LOG NO:	0622	U
ACTION:		

FILE NO:

ASSESSMENT REPORT ON GEOCHEMICAL WORK ON THE FOLLOWING CLAIMS

RED 12 323646 RED 16 323648

EVENT #'S 3065012

WORK PERMIT # SMI-94-010270-185

Located

19 KM SOUTHEAST OF STEWART, BRITISH COLUMBIA SKEENA MINING DIVISION

55 degrees 50 minutes latitude 129 degrees 43 minutes longitude

N.T.S. 103P/13E, 103P/13W

FILMED

PROJECT PERIOD: July 13 to Oct. 11, 1994

SUB-RECORDER RECEIVED MAY 3 1 1995 M.R. # ______S____ VANCOUVER, B.C. ON BEHALF OF TEUTON RESOURCES CORP. VANCOUVER, B.C.

REPORT BY

D. Cremonese, P. Eng. 509-675 W. Hastings Vancouver, B.C.

Date: May 30, 1995

> Ga SM S O 19 50 0 S Q 2 -z > ᄬ 병 75 ~ > ΟZ 20 (7) ~ 꼬

TABLE OF CONTENTS

		Page
1.	INTRODUCTION	1
	A. Property, Location, Access and Physiography B. Status of Property	1
	C. History	1
	D. References	2
	E. Summary of Work Done	3
2.	TECHNICAL DATA AND INTERPRETATION	4
	A. Regional Geology	4
	B. Property Geology	4
	C. Geochemistry	5
	a. Introduction	5
	b. Treatment of Data	5
	c. Sample Descriptions	6
	D. Field Procedure and Laboratory Technique	9
	E. Conclusions	10
API	PENDICES	

- I Work Cost Statement II Certificate III Assay Certificates

ILLUSTRATIONS

Fig.	1	Location Map	Report Body
Fig.	2	Claims Map	Report Body
Fig.	3	Regional Geology	Report Body
Fig.	4	1994 Rock Geochemical Sampling	Map Pocket

.

1. INTRODUCTION

A. Property, Location, Access and Physiography

The property is located about 19km southeast of Stewart, British Columbia. Nearest road is a logging road running east up the Marmot River from tidewater in the Portland Canal to a point about 10km WNW of the property. Present access to the property is by helicopter from the base at Stewart (Vancouver Island Helicopters).

The Red 12 and 16 claims are situated 4km east of Treble Mountain within the southern limits of the extensive Southwest Cambria Icefield. Elevations vary from approximately 1,370 metres on the icefield in the Red 12 claim to about 2,000m on the height of land on the Red 16 claim. Slopes on the various nunataks jutting out from the icefield (some of which do not appear on government topographic maps) vary from moderate to precipitous. There is no forest cover on the property. Vegetation consists of alpine grasses and heather growing in patches among the talus, moraine and outcrop.

Climate is relatively severe, particularly at higher elevations.

B. Status of Property

Relevant claim information is summarized below:

Name	Tenure	No. of Units	Expiry Date*		
Red 12	323646	20	Jan. 31, 1995		
Red 16	323648	20	Jan. 31, 1995		

Claim locations are shown on Fig. 2 after government N.T.S. maps. The claims are owned 50/50 by Teuton Resources Corp. and Minvita Enterprises Ltd. of Vancouver, British Columbia. Teuton Resources Corp. is the operator.

*After applications of assessment credits pursuant to the instant report.

C. History

Exploration for metals began in the Stewart region about 1898 after the discovery of mineralized float by a party of placer miners. Like many other mining districts, exploration proceeded in a boombust pattern with the boom periods following on the heels of an important discovery. The first active period culminated in 1910 when both Stewart and the neighbouring town of Hyder, Alaska boasted a population of around 10,000. Discovery of the extremely rich Premier gold-silver mine in 1918 led to another phase of

intensified exploration which gradually tapered off during the Depression years.

A number of prospects were sporadically worked during these early years in the Marmot River drainage west of the property. The most famous of these was the Prosperity-Porter Idaho at the head of Kate Ryan Creek; it saw limited production in the late 1920's before closing down in 1931 due to poor silver prices. Small high-grade mining and shipping also took place during this period from a number of minor prospects such as the Marmot Metals and North Fork Basin properties. The Ficklin-Harder gold prospect at the head of the South Marmot River was also explored by a few tunnels attempting to intersect high-grade quartz-sulfide mineralization intermittently exposed on surface. Without doubt the area now controlled by the Red 12 and 16 claims was mostly under snow and ice at this time, so there would have been little incentive for oldtimers to explore it.

Lacklustre precious metal prices precluded most gold and silver exploration from 1940 to 1979, although the discovery and subsequent development of the famous Granduc copper mine kept alive Stewart's reputation as an important mining district. When silver and gold prices skyrocketed in the early 1980's the area entered a Successive discoveries of important gold modern boom period. deposits such as the Snip and Eskay Creek mines, both now in production, kept exploration at high levels. This activity peaked In 1991 exploration in the general Stewart and outlying in 1990. areas (the so-called "Golden Triangle") fell sharply. The failure by scores of exploration companies to come up with a discovery to rival Eskay Creek quickly disenchanted investors. Funds for further work evaporated. This downturn also coincided with the election of a provincial government perceived to be hostile to mining interests, which cast a pall over exploration throughout all of British Columbia.

The relatively recent discovery and ongoing development of the promising intrusive-related gold deposits at Red Mountain, located approximately 16km east of Stewart, has rekindled interest in the region. In 1994 several juniors mounted programs in the local area surrounding Red Mountain including KRL Resources/Prime Equities, Trev Corp., Oracle Minerals, Camnor/Golden Giant and Aquaterre Mineral Development.

D. References

- 1. ALLDRICK, D.J. (1984); Geological Setting of the Precious Metals Deposits in the Stewart Area, Paper 84-1, Geological Fieldwork 1983", B.C.M.E.M.P.R.
- 2. ALLDRICK, D.J. (1985); "Stratigraphy and Petrology of the Stewart Mining Camp (104B/1E)", p. 316, Paper 85-1, Geological

Fieldwork 1984, B.C.M.E.M.P.R.

- 3. GREIG, C.J., ET AL (1994); "Geology of the Cambria Icefield: regional setting for Red Mountain gold deposit, northwestern British Columbia", p. 45, Current Research 1994-A, Cordillera and Pacific Margin, Geological Survey of Canada.
- GREIG, C.J. ET AL (1994); "Geology of the Cambria Icefield: Stewart, Bear River and parts of Meziadin Lake and Paw Lake map areas, northwestern British Columbia; Geological Survey of Canada, Open File 2931.
- 5. GROVE, E.W. (1971): Bulletin 58, Geology and Mineral Deposits of the Stewart Area. B.C.M.E.M.P.R.
- 6. GROVE, E.W. (1982): Unuk River, Salmon River, Anyox Map Areas. Ministry of Energy, Mines and Petroleum Resources, B.C.
- 7. GROVE, E.W. (1987): Geology and Mineral Deposits of the Unuk River-Salmon River-Anyox Area, Bulletin 63, BCMEMPR
- 8. GROVE, E.W. (1994): Summary Geological Report and Work Proposal on Teuton Resources Corp. Croesus 3 & 4 Property, Del Norte Creek, B.C. Private Report for Teuton Resources.
- 9. KRUCHKOWSKI, E.R., KONKIN, K. (1994): Fieldnotes and maps regarding work on the Red claims, 1994.
- 10. WOJDAK, PAUL (1995): Northwestern District Mineral Exploration Review 1994, Information Circular 1995-6, Ministry of Energy, Mines and Petroleum Resources, Mineral Resources Division.

