GEOLOGICAL	SURVEY	BRANCH
ASSESSM	ENT REF	ORTS

DATE RECEIVED

JAN 35 1996

PHASE 3

DIAMOND DRILLING

ASSESSMENT REPORT

for the

JESSE CREEK PROPERTY

MIKE GRID (QZ[#]3 CLAIM)

NICOLA MINING DIVISION BRITISH COLUMBIA NTS 92 1/2

for

MERRITT COPPER CORPORATION 2202 CHARTERS STREET MERRITT, B.C.

FILMED

Property Owners:

Report Author:

P. Conlon, L. Mclelland P.O. Box 665, Merritt, B.C.

R.C. Wells, P.Geo., F.G.A.C. Consulting Geologist Kamloops Geological Services Ltd. 910 Heatherton Court Kamloops, B.C. V1S 1P9

SSESSMENT REPOR

January 20, 1996

22 1.755

TABLE OF CONTENTS

																																		pa	ıge
SUMM	ARY .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	1
1.0	INTRO	DU	CT	IOI	N.	•	•	•	•		•	•	•	•	•	•		•		•	•	•	•	•		•		•	•		•		•	•	3
	1.1	Ĺ	OC.	AT:	IOI	N J	AN	0	ACO	CES	SS		•	•	•	•	•	•	•	٠	•	٠	٠	٠	•	•	٠	٠	•	•	•	•	•	•	3
	1.2	P	RO	PEI	RT	Y	•	•	•		•	•	•	•	•	•	•	•	•	٠	٠	٠	•	٠	٠	٠	•	٠	•	-	•	•	•	٠	3
	1.3	P	HY	SIC	DG1	RA.	PH	¥_) \	VE	GE	TA	TI	ON		•	•	•	•	•	٠	•	•	•	•	٠	•	•	٠	٠	•	•	٠	7
	1.4	H	15	TOP	RY.			ч 	RE\	/10	JU	S	WO.	RK	•	•	٠	٠	•	٠	•	. •	•	٠	•	•	٠	٠	٠	٠	•	•	٠	٠	7
	1.5	R	EG.	101		. (GE(ЭГ 27	OG)		•	•	• •	•~	• • •	÷		•		٠	•	٠	•	•	•	٠	•	٠	•	٠	•	•	٠	•	12
	1.0	Ч	RO.	PEI	(T)	¥ (GEI	<u>بار</u>	UG		-	MT	, KE	G	K1	U	ÄF	œr	7	•	•	٠	٠	•	•	•	•	٠	•	٠	٠	•	٠	•	12
2.0	PHASE	1	A	ND	2	D	IA	MO	ND	DI	RI	LI	,IN	G	PR	00	RA	MS	6	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	19
3.0	PHASE	3	D	IAN	101	ND	D	RI	LLI	INC	<u>3</u>	PR	log	RA	М	(1	.99	5)		•	•		•	•			•	•		•	•	•	•		20
	3.1	I	NT:	ROI)Ū(CT	IOI	N	• •		•	•	٠	•	•	•	•	•	٠	•	٠	•	•	٠	•	•	•	•	•	•	•	٠	•		20
	3.2	D	RI	LL	T <i>l</i>	AR	GE'	ſS	A	1D	R	ĒS	UL	TS		•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	20
4.0	REFERE	EN	CE	s.	•	•	•	•	• •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	۰.	•	•	•	•	24
5.0	STATE	ME	NT	OI	? (cos	ST	5	• •		•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	25
6.0	STATE	ME	NT	01	₹ Ç	נטב	AL:	IF	ICF	\T:	10	NS	;	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	26

LIST OF APPENDICES (at rear of Report)

APPENDIX	1:	STATEMENT OF WORK
APPENDIX 3	2:	TABLE 2: ASSESSMENT REPORT INDEX- JESSE CREEK PROPERTY (TABLE 2)
APPENDIX	3:	DIAMOND DRILL LOGS WITH ANALYTICAL RESULTS
APPENDIX	4:	FIGURES 8 and 9 DRILLHOLE PROFILES

LIST OF FIGURES

· •

Î

Ņ

Following Page No.

Figure	1	Property Location Map	1	
Figure	2	Claim Map	3	
Figure	3	Property Outline with Topography	5	
Figure	4	Mineral Showings and Airborne Magnetic Anomalies	7	
Figure	5	Regional Geology	10	
Figure	6	1993 Grid Locations	12	
Figure	7	Mike Grid: Geology Map with Phase 1 and 2 Drill Hole Locations	14	
Figure	8	Mike Grid: Geology Map with Phase 3 Drill Hole Locations	20	
Figure	9	Drill Profile DDH JC 95-4	Appendix	4
Figure	10	Drill Profile DDH JC 95-5	Appendix	4

LIST OF TABLES

Table 1	Jesse Creek Property: Claim information	Page 5
Table 2	Assessment Report Index: Jesse Creek Property	Appendix 2

· –

SUMMARY

The Jesse Creek Property centred on Merritt, British Columbia consists of 24 contiguous mineral claims totalling 188 units and covering approximately 4700 hectares. Much of the property is underlain by Triassic, Nicola Group (western facies) volcanics and sediments with local diorite to monzonite intrusive (Triassic or later age). A significant amount of previous exploration has taken place on the property, much of which is poorly documented. The exploration target for much of this work was Craigmont style Cu-Fe skarn deposits.

In October 1995 Merritt Copper Corporation conducted a Phase 3 diamond drilling program on the Mike skarn area in the western part of the property. In this area a thick sequence of folded andesite to basalt flows interbedded with volcaniclastic rocks and minor sediments lie in the contact metamorphic aureole to the Jesse Creek monzonite stock. Limy units have been converted to calcsilicate hornfels and local medium to coarse grained, copper-iron mineralized skarn with occasional anomalous gold values. Two NQ diamond drill holes (total 206.34 metres) were completed on skarn targets in the southern area. Hole JC 95-4, 146.30 metres long encountered the roof zone to quartz-feldspar porphyry intrusive with calc silicate hornfels and skarn in the proximal country rocks. These contained local heavy pyrrhotite mineralization with elevated arsenic but low copper values. Hole JC95-5 tested another nearby skarn zone but was abandoned short of the target due to bad ground conditions (strong fault zone).

1.0 INTRODUCTION

This report presents the results from a 1995 Phase 3 diamond drilling program on the Jesse Creek Property, Mike grid (Q2#3 claim) in the Nicola Mining Division. The object of this program was to test the remaining more promising skarn zones that had not been tested by Phase 1 and 2 drilling in 1994 and June 1995. These skarn zones on the Mike grid had several significant geological features in common with the Craigmont copper-iron skarn deposit located 10 kilometres to the northwest.

The Phase 3 drilling program took place in October 1995 and was supervised by R.C. Wells, P.Geo., F.G.A.C. consulting geologist for Kamloops Geological Services Ltd. Merritt Copper Corporation with an address at 22.02 Charters Street, Merritt, B.C. financed the program. The total cost of the program was \$27,426.05. At this time \$20,000 of this total is being applied to the Jesse Creek Property for assessment work credit.

1.1 LOCATION AND ACCESS

The Jesse Creek Property is located north and west of the town of Merritt, British Columbia (Figure 1) and is covered by the NTS map sheet 92I/2. Most of the property is easily accessed from a network of old logging and mining roads, many of these can be driven using a 4x4 vehicle. The Nicola-Mameet Indian Reserve lies immediately to the west of the property.

1.2 PROPERTY

This large property, located in the Nicola Mining Division of British Columbia, consists of twenty four mineral claims with a total of 188 units (4700 hectares). Details concerning the individual claims are available in Table 1 and Figure 2. Patrick Conlon and Lorne Mclelland, both of Merritt B.C. are the recorded owners of the claims. Conlon Copper Corporation financed all of the exploration conducted on the property in 1994. This company has an agreement with the owners to earn 100% interest in the property subject to a 2% NSR. Recently, Conlon Copper Corporation underwent a name change to Merritt Copper Corporation with new management.

NAME	RECORD NO.	UNITS	MINING DIV.	ANNIVERSARY DATE
PETE	237348	20	Nicola	June 3 1996
QZ #1	237381	20	11	July 6 1996
QZ #2	237379	20		July 12 1996
JEAN	237383	10	n	July 25 1996
PAUL	237425	12	11	Nov 1 1995
QZ #3	237426	10	"	Nov 10 1995
2 #1	237427	1	11	Nov 10 1995
QZ #4	237428	18		Nov 11 1995
BOB	237450	6	"	Nov 23 1995
PETE #2	237449	8	"	Nov 24 1995
2 #2	237455	1	11	Dec 2 1995
Z #3	237456	1	11	Dec 2 1995
PETE #5	306691	1	11	Dec 12 1995
PETE #6	306692	1		Dec 12 1995
2 #4	237461	<u> </u>	m	Dec 28 1996
Q2 #5	237460	5	**	Dec 28 1995
PETE #3	237459	8	17	Dec 29 1995
JEAN EXT	315305	8	18	Dec 29 1995
PATLO 1	315306	18	71	Dec 30 1995
PATLO 2	315307	8	17	Dec 31 1995
Q #2	237468	3	Ħ	Feb 7 1996
PETE #4	237617	66	π	Feb 7 1996
Z #5	237477	1	¥7	Feb 22 1996
Z #6	237478	_ 1		Feb 22 1996

TABLE 1: JESSE CREEK PROPERTY - CLAIM INFORMATION

TOTAL

188 UNITS

Note: Expiry dates are prior to this assessment report.

ng ting selecting a grade of the second s

1.3 PHYSIOGRAPHY AND VEGETATION

The west trending Nicola Valley, with a mean elevation close to 600 metres, bisects the Jesse Creek Property (Figure 3). To the north and south, steep valley slopes with widespread talus and local cliffs rise to an undulating plateau ranging from 1000 to 1300 metres in elevation. These highlands are dry with a few small ponds and are dissected by small drainages. Jesse Creek is the largest drainage on the property and is located in the northern area. Much of the property is dominated by open coniferous woodland with some large meadows on the plateau regions. Jesse Creek Valley and the lower valley slopes on the Jean Claim are heavily wooded with much undergrowth. Large parts of the property, in particular, the north and west have been logged to varying degrees. Much of the Nicola Valley on the property is in agricultural, commercial or residential use.

