CCEIVE:

$$
\text { UUL - } 61995
$$

Gold Commissioner's Office VANCOUVER,B.C.

COMINCO LTD.

LOB NO: JUL 12 1995 U ACTION:

FILE NO:

ON
AIRBORNE GEOPHY8ICAL GURVEYING
MORE PROPERTY
QUEEN CHARLOTYE ISLANDS, B.C.
BKEENA M.D.
LATITUDE : $\quad 53^{\circ} 05^{\prime} \mathrm{N}$
LONGITUDE : $\quad 131^{\circ} 3^{\prime \prime} \mathrm{N}$

HORE PERFORKED BY DIGREM
ON APRIL 16, 1995
FOR COMINCO LTD.
ON CLAIMS - MORE, MORE 2 AND 4-15
FEOLOGICALBRANCR ASSESSMENTREPORT
FIGURE 1 - LOCATION MAP
INTRODUCTION 1
LOCATION 1
CLAIMS AND OWNERSHIP 1
GEOLOGY 2
PREVIOUS EXPLORATION 2
SURVEY 3
PRODUCTS AND PROCESSING TECHNIQUES 3
DESCRIPTION OF RESULTS 4
CONCLUSION AND RECOMMENDATION 4
APPENDIX I SURVEY EQUIPMENT
APPENDIX II DETAILED SURVEY RESULTS
APPENDIX III LISTING OF EM CONDUCTORS
APPENDIX IV STATEMENT
APPENDIX V STATEMENT OF EXPENDITURES
APPENDIX VI CERTIFICATION OF QULAIFICATIONS
LIST OF PLATES
Dighem EM Anomalies Map, scale 1:20,000
Dighem EM Anomalies Map, scale 1:20,000 with claim boundaries
Total Field Magnetic Contour Map, scale 1:20,000
Calculated Vertical Magnetic Gradient Contour Map, scale 1:20,000
Resistivity (900 Hz) Contour Map, scale 1:20,000
Resistivity (7200 Hz) Contour Map, scale 1:20,000
Resistivity (56000 Hz) Contour Map, scale 1:20,000
Coaxial (5500 Hz) Profile Map, scale 1:20,000

FIGURE 1
COMINCO EXPLORATION
MORE PROJECT, B.C.

NTS: 103G/4

ASSESGMENT REPORT
 OX
 AIRBORNE GEOPHYEICAL SURVEYING
 MORE PROPERTY
 QUEEN CHARLOTTE IBLAND, B.C. SREENA M.D.

INTRODUCTION

A 228 line kms helicopter-borne EM/Mag. survey was conducted over the MORE property, Queen Charlotte Islands, B.C. during April 16, 1995.

The objective was to map resistivity contrasts which may assist in the search for epithermal Au deposits.

This report describes the logistics of the survey and its results.

LOCATION

The MORE property is located on the east side of Moresby Island, north and near the mouth of Cumshewa Inlet. It can be reached by helicopter, some 20 kms SSE from Sandspit, as the crow flies or via logging roads. The property touches in the south, east and north on salt water of Hecate Strait. Elevation changes from zero to 350 ma.s.l. (Fig. 1)

CLAIMS AND OWNERSHIP

The property consists of 14 mineral claims (141 units) totalling $\pm 3,425 \mathrm{Ha}$. The claims are owned and operated by COMINCO Ltd.

Claim	Tenure Nos.	Record Nos.	Units
More	251433	5381	20
More 2	251438	5386	20
More 4	251558	5625	16
More 5	251559	5626	16
More 6	251852	6133	18
More 7	252074	6590	15
More 8	333069	n/a	10
More 9	333071	n/a	1
More 10	333072	n/a	1
More 11	333073	n/a	1
More 12	333074	n/a	1
More 13	333075	n/a	1
More 14	333076	n/a	1
More 15	333070	n/a	20

The property is underlain by altered Tertiary (15 Ma) Masset Fm. acid volcanics that unconformably overlie Jurassic-Yakoun Fm. sediments.

Several epithermal Au showings are present on the property.

PREVIOUS EXPLORATIOX

Gold was first reported in the area in 1909. At that time, three Crown-granted claims called the Homestake Group and situated 2 kms south of our present area of drilling were explored. Two veins containing locally good gold values were prospected with a total of $2,100^{\prime}$ of underground workings. Work on the claims ceased in 1913 and it was not until 1972 that E. Specogna, a prospector, found the Bella and Marino gold showing, 2 kms north of the old Homstake workings.

Specogna's property was optioned by Umex Corporation and Chevron Minerals in 1974 and 1975. Work included extensive soil sampling, rock sampling, five short diamond drill holes and limited I.P. surveys. Chip sampling on the Bella showing gave $1.5 \mathrm{~g} / \mathrm{t}$ Au over 106 m . Soil samples analyzed for gold, arsenic, antimony and silver revealed scattered high values for gold and arsenic over the whole plateau. Drilling totalled 350 m in 5 AX holes. Two of the holes were drilled near the Bella showing and three other holes were drilled three to five hundred metres south of the showing. Assays on cores showed short intercepts of low grade gold in all but one of the holes. Values varied from 1 to $1.9 \mathrm{~g} / \mathrm{t}$ Au over 3 to 15 metres. Work on the Marino showing consisted of mapping and sampling. Values reported varied from $2.2 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ and $5.5 \% \mathrm{Sb}$ to $0.03 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ and $2 \% \mathrm{Sb}$ over short lengths.

The option was abandoned in 1975 and subsequent work occurred in 1980 by Thunderwood Explorations. Their exploration work consisted of an airborne magnetic survey over the area and detailed soil sampling and VLF around the Marino showing. This work indicated widspread but discontinuous high gold and arsenic in soils north of the Marino showing.

In 1986, the claims lapsed and the ground was staked by Cominco Ltd. Exploration work started in early 1987 and included linecutting, I.P. (28 kms), soil geochemistry and geological mapping. These surveys indicated three large I.P. anomalies on the claims, the largest one covered $1.4 \mathrm{~km}^{2}$, and centered on the Bella showing. Examination of the few outcrops lead to the conclusion that much of the plateau was underlain by very altered, Tertiary acid volcanic rocks. It was also found that two of the I.P. anomalies were totally open to the south and west, including the anomaly centered on the Bella showing. A percussion drilling program on two of the anomalies was approved and access construction started in December 1987.

