GEOLOGICAL SURVEY BRANCH ASSISSMENT REPORTS
DATE RECEIVED DEC 2 2 1995

ASSESSMENT REPORT

FOR THE

1994 SOIL GEOCHEMISTRY AND PROSPECTING

OF THE WOLVERINE 1 & 2 MINERAL CLAIMS

OMINECA MINING DIVISION

NTS 93 L/5

LATITUDE 54º 23'N

LONGITUDE 127º 30'W

OWNED BY: RALPH KEEFE

WORK BY: RALPH KEEFE & DARYL HANSON

REPORT BY: D.J.HANSON

DECEMBER 1995

FILMED

GOVERNMENT AGENT DEC 19 1335 NOT AN OFFICIAL RECEIPT TRANS #.

SSESSMENT REPORT

24,201

TABLE OF CONTENTS

TABLE OF CONTENTS	(i)
LIST OF FIGURES	(ii)
LIST OF TABLES	(ii)
LIST OF APPENDICES	(ii)

1.0 INTRODUCTION

1.1 LOCATION AND ACCESS	1
1.2 CLAIM OWNERSHIP	1
1.3 HISTORY	4
1.4 PURPOSE	4
1.5 SUMMARY	5

2.0 PROCEDURE

2.1 PROSPECTING AND ROCK GEOCHEMISTRY	5
2.2 SOIL GEOCHEMISTRY	6

3.0 RESULTS AND DISCUSSION

3.1 GEOLOGY	7
3.2 PROSPECTING AND ROCK GEOCHEMISTRY	—
3.2.1 WOLVERINE 1	7
3.2.2 WOLVERINE 2	9
3.3 SOIL GEOCHEMISTRY	1
4.0 RECOMMENDATIONS	
4.1 WOLVERINE 1	1
4.2 WOLVERINE 2	1
STATEMENT OF EXPENDITURES	1
AUTHOR'S QUALIFICATIONS	1

FIGURES, TABLES AND APPENDICES

LIST OF FIGURES

Figure 1 - Project Location Map	2
Figure 2 - Claim Location Map	3
Figure 3 - Wolverine 1 - Rock Samples	8
Figure 4 - Wolverine 2 - Rock and Soil Geochemistry	(pocket)

LIST OF TABLES

 Table 1 - Wolverine 1 - Rock Geochemistry_____9

LIST OF APPENDICES

Appendix 1 - Min-En Laboratories Rock Geochemistry

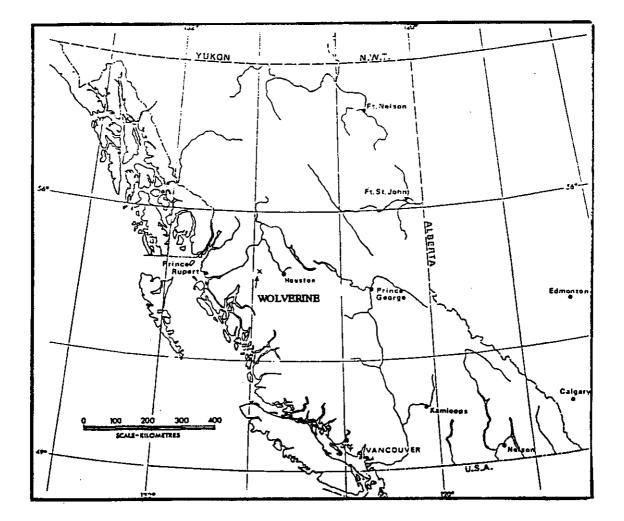
Appendix 2 - Min-En Laboratories Soil Geochemistry

Appendix 3 - Min-En Laboratories Metallic Assays

1.0 INTRODUCTION

1.1 LOCATION AND ACCESS

The Wolverine 1 & 2 mineral claims are located approximately 4 km east of Burnie Lakes on the south side of the Telkwa Range within the Hazelton Mountains physiographic region of west central British Columbia. Access to the property is by helicopter from the town of Houston - approximately 60 km to the east (see Figures 1 ,2). The closest road access is the Thautil River Forest Service Road 15 km southeast.


The topography of both claims is a gentle to flat upland alpine surface, sloping off into subalpine scrub timber.

1.2 CLAIM OWNERSHIP

The Wolverine 1 & 2 mineral claims are wholly owned by Ralph Keefe. A summary of the current claim standing is as follows:

CLAIM	RECORD NO.	<u>UNITS</u>	EXPIRY DATE*
WOLVERINE 1	331443	15	Sept. 27, 1997
WOLVERINE 2	331134	16	Sept. 19, 1997

*pending acceptance of this report

-- ·

. .

