	LOG NO: ACTION:	JUL 1 2 1995	U
ASSESSMENT REPORT ON	FILE ND:		
GEOCHEMICAL WORK ON THE FOLLOWING CLA			

LUCKY JIM 6 253719 LUCKY JIM 4 253720 LUCKY JIM 3 253721 LUCKY JIM 2 253722 LUCKY JIM 1 253723

EVENT #3066669

WORK PERMIT # SMI-94-010270-185

Located

22 KM NORTH OF STEWART, BRITISH COLUMBIA SKEENA MINING DIVISION

56 degrees 09 minutes latitude 129 degrees 56 minutes longitude

N.T.S. 103A/4W

PROJECT PERIOD: July 13 to Oct. 11, 199

ON BEHALF OF MINVITA ENTERPRISES LTD. VANCOUVER, B.C.

REPORT BY

D. Cremonese, P. Eng. 509-675 W. Hastings Vancouver, B.C.

Date: June 19, 1995

FILMED

TABLE OF CONTENTS

1.	INTRODUCTION	1
	A. Property, Location, Access and Physiography B. Status of Property C. History	1 1 1
	D. References	3
	E. Summary of Work Done	4
2.	TECHNICAL DATA AND INTERPRETATION	4
	A. Regional Geology	4
	B. Property Geology	5
	C. Geochemistry Rock Samples	5
	a. Introduction	5
	b. Treatment of Data	6
	c. Sample Descriptions	6
	d. Discussion	8
	D. Field Procedure and Laboratory Technique	9
	E. Conclusions	9

APPENDICES

.

•

- I Work Cost Statement
- II Certificate III Assay Certificates

ILLUSTRATIONS

Fig.	1	Location Map	Report Body
Fig.	2	Claims Map	Report Body
Fig.	3	Regional Geology	Report Body
Fig.	4	1994 Rock Geochemical Sampling	Report Body

. •

Page

1. INTRODUCTION

A. Property, Location, Access and Physiography

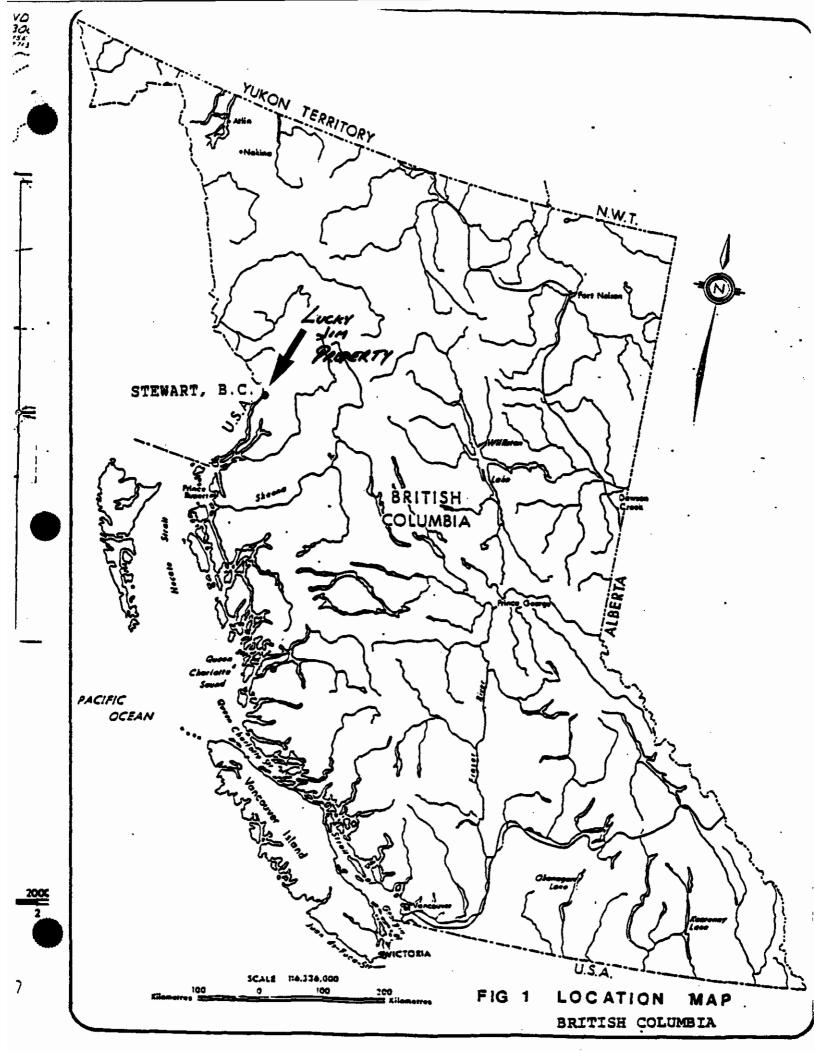
The property is located about 22 kilometres north of Stewart, British Columbia. Present access to the property is by helicopter from the base at Stewart (Vancouver Island Helicopters). Nearest paved road passes 6 kilometres to the south, running between Stewart and Meziadin Junction. A gravel road running up American Creek to within a few kilometres of the property could be used for closer access but this would apparently require expensive road and bridge repair.

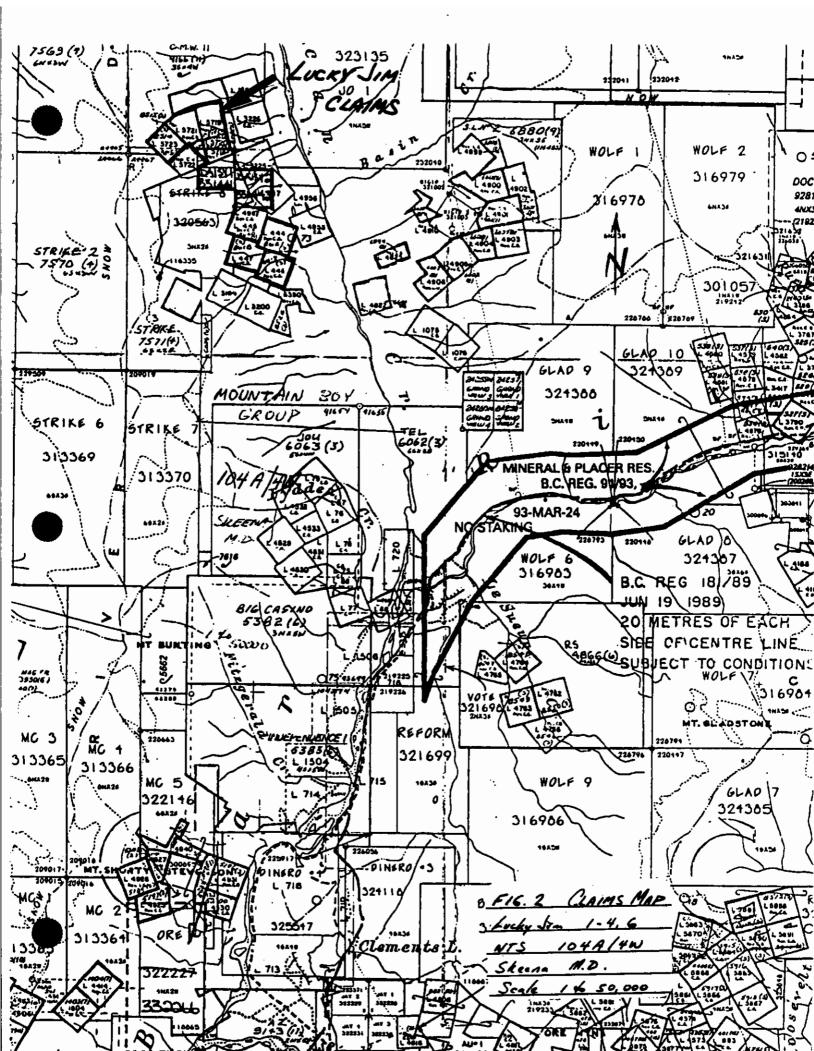
The Lucky Jim claims are situated on the east side of Bear River Ridge, overlooking American Creek. Elevations vary from approximately 700 metres near the southeast corner of the Lucky Jim 1 claim to about 1,650 metres near the ridge top on the Lucky Jim 6 claim. Local slopes are very steep and difficult to traverse. Vegetation ranges from alpine grasses and moss to balsam and spruce trees covering the lower sections. The valley bottom and walls are covered in part with a veneer of consolidated glacial debris ranging in thickness from several centimetres to several metres. Water is plentiful in the form of ground water or glacial run-off.

