GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORTS

DATE RECEIVED

JAN 2 5 1996

KID PORPHYRY PROSPECT

JUN 0 3 1996

RECONNAISSANCE PROSPECTING REPORT

OMINECA MINING DIVISION BRITISH COLUMBIA

NTS 93-K-7W

Latitude 54 degrees 24 minutes north Longitude 124 degrees 53 minutes west

Annual Work Approval No. PRG-1995-1300442-6808

For

Robin Day & Larry Hewitt

By

Robin C. Day, B.Sc., F.G.A.C.

December 01, 1995

FILMED

SSESSMENT REPOR

24 63

Francisco de la composición de JAN 2 2 1995 NCT AN OFFICIAL RECEIPT ···子 科

TABLE OF CONTENTS

Executive	Summary	P.2
Project Lo	cation	P.2
NTS Map		P.2
Access		P.2
Commodit	ties	P.2
Deposit Ty	pes	P.2
Geology		P.2
Work Und	lertaken	P.3
Claim Rec	cord Data	P.3
Claim Ow	nership	P.3
Rock & Si	It Geochemistry Results	P.3
Exploratio	on History	P.4
Conclusion	ns	P.4
Recommen	ndations	P.4
Statement	of Expenditures	, P.4
Reference	8	P.5
Fig. #1: Fig. #2:	Claim Map Claim Location Map-Regional	
Fig. #3:	Geology-Sample Location Map (in pocket)	

Appendix: Certificates of Analysis

KID PORPHYRY PROSPECT

EXECUTIVE SUMMARY

Reconnaissance prospecting, rock and silt sampling was performed on and around the Kid porphyry system, located on the east side of Sutherland River, about 49 kilometers north of Fort Frazer, B.C. This work was performed to investigate the Kid porphyry system for gold as it is immediately up-ice from known placer gold occurrences on Sowchea Creek. One significant gold value (1050 p.p.b.) was obtained from analysis of rock sample number RR-95-01 which was collected near the south end of the claims. A sample split of rock sample number RR-95-14 assayed 3 p.p.m. Rhenium (Re) versus 3046 p.p.m. Molybdenum (Mo). No platinum group metals were detected, however, numerous significant molybdenum values from 500 p.p.m. to greater than 4000 p.p.m. Mo were obtained. Potential exists for significant tonnage of stockwork/breccia controlled and disseminated molybdenum-rhenium mineralization within the north-east end of the Kid porphyry system. The gold value obtained near the southern end of the Kid porphyry system. The gold value obtained near the southern end of the Kid porphyry system.

PROJECT LOCATION

Central B.C. about 25 miles north-northwest of Endako, B.C. on the east side of Sutherland River.

N.T.S. MAP

93-K-7W at ~lat. 54 degrees 24 minutes north, long. 124 degrees 53 minutes west.

ACCESS

By road, north of highway 16 at Nautley Road, east of Fort Frazer and north on the Sutherland River logging road for a distance of 38.4 kilometers and a further 10.5 kilometers by old drill access road (4 x 4 vehicles only) to a landing above and on the south side of Kid Creek. From this point access is by quad and or by foot. Alternate access is by helicopter, 24 air miles west from Ft. St. James, B.C.

COMMODITIES

Mo, Re, Au

DEPOSIT TYPES

Porphyry Mo, Re Epithermal Au

GEOLOGY

The claims lie within the Mississippian to Triassic Cache Creek Group, a northwest trending belt of metamorphosed Paleozoic oceanic sediments and volcanics. Intrusive into the Cache Creek Group within the claim boundary is a serpentine sill and an elongate, northeast trending biotite quartz monzonite about 300 meters by 1500 meters in dimension. The serpentine sill "above" the biotite quartz monzonite porphyry may have acted as an impermeable barrier to magmatic hydrothermal fluids, as no quartz-carbonate (listwanitization), or sulphidization was noted in the outcrops of meta-serpentinite examined. Also, the most intense silica flooding, stockwork development and brecciation was observed at the north-east end of the biotite quartz monzonite, which suggests that this is the "top" of the porphyry system. This interpretation is important as it implies that the porphyry system has undergone tectonic tilting to a near horizontal position during the Laramide orogeny, thus preserving a portion of the top of the porphyry system, which normally would have been eroded.

