Assessment Report on the 1995 Drill Program for the ED Claim
 Within the Siwash Creek Property Belonging to International Tower Hill Mines Ltd.

Located in the Okanagan Area Similkameen Mining Division British Columbia

NTS 92H/16W
Latitude $49^{\circ} 46^{\prime} \mathrm{N}$
Longitude $120^{\circ} 20^{\prime} \mathrm{W}$

Prepared for
R. M. W. Mine Evaluations Ltd.

Prepared by
R. G. Friesen, P. Geo.

Friesen Technical Services

March 18, 1996

TABLE OF CONTENTS

INTRODUCTION 1
PHYSIOGRAPHY 1
HISTORY 2
LIST OF CLAIMS 3
REGIONAL AND PROPERTY GEOLOGY 4
1995 DRILL PROGRAM 4
DISCUSSION OF DRILL RESULTS AND CONCLUSIONS 5
SUMMARY OF EXPENDITURES 6
CERTIFICATE 7
BIBLIOGRAPHY 8
APPENDIX (Figs. 1-7, Assay Certificates)

INTRODUCTION

The Siwash Creek property is located in the Okanagan region of southwestern British Columbia south of Highway 97C, midway between Merritt and Okanagan Lake (Fig. 1). The property is owned 100% by International Tower Hill Mines Ltd. and comprises 22 mineral claims (Fig. 2,3). Access to the property is via well maintained two wheel drive logging roads.
R. M. W. Mine Evaluations Ltd. was contracted by International Tower Hill Mines Ltd. to conduct a six hole percussion drill (down the hole hammer) program to test a copper-zinc-lead-gold-silver soil geochemistry anomaly within the ED Claim in the northeastern corner of the property. Friesen Technical Services was subsequently contracted by R. M. W. Mine Evaluations Ltd. to provide additional technical assistance to the program.

This report summarizes the results of the drill program for the purposes of recording assessment work towards the property. Much of the preamble to this report has been excerpted and compiled from a 1994 report prepared for International Tower Hill Mines Ltd. by Pamicon Developments Ltd. who had been contracted to conduct a detailed field program the year before.

PHYSIOGRAPHY

The Siwash Creek property straddles the junction of Siwash and Galena Creeks (Fig. 3) and is situated on relatively gentle topography of the Thompson Plateau at elevations ranging from 1200 meters above sea level in the drilled area to about 1580 meters above sea level in the western end of the property. Thick accumulations of glacial till and sand and gravels are present on the property; however, average overburden thickness in the area drilled was only 1 meter.

The forest cover on the property consists mainly of pine with lesser spruce and fir. About onethird of the property has been clear cut logged; which includes the area drilled in this program.

The climate is moderate with temperatures ranging from extremes of $-30^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$. Summers are warm and dry; winters are cool, with light to moderate snow fall. The snow free period runs from April to October.

HISTORY

Exploration in the area has been intermittent since the discovery of placer gold and platinum in the Similkameen and Tulameen Rivers in the 1860's. Lode gold was discovered in the Hedley area in 1897; and the Copper Mountain deposits near Princeton were discovered in 1884. Placer mining was first reported in the Siwash Creek area near the turn of the Century and work has been intermittent ever since.

Five hundred feet of underground work on the Claremont Group of claims along Siwash Creek was recorded in the 1918 Ministry of Mines report. In 1927, several properties were explored in the area with underground work reported on the Mabel, Blue Stone, Argentite, and the E.J.A.-B.H.-H.J.B.-Owen, and the Renfrew (Snowstorm) groups (now the 3 Adit Gap area). A 27 ton shipment from the Renfrew claim is reported to have contained 3 opt gold, 3379 opt silver, and 1578 lbs lead. In 1951 and 1952, the Ministry reported underground work on the Lucky Strike Group (ex Snowstorm), and the present day Monty showing.

During the 1960's and 1970's the area was explored for porphyry copper deposits of which the Brenda copper-molybdenum discovery about 25 kilometers northwest of the Siwash Creek property is the most important. Production began in 1970. Brenda Mines Ltd. subsequently undertook extensive exploration in the property area; however, no economic mineralization was discovered.

More recently, there has been an emphasis on gold exploration in the area since the discovery of the Elk deposit by Fairfield Minerals Ltd. in 1986 -- about 6 kilometers due north of the Siwash Creek property.

International Tower Hill Mines Ltd. obtained the Siwash Creek property in 1988 and carried out exploration during the period 1988-1991. Work included soil and rock sampling, relogging and resampling Brenda Mines Ltd. drill core, geological mapping, petrographics, and prospecting. This culminated in a 1991 program of rehabilitation and re-sampling the adits at 3 Adit Gap and Fissure Maiden, additional soil sampling and prospecting. The best results obtained were 0.168 opt gold over 1.1 meters from 3 Adit Gap, and 0.163 opt gold over 0.15 meters from Fissure Maiden.

In 1992, International Tower Hill undertook a Landsat Imagery program over the property and delineated several fault structures and alteration zones.

In 1993, Pamicon Developments Ltd. was contracted by International Tower Hill Mines Ltd. to prepare grids and conduct soil, stream sediment and rock sampling programs over the property. Pamicon also conducted geological mapping and backhoe trenching in selected areas. Their work resulted in the location of numerous anomalies throughout the property, the most significant of which is an area of elevated gold, copper, zinc, lead, silver, arsenic and bismuth values in the northeastern portion of the property centered about the area $5000 \mathrm{~N} / 5400 \mathrm{E}$. Pamicon's findings have been submitted to International Tower Hill Mines Ltd. in a comprehensive report.

In November 1995, R.M.W. Mine Evaluations Ltd. was contracted to conduct a percussion drill (down the hole hammer) program consisting of 6 holes totaling 378 meters to test the above mentioned geochem anomaly for the purpose of delineating a Brenda style porphyry copper type deposit.

LIST OF CLAIMS (Fig. 3)

NAME	UNITS	RECORD NUMBER	EXPIRY DATE
Ed	6	074	June 29, 2004
Ed 2	2	172	November 23, 2004
V.M. No. 1	1	445	October 5, 2004
V.M. No. 2	1	446	October 5, 2004
V.M. No. 3	1	447	October 5, 2004
V.M. No. 4	1	448	October 5, 2004
Peterson	1	8888	February 6, 2004
Fissure Maiden No. 2 FR.	1	171	November 22, 2004
B \& D	12	3079	January 4, 2004
Jean 1	1	671	July 26, 2004
Jean 2	1	672	July 26, 2004
Lon 1	1	3594	October 3, 2004
Lon 2	1	3595	October 3, 2004
Lon 3	1	3596	October 3, 2004
Lon 4	1	3597	October 3, 2004
Lon 5	1	3598	October 3, 2004
Lon 6	1	3599	October 3, 2004
Lon 7	1	3600	October 3, 2004
Lon 8	1	3601	October 3, 2004
Lon 9	1	3602	October 3, 2004
Lon 10	1	3602	October 3, 2004
Lucky 1	1	321384	September 30, 2004

LIST OF CLAIMS (Fig. 3)

NAME	UNITS	RECORD\#	EXPIRY DATE
Cush 1-10	10	$339364-339373$	Aug.14/96
Cush 11-13	3	$339374-339376$	Aug.30/96
Big Boy 1-9	9	$323027-323035$	Nov.10/2004
Blue 1-6	6	$322573-322578$	Nov.10/2004
Blue 7	1	330485	Aug.14/2005
Blue 8	1	330491	Aug.14/2005
Blue 9	1	339809	Aug.14/2005
Blue 10-13	3	$331198-331201$	Sept.15/2005
Blue 14- 29	16	$331533-331540$	Sept.27/2005
Blue 30	1	332426	Aug. 30/96
Blue 31	1	332427	Aug. 30/96
Blue 34	1	339605	Aug30/96
Blue 35	1	339606	Aug.30/96
Blue 36	1	339607	Aug.30/96
Blue 37	1	339608	Aug.30/96
Bing 1	12	342516	Dec.14/96

REGIONAL AND PROPERTY GEOLOGY (Fig. 2)

The area is situated near the eastern edge of the Intermontane Tectonic Belt, underlain by late Triassic to early Tertiary granitic to dioritic intrusives, emplaced into Triassic Nicola Group volcanics to the west and Upper Paleozoic Cache Creek Group sediments and volcanics to the east.