1.4 HISTORY AND PREVIOUS WORK

The property area has a long exploration history, dating back to the 1880's. A wide variety of deposit types are present around Merritt; over 200 mineral occurrences have been documented. Gold-silver bearing quartz veins occur near Stump Lake (Enterprise-King William veins), polymetallic veins with combinations of copper, lead, zinc, gold and silver at Swakum Mountain, Nicola Lake (Turlight) and Iron Mountain (Leadville/Comstock), copper-iron skarns at Craigmont, Swakum Mountain and on the Jesse Creek Property (Cinderella-Chase, Mike, Val). The Craigmont deposit, located 10 kilometres northwest of the property, became the single major producing mine in the Merritt area in 1961 (discovered in 1957). Between 1957 and 1982, Craigmont produced from surface and underground workings a total of 29.3 million tonnes of ore, averaging 1.4% copper.

The property itself has a history of copper exploration dating back to the early 1900's. Until recently, the showings covered by the Jesse Creek property were held by a number of different individuals and mining companies. This is the first time that the area and all the showings have been covered by a contiguous claim group under one owner. Over thirty exploration and small development programs have been documented on the property (Table 2). Many of these programs appear to have been small. Details on the larger programs by Peele Resources/Nippon 1964-65, Newvan Resources Ltd. 1972 and Quintana Minerals Co. 1976 are sparse, especially regarding the location and results from drilling and trenching.

7

a factor de la companya de

Figure 4 gives the location of the main mineral occurrences on the property. A brief description of previous exploration on each of these follows. Table 2 should be consulted for sources of reference.

1) Copper Belle (Jean Claim)

This area features several short adits and a number of rock cuts over a 300 metre strike length. Shallow dipping and generally narrow lenses of massive specular hematite, carbonate, quartz (replacements, veins) with chalcopyrite cut Nicola volcanics. Between 1908 and 1913, a number of small hand sorted shipments, including 47 tons averaging 7.15% Cu in 1913, were sent to Trail and Tacoma smelters. More recently between 1960 and 1985, there have been several geophysical and geochemical surveys of very limited coverage.

2) Anaconda (Jean and Bob Claims)

The old Anaconda workings feature a shallow pit and two caved adits. The pit has steeply dipping, fracture controlled zones of specular hematite in Nicola volcanics. There is very little information on these workings, and no work has been recorded since 1915.

3) Cinderella-Chase (Pete and Pete#2 Claims)

This northerly trending zone of limestone with associated copper skarn zones (local Pb and Zn) is over 2 kilometres long. It should be noted here, that in many publications the Chase and Cinderella mineral occurrences are shown in different locations. Minfile has the Chase north of Cinderella, McMillan (1981) has Chase to the south. For the purposes of this report, the Chase is located over the northern skarn showings, the Cinderella over the south. There has been substantial though poorly documented trenching, stripping and some drilling in a number of areas. Three shallow pits of unknown age occur at the Cinderella copper, lead, zinc occurrence. Major exploration programs were conducted on the Cinderella-Chase zone by Peele Resources in 1964 and Nippon Mining Corporation in 1965. Peele's program included trenching, soils, magnetic, geological surveys and a single drillhole. Nippon conducted significant trenching and 12 drill holes. There is very little available information on these programs and some doubt exists about how many of these holes were actually completed. Quintana Minerals Co. in 1976 conducted an exploration program over the entire zone and adjacent areas. Results from a ground magnetic survey is all that is available.

In 1979, H. Allen completed a 500 foot hole at the northern end of the limestone, skarn zone with disappointing results.

4) Mike (QZ #2 and QZ #3 Claims)

There has been significant trenching in this area, exposing a number of copper-iron skarn showings. There is also evidence on surface for a single drillhole in the trench area. None of this work is public domain. However, it is possible that this work was follow-up to a 1970 magnetic survey by Silver Key Exploration Ltd. These skarn zones were the target for the 1994 drill program.

5) Pumpkin-Val Area (QZ #2, Pete #2, Pete #4 Claims)

This area lies between, and to the north, of the Mike and Cinderella-Chase occurrences. A number of old trenches and copper showings occur in this area. Quintana's magnetic survey in 1976 covered much of this area but did not extend as far west as the western copper showings. Previous to Quintana, Newvan Resources Ltd (1972) is reported to have conducted a 17,000 foot trenching program with a total of 1650 feet of drilling in eleven holes on the old Val 5 and 6 claims. Again, there is very little available data on this program. Traverses in the area indicate that much of the drilling and trenching occurred along the main northeast magnetic trend on the QZ #2, Pete #2 and Pete #4 claims.

Recent work on the property by Conlon Copper Corporation has focused on the known showings. In 1992, a preliminary grid was installed over the Val area and parts of the Cinderella, Chase and Mike showings. This physical work was filed for assessment credit earlier in 1993. A limited amount of sampling from old trenches on the grid was conducted by Greg Ven Huizen in September 1992, and confirmed copper values in the four areas with local lead, zinc and silver.

In 1993 Conlon Copper Corporation financed geological mapping and sampling programs on the Copper Belle-Anaconda (Jean), Mike and Cinderella-Chase areas of the property. The aim of these programs was to outline copper skarn and possible porphyry style targets for further exploration.

CONLON			ATION		
REGIONAL GEOLOGY					
		<u> </u>			
KAMLOOPS GEOLOGICAL SERVICES LTD.					
DATE August 1993	NTS 921/2	FIGURE	5		

1.5 REGIONAL GEOLOGY

The Merritt area lies in the Intermontane Belt of the Canadian Cordillera and is part of Quesnellia Terrane. Within this section of Quesnellia, the Upper Triassic Nicola Group consisting of volcanics, sediments and associated intrusive rocks constitutes an island arc assemblage. Preto (1977) subdivided the Nicola Group between Nicola Lake and Princeton into three northerly trending fault bounded belts each containing a distinct lithologic assemblage (Figure 5). The Eastern Belt (TNe) facies, east and south of Nicola Lake, consists of mafic, augite phyric volcaniclastic rocks, minor volcanic flows and sedimentary rocks. The Central Belt (TNc) facies consists of alkaline mafic flows and pyroclastic rocks with abundant subvolcanic intrusions of diorite to syenite composition. The intrusive volcanic complexes host alkaline type Cu-Au porphyry deposits near Kamloops (Afton). The Western Belt (TNw) facies is an easterly facing succession of calc-alkaline mafic, intermediate and felsic volcanic rocks, syno-volcanic rhyolite plugs, volcaniclastic sediments and reefoid carbonates. These units are well exposed in the Promontory Hills west of Merritt and host the Craigmont Cu-Fe skarn deposit. Cogenetic calc-alkaline intrusive rocks, such as the Guichon Creek Batholith host plutonic copper molybdenum deposits in the Highland Valley area northwest of Merritt. The Craigmont skarn lies close to the southern edge of this batholith.

The Nicola Group is unconformably overlain by Jurassic Age Ashcroft Formation clastic sediments, and Tertiary (Eocene) Princeton Group intermediate volcanic flows and clastic sediments with coal seams (Coldwater Beds).

Major Tertiary structures, notably the Guichon Creek Fault and Clapperton-Coldwater Faults intersect west of Merritt and are extensional features.

1.6 PROPERTY GEOLOGY - MIKE GRID AREA

The location of the Mike grid relative to the mineral claims is shown in Figure 6. This grid covers some of the highest ground on the Jesse Creek Property, with elevations in the 1100 to 1300 metre range. A very large part of this area has been logged. The hill tops and steeper slopes are barren with large areas of outcrop and talus. In the Mike showing area (old trenches), the topography is hummocky with several overgrown gulleys and small swampy areas. On the west side of the grid a large area has been cleared for grazing. Detailed geological mapping was conducted on the Mike grid area in 1993 and is simplified in Figure 7.

a mar 2 and the second and the second and

e i

(a) Lithology

During the 1993 geological mapping program, several distinct rock units were defined in the grid area. These are as follows:

LATE TRIASSIC TO CRETACEOUS INTRUSIVE ROCKS

5

Quartz-Feldspar-Porphyry. Grey to brown, siliceous dikes with plagioclase phenocrysts and local quartz eyes.

LATE TRIASSIC NICOLA GROUP - WESTERN BELT

3

2

Altered limy sediments and tuffs.

- 3a Bleached and silicified tuffs and breccias.
 - **3b** Fine grained siliceous and calc-silicate altered sediments and tuffs.

Andesitic tuffs and breccias. Commonly as mixed sequences with Unit 1.

2a Undifferentiated.

2b Heterolithic to monolithic tuff, breccia, minor epiclastic units.

2c Coarse heterolithic breccias and tuffs, clasts greater than 1 cm.

2d Fine to medium grained, bedded tuffs, some cherty units.

1 Dark green to black, massive andesite to basalt flows, variably magnetic.

- 1a Medium to dark green andesite to basalt, sparse phenocrysts.
- 1b Medium green to black, commonly crowded plagioclase porphyritic andesite to basalt.

1c Light to medium green andesite, sparse phenocrysts, non magnetic.

•

ALTERATION

4

Skarn: several medium to coarse grained mineral assemblages including magnetite, specularite, actinolite, epidote, calcite and K-feldspar. Disseminated chalcopyrite, local pyrite, pyrrhotite.

Moderate to strongly magnetic Nicola volcanics predominate in the grid area (Unit 1). These are massive to plagioclase porphyritic (locally augite) flows and breccias with fine disseminated and local fracture controlled (vein) The volcanic assemblage includes intercalations of volcaniclastic magnetite. rock and minor sediments which range from a few metres to many tens of metres in thickness. Unit 2, green to grey andesitic tuff and breccia includes fine bedded (local cherty) to coarse lapilli tuffs and agglomerates. These may be monolithic to heterolithic with andesite, chert and locally dacite fragments. Epidote carbonate alteration is common within the finer tuffs. Unit 3 consists of calcsilicate altered (hornfels) tuffs and immature sediments. These are predominantly fine grained, fine bedded to massive siliceous rocks with variable epidote, carbonate, light pink to brown garnet, disseminated pyrite and, or The main calc-silicate unit is northwest trending and up to 50 pyrrhotite. metres wide with associated tuffs (Unit 2). Calc-silicate rocks and tuffs also occur along the Mike skarn trend (Figure 6). Two or more dikes of quartzfeldspar porphyry (Unit 5) intrude the Nicola Sequence and have northwesterly These intrusives are of rhyolite to dacite composition and may be trend. subvolcanic equivalents to Nicola (western facies) felsic extrusives. Unit 4 skarn zones will be described later.

(b) Structure

The Nicola Sequence strikes northwest to northeast with steep east to west dips. Bedding attitudes and the configuration of tuff units suggest tight folding. A probable synform fold axis lies close to the base line along the Mike skarn trend and features strong fracturing.

A number of northwesterly trending fault zones are apparent from the mapping. The earliest of these predate and control the quartz feldspar porphyry dikes. These may also control skarn alteration (hematite, epidote, carbonate, pyrite). A later fault set with similar to more northerly trend offsets the dikes and Nicola stratigraphy. The predominate orientation of joints in the grid area is also northwest with vertical to south dips. A northerly trending fault zone is probable along the valley (road) on the eastern edge of the grid.

