LOB NO:	JUL 1	2 1995	U
ACTION:			

O G I C

2 P 7 P

史 明

JUN 2 9 1995 Gold Commissioner's Office VANCOUVER, B.C.

RECEIVEN

FILE NO:

ASSESSMENT REPORT ON GEOCHEMICAL WORK ON THE FOLLOWING CLAIM

MAXWELL SMART #251384

EVENT # 3067045

WORK PERMIT # SMI-94-0100589-218

located

65 KM NORTHWEST OF STEWART, BRITISH COLUMBIA SKEENA MINING DIVISION

56 degrees 25 minutes latitude 130 degrees 40 minutes longitude

N.T.S. 104B/7E

PROJECT PERIOD: July 10 to Oct. 13, 1991

ON BEHALF OF TEUTON RESOURCES CORP. VANCOUVER, B.C.

REPORT BY

D. Cremonese, P. Eng. 509-675 W. Hastings Vancouver, B.C.

Date: June 29, 1995

TABLE OF CONTENTS

1.	INTRO	DUCTION	1
		Property, Location, Access and Physiography	1
		Status of Property	1
		History	1
	D.	References	2
	E.	Summary of Work Done	4
2.	TECH	NICAL DATA AND INTERPRETATION	4
	λ.	Regional Geology & Mineralization	4
	в.	Property Geology	6
	c.	Geochemistry - Rock	7
		a. Introduction	7
		b. Treatment of Data	- 8
		c. Sample Descriptions	8
		d. Discussion	11
	D.	Field Procedure and Laboratory Technique	12
		Conclusions	12

APPENDICES

- I Work Cost Statement II Certificate III Assay Certificates

ILLUSTRATIONS

Fig.	1	Location Map	Report	Body
Fig.		Claims Map	Report	Body
Fig.	3	Property Geology	Report	Body
Fig.	4	1994 Rock Geochemical Sampling	Report	Body

Page

.

1. INTRODUCTION

A. Property, Location, Access and Physiography

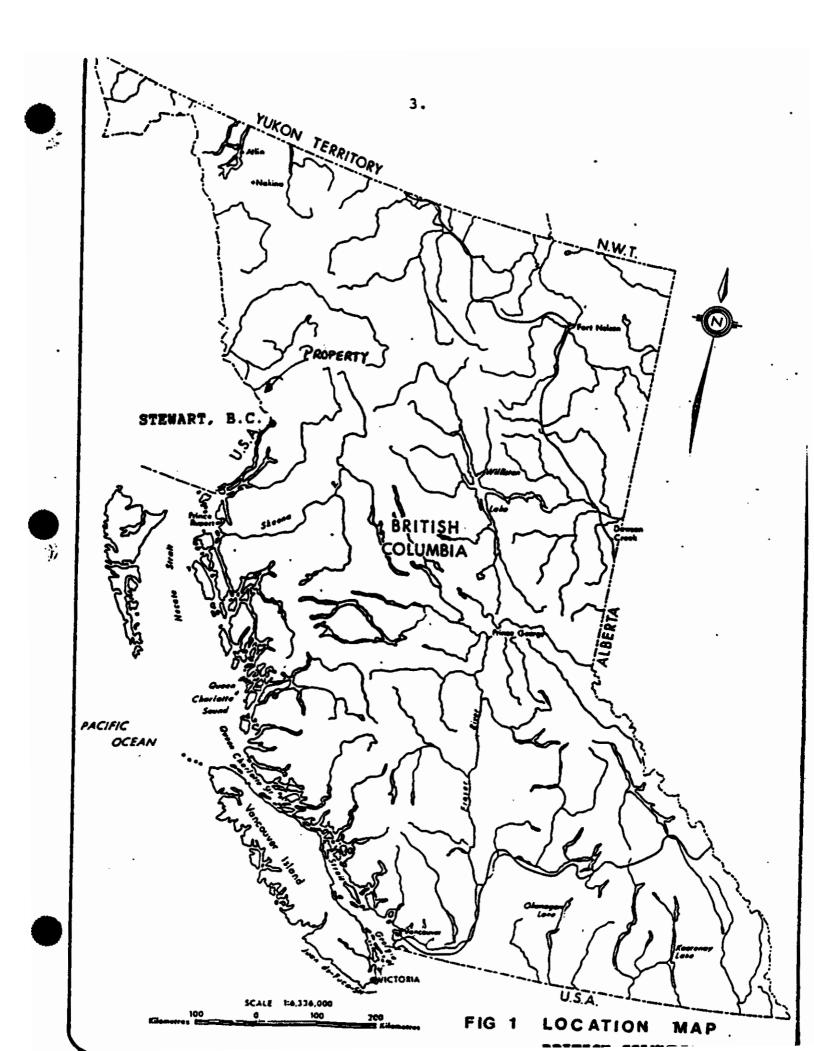
The property is located about 65 km northwest of Stewart, British Columbia. Access is presently limited to helicopter, either from the base at Stewart (Vancouver Island Helicopters), from Bell II on Highway 37 (Northern Mtn. Helicopters), or from the end of the Eskay Creek access road into the Eskay Creek Mine in the Tom McKay Lakes area, 30 km NNE.

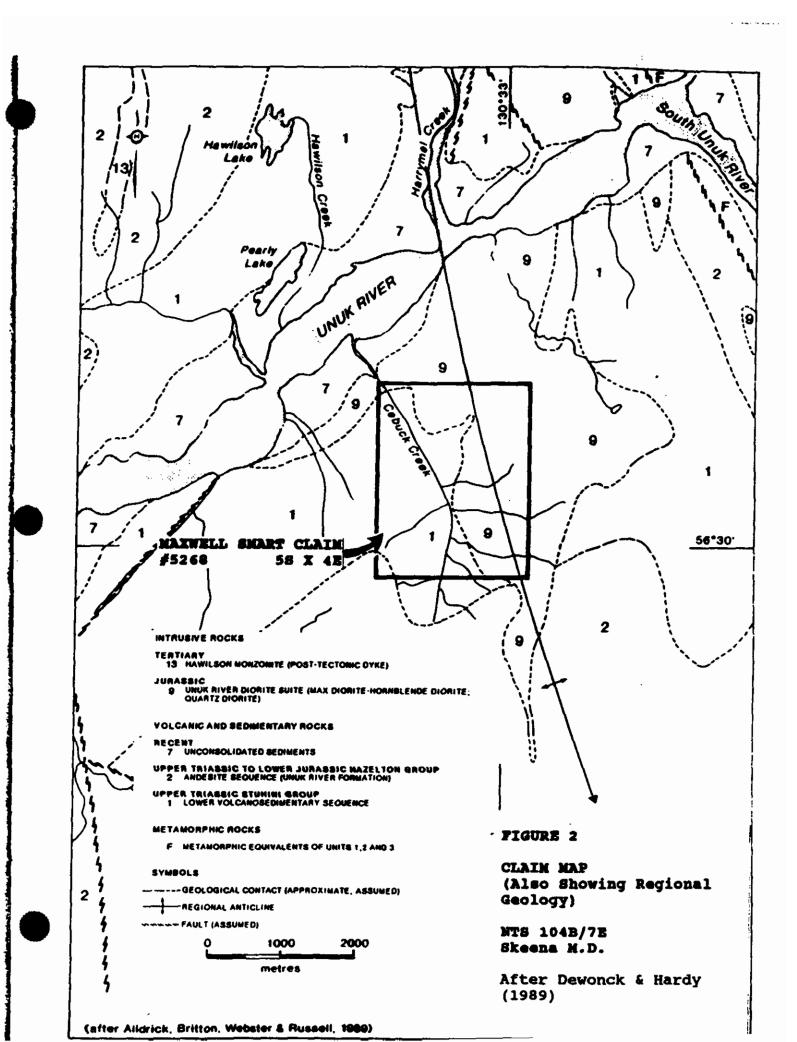
The Maxwell Smart claim covers much of the drainage of Cebuck Creek (also known as Barclay Creek), a northwest flowing tributary of the Unuk River. Elevations vary from approximately 250 meters at the legal corner post on Cebuck Creek to more than 1,250 meters atop the ridge in the southwest corner of the claim. Vegetation in the area is comprised of mountain hemlock and balsam with fairly dense underbrush at low elevations. Slopes range from moderate to precipitous, the latter especially along certain stream courses.

Climate features year round precipitation with abundant snowfall in the winter months.

B. Status of Property

Relevant claim information is summarized below:


Name		Record No.	No. of Units	Record Date
Maxwell	Smart	5268	20	April 1, 1986


Claim location is shown on Fig. 2 after N.T.S. map 104B/7E. The claim is owned by Teuton Resources Corp. of Vancouver, British Columbia.

C. History

Records indicate that the Max property was originally staked by Granduc Mines Ltd. in 1960. Anomalies discovered during an airborne magnetometer survey led to ground follow-up including further magnetometer surveys, geological mapping and prospecting. This resulted in the discovery of the Max skarn deposit containing massive magnetite, chalcopyrite, pyrrhotite and pyrite mineralization. The Max deposit was subsequently explored by 5,450m of diamond drilling which reportedly outlined 10.8 million tons of material grading 45% iron and 0.75% copper.

In 1968, Granduc completed another regional airborne survey which included mapping the distribution of subsurface conductors in the area of the Max property. A program of mapping, linecutting and

detailed ground magnetometer work in 1975 confirmed results of earlier work and expanded previous coverage. No previously undetected mineralized outcrops were noted, but disseminated pyrite and/or pyrrhotite were described as common in rocks adjacent to the Barclay Creek fault. In 1977, magnetometer surveys were extended to cover the western and northern portions of the property and more detailed mapping was completed. A small hand trenching program in an area of iron-staining and disseminated pyrite just north of the present claim boundary reportedly provided values of 0.042 oz/ton gold and 0.30 oz/ton silver.

