DIAMOND DRILLING, GEOLOGICAL

AND GEOCHEMICAL REPORT ON THE

RECEIVED

BONSAI PROPERTY

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORTS

FEB - 5 1996 Gold Commissioner's Office VANCOUVER, B.C.

SKEENA MINING DIVISION

NTS: 104B/10 LATITUDE: 56° 37' LONGITUDE: 130° 34' DATE RECEIVED FEB 1 2 1996

OWNED BY:

TEUTON RESOURCES CORP. #509-675 West Hastings Street Vancouver, B.C. V6B 1N2

OPERATED BY:

PRIME RESOURCES GROUP INC. #1000 - 700 West Pender Street Vancouver, B.C. V6C 1G8

FILMED

🗣VOLOGICAL BRANCS

SSESSMENT REPOR*

Distribution: Homestake File Teuton Resources Corp. A. Kaip D. Kuran Field Copy

EXECUTIVE SUMMARY

The Bonsai property is located within the Skeena Mining Division in northwestern British Columbia, approximately 80 kilometres north-northwest of Stewart. The claims lie on NTS map sheet 104B/10, at latitude 56° 37', longitude 130° 34'. Access to the property is by helicopter from the Eskay Creek mine 8 kilometres to the east. The Bonsai property consists of 10 claims totalling 98 units, owned by Teuton Resources Corp. and operated by Prime Resources Group Inc. Prime currently is in the second year of an option agreement to earn a 60% interest in the property over a 5 year period.

The property is underlain by volcanic and sedimentary rocks of the Lower Jurassic Hazelton Group which are separated into two sequences. The lower sequence comprises basaltic to andesitic flows, breccias and intercalated fine-grained sandstones and siltstones of the Betty Creek Formation and heterolithic tuff with abundant felsic fragments of the Mount Dillworth Formation. The upper sequence consists of well bedded black siltstones, feldspathic wackes and pebble conglomerates intruded by a series of rhyolitic subvolcanic sills and gabbro sills and dykes. A conglomerate unit containing clasts of flow banded and aphanitic rhyolite, stratigraphically above the rhyolite suggests that the rhyolite sills formed near the surface and may have been emergent. Rare bedded pyrite lenses are observed stratigraphically above the trace of the rhyolite. This upper sequence has been correlated with the Salmon River Formation.

Strata at the base of the section is highly disruted along the trace of the Harrymel fault zone. Further up section the strata strikes north and dips steeply eastward into the slope with the pyroxene-phyric sills intruding semi-conformable to the strata.

The 1995 exploration program included diamond drilling, totalling 1180 metres in five holes, 1:100 scale mapping and the collection of 47 rock samples from 10 continuous chip lines, and infill soil sampling between lines 1+00S and 4+00S above the trace of the rhyolite. Drilling on the Bonsai Property confirmed that the rhyolite sills dip moderately to the east, are concordent with stratigraphy and thin rapidly down dip. Anomalous mineralization was encountered in BZ95-1, which intersected the rhyolite down dip of the Bonsai showing. Assays from the mudstone in BZ95-1 averaged between 3 and 124 ppb Au with a high value of 1710 ppb Au over 1 metre.

Assays from continuous chip lines returned gold values from below detection to a high of 1330 ppb Au. Two samples collected from the upper contact of rhyolite black matrix breccia assayed 1330 and 1070 ppb Au and a third sample collected from feldspathic wacke above the rhyolite returned 116 ppb Au. Samples from the contact zone are also anomalous in Ag, As, Sb, and Hg. Surface work has identified an area of anomalous gold mineralization located along the upper contact of the rhyolite from the Bonsai showing 60 metres south to line L0+00, 3+00W. Diamond drilling beneath the Bonsai showing, BZ95-1 and to the south in drill hole BZ95-3 has extended the zone of anomalous gold mineralization done 100 metres down dip of the rhyolite.

This evidence indicates that continued exploration efforts should be directed towards exploring the potential for precious metal mineralization down dip of the Bonsai showing. Because BZ95-3 failed to adequately test the target porizon, a drill hole directed to intersect the rhyolite further down dip of BZ95-3 should be completed.

TABLE OF CONTENTS

- 1. INTRODUCTION
 - 1.1 LOCATION AND ACCESS
 - 1.2 LAND STATUS
 - 1.3 PHYSIOGRAPHY
 - 1.4 EXPLORATION HISTORY
 - 1.5 1995 EXPLORATION PROGRAM
- 2. GEOLOGY
 - 2.1 REGIONAL GEOLOGY
 - 2.2 PROPERTY GEOLOGY
 - 2.2.1 STRATIGRAPHY
 - 2.2.2 STRUCTURE
 - 2.2.3 ALTERATION AND MINERALIZATION
- 3. GEOCHEMISTRY
 - 3.1 ROCK GEOCHEMISTRY
 - 3.1.1 Method of Survey
 - 3.1.2 Results and Discussion
 - 3.2 SOIL GEOCHEMISTRY
 - 3.2.1 Method of Survey
 - 3.2.2 Results and Discussion
- 4. DIAMOND DRILLING
 - 4.1 DRILL HOLE SUMMARIES
- 5. CONCLUSIONS
- 6. **RECOMMENDATIONS**
- 7. **REFERENCES**

LIST OF FIGURES

- 1.1 LOCATION AND ACCESS MAP
- 1.2 CLAIM MAP
- 2.1 TECTONIC ASSEMBLAGE MAP OF THE CANADIAN CORDILLERA
- 2.2 REGIONAL GEOLOGY MAP
- 2.3 PROPERTY GEOLOGY MAP
- 3.1 CONTINUOUS CHIP SAMPLE LOCATION MAP
- 4.1 DRILL HOLE LOCATION MAP

LIST OF FIGURES IN POCKET

- 3.2 SOIL SAMPLE LOCATION MAP
- 4.2 GEOLOGICAL CROSS SECTION BZ95-1
- 4.3 GEOLOGICAL CROSS SECTION BZ95-2
- 4.4 GEOLOGICAL CROSS SECTION BZ95-3
- 4.5 GEOLOGICAL CROSS SECTION BZ95-4
- 4.6 GEOLOGICAL CROSS SECTION BZ95-5

LIST OF TABLES

1.1 CLAIM STATUS

.

•

F

4.1 DRILL HOLE SUMMARY

APPENDICES

APPENDIX 1:	STATEMENT OF COSTS
APPENDIX 2:	STATEMENT OF QUALIFICATIONS
APPENDIX 3:	DRILL HOLE LOGS
APPENDIX 4:	ASSAY CERTIFICATES

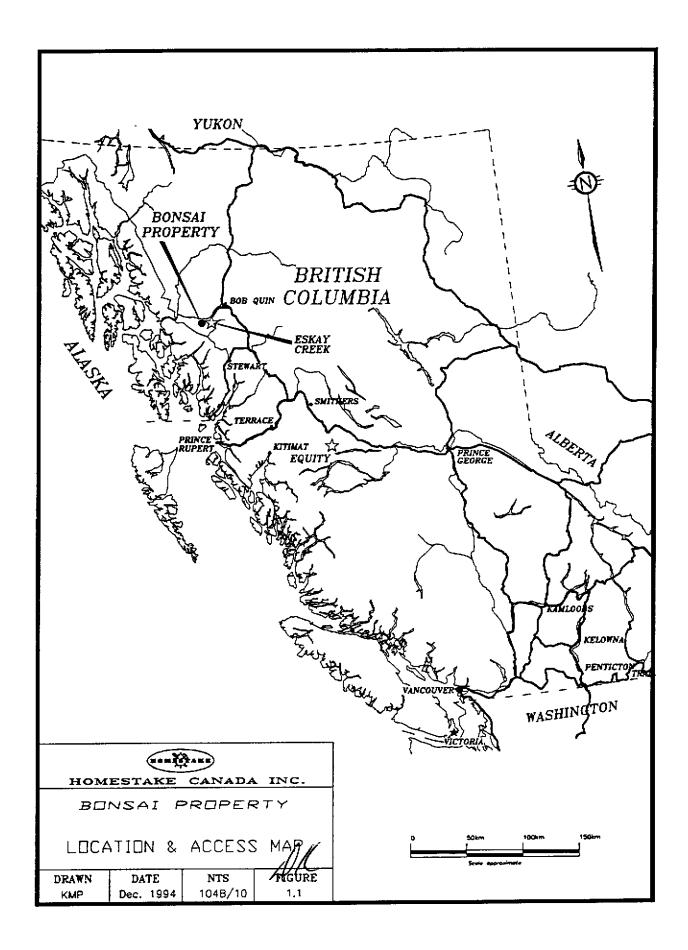
1. INTRODUCTION

1.1 LOCATION AND ACCESS

The Bonsai property is located approximately 80 kilometres north-northwest of Stewart, British Columbia, at the head of Harrymel Creek, a southerly flowing tributary of the Unuk River. The Eskay Creek mine is 8 kilometres to the east. The claims lie on NTS map sheet 104B/10, at latitude 56° 37', longitude 130° 34', in the Skeena Mining Division.

Access to the property is by vehicle to the Eskay Creek mine site, then by helicopter to the Bonsai claims. Naturally occurring heli-pads are abundant on the property along Harrymel Creek and in the sub-alpine, along the eastern margin of the claims. An alternate route is a 35 kilometre direct helicopter flight from the Bob Quinn helicopter base on Highway #37, 400 kilometres north of Smithers, B.C.

1.2 LAND STATUS


The Bonsai property consists of 8 claims totalling 62 units (Table 1.1, Figure 1.2), owned by Teuton Resources Corp. and operated by Prime Resources Group Inc. Prime currently has an option to earn a 60% interest in the property over a 5 year period.

1.3 PHYSIOGRAPHY

The Bonsai Property lies within the Boundary Ranges of the Coast Mountains and primarily occupies the steep to cliff-like eastern slope of Harrymel Creek. Elevations range from 700m (2300') at the base of the Harrymel Valley, to 1140m (3740') in the northeastern corner of the claims. The recent retreat of the Melville Glacier is evidenced by the dominantly moraine covered lower slopes on the northern portion of the property. Rock exposure is generally confined to the steeper sections of this slope. Vegetation consists of dense thickets of slide alder on the slope and sub-alpine spruce and juniper on the plateau above. Climate is typical of the Iskut region with frequent precipitation throughout the year and heavy snowfall in the winter months which remains until mid-May to June.

1.4 EXPLORATION HISTORY

The Bonsai property was staked in 1988 by Teuton Resources Corp. to cover a north-south trending belt of felsic stratigraphy along the east side of Harrymel Creek which shows similarities to the felsic stratigraphy hosting the Eskay Creek deposit. The property was optioned to Cassandra Resources in 1989 who carried out a limited program of prospecting, geochemical sampling, and geophysics that year. Pyrite mineralization with anomalous gold values in felsic

volcanics and coincident magnetometer and EM-16 anomalies were noted, however, Cassandra relinquished the option in 1991.

A small rock sampling program by Teuton Resources Corp. in 1991 confirmed the Cassandra results. In 1992, Teuton undertook a program of trenching and chip sampling on the Bonsai showing, as well as reconnaissance sampling nearby. Three trenches were completed, totalling 27.8 metres. 27 chip samples were taken from the trenches, including four samples assaying 695-775 ppb gold, and 13 samples in the 100-480 ppb gold range. Samples were consistently high in mercury (23 samples >1000 ppb, to a maximum of 19000 ppb) and in arsenic (20 samples >500 ppb, to a maximum of 4620 ppb).

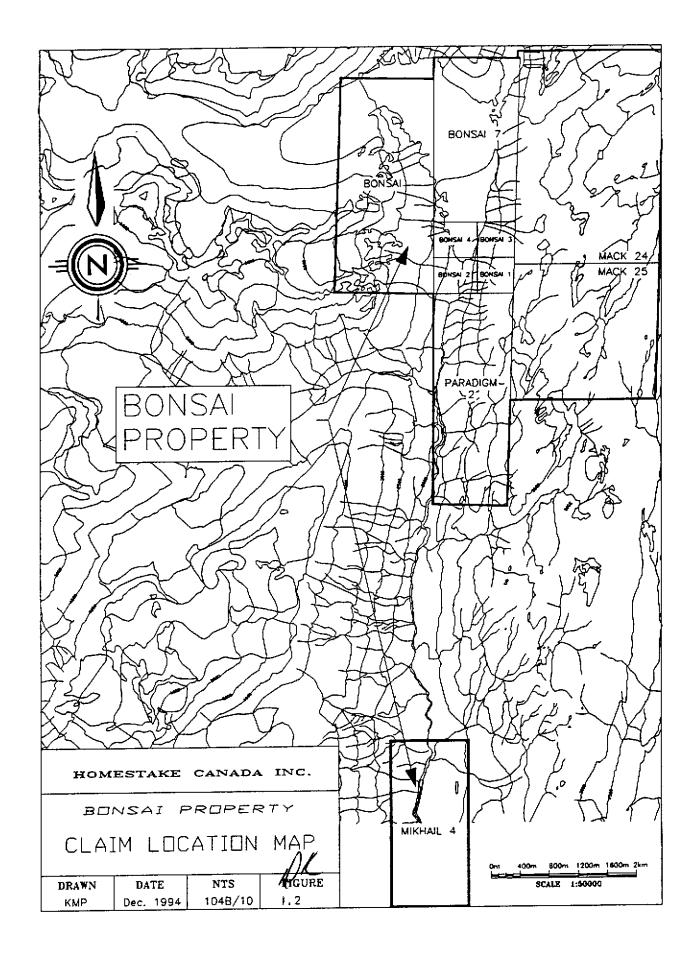

RECORD NUMBER	CLAIM NAME	UNITS	RECORD DATE	EXPIRY DATE*
251838	PARADIGM 2	12	1987.04.28	2006.04.28
252278	MIKHAIL 2	18	1988.12.05	2000.12.05
307389	BONSAI	18	1992.01.17	2006.01.17
307390	BONSAI 7	10	1992.01.17	2006.01.17
307391	BONSAI 1	1	1992.01.17	2006.01.17
307392	BONSAI 2	1	1992.01.17	2006.01.17
307393	BONSAI 3	1	1992.01.17	2006.01.17
307394	BONSAI 4	1	1992.01.17	2006.01.17
329242	MACK 24	20	1994,08.03	2005.08.03
329243	MACK 25	16	1994.08.03	2005.08.03

TABLE 1.1

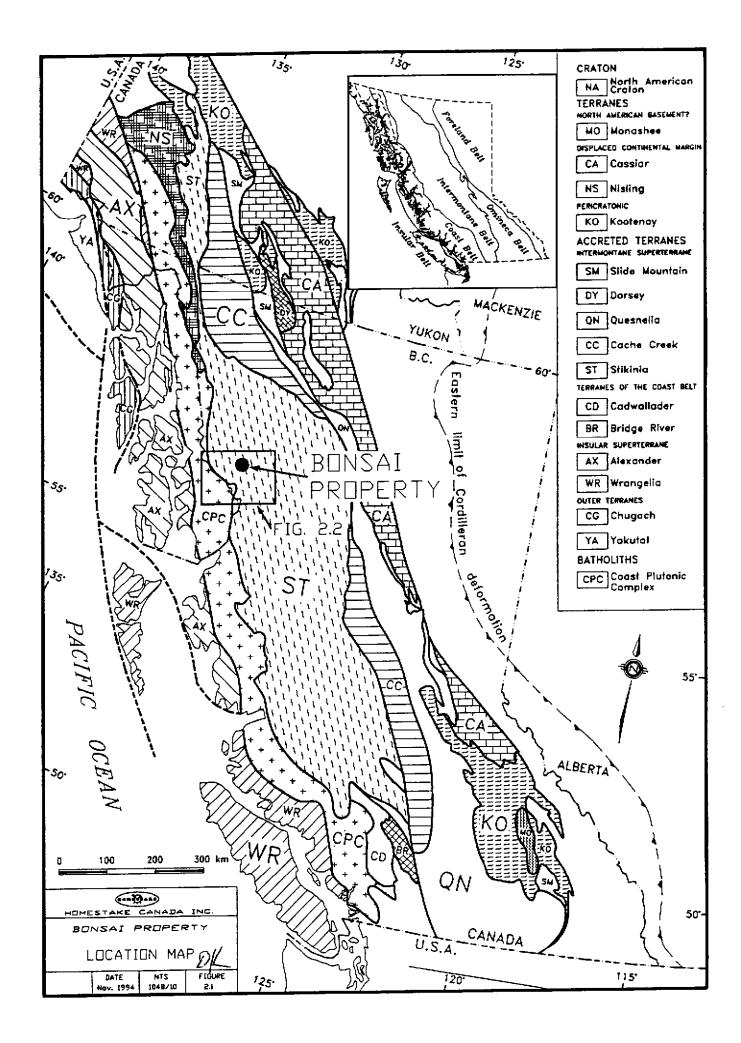
*Note: Expiry dates indicated are based on MEMPR approval of 1996 Assessment Report, Event No. 3080063.

Prospecting near the Bonsai showing also yielded generally high mercury and arsenic values in addition to three gold values of note (2540, 1800, and 1410 ppb) (Cremonese, 1993).

Prime Resources Group Inc. optioned the Bonsai property in 1994, and completed a program of 1:2500 scale grid controlled geologic mapping, 11.2 line kilometres of grid soil sampling, and two trenches totalling fourteen metres on the newly discovered Twisted Ankle showing.

1.5 1995 EXPLORATION PROGRAM

Prime Resources Group Inc. completed an exploration program which included diamond drilling, totalling 1180 metres in five holes, 1:100 scale mapping in the vicinity of L0+00, 3+00W, including the collection of rock samples along 10 continuous chip lines, and infill soil sampling between lines 1+00S and 4+00S above the trace of the rhyolite. A total of 240 core, 47 continuous chip and 17 soil samples were collected for analysis.

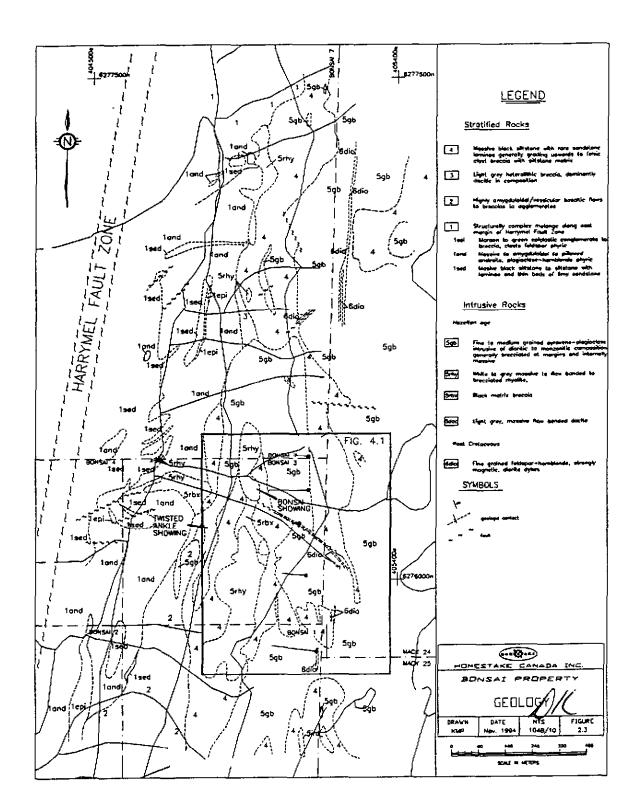

The drilling program was constructed to test the potential for precious metal enriched exhalative mineralization stratigraphically above the trace of the rhyolite or epigenetic mineralization hosted within the rhyolite and to test the lateral extent of mineralization down dip of the east dipping rhyolite. In total drilling tested 575 metres of strike length to a distance of 60 to 140 metres down dip from the surface trace of the rhyolite.

Continuous chip samples were completed to provide surface assay data to correlate with assay data from drill holes in an effort to vector towards areas of precious metal mineralization within mudstones along the upper contact of the rhyolite. The area was also mapped at a scale of 1:100. Infill soil sampling was used to identify the existence of and zones of anomalous mineralization above the trace of the most southern rhyolite subvolcanic dome.

2. GEOLOGY

2.1 REGIONAL GEOLOGY

The Bonsai property is located in northwestern Stikinia, the largest of the auflocthonous terranes which forms the Intermontane Belt of the Canadian Cordillera (Figure 2.1). The northern part of Stikinia is characterized by three unconformity bounded volcano - plutonic and sedimentary sequences and an overlying sedimentary package. From oldest to youngest these include the Paleozoic Stikine, Upper Triassic Stuhini and Lower to Middle Jurassic Hazelton Groups which are overlain by sedimentary rocks of the Middle Jurassic Bowser Lake Group, a successor basin which links Stikinia with the Cache Creek to the north east. To the west, Stikinia is bounded by Cretaceous and Tertiary intrusions of the Coast Plutonic Complex which record the amalgamation of the Intermontane Belt with the Insular Belt to the west during Latest Cretaceous. Tertiary volcanic rocks lie unconformably above the Paleozoic to Jurassic basement strata and form a north - south trending belt from the Iskut region north to Level Mountain, north of the Stikine River. These volcanic rocks are post accretionary and formed during Eocene crustal extension.



The Iskut River map area (104B) contains all the major tectonostratigraphic units which characterize the northern part of Stikinia. The oldest strata in the map area are Devonian to Permian volcano-plutonic and sedimentary rocks of the Paleozoic Stikine assemblage which are best exposed north of the Iskut River and west of the Snip mine between the Craig and Stikine Rivers. In the Iskut River area the Stikine assemblage is characterized by thick sequences of mafic to felsic volcanics, marine sedimentary rocks and fossiliferous limestones.

The Stikine assemblage is unconformably overlain by Upper Triassic andesitic to basaltic flows, sills and breccias intercalated with thick sequences of finegrained siltstones and volcanic derived feldspathic wackes. The Stuhini group is best exposed in the vicinity of the Snip mine where volcanic derived wackes and siltstone predominate, and west of the Unuk River and Harrymel Creek where sedimentary rocks are intercalated with volcanic rocks.

Unconformably overlying the Stuhini Group are sedimentary, volcanic and related plutonic rocks of the Lower to Middle Jurassic Hazelton Group. Recent work by the BCGS (Grove, 1986, Britton and Alldrick 1989) and the GSC (Anderson, 1990) have divided the Hazelton Group into four volcanic sequences which include the Unuk River, Betty Creek, Mount Dilworth and Salmon River Formations. Stratigraphic investigations by the Mineral Deposit Research Unit - Iskut Project have shown that the Mount Dilworth and Salmon River Formations are age equivalent, representing a bimodal volcanic sequence that marks the secession of volcanic activity in Stikinia prior to the onset of Bowser Lake Group sedimentation.

The Unuk River Formation in the Iskut River area comprises a thick sequence of clastic sedimentary rocks with a basal conglomeratic unit informally named the Jack Formation (Henderson et al., 1992). To the south in the Stewart camp the Unuk River Formation is dominated by andesitic volcanic flows, sills and breccias with minor sedimentary rocks. The Betty Creek Formation conformably overlies the Unuk River Formation and consists of maroon to green andesitic breccias, flows, sills and related sedimentary rocks. Coeval with the Betty Creek Formation are orthoclase megacrystic intrusions which form a northwest linear from the Stewart area to the Iskut River in the vicinity of the Snip mine. The age of these intrusions range from 195 to 185 Ma. Separating the Betty Creek and Mount Dilworth/Salmon River Formations is a thin, locally discontinuous sequence of fine-grained, fossiliferous sedimentary rocks which records a hiatus in volcanic activity during the Jurassic. Overlying these sedimentary rocks are heterolithic dacitic tuffs of the Mount Dilworth Formation, and rhyolite flows, basaltic flows, sills and pillow lava and intercalated siltstones of the Salmon River Formation. The top of the Salmon River Formation is characterized by laminated, pyritic ash tuffs and black siltstones which grade upward into siltstones, sandstones and conglomerates of the overlying Bowser Lake Group.

The Hazelton Group strata is best exposed between the Sulphurets camp and the Eskay Creek mine.

Fine-grained siltstones, sandstones and pebble conglomerates of the Middle Jurassic to Lower Cretaceous Bowser Lake Group dominate the northeastern portion of the Iskut River map area. The Bowser Lake Group lies conformably above the Hazelton Group and is characterized by mature sediments including chert derived from Cache Creek Terrane to the northeast.

The western margin of the Iskut map area is dominated by dioritic to granitic intrusions of the Coast Plutonic Complex which forms a northwest trending linear across the map sheet.

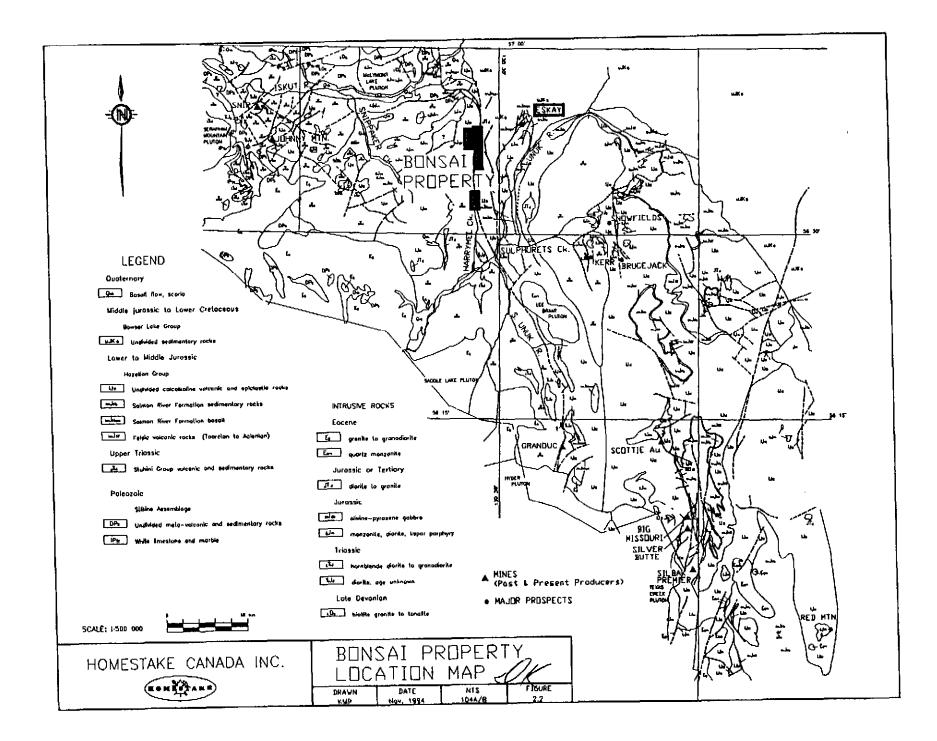
Recent volcanic activity in the map area is observed west of the Unuk River from Cone glacier north to the Iskut valley. Tertiary volcanic activity in the map area consists of mafic to felsic dykes of the King Creek dyke swarm and basaltic cones and flood basalts between Cone glacier and the Iskut River valley.

2.2 PROPERTY GEOLOGY

2.2.1 STRATIGRAPHY

The property is underlain by volcanic and sedimentary rocks of the Lower Jurassic Hazelton Group which are separated into two sequences (Figure 2.1). The lower sequence comprises basaltic to andesitic flows, breccias and intercalated fine-grained sandstones and siltstones of the Betty Creek Formation. These stratified rocks are locally intruded by a flow-banded dacitic intrusion and capped by a heterolithic tuff with abundant felsic fragments. The upper tuff unit is likely correllative to the Mount Dillworth Formation.

The upper sequence consists of well bedded black siltstones, feldspathic wackes and pebble conglomerates which have been intruded by a series of rhyolitic subvolcanic intrusions. The margins of the rhyolite are commonly brecciated and comprise felsic and pyritic clasts within a matric of black siliceous silt. A conglomerate unit containing clasts of flow banded and aphanitic rhyolite, stratigraphically above the rhyolite suggests that the rhyolite intrusions formed near the surface and may have been emergent. Rare bedded pyrite lenses are observed stratigraphically above the trace of the rhyolite. Further up section the sedimentary rocks are intruded by medium grained gabbro sills and dykes which are commonly brecciated along the margins. These contact breccias consist of ameboid fragments of gabbro in a silt matrix and are characteristic of intrusion into unlithified sediments. Intercalated with the siltstones above the rhyolite are thin units of andesitic lapilli and ash tuff. The upper sequence has been correlated with the Salmon River Formation. Strata at the base of the section is highly disruted along the trace of the Harrymel Fault Zone. Further up section the strata strikes north and dips steeply to the eastward into the slope with the pyroxene-phyric sills intruding semi-conformable to the strata.


Stratified Rocks

UNIT 1: The oldest unit exposed on the Bonsai property comprises a structurally disrupted sequence fine-grained sediments, andesite, and epiclastic sediments. The sediments (**Unit 1sed**) are dominantly massive, black siltstones with calcareous sandstone interbeds. Volumetrically, andesites (**Unit 1and**) are the most abundant member of this unit and comprise pale green, aphyric to plagioclase-hornblende phyric, flows, and sills. Locally pillowed and amygdaloidal units are present. Intercalated with Unit 1 and are maroon coloured volcanic conglomerates (**Unit 1epi**). Clasts are feldspar-phyric, well to sub-rounded, and 0.1 to 20 cm.

UNIT 2: Conformably overlying Unit 1 are amygdaloidal andesite breccias exposed in the southern portion of the mapped area. Unit 2 is strongly bleached due to intense carbonate alteration. Common coarse breccias and agglomeratic textures indicate a very proximal source for this unit. Fragments, up to cobble size are rounded, strongly amygdaloidal and supported within a matrix of silt and/or fine ash.

UNIT 3: Underlying the north central portion of the map area is a small body of heterolithic dacitic breccia. This unit lies between units 1 and 4, apparently conformably, and in the same stratigraphic position as Unit 2. Timing relations between units 2 and 3 are undetermined. Unit 3 is pale to medium green with fragments of pumiceous, flow banded and aphanitic felsic lithologies and black siltstone are present. Clasts are angular and poorly sorted and hosted within a matrix of chloritized ash.

UNIT 4: The uppermost of the stratified rocks exposed in the mapped area are sedimentary rocks designated as Unit 4. The basal portions of this unit are dominantly a massive black mudstone to siltstone. Higher in the section siltstones are interbedded with feldspathic wacke and comglomerates containing clasts of siltstone, wacke and andesite. Stratigraphically above Unit 5rhy is a distinctive pebble conglomerate unit which contains angular clasts of flow banded and massive pyritic rhyolite. Rare bedded pyrite lenses are also observed stratigraphically above the rhyolite. This unit is interpreted to represent the shedding of felsic material from the emergent portions of Unit 5rhy. Unit 4 is interpreted to be part of the Aalenian to Bajocian Salmon River Formation sedimentary rocks which are host to the Eskay Creek deposit.

• • • • • •

This unit of andesitic, amygdaloidal lapilli tuffs and ash tuffs are intercalated with sedimentary rocks of Unit 4. Characteristic of this unit are angular siltstone fragments, interpreted as rip-up clasts. These andesitic tuffs are not exposed on surface, but were identified in drill core. Regionally these tuffs are correlated with a laterally persistent andestic tuff which is exposed to the east of the Bonsai property.

Intrusive Rocks

UNIT 5dac: Exposed near the base of the slope is a small body of strongly flow banded dacite with small areas of auto-brecciation along its western margin. It is fault bounded on the northern and southern sides.

UNIT 5rhy: Along the upper slopes of the mapped area lies a discontinuous but laterally persistent series of rhyolite domes which intrude into sedimentary rocks of Unit 4. Internally the rhyolite is autobrecciated, consisting of angular clasts of white to grey coloured, massive and flow banded rhyolite within an amorphous siliceous matrix. Both the matrix and clasts contains up to 5% fine-grained disseminated pyrite. The upper contact of the rhyolite locally forms a black matrix breccia consisting of angular rhyolite clasts within a black siliceous matrix (**Unit 5rbx**). Black matrix breccias are also developed adjacent to rhyolite however, these breccias are characterized by sericitically altered fragments of rhyolite within a matrix of siltstone. The rhyolite is thought to represent a shallowly intrusive dome complex, with the black matrix breccia forming in response to the intrusion of the rhyolite domes into unlithified sediments.

A rhyolite body, exposed below the main trace of Unit 5rhy, along line 1+00N is interpreted to represent a dyke feeding the dome complex. One such body in the northern portion of the mapped area (at L10+00N 3+50W) appears to cut massive andesite of Unit 1 and has an envelope of strong silicification.

Unit 5rhy is correlated with Salmon River Formation rhyolite which forms the footwall to massive sulphide mineralization of the 21B zone at the Eskay Creek deposit. On the east limb of the Eskay Anticline, this unit has been dated at 175+5.6/-0.5 Ma by U-Pb zircon (Childe, 1993).

UNIT 5gb: Sills and dykes of gabbroic intrude sedimentary strata of Unit 4, forming the prominent cliffs exposed along the top of the slope. The sills are pyroxene and plagioclase bearing and vary medium grained in the core to aphanitic along the margins. The margins of gabbro sills are commonly brecciated and carbonate+sericite altered. These contact breccias, (**Unit 5gbx**) consist of ameboid fragments of gabbro in a silt matrix and are characteristic of intrusion into unlithified sediments. Sills and dykes of Unit 5gb are exposed both above and below the trace of Unit 5rhy.

UNIT 6dio: Observed throughout the mapped area are north and northeast trending dioritic dykes. These are fine grained, feldspar-hornblende phyric, strongly magnetic and generally 0.5 to 3 metres wide. They can be observed to cut all of the upper units on the property and often follow pre-existing structures. The age of Unit 6dio is interpreted to be post-Cretaceous.

2.2.2 Structure

The Bonsai property is characterized by moderately east-dipping strata that has been strongly disrupted by the Harrymel Fault Zone and intruded by several cross cutting intrusive bodies. Foliations dominantly trend northeast and dip steeply to the northwest, although there are localized northwest trending fabrics related to late stage faulting.

The western third of the mapped area can be considered as part of the Harrymel Fault Zone. Here, the intercalation of units 1sed and is in part a result of structural disaggregation of andesitic units within a less brittle, sedimentary matrix. Northeast trending faults are exposed in this area and are interpreted as reidel shears within the Harrymel Fault Zone.

The eastern part of the map area consist of relatively undeformed sediments of Unit 4 intruded by the large sill-like body of Unit 5int and smaller, discrete bodies of Unit 5rhy. These intrusions are interpreted to have inflated the stratigraphic thickness of Unit 4 considerably. In this region the sedimentary strata strike northward and dip moderately into the slope. Local variations in bedding are related to northeast and southeast striking faults.

2.2.3 Alteration and Mineralization

Alteration on the Bonsai property primarily consist of carbonate+sericite+pyrite and chlorite+carbonate alteration in the andesitic strata and mafic intrusions of Unit 5gb. The intensity of alteration increases in the vicinity of the Twisted Ankle showing where sericitic and mixed illite/clay alteration is hosted within intrusive rocks of unit 5gb (previously identified as 5rhy). Disseminated pyrite is ubiquitous within the altered portions of Unit 5gb, and minor sphalerite is present within zones of mixed illite/clay alteration underlying the Twisted Ankle showing. The Twisted Ankle showing also hosts crustiform quartz stockwork veining which contain bands of fine grained, colliform pyrite mineralization which is anomallous in gold up to 429 ppb Au.

Alteration within the rhyolite consists of silica along the margins and sericite in the core of the dome and identified in drill hole BZ95-2.

Fine grained disseminated pyrite is ubiquitous within the rhyolite and comprises up to 5% of the rock. Disseminated sphalerite occurs within zones of sericite alteration.