The eastern and western portions of the Siwash Creek property is underlain by quartz diorites of the Jurassic Pennask Batholith, which are intruded in the central portion of the property by quartz feldspar porphyry, quartz feldspar porphyry breccia, megacryst K-spar porphyry, biotite quartz feldspar porphyry, and quartz syenite belonging to the Otter Intrusives of Tertiary age. The Osprey Lake Batholith, a late Jurassic granite and granodiorite body, is found only in the southernmost portion of the property. Base and precious metal mineralization in the area is related to the Otter Intrusives; whereas porphyry copper deposits are related to the Pennask Batholith. The 1995 drill program tested an area underlain by Pennask rocks.

1995 DRILL PROGRAM (Fig. 4-7 incl.) Siee foges 6B...6MFore Mobilization, drilling and demobilization took place during the period October 31 - November 6, 1996 under contract to Cascade Drilling of Kelowna, B. C. The drill rig was a 152 mm ($6^{\prime \prime}$) down the hole hammer drill. Six vertical holes were drilled at the following grid co-ordinates on the ED claim:

HOLE NO.	CO-ORDINATES	DIP	LENGTH
$95-1$	4900 N 5500 E	-90	60 meters
$95-2$	5000 N 5500 E	-90	60 meters
$95-3$	5000 N 5400 E	-90	60 meters
$95-4$	4900 N 5400 E	-90	60 meters
$95-5$	5000N 5300E	-90	60 meters
$95-6$	4900 N 5300 E	-90	78 meters
TOTAL			378 meters

One-quarter split cuttings and/or sludge samples representing 3.0 meter intervals were collected at the collar of each hole. When sulphides were visible, the entire sample was collected. Each sample was split equally into 3 parts labeled A, B, \& C. All the "A" samples were sent to Chemex Labs Ltd. in North Vancouver for analysis. At Chemex, they were crushed and split down to 200 gram samples, pulverized and analyzed. All rejects were saved. As a general rule, a 32 element

ICP package analysis was initially performed on all samples with visible sulphides and every other sample which did not contain visible sulphides. Following receipt of sample analyses, several fill-in analyses were performed. Selected samples for gold analyses were also assayed, based on visual sulphide content, a base metal content of $>1000 \mathrm{ppm}$, or a silver content of $>10 \mathrm{ppm}$ (see Fig. 6 and 7 - cross-sections).

The drill program took place entirely within a clear cut area; thus no trees were cut. Due to the existing access, little new access road work was required to get to the drill sites. Where required, however, they were rehabilitated by replacing the disturbed ground cover after the drill was removed. All ditching along the main access road that was disturbed by the drill program was also rehabilitated.

DISCUSSION OF DRILL RESULTS (Fig. 6, 7) AND CONCLUSIONS

All six drill holes took place in an area which, according to the geological mapping should be underlain by quartz diorite of the Pennask Batholith. Drill cuttings would seem to support this occurrence, although numerous color changes, some volcanic looking intervals and gougey fault zones sometimes made rock type determination difficult.

The purpose of the drill program was to explore a multi element geochemical anomaly in the northeast corner of the Siwash Creek property (ED claim) for a possible Brenda type deposit. While no obvious copper - molybdenum association appears to exist in the area drilled, there are numerous anomalous base metal intervals in most of the holes--especially Holes 95-1, 2, 5, \& 6. Because the Brenda deposit has peripheral base metal values associated with it (Ross Weeks, pers. comm.), it is still possible the area drilled lies on the periphery of a copper-molybdenum porphyry system.

An undetermined amount of follow-up HQ diamond drilling is therefore planned to test the northwest and southeast extensions of the drilled area to explore for such a system. The advantages of core drilling will include more reliable information on the rock type and quality, and nature and extent of mineralization and alteration types.

R. G. Friesen, P. Geo.

March 18, 1996

SUMMARY OF EXPENDITURES

ITEM	COST
 reclamation) Chemex Labs - assaying, sample preparation, etc. R.M.Weeks Mine Evaluation Ltd. Geological consulting	$\$ 38,170.82$
TOTAL	$\$ 1862.14$
	S9166.25
	SEE GREATER GAE

SUMMARY OF FXPENOTTURES
PERCUSSION DRILIING AND SAMPI ING

水 30170.82

CHEMEX LABS ASSAYTNG 1862.14
$(1862.14 / 978 M=\$ 4.93 / M)$
$\angle A B O U R$ AND SUPERUTSTON
R M W MTNE EUALUATTONS SERUTOES OF ROSS WEEKS 54. HOURS @ $\$ 80.00 / \operatorname{HR} \$ 4320.00$

SHEIEY LOGAN GORDANTER G . S OAYS

FRTESEN TKEH SERUTCES
REPORT WRTTTNG 970.00
TOTAL I ABOUR
7565.00

TOTAL EXPENDTTURE

THE PERCUSSTON OUTTTNG LOGS FOL LOW AN PAGES 6 C TO GN. WHEN THE SAMPES WHRE SPITT AS MENTTONED ON PAGE 4 THE EUEN NUMBERED " A " SAMPES WERE FORWARDED TO CHEMEX. IF UTSUAL SUPHTDES WERE EUDENT THEN THE INTERUENING " A " SMMPIES WERE ALSO SENT FOR THE ऽ2 ELEMENT ICP PROGRAM. THE 49 SAMPES SHOWTNG THE HTGHEST GRADES OF COPPER, STIUER OR OUERALI SUIPHTDE CONTENT WAS ALSO ASSAYED FOR GOLD. FOR DETATLS ON THE METHOD USFD BY CHEMEX $\angle A B S$ SEE THE APPENOIX. THE REMAINTNE "A, B ANO C"SAMPIFS ARE STORED TN PENTTOTTON.

