2ppm</td>	CONTOURED FOR SILVER Ippm, 2ppm

.

i cia con esta de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la

es a N

	ณ • •	
	1500N	
-2 -2 -2 -2	d ● 01	
	сц • •	
	-	
$\begin{bmatrix} 26 & 2 \\ 26 & 2 \\ 18 & 2 \\$	ය • -	
	ZO	
	100	
$\begin{bmatrix} 1 & 2 & 3 & 3 \\ 2 & 2 & 2 & 3 \\ 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 \\ 2 & 2 &$	ណ •	·
	4 •	LEGEND:
1 1	·	
	¥	AS, PPM
$\begin{bmatrix} -2 & -2 & -2 & -2 & -2 & -2 & -2 & -2 $	ત્ય • ૦	SYMBOLS: ANOMALOUS ARSENIC
		(SIZE ANNOTATED) CONTOURED FOR AS ≥ 20PPM
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	- 00 2007 20	
50 bases 50 base	•	NOTES:

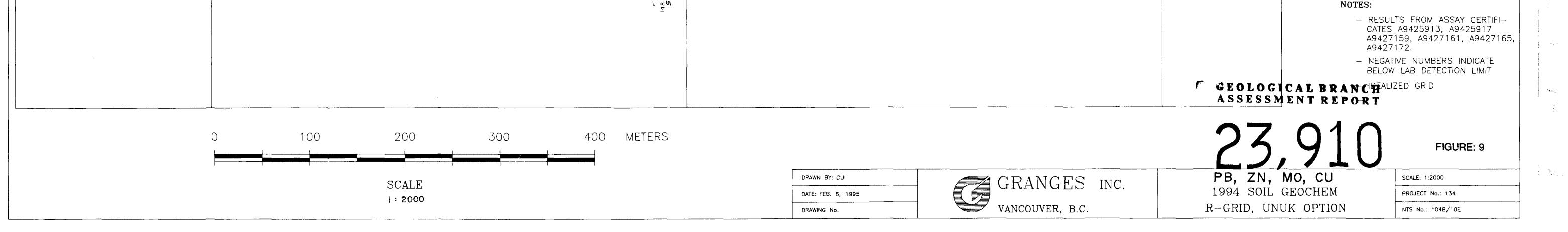

. .

2

÷.,

and services.

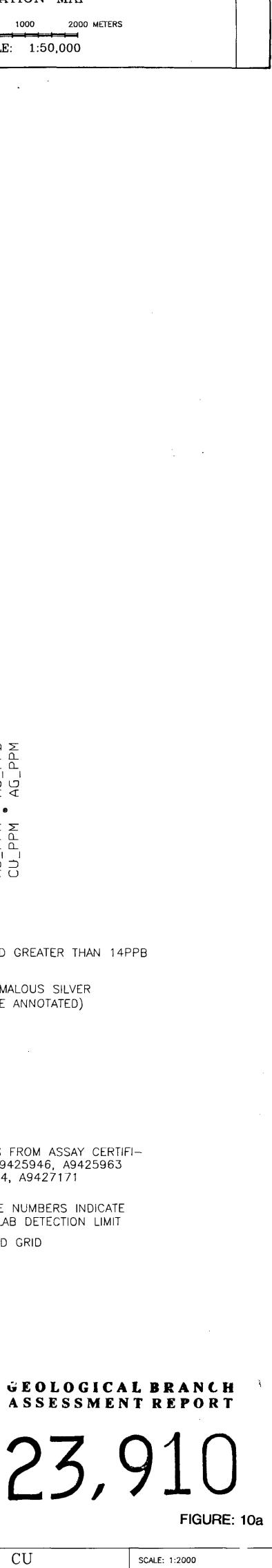
1

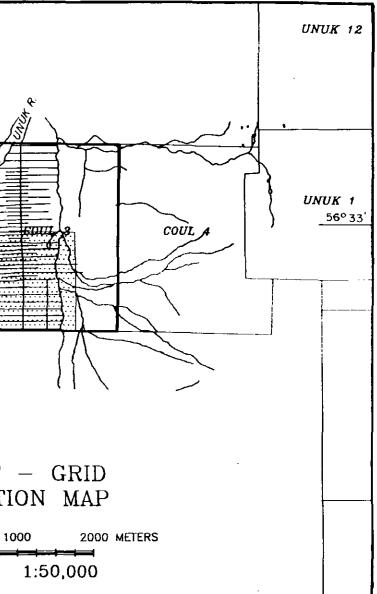


N		$130^{\circ} 30'$
4 -0.5 - 1	$\begin{array}{c} & 122 \\ & 441 \\ & 441 \\ & 105 \\ & 441 \\ & 105 \\ & 105 \\ & 105 \\ & 106 \\$	R - GRID LOCATION MAP
12 0.5 60 1 50 2 88 -1	$\begin{bmatrix} 2 & -0.5 \\ 10 & 0$	COCATION MAP 0 1000 2000 METERS SCALE: 1:50,000
	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & $	
	$ \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	
•	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- T200 N
22 0.5 44 6 12 -0.5 62 8 70 6	$\begin{array}{c} 166 - 0.5 \\ 64 - 0.5 \\ 64 - 0.5 \\ 66 $	
	$\begin{array}{c} \begin{array}{c} & & & & & & & & & & & & & & & & & & &$	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
8 -0.5 48 7 56 2 -0.5 56 2 -0.5 46 4 -0.5 48 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1700 N
12 -0.5 96 3 66 3	88 8 8 - 0.5 88 8	
6 -0.5 40 -1 32 2 32 2 50 -1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
6 -0.5 40 2 2 -0.5 8 -0.5 28 4 30 3 30 3 30 3 76 7 76 7 76 7 76 2 20 -0.5 52 3 20 -0.5 52 3	$ \begin{bmatrix} 2 & -0.5 & $	SYMBOLS:
24 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ANOMALOUS ZINC (SIZE ANNOTATED) CONTOURED FOR ZN ≥100 PPM

