NOV 28 1995

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORTS

Gold Commissioner's Office VANCOUVER, D.C.

DATE RECEIVED

DEC 0 4 1995

1995 GEOLOGICAL, GEOPHYSICAL AND

DIAMOND DRILLING

ASSESSMENT REPORT ON THE TATSI GOLD-SILVER-COPPER PROSPECT

KITNAYAKWA RIVER AREA OMINECA MINING DIVISION BRITISH COLUMBIA

NTS: 93L/5E

LATITUDE: 54° 20' NORTH LONGITUDE: 125° 44' WEST

OWNER: ANGEL JADE MINE LTD. BOX 394 HIGHWAY 16 EAST SMITHERS, B.C. VOJ 2N0

OPERATOR: GOLDEN HEMLOCK EXPLORATIONS LTD. 123 - 626 WEST PENDER STREET VANCOUVER, B.C. V6B 1V9

REPORT BY: S.J. TENNANT, GEOLOGIST W.D. TOMPSON, GEOLOGIST U.D. TOMPSON, GEOLOGIST U.D. TOMPSON, GEOLOGIST DATE: NOVEMBER 20, 1995 ENTREPOR

FILMED

24.115

TABLE OF CONTENTS

P	Page
UMMARY	. 1
NTRODUCTION	
 i. Location, Access and Physiography ii. Claims Ownership iii. Property History 	. 2
EGIONAL GEOLOGY	. 6
ROPERTY GEOLOGY AND MINERALIZATION	. 7
EOPHYSICAL SURVEY	. 9
NAMOND DRILLING	10
ONCLUSIONS AND RECOMMENDATIONS	11
TATEMENT OF COSTS 1	12
UTHOR'S QUALIFICATIONS	13
EFERENCES 1	15

.

LIST OF FIGURES, TABLES AND APPENDICES

Page

FIGURES

Figure 1	Location	3
Figure 2	Location - Tatsi Property	4
Figure 3	Mineral Claims	5
Figure 4	Mineralized Zones	3
Figure 5	Geological Map of Main ZonePocke	t
Figure 6	Geological Map of Discovery ZonePocke	t
APPENDICES		
Appendix I	Assay Plans of Trenches	
Appendix II	Geophysical VLF-EM/Mag. Report and Maps	

- Appendix III Diamond Drill Hole Geologic Logs
- Appendix IV Min-En Laboratories Assays and 31 Element ICP Results

*

SUMMARY

Golden Hemlock Explorations Ltd. holds an option on the Tatsi gold-silver-copper prospect located midway between Smithers and Terrace in west-central British Columbia.

The property consists of two 4-post mineral claims (35 mineral claim units). The original showing known as the Discovery Zone had minor sporadic work done in the late 1940s and 1980s. A recently discovered (Main) zone contains high grade gold-silver-copper mineralization in quartz vein structures.

The 1995 exploration program on the Main and Discovery mineralized zones included geological mapping, geophysical surveys, hand trenching and diamond drilling.

Results of the exploration program indicate that the various mineralized zones on the Main Zone are in fact part of a single vein system. The Discovery Zone consists of several mineralized quartz veins with apparent different mineralogy (mainly chalcopyrite, minor bornite, galena and sphalerite) than the Main Zone (mainly bornite, minor chalcopyrite, galena, sphalerite, electrum and some native silver). Initial selected surface sampling carried out in September of 1994, yielded significant gold, silver and copper values particularly from the Main Zone. Subsequent detailed sampling from hand trenches and diamond drill holes, involved sampling both vein and footwall material. Assay results of the vein material generally contain silver values greater than 200ppm, with copper grades of between 0.5 and 2.0 percent, lead and zinc being less than one percent and gold values ranging from 10 to 7,420 ppb. Footwall samples yielded low values for all elements.

INTRODUCTION

i. Location, Access and Physiography

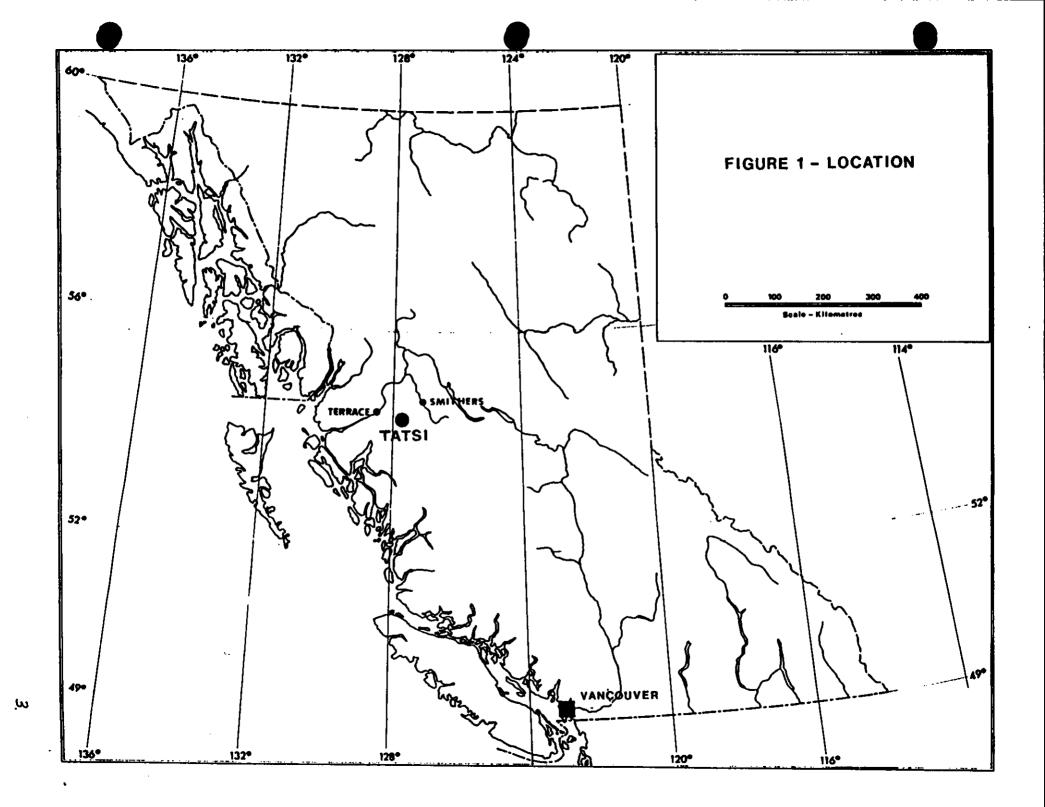
The Tatsi property is located midway between Terrace and Smithers in west-central British Columbia (Figure 1). The property covers the headwaters of Tatsi Creek, a west-flowing tributary of the Kitnayakwa River. The geographic centre of the claims is at latitude 50°20' north and longitude 127°44' west in NTS map-area 93L/5E.

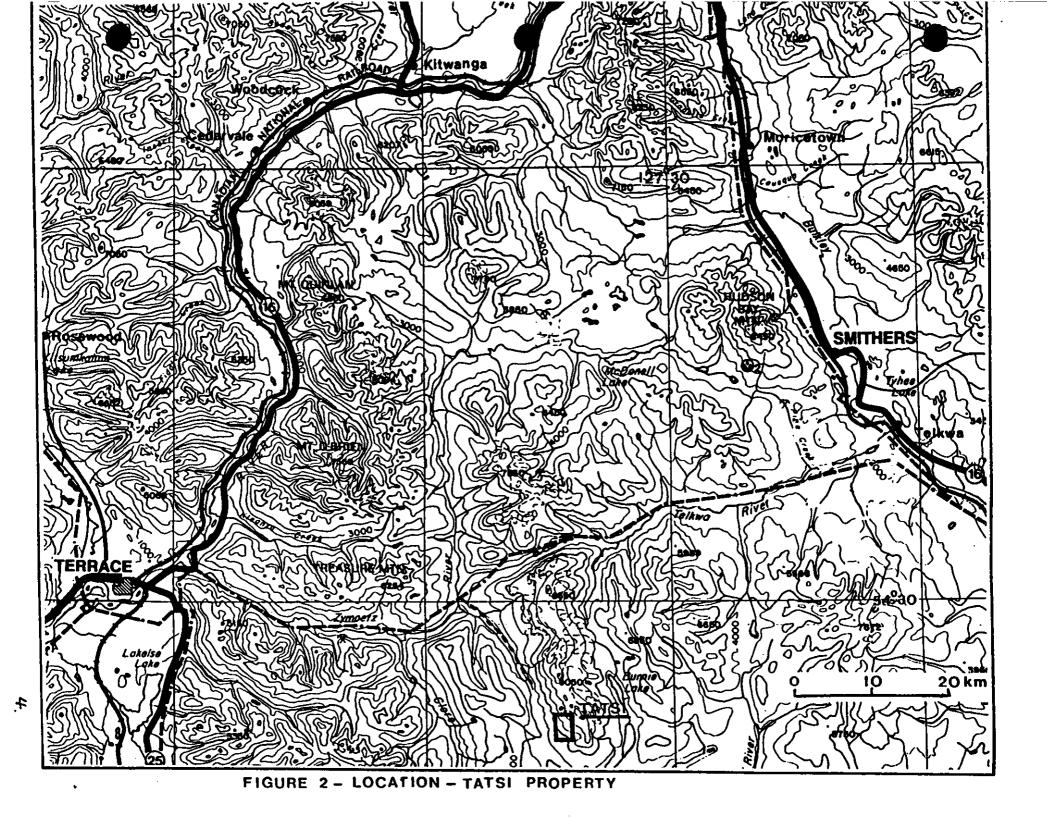
Access to the property is by helicopter from Terrace or Smithers. Logging roads extending from Highway 16 east of Terrace provides conventional access into the Kitnayakwa River valley. End of the road is currently five kilometres northwest of the claims.

The Tatsi claims are within an east-facing cirque dissected by several west-flowing drainages including Tatsi Creek. Topography is moderate to rugged with elevations ranging from 1,300 metres along Tatsi Creek near the western boundary of the property to more than 2,300 metres in the north-eastern claims area (Figure 2). Vegetation is sparse and where present, consists of alpine mosses. Bedrock is fairly well exposed but is obscured in a number of areas by talus and felsenmeer.

ii. Claim Status

The property consists of two 4-post mineral claims (35 mineral claim units) located in the Omineca Mining Division. The mineral claims are shown on Figure 3 and details are as follows:


Claim	No. of	Record	Expiry
	Units	Number	Date
Tatsi #1	20	330686	Sept. 7, 1995
Tatsi #2	15	330687	Sept. 13, 1995


The Tatsi claims are registered in the name of Angel Jade Mines Ltd., and are subject to an option agreement with Golden Hemlock Explorations Ltd.

iii. Property History

There was no documentation of mineralization in the Tatsi Creek area prior to 1988. In July 1987, Atna Resources Ltd. staked a claim, and preliminary mapping and sampling was carried out on three old hand dug trenches excavated along a quartz-carbonate-filled shear zone. No additional work was done until the ground was restaked in 1994 and acquired by Angel Jade Mine Ltd.

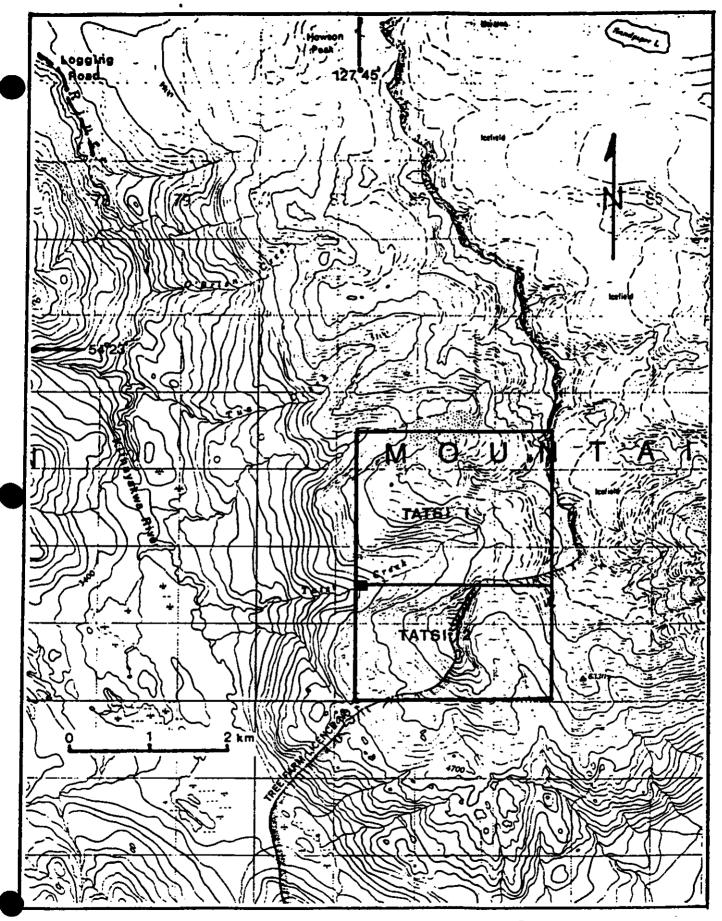


FIGURE 3-TATSI PROPERTY - MINERAL CLAIMS

5.

REGIONAL GEOLOGY

The Tatsi prospect is situated in the Stikine Terrane in the western part of the Intermontaine tectonic belt. The Stikine Terrane is comprised of late Palaeozoic to early Tertiary volcanic and sedimentary assemblages which are intruded by a variety of plutonic rocks.

Lower and Middle Jurassic arc-related volcanic and sedimentary sequences (Hazelton Group) are the most widespread in the area of interest and these are intruded by coeval granitic rocks of the Topley intrusions and by younger Cretaceous and early Tertiary intrusions.

PROPERTY GEOLOGY AND MINERALIZATION

The Tatsi property is underlain by early Jurassic subaerial volcanic pyroclastics and flows of the basal Hazelton Group. The volcanic sequence strikes northerly, dips moderately to the east and consists of maroon, reddish and purple and grey-green coarse pyroclastics and finer grained, well-bedded tuffs. A number of northerly trending biotite-feldspar porphyry and diorite dykes, up to eight metres wide, have been noted in the claims area.

A number of quartz vein structures containing appreciable gold, silver and copper grades have been identified as the Discovery, Main, Upper, Lower West and Lower East zones (Figure 4).

The Main Zone located south of Tatsi Creek, was originally thought to consist of a number of quartz vein structures including the main, upper, lower west and lower east zones. Detailed mapping and trenching indicate that these apparent separate zones appear to be part of a single vein system that strikes easterly and dips 20 - 25° to the southeast. The quartz vein structure has a strike lenght of about 125 metres, a down dip extent of 300 metres and an average thickness of abut 0.5 metres. The exposed structure is bisected by a prominent northwest trending gully which has a marked VLF-EM response. Along the east side of the gully, are some very fine grained rhyolite dykes as well as abundant epidote alteration within the surrounding volcanic rocks. Minerals visible in the quartz vein includes bornite, chalcopyrite, galena, sphalerite, chalcocite, electrum and some native silver. The footwall of the vein as seen in the trenches, consists of a fine-grained volcanic tuff which commonly hosts iron carbonate alteration.

The Discovery Zone, north of Tatsi Creek, consists of a north-easterly trending shear zone within which quartz and quartz-carbonate veins and stringers are developed in altered andesite immediately east of an irregular mass of granodiorite. The zone consists of several parallel quartz-carbonate veins which strike north-easterly and dip 20 - 30° to the southeast. The zone has been traced intermittently in bedrock exposures over a strike length of 300 metres. A large (200 x 500m) flow banded, felsic breccia, which is believed to be of hydrothermal origin, lies near the centre of the area. The mineralogy of this zone differs from the Main Zone in that chalcopyrite, with some minor bornite and some galena and sphalerite are the dominant sulphide minerals.

Geological mapping of the Main and Discovery zones was completed at a scale of 1:1,000 (Figure 5 and 6).

A limited amount of hand trenching was carried out on both the Main and Discovery zones. Seven trenches were blasted and hand mucked on the Main Zone and five trenches blasted on the Discovery zone. Detailed sampling of the trenches involved sampling both vein and footwall material. Assay plan maps of the trenches are in Appendix I.

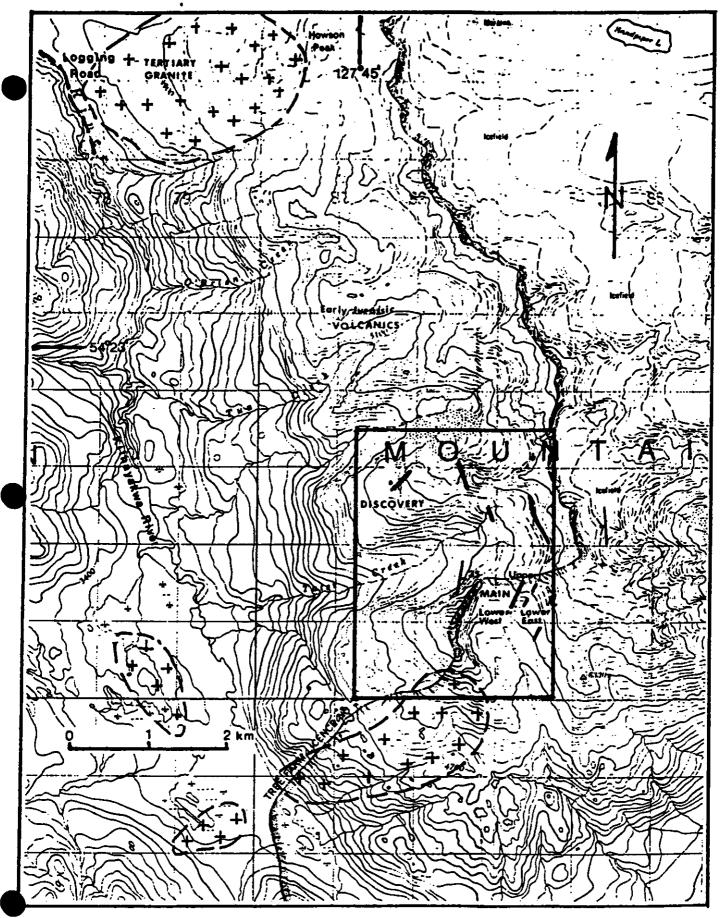


FIGURE 4 - TATSI PROPERTY-MINERALIZED ZONES

GEOPHYSICAL

During July, a magnetometer and VLF-EM survey was completed over the Main and Discovery Zones on separate grids. On both grids surveying was performed at 12.5 metre intervals along flagged lines spaced at 50 metre or 100 metre intervals for a combined total of 14 line kilometres. The baseline on the Main Zone was oriented at an azimuth of 152°. The baseline and 16 cross lines were surveyed for a total length of 10.5 kilometres. On the Discovery Zone the baseline was oriented at an azimuth of 77°. This base line and nine cross lines were surveyed for a total length of 3.5 kilometres.

One the Main Zone, there are several distinct magnetic lineations, some of which are visible as highs and others as lows. Some of the magnetic lineations are parallel to and lossely coincident with VLF-EM conductors. One of the most pominent VLF-EM conductors is located in a northwest trending gully which bisects the Main Zone qurtz vein structure.

On the Discovery Zone, the magnetic survey did not suggest any underlying structures and no conductors were found with the VLF-EM.

A copy of the geophysical report and maps of the VLF-EM and magnetometer survey completed on both the Main and Discovery zone are attached as Appendix II.

DIAMOND DRILLING

The 1995 diamond drilling program on the Tatsi property consisted of 15 drill holes totalling 1,820 metres. Five holes totalling 580 metres was drilled on the Main Zone and ten holes totalling 1,240 metres was drilled on the Discovery Zone.

The drilling utilized a JT2000 heli-portable drill rig to recover BQTK sized core. The drill was mobilized by helicopter from the Kitnayakwa valley logging road, a distance of 10 kilometres. Drilling commenced on August 9 and was completed on September 5.

The contractor was J.T. Thomas Diamond Drilling of Smithers, B.C.

Water for drilling was pumped from streams that exist in the immediate area.

Drill holes were spotted relative to the VLF-EM and Mag grid, which was put in using a compass and hip-chain. Hole direction and dip were set using a compass. Colar elevations were determined with a pocket altimeter.

The core was transported to camp for logging, sampling and permanent storage. Intervals to be assayed were split using a manual splitter and sent to Min-En Laboratories in Smithers for crushing and pulverizing. Pulps were sent to Min-En Labs in Vancouver where they were analysed for Cu, Au and Silver along with 31 element ICP. The camp is located at the southern and of Tatsi 2, over the divide from Tatsi Creet.

										Length	Elevation
Zone	Hole	Bearing	Dip		Latit	ude	0)epa	rture	(m)	(m)
Main	95-1	Vert.	-90	4	+	13E	2	+	96S	107.6	1,840
	95-2	N65E	-45	4	+	13E	2	+	96S	127.1	1,840
	95-3	Vert.	-90	3	+	50S	3	+	98E	115.8	1,843
	95-4	N65E	-60	3	+	50S	3	+	98E	109.1	1,843
	95-15	S67W	-45	4	+	97E	2	+	98S	118.9	1,880
Discovery	95-5	N58W	-45	1	+	61E	0	+	40N	94 .5	1,838
	95-6	N58W	-60	1	+	61E	0	+	40N	145.7	1,838
	95-7	Vert.	-90	1	+	61E	0	+	40N	107.5	1,838
	95-8	S81W	-45	1	+	61E	0	+	40N	164.6	1,838
	95-9	S81W	-60	1	+	61E	0	+	40N	89.8	1,838
	95-10	N78W	-45	1	+	00E	0	+	78S	103.6	1,805
	95-11	N78W	-60	1	+	00E	0	+	78S	103.6	1,805
	95-12	N44W	-45	1	+	13E	0	+	05N	167.6	1,829
	95-13	N44W	-60	1	+	13E	0	+	05N	154.8	1,829
	95-14	West	-45	1	+	13E	0	+	05N	109.1	1,829

Drill hole information is as follows:

CONCLUSIONS AND RECOMMENDATIONS

The 1995 exploration program consisted of geological mapping, trenching, geophysical surveys and diamond drilling. Majority of the work was carried out on the Main and Discovery Zones.

The Main Zone, located south of Tatsi Creek, was originally thought to consist of several separate northeast trending quartz vein structures. Results from mapping, trenching and diamond drilling indicate that these separate vein structures are all part of a single vein system which strikes easterly and dips 15 - 25 degrees to the south. Work on the Main Zone did not locate the source of the high-grade mineralization found on surface. Reconnaissance prospecting did find a number of new quartz vein structures located to the east and south of the Main Zone.

It is recommended that the detailed geological mapping be expanded particularly to the north and east of the Main Zone.

The Discovery Zone consists of several parallel quartz (carbonate) veins developed in silicified and carbonate altered volcanics immediately east of an irregular mass of granodiorite. A large (200 x 500 m) breccia zone, which is believed to be of hydrothermal origin, lies near the centre of the area. A number of mineralized quartz vein structures have been located both east and west of the Discovery Zone. Results of the work completed on the Discovery Zone indicate several important geological features exist that suggest additional work is warranted.

- 1. Shallow-dipping base metal-precious metal veins occur in hydrothermally altered andesite;
- 2. A large (200 x 500m) breccia zone, which is believed to be of hydrothermal origin, lies near the centre of the area;
- 3. A semi-circular zone of quartz-carbonate alteration which lies peripheral to the breccia zone, may have its origin as a ring fault. Sillitoe, et. al. (1984) and Sillitoe (1993) show that gently-dipping fracture systems bounding ring faults may be mineralized during repeated openings. Furthermore, breccias within or marginal to a ring fault may function as conduits or traps for mineralizing solutions.

It is recommended that prior to additional drilling on the Discovery Zone that a detailed (25 x 25m) rock geochemical survey be conducted, encompassing the area from grid, 3+50W to 3+50E, and from 3+00S, northward to the headwall of the cirque. The survey will produce from 400 to 500 samples and is expected to identify areas in the breccia and in the zone of quartz-carbonate alteration (the ring fault) which may host metallic mineralization. Detailed geological mapping should also be expanded to the east and west of the known zone.

STATEMENT OF COSTS

Camp Costs (Materials, Construction, Expeditor)	115,038.35
Meals and Accomodation (345 man days @ \$94/man/day) Geophysical Survey - VLF-EM/Mag. (14km)	32,503.50
Trenching (32 Man Days - 48 m of Trenching)	6,713.55 9,914.48
Helicopter 185hrs @ \$650/hr + \$140/hr. fuel	146,150
Diamond Drilling (1,820 m @ 98/m)	178,360
Sample Preparation and Assay (586 samples @ \$16/sample)	9,376.25
Geology & Sampling	
W. Thompson - 45 days @ \$300/day	13,500
S. Tennant - 45 days @ \$300/day	13,500
R. Riutta - 45 days @ \$170/day	7,650
Compilation and Report Preparation	
S. Tennant - 15 days @ \$250/day	3,750
	\$536,456.13

.

AUTHOR'S QUALIFICATIONS

I, STUART J. TENNANT, do hereby certify that:

- 1. I am a geologist residing at 600 Garrow Drive, Port Moody, British Columbia, V3H 1H5.
- 2. I am a 1959 graduate of the University of British Columbia with a Bachelor of Science degree in geology.
- 3. I have practiced my profession in exploration since 1959, primarily in British Columbia.
- 4. Since October 1994, I have been employed as an exploration geologist with Golden Hemlock Explorations Ltd.
- 5. I personally supervised and participated in the field work and have compiled, reviewed and assessed the data resulting from the work.

at I kinant

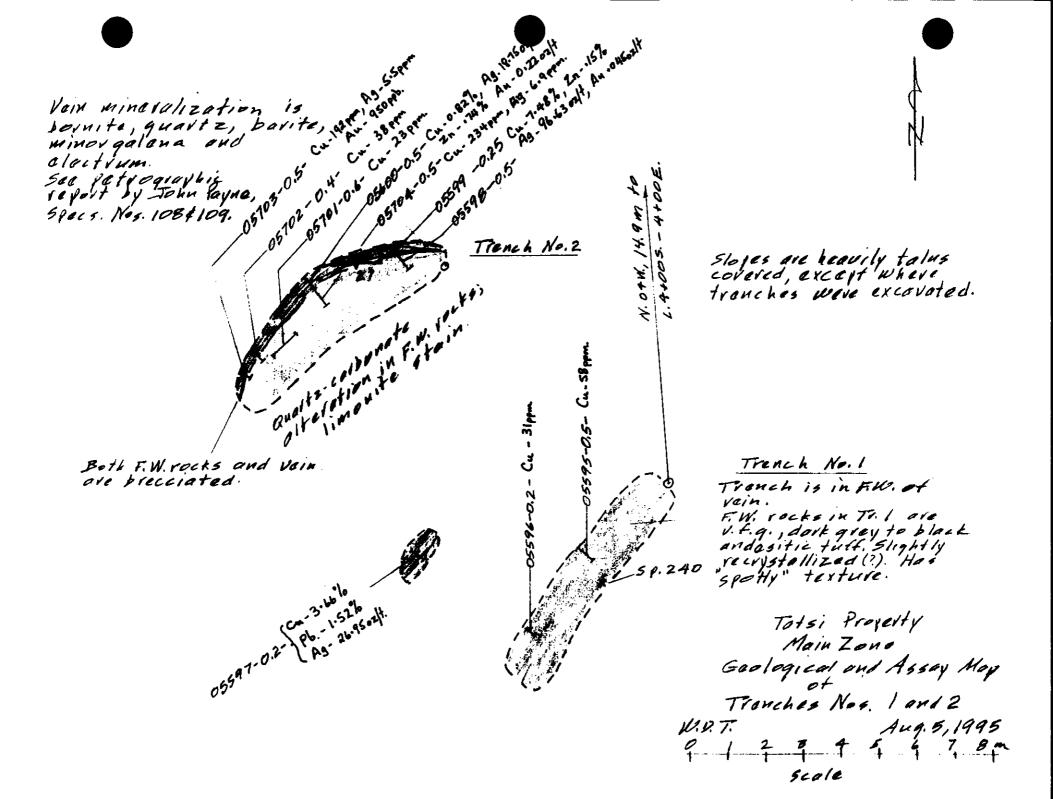
STUART J. TENNANT

DATED at Vancouver, British Columbia, this 20 day of November, 1995.

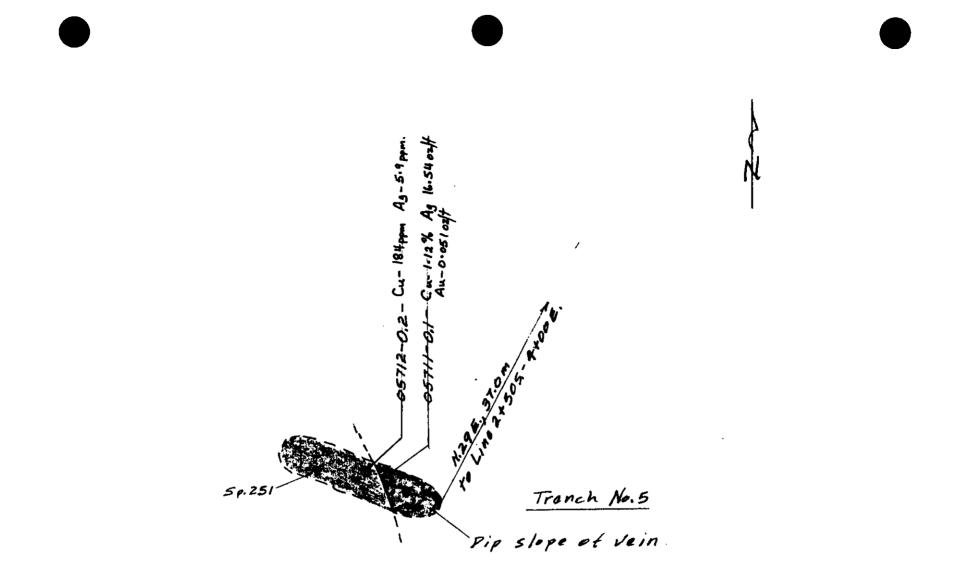
CERTIFICATE

I, Willard D. Tompson, of Smithers, British Columbia, do hereby certify:

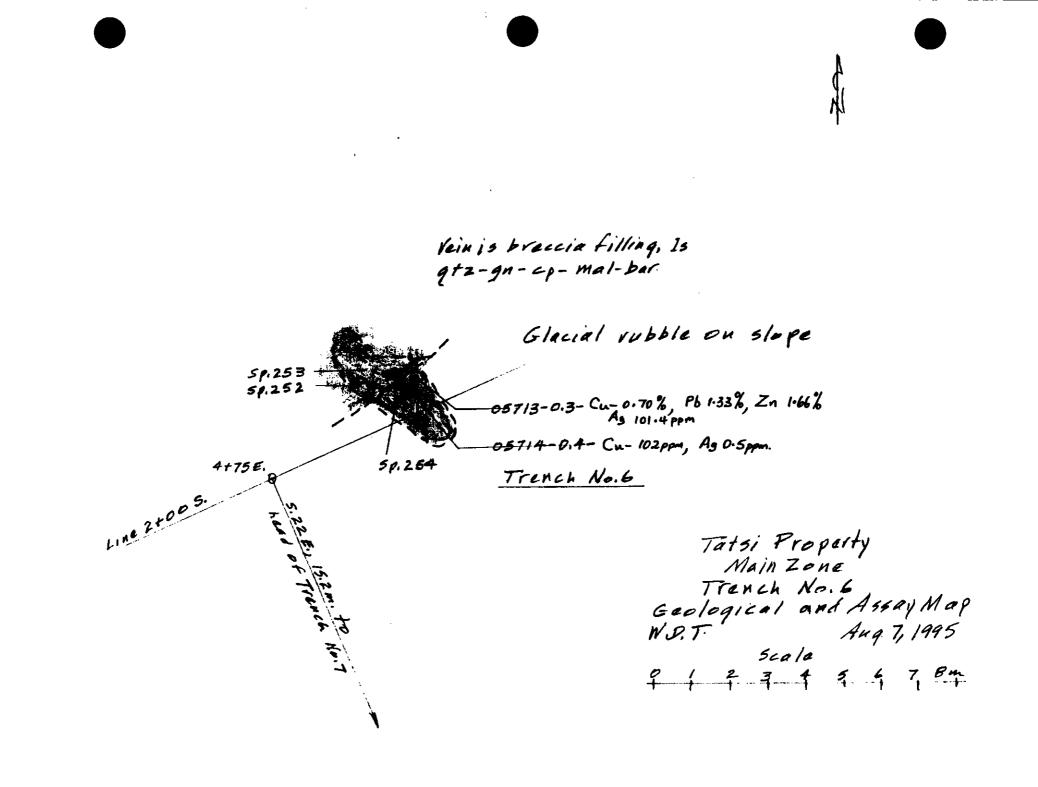
- 1. THAT I am a consulting geologist residing at 1380 Cronin Place, Smithers, British Columbia;
- 2. THAT I hold a Master of Science degree (Geology) from Montana State University, Bozeman, Montana;
- 3. THAT I am registered as a Professional Geoscientist by the Association of Professional Engineers and Geoscientists of British Columbia;
- 4. THAT I am a Fellow of The Geological Association of Canada;
- 5. THAT I have practiced my profession for more than 30 years;
- 6. THAT I worked on the Tatsi project during the period, July 5, 1995 to September 6, 1995 and conducted geological mapping, worked on the planning of the drill program and logged the drill core.
- 7. THAT I have no financial interest in the claims at Tatsi Creek nor in the Company which owns the claims. I do however, have a financial interest in claims which lie about 16 kilometers north of Tatsi Creek.


Dated at Smithers, British Columbia, this $2t^{1}$ day of November, 1995.

Villard D. Tompson, P. Geo.

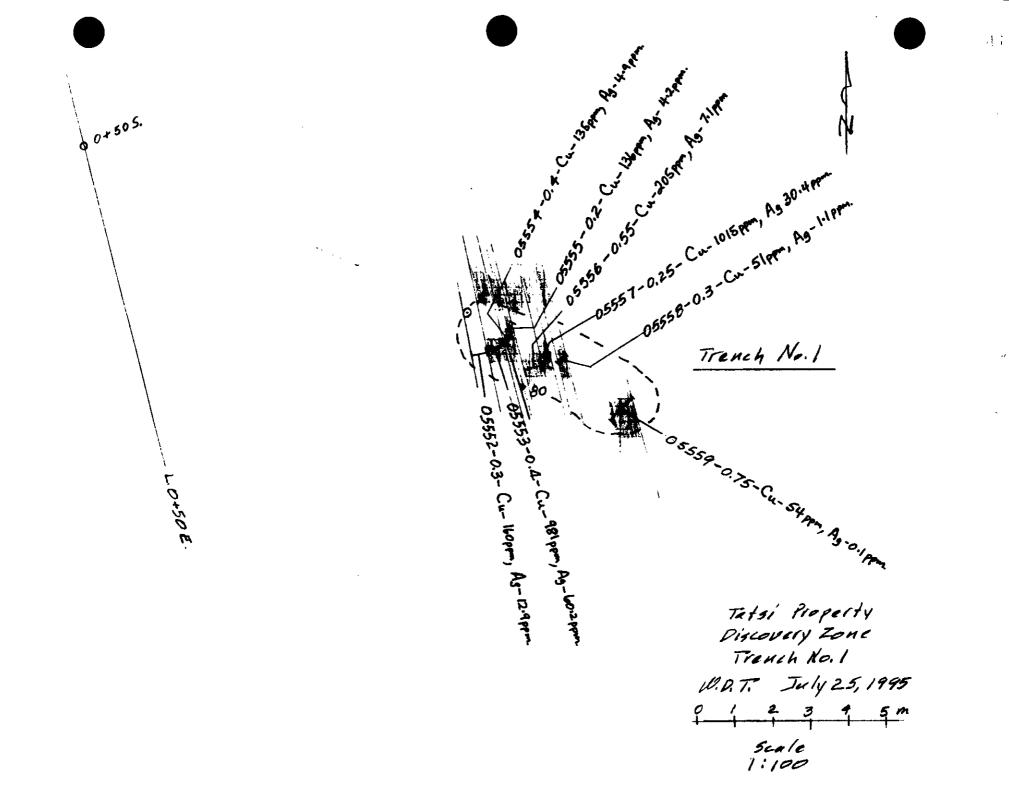

REFERENCES

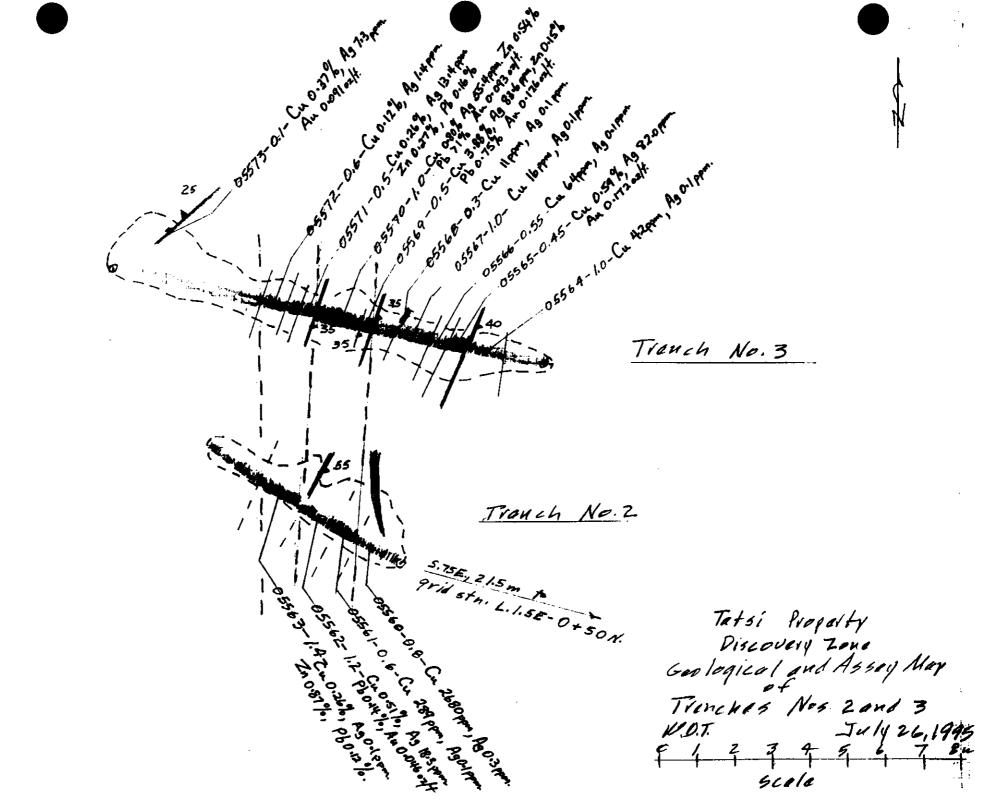
- 1. Carter, N.C. (1981): Porphyry Copper and Molybdenum Deposits, West-Central British Columbia, BCMEMPR Bulletin 64.
- Carter, N.C. (1994): Geological Report on the Tatsi Gold-Silver-Copper Prospect, Kitnayakwa River Area, Omineca Mining Division, British Columbia, private report for Golden Hemlock Explorations Ltd.
- 3. Harivel, Colin (1988): Geochemistry of the Alec Property, Omineca Mining Division, B.C., BCMEMPR Assessment Report 17971
- 4. Sillitoe, Richard H. (1993): Epithermal models: genetic types, geometrical controls and shallow features: Mineral Deposit Modeling, Eds., R.V. Kirkham, W.D. Sinclair, R.I. Thorpe and J.M. Duke. Geol. Assn. Canada, Special Paper 40.
- Sillitoe, Richard H., Baker, E. Max and Brook, William A., (1984): Gold deposits and hydrothermal eruption breccias associated with a maar volcano at Wau, Papau, New Guinea: Econ. Geol., v. 79, pp. 638-655.

