APPENDIX I

Diamond Drill Summary

dow mo.	start DATE	$\begin{gathered} \text { FINISH } \\ \text { DATE } \end{gathered}$	wosged DATL	Locatiom	clatm mas SHEET	monthimg	eastimg	MOA 120 PRONECT	$\begin{aligned} & \text { vent } \\ & \text { PRONECT } \end{aligned}$	elevation	azimuth	dip	Lemotm	sntre	rnom	to	murn	Oz/ton	cu	cost	comenems
*S-1	7/21/95	1/23/93	1/23/9s	spornar 9231cm		35333.27	44191.21			2075.93	190.60	-60.00	140.21								
														100833	34.74	14.90	0.20	Sppe 2	${ }^{277 p m}$		seapmilinite
														100832	44.30	44.50	0.20	127 PB	318 PM		listuniti/SERPEMTIMITE
														1877181	¢1.10	-81.70	0.50 0.00	0.001 0.072	0.17 0.30		Oft VEIM
														147753	${ }_{62} 6.50$	6.62	0.12	0.102 0.123	4.22		ota vein
														147754	62.62	6s. 40	2.70	0.013	0.29		oft vilil
														11975s3	${ }^{65} 6.60$	${ }_{66} 6.10$	${ }^{0.70}$	-0.037	1.62		Otz velir
														167756 147757	66.10 66.50	66.50 67.50	0.40 1.00	0.072 0.011	-0.35		oti Veik
														167759	67.50	60.s0	1.00	0.031	0.38		orz virim
														1477s9	61.50	69.80	0.70	0.299	1.16		OTz VEIM
															61.70	69.20	7.s0	0.055	0.30		
														100034	69.20	69.50	0.30 1.30		0.01 0.06		REXGOUNT PORPMYMY
														10063s	78.30 123.00	79.60		-0.002	-2.06		OTE VEIM
														100836	126.50	126.70	0	7 pra	0.02		Gantoolorite pyas
														100837	136.30	136.50	0.20	49 Pr b	0.06		gremacte
45-2	1/24/93	7/26/9s	7/26/95	SPOENE 92316m		38333.27	46191.21			2075.93	191.00	-73.00	120.10								
														147761 100038	24.10 33.60	29.30 33.00	1.20 0.20	${ }^{0.001}$	0.01 17 Pr		silicified magilita
														100039	S0.90	\$1.30	- 0.20	${ }_{0}$			otz veim a stes.
														100040	49.00	49.30	0.30	3pre 1	17 Pm		I-s cramodioniti
														147762	63.40 59.9	${ }^{63.70}$	0.30	0.014	0.15		I-S CRNMOIDITITE
														100041 100042	69.30 79.90	6.50 00.00	0.20 0.10	${ }_{0}^{118 p r e s}$	${ }^{1018 \%}$		SENPENTIMITE
														167763	10.10	10.10	0.70	0.006	0.14		otz vilim
														167764 147765	10.10 11.00	11.10 2.30	1.00 0.50 0	0	1.17 0.34		OTz VEIM
														147765 16776	11.10 02.30	32.30 33.20	0.50 0.90	-0.034	0.54 2.95		otit velim
														167767	33.20	4.10	0.90	0.006	0.50		otz vein
														147769	14.10	195.10	1.00	0.005	0.14		ott veill
														147769 167710	15.10 16.20	66.20 77.20	1.10 1.00	-0.032	1.37 1.14 14		Otz VEIN
															10.00	03.20	2.40	0.124	1.93		sumanay
														14777	97.20	$0 \cdot 120$	2.00	4.096	1.90		otr veil
														167772 147773	18.20 9.20	99.20 90.20	1.00 1.00	0.011	0.76 3.09		ort velin
														147775	90.20	${ }_{90.40} 0$	1.60	${ }_{0}^{0.003}$	1.39		OTt veill
														147776	90.10	91.20	0.40				otz vein
														14777	11.20 93	22.00	0.00	0.002	0.09 2.06		ors VEIII
														116779	93.00 94.00	94.00	1.00 1.00	-	${ }^{2.06}$		Otz veir
															93.00	33.00	2.00	0.276	1.49		sumpur
															00.10	93.00	14.90	0.276	1.49		sumeny
														14770	110.00	110.40	0.40	0.006	0.30		ote veim
-5-3	7/27/9s	1/30/8s	7/20/93	spoxare s23icm		33338.09	46220.10			2100.47	205.00	-3s.00	110.34								
														167711 167702	51.02 64.20	53.00 65.20	1.10 1.00	0.004 0.003	0.09 0.01		Otz vein moany
														100043	64.30	4.30	0.20	2sprs 3	sippm		poxphy
														147163	6.48 69.48	6.27 68.	0	0.002	${ }^{0.03}$		ort vilim
														187714	67.20 72.70	60.50 73.15	1.30 0.45	0	- 0.018		OTz VEIM
														147706	74.56	75.04	1.20	0.001	0.02		Oft veif
														118717	76.20	77.20	1.00	0.004	-0.08		OTz VIM
														16714 14779	77.20 78.20	79.22 79.20	1.00 1.00	0	0.60 0.51		Oti VEIM
														187790	79.20	10.20	1.00	0.065	0.16		otz veim
														167191	00.20	11.20	1.00	0.059	0.63		ors vein
														167792 147793	11.20 02.20	12.20 3.20	1.00 1.00	-0.074	0.64		OTt VEIN
														187196	13.20	44.20	1.00	0.001	0.42		otz veim
														147195	06.20	15.20	1.00	0.017	0.54		otz vein
														147796	15.20 77.20	16.50 79.20	1.00 2.00	-0.056	1.92		Ofz veim
														147797	-6.30	17.50	1.00	0.007	0.40		otr veim
		.												14779% 18799	17.50	18.50 98.30	1.00 1.00	0.003 0.014	0.14 0.25		OTz VEIM
		-													76.20	99.30	13.30	0.060	0.65		sumevay
														$\begin{aligned} & 100844 \\ & 147000 \end{aligned}$	$\begin{aligned} & 92.70 \\ & 97.12 \end{aligned}$	97.32	0.20 0.20	4Prs	177 PM 0.76		HEALED SHEAR EONE

00m mo.	stamt ontt	$\begin{aligned} & \text { Funsen } \\ & \text { DATr } \end{aligned}$	$\begin{aligned} & \text { LOEGED } \\ & \text { DAFE } \end{aligned}$	Locatiom	clatm maf zacet	montutwe	enstime	Montsom pmorict	$\begin{aligned} & \text { veret } \\ & \text { pmarct } \end{aligned}$	elevartom	nimetn	0 \%	Lemata	smele	rnom	To	midn	$08 / \mathrm{rom}$	cu	cost	comerrs
ss-4	7/30/95	7/31/95	7/31/93	arcane sisicm		38330.09	44220.10			2140.47	205.00	-76.00	137.80								
														$\begin{aligned} & 100002 \\ & 204003 \end{aligned}$	\$5.00	${ }_{66}^{6600}$	1.00	${ }_{0}^{0.001}$			orlicifird nacillite 01 iticifito mactlitite
														100004	67.00	60.00	1.00	0.001	${ }_{06 p p}$		
														100008	60.00	89.00	1.00	0.001	\bigcirc		S1LICIFi80 Macilitit
														20a00s	98.00	4.45	0.150 0	0.001	${ }^{18}$		
														200048	75.40	l2.20	0.101 1.00	${ }^{108 P}$	${ }_{\text {44ppe }}^{0.02}$		Maciluite
														104009	70.70	19.10	0.50	0.001	47ppe		macticite
														${ }^{1080098}$	92.00 93.08	93.80	1.00 1.00	0.421 1.141 1	2.98 4.96		Orz. V11/
														100009	93.00	${ }_{98.00}^{980}$	1.00 1.00	${ }_{\text {1.141 }}^{1.374}$	4.26		Ofre. Velin
														100112	95.00	96.30	0.50	0.027	${ }^{9.32}$		Or2, vil
						.									92.01	95.00	3.00	0.45	3.07		stmenar
Ss-s	0/1/9s	0/3/95	1/3/9s	spowne prsicie		38365.29	10139.60			2199.09	166.00	-45.00	06.71				0.15				ashmonzo moiz
														100014	69.70	70.35	0.65	0.002	0.01		sakcciate oit veim
														100915 100016	70.48 71.11	72.75	0.15 0.31 0.06	0.002 0.002	0.02 0.02		colonite Mith ofr atra. colomite mith oti stas.
*s-6	*/3/ss	e/6/9s	0/6/95	apcoine 9231 cm		3s36s.29	\$4139.60			2198.89	166.00	- 80.00	68.13								ammpomid mole
$x-1$	1/6/8s	1/9/95	0/9/3s	spower mejicm		38362.09	44137.04			2198.00	198.00	-50.00	110.94								
														180019	72.00 02.00	30.00	0.20 1.00	0.003	3.27		oti veir
														100019	05. 50	-5.60	0.10	. 0.02	-.01		ote vir
														100020	00.00	-1.20	0.10	0.003	0.07		ori vilir
														100021	33.30 33.40	93.60	0.30	0.004	${ }^{0.30}$		OTI VEIII
														200022 10023	93.00	\$4.00	1.00	0.013 0.001	3.987		otr velir
														100924	27.04	90.44	0. 60	0.001	0.02		ote verir
														100232	90. 90	\$9.30	0.40	0.495	${ }^{1.17}$		OrI VEIII
														100027	109.30	100.60	1.30	- 0.211	3.22 3.30		OTr velir
															90.90	100.60	1.70	0.163	0.99		sumenat
Ss-0	0/10/93	-/12/93	-/13/9s	spowne mesice		33363.72	14139.60			2199.05	190.00	-70.00	133.60								
														200929	23.40 37.00	23.60 57.20		$140 \mathrm{pph}$	${ }_{15 \mathrm{c}}^{0.02}$		1-D senfertiaite aEDOCONIT PCOPMTAY
														108620	113.38	113.70			22ppm		necililit mith coin .ote.stre
										.		\therefore		100830	151.80	131.70	0.20	3ppob	4.ppe		sicifito amethite
93-9	0/13/9s	0/17/9s	0/10/9s	spowere gisicm		35359.05	44136.00			2198.00	166.00	-53.00	140.50								
														100150	103.90	104.40	1.30	0.656	${ }^{2} .40$		ofi vir
														147650	105.70 106.20	106.20 106.70	0.s0	0.004	0.26 0.02		ors velu
														147662	106. 70	107.30	0.60	0.003	0.02		oft vill
														147663	107.30	107.40	0.30	0.001	0.06		ors velir
														147664	107.60 105.10	108.30 100.30	0.07 2.60	0.023	3.67 1.06		orz Veily
														147663	100.30	109.30	1.00	0.007	0.06		ore vein
														147666	109.30	110.30	1.00	0.001	0.02		CRMITIEED CNERT,
														10766	110.30 111.30	111.10 112.20	0.00	0.011	0.06		RUseli coionite / Chent
														147669	113.80	114.30	0.30	0.001	0.31		otz veill clay covas
														147670	120.40	${ }^{121.40}$	1.00	0.004	0.26		
														147671 147612	121.40 122.30	122.30	1.10 1.00	0.004 0.001	0.09 1.06		ors VEIL
														141673	123.50	124.30	1.00	0.003	0.22		OTx VEIII
														$1 \begin{aligned} & 147674 \\ & 147675\end{aligned}$	124.50 125.90	123.50	1.00 1.00	0.042	0.11 0.15		ort velm
														147676	126.50	127.59	1.00	0.043	0.08		ort velu
														147677	127.50	128.30	1.00	0.002	0.05		ars Velin
														141679	129.50 129	130.50	1.00	0.003	0.22		OTz visin
														147600 147601	130.50 131.50 130	131.51	1.00 1.00	0.003	0.30 0.60		OTP VEIN OTz VEIM
														167661 14762	131.50	132.50 132.00	1.00	- 0.109	2.42		OTr Verim
															120.40	132.00	12.40	0.030	0.42		sumuay

APPENDIX II

Drill Logs and Legend

LEGEND

Rock Types

PRISMACOL- OR NUMBER	
915	(Q) QUARTZ
916	(B,F,~,~~,~~~) BRECCIA, FAULT, weak,moderate, intense fault
934 (313)	(T) LISTWANITE, (TALC-CHLORITE-TREMOLITE-SCHIST,prior 95)
$925(383)$	(D) REXMOUNT PORPHYRY
929	(G) MISSION RIDGE PLUTON, GRANODIORITE, QUARTZ
$948(341)$	(M) METAGREYWACKE
967 (335)	(A) ARGILLITE
$902(306)$	(L) LIMESTONE
$933(304)$	(C) CHERT
931	(S) SERPENTINITE
923	<0.100 opt.Au. (dotted)
	>0.200 opt.Au. (dark)

SYMBOL	IDENTIFIER	SYMBOL	IDENTIFIER
marip	mariposite	po	pyrrhotite
list	listwanite	py	pyrite
chl	chlorite	cpy	chalcopyrite
t	talc	plag	plagioclase
mag	magnetite	qtz	quartz
c	graphite	carb	carbonate
ser	sericite	d	dolomite
bio	biotite	gndio	granodiorite
hbl	hornblende	Fe	iron
F	fault	jts	joints (fractures)
strs	stringers	bx	breccia
frac	fracture	frag	fragments
fol	foliation	TCA	to core axis
w, c	with	XLS	crystals
II	parallel to	frag	fragments
irreg	irregular		
1	light colour	w	weak intensity
med	medium colour	m	moderate intensity
d	dark colour	i	intense
		w $\sim m$	weak to moderate
f gr	fine grained	m~i	moderate to intense
med gr	medium grained	s	silicification
cr gr	coarse grained	d	dolomitization
		silica	silicification

DIAMOND DRILL RECORD
property Spokane - Rex Mt HOLE NO. $95-1$

DIP TEST		
	DEPTH	READING
OEORRECTEO		
460	-	-58

UT \qquad TOTAL DEPTH \qquad 140.21 m date begun Julyzilas azimuth 198°, EON 206° GRid location $333.27 \mathrm{~N} / 191 \mathrm{Z}$ E Date finished July $23 / 95$ inclination -60 , EDH -58° cross section $5+25 \mathrm{~W}$ date logged wi 24l95 collar elevation \qquad 2154.93 core size BO loges ar Mex Beronewsk;

DIAMOND DRILL RECORD

PROPERTY \qquad Rex

	DIP TEST	
	ANGLE	
DEPTH	READING	CORRECTED

UT
\qquad TOTAL DEPTH \qquad date begun \qquad
AZIMUTH \qquad grid location \qquad DATE FINISHED \qquad
INCLINATION \qquad cross section \qquad date logged \qquad
collar elevation \qquad core size \qquad LOGGED BY \qquad

DIAMOND DRILL RECORD

PROPERTY \qquad Rex Mt

	DIP TEST	
	ANGLE	
DEPTH	READING	CORRECTED

UTM

$$
\text { HOLE NO. } \quad 95-1
$$

\qquad TOTAL DEPTH \qquad date begun \qquad
AZIMUTH \qquad grid location \qquad DATE FINISHED \qquad
inclination \qquad cross section \qquad date logged \qquad
collar elevation \qquad CORE SIzE

SHEET NO. 3 of 8
\qquad
\qquad LogGed by \qquad

PROPERTY

	DIP TEST	
DEPTH	READING	CORRECTED

SHEET NO. 4 of 8 HOLE NO. $95-1$

UTM \qquad total DEPTH \qquad date begun \qquad
AZIMUTH \qquad bald location \qquad DATE FINISHED \qquad
inclination \qquad cross section \qquad DATE LOGGED \qquad collar elevation \qquad core size Logged by \qquad

DIAMOND DRILL RECORD

PROPERTY \qquad Rex Mt

DIP TEST		
DEPTH	READING	CORRECTED

UT

HOLE NO: \qquad

SHEET NO. 5 of 8
\qquad total depth \qquad date begun \qquad
AZIMUTH \qquad grid location \qquad DATE FINISHED \qquad
inclination \qquad cross section \qquad date logged
collar elevation \qquad core size \qquad logged by \qquad

\sim Rexmount Porphyry wk. slip

DIAMOND DRILL RECORD
PROPERTY \qquad Rex Mt

HOLE NO. \qquad $95-1$

SHEET NO. 6 of 8

	DIP TEST	
	ANGL	
DEPTH	READING	CORRECTED

UT \qquad TOTAL DEPTH \qquad date begun \qquad
AZIMUTH \qquad grid location \qquad DATE FINISHED \qquad
inclination \qquad cross section \qquad date logged \qquad
collar elevation \qquad core size \qquad LOGGED BY \qquad

DIAMOND DRILL RECORD
property Rex Mt.
HOLE NO. $95-1$
SHEET NO. 7 of 8

	DIP TEST	
	DELE	
DEPTH	READING	CORRECTED

USM \qquad TOTAL DEPTH \qquad DATE BEGUN \qquad AZIMUTH \qquad GRID LOCATION \qquad DATE FINISHED \qquad
INCLINATION \qquad CROSS SECTION \qquad date logged \qquad
collar elevation \qquad CORE SIZE \qquad LOGGED BY \qquad

DIAMOND DRILL RECORD

PROPERTY \qquad
DIP TEST

	DIP TEST	
	ANGLE	
DEPTH	READING	CORRECTED

UTM

HOLE NO. $95-1$
\qquad TOTAL DEPTH
AZIMUTH \qquad grid location

INCLINATION \qquad CROSS SECTION
COLLAR ELEVATION \qquad core size
\qquad DATE BEGUN \qquad
\qquad DATE FINISHED \qquad
\qquad Date logged \qquad
SHEET NO. 8 of 8
\qquad LOGGED BY \qquad

PROPERTY
HOLE NO. \qquad SHEET NO. \qquad Pencilof 9

	DIP TEST	
	AI	
DEPTH	READING	CORRECTED
120.1	190	311°
	-72	

USM \qquad TOTAL DEPTH \qquad 120.1 date begun duly 24/95 AZIMUTH \qquad grid location \qquad
 vulva 26 Sb inclination 73° \qquad date loges sly 24-26
collar elevation \qquad 2154.93 cross section $5+25$ logged by Alex Parenowski

DIAMOND DRILL RECORD
PROPERTY
HOLE NO: 95-2 :
SHEET NO. Page zaf 9

	DIP TEST	
DEPTH	AEADING	CORRECTEO

Crom	Th	${ }_{\text {Hidin }}^{\text {APp }}$	DESCRIPTİN	SAMPLE No.	From	T0	${ }_{\text {HPIOP }}^{\text {AP }}$	REC.		${ }_{\text {Oz/t }}$	ppm.	\%	
		\sim											
1			Acopes, breken- 4e, eminer stipltodt										
			25.6-26.3-2sobeve										
26,3	34.6		Granodiorite (small Araillt interbeds os nof	2)									
			intenske, altered premedraite - gto:										
			crermy erex, med grained, ${ }_{\text {doin }}$ s										
1				197761	28.1	29.3	1.2			<0.502	104	0.01	
			28.1-29.3 Argillite; int silic N, coddesh										
			colove; wovy bends: 10% pe py										
			30.0-30.6 e\% above but less sulphiles 1\%										
			31.3-31.5 is above										
			$31.6-31.8$ as dhove										
			$32.2-33.6$-3s depere; lo ker centoct 45										
			TCA: A ${ }^{\text {N }}$										
			33.6-33.8 wam si gindiod	100838	33.6	33.8	0.2		1		17		

DIAMOND DRILL RECORD

PROPERTY \qquad

	PIP TEST	
	ANGLE	
DEPTH	READING	CORRECTED

UT

HOLE NO. \qquad

SHEET NO. Age 3 of 9
\qquad total Depth \qquad Date begun \qquad
AZIMUTH \qquad gait location \qquad DATE FINISHED \qquad
inclination \qquad cross section \qquad date logged \qquad
collar elevation \qquad CORE SIZE \qquad LOGEED by \qquad

$$
\begin{aligned}
& 50.9-60.3 \text { vIz Wei sirs copy po } \\
& 49.0-49.3 ? ~ i . s . ~ g r n d i a r i t o ~
\end{aligned}
$$

DIAMOND DRILL RECORD
PROPERTY
HOLE NO: 95-Z
SHEET NO. Page 4 of 9

	DIP TEST	
DEPTH	READING	CORRECTED

DIAMOND DRILL RECORD
PROPERTY
HOLE NO: 95-2
SHEET NO. Page 5 of 9

	DIP TEST	
	ANGLE	
	DEPTH	READ
		CORRECTED

USM \qquad TOTAL DEPTH \qquad DATE BEGUN \qquad
AZIMUTH \qquad GRID LOCATION \qquad DATE FINISHED \qquad
INCLINATION \qquad CROSS SECTION \qquad Date logged \qquad
COLLAR ELEVATION \qquad CORE SIZE \qquad LOGGED BY \qquad

PROPERTY
DIAMOND DRILL RECORD
HOLE NO: 95-2.

	DIP TEST	
	ANGLE	
DEPTH	READING	CORRECTED

UT \qquad TOTAL DEPTH \qquad date begun \qquad
AZIMUTH \qquad gRID location \qquad DATE FINISHED \qquad
inclination \qquad cross section \qquad date logged \qquad
collar elevation \qquad CORE SIZE \qquad Logged by \qquad

DIAMOND DRILL RECORD
PROPERTY
HOLE NO: $95-2$
SHEET NO. Page 70 P 9

	DIP TESI	
	ANGE	
DEPTH	READING	CORRECTEO

date becun \qquad DATE FINISHED \qquad
date logged \qquad
collar elevation CORE SIZE Logeed by \qquad Gu:AC

$\begin{aligned} & \mathrm{OEP} \\ & \mathrm{EROM} \end{aligned}$	$\frac{1 \mathrm{IH}}{10}$	$\begin{aligned} & \text { APP } \\ & \text { WIDTH } \end{aligned}$	DESCRIPTION	SAMPLE NO.	FROM	10	WIDTH.	REC.	$p_{p b_{n}}^{A v o z / t}$		ppm. ${ }^{\text {cu. }}$ \%		A
			86. $2-87.2$ 5\% sulptides	147771	87.2	88.2	1.0		5272	0.098	18980	1.80	0.76
			87.2-88,2 5\% sulphedes	147772	88.2	89.2	1.0		20037	0.011	7554	0.76	0.30
			88.2-89.2 5% sulabiles	147773	89.2	90.3	1.0		5674	0.159	30934	3.09	d.35
			89.2-90.2 5\% sulphdes	147274	90.2	90.8	0.6		4882	0.083	13895	1.39	0.52
			90.2-90.8 5.\% solphides	197775	90.8	91.2	0.4			$\therefore \cdots$			
		\sim	90. 8 rubble loult slip	147276	91.2	22.0	0.8		12855	0.022	887	0.09	0.02
			20.8-91.2 21% sulatele	197277	92.0	93.0	1.0		1078	0.089	3106	0.31	0.13
			91.2-92.0 silices basted folc-trendite										
			ate carb serpentorile										
			28.0-93.0 ptrun. inclusions of										
			Lesturdnits.					2					
			93.0-94.0- 10% sulahide (93.2-97.050\%)	197778	93.0	94.0	1.0		1769	0.339	20562	2.06	0.80
			94.0-95.0-10\% sulphide	147779	94.0	95.0	1.0		1250	Q.212	9083	0.91	0.37
			lower contuct $01 m$ bx gte vn 90'rca	Totala	93.0	95.0	2.0			0.276		1.49	
			Mineralogy		\star	Totols	Cnote	one	s2mpf	mis	(2)		
			massive sulphide sections (82.4-82.5)				14.9			0.103		1.14	
			contrins irrequtie stosleletches of pO .	32	30.1	Ca	: Auc	ratio					
			spy 30\% 10%; The white a d oerasic										
			gto va sppears to hove been shottered										

DIAMOND DRILL RECORD HOLE NO: 95-2.
 SHEET NO. Pege 8 of 9

	DIP TEST	
	REPTH	
	READING	CORRECTEO

CB09	${ }^{\text {TH }}$	${ }^{\text {app }}$ Hioti	DESCAIPTION	SAMPLE NO.	from	T0	${ }_{\text {midit }}^{\text {APp }}$	Rec.	ppt. ${ }^{\text {a }}$	oz/t	ppm.	
			and sijected will sulphides, the highect									
			arade antocid centoins dattok-chlocite									
			marinosite-inclusceins i stos, ws well									
			these eoges are assoe slips loults. (1isi)									
			Moxbe celitel to fterures/extension in									
			the ole vein. Lewer \% sulohole									
			sections occur in a whiter atz									
95.0	99.0		Aroillite									
			upper conloct go'rca; Li-silic 4									
			baicline gto-cirb sto, $60^{\circ} 30^{\circ}$ U<4									
			some preen atz-curd poutches; occasonol									
			reddisi hve; $: 1 \%$ pe px									
990	108.3		Rex mount Pernhwcy									
			l.gezz, spectled slack, f-med grainel;									
			$\leq 2 \mathrm{am}^{2}$ alag phenoceysts ; nafies 361									
			aftered to chl bio: - lower contod									
			90. TCA									

DIAMOND DRILL RECORD
PROPERTY SPOKane-Rex Mt.

$$
\text { HOLE NO, } 95-3
$$

SHEET NO. L of 14

	DIP TEST		
	ANGLE		
DEPTH	READING	CORRECTED	
360	41	49°	

UTM \qquad total depth \qquad
 inclination $-55^{\circ}-49$ cross section $4+75 \mathrm{~W} / 5+00 \mathrm{~W}$ date logged july 28 collar elevation \qquad 2140.47 core size $B Q$ Logged by F Moyle,

DIAMOND DRILL RECORD
PROPERTY
HOLE NO. 95.3.
SHEET NO. 2 of 14

	DIP TEST		
	ANGLE		
DEPTH	READING	CORRECTED	

UTM \qquad TOTAL DEPTH \qquad date begun \qquad
AZIMUTH \qquad GRID LOCATION \qquad Date finished \qquad
inclination \qquad Cross section \qquad date logged
collar elevation \qquad CORE SIZE \qquad Logged by \qquad

DIAMOND DRILL RECORD
PROPERTY

	DIP TEST		
	ANGLE		
DEPTH	READING	CORRECTED	

HOLE NO. \qquad 95-3 TOTAL DEPTH \qquad date begun \qquad
AZIMUTH \qquad grid location \qquad DATE FINISHED \qquad
INCLINATION \qquad CROSS SECTION \qquad date logged
collar elevation \qquad core size

SHEET NO. 3 of 14 LOGGED BY \qquad

DIAMOND DRILL RECORD
PROPERTY \qquad

	DIP TEST		
	ANGLE		
DEPTH	READING	CORRECTED	

HOLE NO. \qquad 95.3 total depth \qquad date begun \qquad
UTM \qquad DATE FINISHED \qquad
AZIMUTH \qquad grid location \qquad
inclination \qquad cross section \qquad date logged
collar elevation \qquad core size

DIAMOND DRILL RECORD
PROPERTY \qquad

	DIP TEST	
	ANGLE	
DEPTH	READING	CORRECTED

HOLE NO. 95.3

UTM \qquad total depth

AZIMUTH \qquad grid location
inclination \qquad cross section
collar elevation \qquad CORE SIZE
\qquad date begun \qquad
\qquad DATE FINISHED \qquad
\qquad DATE LOGGED \qquad
SHEET NO. 5 of 14
\qquad LOGGED by \qquad

DIAMOND DRILL RECORD

PROPERTY

	DIP TEST		
	ANGLE		
DEPTH	READING	CORRECTED	

HOLE NO. \qquad

SHEET NO. 6 of 14

UTM \qquad TOTAL DEPTH \qquad DATE BEGUN \qquad
AZIMUTH \qquad GRID LOCATION \qquad DATE FINISHED \qquad
INCLINATION \qquad CROSS SECTION \qquad DATE LOGGED
collar elevation \qquad CORE SIzE \qquad LOGGED BY \qquad

DIAMOND DRILL RECORD
PROPERTY
HOLE NO. \qquad 95-3.

