GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORTS

ASSESSMENT REPORT

1995 EXPLORATION PROGRAM

KING PROPERTY

SKEENA MINING DIVISION

NTS: 104B/7 LATITUDE: 56° 29' LONGITUDE: 130° 34'

OWNED BY:

CHRIS GRAF #307 - 475 Howe Street Vancouver, B.C. V6C 2B3

OPERATED BY:

PRIME RESOURCES GROUP INC. #1000 - 700 West Pender Street Vancouver, B.C. V6C 1G8

> Submitted by: A.W. Kaip K.M. Patterson D. Kuran

September 19, 1995

🕷 🕈 O L O G I C 🖄 I 🛛 B R A N 🖱 🤿 * SSESSMENT REPOR

FILMED

Distribution: Homestake File Chris Graf A. Kaip D. Kuran Field Copy

RECEIVED OCT 1 0 1995 Gold Commissioner's Office

VANCOUVER, B.C.

DATE RECEIVED

OCT 17 1995

EXECUTIVE SUMMARY

The King property is located west of the confluence of the Harrymel Creek and the Unuk River, 80 km northwest of the town of Stewart and 22 km southwest of the Eskay Creek mine in northwestern British Columbia. The King property consists of 9 claims totaling 88 units owned by Chris Graf of Vancouver, B.C. and optioned by Prime Resources Group Inc.

The King property is underlain by a thick sequence of probable Upper Triassic Stuhini Group sediments which are intruded by three intrusive phases. These include a diorite phase exposed on the eastern part of the grid, basaltic to andesitic sills and related feeder dykes exposed on the western portion of the grid, and a zoned intrusion which varies from dark, gray and aphanitic along its margins to coarsely amygdaloidal in the center which underlies the central portion of the grid.

Alteration on the property appears to be related to the intrusion of an amygdaloidal unit into the sedimentary host rocks. Alteration on the property is characterized by sericite+calcite with disseminated pyrite and pyrrhotite within the amygdaloidal intrusion and by silicification of the adjacent sedimentary rocks. Within the intrusion, alteration appears to increase in intensity towards the more coarsely amygdaloidal center of the intrusion. Silicification within the sedimentary rocks form a 350 metre wide zone which underlies the central portion of the grid and increases in intensity towards the margins of the intrusion.

The 1995 work program on the King property consisted of grid controlled soil sampling, 1:5,000 scale geological mapping and rock sampling completed during the first half of July. A total of 32 rock samples and 212 soil samples were collected on the property. Soil sampling confirmed the presence of the soil anomaly identified by Canadian Industrial Minerals Corp. in 1991, with values of 1420 and 5858 ppb Au in the vicinity of L 1+00S, 2+00W. Soil sampling outlined a zone of weakly anomalous Au and Cu mineralization coincident with the margins of the altered intrusion and identified an apparent negative soil anomaly over the majority of the intrusion. Rock sampling in the vicinity of the main soil anomaly returned from <5 to a high of 1145 ppb Au from the strongly carbonate sericite altered amygdaloidal portion of the intrusion.

Based on our evaluation the source of the gold anomaly can be attributed to the underlying altered intrusion which has limited size potential. Numerous samples were collected from the adjacent silicified sediments in an attempt to evaluate the potential for a larger sediment hosted target however, assays were low. At present no further work is recommended for this property.

TABLE OF CONTENTS

- 1. INTRODUCTION
 - 1.1 LOCATION AND ACCESS
 - 1.2 LAND STATUS
 - 1.3 PHYSIOGRAPHY
 - 1.4 EXPLORATION HISTORY
 - 1.5 1995 EXPLORATION PROGRAM
- 2. GEOLOGY
 - 2.1 REGIONAL GEOLOGY
 - 2.2 PROPERTY GEOLOGY
 - 2.2.1 STRATIGRAPHY
 - 2.2.2 STRUCTURE
 - 2.2.3 ALTERATION AND MINERALIZATION
- 3. GEOCHEMISTRY

1

- 3.1 ROCK GEOCHEMISTRY
 - 3.1.1 Method of Survey
 - 3.1.2 Results and Discussion
- 3.2 SOIL GEOCHEMISTRY
 - 3.2.1 Method of Survey
 - 3.2.2 Results and Discussion
- 4. CONCLUSIONS
- 5. **RECOMMENDATIONS**
- 6. **REFERENCES**

LIST OF FIGURES

- 1.1 LOCATION AND ACCESS MAP
- 1.2 CLAIM MAP

٢ĩ

£."

5

ŗ.

1

t

Σ

:

5

r

- -

τ.

۲.

۲.

۲. ۲

Ľ.

۲.

£ `

۲.

- 2.1 TECTONIC ASSEMBLAGE MAP OF THE CANADIAN CORDILLERA
- 2.2 REGIONAL GEOLOGY MAP
- 2.3 PROPERTY GEOLOGY MAP

LIST OF FIGURES IN POCKET

- 2.4 1:5,000 SCALE PROPERTY GEOLOGY MAP
- 4.1 ROCK SAMPLE LOCATIONS
- 4.2a GEOCHEMISTRY Au, Ag, As, Sb IN SOILS
- 4.2b GEOCHEMISTRY Cu, Pb, Zn, Hg IN SOILS

LIST OF TABLES

- 1.1 CLAIM STATUS
- 4.1 SIGNIFICANT SOIL GEOCHEMISTRY RESULTS

APPENDICES

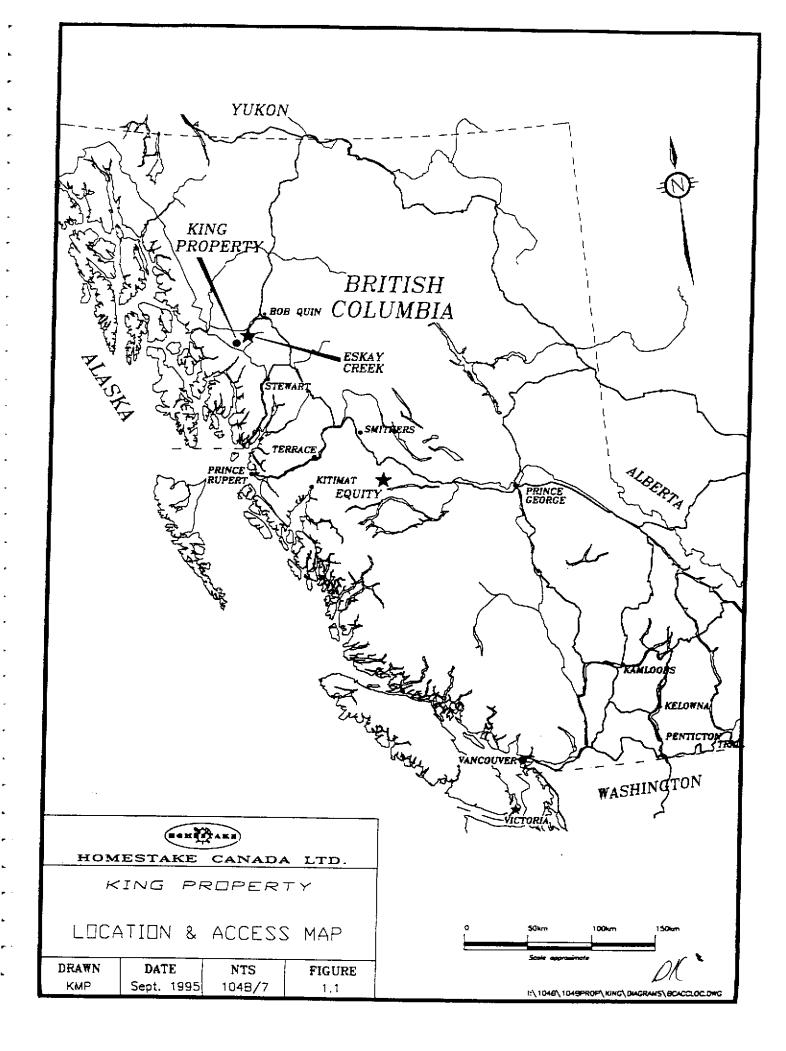
APPENDIX 1:	STATEMENT OF COSTS
APPENDIX 2:	STATEMENT OF QUALIFICATIONS
APPENDIX 3:	ROCK SAMPLE DESCRIPTIONS
APPENDIX 4:	ASSAY CERTIFICATES

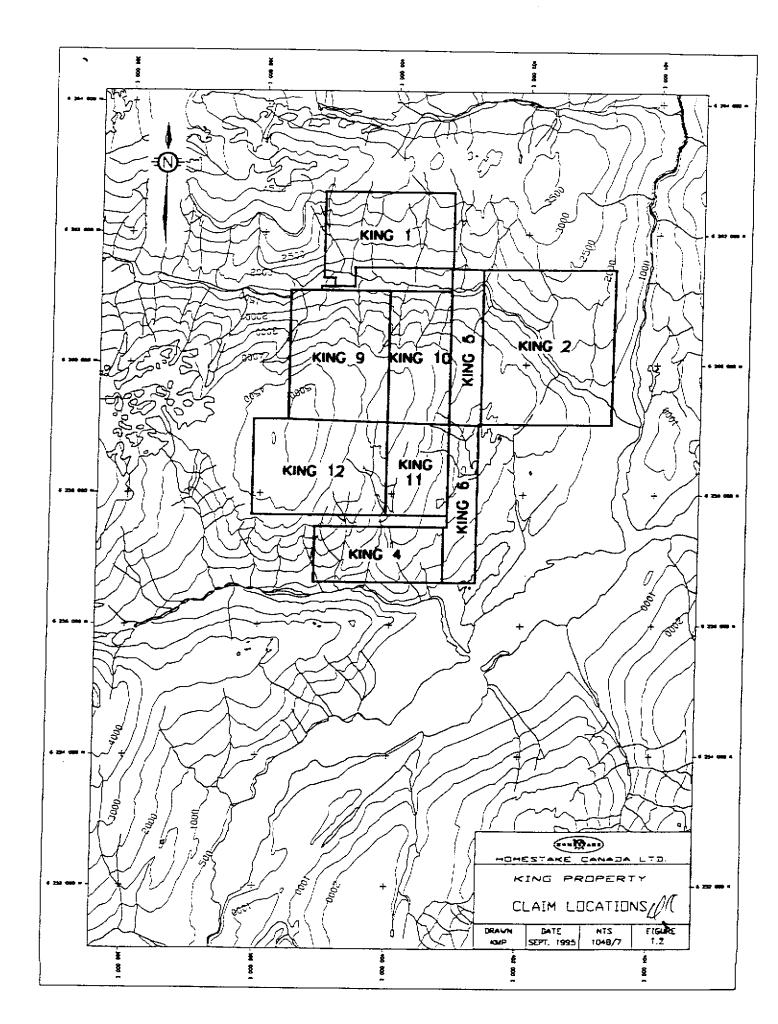
1. INTRODUCTION

1.1 LOCATION AND ACCESS

The King property is located 80 km northwest of the town of Stewart and 22 km southwest of the Eskay Creek mine in northwestern British Columbia (Figure 1.1) The property is situated west of the confluence of the Harrymel Creek and the Unuk River and straddles King Creek. The claims lie on NTS map sheet 104B/7, at latitude 56° 29', longitude 130° 37', in the Skeena Mining Division.

Access to the property is by vehicle to the Eskay Creek mine, then by helicopter to the property. The property is serviced by several helicopter pads along both sides of King Creek, and by a helicopter pad constructed on the south slope of King Creek at 2250 feet above sea level.


1.2 LAND STATUS


The King property consists of 9 contiguous claims grouped as the King Group, totaling 88 units (Table 1.1, Figure 1.2), owned by Chris Graf and operated by Prime Resources Group Inc. Prime currently has an option to earn a 60% interest in the King property over a 4 year period.

RECORD	CLAIM NAME	UNITS	RECORD	EXPIRY
NUMBER			DATE	DATE*
324826	KING 1	12	1994.04.20	1999.04.20
324827	KING 2	20	1994.04.20	1999.04.20
324829	KING 4	8	1994.04.20	1998.04.20
324830	KING 5	5	1994.04.20	1999.04.20
324831	KING 6	5	1994.04.20	1999.04.20
329043	KING 9	12	1994.07.29	1998.07.29
329044	KING 10	8	1994.07.29	1998.07.29
329045	KING 11	6	1994.07.29	1998.07.29
329046	KING 12	12	1994.07.29	1998.07.29

Table 1.1

*Note: Expiry dates indicated are based on MEMPR approval of 1995 Assessment Report, Event No. 3072699.

1.3 PHYSIOGRAPHY

The King property is situated within the Boundary Ranges of the Coast Mountains and primarily occupies the steep forested slopes along King Creek, west of the Unuk River and north of Fewright Creek. The western margin of the property attains higher elevations and occupies open sub-alpine slopes of juniper and spruce. At lower elevations vegetation consists of hemlock, spruce and slide alder. Elevations range from 800' in the Unuk River valley at the southeastern corner of the property up to 4200' along the western margin of the property.

Rock exposure is moderate along the steep slopes adjacent to King Creek except where large talus aprons, covered with slide alder are developed. These talus aprons generally occupy gullies and are separated by resistant ridges which afford excellent exposure. Outcrop exposure is also excellent in the subalpine regions where rock exposures form a series of benches. Exposure is poor on the flat area adjacent to Hawilson Lake.

The climate is typical of the Coast Ranges with heavy snowfall in the winter months. Snow cover often persists until late June, and summers are characterized by frequent precipitation.

1.4 EXPLORATION HISTORY

. 1

•

.

, I

Γ,

٦,

.7

1

. (

.

