	LOG NO: JUL 2 1 1995	U
	ACTION:	
JUL - 7 1935		
Gold Commissioner's Office Assessment Report VANCOUVER B.C. ON	FILE NO:	
GEOCHEMICAL WORK ON THE FOLLOWING CLAI	M	

PORT 19 324518

EVENT # 3066645

WORK PERMIT # SMI-94-010270-185

Located

15 KM SOUTHEAST OF STEWART, BRITISH COLUMBIA SKEENA MINING DIVISION

55 degrees 49 minutes latitude 129 degrees 50 minutes longitude

N.T.S. 103P/13W

PROJECT PERIOD: July 10 to Oct. 13, 1994

ON BEHALF OF TEUTON RESOURCES CORP. VANCOUVER, B.C.

REPORT BY

D. Cremonese, P. Eng. 509-675 W. Hastings Vancouver, B.C.

Date: July 1, 1995

FILMED

یک <

S

OLOG SESS

M - C

ZÞ

E P O R T

İ

TABLE OF CONTENTS

1.	INTRO	DUCTION	1
	A. B. C. D. E.	Property, Location, Access and Physiography Status of Property History References Summary of Work Done	1 1 3 3
2.	TECHI	NICAL DATA AND INTERPRETATION	4
	А. В. С. D.	Regional Geology Property Geology Geochemistry a. Introduction b. Treatment of Data c. Sample Descriptions d. Discussion Field Procedure and Laboratory Technique	4 5 5 6 17 18
	Б. Е.	Conclusions	19

APPENDICES

, **--**

~.

- I Work Cost Statement II Certificate III Assay Certificates

ILLUSTRATIONS

Fig.	1	Location Map	Report Body
Fig.	2	Claims Map	Report Body
Fig.	3	Regional Geology	Report Body
Fig.	4	1994 Rock Geochemical Sampling	Map Pocket

Page

1. INTRODUCTION

A. Property, Location, Access and Physiography

The property is located about 15km southeast of Stewart, British Columbia. Nearest road is a logging road running east up the Marmot River from tidewater on the Portland Canal to a point about 8km west-northwest of the property. Present access to the property is by helicopter from the base at Stewart (Vancouver Island Helicopters).

The Port 19 claim covers part of the southern flank of Treble Mountain with the upper portions lapping onto the extensive Southwest Cambria Icefield. Elevations vary from approximately 1,200 metres on the glacier in the southwest corner of the claim to a little over 2,000m atop the icefield in the northwest corner of the claim. Slopes vary from moderate-steep to precipitous. There is no forest cover on the property. Vegetation consists of alpine grasses and heather growing in patches among the talus, moraine and outcrop.

Climate is relatively severe, particularly at higher elevations.

B. Status of Property

Relevant claim information is summarized below:

Name	Tenure	No. of Units	Expiry Date*
Port 19	324518	20	Mar. 22, 1997

Claim location is shown on Fig. 2 after government N.T.S. map 103P/13W. The claim is owned 50/50 by Teuton Resources Corp. and Minvita Enterprises Ltd. of Vancouver, British Columbia. Teuton Resources Corp. is the operator.

*After applications of assessment credits pursuant to the instant report.

C. History

....

Exploration for metals began in the Stewart region about 1898 after the discovery of mineralized float by a party of placer miners. Like many other mining districts, exploration proceeded in a boombust pattern with the boom periods following on the heels of an important discovery. The first active period culminated in 1910 when both Stewart and the neighbouring town of Hyder, Alaska boasted a population of around 10,000. Discovery of the extremely rich Premier gold-silver mine in 1918 led to another phase of intensified exploration which gradually tapered off during the

Depression years.

Lacklustre precious metal prices precluded most gold and silver exploration from 1940 to 1979, although the discovery and subsequent development of the famous Granduc copper mine kept alive Stewart's reputation as an important mining district. When silver and gold prices skyrocketed in the early 1980's the area entered a Successive discoveries of important gold modern boom period. deposits such as the Snip and Eskay Creek mines, both now in production, kept exploration at high levels. This activity peaked in 1990. In 1991 exploration in the general Stewart and outlying areas (the so-called "Golden Triangle") fell sharply. The failure by scores of exploration companies to come up with a discovery to rival Eskay Creek quickly disenchanted investors. Funds for further work evaporated. This downturn also coincided with the election of a provincial government perceived to be hostile to mining interests, which cast a pall over exploration throughout all of British Columbia.

The relatively recent discovery and ongoing development of the promising intrusive-related gold deposits at Red Mountain, located approximately 16km east of Stewart, has rekindled interest in the region. In 1994 several juniors mounted programs in the local area surrounding Red Mountain including KRL Resources/Prime Equities, Trev Corp., Oracle Minerals, Camnor/Golden Giant and Aquaterre Mineral Development.

The Port 19 claim is located at the eastern limit of the Marmot River sub-district of the Stewart region within which a fair number of prospects were located and explored during the 1910-1935 period. The most famous of these was the Prosperity-Porter Idaho at the head of Kate Ryan Creek; it saw limited production in the late 1920's before closing down in 1931 due to poor silver prices. Small high-grade mining and shipping also took place during this period from a number of minor prospects such as the Marmot Metals and North Fork Basin properties. The Ficklin-Harner (High Grade) gold-silver prospect at the head of the South Marmot River was also explored by a number of open cuts and short tunnels attempting to follow quartz-sulfide vein mineralization, mainly pyrite with sporadic massive lenses of galena, exposed in three veins cutting argillites and volcanic rocks. Free gold was reportedly associated with one of the veins.

The Port 19 claim lies just to the east of the old Ficklin-Harner prospect and may once have been part of the claim group(s) associated with it. During sampling traverses in 1994, the crew spotted evidence of previous work in the central portion of what is now the Port 19 claim consisting of old trenches, tools and a workshop. There was nothing to indicate when this early work was actually carried out.

D. References

- ALLDRICK, D.J. (1984); Geological Setting of the Precious Metals Deposits in the Stewart Area, Paper 84-1, Geological Fieldwork 1983", B.C.M.E.M.P.R.
- ALLDRICK, D.J. (1985); "Stratigraphy and Petrology of the Stewart Mining Camp (104B/1E)", p. 316, Paper 85-1, Geological Fieldwork 1984, B.C.M.E.M.P.R.
- 3. GREIG, C.J., ET AL (1994); "Geology of the Cambria Icefield: regional setting for Red Mountain gold deposit, northwestern British Columbia", p. 45, Current Research 1994-A, Cordillera and Pacific Margin, Geological Survey of Canada.
- 4. GREIG, C.J. ET AL (1994); "Geology of the Cambria Icefield: Stewart, Bear River and parts of Meziadin Lake and Paw Lake map areas, northwestern British Columbia; Geological Survey of Canada, Open File 2931.
- 5. GROVE, E.W. (1971): Bulletin 58, Geology and Mineral Deposits of the Stewart Area. B.C.M.E.M.P.R.
- 6. GROVE, E.W. (1982): Unuk River, Salmon River, Anyox Map Areas. Ministry of Energy, Mines and Petroleum Resources, B.C.
- 7. GROVE, E.W. (1987): Geology and Mineral Deposits of the Unuk River-Salmon River-Anyox Area, Bulletin 63, BCMEMPR
- 8. GROVE, E.W. (1994): Summary Geological Report and Work Proposal on Teuton Resources Corp. Croesus 3 & 4 Property, Del Norte Creek, B.C. Private Report for Teuton Resources.
- 9. KRUCHKOWSKI, E.R., KONKIN, K. (1994): Fieldnotes and maps regarding work on the Red claims, 1994.
- 10. MINISTER OF MINES ANNUAL REPORTS (B.C.), 1927 AND 1928. Marmot River Area, Northwestern District.
- 11. WOJDAK, PAUL (1995): Northwestern District Mineral Exploration Review 1994, Information Circular 1995-6, Ministry of Energy, Mines and Petroleum Resources, Mineral Resources Division.

E. Summary of Work Done.

The 1994 work on the Port 19 claim was part of a larger program covering several Stewart area properties spanning the period from July 10 to Oct. 13. The field crew consisted of Ed Kruchkowski, senior geologist, and Ken Konkin, geologist. Both have spent many seasons exploring the Stewart area.

The crew was shuttled in and out of various portions of the property by helicopter on two separate day trips in late August and early September. Altogether 93 reconnaissance geochemical rock samples were taken during the program. All samples were analyzed for gold content at the Eco-Tech Laboratory facility in Stewart, B.C.; ICP analyses were carried out at the parent facility in Kamloops.

2. TECHNICAL DATA AND INTERPRETATION

A. Regional Geology

The property lies in the Stewart area east of the Coast Crystalline Complex and within the western onlap boundary of the Bowser Basin. Rocks exposed in the area belong to the Mesozoic Hazelton Group and have been folded on regional NW-SE axes, cut by faults and selective tectonism, locally hydrothermalized and intruded by plugs of both Cenozoic and Mesozoic age.

Locally, within the Hazelton Group, Lower Jurassic volcanic and sedimentary rocks of the Unuk River Formation are unconformably overlain by the Middle Jurassic marine and non-marine volcanics and sediments of the Betty Creek Formation, the volcano-sedimentary Upper Jurassic Salmon River Formation, and the post-accretion fine clastic basinal Nass Formation.

Intrusives in the region are dominated by the granodiorite of the Coast Plutonic Complex (to the west). Some of the smaller intrusive plugs in the study area range from quartz monzonite to granite and are likely related outlier processes associated with the Coast Plutonic Complex.

More than 600 mineral deposits, at least 70 of which have shown some production, have been discovered within the boundaries of this region. Famous historical producers include the Premier, Granduc and Anyox mines. At the present time both the Snip and Eskay Creek mines are successfully in production, the latter one of Canada's richest precious metal discoveries ever. As well, modest production of gold ores is continuing at the Premier and proximate SB mine. Several advanced gold prospects, such as in the Sulphurets area and at Red Mountain, are considered likely future producers.

Regional geology is shown in Fig. 3 after Greig et al (1994).

B. Property Geology

Within the Port 19 claim, Jurassic andesitic tuffs, flows and

Fig. 3 REGIONAL GEOLOGY (After Greig, et al, 1994) Red Mountain Area, Stewart, B.C.

LEGEND

STRATIFIED ROCKS

COVER

Middle to Upper Jurassic

	υJ	
_		_

Upper Jurassic clastic rocks

MUJ Middle and Upper Jurassic clastic rocks

Jc Lower to Middle(?) Jurassic clastic rocks

BASEMENT

Lower to Middle(?) Jurassic

Jdf
Jm

Jρ

Jm

debris flow conglomerate and volcanic debris flows Red Mountain sequence

Lower Jurassic

Jh	homblende-feldspar-phyric volcanic rocks
Jd	felsic volcanic rocks

pyroxene-bearing volcanic and volcaniclastic rocks

Jmp maroon pyroclastic rocks

Jme maroon epiclastic rocks

ן	maroon feldspathic pyroclastic and
1	epiclastic rocks
-	

Jvc volcaniclastic rocks

andesite / dacite lapili and ash tuff Jt

Jcv undivided clastic and volcanic rocks

Jv undivided volcanic rocks

Upper Triassic

Tv volcaniclastic rocks

Triassic or older

PLUTONIC ROCKS

Tertiary(?)