SHEET NO. 8 of 14

	DIP TEST		
	ANGLE		
DEPTH	READING	CORRECTED	

UTM \qquad TOTAL DEPTH \qquad DATE BEGUN \qquad
AZIMUTH \qquad GRID LOCATION \qquad DATE FINISHED \qquad
INCLINATION \qquad CROSS SECTION \qquad DATE LOGGED \qquad
COLLAR ELEVATION \qquad CORE SIZE \qquad LOGGED BY \qquad

> DIAMOND DRILL RECORD HOLE NO, $95-3$

PROPERTY
SHEET NO. 9 of 14

OIP TEST		
DEPTH	READING	CORRECTED

UTM	total DEPTH	date begun
AZIMUTH	ghid location	DATE FINISHED
InClination	CROSS SECTION	date logged
collar elevation	CORE SIZE	LOGGED BY

$\begin{aligned} & \text { DE5 } \\ & \hline \text { EROM } \end{aligned}$	TH	${ }_{\text {che }}^{\text {APP }}$	DESCRIPTION	SAMPLE No.	From	то	${ }_{\text {APPP }}^{\text {APIH }}$	REC.	ppb.	\% $2 / 2$	ppm. ${ }^{\text {c }}$	\%
73.15	74.56	1.41	kerniont porplery - 1idt ernsh axy									
			iemxicon clastent arillite m/ Uliss.									
			2ytcpy at 73.76-74.06									
			wif Fe stained fractures al $60^{\circ} \mathrm{tca}$									
24.56	75.84	1.24	Q 2 veil - milk, wht /light areysh wht									
		\approx	74.86-75.8r - poor recovery									
			small gtL frays.									
			tr pyi rubble	147786	74.56	75.84	1.28			0.01	176	0.02
			\rightarrow, \rightarrow, ruble									
7504	15.94	0.10	faull gonge - hiolil chlaritized stong									
		\approx	/ tale and F Fue ar									
			1									
769	76.20	0.26	frajont. .i									
76.20	76.30	2. 10	Heald atz (raetwe - incilled w/									
		\sim	chlorite /tale -trace py									

DIAMOND DRILL RECORD

 HOLE NO: 953 .SHEET NO. 10 of 14

DIP TEST		
	ANGLE	
DEPTH	READING	CORRECTED

$\begin{aligned} & \mathrm{DEP} \\ & \hline \mathrm{EROM} \end{aligned}$	Tit	$\begin{aligned} & \text { APP } \\ & \text { WIDTH } \end{aligned}$	DESCRIPTION	SAMPLE NO.	FROM	то	AIDTH	REC.	ppb. ${ }^{\text {A }}$	${ }^{\text {Au. }}$	ppm. ${ }^{\text {c }}$		
6.30	76.60	0.30	Sheor zore w/contact at $g+2$ vein										
			at 60° tea - verr 2nc Ontairs										
			elilaite/tric clay										
76.60	78.94	2.34	Ot 2 vein - wht/ivey to milky wit										
			bishly fruatived n/ chlorice/twic										
			infilling fructove fress .	147787	76.20	77.20	1.00			0.04	993	0.09	
			ininuralization along fractreres und	147788	77.20	78.22	1.00			0.173	5980	0.60	0.7
			vortly diss cmivated dhru oul	147789	78,20	79. 28	1.00			0.236	5087	0.51	0.17
			cpypry	147790	79.20	80.20	1.00			0.065	8548	0.86	0.34
			Py/py	147791	40.20	81-20	1.00			0.055	8340	0.83	0.36
78.911	79.50	0.56	- highly cliluritied skar zacew/	147792	81.20	82.20	1.00			2.076	6376	0.64	0.29
			10 cm Aridlice at 19.0 em emitel	147793	- 22.20	' 83.20	100			0,029	8227	0.82	0.39
			- /2a finchatite	147294	83.20	84.20	1.00			0.007	4168	0.42	0.19
				147795	64.20	85.20				0.017	5399	0.54	0.32
79.50	65.10	5.6	Q+2 vein - whtish/ivei trilly	147796	85.20	86.50	1530			0.056	19207	1.92	0.77
					77.2	78.20	1.00			0.205		0.56	
			$\text { ciy } 1$								\square		
				ineral, 2	/	coid	dre	clure,	berma	thines	? pi	cis.tu	en.'
		\approx	83.62-84.22-poor veriviy broksmatz										

DIAMOND DRILL RECORD HOLE NO. 95.3 .

SHEET NO. Ll of 14
.

	DIP TEST		
	ANGLE		
DEPTH	READING	CORRECTED	

 TOTAL DEPTH \qquad date begun \qquad
AZIMUTH ___________ GRID LOCATION cross section DATE FINISHED \qquad inclination CORE SIZE date logged —_ COLLAR ELEVATION \qquad LOGGED BY \qquad

DIAMOND DRILL RECORD
PROPERTY
HOLE NO. \qquad 95.3.

SHEET NO. \qquad 12 of 14

	DIP TEST	
	ANGLE	
DEPTH	READING	CORRECTED

UT \qquad total depth \qquad date begun \qquad
AZIMUTH \qquad grid location \qquad DATE FINISHED \qquad
inclination \qquad cross section \qquad date logged \qquad
collar elevation \qquad CORE SIZE \qquad LOGGED BY \qquad

DIAMOND DRILL RECORD

PROPERTY
 HOLE NO. $95 \cdot 3$ SHEET NO. if of 14

	DIP TEST		
	ANGLE		
DEPTH	READING	CORRECTED	

	${ }_{\text {TH }}^{\text {TO }}$		Serot Descciiption	SAMPLE NO.	FROM	T0		REC.	ppb. $^{\text {A }}$	${ }_{0}^{\text {Auo }}$ ot	ppm. ${ }^{\text {c }}$	$\%$
99.20	110.34	11.14	Argitite - dark green u/ otz/									
99,20			corborate veinlets $\underline{\mathrm{O}}$ - w/ chloritic									
			alterations fracture sets at									
			$40^{\circ}+60^{\circ}+2 a \text {. }$									
			"Inusual rock - black meanetic,									
			fraclues witin non-mas silicen,									
			t-meder, d blush oroy. Note									
			the grduadioite is not migadic:-									
			str. sili", probatín a serpentuile									
			i-5,"ABoronewsk,									
			EOH									

DIAMOND DRILL RECORD

HOLE NO. 98.4
SHEET NO. 3 of 7

Fiomi	TH	${ }_{\text {Afor }}^{\text {Af }}$	DESCRIPTION	SAMPLE No.	From	T0	${ }_{\text {app }}^{\text {Apti }}$	REC.		${ }_{0}$	${ }^{\text {ppmm }}$	
z 7.90	78.20		Grandiovite broken up by small									
			atz veinlet stockwek - Altered by									
	-		chlorite - liant greyishigreen									
			tr-py $<$ py - Eragments of Argillite ufin									
78.20	79.10		Argillite intruded by fingers of Gramodion	\% 100808	78.70	79.10	0.50			0.001	47	
			- bropy-disseminated o alang fractures									
			Jopy-disseminated d alang frectres.									
79.10	79.50		Gramodiorite - Lower contact									:
			w/ Argillite at 35° tea									
			- calcite filled fracture									
79.50	71.16		Argillite - foln at 20° tla									
			Lower antact a/ gramediorite at 25 tma									
79.76	80.00		Gronodiorite 1 fractave $60^{\circ} \mathrm{tca}$									
			- calute filled - lower contaci of									
			Angillite at $20^{\circ} \mathrm{tea}$									

PROPERTY
HOLE NO. 95-4.

UTM \qquad total depth \qquad date begun \qquad
AzIMUTH \qquad grid location \qquad DATE FINISHED \qquad
inclination \qquad CRoss section \qquad date logged collar elevation \qquad CORE SIZE
\qquad
\qquad Loges by \qquad

SHEET NO. 4 of 7

OROM IH 1 APP

UTM \qquad AZIMUTH inclination
\qquad
C \quad GRIO LOCATION
Choss section
core size
total depth
\qquad

SHEET NO.
description
chloit mole maciposite and
chantic /talc altination, stra silic A
lower montact of igreen t black
at $60^{\circ} \mathrm{tra}$. $;$ uned iftz sheered/foliate
$\lambda=5$
$Q_{t 2}$ vei
2-37 - whigh cpy foy po ninereluetion sheore fracturicity talle allong upper cintecen 92.56-95.15

10081194.80
t vinedur kedlich stim silic 50
 (a) $2 Z Z=978$ chlar-, th-cech sheak

DIAMOND DRILL RECORD
PROPERTY
HOLE NO. 95-4.
SHEET NO. Pe 6 of 7

	DIP TEST	
DEPTH	READING	CORRECTED

TM \qquad TOTAL DEPTH \qquad date begun \qquad
AZIMUTH \qquad gain location \qquad date finished \qquad
inclination \qquad CROSS SECTION \qquad date logged \qquad
collar elevation \qquad core size. \qquad logged ap \qquad

PROPERTY

$$
\text { HOLE NO: } \quad 95+4
$$

SHEET NO. Page 7 of 7

	DIP TEST	
	ANE	
DEPTH	READING	CORRECTED

UTM \qquad TOTAL DEPTH \qquad Date gecin \qquad
AZIMUTH \qquad GRID LOCATION \qquad DATE FINISHED \qquad
inclination \qquad CROSS SECTION \qquad date logged \qquad COLLAR ELEVATION \qquad CORE SIZE \qquad LOGGED BY \qquad

PROPERTY REX MOUNTAIN

$$
\text { HOLE NO. } 95 \text { - } 5
$$

SHEET NO. 1 OF 6

TM \qquad TOTAL DEPTH \qquad 80.71 m DATE BEGUN Avg. 1/95
AZIMUTH \qquad grid location
\qquad CROSS SEction $565.29 \mathrm{~N} / 132.68 \mathrm{E}$ date finished $\frac{\text { Aug. } 3}{3}$ inclination - -45° 2199.89 core size Ba date logged Aug. 3 collar elevation \qquad
\qquad Logan by E. CONSTANTINESCU * MAGNETITE IN SERPEN..ntiE

-dIAMOND DRILL RECORD

Property Rex Mountain

	DIP TEST	
DEPTH	READING	CORRECTED

HOLE NO. 95-S.

UTM \qquad TOTAL DEPTH \qquad date begun \qquad
Azimuth \qquad grid location \qquad date finished \qquad
inclination \qquad cross section \qquad date logged \qquad
collar elevation \qquad CORE SIZE

SHEET NO. \qquad $20 f 6$
\qquad LOGGED BY \qquad

DIAMOND DRILL RECORD
PROPERTY REXMOUNTAM
HOLE NO. $95-5$
SHEET NO. 3 OF 6

	DIP TEST	
DEPTH	READING	CORRECTED

UTM \qquad TOTAL DEPTH \qquad date begun
AZIMUTH \qquad gRID LOCATION \qquad DATE FINISHED
inclination \qquad cross section \qquad date logged collar elevation \qquad CORE SIZE \qquad Logged by
\qquad
\qquad
\qquad
\qquad

DIAMOND DRILL RECORD
PROPERTY \qquad REX MOUTAN

	DIP TEST		
	ANGLE		
DEPTH	READING	CORRECTED	

HOLE NO. 95-5

SHEET NO. 4 of 6
\qquad date begun \qquad
Azimuth \qquad grid location \qquad DATE FINISHED \qquad
inclination \qquad cross section \qquad date logged
collar elevation \qquad core size \qquad LOGGED by \qquad

DIAMOND DRILL RECORD
PROPERTY REX MOUNTAIN
HOLE NO. 95-5
SHEET NO. 5 of 6

	DIP TEST	
	ANGLE	
DEPTH	READING	CORRECTED

UTM \qquad TOTAL DEPTH \qquad date begun \qquad
AZIMUTH \qquad GRID LOCATION \qquad DATE FINISHED \qquad
inclination \qquad crass section \qquad DATE LOGGED \qquad
collar elevation \qquad CORE SIZE \qquad LOGGED BY \qquad

DIAMOND DRILL RECORD

PROPERTY REX MOUNTACS

	DIP TEST
	ANGLE
DEPTH	READING
	CORRECTED

HOLE NO. 95-5.

UTM \qquad TOTAL DEPTH \qquad date begun \qquad
AZIMUTH \qquad grid location \qquad DATE FINISHED \qquad
INCLINATION \qquad CROSS SECTION \qquad DATE LOGGED \qquad collar elevation \qquad CORE SIZE LOGGED BY \qquad

DIFFICULT DRILNNG THEUSHEAR LONE:

DIAMOND DRILL RECORD

> PROPERTY REX MOUNTA/N

	DIP IEST	
OEPTH	aEading	CORRECTED
$214.0 N 4$	Lecters	citafisin
	\bigcirc	

ABANDONED
\qquad TOTAL DEPTH $6=.13^{k}$ date begun Aust 395
Azimuth lego inclination - - -0° COLLAR ELEVATION 2199.89 grio location 365 - $28 \mathrm{~N} / 139.68$ Edate finished Autio cross section $5+75 \mathrm{~W} / 5+50 \mathrm{~W}$ date logeo Aury 4 \& 6 - ASAMDONED Y SHEARNG AT 65.13 m (214 fect)

EGROM	-		description	SAMPLE No.	From	To	Mfori	REC.			${ }_{\text {ppm. }}{ }^{\text {cu. }} \%$	
0	6.71		OVERBURDON - NO RECOVERY									
6.71	26.19		SERPENTINITE - MEDUMTO DARK GREY Meel	,								
			ALiLCo Geein chacrie Alteram, Steong	r								
			$\rightarrow 6.71$ to 16.25 TILC CHLCRE SEHST, Stacint	\% (2151								
			SFe carb/Some Quarti), Awng Fractice Penales									
			Sthistosmy © $40^{\circ} \mathrm{tca}$. (feqctures Preallec)									
		\sim	$\rightarrow 7.53$ to 7.68 mirce $51 / \mathrm{ngong} \rightarrow 90 \%$ Perovion					90				
		\sim	$\rightarrow 8.85$ to 9.01 caay Shear zowe 20% reousey					90				
		\sim	$\rightarrow 9.17$ to 9.31 call Sheal zont 90% Recunery					90				
		\sim										
		$\sim \sim$	$\rightarrow 12.33$ te 12.50 Henurl) SHEnetD Chay					70				
			Hegring cyoute ~ 70% Reravery									
		\sim	-13.05-33.14 illinor Stikice Fwem Reciveer									
		\sim	-13.33 tor 42 clai Shear fun Reciviay									
		$\sim \sim$	- 13.67 tr 14.02 majol Shepe clay hosting					65				
			Brecaia $<65 \%$ Recorery									
			-14.3510/4.8C VERY BRCKEN THIN ANGULAR SHAROS									

DIAMOND DRILL RECORD
PROPERTY \qquad HOLE NO. 95-G

	DIP TEST	
	ANGLE	
DEPTH	READING	CORRECTED

USM \qquad total DEPTH \qquad $65 \cdot 13$ date begun Aug $3 / 95$
Azimuth \qquad 166° grid location \qquad DATE FINISHED Ang6/55 INCLINATION - - 60 CROSS SECTION $5+50$ Date logged collar elevation \qquad 2200 m core size $-\beta Q$ logged by E. Genasfontionsco
 17 riclure/m.

DIAMOND DRILL RECORD
PRUORRTY

HOLE NO. 95-6.

UTM \qquad TOTAL DEPTH
AzIMUTH \qquad grid location
INCLINATION \qquad CROSS SECTION collar elevation \qquad core size
\qquad date begun
\qquad DATE FINISHED
\qquad DATE LOGGED
SHEET. NO. \boldsymbol{P} ~ 5
\qquad
\qquad
\qquad
\qquad LOGCED By \qquad

	DIP TEST ${ }_{\text {ANGLE }}$	
OESTH	READING	CORRECTED
	-	

DI Nentorilt record
SHEET NO. 4 of 5

$\mathrm{E}_{\mathrm{EROM}}^{\mathrm{DOP}}$	$\xrightarrow{\text { PTH }}$	${ }_{\text {APPP }}^{\text {APP }}$	DESCRIPTION	SAMPLE NO.	From	to	MPP品	REC.\%	${ }^{\text {ppb. }}{ }^{\text {A }}$	${ }_{\text {oze }}$		
			-43.26 to 44.5 GRANITIZES SCRPEATINITE									
			U, B'COXEN UP.									
		~~	- 44.82 to 45.74 MODERATE SHCAK, CIAYRICN					78\%				
		$\sim \sim$	-47.22 to 48.0 Speong shegging Justy cial berca	A				50				
		\sim	- 49.45 to 49.67 Mince SLIP W AnKCCTEECCAY					85				
			14Le Cumaite sehist o $95^{\circ} \mathrm{cea}$									
			- 50.0 To 51.18 GRANODIORTE, HEAVIVSIUCIFIGT)									
			- 51.18 to 52.12 ThLE CHLORTE SEHLST Pa $90^{\circ} \mathrm{ka}$									
			- $52.12-10$ 5.28. Sucitied GRAMKDVRIT - 1% PYR									
			THNN QTZ STRMIzERS $010^{\circ} \mathrm{tCa}$ (2 mm Tmek)									
		-	- ET2. 8 ve 53.7 MAJOC SheArince Beoken up Prgsc	-s				44				
			Wh surenes, scme catt.									
		-	-									
54.38	ce, 31											
		\sim	$\rightarrow 53.25+5.54 .38$ BRECCIATE X(DEATIUATES)					890				
			SHEASTONE IN ASGELLITE HSTMMOCPRPMICD									
			TC THE PORPHYRY									

DIAMOND DRILL RECORD
PROPERTY
HOLE NO. 95-6.
SHEET NO. Sot

	DIP TEST	
	ANGLE	
DEPTH	READING	CORRECTED

USM \qquad TOTAL DEPTH \qquad date begun \qquad
Azimuth \qquad gat location \qquad DATE FINISHED \qquad
inclination \qquad CROSS SECTION \qquad date logged \qquad
collar elevation \qquad CORE SIZE \qquad LOGGED BY \qquad

DIAMOND DRILL RECORD

PROPERTY \qquad Rex Mountain

UTM

HOLE NO: 95-6 ABANDONED
\qquad TOTAL DEPTH \qquad $6=.13^{k}$ 166° grid location \qquad $365=29 \mathrm{~N} / 139.685$ date begun \qquad Auc.3 95 AZIMUTH \qquad -60° CROSS SECTION inclination \qquad $5+75 \mathrm{w} / 5+50 \mathrm{~W}$ date logged Aver 4\&6 collar elevation 2199.89 core size SQ \qquad loges by Exch Constantwesid - ASAMDONEDY SHEARING AT $65.13 \mathrm{~m}\left(214 \mathrm{fect}^{\prime}\right)$

PROPERTY \qquad

	DIP TEST	
	DEPTH	READING
ANE	CORRECTED	

USM

HOLE NO. 95-6.

SHEET NO. ROES
\qquad TOTAL DEPTH \qquad 65.13 date begun Aug 3 las
AZIMUTH \qquad 166° gRID LOCATION \qquad DATE FINISHED Ane 6/55
inclination \qquad -60 cross section \qquad $5+50$ DATE LOGGED \qquad $B Q$ Loges by E. Constontingro
\qquad 2200 m CORE SIzE \qquad
 7rictore/m.

DIAMOND DRILL RECORD

PROPERTY
HOLE NO: \qquad 95-6

UTM \qquad total depth
AzIMUTH \qquad grid location
inclination \qquad cross section collar elevation \qquad CORE SIZE
\qquad date begun
\qquad DATE FINISHED
\qquad date logged
SHEET. NO. $3 \sim=$
\qquad
\qquad
\qquad LOGE BY \qquad

DIAMOND DRILL RECORD
PROPERTY

	DIP TEST	
	ANGLE	
DEPTH	READING	CORRECTED

HOLE NO. 956

UTM
AZIMUTH INCLINATION
COLLAR ELEVATION

TOTAL DEPTH GRID LOCATION
CROSS SECTION
CORE SIZE

SHEET NO. 4 of 5
11

DIAMOND DRILL RECORD
 HOLE NO. 95-6.
 SHEET NO. 5 of 5
 \qquad

PROPERTY

	DIP TEST	
	ANGLE	
DEPTH	REAOING	CORRECTED

EROM	$\frac{1+10}{10}$	${ }_{\text {Aflit }}^{\text {APP }}$	DESCRIPTION	SAMPLE NO.	From	T0	${ }^{\text {Appp }}$	REC.	peb. ${ }^{\text {a }}$	02/t	${ }^{\text {ppm. }}$	${ }^{\text {Cum }} \%$
		\sim	- 57.27 to 57.53 MINOR SHEARING , ERICTEE					90				
			UCHORITE in Doccmite Anterto Fracturio pranes									
	-		(0) 27° tca.									
				E								
63.31	65.13		ARLEELITE: DAR" GKEY GKEY GIENNIIZSD									
			SILIIFICD MON Maçuetic keheulte.									
		\sim	$\rightarrow 63.29$ to 63.53 1lookent SuEnr zent					80				
			Cowilc w Prenlyey Henly clay wily Seristose									
		\sim	$\rightarrow 64.35$ to 65. 13 Heavy Shearinly					70				
			Mued Clay comint on ¢ So\%									
			Breciated Megalite it geawodialite									
		$\xrightarrow{\sim}$	65.13 HCLE ABANDONED TO COLCAPSING									
			SANDY LENSE.									

DIAMOND DRILL RECORD

\therefore PROPERTY key M1. (Hic)

HOLE NO. OS- \because

SHEET NO. 1 of 10

	DIP TEST	
	ANE	
DEPTH	READING	CORRECTED
364,7	42	49
364		206

UTM
TOTAL DEPTH \qquad date begun Rug baas. aZImuth $198^{\circ}\left(206^{\circ}\right)$ GRID LOCATION $36289 \mathrm{~N} / 13784$ Edate FINISHED Hug $9 / 95^{\circ}$ inclination - $50^{\circ}(-49)$ cross section $\frac{5+75 \mathrm{~W}}{}$ date logged Arg $7 / 95$ collar elevation 2199.80 cone size $N Q-B Q$ logged by E. Consfinesche

DIAMOND DRILL RECORD
PROPERTY

	DIP TEST	
	ANGL	
	DEPTH	READING
	CORRECTED	

HOLE NO. O5-7
\qquad TOTAL DEPTH \qquad date beck
AZIMUTH gate location cross section
collar elevation ___ CORE size
SHEET NO.