1

1 I


	20pw 1 0E
5	V 17 18 18 18 18 18 18 18 18 18 18
	272 - 5 272 - 5 272 - 5 28 6 - 5 29 0.4 20 1.0 2
	11 17 17 17 17 17 17 17 17 17
. /	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	30 30 40 30 <td< td=""></td<>
N005	ή ή ή 0
	ດ ດ້າວ ລະຍະ ທີ່ມີ ແລະ ທີ່ຂ້າຍ ເດີດ ທີ່ດີ ດີ ດີ ດີ ດີ ດີ ດີ ດີ ດີ ດີ ດີ ດີ ດີ ດ
	- 12 -
	ດ້າ ເພື່ອ 8.2 ຄືຍີ່ເພື່ອ 8.8 ຄືຍີ່ເພື່ອ 9.6 ຄືຍີ່ເຫັນ 1.6 ຄືຍີ່ເຫັນ 1.6 ຄືຍີ່ເຫັນ 1.6 ຄືຍີ່ເຫັນ 1.6 ຄືຍີ່ເຫັນ 1.6 ຄືຍີ່ເຫັນ 1.6 ຄືຍີ່ເຫັນ 1.6 ຄືຍີ່ເຫັນ 1.6 ຄືຍີ່ເຫັນ 1.6 ຄືຍີ່ເຫັນ 1.6 ຄືຍີ່ເຫັນ 1.6 ຄືຍີ່ມີ 1.6 ຄືຍີ່ເຫັນ 1.6 ຄືຍີ່ເຫັນ 1.6 ຄືຍີ່ເຫັນ 1.6 ຄືຍີ່ເຫັນ 1.6 ຄືຍີ່ເຫັນ 1.6 ຄືຍີ່ເຫັນ 1.6 ຄືຍີ່ເຫັນ 1.6 ຄືຍີ່ເຫັນ 1.6 ຄືຍີ່ເຫັນ 1.6 ຄືຍີ 1.6 ຄື 1.6 ຄືຍີ 1.6 ຄື 1.6 ຄືຍີ 1.6 ຄືຍີ 1.6 ຄື 1.6
- 2	น่าย น่าย น่าย น่าย 455 856 น่าน4759 86 ยังสี 4 ยังเสี 4 นี้ ก่าย น่าย น่าย 4 ยีย 858 859 458 859 144 ค.ศ. ค.ศ. 188 4 4 ก่าย น่าย น่าย 188 859 144 ค.ศ. 188 148 149 149 149 149 149 149 149 149 149 149
	500W O 100 200 300 400 METERS
	SCALE 1:2000


	500E	$\int_{130^{6} 30'}$
0 8 8 8 9 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9		LEGEND: Had op Mad op Mad se
26 19 20 20 20 20 20 20 20 20 20 20 20 20 20		SYMBOLS: GOLD GREATER THA ANOMALOUS SILVER (SIZE ANNOTATED)
2 10 4 10 10 10 10 10 10 10 10 10 10 10 10 10		NOTES: - RESULTS FROM ASSAY CATES A9425946, A942 A9427164, A9427171 - NEGATIVE NUMBERS INC
289-5 31-7 232-5 232-5 13-5 13-5 13-5 13-5 13-5 13-5 13-5 13		BELOW LAB DETECTION - IDEALIZED GRID
	500E	GEOLOG ASSESSI 23
DRAWN BY: CU DATE: FEB. 7, 1995 DRAWING No.	GRANGES INC. VANCOUVER, B.C.	AG, AU, AS, CU 1994 SOIL GEOCHEM JEFF GRID – UNUK OPTION coul 3 claim (5213)

. ,

· · ·

. .

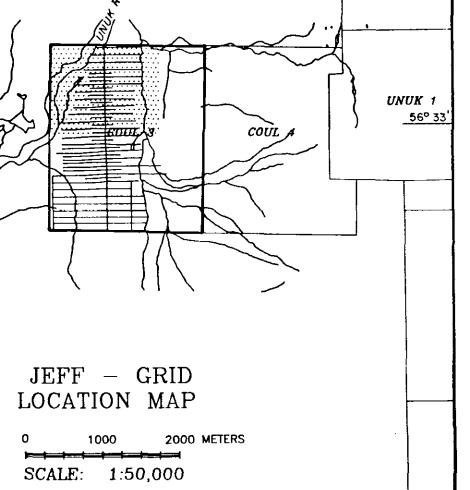
-

PROJECT No.: 134

: .

_____ NTS No.: 104B/09W

				•		
- 2500N		· · · · · · · · · · · · · · · · · · ·	509W			
	N					
			- -		,	
- 2000N						
					10 -5 17 1.0	u ç
						1
						ſ
	·			44 8 0		LL C
1500N			32 -5 22 0.8 48 -5 27 0.8	26 -5 157 0.2 22 15	194 95 30 2.0 30 2.0	116 -5
					51	
		ດ [2] - 1 - 1 - 1 ດ [2] - 1 (2] - 1) [2] - 1 (2] - 1) [2] - 1 (2] - 1) [2] - 1 (2] - 1) [2] - 1 (2] - 1) [2] - 1 (2] - 1) [2] - 1 (2] - 1) [2] - 1 (2] - 1 (2] - 1) [2] - 1 (2]		ທີ່ໄດ້ ທີ່4 ທີ່ 1 0 1 0 ບິດ ທີ່	12 1.4 22 -5 57 0.6	ט כר
			500¥			
			0			
	<i>,</i>					


.

