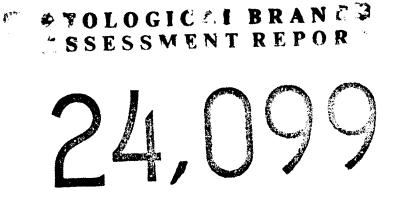
GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORTS

> DATE RECEIVED NOV 2 3 1995

DRILLING ASSESSMENT REPORT

ON THE

SOUP PROPERTY


N.T.S.: 94D/8

OCTOBER, 1995

FILMED

Author:L.R. ErdmanOwner/Operator:Hemlo Gold Mines Inc.

TABLE OF CONTENTS

PAGE

1.0	INTR	ODUCTION	1
	1.1	Location and Access	1
	1.2	Topography and Physiography	1
	1.3	History	1
	1.4	Claims	4
	1.5	Economic Potential	6
	1.6	Survey Control	6
	1.7	Sampling	6
2.0	GEO	LOGY	6
	2.1	Regional	6
	2.2	Property	7
3.0	DIAN	AOND DRILLING PROGRAM	9
	3.1	Presentation of Drill Hole Data	
	3.2	Synopsis of Drill Holes	10
4.0	SUM	MARY	13
5.0	REC	OMMENDATIONS	14

REFERENCES

APPENDICES

Appendix I:	Labratory Analytical Techniques
Appendix II:	Geochemical Results From Drill Core

- Appendix III: Diamond Drill Logs Appendix IV: Statement of Costs Appendix V: Statement of Qualifications

LIST OF DRAWINGS

-

.

.....

<u>PAGE</u>

Drawing 1:	Property Location Map	2
Drawing 2:	Claim Location	5
Drawing 3:	Regional Geology	8
Drawing 4:	Property Geology	In Pocket
Drawing 5:	Plan DDH-HS-95-1A, 1, 2, 3, 4	In Pocket
Drawing 6:	Section DDH-HS-95-1A	In Pocket
Drawing 7:	Section DDH-HS-95-1	In Pocket
Drawing 8:	Section DDH-HS-95-2	In Pocket
Drawing 9:	Section DDH-HS-95-3	In Pocket
Drawing 10:	Section DDH-HS-95-4	In Pocket

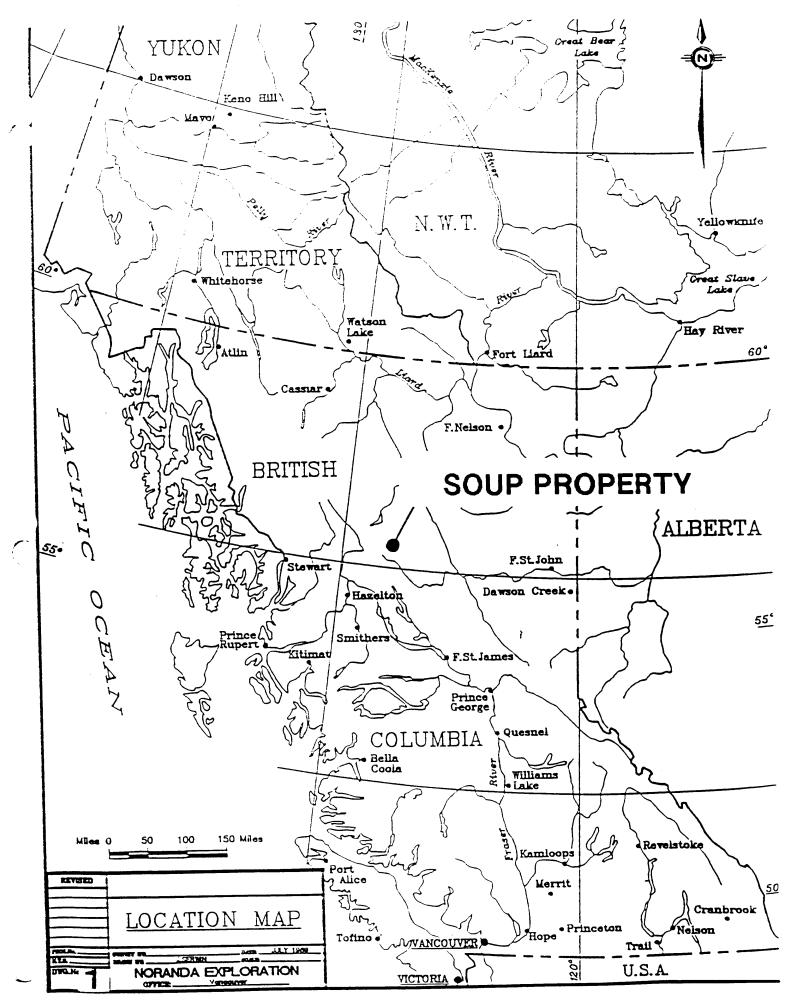
1.0 INTRODUCTION

During the period of July 1 to August 4, 1995, Hemlo Gold Mines Inc. and Britton Bros. Diamond Drilling Ltd. conducted a 4 hole 317.6 meter drill programme of the Soup Property to test magnetic highs associated with gold anomalous magnetite rich outcrops on surface, gold anomalous talus fines, and radiometric anomalies (from an airborne survey flown in 1993). This report describes the entire 4 hole drill programme although only work performed between July 1 and July 31, 1995 is being applied for assessment.

1.1 Location and Access

The Soup property is located approximately 190 km north-northeast of Smithers, B.C. on N.T.S. Mapsheet 94D/8 in the Omineca Mining division (Drawing 1).

The drillers and support crew were housed at a temporary exploration camp located at the southeast end of Johannson Lake on the Omineca mining road, a distance of 13 km north-northeast of the Soup claim block. Crew changes and drill moves were achieved via a helicopter based at Johannson Lake.

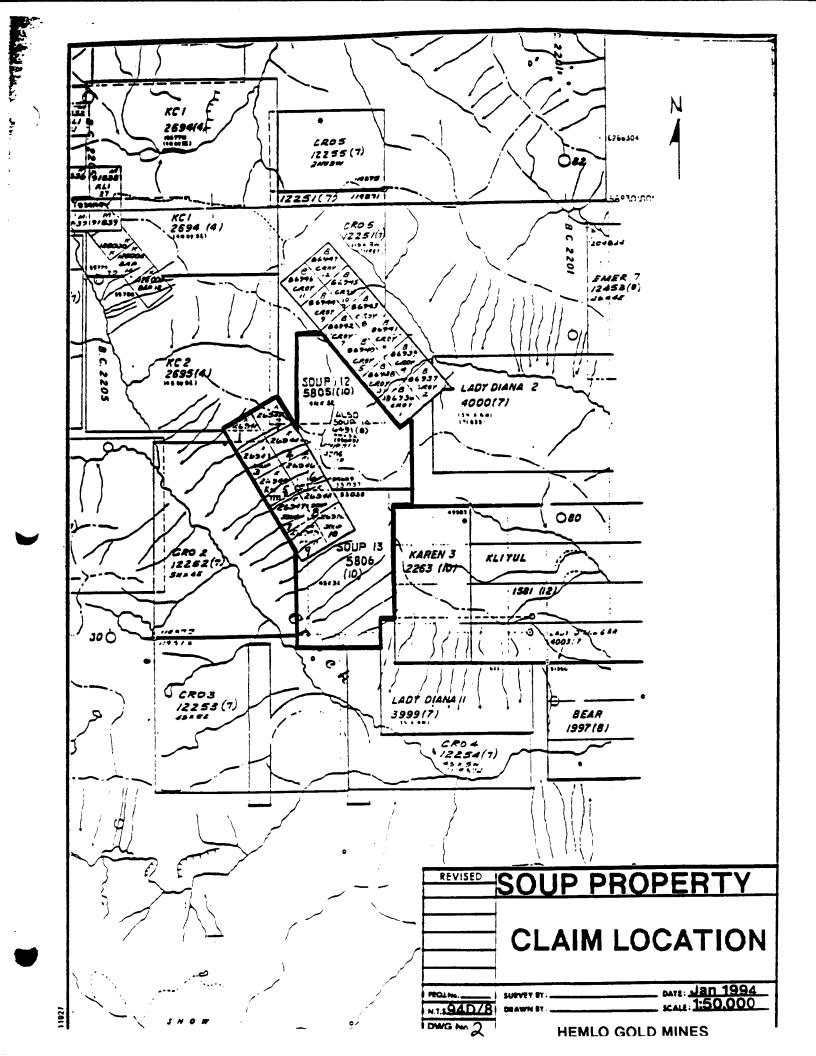

1.2 Topography and Physiography

The Soup property is situated within the Osilinka Ranges and lies on steep south and southwest facing slopes which are drained by small, intermittent creeks flowing into Kliyul Creek. Much of the property is devoid of vegetation due to the steepness of the terrain and elevations which range from 4330 feet in the valley bottom to 7500 feet along the northwest trending ridge located in the eastern section of the claims.

1.3 History

Below is a brief outline of documented work performed on the Soup property and surrounding areas, in chronological order:

- 1930's: Consolidated Mining and Smelting Company explored for lode gold occurrences to the east and southeast of the Soup at Porphyry Creek, Croydon Creek and Granite Basin.
- 1946-48: Springer Sturgeon Gold Mines explored auriferous quartz veins known as the Solo, Bruce and Ginger B occurrences.



1963: This year saw the beginning of exploration on the Davie Creek moly prospect which continued through to 1983 by such companies as Riocanex, Teck, Chevron and Getty Canadian Metals. Southwest Potash Corp. (Amax) conducted mapping and chip sampling of 1964: the southern-most Soup skarn horizons. Mapping by K.C. McTaggert revealed the skarn horizon varied in width 1965: from 10 to 100 feet and extended discontinuously for over 8,000 feet. Three x-ray holes (70 feet) were drilled into the skarn horizon at one 1971: location on the Soup 10 claim by Falconbridge Nickel Mines Ltd. An ore microscopy study was performed on a number of mineralized skarn 1975: samples by A.J. Sinclair. A magnetic profiling and modeling survey was conducted by A.J. Sinclair 1976: which revealed a stratiform magnetic occurrence with dips of 20 to 30° E. A rock chip sampling programme was conducted by BP Minerals along 1977: eleven cross-lines through the skarn horizons. Vital Resources Ltd. optioned the claims and subsequently performed a 1980-81 limited soil survey across the skarn horizon stratigraphy. Noranda Exploration Company, Limited optioned the claims from Vital 1982: and conducted soil and rock chip sampling as well as magnetometer surveying. 1984: Detailed mapping as well as talus-fine and rock chip geochemistry was done by BP Resources Canada Ltd. The geochem survey revealed anomalous Au zones exist stratigraphically above the skarn horizons. 1986-87: A detailed magnetometer survey and systematic rock-chip sampling was completed by Lemming Resources Ltd. One new skarn zone was discovered as mineralized talus. A seven hole (1112 feet) diamond drill hole programme was completed by 1989: Athlone Resources Ltd. Drilling was focused on skarn horizons as well as northeast-southwest crosscutting structural features which contained discordant magnetite-pyrite-chalcopyrite mineralization.

- 1990: Teck Explorations Ltd. completed a detailed large-scale mapping and prospecting programme as well as systematically sampling the skarn occurrences in the southeast portion of the property. Teck recommended further mapping to assess the porphyry Cu-Au potential on the property.
- 1993: Noranda conducted a 288 test pit and 6 hole reverse circulation drilling programme on the Kliyul property as well as cursory mapping and sampling of the Joh, Croydon, Darb and Soup properties.
- 1994: Noranda Exploration Co., Ltd. for Hemlo Gold Mines Inc. established a slope corrected grid upslope of the oxidized magnetite-pyrite-silica occurrences and completed a detailed mapping and sampling programme as well as the collection of talus fines.
 - 1.4 Claims

The Soup property is comprise of 10, 2-post mineral claims (10 units), 1 fractional claim (1 unit), and 3, 4-post mineral claims (36 units), for a total of 47 units (Drawing 2). A list of the claims with corresponding tenure number, anniversary date and owner follows.

CLAIM NAME	TENURE NO.	UNITS	ANNIVERSARY DATE	OWNER
Soup 1	244014	1	August 7, 1998	Hemlo Gold Mines Inc.
Soup 2	244015	1	August 7, 1998	Hemlo Gold Mines Inc.
Soup 3	244016	1	August 7, 1998	Hemlo Gold Mines Inc.
Soup 4	244017	1	August 7, 1998	Hemlo Gold Mines Inc.
Soup 5	244018	1	August 7, 1998	Hemlo Gold Mines Inc.
Soup 6	244019	1	August 7, 1998	Hemlo Gold Mines Inc.
Soup 7	244020	1	August 7, 1998	Hemlo Gold Mines Inc.
Soup 8	244021	1	August 7, 1998	Hemlo Gold Mines Inc.
Soup 9	244022	1	August 7, 1998	Hemlo Gold Mines Inc.
Soup 10	244023	1	August 7, 1998	Hemlo Gold Mines Inc.
Soup 11 Fr	238499	1	August 15, 1997	Hemlo Gold Mines Inc.
Soup 12	238688	12	October 5, 1997	Hemlo Gold Mines Inc.
Soup 13	238689	12	October 5, 1997	Hemlo Gold Mines Inc.
Soup 14	238824	12	August 13, 1997	Hemlo Gold Mines Inc.

1.5 Economic Potential

The narrow discontinuous, erratically mineralized magnetite replacement horizons which occur on the Soup property and dip eastward do not provide a very practical target for an economic deposit. However, the potential for a bulk mineable gold associated with stockworks/breccias zones along major structural breaks may exist on the property . Previous drilling of a stockwork/breccia zone, completed by Athlone Resources in 1989, which intersected a high grade section of 0.229 opt Au , 0.47% Cu/15 feet and 1.427 opt Au, 0.17% Cu/10.5 feet (DDH-89-1 and 2 respectively), and chip sampling of outcrops by Hemlo in 1994 which returned 8.5 gpt Au/1m and 11.0 gpt Au/ 2m lend credence to this possibility.

1.6 Survey Control

The surveying of drill hole collars during this programme was conducted using the slope corrected grid established by Noranda in 1994. Two of the lines, L622N and L625N, were re-established during the 1995 field programme as some of the station markers had disappeared during the winter of 1994/95.

1.7 Sampling

Sampling of the drill core was done primarily at 1.0m intervals. Interval length was dependent on the lithologies as well as the abundance of mineralization encountered. All samples were sent to the Noranda Exploration Laboratory at Unit #1, 7550-76th Street, Delta, B.C.

Refer to Appendix I for laboratory analytical techniques and Appendix II for geochemical results from drill core.

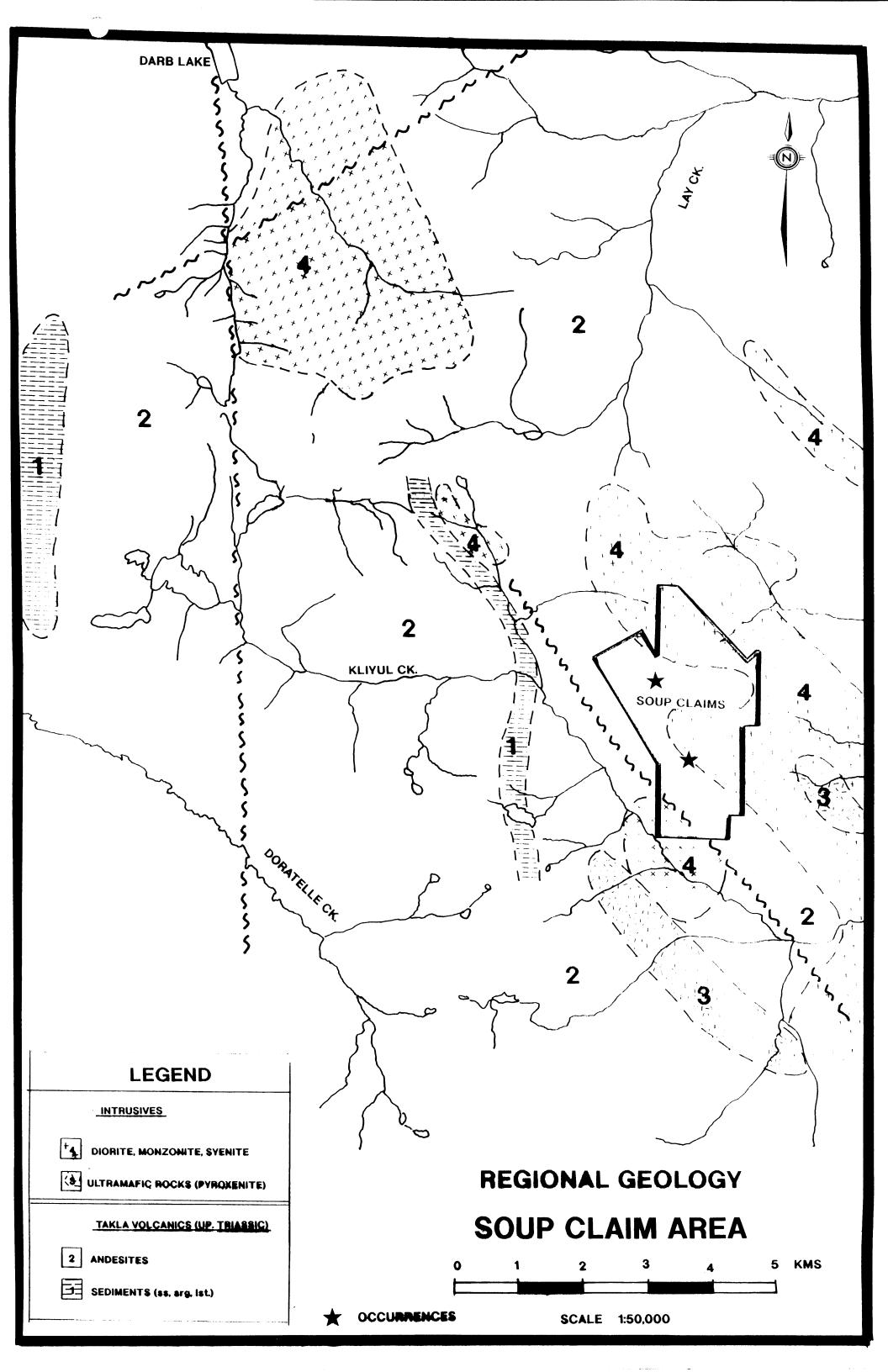
2.0 GEOLOGY

2.1 <u>Regional</u>

The Soup property is situated within the Intermontane Belt which is comprised of Upper Triassic to Lower Jurassic island arc volcanics, volcaniclastics and minor sediments of the Takla Group. The Takla Group hosts such Cu-Au porphyry deposits as Mt. Milligan and Kemess. In the Soup area the dominantly volcanic package has been intruded by Jura-Cretaceous aged diorites, monzonites and syenites associated with the Hogem batholith (Drawing 3).

Prominent structural features in the area include NW, E-W, N-S and NNE-SSW trending fault systems.

2.2 Property Geology


Geological mapping of the Soup property was conducted during the 1994 programme at a 1:5,000 scale on a flagged and picketed, metrically chained, slope corrected grid. Topographic base maps and airphotos were used as a control. The resulting geology map (Drawing 4) was produced at the completion of the 1994 programme and there was no additional mapping in 1995.

The mapped area is underlain by a late Triassic aged volcanic sequence of Takla Group andesites intruded by Triassic-Jurassic aged gabbro/pyroxenites, monzonites and diorites.

The lowermost volcanic unit (Unit 1) is an andesitic tuff. This consists of massive, medium green coloured, fine to medium grained crystal, lithic, and ash tuffs. The crystals are predominantly white feldspar, range from 1 - 3 mm in size, and are often broken. Pyroxene crystals occur only rarely. Fragments observed are monolithic, feldspar rich volcaniclastics similar to the host matrix, and vary in size from 2 mm to 1 cm. This unit dips into the hillslope at an angle of $20^{\circ}-30^{\circ}$ NE.

Stratigraphically above the andesitic tuff unit is a thick succession of augite porphyritic/ feldspar phyric flows and flow breccias (Unit 2). Augite and feldspar vary in relative abundance to each other ,with the result that in some locations augite is of rare occurrence and feldspar is the dominant phenocryst. The augite phenocrysts vary in size from < 1 mm to 5 mm whereas the feldspar crystals are all < 2 mm. Locally the augite porphyry is very coarse grain and resembles a coarse grain diorite. This unit weathers gray-green and exhibits blocky to subrounded talus boulders as well as forming steep bluffs and cliffs. Magnetism of this unit varies from moderate to strong. Of local occurrence are minor interbeds of medium to fine grained sericite, chlorite +/- carbonate altered tuffaceous material.

Intruding the above stratigraphy are three main rock types (pyroxenite - Unit 3, diorite - Unit 4 and monzonite - Unit 6) which occur as small stocks, plugs and dykes.

The pyroxenite outcrops at the southeast end of the mapped grid, and occurs as a small plug and as a dyke like body. It is coarse grained, dark green, dense and very magnetic. The magnetite occurs as medium to coarse grain disseminations, clots and fracture fillings.

The most abundant intrusive phase observed in outcrop is an equigranular, fine to medium grain, melanocratic diorite, with 2-3 mm mafic phenocrysts set in a pale green to white, plagioclase rich, fine grain groundmass. This unit is moderately to strongly magnetic and exhibits epidotization of feldspars as well as epidote along fractures. Locally malachite, and more rarely azurite, are observed along fracture surfaces.

The monzonite occurs throughout the mapped area as dykes striking north, northwest, and east-west. It is leucocratic, variably magnetic and locally has a distinctive porphyritic texture of 2 - 3 mm feldspar crystals in a gray to pinkish gray, fine grain matrix. Where feldspar phenocrysts are absent 2 - 4 mm hornblende lathes are visible, locally weakly aligned. Field relationships show the porphyritic phase of the monzonite is often in close proximity to magnetite-pyrite-quartz gossanous/stockwork zones.

Mineralization on the property occurs as follows:

1. Quartz veins to 0.5 m wide containing chlorite, epidote, malachite, azurite, chalcopyrite, pyrite and locally minor magnetite. These occur mainly within the diorite (Unit 4).

2. Malachite +/- azurite stained fractures occur mainly within the augite porphyritic feldspar phyric andesite (Unit 2) but are locally present within the diorite.

3. Magnetite-pyrite-quartz gossanous zones occur along the contact zone between the lower andesitic tuffs (Unit 1) and the overlying augite porphyritic feldspar phyric flows. These zones locally display a boxwork texture. Previous workers have mapped these as skarn horizons, and it is these zones which have received most of the attention in the past.

4. Magnetite-minor pyrite-quartz stockwork zones hosted by augite porphyritic feldspar phyric andesite on the hanging wall of a porphyritic monzonite dyke. This mineralizing type outcrops near grid co-ordinates 622N-816E and was drilled by Athlone Resources in 1989. Hole 89-2 returned results of 3.31 gpt Au over 43.5 meters.

3.0 DIAMOND DRILLING PROGRAM

The main focus of the 1995 diamond drilling program was to test the supposition formulated in 1994 that the magnetite-(pyrite)-quartz stockwork zones represent leakage

along fracture sets and shear planes, with their origin in the magnetite-pyrite-quartz gossanous zones, the latter emplaced along zones of weakness, i.e. bedding planes and lithologic contacts. This would suggest that the zones coalesce at depth, thereby forming a viable economic target.

3.1 <u>Pesentation of drill hole data</u>

Drilling parameters for holes 1 to 4 are listed in the table below. Refer to Drawings 5 to 10 for plans and sections of these holes. Sections show gold results (ppb) with corresponding sample widths in meters. Geochemical results from drill core are found in Appendix II.

HOLE #	TOTAL LENGTH (meters)	COORDINATES NORTH EAST	AZIMUTH DIP (TRUE)	DATE COLLARED	DATE COMPLETED
HS-95-1A	* 22.9	62217 81745	205 -65	July 24,1995	July 25,1995
HS-95-1	62.8	62217 81744	205 -65	July 25,1995	July 6,1995
HS-95-2	69.5	62217 81744	215 -70	July 26,1995	July 27,1995
HS-95-3	18.3	62515 81800	240 -60	July 27,1995	July 29,1995
HS-95-4	144.1	62194 81647	214 -75	Aug. 4 ,1995	Aug. 6,1995

* HS-95-1A was lost at a depth of 22.9m with all rods and the core barrel left in the hole. HS-95-1 is the second attempt.

3.2 Synopsis of Drill Holes

Complete drill logs can be found in Appendix III.

DDH-HS-95-1A and 1

This hole was drilled to test coincident high airborne and ground magnetic anomalies, gold anomalous talus fines (>300 ppb Au), and an anomalous airborne K-count, in an area of magnetite-quartz stockwork outcrops which returned surface values of 8500 ppb Au/1.0m and 11000 ppb Au/2.0m, upslope from Athlone Resources hole 89-2 (3.3 gpt over 43.5 m).

After 3.0m and 9.5m respectively the holes began in an augite porphyritic feldspar phyric andesite. This unit continues to the bottom of the hole with minor variations in lithology, so that some intervals are described as feldspar phyric or feldspar porphyritic andesite (where augites are rare to absent), and other intervals are described as augite porphyritic andesite (where augite phenocrysts are dominant). These distinctions do not have sharply defined boundaries and grade into one another over lengths of up to 30 cm. From 47.7 m to 51.6 m and again from 52.2 m to 53.4 m the augite crystals become very coarse and are set in a lighter coloured fine grained groundmass so that the andesite has a coarse grain dioritic texture.

The core is magnetic throughout it's length, with magnetic intensity varying from weak to moderate, and local sections are highly oxidized and fractured. Most of the core is pervasively altered to chlorite which varies in intensity from very weak to strong, and feldspars are weakly altered to epidote. Epidote also occurs as a fracture fill. Carbonate is present in almost all fractures, as well as in <5 mm veinlets, the latter may also contain quartz and/or epidote. From 43.0 m to 48.0 m local sections contain moderate pervasive carbonate.

The best results from this hole were 1 gpt Au/1.2 m (32.2 - 33.4 m) and 0.8 gpt Au, 0.22% Cu /1.3m (45.8 - 47.1 m), both from highly oxidized rubbly sections, the latter exhibiting malachite/azurite on fractures.

The hole reached a depth of 62.8m before being abandoned as the rods had seized.

DDH-HS-95-2

The second hole was drilled from the same pad as DDH-HS-95-1 and had the same target as described above. As the first hole did not come close to reaching the target depth of 225 meters it was hoped that by increasing the dip of the hole and by swinging the head away from the gully this second hole would encounter less broken ground and reach the target depth.

After 6.1m of overburden augite porphyritic feldspar phyric andesite was encountered, continuing to the bottom of the hole. As before, lithologies change throughout and are similar as those described for DDH-HS-95-1. The only difference is a short section of diorite from 24.1 to 24.4 meters.

The highest value obtained from this hole is 1.5 gpt Au/ 1.0m (34.7 -35.7), from a section of oxidized core with trace amounts of azurite on fracture surfaces. This interval intersects the same mineralized horizon as was intersected in DDH-HS-95-1 from 32.2 to 33.4 meters.

