

FLU - 9 1996 Gold Commissioner's Office VANCOUVER, B.C.

GEOLOGICAL	SUR	VEY	BRANCH
ASSESSM	ENT	REP	ORTS

DATE RECEIVED

FEB 2 0 1996

JUN 2 8 1995

GEOLOGICAL AND GEOCHEMICAL REPORT

ON THE

RAINBOW 2,3 AND 4 MINERAL CLAIMS

PROJECT 95-96-P067

TULAMEEN

SIMILKAMEEN MINING DIVISION

LAT. 49 34' LONG.120 50' NTS 92 H/10W.

FILMED

BY

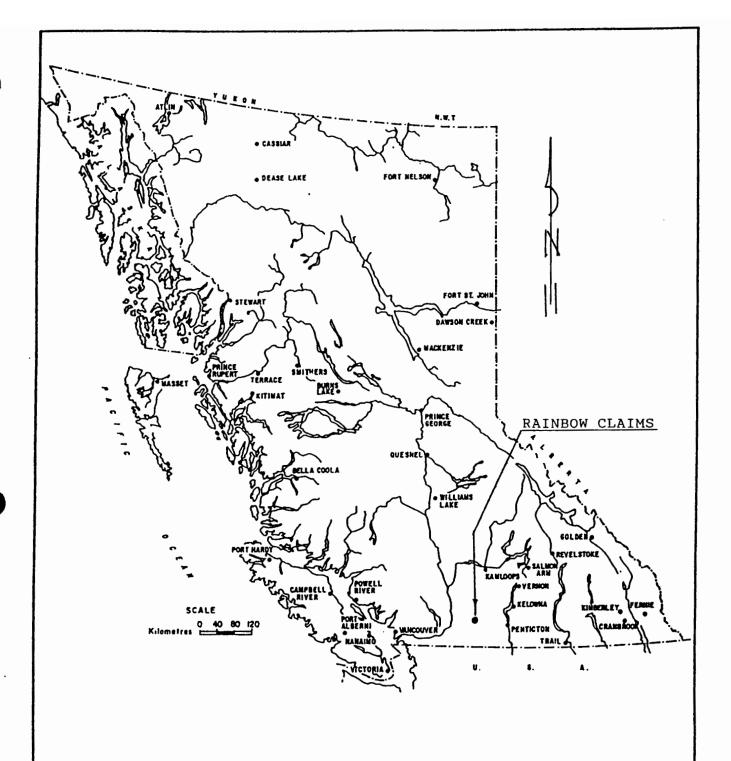
T.E.LISLE, P.ENG.

NOVEMBER 30, 1995

* * VOLOGICAL BRANES * SSESSMENT REPOR

TABLE OF CONTENTS

SUMMARY AND CONCLUSIONS	Page 1
RECOMMENDATIONS	Page 1
INTRODUCTION	Page 2
LOCATION AND ACCESS	Page 2
PROPERTY	Page 3
CLIMATE TOPOGRAPHY AND VEGETATION	Page 3
HISTORY	Page 4
1995 WORK PROGRAM	Page 4
REGIONAL SETTING	Page 5
GEOLOGY OF THE RAINBOW CLAIMS.	Page 6
GEOCHEMICAL SURVEY	Page 7
MAGNETIC SURVEY	Page 8
DISCUSSION	Page 9
REFERENCES	Page 11


ILLUSTRATIONS

LOCATION	After Contents	Fig.1
CLAIM MAP	After Page 2	Fig.2
REGIONAL GEOLOGY	After Page 5	Fig.3
SUMMARY SKETCH	After Page 9	Fig.4
ROPERTY GEOLOGY	In Pocket	Fig.5
GEOCHEMISTRY, COPPER-GOLD	In Pocket	Fig.6

APPENDICES

PERSONNEL	Appendix 1
STATEMENT OF EXPENDITURES	Appendix 2
ASSAY AND GEOCHEMICAL DATA SHEETS	Appendix 3

i

LOCATION MAP, RAINBOW CLAIMS TULAMEEN AREA SIMILKAMEEN MINING DIVISION BRITISH COLUMBIA

Fig 1

SUMMARY AND CONCLUSIONS

A geological and geochemical survey was carried out between June and October, 1995 on the Rainbow 2, 3, and 4 mineral claims located near Tulameen in the Similkameen Mining Division. The program was a continuation of work started in 1994, and was partly funded by the Prospectors Assistance Program administered by the British Columbia Ministry of Mines and Petroleum Resources.

1

The geological work indicated the presence of a felsic rhyolite (feldspar porphyry)? horizon adjacent to a Tertiary Otter granite stock, with an apparent trend of north northwest. Where exposed, this unit is limonitic and is marked by a significant amount of siliceous, pyritic alteration with clay, epidote, chlorite, and locally by magnetite and chalcopyrite.

Much of the altered rhyolitic zone is covered with glacial overburden. Analyses of soil samples collected from the grid revealed gold content to 290 ppb, and copper to 466 ppm. Gold anomalies tend to be loosely clustered within or close to the indicated trace of the alteration zone, or down slope and down ice to the southwest. Anomalous copper assays are widely scattered and more common to the east of the zone.

The north section of the alteration zone is partly marked by anomalous magnetics of the same trend. Assessment report 16016 shows a weak VLF-EM conductor and associated gold and related metal soil anomaly along trend to the southeast on the Rainbow 4 claim.

It is concluded that the results of the preliminary surveys are sufficiently attractive to recommend further prospecting, sampling and geological mapping, and a continuation of the geochemical and geophysical surveys to evaluate the mineral potential of the Rainbow claims.

RECOMMENDATIONS.

1) Analyze all (334) soil samples remaining from the 1994 and 1995 geochemical surveys.

2) Detail map and sample the alteration zone identified in previous work, and soil sample 50 meter lines in areas of interest.

3) Run VLF-EM (2 channel) surveys over the entire grid, and complete magnetic and geological surveys.

4) Southern sections of the Rainbow 4 mineral claim were investigated by geochemical and geophysical surveys in 1986 and the results described in Assessment Report 16016. The area between the 1986 work and the 1995 work should be explored by a combination of geological, geochemical and geophysical surveys to complete coverage in this area.

5) Compile and correlate the Rainbow exploration data with exploration data from the Boulder-Rabbitt Mountain area to the east, and with the geology of the El Alemein gold occurrences to the south.

INTRODUCTION

The author, along with E. Ostensoe, P.Geo., submitted a proposal to the Prospectors Assistance Program administered by the provincial Ministry of Energy Mines and Petroleum Resources in May 1994. The proposal was for funding of a small exploration program proposed for the Rainbow claims located near Tulameen in the Similkameen Mining Division. The funding was granted, and the results of the 1994 work were submitted to the Ministry in a January, 1995 report.


A further proposal was made to the Ministry in April, 1995 for additional funding to continue exploration work on the Rainbow claims. Funding was again allocated, and between June and October, 1995, a program of grid establishment, and geological and geochemical surveys were undertaken. We wish to acknowledge with thanks the assistance of grants received. These funds have covered a significant part of the exploration costs incurred.

This report describes exploration work carried out with assistance of the1995 Prospectors Grant. All technical observations are presented and discussed in the report, and compiled on maps accompanying the report. Due to budget constraints, only a limited number of soil samples were analyzed . 334 samples remain to be analyzed at a future date. Because of the ongoing work, interpretations and conclusions are preliminary and may change significantly with results of proposed additional work.

LOCATION AND ACCESS

The Rainbow claims lie on the north slope of the Tulameen River Valley some six to ten kilometers west and northwest of the village of Tulameen in south central British Columbia. (Figure 1). The geographic coordinates are Latitude 49 34'; Long. 120 50'. NTS Map sheet 92H/10W.

Elevations range from 840 meters at the Tulameen River to 1646 meters above sea level in the central part of the Rainbow 3 claim. The terrain is relatively subdued, but near Lawless Creek and it's tributary streams, slopes are steep and locally precipitous.

Access to the claims is by the Lawless Creek Forest Service Road that runs easterly from the Coquihalla highway to Tulameen, or from Princeton on the southern Provincial highway. A logging road along the Tulameen River provides access to the south part of the Rainbow 4 claim.

PROPERTY

The Rainbow Group comprises three claims aggregating 46 units (Table 1)They are located in the Similkameen Mining Division and are jointly owned by T.E. Lisle and E.O. Ostensoe.

Claim Name	Units	Record`	Located	Anniversary.
Rainbow 2	20	309158	May 6, 1992	May 6, 1997
Rainbow 3	16	309159	May 6, 1992	May 6, 1997
Rainbow 4	10	323956	March 1, 1994	March 1, 1997

CLIMATE, TOPOGRAPHY AND VEGETATION

The climate in the Rainbow claim area is transitional between dry conditions of the southern Interior Plateau, and wet conditions of the Cascade Mountains. Summers are hot and dry, and winters are cold with significant snowfalls.

The Rainbow claims span a vertical range between 840 meters at the Tulameen River to 1646 meters at the upper elevations of the Rainbow 3 claim. North of the Lawless Creek Forest Access Road, the terrain is mainly forested and topography is subdued. South of the road, the topography is steep and locally characterized by bluffs and canyons. Several small streams originate on Boulder Mountain and flow either southerly to Lawless Creek or easterly to Otter Lake.

The upper parts of the claims are forested with thick stands of spruce, fir and balsam, and a few red cedars. Large yellow pine trees are present but not numerous on the south facing upper slopes. Large parts of the area north of the Lawless Creek Road have been logged in recent years.

HISTORY

The mining history of the Tulameen area is documented in numerous government publications, and in more than 120 technical reports that have been filed for assessment purposes on mineral prospects in a 300 square kilometer area centered approximately on Tulameen.

The first comprehensive geological map of the Tulameen area was included in GSC Memoir 26 authored by Charles Camsell in 1913. Camsell showed the presence of a small granitic stock intruding the Nicola rocks in the area of the current Rainbow 3 claim.

Early prospectors were undoubtedly attracted to the Tulameen area by placer mining possibilities, particularly by discoveries of platinum in nearby streams and by production of large gold nuggets from Lawless and Boulder Creeks. A large gossaned alteration zone now exposed near the 9 kilometer mark on the Lawless Creek road occurs along a substantial creek valley that passes southerly through the Rainbow 2 claim. Several small bedrock pits located north of the road were excavated many decades ago and expose concentrations of pyrite and locally magnetite.

Important background information on the Rainbow claim area is contained in assessment reports 16016 and 17271. A 1993 preliminary prospecting report by Lisle and Ostensoe, and their report on the 1994 exploration work also provide background information.

1995 WORK PROGRAM

The following work was completed on the Rainbow claims between June and October, 1995.

Work	Rainbow2	Rainbow 3	Rainbow 4	Total
Grid Lines.	8.50 Km.	3.725 Km.	8.00 Km.	20.225 Km.
Geochemical (soil) *	-	191	118	309 samples
Geology(1:5,000)	17.0 Km.	22.0 Km.	5 Km.	44.0 Km. ?

* 169 samples were selected from the above, and from those remaining from the 1994 work program. These samples were analyzed for gold and for 30 elements by ICP methods. 334 soil samples remain to be analyzed at a future date.

REGIONAL SETTING

The Nicola Group in southern British Columbia is part of a linear northwesterly Cordilleran belt of volcanic and sedimentary rocks developed in an Upper Triassic island arc. The group is, at least in the Princeton-Merritt area, a westward younging assemblage comprising:

a) An eastern belt of alkalic and calc-alkalic submarine volcanic rocks, lahar deposits, basaltic flows, and high-level syenite stocks.

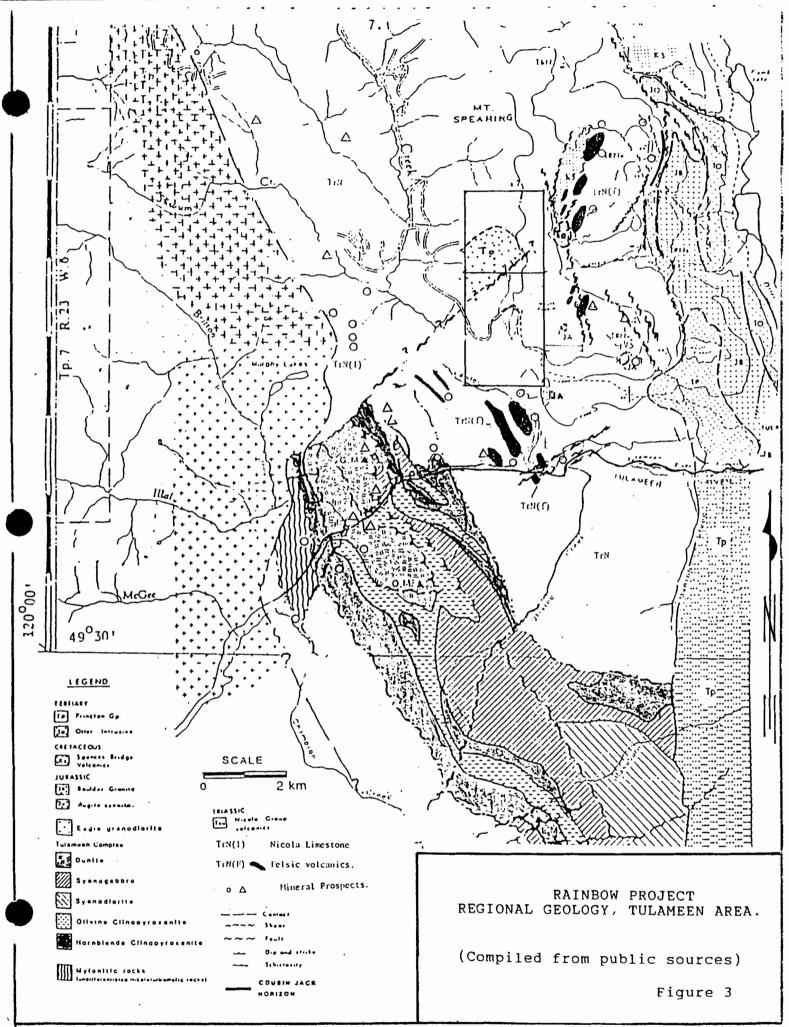
b) A central belt of alkalic and calc-alkalic subaerial and submarine assemblages of andesite, basalt and co-magmatic intrusions of diorite and syenite, and breccia, conglomerate and lahar deposits.

c) A western belt of calc-alkalic flow and pyroclastic rocks ranging in composition from andesite to rhyolite, with minor interbedded limestone, volcanic conglomerate, sandstone and argillite. This assemblage appears to underlie much of the Tulameen area.

The Nicola Group to the west of Tulameen is bounded on the west by the Eagle Granodiorite, a syntectonic intrusion of apparent upper Jurassic age. Both the Eagle Granodiorite, and amphibolitized Nicola Group rocks dip westerly along a regionally developed northwest foliation. Several small intrusions are present in the Tulameen area. They include the Late Triassic to Early Jurassic Boulder Granite, the upper Triassic Tulameen Ultramafic Complex, and Tertiary Otter granite stocks.

All of the older rock units are disrupted by faults that either trend northwest along the regional trend, or by Tertiary (Eocene)? northeast faults that appear to mark the planes of significant right -lateral and vertical displacement. One of the northeast faults marks the north boundary of the Tulameen ultramafic complex and apparently trends northeast through the Rainbow claims close to an Otter Granite Stock. Figure 3 illustrates some of the features of the regional geology in the vicinity of Tulameen.

The Nicola volcanic rocks and related intrusions in south-central British Columbia are host to a number of world-class mineral deposits including copper-gold porphyries at Princeton and Kamloops; copper-molybdenum porphyries at Highland Valley; and the large Craigmont copper-iron skarn deposit at Merritt. In addition, the belt is host to a very large number of prospects, including those at Tulameen, that continue to be evaluated.


GEOLOGY OF THE RAINBOW CLAIMS

The geology of the Tulameen area was first described by C. Camsell in 1913 in GSC Memoir 26, and was further elaborated by H.M.A.Rice in GSC Memoir 243 published in 1947. Both of these references showed the presence of a stock of Otter Granite in the area of the current Rainbow 3 claim, intruding both Nicola Group rocks and intrusive rocks variably described as either augite syncite or members of the Tulameen ultramafic complex, namely peridotite, pyroxenite or gabbro.

The oldest rocks in the area are Nicola Group flow and fragmental volcanic rocks that are mainly of andesitic composition. The assemblage is poorly to well bedded and forms a prominent belt along the east side of the Rainbow claims trending north northwest and dipping from about 55 to 75 degrees to the west. The belt is dominated by rocks provisionally mapped as augite crystal tuff, fine-grained tuff, subordinate amounts of plagioclase crystal tuff, and a variably textured tuff beccia that commonly contains distinctive pink to buff fine-grained felsic clasts. The clasts in this unit locally resemble crysts, and in places grade to pink stringers within or crossing foliation. The tuffaceous units are highly variable over narrow widths, and are interbedded with thin bands of andesite porphyry containing coarse feldspar laths. Near grid point 7+00N - 5+75E, a massive greenish-grey flow in contact with tuff may be dacitic in composition.

The andesitic unit is flanked on the west in part by a pale grey to greenish-grey rhyolite or feldspar porphyry. This unit is commonly siliceous pyritic, in places porphyritic, and is generally poorly exposed. The western contact is obscured by overburden that covers a topographic low over a few hundred meters of width, and the trace of the horizon from 12+00N, 1+50W and 18+75N, 4+00W is obscured by drift. The section between 18+75N and 25+00N and the flanking rocks to the east are marked by a limonitic bleached siliceous zone with up to 10% pyrite, +- magnetite and minor chalcopyrite that is partly coincident with magnetic anomalies of similar trend. Skarny propylitic assemblages of epidote, chlorite, quartz, pyrite and chalcopyrite are locally evident in the eastern segments of the alteration zone.

The southwest side of the Rainbow 2 claim is underlain by a dark-grey fine-grained dioritic unit that may grade from gabbro to syenite. While separated from the above, it also appears to trend northwest. Xenoliths of Nicola andesitic rocks are present, and alteration includes epidote, chlorite, magnetite and minor pyrite. The diorite has been intruded on the north by a stock of Otter Granite. Pink granitic stringers, dykes and disseminations are common in the diorite, around which the composition varies widely. The boundaries of the diorite are poorly defined. The distribution of outcrops indicates that it may join a diorite-syenite mass shown on regional maps to lie a short distance to the southeast.