Molybdenite occurs in the biotite quartz monzonite, diorite and quartz diorite (diorite and quartz diorite were noted in core only-not in outcrop or float) as fine disseminations and as flakes in a well developed quartz vein stockwork. Molybdenite also occurs in the adjacent hornfelsed alteration zone as a coating along fractures and along irregular quartz veins. The biotite quartz monzonite appears to average about 5% pyrite with subordinate pyrrhotite. The adjacent hornfels zone appears to average 7-10% pyrite with subordinate pyrrhotite.

It is noteworthy that this porphyry system is immediately up-ice from the headwaters of Sowchea Creek drainage basin. This creek has recorded placer gold production of 226 ounces which were recovered in gravel derived from till. The auriferous gravel sits on a false bedrock of older or uneroded clay rich till. Also, placer gold on Pitka and Dog Creeks are downstream, in a glaciofluvial sense, from the Kid porphyry system. As this porphyry system is the only known large mineralized system proximal to these alluvial gold occurrences, it was deemed worthy of investigation for precious metals.

Sample RR-95-01 is silicified Biotite quartz monzonite which assayed 1050 p.p.b. Au. It is hypothesized that the gold content and alteration may be related to a Tertiary age Endako Goup volcanic centre though to occur on or near the south-west end of the claim block.

WORK UNDERTAKEN

Field work was performed during the period August 17-27, 1995 by the author and Mr. Larry Hewitt of Telkwa, B.C. This work was comprised of six man days equipment and supplies preparation, travel, camp mobilization and demobilization,, and sixteen man days prospecting and rock sampling. 22 rock samples, 29 core samples and 4 silt samples were collected. Mineralized (visible MoS2, FeS2) rock and core samples were collected in order to determine whether or not gold is present in this porphyry system. Sample distribution is over 1000 meters by 300 meters by about 200 meters depth. Mineralized alteration types sampled include potassic, phyllic, and advanced argillic(characterized by silica flooding). Mineralized rock types sampled include biotite quartz monzonite, diorite, quartz diorite and hornfelsed metasediments. Prospecting did not reveal any quartz-carbonate and/or sulphide bearing alteration in the adjacent meta-serpentinite.

CLAIM RECORD DATA

CLAIM NAME	RECORD NUMBER	DATE
Kid-1	334091	March 01,1996
Kid-2	334092	"
Kid-3	334093	46
Kid-4	334094	"
Kid-5	334095	"
Kid-6	334096	"
Kid-7	334097	"
Kid-8	334098	"

CLAIM OWNERSHIP

Larry Hewitt (50%) and Robin Day (50%)

ROCK & SILT GEOCHEMISTRY RESULTS

30 element ICP plus geochemical gold analysis was performed on four silt samples, twenty-two rock samples and twenty-nine old core samples courtesy of Hemlo Gold Mines Inc. 31 element ICP analysis plus analysis for Au, PGM's and Re were performed by the claim owners on a sample split for sample number RR-95-14. Geochemical data are in appendix A and sample locations are shown in relation to bedrock geology on figure #3. ICP results show that Au, Bi & As content of this porphyry system are generally low. A fire assay of sample RR-95-14 indicates no gold and no platinum group metals present. Mo values deemed significant range from 500 p.p.m. up to greater than 4000 p.p.m. Sample number RR-95-14 assayed 3 p.p.m. rhenium versus 3046 p.p.m. molybdenum. Normalized to a 100 % MoS2 concentrate, the Rhenium content would approximate 500 p.p.m. per tonne. Although only one sample, this analysis suggests an unusually high Re content for a molybdenum porphyry.