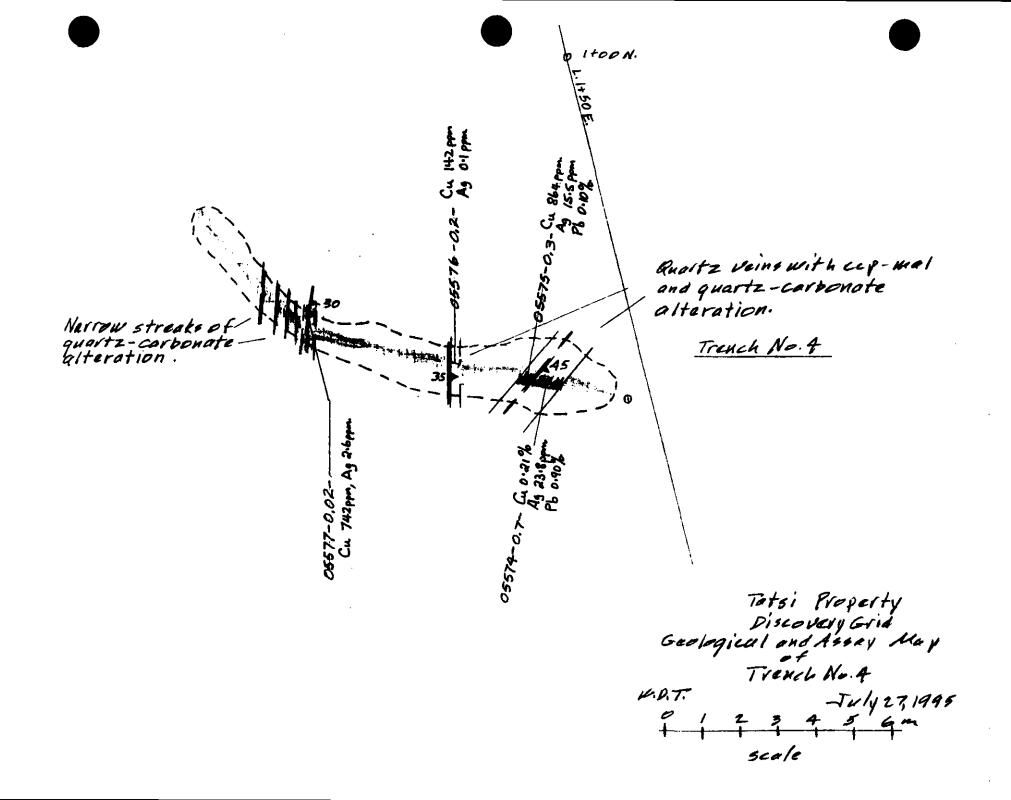

Appendix I Assay Plans of Trenches

Slopes are covered by loose debris of local and glacial origin. Bedrock axposed by treuching. Tranch No. 4 Qualtz vin 150.3 m wide. Vein 14 qtz-bn-qn-bar-elec.-mal-az. (4^{10'}0^{,0'} -05705-0.1- Cu- .37% on on , S, Trench No.3 o^y of L. 2+50 S. Rocks in F.W. ave V.E.g. grey-greanish andesitic tuff. Limenite stain on fractures. Tatsi Property MainZone Geological and Assay Map Tranches Nos. 3 and 4 4+00 E Aug. 7, 1995 N.D.T. Scale

Tatsi Property Main Zone Geological and Assay Map Tranch No.5 W.D.T. Aug. 7, 1995 Scale 0 1 2 3 4 6 6 7m


5217-05 50.25


Trench No.7



Outerop of white quartz protrudes from glacial debris and talus. Is about Imetar Wida. Tatsi Property Main Zone Geological and Assay May Trench No. 7 W.D.T. Aug.7, 1995

scale 1 2 3 4 5 6 7 8 9m

Trench No.5

Medium groined diorite. some propylitic n. alteration, Quartz-carbonate alteration maguetic. with limenite. 51.206 Sampled areas have are quartz vern Grano dicite and quartz-carbonate altered vock. 05578-0.3- Cu Mppm, Ag 0.1ppm. -05579-0;3- Cu. 6ppm. Ag 0.1ppm. -05581-0.03- Cu 53ppm, Agolppm. Quartz-carbonate alteration and limonite. 05580+0.4- Ag 0.19 Medium grained grey diorite. Slight propylitic alteration. Sp.207 Magnetic Tatsi Proporty Discovery Grid Geological and Assay May Trench No.5 Line 2 1 July 29, 1995 U.D.T. 0:4005. - 1 2 3 4 5 G 7 BM Ecule

Appendix II

Geophysical Report and Maps Magnetometer and VLF-EM Survey

MAGNETOMETER AND VLF-EM SURVEY GEOPHYSICAL REPORT

on the

TATSI PROJECT OMINECA MINING DISTRICT BRITISH COLUMBIA NTS 93L

Prepared for:

GOLDEN HEMLOCK EXPLORATION LTD.

Prepared by:

Douglas M. Hrynyk, B. Sc., Adv. Dip. GIS

Syd Visser, P. Geo.

SJ GEOPHYSICS LTD.

11762 - 94th Avenue Delta, British Columbia Canada V4C 3R7

September, 1995

TABLE OF CONTENTS

.

INTRODUCTION	
FIELD WORK AND INSTRUMENTATION 1	
DATA PRESENTATION	;
DISCUSSION	,
MAIN ZONE	I
Magnetic	ł
VI.F-EM	ſ
DISCOVERY ZONE	i
Magnetic	i
VLF-EM	,
RECOMMENDATIONS	í
CONCLUSIONS	í
APPENDIX 1'	,
STATEMENT OF QUALIFICATIONS: SYD VISSER	
STATEMENT OF QUALIFICATIONS: DOUGLAS M. HRYNYK	

INTRODUCTION

A magnetometer and VLF-EM survey was completed by SJ Geophysics Ltd. for Golden Hemlock Exploration Ltd. on the Tatsi project during the period of July 6 to July 16, 1995. The Tatsi Project is located in the Omineca Mining Division of British Columbia, NTS 93L, some 60 km SW of Smithers.

The purpose of the survey was to aid in the mapping of local geology especially structures and to locate massive sulphide veins and/or concentrations of conductive mineral. This report is meant to be an addendum to a more complete report by Golden Hemlock Exploration Ltd.

FIELD WORK AND INSTRUMENTATION

The survey was designed with the project geologist, Stu Tennant. The survey was then extended through further consultation based on the data collected.

The magnetometer and VLF-EM survey was completed during the period July 6 to July 16, 1995. This period included nine data acquisition days and two mobilisation days. The one-man crew mobilised from Vancouver. Data acquisition, field processing and field presentation were performed by Zoran Dujakovic (Geophysicist), employee of SJ Geophysics Ltd. The survey covered two grids: the Main Zone and the Discovery Zone.

On both grids surveying was performed at 12.5 metre intervals along flagged lines spaced at 50 metre or 100 metre intervals for a combined total of nearly 14 line-km. The base line on the Main Zone was oriented at an azimuth of 152°. The base line and sixteen cross lines were surveyed for a total length of approximately 10.5 kilometres. On the Discovery Zone the base line was oriented at an azimuth of 77°. This base line and nine cross lines were surveyed for a total length of approximately 3.5 kilometres.

An EDA OMNI PLUS combined proton precession magnetometer and VLF-EM system was used for data acquisition. An EDA OMNI IV proton precession magnetometer was used as a base station. The VLF-EM survey used signals from Jim

page 1

Creek (Seattle), Washington (24.8 kHz, NLK) and Lualualei, Hawaii (23.4 kHz, NPM). On the Discovery Zone the signal from a third station, Cutler, Maine (24.0 kHz, NAA), was also used. The operator also measured the slope station-to-station with a clinometer and recorded this information manually.

Every evening the magnetic data were corrected for diurnal drift and downloaded to a computer along with the VLF-EM data. Field plots and field interpretation were provided to the project geologist, Stu Tennant, during the survey.

Final data plotting and compilation was performed in Vancouver using Geopak, RTICAD and a 36 inch Ink Jet Colour Plotter.

DATA PRESENTATION

The magnetic data, VLF-EM data, filtered VLF-EM data (using a standard four point Fraser filter) and compilation of the magnetic and VLF-EM data for each of the two grids are presented on the following plates:

Plate G-1a	MAIN ZONE GRID TOTAL FIELD MAGNETIC PROFILES	In Pocket
Plate G-1b	MAIN ZONE GRID TOTAL FIELD MAGNETIC CONTOURS	In Pocket
Plate G-2a	MAIN ZONE GRID VLF-EM PROFILES – SEATTLE	In Pocket
Plate G-2b	MAIN ZONE GRID CONTOURS OF FRASER FILTERED DIP ANGLE – SEATTLE	In Pocket
Plate G-3a	MAIN ZONE GRID VLF-EM PROFILES – HAWAII	In Pocket
Plate G-3b	MAIN ZONE GRID CONTOURS OF FRASER FILTERED DIP ANGLE – HAWAII	In Pocket
Plate G-4	MAIN ZONE GRID MAG VLF COMPILATION MAP	In Pocket
Plate G-5a	DISCOVERY ZONE GRID TOTAL FIELD MAGNETICS PROFILES	In Pocket

SJ Geophysics Ltd, 11762 - 94th Ave., Delta, B.C. Canada tel (604) 582-1100 fax (604) 589-7466

Plate G-5b	DISCOVERY ZONE GRID TOTAL FIELD MAGNETICS CONTOURS	In Pocket
Plate G-6a	DISCOVERY ZONE GRID VLF-EM PROFILES – SEATTLE	In Pocket
Plate G-7a	DISCOVERY ZONE GRID VLF-EM PROFILES – HAWAII	In Pocket
Plate G-8a	DISCOVERY ZONE GRID VLF-EM PROFILES – CUTLER	In Pocket

DISCUSSION

While this report was being prepared, the data available to the author were limited to the magnetic and VLF-EM data, and the production notes. A full set of geologic maps and a property history were not at hand. This interpretation is therefore limited to identifying anomalous trends in the magnetic and VLF-EM data.

MAIN ZONE

Plate G-5 shows notable magnetic features along with the axes of interpreted VLF-EM anomalies.

Magnetic

The corrected total field data collected over the Main Zone (Plate G-1a,b) range from 56364.2 nT to 58332.2 nT. Overall the magnetic field grades upward from the southern end of the grid towards the northern end. There is a pronounced magnetic gradient across the northern end of the grid. This gradient suggests a contact between two rock types the northernmost having the higher magnetic susceptibility.

There are several distinct magnetic lineations some of which are visible as highs and the others as lows. These lineations trend either grid north, 332° parallel to the base line, or due north, 360°. The lineations formed by magnetic highs are possibly due to intrusive dykes or veins. The depths to the tops of these bodies vary but, are generally shallow. For example, the most obvious of these lineations transects the grid east of and parallel to the base line. On L 800S the depth to the top of this body is approximately 16 metres (as estimated by the half-width method for thin vertical sheets). Where the magnetic responses are clear enough to indicate dip they indicate near-vertical dip.

Perhaps more significant than the magnetic highs are the linear magnetic lows which seem to indicate three structures. Starting on L 100S at 375E the first can be seen trending due south through the high susceptibility rock. Its' trend is less obvious after it crosses into the lower susceptibility rock, but it appears to continue southward toward the base line. It is not clear whether or not the structure continues on the other side of the aforementioned intrusive. The second magnetic low can first be seen trending grid south from L 100S at approximately 460E. The third magnetic low lies close aboard the second. It trends southward from L 250S at 450E through L 400 at 410E.

Note that the location L 1100S at 300W was used as helicopter pad. There is a valid magnetic high on this line and the adjacent lines, however, the extreme value measured here is more likely due to fuel drums than geology.

VLF-EM

Plate G-5 shows eight interpreted VLF-EM conductors; these are grouped and labelled (from West to East) as A through E. Significantly, there are magnetic lineations, both highs and lows, parallel to and loosely coincident with several of the VLF-EM conductors.

The conductors grouped as 'A' through 'D' are associated with linear magnetic highs. The axes of conductors in group A and group D are displaced some 25 metres to the east of magnetic highs. Even allowing for the complexity of interpreting the combination of the remnant field of a body and the field induced in it by a given inclination and declination of the Earth's field, it is clear that the rocks which are the source of the magnetic highs are not the source of these VLF-EM responses.

The trio of conductors in group 'E' are coincident with linear magnetic lows; they are not offset to the East of magnetic lineations as are the conductors in groups 'A' and 'D'. The 'E' group of conductors are likely slightly conductive to conductive faults.

The pair of conductors labelled as 'B' lie in a topographic low that has been partially filled with glacial material. The responses of the pair of conductors are largely

masked by conductive overburden. It is this 'overburden effect' which produces the broad total field highs on L 1200S through L 800S.

DISCOVERY ZONE

Magnetic

The corrected total field data collected over the Discovery Zone (Plate G-5a,b) range from 56796 nT to 60421 nT. The data do exhibit some line-to-line correlation, but do not suggest any structures. The total magnetic field decreases to the north, but whether this is due to a change in rock type or to magnetic rocks being more deeply buried to North can not be determined without more information.

VLF-EM

There were no VLF-EM responses over the Discovery Zone grid (Plates G-6a,7a,8a) that could not be attributed to topography.

RECOMMENDATIONS

Geologic mapping and sampling should be conducted to determine the source of both the magnetic highs and of the lows. If the sources of the magnetic lows are revealed to be structures germane to the search for vein mineralization, they could be more completely mapped by adding in-fill lines and collecting additional magnetic and VLF-EM data.

CONCLUSIONS

The magnetic survey over the Main Zone revealed a change to a more magnetically susceptible rock type at the northern end of the property. Together the magnetic and VLF-EM surveys delineated a series of linear magnetic highs alongside conductive responses. These are possibly caused by dykes or veins intruding along shear zones.

Similarly, the survey delineated a series of linear magnetic lows coincident with VLF-EM conductors which are likely due to conductive, non-magnetic shear zones.

page 5

Over the Discovery Zone the magnetic survey did not suggest any underlying structures and no conductors were found with the VLF-EM.

.

21 September 1995

Doug Hrynyk B. Se Geophysicist FESSIO Baik Geophysicist

SJ Geophysics Ltd.

page 6

SJ Geophysics Ltd. 11762 - 94th Ave., Delta, B.C. Canada tel (604) 582-1100 fax (604) 589-7466

APPENDIX 1

STATEMENT OF QUALIFICATIONS: SYD VISSER

I, Syd J. Visser, of 11762 - 94th Avenue, Delta, British Columbia, hereby certify that:

- I am a graduate from the University of British Columbia, 1981, where I obtained a B.Sc. (Hon.) degree in Geology and Geophysics.
- 2) I am a graduate from Haileybury School of Mines, 1971.
- 3) I have been engaged in mining exploration since 1968.
- 4) I am a Professional Geoscientist registered in British Columbia.

CIEF

Syd J. Visser, B.Sc., P.Geo

Geophysicist

1

STATEMENT OF QUALIFICATIONS: DOUGLAS M. HRYNYK

I, Douglas M. Hrynyk, of 1041 Winslow Avenue, Coquitlam, British Columbia, hereby certify that:

- I hold the following degrees: Bachelor of Science, (Geophysics), University of British Columbia, 1992; Advance Diploma of Engineering Technology, (Geographic Information Systems), British Columbia Institute of Technology, 1993.
- I am currently a Geoscientist-in-Training with The Association of Professional Engineers and Geoscientists of the Province of British Columbia, registration number G0009.
- 3) I have practised my profession as a field geophysicist from 1981 to the present.

CIEN

Douglas M. Hrynyk, B.Sc., Adv. Dip. GIS

Geophysicist

8

Appendix III Diamond Drill Logs

BRID Main Zone TATSI PROJECT.

DIAMOND DRILL LOG

.

· · · · · · · · · · · · · · · · · · ·	GRAPH	c										<u> </u>
						<u> </u>		SAY REI	SULTS			
ROCK TYPES AND ALTERATION		MINERALIZATION AND STRUCTURES	T ABE	PERGENT CORE RECOVERED		×	¥L.		G			
			55		NUMBER	ÖZ/T	FTN	C02∕Ť				
		Cosing to 12.00										
attand inside fulf	1.2.	At 1.5 m evidotoichlorite	1.2	• .								
art gicy infill full f		At 1.5 m exidete ichlorite Increases to about 20 yours	nt	82								
less of epidete and/or	^{2,5}	of trial york.	3C -	· · · · · · · · · · · · · · · · · · ·					<u> </u>	· ·		F
hlrvita.		11		60								Í
strong a yids take h lovite				E e								
Heretion continues.	- ⊊										·	L
Part grey logith furt		From 4.9-6.710ck strongly broken. Alostly jubble in	52.1					ł				
with striving egidete- akite siteristanicant.		coie	6.1 -	01								
				·								
a us from 1.2 m. c E.g.m. Starny calcite.	- 7.5	Fracture with some clay, 5n	444 7.6		······	<u> </u>		ļ	ļ			L
- E. que shange area												
Exidente divininiations at E.A. alcite strugere tog.2 CHANGE	. 6.9	A few imm calcite veins	. .	100								
Fine grained, gut E	-+++ ? .2	Contact	9.1									
eplite dike	++++/0-	1				 		<u> </u>			• •	┢
TYNIE EIRC	100		nte.									ŀ
		Probable contact ongle		6B								ł
Back into altaied lagilli		Port groy tuff with	12.7						1		l I	
NGC.	11 12.9	epidete je blouite alteration	,									┢──
ypical propylitic alt.											l l	
icumont calcite				74								
replacement of tuff											1 1	

BRID Main ZONC .

	LÖG					A	BAY RE	ULTE			
ROCK TYPES AND ALTERATION		HINERALIZATION AND STRUCTURES	CORE	BAMPLE		U	• •	G	T		
			RECOVERED	NUMBER	02/1	-	01/T	-	1		
Rock is dark groy lagilli tuff. Many/most clasts are altared to calcute/ apideta		Furnie voit 130 to 1600 82 Voict is about held calcite exidence ve placing tutt greater ve placing tutt greater, 15-1, 17.4m Clay gouge (?) on fracture 176	83								
Park gley fut continues	20	Smill niers of goined of 17. E.	100								
Dark grey lapili tutt anth prominent colorite ilteration dans charts are extraced by colorito	225		65								
indote and calcute 14th tuce nearly 10° percent.	22.0 27.V 24.0 25	Alteration appears to be controlled by these tractures. 24.4	100								_
Strongly eitorod, northled texture. Tout veplaced by colorto to 55%.		253 262	- 93								
Vint grey furt with large blockes of Vinte pridate reglec- rig tutt.	17.5	Coluite en Evacturo 29.3	100							+	. <u>-</u>
Park aver taris with sign proches of calife		. 5cm colcito, apidate 30.5.	95								

GRID Main Zone

DDH <u>95-1</u> BHEET <u>2</u> DF 7

	L00					A	BAY REE	IJLTE		
ROCK TYPES AND ALTERATION			CORE		A	u .		G		
			RECOVERED	NUMBER	01/1	JEN	02/T	П		
Dark grey to slightly purplish tuit with calcute epidate blebs and streaks		Coluite legidote, ± 3cm 2 mm coluite en frontaile 55%	94							
Port given to black ish tuff with blebs and streath of calinte equate		Appens that much of the alteration is by very lacemour at class. 36.5	83				· · · · ·			
Reyl. by colcite/opidate		Breccia- piebobly foult freccia	85				• <u> </u>			
It une inct baranes	11/10									
At 40,0 inct becomes ship, black, dense tutf (?) to 42.0. Aplite (?) dike and 2mm gtz.	472	- Slight Ind ble, 41.0-41. E Norvac (3mm), gtz- veins and 41.8 Calcite Stringers 42.7	BY							
Vork grav State Vig tull. Calcito - cyldrite blevs and strasts thru about 20% of Your	111 . 1	Viregular-shajed colcito- cyidete blebs & stringers.	100							
Part gier to black, utg. to ff with calcite - ofidete reglacing clasts Lighter convert toff, more	44.0	à colcito vein	100							
greening color. Stilla tuff. Tuff becomes black again	18.2	Many Amost small clasts altered to colcite-epidote	100							

GRID Main Zene •

DDH 95-1 Sheet 4 DF 7

일 옷	<u>i</u>					A	ISAY NEI	IULTE			
K TYP	TABE UCTUB	MINERALIZATION AND STRUCTURES	PERCENT CORE			Ū.		G	C		
			RECOVERED	NUMBER	02/T	-	02/T	-	ppm		
	H		91								
		Potch of gornet-epidete alt.	100					 			
╨∽	5 🗍										
5	\$7	These firsture planes are not for contain.	100								:
55	,5 	- Specin #11 - Specin #11 - SPE	100								
	e .9 \\ 1-5	CHANGE 62.2	92 622-	0975/				0+1			
		Hordon + how my trute (53) 63.4	96 ₁₄₀	05192				0.2	5		
+++ 69	F	Partito marine from the (1)	the					0.9 0.3	8 11		
1 1		= 2 - Imm streats of gainet-epidote						0.6	1/		
		52.5 55 557 57,5 57,5 50,5 60,5 60,5 60,5 60,5 60,5 60,5 60	Big poliches of epidote calcite Big poliches of epidote calcite S28 Big poliches eyidote calcite 518 S28 Big poliches eyidote calcite 518 S28 Big poliches eyidote olt. S5 S57 These tiecture planes are not for certain 575 Specimen 575 Specimen 575 Specimen 575 Specimen 575 Specimen 575 Contact and commend continue to 62.0 Speciment Lie Speciment Lie 619 Contact uncertain 62.1 Rock is very hord, Nicessite Horder then my thile (55). 585 Speciment Starter (5	Contract Mineralization and structures Done So Big polities of epidete calcule 91 So State 100 State State 100 State	End HINERALIZATION AND STRUCTURES EDRE REDOVERED Image: State of the state of	MINERALIZATION AND STRUCTURES DORE RAMPLE A 1 Big petches of epidote calente 91 000 1 Big petches of epidote calente 91 1 See Big petches of epidote calente 100 1 See State 100 1 See State 100 1 See See 100 1 See See <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>MINERALIZATION AND STRUCTURESDORE REDOVEREDSUMPLE REDOVEREDAUAG325Big policies of epidote colorie Plig policies exidete colorie Plig41AG525Big policies exidete colorie Plig policies exidete colorie Plig policies exidete colorie Plig$100$$100$$555$Stop$100$$100$$100$$555$Stop$100$$100$$100$$575$Stop$100$$100$$100$$575$Stop$100$$100$$100$$575$Stop$100$$100$$100$$575$Stop$100$$100$$100$$575$Stop$100$$100$$100$$575$Stop$100$$100$$100$$575$Stop$100$$100$$100$$575$Stop$100$$100$$100$$575$Stop$100$$100$$100$$575$Stop$100$$100$$100$$575$Stop$100$$100$$100$$575$Stop$100$$100$$100$$575$$100$$100$$100$$100$$575$$100$$100$$100$$100$$575$$100$$100$$100$$100$$575$$1000$$1000$<t< td=""><td>MINERALIZATION AND STRUCTURESDORE IT MUSERAUAGCLSSBig petches of epidete calcite <math>Right atches epidete calcite91007PM027PMSSSBig petches of epidete calcite$Right atches epidete calcite site91000007PM027PMSSSBig petches epidete calcite site91100007PM027PMSSSBig petches epidete calcite site100000000000000SSSSS048000000000000SSSSSSSSS100000000000SSSSSSSSS100000000000SSSSSSSSS100000000000SSSSSSSSS100000000000SSSSSSSSS100000000000SSSSSSSSS100000000000SSSSSSSSS100000000000SSSSSSSSSSSS100000000SSSSSSSSSSSS100000000SSSSSSSSSSSS100000000SSSSSSSSSSSS100000100SSSSSSSSSSSS000000100SSSSSSSSSSSSSSS000000SSSSSSSSSSSS000$</math></td><td>MINERALIZATION AND STRUCTURESDORMANNERAUAG$0000$$010$$0000$$0000$$0000$$0000$$0000$$0000$$01000$$01000$$01000$$01000$$01000$$01000$$010000$$010000$$010000$$010000$$010000$$010000$$01000000$$01000000000$$0100000000000000000000000000000000000$</td></t<></td>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MINERALIZATION AND STRUCTURESDORE REDOVEREDSUMPLE REDOVEREDAUAG 325 Big policies of epidote colorie Plig policies exidete colorie Plig 41 AG 525 Big policies exidete colorie Plig policies exidete colorie Plig policies exidete colorie Plig 100 100 555 Stop 100 100 100 555 Stop 100 100 100 575 100 100 100 100 575 100 100 100 100 575 100 100 100 100 575 1000 1000 <t< td=""><td>MINERALIZATION AND STRUCTURESDORE IT MUSERAUAGCLSSBig petches of epidete calcite <math>Right atches epidete calcite91007PM027PMSSSBig petches of epidete calcite$Right atches epidete calcite site91000007PM027PMSSSBig petches epidete calcite site91100007PM027PMSSSBig petches epidete calcite site100000000000000SSSSS048000000000000SSSSSSSSS100000000000SSSSSSSSS100000000000SSSSSSSSS100000000000SSSSSSSSS100000000000SSSSSSSSS100000000000SSSSSSSSS100000000000SSSSSSSSS100000000000SSSSSSSSSSSS100000000SSSSSSSSSSSS100000000SSSSSSSSSSSS100000000SSSSSSSSSSSS100000100SSSSSSSSSSSS000000100SSSSSSSSSSSSSSS000000SSSSSSSSSSSS000$</math></td><td>MINERALIZATION AND STRUCTURESDORMANNERAUAG$0000$$010$$0000$$0000$$0000$$0000$$0000$$0000$$01000$$01000$$01000$$01000$$01000$$01000$$010000$$010000$$010000$$010000$$010000$$010000$$01000000$$01000000000$$0100000000000000000000000000000000000$</td></t<>	MINERALIZATION AND STRUCTURESDORE IT MUSERAUAGCLSSBig petches of epidete calcite $Right atches epidete calcite91007PM027PMSSSBig petches of epidete calciteRight atches epidete calcite site91000007PM027PMSSSBig petches epidete calcite site91100007PM027PMSSSBig petches epidete calcite site100000000000000SSSSS048000000000000SSSSSSSSS100000000000SSSSSSSSS100000000000SSSSSSSSS100000000000SSSSSSSSS100000000000SSSSSSSSS100000000000SSSSSSSSS100000000000SSSSSSSSS100000000000SSSSSSSSSSSS100000000SSSSSSSSSSSS100000000SSSSSSSSSSSS100000000SSSSSSSSSSSS100000100SSSSSSSSSSSS000000100SSSSSSSSSSSSSSS000000SSSSSSSSSSSS000$	MINERALIZATION AND STRUCTURESDORMANNERAUAG 0000 010 0000 0000 0000 0000 0000 0000 01000 01000 01000 01000 01000 01000 010000 010000 010000 010000 010000 010000 01000000 01000000000 $0100000000000000000000000000000000000$

BRID MAIN Grid .

<u>DJH 95-1</u> Sheet <u>5</u> of 7

						A	IBAY REI	ULTO		
ROCK TYPES AND ALTERATION		MINERALIZATION AND STRUCTURES			A	v	• •	G		
			RECOVERED	NUMBER	02/T	-	C02/T	-		
Lopilli futt with strong epidote-caicile alteration. Some garnet to 68.2. Very hard, black week.	686	Promiment masses of 61.4 Exidence quartz. Mattled, very hard rock, black with bleps epidente, 225% c fideto: Rock is jot black, H=7 3015	100	N <i>o 50</i> 77 y	7.					
Very fine graned Hard, - nie graned, black icck- enly partially silicitiest, torgeschicific	70.4-71.0	Protobly grants or territorine To	96							
Plack, Very Tisse grimited turt with, streads and bleds + epideria. Junto.		73.2 2 cm. gamet-cridete. Mass of garnet.	100							
Mostly voit in Start, houd, view, and dense. ling a twen but is new offered (Mictionic planed?)	75	streats of quartz, goined The	100							
rid silicitied Wasthe Herdren wetanovyhism & silicitication or beth		streats of garact-apidote streats of exidents	76							
Reat becomes slightly rodding		2 cm. gtz-gainet-elidote Screidi streats thicks gtz- gainet cyndote Rock appenis to be a	96							
5% clain, nicetly less how ton control to retories flissed. Pleyobly gricel gonot. epideto-912 3	62,5 E.4.1	garnet. eyidete- gaatz Lina 	100							

BRID Mein Zene

ЭДН 95-1 внеет_<u>60</u>0<u>6_7_</u>_

	LOG	}				A	IBAY REI	IULTE		
ROCK TYPER AND ALTERATION		MINERALIZATION AND STRUCTURES	PERCENT DORE			U		G		
				NUMBER	02/1	-	C12/T	-		
netamenphosed and is metamenphosed and is new a gernet-epidote- queitz. calcite skorn		Egidate, quartz, coloite Voins thru here Mostly are from 2 min. to 8 mm.	94							
-avilli tuit, metamoryhese lo garnet-exidete- quaitz-calcita starn		Exidate Vein Br Exidate Vein, about 3cm wide	97							
Lapilli turi, metomorphose lo gernet-exidete-quertz starn		A fene suvall (± 2-3mm) e fidete quarte veins qu	- 100							
Very have int. Count- epidete-quartz storm.	925	Clasts in fulf ove verticed by quarts, Matrix altered to gainet.	64							
Lagilli tuff, metamongh. to starn. Stan in dant buigundy - blacking color	97,5	Icm qtz vein	96							
Layilli turit, undameryh- read to starn	100	5MR. quaitz.	100							
apilli tu:t, actomerghoged		100	96							

GRID MAIN Grid ---- · .

DDH 95-1 Sheet 7 of 7

	GRAPH L09						AE	BAY REB	ULTS		
ROCK TYPES AND ALTERATION		MINERALIZATION AND STRUCTURES	Ĭ	PERCENT		A	J	- A (3		
				RECOVERED	NUMBEN	02/1	PTM	Ot/T	PTM		
Lapilli tuft, metamolyhosed. Rock is unic unstly garnet, guartz, efidete and calcite Ruck is grey to blackich to the reddish colin of	11	. Usin of gainet, ± 10cm.	103.4 -	77							
to blacking to the reddish colin ry garnet (+pe++, artite 7)		Flagments in the vock are reglaced and appear to be clasts in tutt.		96						 	
	107,	End of Hole, 107.6	- 107.6							 	
									[<u>·</u>
					1						
					<u> </u>						

BRID MEIN ZONE TATSI PROJECT

DIAMOND DRILL LOG

HULL NU. DDH 95-2

						A	ISAY RE	<u>95-</u>			•
ROCK TYPES AND ALTERATION	ERATIO ERATIO	E 2 MINERALIZATION AND STRUCTURES E 3 E	PERCENT CORE RECOVERED		AL	u		NG	Cu	_	
				NUMÜER	ÓZ/T	7 76	. oz/T	-	PPm.	·	-
Rect wird flibally a lagilli tutt, but is	1,2 -	Cosing to 1.2 1.2	•								
nd slightly nictled who slightly nictled who epidetization of mue clasta. The vack	-	Blets of epidole-quaitz.	90								
proporty completely licities () et perhays euro malinized ()	2-	From about 6:0 to 7.0 lock 6.1 is breccie with (ragmonts(?) Veylaced by eyidots.	84								
entinues black, hard "ck which is forbably licitien or tournalise eff.	12 ed	9.1	84								
and black, hold ack continues	12 6	12.2	72								ŀ
eched, light oreen, voct is art z Vew, Viccoie. Has y 21:36 Vet rest work word- eched, light green, voct is	12.1 13.1 14.C 14.4 14.6	Slighthy orgillic Probatio electrum of 14,4 \$ 14.6. Sullide minevalization.	90 NO	05652		800 (21)	15.81	542	9852		

BRID MAIN ZONA

DDH 95-2 SHEET 2 OF B

							A	ISAY RES	ULTE			
ROCK TYPES AND ALTERATION		MINERALIZATION AND ETRUCTURES	Ϋz	PERCENT CORE	BAMPLE	A	U		G	Cu		
			1001	RECOVERED	NUMBER	OZ/T	-	02/T	-	ppm.		
Pleached, light greenist	132	Lolor, slightly avgillic, a jurte Maybe source gainet	15.2	- 15.6 -								
Rect is meeting proximing of z. Flack full	16.9	Veining, source quarter.		87 16.4	05653				1.0	44.		
Rock becompra silicified								ļ				
(>) er tournalinized (?). 15 Vory hardt dense.		Note: The black "tools" looks the same, whether it is silicified (?) or	<i>16.3</i> -	0.11								
Tentorie of fulf is still visible.		nrt.		84								
Black tuty unt 6 mony 20,2- tiny quest = versilets	200	· Efidote - goinot					 					—
Police exidele, voct is hold		small patch of agidate.	21.3 -	100					[
Rock is black, hard and probably silicitied.	22 22.5							 				
At 23.1, back into black tuff. Clasts are silicified.		Lupple 23.0 10 233		7 <i>B</i>			-					
H 24-24.9, pet is hard, block and silicitied 24.9		24.4 Mostly 1466 84.4-25.5	244	94 - <u>75</u>	05756				0.4	14		
Trem 24.0 to 30.8 (End Box 5) 10ct is extremely dense	-			24.	05757				0.3	153		
and hard. Is probably silicified (?) or				100 20-	05758				0.6	224		
tournalinized thru this	27.5		27.4 -		05759				0.6	32		-
interval and perhaps	29			28- B0	05760				0.2	42	·	_
	EC FI	Mostly ubble from 29.010 and of run at 30.8.	289-	19-	05761				0.3	159		
Black, hard silicified cock. Wet floketly a	308-	Kubbla Fudof Pex 5			05762			•	0.3	16		
tuff.		Schi quartz veix, limonite		88 31.	05763				0.1	15		
	1 225	l	ļ	92-	06714		t · ·			1		

GRID MAIN ZONC

.

- --

DDH 95-2 SHEET 2 OF B

		GRAPHIC LOG						A	ISAY REI	ULTS			
ROCK TYPES A			MINERALIZATION AND STRUCTURES	ĕz	CORE	SAMPLE		U		G	Cu		
					RECOVERED	NUMBER	02/ T	-	02/1	77M	PPM		
Herd, dense, upich is si	black rock ispokly	33.5	11 336 lock becomes		-	05764				0.5	11		-
dehich is pr silicitied t	u14		11 335 lock becomes Very broken erubbly	33.5	44 34	05765		 		0.8	16		_
Fragmante	ac start	1 25	Mestly while			05766		ļ		0.4	47	·	
silicified 1	oct.	741			4376 -	05767				0.1	12		
May be a far 1	ingments aplito	1 36.3	Heavy grey-greenish clay From 36.7-39.1 voct is voly	, 36.6	73.	No Samy 1	<u> </u>						_
,	I qualte very	\$ 7.6	INDOLY. Contains normalieus qualtz voins and is			05654							╞
and is sili	cified. Also monite staining	39.1	limonite stained	3 <i>9.</i> ¥	74					3.4	25		
Rock is block	t tutt.	1140		39.6	- 1.1					Ī			
e sidete.	silicitied, acations of ng slightly chloritic- c. But firm		small veinlats of evidate	41.7	96								
42.5-44.1 ra 40% epidet Rock is \$101	et is about et qualtz	44.1	2 mm clay on fracture	42.6	100								
Reck is sti	with agido to		3mm quait = Vein 998cimen	<i>45</i> .7 -	90								
>90% et ice by eyidote a Below 47.7 100	t is vertecad and quartz.	47.6 - 42.7	Below 47.7 only a faw stren and blebs of egidate.	t-5 482	100		L <u></u>						
silicitied		50						1		ŧ			

BRID Main Zene

Į

_

DIAMOND DRILL LOG

ДЭН 95-2 Shret_4_0F_9_

.

