RECEIVE

DEC 29 **1995**

Gold Commissioner's Office VANCOUVER, B.C. NTS 92G8 LAT 49°19' LONG 122°23'

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORTS

JAN 0 5 1996

GEOCHEMICAL ASSESSMENT REPORT ON THE CRICKMER PROPERTY

NEW WESTMINSTER MINING DIVISION

FOR MIJODRAG GORDIC 4842 SARDIS ST. BURNABY, B.C. V5H 1L5

FILMED

BY ROGER G. KIDLARK, B.S.C. VERTEX MINING SERVICES 8504 123 STREET SURREY, B.C. V3W 3V6 SEPTEMBER 24, 1995 SSESSMENT REPOR

Vertex Mining Services

R /hilla

NTS 92G8 LAT 49°19' LONG 122°23'

GEOCHEMICAL ASSESSMENT REPORT ON THE CRICKMER PROPERTY

-

NEW WESTMINSTER MINING DIVISION

FOR MIJODRAG GORDIC 4842 SARDIS ST. BURNABY, B.C. V5H 1L5

BY ROGER G. KIDLARK, B.S.C. VERTEX MINING SERVICES 8504 123 STREET SURREY, B.C. V3W 3V6 SEPTEMBER 24, 1995 Revised June 25, 1996

SUMMARY

The Crickmer Property consists of eighteen contiguous mineral claims totalling forty units. The property is situated in the New Westminster Mining Division approximately twenty kilometers northeast of Haney, B.C.

Limited and sporadic mineral exploration has been carried out in the area since 1929. The property is underlain by intrusives of the Coast Plutonic Group. Auriferoric quartz veins, lenses and stringers have been located. Gold values are erratic and seem to be associated with sulphide minerals.

Two rock samples returned anomalous values. One rock sample from a four meter wide quartz veinlet returned values of 380 ppm tungsten, and 195 ppm molybdenum. A rock sample from a quartz pyrite stringer returned values of 1260 ppb gold, 21.4 ppm silver and greater than 10,000 ppm copper. One unit sample returned a value of 2,190 ppb gold. Results are consistent with historical data for the area and no further work has been recommended.

i

TABLE OF CONTENTS

	Page
SUMMARY	
1. INTRODUCTION	1
2. LOCATION, ACCESS AND PHYSIOGRAPHY	2
3. CLAIM STATUS	3
4. AREA HISTORY	4
5. REGIONAL GEOLOGY	6
6. PROPERTY GEOLOGY	7
7. 1995 PROGRAM	8
7.1 SCOPE AND PURPOSE	
7.2 METHODS AND PROCEDURES	
8. RESULTS	9
9. CONCLUSIONS	9
10. RECOMMENDATIONS	9
STATEMENT OF EXPENDITURES	10
REFERENCES	11
CERTIFICATE	12
LIST OF FIGURES	
Figure 1 General Location	2a
Figure 2 Claim Location Map	3a
Figure 3 Regional Geology	6a
Figure 4 Rock and Soil Sample Locations	9a
Figure 4a Rock and Soil Sample Locations	9b
LIST OF APPENDICES	
Appendix A:Rock Sample Descriptions	
Appendix B: Analytical Reports	

•

Appendix C:Analytical Techniques

ii

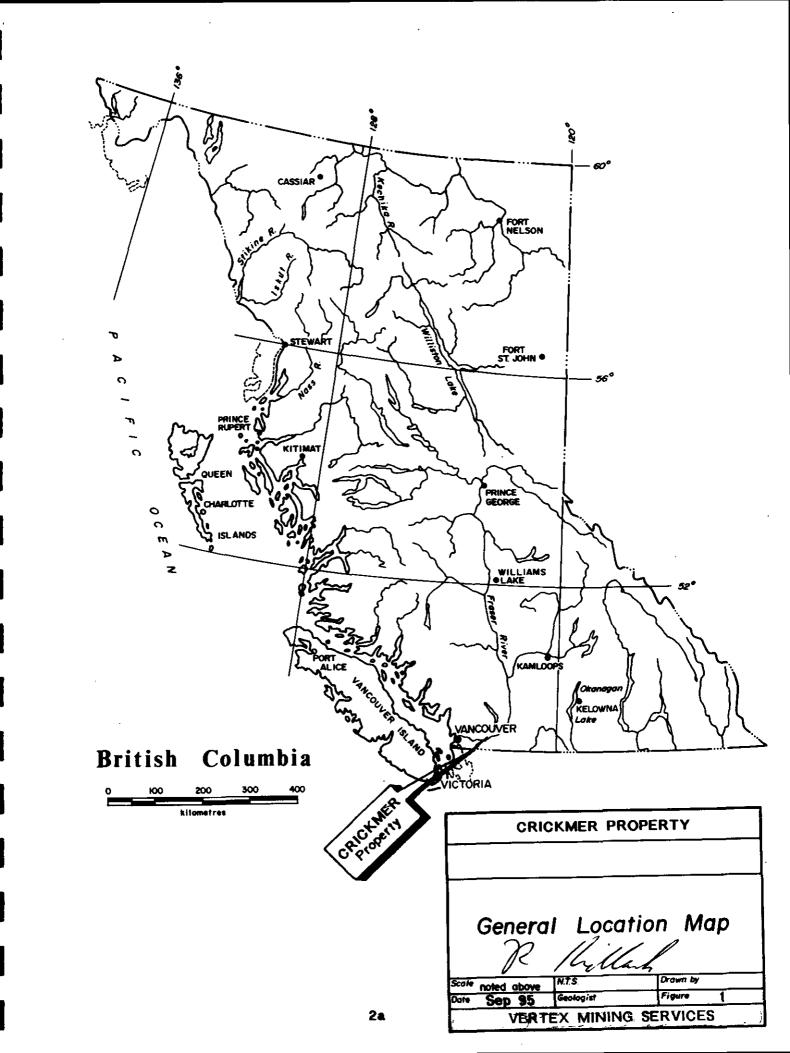
1. <u>INTRODUCTION</u>

This report was prepared at the request of Mjodrag Gordic to evaluate and describe the results of a geochemical survey carried out on the Crickmer claims by Vertex Mining Services of Surrey, British Columbia. The field work was carried out from July 29 to July 31 by the author and two assistants.

The purpose of the project was to evaluate the precious metal mineralization potential of the property and determine an exploration approach. The report describes the area history, previous work, regional geology, results of the 1995 program and makes recommendations for further work.

