GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORTS

DATE RECEIVED

OCT 17 1995

ASSESSMENT REPORT

ON A

HEAVY MINERAL STREAM SEDIMENT, SOIL

AND

ROCK SAMPLING PROGRAM

ON THE

VIDETTE PROPERTY

VIDETTE 5 - 14 MINERAL CLAIMS

VIDETTE LAKE AREA

CLINTON MINING DIVISION, B.C.

FILMED

NTS: LATITUDE: LONGITUDE: OWNER: OPERATOR: AUTHOR: DATE: 092P/02W 51° 10' N 120° 54' W W.R. Gilmour Discovery Consultants T.H. Carpenter, P.Geo, September 12, 1995

SSESSMENT REPOR

24.060

TABLE OF CONTENTS

SUMMARY		Page	1
LOCATIO	N AND ACCESS	Page	2
TOPOGRA	рну	Page	2
PROPERT	¥	Page	3
HISTORY		Page	4
GENERAL	GEOLOGY	Page	5
WORK CO	MPLETED	Page	7
1. 2. 3.	HEAVY MINERAL STREAM SEDIMENT SAMPLING A) PROGRAM PARAMETERS B) PROGRAM RESULTS SOIL SAMPLING A) PROGRAM PARAMETERS B) PROGRAM RESULTS ROCK SAMPLING A) PROGRAM PARAMETERS B) PROGRAM RESULTS		
CONCLUS	IONS	Page	10
RECOMME	NDATIONS	Page	11
REFEREN	CES	Page	12
STATEME	NT OF COSTS	Page	13
STATEME	NT OF QUALIFICATIONS	Page	14

LIST OF ILLUSTRATIONS

FIGURE	1	Location Map		Follo	owing Pa	ıge	2
FIGURE	2	Claim Location Map	(1:50,000)	Folle	owing Pa	ıge	3
FIGURE	3	Geochem Sampling: (1:5,000)	Sample Location	Мар	In Pock	cet	
FIGURE	4	Geochem Sampling:	Au Values (1:5,0	000)	In Pock	cet	

APPENDICES

APPENDIX	A	Heavy Mineral Stream Sediment Survey: Fraction weights and Analytical Results
APPENDIX	В	Soil Sampling Survey: Analytical Results
APPENDIX	С	Rock Samples: Analytical Results
APPENDIX	D	Analytical Procedures

SUMMARY

The Vidette property is a past producer. The former Vidette Lake Gold Mine, located on the property, produced approximately 30,000 ounces of gold and 46,000 ounces of silver from 54,199 tonnes of ore between 1933 and 1940. Gold mineralization at the Vidette Mine consists of fairly continuous, narrow quartz veins in greenstone of the Nicola Group.

Sporadic exploration work was carried out in the area during the 1960's and 1970's for porphyry-type copper and molybdenum mineralization. Several programs exploring the gold potential of the Vidette Lake area were carried out from 1980 to 1984.

In 1995 a program of heavy mineral stream sediment sampling combined with soil and rock sampling was carried out on the property.

LOCATION AND ACCESS

The Vidette property is centred at latitude 51°10'N and longitude 120°54'W, some 47 km due north of Savona, which is on the west end of Kamloops Lake. The property is accessible from the Trans-Canada Highway 6.5 km west of Savona, then 45 km north along the Deadman Valley road to the north end of Vidette Lake (Figure 1).

TOPOGRAPHY

The property includes the northern third of Vidette Lake and adjacent areas of the interior plateau. Maximum relief within the claims is approximately 200 metres, with elevations varying from 900 metres above sea level at lake level to over 1100 metres in the plateau area.

The southwest side of Deadman Valley rises sharply from Vidette Lake to the rim of the plateau, forming a steep, heavily wooded scarp.

PROPERTY

The Vidette property comprises 10 two-post claims. The claims were originally staked as the Vidette 1 to 14 claims. The Vidette 1 to 8 claims were later relocated as the Vidette 5 to 8 claims (Figure 2).

Claim Name	Record No.	Owner of Record	Anniversary Date•
Vidette 5	337440	W.R. Gilmour	July 07, 1999
Vidette 6	337441	W.R. Gilmour	July 07, 1999
Vidette 7	337444	W.R. Gilmour	July 07, 1999
Vidette 8	337445	W.R. Gilmour	July 07, 1999
Vidette 9	329135	W.R. Gilmour	July 18, 1999
Vidette 10	329136	W.R. Gilmour	July 18, 1999
Vidette 11	329137	W.R. Gilmour	July 18, 1999
Vidette 12	329138	W.R. Gilmour	July 18, 1999
Vidette 13	329139	W.R. Gilmour	July 18, 1999
Vidette 14	329140	W.R. Gilmour	July 18, 1999

The claims are owned by W.R. Gilmour in trust for the Predator Syndicate.

* Pending acceptance of this report.

DWG-620-003

HISTORY

Initial work was undertaken by Sterrett and Associates of Kamloops on the Vidette property in 1926 on the Dexheimer Vein on the west side of Vidette Lake. Results were discouraging, but with the discovery of the rich Tenford and Broken Ridge veins on the east side of Vidette Lake, the property progressed towards production.

Between 1933 and 1939 the Vidette Mine produced 54,199 tons of ore with a recovery of 29,869 ounces of gold, 46,573 ounces of silver and 48 tons of copper.