(c) Metamorphism

The effects of thermal metamorphism on the Nicola Group rocks is widespread throughout the grid area. This metamorphism can be related to the Jesse Creek (monzonite) stock which lies less than one kilometre to the north and possibly at depth below the grid area. Unit 5 quartz-feldspar porphyry dikes may be related to the buried stock.

The mafic volcanics (Unit 1) are variably magnetic with local magnetite veinlets and can often be described as hornfels. Limy tuffs, breccias and sedimentary units have been converted to calc-silicate rocks and hornfels with much epidote and variable carbonate. Evidence of recrystallization is widespread, and fine plagioclase porphyroblasts may be present. The predominantly fine to medium grained calc silicate (hornfels) of Unit 3 have been distinguished from the medium to coarse grained skarn assemblages (Unit 4).

(d) Alteration and Mineralization

A number of styles of mineralization and associated alteration occur on the Mike grid. Several discontinuous, dislocated copper-iron mineralized skarn zones are exposed in the Mike trenches over 300 metres strike length (north-south). Chalcopyrite, malachite and minor azurite are associated with medium to coarse grained magnetite rich, epidote, calcite skarn with dark chlorite and local actinolite. Pink to light brown garnet skarn with epidote has little copper. In more fractured and brecciated areas, coarse specular hematite and calcite occurs with epidote, minor amphibole, chlorite and chalcopyrite (coarse blebby). K-feldspar veinlets, pods and coarse, semi-massive pyrite may be present locally. The specular hematite-chalcopyrite assemblage probably represents a secondary skarn (later phase-overprint). Copper values for the mineralized skarns exposed in the Mike trenches were in the 0.1% to 0.4% range over 1.25 to 4.3 metre range (sample widths). Gold was not associated with the better copper mineralization. However, a 5 metre sample width from epidote, actinolite, magnetite skarn yielded 260 ppb Au and 3.6 ppm Ag (5+00 N just west of baseline).

Chalcopyrite bearing epidote, calcite (minor garnet) skarn with disseminated pyrite and pyrrhotite occurs within the main calc silicate band north of the main feldspar porphyry dike (Unit 5) near Line 4+00N. Sampling in this area returned copper values up to 0.4%.

A 1.8 metre (true width) chip sample ran 458 ppm Cu and 335 ppb Au. This is highly significant as it indicates the presence of gold in the weak copper

mineralized parts of the calc silicate, skarn system. Further sampling is warranted.

Prospecting in the southern part of the grid located amphibole skarn float with coarse pyrrhotite and pyrite. This float returned 0.21% Cu and can not be related to any of the known skarn zones on the grid.

Northerly trending quartz-carbonate-chalcopyrite veins and fracture zones occur in the eastern part of the grid. These are generally less than a metre in width and returned copper values up to 0.35% with local anomalous gold (135 ppb).

2.0 PHASE 1 AND 2 DIAMOND DRILLING PROGRAMS

In 1994 a four hole diamond drilling program was proposed by the author for copper skarn targets on the Mike grid, QZ#3 mineral claim. These targets had been outlined by detailed geological mapping and sampling in 1993 (Figure 7).

Conlon Copper funded the Phase 1 and 2 drill programs. Phase 1 in 1994 consisted of two holes in the northern central part of the skarn trend (Figure 7). Hole JC 95-1 encountered narrow zones of mineralized skarn in much broader calc-silicate and hornfels zones. The best intersection was 1.67 metres averaging 0.35% copper and weakly anomalous gold (22 pb). Hole JC 95-2 to the south (Figure 7) did not encounter the skarn zone exposed in old trenches above. This zone was possibly displaced by faulting sub parallel to the drilling direction (easterly trending).

Phase 2 diamond drilling in June 1995 consisted of a single hole JC 95-3 in the southern part of the skarn trend (Figure 7). This hole was not drilled from the correct drill pad or in the right direction. It ended up testing another skarn zone at a small angle to strike. The hole encountered several weak copper mineralized veinlet and calc-silicate bands in the top 60 metres. The main and far more promising skarn target to the southwest remained untested

3.0 PHASE 3 DIAMOND DRILLING PROGRAM (1995)

3.1 INTRODUCTION

In October 1995 a third phase of diamond drilling was conducted on the Jesse Creek Property. This program was funded by the newly formed Merritt Copper Corp., previously known as Conlon Copper Corp. The object of the drilling was to test promising copper skarn targets on the Mike Grid (QZ#3 Mineral Claim).

In October 1995 funding permitted a two hole program in the southern part of the skarn trend. Previous drilling (JC 95-3) in this area had not adequately tested the target(s) and the most promising skarn zone/environment remained untested. Phase 3 drilling consisited of two NQ diamond drill holes for a total of 206.34 metres. This drilling was performed by Atlas Drilling Ltd. With offices in Kamloops B.C. Water for the drilling was hauled from Jesse Creek by Gallant Trucking Ltd and stored in a plastic lined basin near the drilling site. Drilling onthe property was completed between October 18 and 24, 1995 using two shifts.

The supervision of drilling and all geological work was by kamloops Geological Services Ltd. R.C. Wells P.Geo. logged all the drill core from the program. Core logging and sampling was completed by November 1, 1995. Split core samples were transported to Eco Tech Laboratories in Kamloops, B.C. and analyzed geochemically for gold plus 30 element ICP (37 samples total). All drill core from the 1994-95 programs is housed on the property at the Allen drill yard on the QZ#4 mineral claim (outskirts of Merritt).

3.2 DRILL TARGETS AND RESULTS

Diamond Drill logs for the two phase 3 holes can be found in Appendix 3 with the analytical results. The locations of both holes are shown on Figure 8.

Diamond drill hole JC 95-4 was collared at approximate grid coordinates 4+20N, 1+75W and drilled to the west. Hole JC 95-3 was previously reported (Wells, August 1995) from this location but was found to have be collared at 5+00N, 1+00W and drilled north (by Conlon Copper). The copper (+Au?) skarn target remained untested. Previous work by the author in 1993 had located a mineralized skarn zone at surface with grap samples returning up to 0.4% copper and one gold value at 335 ppb. The host was epidote-carbonate-garnet skarn with pyrite, chalcopyrite and magnetite. A feldspar porphyry dyke with northwesterly trend cut the south striking volcanic sequence to the south of the hole. The intersection area was considered an excellent location for mineralized skarn. DDH JC 95-4 was targeted at this area.

JC95-4 (Figure 9) 146.30 metres long was drilled at -50° and intersected a mixed sequence of massive to feldspar phyric andesite to basalt flows interbedded with fine to locally coarse monolithic to heterolithic tuffs. These are intruded by fairly large bodies (dikes to small stocks?) of quartz-feldspar porphyry and a variety of narrow dikes including fine plagioclase porphyries with significant groundmass biotite. The main intrusives are grey to locally orange with numerous tabular plagioclase phenocrysts to 5mm and up to 7% quartz phenocrysts (grey to bluish) of similar size in a fine grained to aphanitic, siliceous groundmass. Intrusion fo these bodies has converted the country rock volcanic flows to variably magnetic dark hornfels and the tuffs to mottled calcsilicate (epidote-calcite) hornfels and more restricted coarser grained skarn with epidote -calcite-K.feldspar-dark amphibole (hornblende?) and local specular hematite.

There are reasonably good correlations between surface and drill hole geology as seen in Figure 9. It is apparent that the intrusions are widening rapidly to depth and that the environment is a `roof zone'. The two main skarn zones in the hole occur at 30 and 43 metres depth with significant pyrrhotite and local veinlet chalcopyrite. These occur vertically below the mineralized outcrops of skarn and calc silicate hornfels (tuffs) and contain far less copper and pyrite but more pyrrhotite. Another proximal indicator (to the heat source) in the pyrite skarn is high arsenic up to 1090 ppm. Calc-silicate hornfels with anomalous copper values (to 317 ppm) occur on the other side (west) of the quartz-feldspar-porphyry intrusions below 115 metres. Below this at 136.6 metres a zone of strong quartz carbonate vein stockwork and banded quartz veins looked promising for gold potential. No significant gold values were however returned. The hole ended 146.30 metres in another porphyritic intrusive similar to those above.

Diamond drillhole JC95-5 was collared at approximate grid coordinates 5+32N, 0+58W and drilled to the southwest. The target was a northerly trending garnet-epidote-carbonate-magnetite skarn zone that returned copper values of close to 0.3% over 2 metre widths at surface (1993 sampling). Hole JC95-3 was drilled on this zone but at a very small angle to strike, and was not an adequate test. JC95-5 tested the skarn zone from the best available set up. Figure 10 shows the drillhole relative to the surface showings. The hole encountered major problems on crossing a a southeasterly trending fault zone and was terminated

prematurely at 60.04m. At this depth squeezing in the fault zone prevented deeper penetration and the amount of core loss was totally unacceptable (more than 50%). The target depth for the hole was between 80 and 100 metres.

Much of JC95-5 was in interbedded mafic volcanic flows, tuffs and breccias. These have been converted to variably magnetic hornfels by thermal metamorphism. A narrow 3.5 metre wide epidote-carbonate skarn zone was encountered above the fault zone at 32 metres depth. This was weakly mineralized with some specular hematite but returned low copper values. At the very end of the hole a more promising skarn unit (much core lost) contained epidote-carbonate-dark amphibole with local magnetite, and returned a low copper value.

3.3 CONCLUSIONS

Diamond drillhole JC95-4 tested the Bouthern skarn target on the Mike grid. The hole encountered some very interesting geology with QFP intrusives and associated calc-silicate alteration with local heavy sulfide mineralization in the country rocks. In this area much of the favourable roof zone has been removed by erosion. The skarn zones to the north on the Mike skarn trend (Figure 8) represent higher levels *ie* further away from the intrusive system and possibly better potential.

Diamond drillhole JC95-5 did not test the targeted skarn. Strong faulting in this area makes drilling difficult and expensive.

4.0 REFERENCES

See Table 2 (Appendix 2) for B.C. MEMPR Assessment Report Index for the Jesse Creek Property.

Ettlinger, A.D., (1990): A Geological Analysis of Gold Skarns and Precious Metal Enriched Iron and Copper Skarns in British Columbia, Canada; Unpublished PhD. thesis, Washington State University.

McMillan, W.J. et al. (1981): Preliminary Map 47 Nicola Project-Merritt Area; B.C. MEMPR.

Meinert, L.D., (1992): Skarns and Skarn Deposits; Geoscience Canada Volume 19, No. 4, Pgs 145-162.