Vertex Mining Services

1

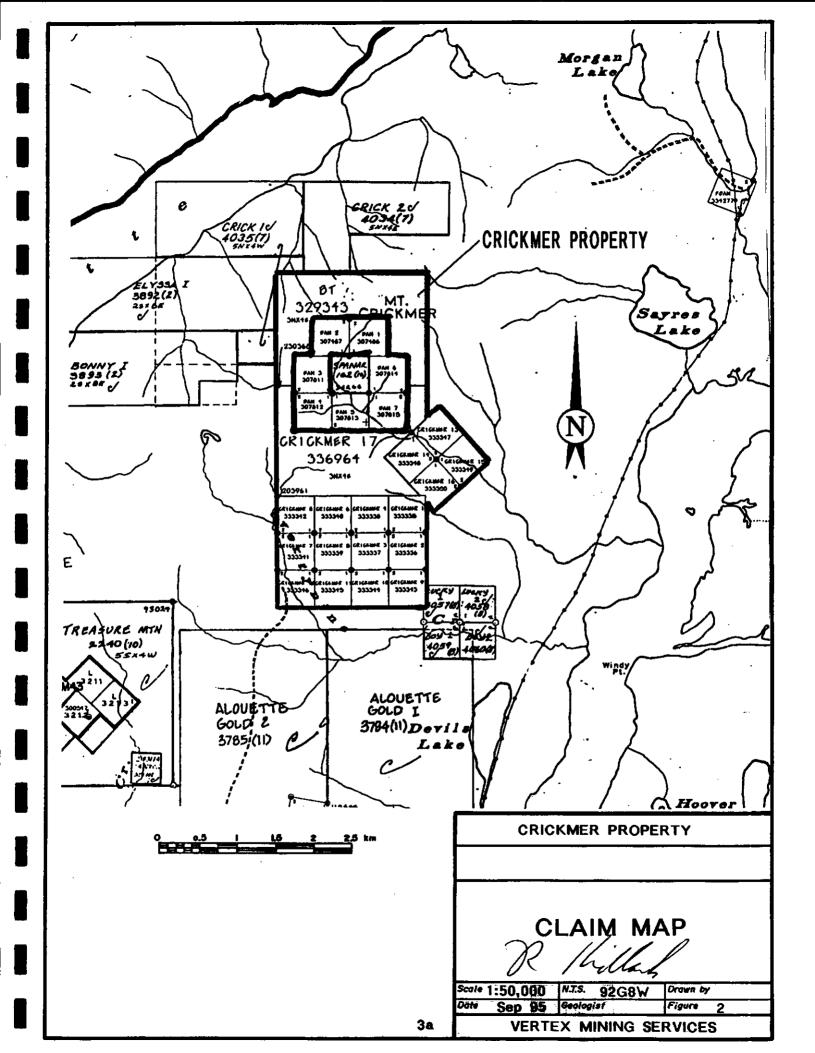

2. LOCATION, ACCESS, AND PHYSIOGRAPHY

The Crickmer property is located 20 kilometers northeast of Haney in the New Westminster Mining Division on NTS map sheet 92 G/8W (Figure 1). Coordinates of the claims are latitude 49°19' north and longitude 122°23' west.

Access to the claim group is by car or truck from Haney via paved Dewdney Trunk Road to the Stave Lake Dam. The remaining four kilometers are serviced by a good allweather gravel logging road. Local access on the claim group is provided by 4-wheel drive spur roads along the north and south sides of Kearsley Creek, and across the ridge into the Seventynine Creek drainage.

Moderate to steep slopes prevail with elevations ranging from 300 meters along the Kearsley Creek valley at the southeast to 1200 meters on the northwest portion. The area has been extensively logged and slopes are covered by high density second growth.

Vertex Mining Services


3. <u>CLAIM STATUS</u>

The property consists of 18 contiguous and overlapping mineral claims (Figure 2). The registered owner of the claims are Mijodrag Gordic, Boris Pavlov, and Branko Mihic of Burnaby, B.C.

CLAIM	UNITS	RECORD #	RECORD	EXPIRY
BT	12	329343	Aug 7 1994	Aug 7 1996
Crickmer 1	1	333335	Dec 22 1994	Dec 22 1996
Crickmer 2	1	333336	Dec 22 1994	Dec 22 1996
Crickmer 3	1	333337	Dec 22 1994	Dec 22 1996
Crickmer 4	1	333338	Dec 22 1994	Dec 22 1996
Crickmer 5	1	333339	Dec 22 1994	Dec 22 1996
Crickmer 6	1	333340	Dec 22 1994	Dec 22 1996
Crickmer 7	1	333341	Dec 22 1994	Dec 22 1996
Crickmer 8	1	333342	Dec 22 1994	Dec 22 1996
Crickmer 9	1	333343	Dec 30 1994	Dec 30 1996
Crickmer 10	1	333344	Dec 30 1994	Dec 30 1996
Crickmer 11	1	333345	Dec 30 1994	Dec 30 1996
Crickmer 12	1	333346	Dec 30 1994	Dec 30 1996
Crickmer 13	1 .	333347	Dec 30 1994	Dec 30 1996
Crickmer 14	1	333348	Dec 30 1994	Dec 30 1996
Crickmer 15	1	333349	Dec 30 1994	Dec 30 1996
Crickmer 16	1	333350	Dec 30 1994	Dec 30 1996
Crickmer 17	12	336964	June 26 1996	June 22 1997

Pertinent claim data is as follows:

Total number of units is 40.

4. <u>AREA HISTORY</u>

Prospecting in the Fraser Valley began in the 1860's with the discovery of placer gold in the Fraser River. Placer gold was discovered at the Ruskin Dam construction site during 1929-30.

Early reports of gold mineralization in quartz veins came from areas such as Hairsine Creek in the Stave Lake dam area, the Ruskin Dam area and the Hayward Lake area near Stave Falls.

In 1938, free gold was mined on "79 Hill" near the headwaters of Seventy-nine Creek, between Alouette Lake and Stave Lake. Prior to the ceasing of operations in 1939, some high-grade gold shipments were made from the 79 Mine.

During 1976 the SPANAR claim was located 1500 meters south of Mt. Crickmer (G.H. Giroux). Subsequently an adit was located and sampled and an I.P. survey was carried out. The adit extended approximately 5.0 meters along a northerly trending quartz-pyrite shear zone. Rock chip samples from the west side of the portal cliff face returned values of 0.390pt silver and 0.535 opt gold over 0.5 meters.

The I. P. Survey located a chargeability anomaly of approximately three times background and low in Apparent Resistivity trending northwesterly away from the adit.

According to L. Sookochoff (1987): In 1981, Skyrocket Explorations and Resources Inc. Held a large claim area between Alouette and Stave Lakes.

In 1981, an area presently the northwestern portion of the Sun and the Star claims was explored by Skyrocket. A geochemical and geophysical survey was completed. The survey area includes the Spanar claim which is excluded from the Golden Sun claim Group at the northwest of the Star and Sun claims.

The results of the 1981 program were reported as not definitive in outlining a highpriority drill target. Spotty anomalous geochemical gold values were revealed. Undated news releases issued by Skyrocket relate surface assays running from .656 oz Au per ton to 1.52 oz Au per ton from within a major shear zone trending northeast-southwest through the property.

In 1983, Skyrocket completed a diamond drill hole on the shear structure which returned up to .054 oz Au per ton over "33.5 feet" which reportedly "suggested that the zone held potential for the development of a large tonnage low-grade gold deposit".