INCLINATION DATE FINISHED \qquad
date logged \qquad
LoGged er \qquad

DIAMOND DRILL RECORD
\because PROPERTY

	DIP TEST	
DEPTH	READING	CORRECTED

HOLE NO. \qquad 95-7 TOTAL DEPTH \qquad
UTM \qquad
AZIMUTH \qquad grid location \qquad
inclination \qquad CROSS SECTION \qquad
collar elevation \qquad core size
date begun \qquad DATE FINISHED \qquad date logged
SHEET NO. 3 of 10
\qquad logged by \qquad

DIAMOND DRILL RECORD
PROPERTY
HOLE NO $95-7$
SHEET NO. 4 of 10

	OIP TEST	
	ANGLE	
OEPTH	READIG	CORRECTED

UTM \qquad TOTAL DEPTH
date begun \qquad
AZIMUTH grid location DATE FJNISHED \qquad
inclination
 CROSS section \qquad date logged \qquad
collar elevation \qquad CORE SIZE LOGEED BY \qquad

DIAMOND DRILL RECORD
PROPERTY

HOLE NO. \qquad 2)5-7

SHEET NO. 5 of 0

UM \qquad total depth \qquad date begun \qquad
azimuth \qquad bad location \qquad date finished \qquad
inclination \qquad cross section \qquad date loge \qquad
collar elevation \qquad CORE SIZE \qquad LOGGED by \qquad

DIAMOND DRILL RECORD
HOLE NO $\quad \rho \sigma-7$

EROM	$\frac{9 \mathrm{TH}}{\text { T0 }}$	APP. WRDTH	DESCRIPTION	SAMPLE NO.	FROM	T0	$\begin{aligned} & \text { APP. } \\ & \text { WIDTH } \end{aligned}$	REC	ppb.	${ }_{\text {ALS }}$	ppm_{0}	\%
754	Co. 7		GRANODORITE - AS ACOVE AND SCRACNTINITE									\ldots
				Happioriss								!
			$\rightarrow 76.2$ to 76.3 EncEen QTP VENN									
			ins CiANODORSE									
				157								1
												\vdots
										-		
80,7	82.8											
				\cdots						,		
												!
			Acrention Enue						,			1
57.8	53.6			100816	32.8	83.4	13	30		0.055		$2 \cdot 7$
												\square
			cpy wiytimince po me\% Sucphoes.									
			-									

DIAMOND DRILL RECORD
PROPERTY
HOLE NO: $95-7$.
SHEET NO. 7 of 10

	DIP TEST		
	ANGLE		
DEPTH	READING	CORRECTED	

TM \qquad TOTAL DEPTH \qquad DATE BEGUN \qquad
AZIMUTH \qquad GRID LOCATION \qquad DATE FINISHED \qquad
INCLINATION \qquad CROSS SECTION \qquad date logged \qquad
COLLAR ELEVATION \qquad CORE SIZE \qquad LOGGED BY \qquad

DIAMOND DRILL RECORD
PROPERTY
HOLE NO: 5-7
SHEET NO. 8 of 10

	DIP TEST	
	ANGLE	
	DEPTH	READING
	CORRECTED	

UTM \qquad TOTAL DEPTH \qquad DATE BEGUN \qquad
AZIMUTH \qquad GRID LOCATION \qquad DATE FINISHED \qquad
INCLINATION \qquad CROSS SECTION \qquad Date lagged \qquad
collar elevation \qquad core size \qquad LOGGED BY \qquad

DIAMOND DRILL RECORD
HOLE NO $95-7$.
SHEET NO. 唯 9 of 10

	DIP TEST	
DEPTH	READING	CORRECTED

DIAMOND DRILL RECORD

PROPERTY HOLE NO: $45-7$

SHEET NO. agere 10.f 10

	DIP IEST		
	ANGLE		
DEPTH	READING	CORRECTEO	

EROM	TH	WIDTH	description	SAmple no.	FROM	T0	MIOTH.	REC.	ppb. ${ }^{\text {a }}$	${ }_{\text {Ouf }}$	ppmo	${ }^{\text {Cu. }} \%$
10		~~n	103.6-10t.24 talc-chl-schid y clog					47				
			109.29-105.3 minor gtz pricher					80				
105.3	108.4	~~	Telc chlorite Sehist									
			hereen tud white atr-carb tolko					71				
			10. TCA ; ircee stos patches									
			bovdins of gtr-carb: miner									
			moriposite? lot									
							5					
1084	110.94		Pexmewit Perphrry					100				
			ala - teldspir - hbl perphieve: while									
\cdots			anbedral inent feldspor xts									

DIAMOND DRILL RECORD
PROPERTY
HOLE NO: \qquad $95-8$

SHEET NO. \qquad 3 of

	DIP TEST	
DEPTH	READING	CORRECTED

UT \qquad total depth \qquad date begun \qquad
Azimuth \qquad grid location \qquad DATE FINISHED \qquad
inclination \qquad cross section \qquad date logged \qquad
collar elevation \qquad CORE SIZE \qquad LOGGED BY \qquad

DIAMOND DRILL RECORD
HOLE NO: $95-8$.
SHEET NO. 4
PROPERTY

	OIP TEST	
DESTH	ANGLE	
	READING	CORRECTEO

DIAMOND DRILL RECORD
PROPERTY
HOLE NO.
SHEET T NO. 5

	DIP TEST	
	ANGLE	
DEPTH	READING	CORRECTED

UTM \qquad TOTAL DEPTH \qquad date begun \qquad
AZIMUTH \qquad GRID LOCATION \qquad DATE FINISHED \qquad
INCLINATION \qquad CROSS SECTION \qquad date logged \qquad
COLLAR ELEVATION \qquad core size \qquad LOGGED BY \qquad

DIAMOND DRILL RECORD

PROPERTY

	DIP TEST		
DEPTH	READING	CORRECTED	

HOLE NG:955-A.
-

	${ }^{\text {파﹎ }}$	${ }_{\text {H }}^{\text {HPPTH. }}$	description	SAMPLE No.	FROM	то	${ }_{\text {APPP }}^{\text {APTH }}$	REC.			ppme ${ }^{\text {c }}$	$\%$
1			108, 8 - 111.0 sit silic ${ }^{20}$ ind ato stachwoek									
1			- sodia; erades to fersh tivir									
			cogstelliar ondio will deatk									
;												
1160	153.6		Mrailite									
			bipkertari int silics ; convolu't									
			ath stes + palches; 63% dis. py									
			111.9-113.0 med silic sndiorirubbe									
			and tractured $10.60^{\circ} 1 \mathrm{CA}$									
			113.0-120.0 blact feresroitite with	100928	< 15.3	115.7	0.4		2		92	
			cenvaluisd de veinuic. 11% py	301 CP								
			c20.0-122.0 w sific 10 cordin.									
			eppercentoct shorp 60. TCA; lener									
		π	confoct diflesente									
		N						70				
			- pper 0, bin creamey grey; credes									
				30 ICP								
			C0'TCA, 63'TA	1008:30	15.5	51.7	0.2		3		49	∞