E. Summary of Work Done.

The 1994 work on the Red 12 and 16 claims was part of a larger program covering several Stewart area properties spanning the period from July 13 to Oct. 11. The field crew consisted of Ed Kruchkowski, senior geologist, and Ken Konkin, geologist. Both have spent many seasons exploring the Stewart area.

The crew was shuttled in and out of various portions of the property by helicopter on two separate day trips. On the first of these, Sept. 1, the crew was let out in area which quickly proved too steep to traverse safely. A crossing was made over the icefield to an area with more moderate slopes but as a result of this and prevailing inhospitable weather only a few samples were taken that day. On the next outing, Sept. 8, the crew spent only a half day on the Red 12 and 16 claims before calling for a helicopter move to another property. Altogether 28 reconnaissance geochemical rock samples were taken during the program. All samples were analyzed for gold content at the Eco-Tech Laboratory facility in Stewart, B.C.; ICP analyses were carried out at the parent facility in Kamloops.

2. TECHNICAL DATA AND INTERPRETATION

A. Regional Geology

The property lies in the Stewart area east of the Coast Crystalline Complex and within the western onlap boundary of the Bowser Basin. Rocks exposed in the area belong to the Mesozoic Hazelton Group and have been folded on regional NW-SE axes, cut by faults and selective tectonism, locally hydrothermalized and intruded by plugs of both Cenozoic and Mesozoic age.

Locally, within the Hazelton Group, Lower Jurassic volcanic and sedimentary rocks of the Unuk River Formation are unconformably overlain by the Middle Jurassic marine and non-marine volcanics and sediments of the Betty Creek Formation, the volcano-sedimentary Upper Jurassic Salmon River Formation, and the post-accretion fine clastic basinal Nass Formation.

Intrusives in the region are dominated by the granodiorite of the Coast Plutonic Complex (to the west). Some of the smaller intrusive plugs in the study area range from quartz monzonite to granite and are likely related outlier processes associated with the Coast Plutonic Complex.

More than 600 mineral deposits, at least 70 of which have shown some production, have been discovered within the boundaries of this region. Famous historical producers include the Premier, Granduc and Anyox mines. At the present time both the Snip and Eskay Creek mines are successfully in production, the latter one of Canada's richest precious metal discoveries ever. As well, modest production of gold ores is continuing at the Premier and proximate SB mine. Several advanced gold prospects, such as in the Sulphurets area and at Red Mountain, are considered likely future producers.

Regional geology is shown in Fig. 3 after Greig et al (1994).

B. Property Geology

Weak to strong quartz-carbonate stockworks up to 5m in width are present in locally carbonate altered maroon volcanics. Narrow zones of galena, sphalerite, pyrite and occasionally chalcopyrite occur along some of the stockwork stringers. Tetrahedrite is also present in trace amounts in some of the quartz-carbonate. North of the maroon volcanics, hornfelsed augite porphyry basalt contains

Red Mountain Area, Stewart, B.C.

LEGEND

STRATIFIED ROCKS

Middle	to Upper Jurassic						
ω	Upper Jurassic clastic rocks						
MUJ	Middle and Upper Jurassic clastic rocks						
Jc	Lower to Middle(?) Jurassic clastic rock						
BASEMENT							
Lower to Middle(?) Jurassic							
Jdf	debris flow conglomerate and volcanic debris flows						
Jm	Red Mountain sequence						
Lower	Jurassic						
Jh	homblende-feldspar-phyric volcanic rocks						
Jd	felsic volcanic rocks						
Jp	pyroxene-bearing volcanic and volcaniclastic rocks						
Jmp	maroon pyroclastic rocks						
Jme	maroon epiclastic rocks						
Jm	maroon feldspathic pyroclastic and epiclastic rocks						
Jvc	volcaniclastic rocks						
Jt	andesite / dacite lapili and ash tuff						
Jcv	undivided clastic and volcanic rocks						
vL	undivided volcanic rocks						
Upper	Triassic						
Τv	volcaniclastic rocks						
Triassi	c or older						
РТЬ	crowded feldspar-phyric basalt						
PLUT	ONIC ROCKS						
Tertiary	(?)						
+++	quartz monzonite to diorite						
Middle	or Late Jurassic to Tertiary						
dti	Bromley Glacier pluton						
Middle	Jurassic to Cretaceous						
Jkf	felsic intrusions						
Jkbp	Bear Pass pluton						
Jkb	Buildog Creek pluton						
Jkg	Goldslide intrusion						
	Highway						
••••	limit of mapping						
~	fimit of permanent ice						
	thrust or reverse fault						
<u>م</u> د بر	high angle fault						
	Middle UJ MUJ JC BASEA Lower Jd Jr Jr Jr Jr Jr Jr Jr Jr Jr Jr						

geological contact: known, interred, assumed

د ـــــ

tsault

Glacie

F16.3

fine-grained pyrrhotite in amounts varying from 1-4%.

To the east, medium-grained granodiorite dykes intrude a sequence of basalts and argillites. These dykes strike at approximately 320 degrees which is the prevalent fracture pattern in the Stewart area. Fine, disseminated pyrrhotite comprises 2-3% of the rock. Numerous narrow carbonate veinlets are present in the area of the dyke intrusions.

C. Geochemistry

a. Introduction

Reconnaissance rock geochemical samples were taken from accessible zones of interest on the Red 12 and 16 claims. Because ablation has been very pronounced in the Stewart area over the past 15 years, areas of rock outcrop are generally much more extensive than those depicted on government claim and topographic maps.

Sample locations are shown in relation to claim lines on Fig. 4 prepared at a scale of 1:5000.

Altogether 28 samples were taken: 16 grab, 10 chip and 2 float. Locations for the KK samples were fixed in the field using a portable GPS unit. The ERK samples were located by reference to a base map prepared from a topographic map and were tied in, where possible, to GPS-located sample sites.

b. Treatment of Data

Geochemical reconnaissance sampling results are presented in this report on Fig. 4 at a scale of 1:5,000. The geochemical data table reports gold values in ppb and silver values in ppm (opt in boldface, where applicable); arsenic, copper, lead and zinc values are in ppm (% in boldface, where applicable). Inset maps give details of areas of high sampling density.

As in other small-scale surveys, a statistical treatment according to standard methods was not deemed practical. In lieu of such treatment, the author has simply chosen anomalous levels by reference to several rock geochemical programs conducted over other properties in the Stewart region over the past ten years. On this basis, anomalous levels are indicated below:

<u>Element</u>	Anomalous Above*
Gold	100 ppb
Silver	3.6 ppm
Arsenic	120 ppm
Copper	200 ppm

5

Lead	160	ppm
Zinc	320	ppm

• Anomalous ranges will vary greatly according to rock type. For this reason, defining anomalous levels for any particular property based on regional averages is somewhat arbitrary.

c. Sample Descriptions

NOTE: For reference, element values for Au, Ag, As, Cu, Pb and Zn have been appended below the sample descriptions where any one of the six elements exceeds 2X the anomalous threshold indicated in the previous section (with all of those elements reporting 2X threshold highlighted in bold).

