1994 DIAMOND DRILLING REPORT MONASHEE MOUNTAIN PROJECT

Monashee Pass, Vernon Mining Division Brtish Columbla, Canada
Latitude: $50^{\circ} 07^{\prime}$ North Longitude: $118^{\circ} 30^{\prime}$ West
N.T.S. 82 L/1 West and 82 L/2 East

YEOWARD 2,3,4,6,7,8,9,10,11 and MS-1

CAMECO CORPORATION 2121-11th Street West Saskatoon, Saskatchewan S7M 1J3
-Owners-

MISHIBISHU GOLD CORP. UNVERSNL TRIDENT INDUSTRIES 1030-609 Granville Street Vancouver, B.C. V7Y 1G5
-Operator-
CAMECO CORPORATION
2121-11th Street West
Saskatoon, Saskatchewan
S7M 1J3

SUMMARY

The Monashee property is located within the Vernon Mining. District, in south-central British Columbia. The claims are owned by Mishibishu Gold Corporation, Universal Trident Industries Ltd., Aber Resources Ltd., and Cameco Corporation. The target is a large tonnage high grade, structurally controlled or replacement gold deposit.

A diamond drilling programs were carried out on the Monashee property in September and October 1994. The objective of the exploration program was to find the source for the heavy mineral gold anomalies delineated by previous work by Cameco.

The Monashee property is underlain by an east-southeast trending, south to west dipping assemblage of volcanics, clastics, and carbonates. These rocks are intruded on the south side of the claims by granodiorite and quartz diorite intrusives. Numerous sills and plugs of diorite to granodiorite are present on the claims, and are commonly associated with the gold bearing quartz veins.

Six diamond drill holes totalling 631.1 m tested coincident geological, geochemical, and geophysical targets. The drilling intersected brittle faults and faulted lithologic contacts with weak to strong alteration. The best result of the diamond drill program is 359 ppb Au over 0.5 m in drill hole MON4-4. All drill sites have been recontoured, seeded, and fertilized.

TABLE OF CONTENTS

PAGE

SUMMARY (i)
1.0 INTRODUCTION 1
1.1 Location and Access 1
1.2 Physiography, Vegetation, and Climate 1
1.3 Property and Tenure 4
1.4 Previous Work 7
1.51994 Exploration Program. 8
2.0 GEOLOGY 8
2.1 Regional Geology 8
2.2 Property Geology. 9
3.0 DIAMOND DRILLING 11
3.1 Introduction 11
3.2 Results 14
3.2.1 MON4-1 14
3.2.2 MON4-2 16
3.2.3 MON4-3 16
3.2.4 MON4-4 16
3.2.5 MON4-5 20
3.2.6 MON4-6 20
4.0 CONCLUSIONS AND RECOMMENDATIONS 23
5.0 BIBLIOGRAPHY 24
6.0 STATEMENT OF EXPENDITURES 25
6.1 Yeoward 7 Claim Group 25
6.2 Yeoward 11 Claim Group 26
7.0 STATEMENT OF QUALIFICATIONS 27
LIST OF TABLES
TABLE 1 Mineral Claim Data 6
TABLE 21994 Diamond Drill Program and Results 13

LIST OF FIGURES

FIGURE 1 Location Map 2
FIGURE 2 Regional Geology and Location Map 3
FIGURE 3 Disposition Map 5
FIGURE 4 Property Geology Map 10
FIGURE 5 Drill Hole Location Map 12
FIGURE 6 Drill Hole MON4-1 15
FIGURE 7 Drill Hole MON4-2 17
FIGURE 8 Drill Hole MON4-3 18
FIGURE 9 Drill Hole MON4-4 19
FIGURE 10 Drill Hole MON4-5 21
FIGURE 11 Drill Hole MON4-6 22
LIST OF APPENDICES
APPENDIX IAPPENDIX II

1994 DIAMOND DRILING REPORT ON THE
 MONASHEE MOUNTAIN PROJECT
 Vernon Mining District, British Columbia

1.0 INTRODUCTION

The Monashee Mountain property is located in the Vernon Mining Division of south central British Columbia, near Monashee Pass. The property is operated by Cameco Corporation under an option agreement with Mishibishu Gold Corporation, Universal Trident Industries Ltd. and Aber Resources Ltd. The following report outlines the results of the diamond drilling exploration program. The program was carried out between September 2 and October 30, 1994.

Earlier work on the Monashee property highlighted 4 anomalous gold target areas. The diamond drilling was completed to locate a source for the anomalous gold values in the tills.

1.1 Location and Access

The Monashee property is located approximately 70 kilometres east of the city of Vemon, British Columbia (Figure 1 and 2). Provincial Highway 6 provides the best access to the property. Several logging roads have been established throughout the property and provide excellent 4 wheel drive access within the property boundaries.

The closest support centres are the towns of Lumby and Cherryville, about 45 and 20 kilometres west of the property, respectively. A major B.C. Hydro grid line transects the property.

1.2 Physiography, Vegetation, and Climate

The Monashee claims are situated in the Whatshan Range of the Monashee Mountains immediately east of the Shuswap Highlands. Elevations range from approximately 850 metres on Monashee Pass Creek to 1830 metres above sea level

on top of Monashee Mountain. A rolling upland forms the upper parts of the mountains with deeply incised drainages creating steep valley flanks.

The property is within the Interior Douglas Fir biogeoclimatic zone which is characterized by Douglas fir, ponderosa pine, western white pine, white spruce, western red cedar, lodgepole pine, larch, aspen, birch and maple. The creek bottoms usually have a luxuriant growth of Devil's Club.

Precipitation in the Monashee Pass area is moderate with much of it falling as snow in the winter months. In general, the area is free of snow from April to November. In the higher elevations the snow may stay as long as late June and return in late September to early October.

1.3 Property and Tenure

Approximately 7,500 hectares consisting of 320 units in 22 claims make up the total land inventory of the Monashee Property. Figure 3 provides a claim disposition map, and Table 1 summarizes the claim status.

The Kettle, Pot, and Pan claims are currently owned by Mishibishu Gold Corp. (2/3) and Universal Trident Industries Ltd. (1/3) of Vancouver, British Columbia. The Yeoward claims are owned by Aber Resources Ltd., of Vancouver, British Columbia. Aber Resources Ltd., amalgamated with the previous land owner Commonwealth Gold Corp., in early 1994. The MS claims are owned by Cameco Corporation of Saskatoon, Saskatchewan. Cameco Corporation has entered into an option agreement to earn a majority interest in the entire Monashee property.

The work discussed in this report was completed on claims Yeoward 7 and Yeoward 11. The appropriate exploration costs are applied to claims were the work was completed

Table 1
 CLAIM AND ASSESSMENT STATUS MONASHEE PROJECT

Yeoward 7 Claim Group

Claim Name	Owner	Tenure No.	Units	Record Date	Expiry Date	Expiry Date *
Yeoward 2	Aber	259961	20	Aug 4/90	Aug 4/95	Aug 4/96
Yeoward 3	Aber	259962	20	Aug 3/90	Aug 3/95	Aug 3/96
Yeoward 4	Aber	259963	20	Aug 3/90	Aug 3/95	Aug 3/96
Yeoward 7	Aber	259966	20	Aug 9/90	Aug 9/96	Aug 9/97
Yeoward 8	Aber	259967	20	Aug 6/90	Aug 6/95	Aug 6/96

Yeoward 11 Claim Group

Claim Name	Owner	Record No.	Units	Record Date	Expiry Date	Expiry Date*
Yeoward 6	Aber	259965	20	Aug 10/90	Aug 10/96	Aug 10/97
Yeoward 9	Aber	259968	20	Aug 10/90	Aug 10/95	Aug 10/97
Yeoward 10	Aber	259969	10	Aug 10/90	Aug 10/95	Aug 10/97
Yeoward 11	Aber	259970	15	Aug 8/90	Aug 8/96	Aug 8/97
MS-1	Cameco	313221	15	Sept 20/92	Sept 20/95	Sept 20/96

Other Claims In the Monashee Project

Claim Name	Owner	Record No.	Units	Record Date	Expiry Date	Expiry Date*
Kettie 2	Daiwan	259773	20	May 15/89	May 15/96	
Yeoward 1	Aber	259960	20	Aug 1/90	Aug 1/95	
Yeoward 5	Aber	259964	20	Aug 6/90	Aug 6/96	
Yeoward 12	Aber	259971	20	Aug 8/90	Aug 8/96	
Yeoward 15	Jenkins	259974	1	Aug 5/90	Aug 5/96	
Yeoward 16	Jenkins	259975	1	Aug 5/90	Aug 5/96	
Pot	Dalwan	260069	1	Mar 16/91	Mar 16/96	
Pan 1	Daiwan	260070	1	Mar 16/91	Mar 16/96	
Pan 2	Daiwan	260071	1	Mar 16/91	Mar 16/96	
MS-2	Cameco	313222	15	Sept 20/92	Sept 20/96	
Shee 1	Cameco	318544	20	June 24/93	June 24/96	
Shee 2	Cameco	318545	20	June 25/93	June 25/95	

* assuming acceptance of this assessment report.

1.4 Previous Work

Mineral exploration with small scale production mining has been ongoing in the Monashee area since the mid eighteen hundreds, with the discovery of a small silver lode deposit known as the Hidden Treasure. Lode gold production of approximately 500 ounces was developed at the Monashee Mine on the west flank of Monashee Mountain. The Morgan Claims not under this option agreement on the top of Monashee Mountain have also produced a small amount of gold to date. The St. Paul Mine occurs 600 metres north of the Morgan workings, and attempts to economically mill the polymetallic ore continued up to 1974. The Siver Bell located on the north side of Monashee Creek about 7 kilometres north of Monashee Mountain is another high grade silver prospect in the area, but has had no known production to date.

The most important mineral production to date has been placer goid, but no reliable production figures are available. The British Columbia Ministry of Mines records placer production of only 155,500 grams ($\sim 5,000$ ounces). Sporadic placer gold production still occurs to date along some creeks on the property.

Exploration in the early 1980's included geochemical and geophysical surveys, geological mapping and prospecting, and a small amount of trenching and diamond drilling. This work was carried out by Brican Resources Ltd. and Mohawk Oil Co. Ltd. until 1986. The ground was then allowed to lapse in 1992, and it was restaked by the current owners.

In 1992 and 1993 Cameco conducted property wide exploration programs consisting of bulk till, stream, sediment sampling and reconnaissance geological mapping and prospecting. Further soil and bulk till sampling, and a 39.2 km of ground magnetics/VLF were conducted in the fall of 1993.

A detailed geological mapping, sampling, and IP/resistivity survey (13.2 kms) was completed on top of Monashee Mountain in early 1994.

$1.5 \quad 1994$ Exploration Program

The objective of the 1994 exploration program was to locate a source for the heavy mineral gold anomalies that are coincident with magnetic linears, magnetic highs, VLF conductors, and IP/resistivity chargeability trends, contacts, and anomalies. The target was a large tonnage, high grade structural or replacement gold deposit.

The 1994 exploration was comprised of NQ diamond drilling (631.1 m in six holes). Analytical work for the diamond drilling consists of 309 core and 152 sludge samples that were analyzed for gold. This work was completed between September 2 and October 30, 1994. All drill sites have been recontoured, seeded, and fertilized.

2.0 GEOLOGY

Regional as well as property scale geology descriptions for the Monashee area were included in the October 1992 report submitted by Steven F. Coombes for Cameco Corporation. The following geological sections summarize the information provided in Coombes' report.

2.1 Regional Geology (Figure 2)

The Monashee property is located on the eastern edge of the Intermontane Belt at its boundary with the Omineca Crystalline Belt. The region is underlain by variably deformed and metamorphosed sequences of Archean to Mesozoic supracrustals, including the Proterozoic and Paleozoic Shuswap Metamorphic Complex; the Carboniferous and Permian Thompson Assemblage; and the Triassic and Jurassic Slocan and Nicola Groups. Cretaceous and/or Jurassic granitoids related to the Columbian Orogeny intrude the supracrustals in the southern region. These rocks are capped on the western side of the region by Tertiary basaltic flows and related sediments of the Kamloops Group (Coombes, 1992).

2.2 Property Geology (Figure 4)

The property is primarily underlain by an east-southeast trending, south to west dipping sequence of volcanic and sedimentary rocks belonging to the Carboniferous and Permian Thompson Assemblage. The Thompson Assemblage rocks are in contact with Triassic Slocan Group argillites and phyllites along the northern edge of the property. The Jurassic Nelson Plutonic rocks of granodiorite to quartz diorite occur in the southern third of the property. A second dioritic to gabbroic body intrudes Thompson Assemblage rocks on the west side of the property. Also on the western claims a columnar basalt of Tertiary age forms a blanket over the older rocks. Several small intrusive rocks on Monashee Mountain are commonly associated with sulphide mineralization (Coombes, 1992). More detailed property wide geological information is available in a report by Duba and Gilmour, 1993.

Outcrop exposures on the Monashee property are limited to approximately 1 to 5% of the total area. The remaining area is covered by thick deposits of Pleistocene sediments and glacial drift. The Quaternary geology of the property is summarized in K. Wasyliuk's geochemical report (Wasyliuk, 1992).

The grid area is predominantly underlain by NNW to NW trending intercalated volcanics, argillites and limestones of the Permian Thompson Assemblage. The NW to NNW striking contact between the Permian Thompson Assemblage and the Triassic Nicola - Slocan Group is located along the northern and western portions of the grid. The Thompson assemblage is comprised of argillites which are locally sheared, brecciated and graphitic. In the western part of the grid the hidden contact is marked by steep overburden covered cliffs. A VLF conductor and magnetic linear also mark the Permian - Triassic contact.

Weakly altered limestones are found in the northwest corner of the grid. The limestones are locally sheared in NS and NW directions. A NW striking fault is interpreted to mark the southern contact of the limestones with the volcanics. Along

this contact the limestones are strongly fractured and sealed with a calcite stockwork.

The volcanics are comprised of intercalated andesite and dacite. Dacite appears to be more abundant in the eastern part of the grid. The dacite is locally silicified with weakly altered, narrow (>1 m) brittle shear zones. Background pyrite content is approximately $1-2 \%$.

The dacite along the southern part of and to the east of the baseline contains 1-3\% disseminated pyrrhotite. This pyrrhotite corresponds with a broad magnetic high. The dacite in the southeastern portion of the grid is locally sheared in a NS direction and has moderate argillic alteration with 2 to locally 10\% pyrite. In this area the NS trending magnetic linears track steep overburden covered cliffs and/or steep drainages.

3.0 DIAMOND DRILLING

3.1 Introduction

Between September 2 and October 30, 1994, six NQ diamond drill holes, totalling 631.1 m were drilled on the Monashee property (Figure 4 and 5). The work was carried out by Lone Ranger Diamond Drilling Ltd., of Lumby, B. C. A Longyear 44 diamond drill mounted on the back of a TD-15 bulldozer was used. The drill crew worked one shift per day. All drill holes were tested for dip deviations using acid tests. The core was logged by the Dwayne L. Melrose, P.Geo. The core is located on the property at L6N 11+75W. Drill holes MON4-1 and 2 are located within claim group Yeoward 11. Drill hole MON4-3 to MON4-6 inclusive are located within claim group Yeoward 7.

