GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORTS

DATE RECEIVED

MAY 0 1 1996

APR 2 9 1996

SUB-RECORDER

RECEIVED

M.R. # \$ VANCOUVER, B.C.

Assesment Report

On

Geochemical, Geological, Geophysical And Diamond Drilling **On The Following** Claims

Red 17 323649 Port 21 324520 Clone 1 331439 [Part of the "Clone" property]

Statements Of Exploration

#3081762 #3081765 #3081767 #3081769 #3081865 #3082368 #3082370 #3082373 #3083849 #3083851 #3083853 #3083856

located 16 Km Southeast Of Stewart, British Columbia **Skeena Mining Division**

55 degrees 48 minutes latitude 129 degrees 47 minutes longitude

N.T.S. 103P/13W Project Period: July 16 to December 5, 1995

> **On Behalf Of Teuton Resources Corp.** Vancouver, B.C

Report By E.R. Kruchkowski, B.Sc., P. Geol. February 8, 1996

S A 📆 20 77 7 2 ٢ 2 ~

0) and 0 റ _!**`**¥ 55 Z

٠.

FILMED

TABLE OF CONTENTS

	<u>Page</u>
SUMMARY	1
INTRODUCTION	6
Location and Access	6
Physiography and Topography	7
Personnel and Operations	7
Property Ownership	8
Previous Work	9
GEOLOGICAL SURVEY	11
Regional Geology	11
Local Geology	12
a. South Grid - Port 21 Claim	13
b. North Grid - Clone 1 Claim	14
Mineralization	16
a. Port 21 Claim	16
b. Clone 1 Claim	18
1.) Hematite Bearing Gold Zones	18
2.) Sulfide Bearing Gold Zones	20
TRENCHING	22
South Grid - Port 21 Claim	22
North Grid - Clone 1 Claim	23
GEOCHEMICAL SURVEYS	28
Introduction	28
Field Procedure and Laboratory Technique	28
Statistical Treatment	29
Anomalous Results	29
GEOPHYSICAL SURVEYS	32
VLF EM Survey	32
Magnetometer Survey	32
DIAMOND DRILLING	34
PETROGRAPHIC STUDIES	41
CONCLUSIONS	43

RECOMMENDATIONS	47
REFERENCES	49
STATEMENT OF EXPENSES	50
STATEMENT OF CERTIFICATE	52

LIST OF FIGURES

After Page

Figure 1	Location Map	After page 6
Figure 2	Claim Map 1:50,000	After page 8
Figure 3	Regional Geology (After Grove)	After page 12
Figure 4	Property Geology (G.S.C. Open File 2931)	After page 12
Figure 5	Grid, Geology and Geochemical Location	
	Map : Scale 1:10,000	After page 13
Figure 6	Geology Map - South Grid Area	In Back Pocket
-	Scale: 1:500	
Figure 7	Geology, Trenches and Geochemistry	In Back Pocket
_	Clone 1 Claim-North Grid Area - Scale 1:500	
Figure 8	Rock Geochemical Sampling	In Back Pocket
	Port 21 Claim Area - South Grid	
	Scale 1:5000	
Figure 9	Rock Geochemical Sampling	In Back Pocket
	Port 20 and 21, Clone 1 Claims	
	Scale 1:500	
Figure 10	Total Magnetic Field Strength- Clone 1 Claim	In Back Pocket
	Scale 1:500	
Figure 11	VLF-EM (Annapolis) Dip Angle	In Back Pocket
	Scale 1:500	
Figure 12	Sketch of Drillhole Location-Clone 1 Claim	After page 37
	Scale 1:800	
Figure 13	Geological Section Showing DDH 1-2	In Back Pocket
	Scale 1:250	
Figure 14	Geological Section Showing DDH 3-6	In Back Pocket
	Scale 1:250	
Figure 15	Geological Section Showing DDH 7-9	In Back Pocket
	Scale 1:250	
Figure 16	Geological Section Showing DDH 10-13	In Back Pocket
	Scale 1:250	
Figure 17	Assay Section Showing DDH 1-2	In Back Pocket
	Scale 1:250	
Figure 18	Assay Section Showing DDH 3-6	In Back Pocket
	Scale 1:250	
Figure 19	Assay Section Showing DDH 7-9	In Back Pocket
	Scale 1:250	
Figure 20	Assay Section Showing DDH 10-13	In Back Pocket
	Scale 1:250	

÷.

--

÷----

LIST OF APPENDICES

APPENDIX I	Sample Description with Indicated Anomalous Values for Au, Ag, As, Cu, Co
APPENDIX II	Geochemical Analysis Results for the Trenching and Geochemical Program
APPENDIX III	Drill Hole Logs DDH-95-13
APPENDIX IV	Assay Results for the Drill Program
APPENDIX V	Petrographic Study Report by Alex Walus

LIST OF TABLES

TABLE 1	Compiled South Grid Trench Results
TABLE 2	Compiled North Grid Trench Results
TABLE 3	North Grid Zone Lengths, Widths and Grade
TABLE 4	Significant Assay Intersections in the Drill Holes

Page 1

<u>SUMMARY</u>

The Clone property, owned by Teuton Resources Corp. and Minvita Enterprises Ltd is located about 16 kilometers southeast of Stewart, British Columbia in the Skeena Mining Division. The property covers an area of Hazelton pyroclastic volcanic rocks in contact with a variety of intrusive plutons associated with the main Coast Range Batholith.

The property lies within a belt of Jurassic volcanic rocks extending from the Kitsault area, south of Stewart, to north of the Stikine River. This belt is host to numerous gold deposits, in a variety of geological settings, including the producing Snip, Eskay Creek and Premier-Big Missouri properties. Reserves have been reported from a number of other properties including Red Mountain, the Brucejack Lake area and Georgia River. In addition numerous gold-silver showings have been reported by exploration companies along this belt of rocks. At least three porphyry type deposits with either Cu-Mo, Cu-Mo-Au or Cu-Au mineralization are also present. Of particular interest is the Red Mountain gold deposit hosted in a hornblende porphyry (Goldslide Intrusive) in association with massive pyrite and zinc and molybdenum mineralization, approximately 15 km to the north.

The Clone property forms a sub-unit within the larger, 100,000+ acre Red property extending over much of the Cambria Icefield region, west, south and east of Royal Oak's Red Mountain property. The Red property was originally staked by Teuton and Minvita in early 1994. A \$250,000 reconnaissance program carried out the same year isolated a number of promising occurrences among which were the C-1 and C-2 [Clone] showings on the Port 21 claim, situated at the head of Sutton Glacier.

During the period July to September, 1995, a follow-up program consisting of reconnaissance geochemical rock sampling, trenching and geological mapping was conducted on the Port 21 claim. Prospecting in early September to the east of the Port 21 uncovered a series of sub-parallel shears on the neighbouring Clone 1 claim, many of which contained high-grade gold mineralization. This led to a shift of focus to the Clone 1 for the period September to December, 1995. Work on the new discovery consisted of reconnaissance geochemical rock sampling, geological mapping, trenching, VLF and magnetometer surveys, diamond drilling and petrographic studies. This new prospect has been variously referred to in press releases by Teuton/Minvita as the Red or Clone prospect but no definite name has been chosen at this time. In this report, all of the Port 21 and Clone 1 claim mineral showings are grouped under the name "Clone".

A grid area measuring 0.7 km by 0.9 km [South Grid] was established over the gold mineralization on the Port 21 claim in order to provide survey control. Total grid area established included 6.35 kilometers of lines (including baseline) spaced 100 meters apart and stations at 50

Page 2

meter intervals. A grid area measuring 0.5 km by 0.25 km [North Grid] was established over the gold mineralization discovered on the Clone 1 claim in order to provide survey control for mapping as well as geophysical surveys. The grid consisted of lines spaced 25 meters apart with stations every 25 meters. A total of 5.1 line kilometers was established on the Clone 1 claim.

A total of 604 rock samples (218 grab and chip samples as well as 386 trench samples) were collected in the surveys and analyzed for metal content by ICP analysis (29 element package) and for gold using atomic absorption methods. Any anomalous gold, silver, copper, arsenic and cobalt (greater than 1000 ppb, 30 ppm for the first two and greater than 10, 000 ppm for the copper and arsenic and greater than several hundred ppm for the cobalt were assayed.

Geological mapping on the South Grid on the Port 21 claim indicated that the area underlain by the grid has andesitic pyroclastic rocks intruded by a variety of dykes and/or sills. Intrusive rocks noted, consisted of hornblende porphyritic diorites as well as dacite porphyry. Geological trends are generally in a northwesterly direction, while mapping of numerous shear zones within the Port 21 Claim indicated a northeasterly trend.

Geological mapping on the North Grid on the Clone 1 claim indicated that the area was underlain by a northwesterly trending assemblage of andesite pyroclastic and volcaniclastic rocks intruded by rocks that are andesitic in composition. Numerous shears with a northwest trend are present along an altered horizon located between a mega-breccia to the east and argillaceous sediments to the west. A large, northwest trending fault zone occurs along an argillaceous horizon located at the western edge of the above rocks. Work in the North Grid area indicated structural breaks with an overall northeast strike that appear to offset the earlier northwest trending ones.

Mineralization in the form of pyrite veins, veinlets, stringers and blebs plus/minus chalcopyrite, plus/minus magnetite and rare molybdenite as well as rare galena is located along a major northeast trending shear zone within the South Grid area. The mineralization is associated with carbonate altered stringers and very abundant dark green chlorite in altered, sheared andesites. Width of the main mineralized zone, parallel to the main shear and in the footwall, may reach 1-5 meters. Many mineralized stringers are also present along splays that have "horsetailed" from the main structure. Mineralized splays may be found up to 30 meters away from the main shear that is generally filled with gouge. The mineralization has been traced over a strike length of 300 meters and is cut by later intrusive dykes. Gold values are usually associated with heavy pyrite and chalcopyrite mineralization within highly chloritic rock.

Mineralization within the North Grid area consists of two different and distinct types. The mineralization is hosted by steeply dipping sub-parallel, en echelon, shear controlled veins and stockwork with a northwesterly trend. The first type of mineralization is dominated by pyrite plus/minus arsenopyrite within chloritic, schistose lapilli tuffs and the second by hematite veins

Page 3

with associated chlorite and calcite-quartz stockworks within broad zones of hematite-chlorite altered rocks. Specularite, chalcopyrite, magnetite and locally visible gold are associated with the hematite dominated mineralization. The sulfide dominated mineralization prevails in the southwestern portion of the grid area with the structures being linear in nature and traced over distances up to 500 meters in length. The hematite dominated structures have less defined walls but show good strike lengths as well. Work has indicated that the mineralized structures are found over an area at least 75 meters wide by 300 meters long. A strong northeast trending structure appears to have offset the zones to the north while the southerly extensions are obscured by ice. Gold values are associated with high sulfide or hematite/sulfide bearing shear zones.

It is speculated that the northeasterly trending mineralization explored in the South Grid area represents a re-mobilization of the North Grid area mineralization along later shearing. Based on visual observations of gossaned zones from the air, it appears a second area of this type of re-mobilized mineralization may be present along the western side of the Clone 1 claim. These gossans appear to be related to a major shear present along a steep gully.

Results of the rock geochemical program indicate highly anomalous gold, silver, copper, arsenic and cobalt values throughout the Port 20, 21 and Clone 1 claim areas. Values as high as 8.66 opt Au, 15.71 opt Ag, 11.5 % Cu, 15.75 % As and 0.98 % Co were obtained from different zones within the explored areas. In addition, during the geochemical survey, it was noted that the highly sheared argillites on the west edge of the North Grid area are generally mineralized with quartz plus/minus sulfides (including pyrite, pyrrhotite, chalcopyrite, galena and arsenopyrite). This horizon can be traced for several kilometers and is generally anomalous in gold associated with sulfides.

A total of 50.63 meters of trenching was completed in 13 trenches in the South Grid area. Results of the trenching indicated significant gold veins (0.1-0.2 opt) over widths of 2 meters with locally higher grade zones across 1-2 meters. The best trench result in the above area included 1.6 meters of 1.433 opt Au (trench 13).

A total of 463.2 meters of trenching was completed in 81 trenches in the North Grid area. Results of the trenching indicated significant gold values over significant widths and lengths. The best trench result was from Trench 4 which yielded 3.59 opt gold across 5.5 meters. Based on the trench results in conjunction with the geological mapping, four main gold bearing structures were outlined as follows:

<u>Structure</u>	Mineralization Type	Width (m)	Length (m)	<u>Grade(opt Au)</u>
S-1	Sulfide	3.0	100	0.74
S-2A	Sulfide/minor hematite	2.3	365	0.71

Skeena I	Resources Corp. Mining Division			
	, British Columbia on Clone Property			Page 4
H-1	Hematite	5.2	191	0.74
Н-2	Hematite	1.5	18	2.62

In addition, trenching and geochemical sampling indicated an increase in cobalt values in the southeast portion of the above zones tested. Highest cobalt value in a trench was 0.71 % across 1.5 meters in trench 9, the most southerly trench.

A magnetometer and VLF EM survey were conducted over a portion of the established North Grid area. The contoured magnetic date shows a definite northeasterly orientation coincident with the general geological trend. One significant magnetic anomaly was noted over the H-1 structure and is probably associated with the magnetite mineralization present within the zone. A second anomaly is along the eastern edge of the survey area and is entirely underlain by ice. The plotted VLF EM data shows a general high coinciding with the general geology in the survey area. A broad anomaly appears to be associated with the major fault within graphitic argillites along the west side of the grid area as well as west of the S-2A structure.

A total of 1070.16 meters of drilling was completed in 13 drill holes located from a single pad east of trench 47. The holes tested a 40 meter strike length of the H-1 structure along four different azimuths.

The most significant intersections were returned from the two southeastern drill sections which tested the downdip extent of mineralization exposed in trenches 4 (5.5 meters of 3.5 opt gold), 14 (3.11 meters of 3.77 opt gold) and 15 (7.5 metes of 0.76 opt gold). Hole 95-8 intersected 1.7 meters true width grading 1.67 opt gold at a drilled depth of 14 meters (beneath trench 4) while hole 95-10 (beneath trench 14) intersected 4.21 meters true width grading 1.85 opt gold at a 15 meter depth. Unfortunately, drill holes 95-12 and 13 passed through the main gold mineralization in the H-1 zone while within a dyke that is at right angles to the structure.

Holes 95-1 and 2 just tested a small wedge of the H-1 zone and tested the S-2B zone between trenches 10 (4.50 meters of 2.08 opt gold) and trench 46 (1.2 meters of 0.047 opt gold). Low values were indicated in the area of the S-2b zone. A portion of the H-1 zone tested in Holes 95-1 and 2 returned 1 meter of 0.52 opt gold and 1 meter of 1.41 opt gold respectively. A total of 938 core samples were analyzed by Atomic Absorption for gold and by ICP for a 29 element package. Golds over 1000 ppb were fire assayed to obtain total metal content.

The presence of a large gold mineralized shear system over a great strike length and across significant widths provides an excellent exploration target. Drilling has indicated down dip extensions to the surface results along a portion of the H-1 zone. The property offers the potential for developing a gold deposit with an appreciable gold content (+ 1, 000, 000 ounces). It is recommended that the following program be conducted:

Page 5

1. Airborne EM and magnetometer survey to delineate magnetic trends associated with hematite mineralization.

2. Ground geophysics to trace the magnetic anomalies to the southeast; beneath the ice cover as well as to the N.E.

3. Two phase drill program involving 5000 meters of drilling. The first phase would involve 2500 meters of short holes to test all zones with high values, particularly along the H-1 zone (trenches 4, 14, 75, 78, 81) and S-2A zone (trenches 25, 26-30). The second phase would be deeper drilling to extend any significant results obtained in phase 1. All holes should be at right angles to the structures.

4. Trenching should be completed to the southeast of the H-1, S-2A zones along all identified structures. It should also extend known trenches where the limits of high gold values have not been defined into the wall areas. It should also test areas between present trenches with indicated high gold values.

5. Geochemical surveys should be extended to other parts of the claim area.

6. The area should be mapped with particular interest in determining possible offsets along a fault that is present at the northwestern edge of the mineral zone. This would provide data for possibly extending the known gold zones to the northwest.

Estimated cost of the program is \$1, 250, 000.

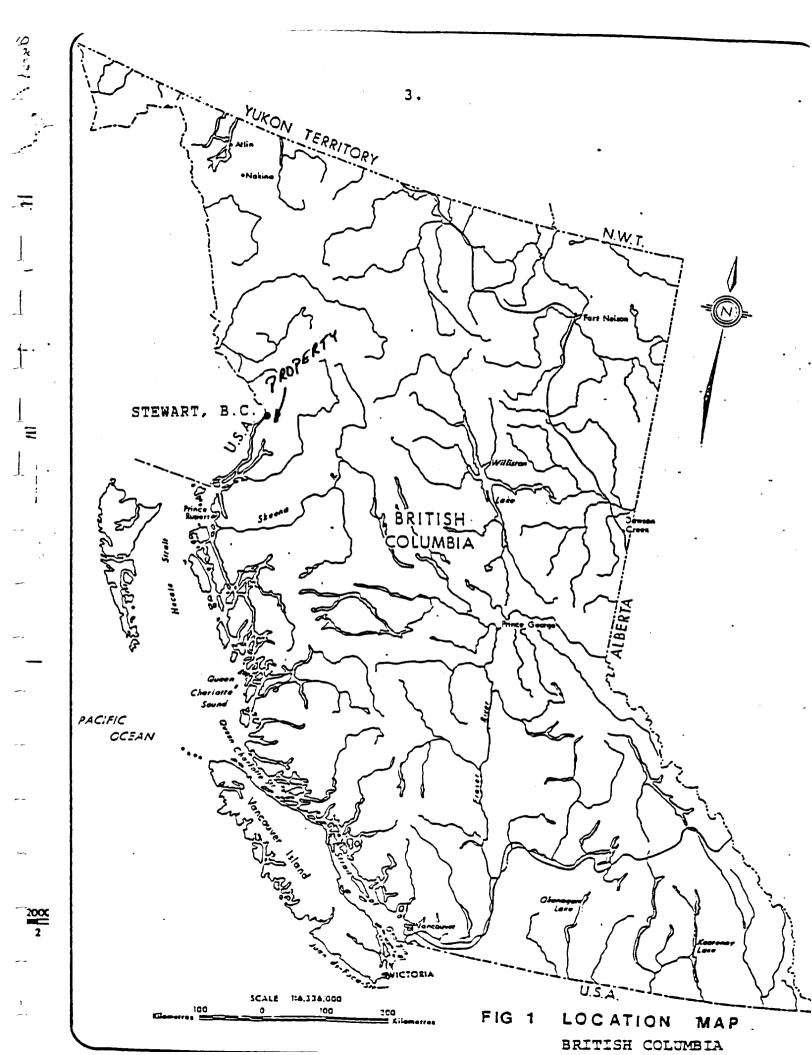
Page 6

INTRODUCTION

An exploration program designed to test the gold potential of the Clone Property was conducted during the period July - December 1995.

The work program was conducted in four separate periods as follows:

- 1. Geochemical sampling, trenching and geological mapping in July-August 1995 on the Port 21 Claim, mainly from a 2 man fly camp.
- 2. Follow-up work on anomalous samples utilizing a Bell 206 or Hughes 500 D helicopter from Stewart, B.C. on a daily basis. Sampling was conducted on the Clone 1 claim in this period, basically in late August.
- 3. Trenching, mapping and sampling on the Clone 1 claim from a semi-permanent camp with 2 x 4 and plywood construction. Work was done in September 1995 to early October.
- 4. Diamond drilling on the Cone 1 claim in late October to early November. Logging on this core was conducted during December utilizing warehouse space in Stewart, B.C.


All rock geochemical and assay samples were analyzed by Echo-Tech Laboratories in Kamploops, B.C. or by Pioneer Labs in Vancouver, B.C. The entire core sections were analyzed and sample intervals were selected on the basis of geology and/or mineralogy. Drilling was completed by J.T. Thomas Drilling out of Smithers, B.C. Vancouver Island Helicopters provided a Bell 206 and/or Bell 205 as well as Hughes 500 D in order to provide access and fly in supplies.

Drill hole locations, co-ordination and overall supervision was provided by E.R. Kruchkowski under the direction of Dino Cremonese, President of Teuton Resources Corp.

Location and Access

The claims in the property are contiguous and are located about 16 kilometres southeast of Stewart, British Columbia. The claim area is approximately 55 degrees 48 minutes latitude and 129 degrees 47 minutes longitude on NTS sheet 103P/13W.

Access to the property at the present time is by helicopter from Stewart. Nearest road to the area is a non-maintained logging road running east along the south side of the Marmot River to

Page 7

a point about 9 km northwest of the property. Total length of the road from tidewater to its termination point is approximately 4 km.

Physiography and Topography

The Clone property claims are situated southeast of Treble Mountain at the head of Sutton and Kshwan Glacier. The main area of interest is a roughly 4 km square nunatak with much of the southern sections only recently exposed by rapidly retreating ice (the southern ice edge is up to 200 m further south in places than that depicted on government topographic and claim maps). Elevations vary from approximately 1,150 metres ASL on the icefield in the southern portion of the Port 21 claim to about 1,700 metres ASL on the height of land in the northern portion of the Port 20 claim. Except for the portions of the claims covered by permanent snow or ice, most of the upper ground is outcrop or talus cover with little vegetation. Just above the glaciers, thick morainal debris obscures the underlying geology. Small ponds occupy depressions in a relatively flat area along the south edge of the Port 21 claim. Maximum rock exposure occurs in early October when most of the annual snowfall has melted. The surface exploration is restricted to late summer and early fall. Most of the nunatak can be traversed safely on foot although local areas contain occasional bluffs.

Small patches of tag spruce are present along the lower slopes of the nunatak, particularly the south facing edge. Alpine grasses, heather and arctic willows grow in patches along the talus, moraine and outcrops.

Personnel and Operations

Personnel involved in the program are listed below:

E. R. Kruchkowski - geologist	July-December 1995
A. Walus - geologist	July-November 1995
D. Cremonese - President (Teuton)	July-December 1995
M. Moorman - geophysical technician/prospector	September-December 1995
A. Raven - prospector	October-December 1995
D. Ethier - prospector	September-December 1995

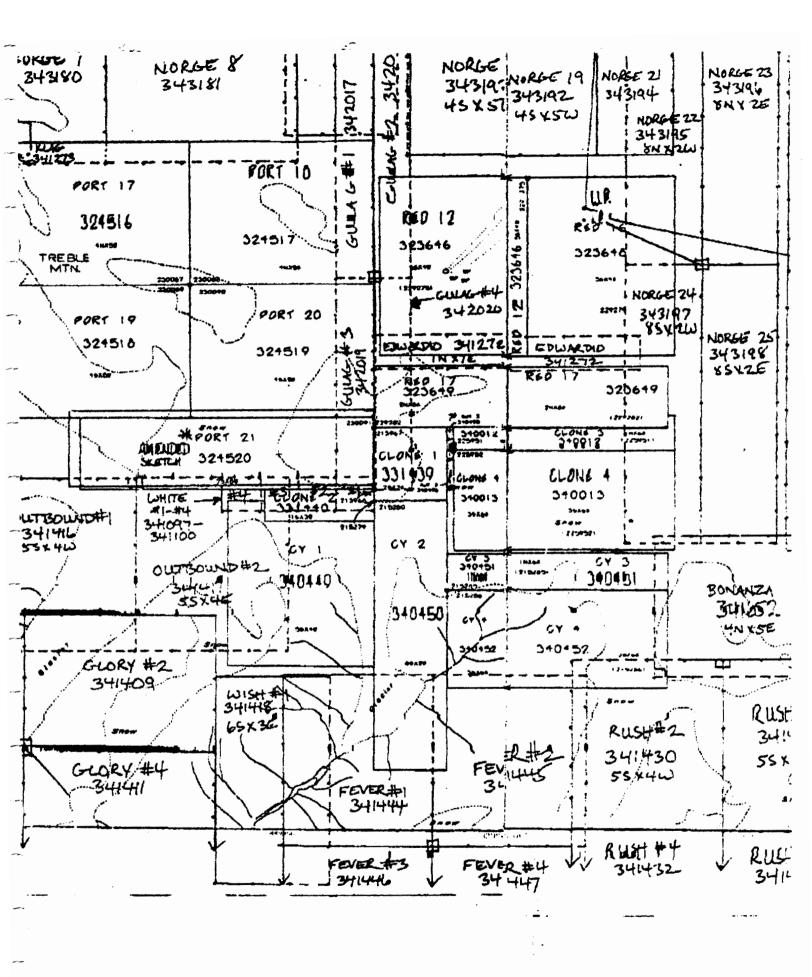
Personnel in the program mobilized to the Stewart area via vehicle or scheduled air flights (Smithers or Terrace). Casual laborers were hired in Stewart on a "as need " basis and were used during the construction of the drill camp and in order to facilitate the removal of core from the property and transport it to Stewart.

-

Page 8

J. T. Thomas Drilling mobilized out of Smithers, British Columbia to Stewart via truck. The actual drilling was delayed several weeks due to weather preventing mobilization by helicopter to the property site. Coring commenced on October 29 and was completed by November 7, 1995.

All drill equipment was slung to the property utilizing a Vancouver Island Helicopter Bell 206 or 205 and/or Hughes 500 D stationed at Stewart.


All personnel involved in the program were accommodated in a drill or exploration camp located either on the Port 21 or Clone 1 claim. While in Stewart, crews were accommodated either in a local hotel or rented house, provided by Teuton.

Supplies and materials for the job were purchased in Stewart and ferried in via helicopter.

Property Ownership

The property consists of 148 units in 18 separate but contiguous single unit claims as well as modified grid claims. Relevant claim information is summarized below:

Name	Tenure	No. of Units	Expiry Date
Red 12	323646	20	31 January 1998
Red 16	323648	20	31 January 1998
Red 17	323649	16	01 February 1998
Port 20	324519	20	23 March 1997
Port 21	324520	16	22 March 1998
Clone 1	321440	4	05 October 1996
Clone 2	331440	3	05 October 1996
Clone 3	340012	6	04 September 1996
Clone 4	340013	18	04 September 1996
Sut 2	340495	1	17 September 1996
Sut 3	340496	1	17 September 1996
White 1	341097	1	01 October 1996
White 2	341098	1	01 October 1996
White 3	341099	1	01 October 1996

Teuton Resources Corp.Skeena Mining DivisionStewart, British ColumbiaReport on Clone PropertyPage 9				
White 4	341100	1	01 October 1996	
Edwardio	341272	7	10 October 1996	
Gulag 3	342019	6	29 October 1996	
Gulag 4	342020	6	29 October 1996	

Claim locations are illustrated on Figure 2, copied after available government NTS maps. Ownership is presently divided equally between Teuton Resources Corp. (50 %) and Minvita Enterprises Ltd. (50%) of Vancouver, British Columbia. Teuton Resources Corp. is the operator of the project.

The author did not examine the claim posts and cannot verify the quality and accuracy of the staking. The exact location of these claims would be subject to further surveys.

Previous Work

The section on previous work has been excerpted from an assessment report prepared by Dino Cremonese in 1994.

"Exploration for metals began in the Stewart region about 1898 after the discovery of mineralized float by a party of placer miners. Sites which could be easily reached from Stewart were the first to be explored among which was the lower Marmot River area. This early phase of exploration culminated in 1910 when both Stewart and the neighboring town of Hyder, Alaska boasted a population of around 10,000 people. Another boom period began in the early 1920's after the discovery of the very rich Premier gold-silver-lead-zinc mine in the Salmon River area, northwest of Stewart.

Although a number of gold and silver prospects were sporadically worked in the Marmot River region up to the early 1930's, only the Prosperity-Porter Idaho mine (at the head of Kate Ryan Creek, a tributary of the Marmot River) saw limited production. The prospect closest to the Port 20-21/Red 17 claims is the old Ficklin-Harder prospect located at the head of the Marmot River on the southern flank of Treble Mountain. It was explored by a few tunnels attempting to intersect high-grade quartz-sulfide mineralization intermittently exposed on surface. Also exploration activities by Teuton crews have located large open cuts across sulfide bearing quartz stockworks along the upper east slopes of Treble Mountain. At this time the area covered by the property was probably mostly under snow and ice and hence unavailable for exploration by the "old-timers".

Page 10

From 1940 to 1979 there was little activity in the region due to lackluster precious metal prices. However when silver and gold prices skyrocketed in the early 1980's, many of the old properties were re-examined by both small and large exploration companies. Success by a number of exploration companies, particularly in the Unuk River has led to continued exploration in the general area. The relatively recent discovery and ongoing development of the promising intrusive-related gold deposits at Red Mountain (1,000,000 ounces gold), located approximately 16km east of Stewart, has again rekindled interest in the surrounding area."

During July to October 1994, an exploration program conducted by Teuton on the area of the present Clone property, consisted of reconnaissance geochemical rock and silt sampling in conjunction with prospecting and reconnaissance geological mapping to primarily evaluate the gold potential with emphasis on any intrusive related mineralization. A total of 159 rock and 3 silt samples were collected on the property.

Geological observations noted during sampling indicated that the property is underlain by a sequence of augite porphyry basalts, maroon clastic volcanics and argillites intruded by dykes of granodiorite and hornblende porphyry. These dykes which strike in a northwesterly direction vary from 2-10 metres in width.

Mineralization in the form of pyrite, plus/minus chalcopyrite, plus/minus magnetite and plus/minus molybdenite was observed in four different geological settings of potential economic significance.

Results of the geochemical program indicated highly anomalous gold, silver, copper, arsenic, molybdenum, tungsten, bismuth and cobalt values widespread throughout the area explored. Values as high as 1.786 opt Au, 8.32 opt Ag, 9.51% Cu, 0.75% As, 0.686% Mo, 0.144% W, greater than 1% Bi and 0.29% Co were obtained from different zones within a square kilometer of partially explored ground. Several anomalous lead and zinc values associated with pyrite bearing float rocks were located in an area of northerly trending shears.

Page 11

GEOLOGICAL SURVEYS

Regional Geology

The Clone property lies in the Stewart area, east of the Coast Crystalline Complex and within the western boundary of the Bowser Basin. Rocks in the area belong to the Mesozoic Stuhini Group, Hazelton Group and Bowser Lake Group that have been intruded by plugs of both Cenozoic and Mesozoic age.

According to C.F. Greig, in G.S.C. Open File 2931, portions of the general Stewart area as well as the northern portion of the property are underlain by Triassic age Stuhini Group. The Stuhini Group rocks are either underlying or in fault contact with the Hazelton Group. These Triassic age rocks consist of dark grey, laminated to thickly bedded silty mudstone, and fine to medium grained and locally coarse grained sandstone. Local heterolitic pebble to cobble conglomerate, massive tuffaceous mudstone and thick bedded sedimentary breccia and conglomerate also form part of the Stuhini Group.

At the base of the Hazelton Group is the lower Lower Jurassic Marine (submergent) and nonmarine (emergent) volcaniclastic Unuk River Formation. This is overlain at steep discordant angles by a second, lithologically similar, middle Lower Jurassic volcanic cycle (Betty Creek Formation), in turn overlain by an upper Lower Jurassic tuff horizon (Mt. Dilworth Formation). Middle Jurassic non-marine sediments with minor volcanics of the Salmon River Formation unconformably overlie the above sequence.

The lower Lower Jurassic Unuk River Formation forms a north-northwesterly trending belt extending from Alice Arm to the Iskut River. It consists of green, red and purple volcanic breccia, volcanic conglomerate, sandstone and siltstone with minor crystal and lithic tuff, limestone, chert and coal. Also included in the sequence are pillow lavas and volcanic flows.

In the property area, the Unuk River Formation is unconformably overlain by middle Lower Jurassic rocks from the Betty Creek Formation. The Betty Creek Formation is another cycle of troughfilling sub-marine pillow lavas, broken pillow breccias, andesitic and basaltic flows, green, red, purple and black volcanic breccia, with self erosional conglomerate, sandstone and siltstone and minor crystal and lithic tuffs, chert, limestone and lava.

The upper Lower Jurassic Mt. Dilworth Formation consists of a thin sequence varying from black carbonaceous tuffs to siliceous massive tuffs and felsic ash flows. Minor sediments and limestone are present in the sequence. Locally pyritic varieties form strong gossans.

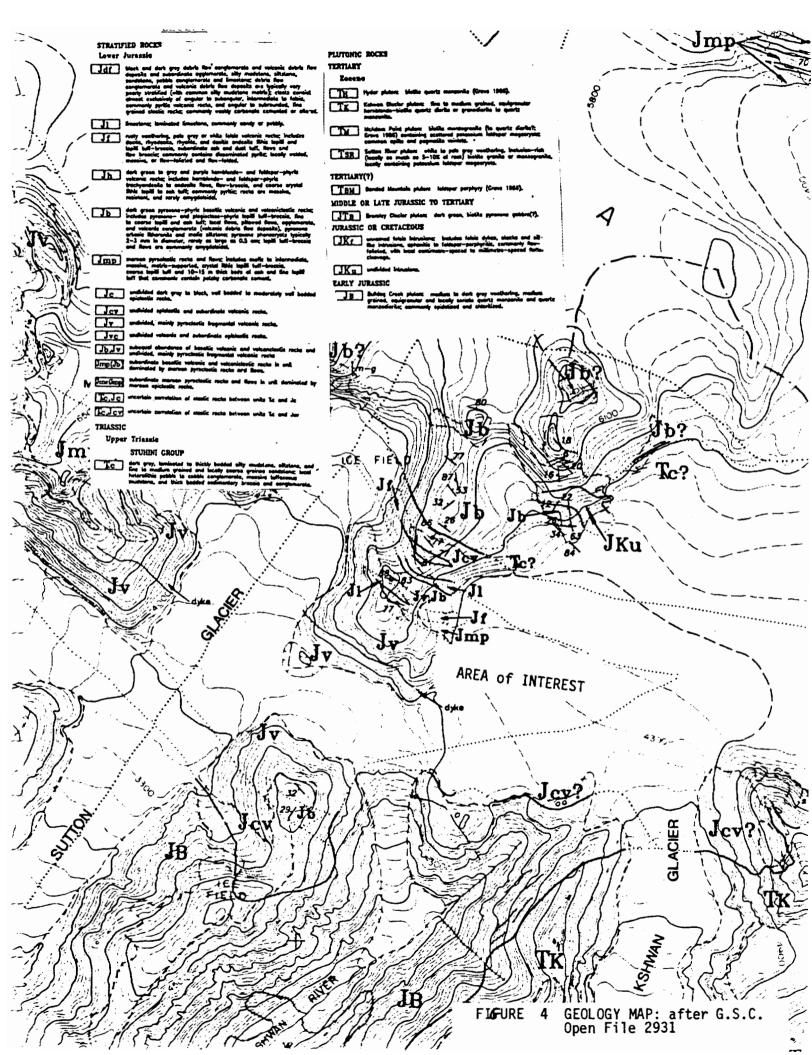
Page 12

The Middle Jurassic Salmon River Formation is a late to post volcanic episode of banded, predominantly dark colored siltstone, greywacke, sandstone, intercalated calcarenite rocks minor limestone, argillite, conglomerate, littoral deposits, volcanic sediments and minor flows.

Overlying the above sequences are the Upper Jurassic Bowser Lake Group rocks. These rocks mark the western edge of the Bowser Basin and are also located as remnants on mountain tops in the Stewart area. These rocks consist of dark grey to black clastic rocks including silty mudstone and thick beds of massive, dark green to dark grey, fine to medium grained arkosic litharenite.

According to E.W. Grove, the majority of the rocks from the Hazelton Group were derived from the erosion of andesitic volcanoes subsequently deposited as overlapping lenticular beds varying laterally in grain size from breccia to siltstone.

D. Aldrick's work to the north of Stewart has shown several volcanic centers in the surveyed area. Lower Jurassic volcanic centers in the Unuk River Formation are located in the Big Missouri Premier area and in the Brucejack Lake area. Volcanic centers within the Lower Jurassic Betty Creek Formation are in the Mitchell Glacier and Knipple Glacier areas.


There are various intrusives in the area. The granodiorites of the Coast Plutonic Complex largely engulf the Mesozoic volcanic terrain to the west. East of these (in the property area), smaller intrusive plugs range from quartz monzonite to granite to highly felsic. Some are likely related to the late phase offshoots of the Coast plutonism, other are synvolcanic and tertiary. Double plunging, northwesterly - trending synclinal folds of the Salmon River and underlying Betty Creek Formations dominate the structural setting of the area. These folds are locally disrupted by small east-overthrusts on strikes parallel to the major fold axis, cross-axis steep wrench faults which locally turn beds, selective tectonization of tuff units and major northwest faults which turn beds. Figure 3 shows the regional geology of the Stewart area (Grove 1982).

Local Geology

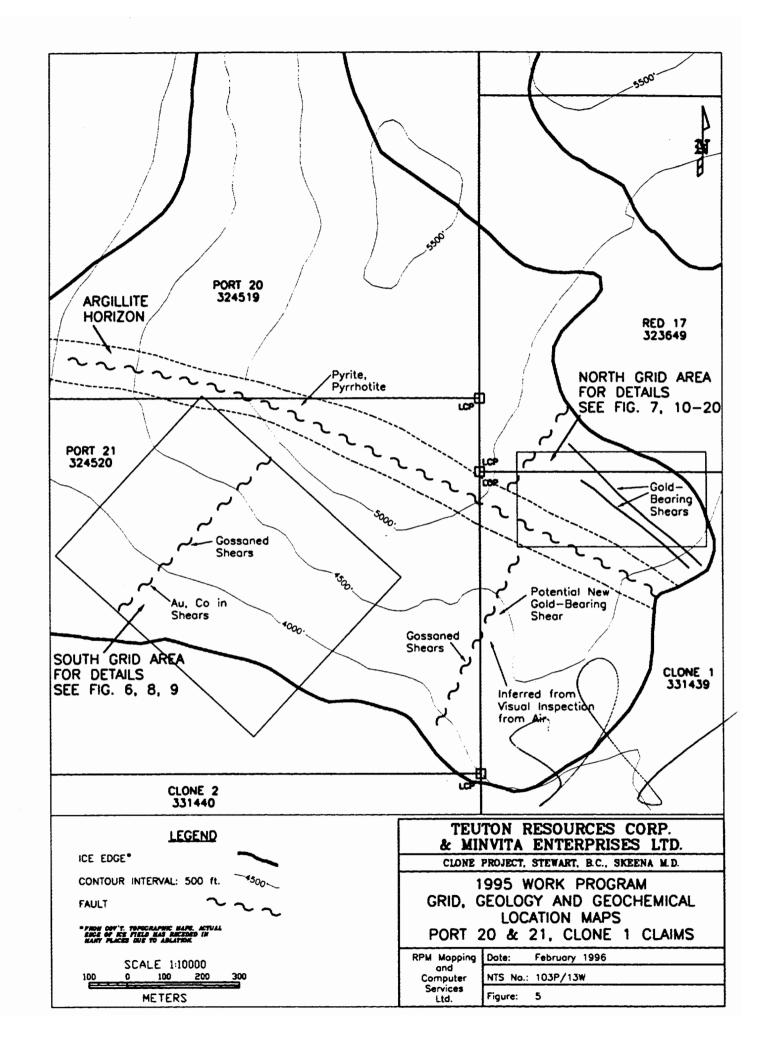
G.S.C. Open File 2931 indicates that the Port 21 claim is underlain by undivided, mainly pyroclastic fragmental volcanic rocks. The Clone 1 claim in underlain by the above assemblage in contact with a subequal abundance of basaltic volcanic and volcanoclastic rocks and undivided, mainly pyroclastic fragmental volcanic rocks.

Wedges of undivided maroon to green feldspathic pyroclastic and epiclastic rocks associated with felsic volcanic rocks are present topographically above the two assemblages. More detailed geological mapping was conducted, by Teuton geologists, on grids established over mineralized areas within the claims. This work is outlined in the following sections for the appropriate claims. It should be noted that this work was preliminary in nature and was conducted in order to

Page 13

determine possible mineralization/rock type and /or structure associations. Figure 5 shows the various grid areas relative to the claim boundaries and to each other.

a. South Grid - Port 21 Claim


A grid measuring approximately 0.7 km by 0.9 km was established over gold bearing sulfide stringers within shear splays along a major northeast trending structure in order to provide survey control. Grid lines were 100 metres apart with wooden picket stations erected every 50 metres along the lines. The baseline was established at 030 degrees with cross lines at 120 degrees. A total of 6.05 kilometres of line was completed, including the baseline.

Mapping by A. Walus indicated the presence of eight different rock units with a general northwest trend within the surveyed area (See Figure 6). Descriptions of the units and distribution of lithologies is based on notes within A. Walus's notebook as well as the geological map based on these observations. Along the south portion of the grid, andesite breccia and andesites are present and appear to have an irregular contact with andesite tuffs to the north. The andesite tuffs consist of dark green, sericite, chlorite altered rock with fragments of feldspars evident especially on weathered surfaces. Locally andesite lapilli were noted. The tuff unit is intruded by feldspar porphyritic, augite porphyritic and aphanitic to fine grained andesites. These intrusive andesitic rocks occur as irregular bodies, partly replacing the andesite tuffs.

The andesite breccia-conglomerate unit is also intruded by feldspar porphyritic, augite porphyritic and aphanitic to fine grained andesites. The feldspar porphyritic andesite contains 20-25% euhedral to subhedral feldspar phenocrysts and 3-5% hornblende phenocrysts set in an aphanitic groundmass. The augite porphyritic andesite contains 10-25% augite phenocrysts 2-3 mm across in a very fine grained groundmass. Epidote is commonly observed along fractures in the vicinity of the above dykes.

A large stock of hornblende porphyritic diorite is present along the northwestern and northern portion of the grid area. The rock is grey with coarse grained euhedral hornblende crystals up to 1.5 cm long forming 15-20% of the rock while biotite crystals form 2-3% of the rock. Both mafic minerals are chlorite altered. A small tabular body conformable with the regional trend was noted near L 1 +00 N, 1 + 00 E.

A dyke and/or sill of equigranular chlorite is located in contact with andesite tuffs and a dacite porphyry dyke in the eastern portion of the grid area. The intrusive is fine to medium grained with locally 15-20% of 2-3 mm augite phenocrysts. The rock is generally equigranular with the mafic minerals being strongly chloritized, possibly due to presence of the nearby dacite.

Page 14

A dacite porphyry dyke approximately 20 m in width cuts across the entire area mapped. The rock which is coarse grained with a white appearance is composed of 30-75% plagioclase phenocrysts 3-6 mm in size set in an aphanitic to very fine grained groundmass. There is also 3-5% chloritized biotite and hornblende phenocrysts and 2-5% resorbed quartz phenocrysts. The dyke has been traced continuously across the Port 21 and appears to correlate with a dyke on the west side of the Sutton Valley, a distance of approximately 5-6 kms. The dyke is post mineral and appears to cut the mineralized northeast trending shear zones. Later barren shearing along the earlier shear zones discussed above have cut the dykes. This late shearing is primarily represented by gouge, clay and highly fractured, chloritic rock.

A small outcrop of aphanitic dacite was noted along L 3 + 00 N, 2 + 50 E. The dacite is in contact with a series of chalcopyrite pyrite bearing quartz veins, veinlets and stringers.

A small wedge of rusty argillite was mapped near the baseline and line 0 + 00.

b. North Grid - Clone 1 Claim

A grid measuring 0.5 km by 0.25 km was established over the area underlain by hematite and sulfide bearing shear zones on the Clone 1 claim. The lines, totaling 5.1 kms, were spaced 25 metres apart with stations every 25 metres along these lines. Wire pickets with attached flags were used to establish the grid.

Preliminary mapping by A. Walus indicated a northwest trending assemblage of andesitic pyroclastic and volcaniclastic rocks intruded by rocks that are andesitic in composition (See Figure 7). A total of four separate shear zones coincident with the geological trend were indicated in the mapping and trenching program conducted. Rock descriptions and distribution are mainly based on a report by Walus included as Appendix V. Mapping has indicated that the hematite rich-sulfide poor shear zones occupy the northeastern portion of the grid area while sulfide rich-hematite poor zones are present to the southwest of the above zones. The area mapped to the northeast of the zones is occupied by hematite cemented volcanic breccia composed primarily of angular andesite and occasionally dacite and diorite fragments reaching up to 1 m in diameter. They are set in lapilli-tuff matrix cemented by hematite. Mapping has indicated that hematite content decreases to the NE of the above unit. The rock becomes a mixed hematite cemented to a non-hematitic green colored volcanic andesite breccia along the extreme NE edge of the grid.

Southwest of the hematite cemented, volcanic andesite breccia, a major intrusion, andesitic in composition is present. It is conformable with the above hematite rich volcanic. Further to the SW, andesite lapilli tuff and limonitic argillite/siltstone to mud supported lapilli-stone are intruded

Page 15

by andesites which form bodies with irregular diffused and difficult to discern borders. In the northwest portion of the mapped area, andesite intrusions were noted.

Andesite composition ranges from hornblende +/- biotite to feldspar porphyritic with minor occurrences of augite porphyritic and aphanitic andesites. Groundmass in the porphyritic varieties is aphanitic and to a lesser extent fine grained.

The mapped area hosting the gold bearing mineralization on the Clone 1 claim is underlain by a weak cataclasite-mylonite zone which features both ductile and brittle styles of deformation. The former is best developed in argillilte/siltstone which exhibits fairly good foliation. In other, more stress resistant lithological units, it is expressed by the stretching of some fragments and locally by weak foliation. The latter style is expressed in the form of intensive fracturing with local zones of shearing and brecciation. The dominating fracture system in the area has an orientation of 320 degrees with moderate dips to the NE or SW.

Along the west edge of the mapped area, a major northwest trending fault zone is present. The fault which strikes approximately 320 degrees is conformable with the general trend for the Stewart area. The zone is generally 4-10 metres wide with an apparent vertical dip. It is represented by strong gouge zones 0.5 m in width within rusty, sheared, graphitic argillite.. Locally strong, but generally barren quartz veins, stockworks and stringers form up to 30% of the rock usually associated with graphitic, pyritic argillite forming selvages to the quartz. The zones can be traced across the entire nunatak underlying the Clone 1, Port 20 and Port 21 claims. Figure 5 shows the location of the fault and argillite relative to the grid areas.

Minor barite with associated trace amounts of sphalerite and galena occur along the argillite horizon in the area of the North Grid.

Both pre and post mineralization faults are present in the gold bearing area on the Clone 1 claim. A very strong northeast trending fracture system that is post mineralization was noted on the claim. These fractures or shears which have coincident trends to those mapped on the Port 21 claim, appear to be less intense and un-mineralized. From the air, steep bluffs immediately south of the mapped area show many of these northeast trending structural breaks. These breaks are generally represented by brecciated country rock cemented by calcite over widths up to 15 cm. Some of the gold bearing shears have been offset along these breaks. One of these breaks offsets the S-2A and H-1 zone in the area of trenches 12 and 18. The second break is at the foot of the bluff below trench 81 and appears to offset the mineralization in trench 8. A third break offsets the H-1 zone in the area of trenches 20 and 21 and appears to terminate the S-2B zone NW of trench 22. These northeast trending shears give rise to the formation of many topographic benches in the surveyed area.

Page 16

In addition, northwest trending fractures with very shallow dips (almost flat lying) to the NE have been noted in several areas, particularly in trench 4. Massive hematite stringers below this break (noted in the trench) do not cross into the hanging wall.

Along the northern part of the mapped area, the gold bearing sulfide and hematite zones appear to be offset by a major northeast trending fault. This fault is inferred by an abrupt change in lithology. Numerous narrow purple, hematite rich tuff units interbedded with green andesitic pyroclastic rocks are present north of the fault. These are in juxtaposition to one of the gold bearing sulfide zones on the south side of the fault. Some of these hematitic tuff units contain sheared, coarse, green clasts up to 15 cm in length, generally stretched along foliation trends. Locally, these clasts contain black copper sulfides that appear to have been mineralized prior to brecciation and re-deposition. These mineralized sections along the mappable tuff horizons can be traced intermittently for several hundred meters. The tuff units appear to be several meters to 8 meters thick and are interbedded with green andesitic pyroclastic. It appears that there may be several of these mineralized horizons.

Above and northwest of the fault, discontinuous areas of intense sericite-pyrite alteration appear as conformable pods and lenses to the strike of the rock units. These are generally several meters wide and up to 10's of meters long. Pyrite forms up to 30 % of these pods and lenses as veinlets and coarse blebs.

Mineralization

Mineralization on the property appears to be related to the emplacement of intrusive dykes and associated shearing and fracturing. The mineralization on the Port 21 and Clone 1 claim are along shearing in a northeasterly and northwesterly direction respectively.

a. South Grid - Port 21 Claim

The 1994 exploration program indicated that mineralization in the form of pyrite, plus/minus chalcopyrite, plus/minus magnetite and plus/minus molybdenite was present in at least four different types of geological settings.

These types of settings are as follows:

- 1. Narrow veins of two different orientations are described below:
- a. Narrow pyrite bearing veins related to "relief" fractures in intrusive rocks. These veins generally strike easterly and contain local chalcopyrite and molybdenite mineralization. Mineralization tends to be discontinuous along the generally continuous fractures.

Page 17

- b. Pyrite stringers in fault gouge along late north-northeasterly trending shear zones. Chalcopyrite occurs as local pods and stringers along with pyrite. These shears cut the above fractures, offsetting intrusive dykes as well as mineralization. These shears are only exposed in several localities along steep creek beds. For the most part, they are obscured by talus and gravel. Locally, 3-4 narrow shears can occur over widths of 4-5 metres.
- 2. Pyrite occurs as fine disseminations and coarse fracture fillings and seams in weakly altered volcanic rocks along the contact with intrusive dykes. Mineralization has been noted in zones up to 15 metres wide and along strike lengths of up to 100 metres.
- 3. Fine grained pyrite in sericite schists that contain varying amounts of quartz-carbonate stockworks. Locally these stockwork zones contain pods and lenses of massive chalcopyrite and pyrite.
- 4. Massive cube pyrite in association with magnetite and garnets (skarn type occurrence).
- 5. Coarse to sparse pyrite in a fine grained hornblende porphyry that contains significant amounts of tungsten either within the pyrite itself or possibly in sheelite.

Pyrite is also commonly associated with pyrrhotite and minor chalcopyrite in hornfelsed volcanics. Alteration minerals noted included chlorite, particularly along zones of shearing, sericite and some K-feldspar replacement.

Work during 1995 concentrated on the pyrite stringers associated with late north-northeasterly trending shear/fault zones to evaluate the gold potential indicated by the 1994 work.

The 1995 program indicated that several massive pyrite stringer zones are present within shears over a strike length of 300 metres. Mineralization is present along splays that are parallel and for the most part within several metres of the main gouge bearing fault. Minor chalcopyrite is intimately associated with the massive pyrite stringers as interstitial blebs or grains. Individual pyrite stringers are generally less than 15 m in length and may be up to 15 cm wide. The main shear has a northeasterly strike, usually 030-040 degrees with dips of 45 - 60 degrees to the northwest. In the first stringer zone, the footwall area of the fault in the proximity of L 0 + 00, 0 + 50 E consists of a 1-2 m wide zone of heavily chloritic andesite with blebs, stringers and veins of massive, coarse pyrite over an exposed strike length of 30 metres. Chalcopyrite is usually associated with this zone, with sulfides generally forming up to 10% of the rock (chalcopyrite 1-2%). A carbonate altered zone, from 0.3 - 0.5 m wide, present in trench 2 and 6, contains minor amounts of galena.

Page 18

Numerous splays are "horsetailed" from the main fault. Most of the splays are mineralized with pyrite and chalcopyrite forming 3-5% of the heavily chloritized sheared and foliated andesite. Mineralized stringers in these splays may extend up to 30 m from the main zone with a definite decrease in sulfides with distance from the main fault. Sulfide bearing stringers may reach 0.3 - 0.5 m in width.

These splays appear to have a very gentle dip into the structure; as a result, they appear to have little apparent strike length and appear to diverge from the main structure with an increase in elevation. However, as one traverses up hill, a series of these mineralized splays can be observed, roughly 10 to 20 meters apart. This has resulted in a situation whereby a moderately dipping zone in the footwall area has a vertical "stack" of gently dipping splays. This makes it difficult to evaluate the gold bearing potential of the entire zone as the strike lengths, thickness and possible gold grade of the splays cannot be properly sampled.

In the above area, narrow fractures less than 1 cm in width, with malachite staining, associated with chloritic gouge or very fine pyrite veinlets as well as quartz veins are found in the hanging wall area of the predominant shear plane. The quartz veins are up to 30 - 40 cm in width and usually contain minor pyrite and/or chalcopyrite and can be extend up to 30 m into the wall area.

The second area trenched is located above a dacite porphyry dyke at line 3 + 00 E. The mineralization in the area consists of numerous well mineralized splays in the footwall region of the fault. Stringers of massive pyrite, chalcopyrite with locally abundant pyrrhotite and possibly arsenopyrite are present over an approximate strike length of 40 metres. Stringers extend approximately 10-15 m into the wall rock and appear to have widths of 1-2 m. Chalcopyrite is present in amounts from 5-10% of the stringers with pyrite forming up to 30% of the rock. As well, the dyke may have re-mobilized the mineralization in the immediate area and is responsible for an enrichment along splays adjacent to the contact areas.

b. North Grid Area - Clone 1 Claim

The gold bearing shears on the Clone 1 claim consists of two main types of based on sulfide and hematite content. All zones strike northwesterly; approximately at 320 degrees, coincident with the overall shear trend in the Stewart area.

1. Hematite Bearing Gold Zones

To date, two main hematite- gold bearing zones have been identified on the Clone 1 claim, within larger hematite-chlorite alteration zones up to 30 meters in width. The alteration zones are very distinct as they are mottled a dark green-red with veins, "wispy" stringers, veinlets, micro-veinlets

Page 19

and interstitial blebs of hematite, particularly on fresh surfaces. These alteration zones weather a distinct white to pinkish colour with the massive to semi-massive hematite veins occurring with distinct black to dark red colored surfaces. The hematite bearing alteration zones do not appear to have distinct contacts with the adjoining rocks; hematite content decreases gradually into the wall areas. Gold mineralization appears to be directly related to the presence of massive hematite veins and/or in close proximity within the wall areas to these veins. Individual massive to semi-massive hematite veins are present in widths up to 1 m and can be traced for strike lengths of several hundred meters. Locally several veins can form zones up to 7 metres in width; especially in areas of trench 4, 14 and 15.

The hematite bearing zones are cut by 2-10 mm wide veinlets containing quartz, calcite, dark green chlorite and occasionally flaky specularite. One set of these veinlets with greater lateral continuity is orientated parallel to the zone with vertical to very steep NE or SW dips. Another set of shorter less continuous veinlets cut the zone at a direction roughly perpendicular to its strike with shallow dips to the NW or SE.

