GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORTS

DATE RECEIVED

FEB 2 9 1996

RECEIVEL

FEB 2 2 1996 Gold Commissioner's Office VANCOUVER, B.C.

KENNECOTT CANADA INC.

1995 GEOLOGICAL, GEOCHEMICAL ASSESSMENT REPORT

Kuyakuz Mountain Property Project 50477

AUTHOR		D.B. Fleming			
CLAIMS		Kuya 3-5			
WOR	K PERIOD	September 17 & 19, 1995			
СОМ	MODITY	Au, Cu, Mo			
LOC	ATION				
•	Area	Interior Plateau, Central British Columbia			
•	Coordinates	UTM Zone 10 5894000 N NAD 27 392000 E			
		Lat-Long 53 11' N 124 37' E			
•	NTS	93 F/2E FOLOGICAI BRAN			
•	Mining Division	Omineca SSESSMENT REPOR*			
OWNER		Kennecott Canada Inc.			
OPERATOR		Kennecott Canada Inc.			

KENNECOTT VANCOUVER OFFICE

February, 1996

KENNECOTT CANADA INC.

1995 GEOLOGICAL, GEOCHEMICAL ASSESSMENT REPORT

Kuyakuz Mountain Property Project 50477

AUTHOR		D.B. Fleming			
CLAII	MS	Kuya 3-5			
WORI	K PERIOD	September 17 &	19, 1995		
COM	MODITY	Au, Cu, Mo			
LOCA •	ATION Area	Interior Plateau,	Central British	n Columbia	
•	Coordinates	UTM Zone 10 Lat- Long	5894000 N 392000 E 53 11' N	NAD 27	
•	NTS	93 F/ 2E	124 37' E		
•	Mining Division	Omineca			
OWNER		Kennecott Canada Inc.			
OPER	ATOR	Kennecott Canada Inc.			

KENNECOTT VANCOUVER OFFICE

February, 1996

TABLE OF CONTENTS

SUMMARY 1
CONCLUSIONS1
INTRODUCTION
General Statement
Location, Access and Physiography2
Claims
1995 Program
REGIONAL GEOLOGY
PROPERTY GEOLOGY
General Statement
Lithologies
Alteration
SURFICIAL GEOLOGY
GEOCHEMISTRY
General Statement
Methods
Results
REFERENCES

APPENDICES

APPENDIX I	-	Statement of Qualifications
APPENDIX II	-	Statement of Costs
APPENDIX III	-	Analytical Procedures and Certificates of Analyses

.

FIGURES

FIGURE 1 -	Location Map (1:10,000,000)	after page 2
FIGURE 2 -	Claim Map (1: 50,000)	after page 3
FIGURE 3 -	Geological and Geochemical Map (1:10,000)	in pocket.

SUMMARY

This report documents a September, 1995 program of till sampling and limited geological mapping conducted on the west flank of Kuyakuz Mountain, located in the Nechako Ranges of the Interior Plateau, 102 kilometres south-southwest of Vanderhoof, British Columbia. The Kuya 3-5 claims (54 units subsequently reduced to 27) were staked November 27-29, 1994 by Kennecott Canada Inc.. The objective of the field program was to identify the source of gold in pan concentrate detected in the course of 1994 reconnaissance exploration. A coincident GSC airborne magnetic anomaly and elevated molybdenum and gold in RGS lake bottom sediments from Kuyakuz Lake, suggested an intrusive-related target.

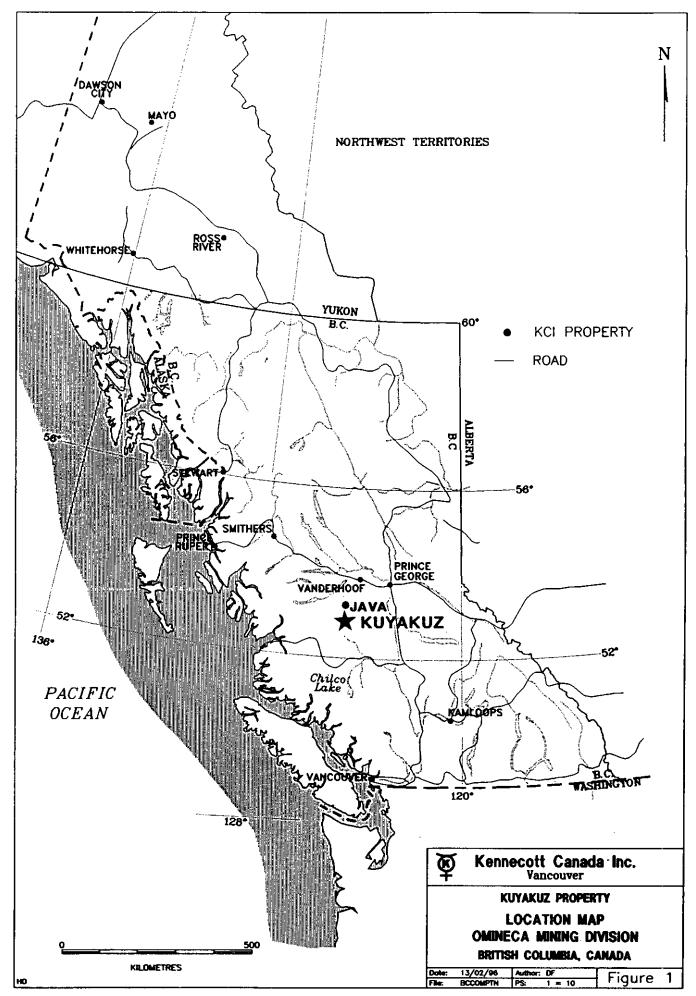
The Interior Plateau is within the Intermontane geomorphological belt and in the southcentral part of the Stikine Terrane. Regionally, the Kuyakuz property is situated within basement rocks of the Nechako Uplift, consisting of island arc-related felsic to mafic volcanics, volcaniclastics and tuffaceous sediments of the Lower to Middle Jurassic Hazelton Group and Middle Jurassic to Mid-Cretaceous clastic sediments of the Skeena Group. Intrusions of Middle Jurassic, Late Cretaceous and Eocene age are scattered throughout the uplift. Outliers of Eocene volcanic rocks and extensive glacial and glaciofluvial deposits locally cover lithologies of interest. The eastern half of the claims are underlain by quartzfeldspar crystal tuffs, lapilli tuffs and fine grained tuffaceous sediments of the Kuyakuz Mountain Assemblage, a recently defined subdivision of the Hazelton Group. These rocks have been pervasively hornfelsed and locally sulphidized by a northerly trending, composite granodiorite to quartz-diorite body exposed to the west. Three rock samples were taken in the course of limited geological mapping and prospecting, one returning weakly anomalous molybdenum (8 ppm) from sulphidized hornfels. No alteration or mineralization of significance was noted.

Basal till sampling was conducted in the central and eastern half of the property to test for the mechanical down-ice dispersion of mineralization from the glaciofluvial covered central and western part of the claim block. A total of ten samples were collected on roughly 500 by 600 metre centres. One sample is moderately anomalous in antimony (2.4 ppm) while two others were weakly elevated in arsenic (13.4 ppm) and copper (33.6 ppm).

CONCLUSIONS

The 1995 Kuyakuz field program has successfully defined a northerly trending contact between a composite granodiorite to quartz-diorite pluton of suspected Eocene age (Chutanlitype), and volcaniclastics of the Lower Jurassic Hazelton Group. Although the composite, multi-phase nature of the intrusion and pervasive hornfelsing and sulphidation of tuffaceous host rocks is considered positive for exploration potential, no mineralization of significance was located on or adjacent to the claims. Till sampling failed to detect the presence of mineralization under the cover of younger basalt and glaciofluvial cover to the west.

INTRODUCTION


General Statement

This report documents the results of basal till sampling (Figure 3) and 1:10,000 scale geological mapping (Figure 3) with limited rock and stream sediment sampling conducted on September 17 and 19, 1995 at Kuyakuz Mountain (Kuya 3-5 claims) in the Interior Plateau of Central British Columbia. Pan concentrate, stream sediment and outcrop geologic data collected in the course of reconnaissance mineral exploration in 1994, prior to staking, has been incorporated. The objective of the program was to locate the source of gold in pan concentrate anomalies from middle and lower reaches of creeks draining the west flank of Kuyakuz Mountain. An outcrop of biotite monzonite located in 1994 and a coincident airborne magnetic high from November, 1994 GSC Open File 2785 suggested a porphyry or intrusion-related target. Anomalous gold and molybdenum in lake sediments from Kuyakuz Lake (BCGS Open File 1994-19) further supported the target.

