

FLB 2 3 1996 Gold Commissioner's Office VANCOUVER, B.C. **1995 GEOLOGICAL REPORT** ON THE JD GOLD SILVER PROPERTY

TOODOGGONE RIVER AREA

OMINECA MINING DIVISION

BRITISH COLUMBIA

NTS 94E6E

Latitude 57 degrees 26' North Longitude 127 degrees 09' West

AGC AMERICAS GOLD CORP 1730 - 999 West Hastings Street Vancouver, British Columbia V6C 2W2

0

By: R. G. Krause, B.Sc. Geologist

February 14, 1996

FILMED

Summary	•••••••••••••••••••••••••••••••••••••••		6
Introduction.	······		14
Location and	d Access	Location Man	14
Property	Figure 1.		16
Physiograph	Figure 2. ly		10 17
History			19
Regional Ge	eology		22
Description Co	Figure 3.	Mineralized Zones	25
Property Ge	OlOgy Stratigraphy	·····	, 20 5
<u>д</u> .	Structure	······ 2	.0 7
р. С	Alteration	······ 2	.7
U. D	ID Property Lithel	2 ogios	.0
D. E	Finn zone	vyics	A.
<u>с</u> . С	Moof Schmitt		5
G.	Prospecting Spur,	Mill, Hairy, Furry, Fiddick claims. 3	6
Geochemist	rv		
1	Geochemical Surv	vev Techniques 3	7
1. 11.	Discussion of Res	ults	8
Diamond Dri	illing		
I.	Schmitt and Woof	zones	.1
II.	Finn zone		-2
Conclusions			50
Recommend	lations		51
Bibliography	l,		. 52
Budget Estir	mate for 1996		53
Certificates			
N. C.	Carter, Ph.D., P. E	ng	54
R . G.	Krause, B.Sc	<u> </u>	. 55
	•		
1995 Staten	nent of Costs		56

TABLE OF CONTENTS

Appendix I:	Diamond Drill logs - Finn zone	Volume II
a)	diamond drill logs	
b)	assay summary sheets	
C)	core recovery sheets	
A		
Appendix II:	Diamond Drill logs - Schmitt zone	Volume II
a)	diamond drill logs	
b)	assay summary sheets	
C)	core recovery sheets	
Appendix III:	Rock sample description record	Volume III
Appendix IV:	Assay sheets - Eco-Tech labs	Volume III
· · · · · · · · · · · · · · · · · · ·		
Appendix V:	Geochemistry sheets - Eco-Tech	Volume III
-refer	to soil geochemistry	
A	This and callebook continu	
Appendix VI:	i nin and polisned section	volume III

Interpretation - C. Leitch Ph. D., P. Eng

LIST OF FIGURES

Figure 1.	Location Map	Page 10 15
Figure 2.	Claim Map	Page 18 16/17
Figure 3.	Mineralized Zones	Page 19 18
Figure 4.	Geology Map and Rock Sample Locations	Volume IV
Figure 4a.	1:2000 Geology Map Woof zone	Volume IV
Soil Sample	Results	Volume IV
Compilation	1994 Regional (100 m x 50 m)	
Plus detaile	d 1995 (50 m X 25 m)	
Figure 5.	Au Geochem	
Figure 6.	Ag Geochem	

- Figure 7. Cu Geochem
- Figure 8. Zn Geochem

Diamond Drilling

Volume IV

Volume IV

I. Finn zone

Figure 9. Plan view diamond drill holes 1994, 1995-collars and hole length Figure 9a. Plan view diamond drill holes 1994, 1995-collars only

Finn zone sections

Volume IV

	Section	Drill Holes: all holes drilled in 1995
Figure 10.	611117E	101,100,102
Figure 11.	611145E	132, 131, 130, 128, 127
Figure 12.	611176E	99, 98, 97
Figure 13.	611120E	96, 95, 94, 93, 92, 91, 90
Figure 14.	611236E	89, 88, 86, 85, 84, 82, 80, 78, 75, 74, 73, 72
Figure 15.	611268E	103, 67, 66, 65, 64, 63, 54, 53, 52, 51, 50

Figure 16.	611286E	104, 71, 70, 69, 68, 49, 48, 47, 46, 45
Figure 17.	611302E	105, 108, 41, 42, 43, 44
Figure 18.	611320E	38, 39, 40, 76
Figure 19.	611331E	35, 36, 37, 77, 79
Figure 20.	611349E	107, 116, 33, 34, 114, 115
Figure 21.	611369E	106, 113, 112, 109, 110, 111
Figure 22.	611391E	120, 119, 118, 117
Figure 23.	611409E	124, 123, 122, 121
Figure 24.	611427E	125, 126, 81
Figure 25.	611449E	61, 62, 55, 56, 57, 58, 59, 60
Figure 26.	611498E	83, 87, 127

Woof/Schmitt zone

Plan View: See Figure 4a

Diamond Drill Holes

Figure 27.	WF95-01
Figure 28.	WF95-02
Figure 29.	WF95-03
Figure 30.	WF95-04

Volume IV

Volume IV

SUMMARY

The 1995 exploration program by AGC Americas Gold Corp consisted of detailed soil geochemistry, prospecting, geological mapping, 36 line kilometers of Induced Polarization (I.P.) geophysics and completion of 103 NQ diamond drill holes totaling 8,664.52 meters (28,592.91 feet).

The 1994 picketed grid was utilized for the I.P. survey which covered the 3.2 kilometer westerly extension of the Finn zone geochemical anomaly. The conjugate of this structure (EOS zone) was also covered by I.P. Rock exposure is poor (less than 5%) on the property and I.P. work assisted in delineating the gold soil geochemical anomalies which are partially defined by sampling at 50 meter X 100 meter sample spaces in 1994.

These soil geochemical anomalies were further delineated by way of a 25 meter X 50 meter infill grid (refer to geochemical maps). Two other areas, the Vent zone and the Valley II zone (parallel valley due south of the Finn zone valley), were gridded on a 25 meter X 25 meter spacing and tied into the 1994 picketed grid.

Detailed mapping of the Vent zone, Woof and Schmitt zones was undertaken by Dean Baron, B.Sc., Geologist, at a scale of 1:2000 (Figure 4a).

An excavator (John Deere 790) on tracks was utilized in the 1995 exploration program to perform reclamation work of trenches, and to build skid roads for Finn zone drilling. Three trenches were attempted along the gold soil geochemical anomaly in the NW quadrant of the grid. This work was hampered by significant talus cover and a high groundwater flow into the trenches.

The main emphasis of the 1995 exploration program was directed to expanding and delineating the Finn zone which was discovered in the 1994 program. A total of 99 drill holes were completed on the Finn zone and extensions.

The Finn zone, hosted by a lapilli tuff fragmental volcanic unit, exhibits typical epithermal textures and mineralogy.

The following table summarizes the 1995 drill intersections with gold values above 0.10 ounces per ton.

1995 Drilling results - JD Property (includes Au values of +0.10 ounces per ton)

Hole No.	Interval	Length	Length	Au	Ag
	(Feet)	(Meters)	(Feet)	(oz/ton)	(oz/ton)
JD95-33	94.5 - 101.1	2.0	6.6	0.138	-
JD95-34	78.7 - 85.3	2.0	6.6	0.107	-
(including	78.7 - 82.0	1.0	3.3	0.173	3.89)
	105.0 - 114.8	3.0	9.8	0.118	-
JD95-35	78.7 - 101.7	7.0	23.0	0.018	2.89
JD95-36	83.7 - 87.0	1.0	3.3	0.118	
	126.3 - 140.7	4.0	14.4	0.056	3.42
(including	136.2 - 139.5	1.0	3.3	0.109	5.58)
JD95-37	137.8 - 154.2	5.0	16.5	0.236	2.94
(including	144.4 - 147.7	1.0	3.3	.683	11.76)
JD95-38	82.0 - 85.03	1.0	3.3	0.107	-
	95.1 - 98.4	1.0	3.3	0.013	29.97
	121.4 - 124.7	1.0	3.3	0.103	1.20
JD95-39	121.4 - 137.8	5.0	16.5	0.037	3.55
	144.0 - 196.8	16.1	52.8	0.157	-
(including	190.3 - 196.9	2.0	6.6	0.652	-)
			{		
JD95-40	108.3 - 118.1	3.0	9.8] -	2.65
	131.2 - 144.3	4.0	13.1	0.014	2.09
	150.9 - 173.9	7.0	23.0	0.462	11.30
(including	157.5 - 167.3	3.0	9.8	0.965	20.22)
JD95-41	101.7 - 158.9	17.43	57.2	0.200	-
(including	105.0 - 118.1	4.0	13.1	0.188	1.41)
			-and-		
(including	128.0 - 147.7	6.0	19.7	0.251)
			-and-		
(including	150.9 - 157.5	2.0	6.6	0.467	[]
JD <u>95-42</u>	157.5 - 160.8	1.0	3.3	0.100	-
	190.3 - 198.0	2.36	7.7	0.153	-
JD95-43	144.4 - 147.7	1.0	3.3	0.431	1.19
	170.6 - 173.9	1.0	3.3	0.206	2.02
	193.6 - 196.2	.8	2.6	0.107	-
	217.2 - 223.1	1.8	5.9	0.134	0.90
JD95-44	249.3 - 265.7	5.0	16.5	0.111	1.25