++++ quartz monzonite to diorite

Middle or Late Jurassic to Tertiary

Jtb Bromley Glacier pluton

Middle Jurassic to Cretaceous

-

- Jkbp Bear Pass pluton
- Jkb Bulldog Creek pluton

Jkg Goldslide intrusion

Highway

•••••• limit of mapping

imit of permanent ice

thrust or reverse fault

▲ ▲ high angle fault

geological contact: known, inferred, assumed

Flat R.

breccias are intruded by several long north-south trending dykes as well as a small stock in the southeastern corner. This latter intrusive consists of light grey, fine grained diorite. Along the contact areas, abundant pyrrhotite with pyrite is present in weakly hornfelsed rocks.

Coarse, locally abundant pyrite is generally present within sericitic zones along brecciated, carbonate rich shears at 240 degrees. A second fracture pattern contains weak to strong quartzcarbonate stockworks within brecciated volcanic rocks. The texture of the quartz has a distinct sucrosic appearance. Near the top of Treble Mountain these stockworks carry varying amounts of pyrite and commonly carry chalcopyrite. Width of the stockwork zones can be up to 5-6m with individual mineralized veins up to 30cm wide. Sulfide content of the zones is generally 3-4%.

Lower in elevation, the quartz-carbonate zones contain varying amounts of sporadic galena, sphalerite, pyrite and chalcopyrite. The zones are discontinuous along strike and usually are no more than 100m in length but can be over widths of 5-6m. In the middle of the Port 19 claim, a large stockwork zone has been traced previously by three large trenches along a length of 40m. Stringers of quartz carrying sphalerite, chalcopyrite, pyrite and to a lesser degree galena occur over widths of 6m. The zone is obscured by talus to the north, but appears to be cut off by an auto-brecciated hornblende porphyry dyke. Rounded cobble size fragments of hornblende porphyry occur in a hornblende porphyry matrix. Mineralization is spotty in the stringers but can be massive locally. Above the trenched zone at least two other galena and sphalerite bearing zones were observed.

A third vein system consists of narrow and discontinuous quartz stringers striking at 0-10 degrees. These can contain massive arsenopyrite, pyrite and to a lesser degree chalcopyrite mineralization. Locally, mineralization may be up to 100% along stringers up to 15cm wide. This vein direction is consistent with the gold bearing vein systems on the Georgia River property approximately 10 km to the southwest. The above veins were only noted in the southeast corner of the Port 19 claim.

In addition, local, intense sericite altered zones carry coarse stringers and veinlets of pyrite. These sericite schist zones are narrow, strike at 320 degrees and are fairly discontinuous.

C. Geochemistry

a. Introduction

Reconnaissance rock geochemical samples were taken from accessible zones of interest on the Port 19 claim. Because ablation has been very pronounced in the Stewart area over the past 15 years, areas of rock outcrop are generally much more extensive than those depicted on government claim and topographic maps. Sample locations are shown in relation to claim lines on Fig. 4 prepared at a scale of 1:5000.

Altogether 93 samples were taken: 74 grab, 13 chip and 6 float. Locations for the KK samples were fixed in the field using a portable GPS unit. The ERK samples were located by reference to a base map prepared from a topographic map and were tied in, where possible, to GPS-located sample sites.

b. Treatment of Data

Geochemical reconnaissance sampling results are presented in this report on Fig. 4 at a scale of 1:5,000. The geochemical data table reports gold values in ppb and silver values in ppm (opt in boldface, where applicable); arsenic, copper, lead and zinc values are in ppm (% in boldface, where applicable). Inset maps give details of areas of high sampling density.

As in other small-scale surveys, a statistical treatment according to standard methods was not deemed practical. In lieu of such treatment, the author has simply chosen anomalous levels by reference to several rock geochemical programs conducted over other properties in the Stewart region over the past ten years. On this basis, anomalous levels are indicated below:

<u>Element</u>	<u>Anomalous_Above*</u>
Gold	100 ppb
Silver	3.6 ppm
Arsenic	120 ppm
Copper	200 ppm
Lead	160 ppm
Zinc	320 ppm

* Anomalous ranges will vary greatly according to rock type. For this reason, defining anomalous levels for any particular property based on regional averages is somewhat arbitrary.

c. Sample Descriptions

NOTE: For reference, element values for Au, Ag, As, Cu, Pb and Zn have been appended below the sample descriptions where any one of the six elements exceeds 2X the anomalous threshold indicated in the previous section (with all of those elements reporting 2X threshold highlighted in bold).

ERK-635 Grab. Quartz stockwork zone with blebs and stringers of pyrite.

ERK-636 Grab. Brecciated volcanic with qtz-carb stockwork; contains pyrite as blebs and stringers, about 3% py; strike 140. Outcrop is 6-7m across with malachite stain.

Au	-	710 ppb	Ag	-	10.2	ppm
As	-	740 ppm	Cu	-	5840	ppm
Pb	-	40 ppm	Zn	-	45	ppm

ERK-637 Grab. Subcrop from opposite side of #636 outcrop. Sample is malachite stained, brecciated volcanic with cpy and py stringers and veinlets.

Au	-	800 1	ppb	Ag	-	1.24	opt
As	-	285]	ppm	Cu	-	4.78	ક
Pb	-	64 p	pm	Zn	-	53	ppm

ERK-638 Grab. Zone of brecciated carb altered volcanic, minor malachite stain, about 1% pyrite.

Au	-	140	ppb	Ag	-	1.8	ppm
As		245	ppm	Cu	-	508	ppm
Pb	-	6	ppm	Zn	-	96	ppm

ERK-639 Grab. Qtz-calcite vein, 0.3m wide; sucrose appearing qtz with 1-2% pyrite.

Au	-	0.096	opt	Ag	-	1.67	opt
As	-	2080	ppm	Cu	-	448	ppm
Рb	-	358	ppm	Zn	-	96	ppm

ERK-640 Grab. Sheared volcanic with minor py along fractures. Shearing at 144 degrees.

Au	-	100	ppb	Ag	-	3.4	ppm
As	-	385	ppm	Cu	-	63	ppm
Pb	-	26	ppm	Zn		13	ppm

- ERK-641 Grab. Partly exposed qtz vein up to 0.6m wide; contains minor py, weathers rusty.
- ERK-642 Grab. Qtz calcite subcrop, sericite altered volcanic with vuggy qtz veins and drusy qtz cavities 1-2% coarse py as cubes and f.g. stringers; strike 176 deg.
- ERK-643 Grab. Sucrosic qtz with 1-2% py, weathers very rusty.

ERK-644 Grab. Subcrop, qtz with 1-2% coarse py blebs.

Au	-	0.045	opt	Ag	-	4.4	ppm
As	-	1200	ppm	Cu	-	67	ppm
РЪ	-	294	ppm	Zn	-	964	ppm

ERK-645	Grab. Qtz carb stockwork in volcanic near hornblende feldspar porphyry dyke; sample is qtz carb with 1-2% py.
ERK-646	Grab. Subcrop, qtz carb with tiny py veinlets, about 2%.
ERK-647	Grab. Qtz vein subcrop, narrow vein with about 5% py.
ERK-648	Grab. Qtz with hydrozincite stain, sample has coarse sph, minor gal, py.
	Au-25 ppbAg-11.8 ppmAs-20 ppmCu-4241 ppmPb-718 ppmZn-4.96 %
ERK-649	Grab. Qtz carb stringer with massive gal and sph.
	Au - 45 ppb Ag - 3.07 opt As - 45 ppm Cu - 2707 ppm Pb - 4.93 % Zn - 23.55 %
ERK-650	Grab. Qtz calcite stringer with hydrozincite, malachite, sphalerite, galena, cpy, py.
	Au-65 ppbAg-1.79 optAs-10 ppmCu-843 ppmPb-4.18 %Zn-9.53 %
ERK-651	Grab. Narrow qtz stringer with sphalerite.
	Au-20 ppbAg-<.2 ppmAs-15 ppmCu-71 ppmPb-1028 ppmZn-5.12 %
ERK-652	Grab. Qtz carb zone 0.45m wide with coarse sphalerite, minor galena and pyrite. Strike of zone is 136/85N.
	Au-35 ppbAg-13.8 ppmAs-15 ppmCu-326 ppmPb-1.43 %Zn-11.40 %
ERK-653	Grab. Same zone as #652, 3m along strike.
	Au-50 ppbAg-26.4 ppmAs-55 ppmCu-1141 ppmPb-1.09 %Zn-5.18 %
ERK-654	Float. Brown weathering carb altered rock with about 1% pyrite and sparse po.
	Au - 60 ppb Ag - 4.8 ppm As - 55 ppm Cu - 61 ppm Pb - 236 ppm Zn - 807 ppm

ERK-655 Grab. Shear zone, 0.15m wide, with qtz carb vein from 1 to 10cm wide, strike 180/vertical. Sample is of qtz stringer with minor sph, trace gal. [Note: host rock for the above zone appears to be a fine grained hornblende porphyry].

Pb	-	146	ppm	Zn	-	7471 ppm
As	-	20	ppm	Cu	-	172 ppm
Au	-	25	ppb	Ag	-	1.0 ppm

ERK-656 Grab. Narrow qtz carb zone, strike 146 with galena and weathered out sphalerite.

Au	-	40	ppb	Ag	-	8.8	ppm
As	-	690	ppm	Cu	-	477	ppm
Рb	-	5478	ppm	Zn	-	2.78	*

ERK-657 Grab. Vuggy qtz calcite stained by malachite, hydrozincite, minor gal, cpy and py.

Au	-	25	ppb	Ag	-	14.6	ppm
As	-	25	ppm	Cu	-	1768	ppm
Рb	-	814	ppm	Zn	-	2.80	*

ERK-658 Grab. Subcrop, qtz with coarse galena, cpy, sph and py.

Au	-	340 ppb	Ag -	3.02 opt
As	-	7180 ppm	Cu –	1123 ppm
РЪ	-	4.60 %	Zn -	4.56 %

ERK-659 Grab from dump material beside old trench in qtz-calcite stockwork zone. Sample has gal, sph and py in qtz stringer.

Au	-	25	ppb	Ag	-	0.91	opt
As	-	80	ppm	Cu	-	6639	ppm
Pb	-	2504	ppm	Zn	-	1.10	*

ERK-660 Grab. Qtz with sph, minor cpy and abundant malachite.

Au	-	30	ppb	Ag	-	1.74	opt
As	-	55	ppm	Cu	-	8073	ppm
Pb	-	324	ppm	Zn		7.78	*

ERK-661 Grab. Qtz carb stringer with 1-2% py.

Au	-	30	ppb	Ag	-	3.4	ppm
As	-	40	ppm	Cu	-	204	ppm
Pb	-	110	ppm	Zn	-	1260	ppm

ERK-662 Grab. Zone of fine-grained gal and sph.

Au	-	30 ppb	Ag	-	1.19	opt
As	-	40 ppm	Cu	-	2301	ppm
Pb	-	134 ppm	Zn	-	7264	ppm

ERK-663 Grab. Qtz carb with sph and cpy.

Au	-	205	ррь	Ag	-	19.0	ppm
As	-	2870	ppm	Cu	-	213	ppm
РЬ	-	8680	ppm	Zn	-	1.86	*

ERK-664 Grab. Weakly hornfelsed rock with 4-5% fine grained py and po, weathers very rusty.