Chalcopyrite is commonly associated with the gold bearing zones; particularly in area of massive hematite veins. Locally minor amounts of secondary copper minerals are present which include malachite, chrysocola(?) and rare native copper. Specularite commonly occurs along vuggy veinlets and usually exhibits magnetism. Abundant specularite veins are present in trenches 14, 15 as well as trenches 77 - 79. It can form veins up to 2 cm wide and comprise up to 10% of the rock. Native gold was noted in trenches 4 and 15 generally as very fine grained flakes interstitial to the specularite or as grains along quartz veinlets. High gold values were obtained from every trench along the H-1 structure that contained specularite veinlets. Abundant erytherite stain is present over 6 m of width in trench 81 and was also noted in minor amounts in trenches 9 and 69.

The main hematite-gold zone (H-1) has been traced over a strike length of at least 500 m. It is present in trench 81 where semi-massive hematite stringers in association with pyrite and arsenopyrite occur in a brecciated, hematite altered rock. The zone which typically carries massive hematite veins can be traced north up to trench 43. Width of the H-1 zone based solely on massive hematite veins and gold content ranges from 1.5 (trench 43) up to 7.5 m (trench 15).

In the area of trench 4 to above trench 12, strongly pyritic, chloritic-sericitic schistose andesite forms the west wall to the H-1 zone. This is also the case in trench 81 where a 2.5 m section of pyritic schist forms the west wall to the above zone. Coarse pyrite occurs as veinlets and blebs in amounts from 7-10 % of the wall area. Native copper was noted in the pyritic schist along the west side of trench 4. Pyrite also occurs in the wall to the massive hematite vein in trench 21.

The H-2 zone which occurs northwest and parallel to the H-1 zone, has been traced by three trenches over a length of 18 meters. At the south end in trench 55, and in trench 16 at the north

Page 20

end, good gold values as associated with very narrow massive hematite stringers from 1 cm (trench 16) up to 6 cm (trench 55). A very strong quartz-calcite-chlorite stockwork forms up to 15 % of the rock on either side of the massive hematite. The zone has not been fully traced as the hematite stringer continues to the north for another 5 m before being offset by a northeasterly trending break. Topographically above and to the north of the break, numerous hematite stringers that may be extensions of the H-2 remain un-tested. To the south, exploration was not completed due to a lack of time.

In addition, the S-2B zone traced for approximately 50 meters, appears to be a mineralized splay, possibly from the main H-1 zone or S-2A zone. Massive hematite veins that occur continuously along the zone reach widths up to 1 meter (trench 22). Pyrite occurs in close association with the hematite within the outlined zone.

2. <u>Sulfide Bearing Gold Zones</u>

Two main sulfide bearing zones labeled the S-2A and S-1, have been identified on the claim. The S-2A zone can be traced over a strike length of 500 meters same as the H-1 zone. It appears that this zone may merge with the H-1 zone in the area of trench 81. Based on gold values, correlated with high sulfide/hematite and/or limonite, the zone width ranges from 0.6 meters (trench 37) to 6.0 meters in trench 18.

The zone can be divided into two separate portions based on the presence or absence of hematite and/or arsenopyrite. To the north of trench 19, the zone is almost solely a sulfide bearing one. From trench 45 to trench 39, the zone contains pyrite with lesser amounts of arsenopyrite. The sulfides form laminations in a chlorite schist and can be present in amounts up to 25-30 % (pyrite 20-25 % and arsenopyrite 5-10 %). The zone usually exhibits very weak limonite stain with the exception of the area with trenches 27-29 and 31.

Below and south of trench 45, the zone contains stringers of massive hematite with a marked decrease in sulfide content. In the area between trench 45 and just north of 70, hematite stringers occur within schistose, weakly hematite altered tuffs. There may be several sub-parallel stringers, especially in the area of trench 18 to 59. South of and including trench 70, the S-2A zone shows a marked increase in pyrite and arsenopyrite. Trench 70 is interesting in that massive pyrite and hematite, intimately mixed, form a stringer up to 15 cm wide. Trench 81 has a 20 cm massive arsenopyrite zone associated with hematite altered rock.

The second zone identified; the S-1 consists of sub-parallel, en echelon sulfide bearing shears. The rocks, hosting the mineralization, consist of green, chloritic, schistose tuffs with semi-massive to massive sulfide zones. Individual zones may be 50 meters in length and locally up to 4 meters in width. Generally, the zones are 1-2 meters in width with approximately 20-80 % pyrite and lesser

Page 21

arsenopyrite. Minor malachite stain is associated with the S-1 zone. This zone has been traced along 100 meters of strike length. It is difficult to trace as the zones appear to occupy topographic depressions and therefore are covered by overburden.

A short zone possibly branches off the main S-2A zone and has been labeled the S-2B zone. The S-2B zone contains massive hematite stringers associated solely with pyrite. Abundant local malachite stain was observed. The zone appears to be 1-1.5 meters in width and was traced for 50 meters before being offset (see figure 7 and 12)

Numerous sulfide rich zones are indicated for the area west of trenches 57 - 59, 77, 78, 69, 70 and 81. Trench 64 (pyrite - arsenopyrite in schistose tuff) is located over another S-type zone. Preliminary observations indicate that this zone (trench 64) may extend along at least 50 meters of strike length. In addition, a strong gossaned area southwest of trench 69 and 70, indicates the presence of even more S-type zones.

Trench 8 located over a massive pyrite - arsenopyrite lens within a northwest trending shear may be a strike extension of the above gossaned area.

It is speculated that long trenches in the sulfide rich area may define zones of significant gold values across substantial widths (0.2 - 0.3 opt Au across 15 - 20 meters).

In addition to the above two mineralized areas, an argillite horizon, roughly between the North and South Grids is cut by a major northwest trending fault zone, contains areas of mineralization. This zone which trends across the NW portion of the Clone grid, strikes in a 310 degree direction towards samples A-95-31 (see figure 7). In the southwest portion of the Clone 1 claim, this zone contains a strong barren quartz vein system associated with graphitic, pyritic wall zone argillite. Along the top of the ridge (DC-94-23), the argillite is heavily mineralized with pyrite and locally pyrrhotite. Sulfides in a silicified argillite may reach 20-30 %.

On the Port 20 claim, the argillite is highly sheared and has been carbonate and sericite altered (area of ERK-95-197 - 203). Discontinuous quartz veins mineralized with galena, chalcopyrite, pyrite, and locally arsenopyrite have been noted. Sulfides locally reach 10-30 % over 1 meter widths. It appears that variety of sulfide content and alteration, particularly sericite alteration, increase downhill and to the NW. Further work is recommended in this area (Port 20 claim) to better evaluate the precious metal content of the argillite.

Page 22

Trenching

A trenching program was conducted over basically two areas of the Clone property. One of the programs concentrated on mineralization located on the Port 21 claim during surveys conducted in 1994, as well as newly located mineralization during the 1995 work. The second program was conducted over gold bearing shears located on the Clone 1 claim during the 1995 geochemical surveys. One trench was located on the west side of the Port 21 claim over sample A-95-31. Rock cuts were excavated using cobra drills, dynamite and hand tools. The objective was to obtain continuous representative material from the tested zones in order to evaluate the gold bearing potential of the shears. Detailed descriptions of the programs for the two main areas are outlined in the following sections.

a) South Grid-Port 21 Claim

A total of 50.63 meters of trenching was completed in 13 trenches, predominately along one shear zone (see figure 7). Trenches were located over areas of sulfide mineralization generally in association with abundant dark green chlorite. Results of the trenching indicate significant gold values ranging from 0.1-0.2 opt over widths of 2 meters with locally higher grade zones across 1-2 meters. The trench results are tabulated as follows with values greater than 0.1 opt in bold:

<u>Trench No.</u>	Width (m)	Gold (opt)
1	2	0.144
2	1.3	0.186
3		low values
4	1	0.077
5	0.5	0.959
6	2.2	0.204
7	1.1	0.280
	0.15	0.20
8		low values
9	1	0.102
10	4	0.10
11		low values
12	0.95	0.164
13	1.6	1.433

Table 1 : Compiled South Grid Trench Results

Page 23

Using the results obtained from trenches 1, 2, and 5-7, an average width of 1.42 meters grading 0.263 opt Au is indicated along a strike length of approximately 30 meters. Unfortunately the zone is obscured to the northeast by deep overburden and to the southwest by snow as well as deep overburden.

Trenching has indicated the presence of other mineralized structures in the immediate vicinity, particularly in trenches 9 and 10. These trenches may represent other possibly parallel mineralized structures. Trenching and sampling has also indicated the presence of higher grade gold values as obtained in trench 13.

b) North Grid-Clone 1 Claim

A total of 463.2 meters of trenching was completed in 81 trenches over at least 4 different structures along a strike length of approximately 500 meters (see figure 7). Results of the trenching indicate significant gold values over significant widths and lengths in all tested zones. The significant results for each trench (>0.03 opt Au) are tabulated below and any values greater than 0.1 opt are in bold as follows:

Trench No.	Zone	Width (m)	Gold (opt)
1	S 1	3.3	0.71
2			Low Values
3	S-2A	3.0	0.046
4	H-1	5.5	3.59
5	H-1		Low Values
6	H-1	3.0	0.04
7	S-1	2.9	1.65
8	S-1?	5.3	0.16
9	H-1	1.5	0.42
10	S-2B	4.5	2.08
11	H-1	2.7	0.71
12	H-1	6.7	0.56
13	H-1	2.8	0.38
14	H-1	7.3	1.50
15	H-1	7.5	0.76

Table 2 : Compiled North Grid Trench Results

16	H-2	1.5	7.18
17	S-2A	<pre></pre>	Low Values
18	S1	6.00	0.22
19	S-2A	- <i>r</i>	Low Values
20	H-1	3.5	0.21
21	H-1	2.35	0.41
22	S-2B	1.0	1.278
22	S-2A	2.5	0.09
23	5-211	2.5	Low Values
25	S-2A	3.0	1.03
20	5-2A	5.0	1.00
26	S-2A	1.75	0.45
27	S-2A	2.00	0.49
28	S-2A	2.00	1.15
29	S-2A	2.65	0.96
30		1.1	0.05
31	S-2A	1.3	0.98
32	H-1	1.2	0.03
33	H-1	1.2	0.05
34	S-2A	0.9	0.84
35		1.5	0.04
36	S-2A		Low Values
37	S-2A	0.6	1.77
38		1.5	0.07
39	S-2A	1.8	0.07
40	H-1	1.5	0.04
41	H-1		Low Values
42	H-1		Low Values
43	H-1	1.5	0.09
44		2.0	0.06
45	S-2A	1.5	0.48
46	S-2B	1.2	0.05
47	H-1	1.5	0.268
48		1.5	0.232

49			Low Values
50			Low Values
51			Low Values
52			Low Values
53			Low Values
54			Low Values
55	H-2	1.5	0.298
55	11-2	1.0	0.270
56	H-2	1.5	0.378
57	H-1	1.2	0.113
	and	3.0	0.087
58	S-2A	1.4	0.035
	and	0.9	0.077
59	S-2A	1.5	0.106
60	S Zone		Low Values
61	S Zone		Low Values
62	S Zone	4.2	0.059
63	S Zone	1.5	0.145
64	S Zone	3.35	0.52
65	S-1	1.45	0.078
66	S-1	1.3	1.309
67	S Zone	1.0	0.13
68			Low Values
69	S-2A	2.8	0.06
70	S-2A	1.1	0.162
71	H Zone		Low Values
72	H Zone		Low Values
73	H Zone		Low Values
74	H-1		Low Values
75	H- 1		Low Values
76	H-1	1.2	0.06
77	S-2A	1.2	0.05
	H-1	6.2	0.09
78	H-1	8.0	0.90
79	H-1	3.0	0.30
	••••		

Teuton Resources Corp.Skeena Mining DivisionStewart, British ColumbiaReport on Clone PropertyPage 26				
80	H- 1	6.0	0.14	
81	H-1/S-2A	9.0	0.34	

In addition, trenching verified the presence of appreciable cobalt values in the southern most portions tested. Trench 8, 9 and 81 carried cobalt values as follows:

Trench	Width	Cobalt %	Gold (opt)
8	5.5	0.08	0.16
9	1.5	0.71	0.42
81	9.0	0.18	0.34

It appears that there is a marked enrichment in cobalt to the southeast, possibly due to sampling at a deeper level on the shear systems (topography slopes to the southeast).

Based on the trenching, an average width and gold grade has been calculated for the various zones tested. Zone S is a sulfide bearing shear, located between the S-1 and S-2A zones, tested by one excavation (trench 64 - location of grab sample DC-30 [2.905 opt Au]). Four trenches have traced the S-1 zone along a gully for approximately 100 meters of strike length. The width of the zone has been extrapolated to 3 m and assay averages have been adjusted to reflect this. Grab sample DC-38 (0.432 opt Au) indicates a strike extension of this zone to the northwest.

The S-2A zone has been traced along 500 m of strike length with a higher gold bearing section defined by trenches 10, 18, 19, 23, 25 -29, 31, 34, 36, 37, 39 and 45. The H-1 zone has been traced for over 500 meters with a section in the middle carrying good gold values. This section as defined by trenches 4, 5, 11 - 15, 20, 21, 57, 77 and 78 - 80 has not been fully outlined and is open to both the north and south. In addition, the full widths of some of the zones, particularly in trenches 11, 13, 15, 20, 79 and 80 have not been delineated. Trench 47 has not been used because of the offset along a structural break in the trench area.

The H-2 zone has been tested by trenches 16, 55 and 56. The results for these zones have been tabulated as follows:

Zone	Strike Length (m)	Average Width (m)	Average Grade (opt Au)
S	N/A	3.35	0.52
S-1	100	3.0	0.74

Table 3 : North Grid Zone Lengths, Widths and Grade

Teuton Resource Skeena Mining I Stewart, British	Division		
Report on Clone	Property		Page 27
S-2A	365	2.3	0.71
S-2B	50	2.2	1.59
H-1	191	5.2	0.74
H-2	18	1.5	2.62
Co-Au	N/A	5.3	0.29

It should be noted that the strike lengths and widths as well as average grade will change as more trenching is conducted. The H-1 zone as drawn on figure 7 appears to become narrower to the north. However this is primarily drawn this way due to the length of the trenches completed and is not an accurate reflection of the H-1 zone width. The S-1 zone is difficult to test as the gold values are not necessarily associated with the highest sulfide values. Further trenching should be conducted in the area of trench 23 - 26 and 31 to give greater zone control as well better define the S-2A zone in this area. Trenches 27, 28 and 31 should be extended in order to fully delineate the width of the gold bearing system in this area.

Additional trenching should be utilized to possibly extend and trace the H-2 zone at the north end of the surveyed area. Unfortunately, the zone appears to be offset in this area and may require some long trenches to define it. To the south, no attempt was made to trace the zone due to the lack of time.

Detailed trenching should be conducted on the S-1 structures. These are sub-parallel, en echelon shears filled with chlorite, sulfide rich material. In the area northwest of trenches 81 and 8, a wide gossaned zone reflecting the presence of sulfide, should be tested. In addition, all sulfide bearing zones southwest of trenches 17 and 18 should be sampled.

Trenching should also test all mineralized features detected to the southeast of all previous trenching. An area approximately 100 m long remains to be tested in this direction.

Page 28

Geochemistry

Introduction

Reconnaissance rock geochemical samples were taken from zones of interest, including gossaned areas, mineralized shear zones and any unusual rock types within the nunatak exposed on the Port 20, 21 and Clone 1 claims. A sample location index map is shown in figure 9 in relation to the claim lines, prepared at a scale of 1:5,000. Icefield boundaries have been taken from government topographic maps, however, these are often inaccurate: pronounced ablation in Stewart during the past years has exposed much new rock outcrop and reduced the size of snow and icefields considerably.

Altogether 604 rock samples were taken: 386 trench and 218 chip, grab and float samples. Locations for the samples were fixed in the field by reference to a base map prepared from a topographic map and were tied in where possible to previously GPS located sample sites. Samples were also plotted where ever possible on base maps (grid areas) prepared for survey control.

Field Procedure and Laboratory Technique

Rock samples were taken in the field with a prospector's pick and collected in standard plastic sample bag. Grab samples were taken to ascertain character of mineralization at any specific locality. These samples consisted generally of three to ten representative pieces with total sample weight ranging between 0.5 to 2.0 kgs. Chip samples were taken across the strike of mineralized structures and generally weighed about 1.0 to 2.0 kgs. Interval samples from chip lines were carefully taken to ensure a balanced weighting of sub-samples along the interval length. In the trenches, continuous chips of fresh material were taken across the excavations in such a manner as to test particular mineralization and/or geology. Sample intervals were selected on the basis of sulfide and/or hematite content as well as possible quartz-calcite stockworks. Complete descriptions of the rock samples, in terms of type, noted mineralization and relationship to nearby features are located in Appendix I. In addition, any determined anomalous values are noted along with the descriptions.

All rock samples were analyzed at the Eco-Tech facilities in Kamloops, British Columbia and Pioneer Labs in Vancouver, British Columbia. Rock samples were first crushed to minus 10 mesh using jaw and cone crushers. Then 250 grams of the minus 10 mesh material was pulverized to minus 140 mesh using a ring pulverizer. For the gold analysis a 10.0 gram portion of the minus 140 mesh material was used. After concentrating the gold through standard fire assay methods,

Page 29

the resulting bead was then dissolved in aqua regia for 2 hrs at 95 degrees Celsius. The resulting solution was then analyzed by atomic absorption. The analytical results were then compared to prepared standards for the determination of the absolute amounts. For the determination of the remaining trace and major elements Inductively Coupled Argon Plasma (ICP) was used. In this procedure a 1.00 gram portion of the minus 140 mesh material is digested with aqua regia for 2 hours at 95 degrees Celsius and made up to a volume of 20 mls prior to the actual analysis in the plasma. Again the absolute amounts were determined by comparing the analytical results to those of prepared standards.

Specific samples were subjected to further analysis where the Au, Ag, As, Cu, Zn, Pb and Co values obtained exceeded certain threshold levels (greater than 1000 ppb for Au, greater than 30 ppm for Ag and greater than 10,000 ppm for the next metals and 100 ppm Co). High golds were fire-assayed using conventional methods followed by parting and weighing of beads. Wet chemistry methods and AA were used for follow-up analysis of base metals and silver (where values were too high for quantitative measurement by ICP).

Analyses results for the geochemical and trenching program are located in Appendix II.

Statistical Treatment

A cumulative frequency plot to determine background and threshold values (greater than threshold is considered anomalous) was not conducted for the results. Generally, gold values greater than 100 ppb gold, silver values greater than 3.6 ppm, arsenic values greater than 120 ppm, copper values greater than 240 ppm and cobalt values greater than 100 ppm, may be considered anomalous in the Stewart area based on previous surveys. Figures 6-9 show the location plots for all sampling conducted with the values for Au, Ag, As and Cu listed in a table for the appropriate samples in any of the individual diagrams.

Anomalous Zones

The geochemical programs basically tested four different areas of the Clone property. The first area tested was in the area of 1994 anomalies along some Au-Co bearing northeasterly trending shears. The sampling program in this area indicated numerous areas of interest in the immediate vicinity of the above shear. The work indicated a strong correlation between highly anomalous cobalt and arsenic as well as significant copper and elevated silver values. Samples are generally pyrite rich with sulfide content from 10 - 100% Chalcopyrite or secondary copper minerals were only noted in a portion of the samples and arsenopyrite was noted in only a few samples. The elevated values appear to be closely associated with a dark green to almost black chlorite. The geochemical sampling was successful in outlining other parallel zones that are parallel to and in the vicinity of the Au-Co shears. Trench 10 (south grid area) and samples ERK-95-103, 106 and

Page 30

107, located to the east of the main shear, indicate gold values present over at least 100 m of width.

Sampling in the central portion of the Port 20 claim, on the east side of the Clone nunatak, indicate highly anomalous gold and arsenic values with associated anomalous copper and cobalt values. Some of the values are associated with narrow chalcopyrite and pyrite bearing quartz veins. Some of the values are associated with a strong quartz stockwork and sulfides (arsenopyrite, pyrite chalcopyrite and galena)in a sheared and altered argillite horizon. More work is required in this area to further define the mineralization and associated gold values. High lead and some zinc values are associated with massive galena found in the argillite horizon a short distance away from the arsenopyrite mineralization.

Sampling during 1995 in the area of DC-94-23 confirmed the presence of anomalous gold values associated with pyrite and pyrrhotite in the area of the Port 10 and Port 21 Legal Corner Posts.

Geochemical sampling was also carried out on the east side of the Clone I claim. This sampling was successful in outlining a number of zones containing gold bearing rocks. Highly anomalous golds are associated with anomalous arsenic, cobalt and copper. This area was trenched with numerous sample results utilized to make metal content associations.

Preliminary comparisons of assay and ICP results from 81 trenches enabled a differentiation of shear zones according to their specific geochemical signatures. These differentiated zones are as follows:

- 1. Zones H-1, H-2, S-2B and part of S-2A between trenches 18 and 23 are characterized by high gold assays of up to 8.66 opt (Sample A-95-277 of trench 10) associated with iron. Sporadically there is elevated arsenic up to 254 ppm and cobalt up to 298 ppm in close proximity to the elevated gold values.
- 2. The S-1 zone plus a portion of the S-2A zone between trenches 25 and 37 feature consistently high gold values ranging between 0.08 and 2.4 opt associated with high arsenic ranging from 1915 ppm to 2.4% and elevated cobalt up to 1826 ppm. Both arsenic and cobalt show fairly good correlation with gold.
- 3. The area comprising trenches 8, 9 and 81 is characterized by high cobalt contents measured in tens of percentage points (up to 0.71% sample A-95-228 of trench 9) associated with high arsenic values reaching over 1% in many samples and moderate to high gold values up to 1.71 opt (grab sample DC-110).

Page 31

Samples belonging to all three designated geochemical types show anomalous values in silver, molybdenum, copper and zinc with the first two showing good and the last two elements very poor correlation with gold values. Silver is slightly elevated up to 29.6 ppm (Sample A-95-403 of trench #51). Molybdenum, in a majority of the samples, is elevated up to an average of 50 ppm; a few samples have higher contents measured in hundreds of ppm with the highest value being 576 ppm recorded in sample A-95-222 of trench 7. Copper values are often in the hundreds of ppm up to a high of 3007 ppm recorded in sample A-95-211 from trench 4. Zinc values are slightly elevated in a portion of the samples with the highest content of 1177 ppm recorded in sample A-95-301 of trench 17.

Geochemical sampling south of the North Grid on the Clone 1 claim and across a major NW fault, indicated anomalous gold values with associated, elevated arsenic and copper values. Samples A-95-122-128 and DC-95-42-50 tested primarily narrow sulfide bearing zones as well as sericite-chlorite altered andesite.

Page 32

Geophysical Surveys

On 26 September 1995, a combined magnetic and VLF survey was conducted on a grid overlying part of the trenched area on the Clone 1 claim. The survey of about 225 stations was completed by one geophysical operator in approximately 8 1/2 hours.

The purpose of the magnetic and VLF surveys was to evaluate the potential for these types of surveys as mapping aids to the geologists. Particular interest lay in determining if the geophysical surveys could be used to extend known outcrop geology under the glacial ice which covers much of the property.

The survey was done on a 25 m square grid covering an area of about 500 m east-west and 250 m north-south. The grid was surveyed with chain and compass. Corrections were made where necessary for the sloping land surface.

The instrument used for the survey was an Omni system manufactured by Scintrex. The single field instrument measured both magnetic (total field) and VLF (using the Annapolis transmitting station). The VLF data appears to be dip angle. The VLF data, presented in Figure 11 is contoured in 5 unit intervals.

VLF EM Survey

In general, the VLF data accurately indicates the NW-SE trend of the mapped surface geology (See Figure 11). The data does not reflect the presence of known and/or mapped faults. The known faults and shears may not be of sufficient size even if the survey was to be repeated doing in phase and quadrature measurements using a different transmitter.

The VLF results reflect the trend of the geological units even in areas covered by an assumed thin (few metres) layers of glacial ice.

Magnetometer Survey

The un-corrected magnetic data is presented in Figure 10. It is mostly contoured in 20 gamma intervals, although some contours have been omitted for purposes of clarity. In addition, the values of 5 stations have been ignored as single point anomalies - two low and three high. The data is contoured after removing 5600 gammas from all readings. The divisional variation as recorded at a base station was less that 15 gammas.

Page 33

The magnetic data outlines a northwest-southeast zone which contains most of the trenches completed to date. This is a 50 to 150 gamma magnetic high possibly reflective of the presence of magnetite in the mineralized rocks. (The high values that were ignored in contouring may reflect the presence of high concentrations of magnetite near the surface.)

Similar to the VLF, the magnetic data outlines the general NW-SE trend to the rocks and mineralization in the surveyed area.

The geophysical technique utilized in this one day test have successfully mapped the trend of the geologic units in the area. The magnetic data appears to have the added potential of mapping mineralized zones which contain varying amounts of magnetite.

As a rapid reconnaissance tool, it would appear to be feasible to use airborne magnetics as a means of mapping geological trends and the presence of significant amounts of magnetite which may be a mineralization indicator. A VLF unit should be flown in the magnetometer for the little extra cost involved. The survey should be flown on lines 100 m apart with the lines every 500 m if feasible.

It is recommended that the airborne survey be flown as early in the field season as possible so as to provide as much time as possible to evaluate anomalies and test the most efficient means of locating the anomalies on the ground. Certainly thought should be given to using horizontal loop EM for determining altitude and depth of conductors and possibly induced polarizations technology for predicting the presence of sulfides related to gold bearing minerals.

It is recommended the available magnetic data be field checked, particularly the cause for the discarded high single point readings. This information would be very helpful in designing future ground surveys and possibly airborne surveys.

It is further recommended a geophysicist be on site for evaluating the application of geophysical technology and to help to select equipment if any appropriate for future mapping.

A budget of 100,000.00 should be sufficient to cover an airborne survey and interpretation of results of an area 5 km x 5 km with 100 m spacing and 500 m tie lines (Est. 60,000.00) plus one week of testing and evaluating airborne follow up procedures (Est. 10,000.00) and three to four weeks of anomaly evaluations and gridding (Est. 20,000.00) plus contingency (10,000.00). If induced polarizations were to be a viable alternative then an extra charge of 1,500.00 per day for the IP crew would be needed.

Page 34

Diamond Drilling

A total of 1070.16 m of BW size drilling was completed in 13 holes utilizing a modified JK Smit 300 drill provided by J. Thomas Drilling. The holes were drilled from a single pad east of trenches 47 and 12 and tested a 40 m strike length of the H-1 structure along four different azimuths. Two holes tested the S-2B structure below an area midway between trenches 10 and 46. Figure 12 shows the location of the drill holes. Core recovery was in excess of 95% and all core is presently stored in the Teuton warehouse located in Stewart, British Columbia.

The holes basically intersected three main rock types in addition to the H-1 and S-2B and possible S-2A gold bearing zones. All drill holes intersected a chlorite-hematite alteration zone at the top of each hole. The above chlorite-hematite zone consisted of a highly altered, mottled red-green rock with abundant green chlorite as well as hematite in the form of wispy stringer, veinlets, veins and interstitial patches and grains. Massive hematite veins within the broader alteration zones contain occasional veinlets of specularite, minor disseminated chalcopyrite, local magnetite and rare bornite. Malachite and limonite commonly occur on fractured surfaces, generally near surface or near fault zones. Native gold was observed in several of the drill holes (DDH-95-1 and 95-08). The rock contains a very strong quartz-calcite stockwork with veinlets at a random orientation. Veinlets are usually 1 - 5 mm and commonly contain coarse blebs of dark green chlorite and rarely chalcopyrite.

The second main rock type intersected consisted of andesitic lapilli tuff in the bottom portions of all the holes. This unit appears to have interbedded flow units and/or sills of andesitic composition. This rock is generally crackle brecciated and/or sheared with a strong quartz-calcite stockwork that tends to decrease with hole depth (decrease to the southwest). Pyrite occurs both as disseminated grains and as stringers along foliation up to 1 mm in width. The rock is strongly foliated, chloritic, fine grained with local sections of coarse pebble lapilli in generally a fine ash matrix. Local silicification and K-feldspar alteration are present in the above two rock types in all the holes. As well, both the above rock types are highly calcareous.

The third main rock type consists of a feldspar porphyry (diabase identification in thin section) dyke. This rock is a homogenous dark grey, fine grained rock with euhedral to subhedral feldspar phenocrysts in a fine grained groundmass. Feldspars form over 50% of the rock which appears devoid of sulfides and any strong fracturing. Very weak, late calcite veinlets form up to 2% of the unit.

Drill hole 95-01 (Azimuth 270 deg., -45 deg. dip) intersected the hematite-chlorite zone from 1.37-33 meters with several narrow sections of weakly altered lapilli tuff. At 13 meters, fine

Page 35

grained flakes of native gold were noted. A massive pyrite veinlets, 2 cm wide, was intersected at 4.45 meters. From 33-34 meters, the hole intersected a rock that appeared intrusive. It is speculated that it may represent an andesite flow horizon within the lapilli tuffs. Drill hole 95-02 (Azimuth 270 deg., -55 deg. dip) intersected predominately a hematite-chlorite zone from 1.37 to 46 meters. Several narrow sections of chloritic lapilli tuff and/ or intrusive were noted. At 16.37-18.29 meters, a dioritic intrusive consisting of a fine grained dark green crystalline rock has minor amounts of hematite generally associated with the pyrite veinlets.

The hematite alteration zone has local, semi-massive to massive hematite stringers with minor blebs and veinlets of specularite. A massive pyrite vein at 20.46-20.76 m probably corresponds to the one noted in 95-01.

From 46-88.39, a fine grained, grey diorite with fine grained euhedral feldspar crystals in an aphanitic ground mass was noted. It is strongly crackle brecciated with abundant clay replacing feldspars as well as on fractures.

Drill hole 95-03 (Azimuth 207 deg., -45 deg. dip) intersected the hematite-chlorite zone from 1.37-18.54 meters. This zone contains a narrow section of weakly altered, hematite rich lapilli tuff with coarse pyrite blebs at the upper contact. From 18.54-64 meters, the core consists of lapilli tuff with local K-feldspar and silicification alteration. Minor hematite rich sections occur locally. Pyrite occurs as disseminated grains and local fine laminations over intervals of 6 cm. The hole has some mylonitic sections with narrow shear and/or fault zones at 41-41 and 57-59 meters.

Drill hole 95-04 (Azimuth 207 deg.-55 deg. dip) intersected a hematite-chlorite zone from 1.36-21 meters with a narrow lapilli tuff section at 17-19 meters. The hematite-chlorite zone contains semi-massive to massive hematite veins over widths up to 3 meters. Minor specularite is associated with the massive hematite veins. Malachite occurs along oxidized fractures and vugs within the massive hematite. At 15.79 to 17.0, the hole encountered a strong, calcareous, mylonitic zone.

From 21-76.2 meters, a lapilli tuff unit with a feldspar porphyry dyke from 64.88-70.1 meters was intersected. The lapilli tuff contains narrow hematite sections as well as cobble sized, locally hematite rich fragments in a fine grained matrix.

The feldspar porphyry is dark grey, with medium grained feldspar phenocrysts; euhedral to subhedral in a fine grained ground mass. Disseminated, fine grained pyrite forms <1 % of the rock. Minor fine calcite veinlets are also present.

Drill hole 95-05 (Azimuth 207 deg., -65 deg. dip) intersected the hematite-chlorite alteration zone from 0.7-41.5 meters. The hole contains semi-massive to massive hematite stringers with local specularite blebs. Malachite and limonite are present along fractures.

The hole encountered lapilli tuff from 41.5-91.44 meters. This unit contains narrow hematite rich sections from 45.72 to 48.8 meters. Overall, pyrite forms 1-2 % of the rock. At 85-86 meters, narrow arsenopyrite mineralization is associated with pyrite stringers. Minor shearing was noted from 53.5-55 meters as well as at 60.5 meters.

Drill hole 95-06 (Azimuth 207 deg., -75 deg. dip) intersected a hematite-chlorite zone from 0.7-44 meters. From 44-57 meters, a mixed zone of hematite-chlorite alteration and lapilli tuffs was logged. The hematite chlorite zone contains quartz veinlets with minor chalcopyrite at 6.3 meters. At 15.2, a carbonate-quartz veinlet contains blebs of specularite. Minor specularite and local magnetite is associated with massive hematite veins and stringers. Minor malachite occurs on fractures, generally in areas of massive hematite.

At 26-27.24 and 28.5-29, narrow, clay rich fault and shear zones were identified. From 57-122.52, the hole encountered a green, weakly foliated lapilli tuff. It is highly broken with limonite on fractures in the vicinity of faults. At 57-58, pyritic sections, up to 5 cm wide, in brecciated rock form 7 % of the interval. Faulting was noted at 66-67.2 and 114.5 meters and is usually represented by clay along fractures. From 115.52 to 117.7, a dioritic intrusive was logged, similar to that in hole 95-04.

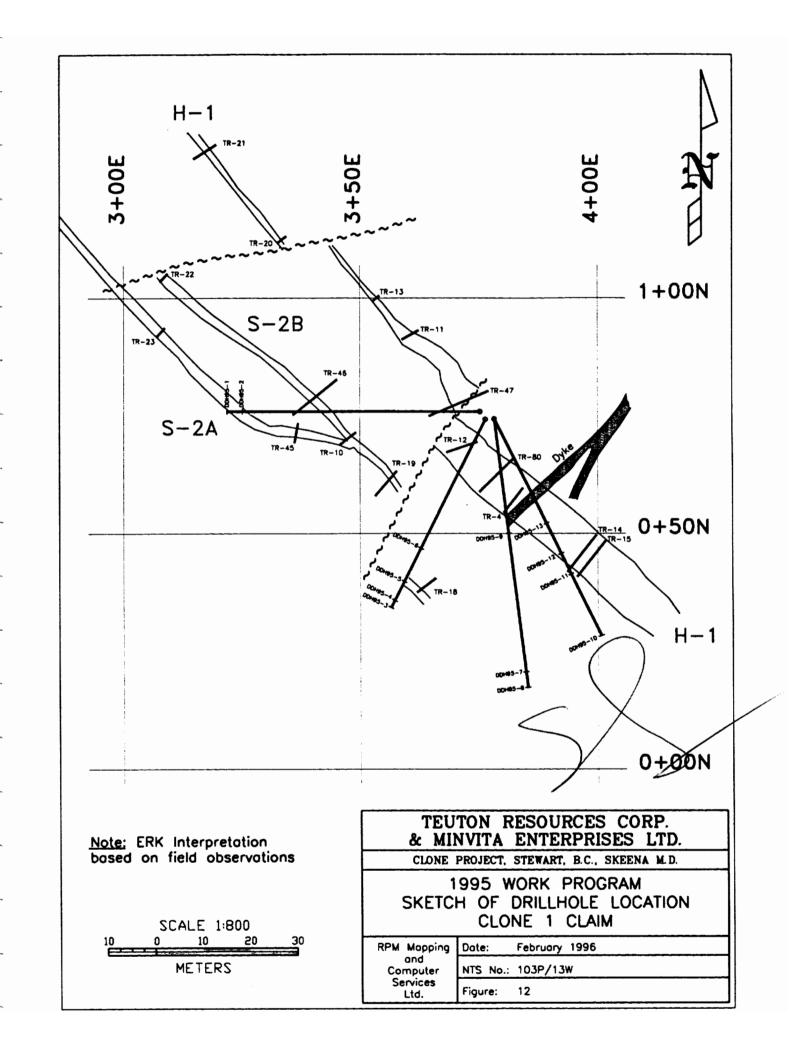
Drill hole 95-07 (Azimuth 173 deg., -45 deg. dip) intersected the hematite-chlorite zone from 1.37-21.0 meters. Massive hematite stringers and/or veins were encountered at 13-13.5, 16-16.3 and 17.1-17.5 meters, with local chalcopyrite, magnetite and bornite.

From 21-76.2 meters, a lapilli tuff unit was intersected with a feldspar porphyry (diabase) dyke at 30.6-34.13. The tuff is generally foliated with local hematite-chlorite alteration as patches or stringers. At 26.5-30.6 meters, the core is highly broken and limonitic on fractures, probably a fault zone. At 47.85 meters, the drill lost circulation and had poor recovery indicating another fault zone. Pyrite along laminations is present at 50.7-56 meters and forms up to 25 % of the rock.

Drill hole 95.08 (Azimuth 173 deg., -55 deg. dip) encountered the hematite-chlorite zone from 1.37 to 36.8 meters. At 15.24 to 15.7 meters, massive hematite veins contain specularite veinlets and fine grained visible gold. Massive hematite veins are also present at 16.1 and 17.3 meters as 0.1-0.2 meters wide intervals. A fault zone was encountered at 20-20.5 meters.

Page 37

From 36.8-40.9 meters, a feldspar porphyry (diabase) dyke was intersected. The dyke shows chill margins at the upper contact while the lower contact is a shear zone. From 40.9-44 meters, beneath the dyke, a hematite-chlorite zone was encountered. Lapilli tuff was intersected from 44-103.93 meters and consisted of a crackle brecciated rock with local strong pyrite along laminations at 49.5-54.86 meters. Faulting was noted at 67.5-75.3 metes, 78.33-84.73 metes and 100.7-101.3 meters and is represented by highly broken and sheared rock with abundant clay on fractures. At 80.7 meters, a narrow pyrite and arsenopyrite stringer, 1 cm wide was noted.


Drill hole 95-09 (Azimuth 170 deg., -70 deg. dip) intersected the hematite-chlorite zone at 1.37-45.22 meters. At 5-5.5 meters, narrow massive hematite stringers carry specularite veinlets. At 16.5 meters, a narrow hematite stringer is present at 45 deg. to the core axis. Traces of malachite are present, generally along oxidized fracture surfaces in the area of the massive hematite stringers. At 36.7 blebs of magnetite were noted.

The feldspar porphyry dyke (diabase) same as in holes 95-7 and 8 was encountered at 45-51.8 meters. From 51.8-60 meters, a hematite-chlorite zone was intersected. From 60-73.2, a lapilli tuff with local patches of strong K-feldspar and moderate quartz-calcite stockworks was encountered. At 72.5, a massive pyrite veinlet, 2 cm thick, was noted.

Drill hole 95-10 (Azimuth 155 deg., -45 deg. dip) hit the hematite-chlorite zone at 2-40.7 meters. It is cut by a feldspar porphyry dyke (diabase) at 26.4-29.1 meters. At 15-18.3 meters, massive hematite contains specularite veinlets with traces chalcopyrite and pyrite. Massive hematite veins were also encountered at 20.9-22.2 and 24.5-25.5 meters.

The dyke has chilled margins at 45 deg. to the core axis. From 40.7-72.54, the hole intersected lapilli tuff with local, narrow and weak hematite alteration zones. At 44.4-45 meters, a massive pyrite stringer forms 50 % of the interval. At 61-70.5 meters, the core is highly sheared with some planes at 10 deg. to the core axis and minor slickensided fracture surfaces.

Drill hole 95-11 (Azimuth 155 deg., -55 deg. dip) encounters the hematite-alteration zone at 2-48.1 meters cut by a feldspar porphyry dyke (diabase) from 29.48-33.7 meters. The zone has a massive hematite stringer with abundant malachite at 16.3-17.1 meters as well as a 0.2 cm massive specularite veinlet at 17 meters. At 19-19.7, massive hematite contains coarse specularite which has highly chloritic contacts. At 28.5 to 29.48, the upper contact with the dyke contains abundant chalcopyrite veinlets up to 1 %. The actual contact with the dyke is a 1 cm, massive chalcopyrite veinlet. At 38.7-39 meters, a massive hematite vein contains a pyrite veinlet as well as minor specularite veinlets. Massive hematite zones are also present at 39.5-39.6, 40.4-41.5 and 45.4-45.5 meters.

Page 38

From 48.1-64, the hole intersected a green, foliated lapilli tuff that has minor pyrite as veinlets. At 57.5-61 hematite is present in altered rock as stringers <2 mm. At 61-64, the rock is highly fractured.

Drill hole 95-12 (Azimuth 155 deg., -65 deg. dip) intersected the hematite chlorite zone at 1.6-55 meters and is cut by a feldspar porphyry dyke (diabase) at 35.83-40.7 meters. The zone has local strong silicification as well as K-feldspar alteration. The zone consists of a brecciated and rehealed altered zone with the fragments consisting of silicified chlorite-hematite in a fine grained hematite rich ground mass.

From 55-76.2 meters, the hole encountered lapilli tuff, highly brecciated with strong microveinlets of quartz and calcite. Shearing was noted at 66.5-67 meters and 67-76.2 meters with abundant clay on fractures.

Drill hole 95-13 (Azimuth 155 deg., -75 deg. dip) hit the hematite-chlorite zone from 1.4-50.4 meters. At 4.57-5 meters, massive hematite approximately 15 cm wide is at 10-30 deg. to the core axis. At 6.1 meters, specularite veinlets with heavy chlorite are present in calcite-quartz veinlets parallel to the core axis. At 12.2 meters, a shear zone with abundant clay occurs in highly broken rock. Locally chalcopyrite up to 1 % is present over 15 cm sections, generally associated with semi-massive hematite.

From 50.4-55.25, a feldspar porphyry dyke (diabase) was encountered. From 55.25-97.54, the hole intersected lapilli tuff containing K-feldspar and silicified sections. Minor zones of hematite alteration were noted. At 73.7-74.3, the hole encountered gouge and sand, implying the presence of a large fault.

It appears that the massive hematite zones encountered in holes 10 and 11 do not extend to holes 12 and 13. However it is interpreted that the latter two holes passed through the high grade gold bearing zone while within the diabase dykes At surface, the dyke is no more than 0.5 m while hole intersections show up to 5 m of dyke rock. This same dyke appears in all holes drilled at 173 and 155 degree azimuth.

More complete descriptions of the geology intersected in the drilling is located in Appendix 3. Figures 13-16 show the geological sections for the four different azimuths drilled. A total of 938 core sample were collected from all core recovered. Assay intervals, generally 1 or 1.5 meters, were based on mineralogy, lithology and sulfide content. Analysis was performed by Echo-Tech Laboratories or Pioneer Labs and all core was tested for metal content by ICP and for gold by Atomic Absorption. Any gold values obtained over 1000 ppb were further analyzed by fire assay. Based on the assays, the drilling has confirmed the down dip extension of mineralization trenched at surface. However, all holes were collared in a wide hematite-chlorite alteration zone that

Page 39

extends many meters to the east from the drill collar locations. As a result, wide hematite zones are indicated for the drilling. It is also unfortunate that DDH-95-01 and 02 just tested a small portion of the gold bearing interval in the H-1 alteration zone due to a fault offset.

A northeast break offsets the zone just north of Trench 12 and moves it approximately 12 meters east. There is also a narrow hematite rich zone halfway between the S-2B and H-1 structure (trenches 10 and 11). This zone should be mapped, sampled and tied in to the drill results. The other area where the drilling did not accurately reflect the geology is in holes 95-11 and 12. The drill holes entered a barren dyke in the middle of the gold bearing section below trenches 14 and 15 and did not return any significant values.

Drill Hole	Dip	Azimuth	Zone	From (m)	<u>To (m)</u>		Width (m) Au
(opt)							
95-1	-45	270	<u>H-1?</u>	12.25	13.25	1.0	0.52
95-2	-55	270	H-1?	15,74	16.74	1.0	1.41
95-3	-45	270	S-2B	40.50	43,50	3.0	0.08
95-4	-55	207	H-1	11.00	16.04	5.0	0.61
including				12.94	15.04	2.1	1.42
U			S-2B	48.50	51.50	3.0	0.08
95-5	-65	207	H-1	23.00	26.00	3.0	0.15
including				25.00	26.00	1.0	0.33
U			H-1	31.00	35.00	4.0	0.11
including				32.00	33.00	1.0	0.33
				84.50	86.00	1.5	0.35
95-6	-75	207	H-1	16.00	18.00	2.0	0.48
including				17.00	18.00	1.0	0.91
			S-2	79.00	82.00	3.0	0.08
95-7	-45	173	H-1	13.00	14.00	1.0	0.60
			H-1	15.00	18.00	3.0	0.20
including				16.00	17.00	1.0	0.33
95-8	-55	173	H-1	14.00	17.00	3.0	1.67
including				15.00	16.00	1.0	4.68
95-9	-70	173	H-1	18.00	21.00	3.0	0.20
including				20.00	21.00	1.0	0.48
95-10	-45	155	H-1	15.00	23.00	8.0	1.85
including				15.00	18.00	3.0	4.50
			H-1	24.00	26.00	2.0	0.18

Drill holes results are tabulated as follows:

Table 4 : Significant Assay Sections in The Drill Holes

Teuton Re Skeena Mi Stewart, B <u>Report on</u>	ning Divi ritish Col	sion umbia				Page	40
95-11 including and	-55	155	H-1	15.00 16.00 19.00 27.00	22.00 17.00 20.00 29.48	7.0 1.0 1.0 2.5	0.64 2.27 1.25 0.29
			H-1	37.00	41.00	4.0	0.29
including				38.00	40.00	2.0	1.65
95-12	-65	155	No signi	ficant interce	pts		
95-13	-75	155	No significant intercepts				

Figures 17 to 20 show the gold values obtained for each interval assayed. Significant gold averages and intersection lengths are plotted on the appropriate figures. Interpretation of the gold bearing zones is very preliminary and will likely change as more information is obtained.

Any further drilling should be carried out at right angles to the zones in order to avoid intersecting fault offset zones or dykes. It is recommended that the next phase of drilling consist of a series of short holes to further outline all high grade gold values obtained during trenching. It is expected that this work would determine zones of higher grade gold values that could subsequently be tested by deeper drilling

Drilling is recommended to intersect the following targets at no more than 15 meters below surface and 15 meters apart.. These areas include below trench 81, beneath trenches 27 - 29, 25 - 26, 20 - 21, 11 - 15, 16 as well as trenches 1 and 65 - 67. Several holes would be completed from each set - up and would only test one zone. This would provide information on possible dips and enable better extrapolation for the deeper drilling. Although the zones appear to have vertical dips based on surface work, drilling has indicated possible steep dips to the west, particularly for the S-2A zone.

Page 41

Petrographic Studies

A series of rock samples were collected during the program in order to conduct petrographic studies. Rock specimens were prepared by Vancouver Petrographics; 8 thin sections, 11 polished thin sections and 3 polished thick sections were made, which were subsequently described by A. Walus using a standard petrographic microscope. All offcuts along with some thin sections were stained by sodium cobaltinitrite solution for K-feldspars. Several gold grains in samples A-95-212 were analyzed for their purity in the Cominco Laboratory using a scanning electron microprobe.

The petrographic studies show a very strong pervasive K-feldspar alteration affecting all shear zones in the area. A gold bearing quartz-hematite-magnetite and chalcopyrite paragensis follows the pervasive K-feldspar alteration. This sequence of mineralization is described by Walus as follows:

"This mineral assemblage introduced after K-feldspatization occurs in the H-1 and probably also in the H-2 zones and is responsible for very high gold assays from trenches 4, 14, 15, 78 and 81. Descriptions of minerals comprising this paragenesis compiled from microscopic examination of thin sections CL-E-341, CL-212, CL-287, CL-423, CL-TR-81, D11-17.6 look as follows:

- Quartz forms irregular grains ranging from 0.05 to 2.0 mm in size.
- Hematite occurs as dense aggregates of very fine grains up to 0.01 mm in size and as specularite with crystal form ranging from small short laths to flakes up to 1.5 mm long often banded together in contorted subparallel aggregates.
- Magnetite is the most characteristic mineral of this assemblage forming either separate subhedral to euhedral crystals measuring from 0.02 to 0.5 mm across or aggregates of such crystals reaching 1.0 mm in size.
- Chalcopyrite occurs always in subordinate amounts forming either inclusions within magnetite or separate patches and blebs.

Other minerals occurring locally in this paragenesis in trace to minor amounts include: native gold (thin sections: CL-E-341, CL-212, CL-287, CL-423 and F11-17.6), biotite and muscovite (CL-E-341), green mica (CL-212), carbonaceous opaque (CL-E-341, Cl-212). Native gold occurs as grain reaching 0.05 mm in diameter embedded in quartz, hematite and magnetite. Analyses of several gold grains from thin section CL-212 showed its high purity of at least 95%."

Page 42

After the introduction of the above mineralization, alteration composed of sericite, Fe-rich chlorite and minor disseminated opaque minerals affected practically all the shear zones with the most intense being in zones S-1, S-2A and S-2B. The gold bearing pyrite-arsenopyrite paragenesis which occurs in of the S-1, parts of the S-2A and S-2B is described by Walus as follows:

"Timing of this event is uncertain, it is either contemporaneous with sericite-chlorite alteration or as indicated by thin section Cl-344, was introduced later. Gold seems to be present in both pyrite and arsenopyrite. A portion of the S-2A zone between trenches 18 and 23 and zone S-2B have no arsenopyrite and gold is likely associated with pyrite. It is not clear whether the absence of arsenopyrite is caused by just local variation in pyrite-arsenopyrite distribution along the shear zone or represents a separate mineralizing event."

Walus also describes the process of hematitization in the general survey area. His description is included below:

"This alteration is understood here as an introduction of numerous disseminated extremely fine (usually up to 0.005 mm across) particles of hematite (hematite dust).

It is by far the most visible alteration, often giving a red colour to the rocks, masking to a large degree other alteration/mineralization assemblages. Weak to strong hematitization is present in all shear zones except S-1. The bulk of this alteration occurs in the H-1 zone and in an area just N.E. of this zone up to the contact between the hornblende porphyritic andesite and hematite cemented volcanic andesite breccia. The intensity of the alteration increases towards the volcanic breccia indicating that this lithological unit is a source of hematite.

Hematitization does not appear to be associated with gold mineralization, it makes, however, shear zones more visible. Hematitization comprised a period of time beginning before the introduction of gold bearing quartz-hematite-magnetite-chalcopyrite mineralization and ending before the introduction of quartz-calcite-chlorite-specularite veinlets."

These specularite bearing veinlets were formed last in the sequence of alteration and mineralization events and are present throughout the whole area with the zones H-1 and H-2 hosting the largest amount. They form simple extension veins usually up to 1.0 cm in width.

A complete description of the petrographic studies is included in Appendix 5.

Page 43

Conclusions

- 1. The property which lies within a belt of Jurassic volcanic rocks extending from the Kitsault area, south of Stewart, to north of the Stikine River is host to numerous gold deposits.
- 2. During the period July to September 1995, an exploration program consisting of reconnaissance geochemical sampling, trenching and geological mapping was conducted on the Port 21 claim. This program was carried out in order to evaluate gold mineralization located during the 1994 program.
- 3. During the period August to December 1995, an exploration program consisting of reconnaissance geochemical rock sampling, trenching, geological mapping, VLF and magnetometer surveys, diamond drilling and petrographic studies was conducted over an area of gold mineralization discovered in 1995 within the Clone 1 claim.
- 4. A grid area measuring 0.7 km by 0.9 km with 6.35 km of line was established over the area of gold mineralization on the Port 21 claim.
- 5. A grid measuring 0.5 by 0.25 km with 5 km of line, was established over the area of gold mineralization on the Clone 1 claim.
- 6. A total of 604 rock samples (218 grab and chip line samples as well as 386 trench samples) were collected on the property.
- Geological mapping on the South Grid on Port 21 claim indicated that the area underlain by the grid has andesitic pyroclastic rocks intruded by a variety of dykes and/or sills. Intrusive rocks noted, consisted of hornblende porphyritic diorites as well as dacite porphyry.
- 8. Geological mapping on the North Grid on the Clone 1 claim indicated that the area was underlain by a northwesterly trending assemblage of andesite pyroclastic and volcaniclastic rocks intruded by rocks that are andesitic in composition. A large, northwest trending fault zone occurs along an argillaceous horizon that is along the western edge of the above rocks. Work in the North Grid area indicated many structural breaks that appear to have an overall northeast strike.

Page 44

- 9. Mineralization in the form of pyrite veins, veinlets, stringers and blebs plus/minus chalcopyrite, plus/minus magnetite and rare molybdenite as well as rare galena is located along a major northeast trending shear zone within the South Grid area. The mineralization is associated with carbonate altered stringers and very abundant dark green chlorite in altered sheared andesites. Width of the mineralized zone may reach 1-5 meters. Many of the mineralized stringers are present along splays that have "horsetailed" from the main structure. Mineralized splays may be found up to 30 meters away from the main shear represented by gouge. The mineralization has been traced over a strike length of 300 meters and is cut by later intrusive dykes.
- 10. Mineralization within the North Grid area consists of two different and distinct types. The mineralization is hosted in steeply dipping sub-parallel en echelon, shear controlled veins and stockwork with a northwesterly trend. The first type of mineralization is dominated by pyrite plus/minus arsenopyrite and the second by hematite with associated chlorite and calcite-quartz stockworks. Specularite, chalcopyrite, magnetite and locally visible gold are associated with the hematite dominated mineralization. The sulfide dominated mineralization prevails in the southwestern portion of the grid area with the structures being linear in nature and traced over distances up to 500 meters in length. The hematite dominated structures have less defined walls but show good strike lengths as well. Work has indicated that the mineralized structures are found over an area at least 75 meters wide by 500 meters long. A strong northeast trending structure appears to have offset the zones to the north while the southerly extensions are obscured by ice.
- 11. It is speculated that the northeasterly trending mineralization explored in the South Grid area represents a re-mobilization of the North Grid area mineralization along later shearing.
- 12. Results of the rock geochemical program indicate highly anomalous gold, silver, copper, arsenic, and cobalt values throughout the Port 20, 21, and Clone 1 claim areas. Values as high as 8.66 opt Au, 17.60 opt Ag, 11.5 % Cu, 15.38 % As, and 0.98 % Co were obtained from different zones within the explored areas.
- 13. A total of 50.63 meters of trenching was completed in 13 trenches in the South Grid area. Results of the trenching indicated significant gold veins (0.1-0.2 opt) over widths of 2 meters with locally higher grade zones across 1-2 meters. The best trench result in the above area included 1.6 meters of 1.433 opt Au (trench 13).
- 14. A total of 463.2 meters of trenching was completed in 81 trenches in the North Grid area. Results of the trenching indicated significant gold values over significant widths and lengths in all tested zones. The best trench result was from Trench 4 which yielded 3.59

Page 45

opt gold across 5.5 meters. Based on the trench results in conjunction with the geological mapping, four main gold bearing structures were outlined as follows:

Structure	Mineralization Type	Width (m)	Length (m)	Grade(opt
<u>Au)</u>				
S-1	Sulfide	3.0	100	0.74
S-2A	Sulfide/minor hematite	2.3	365	0.71
H-1	Hematite	5.2	191	074
H-2	Hematite	1.5	18	2.62

In addition, trenching and geochemical sampling indicated an increase in cobalt values in the southeast portion of the above zones tested. Highest cobalt value in a trench was 0.71 % across the 1.5 meters in trench 9, the most southerly trench.