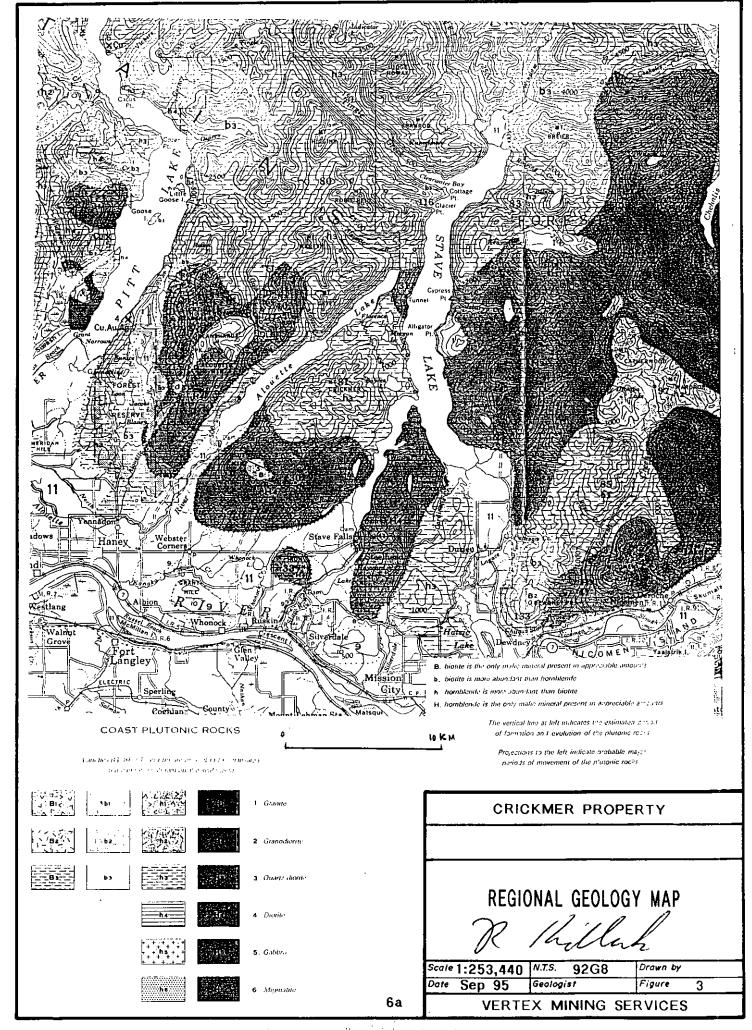
In the follow-up 1984 exploration program, detailed sampling of the adit showings was completed in addition to additional surface sampling and percussion drilling in and around Kearsley Creek. This work was done predominantly in the Spanar claim which is enveloped onthree sides by the Golden Sun claim group.

The more significant results of the program were three samples from the crosscut of the upper adit averaging .07 oz Au per ton with a "fourth (a flat-dipping shear in the north wall) yielding a ppb equivalent of 1.60 Au/ton.

Percussion drill holes southward along Kearsly Creek resulted in negative results with the highest values of 250 ppb over five feet.

Conclusions derived by Harris (1984) from the exploration program was that rather than potential large low-grade gold values, individual narrow high-grade gold concentrations could be possible at the loci of mineralized cross-structures.

During 1988 and 1989 soil and rock sampling surveys were carried out on the Oro and Star mineral claims. (Castavnikovich 1988, 1990). He concluded:


Strong geochemical gold values in the H.M. fraction in rock samples on the Golden Universe property have identified gold-enriched quartz veinlets on the north side of Kearsley Creek, and gold-rich altered shear zones on its south side in bedrock, and in float to the east of the Oro claims.

5. <u>REGIONAL GEOLOGY</u>

The majority of the region is underlain by Coast Plutonic Rocks (Roddich, 1965). Lithologic units range from gabbro to granite. However diorite, quartz diorite, and granodiorite are most abundant. (Fig 3)

Roof pendants and cappings of pre and post Coast Plutonic Rocks occur locally. They consist of Mesozoic to Cenozoic metasediments and volcanics. The region has been subjected to faulting and shearing with accompanying fracturing.

Areas of quartz veining and stringers, with or without disseminated sulphide mineralization, occur throughout the region.

and the second second

6. **PROPERTY GEOLOGY**

The claims are underlain by coarse to medium grained, equigranular hornblende quartz diorite with minor phases of diorite and granodiorite. The GSC has relatively determined the granodiorite phase to be younger than the quartz diorite and the quartz diorite younger than the diorite. All lithologic intrusions are members of the Coast Plutonic Group.

Mineralization was noted to have the following modes of occurrence:

- a) Quartz-pyrite stringers and veins, (up to 6 cm wide), in unaltered quartz diorite. Local traces of disseminated chalcopyrite and magnetite.
- b) Quartz-pyrite lenses up to .40 meters wide in unaltered quartz diorite.
- c) Shear zones: up to 3 meters wide. Accompanied by either silicification, a calc-silicate alteration of the quartz diorite. Sulphide mineralization consist of disseminated pyrite with traces of chalcopyrite. Epidote is a common accessory mineral.

7. <u>1995 PROGRAM</u>

7.1 Scope and Purpose

During July 1995 one geologist and 2 assistants spent 3 days on the property. Rock sampling and soil sampling were carried out on the claim group.

The purpose of this program was:

- a) Locate and sample mineralized outcrop.
- b) To test mineralized outcrop by running reconnaissance soil lines.

7.2 Methods and Procedures

Logging roads were used as central points for all rock and soil sampling. A hip chain and compass were utilized to tie all features to the central points.

A total of 11 rock samples and 36 soil samples were collected and analyzed for gold and multi-element ICP by Chemex Labs Ltd. (See Appendix B for analytical reports and techniques)(FIG 4, 4A)

A soil profile pit was dug near a mineralized shear zone and soil samples were collected from each soil horizon. Two compass soil lines were run at a distance of 50m apart along the shear zone and samples were collected from the B horizon at 50m intervals. (Fig. 4,4A)

8

8. <u>RESULTS</u>

<u>ROCK SAMPLES:</u> Results are plotted on fig. 4 and 4a. Two rock samples returned significant values:

BDR01: A continuous chip sample across a rusty 4 cm wide quartz veinlet returned values of 380 ppm tungsten, 195 ppm molybdenum, and 45 ppb gold.

BDR08: A chip sample across a 2 to 6 cm wide quartz pyrite stringer returned values of 1260 ppb gold, 21.4 ppm silver and greater than 10,000 ppm copper.