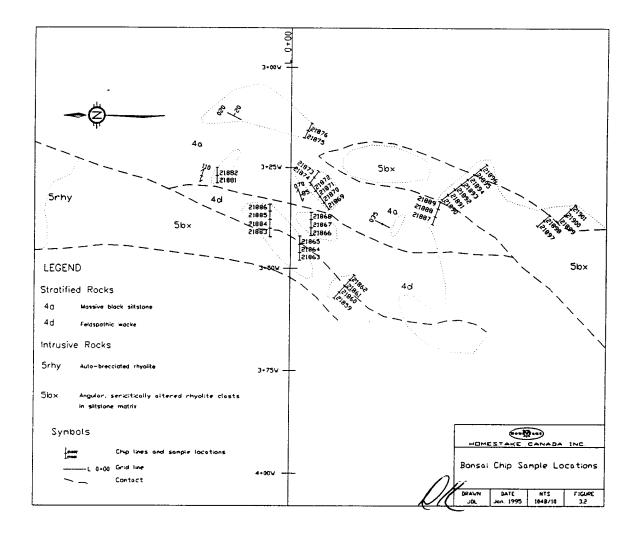
The Bonsai showing is hosted along the upper contact of the rhyolite and consists of brecciated rhyolite and fragments of banded massive pyrite mineralization within a silicous black matrix which assays up to 2540 ppb Au (Cremonese, 1993).

Mineralization comprises finely disseminated pyrite, and minor disseminated sphalerite.

3. SURFACE GEOCHEMISTRY

3.1 ROCK GEOCHEMISTRY

3.1.1 Method of Survey


A total of 47 rock samples were collected from ten continuous chip lines between lines 1+00SN and 1+00S and above the trace of the two rhyolite intrusions in this area (Figure 3.1). Sampling concentrated on providing surface assay data to correlate with assay data from drill holes and to identify the potential for precious metal mineralization within mudstones along the upper contact of the rhyolite. The area was also mapped at a scale of 1:100.

Rock samples were analyzed at International Plasma Laboratories of Vancouver, B.C. Rock samples were crushed to a -10 mesh, riffle split and a 250 gram sample was sieved to -250 for analysis. Each sample was analyzed for gold by Fire Assay with an AA finish using a 30 gram sample. Samples were also analyzed using Aqua-Regia digestion and ICP scan for the standard 30 element package.

3.1.2 Results

Assays from continuous chip lines returned gold values from below detection to a high of 1330 ppb Au. Two samples collected from the upper contact of rhyolite black matrix breccia assayed 1330 and 1070 ppb Au and a third sample collected from feldspathic wacke above the rhyolite returned 116 ppb Au. Samples from the contact zone are also anomalous in Ag, As, Sb, and Hg.

Gold assays from siltstones above the rhyolite are erratic, averaging from below detection level to 10 ppb Au.

3.2 SOIL GEOCHEMISTRY

3.2.1 Method of Survey

A total of 17 soil samples were collected on the Bonsai property during the 1995 field season. Samples were collected between Lines 1+00S and 4+00S and between 1+50W and 3+50W (Figure 3.2). Samples were collected along infill lines spaced 50 metres from previously established soil lines to increase the density of soil sampling above the trace of the trace of the most southern rhyolite subvolcanic dome.

Samples were collected with a mattock or geotool, placed in a kraft paper bag and air dried prior to shipment to International Plasma Laboratories of Vancouver, B.C. Samples were sieved to -80 mesh and analysed for gold by Fire Assay with an AA finish using a 30 gram sample. Samples were also analysed using Aqua-Regia digestion and ICP scan for Ag, Cu, Pb, Zn, As, Sb and Hg.

3.2.2 Results

Gold values for soil samples averaged from below detection level to a high of 136 ppb Au. Sampling did not extend the soil anomaly B, identified in 1994 to the south. Further, the sediment immedately above the trace of the rhyolite were weakly anomalous an displayed no continuity.

Anomalous results of 35 and 64 ppb Au were obtained from immediately above the trace and within the rhyolite along line 3+50S. Suggests that, like the area of continuous chip sampling, the upper contact of the rhyolite is anomalous.

4. DIAMOND DRILLING PROGRAM

Five diamond drill holes totalling 1181 metres were completed on the Bonsai property between August 9 and August 28, 1995 (Table 4.1). Drilling was completed by Hy-Tech Drilling Ltd. of Smithers, B.C. using a modified Boyles F-14 diamond drill recovering NQTK core. Drill CORE is stored at Kilowetter 45 an the Estay Greek mine road at the exploration canp of Homestake The drilling program was constructed to test the potential for precious metal (anada Inc. enriched exhalative mineralization stratigraphically above the trace of the rhyolite or epigenetic mineralization hosted within the rhyolite and to test the lateral extent of mineralization down dip of the east dipping rhyolite. In total drilling tested 575 metres of strike length to a distance of 60 to 140 metres down dip from the surface trace of the rhyolite (Figure 4.1).

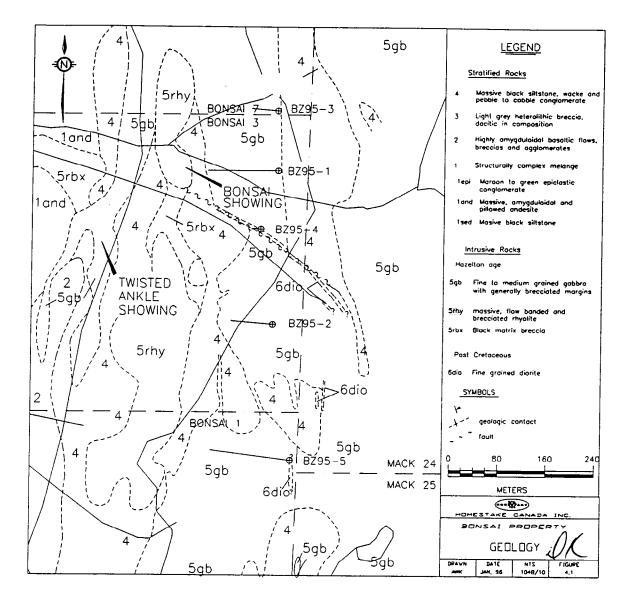

DDH	AZIMUTH	DIP	LENGTH (m)
BZ95-1	270	-60	237.1
BZ95-2	275	-75	270.1
BZ95-3	275	-80	237.7
BZ95-4	275	-80	89.0
BZ95-5	275	-67	346.9
	······································	ΤΟΤΑΙ	1180.8

Table 4.1 Drill Hole Summary

A total of 258 core samples were collected for assay from the rhyolite and sedimentary units adjacent to the rhyolite. Samples were collected at regular intervals within mapable units, with sample intervals terminating when a new lithological unit was encountered.

Core samples were analyzed at International Plasma Laboratories of Vancouver, B.C. Core samples were crushed to a -10 mesh, riffle split and a 250 gram sample was sieved to -250 for analysis. Each sample was analyzed for gold by Fire Assay with an AA finish using a 30 gram sample. Samples were also analyzed using Aqua-Regia digestion and ICP scan for the standard 30 element package.

Drilling on the Bonsai property confirmed that the rhyolite domes dip moderately to the east, are concordent with stratigraphy and thin rapidly down dip. The rhyolite consists of autobrecciated, flow banded and aphanitic fragments within a siliceous matrix both of which host finely disseminated pyrite. Small zones of sericite+pyrite alteration were identified in hole BZ95-2 in the center of the rhyolite which host minor sphalerite mineralization.

Above the rhyolite, drilling intersected a sequence of siltstones, feldspathic wacke, lesser intraformational conglomerate and andesite lapilli and ash tuff which is intruded by dykes and sills of medium to coarse grained gabbro.

A pebble to coase wacke containing fragments of the rhyolite and massive pyrite mineralization was identified above the trace of the rhyolite. Similar rhyolitic pebble conglomerates have been identified on surface suggesting that the rhyolite intruded near surface and may have been emergent.

Anomalous mineralization was encountered in BZ95-1, which intersected the rhyolite down dip of the Bonsai showing. Assays from the mudstone in BZ95-1 averaged between 3 and 124 ppb Au with a high value of 1710 ppb Au over 1 metre. Gold values from the rhyolite ranged between 5 and 100 ppb Au. In the remainder of the holes both the sedimentary strata and the rhyolite were sub anomalous with gold values typically below 5 ppb.

4.1 Diamond drill hole summaries

DDH BZ95-1

Drill hole BZ95-1 was collared to the east of the Bonsai showing to intercept the trace of the rhyolite 100 metres down dip and drilled to a depth of 237.1 metres (Figure 4.2). The top 148 metres of the hole intersected intercalated siltstone feldspathic wacke and minor andesite tuff intruded and disrupted by gabbro dykes and flows the margins of which are typically autobrecciated. From 148 to 158.8 metres pebble to coarse wacke contains clasts of massive pyrite, laminated mudstone and flow-banded to aphanitic rhyolite. This unit lies immediately above autobrecciated rhyolite intersected below 159.5 metres. Separating the rhyolite with the overlying sedimentary strata is a fault zone. Displacement on this fault is interpreted to be minor. From the drill section it is apparent that the rhyolite thins down dip.

Assays from the stratified units above the rhyolite returned values between 3 and 124 ppb Au with a high of 1710 ppb Au from massive to laminated siltstones 25 metres above the trace of the rhyolite. Samples from autobrecciated, pyritic rhyolite returned between 5 and 100 ppb Au.

DDH BZ95-2

Drill hole BZ95-2 was located 255 metres south of BZ95-1 to intersect the down dip extent of the large rhyolite dome to the south of the Bonsai showing (Figure 4.1). As in the previous hole BZ95-2 intersected siltstones, wackes and conglomerate sequence intruded by gabbro sills and dykes which overlie autobrecciated flow-banded and aphanitic rhyolite. Weak sericite+pyrite alteration hosting minor disseminated sphalerite was identified near the core of the rhyolite between 176 and 208 metres. From the section it is apparent that the rhyolite is conformable to bedding and thins rapidly down dip (Figure 4.3).

Assays from both the rhyolite and overlying sedimentary strata were sub anomalous in gold with the rhyolite averaging between 1 an 22 ppb Au and the sedimentary strata between 5 and 62 ppb Au.

DDH BZ95-3

Drill hole BZ95-3, located 100 metres to the north of BZ95-1, failed to intersect the down dip extent of the rhyolite. Due to the rapid thinning of the rhyolite in drill holes BZ95-1 and 2 it is inferred that the rhyolite terminates above the trace of BZ95-3 (Figure 4.4).

Samples collected from massive to laminated mudstones at the inferred down dip trace of the rhyolite were sub anomalous in gold averaging below 25 ppb Au.

DDH BZ95-4

BZ95-4 was collared adjacent to a prominent southeast striking, steepy southwest dipping fault. The drill hole was oriented near vertical in an effort to drill in the footwall of the fault however, the hole had to be abandoned at 89 metres because of poor ground conditions encountered in the fault. The hole intersected two intervals of rhyolite separated by a fault. The fault is inferred to cut the rhyolite with south side up displacement (Figure 4.5).

Assays from both the rhyolite and sedimentary rocks are sub anomalous in gold averaging below 5 ppb Au with a high of 82 ppb Au from siltstones above the rhyolite.

DDH BZ95-5

Drill hole BZ95-5 was located 220 metres south of BZ95-2, and oriented at a steeper dip to intersect the trace of the rhyolite further down dip than BZ95-2 (Figure 4.1). Rhyolite breccia was intersected between 180.4 and 187.7 metres. The decrease in the apparent thickness of the rhyolite in comparison with BZ95-2 indicates that the rhyolite dome is wedge shaped (Figure 4.6). The strata above the rhyolite is consistent with that in the earlier holes, comprising gabbro intruding a sequence of siltstone and wacke. Volcanic lapilli and ash tuffs are more abundant in BZ95-1 when compared with earlier holes.

Unlike BZ95-2, no zones of sericite alteration and mineralization were encountered in the rhyolite and core samples averaged below 5 ppb Au. Sub anomalous assays were also obtained from the overlying sedimentary rocks.

5. DISCUSSION AND CONCLUSIONS

The property is underlain by volcanic and sedimentary rocks of the Lower Jurassic Hazelton Group which are separated into two sequences (Figure 2.1). The lower sequence comprises basaltic to andesitic flows, breccias and intercalated fine-grained sandstones and siltstones of the Betty Creek Formation. These stratified rocks are locally intruded by a flow-banded dacitic intrusion and capped by a heterolithic tuff with abundant felsic fragments. The upper tuff unit is likely correllative to the Mount Dillworth Formation.

The upper sequence consists of well bedded black siltstones, feldspathic wackes and pebble conglomerates which have been intruded by a series of rhyolitic subvolcanic intrusions. The margins of the rhyolite are commonly brecciated and comprise felsic and pyritic clasts within a matrix of black siliceous silt. A conglomerate unit containing clasts of flow banded and aphanitic rhyolite, stratigraphically above the rhyolite suggests that the rhyolite intrusions formed near the surface and may have been emergent. Rare bedded pyrite lenses are observed stratigraphically above the trace of the rhyolite. Further up section the sedimentary rocks are intruded by medium grained gabbro sills and dykes which are commonly brecciated along the margins. These contact breccias consist of ameboid fragments of gabbro in a silt matrix and are characteristic of intrusion into unlithified sediments. Intercalated with the siltstones above the rhyolite are thin units of andesitic lapilli and ash tuff. The upper sequence has been correlated with the Salmon River Formation.

Strata at the base of the section is highly disrupted along the trace of the Harrymel Fault Zone. Further up section the strata strikes north and dips steeply to the eastward into the slope with the pyroxene-phyric sills intruding semi-conformable to the strata.

Assays from continuous chip lines retured gold values from below detection to a high of 1330 ppb Au. Two samples collected from the upper contact of rhyolite black matrix breccia assayed 1330 and 1070 ppb Au and a thrid sample collected from feldspathic wacke above the rhyolite returned 116 ppb Au. Samples from the contact zone are also anomalous in Ag, As, Sb, and Hg. Assays from siltstones above the rhyolite are sporadic, averaging from below detection level to 10 ppb Au.

Gold values for soil samples averaged from below detection level to a high of 136 ppb Au. Sampling did not extend the soil anomaly B, identified in 1994 to the south. Isolated results of 35 and 64 ppb Au were obtained from immediately above the trace and within the rhyolite along line 3+50S. Suggests that, like the area of continuous chip sampling, the upper contact of the rhyolite is anomalous in gold mineralization.

Drilling on the Bonsai property confirmed that the rhyolite domes dip moderately to the east, are concordent with stratigraphy and thin rapidly down dip. Anomalous mineralization was encountered in BZ95-1, which intersected the rhyolite down dip of the Bonsai showing. Assays from the mudstone in BZ95-1 averaged between 3 and 124 ppb Au with a high value of 1710 ppb Au. Gold values from the rhyolite ranged between 5 and 100 ppb Au. In the remainder of the holes both the sedimentary strata and the rhyolite were sub anomalous with gold values typically below 5 ppb. A discrete zone of sericite+pyrite alteration, which host minor sphalerite mineralization, was identified in hole BZ95-2 in the center of the rhyolite. Assays collected from this zone were also sub anomalous.

6. **RECOMMENDATIONS**

Surface work completed in 1991 by Teuton Resources Corp., and by Prime Resources Group Inc. in 1994 and 1995, has identified an area of anomalous gold mineralization on surface, which is located along the upper contact of the rhyolite, at the Bonsai showing, which extends 60 metres to the south (at L0+00, 3+00W). Diamond drilling beneath the Bonsai showing, BZ95-1 intersected anomalous gold values within the rhyolite and over lying sedimentary strata 100 metres down dip. Weakly anomalous gold mieneralization was also intersected within BZ95-3, located 100 metres to the south of BZ95-1. Elsewhere on the property, assays obtained from soil, outcrop and drill core are sub anomalous, to weakly anomalous in gold and display no correlation.

This evidence indicates that continued exploration efforts should be directed towards exploring the potential for precious metal mineralization down dip of the Bonsai showing. Because BZ95-3 failed to adequately test the target horizon, a drill hole directed to intersect the rhyolite further down dip of BZ95-3 should be completed.

6. **REFERENCES**

Anderson, R.G., Thorkelson, D.J. (1990): Mesozoic Stratigraphy and Setting for Some Mineral Deposits in Iskut River Map Area, Northwestern British Columbia; in Current Research, Part E, Geological Survey of Canada, Paper 90-1F, pp. 131-139.

Britton, J.M., Webster, I.C.L., and Alldrick, D.J. (1989): Unuk Map Area (104G/7E, 8W, 9W, 10E); in B.C. Energy, Mines and Petroleum Resources, Geological Fieldwork 1988, Paper 1989-1, pp. 241-250.

Childe, F.C., (1993): Radiogenic Isotopic Investigations of the Eskay Creek Volcanic Hosted Massive Sulphide Deposit, B.C., Canada; in The International Congress on Geochronology, Cosmochronology.

Cremonese, D., 1992, Assessment report on geological and geochemical work on the Bonsai #1, #2 and #3 claims.

Grove, E.W. (1986): Geology and Mineral Deposits of the Unuk River - Salmon River - Anyox Area; B.C. Energy Mines and Petroleum Resources, Bulletin 63.

Henderson, J.R., Kirkham, R.V., Henderson, M.N., Payne, J.G., Wright, T.O. and Wright, R.L., (1992): Stratigraphy and structure of the Sulphurets area, British Columbia; in Current Research, Part A; Geological Survey of Canada, Paper 92-1A, p. 323-332.

Patterson, K.M., Kaip, A.W. and Kuran, D.L. (1994): 1994 Exploration Program on the Bonsai Property.

APPENDIX 1 STATEMENT OF COSTS

-

.

.

STATEMENT OF COSTS

PROJECT NAME: CODE:	RCES GROUP INC. BONSAI 90707 res: July 7 to August 31, 1995		TOTAL COST	171,496.54	
DESCRIPTION	AMO	JUNT	RATE (S)	NET(\$)	TOTAL
1.0 SALARIES	(IN HOUSE) Technical A. KAIP K. PATTERSON D. KURAN	21.5 5 0.5	240.50 201.50 325.00	5,170.75 1,007.50 162.50	
	Seasonal C. DOWNIE J. LEWIS M. PHILLIPS B. Beck	8 4 3.5 21	175.50 175.50 156.00 156.00	1,404.00 702.00 546.00 3,276.00	
			Subt	total	12,268.75
1.1 FEES	(CONSULTANTS)				
	C. BALDYS OTHER	12	285.00 Subt	3,420.00 260.00 total	3,680.00
2.0 GEOPHYSICS					
	Ground Airborne Remote Sensing		Subt	0.00 0.00 0.00	0.00
3.0 DRILLING			Supt	Ulai	0.00
	Surface Mob/Demob Fuel/Supplies		Subt	81,814.41 0.00 7,870.50 cotal	89,684.91
4.0 ANALYSIS	(ASSAY, METALLURGICAL)				
	Rock Soil	305 17	17.10 15.25 Subt	5,215.50 259.25 otal	5,474.75
5,0 FIELD/CAMP	Field Supplies Camp Costs Camp Construction Expediting		Subt	581.05 2,400.23 6,251.43 0.00 otal	9,232.71

STATEMENT OF COSTS

PRIME RESOURCES GROUP INC. PROJECT NAME: BONSAI CODE: 90707 Date of Expenditures: July 7 to August 31, 1995

TOTAL COST 171,496.54

DESCRIPTION AMOUNT RATE (\$) NET(\$) TOTAL

6.0 SURFACE WORK

Line cutting		0.00	
Trenching/P	itting	3,605.63	
		Subtotal	3,605.63
7.0 TRAVEL			
Lodging		57.24	
Meals		4,231.19	
Airfare		0.00	
Taxi/Car ren	tal/mileage	24.53	
	-	Subtotal	4,312.96
8.0 TRANSPORTATION			

Vehicle lease/rental	0.00	
Vehicle operating/maintenance/repair	100.00	
Helicopter	41,204.00	
Fixed wing	0.00	
• · · ·	Subtotal	41,304.00

9.0 SUPPORT ACTIVITIES

Communications	552.30
Maps/publications/photo	0.00
Drafting	0.00
Office supplies	0.00
Freight/shipping	1,380.53
	Subtotal
	TOTAL

Apportionment of Expenditures

\$47,200 applied as assessment work to the Bonsai group claims (Event No. 3080063) dated December 4, 1995 with \$60,000 in expenditures credited to Teuton Resources Corp., Account No. 126630 and the balance of expenditures credited to Prime Resources Group Inc., Account No. 121911.

APPENDIX 2 STATEMENT OF QUALIFICATIONS

STATEMENT OF QUALIFICATIONS

I, Andrew W. Kaip, of 901-1050 Harwood Street, Vancouver, British Columbia, do hereby certify that:

1. I am presently employed by Homestake Canada Inc. of 1000-700 West Pender Street, Vancouver, British Columbia as a Project Geologist.

2. I graduated from Carlton University (1992) and hold a B.Sc. (Highest Honours) in geology.

3. I have been employed in my profession as an Exploration Geologist in Canada since graduation.

4. I have no interest in the property described herein, nor in the securities of any company associated with the property, nor do I expect to acquire any such interest.

Signed at Vancouver, British Columbia this 3/ day of January, 1996.

Anin Kip

ANDREW W. KAIP B.Sc.

STATEMENT OF QUALIFICATIONS

I, David L. Kuran of 25630 Bosonworth Avenue, in the Municipality of Maple Ridge, British Columbia, do hereby certify that:

1. I am a graduate of the University of Manitoba (1978) and hold a B.Sc. in Geology.

2. I am a fellow of the Geological Association of Canada.

3. I am a member in good standing of the Association of Professional Engineers and Geoscientists of the Province of British Columbia.

4. I have been employed in my profession as an Exploration Geologist in Canada, U.S.A., and Mexico since graduation.

5. I am presently employed by Homestake Canada Inc. of 1000-700 West Pender Street, Vancouver, British Columbia as Senior Geologist.

6. I supervised the planning and implementation of the work described in this report, was in communication with the project geologist on site and was involved in the data interpretation and editing of this report on the Bonsai claims.

7. I consent to the use of this report concerning the 1996 exploration program carried out on the Bonsai mineral claims owned by Teuton Resources Corp. in the Skeena Mining Division, NTS 104B/10, for all corporate purposes relating to Prime Resources Group Inc. and Teuton Resources Corp.

Signed at Vancouver, British Columbia this 3/ day of January, 1996.

KURAN B.Sc., P.Geo. DAVID L KURAI SCIEN

APPENDIX 3 DRILL HOLE LOGS

-

٠

•

.

.

×.

•

.

-

.

.

ROJECT: BONSAI		Commenced: 9/8/95	Contract	or: HY-TE	CH DRILLING	3	Logged by: CB
DRILL HOLE: BZ95-1	Date	Completed: 11/8/95					Geotech by: BB
LENGTH: 237.10	Core	Diam: NQTK					·
Collar Location							•
Latitude: 6276272.00 Departure: 405136.00 Elevation: 3420.00							
SUMNA	RY			Depth	DOWN HOLE Azim	SURVEYS Inclin	Method
0.00-3.60 3.60-8.50 8.50-20.80 20.80-38.30 36.30-50.90 50.90-56.90 56.90-58.70 58.70-61.20 61.20-65.10 65.10-70.70 70.70-71.60 71.60-77.10 77.10-116.80 116.80-118.00 118.00-120.20 120.20-129.20 129.20-132.40 132.40-139.00 139.00-139.40 139.40-148.00 148.00-158.80 158.80-159.50 159.50-166.60 167.60-178.40 178.40-189.20 189.20-195.80 195.80-207.40 207.40-237.10	MASSIVE MUC MASSIVE GAE WACKE MASSIVE GAE WACKE MASSIVE GAE MASSIVE GAE MASSIVE GAE MASSIVE GAE MASSIVE GAE MASSIVE GAE GABBRO INTE FAULT ZONE MASSIVE MUE FAULT ZONE MASSIVE MUE HETEROLITH FAULT ZONE RHYOLITE II MASSIVE MUE ANDESITE L INTERBEDED MASSIVE GAE MASSIVE GAE MASSIVE GAE MASSIVE GAE	BBRO DISTONE BBRO DISTONE BBRO DISTONE BBRO DISTONE BBRO RUSION BRECCIA DISTONE DISTONE DISTONE DISTONE DISTONE APILLI TUFF SILTSTONE/WACKE		0.00 228.60	270.00 271.00	-60.00 -61.00	BRUNTON SPERRY SUN

•

and a second second

1 *1*

•

- **-** -

HOMESTAKE MINING COMPANY - BONSAI

PAGE 1 of 6

.

, ,

.

.

. .

none	; RT22-	I HUMESTAKE MI			OAL					11104	21010	
FROM	to	DESCRIPTION	Sample	INTERVAL	WIDTH	Au ppb	Ag ppm	Pb ppm	Zn ppm	Cu ppm	As ppm	Hg ppm
).00	3.60	OVERBURDEN	1			1						
5.60	8.50	GABBRO INTRUSION BRECCIA Brownish-green, Brecciated, oxidized Frs=3.4/m :Vns *1/m Trace CB clasts Mafic volcanic derived wacke disrupted by intrusion of gabbroic sill.										
8.50	20.80	MASSIVE MUDSTONE Fine-coarse grained, black, massive, Brecciated fault/gouge 20°:fracturing 40° Frs=21/m Strongly fractured with slickesides on fracture planes. Thin beds of volcanic derived wacke at 10.6-10.8 metres and 18.7-19.3 metres.										
20.80	38,30	MASSIVE GABBRO Pale green, chilled margin, mottled qz-carb veining 40°:fracturing 5° Frs=1.7/m :Vns =.5/m Moderate GV macroveins Sediment intrusive interaction zone 20.1 to 21.2, shattered gabbro fragments and hyaloclastite with silstone matrix from 37.1 to 38.3 Core of intrusion has 20% mafic phenocrysts in matric of plagioclase, fine to medium grained, with narrow breccia zones.										
38.30	50.90	WACKE Gray, gritty, laminated bedding 75°:fracturing 40° Frs=1.3/m Trace CV macroveins Feldspar-rich, volcanic derived wacke. Bedding is commonly disrupted.										
50.90	56.90	MASSIVE MUDSTONE Grayish-black, bedded, laminated fracturing 5°:bedding 75° Frs=2.6/m Trace CV macroveins Minor wacke.										
56.90	58.70	MASSIVE GABBRO			1							Ì

01/26/96

r

, ,

.

. . .

HOMESTAKE MINING COMPANY - BONSAI

PAGE 2 of 6

х **г** х **г х г х**

٠

л **г**

noue	; BZ32-1			II AIVE - DOI:	10ml						3 3 VL V	
FROM	10	DESCRIPTION	Sample	INTERVAL	WIDTH	Au ppb	Ag ppm	Pb ppm	Zn ppm	Cu ppm	As ppm	Hg ppm
		Pale green, mottled, chilled margin contact 30°:fracturing 20°										
58.70	61.20	WACKE Grayish-black, graded contact 30°:fracturing 5° Frs±3.4/m Weak PY nodules Weak CV macroveins Interbedded massive mudstone.										
61.20	65.10	MASSIVE GABBRO Green, chilled margin contact 45° Frs=3.4/m Weak CL pervasive Weak CB pervasive Trace CV macroveins										
65.10	70.70	MASSIVE MUDSTONE Aphanitic, black, massive, clastic Weak PY nodules Weak CV macroveins Isolated fragments of carbonate altered gabbro.										
70.70	71.60	MASSIVE GABBRO Pale green, chilled margin Trace CV macroveins Hosts narrow intervals of mudstone.										
71.60	77.10	MASSIVE MUDSTONE Aphanitic, black, massive Trace PY blebs Locally laminated.										
77.10	116.80	MASSIVE GABBRO Green, chilled margin fracturing 20° Frs=2/m Weak CL pervasive Weak CB pervasive Trace CV macroveins Upper margin is quenched and brecciated from 77.1 to 78.8 metres. Interval of volcanic wacke from 78.8 to 81 metres. Intrusion comprises up to 20% mafic phenocrysts in										

01/26/96

*

HOMESTAKE MINING COMPANY - BONSAI

PAGE 3 of 6

• •

۳

۰ r

1 3

			Ban-1-		WIDTH	A.,		Pb ppm	2n ppm	Cu ppm	As ppm	Hg pipm
FROM	<u>to</u>		Sample	INTERVAL	MIDIM	Au ppb	Ag ppm	ro ppm	zn ppa		ла рра	ua hha
116.80	118.00	plagioclase rich groundmass. MASSIVE MUDSTONE Massive, clastic fracturing 45° Frs=1/m Weak PY nodules isolated clasts of andesite and calcite veined										
118.00	120.20	siltstone.										
120.20	129.20		20756 20751	123.40-124.40 127.40-128.40	1.00	9 10	1.2 1.1	62 36				
<126	.40-127.	40> MASSIVE GABBRO Aphanitic, green, chilled margin Frs=1/m										
129.20	132.40	FAULT ZONE Aphanitic, black, fractured, veined fracturing 55°:cleavage, foliation 60° Frs=8/m Weak CV vein Black graphitic mudatone strongly sheared/fractured, patially healed by carbonate. Abundant slickensides and narrow gouge zones.	20752 20753 20754 20755	129.40-130.40 130.40-131.40	1.00 1.00 1.00 1.00	11 11 13 18	1.3	46	5 12 18	2 43 3 45	2 21	
132.40	139.00	MASSIVE MUDSTONE Black, contorted, laminated fracturing 35° Frs=2.4/m Trace PY modules	20757 20758 20759 20760 20761		1.00 1.00 1.00 1.00 1.00	13 1710 16 10 12	1_5 1.2 1.4	7(6) 5)	5 19 2 14 7 14	68 6 44 4 62	3 54 8 37 5 45	5
139.00	139.40	FAULT ZONE Black, fractured fracturing 5°	20762 20763	1	0.60 0.40	24 20						3

01/26/96

ч,

. . . .

.

HOMESTAKE MINING COMPANY - BONSAI

. .

. .

•

.

.

PAGE 4 of 6

1 7 1

٦ *٢*

.

. .

•

.

· ·

r 1

HOLE:	B732-1	HUMEDIARE MIN		MEANI ~ DOM	JAI					INUL	5 4 UL U	
FROM	to	DESCRIPTION	Sample	INTERVAL	WIDTH	Au ppb	Ag ppm	Pb ppm	Zn ppm	Cu ppm	As ppm	На ррм
		Frs=10/m										
139.40	148.00	MASSIVE MUDSTONE	20764	139.40-140.40	1.00	14	1.3	65	17	611		
		Aphanitic, black, laminated	20765	140.40-141.40	1.00	87	1.6	70	22 16	702	62	2
		fracturing 40°:bedding 50°	20766	141.40-142.40	1.00	19			16	1086	46	
		Frs=10/m	20767	142.40-143.40	1.00	22	1.7		18	1171	51	
		Intense PY Laminations		143.40-144.40	1.00	13	1.1		18	280		
		Trace CV macroveins		144.40-145.40	1.00	12			18	701	35	
		Abundant pyrite laminations up to 1.5 cm thick.		145.40-146.40	1.00	124	1.2					
48.00	158.80	HETEROLITHIC CONGLOMERATE	20771	146.40-147.40	1.00	12						1
		Fine-coarse grained, gray, clastic, graded	20772	147,40-148.40	1.00	84	1.5		19	1317		
		fracturing 5*	20773	148.40-149.40	1.00	43			22	1228	58	
		Frs=1.5/m	20774	149.40-150.40	1.00	9					38	
		Pebble to coarse samed sized detritus of laminated	20775	150.40-151.40	1.00	9		67			43	
		mudstone, massive pyrite and fow-banded to massive	20776	151.40-152.40	1.00	37	1.9	94	15	1780		'
		rhyolite clasts. The unit is displays normal	20777	152.40-153.40	1.00	8				189		l I
		gradding.	20778	153.40-154.40	1.00	23	1.7	22	2 11	178	36	ri -
158.80	159.50	FAULT ZONE	20779	154.40-155.40	1.00	11					5	1
		Aphanitic, black, sheared, crushed	20780	155.40-156.40	1.00	7					34	
		shear 1°:shear 35°	20781	156.40-157.40	1.00	14		13	i 16		51	ł
		Frs=15/m	20782	157.40-158.40	1,00	21	1.3	13				
		Intense CV macroveins	20783		0.40	19		: 17				5
		Graphitic fault zone.	20784	158.80-159.50	0.70	30	1.4	27	7 19	117	51	
159,50	166.60	RHYOLITE INTRUSIVE BRECCIA	20785	159.50-160.50	1.00	5	0.7				33	;
		Fine-coarse grained, whiteish-black, fractured, flowbanded	20786	160.50-161.50	1.00	100				15	24	
		cleavage, foliation 50°	20787	161.50-162.50	1.00	62	2 0,3	5 5		1 29	31	1
		Frs=1/m :Vns =.3/m	20788		1.00	1 8						
		Strong PY disseminated	20789	163.50-164.50	1.00	1 5		4	17			5
		Trace CV vein	20790	164.50-165.50	1.00	21	0.4	2	2 5			
		Rhyolite clasts are angular, flow banded to massive	20791	165.50-166.60	1.10	23	6 0.4		3] 12	2 19	2 18	3
		and pyritic within a grey siliceous matrix. Fragments					ļ					
		of black mudstone are observed in the rhyolite breccia	i i				i					
		near the base of the unit.							1			
166.60	167.60		20792	166.60-167.60	1.00	13	5 1.2	2 28	в 9	137	7 20	3
		Aphanitic, black, massive, graphitic										
		Trace PY disseminated										
		Weak CV macroveins						1				ļ
167.60	178.40		20793		1.00	20	5 2.7					
		Pale gray, veined, massive	20794		1.00		1.9	2 3	B			
		cleavage, foliation 25"	20795				9 2.0	0 7	2 13			
l i		Fra=2.5/m :Vns =1/m	20796			1				8 10		
l –		Moderate CB pervasive	20797	171.80-172.50	0.70	1	6 1.!	5 24	אן א	9 13	0 2	4

.

٦

-

• •

. .

• •

HOMESTAKE MINING COMPANY - BONSAI

•

.