- 15. A magnetometer and VLF EM survey were conducted over a portion of the established North area. The contoured magnetic date shows a definite northeasterly orientation coincident with the general geological trend. One significant magnetic anomaly was noted over the H-1 structure and is probably associated with the magnetite mineralization noted along the zone. A second anomaly is along the eastern edge of the survey area that is entirely underlain by ice. The plotted VLF EM data shows a general high coincident with the general geology in the survey area. A broad anomaly appears to be associated with the major fault within graphitic argillites along the west side of the grid area as well as west of the S-2A structure.
- 16. A total of 1670.16 meters of drilling was completed in 13 drill holes located from a single pad east of Trenches 47. The holes tested a 40 meter strike length of the H-1 structure along four different azimuths.
- 17. The most significant intersections were returned from the two southeastern drill sections which tested the downdip extent of mineralization exposed in trenches 4 (5.5 meters of 3.5 opt gold), 14 (3.11 meters of 3.77 opt gold) and 15 (7.5 meters of 0.76 opt gold). Hole 95-8 intersected 1.7 meters true width grading 1.67 opt gold at a drilled depth of 14 meters (beneath trench 4) while hole 95-10 (beneath trench 14) intersected 4.21 meters true width grading 1.85 opt gold at a 15 meter depth. Unfortunately, drill holes 95-12 and 13 passed through the main gold mineralization in the H-1 zone while within a dyke that is at right angles to the structure.
- 18. Holes 95-1 and 2 just tested a small wedge of the H-1 zone and tested the S-2B zone between trenches 10 (4.50 meters of 2.08 opt gold) and trench 46 (1.2 meters of 0.047

Page 46

opt gold). Low gold values were indicated in the area of the S-2B zone. A portion of the H-1 zone tested in Holes 95-1 and 2 returned 1 meter of 0.52 opt gold and 1 meter of 1.41 opt gold respectively. A total of 889 core samples were analyzed by Atomic Absorption for gold and by ICP for a 29 element package. Golds over 1000 ppb were fire assayed to obtain total metal content.

- 19. The presence of a large gold mineralized shear system over a great strike length and across significant widths provides an excellent exploration target. Drilling has indicated down depth extensions to the surface results. The property offers the potential for developing a gold deposit with an appreciable gold content (+ 1,000,000 ounces).
- 20. An exploration program consisting of airborne EM and magnetometer surveys, ground geophysics, diamond drilling, mapping, trenching, geochemical surveys and the establishment of a permanent grid are recommended.

Page 47

RECOMMENDATIONS

The recommended program is outlined as follows:

1. Geophysical

a) Airborne EM and Magnetometer Survey.

The survey would be 5 km by 5 km with 100 meter spaced flight survey lines and 500 meter tie lines. This survey would be utilized in order to trace the magnetic signature of the gold bearing zones out under the ice and possibly pick up the fault extension to the north.

b) Ground Geophysical Survey

An IP survey and magnetometer survey would be conducted to provide ground control for any airborne anomalies.

2. Diamond Drilling

A two phase drill program involving 5000 meters of drilling. The first phase would involve 2500 meters of short holes to test all zones with high values, particularly along the -1 zone (Trenches 4, 14, 75, 78, and 81) and S-2A zone (Trenches 25, 26-30). The second phase would be deeper drilling to extend any significant results obtained in Phase 1. Drilling would also include testing selected geophysical targets. All holes should by at right angles to the structure to avoid faults and dykes.

3. Trenching should be completed to the southeast of the H-1 and S-2A zones along all identified structures. It should also extend known trenches (where high gold values are not bracketed) as well as test areas between present high grade trenches.

4. Geochemical Sampling

Further rock geochemistry is recommended to test other areas of the property.

5. Geological Mapping

a) Mapping at a scale of 1:1000 over the Port 20, 21, Clone 1 and 2 claims.

b) Mapping at a scale of 1:250 over the gold bearing shear zones on the Clone 1 claim.

6. Establishment of a permanent grid using metal plates attached to the outcrop or wooden plates in overburden or snow covered areas. An extended wire picket would be placed in such a manner that the attached plate would keep it in place.

- -

.

....

-

Page 48

Estimated Cost of the Program

 Airborne EM and Mag. Ground Geophysics 	100, 000 15, 000
 15 line km at \$1000/km Diamond Drilling 5,000 meters at \$100/meter all inclusive 	500,000
4. Helicopter Support 300 hours at \$700/hour	210, 000
5. Accommodation/Supplies	50, 000
6. Orthophoto of Area	20,000
7. Mob/Demob Costs	20,000
 Trenching, includes dynamite, drills, etc. 	30, 000
9. Assaying 5, 000 samples at \$20/sple.	100, 000
10. Geological Surveys, Mapping, etc.	40,000
11. Geochemical Survey	30,000
12. Report Writing/Drafting, etc.	25,000
Contingency	\$ 1, 140, 000 <u>110, 000</u>
Contingency	\$1, 250, 000

Page 49

<u>REFERENCES</u>

- 1. ALLDRICK, D.J. (1984); "Geological Setting of the Precious Metals Deposits in the Stewart Area", Paper 84-1, Geological Fieldwork 1983, B.C.M.E.M.P.R.
- 2. ALLDRICK, D.J. (1985); "Stratigraphy and Petrology of the Steward Mining Camp (104B/1E)", p. 316, Paper 85-1, Geological Fieldwork 1984, B.C.M.E.M.P.R.
- 3. CREMONESE, D. (1995), "Assessment Report on Geochemical Work on the Red 17, Port 21 Claims".
- GREIG, C.J., ET AL (1994); "Geology of the Cambria Icefield: Regional Setting for Red Mountain Gold Deport, Northwestern British Columbia", p. 45, Current Research 1994-A, Cordillera and Pacific Margin, Geological Survey of Canada.
- 5. GROVE, E.W. (1971); Bulletin 58, Geology and Mineral Deposits of the Stewart Area. B.C.M.E.M.P.R.
- 6. GROVE, E.W. (1982); "Unuk River, Salmon River, Anyox Map Areas. Ministry of Energy, Mines and Petroleum Resources, B.C.
- 7. GROVE, E.W. (1987); Geology and Mineral Deposits of the Unuk, River-Salmon, River-Anyox, Bulletin 63, B.C.M.E.M.P.R.
- 8. KONKIN, K.J. AND KRUCHKOWSKI, E.R. (1988); Drill Report- Georgia River Project (Private Report)
- 9. KRUCHKOWSKI, E.R. (1994); Report on Clone Property.
- 10. WALUS, A; KRUCHKOWSKI, E.R., KONKIN, K.; Fieldnotes and Maps Regarding 1994 Exploration on the Red 1-3 Claims.
- 11. WALUS, A; KRUCHKOWSKI, E. R., Fieldnotes and Maps Regarding 1995 Exploration on the Clone Property.

- -

. -

-

- -

-

- -

_ _

.-

• •

. -

• •

• •

Page 51

Statement of Expenditures

Field PersonnelPeriod July 16 to Dec. 31, 1995:	
E.R. Kruchkowski, Geologist	
66 days @ \$360/day	\$23,760
16 days @ \$300/day	4,800
A. Walus, Geologist	
64 days @ \$270/day	17,280
D. Cremonese, P.Eng.	
20 days @ \$400/day	8,000
A. Raven, Prospector	
30 days @ \$300/day	9,000
16 days @ \$250/day	4,000
D. Ethier, Prospector	
40 days @ \$250/day	10,000
M. Moorman, Prospector	
50 days @ \$225/day	11,250
18 days @ \$175/day	1,400
Lynn Enterprises (Drill Camp cook)	3,100
Miscellaneous day labour	1,550
Helicopter-Vancouver Island Helicopters	79,961
Diamond Drilling (J. T. Thomas): 13 holes, total 1,070 m	103,383
Supplies: Drill camp lumber, fuel, explosives, etc.	42,014
Food and accomodation	29,337
Equipment rental/misc.	11,412
Logistics/supervision/bad weather standby in Stewart	9,187
Mob/demob crew (home base to Stewart, return)	8,067
Local transportation/expediting/radios/etc.	4,608
Workers' Compensation	5,180

Page 52

Assays costs--Eco-Tech Labs/Pioneer Labs
Au geochem + 30 elem. ICP + rock sample prep
1,542 @ \$19.5275/sample30,111Au assay: 248 @ \$9.63/sample2,388Ag assay: 52 @ \$4.28/sample222As assay: 42 @ \$10.70/sample449Co assays: 68 @ \$10.70/sample449

Report Costs

Report and Map preparation, compilation and research	
E. Kruchkowski, P.Geol. 17 days @ \$300	5,100
DraughtingRPM Computers	2,220
Secretarial/word processing	1,112
Copies, reports, jackets, data entry, etc.	240
	\$429,580

Allocation:

• •

Statement of Exploration	#3081762	\$ 7,600
-	#3081765	6,800
	#3081767	9,400
	#3081769	6,000
	#3081865	6,000
	#3082368	4,000
	#3082370	4,800
	#3082373	2,000
	#3083849	8,200
	#3083851	5,600
	#3083853	9,400
	#3083856	_3,000
Total		\$ 72,800*

*Please apply unallocated balance of \$429,580 - \$72,800 + \$ 356,780 to PAC account of Teuton Resources Corp.

Page 52

CERTIFICATE

I, Edward R. Kruchkowski, geologist, residing at 23 Templeside Bay, N.E., in the City of Calgary, in the Province of Alberta, hereby certify that:

- 1. I received a Bachelor of Science degree in Geology from the University of Alberta in 1972.
- 2. I have been practicing my profession continuously since graduation.
- 3. I am a member of the Association of Professional Engineers, Geologists and Geophysicists of Alberta.
- 4. I am a consulting geologist working on behalf of Teuton Resources Corp.
- 5. This report is based on a review of reports, documents, maps and other technical data on the property area and on my experience and knowledge of the area obtained during programs in 1974 1995 and work done by myself on the property during 1994 and 1995.
- 6. I authorize Teuton Resources Corp. to use information in this report or portions of it in any brochures, promotional material or company reports.

E.R. Kruchkowski, B.Sc

APPENDIX I

SAMPLE DESCRIPTIONS WITH INDICATED ANOMALOUS VALUES FOR AU, AG, AS, CU

Page 53

ERK-010 0.3 meter chip sample across shear filled with silicified intrusive? and quartz veinlet -pyrite 3% as fine grained veinlets and as coarse blebs approximately 0.5 cm in chloritic silicified intrusive. Strike of zone 068 degrees/80 degrees N.

Au	-	0.029 opt	Ag	-	16.2 ppm
As	-	165 ppm	Cu	-	14 ppm
[Co	-	381 ppm]			

ERK-011 1.0 meter chip (trench 1). Sheared, chloritic intrusive with pyrite veinlets and quartz veinlets approximately 5-7% - sample is 1 meter, rusty on fractures- minor chalcopyrite.

Au	 0.239 opt 	Ag - 14.0 ppm
As	- 980 ppm	Cu - 419 ppm

ERK-012 1.0 meter chip (trench 1). Sheared chloritic intrusive with minor pyrite veinlets approximately 1%- fault gouge approximately 15 cm wide.

Au	-	0.049 opt	Ag	-	4.2 ppm
As	-	370 ppm	Cu	-	213 ppm

ERK-013 0.5 meter chip (trench 2)- outcrop is silicified, chloritic intrusive with quartz veins with course cube pyrite as well as fine grained banded pyrite. Minor chalcopyrite along quartz and fractures, traces Malachite pyrite 5-7%.

Au	-	0.211 opt	Ag	-	14.2 ppm
As	-	1435 ppm	Cu	-	4898 ppm
[Co	-	169 ppm]			

ERK-014 0.8 meter chip (trench 2) in hanging wall- 6" rusty zone of gouge and quartz veins with pyrite.

Au	-	0.171 opt	Ag	-	9.0 ppm
As	-	260 ppm	Cu	-	455 ppm

Page 54

ERK-015 0.5 meter chip (trench 2)- weakly sheared, chloritic on fracture, fine grained intrusive.

Au	-	350 ppb	Ag	-	0.6 ppm
As	-	35 ppm	Cu	-	48 ppm

ERK-016 Rock is approximately 0.3 meters in diameter- coarse grained chloritic granodiorite with greenish color locally- medium grained pyrite approximately 5 % throughout- minor quartz veinlets.

Au	-	10 ppb	Ag	-	5.8
As	-	10 ppm	Cu	-	5 ppm

- ERK-017 Sample is 20 cm. round float boulder- medium grained intrusive, silicified, bleached gray with approximately 7 % small cube pyrite throughout the sample.
- ERK-018 Sample is cobble sized, medium grained granodiorite boulder with coarse cube pyrite approximately 15 %.

Au	-	5 ppb	Ag -	2.4 ppm
As	-	215 ppm	Cu -	544 ppm

- ERK-019 10 cm. cobble with approximately 30 % coarse cube pyrite in medium grained bleached granodiorite- intrusive has approximately 10-15 % large hornblende phenocrysts.
- ERK-020 Boulder 0.3 meters x 0.5 meters- highly brecciated chloritized rock with seams of coarse pyrite.
- ERK-021 10 cm boulder of altered rock probably intrusive with greenish hue to pyrite veinlets- similar to skarn area- pyrite 10 %.

Au	-	390 ррb	Ag	-	1.6 ppm
As	-	3110 ppm	Cu	-	47 ppm

ERK-022 Float boulder- 0.5 m in diameter- grey choritized medium grained intrusive with early barren quartz veinlets approximately 5 %- massive cube pyrite veinlets approximately 5-7 %- malachite stain along fractures.

Au - 195 ppb Ag - 11.8 ppm

Page 55

- As 45 ppm Cu 4457 ppm
- ERK-023 Approximately 1 meter wide rusty zone exposed along edge of snow in gullycountry rock is coarse grained hornblende porphyry or granodiorite- sample is dark grey- to black choritic with coarse pyrite blebs and stringers approximately 3 %- sample is grab.

Au	-	300 ppb	Ag	-	1.8 ppm
As	-	1155 ppm	Cu	-	326 ppm

ERK-024 1 meter wide zone approximately 20 meters above 023- sample is black chloritic rock with coarse pyrite and chalcopyrite stringer approximately 7.8 %.

Au	-	2.838 opt	Ag	-	4.69 opt
As	-	4.68 %	Cu	-	2.38 %
[Co	-	178 ppm]			

ERK-025 Sample similar to 24 except chalcopyrite and pyrite approximately 4-5 %- zone approximately 1 meter wide in area.

 Au
 2.959 opt
 Ag
 1.71 opt

 As
 1.25 %
 Cu
 9346 ppm

ERK-026 Float boulder approximately 0.3 meters in diameter with massive coarse grained pyrite, massive fine grained black mineral (MoS2?)

Au	-	1.538 opt	Ag	-	2.95 opt
As	-	15.30 %	Cu	-	5364 ppm
[Co	-	134 ppm]			

ERK-027 15 cm float rock- approximately 75 meters below ERK- 95-023- sample in outwash fan- sample is dark grey green chloritized rock with streaks of chalcopyrite and coarse pyrite veins and blebs. Sulfides approximately 7 %.

Au	-	0.404 opt	Ag	-	1.77 opt
As	-	6290 ppm	Cu	-	6319 ppm

ERK-028 Grey to black chloritized rock with coarse pyrite seams in minor chalcopyrite approximately 10 %.

Page 56

Au	-	0.160 opt	Ag	-	2.66 opt
As	-	2075 ppm	Cu	-	6164 ppm

ERK-029 2 meter chip- silicified rusty fine grained intrusive pyrite approximately 3 % as blebs and fine grained.

Au	-	50 ppb	Ag	-	1.8 ppm
As	-	160 ppm	Cu	-	145 ppm

- ERK-030 Large % approximately 50 meters x 20 meters along bluffs, sample is 1 meter chip of rubble- fine grained dense hornfelsed intrusive with very fine pyrite approximately 2-3 %.
- ERK-031 0.3 meters float boulder of silicified intrusive? with fine grained pyrite seams as well as medium grained cube pyrite with quartz veining and silicification- pyrite approximately 10-15 %- slight greenish stain on fractures (weathered), possibly As. mineral.

 Au
 570 ppb
 Ag
 8.4 ppm

 As
 1460 ppm
 Cu
 234 ppm

ERK-032 Patchy gossaned outcrop- sample is pink to black dense hornfels, minor very fine grained pyrite. 1 % some fine quartz veinlets.

Au	-	60 ppb	Ag	-	<.2 ppm
As	-	35 ppm	Cu	-	287 ppm

ERK-033 Outcrop is augite porphyry basalt, hornfelsed with coarse pyrite approximately 1-2 %.

Au	-	160 ppb	Ag	-	1.2 ppm
As	-	130 ppm	Cu	-	1981 ppm

ERK-034 Coarse grained hornblende rich intrusive, hornblende approximately 25 %-minor fine grained pyrite- part of gossaned area approximately 10-15 meters wide x 75-100 meters long.

Page 57

	Au - 35 ppb As - 25 ppm		
ERK-035	Weakly silicified zone exposed a covered slope- minor pyrite, tra		eximately 0.3 meters at edge of heather alachite.
	Au - 10 ppb As - 25 ppm	Ag Cu	- 0.8 ppm - 483 ppm
ERK-036	3 meter wide quartz carbonate s	stock	work with sparse pyrite and trace malachite.
	Au - 10 ppb As - 65 ppm	Ag Cu	 - 1.8 ppm - 740 ppm
ERK-037	Silicified zone with quartz stock pyrite, locally abundant malach		c- varies from 15 cm to 0.5 meters . Sparse one approximately 200 meters.
	Au - 165 ppb As - 25 ppm	-	
ERK-038	Same as 037.		
	Au - 5 ppb As - 15 ppm	+	
ERK-039		e. Sam	proximately 1-4.5 meters- will exposed uple is green chloritic rock with fine %.

ERK-040 Sample is float brecciated intrusive with black chloritic veinlets- Minor pyrite malachite and bornite.

Au	-	65 ppb	Ag	-	6.4 ppm
As	-	30 ppm	Cu	-	6461 ppm

Page 58

ERK-043 1 meter chip (trench 3).Sample is dark green chloritic rock with minor massive cube pyrite veinlets up to 1 cm, minor carbonate altered rock with traces galena? In center of interval- minor sections of dark green altered rock with coarse cube pyrite throughout. Pyrite approximately 5 %.

Au	-	125 ppb	Ag	-	0.2 ppm
As	-	80 ppm	Cu	-	10 ppm

ERK-044 1 meter chip (trench 3). Sample is dark green chloritic rock with small veinlets and coarse cubes of pyrite- minor 1 cm wide coarse cube pyrite veinlets. Pyrite approximately 6-7 %.

Au	-	330 ppb	Ag	-	0.2 ppm
As	-	145 ppm	Cu	-	5 ppm

ERK-045 1 meter chip (trench 4). Sample is dark green to black chloritic rock with approximately 50 cm of rusty gouge- coarse cube pyrite, minor chalcopyrite and minor massive magnetite stringer. Sulfides approximately 7 %.

Au	-	0.077 opt	Ag	-	3.4 ppm
As	-	115 ppm	Cu	-	3816 ppm
[Co	-	403 ppm]			

ERK-046 Zone of epidote rich, chloritized hornblende rich andesite- numerous fractures with red weathered clay, probably after pyrite and chalcopyrite. Minor pyrite, chalcopyrite and malachite in sample- 0.5 meter chip.

Au	-	40 ppb	Ag	-	2.8 ppm
As	-	55 ppm	Cu	-	598 ppm

ERK-047 0.5 meter chip- same as above. No chalcopyrite or malachite observed- abundant red clay on fractures. Fresh rock has medium sized grains of pyrite throughout approximately 5 % of rock. Zone may be second lower shear zone.

Au	- 5 ppb	Ag -	1.4 ppm
As	- 25 ppm	Cu -	483 ppm

Page 59

ERK-048 0.3 meter chip- black/green weakly chloritized zone with coarse blebs of cube pyrite as well as narrow veinlets along fracture. Pyrite approximately 5 %very weak rust along surface.

Au - 235 ppb	Ag - 0.6 ppm
As - 170 ppm	Cu - 137 ppm
[Co - 224 ppm]	

ERK-049 0.5 meter chip (trench 5). Sample is graphitic gouge and argillite as well as extremely chloritized volcanic. Minor pyritic veinlets along unsheared portionspyrite approximately 3-4 %.

Au	-	0.959 opt	Ag	-	7.4 ppm
As	-	915 ppm	Cu	-	365 ppm

ERK-050 1 meter chip (trench 5). Sheared weakly carbonate altered volcanic, minor pyritesome brown rusty, surfaces.

Au	-	200 ррb	Ag	-	<.2 ppm
As	-	65 ppm	Cu	-	24 ppm

ERK-051 1 meter chip (trench 5). Black argillite with fine pyrite along fractures and as fine veinlets. Pyrite approximately 1-2%. Some distinct green hue associated with pyrite veinlets- minor fine quartz veinlets with vugs containing clear tiny quartz crystals.

 Au
 570 ppb
 Ag
 0.6 ppm

 As
 65 ppm
 Cu
 498 ppm

ERK-052 Grab (trench 5) 6 cm wide piece with abundant pyrite as veinlets in brecciated argillite- pyrite approximately 10%.

Au	-	0.545 opt	Ag	-	5.8 ppm
As	-	1010 ppm	Cu	-	342 ppm

ERK-053 Grab out of blast rubble (trench 5)- brecciated argillite with coarse cube pyrite along veinlets. Abundant chalcopyrite along fractures approximately 1-2%. Minor malachite- some distinctive green hue sulfides approximately 5-7%.

Page 60

Au	-	0.078 opt	Ag	-	8.0 ppm
As	-	205 ррт	Cu	-	5189 ppm

- ERK-054 0.7 meter chip (trench 5) in hanging wall of fault- approximately 25 cm of brown carbonate altered volcanic and 45 cm of sheared chloritic volcanic. Sample is above fault gouge, no obvious sulfides.
- ERK-055 Silicified, pyritic rock at contact with argillite- sample is siliceous intrusive? with fine grained pyrite as disseminated grains and very fine veinlets approximately 7 %. Sample is 1.2 meter chip.
- ERK-056 Sample is hornblende porphyry- appears intrusive in nature. Weakly chloritic medium grained with euhedral hornblende and feldspar crystals- very fine grained pyrite as well as tiny veinlets approximately 4-5 %. Rock is white to light green in color on weathered surface- pale grey on fresh surface (1.1 meter chip).

Au	-	715 ppb	Ag	-	<.2 ppm
Ag	-	10 ppm	Cu	-	38 ppm

ERK-057 Grab of 10 cm wide, massive pyrite stringer with minor chalcopyrite (trench 6).

 Au - 1.059 opt
 Ag - 15.71 opt

 As - 2440 ppm
 Cu - 6870 ppm

 [Co - 194 ppm]
 Cu - 6870 ppm

ERK-058 1 meter chip (trench 6) - green/black chloritic rock with fractures and blebs with pyrite- minor chalcopyrite- 10 cm with massive pyrite stringer, same as ERK 94-698. Minor malachite on weathered surface- approximately 10 cm of carbonate altered rock in footwall area. Minor quartz veining in interval sampled.

Au -	0.272 opt	Ag	•	8.24 opt
As -	610 ppm	Cu	-	4464 ppm
[Co -	102 ppm]			

ERK-059 1.2 meter chip (trench 6). Sample contains pyrite and chalcopyrite stringers below upper fault zone- Minor pyrite and chalcopyrite in unsheared chloritic rock bottom.
 0.3 meters is sheared rock with gouge and clay, sulfide approximately 3-4 %. Interval is 1.2 meters.

Au - 0.148 opt Ag - 7.4 ppm

Page 61

As - 465 ppm Cu - 4891 ppm

ERK-060 0.9 meter chip (trench 6) in hanging wall- weakly sheared chloritic hornblende feldspar porphyry. Medium grained with euhedral feldspar crystals- sample has traces chalcopyrite, pyrite and malachite.

Au	-	150 ppb	Ag	-	1.2 ppm
As	-	15 ppm	Cu	-	245 ppm

- ERK-061 0.7 meter chip (trench 6) in footwall zone- green chloritized rock with sparse blebs pyrite approximately less than 1 %.
- ERK-062 1.5 cm green chloritic rock, brecciated with quartz veinlets, vuggy with small quartz crystals. Numerous pyrite and chalcopyrite veinlets approximately 3 %.

Au	-	0.074 opt	Ag	-	4.2 ppm
As	-	100 ppm	Cu	-	798 ppm

ERK-063 1.1 meter chip (trench 7). Green chloritized andesite pyroclastic with numerous large clasts of hornblende- feldspar porphyry- some pyrite veinlets at right angles to strike of zone. Pyrite approximately 7-8 % overall.

Au -	0.280 opt	Ag	-	16.4 ppm
As -	1185 ppm	Cu	-	157 ppm
[Co -	108 ppm]			

ERK-064 0.9 chip (trench 7). Minor pyrite veinlets towards sample 063- mainly sheared carbonate altered rock pyrite approximately 2%, 0.9 meter chip.

Au	-	700 ррb	Ag	-	4.4 ppm
As	-	235 ppm	Cu	-	104 ppm

- ERK-065 2 meter chip (trench 7) of sheared choritic andesite pyroclastic- minor pyrite as blebs and little veinlets. Pyrite less than 1 %. Minor flat lying quartz- weathered sulfide veinlets.
- ERK-066 15 cm chip (trench 7) of brecciated volcanic with vuggy quartz veinlets with small quartz crystals. Coarse patches of pyrite and chalcopyrite approximately 30 % of rock.

Page 62

	Au - 0.200 opt As - 610 ppm	Ag - 9.8 ppm Cu - 1.01 %
ERK-067	0.7 meter chip (trench 7). Sam veinlets. Pyrite approximately 1	pple is chloritic sheared volcanic with spared pyrite %.
	Au - 120 ppb As - 25 ppm	
ERK-068	• •	ated volcanic with vuggy quartz veins with quartz rite and chalcopyrite. Minor malachite sulfides
	Au - 0.120 opt As - 330 ppm	• • •
ERK-069	Chloritic, weakly sheared volcar 3 %.	nic with pyritic blebs and veinlets approximately
	Au - 380 ppb As - 410 ppm	• • • •
ERK-070	-	artz with veinlets with blebs of coarse pyrite and nately 7 %- 30 cm chip sample.
	Au - 0.202 opt As - 410 ppm	• •
ERK-071	30 cm chip - sheared , chloritic,	volcanic with pyrite stringers approximately 4 %.
		Ag - 2.0 ppm Cu - 169 ppm
ERK-072	30 cm chip- sample is same as a	above, pyrite approximately 5-6 %.
		Ag - 2.4 ppm Cu - 84 ppm
ERK-073	1.1 meter chip- sample is black,	, chloritic volcanic with small veinlets of pyrite.

£.... 1

*-1

حذبة

÷

Â

Page 63

Sample approximately 2 % pyrite, highly weathered abundant rust along fractures.

Au	-	0.039 opt	Ag	-	1.8 ppm
As	-	95 ppm	Cu	-	141 ppm

ERK-074 1.67 meter chips- weakly carbonate altered, chloritic volcanic. Minor pyrite veinlets up to 2 cm wide. Minor malachite stain.

Au	-	0.371 opt	Ag	-	6.31 opt
As	-	895 ppm	Cu	-	3443 ppm

ERK-075 2 meter chips of brecciated medium grained hornblende- feldspar intrusive- chloritic with abundant gouge. Minor pyrite veinlets, sample is in hanging wall above main fault zone.

Au	-	145 ppb	Ag	-	1.6 ppm
As	-	30 ppm	Cu	-	159 ppm

ERK-076 15 cm chip- green/black chloritic rock with some brecciation. Centered by vuggy quartz veinlets with tiny quartz crystals in vugs. Sample has heavy pyrite-approximately 10 % of rock, weathers red on fracture surfaces.

Au	-	30 ppb	Ag	-	0.4 ppm
As	-	110 ppm	Cu	-	35 ppm

ERK-077 1.4 meter chips at 80 deg. Sample is black chloritic rock with quartz veinlets approximately 5 %.

Au	-	240 ppb	Ag	-	0.2 ppm
As	-	110 ppm	Cu	-	15 ppm
[Co		151 ppm]			

ERK-078 30 cm chip on east edge of creek wall- sample is green/black chloritic rock with pyrite veinlets approximately 3 meters. Minor blebs of chalcopyrite and malachite. Pyrite 3 %- west edge of sample is 1 cm of red clay.

Au	-	0.072 opt	Ag	-	4.4 ppm
As	-	125 ppm	Cu	-	1711 ppm

Page 64

ERK-079 30 cm chip- zone of 4-5 quartz -sulfide veinlets. Quartz approximately 10 % with pyrite and chalcopyrite- minor malachite approximately 5 %. Rock is dark green/black chloritic volcanic.

Au	-	510 ppb	Ag	-	1.4 ppm
As	-	305 ppm	Cu	-	419 ppm

- ERK-080 20 cm chip- brecciated intrusive? on west side of main fault. Centered by quartz carbonate with sulfide blebs and streaks- pyrite approximately 3-4 %.
- ERK-081 Sample is 33 cm chip including 4 cm quartz- coarse pyrite and MOS2 veinlet plus sheared chloritic volcanic with minor pyrite. Overall, pyrite approximately 3-4 %.

Au	-	80 ppb	Ag	-	5.6 ppm
As	-	170 ррт	Cu	-	516 ppm

ERK-082 Float sample of brecciated, silicified argillite? with massive arsenopyrite and pyrite stringers- sulfides approximately 60 % of rock. Sample is approximately 10 cm in diameter.

Au	-	0.087 opt	Ag	-	4.6 ppm
As	-	8.83 %	Cu	-	287 ppm

ERK-083 Sample is 4 cm piece of brecciated, silicified rock, probably argillite with massive arsenopyrite and minor pyrite. Massive arsenopyrite and minor sulfides approximately 50-60 %.

Au	-	0.042 opt	Ag	-	1.8 ppm
As	-	5.22 %	Cu	-	52 ppm

ERK-084 20 cm chip- sample is sheared intrusive with coarse patchy pyrite approximately 5 % in rock. Some minor disseminated pyrite, minor massive pyrite veinlets at right angles to the hanging wall.

Au	-	10 ppb	Ag	-	0.4 ppm
As	-	1085 ppm	Cu	-	889 ppm

ERK-085 Rock is extremely brecciated argillite, approximately 30 % quartz veinlets and

0

Page 65

quartz cementing fragments- extremely pyritic, approximately 25 % as veinlets and cement.

Au	-	55 ppb	Ag	-	2.8 ppm
As	-	970 ppm	Cu	-	49 ppm

ERK-086 Float approximately 20 cm boulder- same as above- less quartz, minor pyrite veinlets, same greenish hue on weathered surfaces.

Au	-	5 ppb	Ag	-	2.6 ppm
As	-	530 ppm	Cu	-	25 ppm

ERK-087 Large, 70 cm in diameter any boulder. High brecciated with quartz cementing fragments, silicified with coarse pyrite veinlets- as well as fine grained pyrite. Pyrite approximately 15 %.

Au	-	165 ppb	Ag	-	7 .8 ppm
As	-	605 ppm	Cu	-	73 ppm

ERK-088 Sheared volcanic, rusty with fractures- narrow pyrite veinlets with malachite stain. Grab at base of outcrop.

Au	-	470 ppb	Ag	-	11.0 ppm
As	-	230 ррт	Cu	-	4169 ppm

ERK-089 Subcrop sample of high brecciated silicified argillite with coarse seams of very fine grained pyrite. Pyrite approximately 10-15 %.

Au	-	145 ppb	Ag	-	3.0 ppm
As	-	545 ppm	Cu	-	79 ppm

- ERK-090 Sheared argillite, graphitic weak silicification- abundant pyrite veinlets, some greenish hue. Pyrite approximately 7 %.
- ERK-091 Subcrop- sheared, weak calcite- quartz stockwork. Minor fine grained pyrite as coarse seams- graphitic argillite.
- ERK-092 Subcrop- strong quartz stockwork in brecciated argillite with abundant pyrite both fine grained and as narrow veinlets.

Page 66

Au	-	760 ppb	Ag	-	5.2 ppm
As	-	485 ppm	Cu	-	210 ppm

ERK-093 Sample is brecciated argillite, silicified mineralized with fine grained pyrite as well as pyrite veinlets cut by later barren quartz veinlets. Sample is 15 % pyrite- minor green hue.

Au	-	0.039 opt	Ag	-	21.0 ppm
As	-	1010 ррт	Cu	-	348 ppm

ERK-094 1 meter chip- sample is argillite with strong quartz stockwork with minor coarse pyrite seams up to 1 cm. Pyrite approximately 5 % overall- some minor green hue.

Au	-	0.040 opt	Ag	-	4.4 ppm
As	-	435 ppm	Cu	-	62 ppm

ERK-095 1.2 meter chip (trench 8). Weakly chloritized rock in footwall of strong shear zone- minor disseminated pyrite with some pyrite veinlets approximately 1-2 mm at right angles to zone. Traces malachite, pyrite approximately 1%.

Au	-	140 ppb	Ag	-	0.6 ppm
As	-	190 ppm	Cu	-	267 ppm

ERK-096 1 meter chip (trench 8) - weakly carbonate altered green volcanic? with narrow veinlets of black chloritic- traces pyrite.

ERK-097 0.8 meter chip (trench 8)- fault gouge, clay, sheared chloritic volcanic with minor carbonate stringers with sparse pyrite, traces chalcopyrite. Pyrite 1-2 %.

Au	-	285 ppb	Ag	-	5.2 ppm
As	-	90 ppm	Cu	-	206 ppm

ERK-098 1.3 meter chip (trench 8)- weakly altered hanging wall, minor narrow pyrite veinlets, abundant epidote. Minor narrow black chloritic veinlets < 1 mm.

ERK-099 30 cm chip of black chloritic volcanic with sparse disseminated pyrite- Magnetite veinlets in quartz calcite stringer above sample.

Au - 0.054 opt Ag - 0.4 ppm

Page 67

As - 60 ppm Cu - 69 pp	pm
------------------------	----

- ERK-100 Zone is black chlorite with patches and streaks of coarse pyrite. Pyrite approximately 3 %- zone approximately 15 cm in middle with heavy sulfide.
- ERK-101 1 meter chip on east side- chloritic sheared volcanic? Minor pyrite veinlets and blebs approximately 1-2 %.
- ERK-102 Float 15 cm black chloritic rock with streaks of chalcopyrite and pyrite veinlets. Sulfides approximately 4-5 %.

Au	-	270 ppb	Ag	-	2.2 ppm
As	•	45 ppm	Cu	-	968 ppm

ERK-103 Subcrop- 15 cm boulder with strong quartz stockwork. Coarse pyrite and coarse blebs of chalcopyrite- pyrite occurs as discontinuous veinlets. Pyrite approximately 7 %, chalcopyrite approximately 2 %.

Au	-	0.965 opt	Ag	-	16.6 ррт
As	-	760 ррт	Cu	-	6419 ppm

- ERK-104 1 meter chip (trench 9). Chloritic altered volcanic? with minor 1 cm massive pyrite veinlets. Disseminated pyrite through rock. Pyrite approximately 3-4 %. Approximately 15-20 cm zone above fault- gouge is bleached grey and silicified with pyrite on fractures.
- ERK-105 1 meter chip (trench 9). Weakly carbonate altered volcanic? with pyrite along fractures and disseminated approximately 2%.
- ERK-106 1 meter chip (trench 9). High sheared, abundant red clay and black manganese stained gouge- fresh rock is carbonate altered volcanic with disseminated pyrite approximately 0.5 %.

Au	-	0.102 opt	Ag	-	3.0 ppm
As	-	865 ppm	Cu	-	413 ppm

ERK-107 1 meter chip. Black chloritic zone with minor carbonate alteration- stringers of massive pyrite approximately 3 cm. Minor quartz with sulfide approximately 1 % of rock. Disseminated pyrite in volcanic? in zone. Overall, pyrite approximately

5 %.

ذهستا

Page 68

Au	-	0.128 opt	Ag	•	1.4 ppm
As	-	165 ррт	Cu	-	125 ppm

ERK-109 1 meter chip (trench 10). Sample is green/black chloritic rock with strong quartz. stockwork approximately 10% of rock- quartz generally contains sparse pyrite and chalcopyrite- massive pyrite and chalcopyrite veinlets, cut veinlets and chloritic rock. Abundant malachite. Chalcopyrite approximately 1%, pyrite approximately 5-6% in blast rock below- native Cu in fractures.

Au	-	0.199 opt	Ag	-	4.0 ppm
As	-	310 ppm	Cu	-	1234 ppm

ERK-110 1 meter chip (trench 10). Chloritic rock, weakly altered with sparse quartz veinlets. Minor narrow quartz-sulfide veinlets- minor narrow pyrite veinlets. Sparse chalcopyrite and malachite.

Au	-	0.061 opt	Ag	-	0.4 ppm
As	-	85 ppm	Cu	-	291 ppm

ERK-111 1 meter chip (trench 10). Green/black chloritic rock with minor massive pyrite veinlets approximately 1-2 mm. Sparse chalcopyrite and malachite. Pyrite approximately 3 %- sparse quartz veinlets.

Au	-	0.071 opt	Ag	-	0.8 ppm
As	-	225 ppm	Cu	-	393 ppm

ERK-112 1 meter chip (trench 10). Green/black chloritic altered rock with quartz veinlets approximately 5 %- minor massive pyrite veinlets up to 1 cm. Sparse chalcopyrite and malachite- pyrite approximately 3-4 %.

Au	-	0.069 opt	Ag	-	5.4 ppm
As	-	155 ppm	Cu	-	538 ppm

ERK-113 1.0 meter chip (trench 11). Green/ black to bluish chloritic rock with sparse pyrite veinlets approximately 1 mm. Traces chalcopyrite- quartz stockwork approximately 15%. Pyrite approximately 1-2%.

ERK-114 1.0 meter chip (trench 11). Same as above- traces malachite.

Page 69

ERK-115 1.0 meter chip (trench 11). Same-pyrite approximately 4-5 %.

Au	- 120 ppb	Ag - <.2 ppm
As	- 65 ppm	Cu - 7 ppm

ERK-116 1.0 meter chip (trench 11). Same- pyrite approximately 3-4 %.

Au	-	80 ppb	Ag	-	<.2 ppm
As	-	145 ppm	Cu	-	7 ppm

- A-95-6 Chip 3.0 meters across altered (silica-carbonate) and esite? with 3-5 % disseminated pyrite.
- A-95-7 Chip 1.6 meters (same as A-95-6).
- A-95-8 Chip 1.2 meters from same rock as A-95-6 locally thin pyrite veinlets.
- A-95-9 Float of quartz vein with 10-15 % pyrite, minor chalcopyrite, galena? with limonite and wad.

 Au
 505 ppb
 Ag
 11.6 ppm

 As
 355 ppm
 Cu
 2668 ppm

A-95-10 Chip 1.1 meters from rusty small outcrop, sample is very strong sericitic, carbonate, chloritic altered rock with approximately 20-25 % semi-massive pyrite.

 Au
 15 ppb
 Ag
 10.6 ppm

 As
 75 ppm
 Cu
 3946 ppm

A-95-11 Chip 1.4 meters (DC-94-30) and esite? strongly chloritic, lesser sericite, plus/minus carbonate altered with 10-30 % disseminated to semi-massive pyrite. Also present locally, minor amounts of finely disseminated dark grey sulfide.

Au	- 5 ppb	Ag -	1.2 ppm
As	- <5 ppm	Cu -	3170 ppm

A-95-12 Chip 2.15 meters, same as A-95-11.

Au - 5 ppb Ag - 2.0 ppm

Page 70

Keport on v	cione i roperty	rage / o
	As - <5 ppm	Cu - 8775 ppm
A-95-13	Chip 0.9 meters at the edge of	zone.
	Au - 130 ppb As - <5 ppm	
A-95-14		vein with quartz, sericite, limonite, wad, minor '/ steep E- can only see 30 cm of length.
	Au - 170 ppb As - 8940 ppm	
A-95-15	Chip 15 cm from quartz vein w limonite.	vith 15 % chalcopyrite and 10 % pyrite and strong
	Au - 0.173 opt As - 1900 ppm	
A-95-16	• •	with 10 % chalcopyrite and 3 % pyrite, abundant ent in vein 10-15 % (usually chalcopyrite, lesser in be traced for 7 meters.
	Au - 750 ppb As - 495 ppm	

A-95-17 Chip across 40 cm wide- quartz vein with limonite stain. Orientation 4 deg. vent.

Au	-	25 ppb	Ag	-	2.0 ppm
As	-	95 ppm	Cu	-	306 ppm

A-95-18 Chip 55 cm across quartz vein with 3 % chalcopyrite, limonite and malachite stain. Vein orientation 50'/vertical.

Au	-	350 ppb	Ag	-	10.4 ppm
As	-	140 ppm	Cu	-	1.52 %

A-95-19 Float of hornblende microgabbro with 3-5 % sulfides as small, irregular patches (pyrite, pyrrhotite, cobaltite).

Page 71

A-95-20 Same as A-95-19

A-95-21 Chip- 15 cm across quartz vein with 1-2 % pyrite, 1-2 % chalcopyrite, minor limonite and malachite stain. Orientation 170/20 E.

Au	- 215 ppb	Ag -	2.0 ppm
As	- 40 ppm	Cu -	845 ppm

A-95-22 Chip- 55 cm from vein zone developed within fault. It consists of parallel 1-20 cm quartz-carbonate veins interspersed with host rock (andesite pyroclastic) which is often brecciated. Veins, and to a lesser extent, host rock contain up to 20 % chalcopyrite and up to 3 % pyrite and minor limonite and malachite stain. Orientation 70/35 N. Veins consist 60-80 % of the zone.

Au	-	270 ррЬ	Ag	-	4.4 ррт
As	-	160 ppm	Cu	-	2045 ppm

A-95-23 Same as A-95-22-10 meters higher in same vein.

Au	-	905 ppb	Ag	-	15.0 ррт
As	-	220 ppm	Cu	-	9770 ppm

A-95-24 Chip 45 cm from the same vein but 10 meters higher. The bulk of the chalcopyrite is contained in quartz veins. Lesser interspersed host rock, carbonate veins look barren. Quartz veins consists 20-40 % of the zone. The zone can be traced for about 40 meters. Average sulfide content in the zone 3-5 %.

Au	-	0.196 opt	Ag	-	22.6 ppm
As	-	10 ppm	Cu	-	9013 ppm

A-95-25 Chip 85 cm across vein zone of similar type as at A-95-22. Average 3-4 % chalcopyrite, 1 % pyrite, minor limonite, malachite stain, trace of wulfenite. Orientation 130/45 deg. N.E. Vein can be followed approximately 20 meters. It averages approximately 50 cm in thickness. The vein can have at least 50-60 meters of length.

Au	-	0.497 opt	Ag	-	19.4 ppm
As	-	65 ppm	Cu	-	1.01 %

Page 72

A-95-26 Chip 12 cm across quartz vein with 40 % chalcopyrite. Orientation 125/ steep South.

Au	-	0.178 opt	Ag	-	1.98 opt
As	-	25 ppm	Cu	-	6.67 %

A-95-27 Grab from 20 cm wide quartz vein with 25 % chalcopyrite. Orientation 140/ vertical.

Au	-	0.107 opt	Ag	-	23.0 ppm
As	-	5 ppm	Cu	-	1.48 %

- A-95-28 Chip 70 cm from foliated rusty argillite.
- A-95-29 Float of argillite with quartz-carbonate veining with 10 % pyrite.

Au	-	80 ppb	Ag	-	2.2 ppm
As	-	220 ppm	Cu	-	255 ppm

A-95-30 Chip 0.9 meters from zone of rusty argillite 20 meters long and 4 meters wide.

Au	-	30 ppb	Ag	•	1.8 ppm
As	-	60 ppm	Cu	-	267 ррт

A-95-31 Chip 30 cm from rock completely altered to sericite and limonite.

Au	-	0.781 opt	Ag	-	1.13 opt
As	-	3.82 opt	Cu	-	400 ppm

A-95-32 Chip 20 cm from quartz vein with 10 % chalcopyrite. Orientation 140/ steep North. It is down slope extension of one of the higher veins (A-95-25 or 26). Vein thins out on both ends to 7-5 cm in thickness.

Au	-	180 ppb	Ag	-	0.88 opt
As	-	265 ppm	Cu	-	1.42 %

A-95-41 Chip 2.0 m from moderately silicified andesite tuff with 2 - 3 % disseminated pyrite.

A-95-42 Grab from 5 cm wide quartz-limonite vein. Orientation 45 deg./75 deg W

Page 73

	Au - 890 ppb As - 155 ppm	Ag - 10.6 ppm Cu - 1423 ppm
A-95-43	Grab from 8 cm wide quartz v Orientation 45 deg./ 75 deg. W	ein with 10 % pyrite, 5 % chalcopyrite and limonite.
	Au - 0.101 opt As - 40 ppm	Ag - 1.42 opt Cu - 1.67 %
A-95-44	Chip 20 cm across quartz vein limonite.	with 20 % pyrite and 10 % chalcopyrite and
	-	Ag - 4.54 opt Cu - 4.36 %
A-95-45	Chip 0.9 meters from limonite	andesite? zone- Orientation NW-SE
	Au - 20 ppb As - < 5 ppm	
A-95-46	•	ne partly replaced by calcite, locally some limonite ation 60 deg./ 70 deg. W. Zone is at least 2 meters ters.
A-95-47	Chip 1.3 meters from zone of disseminated pyrite.	rusty aphanitic andesite with 1-2 % extra fine
A-95-48	Float of andesite with 3-5 % v very angular.	ery fine grained disseminated pyrrhotite? Boulder is
	Au - 180 ppb As - <5 ppm	Ag - <.2 ppm Cu - 146 ppm
A-95-49	Chip across 10 cm wide weak W.	ly limonite quartz vein. Orientation 40 deg./60 deg.

A-95-50 Chip- 20 cm across weakly limonite quartz vein. Orientation 0/ 70 deg. W.

Page 74

- A-95-51 Chip 1.1 meters from zone of very strongly sericite-carbonate- chlorite and locally silica altered. Weakly limonitic. Zone is frequently cut by abundant thin irregular quartz veinlets locally forming stockworks. Locally, the zone is brecciated.
- A-95-52 Chip 0.8 meters from above zone.
- A-95-53 Grab from the 95-51 zone.
- A-95-54 Chip 1.0 meters from the above zone
- A-95-55 Chip across 20 cm quartz vein with 1 % pyrite, trace chalcopyrite and minor malachite stain. Quartz is vuggy. Orientation 110 deg./ steep N.

Au	-	125 ррb	Ag	-	2.8 ppm
As	-	35 ppm	Cu	-	846 ppm

ERK-195 30 cm chip out of 4-5 meters write zone-of sheared graphitic argillite with generally very strong quartz stockwork. In places, rock is sheeted quartz and graphitic argillite boulder- approximately 0.5 mm. Sample is sericitic, pyrite bands- sulfide approximately 50 %.

Au - 0.45 opt	Ag -	6.72 opt
As - 11.03 %	Cu -	7131 ppm
[Co - 537]		

ERK-196 Grab from sericite altered, brecciated rock, fine grained pyrite bands cementing clasts, "unusual" light green hue on surface. Zone near iceslope is steep with little talus. Rocks stained red/orange to north zone is large. Carbonate altered area-pyrite sample approximately 10 %.

Au	-	130 ppb	Ag	-	5.2 ррт
As	-	970 ppm	Cu	-	176 ppm

ERK-197 30 cm chip, 3 meters W. of 196. Sample is highly sericitic rock with coarse cube pyrite approximately 4 %.

Au	-	170 ppb	Ag	-	4.0 ppm
As	-	595 ppm	Cu	-	38 ppm

Page 75

ERK-198 From 197, sample is 1 meter chip of silicified sericite altered rock with fine grained pyrite approximately 5-6%. Minor cube pyrite, traces arsenopyrite? -zone is high sheared with red rusty gouge zones. Au - 250 ppb Ag - 5.2 ppm Cu - 79 ppm As - 365 ppm **ERK-199** Subcrop highly sericitic rusty rock approximately 15 cm in diameter. Highly silicified with pyrite, minor galena, sphalerite, and arsenopyrite. Pyrite approximately 10 %. Au - 110 ppb Ag - 26.4 ppm Cu - 406 ppm As - 600 ppm **ERK-200** Subcrop- approximately 10 cm- coarse cubic galena with minor pyrite sulfides approximately 50 %. Au - 90 ppb Ag - 5.84 % As - 95 ppm Cu - 234 ppm Pb - 3.80 % ERK-201 .6 meter chip-edge of outcrop. Quartz stringer in high brecciated argillite with strong quartz stockwork. Sample is coarse galena, pyrite and sphalerite with minor arsenopyrite?- sulfide approximately 15 % of rock. Au - 70 ppb Ag - 19.6 ppm As - 105 ppm Cu - 391 ppm Zn - 1.83 % **ERK-202** 10 cm float sample in dry stream bed. Massive fine grained pyrite with minor fine grained black sulfide. Pyrite approximately 60 % in sheared argillite. Au - 130 ppb Ag - 3.8 ppm As - 870 ppm Cu - 30 ppm ERK-203 30 cm chip from 1 meter wide sheared rusty volcanic on intrusive?with fine grained pyrite as coarse seams with 7 %.

Au -	0.034 opt	Ag -	2.56 opt
As -	440 ppm	Cu -	37 ppm

Page 76

ERK-204 0.6 meter float boulder in steep climb- numerous similar boulders. Intrusive with 1-2 % chalcopyrite, pyrite approximately 3 % with minor Mos2- Very little stain on outside.

Au	-	15 ppb	Ag	-	9.8 ppm
As	-	25 ppm	Cu	-	1715 ppm

ERK-205 40 cm red clay and gouge.

Au	-	0.160 opt	Ag	-	1.11 opt
As	-	4630 ppm	Cu	-	577 ppm

ERK-206 1.2 meter chip argillite crystals in intrusive- fine grained chalcopyrite blebs along fractures- Malachite.

Au	-	530 ppb	Ag	-	3.0 ppm
As	-	70 ppm	Cu	-	2167 ppm

ERK-209 0.95 meter chip (trench 12). Carbonate altered with highly chloritic, minor pyrite- abundant red earth. Highly weathered rock is probably altered intrusive?

Au - 0.164 opt Ag - 4.6 ppm As - 1.08 % Cu - 476 ppm [Co - 105 ppm]

ERK-210 1.0 meter chip (trench 12). High sheared carbonate altered weakly chloritic rock with narrow pyrite and chalcopyrite stringer-minor malachite.

Au	-	225 ррb	Ag -	4.2 ррт
As	-	370 ррт	Cu -	2072 ppm

ERK-211 1.0 meter chip (trench 12). Pale green, carbonate altered, sheared volcanic, minor pyrite.

Au	-	35 ppb	Ag	-	1.0 ppm
As	-	105 ppm	Cu	-	264 ppm

ERK-212 1 meter chip (trench 12)- narrow quartz-pyrite stringer. Pyrite approximately 2 % in fresh rock. Approximately 15 cm wide. Zone of red/orange earth rock.

Page 77

Highly sheared.

Au	-	30 ppb	Ag	-	0.8 ppm
As	-	40 ppm	Cu	-	216 ppm

- ERK-213 1.0 meter chip (trench 12). Green carbonate altered chloritic rock, sparse pyrite generally. Locally, very fine grained pyrite approximately 1%.
- ERK-214 1.0 meter chip (trench 12). Red stained zone with minor malachite- locally patching pyrite up to 2%.

Au	-	30 ppb	Ag	-	1.2 ppm
As	-	45 ppm	Cu	-	686 ppm

- ERK-215 1.0 meter chip (trench 12). Red stained on fracture, chloritic rock with pyrite approximately 1-2%.
- ERK-216 1.1 meter chip (trench 12) highly fractured, red stained on fractures. Pyrite approximately 1-2%.
- ERK-217 1 meter chip (trench 13). Highly rusty zone with massive chalcopyrite seams approximately 10 cm, coarse pyrite, some arsenopyrite in area. Sulfides approximately 30 % -heavily chloritic.

Au - 2.235 opt Ag - 4.07 opt As - 1.41 % Cu - 4.36 %

ERK-218 0.6 meter chip (trench 13). Sheared intrusive? with minor malachite stain, fine grained pyrite approximately 1-2%.

Au	-	0.097 opt	Ag	-	6.0 ррт
As	-	6945 ppm	Cu	-	1092 ppm

ERK-219 1.0 meter chip (trench 13). Sheared, weakly chloritic rock with minor limonite in fractures.

Au	-	835 ppb	Ag	-	1.2 ppm
As	-	750 ppm	Cu	-	1517 ppm

Page 78

ERK-220 Sample is 6 cm quartz vein with sparse chalcopyrite, pyrite and wall zone (chloritic with minor pyrite)- 30 cm chip.

Au	-	105 ppb	Ag	-	0.8 ppm
As	-	90 ppm	Cu	-	269 ppm

ERK-221 30 cm chip in poorly exposed creek bed- coarse pyrite seams in chloritic rock approximately 15 %, approximately 3 meters above DC 25, 26 in creek bed.

Au	-	240 ррb	Ag -	•	4.6 ррт
As	-	175 ppm	Cu -	•	2656 ppm

ERK-222 20 cm float, semi-massive pyrite, chalcopyrite and minor arsenopyrite. Some blue sheen, possibly covelite stain. Locally peculiar yellow sheen on chalcopyrite.

Au	 1.383 opt 	Ag	-	9.75 opt
As -	- 990	Cu	-	6.06 %
[Co	- 215 ppm]			

ERK-223 Float approximately 20 cm- semi-massive chalcopyrite, pyrite and minor arsenopyrite? sulfides approximately 50 %.

Au	-	1.450 opt	Ag	-	6.93 opt
As	-	655 ppm	Cu	-	3.69 %
[Co	-	232 ppm]			

ERK-224 1.5 meter chip- sheared chloritic rock, weathers slightly rusty. Local abundant malachite, minor pyrite.

Au	-	0.081 opt	Ag	-	12.8 ррт
As	-	65 ppm	Cu	-	2514 ppm

ERK-225 2 meter chip- Sample is carbonate rich, brecciated rock with chalcopyrite veinlets and highly chloritic rock with coarse pyrite and chalcopyrite stringer. Sulfides approximately 20 %.

Au-1.304 optAg-3.60 optAs-1680 ppmCu-1.44 %

Page 79

[Co - 131 ppm]

ERK-226 Sample is 1 meter chip obliquely across- rusty zone. In middle of sample. Coarse semi-massive chalcopyrite stringer approximately 15 cm- difficult to tell true width. Vertical 2 cm quartz- chalcopyrite stringer on west side.