£.,

The Otter Granite stock underlies a large western segment of the Rainbow 3 claim. The stock is complex in that it contains highly variable concentrations of poor to well assimilated xenoliths of Nicola volcanic rocks. Compositionally the stock grades from granite to granodiorite with border zones more basic, in some areas reported to grade to gabbro. Typically, the contacts are irregular and the granite occurs in stringers, dykes and irregular masses. It is commonly pink to grey in colour, fine to medium-grained, and locally porphyritic. Altered biotite and hornblende are locally evident. The area north of the rhyolitic unit contains up to a few percent pyrite.

A poorly defined +- 15 meter zone of intense argillic alteration occurs at line 25+00N, 5+50 W, near the interpreted boundary between the granite and rhyolite. Argillic alteration, in part related to northeast fractures, is also evident in a road cut near 19+50N, 4+50W.

Camsell showed the contact between the diorite-syenite and Otter granite to trend northeast. Assessment report 15,315) shows a large area near the headwaters of Lockie Creek immediately east of Rainbow 3 claim also to be underlain by granodiorite and diorite, and assessment report 16016 notes the presence of an area of Red granite in the eastern sections of the Rainbow 4 mineral claim. These occurrences suggest the possibility of a much larger area of Otter Granite.

A number of small basaltic dykes related to the Eocene Princeton Group, cut all of the older units. Typically they are black to dark-grey, magnetic, and locally porphyritic with fine hornblende, biotite or feldspar. These exposures are commonly accompanied by strong northeast fracture sets, that are thought to relate to Eocene faults that also trend northeast.

GEOCHEMICAL SURVEY

A total of 411 of 610 soil samples collected in the 1994 survey were analyzed for gold, and for 30 additional elements by ICP techniques. An additional 309 soil samples were collected during the 1995 program. To get the best coverage over the central area of interest noted above, 169 soil samples from both the 1994 and 1995 programs were analyzed as above. 334 soil samples are on hand for future analyses.

The 1995 samples were collected with a shovel in much the same manner as the 1994 samples. Details of the sample site, soil depth, horizon and other sample characteristics were recorded on data sheets that are included along with analytic data as an appendix to this report. The Acme Analytical Laboratory procedure on the -80 mesh soil fraction is explained on Geochemical Analyses Certificates.

For purposes of discussion, ice direction in the claim area is believed to be southwest as shown on figures 5 and 6. The gold and copper data has been plotted on figure 6 and is compiled along with results of the 1994 work. A preliminary assessment of the data indicates the following:

Gold content of the soils ranged to a high of 290 ppb. Contoured at 10 ppb, the distribution shows a loose clustering of 1 to 5 station anomalies that are partly coincident with the siliceous rhyolite and alteration zone, or down slope and down ice from that zone. Anomalous zones on the north section of Rainbow 4 claim occur in overburden covered areas to the west of tuffaceous outcrops that are similar to those mapped to the north.

A number of anomalous (+100 ppm) copper analyses are present. They typically occur over andesitic rocks to the east of the rhyolite zone, and are partly coincident with areas of known mineralization at or close to the property boundary. The highest result detected was 466 ppm located at 22+00N and 2+ 50 west.

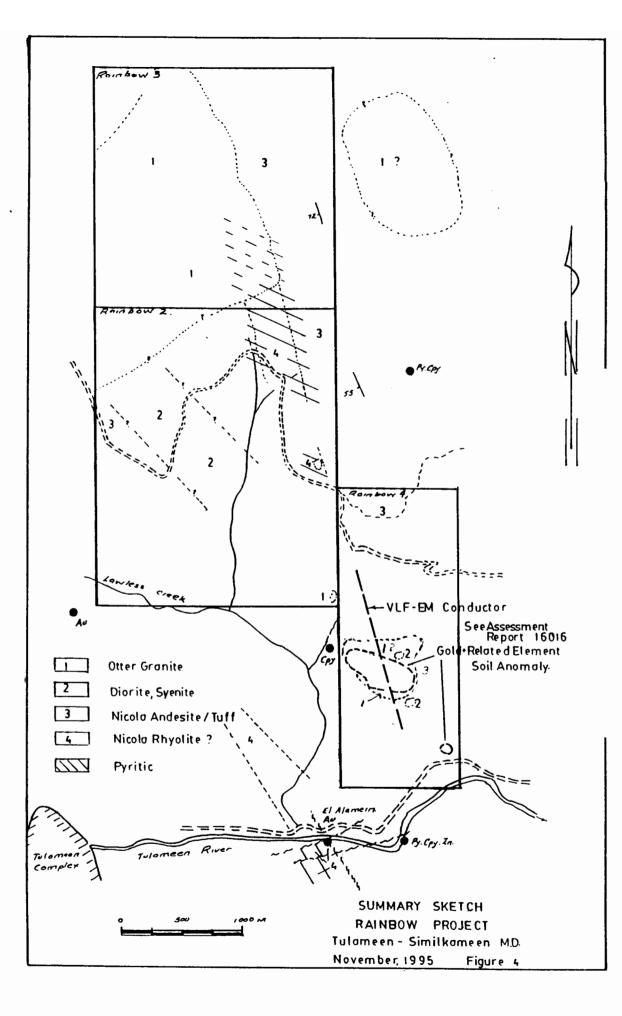
The analyses revealed mainly background concentrations for other elements. Zinc, lead, silver and arsenic contents ranged to highs of 263 ppm, 75 ppm, 0.60 ppm, 14 ppm. respectively.

MAGNETIC SURVEY.

A magnetic survey was conducted over the Rainbow claim grid in the fall of 1994 using two GSM-19 (19-T) high sensitivity proton magnetometer/gradiometers equipped with inbuilt microprocessors and memory. The field instrument was synchronized with a similar unit that was set up in Tulameen as a base station.

The magnetometers were initially tuned to a total magnetic field intensity of 58,000 nT, appropriate for the survey area. Observations were taken at 12.5 metre intervals on all 100 metre spaced grid lines with the exception of lines 35+00N and 36+00N. Steve Lowe, geophysical technician, data processor and autocad specialist, examined the data and executed corrections and procedures to produce computer-generated plan and profile presentations.

The results of the survey were summarized by Lisle and Ostensoe in a report dated January 15, 1995. Modifications, reflecting the geological mapping carried out in 1995 are presented as follows:


- 1) Magnetic relief in the survey area is low and commonly within a range of 300 nT.
- 2) Magnetic values tend to be slightly higher in the north and east parts of the grid relative to values observed elsewhere.

- 3) The southwest corner of the grid, in particular Lines 8+00N through 14+00N from about 5+00W to 10+00W, exhibits high magnetic relief up to about 1100 nT and is magnetically distinct from the balance of the grid. This area is largely underlain by dioritic rocks that could be expected to contain magnetite mineralization. The diorite is however intruded by dyke-like masses of Otter Granite within and around which magnetite is present. For this reason, uncertainty exists as to the cause of the magnetic signature.
- 4) A series of narrow magnetic "highs", up to about 500 nT, form a conspicuous, but locally broken, north-northwesterly linear trend from the southeast to northwest corners of the grid. Some, but not all, of these highs are spatially, and likely directly related to the mafic fine-grained Tertiary dykes. There remains however a north northwesterly grain to the magnetics in this area that is emphasized by a small number of line to line responses of small amplitude both positive and negative.

DISCUSSION.

Poor exposure along trend, and particularly along the west flank of the rhyolite, limits interpretation both as to the size and shape and origin of this unit. There are a large number of feldspar porphyry dykes in the Tulameen area, some of which are pyritic, and some of which have been investigated for economic mineralization. Rice described some of the Otter Granite related dykes as follows: "--- a bewildering array of types no two of which are exactly alike. Some are clearly fine-grained phases of the red or the grey granite and need no further description, but these are in the minority. In general terms the usual type is a rock with very fine-grained groundmass in some shade of red, buff, liver, mauve or grey in which are set conspicuous phenocrysts of white or pink feldspar, and in some specimens, much smaller phenocrysts of Camselbiotite and amphibole".

Property immediately to the east of the Rainbow claims was investigated by the Abermin Corporation in the 1980's. The Abermin work showed a spatial relationship of a number of vein and stratiform sulphide occurrences on Rabbitt and Boulder Mountains to dacitic horizons thought to be part of the upper Nicola Group. Siliceous rocks similar to those observed on the Rainbow ground were noted at one of the Boulder Mountain prospects, however detailed correlation has not been carried out. Detailed mapping carried out by GEP Eastwood on the El Alemein property near the south boundary of the Rainbow 4 claim showed that the gold prospect occurs in or near a northwest trending rhyolite horizon containing both porphyritic and breccia phases.

Uncertainty remains as to whether the felsic unit at the Rainbow property in intrusive or extrusive. Regardless of the origin, the mineralization and alteration associated with this horizon represents an important exploration target requiring further evaluation. The characteristics of this target are summarized herewith:

1) A strong alteration zone associated with a felsic rhyolite horizon contains up to 10% pyrite with or without magnetite and minor chalcopyrite over a significant strike length.

2) Much of the trace of the zone, and particularly the west flank of the zone is covered by glacial drift.

3) A number of gold soil anomalies are loosely clustered along or near the zone, or down slope and down ice to the southwest.

4) The zone has an interpreted north northwest trend based on outcrop distribution. This is similar to bedding attitudes mapped to the east and is comparable to geochemical and geophysical trends reported on ground immediately to the east of the Rainbow 2 and 3 mineral claims. The trend is supported in part by magnetic anomalies detected in 1994 surveys. The indicated trace to the southeast on the Rainbow 4 claim is marked by a VLF-EM conductor that is in part associated with anomalous gold in the soil (A.R. 16,016).

6 inle

T.E.Lisle, P.Eng.

November 30, 1995.

REFERENCES.

1) Lord, T. and Green, A	Soils and Surficial Geology of the Tulameen Area. Agriculture Canada, 1974.
2) Cook, S.J. and Fletcher, W.K.	Platinum Distribution in Soil Profiles of the Tulameen Ultramafic Complex, Southern British Columbia. Journal of Geochemical Exploration, July, 1994.
3) Camsell, C.	Geology and Mineral deposits of the Tulameen District, British Columbia. GSC Memoir 26, 1913.
4) Monger, J.W.H.	Geology of the Hope and Ashcroft Map Areas, British Columbia. Maps 41-1989, 42-1989. Geological Survey of Canada.
5) Preto, V.A.	Geology of the Nicola Group between Merritt and Princeton. Bulletin 69, B.C. Ministry of Energy Mines and Petroleum Resources, 1979.
6) Rice, H.M. A.	Geology and Mineral Deposits of the Princeton Map Area. G.S.C. Memoir 243, 1947.
7) Nixon, G.T.	Geology of the Tulameen Ultramafic Complex. Open File 1988-25. B.C. Ministry of Energy, Mines and Petroleum Resources, 1988.
8) Lisle, T. Ostensoe, E.	Prospecting Report on the Rainbow 2 and 3 Mineral Claims, Tulameen Area, Similkameen Mining Division.B.C. January 15, 1993. Assessment Report.
9) Lisle, T. Ostensoe, E.	Geochemical and Geophysical Report on the Rainbow 2 and 3 Mineral Claims, Tulameen Area, Similkameen Mining Division, January 15, 1995. Assessment Report.
10)	B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Reports 15,315, 16,016 and 17,271.

APPENDIX 1

LIST OF PERSONNEL

The following personnel carried out exploration on the Rainbow _claims in 1995.

1) T.E.Lisle, P.Eng. Geologist, (UBC, 1964)

Extensive field experience in mineral exploration, principally in western North America, and northern North America over the past thirty years.

- Member of APEGBC, GAC, and CIMM.
- Carried out field work on dates shown, and compiled maps and report submitted herewith.

June 28, 1995.	Day 1.	Pack and Travel
June 29, 1995.	Day 2	Geological Mapping.
June 30, 1995.	Day 3.	Geological Mapping.
July 1, 1995.	Day 4.	Geological Mapping.
July 2, 1995.	Day 5.	Geological Mapping.
July 3, 1995	Day 6.	Geological Mapping.
July 4, 1995.	Day 7.	Geological mapping.
July 5, 1995.	Day 8.	Geological mapping.
August 16, 1995.	Day 9.	Pack and travel.
August 17, 1995.	Day 10.	Grid Lines.
August 18, 1995.	Day 11.	Grid Lines.
August 19, 1995.	Day 12.	Grid Lines.
August 20, 1995.	Day 13.	Grid Lines.
August 21, 1995.	Day 14.	Grid Lines.
August 22, 1995.	Day 15.	Grid Lines.
August 23, 1995.	Day 16.	Geological mapping
August 24, 1995.	Day 17.	Mapping and Prospecting.
August 30 -31, 1995	Day 18.	Plotting data.
Sept. 2-4, 1995.	Day 19.	Examination of Rocks.
Oct. 24, 1995	Day 20.	District geologist-Field.
Oct. 25, 1995.	Day 21,	District geologist-Field.
Oct.26-Nov.30, 1995	Days 22-31.	Maps and Report.

2) E.A.Ostensoe, P.Geo., Geologist, (UBC, 1960)

-In excess of thirty years experience in mineral exploration principally in western North America -Member of APEGBC

-Carried out field work on the following dates.

Sept. 14, 1995. Day 2. Soil sampling.	
Duy 2. Son sumpring.	
Sept. 15, 1995. Day 3. Grid + Soil Sampling.	•
Sept. 16, 1995. Day 4. Grid Lines.	
Sept. 16, 1995. Day 5. Grid Lines (Assistant)
Sept. 17, 1995. Day 6. Grid Lines.	
Sept. 19, 1995. Day 7 Soil sample + Grid.	
Sept. 20, 1995. Day 8. Soil sample.	
Sept. 23, 1995. Day 9. Soil Sample.	
Sept. 24, 1995. Dy 10. Soil Sample + Grid.	
Sept. 25, 1995. Day 11. Map Geology + Grid.	
Sept. 27, 1995. Day 12. Geological mapping.	
Sept. 28, 1995. Day 13. Geological Mapping.	
Sept. 29, 1995. Day 14. Packed samples etc.	
Oct. 2, 1995. Day 15. Soil sampleed.	
Oct 4, 1995. Day 16. Soil sampled.	
Oct 7, 1995. Day 17. Soil sampled.	

STATEMENT OF EXPENSES.

STATEMENT OF EXPENDITURES.

Travel and Transportation		4 Wheel Drive Bronc 36 days at 30.00/day GST at 7%	1,080.00 75.60
Soil Sample Analyses	169	Acme Analytical Laboratory	2,099.92
Wages		48 person days at 250.00/day.	12,000.00
Accommodation.		Food, Fuel, Etc.	1,937.71
Field Supplies. (Est)			150.00
Report, Reproduction, etc			126.86

Total

\$17,470.09

ink C T.E.Lisle, P.Eng

December 2, 1995

ASSAY AND GEOCHEMICAL DATA SHEETS

PHONE(604)253-3158 FAX(604 3-1716 CAL LABORATORIES LTD. 852 E. HASTINGS ST. COUVER BC V6A 1R6 ACME ANAL GEOCHEMICAL ANALYSIS CERTIFICATE Tom Lisle File # 95-4534 Page 1 145 W. Rockland Road, North Vancouver BC V7N 2V8 ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: P1 ROCK P2 TO P6 SOIL AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA/BINISHED. NOV 6 1995 DATE REPORT MAILED: $N_{3}\sqrt{15/95}$ DATE RECEIVED:

Tom Lisle FILE # 95-4534

	P	aq	e	2
--	---	----	---	---

ACHE ANALYTICAL								_																						ACHE ANA	LYTICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U popern	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V maqq	Ca %		La ppm	Cr ppm	Mg %	Ba ppm	Ti X	B ppm	Al X	Na %	к %		Au* ppb
L29N 10+00W L29N 9+50W L29N 9+00W L29N 8+50W L29N 8+50W	1 1 2 3 3	35 32 37 34 28	12 11 12 9 12	128 73 93 79 73	<.3 <.3 <.3 <.3 <.3	19 17 18 19 14	12 17 17	644 4 616 4 617 4 645 4 901 5	.17 .75 .90	7 5 7 9 8	<5 <5 <5 <5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3 2 4 5 5	34 34 19 18 14	<.2 <.2 .2 <.2 <.2	~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	80 81 80 77 87	.33 .16 .13	.074 .053 .092 .125 .170	19 13 17 13 15	33 30	.84 1.10 .95 1.05 .85	121	.08 .09 .10 .07 .06	3 2 7 3 4 3	3.03 2.48 3.91 3.81 5.98	.02 .02 .02 .01 .02	.08 .08 .08 .09 .09	< <> <> <> <> <> <> <> <> <> <> <> <> <> <	4 6 3 5 10
L29N 6+00W L29N 5+50W L29N 5+00W L29N 4+50W L29N 4+00W	2 1 2 1 4	86 55 42 88 84	7 9 10 10 17	73 81 97 116 105	.4 <.3 <.3 <.3 <.3	26 19 18 17 18	14 17 17	607 4 762 4 766 4 863 4 1521 4	.41	6 2 7 8 6	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	<2 2 2 2 2 2 2	41 34 20 31 42	.2 .2 .2 <.2 1.3	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	70 82 90 79 90	.36 .17 .34	.076 .083 .093 .066 .075	70 22 10 16 24	27 27	.69 1.37 1.15 1.23 1.20	112	.08 .05 .06 .07 .06	<33 43 32	5.91 5.36 5.25 2.62 5.47	.02 .01 .01 .02 .02	.04 .07 .07 .08 .09	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	4 1 2 1 5
L29N 3+50W L29N 3+00W L29N 0+50W L29N 0+00W L27N 10+00W	2 1 3 3 4	61 79 78 87 39	13 15 12 11 16	95 149 115 93 96	<.3 .3 .3 .3 <.3	15 12 16 15 15	11 8 8	878 4 904 3 477 4 720 3 604 4	.97 .12 .39	7 <2 6 3 5	ৎ ১ ১ ১ ১ ১ ১ ১ ১	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 4	49 48 62 85 24	.6 .3 .4 .6 <.2	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	50		.069	13 45 24 24 18	24	.53		.05 .05 .07 .06 .08	4 2 <3 2 <3 2		.02 .02 .03 .02 .02	.08 .11 .06 .05 .09	~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6 3 13 10 - 2
L27N 9+50W L27N 9+00W L27N 8+50W L27N 8+00W L27N 8+00W	3 3 4 2 3	22 29 30 36 29	10 9 11 11 10	56 70 65 54 69	<.3 <.3 <.3 <.3 <.3	13 13 12 16 15	17 16 18	485 4 468 5 950 4 625 4 1369 4	.04 .78 .76	8 9 4 4 <2	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2	3 5 3 4 3	22 23 25 26 19	.4 .4 .3 .2 <.2	2 2 2 2 2 2 2 2 2	< < < < < < < < < < < < < < < < < < < <	68 71 75 75 75	.21 .30	.077 .099 .078 .083 .096	13 23 37 18 18	21 20 21 1	.87 .81 .24	122 132 126	.06 .07 .07 .06 .06	<pre><3 2 3 3 <3 2 <3 2 5 3</pre>	.01 .69 .68	.02 .01 .02 .02 .02	.07 .09 .07 .08 .10	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	4 6 3 2 2
L27N 7+00W L27N 6+50W L27N 6+00W L27N 5+50W RE L27N 5+50W	3 3 2 1 1	37 46 42 67 67	11 10 12 11 6	64 60 71 80 78	<.3 <.3 <.3 <.3 <.3	12 15 39 26 25	22 23 19	655 4 765 5 870 5 790 4 790 4	.78 .04 .86	4 10 <2 3 <2	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	6 6 3 3	20	<.2 <.2 <.2 <.2 <.2	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	78 83 108 106 104	.32 .19	.120 .132 .079 .086 .086	22 18 25 10 10	21 27 1 55 1 28 1 28 1	.30 .51 .48		.07 .06 .08 .08 .08	<33 33 <34 <33 <33	.56	.02 .01 .02 .02 .01	.10 .08 .08 .08 .08	<2 <2 <2 <2 <2 <2	3 2 7 5 4
L27N 5+00W L27N 4+50W L27N 4+00W L27N 3+50W L27N 1+00W	1 5 2 2 2	49 92 48 46 45	7	88 123 116 135 126	<.3 <.3 <.3 <.3 <.3	17 26 17 18 23	16 14 17	826 4 882 4 892 4 610 4 121 3	.88 .40 .57	5 <2 7 6 <2	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2	2 3 2 2 2 2	18 41 27 25 66	<.2 .6 .4 <.2 .6	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 <2 <2 <2 <2 <2 <2	82 94 75 75 59	.16 .44 .27 .27 .88	.059 .076 .098	10 27 14 13 15	27 1 33 1 25 1 24 31	.14 .09 .92	112	.06 .09 .06 .06 .06	-	.14	.01 .02 .02 .02 .02	.08 .10 .08 .10 .09	<2 <2 <2 <2 <2 <2 <2 <2 <2	3 7 4 1 1
L27N 0+50W L27N 0+00W L25N 10+00W L25N 9+50W L25N 9+50W	2 1 3 2 2	39 42 / 33 31 47 /	14 15 15	113 91	<.3 <.3	20 17 15 14 13	11 13 10	946 4 707 4 644 4 514 3 678 4	.05 .25 .66	6 4 7 5 4	<5 <5 <5 <5 <5	~ ~ ~ ~ ~ ~ ~	2 ~2 2 2 2	39 40 34 27 30	.6 .2 .3 .6	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<2 <2 <2 <2 <2 <2 <2 <2	79 69 59	.50 .48 .41 .30 .35	.044 .041 .051	17 18 24 17 18		.00 .95	133 169 114	.06 .08 .06 .05 .05	<3 2 <3 2 <3 2 <3 2 <3 1	.21 .48 .09	.02 .02 .02 .01 .02	.09 .09 .08 .09 .09	<2 <2 <2 <2 <2 <2 <2	2 3 4 11
STANDARD C/AU-S	19	56	35	122	6.9	65	30 1	074 3	.88	41	17	7	35	48	17.9	17	23	64	.48	.088	38	54	.86	185	.08	27 1	.78	.06	.15	11	51 🗸

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

- 44

££

Tom Lisle FILE # 95-4534

Page 3

ACHE ANALYTICAL																														ACINE ANA	LYTICAL
SAMPLE#	Мо ррт	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Со ррп	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	8 ppm	Al %	Na %	К %	W ppm	Au* ppb
L25N 8+50W L25N 8+00W L25N 7+50W L25N 3+50W L25N 3+00W	2 2 2 <1 3	38 31 60 32 73	9 10 12 8 17	59 87 107 71 111	<.3 <.3 <.3 <.3 <.3	14 11 20 12 19	19 20 13	799 734 801 873 1000	5.48 5.37 4.42	5 5 11 <2 10	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	3 4 5 2 3	35 36 29 42 41	.2 <.2 .8 .4 .4	< < < < < < < < < < < < < < < < <> </td <td><2 <2 2 2 2 4</td> <td>71 91 78 118 89</td> <td>.37 .33 .21 .46 .44</td> <td>.154 .103 .122</td> <td>20 15 16 11 18</td> <td>19 1</td> <td>1.56</td> <td>114 118 175 86 176</td> <td>.06 .04 .07 .13 .09</td> <td><3 2</td> <td>3.45 3.23</td> <td>.02 .01 .02 .02 .02</td> <td>.10 .08 .12 .06 .09</td> <td><2 <2 <2 <2 <2 <2 <2 <2 <2 <2</td> <td>3 3 5 <1 4</td>	<2 <2 2 2 2 4	71 91 78 118 89	.37 .33 .21 .46 .44	.154 .103 .122	20 15 16 11 18	19 1	1.56	114 118 175 86 176	.06 .04 .07 .13 .09	<3 2	3.45 3.23	.02 .01 .02 .02 .02	.10 .08 .12 .06 .09	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	3 3 5 <1 4
L25N 2+50W L25N 2+00W L25N 1+50W L25N 1+00W L25N 0+50W	2 2 2 1 1	36 90 56 42 53	•••	107 108	<.3 .3 <.3 <.3 <.3 <.3	11 18 17 16 16	15 12 13	1148 1267 889 552 1059	4.65 4.47 4.13	3 7 2 11 14	ৎ ৎ জ জ	<2 <2 <2 <2 <2 <2 <2	2 <2 <2 2 2	25 47 54 24 36	<.2 .2 .3 .6 .3	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 2 2 3 2 2	72 67 70 68 74	.24 .57 .65 .22 .38	.061 .060 .072	10 20 21 13 16	27	.03	154 179 189 153 134	.08 .05 .06 .06 .07	<3 2 <3 2 <3 2 <3 2 <3 2	2.75 2.92 3.21	.02 .02 .02 .02 .02	.07 .09 .08 .08 .12	< 2 2 2 2 2 2 2 2 2	5 3 2 1 5
L25N 0+00W L23N 9+00W L23N 8+50W L23N 8+00W L23N 7+50W	1 2 2 1 1	61 v 50 44 44 46		118 110 107 114 113	<.3 <.3 <.3 <.3 <.3	16 20 15 12 13	15 12	832 / 752 / 788 / 864 / 950 /	4.77 4.39 4.48	9 8 2 9 6	ণ্ড ণ্ড ণ্ড ণ্ড	<2 <2 <2 <2 <2 <2	2 3 3 2 2	24 31 28 30 29	.2 .5 .5 .5 <.2	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<2 <2 <2 <2 <2 <2 <2	67 74 67 65 62	.22 .34 .29 .33 .32	.091 .085 .097	14 17 15 15 17	28 1 29 1 26 1 22 1 22	.22 .08 .00	125 125 132 121 113	.05 .06 .05 .06 .07	<3 2 <3 2 <3 2 <3 2 <3 1		.02 .02 .02 .02 .02	.08 .10 .09 .14 .13	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6~ 3 5 3 10
L23N 7+00W RE L23N 7+00W L23N 3+50W L23N 3+00W L23N 2+50W	1 2 1 2 2	39 39 30 57 60	13 12 11 20 24	86 88 99 141 161	<.3 <.3 <.3 <.3 <.3	15 15 21 19 20	14 16 22	697 4 707 4 905 3 1601 5 872 5	4.76 3.95 5.13	4 2 3 7 10		<2 <2 <2 <2 <2 <2	3 4 2 3 3	33 33 21 26 21	.2 .6 .4 <.2 .7	< 2 2 2 2 2 2 2 2 2 2	2 <2 <2 <2 <2 2	72 72 66 83 79	.32 .32 .22 .26 .19	. 106 . 120 . 137	15 15 10 15 13	25 1 23 1 23 28 1 31 1	.76 .08	123 127 136 169 186	.06 .06 .07 .08 .07	<3 2 <3 2 <3 2 <3 4 <3 3	.54 .88 .07	.02 .01 .01 .02 .02	.08 .08 .08 .13 .11	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4 3 7 4
L23N 2+00W L23N 1+50W L23N 1+00W L23N 0+50W L23N 0+00W	2 4 2 1 4	101 73 49 32 58 v	12 12	154 108 129	<.3 6 <.3 3 <.3	17 22 16 16 18	11 15 12	1438 4 719 4 588 4 463 4 1325 4	4.44 4.69 4.21	5 4 10 6 14		<2 <2 <2 <2 <2 <2 <2	2 3 2 <2	24 46 30 19 26	.4 .8 .4 .5 .2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 3 <2 <2 <2 <2	75 68 81 69 67	.24 .50 .27 .21 .35	.075 .063 .071	16 30 14 9 18	27 29	.80 .91 .69	160 179 170 175 201	.07 .11 .07 .06 .05	<33 <34 33 <32 <32	.78 .66 .90	.02 .02 .01 .02 .01	.09 .07 .07 .07 .12	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	4 5 6 6
L21N 10+00W L21N 9+50W L21N 9+00W L21N 8+50W L21N 8+00W	2 2 1 1 2	36 47 43 46 51	12 12	134 93 138	<.3 <.3 <.3 <.3 <.3	15 18 16 16 20	16 16 17	1299 4 1130 4 819 4 1253 4 1317 5	.61 .38 .39	<2 7 2 9	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	2 3 3 3 3	23 25 30 28 34	.5 .8 .4 <.2 <.2	<2 <2 <2 <2 <2 <2	3 <2 <2 3 <2	66 66 67 66 74	.23 . .25 . .32 . .29 . .36 .	. 119 . 089 . 136	11 11 14 16 23	23 23 1	.97 .13 .93	190 131 196	.07' .07 .07 .07 .07	<3 2 <3 2 <3 2 <3 2 <3 2 5 2	.80 .28 .81	.01 .02 .02 .02 .02	.07 .09 .08 .10 .13	<2 <2 <2 <2 <2 <2 <2	14 3 6 6
L21N 7+50W L21N 7+00W L21N 6+50W L21N 6+00W L21N 5+50W	2 2 3 7	54 46 56 54 13	10 13 15 13 <3	85 121 97	<.3 <.3 <.3 <.3 <.3	11 16 19 17 8	14 22 19	744 4 917 4 881 5 136 5 275 4	.42 .81 .29	7 6 7 <2 <2	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2	3 4 2 5 7	27 48 40 45 74	.4 .5 <.2 .4 <.2	<2 <2 <2 <2 <2 <2 <2	3 2 2 <2 <2 <2	69 74 72	.29 . .63 . .41 . .41 . .13 .	.137 .118 .129	12 25 29 34 19	17 27 1 22 26 1 17 1	.22 .94 .30	97 157	.04 .06 .05 .05 .02	3 2 <3 1 <3 2 <3 2 <3 1	.94 .64 .49	.01 .03 .02 .02 .02	.08 .09 .08 .11 .08	<2 <2 <2 <2 <2 <2	35 7 7 7 6
STANDARD C/AU-S	20	58	40	129	6.4	67	30	125 4	.05	41	18	7	38	51	7.5	17	22	60	.49 .	091	40	59	.91	210	.08	24 1	.88	.06	.15	11	49

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

٠

££

Tom Lisle FILE # 95-4534

Page	4
------	---

ACHE ANALYTICAL									·····				-																		AL YTICA
AMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	8 ppm	Al %	Na %	К %	W ppm	Au* ppb
21N 5+00W	2	38	7		<.3	15		406		<2	<5	<2	4		<.2	<2	<2	63	.22		14		.87		.08		2.37		.08	<2	
21N 3+00W 21N 2+50W	2	48 43	13 14	88 118	<.3 <.3	20 18		769 5		5	<5 -5	<2	3	33 26	<.2	<2	2	76	.28		16			151	.09			.02	.09	<2	
21N 2+00W	4	43 91	14		5	29		1254 4		5 3	<5 <5	<2 <2	2	20 42	.2 .4	<2 <2	<2 <2	69 71	.25		14 22		1.05	149 220	.07 .10		5.19 5.76		.12	<2 <2	-
21N 1+50W	3	65	7	106	<.3	19		603 5		<2	<5	<2	2	22	.5	<2	<2	79	.20		9	25	.97	91	.07	<3 3			.09	<2	1
21N 1+00W	4	69	10	123		17		629 5		<2	<5	<2	2		<.2	<2	5	70	.32 .		12	25		170	.07	<33		.01	.10	<2	1
1N 0+50W		42	16	160	<.3	16	. –	1014 4		2	<5	<2	2	23	.4	<2	2	63	.26 .		13	25		143	.05	<33			.11	<2	1
1N 0+00₩√ 9N 6+50₩	2	52√ 52	/ 11 / 8	138 76	<.3 <.3	16 14		574 4 538 4		8 <2	<5 <5	<2 <2	2 3	21 27	<.2 .3	<2 <2	<2 2	62 53	.20.		13 14	26 20	.95 .88	143 92	.05	33 <31	5.12 01		.09	<2 <2	
9N 6+00W	2	45	11	72	<.3	16		536 4		7	<5	<2	3	37	<.2	<2	<2	64	.33		13	20		100	.07	<3 2			.06	<2	
9N 5+50W	2	46	19	180		15		806 5		3	<5	<2	4	29	.3	<2	3	70	.25 .	. 149	16			147	.10	<3 2			.08	<2	
9N 5+00W	2	50	8	87	<.3	15		577 4		2	<5	<2	2	40	.3	<2	<2	68	.40 .		17	20 1		79	.09	<31		.02	.09	<2	
L15N 1+50W 9N 4+50W	2	90 24	18 4	170 71	<.3 <.3	18 19		1227 4 872 4		5 <2	<5 <5	<2 <2	27	28 41	<.2 .2	<2 <2	3 5	75 58	.30.		17 26	28 1 13		175 158	.07 .05	<33 <32	_		.16	<2 <2	4
7N 6+50W	3	33	•		<.3	12		772 4		<2	<5	<2	6	17	<.2	<2	<2		.14 .		15	17	• - ·	116	.09	<3 2			.08	<2	
7N 6+00W	11	80	15	64	<.3	15	21	516 7	7.33	10	<5	<2	10	24	.4	<2	4	56	.17.	219	18	19	.91	98	.03	<32	.73	.01	.07	<2	
N 5+50W	4	47			<.3	15		681 5		5	<5	<2	4	31	.4	<2	<2		.26 .		14	20		120	.08	32			.08	<2	i
7N 5+00W /	2	66 71	13 11	179 84	.3 <.3	20 17		734 4 1066 4		2	<5 <5	<2 <2	2 3	32 46	.2 .6	<2 <2	<2 2	64 67	.38.		2 3 20	23 28 1		141 112	.08 .07	<32 <32			.10	<2 <2	
N 5+00W	1		/ 12		<.3	18		935 4		5	<5	<2	2	40 33	.0	~2	2	68	.34 .		11	24		152	.07	<3 2			.10 .09	<2 <2	
N 4+50W	1	45	12	132	<.3	16	17	696 4	.35	3	<5	<2	2	35	.4	<2	<2	64	.36 .	070	14	24	.99	123	.09	<32	.31	.02	. 13	<2	
N 4+00W	1	40	9		<.3	13		672 4		8	<5	<2	2		<.2	<2	2	65	.36 .		11		.09	85	.07	<32			.09	<2	
N 3+50W N 3+00W	1	64 51			<.3	15		666 4 891 3		6	<5	<2	<2	34	.4	<2	2		.38 .		12	23		135	.07	32			.09	<2	
N 2+50W	ź	49			<.3 <.3	15 16		784 3		<2 2	<5 <5	<2 <2	2 2	33 26	.6 .5	<2 <2	<2 <2	61 62	.38 . .29 .		13 12	22 2 3		130 140	.07 .07	<32 <32			.09 .09	<2 <2	
N 2+00W	1	32	12	224	<.3	17	14	904 3	. 66	<2	<5	<2	2	25	.6	<2	<2	58	.28 .	138	9	20	.73	140	.08'	<32	.33	.02	.11	<2	
N 1+50W	2	83			<.3	16		1145 4		<2	<5	<2	2	27	.4	<2	<2	70	.29 .	123	16	26 1	.01	161	.07	<33	.07		.15	<2	
N 1+00W	1	47		132		16		881 4		6	<5	<2	2	24	<.2	<2	<2	70	.27 .		11	25 1		125	.06	<3 2			.12	<2	
N 0+50W /	1	55 31	14 13		<.3 <.3	19 16		1004 4 1122 3		5 9	<5 <5	<2 <2	3 2	24 28	.4 .8	<2 <2	<2 3	71 59	.24 .		15 9	28 1 21		160 171	.08	<33 32			.11	<2	
	1	21			`. 」	10				y	1	~2	2	20	.0	~2	2	28	.37 .	114	У	21	.70	171	.07			.02	.13	2	
N 5+00W	1	60	7		<.3	13		663 4		5	<5	<2	2		<.2	<2	3		.59 .		16	27 1			.08	<31			.10	<2	
N 4+50W N 4+00W	1	46 45	5 10		<.3 <.3	11 13		588 3 594 3		<2 5	<5 <5	<2 <2	<2 <2		<.2 <.2	<2 <2	2 2	58 60	.40 .		1 1 10	22 1 21	.00 .98	44 90	.08 .08	< 3 1 < 3 1			.09 .08	<2 <2	7
N 3+50W	ź	39			<.3	15	. –	696 4		5	<5	<2	2		<.2	<2	<2		.37 .		12			124	.08	32			.09	~2	1
N 3+00W	1	38	9	119		15	13	644 3	.94	7	<5	<2	2	30	.7	<2	<2		.34 .		10	23 1		90	.08	<3 1			.09	<2	
	20	60		132		71	72.4	160 4	17	42	16	7	-	52 1		19	23	58			41	12	~	190	~~		.95	~		11	4