Location, Access and Physiography

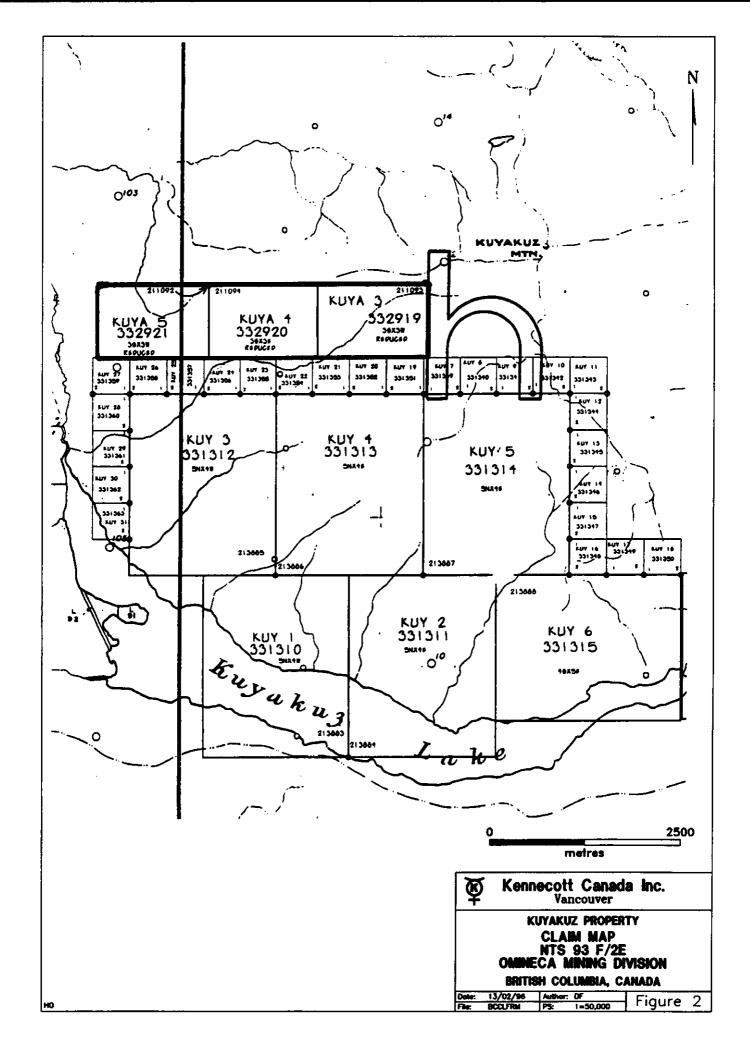
The Kuya claims are situated 102 kilometres south-southwest of Vanderhoof, B.C. (Figure 1), and were accessed on foot from the northern tip of Kuyakuz Lake. Kuyakuz Lake is road accessible via the Kluskus Main and Kluskus Blue Forest Service Roads south from Vanderhoof. A boat launch is situated at the B.C. Forest Service camp site on the southern shore of Kuyakuz Lake. A boat with a shallow draft and short shank motor is required to navigate the northern and western part of the lake. The historic Missou wagon trail provides access to the northern tip of the lake but is motor vehicle restricted.

The property lies within the southern limit of the Nechako Range in the west-central part of the Interior Plateau physiographic region of Central British Columbia. Elevations along the broad, glacially modified Fawnie and Nechako Ranges approach and locally exceed 6000 feet with large, open valleys draining north to elevations below 2800 feet at the Nechako Reservoir. The claims are situated on the gentle to moderate west dipping slope of Kuyakuz Mountain between 3600 and 5000 feet elevation. Vegetation consists of open to moderately dense lodgepole pine with some spruce and balsam fir. The open nature of the forest cover is believed to be a function of well drained glaciofluvial sands at lower elevations and perched glaciofluvial material at higher elevations.

Claims

The Kuyakuz property consists of 27 units in three four-post claims staked November 27-29, 1994(Figure 2). The claims are located within NTS map sheet 93 F/2E. Relevant claims data is provided below.

Claim	Units	Mineral Tenure No.	Expiry Date*
Kuya 3	9	332919	November 29,1996
Kuya 4	9	332920	November 29,1996
Kuya 5	9	332921	November 29, 1996


* expiry date upon acceptance of 1995 assessment work

1995 Program

Field work was conducted on September 17 and September 19,1995, by a crew of 4 geologists. The field crew worked from a base camp established at Tatelkuz Lake, located roughly 60 kilometres by road to the northwest. The program consisted primarily of basal till sampling at 500 metre intervals along lines 600 -700 metres apart. A total of 10 till samples were collected along chained lines oriented at 315 degrees azimuth, roughly perpendicular to glacial ice direction (051 degrees).

Limited outcrop sampling and geological mapping was conducted in the course of till sampling. One rock sample was collected on the property and two immediately north of the claim boundary. Although outcrop exposure is poor, the eastern contact of a northerly trending intrusive body was defined.

A single stream sediment sample was collected in the course of till sampling.

REGIONAL GEOLOGY

The Kuyakuz Property is within Intermontane Belt rocks in the south-central part of the Stikine Terrane, the largest crustal block within the Canadian Cordillera. Stikine Terrane rocks in the central Interior Plateau can be divided into four tectono-stratigraphic elemants: 1) Upper Triassic to Middle Jurassic volcanic island arc assemblage rocks, 2) Middle Jurassic to Mid-Cretaceous molasse assemblage, 3) Late Cretaceous and Eocene continental arc volcanics, and 4) plateau basalt volcanism from late Eocene to Recent.

Intrusive rocks in the Interior Plateau include Mid-Jurassic augite porphyries, gabbros and diorites, Lower Cretaceous porphyritic diorite, late Cretaceous (?) quartz monzonite of the Capoose Batholith and Eocene age granite to granodiorite of the Chutanli pluton affinity.

Regional geologic mapping was conducted in 1949-1953 by H.W. Tipper and published as GSC Map 1131A covering the Nechako River map sheet (NTS 93F). Recent 1:50,000 geological mapping by the BCGS (Open File 1995-16), under the direction of L.J. Diakow, has determined Middle to Lower Jurassic Hazelton Group to be divisible into a lower felsic eruptive sequence and upper augite porphyritic submarine flows and interflow sediments. In the Lower Jurassic, the volcanic arc is interpreted to have been emergent to the west in the Fawnie Ranges and more distal marine to the east in the Nechako Ranges.

PROPERTY GEOLOGY

General Statement

Outcrop exposure on the property is extremely poor and restricted to the central Kuya 4 claim area (Figure 3). Bedrock geological interpretation is aided by 1:50,000 scale outcrop mapping north and east of the property, conducted in the course of 1994 Kennecott reconnaissance exploration and recent BCGS mapping. The property is underlain by felsic tuffs and tuffaceous sediments of presumed Lower Jurassic age, intruded by a northerly trending, composite granodiorite to quartz-diorite body to the west. Composition and airborne magnetic signature suggest the pluton is a Chutanli type intrusion, which is exposed 15 kilometres to the north and recently dated at 49 ma. All lithologies on the property have been hornfelsed and variably sulphidized with disseminated pyrite and pyrrhotite. Intrusive rocks are fresh and appear unaltered. Post intrusive vesicular basalt and Quaternary glaciofluvial outwash obscure the western half of the property.

Lithologies (Figure 3)

NRat Andesite Tuff

This unit is exposed east of the claim boundary and consists of fine to medium grained, light to mid green andesite tuff. This unit may be, in part, epiclastic. Sub-angular lapilli (?) fragments are visible on weathered surfaces but strong northerly trending foliation and pervasive induration due to hornfelsing has obscured textures. Vague feldspar and locally dark mafic crystals are characteristic.

Nrvs Felsic Tuff, Sediments

Interbedded dark grey shale, conglomerate and feldspar-quartz rich crystal tuff and lithic tuff are characteristic lithologies for this unit. Angular, light coloured felsic fragments were noted locally within crowded crystal tuff. Wispy banding in the shale suggests a tuffaceous component. Proximity to the intrusion has resulted in a strong, pervasive hornfelsing and sulphidation of these rocks.

MPCv Basalt

A single subcrop of vesicular, olivine bearing basalt was mapped immediately south of the Kuya 4 claim. It is light brown to green, fined grained and unaltered. The basalt is in juxtaposition with hornfelsed shale subcrop and is interpreted to overly the shale and perhaps the intrusive contact at this locality.

Tg Intrusive Rocks

A variety of fine to coarse grained intrusive rocks were mapped as isolated outcrops that regional airborne magnetics suggest to be compositional and textural variations of a single intrusive complex. All intrusives mapped appear unaltered. Outcrops of quartz diorite and feldspar-biotite porphyry are massive and blocky with 5-10 % groundmass quartz and accessory hornblende. The porphyry has a crowded texture with feldspar phenocrysts to 6mm. Pyrite occurs in trace amounts as clots with biotite and magnetite. Fine to medium grained, equigranular biotite granodiorite has a salt and pepper texture with abundant groundmass quartz. The most felsic end member is a fine grained to aphanitic quartz porphyry in subcrop immediately north of the northern claim boundary. Phenocrysts up to 3mm are sparsely disseminated up to 5% in a buff groundmass of quartz an feldspar. This exposure is east of the intrusive contact and most probably a dike. Other dikes include medium grained hornblende-feldspar-biotite porphyry, observed in outcrop striking 290 degrees azimuth, with up to 5% quartz in the groundmass.

Lkd Diorite

This intrusive is scattered regionally along the Nechako Ranges. Several outcrops mapped in 1994, in the southeast corner of the map area are light green, blocky, medium to course grained, equigranular diorite. White to greenish feldspar, hornblende and chlorite are distinctive.

Alteration

The most significant alteration observed on the property consists of recrystallization and sulphidation associated with hornfelsing adjacent to the intrusion. All lithologies are indurated and dark brown to weakly maroon in colour, indicating the presence of finely disseminated biotite. The more felsic rock types approach a brown-orange colour. Disseminated pyrite and lesser pyrrhotite are ubiquitous, varying from trace amounts in the felsic tuffs to 2% in hornfelsed shale. Locally, felsic clasts in the lithic tuffs are replaced, in part, by clots of pyrrhotite.

SURFICIAL GEOLOGY

The oldest surficial deposits in the map area is Quaternary clay rich basal till that covers most of the eastern portion of the claims i.e. elevations above 3900 feet. This material is relatively compact, fissile and contains locally derived clasts that often display flattening and elongation. Till covers the west side of Kuyakuz Mountain as an extensive but locally thin blanket. Colluviated basal till was encountered in the course of till sampling and consists of a mix of rock talus fragments and disrupted clay rich basal till. Basal deposits are locally derived and are most desirable for geochemical sampling.

Elevations below 3900 feet are covered by glaciofluvial outwash deposits of sand and gravel. A major glaciofluvial channel may have existed in the Kuyakuz Lake-Chedakuz Valley drainage basin. A perched fluvial bench was encountered at 4500 feet in elevation, central to the Kuya 5 claim, in the course of till sampling. Sand and gravel deposits here are likely deposited as kame terraces along the range front.

GEOCHEMISTRY

General Statement

Due to glaciofluvial cover on the western portion of the property, basal till sampling was selected as a geochemical exploration method over conventional soil sampling. The objective was to sample C horizon till for mechanical down-ice dispersion of bedrock mineralization. A total of 10 samples of till were collected at roughly 500 metre spacing, along chain and compass lines 600-700 metres apart (Figure 3). Lines were oriented NW-SE, roughly perpendicular to ice direction.

