NTS $92 \mathrm{~J} / 9 \mathrm{~W}$ LAT. - $5034^{\prime} \mathrm{N}$ LONG. - 12227 W

GEDLDGICAL, GEDCHEMICAL, AND GEOPHYSICAL REPORT ON THE PENNY \#1 CLAIM, D'ARCY, B.C.

LILLOUET MINING DIVISION

PREPARED FOR: AMCORP INDUSTRIES INC., VERDSTONE GOLD CORP., 310-1959 152 nd ST. SURREY, B.C. V4A 9E3

PREPARED BY: ANDRIS KIKAUKA, P.GED. BOX 370, BRACKENDALE, B.C.

NOV. 9, 1995

TABLE OF CONTENTS
1.0 INTRODUCTION 1
page
2.0 LDCATION, ACCESS, PHYSIDGRAPHY 1
3.0 PROPERTY STATUS 1
4.0 AREA HISTQRY 1
5.0 PROPERTY HISTQRY 2
6.0 GENERAL GEOLOGY 2
7.01995 FIELD PROGRAM 2
7.1 METHODS AND PROCEDURES 2
7.2 GEOLOGY AND MINERALIZATION 3
7.3 SOIL GEOCHEMISTRY 4
7.4 MAGNETOMETER SURVEY 5
8.0 DISCUSSION OF RESLLTS 5
9.0 CONCLUSION AND RECOMMENDATION 6
REFERENCES 6
CERTIFICATE
LIST OF FIGURES
FIGURE 1 GENERAL LOCATION MAP
FIGURE 2 CLAIM LOCATION MAP
FIGURE 3 GENERAL GEOLOGY
FIGURE 4 PENNY \#1 GEQLQGY AND MINERALIZATION
FIGURE 5 PENNY \#1 SOIL SAMPLE LOCATION MAP
FIGURE 6 PENNY \# 1 MAGNETOMETER PROFILES
FIG $5 A-C u, \quad 5 B-$
APPENDIX A , $5 D-A g$
AFFENDIX E MAGNETOMETER SURVEY READINGS

1.0 INTRODUCTIDN

This report was prepared at the request of Verdstone Gold Corp. and Amcorp Industries Inc. to describe and evaluate mineral potential on the Penny \#i claim. Geological and geochemical surveys were carried out by Andris Kikauka (geologist) and Louis Bouchard (geatechnician) on the claim between Gct.21-25, 1995.

2.0 LOCATION, ACCESS, PHYSIOGRAPHY

The Penny \#1 claim is situated on the southeast side of Anderson Lake 3 kilometers east of D'Arcy, B.C. There are old logging roads (which are in good condition) that lead to 4,000 foot elevation within 100 meters south of Wade Creek. Within the community of D'Arcy, private land owners have gated the access road, and permission must be granted before entering the $F \& L$ Game Ranch (Frank Rollert proprietor).

Wade Creek bisects the property and forms steep E-W trending cliffs. The gradient of Wade Creek is relatively moderate where fieldwork was carried out (3,500-4,200 foot elev.) and quickly steepens forming waterfalls below 3,500 foot elev. The creek has several bends and deviations from it's west trend which reflect underlying bedrock structures.

3.0 PROPERTY STATUS

The claims comprise 300 hectares and are situated in the Lilloget Mining Division as described below:

CLAIM NAME \# OF UNITS RECORD DATE EXPIRY DATE Penny \#1 12 Nov. 16, 94 Nov. 16, 95*
*assessment work outlined in this report has been filed to extend the expiry date to Nov= 16, 97.

4.0 AREA HIGTORY

B.C.'s Bridge River gold camp (35 km. NW of the Penny \#1) includes the Bralarne, Fioneer, Wayside, and Minto Mines which have collectively produced $4,178,063$ ounces of gold from 8,067,600 tons milled. The Bralorne deposit contains an estimated 566,380 ounces of gold at it's lowest level. International Avino Resources are presently developing and exploiting Bralorne Mine.