1

The King property was staked in the spring of 1994 and encompasses the ground covering the former King, Consoat and Achilles mineral claims. The area surrounding the King property was first explored in the mid 1970's by Great Plains Development Co. of Canada which conducted geological, geochemical, soil and rock sampling over the central portion of the former King claims. Great Plains outlined a north - south elongate diorite intrusion with Cu-mineralization associated with quartz-stockworking along the margins of the intrusion. During the mid 1980's Dupont of Canada Exploration and Placer Development Ltd. conducted mapping, prospecting and silt sampling north of King Creek on the King 1 claim (former Consoat claim) and identified a zone of anomalous Cu-Au mineralization related to pyrite and lesser chalcopyrite mineralization within intrusive and volcanic rocks (Gareau, 1983).

In 1987, Gest Resources Ltd. conducted soil, silt and rock sampling over the area of anomalous Cu-Au mineralization previously identified north of King Creek (Adamson, 1987).

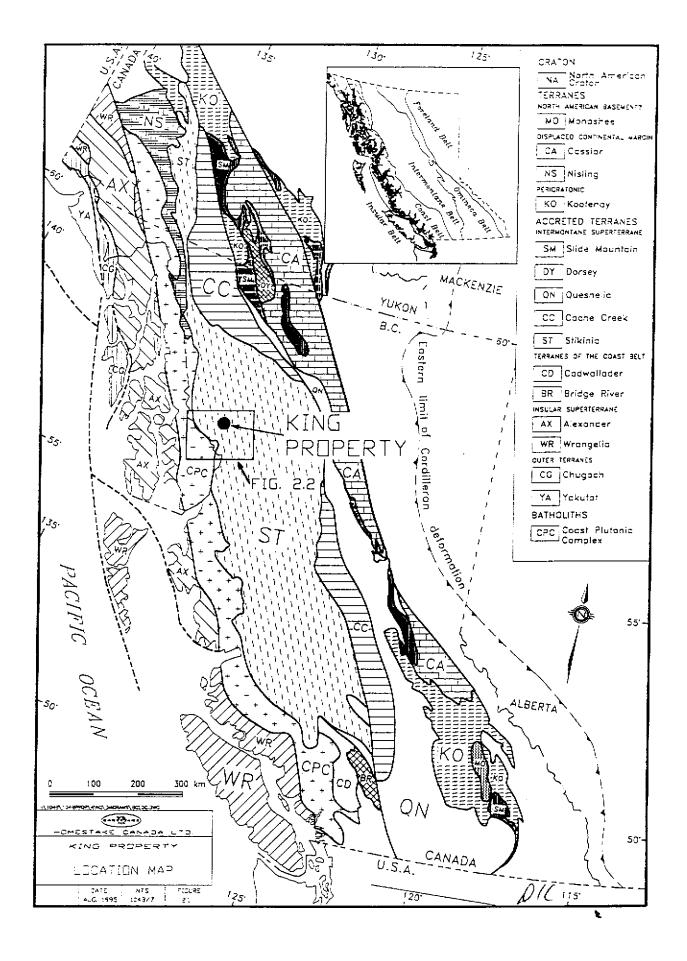
In 1988, an airborne electromagnetic survey was conducted over the King 1, 5 and 10 claims (former Achilles property, Aerodat, 1989). Five areas of anomalously low resistivity occur either on the flanks or coincident with magnetic anomalies. During the same year Cominco Ltd. performed geological mapping, soil and rock sampling on the former King - Consoat property to the west (Wescott, 1988).

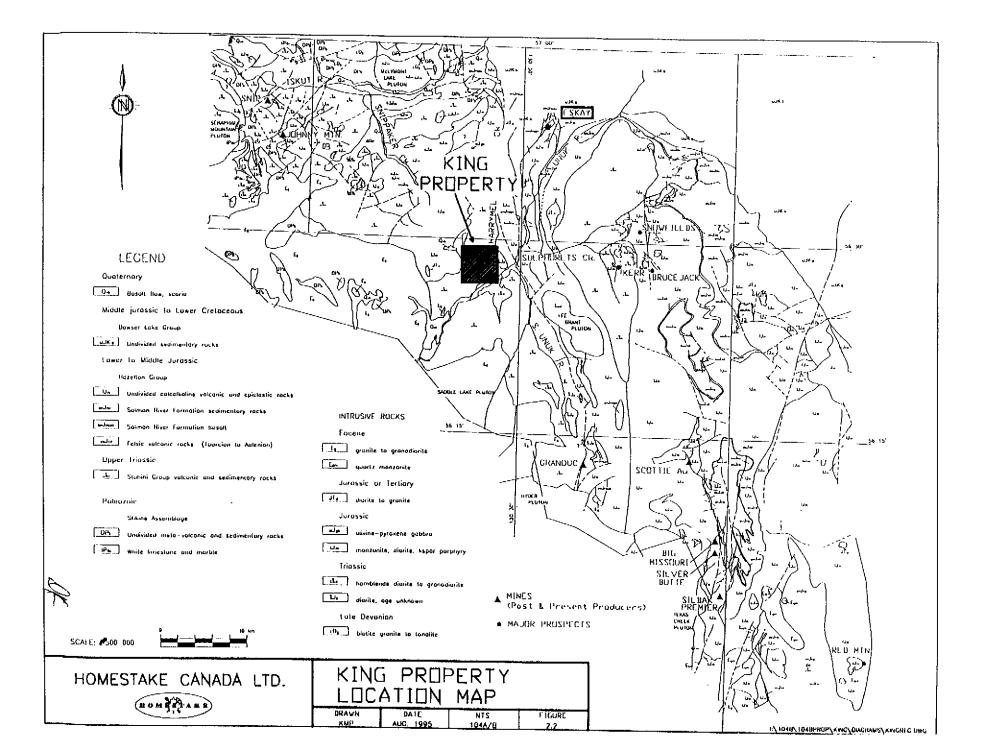
Corptech Industries Ltd. completed four trenches totaling 65 metres, a limited IP survey, three diamond drill holes totaling 364 metres, geological mapping and prospecting on the Former King - Consoat property in 1989. Drilling on the Val zone intersected a weak northeast trending gold zone with a high of 1 gpt Au over 1 metre within a 14.5 metre zone which averaged 600 ppb Au in drill hole CT-89-3. During the same year limited prospecting was completed on the former Achilles property by Bethlehem Resources Corp. (Chapman et al., 1990).

Between 1990 and 1991 Canadian Industrial Minerals Corp. completed geological mapping, trenching, rock and soil sampling surveys on the former Achilles property. Exploration concentrated on evaluating previously identified anomalies on both sides of King Creek. Four zones of anomalous gold-in-soil mineralization assaying up to 3.3 gpt Au were identified in 1990 and work in 1991 concentrated on indentifying the source of these anomalies. Soil sampling completed south of King Creek identified a 5.9 gpt Au soil anomaly located on L 0+90S, 2+10W. A soil pit excavated above this soil anomaly returned a high of 6.3 gpt Au. Trenching was completed in the area of this anomaly however, rock samples collected assayed below 50 ppb Au (Howson, 1991).

1.5 1995 EXPLORATION PROGRAM

Prime Resources Group Inc. optioned the King property in June , 1995. Between July 1st and July 17th Prime conducted a program of grid controlled soil sampling, 1:5,000 scale geological mapping and rock sampling on the King 2, 5 and 10 claims. The grid developed by Canadian Industrial Minerals Corp. in 1990 was re-established and extended 900 metres to the south. Grid construction consisted of a cut baseline oriented at 020° from 3+75 N to 11+00 S. A total of 11 kilometres of crossline was developed with lines spaced at 100 metres between 3+75 N and 5+00 S and spaced at 200 metres between 5+00 S and 11+00 S. All lines were slope corrected and stations were placed at 25 metre intervals. Soil samples were collected at 50 metre intervals between L 1+00 N and L 11+00 S with infill samples spaced at 25 metres collected on lines 1+00S to 4+00S between 1+00W and 4+00 W. A total of 212 soil and 32 rock samples were collected. The focus of the 1995 exploration program on the King property was to identify the source of the soil anomaly identified by Canadian Industrial Minerals Corp. on the south side of King Creek and to extend the anomaly up slope to the south.


2. GEOLOGY


2.1 REGIONAL GEOLOGY

The King property is located in northwestern Stikinia, the largest of the aullocthonous terranes which forms the Intermontane Belt of the Canadian Cordillera (Figure 2.1). The northern part of Stikinia is characterized by three unconformity bounded volcano - plutonic and sedimentary sequences and an overlying sedimentary package. From oldest to youngest these include the Paleozoic Stikine, Upper Triassic Stuhini and Lower to Middle Jurassic Hazelton Groups which are overlain by sedimentary rocks of the Middle Jurassic Bowser Lake Group, a successor basin which links Stikinia with the Cache Creek and the Quesnel terranes to the east. To the west Stikinia is bounded by Cretaceous and Tertiary intrusions of the Coast Plutonic Complex which record the amalgamation of the Intermontane Belt with the Insular Belt to the west during Latest Cretaceous. Tertiary volcanic rocks lie unconformably above the Paleozoic to Jurassic basement strata and form a north - south trending belt from the Iskut region north to Level Mountain, north of the Stikine River. These volcanic rocks are post accretionary and formed during Eccene crustal extension.

The Iskut River map area (104B) contains all the major tectonostratigraphic units which characterize the northern part of Stikinia. The oldest strata in the map area are Devonian to Permian volcano-plutonic and sedimentary rocks of the Paleozoic Stikine assemblage which are best exposed north of the Iskut River and west of the Snip mine between the Craig and Stikine Rivers. In the Iskut River area the Stikine assemblage is characterized by thick sequences of mafic to felsic volcanics, marine sedimentary rocks and fossiliferous limestones.

The Stikine assemblage is unconformably overlain by Upper Triassic andesitic to basaltic flows, sills and breccias intercalated with thick sequences of finegrained siltstones and volcanic derived feldspathic wackes. The Stuhini group is best exposed in the vicinity of the Snip mine where volcanic derived wackes and siltstone predominate, and west of the Unuk River and Harrymel Creek where sedimentary rocks are intercalated with volcanic rocks.

.

3

.

y

N 7

Unconformably overlying the Stuhini Group are sedimentary, volcanic and related plutonic rocks of the Lower to Middle Jurassic Hazelton Group. Recent work by the BCGS (Grove, 1986, Britton and Alldrick 1989) and the GSC (Anderson, 1990) have divided the Hazelton Group into four volcanic sequences which include the Unuk River, Betty Creek, Mount Dilworth and Salmon River Formations. Stratigraphic investigations by the Mineral Deposit Research Unit -Iskut Project have shown that the Mount Dilworth and Salmon River Formations are age equivalent, representing a bimodal volcanic sequence that marks the secession of volcanic activity in Stikinia prior to the onset of Bowser Lake Group sedimentation. The Unuk River Formation in the Iskut River area comprises a thick sequence of clastic sedimentary rocks with a basal conglomeratic unit informally named the Jack Formation (Henderson et al., 1992). To the south in the Stewart camp the Unuk River Formation is dominated by andesitic volcanic flows, sills and breccias with minor sedimentary rocks. The Betty Creek Formation conformably overlies the Unuk River Formation and consists of maroon to green andesitic breccias, flows, sills and related sedimentary rocks. Coeval with the Betty Creek Formation are orthoclase megacrystic intrusions which form a northwest linear from the Stewart area to the Iskut River in the vicinity of the Snip mine. The age of these intrusions range from 195 to 185 Ma. Separating the Betty Creek and Mount Dilworth/Salmon River Formations is a thin, locally discontinuous sequence of fine-grained, fossiliferous sedimentary rocks which records a hiatus in volcanic activity during the Jurassic. Overlying these sedimentary rocks are heterolithic dacitic tuffs of the Mount Dilworth Formation, and rhyolite flows, basaltic flows, sills and pillow lava and intercalated siltstones of the Salmon River Formation. The top of the Salmon River Formation is characterized by laminated, pyritic ash tuffs and black siltstones which grade upward into siltstones, sandstones and conglomerates of the overlying Bowser Lake Group. The Hazelton Group strata is best exposed between the Sulphurets camp and the Eskay Creek mine.

Fine-grained siltstones, sandstones and pebble conglomerates of the Middle Jurassic to Lower Cretaceous Bowser Lake Group dominate the northeastern portion of the Iskut River map area. The Bowser Lake Group lies conformably above the Hazelton Group and is characterized by mature sediments including chert derived from Cache Creek to the northeast.

The western margin of the Iskut map area is dominated by dioritic to granitic intrusions of the Coast Plutonic Complex which forms a northwest trending linear across the map sheet.

Recent volcanic activity in the map area is observed west of the Unuk River from Cone glacier north to the Iskut valley. Tertiary volcanic activity in the map area consists of mafic to felsic dykes of the King Creek dyke swarm and basaltic cones and flood basalts between cone glacier and the Iskut River valley.

2.2 PROPERTY GEOLOGY

2.2.1 STRATIGRAPHY

The King property is underlain by a thick sequence of probable Upper Triassic Stuhini Group sediments which are intruded by three intrusive phases. These include a diorite phase exposed on the eastern part of the grid, basaltic to andesitic sills and related feeder dykes exposed on the western portion of the grid, and a zoned intrusion which varies from dark, gray and aphanitic along its margins to coarsely amygdaloidal in its core which underlies the central portion of the grid. Cross cutting relationships between the intrusive phases suggests that the diorite is younger than the zoned sill and textural similarities between the mafic sills and the zoned intrusive sill suggests that the two may be related (Figures 2.3, 2.4).