1

EXPLORATION HISTORY

1946-	Occurrence of MoS2 noted by J.E. Armstrong during regional mapping.
1968-73-	Amax performed geochemical and geophysical surveys and drilled 26 percussion holes. No assay data for rotary holes was reported in assessment files.
1980-	Claims staked by C. Kowal.
1981-	BP Minerals optioned the claims, mapped the bedrock geology and core drilled 3 holes by three of the Amax percussion holes. Best results reported by BP are 130 meters of .086 MoS2 and 85 meters of .060 MoS2.
1994-	Claims expired.
1995-	"Kid" #1-8 claims staked by L. Hewitt and R. Day (fig. #1) Rock and silt sampling, resampling salvaged core, prospecting

CONCLUSIONS

Potential exists for significant pittable tonnage of disseminated and stockwork/breccia hosted molybdenumrhenium mineralization located in the north-east end of the Kid porphyry. Gold content and alteration of sample RR-95-01 suggests potential for Tertiary age epithermal gold mineralization superimposed on the south-west end of the Kid porphyry.

RECOMMENDATIONS

All sample splits could be analyzed for rhenium. Further reconnaissance field work directed towards epithermal gold mineralization could be undertaken on the south-west end of the claims.

4

STATEMENT OF EXPENDITURES

Transportation	truck(1600 Km @ \$\$0.25/Km)	\$ 400.00
	Gasoline	\$ 225.48
Geochemistry(cost of analysis)		\$ 879.92
Lumber, camp supplies		\$ 360.65
Food & Accommodation	field groceries	\$ 356.26
	travel/meals	\$ 51. 66
Motel		\$ 62.10
Wages (deemed expenditure)	22 man days	\$ 4400.00
Claims/grouping		\$ 10.00
Report printing/mail		\$ 26.50
Report preparation		\$ 200.00
	TOTAL	\$ 6972.57

Fig. #1- Bedrock geology and claim boundary

Fig. #2- Amax and BP Minerals drill hole locations plotted on bedrock geology

Fig. #3- Shass Mountain Prospect location map

Fig. #4- Mineral titles reference map

REFERENCES

- 1. A.R. #1866; Amax, Shass Mountain Property-Geological and Geochemical Report, 1968
- 2. A.R. #4543; Amax, Shass Mountain Property-Geophysical Report, 1973
- 3. A.R. #5119; Amax, Shass Mountain Percussion Drill Program, 1974
- 4. A.R. #8475; C.Kowal, A Prospecting Report Covering the Pirate Molybdenite Prospect, 1980
- 5. A.R. #9800; BP Minerals; 1981 Diamond Drilling and Geological Mapping Program-Shass Mountain Molybdenum Property
- 6. G.S.C. Memoir #252, J.E. Armstrong, Ft. St. James Map Area, B.C.
- 7. G.S.C. Geophysical Paper #7226-Ft. Frazer, NTS 93-K
- 8. C.I.M. 1976-Special Vol. #15, Porphyry Deposits of the Canadian Cordillera
- 9. Sillitoe; Gold Deposits in Western Pacific Island Arcs, in Western Pacific Gold Deposits
- Hollister, V.F., On a Proposed Plutonic Porphyry Gold Deposit Model, 1992 Oxford University Press 0961-1444/92

ŧ

r

MINERAL • EN VIRONMENTS LABORATORIES (DIVISION OF ASSAYERS CORP.)

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C. CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TEL (604) 847-3004 FAX (604) 847-3005

5S-0112-RG2

<u>Geochemical</u>	Analysis	Certificate

Company: MR ROBIN DAY

Date: NOV-03-95 copy 1. Mr. Robin Day, Smithers, B.C.

Project: Attn: Robin Day

We hereby certify the following Geochemical Analysis of 1 rock samples submitted AUG-29-95 by R. Day.

