GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORTS

GEOLOGICAL REPORT WORK PROPOSAL ONTHE

NUGGET \& QUEEN CLAIMS

SEYMOUR INLET AREA, B.C.

图

> S S

VANCOUVER M.D. NTS 92L/14E, 92M/3E
PREPARED FOR
SOLAIA VENTURES INC.

BY
EDWARD W. GROVE, Ph.D., P.Eng.
VICTORIA B.C. FEBRUARY 19, 1996

TABLE OF CONTENTS

Page
SUMMARY 1
INTRODUCTION 2
LOCATION AND TOPOGRAPHY 3
ACCESS 4
PROPERTY 4
PROPERTY HISTORY 5
1995 WORK PROGRAM 6
GENERAL GEOLOGY 6
LOCAL GEOLOGY 7
MINERALIZATION 9
PROPERTY MINERALIZATION 9
1980 SAMPLING RESULTS 11
1995 SAMPLING RESULTS 13
GEOCHEMICAL SURVEYS 17
STREAM SILT SAMPLING 17
GEOCHEMICAL SOIL SAMPLING 17
GEOPHYSICAL SURVEYS 19
CONCLUSIONS 20
RECOMMENDATION 21
REFERENCES 22
1996 EXPLORATION BUDGET - NUGGET QUEEN PROPERTY 23
CERTIFICATE 25
STATEMENT OF COSTS 26
APPENDICES
I. Petrography
II. Rock sample descriptions and Laboratory analyses
III. 1995 Geochemical analyses and soil sample descriptions
IV. 1995 Geochemical soil survey plots and geostatistics
V. Geophysical Report on VLF-EM and Magnetic Surveys over theNugget Queen Property by GEOTRONICS SURVEYS LTD.
FIGURES

1. General Location Map 2
2. Claim Map 3
3. General Geology SW Coast B.C. 5
4. General Outcrop Map, Whelakis Property 6
5. General Geology, Whelakis Property 6
6. NUGGET QUEEN Property Geology pocket
7. Main Showing Outcrop Map, Whelakis Property 8
8. NUGGET QUEEN Claims, Vein Locations 9
9. Bobmac Mine, Assay Plan No. 4 Vein 9
10. Bobmac Mine Main Showing, No. 6 Vein (1938) 9
11. Main Showing - Vein No. 6 Plan and Assay Results 13
12. Vein 3, 4 \& 5, Trench 4, 5 \& 6 Plan and Assay Results 13
13. Trench 2 and 3 Plan and Assay Results 14
14. Stream Sediment Geochemistry 16
15. 1995 Geochemical Soil Survey - Anomalies 17
16. 1995 Geophysical Survey Conductors \& Geochemical Anomalies 18

SUMMARY

The NUGGET and QUEEN mineral claims lie on the B.C. seacoast mainland 35 kilometers northeast of Port Hardy, just south of Seymour Inlet. Access is available by boat, float plane, and helicopter. The mineral deposits can be reached by a short trail and corduroy road from the camp-landing area.

The six known gold quartz veins on the property were discovered in 1938 and were exposed over their length by trenching. All of the veins were sampled, and No. 4 was sampled in good detail. Vein No. 6 was later mined in 1940-1941, and 1949 and produced a total of 609 tonnes which included 20,869 g gold, $44,758 \mathrm{~g}$ silver, $3,869 \mathrm{~kg}$ copper, $10,188 \mathrm{~kg}$ lead, and 234 kg Zn . Work on the mineral deposits since then has been erratic and has included variable resampling, limited geological mapping and geophysical surveys, and a few inconclusive short drill holes.

The gold quartz veins have been localized along several sets of shear zones in deformed, altered sedimentary and volcanic rocks forming part of a roof pendant lying within a mainly granodiorite pluton. The pendant probably represents Late Triassic or younger country rocks engulfed within an outlier of the Coast Plutonic Complex.

Vein mineralization comprises mainly massive white quartz with pyrite, chalcopyrite, galena, sphalerite, plus magnetite and pyrrhotite. Overall the vein sample assay results range from about 5 parts per billion to over 475.44 grams per ton (13.865 opt) gold, and to $135.6 \mathrm{~g} / \mathrm{t}$ Ag over a 35 cm width plus significant copper, lead and zinc.

Geochemical soil sampling of the mineral zones during 1995 has produced a number of composite element anomalies, several of which indicate extensions of the No. 3, 5 and 6 veins. Two anomalies north of the exposed veins indicate somewhat less extensive unknown systems. One major soil anomaly located south of No. 6 vein suggests a new mineralized system over a length of at least 200 meters. Results of the combined magnetometer and VLF-EM surveys show a good to strong correlation with the geology and the geochemical anomalies and provide a strong incentive for continued work.

The excellent results from the 1995 exploration have indicated higher vein grades than previously reported and outlined significant new anomalies. Relatively good access, moderate topography, and weather together suggest that further work on the property is warranted.

The proposed 1996 mineral exploration Phase 1 program for the NUGGET QUEEN property is estimated at about $\$ 150,000$.

INTRODUCTION

The NUGGET and adjacent QUEEN staked mineral claims comprising a total of 24 units are located on the British Columbia mainland seacoast 35 km northeast of Port Hardy. The property can be accessed by boat, float plane, and helicopter from Port Hardy and Port McNeill on Vancouver Island. Six gold quartz veins discovered in 1938 have been trenched over a total length of about 305 meters and sampled. Veins 2, 34 and 5 in the West Showings area are mainly massive to breccia-type milky quartz with occasional to concentrated sulfide content. No. 3 vein has an exposed length of 30 meters, with an irregular width up to 1.5 meters. Sample results have been variable with values of up to 475.44 $\mathrm{g} / \mathrm{t} \mathrm{Au}$ and $135.6 \mathrm{~g} / \mathrm{t}$ Ag plus minor copper, lead and zinc. No. 4 vein which was sampled in detail in 1938 at 1.5 meters intervals over a length of 76 meters assayed a weighted average $5.69 \mathrm{~g} / \mathrm{t}$ Au over 0.7 meters at that time. The 1995 sampling of No. 4 vein returned an uncut average $22.31 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 30.4 \mathrm{~g} / \mathrm{t} \mathrm{Ag}, 371$ ppm $\mathrm{Cu}, 3,374 \mathrm{ppm} \mathrm{Pb}$, and 494 ppm Zn over a 49 cm width. No. 5 vein which has been partly exposed over a length of 40 meters with a width of about one meter has been partly sampled yielding relatively low values up to a high $1.3 \mathrm{~g} / \mathrm{t}$ Au.

No. 6 vein, also known as the Main Showing has been partly mined to produce a total of 609 tonnes from which 20,869 grams $\mathrm{Au}, 44,758 \mathrm{~g} \mathrm{Ag}$, $3,669 \mathrm{~kg} \mathrm{Cu}, 10,188 \mathrm{~kg} \mathrm{~Pb}$, and 234 kg Zn were recovered at the Tacoma smelter. No mineral reserves have been calculated for the vein systems because of the lack of depth and grade information except for No. 6 vein which was mined to a depth of 5 meters only below the surface.

The gold quartz veins on this property are localized within Wrangellian meta-sedimentary and volcanic rocks which form part of a roof pendant within

extensive Jura - Lower Cretaceous granitoids. Thick forest cover has hindered extensive detailed geological, geochemical and geophysical coverage on the property. Trenching has been the general method of testing mineralization and geophysical anomalies.

Geochemical soil surveys were first implemented on the mineral zones in 1995 with good results. Composite element anomalies outlined the known gold quartz veins and suggest extensions. These composite anomalies have outlined at least three new areas to investigate. Two of these lie north of veins 5 and 6 and a major anomalous zone with a length of at least 200 meters has been outlined about 90 meters south of, and parallel to the Main Showing.

Results from the 1995 geophysical surveys which covered the full grid area have shown the strong correlation between mineralized veins and the geochemical soil survey. The continuity of the VLF-EM conductors on both sides of the base line, particularly between L1+00W and L2+80W (the gap) provides good support for future work in this area and both east and west.

This report has been written for Solaia Ventures Inc. based upon review of the available data and the writer's examination of the vein systems on December 29, 1995. The writer has worked on Vancouver Island and mainland British Columbia geological mapping, exploration and mining projects since 1963.

LOCATION AND TOPOGRAPHY

The NUGGET and QUEEN mineral claims are located at about latitude $50^{\circ} 59^{\prime}$ North and longitude $127^{\circ} 13^{\prime}$ West on the British Columbia mainland on NTS maps $92 \mathrm{~L} / 14 \mathrm{E}$, and $92 \mathrm{M} / 03 \mathrm{E}$. The property is about 35 kilometers northeast of Port Hardy and covers part of the peninsula lying between McKinnon and Nenahlmai lagoons which are part of a southeasterly arm of Seymour Inlet (Figure 1).

The claim area lies within part of the Hecate Lowland, a geomorphic division dominated by low lying, knobby hills and ridges, numerous small lakes, and connected to Queen Charlotte Strait by narrow fiords.

The highest point on the claim area is on a small rounded hill at 369
meters. The hill appears to mark a sharp transition from the Lowland to the higher Fiord Ranges. The area has good centripetal drainage, but also contains coastal muskeg in the local depressions.

The claims and adjacent areas are thickly covered by typical dead-top cedar forest which includes western hemlock, balsam and douglas fir, and cypress. The dense undergrowth comprises young conifers, salal, ferns and deadfall. Precipitation is typical of this temperate coastal climate meaning significant rainfall, and occasional snow. At this elevation field work is feasible most of the year.

ACCESS

The NUGGET-QUEEN claims can be reached by boat, float plane and helicopter from Port Hardy and Port McNeill. The best helicopter landing on the property is at the small, swampy pond in the center of the NUGGET claim where a temporary camp was erected in 1995.

Early workers on the mineral deposits reached the area by boat and constructed a 1.5 kilometer long corduroy road from the beach to the No. 6 vein workings. It is about 890 meters from the pond/camp via good trail and road to the No. 6 vein and the intersect with the 1995 base line.

PROPERTY

The current mineral property includes two staked metric mineral claims located in the Vancouver Mining Division (Figure 2).

Name	Units	Tenure No.	Record Date	Expiry Date
QUEEN	6	333667	January 30, 1995	January 30, 1997
NUGGET	18	333668	January 30, 1995	January 30, 1997

The two claims are currently owned by David A. Heyman of Burnaby, B.C.

PROPERTY HISTORY

In 1938 thirty two-post claims were staked on the south side of McKinnon Lagoon covering ground currently known as the NUGGET-QUEEN property. Work completed by The Mining Company of Canada Ltd. included stripping (trenching) more than 1,000 feet along seven quartz veins, vein sampling, some diamond drilling and a preliminary geological map of the area. An anonymous report with figures describing this work is held in the B.C. Energy, Mines \& Petroleum Resources property file but the work was never recorded and the claims were abandoned.

In 1939 the DUD claim was staked by R. Dudley Smith and optioned to Greta B. McCorkell. The property was restaked as the SILTA and during the period 1940 to 1941674 tons of ore from No. 6 vein were shipped to the Tacoma smelter by R.C. McCorkell. It was at this time that the 1.5 km long corduroy road was built to the workings. The vein was mined by underhand stoping leaving a surface pit about 15 meters long, at least 5 meters deep with an average width of about 2 meters, supported by timber stulls. In 1943 the claims were purchased by Greta B. McCorkell and optioned to H.T. Jefferies in 1947. A further 6 tons were mined and shipped in 1949.

No significant work was recorded on the property during the 1960's. In 1973 the veins were restaked as the QC 1 to 40 with No. 6 vein located on the QC 3. Work included an EM survey on a 200 by 400 foot grid on the QC 1 to 4 claims. The property was again restaked as the Whelakis Group in 1979 for Frank Beban Logging Ltd., and a preliminary reconnaissance including some sampling was made by Nevin Sadlier-Brown Goodbrand Ltd. (NSBG). In 1980 NSBG and Premier Geophysics conducted geological mapping, rock sampling, and a magnetometer, VLF-EM survey which covered 3.4 kilometers on the WHELAKIS, and MINE 1 and 2 claims. In 1983 five short Winke holes totalling 156.8 meters were drilled above and just west of the No. 6 vein stope without conclusive results (locations and logs not available). In 1990 the property reverted to the Crown.

In 1990 the property was staked as the CHERRY 1 to 4 claims and recorded by the current owner David A. Heyman. NSBG carried out a review of the geological and geophysical data on the claim group in 1994, essentially a revision of the 1980 NSBG report. In the report the Nos. 3, 4 and 5 veins were

referred to as the West Showing and No. 6 vein as the Main Showing. Geological and geophysical surveys were reviewed and the authors suggested that work on the property had shown that gold quartz mineralization of sufficient tenor to be economic was present in the vein system. A geochemical survey of the entire sedimentary terrain was recommended and dependant upon this and trenching results, drilling would be justified. Details of the 1980 work will be included in following sections.

1995 WORK PROGRAM

Exploration work on the NUGGET-QUEEN property was undertaken in 1995 by Ashworth Explorations Ltd. for the optionee, Solaia Ventures Inc. Fieldwork which included erection of a tent frame camp, cutting a trail to the old corduroy road, cutting a new baseline and cross lines, stream silt sampling, soil sampling, vein sampling and a geophysical survey. This work was completed during the period October 26 to November 13, 1995, at a cost of about $\$ 150,000$, including transportation, materials, analyses and other expenses. Details will be included in the following sections of this report.

GENERAL GEOLOGY

The NUGGET-QUEEN property lies within one of the least studied areas on British Columbia's mainland coast. The first reconnaissance geological studies of the mainland and coastal islands were undertaken by James Richardson in 1874, followed by G.M. Dawson in 1876 and J.F. Whiteaves in 1878. A somewhat more detailed study from Vancouver to Dean Channel was started by O.E. Leroy in 1908, then continued by V. Dolmage as far as Stewart where he reported on the area's mineral deposits.

The central British Columbia sea coast did not receive real attention until 1964 when Geological Survey of Canada project "Coast Mountains" was initiated. Results of this general study were published in 1968 (Figure 3). A variety of regional maps and studies have since been published but few are at the scale useful to detailed mineral exploration.

Tectonically, rocks in the coastal Cape Scott, Alert Bay, and Rivers Inlet map areas are generally included in what is termed the Insular Superterrane

$\therefore=-1$
GRANODIORITE, QUARTZ DIORITE, DIORITE

ANDESITE, BASALT, GREENSTONE

SLATY ARGILLITE
-- GEOLOGICAL BOUNDARY, ASSUMED

$\Longrightarrow \mathrm{m}$	
0400	800
frank beban logging ltd.	
GENERAL OUTCROP MAP	
WHELAKIS PROPERTY	
VANCOUVER M.D., B.C.	NTS MAP $\begin{aligned} & \text { 92M/ 3E } \\ & 92 \mathrm{~L} / 14 \mathrm{E}\end{aligned}$
DRAWING BY D.J.B.	DRAWING
NEVIN SADIIER-GROWN GOODERAND LTD. APRIL 1980	