		APHI LOG	ີຼ		_				A	BAY RE	RUIL TO			
ROCK TYPES AND ALTERATION		X		MINERALIZATION AND BTRUCTURES	Ĭ	PERCENT CORE	BAMPLE	A	U		G			
		500				RECOVERED	NUMBER	02/1	F	OŽ/T				
Hord, black, danse silicified turf.	\prod			Afew streets of epidote thru tubt.	51.2	. 90								
Light grey regente and		51.4	╢	- specimen		70					ļ			
Enstably some as on sulface.	╪╪╪┙	52,5	₩	This allers to be a good contact							<u> </u>			
Hard, dense, black silicified tuff.				gera contrat	FJ.6 -	87								
	╢╢	55	⋬	Brown quartz on Morrow	<u>91.9</u> -						L	 		
Havd, dense, & lack silicified tuff				stringers.	-	9 7								
	Ш.	576	4	Small blabs efidate										
Hard, black, dauge Bilicitied tuff.		79 ,2	ш	Small blebs clidete	57.9									
some vect thru this		-		A faw small, scottered p	tches	68								
interval Rhyolite dite	_	59.5 [.0 60.4	╢	epidete; maybe ve placing cla Rhyolite dite some es abora	984.	· ···		 	 		 	 		
Hold black, donse silicified Epidote replaces small clasts 10 + 10%		62		nayana una seme es surre	61.0	96								
About 20% of black	Ш,	1-2, 5	44						 	[<u> </u>
plack desilicities		f. 4.0		small Imm gtz stvingels.	64.0	160								
Hard, black, danse	_	, ç	Щ								L	.		
vock, largely silicitied														
Same black lock.		L4 8	₩	" the land the a famouth in	- 670	100								
	1114	67.5,	泭	Stock NOIKS of quaits Voim	5 460	-		ł	ļ	ļ		ł		

GRID _____ Zene

ДЭ Н 95-2 Внест <u>5 ор 10</u>

1		GRAPHIC		<u> </u>					BAY REE		
l	ROCK TYPES AND ALTERATION		MINERALIZATION AND ETRUCTURES	¥el	PERCENT CORE	BAMPLE	A		- A	 	
		ALTER ALTER			RECOVERED	NUMBER	02/1	-	OŽ/T		
	Dark grey to blackish tuff. Rock is silicified and has colcite and quartz Veinlets. From	18.4 20	Stock Norts of quartz and coicite verns, mostly 2mm contact of tuff beds. No suffices in stock power		100						
	67. Dto TI.O Silicification diminishes or is appoint, except for quartz veins, Rock	71.0/	,	701	100						
	no longer block, but is dark grey. Rock is grey-dork grey layilli turit.		15cm queitz vein 5cm queitz vein	3.1	100						
	Same groy tull Groy to dork groy tuff. frinchal	76.0	Slight stock works of 16 fracturing with some	,. . -	96						
	alteration is calente veining Rack anly locally silicities in small patches.	80	quartz Veining, mostly Limm, and some calcite Veining. No salfides in stackwork	9,2-	100						
	Rock becoming move silicified of obent BI and is dark grey-black,		Qualtz Vains With calcite for 200mi	2.0	90						
	hard, dower and meetly (net completely) sincitied thru this interval	P5	3 cm quaitz - calcita Vein 83		100						

GRID MAIN Z-ONI

DIAMOND DRILL LOG

ДЭН 95-2 **ВНЕЕТ<u>Б</u>ОР<u>У</u>**

	GRAPHIC LOG						AS	BAY RE	IULTS			
ROCK TYPES AND ALTERATION		MINERALIZATION AND STRUCTURES	¥s	PERCENT CORE		A	U	· A	G			<u>-</u>
				RECOVERED	NUMBER	02/1	M	02/1	-			
Part grey to block dange, hard silicified tuff.			6.5	88							1	
continues dart grey, donse, hard sincified first.	075	Specimen				1				1		
		Epidote occurrences cove very broten diubbly. Bracc aquariz 88.3-88.6 Vertical 3 mm. quatz verm	7. B 1 A	84								
Continue: dark grey, black	1190-		7.9	•					 			
donse, hand cilicitied fulf. Belence Eq.9 vect is black		3mm quartz Veini q	7.7 -	96								
Mettled Dit b exidet a laft ism 93.5.93.5. Loos silicitied here Silic black fusti.	98-5 - 93.5 - 94. r		2.6 - 4.5 -	100	· · · · · · · · · · · · · · · · · · ·							
Hord, dort gray, donse silicified tutt. Silicified tutt.	95,7 97,5	Smm quaitz Voisi Scm quaitz	7.6	100								
spotty + live jutorual, 95,3-102.6. Rock is gray to black; black at avers of workt				100								
intense silicitication. This silicitication must of verifor contert metomorplism. (2). incitied, flock, 1021-102.4	101.0	5/194t juckense of cyidete, 101-102,5. 15 10-1595 of vock.	••15-	100							-	

GRID _____ LOIN LONC

Г

DIAMUND DRILL LUG

- -

DDH 45-2 BHEET_Z_DF_&__

				T	<u> </u>		,						
ROCK TYPES AND ALTERATION		TARE	MINERALIZATION AND STRUCTURES	PERCE		RAMPLE				SULTS 	T		
	Ĭ.	2		RECOVE		NUMBER	02/1	PEM	02/1	-	1		
Black tort, much of it is silicified, but alteration is spaty. frominent elidate alteration leg. 4- 106.1. Fudete is about 30 pricesir of vock.		103.9	103.6	100									T
Elidete alteration strongeridete again, 1070- 1075 Black tutf, some esidet	[[[{	- 2 cm quoitz with scattered chaicopyrite 1067	83									
ind silicification, but it is spotty. At 108.2, epidete content incroases and remains failly high (up to 30%) to 111. B whave these		1002	2.cm qualtz 109.7.	100									
lock is hard, danse,		11.8	1-2 cm quarter in small veins. and calcute in small veins	79	T								ſ
lack tuff which is Dartielly silicified. Pock locus belows voin is Hoved very light green. Hos four scottered grows mariposis		35	12:0 - 2 ° cm quoitz, 113:3-1135 oith minor occurrence of galoux. Alteration 2 one ottitude 114.4-	100									
Place silicified tuft with epidete content to brut 30% Rock tecnings light quay h color to 117.7		6.5 7. 2 7. 5	ji 5. 9 -	95									
Back to block tuff, but 1955 silicitied Has more colorte		11	stactwork of quarts and valente vermlets. 1188-	80									

GRID Main Zone

DIAMOND DRILL LOG

DDH 95-2. Bheet <u>& op</u>

		GRAPHIC LCO		1			A		ULTE	·	
	ROCK TYPES AND ALTERATION		MINERALIZATION AND STRUCTURES	PERCENT	BAMPLE		U	. A	G		
		ALTERAL		RECOVERED	NUMBER	C22/ T	FEM	01/T	ł		
	Rock is block, hord and deuse silicified tuff. smallmass brown gainet Black, hard, silicified	- 121. 4 	small finiture controls location of garmet. 121.9	96							
	tuff continues to the end of hole Massive brown garnet	17.4.6		100							
	Black, silicitied tulf		I cm quortz Ithe Smoll veinsof colcite-quartz End of Hole 127,1	100							
	1 / 4 86 / Jone - 1994 & J										
_											

PRUPLATY TATSL PROJ GRID MAIN ZOME	<u>ECT</u>	DIAMOND	DRILL LO	G				nuu SHEET	20	<u>19. 19.</u> 19. 19. 19. 19. 19. 19. 19. 19. 19. 19.	5-3 	
DEATION Main Zone BEA ATE COLLARED ALL 9. 16 1995 LEN ATE COMPLETED ALL 9. 1995 DIP	RING Ver	tical LATITUDE 3-1. 18 DEPARTURE 3-1. 11 ELEVATION 1.8	498E.					LOS	TAN	<u>N P ;</u> e. 17	F 	15
	GRAPHIC LOG					-			ULTE			•
ROCK TYPES AND ALTERATION	K TVH KATIO TABE	MINERALIZATION AND STRUCTU	RES X S	CORE	BAMPLE	*	u	AG	3			
· · · · · · · · · · · · · · · · · · ·				RECOVERED	NUMBER	OZ/T	PPNE	Cat/T	PPM			
Rock is about half stidote. Host is black tuff (?). Rock is plack, dense	2./	Casing Specimen	0.6	-								
hard turff(R) Continues some to 5.0m where it changes.		No distinct contact	4.6	80								
Hosthy green epidote. Notably some quaits and remnants of black tuilf slack tubb	7.6-	No distinct contect		100							<u>نہ ۔ </u>	
From 5.0 to 17.9m pock is alternating potches of place with and green exidate-quartz			7.9 - 9.1 -	BB								
eplacement or eplacement or lterature Those are ne purpoint	m1	50 me apparent heat. beaccia, 10.6-12.5		100								
fortures in the rack. Appears to be a davit, Cive grained tutte with trong epidete gtz olt.	12.5		12.2.	100								

BRID MAIN ZONE

DDH 95-3

	GR		<u>מוו</u>					A	ISAY REI	ULTE			
ROCK TYPES AND ALTERATION	RATIO	JOY.				BAMPLE		U		G			
	ALTE				RECOVEREI	NUMBER	02/1	PTM	02/T	ITM			
Alternating black tuff	ΠT	72	П	15.2	ŧ								Γ
and altered, epidetized,	111		-11		84	1	1		1				
silicified tulf.								1	ļ				
to 17.9 metris.	Ш	17.	<u>د ا</u>	·····					İ				
		/7. 🖸	Η	17.7	t								
Roddish furt fod with	Ш												
calente en fractiones. fort			-	2 cm quaitz vein, with innomite	80								
15 hemotite. isch. ved strate in inding places	₩	22	4	- specimen	L			<u> </u>				L	
	Ш	20	- N	contact. Probably bedding.		1 .					1		l
From 207 to 32.5				21.3	90			1					
(thispaye) rock is					70								1
alternotely black	Ш	22.	ℯШ				i						
tuff, which offers			- []					1	1				T
to be silicitied					100		1					l	
intersperced with				2 4.4									
large evens abuch	╫	26	-++		┣────			 	 		ļ	ļ	Ļ
are compresed survey of epidete and				Some subble hord 25.9					1				
of epiatric and			11	- <i>DPMIT TAPPIC</i> 23.7 26.5	100						ľ		1
locally exidente- quartz.				£6.3 27.1	ļ ^{(*}								
Coluite occurs in small	┼┼┼	27	∮-	1 / 27.7						<u> </u>	 		┞
omounts on small				There are no structural 27.7 Geothres nor minevalizations	\$	1							ł
				leatures nor mineralizations	94							l	I
foot weer and in				(vom 15.0 to 32,5, excell 295	ļ]]	
ivrequire shayed	\ddagger	30	-	as noted	<u> </u>		+						┢
yatches and blebs			ļ							[ľ	[1
				51.4	94						1	ł	
		4-1	<u> </u>	\$2.0	ł								
	111	22.	211	*2.3	t [.]	I.	I	I	1	1	I	I	1

GRID Main Zone

-

DDH 45-3 BHEET_2_0F_Z___

Γ	<u> </u>		······································	T T			A		ULTS		
	ROCK TYPES AND ALTERATION		MINERALIZATION AND STRUCTURES	PERGENT	BAMPLE	•	U		G		
				RECOVERED	NUMBER	02/1	-	OZ/T			
1	Black dense, hard full, but approvidly little silicities program chaped masses	34.7	There are no structures, 390 brecciation Her								
	of Epidete occur in tull this orea Below 36.5 rock is	36,5	Mineralization to the end of Box & at 44m.	100							
	place full but is very hard and appears to be silicified. Some clasts in the	21,2	97,5 38,1 99.7								
	tust and opproviding altered to epidote. No change in socks	425	40.1	100							
	+ how interval to 14m (evil a Fox e) Very hard, plack, silicified tuff	44 -	42.7 473 5mall yatch equate at 44.1 At 2							- - -	
	Ruch is slightly motiled with existent of 45-46 otherwise week is black, very hard and dange	475	454 15.7 16.6	100							
	and is proketly a silicified fulf		47, 8 48, 7	- 76							

BRID MAIN LONC

DIAMOND DKILL LOG

DDH 95-3 SHEET 4 07 7

_____ ..__

		· ·				A				
ROCK TYPES AND ALTERATION	CK TVP ICRATIC D'TABE	MINERALIZATION AND STRUCTURES	PERCENT CORE RECOVERED	RAMPLE NUMBER	A		A	3		···
					01 /T	PTM	02/T	PTM		
Rock is plack, houd, dense and is apparently silicified Probably is silicified tuff	32.6	30.4 -	75							
At 53 mi tuit becomes a very dost purylish to black color. A fear clasts up to 300 A com	- 53,0 58,8 54,2	From 53.0 a small stock work of epidote-quartz vemilets, (unn. Blaaching Koth some 536- limonite out Smingwitz 545.	88	· · · · · · · · · · · · · · · · · · ·						
Purplish - blockish tutt continues to 62.7 whose a subtle change occurs.	676	stockwork of small a fidote - quartz - calcite Vainlets accuration 53.5 to	96							
	60	Continuation of strucker 524 584- 547	80							
			92							
From 63.2 Port becomes more block in color - probably different	63.2	Signoss of egidete Small streets and suppose of egid ate occus. Egidoto 64.0 about 10% of your.	100							
tuff bed Black lock is slightly method by egidote.		Moss - fajidote at 698	100							
- -	F7.5	67.1 -	Į			1			1	

BRID Main Zone

DD H 95-3 SHEET 5 OF 7

					A8	BAY RE	IULTS	 	
ROCK TYPES AND ALTERATION				A	U		G		
ALTEC			NUMBER	02/1		02/T			
	9.1 Nats of mostly a pidote	100							
t stvingers or exidents	0.7. Mass of e fidote 11.0 Efidote & garnot. 125	9B							
Continues, but changes	3.9 Moscoferidete	2 90 47							
Kock is very hard, dense and slightly privilish color with small streaks of anotz & calcite	76	5- 100							
Bacomes inverse a plack color at about 77-gradual color change- notshavp.	94 Small-lan Veinlet of 9+2- gavnet-colaito 19. Splaches gamet-chidate-col- 9+2	88							
Plack, donse herd black rock, but has strong green mottled texture due to evidete verlacoment	Maybe contact for a dike Porykyntic andesito diko (?). Large massepidate	- 100							
of closts-vary smallclast hanocrysts, nicotly 2. Sma lock is probably silicified staybe intrusive	cr Frocture. I believe this is the a dike polyhyritic andesite dit.								-

GRID Main Zane

DDH 95-3 BHEET<u>6 07.7</u>

					[T	<u> </u>			SULTS	<u>`</u>		
	ROCK TYPES AND ALTERATION		MINERALIZATION AND STRUCTURES	¥s	PERCENT CORE			NU		AG	Cu	·	
		1001		Ĕġ	RECOVERED	NUMBER	02/1	PPM	OZ/T		PPm.		
	Very me Hlad black, hard rock with greene yidets is placement of then avysts		Think + hit is a perphyritic oudesite dike	(100								
	Brown fine grained tait	P7.0			87 -	056.55	<u></u>	 		+	+	+-+	
	Rock is very hard and probably is silicified.	1	Fractures, gtz-cat verillets	₽7.B-	- 51 -		<u> </u>			0.8	1		
	plopaphy is since iten.	F	Atz- cal veins, up to 5cm		100 19-	05651	 			0.5	8		
	·	lle	a	FY.3		05657	l			1.1	5		
	Brown, time grained talt is haid and probably is			90.8	+	03658				1.5	9		
	silicified	11 1	Ment spor chouse voin	Ì	100 91-	09659				0.8	3		
		H1925	- 10cm atz-calcita		92-	09660				01	1		
	frown, - and grained luft,	111 +	Giz-cal veins diminish		93 -			'				$ \begin{tabular}{c} \hline	
	But voire quit below	94.5		94.4-	100		1				, 		
	12 black turil, silicitied	1196-1				}∤	['	 		}	+-+	
		96.5	N		68		1				J		
	Preventa pili tari, is sitierfied	97,6	<u> </u>	96.9-			l	<u> </u>					•
		98.0			I		; I				[
	Black - mently - layilli turt.			99	100			'		'	'		
ł	Black Jayilli funt	100				<u> </u>	!	├ ──┘	 '	 '	<u> </u> '	++	<u> </u>
	Frown, scherich tar	11:5	Quarte calcite vaine cec.		64	05661	 	ļ		1.2	5	$\left - \right $	

GRID MAIN ZONE

DDH 95-3_____

ſ		GR L	APHIC 106	·]			·			A	BAY RE	ULTS		
	ROCK TYPES AND ALTERATION		Ĭ		MINERALIZATION AND STRUCTURES		PERCENT CORE	SAMPLE	A	U	- A	G	Cu	
		A TE					RECOVERED	NUMBER	02/1	PPM	Ot/T	PTH	PPm.	
ſ	Brown, hard fult, 19 fractured and verned by	\prod	••••••	N	Stock work of qualtz colorte Venis in tutt 107		103.5 -	05662				1.4	5	
	fractured and reined by stockloark type venung Rock is silicitied.						100 104.5-	05463				1.5	3	
	Brown, have tuff continues, but values stop at 104.5. At 106,5 rock is dark grey	111	1 05 101.5		·		100							
	to plackish tuff Black tuff continues				Single, lom gtz vein . A fau lum gtz veins		100							
	Tuff & hanging guadwally		H&		//o·3									 i
	Becomes firmushort obsect Illen		111.2- <u>HZ5</u>	₩	Stockwork of qualtz-calcito verus in brown tatf.	[,]	100 111.2. 1120	<i>056</i> +4				1.4	5	
	Brownish furt		//2, > / <i>/3</i> ,5		Stock work continenes to 110.0 118.5 and quite abruptly		100 10.5-	05665			·	1.3	4	
	promiment logilli this		114.3		//4.3									
	this interval Brachrigh fulf		116.3 115.9	\prod	- End of Hole 115.8		100				 			
														1
				Ħ		1				1				

GRID MUIN ZONS

DIAMOND DRILL LOG

SHEET _____DF 7___

_ . . .____

ATION <u>Main Zoile</u> BEA 2 COLLARED <u>AUG-18,1995</u> LEN 2 COMPLETED <u>AUG-20,1</u> 995 DIP	RING <u>N.6.</u> GTH <u>109</u> -60	BE. LATITUDE 3 + 5 O : .1 DEPARTURE 3 + 9 B ELEVATION 1 8 43;	'E		uze <i>J. Q. 7</i> of Lon <i>f. 1</i>	0 MET	nho te a	LOI DAT <u>1</u>	нео ру. т. <u>Ан</u>	12. 19 9 · 19 9 5 -	7, 199 3	23
							A		IULTE			
ROCK TYPES AND ALTERATION	K TYPE RATION	MINERALIZATION AND STRUCTURES			BAMPLE	*	T		Q			
<u>-3</u> .			<u>p</u> a	RECOVERED	NUMBER		PTM	oz/i	-			
·	-0.6	Cosing	0.6-									Τ
ack is mostly aquidate with sparse areas of black uff.		No minievolization nor structures.	2. / -	79								
s plack, Vely hold and lense turif. Rock is		courrence of exidely		96								
Probably silicified. Continue: black tuff. Rock becomes very = mettled from 6.3 to	6.3		5.5 -	89								
9.5 and is about half chidote and half black turk. Ht 95 ruck changes to		No minerolization nor structures.	8.2	90								
be silicitied, as it	4		11.9	80								ŀ
y steel. CHIAN black for ccurvences in preview cles wave harder them steel				100								

GRID Main Zone

DDH <u>95-4</u> Sheet <u>2 of 7</u>

· · · · · · · · · · · · · · · · · · ·		T		·							
	GRAPHIC LOO					A	ISAY RE	IULTS			
ROCK TYPES AND ALTERATION	Adr Adr		PERCENT CORE	SAMPLE	A	Ů	• •	G	Cu		
·			RECOVERED	NUMBER	02/1	-	C2/T		PPm.		
Black, fins grained, donse and havd silicitied fuelt	14.5	Stockwork reining, gravitz 16.4.	100 16.5								
zour of gtz-calarte	11,76	and colute		05666				2.1	31		
stort work. Park quipling - blactish tutt	18. 2	177- 18:3-	18.0.								
7417	120	19.8	Ļ						!		
zone of Blanched full,	2016	\$0.7	206	DELLT							
912-calbert, 912-cal doins Bicum altered full Tuft 19 gurylish, hard		+Brownish fulf above here;	100 244.	05667	·			4.5	110		
MAY be silicitied.	 <i>22.5</i> 	Black, hard tuff below me	<u> </u>	<u>-</u>			<u> </u> -	├	 		
Rock is Mart, donso. hove fuff. frevoly			84								
is silicified.			, .		 			 			, <u></u>
Black hard work contin	444		96								
·····	1127,6	- ۱٫۲ ۲٫ ۳٫۳۰	<u> </u> '	Į			ļ	ļ	ļ	<u> </u>	· ·
Plack hard tuff continue		27,7-									1
	1120	I 9.2- 18.9-	100								1
Rock is an Alas manual	#0,8 -										
Rock is metting, greenish Repitert yortelies with quest 2 - Crister - Cal 763	32.5	Quaitz- coluite Veins 31.4-	- 94 \$1.4. \$2.3	05668				1.7	38		

GRID MAINI LONG

DDH 95-4 BHEET_2_0F_/__

ROCK TYPES AND ALTERATION				ASEAY RESULTS							
			¥s	PERCENT CORE	BAMPLE	AU AC		AG Cu			
	ALTO ALTO			RECOVERED	NUMBER	CZ/T		C02/T	PPM	ppm.	
Black tuff Mettled greenish-whitish in black tuff.	. 99.2.	Trreqular masses of quartz and calcite.	\$4.7 ~	33,2 · 100 345 ·	C5449				1.5	35	
Rock is plach, hard and device furit. Is proportly silicified is this a contact	376	No mineralization, ner structures from 34.5 to 46.0	3600 -	100							
13 this accutant motomerphic effort? Continue strut the Some from 34.5 to	40		36,4 . 394 .	100							
42.0 Pulplish to plackish	42,0	No minelolization nov structures.	41.5	100							
tuff, 1+ dense and hard, then trem 45.0-45.5 13 black.	723		47.7 ·	100							
Blackish tuff Tuff is very derk purylish color, is fine growed, have and dense. Is proposly silicities.	47.6	460 is evict box 8.	454- 46-0 46-6-	75							
some purplish tuff.			/ 8.8-	72							

GRID Mein Zone

DD # 95 -4 BHEET______

	LOG	1		ABBAY RESULTS							
ROCK TYPES AND ALTERATION	사용 표 ····································	PERCENT CORE	BANPLE	A1	AU A		ng Cu				
			RECOVERED	NUMBER	02/1		02/1 1714		ppm.		
Lagilli tuff, premiment clasts, nicetly & lem. Rock is slightly brownish		This is a clean contact between subcerial tuff beds. The tuff units are similar in competition and 9/20 range of frequents. Both	. 97								
suggesting Oxilation in subactial environment Rock is not silicified		the lower unit is equal atting the lower unit is equal atting oxidized of top (it is slightly reddish).	96								
Rock is Storemish lopilli tuff. Not silicified	55.5	Rock is broken and mostly while, 56.5-57.4	59								
Proximist, la pilli tuff. Not silicitied slightly provish 59.60	58 58 59.5-	Rubble, SET- SE.B Rubble, SET- 5E.B Rubble, 595-60.3	73								
Biownish tull 18 Biownish tull 18 Biownish tull 18 Bilicitica below 61.5	60.3 61.5 62.5	FRACTURE, MIMEY - 3MIN, qtz	80								
Proxin - blorihed vack with quarts Hard, danise, dark		smm quaitz Vein 67.4	72	05670				6.8	4		
grey silicities Init. Browniah silicitied tuff.	£5 £6.0	Navier, 20 cm bionish altoration 10 mm; quart 2 Verm 66.4	84								

GRID_Maill Lone

DIAMOND DRILL LOG

DDH 95-4

	LOG					A	BAY RE	ULTS		
ROCK TYPES AND ALTERATION	K TYP	MINERALIZATION AND STRUCTURES	PERCENT CORE	SAMPLE	AU		AG			
			RECOVERED	Numer	02/1	ITM	OZ/T	PPM		
Brownigh, Silicities lapilli tutt	675	Specimen at contact (upper)							 	T
Basalt dike Brownish silicitied	68.6-	Speciment Comment Control	100							
lapilli ivit	11 22	69.8								
Daik gray to plackish la pilli tuit		The change from brown turf to blackish-gray tult 15 imperceptible	100							
Same fult.	72.5	79.1								
Basalt dite Pike Piobably a	74.1° 746	Attitude is observe	100							
diorite dike-is fine granued but coarses than bosalt-aling.	7/ 8	These rects are Spacinien plobably the Same 75.9- intrusice dite	80							
Pork gien tutt. The The tray, tubbing - TT.O Svern soft, chicatized tutt Rubble, brown clay, black gonge, fragment gtz. Voir Fragments of solicitied	- 78.1 - 79.2	The probable tent, green clay, tubble Still in facilit zone Still in facilit zone Fragment of gtz vein Most W, rubble of Sillicitied tuff	41							╉
Falsic dike yely fine grained, fresh Is picketly i hyplite		Attitude uncertain True width is pichatly less than 2 m, some as yhydite dite where the BL3-	70						 	ţ
dife stoy, methed lapilli tuft		ciero out May be some dike.	100						 	╞

BRID Main Zone

DDH 95-4 SHEET_____OF____

	GRAPHIC						A		ULTO			
ROCK TYPES AND ALTERATION		MINERALIZATION AND STRUCTURES		PERGENT CORE		AU AG		G	Cu		4	
	ALTER ALTER			RECOVERED	NUMBER	012/17		O\$/T	PPM	PPm.		
Giey, un Hied la gilli tutt. No Hied texture due to epidete replacement of class.		- OTLI and box 15		100								
Tuff becomes a purplish color. some motiled texture as exidente- quartz replace clasts. Rect is silicified		B Quartz-efidote-brown chert.	×.4	100								
As above . Rock becomes more black	91.4	Specimen Large mass of epidote. 91	4 -	100								
In color Hard, danse, black lapilli tult worth apide	92.5		• 5 •	-				·				
and quartz verlacing clasts	96	Brecciotion with quantz Vaning, brown "chart", 9	4.5 ·	,	05671				1.1	16		
Hord, danse black Infilli tutt continues.	952	- Some intolo of 97.0 S	×.7 ×.9 77.5	952 - 100								
Some layilli tult. with cylate - quartz replacing classes.	100			100								
Lapilli tuti as obeve.		2 cm quoitz Vein	PO.6	100								
	152.5	10	2.4 -									

DIAMOND DRILL LOG GRAPHIC ASSAY RESULTS ROCK TYPE PERCENT ALCOTAGE Cu AU AG ROCK TYPES AND ALTERATION MINERALIZATION AND STRUCTURES PLOOKS CONT BAMPLE RECOVERED NUMBER PPM. ot/t PPM. OZ/T Mottled, part gily fult. 10003.4 104.1 Rock is brecciated, hos gnortz. 104.1 Stringers & brown "ilidia" 2 cm. gnartz Some bleoching olong fruitures. 105. 104.1 05672 Kockie Diey, gtz Voins. Fret is forth, siliceous. 2 0.1 Vory time grained, danse hord tust. 105.5 Piffers from other full 106.0. 100 ancountered in this hole in the extremely fine gran size No closts visible 7.7.6 Rock is > 50% epidote 100 100 . End of hole 109.1 109.1

GRID Main Zone

DDH 45-4

		DIAMOND DRILL LO	G				<u> </u>						
TION DISCOVE (VGYID) BEARING COLLARED AUG. RO. 1995 LENDT COMPLETED AUG.21,1995 DIP	-45	CEPARTURE Of 40N. ELEVATION 18384		DF LOB 1110	·	THE CECIA		1011 19.21,149 6 5H (FOCO C					
	GRAPHIC LOG					AS	BAY RE						
ROCK TYPES AND ALTERATION	K TVP BRATIO BRATIO TAGE	S MINERALIZATION AND STRUCTURES	PERCENT CORE RECOVERED		*	Ŧ.		NG .	Cn				
				NUMBER	CZ/T	-	ot/i	-	PPm.	<u> </u>			
Svay-drik gray, the	.:2	Casing 1.2											
ramen, conjeronalar	2.5	fome bracciation at about 2.4	2.6	09613				0.1	20				
equesite flow verk		Same silicitication from o point 2.0-3.0. Sample it. 2 cm qualtz anth 3-4 cm qtz. coverset a show 4 4.3 pelois usin	71					<u> </u>					
end work type of beard		Icm grattz. Sonia Drocciation, 6-7 m 6.1.	61					* -					
populat some verk	7.5	Frecciotion begins signing	7.4 -					╞───	╞═┿				
s above but offer al	FF	11 BB Cubin bearing 8.5.	1005	05674	·			0.1	9				
fected by procention		much lite a foliation, 9.1.	91.					0.1					
me reddish cheert a	12	olidotized albertian and	<i></i>	05676				0.1	3				
110, 111 at 10-11		a ofidetized, silicified and a nearly assimilated 2 think	96 "	05677				0.1	6				
nd May Ve U.C. Baroly sible a 25: X CH Mile. C.		A this may be evidence of a liver at hormal brecention 122	76	04678				0.1	3				
ley precia with	11 17.5	Krit is propably a precia but silicitication observes	13 -	1957 79				0.1	4				
50 % quartz		but silicitication observes evidence 13.7-	-	03680				0.1	2				
		eviaence.	1 - 19 -					<u>↓ </u>					

and should plant through

GRID_DISCOUCH

-

DDH 95-5

ROCK TYPES AND ALTERATION	K TYPE KATOR LABE	MINERALIZATION AND STRUCTURES		BAMPLE		AU JA		G	Cu.	РЬ	Zn.
Filicified hest above 14.1	ALTE ALTE ALTE		RECOVERED	NUMBER	02/1	рем	OŹ/T		ppm		
Quarto Ven 14.9 to 16.4, with chall charte.	15.4	Quart 2 Vor starts of 14. 7. 152	/5.4	C9682	004		ļ	36.5	1.50%	4.157	3.7
Vein.	164-	12. carbonate to 15.4. From	71	05683	0.15			36.3	7950		
Altered, silicified, mineria)120	16.9	15 Deni guari 2- nomente From 15.4 to 16.4 is quart 2- chelco. 15.4 to 16.4 is quart 2- chelco. 14.4 to 16.4 is quart 2- chelco.	1.1	056.84				2.2	905		
fortwoll voits firm 14.4 to	175	1016.915 qtz. 6 qtz- carb. ott. 17.1 16.9-17.9. qtz-carb olt. and		06685			 	0.1	28		
Ever science - 15/ Was and cathe . Now leas	17.9 18.A-	silicified andesite (+u(f?)	17.4	• • • •	• •		/ -				
loter qualte. specimen.	19.4	Foliation, Pelieve it is due to streaming of water in hydritham breccia. Toot a specimen showing tobric at 19.4.	1 76								
Grey volcanic rock		showing to pric at 19.4.		 			<u>†</u>	<u> </u>		<u> </u>	
<i>u </i>		Imm gtz - sulfide vein Thruout, rock bas a	92								
·····	225	Coliation-like fabric which									
		may be due to streaming as , hydrothermal breches.	74 24								
	26	24.3		n5681				0.1	9		<u> </u>
Gray, silicified volcanie rock. Us picoably tuff		Patch of limonite 2-mm qtz-sulfide veri These are vounded closts ct	25.9					[
or ordersto Chrite.		Dintruspice veck. They and dittugs on margins. 27.1.	100	NE Samyla							
Groy, strongly silicified kydrothormal	27,6	- Patrick - f & man awatt?		05687				0-1	9		
SILICITION RYARDTROVANA		Foliotion - like fobric 28.9	92 29.0	N. 5. 056 88				0.1	10		
Same Noch als about		continues. soit	3 e	05689				0.1	6		
		Roct is strongly silicitied 31.7.	92 31.	C5690	·			0.1	4		
i	32.5		<u></u> 71 -	05691							

BRID DISCOVERY LONC

DDH -95-5 BHEET______OF____

			BOD RECOVERED NUMBER CZ/T HM OZ/T HM PPM. 4 0.00 11) 5 775 330 05691 0.1 4							
ROCK TYPES AND ALTERATION				SAMPLE	•	U		G	PPM. 4 3 4 5 4 5 2 3 2 3 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 5 2 5 5 5 5 5 5 5 5 5 5 5 5 5	
			REDOVERED	NUMBER	012/1	FTM	C0≵/T	PPM	ppm.	
Same grey, Very silicified		The fobric as shown is 778	- 330	05691				0.1		
There are a four quall		the most prominent structural feature	94 34	03692				0.1	3	
round clasts, but	36	7 4.		05693				0.1	4	
mostly with appears to be matrix and		There a few round clotts, mostly & Icm in section. 360	88 #	056 94				0-1	5	
secondary quartz, i, e.			37	05695				0.1	4	
streets of grey voin quests, withly povollet	37,5	I suggest that the foliation	-	094.96				0.3	5	
with "foliation" fabric.		noted have may be streaming	100 39	056 97				0.1	2	
		This is consistent with information from surface, 39.		056 98				0.1	5	
some silicified	1	Some fatric continues to: Very for clasts.		056 99				0.1	2	
gray rack.		12.0 12.0	100 41	056700				0.1	3	
Same gray silicitied	#2.5		14	05768				01	-2	
rock.			100	05769				0.1	2	
	ALE.	\$***?) }		05770				0.1	5	
	460	Small round fragment of intrusive rock 45	1 11	05771				0.2	3	
Apporontly silicitication diministes of the rock		Silicification disministers of 46m. Will not sample 46-50	100 46							
15 doit grey with 1055 obvious quartz	#75	Foliotion continues	100	1			 			
Veining.	50	Becausence of granodiovite. Foliotion flows arount it. May be a clast.	100							

BRID DISCOUCH 2045

DD H 95-5 SHEET 4 OF 6

						A	BAY RE	BULTE			
ROCK TYPES AND ALTERATION	Aur San	MINERALIZATION AND STRUCTURES		SAMPLE		Ľ		G	Cu		
			RECOVERED	NUMBER	02/1		02/1	-	ppm.		
Rock is davk grey, but not as siliceous as mater obcur.		"Foliation" as noted above continues. 518	100								
Continues dark grey and siliceous, but not as siliceous as 24-46m.	52,5	Irregular mass of diorite, may be a fragment in preccia	100	 				-			
	55		·	 			 	ļ	 	 	
Continues date gray bieccia dere swall iconded closts allow from about 57m.	57.5		100								
Reit Het an Silicours Ob Sompled intorvol		some unidentified yellowith	28	05772				0.1	8		
1 bove	60	Brownish clotte occur scottored three interval, 59-61	- 60 	05773 05774		·····		0.1	3		
Porcontige et clasts		"Foliation" diminishes/ de disalleass of 60m.	100	05775				0.1	1		
increases to 20% of lock of ± 62m. Buttles	62.5		÷ <u> </u>	05776				0.1			·
ore more organier and the "felicition" ucted		Same Yellowith - brownish clasts from 63-65. 63.4	63. 100 64.	00777				0.1	2		
a vova diministration				0577B				0.1	3		
disoyyens		Scm gtz-cath olt.	- 66-	06774				0.1	3		
		Lock appears to Vecame Mare siliceous at about 66m 664	1 72	05780				0.1	2		

GRID VIECOVILY ZONE

DDH 45-5

			·····			A		ULTE		
ROCK TYPES AND ALTERATION		MINERALIZATION AND STRUCTURES	PERDENT CORE		A	U	· A	G	Cu	
			RECOVERED	NUMBER	7,50	I	02/1	-	ppm. ·	
Grey silicities broccia. Is largely of orderatie				05781	·			0.1	8	
composition, but has lots of secondary quartz.		A small open space with quarte x10 - < 2 mm - Fut 14 - 69.5. first open space in these cocks	62 19	05783	· - · -			0.1	17	
Same silicified	70	Small wirds of condate	70	06794				0.1	1	
grey bieccia		Smm quarte vein with epidote	84 71	C5785.			[0.1	3	
Breccia continuos	72,5	72.0-	72-	C#186				0.1	T	
Precint Corninats		and to any day of any director	84 74	05787				0.1	1	
<u></u>	75) clost-round-of quandirvite It is ±10 cm diameter (?).		05788				0.3	2	
Grey Silices us pressia continues. Guartz	76 -	At about 76m, beginning to	100 76	05189				0.1	1	
Voinst stuningers		get a subtle lineation of 768. timy quaitz films and	. 77	05790			 	0.1	1	
Increase + Ere this area.		stringers. Not the same as the "trination held	74	05791				0.1	20-	
Quart = stringors with		above in this core some qt2- carbonate streats	9.6 79	05792				0.1	4	
above noted lineation	ll so l	botween 77 178m.		05743				0.1	2	
Continues. Housever, betrue at Ez. f. n. they toriningto			10081	05794			·	0.1	1	
	FIR	Nery small occurrence fulfides. Not visible to uneided eye. I saw flictur with, wiczoscope.		09795				0.1	25	
Brockin CENTACT Foult Zorid Plack fine growed Andosito flew. Mithall.	636 P5	Icm quoutz in H.W. 02.9- Foult has ± 2 cm cloy and and about 0.6 m. vubble 895. Vory slight foliotion in the	E2.8 72	N. 5.						

BRID VIZEOVANY ZANE

DDH 95-5 SHEET 6 07 6

ſ	·	GRAPHIC	<u> </u>			r			·		<u></u>	<u></u>	
					PERGENT	 			BAY RE	IUL TS			
	ROCK TYPES AND ALTERATION	Es y	MINERALIZATION AND STRUCTURES	Ĭ.	CORE	BAMPLE		J		G	Cu		
				1001	RECOVERED	NUMBER	02/1		OZ/T	PPM	ppm.		
	Plack andesite (?) Now contains kiony tiny lineations of quartz- Not a foliations fabris		Epidote mass	857-	100								
	but it looks like tiny ploues on wetcove sufface. But not very ploneunced silicification CHANCE		-Specimen.	/16 •] •	100								
,	silicitied breecia	' <i>90.</i> 2	Icm brown clay gouge on fault Prominent "foliation" with guartz on many	911	902-	05796				0.1	5		
	Afece small (nicotly (2cm) marter of	925	planes,	,	92	057 97				0.1	1		
	epidete, brown chat and K-spor() or cur.					09798				0.1	+		
		94.5	End cf Hole	94.5	100 945	05199				0.1	1		
											i		

GRID LISCOVERY L	ROJECT ONC	DIAMOND DR	ILL LOF	G				7 Внеет.		<u>95-6</u> of <u>9</u>		
ATE COLLARED AKALZ 1997	SEARING <u>N. 52</u> LENGTH <u>145, 7</u> DIP <u>60</u> GRAPHIC	7 DEPARTURE_0+41	ON.		BIZE BQT E OF LOB 11/1 RKB SAMA	10 100		Lee Pett	18ED BY. TE 14 95-5.	<u>NY</u> 19.21	T 2, 199	<u>75</u>
			J	1'			A#	ISAY RES	JULTE			
ROCK TYPEB AND ALTERATION	GK TYT FERATI OTABL	MINERALIZATION AND STRUCTURES		PERGENT CORE RECOVERED	BAMPLE NUMBER		et.	1	AG	C.	Zn.	·]
		· · · · · · · · · · · · · · · · · · ·		<u>↓</u> ′		CELT	-	OŻ/T	-	PPM.	 _'	
		Cosing		1]	'	1 '	1 '	1 '	1	'	
Grey ordered in furf.	· " ' '		1,2	1	[[]	[[[/	<u>†</u> -
Ever and entry fuffi				t'	 '		<u> </u>	+'	 '	\ '	 '	+
z / e y - e e e e e e e e e e e	- 111 - 1'	carbonate alteration	in	84	1	/	1 '	1 '	1 '	1	1 '	
]'	the tuff. Shallow ongi	105	1 1	1)	1 '	1 1	1 '	1 '	'	
		with cove exis		·'	 '		<u></u>	┢───┘	├ ──'	<u>{</u> '	+ '	+
hange Contact 2000		The attitude of contact it	15 101	84	ł '	/	1 1	1 1	1 1	1 '	('	
nirus e pidrite - quartz M		clear, but it oppears it be more or less shollow with	14 C.A.	1 1	1		1)	1 1	£ !	1 '	1 '	
sauchirvite.			7.9 -	f/	<u> </u>		<i>⊢</i>	<i>├</i> ──'	├ ─- ¹	<i>├──'</i>	<u>+</u> '	╀
ANTALIC	'			100	1	+	1 1	1	1 1	1 '	1 1	
	'		9.1 -	1	1		1 1	1	1 !	1 '	1 1	
cause quanted grey grandicvite.	10.8	_ Spocimion		,,	('			1	1-+	ſ/		t
TIMEDICVIIE.	'		11.6-	100	1 '		1 1	1 1	1 1	1 '	1 !	ſ
		l		<u> </u>	I'		1/	1	1_1	1_'	1 1	
Course ground grey				1	t I		1	į.	1	1,		Γ
	- 4.3 -		13,7 -	100	1'		1]	1 1	1 1	1 '	1 1	
Quarte Vein CONTACT	- [[[", ['	Qualz-cholcopynte	I	14.21	05801	0.102	r		27	1.28%	1109	1-

BRID VISCOVERY ZONE

DDH 95-6

				ļ	r——	A	HEAY RE		· · · · · · · · · · · · · · · · · · ·	
ROCK TYPES AND ALTERATION	K TYP			SAMPLE		U .	· A	G	Cu	
	A4.76		RECOVERED	NUMBER 05801	-02/7		OZ/T		ppm.	
QUARTZ VOIN CONTACT		Quartz- cholcopyvilo vein. 15.	15.9	05802	0.166			28.1	1.245%	 T
Port grey audasite.		slight incortain forter	73							
Duit gier ondesite	17.5	Icm qualte veins Fragment of groundiorite	100							
Port grey onderite	- 20	Frequent of grave distrite	92							
Dork gray outesite	225	slight quaste streak	100							
Doit give ordesite	25		72							
Port guy ondesite Grey, ceause growed granodicite.		<u>pregment of gronodiovite</u> 2 cm quaitz vein	84							
Grey, Conte grand			84							

GRID DISCOULIN 2011

ALANTE THAT MANAGE

DDH 95-6 Sheet J of 9

	G								A	BAY RE			
ROCK TYPES AND ALTERATION	Market 1				NAK N	PERCENT CORE	BAMPLE	•	J		G	Cu	
					1001	RECOVERED	NUMBER	92/T	PEM	02/1	-	ppm.	
coarse grained, grey granodic rite		~2			34 .6 -	100							
Grmodiovite Contact Silicitien gioy veleanie		34 35,	÷ 7:	- and gravitz on contact	35 .7 -	10034	05803				0.4	35	
rock, Quarte 10 very		37	5	A suffle foliation-life	77.L-	. 37	04804						
provininiant as small streats and little (±1 mm) varius.				fobilic is glandy visible on colo suifoce Print see breccia textu		38 100 31					1.0	103 26	
		-		yet.	31.6		OSP OL				0.3	2	
Some gray edicitied		10		· · · · · · · · · · · · · · · · · · ·			05801				0.1	8	
Verenne Pere.		42		Some brownish to grochish co.	101	94 41	1200				0.4	1	
		¥	¥#		42.6	43	046.00			<u>_</u>	0.1	4-	
As abive				Foliation-like fabric continues		100 yy	05810				0.3	13	
		4	5	N			05811				0.3	1	
some grey, silicities	-	44	, , ,	Alexing - like is brie Souther A four South (2) cm) clasts	45.7- (:) ₄₁₇₅	100	N: 5.						
15 open igned damp				Icm gtz Jein	* * 6.2	100	N.5.						