Methods

Till sample pits were hand dug with short-handled shovels and tree planter spades to depths ranging from 0.6 to 1.1 metres. The material collected was, ideally, from the compacted, fissile, clay-rich portion of the till. Samples locally consisted of disturbed, colluviated till and talus, as well as silty-sandy till, reworked by glaciofluvial processes. Sample characteristics were noted (see table below). The somewhat sporadic distribution of sample sites is due to the inability to collect basal till in areas underlain by glaciofluvial sand and gravel with thicknesses beyond reach of a shovel (1.2 metres). Roughly three kilograms of till was collected from the bottom of each pit and placed in a 12" by 20" plastic bag for shipment to Chemex Labs, North Vancouver, B.C., for geochemical analysis. Samples were dry seived to -150 mesh (105 microns). A 30 gram split was fire assayed for Au, 0.5 grams for 24 elemant ICP-AES (Al,Ba,Be,Bi,Ca,Cd,Cr,Co,Cu,Fe, Pb,Mg, Mo,Ni,P,K,Ag,Sr,Ti,W,V,Zn) and 2.0 grams for organic extraction ICP ultra trace method for Sb,As,Bi,Cd,Cu,Pb,Mo,Ag,Zn. Mercury was treated separately by cold vapour AA on a 1.0 gram sample.

Rock outcrop grab samples were collected from sulphidized hornfels exposure mapped in the coarse of till sampling and geological mapping. Random chips were placed in 7" by 11"

cloth bags, for a total weight of roughly 1.5 kilograms, and shipped to Chemex Labs for analyses. Each sample was crushed to 60% -10 mesh and pulverized, with a 30 gram split fire assayed for Au and 1.0 grams analyzed by 32-elemant ICP-AES (Al,Ag,As,Ba, Be,Bi,Ca,Cd,Co,Cr,Cu, Fe,Ga,K,La,Mg,Mn,Mo,Na,Ni,P,Pb,Sb,Sc,Sr,Ti,Th,U,V,W,Zn,Hg). Mercury was analyzed by cold vapour AA.

A single stream sediment sample was collected. The sample was placed in a 4" by 6" kraft paper sample bag and shipped to Chemex. The sample was dried and sieved to -80 mesh with a 30 gram split fire assayed for Au and 1.0 grams analyzed by 32-elemant ICP-AES.

The analytical procedures for all of the above mentioned methods are included with the sample results in Appendix III.

Results

Sample #	Depth metres	Clay Content	Moisture	Density	Avg. Clast Size cm.	Comments
VR12976	1.1	moderate	wet	low	3	poor site
VR12977	1.0	low	dry	low	25	poor site
VR12978	1.2	high	moist	moderate	4	moderate
VR12979	1.0	moderate	moist	moderate	5	moderate
VR32930	0.5	high	moist	high	8	good site
VR32931	0.6	moderate	dry	moderate	6	colluviated
VR32932	1.0	high	dry	high	8	good site
VR32933	0.9	high	wet	high	5	fluvial
VR32934	0.8	high	dry	high	4	good site
VR32935	1.0	high	dry	high	3	good site

Till sample characteristics are listed below:

Anomalous till geochemistry has been determined by inspection of Kuyakuz and Kennecott regional till data in the Nechako Uplift. Geochemical thresholds for UT 10 ICP data for elements of interest are: Cu-35 ppm, Mo-1.0 ppm, As-15.0 ppm, Sb-0.2 ppm. Results for these elements are plotted on Figure 3 and sample results for all elements are included in Appendix III.

The only strongly anomalous sample is VR32933A which returned 2.4 ppm Sb. Sample VR32931A is elevated in As (13.4 ppm) and VR32930A is weakly anomalous in Cu and Mo (33.6 and 1.0 ppm respectively).

			Analytical Results				
Sample #	Туре	Description	Au(ppb)	As(ppm)	Sb(ppm)	Cu(ppm)	Mo(ppm)
VR32480	grab	fine gr. Pyritic (2%) hornfels tuff	>5	12	2	4	<1
VR32481	grab	pyritic (2%), brown horfels lapilli tuff	>5	2	<2	22	8
VR32482	grab	pyritic (1%) horInfels shale and lapilli tuff	>5	2	<2	21	<1

Rock sample data is presented below and plotted on Figure 3:

Sample VR32481A is the only anomalous rock sample returning 8 ppm molybdenum.

In the course of 1994 regional exploration, anomalous gold in pan concentrate was returned from the middle and lower parts of the creek central to the property. A single stream sediment sample was collected from the creek in 1995. This sample returned low geochemical values in all elements of significance.

REFERENCES

- Aeromagnetic Survey of the Interior Plateau of British Columbia (1994); Geological Survey of Canada Open File 2785.
- Cook, S.J. and Jackaman, W. (1993) : Regional Lake Sediment and Water Geochemistry of Part of the Nechako River Map Area (93F/02,03,06,11,12,13,14) ; British Columbia Geological Survey Branch Open File 1994-19.
- Diakow, L.J. and Webster, I.C.L. (1993) : Geology of the Fawnie Creek Map Area (93F/03) in Geological Fieldwork 1993; British Columbia Geological Survey Branch Open Paper 1994-1, p. 15-26.
- Diakow, L.J., Webster, I.C.L., Whittles, J.A. and Richards, T.A.(1994) : Stratigraphic Highlights of Bedrock Mapping in the Southern Nechako Plateau Region (NTS 93F/2 and 7) in Geological Fieldwork 1994; British Columbia Geological Survey Branch Paper 1995-1, p 171-176.
- Diakow, L.J., Webster, I.C.L., Whittles, J.A., Richards, T.A., Levson, V.M., and Giles, T.R. (1995) : Bedrock and Surficial Geology of the Tsacha Lake Map Area -NTS 93F/2; British Columbia Geological Survey Branch Open File 1995-16.
- Levson, V.M., Giles, T.R., Cook, S.J. and Jackaman W.(1993) : Till Geochemistry of the Fawnie Creek Map Area (93F/03) ; British Columbia Geological Survey Branch Open File 1994-18.
- Tipper, H.W. (1963) : Nechako River Map-Area, British Columbia; Geological Survey of Canada Memoir 324.

APPENDIX I

STATEMENT OF QUALIFICATIONS

Statement of Qualifications

I, DAVID B. FLEMING, of 5435 Paton Drive, Ladner in the Province of BritishColumbia, DO HEREBY CERTIFY:

- 1. That I am a Project Geologist employed by Kennecott Canada Inc. with offices at Suite 354 200 Granville Street, Vancouver, British Columbia.
- 2. That I am a graduate of the University of British Columbia with a Bachelors Degree in Geological Sciences (1979).
- 3. That I am a member in good standing of the Association of Professional Engineers and Geoscientists of British Columbia.
- 4. That this report is based on fieldwork carried out by myself and field crews of Kennecott Canada Inc., under my supervision.

Dated at Vancouver, British Columbia, this 22 day of Yebruary, 1996.

Bover lente

David B. Fleming, P.Geo

APPENDIX II

STATEMENT OF COSTS

Statement of Costs

-

For field work on the Kuya 3-5 claims in the period September 17 and 19, 1995.

 Salaries D. Fleming : Project Geologist A. Davies : Geologist D. Green : Geologist J. Whittles : Geologist 	- 8 man days total	1590.00
Room and Board	- 8 man days @ 50.00	400.00
Truck Rental	- 2 days @ 65.00	130.00
Boat Rental	- 2 days @ 50.00	100.00
Geochemical Analyses	- 10 till samples @ 31.54	315.40
Materials and Supplies		150.00
Report Preparation		197.42
TOTAL		
		<u>\$ 2872.82</u>

APPENDIX III

ANALYTICAL PROCEDURES AND CERTIFICATES OF ANALYSES

Ring Grinding

Chemex Code: 208 Assay samples

A crushed sample split is ground using a ring mill pulverizer with a chrome steel ring set. The Chemex specification for this procedure is that greater than 90% of the ground material passes a 150 mesh screen. Grinding with chrome steel will impart trace amounts of iron and chromium to a sample.

Crushing

The entire sample is passed through TM Rhino crusher to yield a crushed product where greater than 60% of the sample passes a -10 mesh screen. A split in the range of 200-250g (weight depends on parameters requested) is then taken using a stainless steel Jones riffle splitter.

Different crushing codes are used depending on the weight of the original sample:

Chemex
CodeSample Weight2260 - 6 lbs (Small rock chip samples packed in porous bags only)2947 - 15 lbs27616 - 25 lbs27326 - 40 lbs27041 - 60 lbs

Gold

Fire Assay Collection/ Atomic Absorption Spectroscopy (FA-AA)

Chemex Code: 983

A 30g sample is fused with a neutral lead oxide flux inquarted with 6mg of gold-free silver and then cupelled to yield a precious metal bead.

These beads are digested for 30 mins in 0.5ml diluted 75% nitric acid, then 1.5ml of concentrated hydrochloric acid are added and the mixture is digested for 1 hr. The samples are cooled, diluted to a final volume of 5ml, homogenized and analyzed by atomic absorption spectroscopy.

Detection limit: 5 ppb

Upper Limit: 10,000 ppb

Chemex Code: 998 (oz/T)

Gold analyses are done by standard fire assay techniques. A prepared sample (1 assay ton (29.166 grams)) is fused with a neutral flux inquarted with 5 mg of Au-free silver and then cupelled. Silver beads for AA finish are digested for 1/2 hour in 1 ml diluted 75% nitric acid, then 3 ml of hydrochloric is added and digested for 1 hour. The samples are cooled and made to a volume of 10 ml, homogenized and analyzed by atomic absorption spectroscopy.

Any samples which assay over 0.4 oz/T (13.6 g/t) are automatically re-fire assayed using gravimetric finish. The gravimetrically determined gold content is substituted into the certificate of analysis.