FIGURE 4

GRANODIORITE, QUARTZ DIORITE, DIORITE
andesite, basalt, greenstone

_-- geological boundary, assumed

~~~ FAULT, ASSUMED
\begin{tabular}{|c|c|}
\hline F & \(\cdots \mathrm{m}\) \\
\hline 400 & 800 \\
\hline \multicolumn{2}{|l|}{frank beban logging ltd.} \\
\hline \multicolumn{2}{|l|}{GENERAL GEOLOGY WHELAKIS PROPERTY} \\
\hline Vancouver m.d., B.C. & NTS MAP \(92 \mathrm{M} / 3 \mathrm{BE}\) \\
\hline DRAWING BY D.J. 8 . & DRAWING \\
\hline \multicolumn{2}{|l|}{NEVIN SADLIER-BROWN GOODBRAND LTO.
APRIL 1980} \\
\hline
\end{tabular}

FIGURE 5
which also includes Vancouver Island. The country rocks of the island as well as the adjacent coastal roof pendants include a variety of volcanic, sedimentary, and metamorphic units of mainly Mesozoic age called Wrangellia Terrane which impinges easterly against the Coast Plutonic Complex. Correlation of pendant type rocks in the central seacoast area has been mainly impossible because of isolation, and the overall degree of alteration and deformation.

A review of the generally available geological studies of the cental seacoast shows a scattering of relatively small thin to irregular, generally northwest trending country rock pendants lying within a matrix of intrusive rock. These plutonic rocks which comprise about 75 percent of the area are dominated by quartz diorite, tonalite and diorite. They are mainly Jurassic - Early Cretaceous in age and along with plutons of the Island Intrusions probably represent outliers of the main Coast Plutonic Complex separated by a thin veneer of Wrangellian crust (Friedman et al., 1995). Other recent studies suggest that the central seacoast plutons are mainly Early Cretaceous but that rock age dates are still deficient between latitudes \(51^{\circ} \mathrm{N}\) and \(53^{\circ} \mathrm{N}\) (Monger and Journeay, 1994). In view of the general range of age dates on the plutons it seems likely that the pendant country rocks are remnants of volcanic arc assemblages which were as old as Late Triassic but also partly coeval with the Jurassic - Early Cretaceous magmatic systems. At this time exploration geology maps provide the most detailed information.

\section*{LOCAL GEOLOGY}

The first geological map of the Lee Lake peninsula and adjacent shorelines was produced by The Mining Company of Canada ( 1 inch \(=500\) feet) as part of the Bobmac Mine exploration program. This work showed a northwest trending volcanic-sedimentary sequence at least 4,000 feet "thick" bounded at the west by massive granodiorite and cut by a parallel 1,000 to 1,500 foot wide granodiorite zone near the northwest shore. The quartz veins under investigation were mainly located within the main volcanic-sediment sequence, but one vein was tested in granodiorite south of Lee Lake.

In 1980 the geology of this area was considerably refined as part of a study of the gold quartz vein systems. The outcrop map (Figure 4) and the geology map (Figure 5) compiled by NSBG are included here as being the best information available. With the exception of new trench and thin section work the

\section*{1995 program concentrated on the mineralization.}

The following geological description has been excerpted from the NSBG reports (1980, 1994):
"Lithology
The Cherry Claims are underlain in the north by a sequence of metavolcanic and sedimentary rocks which form a roof pendant in a granodiorite intrusive which is exposed in the southern part of the property near Nenahlmai Lagoon....

The metavolcanic rocks range in composition from basalt to andesite and locally form greenstones. Along Nenahlmai Lagoon they consist of light greenish brown andesite with some remnant pillow structures. A siliceous tuff marks the contact with the adjacent metasedimentary rocks. Exposures on the shore of McKinnon Lagoon consist mainly of massive greenstone but with some intervals of strong foliation.

The metasedimentary rocks are comprised of dark grey slaty argillites which exhibit local silicification. North of the contact with the intrusive rocks in the central part of the claim group the argilite contains interbeds of altered tuff which weather a light buff colour.

The intrusive rocks in the southern part of the property range in composition from strongly foliated granodiorite to fine grained diorite. Gabbroic plugs locally cut both the pendant and intrusive rocks.

The rocks throughout the property area are cut be many small widely scattered quartz veins. The slaty argillite unit in the northern part of the claim group is also cut by large continuous quartz veins up to 2 m wide.

\section*{Structure}

The claims lie immediately east of the Malaspina Fault which passes through Nenahlmai Lagoon on a bearing of \(305^{\circ}\). This orientation is reflected in the general trend of the local structural elements including the major geological boundaries on the property.

A set of faults striking at about \(291^{\circ}\) and dipping north at about \(74^{\circ}\) parallel the major quartz vein system within the slaty argillite unit.

Three sets of fractures are reported (Nevin et al, 1980) to occur in the showing areas. Their attitudes are \(233^{\circ} 73^{\circ} \mathrm{W} ; 357^{\circ} 65^{\circ} \mathrm{E} ; 281^{\circ} 53^{\circ} \mathrm{N}\).

\section*{Main Showing}

The main showing is situated at Station \(0+00\) on the Base Line at the end of the old corduroy road which leads about 1.5 km east-northeasterly from the north shore of Nenahlmai Lagoon. The showing consists of a mineralized quartz vein or vein system hosted by slaty argilite. It has been excavated to a depth of 5 m in a 15 m long pit.

The host argilite unit is bounded to the south by massive greenstone, to the north by fine grained grey porphyritic basalt containing \(\mathbf{1 - 2} \mathrm{mm}\) plagioclase phenocrysts. Within

the argillite unit are at least two interbeds of altered tuff. One of these is exposed at \(1+50 \mathrm{~W}\) at Station \(0+15 \mathrm{~S}\).

The tuff interbeds are siliceous, approximately 2 m thick and weather a light buff colour. At \(0+50 \mathrm{~W}, 0+02 \mathrm{~S}\) the argillite unit is cut by a small \(1 \mathrm{~m} \times 3 \mathrm{~m}\) plug of dark grey-green diorite containing crystals of plagioclase \(3-4 \mathrm{~mm}\) across.

The quartz vein continues both east and west of the "Main Showing Pit". To the east it is 2 m wide with a 2 cm gouge seam on the hanging wall. The vein disappears beneath overburden 3 m east of the pit."

Trenches cut in country rock in the 1995 program to test possible vein extensions in the West and western Main Showings areas disclosed mainly weathered, thinly color banded argillite marked by tight folding and foliation with prominent kink banding (Figure 6). These rocks are the slaty argillite of previous workers but appear to be generally intercalated with finely banded dark brown chlorite schist. One thin section of typical color banded slaty argillite \((\mathrm{H} 6)\) is seen to be a very fine grained, well foliated chlorite schist marked by micro-kink banding and scattered brown biotite (Appendix I). Fine grained quartz, magnetite, pyrite and calcite are ubiquitous in this rock. One sample of volcanic rock type from the West showings area shows a massive fine grained greenish aspect in hand specimen, while in thin section comprises mainly secondary quartz, calcite, and sericite with rare remnant plagioclase. This material is assumed to represent a metasomatized volcanic rock. The 1980 NSBG geology map also showed two small dike-like bodies of granodiorite near the Main Showing (vein No. 6) but these exposures were obscured in 1995 (Figure 7). Considerable time and effort would now be required to refine the geology of the gold quartz showings area.

\section*{MINERALIZATION}

Known mineralization in this part of the British Columbia seacoast is limited to the gold quartz vein systems currently covered by the NUGGET and QUEEN mineral claims.

\section*{PROPERTY MINERALIZATION}

Mineral deposits on the NUGGET and QUEEN claims include six known gold quartz veins localized along shear systems in the slaty argillite and partly in altered volcanic. Seven veins were originally located by The Mining Company of Canada, one of which, the No. 7, was found in the creek flowing



south from Lee Lake hosted in granodiorite and received little attention. No. 1 vein located north of the pond also received minor attention. Locations of veins Nos. 1 through 6 are shown on Figure 8, which also shows the limits of the current NUGGET-QUEEN property. About 1,000 feet of trenching on the veins was completed on the Bobmac Mine property and the veins Nos. 3 to 6 were mapped and sampled. The 1938 report indicated that No. 3 vein was exposed over a length of 100 feet and varied from 4 to 20 inches wide; No. 4 vein was exposed over a continuous 250 feet with widths varying from a few inches to 5 feet. This vein was sampled in detail at 1.5 meter intervals and is shown here as Figure 9. The calculated weighted width and grade of 43 samples from this vein has been noted as 5.69 grams per tonne over an average width of 0.7 meters (EMR PF 92L 178). Sample results over a length of 65 meters ranged from 0.005 opt Au , to 2.44 opt Au ( 69.95 grams per tonne) over 0.9 meters. The No. 4 vein is described as milky quartz with an irregular sulfide content which includes chalcopyrite, bornite, galena, sphalerite, pyrite, pyrrhotite and magnetite as well as angular wall rock fragments lying within a west-northwesterly trending, steeply dipping shear.

No. 5 vein which was also exposed by trenching over a length of 250 feet is somewhat higher in elevation than No. 4 and lies along an intersecting 1 to 6 foot wide northwesterly shear. The No. 5 vein system includes milky quartz as lenses and stringers with minor sulfides. Bobmac did not record assays for this vein.

The No. 6 vein, generally described as the Main Showing, was also exposed by trenching but was not sampled in detailed by Bobmac. The vein outlines and assays are included here as Figure 10. It is described as having a length of 95 feet with an irregular width of from 20 inches to 5.5 feet, comprising mainly quartz, some wall rock fragments and a sulfide content varying from weak to heavy. The sulfide minerals included mainly galena, sphalerite, pyrrhotite and chalcopyrite. As shown in Figure 9, one vein sample (13 inches plus 22 inches) averaged 1.313 opt \(\mathrm{Au}, 2.08\) opt Ag , plus significant lead. The claims were later dropped in 1938.

During the period 1940 to 1941 No. 6 vein was stoped by underhand methods by the new owner (SILTA claims). Recorded lode-metal production records indicate that in this period a total of 666 tons of ore were shipped to the Tacoma smelter, and a further 6 ton shipment from the DUD claim in 1949
(MMAR):
\begin{tabular}{|c|c|c|c|c|c||}
\hline \hline Ore Shipped & \multicolumn{5}{|c|}{ Metals Recovered } \\
\hline \hline & Gold oz & Silver oz & Copper Ibs & Lead Ibs & Zinc Ibs \\
\hline \begin{tabular}{c} 
SILTA 1940-41 \\
666 tons
\end{tabular} & 668 & 1,384 & 3,870 & 21,488 & ---- \\
\hline \begin{tabular}{c} 
DUD 1949 \\
6 tons
\end{tabular} & 3 & 55 & \(\cdots--\) & 973 & 516 \\
\hline \hline Total 672 tons & 671 & 1,439 & 3,870 & 22,461 & 516 \\
\hline \hline
\end{tabular}

Production recorded from the No. 6 vein in the EMR PF 92L 14 differs only very slightly from the above.

The cessation of production from No. 6 vein in 1941 was probably as a result of World War II restrictions which closed non-strategic mines and made men, material, and other supplies generally unavailable. The small shipment from the vein in 1949 was likely taken from broken material remaining in the old stockpile.

\section*{1980 Sampling Results}

The layout of the vein systems on the Cherry claim group (now NUGGET and QUEEN claims, was compiled by NSBG on Figure 7 (this report) along with assay results as follows:

\section*{MAIN SHOWING}
(No. 6 Vein)
\begin{tabular}{||l|c|c|c||}
\hline Sample Number & Au (oz/T) & Ag (oz/T) & Width (m) \\
\hline \hline \(3-30-1\) & 0.078 & 0.10 & 1.95 \\
\hline D9 & 0.208 & 0.36 & - \\
\hline D 8 & 0.380 & 0.60 & - \\
\hline D 10 & 0.012 & 0.98 & - \\
\hline 3-30-2 & 0.12 & 0.30 & 1.5 \\
\hline
\end{tabular}
\begin{tabular}{||l|c|c|c|}
\hline Sample Number & \(\mathrm{Au}(\mathrm{oz} / \mathrm{T})\) & \(\mathrm{Ag}(\mathrm{oz} / \mathrm{T})\) & Width \((\mathrm{m})\) \\
\hline A 6 & 1.923 & 25.75 & - \\
\hline A 11 & 0.01 & \(\operatorname{tr}\) & - \\
\hline D 11 & 0.022 & 0.08 & - \\
\hline D 7 & 0.24 & 0.20 & - \\
\hline A 10 & 0.04 & 0.12 & - \\
\hline \(3-30-3\) & 0.005 & 0.02 & 1.09 \\
\hline
\end{tabular}

WEST SHOWINGS North Vein (No. 5 Vein
\begin{tabular}{||c|c|c|c|}
\hline Sample Number & Au (oz/T) & \(\mathrm{Ag}(\mathrm{oz} / \mathrm{T})\) & Width \((\mathrm{m})\) \\
\hline \hline D 5 & \(<0.003\) & 0.05 & - \\
\hline D 6 & 0.008 & 0.05 & - \\
\hline D 13 & 0.003 & 0.04 & - \\
\hline N 3 & 0.004 & 0.01 & - \\
\hline A 7 & 0.001 & \(\operatorname{tr}\) & - \\
\hline A 8 & 0.001 & 0.04 & - \\
\hline D 14 & 0.064 & 0.36 & - \\
\hline
\end{tabular}

Center Vein (No. 4 Vein
\begin{tabular}{||l|c|c|c|}
\hline Sample Number & \(\mathrm{Au}(\mathrm{oz} / \mathrm{T})\) & \(\mathrm{Ag}(\mathrm{oz} / \mathrm{T})\) & Width \((\mathrm{m})\) \\
\hline \hline \(3-30-4\) & 0.152 & 0.22 & 0.7 \\
\hline D 4 & 0.476 & 4.64 & - \\
\hline \(3-30-5\) & 0.138 & 0.94 & 1.2 \\
\hline N 4 & 0.19 & 0.64 & - \\
\hline N 5 & 2.81 & 7.09 & - \\
\hline
\end{tabular}

South Vein (No. 3 Vein)
\begin{tabular}{||l|c|c|c||}
\hline A 4 & 0.096 & 0.38 & - \\
\hline D 12 & 0.048 & 0.08 & - \\
\hline N 2 & 0.025 & 0.10 & - \\
\hline \(3-30-6\) & 0.31 & 0.27 & 1.9 \\
\hline A 2 & 4.194 & 24.95 & - \\
\hline A 3 & 0.601 & 2.30 & - \\
\hline D 3 & 0.692 & 0.97 & - \\
\hline
\end{tabular}

West Vein (No. 2 Vein)
\begin{tabular}{|l|l|l|l|}
\hline D 2 & 0.018 & 1.50 & - \\
\hline
\end{tabular}

Occurrences in Volcanic Terrain west of West Vein
\begin{tabular}{||l|c|c|c|}
\hline \hline A 1 & 0.126 & 0.10 & - \\
\hline N 1 & 0.035 & 0.05 & - \\
\hline D 1 & 0.052 & 0.01 & - \\
\hline A 5 & 0.042 & 0.11 & - \\
\hline
\end{tabular}

Occurrence in Volcanic Terrain south of the West Showing Area
\begin{tabular}{|l|l|l|l|}
\hline \(3-21-1\) & \(<0.003\) & 0.01 & 1.0 \\
\hline
\end{tabular}

The preceding summary vein analyses had not been used to calculate average grades because of the lack of vein sample widths and the irregular sample spacing. These samples do show the variability of the gold and silver values within the quartz vein systems. Vein No. 3 which was disregarded by Bobmac Mines showed values up to 4.194 opt Au , and 24.95 opt Ag. Vein No. 4, sampled in detail by Bobmac Mines yielded one assay of 2.44 opt Au near the east end of the vein. The NSBG sample record shows an assay of 2.81 opt Au near the west end of the vein indicating the irregular concentration of metal values in the vein system.

\section*{1995 Sampling Results}

Part of the 1995 field program on the NUGGET-QUEEN property included sampling the No. 3, 4, 5, and 6 veins as well as seven new trenches to test possible vein extensions.



\section*{Vein No. 6 (Main Showing)}

Sampling of No. 6 vein which was partly mined in the 1940-1941 period has been restricted to surface material because of the water filled stope. Sample locations and results have been compiled on Figure 11 which also shows new trench T1, and the creek site sample. Sample descriptions and laboratory results are enclosed as Appendix II. These assay results compare favourably with the Bobmac and NSBG sampling and the mined average of about one opt gold, and two opt silver, plus copper, lead, and zinc. The currently exposed vein has an overall length of about 40 meters and disappears to the east under overburden. The Bobmac Mine drawing (Figure 10) indicated the vein also extended westerly as faulted segments with a known length of about 61 meters.

\section*{West Showings}

As a result of the deep trenching in 1938 and streams coursing through the trenches, the Nos. 3, 4, and 5 veins are almost completely exposed.

\section*{No. 5 Vein}

Segments of the lenticular No. 5 vein are exposed within a shear zone over a length of 40 meters (Figure 12). Metal values on the basis of six samples are low with gold ranging from 5 ppb to a high of 0.038 opt Au which compares favourably with previous results (NSBG).

\section*{No. 4 Vein}

This vein was sampled in more detail (Figure 12), and the results comprise values of from 5 ppb to a high of 13.865 opt Au , and 3.96 opt Ag plus significant copper, lead, and zinc. The weighted uncut average grade of No. 4 vein has been calculated as \(22.31 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 30.4 \mathrm{~g} / \mathrm{t} \mathrm{Ag}, 371 \mathrm{ppm} \mathrm{Cu}, 3,374 \mathrm{ppm} \mathrm{Pb}\), and 494 ppm Zn , over an average width of 49 cm . This result is higher than the detailed sampling results produced by Bobmac Mines which gave an average 5.69 \(\mathrm{g} / \mathrm{t}\) over an assay width of 0.7 meters.

\section*{No. 3 Vein}

Eight vein samples taken over a length of about 41 meters at irregular spacing gave results which ranged from a low of \(2.45 \mathrm{~g} / \mathrm{t} \mathrm{Au}\), and \(0.2 \mathrm{~g} / \mathrm{t} A \mathrm{~g}\) over a width of 20 cm to a high of \(475.44 \mathrm{~g} / \mathrm{t} \mathrm{Au}(13.865 \mathrm{opt})\), and \(135.6 \mathrm{~g} / \mathrm{t}\) Ag over a width of 35 cm (Figure 12). Vein sample descriptions and assay data are also

found in Appendix II. The simple uncut average for the eight samples is about 63 \(\mathrm{g} / \mathrm{t} \mathrm{Au}, 19 \mathrm{~g} / \mathrm{t} \mathrm{Ag}, 83 \mathrm{ppm} \mathrm{Cu}, 150 \mathrm{ppm} \mathrm{Pb}\) and 17 ppm Zn across an average width of 31 cm . A simple average of the seven sample results reported by NSBG was about \(29.22 \mathrm{~g} / \mathrm{t} \mathrm{Au}\), and \(142 \mathrm{~g} / \mathrm{t} \mathrm{Ag}\). Both averages are skewed by one high sample each: NSBG sample A2 from the central vein, and R46 from the extreme east end of the vein, again showing the inherent variability of metal content within the vein system. Sample R45, a blocky sulfide-rich quartz float sample, suggests No. 3 vein may extend at least another 10 meters to the northeast.

\section*{Trenches}

Trenches 4, 5, and 6 were cut to intersect the extension of No. 4 vein and the junction of the No. 4 - No. 5 shears (Figure 12). Sample R35 from trench T-5 contained at least 10 percent combined sulfides and graded \(24.23 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 51.8\) \(\mathrm{g} / \mathrm{t} \mathrm{Ag}\) along with good copper, lead, and zinc values over a width of 60 cm . This new result indicates the No. 4 vein mineralization extends at least another 15 meters to the east. Significant vein widths exposed in the T-4, and T-6 trenches (Figure 12) suggest that the No. 5 vein system could extend another 45 meters to this intercept and to the southeast..

Trenches 2, 3A and 3B were cut to check several moderately high geochem soil results and to check a possible northeasterly extension of the Main Showing No. 6 vein (Figures 6, and 13). Trench T-2 cut only pyritic country rock with relatively weakly mineralized narrow quartz veins. Trenches 3A and 3B exposed a 20 to 30 centimeter pyritic zone with narrow quartz veins in country rock. One sample assayed \(6.18 \mathrm{~g} / \mathrm{t} \mathrm{Au}\) and \(7.4 \mathrm{~g} / \mathrm{t} \mathrm{Ag}\) plus relatively low other metals. This new zone does not yet connect to a known system.

\section*{Sample Assay Results}

Because of the number of relatively high assay results obtained in the 1995 vein sampling, the writer took six new vein samples, five of which were checks, and one new sample from No. 6 vein halfway between R3/R4 and the creek exposure - sample number 099754M (Figure 11). In addition, in order to confirm the first 1995 assays, 30 sample pulps were forwarded from the original laboratory, Eco-Tech, to Bondar Clegg in North Vancouver. A tabular comparison of these results is shown in the following:

Sample Assay Comparisons
\begin{tabular}{||l|c|c|c|c||}
\hline Sample & Eco-Tech & Bondar Cl & Sample & Chemex \\
\hline Number & Au opt & Au opt & Number & Au opt \\
\hline \hline \begin{tabular}{l} 
R 3 \\
R 4
\end{tabular} & \begin{tabular}{l}
175 ppb \\
205 ppb
\end{tabular} & & 099752 M & 0.025 \\
\hline R5 & 0.391 & 0.434 & 099751 M & 0.424 \\
\hline R6 7 & 0.309 & 0.240 & & \\
\hline R 8 & 0.741 & 0.906 & & \\
\hline R 10 & 0.036 & 0.031 & & \\
\hline R 11 & 3.717 & 2.679 & & \\
\hline R 12 & 0.158 & 0.180 & & \\
\hline R 13 & 1.174 & 1.110 & & \\
\hline R 14 & 1.183 & 0.694 & & \\
\hline R 15 & 0.047 & 0.053 & & \\
\hline R 17 & 0.237 & 0.238 & & \\
\hline R 21 & 3.306 & 4.117 & & \\
\hline R 22 & 0.557 & 0.466 & & \\
\hline R 23 & 0.310 & 0.372 & & \\
\hline R 26 & 0.342 & 0.259 & & \\
\hline R 28 & 0.006 & 0.006 & \(099756 M\) & 0.026 \\
\hline R 30 & 0.038 & 0.038 & & \\
\hline R 34 & 0.066 & 0.085 & \(099753 M\) & 0.419 \\
\hline R 35 & 0.707 & 0.812 & & \\
\hline R 41 & 0.742 & 0.597 & & \\
\hline R 45 & 0.227 & 0.307 & & \\
\hline R 46 & 13.865 & 12.739 & & \\
\hline R 47 & 0.155 & 0.113 & \(099755 M\) & \\
\hline R 48 & 0.088 & 0.086 & & \\
\hline R 49 & 0.071 & 0.068 & & \\
\hline R 51 & 0.083 & 0.084 & & \\
\hline R 52 & 0.220 & 0.216 & & \\
\hline & & & & \\
\hline
\end{tabular}

\begin{tabular}{||l|c|c|c|c||}
\hline Sample & Eco-Tech & Bondar Cl & Sample & Chemex \\
\hline Number & Au opt & Au opt & Number & Au opt \\
\hline \hline R 53 & 0.304 & 0.326 & & \\
\hline R 54 & 0.180 & 0.181 & & \\
\hline R 59 & 0.271 & 0.354 & & \\
\hline \hline
\end{tabular}

Comparisons between the assay gold results from the two laboratories on the same 30 samples are very close and confirm the presence of erratic high grade gold within the vein systems. No macroscopic free gold was observed in any of the samples suggesting the presence of microscopic gold concentrated in discrete sites in the tested veins. As expected the check samples taken as near to the original site as possible showed more variability.

\section*{GEOCHEMICAL SURVEYS}

The stream silt samples and soil samples taken during the 1995 program are the first taken on the NUGGET-QUEEN property. As reported, this work was recommended in the 1980 NSBG report

\section*{STREAM SILT SAMPLING}

Locations of silt samples with analytical results are indicated on Figure 14. Only one stream sample, S30, had a value exceeding 100 ppb gold, and one sample AS 5 yielded 100 ppb . All the rest were 10 ppb gold or less which along with other low metal values have failed to point out the possible presence of the known mineral systems.

\section*{GEOCHEMICAL SOIL SAMPLING}

Geochemical soil testing carried out in 1995 was confined to the West and Main Showings areas located at the west and east ends of the Base Line. The soil samples were taken from \(B\) horizon material at 10 meter intervals along cut lines spaced at 20 meter intervals. A total of 329 samples were taken and submitted to a laboratory for multi-element analysis. The analytical data and soil sample site descriptions have been included in Appendix III. Plots for each of six elements and geostatistics are included in Appendix IV.


The soils in this generally heavily wooded area are covered by a wet black organic layer covering a one to two meter brown to rusty brown, fine grained wet clay-rich material which overlies weathered glaciated country rock.

Geostatistical analysis of the 1995 soil samples has included \(\mathrm{Au}, \mathrm{Ag}\), \(\mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}\) and As as potential pathfinder elements. The values used here to determine the anomalous levels for the five elements in this claim area included Au \(>100 \mathrm{ppb}, \mathrm{Ag}>1 \mathrm{ppm}, \mathrm{Cu}>46 \mathrm{ppm}, \mathrm{Pb}>123 \mathrm{ppm}, \mathrm{Zn}>126 \mathrm{ppm}\), and As \(>22 \mathrm{ppm}\). Anomalous values for the six elements have been included here as a composite diagram which shows a number of linear anomalies (Figure 15). Individual anomaly maps are included in Appendix IV.

Plots of the six element composite anomalies in Figure 15 show relatively good correlation to veins Nos. 3, 4, and 5 and a better correlation to vein No. 6. The soil anomalies appear to confirm the westerly extension of vein No. 6 shown here in Figure 10 (1938), but not exposed in work since then. Anomalous values also indicate No. 6 extends easterly about 50 to 60 meters under overburden. No soil samples were taken from L1 + O0E to L2 + OOE. Vein No. 5 indicated by anomalous values on the west end at L3 + 80W could extend westerly.

Several new anomalous areas have also been indicated by the soil geochemistry in both grid areas. In the west area one lies about 35 meters north of No. 5 vein and extends between L3+20W and L4+00W parallel to the \(305^{\circ}\) base line. Point anomalies in the west area were also located 80 meters northerly from the base line on \(\mathrm{L} 3+00 \mathrm{~W}\), and another at an isolated spot 50 meters southerly from the BL on \(\mathrm{L} 2+80 \mathrm{~W}\).

In the Main Showing area one very strong anomalous zone has been outlined by a multi-element composite. This lies from 60 to 90 meters south of the base line between L1 + 00 E and \(\mathrm{L} 1+00 \mathrm{~W}\) with a trend of about \(295^{\circ}\) which is similar to that of the No. 6 vein. A possible anomalous zone is indicated on \(L O+20 E\) and \(L O+60 E\) about 60 meters north of the base line. A single point anomaly 80 meters north of the base line on \(L+00\) and two point anomalies on


L2 200 E are not easily related to known veins or shear systems.

The strong composite anomaly located south of the Main Showing No. 6 vein has not been studied and no rock exposures have as yet been found in the zone. On the basis of the presumed geology this anomalous zone could lie at the contact of the phyllitic "argillite", and/or within volcanic rocks.

\section*{GEOPHYSICAL SURVEYS}

In 1980 Premier Geophysics conducted a magnetometer and VLF-EM survey of part of the Cherry property utilizing the grid shown in Figure 7. This survey was laid out to cover the 300 meter wide area between the West and Main Showings, and magnetic survey coverage west of the West Showings, and east of the Main Showings. Premier Geophysics analysis of their data suggested prospecting, mapping and trenching of a number of EM conductors and magnetic lows on both sides of the base line and on two magnetic lows north of the base line. Trenching on one well-defined EM conductor located the westerly extension of the No. 6 vein, and another trench on a similar conductor located a possible extension of No. 6 about 25 meters to the north. This led to the proposal that any EM conductor with well-defined magnetic signature should be a priority investigation (NSBG, 1994).

In 1995 magnetometer and VLF-EM surveys were completed on the new grid. The VLF-EM survey extended from L2 \(2+00 \mathrm{E}\) to \(\mathrm{L} 4+00 \mathrm{~W}\), and the magnetometer survey from L \(1+00 \mathrm{E}\) to \(\mathrm{L} 4+00 \mathrm{~W}\) covering the full grid. The report plus maps by GEOTRONICS SURVEYS LTD. are included here as Appendix V.

The VLF-EM survey produced two strong consistent conductors trending parallel to the base line. Conductor A lies north of the base line and appears to represent a shear zone(s) with which both No. 6 vein and possibly No. 5 vein are associated (Figure 16). The A conductor may be more closely tied to the geochemical anomaly lying just north of No. 5 vein, and at the east end of the grid appears to tie closely with the possible extension of No. 6 vein also marked by a geochemical anomaly.

Conductor B lying parallel to and south of the base line correlates strongly with the major geochemistry soil anomaly and can be interpreted as a mineralized shear similar to vein No. 6 (Figure 16).

The results of the magnetometer survey generally appear to represent changes in rock type. VLF-EM conductor A appears to be associate with a low amplitude magnetic high which involves veins 5 and 6.

\section*{CONCLUSIONS}

Investigation of the West and Main Showings areas on the NUGGET QUEEN mineral claims in 1995 has included resampling the vein systems, and new geochemical and geophysical surveys. Resampling of veins 3, 4, and 6 has indicated higher gold and silver grades than previously recorded. The new geochemical soil survey has indicated the potential for extension of these and No. 5 vein and has outlined parallel new zones to 5 and 6 veins. The latter in particular, although not fully outlined, should be a priority study.

The apparent size and tenor of the known veins is sufficient to warrant further work which should also include trenching the vein extensions, and trenching and sampling of the new anomalous zones. Detailed spaced sampling of the 2, 3, 5 and 6 veins should be part of a future work program.