In 1980 and 1981 Consolidated Paymaster Resources Ltd. conducted a three hole drill program to explore untested ground northwest of and on strike from known gold bearing structures in the Vidette Mine.

Also, in 1983 Hawkeye Resources Ltd. completed underground geological mapping and sampling and a geochemical soil sampling program on the Hamilton Creek workings, northwest of the Vidette Mine.

Tugold Resources Inc., carried out a comprehensive exploration program on the Vidette property in 1989 including linecutting, soil and rock sampling, magnetic and electromagnetic surveying, topographical surveying and a review of mining records.

Further work, including mine dewatering, was recommended to develop an estimated 7500 tons of ore in place between the 2nd and 5th levels of the mine.

GENERAL GEOLOGY

Previous mapping has indicated that primarily two rock units are present in the Vidette area. These comprise dark green andesites of the Triassic Nicola Group and pinkish grey quartzmonzonite intrusive probably related to the nearby Thuya Batholith of Triassic or Jurassic age. The volcanic unit has been divided into massive or porphyritic andesite on the basis of the presence or absence of augite phenocrysts.

Augite porphyry appears more prominent in the topographically lower areas, while the massive variety dominates the higher elevations.

The quartz monzonite is a uniform, medium grained, equigranular rock usually carrying 5% pyrite. Numerous related varieties of intrusive rocks, which occur as narrow dikes, include both fine grained felsic rocks and coarse grained porphyries.

The larger felsic units occur as relatively small plugs 100 m to 250 m long by 50 m to 80 m wide. There is a spatial relationship between these intrusives and linear features interpreted as fault zones.

Within the Nicola formation narrow but fairly continuous quartz veins strike in a northwesterly direction and dip 45° to 70° in a northeasterly direction. Various veins include the Dexheimer, Tenford, Broken Ridge and Bluff veins. During mining these veins were shown to be offset to the east by faulting.

There is abundant evidence of widespread and complex faulting through the Vidette Lake area.

WORK COMPLETED

Work carried out on the property in 1995 comprised heavy mineral stream sediment, soil and rock sampling.

1. Heavy Mineral Stream Sediment Sampling

A) Program Parameters

A total of 3 heavy mineral stream sediment samples was taken from the claim area. Sample locations are shown on Figure 3. Heavy mineral drainage sampling entails the sampling of gravels, sands and silts from creek beds. The material is sieved in the field until approximately 10 kg of -20 mesh material is obtained. The sample is then shipped to C.F. Minerals Ltd. of Kelowna for heavy mineral separation. Fractions were produced according to grain size, specific gravity and magnetic susceptibilities.

Generally the -150HN fraction (-150 mesh, >3.2 specific gravity, non-magnetic) includes native gold, pyrite and many base metal sulphides as well as accessory minerals such as zircon. Para-magnetic (P) minerals include garnets, hornblende and epidote. The magnetic (M) fraction is generally exclusively magnetite. All remaining fractions are stored for further analysis or microscopic examination. The fraction selected for analysis (-150HN) was sent to Activation Laboratories for nondestructive analysis by neutron activation, followed by ICP analysis upon 'cooling'.

B) Program Results

Heavy mineral sampling results are contained in Appendix A, analytical procedures in Appendix D and gold values are shown on

Figure 4. Anomalous gold values contained in samples 001 and 003 indicate possible gold sources upstream from the sample sites. Of particular interest is sample number 003 at the southeast corner of the claim area, which may indicate a possible extension of the Dexheimer vein or possible parallel veins.

2. Soil Sampling

A) Program Parameters

Thirty-five soil samples were collected on the Vidette 9, 10, 11 and 12 claims on grid lines established using compass and hip-chain. Samples were taken at 50 metre intervals along contour and east-west soil lines.

The samples were collected by shovel from the "B" horizon, placed in 9 cm x 25 cm kraft sample bags and sent to Bondar Clegg & Company, Inc. in North Vancouver, B.C. for Au and 34 element ICP analysis.

B) Program Results

The geochemical results are listed in Appendix B, analytical procedures in Appendix D and sample locations are shown on Figure 3. Gold values are shown on Figure 4. Sporadic gold values to 22 and 33 ppb were obtained. Both samples were found on the plateau southwest of Vidette Lake and may represent downslope dispersion from mineralization in this area.

3. Rock Sampling

A) Program Parameters

Eleven rock samples were collected from outcrop and float at various locations on the property. The samples were sent to Bondar Clegg in North Vancouver, B.C. for Au and 34 element ICP analysis.

B) Program Results

Sample locations are shown on Figure 3 and gold values on Figure 4. Analytical results are contained in Appendix C and analytical procedures in Appendix D. The maximum gold value in the rock samples was 102 ppb in 620-CF-006. This sample was collected from the area of heavy mineral sample 003. Sample 620-CF-005, in the same vicinity, assayed 47 ppb Au. Lesser values are contained in the remaining samples.

CONCLUSIONS

The Vidette property is reported to contain an estimated 7500 tons of ore grade material in old workings. Auriferous quartz veins on the property average 15 inches (38 cm) in width and have been traced for up to 900 feet (275 m). These veins have been offset by E-W cross-faulting. The majority of the veins worked to date have been located on the east side of Vidette Lake.

The possibility of parallel veins on the west side of Vidette Lake, including the offset of the Dexheimer Vein has not been fully explored due to the presence of younger volcanic cap rocks in this area.