BRID JISCOVERY

DDH 45-6 Sheet 4-01-7

						A	BAY RE	ULTS			
ROCK TYPES AND ALTERATION		MINERALIZATION AND STRUCTURES	PERCENT CORE	SAMPLE	A	v		G	Cu		
			RECOVERED	NUMBER	02/1	PPN	Ot/T	-	ppm.		
Gray, Silicitied volcomin		, 50.8 .		N .5.					2		
voit.	51.1 51.6	Corcentration opiarte diparte 508.	97 51	05812				0.1	2		
Qually increasing but	52.5	"Foliation" continues	52	05613			<u> </u>	0.4			
voct is norstly same		FOLIATION CONTINUES	53 88 ₄₄	05814		·		0.3	1		• • • •
		concentration apidete - 912. 54.9.	7	05815				0.2	3		
As above.		epidete atz. + K- spor.	54	05816				0.3	2		
			100	CF.0 17				0.1	1		
	57,5	57.5. 58,01018 AUDIZ, VC: 13	57	CS. @18				0.1	2		
Some , in an abrur		57.5.58, mire quartz, vert 13 brow mich greenish 57?	96 co	05819			.	0.1			· - · - ·
	60	continues.	76 59	05810		-	· · · · · · · · · · · · · · · · · · ·	0.1	2		
A four round clasts		- Paund clast of aroundinite	61	05821				0.1	1		
like a breacha	62	3- Round clast of grandicrite 610. Quartz in creases a bit	62	05822				0.1	1		
	625	Prominent fleading by quarter into braccia.	63	05823				0.1		<u> </u>	<u> </u>
Cray, silicities volcours		All inguind a ave voured.	64	05814				0.1	1		
with reased classic of volcout verts		I suspect that the		05615]	0.1	5		
and a time intrastice		in a by drothermal	64	CFF1C				0.1	2		
by quarter flooding the		breccin eystern specimen at 67.4m		OSETT				0.1	2		
process	1675		67	C 58 14				0.1	4	_	

GRID LISCOUNTY

DIAMOND DRILL LOG

SHEET 5 OF 9

·

· · · · · · · · · · · · · · · · · · ·]				A		ILLE	1		
RUCK TYPES AND ALTERATION		MINERALIZATION AND STRUCTURES	PERCENT CORE	BAMPLE	· AI	U		G	Cu		
			RECOVERED	NUMBER	02/T	PTM	OK/T	PTM	ppm.		
Hydrogh mal Broccia		All frog monts over rund		C3828			·		· · · · · · · · ·		<u> </u>
, ,		and silica has filled space. 495	100 49.	05829				0.1	3		
	70		70	058 30		 		0.1	4		
Hydrothermal Breccia		These are no open speces.		05831				0.1	8		
HYBICIAL		Ratio of clast: Motrix volics from obout 1:1 to	100 71.	05832				0.1	3		
	72.5	1:5 or so, and much This	72	050 37				0.1	2		
Precess continues.		of "matrix" is occupied by reglacement / infilling	73- 100 74	058 74				0.1	2		
	76	quartz.	77	05835				0.1	1		
.	75.0	About half of the milled 759		05836				0.1	2		
The volume of quartz		claste from 758-78 Ave of	96 74. TT-	07071				0.1	2		
diminishes below 76m. But the by drothermal		intrumme lock; they are united		05638			┠┯	0.1	3		
breccia continues	78	T	· 78-	05039				0.1	1		
	[79, L	- 79	05840			<u> </u>	0.1	2		 .
Bracen continues				05841				0.1	2		
y to see the second sec				C5842			r	0.1	2		†
	REF		. 82	~5843		<u> </u>	<u> </u>				
Occurrences of large round, milled classes	833	Foliotion-like fabric in	\$ 3.3					0.1			
stops.	P5	Volconic icets begins agoin. Some grey silie weliks		N.5.							

GRID VIACOVELY

DIAMOND DRILL LUG

DDH 45-6 BHEET 6 OF 4

	GRAPHIC LOO					A		IULTS	····	
ROCK TYPES AND ALTERATION		MINERALIZATION AND STRUCTURES	PERCENT	BAMPLE	A	J		G	Cu	
		600	RECOVERED	NUMBER	7,200		O\$/T		ppm.	
Park gury indusite	67.5	Kind epidete Keet 1116 a trace of 883 the fellation like istric as above, But it	- 7 <i>8</i>							
Same and Abrud	20	is not strong. Euclim near CA. qt = stringer.	94							
Sama an strue	036	Small stringer gtz-egidete 914-	100							
Some as abrue	a5	locm quaitz Veni. 945	100							
FIRED OF DEDVO	016	95.f -	100							
Scale brecciation and Silic., 98-99	99	small quoits vein at 90 and some fraccia texture and sillicitication to 99	98 · 100 99 ·	05844				0.1	3	
Part grey andosite	1120	Slight "foliation former with trace of grants showing foliation texture, but on 6 resh surface, UNN black, f.g. rock	100							

BRID LISCOVELY

.

- -

ЭДН 95-6 ВНЕЕТ._____ОГ____

						A	SAY RES	IJLTS	
ROCK TYPES AND ALTERATION	ABK	MINERALIZATION AND STRUCTURES	PERCENT CORE	BAMPLE	A	U	· A	G	
			RECOVERED	NUMBER	02/1	P#14	ot/T	-	
Port grey and esite with a trace of "foliation" fabric and miner streaks		Vary slight to liation-like 103.0. fouric. Small streak brown cheft 1045.	100						
ot questa. Some dork grey ondefite:	100	Smin qtz veins Small yotches exidote 106 + 1065. Yotch +-Spir 1067. ot 106.3	100						
Park quey oude uite.	1013	Several small pote hes e pidete here E pidete gt= vein 109.7.	100						
Dark grey oudesite On the fresh break, the rock is U.f.g., hard	//5	slight foliotion-like fornic continues.	100				(
and fieth and very black. The slight gtz annich- ments that appear as White-grey streats do	1/13.45	113.0- Icm qtz- K-sqai	100						
not shaw on core surface.	116.7	115.2 Slight brecciation with gtz. filling at 1165-117.3 - but it gaits	100						-
Same dort quey audesite Intrusive voct, 119.8-120.5	/17,5 14.8_ 1_0	Potch of epidote at 117.5 1183	100						

GRID <u>JL1 2C. 4 V a.1 Y</u>	- CORADIAN -	······		<u> </u>					<u></u>	
			PERCENT			AB:	BAY REI		1	 _
ROCK TYPES AND ALTERATION		MINERALIZATION AND STRUCTURES	• · · · · · ·	BAMPLE	AU		· A	G	Cu	
		MINERALIZATION AND STRUCTURES		NUMBER	02/1	TTM.	C \$7	-	ppm.	
Grouodicrite	11/20	Intrusive contact a bacuve							1	 Г
Fine ground dork grey andesite.			100							
	1 122.5	<u>//</u>	¥=					ļ		 ŀ
A second second second	-123.4 -	127.	4- 123.	Ż						
Gray, questo viele, strupty indecinted. Originity identity		All closes clean pres	100	02742				1.1	141	
13 obscine Necels Michtly quarte & biorcia		tour gly silvified						5.1	192	ſ
Vark gier sude site	126.5	broccia. Is mostly guartz.	100	5. -						 -
	1275		-	NS			<u>-</u>	ļ		
Park gray sudard a		<i>,</i>		NS.						
	139.0	slight increase quarts content	100 129	05847			····	0.4	43	
	175.1	- 5mall Conc. qt2. 129. 4-1300 190	4. 130.			- ·· ·				 F
Dark gier anderite								Í		ĺ
to 192, 4. Charige			/52.1							
Rect is strongly		Plemine 1111 precention and	133	05010		· · · ·		0.8	37	
precented and his infilled A with genera.		Clecking with quarter on	F 1344	05849			_	0.3	19	
15 ACU' > 50 gercant	11.195 1		175	0450				0.6	15	
quarter		135.	• · · · · · · · · · · · · · · · · · · ·	05851				0.5	37	ſ
			///	05852				0.4	2	 ľ
	137.5		137	05 853		· · ·		· ·		 ŀ

GRID Kiscovery

DIAMOND DRILL LOG

DDH 95-6 SHEET_D_DF_7

GRID VISCOVALY

D.D.H 95-6

ſ	· · · · · · · · · · · · · · · · · · ·	10		PHIC)8			. <u></u>				<u>, </u>		A			· · · ·		
		- R		ÿ	MI		ION AND E	TRUCTURES	. ja	PERCENT	SAMPLE	A	U U	· A	G	Cu		
		MOCK TY								RECOVERED	NUMBER	QZ/T		012/T		ppm.		
	Modian gody precia	Π		1	BI	ecciat	ingin	11/5 210		1.2.27	C5853				0.3	10		
	Medician gody breach with a sourcet (vapalities but is				310	ell, stre et eve	0 54b	len.	01.1390-	100 139 -	05854				0.3	6	· 	
	(vopiniente but it	\parallel	4	4 2	Fr.	d'ard	e barp o	· mpila	140.2-		058.95				0.4	6		
	new constrat mently an quarter				1	1 cm - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			178114		05856				0.6	4		
	, ,		ĺ		1	h. d	a brv	/		100	054 57				0.2	4		
	<u></u>	╫	/	12.5	<u></u>				142.9 -		05#58				0.4	4		- <u> </u>
	and the second	$\ $				10	obrue	-		100 144-	094:9				0.3	1		
			/	45					145.1		01660				0.4	2		
	11 - bend	-	//	15.7	- E,	nd of	Hela .	6 ,		1457-		· ••• ••						
		╢	T		1													
			ł															
	·······	╢	L												_			·
									1									
ł		╢		-1											<u> </u>	<u>}</u>		
ļ					ſ									{	ł			

GRID JUSCAVOY	<u>JECT</u>	DIAMOND DRI	LL LO	G						<u>75-7</u> 0f_7_		
ALT POLLARD 46113 7 2 1995	ARING Var	1021 LATITUDE 17618 5 DEPARTURE 0740 201 ELEVATION 1838	N.	CORE I SCALE REMAR	HZF <u>BR7</u> OF LOB <u>1:</u> KB <u>30 M (</u>	TW 10 MET Site		L01	1960 gr. 1. All 1. 25	10 1.7 q. 1.4 6.	. 199	3
							A	ISAY REI	ULTS			
ROCK TYPES AND ALTERATION	KATIO KATIO	MINERALIZATION AND STRUCTURES		CORE	SAMPLE	*	L.		G			
			54	RECOVERED	NUMBER	о́г/т	-	ot/†	-			
	-2/	Cazin;p	2.1.									
Madian grey, slightly quanular, probably shallow intrusive latite		Enne No forticular structur 2+2 + extrines except a fair 5 kin quartz Voin lets, most at in	40	88						r		
As obeve	7.0	Venilets, Most of er Vare dif & cont 150. Specimen 30 cm qtz.604bonato at	6.1.	- 88								
As above		Scarqtz carb. alt. Scar.qtz carb. alt.		. 100								
As a britt	10		11.2:	96								
As about		Smingtz.		82								
L		Smin 9tz				<u> </u>	<u> </u>		<u> </u>			L

.

GRID JUISCOUCY

.

DDH 95-7 Sheet <u>2_07</u>

					· · · · · · · · · · · · · · · · · · ·					A	BAY RE	ULTO			
	ROCK TYPES AND ALTERATION	MAY A	JUV		MINERALIZATION AND STRUCTURES		PERCENT CORE	BAMPLE	AI	J	• •	G	Cu	Zn	
		NOON					RECOVERED	NUMBER	C12/T	PPM	02/T	~~~	ррм.	1	
M 91. 1 H	anular; pickatly truspic latite					15.2.	96	N. 5.							
32	unte de restarta		17.0		Quartz abolectionte.	16 8	17 -	05061	·	, . <u></u>		0.9	68		
jn	clusicity of bestveret		18,4		Vein here het as well winavelized as in of her	187	96 184	05862					5080		
	dark gray fine				Shalet silier Freation,	186	10 100	05863				0.8	16		
91.	vined and caiter no vidence ct clasts, s in a tart The		: 4	5-	but spetty	, 11.3 -	76	05864				0.6	9		
L	net is alightly	Ш	22 <u>1 1</u>	\$	Some alldote at 23.1.		£1 -						·		
11	reaction processors 100, but act roughy astron fred, nor		17		Vertical qtz vein at 23.5	23.5- 24.4 -	100 34-	63865				0.8	2		
13	it signifigantly	╢	24. 75	4	Gour cilicitication	× 07 -		69266					- <u></u>		
1/1	distinct rock change		25.9 20 70		- pome entiel - restron	_	92 26	-				0.7	4		
/n. 15 7	distinct voct change now intrusive latite (6)	扪	47	5		266-	· ·	C 58 67				0.9	2		
	en abrie 26.5 m.						29 -	· · · · ·							·
91	adium grey, slightly ouvlor intiveire (?) tite (?)		20		- 10cm gtz-contenateolt	29.6 -	100	N S							
P. in	loborly a shallow.		200		locm gtz-corboxata alt.	30.5	100	N 5						-	

ASSAY RESULTS PERCENT ROCK TYPES AND ALTERATION AU AG MINERALIZATION AND STRUCTURES CORE BAMPLE 1001 RECOVERED NUMBER 02/1 **FFM** OŻ/T TTM. Medium. grey, slightly giourles. intrusive(?) No nimetalization Noi étructures 32.6 37.0 94 lotite ?? 74.4 Acobrid 15 obrus B¥ 366 -Some tubble of 37.4 77.4 As above As obeve 92 . Some pleasing on fraction 39.6 + 40 As about As abrue 92 42.7 Agabrica As above 76 CONTACT ---- Steey contact - 44.1 anderite tow, but it 46 The week in relatively shatter cirendis vubbly. 45.4 No quarto verning 64 and clightly argillized. Clay ce caring on fracture 410 sul the soul is relative soft and salls aport As avan 40.4 64 loadily .

BRID 1115COULTY

DIAMUNU UKILL LUG

DDH 95-7 SHEET 2 OF 7

						AB		ULTS	-	
ROCK TYPES AND ALTERATION	AGE ACTION		PERCENT	SAMPLE	AL	J	. A	G	Cu	
	ALTE ALTE		RECOVERED	NUMBER	02/ T	РРМ	OZ/T	PPM	ppm.	
Andesite : his CONTACT Medicin- quey, slightly		Attitude (?)	100							
grandai latite	52.1-									
It is greverly a shallow intrusing		2 cm gtz- corberate alt.	100							
		Epidete and a grut unveral?	<u>†</u>	<u> </u>				{	<u>├</u> ──{	
CENTARI Park gier for giby inch	56-P	57.4	100	4						
Which I think is a braccia clasts are meetly don't grey. Many		All closts are survey ded by quarter and many are	10059	USEE				0.7	3	
and named by quarte		transacted by quarter Ratic of clasts mature		05869				0.1	2	
by quarter. Lots of quarter between fragments and I		Lo 1:10 and "Histirk" 15	100	1				0.1	2	
fraquente and I	62.5	Meathy quartz 62.1 Virtually closts are		05870				<u> · ·</u>	╞──┤	
Alisik fling is a hydrothermal precess If so, restrict is longely	,# 	Virtually Clothe Hack- LICM and one block- Plotobly the original 640 anda site (?) of endesitic	63	05671				0.1	2	
replaced by quarter.		$+\mu f f ()$	10.7	058.72				0.2	2	

BRID		DIAMOND DRILL L	.00					SHEET.	_2(JF	_
· · · · · · · · · · · · · · · · · · ·	GRAPHIC LOG			PERCENT			A	BAY REE	KILTE		_
ROCK TYPES AND ALTERATION	K TYP K TYP TABE TABE	MINERALIZATION AND STRUCTURES				A	u I	- A		Cu	
			32	\$7		02/1		02/T		ppm.	_
Grey to medium- grey		Fragments are commenty suppounded and cut		1-0	05F73				0.1	2	
breccia continues.		by qualtz 69	-2-	100 69							-
	70 1	•	<u>,</u> ,		058 74					<u> </u>	$\left \right $
Qualtz has approverly flooded the breccia.		- Occurrence of bright, To Pint winerol Pont Know what it is Chodonite (?)		100 71	· · · · · · · · · · · · · · · · · · ·			· ·	0.1		-
Figure this is a				100	050 75				0.1	25	
hydrothermal breecia.	++++ 72, F	72	.8	79							ŀ
ny critter i				100						8	
	[]	74.	,	,	05876				0.1	8	
Strange branch	75		56-	79			· · ·		 		ŀ
textures sent men		Afew clasts are 72 cm		102	05877		ļ		0.1	4	
with prate thing	775	and over sound 7	7,1-	77			••••				┟
lepter and socherty					05878				0.1	,	
		79	? 2 -	100 71	+	••••	.,		 		╞
in the second	1100		+		<u>r 9 9 79</u>				0.1	┞╷┝╼┥	ŀ
			».5 †	100	+						╞
	102	- f. sy . than 82-8-3	2.3	100	1:SEFF				0.1	2	
Biccon not adiciticate	1162,54	+-spar concentration at Fac	21	63	¦						ł
cont nice		· -		100	CAFEI				0.1	6	
Bleccia Angricute ine Tanger series 3. Frus			c.	F.F.							

GRID JE GUERLEY

DIAMOND DRILL LOG

BRID JUSCOLONY

DDH 95-7

	GRAPHIC			·		A		HULTS		
ROCK TYPES AND ALTERATION	A DI C	HINERALIZATION AND STRUCTURES	CORE	BAMPLE	AL	J		G	Cu	
	1001 1110		REDOVERED	NUMBER	CZ/T	IPPM	02/T	TTM	ppm.	
Broccia has changed. It is note compression of large class, about 1-10 cm and and of		and affects to have the sudant out affects to have replaced Bistory ELC. Anatorial and has	77 97	05882				0.1	3	
drichule week and grove divite. Hale in the and	875	Demed closts and	96 69	05883				0.1	5	
procention along a	<i> </i>	a 89 .2 . 905 -		05084				0.1	7	
contact Queste Intille the water of devile and vonce and wedite	076	Notes directing blocks on: For bobly out - 945 917 1 - 10 - 10 - 10 - 10 - 945 917	100+91	05885				0.1	5	·
All fragments are	93.9 95.9	In im occurrence of bright 945.	93 · 1 /00	05886				0.1	3	· · · · · · · · · · · · · · · · · · ·
intrusive increases intrusive increases atop classes and in Sem and class: water vatio		PINE MINOVOL Identity(?): Rhodonite(?) Binght pink universit occurs 2 in a 2 cm atz-vhedevite(?) veins.	100 47 -	<i>05</i> 887				0.1	2	
15 given 1:1 to 1:5	<i>?זּ</i>	a a 10 cm, gt 2- covernets alt. 99.0-	100+ 99.	OSPER				0.1	4	
Freccia and silicification	11 100	A Note Marting blocks and portably evidence place	< 100 jel -	05449				0.1		
stops at 102.1	192.15	- 21/12/11/2010 +103/0 - 21/12/11/2010 +1015 at 102.1.	· //·	05e 90				0.1	2	

GRID <u>VISCOVCIY</u>	GRAPHIC				<u>_</u>				DH 95-7
	GRAPHIC LOG JZ		PERGENT		1 .	. - ·	BAY RE	· · · · · · · · · · · · · · · · · · ·	
ROCK TYPES AND ALTERATION	ROCK TYP ALTERATI	MINERALIZATION AND STRUCTURES		BAMPLE Number	A 08/T			G m	
I to but area to	1/025	· ·		05890					
hock is don't grey to block and esite		A lew small golebes • feyidote	100	N.5					
	105	10.	<i>;;</i>	· ·					_
Same Flort oude site		small firsture of 107 hos many small sovicite (?) (lates. 10 End of Hole of 107.5 10	1.4 100	N.5.					
••••••••••••••••••••••••••••••••••••••	107.5	End of Hole of 107.5 1	7.5 /07.	\$	1				
				1	1				
					<u> </u>				
			· · · ·						
						ļ ,			
		-		1	1	<u> </u>			

GRID DI J COVELY ATION DISCOVELY E COLLARED AUGLEY, 1995 LEN E COMPLETED AUGLEY, 1995 DIP.	піна <u>5, 8</u> атн. <u>16 9</u> - <u>45</u>	<u>и.</u> <u>6</u> <u>е</u> сераятияе <u>0+40</u> <u>е</u> сераятияе <u>0+40</u> <u>е</u> сераятияе <u>0+38</u>	<u>N.</u>	CORE I SCALE REMAR	1170 997 07 LOG / 1/ Ka 50 M 1	W e flat		L08 DAT	BED NY_	12.9 - 2.5, and	T. 199 7.	2
	GRAPHIC LOG					-		BAY REE				
RUCK TYPES AND ALTERATION	K TVF KATIO TABE	MINERALIZATION AND ETRUCTURES	TANK DKB	PERCENT CORE RECOVERED		*	r		G			
,		· · · · · · · · · · · · · · · · · · ·	55	HELDVERED	NUMBER	02/7	3	CEZ/T	-			т
		Coning to 1.8	-									
	1.6	0/8 10 310	1.8 -									
	2,5 	0/¥ 10 3.0	3.0.	······································								-
act is gray av madrices		2 cm quatte vain										
nay he even perplipation		Streat at a videte off										
is proportly a shallow			6.1	5.9								
		and availed Burn strake	.,	29								
	7.5	near possillel, 3 mm stroats of exidence	-		······							$\frac{1}{1}$
As above	9	Fracture along C. A. from	9,1 -	55								
	110	9.0-11.0, has red clay gauge on fr. jlowe.	<i></i>			_					_	
Same as above		gauge on fr. plane.	10.7	•								
				100								
	12.5		12.2	-								╉
Asabove		Slight "foliation" subtle.		72								
			14.3									

spinning root sectors

BRID JUSCOVELY		DIAMOND DKIL		-				SHEET_		ar 10	.
							Al	BAY REE	ULTE		
ROCK TYPES AND ALTERATION		MINERALIZATION AND STRUCTURES	¥2	PERCENT CORE	SAMPLE	A	U		G	Cu	Zn
	ALTER ALTER		1001 1001	RECOVERED	NUMBER	07/1	PTM	OŻ/T	FTM	PPm.	
Intrusive latite		10 cm gtz . corb olt. otwo	15.2		N.5.						
about 2 host rock . Dain	155	chale yprite and about		158- 100	05891	0.01			16.9	3550	•28%
15 quartz, timmite and chulcogyvite		holf 13 included host lock.	187	100 _{18.9}	05892				1.2	544	
Grey silicified proces	·		19,5 -			ļ	ļ		0.5	12	
Most closis ore		Clast: motix ist	204		09893						
L2cm. They are	4	Varias. Scome to be obout 1:5 to 1:10.		1031		···	 -		· · <i>,</i>		
vounded and the nock is silicified.	77.6	Matrix is opporantly			05F 94				0.2	4	
Approversty, the matrix is completely		replaced by guartz,		23							
silicitied			59.5 - X 4.4 -	100	0 59 95				0.4	2	
15 obrus		As obeve	162-	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	C98.96				0.5	2	
3 0000		7.90000	2000	27							
			27.4	<u> </u>			[
As spece		A. abrue		- 4	mcen1				0.5	3	
				19.				·	- · ···	1	
		sucult more of exidite	393-		C5F 1F			ţ	0.4	4	
As about		# t 31.		31 -	ł			·			
					19491				0.4	lo	

115'11 DUAND

DIAMININ DRUCE COL

, DDH, 95-8

GRID				ſ	1			SSAY REE	BULTS	~~`````
ROCK TYPES AND ALTERATION	ABE ABE	MINERALIZATION AND STRUCTURES	ă ș	PERCENT CORE		•	NU		\G	Cu
			rootae Alboxa	RÉCOVERED	NUMBER	02/1	-	CCZ/T	-	ppm
Grey, silver and broising All clasts are revealed and that will appears to be pleaded by	85 6	Kotie of clast: scatist Vories. 15 propably Cirm about 1:5 to 1:10.	39.2-	92 92	05899				0.5	4
quarty. This is prevailly a by distinguist pressure	35		366-	G.4 37	05401				0.1	6
BIOCCUM ANDAL CHANGE	343	Contact angle (?) 2 cm qt = carbonate + qt2.	3 9.4	77	05902			-	0.3	2
Ale dimen fine ground gray v. ch. 14 gray v. ch. 14 gray tothy flis some	435	No unicialization, No unicialization, No silicitication, No structures		97	N 5				†	8
lotito ex victal above		Asobere	43.7 -	75	N s					6
		Asobow	45.7 -	100	N 5					
Park, the granded grey yock- lecto like and a fre	+++ <i>47.5</i>	Lange undertos ofidita from 47.5-48.	48.8	100	N 5					

BRID Mac OVERY

DIAMUND DRILL LUG

DDH 95-8 BHEET_1-0F_10

			······		<u> </u>							
		GRAPHIC LOG						A	BAY RE	ULTS		
	ROCK TYPES AND ALTERATION		MINERALIZATION AND STRUCTURES		CORE	BAMPLE	AL	J	- A	G	Cu	·
				22	RECOVERED	NUMBER	750	ITN	02/1	H.	ppm.	
	Gree intrusive lotite, but not certain Qtz- carb 214	57,2.	Wto- contract and 3mm of childrente (3) 51		96 51,5 -							
Į	Breccia. Some find	52,5		-		05903				0.3	3	
	of process an above. Clasts very in size (very above lem to lock of so, light	56		7 -	53 · 85	05904	_	·	· -	0.2	6	
	ore veriante vecta, but ilisto in a 15 cm clost et instructive vect at 56m		Foliation-like labric accurs and in this vertical hole box a rear-vertical dip.		00 \$7-	05905				0.5	2	
	Precess entires. It seems that quarter	575	57	1-	100 54-	CS10L				0.1	3	••••••
	15 the principal Constituent and is		Faliation like fatile Continues, Lies Voy 6	0		05907				0.2	3	
	775 yourst at	62.5	Mean cere atis, 50 403 Mean Ventical dif. Felieve			05908				0.2	2	
	Voin and in and grouts	447			63 - r.c 64.7	0909			· /	0.2	2	
	Grant dir stift Braccin	15.6	the second voits.		65.1°	N S.				0.3	3	
	VVECCIA	67.5	F1.	c	100	05910				0.3	3	

GRID Discovery

DDH 95-8 Sheet_5_0F_10

	GRAPHIC						A		ULTS		
ROCK TYPES AND ALTERATION		MINERALIZATION AND STRUCTURES	¥₽	PERCENT CORE	SAMPLE	A			G	Cn	
				RECOVERED	NUMBER	02/1	PPM	02/T		PPm.	
Breccia Clast: Wratvik ratio Varies; 15 something like 1:5 to		the neor vertical, foliotion-like fabric continues		68 - 100	05910 05911				0.4	3	
like oll of motrix is reglaced by quarter.		auortz laptocomentor motion and foliation- like formic continues	6-1-3	- 100 72 -	05912				0.7	2	
Breccis, as above		1	79.1	100 74-	05913				0.2	2	
Breccia, os above.	75	Rock is dorker cold- wrove cla from 75.2-762. Robelly 605 less quarte. 1		100 Th	05919				0.7	2.	
	775				05915				0.5	3	 <u> </u>
Breccir, as obrue	60	Qualitz alteration and fatric continue	19.2	78 100	05916				0.3	1	
Breccio os obove		small vein K-spor, Jmm	52,3.	100 . 8 2	<i>059</i>]7 -				0.4	1	
Proceire stops about 114.	8:9	- 2. mm K- Spar The contact is extremely abid	yt.	100	059 18				0.2	2	
Process stops a viny 114. Gray lotte or dacite flow	25	Man de ser de la contra de la c			N.5.					1	

BRID VISCOVER

DDH 95-8 BHEET_6_0F_10

							A	IBAY RE	BULTE		
ROCK TYPES AND ALTERATION		MINERALIZATION AND STRUCTURES		ERCENT CORE	BAMPLE	A	ບ ບ	•	G	Cu	
ŏ				DOVERED	NUMBER	02/ T	PPM	ot/T		Ppm	
Fine gramad latite of dacite flow.		85.	Ĩ	100	-						
As obvie	87,6 81 -	At BBIL the vock becomes very shattered. Not in bble- just shattered.	/	100							
An obrea Fault zone Fault zone	90 91.0 91.4 91.4 91.2	Haavy isit grey clay Part grey cley and richtle 91.4 Rubble		120			-				
This appears to be a	94.5	Rubble 72:4 Sharp fracture of 92.4 Shick ensides are 91.5		92.4 84 94.5	05919				1.1	1	
badly ioulter intrusino icek. convergenced grane dievite (?) Braccia. This is a	96.4	The follotion like fature	,	100964					0.8		
silicified breeces, but different your those ofrom Quanta content here is prevally more	<i>47.4</i> A	Ares Net exist in 973 + His breicie. Mous of the clasts are surraid and indistinct		98- 80	05920 05921			· · · · · · · · · · · · · · · · · · ·	0.9	3	 <u> </u>
lite 50% and voit is dorter - niere un-verlaced wafies and un-explaced ma	Inc a	Clast: MATVIN 15 a bout 1:2 or 1:3		100	05992				1.0	2	

BRID 115 C. DV 01 4

DIAMOND DRILL LOG

DDH 95-8 BHEET 7 07-10

•

	GRAPHIC LOG					A		KULTS		
ROCK TYPES AND ALTERATION		MINERALIZATION AND STRUCTURES	PERCENT	BAMPLE		U	· A	G	Cu	
			RECOVERED	NUMQER	C02/T	-	OZ/T	IPPM	ppm.	
Braccia This is a dark gray, silicified		Clast Wrotlix, 1:2011:3 to about 1:5. Clast of groundirvita 1074	100	0592 3				1.0	2	
broicia	105	Muchiloss quartz there	/-/	05914				0.5	2	
Breccia, 65 About		I cm ditas ("of gravedirvitel? Clost of gravedirvite 1061 Clost of gravedirvite 1061	1000	N S						
Rubble from foulting. Bioccia, but not very	107.5	From 107.4 to 109.0 rock is rubble 108.	5 100	N S						
this looks like breached this looks like breached toilicified groundiovite	110.4 110.4 111.2	Hay be a big clast (?).	100	NS				•		
Braccia. This is a	1/120	///.9	/12.0	,			<u>+</u>			
Silicified Diercia. Quarts coulant may be ± 60% However,		Foliation - like Copris. 15 prominent	100	05975				0.5	2	
timil biotite flotes	1152	114. 	\$ 	05976			 	0.5	2	<u> </u>
ave ubiquitous thru		clasti matrix vatic is lise	100116							
the wet Process texture promise	1.176	somithing like 1:5 to 1:10.		05927				0.4	2	
,		Don't know opent all of the vig. birtite.	118	7-						
As avera	120	Needs petroquaphy. Is 118. it secondary?	100	03910				1.0	4	

GRID MILLECAUCKY

DIAMUNU DRILL LUG

DD# 95-8 BHEET_B_OF_/U

						A	IBAY REI	ULTS		
ROCK TYPES AND ALTERATION	K TYPE CRATIC	MINERALIZATION AND STRUCTURES	PERCENT	SAMPLE		U		G	Cn	
				NUMBER	02/1	-	OŽ/T	PPM	ptm.	
Breccia This is a silicified freccio. It also has a failly high precentage of		The precia has a follotion-like fortice. The protites are pl commonly aligned along	3 100	05929				0.6	3	
tiny protitof lates. Qualte cours as fillings () and as voin	//22,5	this intric, but also accus in small clusters higher secondary biotite.	100 124	05930				0.6	2	
In amounte > 50 porcon		124		059 31				0.8	2	
GHANEE		As above -6 CNILLT. AS SHOWN	100 14	05972				1.0	4	
Madium quained, light grey color granediovita Rect varies from medium graned to	/275	Grandinvite has lots of small xercliths. vy to about Tor Ecm.	100	N 5						
finer grain 612-0 This rock is biotico-rich	13.5	131. 	1 100	N 5						
As observed			1- 100	N 5						
As above		As obree a	2. 10.2	NS						

	GRID		UIAMUNU UKILL LU	U				SHEET.		DH 95 17 <u>12</u>	
ſ		GRAPHIC LOG					BA .	BAY RE	IULTE		
	ROCK TYPES AND ALTERATION		김 김 김 MINERALIZATION AND STRUCTURES 문문	PERCENT CORE	BAMPLE	A	IJ		G		
				RECOVERED	NUMBER	02/1	-	OŽ/T	-		
	Hodium - promody light groy gross estimate.		Intrusive groundrovile grown size varies firm subellar grown size to obest willion.	100							
	As oberra. Granderiite has a fair coult x cu-let his	140 141.8- 1425	A four xonchithe. They How out criteonic rocks Scan quartz.	100							
	Ponit know over this reet. 15 gray, medium grained, birtita-rich and birtitas have a	143-	10cm qtz-corbrate olt	100							
	lineation tabrie 1t also has some sullistics. It may be at man gromed vertice of the	1 icm	Imme chalcryyvite (carly) wain 1463	100							
	birtito-nich granedic-vit noted abive- ditli fruit guartz alteration. 1495 1480 Quartz siderite	150	atz- carbonate alt 1493.	100							
	Fine to modium ground biotite pronodicite.	151.1	Same Vein quarts. percent with the styarts or but the annulination (?) and these are propoly 1924.	100							
	With so much bir tite in strand such burlin masses, it is provably secondary		Note Specimenat 151.14	10:27							

DDH 95-8 ----

GRID VISCOURTY

DDH 95-8

					<u> </u>	<u> </u>		A		ULTE	 	
	ROCK TYPES AND ALTERATION			MINERALIZATION AND STRUCTURES	PERCENT	BAMPLE				G		
					RECOVERED	NUMBER	02/1	PTM	02/T	-		
	Medium to time quained quancairoite Bistite content insted about has diminished how	13	7	Nomineratization, 1554	100							
	Brotito 1. 104 abundant - but 1s Present. Gustz - unberiete elt. Modium to time ground	158. 139	.9	1505 Guartz- carponate aliciation	100				,			
A rest building	quandicitie, but beyond 159.3 identification is tomorre first offarition Quantz - carl male all.		7.	Gilicitication in promisiont Guarto conversed att.								
	Ruch is entroyied, but is proposely the mod i.g. to water and	- 164	6	Silici ication is promision - End of Hole								
	•											<u> </u>

COLLARED AUG. 26.1995 LENG	rin <u>g 5. 8</u> 6th <u>84</u> .	E DEPARTURE Q + 40 N.				W 10 MET		LOC	56860 PV.	<u>, NØ7</u> KA 27	- 	
COMPLETED <u>A 6 9 27,19</u> 95 DIP	Á	ELEVATION / B 384		REMAR	nk <u>a <i>51 ml</i> </u>	<u>, leff</u>	ein a	<u>8 9 75</u> Bray Rei	5:5,	600	<u>d 7</u> .	
ROCK TYPEB AND ALTERATION	NO NO	L H H MINERALIZATION AND STRUCTURES		ICENT DRE	BAMPLE	*		1	AG	Cu	РЬ	—
	ALTER VOT			WERED	NUMBER	02/T	~	ot/†				Z
	- 1.2 2.2	Coxing Richtle										
Part yray, nicotly no grainat but pyreacting nicotrum anied (it's slightly rowular) latite. it	2.5	Icm qtz venin Icm qtz venin + 10cm qtz. corb.	75	5	N 5							
hay be a third flow	-	6.	. 1- 89	4	N 5							
As about	7.5	,	.1. 10	,,	N S							
gion edicitie			91	6	NS.							ŀ
Ruttle of say broken icch. Appens to be the latite, 2- above. un, Quest 2- cep.	<u>12,5</u> 14,3	Roct 15 INAble firm 1215-142, butit appears 1-be the latito acobros	<u>, 1</u> 7	2/4.3-	N3.		 					

