

GEOLOGICAL	SUR	(EY	BPANOH
ASSESSM	ENT	REP	ORTS
			and the second

DATE RECEIVED

APR 0 1 1996

REPORT ON

GEOLOGY, GEOPHYSICS AND DIAMOND DRILLING

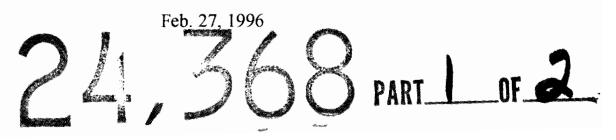
OF THE

HORSEFLY PROPERTY

SKEENA MINING DIVISION

NTS 103H/14

Lat.: 53° 46' N. Long.: 129° 29' W.


BY

Uwe Schmidt, P.Geo.

FILMED

FOR

ATNA RESOURCES LTD.

TABLE OF CONTENTS

1.	SUMMARY 1
2.	INTRODUCTION 2
3.	PROPERTY, LOCATION AND ACCESS 2
4.	PHYSIOGRAPHY 3
5.	HISTORY
	5.1 SUMMARY OF WORK CARRIED OUT IN 1995
6.	REGIONAL GEOLOGY 5
7.	PROPERTY GEOLOGY 6
	7.1 MINERALIZATION
	7.2 STRUCTURE
8.	GEOPHYSICS
9.	DIAMOND DRILLING
	9.1 MINERALIZATION
10.	CONCLUSIONS 13
11.	RECOMMENDATIONS 13
12.	REFERENCES
13.	STATEMENT OF EXPENDITURES

Appendices

Appendix A	Statement of Qualifications
Appendix B	Diamond Drill Core Logs
Appendix C	Certificates of Analysis

	List of Illustrations		
Figure	Title	Scale	Following <u>Page</u>
1	Location	I: 7, 000,000	2
2	Claim Map	1:50,000	2
3	Simplified Regional Geology	1:500,000	5
4	Property Area Geology	1:50,000	6
5	Diamond Drilling Summary	1:10,000	9
6	Cross Section 19+50N	1:1000	11
7	Cross Section 20+50N	1:1000	11
8	Cross Section 27+52N	1:1000	11

in pocket

1:1000

1:1000

1:1000

1:2000

Cross Section 28+40N

Cross Section 29+00N

Cross Section 30+00N

Geology

1. SUMMARY

From August 11 to October 18, 1995, Atna Resources Ltd. explored the Horsefly property under an option agreement with Ecstall Mining Corporation. The property is located 53 km southwest of Kitimat B.C and consists of 54 mineral claims. Exploration included line-cutting, mapping, Max-Min Electromagnetic survey and 1,076 metres of diamond drilling.

The property is underlain by Middle Devonian metavolcanic rocks comprising a complex interbedded sequence of calcareous, intermediate to felsic volcaniclastic, sedimentary and minor volcanic rocks. Foliations strike in a northerly direction with an average of 170° and a steep westerly dip ranging from 60° to 85°.

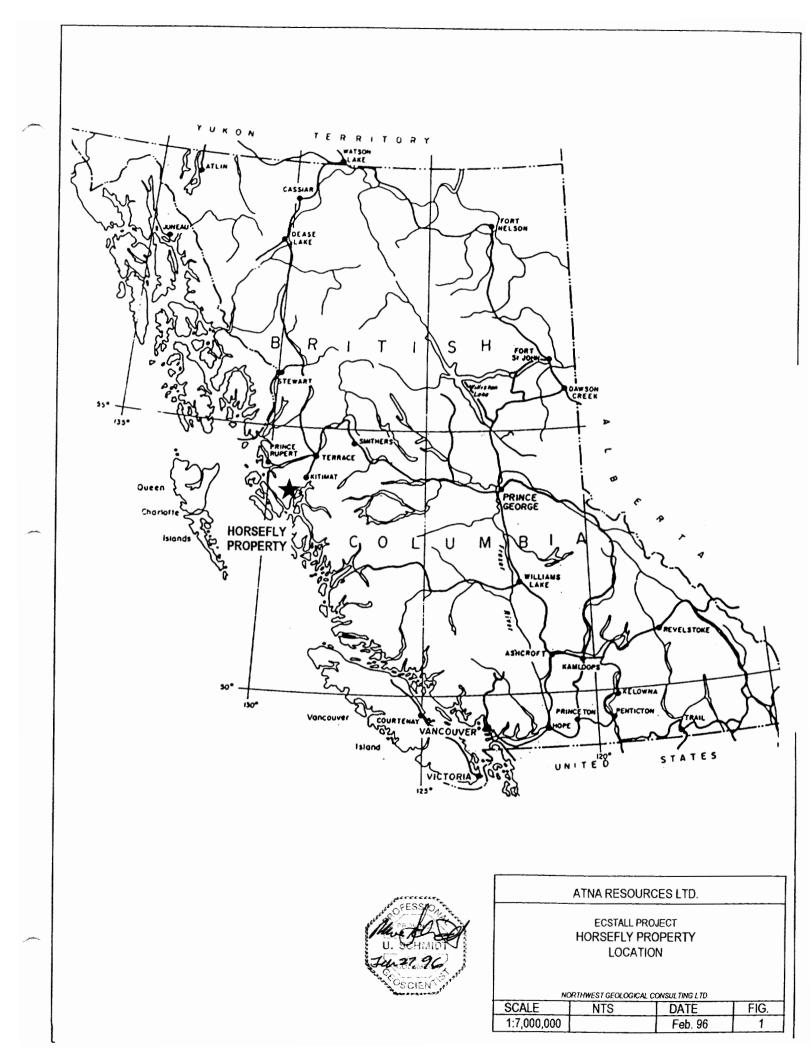
A 20 metre wide zone of strong chloritic alteration and disseminated and semi-massive copperbearing sulphide mineralization was outlined by two drill holes on the south end of the Horsefly grid. This zone has a strike length of 90 metres and is open along strike and down dip. Additional diamond drilling of this discovery is recommended.

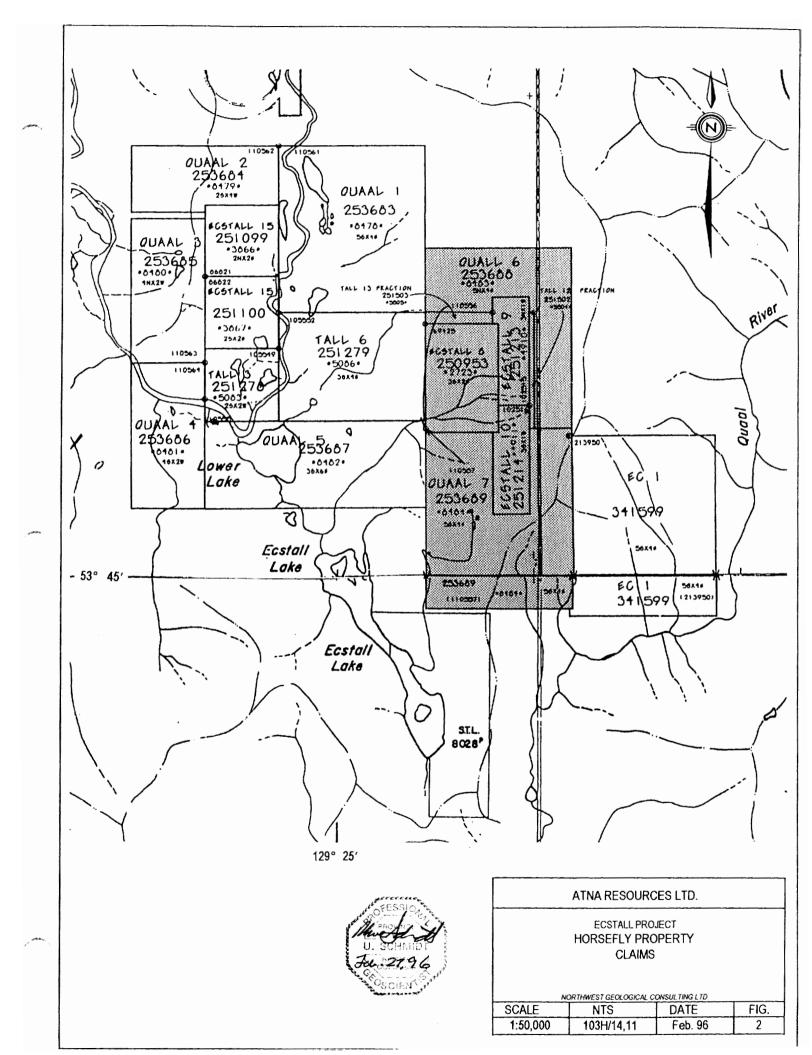
Drill testing of three E.M. anomalies is also recommended. These anomalies were outlined in 1995 but not drilled.

2. INTRODUCTION

From August 11 to October 18, 1995, Atna Resources Ltd. explored the 1,000 hectare Horsefly property under an option agreement with Ecstall Mining Corporation. The Horsefly property is located 53 km southwest of Kitimat B.C and consists of 54 mineral claims. Exploration included line-cutting, geological mapping, Max-Min Electromagnetic survey and diamond drilling.

Work was carried out from three fly camps which were located on the property. Crew size varied from two to three and included combinations of one geologist or one geophysicist and one or two field assistants. The writer was contracted by Atna Resources to provide field management and supply field and camp equipment through Northwest Geological Consulting Ltd. Field assistants Ron Beauchamp, Regan Moran and Kris Carruthers were employed by Atna Resources and were assigned to the project. Geophysicist Matt Chamberland was employed by Delta Geoscience Ltd. who were contracted by Atna Resources to carry out an Electromagnetic survey. Overall program supervision was provided by Peter DeLancey, P.Eng., president of Atna Resources Ltd.


3. PROPERTY, LOCATION AND ACCESS


The Horsefly property consists of 5 mineral claims and 2 fractional mineral claims, totalling 54 units. Overlap of several of the claims has limited the area of the property to approximately 1,000 hectares. The property is located on NTS map sheet 103H/14 in the Skeena Mining Division and approximately 52 km southwest of the village of Kitimat. The geographic coordinates of the approximate centre of the property are 53° 46' N. latitude and 129° 23' W. longitude. The details of the claims are as follows:

Units	Records No.	Record Date	Expiry Date
20	8483	Mar.23/90	Mar.23/2000
20	8484	Mar.23/90	Mar.23/2000
6	2723	Dec.17/80	Dec.17/2000
3	4910	Aug.29/85	Aug.29/2000
3	4911	Aug.29/85	Aug.29/2000
1	5504	Aug.15/86	Aug.15/2000
1	5505	Aug. 15/86	Aug.15/2000
	20 20 6 3	20 8483 20 8484 6 2723 3 4910 3 4911 1 5504	20 8483 Mar.23/90 20 8484 Mar.23/90 6 2723 Dec.17/80 3 4910 Aug.29/85 3 4911 Aug.29/85 1 5504 Aug.15/86

Horsefly Property:

2

The field crew mobilized to the property and were supplied by helicopter from Prince Rupert, located 85 km to the northwest by air. Three fly camps were established over the duration of the program to allow access on foot to all areas of interest. During the later diamond drilling phase, drill supervision and logistical support were provided by a two man crew based in a fly camp on the property, but drill crews were based in Prince Rupert and were flown to the property by helicopter.

Diamond drilling equipment and supplies were transported by barge from Kitimat to Kitkiata Inlet, then by slung for 15 kilometres to the property by helicopter. A Prince Rupert based Vancouver Island Helicopters Bell 206L "Long Ranger" was used for mobilization, drill moves and crew changes.

4. PHYSIOGRAPHY

The property covers an area of rugged terrain typical of the Coast Range Mountains of British Columbia. Elevations range from 200 to approximately 1,200 metres with vegetation varying from over-mature coniferous rain forest to moss and grass covered alpine meadows. Exploration in 1995 was restricted to known areas of mineralization which occur above 500 metres in elevation.

The Horsefly property is divided into the "Horsefly" and "Steelhead" areas. The Horsefly grid is situated in the northern half of the property and is centred over a massive sulphide mineral occurrence by that name, which crops out in a stream. The grid area is predominantly covered by a dense growth of young conifers and brush. A number of small swampy meadows within the area, permitted helicopter access and were used as camp sites. Outcrop is primarily restricted to creeks valleys and cliff faces on the east end of the grid.

The Steelhead grid area lies in the southern half of the property and is also centred on a previously known mineral occurrence. Most of the Steelhead grid is covered in alpine and subalpine vegetation. Stunted conifers and underbrush occur in patches within typical grass and lichen alpine vegetation. Outcrops in Steelhead area are abundant and occur in parallel, resitant-weathering ridges, in a north-south direction.

Deep snow accumulations are typical for this area. This limits the exploration season from July to Late October.

5. HISTORY

The Horsefly showing was discovered in 1968 by prospectors employed by Texas Gulf Sulphur. Texas Gulf explored the area by grid geophysical surveys and mapping. The claims were allowed to lapse and were restaked in 1980 by C. Graf. Ecstall River Joint Venture, consisting of Welcome North Mines Ltd., Esperanza Explorations Limited, E & B Explorations Incorporated and Active Minerals Explorations Limited, explored the property in 1981. In 1985, Noranda Exploration Company, Limited option the property from C.Graf and explored the area by airborne E.M. and Magnetometer surveys in 1986. Airborne surveys were followed up by ground E.M. and magnetometer surveys and geological mapping in the same year. Atna first examined the Horsefly and Steelhead areas in September 1994. Following this examination, Atna entered into an option agreement with Ecstall Mining Corporation which acquired the claims from C. Graf. Atna commenced exploration on August 12, 1995 with a program of line-cutting, geological mapping, and a Max-Min E.M. survey. The best geophysical conductors were tested by 1,076 metres of diamond drilling in eight holes during the period from September 26 to October 6.

5.1 SUMMARY OF WORK CARRIED OUT IN 1995

The 1995 program began on August 12 with line-cutting on the Horsefly grid which primarily involved brushing out and re-establishing the existing Noranda grid. Geologic mapping was carried out with the aid of "hip-chain" and compass surveys along all creeks.

Upon completion of the Horsefly grid the crew moved camp 1,200 metres south to the Steelhead grid on August 25. A new grid was established in the Steelhead area which utilized the same coordinate system and line bearings as the Horsefly grid. Extension of the Horsefly baseline south to the Steelhead area was not possible due to steep terrain. Grid coordinates in both areas were unified by a slope corrected "hip-chain" and compass survey between the two grids.

A Max-Min I-9 E.M. survey was conducted over Horsefly and Steelhead grids from September 7 to 14. Anomalies detected by this survey were tested by diamond drilling during the period from September 26 to October 6. A total of 8 holes were drilled totalling 1,076 metres. Core logging, splitting and sampling continued until camp demobilization on October 19.

A total of 100 core intervals were split and sampled. Of these, 31 samples were assayed for copper and 30 element ICP geochemical analyses. The remaining core samples typically are pyritic core sections with low visible copper grades and rare occurrences of sphalerite and galena. Samples not assayed to date were taken to allow the future assessment, of the base and possible precious metals distribution in pyritic sections of the core, while the core is inaccessible on the property. An additional 49 representative core samples were taken for possible lithogeochemical analyses. These samples are presently in storage. Twenty whole rock samples were collected by T. Barrett, in connection with his research on massive sulphide deposits, through the Mineral Deposits Research Unit at The University of B.C.

6. REGIONAL GEOLOGY

The most recent geological mapping of the area is by S. A. Gareau of the G.S.C., published as Open File 2337 in 1990. The property is situated near the southern limit of the central region of the Scotia-Quaal metamorphic belt, a 60 km long and 10 to 15 km wide, north-northwest trending pendant within the Coast Plutonic Complex. The pendant comprises metamorphosed volcanic, sedimentary and intrusive rocks. It is bounded to the west by the early Late Cretaceous Ecstall pluton and by the Paleocene to Eocene Quottoon pluton to the east.

Gareau subdivided the belt into eight lithologic units. Medium pressure, epidote-amphibolite to upper amphibolite facies metamorphic grades are preserved in the central region of the belt. Metamorphic grade increases gradually across the belt from west to east and from south to north (Fig. 3, Gareau 1991). Regional metamorphism has imparted a strong planar fabric on lithologies. This fabric was subsequently deformed by three periods of folding which occurred between the emplacement of the Middle Devonian Big Falls orthogneiss and early Late Cretaceous Ecstall intrusion.

The oldest rocks, of unknown but probable Paleozoic age, comprise metavolcanic, metasedimentary, layered gneiss units and quartzite.

The metavolcanic unit consists of mafic and intermediate metavolcanics interlayered with minor metasedimentary and felsic metavolcanic rocks. It hosts three subeconomic massive sulphide deposits; Ecstall, Packsack and Scotia. The Ecstall deposit is situated within the central region of the belt and is the largest deposit found to date, with 6.9 million tonnes grading 0.6% copper, 2.5% zinc, 42.3% iron and 48.4% sulphur.

Metasedimentary rocks are medium to fine-grained, epidote-rich, hornblende-biotite gneisses. The quartzite unit is a white to grey quartzite interlayered with biotite-hornblende gneiss, mica schist, black phyllite, pelite and marble. The layered gneiss unit consists of medium-grained, epidote-bearing, hornblende-biotite quartz diorite to granodiorite gneiss and garnet amphibolite.

The Middle Devonian Big Falls orthogneiss, a well-foliated augen gneiss, lies along the western margin of the belt and grades eastward into the metavolcanic unit over a distance of about 700 metres. This suggests a cogenetic relationship between the intrusive orthogneiss and metavolcanic unit.

Mesozoic rocks include the Ecstall pluton, late Early Jurassic Johnston Lake and Foch Lake orthogneisses and probable Jurassic or Cretaceous aged ultramafic rocks.

Late fine-grained hornblende porphyritic lamprophyre dykes of possible Eocene age crosscut the metamorphic rocks throughout the area.

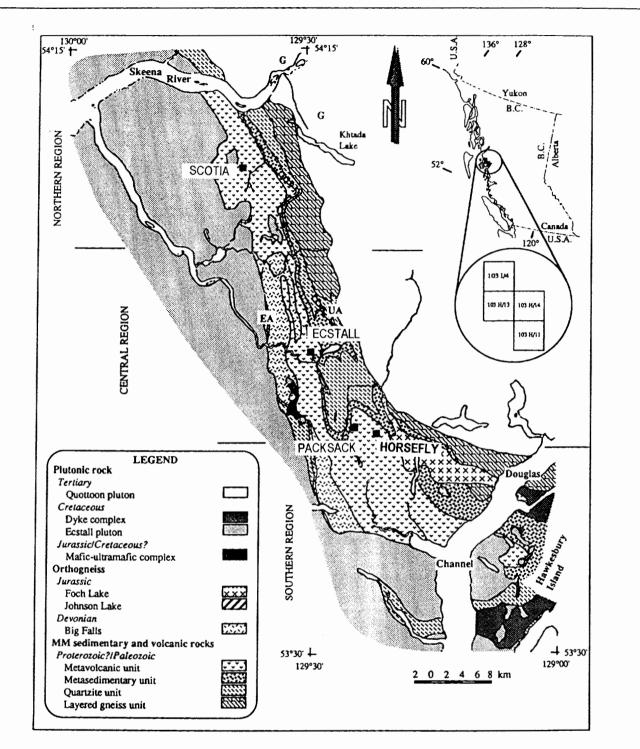
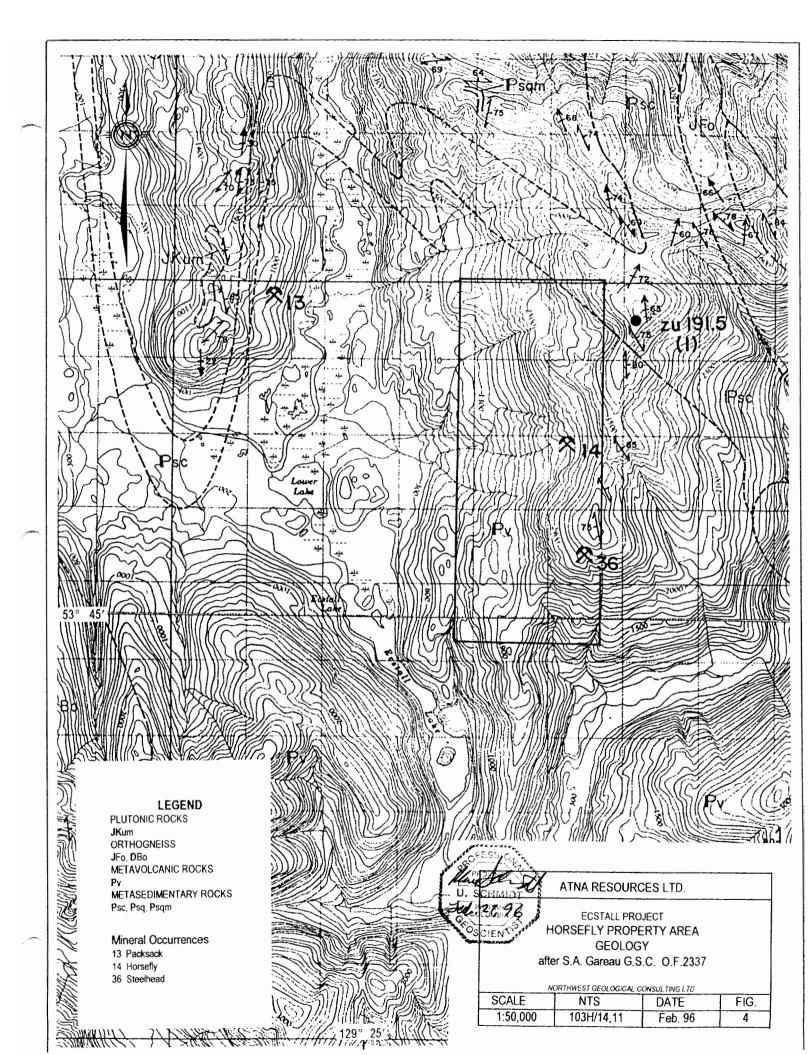


FIG. 1. Simplified geological map of the Scotia-Quaal metamorphic belt. MM, metamorphic. Bold letters designate facies of metamorphism: EA, epidote-amphibolite; UA, upper amphibolite; G, granulite.

ATNA RESOURCES LTD.					
ECSTALL PROJECT					
SIMPLIFIED REGIONAL GEOLOGY					
AND					
MINERAL DEPOSITS					
Mo	dified after S.A. G	areau (1991)			
	ORTHWEST GEOLOGICAL C				
SCALE					
1:500,000	103 H & I	Feb. 96	3		

7. PROPERTY GEOLOGY


Mapping was carried out in the Horsefly and Steelhead grid areas, which cover areas of known mineralization previously explored by Noranda (Fig. 12). Both areas are located at higher elevations near the more accessible eastern limits of the property. The steep, mature forest-covered, western half of the property was not examined. The geology of the Horsefly grid is poorly exposed except within creeks which cross the grid. Geologic mapping was carried out with the aid of slope corrected "Hip-Chain" and compass surveys along all creeks. There is abundant exposure in the Steelhead area, where mapping was carried out along slope corrected grid lines.

The property and the two grid areas mapped in 1995 are underlain by Gareau's metavolcanic unit (Fig. 4). The metavolcanic unit comprises a metamorphosed interbedded sequence of calcareous, intermediate to felsic volcaniclastic, sedimentary and minor volcanic rocks. Foliations strike in a northerly direction with an average of 170° and a steep westerly dip ranging from 60° to 85°. This strike is maintained from the southern end of the Steelhead grid to the northern end of the Horsefly grid. There is an abrupt change in strike to a northwesterly direction with a steep northeasterly dip in rocks exposed just north of Horsefly grid, but the lithologies exposed in this west flowing creek are similar to those exposed to the south.

The volcaniclastic sedimentary and volcanic rocks are complexly interbedded and generally lack primary textures. Exceptions are some of the sedimentary and pyroclastic rocks on the east side of Steelhead grid. Narrow beds of argillite occur within the volcaniclastic succession at approximately 50 to 150 metre intervals. The argillite horizons form recessive-weathering, distinctive marker horizons and help trace the boundaries of featureless lithologies. A compositional trend from intermediate to felsic is also apparent traversing from east to west in Steelhead grid area.

Gareau's metavolcanic unit was sub-divided into: intermediate volcanic and associated metamorphic rocks; metasedimentary and associated metavolcanic rocks; felsic volcanic and associated metamorphic rocks. Volcanic and volcaniclastic rocks of intermediate composition were divided into 6 mappable units. Of these lapilli and crystal tuffs (1a,1b) are the most common. Next in abundance are calcareous quartz-chlorite schist (1d) and sericitic varieties of chlorite schist (1e) which generally lack megascopic primary textures and are gradational with siltstones of the metasedimentary sub-division. Massive varieties of this unit (1f) may include andesitic flows. Andesitic flows are assigned to unit 1a where pillows or coarse crystalline textures were observed.

Metasedimentary rocks were divided into 3 mappable units: argillite (2a), siltstone (2b) and calcareous chlorite schist (2c). The argillite unit is siliceous, carbonaceous, pyritic, and recessive-weathering. It occurs in discontinuous beds of less than 10 metre thickness, often bordered by thin discontinuous beds of calcareous chlorite schist and pyritic quartz-sericite schist. Thin beds of argillite may also occur within the siltstone unit.

Felsic volcanics were divided into 4 map units. The most common of these is unit 3a, comprising pyritic rhyolite flows, breccias, tuffs and quartz-sericite schist. This unit is prominently exposed in cliff-forming outcrops on the west side of Steelhead grid. Iron staining from weathered pyrite obscures textures and internal structures. Disseminated pyrite occurs throughout this unit and is present locally as semi-massive bands. Chalcopyrite, sphalerite and rare galena are associated with pyrite. Higher concentrations of these minerals occur only locally, but are difficult to detect in low concentrations.

Unmineralized rhyolite and quartz-sericite schist were mapped as unit 3b. This unit consists of pale grey to white sericite quartz-augen schists. It is closely associated with the pyritic rhyolite unit and pale grey, massive, fine-grained felsic tuffs of unit 3d. Quartz-sericite schist of unit 3c occurs in thin discontinuous beds often associated with siliceous pyritic argillite horizons of unit 2a and calcareous chlorite schist of unit 2c. The quartz sericite schist commonly contains 5 to 10% disseminated pyrite, fine grained pyrrhotite and traces of chalcopyrite.