Heavy mineral sampling (620-003) has indicated the possible presence of auriferous veins in the south end of the claim area.

RECOMMENDATIONS

Further exploration is recommended on the Vidette property. Prospecting and continued heavy mineral sampling is recommended upstream from the 620-003 location.

Infill soil sampling should be carried out in the area of anomalous soil samples. A resistivity survey may help to define quartz veining beneath volcanic cover rocks.

Enzyme leach analysis may also aid in defining mineralized zones beneath cover rocks.

Respectfully submitted, ROVINCE QARPENTE SCIEN Carpenter, P.Geo T.H.

Vernon, B.C. September 12, 1995

REFERENCES

British Columbia Ministry of Energy, Mines and Petroleum Resources Annual Report

1931 - pg. 114 1932 - pg. 148 1933 - pg. 181 1934 - pg. F20 1936 - pg. F36 1937 - pg. F35 1938 - pg. F67 1939 - pg. 74 1940 - pg. 60

British Columbia Ministry of Energy, Mines and Petroleum Resources - Exploration in British Columbia.

1979 - pg. 197

Assessment Report #4257, 7164, 11273, 11731, 12670, 13453

Cockfield, W.R., 1935 Lode Gold Deposits of the Fairview Camp, Camp McKinney and Vidette Lake Area, and the Dividend-Lakeview Property near Osoyoos, B.C. Geological Survey of Canada. Memoir 179 pp 26-36

STATEMENT OF COSTS

1.	Professional Services W.R. Gilmour, P.Geo. 0.5 days @ \$400/day \$200.00 T.H. Carpenter, P.Geo. Supervision & report writing 2.75 days @ \$380/day 1045.00 C. Furlong - Geologist Rock Sampling July 7 & 8 2 days @ \$256.80/day	\$ 1758.60
2.	Field Personnel Soil & rock sampling R. Mitchell - July 19/94 .25 days @ \$256.36/day 64.09 J. Beggs - July 7 & 8 2 days @ \$214/day 428.00	492.09
~		
3.	(July 7 & 8/95)	272.35
4.	Lodging & Meals	76.22
5.	Geochemical Analyses a) Sample preparation 35 soil samples @ \$1.75/sample 61.25 11 rock samples @ \$4.25/sample 46.75 b) Au geochem (30g, fire assay-AA) and multielement ICP 35 soil samples @ \$15.75/sample 551.25 11 rock samples @ \$15.75/sample 173.25	
	c) Heavy mineral samples - preparation & analysis (multielement INAA and ICP) 3 @ \$148	1276.50
6.	Drafting	600.00
7.	Data compilation, secretarial	375.00
8.	Field supplies and equipment rental	100.00
9.	Printing, data processing, telephone, shipping	150,00
10.	GST	\$5100.76 <u>357.05</u>
	Total	<u>\$5457.81</u>

STATEMENT OF QUALIFICATIONS

I, THOMAS H. CARPENTER of 3902 14th Street, Vernon, B.C., VIT 3V2, DO HEREBY CERTIFY that:

- 1. I am a consulting geologist in mineral exploration associated with Discovery Consultants, Vernon, B.C.
- 2. I have been practising my profession for 23 years.
- 3. I am a graduate of the Memorial University of Newfoundland with a Bachelor of Science degree in geology.
- 4. I am a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of British Columbia.
- 5. This report is based upon knowledge of the Vidette property gained from supervision.
- 6. I hold no interest either directly or indirectly in the Vidette property.

Vernon, B.C. September 12, 1994

<u>APPENDIX A</u>

•

Heavy Mineral Stream Sediment Survey: Fraction Weights and Analytical Results Project 620

file: 620\hm_95.wk1

Vidette Heavy Mineral Sampling Results -150HN Fraction

1995

Date of Report : 95.08.11 Reference : ALL-8601, 8712(CFM95-621)

Sample ID	-20 mesh	-150HM	-150HP	-150HN	-150H	inaa	iNAA	ICP	INAA	ICP	INAA	ICP	ICP	INAA
	weight	wt	wt	wt	total wt	Au	Ag	Ag	As	As	Sb	Sb	Cu	Zn
	kg	g	g	g	g	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
620-001	9.2	2.54	5.72	0.40	8.66	40500	<5	10.5	6	<10	6	<5	82	<200
620-002	8.0	2.36	5.53	0.28	8.17	95	<5	0.4	8	<10	3	<5	283	<200
620-003	5.4	1.66	10.23	0.33	12.22	40300	<5	6.0	10	26	1	<5	245	<200

Vidette

Heavy Mineral Sampling Results (part 2)

Sample ID	ICP Zn ppm	ICP Pb ppm	ICP Cd ppm	INAA Mo ppm	ICP Mo ppm	INAA Fe %	ICP Fe %	INAA Hg ppm	INAA Ni ppm	ICP Ni ppm	INAA Cr ppm	ICP Cr ppm	INAA Co ppm	ICP Co ppm
620-001	50	354	<0.5	<20	4	4.4	2.4	<5	<200	12	300	16	29	18
620-002	49	9	<0.5	<20	<2	3.9	2.4	<5	<200	14	130	13	42	32
620-003	54	9	<0.5	<20	3	7.1	5.8	<5	<200	18	100	15	54	44

Vidette

Heavy Mineral Sampling Results (part 3)