BRID ______

DDH 95-9

			PERCENT		ABBAY REBULTS									
ROCK TYPES AND ALTERATION	A TYPE		CORE	SAMPLE	•	U	· A	G	Cu	РЬ	z			
	ATC	Guartz verntaliz	RECOVERED	06983	02/T	TH	CZ/T	PPM	ppm					
Quartz vain to 15.2. 15.1-16.3 is stockwork	17.2	Stock Work veites and gtz-15.0 Cart. alt to 16.3		05934				0+1	109		F			
Veins + q12 - Covb alt Gumtz voin 16.3-16.9 Breccia	- 16.3	Qtr. Voin 16.3-16.9	94 14-3 16-9	,05935	0.103	· · · · · · · · · · · · · · · · · · ·		<u> 43·2</u>	1.205	0.21%	1			
Bieccia texture and silicitication by voining and voylaco- mont are aburnes.		The bictite curichment 15 proverbly a 183 hydrothermal process. 1t cours with quartz	100											
VONY (in a ground bictite second thrush the rocts o small bunches, but	8	Currich mont + live cut + 6001 131 torvols.	100					-						
niest netatly as plomiment, but diffuse cours.		Thave is on abundance of this rock-type Sompled in PPH Nes. 244	100											
The brices textur Continues. Mont fraquadorts are ober 1 cm in size or les	, , , , , , , , , , , , , , , , , , , ,	5,6,7 and 8, so if it carries volves, these intervols may or may not be sompled at a 27.9	100											
Protite locks like Small divide stream three the rock		Joter date.	100											
Granodiovita Only Imile Dite? Silicified breccia of 31.0 to 39.3.	3/0	Grow chouse sos Silicified bueccie . Clast matrix ± 1:5.	100											

BRID Hiscardery

DDH 95-9 Sheet 2 of 6

	GRAPHIC LOG					A	ISAY REE	ULTS		
ROCK TYPES AND ALTERATION		MINERALIZATION AND STRUCTURES	PERGENT	BAMPLE	AL	J		G		
			RECOVERED	NUMBER	012/17		02/1	F		
Braccia Silicified. Hos small quate "infillings and voylacements Also some bistile as small Hasses	32,5	This source broccia was sampled in POH 5, 6, 74 9 and dris not need to be sampled here	100							
Biotite Increases 363 to 380	343	Some faliotion - like fabris 36.0 in birtite-rich over.	100							
Breceire	38,0		100							
Slightly groundar textu gray foot that I've	40 40	39.4	-							
colled "latite" in this and previous boles.		No structure 3 nov 402 Willievalization 467	100							
1+ is grey, equigranul and on the core surface, simell glag(?) phenociyets (?) are		42.7	160				-			
Visible The some ful type is continuous to 63.2m		4\$7	87							
	47,5	48.8	86			 ,				ſ

]			<u> </u>		AS		FULT#	· · ·	
	ROCK TYPES AND ALTERATION		MINERALIZATION AND STRUCTURES	ğ :	PERCENT CORE	SAMPLE	AL	J	. 🔺	G		
				PD07AB	RECOVERED	NUMBER	02/1	PTM	OZ/T	F		
7	Slightly growular- textured gray latite	526	No univeralization Nor structures 51	. s -	100							
	As about		As obrue		92							
	As obove	35	As obour		94							
	15 obeve	57,5	57. A 6 o bours	.7 -	100						· · ·	
	As above		10 cm gtz and gtz-coit alteration and lisa onite	1.0	100				_			
	BIECCIA :	63.2	Fraquents mostly Licm. clast mater 1:5 6	4.0-	100				ļ			
	This is the armo bieccin espected in PUH B, G, 7 & B. Will wet semple fuither here.	65	Lots of quarte verning and birtite of vernlets \$ wasses Large (ragmont (?) grandiarite	•	100							

GRID _ 1/154	OVIN

•

DIAMUND DRILL LUG

DDH 95-9

	GRAPHIC LOG						A	BAY RE	RILTS	· · · · · · · · · · · · · · · · · · ·	
ROCK TYPES AND ALTERATION		MINERALIZATION AND STRUCTURES		PERCENT CORE	SAMPLE	A	U		G		
			9	RECOVERED	NUMBER	02/1	FFM	02/T			
Breccia The breccia is flooded with quests, and quests veries, surrounds and	69.4	Gianodiovite clast. Open space veining at 68.2 - Specimen		100							
roplaces tragmonts arclats. The motic is grobally meatly requesed.	70 2	Quartz and pirtite Nain and regiace original Mindrals		100		-					
jurequila, masses	79.9	Contact. From 73.9, vock 13 the gray, granular latite	s, /-	100							
and is proverby secondary At 73.9, 1: est- (int ground	775	Which has seconded above in this duill build The	:1-	100							
giey latite As a brin	80	No minerolization nov structures in lotite Granodiorite dite 79.	2-	100							
Lotito, 35 obrus	82.5	No unevalization Hol structures Br	2	100							
As opille	FS			100							

DDH 95-9 SHEET 6 DF 6 BRID VIACOUCIY DIAMOND DRILL LUG GRAPHIC ASSAY RESULTS ROCK TYPE ALTERATION PERCENT POTABE AU RUCK TYPES AND ALTERATION TRUCTO MINERALIZATION AND STRUCTURES AG FOOTABL BLOCKS CORE RECOVERED NUMBER OZ/T OZ/T PPM PPM Tie Medium grained to fine grained latite \$1.7 No mineralization Nor structures. 100 876 BAY As obove 100 ---- Fuder 11-10,69.8. 67.0 - - -

GRID Discovary		DIAMOND DRIL	LLO	G				SHEET.	•••	oh 95- or 4	- -	
TION <u>DISCOVEIV</u> COLLANGO <u>KUI 27/1</u> 95 COMPLETED <u>AU 9.28</u> 1995 DIP	N.7 P.W. 103.6 n. 45	LATITUDE 1 +00F. DEPARTURE 0+7F.	5	BCALE	of Log <u>/://</u>	<u>W.</u> 2_met	RIC	LOI DAT	1000 PY	<u>. N. P. 7</u> . q	. 199	3
	SRAPHIC LÖG Z H						A		BULTE			
ROCK TYPES AND ALTERATION	옷 돈 댐	ALIZATION AND STRUCTURES	D DRILL LOG BHEETO CORE BIZE BO T.W	Cu								
· · · · ·			53			άz/τ	T .	∞ 2/τ		PPm.	T	т
	Casing	10 3.6										
								1	1			
	- P. 44	0 + 0 6 1		-								┟
	6.1		6.1 -	-								ļ
erre grained,												l
rech dievite. The vock	7,5								<u>†</u>	1	<u> </u>	ł
s arev in celer,			9.1	100								
s grey in celer, von textured and												
Haltered.												Ì
	11.251	ecimen		100						ľ		
	12,5		12.2								<u> </u>	┞
	138											ŀ
unte veining, brecciotici na gtz-carbonete elt	aum	2-limmete-sidevite	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						1.0	308		┞
nd gtz- car bouetz alt	15 114	CLY With Innerrite	15.2		-		+			500		-
Noin 15.C. 1055 912 - Homate alteration with	31/1	i, filation diminish		100					1.2	34		
evenal sections of lightly altared jutiusire.				100	05937			1	r L	-		
Manthy Brance Juliusive.	1/2,11			176				L	<u> </u>	L		ļ

BRID DISCOUCHY

DIAMUNU URILL LUG

DDH 95-10 SHEET_____OF____

	GRAPHIC						A	BAY RE	ULTO	_	
ROCK TYPES AND ALTERATION		MINERALIZATION AND STRUCTURES	μų	PERCENT CORE	SAMPLE	A	U	· A	G	Cu	
			1001	RECOVERED	NUMBER	92/1	PPM	O\$/T	TTM	P Pm.	
Coorse groixed, fresh grey diorite.		3cm quaitz-limonite	/\$3 -	100,							
As above		No minatolization nos structures		100							
Qualtz- limita vein	13.3 13.8	Quartz- contamate alteration	r.	013 109,3,8	N 5 03938				0.4	24	
C.G. gray diorite from 23.6	ll ac	No underolizotion not stynitures	24.4		N S						
Coarse grained gray dioxite 23.8 - 36.6.		As above		100							<u> </u>
C.G. grey dissite to 36.6.	35		36-6	100	N 5						
Silicification and	37.5	Quartz, siderite and			05939				1.3	61	<u> </u>
quaitz-coibonete altoration		limonite accur thru intervals		38.0- 100	05940				0.9	20	
	40.4	Qualtz-carbonote elt.		59.6· 40.9 -	059 41				0.5	31	
C.G. gray dirvite	42.5	Coorse grained diorite		~ 7 67.44 ~	N S						

GRID_ <u>VISCOVOLY</u>		DIAMUNU DRIL	L LU	وبا				SHEET.	ردر. 15_0	H 45 3F_4_	-10 -	
		······································						BRAY REE	SULTS			
ROCK TYPES AND ALTERATION		INERALIZATION AND BTRUCTURES	Ĭ	PERGENT CORE	BAMPLE	•	w		.G			
				RECOVERED	NUMBER	OZ/T		CO2/T		1		
Coarse graned grey dirvite		mineralization Noi vitures.		100								
Crarse groined grey diavite	500 51.9 61.9 61.0	enish, cley fault gouge		100								
Coause grained grey Signife.				100								
Slight bleaching of diovite	655 66.1 44.1 44.0 200 200	mo silicificotion with ortz-siderito 664-666	h ble. 67.0	eching 100	NS				}!			
Coarse grained gray divite				100								
Slight pleaching and silicification, 76-78m	776	m qtz-coibonote alt.	76.2	100	N5							
Couse grained gray diorite	170 N. No	o uninetalization of structules.	79,2-	100								

DAR HE-IN

						A		ULTS	
ROCK TYPES AND ALTERATION	ATTOR Anton	MINERALIZATION AND STRUCTURES	PERGENT		A	u 	A	G	
		MINERALIZATION AND STRUCTURES	RECOVERED	NUMBER	02/T		02/T	ł	
couse grained gray diorite		-Stecimen 91.8m	100						
dice it e	95,4	10cm of 2 and of 2 -corb alteration	100						
	9775	Scorptz. contracto pit 991.	100						
terise graned gray			100						
	1936, 1030,	End on Hele							
			,	<u> </u>					

FRUILING TATS! PROTECT DDH 95-11 BRID DISCOUDIN DIAMOND DRILL LOG SHEET _____ BEARING N78W CORE SIZE DOTW LOBBED BY WOT BOALE OF LOG (110 METRIC DATE AUG: 19,1995 MEMARKE SOME FLOTEDUM & & P.P.H. 95-10 LOCATION PISCAVALV LATITUDE 1+00E DATE COLLANED AND. 28. 1995 LENGTH 103,6 DEPARTURE Of 785 DATE COMPLETED AUG 28, 1995 -60 DIP. ELEVATION BRAPHIC ABBAY RESULTS PERCENT ROCK TYPES AND ALTERATION MINERALIZATION AND STRUCTURES Ku CORE XLL. AG BAMPLE RECOVERED NUMBER B OZ/T 11114 atri PPM. FIPM . Cosing Cosing to 2.4 Replie to 3.5 3.0 Slightly weethered dirite. Picrite thru the intervals 50% is YUNNY. firm 30 to 12.84 12.0 12.0 3- meter zonert venes Qt2 vein and gt2-conb. olt. 05942 and att. contructo 0.1 12 75 14.1 14.6 14.1 alteration with sections Dirvite N.S. Btz-luiconte-ptz-corbalt 14.5 of divite betrapper 05947 15,0 94 0.1 150 155 N.5. Spaced of sampled 1.96 Qt2. - carb. alteration 65999 165 96 75 50 3.0 Gray, course granded N'S diovite. Ever, c.g. dicita. 100 NS 24.7 Atz- carbonate \$4.7 25.1 Qualtz carbo date att. 02945 0.6 333 24.1 Grey cours groment No stillctures nor Aimeralization dicite 100 N.5.

	G	LOG						A		ULTE		
ROCK TYPES AND ALTERATION		Į		MINERALIZATION AND STRUCTURES	PERCENT	BAMPLE				G	Cu	
				1001	RECOVERED	NUMBER	Q2/T	PPM	CO2/T	PPH	PPm.	
		33.4		elle brite	100 33.4	NS						
Zone of silicification, replacement net venus.	Ш	34.7	.	Bilicitication of the distite with occurrences chelcopysite	347	05946		· ··	<u></u>	0.1	74	
Course graned, grey				, <u>, , , , , , , , , , , , , , , , , , </u>								
diovite					100							
Cam	╫	42	۶ 				┣──	<u> </u>	<u> </u>		<u> </u>	
At 43.0, dir inte barrinds medium giomed, as it approved ing chilled	111	- 4 3 .			100							
contact. it 44.3 Inck			[ĺ					
pecomes leading place, is granulas textured and is granulas textured and is granulas textured and			-	,	100							
Motomorphicsed ouderste.	╫	50	2╢	<u> </u>			┣		├	<u> </u>	<u> </u>	
Asobrur		51.	,∐		100 541		- <u>-</u>		 			
gtz contrate all. Mixed coarse granned directe and mediking				- Giz-limenite - gtz-convenete	51.5	05947			!. <u></u>	0.1	15	
grainal diovite	Ħ	52.	5		 	<u>+</u>			<u> </u>		1	 -
,		5 Y . 9		Fractures with nonce qualtz	100						1	
Mixed meetium granuld dirvite() and conchiby of meete andesite		~~			16%							
		57.	5									

DIAMUND DRILL LUG

BRID ______ SCEVERY

DDH 45-11 Bheet<u>4</u>0**f-4**

GRID	DIAMUNU UKILL LU	<u> </u>				SHEET.	r	or <u> </u>	
GRAPHIC LD3 LZ					A	BBAY REE	JULTS		
ROCK TYPES AND ALTERATION	MINERALIZATION AND STRUCTURES	PERCENT	BAMPLE		NU .		AG		
4000 ALCO	H MINERALIZATION AND STRUCTURES	RECOVERED	NUMBER	02/1	-	ot/r	-		
Modium gromed, doit grey disvite with numerous xercliths, grovably of anderite.	No milalalization. ner structures	100							
Coarse grained diovite, 452 from 65.2 to 4	30 cm silicification and 3cm	100							
Coarse fromed diorite	No mineralizotion No mineralizotion No stinitures	100							
CONVSI GIOINION NIOVITE	No mineialization ner structures.	100							
Coorse quined diorite 90 92.0- 92.0- 92.0-	Fracture povollel to core exis with clay	100							
Looise ground biovite 940-	and colute	100							
Cooise growed diorite		100							

GRID 14 50 OVOry

DIAMUND DRILL LUG

DDH 95-11

DDH 95-11 SHEET 4 OF 4 GRID <u>VIICOURTY</u> DIAMOND DRILL LOG GRAPHIC ABBAY REBULTS ROCK TYPE ALTERATION FOUTAGE PERGENT ROCK TYPES AND ALTERATION AU AG MINERALIZATION AND STRUCTURES POCTABLE RECEIPTION CORE BAMPLE RECOVERED NUMBER OZ/T **FTM** OZ/T **FPM** coarse grained, grey diorite No uniciolization nor structures. 100 Modiluri-grained, gromutar 1024. textured, doit grey dirvite. contact obscure 100 End of Hale .____ ~

GRID DISCOVERY DDH 95-12 SHEET____OF__9 DIAMOND DRILL LOG LOCATION DISCAMIN BEARING N. 44 W. CONE BIZE BOTW LOBBED BY M. P. T. DATE ALL Q. 30-5647.1.9 LATITUDE 1+13E. DATE COLLARED _ 19 2 1195 LENGTH 167.6 DEPARTURE 0+05N. BOALE OF LOG 1:10 METRIC DATE COMPLETED Aug. 31.1995 ELEVATION 182 911 REMARKS. GRAPHIC ABBAY RESULTS PERCENT ROCK TYPES AND ALTERATION MINERALIZATION AND STRUCTURES Cu CORE XU. AG BAMPLE PLOOTAL SLOCK RECOVERED NUMBER OZ/T OZ/T **FTM** PERM -1PPm Losing 1.7. 1.2.--- --Coarse grained, grey diorite. Marie minerals 2.1 ove shightly chloritized, otherworse the rock appears to be fresh and 100 unaltered. Rock becomes silicified of 100 110 05948 105 9 Voin; quartz-limenite-0.1 11.0 Quartz - cey lim . 05949 143 chalco fyrite 0.1 no 120-FION 12.0 to 18.4, the vock is dort gray to black and pygors to be 12.Za mix o- dictite and 100 undesite - globably along a contact 18.0 18.4 10010.4 intonsely silicified All motion, whotover it praccia Bieccia fragma W85, 15 VEYlaced, Mestly 19.2 05950 6 0.4 ale "flattered" and lie mostly parallel to a crude selictory. No by quarte and some e videte . Soverel small obcurronces of a bright, gint universel. Rhoderite (?) 06951 0.3 ID 213 - 100 micag- all quarter and 22 avidete. 05952

SECOND FINIT MINING

BRID VISCOURY		DIAMOND DKILI		3	·				=	H 95 DF. 4	-12	
				PERGENT								
ROCK TYPES AND ALTERATION	KRATT KRATT FLAD	MINERALIZATION AND STRUCTURES	ž		SAMPLE	AI	U		G	Cu		
			63		NUMBER	02/ T	PTH	012/T		PPm.		
Completely silicitied		Could tolestion dovelater flatteried fraquents.	14		05952					~		Γ
precia, Riet 1s composed of quartz		Rove scattered gians cop		100	02120				0.4	5		1
necostly and 1. apidate	24.5		14.4	24-					0.2	4		Γ
to 10% extend.		More occurvence + 0 · pri	2.47		0\$453				0.2	4		┢
- · · ·	2612	Pink minaral Rhodenite ?	26.2	100								ĺ
Zone of fairlying		· · · · · · · · · · · · · · · · · · ·	\$7.1			-						Γ
starts at 26,2 and	<i>27.5</i> -	Foult from 26.2-34.5.							ļ			-
is contineners to 34.5.		Only intothe collected.		Not								
Dillers report much		Long intervals of clay rejected but not	75.9	(C I CVA V 14	•/							
difficulty in povotrating		VACCHANK. Fault		toult					ł			l
thru the builds ground		INTONNOT 19 8.3m (27.2 ft.)	20.5	70111								┢
,				NICHT IY VUBBLE						 		
				ord								
	<u> <i>32,9</i> </u>	· · · · · · · · · · · · · · · · · · ·		clay				 _		/ — · ·		┢╴
			33,5									ĺ
	346					-						
Pert grey andasite (?) but shealed dollared ancontact	35									 	┝──┤	┝
		No nimaralization not	35.7			ļ		1				
Lightquey, conver queine grandicita Matics slightly chlovitic	千	structures.		100								
	1114011											
c.c., light grey grone dirvite												
·	41.4		[100								
Andosite dike	41.6	· ··· · · · · · · · · · · · · · · · ·										

							A		IULTS	
ROCK TYPES AND ALTERATION	ATION Lat	MINERALIZATION AND STRUCTURES	¥s	CORE	EAMPLE	A	U		3	
- Anderite Pitt	1100K	1	Ê	REGOVERED	NUMBER	Q2/T	-	02/1	PPN	
Coarse grained, light gill groundicule.		tear i contact		100	-					
Contro grand grandion, December dait was contact Breecin strongly silicifie Strong green colors leases	1 53,9	Will not can ple breisin three there panding 5	1.9	100						
for great color Not clear Course gravet don't grey graved insite () Breceia Strongly Silicit ind Strongly	₽	the these panding 5 results of sampling other silicified breeces intervals		100						
Gilicit vert Staningut green color Gunchisite , 59.3-60	59.3	Rubble of 60m.	7.4 -	100						
From 60.0. to 63. P. lock 19. silicified braccia 15 greanist to graying			1.0 -	100						
in color. Gray silicities tott, from 63.8 to 67.7.		4	4.0	100						
Engenticitient turit. Rock affront to be more than half quartz.		6		100						

GRID_<u>Viscovely</u>____

DIAMOND DRILL LUG

DƏ # 95-12 Sheet_3__of_7_

	GRID VISCOVERY	<u></u>	UIAMUNU UK	ILL LU	9				SHEET.		DH 95- DF 7	/2	
ſ								A		ILL TE			
	ROCK TYPES AND ALTERATION		MINERALIZATION AND STRUCTURES	Ĭ	PERCENT CORE	BAMPLE	A			G			
	Grew silie, tuli				AECOVERED	NUMBER	C12/1	PPN	CC2/T	~~~		<u></u>	
	Breccia Ricitis News Hestly quarter.	70	Fragmients of intrusive in precia. Slight falletion-not str Some small concentation		100								
	Breccia is quarta and tragacenta, meatly of dark gray incres. Also a tra patches		Slight - instrusive vort	70.1 · 71.3 ·	100								
	ct exidete.	72.5	- 30 cm clast(?) composed of successed quartz- govnet- e videte, of 72.9 to 73.07 - clasts of intrustive	79 ./-	100								
	Medium - grey, fine growed silicified turit	76.0	Lectures of intrusivered -erutact Noct has a slight falial	76.2	100								
	Bictite occurs of very fine grand! streats and clusters prottered this the vect. Continue		-Evidote Patch with winos quarta veining	79.2	100								
	te flen. Eleccia Much quartz. Evaquiants partially	-	contect	Ø1.3 ·	10."								
	Medium - groy, sind tuffs grained ai licitied tuffs F3.1 - 87.0.	83.	show that the prescie about one mater in o	6 2 5 74 e ^r	100								

DDH 04-12

BRID LISC - JOIN

.

DIAMOND DRILL LOG

DDH 95-12 Sheet <u>5 of 4</u>

								A				
ROCK TYPES AND ALTERATION	K TYM ERATIO			CORE	Î Î	BAMPLE	A				Cu	
······································				ACCOVER		NUMBER	02/1	-	СОД/ Т	-	per.	
Medium groy, time gromed silicitied tuff Bigggia . Vary silic cous.	B	7.0	£5.3	100	,							
Mostly quait = 101th uy to 30 9% birtite (maybe other metics, tro) Coarse gromed to mod. gr. arey-dort gier directed dike;		F.9	Some open space from BT.S-BT.T. Otherwords, all Syace filled with qualtz. B.A. This ET.S-BE.9 15 oucher one meter brecking one.	100								
Iom BB.9 to 901 Breccie and gtz- carb. 017 Stay Silicitied tuff. Many Small guartz voins	- 20	9 7	RUNTZ Veint, 972-Carb alt. Br. 914	1009	1.1- 7.7-0	25954				1.6	59	
von sect turt.	94. 95.		slight quarte ven stockwork in grey turti. 945	100								
Gray to dark grey silicitied breccia, Hewever clast: motrix	95.		A strong foliotion-like fobrie occars flive flee intervols	100								
letio is similating the 1:20 or so and clasts are mostly clam	101		Seme clasts composed	100								
			lovgely of epidete. love (=) of intrusive voit	100	T							

• • • • • • • • • • • • • • • • • • •	GRAPHIC		1			A		ULTE	<u>.</u>	
ROCK TYPES AND ALTERATION		MINERALIZATION AND STRUCTURES	PERCENT	BAMPLE	•	U		G	· · · · · · · · · · · · · · · · · · ·	
	ALTER ALTER		RECOVERED	NUMBER	OZ/T	m	о ‡/т			
Gray silicitient biercia	1	Closts of intructure, 103-1026 Strong foliotion-like fabric three rocks 104 Lem K stor vein of 104 Biotile Vein (1) of 104. Foliotion-like fobric continues	100							
Grey silicitied biorein.	1615	Foliotion-like fobriecontinues occurrences garnet (?) a pidoterose and a pright pirk min oral. Idantity (?), Rhedouite?).	100							
Grey Gillerfied breecia.	1075	At 108, frogment ot intrusive vock								
At 110,1, 100k locks more like a silicilied fulf Has small scattered class	*	Some qualizand a pidrto Veining at this contact?	100							
All & Icm wind all are plank veloonic rock	112,5	Foliation-like fobric 1120 continues	100							
Grey tuft with small clasts continues. It is well succified.			100							
Nock changes character. Process, classes are mostly 3-2 cm in dia		All closts rounded and surveyed by quartz.	100							

GRID KIELOUCHY

DIAMOND DRILL LOG

DDH 95-12 BHEET 7 05

							A					
	MTION ABC CTUBE	MINERALIZATION AND STRUCTURES	ž.	PERCENT CORE	BAMPLE	A	ſ	• •	G	Cu		
Ĭ				RECOVERED	NUMBER	02/1	PPM	Ot/T	PTM	ppm.	_	
Breecia Quartz has Gilled all space, winda leins and veril classs cares sulicitied full.	- 132.7	Breccia texture is very prominent. No visible sulfides, but lets of quarter.		100								
Same full. Same full. Zene of quartz voins with Incourte	12.3.1	Qualtz Vains with live with	/24.0	128,1 - = 1= C= 12 45 -	05955				•1	8		
Every silicities tuy? Hove the internet 124.5 to Some of it may show precention, but not	- <i>1</i> 25	Foliotion-like to bie constinues.	127.1	1250 156	05956				•1	8		
as prosminent on three held above.	1275	F-liation-like tabrie continues.	128.0- 129.5 -	100								
Glay solicities tuff . continues		As above	191.1 -	100								
As store	172.2	As above	134.1	10.9								
Arabour				100								

GRID MISCOUNTY DIAMOND DRILL LOG SHEET B OF 9 BRAPHIC ABBAY REBULTS PERCENT AU ROCK TYPES AND ALTERATION AG MINERALIZATION AND STRUCTURES CORE RECOVERED XODA A TELE NUMBER ēğ **02/**Τ **PPM** OŻ/T -Light to modium grey silicitied tuit. Foliation like fabric continues they the intervals. 100 It may be bedding in the silicified tuff 140.2 beds. As syour 100 Small mass of silerife of 142.5. 14722 As about 100 Foliation. like fabrin in Silicified tult may 1463 15 abrue 100 be original bedding. 47.6 As abrue 1000 Silicified. 1493 1908 Kock is mostly quantz have Mero of the gray 1000 Fablic noted above continues silicitied tuff. As avove As obrue. 100

DDH 95-12

	GRID Jac Cull 4		DIAMOND DRILL LO	5				BHEET.		H 95 F_7_	-/2 -	
				Ι			AS		ULTR			
	ROCK TYPES AND ALTERATION		MINERALIZATION AND STRUCTURES	PEACENT	SAMPLE	AU		- A0	3			
				RECOVERED	NUMBER	02/T	277M	OZ/T	PT%			
	Gray silicified tuth os obeve Andorite (?) Black, i.g. Isict	1558 155.8	August 2 voining and brece. 155.4 of 155.5-155.7. The "andagite" alto has the relation like formic.	100								
	Fraccia, 1525 to 164. Rock in Honorylily Silicitical Grants is give order come fallocas		194.5	90								
	clasts and has apprently completely apprently matrix	k	161.5	<i>e0</i>								
1000010	Freccis continues Grey, silicitud fult.	102,9	Foliotion - lite tabie 164.0	100								
•	Copy principal forth.	165	in tuit. 1647	17.00								
		1675 147.6	Fud of Held, 167,6	<u> </u>								

BRID DISCOVEN	T .	DIAMOND DRILL LO	Image: Street	<u> </u>							
ICATION DISCOVERY BEARIN ITE COLLARED ALLA 31, 1995 LENGTH ITE COMPLETED SCHT. 1, 1995 DIP	N.44 154 - 67	B 41 DEPARTURE O + 05 K.		: of Logi_	D MET	TRIC Same	DA	rt 5a	11. 4	1995	
						A		IULTH	-		
ROCK TYPES AND ALTERATION			CORE				,	Ġ	Cu		
			RECOVERED	NUMBER	ÓZ/T	-	02/ †	-	ppm.		
Course grained grey divite Matics slightly chloritized	12 -1 + 5	Cosing to 1.2 m 1.2.									
coarse grained grey diovite	R.2	- This orgle on silicified contact Tatz. corbonate streats	1 <i>00</i> 9:2	<i>N</i> 5 1 5 7				.5- 54	54		
Vein Nedium to coorse grained dioxite. All	[0:4 []:n	Quartz-chalcopyrite-lime nite 10.4	112	4					7130		
matic mixerals are chloritized.	12.5		100								
Dart grey, medium groined biotite-dicrite-or maybe a gabbro.	15.7 - 15.7 164 176	-Shalp Intiusive contact. Specimen									
Modium grained diavite or granedicrite. Net same as above Lontart zono	18.E	Sharp intrusive contact.	100								
Contest > and	19.5		195	+							i i

and a second
BRID <u>JUSCOVCIY</u>

I

DIAMOND DRILL LUG

カンH 95-13 BHEET <u>2 OF ビ</u>

			1			A		RULTS		
ROCK TYPES AND ALTERATION		MINERALIZATION AND STRUCTURES	PERCENT CORE	SAMPLE		μ	• •	G	_	
			RECOVERED	NUMBER	02/1	PPM	OZ/T	-		
Breccia Dort grey to black with a for synts of exidente Quartz surrounds treplaces clashs	52.4 52.4 52.4	Ginell local quarte stockwood Veins Mostly & lumm. 21.3	s. 100							
Dark grey to black andesite Slightly granular Medium, grained distite Matic minerals are	1 27.6	J think this is a fie-alteration dike. 24.4	100							
Chloritized Part quey to black	- 27	Vary "story" contact. Near C.A.	100							
andesite- some as et 22.2-23.6 Slightly gronular	30	Note ongle of contact.	100							
Andesite, 06 obrue. Breccia All fragments Iounded Mostore in	310	Vory story contact. Neave. 1.30. Pink mineral = Pink mineral	100							
the process of being replaced tats of epidete three interval. Clast: matrix, est 1:10		PINE mineral. The yink mineral useral is bright pine and 335 H>5. It surrounds and Verlaces clasts. Time winder	100							<u> </u>
Natrix oil verlacad by quarts.	36.3 -		100							

_

BRID JISCOVELY

DIAMOND DRILL LUG

ДД H 95-13 Внеет_<u>2___</u>ог<u>_ 12_</u>

ſ								A		IULTS	 	<u></u>
	ROCK TYPES AND ALTERATION		MINERALIZATION AND STRUCTURES	ğı I	PERCENT CORE		A	J	· A	G	 	
					RECOVERED	NUMQER	012/T	ITM	ot/t	PPM		
	Breccia Quarta replaces closts and has replaced matrix. Clarts are round.	40	Cocurrences of bright, Pink minoral landily??. class(?) of intrusive rock 39		100							
	clost: Natrix, 1:10 or so Mix of tuff, andasite and sillified precise along intrusive contact.	- 40.9		,,,	100							
territ int	Rubble and clay thu fauit zone	44,8	frominant fault. Total foult zone is from 40,9 to 44.8, or 3,9m. 4.	9 .7	160							
	Ceause growed, grouish plant dievite Mofies partly chievitized Some biotites fresh(?) + glossy.				100				*			
	Andesite dite Cravse grained, gray granodiovite	51.6	Steej contacts 5	7.9	100							
	CEARSE grained, grey granodicite. Becchios darker celer as it approaches contact				100							
	Andosite, i.e. gie- gianodicvite avdasite.		Contact		106							

						AS	BAY REE	IULTS		
ROCK TYPES AND ALTERATION	A THE		PERCENT CORE		A.	J		G		
			RECOVERED	NUMBER	02/1	PPM	02/ T	ł		
Andesite, clightly chloritiz Tuff, slightly filicified, pickatly docitic	4470.9 1	Foblic 15 Prebobly	100							
Tutt, se obrue, continues to 76.0.		bedding in the tult. TRI-	100							
Turil as abrue Rubble of tavit 15 mostly turit ; raquiout	76.0	Rubble from fault zone. 76.2.								
Medium grained grandin vite Matics slightly chilovitized.		79.2-	100							
Gray tuit, silicified	652	Brecciation in full fot contact Bodding folds populal to contact	100							Ī
Groy, medium groined grane dicrite.	67.7	specimien, grandiarite, 90.2m							-	Ī
Granderite. Braccia. Verst gray- black	87/	Lots of brecciation and xandlill, contamination from 96-974.	100							Ī

ARIA KISCOURSU

DIAMOND DRILL LOG

						A		ililtə		
ROCK TYPES AND ALTERATION		MINERALIZATION AND STRUCTURES		BAMPLE		U.	- AC	G	I	
			FO RECOVERED	NUMBER	02/1		02/1	27 M	1	
Breccia. Rost is mostly black with gray quarte throat and scattered bunche		Nost clasts are round- to sub-rounded.	100							
of epideta Quartz occurs as veins, streats, mapped		, <i>10</i> 1	100							
and replaces clasts. All matrix is opposently replaced.	10-2		3.6- 100							
This vock has a move black crirv than Most of the braccia noted in this and		Foliotion-like fabrie	100							
other dvill holes Black, granular to fix a gr rock; gartly silverfied		2 cm round clasts at 109. contact	100							
Black, granulas and fine grand pock- partly silicitiad.	112.5	3cm qtz-limovite evd BCHI qtz-Carbonale alt.	92							
Protably in milicified		Rubble	92							

ДЭН 95-13

BRID KISCEVELY

Land James Taxan In

DIAMOND DRILL LOG

Д.Д.Н. 95-13 Внеет_6_07_6

.

							A		ULTS	 	
ROCK TYPES AND ALTERATION		MINERALIZATION AND STRUCTURES	μ	PERCENT CORE		A	U	- A(3		
	ALTER ALTER			RECOVERED	NUM ber	02/7	PPM	OZ/T			
Silicities andesite(?). Zone of procession Mostly a will of andesite, and intrusive	115.8	3 cm quartz vein. Protobly a toult zena(?)."	168 -	100							
fragmonts. Some round and some angelar. All invoded to quarte	119.6	., .,	()89	100							
Fine quoined to medium quained grandicrite (maybe advide) Has a few xonclube of	/1/.3-	590Cimon.	/2/.9-	100							<u> </u>
ande site. Ecuye, clay and inbble	123,5 124-C	Fault Zone.	<u>11</u> 4.0 .	- 72							
Lubble and clay Sulicified, wiedium quan quey tuft. Biaccia. All classe are	125 1253 		/15.7 15.9	100				_			
Bioccia All clasts ore counded All precess is silicified Matrix is refl by quartz Silicifian grey turti.	131,2 119,1 130		12.80-	100							
14 oprice	1996		31.1	100							·

GRID JISCOVERY

DIAMOND DRILL LOG

DDH 95-13 BHEET_7_0F_12__

	GRAPHIC						A	BAY REE	NILTS		
ROCK TYPES AND ALTERATION		MINERALIZATION AND STRUCTURES	9	PERCENT CORE		A		. A	G	:	
			9	RECOVERED	NUMBER	02/1	PPM	OŻ/T	-		
Dark grey silicified tuff. Hest clarts are Llem		(34. 34 .		100							
in diamotor. Clasts ove dark Velcanic verts, but some our claved and	135	1 1		100							
ave exidentized Dark grey cilicities tub closes believe here	1262	[7] [7]		100							
ove all plant no epidete However, the full is completely	. 140	Scm gtz vein and scm gtz-carbonate altoration. 141	,	100							
Sericitized	142.5	the second and	3-	100							
Fine-growed to medius growed growedierite (maybe divisito).	- 145.4	The intrusive voct three		100							
F.q. to west que queredicin et diévite	Fe 141.2	these intervals is exactly the some as at 121.3 m in this DPH.		100							
ci dictita Daik yvay eilic. tubE.	149.5.	• ·	.4	100							

	BRID Jetter Kreit		UMMINIAU UNILL LU	.				SHEET_	אפע	95 - / F	3	
ĺ							A	BAY RES	ULTE			
ļ	ROCK TYPES AND ALTERATION	ADGK TYT ALTERATIO FOOTABE	MINERALIZATION AND STRUCTURES			A	J	- A i	G			
		NOCK NOCK	MINERALIZATION AND STRUCTURES	RECOVERED	NUMBER	012/ T	ł	OŽ/T	-			
	Dark grey silicified tuff.	.'E.'R.	- Claste of intrusive rocks 152.4	100								
ŀ	Bioccus Reck is dark	152.5	- Claste of intrusive rocks 152.4.									
	Biocola Rect 14 dork color and in mostly. Siliciticate clasts are pregular shapes. Clast: matrix + 112		- Clarts of intrusive route 153.3 End of Hole, 154.8. 1548	IC:C								
		154.6	End ci Hole, 154.8. 1548					· · · · ·	· · · · · · ·			
1		}}} }	· · · · · · · · · · · · · · · · · · ·			 		·····				
	<u></u>		· · · · · · · · · · · · · · · · · · ·								ľ	
											-	

JDH 95-13

DEATION <u>13 COVALY</u> ATE COLLARED <u>SAPE 11995</u> LENS	IND 11041 TH. 109		<u>.</u>		NZE BOTH	7 MET	RID (/ // //	DAT	BBED BY	of the		5
	GRAPHIC						rost.					÷
ROCK TYPES AND ALTERATION		MINERALIZATION AND ETRUCTURES	X ANK		SAMPLE	A				Cu		<u> </u>
••					NUMBER	ÓZ/T	-	OZ/Ť	-	ppm.		
Vory course grained	1.2.	Cosing 	<i>j.</i> 2 -			;	- 14-1	-				
gradientization of the chloritization of matic minievels		, ,	9.7	100							•	
Silicition, altored Austite	11.4	Silicified, qt2 - corb alt, lime Silicified 2 out		104 100 11:2-	C 5959		 	·· _ · -···	•/	96		
Billicitication and dievite	112,5	Ben glz. carb. alt	120	·	05960				•3	63		<u> </u>
Picarto in alightly descended to 14m.	13,1	I can gtz-corb. alt.	14 C ·	13.1- 105	05960							
Very come grained, grey to slightly greenish dirite A stics are chloritized		Rubble 19,5-22,5m										-
Lorge Indente Konstith. Course graned diente continues.	23.4 23.4 23.6	Xonolith 22.6-23 Guatz coilonate zone						····				

GRID 136 22 11		DIAMUND DKILL LU	6				SHEET.	2	ar_ <u>5</u> _	_	
	GRAPHIC LOG			-		A		ULTE			
ROCK TYPES AND ALTERATION		특 데 MINERALIZATION AND STRUCTURES 홍콩	PERGENT Core	BAMPLE	•	V	· A	G			
			RECOVERED	NUMBER	02/1	ITM	01/ T	7794			
course granned divinte crutinuise Slightly queanish due to chloritizetire, of molies.		Reich decomes slightly sumler grain size at about 4/cm.	100								
Dicrite here is meducin ground still slightly ground due te chevitization of matics	47.6		16.2								
Matus Andente dike(?)			100								
Rock is grey and is most in greatz. Apparently 15 replacing	501 51.2	Many cylidate accurrences About 200% of your is cylder	150								
 a tuit. it appears that the congreat rect is	52.8	About 200% of your is evident Coccurrence bright your fmineral Wornavite (?) or ??	10%								
nearly completely replaced spinite eccure in petities thrucut	57.5		100								
Centuri 58.E-	60-	Allitude of contact observe	100								

1.150 002121

DIMMENDING DRUCE LUCK

DDH 95-14

GRID _____ KIZCOUCTY___

DIAMUNU DRILL LUG

DDH 95-14 Bheet_2_0f-ン

•

			······································	[A	BAY REE		<u></u> .	 ·· _ · · · · · · · · · · · · · · · · ·
ROCK TYPES AND ALTERATION	ATION ATION		MINERALIZATION AND STRUCTURES	PERDENT	BAMPLE	A	U	· A	G		<u>~</u>
	ALTE			RECOVERED	NUMBER	02/T		ot/T	-		
CEONE QUEMENTE Medium question dirite. Some chicitization of Matirs- Vit 2. 1819h as intervels obove.	-		Contact.	100							
C.E. dionte Dark grey, strengly Silicified with of verts	6:	5.4	· 655	160							
 il high mith be along a fault or intrusive contact			69.1-	100							
A. objust Black mix of vocks.	7.		Some brachtion Clasts up tol to loca	150							, ,
All vects and silicities, and the veck offers to be			73.1 -	100							
Moutly quarts Maybe it is all breachs, wire. 70 to 78(7)	7	6	Bieccia, Silicified clast: Wotvix, 1:1 <u>Bieccie, Silicified</u> Clast: Matrix, 1:1	100							
As above.	7		Clart: matrix, 1:1 792:	Ire							

DRID <u>JUSCOVOLY</u>

DIAMOND DRILL LOG

DDH 95-14 BHEET 4 DF 5-14

							A	BAY RE	ULTÜ		
ROCK TYPES AND ALTERATION		MINERALIZATION AND STRUCTURES	Ju	PERCENT CORE	SAMPLE	A	. — — U		G		_
	ALTER ALTER		100 M	RECOVERED	NUMBER	07/1	PPM	0¢/T	PTM		
This is a Exercial. There is a mix or tropments or valcomic			Ø1.1	100							ſ
Vects and of intrusive vects Every thing is silicified	111	Clasts vary in and from t lem to recond ore record most ave s angulat.	Ø2,3 ·	100							
		A Mony intrusing clasts from 82 to 87m	\$5.3	/ C C "							
From #7 to 900, the Neck is composed of 25-50 pricont apidete	87.	Coccurrence bright finit Minieval Usornerite are Nonevite or	87.8 89,3	100		1					
This breece has been continuous from 70m.	92	Moinerite er Nimor rubble et 92. ==	PLC-	100				-			
	93.	Normavite er	945 -	100							
Bioccia, an above Rock is completely silicified		4		Icc							

	GRID			•										
Γ							A		ULTS					
	ROCK TYPES AND ALTERATION			CORE	EAMPLE		NU .		G					
			MINERALIZATION AND ETRUCTURES	RECOVERI		02/1	PPM	O2/T	TTM					
	Braccia All oi the rock is silicified and pirst	98,5	From 98.5 to 104.0, the breach is composed of	100	,									
	oppears to be replaced by quartz.		obout 50 jaicout clasts of intrusive lect. 100.6 The bolonce offrois to be fulf.	100								· .		
	Epideto is unt promimont below obriet 95 m.	104.0	<i>[03.</i> 3	100										
		1059	Syecimen	100	,									
	Biotito provincent as tiny flakes in masses totreats.	10 8.2	End of these 109.	100							· · -	· ^ .		

GRID VIELOVELY

DIAMUND DRILL LUG

DDH 95-14.

BRID Main Zona	<u>ROJECT</u>	DIAMOND DRILL LOG													
LOCATION Main Z ON C DATE COLLARED Sey + 3, 19 95 DATE COMPLETED	BEARING <u>5,67</u> LENGTH <u>11.8,</u> DIP <u>- 45</u>	W. LATITUDE 2 + 9 B 5. 9 DEPARTURE 4 + 97 L ELEVATION 1880		CORE & Stale Remark	E LOB III	TW. LOGGED BY				12 0 i 7. 4,	1992	5			
	GRAPHIC						A	SAY REE	ULTE	_		, - .			
RUCK TYPES AND ALTERATION	idik Tyte Teachdo Otage	MINERALIZATION AND STRUCTURES	ACTARK DCKB	PERCENT CORE RECOVERED	SAMPLE NUMBER	×			G						
Andesite Very - 140	-1.2	Conny to 1.2 Rubble to 1.7	21 .2 - 2. -	·····		CIZ/T									
granice and and slightly groonish due to grouphtre	4.0	Ster bring to hight green		88								-			
alteration	6.	Bleaching to light grade e Bleaching -	5.2. ; //~/	8.9											
Andonia turia. Layilli turia, alight	14 10	Bleaching to light green		100											
queenier due to propphilis siteration Andonie	z. 11.2 12.6		173	109								1 i			
Anderste			13,1	102											

						A	BAY RE	ULTS			
ROCK TYPES AND ALTERATION		MINERALIZATION AND STRUCTURES	PERGENT	BAMPLE	LE AU AG				Cu		
			RECOVERED	NUMBER	02/1	ITM	O2/T	PTM	ppm.		
Anderse pierce with security and entry full bede		No nemiclalization per Storetures	160	· · ·							
Rock becoming cilicities at 22.5. Still source don't groce ander hat source viert 15 dail by glz.	11 1		1013								
At 251 icil 15 becoming blenched & hove 15 globarly & Conformate. globarly & Conformate. globarly & Conformate. globarly bleethedd silienfig	25.9		EY 25.9	05161				•2	44		
Bleached & selicities	28.2		27.6	05961			· · · ·	•7	60		
Guartz- casteriate alt. Blanched & subscified	7.6	Quarty - honorite - aderite	10 28.6	05963			··· -· -···	•1	9		
Gtz- him sid.	1915 30	Sta. 100- 51d, 29.5-30.0	29.5 Bert	04964				•7	51		
Roch blowlad + silverfield Black, time grained andasite	31.1		92								
treally the a town ting venulate of colorte			92								
ah apart	25		100								

BRID ALLING CONE

DIAMUND DKILL LUG

DDH 95-15

•

							A	BBAY REE	SULTS		
ROCK TYPES AND ALTERATION		MINERALIZATION AND STRUCTURES	¥2	PERGENT CORE	SAMPLE		NU I		G	[
				RECOVERED	NUMBER	012/T	F	COL/T		l	
Hord, fresh, black, fried quarmed andesite			39.6	76							
Houd, fresh, black, fine growing oudesite				8 5	· ·						
Andesitic fulf. Slightly greanish due to propolitic alteration All thirgsingits 2 10000			61.0-	100							
Rhyolite dite.	64.0	contert	64.0-	100							
Pickotly the same that creps out Andesite Fire grain, hard, frash, black.	64.0 67.5	· Confact	67.0	100							
Indusite, as about	700			100							
From 70.1 or desite is pleached, slightly collection and is greenish			70.1-	100							

DDH 95-15

GRID			i	····		<u> </u>		SHEET.		 <u>-</u>
				PERCENT		A		BAY REI		
ROCK TYPEB AND ALTERATION	ALTERA ALTERA FOOTAG	MINERALIZATION AND STRUCTURES	roota Alocks	CORE : RECOVERED	BAMPLE Number	02/T	, 774	02/T	G FFM	
Plaachod, greenish andosile Plack oudaries	72,9		73,1 -	100						
slightly pleached, grearies and ente. Prevely 10 silicitied.	775		76.2-	100						
Bleecher and esite.			, R-	100						
Rock is mently intelle lacin 79.5 to 82.1	80 80,5 91.0	Heavy clay forbobly a farit.	<i>e</i> 4.4 -	86						
Black, hard, dansa siliceeus and calcaleu tult. Calcite as verns and patches is prevens	小田之日	Qualty and c filoto, 14-95	<u>51</u> .3-	100						
Tutt as about			96-0	100						
Tutt as above Exidete - quarte alt. Fine quain blait andes	97.5	、	97.5	100	L					

GRID _ / (())(4-ONI

DIAMUND DRILL LUG

DDH-45-/5

GRID MARINE CONC

.

