GECLOGICAL SURVEY BRANCH
ASSESSMENT REPORTS

DATE RECEIVED NOV 2 7 1995

GEOCHEMICAL

ASSESSMENT REPORT

ON THE

ERIN PROPERTY

ERIN 1 - 8 MINERAL CLAIMS

HOUSTON AREA

OMINECA MINING DIVISION, B.C.

SSESSMENT REPORT

24,121

NTS: LATITUDE: LONGITUDE: OWNER: OPERATOR: AUTHOR: DATE:

093L/06E 54° 22'15"N 127° 06' W W.R. Gilmour Discovery Consultants T.H. Carpenter, P.Geo. November 10, 1995

TABLE OF CONTENTS

SUMMARY	Page	1
LOCATION AND ACCESS	Page	2
ТОРОGRАРНУ	Page	2
PROPERTY	Page	3
HISTORY	Page	4
GENERAL GEOLOGY	Page	5
WORK COMPLETED	Page	7
1. SOIL SAMPLING A) PROGRAM PARAMETERS B) PROGRAM RESULTS		
2. ROCK SAMPLING A) PROGRAM PARAMETERS B) PROGRAM RESULTS		
CONCLUSIONS	Page	9
RECOMMENDATIONS	Page	10
REFERENCES	Page	11
STATEMENT OF COSTS	Page	12
STATEMENT OF QUALIFICATIONS	Page	13

LIST OF ILLUSTRATIONS

FIGURE 1	Location Map	Following Page 2
FIGURE 2	Claim Location Map (1:50,000)	Following Page 3
FIGURE 3	Soil Sampling - Copper Values	In Pocket
FIGURE 4	Soil Sampling - Gold Values	In Pocket
FIGURE 5	Soil Sampling - Arsenic Values	In Pocket
FIGURE 6	Soil Sampling - Barium Values	In Pocket
FIGURE 7	Geology & Rock Sample Locations	In Pocket
FIGURE 8	Rock Sampling - Copper Values	In Pocket
FIGURE 9	Rock Sampling - Gold Values	In Pock et
FIGURE 10	Rock Sampling - Arsenic Values	In Pocket
FIGURE 11	Rock Sampling - Barium Values	In Pocket

APPENDICES

APPENDIX	A	Soil Sampling Survey Analytical Procedures and Results
APPENDIX	В	Rock Sample Descriptions
APPENDIX	с	Rock Samples - Analytical Procedures and Results

SUMMARY

The Erin prospect comprises possible porphyry type and/or vein-hosted copper, silver and gold mineralization within Lower Jurassic Hazelton volcanics intruded by Late Cretaceous Bulkley Intrusives.

The occurrence is located 26 kilometres west-southwest of Houston and 45 kilometres south of Smithers.

Extensive exploration work was carried out on the property from 1965 to 1969 over an area measuring 1500 metres by 700 metres.

Further work was carried out in the area in the late 1980s following the release of a government regional geochemical survey. A high grade sample collected in 1988 from one trench yielded 43% copper, 356 oz silver/ton and 0.21 oz gold/ton.

In 1994 a limited soil and rock sampling program was carried out on the property.

LOCATION AND ACCESS

The Erin property is centred at latitude 54°22'15"N and longitude 127°06'W, 26 kilometres west-southwest of Houston and 45 kilometres south of Smithers (Figure 1).

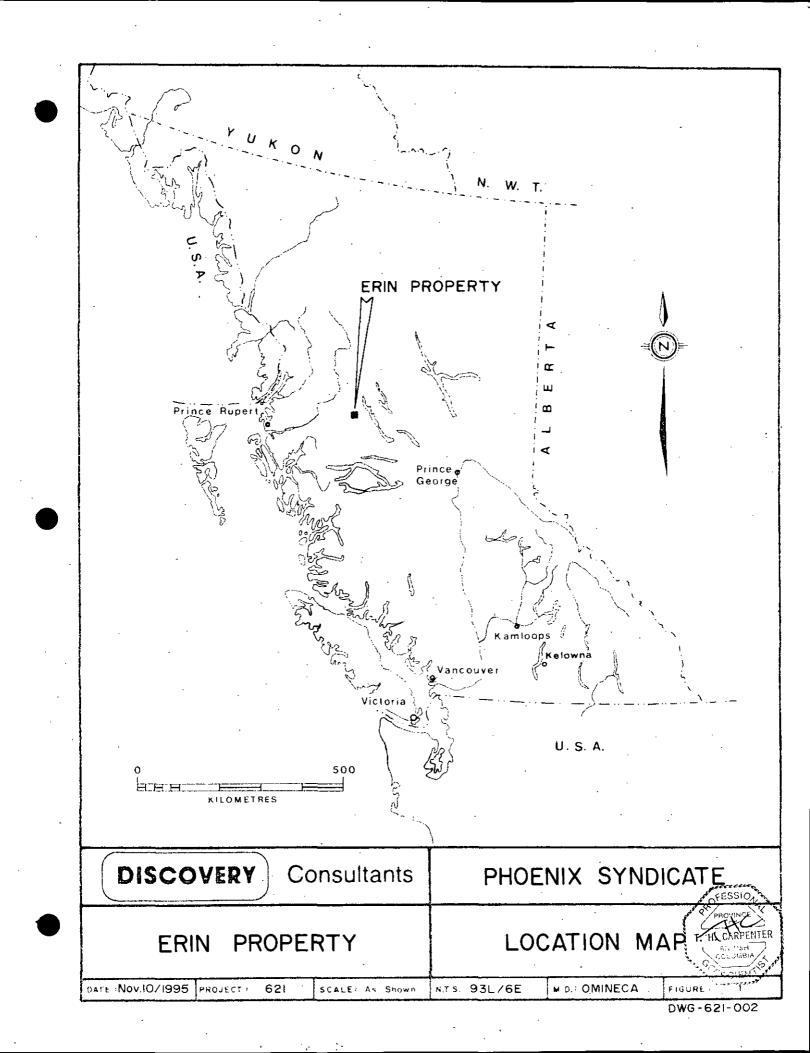
Access to the property can be gained by helicopter from Houston and Smithers. The condition of a "caterpillar" road constructed to the property during the 1960s is unknown.

TOPOGRAPHY

The Erin property lies on a relatively flat, grassy plateau situated above treeline. Elevations range from 5300 feet (1615 metres) at the southwest corner of the property to 6000 feet (1830 metres) at the northeastern corner of the property.

Westerly and southerly flowing drainages are relatively moderate in the claim area. Drainage is to the west into Houston Tommy Creek.

Outcrop is exposed in numerous trenches located on the property, along valley sides and on knolls.

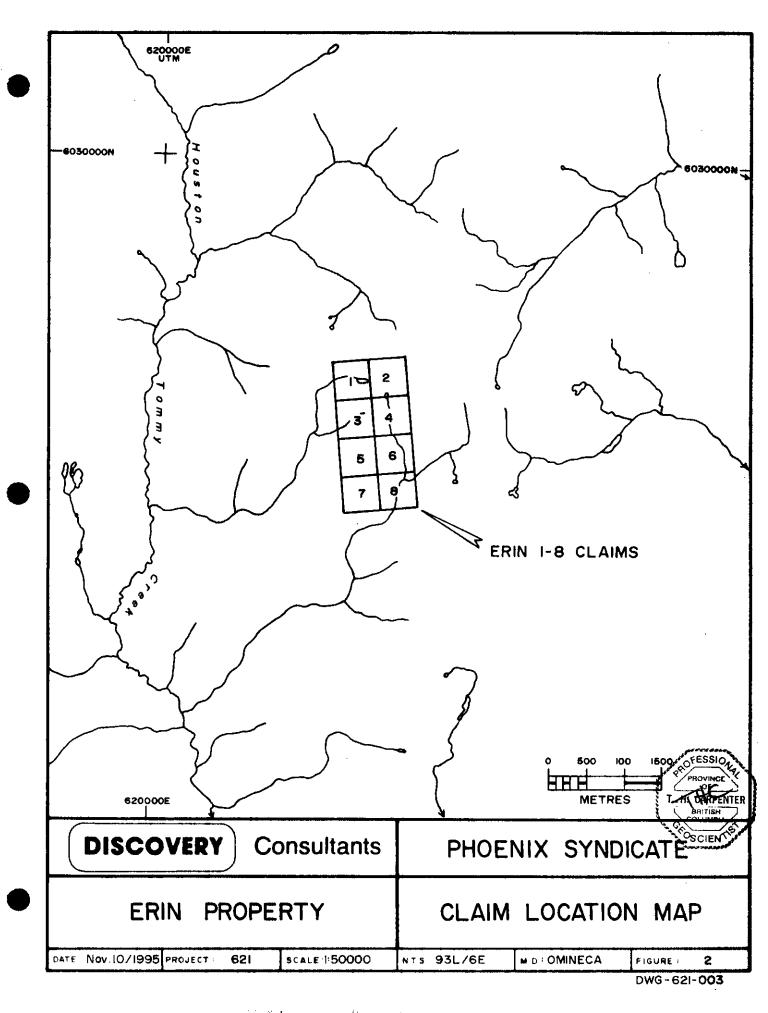

2

Sec. Sec.

a share in

·

~ /


PROPERTY

The Erin property (Figure 2) comprises eight two-post claims, designated Erin 1-8, located by Murray Beenen on August 24, 1995 and recorded in Smithers on September 09, 1995.

<u>Claim Name</u>	Record No.	Owner of Record	Anniversary Date*
Erin 1	330562	W.R. Gilmour	August 24, 1999
Erin 2	330563	W.R. Gilmour	August 24, 1999
Erin 3	330564	W.R. Gilmour	August 24, 1999
Erin 4	330565	W.R. Gilmour	August 24, 1999
Erin 5	330566	W.R. Gilmour	August 24, 1999
Erin 6	330567	W.R. Gilmour	August 24, 1999
Erin 7	330568	W.R. Gilmour	August 24, 1999
Erin 8	330569	W.R. Gilmour	August 24, 1999

The claims are owned by W.R. Gilmour in trust for the Phoenix Syndicate.

* Pending acceptance of this report.

HISTORY

The area of the present Erin claims was staked as part of the "B" claims by the Phelps Dodge Corporation in 1965 to cover the area of copper anomalies in silt samples. From 1965 to 1969 the company explored for copper and base metals. Extensive geochemical sampling and trenching were carried out on the property and at least 85 trenches were dug by bulldozer, blasting and hand trenching. A "cat" road, some 19.3 kilometres in length, was constructed to provide access to the property. No records of the trenching program are available.

In 1973 the Lunlik claims were staked to the east of the present Erin claims. Granges Exploration Ltd. completed geophysical and geochemical surveys over the Lunlik claims and drilled 6 diamond drill holes totalling 813.5 m to test for mineralization in a quartz diorite stock.