Sample Number	Re PPM	
RR-95-14	3	

Certified by

MIN-EN LABORATORIES

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C. CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TEL (604) 847-3004 FAX (604) 847-3005

Geochemical Analysis Certificate

5S-0112-RG1

Company: MR ROBIN DAY Project: Date: SEP-08-95 copy 1. Mr. Robin Day, Smithers, B.C.

Attn: Robin Day

We hereby certify the following Geochemical Analysis of 1 ROCK samples submitted AUG-29-95 by R. Day.

Sample	Au-fire	Pd	Pt	
Number	PPB	PPB	PPB	
RR-95-14	3	<5	<5	

Certified by

MIN-EN LABORATORIES

COMP: MR ROBIN D PROJ: ATTN: Robin Day	ΑY									M 828	IN- 2 SH TEL:	EN ERBRO((604)3	LAB DKE ST 327-34	S – r., \ \$36	ANCOUN	CP : /ER, E (604)3	REP(.c. v 27-34	ORT 5x 4e 23	8									FILE * ro	DATI	5S-01 E: 95, (AC	12-RJ1 /09/07 T:F31)
SAMPLE	AG	AL %		BA	BE	BI	CA %	CD	CO	CR	CU	FE %	GA	ķ		MG		MO	NA %		Р РРМ	PB PPM	SB	SN PPM	SR PPM	TH	TI %	U PPM	V	W	ZN
RR-95-14	1.0	.36	78	39	.4	5	.47	.1	6	83	90	1.32	8	. 12	2 6	.39	133	3046	.04	8	540	17	1	12	12	1	.04	1	22.9	5	65
															 .																
																											·			<u></u>	
												<u>.</u>																			
																		,													
																						_									
								<u> </u>												 							-				
L)		

NORANDA DELTA LABORATORY

Geochemical Analysis

Project Name & No.	: BC GENEX - 127 (HEMLO)	Geol.:	R.D.	Date received:	AUG. 31	LAB CODE:	9509-005
Material:	4 Silts, 22 Rx + 29 Cores	Sheet:	1 of 2	Date completed:	SEP. 05		
Remarks:	 Sample screened @ -35 MESH (0.5 mm) 						

ar Rs. Sumple section of -55 Million

Au - sit & soil, 15.0 g sample digested with aque-regia and determined by A.A. (D.L. 2 PPB); Rx, 10.0 g/AR/AA (DL 5 PPB)

.

ICP - 0.2 g sample digested with 3 ml HClO4/HNO3 (4:1) at 203 °C for 4 hours diluted to 10 ml with water. Leeman PS3000 ICP determined elemental contents.

N.B. The major oxide elements and Ba, Be, Ce, La, Li, Ga are rarely dissolved completely from geological materials with this acid dissolution method.