In 1989, the property was optioned by Teuton to Goodgold Resources Ltd. after which the latter commissioned a regional airborne geophysical survey which included the Maxwell Smart claim. Nominal line spacing was 100m and the flight direction was west-east. This EM-Magnetometer survey disclosed several dyke-like magnetic highs oriented north-south to slightly NNE and NNW within an overall complex magnetic contour pattern. Analysis of the magnetic contours showed numerous NNE to NNW trending offsets, terminations Apparent resistivities within the property area were and breaks. generally very high except for two areas of low resistivity coincident with conductive zones: the first of these was estimated at 250m by 400m in extent and encapsulating the Max deposit, the second, shaped like a boomerang cuts across the southeast corner of the claim block.

In 1991, Goodgold carried out a program of property wide rock, silt and soil geochemical sampling resulting in the discovery of several sites anomalous in copper and, to a much lesser extent, gold. In the northwest portion of the property, three samples from vein occurrences returned anomalous to highly anomalous values in gold, some accompanied by unusually anomalous levels of cobalt. Soil geochem lines emplaced northeast of the Max iron-copper deposit disclosed a number of copper anomalies and one high gold anomaly of 530 ppb. Several streams reported anomalous to highly anomalous copper levels in sediment samples. Float boulders carrying Ni-Cu mineralization were also discovered in the southwestern portion of the claim.

References

- D. J. Alldrick, 1989. "Volcanic Centres in the Stewart Complex" in Geological Fieldwork, 1988, Paper 1989-1, British Columbia Ministry of Energy, Mines and Petroleum Resources, p. 233 -240.
- 2. D. J. Alldrick, 1984. "Geological Setting of the Precious Metal Deposits in the Stewart Area", 1984, Paper 84-1, British Columbia Ministry of Energy, Mines and Petroleum Resources.
- 3. D. J. Alldrick, 1985. "Stratigraphy and Petrology of the

Stewart Mining Camp (104B/1E)", Paper 1985-1, British Columbia Ministry of Energy, Mines and Petroleum Resources.

- 4. D. J. Alldrick, J. M. Britton, I. C. L. Webster, and C. W. P. Russell, 1989. "Geology and Mineral Deposits of the Unuk Area", Open File Map 1989-10, British Columbia Ministry of Energy, Mines and Petroleum Resources.
- 5. B. C. Ministry of Energy, Mines and Petroleum Resources: a: Revised Mineral Inventory Map 104B (MI)
 b: Revised Mineral Inventory Map 103P (MI).
- B. C. Ministry of Energy Mines and Petroleum Resources and G. S. C., 1987. National Geochemical Reconnaissance Map 110, B.C. RGS 18/G.S.C. O.F 1645.
- 7. J. M. Britton, I. C. L. Webster, D. J. Alldrick, 1989. "Unuk Map Area", Paper 1989-1, p. 241- 250, British Columbia Ministry of Energy Mines and Petroleum Resources.
- 8. Cremonese, D.M., 1992. "Assessment Report on Geochemical Work on the Maxwell Smart Claim, Skeena Mining Division"; On file with BCMEMPR.
- 9. E. W. Grove, 1971. "Geology and Mineral Deposits of the Stewart area, B. C.", Bulletin 58, British Columbia Department of Mines and Petroleum Resources.
- 10. E. W. Grove, 1986. "Geology and Mineral Deposits of the Unuk River - Salmon River - Anyox Area", Bulletin 63, British Columbia Ministry of Energy, Mines and Petroleum Resources.
- 11. J. Klein, R. O. Crosby, 1965. "Report on Airborne Geophysical Surveys on the Harmax Group of Mineral Claims, Unuk River Area", Northwestern British Columbia on behalf of Granduc Mines Ltd., A.R. 1835, British Columbia Ministry of Energy Mines and Petroleum Resources.
- 12. D. W. Mallo, 1988. "Assessment Report on the Maxwell Smart Claim Airborne Geophysical Program", British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report, July 25, 1989.
- 13. G. W. M. Norman, 1960. "Report of Geological and Geophysical Survey, Har #1, Har #7, Har #24 and Har #45 Groups", British Columbia Ministry of Energy Mines and Petroleum Resources A.R. 345 report for Granduc Mines Ltd.
- 14. G. W. M. Norman, 1960. "Report on Geological, Geophysical and Geochemical Survey, Max 1, Max 89, 93, Max 121 and Max 125 Groups", Skeena Mining Division for Granduc Mines Ltd. M.E.M.P.R.A.R. 346.

- 15. E. Ostensoe, 1975. "Report on Geological Mapping and Magnetometer Survey on Max prospect, Unuk River Area, Skeena Mining Division", for Granduc Mines Ltd., M.E.M.P.R. A.R. 5496.
- 16. E. Ostensoe, 1978. "Report on Geological Mapping and Magnetometer Survey on Max prospect, Unuk River Area, Skeena Mining Division", for Granduc Mines Ltd., M.E.M.P.R. A.R. 6690.
- 17. B. Dewonck & J. Hardy, 1989. "Summary Report on the Goodgold Resources Ltd. Del Norte Project and Max Project", Goodgold Resources Ltd. Prospectus, Aug. 17, 1990.

E. Summary of Work Done.

The 1994 work on the Maxwell Smart claim was part of a larger program covering several Stewart area properties spanning the period from July 10 to Oct. 13. The field crew consisted of Ed Kruchkowski, senior geologist, Ken Konkin, geologist, and A. Walus, geologist. All have spent many seasons exploring the Stewart area.

The crew was shuttled in and out of the property by helicopter originating in Stewart during a single day trip made in late September at the end of the field season. Altogether 32 reconnaissance geochemical rock samples were taken during the program. All samples were analyzed for gold content at the Eco-Tech Laboratory facility in Stewart, B.C.; ICP analyses were carried out at the parent facility in Kamloops.

2. TECHNICAL DATA AND INTERPRETATION

A. Regional Geology and Mineralisation

The region is underlain by the Stewart Complex (Grove 1971, 1986), a northwest trending assemblage of volcanic and sedimentary rocks of late Paleozoic and Mesozoic age. It is bounded to the west by the Coast Plutonic Complex and to the east by the sedimentary Bowser Basin. The oldest units in the Stewart Complex are Upper Triassic epiclastic volcanics, marbles, sandstones and siltstones. These, in turn, are overlain by sedimentary and volcanic rocks of the Jurassic Hazelton Group. The Hazelton Group has been subdivided (Grove, 1986), into the Early Jurassic Unuk River Formation, the Middle Jurassic Betty Creek and Salmon River Formations, and the Upper Jurassic Nass Formation.

The Unuk River Formation consists predominantly of volcanic rocks and sediments which include lithic tuffs, pillow lavas with carbonate lenses and some thin bedded siltstones. It forms an angular unconformity with the underlying Late Triassic Rocks. Betty Creek rocks are characterized by bright red and green volcaniclastic agglomerates with sporadic intercalated andesitic flows, pillow lavas, chert and some carbonate lenses. They unconformably overlie the Unuk River Formation. The Salmon River Formation is a thick assemblage of intensely folded colour banded siltstones and lithic wackes that form a conformable to disconformable contact with the underlying Betty Creek Formation. The Nass Formation of weakly deformed dark coloured argillites unconformably overlies the Salmon River Formation.

These volcanic and sedimentary successions were intruded by the Coast Plutonic Complex during the Cretaceous and Tertiary periods. A wide variety of intrusive phases are present including granodiorite, quartz monzonite, and diorite. Small satellite plugs from the main batholith can be important for localizing mineralization.

Major structural features of the Stewart Complex include the western boundary contact with the Coast Intrusive Complex. The northern boundary is at the Iskut River where extensive deformation has thrust Paleozoic strata south across Middle Jurassic and older units. Younger faulting has also occurred around the Iskut. A line of Quaternary volcanic flows mark the southern limit of the complex and the Meziadin Hinge defines the eastern border.

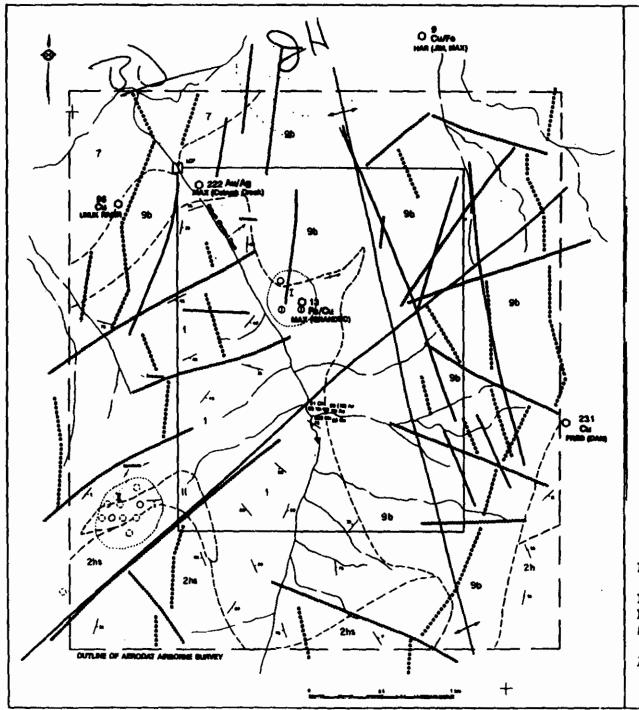
The Stewart area has been mined actively since the early 1900's and is one of the most prolific mining districts in British Columbia (Grove, 1971). Grove (1986) classifies the mineralization in the Stewart area into 3 categories: fissure veins and replacement veins, massive sulphide deposits and porphyry deposits.

Between 1980 and 1994 exploration and development activity has proceeded on several new discoveries in the Stewart Complex including: the Skyline, Johnny Mountain Mine, the Delaware/Cominco Snip deposit (now in production), the various deposits controlled by Newhawk/Granduc and Placer in the Sulphurets area, the Magna Ventures' Doc property, the recent high-grade gold-silver-base metal discoveries at Eskay Creek of Homestake Mining (also now in production) and the intrusive-related gold deposits of Lac Minerals at Red Mountain east of the Town of Stewart.

The E & L Deposit is also situated in the Unuk River area. This deposit was worked in the 1960's and early 1970's by trenching, drilling and 460m of underground development and has proven reserves of 3.2 million tons of 0.8% nickel and 0.6% copper. Mineralization consisting of disseminated pyrrhotite, chalcopyrite with minor pentlandite, pyrite and bornite occurs in a small stock of altered coarse grained gabbro (Nickel Mountain Gabbro Formation).