Climate is relatively severe, particularly at higher elevations.

B. Status of Property

Relevant claim information is summarized below:


Name	Tenure	No. of Units	Expiry Date*
Lucky Jim 6	253719	1	Mar. 22, 1997
Lucky Jim 4	253720	1	Mar. 22, 1997
Lucky Jim 3	253721	1	Mar. 22, 1997
Lucky Jim 2	253722	1	Mar. 22, 1997
Lucky Jim 1	253723	1	Mar. 22, 1997


Claim locations are shown on Fig. 2 after government N.T.S. maps 104A/4W. The claims are owned by Minvita Enterprises Ltd. of Vancouver, British Columbia. Teuton Resources Corp. was the operator during the 1994 work program.

*After applications of assessment credits pursuant to the instant report.

C. History

Exploration for metals began in the Stewart region about 1898 after the discovery of mineralized float by a party of placer miners.

Like many other mining districts, exploration proceeded in a boombust pattern with the boom periods following on the heels of an important discovery. The first active period culminated in 1910 when both Stewart and the neighbouring town of Hyder, Alaska boasted a population of around 10,000. Discovery of the extremely rich Premier gold-silver mine in 1918 led to another phase of intensified exploration which gradually tapered off during the Depression years.

Lacklustre precious metal prices precluded most gold and silver exploration from 1940 to 1979, although the discovery and subsequent development of the famous Granduc copper mine kept alive Stewart's reputation as an important mining district. When silver and gold prices skyrocketed in the early 1980's the area entered a modern boom period. Successive discoveries of important gold deposits such as the Snip and Eskay Creek mines, both now in production, kept exploration at high levels. This activity peaked in 1990.

After three years of declining exploration, interest in the area was rekindled due to promising exploration and development results reported by Lac Minerals from their intrusive-related gold deposits at Red Mountain, located approximately 16km east of Stewart. In 1994 several juniors mounted programs in the local area surrounding Red Mountain including KRL Resources/Prime Equities, Trev Corp., Oracle Minerals, Camnor/Golden Giant and Aquaterre Mineral Development.

The Lucky Jim claims form part of a group of former Crown-granted mineral claims of which the Mountain Boy is the most famous. The Mountain Boy and adjoining claims were first explored in 1902. This early work led to the discovery of the High Grade and Mann veins and between 1929 and 1938 sixty tons of hand-picked ore from the property was shipped and returned an average grade of 546.8 opt silver with copper and lead credits. Although there are only a few references regarding work performed on the Lucky Jim claims proper, Matthews (1942) cites sampling results from a mineralized vein on the Lucky Jim 3, one of five showings on the property.

During the 1980's, Pride Resources carried out additional prospecting, geological mapping, underground rehabilitation and sampling, and diamond drilling mostly on the key Mountain Boy claims. During this time efforts were also made to reconstruct and extend the road up American Creek valley to the property.

After large portions of the Mountain Boy property were allowed to lapse by Pride Resources, Minvita Enterprises Ltd. acquired the Lucky Jim claims by purchase from the successful bidder at a crown grant auction held in 1990. Subsequently minor prospecting and sampling on the Lucky Jim claims (Wilson, 1991) resulted in the discovery of several occurrences carrying significant base and precious metal values.

D. References

- 1. ALLDRICK, D.J. (1984); Geological Setting of the Precious Metals Deposits in the Stewart Area, Paper 84-1, Geological Fieldwork 1983", B.C.M.E.M.P.R.
- 2. ALLDRICK, D.J. (1985); "Stratigraphy and Petrology of the Stewart Mining Camp (104B/1E)", p. 316, Paper 85-1, Geological Fieldwork 1984, B.C.M.E.M.P.R.
- 3. GREIG, C.J., ET AL (1994); "Geology of the Cambria Icefield: regional setting for Red Mountain gold deposit, northwestern British Columbia", p. 45, Current Research 1994-A, Cordillera and Pacific Margin, Geological Survey of Canada.
- 4. GREIG, C.J. ET AL (1994); "Geology of the Cambria Icefield: Stewart, Bear River and parts of Meziadin Lake and Paw Lake map areas, northwestern British Columbia; Geological Survey of Canada, Open File 2931.
- 5. GROVE, E.W. (1971): Bulletin 58, Geology and Mineral Deposits of the Stewart Area. B.C.M.E.M.P.R.
- 6. GROVE, E.W. (1982): Unuk River, Salmon River, Anyox Map Areas. Ministry of Energy, Mines and Petroleum Resources, B.C.
- 7. GROVE, E.W. (1987): Geology and Mineral Deposits of the Unuk River-Salmon River-Anyox Area, Bulletin 63, BCMEMPR
- 8. GROVE, E.W. (1994): Summary Geological Report and Work Proposal on Teuton Resources Corp. Croesus 3 & 4 Property, Del Norte Creek, B.C. Private Report for Teuton Resources.
- 9. KRUCHKOWSKI, E.R., KONKIN, K. (1994): Fieldnotes and maps regarding work on the Red claims, 1994.
- 10. MATTHEWS, W.H. (1942): B.C. Ministry of Mines Bulletin 10, BCDMPR.
- 11. MCINTYRE, R.F. (1984): Exploration Report 1983 Field Program Mountain Boy Property, Stewart, B.C.; Private report for Pride Resources Ltd.
- 12. PHENDLER, R.W. (1978): Report on the Mountain Boy Silver Property, Skeena M.D., B.C., Private report for Northern Lights Resources Ltd.
- 13. TOUGH, THOMAS R. (1986): Geological Report on the Mountain Boy Property, Skeena Mining Division; Private report for Pride Resources Ltd.

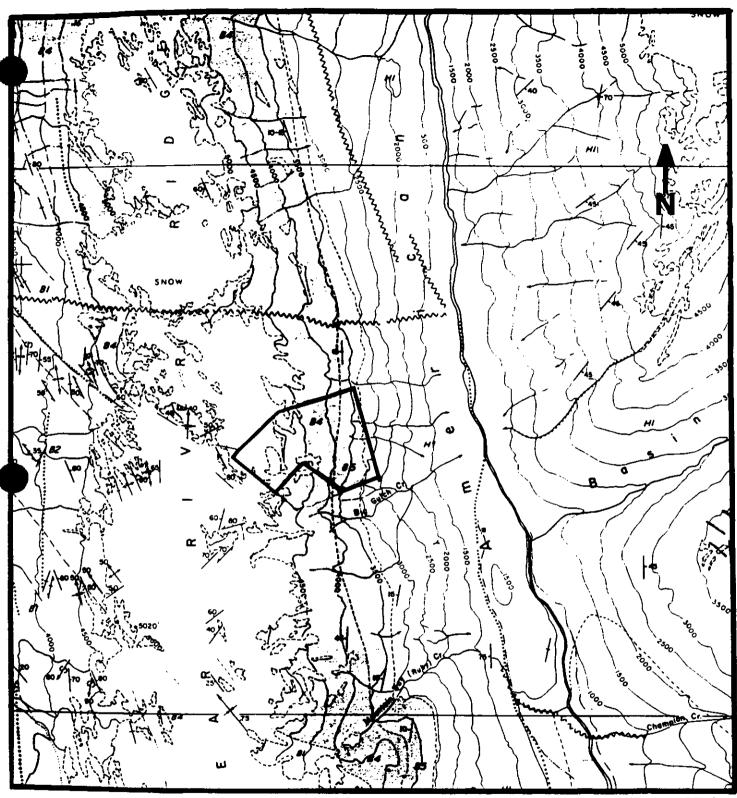
- 14. WILSON, GORDON L. (1991): Geochemical and Prospecting Report on the Lucky Jim Claims, on file with BCMEMPR.
- 15. WOJDAK, PAUL (1995): Northwestern District Mineral Exploration Review 1994, Information Circular 1995-6, Ministry of Energy, Mines and Petroleum Resources, Mineral Resources Division.