Detection Limit: 0.001 oz/T

Upper Limit: 20 oz/T

32-Element Geochemistry Package (32-ICP) Inductively-Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES)

A prepared sample (1.0g) is digested with concentrated nitric and aqua regia acids at medium heat for two hours. The acid solution is diluted to 25ml with demineralized water, mixed and analyzed using a Jarrell Ash 1100 plasma spectrometer after calibration with proper standards. The analytical results are corrected for spectral inter-element interferences.

Chemex	Element	Detection	Upper
Codes		Limit	Limit
229	Digestion		
2119	 Aluminum 	0.01 %	15 %
2118	Silver	0.2 ppm	0.02 %
2120	Arsenic	2 ppm	1 %
2121	• Barium	10 ppm	1 %
2122	• Beryllium	0.5 ppm	0.01 %
2123	Bismuth	2 ppm	1 %
2124	* Calcium	0.01 %	15 %
2125	Cadmium	0.5 ppm	0.05 %
2126	Cobalt	1 ppm	1 %
2127	 Chromium 	1 ppm	1 %
2128	Copper	1 ppm	1 %
2150	Iron	0.01 %	15 %
2130	* Gallium	10 ppm	1 %
2132	 Potassium 	0.01 %	10 %
2151	* Lanthanum	10 ppm	1 %
2134	 Magnesium 	0.01 %	15 %
2135	Manganese	5 ppm	1 %
2136	Molybdenum	1 ppm	1 %
2137	• Sodium	0.01 %	10 %
2138	Nickel	1 ppm	1 %
2139	Phosphorus	10 ppm	1 %
2140	Lead	2 ppm	1 %
2141	Antimony	2 ppm	1 %
2142	• Scandium	1 ppm	1 %
2143	* Strontium	1 ppm	1 %
2144	* Titanium	0.01 %	10 %
2145	• Thallium	10 ppm	1 %
2146	Uranium	10 ppm	1 %
2147	Vanadium	1 ppm	1 %
2148	 Tungsten 	10 ppm	1 %
2149	Zinc	2 ppm	1 %
2131	Mercury	1 ppm	1 %
	•	11	

* Elements for which the digestion is possibly incomplete.

Ultra-Trace-10 (UT10)

The UT10 package combines results from two trace element procedures. Organic extraction followed by inductively coupled plasma spectroscopy is used to determine Ag, As, Bi, Cd, Cu, Mo, Pb, Sb, and Zn. Mercury is done separately by cold vapor AA to provide the lowest detection limit for this element.

Organic Extraction - Inductively-Coupled Plasma Spectroscopy

A prepared sample (2.00g) is digested with concentrated hydrochloric acid and potassium chlorate at low heat. The resulting solution is reduced to eliminate iron interference and trace elements are extracted with trioctyl-phosphine oxide into an organic solvent. The extract is then analyzed by inductively-coupled plasma spectroscopy.

This multi-element extraction is suitable for the analysis of soils, stream and lake sediments and other material which is not highly mineralized. If any element's upper limit is exceeded, the extraction capacity is exceeded and all elements for that particular sample will have to be reported as mineralized.

Chemex Codes	Element	Detection Limit	Upper Limit
1089	Antimony	0.2 ppm	0.1%
1092	Arsenic	0.2 ppm	0.5%
1094	Bismuth	0.2 ppm	0.5%
1095	Cadmium	0.1 ppm	0.01%
1097	Copper	0.2 ppm	0.5%
1933	Lead	0.5 ppm	0.5%
1939	Molybdenum	0.2 ppm	0.5%
1941	Silver	0.02 ppm	0.02%
1946	Zinc	1 ppm	0.5%

Mercury Atomic Absorption Spectroscopy

Chemex Code: 20

A prepared sample (1.00g) is digested with concentrated nitric-aqua regia acid for two hours. The digested solution is diluted to volume and homogenized. An aliquot of the solution is transferred to a reaction flask connected to an absorption cell. Stannous chloride is added to reduce the mercury which is then measured by cold vapour atomic absorption spectroscopy.

Detection Limit: 10 ppb

24-Element Geochemistry Package (24-ICP)

Inductively-Coupled Plasma Atomic Emission Spectroscopy (ICP-AES)

The 24 element rock geochemistry package provides quantitative analysis of all major elements (except silicon) as well as most important trace elements.

A prepared sample (0.50g) is digested with perchloric, nitric and hydrofluoric acids to dryness. The residue is taken up in a volume of 25ml of 10% hydrochloric acid and the resulting solution is analyzed by inductively-coupled plasma atomic emission spectroscopy. Results are corrected for spectral interelement interferences.

561 Bismuth 2 ppm 1 % 576 Calcium 0.01 % 25 % 562 Cadmium 0.5 ppm 0.05 % 569 Chromium 1 ppm 1 % 563 Cobalt 1 ppm 1 % 577 Copper 1 ppm 1 % 566 Iron 0.01 % 15 % 560 Lead 2 ppm 1 % 570 Magnesium 0.01 % 15 % 568 Manganese 5 ppm 1 % 554 Molybdenum 1 ppm 1 % 559 Phosphorus 10 ppm 1 % 584 Potassium 0.01 % 10 %	Chemex Cod <i>e</i>	Element	Detection Limit	Upper Limit
	573 565 575 561 576 562 569 563 577 566 560 577 566 560 570 568 554 564 554 554 554 559 584 578 583 583	Barium Beryllium Bismuth Calcium Cadmium Chromium Cobalt Copper Iron Lead Magnesium Manganese Molybdenum Nickel Phosphorus Potassium Silver Sodium Strontium	0.01 % 10 ppm 0.5 ppm 2 ppm 0.01 % 0.5 ppm 1 ppm 1 ppm 1 ppm 0.01 % 2 ppm 0.01 % 5 ppm 1 ppm 1 ppm 1 ppm 1 ppm 0.01 % 0.5 ppm 0.01 % 1 ppm	15 % $1 %$ $0.01 %$ $1 %$ $25 %$ $0.05 %$ $1 %$ $1 %$ $1 %$ $15 %$ $1 %$ $15 %$ $1 %$ $15 %$ $1 %$
572 Vanadium 1 ppm 1 % 558 Zinc 2 ppm 1 %	556 572	Tungsten Vanadium	10 ppm 1 ppm	1 % 1 %

Analytical Chemists * Geochemists * Registered Assayers North Vancouver 212 Brooksbank Ave. British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

C

To: INNECOTT CANADA, INC

> 354 - 200 GRANVILLE ST. VANCOUVER, BC V6C 1S4

SRECEIVED OCT | 1895

A9529435

Comments: ATTN: DAVE FLEMING CC: ERIC FINLAYSON

CERTIFICATE

A9529435

(KAVC) - KENNECOTT CANADA, INC.

Project: P.O. # : 50-477

Samples submitted to our lab in Vancouver, BC. This report was printed on 5-OCT-95.

	SAM	PLE PREPARATION
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION
201 202 229	6 6 6	Dry, sieve to -80 mesh save reject ICP - AQ Digestion charge
NOTE	1.	

The 32 element ICP package is suitable for trace metals in soil and rock samples. Blements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, T1, W.

		ANALYTICAL P	ROCEDURES		
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	upper Limit
983 2118	6	Au ppb: Fuse 30 g sample Ag ppm: 32 element, soil & rock Al %: 32 element, soil & rock As ppm: 32 element, soil & rock Ba ppm: 32 element, soil & rock	ГЛ-ЛЛ ICP- ЛВ ICP- ЛВ	5 0.2 0.01	10000 200 15.00
2119 2120 2121	6	Al %: 32 element, soil & rock As ppm: 32 element, soil & rock Ba rom: 32 element, soil & rock	ICP-ABS ICP-ABS ICP-ABS	2 10	10000
2122 2123	6	Be ppm: 32 element, soil & rock Bi ppm: 32 element, soil & rock	ICP-ABS ICP-ABS ICP-ABS	0.5	100.0 10000
2124 2125	6	Cd ppm: 32 element, soil & rock	ICP-AES	0.01 0.5	15.00 100.0
2126 2127	6	Co ppm: 32 element, soil & rock Cr ppm: 32 element, soil & rock	ICP-AES ICP-AES ICP-AES		10000 10000 10000
2128 2150 2130	6 6	Cu ppm: 32 element, soil & rock Fe %: 32 element, soil & rock Ga ppm: 32 element, soil & rock	ICP-AES	0.01 10 10	15.00 10000
20 2132	6	Hg ppb: HN03-HC1 digestion K %: 32 element, soil & rock	aa <i>s-flameless</i> Icp-a es	0.01	100000 10.00 10000
2151 2134 2135	6 6 6	La ppm: 32 element, soil & rock Mg %: 32 element, soil & rock Mn ppm: 32 element, soil & rock	ICP-AES ICP-AES ICP-AES	10 0.01 5	15.00
2136 2137	6	No ppm: 32 element, soil & rock Na %: 32 element, soil & rock	ICP -AES ICP -AES	1 0.01	10000 5.00
2138 2139	6 6 6	Ni ppm: 32 element, soil & rock P ppm: 32 element, soil & rock Pb ppm: 32 element, soil & rock	ICP- AES ICP- AES ICP- AES	1 10 2	10000 10000 10000
2140 2141 2142	6	Sb ppm: 32 element, soil & rock Sc ppm: 32 elements, soil & rock	ICP-ALS ICP-ALS	2	10000 10000
2143 2144	6	Sr ppm: 32 element, soil & rock	ICP-ASS ICP-ASS	1 0.01 10	10000 5.00 10000
2145 2146 2147	6 6	TI ppm: 32 element, soil & rock U ppm: 32 element, soil & rock V ppm: 32 element, soil & rock W ppm: 32 element, soil & rock Zn ppm: 32 element, soil & rock	ICP-AES ICP-AES ICP-AES	10	10000
2148 2149	6	W ppm: 32 element, soil & rock Zn ppm: 32 element, soil & rock	ICP-ABS ICP-ABS	10 2	10000 10000

BAMPLE PREP CODE Au ppb FA+AA Ag 7R21074A 201 202 202 201 202 202 201 202 201 202 201 202 202 201 202 202 202 201 202 201 202 202 203 201 202 202 203 201 202 202 203 201 202 202 203 201 202 202 203 201 202 203 201 202 203 201 202 203 203 201 202 203 203 203 204	Al As Ba Be % ppm ppm ppm 2.20 12 150 0.5	Bi ppm	Ca Cd		CATE	To: JF INNECOTT CANADA, INC. 354 - 200 GRANVILLE ST. VANCOUVER, BC V6C 1S4 Project : 50-477 Comments: ATTN: DAVE FLEMING CC: ERIC FINLAYSON CERTIFICATE OF ANALYSIS A							Page Number A Total Pages 1 Certificate Date: 05-OCT-9 Invoice No. 19529435 P.O. Jumber 1 Account KAVC				
SAMPLE CODE FA+AA ppm R21074A 201 202 202 R21075A 201 202 < 5 < 0.2 R21076A 201 202 < 5 < 0.2 R21362A 201 202 < 5 < 0.2 R21363A 201 202 < 5 < 0.2	% рра рра рра				_												
R21075A 201 202 R21076A 201 202 < 5 < 0.2	2.20 12 150 0.5		- Phe	Со ррж	Cr Ppm	Cu pp=	Fe %	Ga pp n	Hg ppb	K %	red Ter	Ng X	Mn ppm				
21153A 201 202		2	1.15 < 0.5	12	39	26	3.72	< 10	70	0.07	10	0.55	1355				

Analytical Chemists * Geochemists * Hegistered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 TO: ANCENNECOTT CANADA, INC.