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

٠

Tom Lisle FILE # 95-4534

raye J	Page	5
--------	------	---

44

ACHE ANALYTICAL								_																						-	TICAL
SAMPLE#	Mo ppm	Cu ppm	Pib ppm	Zn ppm	Ag ppm	N i ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg X	Ba ppm	Ti X	B ppm	Al %	Na %	K X		Au* ppb
L13N 2+50W L13N 2+00W L13N 1+50W L13N 1+50W L13N 0+50W	1 1 1 1	43 53 48 74 59	19 17 13 23 16	150 209 109 219 133	<.3 .3 <.3 .3 <.3	15 17 13 19 14	15 14 16	784 4 1317 4 869 4 1364 4 718 4	4.23 4.30 4.70	2 8 4 10 6	<5 <5 <5 <5 <5	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	2 2 3 2	27 24 23 31 26	.6 .6 .6 .7 .6	<2 <2 <2 <2 <2 <2	2 2 4 2 3	68 68 68 70 67	.24 .36 .40	.069 .127 .103 .259 .095	11 12 11 15 15		.81 .95	111 159 88 178 154	.07 .09 .07 .07 .08	<3 1 <3 2 <3 1 <3 2 <3 2	2.88 1.81 2.94	.01 .02 .02 .02 .02	.09 .10 .07 .14 .13	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	8 25 8 3 2
L13N 0+00W L10N 0+50E L10N 1+00E L10N 1+50E L10N 2+00E	2 1 2 1 2	143 30 31 25 29		119 117 98 77 191		15 16 15 11 14	12 13 10	988 4 774 3 1406 3 713 3 1887 3	3.85 3.56 3.31	10 3 4 3 2	<5 <5 <5 <5 <5	~? ~? ~? ~?	3 <2 <2 <2 <2 <2	28 33 40 26 32	.8 .8 .3 .5	<2 <2 <2 <2 <2 <2 <2	<2 3 2 3 3	84 66 58 58 57	.38 .52	.074 .072 .106 .049 .228	23 9 16 9 12	26 28 23 22 21	.95 .99 .82 .80 .81	149 98 192 80 194	.07 .08 .07 .08 .06	<3 2 <3 1 <3 1 <3 1 <3 2	.98 .51	.02 .01 .01 .01 .01	.09 .14 .20 .15 .11	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	3 2 <1 1 13
10N 2+50E 10N 3+00E 10N 3+50E 10N 4+00E 10N 4+50E	2 2 1 1 1	32 46 103 45 51		182 116 137 110 103	<.3 <.3 <.3	16 17 22 20 19	14 20 15	1150 3 971 4 2001 4 1325 4 1026 4	.14 .81 .74	6 2 2 6 4	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	2 2 2 2 2 2	24 30 61 23 19	<.2 .5 .5 .7 <.2	~? ~? ~? ~? ~?	2 <2 3 <2 3	58 74 69 81 72	.26 .39 .86 .27 .23	.123 .101 .200	12 10 25 10 16	29	.96 1.01 1.00	157 115 205 147 146	.07 .06 .08 .06 .06	4 2 <3 2 <3 3 <3 3 <3 3	.48	.01	.11 .11 .11 .10 .08	~? ~? ~? ~? ~?	27 5 47 7 10
10N 5+00E 9N 5+00W 9N 4+50W 9N 4+00W 9N 3+50W	1 1 1 1	45 - 43 36 37 40		125 105 210 135 108	<.3 <.3 <.3 <.3 <.3	19 16 17 15 15	12 13 12	1019 4 808 3 1087 3 656 3 752 4	.82 .77 .88	3 8 3 6 7	<5 <5 <5 <5	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	2 2 2 2 2 2 2 2	23 24 26 28 27	.3 <.2 .6 .5 .7	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	<2 4 <2 2 2 2	67 65 61 65 72	.27 .31 .30 .36 .33	.067 .119 .069	14 11 11 10 11	32 26 24 23 27	.82 .97	174 136 182 91 88	.05 .08 .07 .07 .08	<33 31 <32 <31 31	.94 .31	.02	.08 .10 .12 .12 .11	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4 5 31 2
9N 3+00W 9N 2+50W 9N 2+00W 9N 1+50W E L9N 3+00W	1 1 3 2 1	70 37 56 61 69	19 14 75 12 22	195 98 239 71 195	<.3 <.3 <.3 <.3 <.3	21 17 18 20 23	15 40 20	1339 4 908 4 1230 4 684 4 1331 4	.41 .92 .58	5 3 2 5 5	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	3 <2 2 <2 3	31 34 47 52 31	.6 <.2 .7 .3 .8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 3 <2 <2 <2 <2	70 78 63 82 69	.37 .46 .63 .72 .37	.097 .218 .092	22 18 31 16 21	27 1 28 1 20 33 1 27 1	.14 .90	211 97 136 101 210	.09 .10 .05 .07 .09	<33 <32 <32 <32 <33	.01 .29 .23	.02 .02 .02	.17 .16 .11 .11 .17	<2 <2 <2 <2 <2 <2 <2 <2 <2	
9N 1+00W 9N 0+50W 9N 0+00W 🗸 9N 1+00E 9N 1+50E	2 2 4 1	28 15 15 35 37	8 <3 5 14 11	120 48 33 183 143	<.3 <.3 <.3 <.3 <.3	14 8 5 18 16	9 10 15	1185 3 503 2 463 3 1531 4 937 3	.78 .14 .07	4 <2 4 <2 2	<5 <5 <5 <5 <5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 4 <2 2 <2	43 35 91 38 31	.8 <.2 .3 .6	< < < < < < < < < < < < < < < < < <> <>	<2 <2 <2 <2 <2 2	48 50	.57 .42 1.35 .49 .35	.025 .079 .149	16 17 19 13 13	15 9	.84 .83 .93		.07' .03 .01 .07 .08	<32 <31 31 <32 32	.65 .22 .33	.01 .01 .02	.12 .12 .09 .17 .15	<2 <2 <2 <2 <2 <2 <2	<1 <1 <1 4 9
PN 2+00E PN 2+50E PN 3+00E PN 3+50E PN 4+00E	1 1 2 1	29 23 38 99 40	10 12 18	182 193 149 162 113	<.3 <.3 <.3	18 18 22 17 18	11 ⁻ 14 ⁻ 16 ⁻	1103 3 1648 3 1539 3 1006 4 1155 3	.49 .68 .24	3 <2 2 <2 5	<5 <5 <5 <5 <5	< < < < < < < < < < < < < < < < < < <	<2 <2 2 2 2 2	30 31 26 31 29	.5 1.1 <.2 .2 .5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 3 2 2 2 2	60 62 63 69 61	.35 .37 .36 .36 .36 .34	.185 .190 .096	10 10 11 16 11	23 25 26	.68 .70 .83	223 159 163	.07 .08 .07 .08 .07	3 2 <3 2 <3 2 <3 2 <3 2 <3 2	.34 .23 .78	.02 .01 .02	.13 .13 .11 .11 .12	<2 <2 <2 <2 <2 <2	10 22
TANDARD C/AU-S	21	60	36	130	6.9	65	32	139 4	. 13	43	16	7	37	50	18.7	19	25	60	.50	.095	40	59	.91	175	.08	23 1	. 85	.06	. 15	10	4

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

££

Tom Lisle FILE # 95-4534

Page 6	5
--------	---

44

ACHE ANALTTICAL																														ACHE ANA	LYTICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm			Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	_	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	8i ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	8a ppm	Ti %	8 ppm	Al %	Na %	K %	W ppm	Au* ppb
L9N 4+50E	1	40	/17	125		16		2934		<2	<5	<2	<2	26	.4	<2	<2	63		. 178	12	26	.78		.06	<3 2			.12	<2	11
L9N 5+00E	1	53 •			<.3	18		846 4		10	<5	<2	<2	26	.7	<2	<2	65		.133	11	27	.98		.05	<3 2		.01	.12	<2	4~
L8N 0+50E	1	65		114		15		970 4		9	<5	<2	2	38	<.2	<2	<2	65		.070	21		1.15		.05	<3 2			.13	<2	5
L8N 1+00E	1	28		114		14		624		5	<5	<2	<2	28	.2	<2	<2	57		.094	9	22			.07		.87	.02		<2	2
L8N 1+50E	1	40	11	80	<.3	13	12	634 3	5.78	8	<5	<2	<2	32	<.2	<2	<2	62	.37	.053	10	24	1.09	83	.06	3 1	1.74	.01	.10	<2	4
L8N 2+00E	1	29	13	106	<.3	16	10	786 3	3.25	6	<5	<2	<2	30	<.2	<2	<2	53	.32	.050	10	21		137	.07		.65	.02	. 18	<2	4
L8N 2+50E	1	26	10	133	<.3	16	12	853 3	3.33	<2	<5	<2	<2	30	.4	<2	<2	53		.115	9	25	.75	160	.06		2.01		.13	<2	3
L8N 3+00E	2	41	9	125	<.3	17	11	988 3	5.65	4	<5	<2	<2	44	<.2	<2	<2	54	.60	.052	19	28		127	.07		2.50	.02	.10	<2	3
L8N 3+50E	1	37	14	207	<.3	16	13	1425 3	3.63	2	<5	<2	<2	38	.6	<2	<2	52		.136	13	26		196	.06		2.25	.01	.16	<2	3
L8N 4+00E	2	36	14	139	<.3	19	13	1001 3	5.98	4	<5	<2	<2	36	.5	<2	2	59	.42	.076	13	29	.87	145	.07	4 2	2.25	.01	.16	<2	3
L8N 4+50E	1	39	13	97	<.3	21	15	750 4	.01	7	<5	<2	2	28	.5	<2	<2	62	.31	.052	15	36	.97	106	.07	31	.87	.01	. 12	<2	4
L8N 5+00E	1	73 .	/ 11	104	<.3	21	18	994 4	. 69	5	<5	<2	<2	31	<.2	<2	<2	70	.35		18	40	1.15	131	.06	<3 2	2.71	.01	.12	<2	2~
L7N 5+00W	1	38		111	<.3	16	12	494 3	5.97	5	<5	<2	2	34	.3	<2	<2	67	.39	.065	15	27	.89	142	.10	3 1	.92	.01	.12	<2	4
L7N 4+50W	1	30	11	133	<.3	17	12	654 3	5.57	4	<5	<2	<2	29	.3	<2	2	59	.31	.085	9	25	.82	160	.08	<3 1	.85	.01	.10	<2	3
RE L7N 4+50W	1	30	7	133	<.3	18	11	655 3	5.57	7	<5	<2	<2	28	.2	<2	<2	59	.30	.086	9	24	.82	154	.07	51	.83	.01	.10	<2	3
L7N 4+00W	1	23	10	169	<.3	15	9	817 3	5.09	4	<5	<2	<2	26	.2	<2	<2	53	.28	.085	7	21	.66	139	.08	<3 1	.54	.02	.10	<2	1
L7N 3+50W	1	20	3		<.3	14	11	855 3	3.25	6	<5	<2	<2	28	.3	<2	2	56	.36	.091	9	27	.73	137	.07	<3 1	.59	.01	.14	<2	2
L7N 3+00W	3	287	26	61	<.3	22	36	470 4	.76	8	<5	<2	2	52	<.2	<2	<2	95	.61	.142	15	21	.93	62	.07	<31	.74	.01	.10	<2	44
L7N 2+50W	1	38	11	76	<.3	14		494 3		6	<5	<2	<2	33	.2	<2	<2	67	.39	.068	10	26	.83	58	.09	<31	.55	.02	.10	<2	5
L7N 2+00W	1	20	9	109	<.3	14	10	715 3	3.31	7	<5	<2	<2	36	.3	<2	3	57	.38	.078	9	24	.82	135	.09	<31	.70	.02	.18	<2	4
L7N 1+50W	1	34	9	124	<.3	15	15	1082 3	5.87	<2	<5	<2	<2	43	.6	<2	<2	64	.64	.058	13	30	1.07	137	.09	<32	2.10	.02	.27	<2	8
L7N 1+00W	i	25		111		17		726 4		5	<5	<2	<2	33	.3	<2	<2		.43		10	28	1.02	101	.09	<31		.02	.16	<2	4
L7N 0+50W	1	33		152		12		1320 3		3	<5	<2	<2	38	<.2	<2	3		.54		13	26			.06	<3 1	.99	.02	.20	<2	3
L7N 0+00	1	48	-	139	<.3	16		1087 4		6	<5	<2	<2	48	.4	<2	<2	67	.77	.060	17	30	1.03	162	.07	7 2	2.20	.02	.22	<2	4
L7N 0+50E	1	28	11	134	<.3	18	12	761 3	5.42	6	<5	<2	<2	31	<.2	<2	<2	53	.38	.084	10	24		158	.06	31	.88	.02	.13	<2	5
L7N 1+00E	2	35	8	235	<.3	15	14	1465 3	. 75	7	<5	<2	<2	32	.6	<2	2	56	.42	. 171	11	24	.83	246	. 05 '	32	.45	.02	.13	<2	3
L7N 1+50E	1	34	7		<.3	13		902 3		6	5	<2	<2	36	.6	<2	2		.47		14	23		118	.06			.01		<2	4
L7N 2+00E	1	46	11		<.3	13		681 3		8	<5	<2	<2	33	.4	~2	<2		.44		14		1.02	85	.06		.73	.01		<2	5
L7N 2+50E	i	33	8	190	.3	13		1254 2		3	<5	<2	<2		1.8	<2	<2		1.17		15	21	.74	166	.06			.01	.19	<2	2
L7N 3+00E	2	42	11	160	.3	15		1128 3		<2	<5	<2	<2	67	.6	<2	<2		.96		18	27		139	.06	<3 2			.10	<2	2
L7N 3+50E	2	58	16	172	< 3	18	13	1034 4	16	7	<5	<2	<2	47	.4	<2	<2	57	.73	.066	17	29	.87	183	.06	4 2	.90	.02	.23	<2	2
L7N 4+00E	1	43		263	<.3	17		1142 4		5	<5	<2	<2	34	.7	<2	3		.36		14	28		225	.06		.44	.02		<2	2
L7N 4+50E	1	33		190	<.3	17		1056 3		7	<5	<2	<2	32	.6	<2	2		.39		11	26			.07		.23		.15	<2	2
L7N 5+00E	i	37	12	199	<.3	16		1830 3		5	<5	<2	<2	31	.6	~2	2	51	.36		13	23	.72	240	.05	<3 2		.02	.18	<2	11
STANDARD C/AU-S	21	58	. –		6.4	67		1037 4		44	19	8	37		17.9	16	23		.50		40			186		28 1			.16	11	49
STANDARD C/AU-S	21	50	- 50	147	0.4	01		1037 4	.04	44	-17				11.7	10		50		.072	40	02	.71	100	.00	20 1	.07				

. .

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Tulameen Project Oct: 7,1995. E. Ostensoe.

GEOCHEMICAL DATA

		LOCATION	NTS											E. C	JSTENSOE
		 NORTH SOUTH		Survey-type	Depth	Hortzon	Colour	Material	% Gravel	% Organic	Clay	Silt	Sand	Bedrock	Romarks In forest
,[6+00		50,1	25	в	Reddust	A	20	,	25	45	10	-	steep slope Ely to
2			2+50		30	C (B)	Medium	Till	15		70	10	5	ESCr.	Creek at 2+85W Flows SW.
3			2+00		35	C	light brown	ショナ	15		75	10	-		W.facue slope 25°
4			1+50		30	C	light brown	これ	10		80	\mathcal{D}	•		1, Ho
5			1+00		30	С	brown	C124 +11	10		80	(0	-		10°W slope.
6			0+50		25	B	near black	Soil	10		70	15	5		ditto
7			0+00		25	B	brown	Modifier +11	20		60	15	5		below main road
8															1
9															
10															

DEPTH: Measured in meters.

HORIZON: Marked A. B. or C

COLOUR: Br. Brown. Bl. Black, R. Red. G. Grey. O. Orange. Dk. Dark. Lt. Light. MATERIAL; T Till; Co. Colluvium. A. Alkuvium. F. Fluvial. GF. Glaciofluvial. O. Organic.

ORGANICS; Visual estimate of organic content.

GRAVEL; Estimate of Gravel sized fragments.

	LOCATION	NTS												
	NORTH SOUTH	GRID EAST WEST	Survey-type	Depth	Hortzon	Colour	Material	% Gravel	% Organic	Clay	Silt	Sand	Bedrock	Romarks Forested
1	6+00	8+00	Soil	20	В	media	m Sand	1. 20		30	35	15		On slope, Some talus
2		7+50		20	В	medium		. 40		20	25	15		Talus area-andesita
3		7+00		20	В	dark brown	Collev	30		30	25	15		Talus-more soil
4		6+50		20	B(?)	brown	Modified till+all	v. 10		30	45	15		Grassy slope - 25°W
5		6+00		25	В	Slightly	4 Allur	20		50	20	10		Flatter. 10°W.
6		5+50		30	BC	brown	+(1(?)	15		65	15	5		Flat 5°s.
7		5+00		25	B	Rich	501	10		65	25			Flat, Good B' soil.
8		4+50		20	B-C	Medium to choc	brown.Till	15		60	20	5		5/ope easterly 10°
9		4+00		20	B-C	Light	Allue. +	20		65	10	5		Lower B+c. till.
10		3+50		20	B	Medium brown	Allur.	20		70	10	-		Slope 20° south
														1

DEPTH; Measured in meters.

HORIZON; Marked A, B, or C

COLOUR: Br. Brown. Bl. Black. R. Red. G. Grey. O. Orange. Dk. Dark. Lt. Light.

MATERIAL; T Till; Co. Colluvium. A. Alluvium. F. Fluvial. GF. Glaciofluvial. O. Organic.

ORGANICS; Visual estimate of organic content.

GRAVEL; Estimate of Gravel sized fragments.