Strong support of the geochemical anomalies has been provided by the geophysical surveys conducted in 1995. The VLF-EM conductors, in particular, emphasize the need to also test vein extensions and investigate the gap.

A limited diamond core drilling program will also be required to test the depth and grade potential of the zones. Drilling should be implemented when physical works have been concluded.

\section*{RECOMMENDATION}

Future exploration work on the claims should include extension of geochemical soil sampling to the open areas beyond the limits of the 1995 survey, in particular concentrating on the new major anomaly south of No. 6 vein. The good to excellent 1995 vein sampling results, particularly on No. 3, indicate that regular detailed sampling should be carried out on the vein systems. Trenching and vein sampling will be required on the vein extensions, as well as all new mineralization exposed by investigation of the geochemical soil anomalies.

The known geology of the general gold quartz vein systems is only poorly known and should be upgraded by geological studies which include rock type, structure and alteration studies in particular. Vein structure should be mapped in detail before any core drilling is contemplated. Transportation for the initial basic work will include helicopter access and provisioning. The temporary camp site at the pond allows room for helicopter landings.

Core drilling of the mineral systems is recommended as a Phase 2 project upon completion of the above recommendations.

\section*{REFERENCES}

Minister of Mines Annual Reports, 1939-1941, 1949
Mines \& Petroleum Resources, Geology, Exploration \& Mining, 1973
Energy, Mines \& Petroleum Resources, G.E.M., 1980, 1983
E.M. \& P.R., Property File 92L 178, 179
E.M. \& P.R., Assessment Reports 4252, 7991
G.S.C. Map 1552A
G.S.C. Open File 480, 722, 1163, 2490, 2787
G.S.C. Paper 68-1, 74-B
G.S.C. Memoir 372, 394

Freidman, R.M., Mahoney, J.B. and Cui, Y. (1995):
Magmatic evolution of the southern Coast Belt from \(\mathrm{Nd}-\mathrm{Sr}\), istopic schematics and geochronology of the southern Coast Plutonic Complex, Can. Jour. Earth Sci., Oct. 1995.

Monger, J.W.H., and Journeay, J.M. (1992):
Guide to the geology and tectonic evolution of the southern Coastal Belt, G.S.C.

\section*{1996 EXPLORATION BUDGET - NUGGET QUEEN PROPERTY}

\section*{Phase 1}
1. Camp, equipment, maintenance supplies \(\$ 15,000\) Room \& board @ \$80/man/day including town costs \(\quad 13,000\)

28,000
2. Trenching, pluggers, compressor, chain saws, fuel, powder, etc.

8,000
4 men @ \$200/man/day 16,000
24,000
3. Geology, mapping, soil geochemistry, \(\begin{array}{ll}\text { sampling, soil and rock sample analysis } & 8,000 \\ 1 \text { geologist @ } \$ 275 / \text { day } & 7,000 \\ 2 \text { assistants @ } \$ 175 / \text { man } / \text { day } & \underline{9,000}\end{array}\)

24,000
4. Transportation including airfare, ground, helicopter transport \& supply

25,000
5. Project Preparation maps, freight, sundries \(\quad 5,000\)
6. Supervision, on property, etc. plotting, reports

20,000

Sub-Total \$126,000
Contingencies @ 10\% 12,600
GST @ 7\% 9,700

TOTAL \$148,300

\section*{1996 EXPLORATION BUDGET - NUGGET QUEEN PROPERTY}

\section*{Phase 2}
1. Camp, maintenance, supplies etc.

Room \& board @ \$80/man/day, fuel, rentals \(\$ 15,000\)
2. Core Drilling

2000 meters @ \$100/meter, all found including site preparation Assaying

20,000
6,000
26,000
3. Geology, core logging, sampling 1 geologist @ \$275/day

6,000
1 assistant @ \$175/day
4,000
10,000
4. Transportation

To and from property plus helicopter supply and support

30,000
5. Engineering

Supervision, plotting, reports \(\underline{\underline{25,000}}\)

Sub-Total 106,000
Contingencies @ 10\% 10,600
GST @ 7\% 8,100

Total \(\mathbf{\$ 1 2 4 , 7 0 0}\)

\section*{CERTIFICATE}

I, Edward W. Grove, of the Municipality of Saanich, do hereby certify that:
1. I am a consulting geologist with an office at 4581 Boulderwood Drive, Victoria, British Columbia.
2. I am a graduate of the University of British Columbia (1955) with a Master's degree, Honours Geology (M.Sc. Hon. Geol.) and a graduate of McGill University (1973) with a doctorate in Geological Sciences (PhD.).
3. I have practised my profession continuously since graduation while being employed by such companies as the Consolidated Mining and Smelting Co. of Canada Ltd., British Yukon Exploration Ltd., the Quebec Department of Natural Resources, and the British Columbia Ministry of Energy Mines and Petroleum Resources. I have been in corporate consulting practice since January 1981.
4. This report is based on the writer's knowledge of the general area, a review of the technical reports, data and maps cited herein, extracts of which are included in the appendices, and the writer's visit to the NUGGET-QUEEN claims on December 29, 1995.
5. I have no direct, indirect or contingent interest in Solaia Venutres Inc. or in the NUGGET-QUEEN claims, or any mineral properties owned by David A. Heyman, or Ashworth Explorations Limited.
6. I am a member in good standing of the Association of Professional Engineers of British Columbia.
7. I consent to the use of this report in a Prospectus or Statement of Material Facts.

February 19, 1996
Victoria, B.C.


March 5. 1996

\section*{STATEMENT OF COS'I}

\section*{TIIE NUGGEI QUEEN PROPERTY}

PHASE 1 Gcological, geochumical and geophysical reconnaissanec ( 8 man crew, 21 days).

Project Preparation (4 men, 4 duys)
\(\$ 5,900.00\)
Inchudes: Preparation of Maps, licid and Camp Supplies, and Warchouse work.
Mob/Demob (8 man crew)
\(\$ 23,200.00\)
Includes: Wages, Transportation (Helicopter, Beaver, Truck and Ferry), Food and Accommodations.

Field Crew:
\begin{tabular}{ll} 
Project Geologist & \(\$ 4,250\) \\
Geophysical Operator & \(\$ 5,950\) \\
l'arty Chief & \(\$ 5,950\) \\
T'wo Geotechnicians & \(\$ 10,200\) \\
Two Linecutters & \(\$ 12,750\) \\
Camp Cook & \(\$ 5,100\)
\end{tabular}

Field Costs:
Camp Cosi
Food Supplies
Field Supplics
Communications (a) \$75/day x 21 days
[2] \(4 \times 4\) Trucks
[3oat Rentals @ \(\$ 125 /\) day \(\times 17\) days
Subtotal \(\$ 44,200,00\)

\section*{('ont. /2}
Lab Analysis: Soil, Rock \& Stream Samples ..... \$ 7.869 .44
Geophysical Survey (EDA System - Mag/VLF) ..... \$ 5,250.00Includes: Geophysical Interpretation
Petrographical Analysis ..... \$ 707.81
Consulting ..... \$ 2,584.78
Data Compilation and Report ..... \(\$ 10,957.97\)
Includes: Report Writing. Maps, Plotting, Drafting, Word Processing,Copying and Binding.
SUISTOTAI. ..... \(\$ 130,140,00\)
^dministration (a) \(15 \%\) ..... \(\$ 19,521.00\)
SUBTOTAL ..... \(\$ 149,661.00\)
GST @ 7\% ..... \(\$ 10,476.27\)
TOTAL.\$160,137.27SAY\(\$ 160,000.00\)

Respectfully Submitted,


\section*{APPENDIX I}

\section*{Petrography}

\section*{Vancouver Petrographics Ltd.}

\author{
JAMES VINNELL, Manager P.O. BOX 39 JOHN G. PAYNE, Pn.D. Geologst CRAIG LEITCH, Ph.D. Geologist JEFF HARRIS, Ph.D. Geologist \\ KEN E. NORTHCOTE, Pn.D. Geochogis \\ 8080 GLOVER ROAD, FORT LANGLEY, B.C. VOX 1 jo \\ PHONE (604) 888-1323 \\ FAX. (604) 888-3642
}

\section*{PETFOGFAFHIC FEPORT ON 6 POLISHED THIN SECTIDNS}

Feppurt fur: Fayz Yaw oub Ashworth Explarations Lot. \# 40 - EOG West Hastings Gtreet Vancouver, E.E. VEE 4W4. December z 19 g

Samples submitted: VJ, Va, VS, VE, HS, HE.
VS: MASSIVE GUAETZ VEIN, MINDF FYEITE-GHALIOFYFITE-SEEIETE
Massive white quartz vejn, divisible into a pure whte portion and a arey portiam; minor pyrite, atalagpyrite and a grey sulfide are visible. Not magnetie, na stainfer ドfeldgä, na reation torad dilute Hil. Madai mineralagy


Duarta
\(95 \%\)
Fyrıte \(\quad\) it
What apyrate.
Sers.eate
\(1 \%\)

tr
Galena ?
tr
The sifde is ermposed almost enturely uf quarte, as barge anhedral Erystals up to a. 5 man in diameter, in places recrystajlized along frawtures to sub-womains af \(50-\mathrm{mo}\) mírons. The guartz is moderately strained. and there is monor suturing of the boudaries. The wnly other siliaate
 alonc gran boundaries and in patebes, lilemy after former feldspar, ta o. zs mm ubameter.

Fyrite woturs as brarse, whbhedral arystals uptog mm diameter in masses that are over 1 om across. It antains trace inulusions gf Ghaloopyrite eelongate frasture fillings up to to mírans thít ar subhedral Erystals tag o. 15 mm and
 separately as separate subhedral crystals tG o. 5 mm , in places assouiated with serigite patohes or traie earbonate Ganhedral Erystals ta 0.1 mm along fraetures in the quartz and Grossing the pyrite). Minor euhedral pyrite to o. \(2 \boldsymbol{c}\) mon is intergrown with this ehalgopyrite. The "grey sulfide" seen in hand sperimen is likely finely divided pyrite.
```
V4: MASSIVE OLIAFTZ WITH MINOF GALENA, EHALEOFYEITE,
GFHALEEITE AND OXIDIZED FYFEHOTITE (+/- LIMONITE)
    Fusty-weathering, milky white quartz vein with minor
blebs Gf sulfides. No stain for &゙-feldspar, no reaction to
Gold dilute HEl, but traces af magneti= attraction in
plames. In polished thin sectiom, the modal mineralgay is
approximately as folluws:
```

Quartz
Galena
Ghalcopyrite
Sphalerite
Fyrrhatite ipartially goidizedi
Ghalcowite, w-ovellite \(1 \%\)
Limonite, \%leuma\%erne < \(1 \%\)

This sample is also mainly quarte, as in ve, mainly outurring as coerse anhedral Erystals to several millimeters in diameter. However, the areas of frawturing and rearystallization are mare abundant forming small anhedraj. sub-grains of \(10-100\) mi"ronsj, and the quartz is more strained and sutured at boundaries. Also, this sample lacts the traces Gf sericite and Garbonate seen in V

Sulfides are mare varied, including mainly galena ac raunded, elongate blebs ta 3.5 min lang. intermi xed with lesser whal opyrite as subhedral orystalc or masses to 2.5 mom long. Traces of gphalerite wowh with both gelema and whalropyrite aw euhedral wrystalc to 1 mm or subhedral aggregates to o. 5 moy sphalerite almo oreurs separately It has medium redmbrown wal wur jomiodting moderate fe Eantert. Trawes of pyrrhotite sembtedral orystals to o. 1 mm , partially axidized ta lamellar pyrite-marcasite or an intermediate FeS phesey are assouiated with the margins af the galena and Ehalrapyritevblebs. Fims af whalogpyrite alsa show traies af oxjdation ta Ehalrogte isubhedral, to Go mírons and guter rims af agvellite (10-20migroms), especially where assagiated with wxidized pyrrhatite.

Limonite alsaraurs at one end of the slide, as amarphous tGerystalline masses with reddish Eolgur up too. 5 man aross; this is likely due to in situ axidation af sulfides near the outside af the sample. There may be trates of \(\because\) Jeumbmene alsa, as olusters of amorphous masses up to 25 microns acrass.
VS：QUAFTZ VEIN WITH INGLUDED FEAEMENTS OF QUAFTZ－SEFIEITE－ FYEITE－FUTILE SIHIST／AFGILLITE：MINOF：OXIDATION（LIMONITE）
White quartz vein with inclusions of blact laminated Foarbonaceous argillite cangular outlines，up ta 2.5 Em lang！．There is no reartign to agld dilute HCl or stain for K－feldspar，and the rowt is not magnetic．Modal mineralogy in polished thin section is approximately：
Quartz（vein and in fragments） \(75 \%\)
Serieite（fragments） \(20 \%\)
Fyrite（mainly in fragments） \(3 \%\)
Fiutile \(\quad 1 \%\)
Fyrrfigtjete（ju pyrite）\(\quad 1 \%\)
Limonite（ari fratutures）＜ \(1 \%\)

Vein quartz farms large anhedral masses in places up to 0.5 Gm aにross，moderately ta strangly strained（undulase extinction and rearystallized along frastures and at arain boundaries（sutured）．Traces af sericite as fine \(25-50\) micron subheral flates are present along some grain boundaries and frastures，or in patiohes up to o． 2 mm arrass that Gould have originally been feldspar．

The fragments Eonsist of fine－grained，antiedral quartz Gaveraging 10－SO mierons．longer jn one dimension parallel ta the layering wr faliationy mixed with lesser sericite〔subhectral flates to 30 mierons）and minor pyrite（eutedral． Gutases up to 1 mm in diametery．The pyrite oontains minar i．ntusions af quartz and serioite plus traces gf pyrfootite as rounded ejongate blebs to 100 miarons lang；there are pressure shadaws of quartz and serizite argund the larger pyrite Grystals．NG other sulfide besides pyrite is visjble in this sample．
 Erystal \(=\) to 50 miorans long；mixed with the small abbes af pyrite sprinkled through the fragments．Minor limonite玉Geurs along O． 1 mm fratutures in the fragments．

VE: DUAFTZ VEIN WITH EHIFS QF SEFIEITE SIHIST: MJNOF FYFITE, GALENA, SFHALEFITE, FYFFHOTITE, GHALEOFYETTE AS IN VA

Massive white quartz vein Eantaining ineluded Ghips af the same blark gehist or argillite as in VS, and minor sulfides cmainly pyrite, but ineluding some galena, Ehal Gopyrite and sphalerite as in vil. There is na stain for K-feldspar, no reaction to agld dilute Hel, and the rout is mat magnetin. Modal mineralogy in polished thin seatiorn is appor ©\%imately:

Ouartz (vein and fragments) \(95 \%\)
Sericite (vein and fragments) \(\quad\) )
Fyrite \(1 \%\)
Earbonareaus material (\%) 《 \(1 \%\)
Galena < \(1 \%\)
Sphalerite \(\quad<1 \%\)
Ehalcopyrite \(\quad<1 \%\)
Fyrrhatite \(\quad<1 \%\)
Ehlorite \(1 \%\)
Futile
< \(1 \%\)
Guartz gf the vein forms Garse anhedral wrystals as in all the previous samples (VS to VG), up tG several millimeters arrass. However, the quartz is maderately to strongly recrystallized cstrained: urdulase extinction; futured bummaries, small sub-domains bath along linear zanes af fragturjrig and diffuse zories). Thig is more like the quartz
 sobist ar argillite. These inclusjons are similar to those described for vs but wentain more serisite ozs-50 microm subhedral. flates) than fine quartz (anhedral, 10 go mierans; loges mare 1 ike veins wutting the fragments than part af the rowt fragments). Very fine (1-5 mírons opaque material Gould be owarbonaceous; there are traces of rutile as Subhedral 10 owo micron erystals. Farely a few fragments Eontain fine zs microm ohlorite mixed with the serisite.

Fyrite forms woarse eutnedral wubes up ta 3 min diameter that, as in V4, Gontajn inclusions to o. 1 mo of whalagprite ar are associated with traces af whaleopyrite and pyrrhotite argund their borders. Galena octurs separtely as rounded, amoeboid blebs up to, al Gng fractures (zones af recrystallization), and in places assouiated with a little sphalerite. Sphalerite also oucurs as rounded to irregular blebs up ta o. 5 man asoss, mainly interstitial to the quartz arystals. The \(\operatorname{col}\) our varies from pale yellowish (low Fe wontent) to reddish brown (maderate Fe content). It Gontains traces of Ehalaopyrite as fine \(1-5\) migran inclusions ("whalcopyrite disease", litely exsolved). Fare pyrrhatite farms subhedral crystals ta 0.3 mm lang, in places asspriated with subhedral Ehalcopyrite of similar size.

In summary, although there are black sericite schist chips present in this sample like those in vs, the diversity of the sulfide assemblage galena, sphalerite, chalcopyrite, pyrrhotite in addition to pyrite leads me to suspert a similar source for V4 and VE.

\section*{Hכ: INTENSELY QUAFTZ-EALEITE-EHLDFITE-SEFIEITE-FYEITE} ALTEFED WALL FEDEF (FOSSIELY OF TANDESITIE OFIGIN)

Medium green host rock with some quartz veins ta 5 mm thiにk; strong reaction to HOl in places. Minor yellow stain for \(\because\)-feldspar in the et Ghed slab; trace magnetism. Madal mineralggy in polished thin section is approimately:

Quartz (secondary) \(65 \%\)
Garbonate (mainly walwite) \(15 \%\)
Serioite \(\quad 10 \%\)
Ehlorite \(5 \%\)
Fyrite \(\quad 1-2 \%\)
Sphene, rutile
Ǩ-feldspar (sérridary, in veins) \(1 \%\)
1-2\%
This slide comsists mostly of semendary quartz with siattered subhedral omafig relics now represented by irregular patiohes up tia 1 mm long af carbonate, ohlorite and seriaite. Duartz forms either subhedral equidimensiomal Gryctals ta \(\quad .75\) min ar else long bladed wryctals up to 1 mm jn 1 ength and random arientations. Earbonate gorurs as subhedral Erystals up to O. 15 mo atameter, generally highly interlouking; serigite forms sub- to euhedral flakes up ta about 50 mierons in di ameter. Chlorite farms subhedral flakes of similar size to serioite iwith which it is often internixed; ; Fe:Fe+Mg ratio is near O. 5 (length-fast ta length-show, weatily anwmal ous birefringence, pale green pleanturasin.

Larger triangular patibhes af Garbonate and lesser Ghlorite and seriaite would be after mafios or else fragments of wall rout. In them, pyrite augurs as small euhedral Gubes up to o. 5 ma diameter, in places aggregating ta 1 mm , and sphene farms subhedral granular aggregates tw
 micransy.

Duartz veins make up about \(20-30 \%\) af the slide, and are Gomposed Gf Goarse subtedral quartz ta 1.5 mm size, mjnar
 ト- feldspar csuthedral ta euhedral Erystals to 0.5 mm size?.

This appears to be an intensely quartz-sericite-calsite-chlorite-pyrite altered rowt, possibly of andesjtia valganit origin ( \(\because\).

\section*{HE: EHLDFITE-GOLAETZ-EALEITE-GFEEN ETOTITE-MABNETITE-FUTILE GEHIST WITH TFAEES OF FYFITE AND EHALEOFYFITE \\ Dart: green-grey, fine-grained, sinistose rack with traces of soattered sulfides. Fiock is moderately magnetia and shows maderate reaction to HEl; no stain for f-feldspar. Modal mineralagy in palished thin sertion is approximately: \\ Ehlorite (twa varieties) \(50 \%\) \\ Quartz 25\% \\ Earbonate (Ealiate) - \(10 \%\) \\ Green biatite \(10 \%\) \\ Magnetite \(\quad 3 \%\) \\ Futile \(2 \%\) \\ Fyrite, traat 曰halmbpyrjte \(\quad<1 \%\)}

This is a well-foliated Ghlgritemquartz schist, with kink banding apparently marked by development af garbanate cmainly Galoites at an oblique angle across the foliation.

Chlorite rorns suibe ta ebtedral flates up to o. 1 mm djameter; Grive \(\quad\) f 1 arger flates are Fe-riah Type 2 Ganomalous birefringenie, length-wswy but the bult af the Ghlarite is less Fe-riah Type 1 Ggreen birefringent Ealours, 3.ength- fast). It werurs both intermixed with fine-grained, anhedral quartz ©average about \(10-15\) mierons; hard ta tell jf there is any feldspar present as well ar noty and as separate, nearly pure ahlarite layers up to o. 1 mm thick. Wuartz grains are mostly e] ongate in the plane af the
 algu flakes or green biotite (higher birefringence than wharite, Jength slow to repleaed by ehlarite Type 2 surrounded by Type \(1 . \quad\) Ginall Glats or knots up to o. 2 im agross of green biotite and quartz or ffeldsper, partly whloritized, are surruunded by pressure shadows wr "tails" af whlorite.

Garbonate is found as anhedral ta subhedral brystals af 25-50 miGron diameter, aggregating im plawes ta 0.5 mm in irregular arrays ablique ta foliatjun (along zkintsplanes.。.

Opeque oxideg are abundant, partly fine needle-1ike rutile up ta Go mivrons long, but more commonly magnetite ar Filmena-magnetite as euhedral ta subhedral arystals to o. 1 mon with a tendency to hexagonal qutlines. These are especially motable in Guarser clats ssubhedral erystals up to O. 1 nmy of quartz, green mica, and Garbonate \(+/-\) minor sulfides, including buth euhedral pyrite and subhedral Ehalcopyrite. Fyrite also Gerurs as EGarse euhedral Eubes up to 1 mm diameter, assouiated with lesser subhedral Ghalcopyrite to o. 1 mm .

This is a whlorite-qquartz-adranate sohist that Gould be derived by metamorphism af an intermediate volianig raw.


Eraig \$. B. Leitron, Fh. D, F.Eng.
492 Isabella Foint Figad; Salt Spring fisland, E. C. V8k \(1 V 4\) (604 \(653-9158\)


\section*{APPENDIX II}

Rock sample descriptions and Laboratory analyses

\section*{NUGGET QUEEN '95 \\ ROCK SAMPLE DESCRIPTIONS}
\begin{tabular}{|l|l|l|l|l|l|l|c|}
\hline SAMPLE & DESCRIPTION & \begin{tabular}{l}
Au \\
PPb
\end{tabular} & Ag & Cu & Pb & Pn & Width \\
& & PPm & PPm & PPm & PPm & cm \\
\hline
\end{tabular}

SAMPLES COLLECTED FROM THE MAIN OPEN CUT
\begin{tabular}{|l|l|c|c|c|c|c|c|}
\hline R1 & \begin{tabular}{l} 
Chip, dark grey to black argillite. \\
Brown, rusty weathering along bedding \\
planes, several quartz veinlets parallel to \\
bedding (305`), 1-2 mm-wide \\
disseminated with fine-grained pyrite.
\end{tabular} & 5 & 0.2 & 40 & 12 & 288 & 380 \\
\hline R2 & \begin{tabular}{l} 
Altered, deeply weathered, dark brown, \\
rusty argillite, hosting several 0.5-2 \\
mm-wide quartz stringers, parallel to \\
bedding planes. Chip sample across 1.4 \\
m.
\end{tabular} & 5 & \(<0.2\) & 66 & 30 & 240 & 140 \\
\hline R3 & \begin{tabular}{l} 
Quartz vein exposed in T-1. White, \\
massive quartz intercalated with \\
crumbly, soft argillic inclusions. \\
Mineralization consists of very fine- \\
grained pyrrhotite, chalcopyrite, pyrite, \\
sphalerite and galena. Vein is rusty, \\
reddish on weathered surfaces, hosted \\
by crumbly altered argillite. Chip \\
sample across 2 m. of the vein.
\end{tabular} & 175 & 1.4 & 118 & 234 & 238 & 200 \\
\hline R4 & \begin{tabular}{l} 
Chip over 15 cm. of strongly \\
mineralized section of the same vein as \\
above, extensive galena and \\
chalcopyrite (8\% combined \\
mineralization).
\end{tabular} & 205 & 9.2 & 208 & 1,752 & 578 & 15 \\
\hline R5 & \begin{tabular}{l} 
Chip, massive white quartz vein \\
disseminated with fine-grained \\
pyrrotite, chalcopyrite and minor \\
galena, vein contains remnants of soft \\
argillitic materials.
\end{tabular} & \(* 0.391\)
\end{tabular}

\footnotetext{
* Values in oz./tonne
}

\section*{NUGGET QUEEN '95 \\ ROCK SAMPLE DESCRIPTIONS}
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline SAMPLE & DESCRIPTION & \begin{tabular}{l}
Au \\
PPb
\end{tabular} & \begin{tabular}{l}
Ag \\
PPm
\end{tabular} & \begin{tabular}{l}
Cu \\
PPm
\end{tabular} & \begin{tabular}{l}
Pb \\
PPm
\end{tabular} & \begin{tabular}{l}
Zn \\
PPm
\end{tabular} & \begin{tabular}{l} 
Width \\
cm
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|c|c|c|c|c|c|}
\hline R8 & \begin{tabular}{l} 
Float, local angular quartz vein material \\
disseminated with 15\% combined \\
chalcopyrite, pyrrhotite, sphalerite and \\
galena, as very fine-grained \\
dissemination. Sample is reddish, rusty \\
on weathered surfaces.
\end{tabular} & \(>1,000\) & \(>30\) & 7,009 & \(>10,000\) & 1,684 & -- \\
\hline R9 & \begin{tabular}{l} 
Altered (argillic) deeply weathered \\
argillite, weak to moderate \\
silicification, 1-2\% pyrrhotite \\
dissemination. Chip sample taken from \\
the west end of the open cut.
\end{tabular} & 200 & 3 & 108 & 230 & 267 & 60 \\
\hline R10 & \begin{tabular}{l} 
Chip, silicified, deeply weathered \\
argillite hosting 3-5 cm. quartz veins. \\
Slightly disseminated (2\%) with \\
pyrrotite, pyrite and trace of fine- \\
grained galena.
\end{tabular} & \(>1,000\) & 3.6 & 104 & 548 & 754 & 90 \\
\hline
\end{tabular}

\section*{SAMPLES COLLECTED FROM V-4}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R11 & Chip, massive, milky quartz disseminated with \(4-5 \%\) of very finegrained aggregates of galena and chalcopyrite. Vein strikes \(280^{\circ}\). & \[
\begin{aligned}
& >1,000 \\
& * 3.717
\end{aligned}
\] & >30 & 2,066 & >10,000 & 2,365 & 60 \\
\hline R12 & Same vein as R11, only 1-2\% of sulphides, mainly chalcopyrite, pyrrhotite and trace of galena. Vein strikes \(280^{\circ}\). & \[
\begin{aligned}
& >1,000 \\
& * 0.158
\end{aligned}
\] & 18.8 & 1,049 & 914 & 1,938 & 60 \\
\hline R13 & V-4 same as above. Moderate to finegrained galena (2\%). & \[
\begin{aligned}
& \hline>1,000 \\
& * 1.174
\end{aligned}
\] & >30 & 566 & 3,520 & 117 & 40 \\
\hline R14 & V-4 quartz vein subcrop, \(2 \%\) galena and chalcopyrite. Chip sample. & \[
\begin{array}{|l}
\hline>1,000 \\
* 1.183 \\
\hline
\end{array}
\] & \(>30\) & 2,121 & 184 & 183 & 15 \\
\hline R15 & V-4 quartz vein subcrop, very minor ( \(<1 \%\) ) sulphide dissemination. Chip sample. & \[
\begin{aligned}
& >1,000 \\
& * 0.047
\end{aligned}
\] & 2.4 & 53 & 218 & 9 & 45 \\
\hline R16 & Barren quartz subcrop. No sulphides. Vein strikes \(268^{\circ}\). Chip sample. & 220 & 5 & 84 & 346 & 29 & 30 \\
\hline R17 & Massive milky quartz, \(2 \%\) fine-grained combined galena and chalcopyrite, inclusions of dark grey argillite. Chip sample. & \[
\begin{aligned}
& >1,000 \\
& * 0.237
\end{aligned}
\] & 15 & 202 & 1,436 & 113 & 45 \\
\hline R18 & Massive milky quartz, vein strikes \(236^{\circ}\), less than \(1 \%\) sulphides, minor argillite inclusion. Chip sample. & 505 & 8 & 93 & 384 & 29 & 90 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|c|}
\hline SAMPLE & DESCRIPTION & Au & Ag & Cu & Pb & Zn & Width \\
& & PPb & PPm & PPm & PPm & PPm & cm \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R19 & Chip, massive milky quartz, disseminated with 1-2\% fine-grained galena and minor chalcopyrite. & 405 & 14.6 & 53 & 2,100 & 6 & 60 \\
\hline R20 & Chip, barren, massive milky quartz with \(<1 \%\) sulphides. Light brown, rusty along fractures, soft argillite inclusions, vein strikes \(248^{\circ} / 80 \mathrm{NW}\). & 5 & 0.2 & 68 & 30 & 9 & 15 \\
\hline R21 & Massive milky quartz, minor sulphides ( \(<1 \%\) ), and wall rock inclusions. Chip across 30 cm . & \[
\begin{aligned}
& \hline>1,000 \\
& * 3.306 \\
& \hline
\end{aligned}
\] & >30 & 16 & 22 & 136 & 30 \\
\hline R22 & Same as R21, vein intercalated with argillite, both are disseminated with \(<1 \%\) pyrrhotite, vein strikes \(280^{\circ}\). & \[
\begin{aligned}
& \hline>1,000 \\
& * 0.557 \\
& \hline
\end{aligned}
\] & >30 & 220 & 6,522 & 528 & 60 \\
\hline R23 & Massive milky quartz, slightly disseminated with fine-grained galena, irregularly distributed. Chip sample collected from local angular boulders in the creek bed. & \[
\begin{aligned}
& \hline>1,000 \\
& * 0.310 \\
& \hline
\end{aligned}
\] & 20.6 & 175 & 2,096 & 102 & 90 \\
\hline R24 & Chip, massive milky quartz, similar to R23. & 165 & 0.6 & 64 & 70 & 799 & --- \\
\hline R25 & Massive, milky quartz, 1-2\% finegrained pyrrhotite, galena and minor chalcopyrite. The vein is intercalated with dark grey to black argillite. Chip sample across 60 cm . of local boulders in the creek bed. & 5 & 1 & 93 & 56 & 222 & 60 \\
\hline R26 & Chip, 30 cm . of massive milky quartz, dark brown, rusty along cleavages, mineralization consists of \(2 \%\) combined pyrrhotite, chalcopyrite and minor galena. & \[
\begin{aligned}
& >1,000 \\
& * 0.342
\end{aligned}
\] & 1.4 & 29 & 14 & 239 & 30 \\
\hline R27 & Chip over 15 cm ., similar to R26. & \[
\begin{gathered}
>1,000 \\
* 3.99 \\
\hline
\end{gathered}
\] & >30 & 18 & 12 & 7 & 15 \\
\hline
\end{tabular}

NUGGET QUEEN '95
ROCK SAMPLE DESCRIPTIONS
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline SAMPLE & DESCRIPTION & \begin{tabular}{l}
Au \\
PPb
\end{tabular} & \begin{tabular}{l}
Ag \\
PPm
\end{tabular} & \begin{tabular}{l}
Cu \\
PPm
\end{tabular} & \begin{tabular}{l}
Pb \\
PPm
\end{tabular} & \begin{tabular}{l}
Zn \\
PPm
\end{tabular} & \begin{tabular}{c} 
Width \\
cm
\end{tabular} \\
\hline
\end{tabular}

SAMPLES COLLECTED FROM V-5
\begin{tabular}{|l|l|c|c|c|c|c|c|}
\hline R28 & \begin{tabular}{l} 
Massive quartz vein trending \\
\(300^{\circ} 80\) NE. Vein intercalated with \\
thinly bedded argillite disseminated \\
with 1-3\% fine-grained pyrite, minor \\
pyrthotite and chalcopyrite. Chip over
\end{tabular} & 5 & 0.4 & 16 & 96 & 69 & 15 \\
15 cm.
\end{tabular}\(\quad\)\begin{tabular}{l} 
R29
\end{tabular}

\section*{SAMPLES COLLECTED FROM T-4}
\begin{tabular}{|l|l|c|c|c|c|c|c|}
\hline R36 & \begin{tabular}{l} 
Dark grey to black, deeply weathered \\
argillite, \(1 \%\) pyrrhotite and minor \\
chalcopyrite. Chip over 1 m.
\end{tabular} & 50 & \(<0.2\) & 38 & 78 & 270 & 100 \\
\hline R37 & \begin{tabular}{l} 
Same as R36. Dark brown, rusty \\
argillite, \(1-2 \%\) pyrrhotite combined \\
with chalcopyrite.
\end{tabular} & 15 & \(<0.2\) & 32 & 6 & 105 & 100 \\
\hline
\end{tabular}

\section*{NUGGET QUEEN '95}

\section*{ROCK SAMPLE DESCRIPTIONS}
\begin{tabular}{|l|l|l|l|l|l|l|c|}
\hline SAMPLE & DESCRIPTION & Au & Ag & Cu & Pb & Zn & Width \\
& & PPb & PPm & PPm & PPm & PPm & cm \\
\hline
\end{tabular}

SAMPLES COLLECTED FROM T-6
\begin{tabular}{|l|l|c|c|c|c|c|c|}
\hline R38 & \begin{tabular}{l} 
Chip, deeply weathered, altered, thinly \\
bedded, rusty argillite. 1-2\% pyrite, \\
pyrrhotite dissemination.
\end{tabular} & 35 & \(<0.2\) & 11 & 18 & 90 & 100 \\
\hline R39 & \begin{tabular}{l} 
White, massive quartz vein, strikes \\
\(308^{\circ} / 80\) NE exposed in T-6 hosted \\
argillite, 1-2\% combined pyrite, \\
chalcopyrite and trace of galena.
\end{tabular} & 5 & \(<0.2\) & 52 & 10 & 456 & 15 \\
\hline R40 & \begin{tabular}{l} 
Chip sample over 60 cm. of black, \\
thinly-bedded argillite, bedding \\
\(300^{\circ} / 58\) NE, hosting quartz vein \\
exposed in creek.
\end{tabular} & 40 & 0.6 & 65 & 86 & 475 & 60 \\
\hline R41 & \begin{tabular}{l} 
Chip sample across quartz vein (V-6) \\
exposed in creek bed. Massive white \\
quartz vein heavily mineralized with \\
galena, chalcopyrite, pyrrhotite in \\
places, up to 15\% sulphides.
\end{tabular} & \(>1,000\) & \(>30\) & 1,021 & 9,678 & 5,518 & 120 \\
\hline R42 & \begin{tabular}{l} 
Chip over 30 cm. of dark grey to black \\
argillite hosting quartz vein (V-6) \\
deeply weathered and contains \\
1-2 mm. quartz stringers.
\end{tabular} & 30 & 0.6 & 77 & 60 & 412 & 30 \\
\hline & \begin{tabular}{l} 