B. Property Geology

Two main rock units underlie the property: to the west an Upper Triassic volcanosedimentary sequence consisting of brown, black and grey mixed sediments interbedded with medium to dark green, mafic to intermediate volcanic and volcaniclastic rocks, and to the east, a Jurassic age diorite (biotite-hornblende diorite, quartz diorite). The contact follows an irregular course along the northeast side of Cebuck Creek. A melanocratic olivine-pyroxene gabbro (Nickel Mountain Gabbro) outcrops in the southwest corner of the claim. In the northwest corner, government mapping has shown a small outcrop of limestone.


Alldrick (1989) lists the Max iron-copper deposit (cf. Fig. 3) within the "intrusive contact" mineralization category: "Massive magnetite with lesser pyrrhotite and chalcopyrite occur in skarnaltered sedimentary rocks adjacent to a diorite stock. Garnet, epidote, actinolite and diopside characterize the skarn assemblage."

Grove (1986) places the Max deposit within the first metallogenic epoch (Upper Triassic) of the Stewart Complex. He says: "This is a massive magnetite-chalcopyrite occurrence on the north side of McQuillan Ridge in the Unuk River area. The Max deposit has not been studied in detail but ore appears to be confined to the anticlinal crest of a folded granular limestone sequence which has been partially intruded and weakly deformed by Late Triassic quartz diorite. Physically the Max deposit is a conformable, stratabound, massive oxide-sulphide deposit. The writer suggests that this has been formed by syngenetic sedimentary-volcanogenic processes, rather than contact metamorphic processes."

The 1994 geochemical sampling was confined to the southwestern quadrant of the claim, mostly along the upper course of Cebuck Creek. This work indicated a sequence of argillites intruded by diabase dykes underlies most of the local area. The argillites are thinly bedded, black and highly brecciated at approximately 022 degrees. Diabase stringers and small dykes are found within clay rich breccia zones. The diabase is fine grained, black and contains 1-2% fine pyrrhotite mineralization along fractures. Abundant calcite veinlets are found along fractures both in the diabase and the surrounding argillite. Minor epidote is also found in the vicinity of the dykes.

Along the bed of Cebuck Creek, diabase dykes 3-4m in width were also observed intruding andesitic tuffs. These dykes are in a north-south direction and consist of medium grained diabase with 50% mafic minerals and 0.5% fine grained pyrite. Along the contact, chill margins from 30-60cm wide are present and calcite veinlets are locally abundant.

A variety of mineralized float boulders were located along upper

.

	LEGEND
	ARABEC [1] *Clik kCarlin Galleto wersen: ann prove plan NGCBHT [7] Verstaatse wersen
:	
	In and the second secon
	FIGURE 3
	PROPERTY GEOLOGY NTS 104B/7E Skeena M.D.
	After Dewonck & Hardy (1989)

Cebuck Creek. The majority of the boulders were weakly hornfelsed altered with pyrite, pyrrhotite and occasionally chalcopyrite occurring as disseminated grains, stringers and semi-massive aggregates. Total sulfide content varies from 2 to 50%. In addition, silicified volcanic float contains greyish quartz carrying sparse pyrite cut by later barren quartz veins.

Property geology is shown on Fig. 3 based on a compilation by Dewonck and Hardy (1989).

C. Geochemistry - Rock

a. Introduction

Reconnaissance rock geochemical samples were taken from accessible zones of interest in the southern portion of the Maxwell Smart claim. Sample locations are shown in relation to claim lines on Fig. 4 prepared at a scale of 1:5000.

Altogether 93 samples were taken: 8 grab, 1 chip and 23 float. Locations for the KK samples were fixed in the field using a portable GPS unit. The ERK and AW samples were located by reference to a base map prepared from a topographic map and were tied in, where possible, to GPS-located sample sites.

b. Treatment of Data

Geochemical reconnaissance sampling results are presented in this report on Fig. 4 at a scale of 1:5,000. The geochemical data table reports gold values in ppb and silver values in ppm (opt in boldface, where applicable); arsenic, copper, lead and zinc values are in ppm (% in boldface, where applicable). Inset maps give details of areas of high sampling density.

As in other small-scale surveys, a statistical treatment according to standard methods was not deemed practical. In lieu of such treatment, the author has simply chosen anomalous levels by reference to several rock geochemical programs conducted over other properties in the Stewart region over the past ten years. On this basis, anomalous levels are indicated below:

Element	<u>Anomalous Above*</u>		
Gold	100 ppb		
Silver	3.6 ppm		
Arsenic	120 ppm		
Copper	200 ppm		
Lead	160 ppm		
Zinc	320 ppm		

* Anomalous ranges will vary greatly according to rock type. For this reason, defining anomalous levels for any particular property based on regional averages is somewhat arbitrary.

c. Sample Descriptions

NOTE: For reference, element values for Au, Ag, As, Cu, Pb and Zn have been appended below the sample descriptions where any one of the six elements exceeds 2X the anomalous threshold indicated in the previous section (with all of those elements reporting 2X threshold highlighted in bold).

- KK-904 Float, football-sized round. Strongly Fe carb altered, well silicified, andesitic tuff with 2-3% diss pyrite, trace cpy; minor 1-3mm qtz veinlets; orange lim ox.
- KK-905 Float, fist-sized angular. Siliceous felsic volcanic; v.f.g. 3-5% diss pyrite, mod Fe ox.
- KK-906 Float, fist-sized angular. Limonitic qtz vein intruding altered intrusive; trace diss f.g. pyrite; minor chl, strong Fe ox; qtz is sheared.
- KK-907 Float, fist-sized angular. Bleached and silicified andesitic tuff, 2-3% specular hematite veinlets 1mm wide with qtz; 1-2% diss py; strong lim ox.
- KK-908 Float, 0.3m. Same general description as previous sample with 2-3% diss pyrite, <1% spec hem in veinlets with qtz; less altered, not as bleached.
- KK-909 Float, 0.3m angular. At base of 20m high cascade, silicified rhyodacite, 2-3% v.f.g. diss py, trace spec hematite; 1-2% diss po; strong Fe ox; weak flow-banded texture.
- KK-910 Float, fist-sized angular. Siliceous rhyodacite with 2-3% v.f.g to f.g. diss py, 1-2% diss po, 3-5% qtz+py veinlets; strong Fe ox.
- KK-911 Float, fist-sized angular. Black volcanic siltstone or ash tuff with 18-20% qtz stringers; very limonitic; <1% diss pyrite.
- KK-912 Float, fist-sized angular. Siliceous altered rhyodacite with 3-5% v.f.g diss py (also as veinlets); strong Fe ox.
- KK-913 Float, 1m angular. Massive andesite with 3-5% diss pyrite, silicified, intense Fe ox.
- KK-914 Float, 0.4m sub-angular. Massive pyrrhotite, about 50%, v.f.g and laminated with trace disseminated cpy; hosted in volcanic lapilli tuff; strong Fe ox.

Au	-	10 ppb	Ag	-	<.2 ppm
As	-	<5 ppm	Cu	-	1252 ppm
Pb	-	<2 ppm	Zn	-	11 ppm
[Co	-	261 ppm]			

KK-915 Float, fist-sized sub-angular. Same generally as previous sample with trace to <1% f.g. chalcopyrite.

Au	-	10 ppb	Ag	-	<.2 ppm
As	-	<5 ppm	Cu	-	1916 ppm
Pb		<2 ppm	Zn	-	13 ppm
[Co	-	272 ppm]			

- KK-916 Float, football-sized sub-rounded. Rhyolite with intense Fe ox, 3-5% diss py, 2-3% 1-2mm wide veinlets;
- ERK-901 Grab. Greenish volcanic andesite, altered with chlorite; 3% coarse py and blackish sulfide; rock contains 10% sulfides overall.
- ERK-902 Grab. Blackish andesitic volcanic with 6-7% f.g. po and py; rock is weakly hornfelsed with minor epidote.
- ERK-903 Grab. Grey, thinly bedded siliceous tuff or rhyolite; microfractures contain 1-2% po and py.
- ERK-904 Grab. Black, medium grey gabbro, weathers slightly rusty. Minor epidote veinlets; no obvious sulfides.
- ERK-905 Grab. Highly brecciated, silicified black argillite/siltstone intruded by gabbro stringers; sample is of f.g. gabbro with abundant calcite along fractures; 1-2% po with minor epidote.
- ERK-906 Grab. Fine-grained gabbro stringers in argillite; abundant clay in fractures; po about 7-10%; fault 022/65.
- ERK-907 Float, 0.15m qtz boulder. Mottled grey, silicified rock cut by later qtz veinlets, minor 1-2% pyrite.

Au	-	0.061	opt	Agʻ	-	6.4 ppm
λs	-	845	ppa	Cu	-	19 ppm
Pb	-	34	ppm	Zn	-	25 ppm

ERK-908 Float, 0.15m boulder. Dark grey, coarse grained diorite with 10-12% pyrite, trace cpy.

Au	-	30	ppb	Ag	-	<.2	ppm
As		20	ppm	Cu	-	675	ppm
Pb	-	44	ppm	Zn	-	34	ppm

9

ERK-909 Float, 0.15m boulder. Chloritic, sheared intrusive, sulfides about 25%--massive py and cpy veinlets as well as diss blebs.

Au	-	0.052	opt	Ag	-	20.8	ppm
As	-	780	ppm	Cu	-	1.93	*
Pb	-	48	ppm	Zn	-	92	ppm
[Co	-	434	ppm]				

ERK-910 Grab. From outcrop in Cebuck Creek. Contact zone of medium grained diabase/gabbro with andesitic tuffs; rock is 50% mafic minerals, dark grey black with 0.5% fine grained pyrite; calcite veins are present in contact area.

λu	-	295	ppb	Ag	-	<.2 ppm
As	-	30	ppm	Cu	-	684 ppm
Pb	-	34	ppm	Zn	-	68 ppm

ERK-911 Grab. Contact zone along creek, same rock as previous sample; chill margin about 0.3m wide, appears to be dyke.