DIAMOND DRILL RECORD

	DIP TEST		
DEPTH	READING	CORRECTED	

HOLE NO: 95-9:
SHEET NO. 2 of 12

	${ }_{\text {TH }}^{\text {TH }}$	${ }_{\text {APOTH }}^{\text {APP }}$	Description	SAMPLE No.	FROM	то	${ }_{\text {WIOTH }}^{\text {APP }}$	REC.	${ }^{\text {ppb. }}{ }^{\text {a }}$	$\mathrm{ol}^{2} / 2$	${ }^{\text {ppm. }}$	
			-more broken uf be-ween $28.5-33.5$									
		$\sim \sim$	34.5-36.6-porshyry and gromediovit					60-70				
	-		rubble									
36.0	38.6		Granodiorite					100				
			med-d greddish orex with minor silice									
			stock work, wmom-s; relatively tresh									
		$\sim \sim$	38.1-38.4 rubble + clay									
33.6	50.2		Serpentinite									
			blush-prey e gh-carh stockwork:									
			randamly oriented; n. magnetic: tin	- $60^{\circ} \mathrm{C}$ C								
		小NM	42.0-46.0 cloy mud fault and tale					30				
			on fracture surfices									
		~~~	47.5-50.0 clay mud, rubble.					45				

DIAMOND DRILL RECORD
PROPERTY
HOLE NO: $\qquad$ 95-9. SHEET NO. 3 of $/ z$

	DIP TEST		
	ANGLE		
DEPTH	READING	CORRECTED	

UTM $\qquad$ TOTAL DEPTH $\qquad$ date begun $\qquad$
AZIMUTH $\qquad$ grid location $\qquad$ DATE FINISHED $\qquad$
INCLINATION $\qquad$ CROSS SECTION $\qquad$ date logged
collar elevation $\qquad$ CORE SIZE $\qquad$ LOGGED BY $\qquad$



DIAMOND DRILL RECORD
PROPERTY
HOLE NO: 95-9
SHEET NO. 4 of 12 .

	DIP TEST		
	ANGLE		
DEPTH	READING	CORRECTED	

UTM $\qquad$ TOTAL DEPTH $\qquad$ date begun $\qquad$
AZIMUTH $\qquad$ gRID Location $\qquad$ DATE FINISHED $\qquad$
INCLINATION $\qquad$ cross section $\qquad$ DATE LOGGED $\qquad$
collar elevation $\qquad$ CORE SIZE $\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD
PROPERTY
HOLE NO: $95-9$.
SHEET NO. of 2


UTM $\qquad$ TOTAL DEPTH $\qquad$ DATE BEGUN $\qquad$
AZIMUTH $\qquad$ grid location $\qquad$ DATE FINISHED $\qquad$
INCLINATION $\qquad$ CROSS SECTION $\qquad$ DATE LOGGED $\qquad$
COLLAR ELEVATION $\qquad$ CORE SIZE $\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD
PROPERTY

	DIP TEST		
	ANGLE		
DEPTH	READING	CORRECTED	

HOLE NO. $\qquad$ 95-9.

Sheet no. $\mathbb{Z}$ of $/ 2$
$\qquad$ date begun $\qquad$
UTM $\qquad$ total depth DATE FINISHED $\qquad$
AZIMUTH $\qquad$ grid location $\qquad$
inclination $\qquad$ cross section $\qquad$ date logged $\qquad$
collar elevation $\qquad$ CORE SIZE LOGGED BY $\qquad$


$$
<0.5 \% \text { by }
$$

DIAMOND DRILL RECORD

PROPERTY

	DIP TEST
	ANGLE
DEPTH	READING
	CORRECTED

HOLE NO: $\qquad$ $95-9$ TOTAL DEPTH $\qquad$ date begun $\qquad$
UTC $\qquad$ grid location $\qquad$ DATE FINISHED $\qquad$
AZIMUTH $\qquad$ grid location $\qquad$ date logged $\qquad$
collar elevation $\qquad$ CROSS SECTION $\qquad$ core size

SHEET NO. $\qquad$ of 12
$\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD

PROPERTY

	DIP TEST
	ANGLE
DEPTH	READING

HOLE NO. $\qquad$ $95 \cdot 9$ TOTAL DEPTH $\qquad$ date begun $\qquad$
UTM $\qquad$ DATE FINISHED $\qquad$
AZIMUTH $\qquad$ GRID LOCATION $\qquad$
INCLINATION $\qquad$ CROSS SECTION $\qquad$ DATE LOGGED $\qquad$
COLLAR ELEVATION $\qquad$ CORE SIZE

SHEET NO. 9 of 2
$\qquad$ +
$\qquad$ LOGGED By $\qquad$


## DIAMOND DRILL RECORD

PROPERTY

DIP TEST		
	ANGLE	
DEPTH	READING	CORRECTED

SHEET NO. 10 of 2


DATE BEGUN DATE FINISHED

LOGGED BY $\qquad$

	$\mathrm{TH}$	$\begin{aligned} & \text { APP. } \\ & \text { WIDTH } \end{aligned}$	DESCRIPTION	SAMPLE No.	FROM	то	MIDPTH	REC.	ppp.	${ }_{0}{ }_{0}$	${ }^{\text {ppm. }}{ }^{\text {c }}$	
		$\sim$	120.4-122.5 narrow sections of	47670	1204	121.4	<. $\varphi$	80?		0.004	2753	0.26
			dete vein 80-90 $7 C A$ with in o	147676	121.4	122.5	1.1	80		0.004	857	0.09
			cley-rubble shear: hezvile minkn									
			$10 \%$ prupecey occur in competentatz									
			veinlets									
		$\cdots$	122.5-123.5 bieneath cluy sherrbegins $x$	147672	122.5	123.5	1.0	180		0.001	0550	1.06
			the solid- portion of the vein; chl strs	14762	123.5	124.5	1.0	90		0.003	2186	0.22
			and sere. inclusion ; potches and	147674	124.5	125.5	1.0	100	-	0.042	1924	0.14
			stos of pecey; $45 \%$ sulphites; *	-147675	125.5	126.5	1.0	90		0.117	1513	0.15
			miner vugpiness,									
			123.6 minor matay $\because$ eoupe.									
			123.5-120.5 -ico areve but $\leqslant 1 \%$									
			sulphides									
*			124.5-125.5 as abpre taill 0.2 m									
			zeoe with actinalite rroselitles: $1 \%$									
			v.f. or sulphides:									
			125.5-126.5 banding $45^{\circ}$ TLA :chl									
			and gear atz: $5 \%$ sulohide in									
			chl strs ind patches 45'rCA									

DIAMOND DRILL RECORD
PROPERTY $\qquad$

	DTP TEST		
DEPTH	READING	CORRECTED	

HOLE NO: 95-9

UTM $\qquad$ TOTAL DEPTH $\qquad$ date begun AZIMUTH $\qquad$ grid location $\qquad$ DATE FINISHED $\qquad$
INCLINATION $\qquad$ Cross section $\qquad$ DATE LOGGED $\qquad$ collar elevation $\qquad$ core size

SHEET NO. $\qquad$ $1 \phi$ of 2 .
$\qquad$
$\qquad$ LOGGED BY $\qquad$


PROPERTY
HOLE NO. $\qquad$ $95-9$

SHEET NO. $\qquad$ 12 of 12

	DIP TEST	
	ANGLE	
DEPTH	READING	CORRECTED

UTM $\qquad$ TOTAL DEPTH $\qquad$ DATE BEGUN $\qquad$
AZIMUTH $\qquad$ GRID LOCATION $\qquad$ DATE FINISHED $\qquad$
INCLINATION $\qquad$ CROSS SECTION $\qquad$ DATE LOGGED $\qquad$
COLLAR ELEVATION $\qquad$ CORE SIZE $\qquad$ LOGGED BY $\qquad$


DIAMOND BRILL RECORD
PROPERTY Spokane (Rex)

$$
\text { HOLE NO. } \quad 95-10
$$

SHEET NO. 1 of 16

	DIP TEST	
	ANGLE	
DEPTH	READING	CORRECTED

UTM $\qquad$ TOTAL DEPTH $17 \% 9$ date begun $\qquad$
AZIMUTH $\qquad$ 166 grid location $359.05 \mathrm{~N} / 136.0$ E date finished Aug $22 / 95$ inclination $\qquad$ $-65^{\circ}$ cross section $5+75 \mathrm{~W} / 5+50 \mathrm{~W}$
collar elevation $\qquad$ $2 / 99.80$ core size $N Q$ $\qquad$ logged by F. Moyle S

Alex Borenowsti.


DIAMOND DRILL RECORD

PROPERTY

	DIP TEST	
	ANGLE	
DEPTH	READING	CORRECTED

HOLE NO. 95-10
$\qquad$ TOTAL DEPTH $\qquad$ DATE begun $\qquad$
AZIMUTH $\qquad$ grid location $\qquad$ DATE FINISHED $\qquad$
INCLINATION $\qquad$ CROSS SECTION $\qquad$ date logged
collar elevation $\qquad$ CORE SIZE

SHEET NO._ 2 of 16
collar alevanon LOGGED BY $\qquad$


DIAMOND DRILL RECORD
PROPERTY
HOLE NO. $\qquad$

	DIP TEST	
	ANGLE	
DEPTH	READING	CORRECTED

TM $\qquad$ TOTAL DEPTH $\qquad$ DATE BEGUN $\qquad$
AZIMUTH $\qquad$ GRID LOCATION $\qquad$ DATE FINISHED $\qquad$
INCLINATION $\qquad$ CROSS SECTION $\qquad$ date logged $\qquad$
COLLAR ELEVATION $\qquad$ core size LOGGED By $\qquad$


DIAMOND DRILL RECORD
HOLE NO $95-10$.
SHEET NO. 4 of 16
PROPERTY $\qquad$

	DIP TEST		
	ANGLE		
DEPTH	READING	CORRECTED	


UTM	TOTAL DEPTH grid location	date begun DATE FINISHED
AZIMUTH		
inclination	CROSS SECTION	DATE LOGGED
collar elevation	CORE SIze	OGEED B


$\frac{\mathrm{DEFF}}{\mathrm{EROM}}$	PTH		DESCRIPTION	SAMPLE No.	FROM	T0	${ }_{\text {Hidit }}^{\text {APP }}$	Rec.	ppb. ${ }^{\text {f }}$	${ }_{0}{ }^{2} / 2$	${ }^{\text {ppm. }}{ }^{\text {cu}}$	$\%$
			29.3-32.3-Light gra/grey w/ 50\%									
			leses hbl (chloritrod)									
			32.3-33.8-slightly darker grn/grey									
			uf $25 \%$ mone hbl (less chloritiod)									
			-2 fractures at $45^{\circ}$									
			33.8-34.4 - dorker greenish grey									
			uf $50 \%$ lesshbl.									
			- hear upper contact of shear									
			- chlorite a lony 1 fracture face									
			at $60^{\circ} \mathrm{ca}$.									
			34.4-34.8- light greyish green									
			- at contact in/ sheo-ed serp.									
			$45^{\circ} \text { tia. - mottled w/less }$									
			ubl. - pale greanish grey at cantact.									
			$-y$									

DIAMOND DRILL RECORD
PROPERTY
HOLE NO. $\qquad$ $95-10$

SHEET NO. S of

	DIP TEST	
	ANGLE	
DEPTH	READING	CORRECTED

USM $\qquad$ TOTAL DEPTH $\qquad$ date begun $\qquad$
AZIMUTH $\qquad$ grid location $\qquad$ DATE FINISHED $\qquad$
inclination $\qquad$ CROSS SECtion $\qquad$ date logged $\qquad$
collar elevation $\qquad$ CORE SIZE $\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD
PROPERTY
HOLE NO. $95-10$
SHEET NO. 6 of

	DIP TEST		
	ANGLE		
DEPTH	READING	CORRECTED	

UTE $\qquad$ TOTAL DEPTH $\qquad$ DATE BEGUN $\qquad$
AZIMUTH $\qquad$ GRID LOCATION $\qquad$ DATE FINISHED $\qquad$
InClination $\qquad$ CROSS SECTION $\qquad$ date logged $\qquad$
COLLAR ELEVATION $\qquad$ CORE SIZE $\qquad$ LOGGED BY $\qquad$
 along convoluted gtr/wale veinlet

DIAMOND DRILL RECORD

PROPERTY
HOLE NO. $\qquad$ 95-10

	DIP TEST	
DEPTH	AEAONG	ANGL
		CORRECTED

UT $\qquad$ total depth $\qquad$ date begun $\qquad$
AZIMUTH $\qquad$ grid location $\qquad$ DATE FINISHED $\qquad$
inclination $\qquad$ cross section $\qquad$ date logged $\qquad$
COLLAR ELEVATION $\qquad$ CORE SIZE $\qquad$ LOGGED BY $\qquad$

SHEET NO. $\qquad$ 7 of


DIAMOND DRILL RECORD

PROPERTY

	DIP TEST		
	ANGLE		
DEPTH	READING	CORRECTED	

HOLE NO: $\qquad$

SHEET NO. 8 of 16
$\qquad$ DATE BEGUN $\qquad$
UTM $\qquad$ TOTAL DEPTH DATE FINISHED $\qquad$
AZIMUTH $\qquad$ GRID LOCATION $\qquad$
INCLINATION $\qquad$ CROSS SECTION $\qquad$ date logged $\qquad$
COLLAR ELEVATION $\qquad$ CORE SIZE LOGGED by $\qquad$


DIAMOND DRILL RECORD
PROPERTY $\qquad$ HOLE NO. $\qquad$ 95-10

	DIP TEST	
DEPTH	READ ANGLE	CORRECTED

UTM $\qquad$ total depth $\qquad$ date begun $\qquad$
AZIMUTH $\qquad$ grid location $\qquad$ DATE FINISHED $\qquad$
inclination $\qquad$ cross section $\qquad$ date loge ed $\qquad$
collar elevation $\qquad$ CORE SIZE $\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD
SHEET NO. 10 of 16

PROPERTY

	DIP TEST	
	DEPTH	READING
	CORRECTED	

HOLE NO. 95-10.
 AZIMUTH INCLINATION COLLAR ELEVATION

TOTAL DEPTH grid location CROSS SECTION CORE SIZE

DATE BEGUN DATE FINISHED $\qquad$ date logged $\qquad$ LOGGED BY $\qquad$


PROPERTY

	DIP TEST		
	ANGLE		
DEPTH	READING	CORRECTED	

HOLE NO. $\qquad$

SHEET NO. 11 of 16
$\qquad$ .
$\qquad$ date begun $\qquad$
UTM $\qquad$ TOTAL DEPTH dATE FINISHED $\qquad$
AZIMUTH $\qquad$ GRID LOCATION $\qquad$
inclination $\qquad$ CRoss section $\qquad$ date logged $\qquad$
collar elevation $\qquad$ CORE SIZE
logged by $\qquad$


DIAMOND DRILL RECORD
PROPERTY HOLE NO. 95-10

SHEET NO. 12 of 16

DIP TEST		
DEPTH	READING	CORRECTED


UTM	total depth	date begun
AZIMUTH	GRID LOCATION	DATE FINISHED
INCLINATION	CROSS SECTION	DATE LOGGED
COLLAR ELEVATION	CORE SIZE	LOGGED


	T0	APP	DESCAIPTION	SAMPLE No.	FROM	то	APPP	REC.	${ }^{\text {pob. }}{ }^{\text {A }}$	${ }_{0}^{4} / 2$	ppm.	$\%$
1027	104.2	$\sim$	Grandiorile,					100				
	-		1-5: glt-rach stor and extcher of									
			at reios; strengle breten; tr py									
109.2	1077		Serpentivite IOrallip wilh Geanediacite					100				
			d blackich-oroje with aik stes $\leqslant$ artches.									
			d. patches; nareow 10.1 m prasedioul									
			dexter which diffese inlo i-s host.									
$\cos 7$	110.5	~v~	Argillite/serpentinite Breccioz	147686	1028	108.8	1.00	100		40.01	73	
			sempeativized $d$-med green serpeatioite									
			will graillitelserp topes in a i-s, mi.d.									
			atlered matix:									
		上~	107.7. 1078 cubble					$90-100$				
		-uva	109.9-110.5 rubble and clay geuge					$90-00$				
110.6	-1920		Rexmeunt parphyit					100				
			hoceeourh gren è bbl + flls x $\times 5$									

PROPERTY

	DIP TEST		
	ALE		
DEPTH	READING	CORRECTED	

HOLE NO.

$$
95-10
$$

$\qquad$
TOTAL DEPTH $\qquad$ DATE BEGUN $\qquad$
AZIMUTH $\qquad$ grid location $\qquad$ DATE FINISHED $\qquad$
INCLINATION $\qquad$ CROSS SECTION $\qquad$ date logged
collar elevation $\qquad$ CORE SIZE

SHEET NO. 13 of 16
$\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD
PROPERTY
HOLE NO. $\qquad$

	DIP TEST		
	ANGLE		
DEPTH	READING	CORRECTED	

TM $\qquad$ TOTAL DEPTH $\qquad$ DATE BEGUN $\qquad$
AZIMUTH $\qquad$ gRID LOCATION $\qquad$ DATE FINISHED $\qquad$
INCLINATION $\qquad$ CROSS SECTION $\qquad$ DATE LOGGED $\qquad$
collar elevation $\qquad$ core size $\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD

PROPERTY

	DIP TEST	
	ANGLE	
	DEPTH	READING
		CORRECTED

SHEET NO. 15 of 16



DIAMOND DRILL RECORD
HOLE NO $95-10$
SHEET NO. 16
PROPERTY

	DIP TEST	
	ANGLE	
DEPTH	READING	CORRECTED

UTM
AZIMUTH
INCLINATION
COLLAR ELEVATION

TOTAL DEPTH GRID LOCATION cross section CORE SIZE date begun
$\qquad$
$\qquad$ DATE FINISHED
$\qquad$
LOGGED
$\qquad$
 to recover sperry sun if if became unlatched - too risky to rex.

DIAMOND DRILL RECORD

PROPERTY $\qquad$

HOLE NO. $\qquad$

SHEET NO. $\qquad$ $10<12$

	DIP TEST	
DEPTH	READING	
ANE	CoRAECTEO	
EDH		

aTM $\qquad$ TOTAL DEPTH $\qquad$ 126.8 GRID LOCATION
AZIMUTH $\qquad$ cat $\qquad$ 343.83 N 102.0 W

INCLINATION $\qquad$ $-55$ CRoss section $\qquad$ $6+00 \mathrm{~W}$ $N Q$ date bean august tz3los date finished Aug. 26 date logged Aug 24/95
COLLAR ELEVATION $\qquad$ 2207.98 LOGGED BY F. Moyle


DIAMOND DRILL RECORD
"PROPERTY
HOLE NO. 95-11
SHEET NO. 2 of 12

	DIP TEST		
DEPTH	READING	CORRECTED	

TM $\qquad$ TOTAL DEPTH $\qquad$ DATE BEGUN $\qquad$
AZIMUTH $\qquad$ GRID LOCATION $\qquad$ DATE FINISHED $\qquad$
inclination $\qquad$ CROSS SECTION $\qquad$ date logged $\qquad$
collar elevation $\qquad$ CORE SIZE $\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD
PROPERTY
HOLE NO. $\qquad$ $95-11$

SHEET NO. 3 of 12

DIP TEST		
BETH	READING	ANE
CORECTEO		

UT $\qquad$ total Depth $\qquad$ date begun $\qquad$
AZIMUTH $\qquad$ GRID LOCATION $\qquad$ DATE FINISHED $\qquad$
inclination $\qquad$ cross section $\qquad$ date logged $\qquad$ collar elevation $\qquad$ core size $\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD
PROPERTY ${ }^{+}$ $\qquad$ HOLE NO: $\qquad$ 95-11.:

	DIP TEST	
	DELE	
DEPTH	READING	CORRECTED

UTM $\qquad$ TOTAL DEPTH
AZIMUTH $\qquad$ GRID LOCATION
INCLINATION $\qquad$ CRoss section
COLLAR ELEVATION $\qquad$ CORE SIzE
$\qquad$ date begun $\qquad$
$\qquad$ DATE FINISHED $\qquad$
$\qquad$ DATE LOGGED $\qquad$
$\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD
PROPERTY
HOLE NO. $95-1 /$
SHEET NO. 5 of 12

	DIP TEST	
	ANGLE	
DEPTH	READING	CORRECTED

TM $\qquad$ TOTAL DEPTH $\qquad$ date begun $\qquad$
AZIMUTH $\qquad$ GRID LOCATION $\qquad$ DATE FINISHED $\qquad$
INCLINATION $\qquad$ CROSS SECTION $\qquad$ date logged COLLAR ELEVATION $\qquad$ core size $\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD
PROPERTY
HOLE NO. $\qquad$ 95-11

	DIP TEST	
DEPTH	READING	CORRECTED

UTM $\qquad$ total depth $\qquad$ date begun $\qquad$
AzIMUTH $\qquad$ grid location $\qquad$ DATE FINISHED $\qquad$
INCLINATION $\qquad$ cross section $\qquad$ date logged $\qquad$
collar elevation $\qquad$ CORE SIzE $\qquad$ LOGGED BY $\qquad$


PROPERTY

	DIP TEST		
DEPTH	READING	CORRECTED	

HOLE NO. $\qquad$

SHEET NO. 7 of 12

UTM $\qquad$ TOTAL DEPTH $\qquad$ date begun $\qquad$
AZIMUTH $\qquad$ grid location $\qquad$ date finished $\qquad$
INCLINATION $\qquad$ cross section $\qquad$ date logged $\qquad$
collar elevation $\qquad$ CORE SIZE $\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD

PROPERTY
HOLE NO. $95-1 /$

	DIP TEST	
	ANGLE	
DEPTH	READING	CORRECTED

UTM $\qquad$ TOTAL DEPTH $\qquad$ date begun $\qquad$
AZIMUTH $\qquad$ GRID LOCATION $\qquad$ DATE FINISHED $\qquad$
INCLINATION $\qquad$ CROSS SECTION $\qquad$ DATE LOGGED
COLLAR ELEVATION $\qquad$ CORE SIZE
$\qquad$
$\qquad$ LOGGED BY $\qquad$

SHEET NO. 8 of 12


PROPERTY

	DIP TEST		
	ANGLE		
DEPTH	READING	CORRECTED	

HOLE NO. $95-1 /$

UTM $\qquad$ TOTAL DEPTH $\qquad$ date begun $\qquad$
AZIMUTH $\qquad$ GRID LOCATION $\qquad$ DATE FINISHED $\qquad$
inclination $\qquad$ cross section $\qquad$ date logged $\qquad$
COLLAR ELEVATION $\qquad$ CORE SIZE

SHEET No. 9 of $/ 2$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD
PROPERTY
HOLE NO: $\qquad$ 95-1

SHEET NO. 10 of 12

DIP TEST		
DEPTH	READING	CORRECTED

UTM $\qquad$ Total DEPTH $\qquad$ date begun $\qquad$
AzIMUTH $\qquad$ GRID LOCATION $\qquad$ DATE FINISHED $\qquad$
inclination $\qquad$ CROSS SECTION $\qquad$ date logged $\qquad$ COLLAR ELEVATION $\qquad$ CORE SIZE $\qquad$ LogGed by $\qquad$


DIAMOND DRILL RECORD HOLE NO: $95-/ /$
$\qquad$ AZIMUTH _______ GAID LOCATION INCLINATION __________________LOSS SECTION coliar elevation $\qquad$ core size

SAMPLE NO.	FROM	T0	WPPP.	REC.	ppb.	Oz/t	ppm.	\%
c								

DIAMOND DRILL RECORD
PROPERTY
HOLE NO. $95-1 /$
SHEET NO. $\qquad$ 12 of 12

	DIP TEST	
	PELE	
DEPTH	READING	CORRECTED

TM $\qquad$ TOTAL DEPTH $\qquad$ date begun $\qquad$
AZIMUTH $\qquad$ GRID LOCATION $\qquad$ DATE FINISHED $\qquad$
INCLINATION $\qquad$ CROSS SECTION $\qquad$ date logged $\qquad$
collar elevation $\qquad$ core size $\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD
PROPERTY. $\quad$ Rex

DIP TEST		
	ANGLE	
DEPTH	READING	CORRECTED
460		$192^{\circ}$
		-70

HOLE NO. 95-12
SHEET NO. 1 of 24
ABANDONED
UTM $\qquad$ total depth $\qquad$ 143.6 m date begun Aug $26 / 95$ Azimuth $\qquad$ ceto 10 253.92 N 26 B 19 date finished Aug $29 / 95$ inclination $-73 \quad(40)$ cross section $\qquad$ $6+20 \mathrm{~W}$ Date logged Any ez/ ar COLLAR ELEVATION 2207.89 CORE SIZE $N Q$ lOGGED By E. mopes


PROPERTY

	DIP TEST	
	PELE	
DEPTH	READING	CORRECTED

HOLE NO: $\qquad$

SHEET NO. $20 f$ $\qquad$ DATE BEGUN $\qquad$
UTM $\qquad$ TOTAL DEPTH $\qquad$
AZIMUTH $\qquad$ GRID LOCATION $\qquad$ DATE FINISHED $\qquad$
INCLINATION $\qquad$ CROSS SECTION $\qquad$ date logged
collat elevation $\qquad$ core size $\qquad$ LOGGED BY $\qquad$


PROPERTY

$$
\text { HOLE NO: } \quad 95-12
$$

SHEET NO. 30f 24

	DIP TEST		
	ANGLE		
DEPTH	READING	CORRECTED	

TM $\qquad$ TOTAL DEPTH $\qquad$ DATE BEGUN $\qquad$
AZIMUTH $\qquad$ gRid location $\qquad$ DATE FINISHED $\qquad$
INCLINATION $\qquad$ CROSS SECTION $\qquad$ date logged $\qquad$
collar elevation $\qquad$ CORE SIZE $\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD
PROPERTY $\qquad$ HOLE NO. $\qquad$ $95-12$ SHEET NO. $y$ of 24


TM $\qquad$ TOTAL DEPTH $\qquad$ DATE BEGUN $\qquad$
AZIMUTH $\qquad$ GRID LOCATION $\qquad$ DATE FINISHED $\qquad$
INCLINATION $\qquad$ CROSS SECTION $\qquad$ DATE LOGGED
COLLAR ELEVATION $\qquad$ CORE SIZE $\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD
PROPERTY
HOLE NO. $95-12$
SHEET NO. $\qquad$

	DIP TEST		
	ANGLE		
DEPTH	READING	CORRECTED	

UTM $\qquad$ TOTAL DEPTH $\qquad$ date begun $\qquad$
AZIMUTH $\qquad$ grid location $\qquad$ DATE FINISHED $\qquad$
INCLINATION $\qquad$ CROSS SECTION $\qquad$ date logged $\qquad$
COLLAR ELEVATION $\qquad$ core size $\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD

PROPERTY
HOLE NO: $\quad 95 .-12$

	DIP TEST	
	DEPTH	READING
	CORRECTED	

UTM $\qquad$ TOTAL DEPTH
AZIMUTH $\qquad$ GRID LOCATION
inclination $\qquad$ cross section
collar elevation $\qquad$ CORE SIZE
$\qquad$ date begun $\qquad$
$\qquad$ DATE FINISHED $\qquad$
$\qquad$ date loge $\qquad$
$\qquad$ LOGGEO by $\qquad$


DIAMOND DRILL RECORD
PROPERTY
HOLE NO: $95-12$
SHEET NO. 7 of 24

	DIP TEST		
	ANGLE		
DEPTH	READING	CORRECTED	

TM $\qquad$ TOTAL DEPTH $\qquad$ DATE BEGUN $\qquad$
AZIMUTH $\qquad$ GRID LOCATION $\qquad$ DATE FINISHED $\qquad$
INCLINATION $\qquad$ CROSS SECTION $\qquad$ DATE LOGGED

COLLAR ELEVATION $\qquad$ CORE SIZE $\qquad$ LOGGED BY $\qquad$


## DIAMOND DRILL RECORD

## PROPERTY

$\qquad$

	DIP IEST		
DEPTH	READING	CORRECTED	

HOLE NO: $95-12$

SHEET NO. \& of 24

$\overline{\mathrm{DE}}$	IT	WIOTH	DESCRIPTION	SAMPLE NO.	FROM	T0	$\begin{aligned} & \text { APP. } \\ & \hline \text { WIDTH } \end{aligned}$	REC.		O2/t	ppm.	$\%$
			$56.5-57.2$ - Mod. Silicif'd uradiait									
			atzurinlet at $30^{\circ} \mathrm{ta}$.									
			57.2-57.9 - Mod. sheeced prodierite									
			hhod-strong chl/tale ith									
		-	weak to mad Coln at $60^{\circ}$ tca.									
			atz/celcite veralets at $35^{\circ} \mathrm{fea}$									
			Cowercontact w/ cess Altrd grudiente at 85	da								
			$57.9-59.4$ med. Silicif'd gradiont					90				
			vevf broken up									
			$q+2$ calcite veralets. at $45^{\circ}$ tead $30^{\circ}$ tee									
			59.4 to 60.0 - weak to Mod sheor					$\cdots$				
			- in amdiorite - weak to mod ch//taliziflt'						¢			
			foln at $50^{\circ} \mathrm{tea}$ - Light grn/ppl.									,
			60.0-61.3 - mad sollcified grndionte					90				
			3 fracs at $35^{\circ} \mathrm{tu}$ med grey/ppl									
			61.3-69.4. Intensely silicified dirdioate									