In 1987 a government geological survey reported moderate to strongly anomalous gold values in three creeks in the area. The area of the present Erin claims was staked, also as the Erin claims, by Geostar Mining Corporation to cover the upper reaches of a creek anomalous in gold, copper, arsenic, antimony, barite and manganese. A program of reconnaisance geological mapping, prospecting, soil and silt sampling was carried out over a three day period in 1988.

The Erin property, staked in 1994, covers the mineralized areas of the B and the former Erin claims.

GENERAL GEOLOGY

The Erin property lies in the Intermontane Belt of the Canadian Cordillera, near the eastern edge of the Coast Crystalline Complex. The area is underlain largely by subaerial to submarine volcanic, volcaniclastic and sedimentary rocks of the Hazelton Group.

The Hazelton Group, comprising and island arc assemblage deposited in Early to Middle Jurassic time, has been divided into the Telkwa, Nilkitkwa and Smithers Formations.

The oldest formation, the Telkwa, consists of calc-alkaline volcanics predominantly of subaerial origin and lesser subaqueous volcanics. The Nilkitkwa Formation conformably to disconformably overlies the Telkwa Formation and comprises fine grained clastic and tuffaceous assemblages. Overlying the Nilkitkwa Formation disconformably are fossiliferous sandstones, siltstones and intercalated felsic tuffs of the Smithers Formation.

The Telkwa Formation has been divided into five distinct facies of which the Howson subaerial facies is thought to underlie the Erin property. Strata of the Howson facies comprise well bedded, red to green coloured, basaltic to rhyolitic pyroclastic and flow rocks as well as terrestrial sedimentary rocks. The most common rocks are andesitic to dacitic pyroclastics which have been altered to a subgreenschist metamorphic grade.

Late Cretaceous intrusives have been mapped to the northeast

and to the south of the Erin property. These intrusives have been mapped as porphyritic granodiorites, quartz diorites and quartz monzonites.

Mineralization on the property is exposed principally in old bulldozer trenches. Bornite, chalcopyrite, tetrahedrite, malachite and azurite occur as massive to locally disseminated patches in andesite and locally in quartz veins and stringers. Assays from mineralized trenches reported high copper and silver with local gold values. Rhodochrosite is widespread in trenches.

WORK COMPLETED

The work carried out on the property in 1994 comprised soil sampling and rock sampling. The individual surveys are discussed below.

<u>1.</u> <u>Soil Sampling</u>

A) Program Parameters

Fifty-seven soil samples were collected on the Erin 1-6 claims. Samples were collected at 50 metre intervals along lines 1000 metres in length at right angles to the Erin claim line.

The samples were collected by shovel from the "B" horizon, placed in 9 cm x 25 cm kraft sample bags and sent to Bondar-Clegg & Company Ltd. Laboratories in North Vancouver, B.C. At Bondar-Clegg analyses were carried out for gold (30g, fire assay/AA) and 27 additional elements by ICP. Sample locations are shown on Figure 3. Analytical results are contained in Appendix 1.

B) Program Results

Limited soil sampling outlined interesting patterns of mineralization on the Erin claims. Anomalous values were noted in Cu, As, Mn and Ba on the northern two lines, whereas anomalous Au, Zn, Mn and Ba were noted on the southern line with a marked decrease in Cu values.

The maximum values obtained for the respective elements are 80 ppb Au, 440 ppm Cu, 308 ppm Zn, 691 ppm As, >2000 ppm Ba and 12037 ppm Mn. Analysis results for Cu, Au, As and Ba are shown on Figures 3 to 6 and contained in Appendix 3.

2. Rock Sampling & Mapping

A) Program Parameters

Forty-two rock samples were collected from trenches on the Erin 1-5 claims. The rocks were collected to confirm previous results as well as to determine by ICP analyses the extent of associated mineralization. The sample locations were tied into claim lines.

The rocks were shipped to Bondar Clegg and Company Ltd. in North Vancouver where they were tested for gold (30g, fire assay/AA analysis) and 27 additional elements by ICP analysis. Rock sample descriptions are contained in Appendix 2. Analytical results are listed in Appendix 3.

B) Program Results

Copper values to 1.6% were noted in rock samples. Anomalous manganese with values in excess of 20,000 ppm is widespread. Silver values to in excess of 50 ppm are in general associated with higher copper values.

The maximum value obtained for gold was 137 ppb in sample ER-94-027. Few rock samples were collected in the area of higher background gold values in soils.

Arsenic values to 3236 ppm were noted in samples. As with silver, the arsenic values are in general associated with higher copper values.

Copper, gold, arsenic and barite values are plotted on Figures 8 to 11.

CONCLUSIONS

The Erin property underwent extensive exploration for base metal mineralization in the 1960s. No results of this work, which included widespread trenching is available and there is no evidence of any diamond drilling on the property.

Mineralization and alteration suggest possible porphyry related mineralization. Assays from a reconnaissance program in 1988 included a high grade sample containing 43% copper, 356 oz silver/ton and 0.21 oz gold/ton.

Reconnaissance sampling in 1994 returned lesser values, consistent with other mineralization sampled in the 1988 program.

RECOMMENDATIONS

Grid soil sampling and detailed mapping should be carried out over the property and analyzed for gold and multi-element ICP. Detailed mapping should include a study of alteration patterns possibly associated with mineral zoning.

Geophysical surveys, including IP, should be carried out over the property to define mineralized zones.

Diamond drilling should be undertaken if suitable targets are delineated.

Respectfully submitted,

T.H. Carp Geo.

Vernon, B.C. November 10, 1995

REFERENCES

British Columbia Ministry of Energy, Mines and Petroleum Resources Annual Report

1965 - pg. 80 1966 - pg. 103

British Columbia Ministry of Energy, Mines and Petroleum Resources - Geology, Exploration and Mining in British Columbia

1974 - pg. 258

British Columbia Ministry of Energy, Mines and Petroleum Resources - Assessment Reports

#1189, 5094, 17994

Tipper, H.W. and Richards T.A. (1976); Jurassic Stratigraphy and History of North Central British Columbia, Geological Survey of Canada, Bulletin 270

STATEMENT OF COSTS

1.	Professional Services		
	Ed Harrington: Aug 24-27 Planning & field work 4 days @ \$308.00/day T. Carpenter, P.Geo. Report writing 2 days @ \$380.00/day W.R. Gilmour, P.Geo.	\$1232.00 760.00	¢ 2002 00
2.	0.25 days @ \$400.00/day Field Personnel	100.00	\$ 2092.00
	Soil Sampling: Aug 24-27 R. Anctil		
	3 days @ \$240.00/day M. Beenen	720.00	
	3 days @ \$190.74/day	572.22	1292.22
3.	Transportation Truck (mob/demob) Helicopter Aug 24, 26	228.00	
	(Northern Mountain Helicopters)	950.00	1178.00
4.	Lodging & Meals		758.97
5.	Geochemical Analyses a) sample preparation rock samples soil samples b) analyses 99 ICP (27 element) @ 4.50 99 30g gold geochem @ 7.60	178.50 91.20 445.50 752.40	1467.60
6.	Drafting		750.00
7.	Data compilation, secretarial		350.00
8.	Field supplies and equipment renta	1	465.93
9.	Printing, data processing, telepho shipping	ne,	200.00

Total <u>\$ 8554.72</u>

STATEMENT OF QUALIFICATIONS

I, THOMAS H. CARPENTER of 3902 14th Street, Vernon, B.C., V1T 3V2, DO HEREBY CERTIFY that:

- 1. I am a consulting geologist in mineral exploration associated with Discovery Consultants, Vernon, B.C.
- 2. I have been practising my profession for 23 years.
- 3. I am a graduate of the Memorial University of Newfoundland with a Bachelor of Science degree in geology.
- 4. I am a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of British Columbia.
- 5. This report is based upon knowledge of the Erin property gained from research and supervision.
- 6. I hold no interest either directly or indirectly in the Erin property.

T.H. CARPENTER T.H. Car P.Geo. hênterî

Vernon, B.C. November 10, 1995

APPENDIX A

.

Soli Sampling Survey Analytical Procedures and Results

ANALYTICAL PROCEDURES

Geochemical Analysis

by Bondar-Clegg :

ELEME	6.1 7	LOWER DETECTION LIMIT	EXTRACTION	METHOD
		DETECTION LINET	EXTRACTION	METHOD
Au	Gold	5 ppb	fire-assay	atomic absorption
Ag	Silver	0.2 ppm	HNO3-HCI hot extr	ind. coupled plasma
AI*	Aluminum	0.01 %	HNO3-HCI hot extr	ind. coupled plasma
As	Arsenic	5 ppm	HNO3-HCI hot extr	ind. coupled plasma
Ba*	Barium	5 ppm	HNO3-HCI hot extr	ind. coupled plasma
Bi	Bismuth	5 ppm	HNO ₃ -HCI hot extr	ind. coupled plasma
Ca*	Calcium	0.01 %	HNO ₃ -HCI hot extr	ind. coupled plasma
Cď	Cadmium	1 ppm	HNO ₃ -HCI hot extr	ind. coupled plasma
Co*	Cobalt	1 ppm	HNO ₃ -HCI hot extr	ind. coupled plasma
Cr*	Chromium	1 ppm	HNO3-HCI hot extr	ind. coupled plasma
Cu	Copper	1 ppm	HNO ₃ -HCI hot extr	ind, coupled plasma
Fe*	Iron	0.01 %	HNO ₃ -HCI hot extr	ind. coupled plasma
Ga	Gallium	2 ppm	HNO ₃ -HCI hot extr HNO ₃ -HCI hot extr	ind. coupled plasma
Hg∎	Mercury	10 ppb	HNO3-HCI leach	cold vapour atomic absorption
K*	Potassium	0.01 %	HNO ₃ -HCI hot extr	ind. coupled plasma
La*	Lanthanum	1 ppm	HNO ₃ -HCI hot extr	ind. coupled plasma
Li	Lithium	1 ppm	HNO ₃ -HCI hot extr	ind. coupled plasma
Mg*	Magnesium	0.01 %	HNO ₃ -HCI hot extr	ind. coupled plasma
Mn*	Manganese	0.01 %	HNO ₃ -HCI hot extr	ind. coupled plasma
Mo*	Molybdenum	1 ppm	HNO ₃ -HCI hot extr	ind. coupled plasma
Na*	Sodium	0.01 %	HNO ₃ -HCI hot extr	ind. coupled plasma
Nb	Niobium	1 ppm	HNO ₃ -HCI hot extr	ind. coupled plasma
Ni*	Nickel	1 ppm	HNO ₃ -HCI hot extr	ind. coupled plasma
Pb	Lead	2 ppm	HNO ₃ -HCI hot extr	ind. coupled plasma
Sb*	Antimony	5 ppm	HNO ₃ -HCI hot extr	ind. coupled plasma
Sc	Scandium	5 ppm	HNO ₃ -HCI hot extr	ind. coupled plasma
Sn*	Tin	20 ppm	HNO ₃ -HCI hot extr	ind. coupled plasma
Sr*	Strontium	1 ppm	HNO ₃ -HCI hot extr	ind. coupled plasma
Та	Tantalum	10 ppm	HNO ₃ -HCI hot extr	ind. coupled plasma
Te*	Tellurium	10 ppm	HNO ₃ -HCI hot extr	ind. coupled plasma
iΤ	Titanium	0.01 %	HNO ₃ -HCI hot extr	ind. coupled plasma
V*	Vanadium	1 ppm	HNO ₃ -HCI hot extr	ind. coupled plasma
W*	Tungsten	20 ppm	HNO ₃ -HCI hot extr	ind. coupled plasma
Y	Yttrium	1 ppm	HNO3-HCI hot extr	ind. coupled plasma
Zn	Zinc	1 ppm	HNO ₃ -HCI hot extr	ind. coupled plasma
Zr	Zirconium	1 ppm	HNO3-HCI hot extr	ind. coupled plasma