Monger, J.W.H. (1989): Geology of Hope and Ashcroft Map Areas, British Columbia, Maps 41-1989 and 42-1989; Geological Survey of Canada, DEMR.

Moore, J.M., Pettipas, A., Meyers, R.E., Hubner, T.B.: Open File 1990-29, Nicola Lake Regional Geology and Mineral Deposits; B.C. MEMPR.

Morrison, G.W. (1980): Stratigraphic Control of Cu-Fe Skarn Ore Distribution and Genesis at Craigmont, British Columbia, CIM. Bull. August 1980, pg 109.

-----(1968): Map 5209G Aeromagnetic Series; Geological Survey of Canada

DEMR.

- Ven Huizen, G.L.: 1993 (March) Summary Report on the Jesse Creek Property for Eurocan Mining (Canada) Corporation. Private Report.
- Wells, R.C. (1993): Report of the Jesse Creek Property for Conlon Copper Corporation. Private Report.
- Wells, R.C. (1994): Geological Assessment Report for the Jesse Creek Property. Mike Grid.

Wells, R.C. (1994): Diamond Drilling Assessment Report for the Jesse Creek Property, Mike Grid (QZ#3 claim).

Wells, R.C. (1995): Phase 1 and 2 Diamond Drilling Assessment Report for the Jesse Creek Property, Mike Grid (QZ#3 claim).

24

5.0 STATEMENT OF COSTS

. .

JESSE CREEK PROPERTY, MERRITT, B.C.

MIKE GRID - (QZ⁴3 CLAIM)

1995 PHASE 3 DIAMOND DRILLING PROGRAM

PHASE 3

.

1.	Personnel: Kamloops Geological Services Ltd.
	R.C. Wells, P. Geo., Consulting Geologist 8 days
	Paul Watt, Geotech. 5 days
	Assessment Report
2.	Diamond Drilling Atlas Drilling Ltd. 15,814.74 Support P. Conlon 400.00 Sub total \$16,214.74
3.	Water Truck Gallant Trucking Ltd., Kamloops
3.	Eco Tech Laboratories Ltd Analytical costs total

.

6.0 STATEMENT OF QUALIFICATIONS

I, Ronald C. Wells, of the City of Kamloops, British Columbia, hereby certify that:

- 1. I am a Member of the Geological Association of Canada
- 2. I am a member in good standing of the Association of Professional Engineers and Geoscientists of British Columbia.
- 3. I am a graduate of the University of Wales, U.K. with a B. Sc. Hons. in Geology (1974), did post graduate (M. Sc.) studies at Laurentian University, Sudbury, Ontario (1976-77) in Economic Geology.
- 4. I am presently employed as Consulting Geologist and President of Kamloops Geological Services Ltd., Kamloops, B.C.
- 5. I have practised continuously as a geologist for the last 15 years throughout Canada and USA and have past experience and employment as a geologist in Europe.
- 6. Ten of these years were in the capacity of Regional Geologist for Lacana Mining Corp. then Corona Corporation in both N. Ontario/Quebec and S. British Columbia.
- 7. I have no interest in the properties or holdings of Merritt Copper Corporation, previously Conlon Corporation, nor do expect to receive any.

R.C. Wells, P.Geo., F.G.A.C.

Dated

APPENDIX 2

.

Table 2: Assessment Report Index - Jesse Creek Property

		T T		
Date	File No./ Source	Author	Type of Work	Area
1915	BCMM Ann. Rept. pg. 231		Desc. old workings	Copper Belle
1915	BCMM Ann. Rept. pg. 230		fi 19	Anaconda
1916	BCMM Rept. K.230		11 11	Copper Belle Anaconda
1962	#402 Ass. Rept.	S. Kelly, Conford Exp. Ltd	SP, rubeanic acid, Cu	Jean area
1962	#461 Ass. Rept.	Hunting Survey Corp. Ltd	Ip. survey, Justice Group	Northern area
1964	MPR Rept 1964		Peele Resources Trenching, soils, mag, geol., 1 DDH- 144'	Cinderella
1965	#736 Ass. Rept.	D.L. Hings, Merritt, Copper Syndicate	Geomag- vectoring	W. of Jean?
1965	MPR. Rept. 1965		Nippon Program 20 trenches 4000' 10 NX holes, 2 BX holes	Cinderell a-Chase
1968	#1598 Ass. Rept.	M.P. Stadnyk Laura Mines Ltd.	Geochemical- soils	NE of property
1968 ¹	#1799 Ass. Rept.	A.R. Allen	Geophysical- mag.	QZ #2 and #3

TABLE 2: ASSESSMENT REPORT INDEX - JESSE CREEK PROPERTY,
MERRITT, B.C.

.

Date	File No./ Source	Author	Type of Work	Area
1969	#2375 Ass. Rept.	A.R. Allen Gibraltar Mines	Geophys geochem.	Patlo 1
1970	#2466 Ass. Rept.	A.R. Allen Silver Key Expl. Ltd	Magnetic Survey	QZ #2 and #3
1971	#3285 Ass. Rept.	N.L. Szabo Cominco	Soil Geochem.	North of QZ #2
1972	#4172 Ass. Rept.	V. Leis Alaskan Metals Ltd.	Geochem, magnetic	Patlo 1, QZ #3?
1972	M.M. Ann. Rept. 1972		Newvan Res. Ltd program Trenching, 11 holes-1650'	QZ #2, Pete #2 and #4
1976	#6132 Ass. Rept.	M.R. Wolfard, Quintana Minerals Co.	Magnetic Survey	Pete, Pete #2, Pete #4, Patlo #2, QZ #2 (Cinderell a-Chase)
1979	#7218 Ass. Rept.	S. Kelly	500' drillhole	N. Cinderella
1980	#8728 Ass. Rept.	T.B. Lewis	Geophysical	Cinderell a-Pete #4
1982	#10186 Ass. Rept.	D. Faulkner	Prospecting	QZ #1 north
1982	#10210 Ass. Rept.	M.G. Schlax JMT. Services	IP. survey. 5 lines	East and N.E. area
1984	#12514 Ass. Rept.	R.W. Phendler	Geological mapping	QZ #1

. ,

APPENDIX 3

Diamond Drill Logs

With Analytical Results

KAMLOOPS	GEOLOGICAL SERVICES LTD	DIAMOND DRILL LOG:DDH JC 95-4
PROPERTY	: Jesse Creek	OWNER : MERRITT COPPER CORPORATION
NTS Claim	: 921/2 : QZ [*] 3 NO 237426	MINING DIVISION: NICOLA MD, B.C.
GRID	: MIKE	LINE/STATION : 4+20N/1+75W
length	: 91.59M	INCLINATION AT COLLAR: -50° Azimuth : 270° W
CASING	: 3.05M	ACID TESTS : @61M -4 5 [°] : @122M -45 [°]
LOGGED BY	: R.C. WELLS	DRILLED BY : ATLAS DIAMOND DRILLING LTD
DATE	: October 27, 1995	DATES : FROM 19/10/95 TO 22/10/95
CORE LOCATIO	N: PROPERTY	CORE SIZE : NQ

PURPOSE OF HOLE: To test beneath copper mineralized skarn and calc silicate units and the contact between a QFP intrusive and northerly trending tuff units.

32

		SUMMARY LOG DDH JC 95-4
FROM (M)	TO (M)	DESCRIPTION
0	3.05	CASING.
3.05	45.60	ANDESITIC TUFFS AND BRECCIAS MIXED WITH CALC-SILICATE ALTERED UNITS (HORNFELS). Fine plagioclase porphyry-biotite dike 23.56-25.51.
45.60	60.60	QUARTZ FELDSPAR PORPHYRY INTRUSIVE.
60.60	74.81	BASALT FLOWS.
74.81	114.46	QUARTZ FELDSPAR PORPHYRY INTRUSIVE.
114.46	124.50	CALC SILICATE ALTERED UNITS. Variable epidote, calcite, K.feldspar and dark amphibole.
124.50	130.47	ANDESITE-BASALT FLOWS/METAVOLCANICS. Massive units.
133.46	135.64	FELDSPAR PHYRIC ANDESITE, BASALT. Massive units.
135.64	136.62	FAULT. Clay gouge.
136.62	138.40	STRONG QUARTZ-CARBONATE ZONE. Brecciated, bleached and veined.
138.40	143.56	ALTERED MAFIC METAVOLCANIC FLOWS. Bleached and intruded by narrow quartz porphyry dike.
143.56	146.30	QUARTZ FELDSPAR PORPHYRY INTRUSIVE
	146.30	END OF HOLE

.

•

.

PAGE NO.1

ALTERATION	GRAPHI	CLC) G :	LITHOLOGY	S	SAM	PLING
	MINERALIZATION		STRUCTURE		FROM	то	SAMPLE NO.
		0 0 0	£•£	CASING 0-3.05m in fill and rubbly bedrack. Set up on old trail.			
Hornfolsed - siliceous, Patchy brown bistite. Aurarous fine epidole verslets throughout incally with guarty.	Patchy fine dissem and fracture controlleds pyrite often in clusters		Mod. brittle fractured numerous veintets; voriable ongles CA. 6.60	File volcaniclestis. Hard, mottled light greens, greys. Sil. harafels weak to none megnetic	5-18	6-10	14 2360
Homfals, siliceous with fracture controlled epidete verslets with calcite.	Clusters of fine disseminated Po-Py Locally fracture 10	17. 11/	Crude bedding H ⁸ -5 ⁵ CA. Fine brittle fronturing	Lapitli tuffs, breacies and ANDESITE TUPFE AN epicloshis. Hard, clark Greacies mined with Mottled greens and greys CALC SILICATE ALTERS	2	7.67	
Patchy generally weak background epidote local fire biotite . Local secondary babular leidensi	controllad. Rorely >3%.	H. H.	low and high angles to CA.	horafels, Poor to mederate units (Hernitets) sorting, generally angular 3.05 - 45.60m fragments yoto Ican File Corregand greens, provided, dark coloured horal, Actorolithic to	10-28	11-25	14-23-5
Homfelsed, highly siliceous thith pervasive fine epidate hers numerous fine epidate	15 upto 54 frie disce frie discentry frie discentrated Ro	Þ., eg	14:70 Weak brittle fracturity.Local 70°C4 fine dark	matrix some biotite. Manolithic lapilli type Lapilli types, breccias is and epielastic unit epiclostics. Hard, light coloured. Significant fine out local chert epielote. Light claused & clasts. Fairly	u 3 16-55	17.68	14 23 63
quarty veinleb.	after fracture controlled rare. Py 20		Chloritic fracture	Acterolithic fragments , siliceous hornfels. Liom. fragment to 1, siliceous hornfels. matrix supported 18 Grenerally non to Be comming finer with 18 Grenerally non to	- - -	20-00	j 4 23 64
in fine epidote fractives non magnetic Y Highly siliceous fine fractive E apid- calcite veinlets U Fine calcite veinlets.	Minor dissem. Po Minor dissem to bleas mad. grained by local cubes 25	/*/ sii	- 21:40 sharp contacts - 21:94 25°CA - 23:56 Contacts 65°CA weak brittle fracture	depthis are united in white a fragments in the second son prove and press mathematical and are coloured son white great great and a strong a magnetic dytas. Si oversate asterniture fragments a second son similation & Faldspar physic to approximate a fragment appearing to be bite rich appearing of the second appearing to be bite rich	21.94	23.56	14 23 6 5