Stratified Rocks

UNIT 1: The central portion of the grid is underlain by black, graphitic siltstones and lesser pale green to buff volcanic derived epiclastic siltstones and intraformational conglomerate. The siltstones are commonly thickly bedded with individual beds averaging 1 to 10 centimetres in width. A lens of green to maroon epiclastic siltstone is exposed east of the baseline between lines 5+00S and 7+00S. The epiclastic siltstones are massive and grade laterally into black siltstone to the north and south. A lens of intraformational conglomerate is observed at L 5+00S, 5+00W. The conglomerate consists of rounded clasts of black siltstone and rare vesicular volcanic fragments within a siltstone matrix.

UNIT 2: Overlying the black siltstones is a thick sequence of massive, fine- to medium-grained feldspathic wackes and lesser black siltstones exposed along the western margin of the grid. The wackes are thickly bedded and massive with bedding difficult to discern except where interbedded with black siltstones. The wackes contain abundant feldspar and black siltstone clasts within a silt matrix.

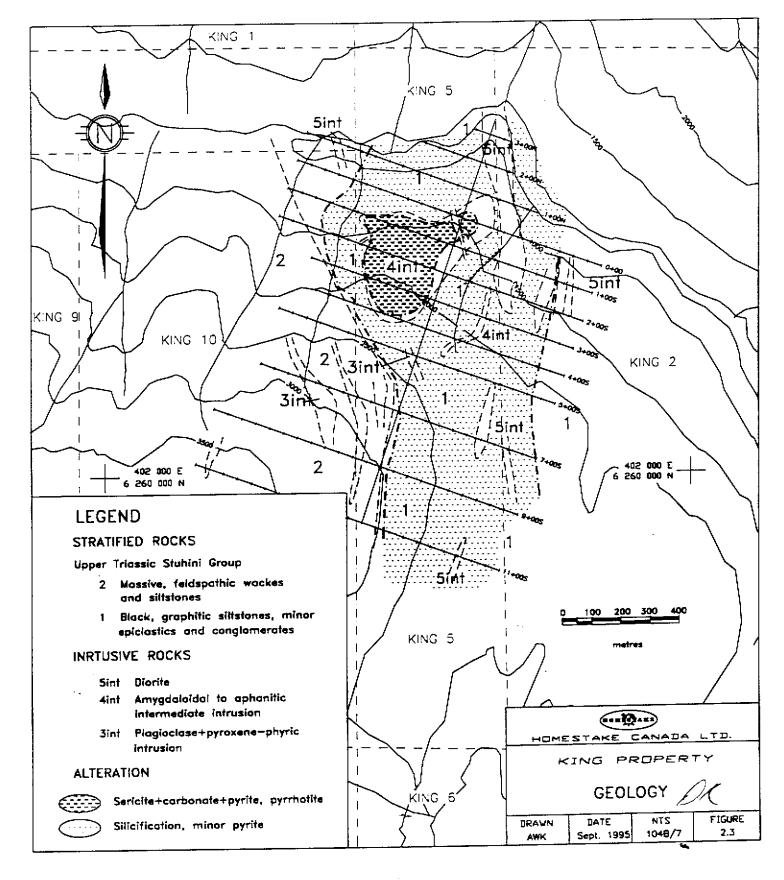
Intrusive Rocks:

UNIT 3int: Intruding the stratified rocks are basaltic to andesitic intrusions which form north-south elongate bodies which appear to be conformable to stratigraphy and dykes which cut the stratigraphy at a high angle. Individual sills vary from several metres up to tens of metres and are best exposed along the western edge of the grid. The intrusions are fine- to medium grained, locally vessicular and are plagioclase and pyroxene-phyric.

•

UNIT 4int: The northern part of the grid is underlain be a zoned intrusion which forms a northeast elongate body measuring 250x200 metres. The intrusion lies within the center of a north-trending syncline and may be structurally thickened. The intrusion is aphanitic along its margins and is difficult to discern from the siltstones fine-grained wackes it intrudes. The core of the intrusion is characterized by sparse to abundant amygdules which increase in size towards the center of the intrusion. The amygdules are commonly filled with calcite and locally with pyrite and pyrrhotite.

UNIT 5int: The youngest of the intrusions that underlie the area mapped are fine- to medium grained diorite intrusions which form north south elongate lenses and cut the sedimentary rocks of Unit 1 at a low angle and intrusive rocks of Unit 4int. The diorite bodies are dark gray to black in color and are homblende+plagioclase-phyric.


2.2.2 Structure

The stratified rocks on the property generally strike southwest and dip moderately to the northwest. Local reversals in bedding attitudes are attributed to folding about tight to isoclinal, north trending folds. Several faults were identified in the steeply incised stream beds on the east side of the grid. The faults are characterized by an intense shear fabric which strikes northwest and dips moderately to the southeast. A mineral lineation on these fault planes plunges to the south. A weak foliation is developed within the sedimentary rocks and within Unit 4int which strikes north and dips steeply to the east.

Sheeted quartz veinlets are developed in the more intensely silicified black siltstones. The quartz veinlets commonly grade laterally into zones of intense silica flooding. The veinlets strike 300° and dip vertically.

2.2.3 Alteration

Alteration on the property appears to be related to the intrusion of Unit 4int into the sedimentary sequence. Alteration on the property is characterized by sericite+calcite alteration with disseminated pyrite and pyrrhotite within the intrusive rocks of Unit 4int and by silicification of the adjacent sedimentary rocks. Within Unit 4int alteration appears to increase in intensity towards the more coarsely amygdaloidal core of the intrusion. Alteration is characterized by intense sericite+carbonate alteration of the aphanitic groundmass with finely disseminated pyrite and by coarse-grained calcite+pyrite±pyrrhotite infill of vesicles in the center of the intrusion which grades outward into pervasive carbonate alteration.

.

Silicification within the sedimentary rocks of Unit 1 forms a 350 metre wide zone which underlies the central portion of the grid. Alteration is characterized by pervasive silicification which increases in intensity towards the intrusion. Locally zones of white silica flooding are present adjacent to the intrusion. Spatially associated with these zones of silica flooding are zones of sheeted quartz veining with veins striking 300° and dipping vertically.

3. GEOCHEMISTRY

3.1 ROCK GEOCHEMISTRY

3.1.1 Method of Survey

A total of 32 rock samples were collected on the King property during the 1995 field season (Figure 4.1). Sampling concentrated on identifying the source of the soil anomaly identified by Canadian Industrial Minerals Corp. in 1991 and evaluating the various style of alteration for their economic potential. Samples of the various types of mineralized float on the property were also analysed in an effort to identify other styles of mineralization in the area. Descriptions of each sample are provided in Appendix 3 and assay results are tabulated in Appendix 4.

Rock samples were analyzed at International Plasma Laboratories of Vancouver, B.C. Rock samples were crushed to a -10 mesh, riffle split and a 250 gram sample was sieved to -250 for analysis. Each sample was analysed for gold by Fire Assay with an AA finish using a 30 gram sample. Samples were also analysed using Aqua-Regia digestion and ICP scan for the standard 30 element package.

3.1.2 Results

Rock sampling of the altered intrusion (Unit 4int) returned from <5 ppb Au to a high of 1145 ppb Au, with the best assay obtained directly above the main soil anomaly defined by Canadian Industrial Minerals Corp. in 1991. Samples collected from this unit display no correlation between Au and Cu, Zn, Pb, As, Sb and Hg.

Samples of the silicified sedimentary rock adjacent to the altered intrusion were collected and assayed in an effort to identify a large zone of disseminated mineralization adjacent to the intrusion. Assays of the silicified sedimentary rocks range from <5 to 231 ppb Au, with the best assay obtained from silicified siltstones with pyrite laminations (#21501). Samples of intensely silicified and quartz veined siltstones averaged below 26 ppb Au. In general the best assays from silicified siltstones were obtained north of the alterated intrusion adjacent to King Creek.

An anomalous gold value was also obtained from intensely silicified siltstone float with small pods of pyrite and chalcopyrite (#21504, 2840 ppb Au). The angular habit of the float suggests that it has not traveled far and may have originated adjacent to the intrusion, although no source was identified during mapping. Alternatively sample 21504 may have originated from the sediments adjacent to the linear diorite intrusion with known copper mineralization drilled by Corptech Industries Inc. on the former King claims to the west of the area of interest (Chapman et al., 1990).

3.2 SOIL GEOCHEMISTRY

3.2.1 Method of Survey

A total of 212 soil samples were collected on the King property during the 1995 field season. Samples were collected at fifty metre spacings along 100 metres spaced crosslines over the northern part of the grid and on crosslines spaced 200 metres apart on the southern portion of the grid. Infill soil sampling was completed over the main soil anomaly identified by Canadian Industrial Minerals Corp. in 1991. Soil samples were collected at 25 metre intervals on lines 1+00S, 2+00S, 3+00S and 4+00S between 1+00W and 4+00W. Soil samples were also taken from soil pits over the main anomalies defined by Canadian Industrial Minerals Minerals Corp. in 1991.

Samples were collected with a mattock or geotool, placed in a kraft paper bag and air dried prior to shipment to International Plasma Laboratories of Vancouver, B.C. Samples were sieved to -80 mesh and analysed for gold by Fire Assay with an AA finish using a 30 gram sample. Samples were also analysed using Aqua-Regia digestion and ICP scan for Ag, Cu, Pb, Zn, As, Sb and Hg.

Where possible, soil samples were collected from the B-horizon at depths of 15 to 20 centimetres. However, portions of the grid are underlain by large talus aprons with little or no soil development. Samples from these areas were obtained from the interstitial fines between the larger talus blocks.

3.2.2 Results

Gold values ranged from below detection level (<5 ppb) to 5858 ppb with the majority of samples assayed in the <5 to 20 ppb range. The distribution of gold values are tabulated below (Table 4.1).

Range (ppb	Number of
Au)	samples
<5 to 9	122
10 to 19	63
20 to 50	20
> 51	7

Table 4.1 Number of samples in each population.

Results of the 1995 soil program confirmed the presence of the soil anomaly identified in 1991 by Canadian Industrial Minerals Corp. with values of 1420 and 5858 ppb Au in the vicinity of L1+00S, 2+25 W. Soil sampling to the north, east and west of the main zone identified a broad area of anomalous Au and Cu in soils which extend from 3+50W to 4+00W and from L 0+00S to L 5+00S (Figures 4.2a and 4.2b).

The east-west trending portion of the soil anomaly situated between L0+00S and L2+00S, and from the baseline west to 3+00W is in part attributed to down slope dispersion from the main soil anomaly identified by Canadian Industrial Minerals Corp. in 1991. This anomaly is characterized by anomalous gold values and sporadic to weakly anomalous copper values and is situated along the contact between Units 1 and 4int. The northeast portion of the anomaly situated between L0+00S and L5+00S and west of 3+00W is also characterized by anomalous Au and Cu in soils. This anomaly coincides with the trace of a linear gully suggesting it may be transported. Alternatively the anomaly may be sourcing from the silicified sedimentary rocks situated along the east side of the gully. The eastern portion of the anomaly extends from L2+00S to 4+00s and from the baseline east to 3+50E and is underlain by variably silicified rocks of Unit 1 and an altered dyke of Unit 4int. The overall morphology of the soil anomaly outlines the margins of Unit 4int suggesting that the margins of the intrusion are elevated in gold and copper mineralization. The apparent lack of anomalous values in soil samples from the area overlying the main intrusion suggests that the bulk of Unit 4int is unmineralized except in the more coarsely amygdaloidal portion situated at L1+00S, 2+25 W.

Several weak gold anomalies were identified on the south half of the grid however, geological mapping and sampling failed to identify any significant mineralization.

4. DISCUSSION AND CONCLUSIONS

The King property is located west of the confluence of the Harrymel Creek and the Unuk River, 80 km northwest of the town of Stewart and 22 km southwest of the Eskay Creek mine in northwestern British Columbia. The King property consists of 9 claims totaling 88 units owned by Chris Graf of Vancouver, B.C. and optioned by Prime Resources Group Inc. Previous work on the property includes grid controlled soil sampling, geological mapping, prospecting, trenching, IP survey and three diamond drill holes totaling 364 metres. The majority of this work has been completed on the King 1, 5, 9 and 10 claims.

The King property is underlain by a thick sequence of probable Upper Triassic Stuhini Group sediments which are intruded by three intrusive phases. These include a diorite phase exposed on the eastern part of the grid, basaltic to andesitic sills and related feeder dykes exposed on the western portion of the grid, and a zoned intrusion which varies from dark, gray and aphanitic along its margins to coarsely amygdaloidal in the center which underlies the central portion of the grid.

Alteration on the property appears to be related to the intrusion of an amygdaloidal unit into the sedimentary host rocks. Alteration on the property is characterized by sericite+calcite with disseminated pyrite and pyrrhotite within the amygdaloidal intrusion and by silicification of the adjacent sedimentary rocks. Within the intrusion, alteration appears to increase in intensity towards the more coarsely amygdaloidal center of the intrusion. Silicification within the sedimentary rocks forms a 350 metre wide zone which underlies the central portion of the grid and increases in intensity towards the margins of the intrusion.

The 1995 work program on the King property consisted of grid controlled soil sampling, 1:5,000 scale geological mapping and rock sampling completed during the first half of July. A total of 32 rock samples and 212 soil samples were collected on the property. Soil sampling confirmed the presence of the soil anomaly identified by Canadian Industrial Minerals Corp. in 1991 with values of 1420 and 5858 ppb Au in the vicinity of L 1+00S, 2+00W.