- Please note: certain mineral forms of those elements above marked with an asterisk will not be soluble in the HNO_3/HCl extraction. The ICP data will be low biased.
- Please note: Hg will only be analysed upon request.

file: \ 621\soi1_94.vk1

Date of Report: 94.10.11

ľ

Erin

Soil Sampling Results 1994

Reference: v94-01077.0

Sampl	e ID	Au ppb	Ag pp m	Cu Ppm	Pb ppm	Zn ppm	Cd pp e	No ppm	As pp∎	Sb pp=	Bi pp n	Ni pp n	Co ppm	Cr ppe	Fe I	Ma pp∎
ES 0	5+00E	<5	<0.2	44	12	130	<1.0	<1	<5	<5	 <5	27	11		3.11	1143
ES O	4+50E	<5	<0.2	56	7	93	<1.0	(1	<5	<5	<5	50	20	133	3.33	1154
ES O	4+00E	<5	<0.2	130	8	92	<1.0	<1	<5	<5	<5	34	25	105	3.67	2058
ES O	3+00E	<5	<0.2	175	7	84	<1.0	<1	59	<5	(5)	29	21	98	3.42	4521
ES O	2+50E	<5	<0.2	112	9	109	<1.0	<1	129	<5	<5	28	20	99	3.16	6204
ES O		<5	<0.2	57	7	71	<1.0	(1	10	<5	<5	27	17	87	2.94	1585
	1+50E	B	<0.2	78	7	67	<1.0	<1	24	<5	<5	25	19	89	3.03	2412
	1+00E	<5	<0.2	94	8	81	<1.0	<1	90	<5	<5	27	22	101	3.42	5933
	0+50E	<5	<0.2	77	8	72	<1.0	<1	21	<5	<5	25	20	91	3.13	3141
	0+00	<5	<0.2	179	7	83	<1.0	1>	296	<5	<5	31	25	124	3.28	3008
	0+50W	(5	<0.2	95	6	67	<1.0	<1	45	<5	<5	25	17	141	2.30	1469
	1+00W	<5	<0.2	50	6	75	<1.0	< <u>(</u>	10	(5	<5	25	19	88	2.86	146
	2+00W 2+50W	<5 (5	(0.2	98 70	6	65	<1.0	<1	24	<5 (5	<5 (5	21	15	81	2.64	158
		<5 6	<0.2 <0.2	73	9	91 105	<1.0	<1	6	<5 (5	<5 (5	25	19	103	3.26	148
	3+00W 4+00W	۵ ۲	<0.2	109 106	10 8	125 104	<1.0	<1	121	<5 /5	<5	26	21	145	3.63	337
	4+50₩	<5	(0.2	440	B	83	<1.0 <1.0	<1 <1	349 64	<5 <5	<5 <5	23 30	16	149 112	2.99 2.83	159) 133)
	5+00W	(5	(0.2	86	9	80 80	(1.0	<1 <1	51	(5	\J \(5	23	17 18	83	3.21	204:
ca v	JT VVW		10.2	00	1	ov	11.0	11	JI	13	13	23	10	03	3,21	204
ES 1		n/s	n/s	n/s	n/s	n/s	n/s	n/s	n/s	n/s	n/s	n/s	n/s	n/s	n/s	n/
ES 1		< 5	<0.2	68	12	131	<1.0	(1	23	<5 (5	<5	24	18	85	3.29	221
ES 1		<5	<0.2	61 57	13	116	<1.0	<1	73	۲5 ۲	<5	21	17	88	3.79	283
ES 1 ES 1		6 6	<0.2 <0.2	56 105	14	136	<1.0	<1	94 109	<5 <5	<5 /5	22	11	77	3.30 3.63	843
ES I		۰ ۲	(0.2	142	63 25	154 210	<1.0 <1.0	<1 <1	113	<5	<5 <5	24 27	12 13	92 95	3.63	90) 128(
ES 1		<5	(0.2	130	14	154	<1.0		232	<5	<5	31	13 19	119	3.60	591
	1+50E	7	<0.2	124	13	110	<1.0	<1	275	\ 5	(5	32	23	96	3.49	1203
	1+00E	, (5	(0.2	112	.5	87	<1.0	<1	170	<5	(5	27	19	92	3.10	1193
ES 1		<5	<0.2	150 (10	87	<1.0	<1	376	<5	<5	28	20	99	3.25	865
ES 1		<5	(0.2	26	ŷ	90	<1.0	<1	28	<5	<5	25	13	88	2.86	149
	0+50W	<5	<0.2	53	10	108	<1.0	(1	83	<5	(5	31	17	102	3.34	181
ES 1		10	(0.2	62	9	95	<1.0	(1	39	<5	(5	32	19	105	3.47	220
ES 1	1+50W	<5	<0.2	116	9	95	<1.0	(1	131	(5	(5	31	21	101	3.72	573
ES 1		<5	<0.2	48	10	78	<1.0	<1	74	<5	<5	28	16	108	3.49	203
ES 1		<5	<0.2	82	8	78	<1.0	(1	77	<5	<5	32	19	112	3.48	464
ES 1	3+00W	<5	<0.2	75	9	78	<1.0	(1	171	<5	<5	26	18	108	3.30	914
ES 1	3+50W	<5	<0.2	69	7	76	<1.0	(1	156	{5	<5	22	16	103	3.10	510
ES 1		<5	<0.2	183 l	8	84	<1.0	<1	360	<5	<5	30	24	104	3.69	731
ES 1		<5	<0.2	113	9	86	<1.0	(1	691	<5	<5	27	22	176	3.57	646
ES 1	5+00W	<5	<0.2	54	6	77	<1.0	<1	409	<5	<5	23	15	107	2.64	410
	5+00E	14	<0.2	58	11	167	<1.0	(1	<5	<5	۲5	19	11	66	3.49	92

.

. A

n/s = no sample

file: \ 621\soil_94.wk1

.

-

Soil Sampling Results (part 2)

ampl	e ID	Ba ppm	V pp a	Sr pp a	Y ppe	La pp n	Te pp n	Sn ppe	N ppm	A1 7	Kg Z	Ca Z	Na Z	*
S 0	5+00E	99	61	13	6	4	<10	<20	<20	2.74	1.12	0.19	0.01	0.06
50	4+50E	110	102	32	5	2	<10	27	<20	3.29	2.40	0.61	0.01	0.03
S 0	4+00E	294	131	55	7	4	<10	<20	<20	3.63	2.61	0.88	0.01	0.04
50	3+00E	204	126	53	9	6	<10	28	<20	3.53	2.28	1.05	0.01	0.0
S 0	2+50E	185	114	24	7	5	<10	<20	<20	3.28	1.89	0.86	0.01	0.0
S 0	2+00E	125	99	37	5	3	<10	<20	<20	2.92	1.95	0.73	0.01	0.0
S 0	1+50E	109	108	23	4	3	<10	<20	<20	2.96	2.05	0.79	0.01	0.0
50	1+00E	213	120	24	5	3	<10	24	<20	3.25	2.14	0.75	0.01	0.0
S 0	0+50E	117	111	18	4	2	<10	21	<20	3.07	2.11	0.67	0.01	0.0
50	0+00	112	122	33	7	3	<10	24	<20	2.92	2.64	1.09	0.01	0.0
S 0	0+50₩	99	90	19	8	3	<10	<20	<20	2.36	1.99	1.43	0.01	0.0
IS 0	1+00W	139	100	18	3	1	<10	<20	<20	2.48	2.05	0.64	0.01	0.0
5 0	2+00₩	131	90	14	6	2	<10	<20	<20	3.14	1.61	0.57	0.01	0.0
IS 0	2+50W	91	115	26	4	2	<10	<20	<20	3.00	2.00	0.78	<0.01	0.0
S 0	3+00W	261	157	37	11	4	<10	<20	<20	2.93	2.15	1.10	0.01	0.0
ES O	4+00W	203	112	31	10	5	(10	<20	<20	2.92	1.79	0.95	0.01	0.0
S 0	4+50W	104	107	30	10	4	<10	<20	<20	2.91	2.32	1.10	0.02	0.0
ES 0	5+00W	327	105	37	6	2	<10	<20	<20	3.19	1.79	0,76	0.01	0.0
ES 1	5+00E	n/s	n/s	n/s	n/s	n/s	n/s	n/s	n/s	n/s	n/s	n/s	n/s	n/
ES 1	4+50E	355	123	11	14	5	<10	<20	<20	2.54	1.93	0.93	0.01	0.0
ES 1	4+00E	406	109	11	9	4	<10	<20	<20	3.06	1.66	0.64	0.01	0.0
ES 1	3+50E	152	89	10	11	5	<10	<20	<20	2.65	1.48	0.36	0.02	0.0
ES 1	3+00E	328	106	12	14	6	<10	<20	<20	2.65	1.62	0,47	0.02	0.0
	2+50E	356	149	12	9	4	<10	<20	<20	2.B1	1.77	0.61	0.02	0.0
ES 1	2+00E	641	124	22	11	4	(10	<20 (20	<20 (20	2.98	2.10	0.86	0.02	0.0
ES 1	1+50E	1671	130	36	12	3	(10	<20 (20	<20 (20	2.98	1.97	0.95	0.01	0.1
	1+005	1998	131	27	7	2	<10	<20	<20	2.75	1.76	0.96	0.01	0.0
ES 1 ES 1	0+50E 0+00	>2000 100	121 84	33 20	9 4	3 2	く10 く10	く20 く20	<20 <20	2.96 2.98	1.82 1.50	0.90	0.02 0.01	0.0 0.0
ES 1	0+00 0+50W	157	110	29	5	3	<10 <10	<20 <20	<20 <20	2.73	1.98	0.45 0.70	0.01	0.0
ES 1	0+30W 1+00W	111	117	27	5	2	(10	<20 <20	<20 <20	2.97	2.20	0.71	0.01	0.0
ES 1	1+50W	312	131	34	J 7	4	<10	22	<20	3.25	2.12	1.05	0.01	0.0
ES 1	2+001	106	112	23	, 7	4	<10	20	<20	2.85	1.66	0.74	0.01	0.0
ES 1	2+50W	251	122	24	6	3	<10	<20	(20	3.28	1.95	0.B2	0.01	0.0
ES 1	3+00W	1515	130	29	4	2	<10	<20	(20	3.30	1.78	0.78	0.01	0.0
ES 1		628	115	22	6	3	<10	<20	<20	3.21	1.62	0.82	0.01	0.
ES 1	4+00₩	653	139	47	9	3	<10	41	<20	3.47	2.30	1.35	0.01	0.0
ES 1		460	132	51	9	4	<10	<20	<20	3.20	2.07	1.56	0.01	0.
ES 1		234	86	26	4	2	<10	<20	<20	2.74	1.58	0.88	0.01	0.
•		.	<u>vv</u>	24	•	-	144	***	184			-144		**
ES 2	5+00E	196	77	13	6	3	<10	<20	<20	3.11	1.28	0.31	0.01	0.