Despite changing both the dip and azimuth of this second hole it only reached a depth of 69.5 m before it too was stopped as the rods seized.

DDH-HS-95-3

This hole was located 350m northwest of DDH-HS-95-1 and 2 and was targeted on a coincident talus fine anomaly of >300 ppb Au and anomalous ground magnetics. There are no exposed outcrops within the targeted area.

As in the case of the previous two holes the bedrock encountered in this hole (4.6 m overburden) is an augite porphyritic feldspar phyric andesite. With the exception of one 0.5m interval the lithologies are as described previously. From 8.0 to 8.5m an augite porphyritic lapilli tuff is intersected, with absorbed 3 cm fragments of feldspar phyric or augite porphyritic andesite within a feldspar phyric augite porphyritic andesite matrix.

No anomalous results were returned from this hole.

The hole was stopped short, at a depth of 18.3m, as due to unseasonably cold temperatures and resulting lack of snow melt, the water source dried up.

DDH-HS-95-4

This hole had the same target as DDH-HS-95-1 and 2 but was collared 70m lower in elevation. While waiting for additional snow melt to re-fill the pond, a period of 6 days, this lower set-up was constructed at a natural break in slope, and was located immediately above the gold anomalous magnetite-quartz stockwork outcrop.

Bedrock was intersected at a depth of 2.1m, and as before is an augite porphyritic feldspar phyric andesite with varying lithologies. This is the predominant rock type throughout, but is locally cut by monzonite or andesite dykes, or is intruded by minor intervals of diorite.

From 2.1 to 15.2 meters core recovery is < 50%, with one 3m interval attaining just 16%. However below 15.2m the recovery increases to 90% or greater, except for the interval 80.7m to 81.0m where only fine grain sand was recovered and a major fault is inferred.

From 21.2 to 38.0 meters the augite porphyritic feldspar phyric andesite is host to a magnetite-quartz- pyrite stockwork zone. The interval starts with a stockwork of < 1.5cm magnetite-quartz veins in a host containing 3% disseminated magnetite. This vein density increases downhole so that by 27.3m there are no distinct veins visible and the core is completely flooded by magnetite-quartz. Where quartz is absent the magnetite is accompanied by intense chlorite alteration. Local sections are highly oxidized, however the majority of the core is a very dark green to black colour. The interval ends with a calcite flooded 3 cm "vein" at 20° to core angle, an angle which is consistent with the orientation of the magnetite-silica outcrop seen on surface. Another highly oxidized section was intersected from 45.0 to 48.2 meters. No distinct magnetite-quartz veins are visible but the interval contains approximately 25% disseminated magnetite, with magnetite abundance increasing in the envelope of malachite/azurite coated fractures.

The highest values obtained from drill core are restricted to the two magnetic zones described above. One meter sections returned 17 gpt Au, 0.15% Cu (29.9-30.9m), 11.4 gpt Au, 0.22% Cu (30.9-31.9m), 8.8 gpt Au, 1.3% Cu (35.9-36.9m), 10.8 gpt Au, 0.24% Cu (36.9-38.0m), and 19.7 gpt Au, 0.6% Cu (47.0-48.2m). From 27.6 to 38.0 meters and from 45.0 to 48.2 meters all samples contained > 2.45 gpt Au. Averages for these intervals are 7.02 gpt Au/0.36% Cu and 10.86 gpt Au/0.40% Cu respectively,but with a zone intersection of 20° to core angle the true thickness of these intervals become just 3.56 meters and 1.09 meters respectively.

4.0 SUMMARY

- 1. Drilling of the Soup property in 1995 failed to reach target depths due to extremely fractured ground, and unseasonably cold weather which contributed to the drying up of the snow melt water source.
- 2. All holes intersected varying lithologies of augite porphyritic feldspar phyric andesite, grading from augite dominant to augite poor. Within this unit sharp lithologic contacts were seldom seen.
- **3.** DDH-HS-95-1,2 and 4 were drilled on the same target but were collared at different elevations. This results in an untested section of stratigraphy, upslope from DDH-HS-95-4, of approximately 46 meters.
- 4. DDH-HS-95-1 and 2 were stopped at a depth of 62.8 and 69.5m respectively due to badly broken ground. Corresponding intersections of 1.0 gpt Au /1.2m and 1.5 gpt Au/1.0m were the only anomalous intervals.
- 5. DDH-HS-95-4 intersected 3.56 meters (true width) of 7.02 gpt Au/0.40% Cu (27.6-38.0m) and 1.09 meters (true width) of 10.86 gpt Au/0.40% Cu (45.0-48.2m), but the remainder of the hole contained no significant values.
- 6. DDH-HS-95-3 only reached a depth of 18.3 meters before the water source dried up, and no anomalous sections were intersected.
- 7. As the magnetite-pyrite-quartz gossanous zone was not intersected, the relationship between it and the stratigraphically higher magnetite-pyrite-quartz stockwork zone remains unknown.

5.0 RECOMMENDATIONS

The 1995 drilling program of the Soup property indicates that although the magnetite-pyrite-quartz stockwork zone has good gold and copper grades it has a narrow width and is of limited extent. Further drilling is not recommended.

REFERENCES

1.	Assessment Report #675:	Geology of the Soup Claims, K.C. McTaggart, 1965.
2.	Assessment Report #5562:	Mineralogical Study of Soup Claims, A.J. Sinclair, 1975.
3.	Assessment Report #5985:	Ground Magnetics, Soup Claims, A.J. Sinclair, 1976.
4.	Assessment Report #6410:	Geochemical Survey, Soup Claims, B.P. Minerals, 1977.
5.	Assessment Report #7033:	Lithogeochemistry, Soup Claims, A.J. Sinclair, 1978.
6.	Assessment Report #9485:	Geochemistry, Soup Claims, Vital Resources, 1981.
7.	Assessment Report #10,743:	Geochem, Geophysics, Geology, Soup Claims, Noranda Exploration, 1982.
8.	Assessment Report #13,315:	Geology, Geochem, Soup Claims, B.P. Minerals, 1984.
9.	Assessment Report #15,201:	Magnetometer, Rock Sampling, Soup Claims, C.M. Rebagliati, 1986
10.	Assessment Report:	Geological, Geochemical, Linecutting Report on the Soup Property, Hemlo Gold Mines Inc., October, 1994
11.	Assessment Report:	Geological, Geochemical and Geophysical Assessment Report on the Soup Report, Hemlo Gold Mines Inc., December, 1994.
12.		Summary Report on the Soup Claims, Rebagliati Geological Consulting Ltd. for Athlone Resources Ltd., 1988.
13.		Summary Report on the Soup Claims (Drilling), Rebagliati Geological Consulting Ltd. for Athlone Resources Ltd., 1989.

٠

14.		Exploration Report on the Soup Property, Teck Explorations Ltd., 1991.
15.	Lord, C.S.:	McConnell Creek Map Area, B.C., G.S.C. Memoir 251, 1948.
16.	Roots, E.F.:	Aiken Lake Map Area, B.C., G.S.C. Memoir 274, 1954.

,

.

APPENDIX I

•

LABORATORY ANALYTICAL TECHNIQUES

ANALYTICAL METHOD DESCRIPTIONS FOR GEOCHEMICAL ASSESSMENT REPORTS

The methods listed are presently applied to analyse geological materials by the Noranda Geochemical Laboratory at Vancouver.

Preparation of Samples:

Sediments and soils are dried at approximately 80° C and sieved with a 80 mesh nylon screen. The -80 mesh (0.18 mm) fraction is used for geochemical analysis.

Rock specimens are pulverized to -120 mesh (0.13 mm). Heavy mineral fractions (panned samples * from constant volume), are analysed in its entirety, when it is to be determined for gold without further sample preparation.

Analysis of Samples:

Decomposition of a 0.200 g sample is done with concentrated perchloric and nitric acid (3:1), digested for 5 hours at reflux temperature. Pulps of rock or core are weighed out at 0.4 g and chemical quantities are doubled relative to the above noted method for digestion.

The concentrations of Ag, Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, V and Zn can be determined directly from the digest (dissolution) with a conventional atomic absorption spectrometric procedure. A Varian-Techtron, Model AA-5 or Model AA-475 is used to measure elemental concentrations.

Elements Requiring Specific Decomposition Method:

Antimony - Sb: 0.2 g sample is attacked with 3.3 ml of 6% tartaric acid, 1.5 ml conc. hydrochloric acid and 0.5 ml of conc. nitric acid, then heated in a water bath for 3 hours at 95° C. Sb is determined directly from the dissolution with an AA-475 equipped with electrodeless discharge lamp (EDL).

Arsenic - As: 0.2 - 0.3 g sample is digested with 1.5 ml of perchloric 70% and 0.5 ml of conc. nitric acid. A Varian AA-475 equipped with an As-EDL is used to measure arsenic content in the digest.

Barium - Ba: 0.1 g sample digested overnight with conc. perchloric, nitric and hydrofluoric acid; Potassium chloride added to prevent ionization. Atomic absorption using a nitrous oxide-acetylene flame determines Ba from the aqueous solution.

Bismuth - Bi: 0.2 - 0.3 g is digested with 2.0 ml of perchloric 70% and 1.0 ml of conc. nitric acid. Bismuth is determined directly from the digest with an AA-475 complete with EDL.

Gold - Au: 10.0 g sample is digested with aqua regia (1 part nitric and 3 parts hydrochloric acid). Gold is extracted with MIBK from the aqueous solution. AA is used to determine Au.

Magnesium - Mg: 0.05 - 0.10 g sample is digested with 4 ml perchloric/nitric acid (3:1). An aliquot is taken to reduce the concentration to within the range of atomic absorption. The AA-475 with the use of a nitrous oxide flame determines Mg from the aqueous solution.

Tungsten - W: 1.0 g sample sintered with a carbonate flux and thereafter leached with water. The leachate is treated with potassium thiocyanate. The yellow tungsten thiocyanate is extracted into tri-n-butyl phosphate. This permits colourimetric comparison with standards to measure tungsten concentration.

Uranium - U: An aliquot from a perchloric-nitric decomposition, usually from the multi-element digestion, is buffered. The aqueous solution is exposed to laser light, and the luminescence of the uranyl ion is quantitatively measured on the UA-3 (Scintrex).

N.B.: If additional elemental determinations are required on panned samples, state this at the time of sample submission. Requests after gold determinations would be futile.

LOWEST VALUES REPORTED IN PPM:

Ag - 0.2	Mn - 20	Zn – 1	Au - 0.01
Cd - 0.2	Mo - 1	Sb - 1	W - 2
Co - 1	Ni - 1	As - 1	U - 0.1
Cu - 1	Pb - 1	Ba - 10	
Fe - 100	V - 10	Bi - 1	

APPENDIX II

GEOCHEMICAL RESULTS FROM DRILL CORE

•

NORANDA DELTA LABORATORY

Geochemical Analysis

Project Name	& No.: SOUP - 150 (HEMLO)	Geol.:GG	Date received: SEP. 05	LAB CODE:	9509-006
Material:	14 Cores (HS95-3/4)	Sheet: 1 of 1	Date completed: SEP. 07		R #34606
Remarks:	* Sample screened @ -35 MESH (0.5 mm)				
	^μ Organic, Δ Humus, S Sulfide	Au – silt & soil, 15.0 g sample	digested with aqua-regia and determined by A.A. (D.I	L. 2 PPB); Rx, 10.0 g/AR/.	AA (DL 5 PPB)
ICP - 0.2 g sample	e digested with 3 ml HClO ₄ /HNO ₃ (4:1) at 203 °C for	4 hours diluted to 10 ml with water.	Leeman PS3000 ICP determined elemental contents.		
N.B. The major ox	tide elements and Ba, Be, Ce, La, Li, Ga are rarely di	ssolved completely from geological m	aterials with this acid dissolution method.		

T.T.	SAMPLE	Au	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cu	Fe	K	La	Li	Mg	Mn	Mo	Na	Ni	P	Pb	Sr	Ti	v	Zn
No.	No.	ppb		%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm
88	091301	5	0.2	5.16	2	136	0.5	5	5.21	0.7	70	23	21	119	6.02	0.20	10	12	1.61	746	1	0.07	18	0.12	2	287	0.56	238	41
89	091302	5	0.2	4.74	4	131	0.5	5	4.71	0.5	70	23	19	144	5.45	0.22	12	11	1.51	663	1	0.05	17	0.11	2	255	0.56	242	40
90	091303	5	0.2	5.14	3	245	0.5	5	4.73	0.7	65	20	20	- 90	6.18	0.45	13	12	1.55	673	1	0.06	16	0.11	2	243	0.53	240	43
91	091304	5	0.2	5.38	2	248	0.5	5	4.91	0.3	61	29	17	133	6.01	0.41	10	12	1.71	658	1	0.05	18	0.10	2	279	0.54	250	43
92	091338	30	0.2	4.55	2	90	0.5	5	4.22	0.4	63	36	27	245	6.19	0.28	10	12	1.95	594	1	0.06	22	0.11	2	248	0.43	228	29
93	091339	25	0.2	4.80	2	439	0.5	5	3.77	0.2	62	26	27	226	7.09	1.19	12	15	2.59	630	1	0.06	25	0.10	2	238	0.46	250	36
95	091340	15	0.2	4.41	2	82	0.5	5	5.56	0.2	58	28	41	196	7.73	0.27	14	11	2.02	704	1	0.08	41	0.12	2	222	0.54	276	36
96	091341	-40	0.2	3.87	2	117	0.4	5	3.01	0.4	52	45	41	437	7.89	0.38	13	12	2.21	559	9	0.11	33	0.12	2	198	0.51	255	37
97	091342	35	0.2	3.45	2	167	0.4	5	2.02	0.2	43	50	82	859	6.52	0.48	14	13	2.78	592	6	0.08	46	0.09	2	148	0.39	219	40
98	091343	5	0.2	3.62	2	245	0.4	5	2.59	0.2	51	18	19	289	6.69	0.57	14	12	2.01	837	1	0.09	16	0.11	2	142	0.51	249	54
101	091344	5	0.2	3.35	3	198	0.4	5	2.73	0.7	50	13	24	114	6.20	0.47	15	11	1.93	760	1	0.08	14	0.11	2	140	0.48	246	43
102	091345	5	0.2	5.46	2	250	0.4	5	4.13	0.4	43	18	19	114	6.78	0.47	13	13	2.41	793	1	0.05	16	0.08	2	216	0.42	278	50
103	091346	5	0.2	5.51	2	320	0.5	5	3.08	0.5	46	64	22	295	7.67	0.53	14	16	3.25	1101	1	0.04	25	0.10	2	170	0.48	306	
104	091347	5	0.2	3.80	2	243	0.4	5	3.01	0.5	44	23	69	216	6.59	0.60	11	11	2.47	677	2	0.09	38	0.09	2	153	0.48	252	65 44

PROJECT # _______

N.T.S. <u>4408</u> DATE <u>Aug. 13/9</u>5

8

LAB REPORT # _____

PROJECT SOUP (Drill holes)

	(meters)	%		AMPLE REPC		SAMPI
SAMPLE NO.	LOCATION & DESCRIPTION	SULPH.	TYPE	(m)		 BY
	H5-95-3				 	
91301	6.3-6.8		Core	0.5	 	 J.
91302	10.0 - 11.1		Core	1.1	 	 I
91303	11.1-12.2		(ore	<u> </u>	 	 <u> </u>
91304	15.6-16.6		(ore	1.0	 	 Jt
	HS-95-4					
91338	58.7-59.7		Core	1.0	 	 <u> </u>
91339	62.0 - 64.0			2.0	 	
91340	72.7 - 74.7			2.0	 	
91341	74.7 -76.7		 _/	2.0	 	
91342	767 - 77.7				 	
913 43	91.4 - 93.4			2.0	 	 //_
91344	43.4 -94.5		<u> </u>	1.	 	
91345	122-125		<u> </u>	3.0	 	
91346	125-128			3.0	 	
91347	97.5 - 100.6		Core	3.1	 	 <u> </u>
				1		

24

NORANDA DELTA LABORATORY

Geochemical Analysis

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Project Name & No.: SOUP 150 (HEMLO) Material: 58 Cores (HS95—1/2/4) Remarks: [©] Sample acreened @ ~35 MBSH (0.54							.5 nm)				Geol.: Sheet:	Lof 2	2		Date received: AUG. 16 Date completed: AUG. 22						ŗ	CODI		9508018 R#34601/4				
<t< td=""><td></td><td>(CP</td><td>0.1 a</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>C for A I</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>L. 2 PPI</td><td>3); R x, 1</td><td>10.0 g/Al</td><td>R/AA (</td><td>DL 5 P</td><td>PB)</td><td></td></t<>		(CP	0.1 a								C for A I													L. 2 PPI	3); R x, 1	10.0 g/Al	R/AA (DL 5 P	PB)	
No. pep pep <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td>•</td> <td></td> <td>concent.</td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			-					•	•													concent.	•							
No. pep pep <td><u>ý ý</u></td> <td>CAMPE 1</td> <td>A</td> <td>۸a</td> <td>A1</td> <td>Â-</td> <td>Ď.</td> <td>Ua</td> <td>'ni</td> <td>6</td> <td>či</td> <td>Ĉ</td> <td>Co</td> <td>G</td> <td>O</td> <td><u>Re</u></td> <td>ĸ</td> <td>1.</td> <td>Ti</td> <td>Me</td> <td>Mn</td> <td>Ma</td> <td>Ńa</td> <td>Ňi</td> <td>р</td> <td>РЬ</td> <td>Sr</td> <td>Ťï</td> <td>v</td> <td>Zn</td>	<u>ý ý</u>	CAMPE 1	A	۸a	A1	Â-	Ď.	Ua	'ni	6	či	Ĉ	Co	G	O	<u>Re</u>	ĸ	1.	Ti	Me	Mn	Ma	Ńa	Ňi	р	РЬ	Sr	Ťï	v	Zn
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																														ppm
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	127	91276 core			4.05					3.56	0,4	69		157			0.66	12		-		1				-				61
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																														76
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																														82
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																														67 79
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	131	91280	410	3.6	.3.67	.5	125	0.5	3	6.22	0.2	83	30	171	ioi	1.12	0.26	12	13	3.41	1240	1	0.06	80	0.10	2	132	0.31	2H	19
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			55																											75
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																						-								45
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																														70
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																														56
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	136	91285	5	0.2	5.43	2	275	05	5	4.57	0.6	80	36	15	110	7.29	0.52	13	12	2.02	//6	I	0.08	13	0.09	2	294	0.45	270	66
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			20																											64
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									-													-								74
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																														79
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																														76 90
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	111	91290	810	2.0	3.72	3	216	0.5	3	2.30	0.8	28	62	104	2156	1.89	0.50	14	17	3.01	1155	,50	0.05	40	0.11	4	.90	0.08	2.30	~
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$															- 21 - 11 - 12 - 12 - 12 - 12 - 12 - 12															60
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			• · ·			-																				-				76
146 91295 5 0.4 5.20 2 130 0.6 5 4.76 1.3 74 46 450 126 6.36 0.39 16 24 7.03 1435 1 0.04 368 0.11 2 69 0.31 186 147 91296 95 0.2 4.35 4 505 0.5 5 3.69 0.6 76 152 28 231 8.35 1.21 19 18 3.41 986 5 0.07 28 0.12 2 87 0.51 204 151 91298 20 0.2 3.46 4 239 0.5 5 5.10 0.6 57 35 101 151 665 0.53 10 13 3.46 1064 5 0.05 42 0.09 2 8.0 0.7 29 2.07 130 0.80 5 0.55 32 20 209 6.18 0.42 12 8 2.00 9.67 2 0.07 12 0.13 <																														68
$\begin{array}{cccccccccccccccccccccccccccccccccccc$															1.1				1.11											46 96
148 91297 1540 0.4 4.49 6 435 0.5 5 4.08 0.7 79 355 38 674 12.28 1.05 17 15 3.01 918 229 0.09 32 0.12 2 130 0.50 292 151 91298 20 0.2 3.46 4 239 0.5 5 5.54 0.6 57 35 101 151 6.65 0.53 10 13 3.46 1064 5 0.05 42 0.10 2 79 0.17 235 152 91299 115 0.2 2.79 7 60 0.4 5 5.10 0.6 59 45 114 195 7.15 0.18 10 11 3.24 1089 3 0.05 42 0.09 2 8.4 0.07 26 0.13 2 169 0.35 2 100 5 5.42 0.3 51 136 343 8.50 1.02 12 15 4.29 8.4	140	, 91295		0.4	5.20	2	1.50	0.0	3	4.70	1.5	74	40	450	140	0.50	0.39	10	24	7.03	1435	I	0.04	.200	0.11	2	09	0.54	100	20
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	147	91296	95	0.2	4.35	4																- 7								61
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	148	91297	1540	0.4		6																								68
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																			1.5			• ·								75
$\begin{array}{cccccccccccccccccccccccccccccccccccc$															2.2.2															77
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	153	91300	55	0.2	4.00	2	217	0.4	5	4.39	0,5	55	32	20	209	6.18	0.42	12	8	2.00	967	2	0.07	12	0.13	2	169	0.35	211	71
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	154	91305	280	0.2	4.35	2		0.5																		2				57
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	155	91306	- 60					0.4			2 4																			55
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															1.2 0.00							•								46
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																														58
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	158	91309	20	0.2	7.70	2	776	0.6	5	4.79	0.6	69	59	8	253	9.69	1.80	15	18	3.07	848	1	0.06	18	0.19	3	284	0.58	.501	50
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	159	91310	65	0.2	7.08	2	1453	0.5	5	1.81	0.5	49	145	31	420	9.93	2.53	14			1540	1	0.07			3			276	88
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	160	91311	260	0.2	6.28	2	1861	0.4	5	0.36	0.2															•				76
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																														70
Es/07 Gus 199																														86
	·	Construction of the second sec		02	3.24	19	377	0.3	5	0.14	0.2	26	35	71	566	23.25	0.88	12	9	1.61	557	286	0.13	16	0.10	Ž	25	0.56	219	49
	25/07																													

NORANDA DELTA LABORATORY Geochemical Analysis

Project Name &	No.: SOUP - 150 (HEMLO)	Gcol.:GG	Date received: SEP. 05	<u>LAB CODE</u> ; 9509-006
Material:	14 Cores (HS95-3/4)	Sheet : 1 of 1	Date completed: SEP. 07	R #34606
Remarks:	Sample screened @ -35 MESH (0.5 mm)			

marks. Sample screened @ -55 Micsin (0.5 mm) ^{III} Organic, Δ Humus, S Sulfide Au - s

. ر

. .,

Au – silt & soil, 15.0 g sample digested with aqua-regia and determined by A.A. (D.L. 2 PPB); Rx, 10.0 g/AR/AA (DL 5 PPB)

ICP = 0.2 g sample digested with 3 ml HClO4/HNO3 (4:1) at 203 °C for 4 hours diluted to 10 ml with water. Leeman PS3000 ICP determined elemental contents.

N.B. The major oxide elements and Ba, Be, Ce, La, Li, Ga are rarely dissolved completely from geological materials with this acid dissolution method.