	*********										******			=====
Semple ID	Ba	Ba	W	W	Mn	Th	Ű	V	inaa Ir	Ca	Sr	AI	Be	Bł
	ppm	ppm	ppm	ppm	ppm	ppm	ppm -	ppm	ppb	%	%	%	ppm	ppm
620-001	1800	41	380	413	148	300	210	18	<50	13	<0.2	0.4	<1	<10
620-002	17000	149	62	<10	396	89	59	27	<50	<2	<0.2	0.5	<1	<10
620-003	3600	90	62	<10	405	34	22	46	<50	7	<0.2	0.9	<1	<10

Vidette

Heavy Mineral Sampling Results (part 4)

20000002222								======				=======		
Sample ID	INAA	INAA	ICP	ICP	ICP	ICP	ЮР	ICP	ICP	INAA	INAA	ICP	ICP	ICP
	Br	Na	Na	Ca	K	Mg	П	Žr	P	Se	Sc	Sc	Sn	Sr
	ppm	ppm	%	%	%	%	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm
620-001	28	17400	0.04	2.5	0.0	0.3	0.03	2	11300	<20	31	2	16	51
620-002	33	25200	0.04	1.8	0.1	0.4	0.04	4	5380	<20	22	4	<10	247
620-003	33	24200	0.02	2.3	0.1	0.8	0.05	3	11300	<20	25	3	<10	56

Vidette

Heavy Mineral Sampling Results (part 5)

Sample ID	INAA Rb ppm	INAA Cs ppm	INAA La ppm	INAA Ce ppm	INAA Sm ppm	INAA Eu ppm	inaa Hf ppm	INAA Nd ppm	INAA Ta ppm	INAA Tib ppm	ICP Y ppm	INAA Yb ppm	INAA Lu ppm
620-001		<2	221	659	66	20	990	305	11	11	24	63	12
620-002	<50	<2	111	331	33	12	450	209	<1	4	12	31	6
620-003	<50	<2	62	190	18	6	180	89	5	<2	16	16	3

APPENDIX B

Soil Sampling Survey: Analytical Results

status: Final

Date of Report : 95.07.17

Project 620

Vidette

Soil Sampling Results

1995

Samplø ID	Au 30 ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm	Cd ppm	Mo ppm	As ppm	Sb ppm	Bi ppm	Ni ppm	Co ppm	Cr ppm	Fe %
620-S 001	ح	0.2	23	8	89	<0.2	3	32		\$	20	14	30	2.65
620-s 002	<5	<0.2	20	5	45	<0.2	3	20	<5	<5	12	10	21	1.88
620-S 003	6	0.2	33	8	65	<0.2	2	30	<5	<5	16	11	26	2.48
620-S 004	6	<0.2	21	5	103	<0.2	3	19	<5	<5	14	12	22	2.20
620-S 005	<5	<0.2	17	4	63	<0.2	2	13	<5	<5	12	10	23	2.23
620-S 006	<5	<0.2	21	4	69	<0.2	2	21	<5	<5	15	12	28	2.50
620-S 007	<5	⊲0.2	19	5	60	<0.2	2	- 14	<5	<5	15	13	28	2.43
620-S 008	<5	<0.2	16	5	59	<0.2	2	23	<5	<5	14	10	27	2.33
620-S 009	<5	<0.2	18	3	46	<0.2	2	14	<5	<5	17	12	30	2.52
620-S 010	<5	<0.2	32	6	46	<0,2	1	28	<5	<5	18	8	17	1.92
620-S 011	<5	<0.2	49	5	121	<0.2	2	28	<5	<5	18	16	30	2.65
620-S 012	<5	<0.2	40	6	89	<0.2	2	28	<5	<5	18	14	28	2.39
620-S 013	<5	0.2	36	5	80	<0.2	2	30	<5	<5	20	15	31	2.49
620-S 014	14	0.3	40	7	87	<0.2	3	36	<5	<5	25	17	37	3.12
620-S 015	33	0.3	28	5	65	⊲0.2	2	21	<5	<5	18	14	34	2.73
620-S 016	<5	0.3	30	6	98	<0.2	2	35	<5	<5	22	15	30	2.79
620-S 017	<5	0.2	36	4	77	<0.2	2	22	<5	<5	20	16	34	2.88
620-S 018	<5	0.3	31	3	69	<0.2	3	21	<5	<5	17	15	32	2.85
620-S 019	<5	0.3	38	7	69	<0.2	3	19	<5	<5	19	16	35	2.83
620-s 020	<5	0.3	29	4	72	<0.2	2	16	<5	<5	15	14	30	2.72
620-S 021	<5	0.3	32	5	58	<0.2	3	25	<5	<5	18	14	33	2.92
620-S 022	<5	0.3	19	5	5 9	<0.2	3	15	<5	<5	14	13	24	2.5
620-S 023	<5	0.4	20	7	79	<0.2	2	18	<5	<5	21	13	26	2.4
620-S 024	<5	0.3	76	6	80	<0,2	3	27	<5	<5	22	17	27	2.72
620-s 025	<5	0.3	42	4	71	<0.2	3	15	<5	<5	22	17	34	3.09
620-S 026	<5	0.4	48	6	68	<0.2	2	26	<5	<5	19	17	31	3.01
620-S 027	<5	0.2	28	4	81	<0.2	2	24	<5	<5	17	12	24	2.51
620-\$ 028	8	0.4	44	7	76	<0.2	3	29	<5	<5	21	17	35	3.20
620-5 029	22	<0.2	25	4	88	<0.2	2	12	<5	<5	13	10	22	2.0
620-S 030	<5	0.4	29	5	67	0.3	3	27	<5	<5	19	13	29	2.7
620-S 031	20	0.2	13	5	52	<0.2	2	8	<5	<5	11	9	18	1.8
620-S 032	<5	0.2	20	5	69	<0.2	2	15	<5	<5	16	12	27	2.4
620-S 033	<5	0.3	18	4	75	<0.2	2	<5	<5	<5	17	13	33	2.6
620-S 034	<5	0.2	15	5	58	⊲0.2	2	16	<5	<5	14	11	31	2.4
620-S 035	<5	<0.2	12	5	59	<0.2	2	14	<5	<5	13	10	26	2.2
Duplicates:														
620-S 001	<5	0.3	23	6	89	<0.2	2	33	<5	<5	19	14	30	2.6
020-3 019		0.2	39	5	69	<u.2< td=""><td>2</td><td>18</td><td><></td><td><></td><td>18</td><td>16</td><td>35</td><td>2.8</td></u.2<>	2	18	<>	<>	18	16	35	2.8
020-3 024	<5													