In 1988, COMINCO conducted a 33-hole reverse circulation drill program ($\approx 2,500 \mathrm{~m}$). The property has not been worked on since.

SURVEY

The Dighem V survey was flown on April 16, 1995. Total coverage was 228 line kms, including tie lines. Flight lines were flown in an azimuthal direction of $135^{\circ} / 315^{\circ}$ with a line separation of 200 metres.

The survey employed the Dighem V electromagnetic system. Ancillary equipment consisted of a magnetometer, radar altimeter, video camera, analog and digital recorder, and electronic navigation system. The instrumentation was installed in an Aerospatiale AS350B1 turbine helicopter (Registration C-FUAM) which was provided by Questral Helicopters Ltd. The helicopter flew at a average airspeed of $114 \mathrm{~km} / \mathrm{h}$ with an EM bird height of approx. 30 m .

Appendix I provides details of the survey equipment, the data channels, their respective sensitivities, and the navigation/flight path recovery procedure. Noise levels of less than 2 ppm are generally maintained for wind speeds up to $35 \mathrm{~km} / \mathrm{h}$. Higher winds may cause the system to be grounded because excessive bird swinging produces difficulties in flying the helicopter. The swinging results from the $5 \mathrm{~m}^{2}$ of area which is presented by the bird to broadside gusts.

PRODUCTS AND PROCESSING TECHNIQUES

Base Maps

A base map of the survey area used as screened background to the data presented, has been produced from published topographic maps. It provides a relatively accurate, distortion-free base which facilitates correlation of the navigation data to the UTM grid. Photo mosaics are useful for visual reference and for subsequent flight path recover, but usually contain scale distortions.

Electromagnetic Anomalies

Anomalous electromagnetic responses are selected and analyzed by computer to provide a preliminary electromagnetic anomaly map. This preliminary map is used by the geophysicist in conjunction with the computer-generated digital profiles to produce the final interpreted EM anomaly map. This map includes bedrock surficial and cultural conductors.

Resistivity

The apparent resistivity in ohmm can be generated from the in-phase and quadrature EM components for any of the frequencies, using a pseudo-layer halfspace model. A resistivity map portrays all the EM information for that frequency over the entire survey area. This contrasts with the electromagnetic anomaly map which provides information only over interpreted conductors. The large dynamic range makes the resistivity parameter an excellent mapping tool

Total Field Magnetics

The aeromagnetic data are corrected for diurnal variation using the magnetic base station data. The regional IGRF can be removed from the data if requested.

Magnetic Derivatives

A first vertical derivative (vertical gradient) map was produced from the Total Field Magnetic dataset.

The following maps were produced and are attached to this report on a scale of 1:20,000:

Dighem EM Anomaly Map (this map also shows the claims and their boundaries)
Total Field Magnetic Contour Map
Calculated Vertical Magnetic Gradient Contour Map
Resistivity (900 Hz) Contour Map
Resistivity (7200 Hz) Contour Map
Resistivity (56000 Hz) Contour Map
Coaxial (5500 Hz) Profile Map

DESCRIPTION OF RESULTS

A detailed description of the results as prepared by the contractor is presented in Appendix II and a listing of the EM conductors in Appendix III.

CONCLUSION AND RECOMEENDATION

The airborne resistivity and magnetic data is rather complex. There appears to be no direct correlation between the known (or assumed) geology and these two datasets. The extent of resistivity high areas which could reflect Au-bearing silica caps or stockworks is rather pervasive. It is therefore recommended to check and sample some of the strongest resistivity areas in the field to determine their source(s).

Report by :

Distribution:

Mining Recorder
Western District, Central Files
Administration Files
Geophysics Files
(2)
(1)
(1)
(1)

APPENDIX I

SURVEY EQUIPMENT

APPENDIX I

SURVEY EQUIPMENT

This section provides a brief description of the geophysical instruments used to acquire the survey data:

Electromagnetic System

Model: \quad DIGHEM $^{\text {V }}$
Type: \quad Towed bird, symmetric dipole configuration operated at a nominal survey altitude of 30 metres. Coil separation is 8 metres for 900 Hz , 5500 Hz and 7200 Hz , and 6.3 metres for the $56,000 \mathrm{~Hz}$ coil-pair.

Coil orientations/frequencies:

Channels recorded:

coaxial	/	900 Hz
coplanar	/	900 Hz
coaxial	/	$5,500 \mathrm{~Hz}$
coplanar	/	$7,200 \mathrm{~Hz}$
coplanar	$/$	$56,000 \mathrm{~Hz}$

5 inphase channels
5 quadrature channels
2 monitor channels
Sensitivity:
0.06 ppm at $\quad 900 \mathrm{~Hz}$
0.10 ppm at $\quad 5,500 \mathrm{~Hz}$
0.10 ppm at $\quad 7,200 \mathrm{~Hz}$
0.30 ppm at $56,000 \mathrm{~Hz}$

Sample rate:
10 per second

The electromagnetic system utilizes a multi-coil coaxial/coplanar technique to energize conductors in different directions. The coaxial coils are vertical with their axes
in the flight direction. The coplanar coils are horizontal. The secondary fields are sensed simultaneously by means of receiver coils which are maximum coupled to their respective transmitter coils. The system yields an inphase and a quadrature channel from each transmitter-receiver coil-pair.

Magnetometer

Model:	Picodas 3340
Type:	Optically pumped Cesium vapour
Sensitivity:	0.01 nT
Sample rate:	10 per second

The magnetometer sensor is towed in a bird 20 m below the helicopter.

Magnetic Base Station

Model:	Scintrex MP-3
Type:	Digital recording proton precession
Sensitivity:	0.10 nT
Sample rate:	0.2 per second

A digital recorder is operated in conjunction with the base station magnetometer to record the diumal variations of the earth's magnetic field. The clock of the base station is synchronized with that of the airborne system to permit subsequent removal of diumal drift.

Radar Altimeter

Manufacturer: Honeywell/Sperry
Type:
AA 220

Sensitivity: $\quad 0.3 \mathrm{~m}$

The radar altimeter measures the vertical distance between the helicopter and the ground. This information is used in the processing algorithm which determines conductor depth.