PAGE 5 of 6

and the second second

Irace CV macroveins 20800 173.80-174.80 1.00 5 1.0 22 Strongly carbonate+sericite altered andesitic 20801 174.80-175.80 1.00 13 1.0 24 <168.60-170.50> FAULI ZOME Aphanitic, black, sheared, crushed ahear 40° 1.00 13 0.9 26 <168.60-170.50> FAULI ZOME Aphanitic, black, sheared, crushed ahear 40° 1.00 100 1.00 13 0.9 26 Frs=11/m Weak CB matrix Trace PY disseminated 0.9 26 0.9 26 Weak CB matrix Trace PY disseminated 20803 176.80-177.80 1.00 7 1.0 20 Meak CC macroveins Graphitic with abundant slickensides, and carbonate heated. 20803 176.80-177.80 1.00 7 1.0 20 178.40 189.20 INTERBEDED SILTSTONE/WACKE 20804 177.80-178.40 0.60 14 1 20 Blackish-gray, bedded 20805 176.40-177.40 1.00 8 0.9 29 Fras-3.5/m Trace CV macr	NOLE:	DL/73~1	nowestare with	ING CO	$\mathbf{MFAINI} - \mathbf{DUIN}$	5/41					FAGE	5 9 01 0	
Trace PY elasts 20790 172.80-173.80 1.00 6 1.11 28 Strongly carbonatesericite altered andesitic 20801 174.80-173.80 1.00 13 1.0 24 Argaments in a sedimentery matrix. 20801 174.80-175.80 1.00 13 1.0 24 Aphentic, black, sheared, crushed shear 40° Aphentic, black, sheared, crushed shear 40° 175.80-176.80 1.00 7 1.0 20 I78.40 192.00 INTERED Sillisoninated Wake CV macroveins 20803 176.80-177.80 1.00 7 1.0 20 I78.40 192.00 INTERED Sillisoninated Wake CV macroveins 20803 176.80-177.80 1.00 7 1.0 20 I78.40 192.00 INTERED Sillisoninated Wake CV macroveins 20803 176.80-177.80 1.00 7 1.0 20 I78.40 189.20 INTERED Sillisonic Mitter 20803 176.80-177.80 1.00 7 1.0 20 I78.40 189.20 INTERED Sillisonic Sillison 2000 177.80-178.60 1.00 7 1.0 20 I78.40	FROM	то	DESCRIPTION	Sample	INTERVAL	WIDTH	Au ppb	Ag ppm	Pb ppm	Zn ppm	Cu ppm	As ppm	Kg ppm
Aphanitic, black, sheared, crushed shear 40° frg=11/m Weak CB matrix Trace PY disseminated Weak CV mecroveins Graphitic with abundant slickensides, and carbonate healed. 178.40 189.20 INTERBED SlitSTOME/WACKE Slackishrgrey, bedded 20804 177.80-178.40 0.60 14 1.00 8 0.9 29 Frs3.5/m thm e.5/m Trace CV macroveins Beddied sequence of wacke and slistone with rare pyrite 20805 183.40-182.40 1.00 8 1.2 20806 183.40-182.40 1.00 8 1.7 20806 183.40-182.40 1.00 8 1.7 20806 183.40-182.40 1.00 8 1.7 38 Bedded sequence of wacke and slistone with rare pyrite 20807 180.40-183.40 1.00 5 1.8 189.20 195.80 MASSIVE GABBRO Fires.1.5/m tyne =.5/m Trace CV wein Complomerate consists of slitanet with a slit matrix. 195.80 207.40 HETEROLITHIC CONGLOMERATE Fine-coarse grained, grayish-black, massive, fractured cleavage, foliation 32°-cleavage, foliation 35° Freat.5/m tyne =.5/m Trace CV wein Conglomerate consists of slitatone and andesitic fragenets in a slitatone matrix. Andesite fragments are variably sericitercarbonate altered.	-		Trace PY clasts Trace CV macroveins Strongly carbonate+sericite altered andesitic	20799 20800 20801	172.80-173.80 173.80-174.80 174.80-175.80	1.00 1.00 1.00	6 5 13	1.1 1.0 1.0	28 22 24	10 8 8	103	18 18 20	2 2 2
Blackish-gray, bedded 20004 177.80-178.40 0.60 14 1.1 20 bedding 70*cleavage, foliation 25° 20805 178.40-179.40 1.00 8 0.9 29 frase.FY Laminations 20805 177.80-180.40 1.00 8 1.7 39 Trace FY Laminations 20805 178.40-181.40 1.00 8 1.7 39 Bedded sequence of wacks and silstone with rare pyrite 20809 181.40-182.40 1.00 6 1.2 35 Bedded sequence of wacks and silstone with rare pyrite 20809 182.40-183.40 1.00 6 1.2 35 Is9.20 195.80 MASSIVE GABBRO 20811 184.40-185.40 1.00 6 1.0 41 rine-coarse grained, grayish-green, Brecclated 20812 185.40-186.40 1.00 15 1.1 30 cleavage, foliation 25°:cleavage, foliation 35° 20813 186.40-187.40 1.00 16 40 rserverse grained, grayish-green, Brecclated 20812 185.40-186.40 1.00 16 40 reavage, foliation 25°:cleavage	<168.	.60-170.9	Aphanitic, black, sheared, crushed shear 40° Frs=11/m Weak CB matrix Trace PY disseminated Weak CV macroveins Graphitic with abundant slickensides, and carbonate										
Fine-coarse grained, grayish-green, Brecclated20812185.40-186.401.00151.130cleavage, foliation 25°:cleavage, foliation 35°20813186.40-187.401.00101.640Weak CB disseminated20814187.40-188.401.00381.846Weak MS disseminated20815188.40-189.200.80111.948Trace PY clastsTrace CV vein111.948Trace CV vein101.0151.11.948195.80207.40HETEROLITHIC CONGLOMERATE1.00101.41.948Fine-coarse grained, grayish-black, massive, fracturedcleavage, foliation 23°:cleavage, foliation 35°1.840-189.200.80111.948195.80207.40HETEROLITHIC CONGLOMERATEFine-coarse grained, grayish-black, massive, fractured1.9481.00101.41.00195.80207.40HETEROLITHIC CONGLOMERATEFine-coarse grained, grayish-black, massive, fractured1.9481.948195.80207.40HETEROLITHIC CONGLOMERATE1.00101.41.948195.80207.40HETEROLITHIC CONGLOMERATE1.00101.41.91.9Firs=1.5/mTrace CB clastsTrace MS clasts1.91.91.91.91.9Weak CV veinConglomerate consists of siltstone and andesitic1.91.91.91.91.91.9Weak CV vein	178.40	189.20	Blackish-gray, bedded bedding 70°:cleavage, foliation 25° Frs=3.5/m :Vns =.5/m Trace PY laminations Trace CV macroveins Bedded sequence of wacke and silstone with rare pyrite	20804 20805 20806 20807 20808 20808 20809	177.80-178.40 178.40-179.40 179.40-180.40 180.40-181.40 181.40-182.40 182.40-183.40	0.60 1.00 1.00 1.00 1.00 1.00	14 8 10 8 7 6	1.1 0.9 1.6 1.7 1.3 1.2	20 29 43 39 38 35	4 7 10 9 1 8	71 99 118 106 105 95	13 16 28 28 19 18	2 2 2 2 2 2 2
Fine-coarse grained, grayish-black, massive, fractured cleavage, foliation 23°:cleavage, foliation 35° Frs=1.5/m :Vns =.5/m Trace CB clasts Trace MS clasts Weak CV vein Conglomerate consists of siltstone and andesitic fragments in a silstone matrix. Andesite fragments are variably sericite+carbonate altered.	189.20	195.80	Fine-coarse grained, grayish-green, Brecciated cleavage, foliation 25°:cleavage, foliation 35° Frs=1.5/m :Vns #.5/m Weak CB disseminated Weak MS disseminated Trace PY clasts Trace CV vein	20812 20813 20814	185.40-186.40 186.40-187.40 187.40-188.40	1.00 1.00 1.00	15 10 38	1.1 1.6	30 40 46) 13) 10 5 7	5 114 5 160	24 27 2 33	
	195.80	207.40	Fine-coarse grained, grayish-black, massive, fractured cleavage, foliation 23°:cleavage, foliation 35° Frs=1.5/m :Vns =.5/m Trace CB clasts Trace MS clasts Weak CV vein Conglomerate consists of siltstone and andesitic fragments in a silstone matrix. Andesite fragments										
	207.40	237.10	GABBRO INTRUSION BRECCIA										

r 1 r

٦

.

•

HOMESTAKE MINING COMPANY - BONSAI

•

•

PAGE 6 of 6

х <u>т</u>

.

1

.

. .

,

٠

· · ·

FROM	to	DESCRIPTION	Sample	INTERVAL	WIDTH	Au ppb	Ag ppm	Pb ppm	Zn ppm	Cu ppm	As pom	Hg ppm
(eoh)		Fine-coarse grained, grayish-green, massive, Brecciated cleavage, foliation 40° Frs=1.5/m :Vns =1/m Weak CB pervasive Weak MS pervasive Trace PY disseminated Weak CV vein Intreval is dominated by gabbro intrusion breccia into sedimentary sequence. More massive gabbro is observed from 214.1-215.9 and 220-229.3.										

Hole: 8295-1

P ...

h

•

•

۳ ۲

.

. .

•

.

•

.

.

•

•

•

`

.

a.

•

•

-

•

•

Page: 1

1

ole: BZ	25-1	GEOTECH	NICAL DATA		Page:
From	то	Measured Vidth	Recovery	RQD	Hardness
0.0			19	14	4
7.6			44	0	3
8.5			5	0	5
11.0			100 94	70	, c
12.2 14.6			100	53	3
16.5				86	3
17.7			100	76	4
20.7			100	100	5
23.8			100	100	5
26.8			100	98	5
29.9			100 100	99 97	
32.9 36.0				59	4
39.0				89	5
42.1				94	5
45.1	68.20	3.10	100	89	5
48.2			100	98	5
51.2			100	91 95	
54.3				90	4
57.34 60.44				93	3333334555555455555454
63.3			100	92	
66.4				99	5 5
69.5		3.00	100	86	4
72.5			97	76	4
75.6			100	100	5
78.6			100	96 87	4
81.7			100 100	91	
84.7 87.8			95	93	5 5 5 4 5 5 5 5 5 5 5 4 5 4 5 4
90.5			100	92	5
93.0	1 -		100	100	4
93.9			100	99	5
96.9		3.10	99	95	5
100.0			100 98	91 94	
103.0			100	99	5
106.1 109.1				92	5
112.2				96	5
115.2	0 118.30	3.10	95	75	4
118.3	0 120.40	2.10		100	5
120.4				82	
121.3	- · · ·			87 88	2
124.4				100	5
129.8				83	4
132.9				100	
135.9			70	68	5 5 4 5 4 5 5 6
138.3	139.60	1.30	100	93	4
139.6	0 142.60			92	5
142.6			93	75	
145.7				100 95	
148.7 151.8				100	6
151.0				77	4
157.9			84	63	4 3 4
160.9	0 164.00	3.10	100	77	4
164.0	0 166.70		100	88	5 3 3 4
166.7		0.30	100	57	2
167.0				69 58	5 7
170.1		2.70	[93	1 L
172.8	0 175.90			83	4
178.9				55	4
182.0			100	83	5
185.0			100	88	5
				96	5
188.1	0 191.40		1	33	3

Hole: BZ95-1	GEOTECHNICAL DATA	Page: 2

From	то	Neasured Width	Recovery	RQD	Hardness
191.40	194.50	3.10	97	96	5
194.50	197.50	3.00	90	64	3
197.50	198.40	0.90	87	53	3
198.40	200.60	2.20	100	98	5
200.60	203.60	3.00	100	97	5
203.60	206.70	3.10	99	91	5
206.70	209,70	3.00	100	90	5
209.70	212.80		97	97	5
212.80	215.80		100	98	5
215.80	218.80		99	80	4
218.80	221.90		97	92	5
221.90	224.90		97	87	5
224.90	228.00		100	75	5
228.00	231.00		100	98	5
231.00	234.20		92	65	4
234.20	237.10		92	42	3

HOMESTAKE MINING COMPA	NY DRILL H	OLE LOG			BZ95-2	
PROJECT: BONSAI DRILL HOLE: 8295-2	Date Commenced: 11/8/95 Date Completed: 14/8/95	Contractor:	HY-TECH DRILL	.ING	Logged by: CB Geotech by: BB	
LENGTH: 270.10	Core Diam: N9TK					
Collar Location					•	
Letitude: 6276016.00 Departure: 405129.00 Elevation: 3720.00						
SUMMAR	ξΥ	Di	DOWN H	OLE SURVEYS Inclin	Method	
0.00-0.40 0.40-42.20 42.20-91.00 91.00-94.00 94.00-97.00 97.00-99.80 99.80-124.60 124.60-132.00 132.00-136.50 136.50-152.60 152.60-168.60 168.60-176.80 176.80-208.90 208.90-230.80 230.80-233.10 233.10-241.50 241.50-252.40 252.40-261.30 261.30-262.40 262.40-270.70	CASING MASSIVE GABBRO HETEROLITHIC CONGLOMERATÉ WACKE MASSIVE GABBRO MASSIVE MUDSTONE MASSIVE MUDSTONE GABBRO INTRUSION BRECCIA MASSIVE MUDSTONE RASSIVE MUDSTONE RHYOLITE INTRUSIVE BRECCIA * RHYOLITE INTRUSIVE BRECCIA * RHYOLITE HETEROLITHIC CONGLOMERATE MASSIVE MUDSTONE WACKE MASSIVE MUDSTONE FAULT ZONE MASSIVE MUDSTONE		0.00 275.0 0.50 276.0 1.30 283.0	0 - 75 .00 0 -74.00	BRUNTON	

.

۰,

HOMESTAKE MINING COMPANY - BONSAI

PAGE 1 of 4

٠

х **г**

1 + 1 + 1 - 1

FROM	TO	DESCRIPTION	Sample	INTERVAL	WIDTH	Au ppb	Ag ppm	Pb ppm	Zn ppm	Cu ppm	As ppm	Hg ppm
0.00	0.40	CASING										
0_40	42.20	MASSIVE GABBRO Green, massive, chilled margin fracturing 15°:fracturing 30° Frs=3/m Lower contact is brecciated.										
<34.	,20-42.20	> GABBRO INTRUSION BRECCIA Fine-coarse grained, grayish-black, Brecciated fracturing 1°:fracturing 30° Frs=3.5/m Trace PY clasts Breccia has a siltstone matrix.										
42.20	91.00	KETEROLITHIC CONGLOMERATE Fine-coarse grained, gray, fragmental Trace PY clasts Fragments of siltstone and bedded wacke with lesser andesitic clasts in silstone matrix. Where bedding is preserved it is commonly distorted and chaotic. Core is moderately fractured between 42.3-43 (possible fault).										
91.00	94.00	WACKE Dark gray, massive contact 90°:cleavage, foliation 30° Frs=3/m :Vns =1/m Trace PY disseminated Trace CV macroveins Feldspar-rich, volcanic derived.										
94.00	97.00	MASSIVE GABBRO Green, chilled margin contact 90°:fracturing 40° Frs=3/m Trace PY disseminated Trace PR macroveins Trace CV macroveins										
97.00	9 9.80	MASSIVE MUDSTONE Dark black, massive, clastic bedding 60° Frs=2/m Trace PY disseminated Mudstone has fragments of calcite veined mudstone.										

.

.

HOMESTAKE MINING COMPANY - BONSAI

PAGE 2 of 4

r 1

r 1

1

٦

۴

.

FROM TO	0	DESCRIPTION	Sample	INTERVAL	WIDTH	Au ppb	Ag ppm	Pb ppm	Znppft	Cu ppm	As ppm	Hg ppm
99.80 124		MASSIVE GABBRO Green, chilled margin, mottled contact 25°:contact 90° Weak CB patches Weak MS patches Trace PY patches Trace CV macroveins Intrusion is locally altered to carbonate+sericite which produces a mottled appearance to the core. The intensity of alteration increases below 118 metres.										
124.60 132		MASSIVE MUDSTONE Dark black, massive fracturing Z5° Frs=6.5/m Trace PY disseminated Trace CV macroveins										
<128.40)-129.0											
<132.00		· - ·										
136.50 15	52.60	MASSIVE MUDSTONE Aphanitic, dark black, veined, massive cleavage, foliation 50°;fracturing 25° Frs=1/m :Vns =.5/m Trace PY vein Trace CV vein Interval contains calcite healed fractures. Bedding is more visible at the end of the interval.	20819	136.50-137.50 137.50-138.50 138.50-139.50 139.50-140.50 140.50-141.50 141.50-142.50 142.50-143.50 143.50-144.50	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	12 6 20 8 12 9 8 8 62		53	8 12 9 15 2 11 2 12 12 11 11	407 1061 320 500 354 233		5 2 3 1
152.60 16	68.60	LAMINATED MUDSTONE Aphanitic, dark black, laminated bedding 70°:bedding 85° Fra=2.5/m Trace PY laminations Trace PR macroveins Local pyritic laminations.	20827 20828 20829 20830	144.50-145.50 145.50-146.50 146.50-147.50 147.50-148.50 148.50-149.50 149.50-150.50 150.50-151.50	1.00 1.00 1.00 1.00 1.00 1.00 1.00	12 9 12 9 12 7	0.8	3 6 6 6 6 5 5 5	1 14 5 15 0 14 4 11 8 12 6 10	20! 30! 260 32: 200 32: 300 01 42!	5 1/ 9 2 9 1/ 8 1/ 8 1/ 5 1	8 1 8 9 6 4

HOLE: BZ95-2

.

HOMESTAKE MINING COMPANY - BONSAI

PAGE 3 of 4

٦

1

٦

FROM	ŤO	DESCRIPTION	Sample	INTERVAL	WIDTH	Au ppb	Ag ppa	Pb ppm	Zn ppre	Cu ppm	As post	Hg ppm
							···• PP-*					
68.60	176.80	MASSIVE MUDSTONE	20832	151.50-152.60	1.10	6	1,1	65	12	425	30	
		Aphanitic, dark black, massive, fractured	20833	152.60-153.60	1.00	5	1.0	56	15	422	32	
		contact 60°:fracturing 35°	20834	153.60-154.60	1.00	4			01	585	27	
		Frs=9/m	20835	154.60-155.60	1.00	4	1.5	61	14	876	34	
		Trace PY laminations	20836	155.60-156.60	1.00	6	1.5	77	13	1447	29	
		Interval is moderately fractured and hosts calcite	20837	156.60-157.60	1.00	23	1.9	88	20	1881	40	
		veined mudstone fragments. Pyrite Laminations are		157.60-158.60	1.00	6		59	14	577	23	
		locally present. Lower contact with rhyolite is	20839	158.60-159.60	1.00	8				2117		1
		sharp.	20840	159.60-160.60	1.00	14	3.1	116	14	2762	41	
76.80	185.80	RHYOLITE INTRUSIVE BRECCIA	20841	160,60-161.60	1.00	30	1.9	84	11	1753	53	
		Fine-coarse grained, gray, auto-brecciated, flowbanded	20842	161.60-162.60	1.00	43	1.7	61	11	1184	37	'
		contact 60°:fracturing 15°	20843	162,60-163.60	1.00	10	2.0		10	3358	49	{
		Frs=2/m :Vns #2/m	20844	163.60-164.60	1.00	19	2.2		12	930	40	
		Trace MS matrix	20845	164.60-165.60	1.00	20			10	2737	24	
		Weak PY pervasive	20846	165.60-166.60	1.00	4				2124		
		Trace QV macroveins	20847	166.60-167.60	1.00	7				1585		
		Weak CV macroveins		167.60-168.60	1.00	6				711	38	
		Rhyolite clasts are angular with flow banding and	20849	168.60-169.60	1.00	8						
		spherulites preserved in larger fragments. The matrix		169.60-170.60	1.00	54						
		consists of cuspated shards, varibly sericitized		170.60-171.60	1.00	8						
		silica and finely disseminated pyrite.	20852	171.60-172.60	1.00	3	1.6	40	10	173	19	
<185	.50-185.	80> 1 % sphalerite - disseminated	20853	172.60-173.60	1.00	3	1.0	29	12	145	26	4
08.90	230.80	RHYOLITE	20854	173.60-174.60	1.00	19	1.0	26	9	166	23	
		Gray, flowbanded, massive	20855	174.60-175.60	1.00	4	1.3	35	22	147		
		:fracturing 15°	20856	175.60-176.80	1.20	3				213	28	
		Frs=1/m :Vns =2/m	20857	176.80-177.80	1.00	1			19	41	28	
		Weak PY pervasive		177.80-178.80	1.00	1	0.3	4	19			
		Weak CV macroveins	20859	178.80-179.80	1.00	1	0.3	5	13	24	14	
30.80	233.10		20860	179.80-180.80	1.00	2	0.z	4	13	28	11	
		Fine-coarse grained, grayish-green, fragmental, massive	20861	180.80-181.80	1.00	1		3	13			
		Trace PY clasts	20862	181.80-182.80	1.00	1			15			
		Mudstone and andesitic fragments in siltstone matrix.	20863	182.80-183.80	1.00	1	0.3	3	8	34	20	Ì
33.10	241.50		20864	183.80-184.80	1.00	2	0.4	. 4	16		34	
		Aphanitic, blackish-gray, bedded, graphitic	20865		1.00	3	0.3	i 5	14		28	5
		bedding 65°:qz-carb veining 60°	20866		1.00	1			11		23	
		Frs=1/m	20867		1,00	1	1		14		45	
		Trace PY clasts	20868	187.80-188.80	1.00	1			15			
		Weak QC vein	20869	188.80-189.80	1.00	1 1	0.2	* 4	8	41	43	5
241.50	252.40		20870	189.80-190.80	1.00	1	0.Z			1		
		Fine-coarse grained, gray, graded, gritty	20871	190.80-191.80	1.00	1	0.4	5	13	128	41	

+ + +

· ·

.

.

.

HOMESTAKE MINING COMPANY - BONSAI

,

.

,

PAGE 4 of 4

,

.

٦

FROM	TO	DESCRIPTION	Sample	INTERVAL	HTGIU	Au ppb	Ag ppm	Pb ppm	Zn ppm	Cu ppm	As ppm	Hg ppm
		bedding 60°:qz-carb veining 70° Trace PY patches Weak QC vein Pebble conglomerate beds at 249.3-249.6 and 251.9-252.4.	20875	191.80-192.80 192.80-193.80 193.80-194.80 194.80-195.80 195.80-196.80	1.00 1.00 1.00 1.00 1.00	1 2 1 1 1	0.4 0.6 0.4 0.3 0.4	7	17 20 8 7 10	4	58 87 45 17 35	2 2 2
252.40	261,30	MASSIVE MUDSTONE Aphanitic, blackish-green, contorted bedding 75°:fracturing \$0° Trace QC vein	20877 20878 20879 20880	196.80-197.80 197.80-198.80 198.80-199.80 199.80-200.80	1.00 1.00 1.00 1.00	1 1 2 2	0.6 0.4	7	15	4 4 5 5	18 21 18 25	2
261.30	262,40	FAULT ZONE Fine-coarse grained, grayish-black, graphitic, broken fault/gouge 45° Weak PY patches Fault zone hosted within black siltstone.	20883	200.80-201.80 201.80-202.80 202.80-203.80 203.80-204.80 204.80-205.80	1.00 1.00 1.00 1.00 1.00	1 1 1 8 1	0.5 1.1 0.4 0.2 0.3	19 15 9	12 15 107 87 51	6 5 5	13 51 54 30 67	222
262.40	270.70	Blackish-gray, massive bedding 50°:fracturing 5° Frs=1.5/m Trace PY disseminated	20887 20888 20889 20890	205.80-206.80 206.80-207.80 207.80-208.80 208.80-209.80 209.80-210.80	1.00 1.00 1.00 1.00 1.00	2 1 1 2 1	0.3 0.4 0.2 0.2	15 17 11 12	44 57 50 27 31	3 4 3 3	52 81 80 48 48	22
(eoh)		Trace QC vein	20892 20893 20894 20895 20895 20896	210.80-211.80 211.80-212.80 212.80-213.80 213.80-214.80 214.80-215.80 215.80-216.80 215.80-216.80	1.00 1.00 1.00 1.00 1.00 1.00 1.00	3116	0.4 0.4	15 8 14 16 17	49 38 22 27 36 43 52	3 4 3 4 5	39 47 62 38	
			20898 20899 20900 20901 20902	217.80-218.80 218.80-219.80 219.80-220.80 220.80-221.80 221.80-222.80 222.80-223.80	1.00 1.00 1.00 1.00 1.00 1.00	22 1 3 6 1	0.2 0.2 0.2	26 24 24 20 24	163 133 52 58	6 5 5 5 5	11 13 13 15 14	22
			20904 20905	223.80-224.80 224.80-225.80 225.80-225.80 226.80-227.80 227.80-228.80 228.80-229.80	1.00 1.00 1.00 1.00 1.00 1.00	1 3 1 2 10	0.2 0.1 0.1 0.2	21 18 18 19 28	83 256 153 124 125	4 5 5 4	15	

• .

.

.

٠

.

.

.

,

.

٠

• .

. .

.

Page: 1

	DLE: 027	J-2	GEUTECH	TICAL DATA	Page:	1	
	From	то	Measured Width	Recovery	RQD	Kardness	
	0.40		2.00	98	67	4]
	2.40		2.80	78	56	5	
	5.20 8.20		3.00 3.40	99 93	88 55	5	
1	11.60	14.60	3.00	100	85	5	
	14.60	17.70	3.10	98	75	5	
1	17.70		2.70	100	77	5	
	20.40 23.50		3.10 3.00	100 100	73 91	5 5 5 5 5 5 5 5 5 5 4	
	26.50		3.10	100	82	5	
	29.60		2.90	100	91	5	
1	32.50 35.40		2.90 3.00	100 100	78 85	4	
	38.40		3.10	94	62	5	
	41.50		3.00	100	77	3	
	44.50 48.20	48.20 51.20	3.70 3.00	92 100	80 80	4	
	51.20	54.30	3.10	97	93	5 5 4	
	54.30	57.30	3.00	89	78		
	57.30		3.10	95	85	4	
	60.40 63.40	63.40 66.10	3.00 2.70	100 91	88 72	6	
	66.10	69.20	3.10	99	74	6 3 3 4	ł
ł	69.20	72.50	3.30	100	74	4	
	72.50 75.60	75.60 78.60	3,10	100 100	71 97	3 5	
	78.60	81.70	3.10	94	65	4	
	81.70	84.70	3.00	99	84	4	ĺ
L	84.70	87.80	3.10	100	80	4	
	87.80 90.80	90.80 93.90	3.00 3.10	100 100	69 87	4	
	93.90	96.90	3.00	100	98	5 5 5	
	96.90	100.00	3.10	100	92	5	
	100.00	103.00	3.00 3.10	100 99	98 85	6	
	106.10	109.10	3.00	94	84	6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
	109.10	112.20	3.10	93 100	78	5	
	112.20	115.20 118.30	3.00 3.10	100	97 95	5	
	118.30	121.30	3.00	100	97	5	
	121.30	124.40	3.10	100	93	5	
	124.40	127_40 130.50	3.00 3.10	90 100	51 88	3	
	130.50	133.50	3.00	100	87	5	
	133.50	136.50	3.00	100	78	4	
	136.50 139.60	139.60	3.10	98 100	93 95	5	
	142.60	145.70	3.10	100	85	5 5 5 5 4	
	145.70	148.70	3.00	100	98	5	
	148.70	151.80 154.80	3.10	99 100	91 97	5	
	154.80	157.90	3.10	100	88		
	157.90	160.80	2.90	99	86	3	
	160.80	163.80 167.00	3.00	98 100	33 62	4 3 3 4	
ļ	163.80	187.00	3.20 3.10	100	62 78	4	
1	170.10	173.10	3.00	100	52	3	
	173.10	176.20	3.10	100	44	3 3 5	
	176.20	179.20	3.00 3.10	99 98	84 92	5	
	182.30	185.30	3.00	100	99	6	
	185.30	188.10	2.80	99	78	6 5 4 5 5 5 4	
	188.10 191.40	191.40	3.30	100 100	62 81	4	
	194.50	197.50	3.00	100	93	5	
	197.50	200.60	3.10	100	89	5	
	200.60	203.60	3.00	100 100	77 82	4	
	203.60	206.70	3.10 3.00	100	82 95	4 5	
L						-	

ole: BZ95	-2	GEOTECKA	ICAL DATA		Page:		
From	το	Measured Width	Recovery	RQD	Hardness		
209.70	212.80	3.10	100	85	5		
212.80	215.80	3.00	100	91	5		
215.80	218,80	3.00	100	95	5		
218.80	221.90	3,10	95	80	6		
221.90	224.90	3.00	100	86	6 6		
224.90	228.00	3.10	100	83	6		
228.00	231.00	3.00	100	78	6		
231.00	234.10	3.10	100	97	6 6 5		
234.10	237.10	3.00	100	78			
237,10	240,20	3.10	100	78	4		
240.20	243.20	3.00	100	99	4 5 3 3		
243.20	246.30	3.10	100	56	3		
246.30	249.30	3.00	95	19	3		
249.30	252.40	3.10	96	60	4		
252.40	255.40	3.00	100	83	4		
255.40	258.50	3.10	100	64	4		
258.50	261.50	3.00	100	65	3		
261.50	264.50	3,00	100	74	3		
264.50	267.60	3.10	100	52	4		

HOMESTAKE MINING COMPANY	DRILL F	HOLE LOG			BZ95-3
PROJECT: BONSA1 DRILL HOLE: B295-3 LENGTH: 237.70	Date Commenced: 15/8/95 Date Completed: 18/8/95 Core Diam: NQTK	Contractor: HY	-TECH DRILLIN	IG	Logged by: CB Geotech by: BB
Collar Location					
Lat{tude: 6276370.00 Departure: 405135.00 Elevation: 3470.00				<u></u>	
S U M M A R Y		Dept	DOWN HOLE h Azim	SURVEYS	Nethod
7.60-11.60 MAS 11.60-52.50 WAC 52.50-86.40 MAS 86.40-91.60 GAB 91.60-121.00 MAS 121.00-125.10 GAB 125.10-125.60 FAU 125.60-141.50 MAS 141.50-212.80 HET	RBURDEN SIVE GABBRO KE SIVE GABBRO BRO INTRUSION BRECCIA SIVE GABBRO BRO INTRUSION BRECCIA ILT ZONE SIVE MUDSTONE EROLITHIC CONGLOMERATE LT ZONE	0.0 30.5 103.6 237.7	0 277.50 0 277.00 0 279.00	-80.00 -79.00 -79.00 -79.00	BRUNTON SPERRY SUN SPERRY SUN SPERRY SUN

4

and a second second

· · · · ·

.

.

4

HOMESTAKE MINING COMPANY - BONSAI

.

.

.

PAGE 1 of 2

÷

,

,

• •

. . . .

FROM	TO	DESCRIPTION	Sample	INTERVAL	WLDTH	Au ppb	Ag ppn	Pb ppm	Zn ppm	Cu ppm	As ppm	Kg ppr
0.00	7.60	OVERBURDEN				ĺ						
7.60	11.60	MASSIVE GABBRO Greenish-blue, fractured, oxidized contact 35°:fracturing 5° Frs=3/m										
11.60	52.50	WACKE Aphanitic, grayish-black, Brecciated contact 30°:fracturing 30° Frs≈3/m Trace PY laminations Intraformational clasts of siltstsone and wacke within massive wacke.										
52.50	86.40	MASSIVE GABBRO Grayish-green, massive, chilled margin contact 15° Frs=1/m Trace CL replaced phenocryst Weak CB pervasive Trace MS pervasive Trace PY patches tower contact is irregular and marked by intrusive breccia with siltstone matrix.										
86,40	91.60	GABBRO INTRUSION BRECCIA Dark green, Brecciated, mottled contact 40° Trace CL replaced phenocryst Trace CB clasts Trace MS clasts Trace MS clasts Trace PY patches Trace CV microveins Angular, cuspate gabbro fragments in siltstone matrix.										
91.60	121.00	MASSIVE GABBRO Grayish-green, massive, mottled contact 75° Trace CL replaced phenocryst Weak CB pervasive Weak MS pervasive Trace PY patches Trace CV microveins										
121.00	125.10	GABBRO INTRUSION BRECCIA								1		Î

· · · · ·

• ·

HOMESTAKE MINING COMPANY - BONSAI

.

PAGE 2 of 2

.

	Sample	INTERVAL	MIDIK	vn bbo	va bbu	Pb ppm	zn ppm	Cuppm	As ppm	Hg ppm
Fine-coarse grained, gravish-black, fragmental Trace CL replaced phenocryst Weak CB pervasive Weak MS pervasive Trace PY disseminated Angular fragments of gabbro within disrupted and brecciated siltstone and wacke.										
FAULT ZOWE Greenish-black, veined	20910	124.60-125.60	1.00	7	0.4	18	674	57	217	2
MASSIVE MUDSTONE Aphanitic, black, laminated bedding 80°:bedding 40° Trace PY disseminated Interval contains rare pyrite laminae and <2mm sized fine grained massive pyrite clasts.	20912 20913 20914 20915	126.60-127.60 127.60-128.60 128.60-129.60 129.60-130.60	1.00 1.00 1.00 1.00 1.00 1.00	25 1 11 12 10 1	1.0 0.9 0.8	14 19 17	719 679	75 81 63 57	68 77 43 52	2222
HETEROLITHIC CONGLOMERATE Fine-coarse grained, grayish-green, mottled, massive Trace CL clasts Trace CB clasts Trace MS clasts Trace PY patches andesitic conglomerate with silt and volcaniclastic matrix, clasts are variably altered to sericite+carbonate.	20918 20919 20920 20921 20922 20923 20923 20924	132.60-133.60 133.60-134.60 134.60-135.60 135.60-136.60 136.60-137.60 137.60-138.60 138.60-139.60	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	2 6	0.5 0.3 0.2 0.8 1.1 0.1 0.5	11 16 18 15 15 8 12	437 494 206 825 1716 252 250	40 48 65 58 74 84 32 31	41 35 49 34 51 35 33 24	222222222222222222222222222222222222222
FAULT ZONE Grayish-tan, Brecciated fault/gouge 40° Trace PY disseminated	20926	140.60-141.60	1_00	5	1.4	11	278	48	43	2
	<pre>Weak CB pervasive Weak MS pervasive Trace PY disseminated Angular fragments of gabbro within disrupted and brecciated siltstone and wacke. FAULT ZONE Greenish-black, veined MASSIVE MUDSTONE Aphanitic, black, laminated bedding 80°:bedding 40° Trace PY disseminated Interval contains rare pyrite laminae and <2 mm sized fine grained massive pyrite clasts. HETEROLITHIC CONGLOMERATE Fine-coarse grained, grayish-green, mottled, massive Trace CL clasts Trace CB clasts Trace CB clasts Trace PY patches andesitic conglomerate with silt and volcaniclastic matrix, clasts are variably altered to sericite+carbonate. FAULT ZONE Grayish-tan, Brecclated fault/gouge 40°</pre>	Weak CBpervasiveWeak MSpervasiveTrace PYdisseminatedAngular fragments of gabbro within disrupted and brecciated siltstone and wacke.20910FAULT ZONE20910Greenish-black, veined20911MASSIVE MUDSTONE20912bedding 80°:bedding 40°20913Trace PYdisseminatedInterval contains rare pyrite laminae and <2 mm sized	Weak CBpervasiveWeak MSpervasiveTrace PYdisseminatedAngularfragments of gabbro within disrupted andbrecciated siltstone and wacke.FAULT ZONE20910Greenish-black, veined20911MASSIVE MUDSTONE20911Aphanitic, black, laminated20913bedding 80°:bedding 40°20913Trace PYdisseminatedInterval contains rare pyrite laminae and <2 mm sized	Weak CBpervasive Weak MSpervasive pervasiveTrace PYdisseminated Angular fragments of gabbro within disrupted and brecciated siltstone and wacke.20910124.60-125.601.00FAULT ZONE Greenish-black, veined20911125.60-126.601.00MASSIVE MUDSTOME Aphanitic, black, laminated bedding 80° bedding 40° Trace PY disseminated Interval contains rare pyrite laminae and <2 mm sized fine grained massive pyrite clasts.20917126.60-125.601.00HETEROLITHIC CONGLOMERATE Fine-coarse grained, grayish-green, mottled, massive Trace PY patches ardes tit conglomerate with silt and volcaniclastic matrix, clasts are variably altered to sericite+carbonate.20917131.60-132.601.00FAULT ZONE Grayish-tan, Brecclated fault/gouge 40°20926140.60-141.601.00	Weak CB Waak NS pervasive Trace PY disseminated Angular fragments of gabbro within disrupted and brecciated siltatone and wacke.20910124.60-125.601.007FAULT ZONE Greenish-black, veined20911125.60-126.601.007MASSIVE MUDSTONE Aphanitic, black, laminated bedding 80°:bedding 40° Trace PY disseminated locating and sized the grained massive pyrite clasts.20911125.60-126.601.001Interval contains rare pyrite laminae and <2 mm sized fine grained massive pyrite clasts.20915129.60-130.601.0010HETEROLITHIC CONGLOMERATE Frace CB clasts Trace RS clasts Trace RS clasts and site are variably altered to sericite-carbonate.20917131.60-132.601.0012FAULT ZONE Grayish-tan, Brecclated fault/gouge 40°20917131.60-135.601.0012FAULT ZONE Grayish-tan, Brecclated fault/gouge 40°20917131.60-135.601.0012	Weak CB pervasive Yeak MS pervasive Yeak MS pervasive Trace PT disseminated Angular fragments of gabbro within disrupted and brecciated siltatone and wacke. 20910 124.60-125.60 1.00 7 0.4 FAULT ZONE Greenish-black, veined 20911 125.60-126.60 1.00 1 1.00 7 0.4 MASSIVE MUDSTONE Aphanitic, black, laminated 20912 126.60-127.60 1.00 1 </td <td>Weak CB pervasive Weak MS pervasive Ynace PY disseminated Angular fragments of gabbro within disrupted and brecciated siltstone and wacke. FAULT ZONE 20910 124.60-125.60 1.00 7 0.4 18 MASSIVE MUDSTONE 20911 125.60-126.60 1.00 25 1.0 1 10 14 Aphanitic, black, veined 20912 126.60-127.60 1.00 1 10 14 Aphanitic, black, leminated 20912 126.60-126.60 1.00 1 10 14 Perval disseminated 20912 126.60-126.60 1.00 1 10 14 Perval disseminated 20913 127.60-126.60 1.00 1 0.9 19 Trace PY disseminated 20915 129.60-130.60 1.00 12 0.8 17 Interval contains rare pyrite clasts. 20915 129.60-130.60 1.00 10 1.7 HETEROLITHIC CONGLOMERATE 20919 131.60-132.60 1.00 10.1 7 Fine-coarse grained, grayish-green, mottled, massive 20918 132.60-136.60 1.00 10.5</td> <td>Weak CB pervasive Weak MS pervasive Image: CB pervasive Image: CB pervasive Trace PY disseminated Angular fragments of gabbro within disrupted and brecciated siltstone and wacke. 20910 124.60-125.60 1.00 7 0.4 18 674 FAULT ZONE 20910 124.60-125.60 1.00 7 0.4 18 674 MASSIVE MLDSTOME 20911 125.60-126.60 1.00 25 1.0 15 863 Aphanitic, black, taminated 20912 126.60-127.60 1.00 1 10 14 1679 bedding 80°:bedding 40° 20913 127.60-128.60 1.00 1 10 19 1266 Trace PY disseminated 20915 129.60-130.60 1.00 10 0.5 12 679 Interval contains rare pyrite laminae and <2 mm sized</td> 20917 131.60-132.60 1.00 1 1.1 7 74 HETEROLITHIC COMGLOMERATE 20918 132.60-133.60 1.00 1 0.5 11 437 Fine-coarse grained, grayish-green, mottled, massive 20918 132.60-133.60 1.00 3	Weak CB pervasive Weak MS pervasive Ynace PY disseminated Angular fragments of gabbro within disrupted and brecciated siltstone and wacke. FAULT ZONE 20910 124.60-125.60 1.00 7 0.4 18 MASSIVE MUDSTONE 20911 125.60-126.60 1.00 25 1.0 1 10 14 Aphanitic, black, veined 20912 126.60-127.60 1.00 1 10 14 Aphanitic, black, leminated 20912 126.60-126.60 1.00 1 10 14 Perval disseminated 20912 126.60-126.60 1.00 1 10 14 Perval disseminated 20913 127.60-126.60 1.00 1 0.9 19 Trace PY disseminated 20915 129.60-130.60 1.00 12 0.8 17 Interval contains rare pyrite clasts. 20915 129.60-130.60 1.00 10 1.7 HETEROLITHIC CONGLOMERATE 20919 131.60-132.60 1.00 10.1 7 Fine-coarse grained, grayish-green, mottled, massive 20918 132.60-136.60 1.00 10.5	Weak CB pervasive Weak MS pervasive Image: CB pervasive Image: CB pervasive Trace PY disseminated Angular fragments of gabbro within disrupted and brecciated siltstone and wacke. 20910 124.60-125.60 1.00 7 0.4 18 674 FAULT ZONE 20910 124.60-125.60 1.00 7 0.4 18 674 MASSIVE MLDSTOME 20911 125.60-126.60 1.00 25 1.0 15 863 Aphanitic, black, taminated 20912 126.60-127.60 1.00 1 10 14 1679 bedding 80°:bedding 40° 20913 127.60-128.60 1.00 1 10 19 1266 Trace PY disseminated 20915 129.60-130.60 1.00 10 0.5 12 679 Interval contains rare pyrite laminae and <2 mm sized	Weak CB pervasive Weak MS pervasive Image: CB pervasive Image: CB pervasive Trace PY disseminated Angular fragments of gabbro within disrupted and brecciated siltatone and wacke. 20910 124.60-125.60 1.00 7 0.4 18 674 57 FAULT ZONE 20910 124.60-125.60 1.00 7 0.4 18 674 57 MASSIVE MUDSTONE 20911 125.60-126.60 1.00 25 1.0 15 863 70 Aphanitic, black, laminated 20912 126.60-127.60 1.00 1 14 1679 75 Interval contains rare pyrite laminae and <2 mm sized	Weak KB pervasive Veak KB pervasive Image: CB pervasive Image: CB pervasive Trace PY disseminated Angular fragments of gabbro within disrupted and breccisted sittstone and wacke. Image: CB pervasive Image: CB pervasive FAULT ZONE 20910 124.60-125.60 1.00 7 0.4 18 674 57 217 Greenish-black, veined 20911 125.60-126.60 1.00 25 1.0 15 863 70 215 Aphanitic, black, Laminated 20912 126.60-127.60 1.00 1 1.0 14 1679 75 68 Aphanitic, black, Laminated 20912 126.60-127.60 1.00 1 10 14 1679 75 68 Interval contains rare pyrite Laminae and <2 mm sized

Hale:	8295-3	

*

•

.