Au	-	0.115 opt	Ag	-	1.47 opt
As	-	165 ppm	Cu	-	1.68 %

ERK-227 30 cm chip- sheared, red weathered zone with pyrite along fracturesapproximately 20 %.

Au	125 ppb	Ag -	2.0 ppm
As	- 25 ppm	Cu -	639 ppm

ERK-300 1 meter chip- 0.4 meters of heavy pyrite stringers, minor arsenopyrite. 0.6 meters green chloritic rock- pyrite 30 %.

Au - 2.805 opt	Ag - 29.0 ppm
As - 2.23 %	Cu - 1460 ppm
[Co - 961 ppm]	

ERK-301 0.8 meter chip- 0.3 meters of pyrite stringers and green chloritic for 5 meters. Pyrite approximately 20 %.

Au - 3.094 opt	Ag - 20.4 ppm
As - 1.18 %	Cu - 1197 ppm
[Co - 453 ppm]	

ERK-302 Hematite stringers approximately 0.5-1 meter wide with malachite stain, hematite approximately 30 %. Rock is quite schistose- minor calcite veinlets.

Au	-	630 ррЬ	Ag	-	12.2 ppm
As	-	135 ррт	Cu	-	7432

ERK-303 Barite stringer approximately 2 cm with traces galena, sphalerite, pyrite.

 Au
 440 ppb
 Ag
 1.67 opt

 As
 245 ppm
 Cu
 127 ppm

Page 80

A-95-109 Grab from 20 cm pod with 50 % pyrite.

Au	-	0.246 opt	Ag	-	3.6 ppm
As	-	5995 ppm	Cu	-	118 ppm

A-95-110 Chip 2.0 meters across zone of argillite with 5 % disseminated pyrite. Zone contains quartz veinlets, mostly along schistosity. Zone orientation, schistosity 150 deg./ steep N.

Au	-	825 ppb	Ag	-	1.6 ppm
As	-	135 ррт	Cu	-	21 ppm

A-95-111 Chip 1.6 meters across replacement zone along the fault within argillite. The zone is composed mostly of dark grey quartz locally with boxwork after pyrite. Trace disseminated pyrite. Cut through by quartz veinlets.

Au	-	75 ppb	Ag	-	5.6 ppm
As	-	100 ppm	Cu	-	25 ppm

A-95-112 Grab from strongly limonitic argillite on the hanging wall of a fault. Orientation 130 deg./ steep E.

Au	-	80 ppb	Ag	-	1.8 ppm
As	-	185 ppm	Cu	-	62 ppm

A-95-113 Grab from rusty argillite with carbonate veining.

Au	-	30 ppb	Ag	-	3.2 ppm
As	-	15 ppm	Cu	-	476 ppm

A-95-114 Grab from small irregular zone of rusty argillite.

A-95-115 Grab from better mineralized part of rusty zone within andesite pyroclastics. Sample contains 15 % very fine grained pyrite and some arsenopyrite.

AU	-	add noc	Ag	-	9.0 ppm
As	-	90 ppm	Cu	-	793 ppm

A-95-116 Grab from sericite-quartz-pyrite altered andesite pyroclastics. Pyrite content 20 %.

Page 81

Au	-	0.254 opt	Ag	-	1.15 opt
As	-	720 ppm	Cu	-	111 ppm
[C o	-	163 ppm]			

A-95-117 Chip 1.4 meters across zone of sericite altered andesite pyroclastic with minor pyrite and minor limonite stain.

Au	-	130 ppb	Ag	-	1.0 ppm
As	-	65 ppm	Cu	-	182 ppm

A-95-122 Chip 1.1 meters from moderately altered andesite with 2 % pyrite and limonite. Zone 1 x 5 meters going under talus.

Au	-	200 ррb	Ag	-	3.8 ppm
As	-	35 ppm	Cu	-	1195 ppm

A-95-123 0.5 meter chip from sericite- chloritic altered andesite pyroclastic with 3 % sulfide (mostly pyrite with minor pyrrhotite and chalcopyrite). It is part of bigger zone, approximately 100 x 50 meters but sulfide distribution is patchy.

Au	-	25 ppb	Ag	-	0.8 ppm
As	-	10 ppm	Cu	-	634 ppm

A-95-124 Grab from strongly limonite sericite- chlorite altered andesite.

Au	-	100 ppb	Ag	-	0.8 ppm
As	-	125 ppm	Cu	-	661 ppm

A-95-125 Chip 1.4 meters from chlorite- sericite altered andesite with 1 % pyrite, trace arsenopyrite? and limonite.

Au	-	230 ррb	Ag -	•	3.0 ppm
As	-	3720 ppm	Cu -	•	3168 ppm

A-95-126 Chip 0.5 meters from pod, 1 x 2.5 meters of strongly limonitic sericite- chloritic altered andesite.

Au-190 ppbAg-0.6 ppmAs-175 ppmCu-588 ppm

Page 82

A-95-127 Chip 2.5 cm from sericite- chloritic-pyrite replacement vein with average 10 % pyrite and yellow-reddish stain. Orientation 144 deg./ vertical.

Au - 0.111 opt	Ag	-	8.0 ppm
As - 105 ppm	Cu	-	4174 ppm
[Co - 302 ppm]			

A-95-128 Chip 0.7 meters from limonite-chlorite- sericite altered andesite. Zone width at least 1.5 meters.

Au	-	200 ррb	Ag	-	1.6 ppm
As	-	5 ppm	Cu	-	966 ppm

A-95-129 Chip 0.6 meters from very strongly chloritized rock with trace pyrite and malachite.

Au	-	70 ppb	Ag -	2.2 ppm
As	-	90 ppm	Cu -	1351 ppm

A-95-130 Grab from very strongly sericitic lesser quartz altered rock with minor limonite and wad.

Au	-	25 ppb	Ag	-	0.2 ppm
As	-	175 ppm	Cu	-	47 ppm

A--95-131 Chip 1.4 meters from very strongly chlorite lesser sericite altered rock, trace malachite, some limonite and hematite. Sample taken across small fault- 160 deg./ steep N.

Au	-	0.034 opt	Ag	-	5.4 ppm
As	-	155 ppm	Cu	-	1188 ppm

A-95-132 Chip 2.2 meters across shear zone replaced by chlorite with lesser sericite and quartz; minor (<1 %) sulfide: pyrite, arsenopyrite and chalcopyrite.

 Au
 585 ppb
 Ag
 1.6 ppm

 As
 2705 ppm
 Cu
 569 ppm

 [Co
 327 ppm]
 569 ppm

A-95-133 Chip 2.4 meters across replacement zone of greenish-black chlorite lesser

Page 83

sericite containing an average of 20 % pyrite and 7 % arsenopyrite. Also, minor malachite stain.

Au - 0.350 opt Ag - 5.0 ppm As - 8.24 % Cu - 2934 ppm [Co - 4005 ppm]

A-95-134 Chip 3.5 meters across shear zone replaced mostly by greenish-black chlorite with average 5 % pyrite and 1 % arsenopyrite.

Au - 0.050 opt	Ag	-	1.8 ppm
As - 1.01 %	Cu	-	1063 ppm
[Co - 686 ppm]			

A-95-135 Grab, better mineralized portion of the zone with 40 % pyrite and 30 % arsenopyrite.

Au - 0.096 opt Ag - 5.8 ppm As - 5.52 % Cu - 3515 ppm [Co - 3428 ppm]

A-95-136 Chip 0.7 meters across hematite vein with minor chlorite and trace malachite.

Au - 0.258 opt Ag - 7.6 ppm As - 730 ppm Cu - 539 ppm

A-95-137 Chip 1.0 meters across zone replaced by dark green chlorite, sericite and strongly limonitic vuggy quartz. Zone is no wider than 1.5 meters and can be traced for 7 meters. Disappears under talus to west.

Au	-	4.043 opt	Ag	-	1.07 opt
As	-	1.39 %	Cu	-	558 ppm
[Co	-	131 ppm]			

A-95-138 Grab from vuggy completely limonite-geothite replaced rock. Possible continuation of the zone from 137 but zone is narrow (1-1.5 meters) and discontinuous.

Au - 2.220 opt Ag - 1.09 opt As - 1.94 % Cu - 414 ppm

Page 84

A-95-198 1.3 meter chip (trench 1) and esite lapilli tuff, very strongly sericite- chlorite quartz altered with average 2 % pyrite as disseminated and irregular patches.

Au	-	320 ppb	Ag	-	0.8 ppm
As	-	390 ppm	Cu	-	122 ppm

A-95-199 1.3 meter chip (trench 1). Same as above.

Au	-	5 ppb	Ag	-	0.6 ppm
As	-	680 ppm	Cu	-	114 ppm

A-95-200 1.2 meter chip (trench 1) andesite lapilli tuff. Dark green chlorite dominated - very strong alteration with lesser sericite and quartz. Average 2 % pyrite. Some parts of the interval completely sericite altered with abundant limonite.

Au	- 950 ppb	Ag	-	5.2 ppm
As	- 3945 ppm	Cu	-	326 ppm
[Co	- 167 ppm]			

A-95-201 2.0 meter chip (trench 1). Same as 198 and 199.

Au	-	5 ppb	Ag	-	0.6 ppm
As	-	385 ppm	Cu	-	241 ppm

 A-95-202 1.8 meter chip (trench 1) andesite lapilli tuff. Dark green chlorite dominatedstrong alteration with lesser sericite and quartz. Average pyrite content approximately 2%. Some parts of interval completely sericite altered with vuggy quartz boxworks with abundant limonite.

Au	 1.289 opt 	Ag	-	10.2 ppm
As	- 1.14 %	Cu	-	331 ppm
[Co	- 123 ppm]			

A-95-203 1.5 meter chip (trench 1). Same as 198 and 199.

 Au
 575 ppb
 Ag
 .2 ppm

 As
 270 ppm
 Cu
 90 ppm

A-95-204 1.7 meter chip (trench 2) andesite lapilli tuff. Very strong dark green chlorite

Page 85

dominated alteration with lesser sericite and quartz. Minor pyrite, some limonite.

Au - 810 ppb	Ag	-	2.0 ppm
As - 220 ppm	Cu	-	113 ppm
[Co - 100 ppm]			

A-95-205 0.9 meter chip (trench 2) and esite lapilli tuff. Very strong sericite- chloritequartz alteration. Average 2 % pyrite as disseminated and irregular patches.

Au	- 220 ррb	Ag	-	0.4 ppm
As	- 265 ppm	Cu	-	338 ppm
[Co	- 131 ppm]			

A-95-206 1.5 meter chip (trench 3) partly sericite- chlorite- K-feldspar. Very strongly altered andesite pyroclastic. Pyrite <1 %- partly a shear zone replaced by chlorite-K-feldspar- hematite and minor malachite stain. Small portion of andesite lapilli tuff altered to dark chlorite. Lesser sericite- K-feldspar, minor limonite.

Au - 0.034 opt Ag - 1.6 ppm As - 135 ppm Cu - 1674 ppm

A-95-207 1.5 meter chip (trench 3) mostly sericite- chlorite- K-feldspar. Very strongly altered andesite pyroclastic. Pyrite <1 % with minor amount of andesite lapilli tuff completely altered to dark chlorite, lesser sericite- K-feldspar, minor limonite.

Au	 0.059 opt 	Ag	-	0.2 ppm
As	- 525 ppm	Cu	-	417 ppm
[C 0	- 357 ppm]			

A-95-208 1.5 meter chip (trench 3) sericite- chlorite- K-feldspar. Very strongly altered andesite pyroclastics. Pyrite <1 %.

Au	-	5 ppb	Ag	-	0.2 ppm
As	-	190 ppm	Cu	-	135 ppm
[C 0	-	109 ppm]			

A-95-209 1.2 meter chip (trench 3). Same as above.

Page 86

Au	-	175 ppb	Ag	-	0.4 ppm
As	-	235 ppm	Cu	-	212 ppm

A-95-210 1.2 meter chip (trench 3) and esite lapilli tuff completely altered to dark chloritelesser sericite- K-feldspar. Minor limonite.

Au	 0.049 opt 	Ag	-	0.8 ppm
As	- 595 ppm	Cu	-	259 ppm
[Co	- 221 ppm]			

A-95-211 1.5 meter chip (trench 4) shear zone as follows: 30 cm of zone replaced by quartz, chlorite and hematite, some limonite, minor greenish stain (malachite). Then 50 cm of zone replaced by quartz, lesser chlorite and hematite and 0.7 meters of zone completely replaced by quartz and hematite. Minor grey sulfide (tetrahedrite) locally specularite on fractures, common malachite and dioptase as stains and encrustations.

Au	-	3.376 opt	Ag	-	9.0 ppm
As	-	145 ppm	Cu	-	3007 ppm

A-95-212 1.5 meter chip (trench 4) 0.25 meters of shear zone completely replaced by quartz and hematite; minor grey sulfide (tetrahedrite) - locally specularite on fractures. 1.25 meters of shear zone replaced by quartz, lesser chlorite and hematite.

Au	-	8.309 opt	Ag	-	10.4 ppm
As	-	60 ppm	Cu	-	1096 ppm

A-95-213 1.5 meter chip (trench 4) 50 cm of shear completely replaced by quartz and hematite, minor copper stain. 1.0 meters of shear zone replaced by quartz, lesser chlorite and hematite.

Au	-	1.406 opt	Ag	-	1.4 ppm
As	-	75 ppm	Cu	-	302 ppm

A-95-214 1.0 meter chip (trench 4) shear zone completely replaced by quartz and hematite, minor copper stain.

Au	-	0.092 opt	Ag	•	<.2 ppm
As	-	50 ppm	Cu	-	287 ppm

Page 87

[Co - 115 ppm]

A-95-215 1.5 meter chip (trench 5) andesite lapilli tuff. Shear zone completely replaced by K-feldspar. Dark green chlorite and hematite. Au - 395 ppb Ag - 0.8 ppm As - 75 ppm Cu - 1060 ppm A-95-216 1.5 meter chip (trench 5) same as 215 with some minor copper stain. Au - 270 ppb Ag - 3.4 ppm As - 40 ppm Cu - 3136 ppm A-95-217 1.9 meter chip (trench 5) same as 215. Au - 485 ppb Ag - <.2 ppm As - 30 ppm Cu - 192 ppm A-95-218 1.5 meter chip (trench 6) shear zone completely replaced by K-feldspar, quartz, dark green chlorite and hematite with minor copper stain. Au - 135 ppb Ag - <.2 ppm As - 10 ppm Cu - 154 ppm A-95-219 1.5 meter chip (trench 6) same as 218. Au - 0.037 opt Ag - 4.2 ppm As - 165 ppm Cu - 3680 ppm [Co - 107 ppm] 1.5 meter chip (trench 6) same as 218. A-95-220 Au - 0.051 opt Ag - 3.6 ppm As - 100 ppm Cu - 2629 ppm A-95-221 0.9 meter chip (trench 7) and esite lapilli tuff completely sericite- chlorite altered with some limonite.

> Au - 0.057 opt Ag - 2.8 ppm As - 105 ppm Cu - 2180 ppm

Page 88

A-95-222 2.0 meter chip (trench 7) interval of completely altered rock to sericite and limonite and lesser chlorite and vuggy quartz. Locally sulfide pockets (pyrite and arsenopyrite) up to 50 %.

Au - 2.371 opt Ag - 26.6 ppm As - 1.42 % Cu - 1057 ppm [Co - 279 ppm]

A-95-223 1.5 meter chip (trench 8) and esite lapilli tuff- completely altered to chlorite dominated assembly with lesser sericite and quartz, minor pyrite.

Au	-	775 ррb	Ag	-	0. 8 ppm
As	-	1675 ppm	Cu	-	263 ppm

A-95-224 1.3 meter chip (trench 8) 30 cm of andesite lapilli tuff- completely altered to chlorite dominated assemblage with lesser sericite and quartz- minor pyrite. 1.2 meters of completely replaced interval by dark chlorite, lesser sericite and quartz. Abundant limonite, minor malachite. Average 10 % pyrite as veinlets and patches, 1 % arsenopyrite.

> Au - 0.046 opt Ag - 8.8 ppm As - 1.02 % Cu - 5927 ppm [Co - 733 ppm]

A-95-225 1.5 meter chip (trench 8). Same as 1.2 meter interval in 224.

 Au
 0.137 opt
 Ag
 5.4 ppm

 As
 1.18 %
 Cu
 2908 ppm

 [Co
 788 ppm
]

A-95-226 1.5 meter chip (trench 8). Same as 1.2 meter interval in 224.

 Au - 0.242 opt
 Ag - 2.2 ppm

 As - 0.77 %
 Cu - 2089 ppm

 [Co - 567 ppm]
 Image: Compare the second s

A-95-227 1.0 meter chip (trench 8). Same as 1.2 meter interval in 224.

Au - 0.225 opt Ag - 2.4 ppm

Page 89

As - 0.84 % Cu - 1355 ppm [Co - 838 ppm]

A-95-228 1.5 meter chip (trench 9) completely altered to chlorite, K-feldspar, quartz and sericite. 2% pyrite average 10 cm massive arsenopyrite vein.

Au - 0.421 opt Ag - 12.0 ppm As - 6.92 % Cu - 2920 ppm [Co - 5524 ppm]

A-95-229 1.5 meter chip (trench 9) completely replaced chlorite, quartz and hematite and K-feldspar.

 Au - 305 ppb
 Ag - <.2 ppm</td>

 As - 555 ppm
 Cu - 420 ppm

 [Co - 130 ppm]
 [Co - 130 ppm]

A-95-276 2.0 meter chip (trench 10) andesite lapilli tuff, very strongly altered to dark green chlorite containing a 10 cm wide quartz- hematite zone with minor greenish stain on the sides. Orientation 330 deg./ vertical. Average 1 % pyrite in whole interval.

Au	- 0.095 opt	Ag - 0.8 ppm
As	- 76 ppm	Cu - 496 ppm

A-95-277 1.0 meter chip (trench 10) 0.2 meters as above then chloritized andesite lapillituff almost completely altered to sericite-limonite with some vuggy quartz.

Au	-	8.66 opt	Ag	-	19.1 ррт
As	-	102 ppm	Cu	-	401 ppm

A-95-278 1.5 meter chip (trench 10) very strongly chloritized lapilli- tuff with some limonite and minor pyrite.

Au	-	0.344 opt	Ag -		2.0 ppm
As	-	74 ppm	Cu -	•	845 ppm

A-95-279 1.8 meter chip (trench 11). Interval of mostly fragmental andesite. Very strong alteration to dark green chlorite, quartz and hematite. Distinct irregular bands of hematite from 0.5 to 20 cm. Orientation 330/75-80 west. Includes thin, almost flat lying quartz veinlets. Minor greenish stain locally.

Page 90

	Au-0.58 optAg-1.4 ppmAs-99 ppmCu-199 ppm
A-95-280	0.9 meter chip (trench 11). Interval of partly brecciated aphanitic andesite? with hematite healing spaces between clasts. Very strong alteration to dark chlorite, lesser hematite. Minor greenish stain.
	Au-0.977 optAg-3.8 ppmAs-30 ppmCu-2238 ppm
A-95-281	1.5 meter chip (trench 12). Andesite lapilli tuff-very strongly dark chlorite lesser hematite altered. Minor disseminated pyrite and trace chalcopyrite.
	Au-0.069 optAg-1.0 ppmAs-33 ppmCu-587 ppm
A-95-282	1.7 meter chip (trench 12). Same as 281.
	Au - 520 ppb Ag - 0.3 ppm As - 59 ppm Cu - 786 ppm
A-95-283	1.5 meter chip (trench 12). Same as 281 with 10 cm massive pyrite vein. Then 40 cm interval of quartz and hematite (Jasper) on N.E. side of trench.
	Au- 2.11 optAg- 3.6 ppmAs- 174 ppmCu- 380 ppm
A-95-284	2.0 meter chip (trench 12). Rock composed of dark green chlorite with lesser quartz and hematite.
	Au-0.24 optAg-0.9 ppmAs-254 ppmCu-501 ppm[Co-298 ppm<]
A-95-285	0.8 meter chip (trench 13). Rock composed of dark chlorite with quartz and hematite. Hematite banding prominent 320 deg./vertical. Boundary between mineralization and andesite wall rock is very sharp.

Au - 1.15 opt Ag - 2.4 ppm

-

Page 91

As -	-	138	ppm	Cu	-	232 ppm
------	---	-----	-----	----	---	---------

A-95-286 2.0 meter chip (trench 13). Rock composed of chlorite with lesser K-feldspar quartz and hematite. No hematite banding.

Au	-	0.07 opt	Ag	-	0.3 ppm
As	-	34 ppm	Cu	-	135 ppm

A-95-287 1.5 meter chip (trench 15). Interval composed of quartz and hematite with minor chalcopyrite and greenish stain. It is cut by veinlets (up to 1.0 cm wide) of flaky to micaceous specularite. Preferred orientation of veinlets 310 deg./ vertical. Some veinlets are vuggy, sporadically with quartz crystals lining up open spaces. Traces of <u>native gold</u>. Gold is associated with mostly specularite but occurs also in quartz hematite rock.

Au	-	2.867 opt	Ag	-	6.4 ррт
As	-	110 ppm	Cu	-	379 ppm

A-95-288 1.5 meter chip (trench 15). Rock very strongly altered to chlorite with lesser quartz and hematite. Locally minor greenish stain and trace chalcopyrite.

Au	 0.121 opt 	Ag	-	0.6 ppm
As	- <5 ppm	Cu	-	820 ppm

A-95-289 1.5 meter chip (trench 15). Same as 288.

Au	-	0.066 opt	Ag	-	<.2 ppm
As	-	30 ppm	Cu	-	107 ppm

- A-95-290 1.5 meter chip (trench 15). 0.7 meter same as 288, then chlorite- quartz and hematite. Cut by irregular veining with carbonate, specularite, minor greenish stain. Veinlets are often vuggy. Quite distinct hematite banding, orientated 320 deg./ 80 deg. W.
- A-95-291 1.5 meter chip (trench 15). Same as 288.

 Au
 0.757 opt
 Ag
 8.2 ppm

 As
 80 ppm
 Cu
 229 ppm

A-95-292 1.5 meter chip (trench 15). Same as 288.

Page 92

	Au - 150 ppb Ag - 0.4 ppm
	As - 50 ppm Cu - 27 ppm
A-95-293	1.4 meter chip (trench 15). Same as 288.
	Au - 845 ppb Ag - 1.8 ppm
	As - 30 ppm Cu - 94 ppm
A-95-294	Grab of float with hematite cementing purple breccia.
A-95-295	1.5 meter chip (trench 16). Andesite lapilli tuff- very strongly altered to chlorite, K-feldspar, quartz and hematite. Locally some limonite. There are chlorite-quartz carbonate veinlets (up to 1 cm) mostly at 310 deg./ vertical.
	Au - 7.183 opt Ag - 21.6 ppm
	As - 75 ppm Cu - 744 ppm
	As - 75 ppm Cu - 744 ppm
A-95-296	1.5 meter chip (trench 16). Same as 295.
	Au - 600 ppb Ag - 0.6 ppm
	As - 10 ppm Cu - 1165 ppm
A-95-297	1.5 meter chip (trench 16). Same as 295.
	Au - 645 ppb Ag - <.2 ppm
	As - 35 ppm Cu - 121 ppm
A-95-298	1.5 meter chip (trench 17). Very strongly chlorite altered andesite and lapilli tuff. Locally minor hematite and trace pyrite. Good example of incipient mylonite zone.
	Au - 595 ppb Ag - <.2 ppm
	As - 150 ppm Cu - 132 ppm
A-95-299	1.5 meter chip (trench 17). Same as 298.
	Au - 0.029 opt Ag - 0.2 ppm
	As - 545 ppm Cu - 125 ppm

As - 545 ppm [Co - 242 ppm]

Page 93

A-95-300 1.5 meter chip (trench 17). Same as 298.

Au	-	315 ppb	Ag	-	<.2 ppm
As	-	80 ppm	Cu	-	172 ppm

A-95-301 1.5 meter chip (trench 17). Very strongly chlorite lesser hematite altered andesite lapilli tuff. Minor greenish stain. Much stronger mylonite zone- shearing at 300 deg./ vertical.

Au	- 665 ppb	Ag	-	<.2 ppm
As	- 385 ppm	Cu	-	266 ppm
[Co	- 396 ppm]			

- A-95-302 0.9 meter chip (trench 17). Same as 298.
- A-95-303 1.5 meter chip (trench 18). Andesite lapilli tuff. Very strongly chlorite lesser sericite altered.

 Au
 0.183 opt
 Ag
 1.2 ppm

 As
 35 ppm
 Cu
 184 ppm

A-95-304 1.5 meter chip (trench 18). Andesite lapilli tuff. Very strongly chlorite lesser
 K-feldspar, quartz and hematite altered rock. Pyrite up to 3 % as disseminated
 grains. Locally minor limonite and greenish stain. Also minor calcite veining.
 Weak shearing 310 deg./vertical.

Au	 0.039 opt 	Ag -	0.8 ppm
As	- 80 ppm	Cu ·	• 345 ppm

A-95-305 1.5 meter chip (trench 18). Same as 303.

Au	- 505 ppb	Ag	-	<.2 ppm
As	- 270 ppm	Cu	-	405 ppm
[C o	- 196 ppm]			

A-95-306 1.5 meter chip (trench 18). Same as 303.

Au - 0.660 opt Ag - 2.6 ppm As - 175 ppm Cu - 1429 ppm

Page 94

[Co - 140 ppm]

A-95-307 1.5 meter chip (trench 19). Andesite lapilli tuff. Very strongly chlorite altered with subordinate amounts of hematite. Minor irregular calcite veining. Minor pyrite.

Au	-	205 ррь	Ag	-	<.2 ppm
As	-	30 ppm	Cu	-	40 ppm

A-95-308 2.0 meter chip (trench 19). Same as 307.

Au	-	150 ррb	Ag	-	<.2 ppm
As	-	50 ppm	Cu	-	363 ppm

A-95-309 1.3 meter chip (trench 19). Andesite lapilli tuff. Very strongly chlorite altered with streaks of hematite. Minor irregular calcite veining. Minor pyrite.

Au	-	635 ppb	Ag	-	<.2 ppm
As	-	80 ppm	Cu	-	301 ppm

A-95-310 1.8 meter chip (trench 19). Same as 309 except with 10 cm wide zone with 20 % pyrite and some limonite.

Au	- 170 ррb	Ag	-	0.2 ppm
As	- 300 ppm	Cu	-	287 ppm
[Co	- 149 ppm]			

- A-95-311 Grab of chlorite- hematite shear zone 2 meters wide.
- A-95-312 Float of chlorite-hematite altered rock with some malachite and azurite.

Au	-	350 ppb	Ag -	•	2.54 opt
As	-	120 ppm	Cu -	•	9186 ppm

A-95-313 1.5 meter chip (trench 20). Andesite lapilli tuff. Very strongly chlorite lesser hematite altered with minor greenish stain. Some irregular calcite veining. Hematite bands and shearing at 320 deg./vertical.

Au	-	0.437 opt	Ag	-	2.2 ppm
As	-	180 ррт	Cu	-	2073 ррм

Page 95

[Co - 279 ppm]

A-95-314 2.0 meter chip (trench 20). Andesite lapilli tuff. Very strongly chlorite altered with subordinate amounts of hematite.

Au	-	0.039 opt	Ag	-	<.2 ppm
As	-	20 ppm	Cu	-	127 ppm

A-95-315 Grab of outcrop from hematitic breccia.

Au	-	35 ppb	Ag	-	0.8 ppm
As	-	140 ppm	Cu	-	32 ppm

- A-95-316 1.5 meters (trench 30). Hornblende porphyry andesite. Very strong altered to chlorite, K-feldspar, carbonate, sericite and some disseminated hematite. Thin calcite veinlets along fractures at different attitudes.
- A-95-317 1.5 meter chip (trench 30). Same as 316.
- A-95-318 1.5 meter chip (trench 30). Same as 316.
- A-95-319 1.1 meter chip (trench 30). Hornblende porphyry andesite. Very strongly altered to chlorite-carbonate- K-feldspar and hematite. Minor limonite. Hematite zone trends 340 deg.

Au - 0.05 opt	Ag - <.2 ppr	n
As - 370 ppm	Cu - 61 ppm	
[Co - 224 ppm]		

A-95-320 1.5 meter chip (trench 30). Same as 316.

Au - 770 ppb	Ag	-	0.2 ppm
As - 60 ppm	Cu	-	83 ppm
]Co - 100 ppm]			

A-95-321 1.4 meter chip (trench 30). Same as 316.

A-95-322 Grab from outcrop of hematite breccia.

A-95-323 1.2 meter chip (trench 32). Andesite, very strongly chlorite- K-feldspar- carbonate

Page 96

altered. Also minor hematite (mostly or fractures). Thin irregular carbonate veinlets, minor pyrite, hematite dispersed or on fractures.

Au	-	5 ppb	Ag	-	0.4 ppm
As	-	45 ppm	Cu	-	224 ppm

A-95-324 1.2 meter chip (trench 32). Same as 323.

Au	-	40 ppb	Ag	-	1.0 ppm
As	-	30 ppm	Cu	-	328 ppm

A-95-325 1.2 meter chip (trench 32). Interval is completely altered to hematite and dark green chlorite. Locally greenish stain. Minor pyrite, limonite and chalcopyrite.

Au - 0.03 opt	Ag	-	11.4 ppm
As - 245 ppm	Cu	-	1284 ppm
[Co - 125 pp	n]		

A-95-326 1.2 meter chip (trench 32). Same as 323- hematite stringers along schistosity at approximately 340 deg./vertical.

Au	-	50 ppb	Ag	-	1.0 ppm
As	-	35 ppm	Cu	-	301 ppm

A-95-327 1.2 meter chip (trench 32). Same as 323.

Au	- 180 ppb	Ag -	0.6 ppm
As	- 45 ppm	Cu -	124 ppm

- A-95-328 1.8 meter chip (trench 33) andesite. Very strongly chlorite altered, thin irregular carbonate veinlets. Minor pyrite, trace chalcopyrite.
- A-95-329 1.5 meter chip (trench 33). Same as 328.
- A-95-330 1.2 meter chip (trench 33) andesite. Very strongly altered to chlorite, K-feldspar with subordinate hematite and carbonate. Irregular carbonate lesser quartz veinlets and small replacements. Hematite usually as stringers lesser dispersed. Minor pyrite and trace chalcopyrite.

Au - 110 ppb Ag - 1.0 ppm

Page 97

As - 100 ppm Cu - 242 ppm

A-95-331 1.2 meter chip (trench 33). Same as 330.

Au	-	0.05 opt	Ag	-	8.4 ppm
As	-	765 ppm	Cu	-	3292 ppm
[Co	-	162 ppm]			

- A-95-332 1.5 meter chip (trench 33). Same as 330.
- A-95-333 1.8 meter chip (trench 33). Same as 328.
- A-95-334 Grab from zone of rusty argillite about 1 meter wide.
- A-95-335 1.3 meter chip (trench 37) andesite. Very strongly carbonate lesser chlorite altered. Minor thin carbonate veinlets. Average 1 % pyrite- very fine grained and disseminated.

Au	-	180 ppb	Ag	-	0.2 ppm
As	-	255 ppm	Cu	-	97 ppm

A-95-336 0.6 meter chip (trench 37). Interval completely sericite-limonite altered. Minor pyrite and trace arsenopyrite? as well as greenish stain.

Au	-	1.77 opt	Ag	-	10.4 ppm
As	-	1915 ppm	Cu	-	648 ppm

A-95-337 0.5 meter chip (trench 37). Same as 335.

Au	-	170 ppb	Ag	-	<.2 ppm
As	-	60 ppm	Cu	-	46 ppm

A-95-338 1.5 meter chip (trench 38) andesite. Very strongly chlorite-carbonate altered. Frequent thin calcite veinlets along fractures together with some manganese/ carbonaceous substance (also along fractures). Average 1 % very fine grained disseminated pyrite.

Au	-	445 ppb	Ag	-	0.4 ppm
As	-	1495 ppm	Cu	-	161 ppm
[C 0	-	229 ppm]			

Page 98

A-95-339 1.5 meter chip (trench 38). Same as 338.

Au	-	155 ppb	Ag	-	0.2 ppm
As	-	220 ppm	Cu	-	232 ррт

A-95-340 1.5 meter chip (trench 38). Same as 338.

Au	-	440 ppb	Ag	-	<.2 ppm
As	-	75 ppm	Cu	-	153 ppm

A-95-341 1.5 meter chip (trench 38). Same as 338.

Au	-	0.07 opt	Ag	-	0.4 ppm
As	-	245 ppm	Cu	-	180 ppm

A-95-342 1.5 meter chip (trench 38). Same as 338.

Au	-	460 ppb	Ag	-	<.2 ppm
As	-	260 ррт	Cu	-	145 ppm

A-95-343 2.0 meter chip (trench 38). Same as 338.

Au	-	555 ppb	Ag	•	<.2 ppm
As	-	170 ppm	Cu	-	194 ppm

A-95-344 1.8 meter chip (trench 39) andesite. Very strongly chlorite-carbonate, K-feldspar altered with thin irregular carbonate veining. Average 7 % pyrite and 1 % arsenopyrite as disseminated irregular patches and veinlets.

Au	- 0.07	opt	Ag	-	<.2 ppm
As	- 8665	ppm	Cu	-	446 ppm
[C 0	- 411	ppm]			

A-95-345 1.2 meter chip (trench 39) andesite. Very strongly dark chlorite-carbonate altered with thin irregular carbonate veining. Average 1 % pyrite.

Au - 505 ppb	Ag - <.2 ppm	
As - 3915 ppm	Cu - 158 ppm	
[Co - 187 ppm]		

Page 99

- 1.5 meter chip (trench 35) andesite. Very strongly carbonate (calcite) lesser A-95-346 chlorite, K-feldspar altered with average 1 % of very fine disseminated pyrite. Frequent calcite veining mostly at 330 deg./vertical and 850/30 deg. N. Also present are stringers of carbonaceous substance. Ag - 0.4 ppm - 180 ppb Au As - 220 ppm Cu - 207 ppm 1.5 meter chip (trench 35). Same as 346. A-95-347 Au - 0.04 opt Ag - 0.4 ppm As - 545 ppm Cu - 182 ppm [Co - 194 ppm] A-95-348 2.0 meter chip (trench 35). Same as 346. Au - 45 ppb Ag - <.2 ppm Cu - 56 ppm As - 160 ppm 1.5 meter chip (trench 36) andesite. Very strongly altered to dark green chlorite, A-95-349 K-feldspar, carbonate with frequent irregular calcite veining (controlled mostly by fractures). Locally minor hematite stain on fractures. Average 1-2 % pyrite as disseminations, veinlets, patches. Also, trace arsenopyrite. Au - 30 ppm Ag - <.2 ppm As - 140 ppm Cu - 353 ppm A-95-350 1.7 meter chip (trench 36). Same as 349. Ag - <.2 ppm Au - 670 ppb As - 4610 ppm Cu - 285 ppm [Co - 242 ppm] 1.6 meter chip (trench 36). Same as 349. A-95-351 Ag - <.2 ppm Au - 110 ppb As - 1105 ppm Cu - 151 ppm
 - [Co 114 ppm]

<u>د</u> ...

Page 100

A-95-352 1.5 meter chip (trench 40) andesite. Very strongly chlorite, K-feldspar, carbonatehematite altered. Hematite mostly as stringers at 330/ vertical. Also, calcite veining most often at 330/ vertical. Trace pyrite.

Au	-	0.04 opt	Ag	-	0.4 ppm
As	-	165 ppm	Cu	-	140 ppm

- A-95-353 1.7 meter chip (trench 40). Same as 352.
- A-95-354 1.5 meter chip (trench 41) andesite. Very strongly chlorite, K-feldspar lesser carbonate altered. Some irregular white to pink colored calcite veining. Minor pyrite, locally some hematite mostly along fractures.
- A-95-355 1.9 meter chip (trench 41). Same as 354.
- A-95-356 1.4 meter chip (trench 41) and esite. Strongly sheared, very strongly chloritecarbonate, K-feldspar altered with some irregular calcite veining. Average 5 % very fine disseminated pyrite.
- A-95-357 1.2 meter chip (trench 41) andesite. Very strongly chlorite, K-feldspar- hematitecarbonate altered. Irregular calcite veining present. Minor pyrite.
- A-95-358 1.4 meter chip (trench 41). Same as 357.
- A-95-359 1.6 meter chip (trench 42) andesite. Very strongly chlorite- carbonate altered. Irregular calcite and minor quartz veining. Pyrite average 5 % as disseminated grains, short veinlets and patches.
- A-95-360 1.2 meter chip (trench 42) andesite. Very strongly sericite-chlorite altered. Some irregular calcite veining.
- A-95-361 1.8 meter chip (trench 42) andesite. Very strongly chloritic lesser hematite altered. Hematite is evenly dispersed. Some calcite veining. Minor pyrite.
- A-95-362 1.2 meter chip (trench 42). Same as 361.
- A-95-363 1.5 meter chip (trench 42) andesite. Very strongly hematite dominated alteration with lesser chlorite and possibly sericite. Hematite dispersed in the whole interval. Locally irregular carbonate veining. Trace pyrite.

Page 101

- A-95-364 1.5 meter chip (trench 42). Same as 363.
- A-95-365 1.5 meter chip (trench 43) andesite. Very strongly chlorite, K-feldspar, lesser carbonate altered. Some irregular carbonate veining. Trace pyrite.
- A-95-366 1.5 meter chip (trench 43) and esite. Very strongly altered to K-feldspar, dark green chlorite and lesser hematite. Minor pyrite, some greenish stain. Some calcite veining.

Au - 0.09 opt	Ag - 1.0 ppm
As - 260 ppm	Cu - 1061 ppm]
[Co - 257 ppm]	

A-95-367 1.2 meter chip (trench 43) aphanitic andesite? with some limonite stringers at 330/vertical.

Au	-	5 ppb	Ag	-	<.2 ppm
As	-	65 ppm	Cu	-	65 ppm

A-95-368 1.4 meter chip (trench 43). Same as 367.

Au	-	150 ppb	Ag	-	0.2 ppm
As	-	55 ppm	Cu	-	132 ppm

- A-95-369 1.7 meter chip (trench 44) and esite completely altered to K-feldspar and hematite. Locally some remnants of chloritized and esite. Frequent thin veinlets of quartz, calcite and dark green chlorite. Mostly at 310/20-40 deg. S. One veinlet of specularite. Minor pyrite and chalcopyrite.
- A-95-370 1.5 meter chip (trench 44). Same as 369.
- A-95-371 2.0 meter chip (trench 44). Same as 369.

Au	-	0.06 opt	Ag	-	2.4 ppm
As	-	160 ppm	Cu	-	175 ppm

Page 102

A-95-372 1.5 meter chip (trench 45) andesite. Very strongly chlorite-carbonate-sericite altered rock. Moderately sheared. Some hematite and limonite on fractures, trace pyrite.

Au	-	245 ppb	Ag	-	<.2 ppm
As	-	515 ppm	Cu	-	117 ppm

A-95-373 1.5 meter chip (trench 45). 0.75 meters same as 372, then andesite, very strongly chlorite-hematite, lesser carbonate altered. Minor pyrite. Part of cataclasite zone.

Au	-	0.48 opt	Ag	-	2.4 ppm
As	-	15 ppm	Cu	-	379 ppm

A-95-374 1.1 meter chip (trench 45) andesite, very strongly chlorite-hematite, lesser carbonate altered. Minor pyrite. Part of cataclasite zone.

Au	-	575 ppb	Ag	-	<.2 ppm
As	-	20 ppm	Cu	-	189 ppm

A-95-375 1.2 meter chip (trench 46) andesite lapilli tuff. Very strongly dark green chloritecarbonate altered. Some irregular carbonate veining. Minor pyrite (<1 %).

Au	-	0.05 opt	Ag	-	<.2 ppm
As	-	15 ppm	Cu	-	85 ppm

- A-95-376 1.5 meter chip (trench 46). As in 375.
- A-95-377 1.5 meter chip (trench 46). As in 375.
- A-95-378 1.5 meter chip (trench 46). Same as in 375.

Au	-	5 ppb	Ag	-	<.2 ppm
As	-	30 ppm	Cu	-	410 ppm

A-95-379 1.5 meter chip (trench 46). Same as in 375.

A-95-380 1.5 meter chip (trench 46). Same as in 375.

Page 103

Au -	350 ррb	Ag -	- 1	<.2 ppm
As - 9	90 ppm	Cu -	- :	139 ppm

A-95-381 1.5 meter chip (trench 46). Same as in 375.

Au	-	5 ppb	Ag	-	<.2 ppm
As	-	80 ppm	Cu	-	646 ppm

A-95-382 1.7 meter chip (trench 47) and esite. Very strongly dark green chlorite lesser hematite and carbonate altered rock. Minor pyrite, some irregular calcite veining.

A-95-383 1.5 meter chip (trench 47). Same as in 382.

Au	-	105 ррЬ	Ag	-	<.2 ppm
As	-	15 ppm	Cu	-	132 ppm

A-95-384 1.5 meter chip (trench 47) and esite completely altered to hematite, K-feldspar and dark green chlorite. Some irregular calcite veining. Minor pyrite and chalcopyrite.

Au	-	0.268 opt	Ag	-	0.4 ppm
As	-	35 ppm	Cu	-	168 ppm

A-95-385 1.5 meter chip (trench 47). Same as 384.

Au	-	370 ррЬ	Ag	-	<.2 ppm
As	-	5 ppm	Cu	-	146 ppm

A-95-386 1.5 meter chip (trench 47). Same as 384. Some greenish stain.

Au	- 335 ppb	Ag -	2.2 ppm
As	- <5 ppm	Cu -	3103 ppm

A-95-387 1.5 meter chip (trench 47). Same as 384. Some greenish stain.

Au	-	220 ррЪ	Ag	-	<.2 ppm
As	-	10 ppm	Cu	-	414 ppm

A-95-388 1.5 meter chip (trench 47). Same as 384.

Page 104

Au	-	5 ppb	Ag	-	<.2 ppm
As	-	<5 ppm	Cu	-	406 ppm

A-95-389 1.5 meter chip (trench 47). Same as 384.

Au	-	835 ppb	Ag	-	<.2 ppm
As	-	15 ppm	Cu	-	81 ppm

A-95-390 1.8 meter chip (trench 47). Same as 384.

Au	-	10 ppb	Ag	-	<.2 ppm
As	-	5 ppm	Cu	-	399 ppm

- A-95-391 1.5 meter chip (trench 48) andesite. Very strongly dark green chlorite, hematite and K-feldspar altered. Minor irregular thin veinlets of calcite and quartz. Minor pyrite.
- A-95-392 1.5 meter chip (trench 48). Same as 391.

Au - 0.232 opt	Ag - 0.6 ppm
As - 170 ppm	Cu - 137 ppm
[Co - 169 ppm]	

A-95-393 1.5 meter chip (trench 48). Same as 391.

Au	-	100 ppb	Ag	-	<.2 ppm
As	-	15 ppm	Cu	-	125 ppm

A-95-394 1.5 meter chip (trench 48). Same as 391.

Au	-	5 ppb	Ag	-	<.2 ppm
As	-	15 ppm	Cu	-	241 ppm

A-95-395 1.5 meter chip (trench 50) andesite, very strongly dark green chlorite-hematite, K-feldspar altered. Cut by frequent thin quartz- carbonate- dark chlorite veinlets mostly at 320/ vertical to 80 deg. N.E.

Au	-	700 ppb	Ag	-	<.2 ppm
As	-	80 ppm	Cu	-	45 ppm

Page 105

[Co - 263 ppm]

A-95-396 2.0 meter chip (trench 50). Same as 395.

Au -	20 ppb	Ag	-	<.2 ppm
Ag -	30 ppm	Cu	-	77 ppm
[Co -	123 ppm]			

A-95-397 1.8 meter chip (trench 52) andesite. Completely altered to dark green chlorite, hematite and K-feldspar. Very few quartz-carbonate tiny irregular veinlets.

Au - 625 ppb	Ag	-	<.2 ppm
As - 35 ppm	Cu	-	153 ppm
[Co - 224 ppm]			

- A-95-398 0.75 meter chip (trench 52) andesite. Very strongly chloritized and K-feldspar lesser hematite altered rock. Frequent quartz-carbonate, dark green chlorite veinlets (irregular).
- A-95-399 1.5 meter chip (trench 51) andesite breccia. Very strongly dark green chlorite, hematite, quartz, carbonate altered. Some very thin quartz carbonate, dark green chlorite lesser specularite veinlets mostly at 330/ vertical.
- A-95-400 1.5 meter chip (trench 51). Same as 399.
- A-95-401 1.5 meter chip (trench 51). Same as 399.
- A-95-402 1.5 meter chip (trench 51). Same as 399.
- A-95-403 2.0 meter chip (trench 51) andesite breccia. Very strongly quartz-hematite altered. Some thin veinlets as in 399. Minor grey mineral. Abundant green stain.

Au	-	355 ppb	Ag	-	29.6 ppm
As	-	45 ppm	Cu	-	4959 ppm

- A-95-404 1.3 meter chip (trench 51) andesite breccia. Very strongly chlorite, quartz, carbonate, hematite altered. Irregular carbonate veining.
- A-95-405 1.9 meter chip (trench 51). Same as 404.

Page 106

- A-95-406 1.2 meter chip (trench 53) andesite breccia. Very strongly quartz-hematite- dark green chlorite-carbonate altered. There is some quartz- dark green chlorite veining mostly 320/ vertical to steep west. Minor greenish stain.
- A-95-407 1.1 meter chip (trench 53). Same as 406.
- A-95-408 1.5 meter chip (trench 54) completely altered to quartz-hematite and dark green chlorite. Frequent quartz veinlets and irregular veining. Small stringers of extremely fine grained grey sulfide associated with quartz veining. Lesser carbonate and epidote veining. Interval intruded by light green felsic rock moderately propylitzed? mineralization seems to be related to the irregular intrusion. Also minor greenish stain. Quartz veins sometimes vuggy with quartz crystals.

Au	-	5 ppb	Ag	-	1.4 ppm
As	-	45 ppm	Cu	-	293 ppm

- A-95-409 1.5 meter chip (trench 54) and esite breccia. Very strongly hematite- dark green chlorite altered with lesser carbonate and quartz. Minor irregular calcite and quartz veining.
- A-95-410 1.5 meter chip (trench 54). Same as 409. Two short intervals of sericitic alteration.
- A-95-411 1.4 meter chip (trench 54). Same as 408.
- A-95-412 1.5 meter chip (trench 57) andesite. Strongly to very strongly K-feldsparchlorite- hematite- carbonate altered with frequent quartz. Lesser calcite, dark green chlorite, epidote. Locally minor greenish stain on fractures.

Au	-	5 ppb	Ag	-	<.2 ppm
As	-	15 ppm	Cu	-	276 ppm

A-95-413 1.5 meter chip (trench 57). Same as 412.

Au	-	735 ppb	Ag	-	<.2 ppm
As	-	15 ppm	Cu	-	57 ppm

A-95-414 1.5 meter chip (trench 57). Same as 412.

Page 107

		-
	Au - 0.127 opt	
	As - 20 ppm	Cu - 58 ppm
A-95-415	1.5 meter chip (trench 57).	Same as 412.
	Au - 0.047 opt	Ag - <.2 ppm
	As - 15 ppm	Cu - 99 ppm
A-95-416	1.5 meter chip (trench 57) and lesser hematite. Some greenish	desite. Very strongly altered to dark green chlorite a stain.
	Au - 20 ppb	Ag - 0.2 ppm
	As - 15 ppm	
A-95 - 417	1.5 meter chip (trench 57). Sa	ame as 412.
A-95-418	1.5 meter chip (trench 57). Sa	ume as 412.
	A 0 112	
	Au - 0.113 opt As - 15 ppm	
	715 - 15 ppm	
A-95-419	1.5 meter chip (trench 57). Sa	ume as 412.
	Au 20 pph	A.g. 0.8 nom
	Au - 20 ppb As - 20 ppm	
A-95-420	1.3 meter chip (trench 57). Sa	ame as 412.
	Au - 5 ppb	Ag - ≤ 2 ppm
	As - <5 ppm	
A-95-421	1.1 meter chip (trench 78) and chlorite is a dark chlorite.	lesitic rock. Very strongly chloritized. Part of

Au	-	275 ppb	Ag	-	<.2 ppm
As	-	20 ppm	Cu	-	444 ppm

A-95-422 1.1 meter chip (trench 78) and esitic rock. Very strongly dark green chloritequartz and hematite altered.

Page 108

Au	-	495 ppb	Ag	-	0.6 ppm
As	-	145 ppm	Cu	-	768 ppm
[C 0	-	134 ppm]			

A-95-423 1.1 meter chip (trench 78). Interval completely quartz-hematite altered with subordinate amounts of "graphite". In the middle of interval is about 40 cm section rich in "graphite". Veins of specularite up to 1 cm thick. Orientation 310/70-80 deg. S. Generally, specularite occurs on fractures. There are occasionally open spaces (vugs).

Au	-	3.859 opt	Ag	~	18.2 ррт
As	-	65 ppm	Cu	-	76 ppm

A-95-424 1.5 meter chip (trench 78) and esitic rock. Very strongly chlorite altered with subordinate amounts of hematite.

Au	-	280 ppb	Ag	-	<.2 ppm
As	-	55 ppm	Cu	-	312 ppm

A-95-425 1.2 meter chip (trench 78). Same as 424.

Au	-	140 ppb	Ag	-	<.2 ppm
As	-	45 ppm	Cu	-	121 ppm

A-95-426 0.9 meter chip (trench 78). Completely quartz-hematite altered interval.

Au	-	0.686 opt	Ag	-	4.2 ppm
As	-	210 ppm	Cu	-	280 ррт

A-95-427 1.5 meter chip (trench 78) andesite. Very strongly chlorite-quartz lesser hematite altered. Locally minor irregular carbonate veining.

Au	-	720 ppb	Ag	-	0.2 ppm
As	-	25 ppm	Cu	-	83 ppm

A-95-428 1.8 meter chip (trench 78). Same as 427.

 Au
 350 ppb
 Ag
 <2 ppm</th>

 As
 20 ppm
 Cu
 65 ppm

Page 109

A-95-429 0.9 meter chip (trench 58) andesitic rock. Very strongly chlorite- K-feldspar altered. Minor irregular carbonate veining. Minor pyrite <1 %. Part of chlorite is dark green colour.

Au - 0.077 opt	Ag - 1.0 ppm
As - 1455 ppm	Cu - 163 ppm
[Co - 216 ppm]	

- A-95-430 1.5 meter chip (trench 58). Same as 429.
- A-95-431 1.4 meter chip (trench 58) and esitic rock. Very strongly chlorite- K-feldspar altered with subordinate amounts of hematite. Minor pyrite.

Au	-	0.035 opt	Ag	-	<.2 ppm
As	-	135 ppm	Cu	-	398 ppm

A-95-432 1.2 meter chip (trench 77) and esitic rock. Very strongly chlorite- K-feldspar carbonate altered. Minor irregular calcite veining. Minor pyrite.

Au	-	5 ppb	Ag	-	<.2 ppm
As	-	130 ppm	Cu	-	458 ppm

A-95-433 1.5 meter chip (trench 77). Same as 432.

Au	-	440 ppb	Ag	-	<.2 ppm
As	-	100 ppm	Cu	-	875 ppm

A-95-434 1.2 meter chip (trench 77). Interval completely dark green chlorite-K-feldspar- hematite altered. Minor irregular carbonate veining. Locally minor greenish stain.

Au - 0.051 opt	Ag	-	<.2 ppm
As - 110 ppm	Cu	-	195 ppm
[Co - 140 ppm]			

A-95-435 1.5 meter chip (trench 77) andesitic rock. Very strongly chlorite altered with lesser developed moderate K-feldspar alteration, carbonate and hematite alteration. Some irregular carbonate veining. Minor pyrite. Sporadically green stain. Part of chlorite- dark green colors.

Page 110

A-95-436 1.5 meter chip (trench 77). Same as 435.

A-95-437 1.4 meter chip (trench 77). Same as 435.

A-95-438 0.8 meter chip (trench 77). Same as 435.

Au	-	665 ppb	Ag	-	<.2 ppm
As	-	55 ppm	Cu	-	353 ppm

A-95-439 2.0 meter chip (trench 77). Same as 434.

Au	 0.154 opt 	Ag	-	0.4 ppm
As	- 350 ppm	Cu	-	712 ppm
[Co	- 343 ppm]			

A-95-440 1.5 meter chip (trench 77). Same as 434.

Au - 0.034 opt	Ag - 0.4 ppm
As - 145 ppm	Cu - 1299 ppm
[Co - 148 ppm]	

A-95-441 1.3 meter chip (trench 77). Same as 434.

Au - 310 ppb	Ag - <.2 ppm
As - 100 ppm	Cu - 646 ppm
[Co - 117 ppm]	

A-95-442 1.4 meter chip (trench 77). Same as 434.

 Au - 0.138 opt
 Ag - 1.2 ppm

 As - 210 ppm
 Cu - 2434 ppm

 [Co - 371 ppm]
 Cu - 2434 ppm

A-95-443 1.5 meter chip (trench 77). Same as 435.

Au	-	0.051 opt	Ag	-	<.2 ppm
As	-	80 ppm	Cu	-	328 ppm
[Co	-	167 ppm]			

A-95-444 1.5 meter chip (trench 77). Same as 435.

Page 111

	Au - 5 ppb As - 45 ppm	Ag - <.2 ppm Cu - 986 ppm
A-95-445	1.5 meter chip (trench 77). Sa	me as 435.
A-95-446	1.6 meter chip (trench 77). Sa	me as 434.
	Au - 465 ppb As - 25 ppm	
A-95-447	• •	lesitic rock. Very strongly dark green chlorite There are some irregular carbonate veining. stain.
A-95-448	1.3 meter chip (trench 76). Sa	me as 447.
	••	Ag - <.2 ppm Cu 1103 ppm
A-95-449	1.3 meter chip (trench 76). Sa	ume as 447.
	Au - 5 ppb	Ag - 0.6 ppm
	As - 15 ppm	Cu - 1313 ppm
A-95-450	1.2 meter chip (trench 76). In altered with average 3 % pyrit	terval is very strongly chlorite sericite- K-feldspar e. Some limonite stain.
	Au - 0.060 opt	Ag - 0.8 ppm
	As - 140 ppm [Co - 123 ppm]	Cu - 57 ppm
A-95-451	1.2 meter chip (trench 76). Sa	ame as 447.
A-95-452	1.5 meter chip (trench 76). Sa	ume as 447.
	Au - 435 ppb	Ag - <.2 ppm
	As - 40 ppm	Cu - 62 ppm

[Co - 137 ppm]

Page 112

A-95-453 1.5 meter chip (trench 76). Same as 447.