		 · .					· · · · · · · · · · · · · · · · · · ·	- -	کی ت یش ۲
- 2500N	509W					140 -5 22 5.8 220 -5 20 1.2 20 1.2 31 1.0		27 0.2 27 0.2 33 - 0.2 33 - 0.2	21 0.6 382 -5 15 0.8
				104 -5 118 1.2	164 -5 21 3.8 34 -5 91 1.0	816 - 5 ³⁹⁹⁰ 225 22 2.8 13 43.4 28 - 5 18 1.2	42 - 5 24 1.0 48 - 5 41 - 0.4	80 50 60 60 80 80 80 80 80 80 80 80 80 80 80 80 80	36 ~5 15 0.4
		• • •		36 8-5 2:2 2:2	12 - 2 - 2 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	20 - 5 - 2 0.8 - 5 - 5 56 - 5 1.4 0.4	ດ ເຊິ່ງ ເຊີ່ ເຊີ່ງ ເຊີ່ງ ເຊີ່ ເຊີ່ ເຊີ່ ເຊີ່ ເຊີ່ ເຊີ່ ເຊີ່ ເຊີ່	2 2 4 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	17 1.2 -2 -5 6 0.6 7 0.6
		:	42 -5 14 1.4 44 -5 64 3.2 64 3.2 32 -5 44 1.4 1390 23 -5 44 1.4 7.0 25 3 120 22 4.4	ດ. ອີ ເງີ	28 28 28 44 1.2 31 0.5 0.5	62 - 5 94 6.8 42 -5 72 1.2	48 -5 116 1.2 114 -5 26 2.0 106 -5	165 6.0 84 -5 97 6.2 14 1.4 84 10	28 1.2 288 -5 16 1.8 742 -5 10 -0.2
- 2000N									28 40 0.4
		28 ع58 12 20 20 20	4 4 6 9 9 1 9 1 9 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1						
		10 17 17 17 17 17 17 17 17 17 17 17 17 17	4 11 14 10 10 10 10 10 10 10 10 10 10		•				
		ທ ຜ 4 ໄ ຫ ໄ ງ ຍີ່ ງ ຍີ່ ງ ຍີ່ ມີທີ່ ກີ 4 ກີ ທີ່	41 41 41 41 41 41 41 41 41 41					·	
		11 14 14 13 13 15 15 13 15 13 15 15 15 15 15 15 15 15 15 15 15 15 15	20 20 - 20 - 20 - 20 - 51 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5						
- 1500N	ය ප ප ප ප ප ප ප ප ප ප ප ප ප ප ප ප ප ප ප	27 0.8 26 -5 157 0.2 22 -5 35 0.4 35 0.4 194 95 30.4 20 3.8 12 -5 12 2.5 15 1.2 15 1.2	24 24 24 14 23 23 24 14 14 15 23 23 25 25 25 25 25 25 25 25 25 25 25 25 25						
	ດີ 1 ດີ 6 ດີ 1 ດີ 1 - 6 - 1 1 1 1 0 0 1 - 6 - 1 1 1 1 1 0 1 0 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-2 -5 -2 -5 -2 -5 14 0.8 12 1.4 22 -5 57 0.6 69 0.6 69 0.6 23 11.2 23 11.2 23 11.2	ສາ 2000 4 100 5 100 100 100 100 100 100 100 100 100 100 100						
	500₩					OE			
			200 SCALE 1:2000	300	400 ME	TERS			

DATE: FEB. 7, 1995

DRAWING No.