Soil sampling outlined a zone of weakly anomalous Au and Cu mineralization coincident with the margins of the altered intrusion and identified an apparent negative soil anomaly over the majority of the intrusion except overlying the most intensely altered portion of the amygdaloidal intrusion.

Rock sampling in the vicinity of the main soil anomaly returned from <5 to a high of 1145 ppb Au from the strongly carbonate sericite altered amygdaloidal portion of the intrusion. Samples of the silicified sedimentary rock adjacent to the altered

intrusion were collected and assayed in an effort to identify a large zone of disseminated mineralization adjacent to the intrusion. Assays of the silicified sedimentary rocks ranged from <5 to 231 ppb Au, with the best assay obtained from silicified siltstones with pyrite laminations (#21501). Samples of intensely silicified and quartz veined siltstones averaged below 26 ppb Au. In general the best assays from silicified siltstones were obtained north of the alterated intrusion adjacent to King Creek.

An anomalous gold value was also obtained from intensely silicified siltstone float with small pods of pyrite and chalcopyrite (#21504, 2840 ppb Au). Sample 21504 may have originated from the sediments adjacent to the linear diorite intrusion with known copper mineralization drilled by Corptech Industries Inc. on the former King claims to the west of the area of interest (Chapman et al., 1990).

5. **RECOMMENDATIONS**

Based on our evaluation the source of the gold anomaly can be attributed to the underlying altered intrusion which has limited size potential. Numerous samples were collected from the adjacent silicified sediments in an attempt to evaluate the potential for a larger sediment hosted target however, assays were generally discouraging. At present no further work is recommended for this property.

6. **REFERENCES**

.

Adamson, R.S. (1987), Assessment Report on a Reconnaissance Geochemical Survey on the Consoat and King Claims, Skeena Mining Division; for Gest Resources Ltd., B.C. Energy, Mines Petroleum Resources, Assessment Report #16316.

Aerodat Limited (December 1988 to January 1989), Airborne EM and Magnetic Survey on the Priam, Achilles, Homer, Illiad, Maxwell Smart Mineral Claims; for Winslow Gold Corp.

Anderson, R.G., Thorkelson, D.J. (1990), Mesozoic Stratigraphy and Setting for Some Mineral Deposits in Iskut River Map Area, Northwestern British Columbia; in Current Research, Part E, Geological Survey of Canada, Paper 90-1F, pp. 131-139.

Britton, J.M., Webster, I.C.L., and Alldrick, D.J. (1989), Unuk Map Area (104G/7E, 8W, 9W, 10E); in B.C. Energy, Mines and Petroleum Resources, Geological Fieldwork 1988, Paper 1989-1, pp. 241-250.

Gareau, M.B. (1983), Geochemical Assessment Report on the Cole Claims, Skeena Mining Division; for DuPont of Canada Exploration Limited; B.C. Energy Mines and Petroleum Resources, Assessment Report 11673.

Grove, E.W. (1986), Geology and Mineral Deposits of the Unuk River - Salmon River - Anyox Area; B.C. Energy Mines and Petroleum Resources, Bulletin 63.

Henderson, J.R., Kirkham, R.V., Henderson, M.N., Payne, J.G., Wright, T.O. and Wright, R.L., 1992, Stratigraphy and structure of the Sulphurets area, British Columbia; in Current Research, Part A; Geological Survey of Canada, Paper 92-1A, p. 323-332.

Wescott, M.G. (1988), Assessment Report on Geological and Geochemical Work on the King 1-4 and Consoat Mineral Claims, Skeena Mining Division, B.C. for Cominco Ltd.

•

APPENDIX 1 STATEMENT OF COSTS

-

.

-

.

.

STATEMENT OF COSTS

-

.

۳ н. .

.

.

.

.

.....

.

.

.

.

. .

.

•

-

.

PROJECT NAME: CODE:	RCES GROUP LTD. KING 90710 res: July 1-17, 1995		TOTAL COST	34,172.20	
DESCRIPTION		AMOUNT	RATE (\$)	NET(\$)	TOTAL
1.0 SALARIES	(IN HOUSE) Technical A. KAIP K. PATTERSON D. KURAN	9 6 1	240.50 201.50 325.00	2,164.50 1,209.00 325.00	
	Seasonal C. DOWNIE J. LEWIS M. PHILLIPS B. Beck	5.5 8 7 5	175.50 175.50 156.00 156.00	965.25 1,404.00 1,092.00 780.00	
			Sub	total	7,939.75
1.1 FEES	(CONSULTANTS)				
	Geological		Subt	0.00 otal	0.00
2.0 GEOPHYSICS					
	Ground Airborne Remote Sensing		Subt	0.00 0.00 0.00 otal	0.00
3.0 DRILLING					
	Surface Mob/Demob Fuel Supplies		Subt	0.00 0.00 0.00 0.00 otal	0.00
4.0 ANALYSIS	(ASSAY, METALLURG	ICAL)			
	Rock Soil	32 212	17.05 13.30 Subt	545.60 2,819.60 otal	3,365.20
5.0 FIELD/CAMP	Field Supplies Camp Costs Camp Construction Expediting		Subt	1,926.92 975.00 3,018.54 0.00 otal	5,920.46

STATEMENT OF COSTS

.

ь.

.

.

•

•

.

•

۲

•

•

.

.

•

•

.

•

.

•

PROJECT NAME: CODE:	RCES GROUP LTD. KING 90710 res: July 1-17, 1995	TOTAL COST	0.00	
DESCRIPTION	AMOUNT	RATE (\$) NET	(\$)	TOTAL
6.0 SURFACE WOR	₹К			
	Line cutting Trenching/Pitting	2,5 Subtotal	96.35 0.00	2,596.35
7.0 ENVIRONMENT	AL/RECLAMATION			
	Baseline studies Permitting Reclamation	Subtotal	0.00 0.00 0.00	0.00
8.0 PROPERTY MA	INTENANCE			
	Staking Land surveying Option/Lease/Acquisition Claim holding costs Taxes Lease rental payments Fixed advanced royalties Variable advanced royalties	Subtotal	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00
9.0 TRAVEL				
	Lodging Meals Airfare Taxi/Car rental/mileage	1,56 Subtotal	0.00 51.08 0.00 0.00	1,661.08
10.0 TRANSPORTA	TION			
	Vehicle lease/rental Vehicle operating/maintenance/repain Helicopter Fixed wing	11,99 Subtotal	0.00 0.00 94.06 0.00	11,994.06

1

STATEMENT OF COSTS

.

-

.

-

.

.

~

PRIME RESOURCES GROUP LTD. PROJECT NAME: KING TOTAL COST 0.00 CODE: 90710 Date of Expenditures: July 1-17, 1995 DESCRIPTION AMOUNT RATE (\$) NET(\$)

11.0 SUPPORT ACTIVITIES

Communications	252.30
Maps/publications/photo	100.00
Drafting	0.00
Office supplies	0.00
Freight/shipping	343.00
	Subtotal

12.0 OTHER A&G/MANAGEMENT FEE

Legal	0.00
Business meetings & entertainment	0.00
Dues/Memberships	0.00
Professional education/seminars/conventions	0.00
Donations	0.00
Rent - Office and storage	0.00
Management fees	0.00
Office equipment	0.00
Computer equipment	0.00
Miscellaneous fees	0.00
Insurance	0.00
Data processing costs	0.00
Allocated administration	0.00
Miscallaneous A&G costs	0.00
	Subtotal

TOTAL.

34,172.20

0.00

695.30

DC

Apportionment of Expenditures

\$29,800 applied as assessment work to the King group claims (Event No. 3072699) with balance of expenditures credited to C. Graf P.A.C. Account No. 110139.

APPENDIX 2 STATEMENT OF QUALIFICATIONS

,

.

*

.

.

-

.

.

STATEMENT OF QUALIFICATIONS

I, Andrew W. Kaip, of 901-1050 Harwood Street, Vancouver, British Columbia, do hereby certify that:

1. I am presently employed by Homestake Canada Inc. of 1000-700 West Pender Street, Vancouver, British Columbia as a Project Geologist.

2. I graduated from Carlton University (1992) and hold a B.Sc. (Highest Honours) in geology.

3. I have been employed in my profession as an Exploration Geologist in Canada since graduation.

4. I have no interest in the property described herein, nor in the securities of any company associated with the property, nor do I expect to acquire any such interest.

Signed at Vancouver, British Columbia this day of October, 1995

\$

ANDREW W. KAIP B.Sc.

.

STATEMENT OF QUALIFICATIONS

I, Keith M. Patterson, of 2828 West 6th Avenue, Vancouver, British Columbia, do hereby certify that:

1. I am presently employed by Homestake Canada Inc. of 1000-700 West Pender Street, Vancouver, British Columbia as a Geologist.

2. I graduated from the University of British Columbia (1994) with a Bachelor of Applied Science, in the Mineral Exploration option of the Geological Engineering program.

3. I am currently registered as an Engineer in Training with the Association of Professional Engineers and Geoscientists of the Province of British Columbia.

4. I have no interest in the property described herein, nor in the securities of any company associated with the property, nor do I expect to acquire any such interest.

Signed at Vancouver, British Columbia this 5° day of October, 1995

ς.

KEITH M. PATTERSON

STATEMENT OF QUALIFICATIONS

I, David L. Kuran of 25630 Bosonworth Avenue, in the Municipality of Maple Ridge, British Columbia, do hereby certify that:

1. I am a graduate of the University of Manitoba (1978) and hold a B.Sc. in Geology.

2. I am a fellow of the Geological Association of Canada.

3. I am a member in good standing of the Association of Professional Engineers and Geoscientists of the Province of British Columbia.

4. I have been employed in my profession as an Exploration Geologist in Canada, U.S.A., and Mexico since graduation.

5. I am presently employed by Homestake Canada Inc. of 1000-700 West Pender Street, Vancouver, British Columbia as a Senior Project Geologist.

6. I supervised the planning and implementation of the work described in this report, was in communication with the project geologist on site and was involved in the data interpretation and editing of this report on the King claims.

7. I consent to the use of this report concerning the 1995 exploration program carried out on the King mineral claims owned by Chris Graf in the Skeena Mining Division, NTS 104B/7, for all corporate purposes relating to Prime Resources Group Inc. and Chris Graf.

Signed at Vancouver, British Columbia this 5 day of October, 1995

N B.Sc., P.Geo. DAVÍÐ

APPENDIX 3 ROCK SAMPLE DESCRIPTIONS

.

-

.

.

.

1995 KING SAMPLES

-

•

.

•

.

٠

.

.

.

٠

•

•

.

.

•

.

.

.

•

•

.

.

.

•

.

.

Sample	Location	Width	Sample Description
21401	1+00S, 2+00W	1.0 m	S[cc+py+po] vesicular intrusive
21402	2+00S, 3+00W	grab	Silicified, pyritic blk siltstones
21403	0+00S, 0+75W	1.0 m	Silicified, pyntic blk siltstones
21404	1+00S, 4+10E	1.0 m	Blk sittstone with fine grained disseminated py
21405	1+00S, 3+25E	grab	Graphitic blk siltstones
21406	4+00S, 3+25W	1.0 m	Blk sittstones with 2% disseminated py
21407	4+00S, 2+50W	grab	Siliceous blk silstones, minor disseminated py
21408	0+20S, 2+00W	grab	Fracture controlled py within silicified blk siltstones
21409	0+20S, 2+90W	1.0 m	Silica flooded blk silstones
21411	1+50S, 3+50W	1.0 m	Weakly silicified blk siltstones
21412	1+75S, 4+25W	1.0 m	Intensely silicified siltstones with minor py
21413	1+10S, 1+90W	1.0 m	S[cc+py+po] vesicular intrusive
21416	1+20S, 1+50W	1.0 m	Silicifed blk silstone wit pods and veinlets of fgr disseminated py
21417	1+40S, 1+80W	1.0 m	S[ser+py+cc] vesicular intrusive
21418	1+60S, 2+00W	1.0 m	M[py+cc] vesicular intrusive
21419	1+80S, 2+50W	1.0 m	M[py+cc] vesicular intrusive
21420	5+00S, 0+45E	1.0 m	Strongly fractured and qz cemmented blk siltstones
21421	4+60S, 1+90E	1.0 m	Blk silicified siltstones with sheeted qz stockwork
21422	11+00S, 1+40E	1.0 m	Siliceous blk silstones, minor disseminated py
21423	11+10S, 3+25E	1.0 m	Siliceous blk silstones, minor disseminated py
21424	11+40S, 4+25E	1.0 m	Siliceous blk silstones, minor disseminated py
21425	10+00S, 3+60E	1.0 m	Blk silicified sittstones with sheeted qz stockwork
21501	1+20N, 2+00E	1.0 m	Blk siltstone with pyritic laminae
21502	2+60N, 0+75W	grab	Intensely silicified siltstones with 3% disseminated py
21503	2+20N, 1+10W	1.0 m	Rusty black siltstones
21504	1+80N, 2+25W	float	Silicified silstones with pods of py, cpy
21505	1+40N, 3+00W	1.0 m	Rusty silstones
21506	3+00S, 3+50E	1.0 m	Silicfied and graphitic blk silstones with 3% disseminated py
21507	3+00S, 0+75W	1.0 m	Aphanitic, silicified intrusive with 1 to 5% disseminated py
21508	3+50S, 1+50W	1.0 m	Intrusion with py+chl filled vesicles
21509	3+20S, 3+00W	1.0 m	Moderately silicified blk siltstones

Ł

APPENDIX 4 ASSAY CERTIFICATES

P

.

.

. .

h

•

.

٠

-

.

,

.

.

.

•

.

,

.

.

.

.

.

•

.

.