Hole No.	Interval (Feet)	Length (Meters)	Lengt h (Feet)	Au (oz/ton)	Ag (oz/ton)
	295 4 200 2	15	10	0.121	
<u></u>	265.4 - 290.3	1.0	4.9	0.151	<u> </u>
linoludina		1.0	50	0.150	┝────
(Including	310.0 - 313.9	1.0	0.9	0.213	- /
JD95-47	167.3 - 180.4	4.0	13.1	0.044	10.25
	193.6 - 213.3	6.0	19.7	0.076	5.95
(including	196.9 - 203.5	2.0	6.6	0.123	10.85)
	216.5 - 223.1	2.0	6.6	3.195	5.38
(including	<u> 216.5 - 219.8</u>	1.0	3.3	6.283	8.98)
				0.100	
JD95-48	1/8.9 - 203.4	7.48	24.5	0.130	
(including	187.0 - 193.6	2.0	6.6	0.175	-)
JD95-49	167.3 - 187.0	6.0	19.7	0.112	
(including	173.9 - 180.5	2.0	6.6	0.200	-)
JD95-50	231.1 - 236.2	1.55	5.1	0.141	-
1005 51	202.0.205.2	10	22	0.225	
1090-01	292.0 - 295.3	1.0	- 3.3	0.235	
JD95-53	206.7 - 226.4	6.0	19.7	0.171	-
(including	206.7 - 219.8	4.0	13.1	0.200	-
JD95-54	170.6 - 200.2	9.03	29.6	0.169	1.36
(including	177.8 - 190.3	3.80	12.5	0.243	0.95)
	229.7 - 236.3	2.0	6.6	0.214	-
	242.8 - 246.1	1.0	3.3	0.108	
JD95-55	48.2 <u>-</u> 51.5	1.07	3.6	0.115	
	46.0 90.0	10.1	240	0.240	
JU33-02	<u>40.0 - 00.9</u> 50 1 65 7	20	66	1 306	-
	<u> </u>		0.0	1.300	-/
JD95-63	124.7 - 158.3	10.2	33.6	0.207	1.23
(this grad feel	s interval also contains des for both up to 4.43 of this section) - Al	1.08% lead an % and 6.92% re	d 1.68% z espectivel	inc with hig y in the firs	gher st 8.2
(including	148.8 - 158.3	2.9	9.5	0.530	-)
	00.2 109.2	5.5	19.0	0.219	1.02
1030-04	118.1 - 131.0	33	120	0.310	1.32
	10.1-101.0		12.0	0.414	<u> </u>
JD95-65	75.5 - 78.8	1.0	3.3	0.122	-
1005.07	440.0 455.0	100	407	0.400	
JD95-6/	116.5 103.4	12.9	42./	0.108	
lincinaling	110.0 - 123.1	Z.U	0.0	U.230 _	l -

Hote No.	Interval	Length	Length	Au	Ag	Pb%	Zn%
	(Feet)	(Meters)	(Feet)	oz/ton	oz/ton		
JD95-68	109.7 - 154.5	13.6	44.8	0.222	0.6		
(including	127.0 - 137.8	3.27	10.8	0.241	-)		
	-and-	1					
(143.2 - 154.5	3.42	11.3	.438	-)		
This hole	also contains:						
	123.7 - 127.0	1.0	3.3	0.071	3.2	12.1	32.0
	-and-						
	196.9 - 203.5	2.0	6.6	0.069	-	1.9	4.3
				[
JD95-69	54.1 - 67.2	3.96	13.1	0.117	-	-] -
	77.1 - 105.0	8.45	27.9	0.268	-	<u>-</u>	-
(including	77.1 - 85.1	2.42	8.0	0.460	-	-	-)
	-and-						
(91.7 - 99.1	2.20	7.4	0.315	-	-	-)
		1	<u> </u> −− −				
JD95-70	75.6 - 85.1	2.87	9.5	0.231			r
· · · · · · · · · · · · · · · · · · ·		1		t		t	
JD95-71	150.9 - 156.6	1.73	5.7	1.821	1.8	-	-
		†					[
JD95-73	298.6 - 305.2	2.0	6.6	0.176	17.3		-
		+	<u></u>	<u> </u>		ł	
JD95-75	87.0 - 97.0	3.03	10.0	0.182	-	<u>├-</u>	-
						t	<u> </u>
JD95-76	170.6 - 187.0	4.96	16.4	0.379	26.8	t	
		+				1	h
JD95-77	180 5 - 187 1	20	66	0 169	06		-
		+				┞────	<u> </u>
JD95-78	253.5 - 257.9	1 33	44	0.648	21	†	
			<u> </u>		<u> </u>	┣─────	<u> </u>
JD95-79	187 3 - 190 3	91	30	0 134	-	<u> </u>	
		+·•••	1-0.0	0.101		┟╼──	
JD95-83	248 2 - 258 0	298	98	0 403	70	<u> </u>	†
(including)	248.2 - 251.5	10	33	1 132	20.9	<u> -</u>	- 1
(indicidentia)		+			20.0	t	
JD95-84	1347-1477	3.94	13.0	0.327			<u>├</u>
(including	144 5 - 147 6	94	31	0.722		-	
		<u> </u> _		0			
1095-85	755-821	20	66	0 394		<u>├</u>	
000000	984-1165	5.48	18 1	0.501			<u>├</u>
(including	101 1 - 107 7	20	66	0.867	0.6	3 25	2 121
Turologing	301.3 - 101.1	2.0	<u> 0.0</u>	0.007	0.0	0.20	<u> </u>
1D95-86	47 0 - 52 8	1 75	58	0 141			
1030-00	627-781	47	15.4	0.145	27		<u>}</u>
	02.1 - 10.1	+ <u></u>	10.7	0.140	<u> </u>		<u> </u>
	364-650	867	28.6	0.117		- <u></u>	
1030-00	30.4 - 03.0	0.0/	20.0	0.11/			└── ─
1005 00	20.0. 24.9	A 49	140	0.175	0.10	0.47	0.47
1030-09	20.0 - 34.0	1 4.40	14.0	0.175	0.13	<u> 0.17</u>	<u> </u>
	260.0.290.6	5.07	10.7	0.154	0.69	<u> </u>	<u> </u>
1040-40	300.9 - 380.0	10.9/	19.7	0.154	0.00		
Uncluaing	300.9-3/0./	2.9/	9.8	0.285	1.3/	L	<u>-}</u>

Hole No.	Interval	Length	Length	Au	Ag	Pb%	Zn%
	(Feet)	(Meters)		ozron	ozron	<u> </u>	<u> </u>
JD95-91	326.5 - 344.5	5.45	18.0	0.227	1.74	<u> -</u>	-
1005.02	208 4 - 218 2	2 07	98	0 101		- <u>-</u>	<u> </u>
JD95-92	300.4 - 310.2	2.51	9.0	0.101		-	
JD95-93	271.3 - 284.3	3.94	13.0	0.167	-	-	-
(including	275.6 - 284.3	2.64	8.7	0.226	_	t	-)
						<u> </u>	
JD95-94	72.2 - 88.6	4.97	16.4	0.105	1.56	-	-
		<u> </u>				<u> </u>	
JD95-95	45.9 - 48.0	.64	2.1	0.136	<u> </u>	<u> </u>	
	82.0 - 91.8	2.97	9.8	0.210	-	ļ	
1005.07	40.0 60.0	2.07	42.4	0.401	5.24	<u> </u>	
1092-81	49.2 - 02.3	3.97		0.491	0.34	-	<u> </u>
	(2.2 - 95.2	0.91	23.0	0.435	1.82	-	-
1095-98	459-689	6.97	23.0	0 427			
000000	40.0 00.0	0.07	20.0	0.421			
JD95-100	331.0 - 333.4	.73	2.4	2.025	2.30	-	-
		1					
JD95-104	91.9 - 95.2	1.0	3.3	0.101	-	-	-
	139.4 - 146.9	2.27	7.5	0.130	-	-	-
	169.0 - 180.5	3.48	11.5	0.121	-	-	-
			<u> </u>				
JD95-105	68.9 - 72.2	1.0	3.3	0.123	-		
ID95-107	336-393	1 73	57	0.105		<u> </u>	
	1116-1280	4 97	16.4	0 194	-	-	-
(including	121.4 - 128.0	2.0	6.6	0.307			-)
	216.5 - 219.8	1.0	3.3	0.134	-	-	-
	223.1 - 226.4	1.0	3.3	0.113	-	-	-
JD95-108	336.5 - 350.7	4.3	14.2	0.216	-	-	-
1005 440		100		0.4.17			
JD95-113	29.5 - 36.1	2.0	6,6	0.14/	-	-	<u>-</u>
1095-116	295-459	4 97	16.4	0.122		<u> </u>	
(including	393-459	20	66	0 157	1 24		- 1
Including	00.0 40.0		0.0	0.107	1.27		- /
JD95-119	47.1 - 62.4	4.64	15.3	0.540	+	-	-
JD95-120	24.1 - 46.0	6.64	21.9	0.162	-		-
	07.0 40.0			0.000			i
JU95-124	27.0 - 49.0	6.6/	22.0	0.390	-		
JD95-125	57.0 - 65.3	2.51	83	0 155		<u> </u>	
		<u> </u>				<u> </u>	
JD95-127	301.9 - 305.2	1.0	3.3	0.235	-	-	-
Ll				l		<u> </u>	L

Hole No.	Interval (Feet)	Length (Meters)	Length (Feet)	Au oz/ton	Ag oz/ton	Pb%	Zn%
JD95-130	128.0 - 134.6	2.0	6.6	0.164	-		
	141.1 - 154.2	3.97	13.1	0.141	2.62	-	-
JD95-131	118.9 - 124.5	1.70	5.6	0.219			
JD95-132	85.3 - 105.0	5.96	19.7	0.405		-	-
(including	85.3 - 91.9	2.0	6.6	0.997	-	-	-)
	121.4 - 134.5	3.97	13.1	.110	-	-	-

To date the Finn zone has been drill-tested over a strike length of 350 meters (1,155 feet) and to depths of approximately 120 meters (396 feet). The zone is interpreted to be a fault displaced block that has been moved some 120 to 150 meters in a SSW direction.

Limits of the Finn zone are presently unknown. The zone is open both along strike and to depth and soil geochemistry indicates potential in a westerly direction. Additional drilling, to further test this area, is proposed for 1996.

Two holes (JD95-83 and JD95-87), drilled to the north of the currently defined zone failed to return values of more than 0.10 ounces per ton gold. Drill hole JD95-127, drilled 150 meters NNE of the Finn zone in what may be the primary conduit, returned 1 meter of .235 ounces per ton gold and drill hole JD 95-83 returned 3.96 meters of .587 ounces per ton gold and 2.13 ounces per ton silver.

Drilling to date has proven a resource which is summarized in the following table:

Figure 1:

Probable Resource

Zone	Tonnes	Gold Grade (g/ton)	Average width (m)
Finn (Main)	240,320	6.00	8.75

Possible Resource

Zone	Tonnes	Gold Grade (g/ton)	Average width (m)
Finn (Main)	134,600	6.19	7.45
(Footwall-upper)	16,555	15.93	1.29
(Footwall-lower)	96,894	5.72	6.92

Total Probable and Possible Resource

Zone	Tonnes	Gold Grade (g/ton)	Average width (m)
Finn (Main)	374,920	6.07	8.28
Finn Footwall	113.450	7.21	
Total	488.370	6.33	

(Imperial units 538,180 tons @ 0.183 ounces per ton)

Parameters used: 3.43 grams per ton (0.10 ounces per ton) cut-off grade 2.70 specific gravity Probable resource estimate includes areas drilled at a density of 15 meters (50 feet).