Tulameen Project Oct. 7, 1995

		LOCATION	NTS											E, Ost	ensoe
_		 NORTH SOUTH	GRID EAST (WEST)	Survey-type	Depth	Horizon	Colour	Material	% Gravel	% Organic	Clay	Silt	Sand	Bedrock	Romarks Forested
1		7+00	0+05	Soil	50	BK	Grey	Till	5		85	10	0	1	balow Main road (10E-20E)
2			0+50		25	B/c	Grey	Modified +,11	10		75	10	5		not as steep.
3			+00		25	С	Light	taw till	10		75	15	1		
4			1+50		25	B/c	Light	till	5		75	15	5		small cr. flows SW at 1+38W
5			2+00		30	B/C	Light Grey-brow	Alluv.+ +11	10		60	20	10		
8			2+50		60	С	Grev	+,11	15		65	15	Ъ		at 2+43W. Tree reat special spl.
7			3+00		30	<u>ر (B)</u>	brown	Allur.	25		50	15	10		Small cr. flows SSW at 2+70W
8			3+50		20	B	reddish b	Allur	20		45	20	15		on 5 slope of 20°.
9			4+00		30	BIC	Pale	Allur +	til 15		55	20	10		Flatter ground
10			4+50		30	ß		Allwa	20	ţ	50	20	10		

DEPTH; Measured in meters.

HORIZON; Marked A, B, or C

COLOUR: Br. Brown. Bl. Black. R. Red. G. Grey. O. Orange. Dk. Dark. Lt. Light.

MATERIAL; T Till; Co. Colluvium. A. Alluvium. F. Fluvial. GF. Glaciofluvial. O. Organic.

ORGANICS; Visual estimate of organic content.

GRAVEL; Estimate of Gravel sized fragments.

Tulameen Project Oct. 7, 1995 E. Ostensoe.

				LOCATION	NTS UTM											<u> </u>		
				NORTH SOUTH	GRID EAST WEST	Survey-type	Depth	Horizon	Colour	Material	% Gravel	% Organic	Clay	sin	Sand	Bedrock	Remarks	
,[7+00	5+00	Soil	50	B	medium	Alluv	20		40	30	10	_		
2					5+50r		30	18		Allur.	20		40	30	10	-	Angular frag of white TT.	
3					6+00		30	В	Light	Alluv.	20		30	40	10		Gentle slope.	
4					6+50		25	B/c	grey brown	+111?	20		55	20	5		Top of steep stope Wester	٩γ.
5					7+00		20	C	light	+.11	15		70	10	5		clay till	
8					7+50		20	C	V. light brown	+==((15		70	15			<i>c</i> ² (,	1.1
7					8+00		20	B ?	light brown	allur.+C	o, 20		50	20	10		green chloritized gubbroic zh buned talus steep s/go	oe h
8					8+50		20	د	light	211uv.++	11 20		60	15	5		outcrops of andesite	
9					9+00	Line e	nds		8+62			ofs	fe	e_{p}	olu	Frs. 1	argush creek is	
10					9+50	at	abo	at "	9+00		Rock	is d	ark	<'n	nont	zonite	ewest of creek	
H C	ORIZ	ON; UR:	Marke Br. Bi		(O+OO	ge. Dk. Dank. Lt.	. Light.	Me	ostly	ande	site	east	of m	onz	eek prit	j with re 'm	th variations embers'.	

MATERIAL; T Till; Co. Colluvium. A. Alluvium. F. Fluvial. GF. Glaciofluvial. O. Organic.

ORGANICS; Visual estimate of organic content.

GRAVEL: Estimate of Gravel sized fragments.

October 4,1995.

	LOCATION	NTS												
	NORTH SOUTH	GRID RAIN BOU	ں Survey-type	Depth	Horizon	Colour	Material	% Gravel	% Organic	Clay	Sin	Sand	Bedrock	Remarks
1	L7+00N	5+00	Soil	25	•		stone	25		40	25	ō		
2		4+50		25	В	brown	211uv.	15		65	15	5		
3		4+00		25	В	dark		15		60	ro	S		
4		3+50		25	B/C	med. brown	clay	10		70	5	5		
5		3+00		30	J	dk brown	stay	5		70	20	5		
6		2+50		25		almost	cay	0		85	10	5		clay + organics (?)
7		:2+00		35	Ċ	brown	clay 7,11	5		75	20	0		at N side of road
8		1+50		25	c		c124 t(11	5		80	15	ь		steep slope to west
9		1+00		25	BC	prom		5		75	15	5		flat ground
10		0+50		25	В	med . Jartin	clay	5		80	10	5		\

DEPTH; Measured in meters.

HORIZON; Marked A, B, or C

COLOUR: Br. Brown. Bl. Black. R. Red. G. Grey. O. Orange. Dk. Dark. Lt. Light.

MATERIAL; T Till; Co. Colluvium. A. Alluvium. F. Fluvial, GF. Glaciofluvial, O. Organic.

ORGANICS; Visual estimate of organic content.

GRAVEL; Estimate of Gravel sized fragments.

CLAY-SILT-SAND. Low to moderate to high estimates.

Mam Lowless Creek Road at 0+25E.

October 4,1995

GEOCHEMICAL DATA

	LOCATION	NTS UTM													
	(NORTH) SOUTH	GRID	Survey-type	Depth	Horlzon	Colour	Material	% Gravel	% Organic	Clay	Slit	Sand	Bedrock	Remarks	
1	L 7+00N	10+00E		25	B(c)	med.	2124	10		75	15	0		In forest	
2		9+50		40	Bic	light grey-br	allur.	25		45	15	15		Top of slope w to cree	k
3		9+00		40	B	med to ngit	211uv. 2)1uv.	40		20	20	20			
4		8+50		35	B	dk	aller.	15		65	15	5		Edge of forest at 8+7	เราะ
5		8 +00		30	ъ	ork to	allur	20		45	20	15			
8		7+50		30	Ъ	dk brown	aller	20		40	25	15			
7		.7+00		35	B	dk brown	allur.	10		45	30	15		Road at 6+90 to 6+0	95E
8		6+50		30	B	hrown	alluv.	lo		50	30	10			
9		6+00		25	B	dark brown	aller:	10		70	15	ő		Steep stope to saith Road is 15 m south	
10		5+50		25			alluv.	10		70	15	5			

DEPTH; Measured in meters.

i. E

Ĩ

HORIZON; Marked A, B, or C

COLOUR: Br. Brown. Bl. Black. R. Red. G. Grey. O. Orange. Dk. Dark. Lt. Light.

MATERIAL; T Till; Co. Colluvium. A. Alluvium. F. Fluvial. GF. Glaciofluvial. O. Organic.

ORGANICS; Visual estimate of organic content.

GRAVEL: Estimate of Gravel sized fragments.

October- 41995.

GEOCHEMICAL DATA

		LOCATION	NTS UTM GRID 군요1~월 EAST WING T	ంట Survey-type		Horizon	Colour	Material	% Gravel	% Organic	Clay	Silt	Sand	Bedrock	Remarks
1		18+00N	0+50	Seil	:25	в		allur.	25		45	20	10		Port siemple
2			1+00		25	С		+.11	15		60	20	5		fair
3			1+50		30	С		+.11	15		65	20	1		fair
4			2+00		30	Bic		modifie til	d 10		70	20			steep slope Westerly
5			2+50		30	Bic			ZO		70	(0	1		flat
6			3+00		25	B		Alluu.	25		4 t	20	15		jentle slope
7			3+50		25	BÍC		1、11?	20		65	10	5	- - -	fair
8	ľ		4+00		20	c		T.11	15		75	10	5		
9			4+50		25	Bic		7.11	15		75	10	5		
10			5+00		40	C		TII	15		75	10	5		good clay till

DEPTH; Measured in meters.

HORIZON; Marked A, B, or C

COLOUR: Br. Brown. Bl. Black. R. Red. G. Grey. O. Orange. Dk. Dark. Lt. Light.

MATERIAL; T Till; Co. Colluvium. A. Alkuvium. F. Fluvial, GF. Glaciofluvial, O. Organic.

ORGANICS; Visual estimate of organic content.

GRAVEL; Estimate of Gravel sized fragments.

October 4,1995.

GEOCHEMICAL DATA

			LOCATION	NTS UTM												
_		 	NORTH SOUTH		Survey-type	Depth	Horizon	Colour	Material	% Gravel	% Organic	Clay	Silt	Sand	Bedrock	Remarks
1			L8+00N	5+50E	Soil	20	C		Colluv+	Zo	*	60	10	10	Nieclz Vole.	V-Shallow
2				6 +00		20	С		Collus.	10		60	zo	10	grey f dacite	ragmental
3				6+50		30	B	Ak brown				70	30			
4				7+00		25	B	cik brow	n	10		65	20	5		Poor
5				7+50		25	B	dk brown	Alluv.	10		80	10			1
6				8400		25	3	dik brown	Alluv.	10		70	20			
7				8+50		35		grey brown	I I	5		85	10			forest starts at 8 +60E
8				9+00		25	C-	grey brow	n Till	15		75	5	5		top of slope easterly to creek at 9+15E
9				9+50		25	ß	pale brown	T.1	10		70	15	5	,	top of slope easterly to creek at 9+15E Top of east side of creek walley
10				10+00		25	ß	med. brown		10		75	10	5		Tried to sample B soil on top of
-	COTI	 	d in metars													-+.11

DEPTH; Measured in meters.

HORIZON; Marked A, B, or C

COLOUR: Br. Brown. Bl. Black. R. Red. G. Grey. O. Orange. Dk. Dark. Lt. Light.

MATERIAL; T Till; Co. Colluvium. A. Alluvium. F. Fluvial. GF. Glaciofluvial. O. Organic.

ORGANICS; Visual estimate of organic content.

GRAVEL; Estimate of Gravel sized fragments.

Tulameen Project Boulder Mtn.

Sampled by: E. Ostenso.

	Lookinon	UTM												N N
	NORTH SOUTH		Survey-type	Depth	Hortzon	Colour	Material	% Gravel	% Organic	Clay	Siit	Sand	Bedrock	Remarks In old logged area
1	9+00	5+00	Soil	20	2	Yellow brown		20		60	10	10	Green ep andeste	obtic Bedrock from 5+40E to 4+50E
2		4+50		10	в	Light	Co	30	5	30	20		Andeste	
3		4+00		25	C	Grey brown	τια	20		65	10			West slope
4		3+50		40	BC	Redust	Allur	20		65	10	5		Good material.
5		3+00		40	C ?	Light	Modifies	20		60	15	5		
		2+50		50	B/c	Light	modefie	1/5		65	[5	5		Fair to good
7	1	2+00		30		brown	K	20		65	10	5		Fair to good on W slope to main road
8		1+50		40	С	Light	Madi	20		70	5	5		1
9		(+00		40	B-C	Light brown	Alluv.	20		70	5	5		
10	NS.	0 +50												No sample-wet blue
DEPTH; Measur	DEPTH: Messured in meters.													

HORIZON; Marked A, B, or C

COLOUR: Br. Brown. Bl. Black. R. Red. G. Grey. O. Orange. Dk. Dark. Lt. Light.

MATERIAL; T Till; Co. Colluvium. A. Alluvium. F. Fluvial. GF. Glaciofluvial. O. Organic.

ORGANICS; Visual estimate of organic content.

LOCATION

NTS

GRAVEL; Estimate of Gravel sized fragments.

Tulaneen Project Boulder Mountain Area Sampled by: E.Ostensoe Oct. 2,1995.

		UTM												Oct. 2, 1995.
	NORTHSOUTH	GRID EAST WEST	Survey-type	Depth	Hortzon	Colour	Material	% Gravel	% Organic	Clay	Silt	Sand	Bedrock	Remarks In forest.
	9+00	10+00	SOIL	40	B/C	Yellow	Allur.	50		15	20	15		Pea gravel.
		9+50		30	C	Grey	STAT TIT	15		60	20	15		Creek at 9+30E
		9+00		25	Ċ	Gret (Vellow)	Clay	15		75	10			On cut bank-slope (6
		8+50		35	C	brown	Alluvium	+ 20		70	10			Forest to 8+85E
		8+00		35	Ċ	brown	1 Clay+ Əlluvini	, 20		60	10	10		Fair material. Rock
		7+50		25	В	Park	Organic in part			65	20	0)		Flat ground. normal
		7+00		20	в	Dark brown	501	5		60	25	10		Road at 6+95E
		6+50	~	25	DIC	brown	n claye till	^Y <5		80	15			Open slope.
		6+00		25	DIC	brown		5		75	5	5		
		5+50		25	ß	Reddish	soil	5		70	20	5		Mixed Bhorizin + till C Good sample. Top of "Vidge"
"Tidge"														

DEPTH; Measured in meters.

HORIZON; Marked A, B, or C

COLOUR: Br. Brown, BL. Black, R. Red. G. Grey. O. Orange. Dk. Dark. Lt. Light. MATERIAL; T TIII; Co. Colluvium. A. Alluvium. F. Fluvial. GF. Glaciofluvial. O. Organic.

ORGANICS; Visual estimate of organic content.

LOCATION

NTS

GRAVEL; Estimate of Gravel sized fragments.

		LOCATION	NTS UT M												
		NORTH SOUTH	GRID EAST WEST	Survey-type	Depth	Hortzon	Colour	Material	% Gravei	% Organic	Clay	Silt	Sand	Bedrock	Remarks Logged but regeneration Juvenia pine trees grow
1		10+00	5+50E	Soil	20	C	Light.	Rocky	25		60	10	5		Gentle slope to east.
2			6+00		20	С	Light brown	TIL	20		65	15			Gentle slope to east. shallow A/B As above. soil due to fires?
3			6+50		30	B/c	Light readish prown	T.11	5		75	20			clavey, Hard. Gentle (1) stope E'ly.
4			7+00		20	c	Grey brown	$-\tau_{\rm eff}$	15		70	15			Hard
5			7+50		25	С	Yellowisi	Rocky	20		70	10			Hard. May have mnor alluvius
8			8+00		25	c	Yellow	CIZY Till	15		65	10	10		Almost flat.
7			8+50		20	د	Grey	11	20		65	10	5		Slopes East. Forestedge at
8			9+00		15	C	Gree	CLAY	~ 5		90	5	Tr.	Varved type	Slopes East. Forestedge at Top of slope to incised creek 8+65E. at 9+25E
9			9+50		40	с	Grey brown	Rocky	20		70	5	5		at 9+258 Top of slope E of creek.
10			10+00		25	C	Light	Rocky + clayey	20		70	5	5		

+11

.

. ~.

DEPTH; Measured in meters.

HORIZON; Marked A, B, or C

COLOUR: Br. Brown, Bl. Black, R. Red. G. Grey, O. Orange, Dk. Dark, Lt. Light.

MATERIAL; T Till; Co. Colluvium. A. Alluvium. F. Fluvial. GF. Glaciofluvial. O. Organic.

ORGANICS; Visual estimate of organic content.

GRAVEL; Estimate of Gravel sized fragments.

					G	EOCH	IEMICA	LDAT	Α									
			PROJECT	TULAMO	EEN	_			SAMPLER	E. Os	tensoe							
			GENERAL LOCATION	Boulder	Mountain	_			DATE	OCT.	2,1995							
									NTS MAP SHEET	9	2							
			LOCATION	NTS														
				UTM														
		(NORTH SOUTH	GRID EAST WEST	Survey-type	Depth	Horizon	Colour	Material	% Gravel	% Organic	Clay	Silt	Sand	Bedrock	Remarks	Logged	area.
Т	Т	T				<u> </u>			1					02.10	Didioch			
			10+00	0+50E	So.	30	C	Grey	clay	5		70	25	-	-			
Т		Τ				25						1	, L	-				
				1+00E		35	C	Greybr	dwn Iill	10		10	15	5	-			
														_				

2			1000			Grey	gwa III			10		\sim		
3			1+50E	25	C	Grey	TIL	10		70	15	5		
4			2+00	30	د	Grey	Till	10		70	15	5		
5			2+50	20	С	Grey-brou	Stoney Till	, 15		70	10	5		inface layer of allowium
6			3+00	30	B/c	Redust	modifie till	4 20		50	20	10		
7			3+50			Pale Yellows		20		60	15	5		lock of - frag andesite
8			4+00	20			Allur.+Till	25	-	50	15	10	·F	bor material Flat.
9			4+50	40		1	Clay till	20		60	15	5	B	edrack epidotic andesite, 2000 Flat. Quits.
10			5+00	25	BK	Brown	· T.II	20		65	15			lat. Rocky.

.

SURVEY TYPE: S=Soil; SS=Silt; R=Rock Chip

•

DEPTH: Measured in meters.

HORIZON: Marked A, B, or C

COLOUR: Br. Brown. Bl. Black. R. Red. G. Grey. O. Orange. Dk. Dark. Lt. Light.

MATERIAL: T Till; Co. Colluvium. A. Alluvium. F. Fluviai. GF. Glaciofluviai. O. Organic.

ORGANICS: Visual estimate of organic content.

GRAVEL: Estimate of Gravel sized fragments.

	PROJECT GENERAL LOCATION	Tulam Boulder	een Mtn	-			SAMPLER DATE NTS MAP SHEET	Sept	0ster 15,1 92H/10	995		- -			
	LOCATION	NTS UTM													
 	 NORTH SOUTH	GRID EAST WEST	Survey-type	Depth	Horizon	Colour	Material	% Gravel	% Organic	Clay	Silt	Sand	Bedrock	Remarks	
	L 30+00N	15+00	501	50	B	Brown	Till	10		50	25	15		In clearing. Fair toge	bod
		14+50		45	B	brown	+111-11ke	. 15		40	25	20		In Forest. Stoney.	
		/4+00		40	В	pale	+	20		40	25	15		As above. Angular Frags from	
		13+50		20	В	brown	tatus -	40		5	15	40		bedrock surface. Sve	mt
		13+00		20	C	grey	Co	30		15	20	35		V. shallow soil on roc	0.
		12+50		45	В	grey brow	n Till?	10		50	30	10		clay	
		12+00		30	B	brow	GF?	10		50	35	5		501/-much clay	
		11+50		60	в	Light	GF?	15		50	30	5	•	Soil-clay + rock	
		11+00		50	в	light		15		40	35	10		5011	
		10+50	No 5	an	ple.	In	large	60	a ar	tea					

SURVEY TYPE: S=Soil; SS=Silt; R=Rock Chip

DEPTH: Measured in meters.