.

.

•

.

-

.

.

.

.

.

,

.

•

.

Page: 1

iole: BZ9	5-3	GEOTECH	ICAL DATA		Page:
From	то	Measured Width	Recovery	RQD	Hardness
7.60	8.50	0.90	86	39	2
8.50		3.10	64	43	2
11.60		0.90	100	0 25	1 2
12.50		2.10	85 100	89 89	3
14.60 17.70		3.00	100	78	3
20.70		3.10	100	72	5
23.80		3.00	100	79	34
26.80		3.10	100	88	4
29.90		3.00	100	97	4
32.90		3.10	100	69	34
36.00		3.00 3.10	100 100	95 75	
39.00 42.10		3.00	100	87	3
45.10		3.10	100	55	3
48.20		3.00	100	69	3
51.20		3.10	100	76	4
54.30	57.30	3.00	100	84	5
57,30		3,10	100	71	5
60.40		3.00	100	81 97	
63.40 66.40		3.00 3.10	100 100	100	3333455566
69.50		3.00	100	97	6
72.50		3.00	100	88	6
75,50		3,10	100	97	6
78.60		3.10	100	100	6
81,70		3.00	100	97	5
84.70		3.10	100	81	4
87.80		3.00	100	85 100	4 5
90.80		3.10 3.00	100 100	100	6
93.90 96.90		3.10	100	37	4
100.00	4	3.00	100	78	5
103.00		3.10	100	87	5 5 6 5
106.10		3.00	100	100	6
109.10		3.10	100	97	5
112.20	115.20	3.00	100	98	5 6
115.20	118.30	3.10 3.00	100 100	95 95	4
118.30 121.30		2.40	47	32	4
123.70		3.70	87	77	4
127.40		3.10	100	91	3
130.50		3.00	100	91	4
133.50		3.10	98	83	3 3
136.60		2.10	86	64	3
138.70		0.90		0	
139.60		3.00 3.10	100 1 100	99 89	5
142.60 145.70		3.00	100	99	5
148.70		3,10	100	100	5 5 5 5 5 5 5 5 5 5 5 6
151.80	154.80	3.00	100	100	5
154.80		3.00	100	97	5
157.80	160.90	3.10	100	95	5
160.90		2.80	100	81	2
163.70		0.90	82 99	66 92	
164.60		2.40	100	92	
167.00 170.10		3.00	100	96	5
173.10		3.10	100	96	5
176,20		3.00	100	89	5
179.20	182.30	3,10	100	100	6
182.30		3.00	100	87	5
185.30		3.10	100	100	6
188.40		3.00	100	100	6
191.40	194.50	3.10	100	91 89	5 5 5
194.50		3.00	100 100	97	5
197.50 200.60		3.00	100	100	6
		3.10	100	100	6
203.60	200.0				

Hole: 8295-3	GEOTECHNICAL DATA	Page: 2
--------------	-------------------	---------

From	TO	Measured Width	Recovery	RGD	Hardness
206.70	209.70	3.00	100	98	6
209,70	212.80	3.10	97	96	5
212.80	215.80	3.00	100	74	4
215.80	218.80	3.00	100	87	5
218.80	221.90	3,10	100	93	5
221.90	224.90	3,00	100	90	5
224.90	228.00	3.10	100	83	4
228.00	231.00	3.00	100	98	5
231.00	234.10	3.10	100	80	5
234,10	237.10	3.00	100	90	5
237.10	237.70	0.60	83	0	4

HOMESTAKE MINING COMPANY	DRILL HOLE	LOG	BZ95-4
PROJECT: BONSAI Drill Hole: 8295-4	Date Commenced: 19/8/95 Date Completed: 22/8/95	Contractor: HY-TECH DRILLING	Logged by: KMP Geotech by: JT
LENGTH: 89.00	Core Diam: NQTK		
Collar Location			•
Latitude: 6276173.00 Departure: 405108.00 Elevation: 3362.00			
S U M M A R Y		DOWN HOLE SURVEYS Depth Azim Inclin	Nethod
7.70-8.05 GABBR 8.05-27.00 MASSI 27.00-27.80 GABBR 27.80-31.30 ANDES 31.30-65.30 MASSI 65.30-66.20 HETER 66.20-70.50 MASSI 70.50-71.00 GABBR 71.00-77.00 MASSI 77.00-81.80 RHYOL 81.80-82.00 FAULT 82.00-83.00 MASSI 83.00-83.45 RHYOL	URDEN VE MUDSTONE O INTRUSION BRECCIA VE GABBRO O INTRUSION BRECCIA ITE LAPILLI TUFF VE GABBRO OLITHIC CONGLOMERATE VE MUDSTONE O INTRUSION BRECCIA VE MUDSTONE ITE INTRUSIVE BRECCIA ZONE VE MUDSTONE ITE INTRUSIVE BRECCIA VE MUDSTONE	0.00 275.00 -80.00	BRUNTON

4

and the second second

HOMESTAKE MINING COMPANY - BONSAI

PAGE 1 of 3

	; 06734				UZAL					140	51015	
FROM	to	DESCRIPTION	Sample	INTERVAL	WIDTH	Au ppb	Ag ppm	Pb ppm	žn ppm	Cu ppm	As ppm	Hg ppm
0.00	7,50	OVERBURDEN										!
7.50	7.70	MASSIVE MUDSTONE Aphanitic, black, foliated shear 30° :Vns =10/m 1-5 mm carbonate veins parallel to foliation.										
7. 7 0	8.05	GABBRO INTRUSION BRECCIA Fine-coarse grained, grayish-green, Brecciated, veined Weak CB pervasive Weak MS pervasive Ameboid clasts of gabbro within siltstone matrix.						1				
8.05	27.00	MASSIVE GABBRO Green, auto-brecciated, chilled margin carbonate veining 30°:carbonate veining 80° :Vns =2/m Trace CL pervasive Trace CB pervasive Trace MS pervasive Trace MS pervasive Trace PY disseminated From 8.05-15.2 m gabbro is weakly autobrecciated with a siltstone matrix.										
27.00	27.80	GABBRO INTRUSION BRECCIA Fine-coarse grained, grayish-green, chilled margin carbonate veining 45° :Vns =1/m Ameboid to anngular clats of gabbro in siltstone.										
27.80	31.30	ANDESITE LAPILLI TUFF Fine-coarse grained, grayish-green, vesicular carbonate veining :Vns =2/m Trace CB pervasive Tuff consists of subrounded clasts of vesicular andesite and rare siltstone clasts in a matrix of volcanic ash.										
31.30	65.30	MASSIVE GABBRO Pale green, veined, auto-brecciated carbonate veining 20°:carbonate veining 80° Frs=1/m :Vns =5/m Trace CL replaced phenocryst Moderate CB pervasive	36957	64,00-65,00	1.00		0.1	1	5 102	2 54	43	

01/09/96

-

HOLE: BZ95-4

HOMESTAKE MINING COMPANY - BONSAI

...

PAGE 2 of 3

· ·

. .

.

.

	. 00/5-										3 1 0 1 5	
FROM	TO	DESCRIPTION	Sample	INTERVAL	WIDTH	Au ppb	Ag ppm	Pb ppm	Zn ppm	Cu ppm	As ppm	Hg ppm
		Weak MS pervasive Trace PY disseminated Interval hosts abundant carbonate veins and is variably altered to carbonate and sericite. Gabbro is locally autobrecciated.										
<49.	20-58.70	SABBRO INTRUSION BRECCIA Fine-coarse grained, grayish-green, chilled margin Ameboid clasts of gabbro in siltstone matrix.										
5.30	66.20	HETEROLITHIC CONGLOMERATE Dark gray, massive bedding 45° Pebble sized clasts of rhyolite, andesite and siltstone in silt matrix.	36958	65.00-66.00	1.00	1	0,1	ç	149	55	34	
56,20	70,50	MASSIVE MUDSTONE Aphanitic, black ;Vns ≈1/m Gouge zone from 69-69.5 metres.	36960 36961	66.00-67.00 67.00-68.00 68.00-69.00 69.00-70.00	1.00 1.00 1.00 1.00	82 1 1 1	0.2	16 14	545 292	49	32	2
0.50	71.00	GABBRO INTRUSION BRECCIA Fine-coarse grained, grayish-green Strong CB patches Weak MS patches Disaggregated dyklets of gabbro.	36963	70.00-71.00	1.00	1	0.3	15	125	22	25	
'1.00	77.00	MASSIVE MUDSTONE Aphanitic, black, veined carbonate veining 45° :Vns =2/m Rhyolite pebble conglomerate bed from 74.1 to 74.8 metres.	36965 36966 36967	71.00-72.00 72.00-73.00 73.00-74.00 74.00-75.00 75.00-76.00 76.00-77.00	1.00 1.00 1.00 1.00 1.00		0.1	12 17 19 12	147 520 112 197	16 38 31 32	5 19 5 29 5 27 2 26	
77.00	81.80	RHYOLITE INTRUSIVE BRECCIA Fine-coarse grained, gray, flowbanded Weak PY disseminated Clasts are angular and locally flow banded, matrix consists of grey, pyritic silica.	36971 36972	77.00-78.00 78.00-79.00 79.00-80.00 80.00-81.00	1.00 1.00 1.00 1.00		0.1	6	66	22	2 22	
81.80	82.00	FAULT ZONE Black, Brecciated, graphitic shear Gouge zone.	36974	81.00-82.00	1.00		0.1	5	88	55	5 3'	
82.00	83.00	MASSIVE MUDSTONE Aphanitic, black, veined	36975	82.00-83,00	1.00	1	0.1	18	128	3 20	2	I

•

•

· · · ·

HOMESTAKE MINING COMPANY - BONSAI

PAGE 3 of 3

ч г

n

.

FROM	TO	DESCRIPTION	Sample	INTERVAL	WIDTH	Au ppb	Ag ppm	Pb ppm	Zn ppm	Cu ppm	As ppm	Hg ppm
	_	Massive siltstone with abundant carbonate veins.										
83.00	83.45	RHYOLITE INTRUSIVE BRECCIA Fine-coarse grained, gray, flowbanded Weak PY disseminated Angular clasts of aphanitic and flow banded rhyolite in silicous matrix.										
83.45 (eoh)	89.00	MASSIVE MUDSTONE Aphanitic, black, veined carbonate veining	36977 36978	83.00-84.00 84.00-85.00 85.00-86.00 86.00-87.00	1.00 1.00 1.00 1.00		0.1 0.1 0.1 0.1	11 5 3	85 89 81 93	29 22	23	22
				87.00-88.00	1.00	i	0.1	7	110		34	

01/09/96

. . .

Role: BZ95-4	GEOTECHNICAL DATA	Page: 1

From	то	Measured Width	Recovery	RQD	Hardness
6.10	8.50	2.40	56	21	3
8.50	11:60	3.10	100	77	4
11.60	14.60	3.00	100	65	4
14.60	17.70	3,10	100	93	5
17.70	20.70	3.00	100	94	5
20.70	23.80	3.10	100	93	5 5 5 4
23.80	26.80	3.00	100	73	
26.80	29.90	3.10	100	63	4
29.90	32,90	3.00	100	100	5 5
32.90	36.00		97	93	5
36.00	39.00		100	90	4
39.00	42.10		100	89	5
42,10	45.10		100	97	5
45.10	48.20		100	94	5
48.20	50.60		100	94	5 5 4
50.60	53.60	3.00	100	75	
53.60	54.90		81	41	4
54,90	57.00		78	6	3
57.00	60.00		76	30	3
60.00	63.40		92	46	4

PROJECT: BONSAI DRILL HOLE: B295-5	Date Commenced: 23/8/95 Date Completed: 28/3/95	Contractor: HY	Y-TECH DRILLIN	G	Logged by: AVK Geotech by: JT
LENGTH: 346.90	Core Diam: NQTK				
Collar Location					· · · · · · · · · · · · · · · · · · ·
Latitude: 6275791.00 Departure: 405160.00 Elevation: 3720.00					
SUNNA	RY	Dep	DOWN HOLE th Azim	SURVEYS Inclin	Method
0.00-6.10 6.10-26.30 26.30-28.50 28.50-30.10 30.10-34.10 34.10-38.10 38.10-38.50 38.50-52.40 52.40-53.90 53.90-62.30 62.30-64.50 64.50-80.20 80.20-84.05 84.05-89.30 89.30-93.15 93.15-95.10 95.10-95.85 95.85-135.40 135.40-141.10 141.10-143.10 143.10-153.20 153.20-164.00 164.00-179.70 179.70-180.40 180.40-187.70 187.70-190.60 190.60-207.50 207.50-218.70 218.70-315.00 315.00-317.35 317.35-346.90	OVERBURDEN MASSIVE GABBRO MASSIVE MUDSTONE MASSIVE MUDSTONE MASSIVE MUDSTONE FAULT ZONE MASSIVE MUDSTONE FAULT ZONE INTERBEDDED SILTSTONE/WACKE FAULT ZONE INTERBEDDED SILTSTONE/WACKE ANDESITE LAPILLI TUFF MASSIVE GABBRO ANDESITE LAPILLI TUFF MASSIVE GABBRO ANDESITE LAPILLI TUFF MASSIVE GABBRO MASSIVE MUDSTONE GABBRO INTRUSION BRECCIA MASSIVE MUDSTONE FAULT ZONE RHYOLITE INTRUSIVE BRECCIA HETEROLITHIC CONGLOMERATE MASSIVE MUDSTONE FAULT ZONE RHYOLITE INTRUSIVE BRECCIA HETEROLITHIC CONGLOMERATE MASSIVE MUDSTONE SASIVE MUDSTONE FAULT ZONE RHYOLITE INTRUSIVE BRECCIA HETEROLITHIC CONGLOMERATE MASSIVE MUDSTONE MASSIVE MUDSTONE SAILT ZONE RHYOLITE INTRUSIVE BRECCIA	0. 30. 186. 341.	50 279.00 00 281.00	-67.00 -68.00 -68.00 -67.00	BRUNTON SPERRY SUN SPERRY SUN SPERRY SUN

and the second second

. .

•

-

.

HOMESTAKE MINING COMPANY - BONSAI

. .

.

. .

. . .

-

PAGE 1 of 6

and the state of t

.

•

	: BL93∹	HOWESTAKE MININ					r	TT	1	r	r	
FROM	TO	DESCRIPTION	Sample	INTERVAL	WIDTH	Au ppb	Ag ppm	Pb ppm	Zn ppm	Cu ppm	As ppm	Hg ppr
.00	6.10	OVERBURDEN				1	1					
6.10	26.30	MASSIVE GABBRO Tan, auto-brecciated, laminated contact 70°:carbonate veining 35° Frs=2.5/m :Vns =2/m Moderate CB pervasive Weak MS pervasive Trace PY disseminated Trace CV macroveins Interval consists of varibly autobrecciated gabbro with siltstone matrix.										
26.30	28.50	MASSIVE MUDSTONE Dark gray, bedded, contorted contact 50°:bedding 50° Frs=3.5/m Trace PY disseminated Interval consists of massive black siltstone with disrupted beds of feldspar-rich wacke. Ripups of black silstone are present and characterized by abundant carbonate microveinlets. The lower contact with gabbro is irregular and characterized by isolated ameboid clast of gabbro in siltstone.										
28.50	30.10	MASSIVE GABBRO Fine-coarse grained, grayish-green, auto-brecciated, chilled marg fracturing 25°:carbonate veining 40° Frs=2/m :Vns =8/m Weak CB pervasive Trace MS pervasive Trace PY disseminated Margins are autobrecciated.	in									
30.10	34.10	MASSIVE MUDSTONE Aphanitic, black, Bracciated, graphitic fracturing 45°:carbonate veining 30° Frs=6/m :Vns =5/m Trace PY disseminated Trace CV vein Fragments of silstone with calcite microveinlats are present throughout interval, minor graphite along fractures. Pyrite forms small grains of fine grained, massive pyrite >2 mm in size.										

HOMESTAKE MINING COMPANY - BONSAI

PAGE 2 of 6

				munt - pou								
FROM	10	DESCRIPTION	Sample	INTERVAL	WIDTH	Au ppb	Ag ppm	Pb ppm	2n ppm	Cu ppm	As ppm	Hg ppm
<32.8	10-33.00>	GABBRO INTRUSION BRECCIA Fine-coarse grained, greenish-tan, veined contact 60° Moderate CB pervasive Trace MS pervasive Ameboid clasts of gabbro in siltstone.										
34.10		MASSIVE MUDSTONE Black, sheared, graphitic shear 25°:bedding 25° Frs=10/m :Vns =1/m Trace PY patches Trace CV vein Rare beds of feldspathic wacke with beds parallel to shear fabric. Abundant fragments of more competent silstone with calcite micro veinlets. Pyrite forms bands of up to 20% fine grained pyrite oriented 20 degrees to core axis and as small clasts of fine grained pyrite.										
38.10		FAULT ZONE Fine-coarse grained, black, sheared, graphitic Trace PY pervasive Trace CV vein Zone of shearing hosted within black, graphitic siltstone.										
38.50	52.40	MASSIVE MUDSTONE Aphanitic, black, veined carbonate veining 60°:fracturing 45° Frs=7/m :Vns =6/m Trace PY disseminated Massive pyrite grains present.										
<46.5	50-47.00	 FAULT ZONE Black, sheared, graphitic shear 45° Weak PY pervasive Zone of shearing hosted within black, graphitic siltstone. 										
<52.4	40-53,90:	 Black, sheared, Breccisted shear 25°:carbonate veining 20° Frs=50/m :Vns =2/m Tectonically disrupted beds of feldspathic wacke. Nosted within siltstone. 										

HOMESTAKE MINING COMPANY - BONSAI

PAGE 3 of 6

FROM	то	DESCRIPTION	Sample	INTERVAL	WIDTH	Au ppb	Ag ppm	Pb ppm	Zn ppm	Cu ppm	As ppm	Hg ppm
53.90	62.30	INTERBEDDED SILTSTONE/WACKE Dark gray, bedded, clastic bedding 45°:fracturing 60° Frs=5/m :Vns =1.5/m 7? PY disseminated Trace CV macroveins Wacke beds are up to 45 cm wide and commonly contain siltstone rip-up clasts. Syn sedimentary deformation structures indicate that strata is upright.										
62.30	64.50	FAULT ZONE Black, sheared, veined shear 15°:carbonate veining 50° :Vns #1.5/m Trace PY disseminated Hosted within siltstone/wacke sequence.										
64.50	80.20	INTERBEDDED SILTSTONE/WACKE Dark gray, bedded, veined bedding 60°:carbonate veining 45° Frs=4.5/m :Vns =4/m ?? PY disseminated Trace CV vein From 76.2 to 80.2 carbonate veining increases to 10/m and wacke beds become more disrupted.										
80.20	8 4.05	ANDESITE LAPILLI TUFF Fine-coarse grained, pale green, graded, vesicular carbonate veining 40° Frs=6.5/m :Vns =5/m Weak CB pervasive Interval grades downward from ash tuff to vesicular block tuff.										
84.05	89.30	INTERBEDDED SILTSTONE/WACKE Black, bedded bedding 45°: <i>carbonate veining 6</i> 0° Frs=4.5/m :Vns =2/m										
89.30	93.15	ANDESITE LAPILLI TUFF Fine-coarse grained, pale green, graded, veined contact 90°:contact 25° Frs=3/M :Vns *4/m Weak CB pervasive Trace PY disseminated Trace CV vein Interval is reverse graded with clast averaging 1-2 cm										

HOMESTAKE MINING COMPANY - BONSAI

PAGE 4 of 6

FROM	то		Earmel a	INTERNAL	10070			Db	I			
			Sample	INTERVAL	WIDTH	Au ppb	Ag ppm	Pb ppm	Zn ppa	cu ppm	As ppm	Kg ppm
		at the base and up to 10 cm at the top.										
93.15	95.10	MASSIVE GABBRO			1	ļ	}		ļ			
		Greenish-tan, chilled margin, auto-brecciated							[[(
		carbonate veining 30°			ľ							
		frs=3/m :Vns =1/m Moderate CB pervasive										1
		Weak MS pervasive			1	1]]	ļ		
		Trace PY disseminated				ļ						
		Disseminated hematite along upper contact.										
95.10	95.85	ANDESITE LAPILLI TUFF										1
		Pale green, massive				{	1	1	1		ł	ł
		carbonate veining 60°:contact 70° Frs=5/m :Vns =.5/m									1	1
		Veak CB pervasive									1	
		77 CV vein					ł					
		Dominately andesitic ash with isolated lapilli.		{		ĺ		1	1	1	1	
95.85	135.40	MASSIVE GABBRO							1		6	
		Green, auto-brecciated, veined										1
		carbonate veining 65°:carbonate veining 30° Frs=3.5/m :Vns #1.5/m]		1	ļ		1	Į	1	ļ
		Trace CL replaced phenocryst								ļ.		
		Trace CB pervasive					1			1		
		Trace MS pervasive				1	1			1	1	
		Trace PY disseminated	1	1		1	}		}	1		
135.40	141.10	MASSIVE MUDSTONE	1				ļ					
		Black, bedded, veined							1			
		carbonate veining 75°:contact 60° Frs=2.3/m :Vns =10/m										
		7? PY disseminated		1	ł	{		}		ł	1	1
1/1 10	1/7 10	HARSINE CARRAG		1			ł					
141.10	143.10	MASSIVE GABBRO Greenish-gray, auto-brecciated			l l				1			
		carbonate veining 55°:contact 75°		J								
		Frs=3/m :Vns =2/m			1	1	1	1	1		1	1
		Trace CB pervasive		1								
143.10	153.20	MASSIVE MUDSTONE										1
		Dark gray, veined, sheared	1	1	·	}	}		1	1		
		shear 50°;carbonate veining 45° Energy 5(m store store			1						ł	1
		frs=2.5/m :Vns =4/m Trace PY disseminated						1		1		
		Weak CV microveins	1		1					1	1	
			1	1	1	1	1	ł	1	1		1

HOLE: BZ95-5

HOMESTAKE MINING COMPANY - BONSAI

,

.

.

.

PAGE 5 of 6

.

,

.

, *,*

FROM	TO	DESCRIPTION	Sample	INTERVAL	WIDTH	Au ppb	As ppm	Pb ppm	Zn ppm	Cu ppm	As ppn	Hg ppm
53.20	164.00	GABBRO INTRUSION BRECCIA fine-coarse grained, grayish-green, mottled carbonate veining 45°:carbonate veining 80° frs=4/m :Vns =2.5/m Weak CB clasts Interval of ameboid gabbro clasts in disrupted siltstone matrix.										
64.00	174.75	MASSIVE MUDSTONE Dark gray, sheared, veined bedding 70°:shear 20° Frs=5/m :Vns =3.5/m Weak EV macroveins Rare interbeds of feldspathic wacke, 3-10 cm wide. Pyrite laminations obzerved at the base of the interval.	36902 36903 36904 36905 36905 36906 36907	164.00-165.00 165.00-166.00 166.00-167.00 167.00-168.00 168.00-169.00 169.00-170.00 170.00-171.00 171.00-172.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00	2 2 4 1 2 1 2 1	0.4 0.4 0.5 0.7 1.4	15	650 675 573 845 1663 2685	68 59 60 62 82 88 102 101	41 36 39 48 56 45	
<174	.35-174.	75> Clastic 20% massive pyrite and pyritic rhyolite grains up to 1 cm in size within siltstone.		172.00-173.00 173.00-174.00	1.00		1.7 0.1		1277 174			
79.70	180.40	FAULT ZONE Dark gray, Brecciated, crushed contact 70° Frs=25/m :Vns ≠1.5/m Trace PY disseminated Trace CV stockwork Hosted by black siltstone, and disrupted wacke.	36912 36913 36914 36915	174.00-175.00 175.00-176.00 176.00-177.00 177.00-178.00 178.00-179.00 179.00-180.00	1.00 1.00 1.00 1.00 1.00 1.00		0.3 0.5 0.4		0 126 0 162 0 161 0 161 0 170	25 26 24 19	5 15 5 23 4 22 9 17	5 5 2 7
180.40	187.70	RHYOLITE INTRUSIVE BRECCIA Fine-coarse grained, gray, flowbanded, veined contact 75°:carbonate veining 50° Frs=6/m :Vns =8/m Trace PY pervasive Trace CV macroveins Flow banded and spherulitic rhyolite fragments, angular to subrounded, in siliceous matrix. Rare black siltstone clasts.	36918 36919 36920 36921	180.00-181.00 181.00-182.00 182.00-183.00 183.00-184.00 184.00-185.00 185.00-186.00 186.00-187.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00		i 0.9		8 94		1 37 4 34 4 14 5 25	7 8 8 5 2
187.70	190_60	NETEROLITHIC CONGLOMERATE Fine-coarse grained, pale gray, clastic, bedded bedding 35° Frs=2/m :Vns =1/m Trace PY disseminated 77 CV vein Clasts consist of andesite, siltstone and dacite.	36924 36925 36926	188.00-189.00	1.00 1.00 1.00	4	1 0.1 5 0.1 1 0.1	2 1	9 7 ⁻ 2 186 6 141	5 2	2 3 2 2 8 3	4

HOLE: BZ95-5

.

HOMESTAKE MINING COMPANY - BONSAI

PAGE 6 of 6

•

.

. .

.

•

• •

	DC32-2											
FROM	TO	DESCRIPTION	Sample	INTERVAL	WIDTH	Au ppb	Ag ppm	Pb ppm	2n ppm	Cuppri	As ppm	Ng ppm
90.60	207.50	MASSIVE HUDSTONE	36927	190.00-191.00	1.00	1	0.5	14		23	31	2
		Black, veined, laminated	36928	191.00-192.00	1,00	1	0.4	8		27	19	
		contact 30°:bedding 5*	36929	192,00-193.00	1.00	1	0.3	9		25	14	2
		frs=2,5/m :Vns =1/m	36930	193.00-194.00	1.00	1 1	0.3	8	381	30	17	2
		Weak CV vein	36931	194.00-195.00	1.00	1		7		34	19	
		Rare pyrite laminations up to 1 cm wide.	36932	195.00-196.00	1.00	1		7		26	19	
		Abundant carbonate veining from 204 to 205.5.	36933	196.00-197.00	1.00	1	0.5	7	189	28	17	2
207.50	218.70	INTERBEDED SILTSTONE/WACKE	36934	197.00-198.00	1.00	49		10			20	z
		Fine-coarse grained, dark gray, bedded, clastic	36935	198.00-199.00	1.00	13	0.6			34	19	2
		bedding 30°:carbonate veining 60°		199.00-200.00	1.00	1 1	1				29	2
		Frs=2/m :Vns =2/m		200.00-201.00	1.00	2	1.6	10				2
		Interval consists of alternating beds of massive black		201.00-202.00	1.00			6	652			
		mudstone and feldspathic wacke to pebble conglomerate		202.00-203.00	1.00	6						2
		with siltstone, vesicular andesite and felsic clasts.	36940	203.00-204.00	1.00	4	2.0	7	260	60	30	2
218.70	315.00	MASSIVE MUDSTONE		204.00-205.00	1.00	1	0.9					
		Dark gray, bedded	36942	205.00-206.00	1.00	1	1.3	٤ ا			40	i 3
		bedding 35°:carbonate veining 60°	36943	206.00-207.00	1.00	1	1.7	9	405	58	27	' Z
		Frs=4.5/m ;Vns =2/m	36944	207.00-208.00	1.00	4	1.6	S		43	31	2
		?? PY disseminated		208.00-209.00	1.00) 3		11	124	32	35	j z
		Occasional feldspathic wacke beds.	36946	209.00-210.00	1.00	1	1.4	12	5 143	35	29	2
<277	.00-315.	00> Black, laminated, veined		210.00-211.00	1.00	1 1	1.7				31	
		bedding 45°;bedding 60°		211.00-212.00	1.00	1	1 2.0			54	37	
		frs=3/m :Vns =1.5/m		212.00-213.00	1.00	1	1.4		5 544	45	30	2
		Weak PY laminations		213.00-214.00	1.00	1			9 182		3 32	2
			36951	214.00-215.00	1_00	7	1,8	5 1 [.]	1 233	5 48	3 33	SI 2
315.00	317.35	WACKE		215.00-216.00	1.00	1			9 171		5 30	
		Fine-coarse grained, ish-gray, bedded, clastic		216.00-217.00	1.00		1		2 39		2 3:	2 7
		bedding 50°; contact 50°		217.00-218.00	1.00	1			B 319			2 2
		Trace PY clasts	36955	218.00-219.00	1.00	1	ı 1.:	7	8 153	5 47	2 20	5 2
		Coarse wacke and paracongiomerate, volcanic derived.			1		1					
		Coarser grained intervals host pyrite clasts.		1		1						
317.35	346.90	ANDESITIC BRECCIA						1				
		Fine-coarse grained, dark green										
		carbonate veining 37°				1					1	1
		Frs=1/m :Vns =3/m										1
		Weak CL pervasive							1			
		Trace CB pervasive	1						1	i i		
		Trace CV vein			1			1		1		1
(eoh)			1							1		

Hole:	8295-5
-------	--------

۳

.

F

.

F.

.

.

.

.

.

•

.

.