- ERK-665 Grab. Brecciated zone with stringers of massive py. Host rock appears to be fine grained intrusive? Py about 30% in sample.
- ERK-666 Grab. Sericite schist at 160 deg.; contains 5% py.
- ERK-667 Grab. Zone of dark brown gossaned rocks; rock is hornfelsed, very siliceous.
- ERK-668 Grab. Brecciated zone at 060/65N, abundant carbonate with some sericitic portions; about 4% pyrite; rusty.
- ERK-669 Grab. Shear zone 0.15 to 0.3m wide. Quartz stringers in sericitic schist; sample is of quartz with minor amounts of cpy and aspy.

Au	-	0.121	opt	Ag	-	15.0	ppm
As	-	7.03	*	Cu	-	3642	ppm
Pb	-	10	ppm	Zn	-	44	ppm

ERK-670 Grab. Same zone as above but 0.3m wide with about 30% total sulfides: py, cpy and aspy.

Au	-	0.311	opt	Ag	-	3.2	ppm
As	-	6.52	*	Cu	-	275	ppm
Pb	-	4	ppm	Zn	-	36	ppm

ERK-671 Grab. Shear zone with 0.5m qtz stockwork; sample is of vuggy qtz with sparse cpy.

Au	-	300	ppb	Ag	-	2.4 ppm	ı
As	-	2195	ppm	Cu	-	53 ppm	l
Pb	-	14	ppm	Zn	-	40 ppm	L

ERK-672 Grab. 0.15m shear with qtz and about 2-3% pyrite.

ERK-694 Grab. Subcrop of qtz stockwork striking 220 deg; sample contains massive py and aspy.

	Au	-	0.305	opt	Ag	-	10.8	ppm		
	AS	-	14.13	5 5	Cu 7n	_	102	ppm		
	PD	-	/4	ppm	211	-	103	ppm		
ERK-695	Grab. Su	ibcr	op, sam	me as	#694 with	minc	or cpy	and	aspy	•
	Au	-	275	ppb	Ag	-	12.2	ppm		
	As	-	2980	ppm	Cu	-	985	ppm		
	Pb	-	14	ppm	Zn	-	24	ppm		
ERK-696	Grab.	0.5m	wide	zone	of gtz-	carb	with	mas	sive	ру
	stringers	5, m	inor c	py and	aspy. S	trike	es 193	deg.	•	
	Au	-	305	ppb	Ag	-	3.8	ppm		
	As	-	750	ppm	Cu	-	49	ppm		
	Pb	-	82	ppm	Zn	-	126	ppm		
ERK-697	Grab. Ma 0.3m wide	ssiv Ə.	ve py i	n narr	ow qtz-car	b st	ockwor	k zoi	ne ab	out
	Au	-	175	ppb	Ag	-	9.4	ppm		
	As	-	270	ppm	Cu	-	582	ppm		
	Pb	-	46	ppm	Zn	-	31	ppm		
ERK-698	Grab. Ca stringers	rbor 5, m	nate ri inor m	ch roc alachi	ck, vuggy w .te.	vith :	massiv	e spł	naler	ite
	Au	-	140	ppb	Ag	-	3.8	ppm		
	As	-	215	ppm	Cu	-	889	ppm		
	Pb	-	62	ppm	Zn	-	6.26	*		
ERK-699	Grab. stringer:	Qtz s.	carb About	stock 1m wid	work, can le.	ries	semi	-mas:	sive	ру
	Au	-	70	ppb	Ag	-	1.0	ppm		
	As	-	230	ppm	Cu	-	166	ppm		
	Pb	-	6	ppm	Zn	-	1960	ppm		
ERK-700	Grab. Qt vein con 236/75N.	z vo tain	ein, 0. s stri	.45m w ngers	ide, very of massiv	vugg e py	y, hig and a	hly 1 spy;	leach stri	ed; kes
	Au	-	0.150	opt	Ag	-	25.0	ppm		
	As	-	9.05	જ	Cu	-	730	ppm		
	Pb	-	36	ppm	Zn	-	257	ppm		
ERK-701	Grab. S	ubcr	op, qt	z witł	n semi-mas	sive	aspy,	mino	or py	•

جعير

Au	-	0.235	opt	Ag	-	5.6 ppm
As	-	10.83	*	Cu	-	396 ppm
Pb	-	100	ppm	Zn	-	109 ppm

11

ERK-702 Grab. Subcrop, massive py and aspy.

Au	-	0.131	opt	Ag	-	7.2	ppm
As	-	8.91	8	Cu	-	531	ppm
Pb	-	58	ppm	Zn	-	111	ppm

ERK-703 Grab. Qtz with massive py and aspy stringers.

Au	-	0.188	opt	Ag	-	20.8	ppm
As	-	11.08	*	Cu	-	549	ppm
Pb	-	170	ppm	Zn	-	72	ppm

ERK-704 Grab. Stockwork zone, qtz carrying blebs of cpy and py, malachite stain. Zone is up to 5m wide with stringers up to .15m.

Au	-	125	ppb	Ag	-	1.46	opt
As	-	1640	ppm	Cu	-	8261	ppm
Pb	-	10	ppm	Zn	-	60	ppm

ERK-705 Grab. Qtz with about 4% coarse cube pyrite.

Au	-	85	ppb	Ag	-	2.6	ppm
As	-	845	ppm	Cu	-	188	ppm
Pb	-	24	ppm	Zn	-	29	ppm

ERK-706 Grab. Rusty outcrop in area of coarse grained granodiorite; sample is altered volcanic, silicified with about 4% pyrite filling fractures.

ERK-707 Grab. Rusty silicified zone at the contact of a small granodiorite plug; about 3-4% coarse py.

Au	-	90	ppb	Ag		1.0	ppm
As	-	975	ppm	Cu	-	25	ppm
Pb	-	28	ppm	Zn	-	16	ppm

ERK-708 Grab. Silicified contact zone with 1-2% f.g. pyrite.

-- •

Au	-	70 ppb	Ag	-	<.2	ppm
As	-	1545 ppm	Cu	-	97	ppm
Pb	-	116 ppm	Zn	-	1.90	*

ERK-709 Grab. 1-2m wide qtz-carb stockwork zone exposed in subcrop for 10m; sample is qtz with 7% coarse cube py.

Au	-	160 ppl	b Ag	-	1.0	ppm
As	-	90 ppi	n Cu	-	2340	ppm
Pb	-	26 pp	m Zn	-	427	ppm

ERK-710 Grab. Subcrop, vuggy qtz, highly leached with pyrite seams and minor aspy.

- ERK-711 Grab. Sericite altered volcanic with qtz stockwork, about 4% py.
- ERK-712 Grab. Parallel veins to #711.
- ERK-713 Grab. 2m wide qtz stockwork with 2-3% py.
- ERK-714 Grab. Qtz stockwork zone about 1m wide; sample is of qtz stringer with about 3-4% cpy, minor py.

Au	-	40 ppb	Ag		25.6 pp	n
As	-	70 ppm	Cu	-	3432 pp	n
Pb		34 ppm	Zn	-	64 pp	n

ERK-715 Grab. Qtz stockwork zone with abundant cpy exposed in all stringers; sample has about 5% cpy; zone is 1.5m wide.

Au	-	85	ppb	Ag	-	7.69	opt
As	-	265	ppm	Cu	-	8955	ppm
Pb	-	<2	ppm	Zn	-	43	ppm

ERK-716 Grab. Qtz stockwork with sparse cpy and py. Granite dyke cuts off zone about 40m along strike to SW.

Au		100	ppb	Ag	-	9.98	opt
As		3980	ppm	Cu		1667	ppm
Pb	-	30	ppm	Zn	-	56	ppm

- ERK-717 Float, 0.5m diameter boulder. Very distinct coarse cube py in qtz.
- KK-680 Grab. Fe carb altered volcanic with 7-10%, 1-4mm qtz carb veinlets; <1% diss py, minor spotty hem shears.

Au	-	435	ppb	Ag	-	0.8	ppm
As		295	ppm	Cu	-	81	ppm
Pb	-	26	ppm	Zn	-	65	ppm

KK-681 Chip, 0.5m. Ferricrete with qtz stringers and 2-3% f.g. diss py along shear plane; trends 065/90; weakly altered andesitic tuff wallrock.

Au	-	45	ppb	Ag	-	0.4	ppm
As		755	ppm	Cu	-	126	ppm
Pb		26	ppm	Zn	-	51	ppm

KK-682 Chip, 0.4m. Fe carb-qtz vein with 2-3% f.g. to c.g. euhedral/diss pyrite, mod lim ox, vuggy with minor ferricrete.

As	-	815	ppm	Cu	-	530 ppm
Pb	-	28	ppm	Zn	-	25 ppm

KK-683 Grab. Chl altered andesitic tuff with qtz-cal stockwork, 5-7% v.f.g. diss and poddy pyrite.

Au	-	135 ppb	Ag	-	3.0 ppm
As	-	395 ppm	Cu	-	70 ppm
Pb	-	50 ppm	Zn	-	119 ppm

- KK-684 Chip, 1.0m. Qtz and Fe carb, K-spar flooded stockwork with 5-7% diss f.g. to c.g. pyrite and 30-35% altered mafic vol fragments.
- KK-685 Float, 0.3m angular boulder. Frothy qtz with heavy Fe ox, 7-10% f.g. to c.g. diss pyrite.

Au	-	100	ppb	Ag	-	0.90	opt
As	-	1210	ppm	Cu	-	811	ppm
Pb	-	164	ppm	Zn	-	33	ppm

KK-686 Float, 0.3m angular boulder. Fe carb altered volcanic with Fe carb vein, 3-5% f.g. to c.g. diss py, mod lim ox.

Au	-	0.059	opt	Ag	-	12.0	ppm
As	-	340	ppm	Cu	-	358	ppm
Pb	-	54	ppm	Zn	-	46	ppm

KK-687 Grab. Silicified, K-spar flooded intermediate volcanic with 5-7% f.g. diss py and po; intense Fe ox.

Au	-	65 ppb	Ag	-	1.8 ppm
As	-	25 ppm	Cu	-	1061 ppm
Pb	-	32 ppm	Zn	-	78 ppm

- KK-688 Chip, 1.0m. Same as previous sample but with half the py and po.
- KK-689 Grab. Same as previous sample.
- KK-690 Float, football-sized angular. Qtz stockwork, very vuggy; intense lim and hem ox; 1-2% diss f.g. to c.g. pyrite.

Au	-	355	ppb	Ag	-	21.2	ppm
As		2720	ppm	Cu	-	436	ppm
Pb	-	34	ppm	Zn	-	316	ppm

KK-691 Float, 0.3m angular. Fe carb altered intermediate volcanic with stringer qtz stockwork; 3-5% diss f.g. to c.g. and veinlet pyrite; intense Fe ox.

Au	-	125 ppb	Ag	-	1.4	ppm
As	-	520 ppm	Cu	-	30	ppm
Pb	-	54 ppm	Zn	-	181	ppm

- KK-692 Grab. From east wall of north-south trending ravine. Silicified, K-spar flooded intermediate f.g. tuff with 2-3% py and po; intense Fe ox.
- KK-693 Chip, 3.0m. Silicified, K-spar flooded intermediate tuff, sheared, intense Fe ox, with 2-3% diss y and po; rare, 2-3% qtz veinlets.
- KK-694 Chip, 2.5m. Silicified, intermediate andesitic tuff, intense Fe ox, 1-2% diss py and po.
- KK-695 Chip, 1.8m. Silicified andesitic tuff, massive, siliceous, strong intense Fe ox, 1-2% diss py and po.