Analog Recorder

Manufacturer: RMS Instruments
Type: \quad DGR33 dot-matrix graphics recorder
Resolution: $\quad 4 \times 4$ dots $/ \mathrm{mm}$
Speed: $\quad 1.5 \mathrm{~mm} / \mathrm{sec}$

The analog profiles are recorded on chart paper in the aircraft during the survey.
Table 2-1 lists the geophysical data channels and the vertical scale of each profile.

Digital Data Acquisition System

Manufacturer: RMS Instruments
Model: DGR 33
Recorder: \quad RMS TCR-12, 6400 bpi, tape cartridge recorder

The digital data are used to generate several computed parameters. Both measured and computed parameters are plotted as "multi-channel stacked profiles" during data processing. These parameters are shown in Table 2-2. In Table 2-2, the \log resistivity scale of 0.06 decade/mm means that the resistivity changes by an order of magnitude in 16.6 mm . The resistivities at 0,33 and 67 mm up from the bottom of the digital profile are respectively 1,100 and 10,000 ohm-m.

Tracking Camera

Type: Panasonic Video

Model: AG 2400/WVCD132

Fiducial numbers are recorded continuously and are displayed on the margin of each image. This procedure ensures accurate correlation of analog and digital data with respect to visible features on the ground.

Navigation System (RT-DGPS)

Model: \quad Sercel NR106, Real-time differential positioning
Type: \quad SPS (Ll band), 10-channel, C/A code, 1575.42 MHz .
Sensitivity: $\quad-132 \mathrm{dBm}, 0.5$ second update
Accuracy: <5 metres in differential mode, ± 50 metres in S/A (non differential) mode

The Global Positioning System (GPS) is a line of sight, satellite navigation system which utilizes time-coded signals from at least four of the twenty-four NAVSTAR satellites. In the differential mode, two GPS receivers are used. The base station unit is used as a reference which transmits real-time corrections to the mobile unit in the aircraft, via a UHF radio datalink. The on-board system calculates the flight path of the helicopter while providing real-time guidance. The raw XYZ data are recorded for both receivers, thereby permitting post-survey processing for accuracies of approximately 5 metres.

Although the base station receiver is able to calculate its own latitude and longitude, a higher degree of accuracy can be obtained if the reference unit is established on a known benchmark or triangulation point. The GPS records data relative to the WGS84 ellipsoid, which is the basis of the revised North American Datum (NAD83).

Conversion software is used to transform the WGS84 coordinates to the system displayed on the base maps.

Field Workstation

Manufacturer:	Dighem
Model:	FWS: V2.65
Type:	80486 based P.C.

A portable PC-based field workstation is used at the survey base to verify data quality and completeness. Flight tapes are dumped to a hard drive to permit the creation of a database. This process allows the field operators to display both the positional (flight path) and geophysical data on a screen or printer.

APPENDIX II

DETAILED SURVEY RESULTS

APPENDIX II

SURVEY RESULTS

GENERAL DISCUSSION

The survey results are presented on one map sheet for each parameter at a scale of $1: 20,000$. Table 1 summarizes the EM responses in the survey area, with respect to conductance grade and interpretation.

The anomalies shown on the electromagnetic anomaly maps are based on a nearvertical, half plane model. This model best reflects "discrete" bedrock conductors. Wide bedrock conductors or flat-lying conductive units, whether from surficial or bedrock sources, may give rise to very broad anomalous responses on the EM profiles. These may not appear on the electromagnetic anomaly map if they have a regional character rather than a locally anomalous character. These broad conductors, which more closely approximate a half space model, will be maximum coupled to the horizontal (coplanar) coil-pair and should be more evident on the resistivity parameter. Resistivity maps, therefore, may be more valuable than the electromagnetic anomaly maps, in areas where broad or flat-lying conductors are considered to be of importance. Contoured resistivity maps, based on the $900 \mathrm{~Hz}, 7200 \mathrm{~Hz}$ and $56,000 \mathrm{~Hz}$ coplanar data are included with this report.

TABLE 1

 EM ANOMALY STATISTICS

 EM ANOMALY STATISTICS}

MORE PROJECT, B.C.
CONDUCTORGRADE
CONDUCTANCE RANGE
SIEMENS (MHOS)
NUMBER OF
RESPONSES
>100 0
$50-100$ 2
$20-50$ 1
10 - 20 0
5 - 10 1
1 - 5 28
<1 118
INDETERMINATE 141
TOTAL 291
CONDUCTOR MOST LIKELY SOURCE NUMBER OF
MODEL
D S
H
E
TOTAL 291
(SEE EM MAP LEGEND FOR EXPLANATIONS)

Excellent resolution and discrimination of conductors was accomplished by using a fast sampling rate of 0.1 sec and by employing a common frequency $(900 \mathrm{~Hz})$ on two orthogonal coil-pairs (coaxial and coplanar). The resulting "difference channel" parameters often permit differentiation of bedrock and surficial conductors, even though they may exhibit similar conductance values.

Anomalies which occur near the ends of the survey lines (i.e., outside the survey area), should be viewed with caution. Some of the weaker anomalies could be due to aerodynamic noise, i.e., bird bending, which is created by abnormal stresses to which the bird is subjected during the climb and turn of the aircraft between lines. Such aerodynamic noise is usually manifested by an anomaly on the coaxial inphase channel only, although severe stresses can affect the coplanar inphase channels as well.

Magnetics

A Scintrex MP-3 proton precession magnetometer was operated at the survey base to record diumal variations of the earth's magnetic field. The clock of the base station was synchronized with that of the airborne system to permit subsequent removal of diurnal drift.

The background magnetic level has been adjusted to match the International Geomagnetic Reference Field (IGRF) for the survey area. The IGRF gradient across the survey block is left intact.

The total field magnetic data have been presented as contours on the base map using a contour interval of 5 nT where gradients permit. The map shows the magnetic properties of the rock units underlying the survey area.

The total field magnetic data have been subjected to a processing algorithm to produce a first vertical magnetic derivative map. This procedure enhances near-surface magnetic units and suppresses regional gradients. It also provides better definition and resolution of magnetic units and displays weak magnetic features which may not be clearly evident on the total field maps. A map of the second vertical magnetic derivative can also be prepared from existing survey data, if requested.