HOLEE $95-1$
GRID LOCATION: 4900 N - 5500 E EIEVATION: 1410

CASTNG OVERBURDEN DEPTH: 1.O METERS
DATE STARTED: NOU 1. 1995
EIEVATION MEASURED RELATIUE TO HOLE $95-5$

METERS
$0.0-1.0$

$1.0-9.0$	$95-1-2,3$
$9.0-12.0$	$95-1-4$

$12.0-36.0$
$95-1-5,6,7,8,9$, $10,11,12$
$36.0-99.0 \quad 95-1 \cdots$
$39.0-45.0 \quad 951-14,15$
$45.0-48.0 \quad 95-16$
$48.0-54.0 \quad 951-17,18$
$8.0-12.0-95-1-4$

TOTAL DEPTH: 60.0 METERS
DATE: COMPIETED:NOU 2.1995

REMARKS

OUERBURDEN
GREY COLORED, WET SLURRY
UERY SLIGHT OXIDATION ON WATER SURFACE TN SAMPLE BUCKET: SAMPIE INCL UDES COARSE GRATNED ANGUI AR FRAGMENTS

GREY COLORED, WET SLURRY
FINE GRATNED FELSTC INTRUSTUE? (DRTLIERS SAY TT SEEMS TO BE HARDER DRTLITIN S SAMPLE COMPOSED OF COARSE GRATNED FRAGMENTS IN GOUPY LTQUTD * HOLE IS MAKTNG WATER

UERY FETNE GRATNED SLURRY, MINOR MEDIUM GRATNED FRAGMENTS THAT DON"T SETTLE OUT EASILY

GREY COLORED, SLIGHTLY THICKER SLURRY (DOESN"T SETTLE OUT)

SAMPLE COLOUR CHANGE TO MEDTUM GREY, FINE GRAINED SLURRY. FRAGMENTS APPEAR TO BE "GRANTTOTD" (MAFIC MTNERALS MORE PREVALENT THAN FEISTC TNTRUSTVE NOTED ABOVE) CIAY GOUGE MATERIAL INCLUDED (COHESTUE CHUNKS NOTED -.. POSSIBLE FAULT CONTACT?) SAMPLE \#17 HAD $1 / 2$ LIGHT GREY COL ORED MATERIAL UP SECTION
$54.0-57.0 \quad 95-1-19$
$57.0-60.0 \quad 95-1-20$

COARSE MEDTUM
GRAINED
FRAGMENTS OF PINK K SPAR
"GRANTTIC"? INTRUSIUE. WET SAMPE, BUT NOT USUAL SI URRY (COULD POUR OFF EXCESS WATER LEAUTNG COARSE GRAVEL SIZED FRAGMENTS

MEDTUM GREY, FINE GRATNED SLURPY, NO RECOGNTZABLE LTTHTC FRAGMENTS
E.O.H

HOLE $95-2$
GRID LOCATION: 5OOON - $5500 E$ EIEVATION: 1.423

CASING/OUERBURDEN DEPTH: 0.15 METERS TOTAL DEPTH: 6O.O METERS
DATE STARTED: NOU 2,1995 DATE COMPIETED:NOU 3,1995
ELEVATION MEASURED RELATIUE TO HOLE 955
METERS SAMPIE NUMEERS REMARKS

- - -

$0.0-0.15$
$0.15-12.0 \quad 95-1,2,3,4$
$12.0-15.0 \quad 95-5$
$15.0-21.0 \quad 9526,7$
$21.0-24.0 \quad 95-8$
$24.0-27.050-29$
$27.0-30.0 \quad 95-10$

30.0-42.0	$95-11,12,13,14$	GREY,POWOERY MATERTAL AS BEFORE, INCLUDES VERY MTNOR FINE TO MEDIUM GRATNED LITHIO FRAGMENTE
$42.0-48.0$	$95-2-15,16$	GREY,POWOERY MATERIAL CHANGES TO DARK GREY POWDERY MATERIAL. LITHOLOGY CHANGE IS MARKED BY GRAPHITE LAYER AT "45 METERS
$48.0-51.0$	$95-217$	MEDIUM TO COARSE GRAINED FRAGMENTS GF MAFIC CRYSTAIIIINE DIKE?) ROCK (DIABASE
$51.0-57.0$	$95-2-18.19$	AS ABOVE TO "53 METERS. LTHOLGGY OHANGES TO SLIGHTLY "REDDISH" GREY, FINE POWDERY MATERTAL GRADTNG BACK INTO THE COMMON GREY POWDERY MATERIAL WITH MINOR LITHIC FRAGMENTS. FROM " 56.0-57.0 METERS A RED OXIDIZFD POWDERY MATERTAL WAS ENCOUNTERED
57.0-60.0	95-2-20	GREY POWDERY MATERTAL.

E.O.H.

HOLE 95 -

GRID LOCATTON:	$5000 \mathrm{~N}-5400 \mathrm{~F}$	EIEVATTON: 1.417
CASTNG/OVERBURD	DEN DEPTH: 3.0 METERS	TOTAL DEPTH: 60.0 METERS
DATE STARTED: N	NOU 3,1995	DATE COMPLETED:NOU 3,1995
ELEVATION MEASU	URED RELATIVE TO HOIF	$85-5$
METERS	GAMPIE NUMBERS	REMARKS
$0.0-3.0$		OUERBURDEN
3.0-9.0	95-3-1.2	PINK, POWDERY MATERIAL WITH MINOR MEDIUM TO COARSE GRATED FRAGMENTS (GRANITE?)
$9.0-12.0$	95-3-3	GREY, POLDERY MATERTAL WTTH MEDIUM TO COARSE GRAINED LITHIC FRAGMENTS
$12.0-36.0$	$\begin{aligned} & 95-3-4,5,6,7,8 \\ & 9,10,11,12 \end{aligned}$	SAME GREY, POWDERY MATERIAL WITH MEDTUM TO C O AR SE GRATNED FRAGMENTS (POSSTBLY GRANITTE IN COMPOSITTON) MINOR LTTTLE STREAKS OF DARKER GREY, FINE GRAINED MATERTAL INCORPORATED (CAN"T TELL IF IT IS SUIFHTDE OR FRACTURE COATING)
36.0-99.0	95-3-13	UERY MINOR FINE GRAINED UNTDENTIFTED SUPHTDE FRAGMENTS OBSERUED IN SAME MATERIAL ENCOUNTERED ABOVE
99.0-60.0	95-5-14,15,16,17	GREY, FINE GRATNED POWDERY MATERIAL WITH VARYING AMOUNTS OF MEDTUM TO COARSE GRATNED LITHTC FRAGMENTS INCORPORATED DOWN SECTION. NO USTBLE GUPHTDES. CONSTSTENT COLOUR TO ENO OF HOLE

MOLE $95 \quad 4$

30.0	\cdots	36.0	95-4-11.12
36.0	-	39.0	95-4-13
39.0	\cdots	45.0	95-4-14.15
45.0	-	43.0	95-4-16
48.0	-	51.0	95-4-17
51.0	-	57.0	95-4-18,19
57.0	\cdots	60.0	95-4-20

WET SAMPLES, SAME AS ABOVE. NO UTSTBIE SUPHTDES

DRY SAMPLE. DARKER GREY, POWDERY MATERIAL WITH SOME COAPSE GRATNED, OXIDTZED, Stidhty rebotsh lithte FRAGMENTS

DARKER GREY/BIACK, FINF POWDERY MATERTAL TNCIUDING Magnet te (doent ifted only WITH MAGNET). NO OTHER GUPHADES OBSERUED

DARK GREY POWDERY MATERTAL *ENTIRE SECTION WAS COLIEETED AS SAMPLE BECAUSE OF SUIPHIDE IDENTIFICATION UP HOIE.

COLOUR CHANGE TO BUFF/DARK GREY, FINE "SANDY" MATERIAL. MINOR REDDTSH OXIDE WISPS OBSERUED

MEDTUM DARK GREY POWDERY/SANDY MATERTAL WITHOUT GNY APPRECTABIE MAGNETITE (BUT YOU CAN STILI ATTRACT THE ODD FINE FRAGMENT WITH A MAGNET)

SAME AS ABOUE UNTTL THE IAST PART OF THE HOLE WHEN REDDTSH HEMATIZED POWDER WAS OBGERUED INTERMTXED OCCASTONALIY. GLGHTLY LIGHTER GREY POWDERY MATERIAL WAS INTERSECTED AT THE VERY END OF THE HOLE

HOLE $95-7$
GRID LOCATION: 5000N -... 5300E
ELEVATION: 1385
CASTNG/OUERBURDEN DEPTH: 2.O METERS TOTAL DEPTH: 6O.O METERS
DATE STARTED: NOU 4, 1995
DATE COMPIETED:NOU 5,1995

* Footage measured from ground level.