E. Summary of Work Done.

The 1994 work on the Lucky Jim claims was part of a larger program covering several Stewart area properties spanning the period from July 13 to Oct. 11. The field crew consisted of Ed Kruchkowski, senior geologist, Ken Konkin, geologist, and A. Walus, geologist. All have spent many seasons exploring the Stewart area.

The crew was shuttled in and out of the property by helicopter on a single day trip late in the field season (Oct. 2, 1994). Wet, cold, blustery weather hampered the work effort and made traverses along the steep slopes especially difficult. One crew member was almost injured by falling rock.

Altogether 19 reconnaissance geochemical rock samples were taken during the program. Rock samples were analyzed for gold content at the Eco-Tech Laboratory facility in Stewart, B.C.; ICP analyses were carried out at the parent facility in Kamloops.


2. TECHNICAL DATA AND INTERPRETATION

A. Regional Geology

The property lies in the Stewart area east of the Coast Crystalline Complex and within the western onlap boundary of the Bowser Basin. Rocks exposed in the area belong to the Mesozoic Hazelton Group and have been folded on regional NW-SE axes, cut by faults and selective tectonism, locally hydrothermalized and intruded by plugs of both Cenozoic and Mesozoic age.

Locally, within the Hazelton Group, Lower Jurassic volcanic and sedimentary rocks of the Unuk River Formation are unconformably overlain by the Middle Jurassic marine and non-marine volcanics and sediments of the Betty Creek Formation, the volcano-sedimentary Upper Jurassic Salmon River Formation, and the post-accretion fine clastic basinal Nass Formation.

Intrusives in the region are dominated by the granodiorite of the Coast Plutonic Complex (to the west). Some of the smaller intrusive plugs in the study area range from quartz monzonite to granite and are likely related outlier processes associated with the Coast Plutonic Complex.

[after Grove 1970]

TEUTON RESOURCES (OFERATOR) Lucky Jim Property Fig 3: Regional Geology

1 mile 1.62 km NTS 104 A/4W

SEDIMENTARY AND VOLCANIC ROCKS

CENOZOIC		PLEISTOCENE AND RECENT Unconsolidated deposits, River flood plain, estuarine deposits; river channel and stream -cut terraces; alluvial fans, deltas and beaches; aulwash, glacial lake
ວັ ເ		sediments MIDDLE TO UPPER JURASSIC
1		Bowser assemblage
		Siltstones, greywacke, argillite, minor chert pebble conglomerate, minor limestone {including equivalent phyllites}
		Lithic wacke, feldspathic wacke, siltstone, pebble conglomerate (including equivalent phyllites)
ļ	لينعا	Rhydite, Rhydite breccia
្ន		Green, red, and buff volcanic sandstone, conglamerate, minor breccia
ME SOZOIC		Red and black volcanic sandstones, conglomerates minor breccia
ξS		Red, green, and black volcanic breccia (with purple phases)
ž		LOWER TO MIDDLE JURASSIC
		Hazelton assemblage
	<u></u>	Red and green volcanic conglomerates and sondstanes, crystal and lithic tuffs
	HZ	Green massive volconic conglomerates, sondstones, minor breccia with minor intercolated silistones
	<u></u>	Red and purple massive volcanic conglamerate, breccia, and sandstone with minor intercalated situationes
,	Ma	Green volcanic breccia, with sondstane and conglomerate
		ITONIC ROCKS
	Cool	t Crystalline Bett TERTIARY
		Bitter Creek quartz monzonite, granodiarite
ž	200	Glacier Creek augite diorite (and equivalent)
ž-		Summit Lake diorite
LE NUZUIL		Boundary granodiorite
-		Hyder guartz monzanite (and equivalent)
ຼ	-	MIDDLE JURASSIC?
ME syZUL	[teg]	Texas Creek granodiarite (and equivalent)
ME 5	└╶╥─	Hornblende is the predominant mafic mineral
-		Biotile is the predominant matic mineral
	(A.A., 5)	Inclusions of country rocks
	<u> </u>	Metasomalic hornblende
	po	Porphyry phase
	MET	AMORPHIC ROCKS
		JURASSIC-CRETACEOUS ?
		Hozeflon equivalents
	MI	Green calaciasites, mylanites, schists
	MZ	Black (bl), purple (pu), red (r), and greenign), mylanile (predominant colour)
	M3	Buff and green schists (including phytlanite)

ALTERATION

P Pyritization

- Scheifseation
 - Feldspathization

h Metosomatic hornblende prominent

DYKE ROCKS

TERTIARY Hornblende

ĸ

Hornblende diarite, quartz diarite (tamprophyre everywhere) Diarite, harnblende diarite(mainly Bear Pass area) Quartz monzonite, granodiarite and quartz diarite commonly parphyritic(bet) of dykes){mainly Partland Canat dyke swarm)

📕 Granodiarite porphyry (in Premier area)(includes Premier dyke swarm)

More than 600 mineral deposits, at least 70 of which have shown some production, have been discovered within the boundaries of this region. Famous historical producers include the Premier, Granduc and Anyox mines. At the present time both the Snip and Eskay Creek mines are successfully in production, the latter one of Canada's richest precious metal discoveries ever. As well, modest production of gold ores is continuing at the Premier and proximate SB mine. Several advanced gold prospects, such as in the Sulphurets area and at Red Mountain, are considered likely future producers.

Regional geology is shown in Fig. 3 after Grove (1970).

B. Property Geology

The Lucky Jim claims are underlain by Lower Jurassic volcanic rocks trending in an east-west direction. The northern part of the claims appear to encompass the contact of thinly bedded tuffs of the Mount Dilworth Formation to the south overlying marcon volcanics of the Betty Creek Formation to the north. The tuffs consist of light grey rhyolitic ash beds with individual beds from 1-4 centimetres. They appear to occupy a synclinal feature, giving the impression of a thick sequence. The Betty Creek Formation consists of mostly carbonate rich green and marcon coloured breccia with minor crystal and lithic tuffs.

Numerous mineralized quartz-carbonate zones were noted on the Lucky Jim claims between elevations ranging from 1470 down to 1000m ASL. Large mineralized zones are reported in previous reports from lower elevations. Based on outcrop exposures and float samples, at least four separate zones are present above the 1000m level. Mineralization as observed consists of massive galena, sphalerite, pyrite and locally minor chalcopyrite occurring as streaks, pods and lenses in Abundant bladed barite crystals are quartz-carbonate veins. present within the brecciated zones. These veins are within brecciated red and maroon volcanics and may be up to 2m wide. The veins tend to pinch and swell greatly over short distances and show individual continuity along strike. lack of However, a mineralization shows great continuity along the controlling The largest zone observed consisted of several structures. parallel veins approximately 20m apart, along a strike length of roughly 100m. Sulfides can form from 3 to 15% of the veins. All the zones strike approximately 320 degrees comparable to the main mineralized trend in the Stewart area.

C. Geochemistry -- Rock Samples

a. Introduction

Reconnaissance rock geochemical samples were taken from accessible

zones of interest on the Lucky Jim claims. Sample locations are shown in relation to claim lines on Fig. 4 prepared at a scale of 1:10000. An inset map gives details of an area of higher sampling density.

Altogether 19 rock samples were taken: 3 chip, 3 grab and 13 float. Locations for the KK samples were fixed in the field using The ERK and AW samples were located by a portable GPS unit. reference to a base map prepared from a topographic map and were tied in, where possible, to GPS-located sample sites.

Treatment of Data Ъ.

Geochemical reconnaissance sampling results are presented in this report on Fig. 4 at a scale of 1:10000. The Geochemical Sample Data table reports gold values in ppb and silver values in ppm (opt in boldface, where applicable); arsenic, copper, lead and zinc values are in ppm (% in boldface, where applicable).