Chip sample collected from a small \\
quartz vein 3" wide, hosted by deeply \\
weathered argillite located at the west \\
end of the main open cut. Vein strikes \\
\(305 \% / 80\) NE. Sample taken from vein \\
and host rock.
\end{tabular} & 50 & 0.4 & 38 & 88 & 175 & 30 \\
\hline \begin{tabular}{l} 
Thinly-bedded black argillite, bedding \\
\(322^{\circ} / 82\) NE, hosting 4 quartz veinlets \\
with minor pyrite and chalcopyrite \\
dissemination.
\end{tabular} & 25 & \(<0.2\) & 22 & 6 & 118 & --- \\
\hline R44 & & & & & & & \\
\hline
\end{tabular}

\section*{SAMPLES COLLECTED FROM V-3}
\begin{tabular}{|l|l|c|c|c|c|c|c|}
\hline R45 & \begin{tabular}{l} 
Float sample taken from a point located \\
10 m. E-NE of V-3. Local angular \\
boulder of quartz vein material, 2\% \\
chalcopyrite and galena dissemination.
\end{tabular} & \(>1,000\) & 17.8 & 1.72 & 2,220 & 121 & \(\cdots-227\)
\end{tabular}\(|\)\begin{tabular}{l} 
R
\end{tabular}

\section*{NUGGET QUEEN '95 \\ ROCK SAMPLE DESCRIPTIONS}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SAMPLE & DESCRIPTION & \[
\begin{aligned}
& \mathrm{Au} \\
& \mathrm{PPb} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Ag} \\
& \mathrm{PPm}
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline \mathrm{Cu} \\
\mathrm{PPm} \\
\hline
\end{array}
\] & \[
\begin{array}{|l|}
\hline \mathrm{Pb} \\
\mathrm{PPm}
\end{array}
\] & \[
\begin{array}{|l|}
\hline \mathrm{Zn} \\
\mathrm{PPm} \\
\hline
\end{array}
\] & Width cm \\
\hline R47 & Same vein (V-3) as above, strikes \(250^{\circ} / 85 \mathrm{NW}\). Massive creamy quartz vein, minor pyrite and chalcopyrite dissemination hosted by green volcanic. & \[
\begin{aligned}
& >1,000 \\
& * 0.155
\end{aligned}
\] & 3.4 & 141 & 516 & 39 & 25 \\
\hline R48 & Creamy massive quartz vein, same as above. Vein exposed in an old trench, light brown, rusty along fractures. Vein hosted by green volcanic with minor pyrite dissemination. & \[
\begin{aligned}
& \hline>1,000 \\
& \\
& * 0.088
\end{aligned}
\] & 0.2 & 34 & 12 & 7 & 30 \\
\hline R49 & Creamy massive quartz vein, 1-2\% pyrite dissemination, hosted by green volcanic. & \[
\begin{aligned}
& >1,000 \\
& * 0.071
\end{aligned}
\] & 0.6 & 32 & 24 & 20 & 20 \\
\hline R50 & Similar to R49, vein exposed in creek bed. & 820 & <0.2 & 13 & 42 & 8 & 45 \\
\hline R51 & Chip across same vein as R50, hosted by green volcanic. & \[
\begin{aligned}
& >1,000 \\
& * 0.083 \\
& \hline
\end{aligned}
\] & 2.2 & 41 & 32 & 18 & 45 \\
\hline R52 & Similar to R50 \& R51. & \[
\begin{aligned}
& \gg 1,000 \\
& * 0.220
\end{aligned}
\] & 3.6 & 319 & 278 & 10 & 45 \\
\hline R53 & Chip sample taken from the west end exposure of V-3, rusty, pyritic quartz hosted by fine-grained green volcanic. & \[
\begin{aligned}
& >1,000 \\
& * 0.304 \\
& \hline
\end{aligned}
\] & 5.4 & 18 & 290 & 7 & --- \\
\hline
\end{tabular}

SAMPLES COLLECTED FROM T-3A \& 3B
\begin{tabular}{|l|l|c|c|c|c|c|c|}
\hline R54 & \begin{tabular}{l} 
Chip over 20 cm. of creamy massive \\
quartz, vein intercalated with argillite, \\
\% pyrite dissemination.
\end{tabular} & \begin{tabular}{c}
\(>1,000\) \\
\(* 0.180\)
\end{tabular} & 7.4 & 18 & 290 & 43 & 20 \\
\hline R55 & \begin{tabular}{l} 
Chip, rusty, dark brown to yellowish, \\
deeply weathered argillite, hosting \\
several quartz veinlets trending \\
\(335 \% / 90^{\circ}\).
\end{tabular} & 205 & \(<0.2\) & 11 & 38 & 30 & 30 \\
\hline R56 & \begin{tabular}{l} 
Deeply weathered argillite hosting \\
\(1-2\) cm. quartz veinlets. Extension of \\
same zone exposed in T-3A.
\end{tabular} & 35 & \(<0.2\) & 23 & 46 & 59 & --- \\
\hline R57 & \begin{tabular}{l} 
Thinly-bedded argillite, hosting several \\
\(1-2\) cm. quartz veinlets trending
\end{tabular} & 10 & \(<0.4\) & 33 & 16 & 260 & 150 \\
\hline R58 & \begin{tabular}{l} 
Light green, altered volcanic, 1\% pyrite \\
dissemination.
\end{tabular} & 5 & \(<0.2\) & 3 & 6 & 8 & 100 \\
\hline R59 & \begin{tabular}{l} 
Chip, quartz vein (V-6) mineralized \\
with galena, chalcopyrite, pyrrhotite, \\
exposed in creek bed.
\end{tabular} & \(>1,000\) & 14 & 212 & 1,346 & 2,350 & 80 \\
\hline
\end{tabular}

\section*{Chemex Labs Ltd.}

Analytical Chemlists * Geochemists * Registered Assayers
To: GROVE, E.W. CONSULTANTS LTD.
4581 BOULDERWOOD DR.

Comments: ATTN: TED GROVE
\begin{tabular}{|ll|}
\hline CERTIFICATE & A9610074 \\
\hline
\end{tabular}
(NCK) - GROVE, E.W. CONSULTANTS LTD.
\(\begin{array}{ll}\text { Project: } & \mathrm{N}-\mathrm{Q} \\ \text { P.O.\#: }\end{array}\)
Samples subaitted to our lab in Vancouver, BC. This report was printed on 14-JAN-96.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{SAMPLE PREPARATION} \\
\hline \[
\begin{aligned}
& \text { CHEMEX } \\
& \text { CODE }
\end{aligned}
\] & NUMBER SAMPLES & DESCRIPTION \\
\hline 208
274
3204 & 6
6
6 & \begin{tabular}{l}
Assay ring to approx 150 mesh 4-7 kg crush and aplit \\
save 1 kg reject for 90 days
\end{tabular} \\
\hline
\end{tabular}


Chemex Labs Ltd.
Analytical Chemists * Geochemists * Registered Assayers


ASHWORTH EXPI.ORATION LTD. AK 95-1128 4-Dec-95


\section*{"URGENT\&CONFIDENTIAL"}
lU: ASHWRTH EXPICRTIICN IUD.
Altantion : Mr. Fayz Yacuab
Referemare:
Sulmitter I F. YMCNB

Our Fax Not (604) 985-1071
Your Fax Noi 681-1533
Nunber of tages : 2 including this page.

Report : V96-00112.0



Notes:

CJTENI: ASHWCRIH EXPTCRATICN IIT. REPCKT: V96-00112.0 ( COMFLEIE )
\begin{tabular}{|c|c|c|c|}
\hline SPMPIE & TPMENT & Au50 & Au \\
\hline NMPFR & WILTS & OPI & CTI \\
\hline F4 R5 & & \(\cdots 0.292\) & 0.434 \\
\hline 14 R6 & & 0.240 & \\
\hline P4 R7 & & >0.292 & 2.747 \\
\hline P4 \(\mathrm{R}_{8}\) & & >0.292 & 0.906 \\
\hline P4 R10 & & 0.031 & \\
\hline P4 R11 & & 70.292 & 2.679 \\
\hline P4 R12 & & 0.180 & \\
\hline P4 R13 & & >0.292 & 1.110 \\
\hline P4 R14 & & >0.292 & 0.694 \\
\hline P4 115 & & 0.053 & \\
\hline P4 R17 & & 0.238 & \\
\hline P4 R21 & & \(>0.292\) & 4.117 \\
\hline P4 R2? & & >0.292 & 0.466 \\
\hline P4 R23 & & >0. 292 & 0.372 \\
\hline P4 R26 & & 0.259 & \\
\hline P4 P28 & & 0.006 & \\
\hline P4 R30 & & 0.038 & \\
\hline P4 R34 & & 0.085 & \\
\hline P4 R35 & & \(>0.292\) & 0.812 \\
\hline P4 R41 & & \(>0.292\) & 0.597 \\
\hline P4 R45 & & 0.292 & 0.307 \\
\hline P4 R46 & & \% 0.292 & 12.739 \\
\hline P4 R47 & & 0.113 & \\
\hline S4 R48 & & 0.086 & \\
\hline P4 RA9 & & 0.068 & \\
\hline P4 P61 & & 0.084 & \\
\hline P4 P62 & & 0.216 & \\
\hline P4 F53 & & >0.292 & 0.326 \\
\hline P4 R54 & & 0.181 & \\
\hline P4 R 59 & & >0.292 & 0.354 \\
\hline
\end{tabular}

PROIET: KNE GIVEN
DAIE PRINIEDI 29-JAN-96
PACE 1

\section*{4-Dec-95}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{22}{|l|}{ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 213} & \multicolumn{9}{|l|}{ASHWORTH EXPLORATION LTD. AK 95-1128 405-609 HASTINGS ST. W VANCOUVER, B.C. V6B 4W4} \\
\hline \multicolumn{22}{|l|}{Phone: 604-573-5700} & \multicolumn{9}{|l|}{ATTENTION: Mr. Fayz Yacoub} \\
\hline \multicolumn{31}{|l|}{S9 Rock samples received Nov. 21,199
Values in ppm unless otherwise reported
PROFCTH: NUGGET QUEEN \#
S26} \\
\hline Et \({ }_{\text {\# }}\) & Tag \# & Au(ppb) & Ag & Al\% & As & Ba & Bi & Ca\% & Cd & Co & Cr & Cu & \(\mathrm{Fe} \%\) & & Mg \% & Mn & Mo & \(\mathrm{Na} \%\) & Ni & \(\mathbf{P}\) & Pb & Ss & Sn & Str & T\% & \(u\) & \(v\) & W & Y & Zn \\
\hline 1 & \(\pi{ }^{1}\) & 5 & 0.2 & 1.75 & \(<\) & 150 & 10 & 0.19 & 3 & 8 & 86 & 40 & 3.81 & <10 & 1.13 & 203 & 17 & 0.02 & 46 & 670 & 12 & < & 20 & 12 & 0.02 & <10 & 78 & <10 & <1 & 288 \\
\hline 2 & R2 & 5 & <. 2 & 1.91 & 5 & 100 & 5 & 1.02 & 6 & 11 & 153 & 66 & 3.69 & \(<10\) & 0.78 & 607 & 20 & 0.08 & 52 & 700 & 30 & 5 & \(<20\) & 49 & 0.08 & \(<10\) & 130 & \(<10\) & 3 & 240 \\
\hline 3 & R3 & 175 & 1.4 & 0.37 & \(<\) & 85 & \(<5\) & 0.10 & 10 & 6 & 313 & 118 & 242 & <10 & 0.21 & 198 & 25 & 0.01 & 20 & 200 & 234 & <5 & \(<20\) & 10 & < 01 & \(<10\) & 21 & \(<10\) & \(<1\) & 238 \\
\hline 4 & R4 & 205 & 9.2 & 0.20 & \(<5\) & 55 & \(<5\) & 0.24 & 27 & 11 & 301 & 208 & 3.54 & <10 & 0.09 & 403 & 15 & 0.02 & 36 & 250 & 1752 & <5 & 20 & 19 & < 01 & \(<10\) & 9 & \(<10\) & <1 & 578 \\
\hline 5 & R5 & >1000 & 11.6 & 0.24 & 40 & 85 & \(<5\) & 0.44 & 33 & 8 & 242 & 208 & 3.39 & \(<10\) & 0.13 & 131 & 40 & 0.01 & 46 & 400 & 1848 & <5 & 20 & 40 & <. 01 & \(<10\) & 12 & \(<10\) & \(<1\) & 710 \\
\hline 6 & R6 & \(>1000\) & >30 & 0.19 & < & 65 & \(<5\) & 0.07 & 19 & 4 & . 441 & 633 & 1.86 & \(<10\) & 0.11 & 107 & 26 & < 801 & 30 & 130 & - 2354 & \(<5\) & 40 & 7 & < 01 & \(<10\) & 15 & \(<10\) & <1 & 388 \\
\hline 7 & R7 & >1000 & >30 & 0.10 & < & 55 & <5 & 0.07 & 85 & 8 & 268 & 2791 & 4.39 & <10 & 0.04 & 94 & 22 & <. 01 & 51 & 60 & >10000 & 20 & 100 & 6 & <. 01 & <10 & 4 & <10 & <1 & 1560 \\
\hline 8 & R8 & >1000 & >30 & 0.01 & < & 35 & \(<5\) & <. 01 & 86 & 4 & 342 & 7009 & 2.84 & \(<10\) & < 0.01 & 46 & 12 & < 01 & 25 & 40 & >10000 & 60 & 40 & 6 & < 01 & <10 & <1 & \(<10\) & <1 & 1684 \\
\hline 9 & R9 & 200 & 3.0 & 0.75 & 15 & 135 & \(<5\) & 2.25 & 9 & 9 & 112 & 108 & 5.88 & <10 & 0.60 & 457 & 48 & < 01 & 32 & 680 & 230 & \(<5\) & 20 & 95 & < 01 & <10 & 37 & \(<10\) & \(<1\) & 267 \\
\hline 10 & R10 & >1000 & 3.6 & 0.41 & 45 & 105 & \(<5\) & 3.36 & 33 & 9 & 253 & 104 & 2.58 & <10 & 0.25 & 494 & 30 & < 01 & 45 & 450 & 548 & <5 & \(<20\) & 122 & \(<.01\) & <10 & 21 & \(<10\) & \(<1\) & 754 \\
\hline 11 & R11 & >1000 & >30 & 0.13 & 80 & 40 & \(<5\) & 0.12 & 152 & 6 & 233 & 2066 & 2.50 & <10 & 0.05 & 80 & 11 & < 01 & 32 & 20 & >10000 & 20 & 80 & 8 & < 01 & <10 & 1 & \(<10\) & \(<1\) & 2365 \\
\hline 12 & R12 & >1000 & 18.8 & 0.07 & < 5 & 30 & \(<5\) & 0.05 & 171 & \(<1\) & 242 & 1049 & 0.75 & \(<10\) & 0.03 & 54 & 7 & < 01 & 7 & \(<10\) & 914 & \(<5\) & \(<20\) & 5 & < 01 & <10 & \(<1\) & \(<10\) & \(<1\) & 1938 \\
\hline 13 & R13 & >1000 & >30 & 0.17 & 430 & 40 & \(<5\) & 0.16 & 2 & 19 & 248 & 566 & 3.51 & \(<10\) & 0.10 & 131 & 14 & <. 01 & 37 & \(<10\) & 3520 & \(<5\) & 40 & 8 & < 01 & \(<10\) & 3 & \(<10\) & \(<1\) & 117 \\
\hline 14 & R14 & >1000 & >30 & 0.19 & < & 40 & \(<5\) & 0.05 & 9 & 4 & 295 & 2121 & 1.46 & \(<10\) & 0.13 & 132 & 10 & <. 01 & 13 & 50 & 184 & \(<5\) & \(<20\) & 3 & <. 01 & <10 & 3 & \(<10\) & \(<1\) & 183 \\
\hline 15 & R15 & >1000 & 2.4 & 0.13 & \(<5\) & 45 & <5 & 0.46 & 2 & 2 & 602 & 53 & 0.99 & \(<10\) & 0.05 & 136 & 23 & < 01 & 12 & <10 & 218 & \(<5\) & 40 & 8 & < 01 & <10 & 3 & \(<10\) & <1 & S \\
\hline 16 & R16 & 220 & 5.0 & 0.46 & < & 40 & \(<5\) & 0.35 & 1 & 3 & 188 & 84 & 1.19 & \(<10\) & 0.36 & 140 & 7 & < 01 & 13 & 140 & 346 & \(<5\) & 20 & 11 & 0.02 & \(<10\) & 14 & <10 & \(<1\) & 29 \\
\hline 17 & R17 & >1000 & 15.0 & 0.21 & < & 40 & < 5 & 0.77 & 7 & 3 & 198 & 202 & 0.87 & \(<10\) & 0.11 & 135 & 10 & <. 01 & 8 & 90 & 1436 & \(<5\) & \(<2\) & 11 & < 01 & <10 & 3 & <10 & <1 & 113 \\
\hline 18 & R18 & 505 & 8.0 & 0.34 & < & 45 & < & 1.07 & 2 & 3 & 291 & 93 & 1.33 & \(<10\) & 0.30 & 298 & 10 & < 01 & 12 & 90 & 384 & \(<5\) & 20 & 19 & <. 01 & <10 & 11 & <10 & \(<1\) & 29 \\
\hline 19 & R19 & 405 & 14.6 & 0.07 & < & 30 & 15 & 0.32 & 2 & \(<1\) & 321 & 53 & 0.57 & \(<10\) & 0.05 & 89 & 14 & <. 01 & 7 & 10 & 2100 & \(<5\) & \(<20\) & 10 & <. 01 & <10 & \(<1\) & <10 & \(<1\) & 6 \\
\hline 20 & R20 & 5 & 0.2 & 0.21 & \(<5\) & 45 & <5 & 0.96 & \(<1\) & 3 & 315 & 68 & 1.18 & <10 & 0.19 & 292 & 11 & <. 01 & 11 & 80 & 30 & \(<5\) & \(<20\) & 15 & < 01 & <10 & 6 & \(<10\) & \(<1\) & 9 \\
\hline 21 & R21 & >1000 & >30 & 0.11 & \(<5\) & 30 & \(<5\) & 0.25 & 8 & \(<1\) & 266 & 16 & 0.61 & <10 & 0.08 & 80 & 13 & < 01 & 7 & 10 & 22 & \(<5\) & 20 & 11 & <. 01 & <10 & 3 & <10 & \(<1\) & 136 \\
\hline 22 & 822 & >1000 & >30 & 0.77 & 250 & 65 & <5 & 0.68 & 39 & 11 & 220 & 220 & 2.17 & \(<10\) & 0.19 & 127 & 16 & < 01 & 48 & 520 & 6522 & \(<5\) & \(<20\) & 11 & < 01 & <10 & 18 & <10 & \(<1\) & 528 \\
\hline 23 & R23 & >1000 & 20.6 & 0.14 & < & 30 & <5 & 0.05 & 3 & 2 & 315 & 175 & 1.04 & \(<10\) & 0.10 & 91 & 14 & <. 01 & 11 & 60 & 2096 & \(<5\) & \(<20\) & 5 & < 01 & \(<10\) & 8 & \(<10\) & \(<1\) & 102 \\
\hline 24 & R24 & 165 & 0.6 & 0.15 & <5 & 30 & <5 & 0.05 & 26 & 5 & 365 & 64 & 1.32 & \(<10\) & 0.07 & 214 & 12 & <. 01 & 13 & 40 & 70 & < & \(<20\) & 3 & < 01 & <10 & 7 & <10 & <1 & 799 \\
\hline 25 & R25 & 5 & 1.0 & 0.43 & 10 & 65 & <5 & 0.49 & 9 & 5 & 304 & 93 & 1.75 & <10 & 0.26 & 225 & 18 & <. 01 & 19 & 410 & 56 & <5 & \(<2\) & 13 & 0.02 & <10 & 19 & \(<10\) & <1 & 222 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Et & Tag & Au(ppb) & Ag & Al \% & As & Ba & BI & \(\mathrm{Ca} \%\) & Cd & Co & Cr & Cu & \(\mathrm{Fe} \%\) & & Mg \% & Mn & Mo & \(\mathrm{Na} \%\) & Ni & \(p\) & Pb & Sb & Sn & Sr & Tix & U & \(v\) & w & \(Y\) & Zn \\
\hline 26 & R26 & \(>1000\) & 1.4 & 0.03 & \(<5\) & 25 & 5 & 0.01 & 7 & 1 & 337 & 29 & 0.85 & \(<10\) & 0.03 & 58 & 10 & < 01 & 8 & <10 & 14 & \(<5\) & \(<20\) & 3 & < 01 & <10 & <1 & <10 & <1 & 239 \\
\hline 27 & R27 & >1000 & >30 & 0.11 & \(<5\) & 30 & 10 & 0.35 & 4 & 2 & 295 & 18 & 0.89 & <10 & 0.08 & 191 & 14 & < 01 & 9 & 20 & 12 & < & 40 & 9 & < 01 & <10 & 5 & <10 & \(<1\) & 7 \\
\hline 28 & R28 & 5 & 0.4 & 0.30 & 45 & 35 & 10 & 0.16 & 2 & 6 & 245 & 16 & 1.54 & \(<10\) & 0.10 & 81 & 16 & < 01 & 25 & 100 & 96 & \(<5\) & <20 & 7 & 0.02 & <10 & 12 & \(<10\) & <1 & 69 \\
\hline 29 & R29 & 305 & 0.2 & 0.09 & <5 & 35 & 5 & 0.04 & \(<1\) & 3 & 389 & 5 & 1.11 & \(<10\) & 0.02 & 62 & 24 & < 01 & 21 & 50 & 16 & \(\leqslant\) & \(<0\) & 5 & < 01 & \(<10\) & 5 & <10 & <1 & 4 \\
\hline 30 & R30 & >1000 & 5.2 & 0.22 & 185 & 55 & 15 & 0.02 & 2 & 9 & 276 & 26 & 4.76 & <10 & 0.06 & 116 & 26 & <. 01 & 31 & 150 & 506 & \(<5\) & 80 & 6 & 0.04 & <10 & 14 & \(<10\) & <1 & 134 \\
\hline 31 & R31 & 5 & 1.8 & 0.29 & \(<5\) & 55 & 10 & 0.15 & 38 & 3 & 267 & 12 & 1.25 & \(<10\) & 0.18 & 134 & 13 & < 01 & 9 & 100 & 252 & \(<5\) & \(<20\) & 5 & 0.01 & \(<10\) & 6 & \(<10\) & \(<1\) & 585 \\
\hline 32 & R32 & 5 & < 2 & 1.10 & <5 & 70 & 10 & 0.07 & 1 & 6 & 338 & 20 & 3.16 & <10 & 0.80 & 207 & 10 & 0.01 & 21 & 160 & 8 & < & 20 & 5 & 0.03 & <10 & 36 & \(<10\) & \(<1\) & 46 \\
\hline 33 & R33 & 5 & <2 & 0.40 & < & 60 & 5 & 0.06 & \(<1\) & 3 & 304 & 13 & 1.28 & \(<10\) & 0.26 & 164 & 14 & < 01 & 10 & 170 & 6 & <5 & \(<20\) & 5 & 0.02 & \(<10\) & 10 & \(<10\) & \(<1\) & 17 \\
\hline 34 & R34 & >1000 & >30 & 0.10 & 20 & 45 & 10 & 0.04 & 102 & 9 & 350 & 77 & 2.51 & \(<10\) & 0.06 & 70 & 14 & < 01 & 38 & 60 & 5600 & 10 & 40 & 5 & < 01 & <10 & 4 & \(<10\) & <1 & 2494 \\
\hline 35 & R35 & >1000 & >30 & 0.15 & \(<5\) & 35 & \(<5\) & 0.07 & 65 & 2 & 248 & 1069 & 1.04 & <10 & 0.12 & 146 & 11 & < 01 & 9 & 30 & 7290 & 10 & \(<20\) & 7 & < 01 & <10 & 2 & \(<10\) & <1 & 795 \\
\hline 36 & R36 & 50 & \(<2\) & 3.27 & \(<5\) & 160 & 5 & 0.43 & 3 & 8 & 80 & 38 & 3.33 & \(<10\) & 0.48 & 144 & 17 & 0.06 & 37 & 790 & 78 & \(<5\) & \(<20\) & 49 & 0.04 & \(<10\) & 48 & \(<10\) & 4 & 270 \\
\hline 37 & R37 & 15 & < 2 & 4.69 & <5 & 150 & 15 & 0.42 & 1 & 6 & 97 & 32 & 4.29 & \(<10\) & 0.65 & 152 & 19 & 0.07 & 21 & 650 & 6 & \(<5\) & 40 & 36 & 0.12 & <10 & 94 & <10 & 4 & 105 \\
\hline 38 & R38 & 35 & <2 & 0.31 & < 5 & 45 & <5 & 0.05 & <1 & 3 & 248 & 11 & 1.61 & <10 & 0.19 & 116 & 18 & < 0.01 & 21 & 120 & 18 & <5 & \(<20\) & 4 & 0.01 & <10 & 11 & <10 & \(<1\) & 90 \\
\hline 39 & R39 & 5 & \(<2\) & 1.76 & 10 & 100 & 15 & 0.63 & 5 & 11 & 98 & 52 & 4.44 & <10 & 0.36 & 164 & 53 & 0.09 & 85 & 630 & 10 & \(<5\) & 40 & 55 & 0.08 & <10 & 73 & <10 & \(<1\) & 456 \\
\hline 40 & R40 & 40 & 0.6 & 1.19 & < & 105 & 10 & 3.58 & 9 & 15 & 75 & 65 & 4.81 & <10 & 0.68 & 556 & 20 & 0.04 & 40 & 900 & 86 & \(<5\) & 20 & 225 & 0.06 & <10 & 71 & <10 & <1 & 475 \\
\hline 41 & R41 & >1000 & >30 & 0.08 & 105 & 45 & \(<5\) & 0.04 & 395 & 16 & 253 & 1021 & 3.87 & \(<10\) & 0.02 & 77 & 14 & <. 01 & 38 & <10 & 9678 & \(<5\) & 60 & 7 & < 0.01 & <10 & 3 & \(<10\) & <1 & 5518 \\
\hline 42 & R42 & 30 & 0.6 & 0.87 & <5 & 125 & <5 & 0.34 & 11 & 15 & 145 & 77 & 3.46 & <10 & 0.53 & 193 & 33 & 0.02 & 49 & 560 & 60 & \(<5\) & \(<20\) & 17 & 0.01 & <10 & 41 & <10 & <1 & 412 \\
\hline 43 & R43 & 50 & 0.4 & 0.39 & 60 & 110 & 10 & 0.34 & 4 & 8 & 298 & 38 & 3.30 & <10 & 0.10 & 385 & 29 & < 01 & 45 & 410 & 88 & < & 40 & 14 & <. 01 & <10 & 16 & <10 & <1 & 175 \\
\hline 44 & R44 & 25 & <. 2 & 1.28 & <5 & 110 & 15 & 0:25 & 3 & 4 & 172 & 22 & 3.41 & <10 & 0.79 & 288 & 13 & 0.04 & 15 & 380 & 6 & \(<5\) & \(<20\) & 28 & 0.06 & <10 & 87 & <10 & <1 & 118 \\
\hline 45 & R45 & >1000 & 17.8 & 0.18 & \(<5\) & 45 & \(<5\) & 0.02 & 9 & 5 & 329 & 333 & 1.72 & <10 & 0.07 & 56 & 16 & <. 01 & 15 & 40. & 2220 & \(<5\) & \(<20\) & 5 & <. 01 & <10 & 6 & \(<10\) & \(<1\) & 121 \\
\hline 46 & R46 & >1000 & >30 & 0.44 & \(<5\) & 40 & \(<5\) & 0.04 & 1 & 4 & 197 & 62 & 1.58 & \(<10\) & 0.38 & 214 & 6 & < 01 & 14 & 40 & 110 & 5 & 200 & 2 & 0.02 & <10 & 20 & <10 & \(<1\) & 29 \\
\hline 47 & R47 & >1000 & 3.4 & 0.42 & \(<5\) & 45 & \(<5\) & 0.49 & 3 & 10 & 281 & 141 & 1.81 & <10 & 0.33 & 225 & 13 & 0.01 & 19 & <10 & 516 & < & <20 & 14 & 0.02 & <10 & 24 & <10 & <1 & 39 \\
\hline 48 & R48 & >1000 & 0.2 & 0.26 & <5 & 35 & \(<5\) & 1.06 & 1 & 4 & 324 & 34 & 1.02 & <10 & 0.26 & 292 & 9 & < 01 & 13 & <10 & 12 & 5 & \(<20\) & 13 & 0.01 & <10 & 10 & \(<10\) & <1 & 7 \\
\hline 49 & R49 & \(>1000\) & 0.6 & 1.01 & \(<5\) & 75 & 10 & 0.87 & 1 & 17 & 179 & 32 & 2.52 & \(<10\) & 0.70 & 353 & 12 & 0.04 & 42 & 60 & 24 & 5 & \(<20\) & 30 & 0.04 & <10 & 56 & <10 & <1 & 20 \\
\hline 50 & R50 & 820 & <. 2 & 0.30 & \(<5\) & 40 & 10 & 0.52 & <1 & 3 & 259 & 13 & 0.91 & \(<10\) & 0.23 & 154 & 7 & <. 01 & 11 & 130 & 42 & \(<5\) & \(<20\) & 7 & 0.03 & <10 & 10 & <10 & \(<1\) & 8 \\
\hline 51 & R51 & >1000 & 2.2 & 0.60 & \(<5\) & 40 & \(<5\) & 1.42 & \(<1\) & 7 & 281 & 44 & 1.62 & \(<10\) & 0.51 & 367 & 12 & < 01 & 20 & 90 & 84 & \(<5\) & \(<20\) & 14 & 0.05 & \(<10\) & 24 & <10 & \(<1\) & 18 \\
\hline 52 & R52 & >1000 & 3.6 & 0.13 & 20 & 35 & \(<5\) & 0.03 & <1 & 9 & 326 & 41 & 2.62 & <10 & 0.06 & 73 & 14 & < 09 & 24 & <10 & 32 & \(<5\) & 20 & 3 & \(<.01\) & <10 & 3 & <10 & <1 & 10 \\
\hline 53 & R53 & >1000 & 5.4 & 0.15 & \(<5\) & 40 & \(<5\) & 0.11 & 1 & 6 & 239 & 319 & 1.12 & \(<10\) & 0.04 & 57 & 12 & < 01 & 11 & 50 & 278 & < & \(<20\) & 3 & \(<.01\) & \(<10\) & \(<1\) & \(<10\) & <1 & 7 \\
\hline 54 & R54 & >1000 & 7.4 & 0.49 & 10 & 40 & 5 & 0.04 & \(<1\) & 2 & 278 & 18 & 2.35 & <10 & 0.05 & 78 & 12 & <. 01 & 9 & 120 & 290 & < & \(<20\) & 6 & <. 01 & \(<10\) & 16 & <10 & <1 & 43 \\
\hline 55 & R55 & 205 & < 2 & 0.91 & <5 & 70 & 10 & 0.16 & \(<1\) & 2 & 151 & 11 & 1.83 & \(<10\) & 0.10 & 52 & 16 & 0.03 & 10 & 180 & 38 & \(<5\) & \(<20\) & 10 & 0.03 & <10 & 47 & \(<10\) & <1 & 30 \\
\hline 56 & R56 & 35 & \(<.2\) & 2.04 & 15 & 70 & 10 & 0.22 & \(<1\) & 6 & 126 & 23 & 3.21 & <10 & 0.24 & 206 & 13 & 0.03 & 15 & 620 & 46 & \(<5\) & \(<20\) & 12 & 0.04 & \(<10\) & 49 & \(<10\) & <1 & 59 \\
\hline 57 & R57 & 10 & 0.4 & 0.44 & \(<5\) & 90 & 10 & 0.20 & 5 & 7 & 91 & 33 & 3.50 & \(<10\) & 0.05 & 87 & 25 & < 0.01 & 38 & 1150 & 16 & \(<5\) & 40 & 8 & <. 01 & <10 & 21 & <10 & \(<1\) & 260 \\
\hline 58 & R58 & 5 & <. 2 & 0.27 & \(<5\) & 80 & \(<5\) & 0.07 & <1 & \(<1\) & 169 & 3 & 0.60 & 10 & 0.06 & 68 & 6 & 0.04 & 5 & 20 & 6 & < & \(<20\) & 4 & 0.01 & \(<10\) & 3 & \(<10\) & \(<1\) & 8 \\
\hline 59 & R59 & >1000 & 14.0 & 0.07 & \(<5\) & 35 & \(<\) & 0.01 & 179 & 2 & 308 & 212 & 0.81 & <10 & 0.05 & 53 & 13 & <. 01 & 12 & \(<10\) & 1346 & < & \(<20\) & 3 & <. 01 & <10 & 2 & <10 & <1 & 2350 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Et. \(\#\) Tog & \(\mathrm{Au}(\mathrm{ppb})\) & Ag & Al X & As & Ba & BI & \(\mathrm{Ca} \%\) & cd & Co & Cr & Cu & Fe\% & & \(M g\) * & Mn & Mo & \(\mathrm{Na} \%\) & Ni & P & Pb & Sb & Sn & Sr & Ti\% & U & \(v\) & w & \(Y\) & 2 n \\
\hline \multicolumn{30}{|l|}{QCADAIA:} \\
\hline \multicolumn{30}{|l|}{Respht:} \\
\hline R/S 1 R1 & 5 & 0.4 & 1.81 & 4 & 155 & 10 & 0.20 & 4 & 8 & 106 & 39 & 3.74 & \(<10\) & 1.13 & 214 & 19 & 0.02 & 48 & 810 & 18 & 10 & \(<20\) & 15 & 0.02 & \(<10\) & 79 & \(<10\) & <1 & 305 \\
\hline R'S 36 R36 & 55 & <. 2 & 3.14 & \(<5\) & 120 & 10 & 0.49 & 5 & 10 & 92 & 43 & 3.77 & <10 & 0.56 & 157 & 22 & 0.08 & 45 & 770 & 64 & <5 & 20 & 47 & 0.04 & <10 & 45 & \(<10\) & 2 & 280 \\
\hline \multicolumn{30}{|l|}{Repeat:} \\
\hline 1 R1 & 5 & 0.4 & 1.77 & <5 & 155 & 10 & 0.19 & 3 & 8 & 87 & 42 & 3.78 & \(<10\) & 1.11 & 199 & 17 & 0.02 & 45 & 650 & 18 & 5 & \(<20\) & 16 & 0.02 & <10 & 78 & <10 & <1 & 287 \\
\hline 10 R10 & >1000 & 4.2 & 0.41 & 45 & 105 & \(<5\) & 3.35 & 34 & 9 & 255 & 101 & 2.55 & \(<10\) & 0.25 & 490 & 30 & < 0.01 & 46 & 440 & 550 & \(<5\) & \(<20\) & 122 & < 01 & <10 & 21 & <10 & <1 & 757 \\
\hline 19 R19 & 430 & 13.2 & 0.06 & \(<5\) & 30 & 15 & 0.29 & 3 & \(<1\) & 300 & 48 & 0.53 & <10 & 0.04 & 87 & 13 & <. 01 & 7 & <10 & 1946 & < 5 & \(<20\) & 9 & < 01 & \(<10\) & <1 & <10 & <1 & 4 \\
\hline \(36 \quad \mathrm{R} 36\) & 50 & <2 & 3.25 & \(<5\) & 150 & 10 & 0.43 & 3 & 7 & 82 & 39 & 3.32 & \(<10\) & 0.48 & 147 & 18 & 0.06 & 37 & 790 & 72 & < & \(<20\) & 48 & 0.04 & <10 & 49 & <10 & 3 & 280 \\
\hline 45 R45 & >1000 & 19.0 & 0.14 & \(<5\) & 40 & \(<\) & 0.02 & 8 & 5 & 324 & 333 & 1.66 & <10 & 0.06 & 50 & 15 & <. 01 & 15 & 30 & 2226 & \(<5\) & \(<20\) & 4 & < 01 & \(<10\) & 5 & <10 & <1 & 116 \\
\hline \multicolumn{30}{|l|}{Standard:} \\
\hline GEO'95 & 150 & 1.0 & 1.68 & 45 & 180 & \(<5\) & 1.77 & \(<1\) & 17 & 56 & 80 & 3.91 & \(<10\) & 0.94 & 685 & 1 & 0.02 & 26 & 640 & 20 & 10 & \(<20\) & 59 & 0.11 & \(<10\) & 73 & \(<10\) & \(<1\) & 77 \\
\hline GEO'95 & 150 & 1.0 & 1.68 & 45 & 180 & 5 & 1.73 & \(<1\) & 16 & 56 & 79 & 3.88 & <10 & 0.94 & 675 & 1 & 0.02 & 27 & 650 & 14 & 10 & \(<20\) & 58 & 0.11 & <10 & 73 & \(<10\) & \(<1\) & 76 \\
\hline
\end{tabular}

\footnotetext{
df1 124
XLS/Ashworth
}


\section*{APPENDIX III}

1995 Geochemical analyses and soil sample descriptions

\begin{tabular}{|l|l|l|l|l|l|}
\hline \(0+00\) & \(1+00 \mathrm{~N}\) & Light Brown & Mud & 30 & \\
\hline & \(0+90 \mathrm{~N}\) & Light Brown & Mud & 40 & \\
\hline & \(0+80 \mathrm{~N}\) & Dark Brown & Mud & 60 & \\
\hline & \(0+70 \mathrm{~N}\) & Dark Brown & Mud & 60 & \\
\hline & \(0+60 \mathrm{~N}\) & Dark Brown & Mud & 30 & \\
\hline & \(0+50 \mathrm{~N}\) & & & No Sample & \\
\hline & \(0+40 \mathrm{~N}\) & Brown & Mud & 40 & \\
\hline & \(0+30 \mathrm{~N}\) & Brown & Mud & 75 & \\
\hline & \(0+20 \mathrm{~N}\) & Grey & Mud & 20 & \\
\hline & \(0+10 \mathrm{~N}\) & Grey & Clay & 20 & \\
\hline & \(0+00\) & & & No Sample & \\
\hline & \(0+10 \mathrm{~S}\) & & & No Sample & \\
\hline & \(0+20 \mathrm{~S}\) & & & No Sample & \\
\hline & \(0+30 \mathrm{~S}\) & & & 30 & \\
\hline & \(0+40 \mathrm{~S}\) & Rusty & Mud & 20 & \\
\hline & \(0+50 \mathrm{~S}\) & Rusty & Gritty & 20 & \\
\hline & \(0+60 \mathrm{~S}\) & Grey & Mud & 20 & \\
\hline & \(0+70 \mathrm{~S}\) & Dark Brown & Gritty & 30 & \\
\hline & \(0+80 \mathrm{~S}\) & Grey & Clay & 20 & \\
\hline & \(0+90 \mathrm{~S}\) & Rusty & Mud & 30 & \\
\hline & \(1+00 \mathrm{~S}\) & Red & Gritty & 45 & \\
\hline
\end{tabular}
\begin{tabular}{|l|c|l|l|c|c|}
\hline \(\mathbf{0}+\mathbf{2 0 W}\) & l +00 N & Rusty & Gritty & 40 & \\
\hline & \(0+90 \mathrm{~N}\) & Dark Brown & Mud & 50 & \\
\hline & \(0+80 \mathrm{~N}\) & Brown & Mud & 30 & \\
\hline & \(0+70 \mathrm{~N}\) & Brown & Gritty & 20 & \\
\hline & \(0+60 \mathrm{~N}\) & Brown & & 20 & \\
\hline & \(0+50 \mathrm{~N}\) & Brown & & 30 & \\
\hline & \(0+40 \mathrm{~N}\) & Brown & & 40 & \\
\hline & \(0+30 \mathrm{~N}\) & Brown & & 30 & \\
\hline & \(0+20 \mathrm{~N}\) & Brown & & 60 & \\
\hline & \(0+10 \mathrm{~N}\) & & & No Sample & Swamp \\
\hline & \(0+00\) & & Mud & 65 & \\
\hline & \(0+10 \mathrm{~S}\) & Brown & Sandy & 20 & \\
\hline & \(0+20 \mathrm{~S}\) & Grey & Clay & 20 & \\
\hline & \(0+30 \mathrm{~S}\) & Grey & & No Sample & \\
\hline & \(0+40 \mathrm{~S}\) & & & No Sample & \\
\hline & \(0+50 \mathrm{~S}\) & & Gritty & 60 & \\
\hline & \(0+60 \mathrm{~S}\) & Brown & Gritty & 20 & \\
\hline & \(0+70 \mathrm{~S}\) & Brown & Mud & 30 & \\
\hline & \(0+80 \mathrm{~S}\) & Brown & Mud & 20 & \\
\hline & \(0+90 \mathrm{~S}\) & Brown & Mud & 35 & \\
\hline & \(1+00 \mathrm{~S}\) & Brown & & & \\
\hline
\end{tabular}

\section*{LINE WTATION COLOUR 1 DEPTH (cm) OTHER}
\begin{tabular}{|l|c|l|l|c|c|}
\hline \(0+40 \mathrm{~W}\) & \(1+00 \mathrm{~N}\) & Brown & Wet Mud & 50 & \\
\hline & \(0+90 \mathrm{~N}\) & Brown & Gritty & 40 & \\
\hline & \(0+80 \mathrm{~N}\) & Brown & Wet Mud & 40 & \\
\hline & \(0+70 \mathrm{~N}\) & & & No Sample & Swamp \\
\hline & \(0+60 \mathrm{~N}\) & Brown & Wet Mud & 30 & Close to Swamp \\
\hline & \(0+50 \mathrm{~N}\) & Brown & Mud & 40 & \\
\hline & \(0+40 \mathrm{~N}\) & Brown & Creamy Mud & 40 & \\
\hline & \(0+30 \mathrm{~N}\) & Mixed Brown & Mud & 30 & \\
\hline & \(0+20 \mathrm{~N}\) & Grey & Clay & 50 & \\
\hline & \(0+10 \mathrm{~N}\) & Red Brown & Gritty & 50 & \\
\hline & \(0+00\) & Brown & Gritty & 40 & \\
\hline & \(0+10 \mathrm{~S}\) & Red Brown & Gritty & 45 & \\
\hline & \(0+20 \mathrm{~S}\) & Brown & Gritty & 40 & \\
\hline & \(0+30 \mathrm{~S}\) & Brown & Gritty Mud & 50 & \\
\hline & \(0+40 \mathrm{~S}\) & Rusty Brown & Gritty & 60 & \\
\hline & \(0+50 \mathrm{~S}\) & Brown Red & Gritty Mud & 50 & \\
\hline & \(0+60 \mathrm{~S}\) & & & No Sample & Creek \\
\hline & \(0+70 \mathrm{~S}\) & Red Brown & Gritty & 45 & \\
\hline & \(0+80 \mathrm{~S}\) & Brown & Gritty & 30 & \\
\hline & \(0+90 \mathrm{~S}\) & Brown & Gritty & 40 & \\
\hline & \(1+00 \mathrm{~S}\) & Grey & Gritty & 30 & \\
\hline
\end{tabular}
\begin{tabular}{|l|c|l|l|l|l|}
\hline \(0+60 W\) & \(1+00 \mathrm{~N}\) & Grey & Wet Gritty & 30 & \\
\hline & \(0+90 \mathrm{~N}\) & & & No Sample & Swampy \\
\hline & \(0+80 \mathrm{~N}\) & & & No Sample & Swampy \\
\hline & \(0+70 \mathrm{~N}\) & Mixed Grey & Mud & 40 & \\
\hline & \(0+60 \mathrm{~N}\) & Brown & Mud & 70 & \\
\hline & \(0+50 \mathrm{~N}\) & Grey & Hard Clay & 40 & \\
\hline & \(0+40 \mathrm{~N}\) & & & No Sample & Swampy \\
\hline & \(0+30 \mathrm{~N}\) & Grey & Hard Clay & 10 & Rocky \\
\hline & \(0+20 \mathrm{~N}\) & Grey & Clay & 10 & \\
\hline & \(0+10 \mathrm{~N}\) & Grey & Clay & 20 & \\
\hline & \(0+00\) & Grey & Clay & 20 & \\
\hline & \(0+10 \mathrm{~S}\) & Brown & Mud & 20 & \\
\hline & \(0+20 \mathrm{~S}\) & Grey & Wet Gritty & 30 & \\
\hline & \(0+30 \mathrm{~S}\) & Brown & Wet Gritty & 30 & \\
\hline & \(0+40 \mathrm{~S}\) & Rusty & Dry Gritty & 20 & \\
\hline & \(0+50 \mathrm{~S}\) & Rusty & Dry Gritty & 30 & \\
\hline & \(0+60 \mathrm{~S}\) & Rusty & Wet Gritty & 40 & \\
\hline & \(0+70 \mathrm{~S}\) & & & No Sample & Main Trail \\
\hline & \(0+80 \mathrm{~S}\) & Brown & Wet Gritty & 40 & \\
\hline & \(0+90 \mathrm{~S}\) & Brown & Mud & 30 & \\
\hline & \(1+00 \mathrm{~S}\) & Brown & Wet Mud & 20 & \\
\hline
\end{tabular}

NUGGET QUEEN '95 SOIL SAMPLE DESCRIPTIONS

\begin{tabular}{|l|c|l|l|l|l|}
\hline \(0+80 \mathrm{~W}\) & \(1+00 \mathrm{~N}\) & Brown & Mud & 50 & \\
\hline & \(0+90 \mathrm{~N}\) & Brown & Mud & 40 & \\
\hline & \(0+80 \mathrm{~N}\) & Grey & Clay & 40 & \\
\hline & \(0+70 \mathrm{~N}\) & Brown & Mud & 30 & \\
\hline & \(0+60 \mathrm{~N}\) & Brown & Mud & 50 & \\
\hline & \(0+50 \mathrm{~N}\) & Rusty & Mud & 40 & \\
\hline & \(0+40 \mathrm{~N}\) & Grey & Mud & 30 & \\
\hline & \(0+30 \mathrm{~N}\) & Grey & Mud & 40 & Close to Creek \\
\hline & \(0+20 \mathrm{~N}\) & Grey & Mud & 20 & \\
\hline & \(0+10 \mathrm{~N}\) & Grey & Mud & 20 & \\
\hline & \(0+00\) & Grey & Clay Mud & 50 & \\
\hline & \(0+10 \mathrm{~S}\) & Grey & Clay Mud & 40 & \\
\hline & \(0+20 \mathrm{~S}\) & Rusty & Grity & 40 & \\
\hline & \(0+30 \mathrm{~S}\) & Rusty & Gritty & 30 & \\
\hline & \(0+40 \mathrm{~S}\) & Grey & Gritty & 30 & \\
\hline & \(0+50 \mathrm{~S}\) & Rusty & Gritty & 40 & \\
\hline & \(0+60 \mathrm{~S}\) & Brown & Gritty & 20 & \\
\hline & \(0+70 \mathrm{~S}\) & Rusty & Dry Gritty & 20 & \\
\hline & \(0+80 \mathrm{~S}\) & Brown & Gritty Mud & 40 & Close to Creek \\
\hline & \(0+90 \mathrm{~S}\) & Brown & Gritty Mud & 40 & Close to Creek \\
\hline & \(1+00 \mathrm{~S}\) & Brown & Mud & 50 & \\
\hline
\end{tabular}
\begin{tabular}{|l|c|l|l|c|l|}
\hline \(\mathbf{1 + 0 0 W}\) & \(1+00 \mathrm{~N}\) & Light Brown & Gritty & 30 & \\
\hline & \(0+90 \mathrm{~N}\) & Grey & Clay & 40 & \\
\hline & \(0+80 \mathrm{~N}\) & Grey & Clay & 30 & \\
\hline & \(0+70 \mathrm{~N}\) & Grey Rusty & Gritty & 30 & \\
\hline & \(0+60 \mathrm{~N}\) & Brown & Muddy & 20 & \\
\hline & \(0+50 \mathrm{~N}\) & Brown & Muddy & 50 & \\
\hline & \(0+40 \mathrm{~N}\) & Brown & Muddy & 60 & Close to Creek \\
\hline & \(0+30 \mathrm{~N}\) & & & No Sample & \\
\hline & \(0+20 \mathrm{~N}\) & Brown & Muddy & 40 & \\
\hline & \(0+10 \mathrm{~N}\) & Brown & Muddy & 40 & \\
\hline & \(0+00\) & Grey & Wet Mud & 30 & \\
\hline & \(0+10 \mathrm{~S}\) & Rusty Brown & Wet Mud & 40 & \\
\hline & \(0+20 \mathrm{~S}\) & Brown & Gritty & 30 & \\
\hline & \(0+30 \mathrm{~S}\) & Grey & Smooth Mud & 40 & \\
\hline & \(0+40 \mathrm{~S}\) & Grey Brown & Muddy & 20 & \\
\hline & \(0+50 \mathrm{~S}\) & Grey & Clay & 50 & \\
\hline & \(0+60 \mathrm{~S}\) & Grey Mustard & Gritty & & \\