1995 drilling also identified a sub-parallel zone in the footwall of the Finn zone. Several drill holes returned significant gold values indicating a second system or an off-shoot of the Finn zone system underlines the Finn zone with intersections approximately 200 feet below the Finn zone from the apparent second zone approximately 60 meters below the Finn zone.

INTRODUCTION

This report describes a 1995 program of infill soil geochemistry (50 meters X 25 meters sample spacing), geological mapping, rock sampling which was undertaken in conjunction with a major diamond drilling program on the Finn zone and extensions. The work was conducted between June 10, 1995 and September 30, 1995.

Project management was reviewed by Dr. N. Carter, P. Eng. while the on site exploration was carried out under the direction of the author, Robert Krause.

LOCATION AND ACCESS

The JD property, located in the Omineca Mining Division, is situated 300 kilometers NNE of Smithers, British Columbia. The property's southern boundary is just north of the Toodoggone River, Moosehorn Creek marks the western boundary while the eastern boundary is some 10 kilometers east of McClair Creek. The northern limits correspond to the east-west flowing headwaters of McClair Creek.

Present access to the property is via the Omineca mine access road from which an extension traverses the western boundary of the property. A cat trail affords access for heavy equipment into the property. Supplies were flown from Smithers to the Sturdee airstrip and from there were flown to camp by helicopter. Fixed wing costs were shared with ongoing exploration programs which included Cheni Mines Ltd and El Condor's Kemess (now Royal Oak Mines Ltd.)

Field work carried out in 1995 included 6.6 line kilometers of infill grid plus the construction of 1.6 line kilometers of new grid. Infill and new picketed grids were tied into the 1994 grid which consists of a baseline trending 080 degrees and

n n a la tha a s

•

crosslines turned 90 degrees. A total of 240 soil samples were collected during the 1995 program.

The Schmitt and Woof zones were re-mapped by Dean Baron and four holes were drilled to test the area of previously collected high grade surface samples. Although these holes failed to intersect any significant mineralization, additional investigation of this area is warranted.

Six new claims were staked along the properties' eastern boundary in 1995. These include the Bush, Furry, Glen, Hairy, Livet and Fiddick claims. Subsequent prospecting and sampling included collection of two grab samples grading .541 ounces per ton gold with 4.18 ounces per ton silver and .421 ounces per ton gold with 20.73 ounces per ton silver. Follow-up work in this area is recommended in the 1996.

PROPERTY

The JD property consists of 22 full and four fractional mineral claims (242 units) located in the Omineca Mining Division.

The claims were located in accordance with procedures as specified in the Mineral Tenure Act Regulations for the Province of British Columbia.

The configuration of the mineral claims is shown on Figure 2 and details as follows:

Figure 2:

CLAIM NAME	RECORD #	UNITS	EXPIRY DATE
JM	238126	20	June 12, 1999
JD	238127	20	June 12, 1998
JR	239295	6	July 18, 1996
McClair 1	238316	4	September 3, 1996
JK Fraction	238326	1	September 3, 1998

JC Fraction	238327	1	September 3, 1998	
JU Fraction	238328	1	September 3, 1998	
JS	238322	6	September 3, 1996	
JB	238333	20	September 3, 1996	
Antoine Louis	238474	10	August 13, 1996	
Furlong	238514	6	September 8, 1996	
Tour	238515	18	September 8, 1996	
Sturdee	239516	18	September 8, 1996	
Big Bird	238517	6	September 8, 1996	
Grover Fraction	238674	1	September 8, 1996	
Gas 1	238675	20	September 8, 1996	
Spur	331108	16	September 25, 1997	
Mill	331107	16	September 20, 1997	
Was 1	239025	8	August 29, 1998	
Was 2	239026	8	August 29, 1998	
New Moose 2A	303799	1	August 23, 1996	
New Moose 2B	303800	1	August 23, 1996	
New Moose 2C	303801	1	August 23, 1996	
New Moose 2D	303802	[•] 1	August 23, 1996	
New Moose 4	303823	15	August 23, 1996	
New Moose 5	303824	9	August 23, 1996	
KAD I	325956	20	May 26, 1997	
KAD II	325957	20	May 26, 1997	
CLAIM NAME	<u>RECORD #</u>	<u>UNITS</u>	EXPIRY DATE	
Bush	339626	20	August 23, 1996 G	В
Furry	339625	20	August 22, 1996 G	В
Glen	339624	20	August 21, 1996 G	В
Livet *	339628	20	August 26, 1996 S	Т
Fiddick	339627	20	August 21, 1996 S	Т
Hairy	339626	20	August 26, 1996 G	В

These claims are held in the name of G. Barton and S. Turgeon for AGC Americas Gold Corp.

PHYSIOGRAPHY

The Toodoggone River area is on the eastern margin of the Spatsizi Plateau, an open, gently rolling upland surface dissected by broad, alluvium-filled valleys. Products of alpine glaciation are steep-walled cirques on north-facing slopes while southern slopes are gentle and rounded.

The JD property covers a prominent highland area between the broad valleys of Moosehorn Creek on the west, McClair Creek on the north and east and Toodoggone River to the south. Topography is moderately rugged and elevations range from about 1,400 to 1,950 meters above sea level.

Locally dense alpine spruce and fir extend from the valley floors to about 1,600 meters elevation above which is typical open alpine country featuring grasses and small shrubs. The valley floors are mainly open alpine and tundra, locally covered by buckbrush and willows.

Bedrock exposures are confined to drainages, steeper slopes and ridge crests. Abundant felsenmeer is believed to be very close to bedrock.

HISTORY

The Toodoggone River area was initially investigated for placer gold in the 1920's. A public company, Two Brothers Valley Gold Mines Ltd., carried out considerable test work, including drilling, near the junction of McClair Creek and Toodoggone River in 1934. This operation was entirely serviced by air from Takla Landing.

The lode potential of the area was also investigated in the 1930's by Consolidated Mining and Smelting Company. Lead-zinc mineralization was discovered near the North end of Thutade Lake and south of Baker Mine and some limited drilling was done on Oxide Peak several kilometers north of the present JD property.

Intermittent exploration work continued in the region until the 1960's when it was investigated by a number of companies for porphyry copper-molybdenum potential. Gold-silver mineralization in quartz veins was recognized at the Chappelle (Baker Mine) property by Kennco Exploration (Western) Ltd. in 1969.

REAL SEC.

1. 1. 1.

1. So i at a

The property was acquired by DuPont of Canada Exploration Ltd. in 1974 and placed in production in 1981. Operations over a 31 month period yielded 1,169.7 kg gold (37,606 ounces) and 23,079 kg silver (742,117 ounces) from 7,000 tonnes milled.

Numerous other gold-silver discoveries were made in the area in the 1970's and 1980's including the Lawyers deposit which was discovered by Kennco in 1973 and optioned to SEREM Ltd. in 1979. This Company carried out extensive surface drilling and underground work prior to bringing the property into production as Cheni Mine in 1989. Reserves prior to mining were 950,000 tonnes grading 6.85 g/t gold and 150 g/t silver, some 620,000 tonnes were mulled prior to closure in 1992 with coverage recovered grades of 8.67 grams per ton gold (0.253 ounces per ton) and 18.2 grams per ton silver (0.53 ounces per ton).

The area now comprising the JD property was staked by Sumac Mines Ltd. in 1971 following a reconnaissance geochemical survey. Exploration work through 1974 included soil and rock geochemistry, I.P., SP and magnetometer surveys, geological mapping, hand trenching and one 122 meter diamond drill hole.

The claims were allowed to lapse and were re-staked in 1978 by T.C. Scott and Petra-Gem Exploration Ltd. Energex Minerals Ltd. acquired an option in 1979 and farmed the property out to Kidd Creek Mines Ltd. (ex. Texasgulf Canada Ltd.) the following year. Exploration work done by Kidd Creek over the ensuing four years included geological mapping, geochemical and geophysical surveys, extensive trenching and rock sampling and the drilling of 15 holes totaling 1,900 meters.

Work on the JD property by Energex Minerals Ltd. in 1988 consisted of 78 backhoe trenches (5,000 lineal meters), geological mapping and prospecting and the collection and analyses of 1,759 rock and 1,593 soil samples.

Work on the JD property in 1994 by AGC Americas Gold Corp consisted of 94 line kilometers of picketed grid on a 50 meter X 100 meter spacing with a slope corrected baseline (trending 080°) with 25 meter pickets and crosslines turned off the baseline at 100 meter intervals. The lines ran 1 kilometer north and 1 south of the baseline. The sample interval along the crosslines was 50 meters, providing reconnaissance scale geochemical coverage.

The geology of 50% of the property was re-mapped by Marco Van Wermeskerken both within and beyond the grid. During the process 130 rock samples were collected.

The Gumbo and Finn zones were tested by 30 diamond drill holes totaling 2,072.8 meters (6,840 feet).

REGIONAL GEOLOGY

The Toodoggone River area, situated near the eastern margin of the Intermontane tectonic belt, is within Stikine terrain which consists of allochthonous Paleozoic and Mesozoic magmatic arc assemblages and overlying sedimentary sequences (Diakow et al, 1991).

Oldest rocks in the area are late Paleozoic limestones in the vicinity of Baker Mine which are in fault contact with late Triassic Stuhini Group volcanic rocks. Overlying these is an early Jurassic volcanic assemblage of distinctive lithology and informally called the "Toodoggone Volcanics" (Carter 1972). More detailed work in the 1980's (Diakow et al, 1991) defined the Toodoggone formation as being a subaerial, predominately andesitic to dacitic pyroclastic assemblage with a thickness of at least 2,200 meters contained in a northwest trending belt 90 kilometers long and 2 - 20 kilometers wide and extending from Thutade Lake on the south to Stikine River on the north.

Six lithostratigraphic members of the Toodoggone formation are recognized (Diakow et al, 1991). These were erupted in two distinct volcanic cycles, the oldest, comprising four members, between 207 and 197 Ma and the youngest two members between 193 and 183 Ma.