			- chly ato/ealcite veinlete w/in				.					
			fracs at $40^{\circ} \mathrm{tea}$ to $20^{\circ} \mathrm{ta}$ a.									
			vescy braken up..									
			1-1.									

DIAMOND DRILL RECORD

PROPERTY

	DIP TEST	
	ANGLE	
DEPTH	READING	CORRECTED

HOLE NO: $\qquad$

7
UTM $\qquad$ TOTAL DEPTH $\qquad$ DATE BEGUN $\qquad$
AZIMUTH $\qquad$ GRID LOCATION $\qquad$ DATE FINISHED $\qquad$
INCLINATION $\qquad$ CROSS SECTION $\qquad$ DATE LOGGED

COLLAR ELEVATION $\qquad$ CORE SIZE $\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD
PROPERTY
HOLE NO. $\quad 95-12$
SHEET NO. 10 of 24

	DIP TEST		
	ANGLE		
DEPTH	READING	CORRECTED	

UTM $\qquad$ TOTAL DEPTH $\qquad$ date begun $\qquad$
AZIMUTH $\qquad$ GRID LOCATION $\qquad$ DATE FINISHED $\qquad$
INCLINATION $\qquad$ CROSS SECTION $\qquad$ date logged $\qquad$
COLLAR ELEVATION $\qquad$ CORE SIZE $\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD
PROPERTY
HOLE NO: $95=12$
SHEET NO. il of 24

	DIP TEST		
	ANGLE		
DEPTH	READING	CORRECTED	

UTM $\qquad$ TOTAL DEPTH $\qquad$ DATE BEGUN $\qquad$
AZIMUTH $\qquad$ GRID LOCATION $\qquad$ DATE FINISHED $\qquad$
INCLINATION $\qquad$ CROSS SECTION $\qquad$ date logged $\qquad$
collar elevation $\qquad$ CORE SIZE $\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD
PROPERTY
HOLE NO: $9.5-12$.
SHEET NO. 12 of 24

	DIP TEST	
	ANGLE	
DEPTH	READING	CORRECTED

UTM $\qquad$ TOTAL DEPTH $\qquad$ DATE BEGUN $\qquad$
AZIMUTH $\qquad$ GRID LOCATION $\qquad$ DATE FINISHED $\qquad$
INCLINATION $\qquad$ CROSS SECTION $\qquad$ DATE LOGGED $\qquad$
COLLAR ELEVATION $\qquad$ core size $\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD
PROPERTY

$$
\text { HOLE NO: } \quad 95-12
$$

	DIP TEST	
	ANGLE	
DEPTH	READING	CORRECTED

TM $\qquad$ TOTAL DEPTH $\qquad$ DATE BEGUN $\qquad$
AZIMUTH $\qquad$ GRID LOCATION $\qquad$ DATE FINISHED $\qquad$
INCLINATION $\qquad$ CROSS SECTION $\qquad$ date logged $\qquad$
collar elevation $\qquad$ CORE SIZE $\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD

PROPERTY

	DIP TEST		
	ANGLE		
DEPTH	READING	CORRECTED	

HOLE NO. $95-12$

TM $\qquad$ TOTAL DEPTH
AZIMUTH $\qquad$ GRID LOCATION

INCLINATION $\qquad$ CROSS SECTION

COLLAR ELEVATION $\qquad$ core size
$\qquad$ DATE BEGUN $\qquad$
$\qquad$ DATE FINISHED $\qquad$
$\qquad$ DATE LOGGED
SHEET NO. 14 of 24
$\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD
PROPERTY

$$
\text { HOLE NO: } \quad 95-12
$$

SHEET NO. 15 of 24

	DIP TEST
	PEA ANGLE
DEPTH	READING
	CORRECTED

UTM $\qquad$ TOTAL DEPTH $\qquad$ DATE BEGUN $\qquad$
AZIMUTH $\qquad$ GRID LOCATION $\qquad$ DATE FINISHED $\qquad$
inclination $\qquad$ CROSS SECTION $\qquad$ date logged $\qquad$
collar elevation $\qquad$ CORE SIZE $\qquad$ LOGged by $\qquad$


DIAMOND DRILL RECORD

PROPERTY

	DIP TEST		
	ANGLE		
DEPTH	READING	CORRECTED	

HOLE NO: $95-12$

TM $\qquad$ TOTAL DEPTH $\qquad$ DATE BEGUN $\qquad$
AZIMUTH $\qquad$ GRID LOCATION $\qquad$ DATE FINISHED $\qquad$
INCLINATION $\qquad$ CROSS SECTION $\qquad$ DATE LOGGED

COLLAR ELEVATION $\qquad$ CORE SIZE

SHEET NO. 16 of 24
$\qquad$
$\qquad$
$\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD
PROPERTY
HOLE NO: $\quad 95=12$
SHEET NO. 17 of 24

	DIP TEST		
	ANGLE		
DEPTH	READING	CORRECTED	

UTM $\qquad$ TOTAL DEPTH $\qquad$ date begin $\qquad$
AZIMUTH $\qquad$ grid location $\qquad$ DATE FINISHED $\qquad$
INCLINATION $\qquad$ CROSS SECTION $\qquad$ date logged $\qquad$
collar elevation $\qquad$ CORE SIZE $\qquad$ LOGGED BY $\qquad$


PROPERTY
HOLE NO:
SHEET NO. 18 of 24

	DIP TEST	
DEPTH	READING	
	CORRECTED	

UTM $\qquad$ TOTAL DEPTH $\qquad$ date begun $\qquad$
AZIMUTH $\qquad$ GRID LOCATION $\qquad$ DATE FINISHED $\qquad$
INCLINATION $\qquad$ CROSS SECTION $\qquad$ date logged $\qquad$
COLLAR ELEVATION $\qquad$ core size $\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD
PROPERTY
HOLE NO: 95-12

DIP TEST		
DEPTH	READING	ANE

UTM $\qquad$ total Depth $\qquad$ DATE BEGUN $\qquad$
AZIMUTH $\qquad$ grid location $\qquad$ DATE FINISHED $\qquad$
inclination $\qquad$ CROSS SECTION $\qquad$ date logged
collar elevation $\qquad$ core size $\qquad$ LOGGE By $\qquad$

PROPERTY

	OIP IEST	
	AELE	
DEPTH	REAOING	CORAECTED


UTM	TOTAL DEPTH GRID LOCATION		DATE BEGUN $\qquad$   DATE FINISHED   date logged   LOGGED BY
AZIMUTH			
INCLINATION		,	
collar elevation	CORE SIzE		


	TIT	${ }_{\text {Hip }}^{\text {APP }}$	Descaiption	Sample no.	From	To	Hippi	REC.	ppb. ${ }^{\text {A }}$	${ }_{\text {atort }}$		
126.2	126.7		Intersely silcified Argillite									
			- med gra/brown u/ diss <l3 py.									
126.7	127.2	NND	Fault grage - Moderata-w/brecerated					90				
			clask of Altrd gradicarle/ Altod Argillite									
			cask at Alor gradiande									
127.3	128.2		Gramodiorite-brecciated-Medchloatiod					90				
			-upper centact w/ famlt at $30^{\circ}$ tea.									
128.2	128.6	num	Fault gauge-Strong ablenturetion					90				
			- creamy green/guex.									
			- cramy grem/gnex.									
128.6	$130 \cdot 0$		Coremedierite - Modevate silcifin.					90				
			Qts veinlets at $50^{\circ} \mathrm{tan}$. $70^{\circ} \mathrm{tca}$									
			weak fraciering									

DIAMOND DRILL RECORD

PROPERTY
HOLE NO: $95-12$

DIP TEST		
DEPTH	READING	CORRECTED

UT $\qquad$ total Depth $\qquad$ date begun $\qquad$
AZIMUTH $\qquad$ gao location $\qquad$ DATE FINISHED $\qquad$
INCLINATION $\qquad$ CROSS SECTION $\qquad$ DATE LOGGED $\qquad$
COLLAR ELEVATION $\qquad$ CORE SIZE $\qquad$ LOGGED BY $\qquad$

SHEET NO. $\qquad$ $210+24$


DIAMOND DRILL RECORD
PROPERTY
HOLE NO. $95-12$
SHEET NO.

DIP TEST		
DEPT	READING	CORRECTED

TM $\qquad$ TOTAL DEPTH $\qquad$ DATE BEGUN $\qquad$
AZIMUTH $\qquad$ GRID LOCATION $\qquad$ DATE FINISHED $\qquad$
INCLINATION $\qquad$ CROSS SECTION $\qquad$ date logged $\qquad$
COLLAR ELEVATION $\qquad$ CORE SIZE $\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD
PROPERTY
HOLE NO: $95-12$
SHEET NO. 23 of 24

	DIP TEST		
	REL		
DEPTH	READING		
	CORRECTED		

UTM $\qquad$ TOTAL DEPTH $\qquad$ DATE BEGUN $\qquad$
AZIMUTH $\qquad$ GRID LOCATION $\qquad$ DATE FINISHED $\qquad$
INCLINATION $\qquad$ CROSS SECTION $\qquad$ date logged
COLLAR ELEVATION $\qquad$ CORE SIZE $\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD
PROPERTY $\qquad$ HOLE NO: $95-12$
SHEET NO. 24 of 24

DIP TEST		
	METH	
DEPTH	READING	CORRECTED

USM $\qquad$ TOTAL DEPTH $\qquad$ DATE BEGUN $\qquad$
AZIMUTH $\qquad$ grid location $\qquad$ DATE FINISHED $\qquad$
INCLINATION $\qquad$ CROSS SECTION $\qquad$ date logged $\qquad$
collar elevation $\qquad$ core size $\qquad$ LOGGED BY $\qquad$



DIAMOND DRILL RECORD
PROPERTY $\qquad$ Rex

DIP TEST		
DEPTH	READING	ALE

TM $\qquad$ TOTAL DEPTH $\qquad$ date begun $\qquad$
AZIMUTH $\qquad$ grid location $\qquad$ DATE FINISHED $\qquad$
inclination $\qquad$ Cross section $\qquad$ dATE LOGGED $\qquad$ collar elevation $\qquad$ CORE SIZE

SHEET NO. $\qquad$ 2
HOLE NO $\qquad$ $3-14$ $\qquad$

$\qquad$ LOGGED BY $\qquad$


## DIAMOND DRILL RECORD <br> HOLE NO: 94-14:.

SHEET NO. 3 of

PROPERTY $\qquad$ | OIP IEST |  |  |
| :--- | :--- | :--- |
| OEPTH | REAODNG | CORAECTEO |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |

 date begun DATE FINISHED $\qquad$ DATE LOGGEO $\qquad$
COLLAR ELEVATION CORE SIZE LOGGED BY

FROM	${ }^{\text {P1/ }}$		DESCRIPTION	SAMPLE No.	From	T0	${ }_{\text {M }}^{\text {APPTH }}$	REC.	-ppb.	02/t	ppm.	
$3 \times 2$	31.8		ThLS-CHLORITE-SCHEST					80				
\%			I-D; Schistosity eo $70-90^{\circ} \mathrm{tca}$									
			Meilum Toulant cieey vibeaken many minma slips									
29,55	29.6	$\sim$	Minor sup wh cay groke									
230	29.1		Heakes beecila govge e $35^{\circ} \mathrm{tca}$.									
			ANKERITE STANINGO 31.5 to 31.8									
31.8	41.8		REXMOUNT PORPHECY					$90+$				
			LIGNT GEEY MREEN FINE GRAWES Grewnamass									
41.7	41.75	$\sim$	WEAK Clay Sup, Minol Betecinfom soep unit									
41.8	43.7		TAKC CHLORITE SCHIST - As ABOUS C 29.2					90				
			I-d veininle MITHT Geey il Minor Anklelite									
			Sminny fenctues nese Lower contact									
42.8	43,05	$\sim$	Caqy wi minde Bx grouge									

DIAMOND DRILL RECORD
PROPERTY HOLE NO: $\qquad$ 95-14.

SHEET NO. 4 of

	DIP TEST	
DEPTH	READING	CORRECTED

TM $\qquad$ TOTAL DEPTH $\qquad$ DATE BEGUN $\qquad$
AZIMUTH $\qquad$ gad location $\qquad$ DATE FINISHED $\qquad$
INCLINATION $\qquad$ Cross section $\qquad$ DATE LOGGED
collar elevation $\qquad$ CORE SIZE $\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD
PROPERTY
HOLE NO:
SHEET NO.

	DIP TEST		
	ANGLE		
DEPTH	READING	CORRECTED	

UTM $\qquad$ TOTAL DEPTH $\qquad$ dATE BEGUN $\qquad$
AZIMUTH $\qquad$ grid location $\qquad$ DATE FINISHED $\qquad$
INCLINATION $\qquad$ CROSS SECTION $\qquad$ date logged
COLLAR ELEVATION $\qquad$ CORE SIZE $\qquad$ LOGGED BY $\qquad$



DIAMOND DRILL RECORD
PROPERTY

	DIP TEST		
DEPTH	READING	CORRECTED	

SHEET NO. 7 OF


$\begin{aligned} & \frac{\mathrm{DEF}}{\mathrm{EROM}} \\ & 84.6 \end{aligned}$	Tith	${ }_{\text {a }}^{\text {APPP }}$	description	SAMPLE NO.	FROM	T0	$\begin{aligned} & \text { APP. } \\ & \text { HITTH } \end{aligned}$	REC.	ppb. ${ }^{\text {a }}$	$\overline{A_{00} \omega_{02 / 8}}$	${ }^{\text {ppme }}$. ${ }^{\text {c }}$	
	92.6		GRANODIORITE - w. S lock strwiges en	os				90				
			inclusioms of treantized Sehist									
		$\sim$	- 35.7 to E60 Broken up Grute, fedi e cte.									
			- 86.0 to E6. 3 inclusion of Gxanitizen Schist									
		$\sim$		cas 2 cm .								
			- 89.7 to 89.9 <ST- TALC CIIORITE SCHISLS m-9									
		$\sim$	- 90.3 to 90.4 minor Clay Sue									
				6.04								
			- 92.6 contact w sehist e 35 Lea.									
22.6	94.5		TALC-CMORTE SEHLST I-D, CLAYEY Brokel	N	,			90				
			Mluce SLID (?) © UPPER (GNTAT, ERIGHT									
			GREEN CCAY WTO LISTWANTE UPTO 92.8									
94.5	97.6		GRANODIORITE:M I-S Qte STRMGERS \& SCHIST INCL	, icons.								
			-95.6 to 97.1 0.5.1\% Pye Aront CHLCRIEE Fium									
			Fanticios,									
			- 95.4 to 976 :I-3. CPy $2 P_{0}(0.25-1 \%)$	100896	97.4	97.5	0.1			0.004	80	
			Assocritei Minor otersearnates									

DIAMOND DRILL RECORD
PROPERTY
HOLE NO: 95-14.
SHEET NO. 8

	DIP TEST	
	AELE	
DEPTH	READING	CORRECTED



$\overline{\mathrm{OEF}}$	TH	${ }_{\text {Hippo }}^{\text {Win }}$	DESCRIPTION	SAMPLE No.	From	T0	${ }_{\text {M }}^{\text {APPrim }}$	REC.	${ }^{\text {pppb }}{ }^{\text {A }}$	O2/t	ppm.	
97.6	99.65		TALC CHLORITE SCHST - I-D					90				
			schistosiry e jootca, lower rentitat									
$\cdots$			minor clay.									
99.65	103.4		Ganodiorwa Hl -3					100				
$!$			-99.7i 99.75 Q+2 Vein e $35^{\circ} \mathrm{ckc}$									
			-100.0-100.2 GTz Verns w Dacomite									
			AkT, 'On SiRINGOL - Pyer $0.25 \%$ on kew ewn	$F$								
		ES	- irio zex detr steingore $\bigcirc$ asica									
		I-S	-101.0 to 101.3 Qtr vein lrieluwar conract									
			0.25\% $\%$ PO ASSUC.ATES.									
103.4	107.1		AKTERED GiNEWACKE (?) w-ms					100				
			MEOWM GREEN GREY KHAKC Colour with PuRPLE									
			Pyk. itocio\% pye kents Fractuats.									
			-106. 5 Q12 ven $12 \%$ Po Alown van e $60^{\circ} \mathrm{tax}, 1.5 \mathrm{~cm}$ Thf	ke.								
			-106.5 to 1071. G9anutiz'o									

DIAMOND DRILL RECORD
PROPERTY

	DIP TEST	
DEPTH	READING	CORRECTED

HOLE NO: $\qquad$ 95-14. TOTAL DEPTH $\qquad$ date begun $\qquad$
UT $\qquad$ DATE FINISHED $\qquad$
AZIMUTH $\qquad$ gad location $\qquad$
inclination $\qquad$ CROSS SECTION $\qquad$ DATE LOGGED $\qquad$
COLLAR ELEVATION $\qquad$ CORE SIZE

SHEET NO $\qquad$ 9 $\qquad$
$\qquad$
$\qquad$
$\qquad$

DIAMOND DRILL RECORD

PROPERTY

	DIP TEST		
	ANGLE		
DEPTH	READING	CORRECTED	

HOLE NO $95-14$

UTM $\qquad$ TOTAL DEPTH $\qquad$ DATE BEGUN $\qquad$
AZIMUTH $\qquad$ GRID LOCATION $\qquad$ DATE FINISHED $\qquad$
INCLINATION $\qquad$ CROSS SECTION $\qquad$ DATE LOGGED
collar elevation $\qquad$ CORE SIZE $\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD

PROPERTY

	DIP TEST		
DEPTH	READING	CORRECTED	

HOLE NO: $\qquad$ 95-14

UTM $\qquad$ TOTAL DEPTH $\qquad$ date begun $\qquad$
Azimuth $\qquad$ GRID LOCATION $\qquad$ DATE FINISHED $\qquad$
INCLINATION $\qquad$ CROSS SECTION $\qquad$ date logged
colían elevation $\qquad$ CORE SIZE

SHEET NO. I/ of
$\qquad$
colin electron

LOGGED by $\qquad$


DIAMOND DRILL RECORD
PROPERTY
HOLE NO. $\qquad$ $95 \cdot 14$

SHEET NO. $\qquad$ 12 of

	DIP TEST		
	ANGLE		
DEPTH	READING	CORRECTED	

UTM $\qquad$ TOTAL DEPTH $\qquad$ DATE BEGUN $\qquad$
AZIMUTH $\qquad$ grid location $\qquad$ DATE FINISHED $\qquad$
INCLINATION $\qquad$ CROSS SECTION $\qquad$ date logged $\qquad$ COLLAR ELEVATION $\qquad$ core size $\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD

PROPERTY

OI	DIP TEST	
DELE		
DEPTH	READING	CORRECTED

SHEET NO. 13 of HOLE NO. $95-14$

UM $\qquad$ TOTAL DEPTH $\qquad$ date begun $\qquad$
AZIMUTH $\qquad$ grid location $\qquad$ DATE FINISHED $\qquad$
inclination $\qquad$ cross section $\qquad$ DATE LOGGED $\qquad$
collar elevation $\qquad$ CORE SIZE $\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD
PROPERTY

	DIP TEST		
	ANGLE		
	DEPTH	READING	
	CORRECTED		

HOLE NO. $95-14$

AZIMUTH $\qquad$
inclination $\qquad$
collar elevation $\qquad$

SHEET NO. 14. of

TOTAL DEPTH $\qquad$ date begun $\qquad$ cato location $\qquad$ DATE FINISHED $\qquad$ CROSS SECTION $\qquad$ date logged $\qquad$ CORE SIZE $\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD


DIAMOND DRILL RECORD
PROPERTY $\qquad$ HOLE NO. $\qquad$ 95-13

SHEET NO. $20 f 6$

	DIP TEST		
	DELE		
DEPTH	READING	CORRECTED	

UTM $\qquad$ TOTAL DEPTH $\qquad$ DATE BEGUN $\qquad$
AZIMUTH $\qquad$ GRID LOCATION $\qquad$ DATE FINISHED $\qquad$
INCLINATION $\qquad$ CROSS SECTION $\qquad$ DATE LOGGED $\qquad$
COLLAR ELEVATION $\qquad$ core size $\qquad$ LOGGED 旦 $\qquad$


PROPERTY		Pex
DIP TEST		
	ANGLE	
DEPTH	READING	CORRECTED

> DIAMOND DRILL RECORD HOLE NO $95-13$

SHEET NO. 3 of 6


$\overline{\text { EROM }}$	T10	$\xrightarrow{\text { APPP }}$	DESCRIPTION	SAMPLE No.	FROM	To	WPPP	REC.	ppb.	${ }_{\text {azt }}^{\text {at }}$	ppm.	$\%$
31.8	31.3	NND	Fault gowge w/ pebbles of					80				
			Laver emtact as $40^{\circ} \mathrm{tca}$. $/$ / sexpentiaidé									
31.3	31.9		Serpentinite - Intensely Alt'd									
			- talc eyes. - weakly folitted at $50^{\circ} \mathrm{tea}$									
			bettom contact wh granodiovite									
			- Tall slear near boftam contact.									
31.9	36.0		Gromodiorite - weak silucificution					90				
	.		very braken up - poor recawery									
			4 frres at in tua. - ctzkallul									
			almyfracs.									
36.0	36.6		Serpentinite. Intensely tal/chl $1 / t d$									
			Whikistuomitic text. - veinlets at $75^{\circ}$ ta									
			unistasiotic tex. veinleteat esta									
					;							

DIAMOND DRILL RECORD


HOLE NO: $95-13$

USM $\qquad$ TOTAL DEPTH $\qquad$ date begun $\qquad$ AZIMUTH $\qquad$ GRID LOCATION $\qquad$ DATE FINISHED $\qquad$
INCLINATION $\qquad$ CROSS SECTION $\qquad$ DATE LOGGED $\qquad$
collar elevation $\qquad$ CORE SIZE $\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD
PROPERTY

	Rex	
	DIP TEST	
	ANGLE	
DEPTH	READING	CORRECTED

HOLE NO: $95-13$
-UTM $\qquad$ TOTAL DEPTH $\qquad$ DATE BEGUN $\qquad$
AZIMUTH $\qquad$ GRID LOCATION $\qquad$ DATE FINISHED $\qquad$
INCLINATION $\qquad$ CROSS SECTION $\qquad$ date logged $\qquad$
COLLAR ELEVATION $\qquad$ core size

SHEET NO. So 6 $\qquad$
$\qquad$ LOGGED 8 Y $\qquad$


$$
\text { Approx } 30^{\circ}+c a \text {. }
$$

DIAMOND DRILL RECORD
PROPERTY $\qquad$ Rex

HOLE NO: $\qquad$ 95-13:

SHEET NO. 6 of 6

	DIP TEST	
	ANGLE	
DEPTH	READING	CORRECTED

UTM $\qquad$ total depth $\qquad$ date begin $\qquad$
AZimuth $\qquad$ grid location $\qquad$ DATE FINISHED $\qquad$
inclination $\qquad$ crass section $\qquad$ date logged $\qquad$ collar elevation $\qquad$ CORE SIZE $\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD
PROPERTY Rex (spokane Res)

HOLE NO. 95-15

SHEET NO. 1 of


TOTAL DEPTH $\qquad$ 135.6 date begun Sept 7/95 371.97 N 639 DATE FINISHED $\qquad$ azimuth $198^{\circ} \quad$ ( 196 ) brio location 371.97 N .6 .39 E 7toow date logged Sept 8/95 collar elevation $\qquad$ 2250.1 Core size Na Loges by F moyle and A. Boronowski


DIAMOND DRILL RECORD
PROPERTY HOLE NO. $\qquad$ $95-15$

SHEET NO. 2 of $\qquad$

	DIP TEST	
	ANGLE	
DEPTH	READING	CORRECTED

UM $\qquad$ total Depth $\qquad$ date begun $\qquad$
azimuth $\qquad$ grid location $\qquad$ date finished $\qquad$
inclination $\qquad$ cross section $\qquad$ date logged $\qquad$
collar elevation $\qquad$ core size $\qquad$ LogGed by $\qquad$


DIAMOND DRILL RECORD
PROPERTY
HOLE NO. $95-15$
SHEET NO. 3 of


TM $\qquad$ TOTAL DEPTH $\qquad$ date begun $\qquad$
AZIMUTH $\qquad$ grid location $\qquad$ date finished $\qquad$
INCLINATION $\qquad$ CROSS SECTION $\qquad$ date logged $\qquad$ collar elevation $\qquad$ core size $\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD
PROPERTY
HOLE NO. $95-15$
SHEET NO. 4 of

	DIP TEST	
	ANGLE	
DEPTH	READING	CORRECTED

USM $\qquad$ TOTAL DEPTH $\qquad$ DATE BEGUN $\qquad$
AZIMUTH $\qquad$ grid location $\qquad$ DATE FINISHED $\qquad$
INCLINATION $\qquad$ CROSS SECTION $\qquad$ date logged $\qquad$
collar elevation $\qquad$ CORE SIZE $\qquad$ LOGGED 8 Y $\qquad$


DIAMOND DRILL RECORD

PROPERTY

	DIP TEST		
	ANGLE		
DEPTH	READING	CORRECTED	

HOLE NO. $95-15$

SHEET NO. 5 of

TOTAL DEPTH $\qquad$ date begun $\qquad$
AZIMUTH $\qquad$ grid location $\qquad$ Date finished $\qquad$
INCLINATION $\qquad$ CROSS SECTION $\qquad$ date logged $\qquad$
collar elevation $\qquad$ core size $\qquad$ logged by $\qquad$


PROPERTY

DIP TEST		
	ANGLE	
DEPTH	READING	CORRECTED

HOLE NO. $\qquad$

SHEET NO. $\qquad$ 6 of total depth $\qquad$ date begun $\qquad$
UTM $\qquad$
azimuth $\qquad$ grid location $\qquad$ Date finished $\qquad$
inclination $\qquad$ cross section $\qquad$ date logged $\qquad$
collar elevation $\qquad$ CORE SIzE $\qquad$ LogGed by $\qquad$


DIAMOND DRILL RECORD
PROPERTY
HOLE NO. $\qquad$ $95-15$

SHEET NO. 7 of

	DIP TEST	
	ANGLE	
DEPTH	READING	CORRECTED
	$\ddots$	

UTE $\qquad$ TOTAL DEPTH $\qquad$ DATE BEGUN $\qquad$ AZIMUTH $\qquad$ grid Location $\qquad$ DATE FINISHED $\qquad$
INCLINATION $\qquad$ CROSS SECTION $\qquad$ date logged $\qquad$
collar elevation $\qquad$ core size LOGGED BY $\qquad$


DIAMOND DRILL RECORD
PROPERTY $\qquad$ HOLE NO. $\qquad$ $95-95$ SHEET NO. $\mathcal{B}$ of

	DIP TEST	
	ANGLE	
DEPTH	READING	CORRECTED

UTM $\qquad$ TOTAL DEPTH $\qquad$ date begun $\qquad$
AZIMUTH $\qquad$ grid location $\qquad$ Date finished $\qquad$
inclination $\qquad$ cross section $\qquad$ date logged $\qquad$
collar elevation $\qquad$ CORE SIZE $\qquad$ Logged by $\qquad$


DIAMOND DRILL RECORD

PROPERTY $\qquad$ Rex Mt

	DIP TEST
	ANGLE
DEPTH	READING

HOLE NO: $\qquad$ $95-15$

SHEET NO. 9

UTM $\qquad$ total Depth $\qquad$ date begun $\qquad$
AZIMUTH $\qquad$ grid location $\qquad$ Date finished $\qquad$
inclination $\qquad$ CROSS SECTION $\qquad$ Date logged $\qquad$
collar elevation $\qquad$ CORE SIZE $\qquad$ Logged by $\qquad$


DIAMOND DRILL RECORD
PROPERTY
HOLE NO. $95-15$
SHEET NO. $\qquad$ 10

	DIP TEST	
	ANGLE	
DEPTH	READING	CORRECTED

TM $\qquad$ TOTAL DEPTH $\qquad$ date begun $\qquad$
AZIMUTH $\qquad$ grid location $\qquad$ DATE FINISHED $\qquad$
INCLINATION $\qquad$ CROSS SECTION $\qquad$ date logged $\qquad$
COLLAR ELEVATION $\qquad$ core size $\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD
PROPERTY $\qquad$ Pe.

HOLE NO. $\qquad$ $25-17$

SHEET NO. $\qquad$ 1 of 8

	DIP TEST	
	ANGLE	
DEPTH	READING	CORRECTED
134.7		208
		$-6 / .5$

UTM $\qquad$ total Depth $\qquad$ 134.7 date begun Sext 1195 azimuth $\qquad$ 204 geld location $\qquad$ $344.44 N 327.73 \mathrm{E}$ $-64$ cross section $\qquad$ $4+\mathrm{OOW}$ Sept 13/95
inclination $\qquad$
$\qquad$ NO Core size
$\qquad$ 2107.63 $\qquad$ OGGED Sept 13195 collar elevation $\qquad$



$$
10^{\circ}, 45,30 \text { TCA ; bleached }
$$

DIAMOND DRILL RECORD

PROPERTY

	DIP TEST		
	ANGLE		
DEPTH	READING	CORRECTED	

HOLE NO. $25-17$

TM $\qquad$ TOTAL DEPTH $\qquad$ DATE BEGUN $\qquad$
AZIMUTH $\qquad$ GRID LOCATION $\qquad$ DATE FINISHED $\qquad$
INCLINATION $\qquad$ CROSS SECTION $\qquad$ DATE LOGGED $\qquad$
COLLAR ELEVATION $\qquad$ core size