- ERK-688 Grab. Medium grained hornblende diorite stringers into volcanic rock with 1-2% po, weathers rusty.
- ERK-689 Grab. Medium grained diorite dyke with 2-3% v.f.g po; country rock is argillite, rusty, with carbonate veinlets; dyke strikes @ 316 and is 2m wide.
- ERK-690 Grab. Grey, silicified andesite? with v.f.g. po.
- ERK-691 Grab. Silicified black argillite with < 1% f.g. py.
- ERK-728 Grab. Carbonate altered zone 5m wide with qtz-carb stockwork striking 100/vert; sample has traces of tetrahedrite and malachite stain in 4-5cm wide qtz carbonate vein.

Au	-	115	ppb	Ag	-	4.8	ppm
As	-	25	ppm	Cu	-	2034	ppm
Pb	-	2	ppm	Zn	-	213	ppm
[8b	-	1425	ppm]				

ERK-729 Grab. Qtz-carb vein up to 15cm wide @068/85N with <1% pyrite, malachite.

Au	-	20 ppb	Ag	-	<.2 ppm
As	-	35 ppm	Cu	-	180 ppm
Pb	-	82 ppm	2n	-	4.09 🕇
[Cd	-	504 ppm]			

ERK-730 Grab. Carb altered zone, about 3m wide. Stringers of Fe carb and qtz. Narrow zones of gal, sph? and traces py, malachite.

Au	-	60	ppb	Ъg	-	8.6	ppm
As	-	35	ppm	Cu	-	273	ppm
Pþ	-	9450	ppm	Zn	-	5.16	*

6

ERK-731 Grab. Carb altered zone 2-3m wide with 2-15cm wide stringers; zone strikes 060/80; total sulfides about 3-4%.

Au	-	135	ppb	λg	-	32.95	opt
As	-	210	ppm	Cu	-	1252	ppm
РЬ	-	3.30	*	Zn	-	9.68	*
[Cđ	-	>1000	ppm]	[8b	-	1925	ppm]
(W	-	>10000	ppm]	2			•

ERK-732 Grab. Stringer zone of carbonate with coarse cube pyrite and minor cpy and trace malachite; strikes 072/85N.

Au	-	95 ppb	Ag	-	9.02 opt
As	-	750 ppm	Cu	-	7244 ppm
Pb	-	480 ppm	2n	-	1166 ppm

ERK-733 Grab. Stringer zone with massive py bands; py is coarse cubes, about 7% of rock

Au	-	50 ppb	Ag	-	20.4 ppm
λs	-	595 ppm	Cu	-	520 ppm
Pb	-	250 8	2n	-	975 ppm

- ERK-734 Grab. Rusty weathering augite porphyry basalt with 1-2% po; augite crystals are coarse-grained, about 1-2mm.
- ERK-735 Grab. Weakly hornfelsed augite porphyry basalt with <1% po; weathers very rusty.

Au	-	350	ppb	Ag	-	<.2	ppm
As	-	25	ppm	· Cu	-	191	ppm
Рb	-	26	ppm	2 n	-	1739	ppm

- ERK-736 Grab. Hornfelsed augite porphyry basalt; 1-2% po; weathers very rusty.
- ERK-737 Grab. From outcrop of rusty augite porphyry basalt with about 1% po and minor f.g. py.
- ERK-738 Grab. Med-grained augite porphyry basalt with qtz carb stockwork. Rock has about 3% f.g. po and minor cpy. Weathers rusty.
- KK-727 Chip, 1.1m. Intense Fe ox., siliceous rhyodacite crystal tuff, minor 2-3% qtz+carb stringers, 3-5% diss f.g. to c.g. po.
- KK-728 Chip, 1.2m. Altered intrusive dyke, very siliceous, f.g. dark grey dioritic with 1-2% v.f.g diss po, strong patchy

Fe ox.

- KK-729 Grab. Siliceous rhyodacite with v.f.g. 7-10% pods of py + diss py; intense purple-red Fe ox.
- KK-730 Chip, 1.0m. Rhyolite, blocky fractures, 1-2% f.g. diss po; intense purple-red Fe ox.; minor 2-3% gtz veinlets.
- KK-731 Grab. Qtz stringer intruding and brecciating massive andesitic tuff, 3-5% c.g. po diss in qtz stringer stockwork (20-25%); trace diss py in host.
- KK-732 Chip, 1.3m. Silicified volcanic siltstone, dark greenblack; v.f.g. <1% diss py; strong spotty Fe ox, massive.</p>
- KK-760 Chip, 1.0m. Fe carb altered volcanic, 7-10% qtz carb veinlets, trace metallic dark grey mineral--very f.g., possibly moly; very vuggy, strong orange buff Fe carb/lim ox; <1% diss f.g. to c.g. py in silicified pods.</p>

Au	-	10 ppb	Ag -	2.0 ppm
λs	-	100 ppm	Cu –	26 ppm
Pb	-	370 ppm	Zn –	607 ppm

- KK-761 Float, fist-sized/angular. Silicified altered andesitic tuff, 7-10% f.g. to c.g. diss py, strong Fe ox.
- KK-762 Chip, 1.0m. Fe carb altered sericite schist with 2-3% mariposite. Weakly silicified, no visible sulfides.
- KK-763 Float, football-sized/angular. Black volcanic siltstone with 10-15% diss-semimassive v.f.g. to c.g. py; very strong Fe ox.

Au		50	ppb	Ag	-	<.8	ppm
)s	-	625	ppm	Cu	-	15	ppm
Pb	-	40	ppm	Zn	-	37	ppm

- KK-764 Chip, 1.0m. Intense Fe ox; basaltic porphyry tuff, very well silicified, 2-3% v.f.g to m.g. diss po.
- KK-765 Chip, 1.3m. Dioritic intrusive breccia basaltic tuff, 1-2% diss po, diss Mo?; intense Fe ox.
- KK-766 Chip, 1.5m. Same as #765 description.
- KK-767 Chip, 1.4m. Basaltic tuff with diorite intruding brecciated volcanic; <1% diss po, intense Fe ox.</p>
- KK-768 Grab. Same as #767 description.

d. Discussion

Variously anomalous base metal and silver values were obtained from a group of samples (ERK-728 to 733) taken from quartz-carbonate stringer mineralization exposed near the southern boundary of the Red 12 claim. Zinc values ranged to 9.68%, lead to 3.30%, copper to 7244 ppm and antimony to 1925 ppm. Cadmium and arsenic were also anomalous in some of the samples. Four of the samples returned anomalous silver values to 32.94 opt.

Most of the other samples taken during the 1994 program over the Red 12 and 16 claims reported background metal values only. Gold values were typically flat although four samples returned marginally anomalous values between 105 and 135 ppm.

D. Field Procedure and Laboratory Technique

Rock samples were taken in the field with a prospector's pick and collected in a standard plastic sample bag. Grab samples were taken to ascertain character of mineralization at any specific locality. These samples consisted generally of three to ten representative pieces with total sample weight ranging between 0.5 to 2.0 kg. Chip samples were taken across the strike of mineralized structures and generally weighed about 1.0 to 2.0 kg.