INTERNATIONAL PLASMA LABORATORY LTD

;

2036 Columbia Street Vancouver, B.C. Canada V5Y 3F1 Phone (604) 879-7878 Fax (604) 879-7898

5 F 7 F 7

1000 - 700 W Pender St Vancouver BC V6C 168 AfT: Ron Britten P Pomestake Mineral Development Co 1 Airport Way Smithers BC V0J 2N0 ATT: Andrew Kaip P	Caip ID=C034305 EN RT CC IN FX 1 2 2 2 1 01. 30 50 BT BL	Analy ## Code 01 313P 02 /21P 03 /11P 04 714P 05 730P 06 703P 07 702P	≀aw Sta Pulp Sta Ztica	orage: orage: (1 S)	ummary—	S finish 30g	0=RC Ct 0= Pulp Element Gold Silver Copper Lead Zinc Arsenic Antimony Mercury	0=0ther	[046817:15:04:59072195] Mon-Month Dis Discard Rtn=Return Arc=Archive
EN=Envelope # RT=Report Style CC=Copie		FY F- (1							

۳

٦

۳

• • •

Canada VSY 3E1

2036 Columbia Street Vancouver, B.C.

INTERNATIONAL PLASM	ATAIIQIA	PORY (10								167	95	G I 4	405						Canada VSY 3E1 Phone (604) 879-7878
Cfient: Nomestal Project: 90710	ke Mir			: pinent	Co			1405 M		ut: Jul 2 In: Jul 1			[0468	809:35:	:4] 95	Page]	1 of		Fax (604) 879(7898 Section 1 of 1 Certified BC Assayer: David Chiu
Sample Name		Ag IPPNI	Cu ppm	pp PD	Zn ppin	٨s	\mathbf{Sb}	Hg	Sample Na			ρΛ mqq	Cu ppm	РЬ ррт	Zn		Sb		
1 0+00S 0+50E S 1 0+00S 1+00E S 1 0+00S 1+50E S 1 0+00S 2+00E S 1 0+00S 2+50E S	6 24 3	0.7 0.6 1.2 0.4 1.2	37 53 277 102 279	15 20 51 11 33	47 74 439 130 232	9 27 107 9 31	<5 <5 <5 <5 5	<3 <3 <3 <3 <3 <3	1. 1+00S L 1+00S L 1+00S I. 1+00S I. 1+00S I. 1+00S	3+25W Š 3+50W Š 4+00W Š	15 10 27	0.5 0.6 1.8 1.5 0.6	75 71 62 102 89	19	141 114 74 126 123	29 36 26 50 15	<5 5 <5 <5 <5	<3 <3 4 <3 <3	
t 0100S 3100E S 1 0100S 3150E S 1 0100S 4100E S 4 0100S 4150E S 1 0100S 0100W S	9 3 7	1.2 1.9 1.8 1.6 0.9	69 233 338 308 182	23 38 62 41 12	140 530 165 90 71	26 57 21 17 185	<5 <5 <5 <1	<3 <3 <3 <3 <3	L 1+00S L 1+00S L 1+00S L 1+00S L 2+00S L 2+00S	5150W Š 6100W Š 0100E Š	4 18 3	1.4 0.3 1.0 0.9 0.4	162 59 98 31 34	12 15 21	147 59 110 59 64	25 9 18 9 13	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3	
I. 0+00S 0+50H S I. 0+00S 1+00H S I. 0+00S 1+50H S I. 0+00S 2+00H S I. 0+00S 2+50H S	22 24 59	D.6 0.6 0.4 0.5 1.0	156 63 77 100 56	17 16 19 19 21	41 54 41 123 54	33 14 8 32 8	د5 د5 د5 د5 د5	5 5 5 5 5 5 5 5	L 2+00S L 2+00S L 2+00S L 2+00S L 2+00S L 2+00S	1+50E Š 2+00E Š 2+50E Š	18 9 3	2.4 0.4 0.2 0.9 0.5	46 23 40 22 29	4 13 19	107 83 76 57 68	13 <5 14 11 27	<5 <5 <5 <5 5	<3 <3 <3 <3 <3 <3	
L 0100S 3100M S L 0100S 3150M Š I 0100S 4100M Š I 0100S 4450M Š L 0100S 5450M Š	9 22 17	1.1 1.5 1.8 1.2 1.7	74 70 226 166 55	31 20 17 16 13	223 119 354 245 45	38 12 25 22 8	<5 <5 <5 <5 <5	2 2 2 2 2 2 2	L 2+00S L 2+00S L 2+00S L 2+00S L 2+00S L 2+00S	4+00E \$ 4+50E \$ 5+00E \$	ն 5 3	0.3 1.3 0.7 0.3 0.4	197 114 62 49 14	23 17 16	216 158 84 73 49	41 22 23 27 6	<5 5 6 <5 <5	<3 <3 <3 <3	
R. 0100S 6100M S L. 1100S 0100E S L. 1100S 0450E S L. 1100S 1450E S L. 1100S 1450E S L. 1100S 2400E S	10 4 6	0.4 1.3 1.5 0.4 0.3	44 68 121 22 50	14	56 31 74 65 77	8 62 17 14 17	<5 <5 <5 <5 <5	<3 <3 <3 <3 4	L 2+00S L 2+00S L 2+00S L 2+00S L 2+00S L 2+00S	1+25₩ \$ 1+50₩ \$ 1+75₩ \$	18 10 6	1.0 0.4 1.5 0.4 0,3	17 42 42 45 55	21 18 17	66 24 42 41 47	10 19 10 8 20	<5 <5 <5 7 14	< > > > > > > > > > > > > >	
L 1+00S 2+50E S L 1+00S 3+00E S I 1+00S 3+50E S L 1+00S 4+60E S L 1+00S 4+50E S	4 10 2	1.4 3.0 0.9 1.2 1.0	37 333 104 131 99		90 1091 107 109 254	25 77 26 28 28	6 <5 <5 <5 <5	<3 <3 <3 <3 <3 <3	L 2+00S L 2+00S L 2+00S L 2+00S L 2+00S L 2+00S	2+50W \$ 2+75W \$ 3100W \$	8 7 <2	1_1 0_3 0_7 0.2 1_8	62 38 63 39 160	- 35 26	27 65 96 57 221	14 22 18 13 39	<5 <5 <5 <5 9	<3 <3 <3 <3 <3	
L 1+00S 5+00E S L 1+00S 0+50W S L 1+00S 1+00W S L 1+00S 1+25W S L 1+00S 1+25W S	10 10 18	0.8 0.3 0.6 0.6 0.8	59 25 28 51 41	20 44 24 31 18	100 41 40 79 50	32 15 <5 12 14	6 <5 <5 <5 <5	3 <3 <3 <3 <3 <3	L 2+00S L 2+00S L 2+00S L 2+00S L 2+00S L 2+00S	4100W \$ 4+50W \$ 5100W \$	15 12 6	4.5 4.1 1.2 1.0 1.1	184 87 111 63 219	27 12 14 16 21	307 160 94 49 278	29 19 12 8 42	9 5 <5 <5 7	<3 <3 <3 <3	
L 1+005 1+754 Š L 1+005 2+004 Š L 1+005 2+254 Š L 1+005 2+754 Š	14 1420	1.0 0.2 0.5 1.0	142 20 138 70	21 29 23 25	82 37 63 158	20 <5 25 13	7 <5 <5 <5	3 3 3 3 3	L 3:00S L 3:00S L 3:00S L 3:00S	0+50E \$ 1+00E \$, 24 15	0,5 6.7 0.7 0.9	49 233 27 111	26 20 22 16	493	21 35 9 20	<5 7 <5 <5	<3 <3 <3 <3	
	9999 11AAA Loso I (_1CP `icien	t Sampl	ICP le S	ICP =Soil	ICP R=Roc!	ICP k C≂Ca	TCP pre L=S	Silt P≖Pelp ' va∵r Pel	∣ N=Undef	9999 FAAA fined	1CP m=E:	1 20000 2 ICP stimate	100	. 1720	100	17713	* /NIN	Eslimate

1

2036 Columbia Street

Fax (604) 879-7803

.

Vanconver, B.C.

Canada V5Y 3E1 Phone (604) 879-7878

٩.

۲ 1

INTERNATIONAL PLASMA LABORATORY LED

mple Na	NIKS		Ag ppm	Cu ppm	Pb ppss	Zo ppm		Sb ppn		Sample Name		Ag ppni	Си рряп	UЧ ткр		As ppm					
3+00S 3+00S 3+00S	2+00E S 2+50E S 3+00E S 3+50E S 4+00E S	12 24 17	1.6 0.9 0.9 2.0 1.0	55 26 37 59 27	18 27 14 15 21	98 106 34 74 79	23 12 16 21 7	<5 <5 <5 <5 6	<3 <3 <3 <3 <3	L 4100S 2175W S L 4100S 3100W S L 4100S 3150W S L 4100S 3150W S L 4100S 3175W S L 4100S 4100W S	10 22 	0.6 0.9 1.0 0.8	43 44 266 293	18 18	105 45 416 243	<5 10 33 54	<5 <5 6 5	<3 <3 <3 <3	 	·	
3+00\$ 3+00\$ 3+00\$	5+00[, S 0+50W Š 1+00W S 1+25W Š 1+50W S	13 15 10	1,7 0,5 1,3 1,4 1,3	71 59 34 29 59	10 18 15 23 19	88 55 57 61 61	18 24 12 9 6	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3	L 5100S 0100E \$ L 5100S 0150E \$ L 5100S 1100E \$ L 5100S 1100E \$ L 5100S 1150E \$ L 5100S 2100E \$	Е 6 <2>	0.6 1.5 1.2 0.1 0.1	22 37 27 35 21	17 39 21 21 30	35 72 69 61 47	5 10 <5 26 17	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3			
1100S 1100S 1100S	1+75W S 2+00M Š 2+25W S 2+50W Š 2+75W Š	9 14 18	0.6 0.4 0.4 1.3 1.8	60 41 26 23 32	20	73 76 63 50 80	20 24 6 5 9	୍ୟ ୧୨ ୧୨ ୧୨ ୧୨	<3 <3 <3 <3 <3	L 5+00S 2+50E S I. 5+00S 3+00E S L 5+00S 3+50E S L 5+00S 4+00E S I. 5+00S 4+50E S	3 3 3	0.7 1.9 0.3 0.2 0.1	21 35 20 23 15	14 27 56	58 80 84 84 31	23 27 6 21 6	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3 <3			
9+00S 8+00S 8+00S	3100W \$ 3+25W \$ 3+50W \$ 4+00W \$ 4+50W \$	33 19 16	1.8 7.7 12.2 1.2 1.2	46 135 80 223 83	14	114 217 142 303 97	14 13 12 20 14	<5 <5 <5 <5	<3 <3 <3 <3 <3	L 5100S 5100E S L 5100S 0150M S L 5100S 11100M S L 5100S 1150M S L 5100S 2100M S	5 5 5	0.3 3.1 0.7 0.9 1.8	32 107 30 23 23	20 18	40 166 64 85 57	26 15 15 16 13	<5 <5 <5 5 <5	<3 <3 <3 <3 <3			
+00S +00S +00S	0+00E \$ 0+50E \$ 1+00E \$ 1450E \$ 2+00E \$	<2 88 4	0.3 1.1 0.5 0.9 0.3	17 219 84 67 20	11 20 17 43 18	79 8/5	5 69 11 30 5	<5 <5 <5 <5 <5	<3 3 <3 <3 <3	L 5+00S 2+50W \$ L 5+00S 3+00W \$ L 5+00S 3+50W \$ L 5+00S 4+00W \$ L 5+00S 4+50W \$	5 6 8	0.6 0.3 0.5 1.0 0.8	91 38 43 173 66	19 15	99 45 60 80 47	6 6 7 18 11	<5 <5 <5 <5 <5	3 3 3 3 3 3 3 3			
+00S +00S +00S	2+50E \$ 3+00E \$ 3+50E \$ 4+00E \$ 4+50F \$	5 4 6	2.4 0.3 0.5 0.6 1.1	77 97 104 74 120	25 59 18 10 20	126 192	24 49 24 14 22	5 <5 <5 <5 <5	<3 <3 <3 <3 <3	L 5+00S 5+00W \$ L 7+00S 0+00E \$ L 7+00S 0+50E \$ L 7+00S 1+00E \$ L 7+00S 1+50E \$	6 9 <2	1.0 1.2 0.2 0.2 0.3	91 99 24 19 15	27	89 77 45 41 36	19 9 17 <5 <5	<5 <5 <5 <5 5	୍ୟ ସ ସ ସ ସ			
(00S) (00S) (00S)	5+00E \$ 0+50W \$ 1+00W \$ 1+25# \$ 1+50# \$	10 10 6	1.1 0.7 1.7 1.8 0.3	104 34 28 20 30	28 21	99 61 54 36 80	23 14 6 <5 12	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3 <3	L 7100S 2100E \$ L 7100S 2150E \$ L 7100S 3100E \$ L 7100S 3150E \$ L 7100S 3150E \$ L 7100S 4100E \$	<2 <2 3 3	0.3 0.2 0.2 1.8 0.6	32 23 16 15 44	20 18 14	76 50 65 53 54	14 12 9 5 14	<5 <5 <5 <5 <5	<3 <3 <3			
1100S	1+79H S 2+00H S 2+29H S 2+50H S	9 6	1.5 2.2 0.7 0.7	22 78 18 79	22 21 19 18	68 279 42 64	<5 68 <5 9	<5 11 <5 <5	<3 <3 <3 <3	L 7+00S 4+50E \$ L 7+00S 5+00E \$ L 7+00S 0+50W \$ L 7+00S 1+00W \$	3	1.6 0.4 0.3 0.4	44 30 42 26	16 27 23 30	61 64 21 33	12 17 <5 5	5 <5 <5 <5	<3 <3 <3 <3			

CERTIFICATE OF ANALYSIS

· · · ·

.