Au	-	460	ppb	Ag	-	<.2	ppm
As	-	35	ppm	Cu		177	ppm
Pb	-	16	ppm	Zn	-	43	ppm

- KK-696 Grab. Limonitic qtz stringers in silicified massive andesite with K-spar alteration; 1-2% diss py and po; intense Fe ox.
- KK-697 Grab. Same as #695 description.
- KK-698 Chip, 2.0m. Sane as #695 but with 2-3% po and py.
- KK-699 Chip, 1.2m. Silicified massive andesitic tuff with goethitic qtz veinlets, intense Fe ox and 2-3% diss po and py.

Au	-	280	ppb	Ag	-	0.4	ppm
As	-	165	ppm	Cu	-	477	ppm
Pb	-	26	ppm	Zn	-	45	ppm

- KK-700 Chip, 2.2m. Well silicified massive andesitic tuff with 1-2% diss f.g. to c.g. py and po; intense Fe ox.
- KK-737 Grab. Silicified, massive andesitic tuff; blocky, fractured, intense Fe ox with 1-2% f.g. to c.g. diss py and po.
- KK-738 Grab. Subcrop. Vuggy, cockade qtz vein with 7-10% v.c.g. to m.g. diss pyrite; strong Fe ox.

Au	-	255	ppb	Ag	-	9.0	ppm
As	-	15	ppm	Cu	-	681	ppm
Pb	-	532	ppm	Zn	-	49	ppm

KK-739	Chip, 0.3m. Qtz stockwork, vuggy cockade with 7-10% m.g.
	to v.c.g. diss py in stockwork in andesitic silicified
	tuff; intense Fe ox.

Au	-	250 ppb	Ag	-	8.8 ppm
As	-	125 ppm	Cu	-	818 ppm
Pb	-	452 ppm	Zn	-	42 ppm

KK-740 Grab. Stockwork zone, 0.6m wide. Same structure as #738.

Au	-	525	ppb	Ag	-	2.8	ppm
As	-	20	ppm	Cu	-	201	ppm
Pb	-	192	ppm	Zn	-	26	ppm

KK-741 Chip, 0.3m. Qtz stockwork at 186 deg. trend; stringers up to 1cm wide; same descrip as #739.

Au	-	0.105	opt	Ag	-	1.19	opt
As	-	850	ppm	Cu	-	3250	ppm
Pb	-	138	ppm	Zn	-	1265	ppm

KK-742 Float, football-sized angular. Qtz vein with 2-3% diss cpy, 5-7% diss py; fine vuggy qtz crystals in altered, silicified massive andesitic tuff.

Au	-	0.071	opt	Ag	-	3.28	opt
As	-	810	ppm	Cu	-	1.27	જ
Pb	-	334	ppm	Zn	-	689	ppm

KK-743 Chip, 0.3m. Fe carb qtz stockwork in silicified andesitic massive tuff; <1% f.g. pyrite; strong lim ox; brecciated stockwork; exposed for 2m length, trending 204 deg.

Au	-	460	ppb	Ag	-	15.2	ppm
As	-	1350	ppm	Cu	-	805	ppm
Pb	-	110	ppm	Zn	-	115	ppm

- KK-744 Grab. Blocky andesitic massive tuff with 1-2% diss f.g. to c.g. py and po; intense Fe ox.
- KK-745 Grab. Same as previous sample.
- KK-746 Grab. Same as #744.

Au	-	30 ppb	Ag	-	3.4	ppm
As	-	40 ppm	Cu	-	204	ppm
Pb	-	110 ppm	Zn	-	1260	ppm

d. Discussion

Individual areas of sampling and corresponding geochemical results are discussed below:

Southwest edge of icefield (Samples ERK-635 to 646, KK-680 to 686);

Anomalous gold values ranging up to 0.096 opt and silver values up to 1.67 opt were obtained in this area from quartz-calcite veins, quartz-carbonate stockworks, and brecciated carbonate altered volcanics. Arsenic was anomalous in a many of the samples with values ranging up to 2,080 ppm. A few samples were copper anomalous (up to 4.78%) and most returned background values in lead and zinc, only.

Inset Map #1 Area (Samples ERK-647 to 663):

Samples from this area were dominated by sphalerite, galena and chalcopyrite bearing quartz/quartz-calcite/quartz-carbonate stringers/veins hosted in carbonate altered rocks. Copper, lead and zinc values were generally quite high with maximum values up to 8073 ppm, 4.93% and 23.55%, respectively. Silver values were also quite anomalous with several samples reporting better than 1.0 opt to a high of 3.07 opt. On the other hand, gold values were muted with the exception of two samples which returned modestly anomalous values of 205 and 340 ppb. A few of the samples were anomalous in arsenic.

Inset Map #2 Area (Samples ERK-668 to 705):

A different style of mineralization is evident in this area, featuring quartz-sulfide mineralization with the sulfides primarily pyrite and arsenopyrite. Not unexpectedly, good gold values accompany the high arsenics, with maximum values of 0.311 opt for the gold and 11.08% for the arsenic. Although several of the samples show anomalous silver values, these are not nearly as high as for the Cu-Pb-Zn dominated mineralization discussed in the previous paragraph. Many of the high Au-As samples are also accompanied by anomalous copper values. Lead is flat throughout the samples and two samples reported anomalous zinc values.

Inset Map #3 Area (Samples ERK-709 to 717):

Quartz and quartz-carbonate stockwork zones contain stringers variously mineralized with pyrite, arsenopyrite and chalcopyrite. Gold values are almost all sub-anomalous to background although two samples returned silver values of 7.69 and 9.98 opt which where the highest obtained on the property. These samples were associated with anomalous arsenic and copper values suggesting, perhaps, the presence of tetrahedrite.

Lower Central Portion (Samples KK-687 to 700, 737-746):

As in other portions of the property, samples of quartz-sulfide mineralization returned anomalous gold and silver values to a high of 0.105 opt and 3.28 opt, respectively. The best gold values came from samples KK-741 and 742, and were associated with quartz vein or stringer mineralization containing pyrite and chalcopyrite.

Two other samples taken within this area are worthy of mention. They are samples KK-695 and 699, representing 1.8m and 1.2m chips, respectively, of silicified, massive andesitic tuff with 1-3% disseminated pyrite and pyrrhotite. The KK-695 value is particularly intriguing because the 480 ppb gold value is unaccompanied by correspondingly anomalous levels in any of the other metals.

D. Field Procedure and Laboratory Technique

Rock samples were taken in the field with a prospector's pick and collected in a standard plastic sample bag. Grab samples were taken to ascertain character of mineralization at any specific locality. These samples consisted generally of three to ten representative pieces with total sample weight ranging between 0.5 to 2.0 kg. Chip samples were taken across the strike of mineralized structures and generally weighed about 1.0 to 2.0 kg.

All rock samples were analyzed at the Eco-Tech facilities in Stewart and Kamloops, B.C. Rock samples were first crushed to minus 10 mesh using jaw and cone crushers. Then 250 grams of the minus 10 mesh material was pulverized to minus 140 mesh using a ring pulverizer. For the gold analysis a 10.0 gram portion of the minus 140 mesh material was used. After concentrating the gold through standard fire assay methods, the resulting bead was then dissolved in aqua regia for 2 hrs at 95 deg. C. The resulting solution was then analyzed by atomic absorption. The analytical results were then compared to prepared standards for the determination of the absolute amounts. For the determination of the remaining trace and major elements Inductively Coupled Argon Plasma (ICP) was used. In this procedure a 1.00 gram portion of the minus 140 mesh material is digested with aqua regia for 2 hours at 95 deg. C and made up to a volume of 20 mls prior to the actual analysis in the plasma. Again the absolute amounts were determined by comparing the analytical results to those of prepared standards.

Specific samples were subjected to further analysis where values obtained exceeded certain threshold levels. High golds were fireassayed using conventional methods followed by parting and weighing of beads. Wet chemistry methods and AA were used for follow-up analysis of base metals and silver (where values were too high for quantitative measurement by ICP).

E. Conclusions

The 1994 work reconnaissance program on the property identified several areas of highly anomalous Au/Ag values accompanied variously by anomalous As/Cu/Pb/Zn values, mostly occurring in quartz or quartz-carbonate stockwork zones carrying some combination of pyrite, chalcopyrite, arsenopyrite, sphalerite and galena. The best gold values appear to be associated with arsenopyrite. Further work is recommended.

Portions of the property not thoroughly investigated during the 1994 program should be carefully prospected and sampled. Results of this work should thereafter be correlated with the 1994 sampling to help in assessing whether or not the property has potential to host an economic deposit. Positive results from such assessment could lead to a recommendation for an expanded program.

Respectfully submitted,

D. Cremonese, P.Eng. July 1, 1995

APPENDIX I - WORK COST STATEMENT	
Field PersonnelPeriod Sept. 1 to Sept. 8, 1994: E. R. Kruchkowski, Geologist 2.0 days @ \$300/day K. Konkin, Geologist	\$ 600
2.0 days @ \$294/day	588
Helicopter VIH Crew drop-offs/pick-ups: Aug. 30 and Sept. 3 VIH: 1.15 hrs. @ \$722.60/hr.	1,012
Shared project costs (prorated at 2.37%*) Logistics/supervision/bad weather standby in Stewart 2.37% of \$16,117)	382
Mob/demob crew (home base to Stewart, return)	
2.37% of \$10,459) Food/accommodation	247
2.37% of \$9,138)	217
2.37% of \$6,493	154
Field supplies/misc. 2.37% of \$4,266	101
Workman's compensation 2.37% of \$3,592)	85
Assay costsEco-Tech Labs	
AU GEOCNEM + 30 EIEM. ICP + FOCK SAMPIE PREP	1 916
Au assav: 12.4 \$9.63/sample	116
Ag assay: 14 0 \$4.28	60
As assay: 7 @ \$10.70	75
Cu assay: 2 @ \$8.025	16
Pb/Zn assays: 18 @ \$6.955	125
Report Costs Report and map preparation, compilation and researc	:h
D. Cremonese, P.Eng., 2.5 days @ \$375/day	938
Draughting RPM Computer	240
Copies, report, jackets, maps, etc. TOTAL	<u>40</u> .\$ 6,812
	• • • • • • •
Amount Claimed Per Statement of Exploration #3066645:	\$ 6,160**
* Based on ratio of field man-days to total project field **Please adjust PAC account accordingly.	l man-days

APPENDIX II - CERTIFICATE

- I, Dino M. Cremonese, do hereby certify that:
- 1. I am a mineral property consultant with an office at Suite 509-675 W. Hastings, Vancouver, B.C.
- 2. I am a graduate of the University of British Columbia (B.A.Sc. in metallurgical engineering, 1972, and L.L.B., 1979).
- 3. I am a Professional Engineer registered with the Association of Professional Engineers of the Province of British Columbia as a resident member, #13876.
- 4. I have practised my profession since 1979.
- 5. This report is based upon work carried out on the Port 19 claim, Skeena Mining Division from July to October of 1994. Reference to field notes and maps made by geologists E. Kruchkowski and K. Konkin is acknowledged. I have full confidence in the abilities of all samplers used in the 1994 geochemical program and am satisfied that all samples were taken properly and with care.
- 6. I am a principal of Teuton Resources Corp. and Minvita Enterprises Ltd., owners of the Port 19 claim: this report was prepared solely for satisfying assessment work requirements in accordance with government regulations.