DIAMUND DKILL LUG

DDH 95-15

				ABBAY REBULTS							
ROCK TYPES AND ALTERATION			PERCENT	SAMPLE	AU		AG				
	ALTER A			NUMBER	02/ T	PPM	02/T				
Fine gran black auderite		1004	100								
Strong equite le alteration et the andoeste.	113.	Preminient queen color 1036 from exidente alt creation 1043	100								
Epidote alteration Anderite, in a grown, hard, danse. Small perphiciplasts (=) -f	1057	1047	100		2						
block winder herts like control welowerythin elfect. Exidente alt. Hard, deuse licest	11788	Extremely hard, extremely 109.7	100							1	
black, extremely line grain ract. Jot Black!		Extremely hard, extremely 109.7 fine grained reck prillers coll it, "terminatory rock". 111.9	100								
Some hard, black, Vit.g., dense voet	1189-										

Appendix IV Assay and ICP Results

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS & ASSAYERS & ANALYSTS & GEOCHEMISTS VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C. CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TEL (604) 847-3004 FAX (604) 847-3005

Geochemical Analysis Certificate

Company:	GOLDEN HEMLOCK
Project:	TATSI
Attn:	GEORGE HEARD

We hereby certify the following Geochemical Analysis of 24 ROCK samples submitted AUG-09-95 by G. Heard.

Sam Num	ple ber	Ag g/tonne	Ag oz/ton	Cu PPM	Cu %	Pb %	Zn %	
055	95			58				******
055	96			31				
055	97	924.0	26.95	>10000	3.663	1.52	Treach	" Main
055	98	***	,	73	· · · · · · · · · · · · · · · · · · ·			2012
055	99	3210.0	93.63	>10000	7.475			
056	00	643.0	18.75	8200			Trench	2 Main
056	17			2450	· · ·		2.03	Zone
056	18			131				
056	19			1 89				
056	20			13				
056	21	371.0	10.82	4230				
056				1170				
056				40				
056				17				
056	25			5				
056	26			2				
056				2 5				
056				14				
056				5070				
056				91				
056	31			16				
056				41				
056				524				
056				9410				

* Possible Metallic Au

Mie Certified by

MIN-EN LABORATORIES

5S-0087-RG1

Date: AUG-23-95

VANCOUVER OFFICE: VANCOUVER, B.C. CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TEL (604) 847-3004 FAX (604) 847-3005

Geochemical Analysis Certificate

GOLDEN HEMLOCK Company: TATSI Project: **GEORGE HEARD** Attn:

We hereby certify the following Geochemical Analysis of 18 ROCK samples submitted AUG-09-95 by G. Heard.

	Zn %	Рb %	Cu %	Cu PFM	Ag oz/ton	Ag g/tonne	Sample Number
				66			05635
	-			23			05701
				38			05702
				192			05703
Main Zone	ench the	Т		234			05704
				3720			05705
			3.578	>10000	81.08	2780.0	05706
Main Zong	nch "3_	Th		120			05707
				7710	9.01	309.0	05708
				6640	9.07	311.0	05709
Main Zone	neh#4	Th		108			05710
			1.115	>10000	16.54	567.0	05711
Main Zono	ench #5	<u>- (T) - (</u>		184			05712
	1.66	1.33		6990			05713
				102			05714
Jain Zone	neh "6	<u> </u>		394			05715
				96			05716
hain Zone.	meh 7 1	-1-4		83			05717

* Possible Metallic Au

.

12 Certified by

MIN-EN LABORATORIES

5S-0087-RG2

Date: AUG-23-95

COMP: GOLDEN HEMLOCK PROJ: TATSI

ATTN: GEORGE HEARD

MIN-EN LABS - ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423 FILE NO: 55-0087-RJ1+2 DATE: 95/08/22

.

possible metallic
 (ACT:F31)

TIN: GEORGE	TEARD									1EL:(0	04/32	27-34	30	PAXI	(004	1321	- 3423									pussi	Die me	Latti		AUT:POT
SAMPLE NUMBER	AG PPM	AL X	AS PPM	BA PPM	BE PPM P		CD PPM	PPM	PPM	CU PPM	FE %	GA PPM	K X P		MG %	MN PPM	MO PPM	NA X	NI PPM	P PPM	PB PPM	SB PPM I	SN PPM P	SR T Pm pp	<u>M</u>	X PF	U V PM PPM	N PPM	PPM	Au-wet PPB
05595 05596 05597 05598 05599*		1.09 1.93 .21 .60 .10	1 1 1	144	.7 1.2 .5 1.1 .4	7 6.21 6 7.83 1 .62 4 1.00 1 .60	.1 .1 1.8 .1 6.0	4 10	8 102 :	40 >10000 115 >10000	3.56 2.16	1 1 1		26 2 1 2		1449 2404 928 699 524	2	.03 .01 .01 .01 .01	51 8 12	1480 520 700 610 1220	29 28 >10000 87 755	1 41 1 65	5 1 3 5 1	12 14	1 . 1 . 1 .	07 03 01 01 01 01	1 33.7 1 51.7 1 11.6 1 5.1 1 3.2	4 11 1 13	79 102 210 269 224	5 5 73 5 1535
05600* 05617* 05618 05619 05620	>200.0 32.4 .1 3.3 .1	.20 .03 .23 .11 .14	12 1 1 1 1	249 241 628 673 728	43746	1 .27 1 .10 2 2.71 1 1.41 2 2.19	.1 >100.0 28.0 4.3 .1	10 7 9	73 192 95		2.85 1.93 2.61	1	.14 .02 .18 .10 .14	1 1	.06 .16	669 843 2753 745 838	39 20 1	.01 .01 .01 .01 .01	16 10 9	340 150 1240 170 530	2057 2361 208 46 30	10 9 2 34 1	31	53 46	1. 1. 1. 1.	01 01	1 5.3 1 1.9 1 9.0 1 5.9 1 8.2	18 4 10 4	281 >10000 1020 284 153	7420 1380 20 5 5
05621 05622 05623 05624 05625	>200.0 17.5 1.1 .1	.03 .09 .16 .20 .20	1 1 1 1	999 216 227 680 925	.7 .8 1.0 .7 .5	47 5.01 1 6.19 9 8.82 3 3.11 1 2.97	6.8 .1 .1 .1	16 21 9	127 97 121 54 86	24 10	3.97 5.07 2.90 2.46	1 1 1	.03 .07 .13 .29 .25	1 1 1 1	.46 .51 .34 .52	1125 1229 1737 1533 1194	131	.01 .01 .01 .01 .01	15 17 20 14 11	110 240 660 560 410	569 117 64 32 29	492 21 1 1	3 2 2 1 2 1	87 54 92 08	1.1.1.		1 12.9 1 18.7 1 24.0 1 9.4 1 8.3	4	307 208 180 145 119	190 80 5 5 5
05626 05627 05628 05629 05630	.1 .1 .1 12.3 2.4	.26 .10 .15 .55 .14	1 1 1		.6 .3 1.3 1.3	2 2.61 1 2.01 2 2.79 1 .22 3 .31	.1 .1 .1 .1	7 16		6 20 5050 110	1.13	1	.30 .04 .14 .17 .05	1 5 1	.13 .30 .33 .10	1391 1108 1414 435 243	3 2 197 6	.01 .01 .01 .01 .01	8 10 9 15 8	550 100 310 420 70	27 22 29 60 26	1 1 1 1	2 6 1	73 1 3	1 . 1 . 1 . 1 .	01 01 01 01 01 01	1 7.6 1 4.1 1 6.4 1 25.5 1 3.4	6 2 4 5	97 64 115 86 20	5 5 200 30
05631 05632 05633 05634* 05635	.1 .1 36.7 66.6 .3	.21 .09 .04 .03 .28	1	689 57 97 134 345	1.4 .4 .8 .8 .3	10 7.81 4 1.23 1 7.38 1 .27 1 4.78		17 10 6	71 62 138 55 79	596 9286 77	4.29 1.32	1 1 1	.21 .07 .03 .03 .03	11	.04 .09 .01 .53	2425 991 1536 492 1162	1 6 4 1	.01 .01 .01 .01 .01	19 9 28 19 14	260 220 80 160 70	75 47 86 5915 767	1 142 15 1		9 50 93 86	1. 1. 1. 1.	01 01	1 27.5 1 5.1 1 20.6 1 3.5 1 10.3	3 52 6	241 59 265 656 73	5 5 2170 5
05701 05702 05703* 05704 05705	.1 .1 5.5 6.9 44.1	.32 .28 .16 .31 .05	1	175 208 252 633 45	9.6.3.9.2	4 2.87 1 1.21 1 .34 5 1.85 1 .68	.1 .1 .1 .1 .1 2.4	<u> </u>	19 36 97 55 124	210 267 3621	.88	1 1 1	.26 .26 .13 .20 .04	1 1 1	.13 .03 .16 .02	1811 627 526 1612 461	1	.01 .01 .01 .01 .01	9 9 13 6	500 460 240 630 90	40 25 30 62 922	1 1 213	1 7 1 2 4 1	3 45 1	1.	01 01 01	1 9.9 1 13.0 1 5.1 1 9.9 1 2.1	1 4 1 6	139 66 77 228 134	70 30 950 55 75
05706* 05707 05708 05709 05710	>200.0 8.4 >200.0 >200.0 5.6	.08 .37 .06 .07 .40	1 1 1	294 210 86 46 186	.4 1.2 .2 1.3	1 .36 5 3.66 1 .35 1 .42 5 2.79	36.9 .1 .1 .1	10 3 3	87 36 97 160 10	170 7234 6174 136	3.07 1.05 1.11 3.80	1 1 1	.09 .33 .05 .06 .36	1 1 1	.02	304 1654 437 474 1688	1 1 3	.01 .01 .01 .01 .01	8 13 7 7 12	500 260 130 120 360	109 42 28 46	2004 9 8 5 1	2 4 1 2	1 1 1	1.1.1.	01 01	1 2.6 1 10.3 1 2.3 1 2.8 1 10.9	1 6 10	730 179 86 77 231	1610 5 295 390 5
05711* 05712 05713 05714 05715	>200.0 5.9 101.4 .5 .9	.03 .26 .11 .23 .42	1 128 1 1	949 376 220 574 636	.2 1.1 .4 .9 1.0	6.81	.1 .1 >100.0 11.2 >100.0	9 8 8	129 4 114 21 31	224 6760 120 442	1.61 2.84 4.04	1	.03 .23 .14 .23 .30	1 1 1	.06	177 1109 668 1879 2121	1 7 1	.01 .01 .01 .01 .01	6 9 13 16	130 550 170 170 620	34 39 8606 866 474	9 1 1524 37 23	3 1	11 04 19	1.	01 01	1 1.1 1 8.5 1 3.3 1 5.7 1 10.2	13	29 172 >10000 787 8699	1755 40 25 10 10
05716 05717	.7 .3	.81 .19		167 136	.8 .4	5 1.08 5 .24	1.1 4.0	7 8	18 90	108 91	2.36 1.92		.17 .10	6 1	.33 .06	1091 1393	1 2	.02 .01	9 11	740 400	76 72	47	2 2	1 4		01 01	1 7.7 1 7.4	4	416 267	55
															-															
<u></u> ,	· · ·																													
	l																					<u></u>					<u> </u>			

MINERAL • EN VIRONM' JTS LABORATORIES (DVISION OF ASSAYERS CORP.)

> SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS + ASSAYERS + ANALYSTS + DEOCHEMISTS

Geochemical Analysis Certificate

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C. CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TEL (604) 847-3004 FAX (604) 847-3005

> 5S-0067-RG1 Date: AUG-08-95

Company:GOLDEN HEMLOCK EXPLORATIONProject:TATSIAttn:George Heard

We hereby certify the following Geochemical Analysis of 24 ROCK samples submitted JUL-28-95 by G. Heard.

Sample	Au-we t	Cu	Cu	
Number	PPB	PPM	%	
05501	8310	1185		
05502	2500	4730		
05503	415	>10000	1.940	
05504	5	80		
05551	857	>10000	4.025	
05552	5	160		
05553	20	98 1		
05554	10	135		
05555	5	136		
05556	10	205		
05557	15	1015		
05558	5	51		
05559	5	54		Trench #1 Discovery Zon
05560	90	2680		······
05561	30	289		
05562*	1585	5100		
05563	65	2630		Trench #2 Discovery Zone
05564	5	42		•
05565*	5910	5850		
05566	10	64		
05567	10	16		
05568	10	11		
05569*	4320	>10000	3.877	
05570	3200	8000		
				Trench "3 Discovery Zone

*Possible Metallic Au

£11¢ Certified by

Geochemical Analysis Certificate

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C. CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TEL (604) 847-3004 FAX (604) 847-3005

> 5S-0067-RG2 Date: AUG-08-95

Company:GOLDEN HEMLOCK EXPLORATIONProject:TATSIAttn:George Heard

We hereby certify the following Geochemical Analysis of 3 ROCK samples submitted JUL-28-95 by G. Heard.

Sample	Au-wet	Cu	
Number	PPB	PPM	
05571	150	2570	
05572	135	11 90	
05573	3115	3710	

PROJ: TATSI

MIN-EN LABS - ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

FILE NO: 55-0067-RJ1+2 DATE: 95/08/08

N: George	Heard										SHEKB)327-3	3436		(604)	327-3	423										*	rock *		ACT:
AMPLE UMBER	AG PPM	AL %	AS PPM	BA PPM	BE PPM	BI PPM	CA X	CD PPM	PPM	PPM	CL PPP	۱ ۲	GA PPM	K X	LI PPM	NG X	MN PPM	MO PPM	NA X P	NI PM	P PPM	PB PPM			SR PPM I		TI XI	U PPM PF	V 1 M PPI	H 1 N Pi
5501 5502 5503 5504 5551	82.8 56.7 >200.0 7.9 >200.0	.03	79 1 774 38 1491	2344	1.5 .9 .5 1.4 .7	82 1 5 1	.05 .22 .55 7.02 2.70	.1 .1 >100.0 .1 >100.0	8 26 15 22 30	39 178 108 69 129	1222 4501 >10000 75 >10000	6.72 3.70 1.75 4.30	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.01 .03 .02 .14 .04	1 1 1 1	.01 .04 .12 1.18 .66	28 969 168	533	.01 .01 .01	18 22 12	50 120 280 780 600	804 710 119 71 199	1 5 8965 76 >10000	42244	141 84 40 265 193	1	.01 .01 .01 .01 .01	1 3. 1 3. 1 3. 1 23. 1 9.	0 7	5 2 9 22 4 2 3 55
5552 5553 5554 5555 5556	12.9 60.2 4.9 4.2 7.1	.31 .34 .21 .18 .18	1 23 1 1 125	490 738 1739 1643	.7 .6 .6 .8 1.4	1 1 2 3	1.48 2.12 3.30 1.01 6.12	.1 3.2 .1 .1 .1	7 8 11 14 20	92 139 114 122 71	174 1159 155 151	1.57 1.63 2.28 2.88 4.07	1	.18 .21 .17 .11 .15	1 1 1 1	.07	369 559 992 1059	2 4 11 6	.02 .02 .01 .01	9 11 14 18	720 780 790 490 980	25 37 36 41 65	173 497 62 92 80	1	21 56 57 53 281	3 6 1 1	.01 .01 .01 .01 .01	1 6. 1 8. 1 9. 1 13. 1 20.	9 7 7 1	5 1 7 2 5 1 6 1 3 2
557 558 559 560 561	30.4 1.1 .1 .3	.21 .26 .61 .18 .32	144	1302 2195 566 441 525	.9 1.2 1.3 1.4 1.1	1 5 4	4.35 3.58 2.14 .76 2.15	.6 .1 .1 .1	14 17 20 14 13	202 102 82 69 60	1013	2.78 3.50 3.74 5.12 2.88	1	.14 .17 .27 .14 .28	1 1 2 1 2	.53 .18 .64	980 1033 1030 1521 1901	4	.01 .01 .02 .01	18 21 1 23 1	450	43 52 49 263 113	511 45 5 2 4		100 71 99 1	1 1 1	.01 .01 .01 .01 .01	1 14. 1 17. 1 37. 1 7. 1 13.	5 1 0	
562 563 564 565 566	18.3 .1 .1 82.0 .1	.14 .48 .22 .15 .22	1	632 648 508 256 369	1.2 1.1 .9 1.1 1.2	1	.31 1.14 1.58 1.37 3.77	100.0 >100.0 .1 .1		100 82 100 100 68	5062 2737 62 5605	4.38 2.22 2.12 3.62 2.59	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.14 .29 .23 .15 .20	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.01 .24 .08	895 1859 951 1808 2053	2 4 1	.01 .02 .01	17 15 1 9 18		1448 1155 51 276 48	7 9 1 9 2	2211	25 67 13 1 38	1 1 1 1	.01 .01 .01 .01 .01	1 3. 1 11. 1 5. 1 5. 1 9.	5735	5 6 8 86 5 2 5 2 4
5567 5568 5569 5570 5571	.1 .1 83.6 55.4 13.4	.29 .27 .09 .16 .34	1 1 69 1	494 571 50 140 539	1.0 1.8 1.5 1.5 1.7		3.39	.1 .1 10.6 >100.0 51.8	11 21 15	79 50	21 15 >10000	2.68	1	.19 .23 .08 .16 .26	1 1 1 1 1 1 1	.32 .14 .02	1805 3109 936 1779 3626	1 1 8 6	.01 .01 .01 .01	13 24 36 26	350 900 620	43 89 7503 10000 1552	1 1 48 41 3	13333	39 7 30 1 1	1 1 1 1	.01 .01 .01 .01 .01	1 12. 1 15. 1 3. 1 3. 1 9.	6 2 2 1 1	4 1 2 2 0 14 7 53 6 27
5572 5573	1.4	.21	1	932 191	1.2	1	1.92 .23	:1		64 115		3.06		.21 .06	1		3120 2075				580 130	155 117	24	1	87 6		.01 .01	1 7.		4 2 6 1
				-		. <u></u>																								
								<u>.</u>																						
																_														
																	<u> </u>									- <u></u>			<u> </u>	
																		_												

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C. CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TEL (604) 847-3004 FAX (604) 847-3005

Geochemical Analysis Certificate

Date: AUG-18-95

5S-0072-RG1

Company: GOLDEN HEMLOCK Project: TATSI Attn: GEORGE HEARD

Copy 1. Golden Hemlock, Vancouver, B.C.

We hereby certify the following Geochemical Analysis of 24 ROCK samples submitted AUG-02-95 by S. Tennant.

Samp I e	Cu	Cu	
Number	PPM	%	
O5574	2120		
05575	864		
05576	142		a
05577	742		Trench "4 Discovery Zone
O5578	17		
O5579	6		
O5580	9		
05581	53		Trench 5 Discovery Zone
05582	122		
O5583	3710		
O5584	>10000	3.340	
O5585	5600		
O5586	187		
O5587	36		
O5588	356		
05589	25		
O5590	68		
05591	939		
05592	12		
O5593	9		
05594	14		
05601	1455		
05602	2490		
05610	19		

Certified by_____

COMP: GOLDEN HEMLOCK PROJ: TATSI ATTN: GEORGE HEARD

MIN-EN LABS - ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423 FILE NO: 5S-0072-RJ1+2 DATE: 95/08/18 * rock * (ACT:F31)

TTN. GEORGE I	LINC												, 9496				., 3463	·										. 10	÷.	(71)	
SAMPLE NUMBER	AG PPM	AL X	AS PPM	BA PPM	BE PPM	B1 PPM	CA X	CD PPM	CO PPM	CR PPM	CU PPM	FE %	GA PPM	K X F		MG X	MN PPM	MO PPM	NA X	NI PPM	P PPM	PB PPM		SN SI PPM PPI		TI % (U PPM	V PPM P		ZN AU	J-wet PPB
05574 05575 05576 05577 05578	23.8 15.5 .1 2.6 .1	.15 .14 .27 .13 .29	1 1 1 80	907 1871 451 638 294	1.0 .9 .5 1.7	1 1 1 6	.15 .06 1.36 1.70 6.00	.1 .1 3.0 .1 .1	9 4 4 7 22	58 42 111 52 28	156 802	3.32 2.90 1.09 2.28 4.15	1	.15 .12 .17 .06 .19	1 :	02 01 15 09 86	2444 467 1054 1271 1491	2 1	.01 .01 .01 .01 .01	8 10 36 1	130 120	9036 1015 110 177 62	6 1 1 1	1 5 1 9 1 3 1 4 40	7 1 3 1 1 1	.01 .01 .01 .01 .01	1 3	2.7 3.4 2.8 6.7 1.4	1 1	35 77 82 38 31	725 650 15 75 5
05579 05580 05581 05582 05583	.1 .1 .1 .1	.16 .24 .07 .27 .46	1	704 897 577 575 1582	1.7 1.2 1.5 .2	6 6 9 1 1	7.60 5.89 7.75 .43 .18	.1 .1 7.6 2.7	21 15 22 2 4	29 50 35 77 35	10 60	4.58 3.27 5.07 .49 .85	1 1 1	.12 .13 .06 .11 .09	12.	89	2206 1692 3172 513 609	2 6 1	.01 .01 .01 .03 .03	20 1	950 1040 280 80 120	66 56 97 23 74	1 1 1 3	5 61 2 31 5 60 1 10 1 20	4 1 3 1 0 1	.01 .01 .01 .01 .01	1 2	5.3 6.2 1.5 3.0	1 2 1	04 37 79 80 12	5 5 5 55
05584 05585 05586 05587 05588	42.4 .1 .1 .1 .2	1.31 .85 .26 .24 .43	1 1 1 1	3370 599 784 417 209	1.7 .5 .2 .1 .4	1 1 1 1	.34 .10 .12	18.0 5.2 2.3 .1 .1	31 8 2 1 5	62 43 84 48 131	207 37 395	1.52 .40 .34 1.00	1 1 1	.07 .15 .12 .11 .18	1 :	41 79 19 17 39	1646 879 308 286 195	2 1 1 2	.01 .03 .03 .03 .03	11 3 3	1000 630 40 90 490	724 252 14 5 174	31 4 1 1	5 16 2 1 1 1 1 1 1	7 1 1 1 2 1	.01 .01 .01 .01 .01		6.7 5.7 3.9 2.9 5.1	11 72 5 37 4 5 2 7 17	80 88 79 64 15	295 5 5 20
05589 05590 05591 05592 05593	.1 .1 9.4 .1	.92 .94 .24 .23 .36	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	411 519 127 2882 629	.9 1.1 .5 .4 1.1		.43 2.59 2.27 .40 1.78 4.66	.1 24.5 4.8 .1 .1	11	47 38 133 162 29	963 14 9	2.09 2.34 1.56 1.09 2.74	1	.23 .24 .09 .10 .21	3. 1. 1.	08 85 19 20 46	855 1048 777 678 1180	2	.04 .02 .01 .01 .01	12 1 10 1 9 8 11 1	320 320	27 91 769 31 49	1 1 1 1 1	2 143 1 69 1 120 2 143	7 1 1 1 5 1 5 1	.03 .01 .01 .01 .01	1 1 1 1	9.2 5.7 1.3	2 7 7 6 7 1 1	09 19 60 76 62	5 5 980 30 5
05594 05601 05602 05610 05611	21.3 17.0 .1 .1	1.15 .06 .11 .20 .56		235 498 41 1146 2827	1.2 .7 .4 .3 1.7	1 1 1 1	1.76 .08 .05 .74 .64	.1 .1 .1 .1	15 5 3 27	49 168 156 89 44	1552 2586 23 2783	2.96 2.58 1.36 .89 6.51	1 1 1	.15 .04 .01 .11 .05	1 . 2 .	02 07 11 <u>43 ></u>	812 48 169 1113 10000	3 3 1 1	.03 .01 .01 .01 .01	46	70 7 70 7 190 360	33 2054 2618 30 377	1 1 1 1	3 3 1 1 4 5 12	1 1 1 1 2 1 2 1		1 1 1 0 1 1 1 1	6.8 2.8 8.1	8 1 8 4 5 8	99 80 92 58 22	5 4210 1110 30 145
05612 05613 05614 05615 05616	.1 .1 24.6 .1	.47 .52 .12 .12 .25	1 117	346 517 1981 66 378	1.3 1.1 1.2 .7 1.7	6 8 10 8	4.97 3.11 4.94 .87 4.67	.1 .1 .1 .1 .1	17 13 14 11 22	10 124 60 111 40	24 11 476 39	3.16 2.69 3.46 2.69 4.76	1	.21 .18 .07 .03 .19		93 94 11 36	1117 1064 2491 534 1141	2 1 56 20	.01	18 9 21 1	870 450 80 1050	46 38 58 75 56	1 1 102 1	3 20 2 9 3 28 1 4 19	5 1 2 1 5 1 5 1	.01 .01 .01 .01 .01	1 2 1 9 1 9 1 4		3 1 6 1 1	76 99 22 50 35	5 5 115 5
05651	>200.0	.18	69	32	1.1	38	4.51	4.2	11	73 :	>10000	3.37	1	.07	2.	23	551	2	.01	14	400 2	2472 1	125	3 1	i 1	.01	1 13	5.4	34	24	310
					<u>.</u>																			<u> </u>							
						<u> </u>																									
																															- I

LABORATORIES (DIVISION OF ASSAYERS CORP.) SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS - ASSAYERS - ANALYSTS - GEOCHEMISTS VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C. CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TEL (604) 847-3004 FAX (604) 847-3005

Geochemical Analysis Certificate

EN VIRONMENTS

5S-0101-RG3

Company: GOLDEN HEMLOCK Project: TATSI Attn: GEORGE HEARD

Date: AUG-31-95 copy 1. Golden Hemlock, Vancouver, B.C.

We hereby certify the following Geochemical Analysis of 19 CORE samples submitted AUG-23-95 by G. Heard.

Sample Number	Cu PPM	
05753	8	
05754	11	
05755	11	
05756	14	
05757	153	
05758	224	
05759	32	
05760	42	
05761	159	
05762	16	
05763	15	
05764	11	
05765	16	
05766	47	
05767	12	
05768	2	
05769	2	
05770	2 2 5 3	
05771	3	

Certified by

COMP: GOLDEN HEMLOCK PROJ: TATSI ATTN: GEORGE HEARD

MIN-EN LABS - ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423 FILE NO: 5S-0101-RJ3 DATE: 95/08/31

.

			DA	1E: 93/08/31
		*	*	(ACT:F31)
TI	U	v	¥	ZN Au-wet

SAMPLE NUMBER	AG PPM	AL X	AS PPM	BA PPM	BE PPM	PPM	A CC X PPN		CR PPM	CU PPM	FE X	GA PPM	K X	LI PPM	MG X	MN PPM	MO PPN	NA X	NI PPM	P PPM	PB PPM	SB PPM	SN PPM	SR PPM	TH PPM	TI % PI		V M PP		Au-wet PPB
05753 05754 05755 05756 05756 05757	.9 .3 .6 .4 .3	.13 .14 .18 .31 .92	8 1 1 1	9 10 8 32 127	.2.3.4.5.7	10 1.1 12 .9 13 1.1 10 1.6 6 2.0	4 .1 6 .1 8 .1 1 .1	7 7 8 7	87 87 134 97 34	9 11 14 14 180	1.70 1.92 2.09 2.29 2.95	1 1 1	.01 .01 .01 .06 .37	2 3 3 4 11	.10 .12 .16 .26 .67	287 271 335 452 879	1 1 1 1	.05 .06 .08 .05 .03	8 8 7 10	410 410 410 350 720	20 18 23 23 32	1 1 1	1 1 2 3	50 25 52 3 18	1 1 1 1	.07 .09 .10 .05 .05	1 17. 1 20. 1 23. 1 26. 1 47.	8 9 9 7	5 56 4 44 7 46 4 43 1 111	10 5 25 5 5
05758 05759 05760 05761 05762	.6 .6 .2 .3	.22 .15 .21 .33	1 1 1 1	12 9 28 18 24	.4 .3 .4 .5 .6	4 2.2 10 4.1 9 1.5 5 1.1 7 1.3	3.1 5.1 9.1 3.1	8 8 8	71 75 93 71 91	255 35 49 183 20	2.06 2.30 2.42 2.81 2.55	1111	.04 .01 .02 .02 .10	3 3 4 7 8	.13 .11 .19 .25 .26	482 687 480 535 562	1 1 1 1	.05 .06 .08 .05 .06	6 8 10 7 9	450 470 470 480 440	20 24 25 30 56	1 1 1 1	12222	13 11 23 1 5	1	.06 .08 .07 .04 .02	1 15. 1 17. 1 19. 1 19. 1 19. 1 19.	2	3 29 3 33 4 51 3 62 3 64	5 10 15 10 5
05763 05764 05765 05766 05767	.1 .5 .8 .4 .1	.37 .29 .82 1.07 2.03	1 1 1	19 20 65 81 50	.6 .5 .6 .7 1.2	8 1.5 12 1.7 11 2.0 7 1.7 8 4.7	9.1	7 9 10 13 22	89 117 62 65 187	17 12 16 59 14	2.41 2.44 2.52 2.97 3.44	1 1 1 1	.11 .07 .22 .19 .11	5 4 12 17 35	.20 .21 .65 1.05 2.58	682 619 755 672 1333	1 1 1 1	.05 .08 .04 .04 .03	7 9 10 11 46	450 450 390 440 780	60 30 22 25 18	11111	22234	13 11 14 7 8	1 1 1 1 1	.03 .10 .09 .04 .03	1 19. 1 30. 1 41. 1 29. 1 56.	8 4 8 9	5 77 6 62 3 79 2 70 6 99	55555
05768 05769 05770 05771	.1 .1 .2	.70 .71 .62 .44	1 1 1	75 57 130 235	.3.4.4.3	10 1.1 11 1.2 6 1.7 9 1.2	7 .1 3 .1 8 .1	9 7 7 7	69 47 41 50	3 2 3 3	1.39 1.31 1.15 1.08	1 1 1	.34 .29 .25 .16	10 11 8 6	.84 .75 .66 .55	775 728 831 685	1 1 1	.07 .07 .06 .05	8 5 6 6	530 560 720 500	10 9 10 11	1 1 1	1 1 1	9 1 27 27	1 1 1	.07 .08 .04 .06	1 22. 1 14. 1 11. 1 15.	9	2 66 1 49 1 61 2 57	10 5 5 5
									<u> </u>				<u>.</u>																	
																										•				
					_																									
			ι Ι				·																			·				

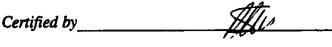
.....

LABORATORIES (DIVISION OF ASSAYERS CORP.)

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS . ASSAYERS . ANALYSTS . GEOCHEMISTS

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C. CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TEL (604) 847-3004 FAX (604) 847-3005


Geochemical Analysis Certificate

Company:	GOLDEN HEMLOCK
Project:	TATSI
Attn:	GEORGE HEARD

Date: AUG-31-95 copy 1. Golden Hemlock, Vancouver, B.C.

We hereby certify the following Geochemical Analysis of 24 CORE samples submitted AUG-23-95 by G. Heard.

Sample Number	Cu PFM	
05655	7	
05656	, 8	
05657	8 5	
05658	9	
05659	9 3	
05660	4	
05661		
05662	5	
05663	5 5 3 5	
05664	5	
05665	4	
05666	31	
05667	110	
05668	38	
05669	35	
05670	4	
05671	16 2	
05672	2	
05673	20	
05674	9	
05675	1	
05676	3	
05677	3 6 3	
05678	3	

(DIVISION OF ASSAYERS CORP.) SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS . ASSAYERS . ANALYSTS . GEOCHEMISTS

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C. CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TEL (604) 847-3004 FAX (604) 847-3005

5S-0101-RG2

Geochemical Analysis Certificate

Company:	GOLDEN HEMLOCK
Project:	TATSI
Attn:	GEORGE HEARD

Date: AUG-31-95 copy 1. Golden Hemlock, Vancouver, B.C.

We hereby certify the following Geochemical Analysis of 24 CORE samples submitted AUG-23-95 by G. Heard.

Sample Number	Cu PPM	Cu %	Pb %	Zn %	
05679	4				
05680	2				
05681	21				
05682*	>10000	1.502	4.15	3.73	
05683*	7950				
05684*	905				
05685	28				
05686	9				
05687	9				
05688	10				
05689	6				
05690	4				
05691	4				
05692	3				
05693	4				
05694	5				
05695	4				
05696	5				
05697	2				
05698	5				
05699	2				
05700	2 3				
05751	13 5				·
05752	5				

*Possible Metallic Au

Atic Certified by

COMP: GOLDEN HEMLOCK PROJ: TATSI ATTN: GEORGE HEARD

MIN-EN LABS - ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423 FILE NO: 5S-0101-RJ1+2 DATE: 95/08/31

* rock * (ACT:F31)

•

TTN: GEORGE I	HEARD										TEL:(604)	527-34	36	FAX:	(604)	527	5425										,	r LOC	;K * ((ACT:F31
SAMPLE NUMBER	AG PPM	AL %	AS PPM	BA PPM	BE PPM	BI PPM	CA X	CD PPM	CO PPM		PPM	FE GA X PPN	K	L I PPM	MG %	MN PPM	MO PPM		N I PPM	P PPM	PB PPM			SR PPM F		TI U X PPI			ZN PPM	Au-wet PPB
05655 05656 05657 05658 05659	.8 .5 1.1 1.5 .8	.82 .43 .63 .52 .55	1 1 25 1	219 38 48 44 102	.67.66	15 17 14 16 12	5.39 9.05 2.95 4.48 6.52	.1 .1 .1 .1	17 13 15 12 11	47 47 63 138 52	7 2. 8 2. 4 2. 10 2. 3 2.	77 3 64 3 55 5	.04	17 6 14 6 11	-86 -32 -67 -34 -62	1257 2147 828 698 1374	1 1 3 1	.06 .03 .03 .06 .04	13 12 12 12 12	950 720 970 950 1080	26 37 26 27 24	13122	22	63 160 113 141 102	1.1.1.1	13 12 12 13 09		34494	85 44 84 56 74	5 5 5 5 5 5 5 5 5 5
05660 05661 05662 05663 05664	.1 1.2 1.4 1.5 1.4		1 1 1 8	293 205 173 197 97	1.2 .7 .7 .7	11 17 16 14 11	7.51 5.44 3.57 5.05 2.20	.1 .1 .1 .1 .1	13 19 22 16 8	29 48 78 65 85	33. 63. 42. 42. 51.	29 4 86 4 09 5	.35	2 24 19 17 9	.83 1.24 1.09 .87 .53	2603 1316 1026 941 499	1 1 2 2	.02 .09 .09 .05 .05	15 19 13 11 9	970 940 660 480 280	56 30 22 19 13	32333		109	1.	.02 .13 .14 .11 .06	23.5 47.9 47.6 45.6 30.5	33555	148 96 84 80 55	55555
05665 05666 05667 05668 05669		.63 .52 .42 1.26 1.10	1 29 1 1	92 47 1525 204 167	.6 .5 1.2 .8 .5	9 11 6 16 12	2.86 6.69 5.14 2.76 1.17	.1 .1 .1 .1 .1	7 11 12 18 13	40 81 54 82 65	3 1. 35 1. 130 3. 44 2. 41 2.	78 6 34 1 87 4 03 4	.24 .56 .56		.58 .44 .77 1.05 1.07	589 576 1830 996 598	1 1 1 1	.04 .02 .01 .06 .04	8 11 15 14 11	290 1190 690 350 520	13 17 49 27 15	4 4 1 3 2	Ž	85 70	1.	.04 .08 .01 .15	37.2	36354	60 44 190 82 71	5 10 10 5 5
05670 05671 05672 05673 05674	.8 1.1 .1 .1	.84 .76 .43 .74 1.14	1 1 1 1	104 114 199 109 187	1.0 .4 .9 .7 .6	7 15 2 3	2.47 15.00 5.69 2.06 1.45	.1 .1 .1 .1	9 10 9 10 10	27 25 50 29 43	5 2. 15 1. 3 2. 25 2. 12 1.	95 6 53 1 12 1	.23 .23 .27 .37	8 10 3 6 12	.50 .55 .88 1.04 1.70	895 2261 1374 863 1149	1 1 1 1	.01 .02 .02 .03 .06	10 12 13 10 11	400 1070 650 620 560	26 30 29 9 2	4 8 1 1	2 1 3 3 1	59 130 160 39 18	1.		14.9 28.7 14.4 14.5 22.1	2 4 1 1	100 60 158 100 81	55555
05675 05676 05677 05678 05679	.1 .1 .1 .1	.85 .58 .29 .60 .37	1	94 43 21 35 34	.5 .4 .4 .4	3 1 1 1	2.15 2.09 2.30 2.70 2.49	.1 .1 .1 .1	8 3 1 2 2	50 57 36 57 36	3.	42 1 80 1 43 1 62 1 46 1		85133	.99 .25 .11 .18 .18	817 310 356 502 469	1 1 1	.05 .06 .03 .07 .04	10 4 5 4 5	470 370 260 280 320	3 1 1 9	11111	2 1 1 1	40 30 42 59 45	1.	.03 .01 .01 .01	18.2 5.8 3.8 6.5 4.4	1 2 1 2 1	57 27 12 34 39	555555
05680 05681 05682 05683 05684	.1 .1 36.5 36.3 2.2	.53 .44 .17 .07 .25	1 1 1 1	40 63 290 89 630	.3 .4 .6 .8	1 2 1 1	2.97 2.63 .96 .44 3.10	.1 .1 >100.0 47.3 32.1	2 3 14 14 9	31 42 43 104 45	23. 23. >10000 2. 7313 4. 1023 2.	05 1	.14 .14 .20 .09 .19	34111	.27 .37 .15 .06 .36	495 615 801 837 1379	1 1 8 1 1	.06 .02 .01 .01 .01	3 5 13 20 9	430 380 400 160 820	4 14 >10000 6127 582	1 38 6 1		45 65 50 84	1.	.01 * .01 * .01 * .01 *	6.0 6.1 3.3 1.6 6.1	1 13 5 2	45 137 >10000 1948 832	5 5 5145 160
05685 05686 05687 05688 05689	1 .1 .1 .1	.34 .51 .50 .25 .39	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	418 229 166 466 272	.5	22212	2.43 1.53 1.24 1.54 1.23	7.4 .1 .1 .1	8 5 5 4 5	37 34 30 19 39	10 1.	851	.10	29846	.33 .76 .59 .43 .59	942 717 626 604 663	1 1 1 1	.02 .05 .04 .04 .05	847 56	490 610 560 260 430	44 17 13 6 7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 1 1 1	49 28 15 68 36		.01 .03 .03 .01 .02	7.1 12.5 18.4 9.5 13.2	1 1 1 1	315 72 57 136 61	40 5 5 5 5 5
05690 05691 05692 05693 05694	.1 .1 .1 .1	.45 .44 .35 .37 .25	1	211 40 33 237 297	.3 .1 .2 .4 .1	1 3 2 1 1	1.68 .72 .76 1.61 1.95	.1 .1 .1 .1	3332	26 38 28 41 19	6 . 4 . 3 . 3 .	57 1 43 1 48 1 68 1 42 1	.12 .18 .12 .22 .09	45533	.34 .49 .42 .27 .28	500 453 394 608 498	1 1 1 1	.07 .08 .06 .02 .02	3 3 8 4 3	270 190 220 240 200	6 1 2 10 6	1 1 1 1	1 1 1 1	26 2 5 42 41		.01 .03 .02 .01	6.1 6.5 5.1 3.3 3.1	1 1 1 1	37 45 39 40 30	5 5 10 5
05695 05696 05697 05698 05699	.1 .3 .1 .1	.40	1 1 1 1	149 231 227 51 77	.2.2.2.2	22122	1.82 1.37 1.21 1.03 .65	.1 .1 .1 .1	33544	32 33 38 39 29	5. 2.	59 1 52 1 75 1 54 1	.19 .16 .21 .17 .25	3 4 7 8	.34 .37 .68 .62 .69	517 397 586 510 485	1 1 1 1	.04 .05 .04 .05 .04	33543	240 200 170 190 220	8 3 8 6 1	1 1 1	1 1 1 1	48 33 13 4 1	1 - 1 - 1 -	01 02 03 03 03	5.7 8.1 14.2 10.4 9.6	1 1 2 1	38 34 52 66 46	5 5 5 5 5
05700 05751 05752	.1 .1 .2	.56 .12 .10	1 1 6	101 16 7	.3 .3 .2	3 5 5	1.03 2.04 1.06	.1 .1 .1	6 5 5	19 88 110		59 1 24 1	.29 .02 .01	12 2 2	.84 .11 .07	556 384 262	1	.04 .08 .06	6 8 6	480 430 450	1 14 12	1	1 1 1	6 26 25	1.	.03 .05 .05	16.4 14.8 10.5	1 4 5	63 31 27	5 5 15
														_	·															
<u> </u>	<u> </u>																						· ···							

LABORATORIES (DIVISION OF ASSAYERS CORP.) SPECIALISTS IN MINERAL ENVIRONMENTS

CHEMISTS + ASSAYERS + ANALYSTS + GEOCHEMISTS

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C. CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TEL (604) 847-3004 FAX (604) 847-3005

5S-0106-RG1

Į.