2

•

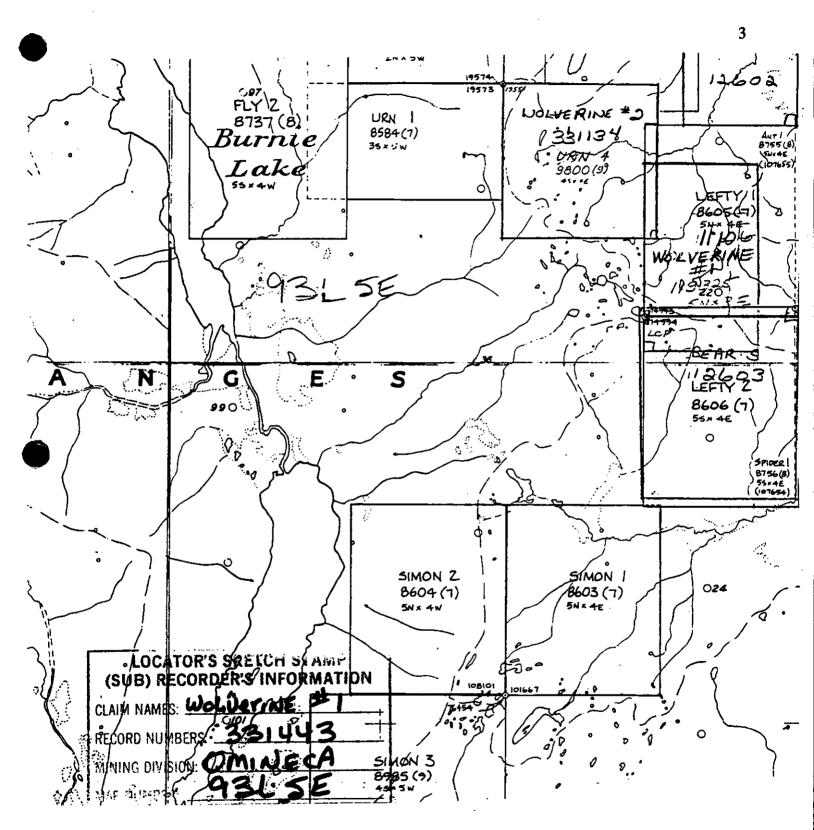


FIGURE 2 - CLAIM LOCATION MAP 1:50,000 SCALE

The copper-silver showing on the Wolverine 1 claim was discovered in 1988 by Equity Silver Mines Ltd. during follow-up prospecting of "heavy mineral" anomalies in the area. Work by Equity included an orientation soil sampling grid, and chip sampling of the showing. Weighted average grades for the showing were reported as 0.35% copper and 26.7 grams/tonne silver over 27.4 metres.

The area of the Wolverine 1 claim was actively explored by Atna Resources Ltd. in 1987-88. Work on the property included extensive prospecting which resulted in numerous new showings, soil geochemistry, VLF-EM, and minor mechanized trenching using a fly-in Kubota back-hoe. Targets were identified but never drill tested. The main quartz breccia zone (Lefty showing) assayed 0.145 oz/t across 4 feet in a composite chip sample.

1.4 PURPOSE

The purpose of the 1994 work program on the Wolverine claims was to confirm the findings of previous operators on the Wolverine 1 and to define the extent of the mineralized zone on the Wolverine 2 by soil geochemistry, rock geochemistry and prospecting. Prospecting on the Wolverine 1 claim confirmed that the "Lefty" quartz-pyritechalcopyrite vein extends for greater than two km along strike. Twelve bedrock samples were taken during the course of prospecting. Two samples of quartz breccia returned 2.74 g/t gold across 0.9 metres and 1.94 g/t gold across 1.2 metres.

On the Wolverine 2 claim a 400 by 200 metre zone of weakly gossanous silicified lower Jurassic Telkwa Formation volcanic rocks was identified by prospecting and soil geochemistry. A weak gold sub-zone was identified by soil geochemistry. The alteration zone is open to the east and northeast.

2.0 PROCEDURE

2.1 PROSPECTING & ROCK GEOCHEMISTRY

The area north and south of the "Lefty" showing on the Wolverine 1 claim was prospected and all quartz veins were sampled. Rock samples were collected by taking approximately two kilograms of rock chips across the width of the vein. Notes were taken describing rock type, mineralization, width of sample, location and orientation of the vein. On the Wolverine 2, the area surrounding the "Equity" showing was prospected for outcrops of siliceous volcanic rocks. Rock geochemistry samples were collected from each outcrop with notes describing mineralization, alteration, rock type, and sample length.

Twelve rock geochemistry samples were sent to Min-En Laboratories in Vancouver for 31 element ICP analysis plus gold. Two samples from the "Lefty" showing were submitted for a Metallic Gold Assay.