Page: 1

	dness
8.5011:30 2.80 93 78 33 11.3014.303.0010088414.3017.403.1010089517.4020.703.309189420.7024.103.409292524.1027.103.0010095427.1030.203.1010032330.2033.203.009674333.2035.702.509642335.7038.102.409333338.102.409333342.1045.403.301003645.4048.503.101005048.5051.503.001009845.5053.001.501006353.0054.601.60922854.6057.603.001008046.34066.403.001004946.34066.403.001009346.34066.403.001009346.34066.403.001005375.3078.303.001005375.3078.303.001005375.3078.303.2010053	
8.5011:30 2.80 93 78 33 11.3014.303.0010088414.3017.403.1010089517.4020.703.309189420.7024.103.409292524.1027.103.0010095427.1030.203.1010032330.2033.203.009674333.2035.702.509642335.7038.102.409333338.1042.104.008930342.1045.403.3010036345.4048.503.1010050445.5051.503.0010098451.5053.001.5010063353.0054.601.609228354.6057.603.0010080460.7063.402.7010051469.5072.503.0010093469.5072.503.0010093469.5072.503.0010053372.5075.302.8010053375.3078.303.00100534	6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5
48.50 51.50 3.00 100 98 44 51.50 53.00 1.50 100 63 33 53.00 54.60 1.60 92 28 33 54.60 57.60 3.00 100 80 4 57.60 60.70 3.10 100 82 33 60.70 63.40 2.70 100 51 4 63.40 66.40 3.00 100 49 4 66.40 69.50 3.10 100 93 4 69.50 72.50 3.00 100 94 3 72.50 75.30 2.80 100 53 3 75.30 78.30 3.00 100 53 4	
48.50 51.50 3.00 100 98 44 51.50 53.00 1.50 100 63 33 53.00 54.60 1.60 92 28 33 54.60 57.60 3.00 100 80 4 57.60 60.70 3.10 100 82 33 60.70 63.40 2.70 100 51 4 63.40 66.40 3.00 100 49 4 66.40 69.50 3.10 100 93 4 69.50 72.50 3.00 100 94 3 72.50 75.30 2.80 100 53 3 75.30 78.30 3.00 100 53 3 75.30 81.50 3.20 100 53 4	
48.50 51.50 3.00 100 98 44 51.50 53.00 1.50 100 63 33 53.00 54.60 1.60 92 28 33 54.60 57.60 3.00 100 80 4 57.60 60.70 3.10 100 82 33 60.70 63.40 2.70 100 51 4 63.40 66.40 3.00 100 49 4 66.40 69.50 3.10 100 93 4 69.50 72.50 3.00 100 94 3 72.50 75.30 2.80 100 53 3 75.30 78.30 3.00 100 53 3 75.30 81.50 3.20 100 53 4	
48.50 51.50 3.00 100 98 44 51.50 53.00 1.50 100 63 33 53.00 54.60 1.60 92 28 33 54.60 57.60 3.00 100 80 4 57.60 60.70 3.10 100 82 33 60.70 63.40 2.70 100 51 4 63.40 66.40 3.00 100 49 4 66.40 66.40 3.00 100 93 4 69.50 72.50 3.00 100 94 3 72.50 75.30 2.80 100 53 3 75.30 78.30 3.00 100 53 3 75.30 81.50 3.20 100 53 4	
48.50 51.50 3.00 100 98 44 51.50 53.00 1.50 100 63 33 53.00 54.60 1.60 92 28 33 54.60 57.60 3.00 100 80 4 57.60 60.70 3.10 100 82 33 60.70 63.40 2.70 100 51 4 63.40 66.40 3.00 100 49 4 66.40 66.40 3.00 100 93 4 69.50 72.50 3.00 100 94 3 72.50 75.30 2.80 100 53 3 75.30 78.30 3.00 100 53 3 75.30 81.50 3.20 100 53 4	1
48.50 51.50 3.00 100 98 44 51.50 53.00 1.50 100 63 33 53.00 54.60 1.60 92 28 33 54.60 57.60 3.00 100 80 4 57.60 60.70 3.10 100 82 33 60.70 63.40 2.70 100 51 4 63.40 66.40 3.00 100 49 4 66.40 66.40 3.00 100 93 4 69.50 72.50 3.00 100 94 3 72.50 75.30 2.80 100 53 3 75.30 78.30 3.00 100 53 3 75.30 81.50 3.20 100 53 4	5
48.50 51.50 3.00 100 98 44 51.50 53.00 1.50 100 63 33 53.00 54.60 1.60 92 28 33 54.60 57.60 3.00 100 80 4 57.60 60.70 3.10 100 82 33 60.70 63.40 2.70 100 51 4 63.40 66.40 3.00 100 49 4 66.40 66.40 3.00 100 93 4 69.50 72.50 3.00 100 94 3 72.50 75.30 2.80 100 53 3 75.30 78.30 3.00 100 53 3 75.30 81.50 3.20 100 53 4	
48.50 51.50 3.00 100 98 44 51.50 53.00 1.50 100 63 33 53.00 54.60 1.60 92 28 33 54.60 57.60 3.00 100 80 4 57.60 60.70 3.10 100 82 33 60.70 63.40 2.70 100 51 4 63.40 66.40 3.00 100 49 4 66.40 66.40 3.00 100 93 4 69.50 72.50 3.00 100 94 3 72.50 75.30 2.80 100 53 3 75.30 78.30 3.00 100 53 3 75.30 81.50 3.20 100 53 4	
48.50 51.50 3.00 100 98 44 51.50 53.00 1.50 100 63 33 53.00 54.60 1.60 92 28 33 54.60 57.60 3.00 100 80 4 57.60 60.70 3.10 100 82 33 60.70 63.40 2.70 100 51 4 63.40 66.40 3.00 100 49 4 66.40 69.50 3.10 100 93 4 69.50 72.50 3.00 100 94 3 772.50 75.30 2.80 100 53 3 75.30 78.30 3.00 100 76 4 78.30 81.50 3.20 100 53 4	
48.50 51.50 3.00 100 98 44 51.50 53.00 1.50 100 63 33 53.00 54.60 1.60 92 28 33 54.60 57.60 3.00 100 80 4 57.60 60.70 3.10 100 82 33 60.70 63.40 2.70 100 51 4 63.40 66.40 3.00 100 49 4 66.40 69.50 3.10 100 93 4 69.50 72.50 3.00 100 94 3 772.50 75.30 2.80 100 53 3 75.30 78.30 3.00 100 76 4 78.30 81.50 3.20 100 53 4	
51.50 53.00 1.50 100 63 3 53.00 54.60 1.60 92 28 3 54.60 57.60 3.00 100 80 4 57.60 60.70 3.10 100 82 3 60.70 63.40 2.70 100 51 4 63.40 64.40 3.00 100 49 4 64.40 69.50 3.10 100 93 4 69.50 72.50 3.00 100 94 3 772.50 75.30 2.80 100 53 3 75.30 78.30 3.00 100 76 4 78.30 81.50 3.20 100 53 4	
57.60 60.70 3.10 100 82 33 60.70 63.40 2.70 100 51 4 63.40 64.40 3.00 100 49 4 64.40 69.50 3.10 100 93 4 69.50 72.50 3.00 100 93 4 69.50 72.50 3.00 100 93 4 772.50 75.30 2.80 100 53 3 75.30 78.30 3.00 100 76 4 78.30 81.50 3.20 100 53 4	5
57.60 60.70 3.10 100 82 33 60.70 63.40 2.70 100 51 4 63.40 64.40 3.00 100 49 4 64.40 69.50 3.10 100 93 4 69.50 72.50 3.00 100 93 4 69.50 72.50 3.00 100 93 4 772.50 75.30 2.80 100 53 3 75.30 78.30 3.00 100 76 4 78.30 81.50 3.20 100 53 4	i
63.40 66.40 3.00 100 49 4 66.40 69.50 3.10 100 93 4 69.50 72.50 3.00 100 94 3 72.50 75.30 2.80 100 53 3 75.30 78.30 3.00 100 53 4 78.30 81.50 3.20 100 53 4	
63.40 66.40 3.00 100 49 4 66.40 69.50 3.10 100 93 4 69.50 72.50 3.00 100 94 3 72.50 75.30 2.80 100 53 3 75.30 78.30 3.00 100 76 4 78.30 81.50 3.20 100 53 4	i
66.40 69.50 3.10 100 93 44 69.50 72.50 3.00 100 94 33 72.50 75.30 2.80 100 53 33 75.30 78.30 3.00 100 76 44 78.30 81.50 3.20 100 53 44	•
69.50 72.50 3.00 100 94 3 72.50 75.30 2.80 100 53 3 75.30 78.30 3.00 100 53 3 75.30 78.30 3.00 100 76 4 78.30 81.50 3.20 100 53 4	
72.50 75.30 2.80 100 53 3 75.30 78.30 3.00 100 76 4 78.30 81.50 3.20 100 53 4	1
75.30 78.30 3.00 100 76 4 78.30 81.50 3.20 100 53 4	i
78.30 81.50 3.20 100 53 4	
81,50 84,90 3,40 100 55 4 84,90 87,60 2,90 100 80 4	
84.90 87.80 2.90 100 80 44 87.80 90.80 3.00 100 82 55 90.80 93.90 3.10 100 88 55 90.80 93.90 3.10 100 88 55 90.80 93.90 3.00 100 67 55 96.90 99.80 2.90 100 84 55 99.80 102.90 3.10 100 80 55 102.90 106.10 3.20 100 81 55 102.90 106.10 3.00 100 87 55 102.90 106.10 3.00 100 87 55 102.90 115.10 2.90 100 93 55 115.10 118.10 3.00 100 82 55 118.10 121.20 3.10 100 92 55 124.40 127.40 3.00 100	
90.80 93.90 3.10 100 88 5	
93,90 96,90 3.00 100 67 5	
96,90 99,80 2,90 100 84 5	
99,80 102.90 3.10 100 80 5	
102.90 106.10 3.20 100 81 5	
106,10 109,10 3.00 100 87 5 109,10 112,20 3.10 100 57 5	
109.10 112.20 3.10 100 57 5 112.20 115.10 2.90 100 93 5	
115,10 118,10 3.00 100 82 5	
118,10 121.20 3.10 100 92 5	
121.20 124.40 3.20 100 86 5	
124,40 127.40 3.00 100 76 5	
127.40 130.40 3.00 100 85 5	
130,40 133,50 3,10 100 94 5 133,50 136,60 3,10 100 72 4	
133.50 136.60 3.10 100 72 4 136.60 139.60 3.00 100 96 5	
139.60 142.60 3.00 100 74 4	
142.60 145.70 3.10 100 82 5	
145,70 148,70 3.00 100 100 5	
148,70 151,80 3,10 100 100 5	
154,80 157,90 3.10 100 69 4 157,90 160,90 3.00 100 87 5	
160,90 164.00 3.10 100 83 4	
160,90 164,00 3.10 100 83 4 164,00 166,70 2.70 77 54 3 166,70 169,20 2.50 78 30 2 169,20 170,10 0.90 100 26 3 170,10 171,30 1.20 86 42 4 171,30 173,10 1.80 100 91 4	
166.70 169.20 2.50 78 30 2	
169.20 170.10 0.90 100 26 3	
170.10 171.30 1.20 86 42 4	
173.10 176.20 3.10 100 83 4 176.20 179.20 3.00 100 91 3	ĺ
179.20 182.30 3.10 100 46 4	
182.30 185.30 3.00 100 79 3	
185.30 188.40 3.10 100 65 4	
189.40 191.40 2.00 94 88 4	
191.40 194.50 3.10 100 80 5 194.50 197.50 3.00 100 80 5	
194.50 197.50 3.00 100 80 5 197.50 200.60 3.10 100 85 4	
200.60 203.60 3.00 100 78 3	1

Hole:	BZ95-
-------	-------

r

.

•

•

•

r

•

•

.

.

,

•

•

•

•

.

+

•

• • • •

.

.

Page: 2

					royu.
From	то	Measured Width	Recovery	ROD	Kardness
203.60	205.10	1.50	93	28	3
205.10	206.70	1.60	100	33	4
206.70	209.40	2.70	100	96	5
209.40	210.60	1.20	100	92	4
210,60	212.80	2.20	100	85	4
212.80	215.80	3.00	100	95	
215.80	218.80	3.00	100	62	3
218,80	221.90	3.10	100	77	4
221,90	224.90	3.00	100	71	
224,90	228.00	3.10	100	76	4 4
228.00	231.00	3.00	100	94	
231.00	234.10	3,10	100	65	4
234.10	237.10	3.00	100	71	4 3 4 4
237.10	239.60	2.50	100	64	4
239.60	243.20	3,60	100	86	4
243.20	246.30	3.10	100	80	5
246.30	249.30	3.00	100	89	4
249.30	252.40	3,10	100	97	
252,40	255.40	3.00	100	54	3
255.40	256.60	1.20	100	20	3
256,60	258.50	1,90	100	76	
258.50	261.50	3,00	100	60	3
261.50	264.60	3,10	100	81	1 7 1
264.60	267.60	3.00	100	59	3
267.60	270.70	3,10	100	55	3
270.70	272.80	2.10	100	40	5443333334434
272.80	273.70	0,90	100	ŏ	ž
273.70	276.50	2.80	100	51	3
276.50	279.50	3,00	100	64	ž I
279.50	282.50	3,00	100	71	2
282,50	285.90	3.40	100	87	3
285.90	289.00	3,10	100	70	Ĩ.
289.00	292.00	3.00	100	85	3
292.00	294,40	2.40	100	61	3 4 4
294.40	297.50	3.10	100	79	L L
297.50	300.50	3.00	100	93	4
300.50	303.60	3.10	100	86	4
303.60	304.80	1.20	100	95	2
304.80	307.20	2.40	100	100	4
307.20	310.20	3.00	100	90	
310.20	313.30	3.10	100	87	ž
313.30	316.30	3.00	100	85	3 3 3
316.30	319.40	3.10	86	74	4
319.40	322.50	3.10	98	95	
322.50	325.60	3.10	96	82	4
325.60	328.60	3.00	100	88	5
328.60	330.80	2.20	100	93	i i
330,80	333.80	3.00	98	90	i i
333,80	337.10	3,30	90	79	Ę I
	340.20	3.10	95	87	i l
337.10 340.20	342.60	2.40	93	80	
340.20	343.80	1.20	88	81	5 5 5 5 5 5 4
343.80	345.80	3.10	91	92	4
34.3.00	340.70	J. 10		76	•
······					

APPENDIX 4 ASSAY CERTIFICATES

CERTIFICAT OF ANALYSIS iPL 9512006

2036 Columb**** Yeel Vancouver, B.L. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

Homestaka Minoral p					Fax (604) 879-7	898
Homestake Mineral Development C Out: Sep 26, 1995 Project: 90707 In : Sop 20, 1995 Shipper: K Patterson PO#: Shippent: ID=C034300	Raw S Pulo S	nples O≏ Ko Storage: Storage:	ck 17= Soil 0= Core 0=R(00Mon/Dis 12Mon/Dis	CCt 0= Pulp (0=Other [076918:03:3 Mon≈Month	9: 59092695) D1ssD1searct
Msg: Au(FA/AAS 20g) 1CP(AqR)30 Msg:	Analytic	al Summary-			Rtn=Return	Arc=Archive
Document Distribution	## Code Met	Title Limit Limit	Units Description			
I Homestake Canada Inc. Chint op the se		LOW HIGH		Element #/	#	
1000 - 700 W Ponder St 0 2 1 0 1	<pre>C 01 312P FAAA D 02 364PFAGrav</pre>			Cold ni		
valicouver hi ab co at or	03 721P 1CP	vaca rg	9/mt Au FA/Grav in g/mt			
BC V6C 1G8 0 0 0 1 1	04 711P ICP	100 V-1 100	PPM Ag ICP	Gold 02 Silver 03		
ATT: Ron Britten/K Petterson Ph:604/684-2345	- 105 2140 i.eo		ppm Cu ICP	Copper 04		
			ppm Pb ICP	Lead 05		
Fx: 604/684-9831			ppm Zn 1CP	. .		
	07 703P ICP 00 702P ICP		ppm As ICP 5 ppm	Zine 06		
	00 702P 1CP 09 732P 1CP	Sb 5 9999	ppm SL ICP	Arsenic 07 Antimony 08		
	10 717P ICP	Hg 3 9999 Ma 1 9999	PPM Hg ICP	Antimony 08 Mercury 09		1
		Mo 1 9999	рри Мо ТСР	Molydonum 10		
	11 747P 1CP	TT 10 999	DOWN TI ICE 10 nom (1)		-	
	12 705P ICP	Bt 2 999	ppm 11 1CP 10 ppm (Incomplete ppm Bi 1CP			
	13 707P 1CP	Cd 0.1 100	ppin Cd ICP	Bismuth 12 Cadmium 13		
	14 /10P ICP	Co 1 999 Ni 1 999	ppm Co ICP	Cadmium 13 Cobalt 14		
		NI 1 999	ppm Ni ICP	Nickel 15		İ.
	16 704P ICP	Ba 2 9999				
	17 727P 1CP	W 5 999	ppm Ba ICP (Incomplete Digest ppm W ICP (Incomplete Digest	Bartum 16		
	10 709P ICP 19 729P ICP	Cr 1 9999	ppm Cr ICP (Incomplete Digest	D I .		
	19 729P ICP 20 716P ICP	V 2 999	bhu a 105	Ada		
	Lo vior ICP	Mn 19999	ppm Mn ICP	Vanadium 19 Manganose 20		
	21 713P ICP	La 2.9999				Í
	22 723P 1CP	Sr 1 9999	ppm La ICP (Incomplete Digest	Lanthanum 21		
	23 731P ICP	Zr 1 999	ppm Sr ICP (Incomplete Digest	Strontium 22		
	24 736P 1CP 25 726P 1CP	Sc 1 99	ppd Sc ICP	Zircontum 23		
	25 726P 1CP	TI 0.01 1.00	X Ti ICP (Incomplate Digest	Scandium 24		
	26 701P ICP	A1 0.01 9.99				
	27 700P 1CP	A1 0.01 9.99 Ca 0.01 9.99	X Al ICP (Incomplete Digest	Aluminum 26		
	28 712P ICP	Fe 0.01 9.99	X Ca ICP (Incomplete Digest X Fe ICP	Calcium 27		
	29 715P 1CP	Mg 0.01 9.99		1		
	30 720P 1CP	K 0.01 9.99	≭ Mg ICP (Incomplete Digest ≭ K ICP (Incomplete Digest	A		
	31 722P ICP	No. 0				
	32 719P ICP	Na 0.01 5.00 P 0.01 5.00	% Na ICP (Incomplete Digest 7 D ICD	Socium 31		
		P 0.01 5.00	X P ICP	Phosphorus 32		
	1			- 04		
	1					
	1					ļ
	1					[
	1					
						1
Verfoundinger H. MY D.		_			· •	
-Envelope # RT=Report Style CC=Copies IN=Lovoices	FYaFay/1-Vac O					

EN=Envalopa # RT=Report Style CC=Coptas IN=Invotces FX=Fax(1=Yes O=No) DL=DownLoad 3D=3-1/2 Disk 5D=5-1/4 Disk BT=BUS Type BL=BUS(1=Yes O=No)

 \checkmark

. . ..

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	wple Name		Λu ppb	∆u g/mt	Ag الدراح			Zn		Sb	lkj h	b 11	p 20	Cul	Co		18:03 Ila			V Hn				BC Assa		avid C	hlu	P	R
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+505 1+50W	S								btau			Ppm	ptxn	ppm p						La ppn	or ppm	λη Αναία	Sc ∏i pm Xt			Fe		ł
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		55			1.1	55	26	53	41		< 680	Ϊ.e			16	15 (19		<	30 18	7 200				1 0.57	1.24	0, 13	5 99	0.23	. n:
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+505 2+25W	ÿ.	<		0.7	26	10 9	24					4	<	16 🕅	11 H	16	<	64 23	5 200				- 1 0:0 (2.71	0 14	- 9, 57	0.90	เกิ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		e. G			0.0			48			< 👘	4 <		U.Z K	19	រដ្ឋ ។ អូរី ។		<	11 7	1 8176	4	25	10	1 0,29	0.91	0.32	2 10	0 21	1 11 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+50S 3+00W ;	S				18 50	11	44			< 🎆	2 <	<	0.6	10 🕅	ă e	а.			•	_					0,29	8,91	0.49) ĝ.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		ŝ			0.5	47	22	37	34		<	7 < 9 ~		<	32 🦉	ίΟÍ 14	6	< (61 B	1 1136				1 0.12		0.47	2.20	0.34	0:
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5	136			35 56	16	51 35	24 14	<	6.68	y ,	<		11	g e	it a	< 12 < 2	28 21(29 13(D 252 G 200			52	3 0.6/	2.59	0.07	9.94 9.43	0.36	n''
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+50S 1+75W	ş	<		0.2												00 -	ς Α	12 7:	3 540			36	2 0.26	3.06	0.18	4.76	0.41	0.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+50S 2+00W +50S 2+25W	5 5			0.6	30	12 14 -	50	21	<	. د مرفقه د ف		* *	< <	11 1	79 15			15 119 54 200	1 149			13	1 0.32	1.65	0.08			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5	21		3.3	30	26	85	33		< 11 < 11		۰ ۲	0.3	15	2 5	2 <		20 160	129	10 7	13			1.3.1	11 11	- H - KA	n 40	
+50S 3+50W S 36 1.0 273 21 204 60 7 < 6 < 24 50 216 < 60 151 1300 10 65 2 3 0.20 2.33 2.04 A	-							100	37	۲	< 800	ł 🗧	<	0.1	22	28	9 d	- 3	29 161 37 146	314 3111				1 2460	1.24	0.15	5 70	1 24	- M
	-50\$ 3+25W \$	ŝ	64 36			107 273	10	209 204	35 60		<	i <					бe												
							\$1008-17-1	204	00	'	<	<	*	1.3	46 🕎	10		: 3	7 126	2000	19		2	3 0.20	2.33 2.33	2.04	4.06	1.79 1.62	8

2036 Columbio Apeet Vancouver, B. Canada V5Y 3E 1 Phone (604) 879-7878

MITHMATHINAL PLASMA LABORATURY & ID.	C:	ERTIFICAT. OF iPL 9512		2036 Columb ^{ran} steel Vancouver, B., Canada V5y 3E (Phone (604) 879-7878
Hent: Homestako Minoral Development Co oject: 90707 17 Soil mplo Name Na P	(PL: 9512006	Out: Sep 22, 1995 In: Sep 20, 1995	Page 1 of: 1 [076918:03:55:59092295]	Fax (604) 879-7863
2 2	1 = t		······································	
1+508 1+504 \$ 0.02 0.11 1+508 1+754 \$ 0.03 0.17 1+508 2+004 \$ 0.03 0.30 1+508 2+254 \$ 0.04 0.10 1+508 2+504 \$ 0.02 0.09				· · · · · · · · · · · · · · · · · · ·
1+50S 2+75W \$ 0.07 0.09 1+50S 3:00W \$ 0.01 0.35 1+50S 3:25W \$ 0.02 0.11 1+50S 3:55W \$ 0.02 0.11 2+50S 1+50W \$ 0.02 0.09				
2+505 1+75W \$ 0.02 0.09 2+505 2+00W \$ 0.02 0.11 2+505 2+25W \$ 0.03 0.12 2+505 2+50W \$ 0.03 0.11 2+505 2+75W \$ 0.23 0.12				
8+505 3125# \$ 0.07 0.14 9+505 3+50# \$ 0.02 0.15				
L1mit 0.01 0.01				

CERTIFICATE OF ANALYSIS iPL 95H1604

. .

> 2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

In : Aug 16, 1995 – Shipper: Andre PO#: – – – – – – – – – – – – – – – – – – –	w Kaip ID=C034305	ţ	law Sti Pulp Sta	orage		03Mon/01: 12Mon/Di:			CCt 0= Pulp 		[060817:11:15 Mon=Month 0 Rtn=Return A)is=Disca
Msg: Ma(17/7/MS 30g) ICP(/(qk)30		Analy	rticz	11	Summ	larv-						
Document Distribution		## Code	Met	Title	Limit	Limit t	Units Descript	ina	E1		·	<u> </u>
1 Homestake Mineral Development Co			noo		Low	High			Element	N H		
1000 - 700 W Pender St	EN RT CC IN FX	01 313P	FAAA	Au		2 9999	ρρό Αυ ΓΑ/ΛΑ	S finish 30a	C-14	<u>.</u>		
Vancouver	12221	02 721P	ICP	Ag	0.1	100	ppm Ag ICP	o rinnan aog	Gold Silver	01	•	
BC V6C 1G8	DL 3D 50 8T 04. 0 0 0 1 0	03 711P	ICP	Cu	1	20000	ppm Cu ICP		Copper	02		
	00010	04 714P	1CP	Pb		20000	ppm Pb ICP		Lead	03		
ATT: Ron Britten	Ph: 604/684-2345	05 730P	1CP	20	1	20000	ppm Zn ICP		Zinc	04 05		
	Fx: 604/684-9831	06 703P	100						«. IIIC	νo		
	12,004,004-2021	07 702P	1CP	As			ppm As ICP	5 ppm	Arsenic	06		
Homestake Mineral Development Co	EN RT CC IN FX	08 732P	ICP	Sb			ppm Sb ICP		Antimony	07		
l Airport Way		09 717P	ICP ICP	Hg		9999	ppn Hg ICP		Mercury	08		
Smithers	DL 3D 5D BT BL	10 747P	ICP	Mo			ррт Мо ІСР		Maludaaum	09		
BC VOJ 2NO	0 1 0 0 0	10 /4//	ICF	11	10	999	ppm T1 ICP 10) ppm (Incomplet	e Thallium	10		
		11 705P	ICP	n .:		000				10		
ATT: Andrew Kalp	Ph:604/521-7361	12 707P	ICP	Bi Ca	2		ppm Bi ICP		Bismuth	11		
c/o: Joy McLeod	E 4441-44	13 710P	ICP	Cd Co	0.1	•	ppm Cd ICP		Cadmium	12		
		14 718P	ICP	Ni	1		ppm Co ICP		Cobalt	13		
		15 704P	ICP	Ba	2		ppm Ni ICP		Nicke]	14		
			1.01	Ua	6	2233	ppm Ba ICP (I	ncomplete Diges	t Barium	15		
		16 727P	1CP	Ж	5	999	non U 100 (I	• • • • •				
		17 709P	ICP	Cr	ĩ		ppm w ICP (I	ncomplete Diges	t Tungsten	16		
		18 729P	1CP	۷	2		ppm V ICP	ncomplete Diges		17		
		19 716P	ICP	Ma	ĩ		ppm Mn ICP		Vanadium	18		
		20 713P	ICP	La	2			ncomplete Diges	Manganese	19		
		.					····· ···· (1	neonprete Diges	. Lanthanum	20		
		21 723P	ICP	Sr	1	9999	ppm Sr ICP (1	ncomplete Digest	Ctanut in			
		22 731P	1CP	Zr	1	999	ppm Zr ICP	Noomb tere Dides	Zirconium	21		
		23 736P	ICP	Sc	1	99	ppm Sc ICP		Seandtown	22		
		24 726P	ICP	Ti		1.00	Ti ICP (In	ncomplete Digest	Titanium	23		
		25 701P	ICP	A1	0.01	9.99	🕺 🕺 🕺 🕺 🕺	ncomplete Digest	Aluminum	24 25		
		26 708P	1CP	~						20		
		27 712P	ICP	Ca F.	0.01	9.99	🕺 🕺 CallCP (In	ncomplete Digest	Calcium	26		
		28 715P	ICP	FC Ma	0.01	9.99	V LO TCh		Iron	27		
		29 720P	ICP	Mg	0.01 0.01	9.99	X Mg ICP (Ir	ncomplete Digest	Magnes (um	28		
		30 722P	ICP	Na	0.01	9.99	- A K ICP (Ir	COMplete Digest	Potaseium	29		
				na	0.01	2.00	X Na ICP (Ir	complete Digest	Sodium	30		
		31 719P	ICP	ρ	0.01	5.00	7 D 100					
				•	0.01	5.00	% P 1CP		Phosphorus	31		
	1											

DE: Nownload 3D=3-1/2 Disk 5D+5-1/4 Disk BT=BBS Typy (BL+BBS(1+Yes 0+No)

CERTIFICATE OF ANALYSIS

iPL 95H1604

Apple Name Au Ag Cu Pu Pan	nple Name		11p=16 Au			Roci		7.						n: Aug			5	00]	0817:	11:4	14:590	² age 281895 ————	1		Cert	ificd	BC A	l of Ssayer:	Davi	id Ch	lu	P	Ŀ
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								Zn ppm	As ppm	Sb PPm	noqo; Pipan				Co ppm													Ca Z					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		R			-		12			<	<	5 4			1	5	าวกั		110		21	Sida		<u> </u>				·•					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							4	6			<	8	 		i	4	ΞqΫ.				11	23		1					0.64	0.02	0.1	; O.O	iG 1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		ĸ				1	15	364	70	16	<		<		3	18	ากา่				169							0.03	-0.67	0.02	0.13	10.0	16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		K				1	18	198	42	5	<	11	<		14											<	1.37	0.30	3.92	0.40	0.3	ດ ກ	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CC1	K	40	0.4	38	1	4	125	38	5		24 🔍	<				107		49	70	198	ं है	25		2	<	2.07	0.30	4.03	- 1.30	0.20	5 0.0	12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	56	R	12	0.2	45	1	8	102	28			14 110		.	-	-							-	•		``	0.55.94	0,09	3.04	0.71	0.26	> 0.0	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	57	Ŕ	10	0.3			$\tilde{\gamma}$	146	-14			16 33	<			3/	<u>92</u>			48	140	4	8	1	1	<	1.70	0.07	3 81	0.70	0.2/		0
59 R 10 0.5 34 20 93 32 9 < 6 < (1) 2 0 5 < 13 2 122 9 6 1 < < (0) 60 0.55 34 23 10 30 12 7 < 0.4 6 9 157 < 11 16 233 4 9 1 1 < (0.46 0.05 0.62 0.01 0.21 0.01 0.23 0.00 0.01	58	Ř					ςĊ	52				(O <	<			44	88			46	172	3	10			<	1.65	0.07	3 45	0.75	0.2		5.
No.0 R 15 0.6 48 23 110 30 12 $<$ 7 $<$ 0.4 6 9 123 $<$ 1 10 219 2 10 1 2 0.65 0.12 3.04 0.02 0.02 661 R 5 0.6 21 10 66 14 $<$ $<$ 3 4 99 $<$ 7 8 157 5 9 1 1 $<$ 0.41 0.11 1.49 0.04 0.21 0.02 643 R 1300 2.79 11 47 16 273 32 $<$ 6 $<$ $<$ 2.4 17 310 6 157 1 1 $<$ 0.41 0.01 0.01 0.02 2.30 0.11 1.49 0.04 0.02 2.30 0.17 0.24 0.02 2.31 10 2 $<$ 0.02 2.30 0.17 0.24 0.02 2.31 10 2 $<$ 0.23 0.12	159	Ŕ				2	ຕັ	ីជី					<		2	6	75			2	122	<u> </u>	6	1	<	<	0.49	0.05	0.00	0.70	0.20	. U.U A A	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								ាភ័ក	30				<			9	152	<		16	293	<u> </u>		1				0.12	3 06	0.03	0.21	0.0	11
61 R 5 0.6 21 10 66 14 $<$ $<$ 3 4 99 $<$ 7 8 157 5 9 1 1 $<$ 0.41 0.11 1.49 0.04 0.21 0.02 63 R 10 13 14 25 $<$ $<$ $<$ 24 17 310 6 157 5 9 1 1 $<$ 0.41 0.11 1.49 0.04 0.21 0.02 64 R 1330 2.9 11 47 14 427 108 $<$ 0.2 2 4 19 $<$ 40 7 13 12 6 1 1 0.27 0.20 2.38 0.17 0.27 0.02 0.27 0.02 0.27 0.02 0.27 0.02 0.27 0.02 0.27 0.02 0.27 0.03 0.25 0.01 1.1 1.57 0.55 0.12 1.56 0.04 0				-,.	10				-103	12	<	1	<	0.4	6	9	123	٢	5	18	189							0.10	3.41	0.03	0.21	0.0	4 2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Ŕ					0 🔆	66		<	<	3 1.3¢	<	<	з	4 5	8 q q	,	7	n	167 3	855.CP			-								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							8]]	55	144	25	<	- 7 🔍 🤻	<			- F	3กจ์			12	137	22						0.11	1.49	0.04	0.21	0.0	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					11		7 🛒	19		32	<	- 6 🕺 <	<			4	1918		40									0.20	2.38	0.17	0.24	0.0	21
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1330	27.9	11	- 4	1 85	S S 1 A	427	108	<	8 💮 🗧	<	0.2	1	3	10		42	ś	1.3	- 1						0.01	1.85	0.02	0.27	0.0	ĩ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	02	Ķ	110	2.5	25	2	4 _	ંગ્રેટ	137	27	<	8 🏹	۲	0.2		4	100			10	59	334 3		2		<	0.36	0.07	2.19	0.02	0.27	0.0	ΪI
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		R	<	0,1	10	· 1	3	92	17	5													•	•	•	•	9-40	0.02	2.01	0.03	0.25	0.0	L (
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Ŕ				1.	4	63				7				12	220				226	9	21	1	1	< ¹	0.54	0.12	1.56	0 04	0.27	0.0	à.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	68	Ŕ	<	0.1		1	ງີ	76	16			A 532				1	333		32		133 👔	9	19	1	1			0.12	1 63	0.01	0.23	0.0	32
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	69	Ŕ			17	1	5 🔗	ĥ	66	, G		-				- B §	246		22	8	108 🖇	ារ	19	1	1			0.10	1 100	0.05	0.20	- 0, 0. - 0 ⁰ 0 ³	3,0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	70	Ŕ				10	៍ ្មី	66		6		7				- 8 S 0 S	241 927		16		329	14				<	0.44	0.11	2.49	0.08	0.24	0.0	Ĩ(
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	71	ö			r.								•	•		a š		۲	14	10	194	#1 3	7	1	1	<	0.45	0.04	1.97	0.02	0.22	0.0	ί
$\frac{73}{76} = \frac{8}{8} = \frac{3}{0.5} = \frac{27}{14} = \frac{110}{101} = \frac{22}{5} < 11 = \frac{2}{5} < 0.9 = 6 = 14 = \frac{107}{14} < 11 = \frac{24}{167} = \frac{74}{11} = \frac{7}{11} = \frac{2}{5} < \frac{6}{0.63} = \frac{6}{0.07} = \frac{6}{2.79} = \frac{6}{0.24} = \frac{6}{0.63} = \frac{6}{0.07} = \frac{6}{2.79} = \frac{6}{0.24} = \frac{6}{0.63} = \frac{6}{0.07} = \frac{6}{0.63} = \frac{6}{0.07} = \frac{6}{0.07} = \frac{6}{0.02} = \frac{6}{0.$		ĥ				10	b F	212 		< r		4 🎎			1	2	342	<	21	3	40 🕯	23	9	2		ة م	ាំះច	0.01	1 10	n	0.00	ni⊂n.	
$\frac{73}{76} = \frac{8}{8} = \frac{3}{0.5} = \frac{27}{14} = \frac{110}{101} = \frac{22}{5} < 11 = \frac{2}{5} < 0.9 = 6 = 14 = \frac{107}{14} < 11 = \frac{24}{167} = \frac{74}{11} = \frac{7}{11} = \frac{2}{5} < \frac{6}{0.63} = \frac{6}{0.07} = \frac{6}{2.79} = \frac{6}{0.24} = \frac{6}{0.63} = \frac{6}{0.07} = \frac{6}{2.79} = \frac{6}{0.24} = \frac{6}{0.63} = \frac{6}{0.07} = \frac{6}{0.63} = \frac{6}{0.07} = \frac{6}{0.07} = \frac{6}{0.02} = \frac{6}{0.$		Ř				1	, 88	1999 - A	73	5		b SS≼				2 🖁	295	<	19	2	49 🖁	26		2				0.01	0.04	0.02	0.29	9,01	į (
$\frac{73}{76} = \frac{8}{8} = \frac{3}{0.5} = \frac{27}{14} = \frac{110}{101} = \frac{22}{5} < 11 = \frac{2}{5} < 0.9 = 6 = 14 = \frac{107}{14} < 11 = \frac{24}{167} = \frac{74}{11} = \frac{7}{11} = \frac{2}{5} < \frac{6}{0.63} = \frac{6}{0.07} = \frac{6}{2.79} = \frac{6}{0.24} = \frac{6}{0.63} = \frac{6}{0.07} = \frac{6}{2.79} = \frac{6}{0.24} = \frac{6}{0.63} = \frac{6}{0.07} = \frac{6}{0.63} = \frac{6}{0.07} = \frac{6}{0.07} = \frac{6}{0.02} = \frac{6}{0.$		Ř					, S	2007 2007	79			3 🛒	۲	<	1	2 👸	334	<	19	2	22	73		5				~ ~ ~	0.04	0.02	0.27	0.01	_ի ն
76 g 2 0.4 24 12 101 19 < < 12 24 0.7 4 13 200 - 10 25 10 10 10 2.79 0.03 0.24 0.02 0		8				1.	A (75)	2016	67			5 888				2 👸	270	<	23	2	63	24		5			0.01	0.01	0.99	0.02	0.30	0:01	ç C
/6 R 2 0.4 24 12 101 19 < 12 22 $(0.7 4)$ 13 2330 $(0.7 4)$ 13 2330 $(0.7 4)$ 10 05 510 $(0.7 4)$		••	5	0.5	27	1.		239	22	<	<	11 🥁	٢	0.9	6	14 🖁	182			24	167	4		2	ì	2	0.68	0.07	2 79	0.02	0.28	0.01	, t s r
	/6	Ŕ	2	0.4	24	12	2	101	19	<	<	12 🔍	۲	0.7	4	12 🖗	232	<	10				10										
																8.	10000				14.5	888 : +	10	I	I	< §	0,61	0.09	2.78	0,04	0.24	0,02	; C