A drill hole summary with results is included as Table 2. For a detailed description of the drill core, the drill logs are included as Appendix I. Sludge samples (152 samples) were continuously collected from the top of the drill hole to the bottom. A sludge sample represents 3.05 m of drilling, and corresponds with every

Table 2

MONASHEE PROJECT

1994 DIAMOND DRILL PROGRAM RESULTS

DRILL HOLE	LOCATION/ ORIENTATION	HIGHLIGETS	RESULTS Au ppb/(m)	$\begin{gathered} \text { DEPTH } \\ (\mathrm{m}) \\ \hline \end{gathered}$
MON4-1	$\left\lvert\, \begin{aligned} & \mathrm{L} 4+1 \mathrm{lN} 2+78 \mathrm{E} \\ & 040^{\circ} /-50^{\circ} \end{aligned}\right.$	altered, brecciated volcanics and argillite with localized weak pyritic zones	$37 \mathrm{ppb} \mathrm{Au} / 0.5 \mathrm{~m}(81.5-82.0 \mathrm{~m})$	98.5 m
MON4-2	$\left\lvert\, \begin{aligned} & \mathrm{L} 6+07 \mathrm{~N} 1+23 \mathrm{~W} \\ & 045^{\circ} /-45^{\circ} \end{aligned}\right.$	localized altered brittle zones with 2$3 \%$ pyrite hosted by intercalated andesite and dacite	$8 \mathrm{ppb} \mathrm{Au} / 0.5 \mathrm{~m}(55.5-56.0 \mathrm{~m})$	98.5 m
MON4-3	$\begin{aligned} & \mathrm{L} 8+30 \mathrm{~N} 4+00 \mathrm{~W} \\ & 000^{\circ}-45^{\circ} \end{aligned}$	intercalated andesite and dacite with sporadic, narrow (less than 1 m) weakly altered brittle zones	$3 \mathrm{ppb} \mathrm{Au} 0.5 \mathrm{~m}(55.4-55.9 \mathrm{~m})$	96.3 m
MON4-4	$\left\lvert\, \begin{aligned} & \mathrm{L} 4+16 \mathrm{~N} 8+48 \mathrm{~W} \\ & 045^{\circ} /-45^{\circ} \end{aligned}\right.$	limestone with sheared-brecciated, weakly altered pyritic contacts	359 ppb Au/0.5 m(47.3-47.8 m)	105.5 m
MON4-5	$\begin{aligned} & \text { L6+07N 8+49W } \\ & 135^{\circ} /-45^{\circ} \end{aligned}$	brecciated-sheared limestone-volcanic-graphitic argillite contact with weak pyritic zones	35 ppb Aw/ $0.5 \mathrm{~m}(48.4-48.9 \mathrm{~m})$	139.0 m
MON4-6	$\begin{aligned} & \text { LS } 5+81 N 11+97 W \\ & 045^{\circ} /-45^{\circ} \end{aligned}$	moderately altered, shearedbrecciated limestone - volcanic contact	20 ppb Au/0.5 m(52.5-53.0 m)	93.3 m

time a new drill rod was added. Whenever structure, alteration, and/or mineralization was observed in the core, the core was sampled and split. A total of 309 core samples were collected. and analyzed for Au using the 30 gm , fire assay with ICP/graphite furnace method. Anomalous samples and check samples (10 samples) were re-analyzed using the Metallic or Total Sample Fire Assay method. The analytical work was performed by Acme Analytical Laboratories Ltd., in Vancouver, British Columbia. The Certificate of Analyses are included in Appendix II.

Drill site preparation and rectamation was performed by Friesen's Excavating Ltd., of Lumby, British Columbia. All drill sites have been recontoured, seeded, and fertilized.

3.2 Results

3.2.1 MON4-1 (Figure 5 and 6)

MON4-1 was drilled to test the coincident with a resistivity contact, a magnetic linear, chargeability trends, and upslope of a gold geochem anomaly. The hole collared in weakly to strongly altered brecciated dacite with intercalated beds of graphitic argillites. It terminated in Triassic Nicola - Slocan Group graphitic argillites. The dacite has sporadic 2 to 3 m wide altered (silicification, bleaching) breccia zones with traces of quartz and 2-4\% pyrite. A brecciated, porphyritic dacite or intermediate porphyritic intrusive (?) was intersected from 46.9 to 61.5 m . It is locally silicified with quartz stringers and up to 1\% pyrite. The Permian - Triassic contact occurs at 93.4 m . The Triassic sediments are comprised of argillite with localized graphitic breccia and cm scale shear zones. The IP anomaly appears to be related to brecciated and pyritic dacite. The resistivity contact correlates with the Permian - Triassic contact. The drill hole did not intersected any significant gold mineralization. The best result is 37 ppb Au over 0.5 m .

Abstract

3.2.2 MON4-2 (Figures 5 and 7)

MON4-2 was drilled to test the coincident with a interpreted SE trending structure, a resistivity contact, a chargeability high and it is upslope of a geochem anomaly. The drill hole intersected intercalated andesite and dacite volcanics. Throughout the drill hole are sporadic, narrow (1 to 3 m) brittle zones with traces of quartz and 2-4\% pyrite. Finely disseminated pyrrhotite increases towards the bottom of the drill hole. This corresponds to a magnetic high. The IP anomaly appears to be related to pyritic brittle zones within the dacite and andesite. The drill hole did not intersect any significant gold mineralization. The best result is 8 ppb Au over 0.5 m .

3.2.3 MON4-3 (Figures 5 and 8)

MON4-3 was drilled to test the coincident head of a geochem anomaly with interpreted SE and NE trending structures, and a resistivity contact. The drill hole intersected intercalated andesite and dacite volcanics. There are sparse, narrow (less than 1 m wide) brittle zones with $1-2 \%$ finely disseminated pyrite. The resistivity contact correlates with a andesite and dacite contact. The drill hole did not intersect any significant gold mineralization. The best result is 3 ppb Au over 0.5 m .

Abstract

3.2.4 MON4-4 (Figures 5 and 9)

MON4-4 was drilled to test a geochem anomaly coincident with chargeability trends, and interpreted NS and NW trending structures. The drill hole collared in graphitic, brecciated argillite with $\mathbf{1 - 3 \%}$ pyrite. At 13.8 m the argillite is in fault contact with a limestone unit. The limestone is predominantly brecciated with a weak to strong calcite stockwork and localized very weak skarn alteration (marbled). The pyrite content is generally 1-3\% with localized zones of $10-15 \%$ containing traces of pyrrhotite and sphalerite. The lower limestone contact is in fault contact with intercalated dacite and andesite. Within the volcanics are weak brittle zones with traces of quartz veining and pyrite. The volcanics are also in fault contact with the

underlying graphitic argillite. The chargeability trends appear to correspond with pyritic brecciated zones and/or graphitic breccia zones. The drill hole did not intersect any significant gold mineralization. The best result is 359 ppb Au over 0.5 m and it corresponds to brecciated limestone with 3-5\% sulphides. All other results are less than $50 \mathrm{ppb} \mathbf{A u}$.

3.2.5 MON4-5 (Figures 5 and 10)

MON4-5 was drilled to test the coincident head of a geochem anomaly with a resistivity contact, a magnetic high, and interpreted NE and NS trending structures. The drill hole collared in limestone and it then intersected intercalated volcanics and argillite to the bottom of the hole. Most of the lithologies have faulted contacts with either gouge, brecciation, and/or shearing. The limestone has weak bleaching, calcite stockwork, and very weak marble with locally 1-3\% pyrite. The shear or breccia zones typically have graphitic fractures and 1-3\% pyrite. Shear zones within the volcanics have weak sericite and patchy silicification with 1-3\% pyrite. The NS and possibly the NE trending linears are verified as most of the lithologic contacts are fault bounded. The resistivity contact and chargeability trends appear to correlate with the limestone - volcanic contact and the sulphide and graphite bearing shear and breccia zones. The drill hole did not intersect any significant gold values. The best result is 35 ppb Au over 0.5 m .

3.2.6 MON4-6 (Figures 5 and 11)

MON4-6 was drilled to test a coincident geochem anomaly with a limestone volcanic contact, a chargeability trend, a magnetic high, and mapped NS striking structure. The drill hole collared in andesite, then drilled through a dacite unit, and then terminated within limestone. Within the volcanics are weak to locally strongly altered brittle and ductile shear zones with traces of quartz veining with 1-2\% pyrite. The contact between the volcanics and limestone is a faulted contact. The limestone

adjacent to the volcanics has weak bleaching and/or marble. The resistivity contact appears to correlate with the limestone - volcanic contact. The drill hole did not intersect any significant gold values. The best gold value is $\mathbf{2 0} \mathrm{ppb}$ Au over 0.5 m .

4.0 CONCLUSIONS AND RECOMMENDATIONS

The 1994 Monashee exploration program did not locate the source for the heavy mineral gold anomalies. The 1994 exploration program consisted of 631.1 m diamond drill program. The diamond drill program explained most of the geophysical targets that were tested. However, no significant gold results were obtained.

MON4-1 intersected weak to strongly altered brecciated volcanics, and graphitic argillites. There are sporadic 2 to 3 m wide altered, breccia zones with traces of quartz and 2-4\% pyrite. The best result for MON4-1 is 37 ppb Au over 0.5 m .

MON4-2 intersected intercalated andesite and dacite. Throughout the drill hole there are sporadic, narrow (1 to 3 m) brittle zones with traces of quartz and $\mathbf{2 - 4 \%}$ pyrite. The best result for MON4-2 is 8 ppb Au over 0.5 m .

MON4-3 intersected intercalated andesite and dacite. There are sparse, narrow (less than 1 m) brittle zones with $1-2 \%$ pyrite. The best result for MON4-3 is 3 ppb Au over 0.5 m .

MON4-4 intersected a 44 m wide limestone unit with altered and brecciated pyritic contacts with the overlying argillite and the underlying dacite. The breccia zones locally contain up to $10-15 \%$ sulphides. The best result for MON4-4 is 359 ppb Au over 0.5 m .

MON4-5 intersected brecciated and sheared limestone, argillite, and volcanic contacts with weak zones of pyrite. The best result from MON4-5 is 35 ppb Au over 0.5 m .

MON4-6 intersected a weakly to moderately altered, sheared and brecciated limestone - volcanic contact. The best result from MON4-6 is 20 ppb Au over 0.5 m .

Due to the pegative results of the 1994 exploration program, no further work is recommended.

Dwayne L. Melrosepporgi,' Geol.
February 9, 1995

5.0 BIBLIOGRAPHY

Coombes, S.F.: Geological and Geochemical Report on the Monashee Project, October, 1992 submitted to the B.C. Ministry of Energy Mines and Petroleum Resources as a Geological Branch Assessment Report.

Duba, D. and Gilmour, W.:

1993 Geological and Geochemical Assessment Report on the Monashee Property.

Gilmour, W.: 1993 Geochemical and Geophysical Assessment Report on the Monashee Property.

Gilmour, W. and Daughtry,K.:

Jones, A.: 1959 Vernon Map Area, British Columbia, Geol. Surv. Canada, Memoir 296.

1994 Geological, Geochemical, Geophysical, and Drilling Exploration Report on the Monashee Project. Private report for Cameco Corporation.

Okulitch, A.: $\quad 1979$ Geology and Mineral Deposits of the Thompson - Shuswap Okanagan Region, South - Central British Columbia; Geol. Surv. Canada; Open File 637.

Read, P.:
Relationship between the Shuswap Metamorphic Complex and the Kootenay Arc, Vernon East - Half; in Geol. Surv. Canada; Paper 79-1A, pp. 37-40.

Wasyliuk, K.: 1992 Geochemical Report on the Monashee Mountain Project. Private report for Cameco Corp.

6.0 STATEMENT OF EXPENDITURES

6.1 Yeoward 7 Claim Group

1 Personnel
a) Field Personnel

- D. Melrose, Project Geologist, Cameco Sept 2-Oct 6/94 21 days @ \$308/day 6468
b)Supervision/Logistics/Planning/Reporting
- D. Melrose, Project Geologist, Cameco 9 days @ \$308/day2772
- R. Chapman, District Geologist, Cameco 1 day @ \$417/day 417
- R. Matthews, Chief Geophysicist, Cameco 1 day @ \$487/day

Sub-total 32 days
487
$\$ 10,144$
II Camp
a)Accommodations
Fiddlesticks 18 days @ \$18.50/day 333
BW Motel 2 days $2 \$ 53 /$ day 106
b) Food 21 days @ $\$ 30 /$ day 630
c) Field Supplies, First Aid, Sampling, Logging, Reclamation 1790
d) Freight 163
Sub-total $\$ \overline{\$ 3,022}$
III Analysis-6 Metallic or V.G. Au assays6 samples @ \$21.02/sample126
-167 core samples for Au-92 sludge samples for Au
167 samples @ \$11.65/sample 1946
92 samples @ \$9.99/sample Sub-total $\begin{array}{r}919 \\ \hline, 991\end{array}$IV Travel and Transportation
646
b) 4×4 Truck; rental, gas, kms
Sub-total \$2,637
V Contractor Charges
Lone Ranger Drilling434.1 m @ \$55.97/m24297
Friesen's Excavating drill site preparation/reclamation 5419Geo-Computers
drafting
Sub-total \$30,675
TOTAL \$49,469
Overhead @ 10\% 4,947
TOTAL CLAIM GROUP EXPENDITURE \$54,416
6.2 Yeoward 11 Claim Group
Personnela)Field Personnel

- D. Melrose, Project Geologist, Cameco Sept 2 - Oct 6/94 10 days @ \$308/day 3080
b)Supervision/Logistics/Planning/Reporting
- D. Melrose, Project Geologist, Cameco 3 days @ \$308/day 924
- R. Chapman, District Geologist, Cameco 1 day @ \$417/day 417
- R. Matthews, Chief Geophysicist, Cameco1/2 day @ \$487/day
Sub-total 14.5 days244$\$ 4,665$
II Campa)Accommodations
Fiddlesticks 9 days @ \$18.50/day 167
BW Motel 1 days $2 \$ 53 /$ day 53
b)Food 10 days @ \$30/day 300
c)Field Supplies, First Aid, Sampling, Logging, Reclamation 842
d) Freight 76
Sub-total \$1,438
III Analysis
-4 Metallic or V.G. Au assays 4 samples @ \$21.02/sample 84
-142 core samples for Au 142 samples @ \$11.65/sample 1654
-60 sludge samples for Au
Sub-total 599 $\$ \mathbf{2 , 3 3 7}$
IV Travel and Transportationa)Air Fares - Mob/demob304
b) 4 X 4 Truck; rental, gas, kms 937
Sub-total $\$ 1,241$
V Contractor ChargesLone Ranger Drilling197.0 m @ \$55.97/m11026
Friesen's Excavating drill site preparation/reclamation 3613
Geo-Computers
drafting480
Sub-total $\$ 15,119$
TOTAL \$24,800
Overhead @ 10\% 2480
TOTAL CLAIM GROUP EXPENDITURE \$27,280

7.0 STATEMENT OF QUALIFICATIONS

I, DWAYNE L. MELROSE of 5173 Aspenview Drive, Reno, Nevada, 89523, DO HEREBY CERTIFY that:

1. I am a geologist with Cameco Corporation, 2121 11th Street West, Saskatoon, Saskatchewan S7M 1J3.
2. I am a graduate of the University of Waterloo (1981) with a Bachelor of Science degree in Honours Earth Science.
3. I have been practicing my profession for 14 years.
4. I am a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of British Columbia (1993).
5. I am a Professional Geologist with the Association of Professional Engineers, Geologists, and Geophysicists of Alberta (1986).
6. This report is based on my own observations and the observations of people under my supervision on the Monashee Property between June 1994 and October 1994.

DATED at Reno, Nevada this February 9, 1995.