T.T.	SAMPLE	Au	Ag	Â	As	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cu	Fe	K	La	Li	Mg	Mn	Мо	Na	Ni	P	Pb	Sr	Ti	V	Zn
No.	No.			%		ppm		ppm	%	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm
88	091301	5	0.2	5.16	2	136	0.5	5	5.21	0.7	70	23	21	119	6.02	0.20	10	12	1.61	746	1	0.07	18	0.12	2	287	0.56	238	41
89	091302	5	0.2	4.74	4	131	0.5	5	4.71	0.5	70	23	19	144	5.45	0.22	12	11	1.51	663	1	0.05	17	0.11	2	255	0.56	242	40
90	091303	5	0.2	5.14	3	245	0.5	5	4.73	0.7	65	20	20	90	6.18	0.45	13	12	1.55	673	1	0.06	16	0.11	2	243	0.53	240	43
91	091304	5	0.2	5.38	2	248	0.5	5	4.91	0.3	61	29	17	133	6.01	0.41	10	12	1.71	658	1	0.05	18	0.10	2	279	0.54	250	43
92	091338	30	0.2	4.55	2	90	0.5	5	4.22	0.4	63	36	27	245	6.19	0.28	10	12	1.95	594	1	0.06	22	0.11	2	248	0.43	228	29
93	091339	25	0.2	4.80	2	439	0.5	5	3.77	0.2	62	26	27	226	7.09	1.19	12	15	2.59	630	1	0.06	25	0.10	2	238	0.46	250	36
95	091340	15	0.2	4.41	2	82	0.5	5	5.56	0.2	58	28	41	196	7. 73	0.27	14	11	2.02	704	1	0.08	41	0.12	2	222	0.54	276	36
96	091341	40	0.2	3.87	2	117	0.4	5	3.01	0.4	52	45	41	437	7.89	0.38	13	12	2.21	559	9	0.11	33	0.12	2	198	0.51	255	37
97	091342	35	0.2	3.45	2	167	0.4	5	2.02	0.2	43	50	82	859	6.52	0.48	- 14	13	2.78	592	6	0.08	46	0.09	2	148	0.39	219	40
98	091343	5	0.2	3.62	2	245	0.4	5	2.59	0.2	51	18	19	289	6.69	0.57	14	12	2.01	837	1	0.09	16	0.11	2	142	0.51	249	54
101	091344	5	0.2	3.35	3	198	0.4	5	2.73	0.7	50	13	24	114	6.20	0.47	15	11	1.93	760	1	0.08	14	0.11	2	140	0.48	246	43
102	091345	5	0.2	5.46	2	250	0.4	5	4.13	0.4	43	18	19	114	6.78	0.47	13	13	2.41	793	1	0.05	16	0.08	2	216	0.42	278	50
103	091346	5	0.2	5.51	2	320	0.5	5	3.08	0.5	46	64	22	295	7.67	0.53	14	16	3.25	1101	1	0.04	25	0.10	2	170	0.48	306	65
104	091347	5	0.2	3.80	2	243	0.4	5	3.01	0.5	44	23	69	216	6.59	0.60	11	11	2.47	677	2	0.09	38	0.09	2	153	0.48	252	44
ł																													

PROJECT # <u>150</u>

LAB REPORT # _____

PROJECT SOUP

N.T.S. <u>9408</u> DATE July 30/95

1 ... 5.11

nl

NOCK SAMPLE REPORT

SAMPLE NO.	LOCATION & DES		% SULPH.	TYPE	WIDTH (m)				SAMPLED BY
	HS-95-(A		00111.	Core	1.5		 	 	 LE
91276	113-43-171	1013 (1.80m		COTR	1.2	 	 	 	 <u> </u>
01000	110 05-1	Q I I n I				 	 	 	 ĹĒ
91277		9.6-10.6 m		(ore	1.0	 	 	 	 LE
91278	1	0,6-12.2m			1.6	 	 	 	 (
91279		3.7-14.7m		1,	1.0	 	 	 	
91280	<u>" - () ⁻ ()</u>	15 - 16 m		11	1.0	 	 	 	
91281	HS-95-1	16-17.1m		Core	1. [
91281 91282	HS-95-1	255-26.4m		(ove	0.9)
91283	11 - 11 - 1	30,7-32.2m		Core	1.5				
71284	11 - 11 - 11	32.2 - 33.4m		1,	1.2				
91285	11 - 11 - 11	34.5-35.3m		11	0,8				
91286	11 - 11 _ 11	35.4-37.42		t i	λ.Ø				
91287	11 - 11 - 11	38.3-40.3m		1,	2.0)
91288	45-95-1	44.2-45.2m		- ()	1.0	 		 	
91289	11 - 11 - 11	45.2-45.8m		Core	0,6	 	 		 ·
91290	10 - 11 (i	45.8-47. m		Core	(.3				 \checkmark
91291	HS - 95 - 1	47.1-48.1m		Core	1.0	 	 	 	 LE
l .						 	 	 	
91292	HS-95-2	19.2 - 20.2 m		Core	1.0	 	 	 	 LE
91293	HS-95-2	20,2-20,9m		Core	0,7				LĒ

OJECT# <u>150</u>

B REPORT # _____

PROJECT SOUP

NOCK SAMPLE REPORT

MPLE NO.	LOCATION & DESCRIPTION	% SULPH.	TYPE	WIDTH (m)					SAMPLED BY
	#5-95-2 23.3-24.4m	1	Core	1.1					LE
91295	"-"-2 24.4-25.6m	1	(ore	1.2					Ć
91295 91296 91297	11-11-7 23,7-24.7km		(ore	1.0					5
91297	11 - 11 - 2 = 34.7 - 35.7 m		(ore	1.0			 	 	
91298	11-11-2 42.7-43.7m	<u> </u>	Core	ſ.O					
91299 91300	1-11-2 43.7-44.5		(010	0,8		 	 	 	
91300	45-95-2 50.6-51.1		Core	0.5			 	 	LE
							 	 	,. <u></u>
						 	 . <u></u>	 	·····
					· · · · · · · · · · · · · · · · · · ·	 	 	 	
						 	 	 	·

N.T.S. <u>9408</u> DATE July 30/95

PROJECT # <u>150</u>

LAB REPORT # _____

PROJECT SOUP HS-95-4

N.T.S. <u>940/8</u> DATE <u>August 5/95</u>

NOCK SAMPLE REPORT

SAMPLE NO.	LOCATION & DESCRIPTION	% SULPH.	TYPE	WIDTH (m)	I		I	Ī	I	SAMPLED BY
91305	12,1-15,1m		Core	3	f					G.M
91306	15,1-17.1m		(2						(
91307	17.1 - 19.4m		$\langle \rangle$	2.3	•					
91308	19.4-20.2m			0.8			 	 		
91309	20,2 - 21.2			1.0			 	 		
91310	212-222			1.0			 	 		
91311	27.2 - 21.2			1.0)
11312	23,2 - 244			1.2	·		 	 		
- 11313	24.4 - 25.4		<u> </u>	1.0		·	 	 		
41314	25.4-26.6			1.Z)
91315	$\frac{26.6 - 27.6}{27.6 - 28.7}$			1.0			 	 		
91316	27.6-28.9			1.3			 	 		
91317	28,9-29,9			1.0			 	 		
91318	29.9 - 30,9			1.0			 	 		
91319	30.9 - 31.9			1.0			 	 		
71320	31.9 - 32.9	_		1.0			 	 		
91321	32.9-33.9			1.0			 	 		
91322	33.9 - 34.9			1.0			 	 		
91323	34.9-35.9		5	1.0			 	 		∇
· 91324	25-9-36.9		Core	1.0				 		G.M

PROJECT # _____

LAB REPORT #

N.T.S. <u>9410/8</u> DATE <u>August 5</u>/95

PROJECT SOUP HS-95-4

• **ROCK SAMPLE REPORT** SAMPLED WIDTH % BY SULPH. TYPE SAMPLE NO. **LOCATION & DESCRIPTION** (m) G.M. 36.9 - 38.0 91325 1.1 (ore 38.0 - 39.0 1.0 91326 91527 39.0 40.0 1.0 (10.0 - (1.0 91328 1.0 41.0 - 42 D 91329 1. Ù 91230 43.0 - 43.0 1.0 91331 1.0 44.0 - 45.0 91332 1.0 45.0-460 46.0-47.0 91353 1.Ö 91534 0.1 47.0-48.2 48.2-49.2 91535 1.2 1.0 91336 G M 91337 49.2 - 51.2 2.0 (ore

APPENDIX III

DIAMOND DRILL LOGS

.

.

DATE CO	LLARED J	uly 24/95	DATE COMPLETED July 25, 1995 CORE SI	ZENQ		C	IP TESTS			PROP	ERTY	SOUP		PROJE	ECT NC	. 150	N.T.S.	No. 94	D/8	GRID NO	N) HTS	.R.T. TF	RUE) 3	20.
			FIELD CO-ORDINATES		DEPTH	BEA	RING	AN	GLE								SHEE	T1OF	1	MAGNETI	C DECI	INATIO	N 23*	
AT. 622	7N		ELEV. 2145 m DIP -65"			RECORDED	CORRECTED	RECORDED	CORRECTED	LAT.		ELEV.		DIP			HOLE	No.		LOGGED	BY L. E	RDMAN	1	
DEP. 817			LENGTH 22.9 m BEARING			<u> </u>	1		· · · · · · · · · · · · · · · · · · ·	DEP.		LENG	тн	BEARI	NG		HS-9	<u>5-1A</u>		DATE JU		995		
		1		A			•	GEOTEC	Н					GEO	CHEM					A	SSAY			
		ROCK	DESCRIPTION				[% RECO	%	%	Frac									SAMPLE				
FROM	то	TYPE				FROM	то	VERY	Py	Mt	Dens	FROM	то	Carb	Chl	Ер	Ser	FROM	то	No.	Au	Cu		
0.0	3.05		CASING.				1																	
			l			1																		•
3.05	14.6	AP	AUGITE PORPHYRITIC ANDESITE			3.05	14.6	•	•	3	•			-	2	3	-							
			Dark green to grey. Epidote on fracture	es. Pyroxen	e pheno-	3.05	6.1																	
			crysts, feldspar phyric. Magnetic throu	ghout. Mottle	ed	6.1	9.1																	
			appearance. 1 cm diorite dykelet at 8.4	4 m (50° to C	CA).	9.1	12.2	13																
			12.4 m 0.5 cm quartz/carbonate vein a			12.2	14.6	90															_	
																							_	
14.6	15.2	AND	ANDESITE FELDSPAR PHYRIC - WE	LL BROKEN		14.6	15.2	100	•	•	80			3	4	· •	•			ļ				
			Very rusty fractures, locally completely										<u> </u>							ļ				L
			ing 15.2 m pieces of core show foliation	n. Fault Zon	e																			
												L												
15.2	18.6	AND	ANDESITE FELDSPAR PHYRIC			15.2		-		<u> </u>	5	· · · · ·		3	3	1	•	18.3	19.8	091276	5	136		
			Minor augite crystals. Finer grained siz			15.2		90			I	I	 				L			I				
			grey colour. Non-magnetic. Pervasive			17.4	19.8	90		ļ	ļ	ļ	ļ	_										
			carbonate. Weak alteration of feldspar				ļ	ļ			ļ	ļ	 	ļ										
		l	at 165", 160", 90", 45", 135" to CA. Pe	ervasive chlo	prite but			Ļ		<u> </u>	 	L												
		ļ	stronger chlorite on fracture fills.			L	ļ	ļ		ļ	<u> </u>	ļ	ļ											
						ļ	└───	ļ		ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>					L	ļ				
18.6	19.8	AND	ANDESITE FELDSPAR PHYRIC		·	ļ	Ļ	l	<u> </u>	1	1	<u> </u>	ļ	1	3	2	<u> </u>			ļ				
		I	Similar to above interval but weakly ma				ļ	ļ		 	ļ	 	 							[
		ļ	magnetite veinlet 60° to CA at 18.8 m.	Epidote frac	cture fill,						ļ	<u> </u>			ļ									
			carbonate fractures rare.				 			 	<u> </u>						<u> </u>			ļ				
		<u> </u>					<u> </u>	[<u> </u>	<u> </u>	<u> </u>	l	+	<u> </u>					ļ				
19.8	21.8	AP	AUGITE PORPHYRITIC ANDESITE			19.8				3	2		<u> </u>	2	3	2	· ·			 				
		ļ	Similar to 3.05 to 14.6 m. Mottled app			19.8	22.9	100			 		<u> </u>	<u> </u>	 					 				
		ļ	fracture fill, pervasively magnetic. Loc			ļ		ļ	[ł	<u> </u>	ļ					 				
			fill. Possible upper contact at 45° to C			ļ	ļ	ļ		<u> </u>	 		┨───							 				
		ļ	rusty fracture fill from 21.0 to 21.8 m, o	chlorite increa	ases	<u> </u>	<u> </u>	Į	ļ	┨───	 	 												
	i	L	to 4 within this section.				 	<u> </u>	 		ļ		 	+	ļ			 	<u> </u>					
		4-				+	+		Į	 	<u> </u>			+		3								
21.8	22.9	AP	AUGITE PORPHYRITIC ANDESITE.			21.8	22.9		<u> </u>	<u>↓ ·</u>	1	<u> </u>	 	2	1		<u> </u>							
			Light green mottled appearance. Carb	vepidote trac	aure fill.	+	<u> </u>	↓			 	┼			 	├								
		 	Last halo and hashe off			+		<u> </u>	 	<u> </u>		╄	 											
22.9	l	L	Lost hole, rods broke off.					J	L	1	L	1	L		L	L	L	L		L				

DATE CO	LLARED J	uly 25/95	DATE COMPLETED July 26, 1995	CORE SIZE NO	1		P TESTS	;		PROP	ERTY	SOUP		PROJE	ECT NO). 150	N.T.S.	No. 94	D8	GRID NO	TH (W	.R.T. TI	RUE)	320°
			FIELD CO-ORDINATES		DEPTH	BE/	RING	AN	GLE								SHEE	T 1 OF		MAGNETI				
LAT. 622	17N		ELEV. 2146 m	DIP -65*	1	RECORDED	CORRECTED	RECORDED	CORRECTES	LAT.		ELEV.		DIP			HOLE			LOGGED				
DEP. 817			LENGTH 62.8 m	BEARING 205°	T	1		[DEP.		LENGT	ГН	BEAR	NG		HS-9	5-1		DATE JU	Y 24, 1	995		
				····	^	1		GEOTEC	H					GEO	CHEM					AS	SSAY			
		ROCK	DESC	RIPTION			1	% RECO	%		Frac									SAMPLE				T
FROM	то	TYPE				FROM	то	VERY	Ру	Mt	Dens	FROM	то	Carb	Chl	Ep	Ser	FROM	то	No.	Au	Cu		
			Lost first hole at 22.86 m so m	noved head forward C).5 m,																_			
			same dip angle and bearing.																					· ·
0.0	9.5		CASING.						L															
									I	L														
9.5	13.5	AP	AUGITE PORPHYRITIC AND			9.5			<u> </u>	5	<u> </u>			1	3	3	<u> </u>		10.6	91277	5	129		
			Dark green to light green, mot			9.5				 	 		L					10.6	12.2	91278	40	143		<u> </u>
			epidote fracture fill/locally per			12.2	15.2	100	ļ		I													
			ture fill. Pervasively magnetic		d with		ļ	L		 														
			rusty fracture fill (10 cm sectio	<u>on).</u>		<u> </u>	ļ		ļ															
		ANIO			(DOVENIE			 	Tr	<u> </u>	 	<u> </u>		- 2	2			42.7	14.7	91279	445	- 70		
13.5	26.5		FELDSPAR PHYRIC ANDESI PHENOCRYSTS	TE WITH LOCAL P	TRUXENE	13.5					 			4	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	├ ── '	<u> </u>		16.0					_
			Finer grained than above. Gr			15.2												the second se	17.1					
			fracture fill. Upper contact at			21.3				<u> </u>	<u> </u>	├ ──┤					<u> </u>	10.0	17.1	91201	- 55	109		
			magnetite. Fractures at 130°,			21.3											——							
			Local epidote fracture fill. Tra				<u> </u>	100	}	<u> </u>														
			Local carbonate fracture fill co			+	<u> </u>		<u> </u>	 				t1										
			13.9 - 14.3 m. 10° to CA. Qu		ite flooded	1				t	<u> </u>													
			zone. No magnetite. Swirled				<u> </u>			<u> </u>														
			grained pyrite in host rock.			1	t		[1	t													<u> </u>
			9.9 - 10.0 m. Magnetite conte	ent increases to 10%,	localized	1	1	1																
i			in quartz/magnetite veinlets <			1	1																	
			13.8 - 13.9 m. Magnetite/silic	a veinlets at 160° to	CA with		T			L														
			fine grained magnetite in vein	envelope .																	ĺ			
			15.1 m. 15 cm carbonate/qua		ngular																			
[brecciated fragments of host r																					
			15.5 m. Epidote/magnetite/ca																					
			to 5 cm, calcite fracture fill an																					
			fill veinlets. Pervasive magne																					
			lope. Section is 10 cm in leng	th. Calcite fracture	fill at 60°.																			
			Magnetite fracture fill at 30°.																					
			16.1 m. Syenite dyklet (5 cm]				
			carbonate on outer selvage.	Syenite is also weak!	y magne-																			
L			tic.				1	1																

DATE CO	LLARED J	luly 25/95	DATE COMPLETED July 26, 1995	CORE SIZE NO	Τ	C	PIP TESTS			PROP	ERTY	SOUP		PROJ), 150	N.T.S.	No. 94	D8	GRID NO				
			FIELD CO-ORDINATES		DEPTH	BE/	RING	AN	GLE									T 2 OF	6	MAGNET	C DEC	LINATIC)N 23°	
AT. 622	17N		ELEV. 2145 m	DIP -65*	1	RECORDED	CORRECTER	NECORDED	CORRECTER	LAT.		ELEV.		DIP			HOLE			LOGGED	BYLE	RDMA	N	
DEP. 817			LENGTH 62.8 m	BEARING 205*	t	1				DEP.		LENGT	гн	BEARI	NG		HS-9	5-1		DATE JU	LY 24, 1	995		
					<u></u>	1	.	GEOTEC	H					GEO	CHEM					A	SSAY			
		ROCK	DESCR	RIPTION			T T	% RECO	%	%	Frac									SAMPLE				
FROM	то	TYPE				FROM	то	VERY	Py	Mt	Dens	FROM	то	Carb	Chi	Ep	Ser	FROM	то	No.		Cu		
			21.2 - 24.38 m. Core is in sma	all rounded pieces, in	ncrease													25.5	26.4	91282	30	373		
			in chlorite content to 3.	······································			1																	· ·
			23.9 m. 30 cm of very broken	oxidized core. Faul	t?? Not	1																		
			magnetic.																					
			25.5 m. 60 cm of oxidized frac	cture fill and veinlets	s (2 mm),																			
			locally strongly mangetic (perv	asive), no magnetito	e, fracture	1																		
			fill/veins.																					
26.5	30.7	AP	FELDSPAR PHYRIC AUGITE	PORPHYRITIC AN	DESITE	26.5		-	Tr	6	2			-	2	1								
			Gradational change with above	e. This section conta	ains more	27.4	30.5	100																
			augite phenocrysts and locally	has a mottled textu	re similar																			L
			to the beginning of the hole.																	I				L
			Oxidized fractures from 26.7 -]	
			Local pervasive magnetite var												L	ļ]	L
			all magnetic pieces of core ext																	[\square		I
			sections with rusty fractures an						L								L							
			epidote fracture fill, pervasive		netite in						<u> </u>													L
•			fracture fill is associated with o	arbonate.					L	L	L				L							\vdash		L
							L			ļ				1			L							
30.7	33.4	AP	FELDSPAR PHYRIC AUGITE			30.7	33.4	-	<u> </u>	10	10			1	4	ļ	•	_	32.2					L
		l	As above but within this intervi			30.5	33.5	65	L	Ļ	L			1	<u> </u>			32.2	33.4	91284	1030	542		<u> </u>
			overall. No epidote. Local car						L	L	ļ			L			L							<u> </u>
			fracture fill and chloritic fractur						<u> </u>	L				1	ļ		L							
		I	chlorite. Malachite from 30.7 t	to 31.7 m in strongly	chlori-	I			L	ļ														
			tized, strongly magnetic host.						1					L	L	L								
			32.6 - 33.0 m. Rusty, rubble, j				I		I					<u> </u>			L					<u> </u>		
			33.2 - 33.4 m. Oxidized core		. Appears				<u> </u>				L									$ \rightarrow $		
			similar to outcrop near Saddle	Gulley.					L															
									L	<u> </u>	L			1		ļ			L					
33.4	35.0	AND	FELDSPAR/AUGITE ANDESI			33.4			Tr	5	2	·		1	<u> </u>	2	· ·	34.5	35.3	91285	5	110		
			Coarser grain size, rounded fe			33.5	36.5	100	4		ļ		L	1	L	L			L			$ \square $		
			and minor pyroxene phenocrys						L	1	ļ		L	I	L		ļ]	
			in hand sample. Pervasive ma											· · ·										
			altered to epidote. Quartz/car						L	L	L		L		L	L								
			carbonate fracture fill @ 20°, r	rare epidote fracture	fill at 50°					1												1		

DATE CO	LLARED J	luly 25/95	DATE COMPLETED July 26, 1995	CORE SIZE NO		C	DIP TESTS	3		PROP	ERTY	SOUP		PROJ	ECT NO). 150	N.T.S.	No. 94	D8	GRID NO	ATH (M	/. R.T. T	RUE)	320*
			FIELD CO-ORDINATES		DEPTH	BE/	ARING	AN	GLE							_	SHEE	T 3 OF	6	MAGNETI	C DEC	LINATIC	DN 231	
LAT. 622	17N		ELEV. 2145 m	DIP -65*		RECORDED	CORRECTER	RECORDER	CORRECTER	LAT.		ELEV.		DIP			HOLE	No.		LOGGED	BYLE	RDMA	N	
DEP. 817	_		LENGTH 62.8 m	BEARING 205"		1	1	1		DEP.		LENG	гн	BEAR	NG		HS-9	5-1		DATE JU		995		
		<u> </u>						GEOTEC	H					GEO	CHEM					A	SSAY			
		ROCK	DESCF	RIPTION			T	% RECO	%		Frac			Τ						SAMPLE				
FROM	то	TYPE				FROM	то	VERY	Ру	Mt	Dens	FROM	то	Carb	Chl	Ep	Ser	FROM	то	No.	Au	Cu		
			to CA.																					
			Trace of very fine grained pyri	ite locally, no rusty fr	actures.																			
35.0	35.4	DK	ANDESITE DYKE			35.0	35.4	•	Tr	5	•			1	-	1	•							
			Upper contact broken, lower c																					
			feldspar phyric, quartz/epidote																					
			as noted previously, quartz/ca		ne angles																		L	
			as quartz/epidote fractures. P	ervasive magnetite.																			L	
									l														L	
35.4	37.4	AP	AUGITE PORPHYRITIC AND			35.4	37.4	<u> </u>	Tr	7	2			1	1	2	•	35.4	37.4	91286	20	249		
			Dark grey, mottled texture. Fe								L													
			pyroxene phenocrysts are well					l						ļ									<u> </u>	L
		l	obscure "mushy" texture. Per							ļ														
			intensity. Strongest magnetite			ļ	ļ	L	ļ	ļ	ļ													
		ļ	quartz fracture fill/veinlets (<2			ļ	ļ	L			ļ			ļ										
			rusty spots (oxidized magnetit			ļ	∔	Į		4														
		ļ	from fractures into host rock (orite		<u> </u>	Į	ļ		ļ		ļ	<u> </u>	ļ									
· · ·			fracture fill. Fractures @ 10°,	<u>30°, 45°, 160°.</u>				Į	ļ		ļ	ļ											·	
						L		ļ	I	<u> </u>	<u> </u>	 		<u> </u>										
37.4	38.2	AND	PYROXENE FELDSPAR PHY	RIC, FINE GRAIN A	NDESITE	37.4			Tr	5	<u> 1</u>			1	<u> </u>	1	-						·	
			FLOW			37.5	39.6	100	·		ļ	ļ		<u> </u>										
			Green-grey colour. Weak alig			 	<u> </u>		<u> </u>	 				<u> </u>										
		 	fracture fill @ 30°, 45°, epidot					ļ	ļ		 													
			Bi phenocrysts (<<1%). Perva				 	ļ	ļ	<u> </u>				ļ										
		ļ	fractures @ 45° to CA. 38.2 n	n - 5 mm epidote/cal	cite vein		<u> </u>	ļ	ļ				L	<u> </u>										
			at 70° to CA.		··		<u> </u>	ļ	<u> </u>		<u> </u>]	
						<u> </u>	+		 	┥		ļ		\vdash	<u> </u>				10.0	04007				
38.2	40.3	AP	AUGITE PORPHYRITIC AND			38.2					 	ļ		1		2		30.3	40.3	91287	15	200		
			Dark grey, mottled texture. Si			39.6	42.7	95	' 		 	 	L	<u> </u>	L									
		 	Quartz/calcite/rusty fractures a			<u> </u>		ļ	┟────		 	 	<u> </u>	<u> </u>										
			only fractures @ 45°. Local a			ļ	ļ	ļ	<u> </u>	┥														
		 	38.3 m. 1 cm quartz vein with			 	<u> </u>	ļ	 	_	 	 												-
,	ļ	ļ	3 cm), margins contain chlorite	e tragments. No ma	gnetite in		l	ļ	l	_	 			<u> </u>										
		Į	vein.			ļ	<u> </u>	ļ	ļ		Į		ļ											
	L	1	45° lower contact, marked by	rusty magnetite(?)/q	uartz/	1	L			1	<u> </u>	1		1]

DATE CO	LLARED J	luly 25/95	DATE COMPLETED July 26, 1995	CORE SIZE NO	1	0	DIP TESTS	;		PROP	ERTY	SOUP		PROJE	CT NC). 150	N.T.S.	No. 94		GRID NO	RTH (M	.R.T. T	RUE) :	320°
			FIELD CO-ORDINATES	······································	DEPTH	BE	ARING		GLE									140F	6	MAGNET	C DEC	LINATIC	N 23	
AT. 622	17N		ELEV. 2145 m	DIP -65"		RECORDER	CORRECTER	RECORDER	CORRECTER	LAT.		ELEV.		DIP			HOLE			LOGGED			N	
DEP. 817	44E		LENGTH 62.8 m	BEARING 205"	1					DEP.		LENGT		BEARI			HS-9	<u>5-1</u>		DATE JU		995		
								GEOTEC	H					GEO	HEM		_				SSAY			
		ROCK	DESCR	RIPTION				% RECO	%		Frac									SAMPLE				
FROM	то	TYPE				FROM	то	VERY	Ру	Mt	Dens	FROM	то	Carb	Chi	Ер	Ser	FROM	TO	No.	Au	Cu		
			calcite/epidote veinlet (5 mm).																					
																								•
40,3	40.8	AP	FELDSPAR PHYRIC, AUGITE			40.3	40.8	•	•	7	1			1	-	2								
			Dark grey with white "dots" (fel		tz/calcite/																			
			epidote fractures at 45° to CA.																					
			Rusty fracture fill at 30° and 45																					
			Feldspar to epidote, pervasive	ly magnetic. Grada	tional												L				L			
			lower contact.																		<u> </u>			
																					ļ			
40.8	42.0	AP	AUGITE PORPHYRITIC AND	ESITE		40.8	42.0	-	-	5	1			1	-	2					ļ			
			Similar to 38.2 - 40.3 m.			ļ															L			
			Gradational upper contact.																					
			40.9 m. 2 cm quartz/chlorite v			ļ	<u> </u>																	
			trace coarse grained pyrite, no	magnetite, 40° to C	;A			ļ																
			50.1 m. 3 cm cloudy carbonat	e vein with epidote	alteration	ļ	<u> </u>	· · · ·													I			
		L	in selvage @ 20° to CA.				ļ	ļ													 			
						<u> </u>	ļ	 						<u> </u>										
42.0·	43.0	AP	FELDSPAR PHYRIC, AUGITE			42.0	43.0				1			1		1					<u> </u>			
			Similar to 40.3 to 40.8 m. We	ak epidote alteration	1 01	<u> </u>	ļ	<u> </u>																
			feldspar.																					
										<u> </u>								44.0	45.0	04000				
43.0	45.8	AND	FELDSPAR PORPHYRITIC A			43.0			•	5	5		<u> </u>	4	2	•			45.2	91288				
			Medium grey, ghosty feldspar			42.7	45.7	100										43.2	45.8	91289	35	179		
			carbonate, carbonate veinlets/			<u> </u>	<u> </u>																	
		[tite. Pervasive chlorite. Fract		' (most	<u> </u>	<u> </u>	ļ						-										
		ļ	common). Rare ghosty pyroxe										 											
			45.0 m. 1 cm carbonate vein,	minor quartz, 30° to	DCA.	ļ		ļ																
			Trace magnetite on selvage.			<u> </u>				[
			45.5 m. 2 cm vein similar to 4	5.0 m vein but at 45	5" 10 CA.	<u> </u>	<u> </u>	 																
						 	 	I	L	ļ		I	 	 										
		ļ				<u> </u>	<u> </u>	Ļ					ļ											
		l						ļ	ļ			ļ	ļ										\rightarrow	
								ļ		L			 											
·		ļ						L					<u> </u>											
		L	L			1	L	I	L	L			L											