EIEVATTON REFERENCE POTNT TAKEN FROM PIAN 7 CU SOTI GRTD

METERS
$0.0-2.0$
$2.0-3.0$
$3.0-15.0 \quad 95-2,3,4,5$
$15.0-18.0 \quad 95-5-6$
$18.0 \cdots 24.095-5-7.8$
$24.0-99.0 \quad 95-5,10,11,12$,
$39.0-42.0 \quad 95-5-14$
$42.0-45.0 \quad 95-15$
PAGE $6 I$

13
SAMPIE NUMBERS REMARKS
$85-5 \cdots$
-
OUERBURDEN FRAGMENTS "LENSES"

BROWN COLORED POWDERY MATERIAL. WTTH SOME MEDTUM TO COARSE GRAINED FRAGMENTS

TOP OF INTERSECTION INCIUDES MINOR AMOUNT OF SAME MATERIAL ENCOUNTERED ABOVE. REMATNDER OF SAMPIED MATERIAL IS MEDTUM GREY COLORED POWDER WITH MEDTUM AND COARGE GRATNED

SAME MEDIUM GREY POWDERY MATERIAL TAKES ON A SLTGHTLY GREENISH TINGE. SOME REDDISH, OXIDIZED POWDEFY MATERIAL IS OCCASTONALIM INCLUDEL AS WTSPY "LENGES"

APPEARS TO BE THE SAME MATERIAL AS TN SAMPIE ABOVE WTH LESS OF THE OXIOTZED

SIGHTLY GREENIGH, MEDTUM GREY POWDFRY MATERIAL WTTH COAREE GRAINED FRAGMENTS OF CHLORTTIZED GRANODTORTTE? OR DUARTZ FELDSDAR PORPHYRY?

SAME UNTT AS ABOUE GEUERAL COARSE GRATNED FRAGMENTS OF SUPHTDE (AREENOPYRTTE?) OBSERVED

SAME UNTY INTEREECTED ABOUE, WITHOUT ANY RECOGNTZABLE SULPMDES
$45.0-48.0 \quad 95-16$
$48.0-54.0 \quad 95-5-17,18$
$54.0-57.0$
$95-5-19$
$57.0-60.0$
$95-5-20$

SAME MATERTAL AS ABOUE. ENTTRE RUN SAMPIED, NO SULPHTOES OBSERUED

SAMPEF TS MOSTIY SIURRY WITH COARSE GRAINED GRANITTC (WTTH MAFIC MINERALS AND K SPAR) FRAGMENTS SETTLING OUT

* HTT WATER and "HARDER" ROCK AT "52.5 METERS (FRACTURE/FAUT?)

UPPER PART OF SAMPIE AS BEWORE AT $\quad 55.5$ METERS LITHOLOGY CHANGES TO A FINE GRATNED, GREENISH TNTRUSTVE DIKE? OR VOLCANTC UNTT VERY THIN INTERCAL ATED BLACK BANDS WERE OBSERVED IN WAGHED SAMPIE. NO UTSTBIE SUPHIDES

AS BEFORE, GRADING INTO MEDIUM GREY POWDFRY MATERIAL WITH SOME MEDTIM TO COARSE GRAINED IITHIC FRAGMENTS TO ENO OF HOL트․

[^0]HOLE $95-6$

PAGE $6 K$

90.0-33.0	95-6-11.	SAME UNIT AS ABOVE WITH COARSE GRAINED LITHIC FRAGMENTS. NO UTSTBLE SUPHIDES
$33.0-36.0$	$95-6-12$	SAME UNIT AS ABOVE * coarse gratned fragments of SUPHMDE UTSTBLE THROUGHOUT
36.0-39.0	$95-13$	AS BEFORE, WTTH SLIGHTLY MORE SLURRY ON TOP OF SAMPIE BUCKEI AND LTTHTC FRAGMENT STZE DECREASED TO MEDTUM GRATNED
99.0-42.0	$95-6-14$	MINOR PERCENTAGE OF ABOVE UNIT GRADES TNTO MEDTUM GREY SLURRY WTTH DEPTH. LITHOLOGY CHANGE *ENTTRE RUN WAS COLIECTED AS SAMPLE BECAUSE OF SUIPHTDE IDFNTIFIED UP HOLE.
$42.0-51.0$	95-6-15,16,17	MEDIUM GREY COLORED SLURRY WTTH FINE GRATNED MATERTAL INCORPORATED
$51.0-54.0$	95-6-18	IITHOLOGY CHANGED BACK TO UNTT AS DESCRIBED IN SAMPIE 7 WITH COARSE GRATNED LTTHTE FRAGMENTS INCORPORATED IN A SMALI. GMOUNT OF MEDTUM GREY SIURRY. SUPHTDES OBSERUED (ARSENOPYRTTE?)
$54.0-57.0$	95-6-19	FINE GRAINED, GREY MATERIAL WITH MINOR AMOUNTS OF FINE GRATNED SUPHTDE OBSERUED *ENTIRE RUN WAS SAMPIED BECAUSE OF SUIPHDES OBSERUED UP HOLE
57.0-60.0	95-6-20	GREY SLURRY, WTH NO REGOGNZAEIF CHANGES BACK TO UNIT DESGRIBED IN GAMPIF 7 AT 59.7 METERS
60.0-63.0	$95-21$	

63.0-69.0	95-6-2	UNTT AS DFSCRTBED ABOVE . (SAMPIE WAS NOT SPIIT MID ROD, MAKING THTS A "DOUBLE" SAMPLE AND TNCLUDES SAMPE 23 INADUERTENTLY)
69.0-72.0	95-6-24	UNTT AS DESCRIBED ABOUE
72.0-78.0	95-6-25.26	GREY COLORED GLURRY WITH FINE GRAINED LITHTC FRAGMENTS SUCH AS ENCOUNTERED IN SAMPLE 18. FINE GRALNED SUIPHTOES ARE OBSERVED

*HOLE $95-6$ PRODUCED A TOTAL OF ONE GALLON/MUNTE, BUT DOES NOT FIOW FROM HOLE.

$$
\mathrm{E} . \mathrm{O} . \mathrm{H} .
$$

CERTIFICATE

I, ROBERT GEORGE FRIESEN, of 455 Laurier Drive, Kamloops, B.C., do hereby certify that:
I am a Consulting Geologist, registered with the Association of Professional Engineers and Geoscientists of British Columbia since 1993.

I am a graduate of the University of British Columbia - B.Sc. (Geology Major), 1967.
I have practiced my profession in eastern and western Canada, Australia, and Fiji for almost 29 years.

The foregoing report on the Siwash Creek property is based on the assay results of the percussion drill program, personal communication from Mr. R.M. Weeks, P. Eng., who supervised the program, and a review of the 1994 in-house report on the property for International Tower Hill Mines Ltd. by Pamicon Developments Ltd. All data, including program costs were received from Mr. Weeks and reviewed with him.

I hold no interest, directly or indirectly, in the mineral claims comprising the Siwash Creek property, or in International Tower Hill Mines Ltd.; nor do I expect to receive any such interest.

Permission is hereby granted to use the foregoing report in support of a filing for Assessment work towards the property.

Robert G. Friesen, P. Geo.
Kamloops, B.C.
March 18, 1996.

BIBLIOGRAPHY

Pamicon Developments Ltd., Geological, Geochemical and Trenching Report on the Siwash Creek Property, January 1994.