APPENDIXI
DRILL LOGS

CNMECO CORPORATIOX

DIAMOND DRILL GEOLOGICAL LOG
PROJECT: MONASHEE DISPOSITION: Yeoward 11 PAGE: _1 of 10

HOLE NO: MON4-1 LOGGED BY: _D. Melrose STORAGE: \qquad

LOCATION: L4+11N, 2+78E SECTION:
[ELEVATION: $\quad 1700 \mathrm{~m}$

AZIMUTH/INCLINATION: $040^{\circ} /-45^{\circ}$ DEPTH: 98.5 m DIP TEST: \quad ACID

CONTRACTOR: Lone Ranger Drilling CORE SIZE:_NO CASING LEFT: 0 m

STARTED/COMPLETED: \qquad September 17-18, 1994 LOGS UPDATED:

DEPTH $\quad 98.5$
AZIMUTH
DIP $\quad-45^{\circ}$
PURPOSE:
SUMMARY:
0-13.4 m: Overburden.
13.4-23.5 m: Dacitic Breccia
$16.0-20.5 \mathrm{~m}$: Intensely bx , localized shearing (w/graphite), patchy sil-ser tr to locally 2% calc stringer, tr-locally 2-3\% diss-stgr py.

* 20.5-23.5 m: 1-3\% calc stgrs 2-4\% clotty stgr-diss py.
23.5-28.8 m: Argillaceous bx
25.0-28.8 m: 3-4\% locally, 5-6\% py, tr calc stgrs.
28.8-30.8 m: Felsic Bx wk qtz-calc stgrs, 2-4\% py.
30.8-37.9 m: Dacite-mnr graphitic shear, bx zones.
37.9-46.9 m: Coarse grained clastic/? Dacite Fragmental narrow graphitic shears/bx.
43.3-46.9 m: Bx, wk sil, tr py qtz stgrs, localized 1-3\% py.
46.9-61.5 m: Bx Intermediate/Felsic Int.-porph, loc sil-qtz bx, tr-1\% py. 61.5-93.4 m: Congl/Dacitic Fragmental - loc bx-qtz-py zones, tr-1\% py.
80.0-84.4 m: Bx zone with 10 cm int dykes, graphitic frac-shears, tr1% qtz-calc vns, 1-3\% py.
93.4-98.5 m: Argillite with good graphitic shears, localized calc vns-1-3\% py.
98.5 m : End of Hole.

SIGNIFICANT RESULTS:
INTERSECTION
(m)
DOWNHOLE
WIDTH
(m)
TRUE
WIDTH
(m)
RESULTS
Au
(oz/st)

NOTES
\qquad
13.4
13.420 .5

overburden

Dacite Breccia zone

Light-dark grey, strongly brecciated with light-dark matrix, localized shear fabric/ fractures, localized clay gouge-black carbonaceous to graphitic fractures/gouge, localized fracture-clotty pyrite.
$\begin{aligned} 13.4-16.0 \mathrm{~m}: & \text { Dark grey breccia, clay } \\ & \text { filled fractures, trace-0.5\% } \\ & \text { fracture pyrite, trace } \\ & \text { localized carbonate- } \\ & \text { fractures/stringers. }\end{aligned}$
14.4-14.5 m: Graphitic gouge with calcite veins stringers 1-2\% diss pyrite, veins 60° to C.A.
16.0-20.5 m: Intensely brecciated. Light grey-buff grey, mm to cm scale fragments which are brecciated, weak patchy sericite-silicificationcarbonaceous to calcareous fractures stringer, localized black carb-graphitic fractures stringers, tr diss-frac-clotty py, sheared/gouge lower contact, 38° to C.A.
18.4 - $18.8 \mathrm{~m}: 2-3 \%$ clotty fracture py.
18.8-19.3 m: Breccia-shear zone with greenish grey gouge, 35$50^{\circ}$ to C.A., 2-3\% white calcareous-carb lensesstringers, $\operatorname{tr}-1 \%$ diss py.

Andesite/Dacite Breccia
Greyish grey-black green, strongly brecciated with argillaceous fragments-blocks, locally feldspar-calcareous phenocrysts, localized white calcareous stringers-fractures, trace-1\% pyrite locally up to $3-4 \%$ stringer-fracture-clotty pyrite, locally graphitic-black carbonaceous fractures-shear planes.

METRES

FROM TO

ROCK DESCRIPTION

DEPTH
(m)

CORE
ANGLE

$$
\begin{aligned}
20.5-23.5 \mathrm{~m}: & 2-3 \% \text { clotty-stringer-diss py, } \\
& 1-3 \% \text { white calcareous } \\
& \text { fractures, localized wk black } \\
& \text { carb-graphitic matrix. }
\end{aligned}
$$

Argillite Brecaia
Predominantly argillite breccia with multilithic fragments-blocks, generally dark grey-black, abundant black carbonaceouslocally graphitic fractures-matrix-gouge localized 1-2\% white calcareous stringer fractures, 1-2\% frac-diss-clotty py-locally 3-5\% localized $2-5 \mathrm{~cm}$ porphyritic dykes?/ volcanic blocks.
23.5 - $25.0 \mathrm{~m}:$ Predominantly blackish gouge breccia, 1\% py.
24.0-24.2m: 3\% diss-frac py.
25.0-28.8 m: 1-3\% py, mm-cm scale fragments gets gradationally more volcanic to weakly silicified (harder and lighter in colour), 3-4\% locally, 5-6\% py.

Felsic Breceia
Light greenish grey-buff grey, may have intrusive nature, but too altered/deformed, sharp upper and lower contact, as 16.0-20.5 m , moderate sericite, weak chlorite patchesstringer, localized bluish grey patches/ fragments (more siliceous), weak carbona-ceous-calc stringers-fractures, trace qtz 24\% diss-clotty-frac py, sheared sericitic/ chloritic/calcite/gouged lower contact $35^{\circ}-$ 48° to C.A.

Dacite

Dark-medium grey, calcareous phenocrysts (?altered clasts/grains), locally brecciated-fractured, locally foliated to sheared, black carbonaceous-graphitic fracture/shears, trace white calcareous stringers, trace-locally 1\% diss-fracture pyrite.

[^0]HOLE NO.: MON4-1 PAGE $\quad 4$

METRES
FROM TO

ROCK DESCRIPTION

DEPTH

CORE
(m) ANGLE
$33.0 \mathrm{~m}: \quad 45^{\circ}$ shear.
33.7-34.1 m: Shear, trace graphite.
$34.0 \mathrm{~m}: \quad 40^{\circ}$ shear.
34.6-34.8 m: Intermediate dyke, foliatedsheared 48° to C.A.
$37.2-37.3 \mathrm{~m}:$ Argillaceous-graphitic shear, 47° to C.A., 1\% calcareous stringers.
$37.3-37.9 \mathrm{~m}:$ strong breccia zone, sheared 47° to C.A. with black pyargillaceous fragments.

46.9 Dacite Fragmental

Dark grey-black, locally brecciated, weak calcareous matrix (?phenocrysts), vf-f grained, localized white calcareous stringers, localized weak graphite slippage fractured and shear zones, tr-1\% diss-frac py, gets more brecciated and altered with depth.
42.9-43.3 m: Rubble zones.
43.3-46.9 m: strongly brecciated with weak silicification-moderate sericite and white calcite veining (non-orientated) trace pyritic quartz stringers (2-3 mm) alteration gets stronger with depth.
44.2-46.9 m: 1-3\% Diss-fractureclotty pyrite localized 1\% quartz stringers over 2 cm .

[^1]Brecciated Intermediate
Buff brown with white feldspar/quartz/ calcareous phenocrysts, strongly fractured/ brecciated with black matrix and sericitecalcareous fracture filling, trace quartz stringers, trace fracture py, moderately silicified.
$48.3-48.4 \mathrm{~m}: \begin{aligned} & 0.5 \% \\ & \text { with qtz stringers, trace }\end{aligned} \quad$ py

METRES
FROM

ROCK DESCRIPTION
(m)
50.1-50.7 m: 0.1 locally 0.5\% qtz stringer
0.1-0.5\% vn-diss-frac py moderately fractured.
51.6 - $54.9 \mathrm{~m}:$ Fractured-locally brecciated, black matrix filling, tr calcite-quartz stringers, tr0.5% vn-frac diss py, locally 1\% over 2-5 cm, silicification gets weaker with depth.
54.9-59.6 m: Brecciated-strongly fractured, localized blocky zones, moderate sericite, localized weak silicification, trace quartz veining, tr diss-frac py, locally 0.51\% py.
$58.6-59.6 \mathrm{~m}: 5 \mathrm{~mm}$ qtz stgr at 5% to C.A.
$59.6-61.5 \mathrm{~m}:$ Alteration and structure gets less with depth, sheared/ graphitic lower contact.

Dacite Fragmental
Medium grey, fine grained matrix, fine to coarse ($3-5 \mathrm{~cm}$) quartz/chert clasts, rounded to sub-angular, contorted-fractured-stretched-squashed-eroded boundaries, sheared-weakly graphitic upper contact (0.5 $\mathrm{m})$, trace calcite veins-stringer-lenses scattered throughout, locally brecciatedsheared, clasts locally aligned with fabric, tr-locally 1-2\% diss-frac-vn py.
62.7-63.7 m: Brecciated-sheared, fgrained, black phenocrysts, ?dyke.
64.7-64.8 m: Broken/shear zone.
64.8 - $66.6 \mathrm{~m}: 2-3 \%$ calcite with quartz veining, sub-parallel to C.A., $5-30^{\circ}$ to C.A. localized gouge-graphitic fractures.
66.6-67.2 m: Gouge/breccia zone, localized graphite 1-2\% calcite stringers-lenses, trace dissfrac py.
\qquadROCK DESCRIPTION

\qquad

METRES			DEPTH	CORE
FROM	TO	ROCK DESCRIPTION	(m)	ANGLE

84.4-93.4 m: Brecciated with bedded argillite, clasts/fragments up to 20 cm , weak calcite stringers, $1 t$ diss-cubic py locally up to 3\%, localized graphitic features.
93.4 98.5 Argillite

Black, bedded, fine to very fine grained, locally brecciated and shared, trace to locally moderate calcite veining-stringers, 1-3\% bands of cubic-diss pyrite, localized calcareous, porphyoblasts, slumped faulted in places.
94.8-94.9 m: Graphitic shear.
95.2 - 96.4 m: Graphitic shear, 1-2\% calcite stringer, 2-3\% cubic-dissstringer py.
96.4-96.9 m: 1-2\% calcite veining, 2-4\% pyrite.
96.9-98.4 m: Intermittent graphiticgouge/shearing with weaks calcite veins, 1-3\% py.

End of Hole.

HOLE
NO. :
PAGE

$\begin{aligned} & \text { SAMPLE NO.: } \\ & \text { (Core) } \end{aligned}$	FROM (m)	$\begin{aligned} & \mathrm{TO} \\ & \text { (m) } \end{aligned}$	WIDTH (m)	$\begin{aligned} & \text { FAAA } \\ & \text { Au } \\ & (\mathrm{ppb}) \end{aligned}$	$\begin{gathered} \text { V.G. Assay } \\ \text { Au } \\ (\mathrm{Oz/st}) \end{gathered}$	$\underset{(\mathrm{Oz} / \mathrm{st})}{\mathrm{Au}}$

MON4-1-

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
17.4
17.9
18.4
18.9
19.4
19.9
20.4
20.9
21.4
21.9
22.4
22.9
23.4
23.9
24.4
24.9
25.4
25.9
26.4
26.9
27.4
27.9
28.4
28.8
29.3
29.8
30.3
30.8

43.3
43.8
44.3
44.8
45.3
45.8
46.3
46.8
47.3
47.8
48.3
48.8
49.3
49.8
50.3
50.8
51.3
17.9
18.4
18.9
19.4
19.9
20.4
20.9
21.4
21.9
22.4
22.9
23.4
23.9
24.4
24.9
25.4
25.9
26.4
26.9
27.4
27.9
28.4
28.8
29.3
29.8
30.3
30.8
31.3
43.8
44.3
44.8
45.3
45.8
46.3
46.8
47.3
47.8
48.3
48.8
49.3
49.8
50.3
50.8
51.3
51.8

0.5	<1	
0.5	7	
0.5	5	
0.5	<1	
0.5	<1	
0.5	8	
0.5	<1	
0.5	<1	
0.5	3	
0.5	<1	
0.5	<1	
0.5	<1	
0.5	3	
0.5	20	<0.001
0.5	14	
0.5	4	
0.5	2	
0.5	5/3	<0.001
0.5	2	
0.5	14	
0.5	<1	
0.5	3	
0.4	3	
0.5	<1	
0.5	<1	
0.5	3	
0.5	<1	
0.5	<1	
0.5	4	
0.5	3	
0.5	<1	
0.5	4	
0.5	3	
0.5	<1	
0.5	<1	
0.5	3	
0.5	<1	
0.5	2	
0.5	3	
0.5	<1	
0.5	<1	
0.5	1	
0.5	<1	
0.5	<1	
0.5	<1/<1	

($\mathrm{Oz} / \mathrm{st}$)
<0.001

HO1LE NO.: MON4-1 RESULTS (Core) Continued

MON4-1-

1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083

51.8	52.3	0.5	<1
52.3	52.8	0.5	1
52.8	53.3	0.5	<1
53.3	53.8	0.5	<1
55.0	55.5	0.5	1
55.5	56.0	0.5	<1
56.0	56.5	0.5	3
56.5	57.0	0.5	<1
57.0	57.5	0.5	2
57.5	58.0	0.5	<1
58.0	58.5	0.5	<1
58.5	59.0	0.5	<1
59.0	59.5	0.5	2
59.5	60.0	0.5	3
60.0	60.5	0.5	3
60.5	61.0	0.5	3
61.0	61.5	0.5	4
61.5	62.0	0.5	<1
73.8	74.3	0.5	3
74.3	74.8	0.5	2
74.8	75.3	0.5	<1
			<1
79.5	80.0	0.5	3
80.0	80.5	0.5	3
80.5	81.0	0.5	2
81.0	81.5	0.5	3
81.5	82.0	0.5	37
82.0	82.5	0.5	3
82.5	83.0	0.5	4
83.0	83.5	0.5	2
83.5	84.0	0.5	$3 / 3$
84.0	84.5	0.5	4
93.5	94.0	0.5	3
94.0	94.5	0.5	<1
94.5	95.0	0.5	0.5
95.0	95.5	0.5	0.5
95.5	96.0	0.5	29
96.0	96.5	0.5	<1
96.5	97.0	0.5	2

HOLE NUMBER		MON4-1		Results (Sludge)		PAGE 10 of 10		
Sample No.	From (m)	$\begin{aligned} & \text { To } \\ & \text { (} \mathrm{m} \text {) } \end{aligned}$	Width (m)	$\begin{gathered} \mathrm{Au} \\ \text { (ppb) } \end{gathered}$	Sample No. $\begin{gathered}\text { From } \\ \\ \text { (m) }\end{gathered}$	$\begin{aligned} & \text { To } \\ & \text { (m) } \end{aligned}$	Width (m)	$\begin{gathered} \mathrm{Au} \\ \text { (ppb) } \end{gathered}$
501	13.4	17.1	3.7	<1				
502	17.1	20.1	3.0	<1				
503	20.1	23.2	3.1	3				
504	23.2	26.2	3.0	21				
505	26.2	29.3	3.1	6				
506	29.3	32.3	3.0	8				
507	32.3	35.4	3.1	8				
508	35.4	38.4	3.0	<1/1				
509	38.4	41.5	3.1	5				
510	41.5	44.5	3.0	10				
511	44.5	47.5	3.0	3				
512	47.5	50.6	3.1	5				
513	50.6	53.6	3.0	1				
514	53.6	56.7	3.1	5				
515	56.7	59.7	3.0	5				
516	59.7	62.8	3.1	5				
517	62.8	65.8	3.0	<1				
518	65.8	68.9	3.1	7				
519	68.9	71.9	3.0	7				
520	71.9	75.0	3.1	<1				
521	75.0	78.0	3.0	2				
522	78.0	81.1	3.1	7				
523	81.1	84.1	3.0	2				
524	84.1	87.2	3.1	9				
525	87.2	90.2	3.0	2				
526	90.2	93.3	3.1	7				
527	93.3	96.3	3.0	5				
528	96.3	98.5	2.2	<1				

N/S - No Sample
NSS - Not Sufficient Sample

DIAMOND DRILL GEOLOGICAL LOG

PROJECT: \qquad DISPOSITION:
Yeoward 11 PAGE: 1 of 11

HOLE NO: MON4-2 LOGGED BY: D. Melrose STORAGE: \qquad

LOCATION: $L 6+07 N, 1+23 W$ SECTION: \qquad ELEVATION: 1759 m

AZIMUTH/INCLINATION: $045^{\circ} /-45^{\circ}$
DEPTH: \qquad DIP TEST: \qquad

CONTRACTOR: Lone Ranger Drilling CORE SIZE: NO CASING LEFT: \qquad

STARTED/COMPLETED: \qquad September 19-21, 1994 \qquad LOGS UPDATED: \qquad

PURPOSE:
SUMMARY:
0-2.5 m: Overburden.
2.5-43.1 m: Dacitic/Andesite, loc bx zones w/qtz-cb vns, 1-2\% py.
17.5-23.1 m: Brittle zone, loc sil-chl patches, localized qtz-cb stgrs-vns, 1\% locally 3\% py.
31.1-33.6 m: As $17.5-23.1 \mathrm{~m}$.
41.3-42.5 m: Brittle zone, trace qtz 1-3\% py-po.
43.1-44.6 m: Porphyritic Andesite/Mafic Dyke.
44.6-51.8 m: Dacite/Andesite, trace brittle qtz-py, 1-locally 2% py-po. 51.8-64.7 m: Intercalated Dacite/Porph And-Mafic Dyke, localized brittle qtz-py, 1-3\% sx.
64.7-98.5 m: Dacite, localized brittle-sil zones, 1% diss po-py.
64.3-65.9 m: 1\% locally-5\% qtz, 2-4\% py.
70.0-75.0 m: Wk-mod sil, trace qtz, 1-2\% po.
85.9-87.8 m: Brittle, weak sil, tr qtz, 3-4 po-py.
98.5 m : End of Hole.