DATE CO	LLARED J	uly 25/95	DATE COMPLETED July 26, 1995	CORE SIZE NO	r		DIP TESTS	;		PROP	ERTY	SOUP		PROJE	CT NC					GRID NO				
			FIELD CO-ORDINATES		DEPTH		ARING		GLE								SHEE	15 OF	_	MAGNETI				
LAT. 622	17N		ELEV. 2145 m	DIP -85*	1	RECORDED	CORRECTER	RECORDED	CORRECTED	LAT.		ELEV.		DIP			HOLE			LOGGED			I	
DEP. 817			LENGTH 62.8 m	BEARING 205°						DEP.		LENGT		BEARI			HS-9	5-1		DATE JU				
		<u> </u>				1		GEOTEC	H					GEO	CHEM						SSAY			
		ROCK	DESCF	RIPTION			I	% RECO	%		Frac									SAMPLE				
FROM	то	TYPE				FROM	то	VERY	Py_	Mt		FROM	то	Carb	Chi	Ep	Ser			No.	Au			
45.8	47.1	AP	FELDSPAR/AUGITE PORPHY	RITIC ANDESITE -	ALTERED	45.8	47.1	•	-	5	80			_2	4	•		45.8	47.1	91290	810	2158		
			SECTION																					<u> </u>
			Very rusty surface weathering,																					L
			only small pieces. Difficult to														L							
			Initial 20 cm appears to be rub																					ļ
			fracture fill and weak pervasive	e calcite along grain	boundaries	5															L			
			46.4 m. Malachite/azurite adja	acent to rubbly calcit	e "vein"						Í													
			in an extremely chloritic host n	ock.	_											L								
			46.9 m. Possible fault??								L													
47.1	47.7	AND	FELDSPAR PORPHYRITIC A			47.1	47.7	<u> </u>		7	2			4		1		47.1	48.1	91291	15	108		
			Medium grey. As at 43.0 - 45.	8 m but rare epidote	/rusty			ļ									 					┝───╋		
			fracture fill.				L	ļ				 		ļ								┝━━━╋		
							L				 	 				<u> </u>						┝──╋		
47.7	51.6	AP	AUGITE PORPHYRITIC AND			47.7			<u> </u>	5	11			2		3						┝──╋		
			Green-grey colour, spotty text		se	45.7	41.8	100	ļ			├ 				ļ	ļ					┝━━╋		
		L	grained diorite. Pervasive epi						L	<u> </u>						 						┍──╋		
•			Carbonate/quartz fractures at				·	l	ļ	 												╞╼╼╾╋		
		l	at 80°. Generally pervasively			ļ	<u> </u>	<u> </u>	ļ		┟───			 								┝───╋		
			alteration is strong magnetite i	s very weak. Quart	z veiniets	ļ	<u> </u>	<u> </u>														┝╼╼╼╋		
		ļ	of 1 mm at 60° cut epidotized			_	<u> </u>		↓	┣						<u> </u>	<u> </u>				——	┝───┼		
			sections there is a trace of coa	irse grained pyrite.	Matics		<u> </u>				<u> </u>			 		<u> </u>						┝━━╋		
			are weakly chloritic.				+		 								<u> </u>					┍━━━╋		
61.0		1		FOITE		51.6	52.2	<u> </u>	 	5		┼										 	+	
51.6	52.2	AP	AUGITE PORPHYRITIC AND		he mek	51.6			<u>├</u>	<u>⊢_</u> ³	<u>├──'</u>	-		<u> </u>		<u>↓</u> -	<u>├</u> ──					+		
		 	Similar to above but dioritic te	فليتحصب والتقاع مسرعي التجريب المتحصر ويرافغا فسيروغ والم	بي ان التي التي التي التي التي التي التي التي	51.0	54.9	100	 	+	<u> </u>	┣───┤				 	<u> </u>					+		
			has a more uniform green-gre		alteration.	+	┼───	<u> </u>	<u> </u>	╂	 	<u>├</u>		<u>├</u> ──		<u> </u>	<u> </u>					+-		
		 	Pervasive carbonate and carb	onate tracture fill.	· <u></u>	+	+	<u> </u>	 			┼───┤				<u> </u>	<u> </u>						+	
60.0	53.4	AP	AUGITE PORPHYRITIC AND			52.2	2 53.4	<u> </u>	<u> </u>	5		+-+		2	1	3	<u> </u>					_	-+	
52.2	53.4	AP			6 -	J	53.4	·	<u>├</u>	+ ³	├ ──- [!]				├ ──── '	<u>⊢</u> °	<u> </u>						-+	
		<u> </u>	Looks like a coarse grained di	UILLE AS AL 4/./ 10 51	.0 111.			+	 	<u>+</u>	┼──	┝──┤											-+	
		 	·			 	+	<u> </u>		<u> </u>		-				<u> </u>							-+	{
		 	+		······	+	<u> </u>		<u> </u>		┼───	$\left - \right $				<u> </u>							+	
		<u> </u>				·	+		<u> </u>		<u> </u>	+-+											+	
	L	L	<u></u>				I	L	L	L	L	<u> </u>		I	l	L	L				l			

DATE CO	LLARED J	uly 25/95	DATE COMPLETED July 26, 1995	CORE SIZE NO	T	C	IP TESTS	5		PROP	ERTY	SOUP		PROJE	CT NC					GRID NO				
			FIELD CO-ORDINATES		DEPTH	BEA	RING		GLE									T 6 OF	_	MAGNET				
AT. 6221	7N		ELEV. 2145 m	DIP -65*		RECORDER	CORRECTED	RECORDED	CORRECTED	LAT.		ELEV.		DIP			HOLE			LOGGED			1	
DEP. 817			LENGTH 62.8 m	BEARING 205*		1				DEP.		LENG		BEARI			HS-9	5-1		DATE JU		995		
1						1		GEOTEC	ж					GEO	CHEM						SSAY			
		ROCK	DESCR	RIPTION				% RECO	%		Frac									SAMPLE				
FROM	то	TYPE				FROM	то	VERY	Py	Mt	Dens	FROM	то	Carb	Chi	Ep	Ser	FROM	то	No.	Au	Cu		
53.4	54.1		FELDSPAR PHYRIC ANDESI	TE, POSSIBLY A D'	YKE				Tr	5	1			2	1	-								
			Pervasive carbonate, carbonat																					
			colour.																					
			54.2 m. Quartz/chlorite/calcite	vein 2 cm @ 80°.																				
			54.3 m. Chlorite vein at 45°, 2																					
54.1	62.8	AP	AUGITE PORPHYRITIC ANDE	ISITE		54.9	57.9	100	•	5	1			2	1	3								
			As at 52.2 to 53.4 m.			57.9	62.8	45																
			56.4 m. Quartz/chlorite vein, 2	cm @ 75°. Minor c	alcite.																			
			on selvages.																					
			Final 10 cm is very rubbly but i	t appears to be fine	grained,	I																		
			may be as at 53.4 - 54.1 m.																					
62.8			Hole abandoned.																					
•																								
																	L							
																	I							
																				L				
																				[
																	1							
]																					
			1																					
				······································		I																		
		1				1	1	1																
		1				1	T		T	T														
		1					1	1	1	T														
		1	1			1	1	1		T	1													
		1	1					1	1	T														
		1	1				1	1	1	1		1	Γ											

DATE CO	LARED	July 26/95	DATE COMPLETED July 27, 1995	CORE SIZE NO	r	C	OIP TESTS			PROP	ERTY	SOUP		PROJE						GRID NOF				320
			FIELD CO-ORDINATES		DEPTH	BE/	ARING	AN	GLE								SHEE	T 1 OF	5	MAGNETI	C DEC	INATIC	N 23	
LAT. 6221	7N		ELEV. 2145 m	DIP -70°	1	RECORDED	CORRECTED	RECORDED	CORRECTED	LAT.		ELEV.		DIP			HOLE	No.		LOGGED	BY L.E	RDMA	1	
DEP. 817	_		LENGTH 69.5 m	BEARING 215*	<u> </u>	1	1			DEP.		LENGT	гн	BEARI	NG		HS-9	5-2		DATE Jub	/ 28, 19	95		
		1			·		.	GEOTEC	Н					GEOC	CHEM					AS	SSAY			
		ROCK	DESCR	RIPTION			1	% RECO			Frac									SAMPLE				Γ
FROM	то	TYPE				FROM	то	VERY	Py	Mt	Dens	FROM	то	Carb	Chl	Ep		FROM	то	No.	Au	Cu		
0.0	6.1		CASING.	······································			1																	
6.1	15.5	AND	FELDSPAR/PYROXENE AND	ESITE		6.1	15.5		Tr	3	4			2	1	1								
		1	Green-grey color. Very rubbly	to 8.8 m. Mottled te	exture.	6.1		70																
			Calcite fracture fill at 40°, 55°,			9.1																		
			Pervasive carbonate, rare rust	y fracture fill, pervas	sive magne	12.2	15.2	100																
			tite. Texture varies from fine g																					
			is primarily fine grained. Ghos																					
			phenocrysts, minor pyroxene p						L															
			rite and pyrite. Quartz/epidote		(1-2 mm)																			
			at 130° cut by similar vein at 2						L				Ĺ											
			Rare rounded xenoliths of rock	from interval below	l	L			I	ļ	ļ													
-						L							<u> </u>								L			
15.5	16,5	AP	FELDSPAR PHYRIC AUGITE	PORPHYRY ANDE	SITE -	15.5			· · ·	5	1		ļ		-	3								
·		ļ	COARSE GRAINED			15.2	18.3	100	ļ	L		I	<u> </u>											
		ļ	Light green-grey colour, large,				 		ļ	ļ	 													
		ļ	gives a spotty texture. Pervas	ive and fracture fille	d epidote	I	L	ļ	<u> </u>	 	ļ			 										
··		ļ	at 20°, 45° to CA.						<u> </u>	ļ	<u> </u>													
·		ļ	Crowded feldspar lathes, all er			ļ	<u> </u>	ļ	 				 	 										
, 		<u> </u>	wide carbonate vein 45° to CA	. Lower contact at 4	U° to CA.	ł		<u> </u>					<u> </u>										<u> </u>	
						1 40.5		ļ	ļ	3	2			1		2		10.2	20.2	91292	10	169		
16.5	22.3	AP	AUGITE/FELDSPAR PORPH			16.5			<u> </u>	<u> </u>				'					20.2		10			
		ł	Similar to above interval over			18.5	21.5	100		+	<u> </u>		──	+				20.2	20.9	91293	10	100		
├ ──── ┤		┨────	interval is medium grained with	n reluspar and pyrox	terie being		<u> </u>	<u> </u>						┼										
<u> </u>		 	more equal in size (< 1 mm).			ł	+	├ ───	ļ	+			ļ											
┝┥		┣	16.8 m. Magnetite fracture fill			<u>├</u>				+		'	<u> </u>	+										
┝───┥		 	center of quartz/epidote. Frac margins, total width 4 mm.	aure med with carbo	mate on	+	<u> </u>	<u> </u>	<u> </u>			<u> </u>		<u> </u>										
┝───┥		╂────	Variable pervasive magnetite	throughout			<u> </u>	<u> </u>	<u> </u>	+		┼──		╆╾╌┥										
		 	17.9 m - 4 cm dacitic dyke at 6				╂						<u> </u>	╂───┤										
J		╂───	magnetite/quartz/epidote band				+	<u>├</u>		+	+	┥───	<u> </u>	++								+		
 		 	of rock similar to what was see				+				+													
J		 	total.	an in interval above,	N 176 UI	+	<u> </u>		+		+		<u> </u>	+										
<u> </u>		 		sive enidete editore	at to free	+	+	<u> </u>		+	+	──	<u> </u>	<u> </u>										
		+	Epidote fracture fil, with perva		IL TO TRAC-	+	+		<u> </u>	+	<u> </u>	+												
		1	itures. Rare 4 mm carbonate v	emiets.		1	<u> </u>	L	L	L	1	<u> </u>	I		L	L	L	L			~]

DATE COL	LARED J	luly 26/95	DATE COMPLETED July 27, 1995	CORE SIZE NO		C	PIP TESTS	;		PROP	ERTY	SOUP		PROJ	ECT NO	D. 150	N.T.S.	No. 94	D/8	GRID NO	RTH (M	/.R.T. T	RUE)	320
			FIELD CO-ORDINATES		DEPTH	BE/	RING	AN	GLE									T 2 OF		MAGNET				
LAT. 6221	7N		ELEV. 2145 m	DIP -70°		RECORDED	CORRECTED	RECORDED	CORRECTED	LAT.		ELEV.		DIP			HOLE			LOGGED	BY L.	RDMA	N	
DEP. 8174	6E		LENGTH 69.5 m	BEARING 215*				[DEP.		LENG	тн	BEAR			HS-9	5-2		DATE JU	_			
			1					GEOTEC	H					GEO	CHEM						SSAY			
		ROCK	DES	CRIPTION		<u> </u>		% RECO			Frac									SAMPLE				
FROM	то	TYPE				FROM	то	VERY	Ру	Mt	Dens	FROM	то	Carb	Chl	Ер		FROM	то	No.	Au	Cu		
			19.4 m - 2 mm carbonate/e	pidote fracture at 0° to (CA. Car-																			
			bonate in centre, epidote on	selvages. At 19.6 m o	xidized																			· ·
		<u> </u>	sulfide in center of fracture	has malachite adjacent	to it.																			
			20.9 m - Magnetite/carbona	ate fracture at 0°.																				
			Becomes fine grained 40 cm	n from bottom. Lower of	contact																			
			at 40° to CA.																					
22.3	22.8	DYKE	ANDESITE DYKE			22.3	22.8	•	•	1	ŀ			•		1								
			Grey-green colour, fine grai																					
			carbonate spots (1 mm), we		Rare																L			Ĺ
			calcite fracture fill at 45°. L	ower contact broken.								L												
										I		ļ	L											
22.8	24.1	AND	FELDSPAR PHYRIC ANDE			22.8		<u> </u>	Tr	5	2			1	-	·		23.3	24.4	91294	100	750		
			Medium green colour, weak			21.3	24.4	100	L	ļ				Ļ										L
			30°, local rounded feldspar				L		ļ		I													
			spotted appearance. Local	pervasive carbonate, c	arbonate				L	ļ	L	ļ												
			fracture fill.						ļ	L	ļ	L		L										İ
		L	23.5 m - Broken core of light				ļ				L		ļ	 		ļ	L							i
			containing 2% pyrite, 3% o>				ļ		 		L	 	 	<u> </u>			L							ļ
			malachite 3%. Approximate			<u> </u>	ļ	L			ļ	L	L	 										
		L	23.6 m - Similar dykelet to	above but only 7 mm w	idth.		ļ		ļ	<u> </u>		ļ												
				······································				ļ	ļ;	ļ	ļ	<u> </u>	ļ	<u> </u>		<u> </u>								,
24.1	24.4	DI	DIORITE			24.1	24.4		1 1	<u> </u>	<u>↓·</u>	L	ļ	1	1	1								
		ļ	Broken core, light grey colo			- <u> </u>			ļ		 	l	ļ	ļ										
		ļ	rare malachite spots, carbo		and the second se	↓	ļ		ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>									
		ļ	pervasive carbonate, weak	chloritization of mafics.			<u> </u>	 	<u> </u>	 	 	<u> </u>	 		ļ									
		<u> </u>				+		ļ	<u> </u>	<u> </u>	 		<u> </u>	<u> </u>	<u> </u>				05.0	04055				
24.4	32.4	AP	FELDSPAR PHYRIC AUGI			24.4				3	· ·	<u> </u>		1 1	1	2		24.4	25.6	91295	5	126		
	·	 	Green-grey colour, medium			24.4				 	 				ļ							$ \rightarrow $		
			fracture fill and local pervas							 				<u> </u>										
		 	carbonate/epidote fracture			30.5	33.5	100					<u> </u>											
		ļ	Variably pervasive magneti	ite, weak chloritization of	DT		∔	 	ļ		ļ	<u> </u>	ļ	 	<u> </u>							$ \rightarrow $		
			pyroxene.		<u></u>	.			ł	 	<u> </u>	 	ł		L	ļ								
		ļ	Minor xenoliths of a differin						ļ	L		 	I	 										
·		1	24.4 to 25. 6 m - Very brok	en core with a clay/chio	rite	1	<u> </u>	<u> </u>	1	1	<u> </u>	1	1		L]

DATE COL	LARED J	luly 26/95	DATE COMPLETED July 27, 1995	CORE SIZE NO	1		DIP TESTS	;		PROP	ERTY	SOUP		PROJ	ECT NO	D. 150	N.T.S.	No. 94	ID/8	GRID NOP	RTH (W	.R.T. TI	RUE) 3	20
			FIELD CO-ORDINATES		DEPTH	BE/	ARING		GLE									T 3 OF	5	MAGNETI	C DECI	INATIO	N 23	
LAT. 6221	7N		ELEV. 2145 m	DIP -70°		RECORDED	CORRECTED	RECORDED	CORRECTER	LAT.		ELEV.		DIP			HOLE			LOGGED	BY L.E	RDMA	1	_
DEP. 8174			LENGTH 89.5 m	BEARING 215"	1	1	1			DEP.		LENG		BEARI			HS-9	5-2		DATE JU		995		
					• • • • • • • • • • • • • • • • • • •			GEOTEC	H					GEO	CHEM	[A	SSAY			
		ROCK	DESCH	RIPTION			1	% RECO			Frac									SAMPLE				
FROM	то	TYPE				FROM	то	VERY	Py	Mt	Dens	FROM	то	Carb	Chl	Ep		FROM	то	No.	Au	Cu		
			section from 25.3 - 25.5 m. P	ossible fault.		1																		
			Rusty fractures from 26.1 to 2	6.3, 2.5 to 27.7, 30 -	30.5 m.	1																		•
32.4	35.7	AP	FELDSPAR/PYROXENE POR			32.4	35.7	•	-	3	20			3	2	1			34.7	91296		231		
			Fault gouge contact at 45° to (CA, then 30 cm of ve	ery chlori-	33.5	36.6	100										34.2	35.7	91297	1540	674		
			tic rock with pervasive carbona																				_	
			fractures @ 30° to CA.																					
			Medium green color, ghosty fe																					
			carbonate fracture fill @ 60*, 3	30°, 45°, 20°. Minor	epidote																			
			fracture fill, weak pervasive ct	nlorite. Variably mag	netic,																			
			minor ghosty pyroxene.																					
			34.4 m - Rusty carbonate/epid	lote/chlorite fracture	@ 45*																			
			with trace of pyrite.																					
			35.2 - 35.5 m Rusty surface of		recciated,				L	L														
		ļ	35.5 - 35.7 m Broken, azurite	on fracture fill.			ļ	 		 	 													
35.7	42.4	AP	AUGITE PORPHYRY ANDES			35.7	42.4	<u> </u>			5			2	1	2								
		<u> </u>	Similar to 24.4 to 32.4 m but m			36.6			<u> </u>	<u> </u>				<u> </u>	in									
			sections are rare. Epidote/car			39.5																		
		<u>├</u> ────	Variable magnetite. Local per						 	<u> </u>														
			downhole.		- comg	<u> </u>	+			<u> </u>	<u> </u>	<u> </u>											-	
			37.4 m Quartz-carbonate-chic	orite vein @ 10°		+	<u> </u>	1																
		<u> </u>	38.2 m 1 cm quartz-carbonat)°	<u> </u>	<u> </u>	<u> </u>	1															<u> </u>
		t	38.6 - 39.2 m Dyke of fine gr			1	+	1	1		<u> </u>													
		t	White dotted texture. Green-			<u> </u>			<u>+</u>	<u> </u>	<u> </u>													
		t	ate, magnetite. Lower contact			+	+		<u> </u>	<u> </u>	1	<u>├</u> ──										†		
							+		1															
42.4	45.8	AND	ANDESITE			42.7	45.8		Tr	7	7			3	3			42.7	43.7	91298	20	151		
			Dark grey, fine grained, ghost	v feidspar/pyroxene	pheno-	42.7		100											44.5					
		·	crysts (texture obscure), carbo			1	1	1	1	1	1													
		1	70°, 50°. Pervasive chlorite.			1	1		1		1											+		
		1	(pinch and swell/discontinuous			1	1		1	1	1												-+	
		1	43.4 m One fracture shows m			1	1	1	1	1	1													{
		1	43.8 m Quartz-carbonate vei			1	+	†	1	1	<u>† </u>		<u> </u>										-+	
		t	44.3 m 15 cm section with ab		lorite/	1	1	1	1	1	t													\neg

DATE COL	LARED J	July 26/95	DATE COMPLETED July 27, 1995	CORE SIZE NO			DIP TESTS			PROP	ERTY	SOUP		PROJ	ECT NO). 150	_			GRID NO			the second s	_
			FIELD CO-ORDINATES		DEPTH	BE/	ARING		GLE									T 4 OF	5	MAGNET	IC DEC	LINATIC	DN 23	
LAT. 6221	7N		ELEV. 2145 m	DIP -70*	1	RECORDED	CORRECTED	RECORDED	CORRECTED	LAT.		ELEV.		DIP			HOLE			LOGGED	BY L.I	ERDMA	N	
DEP. 8174	16E		LENGTH 69.5 m	BEARING 215"						DEP.		LENG	ГН	BEAR			HS-9	5-2		DATE JU				
T								GEOTEC	H					GEO	CHEM						SSAY			
		ROCK	DESCR	RIPTION			ſ	% RECO			Frac									SAMPLE				
FROM	то	TYPE				FROM	то	VERY	Py	Mt	Dens	FROM	то	Carb	Chi	Ер		FROM	то	No.	Au	Cu		
			carbonate forming "streaks" @	35° to CA. Below 4	14.3 m																			
			core is well broken with rare la	rger pieces.																				
																								\bot
45.8	46.1	AP	AUGITE PORPHYRITIC AND	ESITE		45.8			· .	5	3			1	•	1								
			Dark green, medium green, rai			45.7	48.7														<u> </u>		L	
			Carbonate fracture fill. Well de																		I			<u> </u>
			in a feldspar rich host, but no f	eldspar lathes/pheno	ocrysts.	 	ļ				ļ		L										 	
		L				l		I	<u> </u>	<u> </u>	<u> </u>		ļ	 					ļ	<u> </u>	 		j	┣
46.1	47.2	AP	AUGITE PORPHYRY		- <u></u>	46.1	47.2	<u> </u>	Tr	5	5		ļ	1	1	2				<u> </u>	┣	 		
			Similar to 35.7 to 42.4 m.			 	<u> </u>	l	 	 											<u> </u>		 	
			46.9 m - 2.5 cm quartz/carbon			ļ	<u> </u>		ļ		<u> </u>										<u> </u>		<u> </u>	—
		ļ	47.1 m - 1 cm quartz/carbonate					ļ	ļ		ļ	<u> </u>									<u> </u>			<u> </u>
		ļ	Section in between the 2 veins			<u> </u>	ļ	 													<u> </u>			<u> </u>
		 	feldspar phyric andesite (white Pyritic fracture fill @ 20°, 130°		ite.	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>													
			Fynic hacure ni @ 20 , 130	•		ł	{	ł	<u> </u>		 													
47.2	51.2	AP	FELDSPAR PHYRIC AUGITE	PORPHYRITIC AN	DESITE	47.2	51.2		<u> </u>	5	2			1	2	1		50.6	51.1	91300	55	209		
		<u> </u>	Medium grey colour. Well dev			48.7			<u> </u>	<u> </u>	<u> </u>													
		<u> </u>	and feldspar lathes in a feldspa		the second s	1					1													
		t	fracture fill, rusty fracture fill, p			1	<u> </u>	1																
		1	fractures. Fractures are 0°, 5°			1	1			1														
		1	xenoliths, weak pervasive cart		h.	1	1	· · · · ·																
		1	50.6 to 51.1 m - Well broken		gouge at	1		1																
		1	50.7 m.				1	1	1	1	1													
		1	1			1		1																
51.2	62.9		AUGITE PORPHYRITIC AND	ESITE		51.2	2 62.9	-	- 1	3	1	[1	1	2								
			Green-grey colour, "spotty", lo	oks like a coarse gra	ained	51.8	54.9																	
			diorite. Xenoliths of very fine	grained green andes	site (non-	54.9	57.9	93																
			porphyritic). Epidote fracture 1	fill, carbonate fractur	re fill,	57.8	61.0	100																
			chlorite on fractures, pervasive																					
			Below 60.1 m - Local sections																					
			alteration, most of these are a																					
	<u></u>		Also the pyroxene phenocryst	size increases to <7	mm.																			
			58.8 m - 1 cm quartz vein with	chloritic selvages (20° to															_				
			CA.																					