Weeks, R. M., P. Eng., personal communication.

APPENDIX

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers
212 Brooksbank Ave., North Vancouver
British Columbia, Canada V7J 2C1
PHONE: 604-984-0221

INTERNATIONAL TOWER HILL MINES
C/O ROSS WEEKS
1625 SMITHSON PL.,
KELOWNA, BC
VIY 8N5
INVOICE NUMBER
I 9533498

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

CERTIFICATE

A9533498
(NGB) - INTERNATIONAL TOWER HILL MINES
Project:
P.O.\#:
saples mubitted to our lab in Vancouver, BC. This report was printed on 19-1NOV-95.

The 32 element ICP package is aritable for trace motale in moil and rock mamples. Elements for which the nitric-aqua regia digention is ponsibly incomplete are: Al, digention is porsibiy incouplote are: $\mathbf{A l}$, ri, W.

ANALYTICAL PROCEDURES					
$\begin{aligned} & \text { CHEMEX } \\ & \text { CODE } \end{aligned}$	NUMBER SAMPLES	DESCRIPTION	METHOD	$\begin{aligned} & \text { DETECTION } \\ & \text { LIMT } \end{aligned}$	UPPER LIMIT
2118	75	Ag pppm: 32 elament, moil frock	ICP-AES	0.2	200
2119	75	A1 *: 32 element, soil E rock	ICP-AR8	0.01	15.00
2120	75	As ppant 32 olemont, moil m rock	ICP-A18	2	10000
2121	75	Ba pppar 32 elament, moil frock	ICP-NES	10	10000
2122	75	Be ppm: 32 elemont, moil rock	ICP-AES	0.5	100.0
2123	75	Bi ppar: 32 lement, moll \& rock	ICP-ARS	2	10000
2124	75	Ca \%: 32 elment, moil \& rock	ICP-AES	0.01	15.00
2125	75	Cd ppres 32 lement, moil rock	ICP-AES	0.5	100.0
2126	75	Co ppan 32 elemont, moil rock	ICP-AEs	1	10000
2127	75	Cr ppal 32 elmant, moil frock	ICR-AEs	1	10000
2128	75	Cu ppma 32 element, moil trock	ICP-ARS	1	10000
2150	75	Fe \%t 32 olment, moil \% rock	ICP-ARS	0.01	15.00
2130	75	Oa pples 32 olement, moil rock	ICP-Avs	10	10000
2131	75	Hg ppen 32 olamont, moil f rock	TCP-AEs	1	10000
2132	75	K \% : 32 element, soil ferock	TCP-AEs	0.01	10.00
2151	75	La ppras 32 elemont, moil sock	TCP-AES	10	10000
2134	75	Mg \%: 32 element, soil s rock	ICP-NEs	0.01	15.00
2135	75	in ppas 32 olemont, motl a rock	ICP-AEs	5	10000
2136	75	Mo ppan: 32 element, soil 5 rock	ICP-AES	1	10000
2137	75	Na 3: 32 elment, soil tock	ICP-AEs	0.01	5.00
2138	75	N1 ppere 32 element, soil s rock	ICP-AEs	1	10000
2139	75	\underline{P} ppmi 32 element, soil \& rock	ICP-Ars	10	10000
2140	75	Pb ppest 32 olemont, soil \& rock	ICP-AES	2	10000
2141	75	sb pper 32 elemont, soil frock	ICP-AES	2	10000
2142	75	8c ppme 32 elemonts, soil f rock	ICP-AES	1	10000
2143	75	SI ppms 32 element, soil \& rock	ICP-AEs	1	10000
2144	75	Ti k: 32 element, soil \& rock	ICP-AES	0.01	5.00
2145	75	T1 ppes 32 element, moil m rock	ICP-AES	10	10000
2146	75	U ppe: 32 eloment, soil \& rock	ICP-AES	10	10000
2147	75	V ppas 32 element, soil s rock	ICP-AEs	1	10000
2148	75	W ppan 32 elemont, soil s rock	ICP-AEs	10	10000
2149	75	In ppers 32 olement, soil \& rock	ICP-AES	2	10000

Anaiytical Chemisls * Geochemists * Registered Assayers
212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Chemex Labs Ltd.
Analytical Chemists * Geochemists * Registered Assayers
212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

INTERNATIONAL TOWER HILL MINES C/O ROSS WEEKS
1625 SMITHSON PL.
KELOWNA, BC
V1Y 8N5 $: 1-B$ Certificate Date: 19-NOV-95 lnvoice No. : I 9533498
P.O. Number

Account :NGB
Project:
Comments: ATTN: ROSS WEEKS CC: NORM BONIN
CERTIFICATE OF ANALYSIS A9533498