SIGNIFICANT RESULTS:

	DOWNHOLE	TRUE	RESULTS	
INTERSECTION	WIDTH	WIDTH	Au	NOTES
(m)	(m)	(m)	$(\mathrm{Oz} / \mathrm{st})$	

\qquad
METRES
FROM TO
$0 \quad 13.4$ overburden
13.4 Overburden
(Casing to 3.0 m)
43.1 Dacite/andesite

Medium grey, light greenish grey, localized feldspar-quartz phenocrysts, weak localized fracture zones, trace qtz-calcite stringers, trace diss-fracture pyrite, locally fragmental.

$5.6-5.8 \mathrm{~m}: \quad$| Brittle shear zone, trace qtz |
| :--- |
| stringers 40° to c.A., minor |
| gouge, 18 fracture-diss |
| pyrite, main fracture |
| orientation 51° to C.A. |

$8.4 \mathrm{m:} \quad$| Mm scale qtz-carbonate vein, 18° |
| :--- |
| to C.A. |

8.7-9.1 m: Brittle/ductile shear zone, moderate sericite-black gangue fractures, 1-2\% calcite/carbonate stringers, 1-2\% diss-fracture pyrite.
10.0 - $10.6 \mathrm{~m}:$ Fractured zone, $1-2 \%$ nonorientated quartz-carbonate stringers, fragmental, chlorite-sericitic-black fractures, trace to locally 2% diss-fracture pyrite.
11.1 - $11.3 \mathrm{~m}:$ Shear zone, ductile/brittle, black (graphitic?) chloriticsericitic fractures 1-3\% carbonate stringers-fracture trace to locally 18 fracturediss stringer pyrite, shear 52° to C.A.
$12.1 \mathrm{~m}: 3 \mathrm{~cm}$ pyritic-chloritic quartz veins, 42° to C.A.
$12.3 \mathrm{~m}: \quad \begin{aligned} & 2 \text { cm shear-qtz-carbonate vein, } \\ & \text { gouge, } 56^{\circ} \text { to c.A., } 2-3 \% \text { vein } \\ & \text { pyrite. }\end{aligned}$
13.1-13.2 m: Shear zone, chloritic-quartzcalcite veining, 2-3\% diss-stringer-vein pyrite, 72° to C.A.

METRES
FROM TO

DEPTH
(m)

CORE
ANGLE
16.7-17.0 m: Brittle zone, sericiticchloritic fractures, trace calcite stringers, 1\% fracture-diss pyrite.
17.5-23.1 m: Brittle fracture zone (moderate to strong) localized silicification, chloritic patches-fractures, trace to locally 1-2\% (over 5 cm) carbonate-quartz stringers veins, 1\% locally to 2-3\% fracture-stringerdiss pyrite.
19.0-19.2 m: Two qtz veins (3 cm) 42° and 65° to C.A., 3-4\% stringer vein pyrite.
19.4-19.6 m: Graphitic-calcite stringer shear zone 72° to C.A., 1-2\% dissfracture pyrite.
19.6 - $20.8 \mathrm{~m}:$ Breccia/strong fracture zone, localized gouge 12\% white calcite veining, trace quartz 1\% locally 2-3\% stringerdiss pyrite.
21.8-22.5 m: 5-10\% quartz-carbonate veins-stringers $15-40^{\circ}$ to C.A., two generations of veins, chloriticpyritic (1\%) fractures.

$22.5-23.1 \mathrm{~m}:$	Weak silicification,
	trace qtz fractures, 1%
	diss-fracture pyrite.

26.8-27.7 m: Brittle zone, moderatestrong, black (chloritic?) fracture filling, trace to locally 0.5\% calcite stringer, trace to locally 1\% diss-fracture pyrite (over 10 cm) weak patchy silicification.

METRES
FROM TO

ROCK DESCRIPTION
DEPTH
(m) CORE ANGLE
28.9-29.4 m: Brittle zone, 1\% quartzcarbonate vein (5 mm) 2\% stringer-diss-vein pyrite, 16° to C.A.
31.1 - $33.6 \mathrm{~m}:$ Brittle fracture zone, trace quartz-calcite stringersveins, localized patches of silicification, 1% to locally 2-3\% diss-fracture-stringer pyrite.
33.6-34.2 m: Andesite, cm scale fragments.
$34.2 \mathrm{~m}: \quad 3 \mathrm{~cm}$ quartz vein, 52° to C.A.
34.2-41.3 m: Trace mm scale pyritic quartz stringers and fracture fillings, localized brittle zones, weak patchy silicification.
41.3-42.5 m: Brittle zone, moderate-strong fracturing, non-orientated, black gangue-sericitic-chlorite-?graphitic fracture filling, trace quartzcarbonate stringers, 1\% diss-stringer-fracture pyrite.
41.7-41.8 m: Gouge shear, calcite stringers- ? weakly graphitic, 50° to C.A., 2-3\% diss-clotty pyrite.
42.5-42.8 m: Shear zone-black-greenish grey, clay filled fractures, sheared quartz-carbonate veins, minor argillaceous beds, 56° to C.A., 2-3\% stringer fracture pyrite.
42.8-43.1 m: Weak silicification, argillaceous fractures, 1\% pyrite.

METRES			DEPTH
FROM	TO	ROCK DESCRIPTION	(m)

43.1
44.6
44.6

Porphyritic Andesite/Mafic Dyke Dark greyish green-blackish green, abundant brownish rounded and bladed feldspar phenocrysts, weakly magnetic, sharp contact, weak quartz stringer-veinlet, $10-35^{\circ}$ to C.A., 1-2\% stringer-fracture-diss-vein pyrite, lower contact 30° to C.A.

Dacite/Andesite
Light greenish grey-medium grey, very fine grained, locally porphyritic-fragmental, very broken-blocky core, sporadic, narrow weak-strongly fractured, trace mm scale quartz stringers-fracture, trace-2\% dissfracture pyrite, fine grained-fragmental lower contact.
47.8-48.2 m: Strong fracture/brittle zone, sericitic qtz fracture, 1\%locally 2% stringer-diss pyrite.
48.8-49.1 m: Sub-parallel to C.A. fracture/brittle zone sericitic fractures with traces of quartz 1\% dissfracture pyrite.
50.6-50.7 m: Intense brittle zone, carbonaceous-argillaceoussericitic fractures, trace pyrite.
50.7-51.8 m: More fragmental than above, poor sorting, feldspar phenocrysts, trace quartzpyrite.
51.8 64.7 Intercalated Dacite and Porphyritic Andesite/Mafic Dyke
Porphyritic andesite/mafic dyke as 43.1 44.6 m , relatively unaltered with localized quartz-carbonate veining with pyritic fractures. Dacite/Andesite is moderatelystrongly fractured with quartz-carbonate stringers-veins, sericitic-argillaceous fractures, with pyrite stringers-diss-veins.
51.8-53.0 m: Andesitic porphyry, relatively unaltered, trace quartz-trace pyrite.

METRES
FROM

DEPTH
ROCK DESCRIPTION

CORE ANGLE
52.1-52.2m: 2-3\% quartz veins predominantly 25° to C.A., 35\% vein-stringer-pyrite.
53.0 - $53.9 \mathrm{~m}:$ Dacite-strongly fracturedbrecciated, localized quartz veining (most intense with strongest fracturing) 1\% diss-fracture pyrite.
53.2-53.6 m: Intense fracturing 1-3\% quartz veining (28° to C.A.) , sericiticchloritic locally, 2-3\% stringer-fracture pyrite, lower contact 15° to C.A.
53.9-54.3 m: Andesite porphyry/mafic dyke, 0.5\% quartz stringers, 1\% fracture-stringer pyrite.
54.3-55.8 m: Dacite, moderately-strongly fractured, localized quartz veining-pyrite-brecciation, 1\%-locally 3\% stringer fracture pyrite, minor clay fractures.
55.1 - $55.8 \mathrm{~m}: 10-20 \%$ quartz veining parallel to sub-parallel to C.A. veins are chloritic with 3% stringer-fracture pyrite.
55.8-57.9 m: Andesite porphyry, relatively unaltered, sharp lower contact 21° to C.A., brecciated-mixed upper contact.
56.1 - $56.5 \mathrm{~m}: 10 \%$ quartz-carbonate veining, $5-30^{\circ}$ to C.A., 2-3\% stringer-fracturevein pyrite.
56.5 - $56.7 \mathrm{~m}: 1-2 \%$ quartz stringer, 5$25^{\circ}$ to C.A., 2% fracture stringer pyrite.

\qquad

FROM
ROCK DESCRIPTION
57.9-59.9 m: Dacite, moderately-strongly fractured, sericitic-argillaceous-sericitic fractures, 1% quartzcarbonate stringers 0.5-1\% pyrite, locally 2\%.
59.9-64.7m:Andesitic porphyry, relatively unaltered, trace0.5% low angle quartz stringers, trace-locally 1\% diss-fracture pyrite.

Dacite
Light greenish grey-greyish green, very fine-fine grained, locally fragmental and porphyritic, altered upper contact, trace quartz stringer-veinlets (5-60 to C.A.), 1\% diss-fracture pyrite, cm scale clasts, weaklocally strongly fractured.
64.3-65.9m: Moderately-strongly fractured, 1\%-locally 5\% quartz veining, 2\%-locally 4\% diss-stringer-fracture pyrite.

$$
65.4-65.6 \mathrm{~m}: 5-10 \% \text { quartz veins, } 38^{\circ}
$$ to C.A.

65.9 - $83.6 \mathrm{~m}:$ Weak-moderately fractured, trace quartz veining, tr-1\% pyrite, fragmental.
70.0-75.0m: Weak-1ocal moderate silicification, finer grained, less fragments, magnetic, trace quartz, trace-1-locally 2\% dissfracture po.
$75.6 \mathrm{~m}: 2 \mathrm{~mm}$ stringer pyrite, 80° to C.A.
$76.0-76.3 \mathrm{~m}: \mathrm{Mm}$ scale pyrite filled fracture, $5-10^{\circ}$ to C.A.
80.6-81.0 m: Moderate silicification, 1\% diss po, 1-2\% fracturestringer pyrite, moderately fractured, trace quartz carbonate stringers.

FROM

DEPTH
(m)

CORE
ANGLE
83.6-85.9 m: Weakly fractured, trace quartz sericite stringers, 1\% diss-fracture py-po.
85.9-87.8 m: Moderate-locally strong fracturing, weakly silicified, chloriticsericitic fractures, trace quartz stringers, 3-4\% fracture-stringer-diss pyrite-pyrrhotite.
87.8-89.3 m: Weakly fractured, chloritic-sericitic-pyrite pyrrhotite fractures, trace quartz stringers.
89.3-90.3 m: Moderately-strongly fractured, trace quartz stringers-chloritic-sericitic fractures, 2-3\% diss-fracture-stringer pyrite.
90.3-94.3 m: Moderately fractured, trace quartz stringers-weak chloritic-sericitic fractures, 1-2\% fracture diss po-py.

$94.3-98.5 \mathrm{~m}:$	Weakly-locally moderately fractured, trace quartz fractures-stringer, localized
	sericitic patches, 1-locally
	2% fracture-diss py-p.

End of Hole.

SAMPLE NO.:	FROM	TO	WIDTH	FAAA	V.G.Assay	Au
(Core)	(m)	(m)	(m)	Au	Au	Au
				(ppb)	$(\mathrm{oz} / \mathrm{st})$	$(\mathrm{oz} / \mathrm{st})$

MON4-2-

2084
2085 2086 2087 2088 2089

2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102

2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123

9.5	10.5	0.5	2	
10.0	10.5	0.5	3	
10.5	11.0	0.5	2	
11.0	11.5	0.5	<1	
11.5	12.0	0.5	5	
12.0	12.5	0.5	2	
17.0	17.5	0.5	2	
17.5	18.0	0.5	3	
18.0	18.5	0.5	2	
18.5	19.0	0.5	2	
19.0	19.5	0.5	3	<0.001
19.5	20.0	0.5	1	
20.0	20.5	0.5	<1	
20.5	21.0	0.5	4	
21.0	21.5	0.5	<1	
21.5	22.0	0.5	4	
22.0	22.5	0.5	<1	
22.5	23.0	0.5	2	
23.0	23.5	0.5	<1	
26.8	27.3	0.5	2	
27.3	27.8	0.5	3	
28.9	29.4	0.5	2	
31.0	31.5	0.5	1	
31.5	32.0	0.5	2	
32.0	32.5	0.5	3	
32.5	33.0	0.5	<1	
33.0	33.5	0.5	2	
33.5	34.0	0.5	2	
52.0	52.5	0.5	3	
53.0	53.5	0.5	2	
53.5	54.0	0.5	<1	
54.0	54.5	0.5	2	
54.5	55.0	0.5	<1	
55.0	55.5	0.5	2	
55.5	56.0	0.5	8	
56.0	56.5	0.5	<1	0.001
56.5	57.0	0.5	2	
58.0	58.5	0.5	<1	
58.5	59.0	0.5	3	
59.0	59.5	0.5	1	

SAMPLE NO.:
(Core)
FROM
(m)
(m)
WIDTH
(m)

FAAA	V.G. Assay
Au	Au
(ppb)	$(\mathrm{oz} / \mathrm{st})$

Au
(oz/st)

MON4-2-

2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
64.3
64.8
65.3
65.8
79.0
79.5
80.0
80.5
81.0
85.4
85.9
86.4
86.9
87.4
87.9
89.3
89.8
93.0
93.5
64.8
65.3
65.8
66.3
79.5
80.0
80.5
81.0
81.5
85.9
86.4
86.9
87.4
87.9
88.4
89.8
90.3
93.5
94.0
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
<1
<1
$2 / 1$
<1
<1
<1
2
<1
<1
<1
<1
<1
3
$<1 /<1$
<1