354 - 200 GRANVILLE ST. VANCOUVER, BC V6C 1S4 Page Number 52 Total Pages 51 Certificate Date: 05-OCT-95 Invoice No. 19529435 P.O. Number 5 Account KAVC

Project : 50-477 Comments: ATTN: DAVE FLEMING CC: ERIC FINLAYSON

										CERTIFICATE OF ANALYS			SIS	A9529435			
SAMPLE	PRE		Мо	Na %	Ni ppm	P ppm	Pb ppm	Sp ppm	Sc ppm	Sr ppm	7i %	Tl ppm	D D D D	V pp n	W	Zn ppn	
VR21074A VR21075A VR21076A VR21362A VR21363A	201 201 201 201 201 201 201	202 202 202 202 202 202	1	0.01	24	1170	12	< 2	6	70	0.18	< 10	< 10	82	< 1U	טצ	
R21153A	201 2	102	_														
																	·
						<u> </u>	<u> </u>					<u>_</u>					Mai Billia

· • •

CERTIFICATION:

· -----

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver

British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

CERTIFICATE

A9529436

(KAVC) - KENNECOTT CANADA, INC.

Project: 50-477 P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 5-0CT-95.

	SAM	PLE PREPARATION
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION
205 226 3202 229	28 28 28 28 28	Geochem ring to approx 150 mesh 0-3 Kg crush and split Rock - save entire reject ICP - AQ Digestion charge
NOTE		

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, NG, Na, Sr, Ti, Tl, W. To: V INNECOTT CANADA, INC.

354 - 200 GRANVILLE ST. . RECEIVED OCT 1 1 185 VANCOUVER, BC V6C 154

A95294

<u>.</u>*

Comments: ATTN: DAVE FLEMING CC: ERIC FINLAYSON

ANALYTICAL PROCEDURES

CODE	NUMBER		METHOD	DETECTION LIMIT	UPPER LIMIT
983	28	Au ppb: Fune 30 g sample	7 λ- λλ <i>8</i>	5	10000
2118	28	Ag ppm: 32 element, soil & rock	ICP-AES	0.2	200
2119	28	Al %: 32 element, soil & rock	ICP-NES	0.01	15.00
2120	28	As ppm: 32 element, soil & rock	ICP-AES	2	10000
2121	28	Ba ppm: 32 element, soil & rock	ICP-AES	10	10000
2122	28	Be prm: 32 element, soil & rock	ICP-AES	0.5	100.0
2123	28	Bi ppm: 32 element, soil & rock	ICP-AES	2	10000
2124	28	Ca %: 32 element, soil & rock	ICP-AES	0.01	15.00
2125	28	Cd pum: 32 element, soil & rock	ICP-AES	0.5	100.0
2126	28	Co prm: 32 element, soil & rock	ICP-AES	1	10000
2127	28	Cr ppm: 32 element, soil & rock	ICP-AES	1	10000
2128	28	Ca ppm: 32 element, soil & rock	ICP-AES	1	10000
2150	28	Fe %: 32 element, soil & rock	ICP- AE#	0.01	15.00
2130	28	Ga ppm: 32 element, soil & rock	ICP-AE#	10	10000
20	28	Hg ppb: HN03-HC1 digestion	aas- Tlankle ss	10	100000
2132	28	K %: 32 element, soil & rock	ICP- AES	0.01	10.00
2151	28	La ppm: 32 element, soil & rock	ICP-AES	10	10000
2134	26	Mg %: 32 element, soil & rock	ICP- ABS	0.01	15.00
2135	28	Mn ppm: 32 element, soil & rock	ICP- AES	5	10000
2136	28	No ppm: 32 element, soil & rock	ICP-AES	1	10000
2137	28	Na %: 32 element, soil & rock	ICP-AES	0.01	5.00
2138	28	Ni ppm: 32 element, soil & rock	ICP- XE\$	1	10000
2139	28	P ppm: 32 element, soil & rock	ICP-ABS	10	10000
2140	28 (Pb ppm: 32 element, soil & rock	ICP-AES	2	10000
2141	28	Sh ppm: 32 element, soil & rock	ICP-AES	2	10000
2142	28 (Sc ppm: 32 elements, soil & rock	ICP- AES	1	10000
2143	28	Sr ppm: 32 element, soil & rock	ICP-AES	1	10000
2144		Ti %: 32 element, soil & rock	ICP-ABS	0.01	5.00 10000
2145		Tl ppm: 32 element, soil & rock	ICP-AES	10	10000
2146	28	U ppm: 32 element, soil & rock	ICP-ABS	10	10000
2147		V ppm: 32 element, soil & rock	ICP-ARS	1	10000
2148		N ppm: 32 element, soil & rock	ICP-AES	10 2	10000
2149	28	In ppm: 32 element, soil & rock	ICP- Aes	4	10000

0		212 Brook British Col PHONE: 6	lumbia. Ca	anada	North Var \ \X: 604-98	V7J 2C1			Proje	ments: /	50-477 ATTN: D/		EMING CO	-		<u> </u>		P.O. Nur Account		KAVC
SAMPLE	PREP CODE	ли ррђ Гл+лл	λg ppm	A1 %	λs ppn	Ba ppn	Be	Bi ppm	Ca %	Cđ ppa	Co ppe	Cr ppn	Cu Ppa	Pe t	Ga ppn	Hg ppb	X L	La ppa	Ng L	. M DD

VR32680A	205 226	< 5	< 0.Ž	1.23	12	240	< 0.5	2	0.36	< 0.5	2	83	4	2.31	< 10	70	0.51	< 10	0.71	260
L							,	- <u></u>		<u> </u>				RTIFIC		Hh	aic	BT	lo]
					_									.nnnio/		- V				

C		Cher Analytical Cher 212 Brook British Col PHONE: 6	nists * Ge sbank Av umbia, C	ochemista /e., :anada	* Registe North Va	red Assay Incouver V7J 2C1	9 13			354 - 20 VANCO V6C 1S t : ients:	50-477 ATTN: D	VILLE ST C AVE FLE	r. Ming C		FINLAYSC		Invoice No. P.O. Number Account	r 3 :1 te: 05-OCT-95 : 19529436 : : KAVC
SAMPLE	PREP CODE	Mo ppm	Na 2	ni pp=	p ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppa		T1		V ppm	W ppm	zn ppm	A9529	436	
j								-										

VR32478A VR32479A VR32480A	205	226 226 226	- < 1	0.10	1	700	. 4	2	- 7	25	0.18	< 10	< 10	24	< 10	46		
L														ci			Hai Dilla	· _ · · · · · · · · · · · · · · · · · ·

Chemex Labs Ltd. Analytical Chemists ' Beochemists ' Begistered Assayers

Analytical Chemists "Geochemists" Hegistered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: ENNECOTT CANADA, INC.

354 - 200 GRANVILLE ST. VANCOUVER, BC V6C 1S4

RECEIVED OCT 2 4 1995

A9529976

:x¹/2

Comments: ATTN: DAVE FLEMMING/ANDREW DAVIES CC: ERIC FINLAYSON

ANALYTICAL PROCEDURES

CERTIFICATE

A9529976

(KAVC) - KENNECOTT CANADA, INC.

Project: 05-477 P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 18-OCT-95.

	SAM	PLE PREPARATION
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION
205 226 3202 229	44 64 64 64	Geochem ring to approx 150 mesh 0-3 Kg crush and split Rock - save entire reject ICP - AQ Digestion charge
NOTE	1.	

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Ba, Ca, Cr, Ga, K, La, Ng, Ma, Sr, Ti, Tl, W.