This Reported Method --«No Test ins=Insufficient Sample S=Soil R=Rock C=Core L=Silt P=Pulp U=Undefined m=Estimate/1000 %=Estimate % Max=No Estimate International Plasme Lab Ltd. 2036 Columbia St. Vancouver BC V5Y 3E1 Ph:604/879-7878 Fax:604/879-7898

2036 Columbia Street Vancouver, B.C.

Canada V5Y 3F1

CERTIFICATE OF ANALYSIS

iPL 95H2903

UTTENATIONAL PLASMA LABORATORY LTD

2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

PO#: Shipment:	/ Kaip 10=C034305	P	aw Sto ulp Sto	rage:	12	3Mon/Di 2Mon/Di	-					Mon=Month Rtn=Return	35:59090595} Dis=Discard Anc=Archive
Msg: Au(FA/AAS 30g) 1CP(AqR)30		[Analy	tica	1 S	umma	ary—							
Mag:		## Coda	Met ľ	itle i	Limit	Limit	Units Descrip	tion	E) en	ent	##		
Document Distribution			hod			lligh							
1 Homestake Canada Inc	EN RT CC IN FX	01 313P	FAAA	Au	2	9999	ppb Au FA/A	AS finish 30a) Gold	1	01		
1000 - 700 W Pender St	1 2 2 2 1	02 364PF/	AGrav	Au 1	See Da	ata Pg	g/mt Au FA/G		Gold		02	•	
Vancouver	OL 30 50 BT BL	03 721P	1CP	Ag	0.1	100	Ppm Ag ICP	21	Sil		03		
BC V6C 1G8	00010	04 711P	1CP	Çu	1	20000	Ppn Ci ICP		Сорг		04		
		05 714P	ICP	PЬ	2	20000	ppm Pb ICP		Leac		05		
AII: Ron Britten	Ph:604/684-2345	1					.,			•	00		
	Fx:604/684-9831	06 730P	ICP	Zn	1	20000	ppm Zn ICP		Zind	-	06		
	_	07 703P	1CP	As	5	9999	ppm As ICP	5 oom	Arso		07		
2 Homestake Canada Inc.	EN RT CC IN FX	08 702P	ICP	Sb	5	9999	ppm Sb 1CP	•• •		mony	08		
c/o Joy McLead, #1 Airport Way	22001	09 732P	1CP	Hg	3	9999	ppm Hg ICP		Merc		09		
Smithers	DL 3D 50 BT BL	10 717P	ICP	Mo	1	9999	ppin Mo ICP			denum	10		
BC VOJ 2NO	0 0 0 0 0						•••		1019	denom	10		
		11 747P	ICP	T1	10	999	ppm [] ICP	10 ppm (Incom	nlete Thel	1 6	11		
ATT: Andrew Kaip	Ph: 604/521/7361	12 705P	1CP	ßi	2	999	ppm Bi ICP		piece man Bism		12		
	Fx:604/526/5941	13 707P	1CP	Cđ	0.1	100	ppm Cd ICP		Cade		13		
		14 710P	ICP	Co	1	999	ppm Co ICP		Coba				
		15 718P	ICP	Ni	i	999	ppm Ni ICP				14		
					,		Man ut 100		Nick	er	15		
		16 704P	ICP	Ва	2	9999		(Incomplete D	deept Dung				
		17 727P	1CP	W	5	999		(Incomplete D	Ngest Barn	uni oto-	16		
		18 709P	1CP	Cr	ī	9999	oom Ce ICD ((Incomplete D (Incomplete D	ngest lung	sten	17		
		19 729P	ICP	v	2	999	ppm V ICP	(Incomplete D			18		
		20 716P	ICP	Mo	้า	9999			Vana		19		
			101		•	5555	ppm Mn ICP		Mang	anese	20		
		21 713P	1CP	La	2	9999	nom to TCO ((In					
		22 723P	ICP	Sr	ī	9999	ppon ca for ((Incomplete D	ngest Lant	hànum	21		
		23 731P	ICP	Zr	i	999	ppm 3r ICP (ppm Zr ICP	(Incomplete D			22		
		24 736P	ICP	Sc	1	99	ppm Sc 1CP			onium	23		
		25 726P	100			1.00		(1	Scan	dinum	24		
		20 1201	1.01	••	0.01	1.00	A IT ICP ((Incomplete D	ngest lita	niium	25		
		26 701P	1CP	6 1	0.01	9,99	9 AL 100 /						
		27 708P	ICP	_		9.99	7 Co 100 /	Incomplete D	ngest Alum	1 rium	26		
		28 712P	ICP		0.01	9.99		(Incomplete D	-		27		
		29 715P	ICP			9.99	7 Fe ICP	Teensolate A	lron		28		
		30 720P	ICP				Ang ILP (Incomplete D	ngest Magn	esium	29		
			1 V F	N.	0.01	9.99	AK ICP (incomplete D	ngest Pola	ssium	30		
		31 722P	ICP	N>	0.01	6 00	♥ µ= 100 4						
		32 719P	ICP			5.00	z Na ICP (Incomplete D			31		
		52 1151	TCF	r	0.01	5.00	7 P ICP		Phos	phorus	32		
							·						
								•					
	<u> </u>												

EN=Envelope # RT=Report Style CC=Copies IN=Invoices FX=Fax(1=Yes 0=No) DL=DownLoad 3D=3-1/2 Disk 5D=5-1/4 Disk BT=B8S Type BL=B8S(1=Yes 0=No)

WALLSIS OF ANALISIS iPL 95H2903

INTERNATIONAL PLASMA LABORATORY LLD

Client: Home					J			DI 05																	Fa		(604)	879-78		A
Project: 9070		2	21 Rock	:ve			1	PL: 95	11290.3		(Sep 0: Aug 29			66117:	31:4	P 0: 590	'age 19059	1 of 5]	1	Certi	Secti fied	on 1 BC Ass	of 2 ayer:	Dav	rid Ch	iu	14	<u> </u>
Sample Name		Au ppb	۸ م/و	lu IÈ	Ag pra	Си ррп.	РЬ рра	Zn ppm	Λs ppa	Sb ppn	llg ppm p	Mo Spairp	TI B Apan ppa		l Co Ni ippmippe		W nxlq	Cr ppn	V ppm	Мл рра	La ppm	Sr ppm	Zr ppm p	Sc T npm	i) t	۸1 *	Ca X		My X	к Х
21881 21882 21883 21884 21885	R I K I R I R I R	2 2 1070 23 3	- 1.0 		1.2 1.3 28.0 1.3 0.6	11	10 10 47 18 13	123 147 57 69 70	21 35 740 87 22	< < 164 19 6	~ ~ ~ ~ ~	5	< - < - < -	 1.0 0.7 0.2 0.4 0.1 		34 185	< < < < < <	9 13 71 17 31	22 3	126 107 14 104 232	2 < 7 5 12	11 14	1 3 1	2 . 	< 0.4 < 0.2 < 0.4	10 20 . 16	0.04 × 0.04	3.20 3.33 2.00	0.02 0.03 0.01 0.02 0.03	0.22 0.25 0.18
21886 21887 21888 21889 21899 21890	R K R R R	23 2 3 6 <	-		0.6 1.1 0.9 0.8 0.8	7 24 20 18 18	15 12 9 10 14	61 98 109 107 109	24 18 21 18 25	* * * * *	~ ~ ~ ~ ~	15 6 8	< · < ·	 0.2 0.5 1.1 0.9 0.9 	5 3 16 5 19 4 72	315 290 281	~ ~ ~ ~ ~ ~	35 14 36 29 30	19 16	119 107 169 215 271	11 2 5 4 4	21 21 48 26 20	1 1 1 1 1	2 2 2	< 0.4 < 0.4	10 12 12	0.10 0.40 0.18	2.43 2.19 2.62	0.04 0.02 0.08 0.03 0.03	0.19 0.21 0.19
21891 21892 21893 21893 21894 21895	RIRIRIZ	5 3 16 4			0.6 0.8 0.7 0.6 1.3	8 11 11 7 14	14 13 10 18 15	19 28 21 15 50	48 102 180 257 66	7 14 22 10	< < 8 5 5	2 9 9		< <	2 4 2 4 1 3	379	* * * * *	18 21 38 42 15	6 5	41 74 37 36 33	21 10 6 5 2	5 8 6 13	2 1 1 2 1	<pre></pre>	< 0.2 < 0.2 < 0.2	32 28 22	0.03 0.01 0.01	1,82 1,51 1,77	0.02 (0.03 (0.02 (0.01 (0.03 (0,23 0,20 0,19
21896 21897 21898 21898 21899 21900	(X1X1X1X)	3 9 4 2	-	-	1.1 0.6 0.7 1.3 1.2	10 14	13 9 12 13 10	50 7 19 50 57	40 311 368 68 41	<pre></pre>	<pre> </pre> 19 10 4	ñ2 -	< < <	0.3	1 2 1 4 3 0	325 187	~ ~ ~ ~ ~	55 58 15	6 6 17	96 11 54 63 155	3 4 2 3	16 6 8 6 6	1 2 3 1 1	2	< 0.2 < 0.2 < 0.0	23 23 (51 (× 0.01 0.02	1.21 2.06 2.50	0.04 (0.01 (0.01 (0.04 (0.03 (0,24 0,20 0,22
21901	ß	6	-	-	1.1	20	n	67	34	٢	<	8	< <	: 0,4	4 🧱	225	٢	17	15	100	5	G	1	2	< (),(i7 (0.02	2.58	0,03 (0.21
							•																							

Min Limit 0.07 0.1 Max Reported*

2036 combia suger Vancouver, B.C.

Canada V5Y 3E1 Phone (604) 879-7878/

INTERNATIONAL PLASMA CABORATORY LTD.		iPL 95H2	203	Canada V5Y 3E1 Phone (604) 879-7878/
ient: Homestake Mineral Development Co ject: 90707 21 Rock	iPL: 9582903	Out: Sep 03, 1995 In: Aug 29, 1995	Page 1 of 1 [066117:31:48:59090595]	Fax (604) 879-7898 Soction 2 of 2 Certified BC Assayer: David Chiu
ple Name Na P \$ \$				
181 Ř. 0.01 0.09 182 Ř. 0.02 0.10			······································	•
83 <u>R</u> 0.01 0.01				·.
184 R 0.01 0.05 185 R 0.02 0.04				
86 R 0.03 0.05				
187 - Ř. 0.01 0.11 188 - Ř. 0.02 0.06				
189 Ř. 0.02 0.07 190 ř. 0.02 0.06				
91 - R.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O				
193 Ř. 0.01 0.03 194 Ř. 0.01 0.02				
96 🦉 0.01 0.08				
197 Ř. 0.02 0.02 198 Ř. 0.02 0.02				
199 Ř. 0.01 0.08 100 Ř. 0.01 0.07				
~				
101 🦉 0.01 0.05				

----No Test ins=Insufficient Sample S=Soil R=Rock C=Core L=Silt P=Pulp U=Undefined m=Estimato/1000 %=Estimate % Max=No Estimate International Plasma Lab Ltd. 2036 Columbia St. Vancouver BC VSY 361 Ph:604/879-7878 Fax:604/879-7898

...

· F]	
Ĩ	
SPA	翻
- 1 (I	

INTERNATIONAL PLASMA LABORATORY LTD

2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

: Aug 23, 1995 Shipper: C Bald A: Shipment:	- 1D=C034305	_	∿ip Sto				-		12Mon/Dis			Mon=Month Dis-Disc Rtn=Return Arc=Arch
r: Au(FA/AAS 30g) ICP(AqR)30		Analy	ytica	1 S	umm	ary—						
		## Code	Met T	itle	Limit	Limit (Jnits De	scrip	tion	Element	H H	
ocument Distribution			hod		Low	High					11 11	
kwestako Canada Inc		01 313P	FAAA	Au	2	9999	ppb Au	FA/A	AS finish 30g	Gold	01	·.
000 - 700 W Pender St	12221	02 721P	ICP	Ag	0.1	100	ppm Ag			Silver	02	
lancouver		03 711P	1Cb	Cu	1	20000	ppm Cu	ICP		Copper	03	
3C V6C 108	00010		ICP	Pb	2	20000	ppm Pb			Lead	04	
		05 730P	ICP	Zn	1	20000	ррт 2л			Zinc	05	
ATT: Ron Britten/Dave Kuran	Ph: 604/684-2345											
	Fx:604/684-9831	06 703P	ICP	٨s	5	9999	ppm As	ICP	5 ppm	Arsenic	06	
		07 702P	ICP	Sb	5	9999	ppm Sb	1ĈP	••	Antimony	07	
Iomestake Exploration Company		08 732P	401	Hg	3	9 999	ppm Hg	1CP		Mercury	08	
Airport Way	12101	09 717P	ICP	Mo	1	999 9	ppm Mo	1CP		Molydenum	09	
inithers.	de 30 so by be	10 747P	1Cb	TI	10	999	ppm T1	1CP	10 ppm (Incomplete	Thallium	10	
XC VOJ 2NO	0 1 0 0 0											
X X X X X X X		11 705P	ICP	Bi	2	999	ppm Bi	ICP		Bismuth	11	
II: C Baldys/Andrew Kaip	Ph:604/521-7361	12 707P	ICP	Ca	0.1		ppm Cd	ICP		Cadmium	12	
:/o: Joy McLeod FAX ONLY	Fx:604/526-5941	13 710P	ICP	Co	1	999	ppm Co	1CP		Cobalt	13	
		14 718P	1CP	Ni	1	999	pom Ni	ICP		Nicke]	14	
		15 704P	ICP	Ba	2	9999			(Incomplete Digest		15	
		16 727P	ICP	W	5	999	ppm W	ICP	(Incomplete Digest	Tunasten	16	
		17 709P	ICP	Cr	1	9999	ppm Cr	ICP	(Incomplete Digest	Chromium	17	
		18 729P	ICP	v	2	999	ppm V	ICP		Vanadium	18	
		19 716P	ICP	Mn	1	9999	ppm Mn			Manganese	19	
		20 713P	ICP	La	2	9999	ppm La	ICP	(Incomplete Digest	Lanthanum	20	
		21 723P	ICP	Sr	1	9999	ppm Sr	ICP	(Incomplete Digest	Strontium	21	
		22 731P	ICP	Zr	1	999	ppan Zr	ICP		Zircontum	22	
		23 736P	ICP	Sc	1	99	ppm Sc			Scandium	23	
		24 726P	ICP	Τi	0.01		🛣 T i	ICP	(Incomplete Digest	Titanium	24	
		25 701P	ICP	A1	0.01	9,99	% A1	ICP	(Incomplete Digest	Aluminum	25	
		26 708P	1Cb	Ca	0.01	9.99	况 Ca	ICP	(Incomplete Digest	Calcium	26	
		27 712P	ICP	Fe	0.01	9,99	7.Fe	1CP		Iron	27	
		28 715P	ICP		0.01		% Mg	1CP	(Incomplete Digest	Magnesium	28	
		29 720P	ICP	K	0.01	9,99	% K	ICP	(Incomplete Digest	Potassium	29	
		30 722P	ICP	Na	0.01	5.00	% Na	ICP	(Incomplete Digest	Section	30	
									(20	
		31 719P	ICP	Р	0.01	5.00	ΧP	ICP		Phosphorus	31	
											21	

EN=Envolope # RT=Report Style CC=Copies IN=Invoices fX=fax(1=Yes O=No) DL=DownLoad 3D=3-1/2 Disk 5D=5-1/4 Disk BT=BBS Type, 0L=BBS(1=Yes O=No)

2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1

() () () () () () () () () () () () () () (- •													anada Yone (I		r: 1 79 -787	87	A
Client: Homes Project: 90707	itake	Min	eral		pment Core		iPL	.: 95112	201				t: Aug n: Aug				106	4212-	28-1	(9 - 59(Page 082895	1 of		Cort				ix (l	GO4) 8	/9-789		δĊ
Scumpter Name		Au ppb	Ад рра	Си ррян	РЬ рряг	Zn ppm	As ppm	Sh ppu	Hg ppni	Mo ppm	T1 ppm	ßi	Cd	- Co	Ni ppm	ßa		Cr	v	Mn ppm	La	Sr		Sc	Ti X	یر کی ۸۱ ۲	Ca	Fe	Mg	Ŕ	Na Na	
20751 20752 20753 20754 20755	CCCC	13 11	1.1 1.3 1.3 1.3 1.1	36 47 46 64 63	17 20 12 18 17	245 432 453	23 35 21 39 33	< < < < <	< < < < <	4 10 15 22 15	V V V V	< <	0.2 1.0 3.9 2.6 1.2	20 11 16	94 76 120	07	* * *	65 94 40 38 45	38 60 27 42 43	867 801 301		177 180 412 115 113	1 1 1 2 2	2 3 1 2 2	< < <	1.73 2.14 0.98 1.51 1.69	4.10 3.87 7.68 1.36 1.18	4,08 2,76 4,62	1.56 0.54 0.77	0,19 0,20 0,25	0.04	1 0.09 1 0.10 1 0.04 1 0.04
20756 20757 20758 20759 20760	0,0,0 0,0 0,0 0,0	9 13 710 16 10	1.2 1.1 1.5 1.2 1.4	62 63 76 62 57	18 18 19 16 14	269 381 683 448 625	35 31 56 37 45	< 5 5 <	~ ~ ~ ~ ~	11 14 22 15 34		< < <	0.8 1.9 5.7 3.0 5.2	18 18 16	124 139 119	55 40	< < <	43 37 39 34 21	41 39 59 45 44	308 257 284 319	3	85 86 103 112 103	2 2 3 2 2	3 2 3 3 2	<	1.77 1.56 1.79 1.57 1.29	0.95	4.26 4.12 4.71 4.01	0.87 0.80 0.91 0.81	0.29 0.26 0.29 0.29	0.00 0.00 0.07 0.07	5 0.09 5 0.09 7 0.12 5 0.00
20761 20762 20763 20764 20765	00000	24	1,3 1,4 1,2 1,3 1,6	68 69 71 65 70	15 18	612 611	30 33 42 34 62	« « ~ ~ «	* * * * *	15 25 15 20 36		~ ~ ~ ~	1.9 8.2 4.4 5.3 4.8	14 19 15	122 134 123	64	× × ×	25 27 48 40 34	101 51 61 58 57	797 255 289 319	22	104	1 2 2 2 2	5 2 3 2 3	< < <	2.05 1.28 1.79 1.53 1.60		4,44 3,56 4,25 3,69	1.00 0.69 0.96 0.81	0.17 0.25 0.29 0.25	0 05 0 06 0 06 0 06	5 0,09 5 0,09 5 0,09 5 0,09
0766 0767 0768 0769 0770	000000	22 13 12	1.7 1.7 1.1 1.3 1.2	77 75 62 72 65	16 18 18 18 18	260 701	46 51 32 35 37	5 5 < 5 7	< < < < < <	15 25 14 17 22	V V V V	< < <	11.5 11.9 1.9 7.0 4.8	13 16 16	102 112 119	30 59 44	< < <	41 25 33 30 28		236 242 278 253 272	ંગ્ર	79 83 89 88 136	2 2 2 2 2	3 2 3 2 2	~ ~ ~ ~	1.80 1.37 1.77 1.45 1.31	0.66 0.87 0.84 0.70 1.52	4,36 3,93 3,81	0.69 0.92 0.80	0.30 0.32 0.27	0.07 0.07 0.07	0.0
20771 20772 20773 20774 20775	000000	ßA	1.8 1.5 1.9 1.6 1.2	96 80 80 70 67	18 19 22 21 21	1317 1228 1004	49 44 58 38 43	7 8 9 6 8	* * * * *	- 30 - 23		<	25.4 15.2 16.1 13.9 5.4	13 12 13	101 77 63	51 45	< <	24 23 23 19 26	96 68 54 43 49	251 188 198 210 230	9 7	103 71 78 81 88	2 2 2 2 2 2	2 2 2 2 2 2	<	1.27 1.33 1.31 1.18 1.18 1.23	0.96 0.38 0.45 0.64 0.81	3,74 3,94 3,77	0.79 0.80 0.76	0.28 0.32 0.33	0.06 0.06 0.06	0.11 0.05 0.05
20776 20777 20778 20779 20780	000000	8 23	1.9 1.4 1.7 0.6 0.8	94 23 22 6 11	15 13 11 9 14	- 46	67 39 36 9 34	13 10 5 5	* * * * *	28 14 10 4 6	VVVVVV	<	24.0 2.4 2.9 5 0.1	12 4 4 3 4	18 15 5	102	< <	17 23 18 37 47	58 10 11 6 5	335	<u>10</u> 7	93 212 311 179 167	2 2 1 1	2 1 1 1	<	0.71 0.43 0.35 0.35 0.35	0.82 3.82 9.12 3.36	3.90 2.42 2.07 1.41	0.57 0.47 0.51 0.32	0.32 0.25 0.21 0.18	0,00 0,04 0,03 0,03	0.00 0.02 0.00 0.00
20781 20782 20783 20784 20785	000000	14 21 19 30 9	1.2 1.3 1.2 1.4 0.7	13 13 17 27 8	16 18 16 19 18	80 87 91 117 60	51 60 68 51 33	7 7 8 10 5	~ ~ ~ ~ ~	7 9 6	<u> </u>	x		4 4 7 2	16 15		< < <	54 37 51 30 73	4 4 5 9 4	344 302 262 439 218		155 119 105 292 170	1 2 2 1 3	< < < 1 <	< < <	0.33 0.35 0.39 0.43 0.30	2.42	2.06 2.16 2.27	0.30	0.24 0.26	0.03	0.03
20786 20787 20788 20789 20789	0000	8	0.4 0.3 0.3 0.4	3 5 6 4	16 20 17 12	19 29 37 20	24 31 19 15	< < < < <	< < < < <	5 8 4 8		~ ~ ~ ~		ו 1 1 1	3 3 3 3	54 53 70 62	* * * *	80 90 89 96	~ ~ ~ ~	105 78 96 126	3 5 5 2	97 51 63 68	3 3 3 2	* * * *	۲ ۲	0.27	0.58	1.75	0.06	0.18	0.05	0.01
in Limit Max Reported* Method -~=No Test in International	∙ n1≃ar	999 AAA suff	icten	L Samp	le :	20000 ICP S+Sof1	Relico	rc⊭ sk C≏Co	na L	9999 TCP =\$110	uor; ⊾P=P	999 ICP 1010	U≃Und	999 ICP Jef 1	999 ICP ned	m=E	9999 ICP stimu	ICP .te/10	1CP 00	ICP Zafei	STCO.	100	999	99 1	.00	9,99	0.01 9 <u>.99</u> ICP	0 00	0 00	A 00		

International Plasma Lab Ltd. 2036 Columbia St. Vancouver BC VSY 3E1 Ph:604/879-7870 Fax:604/879-7898

- ^{#.} "",		
1 militari	風周	
3.0	政策で	翻
20 M	i water -	122位

2036 Columbia Street Vancouver, B.C.

Canada V5Y 3E1

INTERNATIO	INAL PLASM	ATABOHA											-														ione (-	: 1 79 - 787 79 - 789		
lient: Ho bject: 90					opinent I Core	Co	iPL	: 9510	2301			:: Лид h: Лид				(06	4212:2	8:3			2 of []		Cert,			of 1 sayer:					Ú
nple Name	<u>.</u>	л∟ Ац	Ag ppm	Со рряв	РБ лкіq	Zn ppm	As ppn	Sb ppm	[ali n≮[c]	Mo Fi ppnippni		Cd ppm	Со ррля		Ва ррт	bbur M	Cr ppm p	V	Мо рум	La ppm		Zr ppni		Ti t	۸۱ ۲	Ca X	Fe X		K X	Na Na X	
790 794 792	C Č Č	21 23 13	0.4 0,4 1.2	2 3 28	9 12	17	14 18	5 5	< <	3 <	۲ ۲	<	1		72 49	< <	55 68	< <	82 94	2	78 63	2 2	< <		0.24	0,63	1, 52	0.07	0.15	0.04	0
93 94	C C		1.2 2.1 1,9	53 38	9 11 8	137 406 313	28 76 53	5 7 ×	< < <	6 < 13 < 16 <	< < <	1.1 5.6 5.2	8 14 7	39	57 30 56	< < <	29	16 39 18	477 398 988	2 7 3	277 222 594	1 2 1	2 2 2	¢	0.55 0.52 0.28	2.74	4.49	0.48	0.25 0.29 0.18	0.04	10
95 96 97	ĊĊ	9 15	2.0 1.0	72 14	13 8	104	67 21	8 <	< <	27 <u>-</u> 5 1 <		29.1 0.2	11 12	11	47 42	۲ ۲	33	49 28	351	4	277 79	2 1	2 1		0.51	3.95	3.22	0.66		0.03	3 0
98 99 99	Ć C C	16 8 6	1.5 1.3 1.1	29 15 28	9 5 10	130 57 103	24 10 18	< < <	« « «	4 < 5 < 1 <	* * *		10 4 12	17 10 16	68 129 124	< < <	55	15 1	368 1288 508	3 2 1	99 503 110	1 1 1	2 1 2	<	0.51 0.32 0.51	1.04	3.79 3.50	0.75 3,05	0.25 0.15	0.04 0.03	0 1 0
00 01 02	ĊĊŔ	5 13 3	1.0 1.0 0.9	22 24 26	8 8	85 85	18 20	< <	< <	3	< <	0.5	12 14	8	232 310	< <	18	53		9	124 124	1 1	2 2		1.11	2.48 2.80	3.97 4.22	1.25 1.34	0.18 0.24	0.05 0.04	i 0 0
)3)4	C C C C C C C C C C C C C C C C C C C	7 14	1.0 1.1	20 20 20	5 5 4	75 67 71	20 8 13	< < <	* * *	3 3 3 3	< < <	0.5 0.7 0.6	14 10 9	6	274 48 45	< < <	14		980 1108 927		128 233 274	1 1 1	2 2 1	<	1.36 0.43 0.44	3.30 5.79 6.00	3.199	1.37	0.19 0.22	0.0% 0.04	
)5)6)7	0 0 0 0 0 0 0 0 0 0	8 10 8	0.9 1.6 1.7	29 43 39	7 10 9	99 118 106	16 28	< <	۲ ۲	4		0.2	11 10	22	48 47	< <	16	21	416	۲ 3	105 161	1 1	2 2		0.49	1.45 1.82	3.61 3.51	0.74 0.78	0.26 0.27	0.04	
99 19	ğ		1.3 1.2	38 35		105 105 95	28 19 18	< < <	< < <	5 4 4 4	<	0.9 0.7 0.3	9 11 11	20 17 15	53 41 54	< < <	20	29	7B4 573 423	6 6 5	221 118 93	1 2 1	2 1 1	<	0.68 0.98 1.06		3,20	0.60 0.68	0.28	0.04 0.04	
0 1 2	0202020	5 6 15	$1.8 \\ 1.0 \\ 1.1$	40 41 30	10	148 131 114	22 26	< <	< <	4	<	2.2		120	65 90	< <	22	38	267	9 6	146 77	1 1	2 2		0.98 1.17	3.30	3.19	0.75		0.04	(
3	Ë	10 38	1.6 1.8	40 46	10	160 1172	24 27 33	< < 5	* * *	5 6 14		0.4 2.0 22.4	7 8 8	16 23 36	76 58 54	< < <	19	38	323 421 375	6 6 4	86 117 96	1 1 2	1 1 1	<	1.06 0.89 1.01	1.21 2.25	3.02	0.73	0,26 0,27 0,25	0.03 0.03)
15 16 17	000000 000000	7	1.9 1.6 1.2	48 11 60	8 4	183 39 657	27 9	< <	< <	6 < 3 < 27 < 23 <	< <	2.5 0.2	10 7	26 3	45 220	< <	19		395 2908	G 9	99 905	2 ⊀	2 1		0.89 0.73	1.70	3.74	0.78		0.03) (
н 9	0,60 C	6 20	1.1	53 79	16 12 15	407 1061	60 35 22	< < <	< < <	27 23 25 ×		6.5 2.7 10.8	14	103 100 120		< < <	28	36	466 335 248	4 22 K	323 197 164	2 2 2	3 3 3	<	0,41 0,44 0,44	2.97 1.61 1.05	3.85 4.56	0.96	0,23 0,22	0, 02 0, 02) (
20 21 22	Ċ	12	1.0 1.0	62 62	11 12	320 500	19 18	د ۲	< <	15 15 s	<	2.6 4.3	-14	122 108	77	۲ ۲		37 34	242 355	2	146 204	2 2	4 4		0.57 0.46	0.91	3.93	0.97	0.28 0.24	0.03	
22 23 24	ů č	9 8 62	1.0 0.9 0.9	60 51 60	11 10 13	354 233 248	21 29 20	< < <	< < <	11 × 15 < 11 ×	<	2.4 1.0 0.9	16	97	72 89 81	< < <	19	29	434 423 250	3	346 235 111	2 1 1	4 4 4	<	0.42	2.57 2.21 0.71	4.06	1.11 1.31	0.27	0.03	((
25 26	0 0 0 0 0 0 0		0.8 1.0	61 63	14 15	205 309	18 21	د ۲	< <	10 < 12 < 12 <												1 1	4 3	<	0.80	0.67	4,06	1.09	0,25	0.03	
27 28 	C Č	12	1.0 1.0	60 64	14 13	260 323	18 19	*	< <	12 式 14 💽	< <	0.4 1.7 1.2 2.7	17 17	115 121	59 66	< <	27 25 23 29	31 32	314 337	~	172 223	1 2	3	<	0,62	1.33	4.21	1.02	0.27	0.02	0
limit Reporte hod		9999 FAAA								1 10 9999 999 ICP ICP =Silt P=P	999 1CP		999 1CP	999 · ICP							9999	999 100	99 1	.00	9,99	0.01 9.99 ICP	9,99	9.99	0.01 9.99 ICP	5.00	-5

International Plasma Lab Ltd. 2036 Columbia St. Vancouvor BC VSY 301 Pb-604/A79-7878 Fav-604/079 2000

2036 Columbia Street Vancouver, B.C.

Canada V5Y 3E1

INTERNATIONAL P		DOHATC	DA y 11 0										- -	-	، مي مي												Pl	ione ((79-78		,
Client: Home Project: 9070	stake	Mine	erat l		pment Core	Cω	114	: 950	2301				t: Aug n: Aug				{06	4212:3	28:4		'age 82895			Cert			Fa I of 1 Isayer:		•	v		et Z
Sample Name		Λu pb	Ag ppin	Са ррш	Pb mqq	Zn ppm	As ppill	Sb ppm	Hg ppm			Bi ppm			Ni ppm	Ba ppm	₩ ррњ	Cr: ppm	V ppm	Mrs. ppm	La ppm		Zr ppm		Ti Ž	۸۱ X	Ca X	Fe X				a P Z Z
20829 20830	Ċ Č	7	0.9 1.0	58 56	12 10	308 425	16 14	د ۲	< <	12 15		< <		15 14	109 93	66 76	< <	29 37	30 23	341 584	× ×	203 297	1	3 3		0.47	1.77					2 0.05
20831 20832 20833	Ċ Ċ Ċ	6	1.0 1.1 1.0	59 65 56	13 12 15	289 425 422	14 30 32	≺ 5 6	< < <	13 15 19		< <	3.8	16 16	110 106	64 52	< < <	31 37 21	26 23 28	396	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	246 172 120	1 2 2	3 3 3	۲ ۲	0.48	2.08 2.02	3.89	0,96	0.27	0.0. D.0;	2 0.05
20834 20835	C Č		1.0 1.5	49 61	10 14	505 876	27 34	5 7	د ۲	24 30		<	6.1	11			< <	19 23	35 65	263	3	127 115	1 2	3 3	<	0,60	0.86	3.61	0.85	0.27	0.02	2 0.04
20836 20837 20838	0.0	23	$1.5 \\ 1.9 \\ 1.0$	72 193 59	13 20 14	1447 1881 577	29 40 23	9 7 8	< < <	23 15 15		<	18.3 26.5 6.6	10 12	68 65	70 55	< < <	25 21 28	67	518 275	2 2 2	211 131 208	222	3 3 2	< <	0.75	3.01 1.07	3,37 3,54	1,02	0.28	0.0	3 0.08 3 0.07 3 0.08 3 0.05
20839 20840 2084 1 2084 2 2084 3	č Ç	14 30 43	1.7 3.1 1.9 1.7 2.0	94 116 84 61 104	14 11 11	2117 2762 1753 1104 3350	52 41 53 37 49	13 14 14 10 11	< < < < < <	36 34 46 28 46		< < <	26.3 39.8 23.1 16.6 56.0	12 10 10 8 7	99 89 47	4G 59	* * * * *	19 25 21 20 22	94 80 82 52 63	2.01	k S S S S S S S S S S S S S S S S S S S	101 98 211 158 165	2 2 2 1	3 3 3 3 2	< < <	0.61 0.69 0.63 0.64 0.54	0.91 0.81 2.32 1.56	3.59 3.32 3.34 3.23	0.71 0.66 0.70 0.81	0.23 0.26 0.24 0.23	0.0 0.0 0.0	3 0.05 3 0.05 3 0.05 3 0.05 3 0.05 3 0.04
20844 20845 20846 20847 20848		20 4 7	2.2 1.8 3.4 2.2 4.0	56 74 90 72 82	12 10 11 15 9	930 2737 2124 1505 711	40 24 39 52 30	10 8 9 9 6	~ ~ ~ ~ ~	11 24 20 24 18		v v v v	14.7 42.3 34.7 23.8 14.5	7 7 8 9 8	41 43		~ ~ ~ ~ ~	19	46 70 73 48 44	435 341	54777	155 112 274 129 129	1 1 1 2 1	3 1 3 3 3	< < < <	0.91 0.67 0.72 0.48 0.45	1.38 0.96 5.61 1.86	3.57 2.40 2.84 4.66	0.69 0.55 0.71 0.56	0.30 0.26 0.28 0.24	0.0	3 0.12 3 0.03 3 0.00 3 0.10 3 0.06 3 0.10
20849 20850 20851 20852 20853	00000	54 8 3	3.7 3.1 3.4 1.6 1.0	99 81 88 40 29	9 10 9 10 12	1404 235 214 173 145	40 22 20 19 26	8 < 5 10	< < < < <	15 5 7 8	9455994 94654 9464	< <	0.8	8 9 10 8 7	39 43 31	37 42 51 47 52	~ ~ ~ ~ ~	21 17 20 14 16	58 37 37 27 18	365 234 254 318 285	4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	141 92 110 111 168	1 1 1 1 1	3 4 4 3 2	~ ~ ~ ~	0,50 0,50 0,52 0,55 0,55	0.85 1.13 1.46	3.75 3.91 3.40	0.66 0.76 0.61	0.27 0.28 0.30	0.0	3 0.16 3 0.12 3 0.09 3 0.12 3 0.08
20854 20855 20856 20857 20858	000000	4 3 5	1.0 1.3 1.1 0.4 0.3	26 35 28 4 4	28 19	166 147 213 41 45	23 36 28 28 35	9 15 11 < 6	< < < < <	9 13 8 12 10		< <		5 8 6 1	36 26	49 29	* * * * *	23 31 22 71 126	15 18 20 <	361 320 292 76 62	3 2 17 11	225 215 165 79 70	2 1 1 2 2	22	< < <	0.44 0.46 0.46 0.29 0.23	1.70 0.64	2.68 3.14 1.82	0.49 0.57 0.09	0,27 0,27 0,18	0.02 0.02 0.02	3 0.07 2 0.10 2 0.09 4 0.01 5 0.01
20859 20860 20864 20862 20863	000000	2 < <	0.3 0.2 0.2 0.3 0.3	5 4 3 3 3	13 13 13 15 8	24 28 24 46 34	14 11 18 33 20	6 5 5 <	< < < < <	12 6 11 8 11	- 1 C	< < <	<		4 5 4 5 3	66			~ ~ ~ ~ ~	38 35 37	17 16 15 14 16	172 85 42 44 38	3 3 2 3 2	* * * * *	< < <	0,20 0,21 0,20 0,22 0,22	0.40	0.86 1.09 1.54	0.01 0.01 0.01	0.17 0.17 0.19	0.0	5 0.01
20864 20865 20866 20867	00000	3 <	0.4 0.3 0.4 0.3	4 5 4 4	16 14 11 14	13 59 82 58	34 28 23 45	< 5 5 5 5	< < < <	8 11 8 26		< < < <	0.2	1 1	- 4	55 64 73 61	۰ ۲	134 120 105 131	* * * *	25 103	11 18 10 12	93 10 125 42	3 3 2 2	~ ~ ~ ~	< <	0.19 0.24 0.26 0.24	1.24	1.25	0.01	0.19	0.07	1 0.01 7 0.01 3 k 3 0.01
Min Limit Max Reported* Method =No Test i		199 ! MA	TCI.	101	101		IU ^r	ICP.	ILP.	9999 1CP		999 1CP	10.15	999 TCP	999 1CP	- SICP	TUD -	- 1670 -	nno -	160	area -	100	ICD	99-1 100	1.00	9.99 Strep	0.01 9.99 ICP	9.99	9,99	9.99	5.00	1 5.00