Project 620

į

Soil Sampling Results (part 2)

Sample ID	Ba ppm	Mn ppm	V ppm	Sr ppm	Y ppm	La ppm	Te ppm	Sn ppm	W ppm	AJ %	Mg %	Ca %	Na %	к %
 620-S 001	204	964		38	2	- 13	<10	<20	<20	2.44	0.60	0.37	0.02	0.12
620-S 002	131	861	36	33	1	9	<10	<20	<20	1.50	0.37	0.35	0.03	0.12
620-S 003	97	416	33	53	3	14	<10	<20	<20	2.37	0.76	0.71	0.05	0.18
620-S 004	179	1582	39	33	2	10	<10	<20	<20	1.79	0.41	0.30	0.03	0.14
620-S 005	102	612	50	36	2	10	<10	<20	<20	1.41	0.39	0.35	0.04	0.13
620-S 006	91	420	57	40	3	13	<10	<20	<20	1.67	0.48	0.39	0.04	0.13
620-S 007	108	508	49	43	2	12	<10	<20	<20	1.53	0.47	0.44	0.05	0.15
620-S 008	126	419	48	37	2	11	<10	<20	<20	1.70	0.37	0.32	0.04	0.09
620-S 009	110	301	50	42	2	13	<10	<20	<20	1.75	0.56	0.38	0.05	0.12
620-S 010	101	212	27	71	4	12	<10	<20	<20	2.03	0.83	1.08	0.05	0.19
620-S 011	219	1406	47	51	3	16	<10	<20	<20	2.28	0.83	0.58	0.03	0.40
620-S 012	250	1775	48	40	4	14	<10	<20	<20	2.31	0.71	0.48	0.03	0.15
620-S 013	204	1395	48	47	3	14	<10	<20	<20	2.44	0.72	0.48	0.03	0.19
620-S 014	202	709	64	51	3	18	<10	<20	<20	3.07	0.85	0.50	0.04	0.20
620-S 015	107	540	58	43	3	15	<10	<20	<20	2.05	0.66	0.41	0.04	0.17
620-S 016	188	512	46	42	2	15	<10	<20	<20	2.91	0.72	0.47	0.04	0.32
620-5 017	144	541	61	53	2	15	<10	<20	<20	2.47	0.91	0.49	0.04	0.25
620-S 018	89	523	60 04	42	2	14	<10	<20	<20	2.06	0.70	0.40	0.03	0.21
620-S 019	124	526	61	51	3	16	<10	<20	<20	1.91	0.69	0.46	0.04	0.17
620-S 020	104	383		40	2	14	<10	<20	<20	1.72	0.63	0.40	0.04	0.17
620-S 021	110	300	10	38	3	15	<10	<20	~20	2.19	0.73	0.37	0.03	0.12
620-S 022	102	744	40	31	2	49	<10	<20	<20	1.69	0.39	0.29	0.04	0.12
020-3 UZ3	144	714	41	33	4	14	~10	~20	~20	2.10	0.40	0.37	0.03	0.10
020-3 024 620 S 025	63 92	404	40	44	4	10	<10	<20	~20	4.00	0.53	0.70	0.00	0.10
620-3 023	447	112	70	44	2	10	<10	~20	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2.30	0.03	0.45	0.04	0.20
020-3 V20 620 S 027	117	275	52	40	о 2	10	<10	~20	~20	2.09	0.64	0.50	0.03	0.17
620-3 V21	144	2/5	33	40	2	12	~10	~20	~20	2.30	0.00	0.41	0.04	0.11
020-3 V20	100	020	20	40	3	10	~10	~20	~20	4.50	0.01	0.40	0.03	0.10
620-3 028 620-5 020	140	237	52	30	2	14	<10	~20	~20	2.54	0.91	0.52	0.04	0.13
820-3 030	140	570	42	40	2	40	~10	~20	~20	4.40	0.03	0.70	0.04	0.23
620-5 031	152	590	42	21	2	12	<10	~20	~20	2.00	0.21	0.20	0.03	0.14
620-5 032	100	710	50	20	2	43	~10	~20	~20	1 41	0.40	0.01	0.04	0.17
620-5 035	402	340	40	30	2	11	<10	~20	<20	1.60	0.00	0.30	0.04	0.10
820 8 035	76	436	45	25	1	10	<10	<20	<20	1.05	0.37	0.33	0.00	0.10
020-3 033	70	440		30	•	10	410	~20	-20	1.00	U.JZ	0.04	0.00	0.10
Duplicates:														
620-S 001	207	988 520	52	40 51	2	14	<10	<20	<20	2.50	0.60	0.38	0.03	0.12
620-S 019	125	J¥A	92	21	3	0	<10	~20	~20	7.92	V.00	U.47	Ų.U4	0.17