}

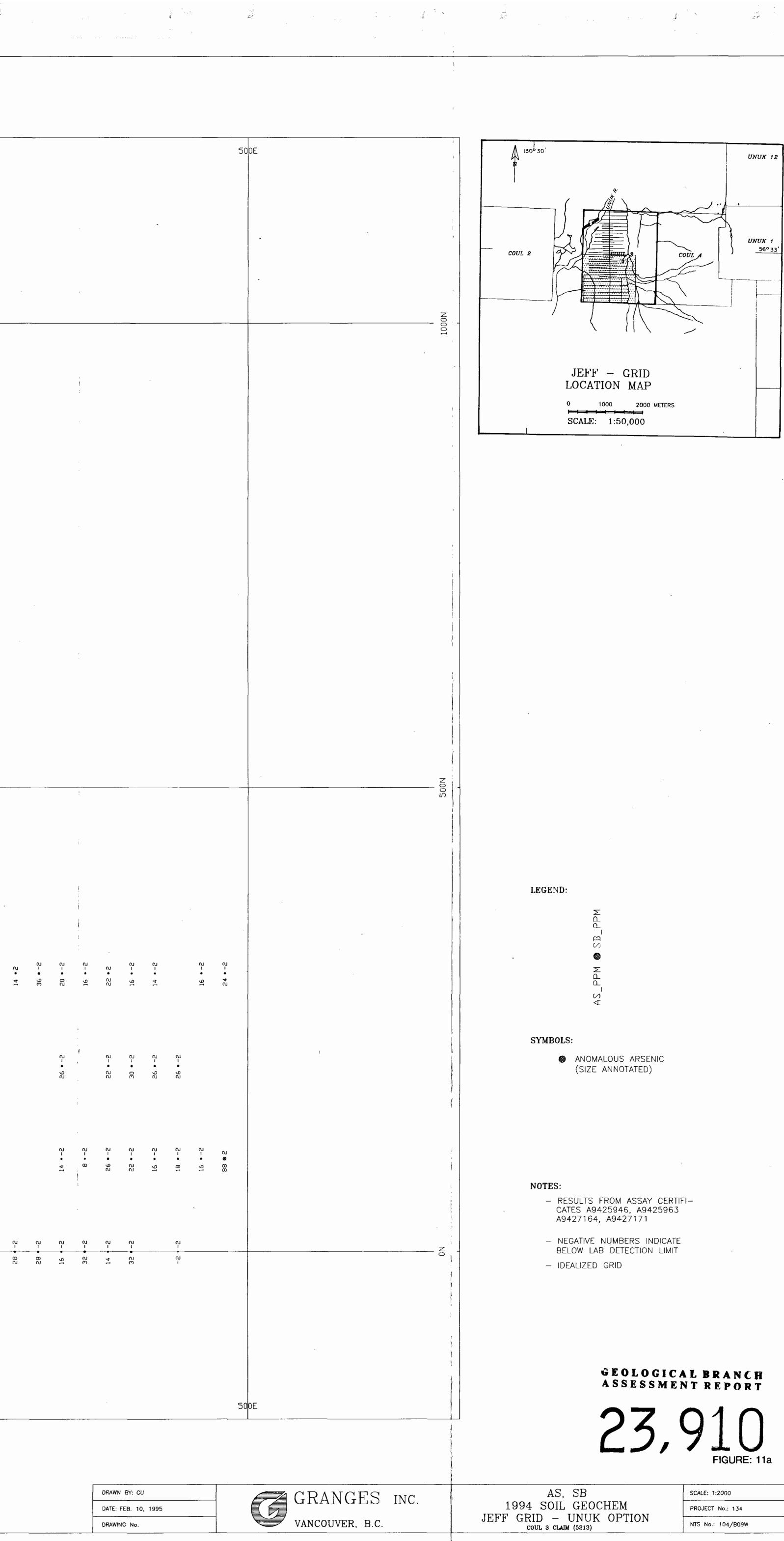
. `

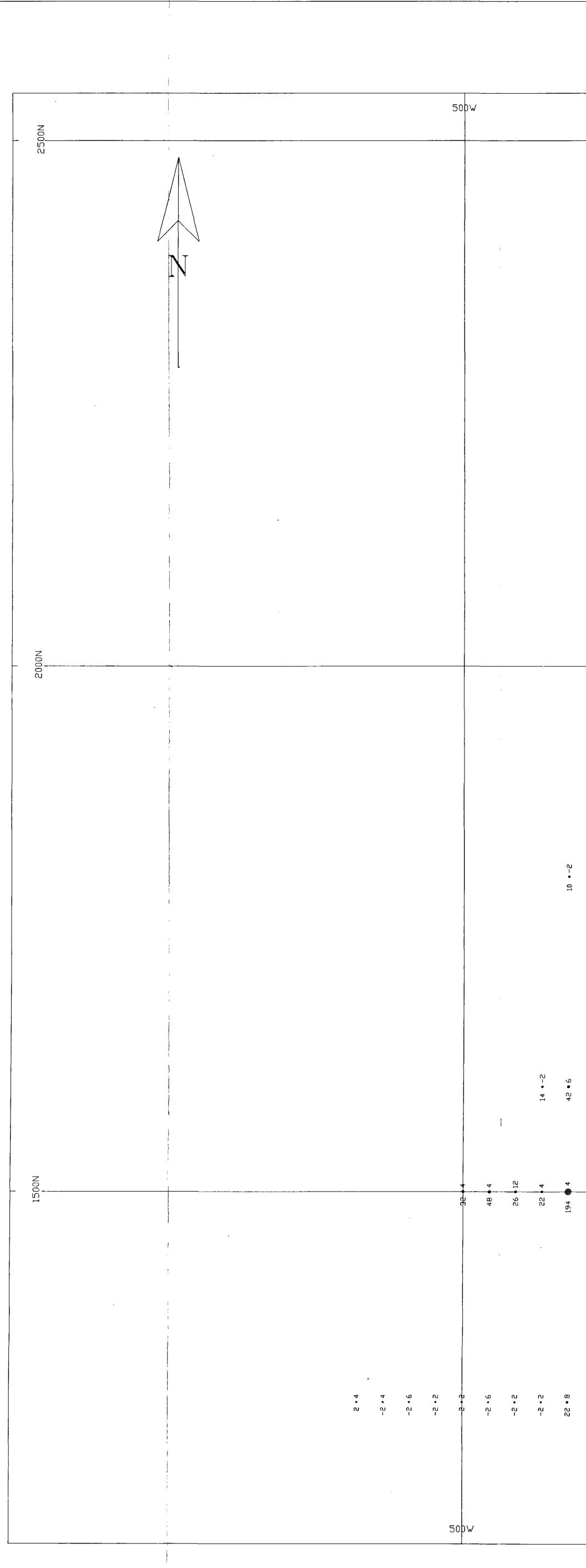
-

. A A C A AS_PPM CU_PPM