•

ţ,

•

page 2

Date of Report: 94.10.11

Erin

Soil Sampling Results 1994

Reference: v94-01077.0

ES 2 4+50E ES 2 4+00E ES 2 3+50E ES 2 3+00E ES 2 2+50E ES 2 2+50E ES 2 1+50E ES 2 1+50E ES 2 0+50E ES 2 0+50E ES 2 0+50W ES 2 1+50W ES 2 1+50W ES 2 2+50W ES 2 2+50W ES 2 3+50W	995 39 80 16 26 26 12 52 23 18 16 16 17	¢0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <	pp∎ 44 43 70 48 90 41	pp= 10 9 13 13 13 14	220 122 201	ppm <1.0 <1.0	pp= <1 <1	pp e (5	рр н (5	pp∎ 	pp m 	pp n	pp n	7. 	pp .
ES 2 4+00E ES 2 3+50E ES 2 3+00E ES 2 2+50E ES 2 2+50E ES 2 1+50E ES 2 1+50E ES 2 0+50E ES 2 0+50E ES 2 0+50W ES 2 1+50W ES 2 1+50W ES 2 1+50W ES 2 2+50W ES 2 3+50W	80 16 26 12 52 23 18 16	<pre><0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2</pre>	43 70 48 90	9 13 13	122	<1.0		<5	(5	/=					
ES 2 3+50E ES 2 3+00E ES 2 2+50E ES 2 2+50E ES 2 1+50E ES 2 1+50E ES 2 0+50E ES 2 0+50W ES 2 0+50W ES 2 1+50W ES 2 1+50W ES 2 2+50W ES 2 3+50W	16 26 12 52 23 18 16	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	70 48 90	13 13			11		• W	<5	14	8	64	3.72	931
ES 2 3+00E ES 2 2+50E ES 2 2+00E ES 2 1+50E ES 2 1+50E ES 2 0+50E ES 2 0+50E ES 2 0+50W ES 2 0+50W ES 2 1+50W ES 2 1+50W ES 2 2+50W ES 2 3+00W ES 2 3+50W	26 26 12 52 23 18 16	<0.2 <0.2 <0.2 <0.2	48 90	13	201		11	11	<5	<5	19	13	66	3.07	1621
ES 2 2+50E ES 2 2+00E ES 2 1+50E ES 2 1+50E ES 2 0+50E ES 2 0+50W ES 2 0+50W ES 2 1+50W ES 2 1+50W ES 2 2+50W ES 2 2+50W ES 2 3+50W	26 12 52 23 18 16	<0.2 <0.2 <0.2	90			<1.0	<1	11	<5	<5	20	11	111	3.91	146:
ES 2 2+00E ES 2 1+50E ES 2 1+50E ES 2 0+50E ES 2 0+50W ES 2 0+50W ES 2 1+50W ES 2 1+50W ES 2 2+50W ES 2 2+50W ES 2 3+50W	12 52 23 18 16	<0.2 <0.2		14	242	<1.0	<1	<5	<5	<5	18	9	67	3.78	97
ES 2 1+50E ES 2 1+00E ES 2 0+50E ES 2 0+60 ES 2 0+50W ES 2 1+50W ES 2 1+50W ES 2 1+50W ES 2 2+60W ES 2 2+50W ES 2 3+50W	52 23 18 16	<0.2	41		267	<1.0	(1	25	(5	<5	30	12	92	3.78	119
ES 2 1+00E ES 2 0+50E ES 2 0+50W ES 2 0+50W ES 2 1+50W ES 2 1+50W ES 2 2+00W ES 2 2+50W ES 2 3+50W	23 18 16			10	233	<1.0	(1	19	<5	<5	16	8	69	3.43	89
ES 2 0+50E ES 2 0+00 ES 2 0+50W ES 2 1+00W ES 2 1+50W ES 2 2+00W ES 2 2+50W ES 2 3+00W ES 2 3+50W	18 16	<0.2	48	14	308	(1.0	(1	110	<5	<5	19	11	75	4.05	121
ES 2 0+00 ES 2 0+50W ES 2 1+00W ES 2 1+50W ES 2 2+00W ES 2 2+50W ES 2 3+00W ES 2 3+50W	16		43	12	237	<1.0	(1	325	<5	<5	17	10	74	3.73	115
ES 2 0+50W ES 2 1+00W ES 2 1+50W ES 2 2+00W ES 2 2+50W ES 2 3+00W ES 2 3+50W		<0.2	47	13	213	<1.0	(1	(5	(5	<5	16	9	65	3.77	113
ES 2 1+00W ES 2 1+50W ES 2 2+00W ES 2 2+50W ES 2 3+00W ES 2 3+50W	11	<0.2	74	13	192	<1.0	< <u>1</u>	214	<5	(5	21	11	84	3.88	115
ES 2 1+50W ES 2 2+00W ES 2 2+50W ES 2 3+00W ES 2 3+50W		<0.2	104	11	178	<1.0	<1	101	<5	<5	14	8	66	2.65	106
ES 2 2+00W ES 2 2+50W ES 2 3+00W ES 2 3+50W	10	(0.2	47	8	167	<1.0	(1	81	<5 (5	<5	9	6	60 57	2.42	78
ES 2 2+50N ES 2 3+00N ES 2 3+50N	15 19	<0.2 <0.2	99 50	11	182 162	<1.0	(1	87 / 5	<5 <5	<5 /5	15	9	57	2.76	207
ES 2 3+00W ES 2 3+50W	12	(0.2	32	10 B	162	<1.0 <1.0	<1 <1	<5 12	() (5	<5 <5	9 11	6 7	42 44	2.55 2.48	95 94
ES 2 3+50W	6	(0.2	52 14	9	135	(1.0	<1	۲ <u>۲</u> ۲2	(5 (5	<5	7	6	35	2.38	145
	ہ 5	(0.2	37	, 9	157	<1.0	<1	<5	(5 (5	<5	15	8	33 62	2.58	137
ES 2 4+00W	13	(0.2	39	11	153	<1.0		(J (5	<5 <5	<5	13	10	65	2.30	137
Statistics:															
n =	57														
Min :	<5	<0.2	14	6	65	<1.0	<1	<5	<5	<5	7	6	35	2.30	78
Max :	80	<0.2	440	63	308	<1.0	(1	691	<5	<5	50	25	176	4.05	1203
25% ile :	<5	<0.2	48	8	83	<1.0	(1	10	<5	<5	19	11	69	2.85	115
50% ile :	(5	<0.2	73	9	109	<1.0	<1	64	<5	<5	25	16	92	3.30	158
75% ile :	12	<0.2	106	12	162	<1.0	<1	129	<5	<5	28	19	105	3.63	337
95% ile :	26	<0.2	175	14	237	<1.0	(۱	360	<5	<5	32	23	141	3.79	865
Duplicates:															
ES-0 4+00E	۲5	<0.2	125	9	90	<1.0	<1	9	<5	<5	33	54	102	3.66	203
ES-1 3+00E	٦,	(0.2	125		168	(1.0		132	<5 <5	<5	33 26	24 13	102	3.94	20: 99
ES-1 3+00E ES-1 1+00W	<5	1412	124	00	100	1110	11	132	\a	13	20	13	111	J.74	72
ES-2 2+50E	٦,	<0.2	100	15	288	<1.0	\1							,	
ES-2 2+00W							2.1	25	<5	<5	26	12	96	3.65	128

.

.

Project 621

ţ÷

٠

٠

Soil Sampling Results (part 2)