.

. .

۲

2036 Columbia Street

Vancouver, B.C.

Canada V5Y 3E1

iPL 95G1405

ITASE RI	ALIONAL PLASM	ALAUORA	1087110								191	. 95	SG14	105						Canada V5Y 3E1 Phone (604) 879-7878 Lax (604) 879-7848
Client: Project:	lkmestal 90710		nerat 212 So		pment	Co	iPL.	: 956	1405 M		Dut: Jut In: Jul			[0468	309:36:			5 of		Section 1 of 1 Certified BC Assayer: David Chiu
Lunple M	lane	Au ppb	Ag ppan	Cu ppm	PD ppm	Zn ppm	As ppm	Sb ppm	Hg ppm	Sample F	Vannes	۸u ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm	Λs ppm	Sb ppm	likj ppen	<i>ddd</i>
7+00S 7+00S 7+00S	1+50W S 2+00W Š 2+50W Š 3+00W Š 3+50W Š	5 ~<2 10	0.4 0.7 0.2 0.4 0.3	74 34 34 80 38	26 17 23 22 23	102 97 89 134 89	21 8 <5 15 10	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3	L11+00S L11+00S L11+00S		9 18 10	1.4 0.5 1.2 0.1 0.2	12 14 15 40 17		54 50 67 59 61	<5 10 7 15 14	<5 <5 <5 <5 <5	ය ය ය ය ය ය	
7100S 7100S 9100S	4+00W S 4+50W S 5+00W S 0+00F S 0+50E S	6 10 <2	0.9 0.7 2.2 1.3 0.8	73 113 54 56 88	18 11 14 7 13	107 155 88 34 59	24 27 58 <5 9	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3 <3	L11+00S L11+00S L11+00S	-2+00₩ \$ -2+50₩ \$	3 2 2	0.3 0.4 0.1 0.4 0.6	22 16 31 39 62	14 Ű	52 62 61 67 134	14 7 17 14 16	6 <5 7 <5 7	<3 <3 <3 <3 <3	
9+ 00 S	1+00E Š 1+50E Š 2+00E Š 2+50E Š 3+00E Š	<2 <2 3 <2 <2	0.2 1.2 0.9 3.2 0.4	36 15 20 25 11	19	64 42 106 45 48	15 13 30 15 <5	<5 7 10 <5 <5	<3 <3 <3 <3 <3	L11+00S L11+00S L11+00S L11+00S L11+00S 21410	4+50W \$ 5+00W \$ 5+50W \$ 6+00W \$	5 12 4	0.2 0.3 1.0 0.2 8.1	57 29 179 34 331	18 0 13 0 14 0	97 105 299 98 1068	29 11 29 8 64	<5 <5 <5 <5 27	ସ ସ ସ ସ ସ	
9+00S 9+00S 9+00S 9+00S 9+00S 9+00S	4+00E Š 4+50E Š	5 3 3	0.2 2.7 0.3 0.5 1.1	62 18 13 18 98	22	107 52 67 54 48	45 20 11 8 9	9 <5 <5 <5 <5	<3 <3 <3 <3 <3	21414 21415	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5850 <2	1.2 0.6	200 67	18 45	59 124	39 35	<5 <5	<3 5	
9+00S 9+00S	1+00H S 1+50H S 2+00H S 2+50H S 3+00H S	12 6 10	1.4 0.6	11 24 14 24 23	19 29	48 68 49 46 61	<5 <5 8 7 12	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3											
9100S 9100S 9100S 9100S 9100S 9100S	4+00W \$ 4+50W \$ 5+00W \$	8 9 8 10 10	1.2	30 33 27 64 37	20	61 88 69 96 82	8 8 <5 13 15	<5 <5 <5 <5 5	<3 <3 <3 <3 <3											
11+00S 11+00S 11+00S	5+00W \$ 0+00E \$ 0+SOE \$ 1+00E \$ 1+50E \$	10 12	1.3 0.4 1.1 1.6 4.2	85 76 112 134 84	16 20	129 148 217 395 470	16 9 17 18 113	5 <5 <5 <5 39	ε> ε> ε> ε>											
11+00S	2+00E \$ 2+50E \$ 3+00E \$ 3+50E \$	6 5	0.6 0.3 0.1 0.3	24 27 13 8	20	51 87 51 42	<5 7 6 <5	<5 <5 <5 <5	<3 <3 <3 <3											
E11:00S E11:00S Min Limi Max Repo Method No To	3+00E \$ 3+50E \$ t orted* est ins=	5 5 2 9999 FAAA Insuff	0.1 0.3 0.1 99.9 1CP	13 8 1 20000 1CP at Saup	20 14 2 20000 ICP 1e 5	51 42 1 20000 1CP 5=Soil	6 <5 9999 ICP R=Roc	<5 <5 5 9999 ICP k C=C	<3 <3 3 9999 1CP 901 L#	Stit Papul	lp U=Urida	9999 FAAA Iffinad	ICP	ן 20000 2 וכף בנותבנה	ICP :	ICP	ICP	9999 9 ICP	ICP	lo Estimato

PETERNALOWAL PLASHAA CABRIDATION COL

CERTIFICATE OF ANALYSIS iPL 95G2003

2036 Columbia Street Vancouver, B C Canada V5Y 3E4 Phone (604) 879 7878 Eax (604) 879 7898

٩.

r 1

Ŧ

٦

۰ ۲

Homestake Mineral Deve Out: Jul 25, 1995 Project: 90710 In: Jul 20, 1995 Shipper: Andrew PO#: Shipment: Msg: Au(FA/AAS 30g) 1CP(AgR)30	Ship=5	R.	Sampl aw Stora Np Stora tical	ige: ige:	03 12	4≕ Rock Mon/Dis Mon/Dis	s -		re 0∝RC 	Ct 0= Pul;	0=0ther 	[048515:17:34:59072595] Mon=Month Dis=Discard Rtn=Return Arc=Archive
Msg:		## Code	Met lit	lei	init:	 limit. l	Jnits Descr	intion		Element		
Document Distribution			hod	_		High				e remerre		
1 Homestake Mineral Development Co	EN RT CC IN FX	01 313P	FAAA	Αц		9999	ppb Au FA	/AAS finish	30a	Gold	01	
1000 - 700 W Pender St	1 2 2 2 1	02 364PF				ta Pg		/Grav in g/		Cold	02	
Vancouver	DL 30 50 BT BL	03 721P		Ag	0.1	100	ppm Ag 1C			Silver	03	
BC V6C 1G8	00010	04 711P	ICP	Cu	1	20000	ppm Cu IC			Copper	04	
		05 714P	ICP	Pb		20000	ppm Pb 1C			Lead	05	
AIT: Ron Britten	Ph: 604/684-2345											
	Fx:604/684-9831	06 730P	ICP	Zn	1	20000	ppm Zn IC	:P		Zinc	06	
		07 703P		٨s		9999	ppm As IC			Arsenic	07	
2 Homestake Mineral Development Co	EN RT CC IN FX	08 702P		Sь		9999	ppm Sb IC			Antinony	08	
1 Airport Way		09 732P		Hg		9999	ppm Hg IC			Mercury	09	
Smithers	DL 30 50 BT BL	10 717P		Mo	1	9999	ppm Mo IC			Molydenum	10	
BC VOJ 2NO	0 1 0 0 0		• • •		•		Ppm 10 10	.,		norydenom	10	
	- · •	11 747P	1CP	τı	10	999		:Р 10 ррт (I	ocomplete	Thallieuu	11	
ATT: Andrew Kaip	Ph: 604/521-7361	12 705P		Bi	2	999	ppm Bi IC		ncompriece	Bismuth	12	
c/o: Joy McLeod	Fx: 604/526-5941	13 707P		Cd	0.1	100	ppm Cd IC			Cadmium	13	
		14 710P		Čo	1	999				Cobalt	14	
		15 718P		Ni	1	999	ppm Ni IC			Nickel	15	
					•		pp () · 10	•		NICKET		
		16 704P	1Cb	ßa	2	9999	DOM BA IC	P (Incomple	to Dionst	Barton	16	
		17 7270	1CP	W	5	999		P (Incomple			17	
		18 709P	ICP	Cr	1	9999		P (Incomple			18	
		19 729P	ICP	v	2	999	ppin V IC			Vanadium	19	
		20 716P	ICP	Mn		9999	ppm Mn IC			Manganese	20	
							••	-		. winguniose	20	
		21 713P	ICP	La	2	9999	pom La IC	P (Incomple	te Dioest	Lanthaoum	21	
		22 723P	1CP	Sr	1	9999		P (Incomple			22	
		23 731P	ICP	Zr	1	999	ppm Zr IC		···· · ···	Zirconium	23	
		24 736P	ICP	Sc	1	99	ppm Sc IC	թ		Scand ium	24	
		25 726P	ICP	Τi	0.01	1.00	🦾 🔏 Ti IC	P (Incomple	ete Dioest		25	
								,	···· ··			
		26 701P		Λ١	0.01	9.99	% A1 IC	9 (Incomple	ete Digest	Alumitrian	26	
		27 708P	ICP	Са	0.01	9.99	% Ca IC	P (Incomple	te Digest	Calcium	27	
		28 712P	ICP	Fe	0.01	9,99	% Fe IC			Iron	28	
		29 715P	ICP	Mg	0.01	9.99	% Ma IC	P (Incomple	te Dioast		29	
		30 720P	ICP		0.01	9.99		P (Incomple			30	
								, , , -			55	
		31 722P	ICP	Na	0.01	5.00	% Na IC	P (Incomple	ete Digest	Soctium	31	
		32 719P	ICP			5.00	7 P IC	:Р		Phosphorus	32	
		1								, noaphor up	JE	
		1										
1		1										
		1										
		1										
		L										

EN=Envelope # RT=Report Style CC=Copies IN=Invoices FX=Fax(1=Yes 0=No) DL=Dramboad 3D=3-1/2 Dick 5D=5-1/4 Dick BT=BBS Type NH =BBS(1=Yes 0=No) CERTIFICATE OF ANALYSIS

2036 Columbia Street Vanconver, B.C.

Canada V5Y 3F1

iPL 95G2003

lient: Homes oject: 90710			lopine Rock		i('L: 95	G2003						1995 1995		8515;	17:39			1 of 5]				on 1 BCAs		2	(60-1) via Ch		Z	th
imp lez Name		Au dqq	Λg ppm	Cu ppm	рр и	Zn ppa	As ppn	Sb pra	l Ig Insta					Co Ni oprippri			Cr ppm (Ma ppm			7r ppnp		Ti Z	۸۱ ۲	Ca X	fe X	Hrj X	
422 423 424 425	K K K K	3 < 17 26	 0,3 0.2	54 22 24 18	10 6 17	33 13 27 22	9 < 5 7	17 10 8 9	< < < <	10 1 33 4	< < < <	< < < < <	0.2 0.4	3 19 2 15 2 13 4 18	317 107 97 131	< < < < <	442 381 308 351	24 4 61 8	58 52 79 238	3 2 3 7	29 6 7 8	1 1 < 1		<	U. 14	0.19 0.02 0.05 0.15	0.891	D DA	0.0
																			• •										

.

	CF	RTIFICATE OF iPL 95G2		2036 Columbia Street Vancouver, B.C. Canada VSY 3E1 Phone (604) 879-7878	
INTERNATIONAL PLASMA LABORATORY LED Lent: Homestake Mineral Development Co ject: 90710 Ship=5 4 Rock	iPL: 9562003	Out: Jul 25, 1995 In: Jul 20, 1995	Page 1 of [048515:17:43:59072595]	1 Section 2 of Certified BC Assay	Fax (604) 879-7848 2 er: David Chiu
ple Name Na P X X					······································
22 Ř 0.02 0.09 23 Ř 0.01 0.01 24 Ř 0.02 0.02 25 Ř 0.02 0.06					
,					

• •

.