Toodoggone formation volcanics and older layered rocks are cut by comagmatic Omineca granitic rocks and by subvolcanic intrusions related to Toodoggone volcanism.

Clastic sedimentary rocks of the Cretaceous-Tertiary Sustut Group overlie older rocks near the Stikine River and form the southwestern exposed margin of the Toodoggone volcanic belt.

the at the addition

Several types of mineralization have been identified in the Toodoggone River area of which the most important are epithermal precious and base metal deposits related to volcanic processes associated with the eruption of Toodoggone formation volcanic rocks. Known deposits occur as fissure veins, quartz stockworks, breccia zones and areas of silicification in which principal ore minerals include argentite, electrum, native gold, silver and lesser chalcopyrite, galena and sphalerite. Alteration suites are typical of epithermal environments with an inner zone of intense silicification, clay minerals and locally alunite, grading outward to sericite and clay minerals, chlorite, epidote and pyrite.

Diakow et al (1991) classify the epithermal deposits on the basis or ore and alteration mineralogy into two types. Most of the known Toodoggone deposits are of the adularia-sericite type. The Baker Mine (Chappelle Property) includes at least six fissure vein systems developed in late Triassic Stuhini Group volcanic rocks although the known veins are spatially related to dykes believed to be feeders for nearby Toodoggone formation volcanic rocks. Virtually all of the other known adularia-sericite type epithermal deposits are hosted by various volcanic members of the Toodoggone formation including the Lawyers (Cheni Mine) deposits in which gold-silver mineralization occurs in banded quartz-chalcedony stockworks and breccia zones.

Epithermal deposits of the adularia-sericite type in the Toodoggone area exhibit a wide range of depths and temperatures of formation based on silver:gold ratios, gangue and alteration mineralogy and the presence or absence of base metals mineralization. Baker Mine and the JD mineralized zones, with a high silver:gold ratio and base metals content, are examples of deeper level mineralization.

. . ?

F = 200 (100 - 200)

PROPERTY GEOLOGY

Geological mapping and prospecting on the JD claims was focused on further delineating the extent of the Low Angle Fault which hosts the gold-silver mineralization of the Gumbo, Finn, Schmitt, Ag Carbonate, JC, JD West and JD East zones. Mapping was performed at 1:5,000 scale covering most of the claims, with detailed mapping on a 1:2000 scale.

A. STRATIGRAPHY

The majority of the claims are underlain by two main units of intermediate volcanic flows and tuffs, both within the upper volcanic division of the Toodoggone volcanic sequence.

The oldest observed rocks are intermediate flows with related flow breccias and lesser lapilli and ash tuffs of the Lower Jurassic McClair Creek formation, referred to as Unit 1. The rocks in this unit are predominantly andesitic feldsparhornblende porphyry (Unit 1a). Bottoms of individual flows consist of flow breccias of similar composition (Unit 1b). Several minor beds of lapilli, ash and crystal tuffs (Unit 1c), are located sporadically throughout the McClair Creek formation.

These rocks are overlain by more massive intermediate flows of the Tuff Peak Formation, also of Lower Jurassic age, referred to as Unit 2. The majority of the rocks in this Unit are feldspar-hornblende porphyry with minor biotite (Unit 2a). Similar flow breccias to those of Unit 1b are common and are observed mostly in the hangingwall of the Low Angle Fault. The composition of these breccias (Unit 2b) are also similar to that of the porphyritic flows. Small beds of lapilli, ash and crystal tuffs (Unit 2c) are less frequent than those of Unit 1c.

. T.

The rocks of Unit 2 are compositionally and texturally very similar to those of Unit 1. They can only be distinguished by their relative location with respect to the Low Angle Fault and by minor differences in texture and composition of the porphyritic flows (Units 1a and 2a). Unit 2a is generally more massive than Unit 1a and has a blocky appearance in outcrop, similar to that of intrusive rocks. Unit 2a contains minor amounts of biotite unlike Unit 1a. Phenocrysts of Unit 2a are generally slightly larger than those of Unit 1a (although there is an overlap in phenocryst size) and include local zones with a trachytic texture.

Units 1 and 2 are separated by the Low Angle Thrust Fault which is characterized by siliceous breccia and sheared andesite, and hosts a quartz vein stockwork and gouge material. This fault (hereinafter called LAF) hosts most of the mineralized zones of the JD property.

Unit 3 consists of maroon (hematitic) lapilli and lithic tuff (with feldspar-hornblende porphyritic fragments) and agglomerate.

Unit 4 consists of pyroclastic flows. This unit usually occurs in areas of Unit 1 tuffs. In some locations, these flows appear to crosscut stratigraphy, and are thought to be marginal to the original fissure or vent (Caira & Eccles 1988). Individual flows range up to 40 meters in thickness.

The above mentioned rocks are intruded by dykes and small irregular intrusions of diabase (Unit 6). These dykes are locally amygdaloidal with calcite and contain significant magnetite. They are relatively unaltered but wallrocks are often moderately silicified with a pyritic halo.

A feldspar porphyritic monzonite (Unit 5) was reported by Caira & Eccles (1988), but was not observed by the author.

Mittain Strate

The youngest rocks are dykes of pink feldspar porphyritic rhyodaciate (Unit 7) and are relatively unaltered. These dykes are abundant in the are of the EOS, JC, Gasp and Gumbo zones.

A more detailed description of the units are listed in table 1.

B. STRUCTURE

The flows and tuffs of unit 1-4 strike north to northwest with a shallow to moderate east-northeasterly dip. Unit 1, the footwall of the LAF, occupies the central and western portions of the mapped area. The rocks of Unit 2 (the hangingwall of the LAF) occupy the eastern, northeastern and southern portions of the mapped area. Small lenses of Unit 3 rocks are located within Units 1 and 2, and have a similar bedding attitude and do not exceed a thickness of 10 meters. There is no apparent significant folding or deformation of the volcanic sequences on the property. The different bedding attitudes of the volcanics as outlined by Morrice (1983) are therefore assumed to be caused by block faulting.

A swarm of diabase dykes (Unit 6) is located in a north-south trending area of approximately 800 meters by 200 meters which includes the Gumbo, Finn and JC zones. Dykes range in widths from 0.5 to 1.5 meters, with sharp but irregular contacts. These dykes are subvertical with strikes ranging from 085 to 135 degrees.

The rhyodacite dykes range in width from 1.0 to 3.0 meters and are structurally much more continuous than the diabase dykes. One of these dykes can be traced in outcrop for approximately 300 meters. The rhyodacite dykes trend north to northwest (000 to 340 degrees), are vertical to steeply dipping and have sharp and regular contacts with chilled margins. These dykes are continuous across the LAF, and consequently are younger.

At least two different generations of faulting have been recognized on the property. The earlier is the low angle thrust fault (LAF), which hosts the gold-silver mineralization currently being assessed, and which forms a tectonic contact between Units 1 and 2. This fault zone ranges in width from 2.0 to 5.0 meters in width and occurs either as a single gouge zone or a set of several sub-parallel fault splays. It trends from near horizontal in the southern portion of the mapped area to northwesterly trending, shallowly (5 to 35 degrees) northeast dripping in the northern and eastern part of the map area. This LAF has been traced for 2.5 kilometers from the JC zone to a kilometer northwest of the Schmitt zone and is open towards the north and east. In the southern portion of the claims this fault was traced for approximately 2.0 kilometers along the 1,750 meter contour. It is faulted off at its southeast but is open to the southwest.

A three meter wide shear at the southeastern corner of the map area is similar to the LAF but dips steeply (approximately 45 degrees) to the northeast. This fault is referred to as the Belle zone. It is believed to be related to the same tectonic event as the LAF.

The second generation of faulting is a conjugate set of steep faults. One set trends roughly north-south (345 to 015 degrees) and is steeply dipping. The second set trends in an easterly direction (060 to 130 degrees) and is also steeply dipping. Both these fault sets offset all litholigic units including the LAF and appear to be post date LAF mineralization although some of these confirm apparently younger mineralization.

C. ALTERATION

Several types of structurally controlled hydro thermal alteration have been recognized on the property. Alteration assemblages include propylitic, silicic, argillic, phyllic and bleaching (oxidation) and were coded by Kidd Creek Mines (1983) and adjusted by Energex Minerals Ltd. (1988). These codes were

adopted in the 1994 work program. Alteration codes and descriptions are as follows:

Type A2: Argillic +/- silicification

This proximal type of alteration is characterized mostly by feldspars (and micas) being partially or completely altered to white, yellow, brown or orange clays. The coloring of clays is due to various amounts of ferric oxide. This type of alteration, with various amounts of silicification is common in most zones within the LAF (Gumbo, Finn, JD and JD West zones). Pyrite occurs in these zones where silicification is prevalent.

Type A3a: Propylitization

This is the most pervasive alteration type on the property. The mafics of the andesites of Units 1 and 2 are variably altered to a chlorite rich groundmass containing calcite and epidote veins, as well as epidotized feldspars. Other alteration minerals include calcite, euhedral pyrite, hematite and talc. Type 3a alteration occurs adjacent and more distal to all mineralized zones on the JD property.

Type A3b: Hematization

Zones of this alteration type occur as purple to maroon zones not obviously related to mineralization. Rocks, especially these with high mafic content, are purple to maroon coloured after hematite with primary texture preserved. These zones occur as widespread zones of presumably diagenetic alteration in a subaerial environment.

Type A5: Silicification +/- sericite

Primary minerals of rocks in zones of silicification are partially replaced by quartz with original textures being preserved. A5 type alteration is mostly associated with the secondary fault zones and contains trace to 10% vugs

from leached feldspars and from cavities between breccia fragments (Caira, N. and Eccles, L., 1988).

Type A7: Intense silicification + pyrite - sericite

Rocks in this type alteration are almost completely replaced by quartz with primary texture being poorly preserved. Pyrite is common (up to 10%) with various amounts of sericite. Quartz is a also present in the form of white, chalcedonic or amethystine veins, usually less than 5 centimeters, but with occasional pods up to 30 centimeters across. A7 type alteration is prevalent in both the hangingwall and footwall of the LAF and is variably mineralized with Au-Ag-Cu-Pb-Zn. As reported by Caira and Eccles (1988) gold mineralization appears to be deposited in the latest stages of quartz hematite veining within this alteration assemblage.