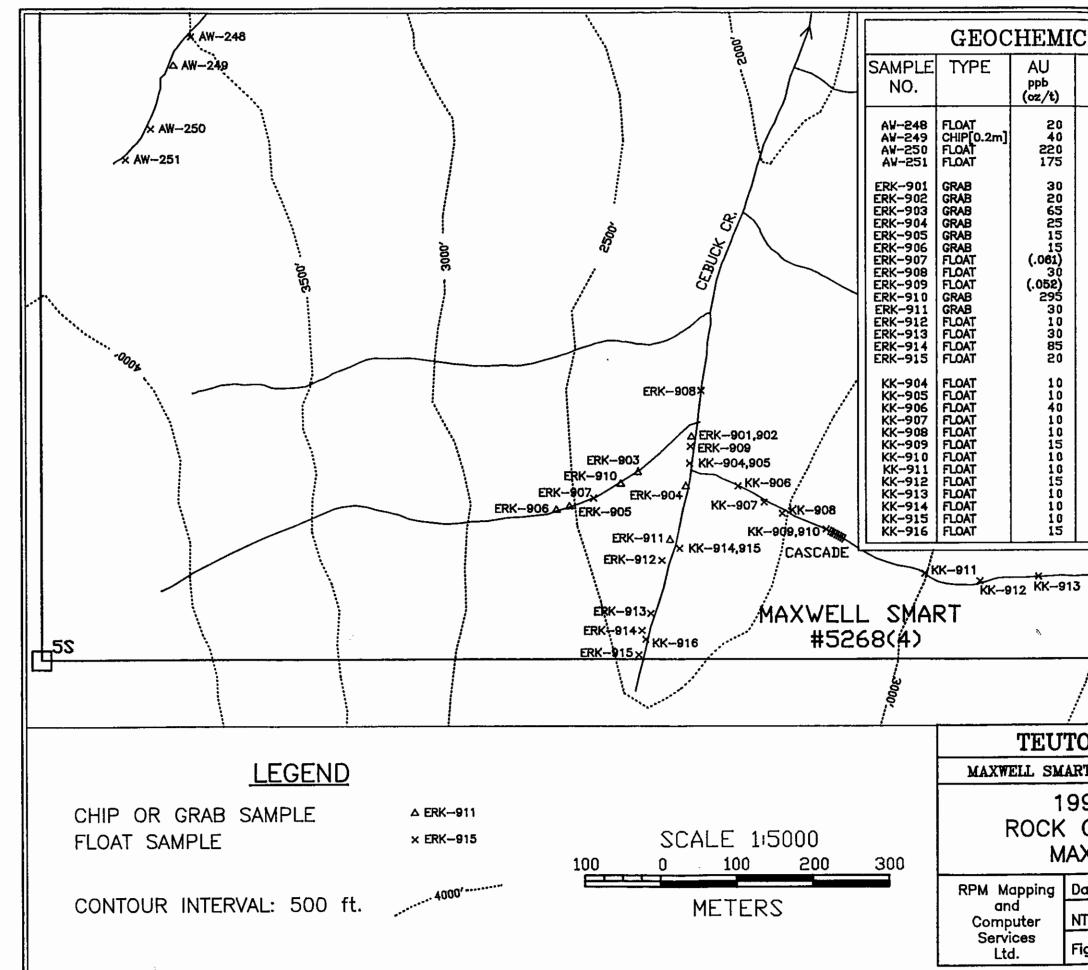
ERK-912 Float, fist-sized. Semi-massive po in greenish altered rock; po about 45-50%.

Au	-	10 ppb	Ag ·	-	0.6 ppm
As	-	<5 ppm	Cu	-	1610 ppm
Pb	-	8 ppm	Zn	-	32 ppm

ERK-913 Float, 0.3m diameter. Grey andesitic tuff, brecciated with 5-7% po and py along fractures.

ERK-914 Float, fist-sized. Semi-massive to massive po, minor cpy.

Au	-	85 p	opb	Ag	-	2.2	ppm
As	-	25 p	pm	Cu	-	3819	ppz
Pb	-	4 F	pm	Zn	-	40	ppm


ERK-915 Float, 0.15m boulder. Semi-massive po, minor cpy and py; sulfides total about 40-50%.

AW-248 Float. Mudstone with malachite on fractures and <1% chalcopyrite.

Au		20 ppb	λg	-	7.8 ppm
As	-	35 ppm	Cu	-	7284 ppm
Pb	-	40 ppm	Źn	-	199 ppm

AW-249

Chip, 0.2m. Calcite replacement vein with some malachite and abundant limonite; 130/55N.

•

· . .

.....

CAL S	SAMPL	E DA	ГА								
AG ppm (oz/t)	AS ppm (%)	CU ppm (%)	PB ppm (%)	ZN ppm (%)							
7.8 7.6 (1.73) (1.69)	7.6 245 7942 4 77 (1.73) 795 (10.21) <2										
0.46 0.42224 0.00000000000000000000000000000	<pre><55 350 <55 2<5 55 55 845 780 55 55 55 25 25 25 25 25 25 25 25 25 25</pre>	349 193 74 191 36 44 19 675 (1.93) 684 138 1610 388 3819 380	64428889444848864 12868949448488664 648886448488864 648886486488648	52 112 86 98 99 25 34 92 65 32 66 40 67							
<pre><0.262</pre> <pre><pre><0.262</pre><pre><0.262</pre><pre><0.262</pre><pre><0.262</pre><pre><0.262</pre><pre><0.262</pre><pre><0.262</pre><pre><0.262</pre><pre><0.262</pre><pre><0.262</pre><pre><0.262</pre><pre><0.262</pre><pre><0.262</pre><pre><0.262</pre><pre><0.262</pre><pre><0.262</pre><pre><0.262</pre><pre><0.262</pre><pre><0.262</pre><pre><0.262</pre><pre><0.262</pre><pre><0.262</pre><pre><0.262</pre><pre><0.262</pre><pre><0.262</pre><pre><0.262</pre><pre><0.262</pre><pre><0.262</pre><pre><0.262</pre><pre><0.262</pre><</pre>	<pre><50 60 1</pre> <pre>55 55 55 55 55 55 55 55 55 55 55 55 55</pre>	174 12 86 274 150 111 73 83 231 341 1252 1916 350	ၜၹႝၹၜၐႄၐၜၜၯၜဨ	224 57 40 107 57 52 60 108 26 42 11 13 101							
3-3500'			, top								
		/									
TON R	ESOU	RCES	CORP	•							
RT PROJ	ect, ste	WART, B.	C., SKEE	NA M.D.							
994 WORK PROGRAM GEOCHEMICAL SAMPLING AXWELL SMART CLAIM											
Date:	June 199	95									
NTS No.: 104B/7E											
Figure:	4		······································								

Au	-	40	ppb	λg	-	7.6	ppm
λs	-	245	ppm	Cu	-	7942	PPM
Pb	-	4	ppm	Zn	+	77	ppm

AW-250 Float. Vein material (sericite-carbonate alt) with abundant limonite 5% cpy and malachite stain, may possibly have more sulfides (pyrite?); very tarnished.

Au	-	220	ppb	λg	-	1.73	opt
λs	-	795	ppm	Cu	-	10.21	*
Pb	-	<2	ppm	Zn	-	1.70	*
[Bi	- >	10000	ppm]				

AW-251 Float. Completely lim. and sericite altered rock (limonite about 60%) with some malachite stain.

Au	-	175	ppb	Ъg	-	1.69 opt
λs	-	1000	ppm	Cu	-	6.05 %
Pb	-	12	ppm	Zn	-	795 ppm

d. Discussion

Several copper anomalous samples were taken along stream courses in the upper headwaters of Cebuck Creek near the southern claim boundary of the Maxwell Smart claim. Semi-massive to massive pyrrhotite mineralization in float boulders (samples KK-914, KK-915, ERK-912 & ERK-914) returned copper values ranging between 1252 and 3819 ppm accompanied by background values in gold and silver. A number of float samples of volcanic rocks carrying from 1 to 10% pyrite also returned anomalous copper values but these were generally lower in the 200 to 400 ppm range.

Three samples from this area also returned anomalous gold values. Perhaps the most interesting is ERK-909, a float sample of a sheared, chloritic intrusive: it assayed 0.052 opt gold and 1.93% copper (with an anomalous cobalt value of 434 ppm and arsenic of 780 ppm). Another float sample, ERK-907, described as silicified rock cut by quartz veinlets, returned 0.061 opt gold and 845 ppm arsenic; copper was low at 19 ppm indicating a different style of mineralization. Finally, a sample from a contact zone outcropping in Cebuck Creek reported an anomalous gold value of 295 ppm accompanied by a copper value of 684 ppm.

Some very interesting samples were taken a few creeks to the northwest in the "AW" series. All four samples taken from this drainage reported highly anomalous copper values ranging from 7284 ppm to 10.21%. Silver values were also anomalous in all samples, varying from 7.6 ppm to 1.73 opt; two of the four samples reported modestly anomalous gold values of 175 and 220 ppb. High zinc and bismuth values, 1.70% and >1%, respectively, were also obtained from sample AW-250 (vein float).

D. Field Procedure and Laboratory Technique

Rock samples were taken in the field with a prospector's pick and collected in a standard plastic sample bag. Grab samples were taken to ascertain character of mineralization at any specific locality. These samples consisted generally of three to ten representative pieces with total sample weight ranging between 0.5 to 2.0 kg. Chip samples were taken across the strike of mineralized structures and generally weighed about 1.0 to 2.0 kg.