As in other small-scale surveys, a statistical treatment according to standard methods was not deemed practical. In lieu of such the author has simply chosen anomalous levels by treatment, reference to several rock geochemical programs conducted over other properties in the Stewart region over the past ten years. On this basis, anomalous levels are indicated below:

<u>Element</u>	Anomalous Above*
Gold	100 ppb
Silver	3.6 ppm
Arsenic	120 ppm
Copper	200 ppm
Lead	160 ppm
Zinc	320 ppm

 Anomalous ranges will vary greatly according to rock type. For this reason, defining anomalous levels for any particular property based on regional averages is somewhat arbitrary.

Sample Descriptions с.

[NOTE: For reference, element values for Au, Ag, As, Cu, Pb and Zn have been appended below the sample descriptions where any one of the six elements exceeds 2X the anomalous threshold indicated in the previous section (with all of those elements reporting 2X threshold highlighted in bold).]

Intermediate crystal andesitic tuff with KK-946 Chip. 1.0m. moderate sericite alteration along shear zone, 7-10% qtz calcite stringers up to 1cm wide, abundant ghost pyrite,

1-2% f.g. diss leached py; strong lim ox.

Au	-	55 ppb	Ag	-	5.4 ppm
As	-	1315 ppm	Cu	-	73 ppm
₽b	-	536 ppm	Zn	-	285 ppm

- KK-947 Chip, 1.0m. Intensely silicified intrusive/volcanic contact between feldspar porphyry diorite and crystal tuff; intense Fe ox, <1% diss pyrite.</p>
- KK-948 Float, angular football-sized. Silicified andesite tuff with vuggy qtz stringer containing 2-3% diss v.f.g. blebs of galena, <1% py; strong lim ox.</p>

Au	-	40 ppb	Ag	-	6.2 ppm
As	-	20 ppm	Cu		540 ppm
РЬ	-	1.79 %	Zn	-	3247 ppm

KK-949 Float, 0.4m very angular boulder very close to source. Same description as #948 with 2-3% v.f.g to m.g. diss galena, 3% sph, 2-3% diss py.

Au	-	20 ppb	Ag	-	0.8 ppm
As	-	95 ppm	Cu	-	89 ppm
Рb	-	3562 ppm	Zn	-	6077 ppm

KK-950 Chip, 1.3m. Silicified crystal tuff with 10-15% up to 10cm wide vuggy qtz stringers in small 5 by 7m outcrop; 164/56. Zone disappears in boulder field.

Au	-	20 ppb	Ag	-	2.2 ppm
As	-	30 ppm	Cu	-	315 ppm
Pb	-	6152 ppm	2 n	-	4926 ppm

- KK-951 Float, fist-sized angular. Sericite schist with 7-10% vuggy qtz veinlets 2-3mm wide; 1-2% f.g. diss py; strong Fe ox; <1% mariposite.</p>
- KK-952 Float, 0.3m angular boulder. Fe carb qtz vein plus barite, 7-10% diss f.g. galena, 2-3% diss sph, 2-3% f.g py; mod lim ox; 7-10% 1-3mm barren qtz veinlets.

Au	-	30	ppb	λg	-	9.8	ppz
As	-	5	ppm	Cu	-	212	ppm
РЪ	-	0.86	8	Zn	-	4.10	8

AW-280 Float. Strongly hematitic qtz vein with 15% hematite, <1% cpy and trace malachite.

Au	-	30	ppb	Ъg	-	14.2	ppz
As	-	<5	ppm	Cu	-	6615	ppm
Pb	-	1564	ppm	2 n	-	1699	ppm

7

ERK-935	Grab. From 1m wide zone of brecciated red and purple
	volcanics with lenses of qtz carrying massive galena,
	sphalerite; strike 142/45; qtz stringers from 0.2 to 0.3m
	wide.

Au	-	0.033	opt			19.8	
As	-	125	ppm	Cu	-	783	ppm
Pb	-	8.25	*	Zn	-	11.96	*

ERK-936 Float, massive boulder. Vuggy qtz with massive galena, sphalerite and pyrite and abundant bladed barite crystals.

Au	-	415	ppb	Ag	-	21.0	ppm
As	-	350	ppm	Cu	-	182	ppm
Рb	-	3.36	*	Zn	-	1.05	*

ERK-937 Grab. From 0.15m wide qtz carbonate along brecciated zone; sparse gal, sph, cpy, py and malachite stain.

Au	-	0.045	opt	Ag	-	12.6	ppm
As	-	45	ppm	Cu	-	851	ppm
Рb	-	1.11	*	Zn	-	6.42	*

ERK-938 Float. White felsic volcanic with qtz stockwork, coarse blebs of gal, about 1%.

Au	-	30	ppb	Ag	-	2.4	ppm
As	-	25	ppm	Cu	-	167	ppm
РЪ		4356	ppm	Zn	-	2413	ppm

ERK-939 Float, 0.15m. Qtz carbonate with about 3% gal and sph and also some barite.

Au	-	20	ppb	Ag	-	16.4	ppm
As	-	35	ppm	Cu	-	169	ppm
Pb	-	1.19	*	Zn	-	6.91	*

d. Discussion

Gold and silver values ranging to 0.045 opt and 3.55 opt, respectively, were obtained from various samples of quartz-sulfide or quartz-carbonate-sulfide vein mineralization taken during the reconnaissance program. Precious metal values were accompanied by highly anomalous lead and zinc values ranging to 8.25% and 33.02%, respectively. Copper, and to a lesser extent, arsenic values were also elevated in many of the samples.

Unfortunately, extremely inclement weather prevented a more thorough investigation of the property.

D. Field Procedure and Laboratory Technique

Rock samples were taken in the field with a prospector's pick and collected in a standard plastic sample bag. Grab samples were taken to ascertain character of mineralization at any specific locality. These samples consisted generally of three to ten representative pieces with total sample weight ranging between 0.5 to 2.0 kg. Chip samples were taken across the strike of mineralized structures and generally weighed about 1.0 to 2.0 kg. Interval samples from chip lines were carefully taken to ensure a balanced weighting of sub-samples along the interval length.

All rock samples were analyzed at the Eco-Tech facilities in Stewart and Kamloops, B.C. Rock samples were first crushed to minus 10 mesh using jaw and cone crushers. Then 250 grams of the minus 10 mesh material was pulverized to minus 140 mesh using a ring pulverizer. For the gold analysis a 10.0 gram portion of the minus 140 mesh material was used. After concentrating the gold through standard fire assay methods, the resulting bead was then dissolved in aqua regia for 2 hrs at 95 deg. C. The resulting solution was then analyzed by atomic absorption. The analytical results were then compared to prepared standards for the determination of the absolute amounts. For the determination of the remaining trace and major elements Inductively Coupled Argon Plasma (ICP) was used. In this procedure a 1.00 gram portion of the minus 140 mesh material is digested with aqua regia for 2 hours at 95 deg. C and made up to a volume of 20 mls prior to the actual analysis in the plasma. Again the absolute amounts were determined by comparing the analytical results to those of prepared standards.

E. Conclusions

The 1994 reconnaissance rock sampling program over the Lucky Jim claims indicated four separate zones of quartz-carbonate-sulfide mineralization exist above the 1000m level. Mineralization in the veins consists of massive galena, sphalerite, pyrite and locally minor chalcopyrite occurring as streaks, pods and lenses; total sulfide content typically varies from roughly 3 to 15%. The veins are hosted within maroon volcanics and may be up to 2m wide. Although the veins tend to pinch and swell greatly over short distances and show a lack of individual continuity along strike, mineralization shows good continuity along the controlling structures.

Further work is recommended to ascertain extent and grade of mineralization along strike. The property should be mapped and all zones of interest trenched and sampled. Ropes may be required in the steeper sections. Positive results from such work could lead to a recommendation for an expanded program.