Type A8: Phyllic (quartz +/- pyrite +/- sericite)

Zones of phyllic alteration occur as linear steeply northwest rending zones 1 to 20 meters in width and with propylitic haloes. One area, approximately 60 by 80 meters in size, of phyllic altered felsenmeer is located near the main saddle between the JD East and the EOS zones. The intensity of silicification varies from weak, affecting only the groundmass, to intense. Disseminated pyrite ranges from 1 to 10% in abundance.

Type A9: Bleaching and oxidation

These are zones in which mafic minerals and pyrite have been partially or completely oxidized to limonite, lesser goethite and jarosite +/- pyrolusite. These zones are widespread throughout the map area as gossans which extend over intervals of 200 meters. Ferricrete is the end product in areas of strong bleaching (oxidation) and a high mafic content and pyrite in the rocks. Extensive areas (up to 100 meters across) northwest of the Schmitt zone are covered by a ferricrete crust up to 2 meters thick.

D. JD PROPERTY LITHOLOGIES

UNIT 1: McClair Creek Formation

1a) Andesitic flow, Feldspar-hornblende porphyry

A fine-grained to aphanitic, green-grey matrix with 1 to 20% plagioclase and 1 to 5% hornblende phenocrysts. Subhedraleuhedral phenocrysts are 1 to 3 mm in size. Small euhedral hornblendes occur as small needles less than 2 mm in length. The units locally magnetic (up to 2% magnetite) and include zones of broken phenocrysts and small tuffaceous fragments (crystal tuff).

1b) Andesitic flow breccia

Subrounded angular fragments up to 50 cm of feldspar-hornblende porphyry described above are contained in a matrix of similar composition. Texture is usually visible on weathered surfaces only. Appears to host more calcite and quartz-calcite veins than the porphyritic flows. Usually found at the base of flows.

1c) Andesitic tuffs

Bedded ash, lapilli and crystal tuffs. Bedding usually well defined, but laterally not very extensive. Includes small lenses of inter volcanic greywacke and shale. These are the only outcrops which yield structural information (measurable bedding).

Unit 2: Tuff Peak Formation

2a) Massive andesitic feldspar-hornblende porphyritic flows

Light grey to tan, massive feldspar-hornblende +/- biotite porphyry. A fine-grained to aphanitic grey-brown matrix supporting 10-20% plagioclase, 1-10% hornblende, 0-3% biotite and 0-1% apatite phenocrysts. All phenocrysts are euhedral. The plagioclase phenocrysts are generally larger that those in Unit 1a (1-5 mm). Infrequent sanidine phenocrysts range to 1 cm. Local biotite occurs as small books up to 3 mm. Apatite crystals up to 1 mm are more common towards the center of large massive flows. Unit 2a also contains magnetite, which is occasionally visible as small blebs less than 0.5 mm. This unit weathers very blocky, similar to intrusive rocks.

2b) Andesitic flow breccia

Subrounded and subangular blocks up to 30 cm in size of porphyry as described in 2a in a matrix of similar composition. Most visible in weathered outcrops. Discernible from 1b flow breccia only by association with flows. Located mostly in the hangingwall of the LAF. Generally more fractured and with more calcite and quartzcalcite stringers than the porphyritic flows.

2c) Andesitic tuffs

The ash and lapilli tuffs of this Unit are similar, though less frequent than to those of Unit 1c. These beds are also laterally discontinuous (occur as small lenses).

Unit 3: Maroon andesitic to calcite lithic tuff and breccia

Maroon, red-brown to pale green angular fragments up to 20 cm in a usually porphyritic maroon, red, yellow to pale green matrix. Often massive in outcrop with little fracturing. Local zones of brecciation with quartz/quartz-calcite infilling (2-3%). Abundant hematite and minor epidote is present in all Unit 3 outcrops. This Unit is located in the vicinity of the Finn zone and southwest of the Tarn zone. In the area of the Finn zone this Unit has been subjected to intense shearing (Caira & Eccles 1988).

Unit 4: Assorted pyroclastic rocks (agglomerate and breccia)

White days

Massive agglomerates and unsorted clastics of intermediate composition with fragments up to 20 cm. These fragments are made up of intermediate tuffs and plagioclase-hornblende porphyry. Unit 4 agglomerates are usually overlain by, and grade into lithic, lapilli and ash tuffs. Individual beds range in thickness from 1 to 40 meters.

Unit 5: Feldspar porphyritic monzonite

This unit, not observed by the author, was described by Claire and Eccles as follows: "The rock is a salmon-pink weathering, fine-grained feldspar porphyritic monzonite with a moderately siliceous groundmass, which imparts a toughness that results in resistant, blocky weathering. Although the intrusive cuts the volcanics, little peripheral alteration along the contact was noted (Peatfield and Schmitt 1980) suggesting that the monzonite may be a late, coeval differentiate".

Unit 6: Diabase dykes

These dykes are dark green to black, very fine grained to aphanitic and range in thickness from 0.5 to 1.5 meters. They contain calcite amygdules up to 5 mm in diameter and are invariably magnetic. These dykes are unaltered with the exception of local weak chloritization and silicification. Contacts are sharp and irregular, occasionally with minor shearing. A narrow pyritic halo is often present in adjacent wallrocks.

Unit 7: Rhyodacite dykes

The rhyodacite dykes, 1-3 meters wide, consist of a tan to pink, finegrained to aphanatic groundmass, supporting 5-10% plagioclase phenocrysts 2-5 mm in size. Although these dykes are relatively unaltered, phenocrysts locally display inward zoning of weak potassic alteration. Dyke contacts are sharp and regular with a 2-5 cm wide chilled margin. Weathering results in a darker, salmon-pink surface with pyrolusite as the most common oxide found on weathered surfaces.

1 61 1 1

N. Prine 1

E. FINN ZONE

The Finn zone from surface mapping and drill core logging is a lapilli tuff fragmental unit bounded above and below by bedded fine to medium ash tuffs with intercalated crystal tuffs.

Thin and polished section worked performed by Craig H. B. Leitch Ph. D., P. Eng interprets the protolith (Finn mineralized zone) to have been developed during several volcanic sequences including a feldspar phyric crystal-lithic tuff, crystal-lithic tuff and a lapilli-crystal tuff that have undergone intense alteration all of which obscures the original protolith.

Rock compositions appear to range from andesitic (most commonly with original plagioclase and pyroxene phenocrysts) to latites, trachytes or potassic-andesite rhyodacite or even quartz latite to rhyolite. In summary, these individual rock units within the Finn mineralized zone appear to be mainly pyroclastic volcanic rocks.

These heterolithic fragmental rocks include a variety of chlorite, clay-sericitecalcite or K-spar altered clasts of 1-2 cm size set in a siliceous (+/- K-spar, sericite) matrix. Also common are quartz breccias that consist of intensely silicified (+/- sericite, chlorite, pyrite altered) ghost-like fragments in a matrix of quartz, minor sericite chlorite and pyrite.

Alteration ranges from mainly potassic (K-feldspar) of increasing intensity to phyllic (quartz-sericite-pyrite-carbonate) to silicified. Carbonate occurs as widespread calcite (commonly late and in veins) and less common dolomite or ankerite. Apatite is generally accessory throughout (hydrothermal?).

The Finn zone appears to have been developed within a mainly pyroclastic volcanic rock sequence featuring intense alteration consisting of quartz,

carbonate, adularia and sulphides. The sulphides include pyrite, sphalerite, galena and chalcopyrite plus rare native gold and possibly electrum.

F. WOOF, SCHMITT

The geology of the Woof and Schmitt zones, interpreted by diamond drilling plus surface mapping, includes a sequence of tuffs and crystal tuffs of intermediate composition. Numerous faults, striking east-west, northerly dipping orientations were mapped and a second set of faults and foliations trending 010 degrees and dip 50-70 degrees to the west.

These faults conform to the two dominant fault orientations that host Finn zone mineralization and the inferred EOS zone and are parallel to the primary and conjugate structures.

Four drill holes encountered carbonate veinlets and pervasive carbonate alteration of wallrocks.

Drill hole WF95-03 was collared in argillically altered ash tuff believed to represent the hangingwall of the Schmitt-Creek Zone.

G. PROSPECTING: SPUR, MILL, FIDDICK, FURRY AND HAIRY CLAIMS

As the 1995 exploration season was coming to a close the decision was made to acquire 6 new claims totaling 120 units which tie onto the eastern boundary not only to protect the possible eastern trend of the Finn zone, but to acquire new ground that had been researched through the government assessment reports and had some anomalous silt samples.

The claims were staked and subsequent to the staking prospecting crews were sent out to perform a cursory investigation. This initial program was set up to sample any obvious gossans or zones of alteration seen on the property. Also the decision to place a small soil geochemical grid over top of a hydro manganese gossan. This gossan lies in what appears to be a structurally controlled valley. Silt samples were also taken from the creek that flows easterly along this valley. Two silt samples returned extremely anomalous zinc values; Fiddick silt 4 returned 7011 ppm zinc and Fiddick silt 6 returned >10,000 ppm zinc.

Two extremely anomalous grab samples were both taken from intermediate to mafic volcanics. Sample 95-GB-8 taken from the Hairy claim returned .541 ounces per ton gold and 4.18 ounces per ton silver and Sample 95-ST-13 taken from the Spur claim returned .421 ounces per ton gold and 20.73 ounces per ton silver. Both samples were taken from quartz veins in silicified intermediate to mafic volcanics.

No mapping was performed in 1995, but follow-up of all anomalous areas is recommended.

I. GEOCHEMICAL SURVEY TECHNIQUES

One of the best exploration techniques employed on the JD property is soil geochemistry. Kidd Creek Mines Ltd. utilized this method on small areas of the property between 1980 and 1984, but, less than half the claim group was covered by 'regional' (50 m x 100 m) surveys during that time period. The 50 m x 100 m sample spacing has been successful in locating most of the significant mineralized zones in the Toodoggone District in the past but in order to detail anomalous areas, 25 m x 25 m infill grids were sampled during the 1995 program on the JD claims.

Correlation of soil geochemical data with the known mineral showings indicates that while gold and silver are the most useful elements, copper, lead, zinc and manganese are also useful pathfinders. Zinc is often associated with zones which contain superior gold values. The most consistent soil geochemical data is derived from the C-horizon which, on the steep slopes of the JD property, is found about 20 cm below the surface.