All rock samples were analyzed at the Eco-Tech facilities in Stewart and Kamloops, B.C. Rock samples were first crushed to minus 10 mesh using jaw and cone crushers. Then 250 grams of the minus 10 mesh material was pulverized to minus 140 mesh using a ring pulverizer. For the gold analysis a 10.0 gram portion of the minus 140 mesh material was used. After concentrating the gold through standard fire assay methods, the resulting bead was then dissolved in aqua regia for 2 hrs at 95 deg. C. The resulting solution was then analyzed by atomic absorption. The analytical results were then compared to prepared standards for the determination of the absolute amounts. For the determination of the remaining trace and major elements Inductively Coupled Argon Plasma (ICP) was used. In this procedure a 1.00 gram portion of the minus 140 mesh material is digested with agua regia for 2 hours at 95 deg. C and made up to a volume of 20 mls prior to the actual analysis in the plasma. Again the absolute amounts were determined by comparing the analytical results to those of prepared standards.

Specific samples were subjected to further analysis where values obtained exceeded certain threshold levels. High golds were fireassayed using conventional methods followed by parting and weighing of beads. Wet chemistry methods and AA were used for follow-up analysis of base metals and silver (where values were too high for quantitative measurement by ICP).

E. Conclusions

The 1994 work reconnaissance program on the property identified one marginally interesting area of anomalous Zn-Pb-Cu-Ag values near the southern boundary of the Red 12 claim. Most of the other samples taken showed background metal values only. Gold values were generally flat with only a few samples marginally anomalous.

Because only a limited portion of the rock outcrop exposed in the claim area has been examined, further reconnaissance work is warranted on the remainder of the property. This should ideally take place later in the field season to take advantage of maximum snow meltback.

Respectfully submitted,

emoneu

D. Cremonese, P.Eng. May 30, 1995

APPENDIX I - WORK COST STATEMENT	
Field PersonnelPeriod Sept. 1 to Sept. 8, 1994:	
E. R. Kruchkowski, Geologist	A 450
1.5 days e \$300/day K. Konkin, Coologist	Ş 45U
1.5 days @ \$294/day	441
Helicopter VIH	
Crew drop-offs/pick-ups: Sept. 1 and Sept. 8	
VIH: 1.15 hrs. @ \$722.60/hr.	831
Shared project costs (prorated at 1.77%*)	
Logistics/supervision/bad weather standby in Stewart	205
1.7/3 OI $310,117$	285
1.77% of \$10,459)	185
Food/accommodation	
1.77% of \$9,138)	162
Local transportation/expediting/radios	
1.7/3 OI \$6,493 Field gumpling/migg	114
rieid supplies/misc.	75
Workman's compensation	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1.77% of \$3,592)	64
Assay costsEco-Tech Labs	
Au geochem + 30 elem. ICP + rock sample prep	
28 @ \$19.5275/sample	547
Ag assay: $2 \neq 54.28$	9 29
PD/2n assay: 4 € \$0.955	20
Report Costs	
Report and map preparation, compilation and research	L
D. Cremonese, P.Eng., 1.5 days @ \$375/day	562
Draughting RPM Computer	180
COPIES, report, jackets, maps, etc. TOTAL	\$ 3,973
Amount Claimed Per Statement of Exploration #3065012:	\$ 3,100**

* Based on ratio of field man-days to total **Please adjust PAC account accordingly. 11

APPENDIX II - CERTIFICATE

- I, Dino M. Cremonese, do hereby certify that:
- 1. I am a mineral property consultant with an office at Suite 509-675 W. Hastings, Vancouver, B.C.
- 2. I am a graduate of the University of British Columbia (B.A.Sc. in metallurgical engineering, 1972, and L.L.B., 1979).
- 3. I am a Professional Engineer registered with the Association of Professional Engineers of the Province of British Columbia as a resident member, #13876.
- 4. I have practised my profession since 1979.
- 5. This report is based upon work carried out on the Red 12 and Red 16 claims, Skeena Mining Division from July to October of 1994. Reference to field notes and maps made by geologists E. Kruchkowski and K. Konkin is acknowledged. I have full confidence in the abilities of all samplers used in the 1994 geochemical program and am satisfied that all samples were taken properly and with care.
- 6. I am a principal of Teuton Resources Corp. and Minvita Enterprises Ltd., owners of the Red 12 and Red 16 claims: this report was prepared solely for satisfying assessment work requirements in accordance with government regulations.

Dated at Vancouver, B.C. this 30th day of May, 1995.

D. Lemmen

D. Cremonese, P.Eng.

APPENDIX III

.

ASSAY CERTIFICATES

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

CERTIFICATE OF ASSAY ETS3098

TEUTON RES. CORPORATION 509-675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2 26-Sep-94

Attention: Dino Cremonese

90 ROCK samples received September 11, 1994 Sample run date: September 15, 1994 Samples submitted by: Ken Konkin Client Project Number: OEX

		Au	Au	Ag	Ag	As	Cu	Pb	Zn	
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	*	%	%	· %	
6	ERK94719								2.78	
7	ERK94720			61.2	1.79			1.09	1.45	
16	ERK94729								4.09	<u></u>
17	ERK94730								5.16	FRED
18	ERK94731			1129.6	32.94			3.30	9,68	1 12.16
19	ERK94732			309.4	9.02			-		1
39	ERK94752	7.40	0.216	32.6	0.95	3.15				
41	ERK94754	5.00	0.146			2.31				
42	ERK94755	3.10	0.090			3.45				
43	ERK94756	4.45	0.130			1.23				
44	ERK94757	4.65	0.136			2.92				
45	ERK94758	2.05	0.060			0.77				
46	ERK94759					0.91				
51	ERK94764	4.35	0.127			2.53				
52	KK747	2.01	0.059			6.06				
61	KK756						1.13			
QC/DATA:	_									
Resplit:										
RS/39	ERK94752	7.00	0.204							

NOTE Average values are reported where repeat assays are performed. Screened "Metallic Assays" are performed on sample resplits screened to -140 mesh.

XLS/Teuton

LABORATORIES LTD. k J. Pezzotti, A.Sc.T. Certified Assayer 8

Page 1

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R R. =2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

CERTIFICATE OF ANALYSIS ETS 94-3089

TEUTON RES. CORPORATION 509-675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Attention: Dino Cremonese

50 rock sample received September 5, 1994 Sample run date: 8 September, 1994 Samples Submitted By: Ken Konkin Client Project Number: OEX

		Au	
ET #.	Tag #	(ppb)	
1	ERK94688	135	
2	ERK94689	25	RED 12, 16
3	ERK94690	105	
4 .	ERK94691	50	
5	ERK94692	140	
6	ERK94693	95	
7	ERK94694	>1000	
8	ERK94695	275	
9	ERK94696	305	
10	ERK94697	175	
11	ERK94698	140	
12	ERK94699	70	
13	ERK94700	>1000	
14	ERK94701	>1000	
15	ERK94702	>1000	
16	ERK94703	>1000	
17	ERK94704	125	
18	ERK94705	85	
19	ERK94706	65	
20	ERK94707	90	
21	ERK94708	70	
22	ERK94709	160	
23	ERK94710	105	
24	ERK94711	85	
25	ERK94712	100	