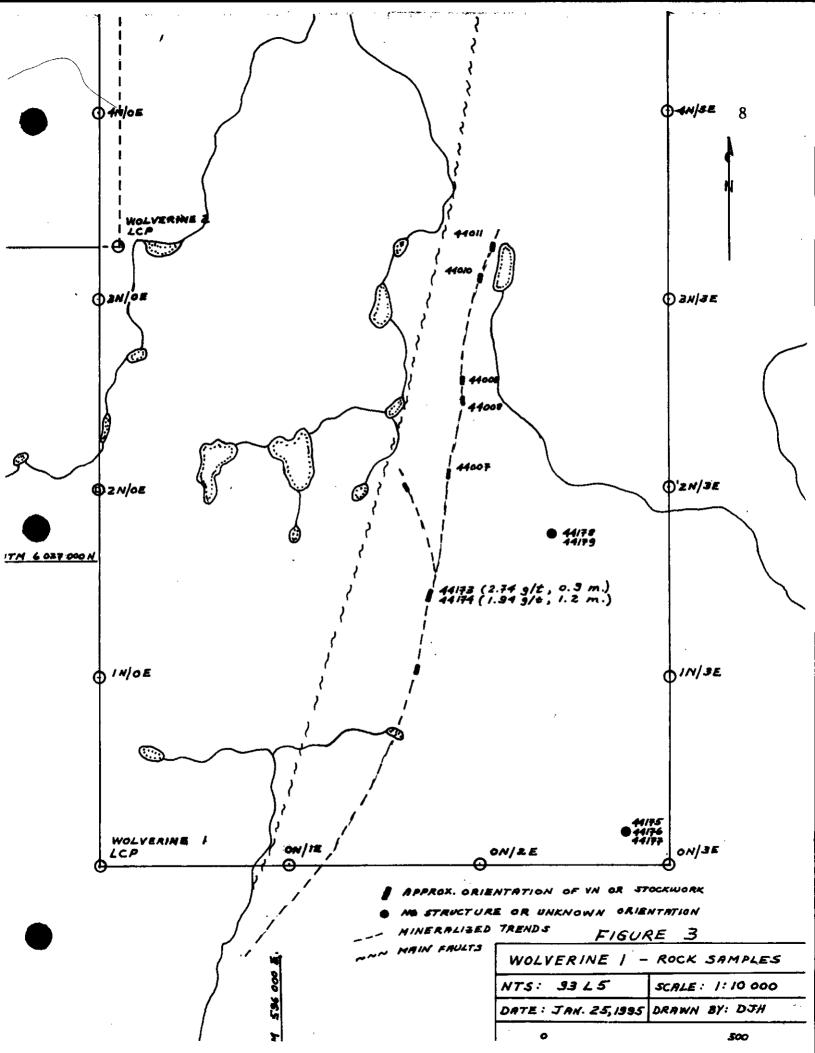
2.2 SOIL GEOCHEMISTRY

In preparation for soil sampling on the Wolverine 2 claim, the "Equity" grid was re-established for control.

Forty-six "B-C" horizon soil samples were collected at 25 metre intervals along east-west lines 100 metres apart. Samples were collected in Kraft envelopes and sent to Min-En Laboratories for 31 element ICP analysis plus gold.

3.0 RESULTS AND DISCUSSION

3.1 GEOLOGY


According to Tipper and Richards (1976) the area of the Wolverine claims is underlain exclusively by Lower Jurassic Telkwa Formation rock units of the Hazelton Group. Major rock types of this formation include breccia, tuff and flows of rhyolitic to basaltic composition. These rocks are the host for many important vein and intrusion related bulk tonnage mineral occurrences in the region. The volcanic stratigraphy has been dissected by several closely spaced, north-northeast trending faults that could be the locus for veins and intrusions.

3.2 PROSPECTING & ROCK GEOCHEMISTRY

3.2.1 WOLVERINE 1

Sample locations are plotted on Figure 3 and the significant geochemistry values are presented in Table 1. Prospecting confirmed that the "Lefty" vein extends for greater than two (2) km subparallel to a major north-northeast trending fault. Metallic gold assays from the main "Lefty" showing are 2.74 g/t over 0.9 metres and 1.94 g/t over 1.2 metres. These values are much lower than the results obtained by the previous operator indicating a high "nugget effect" in this vein. Based upon prospecting data the vein pinches and swells along strike to the north and south. To the south the vein is very poorly exposed under a thin veneer of glacial moraine.

7

TABLE 1

No.	Туре	Width	ppm Cu	ppm Ag	ppm Zn	ppb Au
44007	Chip	0.4 m	2884	1.3	63	25
44008	Chip	1.5 m	1053	0.1	114	13
44009	Chip	1.0 m	3062	0.1	2353	38
44010	Chip	0.3 m	1471	0.1	141	11
44011	Chip	2.0 m	3526	0.1	295	6
44173	Chip	0.9 m	867	0.1	770	2740*
44174	Chip	1.2 m	3759	0.1	264	1940*

WOLVERINE 1 - ROCK GEOCHEMISTRY

* Metallic Assay

3.2.2 WOLVERINE 2

The weakly gossanous zone is mapped in Figure 4 and the significant rock geochemistry values are displayed. The zone is approximately 300 metres long and 200 metres wide and open on the east and northeast sides. The host rock is a pink coloured, fine grained siliceous volcanic rock with rare malachite and azurite visible on fracture surfaces. The siliceous zone is interpreted as a hydrothermal alteration zone because of its shape and because it is non-conformable to local bedding.

Within the alteration zone rock geochemistry results show anomalous copper, weakly anomalous silver, and locally anomalous arsenic and gold.

3.3 SOIL GEOCHEMISTRY

Significant results of the soil geochemistry survey are plotted in Figure 4. The soils within the alteration zone are weakly anomalous in copper (> 100 ppm). A subzone of weakly anomalous gold (> 25 ppb) is defined on lines 4 and 5 N between 10+50 and 11+00 E.

4.0 RECOMMENDATIONS

4.1 WOLVERINE 1

A program of careful float mapping and sampling is recommended for the area south of the "Lefty" showing. This is the area with the highest concentration of gold and a very thin soil veneer. Very detailed soil sampling may also assist to pinpoint the location of the vein.

4.2 WOLVERINE 2

Programs of soil sampling and prospecting are recommended in an attempt to extend the zone of interest to the east. An orientation Induced Polarization survey is recommended to test the response of the alteration zone.

If the alteration zone can be extended in size by prospecting, soil geochemistry and/or Induced Polarization, a 1000 metre program of diamond drilling is recommended to test the system at depth.

STATEMENT OF EXPENDITURES

1.	79 Soil and Rock ICP Geochemical Analyses 2 Metallic Gold Assays		\$1,475.00
2.	Wages R. Keefe - 5 days @ \$200/day D. Hanson - 5 days @ \$200/day		\$1,000.00 \$1,000.00
3.	Camp Costs Equipment Food Radio Rental		\$ 143.00 \$ 490.00 \$ 245.00
4.	Transportation Helicopter (3/4 hr. @ \$750/hr 4x4 Truck		\$ 555.00 \$ 525.00
5.	Report		\$ 250.00
		TOTAL	\$5,683.00

•

11

AUTHOR'S QUALIFICATIONS

- I, Daryl J. Hanson, do hereby certify that:
 - 1. I am a geologist residing at R.R.#1, Quick East Road, Telkwa, B.C.
 - 2. I am a 1971 graduate of the University of British Columbia with a Bachelor of Applied Science in Geological Engineering.
 - 3. I have practised my profession as a geologist for twenty-four years in the fields of exploration, mining and development.
 - 4. I am a member in good standing of the Professional Engineers and Geoscientists of British Columbia.
 - 5. I have no real or beneficial interest in the Wolverine 1 & 2 mineral claims.
 - 6. I personally directed the work programme as described in this report.