Thernational Plasma Lab Ltd. 2036 Columbia St. Vancouver BC V5Y 3E1 Ph:604/879-7878 Fax:604/879-7898

2036 Columbia Street Vancouver, B.C.

Canada V5Y 3E1

																												mada A ione (G			8/1		
lient: Homes oject: 9070;	stake	Mio	eral		pment Core		IPL	: 9511	2301				: Aug : Aug				[06	4212:2	9:00		age 82895			Cert			Fa Lof 1 ssaye r:	-	04) 87 £ Chie			Ł	1
nple Nane		Au ppb	Ag ppm	Си ррл	Pb ppm		As ppa	Sb ppm	Hg ppm	Мо ррл		Bi ppm	Cd ppn	Co ppm		Ba ppm	W Ppni	Cr ppm p	V	Mn ppm	La ppin	Sr ppm	Z r ppm		Ti X	۸۱ ۲	Ca X	Fe X		K K		la Ž	
868	ç	<		5	15	36	60	5	<	12		<	¢	1		51	<	125	<	39	13	14	3	<		0.21	0.12	1.34	0.01	0_18	0.0	 ז בנ	0
869 870	Ci Ci Ci Ci Ci Ci Ci Ci Ci Ci Ci Ci Ci C		0.2 0.2	1 4	8 9	41 180	43 37	<	<u> </u>	11	a incer	×	· · ·	1	4	59 75	<	121	<	-27	Still -	5	3	<		0.20	0.03						
871	č		0.4	4	13			< ;	< <	5 9		< <	1.4 0.5	1	5	60	< <	105 107	۲ ۲	35	10 8	12 20	3 2	< <		0.21	0.10 0.28	0.99	0.02	0.16	0.0	15 (16 (0
872	ē		0.4	5	17		58	6	<	7	198. 	<	<	i	4	54 54	<	122	<	51	2008 2019	24	4	<		0.20	0.28						
873	Ċ	2	0.6	7	20	- 24	87	7	<	34	. :<	<	0.2	1	5	41 55	<	159	<	95	ġ	94	4	<	<	0.18	0.88	2.02	0.01	0.15	0.0	16 (D
874	ç	<		4	9	8	45	6	<	11		<	<	٦	5	55	<	127	<	136	9 14	75	3	<		0.24	1.33	1.28	0.02	0,22	0.0	j5 (0
875 876	0 8 8 8		0.3 0.4	4	76	7 10	17	6	<	Ц		<	<	1		124		134	<	48	15	34	2	<		0.19	0.48	0.72	0.01	0.18	0.0	ЙC	Ü
877	č		0.4	4	9		35 18	× 5	< <	- 11		< <	< <	1	5 4	69 63	د د	146 152	< <	52 40	14 16	30 33	3 3	< <		0.20	0.44 0.33	1.09	0.01	0.19	0.0	15 (0
								-				7							•			33	_	¢	· ·	0.19	0.33	0,04	U, UI	0.17	0,0	10 0	U
678 879	000000		0.6 0.4	4 S	7 10	station in balances and it	21 18	5 <	< <			<	<	1	5	59 52		146	<	63	16 16	69	3	<		0.19	0.61		0.01				
880	č		0.5	5	10		25	~	× ۲	- 6	66651 22222 51002€	< <	۲ ۲	1	-3	78		124 125	< <	43 41	15	36 30	3 3	< <		0.20	0.35 0.31	0.91	0.01				
<u>9</u> 91	Ĉ		0.5	5	13	12	13	5	- 	9		<	<	i	3	119		117	-	47	381 3	42	2	~ ~		0.23	0.31		0.01				
82	Ë	<	1.1	6	19	15	51	5	<	10	2000.00 2-}2.] ≪ 2-000.00	*	<	1	4	47		112	<	55	Ξť	39	ŝ	<		0.19		1.48	0.01	0.16	0.0	is i	1
83	ç		0.4	5	15		54	6	<		33	<	0.2	1	4	55		152	<	25	14	6	3	<	<	0.19	0.04	1.32	<	0.18	0,0	ин	1
804 805	ç		0.2 0,3	5	9	87 51	30	6	<		5 <	<	<	1	4	81			<	18	14 19	6	4	<		0.22	0.03		0.01		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
815 816	ĕ		0.3	4	17 14		67 52	6 5	< <	13 8		۲ ۲	۲ ۲	ו	4 5	41	< <	149 128	< <	37 36	15 15	13 35	4	<		0.18	0.14			0.18	20.000	- i -	
87	02000		0.3	3	15		81	6	<	17	515155 51515	<	0.3	i	5	51 35		152	<	51	12	-35 -53	5 4	۲ ۲		0.18 0.18	0.27 0.40			0.18			
88	Ċ	۲	0.4	4	17	50	80	5	<	26		~	0.2	1	5	- 38	<	125	<	51	12	50	4	<	*	0.19	0.42	2.04	0.01	0 19	0 · 0	15 1	1
999	ĝ		0,2	3	11	27	48	- 7	<	18		<	<	1	4	52	<	154	<	38	12 14	24	3	<		0.18	0.20	1.38		0.17			
190 191	ç	< 2	0.2	3	12	31	48	5	<	17		<	Ś	1	5	45		149	<	40	14	19	3	<	<	0.17	0,17	1.52	0.01	0.18	0.0)5	
191 192	000000		0.5 0.4	4 3	19 15		137 106	10 7	<	22 11	×	<	0.4	2	5	26	<	161	2	95	10 11	37	3	<		0.18	0.35	2.94	<	0.18	0.0	15	
				L	13				۲			<	0.4		6	29	<	149	<	90	35 11	40	3	*	<	0.20	0.49	2,57	0,01	0.21	0.0	14	
193 194	C K		0.4 0.4	4 3	8 14	1	39 47	5 6	<	13 9		٢	<	1	5	62		161 161		142	13	114	3	۲		0.17	2.07	1.17				1.2	
395	8 8 8		0,7	4	16		62	3	< <	16		< <	< <	, 1	5 5	55 43		165 178	< <	48 56	17 15	28 24	4	* *		0.20	0.23	1.37		0.20			
196	Č		0.4	5	17		30	7	<	6		<	<	i	õ	55		145	~	39	16	26	3	- k		0.16	0,24 0,28	1.39		0.17		- i -	
197	Ç	<	0.3	7	23	- 52	26	6	۲	13	9999 9805	<	< .	1	5	64		173	<	65	16	44	4	<		0.17	0.61	1.09					
98	ç		0.2	6	26	163	11	7	<	8	3	<	0.4	1	6	86	<	174	<	47	17 15 16	31	З	<	~	0,17	0.32	0.74	0.01	0, 16	0,0	зG	
199 100	Ć Ć		0.2	5	24		13	8	<	14		<	0.4	1	5	96	<	173	<	90	15	54	3	<		0.17	0.85	0,74	0.01				
200 201	ë	3 0	0.2 0.2	5 5	24 20		13 15	7	< <	8	≺ Andren Si es ≺	<	0.4	1	8 7	95 77	<		<	68	16	46	3	<		0.15				0.13			
002	ğ		0.1	5		៍ទីវ៉ែ		ģ	~				0.9	1		96	۲ ۲	223 173	< <		17 17	14 13	4	< <		0.14	0.15 0.17			0.11	and the second second		
103	Ċ	<	0.1	5	27		13	5	4				1.1	1				212	<				_										
904	Ğ	<	0.2	4	21	83	15	<	<			~	0.2	1	5	81		149	è	49	ġ	14 31	3	< <	× د	0 19	0.15 0.29	0.85	0.02	0.12	0,0	17 14	
905	CCCC		0.1	5	18	256	19	6	<	14		<	1.4	1	5	83 81 82 80	<	169	<	56	13 9 5 9	40	3	<	<	0.18	0.43	0.81	0.01	0.16	0.0	Й	
906	ç	*	0,1	5	18	153	17	ۍ 	<	8		< 	0.4	1	6	80	<	184	<	50	9	36	3	<	~	0, 18	0.35	0,78	0.01	0.16	0.0	庐	
n Limit			0.1	1	2		5	5	3	1	10	2	0.1	1	1	2	5	1	2	1	2	1	٦	1	0.01	0.01	0.01	0.01	0,01	0.01	0.0	<u>n</u> (1
x Reported* Unod	9 6	5777 - 5666	99.9 1CP	20000	20000	20000 ICP	9999 100	9999	9999	9999	999 109	999 100	99.9	999 ICD	999	9999	9999 1000	9999 9	99 9 Ch	9999	9999	9999	999	99	1.00	9.99	9 99	9.99	9.99	9.99	5.0	ю	1
No Test i	, ns⊭tr	nsuff	ictor	nt Same	ole	ംഷം S≈Soi1	R=Roc	k C=C	lore I	=Silt	pan pan	มโก โปก	11=11od	iof 1r	vert	(사사) m=Fe	iur time	1 nor 100/100		101' 7-Ee+	(100210) 100210	101″ .*/ u	TCh. TCh.	101' 16 C-	105	SSICP.	ICP	ICP	ICb	ICP	1C	ъ	

International Plasma Lab Ltd. 2036 Columbia St. Vancouver BC VSY 3E1 Ph:604/879-7878 Fax-604/879-2000

2036 Columbia Street

Phone (604) 879-7878 /

1

Vancouver, B.C.

Canada V5Y 3E1

Cllent: Homest Project: 90707	ake M	iner	<u> </u>		piient Core	G	iPt.	: 958	12301						. 199 . 199		[0 6	4212;	29:1	ր 13: 590	'age 82895			Cert	Sect If led		Fa of 1 sayer:	x (60 David	•	9 - 7898	H	忆
Sample Name	۸ PP		λg spm	Сы ррл	Pb ppm	Zo ppm	As ppm	Sb ppm	Hg ppm	Mo ppm	T1 ppm	Bi ppn	b3 mqq	Co ppm	Ni ppm	Ba ppm	W ppm	Cr ppm	V ppm	Mn. ppm	l.a ppm	Sr ppm	Zr ppm	Sc ppm	ľi X	A1 \$	Ca X	Fe X	Maj X	K X	Na X	x P
20907 20908 20909	<i></i>).2).5).4	4 4 8	19 28 12		28 49 6	6 6 <	< < <	- 12	× × ×	< < <	0.4 0.3 <	1 1 3	6	61 51 76	< < <	155 147 126	< < 7	106	6 4 6	26 146 89	3 4 2	< < <	< < <	0.17 0.20 0.26	0.35 1.44 1.03	1.67	0.03	0,14	0105 0,06 0.06	0.01

Min Limit 2 0.1 ı 2 5 5 3 1 10 2 0.1 1 1 2 5 1 12 2 1 Max Reported* Method ---No Test ins=Insufficient Sample S=Soil R=Rock C=Core L=Silt P=Pulp U=Undefined m=Estimate/1000 %=Estimate % Max=No Estimate International Plasma Lab Ltd. 2036 Columbia St. Vancouver BC VSY 3F1 Ph:604/879-7878 Fav-604/879-7898

			•	
儑	TC 10			
竹根.	1745	\$ 5		

.

٦

INTERNATIONAL PLASMA LABORATORY (1)

2036 Columbia Street	
Vancouver, B.C.	
Canada V5Y 3E1	
Plione (604) 879-7878	
lax (604) 879-7898	

Ait: Sep 18, 1995 — Project: 90707 n : Sep 13, 1995 — Shipper: Andrew	Kaip		aw Sto ulp Sto					03Mon/Dis 12Mon/Dis			Mon=Month Rtn=Return	Dis=Disca Arc=Archi
O#: Shipment:	1D=C034305			-								
lsg; Au(FA/AAS 30g) ICP(AqR)30		_[Analy	tica	1 Sı	unma	iry—						
lsg:		## Code	Met T	itle L	imit	Limit I	Units Descrip	otion	Element	H H		
Document Distribution	· · · ·		hod			lligh						
Homestake Canada Inc	EN RT CC IN FX	01 313P		Au		9999		VAS finish 30g	Gold	01	•	
1000 - 700 W Pender St	12221	02 364PF				ta Pg	g/mt Au FA/(àrav in g/mt	Gold	02		
Vancouver	DL 30 50 BT BL	03 721P	ICP	Ag		100	ppm Ag 1CP		Silver	03		
8C V6C 168	0 0 0 1 0	04 711P	ICP	Cu		20000	ррт Си ІСР		Copper	04		
		05 714P	ICP	РЪ	2	20000	ррт Ръ ІСР		Lead	05		
ATT: Ron Britten	Ph: 604/684-2345			_	_							
	Fx:604/684-9831	06 730P	1CP	Zn		20000	ppm Zn ICP		Zinc	06		
		07 703P	1CP	As		9999	ppm As ICP	5 ppm	Arsenic	07		
' Homestake Exploration Company	EN RT CC IN FX		1CP	Sb		9999	ppm Sb ICP		Antimony	80		
1 Airport Way	12101	09 732P	1CP	Hg	3	9999	ppm Hg ICP		Mercury	09		
Smithers	DL 3D 5D BT UL	10 717P	106	Mo	1	9999	ррт Мо ICP		Molydenum	10		
BC VOJ 2NO	0 1 0 0 0			T -								
ATT. (* Dalde a familie - K-i-	DL. COA (ED1 - 2003	11 747P	ICP	T1	10	999		10 ppm (Incomp)		11		
AIT: C Baldys/Andrew Kaip	Ph: 604/521-7361	12 705P	1CP	Bi	2	999	ppm Bi ICP		Bismuth	12		
c/o; Joy McLeod FAX ONLY	Fx:604/526-5941	13 707P	ICP	Ç1	0.1	100	ppm Cd ICP		Cadmium	13		
		14 710P	ICP	Co	1	999	ppm Co ICP		Cobalt	14		
		15 718P	ICP	Ni	1	999	ppm Ni ICP		Nickel	15		
		16 704P	ICP	Ba	2	9999	pom Ba ICP	(Incomplete Dig	est Barium	16		
		17 727P	1CP	W	5	999		(Incomplete Dig		17		
		18 709P	ICP	Cr	1	9999		(Incomplete Dig		18		
		19 729P	1CP	v	2	999	ppm V ICP	·····	Vanadium	19		
		20 716P	ICP	Mn	1	9999	ppm Mn ICP		Manganese	20		
		21 713P	1CP	La	2	9999	nom la TCP	(Incomplete Dig	net Lanthanum	21		
		22 723P	ÎČP	Sr	1	9999		(Incomplete Dig		22		
		23 731P	ICP	Žr	i	999	ppm Zr ICP	(Theorip Tere Dig	Zircontum	23		
		24 736P	160	Sc	i	99	ppm Sc ICP		Scandium	23		
		25 726P	ICP		0.01	1.00		(Incomplete Dig		25		
		26 701P	ICP	6 7	0.01	9.99				26		
		27 70BP	1CP		0.01	9.99	# C= 100	(Incomplete Dig	JESC ALUMINUM	26		
		28 712P	ICP		0.01	9.99	% Fe ICP	(Incomplete Dig		27		
		29 715P	ICP			9.99		(Incomplete Di	Iron Magnadum	28		
		30 720P	ICP			9.99		(Incomplete Dig		29		
		JU 720F	ICF	~	0.01	9.99	A K ICP	(Incomplete Dig	gest Potassium	30		
		31 722P	1CP			5.00	🎗 Na ICP	(Incomplete Dig	gest Sodium	31		
		32 719P	1CP	Р	0.01	5,00	7 P ICP		Phosphorus	32		
									-			
		1										
		}										

EN=Envelope # RT=Report Style CC=Copies IN=Invoices FX=Fax(1=Yes O=No) DL=DcwnLoad 3D=3-1/2 Disk 5D=5-1/4 Disk BT=BBS Type _BL=BBS(1=Yes O=No)

• . ٩ ٠

2036 Columbia Street

Vancouver, B.C.

Canada VSY 3E1

		• .									بق رباده	' Li	221	1304										la V5Y 3 : (604) 8		79	
INTERNATIONAL PL	LASIMA L	ABUITATON	Y L I II																					(604) 8 (604) 8			1
lient: Homes uject: 90707		-	ral Devo 1 Core	: lopinei	nt Co	i	PL: 95	I1304					, 1995 , 1995		3817;00	0:01:5		je 1 of 1895]	3			on 1 of BC Assay		vid Ch	iu	À	ſĮ
nple Name		Λυ ρρb	∆u g/mt	-	Cu ppm	PD PL	Zn ppu	As ppm	Sb ppm	2	Чо Т рягрр			Co Ni pprnpprn	lia ppm pj		λr Xm pp	V Mn on ppm	La ppn	Sr ppn (Zr ppm p		۸۱ ۲	Ca X	Fe X	Mg X	
901	Ċ	2			68		558	44	5			< <	5,3	15 111	43	< 2	29 3	31 306	<	124	2	4 : : : <	0.45	1.48	3.90	1.07	/ 0.
902	Ĉ	2	=	0.4			650	41	<	A	<u>-</u>	< <		12 91	54		19 2	24 474	<		1	3 <	0.34	, 2.84	3.32	1.27	7 0.
903 904	Ĉ	4		0.4 0.5	60 62	- 1 0	675 573	36 39	7 8			< <		12 98	50			27 (109	<		2	2 4	0.32	2.71			
905	ç	2		0.7	82	17	845	48	7			< < < <		14 111 16 130	42 35			24 <u>404</u> 26 243	< <	202 114	1 2	3 < 3 <	0.30	2.7B 1.02			
906	с	<		1.4	88		1663	56	8	<	34	< <	21.4	12 102	29	< 4	19 :	34 262		108	2	3 <	0.39	1.05	3.29	0.21	1.0
907	Č	2		2.5	102	10	2685	45	8		- 1	< <	42.1	10 64	37			50 272	<		i	3 <	0.40	0.60			
908	C Ć	<		2.2	101	12	2055	53	8		29	< <	32.8	10 59	29			50 (411)	- 2		1	3	0.44	2.03	3.22	0.72	2.0.
909		<		1.7	63	312	1277	34	6	<	19		20,2	7 43	31			39 279	3		2	3 <					
910	¢	<		<	20	4	174	15	<	<	12	< <	2.3	4 21	75	< /	14 2	21 1324	3	699	3	1 <	0.28	13%	2.15	0.73	3 0
911	C Ĉ	<			25	10	128	16	<	<	8	< <		G 24	34			22 509	3		2	3	0.41		2.94	0.87	7.0
912		<		0.3	25	10 9	126	15	<	< 53 : 5555	⊴Z ara	< <		5 22	34			19 279	3		2	2 : : <	0,46		2.72		
913 914	Ć	2 11		0.5	26 24		162 161	23 22	< <	<	÷	< <		8 27	37		16	22 320	3		1	- -	0.46	1.60	3.09		
915	č č	\ <		0.4 <	19	B	170	17	۰. ۲	< <	2 7	< < < <	·	8 25 4 18	40 52		12 · · 32 · ·	18 371 18 691	3 4		1 1	2 500 4	0,44 0.40	2.27 6.74			
916	с	2		0,4		20	196	40	<	<	ia	< <	2.1	5 28	40	< 2	21	13 422	2	248	1	2	0,42	2,81	2,24	0.34	ላ በ
917	Ç	~	•.	0.5	13	1 6	93	36	<	دونو الجانا مي	ΞÂ			3 312	61		93	7 129	4		ź	182	0.29		1.81		
918	Č Č	<		0.5	11	18 17	94	37	<	< 200 < 200	έŻ –	< <		3 🗐 0	44		57	5 231	8		ĩ	1 200 4	0.32		2.10		
919	Ć	<		0.5	4	<u></u> 17	27	38	<	`	5	< <		1 🚟	39		75	< 8121	11	126	2	< 800000		1.27	1.51	0,09	9 à
920	ć	۲		0.4	4	10	67	18	<	< 88	10	< <	0.3	1 34	60	< 13	33	< 2019	11	51	2	< 2005 1000	0.18	0.55	0.99	0.05	5 Ö
921	Ć	٠	• •		4	8	60	15	×	< 🕺		~ ~		1 4 1 4	81	< 12		< 66	13		2	< 2.22.5 < 2.22.5	0.20	0.66	0.89	0,05	5 Q
922	C g	۰.		0.2	5	9 16	27	22	5	< 944	ेम	< <		1 34	62	< 11		2 97	14		- 2	< 2005	0.20	0.91			
923	ç	<			12	16	68	29	6	< ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	85 86	< <		3 11 3 11	70	< 10		6 137	9		2	< 100 C	0.26	1.00			
924 925	Ű Ĉ Ĉ	۲ ۲۵			16	- Sec. 19	- 71 186	31 24	5			< <		<u> </u>	65	< 10		7 141	9		2		0.28				
925	ų	45		0.2		<u>12</u>	100	24	<	< 55		< <	2.6	5 22	42	< 2	26	14 518	4	492	1	2	0.38	4.29	2.27	0,41	1 ()
926 927	000000	< <		0,5 0,5	18 27	16	148 187	32 31	۲ ۲	< ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2002 - C	< <		4 16 6 23	66 64		23 15 -	9 249 16 333	0		2	1 2 2		1.33			
928	ĕ	×.		0.4	23	11 11 11	265	19	,	2	୍ମ ଅ ପ୍ରଶ୍ୱ	<		6 23 6 26	54 36			16 <u>333</u> 28 497	4		2	المرد فالترجي والمرجي المرجع	0.42		2.09		
929	ĕ	è.		~ ~	25	<u>ğ</u>	211	14	,	2 355	S. G	~ ~		6 25	30		10 2	24 500		230	1	a garana	0.42	2.99 3.35	2.87		
930	Ĕ	<			30	9 8	391	17	<	 → /ul>	13	< <		6 34	39			30 4114	3		2	3			2.76		
931	ç	<		0.3	34	as 7	307	19	<	< 3	12	< <	3.9	7 31	37	< 7	27 :	33 400	3	216	2	_ <	0.56	2.76	3.08	0.63	зл
932	C Č	<		0.3	26	, 1 7	218	19	<	<	ĩ	< <		5 26	41			32 397	2		1	3 0004			2.54		
933	ć	*		0,5	20	9		17	<	< 10	ΞÏ	< <		6 26	66	< 2	20 /	10 491	4		1	ે ટેલ્ટ <					
934	Ç	49				<u>10</u>	183	20	<	< <u></u>	<u>.</u>		2,5	6 🚮	42			29 304		138	1	3 200. <	0,59	1.81	2.56	0.99	ыÖ
935	Ģ	13		0.6	34	229	297	19	<	< 100 100	<u>9</u>	< <	4.9	7 33	43	< 2	22 :	36 337	3	166	2	3	0.54	2.22	2.86	0.65	5 0
936	0	<			66	8	475	29	<	~ ~ ~	14	< <	8.4	10 62	23			40 259	5	127	2	4 < 4 < 3 < 3 <	0.51		3.86		
937 938	000	2			59	10	317 652	29	¢	< 80	10 74	< <	5.2	10 58	23		19 3	35 292	5	143	2	4 1032 ×	0.51	1.75			
939	č	< 6			48	10 6 8	484	24 25	< <	<pre> *</pre>	12		: 13.2 : 8.3	7 52 8 39	46 23			48 483 33 265	4	186 159	2 2	 	0.42				
																		11.000			•						
n Limit		2		0.1	1	2	1	5	5000	20 0000	3 1		0.1	1 1	2	5	1	2 1	2	1	1	1 0.01	0.01	0.01	0.01	0.01	10
		9999	11 11 11 1 1 1 1 1	1.1																							
× Reported*			1000.00 FAGrav		ZUUUU ICP	ICP	10000	ICP	106	1Cb 🔋	CP IC	b ICb Fee e	ICP	ICb ICb	ICP 1	Cb 10 26 62	99 9 CP 14	Cb (10b)	- ICh AAAA	ICb	ICb AAA	1CP 51CP	1Cb 8788	9,99 ICP	9,99 ICP		

International Plasma Lab Ltd. 2036 Columbia St. Vancouver BC VSY 3E1 Ph:604/879-7878 Fax:604/879-7898

		CI	ERTIFICATE OF iPL 9511		2036 Columbia Street Vancouver, B.C Canada V5Y 3E1 Phone (604) 879-7878
	stake Mineral Development Co	iPt.: 9511304	Out: Sep 18, 1995 In: Sep 13, 1995	Page 1 of 3 [073817:00:13:59091895]	Fax (604) 879-780 Section 2 of 2 Certified BC Assayer: David Chiu
ample Name	Na P 2 2				
6901	C 0.02 0.05				
6902	Č 0.02 0.04				·.
16903 16904	Č 0.02 0.06 Č 0.02 0.05				•
6905	C 0.02 0.05				
6906	C 0.02 0.06				
6907	C 0.02 0.05				
6908	Č 0.03 0.07				
6909	Č 0.03 0.10				
6910	<u>Č</u> 0.02 0.05				
6911	ġ 0.03 0.09				
6912	Č 0.03 0.07				
6913	Č 0.03 0.08				
6914 6915	Č0.030.08 Č0.030.09				
6916					
6917	C 0.02 0.06 C 0.04 0.02				
6918	Č 0.03 0.03				
6919	Č 0.04 0.01				
6920	Č 0.07 0.01				
6921	C 0.07 0.01				
6922	Č 0.06 0.01				
6923 16924	Č 0.05 0.03				
86924 86925	Č 0.05 0.03 Č 0.02 0.07				
16926 16927	C 0.03 0.04 C 0.04 0.06				
86928	Č 0.04 0.08				
36929	С́ 0.05 0.08				
6930	Č 0.05 0.09				
36931	Ğ 0.06 0.09				
6932	Č 0.05 0.07				
36933 36934	Ĉ 0.05 0.08 Ĉ 0.05 0.09				
30935	Č 0.05 0.08 Č 0.04 0.10				
\$6936 36937	C 0.04 0.20 Č 0.03 0.21				
36938	Ç 0.03 0.15				
36939	Č 0.03 0.13				

Max Reported*

5.00 5.00 1CP 1CP Hethod

.

--=No Test ins=Insufficient Sample S=Soil R=Rock C=Core L=Silt P=Pulp U=Undefined m=Estimate/1000 %=Estimate % Max=No Estimate International Plasma Lab Ltd. 2036 Columbia St. Vancouver BC V5Y 3E1 Ph:604/879-7878 Fax:604/879-7898

2036 Columbia Street Vancouver, B.C.

Canada V5Y 3L1

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	11	79+7871		Phone												104		101	<u> </u>		-														
pub q/At pue pue	E			2						f3				00:14	3817;0	[0/								1304	1: 95	iľ	,	mt Co	topic	al Deve	: Mine	staku	Client: Homes		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Mkj X	te X																				-							-	,			Comple Name		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.38 0.	3.32 0				2	2	112						<								< .	<			1			2.0						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.36 0.			0.31			1													<		٢.				<u>_</u>) - 1965	66				C A			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.45 0.			0.75	·· · 🗲	2															11 11						1	20							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				0.45	⊙ar∑ 	2					10 C 10 C 10 C					34										9	i he	43							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.44 0.	2.73 (a,90	0.74		2	2	100	5	9	179	33	42	<	44	20	5	1.0	*	<	5	< آ	<	35		.11	2 (S.)	32	1.5		3	Ç			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.41 0.	2.5 <mark>3</mark> C	0.99	0.57		2	2	108	4					<		23			<	<	<u>5</u>	<	<								<				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				0,50		2									36	- 26	5									. 10		40				C A			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				0.46	s	2										.44	<u></u> В			<	11					<u>्रा</u> त	32	24							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.65 0.	2.92 C	4.91	u. 35		2	2	979	3				21	۲	49			11-1	¢				•												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						2										32										<u>9</u>	1,000	33							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																37 20										្លីតំ		46				ĕ			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																29					anneise d					ໍ້ ຳ 2	2 🎬	42				č			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							ī															<		22	315	8	1 🞆	37			<	ğ			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.52-0,	3.47 (1.36	0.53	1973. 1784 5	3	1	191	4	1				<	29	24	5		~	<	9	<	<			e	? 🛒	42	1.7		<	ç			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.50 0.				<	3															a second second	<													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				3.98	0.18	13										86	- 37									ိုင်	1 (89) c 200	54				C.			
66960 C - 0.2 49 16 545 32 < < 13 < < 6.6 10 49 71 < 45 41 950 9 367 1 2 < 1.45 7.51 3.00 66961 C - 0.9 40 14 292 41 5 $<<8 <<< 3.4 8 32 46 < 34 46 562 9 230 2 < 1.40 4.50 3.52 66962 C - 0.3 222 15 125 29 <<<<6 6 < 1.2 6 18 58 8 27 23 27 7 21 2 < 1.16 2.0$	<< <th>6 6 <</th> 1.2 6 18 58 8 27 23 27 7 21 2 <	6 6 <	3.04 0, 0.92 0]																				Sec. Sec.					13	1	34				č	
66961 C 0.9 40 14 292 41 5 $<$ 8 $<$ $<$ 3.4 8 32 46 $<$ 34 46 5622 9 230 2 $<$ $<$ 1.10 3.523 7 251 1 2 $<$ 1.12 3.92 3.16 66963 C $<$ $$ 0.3 22 15 125 29 $<$ 6 $<$ $<$ 1.2 6 1.12 3.92 3.16 237 7 217 2 $<$ 1.16 2.06 2.76 3.92 $<$ $<$ 6 $<$ 1.0 1.02 3.92 3.16 1.7 1.97 2 $<$ 1.16 2.06 2.76 1.16 2.06 2.76 1.16 2.06 2.76 1.16 2.06 2.76 1.16 2.06 2.76 1.80 3.92 3.92 3.127 7.86 3.02 9 1.80 1.1 2 2.27 1.80 <	0.82 0,	3.06.1	7 51				٦	ากา	q		CORA	41	45	,	71	ő a g	10	6.6					~	32	545	ात	9 88	49	0.2			С	6960		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.72 0.				a proposed as the		2									<u>.</u>	B				8	<				<u> </u>	j 🔡	40				Ë			
6^{0} $$ 0.2 13 11 91 21 $<$ 6 $<$ 1.0 412 95 $<$ 35 17 417 8 266 1 1 $<$ 1.07 3.94 2.11 46965 C $$ 0.3 16 12 147 19 $<$ 7 $<$ 1.1 4 18 91 $<$ 40 14 302 9 180 1 1 $<$ 0.89 2.25 1.86 60966 C $$ 0.1 38 17 520 29 5 < 221 $<$ 7 45 56 < 34 27 7081 7 332 1 2 <0.57 6.50 2.24 3566 34 27 7081 4172 1 2 <0.57 6.50 2.24 353 31 10 11 $<<1.26$ 0.57 6.50 2.27 12 403 31				1.12	geresek Stor K	2															65	<	<	83	399	<u>12</u>	1 💮	171	13,5		4	Ę	36962		
46965 C \leftarrow $$ 0.3 16 12 147 19 $<$ 7 $<$ $<$ 1.1 4 18 91 $<$ 40 14 302 9 180 1 1 \leq 0.09 2.25 1.60 36966 C $$ $<$ 31 19 112 27 $<$ $<$ 7.2 7 45 56 $<$ 34 27 788 7 332 1 2 $<$ 0.57 6.50 2.24 36960 C $$ $<$ 32 112 27 $<$ $<$ 3 $<$ 1.2 15 24 03 $<$ 300 31 172 12 $<$ 1.1 $<$ 1.33 5.13 3.06 36960 C $$ $<$ 32 12 197 26 $<$ 7 $<$ 2.7 13 47 414 1971 9	0.55 0.	2.76 0	2.86	1.16	- S - C	- 2	- 2				327	23			- 58				<							<u></u>	2 💥	22				Ğ			
6966 C $ 0.1$ 38 17 520 29 5 $<$ 21 $<$ 7.2 7 45 56 $<$ 34 27 7088 7 332 1 2 $<$ 0.57 6.50 2.24 6967 C $ <$ 31 19 112 27 $<$ 30 31 445 4 172 1 2 $<$ 1.41 2.66 3.24 36960 C $$ $<$ 32 12 197 26 $<$ 7 $<$ 2.7 12 24 73 39 31 708 6 354 1 1 $<$ 1.33 5.31 3.08 30 3.21 2 $<$ 1.05 8.30 3.21 2 $<$ 1.05 8.30 3.21 2 $<$ 1.05 8.30 3.21 2 $<$ 1.05 8.30 3.21 1 2	0.59-0.	2.11 (3,94	1.07	<	1	ı	266	8		417	17	35	<	95	:12	1	1.0	<	<	6	<	<	21	91	<u></u> 11	3 sas	13	0.2		<	Ċ	16964		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				0.89	5	1	۱									្លាខ	4			<	2 1	<				12	5 200	16				Ċ			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.47 0.			0.57		- 2														<	2.4	<u>`</u>				្លូរ/	- 88	נא. רו				k			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1.41		2										54	12									8 jz -	2 💱	32				č			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.70 Q.			1.05	<															<	<u>16</u>	۲				20	2	42				Ċ			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.21 0.	1 .05	3.87	1.56		2	1	231	11	1	761	55	27	<	42	÷7	11	0.7	<		iii 3	<	<	21	63	4	า 🖄	21	۰		ĸ	С	36970		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.57 0.	3.41	3.16	1.91	<		2			1	847	71		<		9	12	0.6		<	2	<	<			ور و و و و	ر در در در		<		<	- ĝ			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.30 0.	3.13	3.84	1.73	ं्र								21			6	11	0.5	<		2	<				- -	ե 😳				<				
36975 C < 0.1 20 ﷺ 18 128 21 < < ∰7 < < 1.3 7 ∰17 60 < 35 21 534 6 321 1 1 60 < 1.00 4 99 2 21	1.62.0	3 48 1	1 59	2.05	100-100 	2														4			۲ ۲			6 / ⊂	ວ 🔅 ຊ		_		< ,	2.4			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,83-0,	4.44	2.04	2.54		6	I	170	11			71	ZB	<	70			<	<	4	-381 3	~	•	31	00						•	4			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.57 0.	2.21 (4.99	1.00		1	1				534	21	35	<	60	§17	7	1.3		e			<			3 18	0 0	20			¢	ç			
56070 6 776 6 23 637 23 6 6 6 6 6 6 6 13 13 10 253 1 2 10 253 1 2 10 253 1 2 10 253 1 2 10 253 1 1 2 10 253 1 1 2 10 253 1 1 1 10 1 1 1 10 1 1 1 1 1 1 1 1 1 1	1.27 0.	3.31	4.35	1.78	<pre></pre>	2	1			-	= 840	47	25		57	្លាល្អ	11	0.7		<pre> <</pre>	4	< .	<	23	85	92 () 1517년 -	9 58 6 88	19			۲ -	C R			
36978 () < < 22 23 3 81 26 < < 21 < < < 13 27 49 < 12 59 658 11 172 1 2 22 2.26 2.19 4.09	1 41 0	• • • •	1 1 1 1	- Z. UZ	<		1 1			1	658	59 59	12	< <	49 49	7	13	0.8 <	< <	(< (<	<u> </u>	< <	< <	26	81	2 3	2	22	<		<	Ğ	36978		
				··									,															•		0.00					
	0.01 0.			0,01	1,00	99		1999	ے۔ 1999ء	9999	99999	ے۔ 1990	9999 9999	د 999	9999 ·	999	9999	99.9	2999 2999	999					20000		0 20	20000							
MATING - FAMA FAGHAV TOP	- ICP]			100	1CP	401	4 01	1CP	CP	i 1C	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	1CP	ICP	1CP	1CP	ICP	ICP	1CP	P 🗄	- 1CP					· · · ·		
r≂No Test inselnsufficient Sample SaSoil RaRock CaCore LaSilt PaPulp U=Undefined m=Estimate/1000 %=Estimate % MaxaNo Estimate nternational Plasma Labilid, 2036 Columbia St. Varcouver RA VSY 361 Phi604/970 7979 Source 4/970 7979						te	Imat) Ést	ĸ≈No	Max	to I	:1ma	X =Est	00	ite/10	stima	m=E	veci	defti	ປະປາດ	Pulo 1	lt P=P	L⊧Sil	Core	xck C∝	ÌR≖Ra	Soil	<u> </u>	amplo	cient S	nsuff	ns⊧l	-*No Test 1		

		CE	ERTIFICATE OF ipl 9511		2036 Columbia Street Vancouver, B.C. Canada V5Y 3€1 Phone (604) 879-7878 Fax (604) 879-7893
ient: Ikmes nject: 90707	take Mineral Development Co Bl Core	iPL: 9511304	Out: Sep 18, 1995 In: Sep 13, 1995	Page 2 of 3 [073817:00:31:59091895]	
unple Name	Na P X X				٢>
5940	C 0.03 0.14		- <u>.</u>		
5941	Č 0.02 0.09				•.
5942	Č 0.03 0.28				•
i943	Č 0,03 0,19 Č 0.04 0.10				
5944					
5945	C 0.05 0.12				
5946	Č 0.06 0.11				
5947	Č 0.05 0.16				
5948	Č 0.04 0.19				
5949	Č 0.03 0.11				
5950	C 0.04 0.14				
5951	Ğ 0.04 0.16				
5952 TOUR	Č 0.04 0.17				
1953 1054	Ć 0.03 0.11 Č 0.03 0.12				
5954	9 0103 0112				
5955	C 0.04 0.13				
5956	Ç 0.04 0.16				
5957	Č 0.04 0.29				
5958	Č 0.04 0.21				
595 9	Ğ 0.02 0.08				
	<i>t</i> i a aa a aa				
5960	C 0.02 0.07				
69 61	Č 0.02 0.18				
6962 005 7	Č 0.02 0.13				
6963 6964	Č0.020.07 Č0.030.05				
	<u>Ж</u> агаз агаз				
6965	C 0,02 0,05				
6966	Č 0.02 0.09				
6967	(0.02 0.10				
6968	Č 0.02 0.08				
6969	Ĝ 0.02 0.10				
6030					
6970 6971	C 0.07 0.10				
697) 6000					
6972 6973	Č 0.07 0.11 Č 0.07 0.11				
6973 6974	Č 0.04 0.14				
N 274	G 0.04 0.14				
6975	C 0.02 0.06				
6976	Č 0.04 0.09				
6977	Č 0.05 0.11				
6978	6 0.04 0.12				

0.01 0.01 5.00 5.00 Max Reported*

ICP ICP Method

.