3
2

Results (Sludge)

| Sample No. From | To

 (m) | Width
 (m) | Au
 (m) | Sample No. | From | To | Width | Au |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | (m) | (m) | (m) | (ppb) | | |

529	3.0	4.9	1.9	6
530	4.9	7.9	3.0	
531	7.9	11.0	3.1	<1
532	11.0	14.0	3.0	6
533	14.0	17.1	3.1	5
534	17.1	20.1	3.0	<1
535	20.1	23.2	3.1	2
536	23.2	26.2	3.0	6
537	26.2	29.3	3.1	2
538	29.3	32.3	3.0	7
539	32.3	35.4	3.1	<1
540	35.4	38.4	3.0	4
541	38.4	41.5	3.1	2
542	41.5	44.5	3.0	44
543	44.5	47.5	3.0	8
544	47.5	50.6	3.1	2
545	50.6	53.6	3.0	2
546	53.6	56.7	3.1	6
547	56.7	59.7	3.0	8
548	59.7	62.8	3.1	6
549	62.8	65.8	3.0	10
550	65.8	68.9	3.1	2
551	68.9	71.9	3.0	<1
552	71.9	75.0	3.1	4
553	75.0	78.0	3.0	<1
554	78.0	81.1	3.1	$12 / 12$
555	81.1	84.1	3.0	6
556	84.1	87.2	3.1	16
557	87.2	90.2	3.0	14
558	90.2	93.3	3.1	2
559	93.3	96.3	3.0	8
560	96.3	98.5	2.2	10

CNNECO CORPORATIOX

DIAMOND DRILL GEOLOGICAL LOG

PROJECT: MONASHEE DISPOSITION: Yeoward 7 PAGE: 1 of 6

HOLE NO: MON4-3 LOGGED BY: D. Melrose STORAGE: \qquad

LOCATION: L8+30N, 4+00W SECTION: \qquad ELEVATION: 1783 m

AZIMUTH/INCLINATION: $000^{\circ} /-45^{\circ}$
DEPTH: \qquad DIP TEST: \qquad

CONTRACTOR: Lone Ranger Drilling CORE SIZE: NQ CASING LEFT: \qquad

STARTED/COMPLETED: \qquad September 19-21. 1994 \qquad LOGS UPDATED: \qquad

DEPTH	96.3 m
AZIMUTH	-.0
DIP	-45°

\qquad
\qquad
\qquad
\qquad
PURPOSE:
SUMMARY:
0-2.4 m: Overburden.
2.4-34.1 m: Andesite, brittle zones <1 m wide, trace 1\% py, locally 1-2\% py.
34.1-64.5 m: Dacite, local brit zones <2 m wide, trace-1\% py, loc 2\%.
$64.5-69.8 \mathrm{~m}: \quad$ Porph Andesite
69.8-77.0 m: Dacite
$77.0-96.3 \mathrm{~m}$: Andesite
96.3 m : End of Hole.

SIGNIFICANT RESULTS:
DOWNHOL

TRUE
WIDTH
(m)

RESULTS Au NOTES
(m)
(oz/st)

METRES			DEPTH
FROM	TO	ROCK DESCRIPTION	CORE

0 2.4 Overburden
34.1 Andesite

Light greyish green-locally greenish grey, fine-medium grained, locally porphyriticfragmental, localized brittle fracturing, fracture sets associated with trace-weak quartz-calcite stringers, locally silicified, trace-1\% diss-fracture pyrite, locally grades to dacitic composition.
23.0 - 23.5 m : Brittle zone, moderate fracturing, trace quartz stringer, argillaceouschloritic fractures, 1\% dissfracture pyrite.
23.5-24.5 m: Weak silicification-chloritic fractures, 1-2\% diss-fracture pyrite.
25.7 m : Foliation 44°.
28.5-31.4 m: Moderate-local strong fracturing, weak localized quartz carbonate stringers, 1-locally 2% diss-fracture pyrite.
32.6-34.0 m: As 28.5-31.4m.

Light-medium grey, occasional light greenish-grey, very fine-fine grained, locally fragmental, weakly fractured to locally brecciated, trace mm scale quartzcalcite stringers, trace-1\% diss fracture pyrite, locally grades to andesite.
36.4-39.7 m: Moderately fractured, locally brecciated, trace quartzchlorite stringers, trace-1\% diss-fracture pyrite.
40.5-45.7m: Blocky/broken zone-brecciated-strongly fractured, weak patchy silicification, trace quartzcalcite stringers, tracelocally 1% diss fracturestringer pyrite.

| METRES |
| :--- | :--- | :--- | :--- |
| FROM TO | ROCK DESCRIPTION \quad| DEPTH |
| :---: |
| (m) | | CORE |
| :---: |
| ANGLE |

$48.2 \mathrm{~m}: \quad 2 \mathrm{~mm}$ quartz vein 42° to C.A.
49.0 m : 1 cm quartz vein 38° to C.A., chloritic 1-2\% pyrite.
50.5-51.1 m: Blocky/broken brecciated zone, trace quartz-pyrite.
54.3-54.8 m: Breccia/gouge zone, if quartz stringers, trace-1\% pyrite.
54.8-57.5m: Moderately-strongly fractured, trace $m m-1 \mathrm{~cm}$ quartz stringers, patchy sericite, trace-1t pyrite.
57.5-64.0 m: Weak-localized moderate fracturing, predominantly dacite with minor andesite, trace quartz-calcite veining, trace-1\% diss-fracture pyrite.
64.0 - $64.5 \mathrm{~m}:$ Moderate-strong fracturing, moderate silicification, trace quartz-carbonate stringers, trace pyrite.
64.5 69.8 Porphyritic Andesite

Medium green-brownish green, dark greenblack phenocrysts (?hornblende), moderately fractured, weak carbonate-quartz carbonate stringers, localized chloritic-sericitic fractures, trace-1\% diss-fracture pyrite, gets less porphyritic and fractured with depth.
68.1-69.3 m: Brittle/broken zone.
69.8 77.0 Dacite

Light greenish grey-medium grey, locally grades to andesite, very brittle/broken rock, weak-locally strong fracturing, localized chloritic-quartz-pyrite fractures, tuffaceous-locally porphyritic, localized weak silicification, trace-locally 0.5\% fracture pyrite.
$\begin{aligned} & 69.8-77.0 \mathrm{~m}: \text { Weak-local moderate } \\ & \text { silicification, trace quartz } \\ & \text { carbonate stringers, trace } \\ & \text { pyrite. }\end{aligned}$

HOLE NO.: MON4-3
PAGE $\quad 4$ of

METRES
FROM TO
ROCK DESCRIPTION

DEPTH

(m)

CORE
77.096 .3 Andesite

Locally fractured, porphyritic, trace silicification, trace quartz-chlorite-pyrite fractures.
$\begin{aligned} 86.3-87.8 \mathrm{~m}: & \begin{array}{l}\text { Strongly fractured-locally } \\ \\ \\ \\ \\ \\ \text { brocen/blocky, trace quartz- } \\ \\ \\ \text { chloritic-cubic pyrite } \\ \text { fractures. }\end{array}\end{aligned}$
87.7-87.8 m: Shear 42 C.A. sericiticquartz patches-pyrite.
87.8 - $96.3 \mathrm{~m}:$ Blocky/broken core, trace quartz-chlorite-sericiticpyrite fractures, gets less altered with depth.
92.7-93.0 m: Breccia zone, chloritic-sericitic-carbonate stringers, trace pyrite.

End of Hole.
FROM TO WIDTH FAAA V.G. Assay
(m)
(m)
(m)

Au (ppb)

Au
(oz/st)

Au (Oz/st)

MON4-3-

3143	53.9	54.4	0.5	2
3144	54.4	54.9	0.5	<1
3145	54.9	55.4	0.5	<1
3146	55.4	55.9	0.5	3
3147	88.2	88.7	0.5	2
3147	88.7	89.2	0.5	<1
3149	89.2	89.7	0.5	<1

Results (Sludge)

Sample No	From (m)	To (m)	Width (m)	$\begin{gathered} \mathrm{Au} \\ (\mathrm{ppb}) \end{gathered}$	Sample No.	From (m)	$\begin{aligned} & \text { To } \\ & \text { (m) } \\ & \hline \end{aligned}$	Wdth (m)	$\begin{gathered} \mathrm{Au} \\ (\mathrm{ppb}) \end{gathered}$

561	3.0	7.9	4.9	2
562	7.9	11.0	3.1	<1
563	11.0	14.0	3.0	4
564	14.0	17.1	3.1	4
565	17.1	20.1	3.0	<1
566	20.1	23.2	3.1	<1
567	23.2	26.2	3.0	4
568	26.2	29.3	3.1	6
569	29.3	32.3	3.0	11
570	32.3	35.4	3.1	9
571	35.4	38.4	3.0	9
572	38.4	41.5	3.1	7
573	41.5	44.5	3.0	11
574	44.5	47.5	3.0	7
575	47.5	50.6	3.1	2
576	50.6	53.6	3.0	2
577	53.6	56.7	3.1	4
578	56.7	59.7	3.0	4
579	59.7	62.8	3.1	5
580	62.8	65.8	3.0	5
581	65.8	68.9	3.1	7/9
582	68.9	71.9	3.0	5
583	71.9	75.0	3.1	5
584	75.0	78.0	3.0	<1
585	78.0	81.1	3.1	4
586	81.1	84.1	3.0	<1
587	84.1	87.2	3.1	2
588	87.2	90.2	3.0	2
589	90.2	93.3	3.1	3
590	93.3	96.3	3.0	<1

DIAMOND DRILL GEOLOGICAL LOG

PROJECT: \qquad DISPOSITION:
Yeoward 7 PAGE: 1 of \qquad

HOLE NO: MON4-4 LOGGED BY: \qquad D. Melrose STORAGE: \qquad LOCATION: $工 4+16 N_{\perp} 8+38 \mathrm{~W}$ SECTION: \qquad ELEVATION: \qquad

AZIMUTH/INCLINATION: $045^{\circ} /-50^{\circ}$ DEPTH: 105.5 m DIP TEST: ACID CONTRACTOR: Lone Ranger Drilling CORE SIZE: NO CASING LEFT: 0 _m STARTED/COMPLETED: September 23-25, 1994 LOGS UPDATED: \qquad

PURPOSE:
SUMMARY:
0-4.7 m: Overburden.
4.7-13.8 m: Argillite
9.1-13.8 m: Bx/fault zone, gouge/graph m-s cal, 2-3\% py.
13.8-26.4 m: Limestone
26.4-47.3 m: Bx/Stwk Zone (limestone)
29.0-30.5 m: 3-5\% locally 10-15\% sx, tr qtz.
31.8 - $34.5 \mathrm{~m}: 2-5 \% \mathrm{sx}$.
47.3-58.1 m: Shear/bx zone, limestone/volc ctc?, ave 2-3\% sx/py-po-sphal tr qtz (bx mainly 47.3-55.4 m).
47.3-48.6 m: Arg unit 3-5\% aver - loc 10-15 (py-sphal-po). 48.6-51.7 m: Intense bx, 5\% - loc 7-10\% sx (py-sphal-po). $50.0-51.7 \mathrm{~m}: 5-10 \% \mathrm{sx}$.
58.1-75.6 m: Dacite-1oc bx-ser-brit zones.
75.6 - $82.6 \mathrm{~m}:$ Andesite
82.6-94.7 m: Dacite tuff.
94.7 - $105.5 \mathrm{~m}: \quad$ Argillite-localized graphitic/breccia/shear/gouge zones. 105.5 m : End of Hole.

SIGNIFICANT RESULTS:

INTERSECTION
(m)

DOWNHOLE WIDTH
(m)

TRUE WIDTH
(m)

RESULTS
Au ($\mathrm{Oz} / \mathrm{st}$)

NOTES
4.7
13.8
4.7
9.1
13.8
13.8

overburden

Argillite
Black-dark grey, very fine grained, fractured-strongly brecciated, localized graphitic gouge-breccia-fracture zone, weaklocally strong mm scale calcite stringerspatches, trace-locally 2-3\% diss-fracture pyrite.
4.7-9.1 m: Blocky/broken core, moderately-strongly fractured, <1\% calcite stringers, 1\% diss-fracture pyrite.

4.7-5.2 m:	Ground 0.2 m core.
$5.2-5.8 \mathrm{~m}:$	Lost/ground 0.5 m core.
$5.8-6.4 \mathrm{~m}:$	Lost/ground 0.2 m core.
6.4-7.6m:	Lost/ground 0.1 m core.
$7.6-8.8 \mathrm{~m}:$	Lost/ground 0.5 m core.

Breccia/Fault Zone

Brecciated with localized gouge zones, localized graphitic fractures, moderatelocalized strong calcite stringer zones, 23\% diss-stringer pyrite, sharp undulating contact 75° to C.A. contact.
9.7-11.9 m: Strong calcite stringers, 23\% diss-fracture pyrite.
11.9-12.5 m: Weak calcite stringers, 2-3\% pyrite.
12.5-13.8 m: Moderate-strong calcite stringers, 2-3\% pyrite.

Limestone

Medium-occasionally light grey, granular, locally appears to be recrystallized, localized breccia-strong fracture zone, slightly efferescent (decalcified), tracestrong calcite veining, localized graphitic fractures, weak-moderate sericite fractures, slippage along fractures, trace disseminated pyrite, shear/brecciated upper contact localized argillaceous partings-beds.

15.3 m : Shear 56° to C.A.
16.1 m : Shear 30° and 68° to C.A.
$17.2 \mathrm{~m}: \quad$ Shear/calcite vein 45° to C.A.
17.7-21.0 m: Trace-weakly fractured, localized weak calcite stringers, trace dissfracture pyrite, sericiticslippage fractures, trace argillaceous fractures.
21.0-26.4 m: Moderately fractured-locally brecciated, sericiticargillaceous fractures, localized weak zones of calcite stringers, trace diss-fracture pyrite.
21.2-21.3 m: Weak gouge zone.
26.4 47.3 Breccia/8tockwork zone - Limestone

Light-dark grey, brecciated-foliated, moderately-locally strong calcite stockwork, localized weak marble, efferescent, locally decalcified, argillaceous fractures-bedspartings, trace diss-fracture pyrite, trace quartz stringers, trace gouge fractures, sheared/gouge upper contact, best sx with argillaceous beds/banding/fragments.
$26.5 \mathrm{~m}:$ Foliation/shearing 58° to C.A.
27.8 m : Foliation 45° to C.A.
27.9-28.2 m: 3-5\% stringer-fracture pyrite, <1\% quartz veining.

METRES
FROM

ROCK DESCRIPTION

DEPTH

(m)

CORE
ANGLE
28.2-29.0 m: Trace pyrite, weak calcite stringers.
29.0-30.5 m: Sheared/argillaceous zone, brecciated fragments, weakmoderate calcite stockwork, trace x-cutting quartz stringers-veining, weak graphitic fractures, 3-5\% diss semi-massive pyrite, locally 10-15\% over 0.1-0.2 m.
29.0-29.3 m: 5-10\% stringer-diss pyrite, moderate argillaceous banding/beds 45° to C.A. fragmental, trace quartz veining.
29.3-29.5 m: Trace diss-fracture pyrite.
29.5-29.7 m: 10-15\% semi-massive-diss-fracture pyrite.
29.9 m : Shear/bed 50° to C.A.
30.5-31.0 m: Strongly fractured, weak calcite stringers, trace py.
31.0-31.8m:Argillaceous zone, brecciated-sheared (60° to C.A.), graphitic-sericitic fractures, 1-3\% calcite stringers, trace clay gouge, trace-1\% diss-fracture pyrite.
31.8-38.4 m: Strongly fractured-locally brecciated, strong calcite stockwork, argillaceousgraphitic fractures, trace diss-fracture py, locally bleached (marbled?).
31.8-34.5m: 2-5\% diss-patchystringer pyrite.
36.7 m : Shear 48° to C.A.