Geochemical Analysis Certificate

Company:	GOLDEN HEMLOCK
Project:	TATSI
Attn:	GEORGE HEARD

Date: AUG-31-95 Copy 1. Golden Hemlock, Vancouver, B.C.

We hereby certify the following Geochemical Analysis of 24 CORE samples submitted AUG-24-95 by G. Heard.

Sample	Cu	
Number	PFM	
05772	8	
05773	6	
05774	3	
05775	1	
05776	1	
05777	2	
05778	3	
05779	3	
05780	2	
05781		
05782	17	
05783	1	
05784	1	
05785	3	
05786	1	
05787	1	
05788	2	
05789	1	
05790	1	
05791	20	
05792	4	
05793	2	
05794	1	
05795	25	

Certified by

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C. CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TEL (604) 847-3004 FAX (604) 847-3005

Geochemical Analysis Certificate

5S-0 2	106-	-RG2	

Company: GOLDEN HEMLOCK Project: TATSI Attn: GEORGE HEARD Date: AUG-31-95 copy 1. Golden Hemlock, Vancouver, B.C.

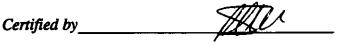
We hereby certify the following Geochemical Analysis of 24 CORE samples submitted AUG-24-95 by G. Heard.

Sample Number	Cu PFM	Cu %	Zn %	
05796	5			
05797	1			
05798	1			
05799	1			
05801	>10000	1.280	1.18	
05802	>10000	1.245		
05803	35			
05804	103			
05805	26			
05806	2			
05807	8			
05808	1			
05809	4			
05810	13			
05811	1			
05812	2			
05813	1			
05814	1			
05815	3			
05816	2			
05817	1			
05818	2			
05819	1			
05820	2			

Certified by_____

VANCOUVER OFFICE: VANCOUVER, B.C. CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TEL (604) 847-3004 FAX (604) 847-3005


Geochemical Analysis Certificate

Company:	GOLDEN HEMLOCK
Project:	TATSI
Attn:	GEORGE HEARD

Date: AUG-31-95 copy 1. Golden Hemlock, Vancouver, B.C.

We hereby certify the following Geochemical Analysis of 24 core samples submitted AUG-24-95 by G. Heard.

Sample	Cu	
Number	PPM	
05821	1	······································
05822	1	
05823	1	
05824	1	
05825	5	
05826	2	
05827	2	
05828	4	
05829	3	
05830	4	
05831	8	
05832	3	
05833	2	
05834	2	
05835	1	
05836	2	***************************************
05837	2	
05838	3	
05839	1	
05840	2	
05841	2	
05842	2	· · ·
05843	1	
05844	3	

MIN-EN LABORATORIES

5S-0106-RG3

COMP: GOLDEN HEMLOCK

PROJ: TATSI

ATTN: GEORGE HEARD

MIN-EN LABS - ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423 FILE NO: 55-0106-RJ1+2 DATE: 95/08/31

* rock * (ACT:F31)

TTN: GEORGE	HEARD									TEL:(604)32/	- 3430) <u>гал</u>	:(00	4) 3 2	7-542												r noci	κ	ACT:F31
SAMPLE NUMBER	AG PPM	AL X	AS PPM	BA PPM	BE PPM	BI CA PPM X	CD PPM	CO PPM	CR PPM	CU FE PPM X	GA PPM	K X P		MG X	MN PPN	MO PPM	NA X	NI PPM	P PPM			SN PPM	SR 1 PPM PF	<u>k M</u>	(PPM		N PPN	PPM	Au-wet PPB
05772 05773 05774 05775 05776	.1 .1 .1 .1	.20 .21 .22 .38 .32	1 1 1 1	21 13 13 26 27		6 1.68 6 1.52 5 .60 5 .51 5 .80	.1 .1 .1 .1	34445	58 59 51 55 54	8 1.11 7 1.19 2 .92 2 1.00 2 1.11	1 1 1 1	.08 .06 .08 .23 .15	1 1 4 8 5	.15	1047 1061 565 1010 967	1	.05 .05 .06 .06 .06	57466	230 260 270 210 400	13 15 6 7 13	1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 3 1 5	1 .04 1 .06 1 .06 1 .05 1 .06	5 1 5 1 5 1		3 3 2 2 3	37 55 79 163 132	5 5 5 5 5
05777 05778 05779 05780 05781	.1 .1 .1 .1	.30 .21 .33 .38 .34	1 1 1 1	43 17 41 35 21	39433	6 .82 6 .57 5 1.11 5 .83 5 1.03	.1 .1 .1 .1	45554	56 54 50 87 39	1 1.05 3 1.03 3 1.24 3 1.08 9 .92	1 1 1 1	.14 .09 .13 .13 .06	45444	.52 .55	934 655 1102 888 909	1 1 1	-05 -07 -04 -06 -05	6 5 7 7 7	470 490 520 400 410	10 9 13 7 7	1 1 1 1	1111	4 12 3 7	1 .05 1 .07 1 .06 1 .06	7 1 5 1 5 1	14.9 14.8	3 3 3 4 1	124 96 118 106 90	5 5 5 5 5 5
05782 05783 05784 05785 05786	.1 .1 .1 .1	.45 .65 .53 .57 .74	1 1 1 1	27 125 310 130 38	4.4.4.6.7	4 1.41 6 .95 9 .98 9 1.59 7 2.08	.1 .1 .1 .1	5 8 12 11 11	66 54 68 58 45	22 1.34 3 1.38 2 1.90 4 2.12 2 1.73	1 1 1 1		67 5 10 1	.90 .75 .73 .24	1068 1226 1129 1579 1883	1 1 1	.06 .06 .05 .05	9 9 11 15 13	400 400 600 740 660	8 16 21 13	1 1 1 1	1 1 2 2	16 2 8 18 32	1 .05 1 .07 1 .10 1 .08 1 .05	7 1 0 1 3 1 5 1	23.6 21.4 21.2	22422	90 139 169 164 162	5 5 5 5 5
05787 05788 05789 05790 05791	.1 .3 .1 .1	.55 .35 .65 .68 .34	11111	71 29 58 152 57	.5.3.5.5.3	6 .88 8 1.07 9 .87 6 .75 5 .91	.1 .1 .1 .1 .1	8 7 10 9 7	52 48 42 47 34	1 1.27 2 1.29 2 1.35 1 1.24 24 1.10	1 1 1 1	.37 .14	8 5 16 1 16 1 4	.51 .08 .04 .52	1028 797 1030 973 778	1	.04 .05 .05 .05 .04	8 7 12 8 6	560 610 890 460 580	13 9 9 8 9	1 1 1 1	1 1 1 1	1 9 4 1 10	1 .06 1 .07 1 .05 1 .08 1 .07	7 1 3 1 7 1	19.8 25.7 21.5 17.9	33222	121 70 119 111 75	5 5 5 5 5
05792 05793 05794 05795 05796	.1	.56 .31 .34 .70 .92	1 1 1 1	124 57 18 51 125	.4 .43 .57	6 1.03 11 1.34 4 .93 7 1.22 8 2.17	-1 -1 -1 -1 -1	11 9 13 11	48 58 30 44 62	3 1.81 2 1.79 2 1.38 32 1.92 4 1.73	1 1 1 1	.34	8 4 5 11 1 <u>11 1</u>	.71	958 1109 967 1493 1129	1 1 1	.06 .06 .05 .06 .08	8 7 10 15	410 640 500 650 1180	15 15 11 5 8	1 1 1 1	2 1 1 2 2	8 14 7 5 95	1 .08 1 .11 1 .06 1 .09 1 .09	1 1 5 1 7 1	42.9 27.2 54.1 36.4	2 3 1 1	114 74 83 172 102	5 5 5 5 5
05797 05798 05799 05801 05802	.1 .1 .1 27.0 28.1	.37 .26 .37 .37 .39	1 21 1 46 5	80 24 42 534 126	.2.2.8.9	1 1.79	.1 .1 100.0 25.3	6 5 14 15	56	2 1.13 2 .87 2 .95 >10000 2.75 >10000 3.90	1 1 2 2	.19	6 9 10 2 1	.37 .22	956 705 1039 534 662	5	.06 .06 .04 .01 .01	8 6 8 14 16	680 550 530 390 690	5 9 5747 294	1 1 16 11		14 8 7 106 106	1 .06 1 .05 1 .06 1 .01 1 .01	5 1 1 1	12.4 7.7 8.8	4	95 66 98 >10000 2892	5 5 3520 5700
05803 05804 05805 05806 05807	.4 1.0 .1 .3 .1	.52 .49 .42 .39 .63	11111	475 149 112 283 126	มี่งมั่งนั้	9 .73 6 1.43 6 2.65 7 1.52 8 1.94	.1 .1 .1 .1	85446	56 52 51 47 53	55 1.39 119 1.10 27 .91 4 .71 12 1.11	2 1 1 1	.19 .14 .17 .11 .22	63335	.72 .36 .37 .33 .56	748 600 1003 492 920	1	.05 .05 .03 .05 .05	76568	350 350 280 220 230	19 12 14 11 10	2222	1 1 1 1	8 26 30 35 34	1 .06 1 .02 1 .01 3 .02 1 .03	2 1 1 2 1	6.9	32322	120 63 42 36 56	5 5 5 5 5 5
05808 05809 05810 05811 05812	.4 .1 .3 .1	.64 .76 .64 .49 .71	11111	96 168 400 92 259	37324	9 1.20 4 2.12 6 1.60 7 .87 9 1.57	.1 .1 .1 .1	66557	44 33 72 34 48	2 .87 7 1.56 17 .83 2 .62 4 1.35	1 1 1 1	.18 .25 .16 .14 .19	5959	.62 .53 .45 .44 .75	598 772 581 413 964	1 1 1 1	.07 .03 .08 .08 .08	59857	280 490 340 240 570	7 11 14 1 10	1 2 1 1	1 2 1 1	18 12 50 17 10	1 .05 1 .01 3 .03 1 .04 1 .07		14.9 10.8 11.3 12.8 18.3	2 1 3 2 3	55 85 68 41 68	5 40 5 5 5
05813 05814 05815 05816 05817	.4 .3 .2 .3	.60 .51 .33 .41 .45	1 1 1 9	67 42 33 46 62	.2.1.2.3	10 .76 10 .61 6 1.38 11 1.21 8 1.53	.1 .1 .1 .1	88576	38 58 39 40 40	2 .92 2 .87 2 .96 2 .99 2 .98	1 1 1 1	.27 .07 .15 .15	10 10 3 6 5	.87 .85 .35 .48 .42	706 546 587 720 801	2	.06 .05 .04 .05 .04	76676	400 380 480 880 740	4 3 12 11 13	1 1 2 2	1 1 1 1	6 4 11 14 18	1 .08 1 .09 1 .06 1 .08 1 .04) 1 5 1 8 1		1 3 3 3 2	76 82 40 55 64	5 5 5 10
05818 05819 05820	.1 .1 .1	.43 .38 .53	1 1 1	87 51 64	.2.2	6 2.38 6 2.11 6 1.62	.1 .1 .1	4 6 5	35 42 41	1 1.22 1 1.03 2 .99	1 1 1	.20 .14 .13	334	.31 .35 .40	1117 951 734	1 1 1	.03 .03 .05	8 10 7	480 470 470	16 15 13	1 2 1	1 1 1	54 35 19	1 .01 1 .03 1 .04	51		222	57 62 56	5 5 5
				· · · · ·			• • • • • • • • • • • • • • • • • • •																						
	I						_															-							

MIN-EN LABS - ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423 FILE NO: 5S-0106-RJ3 DATE: 95/08/31 • (ACT:F31)

TN: GEORGE I	HEARD										TEL:()327-		420										•	e (ACT : F
SAMPLE NUMBER	AG PPM	AL %	AS PPM	BA PPM	BE PPM	BI PPM	CA X P	CD PM I	CO PPM	CR PPM	CU I PPM	FE X I	GA PPM	K X	LI PPM	MG %	MN PPM	MO	NA X	NI PPM	P PPM	PB PPM	SB PPM	SN PPM	SR PPM	TH PPM		U PPM PP	V W M PPM	ZN PPM	Au-we PP
05821 05822 05823 05824 05825	.1 .1 .1 .1 .1	.55 .56 .37 .52 .25	1 1 1 1	44 86 108 57 30	4444	61. 8. 5.	04 70 87 64	.1 .1 .1 .1 .1	6 7 5 6 3	39 32 46 48 55	3 1. 2 1. 2 1. 2 1. 7 1.	58 52 25 08	1 1 1 1	.15 .37 .18 .31 .09	7 15 10 13 3	.46 .70 .43 .63 .20	631 773 759 609 750	1 1 1 1	.08 .06 .05 .07 .04	5 7 6 8 3	720 500 480 400 320	10 14 13 14 13	1 1 1 1	1 1 1 1	21 22 28 5 6	1	.07 .08 .06 .07 .03	1 19. 1 21. 1 17. 1 16. 1 9.	0 1 4 2 9 2	62	
)5826)5827)5828)5829)5830	.1 .1 .1 .1	.33 .41 .50 .52 .79	1 1 1 1	41 178 70 94 95	.4.5.4.5.7	3 1. 3 1. 4 - 5 1.	37 79 87 56	.1	34668	40 50 34 34 35	22325	97 11	1 1 1 1	.18 .15 .20 .25 .22	3 47 9 10	.27 .45 .64 .65 1.10	954 923 741 918 1215	1 1 1 1	.03 .05 .05 .06 .04	4 7 7 10	360 520 380 560 610	11 13 11 14 16	1 1 1 1	1 1 1 2	21 22 2 17 15	1	.01 .01 .05 .06 .05	1 6. 1 12. 1 20. 1 21. 1 22.	1 1 9 1 1 1 5 1	68 72 84 97 138	
5831 5832 5833 5834 5835	-1 -1 -1 -1 -1	.57 .60 .29 .22 .18	1 1 1 1	274 116 26 18 16	.583.22	6 1. 4 1. 3 1. 4 . 3 .	70 73 25 54 70	.1 .1 .1 .1	66 M MN	38 24 27 42 33	8 1.5 3 1.6 1	54 78 59 50	1 1 1 1	.20 .18 .08 .11 .07	66332 2	.64 .70 .42 .35 .23	1179 1187 1042 551 494	1 1 1 1	.04 .03 .04 .06 .05	97534	580 590 380 380 380 360	17 22 13 9 11	1 1 1	1 1 1	28 57 22 3 6	1	.03 .02 .02 .03 .03	1 21. 1 17. 1 9. 1 10. 1 8.	7 1 6 1 2 1 6 1		
5836 5837 5838 5839 5840	.1	.55 .72 .82 .88 .94	1 1 1 1 1	37 54 93 116 66	.5.6.6.7.9	6. 31. 51. 8. 71.	7U 88	.1 .1 .1 .1	5 6 8 10 12	33 25 38 53 26	2 1.0 2 1.4 4 1. 2 1. 4 2.	73 11	1 1 1 1	.22 .20 .30 .44 .31	10 11 13	1.29	1405 1156 1658	1 1 1 1	.04 .03 .04 .04 .03	7 6 10 11 12	420 660	13 12 18 15 22	1 1 1 1	1 2 1 2	9 28 34 1 11	1	.04 .02 .05 .09 .05	1 20. 1 23. 1 33. 1 42. 1 28.	<u>4 1</u>	123 114 108 129 175	
05841 05842 05843 05844	.1 .1 .1 .1	.87 .93 .53 .56	1 1 1 1	178 163 44 82	.7 .8 .5 .5	7 1. 11 . 7 1. 4 1.	03 75 30 01	.1 .1 .1 .1	12 12 9 8	47 29 53 30	2 2. 2 1.1 2 1.3 2 1.3	17 87 58 22	1 1 1 1	.36 .54 .23 .26	11 16 6 7	1.16 1.24 .72 .96	1350 1227 1090 999	1 1 1	.04 .04 .05 .04	14 11 9 9	720 640 590 540	21 19 14 12	1 1 1	2 2 1 1	7 1 20 9	1 1 1 1	.08 .09 .05 .05	1 37. 1 36. 1 26. 1 28.	7 1 4 1 2 2 2 1	155 150 112 97	
																														· · ·	
																_															
																<u> </u>										<u> </u>					
			·					<u> </u>			<u></u>																				
										<u> </u>			<u> </u>	-			. <u>.</u>	. <u>.</u>						<u></u>				. . .			

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C. CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TEL (604) 847-3004 FAX (604) 847-3005

Geochemical Analysis Certificate

5S-0108-RG1

Company: GOLDEN HEMLOCK Project: TATSI Attn: GEORGE HEARD Date: SEP-01-95 copy 1. Golden Hemiock, Vancouver, B.C.

We hereby certify the following Geochemical Analysis of 24 CORE samples submitted AUG-28-95 by G. Heard.

Sample Number	Au-wet PPB	Cu P FM	
			•••••
05845 05846		141 192	
05847		43	
05848		37	
05849		19	
05850		15	
05851		37	
05852		7	
05853		10	
05854		6	
05855		6	
05856		4	
05857		4	
05858		4	
05859		1	
05860		2	
05861		78	
05862*	1285	5080	
05863		16	
05864		9	
05865		2	
05866		4	
05867		4 2 3	
05868		3	

*Possible Metallic Au

Certified by

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C. CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TEL (604) 847-3004 FAX (604) 847-3005

5S-0108-RG2

Geochemical Analysis Certificate

Company:	GOLDEN HEMLOCK
Project:	TATSI
Attn:	GEORGE HEARD

Date: SEP-01-95 copy 1. Golden Hemlock, Vancouver, B.C.

We hereby certify the following Geochemical Analysis of 21 CORE samples submitted AUG-28-95 by G. Heard.

Sample	Cu	
Number	PPM	
05869	2	
05870	1	
05871	2	
05872	2	
05873	2	
05874	1	
05875	25	
05876	8	
05877	4	
05878	1	
05879	1	
05880	2	
05891	3550	
05892	544	
05893	12	
05894	4	
05895	2	
05896	2	
05897	3	
05898	4	
05899	10	
05900	4	

1 Certified by

MIN-EN LABORATORIES

......

PROJ: TATSI

MIN-EN LABS - ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

FILE NO: 55-0108-RJ1+2 DATE: 95/09/01

•

DJ: TATSI	HEARD											:(604			FAX)327-		420	 .								• roo		95/09 (ACT:F
SAMPLE NUMBER	AG PPM	AL %	AS PPM	BA PPM	BE PPM	8I PPM	CA %	CD PPM	CO PPM	CR PPM	CU PPM	FE %	GA PPM	K X	LI PPM	MG %	MN PPM	MO PPM	NA %	NI PPM	P PPM	PB PPM	SB PPM	SN PPM P		TH TI PM %		V PPM PF	W ZN PM PPM	
05845 05846 05847 05848 05849	1.1 5.1 .4 .8 .3	.47 .58 .42 .30 .29	1 1 1 1	248 391 266 586 402	4 5 5 5 5 5	1	1.55 1.90 1.35 1.33 .93	-1 .1 .1 .1	66533	34 46 37 30 23		1.31 1.39 .93 .83 .63	1 1 1	.09 .11 .15 .19 .15	4 5 4 2 3	.62 .73 .51 .38 .39	926 1323 1077 80 4 540	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.04 .05 .03 .02 .03	68544	620 510 210 230 320	55355	3 19 1 3 1	2 1 1	32 51 38 75 44	1 .01 1 .01 1 .02 1 .01 1 .01	11	17.2 16.3 7.3 4.1 4.3	1 113 1 97 1 67 1 56 1 39	41 20
05850 05851 05852 05853 05854	.6 .5 .4 .3 .3	.28 .34 .36 .23 .26	1 1 1 1	190 495 175 126 115	.5	4 3 8 5 1	1.38 .99 .95 .58	.1 .1 .1 .1	23333	31 27 37 24 29	19 43 9 12 7	.68 .84 .71 .57 .53	1 1 1 1	.13 .16 .12 .08 .13	22323	.26 .31 .39 .24 .27	561 852 692 526 341	1 1 1 1	.03 .02 .03 .04 .04	3 4 7 4 3	200 270 360 240 140	4 6 1 1	1 1 1 1	1 1	38 63 22 15 7	1 .01 1 .01 1 .01 1 .02 1 .02	1 1 1	5.0 4.0 6.2 5.9 6.7	1 42 1 59 1 47 1 34 1 43	1
)5855)5856)5857)5858)5858)5859	.4 .6 .2 .4 .3	.26 .25 .25 .21 .18	1 1 2 1	318 117 386 224 208	44522	46564	.90 1.10 1.11 .69 .88	.1 .1 .1 .1 .1	34342	23 40 27 42 25	65464	.78 .89 .87 .64 .57	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.12 .09 .13 .09 .09	2 2 1 2 1	.17 .20 .14 .22 .12	480 639 630 341 413	1 1 1 1	.03 .03 .02 .04 .03	35241	260 280 320 300 320	6 5 1 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1	27 25 50 18 24	1 .01 1 .03 1 .01 1 .02 1 .01	1 1 1 1 1	7.1 2.7 5.7 8.0 4.9	1 59 2 51 1 48 2 41 1 33	2
5860 5861 5862 5863 5864	.4 .9 15.1 .8 .6	.16 .40 .21 .85 .62	1 22 3 1	105 455 333 67 152	.3 1.0 .7 .6 .4	2		.1 10.8 18.0 .1 .1	2 11 8 8 9	14 57 57 38 43	4912 27	.40 2.70 2.26 1.19 1.18	1 1 1	.06 .19 .14 .16 .09	2 2 1 10 8	.21 .78 .32 1.28 .98	313 1143 670 1020 898	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.02 .01 .01 .03 .04	3 11 12 10 4	250 390 410 1240 790	1 192 975 4 1	1 4 1	31	11 42 61 65 23	1 .01 1 .01 1 .01 1 .02 1 .02	11	5.1 0.9 6.1 7.3 6.9	1 34 1 679 2 543 1 190 1 96	12
5865 5866 5867 5868 5868 5869	-8 .7 .9 .7 .1	.44 .70 .62 .21 .19	23 1 10 5 4	21 53 83 15 10	.36.6.2	6 7 8	2.15 1.06 .90	.1	10 11 11 4 5	38 39 29 41 26	5	1.38 1.66 1.61 .62 .74	1 1 1 1	.05 .10 .09 .06 .07	68722	.94 .21 .22	730 1056 1072 538 507	1 1 1 1	.05 .05 .04 .04	5 8 8 5 3	630 590 800 310 260	7 4 8 1 12	1 1 1 1	2	17 27 24 15 2	1 .06 1 .04 1 .05 1 .04 1 .04	1 2 1 2 1 1	23.6 27.0 26.5 8.8 9.3	1 114 1 99 1 69 1 55 1 68	
5870 5871 5872 5873 5874	.1 .1 .2 .1	.29 .32 .25 .32 .48	1281 1	20 20 17 20 20	43344	10 7 8 9 6	.96 .97 1.06	.1 .1 .1 .1	66566	40 34 35 35 41		.89 .79 .77 1.26 1.02	1 1 1	.11 .09 .07 .07 .15	4 4 3 5	.43 .52 .40 .41 .61	769 912 751 717 1110	1 2 1 1	.06 .04 .05 .05 .04	44467	380 440 560 470 280	13 8 12 16 9	1 1 1 1	1 1 1	1 6 9 3 7	1 .05 1 .05 1 .05 1 .05 1 .05 1 .04		0.8 0.3 2.0 4.3 9.0	2 128 1 130 2 104 1 85 1 128	
5875 5876 5877 5878 5879	.1 .1 .1 .1	.35 .36 .31 .35 .33	1 1 5 1	33 59 15 19 22	44344	5 6 6	1.28	.1 .1 .1	55555	35 43 37 36 43	30 10 32 3	.85 .85 .78 .87 .94	1111	.08 .09 .07 .05 .05	34433	.46 .53 .50 .52 .45	1060 1021 911 742 757	1 1 1 1	.04 .05 .04 .05 .05	36464	360 390 470 430 420	12 7 8 11 9	1 1 1 1	1	9 8 11 12 18	1 .03 1 .03 1 .04 1 .02 1 .03	1 1 1 1 1	8.9 8.5 0.0 1.9 2.5	1 101 1 119 1 105 1 92 2 79	
5880 5891 5892 5893 5894	.1 16.9 1.2 .5 .2	.49 .28 .35 .55 .49	1 1 1 1	46 123 200 108 195	47744	1	1.87 2.44 2.21	.1 63.4 .1 .1	5 12 9 6 5	37 92 46 51 29	3392 625 13	1.17 2.43 2.16 1.04 1.00	1 1 1 1	.09 .17 .18 .14 .12	5 1 3 5 5		953 1286 1514 646 696	1 5 2 1 1	.04 .01 .01 .04 .04		380 450 450 1380 1420	9 397 86 12 11	1 5 1 1	3 3	15 16 36 63 70	1 .02 1 .01 1 .01 1 .04 1 .03	1	9.0 8.6 6.2 7.0 4.4	1 86 7 2819 1 182 2 78 1 49	3
5895 5896 5897 5898 5898 5899	.4 .5 .5 .4	.56 .43 .47 .60 .81	26 1 3 1	68 82 87 66 162	42457	7 7 7	1.54 .96 1.46 1.62 2.97	.1 .1 .1 .1	6765 8	50 24 44 37 70	22248	.80 .66 .82 .74 1.60	2 1 1 1	.12 .14 .07 .07 .22	68547	.52 .61 .43 .42 .77	413 388 331 372 1023	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.06 .05 .05 .06	3 6 4	1290 1250 1230 1040 1050	71599	1111	1 1	48 32 43 53 01	1 .05 1 .05 1 .05 1 .04 1 .03	1 1 1 1 1 1	4.6 4.4 3.6 2.5 5.2	2 45 1 46 1 33 1 41 2 80	
5900	.5	.60	1	47	.5		2.14	.1	6	36		1.00	1	.11	6	.50	556	1	.05		1090	10	1	1	77	1.04	·		1 43	
															_												-			

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C. CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TEL (604) 847-3004 FAX (604) 847-3005

Geochemical Analysis Certificate

5S-0114-RG1

Company: GOLDEN HEMLOCK Project: TATSI Attn: GEORGE HEARD Date: SEP-01-95 copy 1. Golden Hemiock, Vancouver, B.C.

We hereby certify the following Geochemical Analysis of 24 CORE samples submitted AUG-29-95 by G. Heard.

Sample Number	Cu PPM	
05881		
05882	6 3	
05883	5	
05884	7	
05885	5	
05886	3	
05887	2	
05888	4	
05889	1	
05890	2	
05901	6	
05902	2	
05903	3	
05904	6	
05905	2	
05906	3	· • • • • • • • • • • • • • • • • • • •
05907	3	
05908	2	
05909	2	
05910	3	
05911	3	,
05912	2	
05913	2	
05914	2	

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C. CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TEL (604) 847-3004 FAX (604) 847-3005

Geochemical Analysis Certificate

Company:	GOLDEN HEMLOCK
Project:	TATSI
Attn:	GEORGE HEARD

Date: SEP-01-95 copy 1. Golden Hemlock, Vancouver, B.C.

We hereby certify the following Geochemical Analysis of CORE samples submitted AUG-29-95 by G. Heard.

Sample Number	Cu PFM	Cu %	Pb %	Zn %	
05915	3				
05916	1				
05917	1				
05918	2				
05919	1				
05920	1				
05921	3				
05922	3 2 2 2				
05923	2				
05924	2				
05925	2		*********		
05926	2				
05927	2				
05928	4				
05929	3				
05930	2				*
05931	2 2				
05932	4				
05933	>10000	1.650	1.61	1.31	
05934	109				
05935	10000	1.205			
05936	308				
05937	34				
05938	24				

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C. CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TEL (604) 847-3004 FAX (604) 847-3005

Geochemical Analysis Certificate

Company: GOLDEN HEMLOCK Project: TATSI Attn: GEORGE HEARD

Date: SEP-01-95 copy 1. Golden Hemlock, Vancouver, B.C.

We hereby certify the following Geochemical Analysis of CORE samples submitted AUG-29-95 by G. Heard.

Sample Number	Cu	
Number	PPM	
05939	61	
05940 05941	20	
05941	31	

Hur Certified by

MIN-EN LABORATORIES

5S-0114-RG3

COMP: GOLDEN HEMLOCK PROJ: TATSI ATTN: GEORGE HEARD

MIN-EN LABS — ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423 FILE NO: 5S-0114-RJ1+2+3 DATE: 95/09/01

• rock • (ACT:F31)

SAMPLE	AG	AL	AS	BA	BE	BI CA	CD	со	CR		GA K	LI M		MO NA	NI P				TH TI	UV		N Au-wet
NUMBER 05881	PPM	<u>%</u> .69	PPM	PPM 55	PPM	PPM %	PPM	PPM	PPN	<u>PPN % F</u> 5 1.47	<u>PM X</u>			PPM %	PPM PPM 4 370		PPM J	<u>2 14 PPM P</u>	<u>PM % P</u> 1.02	<u>PM PPM F</u> 1 19.2	PPM PP 1 10	
05882		.76	1	56 21	.6 .6	5 1.74	.]	11	65	2 1.91	1 11	6.8 71.0 5.7	2 1392	1.05	9 600 4 530	11	į	2 8	1.05	1 23.9	1 13	45
05883 05884	.1	.44 .85	1	101	.7	4 2.31 8 1.35	.1	11	40 48 60	7 2.41	1 .11 1 .12 1 .13	7 1.0	5 1632	1.03	11 770	14	į	3 30	1.04	1 36.6	1 10	7 5
05885 05886	.1	.68 .60	1	153 392	.5	4 1.53	<u>.1</u> .1	9	43	3 1.05	1.18	6.7	5 1159	1.03	3 300	4	1	19	1.03	1 28.6	1 10	3 5
05887 05888	.1 .1	.62 .94	1	128 278	.4	6 1.54 8 1.44	.1	6 10	46 54	31.26 42.06	1.16 2.29	11 1.1		1 .03 1 .03	5 330 8 440	7	1	1 16 2 18	1.04	1 35.4	1 11	B 5
05 889 05890	.1	.56 .70	1	52 375	.5	5 1.45 6 1.19	.1	5 8	58 47	2 1.09 3 1.22	1 .16 1 .22	6.8 7.9	5 1355 7 1125	1 .03 1 .03	2 270 4 370		1	1 28 1 17	1.04	1 22.9 1 21.6	1 12 1 12	25 75
05901 05902	.1 .3	.97	1	59 31	.6 .3	4 2.31 7 1.33	:1	10 10	67 62	7 1.79 2 1.56	1 .13	13 1.1		1 .04	4 910 4 770		1	2 23 2 8	1.03	1 23.6 1 30.3	1 10	0 5
05903	.3	.48	į	39 62	.4	5 1.35		Ĩ	42 52 45	3 1.10 7 .88	1.06	5.5	438	1 .05	3 1400 2 1050	5	1	1 29 1 93	1.06	1 18.7	1 5 1 5 1 2	25 15
05905	.2	.43	<u>i</u>	53	.4	8 1.39	.1		70	4 1.31	1.08	6.5	466	1.05	6 1280	9	<u>i</u>	<u>1 58</u> 1 76	1.08	1 26.8	1 2 3 5 1 5	
05906 05907		.58	1	54 96	.4 .6	7 1.16 6 2.16	.1	10	45 95	3 1.14 3 1.68	1 .10	7 .8	3 760	1.06	3 1250 18 1320 5 1380	5	1	2 125	1.06	1 33.1	1 6	3 5
05908 05909	.2	.39 .77]	32 110	.4	7 1.06 6 1.15		10	29 45	2 .92 2 1.46	1.09	5.5 14 1.0	703	1.04	5 1280	2	1	1 24 2 5 3 38	1 .08	1 17.8 1 26.1 1 35.2	1 8	55
05910 05911		.82	- <u>1</u>	<u>416</u> 100	.6 .6	<u>8 2.07</u> 9 1.82	<u>1</u> 1	<u>10</u> 7	<u>47</u> 33	<u> </u>	1.18	9.7	5 532	1.04	8 1210 3 1010	2	1	2 573	1.06	1 20.4	1 4	0 5
05912 05913	.7 .2	.84 .48	1	52 39	.4	10 1.53 6 1.13	.1 .1	76	54 29	3 1.22 3 .91	3.04 1.06	4 2	262 240	3.11 1.06	3 1230 2 1250	5	1	1 281 1 48	1.10 1.06	1 16.8	2 2 1 2	95
05914 05915	.7 ' .5	.15	1	168 40	.6	91.12 91.27	.1	14 7	31 41	2 1.56 4 1.30	1.57	28 1.8	5 1201 7 417	1.04	4 1540 5 1210		1	2 1 1 65	1 .14 1 .07	1 36.1 1 23.4	1 12 1 4	35 35
05916 05917	.3 .4	.51	1	33 42	.4	6 1.37 8 1.92	.1	8	26	2 1.10 3 1.20	1 .11	10 .7		1.03	6 1300 6 1210		1	1 37	1.06	1 19.2 1 23.2	1 5	45
05918		.91	į	90 44	.4	10 1.01 16 1.45	3	9 16	33 31 56	3 1.28 3 3.47	1 .43	13 1.4	1159	1.04	8 1090 11 1280	1	1	1 1 4 37	1.09	1 57.5	1 9 1 8	75
05920	.8	.80	<u>i</u>	63	.7	12 1.40	.1	11	56	2 2.84	2.12	9.7) 539	1.05	10 1110	<u>12</u> 9	1	3 239	1.10	1 40.9	<u>1 6</u> 1 6	0 5
05921 05922	.9 1.0	.89 .93	1	96 146	.6 .6	13 1.36 15 1.15	.1 .1	14 14	40 39	2 2.97 2 3.10	2.20 2.35 2.14	13 .94 14 1.0 7 .64	7 709	1.05	10 1090	7		4 97 3 173	1.13	1 42.6	1 7	95
05923 05924	1.0	.76	1	154 109	.7 .7	12 1.32 11 1.22 9 1.02	1	11 10 8	43 44 29	3 2.75 3 2.68 2 1.27	2 .14 1 .11 1 .13	6.5	5 432	1.05 1.04 1.04	10 1150 9 1070 7 1140	11		3 94 1 29	1.09	1 31.2 1 37.2 1 20.5		* 5 5 5
05925 05926	.5	<u>.49</u> .37	1	<u>44</u> 28	<u>.4</u> .3	7.93	<u>.1</u> .1	7	23	1 1.02	1.11	5.5	393	1.04	6 1160	1	1	1 24	1.06	1 18.4	2 4	1 5
05927 05928	1.0	.59 .80	1	47 66	.4	10 .95 14 1.13	.1	8 12	25 47	2 1.16 4 2.43	1.25	11 .8	7 649	1.05	6 1150 10 1130		1	1 18 3 <u>7</u>	1.08	1 25.8	1 6	0 5
05929 05930	.6 .6	.50 .66	1	31 61	.6 .5	11 1.35 13 1. <u>19</u>	.1	10 12	33 43	3 3.02 3 3.35	2.06 2.16	5.4	485 7 592	1.04	8 1140 9 1200		1	4 72 4 15	1.08	1 36.9 1 41.8	1 5	6 5 4 5
05931 05932	.8 1.0	.65 1.15	1	63 153	.7	14 1.38 14 1.10	.1	11 15	39 59	32.71 63.07	2.16 3.43	7.6		1.05	9 1040 10 950		1	318 41	1 .10 1 .13	1 36.4	1 5	555
05933	22.8	.18	5	162 204	.6 .5 .7	1 .66	100.0 28.5	9	63 : 36	>10000 2.06 160 2.65	1 .11	1.0		11 .01	10 260	>10000	21	3 31 3 61	1.01	1 4.1	13 >1000	
05935	43.2	.20	18	257	.8	1 1.17	4.6	12	103	>10000 3.78	1.12	<u> </u>	682	6.01	19 520	2102	15	5 112	1.01	<u>1 6.3</u> 1 32.8	7 80	7 <u>3250</u>
05936 05937	1.8 1.2	.57	30	149 126	1.5	1 5.69 5 5.21 9 7.57		24 22 18	41 44 50	423 5.00 43 3.93 29 3.38	1.222	1 1.2 3 1.9 1 .3	7 1047	1.03	26 1490 20 1730 20 1380	82 19 41	12	6 313 5 425 4 111	1 .01	1 44.0	1 18 1 10 1 18	B 5
05938	1.3	.48 .64 .73	1	127 133 312	1.1 .9 .7	9 7.57 1 3.91 2 2.84	.1	14 11	33 44	78 2.75 24 2.16	1 .16	3 1.4	930	10 .02	13 1170 10 1110	15	1	4 221 3 143	1 .01	1 29.7	1 8	45
05940 05941	<u>.9</u> .5	.46	1	118	.8	2 3.94	<u>.1</u> .1	12	35	37 2.52	1.17	2.7		1 .04	11 1070	32	1	3 187	1.02	1 17.2	1 8	
L																						

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C. CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 5MITHERS LAD. 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TEL (604) 847-3004 FAX (604) 847-3005

5S-0118-RG1

Geochemical Analysis Certificate

GOLDEN HEMLOCK Company: Project: TATSI **GEORGE HEARD** Attn:

Date: SEP-11-95 Copy 1. Golden Hemlock, Vancouver, B.C.

.......

We hereby certify the following Geochemical Analysis of 12 CORE samples submitted SEP-01-95 by G. Heard.