9-Sep-94

TEUTON RES. CORPORATION ETS 3089

9-Sep-94

			UA	
	ET #	t. Tag #	(ppb)	
	26	ERK94713	95	
	27	ERK94714	40	
	28	ERK94715	85	
	29	ERK94716	100	
	30	_ERK94717	50	
1	31	KIK 54727	5	
	32	1 V ER 94728	45	
2	33	≣Ŕ ₿94729	30	1
ž	34	ÆR 94730	30	RED 12, 10
*	35	⊞R ∰94731	30	
3	36	ERK94732	50	
AK	37	ERK94733	50	
	38	ERK94734	40	
S	39	ERK94735	35	
121	40	ERK94736	. 20	
Æ	\$ 41	ERK94737	50	
S	8 42	ERK94738	255	
5	¥ 43	ERK94739	250	
SS.	L 44	ERK94740	525	
2	\$ 45	ERK94741	>1000	
И	46	ERK94742	>1000	
Å	47	ERK94743	460	
	48	ERK94744	35	
_	49	ERK94745	30	
. (50	ERK94746	30	

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. *2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

CERTIFICATE OF ANALYSIS ETS 3098

TEUTON RES. CORPORATION 509-675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2 15-Sep-94

Attention: Dino Cremonese

90 ROCK samples received September 11, 1994 Sample run date: September 15, 1994 Samples submitted by: Ken Konkin Client Project Number: OEX

		Au	
ET #.	Tag #	(ppb)	
1	94DC13	97	
2	94DC14	15	
3	94DC15	25	
4	94DC16	25	
5	ERK94718	50	
6	ERK94719	190	
7	ERK94720	360	
8	ERK94721	55	
9	ERK94722	35	
10	ERK94723	35	
11	ERK94724	20	
12	ERK94725	35	×
13	ERK94726	60	
14	ERK94727	40	
15	ERK94728	115	
16	ERK94729	20	
17	ERK94730	60	
18	ERK94731	135	
19	ERK94732	95	0.5.
20	ERK94733	50	I KED
21	ERK94734	65	
22	ERK94735	20	11216
23	ERK94738	25	
24	ERK94737	15.	
_ 25_	ERK94738	15	Y
26	ERK94739	35	

Page

TEUTON RES. CORPORATION ETS3098

15-Sep-94

		Au	
ET #.	Tag #	(ppb)	
27	ERK94740	25	
28	ERK94741	20	
29	ERK94742	20	
30	ERK94743	20	
31	ERK94744	20	
32	ERK94745	15	
33	ERK94746	25	
34	ERK94747	90	
35	ERK94748	20	
36	ERK94749	90	
37	ERK94750	55	
38	ERK94751	120	
3 9	ERK94752	>1000	
40	ERK94753	680	
41	ERK94754	>1000	
42	ERK94755	>1000	
43	ERK94756	>1000	
44	ERK94757	>1000	
45	ERK94758	>1000	
46	ERK94759	535	
47	ERK94760	110	
48	ERK94761	240	
49	ERK94762	110	
50	ERK94763	95	
51	ERK94764	>1000	
52	KK747	>1000	
53	KK748	75	
54	KK749	425	
55	KK750	45	
56	KK751	45	
57	KK752	30	
58	KK753	30	
59	KK754	50	
60	KK755	15	
61	KK756	50	
62	KK757	35	
63	KK758	35	
64	KK759	15	
65	KK760	- 10	
66	KK761	20	•
67	KK762	20	DED IN 11
68	KK763	. 50	KED IZ, 16
69	KK764	15	
70	KK785	25 ¥	•

Em.

TEUTON RES. CORPORATION ETS3098

15-Sep-94

		Au		-
ET #.	Tag #	(ppb)		
71	KK766	20	0	
72	KK767	30	RED	12,16
73	KK768	15		
74	KK789	25		
75	КК770	25		
76	KK771	25		
77	KK772	30		
78	KK773	30		
79	KK774	20		
80	KK775	25		
81	KK776	40		
82	KK777	20		
83	KK778	355		
84	KK779	175		
85	KK780	65		
86	KK781	35		
87	KK782	30		
88	KK783	30		
89	KK784	15		
90	KK785	5		

16-Sep-94

• •

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B C V2C 2J3

Phone 604-573-5700 Fax : 604-573-4557

TEUTON RESOURCES CORPORATION ETS-3089 509-675 W HASTINGS ST VANCOUVER, B C V6C-1N2

.

ATTENTION: Theresa Rau

.

50 rock samples received September 5, 1994 Sample run date September 13, 1994 Samples Submitted By Ken Konkin Client Project Number OEX

Values in ppm unless otherwise reported

Et	t. Tag #	Ag.	<u>N %</u>	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Τι %	U	V	W	Y	Zn		
1	ERK94688	<.2	2.12	60	65	<5	1.76	2	27	68	64	5.86	<10	1 28	527	<1	0.06	12	1370	28	15	<20	36	0.13	<10	115	<10	<1	103	7	
2	ERK94689	<.2	2.18	50	60	10	0.70	2	18	43	26	6.27	<10	1 94	683	<1	0 02	4	1360	20	15	<20	16	0.08	<10	123	<10	<1	145	HER	
3	ERK94690	< 2	1.73	15	35	10	0.99	<1	21	77	52	5.49	<10	1 35	563	<1	0.03	5	1480	32	15	<20	42	0 21	<10	87	<10	1	38	RED 12,1	16
4	ERK94691	0.6	1.27	<5	60	<5	0.61	<1	15	80	67	3.74	<10	0.65	428	<1	0.03	29	1170	30	10	<20	19	0.11	<10	53	<10	2	26	·	
5	ERK94692	<.2	1.99	5	45	5	0.65	<1	18	131	62	5.02	<10	2.32	597	<1	0 02	33	1260	24	25	<20	14	0.08	<10	109	<10	<1	56		
6	ERK94693	<.2	2.28	<5	45	<5	> 15	<1	24	71	150	6.64	<10	2 51	1494	13	0.02	36	2160	6	30	<20	225	0 10	<10	125	<10	4	69		
7	ERK94694	10.8	0.32	>10000	45	<5	0.24	> 1000	49	67	1332	> 15	<10	<.01	89	14	<.01	7	180	74	445	<20	<1	< 01	30	12	<10	<1	103		
8	ERK94695	12.2	0.44	2960	30	<5	0.18	26	49	130	985	> 15	<10	0 03	649	2	<.01	25	660	14	<\$	<20	<1	<.01	<10	24	<10	<1	24		
9	ERK94696	3.8	0.25	750	50	25	0.08	8	40	134	49	> 15	<10	< 01	4704	6	<.01	17	<10	82	<5	<20	2	< 01	70	12	<10	<1	126		
10	ERK94697	94	0.38	270	55	<5	0.04	4	119	131	582	> 15	<10	< 01	550	- 45	<.01	100	340	46	<5	<20	<1	0 01	50	50	<10	<1	31		
11	ERK94698	38	1 48	215	35	<5	2.57	827	24	114	889	6 68	<10	1 13	2191	<1	< 01	17	700	62	<5	<20	27	<.01	<10	48	<10	<1	>10000		
12	ERK94699	10	0.30	230	20	<5	0.91	23	23	132	166	8.57	<10	0.08	1579	- 4	< 01	13	40	6	<5	<20	4	< 01	<10	12	<10	<1	1960		
13	ERK94700	25 0	0.02	>10000	45	<5	0.04	> 1000	27	92	730	> 15	<10	< 01	73	<1	<.01	8	<10	36	300	<20	<1	<.01	20	2	<10	<1	257		
- 14	ERK94701	56	0 06	>10000	30	<5	0 03	> 1000	28	65	396	> 15	<10	< 01	297	2	<.01	8	<10	100	665	<20	<1	< 01	<10	2	<10	<1	109		
15	ERK94702	72	0.05	>10000	50	10	0 04	> 1000	31	62	531	> 15	<10	<.01	65	<1	<.01	8	<10	58	<5	<20	<1	< D1	40	з	<10	<1	113		
16	ERK94703	20.8	0.05	>10000	35	<5	0.03	> 1000	- 25	65	549	> 15	<10	< 01	41	1	<.01	7	<10	170	570	<20	<1	< 01	<10	4	<10	<1	72		
17	ERK94704	>30	0.74	1640	40	<5	0.07	14	13	200	8261	6.53	<10	0 39	1663	7	<.01	10	850	10	5	<20	<1	<.01	<10	20	<10	<1	60		
18	ERK94705	26	0.25	845	20	<5	0.10	7	52	172	188	8.63	<10	<.01	156	5	< 01	25	1070	24	<5	<20	<1	<.01	<10	14	<10	<1	29		
19	ERK94706	< 2	1 19	230	30	<5	0.83	2	28	73	133	5.51	<10	1 12	372	2	0 03	25	1800	20	15	<20	13	0 10	<10	86	<10	<1	43		
20	ERK94707	1.0	0.70	975	40	10	0.41	9	27	24	25	7 32	<10	011	220	1	< 01	9	2500	28	<5	<20	4	<.01	<10	23	<10	<1	16		
21	ERK94708	<.2	0.95	1545	45	<5	0.30	256	12	160	97	3 92	<10	0.40	903	<1	<.01	9	530	116	<5	<20	<1	< 01	<10	22	<10	<1	>10000		
22	ERK94709	1.0	2.49	90	40	<5	1.65	6	27	71	2340	978	<10	1.29	668	<1	0.08	26	2950	26	15	<20	121	0 07	<10	108	<10	<1	427		
23	ERK94710	16	1.52	200	45	<5	2.19	3	37	142	163	7 12	<10	1 05	698	<1	0.02	43	2290	508	10	<20	43	012	<10	114	<10	<1	217		
24	ERK94711	06	0.58	50	25	10	0 18	1	32	172	13	6 39	<10	0.18	1068	3	< 01	11	870	16	<5	<20	<1	< 01	<10	22	<10	<1	36		
25	ERK94712	20	0 54	195	30	15	0 14	2	22	156	103	11.90	<10	0 09	898	10	< 01	14	760	20	<5	<20	<1	< 01	<10	28	<10	<1	29		
	• •		_																												
26	ERK94713	28	1.29	55	40	5	0 31	5	25	176	39	4 68	<10	0 67	901	1	<.01	19	1230	54	5	<20	<1	< 01	<10	43	<10	<1	413		
27	ERK94714	256	1.62	70	20	<5	0.15	<1	33	195	3432	8.37	<10	1.15	1187	- 4	<.01	15	830	34	10	<20	<1	< 01	<10	56	<10	<1	64		