Hemex Code	NUMBER		METHOD	DETECTION	UPPEI
983	44	Au ppb: Fuse 30 g sample	<u> </u>	5	10000
2118	1 11	Ag pom: 32 element, soil & rock	ICP-ARS	0.2	200
2119	1 44	Al %: 32 element, soil & rock	ICP-ARS	0.01	15.00
2120	44	As ppm: 32 element, soil & rock	ICP-ARS	2	10000
2121	44	Ba ppm: 32 element, soil & rock	ICP-ARS	10	10000
2122	44	Be ppm: 32 element, soil & rock	ICP-ARS	0.5	100.0
2123	44	Bi ppm: 32 element, soil & rock	ICP-ARS	2	10000
2124	44	Ca %: 32 element, soil & rock	ICP-ARS	0.01	15.00
2125	44	Cd ppm: 32 element, soil & rock	ICP-ARS	0.5	100.0
2126	44	Co ppm: 32 element, soil & rock	ICP-ARS	1	10000
2127	44	Cr ppm: 32 element, soil & rock	ICP-ARS	1	10000
2128	44	Cu ppm: 32 element, soil & rock	ICP-ARS	1	10000
2150	44	Fe %: 32 element, soil & rock	ICP-ARS	0.01	15.00
2130	44	Ga prom: 32 element, soil & rock	ICP-ARS	10	10000
20	44	Hg ppb: HN03-HC1 digestion	AAS-FLAMELESS	10	100000
2132	44	K %; 32 element, soil & rock	ICP-ARS	0.01	10.00
2151	44	La ppm: 32 element, soil & rock	ICP-ARS	10	10000
2134	44	Mg %: 32 element, soil & rock	ICP-ARS	0.01	15.00
2135		Mn ppm: 32 element, soil & rock	ICP-ARS	5	10000
2136	44	No ppm: 32 element, soil & rock	ICP-ARS	1	10000
2137		Na %; 32 element, soil & rock	ICP-ARS	0.01	5.00
2138	44	Ni ppm: 32 element, soil & rock	ICP- ARS	1	10000
2139	44	P ppm: 32 element, soil & rock	ICP-ARS	10	10000
2140	44	Ph ppm: 32 element, soil & rock	ICP-ARS	2	10000
2141	44	sb ppm: 32 element, soil & rock	ICP- ARS	2	10000
2142	44	Sc ppm: 32 elements, soil & rock	ICP- ARS	1	10000
2143	44	Sr ppm: 32 element, soil & rock	ICP- AR#	1	10000
2144		Ti k: 32 element, soil & rock	ICP- ARS	0.01	5.00
2145		TI ppar 32 element, soil & rock	ICP- XES	10	10000
2146		U ppm: 32 element, soil & rock	ICP- ARS	10	10000
2147	44	V ppm: 32 element, soil & rock	ICP-ARS	1	10000
148	44 1	W ppm: 32 element, soil & rock	ICP-ARS	10	10000
2149	44	En ppm: 32 element, soil & rock	ICP-ARS	2	10000
306		to W: Aqua-Regia digestion	AAS .	0.001	100.00

· __

	212 Brook British Col PHONE: 6	sbank Ave umbia, Ca	e., I anada	* Registen North Var \	red Assays incouver V7J 2C1			To:o: INNECOTT CANADA, INC. Page Number Total Pages Total Pages Total Pages Total Pages Total Pages Certificate Da Invoice No. 354 - 200 GRANVILLE ST. Certificate Da Invoice No. VANCOUVER, BC Project : 05-477 Comments: 05-477 Comments: ATTN: DAVE FLEMMING/ANDREW DAVIES CC: ERIC FINLAYSON CERTIFICATE OF ANALYSIS							o. : nber :	19529976 KAVC				
			_						CE	RTIFI	CATE	OF A	NALY	ALYSIS A9529976						
PREP SAMPLE CODE	λu ppb Fλ+λλ	Ag ppm	A1 %	As ppn	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Со ррш	Cr ppn	Cu ppm	Fa %	Ga ppm	Bg K La Mg H ppb % ppm % p					

و وزنده

و مينتيد ال

VRJ2481X		< 5	< 0.	2	1.30	2	100	< 0.5	< 2	1.35	< 0.5	11	53	22	3.56	< 10	< 10	0.42	< 10	0.70	445	
VR32482A	205 226	< 5	< 0.	2	1.76	2	80	< 0.5	< 2	1.42	< 0.5	10	106	21	2.90	< 10	< 10	0.53	< 10	0.94	820	

CERTIFICATION:

		212 Brook British Col PHONE: 6	nists " Geo sbank Av umbia, Ca	chemists e., anada	* Register North Va	ed Assay ncouver V7J 2C1	ers		To: Pro Cor	354 - VANC V6C ject : mments:	200 GF COUVEI 1S4 05-47 ATTN	7	E ST. FLEM	MING/A				Invoice No. P.O. Number	ate Date: 18-001- No. : 1952997 umber : t : KAVC				
SAMPLE	PREP CODE	Мо рра	Na %	Ni ppm	p ppm	Pb ppm	Sb ppm	Sc ppa	Sr ppz		i 1 * pp		Ŭ Da	V pp a	W ppm	Zn ppn	No *						
																		<u> </u>					

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver

212 Brocksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

CERTIFICATE

A9529438

(KAVC) - KENNECOTT CANADA, INC.

Project: 50-477 P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 3-OCT-95.

		SAM	PLE PREPARATION
CHE	emex XDE	NUMBER SAMPLES	DESCRIPTION
	201 202 220 232 265	7 7 7 7 7	Dry, sieve to -50 mesh save reject Transferring charge Drying charge (0-3 Kg) ICP - HP digestion charge

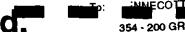
To: INNECOTT CANADA, INC.

ा १:03

A9529438

354 - 200 GRANVILLE ST. VANCOUVER, BC

V6C 1S4


R, BC

SRECEIVED OCT + 1995

Comments: ATTN: DAVE FLEMING CC: ERIC FINLAYSON

ANALYTICAL PROCEDURES

CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION	LIMIT
983	7	Au ppb: Fuse 30 g sample	ም አ-እአይ	5	10000
578	7	Ag ppm: 24 element, rock & core	λλ <i>8</i>	0.2	200
573	1 7	Al %: 24 element, rock & core	ICP-ABS	0.01	25.0
565	2	Ba ppm: 24 element, rock & core	ICP-AES	10	10000
575	;	Be ppm: 24 element, rock & core	ICP-AES	0.5	1000
561	1 1	Bi pres 24 element, rock & core	ICP-AES	2	16666
576	i	Ca %: 26 element, rock & core	ICP-AES	0.01	25.0
562	i	Cd ppm: 24 element, rock & core	ICP-AES	0.5	500
563	1	Co ppm: 24 element, rock & core	ICP-AES	1	10000
569	1 7 1	Cr ppm: 24 element, rock & core	ICP-AES	1	10000
577	7	Cu ppm: 24 element, rock & core	ICP- ABS	1	10000
566	7	To %; 26 element, rock & core	ICP- NES	0.01	25.0
584	2	K %: 24 element, rock & core	ICP-XES	0.01	10.00
570	7	Mg %: 24 element, rock & core	ICP-AES	0.01	15.00
568	7	Mn ppm: 24 element, rock & core	ICP-AES	5	10000
554	1 7	No ppus 24 element, rock & core	ICP-AES	1	10000
583	7	Na %: 24 element, rock & core	ICP-AES	0.01	10.00
564	7	Ni ppu: 26 element, rock & core	ICP-ASS	1	10000
559	7	P ppm: 24 element, rock & core	ICP-AES	10	10000
560	7	Pb ppm: 24 element, rock & core	ans .	2	10000
582	7	Sr ppm: 24 element, rock & core	ICP-ASS	1	10000
579	7	Ti %: 24 element, rock & core	ICP-AES	0.01	10.00
572	7	V ppm: 24 element, rock & core	ICP-AES	1	10000
556	7	W ppm: 24 element, rock & core	ICP-AES	10	10000
558	7	In ppm: 24 element, rock & core	ICP-AES	2	10000

INNECOTT CANADA, INC.

Total Pages : 1 Total Pages : 1 Invoice No. : 19529438 P.O. Number : Account : KAVC

1

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Chemex Labs It

Project : 50-477 Comments: ATTN: DAVE FLEMING CC: ERIC FINLAYSON

CONTRACT OF	Pł	HONE	E: 604-984	-0221 FAX	; 604-984-0	210								495294		
								<u>_</u>	CERTI	FICATE	OF AN	ALYSIS		495294		
	PRE			λg ppm AAS	A1 % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Coppm (ICP)	Cr ppm {ICP}	Cuppa (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)
SAMPLE VR12975A VR12976A VR12977A	COD 201 2 201 2 201 2 201 2 201 2	02 102 102	FA+AA 10 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	7.11 6.95 7.46 7.07	600 610 660 540	0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1.62 1.88 1.83 2.04 1.85	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	13 16 16 17 16	61 77 62 78 62	24 21 29 37 27	4.12 4.46 4.62 4.85 4.65	1.67 1.59 1.48 1.39 1.51	0.66 0.96 1.01 1.16 1.09
VR32930A VR32931A VR32932A VR32932A	201 2 201 2 201 2 201 2	02 102	< 5 < 5 < 5	< 0.2 < 0.2 < 0.2	7.14 7.31 7.28	600 660 600	0.5	< 2 < 2	1.60 1.93	< 0.5 < 0.5	13 15	60 70	27 29	4.27 4.69	1.67	0.86 0.97
			n.]										
						1									1	
				-		ļ										
]			N: 1.1.6		· · ·	L

Analytical Chemists " Geochemists " Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 TOD: INNECOTI CANADA, INC.