Jine blobite

ALTERATION	GRAPHI	C LOG	LITHOLOGY	S	SAMF	PLING
	MINERALIZATION	STRUCTURE		FROM	тb	SAMPLE NO.
U. strong perrasive silicification moderate epidote. Local Mg spen. Hematile, course Ep and K.F. Patchy mod-strong epiodete and K.feideper Strong siliceous with more.	Local specular hematite minor find sulfides. blacky, fracture controlled Blacky Po Local coluite, Po Copyrains to Bon lo-to ca 30 Patchy med/ coarse Po as clusters minor Coy	25.559 what brittle fracturing Some high & Calute veinho 20.55 Late Calut veins Lows Fracturing 20.55 10.55 20.5	Biotics rich dyke Conres heterolichic breccie Anspesitic TUFFS AND (cale-rikeste alteral unit) periclastic. Rottled grand BRECCIAS with CALC- and grays highly diliceous peorly sorted Matrix superial SILICATE ALTERED UNITS fragmants to revene cm. Epidete - dark implaincie (HORNERS) 3.05-45.60m (h) ?) K. Felder, Calcite from grained Ste ARN UNITS As at 25.59m crase	27-33 29-53 29-53	27-33 18-58 2 9-57 30-60	14 23 66 14 23 67 14 23 68 14 23 68 14 23 69
epidate. calcite rich sections. Chlorite-calcite veining associated with cate fracturing	fracture controlled commonly near epidote rich zones. Fracture for minor zs Cray in calc-silicate hornfels.	Pitte prating Rice with exists or Later chienite. Son Tel Late high angle ch Pstp: Calcite vein Lats Pitter Late high angle ch Pstp: Late high angle ch Late high angl	Hetarolitalia Breccia, mottuad greys and greens hard, highly siliceaus (horafels) Narrow exidets calcite medium grained Skarn units R	23 05 35-74	34.65 37-32	14 23 70 14 23 71
Cale-silicate hornfels locally well bardled with K.feldspor and Pa.	Patchy locally 40 strong to 10% dissem, of fracture to best in §	JTT - 28.71 Swirty & boulded SS - textures. Banking 70°CA Local 20°CA Local	Predominanty fine to fine/med grained Kifeld & - gtg-epidote-fine calcite minor atk amphibale calc silicate horafels iscally well bendled	37.28 41 64	\$7.90 42.80	142372 142373
Local dalk amphibole	K. feldy. Sections 2. Skarn 45	Performent	mich with the control of the second of the s	44.04	45-20	14 23 74
weak fracture controlled epictule-carbonate alteration Patchy silicification with epidole.	· Some fine quarts and, or epidote veinlets miner fine fracture by Miner vyfine Coy along dractures with explose with	fine brittle 1 0 to 2 0 to 1 0 to	Quartz-factoper Arphyny FELSIC, QUARTE- gray siliceous, aphanitic FELDSPAR PORPHYRY grownelmass INTRUSIVE Mafric dyke. Dark gray, 45.60-60.60m frie growned, storp contacts bladwad in captor gray,			

MINERAL ATON STRUCTURE Sillceurs veinkes load Very miner frie former Strug former gadete Very former Strug former strug former Strug former Strug former gadete Very former Strug former gadete Strug former Strug former	ALTERATION	GRAPHIC LOG		LITHOL	OGY	S	AMF	PLING
Sillcerus veinkets local sillcerus veinkets local goden. Sillcerus veinkets local goden. Some fractions of spielder Using sports frink the some fractions the some fractions the some fractions the some fractions the some fractions the some some fractions the some fractions the some fractions the some fractions the some some fractions the some f	· · · · · ·	MINERALIZATION S			· · · · · · · ·	FTIOM	79	SAMPLE NO.
Ty fractures	Siliceous veinlets local apidote. Small potches of epidote along some fractures fine cortonate, epidote and guartz veinlets at variable angles CA Patchy fine. K.foldspar epidole, silica z corbonate fracture colcite Weak colcite veining Large block with fine opcorts alteration.	Rare done fracture of the star Very miner file fracture of the star Py. Rare done Cay the star Py. Rare done Cay the star Practure sufficies 55 the star Solfide fracture of the star Solfide for th	15 Torch content Cal Torch Tacture sets Sto Lak to mod ittle fracturing monty 7° ch ma subported octerate to racturing cal riskly cire co whe very sh chupt chay yough (a,)(y massive pow and high y(a CA calcite Lins along ractures	Crier 9ts - fald - perphysion grading into orange grade at depts. 	QUARTE-FEIDSPAR POR PHYRY INTRUSIVE +5:60 - 60:60m Hard, Mottled grey and White to orange and White to orange and White Crowded tradular playoclast phase to Ama 2-5% submustle grants for an any attra- weak to non regative Weak to non regative BASALT FLOWDS Go 6-74 the Moderately hard, dat Brittle fractored with Manable carbonate Velsing Weak to Moderately Magnetive	5383	S S 000	· · · · · · · · · · · · · · · · · · ·

MINERALIZATION 10 cal cristed for a for the formation of	ALTERATION	GRAPHIC LOG	LITHOLOGY	SAMPLING
V. fine gly calcule vandets local epidets Non magnetic sparse file suffides 10 cal epidets Non magnetic sparse file 10 cal epidets Non magnetic sparse 10 cal epidets Non magnetic sparse file 10 cal epidets Non magnetic sparse 10 cal epidets Non magnetic 10 cal epidets 10 cal epid		MINERALIZATION STRUCTURE	74;91.	FROM TO SAMPLE NO.
Concertate fractiones by generally 227. 10 brittle fractionary Feldspor phenos 1-300. Local blebby epidete By fine verilets. tabular. Aphanitic along fractures. 0% Low LCA chloritic siliceus groundmass	V. fine gtz-calaite ventets local epidote	MINEHALIZATION IS THUCTURE TABLE Non magnetic Sparse dive sufficies Sparse dive sufficies I-3% five Controlled fracture Controlled discen. 37 Local chloritile fracture Controlled discen. 37 Local LCA chlorite Controlled discen. 37 Local LCA chlorite Controlled discen. 37 Local LCA chlorite Controlled discen. 37 Local LCA chlorite Controlled discen. 45 Local LCA chlorite Controlled chlore	74:81. C Light pinkish grey GFA GFA GFA GFA GFA GFA GFA GFA	FROM TO SAMPLE NO. 85-34 84 87 44-23 78 87-80 33 70 14 28 79

ALTERATION	GRAPHIC LO	OG	LITHO	LOGY	S	AMF	PLING
		STRUCTURE		· · · · · · ·	FROM	Ð	SAMPLE NO.
Chiarite and, or calcite Low L vershts 2-4 cm zone of fine ground modystrong K.feidspar & Fine exidate at lower contact company line colcite version	Asiner fine fracture controlled Ry: Some fine Ry in 105 Magine Kenelities Magine Ry in 105 Magine	HE.II ME.II AVERAL Grittle fracturing, CUMMIONLY (and angle CA. HID-95 Sharp 30°CA controls 30-50°CA fractures HIZ-12 Stanp brittle	Orange to pinkish QFP Mirad arange, pink and grey, QFP. Quartz bisish to Smm. Playiochus laths up to 4 mon. Locak textures associate through alteration Local Subounded matic setwith alteration Local Dark grey dike Playiochase porphy dike Playiochase production is the local	GFP INTRUSIVES continued			
Local minor epidote. modi strong epidote. modi strong epidote. Maral siliceons with patchy fine epidote, calcite. Local dorker emphibole joblorite hornfels. carb veinlets Patchy epidote, calcite dk amphibole minor chlorite Local moderate k. feidspar, carbonate and, or chlorite	2-5% constra fracture 115 Pe near contact Britts fructure controlled course cubic Py 2-7% 10-15 co 1-6% med/course Py patches or fracture controlled - Local fine magnetic with K-feldlyre	fracting variable Hild us anyles CA Weak brittle Histor fracturing Histor fracturing Histor fracturing Histor Cenerally weak brittle fracturing With Chierite Yor carbonate Veining	Graes file bedded type Graes file bedded type Missive with lacal crowda textures. Strong alteration overprint Similar to above Remnant fragmantal textures. Largely colc silicale altered massive to crucely	CALC-SILICATE ALTERED UNITS Hard 46 - 124-50 m Hard 1194t nottled green and greys. Alteration obscures textures, however protolistin appears to have been mixed types to have fine lithic hyps. Local cruds bedding 50-55° CA Calc-silicate hornfels variable Ep, calibe, K.F.	114 4C 1 115 59 1 117 30 1 120 05 1 121 0 1	115- 58 17-50 18-70 121-01 22-45	14 23 80 14 23 81 14 23 82 14 23 83 14 23 83 14 23 84