Au	-	45 ppb	Ag	-	1.4 ppm
As	-	35 ppm	Cu	-	2193 ppm

- A-95-454 1.5 meter chip (trench 76). Same as 447.
- A-95-455 1.5 meter chip (trench 75). Interval is completely K-feldspar, hematite, carbonate, lesser dark green chlorite altered. Frequent thin quartz, carbonate, dark green chlorite veinlets. Mostly at 330 deg. vertical. Minor greenish stain and minor specularite. Trace chalcopyrite. Same minor epidote veining.
- A-95-456 1.5 meter chip (trench 75). Same as 455.
- A-95-457 1.5 meter chip (trench 75). Same as 455.
- A-95-458 1.5 meter chip (trench 75). Same as 455.
- A-95-459 1.9 meter chip (trench 75) andesitic rock. Very strongly chlorite, K-feldspar carbonate hematite altered. Fine grained quartz-carbonate veining mostly at 320/70-80 N. E.

Au	-	610 ppb	Ag	-	0.4 ppm
As	-	20 ppm	Cu	-	20 ppm

A-95-460 1.0 meter chip (trench 74) and esitic rock. Very strongly chlorite- carbonate altered. Minor pyrite and limonite.

Au	-	10 ppb	Ag	-	<.2 ppm
As	- 2	20 ppm	Cu	-	287 ppm

A-95-461 1.0 meter chip (trench 74). Same as 460.

Au	-	80 ppb	Ag	-	6.2 ppm
As	-	75 ppm	Cu	-	4048 ppm

A-95-462 1.0 meter chip 9 trench 74). Interval completely chlorite, K-feldspar, carbonate altered. Locally subordinate amounts of hematite. Minor pyrite, some manganese on fractures.

Page 113

Au	-	520 ppb	Ag	-	2.4 ppm
As	-	60 ppm	Cu	-	101 ppm

A-95-463 1.8 meter chip (trench 74). Same as 462.

Au	-	400 ppb	Ag	-	1.0 ppm
As	-	75 ppm	Cu	-	55 ppm

A-95-464 1.1 meter chip (trench 73). Rock is completely K-feldspar, hematite altered with lesser chlorite alteration. Frequent quartz, carbonate, dark green chlorite veinlets mostly at 320 deg./ vertical to very steep south.

Au	-	110 ppb	Ag	-	<.2 ppm
As	-	15 ppm	Cu	-	22 ppm

A-95-465 1.2 meter chip (trench 73). Same as 464.

Au	-	0.036 opt	Ag	-	<.2 ppm
As	-	30 ppm	Cu	-	27 ppm

- A-95-466 0.9 meter chip (trench 72). Rock is completely chlorite, K-feldspar, carbonate, hematite altered. Minor irregular carbonate veining.
- A-95-467 1.0 meter chip (trench 72). Same as 466.
- A-95-468 1.5 meter chip (trench 71) andesitic rock completely altered to K-feldspar, hematite, chlorite and carbonate. Some irregular veining by quartz- carbonate -dark chlorite and locally minor epidote.
- A-95-469 1.5 meter chip (trench 71). Same as 468.
- A-95-470 1.5 meter chip (trench 71). Same as 468.
- A-95-471 1.6 meter chip (trench 71). Same as 468.

ERK-95-340 1.5 meter chip (trench 14). Rock composed mostly of dark green chlorite with lesser hematite (mostly along fractures) and minor greenish stain.

Au	-	200 ppb	Ag	-	0.5 ppm
As	-	11 ppm	Cu	-	536 ppm

--

- -

- .

Page 114

ERK-95-341	1.5 meter chip (trench 14). Interval composed of dark green chlorite-quartz and hematite. Frequently, the rock is cut by thin (up to 1.0 cm) veinlets of mostly quartz, lesser carbonate and black flaky mineral. Preferred orientation of veinlets 50 deg./moderate to shallow chip N. Common greenish stain (chyrsocolla and malachite and possibly something else). 50 cm of massive hematite lesser quartz.					
	Au-0.78 optAg-9.4 ppmAs-159 ppmCu-2487 ppm					
ERK-95-342	1.6 meter chip (trench 14) Interval composed of massive hematite lesser quartz and pockets of very fragile, flaky hematite?					
	Au- 6.56 optAg- 16.8 ppmAs- 66 ppmCu- 401 ppm					
ERK-95-343	Middle of ridge- outcrop of purple tuffaceous volcanic. Small patch of good malachite stained jasper rock- purple volcanic weakly fractured with small blebs of black copper mineral. Covellite stained approximately 0.5 %.					
	Au-180 ppbAg-17.60 optAs-155 ppmCu-2.49 %					
ERK-95-344	Purple volcanic breccia with green andesite fragments- sheared zone with minor stringers of massive hematite. Sample is highly malachite stained, grey schistose rock within zone. Minor black sulfide (copper mineralization).					
	Au- 125 ppbAg- 4.73 optAs- 30 ppmCu- 4.46 %					
ERK-95-345	Highly malachite stained, altered to grey-green schistose rock with abundant black copper mineralization as well as malachite black sulfide approximately 2-3 %.					
	Au - 230 ppb Ag - 3.40 opt					

As- 10 ppm Cu - 3.37 %

Page 115

ERK-95-346 Sample is purple hematite rich sheared volcanic (abundant quartz-chlorite veinlets on fracture planes). Appears to be grey altered fragment with abundant malachite and fine grained black copper sulfide (energite)? approximately 1-2 %.

Au	-	120 ррЬ	Ag	-	0.91 opt
As	-	15 ppm	Cu	-	7991 ppm

ERK-95-347 Purple volcanic with abundant malachite, minor narrow calcite veinlets. Heavy hematite.

Au	-	85 ppb	Ag	-	7.4 ррт
As	-	<5 ppm	Cu	-	4961 ppm

ERK-95-348 1.3 meter chip of grey sericitic rusty rock, highly sheared with coarse pyrite cubes as well as coarse grained pyrite in veinlets.

Au	-	30 ppb	Ag	-	1.4 ppm
As	-	5 ppm	Cu	-	223 ррт

- ERK-95-349 1.4 meter chip of similar rock. Pyrite approximately 1-2 %.
- ERK-95-350 Dark green chlorite rock with hematitic bands- local malachite stain. Abundant gypsum crystals on outcrop surface.

Au	-	25 ppb	Ag	-	4.0 ppm
As	-	15 ppm	Cu	-	1885 ppm

ERK-95-351 Highly sheared, purple volcanic, heavy green chlorite, minor hematitic bands containing heavy local malachite.

Au	-	210 ррь	Ag	-	1.29 opt
As	-	75 ppm	Cu	-	3.12 %

ERK-95-352 Similar to 351- extremely heavy malachite, abundant gypsum crystals on surface forming large clusters.

Au	-	105 ppb	Ag	-	2.49 opt
As	-	45 ppm	Cu	-	2.11 %

ERK-95-353 Wedge of argillite in volcanic, rusty with quartz stockwork zone up to 30 cm.

Page 116

Sample is brecciated argillite with quartz stockwork approximately 5 %. Coarse blebs of pyrite, minor sphalerite.

 Au
 250 ppb
 Ag
 7.4 ppm

 As
 4410 ppm
 Cu
 328 ppm

 [Cd
 183 ppm]
 328 ppm

ERK-95-354 Outcrop of pale green chloritized medium grained diorite? Heavy pyrite as disseminated grains and in fractures- pyrite approximately 5 %.

Au	-	110 ppb	Ag	-	<.2 ppm
As	-	30 ppm	Cu	-	306 ppm

- ERK-95-355 30 cm chip (trench 21). Sample is dark green chlorite rock with narrow 1 cm bands of hematite, calcite, traces erytherite? Minor pyrite < 0.5 %.
- ERK-95-356 1.3 meter chip (trench 21). Green chloritic rock with fine grained pyrite approximately 1-2 %- occurs as cubes. Minor pink calcite veinlets approximately 1 cm.
- ERK-95-357 1.0 meter chip(trench 21) 0.57 m of massive hematite on S. side. 0.43 meters of dark green chloritic rock with 1-2 cm stringers of hematite approximately 10 %. Minor pyrite in chloritic section (1 meter).

Au	 0.572 opt 	Ag	-	0.8 ppm
As	- 370 ppm	Cu	-	249 ppm
[Co	- 220 ppm]			

ERK-95-358 1.35 meter chip (trench 21). Narrow pyrite zone approximately 15 cm on contact with massive hematite, minor malachite in pyritic section. Rest of interval is green chloritic rock with weak calcite veinlets, some with minor coarse pyrite. Overall, pyrite approximately 2-3 %.

Au	-	0.290 opt	Ag	-	1.8 ppm
As	-	220 ррт	Cu	•	1251 ppm

ERK-95-359 1.5 meter chip (trench 21). Green chloritic rock, possibly intrusive?- Minor calcite veinlets < 1 cm, minor pyrite approximately 1 %.

Au - 120 ppb Ag - <.2 ppm

Page 117

As	-	20 ppm	Cu -	298 ррт

- ERK-95-360 1.5 meter chip (trench 21) same as 359. More calcite veinlets approximately 5%.
- ERK-95-361 1.6 meter chip (trench 21) same as 358 and 359. Calcite veinlets approximately 5%. Narrow 2 cm hematite stringer on south edge of trench. Pyrite approximately 2%.
- ERK-95-362 1.0 meter chip (trench 22). Massive hematite stringer with strong malachite stain. Stringers approximately 50% of zone. Minor coarse pyrite approximately 2-3% associated with stringers- other 50% is green to grey chloritic rock with minor pyrite. Overall, pyrite approximately 2%.

Au	-	1.278 opt	Ag	-	13.6 ppm
As	-	20 ppm	Cu	-	7324 ppm

ERK-95-363 0.65 meter chip (trench 22)- green chloritic rock with 2-3 % coarse cube pyrite as well as fracture filling.

ERK-95-364 0.7 meter chip (trench 23). High schistose, grey-green chloritized rock, several 1-4 cm bands of limonitic rock. Minor pyrite observed.

Au	-	0.235 opt	Ag	-	2.8 ppm
As	-	85 ppm	Cu	-	359 ppm

ERK-95-365 0.85 meter chip (trench 23). Green, dense, intrusive? Narrow sheared zone approximately 4 cm with limonitic gouge, very narrow pyrite veinlets approximately 1-2 %.

Au	-	595 ppb	Ag	-	0.6 ppm
As	-	80 ppm	Cu	-	223 ppm

ERK-95-366 0.95 meter chip (trench 23) schistose, chloritic rock with limonitic earthy sections up to 4 cm. Pyrite approximately 1 %.

Au	-	0.045 opt	Ag	-	1.0 ppm
As	•	245 ppm	Cu	-	201 ppm

ERK-95-367 0.9 meter chip (trench 24) - green sheared lapilli tuff. Sparse fine grained pyrite

Page 118

approximately 1 %. Rock is chloritic.

	Au - 5 ppb Ag As - 130 ppm Cu	- <.2 ppm - 150 ppm		
ERK-95-368	fine grained pyrite stringers in thi	20 meters of heavy limonitic sheared section, s section. Rest of rock is sheared, chloritic ely 1 %. Overall pyrite approximately 5-7 %.		
	Au- 5 ppbAAs- 105 ppmCo			
ERK-95-369	1.4 meter chip (trench 24)- gree pyrite approximately 1-2 %.	en chloritic lapilli tuff with very fine grained		
ERK-95-370		weakly chloritic lapilli tuff, minor fine grained ebs. Arsenopyrite approximately 4-5 %. Coarse stringers approximately 4 %.		
	Ag - 0.65 opt A	g - 3.4 ppm		
	As - 3.84 ppm C	u - 174 ppm		
ERK-95-371	95-371 1 meter chip (trench 25)- heavy arsenopyrite stringers in green chlorite lapi tuff. Arsenopyrite approximately 4-5 %. Coarse pyrite as disseminated blebs and stringers approximately 4 %.			
	Au - 2.40 opt A	g - 14.2 ppm		
	As - 2.43 % C [Co - 848 ppm]	u - 277 ppm		
ERK-95-372	1 meter chip (trench 25)- green calcite stringers, pyrite approxim	chloritic lapilli tuff with minor narrow dark ately 1 %.		

Au	-	0.05 opt	Ag	-	0.6 ppm
As	-	425 ppm	Cu	-	83 ppm

ERK-95-373 1 meter chip (trench 25)- green weakly schistose, chloritized lapilli tuff. Minor pyrite.

Au	-	620 ррЬ	Ag	-	<.2 ppm
----	---	---------	----	---	---------

Page 119

As - 95 ppm Cu - 39 ppm

- ERK-95-374 2.0 meter chip (trench 25). Dense, non-schistose lapilli tuff. Minor calcite veinlets- fine grained pyrite approximately 1-2%.
- ERK-95-375 0.45 meter chip (trench 26). Highly schistose, almost talcose rock, probably altered lapilli tuff. Sparse pyrite.

Au	-	305 ррb	Ag	-	0.4 ppm
As	-	125 ppm	Cu	-	17 ppm

ERK-95-376 1.0 meter chip (trench 26). High limonitic zone with abundant malachite pyrite stringers approximately 30 %. Minor arsenopyrite-chlorite lapilli tuff. Appears to be host rock.

Au – 0.74 opt	Ag	-	27.0 ppm
As - 1.86 %	Cu	-	5179 ppm
[Co - 1826 ppm]			

ERK-95-377 0.75 meter chip (trench 26)- green chloritic lapilli tuff, minor pyrite on contact with 376. Pyrite approximately 1 % overall.

Au	-	0.05 opt	Ag	-	0.8 ppm
As	-	650 ppm	Cu	-	92 ppm

ERK-95-378 1.2 meter chip (trench 27) - green weakly chlorite lapilli tuff with pyrite approximately 1-2%.

Au	-	80 ppb	Ag	-	<.2 ppm
As	-	305 ppm	Cu	-	94 ppm

ERK-95-379 1.1 meter chip (trench 27) - green chlorite tuff cut by schistose chloritic zone. Chalcopyrite and sparse arsenopyrite. Pyrite approximately 2-3 %.

Au	-	0.06 opt	Ag	-	0.6 ppm
As	-	2935 ppm	Cu	-	217 ppm
[C 0	-	331 ppm]			

Page 120

ERK-95-380 0.9 meter chip (trench 27). Highly limonitic, schistose chloritic rock with pyrite bands. Minor arsenopyrite- pyrite approximately 10-15 %, arsenopyrite approximately 3 %.

Au	-	1.02 opt	Ag	-	10.2 ppm
As	-	1.19 %	Cu	-	942 ppm
[Co	-	510 ppm]			

ERK-95-381 1.1 meter chip (trench 28). Highly schistose, limonitic and highly weathered. Green chlorite tuff with stringers of pyrite and minor arsenopyrite-pyrite approximately 10-15%. Abundant limonitic wad.

Au	-	1.22 opt	Ag	-	6.6 ppm
As	-	1.52 %	Cu	-	618 ppm
[C 0	-	483 ppm]			

ERK-95-382 0.9 meter chip (trench 28). Same, pyrite approximately 15-20 %arsenopyrite approximately 5-6 %.

Au	 1.07 opt 	Ag	~	11.8 ppm
As	- 1.01 %	Cu	-	758 ppm
[C o	- 332 ppm]			

ERK-95-383 1.0 meter chip (trench 28)- dense, green, weakly chloritic intrusive? Pyrite approximately 1 %.

Au	-	275 ррь	Ag	-	<.2 ppm
As	~	770 ppm	Cu	-	52 ppm

ERK-95-384 0.55 meter chip (trench 29) - green chloritic intrusive? sparse pyrite, weak carbonate.

Au	-	0.07 opt	Ag	-	0.6 ppm
As	-	1050 ppm	Cu	-	127 ppm

ERK-95-385 1.2 meter chip (trench 29). Heavy limonitic zone with stringers of pyrite-rock is green-grey chloritic sheared intrusive? Pyrite approximately 10-15 %, arsenopyrite approximately 3-4 %.

Page 121

Au	-	1.85 opt	Ag	-	10.2 ррт
As	-	1.92 %	Cu	-	1184 ppm
[Co	-	862 ppm]			

ERK-95-386 0.9 meter chip (trench 29). Green chloritic intrusive?, pyrite approximately 1-2%. Minor pyrite veinlets.

Au	-	0.31 opt	Ag	-	2.2 ppm
As	-	1000 ppm	Cu	-	207 ppm

ERK-95-387 1.4 meter chip (trench 31). Green siliceous, weakly chloritic feldspar porphyry or diorite (medium grained with approximately 50% euhedral to subhedral feldspar). Minor pyrite approximately 1%- minor red hematite blebs.

Au	-	785 ppb	Ag	-	0.4 ppm
As	-	1975 ppm	Cu	-	52 ppm
[Co	-	144 ppm]			

ERK-95-388 1.3 meter chip (trench 31). Schistose, chloritic rock with siliceous stringers up to 2 cm, locally pyrite and arsenopyrite veinlets up to 3 cm. Overall, pyrite approximately 5-6 %- arsenopyrite approximately 1-2 %.

Au - 0.98 o	pt Ag	; -	7.6 ppm
As - 9305 p	pm Cu	L -	826 ppm
[Co - 522 p	pm]		

ERK-95-389 1.9 meter chip (trench 31). Green, dense, siliceous lapilli tuff? Local strong barren quartz stockwork and silicification. Pyrite approximately 1%.

Au	- 145 ppb	Ag ·	- <.2 ppm
As	- 70 ppm	Cu -	- 54 ppm

ERK-95-390 Grab approximately 7 meters at 311 deg. from 388. 30 cm zone of rusty, schistose rock in creek bed. Pyrite and arsenopyrite approximately 15 %.

Au	-	0.17 opt	Ag	-	0.6 ppm
As	-	1.78 %	Cu	-	105 ppm
[Co	-	1630 ppm]			

Page 122

ERK-95-391 0.9 meter chip (trench 34)-25 cm massive pyrite in quartz rich zone. Wall rock is green silicified lapilli tuff. Pyrite overall approximately 15-20%.

Au	-	0.84 opt	Ag	-	6.2 ppm
As	-	2465 ppm	Cu	-	848 ppm

ERK-95-392 1.5 meter chip (trench 80). Approximately 0.3 meters of green chloritic rock with sparse pyrite 1-2 %-.7 meters of green chloritic and hematite altered rock. Malachite stain in hematitic section.

Au	-	245 ppb	Ag	-	0.2 ppm
As	-	20 ppm	Cu	-	629 ppm

ERK-95-393 1.5 meter chip (trench 80). Green chloritic and hematite altered zone with stringers of massive hematite up to 4 cm. Approximately 10% of zone.

Au	 0.463 opt 	Ag	-	0.8 ppm
As	 85 ppm 	Cu	-	453 ppm
[Co	- 104 ppm]			

- ERK-95-394 1.0 meter chip (trench 80). Same except stringers approximately 5 % of zone.
- ERK-95-395 1.5 meter chip (trench 80). Green chloritic and hematite altered zoneat N. end of interval approximately 30 cm of hematite stringers. Minor malachite.

Au	-	0.069 opt	Ag	-	0.2 ppm
As	-	8 0 ppm	Cu	-	255 ppm

ERK-95-396 1.5 meter chip (trench 80). Same as 395- approximately 20 cm of massive hematite at N. end of interval.

Au	-	850 ppb	Ag	-	<.2 ppm
As	-	35 ppm	Cu	-	268 ppm

ERK-95-397 1.5 meter chip (trench 80). Weakly silicified with minor hematite stringers < 1cm. Minor malachite.

ERK-95-398 1.5 meter chip (trench 80). Green chloritic, hematite altered with

Page 123

abundant quartz-calcite veinlets at N. end. Heavy hematite rich rock- minor malachite.

Au - 0.085 opt	Ag - 1.0 ppn	1
As - 155 ppm	Cu - 354 pp	m
[Co - 296 ppm]		

- ERK-95-399 1.5 meter chip (trench 49). Hematite rich, green chloritic rock- abundant quartz calcite veinlets as well as green chloritic veinlets. Quartz veinlets approximately 5-10%, chlorite approximately 5%.
- ERK-95-400 1.5 meter chip (trench 49). Abundant quartz-calcite veinlets. Generally flat lying, massive hematite stringers approximately 5-7 % of zone. Minor malachite, abundant green chlorite veinlets. Generally flat lying, approximately 40 %.

Au - 530 ppb	Ag	-	0.6 ppm
As - 35 ppm	Cu	-	123 ppm
[Co - 120 ppm]			

- ERK-95-401 0.7 meter chip (trench 49). Green chloritic altered and hematite altered rock. Sparse quartz-calcite and chlorite veinlets.
- ERK-95-402 1.2 meter chip (trench 4 extension). Green chlorite to almost black chloritic rock with coarse pyrite as veinlets and blebs. Approximately 7-10 %- minor native copper.
- ERK-95-403 1.5 meter chip (trench 4 extension). 0.4 meters of pyritic chlorite rock on N. end, then green chloritic rock with minor hematite. Pyrite approximately 3 %.
- ERK-95-404 1.5 meter chip (trench 14 extension). Green chloritic rock, minor hematite. Sparse pyrite veinlets approximately 1 mm.

Au	-	390 ppb	Ag	-	<.2 ppm
As	-	50 ppm	Cu	-	174 ppm

ERK-95-405 1.5 meter chip (trench 14 extension). Same as 404.

Au - 245 ppb Ag - <.2 ppm

Page 124

	As - 85 ppm Cu - 180 ppm					
ERK-95-406	1.2 meter chip (trench 14 extension). Massive hematite stringers approximately 30-40 cm wide in green chloritic rock. Minor coarse pyrite blebs approximately 2-3 cm across- remainder of rock is green chloritic, hematite altered rock with sparse pyrite.					
	Au- 0.231 optAg- 0.4 ppmAs- 105 ppmCu- 243 ppm					
ERK-95-407	1.5 meter chip (trench 16 extension). Siliceous, hematite altered breccia - abundant quartz veinlets and green chlorite.					
	Au - 125 ppb Ag - <2 ppm As - 20 ppm Cu - 105 ppm					
ERK-95-408	1.4 meter chip (trench 16 extension). Highly siliceous, abundant quartz veinlets approximately 7 % both black and vertical. Black chlorite stringers approximately 5 %- minor black micaceous mineral on fractures. Traces malachite.					
	Au - 415 ppb Ag - 0.2 ppm As - 15 ppm Cu - 320 ppm					
ERK-95-409	1.5 meter chip (trench 55). Green chloritic rock, hematite altered with strong quartz veinlet and chloritic veinlets approximately 10%.					
	Au - 145 ppb Ag - <2 ppm As - 25 ppm Cu - 31 ppm					
ERK-95-410	1.5 meter chip (trench 55). Same- more intense stockwork approximately 15 % for 40 cm by 409. Massive hematite veinlets approximately 4-5 cm with veinlets of black shiny micaceous mineral.					
	Au-0.298 optAg-3.8 ppmAs-100 ppmCu-249 ppm					
ERK-411	1.5 meter chip (trench 55). Same as 410- no hematite veinlets but black shiny main veinlets approximately 3 %. Veinlets of epidote.					

л. -, -----

Page 125

Au	-	175 ppb	Ag	-	<.2 ppm
As	-	15 ppm	Cu	-	31 ppm

- ERK-95-412 0.7 meter chip (trench 55). Green chloritic, hematite altered breccia, epidote approximately 3 %.
- ERK-95-413 1.5 meter chip (trench 56). Choritic, hematite altered breccia with massive hematite stringer approximately 6 cm. Traces malachite, weak quartz stockwork- minor silicification.

Au	-	0.378 opt	Ag	-	2.4 ppm
As	-	20 ppm	Cu	-	153 ppm

- ERK-95-414 1.3 meter chip (trench 56). Green chloritic and hematite altered breccia. Minor calcite veinlets.
- ERK-95-415 1.5 cm (trench 79). 10 cm of green chloritic rock- then narrow shear zoneon N. side of shear is green chloritic, hematite altered rock for 60 cm. Then massive hematite with narrow quartz veinlets and chlorite veinlets. Abundant malachite- abundant calcite.

Au	-	0.212 opt	Ag	-	1.6 ppm
As	-	230 ppm	Cu	-	618 ppm

ERK-95-416 1.5 meter chip (trench 79). Hematite (massive) stringers approximately 25% in green chloritic, hematite altered breccia. Minor malachite, abundant calcite veinlets as well as green chlorite veinlets.

Au	-	0.385 opt	Ag	-	1.6 ppm
As	-	115 ppm	Cu	-	646 ppm

ERK-95-417 1.0 meter chip (trench 59). Green chloritic tuff with fine grained pyrite as disseminations approximately minor 5 mm pyrite veinlets. Pyrite approximately 2-3 %.

Au	-	365 ppb	Ag	-	<.2 ppm
As	-	85 ppm	Cu	-	243 ppm

ERK-95-418 1.5 meter chip (trench 59). Green chloritic tuff, minor hematite stringers as well as hematite altered, minor pyrite.

Page 126

Au	-	355 ppb	Ag	-	<.2 ppm
As	-	85 ppm	Cu	-	233 ppm

ERK-95-419 1.5 meter chip (trench 59). Same hematite zone as DC-95-104 approximately 3 meters west. Massive hematite stringers approximately 10-15 cm as well as numerous tiny veinlets. Minor very narrow shiny black veinlets- abundant calcite veinlets approximately 7%. Traces malachite.

Au	-	0.106 opt	Ag	-	<.2 ppm
As	-	105 ppm	Cu	-	445 ppm
[C 0	-	119 ppm]			

- ERK-95-420 1.5 meter chip (trench 59). Green chloritic, hematite altered rock with minor hematite stringers, weak calcite veinlets. Local weak silicification.
- ERK-95-421 1.5 meter chip (trench 59). Same as 420.
- ERK-95-422 1.5 meter chip (trench 60). Green chloritic schistose tufffine grained pyrite approximately 3 %.
- ERK-95-423 1.5 meter chip (trench 60). Green chloritic schistose tuff, pyrite veinlets approximately 1-2 meters, as well as fine grained pyrite. Pyrite approximately 4 %.

Au	-	70 ppb	Ag	-	<.2 ppm
As	-	120 ррт	Cu	-	241 ppm

ERK-95-424 0.9 meter chip (trench 60). Same, pyrite approximately 6 %.

Au	-	35 ppb	Ag	-	<.2 ppm
As	-	260 ррт	Cu	-	396 ppm

ERK-95-425 1.8 meter chip (trench 61). Green, grey chloritic tuff with fine grained pyrite approximately 8-9 %. Traces black shiny mineral, arsenopyrite?

Au	-	280 ррb	Ag	-	<.2 ppm
----	---	---------	----	---	---------

Page 127

	As - 1010 ppm	Cu - 365 ppm
ERK-95-426	• • •	Green chloritic tuff with fine grained to 0.5 cm. Pyrite approximately
	Au - 0.054 opt As - 1015 ppm	Ag - <.2 ppm Cu - 321 ppm
ERK-95-427	1.5 meter chip (trench 62).	Same, pyrite approximately 8 %.
	Au - 0.040 opt As - 270 ppm	Ag - <.2 ppm Cu - 278 ppm
ERK-95-428	1.2 meter chip (trench 62).	Same, pyrite approximately 7-8 %.
	Au - 0.091 opt As - 1185 ppm	Ag - 0.8 ppm Cu - 234 ppm
ERK-95-429	Zone of hematite stringers, a approximately 1 meter wide	grab of massive hematite. Zone in breccia.
ERK-95-430	1.5 meter chip (trench 78). approximately 30 cm at N. e and hematite altered andesit	end. Rust of rock is green chlorite
	Au - 1.567 opt As - 115 ppm	Ag - 4.0 ppm Cu - 110 ppm
ERK-95-431	- • •	Green chloritic andesite lapilli tuff fine veinlets approximately 3-4 %.
	Au - 0.053 opt As - 1955 ppm	Ag - 0.6 ppm Cu - 360 ppm
ERK-95-432	1.5 meter chip (trench 63).	Same as 431.
	Ag - 675 ppb	Ag - <.2 ppm

 Ag
 6/5 ppb
 Ag
 2 ppm

 As
 625 ppm
 Cu
 380 ppm

ERK-95-433 1.5 meter chip (trench 63). Same as 431- coarse pyrite blebs as well as veinlets minor arsenopyrite? Pyrite approximately 7-8%.

Au	-	0.195 opt	Ag	-	1.8 ppm
As	-	5400 ppm	Cu	-	493 ppm

ERK-95-434 1.5 meter chip (trench 63). Same as 431 and 432.

Au	-	790 ppb	Ag	-	<.2 ppm
As	-	1125 ppm	Cu	-	343 ppm

- ERK-95-435 1.5 meter chip (trench 63). Green, siliceous andesite lapilli tuff. Minor hematite altered, pyrite approximately 3%.
- ERK-95-436 0.7 meter chip (trench 64). Green, weakly chloritic, tuff with sparse pyrite.

Au	-	0.053 opt	Ag	-	0.4 ppm
As	-	655 ppm	Cu	-	118 ppm

ERK-95-437 1.15 meter chip (trench 64). Highly limonitic zone of green chloritic schistose rock with pyrite veinlets approximately 10-15 % with 3-4 % arsenopyrite. Traces malachite.

Au	-	1.267 opt	Ag	-	14.0 ppm
As	-	1465 ppm	Cu	-	776 ppm

ERK-95-438 1.5 meter chip (trench 64). Green, weakly chloritic tuff with minor blebs of massive pyrite up to 12 cm across. Minor veinlets pyrite approximately 3-4 %.

Au	-	0.167 opt	Ag	-	2.4 ppm
As	-	995 ppm	Cu	-	275 ppm

ERK-95-439 1.5 meter chip (trench 64). Same as 438. Pyrite approximately 1-2%.

ERK-95-440 1.5 meter chip (trench 68). Green chloritic tuff with sparse

Page 129

hematite veinlets.

Au	- 200 ppb	Ag	-	<.2
As	- 95 ppm	Cu	-	231 ppm

- ERK-95-441 1.5 meter chip (trench 68). Same, hematite veinlets up to 10 cm. Approximately 15%.
- ERK-95-442 1.1 meter chip (trench 68). Same, strong hematite altered with minute hematite veinlets.
- ERK-95-443 2.3 meter chip (trench 69). Green chloritic tuff with veinlets of pyrite approximately 7%. Minor narrow hematite veinlets.

Au	-	0.030 opt	Ag	-	<.2 ppm
As	-	435 ppm	Cu	-	321 ppm

ERK-95-444 1.5 meter chip (trench 69). Green chloritic tuff, abundant calcite veinlets approximately 7-10%. Massive hematite stringers approximately 10%. Erytherite stain in middle of 444.

Au	-	0.202 opt	Ag	-	0.4 ppm
As	-	510 ppm	Cu	-	330 ppm

ERK-95-445 1.1 meter chip (trench 70). Green lapilli tuff, chloritic, pyrite veinlets up to 5 meters. Approximately 5 %.

Au	-	175 ppb	Ag	-	0.2 ppm
As	-	175 ppm	Cu	-	126 ppm

ERK-95-446 1.1 meter chip (trench 70). Highly limonitic, rusty with wad- 25 cm of massive pyrite and hematite with shiny black mineral. Narrow quartz stringer with chalcopyrite and black sulfide. Pyrite approximately 30 %.

Au	-	0.162 opt	Ag	-	17.6 ppm
As	-	6115 ppm	Cu	-	2916 ppm

ERK-95-447 0.8 meter chip (trench 70). Green chloritic lapilli tuff, sparse pyrite, hematite altered with minor hematite veinlets.

Page 130

		Ag - <.2 ppm Cu - 245 ppm
ERK-95-448	1.45 meter chip (trench 65). I heavy pyrite stringers in footwar approximately 15 %, arsenopy	
	-	Ag - 2.0 ppm Cu - 1810 ppm
ERK-95-449	• •	reen chloritic, highly rusty zone with arsenopyrite. Pyrite approximately ely 3 %.
	Au - 1.309 opt As - 1.02 % [Co - 698 ppm]	Ag - 7.2 ppm Cu - 2354 ppm
ERK-95-450	1.0 meter chip (trench 67). G zone with green chlorite and m stringer approximately 10 cm. arsenopyrite 1-2 %.	
	Au - 0.126 opt As - 1.34 % [Co - 655 ppm]	Ag - 2.4 ppm Cu - 840 ppm
ERK-95-451	1.5 meter chip (trench 81). G pyrite streaks. Traces malachit	reen lapilli tuff, minor fine grained e.
	Au - 185 ppb As - 225 ppm	Ag - <.2 ppm Cu - 722 ppm
ERK-95-452	bands. Pyrite seams up to 10 c	reen schistose rock with rusty, limonitic m, minor arsenopyrite? at N. end of well as calcite. Minor erytherite stain

over 0.5 meters.

Page 131

Au	-	0.923 opt	Ag	-	2.0 ppm
As	-	1.25 %	Cu	-	710 ppm
[Co	-	1638 ppm]			

ERK-95-453 1.5 meter chip (trench 81). Green, chlorite and hematite altered . Weakly silicified with massive hematite stringers approximately 5 %.

Au	-	100 ррb	Ag	-	<.2 ppm
As	-	185 ppm	Cu	-	267 ppm

ERK-95-454 1.5 meter chip (trench 81). Same as 453. More strongly silicifiedminor malachite, some hematite veinlets. Minor quartz veinlets approximately 5 %.

Au	-	0.096 opt	Ag	-	0.4 ppm
As	-	225 ppm	Cu	-	561 ppm

ERK-95-455 1.5 meter chip (trench 81). Same as 454-0.5 meters of heavy erytherite stain at N. end. Right at N. end for 10 cm is massive hematite with shiny black mineral approximately 10% of hematite. Minor malachite.

Au	-	0.111 opt	Ag	-	2.4 ppm
As	-	775 ppm	Cu	-	1007 ppm
[Co	-	343 ppm]			

ERK-95-456 1.5 meter chip (trench 81). Approximately 10 cm of massive hematite with shiny black mineral at S. end. Then heavily erytherite stained chlorite altered and hematite altered tuff. Minor malachite at N. end- massive arsenopyrite with minor pyrite stringer approximately 5-6 cm in sample. Quartz veinlets with minor chalcopyrite.

Au	 0.371 opt 	Ag - 2.	.6 ppm
As	- 2.07 %	Cu - 1	230 ppm
[Co	- 4137 ppm]		

ERK-95-457 1.5 meter chip (trench 81). Approximately 10-15 cm of massive arsenopyrite at S. end. Then green chlorite altered and hematite altered

Page 132

rock with very strong erytherite. Minor narrow arsenopyrite stringers at N. end. Abundant carbonate, minor malachite- minor apple-green stain.

 Au - 0.522 opt
 Ag - 5.8 ppm

 As - 2.40 ppm
 Cu - 1473 ppm

 [Co - 4812 ppm]
 Cu - 1473 ppm

ERK-95-458 1.5 meter chip (trench 81). Green weakly chloritic tuff with strong carbonate alteration- minor hematite altered. Sparse pyrite.

Au	-	0.049 opt	Ag	-	0.6 ppm
As	-	930 ppm	Cu	-	853 ppm

ERK-95-459 1.1 meter chip (trench 81). Same as 458.

Au	-	25 ppb	Ag	-	<.2 ppm
As	-	280 ррт	Cu	-	83 ppm

DC-95-21 Grab. Large, mottled brown outcrop. Volcanic with 2-3 % pyrite, silicified, slight brecciated appearance.

Au	-	25 ppb	Ag	-	0.8 ppm
As	-	< 5 ppm	Cu	-	379 ppm

DC-95-22 Grab (select, from frost-heaved subcrop). Argillite, very silicified, 10-15 % pyrite, some arsenopyrite. Quartz veinlets forming stockwork. Greenish cast to rock, vuggy in places.

Au	-	0.057 opt	Ag	-	2.64 opt
As	-	200 ppm	Cu	-	1223 ppm

DC-95-23 Grab. From parallel silicified structure, similar to previous sample but not so well silicified or pyritized.

DC-95-25 Float, 0.3 meters angular, in creek bed. Brecciated rock with coarse grained pyrite and chalcopyrite (cpy has unusual golden luster).

Au	-	0.186 opt	Ag	-	1.38 opt
As	-	2205 ppm	Cu	-	5819 ppm

Page 133

DC-95-26 Float, 15 cm, angular. Same general type of rock and mineralization as previous sample, but with less sulfides. Malachite stain.

Au	-	585 ppb	Ag	-	19.8 ppm
As	-	195 ppm	Cu	-	3055 ppm

DC-95-27 Grab. Brecciated rock with chlorite, pyrite and chalcopyrite.

Au	•	270 ррь	Ag	-	6.0 ррт
As	-	110 ppm	Cu	-	4238 ppm

DC-95-28 Float, or subcrop, probably latter. Same as above, but with only minor chalcopyrite.

Au	-	200 ррb	Ag	-	12.6 ppm
As	-	110 ppm	Cu	-	4908 ppm

DC-95-29 Grab (select). Very well mineralized (pyrite) brecciated and chloritized rock, trace chalcopyrite. Curious sheen on pyrite. Sample from 15 cm wide heavily mineralized streak in 2 meter wide zone of rusty weathering rock.

Au	-	120 ppb	Ag	-	6.6 ррт
As	-	145 ppm	Cu	-	4190 ppm

DC-95-30 Grab. From gossanous outcrop NNW of helipad. Somewhat similar to Alex's massive sulfide outcrop below (trench 8). Strange green clayey material in rock, perhaps some unusual weathering product.

Au	-	2.905 opt	Ag	-	0.88 opt
As	-	1625 ppm	Cu	-	960 ppm

DC-95-31 Float, small angular cobble. Country rock with drusy, quartz crystals and unusual granular pink coating.

Au	-	0.034 opt	Ag	-	2.2 ppm
As	-	100 ppm	Cu	-	37 ppm

DC-95-32 Grab (select). Out crop of whitish-grey volcanic rock cut by numerous stringers of magnetite/hematite? Grab is from one of the stringers. Local area is well mineralized with similar stringers over 5 meters width.

Page 134

Au - 0.037 opt	Ag - <.2 ppm
As - 295 ppm	Cu - 205 ppm
[Co - 0.03 %]	

DC-95-33 Grab (sub-crop). Whitish-pink granular crust on surface of volcanic rock, probably tuff.

Au	-	150 ppb	Ag	-	<.2 ppm
As	-	70 ppm	Cu	-	156 ppm

DC-95-34 Float (possible sub-crop). Volcanic rock containing pinkish-red mineral, minor green stain in places. Much similar to rock in vicinity.

Au	-	2.374 opt	Ag	-	8.6 ppm
As	-	790 ppm	Cu	-	3420 ppm

DC-95-35 Float (or sub-crop, very angular and fresh). Similar to previous sample, unusual light green oxide in places, also tiny little dots of intense blue. Cut by veinlets of hematite?

Au	-	2.638 opt	Ag	-	7.6 ppm
As	-	11 85 ppm	Cu	-	3802 ppm
[Co	-	0.04 %]			

DC-95-36 Grab, subcrop. Volcanic rock with veinlets of reddish-purple hematite. Zone is about 2 to 6 meters wide.

Au	- 0.242 opt	Ag - 2.4 ppm
As	- 620 ppm	Cu - 711 ppm
[Co	- 0.03 %]	

DC-95-37 Grab. From 1 meter wide gossaned structure similar to pyrite-arsenopyrite structures below. Can be traced for another 50 meters uphill. Moderate sulfide content compared to structures downhill.

Au	-	350 ppb	Ag	-	<.2 ppm
As	-	185 ppm	Cu	-	391 ppm

DC-95-38 Grab. Random grab from several pieces of oxidized subcrop. Similar description

Page 135

to previous sample. Moderately pyritized. Appears to be a branch structure which joins previous sample's structure about 15 meters uphill.

Au	 0.432 opt 	Ag - 1.6 ppm
As	- 2300 ppm	Cu - 468 ppm

DC-95-39 Grab. Outcrop of oxidized rock, moderately pyritized.

Au	-	140 ppb	Ag	-	<.2 ppm
As	-	155 ppm	Cu	•	359 ppm

DC-95-40 Grab. From 0.3 meters wide oxidized zone, similar to last sample.

Au	-	1.478 opt	Ag	-	4.4 ppm
As	-	115 ppm	Cu	-	536 ppm

DC-95-41 Grab. From small, oxidized bluff with well mineralized float at base. Some of the float has slight malachite stain. Material in sample site has a somewhat pinkish stain. Very little visible sulfides.

Au	-	0.782 opt	Ag	-	5.4 ppm
As	-	815 ppm	Cu	-	3777 ppm
[C 0	-	0.08 %]			

DC-95-42 Grab. From small, oxidized outcrop (say 4 meters by 6 meters). Rock may be a dyke, very fine grained with fine-grained disseminated pyrite. Does not look too interesting.

Au	-	390 ррb	Ag	-	<.2 ppm
As	-	60 ppm	Cu	-	517 ppm

DC-95-43 Grab. From 0.5 meter wide oxidized zone, volcanic, running straight up and down hill and exposed for about 5 meters. Has odd, greenish earthy crust; green, has yellow tinge to it.

Au	-	0.077 opt	Ag	-	16 ppm
As	-	140 ppm	Cu	-	1827 ppm

DC-95-44 Float. Rubble below oxidized zone in bluff. Drusy vein quartz with much green, earthy coatings. Source appears to be prominent 1-3 meters wide fissure running

Page 136

uphill (fissure has oxidized walls in places). No visible sulfides.

Au	- 180 ppb	Ag -	5.2 ppm
As	- <5 ppm	Cu -	784 ppm

DC-95-45 Float, 20 cm angular. About 30 meters up chute marking fissure. Heavily oxidized rock with apple-green stain and also pinkish-blue stain.

Au	-	0.041 opt	Ag	-	1.55 opt
As	-	155 ppm	Cu	-	1.12 %

DC-95-46 Grab. From south wall of fissure, about 2.5 to 3.5 meters wide at this point. Heavy Fe oxide, fine grained pyrite about 3-5 %.

Au	-	785 ppb	Ag	-	13.4 ppm
As	-	140 ppm	Cu	-	4201 ppm

DC-95-47 Grab. From 1 meter wide zone marked by malachite stain, heavy Fe ox, moderate pyrite content. Silicified.

Au -	0.084 opt	Ag -	1.25 opt
As 🗠 -	<5 ppm	Cu -	1.01%

DC-95-48 Grab (select). Vertical vein, maximum 0.5 meters wide, exposed for about 50 meters or so, narrowing to 5 cm in places. Quartz with occasional pods of very white, fine grained arsenopyrite.

Au	-	80 ppb	Ag	-	4.0 ppm
As	-	135 ppm	Cu	-	160 ppm

DC-95-49 Grab. Random chips from 2 meter wide outcrop of silicified, brecciated argillite/ siltstone (very much like argillite on the western side of nunatak). Some arsenopyrite.

Au	-	110 ррb	Ag	-	4.2 ppm
As	-	390 ppm	Cu	-	67 ppm

DC-95-50 Grab. Subcrop, large Fe-stained area, about 8 meters wide. Sample contains minor disseminated sulfides in fine grained sediment, not brecciated as in previous sample.

Page 137

DC-95-68 Select grab. Hematite vein in 3-4 meter wide stringer zone with abundant malachite stain in places. About 1 % chalcopyrite in sample.

Au - 655 ppb		Ag	-	2.32 opt
As - 2790 ppm		Cu	-	1.11 %
[Co - 106 ppm]	•			

DC-95-69 Grab. From 1 meter zone cut by rusty stringers carrying 5-10 % sulfides, predominantly pyrite, maybe arsenopyrite.

Au	-	0.796 opt	Ag	-	4.4 ррт
As	-	15.75 %	Cu	-	913 ppm
[Co	-	6506 ppm]			

DC-95-70 Grab. From megabreccia containing fragments up to 0.7 meters in size, hematite stain permeates much of the breccia. Some of the fragments appear to be diorite. Maroon volcanics outcrop lower down toward ice.

Au	-	140 ppb	Ag	-	0.4 ppm
As	-	845 ppm	Cu	-	54 ppm

DC-95-71 Grab. Breccia similar to last sample but with local malachite stain. Much hematite in rock throughout.

Au	-	20 ppb	Ag	-	6.29 opt
As	-	405 ppm	Cu	-	1.25 %

DC-95-72 Float, 0.3 by 0.8 meters angular. Composed of roughly equal amounts of quartz and bright red hematite? Contains one or two rosettes of odd-looking whitish mineral.

Au	-	15 ppb	Ag	-	5.2 ppm
As	-	85 ppm	Cu	-	31 ppm

- DC-95-73 Float, 0.4 by 0.9 meters angular. Purplish rock with bright red fragments; very little sulfides or quartz.
- DC-95-74 Float, probably subcrop. From the top of a small, vein/stringer about 20 cm wide. Sample is hosted in maroon colored volcanic with malachite stain in places.

Page 138

Au	-	40 ppb	Ag	-	14.6 ppm
As	-	25 ppm	Cu	-	2096 ppm

DC-95-75 Grab. Same description as previous sample.

Au	- 5 ppb	Ag -	1.2 ppm
As	- 20 ppm	Cu -	266 ppm

DC-95-100 Grab. Select sample from massive specularite or hematite from zone.

Au	-	8.40 opt	Ag	-	20.7 ppm
As	-	70 ppm	Cu	-	93 ppm

DC-95-101 Grab. From 0.3 meter wide hematite stringer zone, probable continuation of Trench 15 mineralization downhill along edge of polished, raised outcropping. No malachite stain or abundant mineralization evident.

Au	-	0.07 opt	Ag	-	0.6 ppm
As	-	83 ppm	Cu	-	603 ppm

DC-95-102 Grab. From sub-crop at base of small bluff; contains hematite and slight malachite stain in places.

Au	-	0.306 opt	Ag	-	0.7 ppm
As	-	39 ppm	Cu	-	907 ppm

DC-95-103 Grab. Hematite outcrop with some malachite on broken surfaces.

Au	-	1.414 opt	Ag	-	3.9 ррт
As	-	227 ррт	Cu	-	2302 ppm

DC-95-104 Grab. Similar to last sample but with more hematite.

Au	-	0.88 opt	Ag	-	1.6 ppm
As	-	356 ppm	Cu	-	213 ppm
[Co	-	619 ppm]			

DC-95-110 Grab. From face of bluff about 9 meters north of DC-95-41. Similar to DC-95-41 description, but with erytherite and identified specks of bright blue mineral (either Cu mineral or maybe cobalite?).

Page 139

 Au - 1.713 opt
 Ag - 6.6 ppm

 As - 2320 ppm
 Cu - 1186 ppm

 [Co - 765 ppm]
 Cu - 1186 ppm

DC-95-111 Grab. Brown stained outcrop that carries minor wisps of arsenopyrite in fresher pieces.

Au	-	475 ppb	Ag	-	0.8 ppm
As	-	225 ppm	Cu	-	614 ppm

DC-95-112 Grab. From Mn stained bluff about 5 meters high with some hematite veinlets. Sample is from 3 locations about 1 meter apart. Rock contains an odd vitreous mineral with a curious habit, looks a little like a rare earth.

Au	-	10 ppb	Ag	-	1.8 ppm
As	-	45 ppm	Cu	-	39 ppm

APPENDIX II

~

ويتحج

~

يتحج

GEOCHEMICAL ANALYSIS RESULTS FOR THE TRENCHING AND GEOCHEMICAL PROGRAM

CERTIFICATE OF ASSAY AS 95-3135

TEUTON RESOURCES CORPORATION 509-675 W. HASTINGS STREET VANCOUVER, B.C. V6C 1N2

ATTENTION: DINO CREMONESE

83 Rock samples received July 24, 1995 PROJECT #: Teuton Reg SAMPLES SUBMITTED BY: E. Kruchkowski

......