A late, unmetamorphosed intrusive phase occurs in both map areas. Dark green to brown porphyritic hornblende lamprophyre dykes (unit 4) intrude late vertical fault zones. Dykes are usually less than 2 metres in width and up to 30 metres in length. The age of this unit is unknown but may be related to Eocene aged quartz diorite dykes mapped by Gareau.

7.1 MINERALIZATION

The Horsefly showing is a pyritic massive sulphide horizon which is exposed in three creeks along the base line of Horsefly grid over a strike length of 100 metres. Previous sampling by Noranda geologists returned assays up to 1.16% Cu, 4.6% Zn, 0.13% Pb and 39g/T Ag. An examination and additional sampling of this showing by Atna geologists in 1994 confirmed the Noranda results. No further sampling was carried out in 1995 but the showing was reexamined.

Sulphide mineralization at the south end of the showing consists of a 30 cm thick bed of banded pyrite with sphalerite, chalcopyrite and pyrrhotite, dipping to the west at 55°. Twentyfive metres north, in a second creek exposure, the zone has narrowed to two sulphide bands measuring 5 and 10 cm in thickness. The banded massive pyrite horizons lie within a broad zone of disseminated pyrite. The north end of the showing is exposed in a third creek approximately 100 metres north of the southern outcrop. At this site, the sulphide horizon is exposed in two limbs of a tightly folded west dipping synform. Pyrite concentrations of 30% with chalcopyrite are exposed over a width of 2 metres. Sulphides are hosted by calcareous chlorite schist dipping to the west at 80°. Additional pyritic horizons occur east and west of the showing. These horizons are commonly hosted by quartz-sericite schist and may contain chalcopyrite and pyrrhotite in low concentration.

Siliceous argillite horizons are also commonly mineralized with disseminated pyrite, pyrrhotite and rare chalcopyrite. Sampling in 1994 indicates that the argillite horizons are also

geochemically anomalous in zinc and lead.

Mineralization on the Steelhead grid is associated with pyritic rhyolite, quartz sericite-schist and breccias. Sampling by Noranda geologists obtained isolated copper and zinc assays up to 1.65% Cu and 3.8% Zn. Concentrations of chalcopyrite or sphalerite occur with higher concentrations of pyrite and pyrrhotite, but mineralization lacks continuity. Some of the mineralization appears to occur in coarse breccia fragments.

Black siliceous argillite horizons in the Steelhead area are also mineralized with disseminated pyrite, pyrrhotite and rare chalcopyrite.

7.2 STRUCTURE

Strong planar fabrics, produced by regional metamorphism, are evident in all lithologies. A primary foliation direction defined by biotite chlorite, muscovite and fragment elongation, parallels original stratigraphy. A second, weaker foliation is recognized primarily in drill core and is defined by disseminated biotite porphyroblasts oriented at approximately 30° to the main foliation plane.

Gareau's regional mapping identified three periods of folding between middle Devonian and early Late Cretaceous time. On a property scale, only small, metre-scale isoclinal folds are evident. Larger scale isoclinal folds are suggested by variations in foliation attitudes recognized on surface and in drill core, but their fold axes are likely sub-parallel to regional strike and therefore are difficult to trace.

Fragmental volcanic rocks on the east side of Steelhead grid contain well-preserved primary textures. Abundant lapilli and crystal fragments and rare bombs are evident. Numerous examples of graded bedding were observed in this area but none were clear enough to determine bedding tops. One bomb impact structure at 22+50N - 33+85E indicates a west-facing stratigraphic top.

Numerous examples of drawn out volcanic fragments occur in the tuff units. These fragments are likely lapilli to bomb size fragments of pumice which have been compressed because of their low densities. A small number of quartz porphyry fragments observed within these units were unaffected by the same compaction forces.

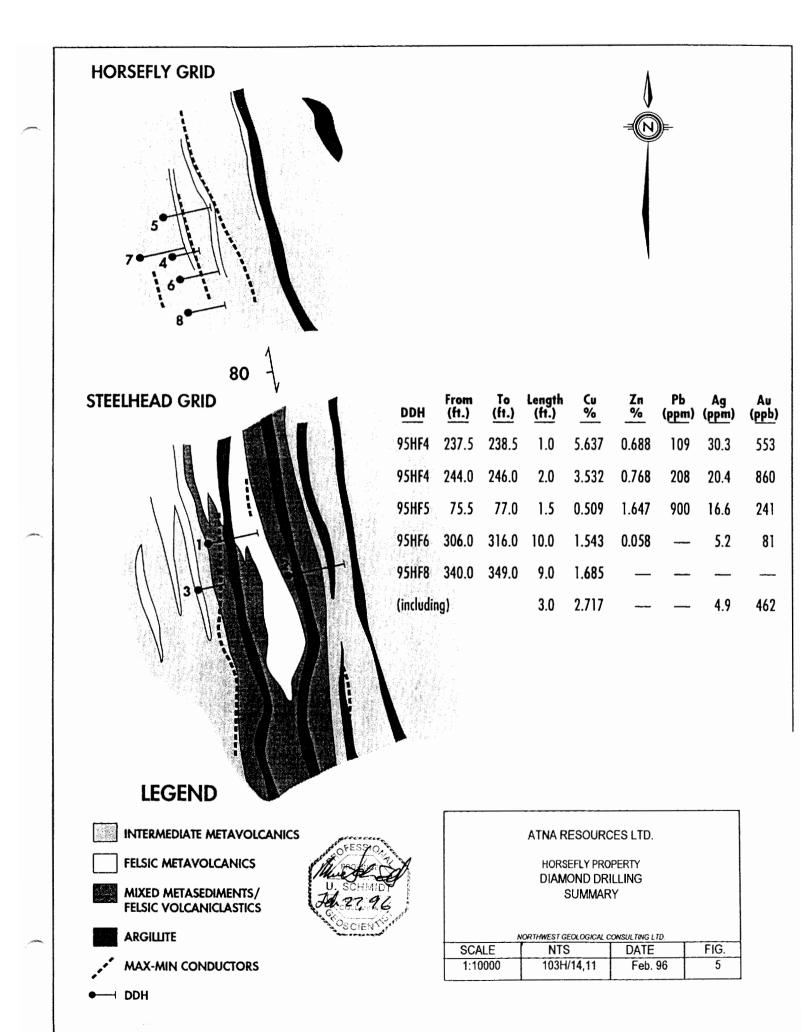
Late, sub-vertical faults were observed in a number of areas. Faults cross-cut and parallel stratigraphy. Argillite horizons are often faulted at their contacts. Young lamprophyre dykes intrude these structures.

8. GEOPHYSICS

A horizontal loop E.M. survey was conducted over the Horsefly and Steelhead grids from September 7 to 14. The survey was contracted to Delta Geoscience Ltd. of Delta, B.C. using a Max-Min I-9 system at a coil spacing of 100 metres. Survey results are described in a separate accompanying report by G.A. Hendrickson. Seven of the eight diamond drill targets tested conductors outlined by this survey and are described in more detail in the following diamond drilling section.

9. DIAMOND DRILLING

During the period from September 26 to October 6, 1995, Britton Brothers Diamond Drilling Ltd. of Smithers, B.C. drilled 8 holes totalling 1,076 metres, under contract with Atna Resources. Seven of the eight holes tested the best geophysical conductors and one hole tested mineralized horizons and stratigraphy on the west side of Horsefly grid.


Two intersections of copper mineralization, near the bottom of holes 6 and 8, returned significant copper assays over similar widths. Chalcopyrite mineralization is associated with pyrrhotite in a distinctive altered volcanic unit which extends over a width of approximately 21 metres. A summary of drill results is presented on Fig. 5.

Diamond drill hole locations are plotted on Fig. 12 and the following table summarizes the 1995 drilling:

<u>DDH</u>	<u>COORDINATES</u>	<u>ANGLE</u>	<u>AZIMUTH</u>	LE	NGTH
95HF-1	20+58N-30+11E	-45°	080°	560'	170.7 m
95HF-2	19+45N-31+86E	-45°	080°	580'	176.8 m
95HF-3	19+54N-29+65E	-45°	080°	250'	76.2 m
95HF-4	29+00N-29+73E	-45°	080°	310'	94.5 m
95HF-5	29+97N-29+84E	-45°	080°	500'	152.4 m
95HF-6	28+40N-29+79E	-45°	080°	420'	128.0 m
95HF-7	29+08N-29+00E	-45°	080°	500'	152.4 m
95HF-8	27+52N-29+79E	-45°	080°	410'	125.0 m
			TOTAL	3,530'	1,075.9 m

The three sub-divisions of the metavolcanic unit used in surface mapping were further subdivided for drill core logging (see legend Appendix B).

Intermediate volcanic rocks were divided into twelve units. These rocks predominantly comprise calcareous quartz-chlorite schists with some variations in colour, texture and accessory minerals. Biotite is the most common accessory mineral. It occurs as uniformly distributed isolated porphyroblasts and as concentrations in centimetre-scale bands. Lapilli tuffs, crystal tuffs and fine-grained tuffs are uncommon in drill core with the exception of hole

2, because most of the drill targets are on the west side of the grids where these rock types are less common. Dark green chloritic quartz-augen schists were assigned to the intermediate volcanic subdivision but may be strongly chloritized felsic rocks. The increase in chlorite in the vicinity of copper mineralization is gradational and the presence of large quartz augen suggest a felsic volcanic affinity.

Metasedimentary units in drill core are the same as surface map units. Gradational contacts between the siltstone, calcareous chlorite schist and other pale coloured chloritic volcaniclastics are difficult to recognize in drill core.

Felsic metavolcanic rocks were subdivided into 7 units. All units are varieties of quartzsericite-schists with variations in accessory minerals which include biotite, chlorite and mariposite.

9.1 Mineralization

Mineralization encountered in drill core can be classified into four categories. The most common is disseminated pyrite, pyrrhotite with traces of chalcopyrite. This type of mineralization occurs in a variety of rock types but is especially common in quartz-sericite schist. Pyrite occurs as euhedral, medium grained disseminated crystals. Pyrrhotite occurs in fine grained disseminated blebs and thin laminations. Chalcopyrite content is variable but commonly associated with pyrrhotite.

Banded massive sulphide mineralization was encountered in 4 drill holes over narrow widths. This style of mineralization consists of 60 to 80% pyrite with chalcopyrite and sphalerite. It is similar to surface exposures of the Horsefly showing but is much thinner and was encountered at deeper levels than expected from surface projections.

Coarse aggregates of pyrrhotite, pyrite and chalcopyrite were encountered in siliceous argillite horizons on the west side of Steelhead grid. This style of mineralization is highly anomalous in lead and returned lower than expected copper concentrations.

A fourth style of mineralization was encountered near the bottom of holes 95HF6 and 8. This type of mineralization consists of chalcopyrite associated with large irregular aggregates of pyrrhotite in a strongly chloritized quartz augen schist. The two holes outlined a 20 metre wide zone of chloritic alteration and disseminated sulphides over a 90 metre strike length. This mineralization type, unlike the previously described mineralization, is low in lead, zinc and precious metals. The mineralogy and alteration suggests that it is related to stockwork mineralization found in the footwalls of massive sulphide systems.

The following descriptions of drill targets are presented with reference to 6 east-west cross-

sections, proceeding from south to north. All holes were drilled at 45° and grid east at 080° azimuth.

STEELHEAD GRID

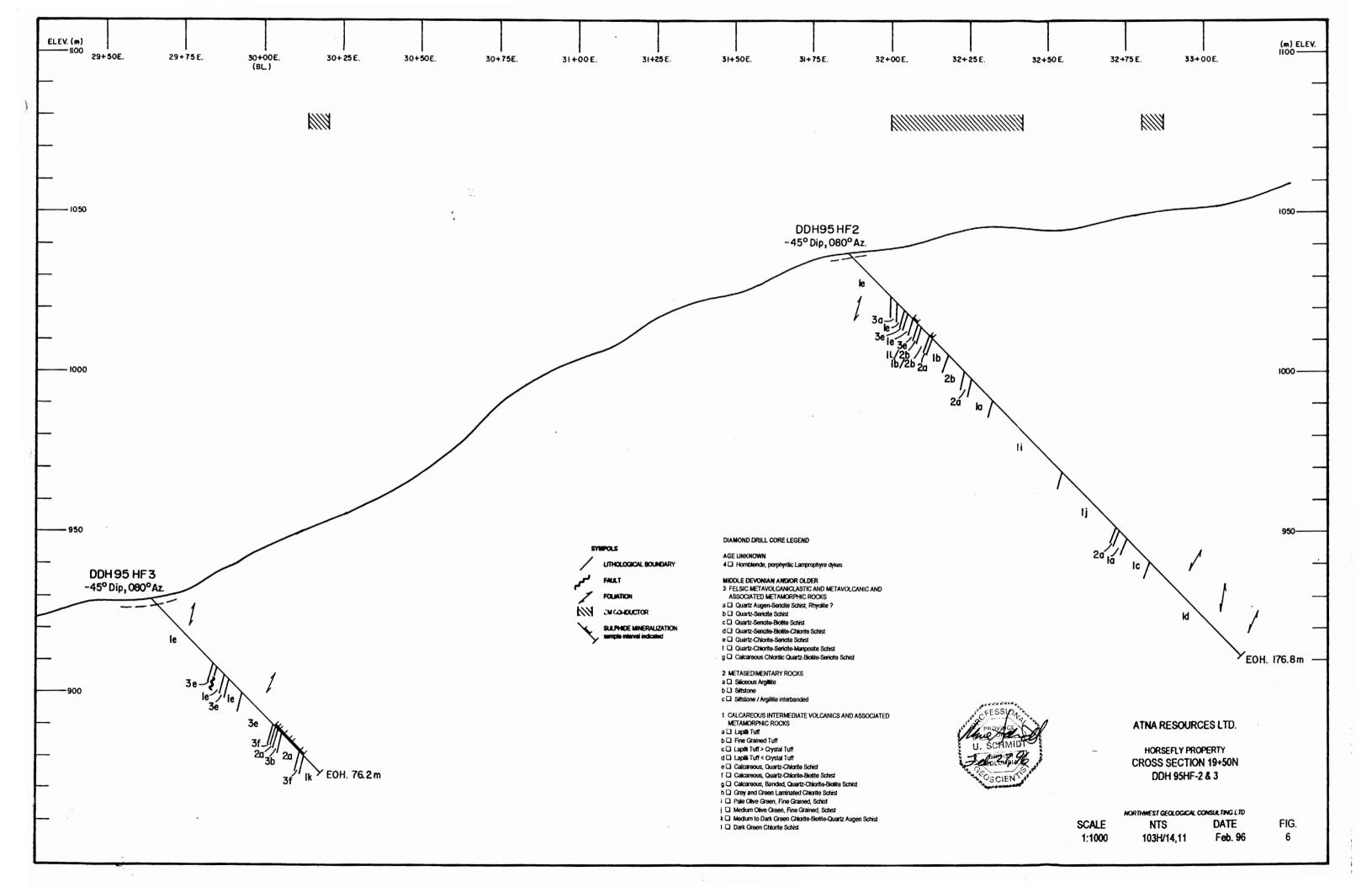
Section 19+50N, (Fig. 6)

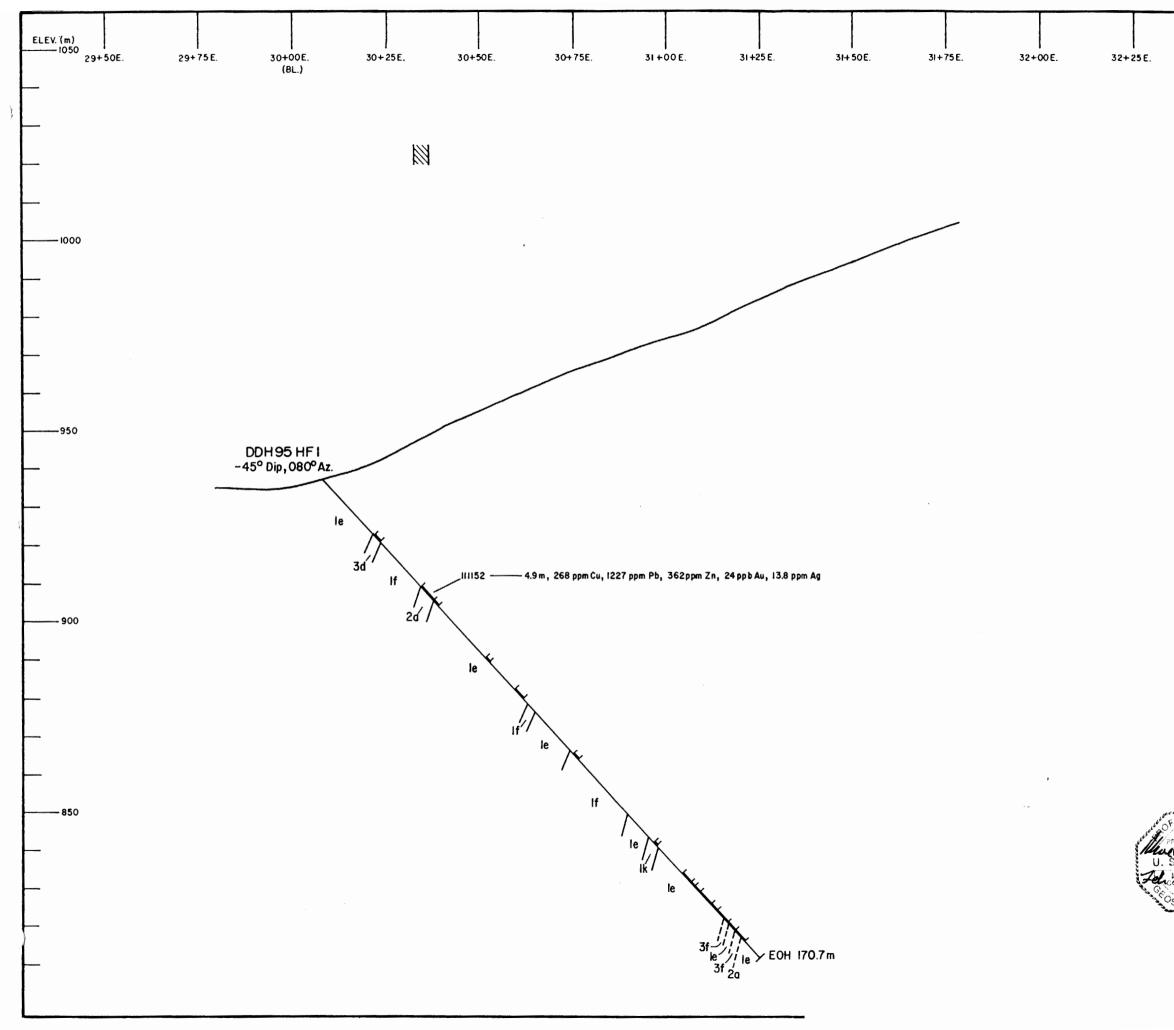
Two holes were drilled on section 19+50N. Hole 95HF2 tested two conductors in centre of Steelhead grid. The upper half of the hole tested a broad conductor which has a length of 750 metres and a width of up to 140 metres. Numerous black siliceous argillite horizons were encountered from 35 to 134 metres. Black argillite horizons commonly contain pyrrhotite concentrations from 5 to 10% and traces of chalcopyrite. Argillite horizons intercalated in lapilli and fine-grained tuffs, diminish in thickness and frequency with depth.

The bottom of hole 95HF2 tested a strong and narrow conductor which coincides with an argillite horizon on surface. A 1.2 metre thick argillite horizon encountered at 122 metres is the likely extension of the surface exposure and source of conductivity.

Hole 95HF3 drilled on the west end of section 19+50N, tested a strong narrow conductor in an area of poor exposure. A 6 metre thick argillite horizon bordered and interbedded with quartz-sericite schist was intersected at 58 metres. The argillite is mineralized with coarse pyrite, pyrrhotite and traces of chalcopyrite. Eight sections of this core were sampled but not analyzed.

Section 20+50N (Fig.7)


Hole 95HF1 was drilled to test a strong narrow conductor and to test mineralized felsic volcanic rocks at depth. A 4.6 metre thick argillite horizon was encountered at 38 metres. This interval was mineralized with 20 to 30% coarse pyrrhotite and minor chalcopyrite and returned 4.9 metres of 0.027 % Cu, 1,276 ppm Pb, 362 ppm Zn, 13.8 ppm Ag and 24 ppb Au.


The bottom 30 metres encountered disseminated pyrrhotite in the range of 5-10% with traces of chalcopyrite in a variety of fine grained volcaniclastics, quartz-sericite schist and minor argillite.

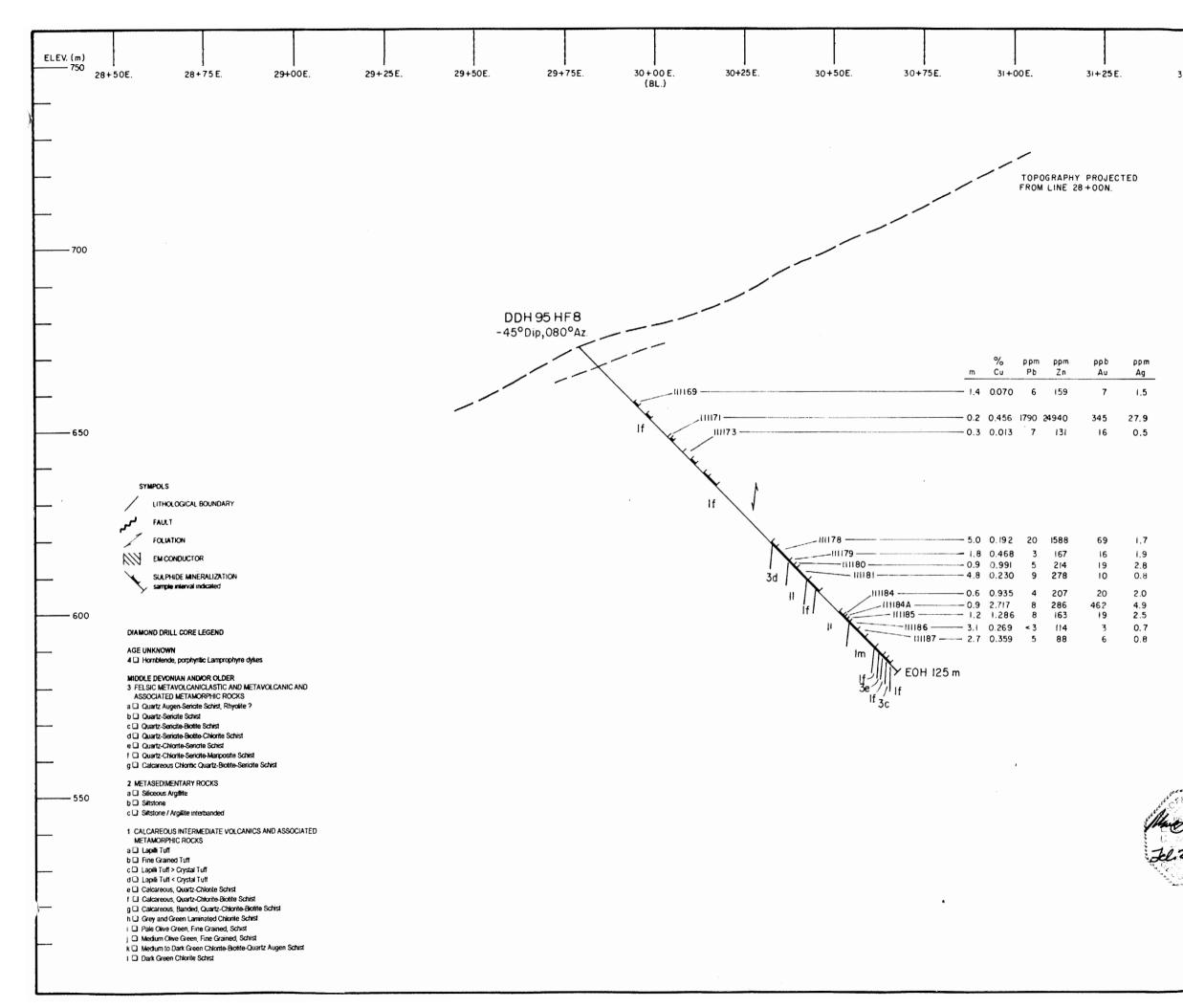
HORSEFLY GRID

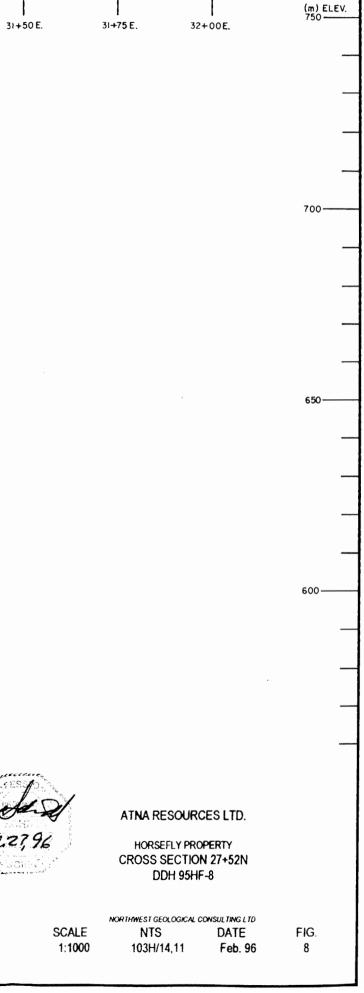
Section 27+52N (Fig.8)

The last hole in the program, 95HF8, was drilled on this section to test the strike extension of copper mineralization encountered in hole 95HF6. Two closely-spaced bands of massive sulphide, with a combined thickness of 20 cm, were intersected at 31 metres. This interval assayed 0.456% Cu, 1790 ppm Pb, 2.49% Zn, 27.9 ppm Ag and 345 ppb Au. A second mineralized interval was encountered from 75.6 to 93.6 metres. The highest grade in this interval returned 0.9 metres of 0.991% Cu. A third mineralized interval occurs from 103 to

32+50 E.