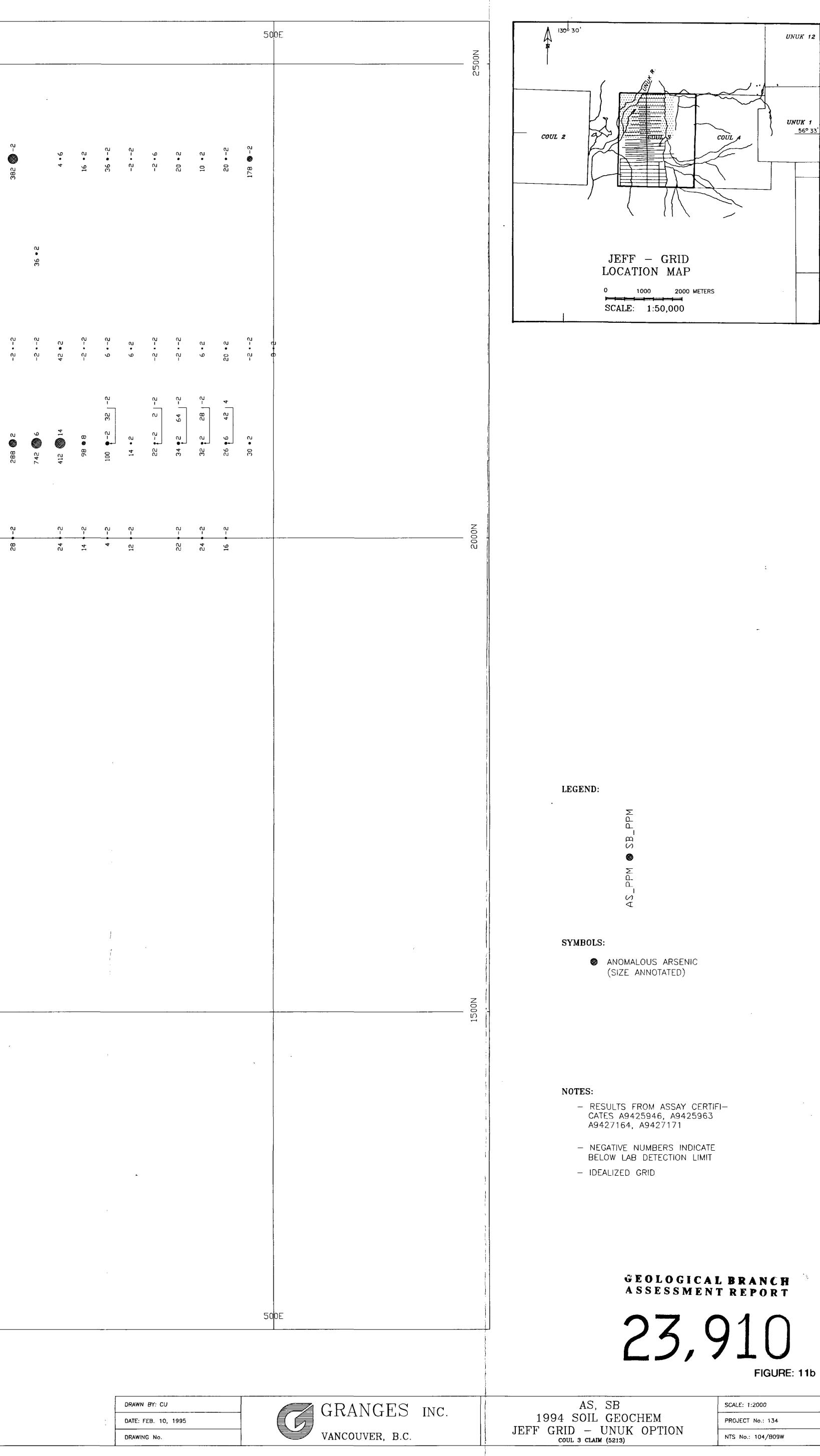
GOLD GREATER THAN 14PPB ANOMALOUS SILVER (SIZE ANNOTATED)