9

10

HORIZON: Marked A, B, or C

COLOUR: Br. Brown. Bl. Black. R. Red. G. Grey. O. Orange. Dk. Dark. LL Light. MATERIAL: T Till; Co. Colluvium. A. Alluvium. F. Fluvial. GF. Glaciofluvial. O. Organic.

ORGANICS: Visual estimate of organic content.

GRAVEL: Estimate of Gravel sized fragments.

PROJECT			EOCH	EMICA			E OS	tensoe						
GENERAL LOCATION	Tulame. Boulder	mtn	, , ,			DATE NTS MAP SHEET	Sept.	15 19 2H/104	95.					
LOCATION														`
 NORTH SOUTH	EAST WEST	Survey-type	Depth	Horizon	Colour	Material	% Gravel	% Organic	Clay	Silt	Sand	Bedrock	Remarks	
31+00	10+50	Soil	45	8	Med. brown	Light	5	5	45	35	10		In Forest.	Good soil.
	11+00	No sa	mple	<u>.</u> B	0994		d							1
	(1+50		50		Brown	Clayer Soil	5		60	25	10		In forest.	FAIR.
	12+00		4D	ß	Dark Grey	clay soil		10	65	20	5		11 11	// <u>,</u>
	12+50		35	B	Brown	Till	5		55	30	10		slashed and 12+40 within	ez from ge parallels 53 e fo 13+00W/ 5 W '/y.
	13+00		40	B	Brown	501	5		60	25	10	Gdio.	Bedrock she	5 w "y. allow.
	13+50		40		Brown	T11/501	10		50	30	I			
	14+00		35	B	Red brown	T.11	15		50	20	15	•	Wet grow,	nd
	14+50		40	B	Brown		15		50	25	10		<u> </u>	
	15+00		30	B	Brown	Co/till	20		30	30	20		Sol from	bedrock
													Su	Mace,

SURVEY TYPE: S=Soil; SS=Silt; R=Rock Chip

DEPTH: Measured in meters.

HORIZON: Marked A, B, or C

COLOUR: Br. Brown. Bl. Bleck. R. Red. G. Grey. O. Orange. Dk. Dark. LL Light. MATERIAL: T Till; Co. Colluvium. A. Alluvium. F. Fluvial. GF. Glaciofluvial. O. Organic.

•

•

ORGANICS: Visual estimate of organic content.

GRAVEL: Estimate of Gravel sized fragments.

			G	EOCH	IEMICA									
	PROJECT GENERAL LOCATION	Boulder	Mtn	- -			SAMPLER DATE NTS MAP SHEET	E.O: Sept.	5tens 15,19 24/10	95 45 21				
	LOCATION	NTS												
	NORTHEOUTH	GRID EAST WEST	Survey-type	Depth	Horizon	Colour	Material	% Gravel	% Organic	Clay	Sin	Sand	Bedrock	Remarks
1	32+00	15 +00	Soil	50	В	Lt brown	Stoney	20		20	30	30	gdio	In slash. Bldrs.
2		14+50		50	B	Med brown	c/24ey +.11	20		35		1	5	Gentle slope.
3		14+00		40	B		Gravelly	25		25	35	15		· · · · ·
4		13+50		70	B/C	Greenish		20		40	25	15		Flat. Vof road (W-S)
5		13+00		40	B/C	1	11	20		40	25	15		
8		12+50		40	r.	Grey brown	Clay	ſ		75	15	5		. <u>Same as 13+50</u> W.
7		12+00		<i>4</i> 0	B	1 1	sity till	5		50	35	10		11
8		11+50		45		Media	Light soil	10		50	30	10	•	Gottle slope. Till (?)
9		11+00		40	в	Dark brown	Muddy	-		60	30	10		Flat.
10		10+50		25	в	Dark grey-br	Dense	-		75	20	5		Glacial.

SURVEY TYPE: S=Soil; SS=Siit; R=Rock Chip

DEPTH: Measured in meters.

HORIZON: Marked A, B, or C

COLOUR: Br. Brown. Bl. Black. R. Red. G. Grey. O. Orange. Dk. Dark. Lt. Light.

MATERIAL: T Till; Co. Colluvium. A. Alluvium. F. Fluvial. GF. Glaciofluvial. O. Organic.

ORGANICS: Visual estimate of organic content.

GRAVEL: Estimate of Gravel sized fragments.

	PROJECT GENERAL LOCATION	<u>Tulam</u> Boulder		EOCH	IEMICA	L DATA	SAMPLER DATE NTS MAP SHEET	E. Os Sept. 9	tensoe 15,199 24/10	5 v/		- -		
		NTS UTM GRID EAST WEST												
·	NORTH SOUTH	EAST	Survey-type	Depth	Horizon	Colour	Material	% Gravel	% Organic	Clay	Sint	Sand	Bedrock	Remarks
1	33+00	10+50	501	55	в	Brown	soul	20		15	30	35		slash block is at 10+85.
2		11 + 00		55	В	med brown	Clayey Soil	10		50	30	10	-	in slash. Good soil. May be till,
3		11+50	No san	ple.	Site	15	a black	muck k	009.					Marshy flat
4		12+00		60	B	Grey brown	-T.11	25		25	30	20	9 dio.	
5		12+50	No same	le .	Site	15 0	n top	ofzba	re adia	kn	06.			
6		13+00		40	BC	Grey/ brown	Till	25	- 7		25	20	gdio	On W slope. Fair to good
7		(3+50		60		Med.	clay at	Ø	10	65	20	5	-	Accumulation now dry . Pond about 20m. diz.
8		14+00		60	в	DK	Alluv?	20		15	43	20	qdio.	Flat ground. skanny altic patches
9		14+50		35	B	Brown	Allur. ?	15	3	22	40	20	g dio	skanny altic patches epidote, Shallow soil-
10		15+00	5011	50	B	Brown	Allur. ?	20	5	15	40	20	gdio.	Fair In slash.

SURVEY TYPE: S=Soil; SS=Silt; R=Rock Chip

DEPTH: Measured in meters.

HORIZON: Marked A, B, or C

COLOUR: Br. Brown. Bl. Black. R. Red. G. Grey. O. Orange. Dk. Dark. Lt. Light.

.

MATERIAL: T Till; Co. Colluvium. A. Alluvium. F. Fluvial, GF. Glaciofluvial. O. Organic.

ORGANICS: Visual estimate of organic content.

GRAVEL: Estimate of Gravel sized fragments.

		PROJECT GENERAL LOCATION	Boulder	EN Mtn.	-			SAMPLER DATE NTS MAP SHEET		Oste 14/15 12H/101	1995		-		
			NTS UTM EAST WEST	Survey-type	Depth	Horizon	Colour	Material	% Gravel	% Organic	Clay	Silt	Sand	Bedrock	Remarks
1		34+00			20	B ?		Rocky		5	10			1	In slash. V. dry. V. rocky. Poor sample.
2			14+50		25	B	med brown	"	30	/	10	40	10	Gdia	
3			14 + 00		50	B		Some	25	3	7	50	15		Fair to go od sample. In a some times drainage channel.
4			13+50		35	B	Lt to med br	Washed till?	25	l	10	45	20		On slope still in slash.
5			13-00		30	R	Yellow	Co/51	20)	10	45	20		Flat. Shallow soil on be
6			12-50		30	B	medhown	A) ++,11	15		15	40	30		Good soil. In forest
7			12+00		50	B	Lt brown	A1 + +11	20		20	40	20		Good. Slash at 12+25V
			11+50		40	B	brown	Gravelly	20		25	30	25	•	Fair sample of till.
9			11+00		45	B/C	Grey brown	Till	30		35	20	15		Edge of forest at 10+90W. Good till
10			10+50		80	B/C	med brown	π(1	:15		55	20	10		In forest. From tree root. Good.

-

-

SURVEY TYPE: S=Soil; SS=Silt; R=Rock Chip

DEPTH: Measured in meters.

HORIZON: Marked A, B, or C

COLOUR: Br. Brown, Bl. Black, R. Red. G. Grey, O. Orange, Dk. Dark, LL Light, MATERIAL: T Till; Co. Colluvium, A. Alluvium, F. Fluvial, GF. Glaciofluvial, O. Organic,

ORGANICS: Visual estimate of organic content.

GRAVEL: Estimate of Gravel sized fragments.

PROJECT	Tuamee
GENERAL LOCATION	BOHLDER

NTS

 \sim MTN

SAMPLER	E, OSTENSOE
DATE	Sept. 14,1995
NTS MAP SHEET	92H/10W

LOCATION UTM

1 1

ř

		NORTH SOUTH	GRID EAST (WEST)	Survey-type	Depth	Horizon	Colour	Material	% Gravel	% Organic	Clay	Siit	Sand	Bedrock		
1		35+00	15+00	501	35	8	Lt brown	sandy gravelly til	1 25		10	15	50		At Boor	Sample.
2			14+50	, ,	35	В	L+ brown		20		25	35	Zo		Rock	area: Fair spl.
-3			14+00	*	35	В	L+ brown	Sandisilt gravel	15		20	40	25		1 1	usoil. God.
*			13+50	50,1	60		med br	Podsolic	10	2	25	40	15			. Good.
5			13+00	~	25	B	Lt br	Rocky	10	2	35	35	20		Tonot	Endre. Fair.
. 6			12+50	V	40	B	med		15	/	35	30	10			, , , , , , , , , , , , , , , , , , ,
7			12+00	\checkmark	35	B	Ltr	P C	15	/	40	40	5		11	. Fair/poor
8			11 + 50		40	R	Lt or.	11	10		40	40	10		Gentl	e sope E'ly, Fair.
9			11+00	V	35	в	+++	Gravelly	20		35	30	15		shallo	w and rocky.
10			10+50		50	в	Ltor	Cobbies, Klay, till	15		40	35	10			r. Flat. Good

SURVEY TYPE: S=Soil; SS=Silt; R=Rock Chip,

DEPTH: Measured in meters.

HORIZON: Marked A, B, or C

COLOUR: Br. Brown. Bl. Black. R. Red. G. Grey. O. Orange. Dk. Dark. Lt. Light.

MATERIAL: T Till; Co. Colluvium. A. Alluvium. F. Fluvial. GF. Glaciofluvial. O. Organic.

* DRGANICS: Visual estimate of organic content.

GRAVEL: Estimate of Gravel sized fragments.

						EOCH			λ	_						
			PROJECT GENERAL LOCATION	BOULDER	MTN	-			SAMPLER DATE	Sept	STENSO	195		•		
						- .			NTS MAP SHEET	12	924/10	W				
			LOCATION	NTS UT <u>M</u>												
		 	NORTH SOUTH	GRID EAST WEST	Survey-type	Depth	Horizon	Colour	Material	% Gravel	% Organic	Clay	Silt	Sand	Bedrock	Remarks
1			36+00	10+50	ے ما	45	B	Brown		20		30	30	20		FAIR. Flatterrain.
2				11+00		40	В	Ltorown		15		35	35	<i>'15</i>		shallow light texture. Silty soil
3				11+50		60	в	Ltbrown	T.11	15		30	45	10		Fair. Light soil.
4				12+00		50	в	Gray brown		15		35	40	10		As above.
5				12+50		40	B	Brawn	Rocky	20		30	35	15		coarse cobbles.
6				13+00		25	B	Grey brown		20		30	30	20	GÍA	290-70°S chloritic
7	exe			13+50		30	B	L+ brown	stoney	20		35	25	20		Fair sample.
8				14+00		65	B	med. brown	Fine silt!	10		40	40	10	•	Fairly good Sample.
9				14+50		40	B	med. brown	shallow soil on b	ad 10		35	45	10		Good. Close by gdi
10	-			15+00		45	В	Brown		20		35	30	15		Good Very rocky.

SURVEY TYPE: S=Soil; SS=Silt; R=Rock Chip

DEPTH: Measured in meters.

Rein H

HORIZON: Marked A, B, or C

.

1.1.2 h.A.

COLOUR: Br. Brown. Bl. Black, R. Red. G. Grey. O. Orange. Dk. Dark. Lt. Light.

MartERIAL: T Till; Co. Colluvium, A. Alluvium, F. Fluvial, GF. Glaciofluvial, O. Organic, ORGANICS: Visual estimate of organic content.

GRAVEL: Estimate of Gravel sized fragments.

						G	EUCr			•							
				PROJECT	Tular	CRN				SAMPLER	E.C)stens	oe				
				GENERAL LOCATION	Zoulde	- Mth	-			DATE	Sent				••		
						<u> </u>	-			NTS MAP SHEET			·		•		
															•		
				LOCATION	NTS:												
				LOOKTON													
					GRID												
				NORTH SOUTH	GRID FAST WEST	Survey-type	Depthy	Hortzon	Colour	Material	% Gravel	% Organic	Clay	Silt	Sand	Bedrock	Remarks in forest
Г	TT	TT							med.	1			T			Γ	T
				37+00	1.0+00	501	90	B	brown	+.11	20		50	25	05		Good sample
	++	++	+-		110 00	~~~	1.0		med.	1,11	~~~		120	<i>A</i>	02		CTODA SAMPLE
					0.50		100	B	mean	- In (I		2	25	25	20		
2				•	9+50		55	D	brown	+11	10	3	35	ر و	~~		Good sample
·							-		med				-	.		· ·	
3					9+00		30	B	brown	1.11	20		50	20	15		Glacial.
Г																	
					8+50		25	Ċ	grey brown	+.((15		60	20	5	1	Shallow. Hard clay.
-⊦-	┼╌┼╸	++							med.	modified	/ 2					1	SALIOW . Mara Clay.
					8+00		25	B		I / /.	15		50	25	10	F.gr. Paleic.	
5	╇	+-+			0700		10	-	brown	F-11	, _		20	22	10	PVOIL.	Fair
					9.5.		2-	-	dark	U	10		10	~~	~		
6					7+50		35	B	brown	U	10		60	25	5		Fair
		TT							dark	11	-						
7		11			7+00		30	B	brown	,	5		70	20	5		Good Viclax rich
` ⊢	++	++	+-				-										Good. V. Jay rich. Small creak 2 6+45W
					6+50		30	B	dark	alluvium	5	5	50	25	20	· ·	
	++	++			0-00		20	<u> </u>	brown	allyvium	~						Flows 120". Fair sample.
					1.00		14	В	redarsh	1.	(0)		سر ا	25	10		
9					6+00		46		Srown		10		22	25	10		Good Soil.
		TT						-1	light				1		(1
10					5+50		25	B/C	brown	1 +11	10		65	15	10		Clay rich sample . Good sample .
		. <u>.</u>		L				0	dark.	alluvium	5						
SI	JRVEY	TYPE	: S=S	Soil; SS=Silt; R=Rock (30	В	brown	dilumin	2		دم	25	5		Good sample
									-								

.

GEOCHEMICAL DATA

DEPTH: Measured in meters.

HORIZON: Marked A, B, or C

COLOUR: Br. Brown. Bl. Black. R. Red. G. Grey. O. Orange. Dk. Dark. LL Light.

MATERIAL: T Till; Co. Colluvium: A. Alluvium. F. Fluvial. GF. Glaciofluvial. O. Organic.

ORGANICS: Visual estimate of organic content.

GRAVEL: Estimate of Gravel sized fragments.

		GENERAL LOCATION	BOULDER	MTN	-			DATE	Sept.	19,1995 2H/10	W		-			
		LOCATION	NTS										-			
		 NORTH	GRID EAST WEST	Survey-type	Depth	Horizon	Colour	Material	% Gravel	% Organic	Clay	Silt	Sand	Bedrock	Remarks	In forest.
1		L37N	15+00	Soil	60	B	Lthrown	Allur.	25		15	40	20		Washe	ed till ?
2			14+50		43	B	Brown		25		20	30	25		Stone	y till.
3			14+00		40	B	Pale Velow-0	Till (A?)	20		35	25	20			Gentle stope
4			13+50		45		Brown	A	15		20	35	20		Fair	
5			13+00		50	B	Grey brown	Ą	10	5	60	20	5		Fair	to good
6			12+50		40	в	Brown	Д	5		65	20	5		Fair	
7			12+00		53	3	Grey	A		5	70	20	5		Poor	
8			11+50		50	B	Light	T.11	20		60	15	5	•	Sideh	
9			11-00		50	B	med	TillA	20		50	20	10		5. dehi	
10			10+50		60	B	Light	Tillia	20		40	30	10		Sidehi	}

SAMPLER

E. Ostensoe

GEOCHEMICAL DATA

SURVEY TYPE: S=Soil; SS=Silt; R=Rock Chip

PROJECT

DEPTH: Measured in meters.

HORIZON: Marked A, B, or C

COLOUR: Br. Brown. Bl. Black. R. Red. G. Grey. O. Orange. Dk. Dark. Lt. Light.

MATERIAL: T Till; Co. Colluvium, A. Alluvium, F. Fluvial, GF. Glaciofluvial, O. Organic, ORGANICS: Visual estimate of organic content.

TULAMEEN

GRAVEL: Estimate of Gravel sized fragments.

	GE	OCHEMICAL DATA		
PROJECT	Tulameen	SAMPLER	E. Ostensoe	-
GENERAL LOCATION	Boulder Mtn	DATE	Sept. 1	1955
		NTS MAP SHEET	92H/10W	

.

`

		NORTHSOUTH	GRID EAST WEST	Survey-type	Depth	Horizon	Colour	Material	% Gravel	% Organic	Ciay	Silt	Sand	Bedrock	Romarka (n forest.
1		38+00		5011	30	ß	brown	Modified Till	15		65		5		Good sample.
2			5+50		30	B	Light	//	10		70	15	5		Good
3			6+00		35	В	Light brown	LE .	15		70	15	-		Fair
4			6+50		40	В		alluvium	5		60	30	5		Dark soil. Near a dry Stream (Small)
5			7+00		45	B	redush	1 1 1	10		60	25	5		Fair to good.
6			7+50		25	B	dark	Collyvinm	5		60	30	5		Fair to good. Bedrock close by- FS porphyry andesite
7			8+00		25	B	medium	modified till	10		60	25	5		Fair to good.
8			8+50		30	В	Hark brown	-ti	5		65	25	5		Fair.
9			9+00		40	B?	V.dk	Allur.+ Clay	5-	3?	70	25			V. dark, loamy
10			9+50		35	B	dark brown	clay	5		70	25			From tree root. Fair spl.