All samples were analyzed at the Eco-Tech facility in Kamloops, B.C. Rock samples were first crushed to minus 10 mesh using jaw and cone crushers. Then 250 grams of the minus 10 mesh material was pulverized to minus 140 mesh using a ring pulverizer. For the gold analysis a 10.0 gram portion of the minus 140 mesh material was used. After concentrating the gold through standard fire assay methods, the resulting bead was then dissolved in aqua regia for 2 hrs at 95 deg. C. The resulting solution was then analysed by The analytical results were then compared to atomic absorption. prepared standards for the determination of the absolute amounts. For the determination of the remaining trace and major elements Inductively Coupled Argon Plasma (ICP) was used. In this procedure a 1.00 gram portion of the minus 140 mesh material is digested with aqua regia for 2 hours at 95 deg. C and made up to a volume of 20 mls prior to the actual analysis in the plasma. Again the absolute amounts were determined by comparing the analytical results to those of prepared standards. Specific samples were subjected to further analysis where values obtained exceeded certain threshold High golds were fire-assayed using conventional methods levels. followed by parting and weighing of beads. Wet chemistry methods and AA were used for follow-up analysis of base metals and silver (where values were too high for quantitative measurement by ICP).

E. Conclusions

The limited 1994 reconnaissance geochemical survey of the southwestern portion of the Maxwell Smart claim resulted in the discovery of several float boulders carrying anomalous values, variously, in copper, gold, silver, arsenic, cobalt, zinc and bismuth. Further work is warranted to follow these boulders to source and to determine whether the source area has the potential to host an economic deposit. This work would entail systematic prospecting and sampling of the local area, extending to and beyond present claim boundaries. Positive results from such a program could lead to a recommendation for further work.

Respectfully submitted,

D. Cremonese, P.Eng. June 29, 1995

12

APPENDIX I -- WORK COST STATEMENT

Field PersonnelPeriod Sept. 1 to Sept. 8, 1994: E. R. Kruchkowski, Geologist	
1.0 day @ \$300/day	\$ 300
K. Konkin, Geologist 1.0 day @ \$294/day	294
A. Walus, Geologist	274
1.0 day @ \$200/day	200
Helicopter VIH	
Crew drop-offs/pick-ups: Sept. 29	
VIH: 2.3 hrs. @ \$722.60/hr.	1,662
Shared project costs (prorated at 1.77**)	
Logistics/supervision/bad weather standby in Stewart	
1.77% of \$16,117) Mob/demob crew (home base to Stewart, return)	285
1.77% of \$10,459)	185
Food/accommodation	100
1.77% of \$9,138)	162
Local transportation/expediting/radios	115
1.77% of \$6,493 Field supplies/misc.	115
1.77% of \$4,266	75
Workman's compensation	
1.77% of \$3,592)	63
Assay costsEco-Tech Labs	
Au geochem + 30 elem. ICP + rock sample prep	
32 @ \$19.5275/sample	625 19
Au assay: 2 @ \$9.63/sample Ag assay: 2 @ \$4.28	8
Cu assay: 3 @ \$8.025	24
Pb/Zn assays: 1 @ \$6.955	7
Report Costs	
Report and map preparation, compilation and resear	rch
D. Cremonese, P.Eng., 2.0 days @ \$375/day	750
Draughting RPM Computer	150
Copies, report, jackets, maps, etc. TOTAL	<u>40</u>
Amount Claimed Per Statement of Exploration #3067045:	\$ 4,700±±
	//00
• Based on ratio of field man-days to total project fie	ld man-days

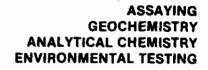
**Please adjust PAC account accordingly.

13

APPENDIX II - CERTIFICATE

- I, Dino M. Cremonese, do hereby certify that:
- 1. I am a mineral property consultant with an office at Suite 509-675 W. Hastings, Vancouver, B.C.
- 2. I am a graduate of the University of British Columbia (B.A.Sc. in metallurgical engineering, 1972, and L.L.B., 1979).
- 3. I am a Professional Engineer registered with the Association of Professional Engineers of the Province of British Columbia as a resident member, #13876.
- 4. I have practised my profession since 1979.
- 5. This report is based upon work carried out on the Maxwell Smart claim from July to October of 1994. Reference to field notes and maps made by geologists E. Kruchkowski, K. Konkin and A. Walus is acknowledged. I have full confidence in the abilities of all samplers used in the 1994 geochemical program and am satisfied that all samples were taken properly and with care.
- 6. I am a principal of Teuton Resources Corp., owner of the Maxwell Smart claim: this report was prepared solely for satisfying assessment work requirements in accordance with government regulations.

Dated at Vancouver, B.C. this 29th day of June, 1995.


D. Lan

D. Cremonese, P.Eng.

APPENDIX III

ASSAY CERTIFICATES

10041 E. Trans Canada Hwy., R.R. *2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

CERTIFICATE OF ASSAY ETS3127

TEUTON RES. CORPORATION

November 4, 1994

509-675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Attention: Dino Cremonese

211 ROCK samples received October 4, 1994 Sample run date: October 20, 1994 Samples submitted by: Ken Konkin **Client Project Number: OEX**

	ET #	Tag #	Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)	As %	Cu %	Pb %	Zn %	
	1	KK94892	10.05	0.293	43.2	1.26	3.26			5.50	
	8	KK94899	.0.00	0,200	62.6	1.83	0.20	1.50		0.00	
	42	KK94933			67.3	1.96					
	57	KK94948			•7.•				1.79		
	61	KK94952							0.86	4.10	
	63	KK94954	2.14	0.062					0.00		
	66	KK94957	8.20	0.239	236.0	6.88			5.59	11.43	
	67	KK94958	10.85	0.316	129.6	3.78	1.04		2.70	10.65	
	68	KK94959	9.15	0.267	92.5	2.70	1104		1.75	9.32	
	69	KK94960	1.02	0.030	02.0	2.10			1.70	0.02	
	70	KK94961		0.000	49.1	1.43	1.17		1.73	4.42	
	73	ERK94885	11.50	0.335	63.4	1.85	2.59		1.65	4.44	
	77	ERK94889	7.20	0.210	3110.2	90.70	2.00		3.36		
	78	ERK94890			119.7	3.49			0.00		
	79	ERK94891			48.6	1.42					
	80	ERK94892	2.09	0.061	830.6	24.22			5.47		
	81	ERK94893	5.05	0.147	2740.5	79.92			8.75	0.94	
	82	ERK94894	16.83	0.491	4280.3	124.83			43.45	4.08	
	83	ERK94895			115.5	3.37			0.83	4.00	
	84	ERK94896	6.65	0.194	280.1	8.17	2.57		0.00		
	- 95	ERK94907	2.10	0.061							-
	97	ERK94909	1.80	0.052				1.93		MAXWELL S	MART
-	110	ERK94922			43.5	1.27				<u></u>	-
	112	ERK94924	10.75	0.314	166.7	4.86					
	113	ERK94925	13.90	0.405					• •		
							-	-			

Page 1

Frank J.Pezzott, A.Sc.T. B.C.Certified Assayer

TEUTON RES. CORPORATION ETS 3127

November 4, 1994

ET#.	Tag #	Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)	As %	Bi %	Cd %	Cu %	Pb %	Zn %
118	ERK94930		<u> </u>	105.4	3.07				0.90	0.89	
123	ERK94935	1,14	0.033					0.15		8.25	11.96
124	ERK94936									3.36	1.05
125	ERK94937	1.56	0.045							1.11	6.42
127	ERK94939									1.19	6.91
129	ERK94941									0.83	3.43
130	ERK94942			121.6	3.55						3.13
131	ERK94943			105.0	3.06						5.44
132	ERK94944							0.12		3.49	1.53
133	ERK94945			92.1	2.69			0.21		2.83	33.02
134	ERK94946										2.90
136	ERK94949								1.50		
138	ERK94951	1.83	0.053						0.92		
139	ERK94952					1.58					
140	ERK94953	8.35	0.244			9.95					
141	ERK94954	1.78	0.052								
MANCEL 167	AW250			59.3	1.73		<.01		10.21		1.70
SMAT 168	AW251			58.0	1.69				6.05		

QC/DATA

Resplit:

RS/63	KK94954	1.95	0.057
RS/125	ERK94937	1.74	0.051

NOTE: Average values are reported where repeat assays are performed. Screened "Metallic Assays" are performed on sample resplits screened to -140 mesh.

ECO-TECH BOR RIES LTD.

Frank J. Pezzotti, A.So.T. B.C. Certified Assayer

XLS/Teuton3

27-Oci-94

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highwey KAMLOOPS, B.C. V2C 2J3

Phone: 604-573-5700 Fax : 604-573-4557

.