Project 620

Soil Sampling Results (part 3)

			***=====				
Sample ID	Ga ppm	Li ppm	Ті %	Ta ppm	Sc ppm	Nb ppm	Zr ppm
620-S 001	2	12	0.14	<10	<5	1	4
620-S 002	<2	6	0.12	<10	<5	<1	3
620-S 003	<2	19	0.14	<10	<5	1	9
620-S 004	2	7	0.13	<10	<5	<1	5
620-5 005	~	5	0.18	<10	5	<1	4
620-5 006 620 6 007	~	6	0.19	<10	<>	<1	10
620-5 007	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7	0.19	<10	~		07
820-5 000	~	é (0.19	<10	<5	21	
620-5 010	~	15	0.20	<10	<5	4	6
620-5 011	0	14	0.13	<10	<5	<1	Ř
620-S 012	\$	11	0.10	<10	<5	<1	5
620-S 013	$\overline{\mathbf{Q}}$	13	0.13	<10	<5	<1	4
620-S 014	~Ž	15	0.18	<10	<5	<1	10
620-S 015	~2	10	0.19	<10	<5	<1	8
620-S 016	<2	15	0.16	<10	<5	<1	11
620-S 017	~2	13	0.19	<10	<5	<1	12
620-S 018	<2	9	0.20	<10	<5	<1	9
620-S 019	2	7	0.19	<10	5	<1	10
620-S 020	<2	7	0.20	<10	<5	<1	10
620-S 021	<2	9	0.19	<10	<5	<1	8
620-S 022	2	7	0.16	<10	<5	<1	7
620-S 023	2	10	0.13	<10	<5	<1	6
620-S 024	<2	20	0.17	<10	< <u>></u>	1	13
620-5 025 620 B 026	~	8	0.18	<10	5	1	12
620-3 020 620 8 027	X	12	0.19	<10	~5	~1	13
820-5 021 820-5 028	V A	12	0.10	~10	~5	24	9
620-5 020	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6	0.20	<10	<5	<1	4
620-S 030	4	12	0.18	<10	<5	<1	14
620-S 031	Ā	5	0.14	<10	<5	<1	4
620-S 032	$\overline{\mathbf{Q}}$	10	0.18	<10	<5	<1	5
620-S 033	~2	6	0.23	<10	<5	<1	6
620-S 034	~2	6	0.22	<10	<5	<1	10
620-S 035	2	6	0.21	<10	<5	<1	6
Duplicates:							
620-S 001	<2	12	0.14	<10	<5	1	4
620-S 019	2	8	0.19	<10	5	<1	10
620-S 024	_	-			-	-	

APPENDIX C

Rock Samples: Analytical Results Date of Report: 95.07.17

Project 620

Vidette

Rock Sampling Results

1995

Sample ID	Au 30 ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm	Cd ppm	Mo ppm	As ppm	Sb ppm	Bi ppm	Ni ppm	Co ppm	Cr ppm	Fe %
620-CF 001	<	⊲0.2	15	4	46	<0.2	2	8		<5	5	9	29	2.14
620-CF 002	26	0.5	236	4	75	<0.2	3	27	Ś	<5	12	27	36	3.62
620-CF 003	13	<0.2	80	3	23	<0.2	2	11	<5	<5	7	7	38	1.27
620-CF 004	15	0.3	86	5	56	<0.2	3	36	<5	<5	56	19	123	4.05
620-CF 005	47	0.3	140	22	24	⊲0.2	10	10	<5	<5	3	9	25	2.55
620-CF 006	102	0.4	255	5	39	⊲0.2	8	14	<5	<5	7	23	23	3.62
620-CF 007	5	<0.2	96	<2	71	<0.2	6	20	<5	<5	9	15	59	2.69
620-CF 008	<5	0.3	103	3	97	<0.2	4	22	<5	<5	13	26	30	3.78
620-CF 009	19	0.3	112	5	63	<0.2	2	15	<5	<5	13	20	58	2.88
Duplicates:														
620-CF 003		<0.2	84	5	25	<0.2	2	11	<5	<5	5	7	28	1.32

Project 620

Rock Sampling Results (part 2)