SURVEY TYPE: S=Soil; SS=Silt; R=Rock Chip

LOCATION

NTS

DEPTH: Measured in meters.

HORIZON: Marked A, B, or C

COLOUR: Br. Brown, Bl. Black. R. Red. G. Grey. O. Orange. Dk. Dark. Lt. Light.

MATERIAL: T Till; Co. Colluvium. A. Alluvium. F. Fluvial. GF. Glaciofluvial. O. Organic.

ORGANICS: Visual estimate of organic content.

GRAVEL: Estimate of Gravel sized fragments.

				-			NTS MAP SHEET	921-	1/10W		·	•		
	LOCATION	NTS UTM										~		
	NORTH SOUTH	GRID EAST WEST	Survey-type	Depth	Hortzon	Colour	Material	% Gravel	% Organic	Clay	Silt	Sand	Bedrock	Romarks In Forest.
	138+00	10+00	Soil	55	в	Light	Clay	/0		70	20	-		
		10+50		70	В	Light	c lay till	20		60	15	5		Outcrop 10 m. north
		11+00		50	B	Light		15		70	10	5		
		11+50		45	в	Light brown	Rocky till(?)	20		40	25	15		
		12-00		35	B	Yellow brown	Colluvium	25		15	45	15		Flat. V. rocky ground.
		12+50		40	B	Brown	Co ?	20		20	40	10		Flat. Granite or sye
		13+00		20	B/c?	Grey	Allurum	? 20		60	10	10		Under 45cm black lo Swa
		13+50		35	В		TT 11 ? AL ?	25		55	10	10	•	Rocky. Possibly Co. !
		14+00		60	B	med. brown	T.11?	20		65	10	5		Rocky.
		14-50	the second distribution of the second distribution of the second distribution of the second distribution of the	50	B	Light brown		20		65	10	5		Slope Wily at 10°
SURVEY TYPE: S DEPTH: Measured	=Soil; SS=Silt; R=Rock (Lin meters.	_{chip} 5+00		60	в	Light	T.11	15		70	10	5		,

SAMPLER

GEOCHEMICAL DATA

PROJECT GENERAL LOCATION

Jouider Mtn

E. Ostensoe Sept. 19, 1995 DATE

DEPTH: Measured in meters.

HORIZON: Marked A, B, or C

COLOUR: Br. Brown. Bl. Black. R. Red. G. Grey. O. Orange. Dk. Dark. Lt. Light. MATERIAL: T Till; Co. Colluvium. A. Alluvium. F. Fluvial. GF. Glaciofluvial. O. Organic.

ORGANICS: Visual estimate of organic content.

GRAVEL: Estimate of Gravel sized fragments.

	S GE	OCHEMICAL DATA		
PROJECT	Tulameen	SAMPLER	E. Ostensoe	
GENERAL LOCATION	Boulder Mtn	DATE	Sept. 24, 1995	
		NTS MAP SHEET	192H/10W	

	NORTH SOUTH		Survey-type	Depth	Horizon	Colour	Material	% Gravel	% Organic	Clay	Silt	Sand	Bedrock	Remarks	In forest.
1	39+00	9+50	501	35	C	Grey brown	TII	20		55	20	5		Fair.	
2		9+00		40	в	Readish	Allur. /+.1	20		50	25	5			
3		8+50		40	в	Medium brown	Alluttill	10		50	35	5			Good Sample.
4		8+00		50		brown		15		50	30	5		Wet, I	Deep A byer-loam
5		7+50		30	B	Light	Alluv.	15		65	20	-			T ,
8		7+00		35	c	Light	T.11	15		65	15	5		Stoney	Hard
7		6+50		35	B/L	Light greybrow.	modified till	15		60	15				sample.
8		6+00		20	B/C	med brown	Till	20		60	15	5	2 desit	Fair.	Flatfish terrain
9		5-50		35	B	Yellowy brown	Allar till	15		60	20	5			
10		5+00		30	ß	brown	Allur. / 4.11	10		70	15	5-		Flat	pround. Fair.

SURVEY TYPE: S=Soil; SS=Silt; R=Rock Chip

LOCATION

NTS

DEPTH: Measured in meters.

HORIZON: Marked A, B, or C

COLOUR: Br. Brown, Bl. Black. R. Red. G. Grey. O. Orange. Dk. Dark. Lt. Light.

MATERIAL: T TIII; Co. Colluvium. A. Alluvium. F. Fluvial. GF. Glaciofluvial. O. Organic.

٠

ORGANICS: Visual estimate of organic content.

GRAVEL: Estimate of Gravel sized fragments.

CLAY-SILT-SAND; Low to moderate to high estimates.

1

				EOCH	IEMICA	L DAT	4							
	PROJECT	Boulder	27	-			SAMPLER		stens	<u>oe</u>		-		
	GENERAL LOCATION	Boulder	mtn	-			DATE	Sept		190 W	15	-		
							ATS MAP SHEET		924/10	2 ~~		-		
	LOCATION	NTS						-						
	\bigcirc	GRID EAST WEST												Remarks All IN Forzst.
	(NORTH)SOUTH	EAST (WEST)	Survey-type	Depth	Hortzon	Colour	Material	% Gravel	% Organic	Clay	Silt	Sand	Bedrock	Remarks HII IN TOTOSI
1	139+00	10+00	Soil	60	£	Grey	Clay +11	10		65	15	10		
2		10+50		55	B	brown	Alluvial	25		15	45	15		Fair
3		11+00		70	B	Light	Allunal	20		20	50	-	Syente	
4		11+50	No 5a	mple									Syenit	e. Bare outcrop.
5		12+00		20	B	brown	Alluvial	10	5	50	30			- Poor soil development
6		12+50		45	B	Brown	Alluv.	30		35	15	20	l '	clayey gravelly till?
7		13+00		55	B	Browr	Al un	20		15	40	30	Syenite	
8		13+50		50	ß	1t brown	-1.11	20		30	1		•	
9		14+00		45	в	Le brown		20		ئە2	35	20		otp 20m N
10		14+50		40	B	Lt brown	Aling	20		30	35	10		Good.
SURVEY TYPE: S	Soil; SS=Silt; R=Rock C	n15+00		65	B	Lt brow	1.11	20		40	25	15		

DEPTH: Measured in meters.

1

HORIZON: Marked A, B, or C

COLOUR: Br. Brown, Bl. Black, R. Red, G. Grey, O. Orange, Dk. Dark, Lt. Light, MATERIAL: T TIII; Co, Colluvium, A, Alluvium, F. Fluvial, GF. Glaciofluvial, O. Organic,

ORGANICS: Visual estimate of organic content.

GRAVEL: Estimate of Gravel sized fragments.

CLAY-SILT-SAND: Low to moderate to high estimates.

.

		PROJECT GENERAL LOCATH	Tulame Boulder		EOCH - -	IEMICA	L DAT	A SAMPLER DATE NTS MAP SHEET	E.O Sept	stens · 24, 2H/11	0-e	<u>.</u>			
			NTS UTM GRID SAST WEST	Survey-type	Depth	Hortzon	Colour	Material	% Gravel	% Organic	Clay	Silt	Sand	Bedrock	Remarka
,			0 10+00		50	B	brown	alluvium			T				Good sample. Andeste ot.
2			10+50		50	В	brown	501		5	60	35			Unusual type of sample to SE From a drainage channell.
3			11+00		10-15	B/c	brown	Collyvium	45		20	25	10		From bedrock surface.
4			11+50		40	В	Jellow		20		55	20	5		Swamp to North of line
5			12+00		20	В	Light brown	+,((20		55	25			Rocky, Flat
6			12+50		30	B	Yellow brown	+11 3	15		60	20	5	Andesiti	
7			13+00		15	B/c	Light	Colluvium	30		<i>45</i>	20	5	Looks Xiline	V. shallow, poor soils.
8			13+50		25	Ble	brown	Colluvium	20		60	15	5	Rock M	ay be transitional indesite to east to diorite g'diorite
9			14+00		15	Вć	Isolt	Colluvium	30		55	15			, , , , , , , , , , , , , , , , , , ,
10			14 + 50		30	B	brown	Collevium	25		60	15		Andesite	V. rocky, Poor. Slopes West 20. Rocky, Fair quality
		: S=Soil; SS=Silt; R=Ro	ck Chip)	20	B (?)	Light brown	modified +,11	25		65	10	,	Andeste	Rocky, gentle slopew.

DEPTH: Measured in meters.

HORIZON: Marked A, B, or C

COLOUR: Br. Brown, Bl. Black. R. Red. G. Grey, O. Orange. Dk. Dark. Lt. Light.

MATERIAL: T Till; Co. Colluvium. A. Alluvium. F. Fluvial. GF. Glaciofluvial. O. Organic.

٠

ORGANICS: Visual estimate of organic content. GRAVEL: Estimate of Gravel sized fragments.

	GENER	VAL LOCATION	Boulde	r Mtn	-			DATE	Sept.	2 4, H//DU	199.	5	•		
	LOCA	_ (<u></u>	<u> </u>				
1-1-1-1-1	(NORT	H)SOUTH	EAST WEST	Survey-type	Depth	Hortzon	Colour	Material	% Gravel	% Organic	Clay	Silt	Sand	Bedrock	
1	40	0-00	5+00	Soil	40	В	Light brown	Allur.	20		65	15			Gentle slope. Good sample
2			5+50		32	B	kight yell	moditil	15		65	15	5		Fair
3			6 + 00		35	B/c	yellow brown	Alluvium	20		60	15		Green andesite	Bedrock outcrops 5- N.
4		_	6+50		40	C	Light	Alluv/till	15		60	15	10		Flat.
5			7+00		35	C (B)	bight	Aller / till	10		65	20	5		Gentle Slope
6			7+50		35	C	Light brown	Allur. /till	10		65	20	5		<u>Gentle slope</u> Gentle slope. Fair sampe.
7			8 + 00		45	C	Light	Mod. till	15		65	20			Outcrops nearby,
8			8+50		45	C	brown	till	20		60	20		5125 to 8	+40W Good sample,
9			9 + 00		25	C	Grey brown	Charley	25		70	5	1	Green	Bedrock at V. shallow deoth, Green andesite
10			9+50		35	C	brown	Till	20		60	15	5		9toow to 9+ 30W and to sof line.

SAMPLER

GEOCHEMICAL DATA

.

٠

SURVEY TYPE: S=Soil; SS=Silt; R=Rock Chip

PROJECT

DEPTH: Measured in meters.

HORIZON: Marked A, B, or C

COLOUR: Br. Brown, Bl. Black, R. Red. G. Grey. O. Orange. Dk. Dark, Lt. Light.

Tulameen

MATERIAL: T Till; Co. Colluvium. A. Alluvium. F. Fluvial. GF. Glaciofluvial. O. Organic. QRGANICS: Visual estimate of organic content.

GRAVEL: Estimate of Gravel sized fragments.

CLAY-SILT-SAND: Low to moderate to high estimates.

ALSO NO1 9+50W

 \sim

E. Ostensoe

	GEOCHEMICA	L DATA	
PROJECT	Til a meen	SAMPLER	E. Ostansoe
GENERAL LOCATION	2011025 11 -	DATE	Sect 20, 1995.
		NTS MAP SHEET	92H/ 10W
LOCATION	NTS		

	(NORTH SOUTH	GRID EAST WEST	Survey-type	Depth	Horizon	Colour	Material	% Gravel	% Organic	Clay	Silt	Sand	Bedrock	Remarks
1		41+00	10+00	50.1	40	в	Light	Co	20		65	10	5	Green	Bedrock v. shallow.
2			10+50		30	B	Medur		10		70	15	5	,,	er u
3			11+00		30	в	-1	.1	15		65	15	5		
4			11+50		30	B	brown	උං	20		65	15			•
5			12+00		35	в	brown	Co+t111	15		50	15	10		,
•			12+50		40	в	Light to Yellow prow	Co+t.11	25		50	20	5		
7			13+00		30	B	11	Cottill	25		45	25	5	Syenite	Bedrock v. shallow
			13+50		30	В	н	μ	20		50	30		t	y u n
9			14+00		35	B	Yellow brown	-Co	25		50	20	5		Angular, tatus-like V.rocky, shallow bedrock,
10			14+50		50		Dart arou brow	Clay Till	10		45	30	15	-	Deep dark clayey Soil with rocks
SURVEY TYPE DEPTH: Mean	E: S==	Sall; SS=Sill; R=Rock C in meters.	mp: 5+00		30	ß	yellow brown	Co	20		45	35			Soil with rocks. V. stoney, Blocky outcrops.

HORIZON: Marked A, B, or C

COLOUR: Sr. Brown. St. Black. R. Red. G. Grey. O. Orange. Dk. Dark. LL. Light.

MATERIAL: T Till; Co. Colluvium. A. Alluvium. F. Fluvial. GF. Glaciofluvial. O. Organic.

UTM

ORGANICS: Visual estimate of organic content.

GRAVEL: Estimate of Gravel sized fragments.

CLAY-SILT-SAND: Low to moderate to high estimates.

.

.

	PROJECT	TULAME		-			SAMPLER	<u> </u>	stenso	<u>ح</u>		-		
	GENERAL LOCATION	Baulder	M+n	•			DATE NTS MAP SHEET		20, 1 924/10		5	-		
	LOCATION	NTS: UTM												
(NORTH SOUTH	GRID EAST WEST	Survey-type	Depth	Hortzon	Colour	Material	% Gravel	% Organic	Clay	Sik	Sand	Bedrock	Romarks In Forest.
1	41+00	5+00	Soil	30	B	Light	clayertill	10		65	20	5		
2		5+50		45	В			15		65	20			
3		6+00		35	В	k [‡]	11	10		70	20			Flat
4		6+50		30	в	16	L1	10		70	20			Slope E'ly
5		7+00	-	37	B	10	Gravelly till	15		70	15			Flat. Green ude. # 6+75W
		7+50		40	В	11	clay till	10		75	15			Gentle slope Easterly.
7		8+00		35	B	Partly rusty	T.11 ? (A?)	10		75	10.	5		Flat. near small swamp
		8+50		45	ß?	Dark	TII?	Ŋ		75	15		7	
		9+00		50	B	light brown	T.11	15		65		5		Rich soil. Derived from till Green porphyric Indesite Bedrock 's shallow
10		9+50		45	B	brown		20		65				11 11 11

.

SURVEY TYPE: S=Soil; SS=Siil; R=Rock Chip

DEPTH: Measured in meters.

HORIZON: Marked A, B, or C

COLOUR: Br. Brown, Bl. Black. R. Red. G. Grey. O. Orange. Dk. Dark. Lt. Light.

MATERIAL: T TIII; Co. Colluvium. A. Alluvium. F. Fluvial. GF. Glaciofluvial. O. Organic.

ORGANICS: Visual estimate of organic content. GRAVEL: Estimate of Gravel sized fragments.

CLAY-SILT-SAND: Low to moderate to high estimates.

-

. ..

							•			NTS MAP SHEET	1	92H/	10	\mathcal{N}				
				LOCATION	NTS													
-				NORTH SOUTH	GRID EAST WEST	Survey-type	Depth	Hortzon	Colour	Material	% Gravel	% Organic	Clay	Silt	Sand	Bedrock	Romarks In Forest	_
1				42+00	10+00	Soil	25	B	brown	Cotsoil	20	5	40	30	5	Breen	on top of 2 name. Ville soul,	
2					10+50		50	B	Light	50.1 +Gravel	20		35	35	10		East slope develop	Ment
3					11 + 00		55	B	Yenow	CO+A	25		35	30	10	Green	At top of mtn.	
4					11+50		30	B	brown	Fine sal bithrack	25		50	20	5		otp nearby.	
5		,			12+00		25	B			25		60	15]
					12+50	_	45	B	Light	Gravel + clay	20		60	15	5		(Co?)	
7					13+00		25	B	brown	111 (+ Co)	30	•	60	10			v.rocky. shallow.	
					13+50		30	B	brown	Co + +ill	30		60	10		•	V. rocky,	
8					14 + 00		25	ß	kight brown	C0	30		60	10			Much angular fragments of bedr	ock.
10			Π		14 +50		45	\boldsymbol{D}	medium brown	Allur ?	20		60	15	5		Rocky, pebbly. Till?	
s	JRVE		PE: S	Soil: SS=Silt: R=Rock C	15+00		50	B	Brown	エル	10		65	20	5			-

SAMPLER

DATE

Ostensoe

Sept.

20,

1995

GEOCHEMICAL DATA

ulameen

M+n.

Boulder

SURVEY TYPE: S=Soil; SS=Siil; R=Rock Chip 4 -

PROJECT

GENERAL LOCATION

DEPTH: Measured in meters.

HORIZON: Marked A, B, or C

COLOUR: Br. Brown, Bl. Bleck, R. Red. G. Grey, O. Orange, Dk. Dark, Lt. Light. MATERIAL: T Till; Co. Colluvium. A. Alluvium. F. Fluviel. GF. Glaciofluvial. O. Organic.

ORGANICS: Visual estimate of organic content. GRAVEL: Estimate of Gravel sized fragments.

					G	EOCH	iemic/	L DAT	A							
			PROJECT	Julan Boulde	reen	.			SAMPLER	<u> </u>	ster : . 20,	5.24	2	-		
			GENERAL LOCATION	<u>Soulde</u>	<u>, </u>	<u>`</u> .			DATE NTS MAP SHEET	<u></u>	an - 1	<u> </u>	0.5	-		
			LOCATION											•		
	 		NORTH SOUTH	GRID EAST (WEST)	Survey-type	Depth	Hortzon	Colour	Material	% Gravel	% Organic	Clay	Silt	Sand	Bedrock	Romarka 19 Forest.
1			42+00	5+00	Soil	30	B	med brown	T.11?	10		65	25			Gentle slope Rocky.
2				5+50		40	B	brown	TIN?	10		65	20	5		Gentle slope. Rocky. Flat ground.
3				6+00		40	B	med. brown	Till?	15		65	20			Slope 10° Easterly.
4				6+50		40	в	Med brown	T.11 ?	15		60	25			Flat ground. Good spl.
6				7+00		40	В	med brown	T.11 ?	15		60	25			Gentle (<10°) slope to E Light clayey soil. Green voicanics in
•				7+50		30	B	med brown	T.11?	10		60	30	-		Green voicanics in autorops: at 7+85W to 7+95W
7				8+00		32	В	med brown	Allur. ?	10		45	25	20		Flat. V. rocky
				8+50		40	B	med	Co+?	15		50	20	15	•	Flatter ground. NNE linear feature at 86 Slope 20°E + 8+75W
	Π	T		9+00		35	В	219ht Brown	Co	20		25	35	15		Slope 20°E +0 8+75W Gravel + dirt
10				9+50		40	-		Colluvium	25		25	30	20	Volc.	Gravel + dirt High ridge FAIR.