Dated at Vancouver, B.C. this 1st day of July, 1995.

 \mathcal{D}

D. Cremonese, P.Eng.

APPENDIX III

يمغمان

ينجبر

ASSAY CERTIFICATES

22

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY **ENVIRONMENTAL TESTING**

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

CERTIFICATE OF ANALYSIS ETS 94-3088

TEUTON RES. CORPORATION

9-Sep-94

509-675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Attention: Dino Cremonese

100 rock samples received August 31, 1994 Sample run date: September 8, 1994 Samples Submitted By:Ken Konkin

į.

		Au	
ET #.	Tag #	(ppb)	
1	ERK-94-635	90	
2	ERK-94-636	710	
3	ERK-94-637	800	
4	ERK-94-638	140	
5	ERK-94-639	>1000	
6	ERK-94-640	100	
7	ERK-94-641	115	
8	ERK-94-642	75	
9	ERK-94-643	95	
10	ERK-94-644	>1000	
11	ERK-94-645	60	
12	ERK-94-646	65	
13	ERK-94-647	50	
14	ERK-94-648	25	
15	ERK-94-649	45	
16	ERK-94-650	65	(102)
17	ERK-94-651	20	
18	ERK-94-652	35	1 19
19	ERK-94-653	50	
20	ERK-94-654	60	
21	ERK-94-655	25	
22	ERK-94-656	40	
23	ERK-94-657	25	
24	ERK-94-658	340	
25	ERK-94-659	25	Y
			•

TEUTON RES. CORPORATION ETS 3088

9-Sep-94

		Au	
ET #.	Tag #	(ppb)	
26	ERK-94-660	30	
27	ERK-94-661	30	
28	ERK-94-662	30	
29	ERK-94-663	205	
30	ERK-94-664	10	
31	ERK-94-665	135	
32	ERK-94-666	35	0.1
33	ERK-94-667	25	(10 ^p 'a
34	ERK-94-668	50	
35	ERK-94-669	>1000	
36	ERK-94-670	>1000	
37	ERK-94-671	300	
38	ERK-94-672	52	<u> </u>
39	ERK-94-673	200	
40	ERK-94-674	135	
41	ERK-94-675	95	
42	ERK-94-676	190	
43	ERK-94-677	440	
44	ERK-94-678	120	
45	ERK-94-679	315	
46	ERK-94-680	70	
47	ERK-94-681	>1000	
48	ERK-94-682	245	
49	ERK-94-683	20	
50	ERK-94-684	85	
51	ERK-94-685	50	
52	ERK-94-686	5	
53	ERK-94-687	645	
54	KK-94-680	435	
55	KK-94-681	45	
56	KK-94-682	450	
57	KK-94-683	135	
58	KK-9 4-6 84	80	
59	KK-94-685	100	
60	KK-9 4-6 86	>1000	
61	KK- 94-6 87	65	•
62	KK-94-688	30	I M
63	KK-94-689	45	01
64	KK-94-690	355	(Yor
65	KK-94-691	125	

TEUTON RES. CORPORATION ETS 3088

9-Sep-94

		Au	
ET #.	Tag #	(ppb)	
66	KK-94-692	20	1
67	KK-94-693	75	
68	KK-94-694	75	
69	KK-94-695	460	Reat
70	KK-94-696	35	} 10K7
71	KK-94-697	25	1 19
72	KK-94-698	60	
73	KK-94-699	280	
74	KK-94-700	125	1
75	KK-94-701	120	
76	KK-94-702	65	
77	KK-94-703	135	
78	KK-94-704	120	
79	KK-94-705	845	
80	KK-94-706	>1000	
81	KK-94-707	515	
82	KK-94-708	90	
83	KK-94-709	60	
84	KK-94-710	95	
85	KK-94-711	35	
86	KK-94-712	40	
87	KK-94-713	100	
88	KK-94-714	260	
89	KK-94-715	145	
90	KK-94-716	65	
91	KK-94-717	35	
92	KK-94-718	575	
93	KK-94-719	>1000	
94	KK-94-720	>1000	
95	KK-94-721	70	
96	KK-94-722	45	
97	KK-94-723	170	
98	KK-94-724	90	
99	KK-94-725	45	
100	KK-94-726	15	

14-Sep-94

. .. .

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMŁOOPS, B C V2C 2J3

Phone 604-573-5700 Fax 604-573-4557 TEUTON RESOURCES CORPORATION ETS-3088 509-675 W. HASTINGS ST VANCOUVER , B C V6C-1N2

Goti

19

ATTENTION: Dino Cremonese

 100 rock sample received August 31, 1994

 Sample run date.
 September 13, 1994

 Samples Submitted By
 Ken Konkin

 Client Project Number.
 OEX

Values in ppm unless otherwise reported

Et	#. Tag #	Ag	Al %	As	Ba	BI	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	<u> </u>	РЬ	Sb	Sn	Sr	Te	TI %	U	<u>v</u>	W	<u>Y</u>	Zn
1	ERK-94-635	1.4	0.66	175	45	<5	4.06	2	41	47	177	8.71	<10	0.20	1046	<1	<.01	21	1160	34	35	<20	87	<50	< 01	<10	21	<10	<1	38
2	ERK-94-636	10.2	0.68	740	35	<5	5.17	9	25	73	584 0	6.84	<10	0.29	2084	<1	< 01	16	860	40	10	<20	123	<50	< 01	<10	23	<10	<1	45
3	ERK-94-637	>30	0.31	285	40	<5	3.04	5	31	54	>10000	11.20	<10	0.03	1685	<1	<.01	70	5630	64	10	<20	30	<50	< 01	<10	10	<10	<1	53
4	ERK-94-638	1.8	0.62	245	25	<5	3.56	3	17	90	508	4.27	<10	0.28	2142	<1	<.01	9	1020	6	10	<20	140	<50	< 01	<10	20	<10	1	15
5	ERK-94-639	>30	0 19	2080	30	<5	0.08	23	10	99	448	9.13	<10	0 02	237	<1	<.01	7	140	358	20	<20	<1	<50	< 01	<10	11	<10	<1	96
6	ERK-94-640	3.4	0.37	385	40	10	2.22	4	16	81	63	8.56	<10	0 04	1157	2	<.01	14	520	26	25	<20	33	<50	<.01	<10	12	<10	<1	13
7	ERK-94-641	3.8	0.45	125	15	5	0.73	2	10	97	56	5.22	<10	0.19	1058	<1	< 01	7	200	20	<5	<20	<1	<50	0.02	<10	17	<10	<1	27
8	ERK-94-642	1.0	0.22	115	25	10	0.14	1	13	117	24	6.65	<10	< 01	128	<1	<.01	11	460	8	<5	<20	<1	<50	<.01	<10	9	<10	<1	17
9	ERK-94-643	4.2	0.25	135	30	15	0.05	2	10	87	28	11.60	<10	< 01	294	4	<.01	8	250	10	<5	<20	<1	<50	< 01	<10	15	<10	<1	25
10	ERK-94-644	4.4	0 13	1 200	10	<5	0.29	22	з	167	67	4.08	<10	0.02	140	<1	< 01	5	80	294	5	<20	5	<50	< 01	<10	8	<10	<1	964
11	ERK-94-645	4.2	0.51	45	35	10	1.87	2	11	74	16	4 97	<10	0.17	844	<1	<.01	11	750	20	<5	<20	25	<50	< 01	<10	14	<10	<1	101
12	ERK-94-646	1.4	0.33	110	35	10	0.09	2	9	69	11	7.41	<10	<.01	106	2	< 01	10	1000	24	<5	<20	<1	<50	< 01	<10	15	<10	<1	13
13	ERK-94-647	1.0	0.20	45	15	15	0.08	2	11	107	12	7.56	<10	<.01	135	4	<.01	10	410	28	<5	<20	<1	<50	< 01	<10	9	<10	<1	67
14	ERK-94-648	11.8	0.67	20	15	<5	1.72	639	18	99	4241	2.66	<10	0.49	796	<1	< 01	10	880	718	<5	<20	40	<50	< 01	<10	25	<10	<1 :	>10000
15	ERK-94-649	>30	0.16	45	<5	<5	0.24	> 1000	30	36	2707	3.58	<10	0 09	1916	<1	<.01	5	290	>10000	<5	<20	27	<50	< 01	<10	5	<10	2 :	>10000
16	ERK-94-650	>30	0.37	10	15	<5	0.48	> 1000	18	91	843	2.04	<10	0.26	830	<1	<.01	4	390	>10000	40	<20	14	<50	<.01	<10	12	<10	<1 :	>10000
17	ERK-94-651	<.2	0.56	15	10	<5	> 15	652	16	52	71	2.50	<10	0.53	2255	<1	<.01	5	630	1028	10	<20	227	<50	< 01	< 10	23	<10	<1 >	>10000
18	ERK-94-652	13.8	0 58	15	10	<5	874	> 1000	36	43	326	4.32	<10	1.17	3474	<1	<.01	5	390	>10000	<5	<20	158	<50	<.01	<10	20	<10	<1 >	>10000
19	ERK-94-653	26 4	0.53	55	10	<5	8.81	608	15	8 5	1141	4.44	<10	0.60	2640	<1	<.01	7	320	>10000	20	<20	163	<50	<.01	<10	21	<10	_<1⇒	>10000
20	ERK-94-654	4.8	0 15	55	10	<5	> 15	15	7	13	61	5.67	<10	1.53	5997	<1	<.01	4	<10	236	20	<20	551	<50	< 01	<10	13	<10	2	807
21	ERK-94-655	1.0	1.78	20	15	<5	5.19	118	8	107	172	5.46	<10	1.37	1923	<1	<.01	8	270	146	20	<20	84	<50	0 01	<10	65	<10	<1	7471
22	ERK-94-656	8.8	1.27	690	20	<5	1.83	272	13	80	477	3 33	<10	0.80	914	<1	<.01	13	950	5478	15	<20	20	<50	0 07	<10	46	<1 0	<1 >	>10000
23	ERK-94-657	14 6	0.28	25	<5	<5	0.11	226	7	125	1768	1.68	<10	0.19	511	<1	< 01	6	210	814	<5	<20	<1	<50	0.01	<10	8	<10	<1 >	10000
24	ERK-94-658	>30	0.35	7180	5	<5	2.17	558	36	84	1123	2 31	<10	0 21	1044	<1	< 01	10	440	>10000	105	<20	16	<50	< 01	<10	10	<10	<1 >	10000
25	ERK-94-659	>30	0.62	80	10	<5	1.67	101	7	118	6639	2.12	<10	0.39	706	<1	<.01	9	700	2504	15	<20	12	<50	0.05	<10	18	<10	<1 >	10000
26	ERK-94-660	>30	0.50	55	10	<5	1.91	841	22	78	8073	3.26	<10	0.34	1024	<1	<.01	10	1040	324	10	<20	16	<50	< 01	<10	18	<10	<1 >	10000
27	ERK-94-661	34	0.27	40	15	<5	8.96	14	13	114	204	3.88	<10	0 09	1574	<1	<.01	10	350	110	<5	<20	207	<50	<.01	<10	10	<10	<1	1260

TEUTON RESOURCES CORPORATION ETS-3088

. .