Respectfully submitted,

Daugh Am

Daryl J. Hanson, P.Eng.

APPENDIX 1

MIN-EN LABORATORIES

ROCK GEOCHEMISTRY

COMP: MR RALPH KEEFE

MIN-EN LABS --- ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

FILE NO: 4S-0285-RJ1+2

DATE: 94/10/0 * rock * (ACT:F31

ATTN: Ralph Keefe

PROJ:

TEL:(604)980-5814 FAX:(604)980-9621 NA X CR Au-Fire AL X ĊU FΕ MG % MN MO NI P PB SB SR TH TI ZN GA SN ω. CO SAMPLE AS В BA BE BI CA CD K X LI AG. X PPM PPM PPM ž PPM PPM PPM PPM PPM PPM PPM PPM PPM % PPM PPM PPM PPM PPM PPB PPM PPM PPM PPM PPM PPM NUMBER PPM .34 .06 .02 .21 .04 3 537 2.23 .13 .05 936 1 .03 10 440 27 289 20 .01 34.4 68 5 82 25 .13 1533 1 44005 .8 .10 .37 .52 .66 154 474 992 5 16 8 1023 2884 1.02 .15 .01 .22 .35 .46 2 151 .04 5 110 30 13 11 1.01 4.1 87 63 5 100 1 44006 51 1.3 .1 1.1 1 25 13 38 61 90 43 180 109 1 .01 80 44007 1.3 .1 .12 1 5 4 1 - 1 3 1053 2.63 .14 õ .01 15 210 27 12 34 .ŏż 9.6 114 7 101 95 1 1758 35 1 1 44008 .1 1.0 .1 1 Ii 4.03 10 1749 .01 17 190 68 16 17 1.01 8.3 2353 7 106 1.3 15 5 3062 . 10 1 44009 1 .1 1 53 63 12 11 83 29 88 71 11 6 13 .52 34 1.92 23 53 10 24 11 27 3 28 23 31 44010 44011 .85 158 98 2.3 .04 -1 -1 11 1471 8.91 .07 1906 .01 240 14 1.01 13.5 141 1 6 .1 22 3526 2 630 2 480 1 171 48322 6355 538 .01 .03 2.39 14.62 .02 68 660 130 1.12 156.6 295 9 .1 .12 .12 .12 .13 .02 .04 .6 .5 .4 .03 .03 .01 1.48 6 6 1 .01 322 44154 400 .1 1 1 8.9 36 1 4 94 82 4.3 584 .02 130 12 .01 32 44155 709 42 .1 1 1 1 11.5 1 4 1 889 1.02 .15 .01 84 .02 5 120 12 14 1 .01 10 1 3 65 1 4.3 44156 6.5 1 .1 1 1 1 .12 7 7 10 2 634 247 274 251 213 2 276 32232 .03 .1 .1 .1 2 2.01 3 .01 108 .03 180 80 3 12 .01 10.9 100 4 79 44157 5.5 .10 .74554 1.51 3432 .11 .01 .01 181 .03 160 15 ·9 .01 12.2 21 19 5 94 44158 44159 13 1 1.9 .01 .01 244 344 480 .04 .02 .04 5 106 7 132 .03 157 .16 Ś. 110 9 14 .01 8.3 1 1 1 1 1 1 1 .05 24 18 481 128 2 8 13 15 7 .01 ŚŚ 2 11.0 .11 .1 .1 1 414 1.81 .13 170 1 15.4 1 1 44160 59 .12 .ŏż 140 31 .01 67 79 47 2 1.47 6 6.7 1 44161 .1 .10 1 1 1 4 24 374 950 .01 .04 7.8 33 44162 .13 .15 .15 .15 .5.4.63 .09 :1 1 155 1.23 .13 362 6 140 63 8 .01 6 119 26 29 5 4 2 1 .1 254 152 232 .25 .20 .14 163 390 95 68 57 1.16 .ŏi .01 8 15 7.5 20 .01 6 120 1 .01 1 5 44163 18.2 1 1 203 294 731 1.25 11 7 7 .01 .1 .01 .01 90 53 8 .01 8.9 19 1 33 2.1 1 6 1 1 44164 .01 2 161 .01 537 6 100 13 1 -01 6.9 49 1 1 44165 .1 138 .õi .03 Š. ž 9 84 .01 1 1.11 .16 80 .01 5.4 8 1 4 . 14 1 .1 1 1 44166 8.1 6 99 333 23 82 647 337 362 1186 224 425 14 33 .02 1 54 1.26 .14 .01 2 .04 5 200 21 1 8 .01 2.1 3 71 44167 .2 .09 .4.6.4.5.5 1 .1 32434 .03 .02 .02 .03 66 62 63 72 254 178 .01 .01 ż 1.68 8.9 Ż 8 180 8 ō, .01 Ĵ. 44168 2.0 .11 136 .1 .11 2221 1 120 150 44169 8.6 .01 1 .14 45 11 18 8 1 -01 5.7 5 1 1 3 .12 .12 44170 10.0 ī .02 1 249 1.20 .12 .01 8 1 .01 8.4 25 1 1 3 - 1 335 .ŏż 90 12 14 .01 9.5 61 ā. 44171 5.5 Ż .1 Ź 1.44 .14 1 1 8 1 1 1 1 1 .01 .26 .72 22 22 34 17 716 221 77 1 .99 22 .03 5 90 27 3.3 13 5 3 .3 .03 .1 128 .21 1 1 15 .01 101 44172 5.6 . 14 1 867 15 919 .01 12 180 770 7 134 .04 3 2.68 16 .01 10.6 1 44173 .1 .40 .6 4 .1 5 6 1 1 .01 .01 18 2 5 22 18 220 190 87 44174 12 5 5 8 3759 5.54 10 1575 49 264 30 7 .87 1.4 .04 .1 .11 24 1.01 16.2 1 1 .1 200 1.3 .03 .09 44175 5.98 136 35 12 1.7 .24 .1 4 8 332 .18 1 11 1.01 14.1 1 1 7 155 167 ŻĞ 17 55 7.27 Å. .01 200 12 .01 9 158 44176 .1 .41 2 1 . 1 .11 4 1 20.8 1 1 42 165 .06 10 2 2 18 3 127 7 .39 689 3 .01 26 20 7 84 5 2 1 7.44 .14 300 18 1 .01 8 138 44177 .56 1.6 :1 26.7 .1 164 13 ż 3 2 37 28 3 64 5 102 .12 .13 962 .06 9 ٠, 44178 44179 2.00 290 .01 .24 1 14 1.6 1 1 :1 1 124 .5 1.69 .02 150 Ż .07 6 300 13 9 ž .08 .1 .10 1 .01 1 1 1 1 1.4 x