-

į.

•

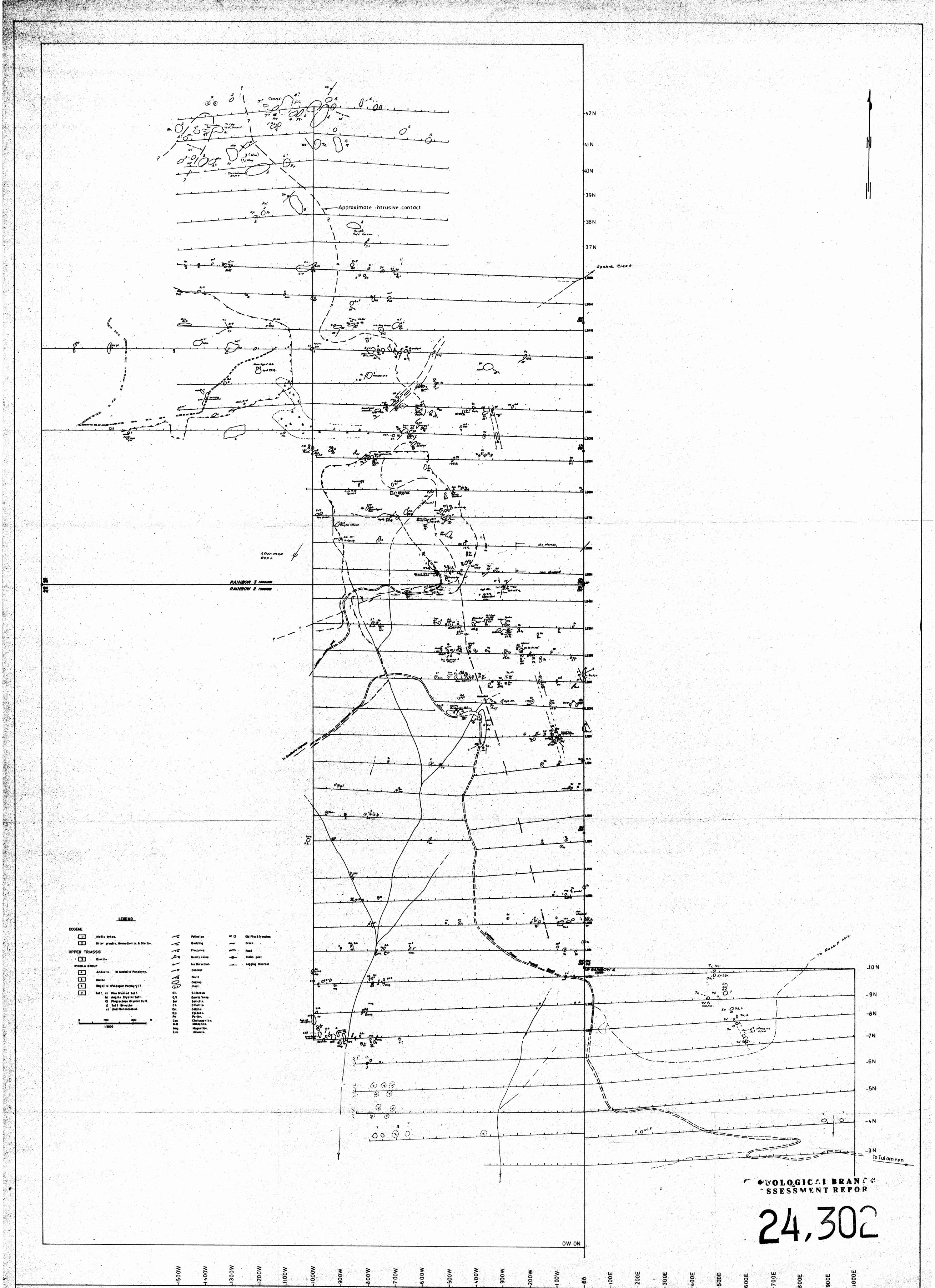
SURVEY TYPE: S=Soil; SS=Siil; R=Rock Chip

DEPTH: Measured in meters.

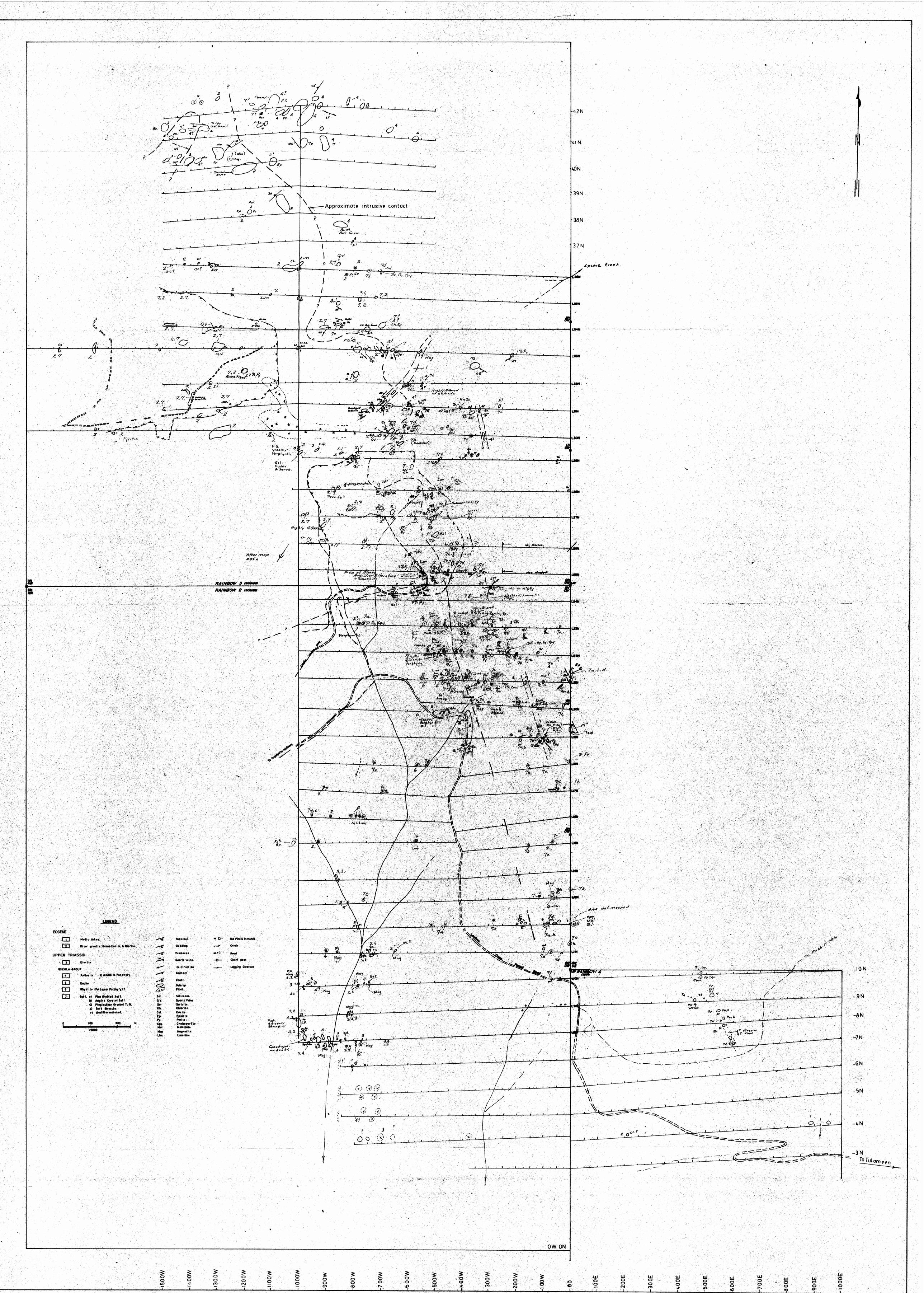
.

HORIZON: Marked A, B, or C

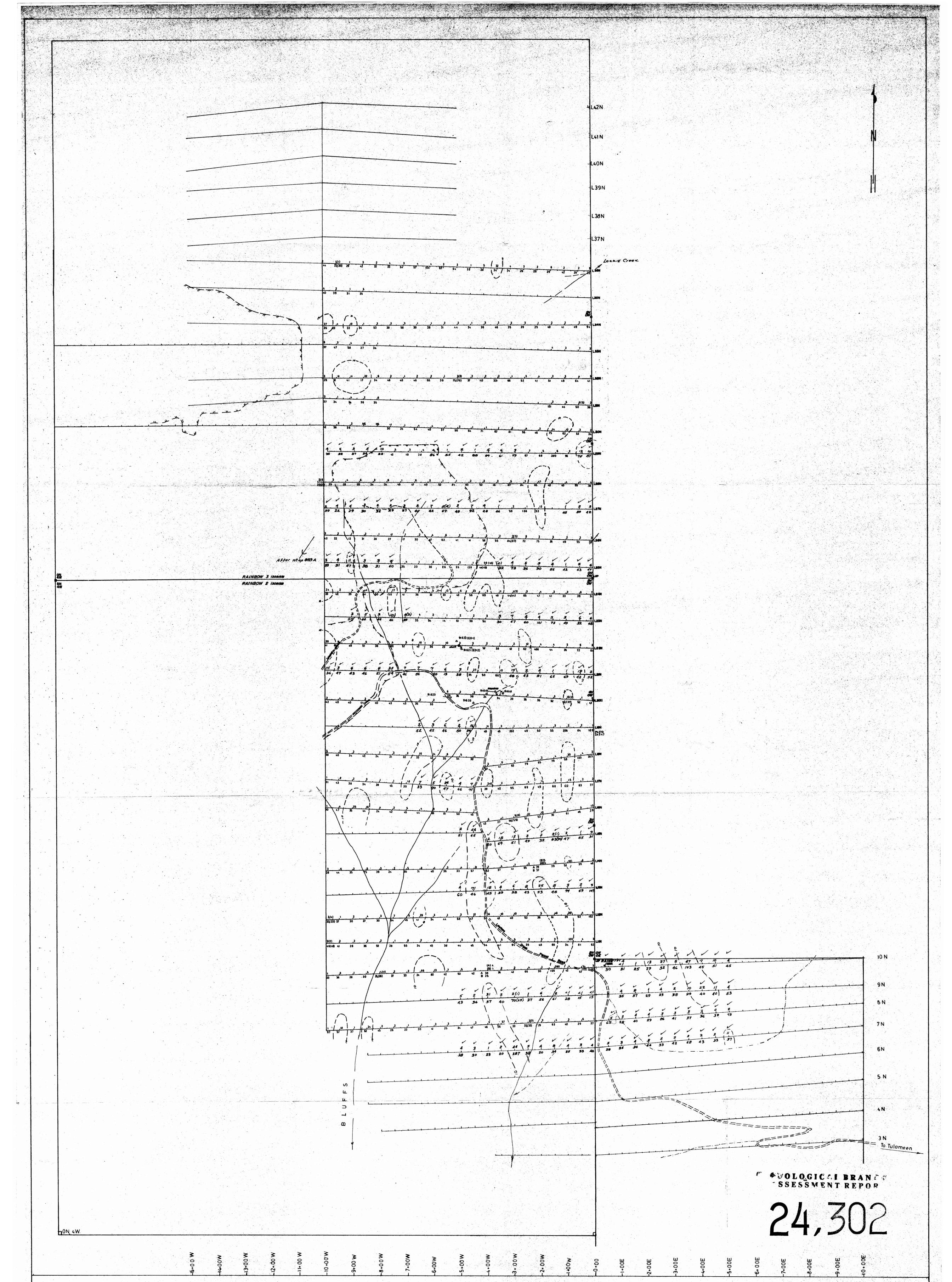
COLOUR: Br. Brown, Bl. Black, R. Red. G. Grey. O. Orange. Dk. Dark. Lt. Light.


٠

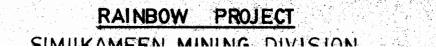
.


MATERIAL: T TIII; Co. Colluvium, A. Alluvium, F. Fluvial, GF. Glaciofluvial, O. Organic, ORGANICS: Visual estimate of organic content.

GRAVEL: Estimate of Gravel sized tragments.


.

			1. 18 . 18		: • ¹ · · ·	1 A		1			್ ಭಟ್ಟು				.		—		-	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			Sec. 1	1. See 1.					G G	12.3	00		1		1.16.10	9	1. A. 1	.	Ω	승규는 19	te n¶ ationalia		က္ေ	(), (1994)	~	.	9 - P. G.	-				- X X			N.		A A		- 1 11 - 111						<u> </u>		0		0		. S. 🖸 🖓					.e	
	1.7							1.		· · · ·		-	',				نبد العد			-	Buch			. t						1.1.1		En la lastra		1		1.			1.000		†	1. 1. 1. 1.	S. A. S.			terra e	1. S. A. S.	- T	2	1					2011 C.		1.11		s.		5		in .		~				O			an seco				si.	
				ਾ ੇ ਕਿ ਤ	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1				Section and	1 . E .		1	. * . [*] .	VI - 1.1			1 - E. S. E.	14 N T	1.1	96 F 1 S 1	200 A								2010			1.2.2.2.2					- 64	0.52.000	1.10.10				227.12	10 C				-															<u> </u>	1	e - 1 - 1		- T		1					1.1.1.1.5.3		<u>A</u>	
1	S. A.		198 (A)			그는 동네.	t av a		- 1 - <u>1</u> -								1.2.15		1 G. 1			100		1.5.4											승규는 상품을			- 19 A.	- 11 - 12 - 1	1.12							이 같은 사람이 있다.			4																		er de recter		(S. 1997)		1 N/1 1	1.111.24			á.	
P. 3	3 S.M.									1.1			1 A.	1.1	1.1		문 문 문				14 A.		- A. 18-1					1 ⁶ A			그 같은 것을	1	ि संदर्भ	e - 945	1.1.1.4	1.1.1	エピュル	- S. 1997 - 1997	- P. P.					12.1		영상 것 같				승규는 것을 가지?	이 같은 것.			at the se	S				Maria a sa	_ 192, 193						14. A. A.		1.1.1.1.1.1.1						. 1 S. (5)		£.	
100									. T			- A 47 A	· 1									° de tu	8 . C.Z	8 . A . A	4. J.C.	برا ، ، رتعی ،	1. A.A.	and a straight		· · · · · ·	1.1					- 1 a .	2011-321	1 S.	1.5			이는 지수?			5 I		같은 소문										1									김 동 15 전	1.2 48.1				2 S. 1998.	1.4				5	
	V -9.24	- 5.5										1.19		1.1		1 a -					1997 - S.	1 A. E.		オ・ボー		1. Te - Je - J					er fra di							성 이 동네			1	- 34 - 4 Î			1944 - C.										. (A. 197		5 N N							18 Stor (* 18						1 E g				the second		e.	
	5 S S		en ender			이 가지 않는 것을 들었다.	g Kalèn		144. Pr					÷ . '				·	1.1	1.3			× . **				· · · .	1. 2						1.1	5 K. S.		5 S	14 JUN		Gal A	3 1 M	See 1					~~~ 영상 전 영				가 나무 것	ふっしょう			전문가 관심	121	나는 것이 같이 같이 같이 같이 같이 많이 많이 했다.		가슴 소리가	t de Carr		영상 위험	1 × 1 × 1 ×	ALC AC	전에 많다.				and a second							6	
							Terra a tar		한 수영을 가지?			175 - E.S.		ja Ya		1 A A A A	an in the second	de espe		1 - E F		1.1		19 - E						그 오르고				weeks a		n Ny Ary	9 X X	1 . E	그는 것은	. 43 s	The state	11 A 36		이 이 영영						승규는 학생님이 가지 않는 것이 없다.					11.11				1. 1. 1.		(1) (N)	19. C. C.	14462			朝鮮の時間の	1.1.1	a i sta			-	적다. 물건 가는		11 A. A. A.	88 C-19	N.	
					2 S (177		1. 1. 1. 1. 1. 1	711112								N. 10	· '	19 - Be	5.8.5.1			152.62	승규는 승규는		1. 1. 1. 1.				t e lighter i		1.11.11							1.1.1	1 A.A.			요즘 같이?					S. Carlo		1. 1. 1.	3. C 41				1.1.1			a sa kina i					1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		DAI	AID.)W(DD/	<u> 1 E/</u>	100 B (100		영양 나라 가지?	동안 나라는 것		일도 아파 가는	2011년 1월 18일 - 183		
1. 18 A. 18			San San	가지 국가 가	A GULL	i je stadiv	an a	141.11				6 ° '	el de la ser	et e Lu				1 (j. 1			1.11	1.11	이번 말 맛.	1 and			1. 2. 4. 3.				- 71 - L				ter de pos				1. Sec. 1.							1							4 Mart 19 1	- 1				A						D MI	14 D.	/ * *		ノノロヽ						은 이상에 많다.	17 A 18 A 19	4	
		1.19		영양 가운 것을 들었다.								4 F	i ante est			e • 177	. K (11 K	1 A A A A A A A A A A A A A A A A A A A		1 -	1977 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	1997 - N. 1987 - N. 19		181 J. S. C. 1	e 12.5		1.1.1	- Alimitati	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	1914		1000 200				·		41.1.1.1.1.1	10	34 6 A 6 7	1. 21 M. 21		6 C A 6 C 6 C			8 i 14	1.1.1.1.1	1.3						•		1																					



RAINBOW PROJECT

LEGEND Cold pits

J-Indicates sumples analyzed 1985