(m) ANGLE
38.4-42.5 m: As 31.8 - 38.4 m , only trace of calcite stockwork, trace fracture py.
$38.8 \mathrm{~m}: 5-6 \mathrm{~mm}$ quartz-pyrite-sphalerite-argillite vein, 46° to C.A.
42.5-47.3 m: As 31.8 - 38.4 m, weakmoderate calcite stringersstockwork, brecciatedstrongly fractured, trace pyrite.
$44.7 \mathrm{~m}: 1 \mathrm{~cm}$ pyrite band with 1% sphalerite.

Mottled grey/white-green/white, moderateintense brecciation, moderate calcite stockwork, ?limestone/argillite host (sharn?) trace quartz veining, average 2-3\% sx (pyrite-po-sphalerite) semi-massive in places localized gouge and clay fractures.
47.3-48.6 m: Brecciated argillite beds, 43-58 to C.A., magnetic, weak calcite stringers, average 3-5\% sx (pyrite, po, sphalerite) locally semimassive.
47.3-47.8 m: 10-15\% sx (pyrite-sphalerite-po).
47.8-48.6 m: 3\% stringer-diss pyrite, trace sphalerite.
48.6-51.7 m: Intense brecciation, moderate strong calcite-carbonate veins-stringers-lenses, 5 locally 7-10\% pyrite-stringers-lenses-diss-clasts, trace honeycomb sphalerite stringer, trace po stringers, chloritic-clay fracturesmatrix, trace po stringers, chloritic-clay fracturesmatrix, trace quartz lensesstringers.

METRES				DEPTH	CORE
FROM	TO	ROCK DESCRIPTION	ANGLE		

METRES		DEPTH	CORE
FROM TO	ROCK DESCRIPTION	(m) ANGLE	

$70.8-73.4 \mathrm{~m}:$	Weak patchy silicification-
	sericite, moderately
	fractured, trace quartz-
	calcite stringers, slippage
	on fractures, 1% diss-cubic-
	fracture pyrite.

75.682 .6 Andesite

Light-medium greyish green, fine grained, locally porphyritic, localized altered fracture zones, trace quartz-calcite stringers, trace-1\% diss-fracture pyrite, locally grades to dacite.
75.6 - $80.5 \mathrm{~m}:$ Moderately fractured, moderately sericitic, slippage on fractures, localized cm shears, trace quartz-calcite stringers, trace-1\% diss-fracture pyrite.
$76.4 \mathrm{~m}: \quad$ Shear, 44° to C.A.
$77.6 \mathrm{~m}: \quad$ Shear/quartz 40° to C.A.
82.4-82.6 m: Gouge zone, 54° to C.A.
82.694 .7 Dacitic Tuff

Light greenish grey-brownish grey, fine grained, locally calcareous, weaklymoderately fractured, abundant blocky/broken zones, trace calcareous stringers-fractures, trace quartz stringer, trace-locally 1\% diss-fracture pyrite.
85.4-87.9 m: Broken/blocky zone, ground 0.2 m core between 86.7 87.2 m.
$94.2 \mathrm{~m}: 3 \mathrm{~cm}$ gouge zone, 68° to C.A.
94.7 105.5 Argillite

Black-dark grey, bedded with localized brecciation, trace-locally strong calcitecarbonate stringers-veins, trace graphitic fractures,t race-1\% diss-cubic-fracture pyrite.
95.1 m : Bedding, 48° to C.A.
$95.5 \mathrm{~m}: 5 \mathrm{~mm}$ pyrite-carbonate veinlet.
$95.9 \mathrm{~m}: 1 \mathrm{~cm}$ pyritic gouge seam.
$96.9 \mathrm{~m}: \quad 2 \mathrm{~cm}$ pyritic-carbonate vein, 52°
97.6-98.1 m: Breccia zone, moderate patchy sericite, 1-2\% calcareous stringers-stockwork, minor gouge at sharp contacts (64° to C.A.), 1\%-locally 2\% diss-cubic-fracture pyrite.

$98.2-99.9 \mathrm{~m}:$	Localized $3-5 \mathrm{~cm}$ wide gouge zones and clay filled
	calcareous, stringers, weakly
	brecciated, trace-1\% diss-
fracture pyrite.	

98.5 m : Shear 54° to C.A., gouge zone 71° to C.A.
99.9-100.5 m: Weakly silicification-chlorite-sericite, trace calcareous fracture, weak epidotized garnets?, 1\% dissfracture pyrite.
100.5-100.9 m: Brecciated, moderate calcareous lenses-stringers, trace graphitic-gouge fractures, 1-2\% pyrite.
$100.8 \mathrm{~m}:$ Gouge, 77° to C.A.
101.4-101.8 m: Shear zone, sericitic, 8 cm calcareous vein, 2-4\% patchy diss pyrite, 52° to C.A.
$101.9 \mathrm{~m}: 3 \mathrm{~cm}$ gouge zone.
102.3-102.6 m: Shear/gouge zone, 2-3\% quartz-carbonate veining, 69° to C.A., pyritic-graphitic gouge, 2-3\% diss-fracture pyrite.

HOLE NO.:	MON4-4		RESULTS (Core)		PAG
$\begin{aligned} & \text { SAMPLE NO.: } \\ & \text { (Core) } \end{aligned}$	FROM (m)	TO (m)	WIDTH (m)	FAAA Au (ppb)	$\begin{gathered} \text { V.G. Asse } \\ (\mathrm{Au} / \mathrm{st}) \end{gathered}$
MON4-4-					
4150	9.0	9.5	0.5	15	
4151	9.5	10.0	0.5	37	
4152	10.0	10.5	0.5	13	
4153	10.5	11.0	0.5	23	
4154	11.0	11.5	0.5	12	
4155	11.5	12.0	0.5	6	
4156	12.0	12.5	0.5	10	
4157	12.5	13.0	0.5	11	
4158	13.0	13.5	0.5	2	
4159	13.5	14.0	0.5	3	
4160	14.0	14.5	0.5	36	
4161	14.5	15.0	0.5	6	
4162	15.0	15.5	0.5	<1	
4163	15.5	16.0	0.5	2	
4164	28.5	29.0	0.5	4	
4165	29.0	29.5	0.5	17	<0.001
4166	29.5	30.0	0.5	44	0.001
4167	30.0	30.5	0.5	7	
4168	30.5	31.0	0.5	3/3	
4169	31.0	31.5	0.5	<1	
4170	31.5	32.0	0.5	7	
4171	32.0	32.5	0.5	42	
4172	32.5	33.0	0.5	2	
4173	33.0	33.5	0.5	3	
4174	38.0	38.5	0.5	<1	
4175	38.5	38.8	0.3	<1	
4176	38.8	39.3	0.5	<1	
4177	46.8	47.3	0.3	4	
4178	47.3	47.8	0.5	359	
4179	47.8	48.3	0.5	16	
4180	48.3	48.8	0.5	12	
4181	48.8	49.3	0.5	17	
4182	49.3	49.8	0.5	15	
4183	49.8	50.3	0.5	20	
4184	50.3	50.8	0.5	22	<0.001
4185	50.8	51.3	0.5	11	
4186	51.3	51.8	0.5	23	
4187	51.8	52.3	0.5	6	
4188	52.3	52.6	0.3	<1	
4189	52.6	53.1	0.5	4	
4190	53.1	53.6	0.5	4	
4191	53.6	54.1	0.5	<1	

SAMPLE NO.:	FROM	TO	WIDTH	FAAA	V.G. Assay	
(Core)	(m)	(m)	(m)	Au	Au	Au
				(ppb)	$(\mathrm{oz} / \mathrm{st})$	$(\mathrm{oz} / \mathrm{st})$

MON4-4-

4192	54.1	54.9	0.8	11
4193	54.9	55.4	0.5	42
4194	55.4	55.9	0.5	16
4195	55.9	56.4	0.5	8
4196	56.4	56.9	0.5	19
4197	56.9	57.4	0.5	4
4198	57.4	57.9	0.5	11
4199	57.9	58.4	0.5	4
4200	58.4	58.9	0.5	7
4201	101.4	101.8	0.4	<1
4202	101.8	102.3	0.5	2
4203	102.3	102.6	0.3	2

Results (Shudge)

Sample No.	From								
	To	Width	Au	Sample No. From	To	Width	Au		
	(m)	(m)	(m)	(ppb)			(m)	(m)	(m)
(ppb)									

591	4.9	7.9	3.0	14
592	7.9	11.0	3.1	12
593	11.0	14.0	3.0	8
594	14.0	17.1	3.1	8
595	17.1	20.1	3.0	<1
596	20.1	23.2	3.1	7
597	23.2	26.2	3.0	3
598	26.2	29.3	3.1	2
599	29.3	32.3	3.0	25
600	32.3	35.4	3.1	3
601	35.4	38.4	3.0	2
602	38.4	41.5	3.1	<1
603	41.5	44.5	3.0	4
604	44.5	47.5	3.0	9
605	47.5	50.6	3.1	500
606	50.6	53.6	3.0	33
607	53.6	56.7	3.1	15
608	56.7	59.7	3.0	28
609	59.7	62.8	3.1	45
610	62.8	65.8	3.0	4
611	65.8	68.9	3.1	7
612	68.9	71.9	3.0	1
613	71.9	75.0	3.1	7
614	75.0	78.0	3.0	12
615	78.0	81.1	3.1	10
616	81.1	84.1	3.0	3
617	84.1	87.2	3.1	3
618	87.2	89.3	2.1	2
619	89.3	93.3	4.0	$71<1$
620	93.3	96.3	3.0	<1
621	96.3	99.4	3.1	20
622	99.4	102.4	3.0	4
623	102.4	105.5	3.1	6

Cansco corporation

dIAMOND DRILL GBOLOGICAL LOG

PROJECT: MONASHEE DISPOSITION: Yeoward 7 PAGE: 1 of 11 HOLE NO: MON4-5 LOGGED BY: D. Melrose STORAGE:

LOCATION: L6+07N $8+49 \mathrm{~W}$ SECTION: \qquad ELEVATION: \qquad AZIMUTH/INCLINATION: $135^{\circ} /-45^{\circ}$ DEPTH: 139.0 m DIP TEST: ACID CONTRACTOR: Lone Ranger Drilling CORE SIZE: NO CASING LEFT: \qquad STARTED/COMPLETED: \qquad September 26 - 30, 1994 LOGS UPDATED: \qquad

PURPOSE:
SUMMARY:
0-9.1 m: Overburden.
9.1-23.3 m: Limestone-Dacite blocks, loc brec-frac-graph shears, loc calc stwk, tr-2\% py, weak loc patchy marble.
23.3 - 29.6 m: Dacite-loc shear/bx zones.
28.1-29.6 m: Shear/brex/gouges, stg ser-calc stgrs, 1\%-locally 2-3\% py.
29.6 - $34.3 \mathrm{~m}:$ Limestone.
34.3-53.0 m: Dacite mod-stg ser, intercal gouge/sher/fol.
42.5-44.2 m: Shear/gouge wk-mod calc stgrs 1\% py.
51.8-53.0 m: Gouge shear 2-3\% py.
$53.0-76.3 \mathrm{~m}:$ Argillite, loc shear/graph gouge 1% loc 1-3\% py.
53.0-54.8 m: Shear/gouge 1-3\% py wk-stg calc-qtz stgrs.
71.0-75.1 m: Fol'd w/loc shear, 1-2\% py.
$76.3-80.3 \mathrm{~m}$: Andesite/Dacite
80.3 - $90.5 \mathrm{~m}:$ Argillite.
86.8 - $90.5 \mathrm{~m}:$ Brec/shear, trace-loca, 1-2\% py.
90.5 - $103.6 \mathrm{~m}: \quad$ Dacite.
98.2-103.6 m: Shear/bx zone, mod cal-qtz stgs, mod perv, ser tr-loc 1\% py.
103.6-106.6 m: Argillite.
106.6-124.7 m: Dacite, loc narrow, shear/bx zones.
124.7-139.0 m: Argillite, loc bx/gouge zone.
124.7-126.1 m: Gouge/fault 3\% clotty py. 139.0 m : End of hole.

SIGNIFICANT RESULTS:
DOWNHOLE
TRUE WIDTH
(m) WIDTH
(m)
RESULTS
Au
$(\mathrm{OZ} / \mathrm{st})$

NOTES

METRES
TO
9.1
23.3

DEPTH
(m)

CORE
ANGLE

Overburden

Limestone

Medium grey, mottled appearance, weakly fractured, foliated, trace calcite stringerlenses, trace diss-cubic-stringer pyrite, argillaceous fractures, trace patchy marble?, locally brecciated, trace quartz stringers.
9.1-12.3 m: Blocky/broken core.
12.3-12.7m: Brecciated-strongly fractured, trace calcareous stringer-quartz lenses, 1-2\% cubic diss-fracture pyrite.
12.7-13.5 m: Dacite, moderately fractured, weak patchy silicification, 40\% limonitic staining, trace quartz-carbonaceous lenses, 2-3\% diss-stringer pyrite.
12.7-12.8 m: Rusty pyritic (1-3\%) quartz vein, 50° to C.A.
13.5 - $14.3 \mathrm{~m}:$ Moderately fractured, trace brecciated, weak patchy marble, argillaceous fractures, 5 cm pyriticchloritic quartz lense at 14.2 m , trace calcite stringers, sharp lower contact 40° to C.A.
14.3 - $15.3 \mathrm{~m}:$ Dacite, locally porphyritic, blocky/broken core.
14.6-14.9 m: 40\% chloritic quartz veining, 1\% diss-cubic pyrite.
$\begin{aligned} 15.3-23.3 \mathrm{~m}: & \text { Foliated, weakly fractured- } \\ & \text { locally fractured limestone, } \\ & \text { rare calcite stringers, trace } \\ & \text { pyrite. }\end{aligned}$
15.7 m : Foliation, 46° to C.A.
$20.4 \mathrm{~m}: \quad$ Foliation, 51° to C.A.

METRES			DEPTH
FROM	TO	ROCK DESCRIPTION	(m)

23.3

Dacite
Medium-dark grey, locally porphyriticfragmental, sharp-sheared upper and lower contacts, sheared-brecciated-strongly foliated, localized argillaceous-graphitic beds-shear/gouge zones, trace calcite-quartz stringers, trace-locally 2-3\% cubic-fracture-diss pyrite, moderate-intense sericite.

$23.3-24.2 \mathrm{~m}:$	Shear/gouge zone, moderate- intense sericite localized
	patchy chlorite, trace weak
	graphitic gouge, trace diss-
	cubic pyrite, 24.4 m shear
	50° to C.A.

24.2-24.8 m: Strongly foliated, trace calcareous stringers, moderate-strong sericite 1-2\% cm scale cubic pyrite, porphyritic-fragmental 24.6 m foliation 46° to C.A.
24.8-25.2 m: Dark grey brecciated-argillite-argillaceous unit, trace quartz stringers, 1\% cubic pyrite.
25.2-28.1 m: Foliated-localized graphitic/ argillaceous shears, weakly fractured, trace calcareousquartz stringers, weak-local moderate sericite, 1\% locally $2 \% \mathrm{~cm}$ scale cubic pyrite.
26.1 m : Foliation 40° to C.A.
27.8-27.9 m: Graphitic/argillaceous shears 46° to C.A.

$28.7 \mathrm{~m}: \quad$ Shear, 45° to C.A.
29.2-29.5m: Gouge zone.