A wide variety af sulphide showings occur near D'Arcy which are hosted in silicified and pyritic volcanics and sediments af the Bridge River Group. Cinnabar is reported near McGillvary Pass. Local ofcurrences of chalcopyrite, galena, and/or sphalerite with associated precious metals are reported in the area which include:
page 2

1) Lake Adit Cu-Ag-Au vein/replacement/skarn,Lillacet Lk $92 \mathrm{~J} / 7$
2) Owl Lk. - Cu-Ag-Mo porphyry, $92 \mathrm{~J} / 10$
3) Margery- Zn-Fe-As vein/replacement, $92 \mathrm{~J} / 7$
4) Texas- Cu-Ag-Au replacement/skarn, $92 \mathrm{~J} / 10$
5) McGillvary- Hg vein/replacement, $92 \mathrm{~J} / 9$
6) Bonanza-Golden Cache- Au vein/replacement, $92 \mathrm{~J} / Э$

5.0 PROPERTY HISTORY

1925- The property was known as the Bluebell. Two adits driven on polymetallic mineralization.

1565- Bralorne Mines examined the property and based on sampling and mapping recommended further work.

6.O GENERAL GEDLDGY

The Coast Plutonic Complex comprises a 150 kilometer wide belt that extends from Alaska to Washington. Bodies of volcanic, sedimentary, and metamorphic rock ranging in age from at least as ald as Mississippian to mid-Cretaceous are found as pendants within the Coast Range Complex throughout its length. The majority of pendants are elongated, narrow, and in fault or intrusive contact with plutonic rocks.

Coast Plutonic Complex is extremely heterogeneous and consists of mainly quartz diorite and granodiorite, gabbra and quartz monzonite are rare, diorite $i s$ concentrated in the west. The plutonic racks form discrete homogeneous plutions but are commonly not well defined and form gneiss and migmatite. The oldest are thought to be in the dioritic complexes near Pemberton which yield late Paleozaic ages from zircon. Potassium-Argon dates on the plutonic rocks show a western belt with Late Jurassic-Early Cretaceous ages, mid-Cretaceous ages near the axis of the belt, and an eastern belt with Late Cretaceous-Early Tertiary ages.

Alteration zones of quartz, sericite (and variaus clay minerals), chlorite, epidote, and/or pyrite occur within the roof pendant rocks adjacent to the Coast Range Comple\% plutons. Sulphide mineralization within or adjacent to alteration zones contain variable amounts of base and precious metals values and account for most of the economic metallic minerals which have been exploited in the Coast Range Complex (e.g. Bralorne and Britannia Mines).

7.0 1995 FIELD PROGRAM

7.1 METHODS AND PROCEDURES

A grid following Wade Creek was surveyed using hip chains and compasses. $N-S$ trending tie lines extended 100 meters N and S of Wade Creek on $L O+00 W$ to L $5+00 W$ and 25 meters N and S of
page 3

Wade Creek on L E+00 W to L 10+00 W (Fig. 5 \& 6). A total of 3.0 kilometers of grid line was surveyed.

The grid (and surveyed extensions) is used for ins,000 scale geological mapping covering an area of 0.4×1.0 kilometer (Figure 4). A total of 10 rock chip samples were taken from the map area (Figure 4). Rock samples comprise 2-3 kilograms of 1-4 cm. diameter chps taken from surface bedrock exposure with a rock hammer and moil. Sample widths vary from 0.1-0.7 meters. Rock samples were placed in marked plastic bags and shipped to Eco-Tech Labs, Kamloops, B. C.

A total of 68 soil samples were taken along grid tie lines at 25 meter spacing (Figure 5). Samples were taken with a grubhoe from a depth of $30-40 \mathrm{~cm}$. 'B' horizon soil was placed into marked kraft envelopes, dried, and shipped to Eco-Tech Labs, Kamploops, B.C.

A magnetometer survey comprised 120 readings at 12.5 meter spacing from 6 tie lines on the grid for a total of 1.2 kilometers (Figure 6). A Geometrics Unimag G-836 portable magnetometer was used. Diurnal corrections were made by loging grid 1 ines.

7.2 GEOLOGY AND MINERALIZATION

The Penny \#1 claim is underlain by the following lithologies:
GEOLGGICAL LEGEND-PENNY \#1 CLAIM

PLUTONIC ROCKS
Cretaceous Bendar Plutonic Suite
2 Quartz diorite, medium grain size
2b Porphyritic border phases on main qtz.dior. mass, minor granite

TRIASSIC/JURASSIC VOLCANICS \& SEDIMENTS
Bridge River Group
1 Greenstone, chert, basalt, arillaceous
siltstone, phyllite, biotite schist
1b Felsite
(madified after Price, Monger, Raddick, 1385)
The plutonic rocks cut through the Eridge River Group at 3,500 to 4,000 foot elevation in the Wade Creek canyon and have metamorphosed the Bridge River volcanic/sedimentary roof pendant producing phyllite and biotite schist. Other pluton/raof pendant contact features include prominent N and NW trending faults which appear as gulleys adjacent to Wade Creek.