\hline & \(0+70 \mathrm{~S}\) & & & No Sample & Too Deep \\
\hline & \(0+80 \mathrm{~S}\) & & & Gritty & 30 \\
\hline & \(0+90 \mathrm{~S}\) & Rusty & Wet Gritty & 30 & Near Creek \\
\hline & \(1+00 \mathrm{~S}\) & Rusty & & & \\
\hline
\end{tabular}

\begin{tabular}{|l|c|l|l|l|l|}
\hline \(2+80 \mathrm{~W}\) & \(1+00 \mathrm{~N}\) & Red/Dark Brown & Mud & 30 & \\
\hline & \(0+90 \mathrm{~N}\) & Grey & Clay & 30 & \\
\hline & \(0+80 \mathrm{~N}\) & Red/Dark Brown & Mud & 45 & \\
\hline & \(0+70 \mathrm{~N}\) & Red/Dark Brown & Mud & 45 & \\
\hline & \(0+60 \mathrm{~N}\) & \begin{tabular}{l} 
Red/Dark Brown, \\
Grey
\end{tabular} & Mud & 15 & \\
\hline & \(0+50 \mathrm{~N}\) & & & No Sample & \\
\hline & \(0+40 \mathrm{~N}\) & Dark Brown & Mud & 30 & \\
\hline & \(0+30 \mathrm{~N}\) & Grey & Clay & 30 & \\
\hline & \(0+20 \mathrm{~N}\) & Red Brown & Mud & 30 & \\
\hline & \(0+10 \mathrm{~N}\) & Red/Dark Brown & Mud & 30 & \\
\hline & \(0+00\) & & & No Sample & \\
\hline & \(0+10 \mathrm{~S}\) & \begin{tabular}{l} 
Red/Dark Brown, \\
Grey
\end{tabular} & Mud & 60 & \\
\hline & \(0+20 \mathrm{~S}\) & & & No Sample & \\
\hline & \(0+30 \mathrm{~S}\) & Red Brown, Grey & Mud \& Clay & 45 & \\
\hline & \(0+40 \mathrm{~S}\) & Red Brown & Mud & 45 & \\
\hline & \(0+50 \mathrm{~S}\) & Red Brown, Grey & Mud \& Clay & 60 & \\
\hline & \(0+60 \mathrm{~S}\) & Dark Brown & Mud & 90 & \\
\hline & \(0+70 \mathrm{~S}\) & \(0+80 \mathrm{~S}\) & Red Brown, Grey & Mud \& Clay & No Sample
\end{tabular}
\begin{tabular}{|l|c|l|l|l|l|}
\hline \(3+00 \mathrm{~W}\) & \(1+00 \mathrm{~N}\) & Light/Dark Brown & Mud & 30 & \\
\hline & \(0+90 \mathrm{~N}\) & Light/Dark Brown & Mud & 30 & \\
\hline & \(0+80 \mathrm{~N}\) & Light/Red Brown & Mud & 30 & \\
\hline & \(0+70 \mathrm{~N}\) & Light/Red Brown & Mud & 60 & \\
\hline & \(0+60 \mathrm{~N}\) & Light/Red Brown & Mud & 45 & \\
\hline & \(0+50 \mathrm{~N}\) & Red/Dark Brown & Mud & 45 & \\
\hline & \(0+40 \mathrm{~N}\) & Red/Dark Brown & Mud & 45 & \\
\hline & \(0+30 \mathrm{~N}\) & Light Brown, Grey & Mud \& Clay & 30 & \\
\hline & \(0+20 \mathrm{~N}\) & & & No Sample & \\
\hline & \(0+10 \mathrm{~N}\) & & & No Sample & \\
\hline
\end{tabular}

\section*{NUGGET QUEEN \({ }^{95}\)}
\begin{tabular}{|l|l|l|l|l|l|}
\hline LINE & STATION & COLOUR & TEXT & DEIPTH \((\mathrm{cm})\) & OTIIER \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 3+20W & \(1+00 \mathrm{~N}\) & Dark Brown & Mud & 75 & \\
\hline & \(0+90 \mathrm{~N}\) & Red/light Brown & Mud & 30 & \\
\hline & 0.480 N & Red/Dark Brown & Mud & 75 & \\
\hline & \(0+70 \mathrm{~N}\) & Ked Hrown & Mud & 75 & \\
\hline & \(0+60 \mathrm{~N}\) & & & No Sample & \\
\hline & \(0+50 \mathrm{~N}\) & & & No Sample & \\
\hline & \(0+40 \mathrm{~N}\) & Red Brown & Mud & 45 & \\
\hline & \(0+30 \mathrm{~N}\) & Mixed Brown & Mud & 45 & \\
\hline & (0) 20 N & Red/I) ark lirown & Mud \& Sand & 45 & \\
\hline & \(0+10 \mathrm{~N}\) & & & No Stumple. & \\
\hline & \(0+00\) & Grey & Clay & 30 & \\
\hline & \(0+10 \mathrm{~S}\) & Red/Light Brown & Mud & 30 & \\
\hline & 0+20S & & & No Sample & \\
\hline & 0+30S & & & No Sample & \\
\hline & \(0+40 \mathrm{~S}\) & Red/Dark Brown & Mud & 80 & \\
\hline & \(0+50 \mathrm{~S}\) & Red/Light Brown & Mud & 45 & \\
\hline & \(0+60 \mathrm{~S}\) & Red/Light Brown & Mud & 45 & \\
\hline \(\cdots\) & 0+70S & Ligh/Dark Brown & Mud & 45 & \\
\hline & 0180 S & Dark Brown & Mud & 45 & \\
\hline & 0190 S & Dark Brown & Mud & 60 & \\
\hline & 1+00S & Red Brown & Mud & 45 & \\
\hline
\end{tabular}
\begin{tabular}{|l|c|l|l|c|c|}
\hline \(3+40 \mathrm{~W}\) & \(1+00 \mathrm{~N}\) & Red Brown & Mud & 45 & \\
\hline & \(0+90 \mathrm{~N}\) & Red Brown & Mud & 75 & \\
\hline & \(0+80 \mathrm{~N}\) & Red Brown & Mud & 45 & \\
\hline & \(0+70 \mathrm{~N}\) & Red Brown, Grey & Mud \& Sand & 20 & \\
\hline & \(0+60 \mathrm{~N}\) & Light/Red Brown & Mud & 20 & \\
\hline & \(0+50 \mathrm{~N}\) & Light/Dark Brown & Mud & 60 & \\
\hline & \(0+40 \mathrm{~N}\) & Dark Brown, Black & Mud & 90 & \\
\hline & \(0+30 \mathrm{~N}\) & Red Brown, Grey & Mud \& Clay & 25 & \\
\hline & \(0+20 \mathrm{~N}\) & Mixed Brown, Grey & Mud \& Clay & 75 & \\
\hline & \(0+10 \mathrm{~N}\) & \begin{tabular}{l} 
Red/Dark Brown, \\
Grey
\end{tabular} & Mud \& Clay & 25 & \\
\hline & \(0+00\) & Red Brown/Grey & Mud \& Clay & 30 & \\
\hline & \(0+10 \mathrm{~S}\) & Mixed Brown, Grey & Mud \& Clay & 100 & \\
\hline & \(0+20 \mathrm{~S}\) & & & No Sample & \\
\hline & \(0+30 \mathrm{~S}\) & & & No Sample & \\
\hline & \(0+40 \mathrm{~S}\) & Light/Red Brown & Rock Inclusion & 30 & \\
\hline & \(0+50 \mathrm{~S}\) & Light/Red Brown & \begin{tabular}{l} 
Sandy, \\
Rock Inclusion
\end{tabular} & 60 & \\
\hline & \(0+60 \mathrm{~S}\) & Dark Brown & Mud & 60 & \\
\hline & \(0+70 \mathrm{~S}\) & Dark Brown, Grey & Mud \& Clay & 12.5 & \\
\hline & \(0+80 \mathrm{~S}\) & Light Brown, Grey & \begin{tabular}{l} 
Mud \& Clay \\
Rock Inclusion
\end{tabular} & 20 & \\
\hline & \(0+90 \mathrm{~S}\) & Red Brown & Mud & 45 & \\
\hline & \(1+00 \mathrm{~S}\) & Red Brown, Black & Mud & 30 & \\
\hline
\end{tabular}

\section*{NUGGET QUEEN '95}

SOIL SAMPLE DESCRIPTIONS

\section*{}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 3+60W & \(1+00 \mathrm{~N}\) & Grey & Clay & 30 & \\
\hline & \(0+90 \mathrm{~N}\) & Grey & Clay & 40 & \\
\hline & \(0+80 \mathrm{~N}\) & Brown & Mud & 40 & \\
\hline & \(0+70 \mathrm{~N}\) & Brown & Mud & 60 & \\
\hline & \(0+60 \mathrm{~N}\) & & & No Sample & \\
\hline & \(0+50 \mathrm{~N}\) & Rusty & Dry Grity & 50 & \\
\hline & \(0+40 \mathrm{~N}\) & Rusty & Dry Gritty & 40 & \\
\hline & \(0+30 \mathrm{~N}\) & Rusty & Dry Gritty & 20 & \\
\hline & \(0+20 \mathrm{~N}\) & Mixed Brown & Mud & 30 & \\
\hline & \(0+10 \mathrm{~N}\) & Brown & Mud & 40 & \\
\hline & 0+00 & Brown & Mud & 30 & \\
\hline & \(0+10 \mathrm{~S}\) & Grey & Mud & 10 & \\
\hline & 0+20S & Grey & Clay & 10 & \\
\hline & \(0+30 \mathrm{~S}\) & Grey & Clay & 40 & \\
\hline & \(0+40 \mathrm{~S}\) & Rusty & Dry Gritty & 20 & \\
\hline & \(0+50 \mathrm{~S}\) & Mixed Brown & Mud & 20 & \\
\hline & \(0+60 \mathrm{~S}\) & Mixed Brown & Mud & 30 & \\
\hline & \(0+70 \mathrm{~S}\) & Grey & Mud & 20 & \\
\hline & \(0+80 \mathrm{~S}\) & Dark Brown & Mud & 40 & \\
\hline & \(0+90 \mathrm{~S}\) & Rusty & Gritty Mud & 30 & \\
\hline & \(1+00 \mathrm{~S}\) & Rusty & Gritty & 20 & \\
\hline \(3+80 \mathrm{~W}\) & \(1+00 \mathrm{~N}\) & Rusty & Dry Grity & 20 & \\
\hline & \(0+90 \mathrm{~N}\) & Brown & Gritty & 20 & \\
\hline & \(0+80 \mathrm{~N}\) & Brown & Gritty & 30 & \\
\hline & \(0+70 \mathrm{~N}\) & Brown & Grity & 20 & \\
\hline & \(0+60 \mathrm{~N}\) & Grey & Clay & 10 & \\
\hline & 0+50N & Grey & Mud & 30 & \\
\hline & \(0+40 \mathrm{~N}\) & Brown & Mud & 30 & \\
\hline & \(0+30 \mathrm{~N}\) & Brown & Gritty Mud & 20 & \\
\hline & \(0+20 \mathrm{~N}\) & Brown & Gritty Mud & 30 & \\
\hline & \(0+10 \mathrm{~N}\) & Rusty & Gritty & 40 & \\
\hline & 0+00 & Brown & Mud & 40 & \\
\hline & \(0+10 \mathrm{~S}\) & Grey & Mud & 30 & \\
\hline & \(0+20 \mathrm{~S}\) & & & No Sample & Exposed Bedrock \\
\hline & \(0+30 \mathrm{~S}\) & & & No Sample & Exposed Bedrock \\
\hline & \(0+40 \mathrm{~S}\) & Grey & Clay & 20 & \\
\hline & \(0+50 \mathrm{~S}\) & Brown & Wet Gritty Mud & 30 & \\
\hline & \(0+60 \mathrm{~S}\) & Brown & Gritty & 30 & Taken from Trench \\
\hline & 0+70S & & & No Sample & \\
\hline & \(0+80 \mathrm{~S}\) & Dark Brown & Smooth Mud & 40 & \\
\hline & \(0+90 \mathrm{~S}\) & Brown & Gritty & 20 & \\
\hline & \(1+00 \mathrm{~S}\) & Grey & Clay & 20 & \\
\hline
\end{tabular}

\section*{NUGGET QUEEN ‘95 SOIL SAMPLE DESCRIPTIONS}

\begin{tabular}{|l|c|l|l|c|c|}
\hline \(4+00 \mathrm{~W}\) & \(1+00 \mathrm{~N}\) & Rusty & Dry Gritty & 35 & \\
\hline & \(0+90 \mathrm{~N}\) & Brown & Mud & 20 & \\
\hline & \(0+80 \mathrm{~N}\) & Rusty & Mud & 20 & \\
\hline & \(0+70 \mathrm{~N}\) & Brown & Wet Mud & 30 & \\
\hline & \(0+60 \mathrm{~N}\) & Rusty & Mud & 20 & \\
\hline & \(0+50 \mathrm{~N}\) & Rusty & Dry Grity & 30 & \\
\hline & \(0+40 \mathrm{~N}\) & Brown Rusty & Mud & 40 & \\
\hline & \(0+30 \mathrm{~N}\) & Rusty & Mud & 30 & \\
\hline & \(0+20 \mathrm{~N}\) & Grey Rusty & Mud & 40 & \\
\hline & \(0+10 \mathrm{~N}\) & Grey & Clay & 20 & \\
\hline & \(0+00\) & Grey & Clay & 30 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|l|l|c|l|}
\hline \(4+20 \mathbf{W}\) & \(0+00\) & Grey & Clay & 20 & Very Steep \\
\hline & \(0+10 \mathrm{~S}\) & Grey & Clay & 30 & Very Steep \\
\hline & \(0+20 \mathrm{~S}\) & Grey & Clay & 40 & Very Steep \\
\hline & \(0+30 \mathrm{~S}\) & Grey & Clay & 30 & Very Steep \\
\hline
\end{tabular}
\begin{tabular}{|l|c|l|l|c|c|}
\hline \(0+20 \mathrm{E}\) & \(1+00 \mathrm{~N}\) & Grey & Clay & 30 & \\
\hline & \(0+90 \mathrm{~N}\) & Dark Brown & Gritty & 20 & \\
\hline & \(0+80 \mathrm{~N}\) & Brown & Muddy & 30 & \\
\hline & \(0+70 \mathrm{~N}\) & Grey & Muddy & 20 & \\
\hline & \(0+60 \mathrm{~N}\) & Dark Brown & Muddy & 40 & \\
\hline & \(0+50 \mathrm{~N}\) & Dark Brown & Muddy & 30 & \\
\hline & \(0+40 \mathrm{~N}\) & Rusty & Gritty & 40 & \\
\hline & \(0+30 \mathrm{~N}\) & Grey & Clay & 30 & \\
\hline & \(0+20 \mathrm{~N}\) & Grey & Clay & 45 & \\
\hline & \(0+10 \mathrm{~N}\) & Brown & Gritty & 50 & \\
\hline & \(0+00\) & & & No Sample & \\
\hline & \(0+10 \mathrm{~S}\) & & No Sample & \\
\hline & \(0+20 \mathrm{~S}\) & Rusty & Clay & 50 & \\
\hline & \(0+30 \mathrm{~S}\) & Rusty & Gritty & 40 & \\
\hline & \(0+40 \mathrm{~S}\) & Grey & Clay & 10 & \\
\hline & \(0+50 \mathrm{~S}\) & Grey & Muddy & 20 & \\
\hline & \(0+60 \mathrm{~S}\) & Rusty & Gritty & 30 & \\
\hline & \(0+70 \mathrm{~S}\) & Brown & Muddy & 30 & \\
\hline & \(0+80 \mathrm{~S}\) & Rusty & Gritty & 20 & \\
\hline & \(0+90 \mathrm{~S}\) & & Muddy & No Sample & \\
\hline & \(1+00 \mathrm{~S}\) & Brown & 75 & \\
\hline
\end{tabular}

SOIL SAMPLE DESCRIPTIONS
\begin{tabular}{|l|l|l|l|l|l|}
\hline LINE & STATION & COLOUR & TEXT & DEPTH \((\mathrm{cm})\) & OTHER \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(0+40 \mathrm{E}\) & 1.100 N & Red lirown & Mud & 30 & \\
\hline & \(0+90 \mathrm{~N}\) & Dark Brown, Grey & Mud \& Clay & & \\
\hline & \(0+80 \mathrm{~N}\) & Red Brown & Mud & 30 & \\
\hline & \(0+70 \mathrm{~N}\) & & & No Saunple & \\
\hline & \(0+60 \mathrm{~N}\) & Light/Dark Brown, Grcy & Mud & 75 & \\
\hline & \(0+50 \mathrm{~N}\) & Ligh/Dark Brown, Grcy & Mud & 60 & \\
\hline & 0+40N & Ligh/Dark Brown, Grey & Mud \& Clay & 30 & \\
\hline & 0+30N & Red Brown & Mud \& Clay & 60 & \\
\hline & \(0+20 \mathrm{~N}\) & Red Brown & Mud & 30 & \\
\hline & \(0+10 \mathrm{~N}\) & Red 13rown & Mud & 45 & \\
\hline & 0.00 & Red Brown & Mud & 45 & \\
\hline & 0+10S & Red 13rown & Mud & 45 & \\
\hline & \(0+20 \mathrm{~S}\) & Red/Dark Brown & Mud & 45 & \\
\hline & \(0+30 \mathrm{~S}\) & Red/Dark Brown & Mud & 45 & \\
\hline & \(0+40 \mathrm{~S}\) & Dark Brown & Mud & 75 & \\
\hline & 0+50S & Light/Dark Brown, Grey & Mud \& Clay & 30 & \\
\hline & 0+60S & Red Brown & Mud & 75 & \\
\hline & \(0+705\) & Grey & Mud & (1) & \\
\hline & \(0+80 \mathrm{~S}\) & Red/Dark Brown & Mud & 40 & \\
\hline & 0+90S & Red Brown & Mud & 30 & \\
\hline & \(1+00 \mathrm{~S}\) & Red Brown & Mud & 30 & \\
\hline
\end{tabular}
\begin{tabular}{|l|c|l|l|l|l|}
\hline \(0+60 \mathrm{E}\) & \(1+00 \mathrm{~N}\) & Red Brown & Muddy & 45 & \\
\hline & \(0+90 \mathrm{~N}\) & Red Brown & Muddy & 30 & \\
\hline & \(0+80 \mathrm{~N}\) & Red Brown & Muddy & 25 & \\
\hline & \(0+70 \mathrm{~N}\) & Red Brown & Muddy & 45 & \\
\hline & \(0+60 \mathrm{~N}\) & Red Brown & Muddy & 20 & \\
\hline & \(0+50 \mathrm{~N}\) & Red Brown & Muddy & 30 & \\
\hline & \(0+40 \mathrm{~N}\) & Red Brown, Grey & Muddy & 20 & \\
\hline & \(0+30 \mathrm{~N}\) & Red Brown, Grey & Clay & 25 & \\
\hline & \(0+20 \mathrm{~N}\) & Red Brown, Grey & Muddy & 30 & \\
\hline & \(0+10 \mathrm{~N}\) & Red Brown & Muddy & 75 & \\
\hline & \(0+00\) & Grey & Clay & 25 & \\
\hline & \(0+10 \mathrm{~S}\) & Red Brown & Muddy & 20 & \\
\hline & \(0+20 \mathrm{~S}\) & Red Brown & Muddy & 30 & \\
\hline & \(0+30 \mathrm{~S}\) & Red Brown & Muddy & 60 & \\
\hline & \(0+40 \mathrm{~S}\) & Red Brown & Muddy & 45 & \\
\hline & \(0+50 \mathrm{~S}\) & DarkRed Brown & Muddy & 63 & \\
\hline & \(0+60 \mathrm{~S}\) & LightRed Brown & Muddy & 20 & \\
\hline & \(0+70 \mathrm{~S}\) & Red Brown & Muddy & 30 & \\
\hline & \(0+80 \mathrm{~S}\) & Mixed Brown & Muddy & 75 & \\
\hline & \(0+90 \mathrm{~S}\) & Red Brown & Muddy & 60 & \\
\hline & \(1+00 \mathrm{~S}\) & Light/Dark Brown & Muddy & 75 & \\
\hline & & & & & \\
\hline
\end{tabular}

NUGGET QUEEN '95 SOIL SAMPLE DESCRIPTIONS

\begin{tabular}{|l|c|l|l|l|l|}
\hline \(0+80 \mathrm{E}\) & \(1+00 \mathrm{~N}\) & & & No Sample & \\
\hline & \(0+90 \mathrm{~N}\) & Dark Brown & Rock Inclusion & 30 & \\
\hline & \(0+80 \mathrm{~N}\) & Dark Brown & Rock Inclusion & 45 & \\
\hline & \(0+70 \mathrm{~N}\) & Dark Brown & Muddy & 53 & \\
\hline & \(0+60 \mathrm{~N}\) & & & No Sample & \\
\hline & \(0+50 \mathrm{~N}\) & Dark Brown & Muddy & 25 & \\
\hline & \(0+40 \mathrm{~N}\) & & & No Sample & \\
\hline & \(0+30 \mathrm{~N}\) & & & No Sample & \\
\hline & \(0+20 \mathrm{~N}\) & & & No Sample & \\
\hline & \(0+10 \mathrm{~N}\) & Dark Brown & Muddy & 30 & \\
\hline & \(0+00\) & Dark Brown & Muddy & 10 & \\
\hline & \(0+10 \mathrm{~S}\) & & & No Sample & \\
\hline & \(0+20 \mathrm{~S}\) & Red Brown & Muddy & 20 & \\
\hline & \(0+30 \mathrm{~S}\) & Red Brown & Muddy & 45 & \\
\hline & \(0+40 \mathrm{~S}\) & Dark Brown, Grey & Muddy & 45 & \\
\hline & \(0+50 \mathrm{~S}\) & Grey & Clay & 45 & \\
\hline & \(0+60 \mathrm{~S}\) & Red Brown & Muddy & 110 & \\
\hline & \(0+70 \mathrm{~S}\) & Dark Brown & Muddy & 45 & \\
\hline & \(0+80 \mathrm{~S}\) & Light Brown & & 45 & \\
\hline & \(0+90 \mathrm{~S}\) & & & & No Sample
\end{tabular}

\begin{tabular}{|l|l|l|l|l|l|}
\hline LINE & STATION & COLOUR & TEXT & DEPTH \((\mathrm{cm})\) & OTIER \\
\hline
\end{tabular}



\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Et \({ }^{2}\) & Tag \({ }^{\text {a }}\) & & Au(ppb) & Ag & A \% & As & Ba & B & Ca\% & Cd & Co & Cr & Cu & \(\mathrm{Fe} \%\) & La & Mg\% & Mn & Mo & \(\mathrm{Na} \%\) & NI & P & Pb & Sb & Sn & Sr & 7\% & U & v & w & \(Y\) & Zn \\
\hline 61 & LO+60E- 0+60 & N & 5 & \(<2\) & 1.33 & 4 & 10 & 4 & 0.08 & <1 & 4 & 32 & 9 & 1.14 & <10 & 0.18 & 41 & <1 & < 01 & 5 & 280 & 10 & <5 & \(<20\) & 2 & 0.09 & <10 & 78 & <10 & 2 & 27 \\
\hline 62 & LO+60E- 0+70 & N & \(\leqslant\) & \(<2\) & 0.13 & < & 20 & 5 & 0.34 & < & <1 & 3 & 7 & 0.15 & \(<10\) & 0.12 & 70 & <1 & 0.05 & 3 & 400 & 10 & 5 & \(<2\) & 23 & <. 01 & <10 & 5 & <10 & <1 & 135 \\
\hline 63 & LO+60E- 0+80 & N & 4 & <. 2 & 1.71 & 5 & 20 & 10 & 0.15 & \(<1\) & 5 & 38 & 15 & 2.08 & <10 & 0.27 & 74 & <1 & 0.03 & 8 & 330 & 12 & <5 & \(<20\) & 11 & 0.09 & <10 & 138 & <10 & 1 & 54 \\
\hline 64 & LO+60E- \(1+00\) & N & \(\leqslant\) & <. 2 & 0.89 & 5 & 15 & < & 0.11 & <1 & 1 & 17 & 25 & 0.60 & \(<10\) & 0.06 & 27 & <1 & 0.02 & 4 & 510 & 10 & \(\leq\) & \(<20\) & 5 & 0.02 & <10 & 25 & \(<10\) & 1 & 80 \\
\hline 65 & LOCOEE- 0+10 & S & \(\leqslant\) & \(<2\) & 1.16 & 5 & 25 & 10 & 0.13 & < & 5 & 19 & 18 & 3.83 & \(<10\) & 0.12 & 102 & 1 & 0.01 & 4 & 340 & 16 & < 5 & \(<20\) & 6 & 0.09 & <10 & 122 & <10 & <1 & 48 \\
\hline 66 & LO+60E- 0+20 & S & \(<\) & \(<2\) & 1.10 & 5 & 15 & < & 0.09 & \(<1\) & 4 & 19 & 10 & 1.31 & <10 & 0.16 & 46 & \(<1\) & < 01 & 5 & 240 & 30 & \(<5\) & \(<20\) & 5 & 0.08 & <10 & 44 & <10 & <1 & 26 \\
\hline 67 & LO+60E- 0+30 & S & \(\leqslant\) & \(<2\) & 1.04 & 5 & 15 & 5 & 0.08 & <1 & 3 & 19 & 11 & 1.22 & <10 & 0.15 & 39 & <1 & < 01 & 5 & 230 & 30 & 5 & 20 & 5 & 0.07 & <10 & 39 & <10 & <1 & 26 \\
\hline 68 & LO+60E- 0+40 & S & \(\leq\) & \(<2\) & 2.62 & 5 & 30 & 20 & 0.07 & 1 & 8 & 41 & 11 & 5.90 & \(<10\) & 0.07 & 54 & <1 & \(<.01\) & 4 & 80 & 18 & 4 & \(<20\) & 5 & 0.19 & <10 & 159 & <10 & <1 & 24 \\
\hline 69 & LO+60E- 0+50 & S & 5 & <2 & 0.51 & \(<5\) & 20 & 5 & 0.04 & 4 & 2 & 8 & 12 & 1.22 & \(<10\) & 0.15 & 49 & <1 & < 01 & 1 & 120 & 30 & <5 & \(<20\) & 9 & 0.07 & <10 & 6 & <10 & <1 & 22 \\
\hline 70 & LO+60E- \(0+60\) & S & 4 & <. 2 & 4.30 & 10 & 20 & < & 0.19 & \(<\) & 5 & 27 & 25 & 0.83 & <10 & 0.17 & 55 & <1 & 0.02 & 7 & 590 & 104 & 10 & \(<20\) & 10 & 0.07 & \(<10\) & 33 & \(<10\) & 5 & 43 \\
\hline 71 & LO+60E- 0+70 & S & 85 & 3.4 & 3.86 & \(<5\) & 60 & 20 & 0.14 & 2 & 218 & 53 & 40 & 14.10 & <10 & 0.01 & >10000 & 11 & \(<.01\) & 6 & 460 & 3604 & 4 & 20 & 4 & 0.13 & <10 & 213 & <10 & <1 & 104 \\
\hline 72 & LOT60E- \(0+80\) & S & 370 & <2 & 3.82 & \(<5\) & 25 & 10 & 0.13 & \(<\) & 7 & 53 & 20 & 4.08 & \(<10\) & 0.17 & 76 & <1 & 0.02 & 12 & 230 & 98 & 4 & 20 & 9 & 0.15 & <10 & 108 & <10 & <1 & 33 \\
\hline 73 & LO+60E- \(0+90\) & S & 255 & 0.4 & 3.77 & 15 & 25 & 10 & 0.18 & \(<1\) & 6 & 39 & 25 & 3.29 & <10 & 0.09 & 48 & <1 & 0.02 & 5 & 260 & 108 & \(<5\) & 20 & 8 & 0.13 & \(<10\) & 85 & <10 & <1 & 52 \\
\hline 74 & LOF60E- \(1+00\) & S & < & < 2 & 2.28 & \(\checkmark\) & 40 & 20 & 0.16 & <1 & 44 & 45 & 13 & 6.33 & \(<10\) & 0.18 & 1930 & <1 & 0.01 & 7 & 170 & 24 & 4 & 20 & 6 & 0.27 & <10 & 135 & <10 & <1 & 41 \\
\hline 75 & LO+80E- 1+10 & N & \(<5\) & <. 2 & 227 & \(<5\) & 35 & 15 & 0.16 & <1 & 44 & 45 & 13 & 6.32 & <10 & 0.18 & 1971 & \(<1\) & 0.01 & 7 & 160 & 22 & < & \(<0\) & 6 & 0.27 & \(<10\) & 134 & <10 & <1 & 40 \\
\hline 76 & LO+BOE- 0+50 & \(N\) & \(\leq\) & \(<2\) & 200 & \(<5\) & 70 & 20 & 0.11 & <1 & 26 & 34 & 12 & 6.68 & \(<10\) & 0.11 & 735 & 5 & < 01 & 7 & 70 & 12 & 5 & <20 & 10 & 0.29 & \(<10\) & 202 & <10 & <1 & 59 \\
\hline 77 & LOPBOE- 0+70 & N & \(<5\) & < 2 & 0.50 & < & 10 & 5 & 0.13 & \(<1\) & 3 & 35 & 10 & 0.47 & \(<10\) & 0.20 & 61 & \(<1\) & < 01 & 10 & 250 & 6 & 5 & \(<20\) & 5 & 0.05 & <10 & 26 & <10 & <1 & 31 \\
\hline 78 & LO+80E- \(0+80\) & N & < & < 2 & 1.23 & 5 & 15 & 5 & 0.13 & <1 & 5 & 40 & 13 & 0.70 & <10 & 0.27 & 61 & <1 & < 01 & 7 & 210 & 12 & - & 20 & 6 & 0.14 & <10 & 48 & \(<10\) & 3 & 21 \\
\hline 79 & LO+80E- \(0+90\) & N & < & \(<.2\) & 256 & 5 & 10 & 5 & 0.09 & \(<1\) & 5 & 42 & 6 & 1.58 & <10 & 0.07 & 37 & <1 & 0.01 & 3 & 170 & -16 & 4 & \(<2\) & 6 & 0.16 & <10 & 110 & <10 & 3 & 12 \\
\hline 80 & LO+BOE - 0+00 & S & \(\leqslant\) & \(<2\) & 0.26 & 5 & 10 & 5 & 0.09 & \(<1\) & 3 & 17 & 5 & 1.09 & \(<10\) & 0.03 & 39 & \(<1\) & 0.02 & 3 & 50 & 12 & 5 & \(<20\) & 8 & 0.07 & \(<10\) & 104 & \(<10\) & <1 & 26 \\
\hline 81 & LO+80E- \(0+20\) & s & S & \(<2\) & 0.57 & \(\leqslant\) & 15 & 5 & 0.08 & 4 & 6 & 15 & 3 & 1.07 & <10 & 0.16 & 56 & \(<1\) & <. 01 & 5 & 100 & 14 & \(<5\) & 20 & 4 & 0.24 & <10 & 76 & <10 & 2 & 26 \\
\hline 82 & L0+80E- \(0+30\) & S & 5 & < 2 & 1.64 & 5 & 25 & 10 & 0.13 & \(<1\) & 5 & 21 & 8 & 3.22 & <10 & 0.14 & 80 & <1 & 0.01 & 3 & 170 & 30 & < & <20 & 7 & 0.12 & <10 & 122 & <10 & <1 & 27 \\
\hline 83 & LO+80E- \(0+40\) & S & -5 & 0.4 & 2.48 & 5 & 20 & 10 & 0.08 & \(<1\) & 4 & 22 & 14 & 2.16 & \(<10\) & 0.20 & 77 & <1 & < 01 & 4 & 240 & 92 & < & \(<2\) & 6 & 0.12 & \(<10\) & 97 & <10 & 2 & 29 \\
\hline 84 & LO+80E- \(0+50\) & S & \(<5\) & < 2 & 0.53 & \(<5\) & 20 & 10 & 0.07 & 4 & 4 & 14 & 3 & 0.46 & <10 & 0.12 & 40 & <1 & < 01 & 2 & 80 & 74 & <5 & \(<20\) & 5 & 0.20 & \(<10\) & 50 & <10 & 2 & 17 \\
\hline 85 & LO+80E-0+60 & s & 135 & \(<2\) & 4.69 & 15 & 20 & \(<5\) & 0.13 & \(<1\) & 5 & 40 & 30 & 265 & \(<10\) & 0.19 & 60 & \(<1\) & 0.01 & 6 & 380 & 188 & 5 & 20 & 8 & 0.11 & <10 & 91 & <10 & 3 & 38 \\
\hline 86 & LO+80E- O+70 & S & 75 & <. 2 & 3.53 & 10 & 35 & 10 & 0.25 & < & 10 & 42 & 14 & 3.06 & \(<10\) & 0.23 & 100 & \(<1\) & 0.02 & 15 & 190 & 62 & < 5 & 20 & 9 & 0.17 & <10 & 113 & <10 & 1 & 68 \\
\hline 87 & L0+80E- \(0+80\) & S & 75 & <. 2 & 2.16 & \(<5\) & 40 & 25 & 0.18 & < & 21 & 52 & 42 & 5.20 & \(<10\) & 1.11 & 320 & \(<1\) & 0.02 & 19 & 120 & 40 & < & \(<20\) & 9 & 0.49 & \(<10\) & 200 & <10 & 2 & 84 \\
\hline 88 & LO+80E- \(1+\infty\) & S & < & 1.4 & 3.57 & \(<\) & 90 & 35 & 0.30 & 2 & 216 & 67 & 23 & > 15 & \(<10\) & 0.02 & >10000 & 12 & 0.02 & 9 & 400 & 14 & < & 20 & 6 & 0.14 & <10 & 188 & <10 & <1 & 55 \\
\hline 89 & L0+20W- \(0+20\) & N & < & < 2 & 1.38 & < & 15 & \(<\) & 0.10 & <1 & 2 & 22 & 23 & 0.41 & \(<10\) & 0.05 & 35 & <1 & <. 01 & 6 & 330 & 14 & < & \(<20\) & 6 & 0.03 & <10 & 38 & <10 & 2 & 30 \\
\hline 90 & LO+20W- \(0+30\) & N & < & <. 2 & 1.24 & \(<5\) & 10 & \(<5\) & 0.06 & \(<1\) & 1 & 16 & 15 & 0.64 & \(<10\) & 0.03 & 21 & <1 & 0.02 & 3 & 550 & 10 & <5 & \(<20\) & 5 & 0.01 & \(<10\) & 55 & \(<10\) & 2 & 90 \\
\hline 91 & L0+20W- 0+40 & N & \(<\) & \(<2\) & 1.41 & \(<5\) & 10 & \(\leq\) & 0.04 & \(<1\) & 1 & 27 & 15 & 0.45 & \(<10\) & 0.04 & 13 & \(<1\) & < 01 & 3 & 370 & 10 & 4 & \(<20\) & 4 & 0.03 & <10 & 33 & <10 & 1 & 50 \\
\hline 92 & L0+20W- 0+50 & N & \(<\) & \(<2\) & 206 & < & 20 & 5 & 0.10 & \(<1\) & 3 & 59 & 30 & 1.99 & <10 & 0.14 & 32 & <1 & < 01 & 6 & 380 & 10 & < & \(<20\) & 6 & 0.04 & <10 & 79 & <10 & <1 & 30 \\
\hline 93 & L0+20N0 & N & - & \(=2\) & 0.0 & -5 & 10 & 10 & 0.00 & - & \(\varepsilon\) & 25 & 5 & 0.5 & 40 & 0.30 & 57 & -1 & -0. 0 & \(\underline{\square}\) & go & 10 & \(\leqslant\) & 20 & 4 & 0.17 & <10 & 5 & <! & 3 & 17 \\
\hline 94 & L0+20W- \(0+70\) & N & < & \(<2\) & 0.54 & \(<5\) & 15 & 10 & 0.08 & \(<1\) & 3 & 15 & 6 & 1.43 & <10 & 0.09 & 36 & \(<1\) & 0.02 & 3 & 300 & 8 & 5 & \(<20\) & 6 & 0.07 & <10 & 30 & <10 & <1 & 40 \\
\hline 95 & LO+20W- \(0+80\) & N & \(<\) & <2 & 1.49 & \(<\) & 10 & 5 & 0.11 & <1 & 1 & 26 & 23 & 0.23 & \(<10\) & 0.03 & 16 & <1 & 0.02 & 3 & 330 & 10 & <5 & \(<20\) & 6 & 0.02 & \(<10\) & 31 & <10 & 1 & 37 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Et \({ }^{\text {a }}\). & Tag \# & & Au(ppb) & Ag & Al \% & As & Ba & B & Ca \% & Cd & Co & Cr & Cu & \(\mathrm{Fe} \%\) & La & Mg \% & Mn & Mo & \(\mathrm{Na} \%\) & Ni & P & Pb & Sb & Sn & Sr & 71\% & U & v & w & \(Y\) & Zn \\
\hline & 96 & L0+20W- \(0+90\) & N & < & < 2 & 0.95 & < & 10 & < & 0.06 & <1 & 2 & 15 & 7 & 0.23 & <10 & 0.06 & 18 & <1 & < 01 & 3 & 200 & 8 & < & \(<20\) & 4 & 0.06 & \(<10\) & 20 & <10 & 1 & 21 \\
\hline & 97 & L0+20W- \(1+\infty\) & N & \(<5\) & \(<2\) & 3.23 & \(\leqslant\) & 25 & 15 & 0.08 & <1 & 7 & 43 & 7 & 4.37 & \(<10\) & 0.09 & 51 & <1 & 0.01 & 5 & 140 & 16 & 5 & \(<20\) & 6 & 0.15 & \(<10\) & 149 & <10 & <1 & 20 \\
\hline & 98 & L0+20W- \(0+10\) & S & 5 & <. 2 & 1.36 & \(\leq\) & 15 & \(<\) & 0.09 & <1 & 2 & 21 & 22 & 0.41 & \(<10\) & 0.05 & 24 & <1 & <. 01 & 6 & 310 & 14 & 5 & \(<20\) & 6 & 0.02 & <10 & 38 & \(<10\) & 2 & 29 \\
\hline & 99 & L0+20W-0+20 & S & 5 & 0.6 & 0.23 & \(\leqslant\) & 35 & \(\leqslant\) & 0.68 & 1 & 1 & 2 & 6 & 0.88 & \(<10\) & 0.04 & 50 & 4 & 0.02 & 3 & 310 & 34 & 5 & \(<20\) & 30 & 0.02 & <10 & 38 & <10 & <1 & 108 \\
\hline & 100 & LO+2OWN-0+30 & s & <5 & \(<.2\) & 2.53 & \(<\) & 20 & 15 & 0.08 & <1 & 6 & 33 & 14 & 3.10 & \(<10\) & 0.08 & 31 & <1 & <. 01 & 4 & 150 & 26 & \(\bigcirc\) & \(<20\) & 4 & 0.18 & \(<10\) & 148 & \(<10\) & 4 & 44 \\
\hline & 101 & L0+20W-0+60 & S & \(<5\) & <. 2 & 3.69 & 5 & 40 & 15 & 0.03 & <1 & 8 & 41 & 25 & 8.02 & \(<10\) & 0.13 & 71 & 6 & < 01 & 6 & 140 & 22 & \(<5\) & \(<20\) & 3 & 0.07 & <10 & 181 & \(<10\) & <1 & 34 \\
\hline & 102 & L0+20W-0+70 & s & \(<5\) & < 2 & 5.39 & 15 & 50 & 10 & 0.04 & <1 & 8 & 40 & 29 & 5.19 & \(<10\) & 0.39 & 127 & 4 & <. 01 & 6 & 270 & 26 & 5 & \(<20\) & 5 & 0.07 & <10 & 110 & <10 & <1 & 61 \\
\hline & 103 & LO+20N-0+80 & S & 5 & < 2 & 3.99 & 40 & 35 & 10 & 0.38 & < & 12 & 29 & 22 & 3.27 & \(<10\) & 0.29 & 207 & 3 & 0.02 & 22 & 1070 & 120 & 5 & 20 & 13 & 0.10 & <10 & 79 & <10 & 6 & 207 \\
\hline & 104 & L0+20W- \(0+90\) & S & 65 & <. 2 & 3.64 & 10 & 25 & 10 & 0.07 & <1 & 9 & 34 & 29 & 3.30 & <10 & 0.18 & 105 & 6 & < 01 & 13 & 330 & 50 & \(\leq\) & \(<20\) & 4 & 0.13 & <10 & 126 & \(<10\) & 5 & 96 \\
\hline & 105 & LO+20W-1+00 & S & \(\leqslant\) & \(<.2\) & 1.22 & 10 & 40 & 20 & 0.05 & <1 & 15 & 41 & 23 & 8.43 & <10 & 0.07 & 85 & 2 & <. 01 & 12 & 30 & 12 & \(<\) & \(<20\) & 2 & 0.35 & <10 & 271 & \(<10\) & \(<1\) & 58 \\
\hline & 106 & L0+40W-0+00 & BL & 235 & \(<2\) & 4.88 & \(<5\) & 35 & 5 & 0.19 & <1 & 12 & 44 & 31 & 5.24 & <10 & 0.37 & 128 & 2 & 0.02 & 20 & 460 & 90 & \(\leqslant\) & \(<20\) & 12 & 0.16 & \(<10\) & 134 & \(<10\) & 4 & 247 \\
\hline & 107 & LC+40W- \(0+10\) & N & 445 & \(<2\) & 5.57 & 30 & 55 & 15 & 0.03 & 4 & 7 & 44 & 27 & 7.30 & <10 & 0.16 & 54 & 17 & <. 01 & 10 & 280 & 54 & 5 & \(<20\) & 3 & 0.10 & <10 & 180 & \(<10\) & <1 & 161 \\
\hline & 108 & LO 40 W - \(0+20\) & N & 65 & < 2 & 0.44 & \(\checkmark\) & 10 & \(\leq\) & 0.02 & \(<1\) & \(<1\) & 3 & 1 & 0.26 & \(<10\) & 0.02 & 12 & 4 & <. 01 & 4 & 40 & 8 & 4 & \(<20\) & 1 & 0.03 & \(<10\) & 20 & \(<10\) & \(<1\) & 19 \\
\hline E & 109 & L0+40W-0+30 & N & 5 & \(<.2\) & 255 & 20 & 20 & \(<5\) & 0.05 & <1 & 3 & 24 & 13 & 0.79 & \(<10\) & 0.16 & 36 & 4 & <. 01 & 4 & 190 & 32 & \(<\) & 20 & 5 & 0.08 & <10 & 73 & <10 & 4 & 50 \\
\hline \(x\) & 110 & LO+40W - \(0+40\) & N & \(<5\) & \(<2\) & 0.84 & \(<5\) & 15 & 5 & 0.09 & \(<1\) & 1 & 14 & 8 & 0.58 & \(<10\) & 0.02 & 18 & \(<1\) & 0.02 & 3 & 460 & 10 & \(<5\) & 20 & 8 & 0.04 & \(<10\) & 29 & \(<10\) & 2 & 59 \\
\hline 클 & 111 & L0+40W- \(0+50\) & N & \(<\) & \(<.2\) & 1.17 & \(\leqslant\) & 10 & 10 & 0.07 & <1 & 4 & 60 & 10 & 0.27 & <10 & 0.14 & 34 & <1 & <. 01 & 4 & 110 & 12 & \(<\) & 20 & 6 & 0.20 & <10 & 45 & <10 & 3 & 20 \\
\hline T & 112 & L0+40W-0+60 & N & \(<\) & <2 & 1.55 & \(<\) & 15 & \(\leq\) & 0.12 & \(<1\) & 1 & 33 & 19 & 0.66 & \(<10\) & 0.03 & 21 & <1 & 0.02 & 4 & 510 & 10 & < & 20 & 8 & 0.01 & <10 & 37 & \(<10\) & 1 & 89 \\
\hline 8 & 113 & L0+40W-0+80 & N & \(\leqslant\) & \(<2\) & 0.48 & -5 & 10 & 5 & 0.06 & < & 3 & 17 & 4 & 0.48 & \(<10\) & 0.15 & 33 & <1 & < 01 & 3 & 110 & 8 & 5 & 20 & 3 & 0.08 & <10 & 24 & <10 & 1 & 18 \\
\hline H & 114 & LO \(40 \mathrm{~W}-\mathrm{O}+90\) & N & 5 & < 2 & 1.15 & 5 & 30 & 10 & 0.09 & \(<1\) & 8 & 22 & 7 & 2.06 & \(<10\) & 0.36 & 197 & <1 & <. 01 & 5 & 140 & 10 & 5 & 20 & 5 & 0.19 & \(<10\) & 84 & \(<10\) & 2 & 39 \\
\hline & 115 & LO+40W- \(1+00\) & N & \(<\) & \(<2\) & 1.70 & 5 & 15 & 5 & 0.09 & \(<\) & 3 & 27 & 12 & 0.52 & <10 & 0.13 & 44 & \(<1\) & 0.02 & 5 & 230 & 12 & < & \(<20\) & 6 & 0.07 & <10 & 31 & \(<10\) & 2 & 37 \\
\hline & 116 & LO+40W- \(0+10\) & s & 5 & \(<2\) & 3.45 & \(<5\) & 45 & 15 & 0.09 & \(<1\) & 10 & 39 & 17 & 7.65 & <10 & 0.09 & 44 & 6 & < 01 & 7 & 110 & 64 & C & 20 & 6 & 0.29 & \(<10\) & 315 & <10 & \(<1\) & 103 \\
\hline & 117 & LO+40N- \(0+20\) & S & < & \(<2\) & 6.21 & 20 & 60 & 10 & 0.12 & <1 & 10 & 41 & 37 & 4.28 & \(<10\) & 0.28 & 123 & 2 & 0.01 & 24 & 350 & 44 & 5 & \(<20\) & 12 & 0.18 & \(<10\) & 137 & \(<10\) & 8 & 143 \\
\hline & 118 & L0+40W-0+30 & s & \(<5\) & \(<2\) & 3.37 & \(<\) & 40 & 20 & 0.09 & \(<1\) & 9 & 52 & 19 & 6.20 & <10 & 0.20 & 104 & \(<1\) & 0.01 & 9 & 140 & 30 & \(<5\) & 20 & 5 & 0.19 & <10 & 195 & <10 & <1 & 50 \\
\hline & 119 & L0+40W-0+40 & 5 & < & \(<2\) & 5.94 & 10 & 30 & 15 & 0.12 & \(<1\) & 8 & 48 & 22 & 3.99 & <10 & 0.13 & 66 & \(<1\) & 0.01 & 7 & 250 & 34 & \(<5\) & 20 & 9 & 0.18 & <10 & 135 & <10 & 4 & 37 \\
\hline \[
\begin{aligned}
& 10 \\
& 10 \\
& 80
\end{aligned}
\] & 120 & LO+40W- \(0+50\) & 5 & \(<\) & <. 2 & 4.23 & \(<5\) & 30 & 15 & 0.10 & <1 & 8 & 38 & 14 & 4.63 & \(<10\) & 0.11 & 63 & <1 & 0.02 & 5 & 190 & 26 & < & \(<20\) & 7 & 0.19 & \(<10\) & 160 & <10 & 1 & 35 \\
\hline \(\cdots\) & 121 & LO+40W - \(0+70\) & S & \(<\) & \(<2\) & 0.86 & 25 & 35 & 20 & 0.12 & 1 & 11 & 42 & 14 & 6.05 & \(<10\) & 0.06 & 71 & 4 & < 01 & 8 & 50 & 30 & < & \(<20\) & 5 & 0.28 & <10 & 249 & <10 & <1 & 46 \\
\hline - & 122 & L0+40W- \(0+80\) & S & \(<5\) & \(<.2\) & 1.57 & 5 & 25 & 10 & 0.08 & \(<1\) & 6 & 28 & 11 & 4.14 & <10 & 0.08 & 39 & <1 & < 01 & 4 & 80 & 34 & \(<5\) & \(<20\) & 5 & 0.12 & <10 & 178 & \(<10\) & <1 & 44 \\
\hline & 123 & L0+40W-0+90 & S & 5 & 0.6 & 4.52 & 20 & 35 & 5 & 0.10 & \(<1\) & 13 & 44 & 25 & 4.70 & <10 & 0.09 & 395 & 2 & 0.01 & 17 & 310 & 38 & -5 & 20 & 6 & 0.11 & <10 & 141 & <10 & 12 & 75 \\
\hline \(\bigcirc\) & 124 & L0+40W-1+00 & S & >1000 & 4.4 & 1.52 & 35 & 35 & 15 & 0.09 & <1 & 9 & 20 & 18 & 282 & \(<10\) & 0.26 & 69 & \(<1\) & < 0.01 & 8 & 80 & 166 & 4 & \(<20\) & 6 & 0.32 & \(<10\) & 150 & \(<10\) & 4 & 90 \\
\hline 6 & 125 & OT+60W-0+00 & BL & \(<5\) & \(<2\) & 0.37 & 10 & 35 & 5 & 0.62 & \(<1\) & 3 & 6 & 6 & 1.64 & <10 & 0.07 & 38 & 16 & < 01 & 4 & 30 & 10 & 5 & \(<20\) & 4 & 0.08 & \(<10\) & 212 & <10 & <1 & 47 \\
\hline & 126 & OT+60W- 0+10 & N & 105 & 0.2 & 0.10 & 5 & 15 & \(<5\) & 0.04 & <1 & \(<1\) & 1 & 2 & 0.47 & <10 & < 01 & 21 & 5 & < 01 & 2 & 80 & 6 & \(\leqslant\) & <20 & 2 & < 01 & <10 & 24 & <10 & <1 & 27 \\
\hline & 127 & OT+60W- \(0+20\) & N & 5 & \(<2\) & 0.09 & \(\leqslant\) & 10 & 5 & 0.02 & \(<1\) & \(<1\) & 2 & 4 & 0.11 & <10 & < 01 & 20 & 2 & < 01 & < & 130 & 2 & 4 & \(<20\) & 1 & 0.01 & <10 & 7 & <10 & <1 & 18 \\
\hline N & :29 & 10 & ! & - & \(-2\) & 0.25 & 5 & 20 & 12 & 0.02 & - & 4 & 4 & \% & 200 & \(\leq 10\) & 0.6: & \(\cdots\) & 22 & -ci & 8 & 10 & 2 & \(\sim\) & <20 & 3 & 0.0 & -ic & 175 & -ic & -i & Tis \\