354 - 200 GRANVILLE ST. VANCOUVER, BC V6C 1S4 Total Pages : I Certificate Date: 03-OCT-95 Invoice No. : 19529438 P.O. Number : Account : KAVC

Project : 50-477 Comments: ATTN: DAVE FLEMING CC: ERIC FINLAYSON

A9529438 **CERTIFICATE OF ANALYSIS** Zn ppm V ppm W pps TI % Sr ppm Ni ppa Pb ppm P ppa Na X PREP Mn ppm No ppe (ICP) (ICP) (ICP) (ICP) (ICP) **MAS** (ICP) (ICP) (ICP) (ICP) (ICP) CODE SAMPLE 90 < 10 0.72 110 297 10 18 980 2.06 < 10 74 660 1 201 202 0.82 132 313 VR12975A 8 27 1030 785 1 2.14 < 10 78 115 201 202 0.74 315 VR12976A 10 28 810 76 730 < 1 2.20 < 10 201 202 0.71 118 VR12977A 8 292 820 32 735 3 1.88 < 10 76 201 202 0.77 121 VR32930A 6 308 880 29 < 1 2.12 800 201 202 VR32931A 70 < 10 0.75 121 304 10 21 800 < 1 2.21 86 < 10 201 202 615 0.01 124 325 VR32932A 12 1120 30 < 1 2.08 201 202 680 VR32933A

CERTIFICATION _

Analytical Chemists * Geochemists * Registered Assayers

North Vancouver 212 Brooksbank Ave., V7J 2C1 Bntish Columbia, Canada PHONE: 604-984-0221 FAX: 604-984-0218

KENNECOTT CANADA, INC. To:

> 354 - 200 GRANVILLE ST. VANCOUVER, BC V6C 1S4

Page ...mber Total Pages :1 Certificate Date: 09-OCT-95 Invoice No. 19529439 P.O. Number :KAVC Account

50.477 Project :

Comments: ATTN: DAVE FLEMING CC. ERIC FINLAYSON

CERTIFICATION:_

RECEIVED OUL 1 3 1995 A9529439 CERTIFICATE OF ANALYSIS Zn Sb РЪ Mo Cu Нg Bi Сđ Aв PREP λg ppm ppm ppm ppm ppb ppm ppm ppm ppm CODE ppm SAMPLE 83 < 0.2 9.0 0.6 20 17.9 < 0.1 0.2 69 5.8 < 0.2 0.04 2993296 6.5 10 0.6 VR12975A 0.1 15.4 77 < 0.2 3.2 < 0.2 < 0.02 2993296 1.0 8.0 20 VR12976A < 0.1 21.0 80 6.4 0.2 < 0.2 0.04 7.0 2993296 1.0 30 VR12977A < 0.1 33.6 0.2 76 7.0 0.04 < 0.2 2993296 0.8 7.0 20 VR32930A 21.0 < 0.1 0.2 13.4 0.02 2993296 VR32931A 64 < 0.2 6.5 40 0.6 20.0 < 0.1 6.8 0.2 80 0.02 2.4 6.0 2993296 0.6 30 VR32932A 25.8 < 0.1 0.2 6.9 0.02 2993296 VR32933A 77 ST 10 . ~ 1

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

TO: INNECOTT CANADA, INC. 354 - 200 GRANVILLE SPECEIVED OCT 2 4 1995 VANCOUVER, BC VGC 154

A9529974

Comments: ATTN: DAVE FLEMMING/ANDREW DAVIES CC: ERIC FINLAYSON

ANALYTICAL PROCEDURES

CERTIFICATE

A9529974

(KAVC) - KENNECOTT CANADA, INC.

Project: 05-477 P.O. # :

Samples submitted to our lab in Vancouver, BC. mis report was printed on 13-0CT-95.

	SAM	PLE PREPARATION
chemex code	NUMBER SAMPLES	DESCRIPTION
201 202 285	4	Dry, sieve to -80 mesh save reject ICP - HF digestion charge

Chemex Code	NUMBER SAMPLES		METHOD	DETECTION	UPPER LIMIT
983		Au ppb: Fuse 30 g sample	7 λ-λλ8	5	10000
578	1 2 1	Ag ppm: 24 element, rock & core	AAS	0.2	200
573		Al %: 24 element, rock & core	ICP-AES	0.01	25.0
565		Ba prm: 24 element, rock & core	ICP-AES	10	10000
575		Be ppm: 24 element, rock & core	ICP-AES	0.5	1000
561		Bi ppm: 24 element, rock & core	ICP-XBS	2	10000
576		Ca %: 24 element, rock & core	ICP-ARS	0.01	25.0
562		Cd ppm: 24 element, rock & core	ICP-ARS	0.5	500
563		Co ppm: 24 element, rock & core	ICP-AES	1	10000
569		Cr ppm: 24 element, rock & core	ICP- ARS	1	10000
577		Cu ppm: 24 element, rock & core	ICP-ARS	1	10000
566		Fe %: 24 element, rock & core	ICP-ARS	0.01	25.0
584		K %: 24 element, rock & core	ICP-AES	0.01	10.00
570		Mg %: 24 element, rock & core	ICP-ARS	0.01	15.00
568		Mn ppm: 24 element, rock & core	ICP- ARS	5	10000
554		No ppm: 24 element, rock & core	ICP-AES	1	10000
583		Na %: 24 element, rock & core	ICP-ARS	0.01	10.00
564		Ni pom: 24 element, rock & core	ICP- XES	1	10000
559		P ppm: 24 element, rock & core	ICP-AES	10	10000
560		Pb ppm: 24 element, rock & core	аль	2	10000
582		Sr ppm: 24 element, rock & core	ICP-NES	1	10000
579	1	Ti %: 24 element, rock & core	ICP-ARS	0.01	10.00
572	. .	V ppm: 24 element, rock & core	ICP-AES	1	10000
556	I I	W ppm: 24 element, rock & core	ICP-AES	10	10000
558		In ppm: 24 element, rock & core	ICP-ASS	2	10000

``\

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers North Vancouver V7J 2C1 212 Brooksbank Ave. British Columbia, Canada PHONE: 604-984-0221 FAX: 604-984-0218

To: _____NNECOTT CANADA, INC.

354 - 200 GRANVILLE ST. VANCOUVER, BC V6C 1S4

Page Number Total Pages 1) Certificate Date: 13-OCT-95 Invoice No. 19529974 Invoice No. P.O. Number Account :KAVC

Project : 05-477 Comments: ATTN: DAVE FLEMMING/ANDREW DAVIES CC: ERIC FINLAYSON

CERTIFICATE OF ANALYSIS

Λ.	a	2	2	ß	۵	7	A	
А	3	J	2	3	Э	1	4	

SAMPLE	PRI	BP DE	ац ррб Га+ад	ng pom Nns	A1 % (ICP)	Bapps (ICP)	Be ppm {ICP}	Bi ppm (ICP)	Ca % (ICP)	Cđ ppm (ICP)	Copps (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fo % (ICP)	K % (ICP)	Ng % (ICP)
VR12978A VR12979A VR32934A VR32935A	201 2 201 2 201 2 201 2 201 2	102	<pre>< 5 < 5 < 5 < 5 < 5</pre>	< 0.2 < 0.2 < 0.2 < 0.2	7.06 7.06 7.28 6.78	560 570 600 560	0.5 1.0 0.5 0.5	< 2 < 2 < 2 < 2	2.01 2.14 1.82 1.74	< 0.5 < 0.5 < 0.5 < 0.5	18 19 18 15	89 71 80 73	20 20 23 17	4.49 4.46 4.60 3.91	1.45 1.46 1.51 1.57	1.19 1.15 1.22 0.75
											CERTIFI		!	•		

Page Number Total Pages 11 Certificate Date: 13-OCT Invoice No. 1952997 P.O. Number 1 Account :KAVC

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

E2051

TO.

Project : 05-477 Comments: ATTN: DAVE FLEMMING/ANDREW DAVIES CC: ERIC FINLAYSON

CERTIFICATE OF ANALYSIS A9529974

SAMPLE PREP CODB Nn ppm (ICP) No ppm (ICP) Na toppm (ICP) P ppm (ICP) P ppm (ICP) P ppm (ICP) St ppm (ICP) Ti toppm (ICP) V ppm (ICP) V ppm (ICP) V ppm (ICP) No ppm (ICP) Na toppm (ICP) P ppm (ICP) Na toppm (ICP) Na toppm (ICP) <th>1</th> <th>}</th> <th></th> <th>T</th> <th>╞══╦╤╤╦╤╤═</th> <th>T</th> <th></th> <th></th> <th><u> </u></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	1	}		T	╞══╦╤╤╦╤╤═	T			<u> </u>								
VR12978A 201 202 730 1 2.06 36 940 8 328 0.85 126 < 10					(ICP)	(ICP)	(ICP)	(ICP)	РЬ ррм Аля	P ppm (ICP)	Ni ppm (ICP)		Ka ppu (ICP)	LEP DE	PI	gamplik	1
				1 76	<pre>< 10 < 10 < 10</pre>	116 124	0.71	313	10	990 790	29	1.98	730 825 720	202 202	201	VR12978A VR12978A VR12979A VR32934A	
																	S L #'
																	{
CERTIFICATION: CERTIFICATION:	i llon		2:23														

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To

354 - 200 GRANVILLE ST. VANCOUVER, BC V6C 1S4

ENNECOTT CANADA, INC.

S RECEIVED BCI 1 51995

A9529975

....

Comments: ATTN: DAVE FLEMMING/ANDREW DAVIES CC: ERIC FINLAYSON

CERTIFICATE

A9529975

(KAVC) - KENNECOTT CANADA, INC.