Sulphide mineralization consisted of disseminated and fracture
page 4
filling pyrite (trace-10\%) and trace amounts of sphalerite and galena spatially related to silicified faults and fracture zones which were probably assaciated with the emplacement of the late phase plutonic rock suite (i.e. porphyritic border phases).

Mineralization of rock samples are described as follows:
PENNY \#1 CLAIM- NTS 92 J/9W LILLOOET M.D.
ROCK SAMPLE DESCRIPTIONS:
SAMPLE \# WIDTH DESCRIPTION
$66551 \quad 0.3 \mathrm{~m}$. Foliated micaceous schist, 20% quartz, 3% disseminated pyrite (blebs to 3 mm.)
$66552 \quad 0.1 \mathrm{~m} . \quad 10 \mathrm{~cm}$. wide quartz vein with 3% disseminated pyrite, fractures in quartz are black (carbonaceous matter)
$66553 \quad 0.2 \mathrm{~m}$. Foliated chloritic greenstone cut by $1-2 \mathrm{~cm}$. wide quartz veins, 3% pyrite
$66554 \quad 0.7 \mathrm{~m} . \quad$ Quartz vein cutting greenstone with trace-1\% pyrite, black coatings on fractures
$66555 \quad 0.7 \mathrm{~m}$. Foliated micaceous schist, 15% quartz as elongated lenses, 3\% pyrite
$66556 \quad 0.2 \mathrm{~m} . \quad$ Same as above
$66557 \quad 0.3 \mathrm{~m} . \quad$ Same as above
$665580.1 \mathrm{~m} . \quad$ Same as above
$66559 \quad 0.2$ m. Quartz vein cutting quartz diorite, 2% pyrite blebs to $3 \mathrm{~mm} .$, trace galena and sphalerite
$66560 \quad 0.1 \mathrm{~m} . \quad$ Same as above
Geochemical analysis of rack samples 66551-66560 gave the following values:

SAMPLE \#	WIDTH (m.)	ppm Cu	Pb	Zn	Ag	ppb Au
66551	0.3	28	14	32	0.2	5
66552	0.1	10	18	20	0.2	5
66553	0.2	43	18	75	0.2	5
66554	0.7	35	6	22	0.2	5
66555	0.7	37	14	44	0.2	5
66556	0.2	17	14	35	0.2	5
66557	0.3	19	16	50	0.2	5
66558	0.1	47	4	18	0.2	5
66559	0.2	7	3152	1218	14.4	5
66560	0.1	8	5176	542	23.2	5

Sample \# 66559 and 66560 returned above average $\mathrm{Pb}-\mathrm{Zn}-\mathrm{Ag}$ values and were the only rock samples taken of the plutonic rock suite.

7.3 SOIL GEOCHEMISTRY

The soil survey followed the Wade Creek canyon which caused some difficult sampling on steep slopes beacuase of talus and in the creek gulley because of a large percentage of fluvial -80 mesh
page 5
fraction fines. This survey covered an area 0.05 X 1.0 kilometers and was intended as a general reconnaissance of the Wade Creek section where the best outcrop exposure occurs on the Penny \#1 claim. Results of the survey are summarized as follows: Cu- A grouping of 6 soils taken between L 6+00 W and $7+50 \mathrm{~W}$ returned copper values in excess of 100 ppm.
Zn - Above average values (upper 15% are in excess of 200 ppm Zn) are not clustered in any any particular area.
$\mathrm{Pb}-$ Lead values are generally low with only 2 samples exceeded 50 ppm Pb.
As- 4 out of 68 soil samples returned values in excess of 200 ppm As.
Au- Gold values were all below detection limits.
Ag- Silver values were all below detection except for 10 samples, none of which exceeded 0.8 ppm Ag.

There is no apparant geochemical correlation between $\mathrm{Pb}-\mathrm{Zn}-\mathrm{Ag}$ or $\mathrm{Cu}-\mathrm{Au}$.