HOLE NO.:
MON4-5
PAGE 4 of

METRES

ROCK DESCRIPTION
(m) ANGLE

Dacite
Light-dark grey, greyish-brown, very finefine grained, locally porphyriticfragmental, foliated, locally shearedbrecciated, gouge localized argillitelimestone blocks, weakly to locally strongly fractured, localized weak zones with calcite stringers, moderate to locally strong sericite, trace-locally 1-2\% diss-cubic pyrite.
37.2 m : Foliation/shear 40° to C.A.
37.5-39.5 m: Intermittent foliated-sheargouge zones, trace cubicfracture pyrite.
40.9-41.0 m: Quartz-calcite stringerfracture zone 2\% cubicfracture pyrite.
41.4-41.9 m: Argillaceous zone.
42.5-44.2 m: Shear/gouge zone, weak calcite-argillaceous stringers, locally 1\% diss pyrite, 30° to C.A., strong sericite.
43.7-44.2 m: 0.3 m lost/ground core.
44.2-46.0 m: Weak-locally moderate quartz vein/stockwork zone (nonorientated) trace silicification, weak sericite, trace pyrite.

ROCK DESCRIPTION
46.0-47.4m: Trace quartz-calcite stringers.
47.4-48.1 m: Gouge zone, weak quartzcalcite veins-stringers, trace cubic-diss pyrite, trace argillaceous shear planes, 18° to C.A.
48.1-51.8 m: Weak quartz vein/stockwork foliated, minor clay filled fractures, weak-moderate sericite, trace pyrite.

. 8 - 53.0 m :	Gouge/shear contact zone, weak calcite-quartz stringers 2-3\% diss-cubic-clotty pyrite-po.

Argillite
Dark grey-black, laminated-bedded appearance, bedded-foliated, locally sheared-brecciated, trace-locally strong calcite stringer, localized graphitic fractures-shears, localized clastic beds (volcanic units?), 1-locally 2-3\% cubic-diss-fracture pyrite, sheared/gouge upper contact.

54.8-56.7 m: Blocky/broken core, trace weak calcite veining, trace1\% pyrite.
58.0-58.9 m: Clastic unit.
58.7 m : Foliation 39° to C.A.
$60.8 \mathrm{~m}: \quad$ Foliation/shear, 30° to C.A.
60.5-67.8 m: Foliated-weakly sheared, locally fragmental.
63.9-68.4 m: Blocky/broken core, trace calcite stringers, localized graphitic fractures 1% cubic fracture pyrite.

METRES
FROM TO

ROCK DESCRIPTION

DEPTH

(m)

CORE
ANGLE

69.6-69.8 m: Weakly sheared, 2\% pyrite.
70.2-71.0 m: Shear, localized gouge, weak-moderate calcite stringers, 1-3\% diss-cubic-stringer pyrite, shearing 38° to C.A.
71.0-75.1 m: Foliated with localized shearing-graphitic fractures (36° to C.A.), trace-weak calcitequartz carbonate stringers, 1-2\% diss-cubic-fracture pyrite.
75.1-76.3 m: Shear-breccia-gouge zone, trace-locally weak quartz carbonate veining, 1\%-locally 2-3\% pyrite.

```
75.1 - 75.4 m: 2-3% pyrite, gouge.
```

76.3 80.3 Andesite/Dacite

Light greyish green-greenish grey, foliated, localized epidotized-chloritic phenocrysts, trace argillite blocks, trace-locally weak quartz carbonate stringers, trace-locally 1\% diss pyrite, localized sericitic fractures, patchy, sharp lower contact 38° to C.A.
78.7 m : Foliation 38° to C.A.
METRES

FROM TO
ROCK DESCRIPTION

DEPTH

CORE
(m) ANGLE
80.3 90.5 Argillite

Black-dark grey, foliated-localized breccia-shearing-gouge, weak-locally strong calcite stringers, trace graphitic fractures-shears, trace-1\% pyrite.
83.0 m : Foliation 37° to C.A.
$\begin{aligned} 86.8-90.5 \mathrm{~m}: & \text { Brecciated-locally sheared, } \\ & \text { localized graphitic } \\ & \text { fractures-gouge, weak-locally } \\ & \text { strong calcite stringers, } \\ & \text { trace-locally 1-2\% cubic- } \\ & \text { diss-fracture (over } 10 \mathrm{~cm}) .\end{aligned}$
90.5103 .6 Dacite

Light greenish grey-greyish green, locally fragmental-epidotized phenocrysts, locally foliated-brecciated-sheared, localized calcareous-quartz carbonate stringers, pristine-locally altered, trace-1\% disscubic pyrite.
90.5-92.0 m: Porphyritic, epidotized phenocrysts, trace quartz 1\% cubic pyrite.
93.3-95.0 m: Breccia-shear zone, daciticargillaceous, fragments, weak-moderate pervasive sericite-chlorite, moderate calcareous-carbonate stringers, trace-1\% diss pyrite, trace malachite stain?/phenocrysts, sharp lower contact 28° to C.A.
95.2-95.4 m: 40\% quartz, trace fracture pyrite.
95.4-98.2 m: Porphyritic dacite, localized epidotized phenocrysts, trace quartz-calcite veins, trace1\% cubic pyrite.

$$
\begin{aligned}
& 95.3-95.7 \mathrm{~m}: 2-3 \% \text { cubic pyrite, } \\
& \text { mottled appearance. }
\end{aligned}
$$

METRES		DEPTH	CORE
FROM	TO	ROCK DESCRIPTION	(m)

98.2 - $103.6 \mathrm{~m}: \quad$ Shear zone, fragmental, porphyritic, weak moderate-calcite stringers, veining, weak patchy chlorite moderate pervasive sericite, trace-locally 1\% dissfracture pyrite, gouge at lower contact.
103.6 106.6 Argillite

Black-dark grey, strongly fractured, brecciated, trace graphitic fractures-gouge, moderate-locally strong calcite stringers/ stockwork, trace-locally 1\% diss-fracture pyrite, sharp lower contact 44° to C.A.

$103.7 \mathrm{~m}:$	Trace fracture hematite
	/(sphalerite)? very fine grained.

Dacite
Medium grey-greenish grey, fragmentallocally porphyritic, heterolithic fragments (argillite-volcanics), elongated with foliation, localized brecciation-weak shear zones ($<0.5 \mathrm{~m}$ width), weak-locally moderate quartz-calcite stringers-veinlets, weakmoderate patchy sericite-chloritic fractures localized argillite beds-blocks, tracelocally 1% diss-fracture pyrite.
109.0 m : Foliation, 37° to C.A.
112.7-117.1 m: Intercalated dacite/ argillite-probably blocks of argillite, weak-moderate calcite stringers, trace-1\% pyrite.
114.8-115.1 m: 2\% cubic pyrite, epidotized phenocrysts.
116.8-118.1 m: Shear zone moderate quartz-calcareous stringers, trace dissfracture pyrite.
117.0 m : Foliation/shear, 40° to C.A.
$117.3 \mathrm{~m}:$ Shear, 41° to C.A.

METRES
FROM TO

DEPTH

(m)

ROCK DESCRIPTION
N
> 118.1-124.7 m: Foliated-sheared fragmental, locally porphyriticbrecciated moderate-locally brecciated moderate-locally
strong calcareous-quartz stringers, weak patchy
chlorite, moderate patchy stringers, weak patchy sericite, trace pyrite.

Argillite
Black-dark grey, bedded-foliated, localized gouge-breccia-blocky/broken core zones, weak-locally strong calcite stringers, trace quartz veinlets-stringers, localized graphitic fractures-gouge, trace-1\% diss fracture pyrite, sharp upper contact at 34° to C.A.
124.7-126.1 m: Gouge/fault zone, moderate calcareous stringers-lens, 3% clotty-diss-stringer pyrite.
126.1-129.7m: Weak-1ocally strong fracturing, strong fracturing with calcareous stringer 1\%locally 2\% diss-stringer pyrite.
128.2-129.7 m: 2\% pyrite, strong calcareous stringers.
129.7-132.0 m: Block/broken core, trace graphitic fractures, 18 pyrite, weak calcareous stringers.
$\begin{aligned} \text { 132.0-139.0 m: } & \text { Weak-locally moderate } \\ & \text { calcareous stringers, } \\ & \text { localized breccia zones, } 1 \% \\ & \text { diss-fracture pyrite. }\end{aligned}$
133.8-133.9 m: Gouge zone, 36 pyrite, 48° to C.A.
135.5-135.6 m: 5\% quartz, 3-4\% stringer pyrite.

End of Hole.

SAMPLE NO.: (Core)

FROM
(m)
(m)
(m)

WIDTH FAAA V.G. Assay
(m) Au
(ppb)

Au
(oz/st)
Au
(oz/st)

MON4-5-

5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
12.2
12.7
13.5
14.0
14.3
14.8
15.3
22.8
23.3
23.8
24.3
24.8
25.3
25.8
26.3
26.8
27.3
27.8
28.3
28.8
29.3
29.8
43.7
44.2
44.7
45.2
45.7
47.4
47.9
48.4
48.9
49.4
51.8
52.3
53.0
53.5
54.0
54.5
68.4
68.9
69.5
70.0
70.5
12.7
13.5
14.0
14.3
14.8
15.3
15.8
23.3
23.8
24.3
24.8
25.3
25.8
26.3
26.8
27.3
27.8
28.3
28.8
29.3
29.8
30.3
44.2
44.7
45.2
45.7
46.2
47.9
48.4
48.9
49.4
49.9
52.3
53.0
53.5
54.0
54.5
55.0
68.9
69.5
70.0
70.5
71.0
0.5
0.8
0.5
0.3
0.5
0.5
0.5

$$
\begin{array}{r}
2 \\
2 /<1 \\
2 \\
14 \\
<1 \\
7 \\
<1
\end{array}
$$

0.5	5
0.5	<1
0.5	<1
0.5	<1
0.5	<1
0.5	4
0.5	2
0.5	<1
0.5	5
0.5	1
0.5	13
0.5	18
0.5	5
0.5	11
0.5	3

$\begin{array}{lr}0.5 & 6 \\ 0.5 & 4 \\ 0.5 & 9 \\ 0.5 & 8 / 2 \\ 0.5 & 2 \\ 0.5 & 9 \\ 0.5 & 14 \\ 0.5 & 35 \\ 0.5 & 23 \\ 0.5 & 11\end{array}$

0.5	2
0.7	4
0.5	14
0.5	9
0.5	5
0.5	12

2
4
14
9
5
12
17
7
14
6
9
<0.001

CAMECO CORPORATION

DIAMOND DRILL GEOLOGICAL LOG

PROJECT: \qquad DISPOSITION: Yeoward 7 PAGE: 1 of 8 HOLE NO: MON4-6 LOGGED BY: D. Melrose STORAGE: \qquad LOCATION: L5+81N, 11+97W SECTION: \longrightarrow ELEVATION: 1826 m___ AZIMUTH/INCLINATION: $045^{\circ} /-45^{\circ}$ DEPTH: 93.3 m DIP TEST: ACID CONTRACTOR: Lone Ranger Drilling CORE SIZE: NO CASING LEFT: 工 0 m STARTED/COMPLETED: September _ , 1994 LOGS UPDATED:

DEPTH	93.3m
AZIMUTH	...0
DIP	-44 ${ }^{\circ}$

PURPOSE:
SUMMARY:
0-4.9 m: Overburden.
4.9-37.6 m: Andesite
37.6-61.1 m: Dacite
61.1-93.3 m: Limestone
93.3 m : End of Hole

SIGNIFICANT RESULTS:

INTERSECTION
(m)

DOWNHOLE WIDTH
(m)

TRUE WIDTH
(m)

RESULTS
Au (oz/st)

NOTES

HOLE NO.: MON4-6 PAGE $2 \quad$ Of 8
METRES DO DEPTH CORE
$0 \quad 4.9$ Overburden
4.9
37.6

Andesite
Dark-medium green, massive-locally porphyritic, weak-local strong fracturing, sporadic quartz-chlorite-sericite fractures, trace clay filled fractures, weak-locally strong mm scale quartz-calcareous stringers, trace diss-fracture pyrite-locally 1\%.
13.1-13.3 m: Gouge zone, weak quartz veinlets, moderate chloritesericite, 0.5% pyrite.
15.0-20.1 m: Moderate-locally strong calcareous-quartz stringers, trace-1\% pyrite.
18.5 - $18.6 \mathrm{~m}:$ Gouge/fault zone,

2\% pyrite.
23.2-27.1 m: Blocky/broken core, trace chlorite-sericite-clay fractures, trace calcareousquartz stringer, trace pyrite.
30.1-37.6 m: Blocky/broken core, localized narrow fault gouge zones ($<0.2 \mathrm{~m}$) 56-18 ${ }^{\circ}$ to C.A. chloritic-sericite-quartzpyrite fractures, 1-2\%locally 3\% fracture-disscubic pyrite.

Dacite
Light-medium grey, porphyritic, weaklylocally moderate fracturing, trace quartz veinlets-stringers (5-60 to C.A.), local patchy sericite-bleaching, localized brittle-brecciated zones 1-2\%-locally 3\% fracture-cubic-diss py.
$37.9-39.1 \mathrm{~m}: 1-3 \mathrm{~cm}$ quartz vein, $5-15^{\circ}$ to C.A. weak patchy silicification, trace chloritic-sericite fracture, 1-2\% vein-diss pyrite.
MON4-6

METRES			DEPTH	CORE
FROM	TO	ROCK DESCRIPTION	ANGLE	

. 7 - 42.9 m :	Brittle-bleached zone, sericite-chlorite-clay fractures, 2-3\% stringer-diss-cubic pyrite.
42.9-44.3 m:	Bleached zone, weakmoderately fractured, sericitic-chloritic fractures 2-3\% stringer-cubic-diss pyrite.
46.0-46.3 m:	Brittle fault/gouge zone, sericitic-chloritic clay, trace-weak calcareous-quartz stringers, 3\% diss-fracture pyrite.
47.5-49.0m:	Broken/blocky core, weak sericitic-chloritic fractures, trace calcareousquartz stringers, 1\%-locally 2\% diss-fracture pyrite-po.
49.0-52.5 m:	Moderate fracturing, porphyritic, moderate silicification, weak sericitic-chloritic fractures, weak patchy bleaching, 2-3\% diss-cubic-stringer-fracture pyrite.
52.5-54.7 m:	Weak-locally moderate silicification, mottled appearance (??skarned limestone) appears to be fragmental, weak calcareous-chloritic-sericitic fractures, 3-4\% cubic-stringer-diss-fracture pyrite-po.
54.7-56.2 m:	Porphyritic-fragmental, trace quartz stringers, moderately fractured, mottled-intrusive texture, weak calcareous-sericitic-chloritic fractures moderate patchy sericite, trace-1\% diss-fracture pyrite.

METRES
FROM TO

DEPTH CORE
(m) ANGLE
56.2-57.5 m: Brownish-grey, very fine grained, glassy, moderatestrong pervasive silicification moderate calcareous fractures, trace quartz stringers (?silicified limestone), sericiticchloritic fractures, 1-2\% diss-fracture pyrite-po.
57.5 - 58.3 m: Brittle/ductile fault/gouge zone, strong patchy sericite, localized contorted quartz stringers, weak shear controlled chlorite, ?weak epidote 1-2\% diss-fracture pyrite-po, sharp lower contact 64° to C.A.
58.3-58.9 m: Silicified, moderately fractured, sheared lower contact 68° to C.A., argillaceous-sericitic fractures, (?silicified limestone), 1 cm quartz-pyrite-po vein, 56° to C.A., 3\% diss-fracture-stringervein pyrite-po.
58.9-61.6 m: Porphyritic, fragmental, localized moderate pervasive silicification, moderate calcareous-sericitic fractures, weak argillaceous stringers, trace-3\% dissfracture po-pyrite.

$$
60.4-61.6 \mathrm{~m}: 3 \% \text { sx-silicified. }
$$

61.193 .3

Limestone

Mottled light-dark grey, strongly fractured with argillaceous fractures, ?weak patchy marble, sharp contact 57° to C.A., efferescent, trace-locally moderate calcite veining.