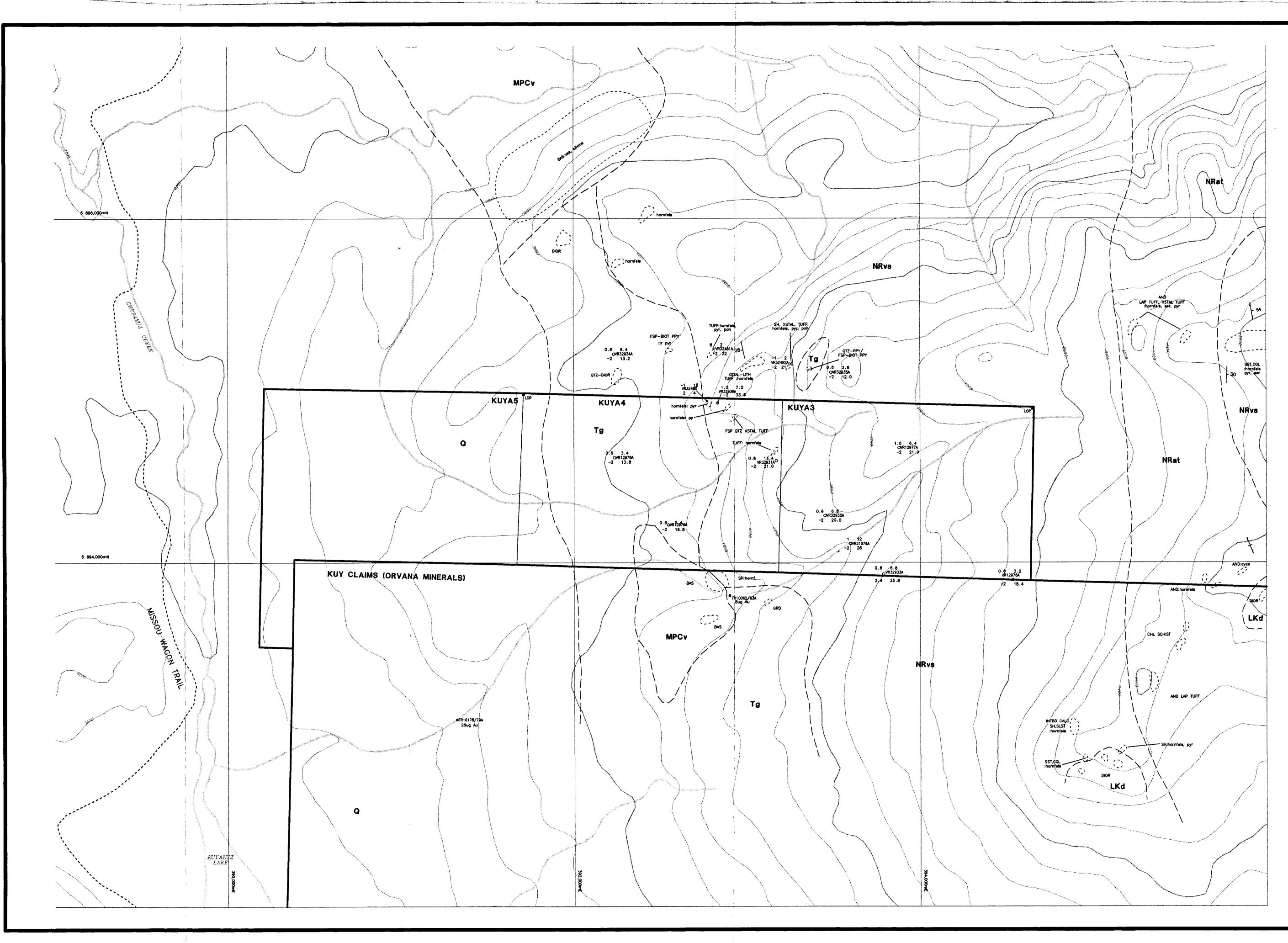
Project: P.O. # : 05-477

Samples submitted to our lab in Vancouver, BC. This report was printed on 10-OCT-95.

SAMPLE PREPARATION				
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION		
299 3296	4	Pulp; prepped on other workorder Ultra trace digestion		

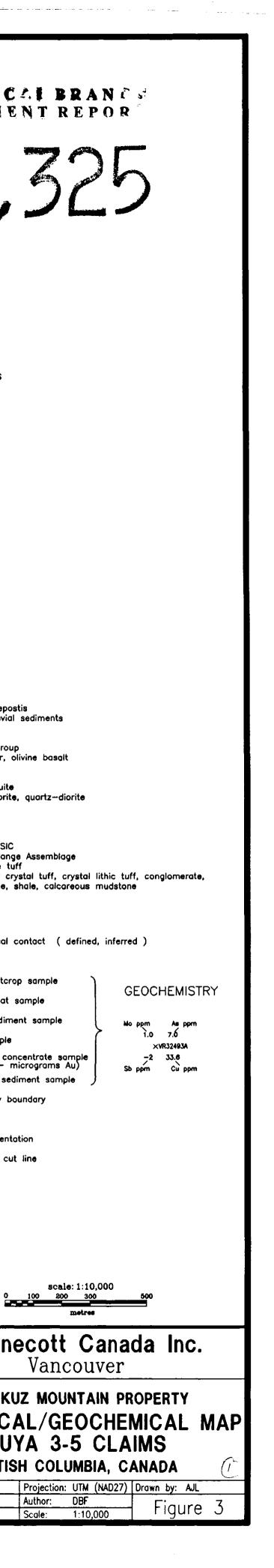
ANALYTICAL PROCEDURES

NUMBER SAMPLES		DESCRIPTION	METHOD	DETECTION	UPPER
	As ppm: Bi ppm: Cd ppm: Cu ppm: Hg ppb: Mo ppm: Pb ppm: Sb ppm:	Ultra trace package Ultra trace package Ultra trace package Ultra trace package HNO3-HC1 digestion Ultra trace package Ultra trace package Ultra trace package	EXT-ICP EXT-ICP EXT-ICP EXT-ICP EXT-ICP AAS-FLAMELESS EXT-ICP EXT-ICP EXT-ICP EXT-ICP	0.02 6.2 0.2 0.1 0.2 10 0.2 0.5 0.2 1	200 50(500, 1000 5000 100000 5000 5000 1000 5000
					. •
		AMPLES A Ag ppm: A B ppm: A B1 ppm: A Cd ppm: A Cu ppm: A Rg ppb: A No ppm: A Pb ppm: A Sb ppm:	SAMPLES DESCRIPTION 4 Ag ppm: Ultra trace package 4 As ppm: Ultra trace package 4 Bi ppm: Ultra trace package 4 Cd ppm: Ultra trace package 4 Cd ppm: Ultra trace package 4 Cu ppm: Ultra trace package 4 Rg ppb: HNO3-HC1 digestion 4 No ppm: Ultra trace package 4 Pb ppm: Ultra trace package	SAMPLES DESCRIPTION METHOD 4 As ppm: Ultra trace package EXT-ICP 4 As ppm: Ultra trace package EXT-ICP 4 Bi ppm: Ultra trace package EXT-ICP 4 Cd ppm: Ultra trace package EXT-ICP 4 Cd ppm: Ultra trace package EXT-ICP 4 Cd ppm: Ultra trace package EXT-ICP 4 Cu ppm: Ultra trace package EXT-ICP 4 Hg ppb: HB03-HCl digestion AAs-FLAMELESS 4 No ppm: Ultra trace package EXT-ICP 4 Pb ppm: Ultra trace package EXT-ICP 4 Sp ppm: Ultra trace package EXT-ICP	SAMPLES DESCRIPTION METHOD LIMIT 4 Ag ppm: Ultra trace package EXT-ICP 0.02 4 As ppm: Ultra trace package EXT-ICP 0.2 4 Bi ppm: Ultra trace package EXT-ICP 0.2 4 Cd ppm: Ultra trace package EXT-ICP 0.1 4 Cd ppm: Ultra trace package EXT-ICP 0.1 4 Cu ppm: Ultra trace package EXT-ICP 0.2 4 Hg ppb: HN03-RC1 digestion AAs-FLANKLESS 10 4 Mo ppm: Ultra trace package EXT-ICP 0.2 4 Pb ppm: Ultra trace package EXT-ICP 0.2 4 Bo ppm: Ultra trace package EXT-ICP 0.2 4 Bo ppm: Ultra trace package EXT-ICP 0.2


Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

35 ENNECUTT CANADA, INC. Тδ 354 - 200 GRANVILLE ST. VANCOUVER, BC V6C 1S4

Page transer Total Pages - 1 Certificate Date: 10-OCT-95 invoice No. : 19529975 P.O. Number : KAVC KAVC Account


Project : 05-477 Comments: ATTN: DAVE FLEMMING/ANDREW DAVIES CC: ERIC FINLAYSON

						CERTIFIC	ATE OF A	NALYSIS	A95	529975	
Sample	PREP CODE	Ag ppm	As ppm	Bi ppm	Cd ppm	Си ррп	Hg ppb	Mo Mo	Pb ppm	sb ppm	Zn ppm
VR12978A VR12979A VR32934A VR32935A	2993296 2993296 2993296 2993296 2993296	0.02 0.02 < 0.02 < 0.02	3.4 5.4 6.4 3.6	0.2 0.6 0.4 0.2	< 0.1 < 0.1 < 0.1 < 0.1	13.8 16.8 13.2 12.0	10 < 10 < 10 10	0.6 0.8 0.6 0.6	5.5 6.5 7.0 5.0	< 0.2 < 0.2 < 0.2 < 0.2	60 66 61 51 0 9
											·•
							c		: Ra	J. Bac	R. J. Cr.

F errer	SSESSMENT REPOR
	24,325
TRUE NORTH IS 1.5° E OF GRID NORTH	
	Abbreviations and andesite aug augite bas basalt biot biotite cal calcate cal calcateous cgl conglomerate chl chlorite dior diorite epi epidote
	fels felsic fsp feldspar grd granodiorite grn granite hnb homblende ho hornfels lap lapilli
	poh pyrrhotite pyr pyrite qtz quartz qvn quartz vein ser sericite sh shale sil silicified
	sitst siltstone sst sandstone tr trace ves vesicular
	Lithologies QUATERNARY Q Surficial depostis
	– glaciofluvial sediments MIOCENE–PLIOCENE MPCv Chilcotin Group – vesicular, olivine basalt
)	TERTIARY Tg Chutanli Suite – granodiorite, quartzdiorite
	LATE CRETACEOUS LKd - diorite
	LOWER—MIDDLE JURASSIC Nechako Range Assemblage NRat — andesite tuff NRvs — feldspar crystal tuff, crystal lithic tuff, con siltstone, shale, calcareous mudstone
	Symbols geological contact (defined, inferred)
	outcrop
	×vR32493A rock outcrop sample ΔTR20247 rock float sample
	Sppm Mo,Cu lake sediment sample Mo ppm OVR12978A till sample XV
	■TR10440 panned concentrate sample2 (1994 — micrograms Au) Sb ppm ¤VR21076A stream sediment sample
	property boundary
	fault vein orientation
	bedding
	foliation
	joint
	====== trail
	scale: 1:10,000 0 100 200 300 500
	metres
	Kennecott Canada Vancouver
POFESSIO 2	KUYAKUZ MOUNTAIN PROPE
D. B. FLEMING BHILISH COLUMBIA OSCIENTS	GEOLOGICAL/GEOCHEMIC KUYA 3-5 CLAIMS
	BRITISH COLUMBIA, CANA NTS: 93F/2E Projection: UTM (NAD27) Drawn
	Date: 20/02/96 Author: DBF File: 5KUYG20 Scale: 1:10,000

در بعد مدر به مدر مورز میرو رومین