Respectfully submitted, marce D. Cremonese, P.Eng. June 19, 1995

9

APPENDIX I - WORK COST STATEMENT

Field PersonnelPeriod July 13 to Oct. 10, 1994: E. R. Kruchkowski, Geologist	
	\$ 300
K. Konkin, Geologist	4 300
1 day @ \$294/day	294
A. Walus, Geologist	
0.2 day @ \$200/day	40
Helicopter VIH	
Crew drop-offs/pick-ups: Oct. 2, 1994	
1 hr. & \$723/hr.	723
Shared project costs (prorated at 1.30**)	
Logistics/supervision/bad weather standby in Stewart	
1.30% of \$16,117)	210
Mob/demob crew (home base to Stewart, return) 1.30% of \$10,459)	135
Food/accommodation	135
1.30% of \$9,138)	119
Local transportation/expediting/radios	
1.30% of \$6,493	84
Field supplies/misc.	
1.30% of \$4,266	55
Workman's compensation	
1.30% of \$3,592)	47
Assay costsEco-Tech Labs	
Au geochem + 30 elem. ICP + rock sample prep	
19 @ \$19.5275/sample	371
Au assay: 2 @ \$9.63/sample Ag assay: 3 @ \$4.28	19
Pb/Zn assay: 19 @ \$6.955	13 132
r5/211 assay. 17 e 30.333	132
Report Costs	
Report and map preparation, compilation and research	
D. Cremonese, P.Eng., 1.5 days @ \$375/day	563
Draughting RPM Computer	120
Copies, report, jackets, maps, etc.	35
TOTAL	\$ 3,260
Amount Claimed Per Statement of Exploration #3066669:	\$3,080**
* Based on ratio of field man-days to total project field	man-dave

* sased on ratio of field man-days to total project field man-days **Please adjust PAC account accordingly.

APPENDIX II - CERTIFICATE

- I, Dino M. Cremonese, do hereby certify that:
- 1. I am a mineral property consultant with an office at Suite 509-675 W. Hastings, Vancouver, B.C.
- 2. I am a graduate of the University of British Columbia (B.A.Sc. in metallurgical engineering, 1972, and L.L.B., 1979).
- 3. I am a Professional Engineer registered with the Association of Professional Engineers of the Province of British Columbia as a resident member, #13876.
- 4. I have practised my profession since 1979.
- 5. This report is based upon work carried out on the Lucky Jim claims, Skeena Mining Division from July to October of 1994. Reference to field notes and maps made by geologists E. Kruchkowski, K. Konkin and A. Walus is acknowledged. I have full confidence in the abilities of all samplers used in the 1994 geochemical program and am satisfied that all samples were taken properly and with care.
- 6. I am a principal of Minvita Enterprises Ltd., owner of the Lucky Jim claims: this report was prepared solely for satisfying assessment work requirements in accordance with government regulations.

Dated at Vancouver, B.C. this 19th day of June, 1995.

D Land

D. Cremonese, P.Eng.

APPENDIX III

ASSAY CERTIFICATES

GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

November 4, 1994

10041 E: Trans Canada Hwy., R.R. 42, Kamloops, B.C. V2C 2J3 Phone (604) 573 5700 Fax (604) 573 4557

CERTIFICATE OF ASSAY ETS3127

TEUTON RES. CORPORATION 509-675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Attention: Dino Cremonese:

211 ROCK samples received October 4, 1994 Sample run date: October 20, 1994 Samples submitted by: Ken Konkin Client Project Number: OEX

	1	· · · · · · · · · · · · · · · · · · ·		Au	Au	Ag	Ag	As	Cu	Pb	Zn		
	#.		VY	(g/t)	(oz/t)	(g/t)	(oz/t)	%	%	%	<u>%</u>		
		KK94892		10.05	0.293	43.2	1.26	3.26			5.50		
	8	KK94899				62.6	1.83		1.50				1.
	2	KK94933				<u>67,3</u>	<u> </u>		-2				
	7	KK94948	•							1.79		1	ľ
	1	KK94952								0.86	4.10	Lucky	J/
	3 .:-	KK94954		2.14	0.062								
6	6	KK94957		8.20	0.239	238.0	6.88			5.59	11.43	· · ·	
6	7	KK94958		10.85	0.316	129.6	3.78	1.04		2.70	10.65		
6	8	KK94959		9.15	0.267	92.5	2.70			1.75	9.32		. • *
6	9	KK94960		1.02	0.030		•						· · .
7	0	KK94961				49.1	1.43	1.17		1.73	4.42		4- 1 ×
7	3	ERK94885		11.50	0.335	63.4	1.85	2.59		1.65			:
7.	7	ERK94889		7.20	0.210	3110.2	90.70			3.36			
7	8	ERK94890				119.7	3.49			1. 			<u>.</u>
· 7	9	ERK94891				48.6	1.42						
8	0	ERK94892		2.09	0.061	830.6	24.22			5.47			
8	1	ERK94893		5.05	0.147	2740.5	79.92			8.75	0.94		
8	2	ERK94894		16.83	0.491	4280.3	124.83		- + 1 2 1 - 1 4 4 - 1	3.45	4.08		
8	3	ERK94895		1		115.5	3.37			0.83,	مرجع بالمجمع		
8	4	ERK94896		6.65	0.194	280.1	8.17	2.57					i . Ngri
9	5	ERK94907		2.10	0.061							رمان با المحمد المارين. المراجع المحمد المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع	
9	7	ERK94909	l The State	1.80	0.052				1.93	6. 6		ي منه برم مرم. م	
11	0	ERK94922				43.5	1.27	Ŧ					
11	2	ERK94924		10.75	0.314	166.7	4.86					ens en sel. Frans e s	
- 11	13	ERK94925		13.90	0.405						4 M 3 M		1977
	1012			٠ <i>٤</i>	· · · · · ·		1977 - 1987 F.	11 11		a- 14 - 2	- 7.3 (C 5		1.4

Frank J.Pezzokt, A.Sc.T. B.C.Certified Assayer

TEUTON RES. CORPORATION ETS 3127

10

November 4, 1994

		Tag #		Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)	As %	Bi %	Cđ %	Cu %	Pb %	Źn %
	118	ERK94930			·	105.4	3.07			<u> </u>	0.90	0,89	
	123	ERK94935		1.14	0.033					0.15		8.25	11.96
;	124	ERK94936			-		` , <u>.</u> ·					3.36	1.05 L
	125	ERK94937		1.56	0.045							1.11	6.42
	127	ERK94939		•			•					1.19	6.91
	129	ERK94941	· · ·		••							0.83	3.43 ¥
	130	ERK94942	•	÷.,		121.6	3.55					0.00	3.13
	131	ERK94943			20	105.0	3.06				-		5.44
	132	ERK94944		•						0.12		3.49	1.53 1
<u>.</u>	133	ERK94945		· · · ·		92.1	2.69	· · ·		0.21		2.83	33.02 1
	134	ERK94946	· · ·							0.21		2.03	2.90
	136	ERK94949					÷	- <u>`</u> _` -	1.1.1		1.50		2.80
	138	ERK94951		1.83	0.053		• •	•	· ·		0.92		•
	139	ERK94952					•••	1.58	. :	1 1.4	0.02	•	
	140	ERK94953		8.35	0.244			9.95					
	141	ERK94954		1.78	0.052			0.00	•				
	167	AW250		:	· · ·	59.3	1.73		<.01	• • •	10.21		4 70
	168	AW251				58.0	1.69		S.01				1.70
							1.08				6.05	•	
C	AC/DA	TA		en graat in		م ان ان مربع می از الم ان مربع می ا		-1		•	•		
	Resplit												
								÷ .					

RS/63 KK94954	1.95	0.057
RS/125 ERK94937	 	0.051

NOTE: Average values are reported where repeat assays are performed. Screened "Metallic Assays" are performed on sample resplits screened to -140 mesh.

ECO-TECH / BORATO Frank J. Pezzotti, A.So.T RIES LTD.

Frank J. Pezzotti, A.So.T. B.C. Certified Assayer

XLS/Teuton3

EIRI - ERIN LABORATORIES LTD

. • .. :

٠

: . i

TEUTON RESOURCES CORPORATION ETS-3127

.

.

.....

ECO-TECH LABORATORIES LTD.