Sample ID	Ba pp n	V pps	Sr ppa	Y ppm	La pp n	Te ppa	Sn pp n	¥ ppa	A1 7	Mg 7,	Ca 7	Na Z	1
ES 2 4+50E	156		8	8	4	<10	<20	<20	2.98	1.08	0.26	0.02	0.08
ES 2 4+00E	175	· 87	28	5	3	<10	<20	<20	2.56	1.14	0.56	0.01	0.04
ES 2 3+50E	288	136	17	14	7	<10	<20	<20	3.03	1.39	0.80	0.02	0.1
ES 2 3+00E	285	80	14	12	6	<10	<20	<20	2.69	1.26	0.56	0.02	0.1
ES 2 2+50E	464	93	15	13	6	<10	21	<20	3.30	1.67	0.69	0.03	0.1
ES 2 2+00E	174	71	11	7	4	<10	<20	<20	3.39	1.11	0.16	0.01	0.0
ES 2 1+50E	276	83	19	8	4	<10	21	<20	3.28	1.44	0.59	0.02	0.1
ES 2 1+00E	316	7B	19	9	5	<10	<20	<20	2.83	1.19	0.67	0.02	0.1
ES 2 0+50E	267	76	15	9	5	<10	<20	<20	3.29	1.16	0.27	0.02	0.1
ES 2 0+00	296	85	14	13	6	<10	23	<20	3.37	1.35	0.29	0.03	0.1
ES 2 0+50W	373	78	24	13	8	<10	27	<20	2.93	0.95	0.38	0.03	0.1
ES 2 1+00W	311	68	22	17	10	<10	21	<20	3.16	0.74	0.19	0.02	0.0
ES 2 1+50W	617	81	17	15	7	<10	29	<20	3.09	1.02	0.43	0.03	0.1
ES 2 2+00W	509	65	17	15	9	<10	23	<20	2.93	0.78	0.26	0.02	0.0
ES 2 2+50W	292	63	24	8	5	<10	<20	<20	2.58	0.79	0.23	0.02	0.0
ES 2 3+00W	188	71	15	6	3	<10	<20	<20	2.79	0.70	0.11	0.02	0.0
ES 2 3+50¥	239	83	23	9	4	<10	29	<20	2.97	1.06	0.37	0.01	0.0
ES 2 4+00W	220	85	26	6	<1	<10	{20	<20	3.26	1.21	0.37	0.02	0.0
Statistics:													
n =	57												
Min :	91	61	8	3	(1	<10	<20	<20	2.36	0.70	0.11	<0.01	0.0
Max :	>2000	157	55	17	10	<10	41	<20	3.63	2.64	1.56	0.03	0.1
25% ile :	139	83	15	6	3	<10	<20	<20	2.81	1.21	0.38	0.01	0.0
50% ile :	251	106	23	8	4	<10	<20	<20	2.98	1.76	0.70	0.01	0.0
75% ile :	355	122	29	10	5	<10	21	<20	3.25	2.05	0.88	0.02	0.(
95% ile :	1515	136	47	14	7	<10	28	<20	3.39	2.32	1.10	0.03	0.1
Duplicates:													
ES-0 4+00E	287	128	54	7	4	<10	24	<20	3.57	2.51	0.87	0.01	0.
ES-1 3+00E	384	119	14	16	7	<10	22	<20	3.06	1.74	0.50	0.02	0.0
ES-1 1+00W			• •		•			164	4144		*144	****	¥ 1
ES-2 2+50E	466	91	11	10	6	<10	21	<20	3.35	1.48	0.77	0.03	0.
ES-2 2+00W	100		••	••	~			124	0100		V I I I	~ ~ ~ ~	

APPENDIX B

Rock Sample Descriptions

Erin Property

ER-94-001

Fine to medium grained. Andesite tuff. Maroon

August 24, 1994

with irregular quartz carbonate veins and patches. 2-3% diopside. Quartz carbonate 2-3 cm wide. visible mineralization. Maroon andesite tuff. Minor epidote. Minor ER-94-002 quartz carbonate irregular (Possible old sample 1m loose material. site). ER-94-003 Maroon andesite tuff. Vuggy quartz fragments. 1-10cm. Well hornfelsed. Minor epidote. 1 m loose material. Maroon-green andesite tuff with quartz-ER-94-004 1.5 m. carbonate blebs. Minor epidote. 1.5 m. Maroon andesite tuff. Quartz-carbonate ER-94-005 blebs. Minor epidote. 1.5 m. Maroon andesite tuff. Quartz-carbonate ER-94-006 blebs. Minor epidote. ER-94-007 DE 398 (22 Sept 87). Light grey bioclastic 1m. Some silicification. Pyrite 1-2% on Lst. fracture. Trace malachite. Rusty weathering. ER-94-008 1m. As above. 020°/60°W Bioclastic? - calcareous boulders cemented ER-94-009 Float. with fine grained red hematized rock. ER-94-010 1m. Strongly hematized bioclastic with calcite stringers and fractures. Minor malachite on fractures (DE 399 R-87). Float in trench. Andesite? Fine grained. ER-94-011 Strongly hematized. Poss. rhodochrosite. 0.5 m Quartz stringers @ 102°. Vertical dip with ER-94-012 malachite 1-3% in hematized andesite. ER-94-013 0.5 m Quartz carbonate vein/stringer to 5cm. ~10m long. Andesite. Hematized. Vuggy. Vein. Local malachite.

ER-94-014 Chip. Sample of vein material <u>only</u>. As above.

- ER-94-015 Grab. 2-3 cm quartz vein with minor carbonate. Chalcopyrite ~1%, tetrahedrite?, malachite 5%.
- ER-94-016 0.5m. Quartz carbonate vein <10cm. Malachite 2-3%. Wall rocks. Andesite? with calcite blebs. Fine to medium grained (amygdaloidal basalt?)
- ER-94-017 2m. Grab across small trench. Calcite and malachite in andesite.
- ER-94-018 1m. Carbonate vein with trace malachite. Some brecciation.
- ER-94-019Light grey to green limy tuff. Fine to mediumER-94-020grained malachite stain with trace silvery specksER-94-021(hematite?). Locally mod. hematized.
- ER-94-022 1m. Amygdaloidal basalt. Quartz carbonate in amygdules. Strongly hematized. Minor rhodochrosite.
- ER-94-023 Representative sample from trench. Strongly hematized. Trace rhodochrosite. Minor epidote. Quartz carbonate in amygdules. Basalt?
- ER-94-024 lm. Strongly, hematized. Calcareous tuff (?). Trace malachite.
- ER-94-025 Grab. Maroon medium grained andesite. Quartz crystals <1mm. Disseminated pyrite <1% locally. Vuggy.
- ER-94-026 0.5m. Fracture @ 345°/80° E dip. Minor malachite. Mottled and green andesite.
- ER-94-027 Grab from maroon trench. Strong hematization. Malachite, massive chalcopyrite. Euhedral white quartz - aragonite? Lst.
- ER-94-028 1m. Strongly hematized 1st.
- ER-94-029 Grab from trench. Limy andesite moderately to well hematized. Vuggy quartz veining with trace malachite.
- ER-94-030 1m. Quartz carbonate vein ~ 0.3m thick in fine grained andesite (Tuff?). Minor malachite. Strike 274°. Dip vertical. Same site as DHR 89-52/53.
- ER-94-031 Chip. 0.5m. Similar to above but with irregular quartz and apple green alteration (epidote?).

- ER-94-032 1m chip. Buff rhyolite. 080°/vertical dip. Banded, sugary texture.
- ER-94-033 Grab. Quartz in trench. Quartz carbonate fragments with epidote.
- ER-94-034 1 m from blast pit, quartz blebs and irregular stringers in andesite.
- ER-94-035 1 m from blast pit. Quartz carbonate as irregular blebs. Trace pyrite. Minor rhodochrosite.
- ER-94-036 Grab. Quartz float in trench. Vuggy with euhedral, hematite-stained quartz crystals. Epidote.
- ER-94-037 Grab. Quartz/carbonate float from trench. Minor epidote.
- ER-94-038 1 m chip. Quartz/carbonate/epidote vein 0.7 m wide. Euhedral quartz and epidote. 002/70° E dip.
- ER-94-039 Chip along. Strike of vein. Quartz carbonate vein <3 cm. Laminated epidote and chlorite.
- ER-94-040 1 m. Pink aplite dyke. 330°/vert. dip.
- ER-94-041 1 m. Quartz carbonate vein with epidote/330° vert. dip. ~0.7 m wide. Possibly same vein as ER-94-038.
- ER-94-045 1 m wide. Similar to ER-94-046.
- ER-94-046 2 m wide. Host rocks dark grey andesite. Porphyritic (1-3 mm). Aphanitic matrix with small quartz lenses in part. Epidote alteration and calcite abundant with minor malachite.
- ER-94-047 Andesite dark grey, aphanitic matrix with porphyritix texture. Altered to epidote. Abundant coarse crystalline calcite. Silicified hematite to bright red jasper. Minor quartz veinlets, trace malachite.

APPENDIX C

Rock Sampling Analytical Procedures and Results

ANALYTICAL PROCEDURES

Geochemical Analysis

by Bondar-Clegg :

		LOWER		
ELEMEI	NT	DETECTION LIMIT	EXTRACTION	METHOD
Au	Gold	5 ppb	fire-assay	atomic absorption
Ag	Silver	0.2 ppm	HNO ₃ -HCI hot extr	ind. coupled plasma
Al*	Aluminum	0.01 %	HNO ₃ -HCI hot extr	ind. coupled plasma
As	Arsenic	5 ppm	HNO3-HCI hot extr	ind. coupled plasma
Ba*	Barium	5 ppm	HNO ₃ -HCI hot extr	ind. coupled plasma
Bi	Bismuth	5 ppm	HNO3-HCI hot extr	ind. coupled plasma
Ca*	Calcium	0.01 %	HNO ₃ -HCI hot extr	ind. coupled plasma
Cd	Cadmium	1 ppm	HNO ₃ -HCI hot extr	ind. coupled plasma
Co*	Cobalt	1 ppm	HNO ₃ -HCI hot extr	ind. coupled plasma
Cr*	Chromium	1 ppm	HNO ₂ -HCI hot extr	ind, coupled plasma
Cu	Copper	1 ppm	HNO3-HCI hot extr	ind, coupled plasma
Fe*	Iron	0.01 %	HNO ₃ -HCI hot extr	ind. coupled plasma
Ga	Gallium	2 ppm	HNO ₃ HCI hot extr HNO ₃ HCI hot extr	ind. coupled plasma
Hg∎	Mercury	10 ppb	HNO3-HCI leach	cold vapour atomic absorption
К*	Potassium	0.01 %	HNO3-HCI hot extr	ind, coupled plasma
La*	Lanthanum	1 ppm	HNO3-HCI hot extr	ind, coupled plasma
Li	Lithium	1 ppm	HNO3-HCI hot extr	ind, coupled plasma
Mg*	Magnesium	0.01 %	HNO3-HCI hot extr	ind. coupled plasma
Mn*	Manganese	0.01 %	HNO ₃ -HCI hot extr	ind, coupled plasma
Mo*	Molybdenum	1 ppm	HNO3-HCI hot extr	ind. coupled plasma
Na*	Sodium	0.01 %	HNO ₃ -HCI hot extr	ind. coupled plasma
Nb	Niobium	1 ppm	HNO3-HCI hot extr	ind. coupled plasma
Ni*	Nickel	1 ppm	HNO ₃ -HCI hot extr	ind, coupled plasma
Ръ	Lead	2 ppm	HNO3-HCI hot extr	ind. coupled plasma
Sb*	Antimony	5 ppm	HNO ₃ -HCI hot extr	ind. coupled plasma
Sc	Scandium	5 ppm	HNO3-HCI hot extr	ind. coupled plasma
Sn*	Tin	20 ppm	HNO ₃ -HCI hot extr	ind, coupled plasma
Sr*	Strontium	1 ppm	HNO3-HCI hot extr	ind. coupled plasma
Та	Tantalum	10 ppm	HNO3-HCI hot extr	ind, coupled plasma
Te*	Tellurium	10 ppm	HNO3-HCI hot extr	ind. coupled plasma
Ti	Titanium	0.01 %	HNO3-HCI hot extr	ind. coupled plasma
V*	Vanadium	1 ppm	HNO ₃ -HCI hot extr	ind. coupled plasma
W#	Tungsten	20 ppm	HNO3-HCI hot extr	ind. coupled plasma
Y	Yttrium	1 ppm	HNO3-HCI hot extr	ind. coupled plasma
Zn	Zinc	1 ppm	HNO3-HCI hot extr	ind. coupled plasma
Zr	Zirconium	1 ppm	HNO ₃ -HCI hot extr	ind. coupled plasma
			3	

- Please note: certain mineral forms of those elements above marked with an asterisk will not be soluble in the HNO₃/HCI extraction. The ICP data will be low biased.
- Please note: Hg will only be analysed upon request.

file: \621\rock_94.wk1

.