7.4 MAGNETOMETER SURVEY

Magnetometer profiles show a significant 500 gamma decrease on the north end af L 2+00 W (Figure 6). This corresponds ta surface trace of a fault gulley where chip sample \#66556 was taken (Figure 4). A 200-350 gamma increase occurs in the north end of $L \quad 0+00 \mathrm{~W}$ and $L 1+00 \mathrm{~W}$ where plutonic rocks outcrop suggesting increased magnetite content relative to the south side of the creek where volcanics and/or sediments are postulated to occur (based on frequency of talus because all outcrop is buried). West half of the survey showed very little mag features, giving weak 100-200 gamma fluctuations.

8.0 DISCUSSION OF RESULTS

The rock chip and soil sample survey reveals low precious metal values in the Wade Creek canyon section. Other outcroppings north and south of the canyon were examined for mineralization, old workings, and some float prospecting was performed to provide coverage of the central and eastern portion of the Penny \#1 claim. No significant showings or soil anomalies were identified. The west, lower elevation portion of the claim was not examined however assessment reports on the adjacent and overlapping Mac Attack claim were examined and results of this work was also negative for base and precious metals.

There are reports of two adits driven on mineralization. No significant mineralization was found. As well, the previous work on the adits was poorly documented. Based on the fieldwork outlined within this report, the author speculates that the adits have been buried by colluvium and that they were likely what old timers refer to as "coyote holes".
page \in

9.0 CONCLUSION AND RECOMMENDATIONS

The Penny \#i has limited potential to host an economic base and/or precious metal deposit. Sampling and mapping has shown negative results for $\mathrm{Cu}-\mathrm{Pb}-\mathrm{Zn}-\mathrm{Ag}-\mathrm{Au}$ within the central and east portions of the property. Other areas of the property, especially the adit mineral zones, which were not located by this survey, may be worthy follow up targets, however geochemical results obtained by the 1995 rack and soil sample program has eliminated the central and eastern portion of the property from any recommended follow up work. Prospecting could be carried out on the unexplored west portion of the claims, but given the negative results of the adjacent Mac Attack $\operatorname{ll} \mathrm{Iam}_{\mathrm{m}}$ this is not recommended.

REFERENCES

B.C. Min. of E.M. \& P.Res. Assessment Report \# 13,522, Mac Attack Claims, Geological, Geochemical, and Frospecting

Bralorne Mines, Internal Report, 1965
Minister of Mines, 1925
Price, Monger, and Roddick, 1985, Field Guides to the Geolagy and Mineral Deposits of the Southern Canadian Cordillerag GSA Cordilleran Section Meeting; Vancouver, B.C.

I, Andris Kikauka, of Box 370, Brackendale, B. C . ; hereby certify that;

1. I am a graduate of Brock University, St. Catharines, Ont., with an Honours Bachelor of Science Degree in Geological Sciences, 1980.
2. I am a Fellow in good standing with the Geglogical Association of Canada.
3. I am registered in the Province of British Columbia as a Professional Geoscientist.
4. I have practised my profession for fifteen years in precious and base metal exploration in the Cordillera of Western Canada and South America, and for three years in uranium exploration in the Canadian Shield.
5. The information, opinions, and recommendations in this report are based on fieldwork carried out in my presence on the subject properties and on published and unpublished literature and maps.
6. I have no interest, direct or indirect with the subject property.
7. I consent to the use of this report in a Prospectus or Statement of Material Facts for the purpose of private or public financing.

Andris Kikauka, P. Gea.,

November 5, 1995

```
page
```

ITEMIZED COST STATEMENT FOR GEOLOGICAL FIELDWORK-PENNY CLAIMS, $92 \mathrm{~J} / 9 \mathrm{~W}, ~ L I L L O D E T$ MINING DIVISION, DOTOBER 21-25, 1595

FIELD CREW:

Andris Kikauka, geologist 5 days Louis Bouchard, geotechnician 5 days

FIELD COSTS:
Equipment \& supplies 100.69 Mob/demob Assays 10 rock, 70 sail Truck rental and fuel Food and accomodation Report
\$ 1,000.00
750.00
200.00

1,275.00
142.00
675.00
300.00

Total $\$ 4,442.69$

DUFFEY LAKE SECTION
Figo S:" Duffey Lake Section, geology and route.

STRATIFIED ROCES

LEISTOCENE AND RECENT

Unconsolidated alluvial, fluvial, and glacial deposits

MIOCENE OR YOUNGER(?)

Mrb

Mrp

EOCENE(?)