a star a star

- - - - **(**

Eco-Tech Laboratories Ltd

ş.,

	Et	#. Tag #	Ag	AI %	As	Ba	61	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	P	РЬ	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn	
	28	ERK94715	>30	0 32	265	50	<5	0.03	3	23	102	6955	> 15	<10	<.01	2106	6	< 01	13	370	2	<5	<20	<1	< 01	60	17	<10	<1	43	
	29	ERK94716	>30	0 39	3980	15	<5	0.05	34	15	168	1667	6.46	<10	0.03	409	<1	<.01	6	400	30	155	<20	<1	0.02	<10	17	<10	<1	41	
k	30	ERK94717	6.6	0 57	105	30	15	0.09	2	37	160	123	> 15	<10	0.19	284	8	<.01	32	200	188	<5	<20	<1	0 02	10	25	<10	<1	56	
	- 31	LE ERK94727	14	2.36	125	70	10	0.73	- 1	19	145	42	5.05	<10	1.96	795	<1	0.02	32	1410	30	20	<20	47	0.13	<10	100	<10	- 1	82	
	A 32	##ERK04728	<.2	206	15	60	15	1 67	1	24	80	41	5.95	<10	1.17	636	<1	0.03	7	1680	32	20	<20	34	0 18	<10	92	<10	<1	76	
							_		_			•																			RED
	- 33	KAERK94729	10	2.15	265	40	<5	0.59	5	27	72	81	7.65	<10	1.58	614	<1	<.01	36	1460	58	20	<20	6	0.09	<10	59	<10	<1	219	
	- 34	KHERK04730	<.2	1.93	15	90	<5	0.96	1	19	123	82	5.22	<10	1.70	750	<1	0.03	31	1750	34	20	<20	19	0.18	<10	139	<10	2	67	12.16
ļ	35	KLERKS4731	0.8	2.16	20	30	<5	5.27	- 4	43	163	82	4.37	<10	0.50	632	<1	0.02	70	740	50	10	<20	33	0 07	<10	56	<10	<1	313	
Í	- 36	KKERKB4732	< 2	0.94	<5	75	<5	2.45	<1	21	120	77	4.16	<10	0.51	506	<1	0.02	41	1030	16	10	<20	49	0.08	<10	63	<10	2	33	
	37	ERK94733	<.2	1.67	265	40	<5	1.15	107	38	99	227	7.41	<10	2.42	487	<1	0 03	59	1360	26	15	<20	30	0 09	<10	100	<10	<1	5095	
J	38	ERK94734	<.2	1.99	55	40	<5	1.32	9	40	168	152	6.13	<10	2.75	606	<1	0.02	95	1250	20	25	<20	28	0 12	<10	111	<10	<1	507	
2	39	ERK94735	<.2	1.58	25	15	<5	0.90	37	30	107	191	5.33	<10	2.02	309	5	0 03	- 44	1480	26	25	<20	14	0 11	<10	102	<10	<1	1739	
2	40	ERK94736	<.2	1 91	<5	50	<5	0.77	<1	24	114	185	4.63	<10	2.56	429	<1	0.03	40	980	20	25	<20	14	0.17	<10	130	<10	- 4	64	
3	41	ERK94737	<.2	2.61	20	65	<5	2 01	1	34	96	140	6.27	<10	1.45	504	<1	0.10	49	2620	36	15	<20	152	0.24	<10	162	<10	4	119	
	42	ERK94738	9.0	0 12	15	30	<5	0.05	3	26	168	681	> 15	<10	<.01	87	4	<.01	32	40	532	<	<20	<1	0 01	<10	6	<10	<1	49	
ž	43	ERK94739	88	0 10	125	30	<5	0.03	3	30	136	818	> 15	<10	<.01	49	3	< 01	34	<10	452	<5	<20	<1	<.01	<10	7	<10	<1	42	
	4	ERK04740	28	0.09	20	10	<5	0.04	1	13	234	201	8 26	<10	< 01	48	5	< 01	13	40	192	4	<20	<1	0.01	<10	4	<10	<1	26	
[45	ERK94741	>30	0.51	850	15	<5	0 11	20	31	170	3250	9.11	<10	0.33	265	<1	<.01	19	530	138	4	<20	<1	0.01	<10	31	<10	<1	1265	
× 1		ERK94747	>30	0.53	810	25	6	0.53	15	33	182	>10000	9.29	<10	0.28	1031	3	< 01	21	1240	334	45	<20	3	0 03	<10	22	<10	<1	689	
×	47	ERK94743	15.2	0.55	1350	35	<	0.11	11	25	102	805	> 15	<10	0.07	309	<1	<.01	16	480	110	10	<20	<1	0 07	<10	39	<10	<1	115	
	48	ERK94744	<.2	2.00	15	45	<5	0.99	<1	26	128	185	6.04	<10	2.22	692	<1	0.04	26	2080	22	25	<20	20	0.22	<10	202	<10	2	73	
	/ 49	ERK94745	<.2	2 49	65	45	<5	1 40	<1	30	91	131	5.91	<10	2.25	647	<1	0.05	27	2180	32	20	<20	47	0.19	<10	188	<10	2	85	
	¥ 50	ERK94746	<.2	203	10	65	<5	1 18	<1	30	90	169	5,79	<10	1.81	533	<1	0 06	28	2080	62	15	<20	65	0.17	<10	158	<10	2	62	

.. .