ALTERATION	GRAPH		G	LITHO	LOGY	5	SAMI	PLING
	MINERALIZATION A		STRUCTURE	124-50		FROM	π	SAMPLE NO.
Patchy weak epidate	Local Med-coorse	TIT	mank brittle		ANDESITE-BASALT FLOWS	134-77	126 20	14 23 85
patchy mod calcite. Epidote-calcite and Low angle Cd. K Foldspar- guarts vein lets.	frocture Ry. Local patches of upto 7% fm grained dissem. Ry 130	1	fracturing local epidate . Fine Calcite verining Comman. Low and 	Mabive flow unit weakly altered.	METAVOLCANICS 1245-1344 Intelling to derk grzy, frie gron en local ithe family friend massive local weak fritte frietning with epidote weakly magnetic			
Patchy siliceous, epidate, Calcite: local hematica . Chi-carb. veins ± Py	Med-coose ground by in 45°CA chi-calute verins or in irregular high 6 ch dractures.		Crucie basteling 57.60°CA weak- Must brittle 13.46 cultoning	Fine grained and strongly altered; overprinted	CRUDELY BED DED TUFFS 130-67-138-460. Light green 10 grey, calc silicate minister Local crude & colding 58-68	130-67	132,08	14 23 86
Norrow calcite vaintets Local epidote.	Local minor dire / mail grained fracture by 125		callite verniets 70-90°CA	Massire unit foirig numerous calcite verhiets	FELDSMAR MYAIS ANDERTE BALALT 133.46-135.66 Fire grained weaks magnetic tabular 1-3 mm place Areas	 !		
clay, weak/mad oxidized.		~~.	FAULT Gay goinge	126.62	FAULT 135-64-136-62	135:64	13462	14 23 87
Strong combinate and silica alteration.	Local fine med. groined By in vein fill.		Brecilated gtz- cars fill. 19:40	Breceivated and counted alteration zone	STRANC, QUART - CARBANNE ZANEL 13562-13:00 GARLANS BECCINER, MARCHAR STORE	13695	138 40	14 23 88
strong veining (Late) in blenched flow unit. Bleached, light coloured pervasive weak-mod carbonak local homatite. Aelatively unaltered calcite veinlets.	Numerous 1+3cm portica bonded gtz Caluse) callite vering Sparse He suffides variable fine fracture Ry Callite vering variable ongles CA.		ligh L CA VEINS PEA Brecciated Course CA Calcite Veins 13:36 Massire, weak Erc frecturing	Bleached fluw unit hight coloured 943 porphyry dyke 40°CA.	ALTERED MARIC METAVOLCANE FLOWS 189.40-143.500 File granded Altered in your part grading into dark majnetic baselt with depth	138-40	139-18 140-57	14-23 99 (4-23 90
Fine fracture veinlets with epidate sor calcite miner Py.	Minor fine pyrite in fractures 146		Sharp contact massive to weak brittle fracturing	Light pinkish grey 3-um tobular plasialou phenocysts. Who sam Subrounded gty phenos here aphenitic ground malls	QUARTE FELDSPAR PORPNYRY 143-56-146-30 BOH.		:	
				END OF HOLE OF ESSION	7.			
				Competing of				

7-Nov-95

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C.

V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

Values in ppm unless otherwise reported

MERRIT COPPER CORP. AK 95-1051 C/O RON WELLS 910 Heatherton Court KAMLOOPS, B.C. VIS 1PS

ATTENTION: RON WELLS

37 Core samples received Nov. 1, 1995 PROJECT: # MC-1 SHIPMENT: #1 Samples submitted by: Ron Wells

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	_ Ni	P	РЬ	Sb	Sņ	Sr	TI %	U	<u>v</u>	W	<u>Y</u>	Zn
1	142360	5	<.2	0.65	- জ	25	\$	0.81	ব	6	130	24	0.85	<10	0.21	216	6	0.09	5	470	6	<5	<20	28	0.12	<10	19	<10	9	25
2	142361	5	<.2	0.92	10	45	10	0.59	<1	10	108	20	3.40	<10	0.58	354	6	0.00	5	490	6	<5	<20	17	0.13	<10	40	<10	7	27
3	142362	5	<.2	0.85	<5	55	<5	0.82	<1	9	94	25	2.35	<10	0.39	288	1	0.10	5	530	2	<5	<20	18	0.13	<10	42	<10	8	31
4	142363	5	<.2	0.45	35	10	<5	0.94	<1	13	- 74	83	1,67	<10	0.30	302	2	0.08	8	630	6	<5	<20	10	0.11	<10	25	<10	6	- 38
5	142364	5	<.2	0.64	110	10	<5	1.87	<1	26	44	94	2.16	<10	0.55	518	<1	0.06	16	1460	6	<5	<20	27	0.13	<10	37	<10	6	67
6	142365	5	<.2	0.70	45	10	<5	1.40	<1	11	66	34	1.26	<10	0.34	361	1	0.06	7	730	8	<5	<20	11	0.11	<10	28	<10	6	33
7	142366	5	<.2	0.44	60	10	<5	1.45	<1	6	73	22	1.07	<10	0.45	413	5	0.07	4	760	6	<5	<20	16	0.11	<10	21	<10	7	118
8	142367	5	<.2	0.47	445	<5	<5	1.70	<1	7	78	8	1.09	<10	0.37	395	33	0.05	5	550	2	<5	<20	19	0.10	<10	19	<10	5	123
9	142368	5	<.2	0.93	15	10	5	4.00	5	6	46	10	2.40	<10	0.66	1109	2	0.04	6	550	<2	<5	<20	44	0.12	<10	78	<10	5	833
10	142369	5	<.2	0.83	1090	40	<5	3.90	1	38	47	150	3.87	<10	0.56	1265	5	0.05	65	860	24	<5	<20	49	0,10	<10	39	<10	<1	2209
11	142370	5	<.2	1.14	30	10	<5	3.87	<1	8	33	49	2.68	<10	1.04	924	2	0.05	5	990	2	10	<20	35	0.11	<10	63	<10	4	74
12	142371	5	<.2	0.97	45	25	<5	1.74	<1	15	41	80	2.34	<10	0.61	561	5	0.09	13	1130	4	<5	<20	36	0.11	<10	42	<10	5	27
13	142372	5	<.2	1.03	50	10	<5	2.33	<1	22	64	173	2.74	<10	0.26	730	2	0.04	18	1900	2	<5	<20	31	0.10	<10	75	<10	7	19
14	142373	5	<.2	1.53	635	20	<5	5.41	<1	71	54	136	6.54	<10	0.44	1377	4	0.02	57	2240	2	<5	<20	32	0.07	<10	92	<10	2	23
15	142374	, 5	<.2	1.43	340	10	5	4.36	<1	16	37	16	2.44	<10	0.80	861	2	0.03	10	2110	10	5	<20	55	0.09	<10	49	<10	3	15
16	142375	5	<.2	0.60	35	15	<5	1.34	<1	10	97	174	1.83	<10	0.57	339	4	0.09	14	270	2	<5	<20	17	80.0	<10	34	<10	3	30
17	142376	5	<.2	0.43	<5	25	<5	0.74	<1	4	109	33	1.10	<10	0.30	265	4	0.06	4	260	2	<5	<20	7	0.02	<10	16	<10	6	20
18	142377	5	<.2	0.33	<5	45	<5	0.98	<1	2	128	14	0.84	<10	0.23	233	5	0.06	5	200	<2	<5	<20	8	0.01	<10	13	<10	8	16
19	142378	5	<.2	0.35	<5	10	<5	0.71	<1	4	104	7	1.13	<10	0.24	231	6	0.05	3	170	2	<5	<20	6	<.01	<10	13	<10	6	14
20	142379	5	0.2	0.43	<5	5	<5	0.54	<1	5	122	11	1.27	<10	0.30	236	8	0.05	3	1 70	2	<5	<20	6	<,01	<10	13	<10	5	15
21	142380	5	<.2	0.66	50	35	<5	1.77	<1	13	52	149	3.14	<10	0.45	624	5	0.06	5	900	4	<5	<20	20	0.13	<10	39	<10	4	29
22	142381	5	<.2	0.64	140	15	<5	4.05	<1	37	49	116	2.95	<10	0.55	953	18	0.06	8	780	<2	<5	<20	25	0.14	<10	45	<10	4	34
23	142382	5	<.2	0.84	50	25	<5	1.76	<1	14	34	227	3.72	<10	0.84	589	7	0.05	9	750	<2	<5	<20	27	0.11	<10	54	<10	1	24
24	142383	5	<.2	1.16	55	20	<5	2.73	<1	20	60	317	4.07	<10	0.72	709	11	0.07	15	670	2	<5	<20	50	0.14	<10	65	<10	2	22
25	142384	5	<.2	1.70	<5	25	<5	4.73	1	16	71	102	7.19	<10	0.83	1204	4	0.03	18	1420	<2	<5	<20	101	0.09	<10	122	<10	<1	22

MERRIT COPPER CORP. AK 95-1051

ECO-TECH LABORATORIES LTD.

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	<u>Cd</u>	Co	_ Cr	_Cu	<u>Fe %</u>	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	TI %	U	V	W	Y	Zn
26	142385	5	<2	2.22	30	65	<	2.97	<1	21	34	89	5.56	<10	0.89	689	8	0.12	7	650	2	<5	<20	57	0.14	<10	150	<10	4	55
27	142386	5	<.2	1.48	50	35	<5	3.20	<1	31	38	149	5.16	<10	1.02	1261	8	0.05	16	1050	2	<5	<20	57	0.14	<10	98	<10	3	52
28	142387	5	<.2	1.65	20	245	<5	5.52	<1	19	69	46	5.10	<10	1.12	1142	5	0.02	48	1640	2	<5	<20	125	< 01	<10	76	<10	12	64
29	142388	5	<.2	0.85	30	235	<5	9.09	<1	18	86	19	5.13	<10	2.23	1769	5	0.02	27	1080	~2	5	<20	128	< 01	<10	154	<10	9	66
30	142389	5	<.2	1.15	ব	110	10	5.16	<1	13	20	17	5.96	<10	0.95	1370	6	0.01	5	610	2	<5	<20	53	<.01	<10	153	<10	7	Π
31	142390	5	0.4	0.66	<5	185	<5	5.91	<1	10	55	85	3.88	<10	0.43	1357	9	0.02	4	320	2	<5	<20	34	<.01	<10	33	<10	9	45
32	142391	5	< 2	2.30	<5	80	4	9.15	1	51	30	84	7.60	<10	1.39	1621	10	0.01	9	910	<2	<5	<20	41	0.03	<10	100	<10	8	48
33	142392	5	<,2	2.01	<5	30	15	5.35	<1	20	27	41	5.96	<10	1.94	1326	2	0.03	7	1030	<2	10	<20	29	0.14	<10	168	<10	8	46
34	142393	5	<.2	1.65	<5	25	15	2.04	<1	36	39	12	6.24	<10	1.60	822	2	0.04	6	920	<2	<5	<20	38	0.12	<10	154	<10	12	- 44
35	142394	5	<.2	3.04	<5	105	15	1.93	1	27	26	19	8.50	<10	2.34	944	<1	0.08	7	880	4	<5	<20	67	0,16	<10	181	<10	8	87
36	142395	5	<.2	2,59	-5	50	10	2.63	<1	19	30	34	7.36	<10	1.81	1244	4	0.04	4	1090	2	<5	<20	57	0.09	<10	144	<10	13	53
37	142396	5	<.2	1.86	10	50	<5	7.94	<1	20	32	212	7.35	<10	1.47	2400	4	0.03	5	1000	4	< 5	<20	70	0,13	<10	96	<10	3	46
OC/DAT Resplit:	' <u>A:</u>																													
R/S 1	142360	5	<.2	0.63	5	25	<5	0.80	<1	6	125	23	0.85	<10	0.20	191	6	0.09	5	480	10	<5	<20	28	0.12	<10	18	<10	9	26
R/S 36	142395	5	<.2	2.62	<5	45	15	2.56	<1	18	26	34	7.39	<10	1.84	1220	4	0.04	4	1110	2	<5	<20	55	0.09	<10	143	<10	13	54
Repeat:																														
1	142360	5	<.2	0.64	<5	25	<5	0.82	<1	7	126	23	0.82	<10	0.21	189	7	0.09	5	490	6	<5	<20	28	0.13	<10	19	<10	9	27
10	142369	5	<.2	0.84	1145	40	<5	3.89	- 4	40	46	148	3.88	<10	0.55	1247	5	0.05	67	870	22	<5	<20	50	0.10	<10	40	<10	<1	2186
19	142378	5	0.2	0,36	<5	10	<5	0.73	<1	4	108	8	1,19	<10	0.24	253	5	0.05	2	180	<2	<5	<20	6	<.01	<10	13	<10	6	13
36	142395	-	<.2	2.64	<5	50	10	2.67	<1	20	30	36	7.43	<10	1.85	1262	4	0.05	4	1100	<2	<5	<20	57	0.09	<10	145	<10	13	54
Stander	d:																													
GEO'95		145	1.2	1.88	80	175	<5	1.83	<1	19	63	86	4.38	<10	0.99	741	<1	0.02	26	770	20	<5	<20	63	0.12	<10	80	<10	2	74
GEO'95		150	1.2	1.92	75	180	<5	1.85	<1	19	64	85	4.43	<10	1.01	754	<1	0.02	24	760	22	<5	<20	63	0.12	<10	81	<10	3	82