Sample	Cu	
Number	PPM	
05942	12	•••••••••••••••••••••••••••••••••••••••
05943	94	
05944	96	
05945	333	
05946	74	
05947	15	
05948	9	
05949	143	
05950	6	
05951	10	
05952	5	
05953	4	

AT 11 Certified by

PROJ: TATSI

MIN-EN LABS - ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

FILE NO: 55-0118-RJ1 DATE: 95/09/11

$\begin{array}{cccccccccccccccccccccccccccccccccccc$.01 1 19.1 3 247 .01 1 44.9 2 120 .01 1 14.3 3 196 .01 1 18.1 1 92 .01 1 14.4 4 180 .04 1 16.4 5 65
5947 .1 .74 1 94 1.1 6 6.02 .1 11 51 17 2.58 1 .21 1 .46 1334 3 .01 19 1290 65 3 2 136 1 .5948 .1 .40 139 473 1.8 6 5.57 .1 17 19 11 3.47 1 .23 1 1.50 1057 1 .02 17 2000 50 1 3 361 1 .5949 .1 .32 1 153 1.5 6 5.57 .1 17 19 11 3.47 1 .20 1 1.02 17 2000 50 1 3 361 1 .5949 .1 .32 1 150 12 2 1 .00 2183 3 .01 19 1360 14 2 257 1 .5950 .4 .63 1 .70 .4 6 1.4 82 1.12 2 .11 3	.01 1 19.1 3 247 .01 1 44.9 2 120 .01 1 14.3 3 196 .01 1 18.1 1 92 .01 1 14.4 4 180 .04 1 16.4 5 65
igeq7 .1 .74 1 94 1.1 6 6.02 .1 11 51 17 2.58 1 .21 1 .46 1334 3 .01 19 1290 65 3 2 136 1 . igeq8 .1 .40 139 473 1.8 6 5.57 .1 17 19 11 3.47 1 .23 1 1.50 1057 1 .02 17 2000 50 1 3 361 1 . igeq9 .1 .32 1 153 1.5 6 5.57 .1 14 82 158 3.54 1 .20 1 1.00 2183 3 .01 19 1360 145 1 2 257 1 . ig950 .4 .63 1 .70 .4 6 1.47 .1 5 7.5 6 1.12 2 .11 3 .33 428 2 .06 7 420 1	.01 1 14.3 3 196 .01 1 18.1 1 92 .01 1 14.4 4 180 .04 1 16.4 5 65
1.1 1.3 1.3 1.3 1.3 1.4 1	.02 1 11.9 6 64

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C. CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TEL (604) 847-3004 FAX (604) 847-3005

Geochemical Analysis Certificate

Date: SEP-19-95 copy 1. Golden Hemlock, Vancouver, B.C.

Company: Golden Hemlock Project: TATSI Attn: GEORGE HEARD

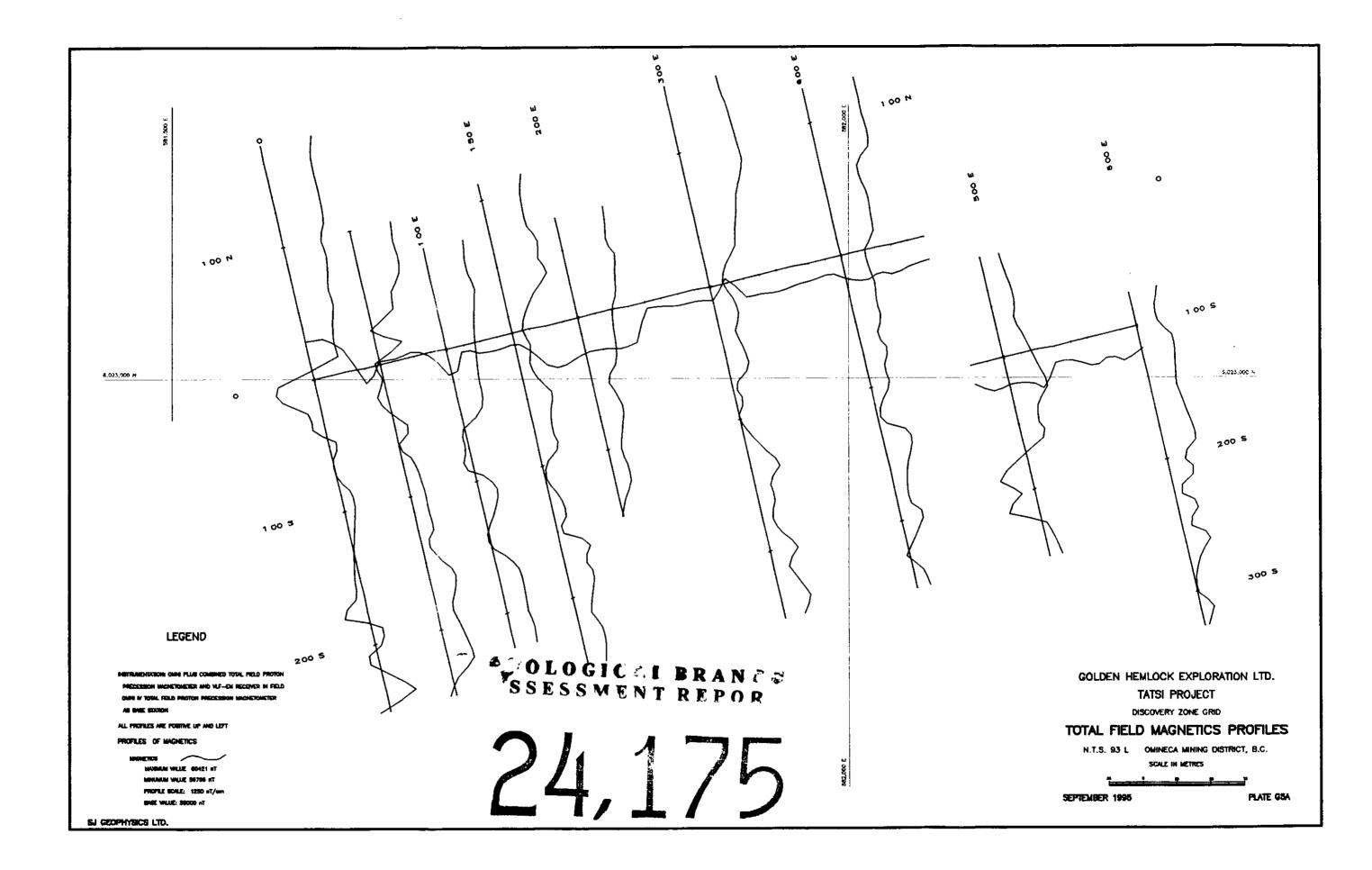
We hereby certify the following Geochemical Analysis of 11 CORE samples submitted SEP-07-95 by G. Heard.

Sample	Cu	
Number	PFM	
1-05954	59	
1-05955	8	
1- 05956	8	
1-05957	54	
1-05958	7130	
1-05959	96	
1-05960	63	
1-05961	44	
1-05962	60	
1-05963	9	
1-05964	51	

TIA Certified by

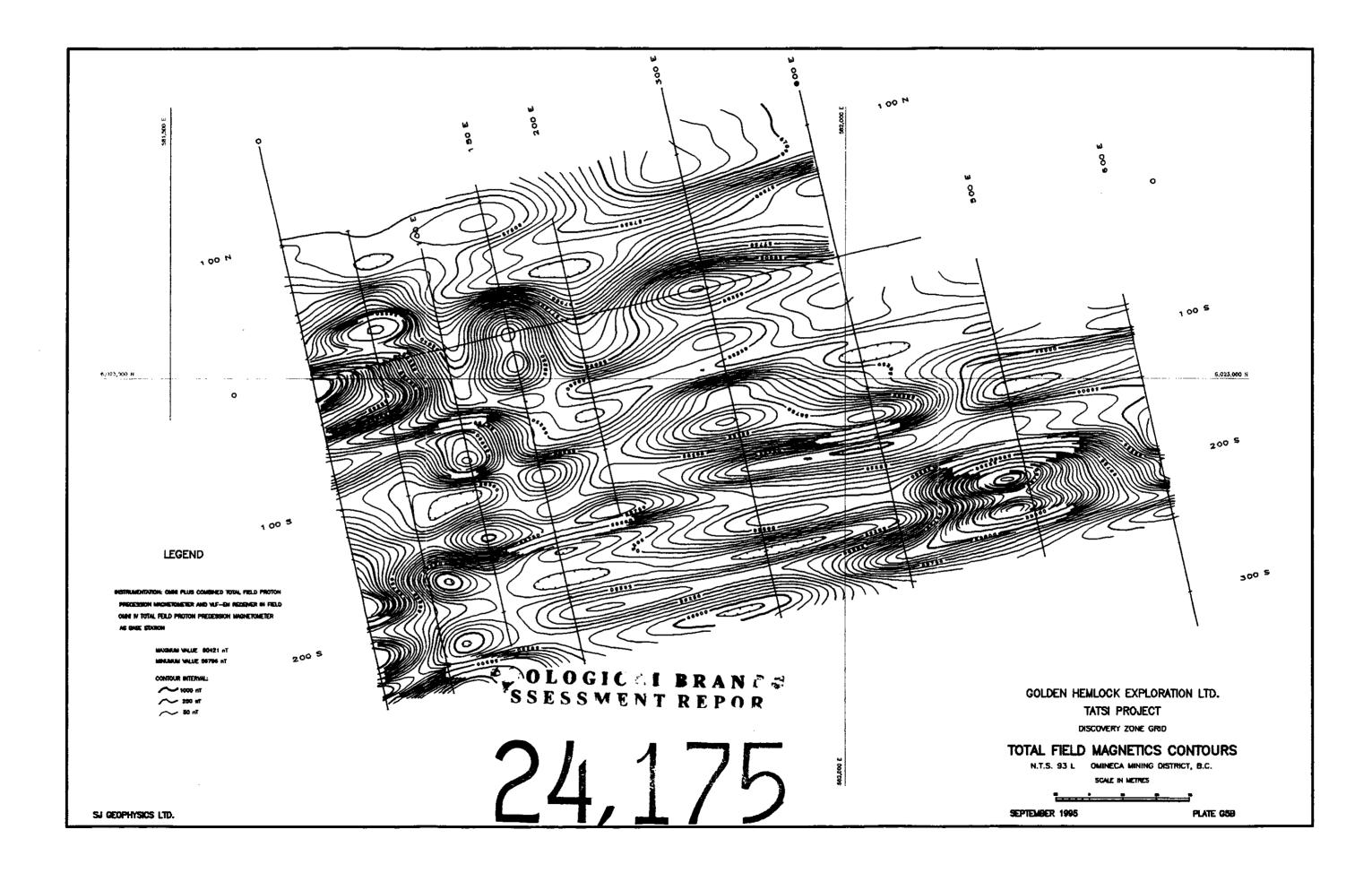
MIN-EN LABORATORIES

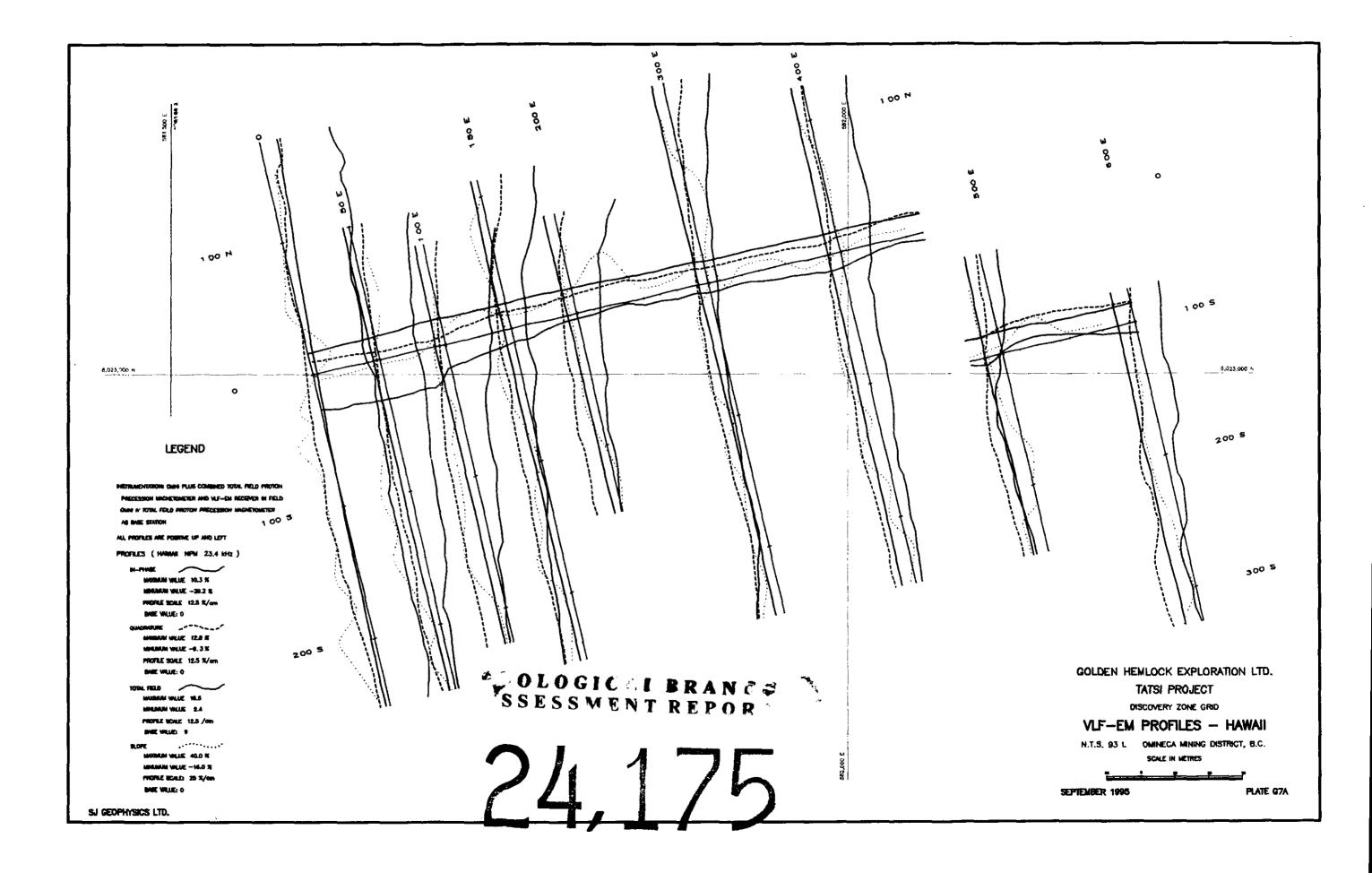
5S-0129-RG1

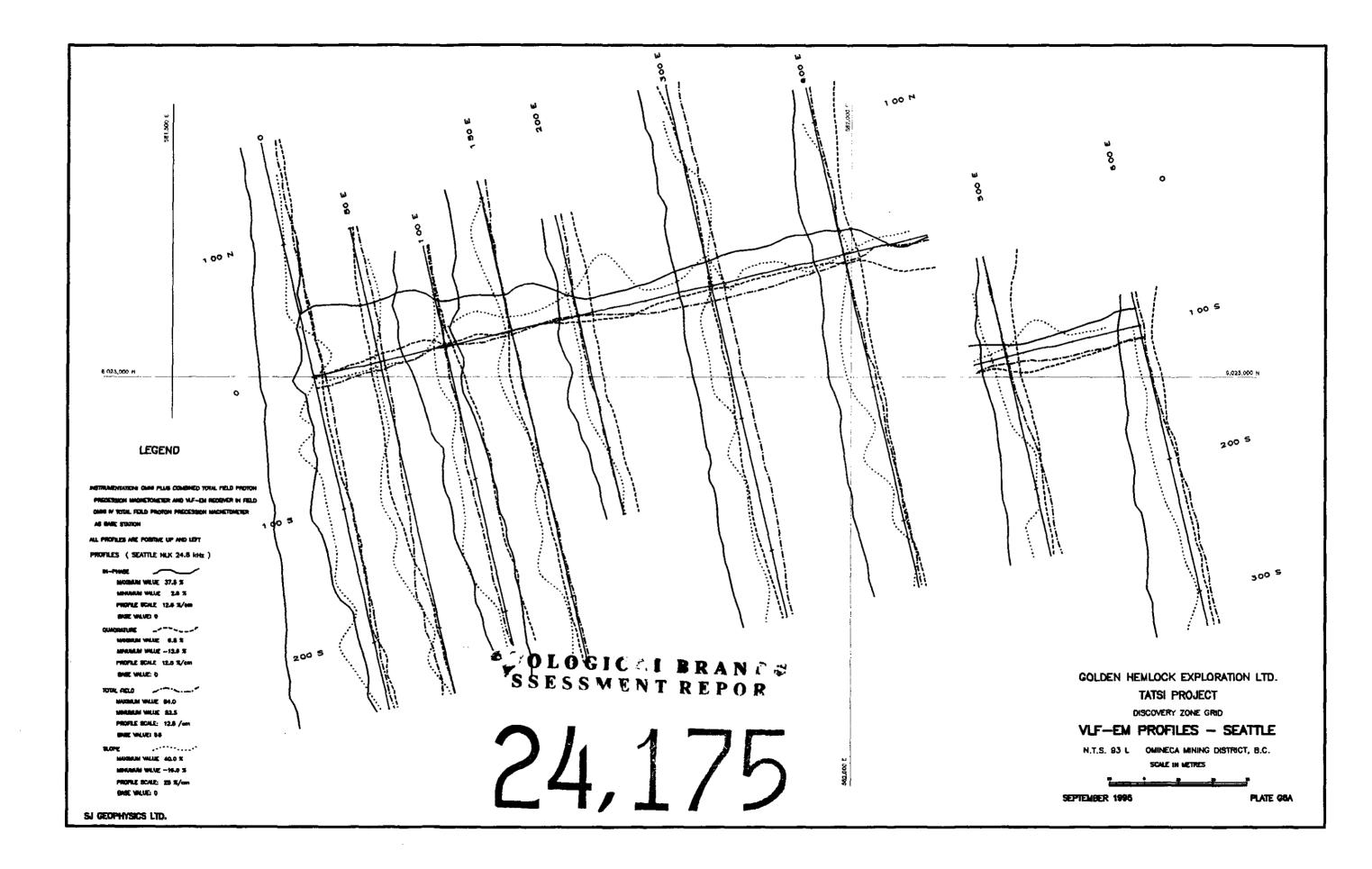

PROJ: TATSI

MIN-EN LABS - ICP REPORT

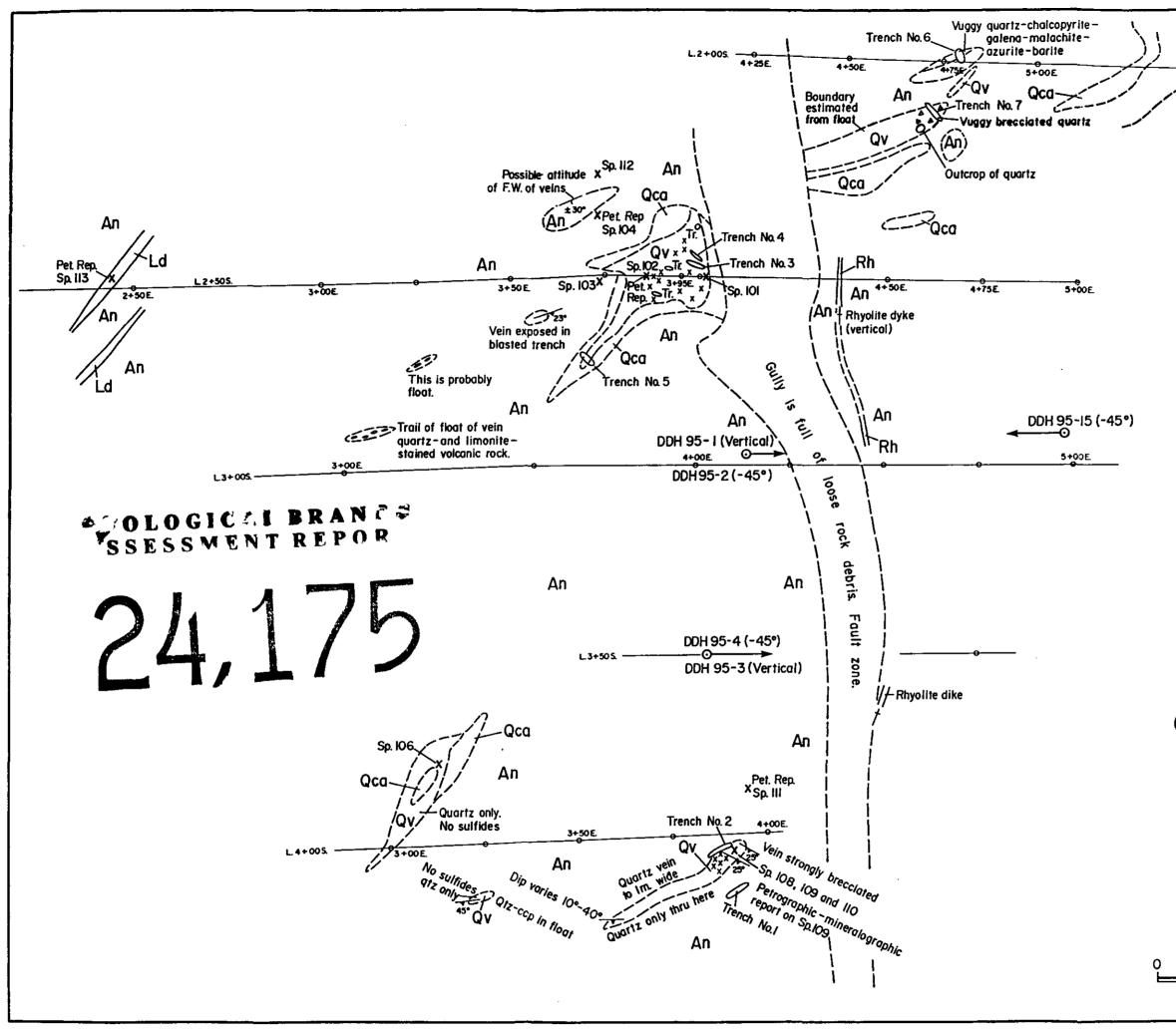
8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8


FILE NO: 55-0129-RJ1 DATE: 95/09/19


TN: GEORGE H	EARD																, B.C. ()327-											*	rock	UATE:	ACT:F3
SAMPLE NUMBER	AG PPM	AL X	AS PPM	BA PPM	BE PPM	BI PPM	CA X	CD PPM	CO PPM	CR PPM	CU	FE X	GA PPM	1	C L	I M M	K PPM	MO PPM	NA X	N I PPM	P PPM	PB PPM	SB PPM	SN PPM	SR PPN	TH	TI %I	U PPM P	V PM PF	W ZN M PPM	Au-wet
1-05954 1-05955 1-05956 1-05957 1-05958	1.6 .1 .5 17.8	.59 .33 .37 .57	1 1 1	303 128 236 173 185	.7 .5 .7 1.1 1.1	5 4 4 2	3.11 1.79 2.80 5.33 2.75	.1 .1 .1 .1	7 5 10 15 13	38 29 35 22 53	85 8 8 59 7425	1.84 1.19 2.35 3.06 4.11	1	.2(.1] .18 .27	3	4 .4 2 .4 2 .8 2 1.4 1 .5	1164 1200 2 2161 2 971 5 1970	1 1 1 1 6	.02 .02 .02 .02	9 4 10 14 21	910 360 420 1830 580	130 22 27 23 840	2 1 1 3	1 1 2 3 4	95 68 157 279 145	1 1 1 1	.01 .02 .03 .01 .01	1 16 1 11 1 23 1 30 1 8	0	5 341 2 170 2 133 1 100 2 244	2
1-05959 1-05960 1-05961 1-05962 1-05963	.1 .3 .2 .7	.33 .38 1.45 .46 .87	1 1 25 126	119 214 324 179 484	1.7 1.3 1.6 1.7 2.1	2 1 5 4	6.42 5.52 5.69 6.11 6.38	2.3 .1 .1 .1 .1	14 12 28 23 37	19 43 87 40 77	117 69 51 70 8	3.17 2.80 4.64 4.52 5.71	1	.10 .2 .49	3	1 .9 1 .9 0 2.8 4 2.0 7 3.6	5 1456 5 1021 5 1431 0 1610 1 1942	1 1 1 1	.01 .01 .02 .01 .01	12 12 46 40 54	1690 1620 610 770 600	140 47 26 220 36	1 1 1 1	3 3 6 6	206 206 290 257 438	1	.01 .01 .04 .01 .01	1 14 1 14 1 62 1 26 1 47	.5 .6 .7	1 440 1 149 1 97 1 269 1 139	1
1-05964	.1	.39	1	81	1.5		6.91	.1	18	31	57	4.42	1	. 19	> :	2 1.0	5 1880	3	.01	27	490	273	2		191	1	.01	1 15	.9	1 351	
												-																			
									·																						
<u>.</u> <u>-</u> .																															
												<u>-</u>																			
								-																							



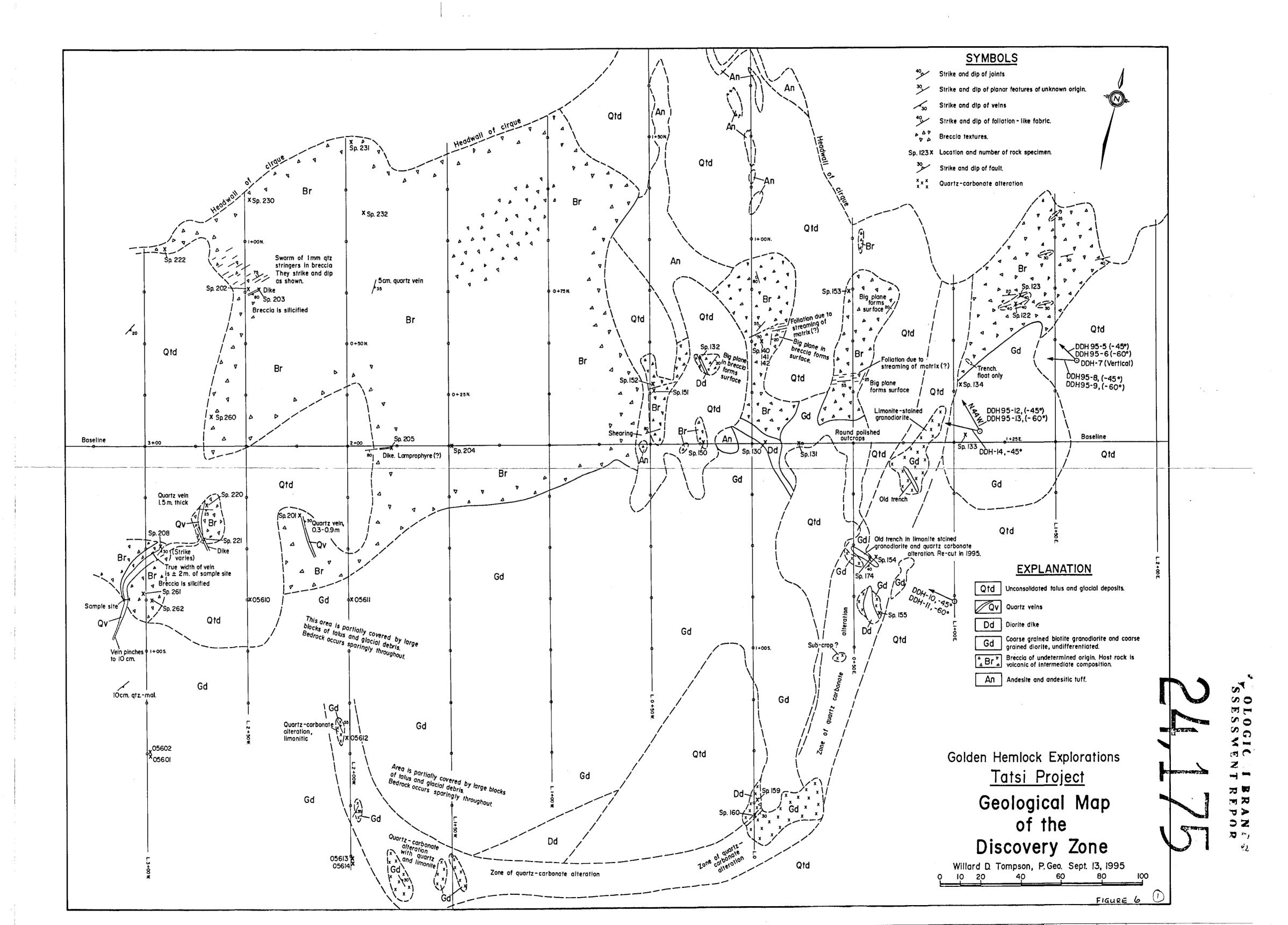

1

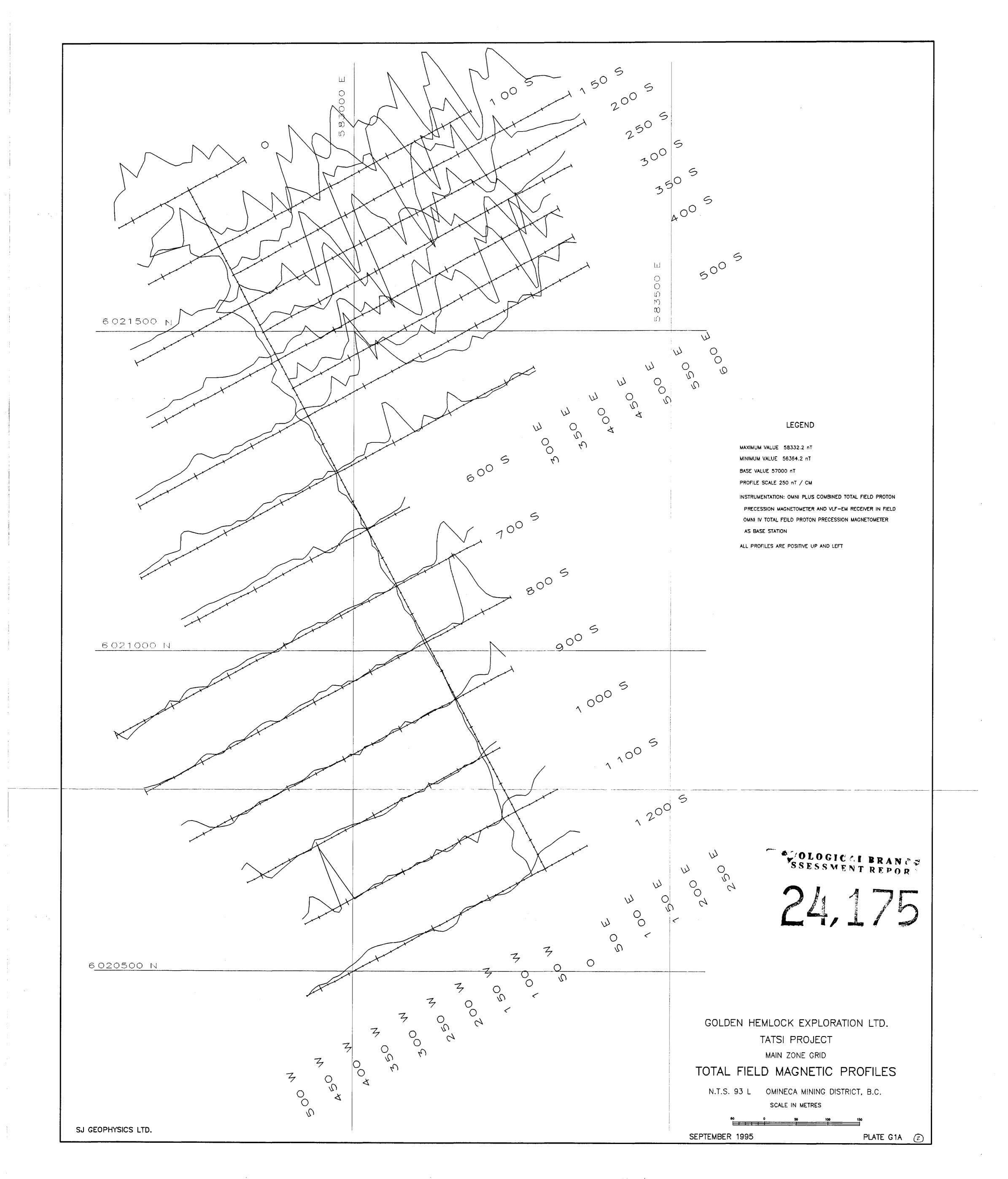

.

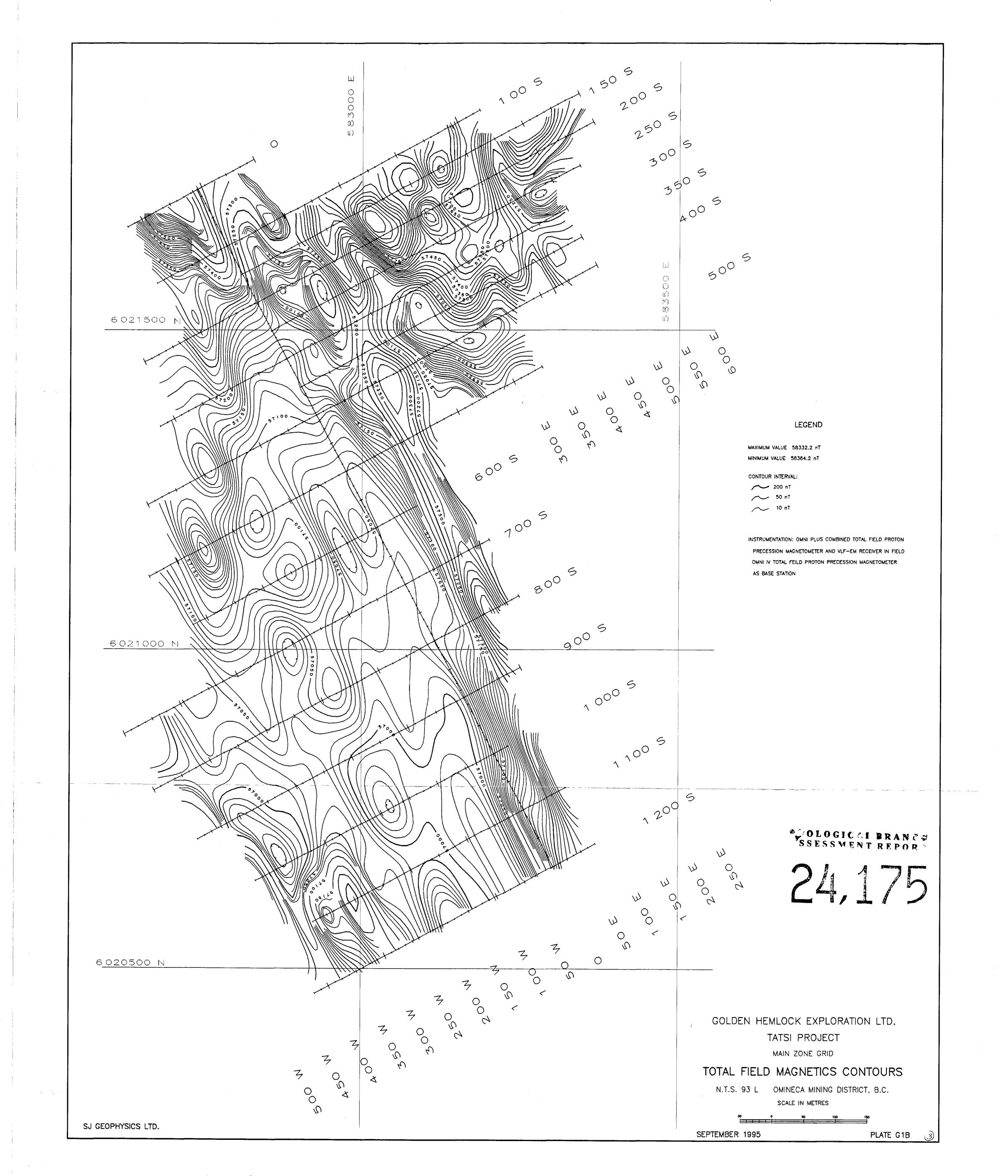
EXPLANATION

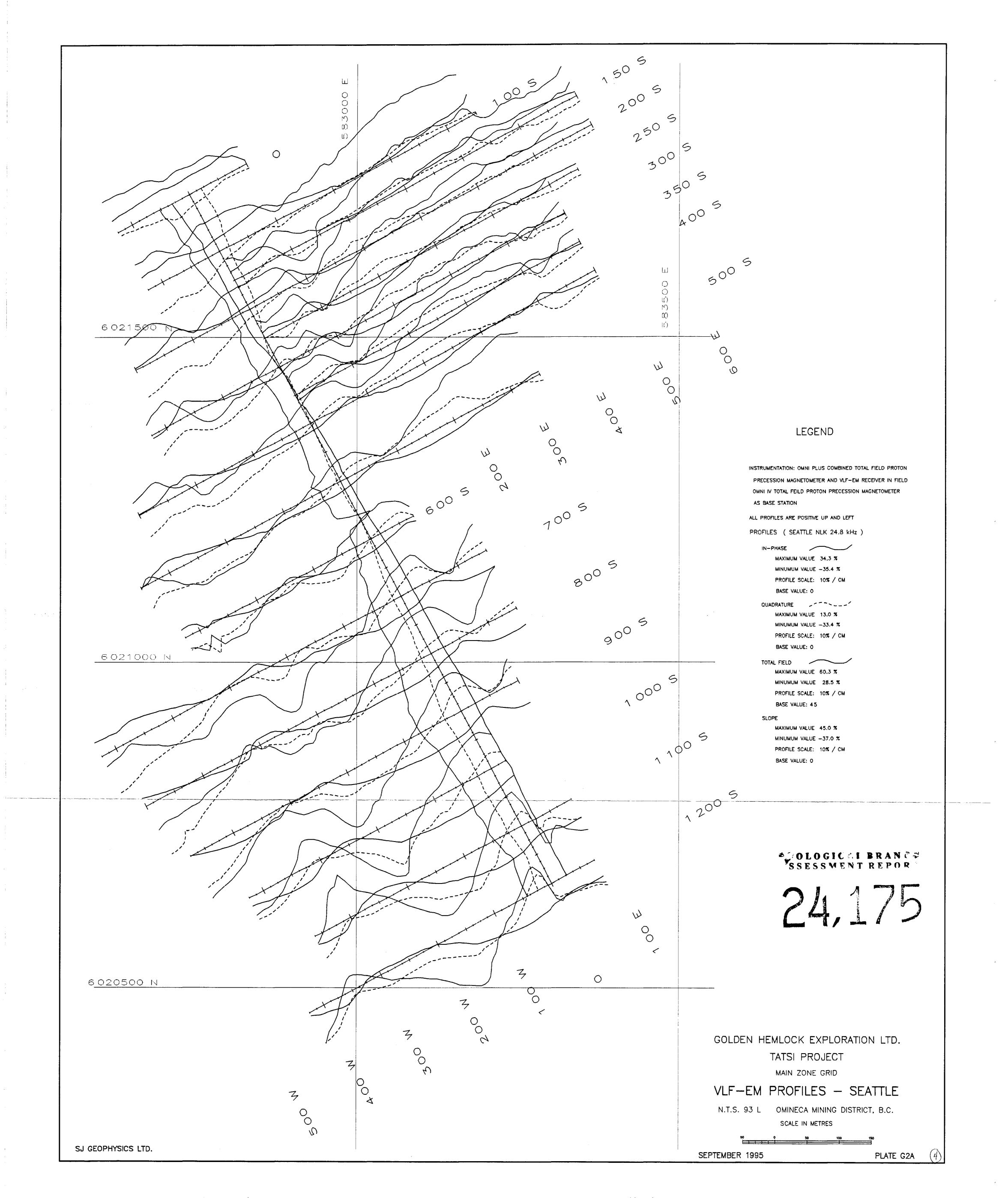
	Quartz veins. Locally cockscomb, locally quartz-breccia. Sulfide mineralization shown by symbol and notation on map.
Qca	Quartz-carbonate alteration
	Andesite crystal-lithic tuff and andesite tuff. Epidote-calcite alteration and veins of calcite and quartz.
Rh	Very fine grained whitish-grey rhyolite dike
30"	Strike and dip of veins.
	Metallic mineralization; Bornite,galena,chalcopyrite,tetrahedrite, and electrum. All not necessarily occurring at any locality.
	Narrow porphyritic hypabyssal latite dikes; 2-3 metres wide, Near vertical dip.
Sp. 104 x 1	Location and number of rock specimen.
DDH ⊙ ≻ l	Location and number of diamond drill hole.

95-1


Golden Hemlock Explorations


<u>Tatsi Project</u>


Geological Map of the Main Zone


Willard D. Tompson, P. Geo. Sept. 13, 1995.

10 20 40 60 80 100 SCALE IN METRES