Eps

Ev
Basalt, andesite, dacite, rhyolite and volcaniclastics

MID TO OPPER CRETACEOUS
\square KINGSVALE GROUP: arkose, greywacke, shale, minor conglomerate

LOWER CRETACEOUS

```
IKtc
```

TAYLOR CREEX GROUP: Chert pebble conglomerate, black limey shale, green tuff, volcanic breccia, andesite and basalt

JACKASS MOUNTAIN GROUP:Interbedded carbonaceous argillite, greywacke, gritty sandstone, conglomerate, and coal

BREW GROUP: Argillite, quartzite, and conglomerate

UPPER JURASSIC AND LOWER CRETACEOUS

JKrm $\begin{aligned} & \text { RELAY MOUNTAIN GROUP: Greywacke, } \\ & \text { siltstone, } \operatorname{argillite~}\end{aligned}$

UPPER TRIASSIC TO MIDDLE JURASSIC
TYAUGHTON GROUP: Shale, siltstone, greywacke

UPPER TRIASSIC

Andesitic breccia, tuff and flows, greenstone; lesser slate,
argillite, phyllite, conglomerate, limestone, rhyolitic breccia and flows

HURLEY FORMATION: Thin bedded argillite, phyllite, limestone, tuff, conglomerate, andesite, minor chert

UKP	PIONEER FORMATIOM: Greenstone, andesitic to basaltic flows and pyroclastics
UKN	NOEL FORMATION: Thin bedded argillite, chert, conglomerate and greenstone

TRIASSIC AND JURASSIC AND OLDER(?)
\(\left.$$
\begin{array}{|c|l}\hline \text { ub } & \begin{array}{l}\text { Ultramafic rocks: Serpentine, } \\
\text { harzburgite, peridotite, diorite }\end{array}
$$

\hline BRIDGE RIVER GROUP: Greenstone,\end{array}\right\}\)| basalt, chert, argillite, |
| :--- |
| phyllite; minor limestone, |
| serpentine, and serpentinized |
| peridotite |

PENNSYLVANIAN TO TRIASSIC

\square CACHE CREEK GROUP: Greenstone; chert, argillite, minor limestone and quartzite; chlorite and quartz mica schist

PLUTONIC AND METAMORPHIC ROCKS

gn
gd

granite

Granodiorite

Quartz diorite
Diorite: dioritic complexes containing diorite, quartz diorite, amphibolite, greenstone, and dyke swarms

Biotite-quartz schist
granitoid gneiss

Granitoid gneiss, schist, amphibolite and quartz diorite

KHOLEK CREER PENDANT: Phyllite, quartzite, limestone, greenstone and schist

Radiometric age symbols:
single determination multiple determinations zircon-z; hornblende-h; biotite-b; whole rock-w
potassium-argon-K; uranium-lead-u; carbon - C

Fig $3 A-$ Legend for Duffey Lake Section

FENNY \#1 CLAIM- NTS 92 I/FW LILLODET M.D.
FOCK SAMFLE DESGEIFTIONS:
SAMFLE \# WIDTH DESCRIFTION
6E551 O. \quad mi. Foliated micacegus schist, 20% quartz, 3%
disseminated pyrite (blebs to 3 mm.$)$, trace sphalerite

6655 g 0.1 m .10 cm . wide quartz vein with 3% disseminated
pyrite, fractures in quartz are black (iarbonaceous matter.
EESES 0.2 m . FGliated chlaritic greenstone cut by $1-2 \mathrm{~cm}$.
wide quartz veins, 3% pyrite
6E554 $0.7 \mathrm{~m} . \quad$ Quartz vein Eutting greenstone with trace- 1%
pyrite, black coatings an fractures
ES5S 0.7 m . Foliated micacerus schist, 15% quartz as
longated lenses, 3\% pyrite
66557 O.2 m. Same as above
$66558 \quad 0.3 \mathrm{~m}$. Same as above
$66559 \quad 0.2 \mathrm{~m}$. Quarts vein
解
yrite blebs ta 3 mm ., trate galena and sphalerite
0.1 m. Same as above
\square lenses, 3% pyrite

:
2:
2

OUTLINE OF OUTCROP
FOLIATION
\leftrightarrow FOLIATION
FRACTU

- ROCK CHIP SAMFLE

上s FAULT

- - P P.JAD

LITHOLOGIC CONTACT
DYKE

.