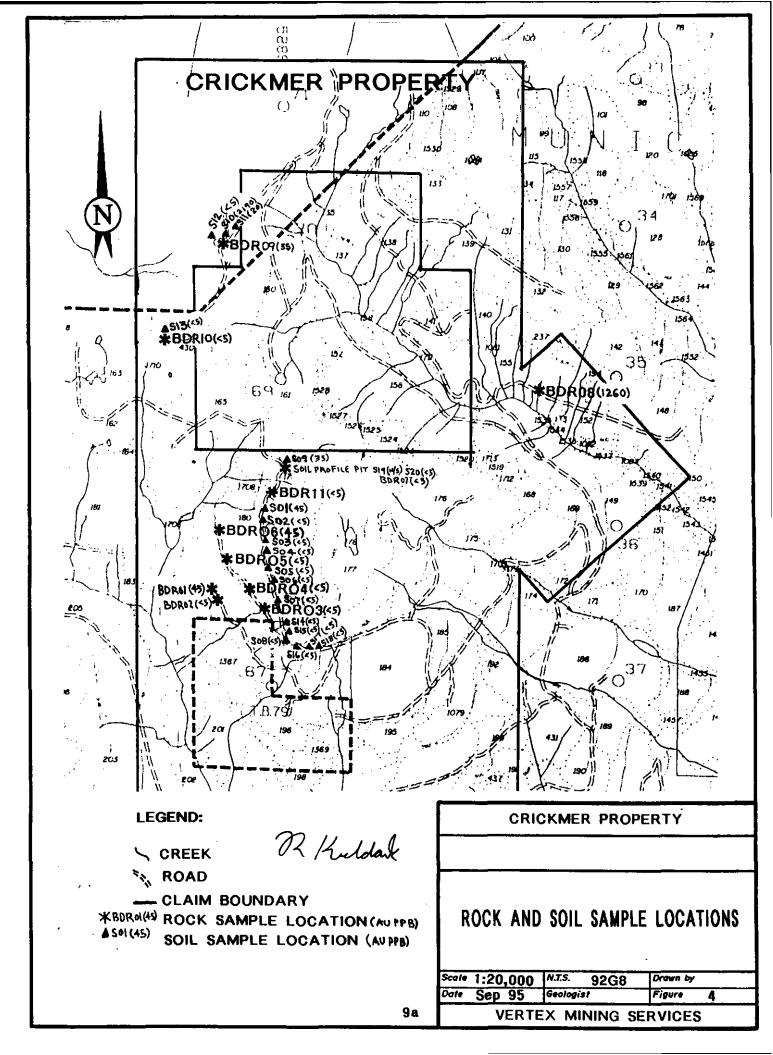
SOIL SAMPLES

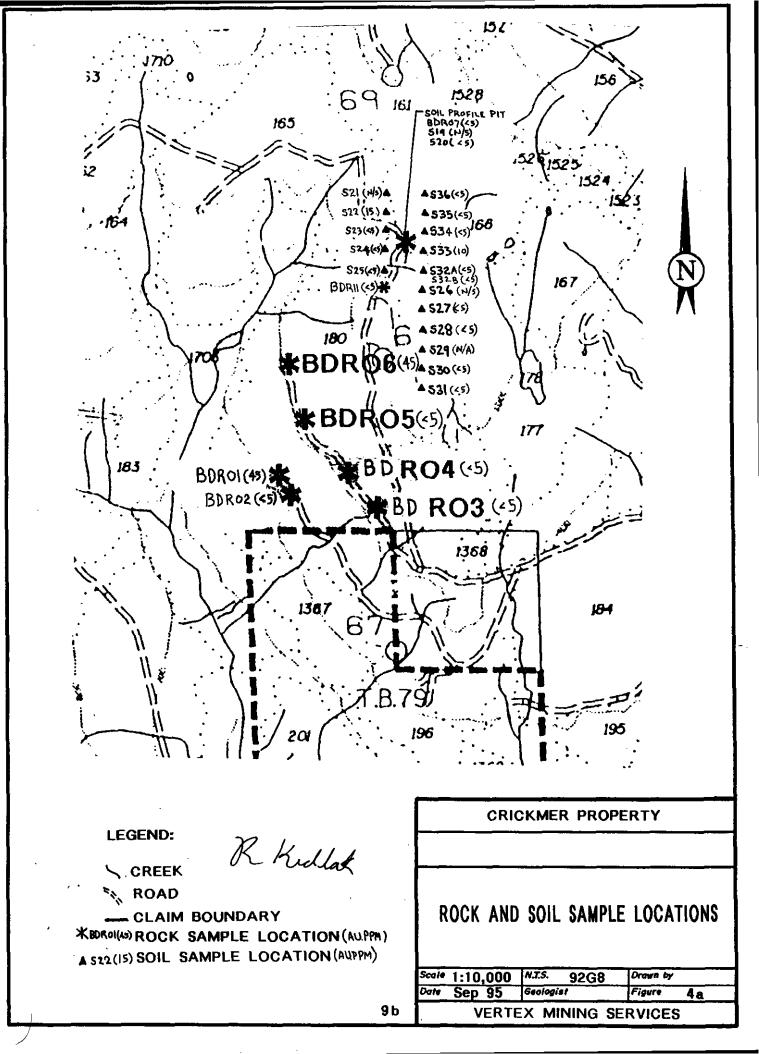
A. Profile Pit

The location of the pit is plotted on fig. 4 and 4a. A total of 2 soil and one rock sample were collected from the pit. A schematic is presented as the following;

B. Reconnaissance Soil Sample Lines

Soil samples were taken from the B horizon at a consistent depth of about 20 cm. One soil sample returned significant values:


SKS10: Returned a value of 2190 ppb gold. The sample was collected directly above rock sample BDR09 which assayed at 35 ppb gold.


9. <u>CONCLUSIONS</u>

Results from the 1995 program are consistent with historical results of the Mt. Crickmer area in that inconsistent and patch gold values occur in quartz vein, stringer, and shear zones.

10. <u>RECOMMENDATIONS</u>

No further work is recommended.

STATEMENT OF EXPENDITURES

.

Project Preparation		\$	150		
Mobilization & demobilization		\$	0		
Field Crew:					
Project Geologist	\$ 325/day x 2 MAN DAYS	\$	650		
Crew Chief	\$ 250/day x 2 MAH DAVS	\$	500		
Geotechnician	\$ 200/day x 2 MAN DAYS	<u>\$</u>	400	\$	1,550
Field Costs:					
Communications	\$ 10/day x 2 days	\$	20		
Supplies & Equipment	\$ 10/day x 6 days	\$	60		
Vehicle	\$ 50/day x 2 days	\$_	<u>100</u>	\$	180
Assays:					
10 rock samples @ \$ 25/sample		\$	250		
35 soil samples @ \$ 25/sample		<u>\$</u>	<u>875</u>	\$	1,125
Report:					
Maps and reports		\$	45		
research		\$	250		
compilation		\$	250		
word prossessing		<u>\$</u>	<u> 250</u>	\$	595
Administration, incl overhead and profit				\$	380
Sub-total				\$	4,180
plus 7% G.S.T.				<u>\$</u>	<u> 293</u>
TOTAL				\$	4,473

R /hillah

10

Vertex Mining Services

<u>REFERENCES</u>

Cohen, H.H.:

Report on the K.D. Mineral Claims for Skyrocket Exploration and Resources Inc. October, 1980.

Giroux, G.H.:

Report on the Spanar Claim on behalf of Frank Noel, June 24, 1977. Assessment Report No. 6325.

Harris, J.F.:

Report on Exploration in 1984 at the Sky 103 Mineral Claim, New Westminster Mining Division for Skyrocket Exploration and Resources Inc., October, 1984.

Roddick, J.A.:

Vancouver North, Coquitlam and Pitt Lake Map Areas, British Columbia. G.S.C. Memoir 335, 1963.

Ryback, Hardy B.:

Geochemical and Geophysical Report on the Sky Mineral Claims for Skyrocket Exploration and Resources Inc., November 16, 1981. Assessment Report No. 10,040.

Sheldrake, R.F.:

Ground Magnetometer Survey on the K.D. Mineral Claims for Goldview Mines Inc., April 15, 1981. Assessment Report 9412.