Eco-Tech Laboratories Ltd

Et #	. Tag #	Ag	AI %	As	Ba	Bi Ca	к с	t Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	РЬ	Sb	Sn	Sr	Te	Ti %	U	v	w	Y	Zn	
28	FRK-94-662	>30	0.35	40	10	<5 86	0 11	2 9	99	2301	3 05	<10	0.67	2547	<1	<.01	10	210	134	25	<20	92	<50	< 01	<10	13	<10	<1	7264	1
29	ERK-94-663	19.0	1.09	2870	15	<5 > 1	5 20	1 59	76	213	3 48	<10	0.85	2987	<1	< 01	51	550	8680	50	<20	204	<50	< 01	<10	37	<10	2 >	10000	
20	EPK-04-664	0.2	2.02	<5	55	<5 19	1	3 33	57	172	5 76	<10	1 31	535	<1	0.04	31	1700	60	20	<20	49	<50	0 17	<10	118	<10	4	261	
30		24	0.89	365	35	35 0 3	7	6 20	96	39	> 15	<10	0.61	700	6	< 01	16	30	58	<5	<20	<1	< 50	0.01	< 10	44	<10	<1	126	10 1
20	ERK-94-000	~ 2	1 00	100	50	20 04		2 31	36	30	9.91	<10	0.47	297	<1	< 01	23	1700	42	5	<20	4	<50	0.20	<10	44	<10	<1	79	10.5
32	EKK-94-000	~ .2	1.03	100	50	20 0.0	~		50		0.51	-10	0.47	207			20	1100						0 20				•	, -	I TOP
20	5 DK 04 007	- 7	1 74	10	30	r 5 23	и .	2 34	63	126	4 46	<10	0.53	279	<1	0.02	35	1900	44	15	< 20	11	<50	0.14	<10	85	<10	2	119	1.10.
33	ERK-94-66/	< 2	1.74	~	30	-0 -1		2 34	60	20	10.40	<10	0.00	070	20	< 01	12	260	30	-5	<20	26	<50	< 01	<10	12	<10	~1	60	1.9
34	ERK-94-668	1.4	0.24	20	30	30 1.0		2 10	69	22	12.40	<10	< 01	100	25	< 01	7	240	10	226	<20	30	<50	< 01	<10	7	<10	-1	~	1 1 1
35	ERK-94-669	15.0	0.18	>10000	30	<5 0.0	, 96 CT	2 24	90	3042	11.20	< 10	<.UI	100		<.UT		340	10	225	20	4	-50	101	~10		<10		36	1
36	ERK-94-670	3.2	0.76	>10000	30	10 5.0	3 86	2 21	67	2/5	> 15	<10	0.30	1142	<1	<.01	8	110	4	115	<20	40	< 50	< 01	20	19	< 10		30	1
37	ERK-94-671	2.4	0.39	2195	25	10 0.0	19 2	1 19	140	53	7.60	<10	0.08	1/5	<1	<.01	8	390	14	<5	<20	<1	<50	<.01	<10	28	<10	<1	40	1
	_	-									7 00		0.45				~	4000					-50	0.00		20	-10		~	ŧ –
38	ERK-94-672	04	1.07	285	35	10 0.5	8	3 25	65	11	7.39	<10	0.45	653	<1	<.01	24	1880	14	<5	<20	6	<50	0.09	<10	29	<10	<1 	23	
39	ERK-94-673	2.8	0.54	180	40	<5 1.8	19	3 72	59	564	> 15	<10	0.02	554	<1	<.01	6	320	6	<5	<20	48	<50	0.12	30	69	<10	<1	31	
40	ERK-94-674	3.6	0.60	15	50	<5 0.4	2	1 118	67	1274	> 15	<10	0.27	248	9	< 01	19	310	<2	<5	<20	42	<50	0 14	50	45	<10	<1	28	
41	ERK-94-675	1.4	0.41	25	40	<5 6.8	88	1 42	5 5	321	> 15	<10	<.01	1499	<1	<.01	5	130	<2	<5	<20	6	<50	0.05	30	92	<10	<1	32	
42	ERK-94-676	11.0	1.49	40	15	<5 1.7	4 :	2 18	79	4145	5.23	<10	0.52	526	<1	<.01	3	1210	6	10	<20	148	<50	0 16	<10	3 6	<10	<1	72	
43	ERK-94-677	9.4	0.33	20	40	<5 0.£	i3 <'	1 20 7	78	1592	> 15	<10	0.11	272	_<1	< 01	11	150	<2	<5	<20	6	<50	0.05	30	34	<10	<1	26	
44	ERK-94-678	<.2	1.38	55	40	<5 1.2	25	1 34	33	222	5.17	<10	0.62	482	<1	0.09	5	1350	14	5	<20	68	<50	0 21	<10	73	<10	5	53	
45	ERK-94-679	9.0	0.56	55	35	<5 0.6	67 <"	87	72	4668	> 15	<10	0.07	140	<1	< 01	8	670	<2	<5	<20	70	<50	0.16	10	41	<10	<1	22	
46	ERK-94-680	<.2	1.53	40	25	15 0.5	i5 <'	1 57	17	94	8.22	<10	0.62	473	<1	< 01	8	1310	12	10	<20	<1	<50	0.21	<10	51	<10	<1	25	
47	ERK-94-681	23.0	0.17	<5	25	<5 0.0	6 '	I 10	142	>10000	6.05	<10	<.01	133	4	<.01	5	>10000	<2	<5	<20	<1	<50	0.02	<10	6	<10	<1	24	
48	ERK-94-682	1.2	1.66	150	30	<5 1.2	0 2	2 19	71	952	7.51	<10	0.29	347	<1	0.11	8	1540	30	<5	<20	44	<50	0.02	<10	6	<10	<1	49	
49	ERK-94-683	< 2	1.25	<5	20	5 0.2	3 <	1 18	51	68	5.12	<10	0.82	218	<1	0.01	16	380	8	5	<20	<1	<50	0 12	<10	9	<10	з	22	
50	ERK-94-684	< 2	1.76	50	30	10 0.7	5 2	2 31	47	107	8.11	<10	1.40	530	20	0.04	6	1770	20	20	<20	10	<50	0 21	<10	135	<10	2	96	
51	ERK-94-685	<.2	2.60	<5	50	10 1.2	×6 <	1 47	175	133	6 43	<10	2.66	496	<1	0.14	63	1850	14	30	<20	75	<50	0.34	<10	184	<10	4	66	
52	ERK-94-686	3.2	1.72	<5	70	<5 2.9	9 9	324	15	1325	> 15	<10	<.01	674	<1	0.01	101	510	68	<5	<20	13	<50	0.08	50	97	<10	<1	362	
53	ERK-94-687	82	2 82	<5	70	<5 11.5	ю ·	251	63	2968	14 20	<10	3.05	2728	<1	0.03	7	450	14	20	<20	63	<50	0.09	< 10	78	<10	14	76	
54	KK-94-680	0.8	0.64	295	80	10 0.2	6	3 24	26	81	9.75	<10	0.06	394	<1	< 01	23	1070	26	25	<20	11	<50	< 01	<10	21	<10	<1	65	ר
55	KK-94-681	0.4	1.57	755	45	20 1.9	7 8	28	25	126	13 20	<10	1 15	935	<1	0.03	10	1520	26	15	<20	30	<50	0 25	10	197	<10	<1	51	
56	KK-94-682	26	0 48	815	30	<5 4.7	2 8	3 18	46	530	7.79	<10	0.26	1937	<1	< 01	9	650	28	<5	<20	75	<50	< 01	<10	2 2	<10	<1	25	
57	KK-94-683	3.0	2 22	395	40	10 2.4	2 5	5 41	79	70	13.30	<10	0 96	1598	<1	< 01	21	870	50	10	<20	71	<50	< 01	<10	81	<10	<1	119	
0,	14101000																													1
58	KK-94-684	1.6	0.39	180	4 0	<5 1.4	3 2	2 12	43	84	5 15	<10	0.03	789	12	<.01	7	990	56	<5	<20	21	<50	< 01	<10	16	<10	<1	54	
59	KK-94-685	>30	0 17	1210	40	<5 0.0	6 12	2 14	142	811	11 80	<10	< 01	184	11	< 01	10	130	164	10	<20	<1	<50	0.01	< 10	53	<10	<1	33	VI C
60	KK-94-686	12.0	1 12	340	25	<5 > 1	5 4	1 14	41	358	7 66	<10	2.56	7746	<1	< 01	11	840	54	35	<20	478	<50	< 01	20	50	<10	4	46	T Met
61	KK 94 697	1.8	3.26	25	30	<5 36	ñ i	69	33	1061	10 40	<10	0.64	663	<1	0.05	41	1690	32	<5	< 20	69	<50	0.09	<10	82	<10	<1	78	110
67	KK-94-007	- 2	2 99	40	35	<5 11	7 <	38	83	320	11 20	<10	1.87	901	<1	0.04	24	1820	14	10	<20	20	<50	0.23	<10	280	< 10	<1	62	IA
62	NN-94-000	~ 2	2.33	40	30	-5 1.1		30	05	520	1.20	-10	1.07	301		004	24	1020	14	10	-20	20	- 50	025		200	- 10		04	1 (1
62	KK OA EBC	12	1.80	65	55	<5 17	6 3	a an	50	179	5 20	< 10	1 18	434	2	0.03	26	1700	128	20	<20	38	<50	0.21	<10	143	<10	з	255	
63	KK 04 600	21.2	0.45	2720	35	-5 0.0	u 20	, 30	03	436	7 42	<10	0.02		2	< 01	20	300	34	20	<20	-1	<50	< 01	<10	10	<10	~1	316	
64	KK-94-690	212	1.02	520	35	5.00	- JU - JU - JU - JU - JU - JU - JU - JU	. 10	53	4.30	6.11	<10	0.02	51	2 E	< 01	4	1160	54	20	<20		~50	0.00	<10	30	<10	~1	191	
65	KK-94-691	1.4	1.03	520	25	5 02		0 18	64	140	6 07	<10	1.07	070	-1	0.03	15	1020	10	20	<20	24	-50	0.03	<10	100	<10	1	101	
66	KK-94-692	< 2	1.63	15	/0	<5 1.1	4 <	- 30	00	149	381	<10	19/	0/9		0.03	20	1920	12	- 30	×20	24	< 50	0 22	10	190	10	3	00	T

Page 2

. . .

TEUTON RESOURCES CORPORATION ETS-3088

.

Eco-Tech Laboratories Ltd

.