\hline \(\stackrel{\sim}{-}\) & 129 & L0+60W- 0+50 & N & 5 & <2 & 1.39 & \(\leqslant\) & 15 & 15 & 0.08 & \(<1\) & 7 & 39 & 3 & 1.17 & <10 & 0.11 & 34 & <1 & < 01 & 3 & 30 & 16 & <5 & \(<20\) & 4 & 0.35 & <10 & 163 & <10 & 3 & 18 \\
\hline & 130 & L0+60W-0+60 & N & 4 & \(<2\) & 1.45 & 5 & 10 & \(<\) & 0.08 & <1 & 4 & 23 & 7 & 0.47 & \(<10\) & 0.19 & 49 & <1 & <. 01 & 5 & 210 & 12 & \(<5\) & \(<20\) & 4 & 0.08 & <10 & 33 & <10 & 2 & 24 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Et \({ }^{\text {a }}\) & Tar \({ }^{\text {a }}\) & & Autppobl & A9 & N\% & A & Bn & B9 & Ca\% & Cd & Co & Cr & Cu & Fe\% & 4 & Mg \(x\) & Mn & Mo & Ha\% & \(\cdots\) & P & Pb & 8b & Sm & 6 & 7x & 4 & \(\checkmark\) & W & \(Y\) & Za \\
\hline & 131 & \(10+600 \mathrm{~N}-70\) & N & 5 & <2 & 0.72 & 5 & 15 & 10 & 0.21 & - & 7 & 28 & 5 & 090 & < & 034 & 85 & \(\bigcirc\) & <01 & 7 & 150 & 12 & \(\checkmark\) & 20 & 12 & 019 & <10 & 57 & <10 & 3 & 36 \\
\hline & 132 & 10,60N-1+70 & N & 5 & \(<2\) & 0.33 & 5 & 5 & 5 & 0.0] & \(<1\) & 3 & 8 & 3 & 0.28 & <10 & 009 & 30 & 4 & <01 & 2 & 80 & 6 & 5 & 80 & 3 & 0.00 & <10 & 23 & \(<80\) & 2 & 13 \\
\hline & 133 & L0+6aN- \(0+10\) & 5 & \(\leqslant\) & < 2 & 360 & 20 & 70 & 20 & 0.08 & 1 & 11 & 46 & 18 & 907 & - 10 & 0.26 & 87 & 9 & < 01 & 16 & 130 & 56 & 4 & 80 & 5 & 0.27 & <10 & 257 & < 10 & c & 308 \\
\hline & 334 & LO+60NK \(0+20\) & 5 & \(\leqslant\) & \(<2\) & 1.27 & -5 & 25 & 5 & 0.11 & 4 & 5 & 18 & 7 & 1.90 & <0 & 0.10 & 44 & 4 & <. 01 & 4 & 110 & 36 & 5 & 20 & 8 & 0.14 & <10 & 111 & <10 & 1 & 39 \\
\hline & 135 & LD+EONK \(0+30\) & 5 & < & \(<2\) & 230 & 5 & 50 & 4 & 0.11 & 4 & 7 & 27 & 12 & 277 & <10 & 0.37 & 129 & 2 & <0] & 7 & 270 & 38 & 4 & 20 & 19 & 0.13 & \(<10\) & 115 & <10 & 4 & 92 \\
\hline \[
\underset{\sim}{\underset{\sim}{x}}
\] & 136 & 10+60N- \(0+40\) & 5 & 4 & \(<2\) & 5.50 & 10 & 35 & 20 & 0.15 & \(<1\) & 10 & 51 & 18 & 58.4 & \(<10\) & 0.15 & 86 & \(<1\) & 0.07 & 5 & 200 & 48 & 4 & 20 & 5 & 022 & -10 & 142 & \(<10\) & 1 & 74 \\
\hline & 137 & 10+60以6-0+50 & 5 & 5 & \(<2\) & 2.27 & ¢ & 35 & 25 & 0.10 & \(<1\) & 13 & 48 & 13 & 6.48 & < 40 & 0.10 & 66 & \(<1\) & 0.01 & 6 & 90 & 20 & 5 & 80 & 7 & 0.27 & <10 & 220 & < 10 & r & 24 \\
\hline \(\stackrel{\square}{\alpha}\) & 138 & LO+6014- D+60 & S & 5 & \(<2\) & 424 & 10 & 25 & 5 & 0.16 & <1 & 7 & 33 & 20 & 281 & < 10 & 0.15 & 58 & 4 & 0.02 & 6 & 230 & 26 & \(\leqslant\) & 80 & 11 & 0.14 & \(<10\) & 109 & <10 & 3 & 36 \\
\hline - & 139 & L0+60w \(0+80\) & 5 & - & \(<2\) & 2.81 & 5 & 30 & 5 & 0.16 & - & 11 & 36 & 19 & 2.31 & -10 & 0.28 & 98 & \(<1\) & 0.02 & 10 & 340 & 28 & \(\checkmark\) & \(<20\) & 13 & 0.11 & <10 & 162 & <10 & 1 & 57 \\
\hline \[
\stackrel{7}{\mathbf{7}}
\] & 140 & \(10+60 \mathrm{~N}-0+50\) & 5 & 5 & 0.4 & 5.57 & 20 & 35 & \(\leqslant\) & 0.21 & 1 & 20 & 39 & 50 & 3.26 & <10 & 0.32 & 597 & 2 & 0.02 & 32 & 720 & 76 & \(\leqslant\) & \(<20\) & 10 & 0.10 & <10 & 80 & \(<10\) & 15 & 198 \\
\hline & 141 & L0+60N- \(0+00\) & s & \(c\) & \(<2\) & 3.67 & \(\checkmark\) & 60 & 25 & 0.77 & 1 & 20 & 54 & 20 & 7.94 & 40 & 0.32 & 247 & \(<1\) & 0.01 & 11 & 250 & 54 & \(\leqslant\) & <20 & 7 & 0.32 & <10 & 203 & \(<10\) & 6 & 63 \\
\hline & 142 & Lorbow -0+00 & B2 & 5 & \(<2\) & 0.56 & 4 & 20 & 5 & 0.04 & 4 & 2 & 7 & 2 & 1.41 & 40 & 0.01 & 16 & 5 & < 01 & 4 & 30 & 14 & 4 & 20 & \(<1\) & 0008 & <10 & 180 & <10 & 2 & 15 \\
\hline & 143 & L0+60w-0+10 & N & \(\leqslant\) & \(<2\) & 0.20 & 5 & 10 & 4 & 0.04 & 4 & 1 & 3 & 2 & 0.39 & <0 & a.88 & 24 & 8 & \(<.01\) & \(<1\) & 130 & 10 & \(\checkmark\) & 20 & 3 & 0.05 & \(<10\) & 42 & \(<10\) & 2 & 22 \\
\hline & 144 & L0+60N- \(0+20\) & N & 5 & \(<2\) & 028 & 5 & 5 & \(\checkmark\) & 0.02 & \(<1\) & 1 & 4 & 4 & 0.16 & \(<10\) & < 01 & 41 & \(<1\) & < 01 & <1 & 20 & 8 & \(<\) & 20 & 3 & 0.05 & <10 & 36 & \(<10\) & 2 & 7 \\
\hline \[
\stackrel{\sim}{\sim}
\] & 145 & LOHBONV-0+30 & N & 5 & \(<2\) & 0.25 & \(\leqslant\) & 5 & 10 & 0.06 & \(<1\) & 4 & 11 & 2 & 0.3 & \(<10\) & 0.01 & 20 & \(<1\) & < 01 & c & 90 & 118 & 5 & 20 & 2 & 0.21 & <10 & 25 & \(-10\) & 6 & 9 \\
\hline \[
\begin{aligned}
& \infty \\
& 0
\end{aligned}
\] & 146 & 10+EONS -0+40 & N & 5 & \(<2\) & 0.20 & 5 & 10 & 15 & 0.04 & <1 & 4 & 12 & 2 & 0.14 & \(<10\) & < 01 & 17 & \(<1\) & <.0才 & \(<1\) & 40 & 12 & 5 & \(<20\) & 3 & 0.25 & \(<10\) & 32 & <10 & 7 & 6 \\
\hline \(\stackrel{\rightharpoonup}{ \pm}\) & 147 & L0+80M4 0+50 & N & 5 & <. 2 & 5.35 & 20 & 15 & 5 & 0.11 & <1 & 5 & 52 & 21 & 0.88 & <10 & 0.15 & 41 & \(\leqslant 1\) & 0.01 & 8 & 370 & 34 & 4 & <20 & 5 & 0.15 & \(<10\) & 110 & <10 & 7 & 26 \\
\hline & 148 & coreow 0450 & N & 5 & <2 & 3.37 & 5 & 35 & 15 & 0.13 & \(\square\) & 7 & 53 & 14 & 5.44 & 40 & 0.08 & 26 & \(<1\) & < 01 & 4 & 170 & 20 & \(<\) & 20 & 6 & 0.17 & <10 & 375 & \(<10\) & 4 & 20 \\
\hline \({ }_{4}\) & 149 & LO+8ON-0+70 & N & 4 & \(<2\) & 0.36 & 4 & 10 & 10 & a.ce & < & 6 & 18 & 3 & 0.28 & 70 & 0.04 & 21 & <1 & \(<.01\) & 2 & 50 & 12 & 5 & 20 & 6 & 0.29 & \(<10\) & 37 & \(<10\) & 8 & 7 \\
\hline & 150 & L0+80w \(0+80\) & N & S & \(<2\) & 0.27 & S & \(\leqslant\) & 15 & 0.10 & <1 & 6 & 12 & 2 & 0.48 & c10 & 0.11 & 52 & \(<1\) & \(<01\) & 3 & 20 & 10 & \(\leqslant\) & \(<20\) & 3 & 0.24 & \(<10\) & 103 & \(<10\) & 7 & 8 \\
\hline & 151 & Larbowl orso & N & \(\checkmark\) & \(\leqslant 2\) & 0.26 & 5 & 10 & 15 & 0.09 & 4 & 6 & 26 & 3 & 0.21 & \(<10\) & 0.07 & 27 & \(<1\) & <. 01 & 2 & 40 & 12 & 5 & 80 & 7 & 0.30 & \(<10\) & 46 & 40 & 8 & 9 \\
\hline & 152 & LOHEON \(1+00\) & N & 5 & \(<2\) & 218 & 5 & 15 & 10 & 0.09 & <1 & 6 & 23 & 9 & 1.57 & \(<10\) & 0.19 & 57 & <1 & 0.01 & 3 & 170 & 14 & 4 & 80 & 4 & 0.15 & \(<10\) & 83 & -10 & 2 & 23 \\
\hline & 153 & : \(0+80 \mathrm{~N}-0+10\) & S & 4 & <2 & 088 & 4 & 20 & 10 & 0.03 & 4 & 4 & 13 & 4 & 1.53 & <10 & 0.06 & 23 & 3 & <. 01 & 1 & 10 & 16 & -5 & 20 & \(<1\) & 0.19 & <10 & 161 & -10 & 2 & 22 \\
\hline & 154 & 10+80N- \(0+20\) & s & c & < 2 & 7.43 & 20 & 65 & 15 &  & 8 & 11 & 71 & 28 & 6.05 & <10 & 0.27 & 110 & 5 & <. 01 & 14 & 340 & 46 & 5 & \(<2\) & 5 & 0.22 & \(<10\) & 167 & \(<10\) & 6 & 162 \\
\hline & 155 & Lorbow \(0+30\) & s & 5 & \(<2\) & 7.71 & 25 & 30 & 5 & 0.22 & <1 & 5 & 39 & 19 & 1.82 & <0 & 012 & 52 & <1 & 0.04 & 9 & 820 & 48 & 4 & 80 & 11 & 0.07 & \(<10\) & 94 & -10 & 8 & 39 \\
\hline \(\stackrel{\sim}{\square}\) & 156 & i \(0+80 \mathrm{~N}-0+40\) & 5 & \(\leqslant\) & 0.4 & 0.90 & 5 & 15 & 10 & 0.13 & \(<1\) & 4 & 13 & 5 & 1.48 & <10 & 014 & 186 & \(<1\) & 0.01 & 2 & 180 & 8 & 5 & 20 & 9 & 0.07 & <10 & 60 & \(<10\) & 4 & 23 \\
\hline - & 157 & 10+80N4-0+50 & S & 5 & \(<2\) & 5.49 & 10 & 25 & 15 & 0.14 & <1 & 7 & 42 & 16 & 241 & \(<10\) & 0.17 & 65 & \(<1\) & 0.02 & 7 & 460 & 34 & 5 & 20 & 11 & 0.17 & \(<10\) & 101 & \(<10\) & 5 & 33 \\
\hline & 158 & LOHENW-0+60 & S & \(\sigma\) & <2 & 0.86 & \(\leqslant\) & 10 & 5 & 0.12 & < & 3 & 10 & 4 & 0.47 & <10 & 0.10 & 40 & \(<1\) & 0.01 & 2 & 170 & 10 & 5 & 20 & 8 & 0.09 & <10 & 27 & <10 & 2 & 16 \\
\hline \(\cdots\) & 159 & L0+80NV-0+70 & S & 5 & <2 & 7.66 & 15 & 20 & 15 & 0.10 & \(\rightarrow\) & 7 & 57 & 13 & 4.10 & \(<10\) & 0.08 & 47 & \(<1\) & 0.02 & 6 & 290 & 40 & 4 & \(<20\) & 5 & 0.14 & <10 & 123 & \(<10\) & 3 & 23 \\
\hline - & 100 & L0+80N- \(0+60\) & s & \(<5\) & \(<2\) & 1.66 & 5 & 25 & 4 & 0.22 & \(<1\) & 8 & 24 & 15 & 1.75 & 40 & 0.30 & 120 & <1 & 0.02 & 8 & 480 & 28 & 4 & 20 & 10 & 0.09 & <10 & 9 & \(<10\) & 2 & 52 \\
\hline \(\frac{\square}{0}\) & 161 & L0+800N-0+90 & 5 & 140 & 0.6 & 2.03 & 10 & 50 & \(\leqslant\) & 0.17 & 2 & 19 & 32 & 69 & 4.59 & \(<10\) & 0.40 & 636 & 4 & 0.102 & 15 & 490 & 196 & 4 & <20 & 18 & 0.08 & \(<10\) & 130 & <10 & \(<1\) & 125 \\
\hline & 162 & LOH80N \(1+00\) & S & \(<5\) & \(<2\) & 3.72 & 4 & 50 & 25 & 0.23 & 1 & 77 & 6 & 18 & 8.80 & <10 & 0.32 & 760 & \(<1\) & 0.02 & 12 & 350 & 50 & 4 & \(<20\) & 8 & 0.20 & <10 & 209 & \(<10\) & <1 & 51 \\
\hline & 163 & L1 H00N- \(0+00\) & BL & \(\leqslant\) & \(<2\) & บ. 0.0 & 5 & 30 & it & 0.11 & \(\checkmark\) & 5 & \(: 5\) & \(\stackrel{1}{4}\) & 2.19 & - & 0.37 & 43 & < & \(<0\) & 2 & 120 & 48 & 5 & \(<20\) & 7 & 022 & \(<10\) & 50 & <10 & & 26 \\
\hline & 164 & L1+20W-0+10 & N & < 5 & \(<2\) & 0.18 & 5 & 35 & 5 & 0.05 & \(<\) & 1 & 6 & 2 & 0.12 & < 10 & 004 & 16 & 1 & \(<01\) & \(<1\) & 80 & 24 & 4 & < 0 & 5 & 0.07 & \(<10\) & 12 & <10 & 1 & 16 \\
\hline & 165 & 21+00016 \(0+30\) & N & 5 & \(<.2\) & 0.21 & \(\leqslant\) & 35 & \(<5\) & 0.05 & \(<1\) & 1 & 6 & 2 & 0.16 & <10 & 0.05 & 17 & 2 & <. 01 & \(<1\) & 80 & 22 & \(<5\) & 20 & 5 & 0.07 & \(<10\) & 13 & \(<10\) & 1 & 16 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Eta & Tag & & Autppb) & Ad & N\% & As & Ba & Bi & Ca\% & Cd & Co & Cr & Cu & Fe\% & & \(\mathrm{Mg} \mathrm{\%}\) & Mn & Mo & \(\mathrm{Na} \%\) & N & P & Pb & Sb & Sn & Sr & 11\% & u & \(V\) & \(w\) & Y & Zn \\
\hline 166 & L1+000V-0+40 & N & 5 & < 2 & 230 & \(\leqslant\) & 30 & 5 & 0.13 & 4 & 7 & 34 & 26 & \(2 \mathrm{B2}\) & <10 & 030 & 83 & 4 & 0.03 & 7 & 270 & 16 & 5 & 20 & 6 & 0.13 & C10 & 90 & \(<10\) & 3 & 4 \\
\hline 167 & L1+00W \({ }^{\text {d }}\) +50 & N & \(\checkmark\) & \(<2\) & 1.52 & < & 20 & 15 & 0.18 & < & 15 & 45 & 10 & 204 & <10 & 0.90 & 152 & <1 & 0.01 & 22 & 110 & 14 & 10 & 20 & 3 & 0.28 & \(<10\) & 73 & <1D & 3 & 31 \\
\hline 188 & L1+00W \(0+60\) & N & \(s\) & \(<2\) & 4.50 & 5 & 36 & 30 & 0.10 & <1 & 10 & 75 & 19 & 6.39 & \(<10\) & 0.07 & 33 & 1 & 0.01 & 5 & 110 & 26 & 5 & 20 & 5 & 0.38 & <10 & 242 & \(<10\) & 3 & 28 \\
\hline 169 & \(21+000460+70\) & N & 5 & \(<2\) & 0.82 & 5 & 20 & 25 & 0.15 & <1 & 12 & 33 & 5 & 3.18 & <10 & a.33 & 78 & \(\checkmark\) & 0.01 & 7 & \(<10\) & 18 & 5 & \(<20\) & 2 & 0.45 & \(\leqslant 10\) & 247 & \(<10\) & 4 & 19 \\
\hline 170 & L1+DONK - \(0+80\) & N & 5 & \(<2\) & 0.21 & 5 & 5 & 5 & 0.06 & \(<1\) & 4 & 15 & 1 & 0.28 & \(<10\) & 0.13 & 44 & 1 & <. 01 & 3 & 30 & 6 & 5 & 20 & 2 & 0.16 & \(<10\) & 40 & 40 & 2 & 14 \\
\hline 171 & L1+00W -0.90 & N & 5 & \(<.2\) & 0.20 & 5 & 5 & 10 & 0.11 & 4 & 5 & 24 & 2 & 0.44 & <10 & 0.06 & 33 & 51 & < 01 & 2 & 30 & 10 & 5 & 80 & 4 & 0.27 & 10 & 91 & <10 & 3 & 14 \\
\hline 172 & L1+00W - \(1+\infty\) & N & \(\leqslant\) & \(<2\) & 0.20 & 5 & 20 & 15 & D. 04 & \(<1\) & 6 & 4 & 4 & 234 & <10 & 0.03 & 59 & <1 & < 01 & 1 & 20 & 6 & \(\leqslant\) & \(<20\) & 4 & 0.23 & -10 & 83 & \(<10\) & 1 & 24 \\
\hline 173 & L1+00W-0+10 & 5 & -5 & \(<2\) & 2.66 & 5 & 70 & 35 & 0.13 & - & 14 & 49 & 17 & 584 & <10 & 0.42 & 109 & <1 & \(<.01\) & 11 & 120 & 44 & 5 & 20 & 8 & 0.44 & \(<10\) & 274 & \(<10\) & 2 & 98 \\
\hline 174 & L1+00w \(0+20\) & 5 & 5 & \(<2\) & 3.77 & 5 & 30 & 20 & 0.09 & <1 & 10 & 52 & 11 & 5.82 & \(<10\) & 0.00 & 41 & -1 & 0.01 & 4 & 150 & 26 & 5 & \(<20\) & 4 & 0.32 & <10 & 226 & <10 & <1 & 36 \\
\hline 175 & L1+00N- \(0+30\) & S & 5 & \(<2\) & 0.76 & 4 & 15 & c & 0.09 & \(<1\) & 2 & 14 & 5 & 0.45 & 10 & 0.05 & 24 & ¢ & <. 01 & 2 & 230 & 16 & 4 & \(<20\) & 7 & 0.10 & 40 & 35 & \(<10\) & 2 & 39 \\
\hline 176 & L1+00w-0,40 & S & \(\leqslant\) & \(<2\) & 0.42 & ¢ & 10 & 5 & 0.06 & \(<1\) & 3 & 8 & 2 & 0.37 & \(<10\) & 0.08 & 41 & 1 & <.01 & 4 & 80 & 10 & 5 & 20 & 4 & 0.14 & \(<10\) & 28 & \(<10\) & 4 & 17 \\
\hline 17 & \(1.1+00000\) & 5 & 5 & \(<2\) & 0.48 & \(\leqslant\) & 213 & 5 & ato & < & 3 & 9 & 2 & 0.41 & \(<10\) & 0.64 & 64 & \(<1\) & < 07 & 1 & 130 & 14 & 5 & \(\bigcirc 0\) & & 0.14 & <10 & 28 & \(<10\) & 4 & 22 \\
\hline 178 & \(11+00 \mathrm{~N}-0+60\) & S & \(\leqslant\) & \(<2\) & 1.58 & 5 & 30 & 15 & 0.08 & \(\checkmark\) & 8 & 40 & 6 & 4.01 & ¢ 0 & 0.05 & 39 & <1 & <. 01 & 4 & 70 & 18 & 5 & \(<20\) & 5 & 0.25 & \(<10\) & 211 & <10 & 5 & 22 \\
\hline 179 & \(11+000 \mathrm{~N}-0+90\) & S & 5 & \(<2\) & 5.04 & 5 & 30 & 20 & 0.09 & <1 & 7 & 42 & 9 & 4.75 & <10 & 0.05 & 29 & <1 & 0.02 & 4 & 350 & 32 & 5 & 20 & 5 & 0.16 & <10 & 135 & \(<10\) & 4 & 22 \\
\hline 180 & L1+00W \(-1+00\) & 5 & \(\leqslant\) & \(<2\) & 252 & \(\leqslant\) & 35 & 20 & a10 & < & 8 & 37 & 9 & 4.55 & 10 & 0.09 & 46 & 4 & 0.01 & 4 & 130 & 18 & 4 & 20 & 7 & 0.20 & 10 & 172 & \(<10\) & 3 & 28 \\
\hline 181 & LO+60E- 0+90 & N & 5 & \(<2\) & 256 & \(\leq\) & 15 & 10 & 0.11 & \(<1\) & 5 & 40 & 13 & 0.89 & \(<10\) & 0.17 & 46 & < & 0.08 & 5 & 250 & 22 & 5 & 20 & 7 & 0.15 & \(<10\) & 66 & \(<10\) & 7 & 28 \\
\hline 182 & L1+00E- \(0+\infty\) & & \(s\) & <2 & 340 & 10 & 15 & S & 0.18 & 4 & 6 & 29 & 10 & 1.08 & <10 & 0.18 & 68 & 4 & 0.02 & 6 & 580 & 24 & 5 & 20 & 8 & 0.10 & <10 & 42 & \(<10\) & 5 & 36 \\
\hline 183 & LT+OOE- \(0+10\) & N & \(\leqslant\) & \(<2\) & 3.60 & 5 & 20 & 5 & 0.27 & 4 & 5 & 29 & 12 & 1.51 & <10 & 0.14 & 62 & 2 & 0.03 & 11 & 80 & 24 & 5 & 80 & 12 & 0.07 & <10 & 62 & 40 & 6 & 50 \\
\hline 184 & L1 +0CE- 0+20 & N & 5 & \(<2\) & 3.40 & 4 & 40 & 15 & 0.13 & - & 21 & 34 & 12 & 5.00 & <10 & 0.14 & 846 & 8 & 0.01 & 6 & 320 & 24 & 5 & 20 & 9 & 0.17 & <10 & 170 & <10 & 3 & 65 \\
\hline 185 & L1+00E- \(0+30\) & N & 5 & \(<2\) & 5.46 & 10 & 30 & 10 & 025 & <1 & 17 & 40 & 23 & 3.27 & \(<10\) & 0.24 & 557 & 3 & 0.03 & 12 & 810 & 34 & 4 & \(<0\) & 13 & 0.11 & \(<10\) & 109 & \(<10\) & 8 & 74 \\
\hline 186 & L1+00E- 0 +40 & N & 5 & \(<2\) & 260 & 5 & 25 & 15 & 013 & <1 & 14 & 33 & 12 & 354 & <10 & 0.17 & 317 & \(\checkmark\) & 0.01 & 7 & 240 & 20 & 4 & \(\infty\) & 5 & 0.17 & <10 & 114 & \(<10\) & 5 & 41 \\
\hline 197 & L1+00E- 0+50 & N & 80 & \(<2\) & 5.15 & \(\leqslant\) & 45 & 25 & 0.09 & 1 & 21 & 182 & 54 & 5.58 & c10 & 1.31 & 320 & 4 & < 07 & 4 & 280 & 28 & 5 & 40 & 4 & 0.39 & 10 & 137 & \(<40\) & 15 & 63 \\
\hline 188 & L1+00E - \(0+60\) & N & 5 & \(<2\) & 0.27 & 4 & 5 & 5 & 0.09 & - & 2 & 57 & 3 & 0.34 & \(<10\) & 0.05 & 24 & \(<\) & cor & 2 & 100 & 4 & 5 & \(\infty\) & 5 & 0.07 & <10 & 29 & <10 & 2 & 11 \\
\hline 189 & L1+00E- 0+10 & S & 5 & \(<2\) & 1.52 & \(\leqslant\) & 15 & 5 & 0.16 & 4 & 6 & 24 & 8 & 1.13 & \(<10\) & 023 & 76 & \(<1\) & 0.01 & 7 & 260 & 15 & 5 & 20 & 7 & 0.13 & \(<10\) & 53 & \(<10\) & 5 & 2 \\
\hline 190 & L1 +00E- \(0+20\) & S & \(\leqslant\) & \(<2\) & 3.14 & 5 & 20 & 15 & 0.12 & 4 & 7 & 34 & 17 & 257 & \(<10\) & \(a 18\) & 58 & \(<1\) & 0.01 & 5 & 190 & 28 & \(c\) & 20 & 5 & 0.21 & <10 & 107 & \(<10\) & 8 & 23 \\
\hline 191 & 21+00E 0+30 & S & \(\leqslant\) & \(<2\) & 1.17 & 4 & 30 & 15 & 0.17 & <1 & 5 & 22 & 5 & 4.77 & 40 & 0.18 & 132 & 2 & 0.01 & \(\bigcirc 5\) & 210 & 16 & 5 & 40 & 9 & D.ce & \(<10\) & 91 & \(<10\) & \(<1\) & 23 \\
\hline 192 & L1+00E- \(0+40\) & S & 5 & \(<2\) & 0.51 & 5 & 25 & 10 & 009 & <1 & 4 & 12 & 3 & 069 & 40 & 0.08 & 33 & <1 & <.01 & <1 & 120 & 44 & \(\infty\) & 20 & 6 & 0.16 & co & 68 & \(<10\) & 4 & 22 \\
\hline 153 & L1+COE - \(0+50\) & S & 5 & \(<2\) & as8 & 5 & 45 & \(\leqslant\) & 006 & 4 & 1 & 4 & 2 & 0.19 & 10 & 2.03 & 20 & - & < 0 ¢1 & \(<1\) & 100 & 12 & \(<5\) & 20 & 5 & 0.04 & 10 & 14 & \(<10\) & 1 & 18 \\
\hline 194 & L1+COEE- \(0+70\) & 5 & 30 & \(<2\) & 1.52 & 4 & 55 & 15 & 0.27 & \(<1\) & 8 & 35 & 18 & 238 & \(<10\) & 0.41 & 137 & - & <. 01 & 7 & 200 & 308 & 5 & 20 & 7 & 0.23 & \(<10\) & 96 & \(<10\) & 9 & 93 \\
\hline 195 & L1+OOE- 0+80 & S & \(\leqslant\) & \(<.2\) & 0.61 & 5 & 15 & 25 & 0.33 & 4 & 11 & 34 & 7 & 1.18 & \(<10\) & 0.30 & 113 & 4 & 0.02 & 11 & 80 & 29 & 10 & \(<20\) & 7 & 0.53 & 40 & 151 & \(<10\) & 14 & 31 \\
\hline 196 & L1 +00E - \(0+50\) & S & 5 & \(<2\) & 0.50 & 5 & 10 & 10 & 0.13 & c & 5 & 16 & 4 & 0.39 & <10 & 0.12 & 48 & \(<1\) & 0.01 & 3 & 160 & 18 & 5 & \(<20\) & 5 & 0.23 & \(<10\) & 41 & \(<10\) & 7 & 15 \\
\hline 197 & L1+00E- \(1+00\) & S & 5 & \(<2\) & 219 & 5 & 25 & 25 & 0.23 & 4 & 11 & 43 & 11 & 3.41 & \(<10\) & 0.35 & 815 & <1 & 0.02 & 9 & 180 & 18 & 5 & 20 & 8 & 0.32 & \(<10\) & 138 & 40 & 9 & 29 \\
\hline 198 & 12+00E- O+Ci) & & 5 & \(<.2\) & 3.32 & 20 & 二 & : & \(2: 3\) & : & 5 & 32 & 54 & 1.89 & <10 & 033 & 48 & 4 & 0.09 & 11 & 470 & 28 & 4 & 20 & 14 & 0.17 & <0 & 109 & 40 & 11 & 68 \\
\hline 199 & L2+00E- O+10 & N & 5 & \(<2\) & 3.16 & 10 & 40 & 15 & 0.15 & \(<1\) & 7 & 41 & 15 & 268 & 40 & 0.47 & 407 & 4 & 0.04 & 9 & 300 & 20 & 10 & <20 & 8 & 0.17 & <10 & 117 & 40 & 7 & 7 \\
\hline 200 & L2400E- \(\mathrm{O}+20\) & N & 5 & \(<2\) & 1.74 & 40 & 55 & 10 & 0.43 & 4 & 27 & 26 & 13 & 602 & <0 & 0.30 & 1389 & 7 & 0.05 & a & 390 & 14 & 5 & 20 & 5 & 0.08 & -10 & 165 & < 10 & <1 & 60 \\
\hline
\end{tabular}

\section*{ASHMORTH EXPLORATION LTD. AK 95-1125}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Et \({ }_{\text {\% }}\) & Tag \({ }^{\text {\# }}\) & & Au(ppb) & Ag & A \% & As & Ba & Bi & Ca \% & Cd & Co & Cr & Cu & Fa\% & & Mg \% & Mn & Mo & \(\mathrm{Na} \%\) & N & P & Pb & Sb & Sn & Sr & T1\% & U & V & W & \(Y\) & \(2 n\) \\
\hline 201 & L2+00E-0+30 & N & 5 & <2 & 1.10 & 4 & 15 & 5 & 0.10 & <1 & 4 & 23 & 12 & 1.01 & <10 & 0.06 & 52 & <1 & < 01 & 3 & 140 & 10 & < & \(<20\) & 7 & 0.14 & \(<10\) & 81 & \(<10\) & 5 & 19 \\
\hline 202 & L2+00E- \(0+60\) & N & \(\leq\) & \(<2\) & 5.36 & < & 45 & 25 & 0.14 & <1 & 17 & 163 & 43 & 5.62 & \(<10\) & 0.75 & 209 & <1 & 0.01 & 29 & 250 & 28 & -5 & 60 & 6 & 0.35 & \(<10\) & 119 & \(<10\) & 9 & 36 \\
\hline 203 & L2+00E-0+70 & N & \(\leqslant\) & <2 & 4.72 & 15 & 20 & 10 & 0.28 & \(<1\) & 6 & 45 & 23 & 1.49 & \(<10\) & 0.18 & 69 & <1 & 0.02 & 7 & 830 & 30 & 5 & 20 & 11 & 0.10 & <10 & 87 & <10 & 9 & 26 \\
\hline 204 & L2+00E-0+80 & N & < 5 & <. 2 & 0.82 & < & 15 & 10 & 0.14 & \(<1\) & 5 & 20 & 5 & 1.13 & \(<10\) & 0.13 & 59 & <1 & 0.01 & 4 & 210 & 14 & -5 & \(<20\) & 7 & 0.14 & <10 & 51 & <10 & 4 & 18 \\
\hline 205 & L2+00E- \(0+50\) & \(N\) & \(\leqslant\) & \(<2\) & 1.16 & < & 25 & 15 & 0.11 & \(<1\) & 6 & 21 & 10 & 211 & \(<10\) & 0.13 & 50 & \(<1\) & 0.03 & 4 & 200 & 14 & 5 & \(<20\) & 6 & 0.15 & <10 & 128 & \(<10\) & 3 & 20 \\
\hline 206 & L2+COE- 1+0) & N & \(<\) & \(<2\) & 4.12 & 5 & 25 & 15 & 0.16 & \(<1\) & 6 & 45 & 21 & 3.13 & <10 & 0.14 & 52 & <1 & 0.02 & 6 & 480 & 24 & \(<5\) & \(<20\) & 7 & 0.12 & 10 & 12 & \(<10\) & 4 & 20 \\
\hline 207 & L2+00E- \(0+10\) & S & \(\leqslant\) & \(<2\) & 0.57 & 5 & 10 & 5 & 0.08 & <1 & 3 & 13 & 4 & 0.26 & <10 & 0.06 & 25 & 3 & < 0.01 & <1 & 140 & 14 & \(<\) & \(<20\) & 6 & 0.14 & <10 & 32 & <10 & 5 & 10 \\
\hline 208 & \(12+00 E-0+20\) & S & 5 & <2 & 1.27 & 4 & 70 & 30 & 0.10 & 1 & 8 & 55 & 4 & 10.90 & <10 & 0.31 & 99 & 6 & 0.02 & 6 & 160 & 10 & 5 & <20 & 7 & 0.12 & 30 & 218 & <10 & <1 & 60 \\
\hline 209 & \(12+00 E-0+30\) & S & \(\leqslant\) & \(<.2\) & 0.62 & \(\checkmark\) & 15 & \(<\) & 0.05 & \(<1\) & 2 & 7 & 6 & 1.29 & \(<10\) & 0.18 & 83 & <1 & < 01 & 1 & 200 & 10 & 5 & \(<20\) & 5 & 0.03 & <10 & 24 & <10 & <1 & 34 \\
\hline 210 & \(12+00 \mathrm{E}-0+40\) & S & < 5 & <2 & 0.46 & \(\delta\) & 25 & 10 & 0.27 & \(<1\) & 4 & 6 & 13 & 0.87 & <10 & 0.20 & 399 & <1 & <. 01 & 1 & 330 & 16 & 10 & \(<20\) & 9 & 0.14 & \(<10\) & 45 & <10 & 3 & 86 \\
\hline 211 & L2+COE- \(0+50\) & S & \(<5\) & \(<2\) & 0.33 & \(\bigcirc\) & 15 & 10 & 0.08 & \(<1\) & 4 & 13 & 2 & 0.67 & \(<10\) & 0.09 & 18 & <1 & < 01 & 4 & 90 & 32 & \(<5\) & \(<20\) & 5 & 0.18 & \(<10\) & 29 & \(<10\) & 5 & 11 \\
\hline 212 & L2+00E- \(0+60\) & S & \(\leqslant\) & \(<.2\) & 0.49 & \(<\) & 15 & 20 & 0.40 & \(<1\) & 12 & 41 & 25 & 1.04 & <10 & 0.27 & 116 & \(<1\) & 0.02 & 11 & 180 & 36 & 5 & \(<20\) & 8 & 0.51 & \(<10\) & 131 & \(<10\) & 13 & 92 \\
\hline 213 & L2+00E- \(0+70\) & \(s\) & < & <. 2 & 0.73 & < & 15 & 5 & 0.14 & <1 & 2 & 22 & 13 & 0.34 & <10 & 0.13 & 48 & \(<1\) & 0.01 & 5 & 730 & 20 & <5 & \(<2\) & 6 & 0.06 & <10 & 23 & <10 & 3 & 40 \\
\hline 214 & 12+00E-0+80 & S & \(<\) & <2 & 1.33 & \(<5\) & 20 & 15 & 0.20 & \(<1\) & 11 & 42 & 8 & 1.57 & <10 & 0.56 & 157 & <1 & 0.01 & 14 & 210 & 20 & 10 & <20 & 7 & 0.31 & <to & 79 & <10 & 10 & 36 \\
\hline 275 & L2+00E- \(0+90\) & 5 & 55 & <. 2 & 0.37 & 5 & 10 & 15 & 0.05 & <1 & 5 & 5 & 3 & 0.37 & <10 & 0.09 & 31 & \(<1\) & <. 01 & <1 & 60 & 10 & \(<\) & \(<20\) & 4 & 0.28 & <10 & 44 & \(<10\) & 8 & 12 \\
\hline 216 & L2+00E- \(1+\infty\) & S & \(\bigcirc\) & \(<.2\) & 0.28 & \(<5\) & 20 & 5 & 0.14 & \(<1\) & 3 & 4 & 14 & 0.69 & <10 & 0.10 & 80 & \(<1\) & 0.02 & 1 & 350 & 12 & \(\leq 5\) & 20 & 11 & 0.10 & <10 & 40 & \(<10\) & 3 & 61 \\
\hline 217 & L2+80W - \(0+10\) & N & < & 0.2 & 0.25 & < & 205 & 5 & 0.81 & \(<1\) & \(<1\) & 2 & 14 & 0.71 & <10 & 0.09 & 39 & 3 & 0.04 & 2 & 320 & 8 & < & < 2 & 28 & 0.03 & <10 & 16 & co & 2 & 72 \\
\hline 218 & L2+80W- \(0+20\) & N & < & <. 2 & 0.45 & <5 & 25 & 5 & 0.24 & <1 & 2 & 8 & 24 & 0.80 & \(<10\) & 0.07 & 61 & 2 & 0.03 & 4 & 480 & 12 & 5 & \(<20\) & 13 & 0.06 & <10 & 30 & \(<10\) & 3 & 75 \\
\hline 219 & L2+BOW - \(0+30\) & N & < & <. 2 & 0.12 & < & 30 & 4 & 0.07 & <1 & 2 & 6 & 2 & 0.10 & <10 & 0.03 & 10 & < & <. 01 & \(<1\) & 80 & 6 & 5 & \(<20\) & 5 & 0.13 & <10 & 31 & <10 & 4 & 8 \\
\hline 220 & L2+80W-0+40 & N & - & \(<2\) & 0.58 & \(<\) & 10 & 5 & 0.09 & \(<1\) & 3 & 17 & 5 & 0.38 & <10 & 0.07 & 24 & <1 & <. 01 & 2 & 140 & 16 & \(<\) & \(<20\) & 5 & 0.13 & <10 & 30 & \(<10\) & 4 & 16 \\
\hline 221 & L2+80W- \(0+60\) & N & \(<\) & <. 2 & 1.42 & \(<5\) & 45 & 10 & 0.23 & \(<1\) & 18 & 35 & 19 & 3.10 & <10 & 1.26 & 141 & \(<1\) & 0.02 & 22 & 140 & 10 & 10 & \(<20\) & 3 & 0.24 & <10 & 90 & <10 & 6 & 41 \\
\hline 220 & L2+80W-0+70 & N & < & 0.2 & 0.07 & < & 10 & < & 0.74 & \(<1\) & \(<1\) & 2 & 7 & 0.12 & <10 & 0.06 & 44 & \(<1\) & 0.05 & 2 & 350 & 8 & 5 & \(<20\) & 12 & <. 01 & <10 & 4 & \(<10\) & <1 & 79 \\
\hline 223 & L2+80W-0+80 & N & 5 & <2 & 0.92 & < & 25 & 10 & 0.10 & <1 & 5 & 26 & 8 & 3.70 & <10 & 0.09 & 33 & \(<1\) & 0.03 & 3 & 230 & 12 & 5 & <20 & 5 & 0.11 & 10 & 151 & <10 & <1 & 23 \\
\hline 224 & L2+80W-0+90 & N & \(\leqslant\) & <2 & 0.60 & \(\leqslant\) & 15 & 10 & 0.22 & <1 & 9 & 133 & 6 & 1.27 & <10 & 0.53 & 104 & \(<1\) & 0.02 & 18 & 110 & 6 & 5 & \(<20\) & 5 & 0.15 & \(<10\) & 53 & <10 & 4 & 31 \\
\hline 225 & L2+80W-1+00 & N & \(<5\) & \(<2\) & 0.40 & \(\leqslant\) & 10 & \(<5\) & 0.12 & <1 & 3 & 14 & 22 & 0.62 & <10 & 0.05 & 26 & <1 & 0.01 & 2 & 610 & 14 & 5 & <20 & 6 & 0.10 & <10 & 37 & <10 & 2 & 52 \\
\hline 226 & L2+80N- \(0+10\) & S & 5 & < 2 & 281 & \(<5\) & 30 & 10 & 0.28 & \(<1\) & 8 & 32 & 29 & 3.23 & <10 & 0.18 & 75 & 2 & 0.05 & 10 & 180 & 26 & 4 & \(<20\) & 17 & 0.21 & <10 & 146 & <10 & 14 & 52 \\
\hline 227 & L2+80W \(-0+30\) & S & \(<\) & <2 & 201 & \(<\) & 95 & 45 & 0.08 & 2 & 25 & 36 & 19 & 14.90 & <10 & 1.75 & 199 & \(<1\) & 0.02 & 20 & 90 & 12 & 4 & \(<20\) & 4 & 0.35 & 30 & 620 & <10 & <1 & 54 \\
\hline 228 & \(12+800-0+40\) & S & 5 & \(<2\) & 1.69 & 5 & 10 & < & 0.12 & \(<1\) & 4 & 33 & 6 & 0.79 & <10 & 0.16 & 61 & \(<1\) & 0.02 & 6 & 180 & 14 & - & \(<20\) & 6 & 0.11 & <10 & 44 & <10 & 4 & 22 \\
\hline 229 & L2+80W- \(0+50\) & S & < & \(<2\) & 0.62 & 35 & 20 & 15 & 0.06 & \(<1\) & 5 & 7 & 3 & 0.59 & <10 & 0.07 & 40 & <1 & < 01 & \(<1\) & 30 & 40 & \(\leqslant\) & \(<20\) & 5 & 0.29 & <10 & 91 & <10 & 7 & 11 \\
\hline 230 & L2+80W- \(0+60\) & 5 & \(<5\) & \(<2\) & 4.39 & 10 & 25 & \(\leqslant\) & 0.19 & \(<1\) & 4 & 33 & 28 & 1.44 & <10 & 0.11 & 51 & \(<1\) & 0.02 & 5 & 820 & 26 & \(<\) & 40 & 10 & 0.07 & <10 & 104 & <10 & 6 & 25 \\
\hline 231 & L2+80W-0+80 & S & 5 & \(<2\) & 3.53 & 5 & 15 & 10 & 0.10 & <1 & 5 & 41 & 8 & 2.50 & <10 & 0.07 & 39 & \(<1\) & 0.01 & 3 & 210 & 24 & 4 & 40 & 6 & 0.17 & <10 & 138 & <10 & 6 & 20 \\
\hline 232 & L2+80W-0+90 & S & \(<\) & <2 & 1.81 & 5 & 5 & 5 & 0.08 & <1 & 2 & 22 & 10 & 0.39 & <10 & 0.09 & 30 & \(<1\) & 0.01 & 2 & 230 & 12 & \(<5\) & \(<20\) & 5 & 0.05 & <10 & 27 & <10 & 3 & 12 \\
\hline 23 &  & 5 & 5 & \(<.2\) &  & 5 & 20 & 5 & 0.12 & <1 & 5 & 30 & 10 & 2.15 & <10 & 0.10 & 42 & \(<1\) & 0.02 & 4 & 350 & 22 & 4 & 20 & 8 & 0.10 & <10 & 82 & <10 & 6 & 14 \\
\hline 234 & 13+00W-0+30 & N & \(<5\) & < 2 & 0.36 & 5 & 10 & 15 & 0.06 & \(<1\) & 6 & 12 & 3 & 0.19 & <10 & 0.02 & 13 & \(<1\) & < 01 & <1 & 80 & 18 & 5 & \(<20\) & 4 & 0.35 & <10 & 79 & <10 & 9 & 10 \\
\hline 235 & L3+COW- \(0+40\) & N & 4 & \(<2\) & 0.42 & \(\leqslant\) & 10 & \(\leqslant\) & 0.09 & <1 & 4 & 15 & 4 & 0.33 & <10 & 0.03 & 24 & <1 & < 01 & 2 & 250 & 14 & \(<5\) & \(<20\) & 7 & 0.16 & <10 & 33 & <10 & 5 & 20 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Et \({ }_{\text {a }}\) & Tag \({ }^{\text {\# }}\) & & Aulppb) & Ag & A \% & As & Ba & Bi & Ca \% & Cd & Co & Cr & Cu & Fe\% & & Mg \% & Mn & Mo & \(\mathrm{Na} \%\) & N! & P & Pt & Sb & Sn & Sr & 7\% & 0 & \(v\) & w & \(Y\) & Zn \\
\hline 236 & L3+00W- \(0+50\) & N & 5 & <2 & 3.39 & 10 & 25 & 10 & 0.26 & <1 & 6 & 28 & 8 & 1.49 & \(<10\) & 0.22 & 116 & <1 & 0.04 & 8 & 390 & 28 & 5 & \(<20\) & 12 & 0.13 & <10 & 56 & \(<10\) & 7 & 43 \\
\hline 237 & L3+00W-0+60 & N & < & <2 & 0.56 & < & 10 & 15 & 0.09 & \(<1\) & 6 & 45 & 4 & 0.53 & \(<10\) & 0.29 & 66 & <1 & < 01 & 3 & 90 & 14 & 5 & <20 & 4 & 0.31 & <10 & 49 & \(<10\) & 8 & 21 \\
\hline 238 & L3+00W- 0+70 & N & \(<\) & <. 2 & 4.85 & 15 & 10 & 10 & 0.08 & \(<1\) & 4 & 52 & 12 & 1.31 & \(<10\) & 0.08 & 34 & <1 & 0.02 & 3 & 330 & 32 & < & 40 & 6 & 0.13 & \(<10\) & 61 & \(<10\) & 6 & 19 \\
\hline 239 & L3+00W - \(0+80\) & N & 5 & <. 2 & 0.76 & \(\leq\) & 30 & 5 & 0.20 & <1 & 5 & 14 & 16 & 3.72 & \(<10\) & 0.04 & 135 & 3 & 0.02 & 4 & 880 & 16 & 5 & \(<20\) & 10 & 0.03 & <10 & 59 & \(<10\) & <1 & 154 \\
\hline 240 & L3+00W-0+90 & N & 5 & \(<.2\) & 0.70 & < & 20 & 10 & 0.11 & \(<1\) & 5 & 27 & 8 & 1.85 & \(<10\) & 0.10 & 36 & \(<1\) & <. 01 & 5 & 280 & 14 & 5 & \(<20\) & 7 & 0.18 & \(<10\) & 96 & \(<10\) & 4 & 36 \\
\hline 241 & L3+00W-1+00 & N & 5 & \(<.2\) & 0.50 & < & 10 & 15 & 0.16 & \(<1\) & 8 & 43 & 4 & 0.45 & \(<10\) & 0.19 & 41 & <1 & < 01 & 5 & 70 & 14 & 5 & \(<20\) & 5 & 0.35 & <10 & 54 & \(<10\) & 9 & 17 \\
\hline 242 & L3+20W-0+00 & & 5 & < 2 & 0.79 & \(\leq\) & 35 & 10 & 0.09 & \(<1\) & 5 & 19 & 5 & 1.11 & \(<10\) & 0.20 & 63 & 3 & 0.02 & 2 & 160 & 20 & < & \(<20\) & 7 & 0.23 & \(<10\) & 81 & \(<10\) & 6 & 27 \\
\hline 243 & L3+20W- \(0+20\) & N & \(\leqslant\) & \(<2\) & 0.18 & \(<5\) & \(<5\) & 5 & 0.05 & \(<1\) & 2 & 6 & 1 & 0.21 & \(<10\) & 0.02 & 21 & 4 & 0.01 & \(\checkmark\) & 20 & 6 & 5 & \(<20\) & 2 & 0.13 & <10 & 49 & \(<10\) & 3 & 7 \\
\hline 244 & L3+20W- \(0+30\) & N & < & \(<2\) & 0.37 & < & 10 & 5 & 0.11 & \(<1\) & 5 & 24 & 3 & 0.55 & <10 & 0.09 & 36 & 4 & 0.03 & 2 & 70 & 12 & 5 & \(<20\) & 5 & 0.19 & <10 & 59 & <10 & 5 & 15 \\
\hline 245 & L3+20W-0+40 & N & 5 & \(<.2\) & 1.18 & \(<5\) & 20 & 10 & 0.14 & \(<1\) & 5 & 28 & 8 & 1.44 & <10 & 0.19 & 60 & <1 & 0.04 & 7 & 170 & 32 & 5 & \(<20\) & 8 & 0.13 & <10 & 71 & <10 & 4 & 30 \\
\hline 246 & L3+20w- \(0+70\) & N & \(<5\) & \(<2\) & 0.96 & \(<\) & 10 & \(<5\) & 0.14 & \(<1\) & 4 & 19 & 9 & 0.63 & \(<10\) & 0.18 & 53 & 4 & 0.01 & 5 & 240 & 8 & \(<5\) & \(<20\) & 5 & 0.06 & \(<10\) & 28 & <10 & 3 & 20 \\
\hline 247 & L3+20WN-0r80 & N & 5 & < 2 & 2.55 & 5 & 30 & 5 & 0.15 & \(<1\) & 7 & 36 & 23 & 0.98 & <10 & 0.27 & 70 & <1 & 0.61 & 3 & 270 & 18 & 5 & 20 & 8 & 0.16 & <10 & 69 & \(<10\) & 6 & 40 \\
\hline 248 & L3+20W- \(0+90\) & N & 5 & <2 & 2.11 & \(\leqslant\) & 15 & 10 & 0.13 & \(<1\) & 6 & 27 & 10 & 1.58 & \(<10\) & 0.19 & 64 & \(\leqslant\) & 0.01 & 5 & 200 & 16 & 5 & \(<20\) & 6 & 0.14 & <10 & 56 & \(<10\) & 4 & 29 \\
\hline 249 & L3+20W- \(1+00\) & N & \(<\) & < 2 & 0.94 & \(\leqslant\) & 30 & \(<5\) & 0.27 & <1 & 3 & 18 & 18 & 281 & \(<10\) & 0.03 & 60 & 2 & 0.03 & 5 & 1150 & 14 & 5 & \(<20\) & 11 & 0.01 & \(<10\) & 41 & <10 & <1 & 103 \\
\hline 250 & L3+20W- \(0+10\) & S & \(\leqslant\) & 0.4 & 3.35 & \(\leqslant\) & 145 & 45 & 0.05 & 4 & 52 & 22 & 17 & > 15 & <10 & < 01 & 4947 & 24 & <. 01 & 1 & 190 & 20 & 4 & \(<20\) & 5 & 0.02 & \(<10\) & 199 & \(<10\) & \(<1\) & 51 \\
\hline 251 & L3+20W-0+40 & S & \(<\) & \(<2\) & 1.64 & < & 15 & 5 & 0.14 & 1 & 2 & 21 & 22 & 0.51 & \(<10\) & 0.05 & 86 & <1 & < 01 & 4 & 530 & 16 & 5 & \(<20\) & 7 & 0.03 & \(<10\) & 45 & \(<10\) & 4 & 65 \\
\hline 252 & L3+20W-0+50 & S & < & < 2 & 1.32 & 5 & 20 & < & 0.19 & \(<1\) & 2 & 17 & 30 & 0.25 & <10 & 0.02 & 36 & \(<1\) & 0.02 & 3 & 720 & 18 & 5 & \(<2\) & 9 & 0.02 & <10 & 33 & \(<10\) & 3 & 71 \\
\hline 253 & L3+20W-0+60 & S & 5 & < 2 & 1.94 & 15 & 15 & 5 & 0.12 & \(<1\) & 3 & 26 & 11 & 0.61 & <10 & 0.17 & 53 & \(<1\) & 0.01 & 5 & 270 & 14 & \(<\) & \(<20\) & 5 & 0.08 & \(<10\) & 40 & <10 & 4 & 23 \\
\hline 254 & L3+20NV-0+70 & S & \(\stackrel{5}{5}\) & \(<2\) & 237 & 10 & 15 & \(<5\) & 0.16 & \(<1\) & 3 & 24 & 10 & 0.51 & <10 & 0.13 & 52 & 4 & 0.01 & 4 & 600 & 18 & -5 & \(<20\) & 9 & 0.07 & \(<10\) & 49 & <10 & 5 & 21 \\
\hline 255 & L3+20W-0+80 & 5 & \(<5\) & \(<.2\) & 1.30 & \(<5\) & 10 & 10 & 0.16 & \(<1\) & 4 & 21 & 7 & 0.61 & <10 & 0.10 & 44 & \(<1\) & 0.01 & 3 & 150 & 14 & \(<5\) & \(<20\) & 6 & 0.15 & <10 & 36 & <10 & 6 & 24 \\
\hline 256 & L3+20W- \(0+90\) & S & \(<5\) & \(<.2\) & 3.11 & 10 & 20 & 5 & 0.14 & <1 & 4 & 28 & 7 & 1.78 & <10 & 0.08 & 45 & \(<1\) & 0.02 & 4 & 510 & 20 & 5 & 20 & 9 & 0.08 & \(<10\) & 92 & <10 & 6 & 12 \\
\hline 25 & L3+20W- \(1+00\) & 5 & < & \(<2\) & 276 & \(<5\) & 15 & 10 & 0.12 & <1 & 5 & 31 & 7 & 1.53 & <10 & 0.09 & 47 & 4 & 0.02 & 3 & 240 & 18 & 4 & \(<20\) & 6 & 0.11 & <10 & 84 & <10 & 7 & 16 \\
\hline 258 & L3+40W-0+00 & & 20 & < 2 & 0.89 & 10 & 25 & 10 & 0.12 & \(<1\) & 5 & 10 & 8 & 0.94 & \(<10\) & 0.09 & 65 & 8 & 0.01 & 5 & 70 & 24 & 5 & \(<20\) & 8 & 0.19 & <10 & 63 & <10 & 5 & 44 \\