Sookochoff, L.:

Geological Evaluation Report for Module Resources Inc. On the Treasure Mountain Claim, November 7, 1983. Assessment Report 1984 - Geochemical and Geophysical Surveys on the Treasure Mountain Claim for Module Resources Inc. October 2, 1984. Assessment Report 1985 on Geological and Geochemical Surveys on the Treasure Mountain claim for Module Resources Inc., January 11, 1986.

Zastavnikovich, S.:

Geochemical & Geophysical Assessment Report on the Gold Universe Group, December, 1986.

Zastavnikovich, S.:

Geochemical heavy minerals assessment report on the golden universe mineral claims, February, 1990.

CERTIFICATE

I, Roger G. Kidlark, of 304-9295 Guildwood Drive, Burnaby, B.C., do hereby certify that:

- 1. I am a graduate of the University of Toronto with a Bachelor of Science Degree in Geology, 1974
- 2. I have practiced my profession as a geologist for seventeen years in British Columbia, Yukon and Northwest Territories, Ontario, Nova Scotia, Montana, and Arizona.
- 3. The information, opinions, and recommendations in this report are based on fieldwork carried out by myself on July 29 and 30, 1995.
- 4. I have no direct, indirect or contingent interest in the subject claims.

Roger G. Kidlark, B.S.C.

Dated at Vancouver, September 24, 1995

APPENDIX A

.

BT and CRICKMER CLAIMS

ROCK SAMPLE DESCRIPTIONS

Sample #	Description	Width (cm)
958DR01	Grab Chip; Rusty quartz veinlet in quartz diorite. Contains traces of fine grained disseminated pyrite.	4
95BDR02	Continuous Chip; Silicified rusty shear zone in quartz diorite. Traces of fine grained disseminated pyri te and molybdenite.	51
95BDR03	Continuous Chip; Rusty shear zone in q uartz diorite. Abundant epidote, trace of pyrite.	8
95BDR04	Grab Chip; Quartz-pyrite stringer in quartz diorite. Trace of chalcopyrite.	2
95BDR05	Grab Chip; Rusty quartz, epidote, pyrite lens in unaltered quartz diorite.	40
95BDR06	Grab Chip; Rusty vuggy quartz-pyrite lens in unaltered quartz diorite.	64
95BDR07	Continuous Chip; Silicified alteration zone in quartz diorite. Trace of disseminated pyrite and magnetite.	3.0m
95BDR08	Grab Chip; Quartz-pyrite stringer.	4
95BDR09	Continuous Chip; Rusty quartz-pyrite alteration zone. Traces of chalcopyrite.	2.5m
95BDR10	Grab Chip; Area of quartz-pyrite and quartz stringers in unaltered quartz diorite. Traces of chalcopyrite and magnetite.	13.5m
95BDR11	Grab Chip; Bedrock chips at bottom of profile pit. Quartz- pyrite chips.	37

Vertex Mining Services

C

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

VERTEX MINING SERVICES To:

8504 123RD ST. SURREY, BC V3W 3V6

Page Number :1-A Total Pages :1 Certificate Date: 21-AUG-95 Invoice No. : 19524453 Invoice No. P.O. Number : :MXA Account

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Project : Comments: ATTN: BRIAN DOUBT.

											С	ERTIF	ICAT	EOF	ANAL	YSIS		A9524	4453		
SAMPLE	PR CO	_	Au ppb Fa+aa	Ag ppm	A1 %	As ppm	Ba ppm	Be pp n	Bi pp m	Ca %	Cd ppm	Co pp=	Cr ppn	Cu p pm	Fe N	Ga ppm	Hg ppm	K N	La ppa	Mg N	Mn PP n
95 588 91	201	202	< 5	< 0.2	1.42	2	20	< 0.5	< 2	0.08	< 0.5	1	2	16	3.92	10	1	0.03	< 10	0.24	205
9588802		202	< 5	< 0.2	0.47	10	20	< 0.5	< 2	0.05	0.5	ī	ī	10	2.12	< 10	< ī	0.03	< 10	0.05	75
95SKS03		202	< 5	< 0.2	1.55	4	20	< 0.5	< 2	0.05	< 0.5	< 1	7	10	3.72	20	< 1	0.01	< 10	0.08	90
958K804 958K805		202 202	< 5 < 5	< 0.2 < 0.2	2.18 0.39	6 4	20 10	< 0.5 < 0.5	< 2 < 2	0.05 0.0 8	< 0.5 < 0.5	1	6 2	15 3	4.66 2.47	10 < 10	< 1 < 1	0.02 0.01	< 10 < 10	0.18 0.02	145 80
9588806	201	202	< 5	< 0.2	4.07	2	40	< 0.5	2	0,14	< 0.5	4	7	21	4.98	10	< 1	0.04	< 10	0.51	270
958K807	201	202	< 5	< 0.2	0.68	4	10	< 0.5	2	0.07	< 0.5	2	5	9	4.05	< 10	1	0.01	< 10	0.15	175
955KS08	201	202	< 5	< 0.2	2.63	18	20	< 0.5	< 2	0.09	< 0.5	3	8	22	7.40	30	1	0.02	< 10	0.21	95
958KS09 958KS10	201 201	202 202	< 5 2190	< 0.2 0.8	1.35 2.73	4	120 20	< 0.5 < 0.5	2 20	0.02 0.08	< 0.5 < 0.5	< 1 2	2 5	6 0	5.57 6.79	10 20	1 < 1	0.13 0.02	< 10 < 10	0.52 0.22	115 110
95 5KS11		202	20	< 0.2	0.89	4	30	< 0.5	2	0.16	< 0.5	1	1	28	2.19	< 10	< 1	0.02	< 10	0.09	55
955KS12		202	< 5	< 0.2	2.79	< 2	80	< 0.5	2	0.16	< 0.5	2	8	36	4.17	< 10	< 1	0.09	< 10	0.53	355
95SKS13		202	< 5	< 0.2	0.72	6	10	< 0.5	< 2	0.06	< 0.5	2	6	10	5.23	10	< 1	0.01	< 10	0.05	75
958KS14 958KS15		202 202	< 5 < 5	0.4 < 0.2	1.06 2.28	4 < 2	20 40	< 0.5 < 0.5	< 2 2	0.12 0.13	< 0.5 < 0.5	< 1 3	777	4 24	0.95 2.37	< 10 10	< 1 1	0.02 0.04	< 10 < 10	0.04 0.57	160 245
55KS16	201		< 5	< 0.2	2.65	2	40	< 0.5	< 2	0.17	< 0.5	6	11	26	3.41	10	< 1	0.07	< 10	0,71	320
55KS17		202	< 5	< 0.2	3.26	4	40	< 0.5	< 2	0.13	< 0.5	4	15	20	4.71	10	1	0.06	< 10	0.77	330
958KS18 958KS19		202 202	< 5	< 0.2	0.85	4	20	< 0.5	< 2	0.06	< 0.5	< 1	3	16	0.57	< 10	< 1	0.01	< 10	0.02	80
958 x8 20	201		not/ss < 5	0.6 0.2</td <td>.0.50 1.66</td> <td>< <u>4</u></td> <td>120 20</td> <td>< 0.5 < 0.5</td> <td>2</td> <td>0,06 0,02</td> <td>1.0 < 0.5</td> <td>1</td> <td>3</td> <td>12 11</td> <td></td> <td>< 10 30</td> <td>< 1 < 1</td> <td>0.06 0.02</td> <td>< 10 < 10</td> <td>0.05 0.18</td> <td>30 90</td>	.0.50 1.66	< <u>4</u>	120 20	< 0.5 < 0.5	2	0,06 0,02	1.0 < 0.5	1	3	12 11		< 10 30	< 1 < 1	0.06 0.02	< 10 < 10	0.05 0.18	30 90
955KS21	201		not/ss	< 0.2	1.29	4	20	< 0.5	< 2	0.14	< 0.5	1	4	12	1.00	< 10	< 1	0.04	< 10	0.13	80
958KS22		202	15	< 0.2	3.13	4	60	< 0.5	2	0.36	< 0.5	6	5	38	2.57	< 10	1	0.06	< 10	0.78	360
958K823 958K824	201	202	< 5	< 0.2	1.07	6	20	< 0.5	< 2	0.10	< 0.5	_	3	B	1.57	< 10	< 1	0.04	< 10	0.16	110
958K824 958K825		202	<pre>< 5 < 5</pre>	< 0.2 < 0.2	5.93 0.95	4 < 2	50 30	< 0.5 < 0.5	< 2 2	0,18 0,24	< 0.5 < 0.5	6 9	8 16	48 22	3.76 2.33	< 10 < 10	< 1 < 1	0.03	< 10 < 10	0.79 0.31	370 125
955K826	201	202	not/ss	0.2	1.69	2	20	< 0.5	< 2	0.03	< 0.5	< 1	6	8	0.58	< 10	< 1	0.04	< 10	0.07	45
958K827	201		< 5	< 0.2	0.86	2	10	< 0.5	< 2	0.02	< 0.5	< 1	2			10	< 1	0.01	< 10		80
958KS28 958KS29	201	202	< 5	< 0.2	1.18	- 4 -	10	< 0.5	< 2		< 0.5		4	4	1.16	10	< 1	0.02	< 10		100
958K830	201		miss. < 5	miss. < 0.2	miss. : 2.33	miss. m < 2	iss. 20	miss. < 0.5	miss. 2	miss. 0.10	miss. < 0.5	miss. 1	miss. 7	miss. 11	miss. 5.00	miss. 20	miss.	miss. 0.01	miss. < 10	miss. 0.19	miss. 125
55KS31	201		< 5	< 0.2	0.73	4	40	< 0.5	< 2	0.32	< 0.5	< 1	1	6	0.94	< 10	< 1	0.02	< 10		240
958KS32A 958KS32B		202	< 5	< 0.2	1.48	8	70	< 0.5	< 2	0.19	< 0.5	2	4	17	2.27	< 10	< 1	0.08	< 10		210
958K832B 958K833		202 202	< 5 10	< 0.2	0.58 1.52	2	20 10	< 0.5 < 0.5	< 2 < 2	0.02	< 0.5	< 1	1 9	4	1.31 2.51	< 10 20	<1 <1	0.03	< 10 < 10		120 160
958K834		202	< 5		0.47	2	10	< 0.5	< 2 < 2	0.04	< 0.5	1	3	3	1.71	< 10	< 1	0.01	< 10	0.02	70
958K835 958K836	201 201	202 202		not/ss < 0.2	not/ss 0.77	not/ss m 2	not/ss 10	not/ss < 0.5	not/ss 2	not/ss 0.10						not/ss 10	not/ss < 1	not/ss 0.01			
																			•		
			l	····								· · · · · · · · · · · · · · · · · · ·					-++			chle	
															CERTIF		10		10~	unie	~