SYMPOLS 1000-LITHOLOGICAL BOUNDARY FAUL 1 FOLIATION SULPHIDE MINERALIZATION sample interval indicated DIAMOND DRILL CORE LEGEND AGE UNKNOWN 4 Homblende, porphyritic Lamprophyre dykes 950-----MIDDLE DEVONIAN AND/OR OLDER 3 FELSIC METAVOLCANICLASTIC AND METAVOLCANIC AND ASSOCIATED METAMORPHIC ROCKS a C Quartz Augen-Sericite Schist, Rhyolite ? b Quartz-Sericite Schist c D Quartz-Sericite-Biotite Schist d 🖾 Quartz-Sericite-Biolite-Chlorite Schist e 🗋 Quartz-Chlorite-Sericite Schist 1 🗋 Quartz-Chlorite-Sericite-Mariposite Schist g 🗀 Calcareous Chloritic Quartz-Biolite-Sericite Schist 2 METASEDIMENTARY ROCKS a 🗇 Siliceous Argillite b 🖬 Sittstone c Sitstone / Argilite interbanded 1 CALCAREOUS INTERMEDIATE VOLCANICS AND ASSOCIATED METAMORPHIC ROCKS 900 a 🗔 Lapilli Tuff b D Fine Grained Tuff c 🗋 Lapilli Tuff > Crystal Tuff d 🖸 Lapilii Tufi < Crystal Tuff e 🖾 Calcareous, Quartz-Chlorite Schist f 🖾 Calcareous, Quartz-Chlorite-Biotite Schist g 🗋 Calcareous, Banded, Quartz-Chlorite-Biotite Schist h 🖾 Grey and Green Laminated Chlorite Schist i 🔾 Pale Olive Green, Fine Grained, Schist j 🖾 Medium Olive Green, Fine Grained, Schist k 🖬 Medium to Dark Green Chlorite-Biotite-Quartz Augen Schist 1 Dank Green Chlorite Schist




ATNA RESOURCES LTD.

HORSEFLY PROPERTY CROSS SECTION 20+50N DDH 95HF-1

SCALE 1:1000 NORTHWEST GEOLOGICAL CONSULTING LTD. NTS DATE 103H/14,11 Feb. 96

FIG. 7

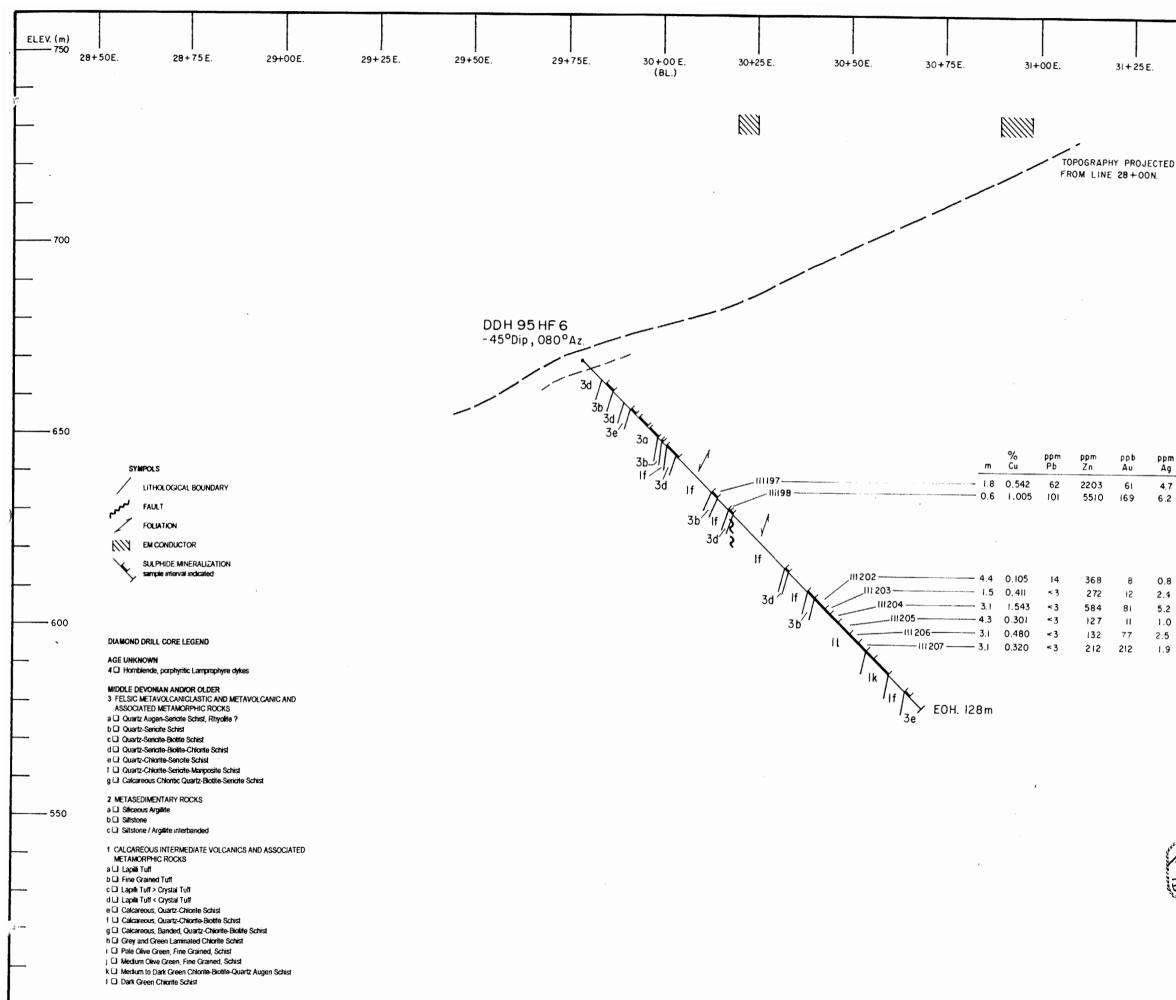
112 metres. The highest grade averaged 1.685% Cu over 2.7 metres, including 0.9 metres of 2.717% Cu. Mineralization is hosted by dark green chloritized quartz augen schists and consists of coarse aggregates of fine grained pyrrhotite, chalcopyrite and pyrite.

SECTION 28+40N (Fig.9)

Hole 95HF6 was drilled to test a narrow conductor which lies 10 metres east of the Horsefly showing and increases in strength southward along strike. Disseminated pyrite and pyrrhotite are associated with quartz-sericite schist in a number of horizons in the hole. One of these horizons at 49 metres, assayed 0.542% Cu, 62 ppm Pb and 2203 Zn over 1.8 metres. Two narrow massive sulphide bands at 55 metres returned 0.6 metres of 1.005% Cu, 101 ppm Pb, 5510 ppm Zn, 6.2 ppm Ag and 169 ppb Au.

Coarse disseminated blebs of chalcopyrite associated with coarse pyrrhotite and pyrite were encountered in a strongly chloritized quartz augen schist from 92 to 107 metres. The highest grade interval assayed 1.543% Cu over 3.1 metres within a 19.5 metre interval of disseminated mineralization which ranged from 0.105% to 0.486% Cu.

SECTION 29+00N (Fig. 10)

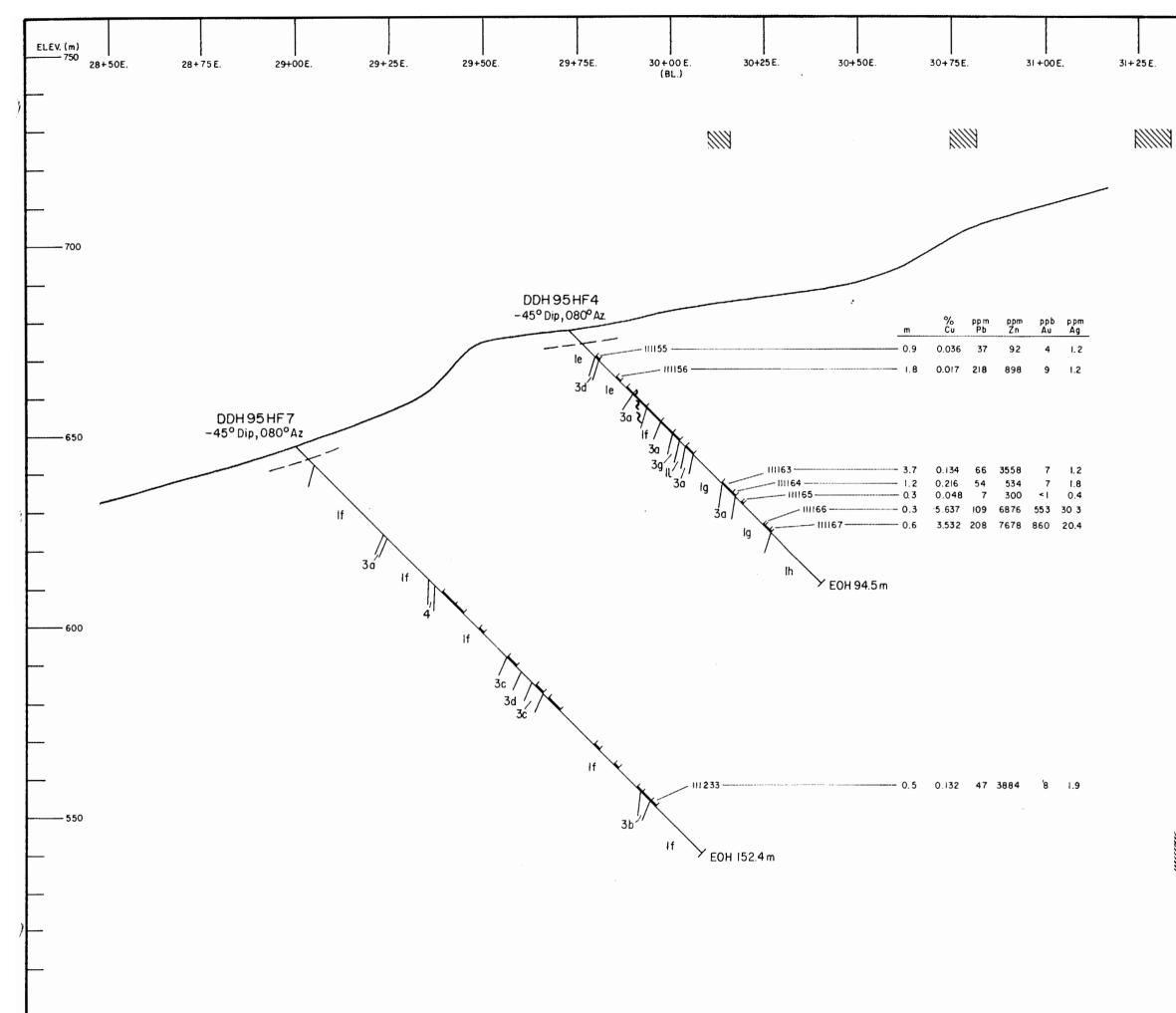

Two holes were drilled on section 29 + 00 N. Hole 95HF4 tested a narrow conductor which lies 10 metres east of the Horsefly showing and extends southward and strengthens in the vicinity of line 29+00 N. Hole 95HF7 was collared west of hole 95HF4 to test the southern strike extension of a number of pyritic, felsic tuffaceous horizons which were mapped west of the Horsefly showing.

Hole 95HF4 encountered disseminated pyrrhotite, pyrite and traces of chalcopyrite in concentrations ranging from 3 to 5% over much of its length. Two narrow, pyritic massive sulphide horizons were intersected at 72 and 75 metres. The former returned 5.637% Cu, 109 ppm Pb, 6,876 ppm Zn, 30.3 ppm Ag and 553 ppb Au over 0.3 metres. The latter returned 3.532% Cu, 208 ppm Pb, 7,678 ppm Zn, 20.4 ppm Ag, 860 ppb Au over 0.6 metres.

Hole 95HF7 also encountered disseminated mineralization similar to Hole 94HF4. One of these horizons, at 133 metres, was analyzed and returned 0.132% Cu, 47 ppm Pb, 3884 ppm Zn over 0.5 metres.

SECTION 30+00N (Fig. 11)

Hole 95HF5 was collared to test the nearby Horsefly showing, a weak conductor located 10 metres east of the showing and a strong, narrow conductor, lying 100 metres east of the collar. A 15 centimetre massive pyrite, pyrrhotite horizon was intersected at 23 metres, within a 14 metre zone of disseminated pyrite & pyrrhotite mineralization. The massive sulphide mineralization assayed 0.509% Cu, 900 ppm Pb, 16,469 ppm Zn, 16.6 ppm Ag and 241 ppb Au. A second assay of disseminated mineralization at the bottom of the zone returned 0.351% Cu, 23 ppm Pb, 4225 ppm Zn, 4.0 ppm Ag and 18 ppb Au. Two additional disseminated sulphide zones were encountered at 102 and 131 metres but these were not assayed.



31+50 E		31+75 E.	32+00E.	(m) ELEV. 750
			52.002.	
				·
D				
				700
				-
m)				650
7				
3				
)				600
1				
				_
PESSIO	el .	ATNA RESC	DURCES LTD.	
TARZEK) Jor ^{a 200}	HORSEFLY CROSS SEC	PROPERTY' TION 28+40N 95HF-6	
	SCALE 1:1000	NORTHWEST GEOLOG NTS 103H/14 11	DATE	FIG.

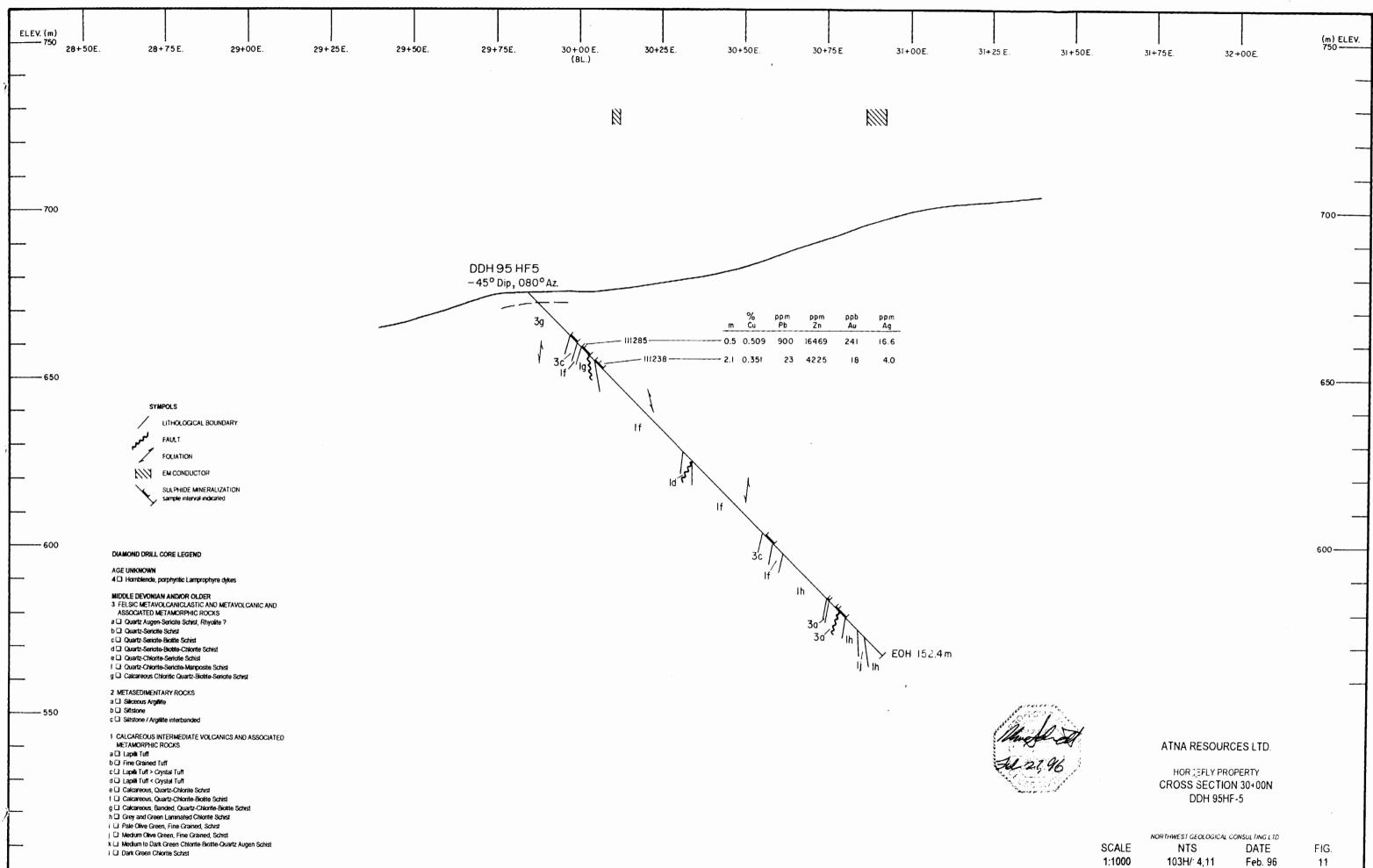
103H/14,11

Feb. 96

9

31+50E.

	-
SYMPOLS	
,	
LITHOLOGICAL BOUNDARY	
FAULT لمحم	
FAULT FOLIATION	700
	-
SULPHIDE MINERALIZATION Sample interval indicated	
y.	-
DIAMOND DRILL CORE LEGEND	-
SAMOND DRILL CORE LEGEND	
4 Homblende, porphyritic Lamprophyre dykes	-
MIDDLE DEVONIAN AND/OR OLDER	
3 FELSIC METAVOLCANICLASTIC AND METAVOLCANIC AND ASSOCIATED METAMORPHIC ROCKS	650
a 🖸 Quartz Augen-Sericite Schist, Rhyolite ?	
b Quartz-Sericite Schist	
c Quartz-Sericite-Biotite Schist d Quartz-Sericite-Biotite-Chlorite Schist	
e 🗆 Quartz-Chlorite-Sericite Schist	
1 Quartz-Chlorite-Sericite-Mariposite Schist	
g 🗆 Calcareous Chloritic Quartz-Biotite-Sericite Schist	
2 METASEDIMENTARY ROCKS	
a 🗆 Siliceous Argillite	
b Sitstone c Sitstone / Argulite interbanded	-
-	
1 CALCAREOUS INTERMEDIATE VOLCANICS AND ASSOCIATED METAMORPHIC ROCKS	_
a 🖵 Lapiki Tuff	
b 🗋 Fine Grained Tuff	
c ⊡ Lapitili Tuff> Crystal Tuff d ⊡ Lapitili Tuff< Crystal Tuff	600
e 🗆 Calcareous, Quartz-Chlorite Schist	000
Calcareous, Quartz-Chlorite-Biotite Schist	
g 🗆 Calcareous, Banded, Quartz-Chlorite-Biotite Schist	
h D Grey and Green Laminated Chlorite Schist	_
i 🖵 Pale Olive Green, Fine Grained, Schist i 🗀 Medium Olive Green, Fine Grained, Schist	
k D Medium to Dark Green Chlorite-Biolite-Quartz Augen Schist	
Dark Green Chlorite Schist	_



ATNA RESOURCES LTD.

HORSEFLY PROPERTY CROSS SECTION 29+00N DDH 95HF-4 & 7

SCALE 1:1000 NORTHWEST GEOLOGICAL CONSULTING LTD NTS DATE 103H/14,11 Feb. 96

FIG. 10

10. CONCLUSIONS

The metavolcanic unit underlying the property is a complex, interbedded sequence of intermediate to felsic volcaniclastic, pyroclastic, metasedimentary and volcanic rocks. The 1995 exploration program on the Horsefly property confirmed earlier work which indicated the potential for the occurrence of volcanic-hosted massive sulphide mineralization. An E.M. survey of the property outlined a number of conductors which are caused primarily by sulphide bearing argillite horizons. A conductor outlined in the vicinity of the Horsefly showing appears to be related to broad zones of disseminated sulphides. Thin massive sulphide horizons occur within these disseminated zones but it is not known whether these horizons are sufficiently conductive to account for this anomaly.

A 20 metre wide zone of strong chloritic alteration and disseminated and semi-massive copperbearing sulphide mineralization was outlined by two drill holes on the south end of the Horsefly grid. This zone is located approximately 70 metres east and 70 metres south of the Horsefly showing. Drilling has traced the mineralization for 90 metres and it is open in all directions. The geophysical expression of this zone may have been detected on line 29+00N at 30+75E but this conductor does not extend south to line 28+00N. The style of mineralization is interpreted as stockwork mineralization associated with a feeder zone in a volcanic-hosted massive sulphide system.

11. RECOMMENDATIONS

Geochemical analysis of all the remaining core samples is recommended. This will help define the limits of copper mineralization in core and may provide additional information to help correlate mineralized horizons between holes. Lithogeochemical analysis of selected cores is recommended to identify the host rocks and alteration of the Horsefly copper zone.

Diamond drilling of three targets is recommended on the Horsefly grid. The first priority is the copper zone intersected in holes 95HF6 and 8. This zone is open along strike and depth. The northern extension of the zone may be tested by re-entering and deepening hole 95HF4. This has an added advantage of testing a short conductor centred on line 29+00N at 30+70E. Drilling along strike to the south will depend on terrain. This area is steep and will require some ground work to locate suitable drill sites.

The second priority target is the drill testing of a short conductor centred on line 28+00N at 29+00E N. This conductor is located in an overburden covered area and is open to the south.

The third priority target is the drill testing of a moderate strength conductor centred on 30+00N -30+00E.

12. REFERENCES

Gareau, S.A.(1990): Geology of the Scotia-Quaal metamorphic belt, Coast Plutonic Complex, British Columbia, G.S.C. Open File 2337

Gareau, S.A.(1991): The Scotia-Quaal metamorphic belt: a distinct assemblage with pre-early Late Cretaceous deformational and metamorphic history, Coast Plutonic Complex, British Columbia, Can. Jour. Earth Sci. 28, 870-880 (1991)

Maxwell, G., Bradish, L.(1986): Geological, Geophysical and Geochemical Report on the Horsefly Group, Assessment Report 15,306

13. STATEMENT OF EXPENDITURE

I. Field Expenses

1) Labour	
P. DeLancey P.Eng. Oct. 4-6	
3 days @ \$300/day\$900.00	
U.Schmidt (Project Geologist) Aug. 7-31, Sept. 1-6,24-30,Oct. 1-21	
59 days @\$350/day\$20,650.00	
R.Beauchamp (Field Assistant) Aug.7-31, Sept.1-30. Oct.1-20	
75 days @ \$140.91/day\$10,568.32	
R. Moran (Field Assistant) Aug.7-18	
12 days @ \$106.25/day\$1,275.00	
K. Carruthers (Field Assistant) Aug.5-21	
17 days @ \$150/day\$2,550.00	
,	\$35,643.32
2) Room and Board	\$4 018 34
3) Consumables and Supplies	\$1,249.93
4) Communications	
Telephone, Radio Rental, Satellite Telephone Charges	\$3 864 70
Telephone, Rudio Rental, Batemie Telephone Charges	
5) Camp and Equipment Rental	
Aug.7-Oct. 21, 1995	\$6 225 50
Mug. (-001. 21, 1995	
6) Transportation	
Airfare\$3,569.61	
Helicopter Charter\$63,349.77	
Truck Rental\$2,075.00	
Courier and Freight\$366.39	
Expediting\$344.63	
Fuel\$630.61	
Tuei	<u> ምግስ 226 በ1</u>
7) Geophysics	\$70,336.01
	£7 000 00
Max-Min I-9 E.M. survey	\$7,000.00
8) Diamond Drilling	¢71 000 01
1,076 metres of BD-BGM core	⊅/1,222.81
9) Assay	
31 assays and 30 element ICP	\$667.85

II. OFFICE

Data compilation, Interpretation, Report Writing

U. Schmidt Oct. 23,24,Nov.1-3,6,7(1/2),9(1/2),15,16,23	(1/2),24(1/2),Dec.15(1/2),1995,
Feb 12,13,16-22, 23(1/2),24,25(1/2),26,27,1996	
23 1/2 days @\$350/day	\$8,225.00
W. Kahlert (Field Assistant) Oct. 23,27(1/2)	
1 1/2 days @ \$156/day	\$234.00
K. Carruthers	
1 day @ \$150/day	\$150.00
	\$8,609.00
10) Drafting, Reproduction and Office Services	\$1,100.01

TOTAL \$209,937.47

Appendix A

STATEMENT OF QUALIFICATIONS

STATEMENT OF QUALIFICATIONS

I, Uwe Schmidt , of 656 Foresthill Place, Port Moody, B.C. do hereby declare:

(1) I am a consulting geologist and controlling shareholder of Northwest Geological Consulting Ltd.

(2) I am a 1971 graduate of the University of British Columbia with a B.Sc. degree in Geology.

(3) I am a member of The Association of Professional Engineers and Geoscientists of British Columbia and a Fellow of the Geological Association of Canada.

(4) I have practised my profession continuously since graduation.

(5) This report is based on work carried out by me or by workers under my supervision.