SHEET NO. 2 of 8 8 LOGGED by $\qquad$


DIAMOND DRILL RECORD

PROPERTY

	DIP TEST		
	ANGLE		
DEPTH	READING	CORRECTED	

HOLE NO. $\qquad$ $95-17$

UT $\qquad$ total depth $\qquad$ date begun $\qquad$
azimuth $\qquad$ brio location $\qquad$ date finished $\qquad$
inclination $\qquad$ cross section $\qquad$ date loge $\qquad$
collar elevation $\qquad$ core size

SHEET NO. $Z$ of 8 logged by $\qquad$


DIAMOND DRILL RECORD
PROPERTY
HOLE NO.
SHEET NO. 4 of 8

DIP TEST		
	ANGLE	
DEPTH	READING	CORRECTED

TM $\qquad$ TOTAL DEPTH $\qquad$ DATE BEGUN $\qquad$
AZIMUTH $\qquad$ GRID LOCATION $\qquad$ DATE FINISHED $\qquad$
INCLINATION $\qquad$ CROSS SECTION $\qquad$ DATE LOGGED $\qquad$
COLLAR ELEVATION $\qquad$ CORE SIZE $\qquad$ LOGGED BY $\qquad$


## DIAMOND DRILL RECORD

 HOLE NO. 95-17SHEET NO. 536

PROPERTY $\qquad$

	OIP TEST		
	ANGLE		
DEPTH	READING	CORRECTED	

UTM AZIMUTH INCLINATION COLLAR ELEVATION

TOTAL DEPTH grid location
choss section core size

Date becun
Date finished $\qquad$
Date loggeo
LOGGED BY $\qquad$


DIAMOND DRILL RECORD
PROPERTY
HOLE NO. $\qquad$ SHEET NO. 6 of 8

	DIP TEST		
	ANGLE		
DEPTH	READING	CORRECTED	

UTM $\qquad$ TOTAL DEPTH $\qquad$ date begun $\qquad$
Azimuth $\qquad$ grid location $\qquad$ Date finished $\qquad$
inclination $\qquad$ cross section $\qquad$ date logged collar elevation $\qquad$ CORE SIZE $\qquad$ logged by $\qquad$


DIAMOND DRILL RECORD

PROPERTY
HOLE NO. 95-17

	DIP TEST		
	ANGLE		
DEPTH	READING	CORRECTED	

TM $\qquad$ TOTAL DEPTH $\qquad$ date begun
AZIMUTH $\qquad$ GRID LOCATION $\qquad$ DATE FINISHED

INCLINATION $\qquad$ CROSS SECTION $\qquad$ DATE LOGGED $\qquad$
COLLAR ELEVATION $\qquad$
$\qquad$

CORE SIzE $\qquad$ LOGGED BY $\qquad$

SHEET NO. \# \& 8


DIAMOND DRILL RECORD
PROPERTY
HOLE NO. $\qquad$ $95-1=$

SHEET NO. 8 if $\&$

	DIP TEST	
	ANGLE	
DEPTH	READING	CORRECTED

UTM $\qquad$ TOTAL DEPTH $\qquad$ DATE BEGUN $\qquad$
AZIMUTH $\qquad$ GRID LOCATION $\qquad$ DATE FINISHED ry pelt
INCLINATION $\qquad$ CROSS SECTION $\qquad$ DATE LOGGED
collar elevation $\qquad$ core size $\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD
PROPERTY Rex（fy品one）
hole no． $\qquad$ SHEET NO． $\qquad$ Los

	DIP TEST	
	ANGLE	
DEPTH	READING	CORRECTED
-74		-20

USM $\qquad$ TOTAL DEPTH $\qquad$ 184.4 date begun sin $14 / 9$.
AZIMUTH $\qquad$ GRID LOCATION $\qquad$ 3 $3+1.4 \mathrm{~N} 401.39 \mathrm{~N}$ date finished seat $17 / 95$
inclination $\qquad$ CROSS SECTION
$\qquad$ $N / Q$ date logged sept $15-16$ collar elevation $\qquad$ 2095.91 CORE SIZE －
$\qquad$ Locke br Fr moyle


| 24.8 | $25.2 \sim$ |
| ---: | :--- | \(\begin{aligned} \& Tale／chl schist wiS w／fanlt <br>

\& <br>
\& <br>
\& <br>
\& \end{aligned}\)

DIAMOND DRILL RECORD

SHEET NO. 2 of

## hole no.

$\qquad$
total depth
date begun
DATE FINISHED $\qquad$
date logged $\qquad$
incl.ination $\qquad$ cross section $\square$ logged by $\qquad$


$$
\begin{array}{r}
\text { DIAMOND DRILL RECORD } \\
\text { HOLE NO. } 95-18 \\
\hline
\end{array}
$$

PROPERTY $\qquad$ SHEET NO. 3 of

	DIP TEST	
	DEPTH	REAOING
	CORRECTED	


UTM	total DEPTH	date begun
AZIMUTH	gaid location	date finished
inclination	cross section	date locged
collar elevation	core size	LOGGED BY



DIAMOND DRILL RECORD
PROPERTY $\qquad$

	DIP TEST		
	ANGLE		
DEPTH	READING	CORRECTED	

HOLE NO. $\qquad$ $95-18$

TM $\qquad$ total Depth
AZIMUTH $\qquad$ grid location
inclination $\qquad$ cross section
collar elevation $\qquad$ CORE SIZE
$\qquad$ date begun $\qquad$
$\qquad$ date finished $\qquad$
$\qquad$ date logged $\qquad$
SHEET NO. 4 of Date begun
$\qquad$
$\qquad$ Loge ed by $\qquad$


DIAMOND DRILL RECORD

PROPERTY

	DIP TEST		
	ANGLE		
DEPTH	READING	CORRECTED	

HOLE NO. 95-18

USM $\qquad$ total Depth $\qquad$ date begun $\qquad$
AZIMUTH $\qquad$ grid location $\qquad$ Date finished
inclination $\qquad$ cross section $\qquad$ date logged
collar elevation $\qquad$ CORE SIZE

SHEET NO. 5 of $\qquad$
$\qquad$
$\qquad$
$\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD
PROPERTY

	DIP TEST	
	ANGLE	
DEPTH	READING	CORRECTEO

HOLE NO. 95-18
SHEET NO. 6 of


DIAMOND DRILL RECORD

PROPERTY

	DIP TEST		
	ANGLE		
DEPTH	READING	CORRECTED	

HOLE NO. 95-18

USM $\qquad$ TOTAL DEPTH
AZIMUTH $\qquad$ GRID LOCATION

INCLINATION $\qquad$ CROSS SECTION
COLLAR ELEVATION $\qquad$ CORE SIZE
$\qquad$ date begun $\qquad$
$\qquad$ DATE FINISHED $\qquad$
$\qquad$ date logged
SHEET NO. 7 of
$\qquad$
$\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD

PROPERTY
HOLE NO. $\qquad$ 95-18

	DIP TEST	
	ANGLE	
	DEPTH	READING
	CORRECTED	

USM $\qquad$ TOTAL DEPTH $\qquad$ date begun $\qquad$
AZIMUTH $\qquad$ cad location $\qquad$ Date finished $\qquad$
inclination $\qquad$ cross section $\qquad$ date logged $\qquad$
collar elevation $\qquad$ CORE SIZE $\qquad$ LOGGED BY $\qquad$

SHEET NO. 8 of $\qquad$


DIAMOND DRILL RECORD

PROPERTY

DIP TEST		
	ANGLE	
DEPTH	READING	CORRECTED

HOLE NO. $95-18$

TOTAL DEPTH GRID LOCATION CROSS SECTION CORE SIZE

SHEET NO. 9 of

UTM	TOTAL DEPTH	date begun
AZIMUTH		DATE FINISHED
inclination	CROSS SECTION	DATE LOGGED
collar elevation	core size	LOGGED BY


	TITH	${ }_{\text {HiOtit }}^{\text {APP }}$	DESCRIPTION	SAMPLE No.	From	T0	Appr	REC.	ppb. ${ }^{\text {a }}$	$0_{02}$	${ }_{\text {pem. }}{ }^{\text {cu }}$	\%
$\underline{67.9}$	88.8		Granodiorite - wn m-s w/					100				
			gta/corb olozg fractures.									
			3 fracs at $40^{\circ}$ tra.									
								100				
388	89.0		Argillite w~m-s -greyish/blik									
			luw colctw/gind. at $85^{\circ} \mathrm{tca}$									
			,									
89.0	89.1		Grondiorite. fingar w~m-s					120				
			cour contat of Arg at $80^{\circ} \mathrm{tca}$									
89.1	89.9		Aralilite - Med arey/blck w-s					100				
			$-a+z / c a \cdot b \text { veinlets sab//tca a } 1$									
			$10-20^{\circ}+c a .$									
89.9	90.9		Greywacke. M-5 w/ ft 2 carb					100				
			Jeinpets at $10-20^{\circ} \mathrm{tcd}$									



DIAMOND DRILL RECORD
PROPERTY $\qquad$ HOLE NO. 95-18

SHEET NO. 11 of

	DIP TEST		
	AISLE		
DEPTH	READING	CORRECTED	

TM $\qquad$ TOTAL DEPTH $\qquad$ date begun $\qquad$
Azimuth $\qquad$ grid location $\qquad$ date finished $\qquad$
inclination $\qquad$ cross section $\qquad$ date logged $\qquad$
collar elevation $\qquad$ CORE SIZE $\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD

PROPERTY $\qquad$

DIP TEST		
	ANGLE	
DEPTH	READING	CORRECTED

UTM

HOLE NO. $\qquad$ 95-18 TOTAL DEPTH $\qquad$ date begun $\qquad$
$\qquad$ ,
AZIMUTH $\qquad$ GRID LOCATION $\qquad$ Date finished $\qquad$
inclination $\qquad$ cross section $\qquad$ Date logged
collar elevation $\qquad$ core size

SHEET NO. $\qquad$ 12 of
$\qquad$
$\qquad$ Logged by $\qquad$


DIAMOND DRILL RECORD

PROPERTY

DIP TEST		
	ANGLE	
DEPTH	READING	CORRECTED

HOLE NO. $95-18$

UTM $\qquad$ total Depth $\qquad$ date begun $\qquad$
AZIMUTH $\qquad$ grid location $\qquad$ DATE FINISHED $\qquad$
inclination $\qquad$ cross section $\qquad$ date logged $\qquad$
collar elevation $\qquad$ CORE SIZE

SHEET NO. 13 of
$\because:$
$\qquad$ LOGGED by $\qquad$


DIAMOND DRILL RECORD

PROPERTY
HOLE NO. $95-18$

	DIP TEST	
	ANGLE	
DEPTH	READING	CORRECTED

USM $\qquad$ TOTAL DEPTH $\qquad$ date begun $\qquad$
AZIMUTH $\qquad$ grid location $\qquad$ date finished $\qquad$
inclination $\qquad$ cross section $\qquad$ Date logged $\qquad$
collar elevation $\qquad$ core size logged by $\qquad$

SHEET NO. 14 of $\qquad$


DIAMOND DRILL RECORD
PROPERTY
HOLE NO. $\qquad$ 95-18

SHEET NO. 15 of

	DIP TEST		
	ANGLE		
DEPTH	READING	CORRECTED	

TM $\qquad$ TOTAL DEPTH $\qquad$ DATE BEGUN $\qquad$
AZIMUTH $\qquad$ GRID LOCATION $\qquad$ DATE FINISHED $\qquad$
INCLINATION $\qquad$ CROSS SECTION $\qquad$ DATE LOGGED
collar elevation $\qquad$ core size $\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD

PROPERTY

	DIP TEST	
	ANGLE	
DEPTH	READING	
	CORRECTED	

HOLE NO. $95-18$.

UTM $\qquad$ total depth
AZIMUTH $\qquad$ grid location
inclination $\qquad$ CROSS SECTION
collar elevation $\qquad$ Core size
$\qquad$ date begun $\qquad$
$\qquad$ date finished $\qquad$
$\qquad$ date logged $\qquad$
SHEET NO. 16 of DATE ECU
$\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD

PROPERTY

	DIP TEST	
DEPTH	READING	CORRECTED

HOLE NO. 95-18

UTM $\qquad$ TOTAL DEPTH $\qquad$ date begun $\qquad$
AZIMUTH $\qquad$ gRid location $\qquad$ DATE FINISHED $\qquad$
inclination $\qquad$ CRoss section $\qquad$ DATE LOGGED $\qquad$
collar elevation $\qquad$ CORE SIZE $\qquad$ Logged by $\qquad$


DIAMOND DRILL RECORD
PROPERTY
HOLE NO. 95-18
SHEET NO. 18 of

	DIP TEST	
	ANGLE	
	DEPTH	READING
	CORRECTED	

TM $\qquad$ TOTAL DEPTH $\qquad$ DATE BEGUN $\qquad$
AZIMUTH $\qquad$ GRID LOCATION $\qquad$ DATE FINISHED $\qquad$
INCLINATION $\qquad$ CROSS SECTION $\qquad$ DATE LOGGED
COLLAR ELEVATION $\qquad$ CORE SIZE $\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD
PROPERTY
HOLE NO. $95-18$
SHEET NO. 19 of

	DIP TEST		
	ANGLE		
DEPTH	READING	CORRECTED	

USM $\qquad$ TOTAL DEPTH $\qquad$ DATE BEGUN $\qquad$
AZIMUTH $\qquad$ grid location $\qquad$ DATE FINISHED $\qquad$
INCLINATION $\qquad$ CROSS SECTION $\qquad$ date locked
collar elevation $\qquad$ core size $\qquad$ logged by $\qquad$


DIAMOND DRILL RECORD
PROPERTY HOLE NO. 95-19

SHEET NO.


TM $\qquad$ TOTAL DEPTH $\qquad$ 0.8 .4 m DATE BEGUN sept 17/95
AZIMUTH $\qquad$ 024 GRID LOCATION $\qquad$ 187.99 N 477.27

INCLINATION - 58 CROSS SECTION $\qquad$ 2+00w $N Q$ date loge sept 20/95
COLLAR ELEVATION

$$
2074.93
$$ care size LoGged er $\qquad$ f. Moyle



DIAMOND DRILL RECORD
PROPERTY

HOLE NO. $95-19$

UTE $\qquad$ total Depth $\qquad$ date begun $\qquad$
AZIMUTH $\qquad$ grid location $\qquad$ date finished $\qquad$
'inclination $\qquad$ cross section $\qquad$ date loge $\qquad$ collar elevation $\qquad$ core size

SHEET NO. 2 of DATE BECK logged by $\qquad$


DIAMOND DRILL RECORD

PROPERTY

$$
\text { HOLE NO. } 95-19
$$

	DIP TEST	
	ANGLE	
DEPTH	READING	CORRECTED

UTM $\qquad$ TOTAL DEPTH
AZIMUTH $\qquad$ GRID LOCATION

INCLINATION $\qquad$ CROSS SECTION
collar elevation $\qquad$ core size
$\qquad$ date begun $\qquad$
$\qquad$ DATE FINISHED $\qquad$
$\qquad$ DATE LOGGED $\qquad$
$\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD

PROPERTY

	DIP TEST		
	ANGLE		
DEPTH	READING	CORRECTED	

HOLE NO. $95-19$

TM $\qquad$ TOTAL DEPTH $\qquad$ Date begun $\qquad$
AZIMUTH $\qquad$ GRID LOCATION $\qquad$ DATE FINISHED

INCLINATION $\qquad$ CROSS SECTION $\qquad$ DATE LOGGED $\qquad$
COLLAR ELEVATION $\qquad$ CORE SIZE

SHEET NO. 4 of $\qquad$
$\qquad$
$\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD
PROPERTY

$$
\text { HOLE NO. } 95-19
$$

SHEET NO. 5 of


UT $\qquad$ total depth $\qquad$ date begun $\qquad$
AZIMUTH $\qquad$ grid location $\qquad$ DATE FINISHED $\qquad$
inclination $\qquad$ cross section $\qquad$ date loge $\qquad$ collar elevation $\qquad$ CORE SIZE $\qquad$ LOGGE by $\qquad$


DIAMOND DRILL RECORD

PROPERTY

	DIP TEST		
	ANGLE		
DEPTH	READING	CORRECTED	

HOLE NO. $95-19$
$\qquad$ date begun $\qquad$
AZIMUTH $\qquad$ grid location $\qquad$ date finished $\qquad$
inclination $\qquad$ CROSS SECTION $\qquad$ Date logged
collar elevation $\qquad$ core size $\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD

PROPERTY
HOLE NO. $\qquad$


UTM $\qquad$ TOTAL DEPTH
AZIMUTH $\qquad$ grid location
inclination $\qquad$ cross section
collar elevation $\qquad$ core size

SHEET NO. $\qquad$ 7 of
$\qquad$ date begun $\qquad$
$\qquad$ date finished $\qquad$
$\qquad$ date logged $\qquad$ LOGGED By $\qquad$


DIAMOND DRILL RECORD
PROPERTY
HOLE NO. 95-19

SHEET NO.
8 of

	DIP TEST	
	ANGLE	
DEPTH	READING	CORRECTED

TM $\qquad$ TOTAL DEPTH $\qquad$ DATE BEGUN $\qquad$
AZIMUTH $\qquad$ GRID LOCATION $\qquad$ DATE FINISHED $\qquad$
INCLINATION $\qquad$ CROSS SECTION $\qquad$ Date logged $\qquad$
COLLAR ELEVATION $\qquad$ CORE SIZE $\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD

PROPERTY
HOLE NO.

$$
95-10
$$

$\qquad$ total depth $\qquad$ date begun $\qquad$

	DIP TEST	
	ANGLE	
DEPTH	READING	CORRECTED

UT $\qquad$ date finished $\qquad$
AzImuth $\qquad$ GRID LOCATION $\qquad$
inclination $\qquad$ cross section $\qquad$ Date logged $\qquad$
collar elevation $\qquad$ CORE SIZE

SHEET NO. g of $\qquad$


DIAMOND DRILL RECORD

PROPERTY
hOLE NO. $\qquad$ 95-19

	DIP TEST	
	ANGLE	
DEPTH	READING	CORRECTED

TM $\qquad$ total DEPTH $\qquad$ date begun $\qquad$
azimuth $\qquad$ brio location $\qquad$ date finished $\qquad$
inclination $\qquad$ cross section $\qquad$ date logged
collar elevation $\qquad$ core size
$\qquad$
$\qquad$ LOGGED by $\qquad$

SHEET NO. 10 of $\qquad$


DIAMOND DRILL RECORD

PROPERTY

	DIP TEST	
	ANGLE	
	DEPTH	READING
	CORRECTED	

HOLE NO. 95-19

SHEET NO. 11 of $\qquad$ TOTAL DEPTH $\qquad$ DATE BEGUN $\qquad$
UTM $\qquad$
AZIMUTH $\qquad$ GRID LOCATION $\qquad$ DATE FINISHED $\qquad$
inclination $\qquad$ CROSS SECTION $\qquad$ date logged $\qquad$
COLLAR ELEVATION $\qquad$ CORE SIZE $\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD
PROPERTY $\qquad$ HOLE NO. $95-19$

SHEET NO. $\qquad$ $110 f$

	DP TEST		
	ANGLE		
	DEPTH		

TM $\qquad$ TOTAL DEPTH $\qquad$ DATE BEGUN $\qquad$
AzIMUTH $\qquad$ brio location $\qquad$ date finished $\qquad$
inclination $\qquad$ CROSS SECTION $\qquad$ date logged collar elevation $\qquad$ core size $\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD
PROPERTY $\qquad$ Rex

HOLE NO. $\qquad$ 95-20

SHEET NO. $\qquad$ 1 of 8

	DIP TEST	
	ANGLE	
DEPTH	READING	CORRECTED
$363 f t$		-62
		magedit:
	$216^{\circ}$	

UTM $\qquad$ total Depth $\qquad$ 110.6 date begun $\qquad$ Sestia/25 AZIMUTH $\quad 198$ ohio location $\qquad$
$\qquad$ $1+75 \mathrm{w}$ NQ date lagged
$\qquad$ sepl20les inclination - 65 cross section cross section
$\qquad$ logged by lex Bereaenski


DIAMOND DRILL RECORD
PROPERTY
HOLE NO. $\qquad$ $95-20$

SHEET NO. 2 of 8

	DIP TEST	
	ANGLE	
DEPTH	READING	CORRECTED

USM $\qquad$ TOTAL DEPTH $\qquad$ date begun $\qquad$
AZIMUTH $\qquad$ GRID LOCATION $\qquad$ DATE FINISHED $\qquad$
INCLINATION $\qquad$ CROSS SECTION $\qquad$ date logged
COLLAR ELEVATION $\qquad$ core size $\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD HOLE NO. $\quad 95-20$

SHEET NO. $\qquad$ 3 F 8
PROPERTY

	DIP TEST	
DEPTH	AEAOING	ANGLE


$\begin{aligned} & \mathrm{EBOMI} \\ & \hline \mathrm{DEF} \end{aligned}$	PTH	WIDPTH	descritition	SAMPLE NO.	FROM	T0	WIDP.	REC.	ppb.	\% 0 \% $/ 2$	${ }_{\text {pom. }}{ }^{\text {c }}$	Cu. $\%$
			27.0-27.4 i-d: i-5;									
. 27.4	28.5		Granodloicite					100				
			m-i-s ; beoled veinlete + baidine									
			stos 45 TCA ; 0.lon barcen atz									
			at the lower contact 45TCA;									
295	35.6		Serpeaiaute					100				
			$\text { 29.5-30.1 t-c-schist; tol } 4 \text { 45TCA }$									
			$30.1-35.6$ w~m-d to in -d al									
			1 lower centoct, miner ste-sarb									
			otes 45 TCA									
356	37.0		Grenediorile									
			i-s: fractures and thin veinlets of									
			gk 80 TCA; 12 lm									

DIAMOND DRILL RECORD

PROPERTY

	DIP TEST	
	ANGLE	
DEPTH	READING	CORRECTED

HOLE NO. $\qquad$ $95-20$

SHEET NO. 4068 TOTAL DEPTH $\qquad$ Date begun $\qquad$
USM $\qquad$ DATE FINISHED $\qquad$
AzImuth $\qquad$ grid location $\qquad$
inclination $\qquad$ cross section $\qquad$ date logged $\qquad$
collar elevation $\qquad$ CORE SIzE $\qquad$ LOGGED BY $\qquad$


DIAMOND DRILL RECORD HOLE NO. $95-20$ SHEET NO. 5 of 8
$\qquad$ TOTAL DEPTH $\qquad$ date begun $\qquad$ AZIMUTH $\qquad$ grid location $\qquad$ date finished $\qquad$
inclination
Cross section $\qquad$ date locgeo $\qquad$
collar elevation $\qquad$ core size $\qquad$ LogGed by $\qquad$

	Tif	${ }_{\substack{\text { App } \\ \text { Mipiid }}}$	Descaription	Sample no.	From	To	${ }_{\text {HiPri }}^{\text {APP }}$	Rec.	${ }^{\text {papb. }}$. ${ }^{\text {au }}$			
46.2	475		Giandorite									
			tionori mri-s, 10 fraclures/m									
			$10^{\circ}, 45 \mathrm{TCA}$									
47.5	46.5		Araillite - Mimon a +2 /uerbstragr									
			irregular to suld									
			folin $80^{\circ} \mathrm{tca}$									
48.5	57.1		Asallite w gandiorite dykes									
			4805-49.5 gadiorite dike I-5									
			Stringies/veinlets /1 tea - Arillite									
			incl. Sns upper contet $80^{\circ} \mathrm{ta}$									
			Lur intat $155^{\circ} \mathrm{tan}$.									
			49.9-50.1 grodionte dyke									
			Lwer entat ob ${ }^{\circ}$ tia I-s									
			50-2-50.5. As above									
			upper contet $10^{\circ} \mathrm{tca}$ Larentet 40ts									
			$51: 8-51.9$ As above I-s									
			noper dur untat's $80^{\circ}$ fea									
			$52.6153 .1-\mathrm{mod}-5$ gradiorite 8 fracs $/ \mathrm{h}$									

DIAMOND DRILL RECORD

PROPERTY

	DIP TEST		
	ANGLE		
DEPTH	READING	CORRECTED	

HOLE NO. 95-20

SHEET NO.
601 $\qquad$

UTM $\qquad$ total DEPTH $\qquad$ date begun $\qquad$
Azimuth $\qquad$ grid location $\qquad$ DATE FINISHED $\qquad$
inclination $\qquad$ cross section $\qquad$ date logged $\qquad$
collar elevation $\qquad$ core size LOGGED BY $\qquad$


DIAMOND DRILL RECORD

PROPERTY

	DIP TEST	
	ANGLE	
DEPTH	READING	CORRECTED

HOLE NO. 95.20

UT $\qquad$ total depth $\qquad$ date begun
AzIMUTH $\qquad$ gabo location $\qquad$ date finished
inclination $\qquad$ cross section $\qquad$ date logged
collar elevation $\qquad$ core size

SHEET NO. $\qquad$ 7 of
$\qquad$ logged by
$\qquad$ 8
$\qquad$
$\qquad$
$\qquad$
$\qquad$


DIAMOND DRILL RECORD
PROPERTY

	DIP TEST		
DEPTH	AEAOING	CORGAECTEO	

HOLE NO. 95-20

SHEET NO. 8 of 8
_ HOLE NO. 95-20


$\overline{\text { EROEP }}$	${ }_{\text {ert }}$	${ }_{\text {H }}^{\text {APP }}$	DESCRIPTION	SAMPLE No.	From	T0	${ }_{\text {M }}^{\text {APPP }}$	REC.	ppb.	${ }^{\text {Au }} \mathrm{O} / 2$		${ }^{50 .} \%$
106.3	110.6		Cormodiorite									
			123.9 - $107.5 . I \cdot S$ - I D Alt'									
			Heavil barki rears $3^{+1}$ urit.									
			tresher wam-s at depth.									
			$E O H$									

## APPENDIX III

## Analytical Data



ICP - . 500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-MNO3-HZO AT 95 DEG.C FOR OME MOVR AND IS dILUTED TO 10 ML UITH MATER.
THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI 8 H AND LIMITED FOR MA K AND AL.
ASSAY RECOMMEMDED FOR ROCK AND CORE SMNPLES IF CU PB ZM AS $\geqslant 1 \%$, AG $>30$ PPM $\&$ AU $>1000$ PPB

- SANPLE TYPE: CORE AG** + NU** BY FIRE ASSAY FRON I A.T. SAMPLE.

Smoles beainning 'RE' are Reruns end 'RRE' are Reiect Reruns.



ICP - . 500 GRAM SAMpLE IS digested with 3ml 3-1-2 hCL-hm03-h20 at 95 deg.c for one hovr and is diluted to 10 ml hith mater.
THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA II B 4 AND LIMITED FOR MA $K$ AMD AL
ASSAY RECOMMENDED FOR ROCK AND CORE SNMPLES IF CU PB ZN AS > 12 , AG > 30 PPM \& AU $>1000$ PPB

- SAMPLE TYPE: P1 CORE P2 ROCK P3 PAN CONC. AG $^{* \pm+}+A U^{* *}$ BY FIRE ASSAY FRON 1 A.T. SAMPLE.

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.


SAMP	$\begin{gathered} \text { Mo } \\ \text { ppin } \end{gathered}$	$\begin{array}{r} \text { Cu } \\ \text { ppand } \end{array}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{pppm} \end{array}$	$\begin{array}{r} 2 n \\ p p n \end{array}$	$\begin{array}{r} \mathbf{A g} \\ \mathbf{p p m} \\ \hline \end{array}$	$\begin{gathered} \mathrm{Mi} \\ \text { ppom } \end{gathered}$	$\begin{array}{r} \text { Co } \\ \text { ppp } \end{array}$	$\begin{array}{cc} \text { Mn } & \mathrm{Fe} \\ \text { ppin } & X \end{array}$	$\begin{gathered} \text { As } \\ \text { ppin } \end{gathered}$	$\begin{array}{r} U \\ \text { pppin } \\ \hline \end{array}$	$\underset{\text { ppon }}{\text { Au }}$	$\begin{array}{r} \text { Th } \\ \text { ppra } \end{array}$	$\begin{gathered} \mathbf{S r} \\ \mathbf{p p m i n} \end{gathered}$	$\begin{array}{r} \text { Cd } \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{array}{r} \text { Sb } \\ \text { pppm } \end{array}$	$\begin{gathered} \text { Bi } \\ \text { ppm } \end{gathered}$	$\begin{array}{r} V \\ \text { ppan } \end{array}$	$\boldsymbol{x}$	$\begin{aligned} & P \\ & \mathbf{X} \\ & \hline \end{aligned}$	$\begin{array}{r} \text { La } \\ \text { ppm } \end{array}$	$\begin{gathered} \text { Cr } \\ \text { pppm } \end{gathered}$	$\mathbf{M g}$	$\begin{array}{r} \mathbf{8 a} \\ \mathbf{p p m} \end{array}$	$\begin{array}{r} \mathbf{T} \mathbf{i} \\ \mathbf{X} \end{array}$	$\begin{array}{r} \text { B } \\ \text { ppa } \end{array}$	$\begin{array}{r} \mathbf{A !} \\ \mathbf{x} \end{array}$	$\begin{gathered} \mathrm{Ma} \\ \mathbf{X} \end{gathered}$		$\begin{array}{r} \mathbf{H} \\ \hline p p m \\ \hline \end{array}$	$\begin{aligned} & \text { Au* } \\ & \text { ppb } \end{aligned}$