8NMPLE	$\begin{aligned} & \text { PRE } \\ & \text { COD } \end{aligned}$		$\begin{array}{r} \mathrm{Na} \\ * \end{array}$	$\begin{array}{r} \text { Ni } \\ \text { ppp } \end{array}$	$\begin{array}{r} \mathbf{p} \\ \mathbf{p p m} \end{array}$	$\begin{array}{r} \text { pb } \\ \text { ppm } \end{array}$	$\begin{array}{r} \text { Sb } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{gc} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathbf{s r} \\ \mathbf{p p m} \end{array}$	$\begin{array}{r} \text { T1 } \\ \text { * } \end{array}$	$\begin{array}{r} \text { T1 } \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} 0 \\ \mathbf{p p m} \end{array}$	$\begin{array}{r} \mathbf{V} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { Y } \\ \text { ppin } \end{array}$	$\begin{array}{r} \text { 2n } \\ \text { ppim } \end{array}$
95-1-02 A	205	226	0.04	7	1070	70	<2	8	49	0.01	<10	< 10	84	< 10	614
95-1-04	205	226	0.06	8	1070	54	<2	9	24	0.02	< 10	< 10	96	< 10	532
95-1-06 A	205	226	0.04	8	990	52	<2	7	28	0.01	< 10	< 10	78	< 10	482
95-1-08 A	205	226	0.02	8	920	66	<2	6	31 <	< 0.01	< 10	< 10	62	< 10	696
95-1-10 A	205	226	0.02	7	790	102	<2	4	$39<$	< 0.01	< 10	< 10	46	< 10	574
95-1-12 A	205	226	0.05	8	810	266	<2	6	$171<$	< 0.01	< 10	< 10	53		2380
95-1-14 ${ }^{\text {A }}$	205	226	0.06	1	1000	8	<2	1	$335<$	< 0.01	< 10	< 10	24	< 10	64
95-1-16 A	205	226	0.06	1	890	10	<2	1	$331<$	< 0.01	< 10	< 10	22	< 10	58
95-1-18 A	205	226	0.03	6	820	184	<2	3	148	0.01	< 10	< 10	35	<10	796
95-1-20 A	205	226	0.08	6	810	76	<2	5	78 <	< 0.01	< 10	< 10	51		546
95-2-02 A	205	226	0.09	81	1270	24	<2	7	91	0.12	< 10	< 10	92	< 10	122
95-2-04 A	205	226	0.11	34	1450	36	<2	10	60	0.24	< 10	< 10	185	< 10	256
95-2-06 \boldsymbol{A}	205	226	0.04	82	1470	110	<2	15	163	0.11	< 10	< 10	128	< 10	872
95-2-08 λ	205	226	0.07	3	910	22	<2	1	$299<$	< 0.01	<10	< 10	30	< 10	78
95-2-10 A	205	226	0.04	3	700	14	<2	1	$310<$	< 0.01	< 10	< 10	21		60
95-2-12 A	205	226	0.11	3	600	8	<2	< 1	385 <	< 0.01	< 10	< 10	17	< 10	38
95-2-14 ${ }^{\text {A }}$	205	226	0.06	2	660	6	<2	< 1	378	< 0.01	< 10	< 10	18	< 10	42
95-2-15 A	205	226	0.07	15	1110	42	2	3	$398<$	< 0.01	< 10	10 <10		< 10 <10	286
95-2-16 \quad A	205	226	0.09	110	1240	78	<2	19	656	0.06	< 10 <10	110 <10	168	<10 <10	680
95-2-18 A	205	226	0.10	92	770	290	<2	16		0.06	< 10	< 10			606
95-2-20 A	205	226	0.02	46	1440	312	<2	8	125	0.01	< 10	< 10	80	< 10	1710
95-3-02 \boldsymbol{A}	205	226	0.09	8	240	22	<2	1	27	< 0.01	< 10	< 10	10	< 10	340
95-3-04 A	205	226	0.07	4	250	12	<2	1	41 <	< 0.01	< 10	< 10	9	-10	214
95-3-06 A	205	226	0.11	3	200	6	<2	1	$33<$	< 0.01	< 10	< 10	8	< 10	58
95-3-08 A	205	226	0.06	2	240	12	<2	1	$30<$	< 0.01	< 10	< 10	8		116
95-3-10 A	205	226	0.07	3	140	46	<2	< 1	31	< 0.01	< 10	< 10	4	< 10	218
95-3-12 A	205	226	0.08	2	140	6	<2	< 1	$31<$	< 0.01	< 10	< 10	4	- 10	60
95-3-13 A	205	226	0.07	2	50	48	<2	< 1	31	< 0.01	< 10	< 10	1	< 10	130
95-3-14 A	205	226	0.06	2	100	24	<2	<1	44 <	< 0.01	< 10	< 10	1	< 10	184
95-3-16 A	205	226	0.08	2	160	IO	<2	<1	48	< 0.01	< 10	< 10	3		94
95-3-18 A	205	226	0.05	2	370	14	<2	1	33 <	< 0.01	< 10	< 10	12	< 10	212
95-3-20 A	205	226	0.08	3	260	8	<2	1	29 <	< 0.01	< 10	< 10	10	< 10	168
95-4-02 A	205	226	0.04	2	590	12	<2	< 1	94 <	< 0.01	<10	< 10	14	< 10	110
95-4-04 A	205	226	0.02	1	610	8	<2	<1	182 <	< 0.01	< 10	< 10	14	< 10	54
95-4-06 A	205	226	0.01	6	940	$30=$	<2	4	74	0.01	< 10	< 10	66		334
95-4-08 A	205	226	0.01	9	790	564	<2	3	112 <	< 0.01	<10	<10	33	< 10	1380
95-4-10 \boldsymbol{A}	205	226	0.01	8	630	52	<2	2	$70<$	< 0.01	< 10	<10	28	<10	910
95-4-12 A	205	226	0.01	7	890	36	<2	3	99	0.01	< 10	< 10	48	< 10	476
95-4-14 A	205	226	0.01	6	980	22	<2	3	132 <	< 0.01	< 10	< 10	51		402
95-4-14 C	205	226	0.01	6	990	22	2	4	132	0.01	< 10	< 10	60		398

Chemex Labs Ltd.
Analytical Chemists * Geochemists * Registered Assayers

PHONE: 604-984-0221 FAX: 604-984-0218
INTERNATIONAL TOWER HILL MINES C/O ROSS WEEKS

CERTIFICATE OF ANALYSIS A9533498

8AMPLE	$\begin{aligned} & \text { PRE } \\ & \text { COD } \end{aligned}$		$\begin{array}{r} \mathrm{Na} \\ \mathbf{*} \end{array}$	$\begin{array}{r} \mathrm{Ni} \\ \mathrm{ppan} \end{array}$	$\begin{array}{r} \mathbf{p} \\ \mathrm{ppa} \end{array}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{ppman} \end{array}$	$\begin{array}{r} \mathbf{g b} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { sc } \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathbf{S r} \\ \mathbf{p p r i m} \end{array}$	$\begin{array}{r} \text { TI } \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Tl} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { ठ } \\ \text { ppmin } \end{array}$	$\begin{array}{r} \mathbf{V} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { N } \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { Zn } \\ \text { ppmin } \end{array}$
95-4-15	205	226	0.01	4	970	544	< 2	4	161	0.01	< 10	< 10	54	< 10	1605
95-4-16 A	205	226	0.01	7	1110	92	<2	4	213	0.02	< 10	< 10	65	< 10	554
95-4-18 \boldsymbol{A}	205	226	0.02	3	560	4	<2	3	54	0.02	< 10	< 10	42	< 10	196
95-4-20 A	205	226	0.01	4	940	788	<2	3	68	0.02	< 10	< 10	55	< 10	3550
95-4-20 B	205	226	0.01	4	940	686	<2	3	66	0.01	< 10	< 10	53	< 10	3170
95-5-02 A	205	226	0.01	10	1310	200	<2	9	30	0.02	< 10	< 10	108	<10	1490
95-5-04 A	205	226	0.02	3	450	194	<2	1		0.01	< 10	< 10	19	< 10	1090
95-5-06 A	205	226	0.02	5	850	2.	<2	6	57	0.01	< 10	< 10	71	< 10	206
95-5-08 A	205	226	0.01	8	840	136	<2	4	57	0.01	< 10	<10	53	<10	1190
95-5-10 A	205	226	0.03	5	750	6	<2	6	61	0.02	< 10	< 10	75	<10	160
95-5-14 ${ }^{\text {a }}$ $95-5-16 ~$	205	226	0.01 0.01	14	1110 1770	456 160	<2 <2	5	$76<$	0.01 0.01	<10 <10	< 10 <10	51 50	<10 <10	$\begin{aligned} & 1480^{\prime} \\ & 1075 \end{aligned}$
95-5-16 $95-5-18$	205	226	0.01	11 10	1770 850	160	<2	5	114 <	0.01	< 10	<10	50	< 10	
95-5-18 $95-5-20 ~$	205	226	0.02 0.01	10	850 730	58 18	< 2	6	96 102	0.01 0.01	< 10	< 10	52 32	[10	348 222
95-6-02 A	205	226	< 0.01	19	870	320	<2	5	35 <	0.01	< 10	< 10	43	10	1220
95-6-06 A	205	226	0.02	5	840	44	<2	6	65	0.01	< 10	< 10	71	< 10	346
95-6-08 A	205	226	0.02	4	760	26	<2	7	53	0.05	< 10	< 10	77	< 10	274
95-6-10 A	205	226	0.03	5	830	22	<2	6	54	0.05	< 10	<10	95	< 10	296
95-6-12 A	205	226	0.01	4	770	172	<2	4	77	0.01	< 10	<10	45	<10	808
95-6-13 A	205	226	0.01	4	750	230	2	4	105 <	0.01	< 10	<10	45	<10	888
95-6-14 A	205	226	0.01	3	810	186	<2	3	142 <	0.01	< 10	<10	30	< 10	1010
95-6-15 A	205	226	0.01	3	790	168 -	< 2	3	122 <	0.01	< 10	<10	27	< 10	912
95-6-16 A	205	226	0.01	3	790	306	< 2	2	87	0.01	< 10	< 10	23	< 10	1205
95-6-17 A	205	226	0.01	3	810	198	< 2	2	91	0.01	< 10	<10	29	< 10	890
95-6-18 A	205	226	0.01	4	990	172	< 2	6	150	0.02	< 10	< 10	50	< 10	794
95-6-19 A	205	226	0.01	3	870	162	<2	3	114	0.01	< 10	<10	33	< 10	832
95-6-20 λ	205	226	0.01	5	900	206	<2	3	$137<$	0.01	< 10	< 10	30	< 10	1010
95-6-21 A	205	226	0.01	3	800	168	< 2	2	90	0.01	< 10	< 10	28	< 10	1190
95-6-22 A	205	226	0.01	17	1150	114	2	4	80	0.01	< 10	< 10	44	< 10	868
95-6-23 A	205	226	mise.	E.	18.	des.	.	.	.	18s.	.	se.	.	E.	lse.
95-6-24 A	205	226	0.01	15	1040	74	< 2	4	86 <	0.01	< 10	< 10	35	< 10	570
95-6-25 A	205	226	0.02	4	810	86	<2	5	106	0.02	< 10	<10	48	< 10	548
95-6-26 A	205	226	0.02	3	790	26	<2	4	94	0.02	< 10	< 10	44	190	274
I.T.E.M ${ }^{\text {¢ }}$	205	226	0.01	<1	230	3420	<2	2	$8<$	0.01	< 10	< 10	33	170	1660.
T.T.H.M ${ }^{\text {W }} 7$	205	226	0.03	1	830	56	2	1	23 <	0.01	< 10	< 10	18	<10	274
I.T.H.M \#13	205	226	0.02	37	2800	64	< 2	7	37	0.01	< 10	< 10	100	< 10	1135