DATE COL	LARED J	uly 26/95	DATE COMPLETED July 27, 1995	CORE SIZE NO			IP TESTS	3		PROP	ERTY	SOUP		PROJE						GRID NO				
			FIELD CO-ORDINATES		DEPTH	BE/	RING		GLE									T 5 OF	5	MAGNET	C DEC	LINATIO	N 23	
LAT. 6221	7N	·	ELEV. 2145 m	DIP -70°			CORRECTER	RECORDED				ELEV.		DIP			HOLE			LOGGED			1	
DEP. 8174		·	LENGTH 69.5 m	BEARING 215"		1	1			DEP.		LENGT		BEAR			HS-9	5-2		DATE JU	LY 28, 1	995		
				_^		1	•	GEOTEC	H					GEO	CHEM					A	SSAY			
		ROCK	DESCR	RIPTION				% RECO			Frac									SAMPLE				
FROM	то	TYPE				FROM	то	VERY	Ру	Mt	Dens	FROM	то	Carb	Chl	Ερ	_	FROM	то	No.	Au	Cu		
62.9	69.5		FELDSPAR PHYRIC AUGITE	PORPHYRITIC ANI	DESITE	62.9			•	5	2			1	2	1								
			As at 47.2 to 51.2 m.			61.0																		
						64.0	67.1	50															i	
69.5			Hole abandoned.					L																L
						ļ		ļ				L								ļ	ļ	$ \longrightarrow $	_	Ļ
					- <u></u>			ļ						 			ļ		<u> </u>			\vdash		┣──
							ļ	↓			 			+ - +								\vdash		┣
							ļ			ļ	ļ											┢───┼		
						<u> </u>	ļ			┣	ļ											┝──╁		
						<u> </u>		<u> </u>			I										L	\vdash		<u> </u>
						<u> </u>	↓	┣		<u> </u>	<u> </u>											┝───╋		┢──
				······································		<u> </u>	 	ļ	[┝──╋		┢──
				<u></u>																		┝╼╾╋		<u> </u>
					·····			<u> </u>			ł											┢╼╾╋		┣
						 	{	{	<u>├</u>	<u> </u>	<u> </u>			1								├──┼		
			<u> </u>			+	<u> </u>			<u> </u>	<u> </u>											├──┼		
i				·····							 			11								r+		┣──
						 	<u> </u>	<u> </u>		<u> </u>	t						<u> </u>					-+		<u> </u>
								<u> </u>	<u> </u>	<u> </u>	<u> </u>											<u> </u>		
			<u></u>		· · · · · · · · · · · · · · · · · · ·	+			<u> </u>	1	<u> </u>						t——					-+		<u> </u>
			f				<u> </u>	<u> </u>	h	<u>† – – – – – – – – – – – – – – – – – – –</u>	1		<u> </u>				<u> </u>							<u> </u>
			1		<u> </u>	1	<u> </u>	1	<u> </u>	t	1												-+	
				<u></u>		1	1	1	 	1	1												-	<u> </u>
			f			1	1	1	1	1	1													<u> </u>
			1			1	1	1	1														-	
					·····		1	1		Γ	1												\neg	
			1	· · · · · · · · · · · · · · · · · · ·		1	1	1																
																								<u> </u>
						1																		

DATE CO	LARED J	uly 27/95	DATE COMPLETED July 29, 1995	CORE SIZE NO	r	C	DIP TESTS			PROP	ERTY	SOUP		PROJE	CT NC). 150	N.T.S.	No. 94	D/8	GRID NO	RTH (M	/.R.T. TI	RUE) 3	.20°
		,	FIELD CO-ORDINATES		DEPTH	BE/	ARING	AN	GLE									T 1 OF :		MAGNET	-		_	
LAT. 6251	5N		ELEV. 2180 m	DIP -60°		RECORDED	CORRECTED	RECORDED	CORRECTED	LAT.		ELEV.		DIP			HOLE			LOGGED	BYLI	ERDMAN	١	
DEP. 818			LENGTH 18.3 m	BEARING 240*						DEP.		LENGT		BEAR			HS-9	5-3		DATE AU				
1						1		GEOTEC	H					GEO	CHEM					A	SSAY			
		ROCK	DESCR	RIPTION			T	% RECO	%	%	Frac									SAMPLE	1			
FROM	то	TYPE				FROM	то	VERY	Py	Mt	Dens	FROM	то	Chl	Carb	Ep		FROM	то	No.	Au	Cu		
0.0	4.6		CASING.																					
																								•
4.6	6.1	AP	AUGITE PORPHYRY			4.6	6.1	35	-	-	1			ŀ	-	2					1			
			Broken core, two types of augi															L			L			
			green, uphole, lighter green do	with a conta	ct at 20°																L			
			to CA. Minor rusty fractures.	Augite and feldspar	pheno-																	\square		L
			crysts of equal size, <2 mm, b	ut also smaller felds	par																 	\vdash		L
			lathes. Lighter green section h	has greater amount of	of perva-	I	L	L	ļ	ļ		L					<u> </u>	i			L			
			sive epidote alteration.			ļ			L	<u> </u>							ļ					\vdash		
						L	ļ	L		<u> </u>											<u> </u>	L		ļ
6.1	7.1		FELDSPAR AUGITE PORPHY			6.1			Tr	5				<u>-</u>	1	1		6.3	6.8	91301	- 5	119		<u> </u>
			Dark grey colour with crowded			6.1	9.1	100		ļ				I					<u> </u>		┣	┝──┥		┝───┘
			(<1%) well formed pyroxene p			ļ	Ļ		ļ	ļ	ļ	ļ		ļ								┝──┤		
			fracture fill, rusty fracture fill, f			<u> </u>	ļ	ļ	 	 	ļ							<u> </u>				┟──┤		
			greater epidote alteration from			+		ļ	 	 		l									<u> </u>	┝──┥		
			at 25° to CA (broken core so n	nay not be accurate)	·			<u> </u>	<u> </u>	<u> </u>		┥──┤		-								┝──┤		
									<u> </u>	+				<u> </u>			<u> </u>				——	\vdash		<u> </u>
7.1 ·	7.5	AP	AUGITE PORPHYRY			7.1	7.5		<u>├</u>	$\frac{1}{1}$	<u>↓</u>	↓ −−−− ↓		-		-						┝──┼		
			Grey-green colour, distinctly p			<u> </u>		<u> </u>	<u>↓</u>	<u> </u>	┼───											┝───┼		
			augite phenocrysts to 4 mm, 2	20% volume. Ground	amass is	<u> </u>			<u> </u>	┼──		I										┝──╁		
			feldspar phyric. Weak alteratic			+	+			<u> </u>	<u> </u>							<u> </u>			├──	┢━━━╋		
			Lower contact is broken but io	oks to be about 80	10 CA.		<u> </u>		<u> </u>	<u> </u>	<u> </u>											┝──╋		
7.5	8.0	AND	FELDSPAR PHYRIC AUGITE			7.5	8.0	<u> </u>	Tr	5	1						- <u>-</u>					┢──╋		
	0.0		Similar to 6.1 to 7.1 m.	FORFITTRITIO AI		1		<u>}</u>	 ``	├	<u> </u>											├── ┼		
							+	<u> </u>	┨─────	+												it		-
8.0	8.5	AP	AUGITE PORPHYRY LAPILL			8.0	8.5	<u> </u>	<u>├</u> -	3	<u> </u>				-	-	· ·						_	
0.0	0.5		Dark green to green-grey colo		ments to		1 0.0	·		<u> </u>														
			3 cm of feldspar phyric or aug	ite nombyritic andes	ite as	+	+	<u> </u>	 	+	t			+			<u>├</u> ──					 		
			seen at 6.1 to 7.1 m. and 7.1 t			+	+		<u> </u>	+	<u> </u>						h							
			absorbed. Variable magnetism			1	+	<u> </u>		+	<u>+</u>											+		
			lithology. Matrix is a feldspar			+	+	<u> </u>	<u>+</u>	1	<u> </u>											 		
			andesite.	pingino adgito porping		+	+	<u> </u>	·	+														
				·		+	1	<u> </u>	f	+	<u> </u>	+										+		
		<u>├</u>	<u> </u>	·····		+	+	<u> </u>	<u> </u>	+		1										+		

DATE CO	LLARED J	luly 27/95	DATE COMPLETED July 29, 1995	CORE SIZE NO	ſ	Ċ	IP TESTS	;		PROP	ERTY	SOUP		PROJ). 150	N.T.S.	No. 94	ID/8	GRID NO				
			FIELD CO-ORDINATES		DEPTH	BEA	RING	AN	GLE								SHEET		3	MAGNET	C DEC	LINATIC	DN 23*	
LAT. 625	15N		ELEV. 2180 m	DIP -60°		RECORDED	CORRECTED	RECORDER	CORRECTED	LAT.		ELEV.		DIP			HOLE			LOGGED				
DEP. 818			LENGTH 18.3 m	BEARING 240*	1		[DEP.		LENGT		BEARI			HS-9	5-3		DATE AU				
			1					GEOTEC	н					GEO	CHEM					A	SSAY			
		ROCK	DESCR	RIPTION				% RECO	%	%	Frac									SAMPLE				
FROM	то	TYPE	1			FROM	то	VERY	Py	Mt	Dens	FROM	то	Chi	Carb	Ер		FROM	то	No.	Au	Cu		
8.5	8.7	AND	FELDSPAR PHYRIC AUGITE	PORPHYRITIC ANI	DESITE				-	5	-			•		•								
			Light grey, crowded feldspar la	thes, minor well dev	reloped	l																		
			dark augite phenocrysts. Loca	al rusty fracture fill.																				
				· · · · · · · · · · · · · · · · · · ·															<u> </u>	L				l
8.7	9.0	AP_	AUGITE PORPHYRY						Tr	2	-			<u> </u>	·	-								
			Similar to 7.1 to 7.5 m. but ov	verall colour is slightl	y darker.		L			ļ	ļ								 					
						ļ	<u> </u>				ļ	 												
9.0	10.0	AND	FELDSPAR PHYRIC AUGITE		DESITE	9.1			<u> </u>	5	<u>↓</u> .					1					L			
		ļ	Similar to 6.1 to 7.1 m. Minor	epidote fracture fill.		9.1	12.2	75		Ļ	 	↓							L	l				L
								L	<u> </u>	<u> </u>	<u> </u>	 				<u> </u>		10.0		91302		144		
10.0	10.5	AP	AUGITE PORPHYRY	(10.0	10.5		3	l ·	5				· ·	3		10.0	11.1	91302	- 5	144		
		 	Light green, fine grained, rusty	racture fill, pervasi	ve and		<u> </u>	Į				 												
			fracture filled epidote. Oxidize					<u> </u>																
		 	filled pyrite. Difficult to see the attention. No feldspar visible		due to				[──		┼──┤												
		 	alteration. No feidspar visible	•		<u> </u>	<u> </u>		<u> </u>		╂									-				
10.5	14.9	AP	AUGITE PORPHYRY LAPILL	I TUFF		10.5	14.9		Tr	4	2				1	1		11.1	12.2	91303	5	90		
•			Similar to 8.0 to 8.5 m but con	e is more broken so	fragments	12.2	15.2	100																
		1	are not distinct. However litho				1		[
			ing clasts. Variably magnetic,																					
		1	onate fracture filled. Local py																					
			ated with pyroxene. Broken 0	.5 cm epidote/carboi	nate vein																			
			at 13.9 m, with pervasive epid	lote in vein envelope																				
										ļ	<u> </u>			L										
14.9	18.3	AP	AUGITE PORPHYRITIC FELI	المحدث الأسميد والمحمد والمحمد والمحمد والمحمد والمحافي والمحاف		14.9			<u> </u>	5	5	·		<u> - </u>	-	•		15.6	16.6	91304	5	133		
		I	Medium green, crowded felds			15.2	18.3	60	ļ	 	 													
		ļ	crysts varying from <1% to 59			<u> </u>		ļ		ļ		<u> </u>												
		{	all <2 mm. Local sections have			<u> </u>	<u> </u>		ł		<u> </u>	$\left \right $										ł		
		Į	where feldspar and pyroxene				<u> </u>		ļ			┝──┤		 									\rightarrow	$ \longrightarrow $
		ł	have a similar 1 mm crystal si			+	<u> </u>		 	<u> </u>	<u> </u>	<u> </u>											-+	
		┟	weak alteration of feldspar to			+	+		<u> </u>	 	<u> </u>	┥												$ \rightarrow $
			fine grained magnetite along a				<u> </u>	<u> </u>	┝────			┼──┤												$ \rightarrow $
		 	magnetite increases in fractur				┥	 		<u> </u>	╂───	┟───┤		 										
		 	light green pervasive epidote				+	 	<u> </u>	 	+	┼		<u>↓</u>										<u> </u>
	l	L	contact of alteration at 30° to	UA, lower contact wa	is not		1	1	1	1	1		I	1						L				

DATE CO	LLARED J	luly 27/95	DATE COMPLETED July 29, 1995	CORE SIZE NO	Г		DIP TESTS	3		PROP	ERTY	SOUP		PROJE	CT NC			No. 94		GRID NO				
			FIELD CO-ORDINATES	· · · · · · · · · · · · · · · · · · ·	DEPTH	BE/	ARING	AN	GLE									T 3 OF :		MAGNET				
LAT. 6251	5N		ELEV. 2180 m	DIP -60*		RECORDED	CORRECTED	RECORDED				ELEV.		DIP			HOLE	No.		LOGGED			1	
DEP. 818			LENGTH 18.3 m	BEARING 240°						DEP.		LENGT		BEAR			HS-9	5-3		DATE AU	GUST :	3, 1995		
								GEOTEC						GEO	CHEM		r	ļ			SSAY			
		ROCK	DESCR	RIPTION				% RECO	%		Frac						ł .			SAMPLE				j –
FROM	то	TYPE				FROM	то	VERY	Ру	Mt	Dens	FROM	TO	Chi	Carb	Ep	L	FROM	то	No.	Au	Cu		
			recovered.			ļ					L													L
			L			<u> </u>																		<u> </u>
			15.1 to 15.2 m. Very fine grain	ned, black coloured i	mafic	<u> </u>	I	ļ																<u> </u>
		L	dyke feldspar crystals present,	<3% volume. Mod	erately	ļ	ļ																	
			magnetic.			<u> </u>	<u> </u>																	<u> </u>
		ļ						l																┝──
18.3		┟────	Hole abandoned, water source	anea up.		+	ļ																	
		<u> </u>				<u> </u>	<u> </u>	<u>├</u>				——												<u> </u>
						╂	├ ────	┼																
		ł				<u>+</u>	 																	
						+	+			<u> </u>											<u> </u>			<u> </u>
						f	{	f	·															
						t					<u> </u>													
;						<u> </u>	1																	·
		l	······			1	1	1			<u> </u>													
		t	· · · · · · · · · · · · · · · · · · ·			1	1	1																
						1	1	1																
		·																						
						1																		
							1																	
																								,
											· · · · ·													
							ļ	ļ		ļ														
		L				4		ļ			I													
		l				4		ļ	L		L													
		L	ļ				ļ	ļ	ļ	I	I		L											
		ļ				ļ	<u> </u>	<u> </u>	ļ	Ļ	L			ļ									$ \rightarrow $	
		ļ				L	L	ļ	L	ļ	I													
		 	l				<u> </u>	 		ļ	ļ											\rightarrow		
	L	L	1			_	1		L	1			L		L								{	

DATE CO	LLARED A	ug 4/95	DATE COMPLETED Aug. 6/95-3 A.M. CORE SIZE NQ		DIP T	ESTS			PROP	ERTY	SOUP		PROJE	ECT NO	0.150	N.T.S.	No. 94	D8	GRID NO	N) HTS	.R.T. TRI	JE) 320°	
			FIELD CO-ORDINATES	DEPTH	BEARING		ANGLE									SHEE	ſ1OF	12	MAGNETI	C DECI	INATION	23*	
LAT. 621	34N		ELEV. 2075 m DIP -75*		RECORDED	CORRECTED	RECORDED	CORRECTED	LAT.		ELEV.		DIP	,		HOLE	No.		LOGGED	BY L. E	RDMAN		
DEP. 816	47E		LENGTH 144.1 m BEARING 214*		<u> </u>				DEP.		LENG	тн	BEARI	NG		HS-9	5-4		DATE AU	IGUST	5, 1995		
					1		GEOTEC	H			1		GEO	CHEN	1	•			A	SSAY	······		
		ROCK	DESCRIPTION				% RECO			Frac					Γ				SAMPLE	<u> </u>			-
FROM	то	TYPE			FROM	то	VERY	Py	Mt	dens	FROM	то	Chi	Carb	Ep.		FROM	то	No.				
0	2.1		CASING.	······································	1				1														
					1																		
2.1	3.0	AP	AUGITE PORPHYRITIC ANDESITE		2.1	3.0	50	-	3	1			•	•	1								
			Grey-green colour, poorly developed augite phe	nocrysts in a																			
			feldspar rich ground mass. No distinct feldspar la	thes or	1																		
			phenocrysts. Epidote fracture fill at 70° to C.A.	Dissemi-																			
			nated magnetite.																				
3.0	9.0	MZ	MONZONITE		5.0		-	Tr	1	1			2	1	-								
			Light grey, feldspar porphyritic in a fine grained		3.0		50																
			of homblende and feldspar. Oxidized, medium	rained pyrite	3.6	8.1	60																_
			Rusty fractures, carbonate fracture fill. Pervasiv		6.1	9.1	50																
			alteration of mafics. Fractures at 90° to CA. Ra																				
			quartz veins at 45° to CA. Magnetite is contained	l within																			
			mafics, pyrite is associated with feldspar.				, i																
9.0	12.9	AP	AUGITE PORPHYRITIC ANDESITE		9.0	12.9	16	•	2	5			3	2	-		12.1	15.1	91305				
•			Medium green similar to what was seen at start							I													
			chlorite alteration has increased. To 12.2 core v										I		<u> </u>								
			and rounded, some pieces exhibit pervasive epi							L					<u> </u>								
		-	ation. Below 12.2 larger pieces of core show irre																				
			carbonate filled fractures vertical to sub horizont	al to CA.														L					_
			Weak pervasive carbonate alteration.																1				
			12.1-Copper oxide on fractures, weathered mag																				
			fractures (1 mm). Main fracture at 30° to CA, dis	continuous																			
			fractures at various other angles.																				
															1								
12.9	13.2	MZ	MONZONITE		12.9		-	-	1	-			-	-	-								
			As at 3.0 to 9.0, core very broken.		12.2	15.2	60									<u> </u>							
13.2	17.5	AP	AUGITE PORPHYRITIC ANDESITE		_13.2	17.5	-		1	3			3	3	-		15.1	17.1	91306				
			Similar to 9.0 to 12.9 but interval is less rubbly.																				
			fracture fill and pervasive carbonate. Pervasive	chlorite.																			
			Variably magnetic from none to weak.																				
			2 cu. quartz vein at 85° to CA at 15.2 m.																				

•

DATE CO	LLARED A	ug 4/95	DATE COMPLETED Aug. 6/95-3 A.M. CORE SIZE NQ	1	DIP T	ESTS			PROP	ERTYS	OUP		PROJE	CT NO	0.150	N.T.S.	No. 94	D8	GRID NOF	THO	R.T. TR	UE) 3	20*
			FIELD CO-ORDINATES	DEPTH	BEARING		ANGLE									SHEET	12 OF	12	MAGNETI	C DECL	INATIO	N 23°	
LAT. 621	94N		ELEV. 2075 m DIP -75*		RECORDER	CORRECTED	RECORDED	CORRECTER	LAT.		ELEV.		DIP			HOLE	No.		LOGGED	BY L. E	RDMAN		
DEP. 816		·	LENGTH 144.1 m BEARING 214*						DEP.		LENGT	Н	BEARI	NG		HS-9	5-4		DATE AU	GUST	5, 1995		
							GEOTEC	Н					GEOC	CHEM		·			AS	SAY			
		ROCK	DESCRIPTION				% RECO			Frac						I			SAMPLE				
FROM	то				FROM	то	VERY	Py	Mt	dens	FROM	то	Chi	Carb	Ep.		FROM	то	No.				į –
			1 cm. quartz chlorite vein at 50° to CA at 17.0.	Carbonate																			
			fracture fill at 20°, 50°, 70°. Trace copper on frac	ture at 16.5.																			
			Trace copper on fracture at 16.5. Below 17.0 the	ere are no																			
			carbonate fractures but rock is still pervasive car	bonatized.																			
			locally flooded very fine grained magnetite (30%		1																		
17.5	19.4	AND	ANDESITE AUGITE PORPHYRY		17.5	19.4	-	-	7	1			2	1	1		17.1	19.4	91307				
			Medium gray, medium grained, no obvious augit	e pheno-								_											
			crysts. Looks intrusive from 17.5 to 17.7. Weak a																				
			fracture to epidote. Pervasive magnetite associa	ted with																			
			mafic minerals carbonate and more rarely carbo	nate/quartz																			
			fracture fill at 45° to CA. Epidote fracture fill and																				
			epidote in fracture envelope from 17.9 to 18.3. 1																				
			milky quartz/epidote vein at 85° to CA. 17.7m - 0).5cm. vein																			
			similar to above at 35° to CA. Local vertical wea	k pervasive																			
			carbonate.																				
			Below 18.4 the rock is less intrusive looking, fine																		_		
•			still no obvious pyroxene phenocrysts. Pervasive																i				
			chlorite fracture fill. 18.6-very magnetic with mag	netite within																			
			a carbonate fracture.																				
			19.1-19.4-Broken core, pervasive epidote, rusty	fractures	19.1	19.4		-	3	3			•	1	5					_			
			local strong magnetite but overall this interval is	non-mag-																			
			netic, minor carbonate.																				
																			L				
19.4	21.2		AUGITE PORPHYRY-INTRUSIVE TEXTURE		19.4	21.3	<u> </u>	· ·	5	-			·	1	3	1	19.4	20.2	91308				
			Dark green, mottled texture weak epidote alterat	ion of feld-																			
			spar, epidote fracture fill, rusty fractures. Carbor	ate fracture																			
			fill - 15°, 20°, 25° to CA. Silica veinlets/fractures											[I					
			Disseminated evenly distributed magnetite clots	given the																			
			core a mottled appearance.										1	L	L	ļ		L					
21.2	38.0	AND	ANDESITE - MAGNETITE/SILICA ZONE		21.2			1	40	20			4	-	<u> </u>			22.2					
			Medium green to black color, lithologies vary fro		21.3	24.4	100										21.3	23.2	91311				
			porphyry to feldspar phyric. All fractures are rust																				
			sections are totally oxidized. Pervasive magneti							L													
			with local sections flooded by magnetite/silica an	nd up to						L				L									

DATE CO		lug 4/95	DATE COMPLETED Aug. 6/95-3 A.M. CORE SIZE NQ	1	DIP TI	ESTS			PROP	ERTYS	SOUP		PROJ	ECT NO	0.150	N.T.S.	No. 94	D8	GRID NO	RTH (W	R.T. TR	UE) 3	20°
			FIELD CO-ORDINATES	DEPTH	BEARING		ANGLE									SHEE	F 10 OF	12	MAGNETI	C DECL	INATIO	N 23°	
LAT. 6219	94N		ELEV. 2075 m DIP -75*	1	RECORDED	CORRECTED	RECORDED	CORRECTED	LAT.		ELEV.		DIP			HOLE	No.		LOGGED	BY L. E	RDMAN		
DEP. 816			LENGTH 144.1 m BEARING 214*	1					DEP.		LENGT	гн	BEARI	NG		1HS-9	5-4		DATE AL	JGUST	5, 1995		
				4			GEOTEC	Н					GEO	CHEN		<u> </u>				SSAY			
		ROCK	DESCRIPTION				% RECO			Frac		<u> </u>				I			SAMPLE				
FROM	то				FROM	то	VERY	Py	Mt	dens	FROM	то	Chl	Carb	Ep.		FROM	то	No.			l	İ
94.0	94.4		Diabase dyke.																1				
			Medium grey, very fine grained. Upper contact at	30°. Lower															[
			contact is broken. Very fine grained magnetite.																				\square
																							\square
94.4	96.9	AP	FELDSPAR PHYRIC AUGITE PORPHYRITIC AN	DESITE	94.4	96.9	-	-	2	-			-	-	-								
			Same rock as at 93.2 to 94.0 but local sections ha	ve more	94.5	97.5	90																
			distinct feldspar crystals, pyroxene phenocrysts <	1%.																			
96.9	97.5	AP	AUGITE PORPHYRY - Completely altered.		96.9	97.5	-	-	1	-			-	-	5								
			Green, pyroxene phenocrysts in epidote matrix. Le																				
			strong magnetite on fractures but host is non-mag	netic.																			
97.5	111.4	AP	FELDSPAR PHYRIC AUGITE PORPHYRITIC AN	IDESITE.	97.5		-	Tr	2	2			ŀ	-	1		97.5	100.6	91347				
			Medium grey, fine grained porphyritic.		97.5	100.6	75																L
			Well defined feldspar phenocrysts < 1 mm, 25% v		100.6		50					·	I					ļ					L
			Generally pyroxene phenocrysts (15%) are of a si		103.6		100												L			!	L
			but locally pyroxene phenocrysts are < 4 mm. Rus		106.7	109.7	100		L									L					
		L	fractures at 45° and 135°, rare fractures sub paral	lel to CA.	109.7	112.8	100		<u> </u>					L		ļ			1				
		L	Weak alteration of feldspar to epidote.		ļ								_		I	L		ļ					ļ
		l			L				<u> </u>	<u> </u>		 	 	<u> </u>	Ļ	ļ		ļ		L			
111.4	111.7	AP	AUGITE PORPHYRY	·····	111.4	111.7	-	Tr		5			1	1	1			I	ļ	L			
		 	Medium green, very fine grained with feldspar and		L					ļ			<u> </u>		ļ			Ļ	L	L			
			phenocrysts. Feldspar (2%), augite (3%), both < 2		l					ļ		l	_	ļ	Ļ	I			ļ				┝
			Augites altering to carbonate/epidote/chlorite. Fra	ctures at	ļ				ļ	ļ		ļ	ļ						ļ	ļ			<u> </u>
		 	15°, 30°, 60° with carbonate/epidote.	· · · · · · · · · · · · · · · · · · ·	ļ	ļ	L		ļ	<u> </u>		I			L	 		ļ	L				ļ
		L			L		ļ		\vdash	 		ļ		 	ļ	ļ		ļ	 	Ļ			<u> </u>
111.7	112.3	MZ	MONZONITE		111.7	112.3	·	-	<u> </u>	<u> </u>		ļ	<u> </u>	<u> </u>	┝╧		<u> </u>		ļ				
		 	See description for 113.0-120.4. Contacts are bro	ken but	l	ļ				 		ļ		 	Ļ	 		ļ	 	<u> </u>			ļ
			upper contact is from 40° to 50°.	·····	ļ				_	<u> </u>			<u> </u>		<u> </u>			ļ	ļ	ļ			
110.5				DEOLTE	446.5		ļ		<u> </u>	 					<u> </u>	 		 	I	┣			
112.3	112.8		FELDSPAR PHYRIC AUGITE PORPHYRITIC AN		112.3	112.8	<u> </u>	Tr	3	5		ļ	<u> </u>	<u> </u>	1	 		<u> </u>	┟────	┣		-	<u> </u>
		<u> </u>	Broken rusty core. Similar to 97.5 to 111.4. Epidor	le on	<u> </u>			ļ		 	ļ	<u> </u>	 		 	┣──		 		┣			
		ļ	fractures.		ļ				 			 			<u> </u>				ļ				
		 	↓		l							 			<u> </u>		I	I	├ ──				┝───
		L			1	L	1	L	1	<u> </u>		L	1	L	L		L	L	L	L			i

DATE CO	LLARED	Aug 4/95	DATE COMPLETED Aug. 6/95-3 A.M. CORE SIZE NQ	1	DIP T	ESTS			PROP	ERTY S	SOUP		PROJE	CT NC	0.150	N.T.S.	No. 94	D8	GRID NOP	RTH (W	R.T. TRU	JE) 3.	20°
			FIELD CO-ORDINATES	DEPTH	BEARING		ANGLE									SHEE	Г 11 OF	12	MAGNETI	C DECI	INATION	23*	
LAT. 6219	94N		ELEV. 2075 m DIP -75*	1	RECORDED	CORRECTED	RECORDED	CORRECTED	LAT.		ELEV.		DIP			HOLE	No.		LOGGED	BY L. E	RDMAN		
DEP. 816	47E		LENGTH 144.1 m BEARING 214"	1					DEP.		LENGT	ГН	BEARI	NG		HS-9	5-4		DATE AL	GUST	5, 1995		
							GEOTEC	Н					GEO	CHEM					A	SSAY			
		ROCK	DESCRIPTION				% RECO			Frac									SAMPLE				
FROM	то	TYPE			FROM	то	VERY	Ру	Mt	dens	FROM	то	Chl	Carb	Ep.		FROM	то	No.				
112.8	120.4	MZ	MONZONITE		112.8	120.4	-	٦T	-	-			-	-	•								
		[Upper contact at 25% to CA but it is not sharp with	interval	112.8	115.8	100																
			above. Rather gradational as if dyke has absorbed		115.8		100																
			porphyry. Green grey colour with distinct, large (<		118.9	121.9	100																
			white feldspar phenocrysts. Phenocrysts 30% volu																				
			carbonate filled fractures. Ground mass feldspar is	6																			
			sausseritized but not phenocrysts. Rare cubic pyrc																				
			Trace ground mass homblende. Rare, weak, patch																				
			large epidote. Lower contact broken but the monze																				
			becomes fine grained and less porphyritic, as at to	р																			
120.4	120.7	DY	MONZONITE (?) DYKE		120.4	120.7	-	•	5	1			<u> </u>	-	1								
		Í	Black with 1 mm - 2 mm white feldspar crystals (5																	1			
			rusty fractures. Possibly chilled margin of previous	s intervals	L											<u> </u>							_
			monzonite. Epidote fracture fill.		ļ	ļ			ļ														
120.7	122.5		I FELDSPAR PHYRIC AUGITE PORPHYRITIC AN	DESITE	120.7	122.5	-	Tr	3				1							<u> </u>		-+	
12.0.7	122.0	<u>/ "</u>	Green grey, core fairly well broken. Rusty fracture		121.9					·										 			
			Feldspar phyric with minor (<1%) pyroxene pheno		125.0		50				t												
			Pyroxene altering to epidote. Sausseritized feldsp	ar.												<u> </u>							
		<u> </u>	Discrete disseminated magnetite crystals.			†				i						<u> </u>				<u> </u>			
		f			f											<u> </u>				<u> </u>			
			121.9 - 1 cm. quartz/carbonate vein @ 60° with fir	ne grained	1	<u> </u>				1													
		1	magnetite on vein margin.	¥		1					1												
		1				1			1	f													
122.5	130.7	AP	AUGITE PORPHYRITIC ANDESITE		122.5	130.7	•	Tr	1	1			1	1	1		122	125	91345	<u> </u>			
			Medium green porphyritic texture.		128.0	131.1	100										125	128	91346				
		1	Pyroxene phenocrysts to 4 mm. in a feldspar phyr	ic matrix.							1				-								
		1	Phenocrysts volume 20%. Rusty fractures at 30° t	o 60° to		1																	
			CA. Epidote fracture fill, local carbonate veinlets (< 0.5 cm)		1			T	1												- 1	
			at 45°. Variably magnetic, from none to moderate																				
									ļ														
130.7	140.3	AP	FELDSPAR PHYRIC AUGITE PORPHYRITIC AN	DESITE	130.7		<u> </u>	<u> </u>	3	1	 	L		2	1					L			
		I	Similar to 120.7 to 122.5. Very broken to 137.1.		131.1				ļ			ļ				<u> </u>				L		$ \rightarrow $	
			1 cm quartz/carbonate vein at 134.0 broken core.		134.1	137.1	20	L	L		1	L	1		L	L			L	L	L		

.....