A 1008	5	92	$<3$	162	. 5	20	7	5474.24	7	$<5$	$<2$	$<2$	32	$<.2$	3	$<2$	108	.73	. 043	4	31	1.16	120	. 1		2.08	. 14	. 83	2	2
A 10082	<1	212	<3	36	. 4	18	24	8003.29	7	12	<2	$<2$	120	<. 2	$<2$	$<2$	97	9.03	. 034	$<1$	6	1.80	111	. 38		2.12	. 04	. 84	2	140
A 10	6	49	3	122	. 4	22	9	5214.35	9	$<5$	$<2$	$<2$	70	<. 2	<2	<2	112	1.53	. 041	3	28	. 86	124	. 18		2.47	. 24	. 67	$<2$	3
A 100831	2	15	6	44	$<.3$	9	4	3621.74	3	$<5$	$<2$	$<2$	46	<. 2	$<2$	$<2$	42	. 71	. 041	4	13	. 74	43	. 13	3	. 88	. 09	. 06	$<2$	2
A 100832	<1	34	3	12	<. 3	1495	56	6942.78	37	<	$<2$	$<2$	532	$<.2$	$<2$	3	11	2.76	. 002	$<1$	645	8.29		<. 01	9	. 26	<. 01	<. 01	2	12
A 100833	$<1$	27	<3	26	<. 3	2003	88	9294.13	10	$<5$	$<2$	$<2$	2	<.2	$<2$	2	21	. 12	. 003	1	644	18.09	3	. 01	7	. 41	<. 01	<. 01	16	5
A 100834	3	120	7	43	<. 3	32	5	3191.83	$<2$	$<5$	$<2$	$<2$	31	$<.2$	2	$<2$	40	. 76	. 040	6	27	1.20	39	. 14	$<3$	1.15	. 08	. 10	2	7
A 100835	41	82	$<3$	9	<. 3	406	18	54.67	$<2$	5	$<2$	$<2$	11	< 2	2	$<2$	3	. 16	. 001	<1	240	1.39	13	<. 01	<3	. 22	. 01	. 21	$<2$	$\leqslant 1$
RE A 100835	$<1$	79	$<3$	10	<. 3	381	17	48 . 65	$\leqslant 2$	$<$	$<2$	$<2$	11	< 2	$<2$	$<2$	4	. 16	. 001	<1	235	1.34		<. 01	<3	. 21	<. 01	. 21	$<2$	<1
RRE A 100835	$<1$	70	$<3$	10	<. 3	382	17	57.68	$<2$	<	$<2$	$<2$	8	. 3	$<2$	$<2$	3	. 14	. 001	$<1$	241	1.58		<. 01	3	. 21	<. 01	. 20	$<2$	1
A 100836	2	201	11	73	<.3	9	6	2432.01	$<2$	$<5$	$<2$	4	32	. 6	$<2$	5	30	. 37	. 070	9	13	. 89	49	. 13		1.17	. 08	. 26	$<2$	7
A 100837	1	607	$<3$	46	<. 3	34	23	3024.55	2	$<5$	$<2$	$<2$	33	. 8	4	5	101	1.20	. 120	3	42	1.57	68	. 42		1.50	. 09	. 61	695	49
A 100838	2	17	5	68	<. 3	13	5	1971.84	$<2$	$<5$	$<2$	4	19	. 5	3	$<2$	31	. 64	. 048	9	17	. 79	66	. 17	<3	1.15	. 07	. 35	8	1
A 100840	1	17	4	27	<. 3	6	4	2301.48	8	$<5$	$<2$	4	54	. 3	2	$<2$	14	1.29	. 041	10	9	. 51	22	<. 01	,	. 89	. 06	. 15	3	3
A 100841	$<1$	18	$<3$	9	<. 3	1116	53	6443.19	33	$<5$	$<2$	$<2$	18	4	4	$<2$	11	. 58	. 001	$\leqslant 1$	575	8.17	2	<. 01	<3	. 23	. 01	< 01	2	
A 100842	<1	7654	3	202	9.1	95	31	4564.53	9	$<5$	$<2$	2	86	9.3	6	14	105	3.01	. 038	$<1$	46	2.06	55	. 15		2.55	. 06	. 50	1348	86
A 100843	1	51	4	39	<. 3	18	6	2121.98	4	$<5$	$<2$	$<2$	32	. 2	3	$<2$	26	. 46	. 069	10	17	1.95	29	<. 01		1.44	. 06	. 22	10	25
A 100844	$<1$	17	$<3$	6	<. 3	1069	46	7082.33	55	9	$<2$	$<2$	248	. 3	$<2$	2	6	7.52	. 001	<1	311	4.64	4	<. 01	$<3$	. 12	<. 01	<. 01	$<2$	4
A 100845	10	206	4	79	. 4	28	9	5005.28	14	$<5$	$<2$	$<2$	45	. 6	$<2$	$<2$	94	1.64	. 202	5	22	. 96	81	. 26	<3	2.00	. 11	. 58	27	10
RE A 100845	11	212	4	80	. 4	29	9	5105.38	14	$<5$	$<2$	$<2$	46	. 7	2	$<2$	96	1.66	. 208	5	22	. 98	79	.27		2.05	.11	. 59	27	
RRE A 100845	11	166	$<3$	81	. 3	23	9	5095.50	18	$<5$	$<2$	$<2$	43	. 6	$<2$	$<2$	93	1.58	. 203	5	21	. 93	71	. 26		1.97	. 11	. 54	28	13
A 100846	,	115	3	53	<. 3	14	6	2531.84	2	$<5$	$<2$	4	22	$<.2$	$<2$	3	30	. 56	. 045	8	15	. 10.76	120	. 14	<3	1.00	. 07	. 47	$<2$	8
A 100847	1	3	$<3$	65	<. 3	671	46	5284.75	12	5	$<2$	$<2$	72	. 7	2	<2	208	. 31	. 047	1	234	10.00	260	.31		6.63	. 02	4.26	$<2$	$<1$
STANDARD C/AU-R	18	57	36	131	6.7	64	29	10443.86	43	18	7	35	48	17.5	19	19	65	. 49	. 090	42	61	. 87	174	. 08	27	1.84	. 06	. 15	12	460

ICP - . 500 GRAM SANPLE IS DIGESTED HITM 3ML 3-1-2 HCL-HNO3-h20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH HATER.
THIS LEACH IS PARTIAL FOR MM FE SR CA P LA CR MG BA TI B 4 AND LIMITED FOR MA K AND AL
ASSAY RECOMENDED FOR ROCK AND CORE SNHPLES IF CU PB $2 N$ AS $>1 x$, AG $>30$ PPN \& NU $>1000$ PPB

- SMMPLE TYPE: P1 CORE P2 ROCK P3 SILI/PM PAN CONC. NN\# - IGNITED, AOM-REGIN/MIBK EXTRACT, GF/M FIMISHED.

Semples begiming 'RE' are Reruns and 'RRE' are Reject Reruns.



ICP－． 500 GRAM SAMPLE IS DIGESTED HITH 3ML 3－1－2 HCL－HNO3－H2O AT 95 DEG．C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH UATER．
THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B $⿴ 囗 十$ AND LIMITED FOR MA K AND AL．
ASSAY RECOMNEMDED FOR ROCK AND CORE SAMPLES IF CU PB $Z N A S \geqslant 1 \%$ ，AG $>30$ PPM AN $>1000$ PPB
－SAMPLE TYPE：CORE AG＊＊+ AU＊＊BY FIRE ASSAY FROM 1 A．T．SAMPLE．
Samptes beginning＇RE＇are Reruns and＇RRE＇are Reiect Reruns．



Sample type: ROCK. Semples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.
AU* - IGMITED, AOUA-REGIA/HIBX EXTRACT, GF/AA FIMISHED.


金




IC - . 500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH MATER.
THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI 8 H AND LIMITED FOR MA AND AL.
ASSAY RECOMNENDED FOR ROCK AND CORE SAMPLES IF CU PB ZW AS > 1\%, AG > 30 PPM \& AU $>1000$ PPR

- SAMPLE TYPE: PI TO PL CORE PS ROCK AU* - IGNITED, AOUA-REGIA/MIBK EXTRACT, GF/AM FINISHED.

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.
DATE RECEIVED: SEP 51995 DATE REPORT MAILED: SEPC\&/45
SIGNED BY ...A~TOP.TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

釷


Sample type: CORE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.



Sample type: PAN COMC.
AU* - YOTAL SAMPLE IGNITED, AOMA-REGIA/MIBK EXTRACT, GF/M FIMISHED.

icp - . 500 Gram sample is digested with 3ml 3-1-2 hCl-hmo3-hzo at 95 deg. c for one hovr ano is diluted to 10 ml mith mater.
this leach is partial for mi fe sr ca p la cr mg ba il b wav limited for ma $x$ avo al.
ASSAY RECOMEMDED FOR ROCK AND CORE SAMPLES IF CU PB $2 M$ AS $>1 x_{1}$ AG $>30$ PPM \& NU $>1000$ PPB

- SAMPLE TYPE: P1 ROCK P2 PAM CONC. P3 SILT AN** AMALYSIS BY FNICP FRON 30 GN SAMEDE.


ACNE ANALYTICAL LABORATORIES LID. $480-\frac{\text { Spokane Ress }}{650 \mathrm{~W} . \text { Georgia St. }}$	GGS ST. VANCOUV ICAL/ASSAY   urces Ltd.   Vancower BC V6B 4N8	R BC   RTIFI   ile submi	V6A 1R   CATE   95-3   tted by:	$85$   ex $B$	PHONE (6   onouski	$604) 253-3158$	$\begin{array}{r} \text { FAX }(604) 253-1716 \\ 4-4 \end{array}$
SAMPLE\#	$\begin{array}{cc} \hline \hline \mathrm{Cu} & \mathrm{Fe} \\ \text { ppm } & \% \\ \hline \end{array}$	$\begin{array}{r} \text { As } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Bi} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathbf{W} \\ \operatorname{ppm} \end{array}$	$\begin{aligned} & \text { Ag** } \\ & 02 / t \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Au*t } \\ & 02 / t \end{aligned}$	
$\begin{array}{ll}\text { A } & 100969 \\ \text { A } & 100970 \\ A & 100971 \\ A & 100972 \\ A & 100973\end{array}$	$\begin{array}{rr}743 & 2.08 \\ 321 & 2.26 \\ 1878 & 2.06 \\ 1613 & 1.94 \\ 1011 & 1.45\end{array}$	3 4 5 7 5	40 17 191 44 113	$<2$ 2 $<2$ $<2$ 3	$\begin{array}{r} .02 \\ <.01 \\ .07 \\ .06 \\ .03 \end{array}$	$\begin{array}{r} .003 \\ .003 \\ .005 \\ .001 \\ .007 \end{array}$	
$\begin{array}{ll}\text { A } & 100974 \\ \text { A } & 100975 \\ \text { A } & 100976 \\ \text { A } & 100977 \\ A & 100978\end{array}$	$\begin{array}{rr}5728 & 3.19 \\ 1359 & 2.96 \\ 172 & 1.08 \\ 317 & 1.66 \\ 1190 & 3.47\end{array}$	7 33 5 25 5	258 175 10 73 26	$<2$ $<2$ 5 2 164	.24 .03 $<.01$ .01 $<.01$	.019 .007 .001 .023 .005	
RE A 100978 RRE A 100978 A 100979 A 100980 A 100981	$\begin{array}{rr}1206 & 3.59 \\ 1229 & 3.64 \\ 1675 & 3.11 \\ 280 & 2.16 \\ 17173 & 28.76\end{array}$	5 5 3 5 7	$\begin{array}{r} 24 \\ 25 \\ 26 \\ 8 \\ 1195 \end{array}$	168 171 652 12 660	$\begin{gathered} .01 \\ .01 \\ .02 \\ .01< \\ .46 \end{gathered}$	$\begin{array}{r} .006 \\ .005 \\ .007 \\ .001 \\ .301 \end{array}$	
	$\begin{array}{rr}8277 & 2.11 \\ 759 & 1.02 \\ 979 & 3.17 \\ 1238 & 1.54 \\ 1152 & .89\end{array}$	18 3 5 12 6	574 63 29 39 744	130 24 6 21 17	.31 .02 .02 .03 .08	$\begin{array}{r} .105 \\ .011 \\ .003 \\ .006 \\ .145 \end{array}$	
$\begin{aligned} & A 100987 \\ & A 100988 \\ & R E A 100988 \\ & R R E A 100988 \\ & \text { A } 100989 \end{aligned}$	$\begin{array}{lr}554 & 2.86 \\ 193 & .55 \\ 185 & .55 \\ 189 & .58 \\ 102 & .74\end{array}$	14 26 23 24 21	$\begin{array}{r} 7 \\ 250 \\ 286 \\ 245 \\ 52 \end{array}$	20 5 6 6 245	.01 .01 .02 .01 $<.01$	$\begin{aligned} & .001 \\ & .055 \\ & .055 \\ & .052 \\ & .026 \end{aligned}$	
A 100990   A 100991   A 100992   A 100993   A 100994	$\begin{array}{rr}152 & 1.35 \\ 4289 & 13.79 \\ 2111 & 7.64 \\ 28 & 1.21 \\ 475 & 1.97\end{array}$	3 12 19 3 23	60 296 22 175 25	9 738 190 27 12	.01 .18 .02 .02 .01	$\begin{array}{r} .007 \\ .060 \\ .044 \\ .073 \\ .010 \end{array}$	
STANDARD C/AG-2/AU-1	$62 \quad 4.21$	43	23	11	13.30	. 101	

ICP - . 500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H20 AT 95 DEG.C FOR ONE HOUR AMD IS DILUTED TO 10 ML HITH MATER.
THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B H AND LIMITED FOR MA K AMD AL
ASSAY RECOMNEMDED FOR ROCK AND CORE SAMPLES IF CU PB $2 M$ AS > 1\%, AG > 30 PPM \& AU > 1000 PPB

- SAMPLE TYPE: CORE AG** + AU** BY FIRE ASSAY FRON 1 A.T. SAMPLE.

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.



- SAMPLE TYPE: PI ROCK PL SOIL AU* - IGNITED, ACUA-REGIA/HIBK EXTRACT, GF/MA FINISHED.

Samples beginning.'RE' are Reruns and 'RRE' are Reject Reruns.
dATE RECEIVED: JUL 281995 DATE REPORT MAILED: Hug 5/95
SIGNED BY. .T.:....... .tore, c.leowg, J. Wang; certified bic. assayers

$$
\text { Mo } \mathrm{Cu} \quad \mathrm{~Pb} \quad \mathrm{Zn} \quad \mathrm{Ag} \quad \mathrm{Mi}
$$

$$
0
$$



E 111864
E 111755
111865
E 147658
E 147659
REE 147659

| 4 | 250 | 16 | 78 | .5 | 76 | 9 | 472 | 5.22 | 77 | $<5$ | $<2$ | 2 | 29 | $<.2$ | 2 | $<2$ | 97 | .11 | .059 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

Sample type: ROCX, Sanples beninning 'RE' are Reruns and 'RRE' are Reject Reruns.

SAMPLE*	$\begin{gathered} \text { Mo } \\ \text { pppm } \end{gathered}$	$\begin{gathered} \mathrm{Cu} \\ \mathrm{Ppm} \end{gathered}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{pp} \text { 相 } \end{array}$	$\begin{array}{r} 2 n \\ \text { ppm } \end{array}$	$\begin{gathered} \mathbf{A g} \\ \mathbf{p p r i} \\ \hline \end{gathered}$	$\begin{array}{r} \mathrm{Mi} \\ \text { ppm } \end{array}$	$\begin{array}{r} \text { Co } \\ \text { ppra } \end{array}$	$\begin{gathered} \text { Mn } \\ \mathbf{p p m}^{\prime} \end{gathered}$	$\mathrm{Fe}$ \%	$\begin{gathered} \text { As } \\ \text { ppon } \end{gathered}$	$\begin{array}{r} \text { U } \\ \text { ppri } \end{array}$	$\begin{array}{r} \mathbf{A L} \\ \mathbf{p p r a} \end{array}$	$\begin{array}{r} \text { Th } \\ \text { ppm } \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Sr} \\ \mathbf{p p m} \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Cd} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { Sb } \\ \text { ppm } \end{array}$	$\begin{gathered} \mathbf{B i} \\ \mathbf{p p} \boldsymbol{1} \\ \hline \end{gathered}$	$\begin{array}{r} v \\ p p m \end{array}$	$\begin{gathered} \mathrm{Ca} \\ \boldsymbol{\chi} \end{gathered}$	$\begin{aligned} & P \\ & \% \end{aligned}$	$\begin{gathered} \text { La } \\ \text { ppom } \end{gathered}$	$\begin{array}{r} \mathrm{Cr} \\ \mathrm{pppm} \end{array}$	$\begin{gathered} \mathrm{Mg} \\ \mathrm{X} \end{gathered}$	$\begin{array}{r} \mathbf{B a} \\ \text { ppom } \end{array}$	$\begin{array}{r} \mathbf{T i} \\ \mathbf{\chi} \end{array}$	$\begin{array}{r} B \\ \text { ppm } \end{array}$	$\begin{gathered} \text { A! } \\ \mathbf{x} \end{gathered}$	$\begin{gathered} \mathrm{Ma} \\ \mathrm{X} \end{gathered}$	$\begin{aligned} & \mathbf{K} \\ & \mathbf{x} \end{aligned}$	$\begin{array}{r} \mathrm{H} \\ \text { ppm } \end{array}$	A $4^{*}$ ppb
E 111866	3	55	4	23	< 3	49	7	421	1.63	17	$<5$	$<2$	$<2$	50	. 5	3	$<2$	33	2.39	. 032	2	43	. 48	72	. 10	3	. 98	. 07	. 09	2	5
E 111867	1	29	$<3$	29	<. 3	2350	96	553	3.82	2	$<5$	<2	$<2$	1	. 7	$<2$	4	6	. 02	. 001	1	260	19.35	3	< 01	13	. 10	<. 01	< 01	$<2$	5
E 111868	4	2413	$<3$	11	2.3	38	3	72	. 72	13	$<5$	$<2$	$<2$	4	. 4	3	2	8	. 16	. 016	1	21	. 29	14	<. 01	4	. 23	. 01	. 03	2	24
E 111869	3	34	$<3$	8	< 3	9	$<1$	77	1.02	92	<	<2	$<2$	15	<. 2	$<2$	$<2$	5	. 05	. 009	$<1$	11	. 04	6	<. 01	$<3$	. 10	. 01	. 01	2	220
E 111870	3	27	3	7	< 3	18	2	170	. 75	2	$<5$	<2	$<2$	3	<. 2	$<2$	$<2$	8	. 04	. 001	$<1$	13	. 14	12	<. 01	3	. 13	<. 01	. 02	2	4
E 111871	42	86	4	20	.3	10	1	143	1.31	19	$<5$	$<2$	12	6	. 2	$<2$	$<2$	10	. 05	. 015	7	13	. 09	24	. 01	3	. 39	. 05	. 15	2	4
E 111872	19	1380	4	158	. 5	55	41	327	5.47	$<2$	$<5$	$<2$	$<2$	137	1.0	$<2$	$<2$	117	2.98	. 155	<1	64	1.18	12	. 21	4	3.80	. 21	. 09	<2	4
E 111873	3	28	$<3$	90	$<.3$	31	5	529	1.01	$<2$	$<$	$<2$	$<2$	13	. 6	$<2$	$<2$	28	1.90	. 137	5	49	. 23	17	. 29	$<3$	. 53	. 04	. 02	$<2$	3
E 111874	2	67	6	16	$<.3$	31	4	296	. 83	$<2$	$<5$	$<2$	$<2$	7	. 2	$<2$	$<2$	24	. 36	. 013	5	18	. 25	348	. 15	<3	. 27	. 05	. 13	2	2
E 111875	4	22	15	7	$<.3$	8	<1	145	. 80	2	$<5$	$<2$	5	3	<. 2	$<2$	$<2$	20	. 08	. 010	7	22	. 05	23	. 19	<3	. 09	. 06	. 01	$<2$	3
RE E 111875	4	23	14	7	$<.3$	7	81	77	. 77	$<2$	$<5$	$<2$	5	4	. 2	$<2$	$<2$	20	. 08	. 011	7	20	. 05	22	. 20	$<3$	. 08	. 06	. 01	$<2$	1
RRE E 111875	4	14	14	8	< 3	7	<1	85	. 74	$<2$	$<5$	<2	5	3	. 2	$<2$	<2	19	. 09	. 010	7	20	. 06	27	. 20	$<3$	. 08	. 06	. 01	$<2$	1
E 111876		2336	20	83	6.0	13	7	132	. 86	$<2$	$<5$	<2	$<2$	354	3.8	$<2$	16	11	3.51	. 012	$<1$	8	. 25	27	. 02	5	6.13	1.08	. 05	$<2$	3
E 111877		2693	19	68	5.1	16	7	183	1.07	$<2$	<	$<2$	$<2$	445	4.1	$<2$	9	21	4.38	. 012	$<1$	8	. 44	36	. 05	4	8.03	1.26	. 06	$<2$	3
E 111878	3	55	$<3$	13	<. 3	21	3	172	. 85	3	$<5$	$<2$	$<2$	17	. 2	$<2$	$<2$	16	. 24	. 011	1	19	. 20	51	. 03	3	. 54	. 06	. 08	2	2
STAMDARD C/AU-R	18	59	37	130	6.6	65	30	967	3.81	41	19	7	37	49	18.1	19	19	65	. 48	. 090	43	59	. 85	180	. 08	28	1.81	. 06	. 15	11	520

Semple type: ROCK. Samples beginning 'RE' are Reruns and 'RRE' are Reiect Reruns.


ISP - . 500 GRAM SAMPLE IS dIGESTED HITH 3 ML 3-1-2 hCL-hn03-h20 at 95 deg.C for owe hour and is diluted to 10 ml with mater.
THIS LEACH IS PARTIAL FOR MM FE SR CA P LA CR MG BA TI $B \mathrm{H}$ AND LIMITED FOR MA $K$ AND AL.
ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB $2 N$ AS $>12$, AG $>30$ PPM \& AU $>1000$ PPS

- SAMPLE TYPE: PI CORE/P2 ROCK PS SILT PG PAN CONC. AG** + AN** BY FIRE ASSAY FROM 1 AIt. SAMPLE.

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.
date received: aug 281995 date report mailed: Sept $8 / 95$
sIGNED BY.

Spokane Resources Ltd. File 95-2495 Page 1
$480-650 \mathrm{H}$. Georgia St., Vancolver BC V68 4 NP Submitted by: Alex moronougki

SAMPLE\%	$\begin{aligned} & \text { no } \\ & \text { ppo } \end{aligned}$	$\mathrm{c}^{\mathrm{pp}}$	$\begin{aligned} & \mathrm{pb} \\ & \mathrm{ppp} \end{aligned}$	$\begin{aligned} & \mathrm{zn} \\ & \mathrm{ppm} \end{aligned}$	$\begin{aligned} & A_{g} \\ & p p p \end{aligned}$	$\begin{aligned} & \text { ni } \\ & \text { pppa } \end{aligned}$	$\begin{gathered} \text { co } \\ \text { ppo } \end{gathered}$	$0 \mathrm{mp}$	$4 \begin{gathered} \mathrm{Fe} \\ \mathrm{x} \\ \hline \end{gathered}$	$\begin{aligned} & \text { As } \\ & \text { pom } \end{aligned}$	ppr	$\begin{aligned} & \mathrm{Au} \\ & \mathrm{ppm} \end{aligned}$	$\begin{aligned} & \text { Th } \\ & \hline \text { npp } \end{aligned}$	$\begin{aligned} & \text { sp } \\ & \text { ppr } \end{aligned}$	co	$\begin{gathered} \text { sb } \\ \text { ppen } \end{gathered}$	$\begin{aligned} & \mathrm{Bi} \\ & \mathrm{ppm} \end{aligned}$		$\overline{C_{a}}$	$\begin{aligned} & \mathrm{p} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \text { La } \\ & \text { pp } \end{aligned}$	$\begin{aligned} & \text { cr } \\ & \text { pp } \end{aligned}$	$\underset{\chi}{\mathbf{m g}_{x}}$		$\begin{gathered} 7 i \\ x \end{gathered}$	$\begin{array}{r} 8 \\ \text { ppp } \end{array}$	$\begin{gathered} A 1 \\ x \end{gathered}$	$\mathrm{ma}_{\mathrm{z}}$	$\begin{aligned} & k \\ & x \end{aligned}$		$\begin{aligned} & \text { aup } \\ & \hline \mathbf{p p} \end{aligned}$
E 147701	2		3	41	<. 3	204	19		22.93		5	4	$<2$	25	<. 2	4	7	43	1.34	. 059	1	237	2.26	41	. 21		2.27	. 03	. 14	2	
E 147702	1	107	3	58	<. 3	227	25	572	2.13	<2	5	2	$<2$	51	<. 2	$<2$	8	71	1.52	. 108	5	197	2.88	43	. 49		2.62	. 6	. 12	2	
E 147703	2	91	3	53	<. 3	210	21	575	3.87	2	< 5	2	<2	35	-. 2	<2	9	69	2.13	.055	<1	249	2.46	27	. 34		2.31	. 0	. 07		
E 147704	2	97	3	89	<. 3	32	17	861	17.45	2	<	$<2$	$<2$	2	<. 2	<2	8	324	1.02	. 097	<1	51	2.65	31	. 70		2.82	. 0	. 02	2	
E 147705	2	61	3	62	<. 3	110	11	1444	3.68	7	< 5	$<$	2	40	<. 2	$<2$	7	47	1.71	. 061	<1	90	1.63	43	. 31		1.9	. 03	. 15	2	$<1$
E 147706	2	4	3	57	<. 3	79	10		53.53	2	<	2	3	382	< 2	<2	6	47	6.21	. 061	3	50	1.99	49	31			. 02	. 14	2	$\leqslant 1$
E 147707	3	87	12	59	<. 3	21	7	438	2.61	24	< 5	8	<2	29	<. 2	<2	7	42	. 43	. 031	$\leq 1$	21	. 85	38	. 20			. 02	. 12	2	1
E 147708	1	2	3	7		1364	85		33.84	88	<	<2	<2	3	1.0	<2	2	7	. 19	. 003	<1	306	15.36		<.01	3			<. 01	2	1
E 147709	2	14	${ }^{3}$	9	<. 3	820	74	460	30.57	77	5	<2	2	11	. 9	2		10	. 50	. 002	<1	479	17.01		<. 01	3	24	<. 01	<. 01	2	4
E $\times 1>10$	3	32	3	14	<. 3	209	26	364	2.02	7	<	2	$<2$	109	. 9	4	4	11	4.89	.003	<1	262	4.55		<. 01			. 02	. 10	4	
E 14r711	1	11	3	12	< 3	46	29		2.55	86	<	<2	2	184	1.0	2	2	14	. 78	.002	1	157	9.85		<. 01	5			<. 01	$<$	4
E 14712	1	22	3	9	<. 3	676	35		82.76	84	5	<2	4	12	1.1	2	2	5	3.02	. 002	<1		13.81			3			. 02		
RE E 14712	1	23	3	10	< 3	69	36		72.81	85	<	2	2	12	1.0	$<2$	2	5	3.07	.002	4		14.11		<. 01	3	. 25	. 08	. 01		3
RRE E 167712	1	22	${ }^{3}$	9	<. 3	678	35	446	42.76	82	5	82	2	12	1.1	2	<2	5	3.01	. 002	$\leqslant 1$	83	13.81		<. 01	3	. 25	. 0	. 01	4	3
E 14 T13	2	4	3	2		436	78		2.87	145	<	2	2	2	. 7	<2	2	2	. 06	. 002	<1	68	19.23		<. 01	10				4	
E 147716	1	5	3	6		1699	77		3.51	59	<	<2	2	3	1.2	$<2$	$<2$	9		. 002	1		17.56		<. 01	3			. 02	2	
E 147715	1	3	3	7		1824	70		33.52	148	5	<2	2	63	1.2	6	<	9		.002	1		17.72		<. 01	3		<. 01	. 01		
E 147716	1	5	3	6		1147	52		3.27	69	5	<2	2	6	9	<	<	7	. 09	. 002	<1		14.50		<. 01	3		<. 01	<. 01	<2	4
E 147717	3	4	3	4	<. 3	1506	7		22.96	214	$\checkmark 5$	$<2$	2	4	. 9	T	3	7	. 10	. 001	¢				<. 01	3	. 10	<. 01	. 01	<2	3
E 147718	2	5	3	4		259	61		. 0	88	s	$<2$	<2	4	. 8	3	3	8		. 002	1		15.71		<. 01	5	. 10	<. 01		2	2
E 14719	1	2	13	28		407		2116	2.49	119	<	2		472	1.0	4	$<2$	12	6.55	. 125	5		7.06		<. 01	3			. 06		1
E 147720	3	9	${ }^{2} 3$	13		1399	64	672	3.39	252	5	<2	$<2$	26	1.1	$<2$	2		. 33	. 003	<1		14.16		<. 01	3		<. 01		<2	
E 147721	2	8	27	9		1244	61	450	3.39	299	<	<2	<2	11	1.0	<2	<2	6	. 18	. 002	<	190	16.37		<. 11	3			. 02	4	5
E 147722	2	7	${ }^{3}$	19	<. 3	31	9	525	3.34	115	< 5	<2	<2	9	. 8	< 2	<2	13	. 16	. 010	4	21	. 18	42	. 02	3	. 17	. 08	. 01	<2	2
E 14773	2	18	3	11	<. 3	20	7	935	1.78	16	5	4	<2	61	. 5	2	2	13	2.58	. 105	<1	13	. 28	16	. 01	8	. 16	. 88	. 01	$<2$	4
E 147726	2	10	4		<. 3	16			1.44	649	5	8	3	8	. 6	2	<2	1		. 00		11	. 10	18	<. 01	3	. 26	. 07	. 12	2	81
E 147725	2	5		5	<. 3				81.18	222	5	2	2		. 2	3	<	<1			2		. 02		<. 01	3	. 26	. 10	. 20	2	12
${ }_{\text {F }}{ }^{\text {F }} 1726$	1	20	3	11		116	71	936	3.91	<2	< 5	<2	2	14	1.1	<2	3	23	1.20	. 002	<1		12.44		<. 01	11			. 01	2	
		18	${ }^{3}$	10		1100	66	885	3.71	$<2$	< 5	${ }^{2}$	<2	13	1.0	<2	3	22	1.13	. 002	<1	739	11.83		<. 01	12		<. 01	. 01	$<2$	
Rre E 14776	4	20	3	10		1077	64		3.70	<2	4	$<2$	<2	13	1.2	$<2$	$<2$	22	1.12	. 003	<1	723	11.65		<. 01	11	. 45	<. 01	. 01	$<2$	5
E 147727	4	7	34	110		27	6		12.36	33	<	82	2	115	2.7	2	$<2$	3	3.97	.054		28	. 22		<. 01	3	. 10	. 05	. 03	$<2$	89
E 147728	2	3	5	33		1242	59		53.80	481	< 5	$<2$	2	168	1.2	<2	<2	21	3.46	. 025	$\leqslant 1$	398	13.64		4. 01	3	. 50	<. 01	. 07	$\stackrel{2}{ }$	2
E 147729	3	47	3	9	<. 3	247	46		83.47	38	5	<2	$<2$	9	1.3	<2	4	9	5.21	.086	8	${ }_{7} 8$	3.61	67	. 0		3.12	. 02	. 16	2	5
E 147730	5	9	4	14	<. 3	16	3	438	1.05	12	< 5	$<2$	<2	6	4	<2	<2	3	. 12	. 026	$<1$	17	. 06	13	<. 01	3	. 07	. 01	. 02	2	7
E 14731	1	12	<3	9		1048	61		3.36	43	< 5	$<2$	<2	31	. 9	$<2$	2	15	. 42	. 06	1		14.25		<. 01	3			. 02	2	2
E 147732	<1		3	15	<. 3	368								343														. 01	. 13		
E 14733	2	34	3	53	<. 3	27	15	735	4.06	16	5	2	4	116	1.1	2		61	5.06	. 029	4		1.80	23	. 03		1.82	. 03	. 08	<2	3
STANOARO C/AUU-R	19	65	35	123	6.8	78	32	1057	73.	40	20	5	35		19.3	15	24	61	. 49	. 090	41	56	. 88	181	. 08			.0	. 14	12	460