Chemex Labs Ltd.
Analytical Chemists * Geochemists * Registered Assayers
C/O ROSS WEEKS
1625 SMITHSON PL.,
KELOWNA, BC
VIY 8N5
12 Brooksbank Ave., North Vancouver
Vritish Columbia, Canada V7J 2C
PHONE: 604-984-0221
INVOICE NUMBER
I 9535581

C/OROSS WEEKS

Comments: ATTN: ROSS WEEKS CC: NORM BONIN

CERTIFICATE			A9535581
(NGB) - INTERNATIONAL TOWER HILL MINES			
Project: P.O.\#: Samples submitted to our lab in Vancouver, BC. This report was printed on 13-DEC-95.			
SAMPLE PREPARATION			
$\begin{aligned} & \text { CHEMEX } \\ & \text { CODE } \end{aligned}$	NUMBER SAMPLES		RIPTION
244	33	Pulp;	red at Chemex

Chemex Labs Ltd.
Analytical Chemists * Geochemists * Registered Assayers
\qquad
V7J 2C1
PHONE: 604-984-0221 FAX: 604-984-0218

INTERNATIONAL TOWER HILL MINES CMO ROSS WEEKS 1625 SMITHSON PL.
KELOWNA, BC
V1Y 8N5
Project :
Comments: ATTN: ROSS WEEKS CC: NORM BONIN
CERTIFICATE OF ANALYSIS A9535581

CERTIFICATE	A9611868

(NGB) - INTERNATIONAL TOWER HILL MINES
Project:

Gamples aubitted to our lab in Vancouver, BC. This report wes printed on 14-FEB-96.

ANALYTICAL PROCEDURES					
$\begin{aligned} & \text { CHEMEX } \\ & \text { CODE } \end{aligned}$	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
999	5.	Au g/t: 1 aseay ton, An finieh	FA-MAS	0.03	150.00

Chemex Labs Ltd.
Analytical Chemists * Geochemists * Registered Assayers
212 Brooksbank Ave., North Vancouver
British Columbia, Canada V7J 2C1
British Columbia, Canad
PHONE: 604-984-0221

TO: INTERNATIONAL TOWER HILL MINES C/O ROSS WEEKS
1625 SMITHSON PL., KELOWNA, BC
VIM 8N5
INVOICE NUMBER
I 9611868

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

To: INTERNATIONAL TOWER HILL MINES CIO ROSS WEEKS 1625 SMITHSON PL
KELOWNA, BC
V1Y 8N5

Comments: ATTN: ROSS WEEKS CC: NORM BONIN

CERTIFICATE	A9611868

(NGB) - INTERNATIONAL TOWER HILL MINES
Project
P.O.\#:

Samples submitted to our lab in Vancouver, BC This report was printed on 14-FEB-96.

ANALYTICAL PROCEDURES					
$\begin{aligned} & \text { CHEMEX } \\ & \text { CODE } \end{aligned}$	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMT
999	${ }^{5}$	Au g/t: 1 assay ton, an finish	fi-nas	0.03	150.00

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers
212 Brooksbank Ave., North Vancouver
British Columbia, Canada V7J 2C1
PHONE: 604-984-0221

INTERNATIONAL TOWER HILL MINES
C/O ROSS WEEKS
1625 SMITHSON PL.
KELOWNA, BC
V1Y 8N5

INVOICE NUMBER

I 9612616

| \# OF | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SAMPLES | ANALYSED FOR |
| CODE - DESCRIPTION | |

CERTIFICATE

A9612616
(NGB) - INTERNATIONAL TOWER HILL MINES
Project:
P.O.\# :

Sarplea mubaitted to our lab in Vancouver, BC. This report was printed on 1-MNR-96.

The 32 element ICP package is suitable for trace motals in soil and rock samples. slements for which the nitric-aqua regia digestion is possibly incomplete are: Al Ba, Bo, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti. T1, W.

ANALYTICAL PROCEDURES					
$\begin{aligned} & \text { CHEMEX } \\ & \text { CODE } \end{aligned}$	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
999	11	Au g/t: 1 assay ton, NA finish	PA-NAs	0.03	150.00
2118	11	Ag ppme 32 element, soil s rock	TCP-AEs	0.2	200
2119	11	A1 \%: 32 elomont, sotl t rock	ICP-AES	0.01	15,00
2120	11	As ppme 32 element, soil \& rock	TCP-AES	2	10000
2121	11	Ba ppm: 32 -lement, soil frock	ICP-AES	10	10000
2122	11	Be ppm: 32 element, soil rock	ICP-AES	0.5	100.0
2123	11	B1 ppan: 32 element, soil rock	ICP-AES	2	10000
2124	11	Ca 5: 32 eleaent, moil $\%$ rock	TCP-AES	0.01	15.00
2125	11	Cd ppme 32 elemont, soil 2 rock	ICP-AES	0.5	100.0
2126	11	Co ppen 32 olemont, soil rock	ICP-AES	1	10000
2127	11	Cr ppen 32 element, soil s rock	ICP-AES	1	10000
2128	11	Cu ppas 32 elamont, soil zock	ICP-AEs	1	10000
2150	11	Fe \%: 32 elment, moil rock	ICP-AES	0.01	15.00
2130	11	Oa ppas 32 element, soil \& rock	ICP-AEs	10	10000
2131	11	Hg ppme 32 element, soil \& rock	TCP-AEs	1	10000
2132	11	K \%: 32 element, soil \& rock	ICP-AES	0.01	10.00
2151	11	La ppmi 32 dement, soil f rock	ICP-AES	. 10	10000
2134	11	Mg \%: 32 element, soil E rock	ICP-AEs	0.01	15.00
2135	11	in ppen 32 element, soil f rock	ICP-AES	5	10000
2136	11	Mo ppma 32 element, soil t rock	ICP-AES	1	10000
2137	11	Na \%: 32 elemont, soil \& rock	TCP-AES	0.01	5.00
2138	11	Ni ppme 32 elemont, soil s rock	ICP-AES	1	10000
2139	11	P ppm: 32 element, soil fock	ICP-AES	10	10000
2140	11	Pb ppma 32 elemont, soil a rock	ICP-AES	2	10000
2141	11	8b ppas 32 element, soil f rock	ICP-AES	2	10000
2142	11	Sc ppme 32 elements, soil f rock	ICP-AES	1	10000
2143	11	Ir pppe 32 element, soil \& rock	TCP-AES	1	10000
2144	11	T1 \%: 32 element, soil f rock	ICP-AES	0.01	5.00
2145	11	T1 ppme 32 element, soil sock	ICP-AES	10	10000
2146	11	0 ppan 32 element, soil \& rock	ICP-ARS	10	10000
2147	11	V ppm: 32 element, soll \& rock	ICP-AES	1	10000
2148	11	W ppm: 32 element, soil te rock	ICP-AES	10	10000
2149	11	Zn ppm: 32 -1ement, moil \& rock	ICP-AES	2	10000