Soil samples collected along hip chained and compassed grid lines were collected using mattocks and were placed in gusseted brown paper envelopes with grid locations written on them. All samples collected in 1995 were analyzed for gold, silver, copper, lead and zinc at Eco-Tech Laboratories in Kamloops.

Kidd Creek originally undertook statistical analysis of results obtained from individual geochemical grids but the work did not fully address the problems of sample variance, nor the importance of low level but 'anomalous' soil data. Statistical information derived from grids centered directly over high grade showings was based on averaging and manipulating consistently high values and as a result, low level anomalies went undetected. It is felt by the author that the current sample population is large enough to calculate more Normal or Gaussian distribution.

Element	Mean = X (Background)	X-1SD (Anomalous)	X-2SD (Mod. Anomalous)	X-3SD (Highly Anomalous)
Au	25	140	794	4,514
Ag	0.5	1.5	4.6	13.9
Cu	14	26	46	82
Zn	86	159	293	542
Mn	1,164	3,075	8,126	21,473

TABLE 1 STATISTICAL SUMMARY GEOCHEMICAL RESULTS - JD PROPERTY (From J. Clark)

Contours shown on the geochemical maps now represent mean plus one, two and three standard deviations. Since reinterpretation, the contours are now of equal statistical weight on each grid enabling smooth transitions from one grid to another. The numerical values assigned to the contours are rounded off from the values in Table 1.

Many of the areas trenched in 1988 were low-order gold anomalies detected by the recontouring of older data made possible by a broader database and larger sample population.

The 1994 and 1995 soil geochemical survey on the new grid were contoured utilizing these statistical results.

II. DISCUSSION OF RESULTS

The infill soil geochemistry grids failed to extend the gold soil geochemical values beyond the anomalous areas identified by the 1994 exploration program.

Soil samples taken on the north facing slopes north of the baseline reflect poor soil development and a predominance of talus (from large boulders to fine silt) that hampers any possible interpretation.

In this context, it is worthwhile to reiterate the analysis of results from the 1994 program.

One gold in soils anomaly extends for one kilometer from station 6 + 00 E / 10 + 00 N to station 3 + 00 W/5 + 00 N. Locally, gold values exceed 1000 ppb. This anomaly is open ended with its southwestern extremity trending toward the high grade Schmitt zone. No soils were taken between the SW end of the anomaly and the Schmitt zone due to a large boulder talus field.

The second anomaly, which extends for over 2 kilometers from the Schmitt zone through the Woof zone to the Creek zone has gold values locally exceeding 1000 ppb. Remapping of this area during the 1994 field season returned two grab samples from the Woof zone of 2.8 and .77 ounces per ton Au. An I.P. survey was conducted over this area from line 9 + 00 W/0 + 00 to line 17 + 00 W/0 + 00; at line 15 + 00 W/2 + 50 N a soil sample returned 655 ppb gold. This area is within an I.P. resistivity low and adjacent to a resistivity high which is coincident with high chargeability.

The third gold in soil anomaly includes the Finn zone (known strike length 182 meters or 600 feet) and extends for 1,100 meters or 3,630 feet) from 6 + 00 E/5 + 00 S to 5 + 00 W/2 + 50 S. This anomaly, coupled with a previous soil geochemical anomaly (between 4 + 75 E and 0 + 00) has been extended to 1,100 meters or 3,630 feet in length. Values locally exceed 1000 ppb and drill intersections have confirmed the gold-bearing nature of this silicified zone.

Silver, Copper, Zinc, Lead

Ag, Cu, Pb and Zn values display a moderate correlation from line 5 + 00E/3 + 00 - 5 + 00 S to line 10 + 00 E/3 + 00 E - 0 + 00. This includes the eastern extremity of the Finn zone, although the gold anomaly dies out at station 5 + 00 E/5 + 00S.

There is a dramatic drop in topographic relief as one progresses east from the circue and this anomalous silver plus base metals anomaly could reflect the easterly trend but lower part of the Finn zone.

Geochemical Linears

The regional geochemical program produced three strong gold in soil geochemical linears of which the cause of two is known.

The linears that contain the Finn, Schmitt, Woof and Creek zones (refer to Fig. 6) possibly represent a geochemical anomaly that extends over 3,000 meters or 9,900 feet and may be reflecting one large structural system that gave rise to the silicifed zones that appear to be gold-bearing. Rock samples taken from outcrops in the Woof zone returned 2.8 and .77 ounces per ton Au while float which appears to be from the Schmitt zone (no outcrop boulder train) has returned samples in excess of 5 ounces of gold per ton.

DIAMOND DRILLING

I. SCHMITT AND WOOF ZONES

During the 1995 four drill holes were drilled to test the Woof (see figure 4a) zone in the area of previous surface sampling which included two samples grading .527 and 1.852 ounces per ton gold.

Drill hole WF95-01 was collared in a fault and was subsequently abandoned at 149.05 meters. No significant assays were obtained from this hole. The drill was then moved approximately 100 meters east and a second hole (WF95-02) passed through a sequence of tuffs and crystals tuffs and with no significant mineralization.

The drill (JFS-1000 helicopter movable drill) was then moved to Station 17 + 00W 50 N to test a coincident gold in soil geochemical anomaly (665 ppb) and a resistivity high (silicification) discovered in the 1994 I.P. survey conducted by Geotronics Surveys Ltd., of Vancouver, British Columbia.

Drill hole WF95-03 was collared in a yellow-orange argillically altered crystal ash tuff with a limonite gossan, intersected carbonate-altered ash and crystal tuff sequences with trace to 5% pyrite. It is interpreted that this hole was drilled in the hangingwall of the structure and while elevated gold values were encountered, no significant results were obtained.

Drill hole WF95-04, drilled east and north of WF95-02, intersected a sequence of carbonate-altered tuffaceous rocks containing no significant mineralization.

II. FINN ZONE

.

Drilling on the Finn zone in 1995 consisted of 8,029.,62 meters (26,497.8 feet) in 99 drill holes along 17 sections to further assess a probable and possible resource within the Finn zone (Figure 9).

A summary of results is contained in the following table:

1995 Drilling results - JD Property (includes Au values of +0.10 ounces per ton)

Hole No.	Interval	Length Length		Au	Ag	
	(Feet)	(Feet)	(Meters)	(oz/ton)	(oz/ton)	
JD95-33	94.5 - 101.1	6.6	2.0	0.138	-	
JD95-34	78.7 - 85.3	6.6	2.0	0.107	-	
(including	78.7 - 82.0	3.3	1.0	0.173	3.89)	
	105.0 - 114.8	9.8	2.96	0.118	-	
JD95-35	78.7 - 101.7	23.0	6.96	0.018	2.89	
JD95-36	83.7 - 87.0	3.3	1.0	0.118	-	
	126.3 - 140.7	14.4	4.36	0.056	3.42	
(including	136.2 - 139.5	3.3	1.0	0,109	5.58)	
<u></u>						
JD95-37	137.8 - 154.2	16.5	4.96	0.236	2.94	
(including	144 4 - 147 7	3.3	1.0	.683	11.76)	
<u>(</u>				+ <u></u> -		
JD95-38	82.0 - 85.03	3.3	1.0	0.107	-	
0000 00	951-984	3.3	1.0	0.013	29.97	
	121.4 - 124.7	3.3	1.0	0.103	1.20	
JD95-39	121 4 - 137 8	16.5	4.96	0.037	3.55	
	144.0 - 196.8	52.8	16.0	0.157	-	
(including	190.3 - 196.9	66	20	0.652		
(moldaling				0.000		
1095-40	108.3 - 118.1	98	2.98	-	2.65	
0000 10	131 2 - 144 3	13.1	3.96	0.014	2.09	
h	150.9 - 173.9	23.0	6.96	0.462	11 30	
(including	157.5 - 167.3	98	296	0.965	20.22)	
Incidentig				0.000		
1095-41	101 7 - 158 9	57.2	17.3	0.200		
(including	105.0 - 118.1	13.1	3 96	0.188	1 41)	
(including		-and-		10.100		
lincluding	128.0 - 147.7	197	5.96	0.251		
Turoidaing				0.201		
(including	150.9 - 157.5	66	20	0.467		
(including	100.0 - 107.0	- 0.0	2.0	0.40/		
1005 42	157.5 160.8	33	10	0.100		
5035-42	100.3 - 100.0	77	23	0.163		
┟───────┦	130.3 - 130.0		2.5	0.100	- -	
1005 43	144 4 147 7		10	0.431	1 19	
1090-43	1706 1720	3.5	1.0	0.401	2.02	
┟────┤	103.6 106.2	26	78	0.200	2.02	
┝───────────	<u></u>	<u> </u>	1.78	0.10/		
	Z11,Z-ZZ3.1	0.5	1.70	10.104	0.50	

Hole No.	Interval (Feet)	Length (Feet)	Length (Meters)	Au (oz/ton)	Ag (oz/ton)
		<u> </u>			,
JD95-44	249.3 - 265.7	16.5	4.96	0.111	1.25
JD95-45	285.4 - 290.3	4.9	1.48	0.131	-
	303.5 - 316.0	12.5	3.78	0.158	-
(including	310.0 - 315.9	1.78	1.78	0.273	-)
1005 46	No cicoificant volues			· · · · · · · · · · · · · · · · · · ·	<u></u>
3030-40	NO SIGNICALL VALUES				<u> </u>
1095-47	167 3 - 180 4	13.1	3.96	0.044	10.25
0000 1/	193.6 - 213.3	19.7	5.96	0.076	5 95
(including	196.9 - 203.5	66	20	0.123	10.85)
(216.5 - 223.1	66	20	3 195	5.38
(includina	216.5 - 219.8	3.3	1.0	6.283	8.98)
JD95-48	178.9 - 203.4	24.5	7.42	0.130	-
(including	187.0 - 193.6	6.6	6.6	0.175	-)
					· · · · · · · · · · · · · · · · · · ·
JD95-49	167.3 - 187.0	19.7	5.96	0.112	-
(including	173.9 - 180.5	6.6	2.0	0.200	-)
JD95-50	231.1 - 236.2	5.1	1.54	0.141	
1005 54	000 0 005 0			0.005	ļ
<u>JD95-51</u>	292.0 - 295.3	3.3	1.0	0.235	
1005 52	No significant values				
JD93-32	NO SIGNICAN VALUES				<u> </u>
1095-53	2067-2264	19.7	5.96	0 171	
(including	200.7 - 220.4	13.1	3.90	0.171	
Including	200.1 - 210.0	10.1	0.00	0.200	
JD95-54	170.6 - 200.2	29.6	8.96	0.169	1.36
(including	177.8 - 190.3	12.5	3.78	0.243	0.95)
	229.7 - 236.3	6.6	2.0	0.214	-
	242.8 - 246.1	3.3	1.0	0.108	-
JD95-55	48.0 - 51.5	3.6	1.0	0.115	
ID95-56	No significant values		 		
	The significant values				· · · · · · · · · · · · · · · · · · ·
JD95-57	No significant values	·····			
		· ·			
JD95-58	No significant values				
JD95-59	No significant values				
JD95-60	No significant values				