ROVINCE U. SCHMIDT 883 Uwe Schmidt, B.Sc., P. Geo. SCIEN

February 27, 1996 Vancouver, B.C Appendix B

DIAMOND DRILL CORE LOGS

DIAMOND DRILL CORE LEGEND

AGE UNKNOWN

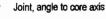
4 🗍 Hornblende, porphyritic Lamprophyre dykes

MIDDLE DEVONIAN AND/OR OLDER

- 3 FELSIC METAVOLCANICLASTIC, METAVOLCANIC AND ASSOCIATED METAMORPHIC ROCKS
- Quartz Augen-Sericite Schist, Rhyolite ? a 🗋
- b 🖸 Quartz-Sericite Schist
- c 🗍 Quartz-Sericite-Biotite Schist
- Quartz-Sericite-Biotite-Chlorite Schist d 🗆
- Quartz-Chlorite-Sericite Schist e 🗋
- f 🛈 Quartz-Chlorite-Sericite-Mariposite Schist
- g 🗋 Calcareous Chloritic Quartz-Biotite-Sericite Schist

2 METASEDIMENTARY ROCKS

- a 🗋 Siliceous Argillite
- b 🗋 Siltstone
- c 🗇 Siltstone / Argillite interbanded


1 CALCAREOUS INTERMEDIATE VOLCANICS AND ASSOCIATED METAMORPHIC ROCKS

- Lapilli Tuff a 🔾
- b 🗆 Fine Grained Tuff
- c 🗖 Lapilli Tuff > Crystal Tuff
- d 🗋 Lapilli Tuff < Crystal Tuff
- Calcareous, Quartz-Chlorite Schist e 🗖
- f 🗋 Calcareous, Quartz-Chlorite-Biotite Schist
- g 🗋 Calcareous, Banded, Quartz-Chlorite-Biotite Schist
- ĥΟ Grey and Green Laminated Chlorite Schist
- i 🛛 Pale Olive Green, Fine Grained, Schist
- j 🖬 Medium Olive Green, Fine Grained, Schist
- k 🖸 Medium Grey-Green Calcareous Chlorite-Quartz Augen Schist
- 10 Medium to Dark Green Chlorite-Biotite-Quartz Augen Schist
- Dark Green Chlorite Schist mΟ

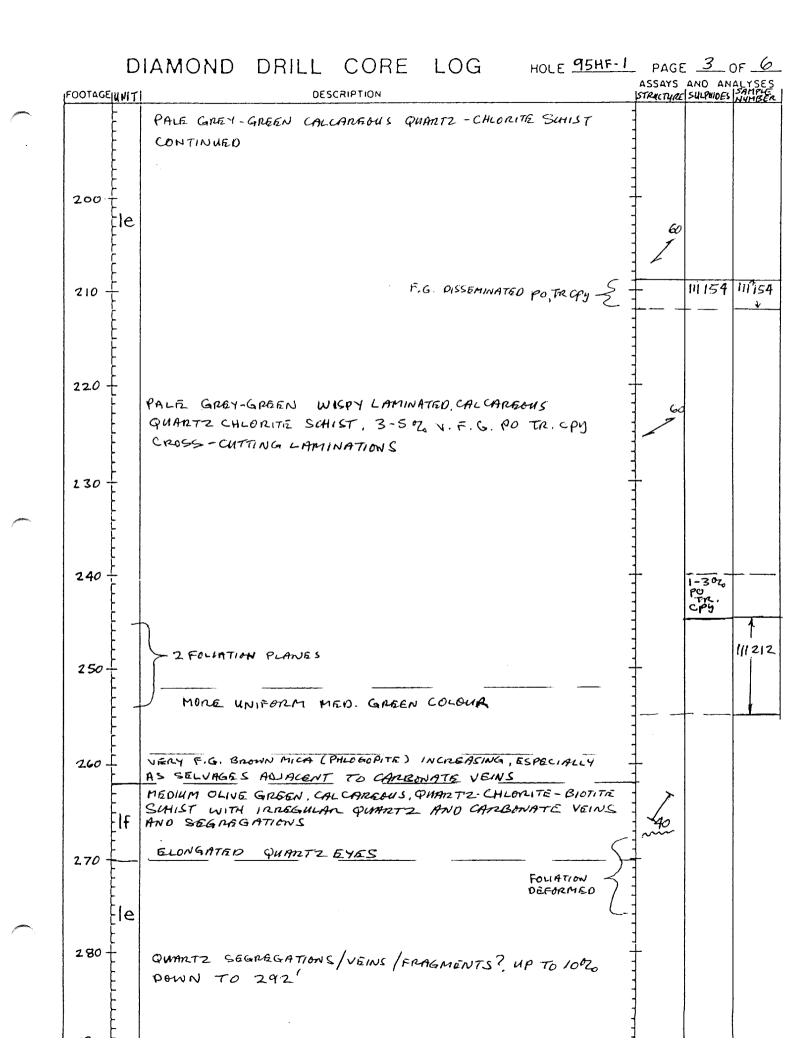
Symbols

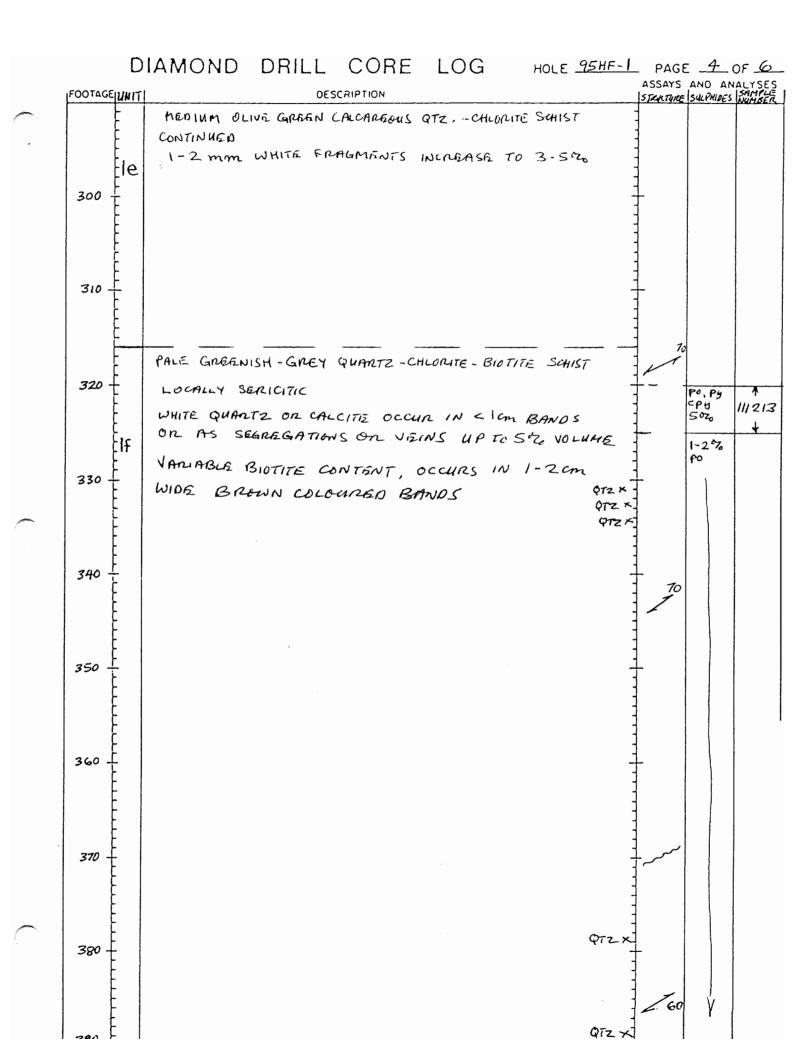
Geological Boundary: sharp, gradational contact

30 Fault, angle to core axis 70 \square

Foliation, angle to core axis

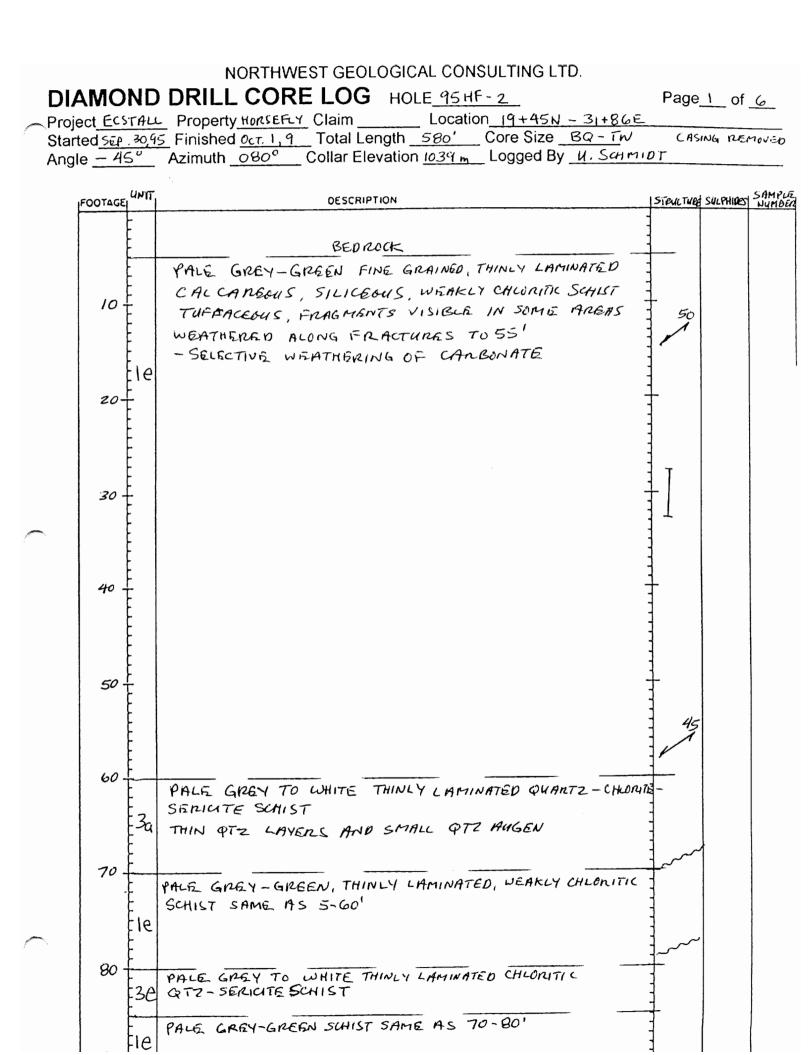
rock sample

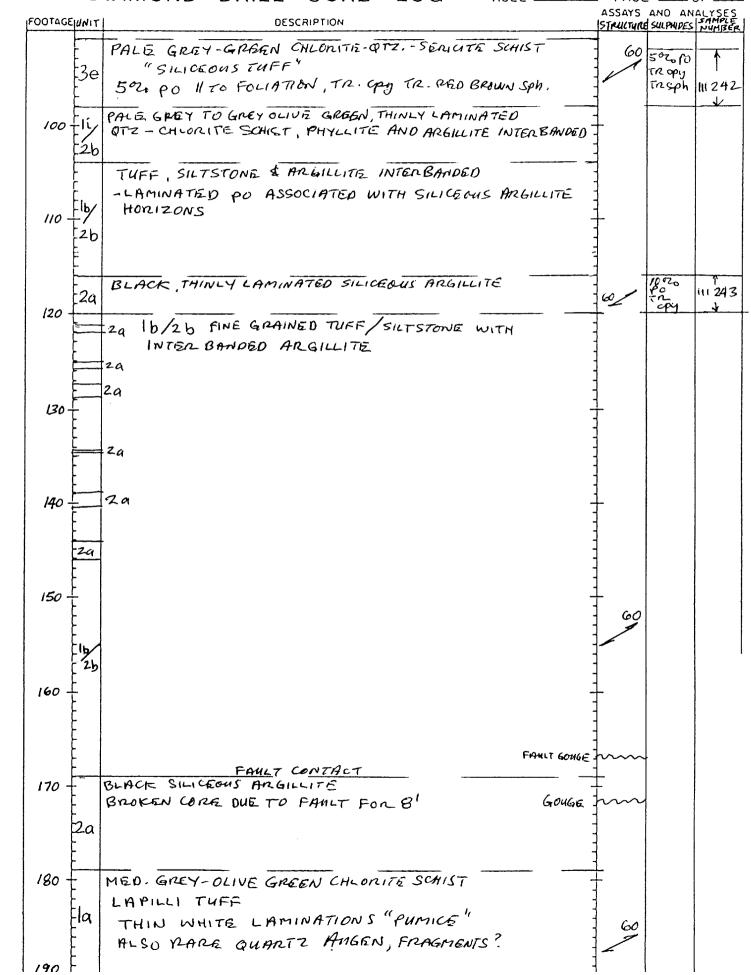

mineralization: py pyrite po pyrrhotite cpy chalcopyrite bo bornite gri galena sph sphalerite TR trace quartz vein

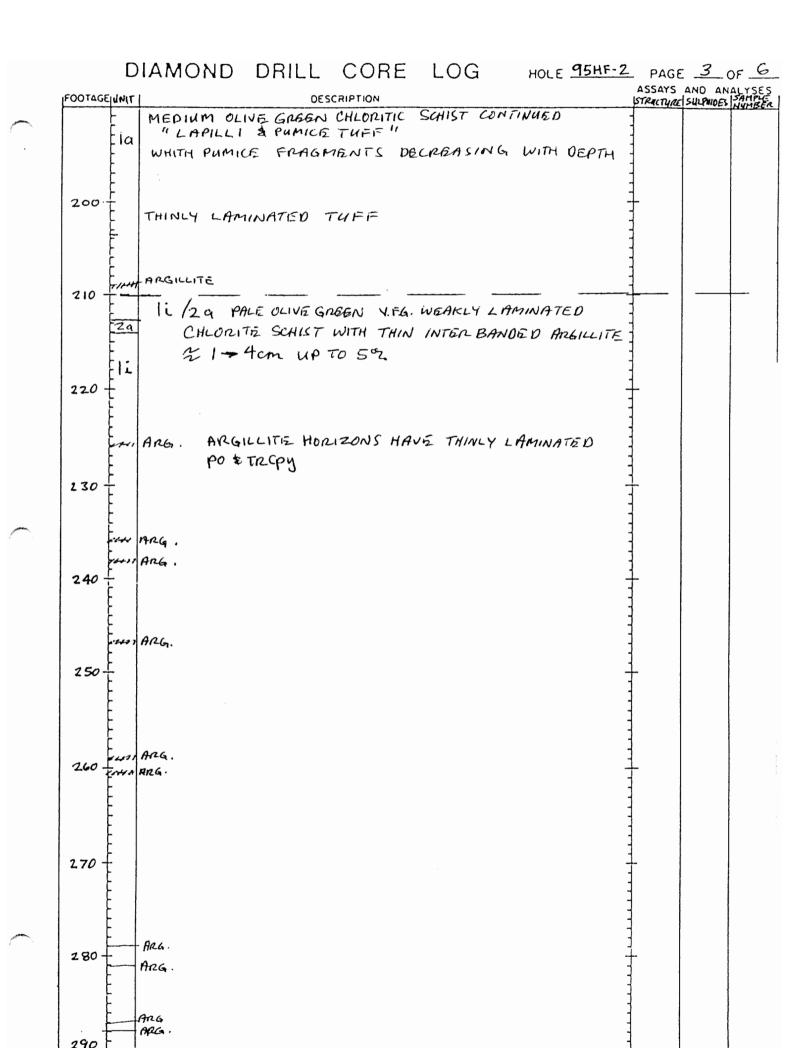

NORTHWEST GEOLOGICAL CONSULTING LTD. DIAMOND DRILL CORE LOG HOLE 95 HF-1 Page 1 of 6

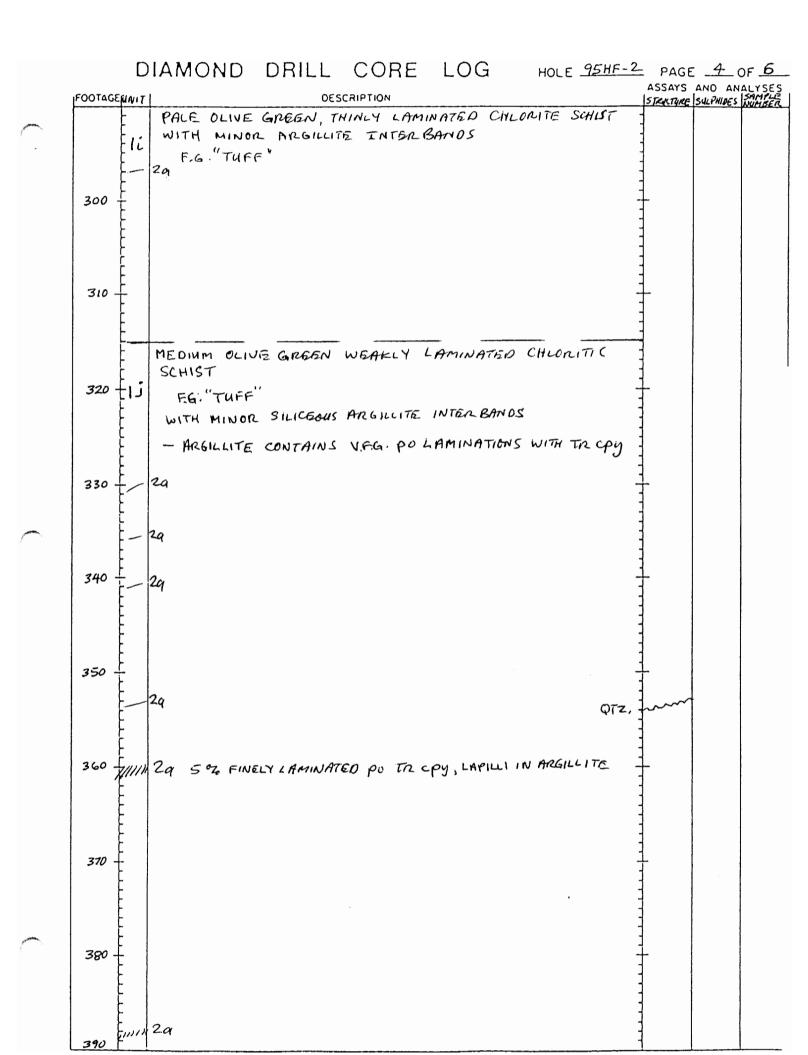
Project ECSTALL Property HorsEFLY Claim Location 20 + 58N - 30 + 11E Started SEP. 28 95 Finished SEP. 29, 95 Total Length 560 FT. Core Size BQ - TW Angle - 45° Azimuth 080° Collar Elevation 30.79' Logged By U. Schmidt

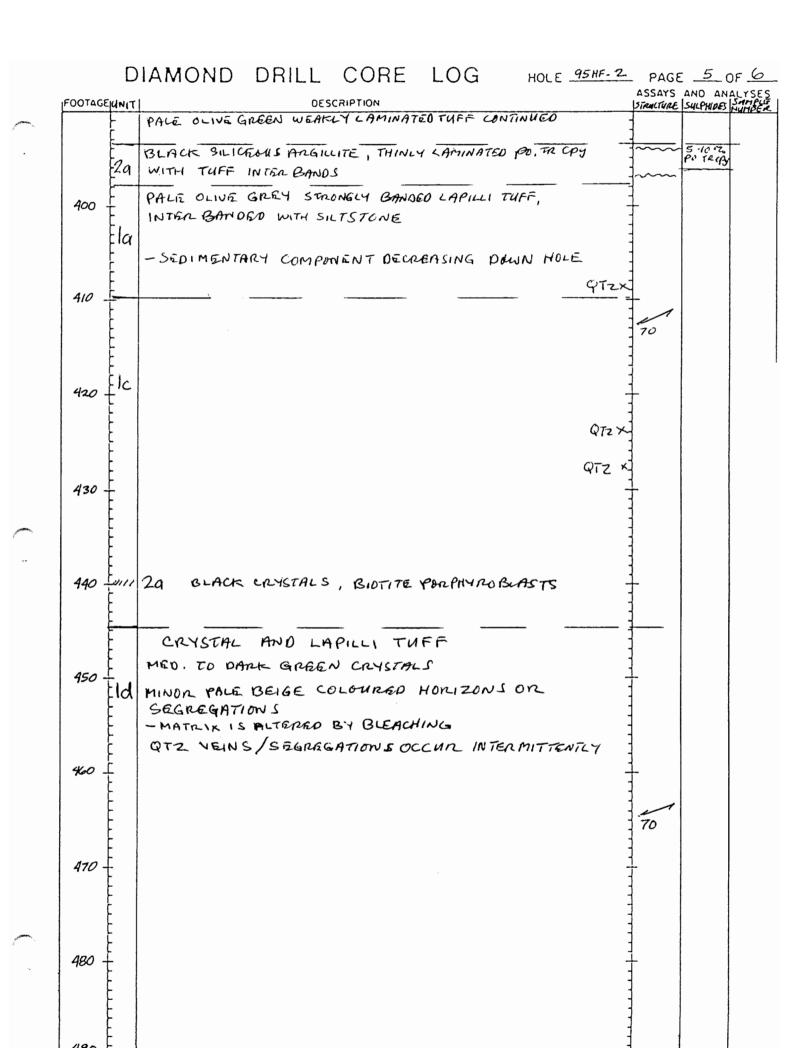
FOOTAGE	DESCRIPTION	STRUCTUR	SULPHIDES	SAMPU
		-		
	BEDRUCK	-		
10 -	MED. GREY GREEN CALCAREOUS QTZ, -CHLORITE SCHIST N.F.G. PALE GREY-GREEN THINLY LAMINATED, TUFF?			
	2 RUSTY WEATHERING ALONG FRACTURES TO 23'			
20-	PO, TR. CRY 112	1 100		
- - - -	MED. GREEN CHLORIT SCHIST, MINOR BIOFITE // FOLIHTION	160		
30 +	C QUANTZ - SERICITE - BIOTITE SCHIST		3-5% PO&TR	сру
	MED. GREY GREEN CALCAREOUS QTZ, - CHLORITE SCHIKT CONTINUED			
40	e V. FINE GRAINED PO & TR CPY 11 TO FOLIATION			
يد بالد	3-502 THINLY LAMINATED POTR CAY LIGHT GABY & GREAN LAMINATED CHLORITE SCHIST h SMALL QTZ. FRAGMENTS? TUFF?	1	3-57 p	o, Try
50 -	CALCAREOUS CHLORITE SCHIST AS ABOVE CROSS-CUTTING VEINS OF QUARTZ AND CARBONATE WITH	35		
	BIOTITE SELVAGES			
60 ÷		•		
	LIGHT GREY TO WHITE, QUARTZ - SERICITE SCHILT, WITH CHLORITE & BIOTITE	170	3-5%	63
70 -	PALE GREY-GREEN, VERY FINELY LAMINATED SILICEBUS SCHILT SILICA INCREASING DOWN HOLE 3-500 INTERLATINATED VEG. PO, TR. CPY		po Tr cfy	1112(1 ¥
-م ب ا	PALE GREY-GREEN QUARTZ-CHLORITIE-BIOTITE SCHIST			¥
	F CROSS-CUTTING CARBONATE AND QUARTZ VEINLETS (BLEBS/ SEGREGATIONS	40		
80 -				
. }				

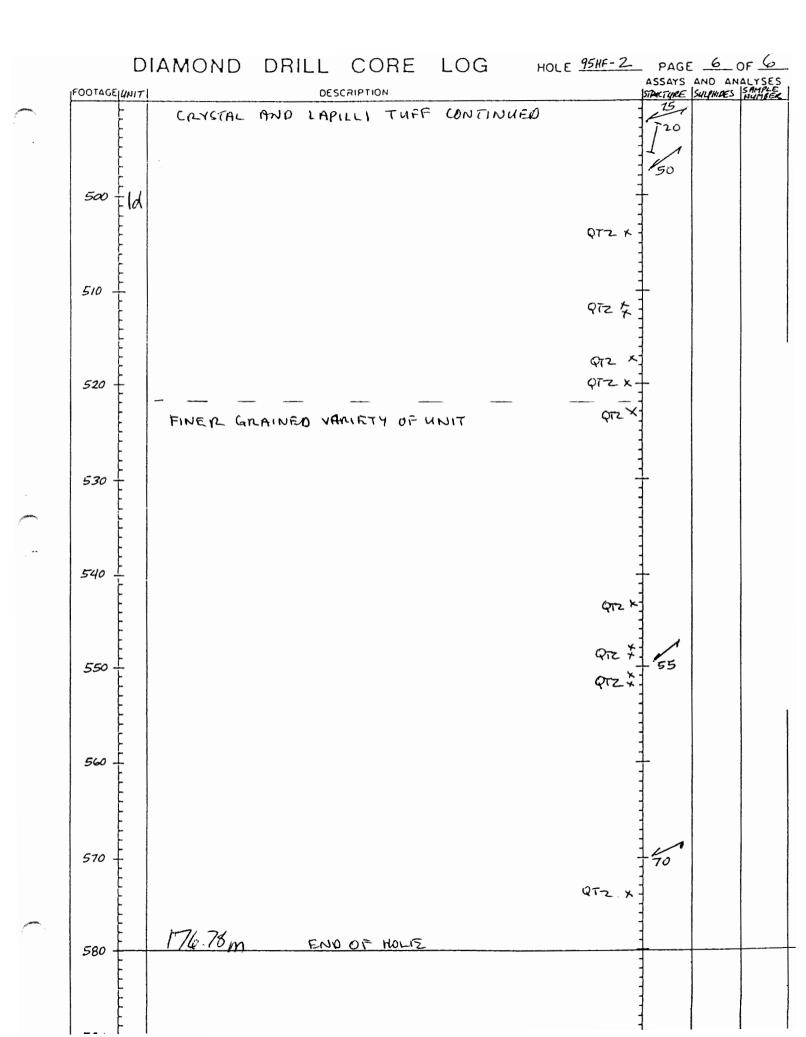

		D	IAMOND DRILL CORE LOG HOLE 95HF-1			
	FOOTAGE	UN17		ASSAYS	AND AN	ALYSES SAMPLE NUMBER
	100	-lf	CALCAREOUS QTZ-CHLORITE - BIOTITE SCHIST CONTINUED 3 QTZ SERICITE SCHIST, TR. PO. CPy II FOLIATION			
	110 -	l L L L L L				
	120 -		LIGHT GREY GREEN CALCAREOUS CHL BOT. SCHIST + MARIFOSITE NEAR CONTACT			
	130 -	29	BLACK SILICEOUS ARGILLITE WITH PO & CPY CLAMSE BLEBBY PYRRHUTITE WITH CPY, LOCALLY NO TO 50% SULPHIDES, IN QTZ, AND LAMINATED BLACK ARGILLITE		20 - 30 Рахуру Миноп Сру	111 152
	140 -		4.9 mc, 268 ppm Cu, 1276 ppm Pb, 362 ppm Zn 24ppb Au 13.8 ppm	As		1
	150 -	e e	PALE OLIVE GREEN, CALCAREAUS QUARTZ - CHURITE SCHIST 3-5% FINELY DISSEMWATED SULPHIDES PARALLEL TO FOLLATION PO>> PY TR, CPY DEFORMED TO 146' IRREGULAM QUARTZ FRAGMENTS ON SEGREGATIONS THINLY LAMINATED FROM 146' ON	1		111753 ¥
	160 -		MINOR BANDS OF BLACK ARGILLITE, MINOR MARIPOSITE - QUARTZ BLEBS (FRAGMENTS?) TUFFACEBUS, WITH MINOR SEDIMENTS	760		
	170 -		LQUARTZ AND CARBONATE SEGREGATIONS PARALLEL TO FOLIATION	20		
	180 -					
		29	ARGILLITE LAYERS INCREASING INFREQUENCY WITH DEPTH	~~~~		