Et ø.	. Tag #	Au (ppb)	Ag	AI %	As	Ba	Bi	C# %	Cd	Co	Çr	Cu	Fe %	<u>ما</u>	Mg %	Mn	Mo	Na X	Ni	P	Pb	Sb	Sn	Sı	Tis	<u> </u>	v	w	۲	Zn	
31	KK94922	35	14	0.84	75	10	15	0.23	<1	23	103	17	7,74	<10	0 60	161	17	< 01	43	900	110	4	<20	<1	< 01	<10	12	<10	<1	60	
32	KK94923	45	1.0	0 38	40	5	5	0.03	2	15	106	35	7,20	<10	0 04	27	3	< 01	38	<10	46	<5	<20	<1	<.01	<10	7	<10	<1	32	
33	KK94924	15	0.8	0.51	- 45	15	<5	0.09	1	9	131	21	2 50	<10	013	142	8	< 01	21	110	46	<5	<20	<1	< 01	<10	9	<10	<1	106	
34	KK94925	15	0.6	0,98	25	10	10	0.23	<1	12	76	12	4,97	<10	0.71	212	<1	0.01	9	960	30	<5	<20	<1	< 01	<10	17	<10	<1	121	
35	KK94926	15	0.6	0,95	25	10	<5	D.16	<1	8	128	29	3.86	<10	0.53	162	5	0 02	8	680	62	10	<20	<1	<.01	<10	17	<10	<1	69	
	WHEN 4000	510	29.4	0.23	480	20	<5	0.12	<1	5	158	50	2.90	<10	0.09	43	<1	<.01	5	470	24	7 6	- 20		- 01	-10	2	~10			
36	KK94927	825	158	0.39	2035	25		0.12	<1	7	1.00						5	-	5 5	470 330	24	35 30	<20	<1	< 01	<10	-	<10	<1	51	
37	KK94928			0.35	715	15	-		<1	6			2.62	<10	0.21	64		< 01	-		20		<20	<1	<.01	<10	4	<10	<1	37	
36	KK94929	415 20	<2	0.92	45	45		0.25 9.87	<1	-	164		5.16	<10	0.13 0.99	84		< 01	5 51	300	14	<5	<20	<1	<.01	<10	3	<10	<1	20	
39	KK94930	120		0,92	3325	15	-	0.51		14 21	69		4.17	<10		1174	<1	0.02		1040	18	15	<20	169	0 03	<10	26	<10	11	73 38	
40	KK94931	120	⊐.∡ -	0.13	3325	13	10	0.91	<1	21	81	20	13,60	<10	<.01	104	1	<.01	4	<10	88	160	<20	17	<.01	10	<1	<10	<1	30	
41	KK94932	30		0,15	80	15	-	0.04	<1	1	136		2,34	<10	<.01	25	4	< 01	4	<10	8	<5	<20	<1	<.01	<10	<1	×10	<1	106	
42	KK94933	10	>30	0.07	185	15	20	0.01	<1	28	112	23	14.60	<10	<.01	12	<1	< 01	7	<10	104	5	<20	<1	<.01	20	4	<10	<1	32	
43	KK94934	10	<2	2.47	<5	40	5	6.00	<1	39	167	79	8.76	<10	1.99	1992	<1	0.02	76	660	12	10	<20	27	0.18	<10	179	<10	8	101	
44	KIG4935	10	6.0	1.63	- 5	35		2.06	1	22	120	79 '	8.59	<10	0.76	935	<1	0 02	7	2020	8	<5	<20	93	0.03	<10	45	<10	<1	133	
45	KK94936	10	0.4	0,39	45	25	4	1.30	2	11	124	73	4.17	<10	0.44	422	5	0.05	6	390	4	5	<20	35	<.01	<10	11	<10	<1	171	
46	KK94937	390	1.4	1.73	490	20	10	0.26	<1	6	46	17	7.01	<10	0.97	276	1	0.01		390	18	10	<20	<1	<.01	<10		<10	<1	146	
	KK94936	. 395	1	0.09	545	30		5.28	<1	21	149		9.09		1.47	2097	<1	<.01	66	200	72	40	<20	293	<.01	20	11	<10	<1	62	
47 48	KK94839	200		0.40	360	20	-	0.58	<1	5	94	12		• -	0.10	605	<1	0.01	3	270	18	 ⊲	<20	11	<.01	<10		<10	<1	36	
	KK94940	175		0.22	270	25	-	0.05	<1	3	165		2.00	<10	<.01	60	6	<.01	3	120	6	4	<20	<1	<.01	<10		<10	<1	19	
49 50	10(94941	590		0.24	570	15	-	0.03	<1	3	170	_	3.11		<.01	36	<1	0.01	3	100	8	3	<20	<1	<.01	<10	2	<10	<1	27	
50	10034341		•	0.24	010			0.00				• :	¥.11	~10				0.01	2	100	U	~	~20	~1	01	~10	4	-10	~1	11	
51	KK94942	505	4.2	0.19	450	30	<5	0.01	<1	2	164	13	1.66	<10	<.01	21	4	0.01	3	40	156	<5	<20	<1	<.01	<10	<1	<10	<1	29	
52	KK94943	20	0.4	0.27	50	15	4	0.14	<1	4	210		3.50	<10	0 02	196	2	0.01	8	110	32	<5	<20	<1	<.01	<10	<1	<10	<1	91	
53	KK94044	10	0.4	0.29	25	100	-5	0.04	<1	1	150	5	1.68	10	0 01	39	7	<.01	3	30	10	<5	<20	<1	<.01	<10	<1	<10	<1	60	
	<u>KK94945</u>	15		0.22	100	<u> </u>		0.13	<1	3	145	5	4.79	<10	<.01	54	23	0.02	3	<10	18		<20	<1	<u><.01</u>	<10	<1	<10	<1	72	
55	KK94946	55	5.4	0,17	1315	90	4	<.01	<1	3	145	73	4.94	<10	<.01	21	11	<.01	3	70	536	25	<20	50	0.01	<10	6	<10	<1	265	1
56	KK94947	20	3.2	1.44	55	540	Ś	0.06	<1	9	91	33	5.29	<10	0.66	3521	<1	< 01	8	320	286	5	<20	<1	<.01	20	30	<10	<1	547	
57	KK94948	40	6.2	0.52	20	55	<5	<.01	17	2	177	540	2.60	<10	0.13	679	4	< 01	3		10000	<5	<20	<1	<.01	<10	11	<10	<1	3247	LUCKY
58	KK94949	20	8.0	0.97	95	65	-	<.01	33	3	106		4.25		0.33	1651	<1	< 01	ž	20	3562	ŝ	<20	ব	<.01	<10	23	<10	<1	6077	1
59	KK94950	20	2.2	0.63	30	75	<6	0 02	27	2	148		2.71		0.22	1094	1	<.01	3	60	6152	<5	<20	<1	<.01	<10	13	<10	<1	4926	ML I
60	KK94951	10	- 2	0.47	10	15	<5	0.39	1	9	68		3.63	<10	<.01	54	10	<.01	7	970	262	<5	<20	<1	0.16	<10	19	<10	- i -	223	1 3.
			·	0.00	,			~ ~				-	6 74			470			~	~~~		-					-		_		+
61	KK94962	30	9.6	0.26	<u>5</u> 35	10	<u>ক</u>	0.21	248	- <u>5</u> 16	83 78	212	0.70	<10	0.02	173	43	<.01	2		•10000	<u><5</u>	<20		<.01	<10		<10		10000 763	-L-
62	KK94953		5.6		35 870	20		1.76	<1	41	101						14	<.01		1210	200	<5	<20	1	<.01	<10	12	<10	2		
63	KK94954	+1000	82		445	15	-	1.79	<1				8.63		0.18	567	-	0 01	12	1160	154	20	<20	27	<.01	<10	22	<10	-1	167	
64	KK94955	460	1.8		-++⊂ 95 ∶	20	-	0.96	<1	39 48	125		7.28		0.13	551	<1	<.01	60	760	82	5	<20	3	<.01	<10	6	<10	-1	116	
65	KK94956	440	; 1.0 	0.32	1	20	15 (0.10	••	40	118	. 63	> 15	<10	<.01	41	<1	<.01	11	360	66	4	<20	<1	<.01	20	6	<10	<1	38	
		1																												•	

1.12

.

---- FR494947 MISSING •

Page 4

.