APPENDIX 2

.

MIN-EN LABORATORIES

SOIL GEOCHEMISTRY

COMP: MR RALPH KEEFE

MIN-EN LABS - ICP REPORT

FILE NO: 48-0285-SJ1+2 DATE: 94/09/30

PROJ: WOLVERINE 2

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 TEL:(604)980-5814 FAX:(604)980-9621

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	PROJ: WOLVERING ATTN: RALPH KEEFE	E 2								70		L:(604)	•			(:(604)98			12									* s	oil*		4/09/3 CT:F31
L2H Y-25E 1 96 1 15 53 1 03 64.8 175 1 4 18 4 L2H Y-25E 1 1 1 9 4 10 15 23 10 24 200 25 23 0.01 21 200 25 10 21 200 25 10 22 20 10 21 20 15 31 15 15 10 22 20 10 21 10 31 14 <th< th=""><th></th><th></th><th>AL ¥</th><th></th><th></th><th></th><th></th><th></th><th>CA X</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>			AL ¥						CA X																						
$ \begin{array}{c} 128 \ 6.75c \\ 128 \ 6.75c \\ 1.1 \ 6.7 \ 1.1 \ 6.17 \ 1.1 \ 5.0 \ 0.3.46 \ 1.2 \ 1.1 \ 5.7 \ 1.75 \ 1.276 \ 1.1 \ 5.77 \ 1.75 \ 1.276 \ 1.1 \ 5.77 \ 1.276 \ 1.$	L2N 7+25E L2N 7+50E L2N 7+75E L2N 7+75E L2N 8+00E	.1 .1 .1	.96 .91 1.19 .87 1.12	1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	55 121 67 106 59	.8 .9 .7 .9		.15 .13 .10 .09 .14	.1	6 3 4 5 4	37 3. 26 2. 56 2. 85 3. 22 2.	.24 .36 .76 .13 .90	.06 .06 .07 .10 .06	13 7 8 7 7	.63 1212 .30 950 .27 715 .28 1175 .30 604	3 2 1 3	.01 .01 .01 .01 .01	21 82 13 126 12 121 17 92 14 110	0 39 0 26 0 28 0 36 0 31	15 14 18 12 16	53 59 51 42 54	1 1 1 1 1	.03 .02 .03 .02 .03	64.8 49.1 52.8 52.4 48.6	175 127 107 108 88	1 1 1 1	1 1 1 1 1	4 4 4 3 3	18 14 10 8 11	4 5 4 2 3
L3N 7*50E .1 1.13 1 1.96 1.1 5 .22 .1 5 .33 .11 .12 12 .5 .25 .783 .3 .01 18 1190 .35 17 .82 1.0 .66 .1 .22 1 5 .33 .11 .12 .11 .13 .11 .13 .11 .12 .13 .13 .13 .13 .13 .13 .13 .13 .13 .13 .13 .13 .14	L2N 8+75E L2N 9+00E L2N 9+25E	.1 .1 .1	.99 1.29 1.13 .91	1 1 1 1	1 1 1 1	209 150 108 155	1.1 .8 1.1	6 4 5	.17 .11 .12 .14	.1 .1 .1	5 3 5 6	60 3. 39 2. 49 3. 57 3.	.36 .65 .37 .22	.12 .15 .12 .12	11 8 12 13	.55 1298 .32 541 .49 779 .57 1178	2 3 3	.01 .01 .01	20 111 12 127 19 118 24 85	0 37 0 28 0 29 0 32	16 21 16 12	64 62 51 49	1 1 1 1	.03 .02 .02 .03	64.6 53.9 60.3 58.9	146 86 135 109	1 1 3 1 1	1 1 1 1	444	16 13 13 16	4 2 6 5
L3N 9475E L3N 9475E L3N 9425E L1 1,26 1 L4N 7425E L1 1,26 1 L4N 7425E L1 1,26 1 L4N 7450E L1 1,26 1 L4N 7450E L4N 74	L3N 7+50E L3N 7+75E L3N 8+00E	.1	1.13	1 1 1 1	1 1 1 1 1 1	96 110 93	1.1 .9 1.2	577	.22 .25 .27	.1 .1 .1	5 5 8	333. 343. 623.	.11 . .03 . .86 .	12 15 14	12 12 16	.55 783 .60 689 .82 2104 .45 902	3 4 4 2	.01 .01 .01	18 119 17 114 27 106	D 35 D 37 D 54	17 20 19	82 100 87 73	1 1 1	.04 .05 .05	64.9 65.1 77.1	117 123 251	1 2 5 1	1 1 1	4 5	18 19	1 4 4 1
L4N 7+75E .1 .04 1 159 1.2 6 .16 .1 6 26 3.27 .10 11 .52 798 2 .01 22 910 33 16 63 1 .03 71.4 112 2 15 .71 155 .71 155 .71 155 .71 155 .71 155 .71 155 .71 155 .71 155 .71 155 .71 155 .71 155 .71 155 .71 155 .71 155 .71 155 .71 155 .71 155 .71 155 .71 .61 123 .27 .09 11 .56 1376 2 .01 .25 100 .35 .65 1 .3 16 .22 .01 .26 100 .35 .65 1 .31 .26 .25 .10 .02 .25 .10 .26 .25 .10 .33 .64 .17 .10 .35 .35 .35 .10 <th>L3N 8+75E L3N 9+00E L3N 9+25E</th> <th> .1 .1 .1</th> <th>.05 .77 1.26</th> <th>1 1 1 1</th> <th>1 1 1</th> <th>3 155 136</th> <th>.1 1.1 1.1</th> <th>1 6 6</th> <th>.01 .21 .13 .13</th> <th>.1 .1</th> <th></th> <th>22 127 3. 151 3. 35 3.</th> <th>.13 .35 .21 .60</th> <th>.20 .10 .19</th> <th>15 8 9</th> <th>.02 22 .45 1392 .36 890 .51 1122</th> <th>1 2 4</th> <th>.01 .01 .01</th> <th>1 12 17 77 17 145 25 123</th> <th>D 1 D 31 D 34 D 38</th> <th>1 13 23 18</th> <th>2 58 71 59</th> <th>1 1 1 1</th> <th>.01 .04 .02</th> <th>1.4 66.1 63.0</th> <th>4 141 127</th> <th>1 1 4 1</th> <th>1 1 1 1</th> <th>-5 °</th> <th>14</th> <th>7 4 8 9</th>	L3N 8+75E L3N 9+00E L3N 9+25E	.1 .1 .1	.05 .77 1.26	1 1 1 1	1 1 1	3 155 136	.1 1.1 1.1	1 6 6	.01 .21 .13 .13	.1 .1		22 127 3. 151 3. 35 3.	.13 .35 .21 .60	.20 .10 .19	15 8 9	.02 22 .45 1392 .36 890 .51 1122	1 2 4	.01 .01 .01	1 12 17 77 17 145 25 123	D 1 D 31 D 34 D 38	1 13 23 18	2 58 71 59	1 1 1 1	.01 .04 .02	1.4 66.1 63.0	4 141 127	1 1 4 1	1 1 1 1	-5 °	14	7 4 8 9