,	ET #.	Tag #	Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)	As (%)	Cd (%)	Cu (%)	Pb (%)	Zn (%)	
-	5	AW-95-5	-	-	5324.0	155.26	-	0.33	•	6.78	18.60	
	15	A-95-15	5.94	0.173	333.6	9.73	-	-	11.50	-	-	
	16	A-95-16	-	-	37.8	1.10	-	-	-	-	-	
	18	A-95-18	-	-	-	-	-	-	1.52	-	-	Clone
	24	A-95-24	6.71	0.196	-	-	-	-	-	-	-	Cione
	25	A-95-25	17.03	0.497	-	-	-	-	1.01	-	-	
	26	A-95-26	6.11	0.173	67.8	1.98	-	-	6.67	-	-	
	27	A-95-27	3.67	0.107	-	-	-	-	1.48	-	-	
	31	A-95-31	26.77	0.731	38.9	1.13	3.82	-	-	1.33	-	
	32	A-95-32	-	-	30.3	0.88	-	-	1.42	-	-	
	37	A-95-37	-	-	72.6	2.12	•	-	-	-	-	
	38	A-95-38	-	-	279.4	8.15	-	1.22	-	2.48	27.60	
()	39	A-95-39	-	-	331.6	9.67	-	0.52	-	-	14.80	
	40	A-95-40	-	-	3610.0	105.28	-	1.39	-	40.20	25.20	
	41	ERK-95-1	-	-	161.3	4.70	-	-	-	-	-	
	42	ERK-95-2	-	-	1053.0	30.71	•	-	-	20.60	6.06	
~~	43	ERK-95-3	-	-	2224.1	64.86	-	-	-	1.86	4.53	
	44	ERK-95-4	-	-	816.3	23.81	-	•	-	1.74	4.96	
	45	ERK-95-5	-	-	861.4	25.12	-	-	•	1.98	8.13	·.
	46	ERK-95-6	-	-	3784.0	110.35	-	-	-	1.73	5.72	
	47	ERK-95-7	-	-	237.4	5 92	-	0.32	-	1.22	10.20	
	48	ERK-95-8	-	-	2744.0	30.02	-	0.70	-	19.70	33.20	
	49	ERK-95-9	-	-	1462.3	42.65	-	-	-	1.64	5.84	
	50	ERK-95-10	1.01	0.029	•		-	•	-	-	•	<u>_</u>
	51	ERK-95-11	8.19	0.239	-	-	-	-	-	-	-	
	52	ERK-95-12	1.69	0.049	-	-	-	-	-	-	-	
	53	ERK-95-13	7.25	0.211	-	-	-	-	-	-	-	
	54	ERK-95-14	5.87	0.171	-	-	-	-	-	-	-	Clone
	64	ERK-95-24	97.30	2.338	160.8	4.69	4.68	-	2.38	-	-	
	65	ERK-95-25	101.45	2.959	58.6	1.71	1.25	-	-	-	-	
	66	ERK-95-26	52.75	1.833	101.3	2.95	15.30	-	-	-	-	
	67	ERK-95-27	13.84	0 404	60.8	1.77	-	-	-	-	-	
	68	ERK-95-28	5.50	2 160	91.2	2.66	-	-	-	-	-	

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

5-Aug-95

5-Aug-95 ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fex : 604-573-4557

Values in ppm unless otherwise reported

TEUTON RESOURCES CORPORATION AS 98-3138

509-675 W. HASTINGS STREET VANCOUVER, B.C. V6C 1N2

ATTENTION: DINO CREMONESE

83 Rock samples received July 24, 1995 PROJECT #: Teuton Reg SHIPMENT #: None Given

Et #	. Tag #	Au(ppb)	Ag	AI %	As	84	BI	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	Р	Pb	Sb	Sn	Sr	TI %	U	٧	W	Y	Zn	
1	AW-95-1	10	1.4	0.03	225	<5	<5	0.19	<1	2	137	23	0.37	<10	0.02	148	2	<.01	7	50	<2	5		5	<.01	<10	1	<10	<1	35	
2	AW-95-2	5	3.8	0.02	5	10	<5	0.01	<1	1	124	3787	0.85	<10	<.01	79	2	<.01	2	150	22	<5	<20	1	<.01	<10	<1	<10	<1	6	
3	AW-95-3	5	<.2	0.37	<5	30	<5	1.17	<1	4	142	25	2.02	<10	0.08	324	3	<.01	6	260	12	<5	<20	31	<.01	<10	5	<10	<1	53	
4	AW-95-4	5	2.6	0.14	5	25	<5	0.14	<1	4	103	1348	1.24	<10	0.03	218	2	<.01	2	260	38	<5	<20	6	<.01	<10	2	<10	<1	42	
5	AW-95-5	5	>30	0.09	50	<5	<5	0.89	10	12	44	444	2.30	<10	<.01	1657	<1	<.01	2	410 >	10000	90	<20	69	<.01	<10	4	<10	<1	>10000	
6	A-95-6	55	14.4	1.67	<5	35	<5	0.99		16	34	831	5.13	<10	0.76	546	3	0.05	2	1500	242	<5	<20	25	0.09	<10	64	<10	2	725	Trlone
7	A-95-7	10	12.2	1.95	<5	30	<5	1.25	2	17	47	666	5.18	<10	0.79	566	19	0.07	3	1550	184	<5	<20	31	0.08	<10	63	<10	2	363	
8	A-95-8	5	1.0	2.39	<5	50	<5	1.42	<1	23	36	1490	6.52	<10	0.99	691	30	0.08	<1	1510	30	<5	<20	37	0.08	<10	78	<10	<1	66	1
9	A-95-9	505	11.6	0.45	355	30	<5	0.04	<1	95	120	2668	11.10	<10	0.09	498	590	<.01	19	<10	28	<5	<20	<1	<.01	<10	10	<10	<1	94	-
10	A-95-10	15	10.6	1.80	75	45	<5	0.24	<1	73	32	3946	13.80	<10	0.63	657	21	<.01	3	1080	32	<5	<20	<1	0.07	<10	50	<10	<1	88	7
11	A-95-11	5	1.2	2.42	<5	50	<5	0.95	<1	38	46	3170	12.00	<10	0.78	862	36	0.08	3	1160	28	<5	<20	41	0.05	<10	59	<10	<1	60	
12	A-95-12	5	2.0	2.51	<5	65	<5	0.39	1	64	33	8775	> 15	<10	0.77	952	- 48	0.03	2	520	14	<5	<20	16	0.02	<10	72	<10	<1	50	
13	A-95-13	130	2.6	1.27	<5	65	<5	0.45	<1	21	35	1243	11.60	<10	0.27	327	45	0.03	4	990	18	<5	<20	14	0.07	<10	48	<10	<1	55	
14	A-95-14	170	1.0	1.94	8940	35	<5	1.04	<1	86	66	807	8.54	<10	0.88	894	30	<.01	18	480	32	60	<20	5	0.01	<10	41	<10	<1	83	
15	A-95-15	>1000	>30	0.15	1900	70	<5	0.02	<1	122	72	>10000	> 15	<10	<.01	56	75	<.01	6,	>10000	<2	<5	<20	<1	<.01	<10	5	<10	<1	155	
16	A-95-16	750	>30	0.09	495	30	<5	0.02	<1	28	99	6352	6.53	<10	<.01	80	96	<.01	4	150	14	<5	<20	<1	<.01	<10	7	<10	<1	21	alar
17	A-95-17	25	2.0	0.02	95	<5	<5	<.01	<1	9	15 6	306	1.41	<10		21	6	< 01	5	<10	6	<5	<20	<1	<.01	<10	2	<10	<1	14	Clor
18	A-95-18	350	10.4	0.37	140	15	<5	1.92	<1	62	99	>10000	3.43	<10		1529	67		42	200	20	<5	<20	15	<.01	<10	6	<10	5	61	
19	A-95-19	5	<.2	1.92	<5	30	<5	0.98	<1	24	64	194	5.76	<10		755	7		15	2640	20	<5	<20	36	0.09	<10	174	<10	2	54	
20	A-95-20	5	<.2	1.92	<5	30	<5	0.97	<1	24	44	166	5.37	<10	1.54	797	5	0.03	14	2370	20	5	<20	36	0.09	<10	167	<10	2	85	
21	A-95-21	215	2.0		40	20	<5	0.17	<1	68	123	845		<10		534	6		10	120	6	<5	<20	4	0.01	<10	28	<10	<1	18	
22	A-95-22	270	4.4	1.79	160	30	<5	> 15	<1	84	60	2045	8.36	<10		2677	11	<.01	26	340	10	<5	<20	151	0.03	<10	66	<10	<1	30	
23	A-85-23	905	15.0	1.21	220	35	<5	8.01	<1	60	92	9770	7.29	<10			12		33	590	14	<5	<20	69	0.03	<10	58	<10	<1	52	
24	A-95-24	>1000	22.6	0.42	10	10	<5		<1	5	50	9013	2.51			2396	2		3	260	<2	5	<20	203	0.01	<10	13	<10	<1	19	ł
25	A-95-25	>1000	19.4	0.63	65	40	<5	5.90	<1	55	74	>10000	6.89	<10	0.22	1082	8	<.01	22	620	8	<5	<20	46	0.01	<10	23	<10	<1	25	
26	A-95-26	>1000	>30	0.19	25	45	<5	0.14	4	32	114		12.90	<10		242	30	<.01	28 >	>10000	6	<5	<20	2		<10	5	<10	<1	205	
27	A-95-27	>1000	23.0	0.88	5	40	<5		<1	23	148	>10000		<10		920	10		16	1140	10	<5	<20	57	<.01	<10	32	<10	<1	44	1
28	A-95-28	5	1.0	0.43	75	85	<5	7.00	<1	15	35	198	3.79	<10	0.68	1655	13	<.01	29	1210	12	<5	<20	164	<.01	<10	15	<10	4	124	

5-Aug-95 ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fex : 604-573-4557

Values in ppm unless otherwise reported

TEUTON RESOURCES CORPORATION AS \$5-3135

TEUTON RESOURCES CORPORATION AS \$5-3135

509-675 W. HASTINGS STREET VANCOUVER, B.C. V6C 1N2

ATTENTION: DINO CREMONESE

83 Rock samples received July 24, 1995 PROJECT #: Teuton Reg SHIPMENT #: None Given

ECO-TECH	LABORAT	ORIES	LTD.
----------	---------	-------	------

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	P	Pb	Sb	Sn	Sr	TI %	U	V	W	<u>Y</u>	Zn	
29	A-95-29	80	2.2	0.26	220	35	<5	1.51	27	8	85	255	4.91	<10	0.11	534	8	<.01	17	770	702	<5	<20	39	<.01	<10	10	<10	<1	2314	$\left \right $
80	A-95-30	30	1.8	2.60	60	70	<5	0.23	<1	15	65	267	5.52	<10	2.46	522	5	0.01	63	1150	46	25	<20	7	<.01	<10	83	<10	<1	109	1(
1	A-95-31	>1000	>30	1.99	>10000	415	<5	0.60	<1	31	29	400	> 15	<10	1.08	814	43	<.01	13	790 :	>10000	540	<20	66	0.08	<10	109	<10	<1	1517	
2	A-95-32	160	>30	0.82	265	35	<5	0.43	<1	19	61	>10000	4.41	<10	0.66	471	5	<.01	10	1270	44	<5	<20	7	0.03	<10	25	<10	<1	64	
3	A-95-33	90	0.6	0.29	100	40	<5	0.06	<1	3	111	244	1.34	<10	0.10	130	3	<.01	5	130	34	<5	<20	6	<.01	<10	2	<10	<1	26	-
ł	A-95-34	5	0.6	0.08	15	110	-5	0.77	<1	5	110	118	1.66	<10	0.02	778	3	<.01	4	220	22	<5	<20	17	<.01	<10	4	<10	1	158	
	A-95-35	10	0.6	0.18	25	595	-		<1	<1	58	29	1.69	<10	0.02		-			610	38	10	<20	2449	<.01	<10	7	<10	21	75	
	A-95-36	5	1.2	0.36	10	160	<5		<1	16	33	23 51	5.32	<10		1904		<.01	4	1050	84	<5	<20	50	<.01	<10	13	<10	3	140	
	A-95-37	20					-			5									•			-				<10	4		-		
			>30	0.21	2465	60 27		0.07	<1	5	29		7.04	<10		317		0.01	<1	350	3796	245	<20	53	<.01			<10	<1	832	
	A-95-38	60	>30	0.04	45	25	<0	13.40	4	4	9	111	2.79	<10	2.24	10000	9	0.01	<1	6 0 3	>10000	140	<20	556	0.02	<10	13	<10	<1	>10000	
	A-95-39	250	>30	0.06	270	30	<5	> 15	2	3	10	120	2.66	<10	1.52	10000	<1	<.01	<1	<10	571 6	145	<20	1079	0.03	<10	15	<10	<1	>10000	
	A-95-40	530	>30	0.01	<5	20	<5	1.94	2	2	2	41	1.52	<10	0.54	3336	<1	< 01	<1	<10 :	>10000	2630	<20	139	<.01	<10	3	<10	<1	>10000	
	ERK-95-1	60	>30	0.08	170	25	<5	0.22	18	18	49	89	3.46	<10	<.01	393	17	<.01	4	190	1724	35	<20	128	<.01	<10	2	<10	<1	2867	
	ERK-95-2	10	>30	0.04	5	10	<5	0.35	10	3	102	41	1.59	<10	0.04	1207	<1	<.01	2	50 :	>10000	420	<20	162	<.01	<10	3	<10	<1	>10000	
	ERK-95-3	40	>30	0.04	55	25	<5	4.41	8	3	81	76	3.24	<10	1.00	494 2	<1	<.01	3	<10 ;	×10000	65	<20	208	<.01	<10	4	<10	<1	>10000	
ļ	ERK-95-4	10	>30	0.03	20	50	<5	4.88	10	4	62	86	2.21	<10	0.76	3217	<1	<.01	2	<10 :	>10000	75	<20	163	<.01	<10	5	<10	c1	>10000	
	ERK-95-5	10	>30	0.02	5	40	<5		6	4	67		1.73	<10	0.63		<1	<.01	1		>10000	60	<20	144	<.01	<10	2	<10	•	>10000	
	ERK-95-6	60	>30	0.02	30	20	<5		6	4	88		1.62	<10	<.01			<.01	2	-	>10000	370	<20	181	<.01	<10	2	<10	-	>10000	
	ERK-95-7	5	>30	0.20	-5	20	-		10	5	68		2.15	<10	0.09		<1	<.01	3		>10000	<5	<20	225	<.01	<10	6	<10	•	>10000	
, ,	ERK-95-8	20	>30	0.02	30	15	<5		10	5	00 41		1.61	<10	0.09				-3 <1		>10000	<5 260	<20 <20	70	<.01	<10	1			>10000	
	ERK-80-0	20	-30	0.02	30	15	-0	0.28	10	5	41	264	1.01	-10	0.07	123/	~	<.01	~1	<10 /	10000	200	<20	70	<.01	<10	'	<10	<1	>10000	
	ERK-95-9	5	>30	0.06	20	35		> 15	2	9	45		1.68		0.21			<.01	2		>10000	60	<20	881	<.01	<10	5			>10000	_
)	ERK-95-10	>1000	16.2		165	55	25		4	381	48		> 15	<10		1379	12	<.01	8	470	818	<5	<20	6	0.03	<10	71	<10	<1	754	
	ERK-95-11	>1000	14.0		960	60		0.53	<1	41	33		12.70	<10	0.82			<.01	3	700	276	<5	<20	11	<.01	<10	73	<10	<1	186	
2	ERK-95-12	>1000	4.2	2.59	370	95		1.14	<1	29	24		10.90	<10		1390		<.01	2	920	50	<5	<20	21	<.01	<10	81	<10	<1	76	
•	ERK-95-13	>1000	14.2	2,10	1435	40	<5	0.13	<1	169	56	4896	14.50	<10	0.57	716	55	<.01	3	500	60	<5	<20	2	<.01	<10	32	<10	<1	96	
1	ERK-95-14	>1000	9.0	1.54	260	60	45	5.09	<1	27	39	455	8.29	<10	1.06	1772	9	<.01	3	730	814	<5	<20	85	<.01	<10	43	<10	<1	199	
5	ERK-95-15	350	0.6	2.93	35	180	10	1.98	<1	30	27	48	8.75	<10	1.67	1781	6	0.02	3	1060	42	<5	<20	38	0.03	<10	114	<10	<1	97	
3	ERK-95-18	10	5.8	2.03	10	60	10	0.27	1	18	56	5	7.56	<10	0.91	659	7	<.01	3	1230	202	<5	<20	7	0.01	<10	63	<10	<1	246	
,	ERK-95-17	20	1.4	0.45	80	35	15	1.24	<1	34	73		10.90	<10	0.17			<.01	3	310	52	<5	<20	11	<.01	<10	10	<10	<1	76	
3	ERK-95-18	5	2.4	2.65	215	55	<5	0.67	<1	52	44		> 15	<10	0.76	1022	24	<.01	16	1040	172	<5	<20	4	0.03	<10	85	<10	<1	194	
)	ERK-95-19	10	0.4	2.06	35	60	35	0.15	1	87	100		> 15	<10	0.74	933	26	<.01		570	20	<5	~~~	2	<.01	<10	51	<10	<1	07	
,)	ERK-95-20	50	1.8	2.63	35 85	70	35 10		1	39	17		> 15	<10		933 1407		<.01	7	1360	28 54	<5 <5	<20 <20	2	<.01 0.07	<10 <10	117	<10		97 159	
			• • =			• -			•													-		_					<1		
1 2	ERK-05-21	390	1.6	2.19	3110	50	25	0.28	<1	34	50		11.70	<10	0.57			<.01	5	960	42	<5	<20	1	0.02	<10	80	<10	<1	54	
2 }	ERK-95-22	195	11.8	3.01	45	90 75	<5	2.12	2	76	24		> 15	<10	0.92	879		0.02	8	1310	42	<5	<20	32	0.05	<10	120	<10	<1	121	
	ERK-95-23	300	1.8	4.29	1155	75	<5	0.20	<1	76	90	326	> 15	<10	1.63	1353	22	<.01	4	720	62	<5	<20	4	0.07	<10	118	<10	<1	174	
I.	ERK-95-24	>1000	>30	3.69	>10000	80	<5	0.11	<1	178	<1	>10000	> 15	<10	1.14	1242	29	<.01	8	30	192	<5	<20	3	0.02	<10	93	<10	<1	242	
5	ERK-95-25	>1000	>30	5.12	>10000	65	<5	0.08	<1	42	<1	9346	> 15	<10	1.70	1892	29	<.01	4	490	58	<5	<20	2	0.02	<10	146	<10	<1	108	
3	ERK-95-26	>1000	>30	0.07	>10000	70	<5	0.01	<1	134	18	5364	> 15	<10	<.01	7	33	<.01	15	<10	108	125	<20	<1	<.01	<10	4	<10	<1	91	
	ERK-95-27	>1000		2.34	6290	65		0.21	<1	95	18	6319	> 1E	<10	0.59	851	28	- 01	12	1110	72	<5	<20	2	0.03	<10	82	<10	<1	203	

5-Aug-95 ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

df/3135 XLS/95Teuton

1

1

;

Values in ppm unless otherwise reported

TEUTON RESOURCES CORPORATION AS \$5-3136

TEUTON RESOURCES CORPORATION AS 95-3135 509-875 W. HASTINGS STREET VANCOUVER, B.C. V6C 1N2

ATTENTION: DINO CREMONESE

.

.

83 Rock samples received July 24, 1995 PROJECT #: Teuton Reg SHIPMENT #: None Given

ECO-TECH LABORATORIES LTD.

Et #	. Tag #	Au(ppb)	Ag	AI %	As	Ba	BI	Ca %	Çd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	P	Pb	Sb_	8n	Sr	TI %	U	v	w	Y	Zn	
68	ERK-95-28	>1000	>30	2.32	2075	50	<5	0.30	<1	96	32	6164	14.90	<10	0.62	1242	22	<.01	10	1200	66	<5	<20	6	0.02	<10	68	<10	<1	118	
69	ERK-95-29	50	1.8	2.69	160	50	<5	2.05	<1	24	36	145	5.69	<10	0.77	311	3	0.17	2	1720	104	<5	<20	95	0.08	<10	63	<10	<1	76	[
70	ERK-95-30	5	0.2	2.12	15	35	<5	1.98	<1	20	50	59	4.74	<10	0.57	529	8	0.07	5	1670	58	<5	<20	31	0.08	<10	81	<10	1	99	
71	ERK-95-31	570	8.4	0.45	1460	30	<5	0.09	<1	28	118	234	10.20	<10	0.22	81	55	<.01	93	400	80	<5	<20	5	<.01	<10	229	<10	<1	42	[
72	ERK-95-32	60	<.2	1.98	35	40	<5	0.87	<1	10	86	287	3.68	<10	1.04	472	51	0.05	8	950	52	<5	<20	31	0.11	<10	106	<10	<1	89	1.
																						-			• • •						10/0r
73	ERK-95-33	160	1.2		130	30	<5	0.63	<1	57	72	1981	8.60	<10	1.72	502	103		12	2770	36	<5	<20	12		<10	198	<10	<1	44	
74	ERK-95-34	35	<.2		25	40	<5	0.51	<1	19	68	328	9.57	<10	0.95	1381	78		8	1500	36	<5	<20	10	0.06	<10	97	<10	<1	41	1
75	ERK-95-35	10	0.8	2.06	25	40	<5	0.47	<1	18	50	483	8.77	<10	0.84	1064	122		8	1670	36	<5	<20	11	0.07	<10	98	<10	<1	44	
76	ERK-95-36	10	1.8	2.19	65	40	<5	4.23	<1	31	62	740		<10		1897	45	<.01	22	1690	40	<5	<20	54	0.02	<10	73	<10	<1	50	
77	ERK-95-37	165	1.6	1.18	25	35	<5	1.34	<1	39	72	699	4.37	<10	0.57	831	28	<.01	16	1320	36	<5	<20	11	0.04	<10	35	<10	2	40	1
78	ERK-95-38	5	1.2	0.89	15	465	<5	0.53	<1	20	63	550	2.98	<10	0.32	428	13	<.01	11	2070	18	<5	<20	11	0.05	<10	45	<10	1	24	1
79	ERK-95-39	55	1.8		25	35	<5	0.21	<1	7	10	174	8.49	<10	0.13	174	10		1	90	10	<5	<20	2	0.01	<10	13	<10	<1	14	
80	ERK-95-40	65		3.29	30	45	<5		1	30	39	6461	8.84	<10	2.37	1375	14	0.02	51	2990	38	<5	<20	17	0.03	<10	220	<10	3	168	1
81	ERK-95-41	5	0.4		75	25	10		्र	25	16	39	7.59	<10	0.68	374	8	0.02	9	1140	52	<5	<20	24	< 01	<10	27	<10	<1	157	-
82	ERK-95-42	5	<.2	1.15	<5	30	15	0.77	<1	22	52	40		<10	0.33	331	2	0.01	12	1210	50	<5	<20	13	0.11	<10	151	<10	<1	87	
83	ERK-94-977	5	<.2	1.80	<5	45	15	5.67	<1	60	122	63	9.67	<10	1.79	964	1	0.03	100	1010	22	<5	<20	44	0.14	<10	105	<10	4	106	
QC/DA Respli	ť	-																													
	A-95-36	5	1.4	0.37	30	170	<5	2.32	<1	18	45	57	5.63	<10	0,18	1994	7	<.01	6	1130	110	<5	40	43	<.01	<10	13	<10	3	169	
R/S 73	ERK-95-33	160	1.0	2.33	160	35	<5	0.65	<1	58 .	62	1984	9.47	<10	1.80	538	105	0.01	17	2940	34	<5	<20	12	0.12	<10	210	<10	<1	46	
Repea	t:																														
1	AW-95-1	20	1.4	0.03	245	<5	<5	0.20	<1	2	141	31	0.40	<10	0.02	156	4	<.01	7	40	4	10	<20	6	<.01	<10	1	<10	<1	40	
10	A-95-10	20	10.2	1.78	80	45	<5	0.23	<1	72	32	3851	13.60	<10	0.62	650	20	<.01	2	1080	30	<5	<20	2	0.07	<10	49	<10	<1	79	
19	A-95-19	5	<.2	1.82	<5	25	<5	0.94	<1	23	63	173	5.60	<10	1.73	731	6	0.03	13	2540	24	<5	<20	35	0.08	<10	167	<10	2	55	
28	A-95-28	5	1.2	0.42	80	90	<5	7.19	<1	15	36	196	3.85	<10	0.68	1690	14	<.01	29	1240	10	5	<20	175	<.01	<10	14	<10	4	125	
36	A-95-36	10	1.4	0.30	10	150	5	2.22	2	16	33	47	5.17	<10	0.18	1829	7	<.01	5	1010	92	<5	<20	43	<.01	<10	12	<10	3	150	
45	ERK-95-5	15	>30	0.03	10	35	<5	3.62	8	4	66	83	1.72	<10	0.59	3823	<1	<.01	1	<10 >	10000	65	<20	131	<.01	<10	2	<10	<1 >	10000	
54	ERK-95-14	>1000	8.4	1.60	265	60	45	5.24	<1	28	41	470	8.56	<10	1.08	1821	10	<.01	4	780	848	<5	<20	85	<.01	<10	44	<10	<1	172	
71	ERK-95-31	590	8.8	0.47	1510	25	<5	0.08	<1	30	120	246	10.80	<10	0.23	84	59	<.01	100	450	86	<5	<20	4	<.01	<10	240	<10	<1	44	
80	ERK-95-40	70	8,4	3.51	25	50	<5	1.88	2	31	41	6744	9.34	<10	2.52	1457	13	0.02	52	3120	38	<5	<20	18	0.03	<10	234	<10	2	177	
Ciar de	- mode																														
Standa GEO9		150	1.2	1.52	65	155	<5	1.56	<1	19	59	83	4.09	<10	0.84	657	<1	0.01	25	610	20	<5	<20	53	0.09	<10	70	<10	5	73	
GEOS	-	150	1.2	1.80	80	165	<5	1.60	<1	16	63	88	4.05	<10	0.84	624	<1	0.01	25	620	20	<5	<20	55	0.09	<10	74	<10	5	74	
GEOS		150		1.57	80	160		1.63	<1	21	62			<10	0.85	630	<1	0.01	24	620	20	5	<20	50	0.09	<10	73	<10	4	70	
GEOS		150	1.0	1.57	00	100	<5	1.05	~ 1	Z 1	04	82	3.00	-10	0.05	000	- 1	0.01	27	020	20		~20	30	0.09	~10	13,	-10	-	10	

.

.

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T, B.C. Certified Assayer

Page 3

CERTIFICATE OF ASSAY AS 95-4005

TEUTON RESOURCES CORPORATION 509-675 W. HASTINGS STREET VANCOUVER, B.C. V6C 1N2

21-Aug-95

Clone

ATTENTION: DINO CREMONESE

89 Rock samples received August 8, 1995 PROJECT #: Teuton SHIPMENT #: None Given P.O.#: None Given

Samples submitted by: E. Kruchkowski

			Au	Au	Ag	Ag	As	Cu
	ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	(%)	(%)
-	3	ERK-95-45	2.63	0.077	•	•	-	-
~~	7	ERK-95-49	32.90	0.959	-	-	-	-
	10	ERK-95-52	18.68	0.545	-	-	-	-
	11	ERK-95-53	2.66	0.078	-	-	-	-
	15	ERK-95-57	36.30	1.059	538 .6	15.71	-	-
~~	16	ERK-95-58	9.34	0.272	282.4	8.24	-	-
	17	ERK-95-59	5.06	0.148	-	-	-	-
	20	ERK-95-62	2.55	0.074	-	-	-	-
	21	ERK-95-63	9.60	0.280	-	-	-	-
	24	ERK-95-66	6.87	0.200	-	-	-	1.01
	25	ERK-95-67	-	-	-	-	-	-
	26	ERK-95-68	4.10	0.120	-	-	-	-
-	28	ERK-95-70	6.92	0.202	32.3	0.94	•	-
	31	ERK-95-73	1.35	0.039	-	-	-	-
	32	ERK-95-74	12.71	0.371	216.5	6.31	-	-
-	36	ERK-95-78	2.48	0.072	-	-	-	-
	40	ERK-95-82	2.97	0.087	-	-	8.83	-
	41	ERK-95-83	1.44	0.042	-	-	5.22	-
	51	ERK-95-93	1.34	0.039	-	-	-	-
	52	ERK-95-94	1.38	0.040	-	-	-	-
	57	ERK-95-99	1.84	0.054	-	-	-	-
	61	ERK-95-103	33.10	0.965	-	-	-	-
-	64	ERK-95-106	3.51	0.102	-	-	-	-
	65	ERK-95-107	4.38	0.128	-	-	-	-
	67	ERK-95-109	6.83	0.199	-	-	-	-
	68	ERK-95-110	2.08	0.061	-	-	-	-
-	69	ERK-95-111	2.42	0.071	-	-	-	-
	70	ERK-95-112	2.36	0.069 -		-	-	-
	77	A-95-43	3.45	0.101	48.6	1.42		1.67
-	78	A-95-44	3.91	0.114	155.7	4.54	-	4.36

18-Aug-95

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

Received in Stewart: August 8, 1995 Received in Kemloops: August 14, 1995

)

Į.

Values in ppm unless otherwise reported

TEUTON RESOURCES CORPORATION AS 95-4005 509-675 W. HASTINGS STREET VANCOUVER, B.C. V6C 1N2

ATTENTION: DINO CREMONESE

89 Rock samples received August 8, 1995 PROJECT #: None Given SHIPMENT #: None Given P.O.#: None Given Samples submitted by: E. Kruchkowski

Et	t. Tag #	Au(ppb)	Ag Al %	As	Ba	BI	Ca % Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	NI	P	Pb	8b	8n	8r	TI %	U	V	W	Y	Zn	
1	ERK-95-43	125	0.2 5.28	80	95	30	2.00 2	63	20	10	> 15	<10	1.86	1830	15	<.01	6	1210	28	<5	60	27	0.01	<10	102	<10	<1	233	1
2	ERK-95-44	330	0.2 4.84	145	90	30	1.51 <1	133	. 18	5	> 15	<10	1.58	1478	14	<.01	4	1310	18	<5	40	20	<.01	<10	105	<10	<1	- 94	i i
3	ERK-95-45	>1000	3.4 5.14	115	150	<5	0.28 <1	403	20	3816	> 15	<10	1.77	1539	84	<.01	1	790	12	<5	100	8	0.02	<10	113	<10	<1	79	1
4	ERK-95-46	40	2.8 2.59	55	20	<5	1.59 8	58	60	598	6.18	<10	1.81	1085	- 4	<.01	3	1180	30	<5	<20	182	0.16	<10	58	<10	Э	211	1
5	ERK-95-47	5	1.4 2.48	25	60	<5	1.63 <1	46	47	483	6.00	<10	1.51	1572	<1	0.08	3	1380	16	<5	<20	121	0.17	<10	57	<10	4	73	
6	ERK-95-48	235	0.6 2.39	170	100	15	0.34 <1	224	43	137	8.65	<10	0.70	1110	6	<.01	4	970	14	<5	60	9	0.10	<10	87	<10	<1	41	
7	ERK-95-49	>1000	7.4 1.43	9 15	80	20	0.21 <1	98	43	365	5.97	<10	0.30	403	41	<.01	7	1250	34	20	40	8	<.01	<10	16	<10	<1	21	i i
8	ERK-95-50	200	<.2 3.16	65	135	15	1.35 <1	24	47	24	8.42	<10	1.59	1199	6	0.06	4	980	18	<5	<20	45	0.11	<10	88	<10	5	38	i
9	ERK-95-51	5 70	0.6 2.77	65	115	<5	0.44 <1	57	81	498	8.30	<10	0.80	882	31	0.01	40	1280	18	<5	40	14	0.01	<10	57	<10	<1	46	i i
10	ERK-95-52	>1000	5.8 1.10	1010	85	<5	0.13 <1	40	71	342	5.45	<10	0.15	195	63	<.01	4	1080	14	<5	40	7	<.01	<10	18	<10	<1	16	none
11	ERK-95-53	>1000	8.0 2.34		100	<5	0.22 <1	65	86	5189	7.07	<10	0.53	711	48	<.01	7	1140	22	<5	60	3	<.01	<10	28	<10	<1	38	C/0.
12	ERK-95-54	60			360	<5	2.79 <1	13	55	84	4.31	<10		1035	6	0.05	9	1150	10	<5	<20	62	0.04	<10	65	<10	3	48	1
13	ERK-95-55		<.2 3.94		60		1.78 <1	18	41	87	8.26	<10		785	5	0.32	19	1550	22	<5	<20	171	0.13	<10	118	<10	2	100	1
14	ERK-95-56		<.2 2.36		75		1.03 <1	46	57	38	6.02	<10		580	2	0.07	5	1350	14	<5	<20	67	0.22	<10	85	<10	6	37	1
15	ERK-95-57	>1000	>30 0.94	2440	60	410	0.05 <1	1 94	80	6870	> 15	<10	0.19	211	41	<.01	3	<10	2252	<5	120	4	<.01	40	13	<10	<1	176	
18	ERK-95-58		>30 3.77			320	0.52 <1	102	66		> 15	<10			44		3	770	634	<5	100	6	< 01	<10	71	<10	<1	139	
17	ERK-95-59		7.4 4.10		95	_	0.23 <1	51	67	4891	13.90	<10	1.11	1535	20	<.01	5	780	30	<5	60	2	<.01	<10	71	<10	<1	62	1
18	ERK-95-60		1.2 2.13	15	140	<5	0.98 <1	14	67	245	5.18	<10	0.80	819	8	0.02	3	1140	18	<5	20	18	0 03	<10	47	<10	3	41	1
19	ERK-95-61	5	0.2 2.37	5	135	10	3.19 <1	15	51	76	5,70	<10	1.21	1585	5	0.05	5	1190	12	<5	<20	76	0 06	<10	83	<10	2	69	
20	ERK-95-62	>1000	4.2 4.22	100	85	<5	0.34 <1	38	217	798	12.90	<10	1.16	2141	14	<.01	46	730	18	<5	100	4	0.08	<10	79	<10	<1	63	
21	ERK-95-63		16.4 1.05			40	5.15 <1	108	88		12.90		0.47	1091	52	<.01	6	550	180	<5	80	83	<.01	<10	20	<10	<1	36	
22	ERK-95-64		4.4 1.52		70		5.22 <1	27	61	104	5.91	<10		1212	8	<.01	3	860	222	<5	40	85	<.01	<10	26	<10	<1	51	
23	ERK-95-65		0.4 2.49		120	<5	2.71 <1	26	39	68	7.39	<10		1156	9	<.01	4	1060	12	<5	20	33	<.01	<10	54	<10	<1	46	1
24	ERK-95-66		9.8 3.16		80	<5	0.62 <1	63	51		15.00	<10		1012	18	<.01	3	730	10	<5	80	10	< 01	<10	50	<10	<1	88	
_25	ERK-95-67	120	0.8 2.24	25	130	<5	2.03 <1	19	51	715	6.38	<10	0.78	1256	7	0.02	3	1030	10	<5	20	37	0.01	<10	57	<10	<1	40	1

Ì.

ECO-TECH LABORATORIES LTD.

alone

•

Et #	the second s	Au(ppb)	Ag Al %	As	Ba	Bi	Ca % Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	86	8n	Sr.	TI %	U	V	W	Y	Zn
26	ERK-95-68	>1000	4.4 3.39	330	100	<5	1.10 <1	85	43	2376	12.70	<10	0.98	1524	13	<.01	3	1120	12	<5	60	13	<.01	<10	58	<10	<1	60
27	ERK-95-69	380	1.4 2.04	¥ 410	60	5	0.27 <1	19	63	. 140	7.92	<10	0.55	563	10	<.01	4	1030	16	<5	60	5	<.01	<10	35	<10	<1	47
28	ERK-95-70	>1000	>30 4.05	5 410	75	<5	0.74 <1	90	69	2511	> 15	<10	1.05	1418	27	<.01	3	820	22	<5	100	10	0.01	<10	74	<10	<1	77
29	ERK-95-71	600	2.0 2.88	720	130	25	0.49 <1	22	32	169	12.40	<10	1.20	1842	5	0.01	3	1320	18	<5	60	12	0.19	<10	78	<10	<1	66
30	ERK-95-72	905	2.4 3.35	675	100	25	0.42 <1	24	23	84	14.20	<10	1.04	2497	7	<.01	5	1240	22	<5	80	5	0.20	<10	81	<10	<1	69
31	ERK-95-73	>1000	1.8 3.58	95	125	10	2.46 <1	31	7	141	9.81	<10	1.43	1810	9	0.01	3	1540	28	<5	<20	57	0.02	<10	92	<10	<1	84
32	ERK-95-74		>30 1.82		45	<5		62	72		12.00	<10	0.53	563	11	<.01	B	1000	628	<5	100	5		<10	32	<10	<1	261
33	ERK-95-75		1.6 3.80		90	<5		17	35	159	6.18	<10	1.46		<1	0.24	3	1520	28	<5	<20	141		<10	122	<10	3	81
34	ERK-95-76		0.4 3.21		. 60	35	0.43 <1	91	36	35	> 15	<10		1367	14	<.01	15	1060	12	<5	80	5		<10	106	<10	<1	68
35	ERK-95-77		0.2 6.24			30	1.16 <1	151	15	15		<10		2044	18	<.01	3	1380	14	<5	60	15	0.01	<10	127	<10	<1	96
55	ENN-60-11	240	0.2 0.24		. 55	30	1.10 11	191	15	10	- 15	510	2.10	2044	10	2.01	3	1300	14	K 0	00	15	0.01	\$10	127	\$10	~1	90
36	ERK-95-78		4.4 5.03	•	105			51	43		> 15		1.83		18	<.01	5	1060	16	<5	40	18		<10	96	<10	<1	86
37	ERK-95-79		1.4 3.42		75	<5		75	42		13.40	<10		1533	14	<.01	3	1310	12	<5	80	19	0.02	<10	81	<10	<1	71
38	ERK-95-80		<.2 2.78	• -	85	15	0.32 <1	49	96	25	8.48	<10		1347	11	<.01	6	580	16	<5	<20	11	0.08	<10	56	<10	<1	62
39	ERK-95-81		5.6 1.65		105	<5	0.29 <1	22	74	516	7.23	<10	0.60	486	951	<.01	5	1540	20	<5	<20	- 4	<.01	<10	59	<10	<1	19
40	ERK-95-82	>1000	4.6 2.42	2 >10000	65	30	0.24 <1	81	54	287	> 15	<10	1.02	837	28	<.01	4	760	54	45	80	5	0.02	<10	60	<10	<1	58
41	ERK-95-83	>1000	1.8 2.92	>10000	65	35	0.30 <1	75	59	52	13.40	<10	1.35	763	17	<.01	4	960	30	20	60	4	0.03	<10	63	<10	<1	54
42	ERK-95-84	10	0.4 3.62	1085	85	<5	2.23 <1	61	46	889	8.18	<10	1.53	1528	9	0.23	12	1510	18	<5	20	172	0.18	<10	140	<10	2	56
43	ERK-95-85	55	2.8 0.84	970	- 35	15	0.09 <1	20	125	49	10.90	<10	0.34	78	18	<.01	68	280	22	<5	100	2	< 01	10	21	<10	<1	574
44	ERK-95-86	5	2.8 0.47	530	35	5	0.03 <1	9	139	25	3.85	<10	0.08	45	4	<.01	44	250	24	<5	60	<1	<.01	<10	16	<10	<1	61
45	ERK-95-87		7.8 0.39		30	5	0.07 <1	12	179	73	7.51	<10	0.07	45	18	<.01	52	310	54	<5	80	<1	<.01	<10	12	<10	<1	195
46	ERK-95-88	470	11.0 2.39	230	95	<5	0.44 <1	85	102	4169	8,71	<10	4.04	4240	134	<.01	8	400	1294	<5	40	9	<.01	<10	79	-10		474
47	ERK-95-89		3.0 0.77		40	5	0.11 <1	20	86	4109		<10	1.21 0.24	80			-	400 600		<5		3				<10	<1 <1	421 49
	ERK-95-90		1.4 1.09			-					5.45				13	<.01	28		60	-	60	-	<.01	<10	12	<10		
48	ERK-95-90	+			85	<5	1.62 4	10	36	63 75	2.92	<10	0.41	501	4	<.01	19	1310	18	10	<20	13	<.01	<10	18	<10	1	801
49			1.6 0.92		55	<5	0.21 <1	15	57		2.75	<10	0.23	145	7	<.01	34	940	22	5	20	3	<.01	<10	24	<10	<1	36
50	ERK-95-92	/80	5.2 0,79	485	40	<5	0.08 <1	8	159	210	8.63	<10	0.35	153	7	<.01	20	260	30	<5	80	1	<.01	<10	17	<10	<1	269
51	ERK-95-93	>1000	21.0 0.34	1010	25	<5	0.03 <1	12	191	348	7.02	<10	0.09	56	25	<.01	25	130	148	<5	80	1	< 01	<10	10	<10	<1	640
52	ERK-95-94	>1000	4.4 0.59	435	45	<5	0.10 <1	5	145	62	3.87	<10	0.13	65	15	<.01	12	600	70	<5	60	- 4	<.01	<10	20	<10	<1	189
53	ERK-95-95	140	0.6 3.35	190	90	<5	1.43 <1	37	41	267	10.20	<10	1.11	1188	12	<.01	5	1170	16	<5	40	20	<.01	<10	71	<10	<1	66
54	ERK-95-96	20	<.2 2.52	<5	120	10	3.67 <1	15	33	71	7.13	<10	1.31	1345	8	<.01	4	1410	12	<5	<20	64	<.01	<10	80	<10	<1	51
55	ERK-95-97	285	5.2 3.06	90	80	<5	7.15 <1	48	29	206	10.60	<10	1.40	2269	13	<.01	6	1060	292	<5	20	107	<.01	<10	58	<10	<1	67
58	ERK-95-98	5	<.2 2.05	35	150	10	4.10 <1	20	42	22	5.48	<10	0.90	990	5	0.04	4	1330	18	<5	<20	131	0.05	<10	81	<10		27
57	ERK-95-99	-	0.4 6.21		120		1.51 <1	94	35	69	> 15	<10		1748	16	<.01	4	1310	16	<5	40	25	0.02	<10	124	<10	<1	69
58	ERK-95-100		<.2 2.99		75	15	0.84 <1	32	33	48	8.28	<10	1.30	949	7	<.01	5	1450	14	<5	20	25 6	0.02	<10	77	<10	<1	36
59	ERK-95-100		<.2 4.30	-	85		1.15 <1	60	33	43	9.50	<10		1155	6	0.12	4	1530	20	<5	20	83	0.12	<10	102	<10	<1	47
60	ERK-95-102		2.2 4.95				0.62 <1	53	29		12.60		2.64		7	<.01	9	1240	20	<5	<20	5	0.12	<10	117		<1	77
00	ERN-90-102	2/0	2.2 4.90	43	00	-0	0.02 1	33	20	906	14.00	10	4.04	1000	/	N.01	8	1240	20	-0	~20	5	0.10	-10	117	-10	~	

ECO-TECH LABORATORIES LTD.

٠.

Et#	. Tag #	Au(ppb)	Ag Al	% As	Ba	BI	Ca % Cd	Co	Ċr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	P	РЬ	8b	8n	8r	TI %	U	v	w	Y	Zn	
61	ERK-95-103	>1000	16.8 23	34 760	60	<5	0.21 <1	84	77	6419	11.60	<10	0.68	866	19	<.01	4	580	24	<5	100	4	0.05	<10	45	<10	<1	58	
62	ERK-95-104	80	<.2 1.8	90 15	55	10	0.55 <1	48	47	111	7.41	<10	0.79	771	19	<.01	6	1300	12	<5	40	11	0.13	<10	40	<10	2	29	
63	ERK-95-105	30	<.2 2.7	5 40	70	15	0.48 <1	61	42	52	8,19	<10	1.23	855	4	<.01	7	1290	14	<5	<20	6	0.13	<10	80	<10	2	41	
64	ERK-95-108	>1000	3.0 2.4	9 865	185	<5	0.38 <1	36	27	413	7.97	<10	0.82	1980	11	<.01	6	1350	20	<5	40	4	0.10	<10	65	<10	7	46	
65	ERK-95-107	>1000	1.4 2.0	8 165	70	20	0.28 <1	23	62	125	7.52	<10	0.95	775	9	<.01	6	960	16	<5	40	6	0.04	<10	50	<10	<1	34	
66	ERK-95-108	5	<.2 3.0	5 25	75	15	0.96 <1	22	58	105	6.37	<10	1.89	738	<1	0.12	5	1050	24	5	<20	60	0.25	<10	156	<10	4	77	
67	ERK-95-109	>1000	4.0 3.4	10 310	75	<5	0.55 <1	35	53	1234	11.40	<10	1.16	1221	10	<.01	3	920	22	<5	40	5	0.07	<10	86	<10	<1	59	
68	ERK-95-110	>1000	0.4 3.8	3 85	65	50	0.38 <1	22	29	291	11.40	<10	1.49	1417	8	<.01	3	1130	20	<5	40	3	0.09	<10	97	<10	<1	64	1
69	ERK-95-111	>1000	0.8 3.2	27 225	85	<5	0.38 <1	36	-41	393	10.50	<10	1.25	1188	8	<.01	3	1120	16	<5	40	3	0.08	<10	66	<10	<1	59	ł
70	ERK-95-112	>1000	5.4 3.2	4 155	100	<5	0.40 <1	48	36	538	10.00	<10	1.09	1123	5	<.01	4	1170	26	<5	40	2	0,13	<10	88	<10	<1	53	
71	ERK-95-113	90	<.2 4.0	5 40	135	20	038<1	48	50	14	11.30	<10	1.45	1278	e	<.01	6	1070	6	<5	<20	3	0.08	<10	116	<10	<1	56	
72	ERK-95-114	5	<.2 4.2	5 <5	125	20	0.55 <1	20	- 44	15	11.30	<10	1.98	1439	5	0.02	9	1250	<2	<5	<20	11	0.13	<10	155	<10	<1	62	
73	ERK-95-115	120	<.2 3.3	1 65	110	25	0.42 <1	39	- 30	7	10.30	<10	1.12	1245	2	<.01	6	1090	<2	<5	<20	5	0.16	<10	9 5	<10	<1	50	1 me
74	ERK-95-116	80	<.2 3.1	7 145	105	35	0.37 <1	82	46	7	11.50	<10	1.08	1077	3	<.01	5	1220	30	<5	<20	1	0.17	<10	104	10	<1	55	10/010
75	A-95-41	30	<.2 2.8	2 10	55	5	1.77 <1	16	57	75	4.64	<10	1.01	939	<1	0.15	4	1160	12	<5	<20	101	0.19	<10	65	<10	7	73	
78	A-95-42	690	10.6 0.3	6 155	20	<5	0.14 <1	41	183	1423	5.62	<10	0.08	125	175	<.01	5	120	10	<5	<20	7	<.01	<10	9	360	<1	22	1
77	A-95-43	>1000	>30 0.6	1 40	35	<5	0.20 1	65	164	>10000	8.71	<10	0.25	186	296	0.02	7	<10	<2	<5	<20	14	0.05	<10	22	80	<1	58	1
78	A-95-44	>1000	>30 0.0	4 355	40	<5	0.02 <1	102	186	>10000	14.30	<10	<.01	43	64	<.01	9	>10000	<2	<5	<20	2	<.01	30	3	20	<1	65	1
79	A-95-45	20	2.0 0.8	5 <5	515	<5	1.70 <1	12	48	298	4.02	<10	0.10	991	8	0.01	4	1090	<2	<5	<20	21	0.02	<10	35	<10	2	33	1
80	A-95-48	10	1.4 3.0	2 <5	75	<5	9.51 <1	36	44	139	8.57	<10	2.11	2076	8	<.01	4	830	<2	<5	<20	94	<.01	<10	46	<10	<1	20	1
81	A-95-47	30	0.4 2.9	8 5	55	<5	3.12 <1	26	53	180	5.07	<10	0.68	686	<1	0.13	3	1390	6	<5	<20	74	0.19	<10	62	<10	5	26	
82	A-95-48	180	<.2 3.8	3 <5	85	<5	3.10 <1	39	158	146	5.53	<10	2.74	645	<1	0.35	137	1460	8	<5	<20	223	0.20	<10	163	<10	3	62	1
83	A-95-49	45	1.6 1.4	1 20	90	<5	0.19 <1	5	140	44	3.23	<10	0.60	368	3	<.01	4	790	6	<5	<20	4	<.01	<10	56	<10	<1	63	1
84	A-95-50	5	0.2 0.0	9 <5	15	<5	0.02 <1	1	305	8	0.56	<10	0.03	64	17	<.01	5	20	<2	<5	<20	3	< 01	<10	5	<10	<1	<1	1
85	A-95-51	5	<.2 1.2	8 <5	70	5	0.17 <1	19	110	12	3.33	<10	0.55	461	4	<.01	3	720	8	<5	<20	3	0.02	<10	27	<10	<1	17	
88	A-95-52	20	<.2 1.4	1 <5	55	10	0.12 <1	16	172	8	3.32	<10	0.65	466	14	<.01	4	370	6	<5	<20	3	0.04	<10	29	<10	<1	22	l
87	A-95-53	5	<.2 1.6	5 <5	75	<5	0.29 <1	9	98	8	3.21	<10	0.81	410	<1	<.01	3	960	6	<5	<20	6	0.09	<10	36	<10	1	22	
88 (A-95-54	5	<.2 2.1	4 <5	120	-	0.73 <1	16	94	33	4.34	<10	1.08	1146	10	<.01	4	1000	4	<5	<20	11	0.04	<10	47	<10	4	35	ł
89	A-95-55	125	2.8 0.2	4 35	15	<5	0.44 <1	64	306	846	2.12	<10	0.09	689	2	<.01	7	70	46	<5	<20	5	<.01	<10	9	<10	<1	13	

30-Aug-95

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

.

۰.

Phone: 604-573-5700 Fax : 604-673-4557

1

TEUTON RESOURCES CORPORATION AS 98-4017 509-675 W. HASTINGS STREET VANCOUVER, B.C. V&C 1N2

ATTENTION: DINO CREMONESE

٠,

46 Rock samples received in Stewart August 21, 1995 (Damp) in Kamloopa August 24, 1995 PROJECT #: None Given SHIPMENT #: None Given P.O.#: None Given Samples submitted by: A. Welus

clor

٠.

Values in ppm unless otherwise reported

1						• /															•		•							
ELA		Au(ppb)	Ag	AI %	As	Ba	BI	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	NI	P	Pb	8b	Sn	Sr	TI %	U	<u>v</u>	w	Y	Zn
1	ERK-95-183		10.4		660	15	<5	1.42	496	14	142	916	4.74	<10	0.18	248	<1	<.01	9	460	9360	<5	<20	54	<.01	<10	9	<10		>10000
2	ERK-95-184	-	>30	0.24	45	10	<5	1.17	89	7	94	175	i 1.98	<10	0.22	315	31	< 01	4	130	6738	90	<20	352	<.01	<10	4	<10	<1	>10000
3	ERK-95-185		>30	0.76	<5	25	<5	0.59	24	7	119	70	2.70	<10	0.34	192	- 11	<.01	4	500	1574	15	<20	670	<.01	<10	11	<10	<1	4021
4	ERK-95-186	<5	>30	0.07	45	10	<5	0.70	174	7	107	122	2.27	<10	0.14	329	35	<.01	6	<10	>10000	55	<20	193	<.01	<10	4	<10	<1	>10000
5	ERK-95-187	5	>30	0.74	35	25	<5	1.21	24	6	142	32	3.20	<10	0.34	285	8	<.01	4	160	280	<5	<20	715	<.01	<10	17	<10	<1	348 2
	ERK-95-188	<5	>30	0.30	30	15	<5	2.08	13	6	165	44	1.90	<10	0.23	305	8	<.01	8	60	784	25	<20	837	<.01	<10	11	<10	<1	2365
7	ERK-95-189	5	>30	0.13	30	20	<6	1.07	20	5	184	152	1.67	<10	0.16	233	15	<.01	4	20	2772	85	20	332	<.01	<10	7	<10	<1	2954
8	ERK-95-190	<5	>30	0.33	25	35	<5	0.73	3	5	173	53	1.86	<10	0.20	172	14	<.01	7	60	168	20	<20	527	<.01	<10	37	<10	<1	668
0	ERK-95-191	40	>30	0.57	55	<5	<5	2.85	14	10	180	42	3.79	<10	0.61	680	19	<.01	5	120	542	20	<20	1273	< 01	<10	13	<10	<1	2365
10	ERK-95-192	125	>30	0.43	<5	20	<5	2.06	115	10	148	159	2.20	<10	0.81	444	19	<.01	9	130	>10000	55	<20	415	<.01	<10	14	<10	<1	>10000
11	ERK-95-193	100	>30	0.29	25	20	<5	1.33	48	6	180	182	2.30	<10	0.36	286	29	<.01	7	40	6874	50	<20	329	<.01	<10	14	<10	<1	5054
12	ERK-95-194	<5	>30	0.23	<5	30	<5	1.98	5	9	150	71	2.03	<10	0.45	470	7	<.01	8	60	326	20	<20	633	< 01	<10	14	<10	<1	788
13	ERK-95-195	>1000	>30	0.13	>10000	50	<5	0.03	<1	637	94	7131	> 15	<10	<.01	17	19	<.01	8	<10	340	530	<20	11	<.01	50	2	<10	<1	7208
14	ERK-95-198	130	5.2	0.53	970	25	<5	0.30	<1	13	102	178	7.98	<10	0.08	96	11	<.01	13	1330	36	<5	<20	16	<.01	20	24	<10	<1	389
15	ERK-95-197	170	4.0	0.41	595	25	5	0.33	<1	12	126	38	4.56	<10	0.05	170	9	<.01	9	760	596	<5	<20	15	<.01	<10	16	<10	<1	422
16	ERK-95-198	250	5.2	0.40	365	20	<5	0.27	<1	20	61	79	5.92	<10	0.05	125	8	<.01	18	1150	30	<5	<20	10	< 01	20	14	<10	<1	41
17	ERK-95-199	110	26.4	0.44	600	15	<5	0.03	6	12	163	408	5.10	<10	0.12	68	13	<.01	16	400	>10000	<5	20	- 4	< 01	20	19	<10	<1	1154
18	ERK-95-200	90	>30	0.22	95	25	<5	0.02	10	4	150	234	3.54	<10	0.04	63	13	< 01	9	130	>10000	90	20	4	<.01	<10	8	<10	<1	868
19	ERK-95-201	70	19.6	0.39	105	15	<5	0.05	276	9	109	391	3.57	<10	0.11	250	- 4	<.01	9	320	7170	<5	<20	<1	<.01	<10	11	<10	<1 ⇒	>10000
20	ERK-95-202	130	3.8	0.50	670	25	15	0.17	<1	37	30	30	9.46	<10	0.08	81	31	<.01	86	920	182	<5	<20	4	<.01	40	15	<10	<1	137
21	ERK-95-203	>1000	>30	1.15	440	35	10	0.13	<1	16	55		12.40	<10	0.59	165	12	<.01	11	600	64	<5	<20	4	< 01	30	34	<10	<1	115
22	ERK-95-204	15	9.6	3.54	25	100	<5	3.97	3	36	73	1715		<10	2.62	1316	21	< 01	25	1550	516	10	<20	182	<.01	<10	156	<10	6	200
23	ERK-95-205	>1000	>30	2.61	4630	280	<5	0.83	<1	33	- 44	577	11.60	<10	2.28	2002	25	<.01	29	1560	2860	50	<20	25	0.16	<10	161	<10	<1	1269
24	ERK-95-206	530	3.0	2.13	70	110	<5	1.13	3	42	71	2167	5.59	<10	2.14	836	<1	0.04	26	1520	40	10	<20	41	0 25	<10	159	<10	3	449
25	ERK-95-207	10	> 30	0.05	25	135	<5	> 15	67	1	33	62	2.38	<10	0.51	>10000	<1	<.01	3	20	5732	70	<20	1651	0.03	<10	7	<10	<1 :	10000
26	ERK-95-208	55	12.2	0.19	155	30	<5	6.53	48	7	71	44	3.06	<10	0.09	1757	3	<.01	3	320	3670	<5	<20	210	<.01	<10	4	<10	6	5540

٠.

۰.

٠.

۰.

٠.

CERTIFICATE OF ASSAY AS 95-4018

TEUTON RESOURCES CORPORATION 509-675 W. HASTINGS STREET VANCOUVER, B.C.

V6C 1N2

ATTENTION: DINO CREMONESE

42 rock samples received in Stewart August 22, 1995 in Kamloops August 25, 1995

PROJECT #: None Given

SHIPMENT #: None given

P.O.#: None given

Samples submitted by: E. Kruchkowski

ET #.	Tag #	Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)	As (%)	Co (%)	Cu (%)
1	ERK-95-209	5.62	0.164	-	-	1.08	-	-
9	ERK-95-217	76.63	2.235	139.6	4.07	1.41	-	4.36
10	ERK-95-218	3.32	0.097	-	-	-	-	-
14	ERK-95-222	47.43	1.383	334.2	9.75	-	-	6.06
15	ERK-95-223	49.72	1.450	237.6	6.93	-	-	3.69
16	ERK-95-224	2.78	0.081	-	-	-	-	-
17	ERK-95-225	44.71	1.304	123.4	3.60	-	-	1.44
18	ERK-95-226	3.96	0.115	50.4	1.47	-	-	1.68
26	A-95-127	3.80	0.111	-	-	-	-	-
30	A-95-131	1.17	0.034	-	-	-	-	-
31	A-95-132	-	-	-	-	-	0.43	
32	A-95-133	12.00	0.350	-	-	8.24	0.54	-
33	A-95-134	1.71	0.050	-	-	1.01	0.10	-
34	A-95-135	3.28	0.096	-	-	5.52	0.56	-
35	A-95-136	8.86	0.258	-	-	-	-	-
36	A-95-137	138.62	4.043	36.7	1.07	1.39	-	-
37	A-95-138	76.12	2.220	37.3	1.09	1.94	-	-
/ 38	DC-95-25	6.39	0.186	47.2	1.38	-	-	-

Standard:						
Mp-1A	-	-	70.0	2.04	0.84	-
HV-1	-	-	-	-	-	0.52

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/95Teuton

1-Sep-95

Clone

31-Aug-95

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

Values in ppm unless otherwise reported

. 1

1

1

1

TEUTON RESOURCES CORPORATION AS 95-4018 509-675 W. HASTINGS STREET VANCOUVER, B.C. V6C 1N2

ATTENTION: DINO CREMONESE

•

42 rock samples received in Stewart August 22, 1995 In Kamloops August 25, 1995

PROJECT #: None Given SHIPMENT #: None given P.O.#: None given Samples submitted by: E. Kruchkowski

1

l

	t#. T	Tag #	Au(ppb)	Ag	AI %	As	Be	81	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	รก	Sr	TI %	U	V	W	Y	Zn	
1	ERK	<-95-209	>1000	4.6	3.92	>10000	130	10	0.89	<1	105	20	476	13.70	<10	1.30	3871	13	<.01	10	1280	14	<5	<20	14	<.01	<10	107	<10	<1	71	
2	ERK	< -95-210	225	4.2	3.22	370	90	<5	0.99	<1	38	27	2072	10.10	<10	1.03	2583	15	<.01	8	1470	6	<5	<20	8	<.01	<10	99	70	<1	58	
1	ERK	< -95-2 11	35	1.0	3.01	105	110	<5	0.34	<1	24	14	264	8.26	<10	1.44	2210	10	<.01	8	1530	12	<5	<20	6	<.01	<10	84	<10	6	50	
. 4		<-95-212	30	0.8	1.96	40	90	<5	0.33	<1	50	27		8.09	<10		921	16		11	1560	12	<5	<20	7	<.01	<10	59	<10	4	33	
1	ERK	(-95- 213	15	0.6	2.41	5	105	<5	0.68	<1	25	16	176	8.24	<10	1.11	1132	7	0.03	8	1630	10	<5	<20	23	<.01	<10	79	<10	6	40	
								-												-					_							
		<-95-214	30	1.2	2.61	45	75	<5	0.67	<1	27	9		7.81	<10		1131	11			1630	10	<5	<20	7	<.01	<10	93	<10	9	39	
7		(-95-215	45	0.4	2.80	25	70	5	0.38	<1	45	26		9.05	<10		1011	16		9	1430	10	<5	<20	6		<10	73	<10	3	35	
		(-95-216	15	0.2	2.61	40	80	10	0.35	<1	27	17		7,34	<10		1125	8	<.01	8	1520	10	<5	<20	4	<.01	<10	80	<10	2	37	1
5		(-95-217	>1000	>30		>10000	75	<5	0.14	<1	79			> 15	<10	0.99		25	<.01	12 :	10000	16	<5	<20	2	<.01	40	96	<10	<1	183	
1	D ERK	(-95-218	>1000	6.0	3.21	6945	70	<5	0.44	<1	26	10	1092	10.60	<10	1.05	1456	12	<.01	5	1630	10	<5	<20	7	0.01	<10	97	<10	<1	55	
		(-95-219	835	1.2	2.97	750		-	0.70	- 4	20	20	1517	7 40	-10	4.98	1072	-	0.00	•	4000	•	-5	-20	24	0.00	-10		-10			alone
1		(-95-220				750	95	<5	0.78	<1	29	26		7.62	<10		1873	7			1800 1350		<5	<20	24	0.03	<10	115	<10	6	51 20	1 (1)01
1	-	(-95-220 (-95-221	105	0.8	1.51	90	75	<5	0.44	<1	33	56		4.63	<10	0.73	513		<.01	10			<5	<20	;	<.01 0.02	<10	42	<10	-3 <1	41	
		(-95-222	240	4.6	2.23	175	55	<5	0.65	<1	75	22	2656		<10	1.07	843	12		12	1480	16	<5	<20			<10	61	<10 120			
1		(-95-223	>1000 >1000	>30 >30	0.81 1.67	990 655	80 75	<5	0.04	<1	215 232		>10000 >10000			0.15 0.45	219 484	23	<.01		10000	78	<5	<20 <20	2	<.01 0.02	60	23		<1 <1	392 659	
	D ERR	-80-223	21000	-30	1.07	600	75	<5	0.05	11	232	12	>10000	× 15	< 10	0.45	404	21	<.01	10	<10	42	<5	<20	3	0.02	50	40	<10	S1 -	608	
10	S ERK	(-95-224	>1000	12.8	1.80	65	50	<5	0.68	<1	28	21	2514	6.19	<10	0.85	936	7	<.01	6	1340	12	<5	<20	7	0.04	<10	54	50	<1	73	
1		-95-225	>1000	>30	2.61	1680	70	<5	1.18	<1	131			> 15				17		13	590	34	<5	<20	15	0.02	<10	85	<10	<1	131	1
1	B ERK	-95-226	>1000	>30	3.37	165	65	<5	0.65	2	58	11	>10000	13.30	<10	1.23	1357	33		5	1080	28	<5	<20	8	0.04	<10	90	40	<1	170	
1	ERK	(-95-227	125	2.0	3.22	25	55	<5	1.42	<1	25	35	639	6.44	<10	0.85	996	7	0.17	7	1600	16	<5	<20	70	0.04	<10	113	20	<1	49	
2	D A-95	5-120	30	0.6	0.20	5	135	<5	0.91	<1	2	97	73	0.69	10	0.16	512	4	0.02	3	50	6	<5	<20	27	<.01	<10	2	<10	2	10	
2	1 A-95	5-122	200	3.8	1.81	35	65	<5	0.54	<1	22	50	1195	8.63	<10	1.11	486	11	0.04	11	1490	10	<5	<20	25	0.07	10	135	<10	<1	42	
2	2 A-95	5-123	25	0.6	1.50	10	35	<5	0.93	<1	34	86	634	6.03	<10	1.19	464	6	0.06	39	1660	10	<5	<20	38	0.08	<10	79	<10	<1	33	
2	3 A-95	5-124	100	0.8	3.26	125	55	<5	0.48	<1	27	170	661	11.20	<10	2.63	785	23	0.01	31	1700	14	<5	<20	29	0.08	<10	121	<10	<1	60	
2	4 A-95	5-125	230	3.0	1.32	3720	30	<5	1.59	<1	53	86	3168	6.46	<10	1.08	479	24	0.03	44	1450	10	<5	<20	33	0.04	<10	49	<10	<1	87	
2	5 A-95	5-128	190	0.6	3.53	175	55	<5	1.87	<1	61	180	588 1	12.00	<10	2.77	1016	294	<.01	42	1320	12	<5	<20	34	0.11	<10	228	<10	<1	145	

Page 1

1

. . 1

ECO-TECH LABORATORIES LTD.