Et #.	Tag #	Au (ppb)		<u>AI %</u>	As	Ba		Ca %	Çđ	Co	Cr		Fe %			Ma		Na %	Ni	P	Pb	Sb	Sn		Ti %	U	V	W	<u> </u>	Zn	
01	ERK94913	30	<.2		<5	20	-	1.09	<1	27	70	386	8 95	<10	1 72	515	<1	0.04	42	950	66	10	<20	20	025	< 10	102	<10	<1	66	
02	ERK94914	65	2.2	0 37	25	60	<5	6.00	2	169	35	3619	> 15	< 10	< 01	2439	<1	< 01	13	310	4	<5	<20	<1	0 02	40	11	<10	< 3	40	
03	ERK94915	20	< 2	3.68	<5	- 45	<5	0.66	<1	64	117	380	> 15	<10	279	1365	<1	< 01	7	1540	36	<5	<20	<1	0.04	20	175	< 10	<1	67	
04	ERK94916	35	1.2	0 52	60	20	<5	1.69	32	127	27	60	13.10	<10	0 21	618	8	0.02	23	1730	22	10	<20	27	< 01	20	29	<10	<1	129	
05	ERK94917	70	04	0.24	240	<5	5	0.33	<1	36	50	19	4.99	<10	< 01	119	67	0 02	50	1530	96	25	<20	<1	< 01	<10	6	<10	<1	50	
06	ERK94918	10	0.2	0.47	195	10	15	0.36	3	79	47	14	8.50	<10	0 10	241	40	0 02	39	610	56	15	<20	4	< 01	<10	18	<10	<1	116	
07	ERK94919	105	<.2	0.63	20	25	<5	3 55	2	27	27	26	8 96	<10	045	1524	2	0.02	12	2200	20	20	<20	56	< 01	10	11	<10	<1	85	
08	ERK94920	10	<.2	1.16	.<5	25	15	1.58	<1	19	32	25	9.98	<10	0.56	518	<1	0.02	10	2400	20	10	- 20	29	< 01	10	17	<10	<1	79	
09	ERK94921	10	<.2	0.97	10	30	<5	6.72	<1	18	24	19	6.93	<10	0.65	1875	<1	0.01	8	1920	18	<5	• 20	93	< 01	<10	14	<10	<1	94	
10	ERK94922	80	>30	0.19	70	55	<5	1.88	7	7	177	359	2.41	<10	0 32	469	6	<.01	8	580	3874	190	<20	182	< 01	<10	5	< 10	1	544	
11	ERK94923	365	2.6	0.36	545	20	<5	017	<1	6	173	23	2.09	<10	0 17	76	<1	<.01	4	400	168	15	<20	<1	<.01	<10	3	<10	×1	51	
12	ERK94924	>1000	>3 0	1.31	810	15	<5	1.91	. 20	11	116	301	5.20	<10	011	240	<1	<.01	8	1260	8688	105	<20	<1	0 07	<10	60	<10	<1	4766	
13	ERK94925	>1000	18.6	1.02	365	45	<\$	5.15	16	220	32	1454	> 15	<10	0.46	666	<\$	<.01	47	500	422	<5	<20	314	< 01	20	35	<10	<1	1821	
14	ERK94926	370	1.8	1.35	125	30	<5	0.66	13	17	92	151	4.68	<10	0.62	248	9	<.01	13	1300	100	20	<20	21	< 01	<10	35	<10	<1	1842	
15	ERK94927	370	6.6	0.26	1390	10	<5	0.13	5	16	97	27	4.23	<10	<.01	42	1	0.01	5	250	68	30	<20	<1	<.01	<10	2	<10	<1 ⁻	1212	
16	ERK94928	225	26.0	0.12	635	5	15	0.06	8	8	116	17	9.26	<10	<.01	21	7	<.01	5	60	116	210	<20	<1	< .01	10	<1	<10	<1	1241	
17	ERK94929	35	16.2	0.32	350	15	<5	0.98	<1	30	84	30	7.38	<10	0.25	353	<1	<.01	16	150	110	85	<20	113	< 01	<10	4	<10	<1	159	
18	ERK94930	90	>30	0.07	10	30	<5	2.86	130	9	173 :	>10000	2.55	<10	011	230	3	<.01	17	1090	>10000	55	<20	69	< 01	<10	2	<10	<1	8234	
19	ERK94931	50	1.4	0.01	670	<5	<5	0.05	2	6	171	96	6.09	<10	<.01	46	- 4	<.01	7	<10	248	110	<20	<1	< 01	< 10	1	<10	<1	. 286	
20	ERK94932	25	2.8	0.15	2090	25	10	0.66	<1	16	61	46	> 15	<10	< 01	265	<1	< 01	3	140	50	300	< 20	11	< 01	20	14	<10	<1	76	
21	ERK94933	30	1.6	0.09	165	15	<5	0.06	1	2	148		2.05	<10	0 03	\$3	Э	<.01	4	50	202	15	< 20	<1	< 01	<10	4	<10	<1	105	
22	ERK94934	15	_0.4	0.12	70	165	<5	0.02	- 1	1	239	15	076	<10_	<.01	72	8	<.01	4	<10	48	<5	<20	<1	<.01	<10	3	<10	<1	31_	
23	ERK94935	>1000	19.8	0.27	125	<5	<5	0.02	> 1000	10	127	783	1.63	<10	011	468	<1	<.01	2	80	>10000	<5	<20	<1	< 01	<10	11	<10	<1	>10000	
24	ERK94936	415	21.0	0.10	360	20	<\$	0.02	75	5	175	182	8.46	<10	< 01	ស	<1	<.01	3	90 :	>10000	5	<20	2	< 01	<10	31	<10	<1	9006	
25	ERK94937	>1000	12.6	0.14	45	35	<5	1.61	435	5	133	851	3.05	<10	0 01	1564	<1	<.01	2	110 :	>10000	<5	<20	25	< 01	<10	14	<10	<1	>10000	1
26	ERK94938	30	2.4	0 25	25	180	<5	0 03	13	2	129	167	1.90	<10	<.01	155	4	<.01	2	50	4355	<5	<20	<1	< 01	<10	5	<10	<1	2413	4
27	ERK94939	20	16.4	0.13	35	45	-5	> 15	651	12	55		1.39	40	< 01	6199	33	< 01	15		>10000	5	<20	265	0.01	<10	4	<10	•	>10000	
27 28	ERK94940	15	54	0 31	- 150	15	10	0.45	19	12	55		674	<10	< 01	727	-	<.01	6	860	976	10	<20	<1	< 01	<10	15	<10	<1	2512	J
	ERK94941	20	4.0	0 26	20	10	ँ	0.50	250	a	105	•	246		0.05	1057	-	<.01	6		>10000	75	<20	<1	< 01	<10		<10	-	>10000	J
29		: 220	>30	0.51	5	20	~~ ~	1.36	199	10	55		1.92		0 19	2424	-	<.01	10	1140	5774	10	-20		< 01		22 21				
30	ERK94942	. 220	-30			20		1.30	199		30			-10	5.5		-		10		5//-	10	-20	14	101	<10	21	< 10	2	>10000	
31	ERK94943	640	>30	0 39	60	5	<5	4.41	355	13	80	732	1.63	<10	016	2547	2	<.01	6	720	5916	<5	<20	76	<.01	<10	12	<10	4	>10000	
32	ERK94944	95	9.0	0 23	30	<5		0.13		10	82	717	0.86	<10	0 03	189	<1	<.01	4	* 640 -	>10000	80	<20	<1	< 01	<10	8	<10	<1	>10000	
33	ERK94945	260	>30	0.32	10	<5	<5	2.03 >	1000	32	31	1069	1.48	<10	018	2423	<1	< 01	4	240 -	>10000	<5	<20	_ 6	< 01	<10	9	<10	2	>10000	
34 35	ERK94946	170	17.6	0.37	385	25	-5	2.78	178	17	92	453	> 15	<10	0.07	1574	<1	<.01	15	150	5366	15	<20	103	< 01	40	5	<10	~1	>10000	
		i 35	32	0.20	20	35	-	13.80	35	4	66	2114			012	1974	<1	<.01		460 :	1014	10	<20			<10				5320 ¹	

TEUTON RESOURCES CORPORATION ETS-3127

.