RESULTS FROM ASSAY CERTIFI-CATES A9425946, A9425963 A9427164, A9427171

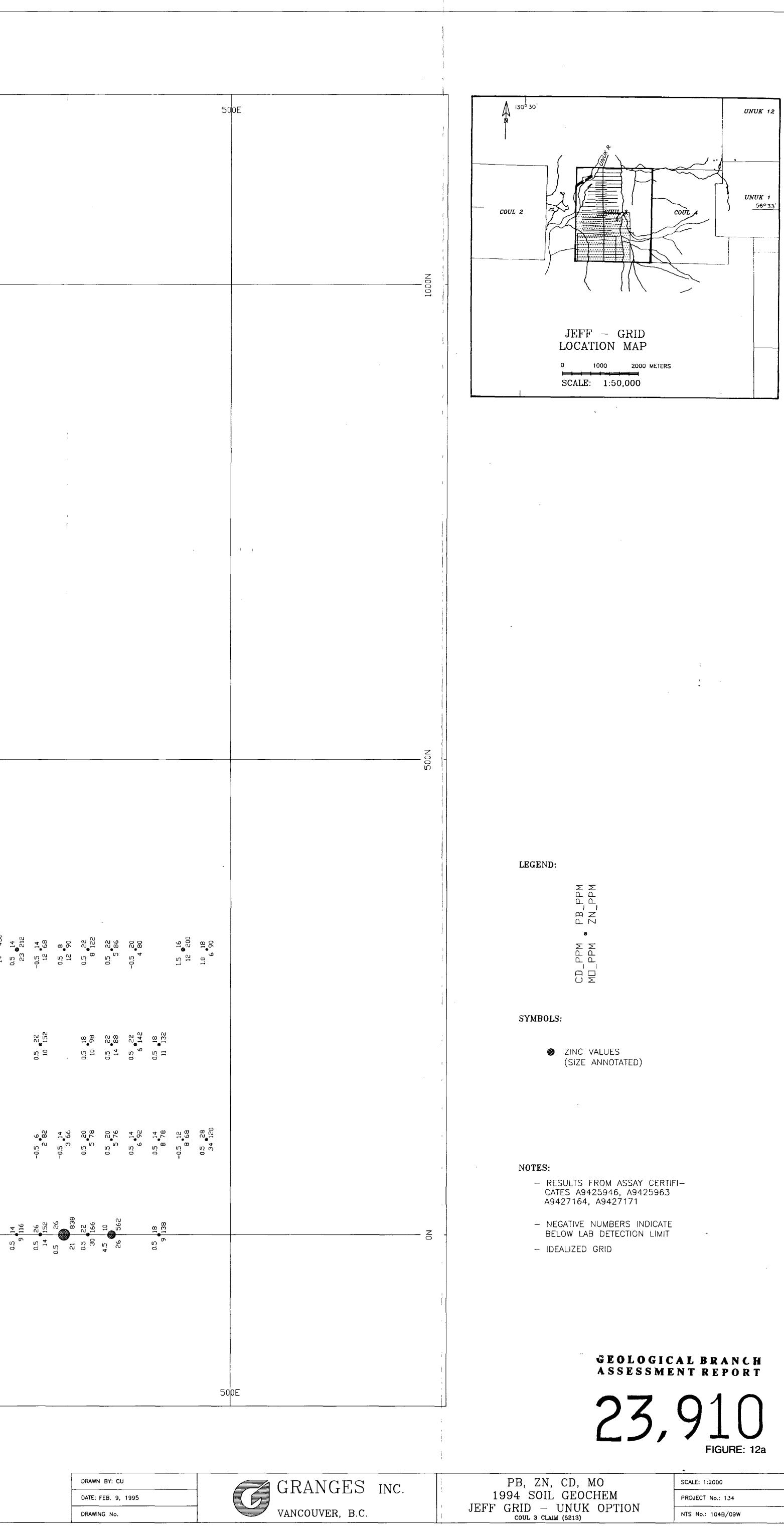

- NEGATIVE NUMBERS INDICATE BELOW LAB DETECTION LIMIT



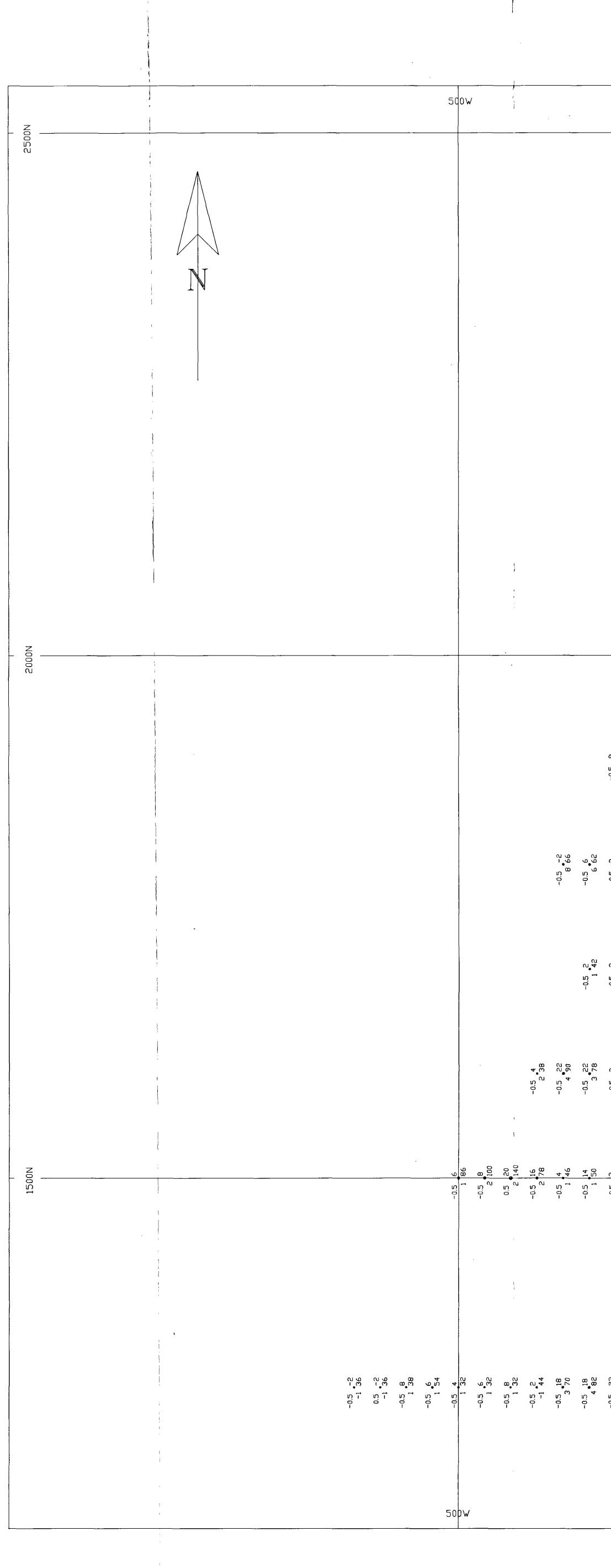
1994 SOIL GEOCHEM JEFF GRID – UNUK OPTION coul 3 claim (5213)


SCALE: 1:2000 PROJECT No.: 134 NTS No.: 104B/09W

									50pw													-				0E						
Z	IN IN						14 • 6 16 • 2	16 • -2		14 • -2	22 • -2	16 • -2 18 • -2	2	2 Z	12 • -2	4 • -2	12 • -2	9 5 •	14 •-2													
						1 I 1 I 2 I 2 I	a - 🖉 - 62 a	1260 🜑 -2			-	18 • - 2	I6 • -2	722	16 • -2															-		
						112 😞 – 2		14 • -2	ф '		· · · ·	ບ - ອ ເມ	26 • -2	42 • -2	32 • - 2																	
						32 • - 2		- 4 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7				122 & ~2 98 • ~2		ひ - ・ ひ -									offer manufacture and a second s									
200N		ح ب ب	си -	ณ 	0 -	ດ -	2 - • ●	· · · · · · · · · · · · · · · · · · ·	cu i	<u>ଧ</u>	<u>ر</u> ا	ים ה י י י י י י י י י י י י י י י י י י	ା ପ୍ ା	ບ -	4	2 • 2 -														-		
υ		ನ ಕ ಲ	2 	δ • 2		48 • -2	2•2 6. 38 6. 2	6 • -2 30		-2 • -2		ບ ບ ເ ເ ເ เ		-2 • 4 16	v	·																
			2 • 2 -	-2 • -2	36 • 4	5 5		SO 20		26 • -2	4	24 • 2 20 • -2	10 4-2 16 -2		22 • 2	14 • 6	288 •		6 • 4	- 5 5 -	22•6 -2:•-2	82 6 4	50 • - 2	34 • -2	12 • -2	16 + 2			24 • -2	42 • 2	34 • 2	82
		5 - 2 - - 2	12 • -2	66 e - 2	32 • -2	10 • -2	น น น น	26 • -2	2 • 6	10 • -2	2 · · 2 -	40 € 66 € 1 €	52 • - 2		4 • -2	4 (• 0 0	เ งา 4 ถ่า 1 ถ่า 4	22 • -2	I	2 2 -	น น 	10 • -2	8 • -2	2-• 2-			ານ ● ກັນ ກິ		32 • -2	24 • C	40 • 10	32 • 5 35 • 5
:		5- • 5- 2-		œ	-2	56 • 2 26	ດຸ ດຸ ດີ ເບີ ດີ ເບີ	-2 -0 -2		N	22 • 2	ה 124 - 22 24 - 22	بے 6 • -2	-2 • -2	5- • 5- 2-	ณ • - - - - -	ν 	י י י י י י י י	-2 • -2	52 • 5	ά 6 • - 2 4 • - 2	5-•5-	-2 • -2	-2			-2 -2 -2 -2 -2	-2 14 • -2	-2 14 • 4		16 • -2 0 • -2	1
δ		ແບ • ●		2	ณ - -	ୟ ଏ -	14 • -2 -2 • -2 38 • -	20 • -2		ດ 1 •	ପ +	26 • -2 2 1 −2 -2 -2 -2 -2 -2	- 5 -	16 • -2 12	16 • -2	41 	25 • 15 0 • 1 0 • 1 0 • 1 0 • 1 0 • 0 0 • 0 0 • 0 0	124 & -2	8 • -2 12	24 • -2	34 • -2 24 • -2 14 • -2	26 • -2	22 • 2	ی ب ع ا			24 • -2 13 • 13 24 • -2		24 • -2	14 • -2	24 • -2	14 •2
									50pw	0			1(00			200			300			40	0	METE	0E RS						