DATE CO	LLARED A	lug 4/95	DATE COMPLETED Aug. 6/95-3 A	M. CORE SIZE NO	1	DIP T	ESTS			PROP	ERTY S	SOUP		PROJE	CT NC	0.150	N.T.S.	No. 94	D8	GRID NO	RTHM	R.T. TR	UE) 3	20*
			FIELD CO-ORDINATES		DEPTH	BEARING		ANGLE									SHEE	T 12 OF	12	MAGNETI	C DEC	INATION	23	
LAT. 6219	MN		ELEV. 2075 m	DIP -75*	i	RECORDED	CORRECTED	RECORDED	CORRECTED	LAT.		ELEV.		DIP			HOLE	No.		LOGGED	BY L. E	RDMAN		
DEP. 816	47E		LENGTH 144.1 m	BEARING 214"	1					DEP.		LENG	гн	BEARI	NG		HS-9	5-4		DATE AL	JGUST	5, 1995		
								GEOTEC	H					GEO	CHEM	ł				A	SSAY			
1		ROCK	DES	SCRIPTION				% RECO			Frac									SAMPLE	Γ			
FROM	то	TYPE			_	FROM	то	VERY	Py	Mt	dens	FROM	то	Chi	Carb	Ep.		FROM	то	No.	1			i '
			Similar vein at 137.2 at 70°	' to CA.		137.1	140.2	80																
			Fractures at 30°, 80°, 45°.																					
			Carbonate fracture fill, carb	onate/epidote fracture	fill, weak																			
			pervasive carbonate.																					
			Discrete disseminated mag	netite.	_																			
140.3	146.6	DI	DIORITE			140.3		-	-	2	1			1	2	-								
			Grey green, fine grained.			140.2		90																
			Local rusty fracture fill. Per			143.3	146.3	95																
			altered to chlorite, discrete																					
			crystals as well as magneti																					
			Veinlets and fractures at 20		<i>r</i> ith																			
			epidote/carbonate or carbo	nate.																				
																								i
146.6			EOH - Water source dried	up		ļ							L											
						1										L		l		L	L			
						ļ				ļ	1		 			I	ļ	L	L		ļ			
			· 			ļ						L	 			I		L	ļ	ļ	L			
											L	L	 			Į	<u> </u>	ļ	L					
		L								L	L					ļ					ļ			ļ
		l								 			L	I		L	I	<u> </u>	L	I	L			
						<u> </u>					L		 	1		<u> </u>	L	ļ	 		 			
										Į		l	ļ			L	L	I		L	I	 		
							L			 		L	ļ			L	I	ļ	L	L	L			
		I	· · · · · · · · · · · · · · · · · · ·				L			ļ	ļ						ļ	ļ	ļ	ļ				
							L				Ļ	ļ	ļ			I	L	<u> </u>	L	L				
	·····					.l	ļ			 	 	 	ļ			ļ	ļ	ļ		L	\vdash			
				······		L	L			 	L	I	 	-	L	I	<u> </u>	<u> </u>	 	L	I			
		 				ļ	L				L	 				I	L		L	L				
							L			 			ļ			L	ļ	I	 	L				
							L			 	L	L	<u> </u>			1	L	L	 	L	1			
							L				L					L	 	1		L	L			·
		ļ		·····						 	ļ	 	 		L	l	 	L	L		L			
		l				+	L			 	I	L	ļ		L		 		L	L	I			
		l	L				1			L	L	1	l			1	L			L	1			

DATE CO	LLARED A	ug 4/95	DATE COMPLETED Aug. 6/95-3 A.M. CORE SIZE NO		DIP T	ESTS			PROP	ERTY S	SOUP		PROJE	CT NO	D.150	N.T.S.	No. 94	D8	GRID NO	RTH (M	.R.T. TR	(UE) 3	20°
			FIELD CO-ORDINATES	DEPTH	BEARING		ANGLE									SHEE	T 3 OF	12	MAGNETI	C DEC	INATIO	N 23°	
LAT. 6219	94N		ELEV. 2075 m DIP -75°		RECORDED		RECORDED	CORRECTED	LAT.		ELEV.		DIP			HOLE	No.		LOGGED	BY L. E	RDMAN		
DEP. 816			LENGTH 144.1 m BEARING 214"		1	1			DEP.		LENGT	H	BEAR	NG		1HS-9	5-4		DATE AL	JGUST	5, 1995		
							GEOTEC	H			1		GEOC	CHEN	1	•••••			A	SSAY			
		ROCK	DESCRIPTION				% RECO			Frac	T				Γ				SAMPLE	[
FROM	то	TYPE			FROM	то	VERY	Py	Mt	dens	FROM	то	Chi	Carb	Ep.	ſ	FROM	то	No.		1		
			10% coarsely crystalline pyrite. Where there is	no addition of	1	<u> </u>																	
			silica andesite is chloritic.Chlorite present on fr																				
			surfaces .																				
			21.2 - 22.2 m Magnetite/silica alteration not as	intense as in																			
			remainder of interval with no flooding, only ma	gnetite/quartz																			
			veins and 3% pervasive magnetite. Fractures	are predomi-																			
			nantly at 45° to CA. Magnetite/silica veins ≤1.		I																		
			60°, subparallel, 15°, 50°, 70°. Pyrite/silica ve	ns at 45°. At																			
			36.5 possible copper in massive pyrite/silica ve	in (1 cm) at											Γ	_							
			45°.																				
			27.3-28.2 Intense magnetite/silica/pyrite flood	ng. No																			
			distinct veins (ocallyrhlartic).																				
			28.2-29.9 Completely oxidized, boxwork textu																				
			31.3-31.7 Oxidized boxwork texture, chloritic I	iost, massive																			
			magnetite soils, disseminated pyrite (5%).																				
			37.5 - 38.0 Oxidized, chloritic host, quartz vei	NS											ļ								
38.0	41.8		ANDESITE		38.0		<u> </u>	Tr	7	5				2	3	1	38.0						I
·			Green-gray fine grained, no visible phenocryst		39.6	42.7	100	L							L	L		40.0					L
			spar crystals. Pyrite fracture fill, epidote fracture															41.0					ļ
			pervasive chlorite. Pervasive veinlet and fraction		L												41.0	42.0	91329				L
			ate. Disseminated fine grained magnetite. Inte												_	L							L
			with a carbonate flooded "vein" (3 cm) at 20° to												ļ		L			L			L
L			malachite. Malachite on fracture fill and in ass												ļ	<u> </u>							L
			carbonate continues throughout interval but is			L	L			L					 	 							L
L			comes increasingly less below chlorite floodin		1		L			L								I	L				L
		L	chlorite flooding for the first 30 cm of interval						I						ļ			L	l				L
			flooding ceases. Carbonate veins with trace py												I	L							L
			malachite associated in Pyrite carbonate veins	at 20°, 45°,					ļ						L								L
			30° causes a streaky texture.							<u> </u>					ļ	I			L	ļ			
						ļ			l	L					<u> </u>					ļ			L
41.8	42.5	AND	ANDESITE		41.8	42.5	· -	-	Tr	1				2	2	l	42.0	43	91330	I			L
		L	Medium green, fine grained. No carbonate vei	ns but some					ļ	L			-			 	 	L	L	1			i
L		L	carbonate/epidote fractures at 40°, 30°, 20° to		ļ	L		L		I					 	 			L	L			<u> </u>
L		L	Tuffaceous texture with feldspar crystals more			Ļ			ļ	<u> </u>					 	 	L			I			
L	l	I	observable than in above interval. Carbonate t	ine fracture	1		1		L	L			1		L			l	l				L'

DATE CO	LLARED A	lug 4/95	DATE COMPLETED Aug. 6/95-3 A.M. CORE SIZE NQ		DIP TE	STS			PROP	ERTYS	SOUP		PROJE	CT NC	0.150	N.T.S.	No. 94	D8	GRID NO	TH (W	R.T. TR	UE) 32	.0°
				DEPTH	BEARING		ANGLE									SHEE	14 OF	12	MAGNETI	C DECL	INATIO	V 23°	
LAT. 621	94N		ELEV. 2075 m DIP -75°		RECORDED	CORRECTED	RECORDED	CORRECTED	LAT.		ELEV.		DIP			HOLE	No.		LOGGED	BY L. EI	RDMAN		
DEP. 816	47E		LENGTH 144.1 m BEARING 214"						DEP.		LENGT	н	BEARI	NG		HS-9	5-4		DATE AL	GUST	5, 1995		
							GEOTEC	н	.				GEOC	HEM	I				Ā	SSAY			
		ROCK	DESCRIPTION				% RECO			Frac									SAMPLE				
FROM	то	TYPE		[FROM	то	VERY	Py	Mt	dens	FROM	то	Chi	Carb	Ep.		FROM	то	No.				
			and "spots" of carbonate weak epidote alteration of f	feldspar.																			
										_													
42.5	42.9	AND	ANDESITE		42.5	42.9	- 1	•	7	5			2	3	-								
			Similar to 38 to 41.8 but no malachite stain observed	d.	42.7	45.7	100																
							1																
42.9	43.3	AND	ANDESITE		42.9	43.3	-	•	Tr	1			1	2	2								
			Similar to 41.8 to 42.5 in appearance but at 43.1 is s	strong																			
			disseminated magnetite in envelope of a carbon/epic																				
			veinlet at 50° to CA which blows out in several radia																				
			ing fractures over a 3 cm interval. Gradational lowe	r contact																			
43.3	48.2	AP	AUGITE PORPHYRY		43.3	45.6	-	Tr	3	5			1	3	1		43.0	44.0	91331				
			Grey-green porphyritic texture. Phenocrysts are up to	o 2 mm	45.6	48.2	-	•	7	5			1	1	-			45.0					
			large and altered to carbonate + disseminated magn	netite	45.7	48.2	95										45.0	46.0	91333				
			(trace). These are perhaps pyroxene phenocrysts. C.	arbon-														42.0	91334				
			ate fracture fill and veinlets at 35°, 45°, 50°, 60° and														47.0	48.2	91335				
			CA, many at 50°. Weak pervasive epidote alteration																				
			feldspar. Variably magnetite with fine grained magnet																				
			throughout interval. Weak pervasive chlorite alteration																				
			45.0 m downwards the core has a rusty surface and												L								
			malachite. From 45.6 m the core is broken with mala						l														
			azurite on fractures and disseminated. Very fine grain	in																			
			magnetite is more abundant (2 5%)]		
			azurite coated fractures. At 47.3 - 10 cm piece of co																				
			boxwork texture with malachite disseminated throug	hout.																			
L																L							
45.6	48.2	AND	From 45.6 to 48.2 most core is so oxidized original t																				
			cannot be determined but rare pieces show textures																				
			to the top of the interval. Included with interval abov	/e.																			
48.2	49.6	AND	ANDESITE		48.2	49.6	•	Tr	Tr	1			-	1	1		48.2	49.2	91336				
			Medium green fine grain with visible feldspar crystal	ls,																			
			some euhedral alteration < 1 mm, rare pyroxene photon																				
			to 3 mm. Similar to 42.9 to 43.3. Carbonate fracture																				
			malachite in carbonate fractures in first 10 cm of inte	erval.									1		I						T		

DATE CO	LLARED A	Jug 4/95	DATE COMPLETED Aug. 6/95-3 A.M.	CORE SIZE NO	r	DIP T	ESTS			PROP	ERTY S	SOUP		PROJE		0.150	N.T.S.	No. 94	D8	GRID NO				
			FIELD CO-ORDINATES		DEPTH	BEARING		ANGLE									SHEE	T 5 OF	12	MAGNET				
AT. 6218	94N			DIP -75*	1	RECORDED	CORRECTED	RECORDER	CORRECTED	LAT.		ELEV.		DIP			HOLE	No.		LOGGED	BY L. E	RDMAN		
DEP. 816			LENGTH 144.1 m	BEARING 214"	<u> </u>	1				DEP.		LENGT	н	BEARI	NG		HS-9	5-4		DATE AL				
						1		GEOTEC	ЭH					GEOC	CHEM					A	SSAY			
		ROCK	DESCR	IPTION				% RECO			Frac									SAMPLE				
FROM	то	TYPE				FROM	то	VERY	Py	Mt	dens	FROM	то	Chl	Carb	Ep.		FROM	то	No.			_	
			Variably magnetic from none to	o trace. Rare very fi	ne grained																			
			pyrite.																					
49.6	51.0	AND	ANDESITE			49.6	51.0	•	-	2	1				1	-		49.2	51.2	91337				
			Gray-green, fine grained with p	oorly developed cry	rstals.					<u> </u>											L			ļ
			Carbonate 'fracture fill at 30°, 1																		 		_	
			quartz/carbonate vein at 20°. D																					
			magnetite. Pyroxene crystals to	o 1 mm visible ton s	plit sur-																L			
			face of core.			L			L			┝──┥									 			
						L			ļ	<u> </u>	<u> </u>			<u> </u>							ļ			
51.0	51.5	AND	ANDESITE		<u> </u>	51.0	51.5	<u> </u>	<u> </u>	1	1				1	1					 			
			Similar to 48.2 to 49.6 but no m			ļ				<u> </u>				1										
			Gradational contact with interva	al below.	1000 Marco	I			<u> </u>	 														
				<u> </u>					┨─────	 	l	┨──┨								·				
51.5	52.3	AND	ANDESITE	1		51.5	52.3		↓	·	<u> - </u>	┠		├	-	·								
		ļ	Finer grain phase of the andesi	ne in the interval ab	ove.																			
	57.5	AP			DECITE	52.3	57.5	 		1-1	1			2	1	1					 		_	
52.3	57.5		FELDSPAR PHYRIC AUGITE		DESITE	51.8				<u>├</u> '	<u>├</u> '					<u> </u>								
			Medium grey, fine grain porphy Pyroxene phenos are not abun	dent and locally no	N/MYADA	54.9				<u> </u>														
			is observed.Crowded feldspar	cant and locally no	pyroxerie	34.8	57.8		′ 	 	┼	┨───┤												
			so rock has a grainy appearance			+		<u> </u>	<u> </u>		┼──													
			locally. Feldspar veinlets and fi			<u> </u>			<u>├</u> ───	 	<u> </u>	┼──┤											_	
			epidote salvage, 30°. 25°, 10°,			+		<u> </u>	1	†	<u> </u>	<u>├</u> ──┤					<u> </u>					├── - ╂		
			54m-Chlorite vein with calcite		A Generaliv	,	<u> </u>		<u> </u>	t	+	┼──┤												
		<u> </u>	trace magnetite, locally 3° mag			+	<u> </u>		1	†	+													
		t	carbonate/epidote vein at 20° v			<u> </u>		t	<u>†</u>	<u>† </u>	1		<u> </u>				t	<u> </u>						
		<u> </u>	envelope. At 56.8 a magnetite	fracture fill with 0.4	cm	1	<u> </u>	<u> </u>	1	†	<u>† </u>													
		1	epidote envelope, pervasive m			1	<u> </u>	1	1	†	<u>† </u>					İ								
		<u> </u>	adjacent to fracture. Weak epic			<u> </u>	t	t	1	1	1													
		t				+	<u> </u>	1	1	1	1													
		<u> </u>				<u> </u>	1	1		1	1													
57.5	57.7	DY	DYKE - ANDESITE	······································		57.5	57.7		-	•	-			•	•	-								
		<u> </u>	Very fine grained, green grey.	Upper contact at 10	°, lower	T	Γ	Γ																
	1		contact broken. Minor <1mm f			1		T																

AT. 62194N DEP. 81647E FROM TO 57.7 58.4 58.4 58.6 58.6 58.7 58.6 58.7 58.7 60.5 58.7 60.5 60.5 62.1	ROCK	FELDSPAR PHYRIC (AUGIT Similar to 52.3 to 57.5. Variab at contact with dyke below. DYKE - ANDESITE Upper contact 35°, lower cont but with quartz/carbonate/epic FELDSPAR PHYRIC (AUGIT Similar to 52.3 to 57.5. (FELDSPAR PHYRIC) AUGIT Medium green fine grained, lo Overall finer grain size than a similar to above interval. Rut Malachite in fracture fill at 59.	DIP -75° BEARING 214° CRIPTION E PORPHYRITIC) A bly magnetic, from 0, tact 45°. Similar to 5 dote fracture fill at 45 E PORPHYRITIC) A TE PORPHYRITIC A ocal pyroxene pheno above interval but loc bbly core at start of in	to 5% 7.5-57.7 5° to CA. NDESITE NDESITE crysts. cal sections interval.	BEARING RECORDED FROM 57.7 57.9 58.4 58.6 58.6 58.7		ANGLE RECORDED GEOTEC % RECO VERY - 100	-	DEP.	Frac dens - 5 - 1	ELEV.	G	DIP IEARING EOCHE 2 2 2 2 1	to Ep 1	HOLE HS-E	FROM		MAGNETI LOGGED DATE AL AS SAMPLE No. 91338	BY L E JGUST SSAY	RDMAN	
DEP. 81647E FROM TO 57.7 58.4 58.4 58.6 58.6 58.7 58.6 58.7 58.7 60.5	D TYPE AP DK AP	ELEV. 2075 m LENGTH 144.1 m DESC FELDSPAR PHYRIC (AUGIT Similar to 52.3 to 57.5. Variab at contact with dyke below. DYKE - ANDESITE Upper contact 35°, lower cont but with quartz/carbonate/epic FELDSPAR PHYRIC (AUGIT Similar to 52.3 to 57.5. (FELDSPAR PHYRIC) AUGIT Medium green fine grained, lo Overall finer grain size than a similar to above interval. Rut Malachite in fracture fill at 59.	BEARING 214° CRIPTION E PORPHYRITIC) A bly magnetic, from 0, tact 45°. Similar to 5 dote fracture fill at 45 E PORPHYRITIC) A TE PORPHYRITIC A ocal pyroxene pheno above interval but loc bbly core at start of in	to 5% 7.5-57.7 5° to CA. NDESITE NDESITE crysts. cal sections interval.	FROM 57.7 57.9 58.4 58.4 58.6	TO 58.4 60.1 58.6 58.7	GEOTEC % RECO VERY	н - -	DEP.	Frac dens - 5	LENGT	G	Chi Ca 2 2 1	to Ep 1	HS-6	FROM	то 	DATE AL AS SAMPLE No.			
DEP. 81647E FROM TO 57.7 58.4 58.4 58.6 58.6 58.7 58.6 58.7 58.7 60.5	D TYPE AP DK AP	DESC FELDSPAR PHYRIC (AUGIT Similar to 52.3 to 57.5. Variab at contact with dyke below. DYKE - ANDESITE Upper contact 35°, lower cont but with quartz/carbonate/epic FELDSPAR PHYRIC (AUGIT Similar to 52.3 to 57.5. (FELDSPAR PHYRIC) AUGIT Medium green fine grained, lo Overall finer grain size than a similar to above interval. Rut Malachite in fracture fill at 59.	CRIPTION E PORPHYRITIC) A bly magnetic, from 0, tact 45°. Similar to 5 dote fracture fill at 45 E PORPHYRITIC) A TE PORPHYRITIC A ocal pyroxene pheno above interval but loc bbly core at start of in	to 5% 7.5-57.7 5° to CA. NDESITE NDESITE crysts. cal sections interval.	57.7 57.9 58.4 58.6	TO 58.4 60.1 58.6 58.7	% RECO VERY	Py -	Mt 1	Frac dens - - 5 - 1	- 1	G		to Ep 1	1	FROM	то 	A: SAMPLE No.	SSAY	5, 1995	
FROM TO 57.7 58.4 58.4 58.6 58.6 58.7 58.6 58.7 58.7 60.5	D TYPE AP DK AP	DESC FELDSPAR PHYRIC (AUGIT Similar to 52.3 to 57.5. Variab at contact with dyke below. DYKE - ANDESITE Upper contact 35°, lower cont but with quartz/carbonate/epic FELDSPAR PHYRIC (AUGIT Similar to 52.3 to 57.5. (FELDSPAR PHYRIC) AUGIT Medium green fine grained, lo Overall finer grain size than a similar to above interval. Rut Malachite in fracture fill at 59.	CRIPTION E PORPHYRITIC) A bly magnetic, from 0, tact 45°. Similar to 5 dote fracture fill at 45 E PORPHYRITIC) A TE PORPHYRITIC A ocal pyroxene pheno above interval but loc bbly core at start of in	to 5% 7.5-57.7 5° to CA. NDESITE NDESITE crysts. cal sections interval.	57.7 57.9 58.4 58.6	TO 58.4 60.1 58.6 58.7	% RECO VERY	Py -	Mt -	dens 	FROM	T	Chi Ca 2 2 2 	to Ep 1	1			SAMPLE No.			
57.7 58.4 58.4 58.6 58.6 58.7 58.6 58.7 58.7 60.5	D TYPE AP DK AP	FELDSPAR PHYRIC (AUGIT Similar to 52.3 to 57.5. Variab at contact with dyke below. DYKE - ANDESITE Upper contact 35°, lower cont but with quartz/carbonate/epic FELDSPAR PHYRIC (AUGIT Similar to 52.3 to 57.5. (FELDSPAR PHYRIC) AUGIT Medium green fine grained, lo Overall finer grain size than a similar to above interval. Rut Malachite in fracture fill at 59.	TE PORPHYRITIC) A bly magnetic, from 0, tact 45°. Similar to 5 dote fracture fill at 45 TE PORPHYRITIC) A TE PORPHYRITIC A ocal pyroxene pheno above interval but loc bbly core at start of in	to 5% 7.5-57.7 5° to CA. NDESITE NDESITE crysts. cal sections interval.	57.7 57.9 58.4 58.6	58.4 60.1 58.6 58.7	VERY		Mt -	dens 	FROM		2		1			No.			
57.7 58.4 58.4 58.6 58.6 58.7 58.6 58.7 58.7 60.5	AP	FELDSPAR PHYRIC (AUGITI Similar to 52.3 to 57.5. Variab at contact with dyke below. DYKE - ANDESITE Upper contact 35°, lower cont but with quartz/carbonate/epic FELDSPAR PHYRIC (AUGITI Similar to 52.3 to 57.5. (FELDSPAR PHYRIC) AUGITI Medium green fine grained, lo Overall finer grain size than a similar to above interval. Rut Malachite in fracture fill at 59.	bly magnetic, from 0, tact 45°. Similar to 5 dote fracture fill at 45 TE PORPHYRITIC) A TE PORPHYRITIC A ocal pyroxene pheno above interval but loc bbly core at start of in	to 5% 7.5-57.7 5° to CA. NDESITE NDESITE crysts. cal sections interval.	57.7 57.9 58.4 58.6	58.4 60.1 58.6 58.7	-			- 5	FROM		2		1						
57.7 58.4 58.4 58.6 58.6 58.7 58.6 58.7 58.7 60.5	DK AP	Similar to 52.3 to 57.5. Variab at contact with dyke below. DYKE - ANDESITE Upper contact 35°, lower cont but with quartz/carbonate/epic FELDSPAR PHYRIC (AUGITI Similar to 52.3 to 57.5. (FELDSPAR PHYRIC) AUGITI Medium green fine grained, lo Overall finer grain size than a similar to above interval. Rut Malachite in fracture fill at 59.	bly magnetic, from 0, tact 45°. Similar to 5 dote fracture fill at 45 TE PORPHYRITIC) A TE PORPHYRITIC A ocal pyroxene pheno above interval but loc bbly core at start of in	to 5% 7.5-57.7 5° to CA. NDESITE NDESITE crysts. cal sections interval.	57.9 58.4 58.6	60.1 58.6 58.7	- 100 - -	•	1 				2 -	1 -		58.7	59.7	91338			
58.4 58.6 58.6 58.7 58.7 60.5	AP	Similar to 52.3 to 57.5. Variab at contact with dyke below. DYKE - ANDESITE Upper contact 35°, lower cont but with quartz/carbonate/epic FELDSPAR PHYRIC (AUGITI Similar to 52.3 to 57.5. (FELDSPAR PHYRIC) AUGITI Medium green fine grained, lo Overall finer grain size than a similar to above interval. Rut Malachite in fracture fill at 59.	bly magnetic, from 0, tact 45°. Similar to 5 dote fracture fill at 45 TE PORPHYRITIC) A TE PORPHYRITIC A ocal pyroxene pheno above interval but loc bbly core at start of in	to 5% 7.5-57.7 5° to CA. NDESITE NDESITE crysts. cal sections interval.	58.4	58.6	-	•	- - - Tr				1	1 -		58.7	59.7	91338			
58.6 58.7 58.7 60.5	AP	DYKE - ANDESITE Upper contact 35°, lower cont but with quartz/carbonate/epic FELDSPAR PHYRIC (AUGITI Similar to 52.3 to 57.5. (FELDSPAR PHYRIC) AUGIT Medium green fine grained, lo Overall finer grain size than a similar to above interval. Rut Malachite in fracture fill at 59.	dote fracture fill at 45 TE PORPHYRITIC) A TE PORPHYRITIC A ocal pyroxene pheno above interval but loc bbly core at start of ir	* to CA. NDESITE NDESITE crysts. cal sections nterval.	58.6	58.7	-	•	- - - Tr				1	1 -		58.7	59.7	91338			
58.6 58.7 58.7 60.5	AP	Upper contact 35°, lower cont but with quartz/carbonate/epic FELDSPAR PHYRIC (AUGITI Similar to 52.3 to 57.5. (FELDSPAR PHYRIC) AUGIT Medium green fine grained, lo Overall finer grain size than a similar to above interval. Rut Malachite in fracture fill at 59.	dote fracture fill at 45 TE PORPHYRITIC) A TE PORPHYRITIC A ocal pyroxene pheno above interval but loc bbly core at start of ir	* to CA. NDESITE NDESITE crysts. cal sections nterval.	58.6	58.7		•	- - Tr				1	1 -		58.7	59.7	91338			
58.6 58.7 58.7 60.5	AP	Upper contact 35°, lower cont but with quartz/carbonate/epic FELDSPAR PHYRIC (AUGITI Similar to 52.3 to 57.5. (FELDSPAR PHYRIC) AUGIT Medium green fine grained, lo Overall finer grain size than a similar to above interval. Rut Malachite in fracture fill at 59.	dote fracture fill at 45 TE PORPHYRITIC) A TE PORPHYRITIC A ocal pyroxene pheno above interval but loc bbly core at start of ir	* to CA. NDESITE NDESITE crysts. cal sections nterval.	58.6	58.7	-	•	- - Tr				1	1 -		58.7	59.7	91338			
58.7 60.5		but with quartz/carbonate/epic FELDSPAR PHYRIC (AUGITI Similar to 52.3 to 57.5. (FELDSPAR PHYRIC) AUGIT Medium green fine grained, lo Overall finer grain size than a similar to above interval. Rut Malachite in fracture fill at 59.	dote fracture fill at 45 TE PORPHYRITIC) A TE PORPHYRITIC A ocal pyroxene pheno above interval but loc bbly core at start of ir	* to CA. NDESITE NDESITE crysts. cal sections nterval.					- Tr						1	58.7	59.7	91338			
58.7 60.5		FELDSPAR PHYRIC (AUGITI Similar to 52.3 to 57.5. (FELDSPAR PHYRIC) AUGIT Medium green fine grained, lo Overall finer grain size than a similar to above interval. Rut Malachite in fracture fill at 59.	E PORPHYRITIC) A TE PORPHYRITIC A ocal pyroxene pheno above interval but loc bbly core at start of ir	NDESITE NDESITE crysts. al sections nterval.			-		- Tr						1	58.7	59.7	91338			
58.7 60.5		Similar to 52.3 to 57.5. (FELDSPAR PHYRIC) AUGIT Medium green fine grained, lo Overall finer grain size than a similar to above interval. Rub Malachite in fracture fill at 59.	TE PORPHYRITIC A ocal pyroxene pheno above interval but loc bbly core at start of ir	NDESITE crysts. cal sections nterval.			-		- Tr						1	58.7	59.7	91338			
58.7 60.5		Similar to 52.3 to 57.5. (FELDSPAR PHYRIC) AUGIT Medium green fine grained, lo Overall finer grain size than a similar to above interval. Rub Malachite in fracture fill at 59.	TE PORPHYRITIC A ocal pyroxene pheno above interval but loc bbly core at start of ir	NDESITE crysts. cal sections nterval.					- Tr						1	58.7	59.7	91338			
	AP	(FELDSPAR PHYRIC) AUGIT Medium green fine grained, lo Overall finer grain size than a similar to above interval. Rut Malachite in fracture fill at 59.	ocal pyroxene pheno above interval but loc bbly core at start of ir	crysts. al sections nterval.	58.7	60.5	•	-	Tr	1	+			1	1	58.7	59.7	91338			
	AP	Medium green fine grained, lo Overall finer grain size than a similar to above interval. Rut Malachite in fracture fill at 59.	ocal pyroxene pheno above interval but loc bbly core at start of ir	crysts. al sections nterval.	58.7	60.5	-	-	Tr	1		=	_1	1	1	58.7	59.7	91338			_
	AP	Medium green fine grained, lo Overall finer grain size than a similar to above interval. Rut Malachite in fracture fill at 59.	ocal pyroxene pheno above interval but loc bbly core at start of ir	crysts. al sections nterval.	58.7	60.5	-	-	Tr	1	+		_1	1	1	58.7	59.7	91338			\pm
60.5 62.1		Overall finer grain size than a similar to above interval. Rut Malachite in fracture fill at 59.	above interval but loc bbly core at start of ir	al sections																	
60.5 62.1		similar to above interval. Rut Malachite in fracture fill at 59.	bbly core at start of in	nterval.											_	1			1		
60.5 62.1		Malachite in fracture fill at 59.												+		 					
60.5 62.1).2m,aiso at 59.2 <1 c											+							
60.5 62.1											—			-				 			
60.5 62.1		ate/epidote vein at 45°. Pervi								ļ											
60.5 62.1		3% in vein envelope, also epi	idote alteration of fek	dspar in			ļ. <u> </u>									┢──					-+
60.5 62.1		envelope.	······································		ļ											<u> </u>					-+
60.5 62.1	+													1-		<u> </u>					
	AP	FELDSPAR PHYRIC AUGITE			60.5	61.2 62.5	-	· · ·	<u> - </u>	1				4-	2	<u> </u>					
		Similar to 52.3 to 57.2. At 59.			60.1	62.5	100							+							-+
		out, with central discontinuous							<u> </u>							+					-+-
, ,	- 	epidote envelope, total width	8 cm. weak chiome	arteration											<u> </u>						-+-
		of pyroxene.							<u> </u>	<u> </u>				+		+					<u> </u>
010 017	-	ANOFOITE			64.0	64.7			Tr			-+				<u> </u>					
61.2 61.7	AND	ANDESITE Medium green, fine grained.	· · · · · · · · · · · · · · · · · · ·		61.2	61.7	· · · · · · · · · · · · · · · · · · ·		<u> </u>			<u> </u>	<u>-</u>								
	+		antast gendational E	oldener	<u> </u>																-+-
		Upper contact at 30°, lower co and pyroxened crystals <1mn			┼					<u> </u>	┝									-+	-+
		spar >> pyroxened crystals <1mn			+		<u> </u>		+	-	┝──╁	\rightarrow		+	+	+			\vdash		+
	+	mm) at 30° to CA. Pyrite epid								\vdash	┝╼╍╋			+		+				-+-	
	1	ining at 30° to CA. Pynte epid	uoterquartz mied mac		+			├ ───-			┝╼╼┥					+					
61.7 65.3			E PORPHYRITIC AN		61.7	65.3		Tr	Tr				-1-	1	1	62	64	91339			
01.1 00.3	AP				1 01./	00.3	100		1 11		┝───┿			·+		+ ²		01008	├{		<u> </u>