 THIS LEACH IS PARTIAL FOR MM FE SR CA P LA CR ME BA II B 4 ADD LIMITED FOR MA $K$ AND AL.
ASSAY RECOMENDED FOR ROCK ANO CORE SMMPLES IF CU PB $2 M$ AS $>1 x_{\text {, AE }}>30$ PPM \& AU $>1000$ PPB

- SAMPLE TYPE: P1 TO PZ ROCK P3 SOIL Ph SILT AU* - IGMITED, ACM-REGIN/MIBK EXTRACT DGF/MA FIMISMED.

Samples beginning 'RE' are Reruns and 'RRE' areqeipct Rerys.
DATE RECEIVED:


Sample type: ROCK, Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns,


ISP - . 500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-hNO3-h2O AT 95 deg.C for owe hour and is diluted to 10 mL with mater.
THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA II B H AND LIMITED FOR MA $K$ AND AL.


Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.
DATE RECEIVED: JUL 281995 DATE REPORT MAILED: Aug 9/95


Sample type: PAM cour. . Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.
AN* - IGHITED, AOMA-REGINMIBK EXTRACT, GF/MA FINISHED.


Sample type: PAN COMC..


## Sample type: PAM-COMC.

AN* - IGWITED, AQUA-REGIA/HIBK EXTRACT, GF/AA FIMISHED.


Sample type: Soll. Samples beginning 'RE' are Reruns and 'RRE' are Reiect Reruns.


IC - . 500 GRAM SAMPLE IS DIGESTED UITH 3ML 3-1-2 HCL-MNOS-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH MATER.
THIS LEACH IS PARTIAL FOR MM FE SR CA P LA CR MG BA TI $\operatorname{H}$ AMD LIMITED FOR MA $X$ AND AL.
ASSAY RECOMNEMDED FOR ROCK AND CORE SAMPLES IF CU PB $2 M A S \geqslant 1 \%, A G>30$ PPM A AU $>1000$ PPR

- SAMPLE TYPE: PI ROCK PR SOIL AU* - IGNITED, AOUA-REGIA/MIBK EXTRACT, GF/AM FIMISMFD.

DATE RECEIVED: NU L 281995 DATE REPORT MAILED:
Any s/95
SIGNED BY. ......0.TOYE, C.LEOWG, J.HAMG; CERTIFIED B.C. ASSAYERS


Semple type: SILT. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

							8pokane			Resources Ltd.						FILE		95-3058				Page 3									
SAMPLE*	$\begin{gathered} \text { Mo } \\ \text { ppo } \end{gathered}$	$\underset{\text { Cu }}{\text { Cu }}$	$\begin{array}{r} \text { Pb } \\ \text { ppp } \end{array}$	$\begin{array}{r} 2 n \\ \text { ppan } \end{array}$	$\begin{array}{r} \text { Ag } \\ \text { pppan } \end{array}$	$\begin{gathered} \mathrm{Ni} \\ \mathrm{Mp} \end{gathered}$	$\begin{array}{r} \text { Co } \\ \text { ppm } \end{array}$	$\begin{gathered} \text { Mn } \\ \text { ppm } \end{gathered}$	$\begin{gathered} \mathrm{Fe} \\ \mathrm{X} \end{gathered}$	$\begin{gathered} \text { As } \\ \text { pppan } \end{gathered}$	$\begin{array}{r} \mathbf{U} \\ \text { ppow } \end{array}$	$\begin{gathered} \text { Au } \\ \text { ppin } \end{gathered}$	$\begin{aligned} & \text { Th } \\ & \text { ppp } \end{aligned}$	$\begin{array}{r} \mathrm{Sr} \\ \text { ppp} \end{array}$	$\begin{gathered} \mathrm{Cd} \\ \mathrm{pppm} \end{gathered}$	$\begin{array}{r} \text { Sb } \\ \text { ppem } \end{array}$	$\begin{array}{r} \mathrm{Bi} \\ \text { ppem } \end{array}$	$\begin{array}{r} \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Ca} \\ \mathbf{x} \end{gathered}$	$\begin{aligned} & \mathbf{P} \\ & \mathbf{X} \end{aligned}$	$\begin{gathered} \text { Le } \\ \text { pppem } \end{gathered}$	$\begin{gathered} \mathrm{Cr} \\ \mathrm{pp} \end{gathered}$	$\begin{gathered} \mathbf{H g} \\ \mathbf{X} \end{gathered}$	$\begin{array}{r} \mathbf{B a} \\ \text { ppa } \end{array}$	$\begin{array}{r} \mathrm{Ti} \\ \mathcal{Z} \end{array}$	$\begin{array}{r} 8 \\ \text { ppa } \end{array}$	$\underset{\%}{A l}$	$\mathrm{Ma}$	$\begin{aligned} & K \\ & \mathbf{x} \end{aligned}$	$\begin{array}{r} \mathrm{H} \\ \text { ppan } \end{array}$	$A u^{*}$   ppb
ME-008	1	77	7	88	. 3	284	29		5.32	42	$<5$	2	$<2$	23	$<.2$	2	$<2$	93	. 72	. 059	5	253	2.96	134	. 26	5	2.22	. 03	. 36	$<2$	4
WE-009	$<1$	71	4	81	<. 3	323	29		4.96	38	<	$<2$	$<2$	21	< 2	$<2$	3	87		. 061	4		3.25	133	. 24	3	2.13	. 04	. 35	$<2$	4
WE-010	$<1$	74	5	85	. 5	365	32		4.92	48	5	$<2$	$<2$	25	< 2	$<2$	$<2$	87		. 064	5		3.37	145	. 24	13	2.18	. 04	. 37	$<2$	17
WE-011	$<1$	52	6	66	<. 3	461	32		4.49	41	$<5$	$<2$	$<2$	17	<. 2	$<2$	2	75		. 052	3		4.04	127	. 21	10	1.92	. 03	. 31	$<2$	9
UE-012	1	56	5	52	. 3	716	41		4.13	13	$<5$	$<2$	$<2$	13	$<.2$	$<2$	$<2$	67	. 33	. 049	4		4.51	163	. 16	11	1.56	. 03	. 28	$<2$	2
RE WE-012	$<1$	54	3	50	$<.3$	693	40	536	4.02	13	$<5$	$<2$	$<2$	12	<. 2	$<2$	$<2$	67	. 33	. 048	4	341	4.40	158	. 15	5	1.53	. 03	. 27	$<2$	1

Sample type: SILT. Samples begiming 'RE' are Reruns and 'RRE' are Reject Reruns.


Sample type: SILT.
AN" - IGMITED, AOMK-REGINHIBK EXTRACT, GF/aA FIMISHED.

SPOKANE RESOURCES LTD. 480-650 W. Georgia St.
Vancouver, BC V6B 4N9

File: 95-2599
Date: Aug 51995

QTY	ASSAY	PRICE	AMOUNT
20	GEOCHEM AU ANALYSIS BY ACID LEACH (10 gm) @ 30 ELEMENT ICP + GEOCHEM AU (10 gm) ANALYSIS @ ROCK SAMPLE PREPARATION @ SOIL SAMPLE PREPARATION @ SAVING REJECT @	6.15	123.00
1		11.55	11.55
20		3.96	79.20
1		1.25	1.25
1		0.67	0.67
	GST Taxable 7.00 \% GST		$\begin{array}{r} 215.67 \\ 15.10 \end{array}$
	TOTAL		230.77

Samples submitted by Alex Boronowski

SPOKANE RESOURCES LTD.
480-650 W. Georgia St.
Vancouver, BC V6B 4N9

QTY	ASSAY	PRICE	AMOUNT
28 28 28	GEOCHEM CU FE AS BI \& W ANALYSIS BY ICP @ AG \& AU BY FIRE ASSAY FROM 1 A.T. @ CORE SAMPLE PREPARATION @   GST Taxable 7.00 \% GST TOTAL	$\begin{array}{r} 4.80 \\ 14.30 \\ 3.96 \end{array}$	$\begin{aligned} & 134.40 \\ & 400.40 \\ & 110.88 \end{aligned}$
			$\begin{array}{r} 645.68 \\ 45.20 \end{array}$
			690.88

Samples submitted by Alex Boronowski

COPIES 1

Please pay last amount shown. Return one copy of this invoice with payment.

## APPENDIX IV

## Scatter Diagram Copper:Gold



> Cu. \%

Satter Diagram Cu:Au

$$
1094: 1
$$

## APPENDIX IV

## Resource Estimate Calculations

## West Zone

* intersection reduced to true thickness
** intersection diluted to 1.5 m . thickness

Section   DDH	Thickness   metres	Strike   metres	Dip   metres	Tonnes	Opt.   Gold	Percent   Copper
$4+00$						
$94-18$	$3.5^{*}$	25	25	5797	0.800	2.45
$95-16$	$1.5^{*}$	25	25	2484	0.047	0.62
Total				8281	0.574	1.90

Section $4+00 \mathrm{~W}$ estimate is for the Lower Adit quartz vein system. The economically significant intersection in 94-16 lies below the thrust sheet separating the argillite package from the serpentinite and is not believed to extend far beyond the thrust fault.

Section $4+25$ does not contain a significant intersection. However, the intersections within 94-19 lies along the hypothesised north dipping shear zone as shown on section.

$4+50$						
$94-15$	$3.0^{*}$	25	25	4969	0.268	0.63

Section $4+50 \mathrm{~W}$ estimate is for the Lower Adit quartz vein system. The intersection lies along the hypothesised north dipping shear zone as shown on section

$4+75 \mathrm{~W}$						
$94-8$	$2.0^{*}$	25	25	3313	0.218	0.68

Section $4+75$ estimation is for the Lower Adit quartz vein system. The intersection lies along the hypothesised north dipping shear zone as shown on section

$5+00$						
$95-4$	$2.5^{*}$	25	17	2816	0.645	3.07
$95-3$	$11.0^{*}$	25	10	7288	0.060	0.65
$88-10$	$10.0^{*}$	25	10	6625	0.270	0.49
$89-104$	$10.0^{*}$	25	12	7950	0.210	0.37
Total				24679	0.232	0.79
$86-6$	$3.0^{*}$	25	5	994	0.16	0.80
$86-4$	$1.5^{*}$	25	25	2484	0.149	1.85
$86-4$	$2.0^{*}$	25	25	3313	0.174	1.17
Total				6791	0.163	1.37

Section 5+00W. The above two estimations are for the Lower Adit quartz vein system.

$5+00$						
$89-105$	$2.5^{*}$	25	7	1159	0.792	3.12
$86-5$	$3.0^{*}$	25	5	994	0.053	0.81
$89-103$	$7.0^{*}$	25	5	2484	0.120	0.44
				4637	0.274	1.19

Section $5+00 \mathrm{~W}$. The above estimation is for the Upper Adit quartz vein system.

$5+25 \mathrm{~W}$						
$95-2$	$10.0^{*}$	25	15	1988	0.103	1.14
$88-6$	$3.5^{*}$	25	15	3478	0.134	0.74
$95-1$	$6.5^{*}$	25	25	10766	0.055	0.58
$94-13$	$1.5^{*}$	25	25	2484	0.149	1.68
$94-13$	$2.5^{*}$	225	25	10766	0.315	1.80
$94-13$	$1.5^{*}$	25	25	2484	0.145	0.70
Total				31966	0.169	1.14

Section $\mathbf{5 + 2 5}$. The above estimation is for the Lower Adit quartz vein system.

$5+50 \mathrm{~W}$						
$95-9$	$1.5^{* *}$	25	25	2484	0.219	0.80

Section $5+50 \mathrm{~W}$. The above estimation is for the Lower Adit quartz vein system.

$5+75 \mathrm{~W}$						
$95-7$	1.7	25	25	2816	0.165	0.99
$95-7$	$1.5^{* *}$	25	25	2484	0.055	1.51
Total				5300	0.113	1.23

Section $5+75 \mathrm{~W}$. The above estimation is for the Lower Adit quartz vein system.

$6+00 \mathrm{~W}$						
$95-11$	$1.5^{* *}$	25	25	2484	0.219	0.09

Section $6+00 \mathrm{~W}$. The above section is for the Lower Adit quartz vein system.

## East Zone

$1+25 \mathrm{~W}$						
$89-116$	$1.5^{* *}$	25	5	497	0.22	0.31

Section $1+25$. Three intersections of the flat lying vein occur within 8 metres of each other. The thickness and grade very from 0.27 m . grading $0.201 / 0.04$, to 0.78 m . grading $0.426 / 0.59$ to 2.57 m . grading $0.072 / 0.09$. An example, of the dramatic changes that one can expect both along dip and strike. Further, it can be concluded that the 25 metres of strike estimated for the area of influence may be optimistic.

$1+75$						
$89-6$	$1.5^{* *}$	25	25	2484	0.115	1.97
$89-6$	$2.5^{*}$	25	25	4141	0.254	1.36
$89-121$	$3.5^{*}$	25	15.5	3594	0.602	0.08
$89-120$	$2.5^{*}$	25	5	828	0.124	0.08
$89-3$	$3.5^{*}$	25	9	2087	0.371	0.32
$88-8$	$1.5^{*}$	25	10	994	0.432	0.03
$88-8$	$4.0^{*}$	25	10	2650	0.351	0.39
$88-8$	$1.5^{* *}$	25	20	1988	0.060	0.56
$88-8$	$1.5^{*}$	25	20	1988	0.114	1.23
$88-8$	$1.6^{*}$	25	18	1908	0.084	1.71
Total				22662	0.276	0.86

Section $1+75 \mathrm{~W}$. The quartz vein system is interpreted as being a folded vein. However, the geological setting is complex and not understood well.

$2+00 \mathrm{~W}$						
$89-125$	$1.5^{* *}$	25	20	1988	0.112	0.09
$89-124$	$1.5^{*}$	25	20	1988	0.162	0.34
$89-4$	$1.5^{*}$	25	25	1988	0.220	0.13
$89-124$	$1.5^{* *}$	25	12	1193	0.081	0.17
Total				7157	0.151	0.21

Section $2+00 \mathrm{~W}$. The quartz vein system is interpreted as being a folded vein. As mentioned above, this interpretation is suspect and the intersections may represent discontinuous flat lying and vertical pods of quartz veining.

$2+25 \mathrm{~W}$						
$89-123$	$3.0^{*}$	25	10	1988	0.155	0.02
$89-126$	$1.5^{* *}$	25	10	994	0.069	0.04
Total				2982	0.126	0.03

Section $2+25 \mathrm{~W}$. The quartz vein system is interpreted as flat lying and folded.

$2+50$						
$89-130$	$1.5^{* *}$	25	25	2484	0.179	0.04
$89-115$	$1.5^{*}$	25	5	477	0.107	0.05
Total				2961	0.167	0.04

Section $2+50 \mathrm{~W}$. The quartz vein system is interpreted as flat lying and folded.

$2+75 \mathrm{~W}$						
$94-20$	$1.5^{*}$	25	25	2484	0.178	0.87
$92-22$	$1.5^{*}$	25	25	2484	0.185	0.57
Total				4968	0.182	0.72

Section $2+75 \mathrm{~W}$. The quartz vein system is interpreted as shallowly dipping to the south. This interpretation is suspect since fault and vein contacts are also steeply dipping.

$3+00 W$						
$94-9$	$1.5^{* *}$	25	25	2484	0.140	0.38
$94-9$	$2.5^{*}$	25	25	4141	0.395	1.12
Total				6625	0.299	0.84

Section $3+00 W$. Same interpretation as the previous section.

$3+25$						
$94-1$	$3.0^{*}$	25	25	4969	0.533	1.61
$94-3$	$1.5^{*}$	25	25	2484	0.137	0.61
$94-3$	$3.5^{*}$	25	25	5797	0.183	1.13
$94-3$	$1.7^{*}$	25	25	2816	0.449	0.52
Total				16066	0.331	0.61

Section $3+25 \mathrm{~W}$. The quartz vein system is either dipping shallowly to the south or steeply to the north. If north dipping, then the quartz vein system is cut off by a thrust fault.

$3+50 \mathrm{~W}$						
$89-108$	$1.5^{* *}$	25	25	2484	0.235	0.42
$89-131$	$1.5^{* *}$	25	25	2484	0.457	0.57
$89-136$	2.66	25	7	1234	0.144	0.02
$89-136$	$2.0^{*}$	25	18	2385	0.348	0.70
$89-136$	$5.0^{*}$	25	25	8281	0.257	1.26
$89-137$	8.0	25	8	4240	0.128	0.24
Total				21108	0.256	0.74

Section $3+50 \mathrm{~W}$. The quartz vein system is believed to be a south dipping structure. Note, that the structure appears to narrow to a 0.55 metre thick intersection in DDH 89-108.

$3+75 \mathrm{~W}$						
$94-4$	$1.75^{*}$	25	25	2898	0.359	1.50
$94-5$	$1.5^{*}$	25	25	2484	0.370	3.65
$94-6$	$2.5^{*}$	25	25	4141	0.361	0.93
Total				9523	0.363	1.81

Section $3+75 W$. The quartz vein system is believed to be a south dipping structure. Note that a quartz vein on surface at approximately 110 S . was mapped previously as a north dipping structure. This quartz vein is believed to have been covered during reclamation.


#### Abstract

APPENDIX VI

\section*{Reconnaissance Sample Descriptions}


Sample No.

A100801
E147651
E147652
E147653
E147654
E147655
SA 95-1
SA 95-2
SA 95-3
SA 95-4
SA 95-5

## Sample Loc. <br> Description

July 6/95
RA 95-1
RA 95-2
RA 95-3
RA 95-4
RA 95-5
Grab of grd/porphyry float, Fe stain
Porphyry-granodiorite contact, Fe stain
Porphyry-granodiorite contact, Fe stain
Porphyry-granodiorite Fe stain, strs.jts
Porphyry-granodiorite $<1 \%$ sulphides
Porphyry-granodiorite contact, Fe stain
beyond little lake, good silt
@ 1980 m . elevation, good silt
@ 1965 m . elevation, good silt
@ 1945 m . elevation, good silt
@ 1875 m . elevation, good silt

## Sample Descriptions

100801

100851
100852
100853
100854

100901
100902
100903
100904
100905
100906
100907
100908
Grab of granodiorite/porphyry float, Fe stain

Quartz vein ( 0.15 m . thick -0.5 m long) at $250 / 90$ in granodiorite.
Quartz veins with trace py and Fe staining within schist near granodiorite dyke contact.
Same unit as above, just lower down.
Fe stained quartz in schist float.

Quartz vein in hydrothermally altered serpeninite with high mariposite concentrations. Same unit as above.
Quartz vein in schist near anomalous sample R94-43.
Quartz float with trace py.
Quartz vein in subcrop at 280/? in intensely silicified and hydrothermally altered serpentinite.
Quartzite at 240/50 with $0.5-1.0 \%$ py.on contact between serpentinite and porphyry.
Same unit as above.
Quartz vein ( 1 m . thick - 10 m . long) at $275 / 30$ in schist.

100968

111851
111852
111853
111854
111855
111856
111857
111858
111859
111860
111861
111862
111864
111865
111866
111867
111868
111869
111870
111871
111872
111873
111874
111875
111876
111877
111878
111879
111880
111881
111882
111883
111884
111885

Quartz float with $1 \%$ cpy.

Highly altered ultramafic with disseminated mariposite.
Same unit as above.
Quartz diorite dyke 320/90 with quartz stringer. Trace py.
Quartz vein in schist. Foliation 065/62.
Quartz veins ( 30 cm . thick) in schist 290/56.
Same unit as above.
Quartz vein in strongly silicified diorite.
Quartz vein in schist float. Trace py.
Quartz vein in silicified schist at 262/68. Trace py.
Quartz vein in ankerite.
Quartzite along contact with serpentinite disseminated with mariposite.
Quartz vein (290/50) along shear zone in serpentinite.
Rusty silicified phyllite. Trace py,po.
Rusty quartz phyllite.
Quartz vein ( 0.5 m . thick) in contact shear zone.
Serpentinite float with $1 \%$ magnetite.
Quartz vein ( 0.2 m . thick -5 m . long) with $0.5 \%$ cpy at $292 / 90$ in quartz phyllite schist parallel with vein. Very close to serpentinite contact.
Quartz vein ( 0.15 m . thick -2.0 m . long) in subcrop at $320 / 90$.
Quartz vein ( 0.15 m . thick -0.3 m . long) in phyllitic schist. $\mathrm{Fe}, \mathrm{Mn}$ staining.Trace py.
Granodiorite float with trace py. $\mathrm{Fe}, \mathrm{Mn}$. stained locally.
Very rusty serpentinite float with $0.5 \%$ po and trace py.
Epidote rich quartz with calcite veinlets.
Quartz vein ( 0.1 m . thick -1 m . long) in malachite stained quartzite. as above
Quartz vein with $0.5-1 \%$ cpy and malachite staining in serpentinite float.
Quartz vein ( $0.05-0.2 \mathrm{~m}$. thick - 3 m . long) at $136 / 35$ with $0.5-1 \%$ cpy locally with serpentinite.
Quartz vein ( 0.2 m . thick -3 m . long) at $315 / 80$ in quartz phyllite. Quartzite float.
Quartz vein in schist float. Quartz vuggy with ankerite and limonitic alteration.
Quartz vein with trace cpy/py, malachite, magnetite and limonitic staining within schist subcrop.
Quartz vein ( 0.3 m thick -1 m . long) with $\mathrm{Fe}, \mathrm{Mn}$ staining and trace py within schist.
Quartzite bed with limonitic staining and trace py in subcrop.
Quartzite boulder from above unit.
Quartz vein ( 2.5 m . thick -5 m . long) at $300 / 45$ with little mineralization. Trace py and $\mathrm{Fe}, \mathrm{Mn}$ staining.

111886
111887
111888
111889
111890
111891
111892
111893
111894
111895
111896
111897
111898
111899
111900

147651
147652
147653
147654
147655
147659

147701
147702
147703
147704
147705
147706
147707
147708
147709
147710
147711
147712

Granodiorite float with $<1 \%$ py dissemination. Quite dense.
Quartz vein in schist at 280/80. North of old workings tunnel.
Same unit as above
Quartz vein in schist subcrop at 080/50. limonitic staining with weathered out py cubes.
Quartz float, barren.
Felsic intrusive subcrop.
As above.
Quartz vein directly above old workings tunnel. Most likely part of the same vein they followed in.
Quartz float in creek bed.
Quartz vein ( 0.3 m. thick) at 290/65 with concentrated Fe staining and trace py within schist.
Quartz veins ( $0.2-0.3 \mathrm{~m}$. thick -1.2 m . long) in quartz phyllite schist at 270/80.
Same unit as above.
Quartz stringers in coarse grained silicified sandstone bleb 1 m . by 2 m . within schist. Trace py,po.
Quartz float with trace py and Fe stained.
Granodiorite in subcrop with $<1 \%$ py dissemination.

Porphyry-granodiorite contact, Fe stain
Porphyry-granodiorite contact, Fe stain
Porphyry-granodiorite Fe stain, str.jts
Porphyry-granodiorite $<1 \%$ sulphides
Porphyry-granodiorite contact, Fe stain
Small trench with granodiorite.

Foliated calcareous conglomerate
Argillite lens in foliated calcareous conglomerate.
Fine grained carbonate with slight foliation and small calcareous veins. Fe staining- Ankerite.
Phyllite with dark Fe staining. 267/52
Quartzite in phyllite. Fe stained.
Quartz veins ( 1 m. thick) concordant with bedding. 252/44 in phyllite.
Quartz vein ( 20 cm . thick) concordant with bedding in same phyllite unit as above.
Quartz vein in rusty intrusive outcrop. Yellow staining on fracture surface.
Quartz vein with malachite staining.
Quartz vein in phyllite.
Quartz vein in silicified greenstone.
Rusty schist with mariposite. 081/90.

147713
147714
147715
147716
147717
147718
147719
147720
147721
147722
147723
147724
147725
147726
147727
147728
147729
147730
147731
147732
147733
147734
147735
147736
147737
147738
147739
147740
147741
147742
147743
147744
147745
147746
147747
147748
147749
147750
as above
Quartz vein in rusty schist.
Quartz stringer with mariposite.
same unit as above
same unit as above
same unit as above
Quartz vein in rusty dark grey serpentinite. trace pyrite.
Fault zone. Rusty coloured.
Gossanous ridge with trace py and mariposite
Grab on talus slope. Rusty Ankerite with weathered out py cubes. Acicular needles in white silicified surface.
Grab on ridge top above sample 147722.
Quartzite beds with limonitic alteration within the serpentinite unit. 280/60. same as above.
Serpentinite shear zone with garnet mineralization (almandine? -black).
Small quartz vein subcrop in serpentinite unit. Parallel to quartzite beds.
Quartz vein in gossan.
Quartz vein in serpentinite unit.
Quartz vein. 270/85.
Quartz vein in talus on east end of serpentinite shear zone.
Altered serpentinite, silicified.
Rusty phyllite at sample location R94-39.
Same as above.
Large rusty boulder of epidote rich greenstone.
Rusty schist.
same unit as above.
Very altered greenstone float.
Altered conglomerate near shear zone. Chlorite rich. 140/90. Near sample location R94-42.
Grab from talus. Creamy light green with chlorite and magnetite.
Quartz vein in small chloritic shear zone with isolated rust stains. Concordant with bedding at $313 / 74$.
Quartz vein in same shear zone as above.
Grab from dried up cree bed. Greenstone with high Fe content. Trace py.
Small quartz vein in schist. Cleavage plane 310/40.
Quartz vein ( 0.5 m . thick) in chloritic schist. No sulphides. From open cut above Hog Creek.
Small quartz vein in chloritic schist.
Quartz vein ( $1-1.5$ m. thick) in subcrop. Limonitic alteration. Close to shear zone in serpentinite.
Mariposite in ankerite float.
Quartz vein (330/90) in serpentinite unit. Coating of graphite or moly? Quartz vein (270/90) brecciated in serpentinite.