Lider M)

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

df/1048 XLS/95Kmisc.#7

KAMLOOPS	GEOLOGICAL SERVICES LTD	DIAMOND DRILL LOG:DDH JC 95-5
PROPERTY	: Jesse Creek	OWNER : MERRITT COPPER CORPORATION
NTS	: 921/2	MINING DIVISION: NICOLA MD, B.C.
CLAIM	: QZ ⁴ 3 NO 237426	
GRID	: MIKE	LINE/STATION : 5+32N/0+58W
LENGTH	: 60.04M	INCLINATION AT COLLAR: -50° Azimuth : 245° SW
CASING	: 1.22M	ACID TESTS : NO
LOGGED BY	: R.C. WELLS	DRILLED BY : ATLAS DIAMOND DRILLING LTD
DATE	: October 28, 1995	DATES : FROM 23/10/95 TO 24/10/95
CORE LOCATIO	N: PROPERTY	CORE SIZE : NQ

PURPOSE OF HOLE: To test a copper mineralized skarn in old pits and along the old trail. This zone was not adequately tested by earlier hole JC95-3.

34

		SUMMARY LOG DDH JC 95-5
FROM (M)	то (М)	DESCRIPTION
0	1.22	CASING.
1.22	22.43	MAFIC (ANDESITE-BASALT) TUFFS AND BRECCIAS HORNFESL. Massive to bedded units.
22.43	28.50	ANDESITE-BASALT METAVOLCANICS. Massive flow units.
28.50	32.00	EPIDOTE-CARBONATE SKARN GRADING DOWNWARD INTO LAPILLI TUFF/BRECCIA. Fault @29.5-30.0.
32.00	35.66	FAULT ZONE. Clay, much lost core.
35.66	50.90	FRACTURE ZONE. Largely in massive andesite to basalt flows.
50.90	57.48	FRACTURED ANDESITE. Some tuff sections.
57.48	60.04	SKARN. Epidote-carbonate-dark amphibole local magnetite.
	60.04	END OF HOLE. Abandoned bad ground.

ا يببت کي د

.

1

35

ALTERATION	GRAPHI	CLC)G	LIT	HOLOGY	S	AMF	PLING
	MINERALIZATION		STRUCTURE			FROM	то	SAMPLE NO.
		000	<u>1:12m</u>	CASING 0-1.1 122 Juin soil br	2m kan volcanie subcop			
Fine chloritic fractures local calcite Hornfels. Generally very weak alteration	Sporse fine fracture controlled Po some by? s	-//- -/- -/- -/- -/ -/	massure to crude besiding . Weak brittle feacturing locally chloribic many 15-35°CA 0736m	MAFIC (AND BRECCIAS, HO Light to medium greenish gray lithic type, Local mapli lapilli to lom As general description. Wide	ESTR-BASALT) TUFFS AND RNFELS 1-22-22.48m. Pradominantly dark gray Massive, weak to moderately magnetic. Mixed sequence of interbedded fine, morelithic to weak heterolithic copilli teffs			
Local find epidoce one, or carbonate veinlets at Variable ongles.	disseminated for grained Ry, Po. generally 2% in coarser lapitli byge		the tare lither. Lego Ili to Icm :	sorted Monolithu to weak heterolithic (with chart) frogrant	and epiclosics. The administration of the source of the so			
	epiclashcs is	///	Some Fracturing 10-20°CA Outobiged	to weak matter (ash) supported tyffs. Fine more massive tyff units. minor faldspor physic fluo? with depth.	Local crude bedding 40." 45° CA. Norrow sections of massive, fine feldspor physic make flows. Local fine disseminated Po Space fine grained epidote and, or calcite veising. at variable angles to CA.			
weak alteration. Narrow zones of fine excidute and, or corponate, veining	sparse fiñe alisseminule Po, Py 35	 >	createrally weak. brikks fracturing	ANDESITE - 8 22.43 - 28.50m	ASALT META VOLCANICS			

.

ALTERATION	GRAPHIC LOG	LITHOLOGY	SAMF	PLING
	MINERALIZATION STRUCTURE		FROM TO	SAMPLE NO.
	Calcite and, or epidote verinlets.	Medium greens to greys, predominantly. Massive and fine grained. Short sections of fine lapilli / lithic, ash. week magnetic.		
Pervasive epidate-carbonate local epidate veintets weak oxidized fractures.	Oxidized/clay 20 The Fruits minor fracture for the Brittle fracturing 2200	E PIDOTE - CARBONATE SKARN GRADING MTD LAPILLI TUFF/BAELCIA WITH DEPH 2550 - 32000 Mottled green to byff, fire to medium grained. Predominanti, epidote -calcite, weak hymosite 200 cally and magnetic mine spec Hematike	28-50 30-10 30 10 31-05 81:05 32-15	14237) 142392 142393
Oxidized	SS STRONG FAULT SSS WITH GOUGE	FAULT ZONE 32.0-35.66m Clay much lost core.		
Numerous sxidized fractures Carbonate vainlets fine calcite veinlets throughout.	When the strong fracturing	FRACTURE ZONE 35:66-50-9am Rubbly core recovery numerous oxidized Surfaces. Original lithologies appear to be largely massive fine grained andesite to bosalt metavolcanic flows weak to modystrong magnetic. Short sections gl epidote-carbonate altered lithic-lapilli tuffs.	37 18 58 70 38 70 40 S	14 2 3 94
	XX Preservery	•		

ALTERATION	GRAPHIC LO	G	LITHOLOGY	SAMF	PLING
	MINERALIZATION	STRUCTURE	· · · · · · · · · · · · · · · ·	ГПОМ ТО	SAMPLE NO.
Local subparallel to 15°5A epidote bands. Low and high angle to CA Calcite verillets throughout.	Local specks of fine sulfide - Ao?	ietaSe mod /strong 6 nittle frachning Oxidized (ocally	FRACTURED ANDESITE SO 90-5748 Medium green, predominantly fine. grained and moderate to strong fractured. Weak magnetic. Some sections of fine Capilli, little ash hyfi.		
Acruative fine epide carb- fine anohibole. Some high angle veinlets mgl.	magnetite veintets	weak/mod brittle	SKARN 57.48-60.04m epidote-carbonate-fine apphibole fine grained, 6 cal magnetite-Pololith?	57.48 60 04	14:13:90
			Hole abandoned. Bad ground conditions. Rods binding in fault zone abare PROVINCE T R. C. WELLS COLUMBIA OSCIENTIST		

7-Nov-95

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C.

V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

Values in ppm unless otherwise reported

MERRIT COPPER CORP. AK 95-1051 C/O RON WELLS 910 Heatherton Court KAMLOOPS, B.C. VIS 1PS