DATE CO	LLARED A	ug 4/95	DATE COMPLETED Aug. 6/95-3 A.M. CORE SIZE NO		DIP TI	ESTS			PROP	ERTY	SOUP		PROJE	CT NO	0.150	N.T.S.	No. 94	D8	GRID NO	TH (W	R.T. TR	UE) 3	320*
			FIELD CO-ORDINATES	DEPTH	BEARING		ANGLE					_				SHEE	T 7 OF	12	MAGNET	C DEC	INATIO	V 23*	
LAT. 621	94N		ELEV. 2075 m DIP -75°		RECORDED	CORRECTED	RECORDED	CORRECTED	LAT.		ELEV.		DIP			HOLE	No.		LOGGED	BY L. E	RDMAN		
DEP. 816	47E		LENGTH 144.1 m BEARING 214*						DEP.		LENG	гн	BEARI	NG		HS-9	5-4		DATE AU	JGUST	5, 1995		
							GEOTEC	H					GEOC	HEN					A	SSAY			
		ROCK	DESCRIPTION				% RECO			Frac									SAMPLE	I			
FROM	то	TYPE			FROM	то	VERY	Py	Mt	dens	FROM	то	Chi	Carb	Ep.		FROM	то	No.				
			Carbonate filled fractures @ 30°, 10°. May be	coarser phase																			
			of interval above. 5 mm quartz/carbonate vein																				
			magnetite on vein margins. Interval becomes	coarser grained																			
			down section, from feldspar and pyroxene <1n	nm to feldspar																			
			to 2 mm and pyroxene to 4 mm. Feldspar >>	oyroxene																			
			content. Feldspar crystals are generally not eu	hedral																			
			Weak pervasive chlorite alteration of mafics. I																				
			fill with associated magnetite at 61.8m. At 62.	1m is a carb-																			
			onate veinlet at 30° with flecks of malachite. E																				
			with massive magnetite at 62.2m. Generally n																				
			with localized disseminated magnetite at 65.0-	65.1 carbon-																			
			ate/epidote/magnetite (broken core).																				
65.3	65.7	AND	ANDESITE		65.3	65.7	-	Tr	2	ŀ			-	•					[
			Similar to 61.2 to 61.7		L													ļ					
															<u> </u>	ļ	ļ		Ļ		┥──┥		
65.7	66.2	TUFF	ANDESITE TUFF		65.7	66.2	· ·	Tr	Tr	2		ļ		-	1	<u> </u>	 		ļ	1			_
		I	Upper contact gradational, lower contact broke		ļ				ļ	ļ	ļ	ļ				ļ	ļ	ļ	ļ	ļ	$ \longrightarrow $		_
			green, very fine grained, laminated at 45°. Fra		ļ	ļ		ļ	1	L	ļ	 		L		ļ	L	ļ	ļ	 	┨───┤		┣
		ļ	at 45°, 60°, 30°, 70°, epidote fine fracture <u>+</u> py		ļ		L		ļ	ļ		 			ļ	1		I		<u> </u>			I
		ļ	content is unevenly distributed as disseminate	d crystais.	ļ				┣	ļ	_					I	 	ļ	ļ	Ļ	$ \rightarrow $		_
													+		<u> </u>	_		I	ļ				_
66.2	68.4	AND	ANDESITE	A. 6	66.2	68.4	<u> </u>	Tr	3	1 ·	 			•	<u> 1</u>	—	 	<u> </u>	 	—	+		_
			Similar to 61.2 to 61.7. Rusty fine fracture, ep	dote fine	ļ		ļ	ļ				 	+					ļ	<u> </u>		l		┢──
		ļ	fracture.			ļ	ļ	ļ		ļ						ļ	 				┟──┤		–∔
							ļ		<u> </u>	<u> </u>					<u> </u>	 	 	I	ļ		-+		_
68.4	68.6	AND	FELDSPAR PHYRIC ANDESITE		68.4	68.6		<u> </u>	2	1		L		· ·		ļ			ļ	Ļ	$ \rightarrow $		<u> </u>
		ļ	Medium grey, crowded feldspar to 1 mm epide	ote fine	<u> </u>			<u> </u>	<u> </u>						ļ	ļ	<u> </u>	ļ	ļ	ļ	┥──┤		<u> </u>
		 	fracture.		l	ļ		L	 		ļ	 			 	 	ļ	l		I	$ \longrightarrow $		
				·			<u> </u>	ļ	<u> </u>		 	 	 		 	┨────	┣	ļ	ļ		\vdash		_
68.6	69.5	AND	ANDESITE		68.6	69.5	ļ	<u> </u>	1 1	•		ļ	<u> -</u>	<u> </u>	<u>↓ </u>	ļ		<u> </u>	ļ	ļ			_
	 	 	Similar to 66.2 to 68.4. Disseminated magnet		¥——	 	L		<u> </u>			<u> </u>	 	L	 	 	 	L	l		\vdash		_
	L	ļ	1-20%. Fine grain size, no phenocrysts of pyre	oxene.			<u> </u>	ļ	<u> </u>	 	<u> </u>	ļ		L	 	ļ	<u> </u>	I	I	ļ			_
	 	L	Feldspar >> pyroxene content.		L	ļ	 	ļ	L	ļ		<u> </u>			 	 	L	L	ļ	L			
_	L	L	L		1					1	1			ļ						1			

DATE CO		ug 4/95	DATE COMPLETED Aug. 6/95-3 A.M. CO	DRE SIZE NO		DIP T	ESTS			PROP	ERTYS	SOUP		PROJE	CTNC	0.150	N.T.S.	No. 94	D8	GRID NOP	RTH (W	R.T. TR	UE) 3	20°
			FIELD CO-ORDINATES		DEPTH	BEARING		ANGLE									_	T 8 OF	12	MAGNETI				
LAT. 621	94N		ELEV. 2075 m DI	P -75°		RECORDED	CORRECTED	RECORDED	CORRECTED	LAT.		ELEV.		DIP			HOLE	No.		LOGGED	BY L. E	RDMAN		
DEP. 816			LENGTH 144.1 m BE	ARING 214°						DEP.		LENGT	гн	BEARI	NG		HS-9	5-4		DATE AU	GUST	5, 1995		
					·			GEOTEC	H					GEOC	CHEM	1				A	SSAY			
		ROCK	DESCRIP	TION				% RECO		T T	Frac						ſ			SAMPLE				
FROM	то	TYPE				FROM	то	VERY	Ру	Mt	dens	FROM	то	Chl	Carb	Ep.		FROM	то	No.				
69.5	72.3	AP	AUGITE PORPHYRY			69.5	72.3	-	•	Tr	1			1	1	-								
			Grey green porphyritic. Pyroxene	phenocrysts wea	kly																			
			alteration to chlorite. Phenocrysts																					
			blend into the matrix. Matrix is fea	tureless but loca	lly a rare																			
			ghosty feldspar is observed. Carb																					
			vertical, 15°, 40°, 45°.																					
72.3	77.9	AP	FELDSPAR PHYRIC AUGITE PC	RPHYRITIC AN	DESITE	72.3	77.9	-	-	5	1			•	1	2		72.7	74.7	91340				
			Medium green, porphyritic. White			73.2	74.7	100																
			euhedral feldspar phenocrysts to			74.4	77.7	80																
			5% pyroxene phenocrysts to 5 mr	n. Disseminated	magnetite																			
			rusty fractures, epidote fracture fil	I, carbonate vein	lets and																			
			fracture fill. Most of the interval is																					
			below 74.7 m Magnetite fracture f																					
			fractures range between 30° and								I													Ĺ
			chite on fracture fill associated wi																					
			This interval begins with 4 cm chl																					
			Vein contains irregular clots of ca													ļ	L							
			carbonate. Local epidote flooding		ote											L	I							
			fracture fill, feldspar weakly altere	d to epidote.																				
														[]										
77.9	78.1	AP	AUGITE PORPHYRY			77.4	78.1	•	•	·	-			1	-	-								
			Similar to 69.5 - 72.3			77.7	79.2	40			L													L
70.4	70.0	41/0			, <u>-</u>	70.4	70.0			<u> </u>				 	ļ	4		 	 	 	ļ			<u> </u>
78.1	78.2	AND	ANDESITE		for a bound	78.1	78.2			3	<u> </u>	╉───┥		-	<u> </u>	4	ł	<u> </u>	<u> </u>	 				
			Coarse grain feldspar and minor			+						 				I		——		 				<u> </u>
			magnetite. Final 2 cm is highly all	tered to epidote a	ind there			·											ļ	 				
			is no magnetite present.	<u> </u>												<u> </u>			—					
78.2	80.7	AP	AUGITE PORPHYRITIC ANDES	TE		78.2	80.7			 3	<u> </u>	 		1-1		-			<u> </u>	<u> </u>		┝╌╌┦		<u> </u>
	†		Medium green, pyroxene porphyr		to 79.2m	79.2		50		†	<u> </u>	1		<u> </u>		1	<u> </u>	1		<u> </u>	<u> </u>			
	<u> </u>		Rusty, fine fracture, pyroxene pho			+				1	1	1				t	1		<u> </u>	1				
	t		to chlorite. Non euhedral feldspar			1	<u> </u>			+	<u>† </u>	t		+	<u> </u>	1	<u> </u>	<u> </u>	t	t				
	<u> </u>		rarely 2 mm, indistinct crystals fe			1	<u> </u>			1	<u>†</u>	1				<u> </u>	1	<u> </u>	<u>† </u>	<u>† </u>				<u> </u>
	t	l	(3%).			1	<u> </u>		t	1	t	1	 	1		t	t	<u> </u>		t				<u> </u>

DATE CO	LLARED A	ug 4/95	DATE COMPLETED Aug. 6/95-3 A.M. CORE SIZE NO		DIP TE	STS			PROP	ERTY S	SOUP		PROJE		D.150	N.T.S.	No. 94	D8	GRID NO	RTH (W	R.T. TF	RUE) 3	320°
			FIELD CO-ORDINATES	DEPTH	BEARING		ANGLE									SHEE	T 9 OF	12	MAGNET	C DEC	INATIO	N 23*	
LAT. 621	94N		ELEV. 2075 m DIP -75*		RECORDED	CORRECTED	RECORDEB	CORRECTED	LAT.		ELEV.		DIP			HOLE	No.		LOGGED	BY L. E	RDMAN		
DEP. 816	47E		LENGTH 144.1 m BEARING 214°	1					DEP.		LENG	тн	BEARI	NG		HS-9	5-4		DATE AL	IGUST	5, 1995		
							GEOTEC	Н					GEO	CHEM	1				A	SSAY			
		ROCK	DESCRIPTION				% RECO			Frac									SAMPLE				
FROM	то	TYPE			FROM	то	VERY	Ру	Mt	dens	FROM	то	Chl	Carb	Ep.		FROM	то	No.				
80.7	81.0	AND	ANDESITE (?)		80.7	81.0	•															_	
			No core, just sand.																				
														L									
81.0	82.3	AND	FELDSPAR/PYROXENE PHYRIC ANDESITE		81.0	82.3	-	-	5	•			1	<u> </u>	· ·	L							
			Dark grey, fine grained feldspar crystals rarely eu																				
			1 mm, pyroxene crystals to 2 mm, feldspar ~ 30									Ĺ											
			volume, pyroxene ~ 3%. Similar to 61.7 to 65.3 b																L				
			overall grain size. Salt/pepper texture. Dissemina						L						ļ	ļ	L		L	[
			grain magnetite, rusty fracture fill. Weak chlorite i	alteration of															I				
			pyroxene phenocrysts.								L			-		ļ				L			
																	l						
82.3	82.7	DI	DIORITE		82.3	82.7	•	•	Tr	-			1	-	· .	ļ							
			Light grey. Leucocratic magnetite diorite, rusty fra							ļ			 	L	ļ	ļ			ļ	I			
			Local disseminated magnetite, chlorite alteration	of matics.					ļ					I	L	ļ		L	ļ				
00.7	00.0	44/0			00.7				5							ļ				 			
82.7	86.9	AND	FELDSPAR/PYROXENE PHYRIC ANDESITE		82.7 82.2	86.9 85.3	- 50		<u> </u>		I	 	<u> </u>	<u> </u>	<u> </u>				 				<u> </u> '
			Same rock type as at 81.0 to 82.3		82.2	85.3	50		ļ			<u> </u>	+						┟────				┢───┘
86.9	88.3		ANDESITE		86.9	88.3			2	<u> -</u>										 			<u> </u>
00.9	00.3		Medium green, very fine grained. Very broken co		85.3	88.4	60					 	<u> '</u>	<u> </u>	+				<u> </u>				<u></u> '
			fracture fill. Feldspar: noneuhedral, <<1mm. Loca		05.5	-00.4						<u> </u>	+				<u> </u>		<u>├</u> ────				
			pyroxene phenocrysts to 2 mm are present. Felds														<u> </u>						<u> </u>
			content > pyroxene.	эраі							┼──		+		 		<u> </u>						┝──
														<u> </u>	1	<u> </u>		<u> </u>	t	<u> </u>	┝──┤		
88.3	89.3	AND	FELDSPAR/PYROXENE PHYRIC ANDESITE		88.3	89.3	-		5	-			1	+	1 -	<u> </u>	<u> </u>		<u> </u>	<u> </u>			<u>├</u> ──┤
	00.0		Same rock type as at 82.7 to 86.9			00.0			+		<u> </u>		<u> </u>	<u> </u>	<u> </u>	1			<u> </u>				┢──┤
											t			<u> </u>	 	<u> </u>			t				<u>├</u> ──┘
89.3	93.2	AND	ANDESITE		89.3	93.2	· · ·		5	-	1	<u> </u>	1 -	- 1	1 -	1	91.4	93.4	91343	<u> </u>	├		├ ── [/]
		<u> </u>	Grey green, fine grain, very broken core, rusty fra	actures.					└─_ਁ	<u> </u>	1	f	1	1	1	<u> </u>	<u> </u>		1	<u> </u>	├	•••••	<u>├</u> ──┤
			Fine grained magnetite. No phenocrysts present,			· · · · ·			1	<u> </u>	1	t	+	1	<u>†</u>	<u> </u>	t	<u> </u>		<u> </u>			t
	<u> </u>	<u> </u>	Similar to 86.9 - 88.3								†	t	+		<u> </u>					<u> </u>			<u>├</u> /
									1	t	<u>† – – – – – – – – – – – – – – – – – – –</u>	t	+	1	1	1		<u> </u>	<u> </u>	<u> </u>		·	
93.2	94.0	AP	FELDSPAR PHYRIC AUGITE PORPHYRITIC A	NDESITE	93.2	94		Tr	2	1	<u> </u>	t	1	-	- 1	1	93.4	94.5	91344	 			<u>├</u> ──┤
	<u> </u>	<u> </u>	Medium green, fine grained. Indistinct <1 mm fel						t=	†	1	<u> </u>	+	<u> </u>	1	1	1	<u> </u>	t	t	<u>├</u>		├ ───┤
	t	1	minor augite crystals of the same size. Rusty frac		1				1	<u> </u>	<u>† – – – – – – – – – – – – – – – – – – –</u>	<u> </u>	1		<u> </u>	t	<u> </u>	<u> </u>	t		┞──┦		

APPENDIX IV

STATEMENT OF COSTS

•

HEMLO GOLD MINES INC. STATEMENT OF COSTS

PROJECT: SOUP

DATE: October 12, 1995

TYPE OF REPORT: DRILLING

a)	Wages:	
ŗ	No. of Mandays :	28
	Rate per Manday:	\$204.25
	Dates From :	July 1 - July 31, 1995
	Total Wages :	\$5,730.00

b)	Food & Accommodations:	
,	No. of Mandays :	52
	Rate per Manday:	\$30.00
	Dates From :	July 1 - July 31, 1995
	Total Costs :	\$1,560.00

c)	Transportation:	
-	No. of Mandays :	21
	Rate per Manday:	\$60.00
	Dates From :	July 1 - July 31, 1995
	Total Costs :	\$1,260.00

Supplies: d) No. of Mandays : 44 Rate per Manday: \$36.50 Dates From July 1 - July 31, 1995 : \$1,606.00 Total Costs :

e)	Analysis: (See attache	ed schedule)	
f)	Drilling Cos Contractor:	ts: \$ Britton Bros. Diar	25,517.00 nond Drilling
g)	Cost of Prep Author : Drafting: Typing :	paration of Report: 2 days @ \$300. 2 days @ \$220. 1 day @ \$150. =	= \$4 40.
h)	Other: Helicopter f	lights \$	35,861.00

Contractor: Pacific Western Helicopters

TOTAL COST \$73,099.00

·	h)	Unit Costs for	Drilli	ng
		No. of Manday	ys :	52
		No. of Units	:	173.5 meters
		Unit Costs	:	\$421.32/meter
		Total Cost	:	\$73,099.00

GRAND TOTAL \$73,099.00

DETAILS OF ANALYSIS COSTS

 PROJECT:
 SOUP

 ELEMENT
 NO. OF DETERMINATIONS
 COST PER DETERMINATION
 TOTAL COSTS

 30 element ICP
 25
 \$15.00
 \$375.00

 plus Au
 \$15.00
 \$375.00

,

HEMLO GOLD MINES INC. STATEMENT OF COSTS

PROJECT: SOUP

DATE:

October 12, 1995

TYPE OF REPORT: PHYSICAL

Wages:	
No. of Mandays :	16
Rate per Manday:	\$206.06
Dates From :	July 14 - July 31, 1995
Total Wages :	\$3,297.00
	No. of Mandays : Rate per Manday: Dates From :

Food & Accommodations:	
No. of Mandays :	16
Rate per Manday:	\$27.50
Dates From :	July 14 - July 31, 1995
Total Costs :	\$440.00
	No. of Mandays : Rate per Manday: Dates From :

c) Other: Helicopter Flights: \$7,290.00

> Contractor: Pacific Western Helicopters

TOTAL COST

\$11,027.00

d)	Unit Costs for	
•	No. of Mandays :	16
	No. of Units	3 Pads/1 Pond
	Unit Costs :	\$689.19
	Total Cost :	\$11,027.00