82

200 m. to
LCP
PENNY 1
ib
 \ldots
$2 \ldots$
\cdots
\cdots
$\therefore 2$
\cdots

yinctis
 xienernteart

amcone moustruse me.
O-NTon-08
310-185 152ND STRTEET
SURREYY E.C.
V4A 9ES

68 soll semplew recolved Ortober 30, 1005
PROAECT Pamay
sfupheint wona given

ET *	Tent	$\underset{\text { (pap }}{\text { aut }}$
7	L0+00T6022]N	4
2	L0.00w-0+00 N	4
3	20+00k-0+25 S	$<$
4	L0+50N-0+25 N	<5
5	LO+50W-0+00 N	<6
-	LO450W-0+25 5	<6
7	L3+00W-0+25 N	45
8	$51+00 \mathrm{NW} 0+00 \mathrm{~N}$	<5
9	L1+00W-0+25 S	4
10	$\mathrm{L}+50 \mathrm{~W}-\mathrm{O}+25 \mathrm{~N}$	4
11	Li+50WW0+00 N	C5
12	$\mathrm{L} 1+50 \mathrm{~N} / 0+288$	45
13	L2+00W-0+75 N	4
14	L2+00N-0+50 N	45
15	L2+00N-0+25 N	<5
18	L2+00N/ $0+00 \mathrm{~N}$	4
17	L2+00N $-0+258$	<5
15	12+60N/-0+25 N	<5
19	12+50N-0400 N	<5
20	L2+60NW0+26	4
21	L3+00W-0423 N	<5
22	L3+d001-0+00 N	<5
23	$\mathrm{L} 3+00 \mathrm{~N}-0+25 \mathrm{E}$	4
24	L9+80N-0 +23 N	-5

ETit	Tont	
25		<
20	Lardownotas N	4
77	Latocmporsa N	< 6
28	14+6\%M104268	4
29	L4+60M 4 (+25 N	4
34	W+60M-O+0S N	4
31	Letewroves	4
32		45
88	L4+60M0473	4
84	LANEMKT+008	4
86	LA+E00 4 4+238	4
38	LP*	4
37	LS+60w-0+20 N	<5
38	L5+60\% $0+25$ -	4
30	L6+60N-0+23 N	-
40	LStECNKOH0N	- 6
41	L5+501N-0+258	45
42		4
43	L8+0NN-60 N	4
44	LO+0.w-0+258	<6
46	$18+50040+28 \mathrm{~N}$	45
48	$18+50140+00 \mathrm{~N}$	- 5
47		4
48	L7+00M-0+25 N	4
49	L7+00N+0+00 N	4
50	L7+004-0+258	<
81	L7+101040425	4
82	L7460MK0t00 N	4
88	L7480以104288	4
54	Letermeqt25	46
5	Letancmotion	<
58		4
57	$18+500-0+25 \mathrm{~N}$	45
68	Letcown $0+00 \mathrm{~N}$	45
50	$18+50 \sim 0+258$	45
60	Leocruy-0425 N	<
81	Leraowhana M	c
02	L9+03NHO+25	4
83	Lensownation	4
64	LP4EON-360 N	4
85	Lewowranas	<5
$0 \cdot$	L104901-0+23 N	46
- 8	L40+con-	C5
0	L10+00w-0+25 ${ }^{\text {8 }}$	46

AMCORP INDUSTRIES LTD．
6－Nov－95
310－1859 152nd STREET
SURREY，B．C．
V4A 9E3

10 ROCK samples received October 30， 1895
PROJECT \＃：PENNY
Samples submitted by：Andris Kikauka

PENNY \#1 Claim, Lillooet m.d.- Magnetometer survey INSTRUMENT USED GEDMETERICS UNIMAG G-B3E, READINGS IN GAMMAS AT 12.5 METER SPACING, CORRECTED BY LOOFING. DCT. 21-25, 95

L $0+00 \mathrm{~W}$
Station Reading

1+00 5 56,250
0+87 S 56,260
$0+755$ 56,290
$0+62 \mathrm{~S}$ 56,310
$0+50 \mathrm{~S} 56,290$
$0+375$ 56,350
$0+255$ 56,400
$0+125$ 56,400
$0+00 \mathrm{~N} \quad 56,480$
$0+12 \mathrm{~N}$ 56,490
$0+25 \mathrm{~N}$ 56,460
O+37 N 56,480
$0+50 \mathrm{~N}$ 56,500
$0+62 \mathrm{~N}$ 56,580
$0+75 \mathrm{~N} \quad 56,590$
0+87 N 56,580
$1+00 \mathrm{~N}$ 56,590