There is some evidence on the magnetic map which suggests that the survey area has been subjected to deformation and/or alteration. These structural complexities are evident on the contour maps as variations in magnetic intensity, irregular patterns, and as offsets or changes in strike direction.

The dynamic range within the area is slightly more than 2000 nT , ranging from a low of approximately $55,800 \mathrm{nT}$ to a high of over $57,800 \mathrm{nT}$. The magnetic data are
generally complex and trends are quite discontinuous. Several possible structural breaks are indicated by the magnetic data. A prominent possible structural feature trends east from the northwest end of line 10250 to the southeast end of line 10440 . It seems to truncate several highly magnetic, magnetite-rich features which trend approximately northeast/southwest. A large relatively non-magnetic zone is situated to the north of this possible structural break.

Several other possible linear structural features can be inferred from the magnetic data which also trend approximately east from the northwest end of line 10120 and from fiducial 7940 on line 10120. A prominent magnetic break also extends north from the southeastern end of line 10180.

In the central region of the block, over lines 10210 through 10280, in the vicinity of tie line 19010, many magnetic features display limited strike length, many anomalies reflect single-line sources. A strong, circular, single-line magnetic anomaly is centered at fiducial 5978 on line 10210. Several possible EM responses are associated with this feature.

Another strong, circular magnetic feature is centered at fiducial 7231 on line 10160. It displays no correlation with the EM data.

If a specific magnetic intensity can be assigned to the rock type which is believed to host the target mineralization, it may be possible to select areas of higher priority on the basis of the total field magnetic data. This is based on the assumption that the magnetite content of the host rocks will give rise to a limited range of contour values which will permit differentiation of various lithological units.

The magnetic results, in conjunction with the other geophysical parameters, should provide valuable information which can be used to effectively map the geology and structure in the survey area.

Resistivity

Resistivity maps, which display the conductive properties of the survey area, were produced from the $900 \mathrm{~Hz}, 7200 \mathrm{~Hz}$ and $56,000 \mathrm{~Hz}$ coplanar data. The maximum resistivity values, which are calculated for each frequency, are $1,000,8,000$ and 20,000 ohm-m respectively. These cutoffs eliminate the meaningless higher resistivities which would result from very small EM amplitudes. The minimum resistivity value is 0.000017 times the frequency. This minimum resistivity cutoff eliminates errors due to the lack of an absolute phase control for the EM data. In general, the resistivity patterns show limited agreement with the magnetic trends. Resistivity highs are associated with highly magnetic units situated over lines 10340 through 10400 in the vicinity of tie line 19020 and over the southeast ends of lines 10220 through 10340.

EM responses determined to be of bedrock origin are generally quite weak and do not give rise to well-defined resistivity lows, although a general relationship exists between a centrally located group of conductors and an approximately north/south trending resistivity low.

There are some areas where contour patterns appear to be strongly influenced by conductive surficial material. The salt water at the edges of the survey block has been well-defined by the EM data.

All three frequencies display similar resistivity contour patterns. Much of the area is quite resistive, and displays resistivities of over 1000 ohm-metres. The central region of the survey area is generally more conductive. Most of the interpreted bedrock anomalies are associated with this zone, although the resulting conductivity appears to be a combination of both bedrock and surficial sources.

Although most of the broad conductive units seem to be surficial in origin, there is at least one zone which exhibits lower resistivities on the low frequency suggesting a conductive source at depth. This zone is situated near the southem comer of the block over lines 10040 through 10110, immediatley southeast of tie line 19010.

Electromagnetics

The EM anomalies resulting from this survey appear to fall within one of two general categories. The first type consists of discrete, well-defined anomalies which yield marked inflections on the difference channels. These anomalies are usually attributed to conductive sulphides or graphite and are generally given a " B^{\prime}, "T" or "D" interpretive symbol, denoting a bedrock source.

The second class of anomalies comprises moderately broad responses which exhibit the characteristics of a half space and do not yield well-defined inflections on the difference channels. Anomalies in this category are usually given an "S" or "H"
interpretive symbol. The lack of a difference channel response usually implies a broad or flat-lying conductive source such as overburden. Some of these anomalies may reflect conductive rock units or zones of deep weathering.

The effects of conductive overburden are evident over portions of the survey area. Although the difference channels (DFI and DFQ) are extremely valuable in detecting bedrock conductors which are partially masked by conductive overburden, sharp undulations in the bedrock/overburden interface can yield anomalies in the difference channels which may be interpreted as possible bedrock conductors. Such anomalies usually fall into the "S?" or "B?" classification but may also be given an "E" interpretive symbol, denoting a resistivity contrast at the edge of a conductive unit.

In areas where EM responses are evident primarily on the quadrature components, zones of poor conductivity are indicated. Where these responses are coincident with magnetic anomalies, it is possible that the inphase component amplitudes have been suppressed by the effects of magnetite. Most of these poorly-conductive magnetic features give rise to resistivity anomalies which are only slightly below background. If it is expected that poorly-conductive economic mineralization may be associated with magnetite-rich units, most of these weakly anomalous features will be of interest. In areas where magnetite causes the inphase components to become negative, the apparent conductance and depth of EM anomalies may be unreliable.

It is difficult to assess the relative merits of EM anomalies on the basis of conductance. It is recommended that an attempt be made to compile a suite of geophysical "signatures" over areas of interest. Anomaly characteristics are clearly defined on the computer-processed geophysical data profiles which are supplied as one of the survey products.

A complete assessment and evaluation of the survey data should be carried out by one or more qualified professionals who have access to, and can provide a meaningful compilation of, all available geophysical, geological and geochemical data.

CONDUCTORS IN THE SURVEY AREA

The electromagnetic anomaly map shows the anomaly locations with the interpreted conductor type, dip, conductance and depth being indicated by symbols. Direct magnetic correlation is also shown if it exists. The strike direction and length of the conductors are indicated when anomalies can be correlated from line to line. When studying the map sheets, consult the anomaly listings appended to this report.