1

Et	N. Tag#	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr.	Cu	Fe %	La	Mg %	Mn	Мо	Na %	NI	P	Pb	Sb	Sn	Sr	TI %	U	v	w	Y	Zn	
20	ERK-95-292	325	1.0	1.83	15	190	<5	1.23	1	15	36	93	6.33	<10	0.90	934	7	0.01	3	940	44	<5	<20	27	< 01	<10	79	<10	<1	120	
27	ERK-95-293	>1000	6.8	3.21	590	70	<5	1.25	198	19	44	707	12.60	<10	1.02	1392	22	<.01	8	640	740	<8	20	21	<.01	<10	76	<10	<1 >	10000	
28	ERK-95-294	>1000	18.6	3.13	180	90	<5	0.39	45	30	33		14.30	<10		928	11		6			<5	<20	9		<10	98	<10	<1	3960	
29	ERK-95-295	165	1.4	1.58	50	215	<5	1.18	31	16	35	100	0.40	<10		1447	7		4	1000		<5	<20	15		<10	40	<10	<1	2550	
30	ERK-95-298	185	>30	0.15	75	115	<5	1.82	64	6	127	5235	3.54	<10		2115	5					145	20	30		<10	7	<10	<1	6223	
										-									-					•••			•				
31	ERK-95-297	120	2.8	3.25	<5	40	<5	10.60	579	10	59	3493	9.18	<10	1.28	6366	<1	<.01	12	580	178	<5	<20	127	0.01	<10	69	<10	<1 2	10000	
32	ERK-95-298	390	>30	0.13	375	55	<5		6		174	6006	9.91	<10		1102	17		6			1035	<20	32		<10		<10	<1	792	
33	ERK-95-299	>1000	16 0	2.31	660	305	<5		4	29	68	613	> 15	₹10		898	26		Ă	600		<8	<20	45		10	97	<10	<1	1408	
-34	ERK-95-300	>1000			>10000	95	<5	0.86	<1	961	16	1460	> 16	<10		976	90	<.01	38		the second s		<20	14	0.01	<10	147	< 10	<1	217	, ,
36	ERK-95-301	>1000			▶10000	100	<5		<1	453	4	1197	> 15	<10		1204	73		10			<5	<20	23		10	178	<10	<1	566	1 chant
					- 10000				- •		-		- 10	-10		1204				1400						10	170	-10			Clone
38	ERK-95-302	630	12.2	5.33	135	165	<5	0.39	2	60	81	7432	▶ 15	<10	2.80	1386	29	<.01	12	1120	48	<6	<20	12	0.04	<10	166	₹10	<1	670	-
37	ERK-95-303	440		0.14	245	50	<6		67	6	68	127	2.21	<10		37	1	<.01	7			5	<20	171		<10	4	<10	-	7198	
38	DC-95-51	120	3.6		40	1280	<5		14		42	65	4.59	<10	0.74	8452	-	<.01	7	700		10	<20	180	0 02	<10	24	<10	<1	1031	
39	DC-95-52		20.4		80	40		12.80	80	23	64	112	6.78	<10	0.31	6398	7	<.01	11	520		15	<20	140	0.01	<10	15	<10	<1	3655	
40	DC-95-53	25			130	50	<5		325	21	62	89	4.00	<10	0.19	8111	<1	<.01	18		▶10000	75	<20	199	0.01	<10	14	<10		10000	
				0.10	100	•••			010		~			-10	0.10	0.11				. 400	-10000		-10		0.01	-10				10000	
41	DC-95-54	5	22	0.23	40	140		6.15		10	94	13	4.48	<10	1.47	1249		<.01	24	1050	162	10	<20	705	<.01	<10	10	<10	2	283	
42	DC-95-55	15	0.8	2.97	100	115	5			23	123	88	4.54	<10	1.67	1168		0 02	20	1460	78	15	<20	29	0.09	<10	128	<10	<1	472	
43	DC-95-56	10		3.45	30	100	10		- 7	28	121	119	6.51	<10	1.95	950	<1	0.02	43	2310	48	10	<20	82	0.17	<10	169	<10		146	
44	DC-95-57	5	1.4		45	70	10		3	7	110	37	3.26	<10	0.94	1019	6	0.03	12	590	276	15	<20	476	<.01	<10	7	<10	3	208	
45	DC-95-58	10	3.4	0.34	35	90	<5	5.83	1	14	79	43	6.07	<10	1.31	1466	ĕ	0.04	18	1020	98	15	<20	197	<.01	<10	15	<10	3	103	
	00.00.00		9.4	0.04		•••		0.00					0.07	-10	1.31	1400	•	0.04		1020		10	-20		01	10	15	-10	3	103	
40	DC-95-59	5	0.8	1.89	15	85	<5	3.66	3	18	67	78	4.42	<10	1.74	973		0.02	23	1320	46	15	<20	90	<.01	<10	112	<10	2	203	
47	DC-95-60	5	<.2	2.98	25	120	5			21	131	111	4.72	<10	1.68	708	<1	0.04	47	1430	42	5	<20	94	0.19	<10	135	<10	8	135	
46	DC-95-61	50	4.0	0.24	95	75	5	4.72	<1	10	144	20	4.47		1.13	892		<.01	23	780	32	20	<20	414	<.01	<10	135	<10	2	101	
49	DC-95-62	145		0.10	520	45	5	0.05	<1	5	163	6	4.52	<10	<.01	24	9	<.01	- 13	180	24	<5	<20	2	<.01	<10	3	<10	<1	150	
50	DC-95-63	5	0.4	1.47	<5	265	<5		6	6	101	35	2.49	<10	0.65	295	2		13	590	30	5	<20	65	0.05	<10	33	<10	8	546	
~	00.000	5	0.4	1.47		205	-0	1.00	•	•	101		2.70	-10	0.00	200	-	0.03	13	360	30		-20	05	0.00	-10	33	10	0	340	
51	DC-95-64	170	<.2	0.20	20	15	45	> 15	> 1000	30	•	43	1.52	<10	0.09	5052	<1	<.01	<1	<10	274	<5	<20	159	<.01	<10	5	<10	-1 -	10000	
52	DC-95-65	>1000	4.0	1.58	125	65	<5	0.38	23	20	86	216	6.30	<10	0.49	1018	28	0.01		980	520	<5	20	9	<.01	<10	43	<10	<1	2747	
53	DC-95-66	50	<.2	0.64	40	20	<5		> 1000	42	50	185	4.65	<10	0.30	3466	<1	<.01		350	148	<5	<20	150	<.01	<10	11	<10	•	10000	
64	DC-95-67	5		1.05	45	35	<5		> 1000	26	45	324	5.78		0.38	3384	•	<.01	ĕ	730	1212	<5	<20	137	<.01	<10	27	<10		10000	
66	DC-95-68	655	>30	1.33	2790	100	<5		1000	106		10000		<10	0.61	530	14	<.01		1370	92	555	40	-11-	0.02	-<10	-44	<10	•	1822	г
	00-00-00	000	-30	1.55	2/00	100	-0	0.01		100	08 -	10000	10.00	~10	0.01	550		01	'	1370	92	555	40		0.02	10		-10	~,	1022	1,
56	DC-95-69	>1000		2 35	>10000	100	<5	3.09	<1	6506	33	013	> 15	<10	1.49	989	47	0.01	36	1320	32	45	<20	124	0.02	10	138	<10	<1	286	10000
57	DC-95-70	140	0.4	2.15	845	155	10		<1	56	64	54	5.01	<10	1.62	1898	2	0.02	12	1570	54	5	<20	32	0.08	<10	80	<10	<1	542	Clone
58	DC-95-71	20	>30	2.04	405	270		1.13	26	34		10000	4.75		1.54	1724	18	0.02	11	1170	1276	30	<20	29	0.11	<10	100	<10	<1	488	1
59	DC-95-72	15	5.2	0.06	85	150		> 15	34	1	13	31	0.81		0.10	4904	<1		<1	30	336	10	<20	455	<.01	<10	12	<10		80	
60	DC-95-73	5	0.6	0.64		1395		11.50	39	9	20		5.10		0.56	2811		<.01	5	910	228	15	<20	221	0.02	<10	43	<10	3	350	
-90	085-73	5	0,8	0.04	20	1383	13	11.50	38	3	20		0.10	10	0.50	2011		4.01		010	228	15	420	221	0.02	10	4.3	10		350	+
61	DC-95-74	40	14.6	1.63	25	525	<5	2.67	3	25	38	2096	6.31	<10	1 38	988		<.01	12	1390	70	5	<20	66	0.03	<10	101	<10	<1	289	01.0
	DC-95-75		the second s	0.91	20			3.78			40	and the second second	5.05	<10		1399		<.01		1160	48	<5	<20		0.03	<10	67	<10	5	172	Clone
63	ERK-95-278		1.4		<5	470		0.13		17	40		> 15	<10		844	51	<.01		<10	34	<5	<20		<.01	<10	17	<10	<1	340	_
	2111-00-210	5		0.02				0.13	9	.,	-0	13		- 10		044	31		3	- 10	-		-10	5		- 10	.,			340	

.

CERTIFICATE OF ASSAY AS 95-4017

TEUTON RESOURCES CORPORATION 509-675 W. HASTINGS STREET VANCOUVER, B.C. V6C 1N2

31-Aug-95

ATTENTION: DINO CREMONESE

46 Rock samples received in Stewart August 21, 1995 (Damp) in Kamloops August 24, 1995

PROJECT #: None Given

SHIPMENT #: None Given

P.O.#: None Given

Samples submitted by: A. Walus

		Au	Au	Ag	Ag	As	Cd	Pb	Zn	
ET #.	Tag #	(g/t)	_(oz/t)	(g/t)	(oz/t)	(%)	(%)	(%)	(%)	
1	ERK-95-183	-	-	-	•		-		5.46	
2	ERK-95-184	-	-	930.6	27.14	-	-	-	1.07	
3	ERK-95-185	-	-	175.5	5.12		-	-	-	
4	ERK-95-186	-	-	1370.0	39.95	-	-	1.27	1.81	
5	ERK-95-187	-	-	51.6	1.51	-	-	-	-	
6	ERK-95-188	-	-	99,2	2.89	-	-	-	-	
7	ERK-95-189	-	-	346.3	10.10	-	-	-	-	
8	ERK-95-190	-	-	31.6	0.92	-	-	-	-	
9	ERK-95-191	-	-	111.4	3.25	-	-	-	-	
10	ERK-95-192	-	-	1200.0	35.00	-	•	1.69	1.07	
11	ERK-95-193	-	-	726.3	21.18	-	-	-	•	
12	ERK-95-194	-	-	34.5	1.01	-	-	-	-	
13	ERK-95-195	15.43	0.450	230.5	6.72	11.03	-	-	-	
17	ERK-95-199	-	-	-	-	-	-	0.95	-	
18	ERK-95-200	-	-	200.3	5.84	-	-	3.80	-	10
19	ERK-95-201		-	-	-	-	-	-	1.83	
21	ERK-95-203	1.17	0.034	87.8	2.56	-	-	-	-	
23	ERK-95-205	5.48	0.160	38.2	1.11	-	-	-	-	
25	ERK-95-207	-	-	420.7	12.27	-	-	-	1.46	
27	A-95-109	8.42	0.246	-	-		-	-	-	1
34	A-95-116	8.70	0.254	39.5	1.15	-	-	-	-	1
39	DC-95-16		-	49.6	1.45	-	-	2.21	1.31	
40	DC-95-17	-	-	-	-	-	0.20	2.16	16.60	
45	DC-95-22	1.96	0.057	90.6	2.64	-	-		-	

QC/DATA:

Standard:

Mp-1A

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

- 19.00

XLS/95Teuton

.

1

.) 1 .)

ECO-TECH LABORATORIES LTD.

•

`

Et#	Teg #	Au(ppb)	Ao	AI %	As	Ba	81	Ca %	Cđ	Co	Cr	Cu	Fe %	Le	Ma %	Mn	Мо	Na %	NI	р	Pb	Sb	5n	Sr	TI S	บ	v	w	Y	Zn	
Contractor in the	A-95-109	>1000	3.6	and the second second	5995	55	25	0.12	<1	24	27	118	> 15	<10	States and states and states	140	23	Contract of the local division of the local	7	140	44	<5	<20	7	<.01	60	11	<10	<1	67	1
28	A-95-110	825	1.6	0.42	135	25	<5	0.15	<1	12	113	21	2.87	<10		76	7		14	460	26	<5	<20	5	<.01	<10	12	<10	<1	50	
29	A-95-111	75	5.8	0.16	100	85	. <5	0.06	<1	1	142	25	1.55	<10		58	7	<.01	7	280	1470	<5	40	11	<.01	10	9	<10	<1	126	
30	A-95-112	60	1.8	0.74	185	275	5	0.07	<1	6	205	82	8.92	<10		147	61	<.01	21	970	50	<5	40	5	<.01	20	85	<10	<1	49	
31	A-95-113	30	3.2	0.62	15	135	<5	2.58	<1	6	. 96	476	2.35	<10	0.26	1760	2	<.01	25	480	18	<5	<20	52	<.01	<10	13	<10	3	39	(.10)
32	A-95-114	35	<.2	2.52	<5	120	<5	0.27	<1	13	114	38	5.60	<10	1.80	313	5	0.01	56	1140	32	10	<20	14	<.01	<10	86	<10	<1	76	l v
33	A-95-115	300	9.6	3.57	90	55	<5	0.09	5	64	60	793	> 15	<10	1.66	1278	17	<.01	10	80	230	<5	<20	2	0.01	<10	409	<10	<1	357	
34	A-95-116	>1000	>30	0.11	720	40	15	0.01	<1	163	82	111	> 15	<10	<.01	17	17	<.01	8	<10	106	<5	<20	2	<.01	40	7	<10	<1	197	
35	A-95-117	130	1.0	3.75	65	60	10	0.51	8	27	44	182	> 15	<10	3.19	544	15	<.01	8	1110	132	<5	<20	11	<.01	20	163	<10	<1	277	
36	A-95-118	50	<.2	0.83	<5	85	<5	1.65	<1	8	196	56	2.26	<10		697	7	<.01	5	170	14	<5	<20	59	<.01	<10	30	<10	<1	50	
37	A-95-119	20	<.2	0.67	<5	310	<5	10.20	<1	15	19	9	5.05	<10		2275	5	<.01	5	560	10	<5	<20	199	<.01	<10	14	<10	<1	36	
	A-95-121	15	<.2	0.26	<5	195	<5	3.12	<1	4	119	5	1.39	10		821	6		3	100	12	<5	<20	83	<.01	<10	3	<10	1	27	
39 40	DC-95-16 DC-95-17	35 230	>30 20,4	0.35	35 140	55 65	<5 <5	1.62	168 > 1000	10 35	49 72	613 1555	1.45 3.86	<10 <10	0.10	253 618		<.01 <.01	19 28		>10000 >10000	35 <5	<20 60	84 35	<.01 <.01	<10 <10	6	<10 <10		>10000 >10000	
1		200	20,4	0.00	140			0.24		~	12	1000	5.00	-10	0.00	010	-1	01	20	200	-10000	-0	~	~	01	10	Ŭ	-10	-		
41	DC-95-18	20	3.4	0.57	<5	70		12.10	63	15	20	143	7.22	<10		4757	5	<.01	28	530	616	<5	<20	590	<.01	<10	13	<10	<1	4922	
42	DC-95-19	<5	0.8	0.42	<5	385		10.70	6	11	43	67	6.28	<10	• • • •	2001	7	<.01	8	800	192	<5	<20	157	<.01	<10	15	<10	2	545	
43	DC-95-20	<5	1.4	0.02	5	85		> 15	3	<1	15	4	1.51	<10		6129		<.01	3	50	60	10	<20	1627	<.01	<10	4	<10	4	165	- la
44	DC-95-21	25	0.8	1.75	<5	120		11.00	2	24	54		6.14	<10		1828	10		29	1530	42	10	<20	237	<.01	<10	62	<10	1	146	Glar
45	DC-95-22 DC-95-23	≻1000 60	>30 1.2	0.10 2.44	195 25	40 70	<5 <5	0.13 0.38	<1 <1	68 19	83 25	1241	12.10 6.31	<10 <10	<.01 2.07	29 469	15 8	<.01 0.01	16 30	<10 1550	28 36	<5 5	<20 <20	5 12	<.01 <.01	40 <10	3 46	<10 <10	<1 <1	62 132	1
QC/DA Respik	•				•		_					• · · ·										_		-							
	ERK-95-183 A-95-118	770 55	9.2 0.8	0.18 0.88	610 <5	20 120	<5 <5	1.50 1. 43	462 <1	13 8	126 166	814 74	4.74 2.35	<10 <10	0.18 0.58	239 709	<1 6	<.01 <.01	10 6	460 160	8672 24	<5 <5	<20 <20	53 53	<.01 <.01	<10 <10	8 31	<10 <10	<1 <1	>10000 75	
Repeat	:																														
1	ERK-95-183	855	10.4	0.21	660	20	<5	1.48	503	13	138	877	4.77	<10	0.17	247	<1	<.01	9	440	9642	<5	<20	58	<.01	<10	9	<10	<1	>10000	
10	ERK-95-192	130	>30	0.42	<5	15	<5	1.98	110	10	140	147	2.12	<10	0.59	417	19	<.01	9	120	>10000	60	<20	380	<.01	<10	14	<10	<1	>10000	
19	ERK-95-201	80	19.8	0.38	105	25	<5	0.05	274	10	171	391	3.64	<10	0.11	257	4	<.01	9	340	7406	<5	20	2	<.01	<10	11	<10	<1 :	>10000	
28	A-95-110	795	•	-	•	-	•	-	-	•	-	•	-	-	-	•	•	•	-	-	•	•	-	•	-	•	•	-	•	•	
36	A-95-118	50	<.2	0.86	<5	90	~5	1.70	<1	9	202	59	2.33	<10	0.58	720	7	<.01	8	180	12	<5	<20	62	< 01	<10	31	<10	<1	50	
45	DC-95-22	>1000	>30	0.10	200	35	<5	0.13	<1	69	80	1223	12.10	<10	<.01	27	15	<.01	15	<10	28	<5	<20	5	< 01	40	3	<10	<1	6 5	
Stende																						_							_		
GEO'9		140	1.0	1.60	55	160	<5	1.59	<1	19	65	82	3.96	<10	0.89	667	<1	0.02	31	670	18	5	<20	55	0.13	<10	79	<10	5	72	
GEO'9	1	140	1.0	1.59	50	155	<5	1.62	<1	19	60	85	3.96	<10	0.86	659	<1	0.01	28	670	20	<5	<20	50	0.11	<10	72	<10	4	74	
df/4017 XLS/95													,							f	ECO-TEC Frank J. P B.C. Certif	ezzotti,	A Sc.T		LTD.						

ECO-TECH LABORATORIES LTD.

EtA	. Tag #	Au(ppb)	Ag	AI %	As	8.	BI	Ca %	Cđ	Co.	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Ne %	NI	P	Pb	Sb	Sn	8r	TI %	U	v	w	Y	Zn	1
26	A-95-127	>1000	8.0	1.93	105	75	<5	0.18	1	302	140	4174	> 15	<10	1.40	513	25	<.01	249	500	6	<5	<20	10	0.15	50	109	<10	<1	62	
27	A-95-128	200	1.6	2.66	5	105	<5	0.32	<1	31	112	. 966	11.10	<10	2.29	650	26	0.02	17	1330	8	<5	<20	12	0.21	<10	193	<10	<1	51	I
28	A-95-129	70	2.2	1.26	90.	170	<5	0.90	1	9	30	1351	2.68	<10	0.84	702	4	<.01	4	1580	14	15	<20	17	0 02	<10	26	<10	2	95	1
29	A-95-130	25	0.2	0.63	175	220	<5	0.58	<1	13	31	47	2.69	<10	0.17	701	5	<.01	3	1290	28	<5	<20	14	0.02	<10	23	<10	2	68	1
30	A-95-131	>1000	5.4	0.93	155	250	<5	0.43	<1	31	20	1188	4.70	<10	0.40	469	7	<.01	3	1310	30	5	<20	12	0.02	<10	40	<10	1	67	1
																															1
31	A-95-132	585	1.6	2.77	2705	80	<5	0.76	<1	327	35	589	7.30	<10	2.35	682	8	<.01	8	1710	24	<5	<20	16	0.03	<10	183	<10	<1	79	1
32	A-95-133	>1000	5.0	2.46	>10000	65	<5	0.33	<1	4005	7	2934	> 15	<10	1.66	527	29	<.01	<1	310	76	35	<20	8	0.02	40	99	<10	<1	181	1 1 -0
33	A-95-134	>1000	1.8	2.81	>10000	65	<5	1.95	<1	666	29	1053	11.30	<10	2.12	794	16	<.01	2	1000	22	<5	<20	26	0.04	<10	141	<10	<1	131	1. MUC
34	A-95-135	>1000	5.8	1.14	>10000	60	<5	0.04	<1	3428	27	3515	> 15	<10	0.73	240	24	<.01	2	<10	108	<5	<20	6	<.01	60	51	<10	<1	79	
35	A-95-136	>1000	7.6	0,71	730	70 '	<6	0.11	<1	63	34	539	13.60	<10	0.52	374	20	<.01	7	260	14	<5	<20	2	0.01	20	50	<10	<1	195	
																															1
36	A-95-137	>1000	>30	2.11	>10000	65	5	0.29	<1	131	13	558	> 15	<10	0.93	406	332	<.01	4	1410	118	<5	<20	5	0.03	50	384	<10	<1	57	1
37	A-95-138	>1000	>30	0.07	>10000	165	20	0.01	<1	28	<1	414	> 15	<10	<.01	3	607	<.01	<1	140	98	<5	<20	6	<.01	100	217	<10	<1	17	1
38	DC-95-25	>1000	>30	3.13	2205	60	<5	0.38	<1	95	14	5819	> 15	<10	0.77	1218	26	< 01	13	1030	10	<5	<20	5	0.02	<10	99	<10	<1	91	1
39	DC-95-26	585	19.8	2.38	195	55	<5	0.47	<1	34	25	3055	7.98	<10	0.85	1214	8	<.01	4	1030	14	<5	<20	7	0.02	<10	95	<10	<1	53	i
40	DC-95-27	270	6.0	2.76	110	50	<5	0,90	<1	64	25	4238	12.60	<10	1.10	889	37	0.09	16	1380	8	<5	<20	51	0.03	<10	108	1380	<1	69	1
																															l l
41	DC-95-28	200	12.6	2.89	110	50	<5	0.45	<1	105	17	4906	> 15	<10	1.46	1034	25	0.02	14	1180	22	<5	<20	16	0.03	<10	107	790	<1	79	1
42	DC-95-29	120	6.6	2.64	145	50	<5	0.38	<1	52	32	4190	> 15	<10	0.69	879	34	0.01	12	640	10	<5	<20	8	0.03	10	93	920	<1	63	1
QC/DA																															
Respik																			_			_									
	ERK-95-209	>1000			>10000	125	5		<1	110	10		13.70	<10	1.27	3959	12	<.01	9	1250	20	<5	<20	11	0.01	<10	106	<10	<1	73	
R/S36	A-95-137	>1000	>30	1.96	>10000	60	10	0.30	<1	140	14	542	> 15	<10	0.88	386	363	<.01	6	1480	118	<5	<20	5	0.03	40	393	<10	<1	54	
Repea																						_									
1	ERK-95-209	>1000	4.4		>10000	115	5		<1	102	19		13.10	<10	1.22		12		8	1240	16	<5	<20	12	<.01	<10	101	<10	<1 -	69	
10	ERK-95-218	>1000	5.8	3.13	6930	75	<5	0.43	<1	25	9		10.40	<10	1.03		11		5	1590	10	<5	<20	6	0.02	<10	95	<10	<1	55	
19	ERK-95-227	95	2.0	3.26	30	60	<5	1.44	<1	26	35	634	6.44	<10	0.85	997	6	0.17	8	1580	16	<5	<20	71	0.05	<10	114	20	<1	49	
36	A-95-137	>1000	>30	2.10	>10000	65	<5	0.28	<1	134	9	566	> 15	<10	0.94	404	332	<.01	3	1390	116	<5	<20	5	0.03	50	379	<10	<1	57	
Stande							_																				~		-		
GEO95		150	1.2	1.46	65	160	<5	1.88	<1	17	52	89	3.67	<10	0.87	654	<1	0.01	26	640	20	<5	<20	51	0.07	<10	65	<10	5	71	
GEO9		155	-	•	•	-	-	•	•	•	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	•	-	•	-	-	

df/698A XLS/95Teuton ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

Page 2

1

ECO-TECH LABORATORIES LTD.

۰.

. .

Et #	Tag#	Au(ppb)	Ag	AI %	As	Ba	BI	Ca %	Cd	Co	Cr	Cu	Fe %	Le	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
26	A-95-164	435	29.0	2.53	5535	495	<5	0.58	<1	19	20	218	5.09	<10	1.92	5653	5	<.01	14	1980	1316	35	<20	50	<.01	<10	41	<10	12	619
27	A-95-165	915	>30	1.85	5805	545	<5	0.46	<1	15	35	359	4.81	<10	1.27	3190	6	<.01	9	1550	7458	95	<20	35	<.01	<10	42	<10	7	411
28	A-95-168	>1000	>30	0.08	2280	15	<5	0.06	77	3	53	>10000	2.40	<10	0.02	214	5	<.01	5	<10	>10000	>10000	<20	13	<.01	<10	3	<10	<1	1655
29	A-95-187	110	>30			140	<5	0.06	<1	11	27	775	4.55	<10	0.01	6488	- 4	<.01	<1	1840	8024	140	<20	6	<.01	<10	22	<10	<1	932
30	A-95-168	>1000	>30	0.31	5895	55	<5	0.19	25	13	51	6949	11.90	<10	<.01	>10000	7	<.01	8	840	>10000	2320	<20	- 44	0.03	<10	18	<10	<1	>10000
		_																												
31	A-95-169		19.2		125	130	<5	0.93	1	23	28	294	5.69		0.13		5	<.01	6	2300	1652	30	<20	19	<.01	<10	47	<10	6	409
32	A-95-170		>30	0.17	6390	35	<5	0.80	<1	10	61	1851	3.80	<10			13	<.01	6	380	>10000	1875	<20	62	0.01	<10	9	<10	<1	3885
33	A-95-171	380	>30		3810	50	<5	3.64	72	14	25	1769	4.12	<10		3881	<1		13		>10000	2155	<20	157	<.01	<10	12	<10	- 4	>10000
34	A-95-172	>1000	>30			215	<5	2.49	<1	17	35	357	4.53	<10	0.11	4396	10		18	980	>10000	625	<20	105	<.01	<10	15	<10	- 4	3652
35	A-95-173	>1000	>30	0.32	5260	180	<5	1.60	<1	11	51	255	3.99	<10	0.22	3292	14	<.01	14	660	8438	515	<20	140	<.01	<10	13	<10	2	1452
36	A-95-174	230	>30	0.43	2625	230	<5	0.90	<1	15	38	995	5.00	<10	0.03	2383	7	<.01	13	760	1186	705	<20	71	<.01	<10	14	<10	2	924
37	A-95-175	>1000	>30		6405	75	<5	0.24	<1	5	64	1142	3.23	<10	<.01	925	7		5	160	1768	1285	<20	41	<.01	<10	7	<10	<1	566
38	A-95-176	490	18.4		7535	315	<5	4.64	<1	24	28	239	3.53	<10	0.97		23		34	840	1334	100	<20	129	0.01	<10	37	<10	6	4445
39	A-95-177	>1000	>30		3450	30	<5	2.15	102	10	132	1258	7.41	<10		>10000	10		9		>10000	330	<20	63	0.02	<10	12	<10	-	>10000
40	A-95-178	>1000	>30		5900	30	<5	2.80	101	16	91	2589	6.11	<10			30		14		>10000	620	<20	71		<10	17	<10		>10000
						•••	•				•		•								10000	010					.,			10000
41	A-95-179	410	12.6	0.54	5055	125	<5	3.49	<1	17	26	216	4.49	<10	0.85	6103	21	<.01	16	960	1066	75	<20	99	<.01	<10	18	<10	5	2988
42	A-95-180	5	5.8	0.73	2890	70	<5	1.61	<1	12	22	398	4.09	<10	0.49	4490	21	<.01	14	1440	548	140	<20	57	<.01	<10	22	<10	7	2328
43	A-95-181	595	>30	0.39	>10000	45	<5	1.41	<1	16	63	7281	5.56	<10	0.38	3057	21	<.01	6	520	>10000	1470	<20	61	<.01	<10	11	<10	<1	3535
44	A-95-182	835	>30	0.28	8220	30	<5	1.48	<1	10	67	8057	4.56	<10	0.40	3264	19	<.01	4	520	>10000	2655	<20	44	<.01	<10	9	<10	<1	5681
45	A-95-183	>1000	>30	0.33	>10000	45	<5	1.54	<1	12	53 :	10000	5.17	<10	0.38	2238	17	<.01	8	360	>10000	3295	<20	57	<.01	<10	10	<10	<1	4581
																													•	
46	A-95-184	>1000	18.0	0.28	>10000	25	<5	0.86	<1	11	48	236	2.94	<10	0.22	2013	17	<.01	8	410	1190	150	<20	45	<.01	<10	8	<10	2	982
47	A-95-185	>1000	>30	0.21	>10000	30	<5	0.30	<1	7	58	293	3.44	<10	0.04	430	15	<.01	6	640	2178	205	<20	44	<.01	<10	6	<10	<1	558
48	A-95-186	>1000	29.8	0.65	9515	50	<5	3.05	<1	12	51	654	4.07	<10	0.82	2555	14	<.01	15	1010	1588	180	<20	105	<.01	<10	15	<10	5	1236
49	A-95-187	110	4.0	0.60	1555	90	<5	6.69	<1	12	32	162	3.39	<10	1.02	2458	10	<.01	24	910	194	110	<20	121	<.01	<10	21	<10	4	1645
50	A-95-188	>1000	27.0	0.20	7925	145	<5	0.17	<1	2	57	71	3.08	<10	0.02	107	17	<.01	2	360	5768	315	<20	26	<.01	<10	12	<10	<1	222
												-																		
51	A-95-189	>1000				240	<5		<1	1	104		2.13	<10		124	8	<.01	4	290	896	110	<20		<.01	<10	12	<10	<1	115
52	A-95-190	>1000			>10000	220	<5	0.29	<1	14	40	95		<10	0.01	1751	• •	< 01	9	720	318	80	<20	33	<.01	<10	16	<10	<1	553
53	A-95-191	950	>30		1085	20	<5	0.02	225	2	109	1794	1.20		<.01	286		<.01	5		>10000	1255	20		< 01	<10	<1	<10		>10000
54	A-95-192	>1000	>30		5430	55	<5	0.89	<1	32	50	8166	> 15			>10000	19	<.01	10	860	2612	390	<20	127	0.07	<10	52	<10	<1	1219
55	A-95-193	>1000	>30	0.42	7325	30	<5	3.14	<1	26	60	8083	6.28	<10	0.37	>10000	9	<.01	12	1310	1974	350	<20	92	0.02	<10	34	<10	<1	1968
	A-95-194	410	>20	0.80	1745	40		3.02		-	40	4470				- 40000		- 01	•	4000			-10							
67	A-95-195	410	>30		1745	40	<5	3.03	<1	25	49	4473				>10000		<.01		1290	1124	375	<20	67	0.02	<10	54	<10	<1	621
57	A-95-195 A-95-196			0.30		365	<5	0.17	<1	2	40		2.33	<10	<.01	374	2	<.01	2	810	68	65	<20	20	<.01	<10	12	<10	2	30
60		>1000	8.2		6215	60 45	<5	0.11	<1	8	52		4.73	<10	<.01	256	6	<.01	<1	1040	44	65	<20		<.01	<10	14	<10	<1	31
59	A-95-197 A-95-198	>1000 320		3.23	>10000	45	<5	0.10	<1		59		4.51	<10		233		<.01	4	1020	40	135	<20	Statement of the local division of the local	<.01	<10	12	<10	<1	
00	-190 - CR-V	320	0.0	3.23	390	80	<0	5.88	<1	23	23	122	7.15	<10	2.93	1298	3	0.03	4	2010	60	15	<20	84	0.15	<10	300	<10	1	79 101

.

ECO-TECH LABORATORIES LTD.

E	#. Tag #	Au(ppb)	Ag	AI %	As	8a	BI	Ca %	Cd	Co	Cr	Cu	Fe %	La	Ma X	Mo	Mo	Na %	NI	P	Pb	Sb	Sn	Sr	TI X	U	v	w	Y	Zn	
- 6	A-95-199	5	0.6	2.82	680	65	<5	7.52	<1	33	12	114	6.44	<10	2.49	1495	5	0.02	2	1670	72	15	<20	74	0.13	<10	278	<10	2	119	1
62	A-95-200	950	5.2	3.03	3945	75	<5	0.56	<1	167	22	326	10.30	<10	2.08	1100	10	0.01	<1	1720	378	<5	<20	10	0.06	<10	289	<10	<1	244	
63	A-95-201	5	0.6	3.82	385	60	<5	3.66	<1	37	42	241	9.40	<10	3.31	1381	5	0.04	13	2430	58	10	<20	60	0.15	<10	316	<10	2	96	1
64	A-95-202	>1000	10.2	3.56	>10000	60	25	0.56	<1	123	25	331	> 15	<10	2.49	959	72	0.02	6	2010	120	<5	<20	13	0.07	<10	268	<10	<1	121	1
65	A-95-203	575	<,2	2.13	270	50	10	0.55	<1	20	36	90	5.09	<10	1,80	762	3	0.02	6	1160	22	10	<20	10	0,12	<10	158	<10	4	55	
50	A-95-204	810	2.0	2.08	220	75	<5	0.38	<1	100	56	113	4.72	<10	1.69	885	4	0.02	9	1550	418	5	<20	12	0.02	<10	197	<10	<1	112	1
6		220	0.4		265	65	<5	2.00	<1	131	29		9.55		3.59	1086		0.02	19	1910	44	5	<20	45		<10	271	<10	<1	139	1
68	A-95-208	>1000		3.16	135	105	-		<1	70	21		13.10		2.80	1197		0.01	17	1490	34	<5	<20		0.11	<10	202	<10	<1	137	
69	A-95-207	>1000		3.35	525	100	<5		<1		21		10.70		2.78	1182		<.01	15	1950	16	<5	<20		0.07	<10	170	<10	<1	160	ł
	A-95-208	5		2.20	190	90	<5		<1		14		4.61		1.54	601		0.01	3	1760	22	10	<20		0.05	<10	49	<10	2	78	
71	A-95-209	175	0.4	2.25	235	80	<5	1.15	<1	78	27	212	5.14	<10	1.73	755	4	0.02	3	1580	22	5	<20	22	0.06	<10	72	<10	1	84	
7		>1000	0.8		595	80	<5	0.43	<1	221	24		12.20	<10	4.62	1514		<.01	18	1640	28	<5	<20			<10	245	<10	<1	155	Inter
73		>1000		2.39	145	95	<5	0.51	1	78	29		12.10		1.83	784	• •	<.01	20	1850	186	15	<20		0.07	<10	209	<10	<1	387	()0'
	A-95-212	>1000		1.56	60	80	<5	0.23	<1	45	6		13.80		0.95	926		<.01	8	670	50	<5	40	8	0.04	<10	262	<10	<1	296	$1 \sim 1$
	A-95-213	>1000		1.96	75	230	<5	0.44	<1		26		12.40		1.35	939	19	<.01	5	1110	48	<5	<20	15		<10	160	<10	<1	213	1
	A-95-214	- 1000							- 4		••	207	49.00	-10	2.00	1201	•	- 04		2040			- 20	47	<u> </u>		400	~10	-1	122	
76		>1000		3.35	50	135	<5			115	31		13.80		2.66	1264	-	<.01	11		20	<5	<20		0.09	<10	192	<10	<1	133	
77		395		3.74	75	100	<5	0.71	3	83	38		10.80		3.28	1497		<.01	22	2050	26	<5	<20			<10	203	<10	<1	912 347	
78		270		3.72	40	90	<5	1.79	3	39	66		10.00		3.51	1844	2		22 7	1940	30	<5	<20 <20		0.14	<10	217	<10	<1	347 146	i i
76		485		1.74	30	110	<5	1.95	<1	22	30		5.34		1.23	951	<1		•	1570	20	15	-			<10	76	<10	3		
80	A-95-218	135	<.2	4.46	10	145	5	2.57	3	30	144	154	12.30	<10	4.03	1868	4	0.01	30	1980	30	<5	<20	39	0.16	<10	262	<10	<1	234	
81	A-95-219	>1000	4.2	3.33	165	120	<5	0.95	3	107	87	3680	14.70	<10	2.72	1298	13	<.01	19	1560	42	<5	<20	19	0.09	<10	247	<10	<1	660	ł
82	A-95-220	>1000	3.6	3.92	100	90	<5	1.47	1	94	75	2629	12.90	<10	3.62	1329	13	<.01	28	1730	132	<5	<20	21	0.13	<10	288	<10	<1	373	1
83	A-95-221	>1000	2.8	4.10	105	85	<5	1.22	<1	85	60	2180	12.00	<10	3.92	1324	11	0.01	23	1850	112	<5	<20	19	0.13	<10	305	<10	<1	268	1
84	A-95-222	>1000	26.6	2.34	>10000	95	<5	0.25	<1	279	8	1057	> 15	<10	1.62	736	576	<.01	7	870	66	<5	<20	11	0.07	<10	218	<10	<1	55	
85	A-95-223	775	0.8	2.49	1675	75	<5	1.45	<1	75	46	263	7.18	<10	2.31	871	15	0.02	10	1430	22	10	<20	30	0.11	<10	171	<10	<1	104	1
86	A-95-224	>1000	8.8	4.50	>10000	60	<5	0.85	<1	733	20	5927	> 15	<10	3.46	1167	18	<.01	8	1060	36	<5	<20	17	0.05	<10	222	<10	<1	320	
87	A-95-225	>1000	5.4	2.37	>10000	60	<5	0.29	<1	788	27	2908	> 15	<10	1.45	589	20	<.01	2	530	50	<5	<20	9	0.04	<10	104	<10	<1	137	
88	A-95-226	>1000	2.2	3.25	>10000	60	<5	0.57	<1	567	28	2089	> 15	<10	2.27	678	23	<.01	4	550	34	<5	<20	12	0.04	<10	128	<10	<1	158	
69	A-95-227	>1000	2.4	2.71	>10000	60	<5	3.75	<1	838	31	1355	11.10	<10	2.24	1228	16	<.01	4	890	34	5	<20	87	0.04	<10	145	<10	<1	145	
90	A-95-228	>1000	12.0	2.05	>10000	45	<5	0.35	<1	5524	48	2920	10.90	<10	1.66	438	18	<.01	7	1080	32	25	<20	9	0.02	<10	149	<10	<1	68	
91	A-95-229	305	<.2	3.80	555	80	<5	2.21	<1	130	27	420	9.69	<10	3.34	1054	10	0.02	17	2090	16	5	<20	45	0.06	<10	259	<10	<1	88	
	DC-95-24	130		1.48	125	135		6.52	153		215		7.44		2.34	2896		<.01	130	2150	516	<5	<20	274		<10	65	<10	<1 >	10000	
0		>1000		4.13	1625	80	<5	the second second second	<1	53	<1		> 15	<10		811		<.01	25	1450	46	<5	<20	5	0.02	<10	330		<1	259	Clone
94		>1000		0.67	100	145	<5	0.18	8	11	87		3.21		0.17	1106	7	<.01	6	700	50	<5	<20		0.02	<10	39	<10	3	204	
95	DC-95-32	>1000		1.78	295	130	35	1.63	<1	101	39		> 15			888		<.01	2	1430	2	<5	<20		0.14	<10	700	<10	<1	70	
-																						_									•

ET #.	Tag #	Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)	As (%)	Cd (%)	Co (%)	Cu (%)	Рb (%)	Sb (%)	Zn (%)	I
44	A-95-182	-	-	439.2	12.81	-	-	-	-	4.48	•	-	
45	A-95-183	1.49	0.043	851.2	24.82	1.02	-	-	1.23	1.52	-	-	
46	A-95-184	2.71	0.079	-	•	1.02	-	-	-	-	-	-	
47	A-95-185	7.28	0.212	40.8	1.19	1.03	-	•	-	-	-	-	
48	A-95-186	1.18	0.034	•	•	•	-	-	-	•	-	-	
50	A-95-188	8.49	0.248		. •	-	-	-	-	-	•	-	
51	A-95-189	9.80 5.27	0.286	-	-	- 70	-	-	-	-	-	-	
52	A-95-190	5.27	0.154	-	-	0.79	-	-	-	-	-	-	
53 54	A-95-191	2.26	0.005	1164.0	33.95	-	-	•	-	33.08	-`	3.71	
54 55	A-95-192	3.26 7.67	0.095	206.7	6.03	-		•	-	-	-	-	
55 56	A-95-193	7.67	0.224	117.4	3.42		-	-	-	• •	-	-	
56 57	A-95-194	- 2 54	-	261.2	7.62	-	-	-	-	-	-	-	
57 58	A-95-195	3.54	0.103	-	-	-	-	-	-	-	•	-	plone
	A-95-196	1.94	0.057	-	-	-	-	-	-	-	-	-	
59 62	A-95-197	2.32	0.068	-	-	1.04	-		-	-	-	-	
62 64	A-95-200	-	4 290	-	-		-	0.02	-	-	-	-	
64 66	A-95-202	44.20	1.289	-	•	1.14	-	0.02	-	-	-	-	
66 67	A-95-204 A-95-205	-	-	-	-	-	-	0.01	-	-	-		
67 68		4 15	-	-	-	•	•	0.02	-	-	-	-	
68 69	A-95-206	1.15	0.034	-	•	-	-	-	-	-	-		
69 70	A-95-207	2.02	0.059	-	-	•	•	0.04	-	-	-	•.	
70 72	A-95-208	-		•	•	-	-	0.01	-	-	-	-	
72	A-95-210	1.68	0.049	-	-	-	-	0.03	-	-	-	-	
73 74	A-95-211	115.77	3.376 8.200	-	-	-	-	-	-	-	-	-	
74 75	A-95-212	284.93	8.309	-	•	•	-	-	-	-	-	-	
75 76	A-95-213	48.20	1.406	•	-		-		-	-	-	-	
76 81	A-95-214	3.15	0.092	-	-	-	-	0.02	-	-	-	-	
81 82	A-95-219	1.27	0.037	•	•	-	-	0.02	-	-	-	•	
82 83	A-95-220	1.74	0.051	-	-	-	-	•	-	-	•	-	
83 84	A-95-221	1.95	0.057	-	-		-	-	-	-	-	-	
84 86	A-95-222	81.30	2.371	-	-	1.42	-	0.03	-	-	-	-	
86 87	A-95-224	1.57	0.046	-	-	1.02	-	0.08	-	-	-	-	
87 88	A-95-225	4.71 8 31	0.137	-	-	1.18	-	0.08	-	-	-	-	
88 80	A-95-226	8.31 7.72	0.242	-	-	0.77	-	0.07	-	-	-	-	
89 00	A-95-227	7.73	0.225	-	-	0.84	-	0.09	-	-	-	-	
90 01	A-95-228	14.45	0.421	-	-	6.92	-	0.71	-	•	-	•	
<u>91</u>	A-95-229	<u> </u>						0.02	<u> </u>				1
92	DC-95-24									-		1.63	
93	DC-95-30	99.62	2.905	30.1	0.88	-	-	-	-	-	•	-	
94 05	DC-95-31	1.15	0.034	-	-	-	-		-	•	-	-	
95 97	DC-95-32	1.27	0.037	-	-	-	-	0.03	-	-	•	-	
97 08	DC-95-34	81.41	2.374	-	-	-	-	0.02	-	-	-	-	
98 00	DC-95-35	90.46	2.638	-	•	-	-	0.04	-	-	-	-	
99 101	DC-95-36	8.31	0.242	•	•	-	-	0.03	-	-	-	-	Clone
101	DC-95-38	14.80	0.432	-	•	-	-	-	-	-	•	-	
103	DC-95-40	50.68	1.478	-	-	-	•	-	-	-	-	-	
104	DC-95-41	26.81	0.782	-		•	-	0.08	-	-	-	-	
106	DC-95-43	2.63	0.077	-	-	-	-	•	-	-	-	-	
108	DC-95-45	1.40	0.041	53.2	1.55	-	-	-	1.12	-	-	-	
110	DC-95-47	2.89	0.084	42.8	1.25				1.01	-			
114	ERK-95-228	14.59	0.425	1446.0	42.17	1.64	-		-	9.14	1.56	-	
	ERK-95-229 ERK-95-230	-	-	1688.0 2240.0	49.23	-	-	•	-	5.62	-	-	
				7740 0	65.33					4.53		-	

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

TEUTON RESOURCES CORPORATION AS 95-4025

18-Sep-95

1

ECO-TECH LABORATORIES LTD.

.

Et A	Tag#	Au(ppb)	Ag	AI %	As	Ba	BI	C= %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Nł	P	Pb	Sb	8n	\$r	TI %	U	v	w	Y	Zn	
96	DC-95-33	150	<.2	3.08		100	<5		<1	37	74	156		<10	3.67	994	<1	0.07	20	1770	18	20	<20	31	0 22	<10	208	<10	5	65	
97	DC-95-34	>1000		1.30	790	85	<5	0.28	<1	119	68	3420		<10			62		25	570	8	15	<20	9	0.05	<10	449	<10	<1	179	1
98	DC-95-35	>1000	7.6			120	<5		<1	431	56	3802	> 15	<10		1203	29		21	1170	10	<5	<20	20		<10	410	<10	<1	266	
99	DC-95-36	>1000	2.4			135	<5	0.28	<1	196	65	711		<10	1.85	1170	27		36	730	20	<5	<20	11	0.04	<10	224	<10	<1	1267	
100	DC-95-37	350	<,2	4.27	185	65	<5	0.67	<1	35	28	3191	14.00	<10	2.90	869	•	0.02	5	1670	12	<5	<20	14	0.19	<10	324	<10	<1	96	
101	DC-95-38	>1000	1.6	3.26	2300	65	<5	0.32	<1	42	54	468	14.50	<10	2.15	663	45	0.02	14	1590	26	<5	<20	14	0.22	<10	252	<10	<1	70	1.1.6
102	DC-96-39	140	<.2	3.70	165	200	<5	0.99	<1	33	29	359	10.10	<10	3.14	1409	3	<.01	15	2190	20	5	<20	20	0.17	<10	217	<10	<1	73	10/01
103	DC-95-40	▶1000	4.4	2.50	115	65	<5	0.39	3.	10	3	636	▶ 18	<10	1.37	641	335	<.01	10	1790	176	<5	<20	11	0 04	<10	466	₹10	<1	351	IL IN
104	DC-96-41	►1000	5.4	2.93	815	90	<5	1.22	<1	770	61	3777	12.90	<10	2.34	1140	15	<.01	11	1160	28	<6	<20	25	0.00	<10	362	<10	3	118	Ĭ
105	DC-95-42	390	<.2	2.35	60	65	<5	0.86	<1	61	96	517	6.79	<10	1.79	618	6	0.05	31	1680	14	<5	<20	39	0.27	<10	178	<10	1	44	
106	DC-95-43	>1000	18.0	1.97	140	75	<5	0.11	<1	54	102	1827	> 15	<10	1.76	286	987	0.01	42	690	42	<6	<20	6	0 24	<10	305	<10	<1	44	
107	DC-95-44	180	5.2	1.02	<5	15	<8	0.01	<1	11	225	784		<10	0.81	338	33		5	<10	12	<8	<20	2	0 0 1	<10	88	<10	<1	46	
108	DC-95-45	>1000	>30	1.95	155	50	<5	0.08	7	90	112	>10000	> 15	<10	1.40	1371	30	<.01	24	170	14	<5	<20	2	0 09	<10	184	<10	<1	515	
109	DC-95-46	785	13.4	4.49	140	60	<5	0.32	<1	87	135	4201	≥ 15	<10	3.57	1111	26	<.01	32	1300	16	<5	<20	10	0.28	<10	283	<10	<1	146	
110	DC-95-47	>1000	>30	1.97	<5	30	<5	0,15	3	24	143	>10000	7.13	<10	1.62	648	16	<.01	11	140	28	<5	<20	3	0.08	<10	160	<10	<1	175	
	DC-95-48	60	4.0	0.05	135	35	<5	0.01	<1		66	160	5.13	<10	<.01	15	8	<.01	17	<10	16	<5	<20	32	0.02	<10	9	<10	<1	8	
	DC-95-49	80 110	4.0	0.05		490	<5	0.01	<1	<1	97	87	2.18	<10	<.01	63	7	<.01		140	20	<5	<20	11	<.01	<10	10	<10	<1	5	1
113		5	1.2		50	40		0.32	<1	13	91	104				139			13	1810	24	5	<20		<.01	<10	61	<10	<1	37	ł
-	ERK-95-228				>10000	15	-	0.02	- 21		-117		8.13			67	- 91				>10000	-	<20	-17	<.01	<10	2	<10	त	446	
	ERK-95-229		>30	0.04	1060	20	-	0.05	39	5	165	7587				>10000	23		8		>10000	5650	<20	22	0.03	<10	5	<10	<1	5998	
																								_			_				
	ERK-95-230		>30	0.02		35	-		30	4	119	9252				>10000	12		9		>10000	6815	<20	6	0.11	<10	7	<10	<1	1829	
117		845	>30		2585	50	<5	2.45	<1	15		>10000		<10		>10000	18		10	<10	1630	1410	<20	155	0.03	<10	6	<10	<1	1262	
118			>30	0.11	8040	60	<5	0.07	<1	13	233	2531	> 15	<10	<.01	767	20		10	<10	2804	6730	<20	19	<.01	<10	5	<10	<1	293	
	ERK-95-233		>30	0.04	610	30	<5	0.98	63	4	26	5417		<10		>10000	2	<.01	4		>10000	3440 4460	<20 <20	40 35	0.04 <.01	<10 <10	5	<10 <10	<1 <1	5180 3243	
120	ERK-95-234	330	>30	0.07	430	15	<5	0.05	47	2	6	2604	1.49	<10	<.01	1343	<1	<.01	2	100	>10000	4400	×20	30	<.01	-10	•	10	~	3243	
121	ERK-95-235	140	>30	1.69	340	40	15	1.31	<1	56	62	228	12.10	<10	1.15	1386	<1	0.03	19	1140	>10000	130	<20	12	0.65	<10	220	<10	16	183	
122	ERK-95-236	>1000	>30	0.12	>10000	40	<5	0.03	<1	12	42	465	9.17	<10	<.01	276	11	<.01	8	<10 :	>10000	885	40	26	<.01	<10	5	<10	<1	2390	
123	ERK-95-237	>1000	>30	0.07	>10000	25	<5	0.03	<1	11	156	409	7.91	<10	<.01	189	25	<.01	5	<10 :	>10000	1405	<20	18	<.01	<10	4	<10	<1	3080	
124	ERK-95-238	>1000	>30	0.08	>10000	25	<5	0.03	<1	13	185	218		<10	<.01	410	15	<.01	8	<10	3472	1465	<20	21	<.01	<10	5	<10	<1	1421	
125	ERK-95-239	>1000	>30	0.08	>10000	35	<5	0.02	<1	12	144	425	9.87	<10	<.01	18 9	16	<.01	6	<10	5006	695	20	27	<.01	<10	6	<10	<1 >	10000	
126	ERK-95-240	275	>30	0.73	1065	60	<5	0.74	2	26	32	622	6.92	<10	0.05	5864	6	<.01	17	1630 :	10000	505	<20	13	<.01	<10	85	<10	6	1667	
127	ERK-95-241	5	7.0	0.88	340	205	<5	1.64	<1	10	13	80	5.31	<10		1518	5	<.01	7	1870	582	<5	<20	20	<.01	<10	60	<10	4	116	
128	ERK-95-242	5	>30	0.63	3715	245	<5	1.81	<1	19	27	127	5.35	<10	0.08	4565	5	<.01	17	1150	2536	50	<20	28	<.01	<10	54	<10	8	565	
129	ERK-95-243	5	2.4	1.32	510	105	<5	0.74	<1	15	45	68	5.18	<10	0.71	1558	- 4	0.02	15	930	154	5	<20	19	<.01	<10	94	<10	1	110	
130	ERK-95-244	125	>30	0.08	295	<5	<5	0.04	88	2	5	1640	1.54	<10	<.01	644	<1	<.01	2	60 :	>10000	4050	<20	21	<.01	<10	4	<10	<1	9730	

09:54

To:
De Fax
No.
Fro

REVISED CERTIFICATE OF ASSAY AS 95-40

FEED FAX THIS END ۶c LO1 itom x No.: 403) 050-5872 of Pages: m: DIANO Feb 190 Date: . Company: Fax No.: Reuiseo Cert Comments: At AS95 Post-It ad 7933E

TEUTON RESOURCES CORPORATION 509-675 W. HASTINGS STREET VANCOUVER, B.C.