ECO-TECH LABORATORIES LTD.

ECO-TECH LABORATORIES LTD.

TEUTON RESOURCES CORPORATION ETS-3127

Et#.	Tag #	Au (ppb)	Ag	Ał %.	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Ma	No %	Ni	P	Pb	Sb	Sn	Sr	TI %	U	v	w	Y	Zn	
171	AW254	15	20	0 41	10	105	<5	4 60	1	12	126	296	7.50	<10	0 30	2796	<1	0.01	7	1100	266	<5	<20	49	< 01	20	11	- 10	0	103	
172	AW255	40	2,0	0 10	90	20	<5	0 16	<1	12	226	120	1.38	<10	0.03	336	6	≤.01	6	90	124	<5	<20	<1	< 01	= 10	1	- 10	• 1	74	
173	AW256	55	22	014	60	40	<5	0.72	<1	21	173	68	5 54	<10	0 26	4234	<1	< 01	8	70	54	<5	<20	5	< 01	30	2	×10	*1	85	
174	AW257	25	04	1.28	15	35	5	6.35	<1	30	44	51	967	<10	073	1465	<1	0.03	10	1060	38	10	<20	50	< 01	<10	32	<10	<1	191	
175	AW258	30	28	0.37	65	25	15	0.35	1	80	32	56	> 15	<10	< 01	201	3	0.02	12	550	134	<5	<20	<1	< 01	30	8	<10	- 1	235	
									:					_														_		_	
176	AW259	55	2,8	0.77	585	10		0.18	<1	16	82		5 53		0 41	211	-	0.01	40	560	66	55	<20	<1	< 01	<10	11	<10	<1	97	
177	AW260	50	2.0		370	15		0 55	5	22	86		7.13		0 82	476	-	∉.01	60	2390	56	55	<20	<1	< 01	<10	26	<10	<1	481	
178	AW261	25	1,6		40		_	0.11	<1	12	100		3.32		0 18	67	_	< 01	51	550	52	10	<20	<1	< 01	<10	9	<10	~1	45	
179	AW262	35	22		50			1.94	4	18	73		5.25		0.55	709		≮.01	39	1150	162	30	<20	26	< 01	<10	16	<10	<1	213	
180	AW263	30	1.6	0.13	80	200	5	10.10	70	6	142	21	7.64	<10	1 31	3473	2	<.01	9	200	124	15	<20	628	<.01	20	9	<1 0	1	5641	
181	AW264	20	21.0	0.12	140	35	<5	8.40	3	6	129	215	4 49	<10	1.32	1223	<1	< 01	10	410	46	170	<20	625	< 01	< 10	7	<10	5	258	
182	AW265	25	14	0 24	45	55	<5	5 09	6	6	83	67	3.47	<10	0 95	886	1	<.01	10	540	246	40	<20	283	< 01	<10	4	<10	<1	559	
163	AW265	90	4,6	0.36	1610	145	4	9.75	9	6	149	26	6.60	<10	0.26	2948	<1	<.01	7	330	678	15	<20	64	< 01	10	17	<10	6	659	
184	AW267	70	5.4	0.67	1715	50	10	14.50	3	6	131	12	9.05	<10	1.81	5188	1	<.01	5	180	1416	25	<20	1461	<.01	30	24	<10	5	386	
185	AW268	25	₹.2	0.21	: 35	40	-5	0.18	<1	<1	160	8	0.69	<10	0.02	91	<1	<.01	2	<10	26	<5	<20	<1	< 01	<10	<1	<10	7	69	
100	•••••	1		1															-												
186	AW269	25	×.2	0.83	20	45	<5	> 15	2	28	67	50	3.66	<10	0.44	1130	<1	0.02	48	910	32	5	<20	108	0 25	<10	99	<10	7	227	
187	AW270	25	<,2	3.21	. 15	55	20	0 51	<1	19	363	32	8.96	<10	3 94	862	<1	0.02	13	350	44	20	<20	<1	0 31	<10	195	<10	<1	94	
188	AW271	20	*,2	3.30	. 10	45	20	3 33	<1	69	414	32	8 86	<10	3.96	602	<1	0.02	74	450	44	20	×20	6	a 25	<10	123	< tQ	<1	96	
169	AW272	15	<.2	3.85		30	15	1.46	<1	42	406	17	6.82	<10	4.77	826	<1	0 03	33	610	46	15	<20	<1	0 31	<10	213	< 10	5	110	
190	AW273	20	<.2	0.16	5	10	4	0.51	<1	2	276	5	0.76	<10	0 17	265	9	< 01	5	30	8	<5	<20	<1	0 01	<10	6	×10	<1	21	
		50	0.7	0 39	115	255	4	0.67		2	100		• • •	-10	0.22	620				20	-					-10	-			24	
191	AW274		•	0.78	455	235	-	0.03	<1	2	186		1.16		0.37	629	•	<.01	4	20	20	10	<20	<1	< 01	<10	3	<10	<1	34 60	
192	AW275	45			165	220	9		<1	1	84		2.75		045	97	_	<.01	2	30	46	10	<20	<1	< .01	<10	<1	<10	<1	-	
193	AW276	45	-	0.14					<5	3	273		184		0 02	74	<1	< 01	4	<10	22	<5	<20	<1	< 01	<10	<1	<10	<1	36	
194	AW277	20		0.37	80	15	<5 		<1	-	131		2.60	< 10		13	5		3	80	18	<5	<20	<1	< 01	<10	<1	<10	<1	183	
195	AW278	20	0.2	0.30	45	90	<q.< td=""><td>0.01</td><td><1</td><td><1</td><td>96</td><td>3</td><td>1.52</td><td>10</td><td><.01</td><td>14</td><td>3</td><td>∡.01</td><td><1</td><td>20</td><td>20</td><td><5</td><td><20</td><td><1</td><td><.01</td><td><10</td><td><1</td><td><10</td><td>*1</td><td>43</td><td></td></q.<>	0.01	<1	<1	96	3	1.52	10	<.01	14	3	∡.01	<1	20	20	<5	<20	<1	<.01	<10	<1	<10	*1	43	
196	AW279			0 34		145		0.08	<1	1	97		2.54		<.01	_61		<.01	2	10				<1	<.01	- 10	<1	<10	<u>*1</u>	30	
> 197	AW260		14.2		-	95		0.12	4	21	164	6615		<10		1687		<.01	6		1564		<20	<1	0.05	20	146	<10	<1		NC44 TIM
198	AW281			0.83	150			10 00		-44	67	299		<10		2328	-	0.01	114	2190	100	5	<20	346	<.01	<10	62	<10	1	285	
199	AW282	25		0 60	25	115			<1	14	103		2.45	<10	0 09	695	<1	<.01	13	2300	30	-5	<20	59	< 01	< 10	12	<10	<1	74	
200	AW283	20	×.2	0.80	10	100	<5	5.14	<1	21	21	297	6.04	<10	0 28	1200	<1	0.01	15	2630	14	~5	<20	69	< 01	<10	40	<10	1	86	
201	AW284	20	1.8	0.24	35	80	<5	0.13	2	10	205	89	4.06	<10	<.01	1646	<1	<.01	6	580	42	5	<20	<1	< 01	<10	18	<10	<1	949	
202	AW285	20		1.68	-5	80	-	214	<5	20	63		5.14		1 01	751		0.02		2040	22	10	<20		0.04	<10	99	<10	*1	110	
203	AW265	55		1.06	190			3 64	<1	30	16		6.18		0.42	1050		0.01	ā	2700	18	<5	<20	57	< 01	<10	37	<10	<1	99	
203	AW287	15		2.49		145		3.00	1	30	11		7.73		0 58	788		<.01	15	3750	26	-5	<20	46	< 01	<10	62	<10	<1	132	
-	AW266	. 25		1.44		155		3.17	<1	23	18		6 02		0 27	934		0 01		2650	16	<5	<20		0 02	<10	44	<10		88	
205	ATT200	2.5			1	,			.,			,	0.02	-10	527		-	501		2000			-20	5.5	0.02	-10		-10	.,		

1

.....