CERTIFICATION:

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

To: VERTEX MINING SERVICES

8504 123RD ST. SURREY, BC V3W 3V6 Page Number : 1-B Total Pages :1 Certificate Date: 21-AUG-95 Invoice No. : 19524453 P.O. Number : Account :MXA

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Project : Comments: ATTN: SRIAN DOUBT.

SAMPLE 953KS01 2 953KS02 2 953KS03 2 953KS03 2 953KS04 2 953KS05 2 953KS06 2 953KS07 2 953KS08 2 953KS01 2 953KS01 2 953KS10 2 953KS12 2 953KS13 2 953KS15 2 953KS16 2 953KS15 2 953KS16 2 953K317 2 953K318 2 953K319 2	PREP CODE 201 20 201 20	02 02 02 02 02 02 02 02 02 02 02 02 02	< 1 3 < 1 4 < 1 1 1 1 11		Na 3. 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Ni ppm 1 4 1 2 1	290 710 300 390	Pb ppm 6 102 8 2 12	Sb ppm < 2 < 2 < 2 < 2 < 2 < 2	Sc ppm 3 < 1 1 2	Sr ppm 6 6 7	Ti 3 0.18 0.05	T1 ppm < 10 < 10	U ppm < 10 < 10	V ppm 52 42	W ppm < 10	Zn ppm 20	
955KS02 2 955KS03 2 955KS04 2 955KS05 2 955KS06 2 955KS07 2 955K507 2 955K509 2 955K510 2 955K512 2 955K513 2 955K514 2 955K515 2 955K516 2 955K517 2 955K518 2 955K516 2 955K518 2 955K519 2	201 20 201 20	02 02 02 02 02 02 02 02 02 02 02 02 02	< 1 3 < 1 4 < 1 1 1 1 11	· · · · · · · · · · · · · · · · · · ·	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	4 1 2 1 4 2	710 300 390 80 380	102 8 8 2	2 < 2 < 2	< <u>1</u> 1	6	0.05						
955K507 2 955K508 2 955K509 2 955K510 2 955K511 2 955K512 2 955K513 2 955K514 2 955K515 2 955K516 2 955K517 2 955K518 2 955K517 2 955K518 2 955K519 2	201 20 201 20 201 20 201 20 201 20 201 20 201 20 201 20 201 20	02 02 02 02 02 02	< 1 1 3 11	<pre><</pre> <pre></pre> <pre< td=""><td>0.01 0.01 0.01</td><td>2</td><td></td><td>12</td><td></td><td>< ī</td><td>6</td><td>0,24 0.18 0.05</td><td>< 10 < 10 < 10</td><td>< 10 < 10 < 10 < 10</td><td>147 77 59</td><td>< 10 < 10 < 10 < 10 < 10</td><td>22 12 20 14</td><td></td></pre<>	0.01 0.01 0.01	2		12		< ī	6	0,24 0.18 0.05	< 10 < 10 < 10	< 10 < 10 < 10 < 10	147 77 59	< 10 < 10 < 10 < 10 < 10	22 12 20 14	
55K512 2 55K513 2 55K514 2 55K515 2 55K516 2 55K517 2 55K518 2 55K519 2	201 20 201 20 201 20				0.01	< 1 2	1490 520	12 12 4 4 8	<pre></pre>	5 1 1 4 3	12 6 11 21 11	0.18 0.17 0.26 0.25 0.31	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	73 138 193 112 144	<pre>< 10 < 10</pre>	38 18 24 16 16	
55KS17 2 55KS18 2 55KS18 2	201 20)2)2	3 9 1	<pre></pre>	0.01 0.01 0.01 0.01 0.01	1 3 2 2 3	920 290	30 32 12 24 4	<pre></pre>	1 6 < 1 < 1 3	12 17 8 9 17	0.14 0.23 0.13 0.12 0.13	<pre>< 10 < 10</pre>	< 10 < 10 < 10 < 10 < 10 < 10	\$2 107 228 25 72	< 10 < 10 < 10 < 10 < 10 < 10	16 30 8 18 32	
58K820 2	201 20 201 20 201 20 201 20 201 20 201 20	22 22 22	< 1 < 1 < 1	. «	0.01 0.01 0.01 0.02 0.01	5 6 1 6 1	470 270 810	8 2 18 78 4	<pre>< 2 < 2</pre>	4 4 < 1 < 1 2	18 13 8 27 4	0.15 0.18 0.08 0.02 0.31	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 10 < 10</pre>	77 76 19 13 119	< 10 < 10 < 10 < 10 < 10 < 10	42 42 12 52 14	
255KS22 2 55KS23 2 55KS24 2	201 20 201 20 201 20 201 20 201 20 201 20)2)2)2	< 1 < 1 2 < 1 < 1	<	0.01 0.01 0.01 0.01 0.01	3 2 1 3 4	1090 620 300 370 420	66 6 18 2 24	<pre></pre>	< 1 6 1 7 1	10 29 11 21 36	0.04 0.15 0.13 0.16 0.10	<pre>< 10 < 10</pre>	< 10 < 10 < 10 < 10 < 10 < 10	25 63 61 78 94	< 10 < 10 < 10 < 10 < 10 < 10	20 42 20 44 26	
55KS27 2 55KS28 2 55KS29 -	201 20 201 20 201 20 	02 02	1 miss.	< < mi	0.01 0.01 0.01 ss. 0.01	3 < 1 1 miss. 2	190 miss.	20 8 miss. 6	<pre></pre>	< 1 < 1 1 miss. 2	6 4 8 12	0.02 0.09 0.15 miss. 0.21	< 10 < 10 < 10 miss. < 10	< 10 < 10 < 10 miss. 1 < 10	13 38 51 106	< 10 < 10 < 10 aiss. 2 < 10	14 6 10 185. 20	
58KS32A 2 58KS32B 2 58KS33 2	201 20 201 20 201 20 201 20 201 20 201 20	02 02 02	1 1 < 1	< < <	0.01 0.01 0.01 0.01 0.01	1 3 < 1 2 1	150	16 32 2 8 2	<pre></pre>	1 2 1 2 < 1	15 19 3 12 6	0.15 0.12 0.15 0.27 0.08	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 10 < 10</pre>	33 51 29 117 54	<pre>< 10 < 10</pre>	36 26 12 20 6	
	201 20 201 20)2)2	not/ss < 1	: nc	0.01	not/ss < 1	not/ss 130	not/ss 4	not/ss < 2	not/ss 1	not/ss 10	not/ss 0.21	not/ss < 10	not/ss 1 < 10	not/ss 1 142	not/ss n < 10	ot/ss 14	