L4M 9+00E .1 .76 1 1 206 1.3 4 .16 .1 7 138 3.33 .11 8 .44 1719 2 .01 26 730 37 10 52 1 .02 54.3 129 1 1 3 13 29 L4M 9+25E .1 .71 1 165 1.1 4 .23 .1 80 9 .55 1828 1.01 23 940 040 10 465 1.03 56.5 156 1 3 10 22 L4M 9+75E .1 .80 1 163 1.2 6 .24 .1 6 69 .29 .08 12 .07 121 22 .01 23 .70 21 1 .6 63 2.90 .08 11 .64 .04 .90 .14 .1 .3 .11 .21 .1 .4 .22 .10 .23 .70 .21 .1 .1 .13 .11 .10 .15 <th>L4N 7+75E L4N 8+00E L4N 8+25E</th> <th>.1</th> <th>1.04 1.09 .93</th> <th>1 1 1</th> <th>1 1 1 1</th> <th>159 147 140</th> <th>1.2 1.1 1.3</th> <th>6</th> <th>. 16</th> <th>.1</th> <th>67</th> <th>26 3. 33 3. 49 3.</th> <th>.27 . .37 . .71 .</th> <th>10 13 13</th> <th>11 15 13</th> <th>.71 1055</th> <th>223</th> <th>.01 .01 .01</th> <th>22 91 24 135 28 107</th> <th>0 33 D 37 D 44</th> <th>16 17 14</th> <th>63 102 65</th> <th></th> <th>.03 .04 .03</th> <th>71.4 66.2 74.5</th> <th>112 108 159</th> <th>2 2 1 1</th> <th>1 1 1 1</th> <th>5 5 5</th> <th>23 22 26</th> <th>8 17 5 3</th>	L4N 7+75E L4N 8+00E L4N 8+25E	.1	1.04 1.09 .93	1 1 1	1 1 1 1	159 147 140	1.2 1.1 1.3	6	. 16	.1	67	26 3. 33 3. 49 3.	.27 . .37 . .71 .	10 13 13	11 15 13	.71 1055	223	.01 .01 .01	22 91 24 135 28 107	0 33 D 37 D 44	16 17 14	63 102 65		.03 .04 .03	71.4 66.2 74.5	112 108 159	2 2 1 1	1 1 1 1	5 5 5	23 22 26	8 17 5 3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	L4N 9+00E L4N 9+25E L4N 9+50E		.71 .67	1 1 1 1	1 1 1 1	206 154 165	1.3 1.0 1.1	44546	.16		7	138 3. 102 3. 80 2.	.33 .18 .98	.11 .08 .07	8 9 9 12	.44 1719 .55 1828 .51 1302 .71 2523	2 1 1 2	.01 .01 .01	26 73 23 94 19 87	0 37 0 40 0 36	10 10 10	52 46 65	1	.02 .03 .03	54.3 56.5 50.0	129 156 131	1 1 1 1	11111	332	13 10 10	29 2 3
L5N 8+75E .1 .97 1 1 157 1.5 5 .12 .1 8 41 3.60 .06 15 .69 2159 2 .01 31 1310 42 14 51 1 .02 72.6 142 1 4 24 1 L5N 9+00E .1 .78 1 1 138 1.1 3 .06 .1 7 36 3.27 .08 10 .44 1802 1 .01 26 1040 32 12 39 1 .01 53.0 132 1 1 3 14 4 L5N 9+25E .1 .83 1 1 203 1.1 4 .35 .1 6 29 2.95 .09 11 .48 100 2 .01 22 38 11 16 1.04 1 1.31 1 3 12 6 40 3.09 .10 12 .68 1162 2 .01 22 710 37 10 8.0	L4N 10+25E L4N 10+50E L4N 10+75E	.1 .5 .1	.81 .86 .84	1 1 1 1	1 1 1 1 1	133 96 179	.9 .5 .9		.21 .11 .12 .15	.1	6 4 4	83 2. 22 1. 47 2.	.90 .80 .70	.08 .04 .07	11 9	.62 1390 .43 358 .29 716	2 2 1	.01 .01 .01	21 89 14 96 15 115	039 034	11 13	86 51 42 38	1	.03 .02 .02	49.4 41.7 53.7	136 79 105	1 1 2 1 1	1111	333	11 11 13	16 69 71
L5N 10+00E .1 1.04 1 1 123 1.0 4 .23 .1 7 55 3.29 .10 12 .71 1416 2 .01 23 1320 38 15 71 1 .03 66.9 186 1 1 4 16 17 L5N 10+25E .1 1.07 1 1 105 .8 4 .15 .1 7 42 3.08 .07 10 .54 662 3 .01 20 1220 32 16 59 1.03 66.7 142 1 1 4 19 22 L5N 10+50E .1 .71 1 1 88 .6 3 .12 .1 4 24 2.72 .05 6 .37 969 2 .01 15 850 27 9 41 1 .03 56.4 116 1 3 11 33 L5N 10+75E .1 .91 1 1 100 .9 5 .22 .1 6 86 2.82 .06 13 .78 849 2 .01 22 560 38 13 47 1 .04 57.6 190 1 1 4 17 48	L5N 8+75E L5N 9+00E L5N 9+25E	-1 -1 -1	.97 .78 .81	1 1 1 1	1111	157 138 156	1.5 1.1 .9	45334	.06	.1	7	363. 292.	.27 .95 .	.06 .08 .09	15 10 11	.69 2159 .44 1802 .48 1600	2	.01 .01 .01	26 104 23 127	D 32 D 30	12 11	51 39 62	1 1 1 1	.02 .01 .01	72.6 53.0 53.8	142 132 113	1111	1111	433	24 14 12	1 4 6
L5N 11+00E .1 .82 1 1 99 1.0 3 .07 .1 6 47 3.11 .06 9 .28 2265 1 .01 19 830 34 11 33 1 .02 45.3 115 1 1 2 8 4	L5N 10+00E L5N 10+25E L5N 10+50E		1.04 1.07 .71	1 1 1 1	1 1 1 1	123 105 88	1.0 .8 .6	44435	.23 .15 .12	.1	7 7 4	55 3. 42 3. 24 2.	.29 .08 .72	.10 .07 .05	12 10 6	.71 1416 .54 662 .37 969	232	.01 .01 .01	23 132 20 122 15 85	D 38 D 32 D 27	15 16 9	71 59 41		.03 .03 .03	66.9 66.7 56.4	186 142 116	1 1 1 1	1 1 1 1	4 4 3	16 19 11	17
				1	1			3																			1	1			4
							-																								·
)																													