T.T.	SAMPLE	Au	Ag	Al	As	Ba	Be	Bi	C.	Cd	Ce	Co	Cr	Cu	Fe	K	La	L		Mg	Mn	Mo	Na	Ni	P	Pb	Sr	TĬ	v	Zu
No.	No.	ppb	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	%	ррш	ppm		%	ppm	ppm	%	ppm	%	ppm	ррш	%	ppm	ppm
102	RST-9501 silt	6	0.2	2.84	4	776	0.6	5	0.79	0.7	45	13	81 §		3.66	0.55	16			1.09	783	9	0.07	65	0.09		57	0.23	104	105
103	RST-9502	2	02	2.88	6	256	0.5	5	1.05	0.7	48	17	160	46	4.06	0.48	16			1.56	762	4	80.0	119	0.09		51	0.28	113	110
104	RST-9503	2	0.2	2.40	3	265	0.4	5	0.71	0.5	42	12	66		3.36	0.51	14 §			1.05	546		0.05	64	80.0		44	0.22	105	103
105	RST-9504 silt	2	0.2	2.89	5	366	0.6	5	0.82	0.8	52	13	75	41	3.54	0.53	18			1.02	846	6	0.07	π	0.09		58	0.24	94	114
106	RR-9501 rx	1050	0.2	1.26	3	86	0.6	5	0.64	0.6	68	4	104	249	1.86	0.33	26		(0.35	225	518	0.08	4	0.07		44	0.14	33	28
107	RR-9502	5	02	1.74	5	51	0.4	5	1.32	0.5	58	19	40 🖁	235	4.40	0.41	15	20		0.65	359	47	0.11	23	0.11		30	0.43	64	- 54
108	RR-9503	5	0.2	0.62	2	99	0.2	5	0.55		63	5	123	167	2.02	0.18	24		(0.28	197	145	0.06	6	0.07		26	0.21	38	35
109	RR-9504	5	0.2	0.79	2	161	0.3	5	0.87	0.3	37	7	182	1:6	2.16	0.13	11	10		0.43	271	66	0.07	28	0.05		32	0.19	62	38
110	RR-9505	5	02	0.74	2	76	0.2	5	0.78	23	48	6	125	121	2.69	0.16	16		(0.18	161	56	0.07	16	0.07		36	0.22	44	82
111	RR-9506	5	0.2	1.59	2	134	0.5	5	1.35	22	64	6	65	183	2.31	0.24	18			0.24	219	32	0.07	15	80.0	30	59	0.22	73	45
112	RR-9507	5	0.2	0.76	2	110	0.2	5	0.56	0.2	38	- 4	164 🛔	77	2.34	0.23	12	6		0.27	194	1210	0.06	8	0.06		28	0.16	41	24
113	RR-9508	5	02	0.69	2	67	0.2	5	0.53	13	39	3	167	π	1.51	0.20	14	5		0.19	129	626	0.06	6	0.05		19	0.15	31	42
114	RR-9509	5	0.2	0.79	2	120	0.2	5	0.33	0.2	37	3	136 💈	43	2.02	0.35	14 §	10	(0.53	263	1440	0.06	5	0.06	2	13	0.17	47	- 36
115	RR-9510	10	0.2	1.04	2	93	0.3	5	0.42	0.9	42	4	129	74	2.00	0.30	17			0.48	256	1100	0.06	5	0.06	333	14	0.15	42	45
116	RR-9511	5	0,2	0.89	2	56	0.2	5	0.29	0.3	42	1	154	25	1.30	0.33	19			0.35	187	674	0.06	2	0.05	888 5 8	18	0.09	34	15
117	RR-9512	5	0.2	1.02	2	125	0.2	5	0.38	0.2	41	1	126	41	1.83	0.40	16	10		0.48	260	1853	0.07	2	0.07	4	16	0.16	43	- 24
118	RR-9513	5	0.2	1.41	2	71	0.3	5	0.65	0.8	59	5	120	128	2.24	0.37	22	19	4	0.74	323	1107	0.08	6	0.10	888 48	24	0.20	64	•7