• •

~~~~

211 ROCK samples received October 4, 1994 Sample run date: 27 October, 1994 Samples submitted by. Ken Konion Client Project Number: OEX

i

509-675 W HASTINGS ST

ATTENTION: Dino Cremonese

VANCOUVER, B.C. V6C-1N2

TEUTON RESOURCES CORPORATION ETS-3127

Values in ppm unless otherwise reported

Et #.	Tag #	Au (ppb)	Ag	AI X	As	Ba	Bi	Ca %	Cd	Co	Cr		Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Tì %	U	V	W	Y	Zn	
1	KK94892	>1000	>30	0.13	>10000	20	<5	1.55	796	20	113	1896	8.12	<10	0.28	2137	۲	<.01	8	600	446	35	<20	64	< 01	20	6	<10	<1	>10000	
2	KK94893	115	0.4	1.22	300	25	<5	0.27	5	29	- 44	678	12.20	<10	0.94	842	<1	0.01	8	520	6	<5	<20	<1	0.07	20	72	<10	<1	374	
3	KK94894	40	<.2	3.56	170	70	<5	1.00	3	28	70	843	8.13	<10	1.61	471	<1	0.14	9	1780	14	<5	<20	65	0.32	<10	216	<10	<1	249	
4	KK94895	20	1.0	1.15	<5	25	<5	6.50	2	80	36	1278	14.10	<10	3.22	3584	<1	<.01	9	80	<2	25	<20	148	0.02	30	166	<10	<1	93	
5	KK94895	20	0.6	1.49	-5	30	<5	9.17	<1	55	65	658	11.40	<10	3.50	3759	<1	<.01	9	370	<2	15	<20	233	0.04	30	158	<10	<1	87	
6	KK94897	15	<.2		<5	35	<		<1	24	45	226		<10	1.15	1068	<1	0.02	5	1640	4	10	<20	88	0.06	<10	79	<10	<1	68	
7	KK94898	15	<.2	2.26	50	25	-	10.30	<1	35	26	566	9.43	<10	2.26	2500	<1		11	850	2	20	<20	197	0.05	20	89	<10	<1	92	
8	10(94899	225	>30	0.50	<5	35	-5	0.83	18	20	194 :	>10000		<10	0.34	578	<1	<.01	8	1650	<2	<5	<20	7	0.03	<10	18	<10	<1	558	
9	KIG4900	30	2.2	0.22	<5	15	<	0.20	2	16	35	576	12.00	<10	0.32	423	<1	<.01	3	40	<2	<5	<20	<1	<.01	10	26	<10	<1	40	
10	KK94901	10	0.6	2.83	-5	45	-5	1.92	1	59	123	878	10.90	<10	1.73	978	<1	0.03	8	1090	14	<5	<20	28	0 04	10	72	<10	<1	116	
11	KK94902	15	<.2		20	60	<5		<1	15	65	261			0.96	499	<1	0.14	6	1760	8	10	<20	52	0.12	<10	107	<10	2	63	
12	KK94903	10	<.2	2.06	. <5	55		297	<1	20	76	351			1.30	869	_	0.02	6	1900	6	15	<20	37	0 07	<10	85	<10	<1	65	
13	NG/G4904	10	<.2		¢.	65	<5	12.80	2	41	130		8.15	<10	1.15	1367	<1		60	2280	22	15	<20	- 85	< 01	<10	141	<10	<1	224	1
14	KK94905	10	0.6	0 30	60	70	-5	0.16	<1	2	65	12		<10		204	<1	0.05	2	60	8	<	<20	16	<.01	10	8	<10	3	57	
15	KK94906	40	<.2	1.03	10	20	<5	0.35	<1	11	243	86	3.15	<10	0.57	600	6	<.01	6	840	<2	<5	<20	<1	0.02	<10	23	<10	<1	40	
16	KK94907	10	4.6	0.80	<5	35	<5	6.48	2	23	26	274	5.62	<10	1.80	1655	<1	D.01	2	1310	8	10	<20	116	<.01	<10	26	<10	1	107	1
17	KK94908	10	<2	2.10	-5	25	- 5	1.54	<1	26	77	150	4.70	<10	1.30	637	<1	0.05	16	940	6	10	<20	19	0 26	<10	82	<10	2	57	1
18	KK94909	15	< 2	1.77	15	15	<5	0.74	<1	35	60	111	4.74	<10	1.19	699	<1	0.04	13	720	6	10	<20	26	0.20	<10	56	<10	<1	52	L MAY
19	KK94910	10	<2	2.30	15	15	<5	0.96	<1	31	73	73	5.43	<10	1.55	878	<1	0.06	13	1010	6	10	<20	31	0 26	<10	66	<10	<1	60	/ · · .
20	KK94911	10	<.2	4.43	5	35	10	5.26	<1	34	41	83	8.04	<10	1.89	1496	<1	0.03	7	1350	16	15	<20	26	0 43	<10	230	<10	1	106	SHA
21	KK94912	15	<.2		75	15	<5	0.97	<1	58	49	231	3.76	<10		357	<1	0.05	102	830	6	<5	<20	7	0 21	<10	38	<10	3	26	1
22	KK94913	10	<.2		<5	20	<5	2.67	<t< td=""><td>36</td><td>72</td><td>341</td><td>5.25</td><td><10</td><td>0.73</td><td>504</td><td><1</td><td>0.05</td><td>20</td><td>890</td><td>8</td><td><5</td><td><20</td><td>10</td><td>0 26</td><td><10</td><td>77</td><td><10</td><td>2</td><td>42</td><td>1</td></t<>	36	72	341	5.25	<10	0.73	504	<1	0.05	20	890	8	<5	<20	10	0 26	<10	77	<10	2	42	1
23	KK94914	10	<.2	0.06		15		10 20	1	261	18		13.40	<10	<.01	959	<1	<.01	22	100	<2	<5	<20	43	0.01	20	11	<10	<1	11	•
24	KK94915	10	<.2	0.04		20	<5	10.20	2	272	19	1916	14.30	<10	<.01	1004	<1	<.01	26	140	<2	<5	<20	- 38	< Q1	30	11	<10	<1	13	1
25	KK94915	15	<.2	1.69	<5	10	<5	2.12	1		59	350	4.48	<10	0.61	394	<1	0.03	21	1090	6	10	<20	37	0.16	<10	63	<10	<1	101	
26	KK94917	20	<.2		-5	25	10	2.26	<1	28	28		10.70	<10	0 92	232	<1	0.02	9	1580	18	<5	<20	41	0.18	<10	40	<10	3	88	
27	KK94918	10	<.2		10	25	20	1.21	2	52	57		> 15	<10	0.53	181	21	0.02	11	410	34	ব	<20	22	<.01	10	26	<10	<1	69	
28	KK94919	20	<.2	1.59		25	20	0.63	1	35	24		14.90	<10	0.63	178	<1	0.01	10	, 440	26	<5	<20	5	0.19	20	23	<10	<1	88	
29	KK94920	30	10.8	0.69	90	10	<5	0.32	<1	22	40	58	6.65	<10	0.20	200	2	0.01	66	410	24	10	<20	1	0 02	<10	30	<10	<1	28	
30	KK94921	15	2.6	0.36	40	10	<5	0.05	<1	14	74	45	4.24	<10	<.01	19	<1	<.01	73	220	62	ব	<20	<1	<.01	<10	5	<10	<1	10	
															Page 1																

.

• •

TEUTON RESOURCES CORPORATION ETS-3127

.

ECO-TECH LABORATORIES LTD.

EL #.	Tag #	Au (ppb)	_	AI X	As	Ba	_	Ca %	Cd	Ço	Cr		fe %	_	Mg %	Ma		Na X	Ni	<u> </u>	<u>Pb</u>	Sb	<u>Sn</u>		Ti %	U	<u> </u>	w	<u> </u>		
66	KK94957	>1000		0.08		20		1.96	634	22	56		> 15		0.62	2605		< 01	6		>10000	130	<20	40	<.01	50	3	<10		>10000	
67	KK94958	>1000			>10000	20	-	1.65	617	23	61		> 15		0.40	2225	•	<.01	6		>10000	55	<20	37	< 01	30	4	<10		>10000	
68	KK94959	>1000	>30		9290	25	10	3.19	493	22	59	155	» 15	<10	1.02	3233	<1	< 01	4		>10000	30	<20	58	<.01	40	6	<10	-	>10000	
69	KK94960	>1000	6.2		735	30	<5	3.51	36	10	63	74	4.94	<10	0.67	2576	* †		8	1530	1522	15	<20	53	< .01	<10	27	<10	<1	6278	
70	KK94961	415	>30	1.46	>10000	35	4	1.27	294	27	52	1927	> 15	<10	0.62	2079	< 1	0.01	5	520	>10000	5	<20	37	< 01	50	51	<10	<1	>10000	
71	KK94962	40	2.0	0.38	160	20	<5	1.68	4	32	59	164	12.50	<10	0.60	761	<1	<.01	7	1680	338	<5	<20	44	<.01	20	24	<10	<1	681	
72	ERK94884	195	0.4	2.63	75	20	-5	0.32	3	84	117	1027	11.50	<10	2.32	921	<1	< 01	11	520	224	10	<20	<1	0.05	<10	126	<10	<1	516	
73	ERK94685	>1000	>30		>10000	<5	<5	0.03	<1	6	272	3960	3.08	<10	<.01	33	8	<.01	5	450	>10000	5720	<20	<1	<.01	<10	3	<10	<1	382	
74	ERK94886	375		4.26	680	120	<	1.40	2	39	43	331	9.33	<10	2.06	956	~1	0.07	11	2320	576	90	<20	41	0 35	<10	259	<10	<1	229	
75	ERK94667	145	<.2	1.71	275	70	4	473	1	17	50	128	4.57	<10	1.00	989	<1	0.04	7	2080	256	8 5	<20	79	0.11	<10	104	<10	<1	169	
76	ERK94688	185	2.6	1.27	1645	60	4	3.32	2	230	75	851	» 15	<10	0.85	1105	*1	<.01	23	50	756	10	<20	206	<.01	40	57	<10	<1	677	
77	ERK94869	>1000	>30	0.06	1290	<5	<	0.19	106	10	246	4686	1.84	<10	0.03	62	5	<.01	6	570	>10000	4685	20	<1	<.01	<10	Э	<10	<1	5294	
78	ERK94890	290	>30	1.70	90	45	-5	2.02	2	16	54	230	5.60	<10	1.21	696	1	0.03	5	2360	882	135	<20	31	0 11	<10	113	<10	<1	174	