$\frac{10}{100} = \frac{100}{100} 1$		DIAMOND DRILL CORE LOG HOLE 95HF-1	ASSAYS	AND AN	ALY
420 $ \begin{array}{c c c c c c c c c c c c c c c c c c c $	le	MEDIUM GREEN CALCAREENS QTZ-CHLORITE SCHIST BIOTITE LESS COMMON, OCCURS AS PORPHYROBLASTS PARALLEL TO FOLIATION	-	SACTION	
IKBLUE - GREYQUARTZANGEN IN THINLY LAMINATED THATZIXMEDIUMGREEN CALCHREGUSQUARTZ-CHLORITEMEDIUMGREEN CALCHREGUSQUARTZ-CHLORITEQT2 + $qT2$ $qT2$ QT2 + $qT2$ $qT2$ 400 $ e $ $qT2$ 410 $ e $ $qT2$ $ e $ </td <td>410</td> <td></td> <td></td> <td></td> <td></td>	410				
430 MEDIUM GREEN CALCAREDUS QUART2-CHLORITE SCHIST TT2 + TT2 +		BLUE-GREY QUARTZ AUGEN IN THINLY LAMINATED		10 2 PO	111
440 $ e $ 440 $ e $ 450 $ e $ e e	430	MEDIUM GREEN CALCAREOUS QUARTZ-CHLORITE SCHIST			
460 26 GREY BANORD SILTSTENE HEDIUM GREEN CALCAREAUS QTZ CHLORITE SCHIST CATZ PRAGMENTS VARIABLE PO CONCENTRATIONS FROM 2 - 20°2. DISSEMINATED PARALLEL TO FOLIATION TO BLEBBY CONCENTRATED VERKLY FOLIATED 480 480 480	140 <u>e</u>	-			
470 470 470 470 470 470 470 470	450		- - - - -		
470 470 A70 NERY FINE GRAINED, ISOLATED QTZ_ FRAGMENTS WEAKLY FOLIATED 480 480 480 10% PO		MEDIUM GREEN CALCAREOUS QTZ CHLORITE SCHIST		52 00	111
480		NERY FINE GRAINED, ISOLATED QTZ_ FRAGMENTS		TROPY	
	480		1	po TR Cpy	






DIAMOND DRILL CORE LOG HOLE 95HF-2 PAGE 2 OF 6

NORTHWEST GEOLOGICAL CONSULTING LTD.	
DIAMOND DRILL CORE LOG HOLE 95 HF - 3	Page 1 of 3
Project ECSTALL Property HorsEFLY Claim Location 19+54N-29+65E	
Started Oct. 2,95 Finished Oct. 2,95 Total Length 250' Core Size BQ-TW	

Angle __ 45° Azimuth _080° Collar Elevation _3054' Logged By U. Schmidt

IFOOTAGE	นมก	DESCRIPTION	STRUCTUR	SULPHIDES	SAMPUZ NYMBÉR
	E		-		
		BEDROCK MEDIUM GREY-GREEN QUARTZ-CHLORITE SCHIST			
10 -	le	CLASTIC TEXTURE, THINLY LAMINATED ISOLATED IRREGULAR CALCITE HORIZONS TR. PO ASSOCIATED WITH QUARTZ HORIZONS OR FRAGMENTS	70		
20-			- - - - - -		
30 -			-		
40 -					
50 -		MEDIUM GREEN THINLY LAMINATED CHLORITE SCHIST VARIABLE BIOTITE CONZENT IN THIN LAMINATIONS VARIABLE QUARTZ CONTENT	60 /25 /25		
60 -	م م م ا م م م	QUARTZ RICH SECTION RETURN TO THINLY LAMINATED QTZ-CHLORITE SCHIST QTZ X	50		
70 -		ψι z · ·	60		
80 -					
an	F	MORE MASSIVE VARIET WITH GRANNLAR TEXTURE	7		

DIAMOND DRILL CORE LOG HOLE 95HF-3 PAGE 2 OF 3

IFOOTAGEI			AND AN	
	10 HORE MASSIVE GRANNLAR VARIETY	-		NUMISER
	PALE GREY GREEN, QUARTZ CHLORITE - SERIGITE SCHIST 30 ISOLATED IRREGULAR QUARTZ LAMINATIONS, FRAGMENTS?	60	1-2°20 Po	
100	LIGHT GREY THINLY LAMINATED QUARTZ-CHLORITE SCHIST	- - -		
	1e - SILICEOUS FRAGMENTAL?			
110 -	PALIE GREY CHLORITIC QUARTZ SERICITE SCHIST	50		
	30 IRREGULAR CALCITE/QTZ SEGREGATINS -LARGER QUARTZ AUGEN			
	PALE GREEN WEAKLY LAMINATED QUARTZ-CHLORITE SCHIST LE GRANULAR TEXTURE			
120 -	PALE GRET CALCAREOUS QUART-CHLORITE SCHIST IRREGULAR LAMINATIONS MINOR BIOTITE PORPHYROBLASTS ILFOLIATION			
130-	10 In SCALE QUARTZ AUGEN	- - - T20		
140	36 NERT SILICEOUS SECTION, QUARTZ SERVICITE SCHIST PALE GREEN QUARTZ-CHLORITE-SERVICITE SCHIST ~ ACM DIAMETER QUARTZ FRAGMENT WITH TRACE PO, CPY			
150	3e	720		
160	PTZ SCHIST "TUFFACEOUS SILTSFONE?" QTZ >	60		
170	3d BIOTITIZ LAMINATIONS INCREASING PALE GREY TO GREY-GREEN QUARTZ-CHLORITE-MUSCOVITE SCHIST SILICEOUS TUFF OR METASEDIMENT 3e		1-32. 10	
180	BECOMING LIGHTER GREEN AN MORE SILICEONS LIGHT GREY GREEN TO WHITE, WEAKLY CHLORITIC PULATZ-SERVITE SCHILT	Y50 70	th opy 3-502.	-+
	BLACK SUNCEUS ADGULITE /AZISTE AD	307	PO 10-152	111244
⊭	36 QTZ-SERICITE SCHIST	1/-	ρς 10-1500 ρο	111 296

DIAMOND DRILL CORE LOG HOLE 95HF-3 PAGE 3 OF 3

IFOOTAGE		DESCRIPTION	ASSAYS	AND AN	ALYSES
	36	QUANTZ-SERIGTE SCHUT	STRUCTURE	10-152	
	F	BLACK SILICEOUS HIGHLITS	1/20	PU, PY TR GY	111246
	36	QTZ-SERIGTE SCHIST	<u> -</u>	10-152	-*
	F	BLACK, THINLY LAMINATED SILICEOUS ANGILLITE THIN PO LAMINATIONS \$ EUHEDRAL PY TR. CPY		PO, Py	111247
	F2a	The policy find the started on the first of g	150	Tr. CPy	1
200	Ē.			10 2. Py	- <u>*</u>
	E31	FALE GREEN QUART Z-SERIUTE-MARIPOSTE SCHIST		PD	111248
3-	120			5020	
	Ļ	BLACK THINLY LAMINATED SILLEOUS ANGILLITE		Py, Po	
210 -	<u>}</u>	THIN WHITE LAMINATIONS IN BLACK MATRIX	+		
	120	PY, FINELY DISS. PO Il TO FOLIMITION	55		11,249
	[2q			10-15%	-
	► ►	SULPHING CONTENT INCREASES TO 10 1502	-60	PO, PS	
·	}	SULPHIDE CONTENT INCREASES TO 10 1502	$-\omega$	m Gy	$ -\lambda $
220 -	÷.	LIGHT GREEN QUARTZ - SERIGIE - MARIPOSITE SCHIST	-7		111250
	‡3f	PYRITIC	1 20		1
	[<u> </u>		- *
	F	PALE OLIVE-GREEN QUARTZ-CHLORITE SCHIST	1		
	E	THIN ARGULITE INTERBANDS INCREASE IN FREQUENCY WITH DEPTH	1		
230-	£	- QUARTZ ANGEN, FRAGMENTS? QTZXX	50		
	E.	quint 2 magen ; indications ; qizes	12		
	Elk				
Ì	Ł				
	ţ		1		
240-	<u> </u>		+		
	F]		
	Ē]		
	E		-		
250-	<u>}</u>	762m ENDOF HOLE			
2.2	Ł		4		
	F				
	Ę		1		
	F		1		
260-	ţ	-	1-		
	F]		
	F		1		
	F		1		
1	F]		
2.70 -	£		+		
	Ę		1		
	Ę		1		
	F		4		
	Ł		1		
280-	<u></u>	· · · · ·	ŧ		
	₽		1		
			1		i
	k		1		
290	È ∣		1		
1 10	•		÷	<u></u>	A

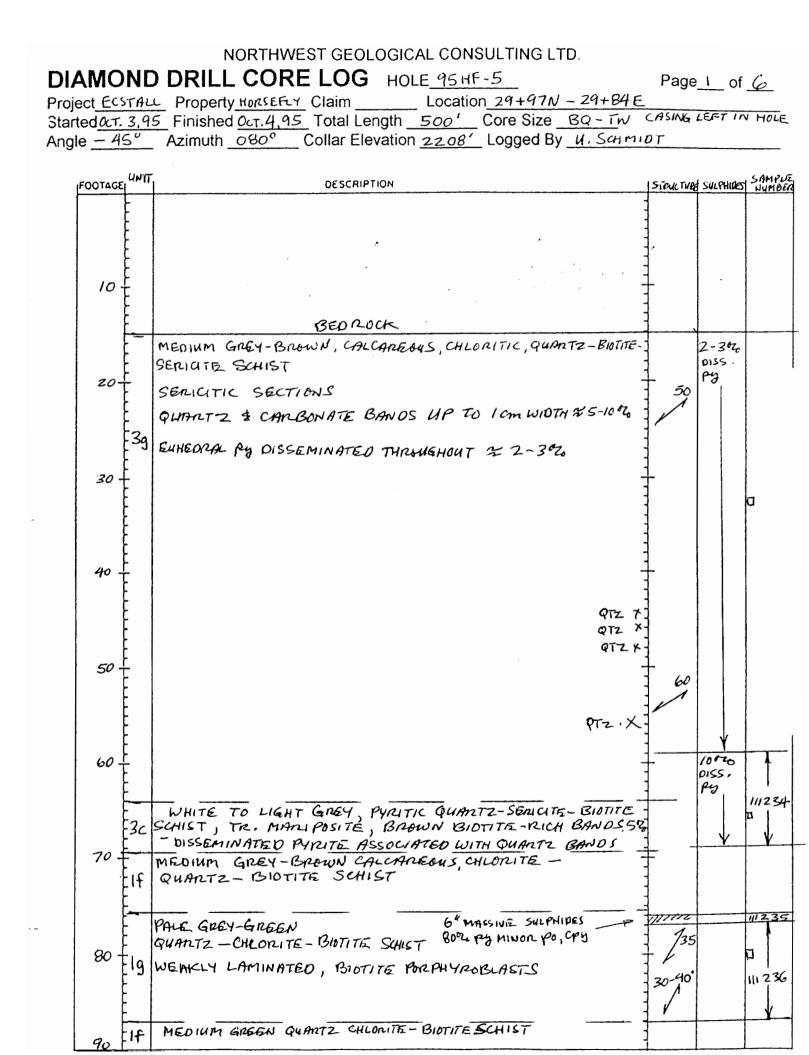
NORTHWEST GEOLOGICAL CONSULTING LTD.

DIAMOND DRILL CORE LOG HOLE 95HF-4

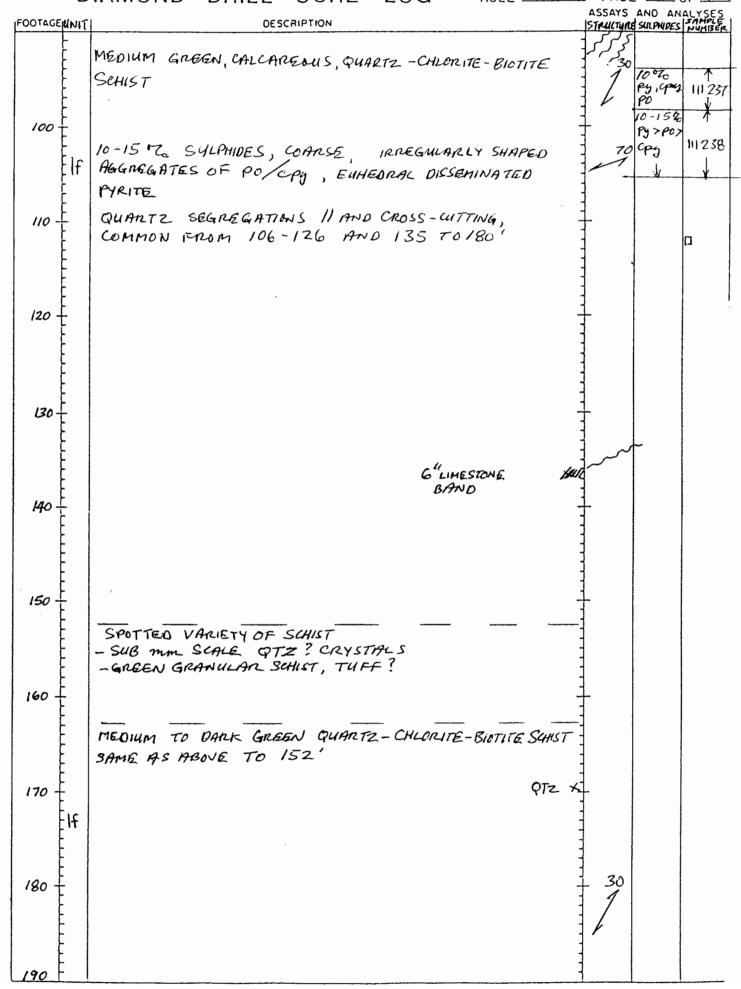
Page 1 of 4

Project ECSTALLProperty HorsEFLYClaimLocation 29+00N - 29+73EStarted $0c_{7,2}, 95$ Finished $0c_{7,3}, 95$ Total Length 310'Core Size BQ - TWAngle -45''Azimuth 080''Collar Elevation 2232'Logged By U. Schmidt

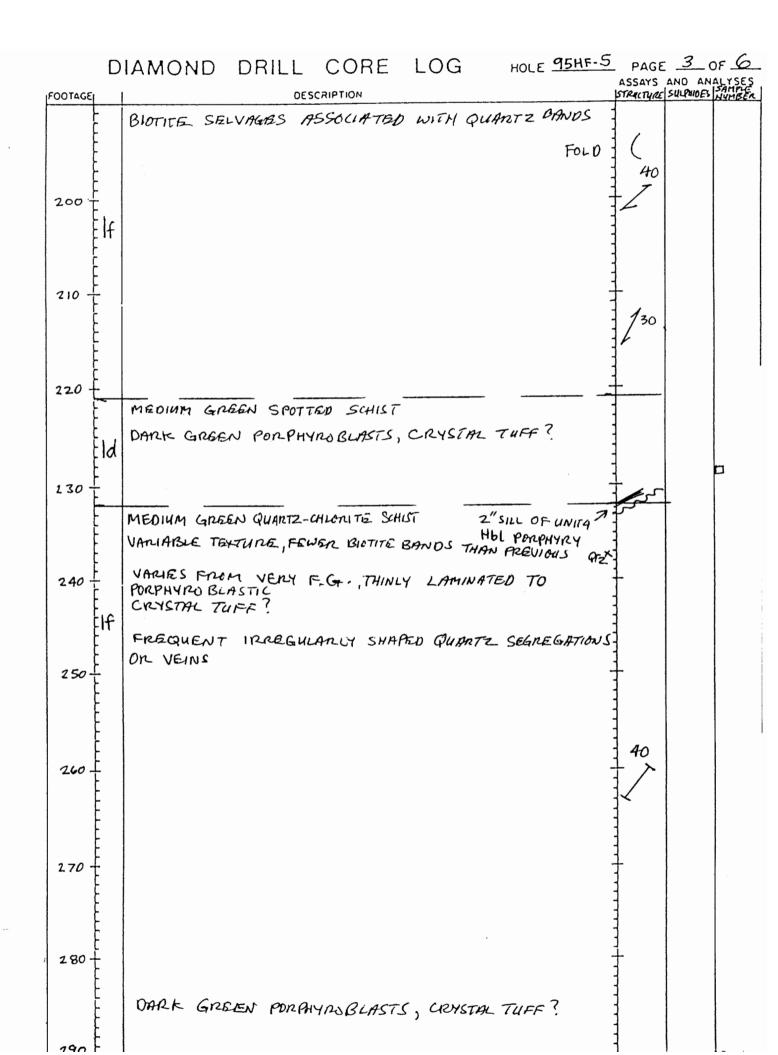
FOOTAGE	UN'T	DESCRIPTION	STEULTURE	SULPHIDES	SAMPUZ NYMBER
10 -		BEDROCK			
		Marine Contraction of Contract	1		
20-	1	MEDIUM GREEN CHLORITIZ SCHIST FINE GRAINED, THINLY LAMINATED, "MARBLE" TEXTURE, WIT BY IRREGULAR CARBONATE /QUIMTZ VEINS AND LAMINATIONS, OCCASIONAL REEBS OF PY DARK BROWN LAMINATIONS OF BIDTITE OR PHOGOPITE		204 M m	C Pry
	F		165		
30 -		FELSIC BANDS APPEAR PALE GREY, THINLY LAMINATED, QUARTZ SERIUTE SCHIST WITH BLUEGREY QUARTZ ENES, BIOTITE & CHLORITE F.G. PS. (PYPY		Ро, Фу Ру	111 155
	[3CM OF PO PY CPY AT 32 3 4'			
40 -			1 1 1 1 1	3920 Po, PY(PY	
50 -	le	-	60		D
60 -				ро сру. ру 111111	11156
70 -	3Ъ	3	- - - - - -		tn 157
80 -	30	QUARTZ SERIGITE SCHIST (RHYOLITE FLOW?) PALE GREY TO BEIGE, FINE TO MEDIUM GRAINED DISSEMINATED PY II TO FOLIATION Z 5020 INTERBANDED WITH BIDTITE-RICH LAYERS, BLUE-GREY QUARTZ AUGEN VISIBLE IN LIGHTER SECTIONS GOUGE II FOLATION	80	D155+ S4LPNI D4 S 'ЭФ2+	แบร์ช

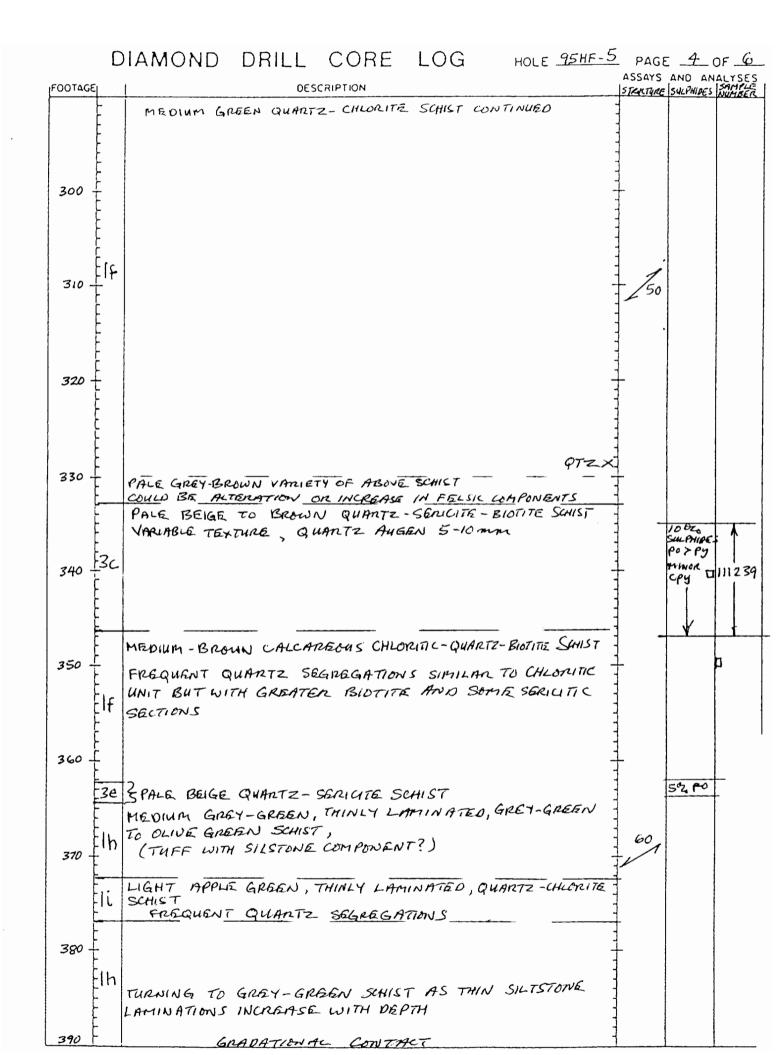

DIAMOND DRILL CORE LOG HOLE 95HF-4 PAGE 2 OF 4

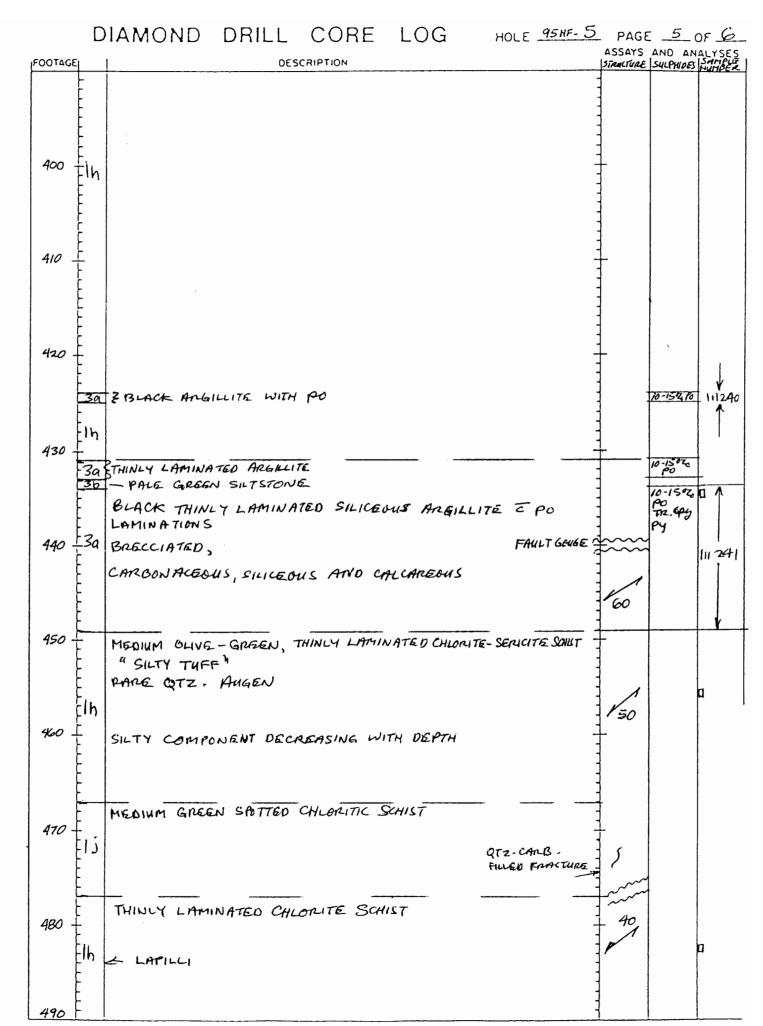
	TAMOND DRILL CORE LOG HOLE	ASSAYS	AND AN	ALYSES
FOOTAGEUNIT		STRUCTURE	SULPHIPES	111158
1-29	QUARTZ-SERIUTE SCHIST		- 100	X +
	QUANTZ-BIOTITE-CHLORITE SCHILT LIGHT GREY-GREEN TO BROWN		5-102 Py	
}	CARACTERIAL WITH DURATA - SERVICITE SCHICT HUNDA		j	
100 Flf	GRADATIONAL WITH QUARTZ-SERICITE SCHIST, MINOR QUARTZ-SERICITE SCHIST INTERBANDS CANBING	-		
L L	TWITEN MITTENT OTZ, & CARBONATE SEGREGATIONS			111 159
	5-10% DISSEMINATED BY IL FOLIATION			
	BLUE-GREY QUARTZ-AUGEN			
E				
110 +		-		
F	QUARTZ - SERIGITE - BIOTITE SCHICT (RHYOLITE FLOW?)	1		
	PALE GREY QUARTZ - SERICITE SCHILT WITH DISSEMINATED			
3a	PYRITE 5-10%		Tir Gpy Sph,gn	111 160
120 -	BLUE-GREY QUARTZ AUGEN AND LARGER, PYRITIC QUARTZ AUGEN, UP TO 4000 py OVER 2-4cm	-		
	TR. RED-BROWN Sph, TR. GR			
E			V	
	GRADES TO MEDIUM GREY-GREEN SCHIST (NO 9TZ EYES)		3-52	
3g	BIOTITE LAMINATION S INCREASE, PY DECREASES, WARSEN		Pg	111 161
130-	PYRITE AGGREGATES ASSOCIATED WITH BIOTITE LAYERS -		Í	
Ę				<u> </u>
Ę.	DARK TO MEDIUM GREY-GREEN, QTZ-CHLORITE-BIOTITE SCHIST, WITH AUGEN OF GRANULAR QUARTZ 2K6mm			
140 1	BIOTITE LAMINATIONS HAVE INGREASED	<u> </u>		
	LIGHT GREY QUARTZ - HUGEN SCHIST			
[3a	QUARTZO - FELOSPATHIC, BIOTITE - SERIUTE ? CHLORITE	60		111 162
	Sanst	1		
150 +	-	+	py, Po	V
E	QUARTZ-CHLORITE-BIOTITE SCHIST	5,60	L2020	
E	MEDIUM GREY-GREEN, THINLY LAMINATED, QUARTZ-CHLORITE		po, po	
٢٩	BIOTITE SCHIST	52/		
160		501		
	PALE OLIVE-GREEN INTERBANDED CHLORITE-BIOTITE			
	BROWN BIDTITE LANERS MAKE UP TO 30" OF UNIT			
F1g	5-10% WHITE QUARTZ AND CALCITE BANDS			
I E	HAND CROSS-CUTTING FOLIATION			
170 +	Diss. $Py < 2\%$			
-3d	S CHLONITIC QUARTZ-SERIGIE SCHIST WITH INTER BANDED BIOTITE			
	QUARTZ & CALCITE SEGREGATIONS, 2-3cm WIOTH	50	1	
	HIGHLY VARIABLE FOLIATION			
180 Flg		I FOL.		
		es es	100%	4 111 163
190 30	QUARTZ - SERIGIE SCHIST	T TR	cpy	