									-												-	·		
												1												
					<u>.</u>					 		1		0E										
										 		;												
												122	56 e -2	140 🖨 6-	220 🌑 6	60 • 2	16 • 2	84 🗞 – 2	86 8 2	108 💩 - 2	58 • 6	36 • 8	382 🌑 -2	
															96	г							ю	
										104 & -2	6	34 • 2			816 🌑 4 3990	28 • -2	42 • -2	48 ● -2		80	50 ● 4			36 • 2
										104	164 🚷 6				816	28	42	. 48		80	50			36
										01	01		01			01	01	01	01			01	01	01
										36 • - 2	4 • Ú	I	16 • -2		ณ • เ	56 ● ~2	26 • -2	2 • -5	32 •2	70 @ 4	72 @ 2	54 ● - 2	ณ • ง	ນ - ບ -
												[
			42 ● 12	44 • -2	32 • 2	1390 🛞 2	2750 🌑 2			36 • 2	36 • - 2		24 • -2		62 62	42 € - 2	48 • 2	114 🙆 2	106 💩 2	84 🛭 – 2	108 😵 4	84 🛚 – 2	288 🏀 2	742 🛞 6
						130	27					:							-				N	~
							<u></u>					····											2 - -	
												ч . —								·			28	
		01	01	01	01	01	01																	
	2 9 5 8 7	12 • -	4		• ©	14 • -2	- • 92																	
10 2	ณ 1 • ณ	4 • 1	4 ∩ 0	2 2	10 • -2	-22	34 • - 2																	
ଧ - ଧ	4 5 1	ପ • 8	14 • - 2	14 • -2	- 5 2 -	4 • 1 2	6 • -2		-															
ιu		u	14	14	I		¥																	
22 • 6	ณ • เ	۲ ۲ ۹	12 • 4	2 • 2 -	12 • 2	16 • 4	0 • 4		2															
116 🛛 6	เ เบ 4	0 4	14 • 8	24 6	14 • 4	22 • •																		
																							,	
																			-					
	01			4																				
28 • 6	48 • 12	- 2 - 4	28 • 8 2	30 • 14	14 • 6	20 • 4	2 • 10																	
														0E										
														0E										
10(J			20	0			30	0		4(MET	TERS)									
		-		SCA 1:20																				

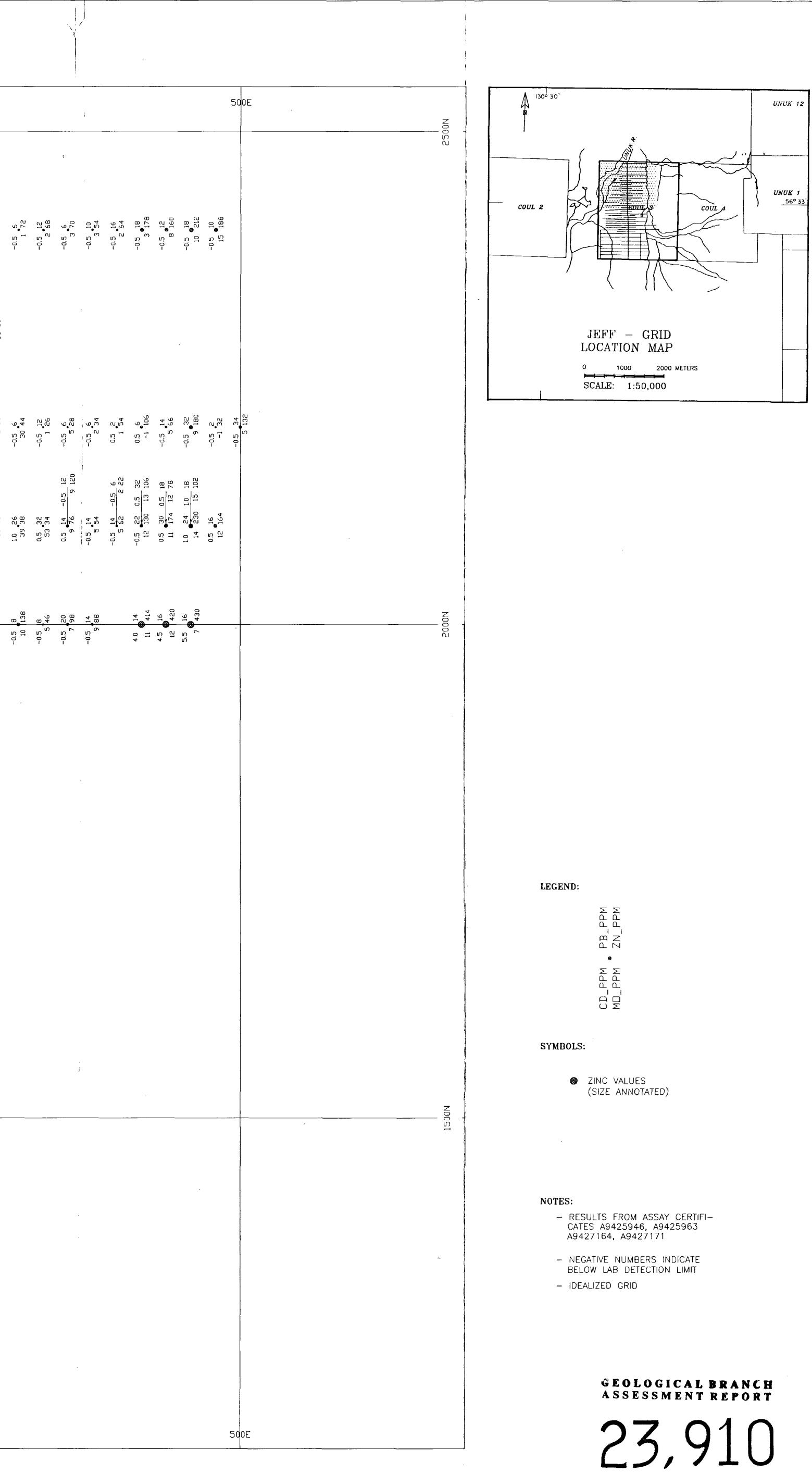
UNUK 1 ______56° 33'