APPENDIX 3

.......

MIN-EN LABORATORIES

METALLIC ASSAYS

MINERAL ENVIRONMENTS LABORATORIES (DMSION OF ASSAYERS CORP.)

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

Metallic Assay Certificate

Company:	MR RALPH KEEFE
Project:	
Attn:	Ralph Keefe

.

We hereby certify the following Metallic Assay of 2 rock samples submitted SEP-30-94 by R. Keefe.

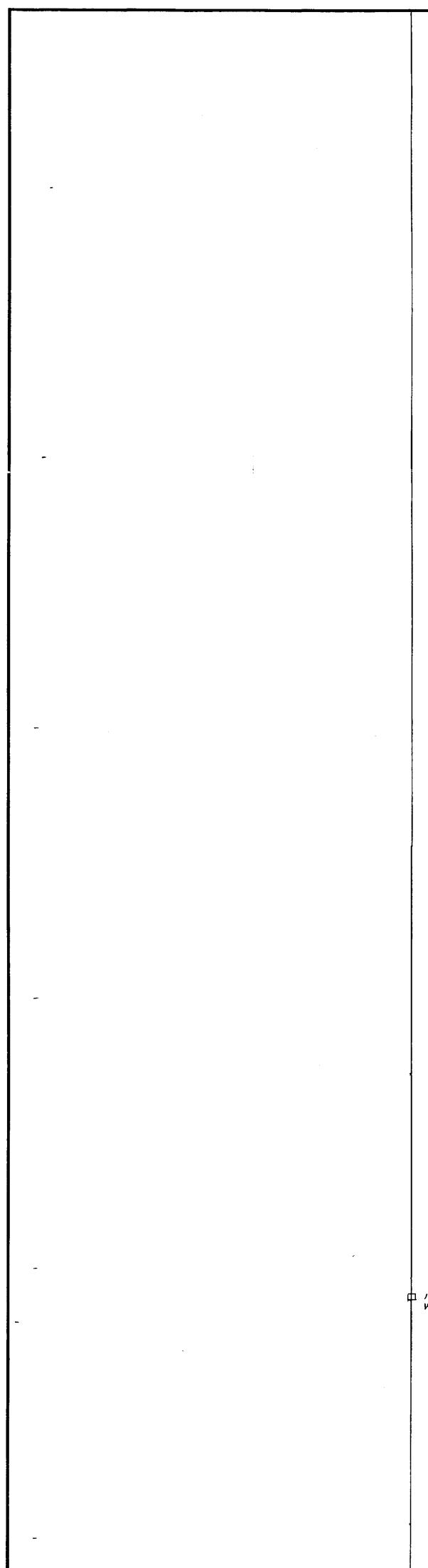
**************	****	******	* * * *	****	***	* * *	*********	*********	**1	*******	********	***	**********	*******	***	*********	********
Sample	*	Total	* -	+150	м	*	Assay Va	alue Au	*	Total	Weight Au	*	Metalli	с Ац	*	Net	Au
Number											-150(mg)					(oz/ton)	(g/t)
44173	*	323.0			7.8		1.28	2.68				•	0.003	0.11	*	0.080	2.74
44174	*	319.6	*	16,	. 19	*	1.17	1.98	٠	0.019	0.601	*	0.002	0.06	٠	0.057	1.94 V