Sample ID	Ba ppm	Mn ppm	V ppm	Sr ppm	Y ppm	La ppm	Te ppm	Sn ppm	W ppm	A! %	Mg %	Ca %	Na %	К %
620-CF 001	638	943	46	116	8	16	<10	<20	<20	1.25	0.96	3.82	0.04	0.25
620-CF 002	178	968	119	174	5	21	<10	<20	<20	2.02	2.19	2.58	0.05	0.15
620-CF 003	52	356	26	122	4	9	<10	<20	<20	0.95	0.63	1.21	0.05	0.21
620-CF 004	52	729	75	82	4	26	<10	<20	<20	2.89	2.71	2.26	0.02	0.16
620-CF 005	110	283	25	69	4	12	<10	<20	<20	0.96	0.72	0.68	0.04	0.34
620-CF 006	41	1258	104	260	6	22	<10	<20	<20	1.97	1.97	7.25	0.03	0.24
620-CF 007	210	1169	107	100	5	14	<10	<20	<20	1.84	1.80	3.34	0.04	0.34
620-CF 008	49	994	140	140	8	20	<10	<20	<20	1.99	2.00	2.02	0.08	0.30
620-CF 009	35	803	95	110	5	15	<10	<20	<20	1.48	1.69	2.53	0.07	0.22
Duplicates:														
620-CE 003	55	372	28	132	5	10	<10	<20	<20	1.02	0.67	1 28	0.06	0.23

Project 620

Rock Sampling Results (part 3)

Sample ID	Ga ppm	Li ppm	Ti %	Ta ppm	Sc ppm	Nb ppm	Zr ppm
620-CF 001	2	12	<0.01	<10	<5	<1	1
620-CF 002	<2	12	0.18	<10	8	<1	3
620-CF 003	2	4	0.05	<10	<5	<1	2
620-CF 004	$\overline{\mathbf{Q}}$	17	<0.01	<10	6	<1	2
620-CF 005	<2	4	0.10	<10	<5	<1	3
620-CF 006	<2	14	0.12	<10	7	<1	1
620-CF 007	<2	15	0.16	<10	6	<1	2
620-CF 008	<2	10	0.25	<10	9	<1	6
820-CF 009	2	9	0.18	<10	7	<1	4
Duplicates:							
620-CF 003	<2	4	0.06	<10	<5	<1	2

<u>APPENDIX D</u>

Analytical Procedures

ANALYTICAL PROCEDURES

Geochemical Analysis

by Bondar-Clegg :

		LOWER		
ELEMEN	π	DETECTION LIMIT	EXTRACTION	METHOD
Au	Gold	5 ррв	fire-assay	atomic absorption
Ag	Silver	0.2 ppm	HNO ₃ -HCI hot extr	ind. coupled plasma
Al*	Aluminum	0.01 %	HNO ₃ -HCI hot extr	ind. coupled plasma
As	Arsenic	5 ppm	HNO3-HCI hot extr	ind. coupled plasma
Ba*	Barium	5 ppm	HNO ₃ -HCI hot extr	ind. coupled plasma
Bi	Bismuth	5 ppm	HNO3-HCI hot extr	ind. coupled plasma
Ca*	Calcium	0.01 %	HNO3-HCI hot extr	ind. coupled plasma
Cd	Cadmium	1 ppm	HNO ₃ -HCI hot extr	ind. coupled plasma
Co*	Cobalt	1 ppm	HNO3-HCI hot extr	ind. coupled plasma
Cr*	Chromium	1 ppm	HNO ₃ -HCI hot extr	ind. coupled plasma
Cu	Copper	1 ppm	HNO ₃ -HCI hot extr	ind. coupled plasma
Fe*	Iron	0.01 %	HNO ₃ -HCI hot extr	ind. coupled plasma
Ga	Gallium	2 ppm	HNO3-HCI hot extr	ind. coupled plasma
K*	Potassium	0.01 %	HNO3-HCI hot extr	ind. coupled plasma
La*	Lanthanum	1 ppm	HNO3-HCI hot extr	ind. coupled plasma
Li	Lithium	1 ppm	HNO ₃ -HCl hot extr	ind. coupled plasma
Mg*	Magnesium	0.01 %	HNO ₃ -HCI hot extr	ind. coupled plasma
Mn*	Manganese	0.01 %	HNO3-HCI hot extr	ind. coupled plasma
Mo*	Molybdenum	1 ppm	HNO ₃ -HCI hot extr	ind. coupled plasma
Na*	Sodium	0.01 %	HNO3-HCI hot extr	ind. coupled plasma
Nb	Niobium	1 ppm	HNO ₃ -HCI hot extr	ind. coupled plasma
Ni*	Nickel	1 ppm	HNO3-HCI hot extr	ind. coupled plasma
Pb	Lead	2 ppm	HNO3-HCI hot extr	ind. coupled plasma
Sb*	Antimony	5 ppm	HNO ₃ -HCI hot extr	ind. coupled plasma
Sc	Scandium	5 ppm	HNO ₃ -HCI hot extr	ind. coupled plasma
Sn*	Tin	20 ppm	HNO ₃ -HCI hot extr	ind. coupled plasma
Sr*	Strontium	1 ppm	HNO3-HCI hot extr	ind. coupled plasma
Та	Tantalum	10 ppm	HNO ₃ -HCI hot extr	ind. coupled plasma
Te*	Tellurium	10 ppm	HNO ₃ -HCI hot extr	ind. coupled plasma
Ti	Titanium	0.01 %	HNO ₃ -HCI hot extr	ind. coupled plasma
V*	Vanadium	1 ppm	HNO ₃ -HCI hot extr	ind. coupled plasma
W*	Tungsten	20 ppm	HNO ₃ -HCI hot extr	ind. coupled plasma
Y	Yttrium	1 ppm	HNO3-HCI hot extr	ind. coupled plasma
Zn	Zinc	1 ppm	HNO3-HCI hot extr	ind. coupled plasma
Zr	Zirconium	1 ppm	HNO3-HCI hot extr	ind. coupled plasma

 Please note: certain mineral forms of those elements above marked with an asterisk will not be soluble in the HNO₃/HCI extraction. The ICP data will be low biased.