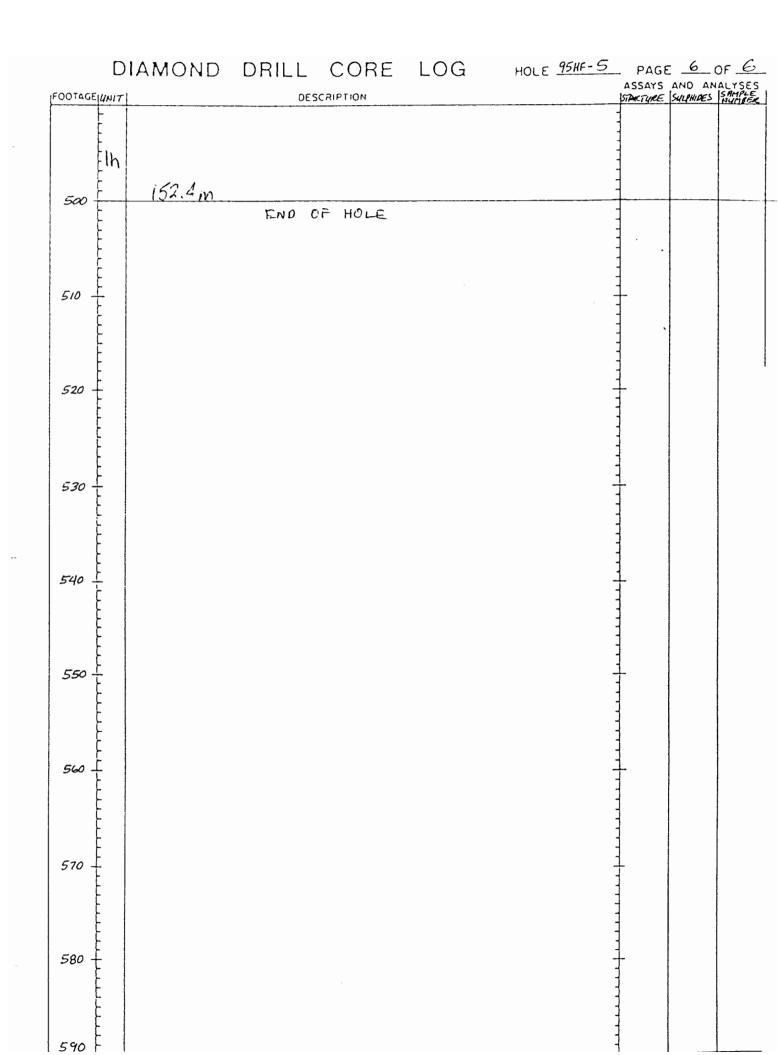

~~

QUARTZ-SERICITE_SCHIST 0.30 QUARTZ-SERICITE_SCHIST 0.30 QUARTZ-SERICITE SCHIST 0.30 PRE GREY LAMINATED QUARTZ-SERICITE SCHIST 0.30 PALE GREY LAMINATED QUARTZ-SERICITE SCHIST 0.30 PALE GREY LAMINATED QUARTZ-CHLORITE SCHIST 0.30 PALE GREY LAMINATED WITH QUARTZ AUGEN 0.30 PALE GREY CHLORE SCHIST 20% SULPHIDES PLOYD 0.57 SQ QUARTZ-SERICITE SCHIST 20% SULPHIDES PLOYD 1.57 -CROSS-CHTING QUARTZ PHO CARBONATE VEINS/SEGREGATION 1.57 -CROSS-CHTING QUARTZ PHO CARBONATE VEINS/SEGREGATION 1.57 -05550-MATED F.G. PO & QA 210 10 10 50 210 10 10 110 CHLORITIC SCHIST GETTING LIGHTER IN COLDUR 20 210 10 10 1.00 210 10 10 1.00 210 10 1.00 1.00 210 10 1.00 1.00 210 10 1.00 1.00 210 10 1.00 1.00 1.00 210 10 1.00 1		TI DESCRIPTION	STONDA	ANO AI	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	FOOTAGE	QUANTZ-SERIUTE SCHIST		10-25	đ
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Fa	PALE GREY LAMINATED QUARTZ-SERIGTE SCHIST	-		k
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	[sa	PO, PY, TR. CPY IL AND CROSS-CUTTING FOLIATION]		ſ
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	E	PY ALSO DISSEMINATED IN QUARTZ AUGEN		+	1
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	an fle	MEDIUM GREEN, QUANTZ-CHLORITE SCHIST		PO, CPY	T
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	200				ē
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	Ę		-		
210 IG SILICA CONTENT INCREASING. 220 GUARTZ VEINING INCREASING. 220 CUARTZ VEINING INCREASING, FOLIATION VARIABLE CHLORITL SCHIST GETTING LIGHTER IN COLOUR 240 PRIE GREY-GREEN & MEDIUM GREEN INTER BANDED QUARTZ - CHLORITE - BIDIUM GREEN INTER BANDED PRIEGE COLONITE - MEDIUM SCHIST, THINLY ARIWATED PRIEGE COLONITE - MEDIUM SCHIST, THINLY ARIWATED MNORL PY, PO & TIL, CPY BETWEEN THIN BANDS OF MASSIVE PITYOR 250 FINE GRAMED, THINLY LAMINATED, INTERNITTENT CACITE > QUARTZ BANDS, II FOLIATION, ALSO CROSS - CUTTING, WIDELY SPACED AGGREGATES OF PHRITE 50 260 260 260 260 260 260 260 26	ŀ	- CROSS-CUTTING QUARTE AND CARBONATE VEINS/SEGREGATIONS	-11 lota.		
220 220 220 220 220 230 QUARTZ VEINING INCREASING, FOLIATION VARIABLE CHLORIT'L SCHIST GETTING LIGHTER IN COLOUR 240 PALE GREY-GREEN & MEDIUM GAREN INTER BANDED GUARTZ - CHLORITE - BIOTITE SCHIST, THINLY LANNATED BEIGE COLOURSD LANNAMATIONS MINON PY, PO & TR., CAY BETWEEN THIN BANDS OF MASSIVE POLYTON BEIGE COLOURSD LANNING TIONS MEDIUM GREEN, QUARTZ - CHLORITE SCHIST (SAMERS 198-221) FINE GRAMED, THINLY LANNATED, INTERMITTENT CALCITE > QUARTZ CHLORITE SCHIST (SAMERS 198-221) FINE GRAMED, THINLY LANNATED, INTERMITTENT CALCITE > QUARTZ BANDS, U FOLIATION, ALSO CROSS- CUTTING, WIDELY SPACED AGGNEGATES OF PIRITE 50 200 200 200 200 200 200 200	Ē		-		
220 220 220 220 220 220 220 230 QUARTZ VEINING INCREASING, FOLIATIAN VARIABLE CHLORITIC SCHIST GETTING LIGHTER IN COLOUR PALE GRAY-GREEN & MEDIUMI GREEN IN COLOUR PALE GRAY-GREEN & MEDIUMI GREEN INCOLOUR GUARTZ - CHLORITE - BIOTITE SCHIST, THINLY LATINATED BEIGE COLOURED LATINATIONS MINDL PY, PO & TR. CPY BETWEEN THIN BANDS OF MASSIVE PARYON DECOLOURED LATINATIONS MINDL PY, PO & TR. CPY BETWEEN THIN BANDS OF MASSIVE PARYON FINE GRAMMED, THINLY LAMINATED, INTERMITTENT CALCITE > QUARTZ CALLORITE SCHIST (SAME AS 198-231) FINE GRAMMED, THINLY LAMINATED, INTERMITTENT CALCITE > QUARTZ BANDS, II FOLIATION, ALSO CROSS-CUTTING, WIDELY SPACED AGGREGATES OF PARITE 50 200 200 200 200 200 200 200	210 - 19	SILICA CONTENT INCREASING]/	POCAN	+
220 220 220 230 QUARTZ VEINING INCREASING, FOLIATION VARIABLE CHLORITIC SCHIST GETTING LIGHTER IN COLOUR PALE GREY-GREEN & MEDIUMI GREEN INTERENT QUARTZ - CHLORITE - BIOTITE SCHIST, THINLY LATINATED BEIGE COLOURED LATINATIONS MINOL PY, PO & TR. CPY BETWEEN THIN BANDS OF MASSIVE PITYOF DEIGE COLOURED LATINATIONS MINOL PY, PO & TR. CPY BETWEEN THIN BANDS OF MASSIVE PITYOF DEIGE COLOURED, QUARTZ - CHLORITE SCHIST (SMERS 198-25) FINE GRAMMED, THINLY LAMINATED, INTERMITTENT CALCITE > QUARTZ BANDS, IN FOLIATION, ALSO CROSS-CUTTING, WIDELY SPACED AGGREGATES OF PHRITE 200 200 200 200 200 200 200 20	F		50		
230 QUARTZ VEINING INCREASING, FOLIATION VARIABLE CHLORITIC SCHIST GETTING LIGHTER IN COLOUR PALE GRAY-GREEN & MEDIUMI GREEN INTER BANDED QUARTZ - CHLORITE - BIOTITE SCHIST, THINLY LAMINATED BEIGE COLOURED LAMINATIONS MINOR PY, PO & TR. CPU BETWEEN THIN BANDS OF MASSIVE POLY(94) CO-COR PY, PO, MEDIUMI GREEN, QUARTZ - CHLORITE SCHIST (GAMERS 198-237) FINE GRAMED, THINLY LAMINATED, INTERMITTENT CALCITE > QUARTZ BANDS, II FOLIATION, ALSO (ROSS - CHTTING, WIDELY SPACED AGGREGATES OF PHRITE 50 240 240 240 240 240 250 CROSS - CHTTING, WIDELY SPACED AGGREGATES OF PHRITE 50 240 240 250 CROSS - CHTTING IS II TO CORE ALLS AT 278 % 1 250 FOLIATION IS II TO CORE ALLS AT 278 % 1 250 250 250 250 250 250 250 250	F				
230 QUARTZ VEINING INCREASING, FOLIATION VARIABLE CHLORITIC SCHIST GETTING LIGHTER IN COLOUR PALE GRAY-GREEN & MEDIUMI GREEN INTER BANDED QUARTZ - CHLORITE - BIOTITE SCHIST, THINLY LAMINATED BEIGE COLOURED LAMINATIONS MINOR PY, PO & TR. CPU BETWEEN THIN BANDS OF MASSIVE POLY(94) CO-COR PY, PO, MEDIUMI GREEN, QUARTZ - CHLORITE SCHIST (GAMERS 198-237) FINE GRAMED, THINLY LAMINATED, INTERMITTENT CALCITE > QUARTZ BANDS, II FOLIATION, ALSO (ROSS - CHTTING, WIDELY SPACED AGGREGATES OF PHRITE 50 240 240 240 240 240 250 CROSS - CHTTING, WIDELY SPACED AGGREGATES OF PHRITE 50 240 240 250 CROSS - CHTTING IS II TO CORE ALLS AT 278 % 1 250 FOLIATION IS II TO CORE ALLS AT 278 % 1 250 250 250 250 250 250 250 250	F		-		
230 QUARTZ VEINING INCREASING, FOLIATION VARIABLE CHLORITIC SCHIST GETTING LIGHTER IN COLOUR PALE GRAY-GREEN & MEDIUMI GREEN INTER BANDED QUARTZ - CHLORITE - BIOTITE SCHIST, THINLY LAMINATED BEIGE COLOURED LAMINATIONS MINOR PY, PO & TR. CPU BETWEEN THIN BANDS OF MASSIVE POLY(94) CO-COR PY, PO, MEDIUMI GREEN, QUARTZ - CHLORITE SCHIST (GAMERS 198-237) FINE GRAMED, THINLY LAMINATED, INTERMITTENT CALCITE > QUARTZ BANDS, II FOLIATION, ALSO (ROSS - CHTTING, WIDELY SPACED AGGREGATES OF PHRITE 50 240 240 240 240 240 250 CROSS - CHTTING, WIDELY SPACED AGGREGATES OF PHRITE 50 240 240 250 CROSS - CHTTING IS II TO CORE ALLS AT 278 % 1 250 FOLIATION IS II TO CORE ALLS AT 278 % 1 250 250 250 250 250 250 250 250	F		1		
240 PALE GREY-GREEN & MEDIUM GREEN IN COLOUR QUARTZ - CHLORITE - BIOTITE SCHIST, THINLY LATINATED BEIGE COLOURED LATINATIONS MINOR PY, PO & TR. CPY BETWEEN THIN BANDS OF MASSIVE PARY PREDIMM GREEN, QUARTZ -CHLORITE SCHIST (SAMERS 198-237) FINE GRAINED, THINLY LAMINATED, INTERMITTENT CALCITE > QUARTZ BANDS, II FOLIATION, ALSO CROSS - CUTTING, WIDELY SPACED AGGREGATES OF PIRITE 50 240 240 250 FOLIATION IS II TO CORE AKIS AT 278 2 250 FOLIATION IS II TO CORE AKIS AT 278 2 250 FOLIATION IS III TO CORE AKIS AT 278 2 250 FOLIATION IS II TO CORE AKIS AT 278 2 250 FOLIATION IS II TO CORE AKIS AT 278 2 250 250 250 250 250 250 250 25	22.0 +		Ŧ		
240 PALE GREY-GREEN & MEDIUM GREEN IN COLOUR QUARTZ - CHLORITE - BIOTITE SCHIST, THINLY LATINATED BEIGE COLOURED LATINATIONS MINOR PY, PO & TR. CPY BETWEEN THIN BANDS OF MASSIVE PARY PREDIMM GREEN, QUARTZ -CHLORITE SCHIST (SAMERS 198-237) FINE GRAINED, THINLY LAMINATED, INTERMITTENT CALCITE > QUARTZ BANDS, II FOLIATION, ALSO CROSS - CUTTING, WIDELY SPACED AGGREGATES OF PIRITE 50 240 240 250 FOLIATION IS II TO CORE AKIS AT 278 2 250 FOLIATION IS II TO CORE AKIS AT 278 2 250 FOLIATION IS III TO CORE AKIS AT 278 2 250 FOLIATION IS II TO CORE AKIS AT 278 2 250 FOLIATION IS II TO CORE AKIS AT 278 2 250 250 250 250 250 250 250 25	F		1		
240 PALE GREY-GREEN & MEDIUM GREEN IN COLOUR QUARTZ - CHLORITE - BIOTITE SCHIST, THINLY LATINATED BEIGE COLOURED LATINATIONS MINOR PY, PO & TR. CPY BETWEEN THIN BANDS OF MASSIVE PARY PREDIMM GREEN, QUARTZ -CHLORITE SCHIST (SAMERS 198-237) FINE GRAINED, THINLY LAMINATED, INTERMITTENT CALCITE > QUARTZ BANDS, II FOLIATION, ALSO CROSS - CUTTING, WIDELY SPACED AGGREGATES OF PIRITE 50 240 240 250 FOLIATION IS II TO CORE AKIS AT 278 2 250 FOLIATION IS II TO CORE AKIS AT 278 2 250 FOLIATION IS III TO CORE AKIS AT 278 2 250 FOLIATION IS II TO CORE AKIS AT 278 2 250 FOLIATION IS II TO CORE AKIS AT 278 2 250 250 250 250 250 250 250 25	Ĺ		60		
CHLORITIL SCHIST GETTING LIGHTER IN COLOUR. PALE GREY. GREEN & MEDIUMI GREEN INTER BANDED GUARTZ - CHLORITE - BIDTITE SCHIST, THINLY LAMINATED BEIGE COLOURED LAMINATIONS MINOR PY PO & TR. CPY BETWEEN THIN BANDS OF MASSIVE POLYON CO-COOR POLYON MEDIUM GREEN, QUARTZ - CHLORITE SCHIST (SAMERS 198-237) FINE GRANED, THINLY LAMINATED, INTERMITTENT CALCITE > QUARTZ BANDS, U FOLIATION, ALSO CROSS- CUTTING, WIDELY SPACED AGGREGATES OF PHRITE SO 10 200 10 200 20 20 20 20 20 20 20 20	ţ		IN		
CHLORITIL SCHIST GETTING LIGHTER IN COLOUR. PALE GREY. GREEN & MEDIUMI GREEN INTER BANDED GUARTZ - CHLORITE - BIDTITE SCHIST, THINLY LAMINATED BEIGE COLOURED LAMINATIONS MINOR PY PO & TR. CPY BETWEEN THIN BANDS OF MASSIVE POLYON CO-COOR POLYON MEDIUM GREEN, QUARTZ - CHLORITE SCHIST (SAMERS 198-237) FINE GRANED, THINLY LAMINATED, INTERMITTENT CALCITE > QUARTZ BANDS, U FOLIATION, ALSO CROSS- CUTTING, WIDELY SPACED AGGREGATES OF PHRITE SO 10 200 10 200 20 20 20 20 20 20 20 20	230 +	QUARTZ VEINING INCREASING, FOLIATION VARIABLE	1		
240 PALE GREY-GREEN & MEDIUM GREEN INTER BANDED QUARTZ - CHLORITE - BIOTITE SCHIST, THINLY LATINATED BEIGE COLOURED LAMINATIONS MINOR PY, PO & TR., CPY BETWEEN THIN BANDS OF MASSIVE POJPYON COLOR GREEN, QUARTZ - CHLORITE SCHIST (SAMERS 198-257) 250 FINE GRAINED, THINLY LAMINATED, INTERMITTENT CALCITE > QUARTZ BANDS, U FOLIATION, ALSO CROSS-CUTTING, WIDELY SPACED AGGREGATES OF PHRITE 50 10 240 240 240 240 250 CROSS-CUTTING, WIDELY SPACED AGGREGATES OF PHRITE 240 250 FOLIATION IS II TO CORE ANIS AT 278 1/2 250 FOLIATION IS II TO CORE ANIS AT 278 1/2 250 CROSS-CUTTING IS IN TO CORE ANIS AT 278 1/2 250 CROSS-CUTTING IS IN TO CORE ANIS AT 278 1/2 250 FOLIATION IS II TO CORE ANIS AT 278 1/2 250 CROSS-CUTTING IS IN TO CORE ANIS AT 278 1/2 CALCING IS IN TO CORE ANIS IN TO CORE ANIS AT 200 CALCING IS IN TO CORE ANIS IN TO CORE ANIS AT 200 CA	F		1 1		
240 QUARTZ - CHLORITE - BIOTITE SCHIST, THINLY LARINATED, BEIGE COLOMINED LAMINATIONS MINOR PY, PO & TR., CPY BETWEEN THIN BANDS OF MASSIVE PUTYON OCCOR POPUL MEDIUM GREEN, QUARTZ - CHLORITE SCHIST (SAMERS 198-227) SO MEDIUM GREEN, QUARTZ - CHLORITE SCHIST (SAMERS 198-227) FINE GRAINED, THINLY LAMINATED, INTERMITTENT CALCITE > QUARTZ BANDS, U FOLIATION, ALSO CROSS-CUTTING, WIDELY SPACED AGGREGATES OF PURITE SO CROSS-CUTTING, WIDELY SPACED AGGREGATES OF PURITE SO CROSS-CUTTING, WIDELY SPACED AGGREGATES OF PURITE SO CROSS-CUTTING DEFINED BY BIOTITE BANDS FOLIATION IS II TO CORE AKIS AT 278 2 250 COMPARENT OF CORE AKIS AT 278 2	Ē	Chever - Chever Carrier IN Colour			
240 QUARTZ - CHLORITE - BIOTITE SCHIST, THINLY LARINATED, BEIGE COLOMINED LAMINATIONS MINOR PY, PO & TR., CPY BETWEEN THIN BANDS OF MASSIVE PUTYON OCCOR POPUL MEDIUM GREEN, QUARTZ - CHLORITE SCHIST (SAMERS 198-227) SO MEDIUM GREEN, QUARTZ - CHLORITE SCHIST (SAMERS 198-227) FINE GRAINED, THINLY LAMINATED, INTERMITTENT CALCITE > QUARTZ BANDS, U FOLIATION, ALSO CROSS-CUTTING, WIDELY SPACED AGGREGATES OF PURITE SO CROSS-CUTTING, WIDELY SPACED AGGREGATES OF PURITE SO CROSS-CUTTING, WIDELY SPACED AGGREGATES OF PURITE SO CROSS-CUTTING DEFINED BY BIOTITE BANDS FOLIATION IS II TO CORE AKIS AT 278 2 250 COMPARENT OF CORE AKIS AT 278 2	ŀ]>0/		
BEIGE COLOMAED LAMINATIONS MINOR PY, PO & TR. CPY BETWEEN THIN BANDS OF MASSIVE PUTY AND CO-CONSEPLENT MEDIUM GREEN, QUART2-CHLORITE SCHIST (SAMERS 198-237) FINE GRAINED, THINLY LAMINATED, INTERMITTENT CALCITE > QUARTZ BANDS, II FOLIATION, ALSO CROSS-CUTTING, WIDELY SPACED AGGREGATES OF PHRITE 50 10 240 240 240 25 20 20 20 20 20 20 20 20 20 20	-			2 9	ŀ
MINOR PY, PO & TR. CPY BETWEEN THIN BANDS OF MASSIVE PO, PY, PO MEDIUM GREEN, QUARTZ-CHLORITE SCHIST (SAME AS 198-237) 250 FINE GRANNED, THINLY LAMIN ATED, INTERMITTENT CALCITE > QUARTZ BANDS, II FOLIATION, ALSO CROSS-CUTTING, WIDELY SPACED AGGREGATES OF PIRITE 50 11 240 270 PY AGGREGATES Z 20% CORE FOLIATION DEFINED BY BIOTITE BANDS FOLIATION IS II TO CORE AKIS AT 278 2 280 280 280 250 250 250 250 250 250 250 25	240 +	1 · · · · · · · · · · · · · · · · · · ·	$\frac{1}{1}$		
250 HEDIUM GREEN, QUARTZ-CHLORITE SCHIST (SAMERS 198-237) FINE GRAINED, THINLY LAMIN ATED, INTERMITTENT CALCITE > QUARTZ BANDS, IT FOLIATION, ALSO CROSS-CUTTING, WIDELY SPACED AGGREGATES OF PHRITE 50 10 200 200 2-4mm py AGGREGATES Z 20% CORE FOLIATION DEFINED BY BIOTITE BANDS FOLIATION IS II TO CORE AKIS AT 278 ½ 10 10 10 10 10 10 10 10 10 10	Ę	MINOR PY PO & TR, CPY BETWEEN THIN BANDS OF MASSIVE PO, PYCAN	1		
250 FINE GRAINED, THINLY LAMIN ATED, INTERMITTENT CALCITE > QUARTZ BANDS, II FOLIATION, ALSO CROSS-CUTTING, WIDELY SPACED AGGREGATES OF PYRITE 50 IIII 260 270 2-4mm py AGGREGATES Z 20% CORE FOLIATION DEFINED BY BIOTITE BANDS FOLLATION IS II TO CORE AKIS AT 278 2 280 280 280 25	F		'l -		1
CALCITE > QUARTZ BANDS, U FOLIATION, ALSO CROSS-CUTTING, WIDELY SPACED AGGREGATES OF PHRITE 50 11/1 200 200 200 200 200 200 200 200 200 20			50-000	PO PO,	
CALCITE > QUARTZ BANDS, II FOLIATION, ALSO CROSS-CUTTING, WIDELY SPACED AGGREGATES OF PYRITE 50 14 200 - 2-4mm py AGGREGATES Z 2020 CORE FOLIATION DEFINED BY BIOTITE BANDS FOLIATION IS II TO CORE AKIS AT 278 21 200 - 2-4mm 15 II TO CORE AKIS AT 278 21 200 - 2-4mm 200 - 25	-			PO PO, CFY	
240 240 240 240 2-4mm py AGGREGATES 7 20% CORE FOLIATION DEFINED BY BIOTITE BANDS FOLIATION IS II TO CORE AKIS AT 278/2 280 280 25	250	MEDIUM GREEN, QUARTZ-CHLORITE SCHIST (SAME AS 198-237)		Po Po, Gy	ľ
260 1) 2-4mm py AGGREGATES = 20% CORE FOLIATION DEFINED BY BIOTITE BANDS FOLIATION IS II TO CORE AKIS AT 278/2 280 25	250	MEDIUM GREEN, QUARTZ-CHLORITE SCHIST (SAMERS 198-237) FINE GRAINED, THINLY LAMINATED, INTERMITTENT		Po Po, Fy	
260 270 2-4mm py AGGREGATES = 20% CORE FOLIATION DEFINED BY BIOTITE BANDS FOLIATION IS II TO CORE AKIS AT 278/21	250	MEDIUM GREEN, QUARTZ-CHLORITE SCHIST (SAMERS 198-237) FINE GRAINED, THINLY LAMINATED, INTERMITTENT CALCITE > QUARTZ BANDS, I FOLIATION, ALSO		40, PU,	2
270 2-4mm py AGGREGATES = 20% CORE FOLIATION DEFINED BY BIOTITE BANDS FOLIATION IS II TO CORE AKIS AT 278/21		MEDIUM GREEN, QUARTZ-CHLORITE SCHIST (SAMERS 198-237) FINE GRAINED, THINLY LAMINATED, INTERMITTENT CALCITE > QUARTZ BANDS, I FOLIATION, ALSO		Po Po, SFY	2
FOLIATION DEFINED BY BIOTITE BANDS FOLIATION IS II TO CORE AKIS AT 278/2 280	r L	MEDIUM GREEN, QUARTZ-CHLORITE SCHIST (SAMERS 198-237) FINE GRAINED, THINLY LAMINATED, INTERMITTENT CALCITE > QUARTZ BANDS, I FOLIATION, ALSO		Pe Po, Fy	
FOLIATION DEFINED BY BIOTITE BANDS FOLIATION IS II TO CORE AKIS AT 278/2 280		MEDIUM GREEN, QUARTZ-CHLORITE SCHIST (SAMERS 198-237) FINE GRAINED, THINLY LAMINATED, INTERMITTENT CALCITE > QUARTZ BANDS, I FOLIATION, ALSO		Po Po,	
FOLIATION DEFINED BY BIOTITE BANDS FOLIATION IS II TO CORE AKIS AT 278/2 280	r L	MEDIUM GREEN, QUARTZ-CHLORITE SCHIST (SAMERS 198-237) FINE GRAINED, THINLY LAMINATED, INTERMITTENT CALCITE > QUARTZ BANDS, I FOLIATION, ALSO		ρο ρυ, Sry	
FOLIATION DEFINED BY BIOTITE BANDS FOLIATION IS II TO CORE AKIS AT 278/2 280	r L	MEDIUM GREEN, QUARTZ-CHLORITE SCHIST (SAMERS 198-237) FINE GRAINED, THINLY LAMINATED, INTERMITTENT CALCITE > QUARTZ BANDS, I FOLIATION, ALSO		Po Po,	
FOLIATION DEFINED BY BIOTITE BANDS FOLIATION IS II TO CORE AKIS AT 278/2 280	r L	MEDIUM GREEN, QUARTZ-CHLORITE SCHIST (SAMERS 198-237) FINE GRAINED, THINLY LAMIN ATED, INTERMITTENT CALCITE > QUARTZ BANDS, U FOLIATION, ALSO CROSS-CUTTING, WIDELY SPACED AGGREGATES OF PHRITE		Po Po,	
ROLLATION IS II TO CORE AKIS AT 278/2 (-	r L	MEDIUM GREEN, QUARTZ-CHLORITE SCHIST (SAMERS 198-237) FINE GRAINED, THINLY LAMIN ATED, INTERMITTENT CALCITE > QUARTZ BANDS, U FOLIATION, ALSO CROSS-CUTTING, WIDELY SPACED AGGREGATES OF PHRITE	50	Po Po,	
280	260	MEDIUM GREEN, QUARTZ-CHLORITE SCHIST (SAMERS 198-237) FINE GRAINED, THINLY LAMIN ATED, INTERMITTENT CALCITE > QUARTZ BANDS, IF FOLIATION, ALSO CROSS-CUTTING, WIDELY SPACED AGGREGATES OF PHRITE 2-4mm py AGGREGATES 7 20% CORE	50	Po Po,	
280	260	MEDIUM GREEN, QUARTZ-CHLORITE SCHIST (SAMERS 198-237) FINE GRAINED, THINLY LAMIN ATED, INTERMITTENT CALCITE > QUARTZ BANDS, IF FOLIATION, ALSO CROSS-CUTTING, WIDELY SPACED AGGREGATES OF PHRITE 2-4mm py AGGREGATES 7 20% CORE	50	Pe Po	
25	260	MEDIUM GREEN, QUARTZ-CHLORITE SCHIST (SAMERS 198-237) FINE GRAINED, THINLY LAMIN ATED, INTERMITTENT CALCITE > QUARTZ BANDS, IF FOLIATION, ALSO CROSS-CUTTING, WIDELY SPACED AGGREGATES OF PHRITE CROSS-CUTTING, WIDELY SPACED AGGREGATES OF PHRITE FOLIATION DEFINED BY BIOTITE BANDS	50	Po Po,	
	200	MEDIUM GREEN, QUARTZ-CHLORITE SCHIST (SAMERS 198-237) FINE GRAINED, THINLY LAMIN ATED, INTERMITTENT CALCITE > QUARTZ BANDS, IF FOLIATION, ALSO CROSS-CUTTING, WIDELY SPACED AGGREGATES OF PHRITE CROSS-CUTTING, WIDELY SPACED AGGREGATES OF PHRITE FOLIATION DEFINED BY BIOTITE BANDS	50	Po Po,	
	260	MEDIUM GREEN, QUARTZ-CHLORITE SCHIST (SAMERS 198-237) FINE GRAINED, THINLY LAMIN ATED, INTERMITTENT CALCITE > QUARTZ BANDS, IF FOLIATION, ALSO CROSS-CUTTING, WIDELY SPACED AGGREGATES OF PHRITE CROSS-CUTTING, WIDELY SPACED AGGREGATES OF PHRITE FOLIATION DEFINED BY BIOTITE BANDS	50	Po Po,	
	200	MEDIUM GREEN, QUARTZ-CHLORITE SCHIST (SAMERS 198-237) FINE GRAINED, THINLY LAMIN ATED, INTERMITTENT CALCITE > QUARTZ BANDS, IF FOLIATION, ALSO CROSS-CUTTING, WIDELY SPACED AGGREGATES OF PHRITE CROSS-CUTTING, WIDELY SPACED AGGREGATES OF PHRITE FOLIATION DEFINED BY BIOTITE BANDS	50	Pe Po	
290	200	MEDIUM GREEN, QUARTZ-CHLORITE SCHIST (SAMERS 198-237) FINE GRAINED, THINLY LAMIN ATED, INTERMITTENT CALCITE > QUARTZ BANDS, IF FOLIATION, ALSO CROSS-CUTTING, WIDELY SPACED AGGREGATES OF PHRITE CROSS-CUTTING, WIDELY SPACED AGGREGATES OF PHRITE FOLIATION DEFINED BY BIOTITE BANDS	50	Pe Po, Fy	
	240	MEDIUM GREEN, QUARTZ-CHLORITE SCHIST (SAMERS 198-237) FINE GRAINED, THINLY LAMIN ATED, INTERMITTENT CALCITE > QUARTZ BANDS, IF FOLIATION, ALSO CROSS-CUTTING, WIDELY SPACED AGGREGATES OF PHRITE CROSS-CUTTING, WIDELY SPACED AGGREGATES OF PHRITE FOLIATION DEFINED BY BIOTITE BANDS	50	Pe Po	