TEUTON RESOURCES CORPORATION ETS-3089

•

.

:

• ••

. .

÷ • •

•

Page 2

-

.

23-Sep-94

• • • •

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOP\$, B.C. V2C 2J3

Phone. 604-573-5700 Fax : 604-573-4557

•

TEUTON RESOURCES CORPORATION ETS-3098 509-675 W HASTINGS ST VANCOUVER, B C. V6C-1N2

ATTENTION Dino Cremonese

90 rock samples received September 11, 1994 Sample run date 21& 23 September, 1994 Samples Submitted By. Kan Konkin Client Project Number: OEX

Values in ppm unless otherwise reported

Et i	f. Tag #	Au (ppb)	Ag	<u>AI %</u>	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	L	Mg %	Ma	Ma	Ne %	NI	P	Pb	<u></u> \$b	Sn	Sr	TI %	<u> </u>	V	W	Y	<u>2n</u>	
1	94DC13	97	3.4	0.36	55	135	10	0.06	<1	2	136	9	1.57	10	<.01	24	2	<.01	2	50	18	\$	100	3	<.01	<10	1	20	<1	23	
2	94DC14	15	0.6	0.30	35	150	<5	0.02	<1	2	137	5	2.07	10	<.01	18	5	<.01	2	20	22	<5	100	2	<.01	<10	<1	<10	<1	29	
3	94DC15	25	<.2	0.28	80	535	<5	0.01	<1	2	145	- 4	1.57	<10	<.01	26	- 4	0.01	2	160	58	125	100	40	<.01	<10	1	<10	<†	9	
- 4	94DC16	25	<.2	0.21	30	260	<	0.01	<1	<1	229	3	0.54	<10	<.01	34	8	0.02	3	10	6	- 55	160	<1	<.01	10	1	<10	<1	5	
5	ERK94718	50	0.4	1.34	645	90	4	9.60	36	11	128	137	3.43	<10	0.63	1318	<1	<.01	12	940	42	20	40	5 97	<.01	<10	26	<10	2	921	
6	ERK94719	190	8.8	0.99	675	75	4	> 15	295	9	85	452	4.71	<10	1.50	4449	<1	<.01	2	280	396	50	<20	720	<.01	<10	27	<10	<1	>10000	
7	ERK94720	360	>30	0.95	35	80	⊲5	0.67	348	18	186	298	3.37	<10	0.33	542	<1	<.01	6	700	>10000	50	100	19	<.01	<10	19	<10	<1	>10000	
8	ERK94721	55	1.2	1.66	10	55	ৰ	6.56	7	17	177	61	2.67	<10	0.35	681	<1	0.02	60	1860	214	10	100	71	014	<10	46	<10	11	416	
9	ERK94722	35	<.2	2.95	<5	70	<5	1.36	<1	47	150	170	8.19	<10	3.72	656	<1	0.07	131	1450	76	30	<20	38	0.15	10	187	<10	<1	126	
10	ERK94723	35	<.2	2.72	10	75	10	1.12	- 4	29	108	108	6.94	<10	2.39	1031	<1	0.03	26	3090	74	20	<20	45	0.24	30	137	<10	З	320	
11	ERK94724	20	<.2	2.17	<5	60	10	0.53	1	21	71	104	6.25	<10	1.73	602	<1	0.03	5	1570	44	15	<20	16	0.08	20	104	<10	<1	85	
12	FRK94725	35	11.6	1.16	10	190	4	0.07	<1	9	172	7026	2.87	<10	1.06	92	7	0.02	27	920	26	15	80	5	< 01	<10	29	<10	<1	56	
13	ERK94726	60	8.6	0.26	75	80	ৰ্ব্ত	0.20	2	8	181	9412	4.21	<10	0.02	64	32	<.01	30	2650	16	45	100	6	< 01	20	110	<10	i	31	
14	ERK94727	40	1.4	0.99	<5	45	4	2.16	4	18	148	278	3.86	<10	0.05	124	<1	0.02	71	1950	22	<	80	8	0 13	<10	25	<10	7	59	
15	ERK94728	115	4.8	0.14	25	65	ব	12.30	1	5	151	2034	2.01	<10	0.13	1364	1	<.01	7	900	2	1425	80	740	<.01	10	7	<10	4	213	
16	ERK94729	. 20	<.2	0.39	35	75	ح	8.25	504	18	123	180	4.52	<10	1.78	8163	<1	<.01	2	950	82	25	<20	365	0.01	40	17	<10	<1	>10000	RET
17	ERK94730	60	6.6	0.36	15	40	4	12.50	>1000	41	101	273	5.17	<10	4.12	5339	<1	<.01	122	670	9450	50	<20	351	<.01	<10	26	<10	<1	>10000	~~~~
18	ERK94731	135	>30	0.69	210	<5	4	9.43	>1000	26	73	1252	7.96	<10	2.52	3905	<	<.01	36	370	>10000	1925	<20	240	< 01	<10	18 >	10000	<1	>10000	12
19	ERK94732	95	>30	0.95	750	85	<5	12.70	29	39	124	7244	13.30	<10	4.47	6016	<1	<.01	59	410	480	230	<20	416	0.01	60	38	<10	<1	1166	171
20	ERK94733	50	20.4	1.24	595	50	<5	3.06	22	26	154	520	9.15	<10	1. 0 9	1663	<1	<.01	26	760	250	55	<20	101	<.01	30	35	<10	<1	975	16
21	CRK94734	65	1.6	231	<5	80	6	2.08	4	40	196	174	6 80	~10	1 25	437	~1	0.15	24	2500	72	10	-20	131	0 18	20	157	*10	2	176	10
22	EPK04735	· 200		4.07	10	75	$\tilde{\mathbf{x}}$	1 41		52	118	116	8.05	<10	4 15	411	-	0.17	35	2000	96	30	~~~	57	0.26	20	417	~10	1	130	
23	E0K04736	25	114	374	10	70	10	1 76	;	49	123	147	7 48	<10	264	581	-	0.27	37	2370	92	25	<20	129	0.20	20	193	<10 <10	~	155	
23	ERK94737	15	22	3.34	<5	70	<5	1.46	4	32	87	132	6 37	<10	332	Báa		0.00	44	2740	- 52 80	35	<20	102	0 12	10	213	<10	3	77	
/ 25	E9K04739	15	- <2	275	<5	45	<5	1.32	1	42	49	231	8 21	<10	2.26	662		0.03	16	2740	56	25	<20	29	0.16	10	274	<10	<1	132	
1 23	21110-1130	10					~~~		<u> </u>	-44			0.21	-10	2.20					2240			-20	20			429	-10	-	1.32	_

- 1 . . .
- ł ;
- ÷ ···
- ;

TEUTON RESOURCES CORPORATION ETS-3098

÷ .