,

Hole No.	Interval	Length	Length	Au	Ag
	(Feet)	(Feet)	(Meters)	(oz/ton)	(oz/ton)
JD95-61	No significant values				
JD95-62	46.0 - 80.9	34.9	10.6	0.346	
(including	59.1 - 65.7	6.6	2.0	1.306	-)
JD95-63	124.7 - 158.3	33.6	10.18	0.207	1.23
(th	is interval also contains	s 1.08% lead	and 1.68% z	inc with higher	grades
for	both up to 4.43 and	6.92% resp	ectively in th	e first 8.2 feet	of this
se	ction) -Also-		-		
(including	148.8 - 158.3	9.5	2.88	0.530	-)
JD95-64	90.2 - 108.2	18.0	5.45	0.318	1.92
	118.1 - 131.0	12.9	3.91	0.414	-
					· · · · · · · · · · · · · · · · · · ·
JD95-65	75.5 - 78.8	3.3	1.0	0.122	-
JD95-66	No significant values				
JD95-67	113.2 - 155.9	42.7	12.9	0.108	-
(including	116.5 - 123.1	6.6	2.0	0.238	-

Hole No.	Interval (Feet)	Length (Feet)	Length (Meters)	Au oz/ton	Ag oz/ton	Pb %	Zn %
JD95-68	109.7 - 154.5	44.8	13.6	0.222	0.6		
(including	127.0 - 137.8	10.8	3.27	0.241	-)	[
	- and -						
(143.2 - 154.5	11.3	3.42	.438	-)		
This hole	also contains:						
	123.7 - 127.0	3.3	1.0	0.071	3.2	12.1	32.0
	- and -						
	196.9 - 203.5	6.6	2.0	0.069	-	1.9	4.3
]
JD95-69	54.1 - 67.2	13.1	3.96	0.117	-	-	-
	77.1 - 105.0	27.9	8.45	0.268	-	-	-
(including	77.1 - 85.1	8.0	2.42	0.460	-	-	-)
	- and -						
(91.7 - 99.1	7.4	2.24	0.315	_		-)
		1					
JD95-70	75.6 - 85.1	9.5	2.87	0.231	-	-	-
JD95-71	150.9 - 156.6	5.7	1.73	1.821	1.8	-	-

Hole No.	Interval (Feet)	Length (Feet)	· Length (Meters)	Au oz/tori	Ag oz/ton	Pb %	Zn %
JD95-72	No significant values	ļ		ļ			
JD95-73	298.6 - 305.2	6.6	2.0	0.176	17.3	 -	+
JD95-74	No significant values						
JD95-75	87.0 - 97.0	10.0	3.03	0 182	<u> </u>		+
000010	01.0 01.0						┦━╌
JD95-76	170.6 - 187.0	16.4	4.96	0.379	26.8	-	-
	190 5 197 1	66	20	0.160	0.6	ļ	┦
<u>1093-77</u>	100.5 - 107.1	0.0	.2.0	0.109	0.0		
JD95-78	253.5 - 257.9	4.4	1.33	0.648	2.1	-	-
1005 70	407.0 400.0	20		0.404			
1042-1.8	187.3 - 190.3	3.0	.91	0.134	- -		
JD95-80	No significant values				ļ · ·		
	¥						
JD95-81	No significant values						┨
1095-82	No significant values			 	<u> </u>		-{
3000-02	NO SIGNICAN VALUES						- <u> </u>
JD95-83	248.2 - 258.0	9.8	2:96	0.403	7.0	-	-
(including	248.2 - 251.5	3.3	1.0	1.132	20.9	-	<u> -)</u>
1005-84	124 7 447 7	12.0	3.04	0 3 2 7			
(including	144.5 - 147.6	31	94	0.327	-	-	<u> -</u>
<u></u>							+
JD95-85	75.5 - 82.1	6.6	2.0	0.394	-	-	-
	98.4 - 116.5	18.1	5.48	0.501	-	-	<u> </u>
(including	101.1 - 107.7	6.6	2.0	0.867	0.6	3.25	<u>2.12)</u>
JD95-86	47.0 - 52.8	5.8	1.75	0.141	- -	-	+
	62.7 - 78.1						
1005 07							
JD95-87	No significant values	├ ──────────	<u> </u>		<u> </u>		· <u> </u>
JD95-88	36.4 - 65.0	28.6	8.670	0.117	-	-	
JD95-89	20.0 - 34.8	14.8	4.48	0.175	0.19	0.17	0.17
1005.00	260.0.200.0	10.7	5.07	0.454	0.00		<u> </u>
Uncluding	360.9 - 380.6	0.8	2.9/	0.154	1 37		
Thornautig	000.0 - 070.1	<u> </u>	2.31	0.200	1.57		+-/-
JD95-91	326.5 - 344.5	18.0	5.45	0.227	1.74	-	-
JD95-92	308.4 - 318.2	9.8] 2.97	0.101	- I	-	-

46

.

•

to the second second in the second of the second second of the second second second second second second is a second

Hole No.	Interval	Length	Length	Au	Ag	Pb	Zn
	(Feet)	(Feet)	(Meters)	oz/ton	oz/ton	%	%
JD95-93	271.3 - 284.3	13.0	3.94	0.167	-	-	
(including	275.6 - 284.3	8.7	2.64	0.226			-)
JD95-94	72.2 - 88.6	16.4	4.97	0.105	1.56		ļ
				<u> </u>			ļ
JD95-95	45.9 - 48.0	2.1	.64	0.136			
	<u> </u>	_9.8	2.97	0.210			<u> -</u>
	· · · · · · · · · · · · · · · · · · ·	ļ					ļ
JD95-96	No significant values	=					
		ļ					
JD95-97	<u>49.2 - 62.3</u>	13.1	3.97	0.491	5.34	<u> -</u>	
	72.2 - 95.2	23.0	6.97	0.435	1.82		
							
JD95-98	<u>45.9 - 68.9</u>	23.0	6.97	0.427	-		
		ļ	Ì			Ì	
JD95-99	No significant values						ļ
						<u> </u>	
JD95-100	331.0 - 333.4	2.4	.73	2.025	2.30	<u>-</u>	
		ļ	}			┣	<u> </u>
JD95-101	No significant values						
1705 (00							ļ
JD95-102	No significant values						
1005 400		<u> </u>		<u> </u>		ļ	├
JD95-103	No significant values				·		
1005 404	01.0 05.0	20	10	0.404			
JD95-104	91.9 - 95.2	3.3	1.0	0.101	-		<u> </u> −
	139.4 - 140.9	1.5	2.21	0.130	-	<u> </u>	
	109.0 - 100.5	11.5	3.46	0.121	-		
1005 105	690 722	22	10	0.102			
1092-102	00.9 - 12.2	3.3	1.0	0.125	-		<u> </u> −
1095 106	No significant voluos		<u> </u>				· · · · · ·
3030-100	The significant values						
1095-107	33 K - 30 3	57	1 73	0 105			
3035-107	1116_1280	16.4	4 97	0.100	<u> </u>	- <u>-</u>	<u> </u>
(including	121 4 - 128 0	66	20	0.104	<u> -</u>		$\frac{1}{2}$
Including	216.5 - 219.8	33	1.0	0.007		<u> </u>	$\frac{1}{2}$
	210.0 - 210.0	33	1.0	0.134			<u> </u>
	<u> </u>	0.0	1.0	0.110		<u> </u>	<u> </u> −−−−
JD95-108	336 5 - 350 7	14.2	43	0.216			<u>-</u>
	000.0 000.1			0.2.10			f
JD95-109	No significant values		 -				
							
JD95-110	No significant values						<u> </u>
						<u> </u>	
JD95-111	No significant values						
		 		·	 		{
JD95-112	No significant values				<u> </u>	<u> </u>	

.

~n i 4

					······		
Hole No.	Interval	Lenath	Lenath	Au	Aa	l Pb	Zn
	(East)	(East)	(Motore)	oriton	ortion	04	04
				021011	02/10/1	70	
JD95-113	29.5 - 36.1	6.6	2.0	0.147	-	-	-
1005 114	No significant values			· · · · · ·			
JD95-114	NO Significant values				ļ		<u> </u>
					1		
1095-115	No significant values		1				
0000110	Ho significant faidee				┨────────────────────────		<u> </u>
JD95-116	29.5 - 45.9	16.4	4.97	0.122	-	-	-
(including	393-459	66	20	0.157	1 24	-	- 1
Turorading	00.0 10.0	0.0	1	0.101		<u>}. </u>	
	· · · · · · · · · · · · · · · · · · ·		ļ		ļ		<u> </u>
JD95-117	No significant values						
1005 440		{	┟─────	{·	<u>├───</u>	{	
1092-118	No significant values		L			· · · · · ·	
JD95-119	47.1-62.4	15.3	4.64	0.540	-	-	-
0000 110		10.0		0.010			<u> </u>
<u> </u>	· · · · · · · · · · · · · · · · · · ·		\	·	· · · · ·		· · · · · ·
JD95-120	24.1 - 46.0	21.9	6.64	0.162	-	-	-
			1				
1005 404	N		╂━────		l	<u> </u>	
_JD95-121	No significant values						
]	1]	1		1
JD95-122	No significant values						
			<u>+</u> −−−−				<u> </u>
			ļ				L
JD95-123	No significant values		[
			Γ "				
ID01-124	27.0 49.0	22.0	6.67	0.300			<u> </u>
3031-124	27.0 - 49.0	22.0	0.07	0.390	<u> </u>		<u> </u>
JD95-125	57.0 - 65.3	8.3	2.51	0.155	1 -	-	12
·····			<u> </u>				
			<u> </u>		·		
JD95-126	No samples collected						
			[
ID05-127	201 0 205 2	22	10	0.225			
	001.0 ~ 000.2		1.0	0.200		┝────	<u>↓ -</u>
·		L	L				L
JD95-128	No significant values						
· · · · · · · · · · · · · · · · · · ·			<u> </u>	1			1
1005 400		<u> </u>	<u> </u>	<u> </u>			╀────
JU95-129	NO SIGNIFICANT VALUES						
	_			}			
ID95-130	128.0 - 134.6	66	20	0 164	-	_	
	120.0 - 104.0	0.0	2.0	0.104		ļ	}
L	141.1 - 154.2	13.1	3.9/	0.141	2.62	-	<u> -</u>
ļ		· _	1	1			
ID95-131	1189-1245	56	1 70	0.210	_	_	_
	110.0 - 12-1.0	<u> </u>	+ <u>v</u>	0.213		<u> </u>	- -
			L				
JD95-132	85.3 - 91.9	6.6	2.0	0.997	-	-	-
	121 4 - 134 5	131	3.97	0 1 1 0		_	
	121.72104.0			0.110	Ļ	ļ	┝────┥
Į		l	Į.	5	l I		ļ I

te s

۰.