1000N	V 01 05 01 05 05 05 05 05 05 05 05 05 05	
	0.5 2 4 6 2.5 2 4 7 2.5 2 4 7	
	-0.5 -0.5	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$-0.5 \cdot 26$ $-0.5 \cdot 29$ $-0.5 \cdot 29$ $-0.5 \cdot 8$ $-0.5 \cdot 16$ $-0.5 \cdot 12$ -	
- NO SO S	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.5 20 1 08 -0.5 20 2.5 2 1.0 32 1.0 32 1.0 32 1.0 32 1.0 32 1.0 32 1.0 32 1.0 32 1.0 32 1.0 32 1.0 36 1.0 36 1.0 36 1.0 36 1.0 36 1.4 2.0 0.5 28 0.5 28
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
- 2	0.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1	-0.5 -0.5 -1 -1 -1 -1 -1 -1 -1 -0.5 -0
	$\begin{array}{c} \begin{array}{c} -0.5 \\ 1 \\ 3 \\ -0.5 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	500W	0E
	0 100 200 300 SCALE 1:2000	400 METERS

ł

•

I TION	SCALE: 1:2000			
	PROJECT No.: 134			
	NTS No.: 1048/09W			



1

1	SCALE 1:2000	, – , , , , , , , , , , , , , , , , , ,											
100	200	300	400	METEF	२ ऽ								
-0.5 22 4 62 -0.5 4 1 38	-0.5 8 -0.5 14 3 64 -0.5 28 -0.5 28 4 76 4 76 4 32			OE									
-0.5 -1 -0.5 -0.5 -0.5 -1 -0.5 -1 -0.5 -1 -0.5 -1 -0.5 -1 -0.5 -1 -0.5 -1 -0.5 -1 -0.5 -1 -0.5 -1 -0.5 -1 -0.5 -1 -0.5 -1 -0.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1			-										
0.5 2 -1 40 -0.5 4 1 34	-0.5 2 1 28 -0.5 4 -1 36 -0.5 8 -0.5 4 2 48 2 46												
-0.5 - 3 78 -0.5 - 4 74	1.0 1 5.5 1.5 2.5 1 2.4 1.4 2.5 1.4 2.4 1.4 2.5 1.3 2.4 1.4 2.5 1.5 2.5 1.5 2.5 1.5 2.5 1.5 2.5 1.5 2.5 1.5 5 1.5 5 1.5 5 1.5 5 1.5 5 1.5 5 1.5 5 1.5 5 1.5 5 1.5 5 1.5 5 1.5 5 1.5 5 1.5 5 1.5 5 1.5 5 1.5 5 5 1.5 5 5 1.5 5 5 1.5 5 5 1.5 5 5 5									-			
-0.5 ຄ 1 28 1 28 1 34	-0.5 254 -0.5 -254 -1.5 -26 -1.34 1.5 33 268 1.5 16 1.5 26 208												
-0.5 8 3 48 2.0 24 9 172	0.5 1 40 0.5 - 1 32 - 0.5 1 42 1 42 1 42 1 42 1 42 1 42 1 42 1 42 1 42 1 42 1 42 1 42 1 42 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 40 1 32 1 32 1 40 1 40 1 32 1 40 1 32 1 40 1 32 1 40 1 32 1 32 1 32 1 40 1 32 1 32 1 40 1 32 1 32 1 40 1 32 1 32 1 40 1 32 1 32 1 40 1 32 1 32 1 40 1 32 1 42 1 32 1 32 1 42 1 32 1 42												
											-0.5 12 14 96		-0.5 8
	0.5 26 7 98 1.0 32 23 446 0.5 16 17 368 3.0 26 2 64 7.0 150 4 80	0.5 Z0 7 140	0.5 26 4 76 	-0.5 18 6 126	1.0 56 3 82 -0.5 22	392 -0.538 10144	0.5 18 14 84 0.5 36		-0.5 _26 31 _22	-0.5 _24 15 _38	1.0 14 21 44	0.5 18 80 48	1,0 26
		-0.5 4 • 40	-0.5 10 2 56 1 40	-0.5 6 3 32 -0.5 14 3 56	-0.5 6 -1 50 0.5 14	6 112 1.5 8 4 236	0.5 2 3 62 -0.5 26	1.0 26 9 256	0.5 a2 10 258	0,5 24 8 106	-0.5 € -1 42	0.5 2 2 34	-0.5 6
		0.5 3 2 4 134	0.5 28 9 58 2 24 2 84		2.0 <u>24 9.0</u> 94 4 96 27 52 0.5 18	2 104 -0.5 18 7 122	0.5 8 7 202	0.5 3 6 6 214	0.5 20 6 156			-0.5 14 33 50	
			-0.5-12- 1 22	-0.5 1 4 6 176 0.5 14 8 70	1.0 50 10 114 0.5 24	11 1 76 1.0 0 12 6 2 58	-0.5 10 10 118 -0.5 12	e 114 -0,5 1 4 21 216	-0.5 20 15 152	-0.5 8 8 64	-0.5 14 23 50		-0.5 6
				GE									

1

ţ ł

DRAWN BY: CU
DATE: FEB. 9, 1995
DRAWING No.

PB, ZN, CD, MO 1994 SOIL GEOCHEM JEFF GRID – UNUK OPTION coul 3 claim (5213) SCALE: 1:2000 PROJECT No.: 134 NTS No.: 104B/09W

•

FIGURE: 12b