	C	NAMOND DRILL CORE LOG HOLE 95HF-4	E PAGE	4_0	F_4_
	FOOTAGE	DESCRIPTION	ASSAYS	ANO ANA	LYSES
		INCREASE IN GRANULAR QUARTZ BANDS I-2 CM WIDTH BEIGE COLOURED SELVAGES WITH BIDTITE AT BAUNDARIES	-		
		BEIGE COLOURSED SELVAGES WITH BIOTTIC AL BOUNDAULES	1		
			4		
	300 Flh	V.F.G., QTZ. PORPHYROBLASTS, START TO APPEAR	1/		
		SUB mm SEALE 150%	400		
			-		
			-	a	
	310	94,49m END OF HOLE	<u> </u>	-	
			-		
			Ì		
			-		
	320 -	-	$\frac{1}{1}$		
	Ę]		
	330 +	-	+		
. 10g			-		
-	340 -				
	540		-		
	Ē				
	350 -	-	4		
			-		
			-		
	-		-		
	360 -	-			
			-		
	E				
	370 -				
			-		
			-		
	380 -		1		
	390 -		1		




DIAMOND DRILL CORE LOG HOLE 95HF-5 PAGE 2 OF 6


-

......

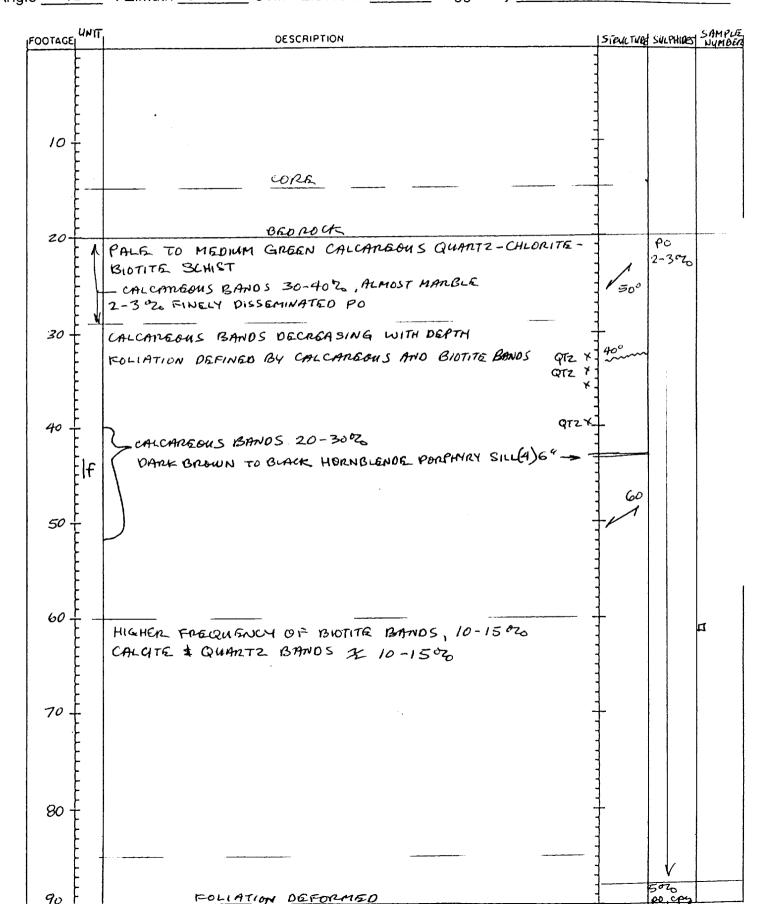
NORTHWEST GEOLOGICAL CONSULTING LTD.	
DIAMOND DRILL CORE LOG HOLE 95HF-6	Page_1_ of 5
Project ECSTALL Property HORSEFLY Claim Location 28+40N-29+79E	
Started OCT, 2,95 Finished Oct. 3,95 Total Length 420' Core Size BQ - TW	
Angle - 45" Azimuth 080° Collar Elevation 2196' Logged By U. Schmid	T

FOOTAGE	UNIT	DESCRIPTION	STEULTURE	SULPHIRES	SAMPUE NYMOER
10 -	L	BEDROCK	· · · · · · · · · · · · · · · · · · ·	2-3 %	
	: :3d	LIGHT GRAY TO BEIGE, QUARTZ - SERICITE - CHLORITE - BIOTITE SHILF MARBLE TEXTURE	30	Py tr. Pc CP3	a
20-		QUARTZ - SEAUTE SCHIST QTZX QTZX QTZX	/Fail		
30 -	-3b	GTZ X QTZ X		5-10% Py	111 19 1
40 -	F."	PALE GRAY-GREEN QUARTZ-CHLORITE-BIOTITE SCHIET VERY SILICEOUS, GRADATIONAL WITH QTZ-SER-SCHIET FOLLATION DEFINED BY BIOTITE QTZ AND CARBONATE VEINS/SEGREGATIONS CROSS-CUTTING BIOTITE SELVAGES AT QUARTZ/HOST BOUNDARY, LOW SULPHIDES	QT2 \	EIN LOW SULPHINES	
50 -	- - -3e	BIOTITE BANDS DECREMSING IN FREQUENCY PALE GREY-GREEN SILICEOUS CHLORITIC SCHIST NEG. GRADEB TO QUANTZ-SERICITE SCHIST (RHYOLITE)		2-3°20 PY	
60 -	39	QUARTZ SERICITE SCHIST (RHYOLITE) LIGHT GREY, DEFORMED PYRITIC QUARTZ HORIZONS IN SERICITIC MATRIX GRADING TO FINER GRAINED PALE GREY THINKY LAMINATED VARIETY	40	Tr2- 44	111 192
70 -		QUANTZ - SERLATE SCHIST (RHYOLITE) TEXTURE VARIES FROM THINLY LAMINATED TO "BIRD'S EVE MARG" TEXTURE		5-10 FZO SHLPHIOE PY	111 193
80 -		MEDIUM GREY QUARTZ LAMINATIONS AND QUARTZ AUGIEN, DISSEMINATED PYRITE ASSOCIATED WITH QUARTZ	1012	5-10+20	111 194
n.	£	LADORS TO THULLY I ADDINGTED VARIETY	1		

	DIAMOND DRILL CORE LOG HOLE 95HF-4	PAGE 2 OF 5
FOOTAGE	UNIT DESCRIPTION	STRUCTURE SULPHIDES NUMBE
	-39 QUANTZ-SERICITE SCHIST CONTINUED	V 50 Py 111 19
	LADDER TO PALE CARY CAREAN QUARTA CHARTE RET SUNT	¥
	If GRATURS TO TIME GIVET-GIVENZIO QUINTIZ-ONLOIGIE-BUILLE SHIST	10-15-25 11.02
	36 3. QTZ, - SEALCITE SCHIST	PY 111192
100-	IC QUARTZ-CHLORITE BIDTITE SCHIST	
100-		$\left\{ \begin{array}{c} 1 \\ 1 \end{array} \right\}$
	PALE GREY TO BEIGE QUARTZ-SEALCITE-CHLORATE-BIOTITE SHIST -	10 tro
		Po, Py
	3d	th opy
		1119
110 -	QUARTZ & CALCITE SEGREGATIONS INCREASING WITH DEPTH -	
		1
		202, 14
	MEDIUM GREEN QUARTZ - CHLORITE - BIOTITE SCHIST	
120 -		
		70
	IF BIOTITE AND CALCITE BANDS INCREASING TO ABOUT 10000	
	IT MEDIUM GRAINED EUHEDRAL PERITE < 2020 THROUGHOUT	
130-		
140	- -	
150		
]	
160 -	LIGHT GREY, THINLY LAMINATED, QUANTZ - SEALUTE SCHIST (RHYOLITES	10-150 A SULPHIDES
	OF CALLY AND ITS TUPE MALARIE CHIDRITE & BIDTITE CONTENT	
	36 LARGE FRAGMENT? AT 165	Cpy 111197
		↓ ↓ <u>↓</u> <u>↓</u> <u>↓</u>
	MEDIUM GREEN QUARTZ - CHLORITE -BIOTITE SCHIST	
	SIMILAR TO 115-160 ABONG BUT SLIGHTLY PALER	
170 -	IF - CALCITE BANDS 210%, BIOTITE BANDS 2 5-10%	70
	t l	
180 +	PALE GREY TO BEIGE QUARTZ-SEMICITE - CHLONITE - BIOTITE SCHIST -	30 - 111 198
	30 POSSIBLE TUFF. SIMILAR TO 160-165' 1", 80% PY, UP9.	5-102. 1
	5-102 DISSEMINATED PO, PY, CPY 5"70% POPY CPY	po py upy 111 199
		1 1 1
	MEDIUM GREEN QUARTZ-CHLORITE-BIDTITE SCHIST	
190	If SIMILAN TO 115-160' ABOVE CANBONATE & BIDTITE BANOS INCREASE	

		ASSAYS	AND AND
	MEDIUM GREEN QUARTZ-CHLORITE-BIDTITE SCHIST CONTINUED MINOR PURITE		
200 - [[f	- SILICEOUS BAND	70	
	SILICEOUS BANDS INCREASING IN FREQUENCY		
210	VERY F.G. THIN LAMINATIONS QTZ X		
220	BIOTITE LAMINATIONS DECREASING TO DISSEMINATED PORPHYROBLASTS	48	
230			
240			
250- 	QUARTZ-SERICITE-CHLORITE-BIOTITE SCHIST 10-15 Pre py 11 TO FOLLATION		10-15%
260 <u>[</u> []f	MEDIUM GREEN QUANTZ - CHLONITE - BIOTITE SCHIST CONTINUES AS ABOVE, WITH FEWER BIOTITE AND CALCITE BANDS THINLY LAMINATED, N.F.G.		2-5 % Po, Py
2.70 +			
LIUT	MEDIUM GREY-GREEN	-	
		1	
	GETTING MORE SILICEOUS WITH DEPTH		¥
2 80 - 3 b	QUARTZ SEGREGATIONS /FRAGMENTS? INCREASING		V 541.PH 1000 P1. Sph 92

	T DESCRIPTION	ASSAYS	SULPHIDES	SA NU
Ł	DARK GREEN QUARTZ-CHIOMITE-BIDTITE SCHKT CONTINUED	-	10000	
Ł	QUARTZ SEGREGATION'S / FRAGHENTS ? UP TO 3070	1	CP13	μ
Ł	PO, CPUS UP TO 10020 - LAMBE WHITE QUANTZ SEGRE GATIONS/FRAGMENT? /VEINS?	-		11
F		1	1-2020 Cpy	
300 +	ALSO SMALLER QUARTZ FRAGMENTS AND AUGEN,	4	L	
Ē	ALSO SMALLER GUMELIZ FRAGMENTS THO THE GUD	<u></u>	10000	+
Ę	AND GRAINED MM SCALE QUARTZ AUGEN	4	Po, CPS	1
۲I	COMPSE INREGULARLY SHAPED AGGREGATES OF PO\$ CPY	<u> </u>	10-15 %	•
310 +	CUT ACROSS CORE UP TO CM. SCALE, SUB-PARALLEL	4	PO, CPY	
	TO FOLLATION, ALSO ASSOCIATED WITH QUARTZ	-	2-4-5	
Ę	QUARTZ SEGREGATIONS FRAGMENTS DECREASING	<u> </u>		
Ę			5-1090 PO, Pu	
320 -	PO, CRY ASSOCIATED WITH QUARTZ BAND OSSEMINATE	1		μ
þ	PARALLEL TO FOLIATION 9TZ	1		11
Ę		1		
Ę	QTZ x			
330 +	-	<u> </u>	<u> </u>	╀
E		-		
ŀ				11
È				
340 [4	 	+-
Ē				
Ļ		4		11
Ę	QUARTZ SEGREGATIONS INCREASING TO ABOUT 20020			
350 +	PALER VARIETY OF QUARTZ - CHLORITE - BIOTITE SCHIST		V	╞
F			1-302 PO, CPy	
F	FINER GRAINED BIDTITE RESTRICTED TO ISOLATED PORPHYPABAS	1		
Ę.,	QUARTZ SEGREGATIONS DECREASING WITH DEPTH]		1
۲		-		
360	PALE GREY-GREEN QUARTZ-CHLORITE-BIOTITE SHIST 972+2	<u>+</u>	<u> </u>	T
ŀ	QUARTZ SEGREGATIONS / FRAGMENTS? 10-2020	160		4
Ę	PO, CPY, PY PANALLEL TO FOLLATION			
370 -]		
F				
Ę		-		
L.		1 -⊣	3-500	+
380 -3	PALE GREY-GREEN QUARTZ-SERICITE SCHIST FINELY DISSEMINATED PO 11 TO FOLIATION] +-	рс РС	
F	MEDIUM GREY-GREEN, THINLY LAMINATED QUARTZ- QT2 X CHLORUTE SCHIST			
⊢				
E I	FINE GRAINED BIOTITE, IL FOLIATION, QUARTZ SEGREGATIONS			


	NAMOND DRILL CORE LOG HOLE 95HF-6	ASSAYS STRUCTURE	AND AN	
FOOTAGEUNIT	MEDIUM GREY-GREEN, THINLY LAMINATED, QUARTZ-CHLORITE	STRUCTURE	SULPHIDES	P.J.
FIF	SCHILT CONTINUED			
	PALE GRET, THINLY BANDED, CHLORITIC QUARTZ-SIERIUTE SCHILT		10-152 PO	/
400 +		55		111:
3e			V_	
	MEDIUM GREY-GREAEN, QUARTZ-CHLORITE SERICITE SCHIST		1-2 020 PO FR. (Ay)	
410	VEG., THINLY LAMINATED, QUARTZ & CALCITE BANDS,	1 /		
	2-4 mm THICK IL FOLLATION 2= 50%	40		
	VEG. po Il FOLIATION			
		50		
420 -	128.0 in END OF HOLE		¥	
		1		
		4		
430 -	-	1		
		-		
440 		+ •		
450		4		
		1		-
		-		
460		4		
		-		
470 -		4		
		-		
		-		
480 -		+		
		-		
490		1		

NORTHWEST GEOLOGICAL CONSULTING LTD. DIAMOND DRILL CORE LOG HOLE 95 HF - 7 Page 1 of 6

 Project ECSTALL
 Property HorsEFLY
 Claim
 Location 29+08 - 29+00E

 Started ατ. 5, 95
 Finished ατ. 6, 95
 Total Length 500'
 Core Size
 BQ - TW

 Angle - 45°
 Azimuth 080°
 Collar Elevation 2124 ¹
 Logged By
 U. Schmidt

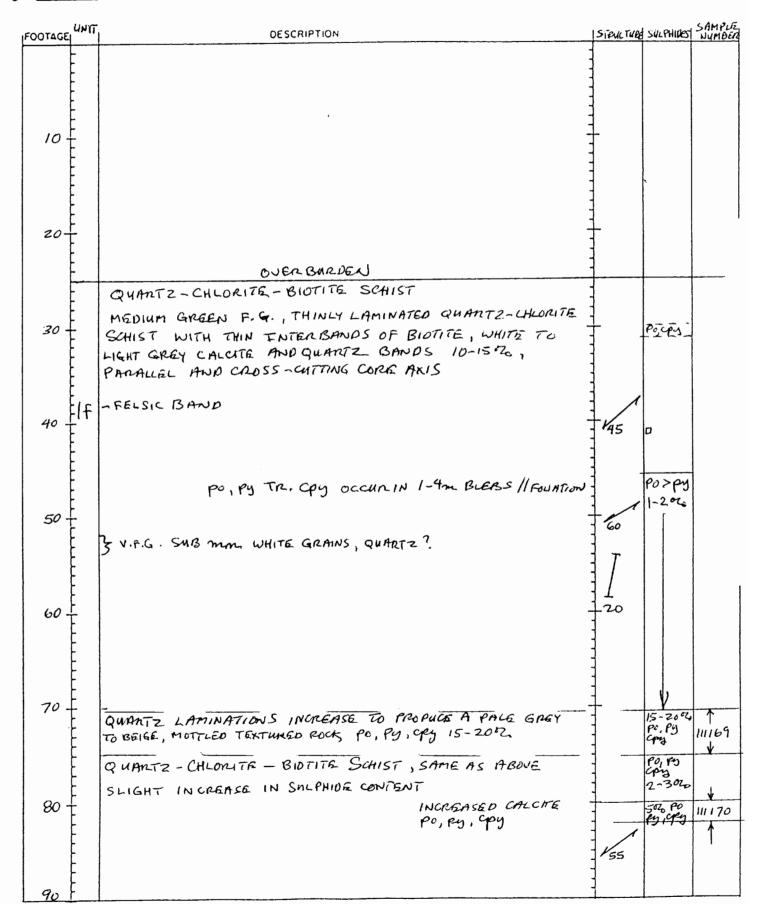
OOTAGEIU	DIAMOND DRILL CORE LOG HOLE 95HF-7	ASSAYS	<u>2</u> 0 AND ANA SULPHIPES	
-	CALCAREOUS QUARTZ-CHLORITIZ-BIOTITE SCHILT CONTINUED		Po, CPF	ринвер
100	F FOLIATION DEFORMED, POSSIBLE FRAGMENTAL UNIT			
1 1 A - A - A - A - A - A - A - A - A -	WUANTZ - SERIUTE - CHLORITE-SCHILT WITH BLUE GREY		5020 PO Trucpy-	
110	9 QUARTZ AUGENI	-		n
	3 SILICEOUS HORIZON			
120 -	HIGHLY VARIABLE FOLIATION - PALE GREY-GREEN AND BROWN LAMINATED QUARTZ-CHLORITE- BIOTITE SCHIST			
	F 3 SILICEOUS HORIZON			
130-	GREY-GREEN, WHITE AND BROWN COLOUR BANDED	70	c	1
140	MEDIUM OLIVE-GREEN CALCAMEOUS QUARTZ-CHLOMITE-BIOFITE SCHIST -FEWER BIOTITE-RICH HOMZONS	-	1-202 PH	
150				
160	DARK BROWN - BLACK HORNBLENDE PYKE SUB-PAPALLEL TO CORE	-//		
	HORNOLENDE PORPHYRY LAMPROPHYRE DVRE			
170 -1	F ALTERED SCHILT FRAGMENT, DARK BROWN 200 HORNBLENDE PERPHYRY, LAMPROPHYRE DYKE	ON THET		
	PARK GREY TO DARK GREEN, AMYGOALOIDAL			
180 =	PALE BROWN AND BEIGE QUARTZ - CHLORITE - BIOTITE SCHILT -	 	Py Py	1
È,	- PROBABLY THERMALLY ALTERED EQUIVALENT OF QUARTZ - CHLONITE - BIOTITE SCHIST		2-502	 1221
Ęľ	EUHEDRAL, DISSEMINATED PYRITE, 2-50% /1 TO FOLIATION			1

.