- . .

Erio

Date of Report: 94.10.11

Rock Sampling Results 1994

Reference: v94-01077.0

Sample ID	Au	Ag	Cu	Pb	Zn	Cď	Mo	As	Sb	Bi	Ni	Co	Cr	Fe	Ho
	ppb	pp n	pp n	pp m 	pp e	pps	pp s	pp n	pp e	pp n 	pp .	pp n	pp=	7.	pp=
ER-94 001	<5	<0.2	26	9	252	<1.0	(1	<5	<5	<5	20	17	119	2.45	1470
ER-94 002	<5	<0.2	53	11	101	<1.0	<1	<5	<5	<5	33	17	113	2.69	1566
ER-94 003	<5	<0.2	57	14	65	<1.0	<1	<5	<5	<5	12	13	204	3.18	1474
ER-94 004	<5	<0.2	10	7	93	<1.0	<1	<5	<5	<5	26	23	169	2.82	355
ER-94 005	<5	<0.2	23	8	66	<1.0	<1	<5	<5	<5	22	21	165	2.67	292
ER-94 006	<5	<0.2	36	10	121	<1.0	<1	<5	<5	<5	28	26	165	2.92	309
ER-94 007	. 7	10.8	1947	14	96	<1.0	(1	53	<5	<5	3	10	64	2.55	428
ER-94 008	<5	15.9	1940	14	103	<1.0	(1	23	<5	<5	2	12	69	2.49	4141
ER-94 009	6	<0.2	93	4	28	<1.0	(1	122	<5	<5	6	4	117	1.65	376
ER-94 010	21	1.0	2008	<2	<1	<1.0	(1	41	(5	<5	3	3	49	1.04	512
ER-94 011	<5	6.3	471	21	68	<1.0	<1	329	<5	35	8	21	75		>2000
ER-94 012	12	26.4	(1	6	138	<1.0	(1	(5	<5	<5	20	23	180	2.59	800
ER-94 013	7	<0.2	1189	4	40	<1.0	(1	13	<5	<5	12	14	55	1.11	570
ER-94 014	27	1.7	3468	<2	27	<1.0	<1	6	<5 /5	<5 (5	3	8	106	1.12	4863
ER-94 015	41	>50.0	9B04	<2 (2	334	<1.0		593	<5	۲5 ۲۶	(1	6	114	1.67	244
ER-94 016	12	5.0	1>	<2	115	<1.0	<1	125	<5 (5	<5 (5	10	11	204	1.82	435
ER-94 017	54	28.0	8449	11	56	<1.0	9	124	<5 /5	<5 (5	9	7	85 5/	1.31	592
ER-94 018 ER-94 019	<5 15	<0.2 25.2	816 10000	9 <2	5	<1.0	(1	<5 3236	<5 61	<5 /F	3	2	56	1.50	272
ER-94 019	15 (5	6.2	15165		128 71	<1.0 <1.0	3	3236 1718	14	<5 <5	4	11 10	103 65	1.74	321 375
ER-94 020	- 16	7.1	16369	5 7	100	<1.0	<1 <1	1459	33	(5 (5	7 6	10	6J 46	2.02	479
ER-94 021	16 (5	<0.2	16369 39	13	97	<1.0	1	1433 671	33 9	<5	р 23	21	40 144	2.02	- 1411
ER-94 022	<5 <5	(0.2	9	33	170	<1.0	4	2712	6	<5	15	17	68		>2000
ER-94 024	(5	(0.2	459	8	59	(1.0	5	237	(5	<5	34	6	91	2.18	918
ER-94 025	<5	<0.2	16	<2	400	<1.0	2	328	<5 <5	<5	19	17	130	4.18	1058
ER-94 026	<5	(0.2	2470	22	100	<1.0	1	9	<5	<5	5	8	82	2.97	179
ER-94 027	137	>50.0	9804	11	288	<1.0	45	148	15	(5	11	30	77	6.30	994
ER-94 028	<5	9.3	651	7	120	<1.0	7	1305	75	24	8	7	35		>2000
ER-94 029	7	3.6	1055	<2	66	14.7	6	75	(5	<5	30	7	153	1.95	560
ER-94 030	(5	1.5	2180	<2	233	<1.0	< i	<5	<5	<5	18	20	120	2.45	787
ER-94 031	<5	<0.2	191	<2	63	<1.0	2	(5	<5	<5	20	17	170	3.71	390
ER-94 032	(5	<0.2	68	<2	9	<1.0	4	20	<5	<5	1	- A	61	0.48	
ER-94 033	(5	<0.2	46	<2	65	<1.0	a	332	<5	(5	- 8	9	78	1.55	
ER-94 034	(5	<0.2	31	<2	65	<1.0	- di	185	7	<5	13	15	122	3.32	
ER-94 035	(5	<0.2	56	<2	105	<1.0		1487	7	<5	23	20	139	3.68	
ER-94 036	<5	<0.2	73	<2	44	<1.0	- A	<5	۲5	<5	15	10	277	3.32	
ER-94 037	<5	<0.2	32	<2	56	<1.0	3	<5	<5	<5	18	14	169	2.60	
ER-94 038	<5	<0.2	148	<2	34	<1.0	<1	(5	<5	<5	10	8	104	1.67	
ER-94 039	28	(0.2	287	<2	25	<1.0	à	<5	<5	(5	12	10	81	2.25	
ER-94 040	<5	(0.2	205	<2	57	<1.0	(i	<5	<5	<5	35	19	197	3.31	
ER-94 041	<5	(0.2	181	<2	42	<1.0	6	<5	<5	<5	13	13	159	1.45	
ER-94 047	<5	<0.2	311	<2	74	<1.0	<1	(5	<5	<5	24	19	154	3.31	

.

file: \621\rock_94.wk1

FINAL

•

Rock Sampling Results (part 2)

Sample ID	Ba pp n	V ppa	Sr ppm	Y pp a	La pp n	Te pp∎	Sn pp n	W ppe	Al Z	Mg X	Ca I	Na X	K 7
ER-94 001	6	154	24	2	<1	<10	31	<20	3.34	1.86	>10.00	0.02	0.02
ER-94 002	477	140	195	10	8	<10	<20	<20	3.30	2.02	1.56	0.18	0.18
ER-94 003	50	113	75	3	(1	<10	42	<20	1.94	0.73	2.18	<0.01	0.1
ER-94 004	53	199	16	7	<1	<10	22	<20	4.54	2.44	3.91	0.03	0.0
ER-94 005	145	128	41	7	<1	<10	22	<20	2.82	2.23	1.43	0.04	0.1
ER-94 006	84	161	15	7	<1	<10	33	<20	3.83	2.57	3.04	0.04	0.1
ER-94 007	694	34	5	13	<1	<10	<20	<20	1.05	0.32	2.60	0.02	0.2
ER-94 008	935	40	13	12	<1	<10	<20	<20	1.23	0.50	4.24	0.02	0.2
ER-94 009	1171	124	107	7	<1	<10	29	<20	1.40	0.48	7.54	0.02	0.1
ER-94 010	1024	B4	62	<1	<1	<10	<20	<20	0.64	0.10	>10.00	<0.01	0.0
ER-94 011	>2000	158	45	4	<1	<10	46	<20	2.03	0.34	1.14	0.02	<0.0
ER-94 012	182	139	2	6	<1	<10	<20	<20	1.49	0.90	1.79	0.03	0.1
ER-94 013	138	101	42	4	<1	<10	30	<20	1.61	0.78	>10.00	0.02	0.0
ER-94 014	1658	146	45	3	<1	<10	25	<20	1.07	0.59	7.90	0.02	0.0
ER-94 015	3	82	<1	3	4	30	<20	<20	0.81	0.46	0.26	0.01	0.1
ER-94 016	1B4	153	45	4	<1	<10	30	<20	1.59	0.86	1.00	0.02	0.1
ER-94 017	255	46	46	8	6	<10	<20	<20	1.05	0.43	>10.00	<0.01	0.1
ER-94 018	53	81	30	<1	4	<10	<20	<20	0.40		>10.00	<0.01	0.1
ER-94 019	69	137	11	6	4	<10	<20	<20	1.22	0.72	4.76	0.02	0.1
ER-94 020	426	191	20	6	4	<10	<20	<20	1.48	0.97	7.64	0.01	0.1
ER-94 021	452	298	37	10	5	<10	22	<20	2.12	1.23	9.28	0.02	0.1
ER-94 022	29	133	43	4	(1	<10	<20	<20	3.85	1.31	4.61	0.02	0.0
ER-94 023	103	213	75	4	1	<10	20	<20	3.44	1.10	8.99	0.02	0.1
ER-94 024	1379	240	48	11	6	<10	<20	<20	0.95	0.22	7.21	0.02	0.1
ER-94 025	1894	117	19	9	3	<10	<20	<20	0.64	0.68	1.15	0.07	0.0
ER-94 026	1159	55	270	13	3	<10	35	<20	2.15	0.75		0.03	0.0
ER-94 027	18	150	59	2	2	13	23	<20	0.77	0.25	7.22	<0.01	0.0
ER-94 028	>2000	198	141	1	1	12	45	<20	1.62	0.35		0.02	0.0
ER-94 029	280	155	11	8	3	<10	<20	<20	1,38	0.72		0.05	0.0
ER-94 030	191	117	40	3	2	(10	<20	<20	2.20	1.65		0.02	0.0
ER-94 031	106	144	19	3	1	<10	25	<20	2.13	1,40		0.05	0.0
ER-94 032	389	7	6	2	9	(10	<20	<20	0.70	0.10		0.04	0.3
ER-94 033	49	100	44	(1	2	(10	24	<20	1.80	0.87		0.01	0.0
ER-94 034	89	134	32	4	2	<10	(20	<20	1.12	0.93		0.03	0.0
ER-94 035	123	105	89	5	2	<10	22	<20	2.88	1.59		0.06	0.0
ER-94 036	40	71	50	2	1	<10	<20	<20	1.38	0.72		0.02	0.0
ER-94 037	70	74	38	3	1	<10	<20	<20	1.80	1.04		0.01	0.1
ER-94 038	15	69 107	39	<1	2	<10	<20	<20	1.54		>10.00		<0.0
ER-94 039	14	196	19	2	(1	<10	<20	<20	6.20		>10.00	0.01	<0.0
ER-94 040	30	110	75	8	3	<10	34	<20	2.70	1.92		0.02	0.0
ER-94 041	62	70	77	<1	1>	<10	<20	<20	2.29	0.83		<0.01	0.0
ER-94 047	55	117	89	6	1	<10	<20	<20	2.53	1.70	2.00	0.02	0.

page la

file: \621\rock_94.vk1

.