METRES
FROM TO

ROCK DESCRIPTION

DEPTH
(m)

CORE
ANGLE
64.0-67.5 m: Predominantly argilliteargillaceous limestone, locally brecciated with weak graphitic fractures, tracelocalized moderate calcareous stringers veinlets, trace-1\%locally 3% cubic-dissfracture pyrite.
65.0-65.7 m: 2-3\% cubic-diss-fracture pyrite brecciatedsheared (62 ${ }^{\circ}$ to C.A.) graphitic fractures.

| $67.5-73.2 \mathrm{~m}:$ | Mottled

 locally
 veinlets-stringers,
 pyrite. |
| ---: | :--- | | moderate, |
| ---: |
| calcite |
| trace |

73.2 - $73.9 \mathrm{~m}:$ Dacite porphyry/felsic dyke, high-medium grey, porphyritic, epidotized and (?malachite) emerald green phenocrysts, trace quartz stringers, 1-2\% diss-cubic pyrite, contact 60° to C.A.
73.9-76.2 m: Trace mottled limestone, pristine?, trace-weak calcite veinlets-stringers.
76.2-76.4 m: Dacite dyke, 1-2\% cubic pyrite, 66° to C.A., weak chlorite-sericite.
78.7-79.3 m: Dacite dyke, at 76.2 - 76.4 m.

$79.3-91.8 \mathrm{~m}:$	Relatively unaltered
	limestone, trace-weak calcite
	stringers-veinlets, locally
vuggy.	

91.8-92.0 m: Dacite dyke, 2% cubic pyrite, 58° to C.A.

SAMPLE NO.: (Core)

FROM
(m)

TO
(m)

WIDTH
(m)

FAAA
Au
(ppb) (oz/st)
($\mathrm{Oz} / \mathrm{st}$) ($\mathrm{Oz} / \mathrm{st}$)

Au

MON4-6-

6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306

31.7	32.2	0.5	<1	
32.2	32.7	0.5	12	
32.7	33.2	0.5	<1	
33.2	33.7	0.5	<1	
33.7	34.2	0.5	<1	
34.2	34.7	0.5	<1	
34.7	35.2	0.5	3	
35.2	36.2	1.0	<1/<1	
36.2	36.7	0.5	3	
36.7	37.2	0.5	<1	
37.2	37.7	0.5	1	
37.7	38.2	0.3	7	
38.2	38.7	0.5	6	
38.7	39.2	0.3	15	
42.7	43.2	0.5	12	
43.2	43.7	0.5	19	
43.7	44.3	0.6	3	
48.5	49.0	0.5	1	
49.0	49.5	0.5	1	
49.5	50.0	0.5	5	<0.001
50.0	50.5	0.5	<1	
50.5	51.0	0.5	6	
51.0	51.5	0.5	9	
51.5	52.0	0.5	5	
52.0	52.5	0.5	7	
52.5	53.0	0.5	20	
53.0	53.5	0.5	6	
53.5	54.0	0.5	4	
54.0	54.5	0.5	4	
54.5	55.0	0.5	4	
55.0	55.5	0.5	2	
55.5	56.0	0.5	2	
56.0	56.5	0.5	2	
56.5	57.0	0.5	<1	
57.0	57.5	0.5	4	
57.5	58.0	0.5	<1	
58.0	58.5	0.5	2	
58.5	59.0	0.5	8	
59.0	59.5	0.5	3/3	
59.5	60.0	0.5	3	
60.0	60.5	0.5	1	
60.5	61.1	0.6	<1	<0.001
61.1	61.6	0.5	1	

HOLE NO.:	MON4-6		pesutas (Core)		PAGE	7 of	8
SAMPLE NO.: (Core)	FROM (m)	TO (m)	WIDTH (m)	FAAA Au (ppb)	$\begin{gathered} \text { V.G. Assay } \\ \text { Au } \\ (\mathrm{oz} / \mathrm{st}) \end{gathered}$	$\underset{(0 z / s t)}{A u}$	
MON4-6-							
6307	64.5	65.0	0.5	7			
6308	65.0	65.5	0.5	14			
6309	65.5	66.0	0.5	<1			

Results (Sludge)

Sample No.	From								
	(m)	To (m)	Width (m)	Au (ppb)	Sample No.			From	To
(m)		Witth (m)	Au (m)	(ppb)					

624	4.9	7.9	3.0	4
625	7.9	11.0	3.1	4
626	11.0	14.0	3.0	<1
627	14.0	17.1	3.1	9
628	17.1	20.1	3.0	5
629	20.1	23.2	3.1	12
630	23.2	26.2	3.0	1
631	26.2	29.3	3.1	1
632	29.3	32.3	3.0	<1
633	32.3	35.4	3.1	1
634	35.4	38.4	3.0	5
635	38.4	41.5	3.1	11
636	41.5	44.5	3.0	29
637	44.5	47.5	3.0	3/5
638	47.5	50.6	3.1	5
639	50.6	53.6	3.0	14
640	53.6	56.7	3.1	4
641	56.7	59.7	3.0	<1
642	59.7	62.8	3.1	5
643	62.8	65.8	3.0	7
644	65.8	68.9	3.1	<1
645	68.9	71.9	3.0	<1
646	71.9	75.0	3.1	11
647	75.0	78.0	3.0	11
648	78.0	81.1	3.1	9
649	81.1	81.4	0.3	7
650	81.4	84.1	2.7	2
651	84.1	87.2	3.1	7
652	87.2	90.2	3.0	4

?

[^2]| SAMPLE\# | $\begin{gathered} \mathbf{A u * *} \\ \mathbf{p p b} \end{gathered}$ |
| :---: | :---: |
| $\begin{aligned} & \text { MON4D-1069 } \\ & \text { MON4D-1070 } \\ & \text { MON 4D } 1071 \\ & \text { MON4D-1072 } \\ & \text { MON4D-1073 } \end{aligned}$ | $\begin{array}{r} 3 \\ 2 \\ 37 \\ 3 \\ 4 \end{array}$ |
| $\begin{aligned} & \text { MON4D-1074 } \\ & \text { KON4D-1075 } \\ & \text { RE MON4 } 4 \mathrm{D}-1075 \\ & \text { MON4D } 1076 \\ & \text { MON4D-1077 } \end{aligned}$ | 2 3 3 4 4 |
| $\begin{aligned} & \text { MON4D-1078 } \\ & \text { OON4D-1079 } \\ & \text { MON4D-1080 } \\ & \text { MON4D-1081 } \\ & \text { MON4D-1082 } \end{aligned}$ | $\begin{aligned} & <1 \\ & <1 \\ & 3 \\ & 29 \\ & <1 \end{aligned}$ |
| $\begin{aligned} & \text { MON4D-1083 } \\ & \text { KON4D-2084 } \\ & \text { MON4D-2085 } \\ & \text { MON4D-2086 } \\ & \text { MON } 4 \mathrm{D}-2087 \end{aligned}$ | 2 2 3 2 <1 |
| $\begin{aligned} & \text { MON4D-2088 } \\ & \text { MON4D-2089 } \\ & \text { MON4D-2090 } \\ & \text { MON4D-2091 } \\ & \text { MON4D-209 } \end{aligned}$ | 5 2 2 3 2 |
| $\begin{aligned} & \text { MON4D-2093 } \\ & \text { MON4D-2094 } \\ & \text { MON4D-2095 } \\ & \text { MON4D-2096 } \end{aligned}$ | $\begin{array}{r} 2 \\ 3 \\ 1 \\ <\frac{1}{4} \end{array}$ |
| MON4D-2098
 MON4D-2099
 MON4D-2100
 MON4D-2101
 MON4D-2102 | $\begin{aligned} & <1 \\ & 4 \\ & <1 \\ & 2 \\ & <1 \end{aligned}$ |
| STANDARD AU-R | 477 |

SAMPLE\#	Au** ppb
MON4D-2103	2
MON4D-2104	3
MON4D-2105	2
MON4D-2106	1
MON4D-2107	2
MON4D-2108	3
MON4D-2109	<1
MON4D-2110	2
MON4D-2111	2
MON4D-2112	3
MON4D-2113	2
MON4D-2114	<1
MON4D-2115	2
MON4D-2116	<1
MON4D-2117	2
MON4D-2118	8
MON4D-2119	<1
MON4D-2120	2
MON4D-2121	$<\frac{1}{2}$
MON4D-2122	3
MON4D-2123	<1
MON4D-2124	<1
MON4D-2125	<1
MON4D-2126	2
RE MON4D-2126	1
MON4D-2127	<1
MON4D-2128	<1
MON4D-2129	<1
MON4D-2130	<1
MON4D-2131	2
MON4D-2132	<1
MON4D-2133	<1
MON4D-2134	<1
MON4D-2135	<1
MON4D-2136	3
STANDARD AU-R	456

Sample type: CORE. Samples beginning 'RE' are duplicate samples.

Sample type: CORE. Samples beginning 'RE' are duplicate samples.

Sample type: CORE. Samples beginning 'RE' are duplicate samples.
Cameco U.8. Inc. PROJECT MONASHEE FILE \# 94-3493
Page 3

SAMPIE\#	$\begin{gathered} \overline{\mathrm{Au} * *} \\ \mathrm{ppb} \end{gathered}$	
$\begin{aligned} & \text { MON4D-5218 } \\ & \text { MON4D-5219 } \\ & \text { MON4D-52220 } \\ & \text { MON4D-5221 } \\ & \text { MON4D-5222 } \end{aligned}$	$\begin{array}{r} <1 \\ 5 \\ 1 \\ 13 \\ 18 \end{array}$	
MON4D-5223 MON4D-5224 MON4D-5225 MON4D-5226	$\begin{array}{r} 5 \\ 1 \frac{1}{3} \\ 6 \\ 4 \end{array}$	
	9 8 8 2 2	
$\begin{aligned} & \text { MON4D-5232 } \\ & \text { MON4D-5233 } \\ & \text { MON4D-5234 } \\ & \text { MON4D-5235 } \\ & \text { MON4D-5236 } \end{aligned}$	$\begin{array}{r} 14 \\ 35 \\ 23 \\ 1 \frac{1}{2} \\ \hline \end{array}$	
MON4D-5237 MON4D-5238 MON4D-5239 MON4D-5240 MON4D-5241	$\begin{array}{r} 4 \\ 14 \\ 9 \\ 5 \\ 12 \end{array}$	
$\begin{aligned} & \text { MON4D-5242 } \\ & \text { MON4D-5243 } \\ & \text { MON4D-5244 } \\ & \text { MON4D-5245 } \\ & \text { MON4D-5246 } \end{aligned}$	$\begin{array}{r} 17 \\ 7 \\ 14 \\ 6 \\ 9 \end{array}$	
MON4D-5247 MON4D-5248 MON4D-5249 MON4D-5250	$\begin{array}{r} 2 \\ <1 \\ 2 \\ 10 \\ 10 \end{array}$	
STANDARD AU-R	501	

Sample type: CORE. Samples beginning 'RE' are duplicate samples.

[^3]

- 100 aU bY fire assay from 1 a.t. SAMPLE. dUPAU: AU dUPLICATED FRPM - 100 MESH. +100 aU - TOTAL SAMPLE fire assay.
- SAMPLE TYPE: CORE REJ.

DATE RECEIVED: OCT 141994 DATE REPORT MAILSD: 4 ($31 / 94$ SICRSED BY.

SAMPLE\#	$\begin{array}{\|c} \begin{array}{c} \mathrm{Au}^{* *} \\ \mathrm{ppb} \end{array} \\ \hline \end{array}$
MON4D-6286 MON4D-6287 MON4D-6289	9 5 7 20
$\begin{aligned} & \text { MON4D-6291 } \\ & \text { MON4D-6292 } \\ & \text { MON4D-6293 } \\ & \text { MON4D-6294 } \end{aligned}$	4 4 4 2 2
$\begin{aligned} & \text { MON4D-6296 } \\ & \text { MON4D-6297 } \\ & M O N 4 D-6298 \\ & M O N 4 D-6299 \\ & M O N 4 D-6300 \end{aligned}$	$\begin{array}{r}2 \\ 1 \\ 4 \\ 4 \\ \hline 1\end{array}$
$\begin{aligned} & \text { MON4D-6301 } \\ & \text { MON4D-6302 } \\ & \text { RE MON4D } \\ & \text { MON4D-63030203 } \\ & \text { MON4D-6304 } \end{aligned}$	8 3 3 3 3 1
MON4D-6305 MON4D-6306 MON4D-6307 MON4D-6308 MON4D-6309	<1 1 7 14 <1
STANDARD AU-R	474

Sample type: CORE. Samples beginning 'RE' are duplicate samples.
$=$
c.
\%

GEOCHEM PRECIOUS METALS ANALYSIS

30 GRAM SAMPLE FIRE ASSAY AND ANALYSIS BY ICP/GRAPHITE FURNACE.

- SAMPLE TYPE: SLUDGE

Samples beginning 'RE' are duplicate samples.
date received: oct 41994 date report mailed: 0 f $14 / 94$ signed by. 0.0 .o .fore, c.leong, j.hang; certified bic. assayers

SAMPLE\#	$\begin{array}{r} \mathrm{Au**} \\ \mathrm{ppb} \end{array}$
MON4X-535 MON4X-536 MON4X-537 MON4X-538 MON4X-539	2 6 2 7 <1
$\begin{aligned} & \text { MON4X-540 } \\ & \text { MON4X-541 } \\ & \text { MON4X-5442 } \\ & \text { MON4X-544 } \\ & \text { MON4X-544 } \end{aligned}$	4 2 44 8 2
MON4X-545 MON4X-546 MON4X-547 MON4X-548 MON4X-549	2 6 8 6 10
MON4X-550 MON4X-551 MON4X-552 MON4X-553 MON4X-554	2 <1 <1 <12
MON4X-555 MON4X-556 MON4X-557 RE MON4X-554 MON4X-558	6 16 14 12 2
MON4X-559 MON4X-560 MON4X-561 MON4X-562 MON4X-563	8 10 2 <1 4
$\begin{aligned} & \text { MON4X-564 } \\ & \text { MON4X-565 } \\ & \text { MON4X-566 } \\ & \text { MON4X-567 } \\ & \text { MON4X-568 } \end{aligned}$	4 <1 <1 4 6

Sample type: SLUDGE. Samples beginning 'RE' are duplicate samples.

notanmen			nax mumion
	SAMPLE\#	$\begin{gathered} \begin{array}{c} \mathrm{Au**} \\ \mathrm{ppb} \end{array} \\ \hline \end{gathered}$	
	$\begin{aligned} & \text { MON4X-637 } \\ & \text { RE MON4X-637 } \\ & \text { MON4X-638 } \\ & \text { MON4X-639 } \\ & \text { MON4X-640 } \end{aligned}$	$\begin{array}{r} 3 \\ 5 \\ 5 \\ 14 \\ 4 \end{array}$	
	$\begin{aligned} & \text { MON4X-641 } \\ & \text { MON4X } 4 \text { X } 642 \\ & \text { MON4X } 643 \\ & \text { MON4X } 4644 \end{aligned}$	$\begin{array}{r} <1 \\ 5 \\ 7 \\ <1 \\ <1 \end{array}$	
		11 11 9 7 2	
	$\begin{aligned} & \text { MON4X-651 } \\ & \text { MON4X-652 } \\ & \text { STANDARD AU-S } \end{aligned}$	$\begin{array}{r} 7 \\ 4 \\ 48 \end{array}$	

Sample type: SLUDGE. Samples beginning 'RE' are duplicate samples.

[^0]: 32.6-33.3 m: Shear zone, minor gouge with weak graphitic fractures, trace calcareous stringers.

[^1]: 46.9
 61.5

[^2]: Sample type: CORE. Samples beqinning 'RE' are duplicate samples.

[^3]: Sample type: CORE. Samples beginning 'RE' are duplicate samples.