No strong bedrock anomalies have been interpreted from the EM data. Most bedrock sources result in no stronger than a grade two anomaly. Most anomalies are situated in the central region of the survey block. Magnetic correlation varies, although very few show direct coincidence with magnetic peaks. Conductors 10250C-10290B,

10250D, 10260C-10270D, 10260D-10280D, 10270C-10280C, 10290A, 10290C, $10300 \mathrm{~B}-10310 \mathrm{C}, 10300 \mathrm{C}, 10310 \mathrm{~B}, 10310 \mathrm{D}, 10310 \mathrm{E}$ and 10310 F are all associated with a highly magnetic feature which trends northeast/southwest over lines 10250 through 10340. Moderately high percentages of magnetite are associated with this zone as evidenced by the negative inphase responses. Most trends are indicative of weak, possible bedrock sources, although several display well-defined anomaly shapes which reflect thin, dyke-like sources. Both the magnetic unit and the EM anomalies are truncated at their northern limit by an east/west trending structural feature.

Conductor 10350 C -10370D is indicative of a weak, thin bedrock source. It is situated at the intersection of the east/west trending structural feature above, and another possible structural break trending north/south.

Several anomalies are indicative of possible conductive bedrock sources associated with magnetite responses. Anomalies such as 10120A, 10120B and 10280A have been given a "B?" interpretation because they are moderately well-defined. Anomalies 10140A and 10160 C also display conductivity associated with a magnetite response. They have been given an "S?" interpretation as the conductivity may be surficial in origin.

Few conductive trends extend for more than two lines. Changing magnetic correlation, and changes in anomaly definition make it difficult to correlate anomalies
from line to line. The remaining anomalies should be prioritized on the basis of favourable location, magnetic correlation, or other existing geological or geophysical information.

APPENDIX III

LISTING OF EM CONDUCTORS

APPENDIX III

1211
MORE PROJDCT, B.C.

Abstract

COAXIAL COPLANAR COPLANAR . VERTITCAL . HORTZONIAL CONDUCIIVE MAG 1078 HZ 867 HZ 7268 HZ . DIKE . SHEET EARIH CORR

ANCMALY/ REAL QUAD REAL QUAD REAL QUAD . COND DEPIH*. COND DEPTH RESIS DEPIH FID/INIERP PPM PFM PFM PPM PFM PFM .SIEMEN M .SIEMEN M OFMGM M MI

LINE 10060	(FLIGHI	1)										
A 8918S	29	4	1	14	37	0.4	0	1	35	75	20	6
B 8938H	24	2	7	10	3	1.4	45	1	62	230	21	

LINE 10070	(FIIGHT	1)									
A 8770s	05	2	9	38	26	0.4	0	1	36	385	0
B 8744H	11	1	2	2	4			-	-		

LTN	10080		ICHI	1)										
A	85965	0	1	1	2	2	4	-	-	-	-	-	-	0
B	86405	1	2	1	2	2	4	-	-	-	-			30
C	8657H	0	3	1	3	9	20	0.4	0	1	46	283	20	0
D	8677H	1	2	2	3	11	21	0.5	0	1	56	209	32	0
E	8700E	53	120	105	259	893	505	5.3	0	2	8	24	0	8

ITNE 10090 (FLIGHIT 1)

| A | 8452D? | 0 | 4 | 1 | 4 | 10 | 25 | 0.4 | 0 | 0 | 1 | 93 | 387 | 26 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

LINE 10100 (FIIGHT 1)

A	82565	0	2	1	2	2	3		-	-	-	\cdots	-	0
B	83055?	1	4	1	8	6	15	1.2	34	1	78	590	11	90
C	83105	1	5	2	9	8	19	1.1	28	1	51	325	9	60
D	83735?	2	2	1	4	18	30	0.7	0	1	47	259	22	0

ITNE 10110 (FLIGHT 1)

A	8140S?	0	3	2	4	9	31.	0.3	0.	1	24	604	0	0
B	8080S	0	2	1	2	2	4.	-	.-	-	-	-	-	0

LINE 10120 (FLIGHT 1)
$\begin{array}{rrrllllllllllll}\text { A } & \text { 7880B? } & 0 & 3 & 0 & 0 & 2 & 11 \cdot & 0.4 & 0 . & 1 & 88 & 893 & 0 & 260 \\ \text { B 7900B? } & 0 & 1 & 0 & 2 & 2 & 2 \cdot & - & -. & - & - & - & - & 0\end{array}$
.* ESTIMATED DEPIH MAY BE UNRELIABLE BECAUSE THE STRONGER PART .

- OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLIGHI .
- LINE, OR BECAUSE OF A SHALION DIP OR OVERBURDEN EFFECTS.

ANCMALY/ REAL QUAD REAL QUAD REAL QUAD . COND DEPIH*. COND DEPTH RESIS DEPIH FID/INIERP PRM PPM PPM PPM PFM PRM .SIEMEN M .SIEMEN M OHM-M M NT