Г

CERTIFICATION: Garty Suchler

nemex Ξ**α**, ads. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

EX MI

8504 123RD ST. SURREY, BC V3W 3V6

Total Pages :1 Certificate Date: 21-AUG-95 Invoice No. :19524444 P.O. Number : Account MXA

.A

Nuni

Project : Comments: ATTN: BRIAN DOUBT

ISER

* PLEASE NO	TE										CE	RTIF	CATE	OF A	NALY	(SIS	A9524444
SAMPLE	PR		Mo ppm		Ni pp n	p ppn	Pb ppm	Sb ppm	Sc ppm	Sr ppn	ti X	Tl ppn	U ppm	V ppm	W ppm	Zn ppm	
958DR01 958DR02 958DR03 958DR04 958DR05	205 205 205	226 226 226 226 226 226	12 8 1	< 0.01 0.02 0.05 0.03 0.01	10 2 3 1 2	280 1020 500 320 260	4 2 2 < 2 < 2 < 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2	15 7 4 8 2	7 87 16 6 36	0.09 0.17 0.14 0.13 0.09	< 10 < 10 < 10 < 10 < 10 < 10	10 < 10 < 10 10 < 10	261 57 35 62 21	380 < 10 • 10 < 10 < 10	94 42 20 18 12	
958DR06 958DR07 958DR08 958DR08 958DR09 958DR10	205	226 226 226 226 226 226	< 1 7 26	0.05 • 0.01 0.02	2 1 41 1 3	330 670 520 840 510	< 2 < 2 24 4 < 2	< 2 < 2 < 2 < 2 < 2 < 2	3 8 2 8 3	14 27 70 25 66	0.06 0.09 0.06 0.18 0.02	< 10 • 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	21 47 39 60 71	< 10 < 10 < 10 = 10 < 10	26 28 66 24 24	· · · · · · · · · · · · · · · · · · ·
958DR11	205	226	11	0.03	1	920	< 2	< 2	9	•	0.16	< 10	< 10	41	< 10	36	

iex L .abs en .td.

Analytical Chemists * Geochemists * Registered Assayers

North Vancouver V7J 2C1 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 X MI SER

8504 123RD ST. SURREY, BC V3W 3V6

Num Total Pages :1 Certificate Date: 21-AUG-95 Invoice No. :19524444 P.O. Number : Account :MXA

Project : Comments: ATTN: BRIAN DOUBT

PLEASE NO	TE										CE	RTIFI	CATE	OF /	ANAL'	YSIS	/	\9524	444		
SAMPLE	PRI		Ац ррђ ГА+АА	Ag ppm	λ1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppn	Со ррт	Cr ppm	Cu ppm	Fa %	Ga ppm	Hg ppm	К %	La ppm	Mg %	Mn ppm
958DR01 958DR02 958DR03 958DR04 958DR04 958DR05	205 205 205	226 226 226 226 226 226	< 5	1.4 0.2 < 0.2 0.2 < 0.2	2.89 2.31 1.10 1.19 0.94	2 8 2 2 2	20 120 50 70 40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	10 8 < 2 < 2 2 2	0.14 0.45 0.28 0.08 0.58	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	129 8 6 18 4	128 110 286 86 229	456 166 59 110 100	13.60 4.67 2.48 >15.00 4.87	< 10 < 10 < 10 < 10 < 10 < 10	1 < 1 < 1 2 < 1	0.08 0.07 0.12 0.40 0.13	< 10 < 10 < 10 < 10 < 10 < 10	2.14 0.99 0.50 0.40 0.15	935 395 240 675 265
958DR06 958DR07 958DR08 958DR09 958DR09 958DR10	205 205 205	226 226 226 226 226 226	1260 35	0.6 < 0.2 21.4 0.2 < 0.2	0.87 1.45 1.02 1.30 2.19	2 < 2 838 6 < 2	50 100 10 30 220	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	22 < 2 Intf* 46 2	0.10 0.10 0.70 0.28 0.20	< 0.5 < 0.5 2.0 < 0.5 < 0.5	3 2 485 3 7	208 131 115 : 108 172	142 12 10000 78 104	2.39 3.05 >15.00 5.84 5.86	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.22 0.16 0.02 0.11 0.18	< 10 < 10 < 10 < 10 < 10 < 10	0.32 1.03 0.29 0.70 1.08	305 240 135 295 430
95BDR11		226		< 0.2	1.76	4		< 0.5	2		< 0.5	6	115	36	3.39	< 10	< 1	0.08	< 10	1.37	410

Г

Chemex Labs Ltd.