2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

١

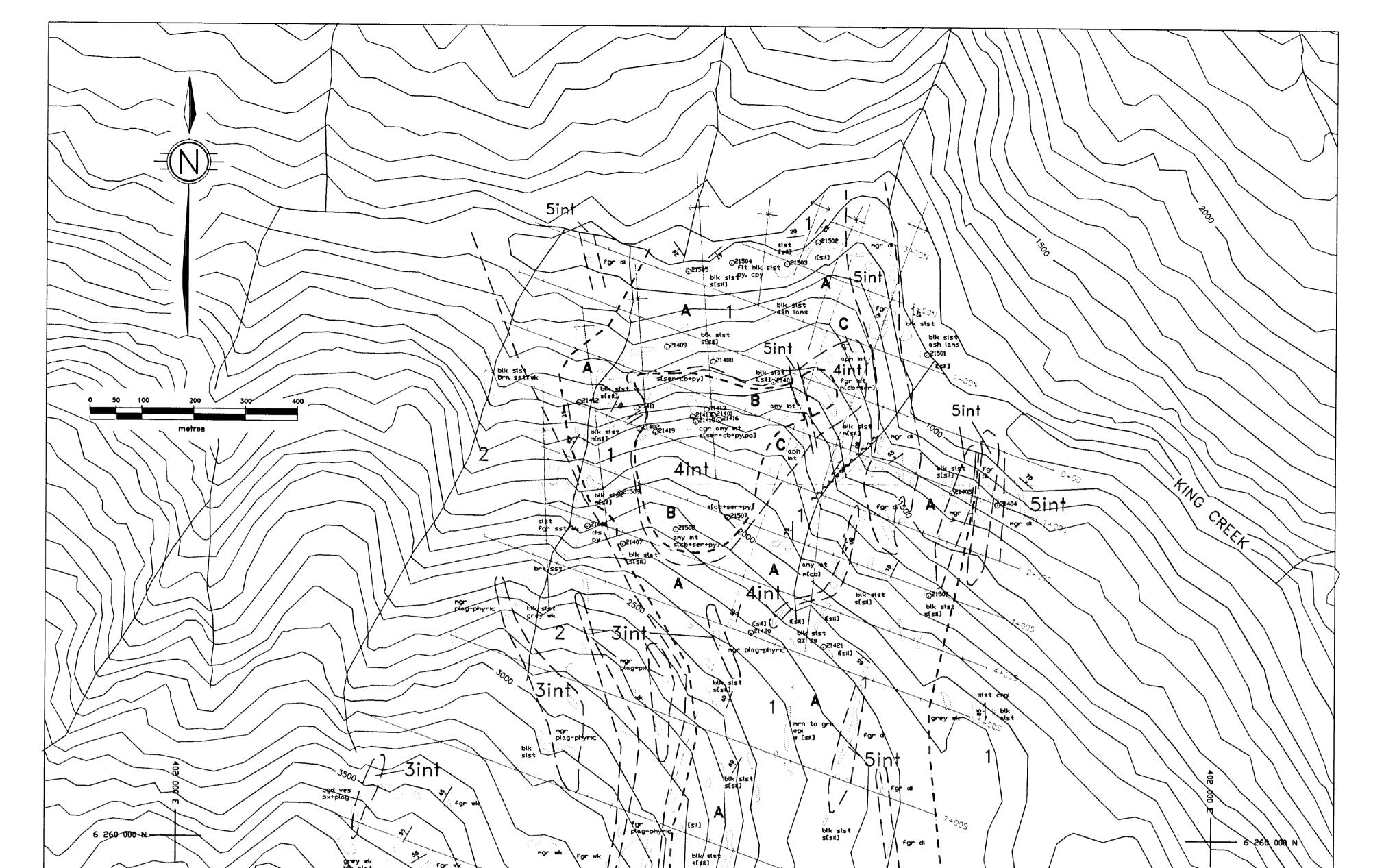
. . .

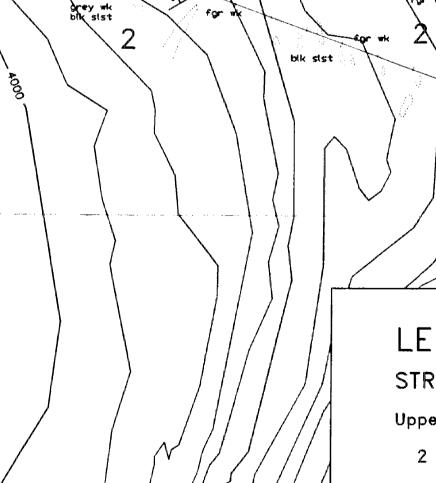
л f

۰ r

INDIGATIONAL	PIASLA	AUORATORY LID

Homestake Mineral Deve Out: Jul 19, 1995 – Project: 90710	-		Samp _{law Sto}	les rage:	2 03	8= Rock Mon/Dis	0= Soil	0= Core	CCt 0≠ Pulp	0=Other		19:59071995] Dis=Discard
In : Jul 14, 1995 Shipper: Andrew			Pulp Sto			Mon/Dis						Anc=Archive
PO#: Shipment: Msg: Au(FA/AAS 30g) ICP(AgR)30	ID=C034305	Mool.		1 0								
Msg:		Analy	'LICA	1 2	umma	ary—						
Document Distribution		## CODE	hod	itle		Limit U High	nits Descript	tion	Element	##		
1 Homestake Mineral Development Co	EN RT CC IN FX	01 313P	FAAA	Au		9999	DOD ALL EA /A/	AS finish 30g	0.11			
1000 - 700 W Pender St	1 2 2 2 1	02 721P	ICP	Ag		100	ppm Ag ICP	o iman bog	Gold Silver	01 02		
Vancouver	DL 30 50 BT BL	03 711P	ICP	Сu		20000	ppm Cu ICP		Copper	02		
BC V6C 168	0 0 0 1 0	04 714P	1CP	Pb		20000	ppm Pb ICP		Lead	04		
		05 730P	1CP	Ζn		20000	ppm Zn ICP		Zinc	05		
ATT: Ron Britten	Ph: 604/684-2345									0.5		
	Fx:604/684~9831	06 703P	ICP	٨s	5	9999	ppm As ICP	5 ррл	Arsenic	06		
		07 702P	[CP	Sb	5	9999	ppm Sb ICP		Antimony	07		
2 Homestake Mineral Development Co	EN RT CC IN FX	08 732P	ICP	Hg	3	9999	ppm Hg ICP		Mercury	08		
1 Airport Way	2 2 1 0 1	09 717P	ICP	Mo	1	9999	ррт Мо ІСР		Molydenum	09		
Smithers BC V0J 2N0	DL 3D 5D BT BL	10 747P	1CP	T 1	10	999	ppm T1 ICP 1	10 ppm (Incomple	e Thallium	10		
05 400 200	0 1 0 0 0	11 705P	100	р.	~	000						
ATT: Andrew Kaip	Ph: 604/521-7361	12 707P	ICP ICP	Bi Cd	2	999	ppm Bi ICP		Bismuth	11		
c/o: Joy McLeod	Fx: 604/526-5941	13 710P	ICP	Co	0.1	100 999	ppm Cd ICP		Cadmium	12		
c, c, d, doj nazdod	(A, 004) 3E0 3341	14 718P	1CP	Ni	1	999 999	ppm Co ICP ppm Ni ICP		Cobalt	13		
		15 704P	ICP	8a		9999		(Incomplete Diges	Nickel	14		
			101	444	2		ppin ba tor (Theorem biges	i barium	15		
		16 727P	ICP	W	5	999	ppm W ICP ([Incomplete Dige:	t Tunashan	16		
		17 709P	ICP	Cr	1	9999	ppm Cr ICP (Incomplete Dige	t Chromium	17		
		18 729P	ICP	۷	2	999	ppm V ICP		Vanadium	18		
		19 716P	ICP	Mn	1	9999	ppm Mn ICP		Manganese	19		
		20 713P	1CP	La	2	9999	ppm La ICP (Incomplete Dige	t Lanthanum	20		
		21 723P	1CP	Sr	1	9999	ppm Sr 1CP ((Incomplete Dige:	st Strontium	21		
		22 731P	ICP	Zr	1	999	ppm Zr ICP		Zirconium	22		
		23 736P	ICP	Sc	۱	99	ppm Sc ICP		Scand tum	23		
		24 726P	ICP	Ti		1.00	🛛 🕺 TH ICP ((Incomplete Dige	it Titanium	24		
		25 701P	ICP	A1	0.01	9.99	% Al ICP (Incomplate Dige	st Aluminum	25		
		26 708P	ICP	Ca	0.01	9.99	% Ca ICP ((Incomplete Dige	t Calcium	26		
		27 712P	ICP		0.01		% Fe 1CP		Iron	27		
		28 715P	ICP		0.01		🕺 Mg ICP ((Incomplete Dige	st Magnesium	28		
		29 720P	105	K	0.01		XK ICP ((Incomplete Dige:	st Potassium	29		
		30 722P	ICP	Na	0.01	5.00	🗶 Na ICP ((Incomplete Dige	at Sodium	30		
		31 719P	ICP	β	0.01	5.00	X P ICP		Phosphorus	31		
		1										
EN=Envelope # PT=Peopet Style CC=Cor		EV-E(1	-Y 0				• 11. •				· · · · · · · · · · · · · · · · · · ·	


٦


2036 Columbia Street Vancouver, B.C.

Canada V5Y 3E1

lient: Home oject: 9071			eral (28 Roc		pment	Со	iPL:	95G	1404				: Jul : Jul				[04	6711:	18:5		Page 171995			Cert	Sect ified	.ion IBCA⊴	t of 1 ssayer:	Davi	d Chi	u	B	61
nple Name		λu ppb	Ag ppm	Cu ppm	РЬ ррт	Zn ppm	As ppm	Sb ppm	lig ppm		bbw t	Bi opons	Cd ppm	Co ppm		Ba ppm	₩ ppm	C r ppm	V ppm	Mn ppn	l.a ppm	Sr ppm	Zr ppm		Ti Z	۸۱ ۲	Ca Z	Fo X			Ni Ni	
401	ĝ		0.1	28	1	21 28	6	5	<	2		<	<	2	16	223		215	7	88	S S S	5	1	1		0.38		1.02	0.43	0.07	0,01	0
102	R		0.1	36	8	28	< • C	10	<	2	88 4	<	<	2		260	<		4	67	:	7	1	1		0.14		0.74				
403 104	Ř	119	0.3	94 10	10	42 46	45 7	۰ ۲	× ۲	12 9		́з	< <	9 6	6 37	159 65	<	60 200		424	9	12	6			1.27		2.28				
105	(X1)21(X)		2.2	58	19	95	37	10	<	5	2 2	۲ ۲	<	4	22	204 204		196 212	23 18	211 96	9 5 9	83 12	2 1	3 2		0,78 0,57		1.44 1.76				
06	Ŕ		0.7	86	8	92	9	<	<	4		<		13		123	<	106	140			23	2	5	0.13	22.31	0,41	4.19	1.60	0.14	0,04	10.
07	RIRIRIR	4	0.6	55	6	1.36 8	<	<	<	3			0.2	15		203		112		516	<u>A</u>	11	5			2.08		3.70				
108 109	К О́	14 <	0.6 0,2	104 39	8 14	2000 B	18 13	< 9	< <	15 4		Ě	× ۲	6 6	19	50	<	248	19	75		4	4			0, 32	0.09	4.86				
.11	ι. Έ		1.0	47	14 8	26 56	6	9	۰ ۲	7		د >	< <	4	20	227 198	× ر	326 337	10 16	03	2002 2002	10 10	2 1	ן 1	< <	0.26		1.37	0.18	0.06	-0.207 -3.785	?0.
	9 																											1.41				
12 13	Ň	4 14	0.3 0.2	27 160	4 5	43 40	14 <	6 <	< <	15 12		۲. ۲	<u> </u>	2 30	7 43	379		195	41	58	3 N	35	2	2		80,64 SASAA		1.94	0.62	0.13	0.0;	0
15 A	- â		0.3	15	6	ŽĂ.	۰ ۲	* *	< <	4		× <	< <	14		40 156	< <	90 57	94 123	984 611	ःः ः ।	49 22	19 16	5	0.42	2,28 1,98	3.66	5.69 3.27	2.06	0.02	0.00	10
16	Ŕ		0.2	61	4	48 41	- 7	 	<	2		 <		14	16	123		115	82	362	12 4	12	2	5	0.07	2.04	0.21	3.09	1.55	0.10	0.00	5 U 5 N
17	۶Į ۱		0.6	143	10	47	5	۲	<	25		<	<	42	84	23	<	81	80	771	S H	46	19			3,99		5.82	1.25	0.01	0.04	Ó
18	Ŕ		0.2	34	2	50 214	~	<	<	3			0.1				~	74	53	576	11 36 5		13			:1.21		3.32				
19 20	К Б	3 4	0.3 0.4	46 40	22 5	214 800	× 9	× 12	* *	3 33		۲ ۲	0.9			111 65	<	107 396	91	587	36	49	7			4.03		5.09				
21	XIXXIX	~ ~	<	-10	2	90 12	- -	5	~	2	5555 2	-	د.u >	3	-3-3 7	1829	÷	203	6	2.0P		13 20	2 <			0.60		1.82 0.51	0.59	0.05	0.01 888	l D í A
01	Ř		0.8	27	10	41	145	۲,	<	11	(V V V		0,2	5	14	i 71		196	47	143	3	12	2	2		0.88		2.12	0.48	0.23	<u>ð</u> 202	0
DS .	ir X		0.6	63	5	6 120	<	6	<	16		<	<	2	8	441	<		15	61	2 11 5	7	2	۱	<	0.26		1.87				
03 04	K K		1.3 6.9	156 464	11 49	120 194	105 1216	<	<	64 20			1.1		142	》60 第17	<	215	488	592	<u>, 11</u>	115	5			2.45		3.98	2.74	0.23	0.02	s o
05		.040 9	4.1	404 81	49 A	670	1210	< 6	< <	37		< <	× 6.1	6	29 02	282		208 215	39 204	293		5 97	3 2	1 3		1,11	1.59	12	1 0.53	0.25	0103	30
606	Ĩ.		0,3	27	9	679 25	15 20	7	4	88		< l	<	4	17	120	<	263	73	34	Ő	7	5	3 1		0.34	0.05	$1.81 \\ 1.56$	0.07	0.20	0.01	; 0 (0
07	Ř		0.6	289	7	31 75	<	· <	<	14	6 Y Y	<		17	9	122	<	55	123	412 912	1 3	28	8	5	0.17	1.27	0.63	3.21	1.14	0.10	0.08	i o
08	R		0.3	75	7	75	<	< .,	<	6	5	<	<			206	<	93	82	912	<u>15</u>	38	21				2.60		1,98	0.06	0.00	រុំ០
09	Ķ	5	0.8	40	4	56	~	7	<	b		<	<	4	27	00	<	269	25	110	5505555 5505555	11	1	1	<	0.46	0.09	1.15	0.48	0.00	0.02	2 0
			0.1	<u>.</u>	2						10				1	2									··							