LIN	E 10120	(FLIGHT		1)										
C	7939S?	1	2	0	2	2	4	- -	-	- -	-	-	-	0
D	7955B?	0	2	0	2	2	4	- -	-	- -	-	-	-	0
LIN	10130		GHT	1)						-				
A	7812S	0	2	1	2	2	4	-	-	- -	-	-	-	0
B	77845	0	3	0	2	5	28	0.4	0	1	79	875	0	0
C	7764S	0	2	1	2	2	4	-	-	- ${ }^{-}$	-	-	-	0
D	7757B?	2	5	2	9	31	19	1.5	31	1	48	294	7	150
E	7753B?	2	3	2	9	31	19	2.8	62	1	65	487	9	0
LINE 10140		(FIIGHI		1)										
A	7536S?	0	2	0	2	2	4	-		-	-	-	-	100
B	7553S?	1	6	3	10	8	75	0.4	6	- 1	36	398	0	0
C	7592S	1	2	1	2	2	4	-	-	- -	-	-	-	0
D	7602B?	0	2	0	2	2	4	-	-	- -	-	-	-	14
E	7612B?	1	2	0	2	2	4	-	-	- -	-	-	-	0
F	7620D	0	2	1	2	2	4	-	-	- -	-	-	-	0
G	7629B?	1	2	1	2	2	4	-	-	- -	-	-	-	0
H	7633S	1	2	1	2	2	4	-	\rightarrow	-	-	-	-	0
I	7642B?	3	7	2	13	32	41	1.7	46	1	55	646	10	70
J	7660H	0	1	0	2	1	4	0.4	10	1	75	798	4	0
K	76965	2	5	0	10	29	13	2.1	32	1	47	683	0	40
LINE 10150		(FLIGHT		1)										
A	7410S?	0	19	4	31	79	217	0.4	0	1	19	267	0	0
B	7392S	2	3	2	4	14	25	0.5	0	1	33	456	6	0
C	7379S	1	3	2	3	14	24	0.6	0	1	41	304	15	0
D	7370s?	0	1	2	1	6	10	0.4	0	1	112	458	30	0
E	7350B?	0	6	1	8	9	11	0.4	3	1	42	662	0	0
F	7343B?	0	4	1	6	9	2	0.4	0	1	39	676	0	0
G	7338B?	1	3	0	6	12	50	1.2	45	1	50	713	0	0
H	7328D	1	4	3	6	16	17	1.0	26	1	50	530	0	17
1	7320B?	3	8	7	21	55	57	2.0	24	. 1	49	196	11	0
J	7316D	1	2	1	2	2	4	-	-	. -	-	-	-	0
K	7299S	0	2	0	2	2	4	-	-	-	-	-	-	0
L	7275S?	0	3	0	3	13	25	0.5	0	1	28	470	0	0
LINE 10160		(FLIGHT		1)										
A	7051B?	1	2	1	2	2	4	-	-	- -	-	-	-	30
B	7056B?	1	5	4	8	33	77	1.1	23	1	25	263	0	11
C	7067S?	0	6	0	8	44	70	0.4	0	1	20	563	0	70
.* ESTIMATED DEPIH MAY BE UNRELTABLE BECAUSE THE STRONGER PARTI OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLIGHT LINE, OR BECAUSE OF A SHALLOW DIP OR OVERBURDEN EFFECTS.														

	COPLANAR	∞	VErrita		In		
1078 HZ	867 HZ	72	DI		SHEET	EARTH	

ANOMALY/ REAL GUAD REAL QUAD REAL QLAD . COND DEPPIH*. OOND DEPPH RESIS DEPIH FID/INTERP PPM PPM PPM PPM PPM PPM .SIEMEN M .SIEMEN M OHM-M M

NT

.* ESTIMATED DEPTH MAY BE UNRETITABIE BECAUSE THE STRONGER PART - OF THE CONDUCTOR MAY BE DEFPER OR TO ONE SIDE OF THE FLIGHT - LINE, OR BECAUSE OF A SHALIOW DIP OR OVERBURDEN EFFECTS.

ANOMALY/ REAL QUAD REAL QUAD REAL QUAD . COND DEPIH*. OCND DEPIH RESIS DEPTH FID/INTERP PFM PFM PRM PFM PFM PPM .SIEMEN M .SIEMEN M OHM-M M NT

-* ESTIMATED DEPTH MAY be unreltable because the stronger part

- OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLIGHT .
- LINE, OR BECAUSE OF A SHALLOW DIP OR OVERBURDEN EFFECTS.

ANCMALY/ REAL QUAD REAL QLAD REAL QUAD . COND DEPIH*. COND DEPIH RESIS DEPIH FID/INIERP PFM PFM PPM PPM PFM PFM .SIDMEN M .SIEMEN M OKM-M M NT

LINE 10210		(FIIGET		1)										
I	5951B?	0	5	1	8	23	56	0.4	0	1	69	664	0	8
J	5926S	0	2	0	1	2	4	-	-	-	-	-	-	0
LIN	E 10220		IGHT	1)										
A	57335	0	6	0	5	21	3	1.0	0	1	25	516	2	20
B	5750B?	1	2	1	2	2	4	-	-	-	-	-	-	0
C	5772B?	0	2	0	2	2	4	-	-	-	-	-	-	70
D	5774B?	0	2	0	2	2	4	-	-	-	-	-	-	0
E	5782D	0	15	2	19	33	160	0.4	7	1	29	478	0	0
F	5793B?	0	2	1	2	2	4	-	-	-	-	-	-	0
G	5797D	0	2	1	2	2	4	-	-	-	-	-	-	0
H	5808D	2	11	1	12	24	87	0.6	16	1	42	544	3	0
I	5812B?	0	2	1	2	2	4	-	-	-	-	-	-	20
J	5814D	0	2	1	2	2	4	-	-	-	-	-	-	0
K	5826S	0	3	0	2	4	22	0.4	6	1	165	997	0	0
L	5840S	0	1	0	2	1	4	-	-	-	-	-	-	0

LTN	10230	(FLIGHP		1)										
A	5610S	1	2	1	2	2	4	-		-	-	-	-	80
B	5580B?	0	2	0	1	2	8	0.4	4	1	154	997	0	0
C	5571D	0	6	1	4	9	38	0.4	3	1	106	949	8	0
D	5560D	1	2	1	2	2	4	-	-	-	-	-	-	0
E	5548D	2	8	2	14	41	78	1.0	13	1	25	452	0	0
F	5542D	4	6	0	9	12	31	2.9	36	1	74	839	0	0

LIN	10240		HT	1)										
A	5299B?	2	4	0	3	3	14	1.9	37	1	114	997	0	0
B	5333B?	0	2	0	2	2	4	-	-	-	-	-	-	0
C	5351B?	0	4	0	4	0	40	0.4	16	1	107	898	18	0
D	5355B?	0	2	0	2	0	4	-	-	-	-	-	-	0
E	5385D?	1	2	0	3	8	15	1.6	77	1	100	884	14	40
F	5390D	0	5	1	9	26	67	0.4	7	1	76	560	13	0
G	5397B?	0	8	1	12	10	74	0.4	9	1	35	579	0	0
H	5404B?	3	5	2	7	20	60	2.0	46	1	36	589	0	0
1	5413B?	0	5	0	6	6	20	0.4	5	1	47	698	0	0
J	5418D	0	2	0	2	2	4	-	-	-	-	-	-	130
K	54395	1	5	0	8	12	65	0.4	10	1	67	772	2	0
LTN	10250		HT	1)										
A	5228S	0	2	0	2	2	4	-	-	-	-	-	-	30
B	5211B?	0	2	0	3	9	45	0.5	7	1	127	997	0	0

.* ESTIMATED DEPTH MAY BE UNREITABLE BECAUSE THE STRONGER PARC .

- OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FIIGHT .
- LINE, OR BECAUSE OF A SHALLOW DIP OR OVERBURDEN EFFBCTS.

1211 MORE PROJECT, B.C.

COAXIAL COPLANAR COPIANAR . VERTICAL . HORIZONIAL CONDUCIIVE MAG 1078 HZ 867 HZ 7268 HZ . DIKE . SHEET EARIH ORR

ANOMALY/ REAL QUAD REAL QUAD REAL QUAD . COND DEPIH*. COND DEPTH RESIS DEPIH FID/INTERP PPM PPM PPM PPM PPM PPM .SIDMIRN M .SIEMEN M OHM-M M NT

LINE 10250		(FLIGHI		1)				-				-	-	0
		1	2	0	2	2	4	-	-	-	-			
D	5199B?	1	2	0	2	2	4	-	-	-	-	-	-	20
E	51975	2	6	0	11	28	81	1.0	19	1	29	605	0	0
F	5190B?	1	2	1	2	2	4	-	-	-	-	-	-	15
G	5181B?	0	2	0	2	2	4	-	-	-	-	-	-	0
H	5152B?	1	2	0	2	2	4	-	-	-	-	-	-	0
LTI	10260	(FLIGHP		1)										
A	5004S?	0	2	0	2	2	4	-	-	-	-	-	-	0
B	5032D	0	2	0	2	2	4	-	-	-	-	-	-	0
C	5041B	0	2	1	2	2	4	-	-	-	-	-	-	0
D	5047B?	1	8	1	20	17	172	0.4	8	1	37	609	0	0
E	5051B?	2	15	2	21	49	172	0.4	4	1	27	479	0	0
F	50785	0	2	1	2	2	4	-	-	-	-	-	-	0
LTN	10270	(FLISGIT		1)										
A	4816B?	0	2	0	1	0	4	-	-	-	-	-	-	0
B	4792D	0	2	0	2	2	4	-	-	-	-	-	-	0
C	4786D	0	6	0	8	14	31	0.4	0	1	55	767	0	0
D	4782B?	0	5	0	8	24	10	0.4	0	1	48	733	0	0
E	4776D	1	2	0	2	2	4	-	-	-	-	-	-	0
F	4761B?	1	2	0	2	2	4	-	-	-	-	-	-	0
G	4725S	0	1	0	2	2	4	-	-	-	-	-	-	0
LTN	10280	(FLITGHI		1)										
A	4572B?	0	1	0	2	0	12	0.4	12	1	155	997	0	330
B	4594B?	0	2	0	2	2	4	-	-	-	-	-	-	0
C	4601B?	0	3	0	7	33	14	0.4	6	1	48	696	0	360
D	4611B?	1	2	1	2	2	4	-	-	-	-	-	-	0
E	4640B?	0	3	1	3	10	29	0.4	3	1	76	734	4	0
F	4655s?	0	5	0	9	19	64	0.4	9	1	48	687	0	0
G	4677B?	0	2	0	2	2	4	-	-	-	-	-	-	0
LINE 10290		(FLIGHT		1)										
A	4421B?	1	2	0	2	2	4	-	-	-	-	-	-	50
B	4415B?	1	11	0	18	22	93	0.4	0	1	20	526	0	0
C	4406D	1	2	0	2	2	4	-	-	-	-	-	-	0
D	4383B?	1	2	0	2	2	4	-	-	-	-	-	-	16
E	4379B?	1	2	0	2	2	4	-	-	-	-	-	-	0
F	4367S?	0	2	0	2	2	4	-	-	-	-	-	-	0
G	4352S	0	4	0	6	10	15	0.4	0	1	53	754	0	0

.* ESTIMATBD DEPTH MAY be Unrellable bdcause the stronger part - OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLIGHT - LINE, OR BECAUSE OF A SHALLOW DIP OR OVERBURDEN EFFECTS.

ANCMALY/ REAL QUAD REAL QUAD REAL QUAD . COND DEPPIH*. COND DEPIH RESIS DEPPTH FID/INIERP PFM PFM PPM PPM PPM PFM .SIEMEN M .SIEMEN M OFM-M M NT

LINE 10300 (FIIGHT 1)

A	4184B?	1	2	0	2	0	$4 \cdot$	-	$-\cdot$	-	-	-	-	0	
B	4195D	1	7	0	16	9	47	\cdot	0.5	8	\cdot	1	76	818	2

LINE 10320 (FITGHT 1)

A	3788S?	0	2	0	4	14	36.	0.4	0.	1	28	602	6	0
B	3826S	0	4	0	7	11	43.	0.4	0.	1	49	732	0	0
C	3838S	0	2	0	5	19	39.	0.5	4.	1	59	782	0	0
D	$3850 S ?$	0	4	0	6	16	53.	0.4	0.	1	64	795	0	0
E	3877S	1	2	0	2	2	4.	-	.-	-	-	-	-	0

LTNE 10330 (FLIGHT 1)

A	3480B?	0	2	0	2	2	4.	-	-	.	-	-	-	-
B	3447S	0	3	0	6	20	27.	0.5	0	-	1	57	787	0
C	3435B?	0	2	0	2	2	3.	-	-	-	-	-	-	-
D	0													
E	3408S?	0	1	0	1	1	4.	-	-	-	-	-	-	-
0														

LINE 10340 (FLIGHT 1)
$\begin{array}{llllllrllllrlrr}\text { A } & \text { 3150S } & 1 & 3 & 0 & 5 & 11 & 43 \cdot & 0.3 & 0 . & 1 & 20 & 993 & 0 & 13 \\ \text { B } & \text { 3164S? } & 1 & 2 & 0 & 2 & 4 & 21 . & 1.0 & 36 \cdot & 1 & 127 & 997 & 0 & 0 \\ \text { C } & \text { 3195S? } & 1 & 3 & 1 & 6 & 27 & 33 . & 0.8 & 27 . & 1 & 49 & 512 & 1 & 0\end{array}$
.* ESTIMATED DEPIH MAY BE UNRELJABLE BECAUSE THE SIRONGER PART

- OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLIGHT .
- LINE, OR BECAUSE OF A SHALLOW DIP OR OVERBURDEN EFFECTS.