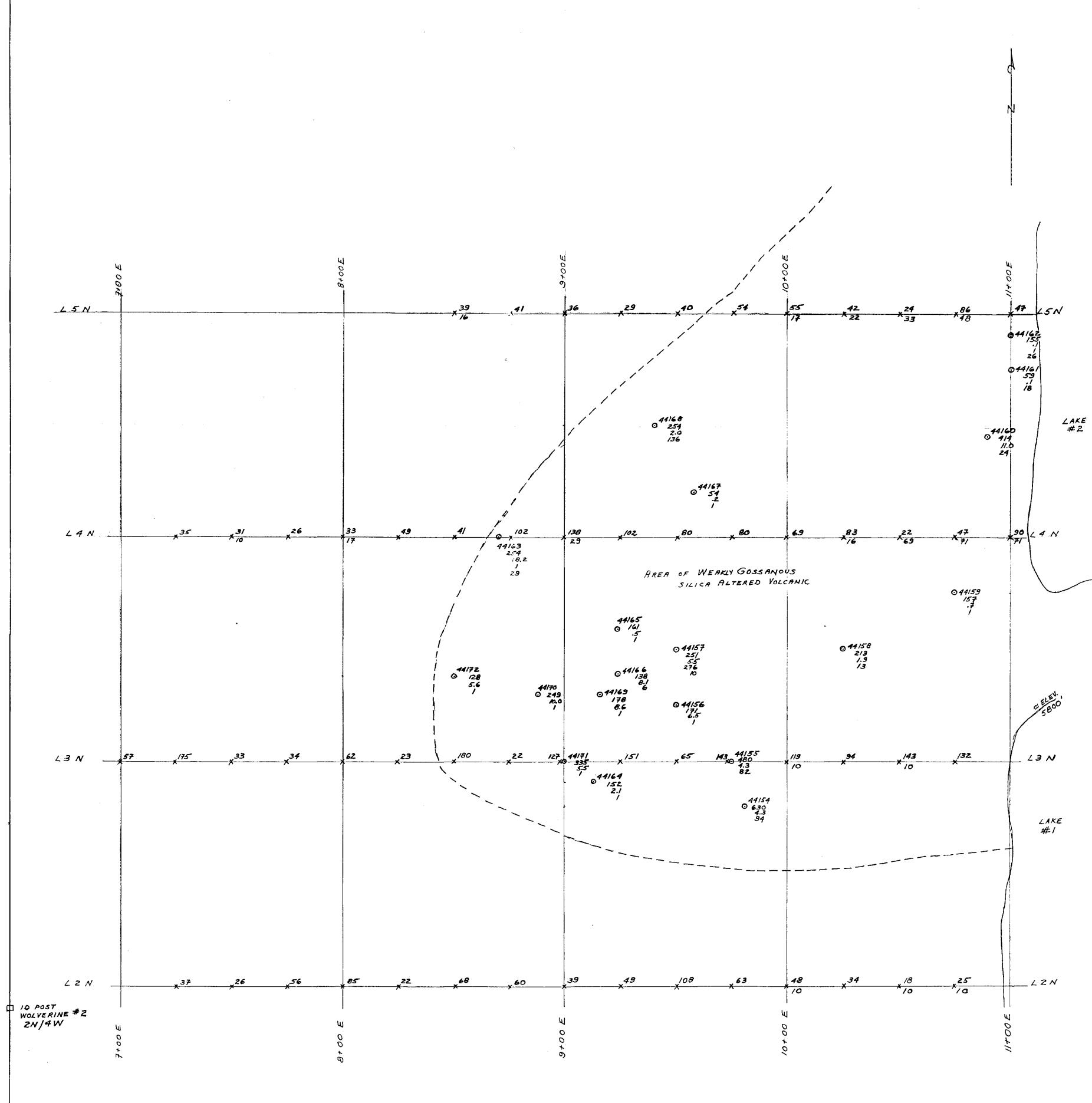
Certified by

MIN-EN LABORATORIES

VANCOUVER OFFICE:

....




705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

4S-0285-RM1

Date: OCT-07-94

24 X 38 PRINTED ON NO. 1000H CLEARPRINT .

. . .

UTM 6 029 000 N

· · ·

90 (ppm Cu) A 10 (ppb Au >10) ______ Soil_ sample 90 (ppb Au >10) ______ Soil_ sample 90 (ppm Cu) 90 (ppm As) 90 (ppb Au >10)

10 (pp & Au >10)

metres

•

SSESSMENT REPOR

24,201

FIGURE 4

WOLVERINE #2 ROCK & SOIL GEOCHEMISTRY

 SCALE: /: /000
 APPROVED BY:
 DRAWN BY DJH.

 DATE: JAN. 25/95
 REVISED

DRAWING NUMBER

 \mathcal{O}

93 2 5