.

÷ •

. ŧ

.

• •

•

.

ECO-TECH LABORATORIES LTD.

.

÷

.

Et	l. Tag #	Au (ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Ma	Mo	Na %	Ni	Р	Рь	Sb	8n	Sr	Ti %	U.	_ v	w	Y	Źn	
61	KK756	50	9.2	0.28	80	85	\$	0.17	1	21	265	>10000	6.18	<10	0.02	297	- 14	<.01	63	1440	12	Ś	160	6	< 01	20	30	<10	<1	81	
62	KK757	35	1.6	0.99	55	- 60	<5	0.93	1	28	138	400	4 79	<10	0.74	481	<1	0.05	107	1380	28	10	40	10	0.16	10	89	<10	7	107	
63	KK758	35	0.2	0.62	180	125	<	7.67	2	19	154	87	4.73	<10	1.26	1228	<1	0.03	40	1870	10	40	<20	352	<.01	20	41	<10	3	34	
64	KK759	15	<.2	2.99	15	120	15	10.20	<1	55	472	127	7.85	<10	5.38	1944	<1	<.01	276	'1190	36	- 36	60	467	0.01	20	141	<10	<1	62	_
65	KK760	10	2.0	0.40	100	120	10	10.10	6	16	65	26	6.40	<10	2.05	6179	<1	<.01	6	1050	370	25	<20	340	<.01	40	24	<10	<1	607	—
	_		_	_					_				.				_				. .			_			_				Den
66	KK 76 1	20	<,2	3.89	80	50	20	5.38	3	30	73	64	7.63	<10	2.22	662	<1	0.02	17	1500	84	30	<20	42	0.12	<10	127	<10	<1	197	$(E \nu$
67	KK762	20	0.4	0.81	75	110	্ৰ ব	7.02	2	33	214	79	4.24	<10	1.46	969	<	<.01	117	Z290	22	35	40	Z22	<.01	10	39	<10	2	43	-
68	KK763	50	0.6	2.04	625	75	- 45	0.17	9	54	200	15	> 15	<10	0.93	500	2	<.01	29	740	40	9	<20	29	0.01	40	80	<10	<1	37	12.
69	KK764	15	<2	3.02	25	85	5	2.46	<1	45	105	125	5.55	<10	1.60	293	<1	0.25	70	2090	56	20	<20	159	0.16	<10	102	<10	<1	56	
70	KK765	25	<.2	1.89	10	50	<	2.09	<1	29	114	112	4.86	<10	0.61	322	2	0.11	24	2360	36	10	<20	97	0.12	10	94	<10	2	39	16
71	KK766	20	<.2	2.73	10	80	10	2.39	<1	37	82	148	6.13	<10	0.68	359	<1	0.21	28	2300	54	10	<20	244	0.16	10	121	10	3	60	1 -
72	KK767	30	<2	3.16	30	105	<5	2.00	<1	37	109	197	6.81	<10	1.63	469	<1	0.23	24	2540	64	20	<20	193	0.18	20	172	<10	2	65	
73	KK768	15	<.2	3.90	20	60	10	0.77	<1	38	250	130	7.91	<10	4,15	576	<1	0.02	43	2550	64	25	<20	29	0.10	10	241	<10	<1	86	—
74	KX 769	25	<.2	2.55	4	75	<5	1.74	<1	46	83	294	13.60	<10	0.98	1370	<1	0.03	29	1710	38	<5	<20	15	0.14	20	134	<10	<1	58	
75	KK770	25	<.2	1.97	-5	75	25	0.75	<1	52	73	161	-> 15	<10	1.57	731	<1	0.03	25	1740	36	<	<20	14	0.12	30	128	<10	<1	32	
76	KK771	25	<.2	2.46	<5	70	<5	2.73	<1	31	70	193	7.99	<10	1.17	516	<1	0.04	12	2380	42	10	<20	37	0.09	20	126	<10	<1	36	
77	KK772	30	0.4	3.06	<	80	15	3.04	<1	66	30	341	> 15	<10	2.09	696	<1	<.01	21	1640	36	4	<20	52	0.05	50	110	30	<1	52	
78	KK773	30	0.6	3.05	<5	90	- 30	0.87	<1	69	82	136	> 15	<10	1.99	1202	<1	0.02	28	1660	50	4	<20	8	0.10	50	248	<10	<1	77	
79	KK774	20	0.4	2.39	<5	60	<	1.46	<1	66	21	523	> 15	<10	1.50	399	<1	0.02	17	1320	4	4	<20	17	0.06	30	72	<10	<1	27	
80	KK775	25	<.2	2.07	25	45	<5	0.77	<1	29	58	274	5.39	<10	2.87	410	<1	0.02	10	1660	4	25	<20	65	0.22	20	104	<10	<1	54	
81	KK776	40	< 2	0.40	115	40	10	1.62	1	97	63	50	5 58	<10	0 10	122	<1	0.03	23	1320	4	6	<20	69	0 16	<10	43	<10	e1	0	
87	66777		< 2	0.42		75	20	0.83	<1	20	66	61	7.02	<10	0.07	304	<1	0.05		1830	- -	-5	<20	55	0.78	20	143	<10		33	
83	66778		52	1 94	440	30	20	0.00		11	1.46	12	6.95	<10	1.82	278		< 01		490	46	45	-20	~	0.20	20	24	<10		33	
84	86770	175	24	7 66	490	50	20	0.13	7	- 20	140		0.00 0.01	210	10.80	418	-1	< 01	-	4100	34		<20	2 0	< 01	~10	27 000	<10		02	
84 84	NK700	65	A.7	0.00	840	20	10	0.25	7	20	207	6	2.01	~10	0.17	1077	- 1	< 01	2	10	30	~	~20	-1	< 01	10	2	<10		33 57	
60	NN/60	. 60	0.0	. 0,00	040	20	10	U.23	'	3	291	0	2.00	~10	0.17	1927		~.0 1	3	10	•	2	~20	~1	N.01	10	3	<10	~1	37	
86	KK781	35	0.8	, 0.34	120	105	10	0.01	1	2	138	7	3.58	<10	0.02	40	9	<.01	2	170	12	<	<20	2	< 01	<10	1	<10	<1	39	
87	KK782	30	1.0	0.33	280	65	5	0.01	2	2	118	7	2.66	<10	0.04	26	5	<.01	2	50	14	4	<20	<1	<.01	<10	1	<10	<1	42	
88	KK783	30	1.2	0.33	120	115	10	<.01	<1	2	118	6	2.15	<10	0.01	15	4	<.01	1	<10	6	ব	<20	<1	<.01	<10	1	<10	<1	18	
69	KK784	15	1.2	0.25	120	35	<5	0.02	2	- 4	110	13	2.67	<10	< 01	19	3	<.01	3	140	126	50	<20	63	< 01	<10	2	<10	<1	30	
90	KK785	5	• 0.4	0.10	20	305	5	<.01	<1	2	219	6	0.70	<10	<.01	39	5	<.01	3	20	12	5	<20	9	<.01	<10	1	<10	<1	8	

Page 3