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers
212 Brooksbank Ave.
British Columbia, Canada North Vancouver
PHONE: 604-984-0221 FAX: 604-984-0218

INTERNATIONAL TOWER HILL MINES COO ROSS WEEKS 1625 SMITHSON PL.,
KELOWNA, BC
V1Y BN
Project:
Comments: ATTN:ROSS WEEKS

CERTIFICATE OF ANALYSIS A9612616

Chemex Labs Ltd.
 Analytical Chemists * Geochemists * Registered Assayers

SNPPLE												ERTIF	ICATE	EOFA	ANAL	YSIS	A9612616
	PREP CODE		Mo ppm	$\begin{gathered} \text { Ma } \\ \% \end{gathered}$	$\begin{array}{r} \mathrm{N} 1 \\ \mathrm{pp} \end{array}$		Pb ppm		Sc ppm	$\begin{array}{r} \mathbf{S r} \\ \text { ppII } \end{array}$	$\begin{array}{r} \text { T1 } \\ \% \end{array}$	$\begin{array}{r} \text { Tl } \\ \text { ppm } \end{array}$		$\begin{array}{r} \mathbf{v} \\ \mathrm{ppm} \end{array}$			
$\begin{aligned} & 95-1-11 A \\ & 95-1-13 A \\ & 95-2-17 A \\ & 95-2-19 A \\ & 95-3-15 A \end{aligned}$	$\left\lvert\, \begin{gathered} 208 \\ -- \\ 208 \\ 208 \\ 208 \end{gathered}\right.$	$\begin{aligned} & 220 \\ & \hline 220 \\ & 220 \\ & 220 \end{aligned}$	$\begin{array}{r} 1 \\ \text { NotRcd } \\ 10 \\ 14 \\ 1 \end{array}$	$\begin{array}{r} 0.03 \\ \text { sotRcd } \\ 0.16 \\ 0.06 \\ 0.05 \end{array}$	4 Notred 86 92 3	790 sotred 960 880 110	490 NotRed 48 34 14	<2 HotRed <2 <2 <2	$\begin{array}{r} 4 \\ \text { NotRed } \\ 12 \\ 17 \\ <1 \end{array}$	Notred 214 164 36	$\begin{array}{r} <0.01 \\ \text { NotRcd } \\ 0.10 \\ 0.07 \\ <0.01 \end{array}$	$\begin{array}{r} <10 \\ \text { NotRcd } \\ <10 \\ <10 \\ <10 \end{array}$	$\begin{array}{r} <10 \\ \text { NotRcd } \\ <10 \\ <10 \\ <10 \end{array}$	38 Notred 102 134 2	$\begin{array}{r} <10 \\ \text { NotRcd } \\ <10 \\ <10 \\ <10 \end{array}$	$\begin{array}{r} 3270 \\ \text { MotRed } \\ 268 \\ 308 \\ 76 \end{array}$	
$\begin{aligned} & 95-4-7 \lambda \\ & 95-4-9 \lambda \\ & 95-4-11 \Lambda \\ & 95-4-17 \lambda \\ & 95-4-19 \lambda \end{aligned}$	208 208 208 208 208	$\begin{aligned} & \hline 220 \\ & 220 \\ & 220 \\ & 220 \\ & 220 \end{aligned}$	5 1 2 1 1	$\begin{array}{r} 0.01 \\ < \\ <0.01 \\ < \end{array} 0.01$	$\begin{aligned} & 6 \\ & 4 \\ & 5 \\ & 6 \\ & 5 \end{aligned}$	$\begin{array}{r} 1030 \\ 690 \\ 900 \\ 360 \\ 930 \end{array}$	$\begin{aligned} & 26 \\ & 32 \\ & 64 \\ & 32 \\ & 18 \end{aligned}$	$\begin{array}{ll} \ll & 2 \\ < & 2 \\ < & 2 \\ < & 2 \\ < & 2 \end{array}$	6 1 5 1 4	$\begin{array}{r} 108 \\ 100 \\ 60 \\ 54 \\ 134 \end{array}$	$\begin{array}{r} 0.03 \\ <0.01 \\ 0.01 \\ <0.01 \\ 0.03 \end{array}$	$\begin{array}{ll} < & 10 \\ < & 10 \\ < & 10 \\ < & 10 \\ < & 10 \end{array}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 85 \\ & 14 \\ & 47 \\ & 15 \\ & 65 \end{aligned}$	$\begin{aligned} & <10 \\ & <10 \\ & <10 \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & 304 \\ & 228 \\ & 836 \\ & 226 \\ & 244 \end{aligned}$	
$\begin{aligned} & 95-5-3 A \\ & 95-5-5 A \\ & 95-5-11 A \\ & 95-5-13 A \end{aligned}$	$\begin{aligned} & -7 \\ & \hline-- \\ & 208 \\ & 208 \end{aligned}$	$-=-$ 220 220	sotred SotRed	$\begin{aligned} & \text { NotRed } \\ & \text { NotRed } \\ & 0.04 \\ & 0.03 \end{aligned}$	Notred NotRed 5 5	$\begin{array}{r} \text { NotRcd } \\ \text { NotRed } \\ 820 \\ 730 \end{array}$	$\begin{array}{r} \text { Notred } \\ \text { NotRed } \\ 30 \\ 232 \end{array}$	$\begin{array}{r} \text { Notred } \\ \text { Notred } \\ <2 \\ <2 \end{array}$	Notred NotRed 7 5	Notred Notred 61 62	NotRed NotRed $\begin{aligned} & 0.04 \\ & 0.01 \end{aligned}$	$\begin{aligned} & \text { Notrcd } \\ & \text { NotRed } \\ & <10 \\ & <10 \end{aligned}$	$\begin{aligned} & \text { NotRed } \\ & \text { NotRed } \\ &< 10 \\ &< 10 \end{aligned}$	NotRcd Notred 81 52	NotRcd NotRed <10 < 10	NotRed NotRed 174 822	

Analytical Chemists * Gecchemists * Registered Assayers
212 Brooksbank Ave., North Vancouver British Colurnbia, Canada V7J 2C1 PHONE: 604-984-0221

INTERNATIONAL TOWER HILL MINES

C/O ROSS WEEKS
1625 SMITHSON PL.
1625 SMITHS

INVOICE NUMBER
I 9611868

BILLING INFORMATION	
Date:	14-FEB-96
Project:	
P.O. No.:	
Account:	NGB
Comments:	
Billing:	For analysis performed on Certificate A9611868
Terms:	Payment due on receipt of invoice 1.25% per month (15% per annum) charged on overdue accounts
Please Remit Payments to:	
	CHEMEX LABS LTD. 212 Brooksbank Ave., North Vancouver, B.C. Canada V7J 2C1

[^0]: E.O.H.