ţ

.

page 2

Date of Report: 94.10.11

.

Project 621

Rock Sampling Results 1994 ÷

Erin

s.

Reference: v	/94-01077.	0		:=======	222332										
Sample ID	Au ppb	Ag ppm	Cu pp=	Pb ppm	Zn pp n	Cd ppm	Mo pp#	As pp∎	Sb ppm	Bi ppm	Ni pp m	Co pp∎	Cr ppm	Fe X	Hn ppm

Duplicates:															
ER-94 004		<0.2	11	9	93	<1.0	{1	<5	<5	<5	26	22	171	2.88	3616
ER-94 019	16														
ER-94 024		<0.2	462	11	55	<1.0	5	233	<5	<5	31	6	79	2.37	7704
ER-94 041		<0.2	167	6	39	<1.0	4	<5	<5	<5	12	12	143	1.30	945
ER-94 047	<5														

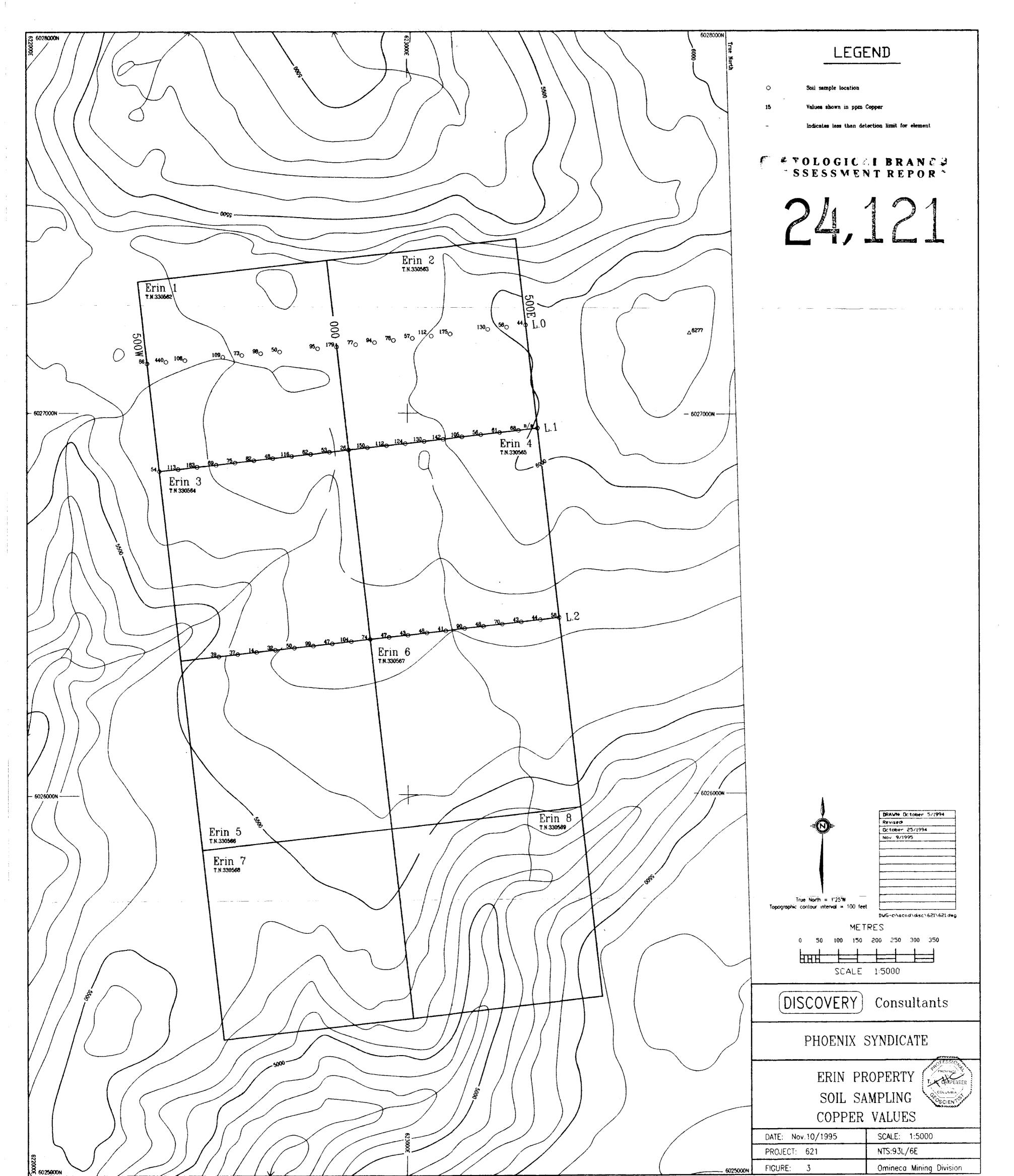
file: \621\rock_94.wk1