CERTIFICATE OF ANALYSIS ipl 9511304	2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1
	Phone (604) 879-7878 Fax (604) 879-7898

INTERNATIONAL	ріазыа	LAUO	RATOR	۹L	11
					-

Client: Home Project: 9070			a) Deve Cone	lopmer	nt Co	il	ય.: 95	11304						1995 1995		73817	;00;3		age 191895					ion 1 BC Ass			id Ch	iu –	X	(
Sample Name		Ли орь	∆u g/mŁ	Ag ppm	Си рјуп	РЪ mqq	Zn ppin	Λs ppm	Sb ppm	Hg ppm	Mo ppm		Bi ppm		Co Ni ppmippm			Cr ppm	V ppm	Mn ppm	La ppm		Zr ppm p	- · ·	ًו አ	A1 X	Ca X	Fe t	Muj t	K X
36979 36980 36981	C C C	< < <		د د 4,1	38 52 59	والالالا والأفاقة	93 110 88	30 34 32	< < <	<	3 4 12	< < <	< < < <	0.1 0.1 0.9	15 30 15 28 11 27	59	< < 59	76 47 34	104 76 56	952 680 716	8	345 194 318	1 1 1	4 2 2	< 2 < 7 < 1	.45 .42 .18	3.06	4.31 4.41 2.39	1.57	0.20

	Cr	ERTIFICATE OF iPL 9511		2036 Columbia Street Vancouver, B.C. Canada VSY 3f.1 Phone (604) 879-7878
IntERNATIONAL PLASMA LABORATORY (1) Lient: Honestake Mineral Development Co Sject: 90707 81 Core	119.: 9511304	Out: Sep 18, 1995 In: Sep 13, 1995	Page 3 of [073817:00:39:59091895]	Fax (604) 879-789
iple:Name Na P X X		· -		
079 C 0.03 0.17 080 Č 0.02 0.17 081 Č 0.02 0.09				·.

INTERNAT	HUNAL PLASMA LA	BORATORY LTD.

LRTIICAL OF ANALISIS iPL 95H2901

2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

۳

ч.

7 1

ut: Sep 03, 1995 — Project: 90707 n ; Aug 29, 1995 — Shipper; C. Bal	•		aw Sta ulp Sta				·	03Mon/Dis 12Mon/Dis			Mon=Month Dis=Discar Rtn=Return Arc-Archiv
O#: Shipment:	ID=C034305										
sg: Au(FA/AAS 30g) ICP(AqR)30		[Analy	tica	I S	umma	ary—					
sg: Decument Dickribution		## Code		fitle l			Inits Descrip	tion	Element	##	
Ocument Distribution Homestake Canada Inc			hod			High					
1000 - 700 W Pender St	EN RT CC IN FX	01 313P	FAAA	Au		9999	•••	AS finish 30g	Gold	01	
Vancouver	1 2 2 2 1 DL 3D 5D BT BL	02 721P 03 711P	ICP	Λg		100	ppm Ag 1CP		Silver	02	
BC V6C 1G8		03 711P	ICP ICP	Cu Pb		20000 20000	ppm Cu 1CP		Copper	03	
		05 730P	ICP	Zn			ppm Pb 1CP		Lead	04	
ATT: Ron Britten/Dave Kuran	Ph: 604/684-2345		101-	L 11	,	20000	ppm Zn ICP		Zinc	05	
	Fx: 604/684-9831	06 703P	ICP	As	5	9999	ppm As ICP	5 ррм	A	06	
	·	07 702P	ICP	Sb		9999	ppm AS ICP	ndd c	Arsenic Antimony	06 07	
Homestake Canada Inc	EN RT CC IN FX	08 732P	ICP	Hg	3		ppn Hq ICP		Mercury	08	
c/o Joy McLeod - #1 Airport Way	22001	09 717P	ICP	Mo	ĩ	9999	ppm Mo ICP		Molydenum	09	
Smithers	DL 3D 5D BT BL	10 747P	ICP	n	10			10 ppm (Incomplete		10	
BC	0 0 0 0 0							- Pho Cricoupière		10	
Canada		11 705P	ICP	Bi	2	999	ppm Bi 1CP		Bismuth	11	
ATT: C. Baldys/Andrew Kaip	Ph:604/521/7361	12 707P	ICP	Cđ	0.1	100	ppm Cd 1CP		Cadmium	12	
	f x: 604/526/5941	13 710P	401	Co	1	999	ppm Co 1CP		Cobalt	13	
		14 718P	ICP	NI	1	999	ppm N1 ICP		Nickel	14	
		15 704P	ICP	Ba	2	9999	ppm Ba 1CP	(Incomplete Digest	Barium	15	
		16 2020	100								
		16 727P	ICP	W	5	999	ppm W 1CP	(Incomplete Digest	Tungsten	16	
		17 709P 18 729P	100	Cr	Ì	9999		(Incomplete Digest		17	
		19 716P	ICP ICP	V	2		ppm V 1CP		Vanadium	18	
		20 713P	ICP	Mn La	1		ppm Mn ICP		Manganese	19	
			ICF	La	ζ,	2222	ррян са тер	(Incomplete Digest	Lanthanum	20	
		21 723P	ICP	Sn	1	9999	nom Sr ICP	(Incomplete Digest	Streetium	21	
		22 731P	ICP	Zr	i	999	ppm Zr ICP	(momproto bigast	Zirconium	22	
		23 736P	ICP	Se	i		ppm Sc ICP		Scandium	23	
		24 726P	ICP	Τi	0.01			(Incomplete Digest		24	
		25 701P	ICP	A1	0.01			(Incomplete Digest		25	
		1									
		26 708P	ICP	Ca	0.01	9,99	况 Ca ICP	(Incomplete Digest	Calcium	26	
		27 712P	ICP			9.99	🕱 Fe ICP	-	Iron	27	
		28 715P	ICP	_		9.99	🔏 Mg ICP	(Incomplete Digest	Magnesium	28	
		29 720P	1CP			9.99	XK ICP	(Incomplete Digest	Potassium	29	
		30 722P	ICP	Na	0.01	5.00	% Na ICP	(Incomplete Digest	Sodium	30	
				_			_				
		31 719P	ICP	Р	0.01	5.00	🗶 P ICP		Phosphorus	31	
		1									
		1									

EN*Envelope # RT=Report Style CC+Copies IN=Invoices FX=Fax(1=Yes O=No) DL=DownLoad 3D=3-1/2 Disk 5D=5-1/4 Disk BT*BBS Type BL=BBS(1=Yes O=No) LATI CALL OF MALLIS

2036 ออเอกษณ์

Vancouver, B.C.

Canada V5Y 3E1 Phone (604) 879-7878)

iPL 95H2901

INTERNATIONAL PL	ASUALAUGA	TORY LED.																								Fa	x ((604) t	379-73	89¥		
Client: Homes Project: 90707		neral 18 Ce		pment	Co	iPL	; 95H	2901				Sep Aug				106	5917::	39:2		аде 90595			Certi			of 1 sayer:		d Ch	iu	Ø	\$12	<u>/</u>
Sample Name	Au ppb	Ag ppm	Cu ppin	Pb ppm	Zn ppn	As ppm	Sb ppm	lkg ppon	Мо рра	11 ppn p			Co ppm		Ba ppm	W ppm	Cr ppm (V prpm	Mn ppm	La ppm	Sr ppm	Zr ppm		Ti X	۸۱ ۲	Ca X	Fe 2		j Z		ła Ż	р Х
20910 20911 20912 20913 20914	Č 25 Č < Č 11	0.4 1.0 1.0 0.9 0.8	57 70 75 81 63	18 15 14 19 17	674 863 1679 1286 719	217 215 68 77 43	9 8 7 7 7	< < < < < <	.39	V V V V	< 1	6.2 7.3 15.5 11.6 6.4	13	110	36	* * * *	31	57	422 219 272 184 100	L L L L L L L L L L L L L L L L L L L	233 108 146 99 96	2 2 2 2 2 2	2 3 3 3 3	< < <		3,80 1.03 1.62 0.82 0.79	3.42 3.71 3.45	0.6 0.8 0.6	1 0.2 2 0.2 2 0.2	25 0.0 25 0.0 26 0.0	05 0. 05 0. 06 0.	05 08 07
20915 20916 20917 20918 20919	Ç < Ç 12 Ç <	0.5 0.3 0.5 0.3	40 48	7 9 11	679 274 320 437 494	52 31 41 35 49	< < < < <	< < < < < <	24 26 28 30 12	VIVIVIV	د د ۲	7.4 3.5 4.0 5.0 4.6	6 7 9	58 63	52 60 47 42 32	* • • • •	21 13 12 15 31	49 25 29 36 47	496	4 8 5 5 8	145 238 179 162 127	3 3 2 2 3	3 4 3 3 3	< < <	0,44 0,53 0,67	2.99 8.94 5.32 4.26 1.91	2.10	0.3	70.2 40.2 70.2	23 0.0 22 0.0 22 0.0	04 0. 05 0. 05 0.	09 09 00
20920 20921 20922 20923 20924	C 3 C 3 C 3 C 3 C 3 C 3 C 3 C 3 C 3 C 3	1.1	74 84 32	18 15 15 8 12	206 825 1716 252 250	34 51 35 33 24	v 5 <	~ ~ ~ ~ ~ ~ ~	13 10 30 28 26	ACALA N	< < <	1.4 9.6 19.3 2.7 2.7	16 13	120	47 35 43 68 58	< < < < <	38 36 25 13 16	39 53 58 29 18	726	<u>с</u> З	106 148 140 409 203	2 2 2 3 2	3 3 3 3 3 3	< < < <			4.08 3.41 2.40	0.8 0.7 0.5	2 0.2 1 0.2 3 0.2	28 0.0 27 0.0 20 0.0	06 0. 05 0. 03 0.	14 07 09
20925 20926 20927	ପୁଁ 7 ପୁଁ 5 ପୁଁ 10	1.4	48	11	223 278 217	41 43 55	v v v	< < <	10 9 5		<	3.0 2.1 0.6	8 10 11	23 26 31	47 42 34	* * *	21 34 31	28 46 37	245	9 7 6	150 97 136	2 2 2	2 2 3	<	0.64 1.30 0.95	2.47 1.11 1.50	4.02	2 0.8	1 0.2	24 0_)	05 0.	13
																					•											
Min Limit Max Reported*		2 0.1	1 1 20000			•			-	10 000		0.1 aq q			_							1 000				0.01						

8 STATEMENT OF QUALIFICATIONS

I, Keith M. Patterson, of 2828 West 6th Avenue, Vancouver, British Columbia, do hereby certify that:

- I am presently employed by Homestake Canada Inc. of 1000-700 West Pender Street, Vancouver, British Columbia as a Geologist.
- I am a graduate of the University of British Columbia (1994), and hold a
 B.A.Sc. from the mineral exploration option of the geological engineering program within the faculty of Applied Science.
- I am currently registered as an Engineer in Training with the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
- 4. I have no interest in the property described herein, nor in the securities of any company associated with the property, nor do I expect to acquire any such interest.

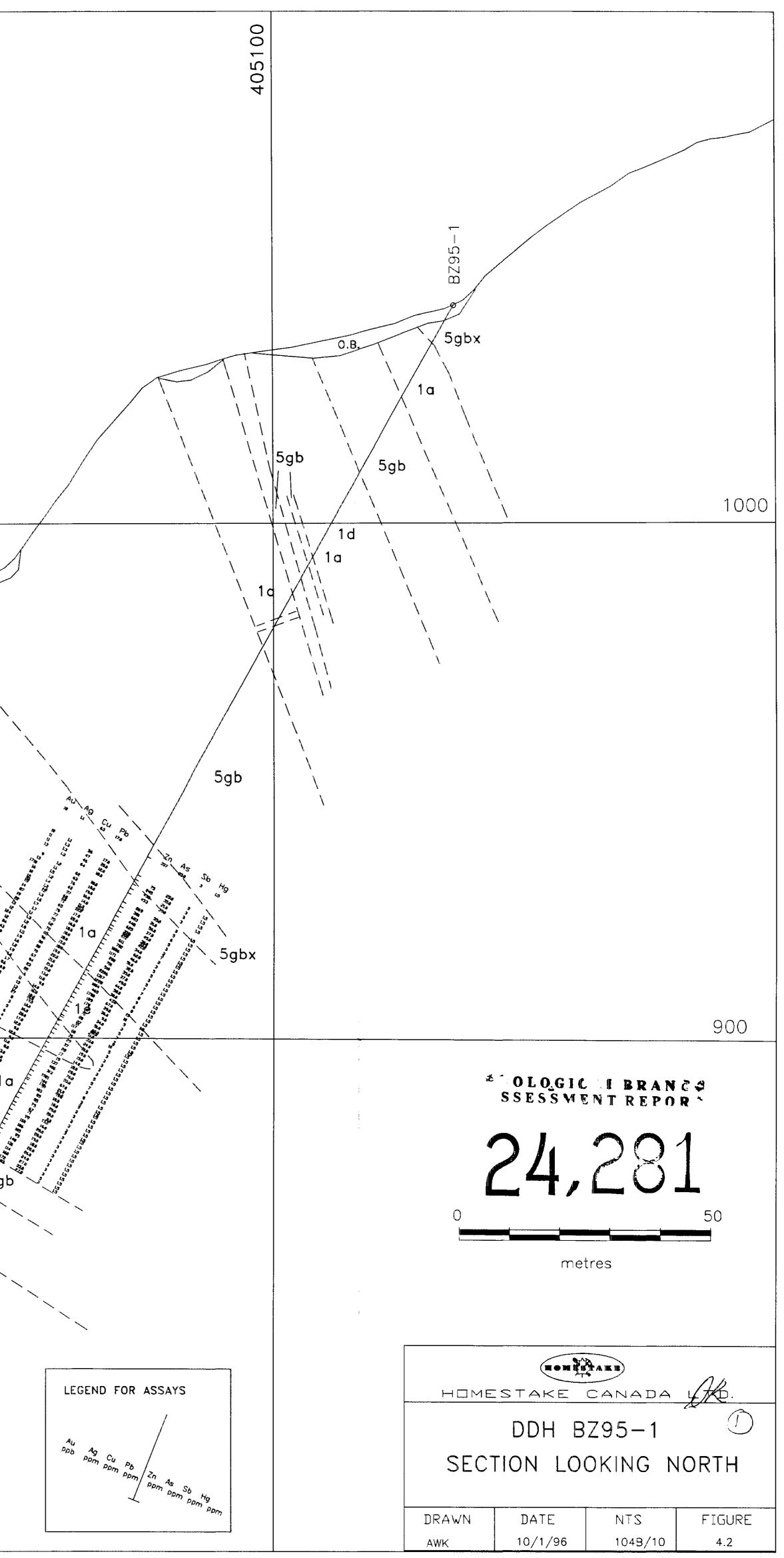
Signed at Vancouver, British Columbia this 20 day of October, 1995

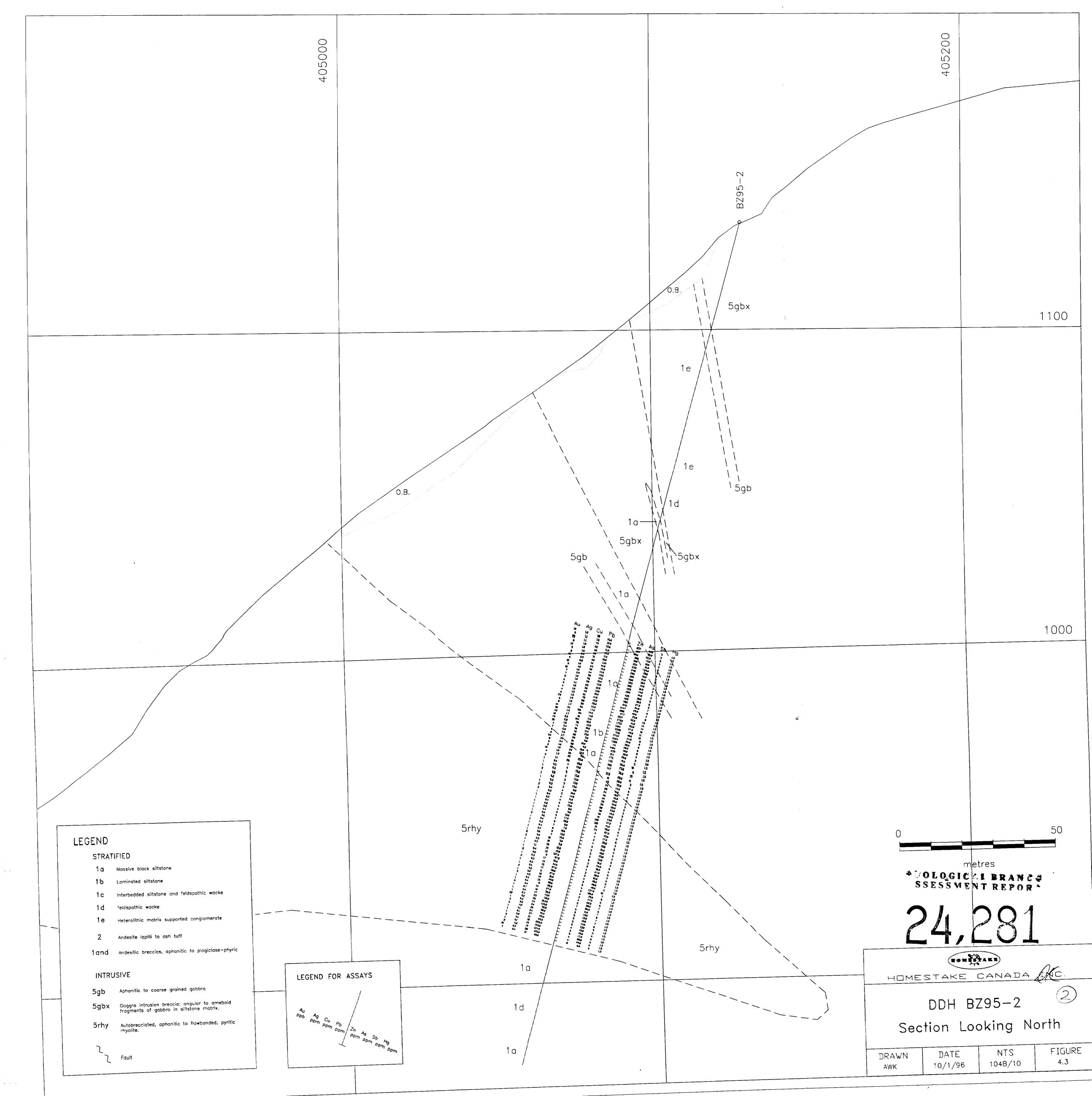
KEITH M. PATTERSON, B.A.Sc.

STATEMENT OF QUALIFICATIONS

I, Christopher Baldys, P. Eng., of 20699 - 120 B Avenue #13, Maple Ridge. BC, certifies that:

- (i) I am a graduate of Academy of Mining and Metallurgy in Cracow, with a Magister Degree in Engineering in Mining Geology, 1980.
- (ii) 1 am a member of Geological Association of Canada and the Association of Professional Engineers and Geoscientists of British Columbia.
- (iii) I have worked for 3 years in mining geology in Poland and for 9 years in exploration and mining in North American Cordillera.

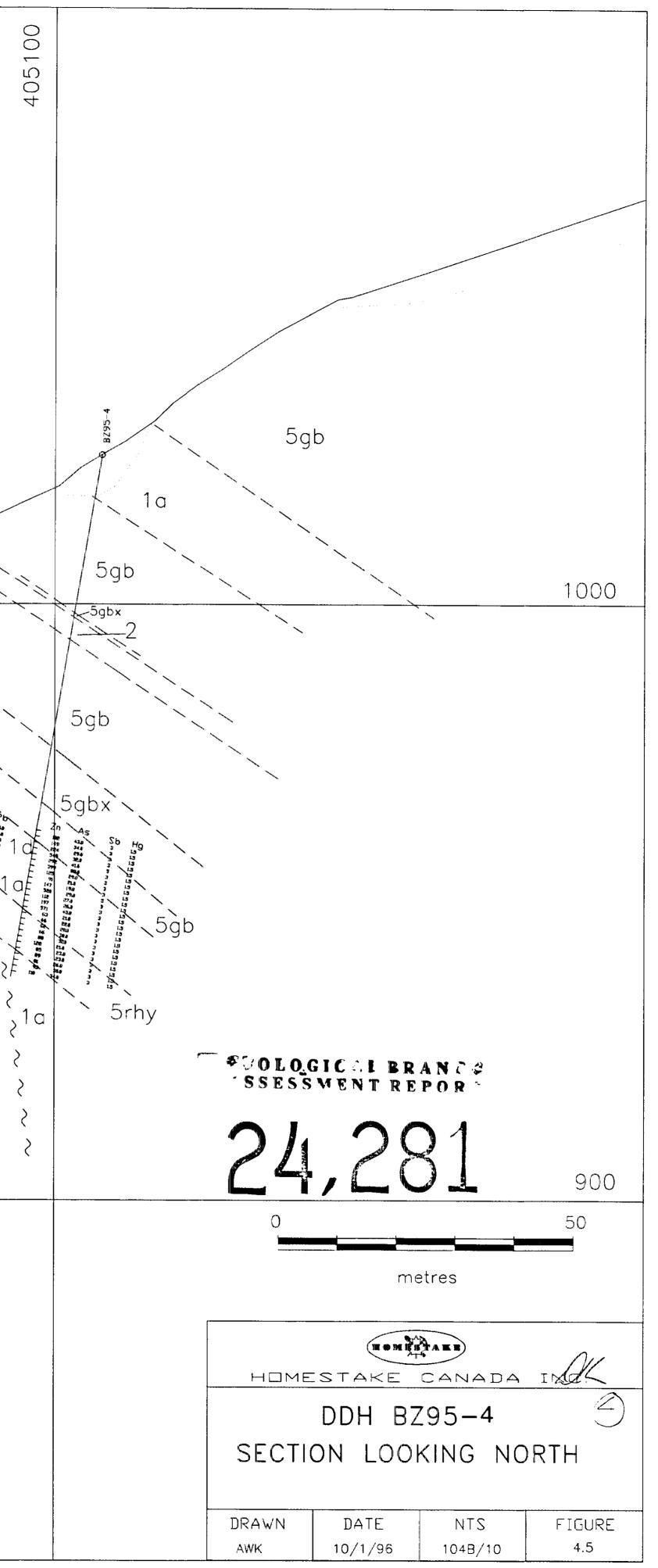

	00	
	405000	
	4	
		-
Over Burden		5rhy
, ,		
		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
LEGEND		
STRATIFIED 10 Massive black siltstone		5
1b Laminated siltstone		1e
1 cInterbedded siltstone and feldspathic wacke1 dfeldspathic wacke		
1e Heterolithic matrix supported conglomerate		5gbx
2 Andesite Iapilli to ash tuff		
1 and Andesitic breccias, aphanitic to plagiclase-phyric		
INTRUSIVE		
5gb Aphanitic to coarse grained gabbro		
5gbx Gaggro intrusion breccia: angular to ameboid fragments of gabbro in siltstone matrix.		
5rhy Autobrecciated, aphanitic to flowbanded, pyritic rhyolite.		
کے Fault		

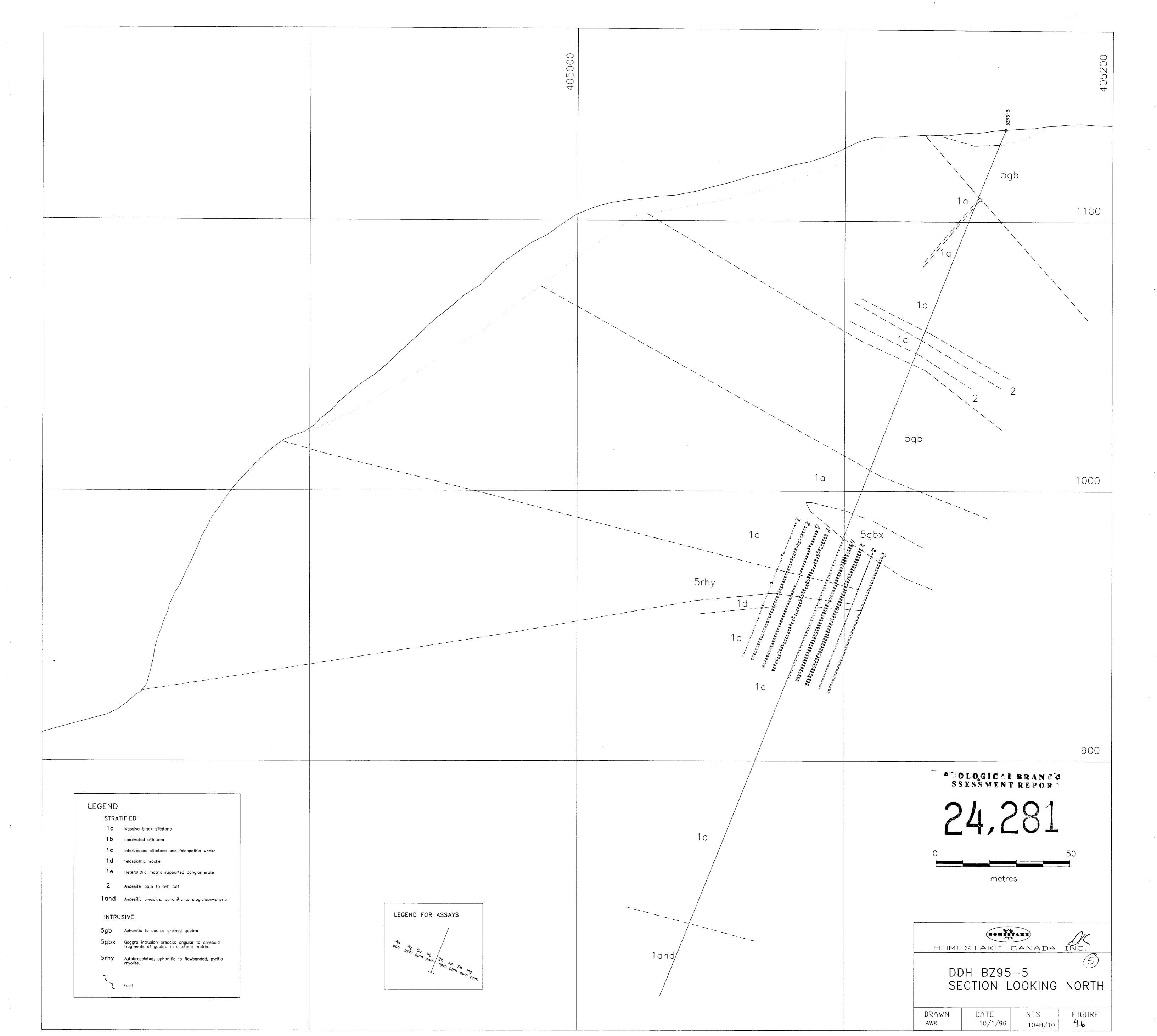

• • *

- -


- •

• • •





		Г. 			í _X i
					, ``
					(
					۲
					٢
					1
					$\langle \cdot \rangle$
					``````````````````````````````````````
					$\langle$
					< < < <
					< ~ ~ ~
					аталинаци Р Сасбасае ор Сасбасае ор
					инини и и и и и и и и и и и и и и и и и
					анскоескейскеесе об соб соб соб соб соб соб соб соб соб
					теленектеление с с с с с с с с с с с с с с с с с с с
					ананананананананананананананананананан
					анынынынын алагынын а арынынынынын алагынын br>арынынын алагынын ала
					А с на
					А
					А
					Ар цани в полиция и на
LEGEND					Ан таки по
	TIFIED				
	TIFIED Massive black siltstone				
STRA					
STRA 1 a	Massive black siltstone Laminated siltstone	ocke			
STRA 1a 1b 1c	Massive black siltstone Laminated siltstone Interbedded siltstone and feldspathic wo	ocke			
STRA 1a 1b 1c 1d	Massive black siltstone Laminated siltstone Interbedded siltstone and feldspathic wa feldspathic wacke				
STRA 1a 1b 1c	Massive black siltstone Laminated siltstone Interbedded siltstone and feldspathic wo				
STRA 1a 1b 1c 1d	Massive black siltstone Laminated siltstone Interbedded siltstone and feldspathic wa feldspathic wacke				
STRA 1 a 1 b 1 c 1 d 1 e 2	Massive black siltstone Laminated siltstone Interbedded siltstone and feldspathic wo feldspathic wacke Heterolithic matrix supported conglomer Andesite lapilli to ash tuff	rote			
STRA 1a 1b 1c 1d 1e	Massive black siltstone Laminated siltstone Interbedded siltstone and feldspathic wa feldspathic wacke Heterolithic matrix supported conglomer	rote			
STRA 1a 1b 1c 1d 1e 2 1and	Massive black siltstone Laminated siltstone Interbedded siltstone and feldspathic wo feldspathic wacke Heterolithic matrix supported conglomer Andesite Iapilli to ash tuff Andesitic breccias, aphanitic to plagiclas	rote			
STRA 1a 1b 1c 1d 1e 2 1and INTRI	Massive black siltstone Laminated siltstone Interbedded siltstone and feldspathic wo feldspathic wacke Heterolithic matrix supported conglomer Andesite Iapilli to ash tuff Andesitic breccias, aphanitic to plagiclas	rote	LEGEND FOR ASSAY		
STRA 1a 1b 1c 1d 1e 2 1and	Massive black siltstone Laminated siltstone Interbedded siltstone and feldspathic wo feldspathic wacke Heterolithic matrix supported conglomer Andesite Iapilli to ash tuff Andesitic breccias, aphanitic to plagiclas	rote	LEGEND FOR ASSAY		
STRA 1a 1b 1c 1d 1e 2 1and INTRI	Massive black siltstone Laminated siltstone Interbedded siltstone and feldspathic wo feldspathic wacke Heterolithic matrix supported conglomer Andesite lapilli to ash tuff Andesitic breccias, aphanitic to plagiclas JSIVE Aphanitic to coarse grained gabbro	rote sephyric		ΥS	
STRA 1a 1b 1c 1d 1e 2 1and INTRU 5gb 5gbx	Massive black siltstone Laminated siltstone Interbedded siltstone and feldspathic wo feldspathic wacke Heterolithic matrix supported conglomer Andesite lapilli to ash tuff Andesitic breccias, aphanitic to plagiclas JSIVE Aphanitic to coarse grained gabbro Gaggro intrusion breccia: angular to an fragments of gabbro in siltstone matrix	rote sephyric neboid		ΥS	
STRA 1a 1b 1c 1d 1e 2 1and INTRU 5gb	Massive black siltstone Laminated siltstone Interbedded siltstone and feldspathic wo feldspathic wacke Heterolithic matrix supported conglomer Andesite lapilli to ash tuff Andesitic breccias, aphanitic to plagiclas JSIVE Aphanitic to coarse grained gabbro Gaggro intrusion breccia: angular to an fragments of gabbro in siltstone matrix	rote sephyric neboid		ΥS	
STRA 1a 1b 1c 1d 1e 2 1and INTRU 5gb 5gbx	Massive black siltstone Laminated siltstone Interbedded siltstone and feldspathic wo feldspathic wacke Heterolithic matrix supported conglomer Andesite lapilli to ash tuff Andesitic breccias, aphanitic to plagiclas JSIVE Aphanitic to coarse grained gabbro	rote sephyric neboid		ΥS	
STRA 1a 1b 1c 1d 1e 2 1and INTRU 5gb 5gbx	Massive black siltstone Laminated siltstone Interbedded siltstone and feldspathic wo feldspathic wacke Heterolithic matrix supported conglomer Andesite lapilli to ash tuff Andesitic breccias, aphanitic to plagiclas JSIVE Aphanitic to coarse grained gabbro Gaggro intrusion breccia: angular to an fragments of gabbro in siltstone matrix	rote sephyric neboid	4	ΥS	