Et	#. Tag #	Ag	AI %	As	8a	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Тe	Ti %	U	V	w	Y	Zn	
67	KK-94-693	< 2	2.27	25	40	15	0.50	<1	23	53	122	10 50	<10	2.02	538	<1	0.04	15	1620	16	15	<20	23	<50	0.30	< 10	264	<10	<1	59	
68	KK-94-694	< 2	1.89	<5	50	<5	1,45	<1	31	61	154	5.31	<10	1.45	344	<1	0.05	28	1790	22	25	<20	49	<50	0 20	<10	138	<10	3	44	n
69	KK-94-695	<.2	1 61	35	30	<5	1.50	<1	21	49	177	4.64	<10	0.80	360	16	0.04	19	1640	16	15	<20	54	<50	019	<10	115	<10	4	43	VOLI
70	KK-94-696	< 2	1 66	10	30	<5	1.27	<1	20	52	220	6.62	<10	1.12	355	<1	0.03	12	1710	12	15	<20	22	<50	0 20	<10	122	<10	2	26	(*
71	KK-94-697	< 2	1.63	10	30	<5	1.40	<1	23	45	135	4 05	<10	1 19	435	<1	0.02	21	1680	22	15	<20	23	<50	0.18	<10	118	<10	4	62	. a
	111 34 031		1.00			-										•		•													1 11
72	KK-94-698	< 2	2.06	15	30	<5	1.68	<1	33	33	167	5.88	<10	1 20	405	<1	0.03	13	1770	14	15	<20	30	<50	0 23	<10	143	<10	4	47	
73	KK-94-699	04	2.46	165	55	<5	0.42	2	37	59	477	14.20	<10	1.74	595	<1	0.03	30	1590	26	10	<20	13	<50	016	<10	220	<10	<1	45	L
74	KK-94-700	< 2	2 23	25	30	<5	2.16	<1	26	49	117	4.70	<10	1.32	454	<1	0.02	26	2210	22	20	<20	31	<50	018	<10	132	<10	3	84	
75	KK-94-701	0.6	0.65	<5	25	6	1.93	<1	55	48	212	12.60	<10	0.13	545	<1	< 01	6	460	<2	<5	<20	56	<50	015	<10	137	<10	<1	12	
76	KK-94-702	< 2	1.80	5	35	<5	1.72	4	46	32	2182	3.35	<10	1.23	1130	<1	0.02	3	1760	12	20	<20	61	<50	0 22	<10	59	<10	5	184	
77	KK-94-703	0,6	1.60	40	35	20	0.32	<1	88	46	42	> 15	<10	0.84	601	2	<.01	7	360	2	<5	<20	<1	<50	0.07	<10	52	<10	<1	29	
78	KK-94-704	<.2	0.69	<5	25	15	0.33	<1	55	52	30	5.91	<10	0.40	194	<1	<.01	8	770	4	<5	<20	<1	<50	013	<10	29	<10	<1	12	
79	KK-94-705	12.6	1.53	5	40	<5	3.90	1	67	60	3465	> 15	<10	0.78	2764	2	<.01	7	570	<2	<5	<20	14	<50	0 08	20	110	<10	<1	75	
80	KK-94-706	13.8	0.53	10	50	<5	1.51	2	154	53	3331	> 15	<10	0.16	1111	3	<.01	9	220	<2	<5	<20	13	<50	0.04	40	44	<10	<1	58	
81	KK-94-707	11.8	0.38	40	35	<5	0.85	<1	112	69	1965	> 15	<10	<.01	179	<1	<.01	9	420	<2	<5	<20	65	<50	0.12	20	30	<10	<1	17	
82	KK-94-708	1.8	0.66	<5	30	<5	0.85	<1	100	60	370	> 15	<10	0 19	203	<1	<.01	11	300	<2	<5	<20	82	<50	018	<10	49	<10	<1	18	
83	KK-94-709	26.4	0.36	<5	70	<5	0.55	<1	178	47	4167	> 15	<10	<.01	177	<1	<.01	26	80	<2	<5	<20	79	<50	010	60	435	<10	<1	26	
84	KK-94-710	< 2	1.34	<5	40	10	0,89	<1	38	40	101	6.43	<10	1 12	668	<1	0.02	8	1220	8	15	<20	54	<50	0 26	<10	86	<10	3	54	
85	KK-94-711	<.2	1.63	10	35	10	2.11	<1	26	49	66	5.33	<10	0.25	201	<1	0.10	8	1090	14	<5	<20	111	<50	0 20	<10	61	<10	5	29	
86	KK-94-712	<.2	1.60	5	50	10	1.18	<1	28	33	61	5.38	<10	1.02	806	<1	0.08	7	1240	10	15	<20	75	<50	0 25	<10	101	<10	3	62	
87	KK-94-713	0 2	1 56	10	35	<5	1.59	<1	14	26	280	8.68	<10	0.86	996	<1	0.03	3	1260	10	<5	<20	92	<50	0.30	<10	118	<10	<1	47	
88	KK-94-714	< 2	1.50	10	15	<5	2.09	<1	26	51	190	7.27	<10	0.63	1074	<1	<.01	4	1010	10	15	<20	171	<50	0 28	<10	117	<10	3	35	
89	KK-94-715	5.6	1 94	90	25	<5	0.50	<1	76	70	3917	13 6 0	<10	0.57	1156	20	<.01	5	450	6	<5	<20	5	<50	0.05	<10	38	<10	<1	30	
90	KK-94-716	4.0	1.67	<5	35	<5	0.21	<1	37	66	1977	10.40	<10	0.52	560	10	<.01	4	710	6	<5	<20	<1	<50	0 09	<10	51	<10	<1	20	
91	KK-94-717	1.0	2.66	<5	55	<5	1.23	<1	65	54	4141	> 15	<10	0.67	738	15	0.08	4	1110	10	<5	<20	52	<50	011	<10	48	<10	<1	23	
92	KK-94-718	>30	0 24	295	25	<5	0.09	7	96	184	>10000	9.67	<10	0 01	74	203	< 01	27	1190	150	25	<20	<1	<50	0.01	<10	5	<10	<1	96	
93	KK-94-719	11 4	1.47	<5	55	<5	1.19	<1	26	89	4197	4 53	<10	0.93	701	13	0 02	6	1070	16	10	<20	29	<50	017	<10	67	<10	2	64	
94	KK-94-720	>30	0.17	16 5	40	<5	0.02	8	92	99	>10000	> 15	<10	<.01	39	202	<.01	12	>10000	6	<5	<20	< 1	<50	< 01	<10	9	<10	<1	208	
95	KK-94-721	2.8	0.55	<5	50	<5	0.05	<1	113	44	1833	> 15	<10	<.01	321	<1	<.01	220	<10	<2	<5	<20	<1	<50	0.01	30	19	<10	<1	26	
96	KK-94-722	14	1.05	<5	60	<5	0.25	<1	14	51	609	6.20	<10	0.61	231	<1	0 02	8	1160	14	5	<20	10	<50	018	<10	28	<10	<1	28	
97	KK-94-723	< 2	2.28	10	40	<5	1.33	<1	22	250	380	4.55	<10	1.35	498	76	0.07	86	1190	16	15	<20	42	<50	0 28	<10	142	<10	4	4 6	
98	KK-94-724	<.2	1.15	<5	15	<5	0.58	<1	12	151	199	3.92	<10	1.28	174	<1	0.03	14	1460	10	15	<20	10	<50	0 29	×10	134	<10	9	24	
99	KK-94-725	<.2	3.30	<5	30	5	0.97	<1	23	234	152	7.33	<10	4.04	423	<1	0.04	57	2650	16	30	<20	22	<50	0 29	<10	250	<10	з	54	
100	KK-94-726	<.2	3.67	<5	35	<5	0.94	<1	39	189	178	7.54	<10	4.49	464	<1	0 03	90	2610	22	30	<20	20	<50	0.24	<10	254	<10	з	62	

.

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. *2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

CERTIFICATE OF ASSAY ETS 3089

TEUTON RES. CORPORATION 509-675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Attention: Dino Cremonese

50 rock samples received September 5, 1994 Sample run date: September 8, 1994 Samples submitted by: Ken Konkin Client Project Number: OEX

		Au	Au	Ag	Ag	As	Cu	Zn	
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	%	%	%	
7	ERK94694	10.45	0.305			14.13			1
11	ERK94698							6.26	
13	ERK94700	5.15	0.150			9.05			
14	ERK94701	8.05	0.235			10.83			
15	ERK94702	4.50	0.131			8.91			10.0
16	ERK94703	6.45	0.188			11.08			YORI
17	ERK94704			50.2	1.46				
21	ERK94708							1.90	1 19
28	ERK94715			263.6	7.69				
29	ERK94716			342.3	9.98				1
45	KK -ERK94741	3.60	0.105	40.8	1.19				
46	KK ERK94742	2.44	0.071	112.4	3.28		1.27		

k J.Pezzotti, A.Sc.T.B.C.Certified Assayer Ftar

15-Sep-94

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

CERTIFICATE OF ANALYSIS ETS 94-3089

TEUTON RES. CORPORATION 509-675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2 9-Sep-94

Attention: Dino Cremonese

50 rock sample received September 5, 1994 Sample run date: 8 September, 1994 Samples Submitted By: Ken Konkin Client Project Number: OEX

		Au	
ET #.	Tag #	(ppb)	
1	ERK94688	135	
2	ERK94689	25	
3	ERK94690	105	
4	ERK94691	50	
5	ERK94692	140	
6	ERK94693	95	
7	ERK94694	>1000	
8	ERK94695	275	
9	ERK94696	305	
10	ERK94697	175	
11	ERK94698	140	
12	ERK94699	70	
13	ERK94700	>1000	
14	ERK94701	>1000	1 19
15	ERK94702	>1000	
18	ERK94703	>1000	Yor
17	ERK94704	125	
18	ERK94705	85	
19	ERK94706	65	
20	ERK94707	90	
21	ERK94708	70	
22	ERK94709	160	
23	ERK94710	105	
24	ERK94711	85	
25	ERK94712	100	

TEUTON RES. CORPORATION ETS 3089

. .