119	RR-9514	5	0.2	0.70	2	56	0.2	5	0.34	0.5	34	5	184	\$7	2.41	0.26	10	9		0.43	203	4965	0.05	9	0.06		13	0.15	50	29
120	RR-9515	5	02	0.62	2	148	0.2	5	0.23	0.2	39	3	113	105	1.37	0.31	14 🛔	9		0.39	218	277	0.06	3	0.06		9	0.14	33	24
121	RR-9516	5	02	0.29	2	79	0.2	5	0.14	0.2	18	1	73	54	0.39	0.18	7		(0.19	104	369	0.04	1	0.02		5	0.06	14	14
122	RR-9517	5	0.2	0.55	2	46	0.2	5	0.25	0.2	22	2	61	18	§ 0.98	0.15	9	6	(0.24	119	361	0.03	1	0.03		11	0.06	16	17
123	RR-9518	5	02	1.43	2	71	0.3	- 5	1.94	1.0	30	6	58	82	1.55	0.08	7		4	0.04	248	272	0.04	13	0.03		61	0.10	39	48
124	RR-9519	5	0.2	3.65	2	21	0.2	5	2.00	0.2	22	18	19	95	2.14	0.04	3	6		1.65	256	8 . .	0.20	49	0.02	388 2 8	45	0.07	61	19
125	RR-9520	5	0.2	1.76	4	265	0.5	5	0.47	0.2	28	2	28	74	§ 0.65	0.74	10	2	1	0.07	122	225	0.03	3	0.03		40	0.02	13	15
126	RR-9521	5	0.2	0.74	2	47	0.2	5	1.22	0.2	29	4	47 §	46	1.07	0.06	8	27		0.07	108	109	0.04	24	0.03		70	0.09	31	- 25
127	RR-9522 rx	15	0.2	0.57	2	69	0.2	5	0.31	0.2	32	2	94]	57	1.14	0.26	13	- 13		0.30	180	524	0.06	2	0.04	3	26	0.08	20	21
128	RC-9501 core	5	0.2	0.59	2	116	0.2	5	0.44	3.6	45	4	127	38	§ 1.94	0.31	12	11		0.48	318	1053	0.06	3	0.07	888 5 8	11	0.14	37	130
129	RC-9502	5	0.2	1.27	2	105	0.3	5	0.57	313	49	4	104	144	§ 2.08	0.31	16	14		0.43	326	424	0.05	3	0.07		31	0.14	37	72
130	RC-9503	5	0.2	1.17	2	90	0.3	5	0.59	0.3	54	4	112	130	§ 1.71	0.29	14	16		0.44	269	551	0.05	3	0.05	888 5 8	33	0.11	35	38
131	RC-9504	5	02	3.83	9	31	0.6	5	1.04	1.0	63	5	71	133	§ 1.93	0.24	21	34		0.35	270	3725	0.03	4	0.06		40	0.08	40	48
															ŧ												_			
132	RC-9505	5	0.2	1.85	4	66	0.4	5	2.55	0.9	70	- 4	102	137	§ 1.56	0.31	19	14		0.37	376	805	0.05	4	0.06		56	0.08	36	46
133	RC-9506	5	02	2.46	2	200	0.4	5	1.55	0.6	53	13	93	386	3.70	0.41	15	20		0.99	354	185	0.09	34	0.08		171	0.23	102	79
134	RC-9507	5	0.2	5.16	4	160	0.7	5	3.68	2.1	57	27	28	366	§ 4.34	0.86	- 11	20		1.86	470	1047	0.27	20	0.09		173	0.50	147	93
135	RC-9508	5	0.2	1.24	6	143	0.2	5	1.20	13	81	11	74	128	§ 3.00	0.40	28	10		0.78	324	66	0.12	8	0.14		58	0.30	70	74
136	RC-9509	50	0.2	3.28	121	268	0.6	5	1.79	2.2	62	6	78	99	2.40	1.34	14	18	I	0.70	390	71	0.06	12	0.08	<u> </u>	67	0.15	51	86