GRAND TOTAL

\$11,027.00

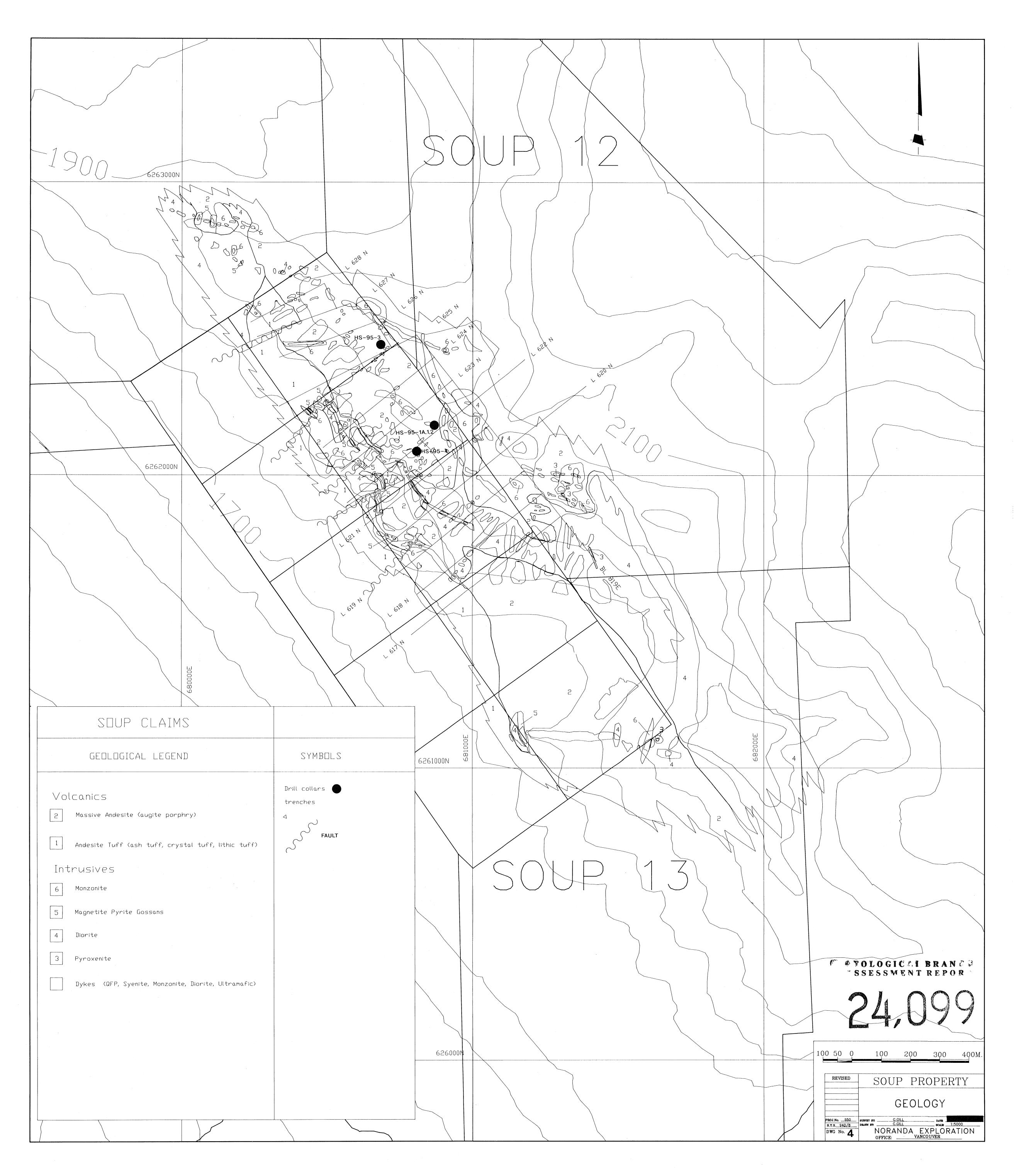
APPENDIX V

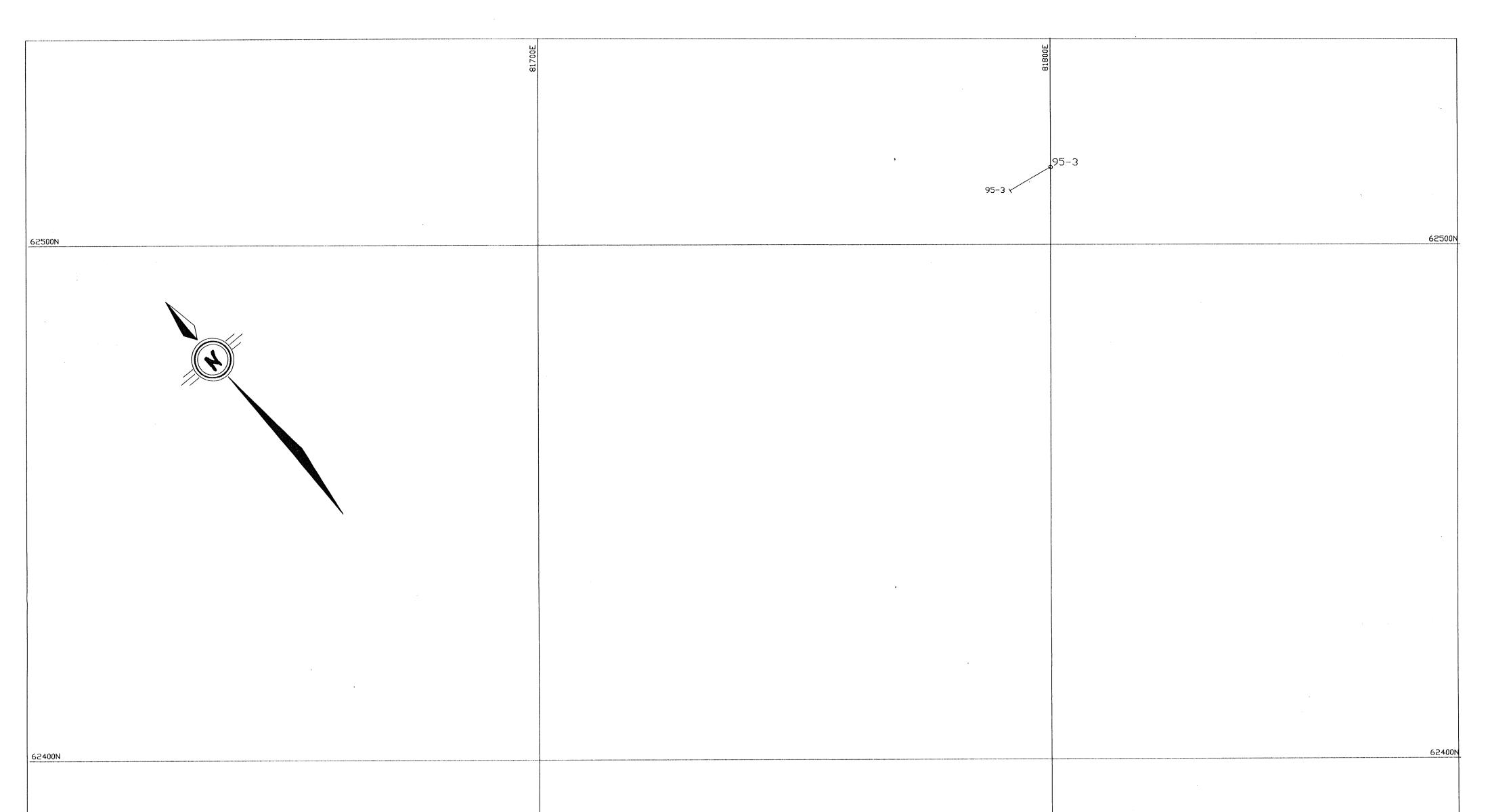
•

STATEMENT OF QUALIFICATIONS

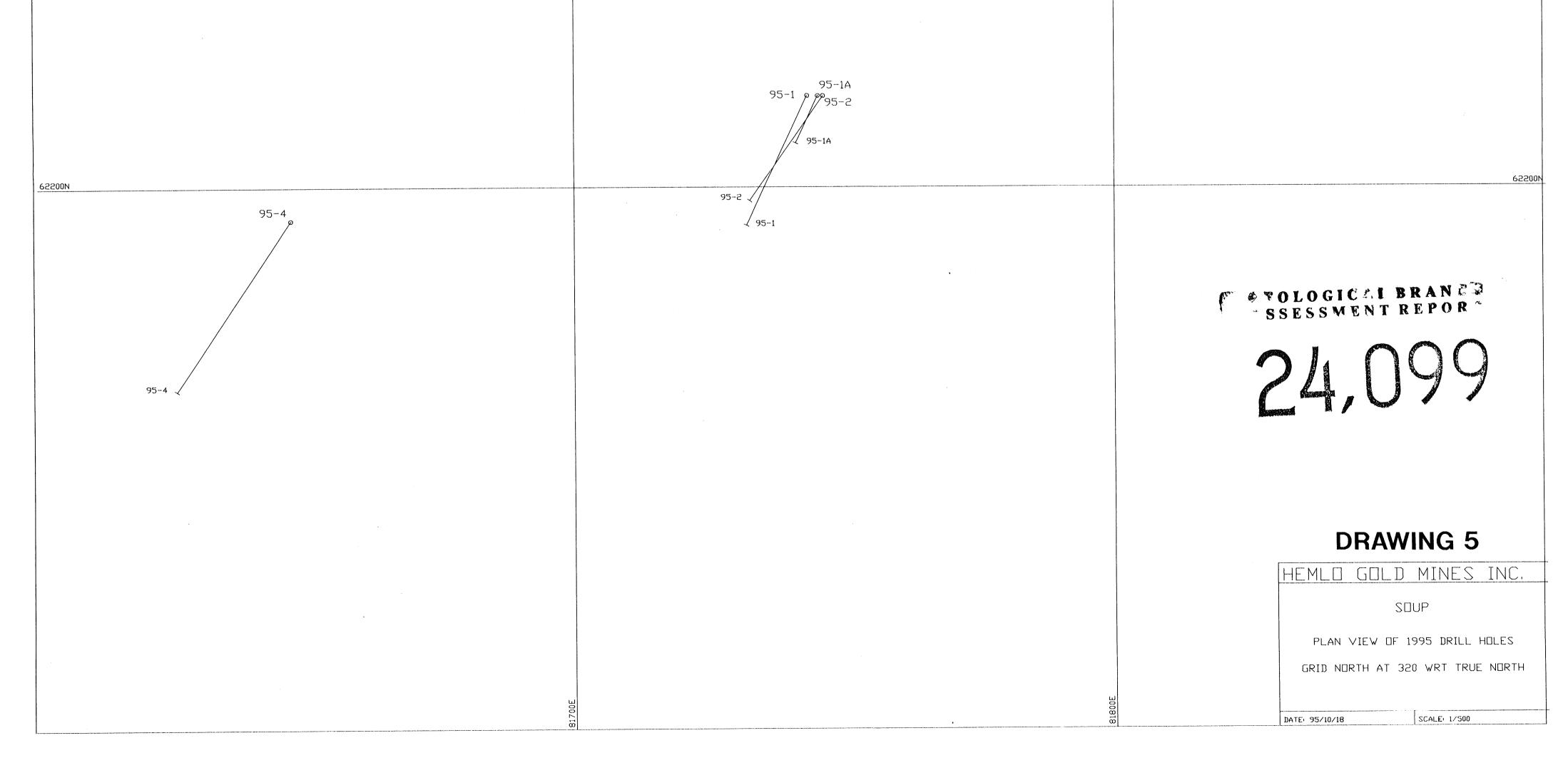
STATEMENT OF QUALIFICATIONS

I, Linda R. Erdman, of the City of Vancouver, Province of British Columbia, hereby certify that:

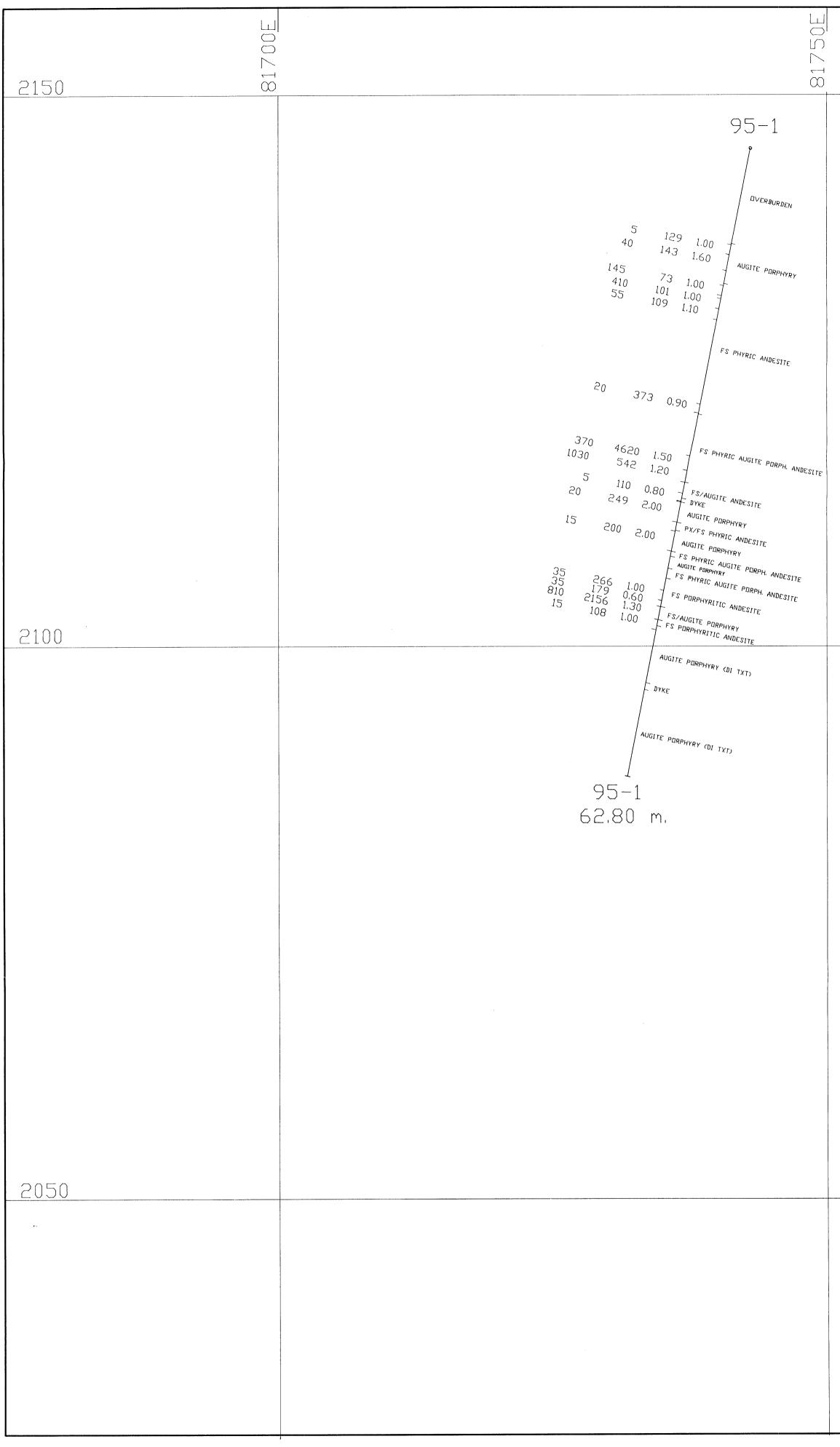

I am a geologist residing at 1397 Matthews Avenue, Vancouver, B.C.


I have graduated from the University of British Columbia in 1978 with a BSc in geology, and in 1985 with an MSc in geology.

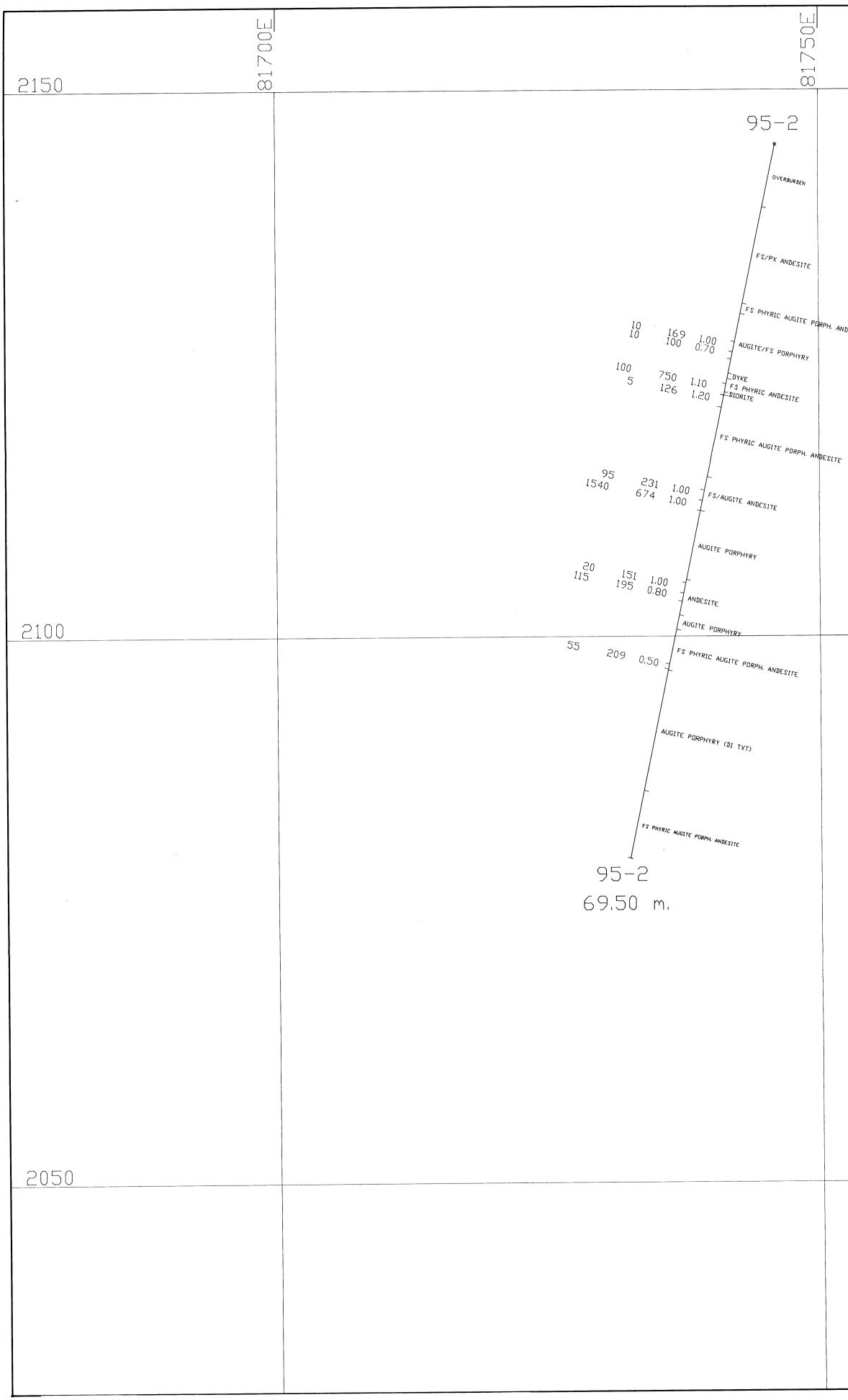
I have worked in mineral exploration since 1976.


I have been with Hemlo Gold Mines Inc. since March, 1995.

Linda R. Erdman, MSc.

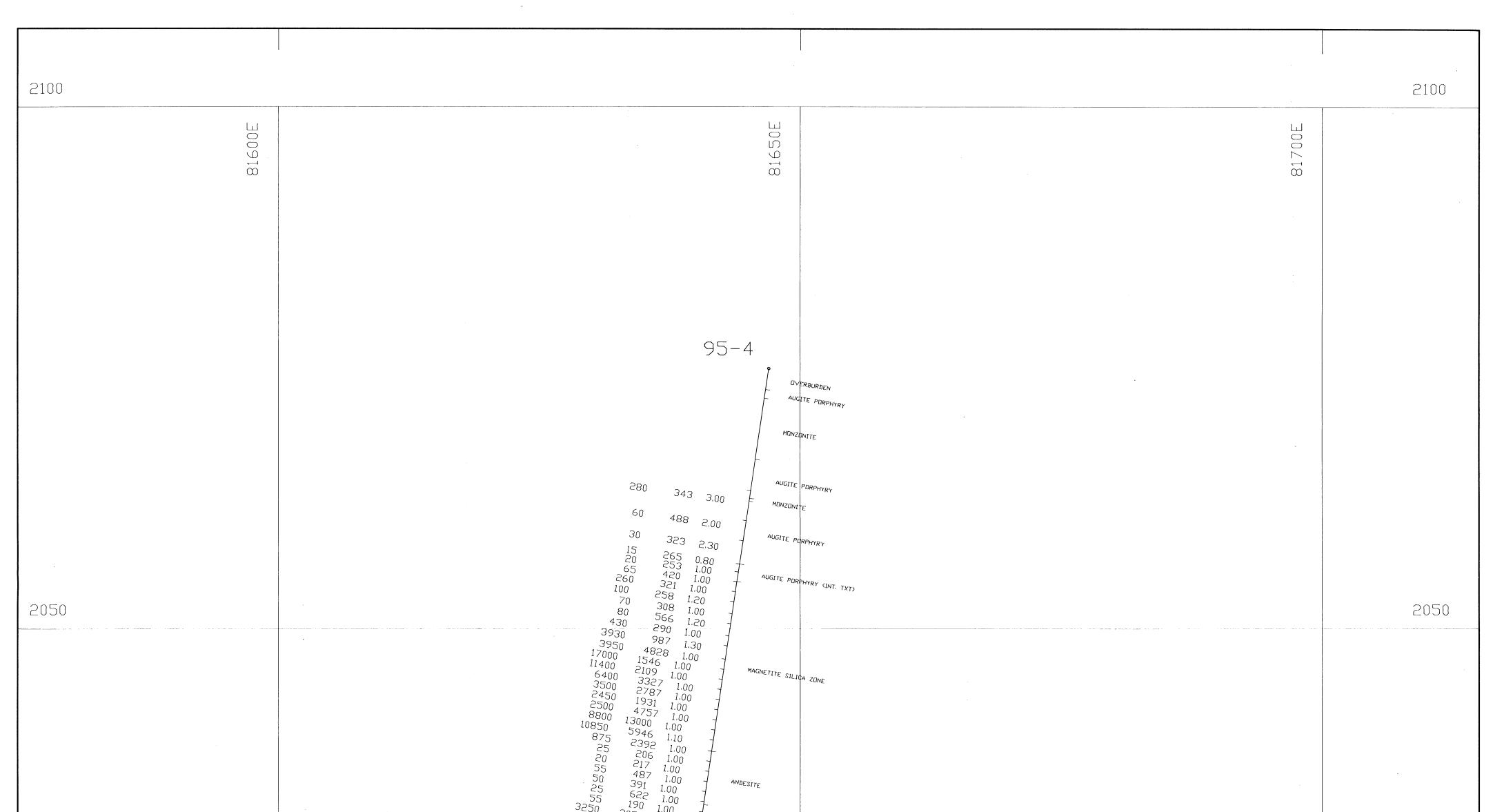


62300N	
	62300N

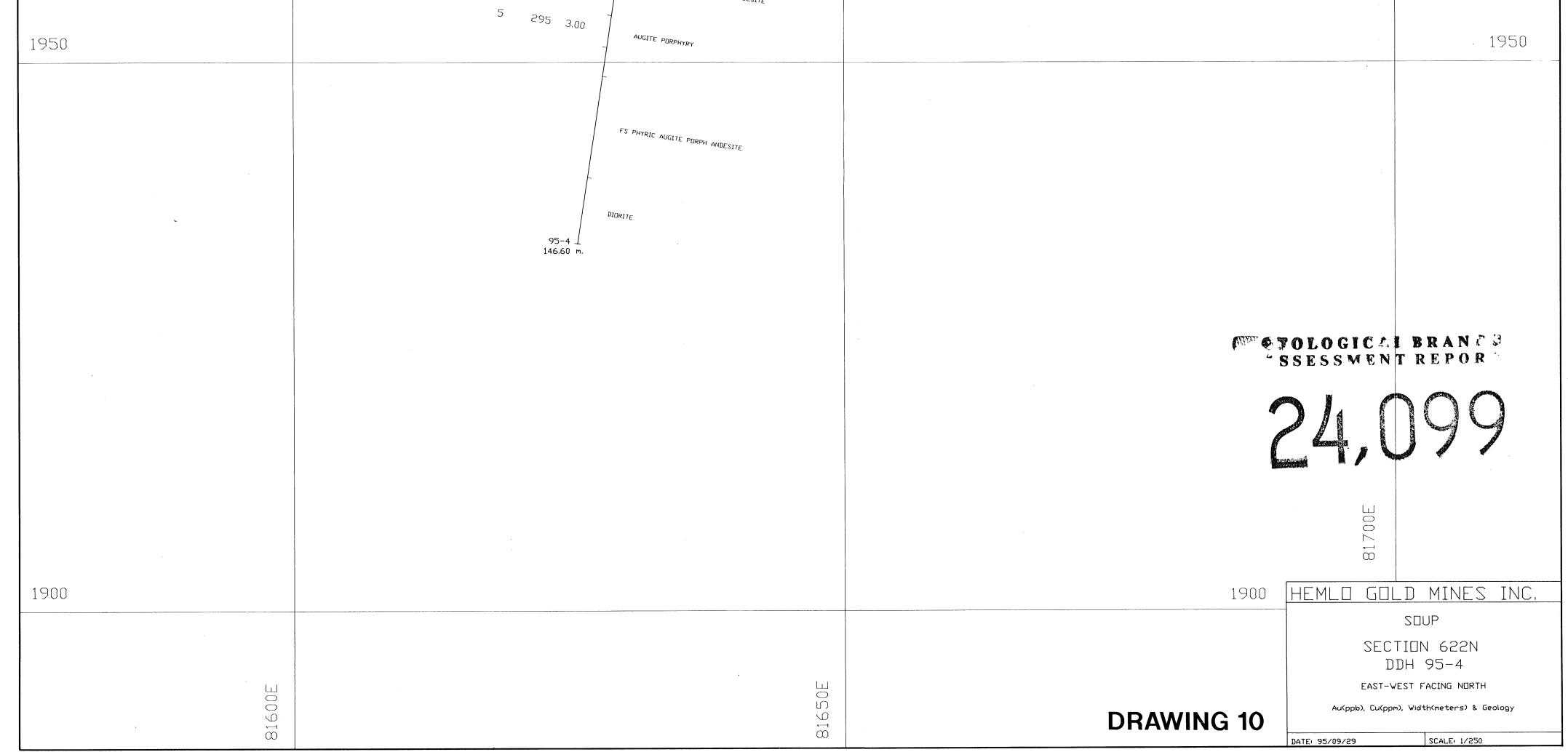


2150	81750F
	95-1A
	AUGITE PERPHYRY
*	5 136 1.50 $f^{S PHYRIC ANDESITE}$ $J^{AUGITE PORPHYRY}$ 95-1A 22,90 M.
	22.70 M.
2100	
2100	
2050	

8175 <u>0</u> E		Ш 00 10 10 2150
$95-1A$ $\int_{a_{VERBURDEN}}$		
AUGITE PORPHYRY		
136 1.50 FS PHYRIC ANDESITE AUGITE PORPHYRY		
95-1A 22,90 m.		
		2100
	TOLOGI TOLOGI	CLIBRANCO ENTREPOR
		000
		2050
		JLD MINES INC. Soup Ection 622N JP-DDH-S95-1A
	EAS	JP-JJH-S95-IA ST-WEST FACING NORTH o, Cu ppm, width(m), Geology SCALE: 1/250



	81800 E	2150
		2100
SSESSMEN	I BRANCO TREPOR	
	HEMLO GOLD MINES	2050 INC,
DRAWING 7	SOUP SECTION 622N SOUP-DDH-S95-1 EAST-WEST FACING NORTH Au ppb, Cu ppm, width(m), Geology	



		81800F	2150
ANDESITE			
Ε			
ς 			,
			2100
	T & FOLOGICAL B SSESSMENT F	RANCO	
		O O	
			2050
		SOUP Section 622N	S INC,
	DRAWING 8	SOUP DDH-S95-2 EAST-WEST FACING NORTH Au ppb, Cu ppm, width(m), Geolog DATE: 95/10/10	SCALE: 1/250

	55 52 1.00 3250 2054 1.00 7850 3498 1.00 19730 6101 1.20 10 657 1.00 100 247 2.00 ANDESITE	
	$\begin{array}{c} 30 \\ 245 \\ 25 \\ 245 \\ 2.00 \end{array} \xrightarrow{F_{S} PHYRIC AUGITE PURPH. ANDESITE} \\ F_{S} PHYRIC AUGITE PURPH. ANDESITE \\ F_{S} PHYRIC AU$	
2000	$ \begin{array}{c} FS PHYRIC AUGITE PORPH. ANDESITE \\ ANDESITE \\ FS PHYRIC ANDESITE \\ ANDESITE \\ AUGITE PORPHYRY \\ 40 196 2.00 \\ 35 427 \end{array} $	2000
	35 437 1.00 ANGEVER AUGITE PERPH. ANDESITE AUGITE PERPHYRY AUGITE PERPHYRY AUGITE PERPHYRY SAND FS/PX PHYRIC ANDESITE DIGRITE FS/PX PHYRIC ANDESITE FS/PX PHYRIC ANDESITE	
	5 859 2.00 5 289 1.10 5 114 3.10 ANDESITE FS./PX PHYRIC ANDESITE FS./PX PHYRIC ANDESITE FS./PYN PIC ANDESITE FS./PYN PIC ANDESITE FS./PYN PIC ANDESITE FS./PYN PIC ANDESITE ANDESITE ANDESITE ANDESITE FS./PYN PIC ANDESITE FS./PYN PIC ANDESITE ANDESITE ANDESITE ANDESITE FS./PYN PIC ANDESITE FS./PYN PIC ANDESITE	
	FS PHYRIC AUGITE PORPH. ANDESITE AGGUTE/GRPHYRY FS PHYRIC AUGITE PORPH. ANDESITE MONZONITE	
	5 114 3.00 FS PHYRIC AUGITE PERPH. ANDESITE	