9-Sep-94

			Au			
ET #.		Tag #	(ppb)		_	
26		ERK94713	95			
27		ERK94714	40			
28		ERK94715	85		PORT	コク
29		ERK94716	100			
30		ERK94717	50			
31	1	ERK94727	5	•		
32	1	集 床K94728	45			
33		ERK94729	30			
34		ERK94730	30			
35		ERK94731	30			
36	1	ERK94732	50			
37	5	ĘRK94733	50			
38	κę	ERK94734	40			
39	er K	ERK94735	35			
_40	\$	ERK94736	20			
41	5	ERK94737	50)		
42	<u>ـد</u>	ERK94738	255	- 1		
43	2	ERK94739	250	- 1		
44	-	ERK94740	525		0	
45		ERK94741	>1000	- }	VORT	19
46	7	ERK94742	>1000	1	I VKI	
47	7	ERK94743	460			
48		ERK94744	35			
49		ERK94745	30			
50	•	ERK94746	30	J		
				-		

16-Sep-94

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B C V2C 2J3

Phone 604-573-5700 Fax 604-573-4557

Values in ppm unless otherwise reported

TEUTON RESOURCES CORPORATION ETS-3089 509-675 W HASTINGS ST VANCOUVER , B C

V6C-1N2

ATTENTION: Theresa Rau

50 rock samples received September 5, 1994 Sample run date: September 13, 1994 Samples Submitted By Ken Konkin Client Project Number: OEX

Et #	l. Tag #	Ag	AI %	As	Ba	Bi	Ca %	Cđ	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	РЬ	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn	
1	ERK94688	< 2	2.12	60	65	<5	1.76	2	27	68	64	5.88	<10	1.28	527	<1	0.06	12	1370	28	15	<20	36	0.13	< 10	115	< 10	<1	103	
2	ERK94689	< 2	2 18	50	60	10	0.70	2	18	43	26	6.27	<10	1 94	683	<1	0 02	4	1360	20	15	<20	16	0.08	<10	123	<10	- <1	145	
3	ERK94690	<.2	1.73	15	35	10	0.99	<1	21	77	52	5 49	<10	1.35	563	<1	0 03	5	1480	32	15	<20	42	0 21	<10	87	<10	1	38	
4	ERK94691	06	1.27	<5	60	<5	0.61	<1	15	80	67	3.74	<10	0.65	428	<1	0.03	29	1170	30	10	<20	19	0.11	<10	53	<10	2	26	
5	ERK94692	< 2	1.99	5	45	5	0.65	<1	18	131	62	5 02	<10	2 32	597	<1	0 02	33	1260	24	25	<20	14	0.08	<10	109	<10	<1	56	
																-														
6	ERK94693	< 2	2 28	<5	45	<5	> 15	<1	24	71	150	6.64	<10	2 51	1494	13	0.02	36	2160	6	30	<20	225	0.10	<10	125	<10	4	69	····
7	ERK94694	10.8	0.32	>10000	45	<5	0.24	> 1000	49	67	1332	> 15	<10	< 01	89	14	< 01	7	180	74	445	<20	<1	< 01	30	12	<10	<1	103	1
8	ERK94695	122	0 44	2980	30	<5	0.18	26	49	130	985	> 15	<10	0 03	649	2	<.01	25	660	14	<5	<20	<1	<.01	<10	24	<10	<1	24	
9	ERK94696	38	0 25	750	50	25	0.08	8	40	134	49	> 15	<10	< 01	4704	6	<.01	17	<10	82	<5	<20	2	< 01	70	12	<10	<1	126	
10	ERK94697	94	0 38	270	55	<5	0.04	4	119	131	582	> 15	<10	< 01	550	45	<.01	100	340	46	<5	<20	<1	0.01	50	50	<10	<1	31	1
11	ERK94698	38	1 48	215	35	<5	2.57	827	24	114	889	6.68	<10	113	2191	<1	<.01	17	700	62	<5	<20	27	< 01	<10	48	<10	<1	>10000	}
12	ERK94699	1.0	0.30	230	20	<5	0.91	23	23	132	1 6 6	8 57	<10	80 0	1579	4	< 01	13	40	6	<5	<20	4	< 01	<10	12	<10	<1	19 60	
13	ERK94700	25 0	0.02	>10000	45	<5	0.04	> 1000	27	92	730	> 15	<10	<.01	73	<1	<.01	8	<10	36	300	<20	<1	< 01	20	2	<10	<1	257	
14	ERK94701	56	30.0	>10000	30	<5	0 03	> 1000	28	65	396	> 15	<10	< 01	297	2	< 01	8	<10	100	665	<20	<1	< 01	<10	2	<10	<1	109	
15	ERK94702	72	0.05	>10000	50	10	0.04	> 1000	31	62	531	> 15	<10	< 01	65	<1	< 01	8	<10	58	<5	<20	<1	<.01	40	3	<10	<1	111	<u>۳</u> , ۱
																		_												1~ 11
16	ERK94703	20.8	0.05	>10000	35	<5	0.03	> 1000	25	65	549	> 15	<10	<.01	41	1	<.01	7	<10	170	570	<20	<1	< 01	<10	4	< 10	<1	72	() i
17	ERK94704	>30	074	1640	40	<5	0.07	14	13	200	8261	6 53	<10	0 39	1663	7	< 01	10	850	10	5	<20	<1	< 01	<10	20	<10	<1	60	I VOP
18	ERK94705	2.6	0.25	845	20	<5	0.10	7	52	172	188	663	<10	< 01	156	5	< 01	25	1070	24	<5	<20	<1	< 01	<10	14	<10	<1	29	11
19	ERK94706	< 2	1 19	230	30	<5	0.83	2	28	73	133	5 51	<10	1 12	372	2	0 03	25	1800	20	15	<20	13	010	<10	BC	<10	<1	43	1
20	ERK94707	10	0.70	975	40	10	0 41	9	27	24	25	7 32	<10	011	220	1	<.01	9	2500	28	<5	<20	4	< 01	<10	23	<10	<1	16	
		_																				.00				-			10000	
21	ERK94708	<.2	0.95	1:45	45	<5	0.30	256	12	160	97	3 92	<10	0 40	903	<1	< 01	9	530	116	<5	<20	<1	< 01	<10	- 22	< 10	<1	>10000	1
22	ERK94709	10	2.49	90	40	<5	1.65	6	27	71	2340	978	<10	1 29	668	<1	0.08	26	2950	26	15	<20	121	007	<10	108	<10	<1	427	
23	ERK94710	16	1.52	260	45	<5	2.19	3	37	142	163	7.12	<10	1 05	698	<1	0.02	43	2290	508	10	<20	43	012	< 10	114	<10	<1	217	1
24	ERK94711	06	0 58	50	25	10	0.18	1	32	172	13	6 39	<10	018	1068	3	<.01	11	870	16	<5	<20	<1	<.01	<10	22	<10	<1	38	
25	ERK94712	20	0 54	195	30	15	0 14	2	22	156	103	11 90	<10	0 09	898	10	< 01	14	760	20	<5	<20	<1	< 01	< 10	28	× 10	<1	29	
						-	•					1.00		0.07					4000	<i>c</i> .	-				10				110	
26	ERK94713	2.8	1 29	55	40	5	0.31	5	25	176	39	4 68	<10	0.67	901	1	< 01	19	1230	54	5	<20	~1	< 01	< 10	শ্ব	< 10	~1	413	
27	ERK94714	25.6	1.62	70	20	<5	0.15	<1	33	195	3432	8 37	<10	1 15	1187	4	< 01	15	830	34	10	<20	<1	< 01	<10	55	×10	<1	64	

Page 1

TEUTON RESOURCES CORPORATION ETS-3089

- 7

Eco-Tech Laboration us Ltd

	Et#	Tag #	Ag	AI %	As	Ba	Bi	Ca %	Cđ	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	Р	РЬ	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn	
-	28	ERK94715	>30	0 32	265	50	<5	0.03	3	23	102	8955	> 15	<10	<.01	2106	6	<.01	13	370	<2	<5	<20	<1	<.01	60	17	×10	• 1	43	0
	29	ERK94716	>30	0 39	3980	15	<5	0.05	34	15	188	1667	646	<10	0.03	409	<1	< 01	6	400	30	155	<20	<1	0.02	<10	17	< 10	• 1	41 7	DAT 19
	30	ERK94717	6.6	0 57	105	30	15	0.09	2	37	160	123	> 15	<10	0.19	284	8	< 01	32	200	188	<5	<20	<1	0.02	10	- 25	< 10	<1	56	-
L	9 31	54727	14	2 36	125	70	10	073	1	19	145	42	5.05	<10	1.98	795	<1	0.02	32	1410	30	20	<20	47	0.13	<10	100		1	82	
Y	32	510 94728	< 2	2.06	15	60	15	1 87	1	24	80		-5.05		1.17	636	~1	0.03	7	1680	32	20	<20	34	0.18	<10	92	<10	<1	76	
	33	ERK94729	10	2.15	265	40	<5	0.59	5	27	72	81	7.65	<10	1.58	614	<1	<.01	38	1460	58	20	<20	6	0 09	<10	59		~ <1	219	
	34	ERK94730	< 2	1 93	15	90	<5	0.96	1	19	123	82	5 22	<10	1.70	750	<1	0.03	31	1750	34	20	<20	- 10	0.18	<10	139	< 10	2	67	
	35	ERK94731	0.8	2 16	20	30	<5	5 27	4	43	183	82	4 37	<10	0.50	632	<1	0.02	70	740		10	<20	33	0.07	<10	56	<10	< 1	313	
	36	ERK94732	< 2	0.94	<5	75	<5	2 45	<1	21	120	77	4.16	<10	0.51	506	-	0.02	41	1030	16	10	<20	49	0 08	<10	63	<10	2	33	
1	37	ERK94733	<.2	1.67	265	40	<5	1.15	107	38	99	227	7.41		2.42	487	<1	0.03	59	1360	26	15	<20	30	0 09	<10	100	<10	<1	5095	
										_																					
	38	ERK94734	< 2	1 99	55	40		1.32	9	40	168	152	6 13	<10	2.75	608	<1	0.02	95	1250	20	25	<20	28	0.12	<10	111	<10	<1	507	
	39	ERK94735		1 30	25	15	<5	0 90	37	30	107	191	5 33	<10	2.02	309	5	0.03	44	1480	26	25	<20	14	0.11	<10	102	< 10	<1	1739	
	40	ERK94736	<.2	1 91	<5	50	<5	0 77	<1	24	114	185	4.63	<10	2 55	429	<1	0.03	40	980	20	25	<20	14	0 17	<10	130	< 10	4	64	
1	41	ERK94737	<.2	2.61	20	65	<5	2.01	1	34	96	140	6.27	<10	1 45	504	<1	0.10	49	2820	36	15	<20	152	0.24	<10	162	<10	4	119	<u> </u>
	42	ERK94738	9.0	012	15	30	<5	0.05	3	26	168	681	> 15	<10	<.01	87	4	<.01	32	40	532	<5	<20	<1	0.01	<10	6	< 10	<1	49	1
1																															1
	43	ERK94739	88	0 10	125	30	<5	0 03	3	30	136	818	> 15	<10	<.01	49	3	< 01	34	<10	452	<5	<20	<1	<.01	<10	7	< 10	<1	42	
1	44	ERK947 40	28	0 09	20	10	<5	0 04	1	13	234	201	8.26	<10	<.01	48	5	<.01	13	40	192	<5	<20	<1	0.01	<10	4	<10	<1	26	Var
1	45	ERK94741	>30	0.51	850	15	<5	0.11	20	31	170	3250	9.11	<10	0.33	285	<1	< 01	19	530	138	<5	<20	<1	0 01	<10	31	<10	<1	1265	7041
1	4 6	ERK94742	>30	0.53	810	25	<5	0.53	15	33	182	>10000	9 29	<10	0.28	1031	3	< 01	21	1240	334	<5	<20	3	0 03	<10	22	<10	<1	689	<i>P</i> , 1
	47	ERK94743	15.2	0.55	1350	35	<5	0.11	11	25	102	805	> 15	<10	0.07	309	<1	< 01	16	480	110	10	<20	<1	0 07	<10	39	- 10	<1	115	
1	48	ERK94744	<.2	2 00	15	45	<5	0.99	<1	28	128	185	6 04	<10	2.22	692	<1	0.04	26	2080	22	25	<20	20	0.22	<10	202	<10	2	73	
N.	49	ERK94745	< 2	2 49	65	45	<5	1.40	<1	30	91	131	5 91	<10	2 25	647	<1	0 05	27	2180	32	20	<20	47	0.19	<10	185	<10	2	85	
Ý	50	ERK94746	< 2	2 03	10	65	<5	1.18	<1	30	90	169	5.79	<10	1.81	533	<1	0.06	28	2080	62	15	<20	65	017	<10	158	< 10	2	62	