\hline 259 & L3+40W- \(0+10\) & N & 5 & \(<2\) & 0.48 & \(\leq\) & 75 & 5 & 0.08 & \(<1\) & 2 & 25 & 2 & 0.47 & \(<10\) & 0.13 & 40 & <1 & <. 01 & <1 & 70 & 8 & 5 & \(<20\) & 6 & 0.08 & <10 & 43 & <10 & 2 & 14 \\
\hline 260 & L3+40W-0+20 & N & \(<5\) & \(<2\) & 2.90 & \(<5\) & 35 & 20 & 0.12 & \(<1\) & 11 & 58 & 12 & 5.29 & <10 & 0.09 & 53 & \(\checkmark\) & <. 01 & 3 & 80 & 24 & 5 & <20 & 5 & 0.38 & 10 & 296 & <10 & 5 & 30 \\
\hline 261 & L3+40N- \(0+30\) & N & 5 & \(<2\) & 0.43 & \(<5\) & 15 & 10 & 0.09 & \(<1\) & 7 & 13 & 3 & 0.85 & \(<10\) & 0.19 & 58 & \(<1\) & < 01 & \(<1\) & 50 & 16 & < & \(<20\) & 5 & 0.38 & \(<10\) & 118 & \(<10\) & 8 & 15 \\
\hline 262 & L3+40N- \(0+40\) & N & \(<\) & \(<2\) & 3.50 & 10 & 36 & \(<5\) & 0.24 & <1 & 10 & 60 & 96 & 1.14 & <10 & 0.42 & 102 & 4 & 0.01 & 26 & 490 & 26 & 10 & <20 & 9 & 0.15 & 40 & 48 & <10 & 12 & 39 \\
\hline 263 & L3+40W- \(0+50\) & N & \(<5\) & \(<2\) & 1.22 & \(<5\) & 10 & \(<5\) & 0.10 & \(<1\) & 2 & 18 & 13 & 0.27 & \(<10\) & 0.11 & 36 & 4 & < 01 & 5 & 430 & 10 & \(<\) & \(<20\) & 4 & 0.04 & <10 & 22 & \(<10\) & 3 & 36 \\
\hline 264 & L3+40W-0+60 & N & \(\leqslant\) & < 2 & 0.31 & 5 & 10 & 10 & 0.08 & <1 & 4 & 15 & 5 & 0.53 & <10 & 0.04 & 30 & 4 & < 01 & 2 & 150 & 10 & 5 & \(<20\) & 5 & 0.19 & <10 & 61 & <10 & 4 & 16 \\
\hline 265 & L3+40W- 0+70 & N & \(\leqslant\) & \(<2\) & 0.32 & \(<5\) & 5 & 10 & 0.19 & <1 & 5 & 22 & 6 & 0.50 & \(<10\) & 0.06 & 32 & 4 & <. 01 & 1 & 110 & 10 & 5 & <20 & 3 & 0.26 & <10 & 77 & \(<10\) & 8 & 27 \\
\hline 266 & L3+40W-0+80 & N & \(<5\) & \(<2\) & 3.90 & 10 & 15 & 10 & 0.10 & \(<1\) & 5 & 49 & 9 & 1.50 & \(<10\) & 0.09 & 38 & c 1 & < 010 & 3 & 170 & 28 & 5 & 40 & 5 & 0.22 & <10 & 133 & \(<10\) & 5 & 24 \\
\hline 267 & L3+40W-0+90 & N & \(<\) & \(<2\) & 0.71 & \(<5\) & 20 & 10 & 0.11 & \(<1\) & 4 & 20 & 11 & 1.40 & \(<10\) & 0.07 & 32 & 4 & 0.02 & 2 & 300 & 14 & \(<\) & <20 & 7 & 0.13 & \(<10\) & 61 & <10 & 3 & 39 \\
\hline 298 & 123:404-1100 & i & -5 & \(=2\) & i.87 & \(\bigcirc\) & 20 & is & U.is & < & ¢ & 2 & ¢ & 248 & \(<10\) & 0.16 & 71 & \(<1\) & 0.01 & 5 & 130 & 12 & 5 & 20 & 5 & 0.23 & <10 & 101 & <10 & 4 & 23 \\
\hline 269 & L3+40W-0+10 & 5 & 5 & <. 2 & 1.07 & \(<5\) & 50 & 25 & 0.11 & \(<1\) & 12 & 19 & 12 & 5.13 & <10 & 0.28 & 125 & <1 & <. 01 & 2 & 80 & 29 & 5 & \(<20\) & 7 & 0.54 & <10 & 328 & <10 & 8 & 41 \\
\hline 270 & L3+40W- \(0+40\) & S & 255 & 1.4 & 263 & 5 & 50 & \(<5\) & 0.38 & 1 & 12 & 29 & 87 & 3.25 & <10 & 0.38 & 303 & \(<1\) & 0.03 & 13 & 530 & 168 & 5 & \(<20\) & 20 & 0.12 & <10 & 98 & <10 & 5 & 67 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Et & Tag \# & & Au(ppb) & Ag, & A \% & As & Ba & BI & Ca\% & cd & Co & Cr & Cu & Fe\% & & Mg \% & Mn & Mo & \(\mathrm{Na} \%\) & N & \(p\) & Pb & Sb & Sn & Sr & 7\% & U & \(v\) & W & \(Y\) & Zn \\
\hline 271 & L3+40WV-0+50 & S & \(<\) & <. 2 & 1.10 & < & 20 & 10 & 0.16 & 4 & 8 & 28 & 9 & 1.97 & <10 & 0.38 & 109 & \(<1\) & 0.01 & 9 & 130 & 10 & 5 & 20 & 10 & 0.14 & <10 & 01 & <10 & 3 & 23 \\
\hline 272 & L3+40W-0+60 & S & < & <. 2 & 1.41 & < & 20 & < & 0.31 & <1 & 6 & 27 & 9 & 0.85 & \(<10\) & 0.27 & 108 & \(<1\) & 0.01 & 9 & 240 & 12 & 10 & 20 & 9 & 0.13 & <10 & 46 & \(<10\) & 4 & 23 \\
\hline 273 & L3+40W- \(0+70\) & S & < & <. 2 & 0.39 & < & 10 & 5 & 0.18 & \(<1\) & 3 & 8 & 18 & 0.60 & \(<10\) & 0.14 & 54 & \(<1\) & <. 01 & 2 & 260 & 12 & < & \(<20\) & 4 & 0.09 & <10 & 39 & <10 & 2 & 54 \\
\hline 274 & L3+40W- \(0+80\) & S & <5 & \(<2\) & 0.29 & < & \(<\) & 5 & 0.11 & \(<1\) & 2 & 11 & 2 & 0.14 & \(<10\) & 0.03 & 28 & \(<1\) & \(<01\) & 1 & 60 & 10 & 4 & \(<20\) & 3 & 0.13 & <10 & 39 & \(<10\) & 3 & 11 \\
\hline 275 & L3+40W- \(0+90\) & S & < & \(<2\) & 0.64 & \(<5\) & 15 & 15 & 0.06 & <1 & 5 & 25 & 3 & 2.94 & <10 & 0.02 & 28 & \(<1\) & \(<.01\) & \(<1\) & 20 & 8 & < & 20 & 4 & 0.21 & <10 & 131 & \(<10\) & 2 & 10 \\
\hline 276 & L3+40W- \(1+00\) & S & 5 & \(<2\) & 0.31 & \(<5\) & 10 & 5 & 0.36 & \(<1\) & 2 & 7 & 9 & 0.56 & \(<10\) & 0.03 & 34 & \(<1\) & 0.02 & 1 & 250 & 8 & 5 & 20 & 10 & 0.10 & <10 & 36 & \(<10\) & 2 & 47 \\
\hline 277 & L3+60W-0400 & & < & <. 2 & 0.55 & < & 20 & \(<\) & 0.10 & <1 & 4 & 15 & 5 & 0.51 & \(<10\) & 0.12 & 44 & <1 & < 01 & 3 & 310 & 14 & 5 & \(<20\) & 8 & 0.11 & <10 & 35 & \(<10\) & 3 & 20 \\
\hline 278 & L3+60W - \(0+10\) & N & \(\leqslant\) & <. 2 & 1.21 & \(<\) & 10 & 5 & 0.11 & <1 & 3 & 18 & 5 & 0.32 & \(<10\) & 0.09 & 30 & <1 & < 01 & 3 & 150 & 18 & < & \(<2\) & 6 & 0.12 & <10 & 25 & <10 & 4 & 13 \\
\hline 279 & L3+60W- \(0+20\) & N & \(\leqslant\) & < 2 & 1.77 & 5 & 25 & 20 & 0.04 & <1 & 8 & 28 & 7 & 5.03 & \(<10\) & 0.01 & 34 & <1 & < 01 & 3 & 60 & 14 & < & \(<20\) & 4 & 0.27 & 20 & 256 & <10 & 2 & 23 \\
\hline 280 & L3+60W- \(0+30\) & N & \(\leqslant\) & \(<.2\) & 1.72 & 5 & 35 & 20 & 0.07 & \(<1\) & 10 & 41 & 7 & 6.13 & \(<10\) & 0.07 & 39 & \(<1\) & < 01 & 4 & 10 & 14 & \(\leqslant\) & \(<20\) & 4 & 0.34 & 20 & 266 & <10 & 2 & 19 \\
\hline 281 & L3+60W- 0+40 & N & 35 & <. 2 & 5.24 & 30 & 35 & 25 & 0.11 & <1 & 14 & 134 & 30 & 5.30 & <10 & 0.51 & 135 & \(<1\) & 0.01 & 24 & 190 & 34 & 5 & <20 & 5 & 0.26 & <10 & 139 & <10 & 4 & 37 \\
\hline 282 & L3+60W- \(0+50\) & N & 4 & \(<2\) & 229 & < & 40 & 30 & 0.23 & <1 & 20 & 137 & 33 & 6.56 & <10 & 1.08 & 237 & <1 & 0.01 & 36 & 90 & 14 & 5 & \(<20\) & 5 & 0.44 & <10 & 184 & \(<10\) & 4 & 37 \\
\hline 283 & L3+60NV-0+70 & N & < & <2 & 1.91 & \(\leqslant\) & 10 & 5 & 0.08 & <1 & 4 & 34 & 10 & 0.80 & \(<10\) & 0.08 & 30 & \(<1\) & < 01 & 3 & 150 & 14 & 4 & \(<20\) & 5 & 0.15 & \(<10\) & 60 & <10 & 5 & 11 \\
\hline 284 & L3+60W-0+80 & N & \(\leqslant\) & \(<2\) & 1.48 & 5 & 5 & 5 & 0.05 & \(<1\) & 1 & 36 & 18 & 0.48 & \(<10\) & 0.03 & 13 & \(<1\) & <. 01 & 2 & 450 & 12 & 4 & <20 & 4 & 0.04 & <10 & 46 & <10 & 1 & 32 \\
\hline 285 & L3+60W-0+90 & N & \(<5\) & < 2 & 0.57 & \(<\) & 20 & 30 & 0.11 & \(<1\) & 12 & 30 & 6 & 3.42 & <10 & 0.13 & 47 & \(<1\) & < 01 & 5 & <10 & 16 & 5 & \(<20\) & 3 & 0.57 & <10 & 258 & \(<10\) & 9 & 14 \\
\hline 286 & L3+60W - \(1+00\) & N & \(<5\) & \(<2\) & 0.54 & \(\leqslant\) & 10 & 10 & 0.19 & \(<1\) & 11 & 28 & 2 & 1.07 & <10 & 0.45 & 87 & <1 & 0.01 & 13 & 10 & 10 & 5 & \(<20\) & 6 & 0.30 & <10 & 125 & <10 & 6 & 12 \\
\hline 287 & L3+60W- \(0+10\) & S & 4 & < 2 & 1.23 & \(<\) & 65 & 10 & 0.17 & \(<1\) & 9 & 17 & 11 & 1.87 & \(<10\) & 0.43 & 230 & \(<1\) & 0.02 & 4 & 240 & 16 & < & \(<20\) & 16 & 0.15 & \(<10\) & 82 & <10 & 3 & 41 \\
\hline 288 & L3+60W - \(0+20\) & S & \(\leqslant\) & \(<2\) & 0.45 & c & 15 & 10 & 0.09 & <1 & 4 & 7 & 3 & 0.88 & <10 & 0.09 & 95 & <1 & <. 01 & 2 & 70 & 12 & 4 & \(<20\) & 5 & 0.14 & <10 & 76 & <10 & 2 & 16 \\
\hline 289 & 13+60W-0+30 & S & \(<\) & <. 2 & 0.65 & \(<5\) & 20 & 10 & 0.09 & \(<1\) & 4 & 13 & 3 & 1.63 & <10 & 0.16 & 84 & <1 & < 01 & 2 & 40 & 10 & \(\bigcirc\) & \(<20\) & 6 & 0.14 & <10 & 112 & <10 & 2 & 18 \\
\hline 290 & L3+60W- \(0+40\) & S & \(<\) & \(<2\) & 2.33 & 4 & 55 & 35 & 0.06 & 2 & 12 & 40 & 10 & 11.20 & <10 & 0.03 & 69 & 2 & \(<.01\) & 3 & 100 & 16 & \(<5\) & \(<20\) & 4 & 0.32 & 20 & 273 & \(<10\) & \(<1\) & 33 \\
\hline 291 & L3+60N- \(0+50\) & S & \(<5\) & <. 2 & 5.17 & 5 & 55 & 10 & 0.23 & \(<1\) & 7 & 38 & 14 & 2.84 & <10 & 0.15 & 63 & <1 & 0.01 & 7 & 310 & 28 & \(<5\) & \(<20\) & 10 & 0.17 & \(<10\) & 108 & <10 & 5 & 31 \\
\hline 292 & L3+60W-0+60 & S & \(\leqslant\) & \(<2\) & 1.70 & <5 & 25 & 15 & 0.17 & <1 & 11 & 59 & 17 & 2.66 & <10 & 0.48 & 158 & <1 & <. 01 & 8 & 110 & 20 & \(\leq 5\) & \(<20\) & 10 & 0.30 & <10 & 107 & <10 & 6 & 57 \\
\hline 293 & L3+60N- \(0+70\) & S & \(<\) & \(<2\) & 0.97 & \(\leq\) & 20 & 10 & 0.17 & \(<1\) & 9 & 43 & 26 & 2.05 & \(<10\) & 0.75 & 101 & \(<1\) & 0.01 & 15 & 290 & 38 & \(<5\) & \(<20\) & 6 & 0.25 & <10 & 93 & <10 & 4 & 59 \\
\hline 294 & L3+60W-0+80 & S & \(<\) & \(<.2\) & 1.71 & \(<5\) & 20 & \(<\) & 0.12 & <1 & 5 & 32 & 9 & 0.71 & <10 & 0.31 & 74 & <1 & 0.01 & 8 & 190 & 16 & < & \(<20\) & 9 & 0.11 & \(<10\) & 45 & \(<10\) & 3 & 22 \\
\hline 295 & L3+60W-0+90 & s & 5 & \(<2\) & 0.58 & 5 & 20 & 15 & 0.08 & \(<1\) & 8 & 36 & 4 & 3.86 & <10 & 0.03 & 41 & <1 & < 01 & 3 & 20 & - & 5 & \(<20\) & 2 & 0.25 & <10 & 202 & <10 & 3 & 12 \\
\hline 296 & L3+60W- 1+00 & S & <5 & <. 2 & 1.25 & \(<5\) & 25 & 25 & 0.24 & <1 & 18 & 255 & 2 & 5.05 & <10 & 0.94 & 211 & <1 & 0.02 & 34 & 20 & 12 & 5 & \(<20\) & 3 & 0.31 & <10 & 158 & <10 & 4 & 47 \\
\hline 297 & L3+80W - \(0+00\) & & \(<5\) & < 2 & 5.60 & 25 & 95 & 20 & 0.06 & \(<1\) & 10 & 37 & 19 & 5.84 & <10 & 0.14 & 88 & 15 & < 01 & 16 & 240 & 32 & 5 & \(<2\) & 4 & 0.28 & <10 & 159 & \(<10\) & 5 & 140 \\
\hline 298 & L3+80W- \(0+10\) & N & \(<5\) & \(<2\) & 1.89 & \(<\) & 35 & 15 & 0.14 & <1 & 11 & 36 & 12 & 6.23 & <10 & 0.05 & 58 & \(<1\) & < 01 & 6 & 100 & 14 & \(\leqslant\) & \(<20\) & 6 & 0.34 & 20 & 193 & <10 & 2 & 38 \\
\hline 299 & L3+80WW-0+20 & N & 4 & < 2 & 1.07 & \(\bigcirc\) & 25 & 20 & 0.08 & \(<1\) & 8 & 31 & 7 & 4.42 & <10 & 0.08 & 40 & <1 & <. 01 & 4 & 50 & 10 & 5 & \(<20\) & 4 & 0.25 & <10 & 203 & <10 & 2 & 24 \\
\hline 300 & L3+80W- \(0+30\) & N & \(<\) & \(<.2\) & 1.56 & 5 & 20 & 15 & 0.15 & \(<1\) & 10 & 24 & 8 & 2.45 & \(<10\) & 0.41 & 100 & <1 & < 01 & 9 & 80 & 16 & 6 & \(<20\) & 5 & 0.32 & \(<10\) & 129 & <10 & 5 & 22 \\
\hline 301 & L3+80W-0+40 & N & \(<5\) & <. 2 & 1.82 & 10 & 35 & 15 & 0.14 & < & 4 & 25 & 52 & 5.80 & \(<10\) & 0.09 & 47 & 3 & <. 01 & 5 & 540 & 12 & \(<5\) & \(<20\) & 6 & 0.06 & <10 & 196 & \(<10\) & < & 47 \\
\hline 302 & L3+80W- 0+50 & \(N\) & < & \(<2\) & 0.69 & \(\leqslant\) & 20 & 15 & 0.12 & <1 & 11 & 28 & 7 & 272 & <10 & 0.40 & 90 & <1 & < 01 & 9 & 20 & 10 & < & \(<20\) & 3 & 0.38 & <10 & 196 & <10 & 5 & 19 \\
\hline 30 & 2:80N- & N & \(\pm\) & -2 & 1.38 & 5 & 35 & 5 & 0.5 & <i & ii & 50 & 8 & 211 & \(<10\) & 0.60 & 211 & <1 & 0.01 & 16 & 420 & 12 & 5 & \(<20\) & 10 & 0.12 & <10 & 62 & <10 & 5 & 51 \\
\hline 304 & L3+80W-0+70 & N & <5 & \(<2\) & 0.26 & 5 & 5 & 5 & 0.13 & <1 & 4 & 34 & 3 & 0.58 & \(<10\) & 0.15 & 41 & \(<1\) & < 01 & 4 & 120 & 8 & \(<\) & \(<20\) & 4 & 0.16 & <10 & 47 & <10 & 3 & 15 \\
\hline 305 & L3+80W - \(0+80\) & N & 5 & \(<.2\) & 1.87 & < & 30 & 20 & 0.12 & <1 & 11 & 41 & 9 & 5.88 & \(<10\) & 0.12 & 60 & <1 & <. 01 & 5 & 140 & 12 & 5 & \(<20\) & 3 & 0.35 & 10 & 223 & <10 & 2 & 22 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Et 妥 & Tag & & Au(ppbl & Ag & A \% & As & Ba & Bi & Ca\% & Cd & Co & Cr & Cu & \(\mathrm{Fe} \%\) & La & Mg\% & Mn & Mo & \(\mathrm{Na} \%\) & M & \(p\) & Pb & Sb & Sn & Sr & 71\% & U & V & W & \(Y\) & Zn \\
\hline 306 & L3+80W-0+90 & N & 5 & < 2 & 0.66 & 5 & 10 & 10 & 0.15 & <1 & 9 & 36 & 4 & 0.79 & <10 & 0.34 & 69 & \(<1\) & 0.01 & 7 & 140 & 16 & 10 & \(<20\) & 4 & 0.31 & <10 & 51 & <10 & 6 & 21 \\
\hline 307 & L3+80W - \(1+00\) & N & \(<\) & \(<2\) & 1.36 & \(<5\) & 30 & 25 & 0.10 & <1 & 10 & 30 & 9 & 5.79 & <10 & 0.15 & 46 & \(<1\) & < 01 & 5 & 170 & 10 & < & <20 & 3 & 0.29 & 10 & 211 & \(<10\) & 1 & 23 \\
\hline 308 & L3+80W- \(0+10\) & S & \(<5\) & \(<2\) & 3.46 & 35 & 60 & 30 & 0.07 & <1 & 14 & 23 & 21 & 7.80 & <10 & 0.04 & 64 & 25 & < 01 & 21 & 130 & 28 & 5 & <20 & 3 & 0.42 & 20 & 227 & \(<10\) & 3 & 121 \\
\hline 309 & L3+80W- \(0+40\) & S & \(<5\) & < 2 & 0.24 & \(<5\) & 10 & 5 & 0.08 & <1 & 4 & 9 & 2 & 0.43 & <10 & 0.05 & 33 & <1 & < 0.1 & 1 & 40 & 10 & 5 & \(<20\) & 5 & 0.20 & -10 & 40 & <10 & 3 & 11 \\
\hline 310 & L3+80W- O+50 & S & \(<5\) & \(<2\) & 4.08 & 10 & 75 & 10 & 0.30 & \(<1\) & 11 & 36 & 32 & 201 & <10 & 0.24 & 201 & 4 & 0.02 & 23 & 500 & 26 & \(<5\) & 20 & 13 & 0.15 & < 10 & 60 & \(<10\) & 8 & 152 \\
\hline 311 & L3+80W-0+60 & S & 105 & \(<.2\) & 3.45 & 10 & 125 & 15 & 0.28 & 2 & 47 & 180 & 84 & 8.22 & <10 & 1.50 & 446 & \(<1\) & 0.02 & 81 & 580 & 32 & \(<\) & \(<20\) & 10 & 0.22 & <10 & 225 & <0 & 4 & 208 \\
\hline 312 & L3+80W-0+80 & s & < & <2 & 0.84 & \(<5\) & 10 & ¢ & 0.09 & <1 & 3 & 18 & 9 & 0.45 & <10 & 0.17 & 49 & <1 & < 0.01 & 5 & 180 & 8 & 4 & \(<20\) & 6 & 0.06 & <10 & 25 & <10 & 2 & 19 \\
\hline 313 & L3+80W-0+90 & S & \(<\) & < 2 & 1.31 & \(<\) & 30 & \(<5\) & 0.16 & <1 & 9 & 29 & 11 & 2.11 & <10 & 0.39 & 149 & <1 & 0.01 & 10 & 250 & 10 & \(\leq\) & <20 & 10 & 0.12 & <10 & 88 & <10 & 2 & 28 \\
\hline 314 & L.3+80W- \(1+00\) & S & 5 & < 2 & 0.58 & 5 & 25 & 30 & 0.22 & 1 & 13 & 65 & 6 & 4.78 & \(<10\) & 0.16 & 76 & <1 & < 01 & 10 & <10 & 14 & 4 & 20 & 6 & 0.48 & 10 & 300 & <10 & 5 & 16 \\
\hline 315 & L4+00W-0+00 & & \(\leq\) & \(<2\) & 0.14 & \(<\) & 10 & 10 & 0.02 & \(<1\) & 3 & 4 & 5 & 0.64 & \(<10\) & < 01 & 8 & 6 & < 01 & 2 & 50 & 6 & 5 & \(<20\) & 3 & 0.15 & <10 & 66 & \(<10\) & 3 & 16 \\
\hline 316 & L4+00W- 0+10 & N & \(<5\) & \(<2\) & 0.25 & 45 & 15 & \(<\) & 0.03 & \(<1\) & \(<1\) & <1 & 2 & 0.26 & <10 & 0.03 & 35 & \(<1\) & < 01 & \(<1\) & 100 & 6 & \(<\) & \(<20\) & 2 & 0.05 & \(<10\) & 8 & 40 & 1 & 10 \\
\hline 317 & L4+00W-2420 & N & \(<5\) & \(<2\) & 0.75 & 4 & 30 & 20 & 0.07 & <1 & 8 & 36 & 4 & 6.03 & <10 & 0.09 & 37 & \(<1\) & <. 01 & 3 & <10 & \(\boldsymbol{8}\) & -5 & \(<20\) & 4 & 0.28 & 10 & 295 & <0 & < & 15 \\
\hline 318 & L4+00W-0+30 & N & \(<5\) & < 2 & 5.26 & \(<5\) & 25 & 15 & 0.09 & <1 & 6 & 63 & 10 & 4.19 & \(<10\) & 0.07 & 37 & <1 & 0.01 & 4 & 280 & 28 & 5 & \(<20\) & 5 & 0.15 & \(<10\) & 166 & \(<10\) & 3 & 20 \\
\hline 319 & L4+00W-0+40 & N & 4 & < 2 & 3.59 & \(<\) & 30 & 15 & 0.16 & <1 & 15 & 79 & 25 & 2.28 & \(<10\) & 0.66 & 145 & \(<1\) & 0.01 & 19 & 240 & 22 & \(<5\) & \(<20\) & 6 & 0.31 & <10 & 106 & <10 & 8 & 38 \\
\hline 320 & L4+00W- \(0+50\) & N & \(<5\) & \(<2\) & 4.70 & \(<5\) & 55 & 30 & 0.10 & 1 & 14 & 68 & 25 & 11.10 & \(<10\) & 0.08 & 56 & \(<1\) & 0.01 & 4 & 160 & 22 & \(<5\) & \(<20\) & 5 & 0.32 & 20 & 214 & <10 & <1 & 28 \\
\hline 321 & L4+00w \(-0+60\) & N & \(\leqslant\) & \(<.2\) & 2.43 & 4 & 60 & 40 & 0.09 & 2 & 14 & 62 & 20 & 12.70 & \(<10\) & 0.03 & 32 & \(<1\) & <. 01 & 5 & -10 & 10 & \(\leq\) & \(<20\) & 6 & 0.47 & 30 & 328 & <10 & <1 & 22 \\
\hline 322 & L4+00W-0+70 & N & \(<5\) & \(<2\) & 1.73 & \(<5\) & 20 & 20 & 0.16 & \(<1\) & 9 & 36 & 12 & 2.56 & <10 & 0.43 & 88 & \(\checkmark\) & 0.01 & 10 & 160 & 14 & \(\leqslant\) & 20 & 5 & 0.24 & <10 & 118 & <10 & 4 & 25 \\
\hline 323 & L4+00W-0+60 & N & \(<5\) & < 2 & 1.08 & \(<5\) & 50 & 30 & 0.13 & 1 & 11 & 33 & 9 & 8.88 & \(<10\) & 0.14 & 48 & \(<1\) & <. 01 & 7 & 80 & 12 & \(<\) & 20 & 6 & 0.30 & 20 & 395 & <10 & <1 & 28 \\
\hline 324 & L4+00W- \(0+90\) & N & \(\leqslant\) & \(<2\) & 0.49 & \(\leqslant\) & 10 & 15 & 0.11 & \(<1\) & 7 & 24 & 4 & 1.20 & \(<10\) & 0.35 & 79 & \(\leqslant\) & <. 01 & 10 & 50 & 8 & 5 & 20 & 4 & 0.23 & <10 & 98 & < 10 & 3 & 18 \\
\hline 325 & L4+00W-1+00 & N & \(<\) & \(<2\) & 3.95 & \(<5\) & 50 & 30 & 0.10 & \(<1\) & 12 & 47 & 19 & 9.30 & \(<10\) & 0.06 & 40 & \(<1\) & 0.01 & 4 & 240 & 22 & \(<\) & 20 & 5 & 0.41 & 30 & 181 & -10 & \(<1\) & 20 \\
\hline 326 & 14+20W-0+00 & & 5 & \(<2\) & 0.45 & \(\leqslant 5\) & 20 & 10 & 0.04 & \(<1\) & 4 & 7 & 4 & 1.65 & <10 & 0.02 & 27 & 11 & < 01 & 1 & 10 & 10 & 5 & 20 & 2 & 0.19 & - & 163 & \(<10\) & 2 & 18 \\
\hline 327 & L4+20W- 0+10 & S & \(<\) & \(<2\) & 0.45 & 15 & 25 & 15 & 0.02 & <1 & 6 & & 8 & 4.37 & <10 & < 0.01 & 19 & 27 & < 01 & 6 & 20 & B & 5 & 20 & \(<1\) & 0.17 & <10 & 305 & <10 & <1 & 36 \\
\hline 328 & L4+20W-0+20 & S & \(<5\) & \(<2\) & 0.42 & 5 & 15 & < & 0.05 & \(<1\) & 2 & 3 & 3 & 0.32 & <10 & 0.02 & 20 & <1 & <. 01 & <1 & 130 & 14 & \(<5\) & 20 & 4 & 0.08 & <10 & 34 & <0 & 1 & 14 \\
\hline 329 & L4+20W- O+30 & S & \(<5\) & \(<.2\) & 0.29 & \(<\) & 5 & \(<\) & 0.03 & <1 & \(<1\) & 3 & 2 & 0.19 & <10 & 0.03 & 16 & <1 & < 01 & \(<1\) & 100 & 8 & 4 & 20 & 5 & 0.04 & <10 & 18 & \(<10\) & 1 & 4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Etit. & Tag \# & & Au(ppb) & Ag & Al \% & As & Ba & Bi & Ca\% & Cd & Co & Cr & Cu & \(\mathrm{Fe} \%\) & La & Mg\% & Mn & Mo & \(\mathrm{Na} \%\) & NI & \(p\) & Pb & Sb & Sn & Sr & 71\% & U & V & W & \(Y\) & Zn \\
\hline \multicolumn{32}{|l|}{gCmata:} \\
\hline Repeat & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline 1 & L0+00- \(0+40\) & S & \(<5\) & \(<2\) & 4.88 & 5 & 15 & 5 & 0.11 & \(<1\) & 6 & 38 & 18 & 291 & <10 & 0.12 & 49 & <1 & 0.01 & 6 & 500 & 30 & \(<5\) & \(<20\) & 6 & 0.10 & <10 & 131 & \(<10\) & 4 & 26 \\
\hline 10 & 10+00-0+30 & N & < & \(<2\) & 0.71 & \(<5\) & 15 & \(<5\) & 0.04 & <1 & 1 & 15 & 16 & 0.82 & <10 & 0.05 & 19 & 2 & < 01 & 2 & 220 & 16 & < & \(<20\) & 6 & 0.04 & <10 & 30 & <10 & <1 & 25 \\
\hline 19 & LO+20E- \(0+30\) & N & 5 & \(<2\) & 1.17 & \(<5\) & 20 & 5 & 0.17 & \(<1\) & 4 & 19 & 11 & 1.02 & <10 & 0.11 & 66 & \(<1\) & < 01 & 3 & 100 & 22 & \(\leq\) & \(<20\) & 11 & 0.16 & <10 & 79 & 40 & 2 & 37 \\
\hline 28 & LO+20E- \(0+30\) & S & 5 & \(<.2\) & 3.59 & \(<5\) & 25 & 20 & 0.04 & <1 & 10 & 36 & 21 & 8.09 & \(<10\) & 0.16 & 84 & 3 & <. 01 & 5 & 130 & 24 & \(<5\) & \(<20\) & \(<1\) & 0.21 & <10 & 209 & 40 & <1 & 46 \\
\hline 36 & LO+40E- \(0+10\) & N & 5 & \(<2\) & 1.23 & \(<5\) & 10 & \(\leqslant\) & 0.06 & <1 & 3 & 23 & 8 & 0.80 & \(<10\) & 0.10 & 30 & <1 & <. 01 & 3 & 140 & 10 & \(<5\) & \(<20\) & 5 & 0.08 & <10 & 64 & <10 & 1 & 11 \\
\hline 45 & LO+40E- 0+10 & S & 5 & \(<.2\) & 0.79 & \(<5\) & 15 & \(<5\) & 0.04 & \(<1\) & 2 & 14 & 3 & 1.08 & <10 & 0.35 & 90 & <1 & < 01 & 2 & 130 & 14 & 5 & \(<20\) & 4 & 0.06 & <10 & 49 & \(<10\) & <1 & 26 \\
\hline 54 & LO + 40E- \(1+00\) & S & 5 & \(<2\) & 1.31 & \(\leq\) & 30 & 20 & 0.09 & \(<1\) & 9 & 32 & 12 & 5.99 & <10 & 0.11 & 52 & \(<\) & <. 01 & 6 & 90 & 52 & \(\leqslant\) & 20 & 5 & 0.22 & <10 & 165 & <10 & <1 & 47 \\
\hline 5 & LOTGRE-0+80 & i & 5 & \(<2\) & 1.79 & 4 & 20 & \(\leftrightarrows\) & 0.11 & < & 5 & 33 & io & 217 & <10 & 0.25 & 75 & <1 & 0.00 & \(\overline{9}\) & 200 & 14 & 5 & <20 & 7 & 0.08 & <10 & 147 & <10 & 2 & 51 \\
\hline 71 & LO+60E- 0+70 & S & 105 & 3.4 & 3.90 & \(<\) & \(\omega\) & 25 & 0.14 & 2 & 217 & 53 & 42 & 14.10 & <10 & < 01 & >10000 & 11 & \(<.01\) & 6 & 480 & 3626 & \(\leqslant\) & \(<2\) & 6 & 0.13 & <10 & 215 & <10 & <1 & 106 \\
\hline 80 & L0+80E- \(0+00\) & S & 5 & \(<.2\) & 0.29 & 5 & 10 & 5 & 0.10 & \(<1\) & 3 & 15 & 6 & 1.05 & < 10 & 0.04 & 36 & <1 & 0.02 & 3 & 60 & 6 & \(\leqslant\) & \(=20\) & 3 & 0.08 & <10 & 57 & <10 & <1 & 29 \\
\hline 89 & LO+20W- \(0+20\) & N & \(<5\) & \(<.2\) & 1.29 & \(<5\) & 20 & 10 & 0.04 & \(<1\) & 5 & 16 & 7 & 296 & <10 & 0.02 & 23 & 2 & <. 01 & 4 & 80 & 30 & < 5 & \(<20\) & 4 & 0.15 & <10 & 137 & \(<10\) & \(<1\) & 42 \\
\hline 106 & L0+40W- \(0+00\) & BL & . & 1.0 & 4.79 & 5 & 35 & 15 & 0.19 & <1 & 12 & 43 & 31 & 5.24 & \(<10\) & 0.36 & 128 & 1 & 0.02 & 20 & 450 & 90 & \(<5\) & \(<20\) & 11 & 0.15 & <10 & 139 & \(<10\) & 4 & 244 \\
\hline 115 & L0+40W-1+00 & N & - & < 2 & 1.61 & \(\leqslant\) & 10 & 5 & 0.09 & <1 & 3 & 27 & 12 & 0.53 & <10 & 0.12 & 45 & <1 & <. 01 & 4 & 200 & 12 & \(\leqslant\) & \(<20\) & 4 & 0.06 & \(<10\) & 31 & <10 & 3 & 33 \\
\hline 124 & LO \(+40 \mathrm{~N}-1+00\) & S & >1000 & 7.0 & 1.45 & 35 & 35 & 15 & 0.09 & <1 & 9 & 18 & 17 & 2.77 & <10 & 0.27 & 69 & <1 & <. 01 & 9 & 70 & 164 & \(<5\) & \(<20\) & 5 & 0.31 & <<0 & 148 & <10 & 3 & 81 \\
\hline 133 & L0+60W- \(0+10\) & s & 5 & \(<2\) & 3.69 & 5 & 65 & 30 & 0.06 & 1 & 11 & 47 & 18 & 9.09 & <10 & 0.26 & 102 & 10 & <. 01 & 16 & 140 & 56 & 5 & \(<20\) & 6 & 0.27 & <10 & 267 & <10 & <1 & 306 \\
\hline 141 & L0+60W - \(0+00\) & S & 5 & \(<2\) & 3.54 & 4 & 60 & 30 & 0.26 & <1 & 20 & 53 & 19 & 7.60 & <10 & 0.31 & 237 & \(<1\) & 0.01 & 12 & 240 & 48 & \(<5\) & \(<20\) & B & 0.30 & \(<10\) & 194 & <10 & 5 & 60 \\
\hline 150 & L0+80W - \(0+80\) & N & 5 & < 2 & 0.44 & \(<5\) & \(<5\) & 10 & 0.11 & <1 & 6 & 14 & 2 & 0.61 & \(<10\) & 0.12 & 62 & \(<1\) & <. 01 & 4 & 20 & 8 & 4 & \(<20\) & 2 & 0.26 & <10 & 112 & <10 & & 日 \\
\hline 159 & L0+80W - \(0+70\) & S & < & \(<2\) & > 15 & 10 & 25 & 10 & 0.10 & <1 & 7 & 58 & 14 & 4.26 & <0 & 0.09 & 46 & <1 & 0.02 & 4 & 270 & \(<2\) & 5 & \(<20\) & 7 & 0.15 & <10 & 127 & <10 & 3 & 25 \\
\hline 168 & LO+80W-0+60 & N & \(<5\) & \(<2\) & 4.43 & 5 & 30 & 20 & 0.11 & <1 & 11 & 74 & 19 & 6.36 & <10 & 0.08 & 37 & <1 & \(<.01\) & 4 & 120 & 26 & \(\leqslant\) & \(<20\) & 3 & 0.38 & <10 & 242 & <10 & , & 29 \\
\hline 176 & LO+80W- \(0+40\) & S & 5 & \(<2\) & 0.44 & 5 & 5 & 5 & 0.06 & \(<1\) & 3 & 8 & 2 & 0.40 & \(<10\) & 0.07 & 49 & <1 & <. 01 & \(<1\) & 80 & 8 & \(<5\) & \(<20\) & 4 & 0.12 & \(<10\) & 27 & \(<10\) & 3 & 16 \\
\hline 185 & L1+00E- \(0+30\) & N & 5 & \(<2\) & 5.19 & 10 & 30 & 10 & 0.23 & \(<1\) & 16 & 38 & 22 & 3.08 & <10 & 0.23 & 510 & 3 & 0.02 & 13 & 750 & 30 & \(<5\) & \(<20\) & 11 & 0.10 & <10 & 97 & <10 & 6 & 71 \\
\hline 194 & L1+00E-0+70 & S & 20 & \(<2\) & 1.53 & \(<\) & 55 & 15 & 0.27 & \(<1\) & 8 & 37 & 18 & 245 & \(<10\) & 0.42 & 132 & <1 & <. 01 & 8 & 270 & 316 & \(<\) & \(<20\) & B & 0.25 & <10 & 99 & <10 & 9 & 94 \\
\hline 203 & \(12+00 \mathrm{E}-0+70\) & N & < & < 2 & 4.53 & 15 & 20 & 5 & 0.26 & <1 & 5 & 44 & 22 & 1.41 & <0 & 0.16 & 60 & <1 & 0.02 & 7 & 830 & 29 & 5 & \(<20\) & 10 & 0.09 & \(<10\) & 84 & \(<10\) & 8 & 27 \\
\hline 211 & L2+00E- \(0+50\) & S & \(<\) & \(<2\) & 0.32 & 5 & 15 & 10 & 0.06 & <1 & 3 & 13 & 2 & 0.66 & \(<10\) & D.03 & 17 & \(<1\) & <. 01 & \(<1\) & 80 & 30 & <5 & \(<20\) & 6 & 0.19 & \(<10\) & 29 & \(<10\) & 5 & 10 \\
\hline 220 & L2+80W - \(0+40\) & N & \(<5\) & < 2 & 0.61 & < & 10 & 5 & 0.09 & \(<1\) & 3 & 17 & 5 & 0.41 & <10 & 0.08 & 27 & \(\leqslant\) & \(<.01\) & 2 & 140 & 14 & \(<5\) & \(<20\) & 4 & 0.12 & \(<10\) & 32 & \(<10\) & 4 & 17 \\
\hline 229 & L2480W-0+50 & S & \(<\) & \(<2\) & 0.64 & 35 & 20 & 15 & 0.06 & <1 & 5 & 8 & 3 & 0.59 & <10 & 0.07 & 44 & <1 & < 01 & \(<1\) & 40 & 40 & \(\leq\) & \(<20\) & 5 & 0.29 & <10 & 93 & \(<10\) & 7 & 11 \\
\hline 238 & L3+00W-0+70 & N & \(<5\) & < 2 & 4.97 & 15 & 15 & 5 & 0.09 & <1 & 4 & 54 & 13 & 1.37 & \(<10\) & 0.09 & 37 & \(<1\) & 0.01 & 3 & 340 & 28 & \(\leqslant\) & 40 & 7 & 0.14 & <10 & 64 & <10 & 6 & 19 \\
\hline 246 & L3+20W- 0+70 & N & < & \(<2\) & 1.03 & 5 & 15 & \(<\) & 0.15 & <1 & 4 & 21 & 8 & 0.67 & \(<10\) & 0.19 & 56 & <1 & 0.01 & 6 & 250 & 10 & \(\leqslant\) & \(<20\) & 6 & 0.06 & \(<10\) & 30 & <10 & 3 & 22 \\
\hline 255 & L3+20W- \(0+80\) & s & \(<5\) & < 2 & 1.33 & \(<5\) & 15 & 10 & 0. 20 & <1 & 5 & 22 & 7 & 0.66 & \(<10\) & 0.11 & 51 & <1 & 0.01 & 3 & 160 & 14 & < & \(<20\) & 6 & 0.18 & <10 & 39 & <10 & 7 & 25 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Et \({ }^{\text {\% }}\) & Teg* & & Au(ppb) & Ag & A) \% & As & Ba & 8 & Ca\% & Cd & Co & Cr & Cu & \(\mathrm{Fe} \%\) & & \(\mathrm{Mg} \%\) & Mn & Mo & \(\mathrm{Na} \%\) & Ni & P & Pb & Sb & Sn & Sr & \(\pi \%\) & U & \(v\) & W & \(Y\) & Zn \\
\hline \multicolumn{32}{|l|}{gCmata:} \\
\hline Repeat & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline 284 & L3+40W- 0+60 & & 5 & < 2 & 0.33 & \(<5\) & 5 & 10 & 0.09 & \(<1\) & 4 & 16 & 5 & 0.56 & <10 & 0.05 & 34 & <1 & < 01 & 2 & 160 & 10 & <5 & \(<20\) & 4 & 0.20 & <10 & 65 & <10 & 4 & 17 \\
\hline 273 & L3+40W-0+70 S & & 5 & < 2 & 0.43 & \(<\) & 10 & 5 & 0.19 & \(<1\) & 3 & 8 & 17 & 0.63 & <10 & 0.14 & 62 & <1 & 0.02 & 3 & 290 & 14 & \(\leqslant\) & 20 & 6 & 0.10 & <10 & 43 & <10 & 2 & 56 \\
\hline 281 & L3+60WV-0+40 & & 50 & < 2 & 5.23 & 35 & 35 & 20 & 0.11 & <1 & 14 & 136 & 30 & 5.36 & <10 & 0.53 & 139 & <1 & 0.01 & 24 & 190 & 36 & \(<\) & 20 & 5 & 0.27 & \(<10\) & 140 & <10 & 4 & 38 \\
\hline 290 & L3+6OW- \(0+40 \mathrm{~S}\) & & < & <. 2 & 254 & 5 & 60 & 35 & 0.07 & 1 & 12 & 41 & 11 & 11.40 & <10 & 0.03 & 76 & 2 & <. 01 & 3 & 110 & 16 & \(<5\) & \(<20\) & 4 & 0.31 & 30 & 263 & <0 & <1 & 35 \\
\hline 299 & L3+BOW- \(0+20 \mathrm{~N}\) & & 5 & \(<2\) & 1.03 & \(<5\) & 25 & 20 & 0.09 & 1 & 8 & 31 & 7 & 4.23 & <10 & 0.09 & 41 & \(<1\) & <. 01 & 5 & 60 & 10 & 5 & 20 & 3 & 0.24 & \(<10\) & 195 & <10 & 2 & 23 \\
\hline 308 & L3+BCW- 0+10 & & 5 & \(<2\) & 3.42 & 30 & 60 & 30 & 0.07 & 1 & 14 & 23 & 21 & 7.72 & <10 & 0.04 & 64 & 25 & <. 81 & 20 & 110 & 26 & \(<5\) & \(<20\) & 6 & 0.42 & 20 & 226 & \(<10\) & 1 & 121 \\
\hline 316 & L4+00N- \(0+10 \mathrm{~N}\) & & 5 & \(<.2\) & 0.25 & \(\leqslant\) & 10 & \(<5\) & 0.03 & \(<1\) & <1 & \(<1\) & 1 & 0.27 & <10 & 0.03 & 33 & \(<1\) & <. 01 & \(<1\) & 110 & 6 & 4 & 20 & 4 & 0.05 & <10 & 9 & <10 & <1 & 10 \\
\hline 325 & L4+CON-1+0 : & & -5 & . & - & - & . & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & . & . & . & - & - \\
\hline \multicolumn{32}{|l|}{standard:} \\
\hline GEO'95 & & & 150 & 1.0 & 1.62 & 65 & 155 & \(\leqslant\) & 1.70 & <1 & 17 & 56 & 76 & 3.98 & \(<10\) & 0.87 & 675 & 2 & 0.01 & 24 & 690 & 20 & \(<5\) & 20 & 51 & 0.09 & <10 & 76 & \(<10\) & 3 & 75 \\
\hline GEO'95 & & & 145 & 1.0 & 1.78 & 65 & 155 & 5 & 1.86 & <1 & 19 & 67 & 74 & 3.65 & <10 & 1.01 & 700 & \(<1\) & 0.01 & 25 & 660 & 20 & \(<5\) & <20 & 59 & 0.10 & <10 & 80 & <10 & 5 & 70 \\
\hline GEO'SS & & & 150 & 1.0 & 1.79 & 65 & 150 & 4 & 1.06 & <1 & 20 & 66 & 74 & 3.89 & \(<10\) & 1.00 & 700 & \(<1\) & 0.02 & 24 & 670 & 20 & 5 & \(<20\) & 58 & 0.09 & \(<10\) & 78 & \(<10\) & 6 & 71 \\
\hline GEO'95 & & & 150 & 1.0 & 1.82 & 65 & 155 & 5 & 1.87 & \(<1\) & 17 & 66 & 75 & 3.76 & \(<10\) & 1.01 & 643 & \(<1\) & 0.02 & 25 & 660 & 40 & 5 & \(<20\) & 58 & 0.10 & \(<10\) & 73 & \(<10\) & 5 & 77 \\
\hline GEO'95 & & & 150 & 1.0 & 1.70 & 70 & 170 & 5 & 1.73 & <1 & 18 & 66 & 81 & 3.93 & \(<10\) & 1.91 & 685 & \(<1\) & 0.02 & 27 & 710 & 24 & \(<5\) & \(<20\) & 59 & 0.11 & <10 & 76 & \(<10\) & 6 & 75 \\
\hline GEO'95 & & & 150 & 1.0 & 1.79 & 65 & 155 & \(<\) & 1.83 & -1 & 18 & 57 & 76 & 3.76 & <10 & 1.00 & 647 & \(<1\) & 0.02 & 24 & 730 & 22 & 5 & \(<20\) & 54 & 0.11 & <10 & 72 & <10 & 7 & 75 \\
\hline GEO'9S & & & 150 & 4.2 & 1.71 & 65 & 155 & \(\leqslant\) & 1.82 & <1 & 18 & 60 & 77 & 3.85 & <10 & 1.01 & 657 & \(<1\) & 0.02 & 25 & 710 & 20 & < & \(<20\) & 55 & 0.12 & <10 & 75 & <10 & 7 & 76 \\
\hline GEO'9S & & & 150 & 1.0 & 1.81 & 70 & 155 & 10 & 1.79 & <1 & 18 & 58 & 76 & 3.82 & <10 & 0.96 & 649 & 4 & 0.02 & 23 & 700 & 22 & < & \(<20\) & 55 & 0.11 & \(<10\) & 75 & \(<10\) & 6 & 76 \\
\hline GEO'S & & & 150 & 1.2 & 1.70 & 70 & 160 & 4 & 1.76 & <1 & 18 & 60 & 78 & 3.58 & <10 & 0.95 & 678 & \(<1\) & 0.02 & 22 & 720 & 22 & 5 & \(<20\) & 58 & 0.12 & \(<10\) & 78 & \(<10\) & 5 & 78 \\
\hline GEO'9S & & & - & 1.2 & 1.82 & 65 & 155 & \(<\) & 1.90 & \(<1\) & 18 & 59 & 77 & 3.85 & \(<10\) & 0.90 & 660 & \(<1\) & 0.02 & 24 & 730 & 22 & \(<5\) & \(<20\) & 54 & 0.11 & <10 & 74 & \(<10\) & 6 & 76 \\
\hline
\end{tabular}



\section*{APPENDIX IV}

1995 Geochemical soil survey plots and geostatistics

EW Grove Consultants:
GEMCOM Services PCX_404: DB=C: \(\backslash P X D B N Q \backslash R E P O R T S\)
Victoria Office :Extraction File : C: \PXDBNQ \(\backslash E X T R A C T \backslash S A U P P B . M E X\)
Data Description : NQ SOIL GEOCHEM - GOLD (PPB)
Minimum Cutoff Value ..... 5.000000Maximum Cutoff Value445.000100
Number of Samples \(<=0\) ..... 0
Total Number of Samples Used ..... 329
Minimum Histogram Value5.000000
Maximum Histogram Value ..... 445.000100
Number of Class14.666700
Class Interval5.000000\(\begin{array}{ll}\text { Minimum Population Data point } & 5.000000 \\ \text { Maximum Population Data point } & 445.000000\end{array}\)445.000000Total Population329
Ungrouped DataMeanMedianGeometric MeanNatural LOG MeanStandard Deviation
Variance
Log Variance
Coefficient of Variation
Moment 2 about Arithmetic Mean14.148936
N/A
6.1846811.822076
\[
43.832775
\]
\[
1921.312165
\]
\[
0.631827
\]
\[
3.097956
\]
Moment 1 about Arithmetic Mean
\[
\begin{array}{ll}
3.091950 & 2.012110 \\
0.000000 & 0.000000
\end{array}
\]
\[
1921.312165 \quad 1783.406626
\]
Moment 3 about Arithmetic Mean
\[
543911.413450 \quad 494358.452873
\]
Moment 4 about Arithmetic Mean
\[
187428570.798956 \quad 165263069.854657
\]
Moment Coefficient of Skewness
\[
50.773830 \quad 51.960709
\]
Moment Coefficient of Kurtosis





SOLAIA VENTURES INC. - NUGGET QUEEN PROPERTY SEYMOUR INLET AREA, VANCOUVER MINING DIVISION 1995 GECCHEHTCAL SOIL SUUVEV - SIIVEA (PPM)
SCALE (HOR) :2000 SCALE (VERT) 1:2000 ANOMALOUS SILVER VALUES \(\Rightarrow 1\) PPM (LARGE DOT)

Extraction File : C: \PXDBNQ \(\backslash\) EXTRACT \(\backslash\) SAGPPM.MEX
Data Description : NQ SOIL GEOCHEM - AG (PPM)

Minimum Cutoff Value
0.200000

Maximum Cutoff Value
Number of Samples <=0
Total Number of Samples Used
Minimum Histogram Value
Maximum Histogram Value
Number of Class
Class Interval
Minimum Population Data point
Maximum Population Data point Total Population

Mean
Median
Geometric Mean
Natural LOG Mean
Standard Deviation
Variance
Log Variance
Coefficient of Variation
Moment 1 about Arithmetic Mean
Moment 2 about Arithmetic Mean
Moment 3 about Arithmetic Mean
Moment 4 about Arithmetic Mean
Moment Coefficient of Skewness
Moment Coefficient of Kurtosis
0.200000
4.400100

\section*{30}
0.140000
0.200000
4.400000
329
4.400000
329
4.400100

0
329

Ungrouped Data Grouped Data
\begin{tabular}{rr}
0.253495 & 0.318936 \\
\(\mathrm{~N} / \mathrm{A}\) & 0.273814 \\
0.215568 & 0.286341 \\
-1.534481 & -1.250571 \\
0.354984 & 0.339331 \\
0.126014 & 0.115146 \\
0.137082 & 0.097004 \\
1.400356 & 1.063947 \\
0.000000 & 0.000000 \\
0.126014 & 0.115146 \\
0.395672 & 0.352901 \\
1.397767 & 1.207868 \\
88.023740 & 91.101246 \\
8.845231 & 9.031957
\end{tabular}

Normal Histogram Na SOIL GEOCHEM - AG (PPM)