COAXIAL COPLANAR COPLANAR . VERTICAL . HORIZONLAL CONDUCIIVE MAG 1078 HZ 867 HZ 7268 HZ . DIKE . SHEFT EARXH CORR

ANOMALY/ REAL QUAD REAL QUAD REAL QUAD . COND DEPIHH. COND DEPIH RESIS DEPIH FID/INIERP PFM PFM PPM PPM PPM PPM .SIEMEN M .SIEMEN M OFM-M M NT

LTN	10340		IGrir	1)						-				
D	3203D?	1	2	1	2	2	4	-		. -	-	-	-	0
E	3224S?	0	2	1	2	2	4			- -	-	-	-	0
F	32385	0	4	1	6	16	43	0.4	0	1	57	691	0	0
G	32505	0	5	0	8	23	60	0.4	0	1	43	706	0	0
H	3257S?	0	5	1	8	4	52	0.4	0	1	58	761	0	20
1	32865	0	1	0	1	0	4	-	-	- -	-	-	-	0
J	33065	0	2	0	2	2	4	-	-	-	-	-	-	0
K	33285	16	82	30	157	634	518	1.8	0	1	1	70	0	0
LIN	10350		GHP	1)										
A	3048S	1	1	0	1	2	4	-	-	. -	-	-	-	0
B	2986S	1	2	1	2	2	4	-	-	- -	-	-	-	0
C	2962D	1	2	0	1	2	4	-	-	- -	-	-	-	0
D	29365	1	2	0	2	2	4	-	-	- -	-	-	-	0
LTN	10360		crit	1)										
A	27105	0	3	0	6	3	9	0.4	0	1	68	803	0	0
B	2737B?	1	3	0	1	5	14	0.8	16	1	104	976	1	0
C	27475	0	2	0	2	1	4	-	-	- -	-	-	-	0
D	2771S	1	3	0	8	6	4	0.7	12	1	31	686	0	0
E	27965	0	2	0	2	1	4	-	-	. -	-	-	-	0
LTN	10370		CHI	1)						-				
A	2575S	0	1	1	1	1	4	-	-	-	-	-	-	0
B	2547S	0	2	1	2	2	4	-	-	-	-	-	-	8
C	2520S	0	2	0	2	2	4	-	-	- -	-	-	-	0
D	2500B?	1	2	1	2	2	4	-	-	- -	-	-	-	0
E	2468S	1	2	1	2	2	4	-	-	- -	-	-	-	0
LINE	10380		crir	1)						-				
A	2271S	1	2	0	2	2	4	-	-	. -	-	-	-	0
B	2284S?	1	2	0	2	2	4	-	-	-	-	-	-	0
C	2322S	0	1	0	2	2	3	-	-	-	-	-	-	0
D	23435?	0	7	1	11	5	77	0.4	0	1	43	638	0	0
LTN	10390		GHI	1)										
A	2137B?	2	5	0	6	3	37	1.4	27	1	75	831	0	0
B	2127B?	2	3	0	2	2	16	1.7	40	1	115	997	0	0
C	2092S?	1	2	0	2	2	4	-	-	-	-	-	-	0
D	2083S?	0	1	0	2	2	4	-	-	. -	-	-	-	0
LTN	10400		GHT	1)										
A	1214B?	0	2	1	1	2	4	-	-	- -	-	-	-	0
-* ESTIMATED DEPTH MAY BE UNRELJABLE BECAUSE THE STRONGER PART OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLTGHT - LINE, OR BECAUSE OF A SHALLON DIP OR OVERBURDEN EFFECIS.														

ANCMALY/ REAL QUAD REAL QUAD REAL QUAD . COND DEPIH*. COND DEPIH RESIS DEPIH FID/INIERP PFM PFM PRM PPM PFM PFM .SIEMEN M .SIEMPN M OFM-M M MI

[^0]
APPENDIX IV

IN THE MATTER OF THE B.C. MINERAL ACT

AND THE MATTER OF A GEOPHYBICAL PROGRAMME

CARRIED OUT ON THE MORE PROPERTY

LOCATED 20 RMS SSE OF BANDSPIT, QUEEN CHARLOTTE ISLANDS
IN THE SREENA MINING DIVIEION OF THE

PROVINCE OF BRITIBE COLUMBIA,

MORE PARTICULARLY
N.T.S. 103G/4

BTATEMENT

I, Jan Klein, of the Municipality of Burnaby, in the Province of British Columbia, make oath and say:

1. THAT I am employed as a geophysicist by Cominco Ltd. and, as such have a personal knowledge of the facts to which I hereinafter depose;
2. THAT annexed hereto and marked as "Appendix V" to this statement is a true copy of expenditures incurred on a geophysical survey on the MORE property;
3. THAT the said expenditures were incurred on April 16, 1995, for the purpose of mineral exploration on the above-noted property.

Dated this $30^{\text {th }}$ day of Anue 1995

APPENDIX V

STATEMENT OF EXPENDITURES

MORE PROPERTY,
QUEEN CHARLOTTE IBLANDS APRIL 16, 1995

Surveying of 228 line kilometres of helicopter-borne EM/Mag. by Dighem, a Division of CGG Canada Ltd.

Mobilization/Setup Charge

Fixed Price Survey
$\$ 24,000.00$

Total Expenses
$\$ 26,000.00$

CERTIFICATION OF QUALIFICATIONS

I, JAN KLEIN, of 7025 Dunblane Ave., in the Municipality of Burnaby, in the Province of British Columbia, do hereby certify:

1. THAT I graduated from the Technological University of Delft, Netherlands in 1965 with a M. Sc. in Geophysics;
2. THAT I am a member of the Association of Professional Engineers and Geoscientists of the Province of British Columbia, the Society of Exploration Geophysicists of America, and the British Columbia Geophysical Society;
3. THAT I have been practising my profession for the past thirty years.
4. THAT I have been employed by Cominco Ltd. since 1974.

Dated this $300^{\text {th }}$ day of \qquad , 1995 at Vancouver, British columbia

[^0]: .* ESTIMATED DEPIH MAY BE UNRETITABLE BECAUSE THE STRONGER PART "

 - OF THE CONDUCTOR MAY BE DEEPER OR TO ONE SIDE OF THE FLIGHT
 - LINE, OR BECAUSE OF A SHALLOW DIP OR OVERBURDEN EFFECTS.