L $1+00 \mathrm{~W}$
Station Reading
$1+005$ 56,230
$0+875 \quad 56,250$
$0+755$ 56,280
$0+62 \mathrm{~S}$ 56,320
$0+50556,450$
$0+37$ S 56,430
$0+25 \mathrm{~S}$ 56,440
$0+125$ 56,480
$0+00 \mathrm{~N}$ 56,500
$0+12 \mathrm{~N}$ 56,520
$0+25 \mathrm{~N}$ 56,530
$0+37 \mathrm{~N}$ 56,460
O+50 N 56,440
$0+62 \mathrm{~N}$ 56,500
$0+75 \mathrm{~N} \quad 56,580$
0+87 N 56,590
$1+00 \mathrm{~N} 56,590$

FENNY \#1 CLAIM, LILLOOET M.D.- MAGNETOMETER SURVEY INSTFUMENT USED GEOMETERIES UNIMAG G-83E, READINGS IN GAMMAS AT 12.5 METER SFACING, CORRECTED EY LOOFING. OLT. $21-25, ~ Э 5$

L $2+00 \mathrm{~W}$
Station Reading
$1+005$ 56,270
$0+875$ 56,260
$0+755$ 56,220
$0+625$ 56,230
$0+505$ 56,220
$0+375$ 56,260
$0+255$ 56,290
$0+125$ 56,270
$0+00 \mathrm{~N}$ 56,250
$0+12 \mathrm{~N}$ 56,270
$0+25 \mathrm{~N} \quad 56,310$
O+37 N 56,270
$0+50 \mathrm{~N} \quad 56,220$
$0+62 \mathrm{~N} \quad 56,170$
$0+75 \mathrm{~N}$ 56,100
0+87 N 56,000
$1+00 \mathrm{~N} \quad 55,900$
L. 3+00 W

Station Reading
1+00 S 56,600
$0+87556,580$
$0+75 \mathrm{~S}$ 56,570
$0+62 \mathrm{~S}$ 56,530
$0+505$ 56,500
$0+375$ 56,480
$0+255$ 56,490
$0+125$ 56,510
$0+00 \mathrm{~N} \quad 56,520$
$0+12 \mathrm{~N}$ 56,500
$0+25 \mathrm{~N}$ 56,490
0+37 N 56,500
$0+50 \mathrm{~N} \quad 56,510$
$0+62 \mathrm{~N}$ 56,500
$0+75 \mathrm{~N} \quad 56,490$
O+87 N 56,500
$1+00 \mathrm{~N} \quad 56,530$

PENNY \#1 CLAIM, LilLooet M.D.- MAgnetometer survey INSTRUMENT USED GEDMETERICS UNIMAG G-836, READINGS IN GAMMAS AT 12.5 METER SPACING, CORRECTED BY LOOFING. OCT. $21-25,95$

L 4+00 W Station Reading $1+005$ 56,620 $0+875$ 56,610 $0+755$ 56,600 $0+62 \mathrm{~s}$ 56,600 $0+505$ 56,590 0+37 S 56,580 $0+255$ 56,560 $0+125$ 56,560 $0+00 \mathrm{~N} 56,550$ $0+12 \mathrm{~N}$ 56,540
$0+25 \mathrm{~N}$ 56,540
$0+37 \mathrm{~N} \quad 56,530$
$0+50 \mathrm{~N} \quad 56,570$
$0+62 \mathrm{~N} \quad 56,590$
$0+75 \mathrm{~N}$ 56,600
$0+87 \mathrm{~N} \quad 56,600$
$1+00 \mathrm{~N} \quad 56,580$
L $5+00 \mathrm{~W}$
Station Reading
$1+00 \mathrm{~S}$ 5,510
0+87 S 56,500
$0+755$ 56,480
$0+625$ 56,470
$0+50 \mathrm{~S} 56,450$
$0+37 \mathrm{~S}$ 56,420
$0+255$ 56,400
$0+125$ 56,430
$0+00 \mathrm{~N}$ 56,480
$0+12 \mathrm{~N} 56,500$
$0+25 \mathrm{~N} \quad 56,510$
$0+37 \mathrm{~N}$ 56,490
$0+50 \mathrm{~N}$ 56,470
$0+62 \mathrm{~N}$ 56,500
$0+75 \mathrm{~N}$ 56,560
O+87 N 56,510
$1+00 \mathrm{~N} \quad 56,480$