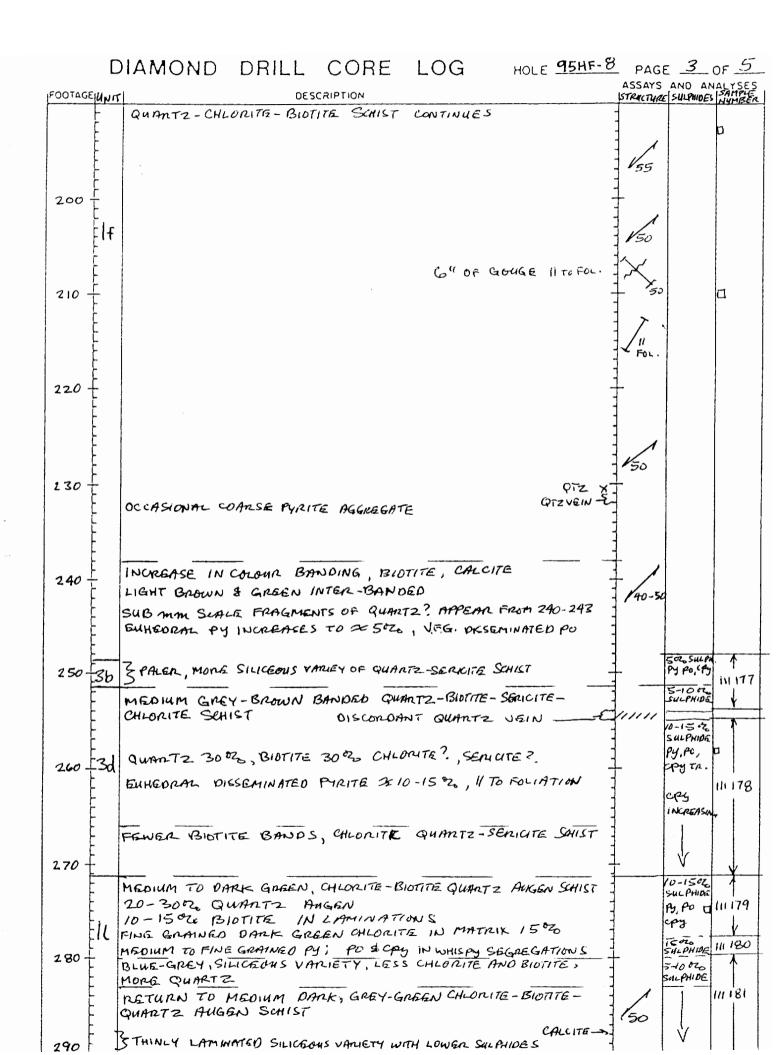
IFOOTAGE[UI	DIAMOND DRILL CORE LOG HOLE 95HF-7	ASSAYS	AND AN	ALYSES
200	PALE BROWN AND BEIGE, BANDED QUARTZ - CHLORITE - BIOTITE SCHIST CONTINUED		2-5 00 PM	111 223
210	GRADING TO UNALTERED LIGHT GREY-GREEN VARIETY FRACTURED CORE 4		*	¥
220 +	CCCASIONAL BANOS OF 20 % py OVER 2000, WITH PO	70	5-10% Py	1
230	PALE GREY-GREEN QUANTZ-CHLORITE-BIOTITE SCHIST N.F.G., THINLY LAMINATED	- - - - - - - - - - - - - - - - - - -	Į.	111225 ¥
240	BIOTITE PORPHUROBLASTS FOLIATION LOWER THAN USUAL CONCENTRATION OF BIOTITE, CARBONATE AND QUARTZ			
250	PALE GREEN, BROWN AND BEIGE, BANDED VARIETY OF OWANTZ-CHLORITE-BIOTITE SCHIST MARIADATE- POSSIBLE ALTERATION FROM NEARBY DYKE PALE GREY TO LIGHT BROWN QUARTZ-SERIGTE-BIOTITE		7 .0.07	1
2.70 -	SCHIST FINE GRAINED, THINLY LAMINATED		5-10°20 50 50 50 50 50 50 50 50 50 50 50 50 50	226
280	QUARTZ - SERICITE SCHIST MEDIUM GREY-BROWN TO BEIGE CHLORITIC QUARTZ-SERICITE-BOTTE SCHIST		Py 2-500	D
290 -			V	

.

FOOTAGE	UNIT			AND ANA
	; Зс	PALE GREY & BROWN BANDED, QUARTZ-SEALCITE-BIDTITE SCHIST CONTINUED	T20	3-502 Py, Po
300				Fr. Сру
		PALE GREY-GREEN TO BROWN QUARTZ-CHLORITE-BIOTITE SCHIST INTER BANDED WITH WHITE, PYRITIC, QUARTZ-SERIUTE SCHIST QTZ?	7	
310 -	-36 [[[]	ZQUARTZ-SERUCITE SCHIST QTZ.		5-10°20 Py LOCALY Potopy
3 20 -		WHITE QUARTZ-SERICITE SCHIST, DRAWN OUT QUARTZ LAYERS		5-10220 PC, PY
330 -	ر بر بر ا	MEDIUM GREY-GREEN AND BRIWN BANDED GWARTZ - CHLORITE - BIDTITE SCHIST PALE GREY-GREEN QTZ-CHLORITE - BIDTITE SCHIST QUARTZ SEGREGATIONS UP TO 2502 OF OBRE QTZ X TO 336'		
340 -	·····	MEDIUM GREEN AND BROWN BANDED, QUANTZ-CHLORITE- BIOTITE SCHIST SUB THM SCALE WHITE POMPHYROBLASTS 10-15% ASH?		Ē
350 -			70	1-202. 100, pm Cpm
360 -		HIGHLY DEFORMED, VARIABLE FOLIATION ATTITUDES TO 395 BIOTITE CONTENT & 10-1500 QUARTZ AND CALCITE SEGREGATIONS COMMON, & 10-1500 - QUARTZ/CALCITE		
370 -		ZQWARTZ CHALCITE WITH 5°ZO DISSEMWATED PO		3-502 PO, PJ CP¥
380 -				d
			-	


DIAMOND DRILL CORE LOG HOLE 95HF-7 PAGE 5 OF 6

ASSAYS AND ANALYSES FOOTAGE DESCRIPTION 50% fo, py 111230 FOLIATION HIGHLY VARIABLE cpy ¥ 1-202 PALE GREEN QUARTZ-CHLORITE-BIOTITE SCHIST PY, PO flf 400 N.F.G., THINLY LATMINATED TO MASSIVE BIOTITE OCCURS AS PORPHYROBLASTS 11 FOLIATION 25020 CONCENTRATED IN BANDS WITH QUARTZ AND CARBONATE UP to 2 cm 410 *5*5 420 PALE GREY-GREEN, THINLY LAMINATED QUARTZ - CHLORITE-5000 рy BIDTITE SCHIST 111231 GRADES TO QUARTZ - SERICITE SCHIST LIGHT GRAY, THINLY LAMINATED QUARTZ-SERICITE SCHIST 10-15% py 10-15 020 DISSEMINATED EUHEDRAL PY, LOCALLY WITH IL FOL . 430 t3b TR. CPy 111232 PO ANO TR. CPY 60 10-152 DARK BROWN, THERMALLY ALTERED, QTZ-CHLORITE-BIOTITE PO Py 111233 SCHIST 10-15 % PO 11 TO FOLIATION, CAY BLEBS LOCALLY ASSOCIATED 440 ↓ WITH PO Tre. HORN BUSN DE PORPHYRY DYKE py, po MEDIUM GREEN QUANTZ - CHLORITE - BIDTITE SCHIST CARBONATE & QUARTZ SEGREGATIONS HEL. PORPHARY SILLS 450 21020 IL TO FOLIATION AND CROSS-CUTTING ţlf 460 470 BIOTITE CONTENT DECREASING 480 490


D	NAMOND DRILL CORE LOG HOLE 95HF-	PAGE	6_0	F 6
FOOTAGEIUNIT		ASSAYS	AND AND	SAMPLE
F	QUARTZ - CHLORITE - BIDTITE SCHIST CONTINUED	-		
Ēlf		• • •		
		1		
	PALE GREY-GREEN THINLY LAMINATED, QUANTZ-CHLONITE- SCHIET BIGT PORPHYROBLASTS // FOLIATION	-		
500	152.4m END OF HOLE	1		
}		-		
		1		
510 -				
		1		
		· · ·		
520 -		1		
		4		
530 -		<u>↓</u>		
		4		
		-		
		-		
540 <u>+</u>		1		
		-		
550 -		$\frac{1}{1}$		
		-		
		1 1		
		-		
560				
		-		
570 -				
		1		
580 -		1		
590 -				
	·	1 1		

NORTHWEST GEOLOGICAL CONSULTING LTD. **DIAMOND DRILL CORE LOG** HOLE 95HF-8 Page 1 of 5

Project ECSTAL Property HoresEFLY Claim _____ Location 27+52N - 29+79E Started Oct. 6,75 Finished Oct. 7,95 Total Length 410' Core Size BQ - TW CASING CEFT IN HOLE Angle - 45° Azimuth 080° Collar Elevation 2208' Logged By U. Schmidt

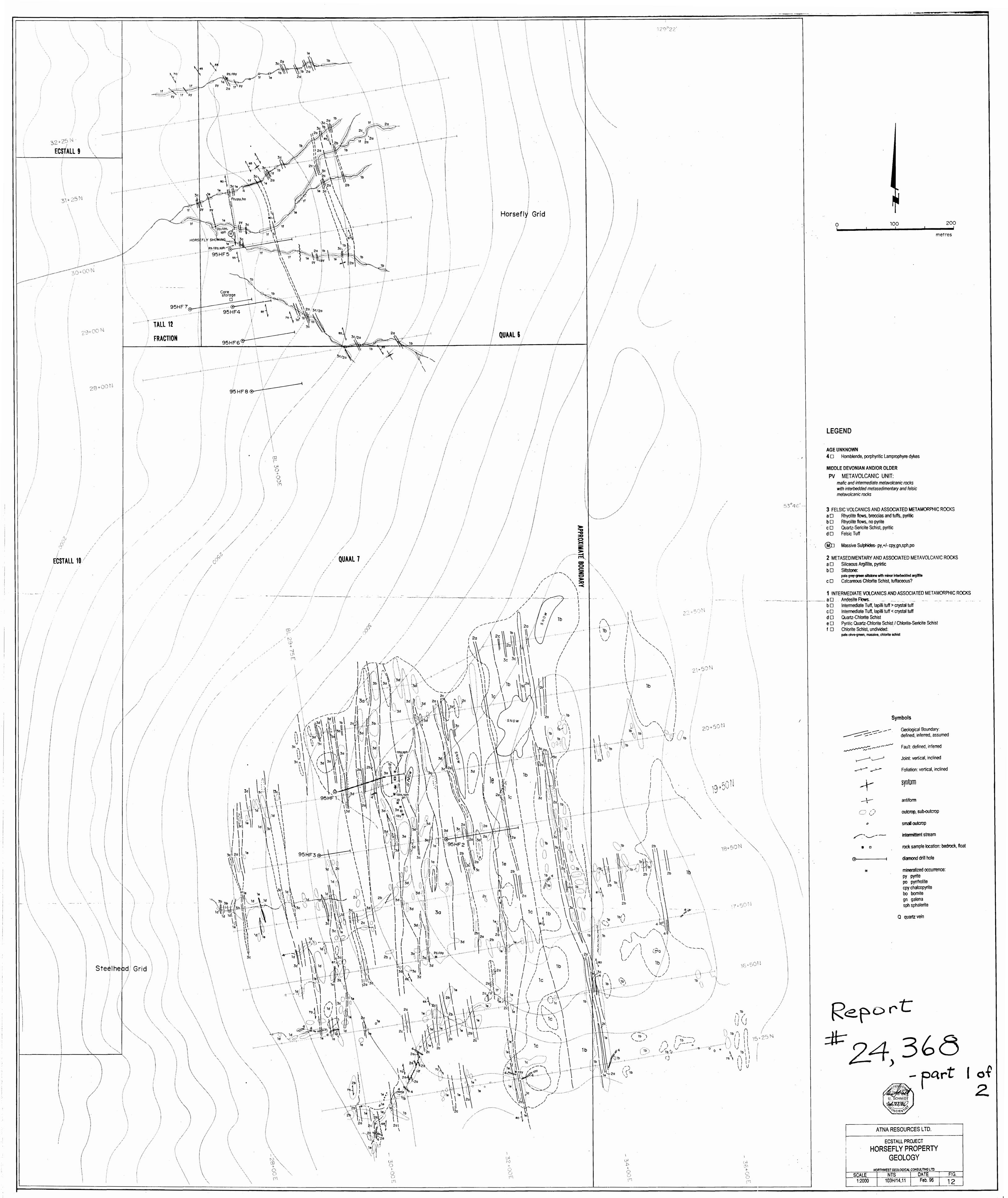
FOOTAGEUNIT	DESCRIPTION	STRUCTUR	AND AN	ALY SAN
	CALCITE BANDS INCREASE	55		
100	6" MASSING SULPHIDZ, PJ.PO, CPJ, Sph?	- 20~~	9085UL	нір 71
110	2"MASSINE SULPHIDE 7 V.F.G. DISSEMINATED BLEBS OF PO, CPy, PY, 1-2% TOTAL SULPHIDE	60	160 ~~ Sul (HIDE 1-2020 Po, Pm Cpy	
	QUARTZ CAMINATIONS WITH GRANULAR TEXTURE, INCREASE SULPHIDES HAVE INCREASED		5°20 ry, po, 4y	11)
120	THINLY LAMINATED HIGHER VOLUME OF QUARTZ, GARBONATE BANPS MEDIUM TO PALE GREY-GREEN, QUARTZ-CHLORITE-BIOTITE SCHIST	20		
130	20-3000 fo,py, cpy ->	70		11(1
	PALE GREY & GREEN INTERBANOED QUARTZ-CHLORITE-BUTTE SCHIST HIGHER FREQUENCY OF QUARTZ & CARBONATE LAMINATIONS F.G. PO FOLLATION, COARSER PY AGGREGATES V.F.G. CPY & PO	201	5020 PO, PY CPY	ם (וו
150	MEDIUM GRAY-GREEN QTZ-CHLORITE - BIOTITE SCHIET FOLIATION DEFINED BY BIOTITE LAMINATIONS MINON CARBONATE (QUARTZ LAMINATIONS	20 ~/~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
160 - [f	QTZ) PALS GREY & GREEN INTERBANDED QUARTZ-CHLORITE - BIOTITE SCHIST, BIOTITE AND QUARTZ (CARBONATE LANINATIONS	1	2-502 PD, PJ CPY	, 111
170 -	PALE GREY TO GREY-GREEN QUARTZ-CHLORITE-BIOTITESHIST -FELSIC UNIT CAUSED BY INCREASE IN SILICEOUS BANDS GUHEDRAL PY ASSOCIATED WITH SOME SILICEOUS BANDS HIGHER SULPHIDE CONCENTRATION ASSOCIATED WITH FELSIC HORIZONS	80	2-5 mg Po, py Cpy	111
180 -	MED GREEN QUARTZ -CHLORITE - BIDTITE SCHIST SAME AS ABOVE FOLIATION DEFINED BY BIDTITE, CALCITE & QUARTZ BANDS MINOR PY, PD, CALCITE REMOBILIZED ALONG FRACTURES WHICH ATE SUB-PARALLEL OR AT LOW ANGLES TO COME AXIS	20	TR. TO 125 SulPhilpäs Py PO	
		-		

FOOTAGEUN	DESCRIPTION	ASSAYS	SULPHIDES	AL SA
ĘIL	MEDIUM DARK GREEN CHLORITE - BIOTITE - QUARTZ AUGEN SCHIST CONTINUED	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		111
300 - [F	PALE GREY-GREEN, THINLY LAMINATED QUAMTZ-CHLORITE- BIDTITE SCHICT PO, CPJ PARALLEL TO FULIDITION, IRREGULAR QUARTZ VEINS/SEGREGATIONS	50	Ster Star Philoes PU, CPy , Pu,	111
310	MEDIUM TO DARK GREEN, CHLORITE -BIDTITE -QUARTZ AUGEN SCHIET, SAME AS 271-280' LOWGEL SULPHIDE CONCENTRATIONS THAN PREVIOUS INTERVAL		Tre Smuthiob	
320 -				
330 -	P0, cpy \$ 972 0162 3" →	1		
340 -	SULPHIDES INCREASING & FEWER BUT COARGER QUARTZ SEGREGATIONS/FRAGMENTS? DANK GREEN CHLORITE - QUARTZ HUGEN SCHIST SIGNIFICANT PO, CPY II TO FOL INTION, QUARTZ SEGREGATIONS / FRAGMENTS ?, 1-2 CM WIDTH, FROM 340-344	50	502 54 474186 10-22 Po 0 PJ 15-20 20 341 84186 80,094 194	115
350	DECREASING FROM 344 PO, OPY SEGREGATIONS SUB-PARALLEL AND PARALLEL TO FOLIATION WITH AGGREGENTES OF EUNEDRAL PYRITE DARK GREEN CHLORLITE - BIDTITE SCHIST, BIDTITE CONCENTRATED ALONG THIN HORIZONS	1	10 720 SALPHIDE PY, POSPY	ſ
360	GRADES TO DARK GREEN CHLORITE SCHIST WHISPY PO, UPY II TO FOLIATION, ISOLATED EUHEDRAL PY QTZ >		15 сге SALPHOE Ризсруд Ру	ін
370	GRADES TO DARK GREEN CHLORITE SCHIST -FEWER CALCITE/QUARTZ SEGREGATIONS, NO QUARTZ HUGEN		2-302 541 рние ро,Сру РУ	111
380	GREY-GREEN BANDED QUARTZ-CHLORITE-BIDTITE SCHIET INCREASED BIDTITE AND QUARTZ LAYERS	150	5°20 Sulphoe Py	

DIAMOND DRILL CORE LOG HOLE 95HF-8 PAGE 5 OF 5

FOOTAGE	דיאשן	DESCRIPTION	ASSAYS	AND AN	SAMPLE
	Ein	MEDIUM GREEN CHLORITE - BIOTITE SCHIST	1		CUTPC K
	[<u> </u> F	CALLITE VEINS & SEGREGATIONS CROSS-CUITTING AND I TO FOLLATION	-		
	E	LIGHT GREY TO GREY-GREEN, QUANTZ-SENIUTE SCHIST		3-5-6	1
	F	MEDIUM TO F.G. DISSEMINATED PY IL TO FOLIATION, BIOT ON	-	py	111 190
100	t:3c	FOLIATION PLANES	-		ļ
400	F				¥
	F				
	ţ.	PALE GREEN QUARTZ - CHLORITE - BIDTITE SCHIST	1		
	÷lf-	BIOTITE CONCENTRATED ON FOLIATION PLANES			
	Ł	CALCITE 11 AND CROSS CATTING FOLIATION FOND OF HOLE			
410 -					
	Ļ	125.0m	1		
	Ł		1 、		
	F		-		
	F		-		
420 -	F		1		
	F		-		
	ţ		1		
	Ł		1		
	Ł		-		
430 -	}		-		
450 -	F		1		
	F				
	-		-		
	ţ.		-		
			1		
440 -			+		
	Ł		-		
	6		-		
	F		-		
	F		-		
450 -			1		
	ξ I				
	2				
	Εl		-		
			-		
40	F		-		
460 _	5		-		
	t l		1		
	E		-		
	Ł		-		
	E		-		
470 -	F		1		
	F		-		
			1		
l			-		
480 -	-]		
400 -	-		Ŧ		
			1		
	-				
490			1		

Appendix C


CERTIFICATES OF ANALYSIS

SAMPLE#	Mo ppm	Cu ppm	Pb ppm		-	Ni ppm p		Mn ppm			U ppm p								Ca X		La ppm		Mg %		Ti % p			Na %		W. ppm		Cu X
111152 111155 111156 111163 111164	11 2 2 <1 3	268 382 179 1361 2345	218	92 898 3558	1.2 1.2	76 33 17	67 27 41	460 643 416 1		4 27 34	<5 <5 <5	<2 <2 <2	<2 <2 <2	24 15 5 1	.4 5.5 11.3	<2 <2 <2	<2 <2 <2	64 2 83 51	2.80 1.11 .53	.028 .068	<1 <1 <1	57 46 4	1.76 3.00 1.53	45 30 19	.16 .14 .16	4 1 3 2 4 1	.71 .46 .50	.04 .02 .02	.10 1.23 1.22 .35 .34	<2 <2 <2	4 9	.027 .036 .017 .134 .216
111165 111166 111167 111169 111171	2 <1	54048 33650 763	208 6	300 6876 7678 159 24940	30.3 20.4 1.5	10 1 17 3 72	43 38 28	905 1 935 2 749	27.39 9.17	42 110 7	<5 <5 <5	<2 2 <2	<2 <2 <2	36 1 40 2 69	19.4 23.4 5.7	<2 5 2	59 95 <2	79 / 62 1 123 1	4.31 3.78 7.07	.053 .069 .384	<1 <1 <1	3 12 83	1.21 .74 1.87	29 18 61	.11 .08 .11	71 3	.13 .79 .70	.01 .01 .02	.35 .21 .53 .36 .03	<2 <2 <2	553 860 7	.637 .532
RE 111171 RRE 111171 111173 111178 111179	2 3 4	4420 4637 126 2152 4826	1801 7 20	24384 25355 131 1588 167	28.6 .5 1.7	26 2 20 22	04 43 33 1	429 2 536 292 1	28.84	163 4 46	<5 <5 <5	<2 <2 <2	<2 <2 <2	35 7 8 8	72.3 <.2 4.7	3 <2 4	127 <2 <2	13 ⁻ 144 ⁻ 53	1.82 1.14 .42	.005	<1 <1 1	11 27 21	3.08 2.93	9 21 31	.27 .04	<3 <3 2 4 2	.23	.01 .03 .01	.03 .03 .61 .30 .48	<2 <2 <2	503 16 69	.449
111180 111181 111197 111198 111202	2 2 4	10133 2503 5391 9894 1103	9 62 101	214 278 2203 5510 368	.8 4.7 6.2	20 32	27 1 92 93	027 559 624	13.61 17.21	4 50 65	<5 <5	<2 3 <2	<2 <2 <2	16 7 18 1	.3 5.1 16.7	2 5 <2	<2 3 15	80 83 114 2	.95 .88 2.58	.009 .022 .029 .151 .029	<1 <1 <1	35 86 12	3.91 2.58 1.14	46 15 13	.05 .16 .15	33 72 51	.84	.01 .02 .02	1.19 .25 .72 .48 .31	<2 <2 <2	10 61 169	
111203 111204 RE 111204 RRE 111204 111205	2 4 3	4418 15044 15221 15222 2920	<3 4 3	584 608 602	5.2 5.1 5.2	24 26 1 26 1 25 1 32	35 35 33	968 1 975 1 959 1	7.23	4 2 4	<5 <5 <5	<2 <2 <2	<2 <2 <2	11 11 11	2.5 2.8 2.6	<2 3 <2	5 13 6	163 164 161	.46 .46 .46	.025 .029 .028 .029 .029	<1 <1 <1	52 53 54	5.00 5.02 4.94	42 43 42	.05 .05 .05	66 56 46	.16< .16< .22< .08< .84<	.01 .01 .01	.18 .22 .22 .22 .33	<2 <2 <2	81 50 43	.539 .545
111206 111207 111233 111235 111238	8 4 1	4755 3365 1293 4860 3772	<3 47 900	212 3884 16469	1.9 1.9 16.6	24 33 19 1	56 19 58 1	877 1 897 1 124 2	2.04	3 <2 68	<5 <5 <5	<2 <2 <2	<2 <2 1 <2	13 00 14 4	1.0 8.2 1.6	2 <2 4	<2 <2 34	174 135 26	.60 1.05 1.79	.017	<1 1 <1	41 83 11	5.22 3.33 .79	15 30 10	.04 .14 .07	56 42 8	.17< .94 .77	.01 .30 .02	.08 .06 1.22 .26 .83	<2 <2 <2	27 8 241	.480 .320 .132 .509 .351
STANDARD C/AU-R	20	62	35	130	6.5	65	33 1	053	4.17	42	17	6	37	52 1	8.5	15	17	58	.52	.097	40	57	.97	193	.08	25 1	.94	.06	. 15	11	520	-
DATE RECEIVE	THI CU ASS - S	S LEAC BY REC AY REC AMPLE	CH IS GULAR COMMEN TYPE:	M SAMI PARTI/ ASSAY DED FC CORE ting 'F	AL FO ICP. DR ROO	R MN F CK AND	E SR COR	E SAN	P LA C IPLES AQUA-	R MG	BA T U PB A/MIB	IB ZNA KEX	W AN	D LI 1%, T. G	AG >	D FOR	PPM A	K AF	ND AL > 10	• 00 PP	в				-				FIED	в.с.	. ASS	AYERS

CME AN STIC	CAL	LAB	DRAJ	COR.			<u>a R</u>		852 G <u>ourc</u> 09 Gra	EO(CHE Lt	MIC d.	CAL PF	(A)	NAI ECI	. YS <u>H</u>	IS	CE SE	RTI <u>FLY</u>	F	'AT	E 2 #	9!	5-4	36) 25:	3-3:	158	FI	AX (6	ι ι .	253-1710 AA
SAMPLE#	Mo		J Pb		n Ag n ppm	Ni				As ppm	-	Au	Th		Cd pom	Sb		V	Ca %	P X	La ppm		-	Ba ppm		B	Al X	Na X	K X		Au* ppb	CL	
	+					<u> </u>						· · · · ·														1.1							
111184	3	8548	3 4	207	2.0	14	100	875	13.80	<2	<5	<2	<2	40	.4	<2	<2	159	1.46	.011	<1	19	3.94	80	.10	5	4.57	.01	.66	<2	20	.935	5
111184A	13	23736	5 8	286	4.9	19	231	765	17.58	4	<5	<2	<2	26	1.1	<2	<2	114	.85<	.001	<1	16	3.10	49	.12	6	3.57	.01	1.21	<2	462	2.717	7
111185	6	11340	8 (163	2.5	25	401	819	20.49	11	<5	<2	<2	20	.2	5	<2	121	.64	.003	<1	21	3.08	34	.13	5	3.59	.01	1.21	<2	19	1.286	5
111186	3	2502	2 <3	114	.7	21	221	852	17.26	6	<5	<2	<2	17	<.2	<2	<2	167	.59	.011	<1	24	4.38	47	.13	5	5.27	.02	1.26	<2	3	.269	>
111187	15	3333	5 5	88	.8	15	200	811	16.27	4	<5	<2	<2	22	<.2	<2	<2	104	.79	.068	<1	4	4.01	78	.13	3	4.55	.01	1.29	<2	6	.359	>
RE 111187	14	3231	3	88	.9	16	192	803	16.06	4	<5	<2	<2	22	<.2	<2	<2	105	.79	.069	<1	9	4.01	81	.13	6	4.56	.01	1.27	<2	4	.365	5
	1	3255	-	91					16.57	•		-				_	_		.81				4.04			-				-	-	.358	

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. CU BY REGULAR ASSAY ICP. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: CORE AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: OCT 27 1995 DATE REPORT MAILED: Nov 4/95