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 TO: VETTEX MINING SERVE

8504 123RD ST. SURREY, BC V3W 3V6

A9524444

Comments: ATTN: BRIAN DOUBT

CERTIFICATE

A9524444

(MXA) - VERTEX MINING SERVICES

Project: P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 21-AUG-95.

SAMPLE PREPARATION									
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION							
205 226 229	11 11 11	Geochem ring to approx 150 mesh 0-3 Kg crush and split ICP - NO Digestion charge							
* NOTE	1:								

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W.

EMEX NUMBER SAMPLES		METHOD	DETECTION LIMIT	Upper Limit
983 11	Au ppb: Fuse 30 g sample	<u> </u>	5	10000
2118 11	Ag ppm: 32 element, soil & rock	ICP-AES	0.2	200
2119 11	Al %: 32 element, soil & rock	ICP-AR#	0.01	15.00
2120 11	As ppm: 32 element, soil & rock	ICP- NES	2	10000
2121 11	Ba ppm: 32 element, soil & rock	ICP-XES	10	10000
2122 11	Be ppm: 32 element, soil & rock	ICP-XE#	0.5	100.0
2123 11	Bi ppm: 32 element, soil & rock	ICP-AES	2	10000
2124 11 2125 11	Ca %: 32 element, soil & rock Cd ppm: 32 element, soil & rock	ICP-AES	0.01	15.00
2126 11	Co ppm: 32 element, soil & rock	icp- aes icp- aes	0.5 1	100.0 10000
2127 11	Cr ppm: 32 element, soil & rock	ICP-AES	1	10000
2128 11	Cu ppm: 32 element, soil & rock	ICP-AES	1	10000
2150 11	Fe %: 32 element, soil & rock	ICP-NES	0.01	15.00
2130 11	Ga ppm: 32 element, soil & rock	ICP-AES	10	10000
2131 11	Hg prm: 32 element, soil & rock	ICP-ARS	1	10000
2132 11	K %: 32 element, soil & rook	ICP-ARS	0.01	10.00
2151 11	La ppm: 32 element, soil & rock	ICP-NES	10	10000
2134 11	Mg %: 32 element, soil & rock	ICP-ARS	0.01	15.00
2135 11	Ma ppm: 32 element, soil & rock	ICP-XES	5	10000
2136 11	No ppm: 32 element, soil & rock	ICP- ARS	1	10000
2137 11	Na %: 32 element, soil & rock	ic p-les	0.01	5.00
2138 11	Ni ppm: 32 element, soil & rock	ICP- XE S	1	10000
2139 11	P ppm: 32 element, soil & rock	ICP-AES	10	10000
2140 11	Pb ppm: 32 element, soil & rock	ICP-AES	2	10000
2141 11	sb ppm: 32 element, soil & rock	ICP-AES	2	10000
2142 11	So ppm: 32 elements, soil & rock	ICP-ABS	. 1	10000
2143 11	Sr ppm: 32 element, soil & rock	ICP-ARS	1	10000
2144 11 2145 11	Ti %: 32 element, soil & rock	icp-aes icp-aes	0.01 10	5.00 10000
	T1 ppm: 32 element, soil & rock			10000
				10000
			_	10000
				10000
2146 11 2147 11 2147 11 2148 11 2149 11	U ppm: 32 element, soil & rock V ppm: 32 element, soil & rock W ppm: 32 element, soil & rock En ppm: 32 element, soil & rock	ICP-AES ICP-AES ICP-AES ICP-AES	10 1 10 2	

.

British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

North Vancouver

To: VERTIES MINING SERVICE

8504 123RD ST. SURREY, BC V3W 3V6

A9524453

Comments: ATTN: BRIAN DOUBT.

CERTIFICATE

A9524453

212 Brooksbank Ave.,

(MXA) - VERTEX MINING SERVICES

Project: P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 21-AUG-95.

SAMPLE PREPARATION								
CHEMEX	NUMBER SAMPLES	DESCRIPTION						
201 202 229	36 36 35	Dry, sieve to -80 mesh save reject ICP - AQ Digestion charge						
* . NOTE	1.							

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W.

HEMEX	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION	UPPEI
983	33	Au ppb: Fuse 30 g sample	£λ-λλS	5	10000
2118	35	Ag ppm: 32 element, soil & rock	ICP-AES	0.2	200
2119	35	Al 4: 32 element, soil & rock	ICP-AES	0.01	15.00
2120	35	As ppu: 32 element, soil & rock	ICP-AES	2	10000
2121	35	Ba ppa: 32 element, soil & rock	ICP-AES	10	10000
2122	35	Be ppu: 32 element, soil & rock	ICP-AES	0.5	100.0
2123	35	Bi ppu: 32 element, soil & rock	ICP-AES	2	10000
2124	35	Ca %: 32 element, soil & rock	ICP-AES	0.01	15.00
2125	35	Cd ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
2126	35	Co ppm: 32 element, soil & rock	ICP-AES	1	10000
2127	35	Cr ppm: 32 element, soil & rock	ICP-AES	1	10000
2150	35	Cu ppu: 32 element, soil & rock	ICP-AES		10000
2130	35	Fe %: 32 element, soil & rock Ga ppu: 32 element, soil & rock	ICP-AES ICP-AES	0.01	15.00
2130	35	Hg ppm: 32 element, soil & rock	ICP-AES ICP-AES	10 1	10000 10000
2132	35	K %: 32 element, soil & rock	ICP-AES	0.01	10.00
2151	35	La ppm: 32 element, soil & rock	ICP-AES	10	10000
2134	35	Mg %: 32 element, soil & rock	ICP-AES	0.01	15.00
2135	35	Ma ppu: 32 element, soil & rock	ICP-AES	5	10000
2136	35	No ppu: 32 element, soil & rock	ICP-AES	ī	10000
21,37	35	Wa %: 32 element, soil \$ rock	ICP-AES	0.01	5.04
2138	35	Ni ppm: 32 element, soil & rock	ICP-AES	ī	10000
2139	35	P ppm: 32 element, soil & rock	ICP-AES	10	10000
2140	35	Pb ppm: 32 element, soil & rock	ICP-AES	2	10000
2141	35	Sb ppm: 32 element, soil & rock	ICP-AES	2	10000
2142	35	Sc ppm: 32 elements, soil & rock	ICP-AES	1	10000
2143	35	Sr ppm: 32 element, soil & rock	ICP-AES	1	10000
2144	35	Ti %: 32 element, soil & rock	ICP-AES	0.01	5.00
2145	35	Tl ppm: 32 element, soil & rock	ICP-AES	10	10000
2146	35	U ppm: 32 element, soil & rock	ICP-AES	10	10000
2147	35	V ppm: 32 element, soil & rock	ICP-AES	1	10000
2148	35	W ppm: 32 element, soil & rock	ICP-AES	10	10000
2149	35	Zn ppm: 32 element, soil & rock	ICP-AES	2	10000