ATTENTION: RON WELLS

37 Core samples received Nov. 1, 1995 PROJECT: # MC-1 SHIPMENT: # 1 Samples submitted by: Ron Wells

🔡 Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba_	BI	Ca %_	Cd	Co	Cr	<u> </u>	Fe %	<u> </u>	Mg %	Mn	Mo	Na %	<u>Ni</u>	<u> </u>	<u>64</u>	Sb	Sn	<u>Sr</u>	TI %	<u> </u>	<u>v</u>	<u></u>	<u> </u>	<u></u>
1	142360	5	<.2	0.65	- ও	25	ৰ	0.81	<1	6	130	24	0.85	<10	0.21	216	6	0.09	- 5	470	6	\$	<20	28	0.12	<10	19	<10	-9	25
2	142361	5	<.2	0.92	10	45	10	0.59	<1	10	108	20	3.40	<10	0.58	354	6	0.09	5	490	6	<5	<20	17	0.13	<10	40	<10	7	27
3	142362	5	<.2	0.85	4	55	4	0.82	<1	9	94	25	2.35	<10	0.39	288	1	0.1D	5	530	2	<5	<20	16	0.13	<10	42	<10	8	31
4	142363	5	<.2	0.45	35	10	<5	0.94	<1	13	74	83	1.67	<10	0.30	302	2	0.06	8	630	6	<5	<20	10	0.11	<10	25	<10	6	38
5	142364	5	<.2	0.64	110	10	<5	1.87	<1	26	44	94	2.16	<10	0.55	518	<1	0.08	16	1 46 0	6	<5	<20	27	0.13	<10	37	<10	6	67
6	142365	5	<.2	0.70	45	10	<5	1.40	<1	11	66	34	1.26	<10	0.34	361	1	0.06	7	730	8	<5	<20	11	0.11	<10	26	<10	6	33
7	142366	5	<.2	0.44	60	10	<5	1.45	<1	6	73	22	1.07	<10	0.45	413	5	0.07	4	760	6	<5	<20	18	0.11	<10	21	<10	7	118
8	142367	5	<.2	0.47	445	<5	<\$	1.70	<1	7	78	8	1.09	<10	0.37	395	33	0.05	5	550	2	<5	<20	19	0.10	<10	19	<10	5	123
9	142368	5	<.2	0.93	15	10	5	4.00	5	6	46	10	2.40	<10	0.66	1109	2	0.04	6	550	4	<5	<20	- 44	0.12	<10	78	<10	5	833
10	142369	5	<.2	0.83	1090	40	<5	3.90	1	38	47	150	3.87	<10	0.56	1265	5	0.05	65	860	24	<5	<20	49	0.10	<10	39	<10	<1	2209
11	142370	5	<.2	1.14	30	10	<5	3.87	<1	8	33	49	2.68	<10	1.04	924	2	0.05	5	990	<2	10	<20	35	0.11	<10	63	<10	4	74
12	142371	5	<.2	0.97	45	25	<5	1.74	<1	15	41	80	2.34	<10	0.61	561	5	0.09	13	1130	4	<5	<20	36	0.11	<10	42	<10	5	27
13	142372	5	<.2	1.03	50	10	<5	2.33	<1	22	64	173	2.74	<10	0.26	730	2	0.04	18	1900	2	<5	<20	31	0.10	<10	75	<10	7	19
14	142373	5	<.2	1.53	635	20	<5	5.41	<1	71	54	.136	6.54	<10	0.44	1377	- 4	0.02	57	2240	2	<5	<20	32	0.07	<10	92	<10	2	23
15	142374	, 5	<.2	1.43	340	10	5	4.36	<1	16	37	16	2.44	<10	0.80	861	2	0.03	10	2110	10	5	<20	55	0.09	<10	49	<10	3	15
16	142375	5	<.2	0.60	35	15	<5	1.34	<1	10	97	174	1.83	<10	0.57	339	4	0.09	14	270	2	<5	<20	17	0.08	<10	34	<10	3	30
17	142376	5	<.2	0.43	<5	25	<5	0.74	<1	4	109	33	1.10	<10	0.30	265	- 4	0.06	- 4	260	2	<5	<20	7	0.02	<10	16	<10	6	20
18	142377	5	<.2	0.33	<5	45	<5	0.98	<1	2	128	- 14	0.84	<10	0.23	233	5	0.06	5	200	2	<5	<20	8	0.01	<10	13	<10	8	16
19	142378	5	<.2	0.35	<5	10	<5	0.71	<1	- 4	104	7	1.13	<10	0.24	231	6	0.05	3	170	2	<5	<20	6	<.01	<10	13	<10	6	14
20	142379	5	0.2	0.43	<5	5	<5	0.54	<1	5	122	11	1.27	<10	0.30	236	8	0.05	3	170	2	<5	<20	6	<.01	<10	13	<10	5	15
21	142380	5	<.2	0.66	50	35	<5	1.77	<1	13	52	149	3.14	<10	0.45	624	5	0.06	5	900	4	<5	<20	20	0.13	<10	39	<10	4	29
22	142381	5	<.2	0.64	140	15	<5	4.05	<1	37	49	116	2.95	<10	0.55	953	18	0.06	8	780	2	<5	<20	25	0.14	<10	45	<10	4	- 34
23	142382	5	<.2	0.84	50	25	<5	1.76	<1	14	34	227	3.72	<10	0.84	589	7	0.06	9	750	<2	<5	<20	27	0,11	<10	54	<10	1	- 24
24	142383	5	<.2	1.16	55	20	<5	2.73	<1	20	60	317	4.07	<10	0.72	709	11	0.07	15	670	<2	<5	<20	50	0.14	<10	65	<10	2	22
25	142384	5	<.2	1. 70	<5	25	<5	4.73	1	16	71	102	7.19	<10	0.83	1204	4	0.03	18	1420	2	<5	<20	101	0.09	<10	122	<10	<1	22

.

MERRIT COPPER CORP. AK 95-1051

ECO-TECH LABORATORIES LTD.

.

<u>Et #.</u>	Tag #	Au(ppb)	Ag	<u>AI %</u>	As	Ba	Bi	Ca Y	Cd	Co	Ċr	Çu	Fe %		Mg %	Мл	Mo	Na %	Ni	<u> </u>	РЬ	Sb	Sn	Sr	<u>Ti %</u>	<u> </u>	_ V	W	<u>Y</u>	Zn
26	142385	5	<.2	2.22	30	65	<5	2.97	<1	21	34	89	5,56	<10	0,89	889	- 8	0.12	7	650	2	<5	<20	57	0.14	~10 [~]	150	<10	-4	- 55
27	142386	5	<.2	1.48	50	35	<5	3.20	<1	31	38	149	5.16	<10	1.02	1261	8	0.06	16	1050	2	<5	<20	57	0.14	<10	98	<10	3	52
28	142387	5	<.2	1.65	20	24 5	<5	5.52	<1	19	69	46	5.10	<10	1.12	1142	5	0.02	46	1640	2	<5	<20	125	<.01	<10	76	<10	12	64
29	142388	5	<.2	0.85	30	235	- 4	9.09	<1	18	86	19	5.13	<10	2.23	1769	5	0.02	27	1080	<2	5	<20	128	<.01	<10	154	<10	9	66
30	142389	5	<.2	1.15	<5	110	10	5.16	<1	13	20	17	5.96	<10	0.95	1370	6	0.01	5	610	<2	<5	<20	53	< 01	<10	153	<10	7	77
31	142390	5	0.4	0.66	<5	185	<5	5.91	<1	10	55	85	3.88	<10	0.43	1357	9	0.02	4	320	<2	<5	<20	34	<.01	<10	33	<10	9	45
32	142391	5	<.2	2.30	<5	80	ৎ	9.15	1	51	30	84	7.60	<10	1.39	1621	10	0.01	9	810	4	<5	<20	41	0.03	<10	100	<10	8	- 48
33	142392	5	<.2	2.01	<5	30	1 5	5.35	<1	20	27	41	5.96	<10	1.94	1326	2	0.03	7	1030	2	10	<20	29	0.14	<10	168	<10	8	- 46
34	142393	5	<.2	1.65	<5	25	- 15	2.04	<1	36	39	12	6.24	<10	1.60	922	2	0.04	6	920	<2	<5	<20	38	0.12	<10	154	<10	12	- 44
35	142394	5	<.2	3.04	<5	105	15	1.93	1	27	26	19	8.50	<10	2.34	944	<1	0. 08	7	880	<2	<5	<20	67	0.16	<10	181	<10	8	87
36	142395	5	<.2	2.59	<5	50	10	2.63	<1	19	30	34	7,36	<10	1.81	1244	4	0.04	4	1090	<2	<5	<20	57	0.09	<10	144	<10	13	53
37	142396	5	<.2	1.86	10	50	\$	7.94	<1	20	32	212	7.35	<10	1.47	2400	4	0.03	5	1000	2	<5	<20	70	0.13	<10	96	<10	3	46
	A:																													
R/S 1	142360	5	< 2	0.63	5	25	-5	0.80	۲1	A	125	23	0.85	<10	0.20	191	6	0.09	5	480	10	<5	<20	28	0.12	<10	18	<10	9	26
R/S 36	142395	5	<2	2.62	<5	45	15	2.56	<1	18	26	34	7.39	<10	1.84	1220	4	0.04	4	1110	<2	<	<20	55	0.09	<10	143	<10	13	54
Repeat:																														
1	142360	5	<.2	0.64	<5	25	<5	0.82	<1	7	126	23	0.82	<10	0.21	189	7	0.09	5	490	6	<5	<20	28	0.13	<10	19	<10	9	27
10	142369	5	<.2	0.84	1145	40	<5	3.89	4	40	46	148	3.66	<10	0.55	1247	5	D. D5	67	870	22	<5	<20	50	0.10	<10	40	<10	<1	2186
19	142378	5	0.2	0.36	<5	10	<5	0,73	<1	4	108	8	1.19	<10	0.24	253	5	0.05	2	180	<2	<5	<20	6	<.01	<10	13	<10	6	13
36	142395	•	<.2	2.64	<5	50	10	2.67	<1	20	30	36	7.43	<10	1.85	1262	4	0.05	4	1100	2	<5	<20	57	0.09	<10	145	<10	13	54
Standar	d:																													
GEO'95		145	1.2	1.88	80	175	<5	1.83	<1	19	63	86	4.38	<10	0.99	741	<1	0.02	26	770	20	<5	<20	63	0.12	<10	80	<10	2	74
GEO'95		150	1.2	1.92	75	180	<5	1.85	<1	19	64	85	4.43	<10	1.01	754	<1	0.02	24	760	22	<5	<20	63	0.12	<10	81	<10	3	82

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A Sc. T. B.C. Certified Assayer

df/1048 XLS/95Kmisc.#7

APPENDIX 4

.

Figures 8 and 9

Drillhole Profiles

	ALTERATION ALTER
0 10 20M SCALE I:500	CONLON COPPER CORPORATION JESSE CREEK PROPERTY
a se a san Se se san Se se san	
R. C. W	ELLS KAMLOOPS GEOLOGICAL SERVICES LTD.
SCIEL SCIEL	DATE January 1996 NTS 921/2 FIGURE 9

'/ 1a (20)

5:212

60.04m EOH.JC95-5

LATE TRIASSIC TO CRETACEOUS INTRUSIVE ROCKS

Quartz-Feldspar-Porphyry. Grey to brown, siliceous dikes with plagioclase phenocrysts and local quartz eyes.

LATE TRIASSIC NICOLA GROUP - WESTERN BELT

2

1

Altered limy sediments and tuffs. 3a Bleached and silicilied tuffs and breccias. 3b Fine grained, siliceous and calc-silicate altered sediments and tuffs.

Andesitic tuffs and breccias, Commonly as mixed sequences with Unit 1. 2a Undifferentiated. 2b Heterolithic to monolithic tuff, breccia, minor epiclastic units. 2c Coarse heterolithic breccias and tuffs, clasts greater than 1cm. 2d Fine to medium grained, bedded tuffs, some cherty units.

Dark green to black, massive andesite to basalt flows, variably magnetic. 1a Medium to dark green andesite to basalt, sparse phenocrysts, 1b Medium green to black commonly crowded plagioclase porphyritic andesite to basalt. Ic Light to medium green andesite, sparse

 	· · · · <u>·</u>				Ä					-
					4	Skarn: several rr magnetite, spe Disseminated ch	nedium to (cularite, a halcopyrite	coarse grained octinolite, epi , local pyrite,	t mineral asseml dote, calcite a pyrrhotite.	blages including and K-feldspar.
0 	10 SCALE I:50	20M				CONLON				RATION
							MI)	
			. Ave	FROVINCE		DRILLHC	DLE P	ROFILI	E DDH.J	C95-5
			A.c.	R.C. WELLS	TL	KAMLOOPS GEOL			TD.	
			ч.	SCIEN S.	," D	ATE January 1996	NTS	921/2	FIGURE	10