79	ERK94891	235	>30	1.60	470	20	-5	0.26	<1	57	63	959	12.90	<10	2.07	1365	*1	<.01	7	560	564	50	<20	<1	0 03	10	107	<10	<1	165	
60	ERK94892	>1000	>30	0.04	3000	<5	4	0.02	13	2	234	827	0.79	<10	0.02	42	~1	<.01	4	170	>10000	1120	<20	<1	<.01	<10	2	<10	<1	176	
81	ERK94893	>1000	>30	6.06	4815	<\$	4	0.02	184	3	314	3492	1.06	<10	<.01	53	6	<.01	5	500	>10000	3990	<20	<1	< 01	<10	2	<10	<1	9836	
42	ERK94894	>1000	>30	<.01	9465	<5	<5	<.01	756	3	85	9473	1.21	<10	<.01	19	*1	<.01	3	1060	>10000	9600	<20	<1	<.01	<10	<1	<10	<1	>10000	
83	ERK94895	435	>30	0.36	395	30	<	5.77	35	61	87	1299	> 15	<10	1.50	3317	*1	<.01	3	390	>10000	235	<20	267	<.01	30	73	<10	<1	1759	
84	ERK94896	>1000	>30	0.04	>10000	15	- ৩	0.06	<1	68	211	1662	13.30	<10	< 01	55	9	<.01	7	90	7278	1370	<20	<1	< 01	10	2	<10	<1	591	
85	ERK94897	325	9.0	0.41	4185	65	4	0.18	<1	14	190	160	6.15	<10	0.03	481	5	< 01	5	960	350	70	<20	2	< 01	<10	15	<10	<1	91	
86	ERK94898	130	6.0	0.37	1530	35	ক	6.45	<1	71	83	781	14.30	<10	2.64	2801	4	<.01	19	230	234	115	<20	371	<.01	30	76	<10	<1	127	
87	ERK94899	36	2.0	0.53	90	5	<5	8.99	<1	16	-41	164	4.28	<10	0 97	1807	*1	<.01	6	340	104	25	<20	131	0 01	<10	37	<10	<1	56	
86	ERK94900	15	1.6	2.88	· <u>50</u>	40		4.70	<1	13	67		3.90	<10	1.11	962	<u>*1</u>	0.25	6	2190	156	20	<20	122	014	<10	130	<10	1	71	
60	ERK94901		0.4	2.10		20	-	3.20	<1	57	60	349	11.70	<10	1.84	821	*1	<.01	9	790	66	10	<20	41	0.09	<10	72	<10	<1	52 '	
90	ERK94902	20	0,6	2.69	35	30	<5	2.20	<1	48	67	193	6.54	<10	1.81	622	*1	0 24	15	800	124	30	<20	69	0 21	<10	96	<10	<1	112	1
91	ERK94903	65	0.4	2.87	20	35	<5	1.47	<1	19	53	74	5.39	<10	1.45	944	< 1	0.10	9	540	82	15	<20	46	0,19	<10	90	<10	<1	66	
92	ERK94904	25	<.2		4	105	<5	3.13	<1	35	79	191	7.20	<10	1 30	976	<1	0.02	1B	3360	68	15	<20	122	0.25	<10	193	<10	<1	96	مل المعديد
93	ERK94905	15	<.2	2.16	<5	40	10	5.60	<1	22	80	36	4.50	<10	1.83	832	*1	0.08	30	3210	38	20	<20	104	0.20	<10	87	<10	<1	69	MAYNEL
94	ERK94906	15	8.2	2.21	<5	40	5	3,41	<1	25	89	44	5.00	<10	1.97	854	*1	0.06	32	3270	40	25	<20	77	0 20	<10	95	<10	<1	89	
95	ERK94907	>1000	6.4	0.17	845	30	<5	0.31	<1	4	199	19	1.57	<10	0 07	123	7	<.01	5	390	34	15	<20	~ †	< 01	<10	6	<10	<1	25	المهرب]
96	ERK94908	30	<.2	3.04	20	20	<5	2.03	<1	125	50	675	9 55	<10	1.06	385	* 1	0 03	25	690	44	10	<20	5	0 11	<10	79	<10	<1	34	1
97	ERK94909	>1000	20.8	1.33	780	30	<5	0.13	1	434	124	>10000	> 15	<10	0.14	166	2	< 01	26	2160	48	<5	<20	<1	0.01	20	20	<10	<1	92	
98	ERK94910	295	<.2	2.97	30	30	<5	3.11	<1	45	153	684	5.44	<10	2.46	802	*1	0.16	50	1870	34	30	<20	64	022	<10	97	<10	6	68	,
99	ERK94911	30	<.2	2.69	5	25	<5	3.59	<1	33	174	138	5 33	<10	246	859	*1	012	47	1690	28	25	<20	\$1	0.25	<10	107	<10	6	65	
100	ERK94912	10	0.6	0.81	<5	40	-5	0.54	2	129	15	1610	> 15	<10	0.40	268	*1	<.01	32	250	8	<5	<20	2	0.04	40	32	<10	<1	32	

Page 3

.

-

:

٠

ECO-TECH LABORATORIES LTD.

.

Et #.	. Tag #	Au (ppb)	Ag	AI %	As.	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	υ	v	W	<u>Y</u>	<u>Zn</u>	•
101	ERK94913	30	<.2	2.12	<5	20	<5	1.09	<1	27	70	388	8.95	<10	1.72	515	~ ~1	0.04	42	950	66	10	<20	20	0.25	<10	102	<10	<1	66	MAXWELL
102	ERK94914	65	2.2	0.37	25	60	<5	6.00	2	169	35	3819	> 15	<10	<.01	2439	<1	<.01	13	310	4	<5	<20	<1	0 02	40	11	<10	<1	40	
103	ERK94915	20	<.2	3.68	<5	45	<5	0.66	<1	64	117	380	> 15	<10	2.79	1355	<1	<.01	7	1540	36	<5	<20	<1	0 04	20	175	<10	<1	67	SMART
104	ERK94916	35	1.2	0.52	- 50	20	<5	1.69	32	127	27	- 60	13.10	<10	0.21	618	8	0.02	23	1730	22	10	<20	27	< 01	20	29	<10	<	129	
105	ERK94917	70	0.4	0.24	240	<5	5	0.33	<1	36	50	19	4.99	<10	<.01	119	67	0.02	50	1530	96	25	<20	<1	< 01	<10	6	<10	<1	50	
																• · ·															
106	ERK94918	10	0.2	0.47	195	10		0.36	3	79	47	14		<10		241	40	0.02	39	610	56	15	<20	4		<10	18	<10	<1	116	
107	ERK94919	105	<.2	0.63	20	25	4		2	27	27	26	8.96	<10		1524	_	0.02	12	2200	20	20	<20	58	< 01	10	11	<10	<1	65	
106	ERK94920	10	<.2		-5	25	15		<1	19	32	25	9 96	<10		518	<1	0.02	10	2400	20	10	<20	29	<.01	10	17	<10	<1	79	
109	ERK94921	10	<.2	D.97	10	30	-		<1	18	24	19	6.93	<10		1875	<1	0.01	8	1920	18	<5	<20	93	< 01	<10	14	<10	<1	94	
110	ERK94922	80	>30	0.19	70	55	4	1.86	7	1	177	359	2.41	<10	0.32	469	6	<.01	8	580	3874	190	<20	182	<.01	<10	5	<10	1	544	
111	ERK94923	365	2.6	0.36	545	20	<5	0.17	<1	6	173	23	2.09	<10	0 17	76	<1	<.01	4	400	168	15	<20	<1	< 01	<10	3	<10	<1	51	
112	ERK94924	>1000	>30	1.31	810	15	<5	1.91	20	11	116	301	5.20	<10	0.11	240	<1	<.01	8	1260	8688	105	<20	<1	0.07	<10	60	<10	<1	4766	
113	ERK94925	>1000	16 6	1.02	385	45	-5	5.15	16	220	32	1454	> 15	<10	0.46	866	<1	<.01	47	500	422	<5	<20	314	<.01	20	35	<10	<1	1821	
114	ERK94926	370	1.0	1.35	125	30	<5	0.66	13	17	92	151	4.68	<10	0.82	248	9	<.01	13	1300	100	20	<20	21	<.01	<10	38	<10	<1	1842	
115	ERK94927	370	6.6	0.26	1390	10	-5		5	16	97	27	4.23	<10		42	1	0.01	5	250	68	30	<20	<1	<.01	<10	2	<10	<1	1212	
	210121021	0.0					•		-							~			-					-			-				
116	ERK94928	225	26.0	0.12	635	5	15	0.06	8	9	116	17	9.26	<10	<.01	21	7	<.01	5	60	116	210	<20	<1	<.01	10	<1	<10	<1	1241	
117	ERK94929	35	16.2	0.32	350	15	<5	0.98	<1	30	84	30	7.38	<10	0.25	353	<t< td=""><td><.01</td><td>16</td><td>150</td><td>110</td><td>85</td><td><20</td><td>113</td><td><.01</td><td><10</td><td>4</td><td><10</td><td><1</td><td>159</td><td></td></t<>	<.01	16	150	110	85	<20	113	<.01	<10	4	<10	<1	159	
118	ERK94930	90	>30	0.07	10	30	<5	2.86	130	9	173	>10000	2.55	<10	0.11	230	3	<.01	17	1090	>10000	55	<20	69	<.01	<10	2	<10	<1	6234	
119	ERK94931	50	1.4	0.01	670	<5	<5	0.05	2	6	171	96	6.09	<10	<.01	46	4	<.01	7	<10	248	110	<20	<1	<.01	<10	1	<10	<1	286	
120	ERK94932	25	2.8	0.15	2090	25	10	0.68	<1	16	61	46	> 15	<10	<.01	265	<1	<.01	3	140	50	300	<20	\$1	<.01	20	14	<10	<1	76	
121	ERK94933	30	1.6	90.09	165	15	<5	0.06	1	2	148	106	2.05	<10	0.03	53	з	<.01	- 4	50	202	15	<20	<1	<.01	<10	4	<10	<1	105	
122	ERK94934	15	0.4	0.12	70	165	<5	0.02	<1	1	239	15	0.76	<10	<.01	72	8	<.01	- 4	<10	48	<5	<20	<1	<.01	<10	Э	<10	<1	31	
123	ERK94935	>1000	19.8	0.27	125	<5	<5	0.02	> 1000	10	127	783	1.63	<10	0.11	468	<1	<.01	2	80	>10000	<5	<20	<1	< 01	<10	11	<10	<1 :	>10000	
124	ERK94936	415	21.0	0.10	350	20	<5	0.02	75	5	175	182	8.46	<10	<.01	63	<1	<.01	3	90	>10000	5	<20	2	< 01	<10	31	<10	<1	9886	