```
EW Grove Consultants
Victoria Office :
```
GEMCOM Services PCX_404: DB=C: \(\backslash P X D B N Q \backslash R E P O R T S\)
:

Extraction File : C: \PXDBNQ \(\operatorname{EXTRACT} \backslash\) SCUPPM.MEX
Data Description : NQ SOIL GEOCHEM - CU (PPM)

Minimum Cutoff Value
1.000000

Maximum Cutoff Value 169.000100

Number of Samples \(<=0\) 0
Total Number of Samples Used 329

Minimum Histogram Value
1.000000

Maximum Histogram Value 169.000100

Number of Class 30
Class Interval
5.600000

Minimum Population Data point Maximum Population Data point Total Population

\section*{Mean}

Median
Geometric Mean
Natural LOG Mean
Standard Deviation
Variance
Log Variance
Coefficient of Variation
Moment 1 about Arithmetic Mean
Moment 2 about Arithmetic Mean
Moment 3 about Arithmetic Mean Moment 4 about Arithmetic Mean Moment Coefficient of Skewness Moment Coefficient of Kurtosis

Ungrouped Data 14.389058

N/A
9.726179
2.274821
15.832347
250.663224
0.803026
1.100305
0.000000
250.663224
17497.087986
2151413.179807
34.240696
4.408896

Grouped Data
14.625532
10.439175
10.330045
2.335057
15.671392
245.592540
0.647321
1.071509
0.000000
245.592540
16642.936385
1995118.917100
33.077939
4.324214




Extraction File : C:\PXDBNQ \({ }^{\text {EXTRACT } \backslash \text { SPBPPM.MEX }}\)
Data Description : NQ SOIL GEOCHEM - PB (PPM)

Minimum Cutoff Value
Maximum Cutoff Value
Number of Samples <=0
Total Number of Samples Used
Minimum Histogram Value
Maximum Histogram Value
Number of Class
Class Interval
Minimum Population Data point
Maximum Population Data point
Total Population

Mean
Median
Geometric Mean
Natural LOG Mean
Standard Deviation
Variance
Log Variance
Coefficient of Variation
Moment 1 about Arithmetic Mean
Moment 2 about Arithmetic Mean
Moment 3 about Arithmetic Mean
Moment 4 about Arithmetic Mean
Moment Coefficient of Skewness
Moment Coefficient of Kurtosis
\begin{tabular}{rr}
2.000000 \\
650.000000 \\
0 & \\
328 \\
2.000000 \\
650.000000 \\
30 & \\
21.600000 & \\
2.000000 & \\
3604.000000 & \\
329 & \\
& \\
Ungrouped Data & \\
27.164634 & 28.341463 \\
\(\mathrm{~N} / \mathrm{A}\) & 18.028959 \\
17.789851 & 19.530870 \\
2.878628 & 2.971996 \\
47.715848 & 47.440237 \\
2276.802164 & 2250.576086 \\
0.605577 & 0.477662 \\
1.756543 & 1.673881 \\
0.000000 & 0.000000 \\
2276.802164 & 2250.576086 \\
875572.446908 & 862890.346050 \\
467635733.217279 & 461380071.177001 \\
90.210502 & 91.090153 \\
8.059427 & 8.081930
\end{tabular}
2.000000

0
328
2.000000

30
21.600000
2.000000

329

Normal Histogram
NQ SOIL GEOCHEM - PB (PPM)

E. W. Grove Consultants Ltd.



Extraction File : C: \PXDBNQ \(\backslash\) EXTRACT \(\backslash\) SZNPPM.MEX
Data Description : NQ SOIL GEOCHEM - ZN (PPM)
\begin{tabular}{lr} 
Minimum Cutoff Value & 4.000000 \\
Maximum Cutoff Value & 352.000100 \\
Number of Samples <=0 & 0 \\
Total Number of Samples Used & 329 \\
& \\
Minimum Histogram Value & 4.000000 \\
Maximum Histogram Value & 352.000100 \\
\begin{tabular}{l} 
Number of Class \\
Class Interval
\end{tabular} & 30 \\
\begin{tabular}{l} 
Minimum Population Data point \\
Maximum Population Data point \\
Total Population
\end{tabular} & 4.600000 \\
\end{tabular}

Mean
Median
Geometric Mean
Natural LOG Mean
Standard Deviation
Variance
Log Variance
Coefficient of Variation
Moment 1 about Arithmetic Mean
Moment 2 about Arithmetic Mean
Moment 3 about Arithmetic Mean
Moment 4 about Arithmetic Mean
Moment Coefficient of Skewness
Moment Coefficient of Kurtosis

Ungrouped Data 43.136778

N/A
32.405246
3.478320
41.517742 1723.722933
0.520088
0.962467
0.000000
1723.722933
245815.342134
57793548.59591454435665 .159714
19.451112
3.434850

Grouped Data 43.083891 30.825000 32.199564
3.471953
41.205604
1697.901777
0.537421
0.956404
0.000000
1697.901777
235052.336154
18.882453
3.359663

\title{
Normal Histogram NQ SOIL GEOCHEM - ZN (PPM)
}




Extraction File : C: \PXDBNQ \({ }^{\text {EXTRACT } \backslash \text { SASPPM.MEX }}\) Data Description : NQ SOIL GEOCHEM - AS (PPM)

Minimum Cutoff Value
5.000000

Maximum Cutoff Value
65.000100

Number of Samples \(<=0\)
Total Number of Samples Used 329

Minimum Histogram Value
5.000000

Maximum Histogram Value
Number of Class
65.000100
2.000000
5.000000

Minimum Population Data point Maximum Population Data point Total Population
65.000000 329
\begin{tabular}{rr} 
Ungrouped Data & \multicolumn{1}{c}{ Grouped Data } \\
7.462006 & 8.328267 \\
\(\mathrm{~N} / \mathrm{A}\) & 6.227612 \\
6.172952 & 7.180242 \\
1.820177 & 1.971333 \\
7.387613 & 7.224693 \\
54.576824 & 52.196192 \\
0.246097 & 0.193513 \\
0.990030 & 0.867491 \\
0.000000 & 0.000000 \\
54.576824 & 52.196192 \\
1806.895210 & 1728.938589 \\
79655.899098 & 74924.667705 \\
26.742464 & 27.500918 \\
4.481471 & 4.584810
\end{tabular}

Normal Histogram



ADDENDUM

GEOPHYSICAL REPORT

ON

\section*{VLF-EM AND MAGNETIC SURVEYS}

OVER THE

\section*{NUGGET QUEEN PROPERTY}

SEYMOUR INLET AREA
VANCOIVER M. D., BRITISH COLUMBIA

SURVEY PERIOD
WRITTEN FOR

WRITTEN BY

DATED

November 1 to 11,1995

SOLAIA VENTURES INC.
Vancouver. British Columbia

David G. Mark, P.Geo..
Geophysicist
GEOTRONICS SURVEYS LTD.
Vancouver, British Columbia

February 2, 1996

ADDENDUM

GEOPHYSICAL REPORT

\section*{ON}

VLF-EM AND MAGNETIC SURVEYS
OVER THE
NUGGET QUEEN PROPERTY
SEYMOUR INLET AREA

VANCOUVER M. D., BRITISH COLUMBIA

SURVEY PERIOD

WRITTEN FOR

WRITTEN BY

DATED

November 1 to 11, 1995

SOLAIA VENTURES INC.
Vancouver, British Columbia

David G. Mark, P.Geo,
Geophysicist
GEOTRONICS SURVEYS LTD.
Vancouver, British Columbia

February 2, 1996

\section*{TABLE OF CONTENTS}
SUMMARY ..... i
CONCLUSIONS ..... ii
RECOMMENDATIONS ..... iii
INTRODUCTION AND GENERAL REMARKS ..... 1
MAGNETOMETER AND VLF-EM SURVEYS ..... 2
(l) Instrumentation ..... 2
(2) Theory ..... 2
(3) Survey Procedure. ..... 3
(t) Compilation of Data ..... 3
DISCUSSION OF RESULTS ..... 4
(I) Magnetics ..... \(+\)
(2) \(V L F-E M\) ..... 5
REFERENCES ..... 7
GEOPHYSICIST'S CERTIFICATE ..... 8
\begin{tabular}{|c|c|c|}
\hline & & \\
\hline & Scale & Map\＃ \\
\hline Magnetic Survey & & \\
\hline Contour Plan & 1：1000 & NQ－1 \\
\hline Profile Plan & 1：1000 & NQ－2 \\
\hline VLF－EM Survey & & \\
\hline Fraser Filter Contour Plan & 1：1000 & NQ－3 \\
\hline Tilt Angle and Quadrature Profile Plan & 1：1000 & NQ－4 \\
\hline
\end{tabular}

Fraser Filter
Contour Plan \(\quad 1: 1000\) NQ－3
Tilt Angle and Quadrature
Profile Plan
1：1000
NQ－4

\section*{SUMMARY}

VLF-EM and magnetic surveys were carried out over the Nugget Queen Property belonging to Solaia Ventures Inc. The property is located in the Seymour Inlet area on the B.C. mainland about 35 km northeast of the town of Port Hardy.

The surveys were carried out using a Scintrex/EDA Omni-Plus proton precession magnetometer/VLF-EM unit. readings were taken every 10 m with a line spacing of 20 or 50 meters for a total survey length of 4,360 meters on 22 lines for the magnetic survey and 3,760 meters on 19 lines for the VLF-EM survey. The results were displayed as follows: (1) the magnetic survey data were plotted and contoured on a base map, (2) the VLF-EM survey Fraser-filtered tilt-angle data were plotted and contoured on a second base map, and (3) the VLF-EM survey raw tilt-angle and quadrature data were each profiled on a third base map.

The purpose of the work was to determine the correlation of the 2 geophysical surveys with the known mineralization, and if they correlate, locate additional mineralization. A secondary purpose was to aid in the geological mapping of the property.

\section*{CONCLUSIONS}
1. The VLF-EM survey revealed two strong consistent conductors, labeled A and B, striking subparallel to the base line, each with a minimum strike length of 600 meters.
2. Conductor A correlates directly with veins 5 and 6 and their associated shear zones as well as the correlating soil geochemistry anomalies. The causative source(s) therefore is very likely the shear zone(s). Conductor A indicates that veins 5 and 6 may be one and the same or that each has a much greater strike length.
3. Conductor B correlates with a strong soil geochemistry anomaly with which there is no known mineralization. The suggested causative source is therefore a shear zone that contains a quartz vein mineralized with base metal sulphides containing values in gold and silver.
4. A broad magnetic high of low amplitude correlates with veins 5 and 6 and with the associated conductor A. It may be reflecting an intrusive such as a dyke or a volcanic rock-type interbedded with the metasediments. No such feature correlates with conductor B.
5. The magnetic survey also revealed 2 magnetic highs, one along the southwestern part of the grid area and one along the northeastern edge of the grid area. These highs are very likely reflecting volcanics such as that which has been mapped around vein 3.

\section*{RECOMMENDATIONS}

The results from the magnetic and VLF-EM surveys are very positive and thus should be extended in all directions, especially to the northwest and to the southeast. This also holds true for the soil geochemistry survey.

An IP/resistivity survey would probably prove very useful as well. The IP survey should reflect the sulphides and therefore would more accurately determine the location of the mineralization, wherever it is unknown. This would include extensions of veins 5 and 6 as well as the causative source of conductor B and its associated soil geochemistry anomaly. The electrode spacing should be kept small, such as 10 to 15 meters, and should be done to a depth penetration of 6 separations.

\section*{ADDENDUM}

\section*{GEOPHYSICAL REPORT}

ON

\section*{VLF-EM AND MAGNETIC SURVEYS}

OVER THE

\section*{NUGGET QUEEN PROPERTY}

SEYMOUR INLET AREA

\section*{VANCOUVER M. D., BRITISH COLUMBIA}

\section*{INTRODUCTION AND GENERAL REMARKS}

This report discusses the instrumentation, theory, field procedure and results of VLF-EM and magnetic surveys carried out over the Nugget Queen Property located in the Seymour Inlet area on the B.C. mainland 35 km northeast of the town of Port Hardy. The geophysics were carried out from November 1 to 11,1995 , under the direction of the writer. The magnetic and VLF-EM surveys were carried out by Andrew Molnar, field technician with Ashworth Explorations Limited using a combination magnetic/VLF-EM unit. The exploration program was under the field supervision of Fayz Yacoub, P. Geo., of Ashworth Explorations. Mr. Yacoub mapped geology on the property and supplied the writer with geological maps with which to correlate the magnetic and VLF-EM survey results with.

This report is written as an addendum to a geological engineering report currently being prepared by Ted Grove, P.Eng., of EW Grove Consultants. Mr. Grove supplied the writer with a map of the anomalous soil geochemistry results that he prepared for the purpose of correlating the geophysics with.

The purpose in carrying out the magnetic and VLF-EM surveys was to determine their response to the known mineralization and if they responded, then locate additional mineralization. It was also anticipated that the magnetic, and VLF-EM surveys would assist
in the mapping of the bedrock geology. The magnetic survey was expected to map lithology as well as possibly structure. The VLF-EM survey was expected to map geological structure as conductors.

\section*{MAGNETOMETER AND VLF-EM SURVEYS}

\section*{(1) Instrumentation}

Both the magnetic survey and the VLF-EM survey were carried out with a Scintrex/EDA Omni-Plus unit which consists of a proton precession magnetometer and a VLF-EM receiver. It is a memory system capable of storing up to 1,300 readings. This unit was used with a Scintrex/EDA Omni base station unit for the purpose of monitoring the diurnal variation of the magnetic field. The magnetometer part reads directly in gammas the Earth's total magnetic field to an accuracy of \(\pm 0.1\) gamma, over a range of \(18,000-110,000\) gammas. The VLF-EM part can read up to three transmitters at the same time in the 15 to 30 kHz range. For each transmitter station, the readings consist of: (a) the in-phase, (b) the quadrature, (c) the tilt angle, and (d) the field strength. Also the instrument calculates both a 4 -point and a 5 -point Fraser- filter value automatically as the survey progresses. Operating temperature range is \(-40^{\circ}\) to \(+55^{\circ} \mathrm{C}\).

\section*{(2) Theory}

\section*{(a) Magnetics}

Only two commonly occurring minerals are magnetic; magnetite and pyrrhotite. Magnetite is strongly magnetic and pyrrhotite is weakly magnetic with it not being magnetic at all in some cases. Magnetic surveys are therefore used to detect the presence of these minerals in varying concentrations. Magnetics is also useful as a reconnaissance tool for mapping geologic lithology and structure since different rock types have different background amounts of magnetite. Generally, (1) the amount of magnetite within igneous rocks increases as the rock becomes more basic, (2) sedimentary rocks contain little magnetite, and (3) the amount of magnetite within metamorphic rocks depends on the origin of the rock (whether sedimentary or igneous, for example) and the degree of metamorphism that has taken place.

\section*{(b) Electromagnetics}

In all electromagnetic prospecting, a transmitter produces an alternating magnetic field (primary) by a strong alternating current usually through a coil of wire. If a conductive mass such as a sulphide body is within this magnetic field,
a secondary alternating current is induced within it which in turn induces a secondary magnetic field that distorts the primary magnetic field. It is this distortion that the EM receiver measures. The VLF-EM uses a frequency range from 13 to 30 kHz , whereas most EM instruments use frequencies ranging from a few hundred to a few thousand Hz . Because of its relatively high frequency, the VLF-EM can pick up bodies of a much lower conductivity and therefore is more susceptible to clay beds, electrolyte-filled fault or shear zones and porous horizons, graphite, carbonaceous sediments, lithological contacts as well as sulphide bodies of too low a conductivity for other EM methods to pick up. Consequently, the VLF-EM has additional uses in mapping structure and in picking up sulphide bodies of too low a conductivity for conventional EM methods and too small for induced polarization. (In places it can be used instead of IP). However, its susceptibility to lower conductive bodies results in a number of anomalies, many of them difficult to explain and, thus, VLF-EM preferably should not be interpreted without a good geological knowledge of the property and/or other geophysical and geochemical surveys.

\section*{(3) Survey Procedure}

The readings of the earth's total magnetic field as well as the electromagnetic field from 3 transmitter stations; Seattle (Jim Creek) at 24.8 kHz , Annapolis at 21.4 kHz , and Cutler at 24.0 kHz ; were taken at 10 m stations on lines 20 or 50 meters apart running in a \(055^{\circ} \mathrm{E} / 235^{\circ} \mathrm{E}\) direction. The magnetic survey consisted of 4,360 meters on 22 lines and the VLF-EM survey consisted of 3,760 meters on 19 lines.

The diurnal variation of the magnetic field was monitored in the field by a base station which was set up on the property. Each day at the beginning of the surveying, the surveying unit was initialized with the base station unit. The data was then dumped in the evening with the surveying unit interconnected with the base station unit thus enabling the magnetic data to be automatically corrected for diurnal variation.

\section*{(4) Compilation of Data}

The magnetic data were edited, and then plotted and contoured onto a plan map with a scale of \(1: 1,000\) and numbered NQ-1. The contour interval chosen was 250 gammas \((\mathrm{nT})\). Also, profiles of the magnetic data were drawn onto a second plan map numbered NQ-2 at the same scale and at a vertical scale of \(1 \mathrm{~cm}=800 \mathrm{nT}\).

The 4-point Fraser-filtered VLF-EM data from the Annapolis, Maryland transmitter were also edited, and then plotted and contoured onto a plan map at a scale of 1:1,000
and numbered NQ-3. The contour interval chosen was 5 degrees. In addition, the raw tilt angle data and the raw quadrature data were each profiled onto a plan map of the same scale numbered NQ-4 with a vertical scale of \(1 \mathrm{~cm}=15 \%\).

The Seattle data were not usable due to transmitter shutdown and thus are not presented within this report. The Cutler data is not presented since it's transmitter is virtually in the same direction as the Annapolis transmitter and thus it's results are repetitious of the Annapolis results.

All of the above data reduction was carried out using software produced by Geosoft of Toronto, Ontario and modified by Geotronics for its own use.

\section*{DISCUSSION OF RESULTS}

\section*{(1) Magnetics}

The magnetic survey results show a magnetic field that has a wide range running form a low of \(56,170 \mathrm{nT}\) (or gammas) to \(60,000 \mathrm{nT}\) resulting in a spread of almost 4,000 nT . This indicates rock types that contain significant amounts of magnetite such as volcanics which are known to occur in the area.

Much of the survey area is overlain with a thin cover of overburden and thus the geology is not known over wide areas. Most of what has been mapped is metasediments with the only known occurrence of volcanics being near the west showing northwest of the magnetic survey area.

However, the magnetic field over the grid area indicates it is probably underlain by volcanics over a much wider area than the sparse outcroppings would indicate. The grid is underlain by two magnetic highs that trend roughly parallel to the base line, one within the southwestern part of the grid area, and one along the northeastern edge of the grid area. The 2 highs most likely reflect volcanics for the following 2 reasons:
1. The only mapped volcanics occur to the immediate northwest of the southwestern magnetic high.
2. A geology map within Sadlier-Brown's report show volcanics very close to the two magnetic highs.

The correlation of the magnetics with the known mineralization is somewhat interesting. A broad magnetic high of low amplitude correlates with vein 6 and vein 5
which appear to be approximately on strike with each other but are 330 meters apart. The broad magnetic high is fairly continuous between the two veins, but appearing to be broken up by one or two cross faults, and therefore suggests the two are actually the same. Also this high may trend off of the grid in either or both directions suggesting the mineralization may extend in southeasterly and northwesterly directions.

At this point it is unknown what the correlation with the mineralization means but perhaps the mineralization, and/or it's associated shear zone, is associated with an intrusive (dyke?) containing magnetite, or, perhaps, with volcanic interbedding within the metasediments. The intrusive or volcanic interbedding would subparallel the mineralized quartz vein/shear zone and would occur at depth.

Anomalous soil geochemistry values in gold, arsenic, copper, lead, zinc, and silver correlate with the veins 5 and 6 and/or their extensions and therefore correlate also with the broad magnetic high. However, there is no magnetic correlation with a strong soil geochemistry anomaly along the southwestern part of the grid area. There is no known mineralization correlating with the soil anomaly and thus it is indicating a previously undiscovered vein. The reason for the lack of correlating magnetic high is unknown but perhaps the correlating magnetic high with veins 5 and 6 is simply coincidental.

\section*{(2) VLF-EM}

The VLF-EM response consists of 2 strong persistent conductors across the grid area with both subparalleling the base line. They have been labeled by the upper case letters \(A\) and \(B\). Both have a minimum strike length of 600 meters and are open both to the northwest and southeast.

Conductor A occurs northeast of the baseline correlating with veins 5 and 6 and their associated shear zone(s). It is therefore very likely that conductor \(A\) is reflecting the shear zone even though it occurs 10 or 20 meters to the northeast of it (Often VLF-EM conductors are displaced up to 35 meters off of their causative source). Therefore, like the broad magnetic high, anomaly A indicates that veins 5 and 6 could be the same and that they extend over a much greater strike length. However, it must be remembered that even though conductor \(A\) indicates a shear zone of unknown strike length, quartz veining may occur only along segments of it. Nevertheless, conductor A does indicate much greater lengths to the quartz veins.

Since conductor A correlates with veins 5 and 6 , it also correlates with the associated soil geochemistry anomaly and the broad magnetic high of low amplitude. It also appears to be cut by cross faulting in the same places as the magnetic high is.

Conductor B occurs southwest of the baseline and correlates directly with the abovementioned soil geochemistry anomaly with which there is no known correlating minerlization. Because conductor A correlates directly with veins 5 and 6 and the associated shear zone(s), the causative source of conductor B is very likely a shear zone that subparallels the conductor A shear zone. It is therefore very likely that it contains a quartz vein mineralized with base metal sulphides containing values in gold and silver.

The soil anomaly has a minimum strike length of 180 meters, but conductor \(B\) has a minimum strike length of 600 meters. It therefore suggests the causative source of the soil geochemistry anomaly has a greater strike length and/or additional quartz vein mineral zone(s) may occur along its length. Like conductor A , conductor B appears to be broken up by cross faulting.

There is no magnetic correlation with conductor \(B\).

Respectfully submitted, GEOTRONICS SURVEYS LTD.

David G. Mark, P.Geo.,
Geophysicist

\section*{REFERENCES}

Grove, E. W., P. Eng., Map of Soil Geochemical Survey - Anomalies, EW Grove Consultants, January, 1996

Saddlier-Brown, T.L., P.Geo., A Report on a Compilation of Geological and Geophysical Survey Data on the Cherry Claims, Vancouver Mining Division, B.C., Prepared for D. Heyman as a revision of an earlier report dated May 12 1980 , Nevin Sadlier-Brown Goodbrand Ltd., October 18, 1994

Yacoub, Fayz, P.Geo., Geological Maps of the Nugget Queen Property, December, 1995.

Yacoub, Fayz, P.Geo., Personal Communication, January, 1996.

\section*{GEOPHYSICIST'S CERTIFICATE}

I, DAVID G. MARK, of the City of Vancouver, in the Province of British Columbia, do hereby certify that:

I am a Consulting Geophysicist of Geotronics Surveys Ltd., with offices at \#405-535 Howe Street, Vancouver, British Columbia.

I further certify that:
1. I am registered as a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
2. I am a graduate of the University of British Columbia (1968) and hold a B.Sc. degree in Geophysics.
3. I have been practicing my profession for the past 28 years, and have been active in the mining industry for the past 31 years.
4. This report is compiled from data obtained from magnetic, and VLF-EM surveys carried out over the Nugget Queen Property from November 1 to 11, 1995. The surveys were carried out by geophysical technician, Andrew Molnar under my supervision with the general exploration program being under the direction of Fayz Yacoub, P.Geo.
5. I do not hold any interest in Solaia Ventures Inc., nor in the property discussed within this report, nor any other property owned by Solaia Ventures, nor do I expect to receive any interest as a result of writing this report.


David G. Mark, P.Geo.,
Geophysicist
February 2, 1996

OOLOGCCIBRANE
SSESMENTREPOR




MOLOGICRMBRANE
SSESSMENTREPOR

~~~