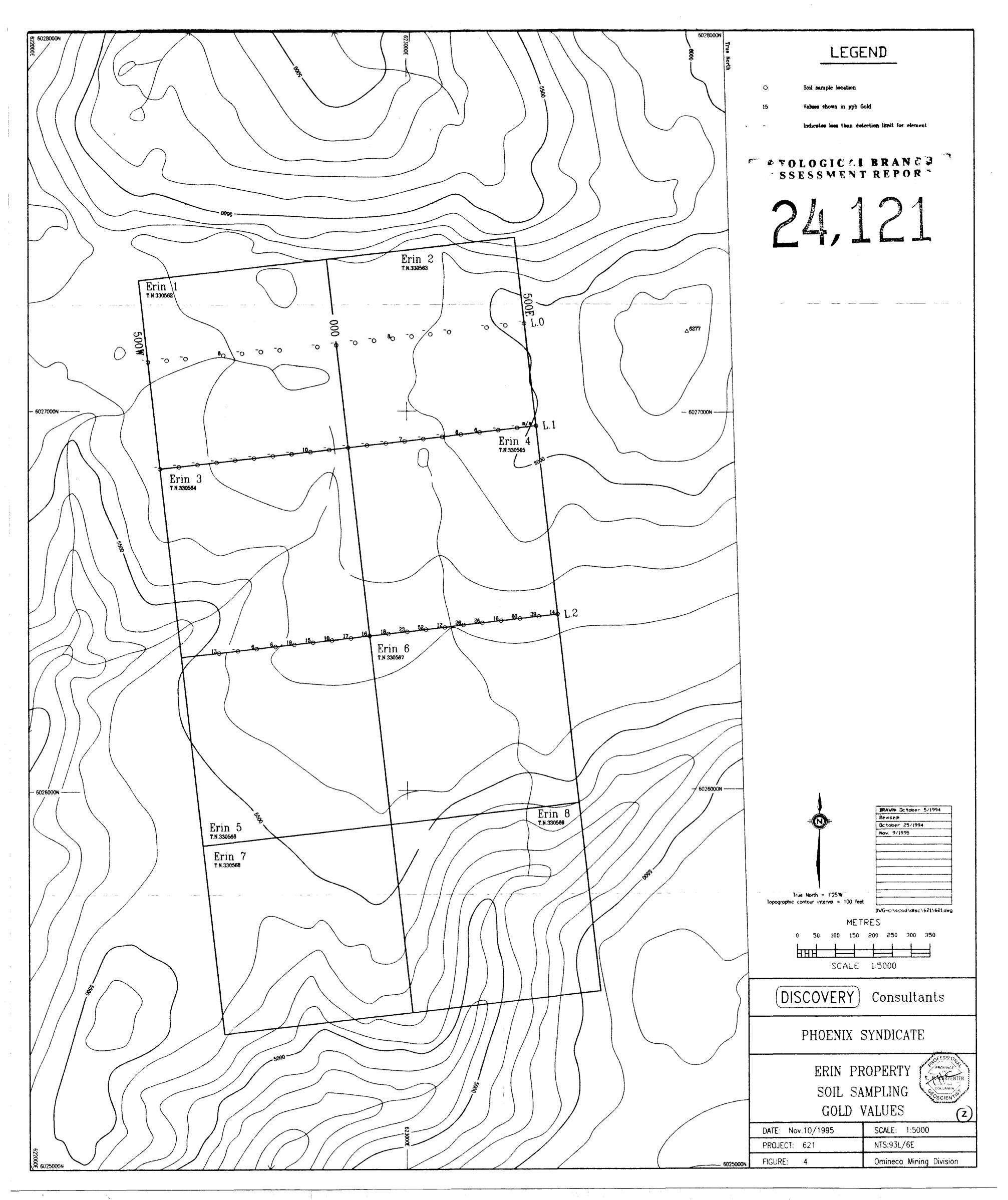
FINAL

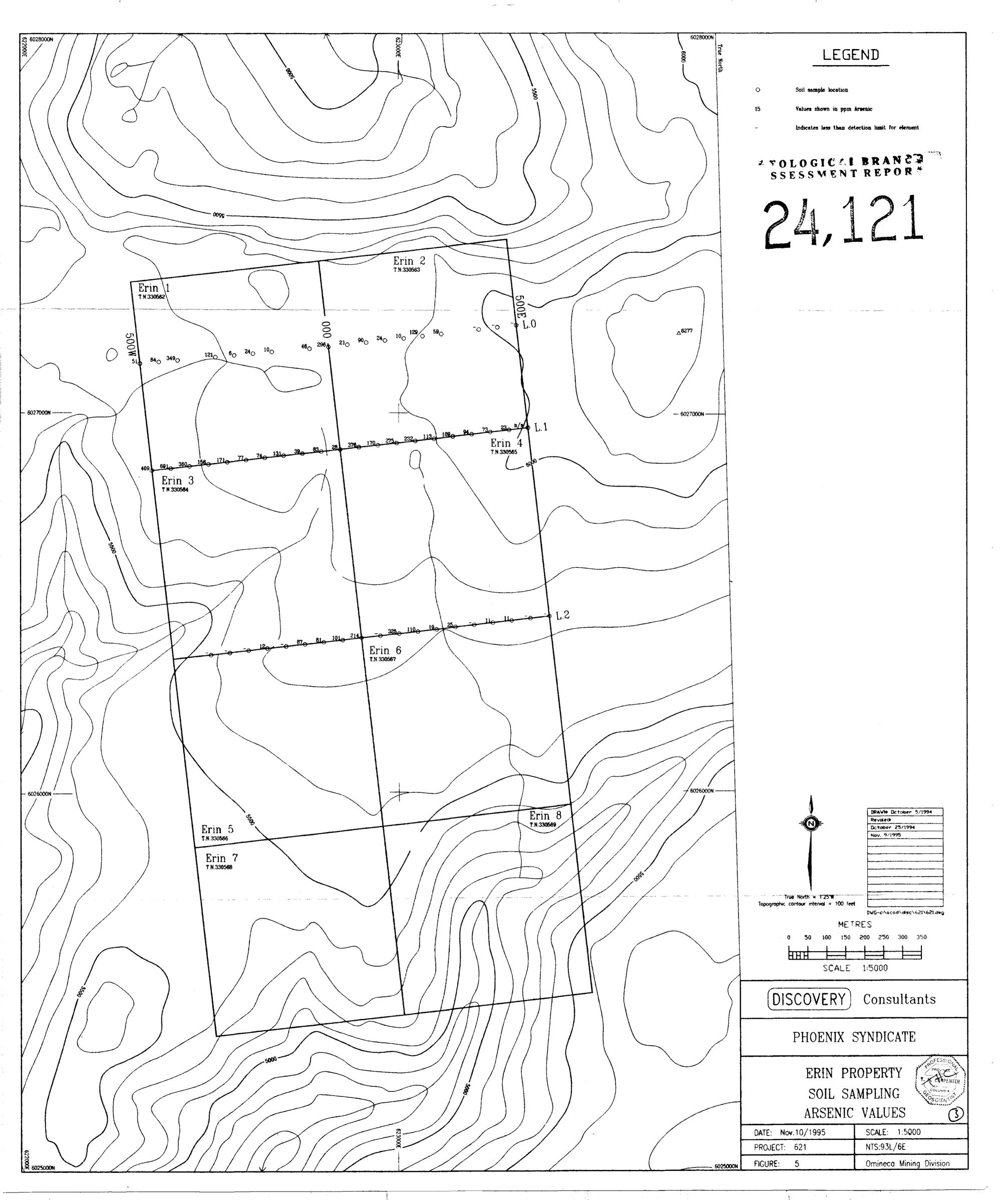
Project 621

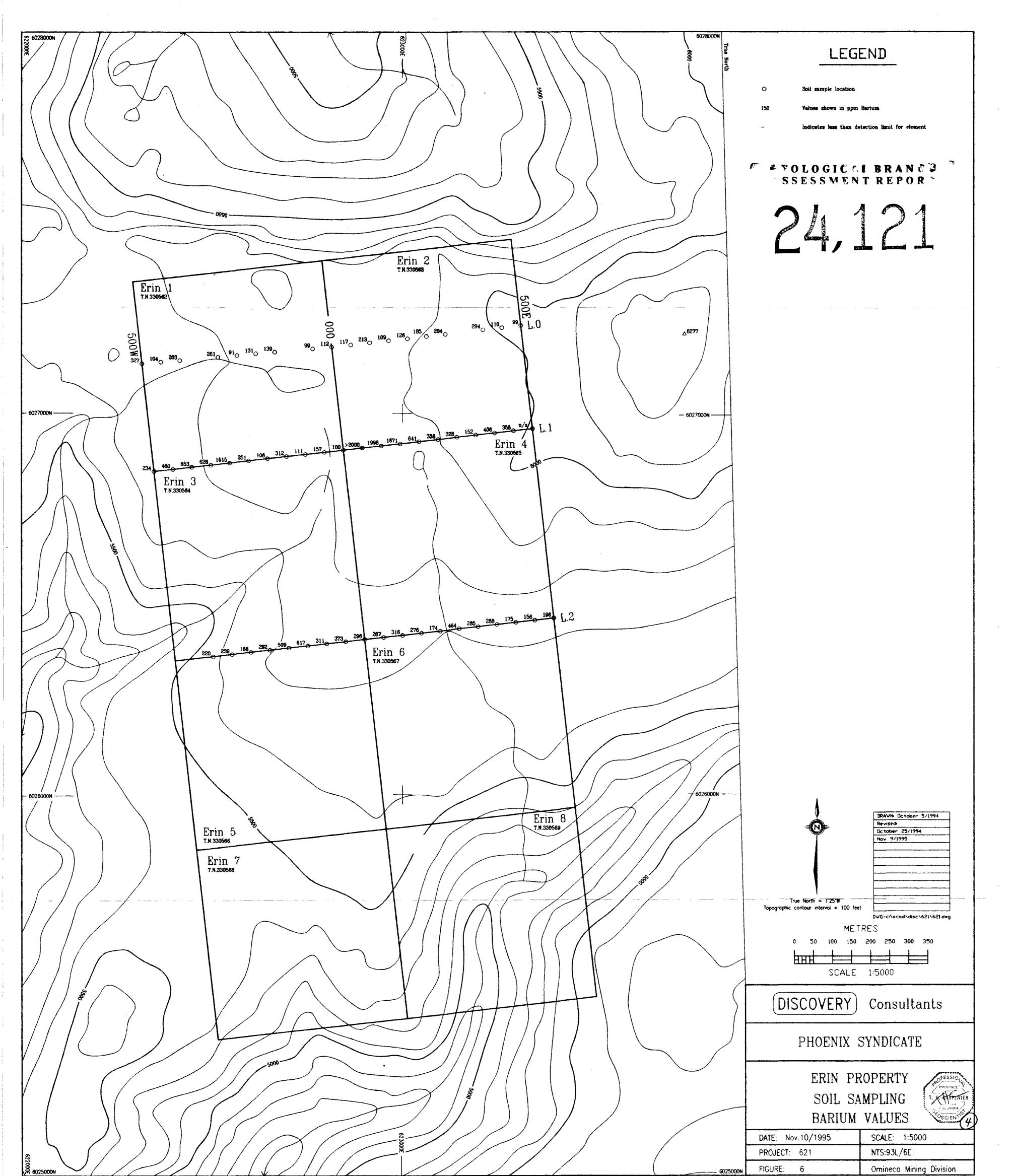
Į.

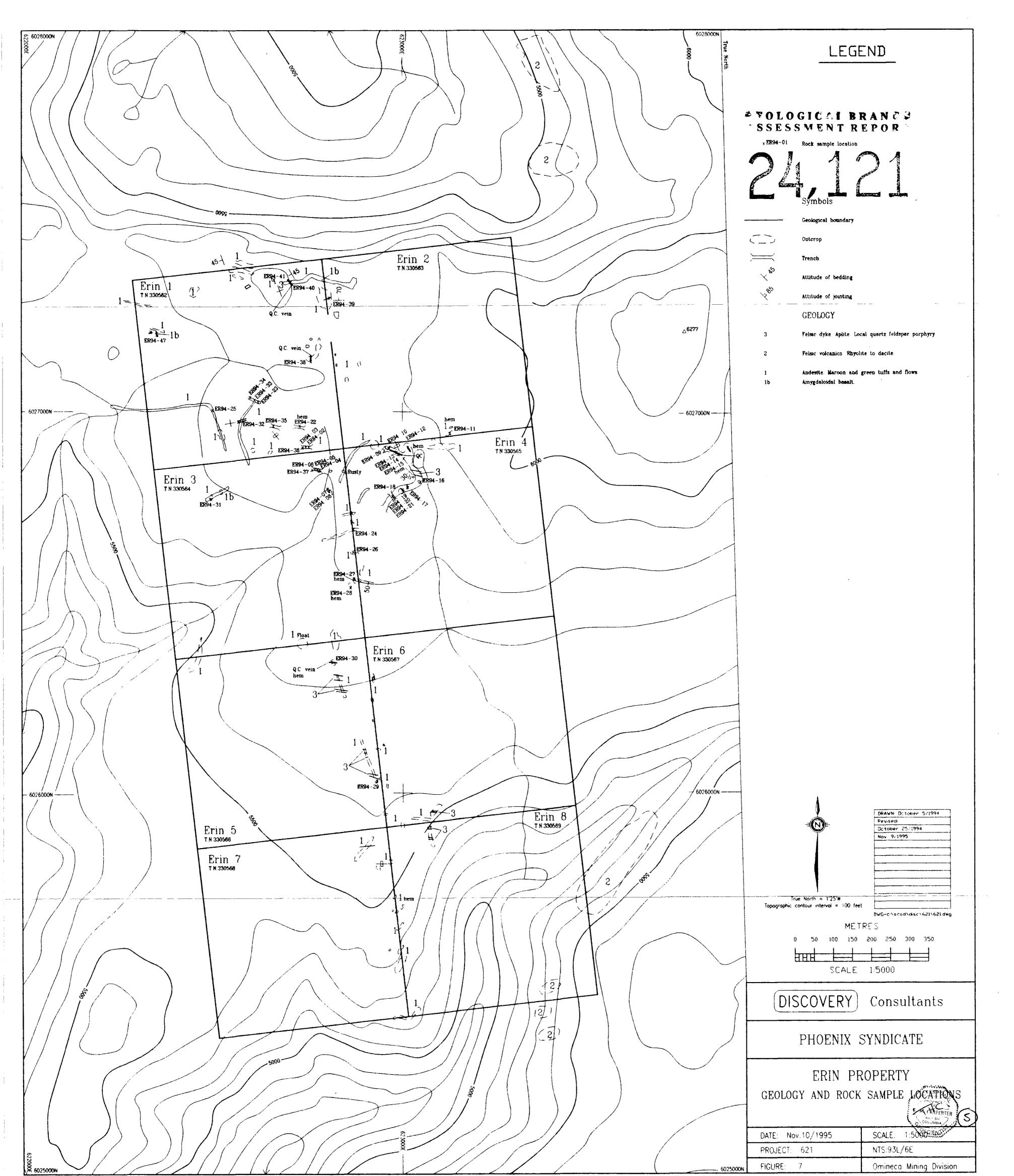
.


•


.


Rock Sampling Results (part 2)


1155162888888				.======					 *******	 69322922	:=2235
Sample ID	Ba pp e	V ppe	Sr pp=	Y pp a	La ppm	Te ppe	Sn ppe	W ppa	-	Na X	K Z


Duplicates:													
ER-94 004	52	200	15	7	<1	<10	21	<20	4.51	2.46	3.97	0.03	0.04
ER-94 019													
ER-94 024	1356	217	49	11	8	<10	22	<20	0.89	0.20	7.11	0.02	0.14
ER-94 041	57	63	71	<1	(1	<10	<20	<20	2.18	0.78	2.84	<0.01	0.04
ER-94 047													