T.T.	SAMPLE	Au	Ag	٨	L As	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	· Cu	Fe	K	La	Li	Mg	Mn	Mo	Na	Ni	P	Рь	Sr	π	v	Zn 9509	-005
No.	No.	ppb	ррш	%	ppm	ppm	ppm	ррш	%	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	թթա	%	ppm	%	ppm	ppm	%	ppm	ppmiig. 2	tet 2
137	RC-9510	5	0.2	0.94	4	14\$	0.2	5	0.57	0.7	48	4	76	116	1.82	0.33	15	10	0.52	319	16	0.06	3	0.06	6	18	0.16	38	61	
138	RC-9511	15	0.2	3.25	40	268	0.7	5	2.01	3.4	61	11	108		1.26	1.25	17		1.44	484	367	0.06	59	0.08		213	0.21	166	217	
139	RC-9512	5	0.2	2.10	6	216	0.4	5	1.06	2.6	53	10	126	199	3.52	0.70	16		1.10	391	734	0.07	47	0.07	6	83	0.26	128	161	
140	RC-9513	5	0.2	2.04	6	173	0.5	5	1.96	22	60	11	119	2093	3.31	0.56	16		0.82	444	216	0.15	58	0.08		64	0.27	106	134	
141	RC-9514	5	0.4	1.93	2	128	0.5	5	1.55	17	65	5	93	194	2.24	0.34	22	54	0.68	327	139	0.05	5	0.08	6	106	0.15	44	70	
142	RC-9515	5	0.2	3.47	6	1211	0.8	5	5.72	2.7	74	9	75		3.11	1.10	15		1.38	715	100	0.06	29	0.07		162	0.15	114	141	
143	RC-9516	5	0.2	2.18	2	50	0.5	5	0.87		57	4	97		1.82	0.29	21		0.35	248	S73	0.05	3	0.06		56	0.10	33	52	
144	RC-9517	5	0.2	1.13	2	231	0.3	63	0.80	31.7	58	7	110	161	3.17	0.58	17		0.75	495	64 (0.07	5	0.12	38 3 58	28	0.27	60	88	
145	RC-9518	5	0.2	3.12	2	65	0.6	5	1.19	0.5	69	4	72		1.79	0.33	25		0.42	249	675	0.03	3	0.06	10	87	0.10	34	35	
146	RC-9519	5	0,4	2.60	2	149	0.5	5	1.17	1.7	51	9	77	373 3	3.49	0.72	18	21	0.80	411	2004	0.11	8	0.09	•	47	0.15	64	82	
147	RC-9520	5	0.2	2.27	2	125	0.4	5	1.48	0.5	60	8	79		3.34	0.50	18		0.77	426	266	0.16	4	0.09		62	0.19	56		
148	RC-9521	5	0.2	3.01	8	296	0.6	5	2.51	1.0	58	12	95	343 3	3.97	0.61	16		1.50	543	304	80.0	36	0.10		204	0.22	117	943	
151	RC-9522	5 🕺	0.2	1.19	2	83	0.4	5	0.86	2.0	43	11	162	27763	3.18	0.45	12		0.85	309	385	0.09	51	0.07		22	0.25	103	105	
152	RC-9523	5	0.2	1.74	7 🖁	354	0.5	5	2.50	34.0	60	17	99	AC5 :	3.55	0.33	9	11	0.78	443	1566	0.09	29	0.07		64	0.18	92	332	
153	RC-9524	5	0.2	2.40	4	95	0.5	5	1.95	0.\$	51	23	67	401 3	3.89	0.53	10	23	1.33	376	2457	0.13	26	0.08	3	68	0.45	116	67	
154	RC-9525	5	0.2	1.55	2	110	0.4	5	1.20	0.4	68	8	94	15	2.05	0.44	22		0.64	313	133	0.08	6	0.06		30	0.19	52	47	
155	RC-9526	5	02	2.13	3	336	0.4	5	0.88	0.1	47	12	124		3.90	0.77	12		1.14	372	131	0.06	55	0.08	3	87	0.25	134	132	
156	RC-9527	5	0.2	1.56	2 🖇	128	0.4	5	0.75	0.8	61	5	106	141	1.91	0.58	20	16	0.48	308	833	0.05	3	0.07	9	41	0.14	42	\$ 7	
157	RC-9528	5	0.2	0.80	7	100	0.3	5	0.50	2.0	54	4	144	112	1.84	0.36	21	13	0.43	280	1789	0.06	3	0.06	6	18	0.13	36	66	
158	RC-9529 core	5	0.2	3.84	7	133	0.5	5	2.84	1.4	57	23	44	790	3.94	0.75	11	15	1.72	438	652	0.24	17	0.06		118	0.44	126	73	

.

j.,

No. A start