125	ERK94937	>1000	12.6	0.14	45	35	<5	1.61	435	5	133	851	3.05	<10	0.01	1564	<1	<.01	2	110	>10000	<5	<20	25	<.01	<10	14	<10	<1 :	>10000	
							_							-	_							-					-				
126	ERK94938	30	2.4	0.25	25	180	<5		13	2	129	167	1.90	<10	<.01	155	- 4	<.01	2	50	4356	<5	<20	<1	<.01	<10	5	<10	<1	2413	
127	ERK94939	20	16.4	D.13	35	45	-	> 15	651	12	55	169	1.39	40	< 01	6199	33	<.01	15	170	>10000	5	<20	265	0.01	<10	4	<10	10 :	>10000	
128	ERK94940	15	54	0.31	150	15	10		19	12	55	44	6 74	<10	<.01	727	7	<.01	8	660	976	10	<20	<1	< 01	<10	15	<10	<1	2512	
129	ERK94941	20	4.0	0.26	20	10		0 50	250	8	105	240	2.46	<10	0.05	1057	<1	<.01	6	860	>10000	75	<20	<1	<.01	<10	22	<10		>10000	
130	ERK94942	220	>30	0.51	5	20	<5	1,36	199	10	55	1166	1.92	<10	0.19	2424	<1	<.01	10	1140	5774	10	<20	14	< 01	<10	21	<10	5 :	>10000	
131	ERK94943	840	>30	0.39	60	5	<5	4.41	355	13	80	732	1.63	<10	0.16	2547	2	<.01	6	720	5916	<5	<20	76	<.01	<10	12	<10	4 :	>10000	
132	ERK94944	95	9.0	0.23	30	<5	-		> 1000	10	82	717	0.86	<10	0.03	189	<1	<.01	4		>10000	80	<20	<1	<.01	<10	8	<10		>10000	
133	ERK94945	260	>30	0.32	10	<5	-5		> 1000	32	31	1069	1.48	<10	0.18	2423	<1	<.01	4		>10000	<5	<20	6	<.01	<10	9	<10		>10000	
134	ERK94946	170	17.6	0.37	385	25	ৰ্ব্য		178	17	92	463	> 15	<10	0.07	1574	<1	<.01	15	150	5386	15	<20	103	<.01	40	5	<10		>10000	
135	ERK94948	35	3.2	0 20	20	35		13.60	35	4	86	2114	1.77	<10	0.12	1974	<1	<.01		460	1014	10	<20	313	<.01	<10	Ă	<10	1	5320	
135	ERN34940	30	3.2	0 20	20	30	4	13.00	. 30	•	80	2114	1.11	-10	0.12	1014	-1	01	-	-100	1014	10	-20	313	01	-10	•	-10	•	3320	

. •

TEUTON RESOURCES CORPORATION ETS-3127

TEUTON RESOURCES CORPORATION ETS-3127

- .

• • •

ECO-TECH LABORATORIES LTD.

Et #	Tag#	Au (ppb)	Ag	AI %	As	Ba	8 i	Ca %	Cd	Co	Cr	Çu	Fe %	La	Mg %	Mn	Ma	Na %	·Ni	P	Pb	Sb	Sa	Sr	TI %	V	v_	w	Y	Za	
136	ERK94949		14.0	1.30	45	55	- ৰ	7,44	22	14	52	>10000	5 80	<10	0.54	1789	<1	<.01	11	2970	528	15	<20	197	0.01	<10	26	<10	<1	3183	
137	ERK94950	105	3.6	1.05	<5	50	-5	0.31	12	73	47	1193	> 15	<10	0.33	1489	3	<.01	5	230	246	-5	<20	<1	< 01	50	28	<10	<1	1450	
130	ERK94951	115	166	0 37	235	20	<	1.13	5	- 45	107	>10000	457	<10	0.11	536	2	<.01	57	1950	106	ৰ	<20	12	<.01	×10	7	<10	<1	833	
139	ERK94952	>1000	5.4		>10000	25	15	0.10	<1	54	- 74	192	> 15	<10	0 09	212	<1	<.01	6	50	662	<5	<20	- 4	<.01	30	16	<10	<1	234	
140	ERK94953	>1000	3.2	0.17	>10000	30	15	4.05	<1	87	67	148	> 15	<10	0.63	2464	<1	<.01	40	450	242	455	<20	60	<.01	30	7	<10	<1	403	
141	ERK94954	>1000	7.8	1.09	2705	45	4	0.99	4	27	69	605	> 15	<10	0.41	6972	<1	<.01	12	500	286	ৰ	<20	9	0.01	90	27	<10	∢1	992	
142	AW225	110	15.8	0.59	825	145	<5	10.40	3	36	73	711		<10	0.18	3545	1	0.02		2420	654	ব	<20	142	<.01	20	25	<10	9	224	
143	AW226	25	3.0	1.58	480	50	<5	2.68	3	27	88	667	6.86	<10	1.06	1144	<1	0.02	10	1460	190	10	<20	166	0.03	<10	85	<10	<1	488	
144	AW227	15	<.2	3.07	135	85	<5		<1	21	62		13.60	<10	2.31	1229	<1	0.01	4	1570	78	5	<20	20	012	10	165	<10	4	247	
145	AW228	20	<.2	1.92	65	50	<5		1	15	27	83	4.94	<10	1.90	2258	<1	0.0t	6	1290	52	25	<20	443	0.03	<10	76	<10	<1	171	
145	AW229	10	0.2	2.58	40	50	<5	0.80	2	43	33	553	10.60	<10	1,73	690	3	0.02	9	2130	50	4	<20	10	0.02	<10	105	<10	<1	195	
147	AW230	130	6.2	0.74	120	15	<5	0.38	- 4	73	106	3716	7.67	<10	0.23	216	<1	0.01	8	1320	58	<5	<20	5	0.07	<10	30	<10	<1	283	
148	AW231	80	5.4	0.93	80	65	<5		2	16	203	1292	5.27	<10	0.47	327	2	0.02	7	1000	62	<ŝ	<20	Ē	0.09	×10	53	<10	<1	239	
149	AW232	30	<2	0.92	50	60	<	4.66	1	13	53	242	-	<1D	0.65	1787	- 4		6	2130	60	10	<20	99	0.01	<10	42	<10	5	233	
150	AW233	200	2.0	2.11	555	30	-5	4.94	<1	65	101		14.10	<10		2326	<1	<.01	10	760	42	-5	<20	73	0.02	30	105	<10	<1	201	
							•		-												-	~			•.••	~	,	10	•		
151	AW234	55	0.6	0.26	145	140	<	> 15	1	15	53	126	4.16	<10	0.81	2640	<1	<.01	4	660	96	15	<20	682	<.01	<10	16	<10	1	204	
152	AW235	25	<.2	0.82	25	85	<	6.96	<1	23	14	78	6.25	<10	0.67	1701	<1	0.02	9	2260	34	5	<20	258	<.01	<10	31	<10	<1	181	
153	AW236	20	<.2	1.23	5	130	ক	5.16	<1	24	19	183	6.27	<10	0.32	1396	<1	0.02	9	2420	22	ব	<20	84	<.01	<10	52	<10	<1	138	
154	AW237	30	<.2	1.03	-5	115	<	4.29	<1	30	27	219	6.76	<10	0.36	1717	<1	0.02	11	2450	32	<5	<20	78	< 01	<10	57	<10	<1	145	
155	AW238	25	<.2	1.00	<5	105	-5	5.01	<1	23	36	243	7.46	<10	0.46	1134	<1	0.02	11	2140	26	-5	<20	102	<.01	<10	39	<10	<1	150	
156	AW239	25	<.2	0.70	حه	90	<5	3.36	<1	19	27	48	6.78	<10	0.11	1248	<1	0.02	9	2430	12	<5	<20	33	<.01	<10	33	<10	<1	106	
157	AW24D	20		1.10	<5	145	<5		<1	23	16	241	6 81	<10	0.20	1068	<1	0.02	10	2680	20	<5	<20	37	< 01	<10	37	<10	<1	120	
158	AW241	100	3.2		75	70	<5		2	38	37	-	> 15	<10	<.01	262	10	< 01	12	1390	104	<5	<20	<1	<.01	30	22	<10	<1	32	
159	AW242	30	0.4	0.11	10	25	-			14	41	147	5.97	<10	1.93	2499	<1	< 01	6	120	16	25	<20	659	<.01	<10	19	<10	<1	92	
160	AW243	25	1.2	0.23	<5	30	-	14.70	<1	16	75	1076	6.33		3.15	4786	<1	<.01	ă	550	14	20	<20	413	<.01	20	29	<10	7	102	
,00			•				•	1					0.00	-10	0.10	4,00	•		•	000		20	-20	410	4. 9 1	20	23	-10	'	102	
161	AW244	25	<.2	0.57	<5	200	<5	7.51	<1	17	12	238	5.21	<10	0 39	1417	<1	0.03	5	2290	12	10	<20	262	<.01	<10	52	<10	2	102	
162	AW245	20	1.8	0.48	10	95	<5	8.39	<1	21	48	1316	5 93	<10	0.58	2072	<1	<.01	25	1930	16	15	<20	132	<.01	<10	29	<10	2	73	
163	AW246	25	0.2	0.57	15	100	<5	10.20	<1	20	37	100	7 59	<10	1.50	2160	<1	<.01	27	1890	10	15	<20	288	<.01	10	53	<10	1	102	
164	AW247	20	<.2	0.67	<5	125	<5	6.60	<1	22	28	99	6.41	<10	1.15	1406	<1	0 02	. 12	2580	14	15	<20	225	< 01	<10	46	<10	2		
165	AW246	20	7.8	4.17	- 35	55	<5	1.94	1	27	43	7264	987	<10		1621	<1	<.01	25	2210	40	15	<20	4	0 33	<10	110	<10	<1	199	7
							_						_																		MAXWELL
166	AW249	40	7.6	0.91	245	20	<5		<1	68	20	7942			0.42	3389		<.01	29	600	4	15	<20	203	0.05	<10	26	<10	17	Π	7
167	AW250	220	>30	1.25	795		10000		96	246		>10000			-	2489		<.01		>10000	<2	-5	<20	13	< 01	60	58	<10		>10000	SMART
168	AW251		>30		1000	80		0.56	4	110		>10000			105	1574	_	< 01	35,	>10000	12	<5	<20	. 1	< 01	30	86	<10	<1	795	L
169	AW252	- 25		0.62	- 50	155		0.45	2	18	21		3.68	<10	0 04	560		0.02	4	1860	8	<5	<20	7	< 01	×10	18	<10	«1	425	
170	AW253	30	<.2	1.86	25	35	<5	0.82	2	38	31	650	> 15	<10	067	377	23	0.03	10	650	30	<5	<20	15	< 01	<10	40	<10	<1	124	

Page 5

.