ANALYTICAL PROCEDURES

INAA Analysis

by Activation Laboratories :

		LOWER		
ELEME	NT	DETECTION LIMIT	EXTRACTION	METHOD
Au	Gold	5 ppb		INAA
Aa	Silver	5 ppm		INAA
As	Arsenic	2 ppm		INAA
Ва	Barium	200 ppm		INAA
Br	Bromine	5 ppm		INAA
Ca	Calcium	1 %	I.	INAA
Ce	Cerium	3 ppm		INAA
Co	Cobalt	5 ppm		INAA
Cr	Chromium	10 ppm		INAA
Cs	Cesium	2 ppm		INAA
Eu	Europium	0.2 ppm		INAA
Fe	Iron	0.02 %		INAA
Hf	Hafnium	1 ppm		INAA
Hg	Mercury	5 ppm		INAA
Ir	Iridium	40 ppb		INAA
La	Lanthanum	1 ppm		INAA
Lu	Lutetium	0.1 ppm		INAA
Мо	Molybdenum	20 ppm		INAA
Na	Sodium	500 ppm		INAA
Nd	Neodymium	10 ppm		INAA
Ni	Nickel	200 ppm		INAA
Rb	Rubidium	50 ppm		INAA
Sb	Antimony	0.2 ppm		INAA
Sc	Scandlum	0.1 ppm		INAA
Se	Selenium	20 ppm		INAA
Sm	Samarium	0.1 ppm		INAA
Sr	Strontium	0.2 %		INAA
Та	Tantalum	1 ppm		INAA
Tb	Terbium	2 ppm	·	INAA
Th	Thorium	0.5 ppm		INAA
U	Uranium	0.5 ppm		INAA
W	Tungsten	4 ppm		INAA
Yb	Yttebium	0.2 ppm		INAA
Zn	Zinc	200 ppm		INAA

ANALYTICAL PROCEDURES

ICP Analysis

by Activation Laboratories:

		LOWER		
ELEME	NT	DETECTION LIMIT	EXTRACTION	METHOD
Ag	Silver	0.2 ppm	HNO ₂ -HCI hot extr	ind. coupled plasma
AI*	Aluminum	0.01 %	HNO ₃ -HCI hot extr	ind. coupled plasma
As*	Arsenic	5 ppm	HNO3-HCI hot extr	ind. coupled plasma
Ba*	Barium	1 ppm	HNO ₂ -HCI hot extr	ind. coupled plasma
Be*	Beryllium	1 ppm	HNO ₃ -HCI hot extr	ind. coupled plasma
Bi	Bismuth	5 ppm	HNO ₂ -HCI hot extr	ind. coupled plasma
Ca*	Calcium	0.01 %	HNO3-HCI hot extr	ind. coupled plasma
Cd	Cadmium	0.6 ppm	HNO ₃ -HCI hot extr	ind. coupled plasma
Co*	Cobalt	1 ppm	HNO ₃ -HCI hot extr	ind. coupled plasma
Cr*	Chromium	1 ppm	HNO ₂ -HCI hot extr	ind. coupled plasma
Cu	Copper	1 ppm	HNO ₂ -HCI hot extr	ind. coupled plasma
Fe*	Iron	0.01 %	HNO ₂ -HCI hot extr	ind. coupled plasma
K*	Potassium	0.01 %	HNO ₂ -HCI hot extr	ind. coupled plasma
Mg*	Magnesium	0.01 %	HNO ₃ -HCI hot extr	ind. coupled plasma
Mn*	Manganese	2 ppm	HNO ₃ -HCI hot extr	ind. coupled plasma
Mo*	Molybdenum	2 ppm	HNO ₂ -HCI hot extr	ind. coupled plasma
Na*	Sodium	0.01 %	HNO ₃ -HCI hot extr	ind. coupled plasma
Ni*	Nickel	2 ppm	HNO3-HCI hot extr	ind. coupled plasma
P*	Phosphorus	5 ppm	HNO ₃ -HCI hot extr	ind. coupled plasma
Pb	Lead	2 ppm	HNO ₂ -HCI hot extr	ind. coupled plasma
Sb	Antimony	5 ppm	HNO3-HCI hot extr	ind. coupled plasma
Sc*	Scandium	10 ppm	HNO ₃ -HCI hot extr	ind. coupled plasma
Sn*	Tin	5 ppm	HNO ₃ -HCI hot extr	ind. coupled plasma
Sr*	Strontium	1 ppm	HNO3-HCI hot extr	ind. coupled plasma
Ti*	Titanium	0.01 %	HNO ₃ -HCI hot extr	ind. coupled plasma
₩	Vanadium	1 ppm	HNO ₃ -HCI hot extr	ind. coupled plasma
₩*	Tungsten	10 ppm	HNO ₃ -HCI hot extr	ind. coupled plasma
Y	Yttrium	1 ppm	HNO ₃ -HCI hot extr	ind. coupled plasma
Zn	Zinc	1 ppm	HNO3-HCI hot extr	ind. coupled plasma
Zr	Zirconium	1 ppm	HNO3-HCI hot extr	ind. coupled plasma

 Please note: certain mineral forms of those elements above marked with an asterisk will not be soluble in the HNO₃/HCI extraction. The ICP data will be low biased.