---=No Test ins=Insufficient Sample S=Soil R=Rock C=Core L=Silt P=Pulp U=Undefined m=Estimate/1000 %=Estimate % Max=No Estimate International Plasma Lab Ltd. 2036 Columbia St. Vancouver BC VSY 3F1 Ph: 604/879-7878 Estimate % Max=No Estimate

for

3/

STRATIFIED ROCKS

Upper Triassic Stuhini Group

11

021422 bik stat

13/1

- 2 Fine to medium-grained feldspathic wackes sandstones and siltstones.
- Black graphitic siltstones, pale green to maroon 1 epiclastic siltstones and minor conglomerates

* *

A

olk sist ozraza mor di s(sil)

11

5int'

97 50 0214/3 515t I[5k]

021424 s[sil] 05

INTRUSIVE ROCKS

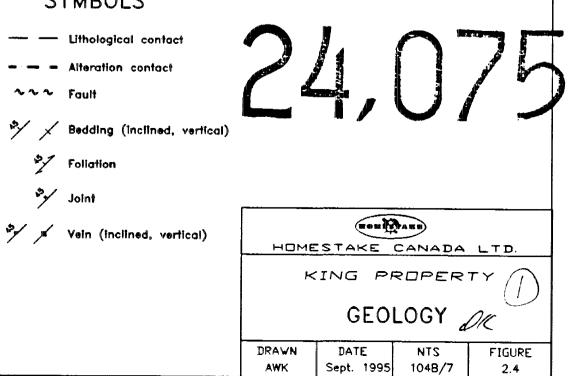
Cretaceous

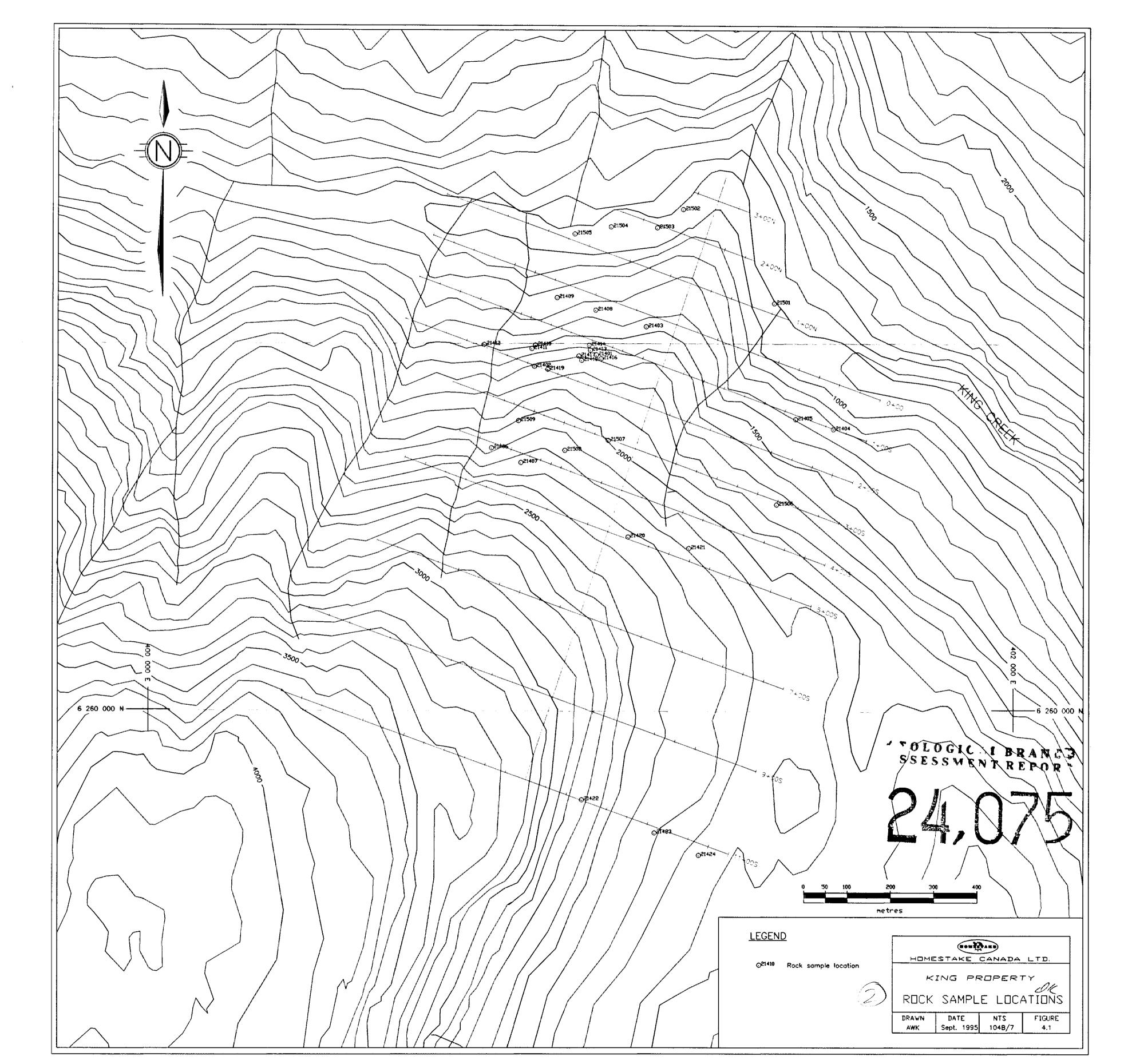
5int Medium to fine-grained, massive diorite

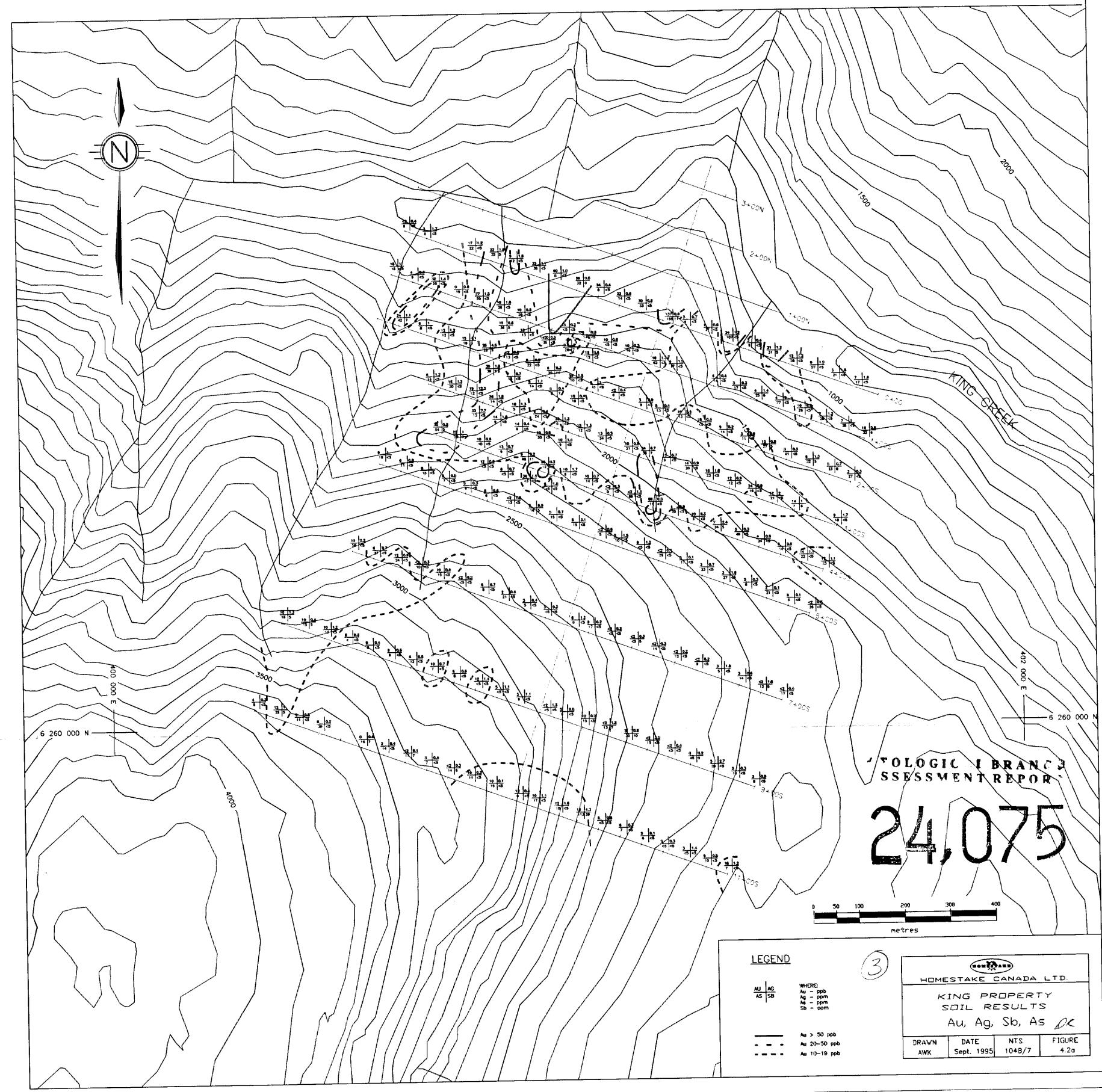
Triassic and Jurassic

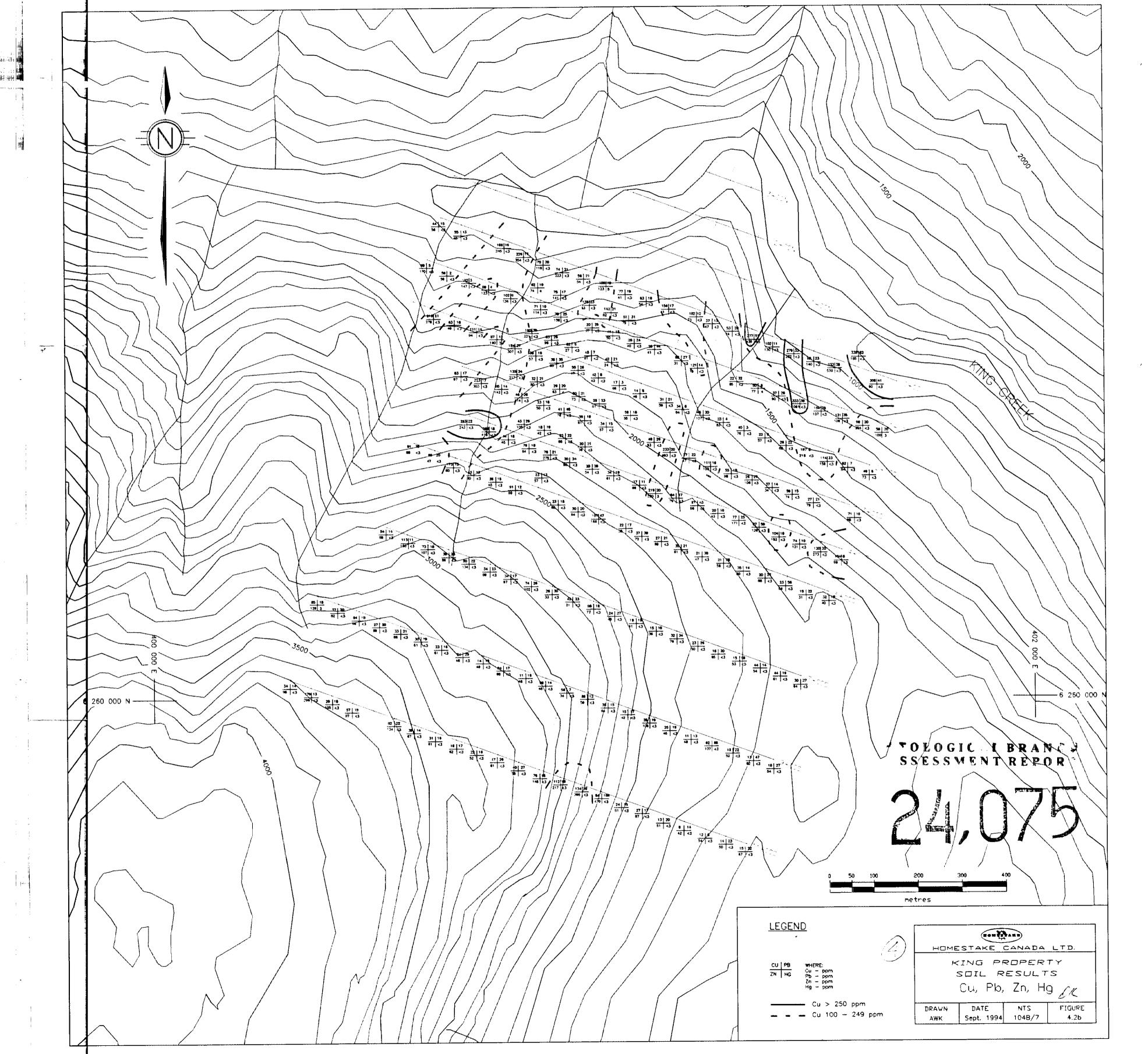
- 4int Aphanitic to amygdaloidal intermediate intrusion. Strongly altered to sericite+carbonate+pyrite and minor pyrrhotite.
- 3int Fine to medium grained plagioclase-phyric and plagioclas+pyroxene-phyric sills and dykes. Locally vesicular.

ALTERATION


A Silicification, minor disseminated pyrite


١.


1.


- Sericite+carbonate+pyrite, pyrrhotite В
- C Carbonate
- Note: [] denotes the alteration assemblage and twintense, SSESSWENT REPOR

SYMBOLS