The following resource estimate has been calculated by Dr. N. Carter, P. Eng: Table:

Figure 1:

1 - 2 # 9

Tro -

17.14

Probable Resource

Zone	Tonnes	Gold Grade (g/ton)	Average width (m)
Finn (Main)	240,320	6.00	8.75

Possible Resource

Zone	Tonnes	Gold Grade (g/ton)	Average width (m)
Finn (Main)	134,600	6.19	7.45
(Footwall-upper)	16,555	15.93	1.29
(Footwall-lower)	96,894	5.72	6.92

Total Probable and Possible Resource

Zone	Tonnes	Gold Grade (g/ton)	Average width (m)
Finn (Main)	374,920	6.07	8.28
Finn Footwall	113.450	7.21	
Total	488.370	6.33	

(Imperial units 538,180 tons @ 0.183 ounces per ton)

Parameters used: 3.43 grams per ton (0.10 ounces per ton) cut-off grade

2.70 specific gravity

Probable resource estimate includes areas drilled at a density of 15 meters (50 feet).

CONCLUSIONS

Exploration in 1995 was directed predominantly to the development of a resource base within the Finn zone and extensions. Drilling indicates that the Finn zone contains an epithermal gold-bearing zone of sufficient tonnage and grade to warrant further development work to fully assess its potential.

Drilling completed on the Schmitt and Woof zones yielded inconclusive results and further investigation of these zones is required.

Three trenches were attempted along the trend of the gold soil anomaly west of the Schmitt zone in the northwest quadrant of the grid. None of these reached bedrock and due to an extremely wet field season the trenches filled with water as quickly as they were excavated and further attempts at trenching were abandoned.

The infill soil geochemistry along linears outlined in 1994 proved inconclusive due to the poor quality of samples collected from a slope that is predominantly talus (boulders to fine silt).

Six new claims were staked along the JD properties' eastern boundary; subsequent prospecting of these and the Spur and Mill claims identified 2 areas of gold/silver mineralization that require follow up in 1996.

RECOMMENDATIONS

(I.) An aggressive drill program on the Finn zone and westerly extension up to and beyond the Gumbo zone is recommended for 1996. This program should utilize two diamond drills, one of which a helicopter portable drill for infill drilling of the cirque between the Finn and Gumbo zones. The second drill, a skid mounted Longyear super 38 (remains on site from 1995) to be utilized for drilling stepout holes on section west of the Gumbo zone. These holes should be drilled on 30.30 meter (100 foot) spaced sections to access the continuity and grade of the lapilli tuff fragmental beyond its present known limits.

(II.) A minimum of 20 holes should be drilled to test the coincident gold in soil geochemical anomaly and I.P. anomaly between the Schmitt and Creek zones.

(III.) A detailed mapping, rock sampling and, if possible, soil geochemical program should be undertaken around the two high grade grab samples collected from the Furry and Spur claims.

(IV.) A further program of prospecting and rock sampling is recommended for the unexplored areas of the newly acquired claims and on the pre-existing JD claim block.

(V.) A bulk sample should be obtained from the Finn zone to precisely determine the recoverable gold grades and to investigate the metallurgical characteristics of the Finn zone ore.

The foregoing recommended program is estimated to cost \$2,772,550 as detailed in the following table:

BIBLIOGRAPHY

- Carter N.C. Phd. P. Eng, October 1993;
 <u>Geological Report on the JD Gold Silver Property</u>, private report for Global Marine Technologies Inc.
- (2) Caira, Nadia, Eccles, Louise K., December 1988; <u>Final Report on the 1988 Trenching and Geochemical Surveys JD Claims</u>, private report for Energex Minerals Ltd.
- (3) Clark J. R., 1988; <u>Evaluation of Previous Exploration Potential Targets and Exploration</u> <u>Approaches for the Energex JD Property Toodoggone District, BC, private</u> report for Energex Mineral Ltd.
- Schroeter, T.G., 1982; <u>Toodoggone River (94e) BC Ministry Energy, Mines & Petroleum</u> <u>Resources, Geological Field Work 1981 Paper 1983 - 31, p. 122-133</u>
- (5) Diakow, Larry J., Panteleyen, Andrejs and Schroeter, T. G., 1991; Jurassic Epithermal Deposits in the Toodoggone River Area, British Columbia: Examples of well-preserved, Volcanic Hosted, Precious Metal Mineralization, Economic Geology, Vol. 86, PP 529-554.
- (6) Krause, R., May 1994; <u>Geological Summary Report on the JD Gold Silver Property</u>, private report for AGC Americas Gold Cop
- (7) Krause, R., December 1994 <u>1994 Geological and Geochemical Report on the JD Gold Silver Property</u>, private report for AGC Americas Gold Corp

BUDGET ESTIMATE 1996

Diamond Drilling 2 drills	1. skid mounted 38 2. JKS 1000 portable (helic 50,000 feet @ \$22.00/foot Mob/Demob	opter)	1,100,000 20,000
Excavator	70 days @ \$1,300 per day Mob/Demob		91,000 10,000
Helicopter (Bell 206)	300 hours @ \$875 per hour	(all in)	262,500
Geochemistry & Assaying			100,000
Equipment Rental & Travel	& Communications		50,000
Personnel: -1 Project Management -2 Geologists -2 Core splitters -1 Prospector -Cook & Cook Assistant -Field Personnel (4)	100 days @ \$350 per day 200 days @ \$300 per day 200 days @ \$200 per day 30 days @ \$300 per day 100 days @ \$375 per day 400 days @ \$225 per day	35,000 60,000 40,000 9,000 37,500 90,000	 309,000
Camp Support	1600 man days @ \$80 per n	nan day	128,000
Bonding			250,000
Bulk Sample	500 tons		150,000
Reporting			 50,000
	Contingencies @ 10%	-	 2,520,500 _252,050
	Estimated total		\$ 2,772,550

CERTIFICATE

I, NICHOLAS C. CARTER, with residence and business address at 1410 Wende Road, Victoria, British Columbia, do hereby certify that:

- 1. I am a Consulting Geologist and have been registered with the Association of Professional Engineers and Geoscientists of British Columbia since 1966.
- I am a graduate of the University of New Brunswick with B.Sc.(1960), Michigan Technological University with M.S.(1962) and the University of British Columbia with Ph.D.(1974).
- 3. I have practised my profession in eastern and western Canada and in parts of the United States for more than 30 years.
- 4. I have reviewed the foregoing 1995 Geological Report on the JD Property, Toodoggone River Area, British Columbia, prepared by R.G. Krause, B.Sc. My knowledge of the JD property is based on extensive past experience in the Toodoggone River area which includes providing an overview of both the 1994 and 1995 exploration programs and numerous visits to the property while these programs were in progress.
- 5. I hold no interest, directly or indirectly, in the mineral claims comprising the JD property or in the securities of AGC Americas Gold Corp. nor do I expect to receive any such interest.

Dated at Victoria, British Columbia, this 5th day of February, 1996:

Allerter Ph.D. P.Eng.

N.C. Carter, Ph.D. P.Eng.

N.C. CARTER, Ph.D., P.Eng. CONSULTING GEOLOGIST

م م موا

. . <u>.</u>

CERTIFICATE

I, Robert Krause, residing in Vancouver, British Columbia, do hereby declare that:

(1) I am a graduate of the University of British Columbia, Vancouver, British Columbia with a Bachelor of Science in Geology;

(2) I have been practicing my profession in Canada, United States, Central and South Americas for the past ten years;

(3) I am an employee of AGC Americas Gold Corp;

(4) I am the author of this report and worked on the compilation of all available previous data on the JD claim group and the data derived from the 1994 exploration program;

(5) I personally supervised and managed the exploration program on site, during the period June 10, 1995 to September 30, 1995.

Robert G. Krause, B.Sc.

January 1996 Vancouver, British Columbia

STATEMENT OF COSTS 1995

Diamond drilling	28,000 feet @ \$23.00	644,000
Helicopter	290 hours @ \$825.00	239,000
Excavator	60 days @ \$1,400 per day	84,000
I P Geophysics		44,000
Camp Support		100,000
Fixed Wing		32,000
Wages/Personnel		250,000
Assaying		80,000
Camp & Equipment		50,000

TOTAL

\$1,523,000

AGC Americas Gold Corp. Expenditure Statement 1995 IP Survey

1.	Helicopter Support (8.5 hours @ \$825.00)	\$7,012.50 \$45,304,71
2. 3.	Camp Support (190 mandays @ \$70.00)	\$13,300.00
4.	Fixed Wing Support (3 trips @ \$1800.00)	\$5,400.00
5.	Wages (grid re-establishment 3 men x 20 days)	\$13,300.00
6.	Field Supplies and Rental Quads	\$5,000.00
	Sub-Total	\$89,317.21
7.	Administration and Supervision	\$8,931.00
	Total	\$98,248.21

Application of Expenditures

12-Jun-96	JM Claims (Tia Group)	Event #3087939	\$34,500.00
24-May-96	JD Claims (Oro Group)	Event #3086877	\$40,500.00
Pending	Sturdee Claim		\$23,248.21

Total

\$98,248.21

Paul A. Hawkins

Project Manager AGC Americas Gold Corp.

26-Jun-96