ATTENTION: DINO CREMONESE

28 Rock samples received in Stewart September 20,1995 (Wet) in Kamloops September 25, 1995

PROJECT #: None given SHIPMENT #: None given P.O.#: None given Samples submitted by: Alex Walus

ET #.	Tag #		Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)	Cu %	Co %	Zn % (
2	A-95-299	1	1.01	0.029	-	-	-	0.02	-	
4	A-95-301	•	-	-	-	•	-	0.04	-	
6	A-95-303	:.	6.26	0.183	-	-	-	•	-	
7	A-95-304		1.33	0.039	•	-	-	-	-	
9	A-95-306		22.63	0.660	-	-	•	-	-	(
15 -	A-95-312		-	-	87.2	2.54	-	-	-	
18	A-95-313		14.97	0.437	-	-	-	0.03	-	
17	A-95-314		1.35	0.039	-	-	-	-	-	
18	ERK-95-343		-	-	603.6	17.60	2.49	-	-	
19	ERK-95-344		-	-	162.2	4.73	4.46	-		
20	ERK-95-345		-	-	116.4	3.40	3.37	-	•	
21	ERK-95-346		-	-	31.1	0.91	-	-	-	
26	ERK-95-351		-	-	44.2	1.29	3.12	-	-	
27	ERK-95-352		-	-	85.2	2.49	2.11	-	-	
28	ERK-95-353		-	-	-	-	-	-	2.22	
Stand Mp-IA					70.0	2.04				
HVI			-	-		2.04	0.52		-	
Su-1A		-	_	_	-	_	0.52	0.04	-	

BJL Mun ECO-TECH LABORATORIES LTD.

Per Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/95Teuton#2

- -

CERTIFICATE OF ASSAY AS 95-4027

TEUTON RESOURCES CORPORATION 509-675 W. HASTINGS STREET

VANCOUVER, B.C. V6C 1N2

ATTENTION: DINO CREMONESE

62 ROCK samples received in Stewart September 11, 1995 in Kamloops September 18, 1995

PROJECT #: Teuton SHIPMENT #: None given Samples submitted by: E. Kruchkowski

	ET #.	Tag #	Ац (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)	As (%)	Cd (%)	Co (%)	Сu (%)	РЬ (%)	Zn (%)
=	1	ERK-95-266			67.3	1.96						(%)
	2	ERK-95-267	_		42.6	1.30	-		-	-	-	-
	3	ERK-95-268	-		148.3	4.33		- 0.11		-	- 1.73	2.02
	5	ERK-95-270	-		52.2	1.52		0.11		-	1.75	6.88
	12	ERK-95-277	-	-	3840.0	111.99		0.22			- 5.33	- 5.61
	13	ERK-95-279	-	-	42.2	1.23	_	0.24			0.00	5.61 1.15
	14	ERK-95-280	2.10	0.061	42.2		-	-	-			1.15
	17	ERK-95-283	2.10	0.00	77.9	2.27		_	-		- 1.91	- 5.94
	19	ERK-95-285	5.02	0.146	39.6	1.16	5.52	_	_	_	1.31	0.34
	22	ERK-95-288	4.84	0.140			0.02			_		-
	27	ERK-95-293	1.73	0.050	_	-		-	-	-		- 2.22
	28	ERK-95-294	3.06	0.089	_	-						2.22
	30	ERK-95-296	0.00	0.000	77.3	2.25		_				·
	31	ERK-95-297	-	-		2.20		-				- 5.91
	32	ERK-95-298	-		133.5	3.89		_			-	5.91
	33	ERK-95-299	7.73	0.225	100.0	0.00		-				-
	34	ERK-95-300	96.20	2.805			2.23		0.09			
	35	ERK-95-301	106.10	3.094	-	-	1.18		0.05			
	37	ERK-95-303	100.10	0.004	57.1	1.67	1.10		0.00			
	40	DC-95-53			154.2	4.50					1.13	1.69
• •	51	DC-95-64	-	-	-	-		- 0.29	-		1.10	28.83
	52	DC-95-65	1.01	0.029	-	-		0.20				20.00
	53	DC-95-66			-	-		- 0.31				- 22.64
	54	DC-95-67	-			-	-	0.31				8.73
	55	DC-95-68			79.4	2.32		0.11	0.02	 1.11		
	56	DC-95-69	27.30	0.796	-	-	15.75		0.68	1.11][
	58	DC-95-71	-	0.700	215.6	6.29	-		0.00	1.25		
				·····	210.0					1.20		

22-Sep-95

5-Oct-95

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

Values in ppm unless otherwise reported

,

7

;

1

;

TEUTON RESOURCES CORPORATION AS 95-4033 509-675 W. HASTINGS STREET VANCOUVER, B.C. V6C 1N2

ATTENTION: DINO CREMONESE

ι.

17 Rock samples received in Stewart Sept. 25,1995 In Kamloops Oct. 2, 1995

Clone

PROJECT #: None given SHIPMENT #: None given P.O.#: None given Samples submitted by: D. Cremonese

Et #	Tag #	Au(ppb)	Ag	AI %	As	Ba	81	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Nł	P	Pb	Sb	Sn	Sr	TI %	U	v	w	Y	Zn
1	ERK- 95- 354	110	<.2	3.32	30	65	<5	3.87	4	46	48	308	9.84	<10	3.46	1914	5	0.03	18	1740	10	10	<20	90	0.10	<10	183	<10	<1	332
2	ERK- 95- 355	50	<.2	2.22	<5	365	15	8.00	6	23	35	63	9.68	<10	1.17	952	5	<.01	16	1560	18	<5	<20	177	0.09	<10	97	<10	2	242
3	ERK- 95- 356	30	<.2	4.57	20	155	10	6.09	1	41	59	142	9.05	<10	5.05	2126	6	0.01	23	2290	10	20	<20	118	0.06	<10	219	<10	2	106
4	ERK- 95- 357	≻1000	8.	3.08	370	105	30	3,15	<1	220	38	249	> 15	<10	2.63	1082	20	<.01	16	1910	28	<5	<20	56	0.09	<10	256	<10	<1	221
5	ERK- 95- 358	>1000	1.8	3.73	220	115	<5	3.28	<1	93	22	1251	10.50	<10	3.63	1422	16	0.01	10	2140	42	10	<20	76	0.04	<10	177	<10	<1	112
6	ERK- 95- 359	120	<.2	3.02	20	80	<5	4.30	1	39	38	298	7.08	<10	2.93	1370	5	0.02	11	1730	8	10	<20	88	0.04	<10	205	<10	<1	77
7	ERK- 95- 360	45	<.2	4.39	20	65	<5	5.93	<1	43	47	183	9.17	<10	5.05	2224	5	0.02	24	1840	6	15	<20	128	0.07	<10	280	<10	2	179
8	ERK- 95- 361	20	<.2	3.35	30	45	5	7.33	<1	33	32	129	7.51	<10	3.57	1586	3	0.02	11	2100	6	10	<20	112	0.07	<10	233	<10	1	67
9	ERK- 95- 362	>1000	13.6	4.94	20	115	<5	4.66	8	31	17	7324	> 15	<10	3.91	2039	20	<.01	37	310	<2	<5	<20	74	0.03	<10	288	<10	<1	192
10	ERK- 95- 363	5	<.2	2.57	20	60	<6	2.64	1	14	51	172	6.17	<10	2.40	932	4	0.02	10	1530	2	5	<20	40	0.04	<10	189	<10	<1	78
11	ERK- 95- 364	>1000	2.8	2.71	85	105	<5	3.63	<1	29	26	359	8.86	<10	2.01	1430	24	0.01	9	1940	20	<5	<20	63	0.01	<10	208	<10	<1	118
12	ERK- 95- 365	595	.8	3.35	80	145	<5	3.57	<1	42	23	223	8.35	<10	2.44	1467	8	<.01	21	1860	14	5	<20	65	0.02	<10	110	<10	<1	210
13	ERK- 95- 366	>1000	1.0	3.08	245	200	<5	1.85	2	76	27	201	7.91	<10	1.99	1747	8	<.01	15	1720	44	<5	<20	33	0.01	<10	63	<10	<1	450
14	A- 95- 315	10	<.2	2.10	15	45	<5	0.76	<1	27	92	195	4.23	<10	2.69	477	<1	0.02	32	1860	4	15	<20	17	0.12	<10	144	<10	3	45
15	DC- 95- 112	10	1.8	3.17	45	120	15	10.10	8	18	35	39	8.76	<10	1.16	4332	7	<.01	10	1100	46	<5	<20	128	<.01	<10	187	<10	<1	529
16	DC- 95- 110	>1000	6.6	1.50	2320	345	<5	0.43	<1	765	10	1186	> 15	<10	1.39	688	21	<.01	2	1220	110	<5	<20	19	0.02	<10	192	<10	<1	286
17	DC- 95- 111	475	.8	3.34	225	110	<5	5.27	<1	55	28	614	> 15	<10	2.66	1545	17	<.01	16	1750	12	<5	<20	93	<.01	<10	145	<10	<1	92

Page 1

1

ł

; ;

1 1

?

;

;

j

))

CERTIFICATE OF ASSAY AS 95-4030

TEUTON RESOURCES CORPORATION 509-675 W. HASTINGS STREET VANCOUVER, B.C. V6C 1N2

ATTENTION: DINO CREMONESE

28 Rock samples received in Stewart September 20,1995 (Wet) in Kamloops September 25, 1995

PROJECT #: None given

SHIPMENT #: None given

P.O.#: None given

Samples submitted by: Alex Walus

	ET #.	Tag #	Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)	Cu %	Co %	Zn %	ł
	2	A-95-299	1.01	0.029	-	-	-	0.02	-	
	4	A-95-301	-	-	-	-	-	0.04	-	
~ -	6	A-95-303	6.26	0.183	-	-	-	-	-	
	9	A-95-306	22.63	0.660	-	-	-	-	-	
	15	A-95-312	-	-	87.2	2.54	-	-	-	
	16	A-95-313	14.97	0.437	-	-	-	0.03	-	More
	17	A-95-314	1.35	0.039	-	-	-	-	-	10.
	18	ERK-95-343	-	-	603.6	17.60	2.49	-	-	
	19	ERK-95-344		-	162.2	4.73	4.46	-	-	
	20	ERK-95-345	-	-	116.4	3.40	3.37	-	-	
	21	ERK-95-346	-	-	31.1	0.91	-	-	-	
	26	ERK-95-351	-	-	44.2	1.29	3.12	-	-	
	27	ERK-95-352	-	-	85.2	2.49	2.11	•	-	
	28	ERK-95-353	-		-	-	-	-	2.22	
	Stand	lard:								
	Mp-IA		-	-	70.0	2.04	-	-	-	
	HVI		-	-	-	-	0.52	-	-	
	Su-1A	N N	-	-	-	-	-	0.04	-	

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/95Teuton#2

##########

.

. '

......

27-Sep-95

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

!

TEUTON RESOURCES CORPORATION AS 98-4030 509-875 W. HASTINGS STREET VANCOUVER, B.C. V&C 1N2

ATTENTION: DINO CREMONESE

.

28 Rock samples received in Stewart September 20, 1995 (Wet) In Kamloope September 25, 1995

Clone

1

1

PROJECT #: None given SHIPMENT #: None given P.O.#: None given Semples submitted by: Alex Weius

Zn	Y	w	v	U	TI %	Sr	Sn	5b	Pb	P	NI	Na %	Мо	Mn	Mg %	La	Fe %	Cu	Cr	Co	Cđ	Ca %	Bi	Ba	As.	Ał %	Ag	Au(ppb)	Teg #	Et #
138	<1	<10	86	<10	0.06	31	<20	<5	12	1990	10	0.01	2	542	1.24	<10	5.59	132	46	51	<1	1.42	<5	85	150	2.22	<.2	595	A-95-298	1
102	<1	<10	208	<10	0.09	74	<20	<5	10	2230	12	0.02	12	1635	4.17	<10	9.46	125	29	242	<1	3.92	10	70	545	5.04	0.2	>1000	A-95-299	2
233	<1	<10	210	<10	0.09	50	<20	<5	8	2060	14	0.01	2	1781	3.94	<10	8.98	172	33	44	<1	3.06	<5	80	80	4.68	<.2	315	A-95-300	3
1177	<1	<10	168	<10	0.09	24	<20	<5	8	2120	41	<.01	3	1140	3.05	<10	10.60	266	38	396	<1	1.29	<5	80	385	3.84	<,2	665	A-95-301	4
98	<1	<10	310	<10	0.09	20	<20	<5	14	2050	19	0.01	6	1451	4.45	<10	11.30	166	17	53	<1	1.43	<5	65	95	5.10	<.2	50	A-95-302	5
88	<1	<10	195	<10	0.06	24	<20	<5	20	1980	11	0.03	2	995	1.77	<10	5.41	184	48	25	<1	1.14	<5	80	35	2.49	1.2	>1000	A-95-303	6
172	<1	<10	105	<10	0.05	16	<20	<5	32	1740	15	0.01	8	892	1.29	<10	9.77	345	45	57	<1		<5	115	80	2.29	0.8	>1000	A-95-304	7
703	<1	<10	189	<10	0.10	20	<20	<5	8	1880	23	<.01	5	1447	2.86	<10		• • •	48	196	<1	0.90	<5	100	270	4.04	<.2	505	A-95-305	8
412	<1	<10	223	<10	0.07	20	<20	<5	36	2250	24	0.01	21	1178	2.40	<10	13.10		31	140	3	1.46	<5	70	175	3.51	2.6	>1000	A-95-308	9
251	<1	<10	147	<10	0.12	59	<20	<5	8	2340	18	0.01	<1	1101	1.99	<10	8.55	40	25	26	<1	5.34	10	70	30	3.30	<.2	205	A-95-307	10
141	<1	<10	129	<10	0.08	47	<20	10	16	2530	13	0.02	3	1170	2.49	< 10	7.93	363	19	58	<1	4.12	<5	80	50	3.82	<.2	150	A-95-308	11
185	<1	<10	116	<10	0.08	37	<20	<5	22	1820	12	0.02	3	869	1.15	<10	6.49	301	44	41	3		<5	90 90	80	2.03	< 2	635	A-95-309	12
541	<1	<10	190	<10	0.08	24	<20	<5	22	2200	19	0.01	7	1787	3.40	<10			18	149	<1	1.48	<5	60	300	4.91	0.2	170	A-95-310	13
386								_					7										-							
1579								-					20							_			-		-					
1310	- 1	- 10	5/0	-10	0.00	.5	-20	~	1830	1750	.0	01			0.85	-10	0.00	0100	/0	-0	-	0.41	-0	419	120	2.15	- 30	555	A-05-512	15
141	<1	<10	205	<10	0.13	63	<20	10	10	1580	20	<.01	1	1442	2.85	<10	9.50	2073	89	279	<1	6.79	<5	165	180	3.07	2.2	>1000	A-95-313	16
110	<1	<10	249	<10	0 17	97	<20	15	6	2280	26	0.02	<1	1662	4.99	<10	8.54	127	110	45	<1	6.44	<5	90	20	4.63	<.2	>1000	A-95-314	17
885	8	< 10	106	<10	0 03	290	<20	220	408	600	6	<.01	8	6859	0.71	<10	5.00	>10000	68 >	10	64	> 15	<5	185	155	0.67	>30	180	ERK-95-343	18
447	<1	<10	108	<10	< 01	13	<20	55	4	>10000	14	<.01	3	1353	2.88	<10	4.75	►10000	35 >	53	<1	0.45	<5	100	30	3.71	>30	125	ERK-05-344	19
584	<1	<10	175	<10	0.02	31	<20	30	12	1990	14	0.01	3	1978	3.60	<10	6.18	×10000	48 3	49	2	0.91	<5	125	10	4.63	>30	230	ERK-95-345	20
219	<1	<10	170	<10	0.02	13	<20	10	40	2130	15	<.01	6	500	1.05	<10	6.29	7991	38	28	2	0.45	<5	265	15	1.59	>30	120	ERK-95-346	21
287	<1	<10	142	<10	0.06	20	<20	<5	58	1120	15	<.01	11	779	1.53	<10	12.60	4961	56	50	2	0.29	<5	230	<5	2.41	7.4	85	ERK-95-347	22
117	<1	<10	129	<10	<.01	15	<20	<5	70	1440	20	<.01	12	1167	2.08	<10	9.83	223	80	30	2	0.93	<6	45	5	2.85	1.4	30	ERK-95-348	23
223	<1	<10	129	<10	< 01	9	<20	<5	60	1440	8	<.01	13	851	1.55	<10	10.10	173	49	26	1	0.23	<5	90	35	2.55	1.0	45	ERK-95-349	24
158	<1	<10	120	<10	0 01	68	<20	10	80	1490	23	<.01	5	828	1.53	<10	7.47	1685	112	22	1	1.14	<6	1110	15	2,35	4.0	25	ERK-95-350	25
27	<1	<10	139	<10	0.06	12	<20	285	158	1650	12	< 01	7	538	0.63	<10	9.82	>10000	85 :	20	<1	0 29	<5	190	75	1.12	>30	210	ERK-95-351	26
394	<1	<10	140	<10	0.02	8	<20	25	46	2280	28	<.01	4	1293	2.05	<10	7.46	10000			1	0.66	<5			2.70	>30	105	ERK-95-352	27
10000	<1 >	<10	7	<10	<.01	10	<20	35	108	160	21	<.01	<1	760	_	<10	3.77	328	217	12	183	1.18	<5	35	4410		7.4	250		28
	<t></t> 8<1	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	249 106 108 175 170 142 129 120 139 140	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	0 17 0 03 < 01 0 02 0 06 < 01 < 01 0 01 0 06 0 02	97 290 13 31 13 20 15 9 68 12 8	<20 <20 <20 <20 <20 <20 <20 <20 <20 <20	15 220 55 30 10 <5 <5 <5 10 285 25	6 408 4 12 40 58 70 60 80 158 46	2280 600 10000 1990 2130 1120 1440 1440 1440 1490 1650 2280	26 6 14 15 15 20 8 23 12 28	0.02 < 01 < 01 < 01 < 01 < 01 < 01 < 01 < 01	8 3 3 6 11 12 13 5 7 4	1662 6859 1353 1978 500 779 1167 851 828 538 1293	4.99 0.71 2.88 3.60 1.05 1.53 2.08 1.65 1.53 0.63 2.05	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10	8.54 5.00 4.75 6.18 6.29 12.60 9.83 10.10 7.47 9.82 7.46	9186 2073 127 >10000 >10000 >10000 7991 4961 223 173 1885 >10000 >10000	110 88 2 35 3 48 2 38 56 80 49 112 85 2 51 2	45 10 53 49 28 50 30 26 22 20 54	<1 84 <1 2 2 2 2 1 1 1 <1	6.44 > 15 0.45 0.91 0.45 0.91 0.45 0.29 0.93 0.23 1.14 0.29 0.66	\$\$\$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	90 185 100 125 265 230 45 90 1110 190 135	20 155 30 10 15 <5 5 35 16 75 45	4.63 0.67 3.71 4.63 1.59 2.41 2.85 2.55 2.35 1.12	<.2 >30 >30 >30 7.4 1.4 1.0 4.0 >30 >30	>1000 180 125 230 120 85 30 45 25 210 105	A-05-314 ERK-05-343 ERK-05-344 ERK-05-345 ERK-05-346 ERK-05-346 ERK-05-340 ERK-05-350 ERK-05-351	17 18 19 20 21 22 23 24 25 26

Values in ppm unless otherwise reported

PIONEER LABORATORIES INC.

5-730 EATON WAY NEW WESTMINSTER, BC CANADA V3M 6J9

TELEPHONE (604)522-3830

Analyst ESam

Date: September 24, 1995

Report No. 9581433

1

TEUTON RESOURCES CORP. Project: Sample Type: Rocks GEOCHEMICAL ANALYSIS CERTIFICATE
Nulti-element ICP Analysis - .500 gram sample is digested with 3 ml of aqua regia, diluted to 10 ml with Water. This leach is partial for Nn, Fe, Ca, P, La, Cr, Mg, Ba, Ti, B, W and limited for Na, K and Al. Detection Limit for Au is 3 ppm.
*Au Analysis- 10 gram sample is digested with aqua regia, MIBK extracted, graphite furnace AA finished to 1 ppb detection.

ELEMENT	Mo	Cu	Pb	Zn	Ag	NE	Co	Mn	Fe	As	υ	Au	Th	S٢	Cd	sь	Bi	V	Ca	P	La	Cr	Mg	Ba	ŤĬ	8	At	Na	ĸ	¥	Au*
SAMPLE	ppm	ppm	ppm	ppm	ppm	ppm	ppn	ppm	x	ppm	ppa	n bbu	ppm	ppm	ppm	ppm	PP	m ppm 3	X	x	ppr	n bbu	x	ppm	x	ppr	n X	X	x	ppm	ppm
A95·276	8	496	40	277	.8	13	54	1384	11.10	76	5	ND	2	101	2.1	2	4	176	6.02	.098	3	- 8	2.39	21	.09	3	3.76	.01	.10	2	3.2
495-277	392	401	225	50	19.1	2	5	82	23.88	102	5	286	2	4	1.1	32	4	517	.06	.218	3	13	.09	92	.03	4	.27	.01	.04	2	297.
A95-278	148	845	594	661	2.0	11	9	748	17.70	74	5	11	2	5	5.8	7	6	296	.20	.109	6	13	1.79	110	.11	3	2.97	.01	.04	2	11.8
495-279	8	199	44	653	1.4	13	86	1186	10.99	99	5	22	2	19	.8	116	3	167	.73	.155	11	33	.84	98	. 12	3	1.31	.01	.39	7	19.8
495-280	5	2238	20	193	3.8	18	31	1232	7.81	30	5	31	2	25	1.6	30	4	123	1.26	. 165	7	30	2.49	133	.18	4	2.53	.01	.35	2	33.5
95-281	19	587	49	232	1.0	18	32	900	9.73	33	5	ND	2	15	.4	6	5	153	.50	.157	6	34	2.76	55	. 14	3	3.09	.01	. 18	2	2.3
95-282	2	786	11	463	.3	17	53	1027	7.63	59	5	ND	2	8	.8	11	3	74	.33	.110	4	30	1.98	72	.11	5	2.61	.01	.41	2	.5
95-283	11	380	63	220	3.6	7	93	1004	10,16	174	5	80	2	11	.2	9	9	262	.30	.115	9	35	1.42	53	.07	3	1.91	.01	. 22	4	72.5
95-284	6	501	12	169	.9	10	298	853	10.22	254	5	5	3	15	.2	12	4	138	.52	.098	10	22	1.66	194	.09	3	2.05	.01	.28	3	8.3
95-285	28	232	15	126	2.4	22	164	745	16.88	138	5	36	2	27	.4	20	27	139	1.40	.112	6	50	.92	49	. 13	3	1.25	.01	.37	16	39.5
95-286	19	135	4	86	.3	19	49	882	8.92	34	5	ND	Z	48	.2	6	5	130 2	2.19	. 139	4	26	2.68	45	.17	3	2.51	.01	.42	7	2.4
C95-100	124	93	146	54	20.7	3	2	152	25.77	70	5	261	2	11	.2	47	10	341	. 15	.059	8	110	.05	21	.01	5	. 14	.01	.04	29	288.
C95-101	3	603	9	188	.6	18	39	1061	10.71	83	5	ND	2	20	.9	7	3	172 .	.89	. 146	7	48	2.46	62	.21	3	2.74	,01	.19	4	2.5
c95-102	38	907	8	135	.7	23	39	965	11.81	39	5	5	3	15	.8	3	7	440	.90	.205	4	18	3.56	82	. 10	3	3.71	.01	.05	2	10.5
c95-103	9	2302	16	149	3.9	13	60	461	11.55	227	5	43	2	15	2.0	44	10	173	.34	. 103	6	30	1.09	38	. 14	3	1.31	.01	. 19	4	48.5
c95 - 104	3	213	3	111	1.6	19	619	670	11.07	356	5	26	Z	13	.8	9	16	179	.50	.110	13	29	z.19	46	. 18	3	2.22	.01	.15	2	30.2
0095-105	45	381	40	614	1.5	9	15	1138	10.68	71	5	ND	3	9	5.1	8	7	312	.4Z	. 149	11	26	2.48	29	.10	3	2.9Z	.01	.12	2	1.4
ERK-340	1	536	53	124	.5	31	30	1545	8.02	11	5	ND	2	46	1.0	3	2	124 2	2.62	.130	7	75	2.74	44	.15	3	2.98	.01	.16	2	.2
RK-341	15	2487	57	185	9.4	13	32	626	12.94	159	5	26	2	17	1.7	120	6	154 .	.49	. 175	10	37	.98	65	.08	3	1.41	.01	.25	12	26.8
RK-342	49	401	181	323	16.8	7	27	614	16.68	66	5	197	2	9	.3 .	53	9	243	.22	.075	7	57	.69	45	.04	3	1.06	.01	.13	13	225.

PAGE 1

6-Oct-95

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phona: 604-573-5700 Fax : 604-573-4557

1

Values in ppm unless otherwise reported

TEUTON RESOURCES CORPORATION AS 85-4034 509-675 W. HASTINGS 8TREET VANCOUVER, B.C. V&C 1N2

ATTENTION: DINO CREMONESE

}

Ì

).

١

80 ROCK samples received in Stewart Sept 28, 1995 in Kamloope Oct 2, 1995

PROJECT #: None given SHIPMENT #: None given P.O.#: None given Semples submitted by: D. Cremonese

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cď	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Şb	Sn	Sr	TI %	U	v	w	Y	Zn	
1	A- 95-315	35	0.8	1.64	140	155	5	2.25	2	23	63	32	5.05	<10	1.40	1234	<1	0.01	13	1260	72	15	<20	46	0.14	<10	75	<10	3	449	,
2	A- 95-318	20	<.2	1.52	115	85	<5	3.01	3	14	56	69	3.27	<10	1.16	551	3	0.04	4	1560	4	5	<20	72	0.05	<10	56	<10	4	278	1
3	A- 95-317	5	<.2	1.34	35	70	5	2.96	<1	12	42	33	3.32	<10	1.12	499	1	0.04	4	1620	2	10	<20	67	0.05	<10	63	<10	3	45	1
4	A- 95-318	5	<.2	1.61	20	95	<5	2.51	<1	12	47	58	3.98	<10	1.31	537	3	0.05	3	1710	<2	5	<20	67	0.03	<10	76	<10	2	52	1
5	A- 95-319	>1000	<.2	1.12	370	115	30	0.42	<1	224	32	61	13.90	<10	0.23	637	13	<.01	4	910	18	15	40	12	0.06	30	156	<10	<1	289	
6	A- 95- 320	770	0.2	1.72	60	180	<5	0.94	<1	100	33	83	4.65	<10	1.06	1167	3	0.01	3	1690	6	5	<20	23	0.04	<10	60	<10	2	228	
7	A- 95- 321	35	<.2	1.62	20	140	<5	3.31	<1	17	40	64	3.54	<10	1.15	683	<1	0.02	5	1560	2	15	<20	60	0.08	<10	57	<10	5	70	1
8	A- 95- 322	5	<.2	1.85	40	195	10	3.00	2	21	48	22	5.49	<10	1.35	1152	<1	0.02	14	1440	18	5	<20	48	0.14	<10	89	<10	3	198	4
9	A- 95- 323	5	0.4	1.84	45	120	<5	2.64	<1	22	35	224	3.70	<10	1.00	709	5	0.02	4	1570	10	5	<20	49	0.03	<10	54	<10	3	95	
10	A- 95- 324	40	1.0	2.05	30	135	<5	1.46	<1	14	35	328	4.09	<10	1.22	945	4	0.01	4	1680	12	5	<20	27	0.01	<10	52	<10	2	144	rlone
11	A- 95- 325	>1000	11.4	1.14	245	160	<5	1.16	<1	125	46	1284	11.60	<10	0.44	613	14	<.01	7	1280	30	<5	<20	17	0.02	10	48	<10	<1	297	
12	A- 95- 326	50	1.0	1.31	35	120	<5	2.73	8	39	43	301	3.31	<10	0.80	700	4	0.01	3	1510	22	<5	<20	66	0.03	<10	53	<10	2	118	4
13	A- 95- 327	180	0.6	2.00	45	120	<5	1.30	1	39	32	124	4.54	<10	1.20	750	- 4	0.02	4	1500	20	5	<20	26	0.02	<10	50	<10	2	166	
14	A- 95-328	5	0.2	1.82	15	110	<5	2.09	<1	17	45	189	4.06	<10	1.20	665	6	0.04	5	1400	6	5	<20	42	0.06	<10	61	<10	4	71	{
15	A- 95- 329	5	<.2	1.62	20	130	<5	1.29	1	15	35	198	3.68	<10	1.19	572	8	0.02	3	1540	6	10	<20	31	0.02	<10	44	<10	1	80	
16	A- 95- 330	110	1.0	1.58	100	155	<5	0.69	<1	62	28	242	3.28	<10	0.71	679	4	0.01	6	1580	18	<5	<20	16	0 02	<10	40	<10	3	121	
17	A- 95- 331	>1000	8.4	1.60	785	195	<5	1.23	<1	162	52	3292	8.24	<10	0.67	680	10	<.01	4	1180	20	30	<20	30	0.03	<10	95	<10	<1	286	i
16	A- 95- 332	20	0.4	1.65	45	250	<5	2.88	<1	39	40	202	3.32	<10	1.15	751	5	0.03	3	1480	10	10	<20	68	0.02	<10	55	<10	2	96	
19	A- 95- 333	5	<.2	1.93	20	590	<5	2.03	<1	20	32	56	3.45	<10	1.55	670	3	0.02	- 4	1530	2	10	<20	59	0.02	<10	50	<10	1	59	
20	A- 95- 334	5	1.2	0.53	100	70	<5	0.14	<1	8	94	14	3.06	<10	0.14	79	14	<.01	15	790	8	<5	<20	4	<.01	20	34	<10	<1	54	
21	A- 95-335	180	0.2	2.23	255	120	<5	3.88	<1	20	39	97	4.60	<10	1.61	721	4	0.01	9	1350	14	15	<20	101	<.01	<10	90	<10	<1	58	
22	A- 95- 336	>1000	10.4	2.00	1915	70	<5	2.22	<1	40	32	648	14.00	<10	0.87	805	102	0.01	12	830	52	<5	20	56	0.01	20	96	<10	<1	300	1
23	A- 95- 337	170	<.2	2.14	60	95	5	3.96	<1	13	42	46	4.17	<10	1.61	822	5	0.02	8	1350	4	10	<20	92	0.02	<10	90	<10	<1	73	
24	A- 95-338	445	0.4	2.12	1495	110	<5	1.35	<1	229	54	161	5.15	<10	1.36	805	6	0.02	5	1070	14	<5	<20	32	0.02	<10	89	<10	<1	74	
25	A- 95-339	155	0.2	1.82	220	70	<5	2.94	<1	57	37	232	4.84	<10	1.18	689	3	0.03	4	930	6	<5	<20	85	0.05	<10	95	<10	1	54	
26	A- 95- 340	440	<.2	1.85	75	65	<5	3.02	<1	37	49	153	4.66	<10	1.25	700	3	0.03	4	910	14	15	<20	72	0.09	<10	79	<10	3	54	
27	A- 95- 341	>1000	0.4	1.93	245	95	<5	2.35	<1	74	45	180	4.79	<10		764	7	0.02	5	860	6	10	<20	47	0.05	<10	82	<10	2		
27	A- 95- 341	>1000	0.4	1.93	245	95	<5	2.35	<1	74	45	180	4.79			764			5		6			47			82	<10	2	62	

Page 1

1

ECO-TECH LABORATORIES LTD.

5

Et #	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cđ	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	P	Pb	Sb	Sn	Sr	TI %	U	v	w	Y	Zn	
28	A- 95- 342	480	<.2	1.87	260	105	<5	2.50	<1	60	45	145	4.69	<10	1.30	686	5	0.02	6	900	8	10	<20	44	0.03	<10	85	<10	2	60	
29	A- 95- 343	655	<.2	2.04	170	95	<5	3.94	<1	49	51	194	4.94	<10	1.57	922	3	0.02	11	1360	<2	15	<20	81	0.03	<10	162	<10	<1	66	
30	A- 95- 344	>1000	<.2	3.65	8665	70	<5	3 86	<1	411	23	446	11.30	<10	3.01	1061	9	0.02	10	1770	<2	5	<20	67	0.08	<10	269	<10	<1	63	i
31	A- 95- 345	505	<.2	3.68	3915	65	<5	6.26	<1	187	9	158	9.06	<10	3.23	1389	4	0.02		2000	<2	15	<20	120	0.10	<10	261	<10	<1	61	í .
32	ERK 95-367	5	₹.2	4.10	130	115	10	6.10	<1	37	30	150	6.07	<10	3.49	1602	5	0.01	15	1900	<2	10	<20	212	0.04	<10	173	<10	<1	164	
33	ERK 95- 368	5	6.8	4.51	105	85	<5	4.55	11	31	39	389	11.40	<10	3.34	1548	8	<.01		1780	236	<5	<20		0.02	<10	178	<10	<1	611	
34	ERK 95-369	5	0.4	3.72	25	100	<5	5.02	1	32	36	119	7.11	<10	3.30		6	0.01		1870	12	20	<20		0.02	<10	159	<10	<1	178	1
35	ERK 95-370	>1000	3.4	3.84	2870	110	<5	5.19	<1	95	38	174	9.03	<10	2.82	1218	90	<.01	17	1540	6	10	<20	97	0.02	<10	119	<10	<1	149	1
36	ERK 95-371	>1000	14.2	3.66	>10000	80	<5	5.17	<1	848	23	277	9.87	<10	2.69	1068	114	<.01	12	1280	10	10	<20	108		<10	140	<10	<1	183	1
37	ERK 95-372	>1000	0.6	2.34	425	150	<5	2.84	<1	39	38	83	4.41	<10	1.68	819	8	0.02	9	1630	8	15	<20	69	<.01	<10	81	<10	<1	62	
38	ERK 95-373	620	<.2	2.88	95	310	<5	2.50	<1	26	43	39	5.22	<10	2.08	682	5	0.02	13	1680	2	20	<20	82	<.01	<10	102	<10	<1	62	
39	ERK 95-374	5	<.2	4.34	10	110	<5	4.43	<1	38	28	162	8.45	<10	4.10	1491	6	0.02	16	2150	<2	10	<20	145	0.04	<10	230	<10	1	148	l .
40	ERK 95-375	305	0.4	2.04	125	145	<5	7.08	3	26	32	17	3.61	<10	1.20	1460	3	<.01	8	1380	104	10	<20	344	<.01	<10	55	<10	1	341	
41	ERK 95-376	>1000	27.0	3.33	>10000	85	<5	1.02	<1	1828	24	6179	> 15	<10	1.71	1321	- 34	<.01	33	720	70	<5	40	39	0.01	30	137	<10	<1	479	rione
42	ERK 95- 377	>1000	0.8	2.84	650	105	<5	3.51	<1	89	54	92	6.16	<10	2.05	1201	8	0.03	9	1440	16	10	<20	108	0.01	<10	115	<10	<1	158	Cir
43	ERK 95-378	80	<.2	2.33	305	100	<5	4.25	<1	57	54	94	4.59	<10	1.97	1041	Э	0 02	11	1480	8	15	<20	61	0.01	<10	138	<10	<1	90	
44	ERK 95-379	>1000	0.6	2.85	2935	115	<5	2.85	<1	331	45	217	7.13	<10	1.71	1130	10	0.01	8	1540	8	<5	<20	51	0.01	<10	115	<10	<1	135	i i
45	ERK 95-380	▶1000	10.2	3.51	>10000	80	<5	1.88	<1	510	54	942	> 15	<10	1.69	1142	56	<.01	15	1370	34	<5	<20	31	0.01	20	198	<10	<1	173	1
46	ERK 95-381	>1000		4.45	>10000	90	<5	0.55	<1	483	26	618	> 15	<10	1.90	1047	39	<.01	12	1310	6	<5	<20	18	0.01	20	174	<10	<1	168	i i
47	ERK 95-382	>1000	11.8	3.43	▶10000	85	<5	1.20	<1	332	24	788	> 15	<10	1.36	1042	35	≤.01	12	910	38	<6	40	23	0.01	40	144	<10	<1	199	
48	ERK 95- 383	275	<.2	2.40	770	95	<5	3.43	<1	33	41	52	4.01	10	1.62	916	6	0 02	5	1550	10	10	<20	70	< 01	<10	102	<10	<1	86	
49	ERK 95-384	>1000	0.8	2.77	1050	210	<5	1.35	<1	92	42	127	6.50	<10	1.64	945	8	0.01	9	1600	26	<5	<20	30	0.01	<10	123	<10	<1	171	í –
50	ERK 95- 385	>1000	10.2	3.20	>10000	70	<5	0.82	<1	862	33	1184	> 15	<10	1.15	694	99	<.01	14	1150	46	<5	<20	20	<.01	40	140	<10	<1	149	i
51	ERK 95-386	>1000	22	2.89	1000	95	<5	2.78	<1	70	38	207	7.48	<10	1.53	924	16	0.01	9	1530	12	<5	<20	62	< 01	<10	68	<10	<1	115	i
52	ERK 95-387	785	0.4	1.72	1975	90	<5	7,82	<1	144	37	52	4.28	<10	0.67	1302	9	<.01	7	1260	20	<5	<20	153	<.01	<10	47	<10	2	197	
63	ERK 95- 388	>1000	7.6	2.70	9305	50	<5	2.10	<1	522	45	626	11.20	<10	1.15	906	45	< 01	16	1570	88	<5	<20	60	< 01	<10	75	<10	<1	345	
54	ERK 95-389	145	<.2	2.28	70	265	<5	3.92	<1	16	45	54	4.16	<10	1.28	813	5	0 01	8	1250	18	10	<20	129	< 01	<10	54	<10	<1	119	1
55	ERK 95- 390	>1000	06	4.17	>10000	85	10	3.82	<1	1630	50	105	12.20	<10	2.62	1116	149	< 01	3	1780	18	<5	<20	87	< 01	<10	228	<10	<1	211	1
56	ERK 95- 391	>1000	6.2	2.25	2465	50	<5	2.92	<1	98	48	848	11.40	<10	1.28	1445	39	< 01	16	1050	82	<5	<20	99	< 01	<10	86	<10	<1	201	1
67	MM- #1	>1000	20.2	1.51	>10000	80	30	0.24	<1	9801	2	2529	> 15	<10	1.07	499	255	<.01	22	480	1840	<5	60	11	0.03	60	277	<10	<1	33	
58	MM- #2	750	5.0	0.82	680	30	<5	0.07	<1	78	182	83	6.17	<10	0.58	222	42	<.01	67	180	48	<5	<20	2	<.01	10	79	<10	<1	29	
59	MM- #3	370	15.4	1.25	1485	35	<5	0.16	<1	31	96	361	10.70	<10	0.75	255	11	<.01	21	590	28	<5	<20	4	<.01	10	28	<10	<1	371	
60	MM- #4	5		1.10	65	50	<5	0,74	<1	29	96	195	5.13	<10	0.93	566	<1	0.05	19	1900	18	<5	<20	28	0.16	<10	146	<10	2	181	

CERTIFICATE OF ASSAY AS 95-4035

TEUTON RESOURCES CORPORATION 509-675 W. HASTINGS STREET VANCOUVER, B.C. V6C 1N2

ATTENTION: DINO CREMONESE

36 ROCK samples received in Stewart Oct 2, 1995 in Kamloops Oct 5, 1995

PROJECT #: None given SHIPMENT #: None given P.O.#: None given

Samples submitted by: None given

		Au	Au	Co	
 ET #.	Tag #	(g/t)	(oz/t)	(%)	
2	A-95- 347	1.22	0.04	-	
5	A-95- 350	-	-	0.02	
 7	A-95- 352	1.38	0.04	-	Clone
21	A-95- 366	3.02	0.09	0.02	
26	A-95- 371	2.03	0.06	-	
 28	A-95- 373	16.32	0.48	-	
30	A-95- 375	1.59	0.05	-	

2.11

0.06

0.04

QC/DATA: Standard: STD-L

Su1A

XLS/95Teuton#2

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

6-Oct-95

11-Oct-95

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557 TEUTON RESOURCES CORPORATION AS 95-4036 509-875 W. HASTINGS STREET VANCOUVER, B.C. V6C 1N2

ATTENTION: DINO CREMONESE

36 ROCK samples received in Stewart Oct 2, 1995 In Kamloops Oct 5, 1995

rlone

ì

1

PROJECT #: None given SHIPMENT #: None given P.O.#: None given Semples eubmitted by: None given

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	· Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Nì	P	Pb	Sb	8n	Sr	TI %	U	v	w	Y	Zn (
1	A-95- 346	180	0.4	1.92		55	<5	4.55	<1	44	31	207	5.14	<10	1.26	893	5	0.03	5	1000	14	5	<20	138	0.04	<10	68	<10	<1	60
2	A-95- 347	>1000	0.4	2.71	545	125	<5	4.42	<1	194	38	182	6.76	<10	1.46	825	7	0.02	6	1230	14	10	<20	135	0.02	<10	91	<10	<1	79
3	A-95- 348	45	<.2	2.11	160	110	<5	3.88	<1	50	50	- 56	4.29	<10	1.49	781	2	0.02	10	1620	16	10	<20	108	0.04	<10	98	<10	2	75
4	A-95- 349	30	<.2	5.12	140	55	<5		<1	36	29	353	12.80	<10	4.63	1549	- 4	0.01	18	2280	12	<5	<20	88	0.16	<10	310	<10	<1	85
5	A-95- 350	6 70	<.2	5.14	4610	55	10	5.57	<1	242	44	285	12.90	<10	4.58	1514	5	0.02	16	2090	12	5	<20	99	0.14	<10	312	<10	<1	78
6	A-95- 351	110	<.2	5.83	1105	85		6.18	<1	114	61	151	13.90	<10	5.34	1950	7	0.02	27	2090	14	15	<20	108	0.14	<10	319	<10	<1	92
7	A-95- 352	>1000	0.4	1.03	165	620	<5	4.10	<1	90	19	140	5.78	<10	0.45	908	5	<.01	3	1790	8	<5	<20	130	0.03	<10	58	<10	2	108
8	A-95- 353	45	<.2	0.90	45	1120	<5	4.91	<1	33	16	25	3.44	<10	0.39	928	2	0.02	3	1650	8	<5	<20	170	0.03	<10	49	<10	5	35
9	A-95- 354	5	<.2	1.81	45	200	<5	5.16	<1	17	37	164	4.13	<10	1.14	1201	3	<.01	21	1850	6	20	<20	139	0.01	<10	51	<10	1	53
10	A-95- 355	5	0.4	2.32	<5	400	<5	5.16	<1	20	37	160	5.09	<10	1.62	1222	4	<.01	21	1730	6	15	<20	166	0.01	<10	58	<10	<1	55
11	A-95- 356	10	0.2	2.60	65	25	<5	7.87	<1	29	21	136	7.46	<10	2.12	1529	7	<.01	10	1230	38	10	<20	160	<.01	<10	84	<10	<1	61
12	A-95- 357	10	<.2	2.51	20	110	<5	11,40	2	41	49	- 68	7.01	<10	1.76	2554	5	<.01	25	1620	14	<5	<20	319	0.05	<10	82	<10	5	175
13	A-95- 358	5	<.2	1.09	35	725	15	11.70	2	24	26	18	7.35	<10	0.46	1586	5	<.01	13	2050	16	10	<20	351	0.08	<10	82	<10	8	168
14	A-95- 359	5	4.0	3.54	10	55	<5	7.03	4	25	21	145	9.13	<10	1.94	2850	9	<.01	11	1550	80	15	<20	154	<.01	<10	82	<10	<1	379
15	A-95- 360	5	1.2	2.56	20	180	<5	11.50	<1	18	19	60	5.56	<10	1.27	3300	5	<.01	9	1410	28	5	<20	296	<.01	<10	53	<10	3	129
16	A-95- 361	5	0.4	1.64	<5	605	5	4,81	3	15	28	18	5.18	<10	0.77	1940	4	<.01	4	1140	14	<5	<20	140	0.03	<10	38	<10	1	199
17	A-95- 362	5	1.8	1.77	10	130	<5	3.72	1	25	24	35	4.98	<10	0.68	1612	7	<.01	6	1120	38	10	<20	95	0.01	<10	32	<10	<1	149
18	A-95- 363	5	5.0	1.12	<5	780	<5	14.70	3	10	25	69	3.54	<10	0.58	3475	4	<.01	4	860	56	15	<20	364	0.02	<10	31	<10	4	158
19	A-95- 364	5	1.0	0.82	<5	1220	<5	10.00	2	7	22	18	4.24	<10	0.36	2774	3	<.01	4	990	20	15	<20	274	0.04	<10	30	<10	2	117
20	A-95- 365	5	<.2	2.50	25	180	<5	6.56	<1	20	27	82	5.13	<10	1.96	1121	<1	0.02	8	1090	12	15	<20	138	0.09	<10	54	<10	2	78
21	A-95- 366	>1000	1.0	4.40	260	195	<5	6.81	<1	257	34	1061	11.40	<10	3.91	1517	6	<.01	29	1730	28	5	<20	149	0.07	<10	121	<10	<1	142
22	A-95- 367	5	<.2	0.99	50	370	<5	6.12	<1	18	20	65	3.73	<10	0.46	592	3	0.01	5	1830	4	<5	<20	141	0 02	<10	45	<10	4	33
23	A-95- 368	150	0.2	0.70	55	80	<5	6.74	<1	20	17	132	2.01	<10	0.15	744	2	0.01	3	1690	24	<5	<20	151	<.01	<10	25	<10	4	15
24	A-95- 369	5	<.2	1.54	25	125	<5	2.04	<1	15	38	109	4.12	<10	1.26	706	3	0.03	4	1740	6	10	<20	58	0 03	<10	67	<10	1	68
25	A-95- 370	5	<.2	1.36	20	130	<5	3.87	<1	26	34	37	3.76	<10	1.09	1012	3	0.02	4	1660	8	15	<20	131	0.02	<10	55	<10	2	71
26	A-95- 371	>1000	2.4	1.41	160	220	<5	1.26	<1	98	20	175	6.66	<10	0.88	495	6	0.02	6	1610	12	<5	<20	40	0 03	<10	67	<10	<1	119
27	A-95- 372	245	<.2	2.74	515	135	<5	2.50	<1	32	15	117	5.98	<10	1.55	1041	4	<.01	13	1910	16	5	<20	59	0.02	<10	73	<10	3	124

Values in ppm unless otherwise reported

1

1

1

TEUTON RESOURCES CORPORATION AS 95-4035

ECO-TECH LABORATORIES LTD.

١

.

Et	#. Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cđ	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Nł	P	Pb	Sb	Sn	\$r	TI %	U	v	W	Y	Zn	
28	A-95- 373	>1000	2.4	3.14	15	170	<5	2.42	<1	37	21	379	8.18	<10	2.43	859	20	0.01	10	1790	22	<5	<20	59	0.04	<10	149	<10	<1	103	,
29	A-95- 374	575	<.2	3.46	20	125	<5	3.72	1	6 0 ·	27	189	8.93	<10	2.52	951	5	0.01	18	1910	22	<5	<20	98	0.09	<10	119	<10	- 4	203	
30	A-95- 375	>1000	<.2	3,73	15	85	<5	2.60	1	13	15	85	7.63	20	3.14	1254	5	0 02	6	1800	16	10	<20	51	0.06	<10	155	<10	- 4	83	
31	A-96- 376	10	<.2	1.87	30	95	<5	4.21	<1	11	29	· 12	4.03	<10	1.31	836	1	0.02	8	1590	8	15	<20	94	0.05	<10	95	<10	2	60	rlone
32	A-95- 377	50	<.2	5.10	30	95	15	4.55	1	26	9	31	10.70	<10	4.33	1584	4	<.01	11	2040	18	16	<20	75	0.12	<10	165	<10	<1	98	Cloir
33	A-95- 378		<.2	5.01	30	70	<5	5.38	1	43	11	410	11.20	<10	4.03	1459	4	0.01	14		14	15	<20	81	0.13	<10	173	<10	<1	107	
34	A-95- 379		<.2	4.78	50	60	<5	4.62	<1	36	34	183	10.60	<10	4.26	1528	3	0.02			14	10	<20	78		<10	252	<10	<1	155	
35	A-95- 380	350	<.2	5.67	90	75	20	4.98	1	34	29	139		<10			4	0.02	14	1870	18	<5	<20	88	0.19	<10	316	<10	<1	79	
36	A-95- 381	5	<.2	3.97	80	55	<5	2.93	<1	52	34	646	12.90	<10	3.10	1121	8	0.03	27	1970	22	<5	<20	49	0.14	<10	239	<10	<1	49]
QC/D Resp	والمتحد المتعالية فيها						,																								
RS	A-95- 346	125	<.2	2.04	200	60	<5	4.64	<1	44	28	204	5.25	<10	1.36	936	з	0.03	6	1040	18	10	<20	145	0.05	<10	74	<10	2	60	
RS3	8 A-95- 381	5	<.2	3.92	70	50	<5	2.97	<1	52	33	658	12.90	<10	3.06	1104	6	0.03	27	2010	18	<5	<20	48	0.14	<10	240	<10	<1	46	
Repe	at:																			~											
1	A-95- 348	160	0.2	1.89	200	60	<5	4.44	<1	43	29	197	5.04	<10	1.23	877	5	0.03	6	1010	20	10	<20	132	0.04	<10	67	<10	2	60	
10	A-95- 355	5	0.2	2.28	5	440	<5	5,00	<1	19	34	173	4.96	<10	1.58	1197	4	<.01	20	1680	8	15	<20	163	0.01	<10	54	<10	<1	53	
19	A-95- 384	5	0.8	0.82	<5	1220	<5	10.00	1	6	21	18	4.25	<10	0.37	2764	3	<.01	4	970	18	10	<20	275	0.03	<10	31	<10	2	117	
Stan	terd:																														
GEO	5	150	1.4	1.66	65	160	<5	1.85	<1	20	60	82	3.84	<10	0.84	630	<1	0.02	24	630	24	<5	<20	55	0.11	<10	77	<10	6	74	

df/4032 XLS/95Teuton

į.

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

4

CERTIFICATE OF ASSAY AS 95-4034

TEUTON RESOURCES CORPORATION 509-675 W. HASTINGS STREET VANCOUVER, B.C.

VANCOUVER, B.C. V6C 1N2

- ATTENTION: DINO CREMONESE

60 Rock samples received in Stewart Sept. 28, 1995

in Kamloops Oct. 2, 1995

PROJECT #: None given

SHIPMENT #: None given

P.O.#: None given

Samples submitted by: D. Cremonese

			Au	Au	As	Co	
	ET #.	Tag #	(g/t)	(oz/t)	(%)	(%)	1
	5	A-95-319	1.69	0.05	-	0.03	
	11	A-95-325	1.14	0.03	-	-	
~	17	A-95-3 3 1	1.73	0.05	-	-	
	22	A-95-336	60.52	1.77	-	-	
	24	A-95-338	-	-	-	0.03	
-	27	A-95-341	2.28	0.07	-	-	
	30	A-95-344	2.50	0.07	-	0.05	
	35	ERK-95-370	22.18	0.65	-	-	
-	36	ERK-95-371	82.33	2.40	2.43	0.08	
	37	ERK-95-372	1.60	0.05	-	-	
	41	ERK-95-376	25.34	0.74	1.86	0.18	
	42	ERK-95-377	1.82	0.05	-	-	
	44	ERK-95-379	2.01	0.06	-	0.03	
	45	ERK-95-380	34.86	1.02	1.19	0.05	
	46	ERK-95-381	41.80	1.22	1.52	0.05	
	47	ERK-95-382	36.66	1.07	1.01	0.04	
	49	ERK-95-384	2.52	0.07	-	-	
	50	ERK-95-385	63.32	1.85	1.92	0.09	
-	51	ERK-95-386	10.48	0.31	-	-	
	53	ERK-95-388	33.54	0.98	-	0.05	
	55	ERK-95-390	5.71	0.17	1.78	0.16	
-	56	ERK-95-391	28.72	0.84	-	-	
	57	MM-#1	163.80	4.78	1.69	0.83	

12-0ct-95

18-Oct-95

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

1

TEUTON RESOURCES CORPORATION AS 85-4037 509-875 W. HASTINGS STREET VANCOUVER, B.C. V&C 1N2

ATTENTION: DINO CREMONESE

182 Rock samples received in Stewart Oct. 5,1995 (Wet) In Kamloope Oct. 12, 1995

nlone

1

PROJECT #: None given SHIPMENT #: None given P.O.#: None given Samples submitted by: Alex Walus

Et #	Tag #	Au(ppb)	Ag	AI %	As	8a '	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Nł	P	Pb	Sb	Sn	Sr	TI %	U	v	w	Y	Zn	
1	A-95-382	5	0.2	0.35	105	45	10	0.02	<1	10	133	30	6.37	<10	0.08	598	6	<.01	7	30	28	<5	<20	<1	<.01	<10	11	<10	<1	162	1
2	A-95-383	105	<.2	3.83	15	145	<5	0.73	1	32	48	132	9.43	<10	3.52	1299	3	0.01	17	2470	22	<5	<20	18	0.09	<10	151	<10	<1	79	
3	A-95-384	>1000	0.4	3.16	35	195	20	1.49	1	47	67	168	> 15	<10	2.97	1300	13	<.01	12	2210	12	<5	<20	36	0.10	<10	298	<10	<1	127	
4	A-95-385	370	<.2	3.21	5	160	<5	1.45	1	93	76	146	9.43	<10	3.02	1312	- 4	<.01	15	2560	12	5	<20	33	0 09	<10	173	<10	<1	201	
5	A-95-386	335	2.2	2.87	<5	115	<5	1.82	2	65	60	3103	9.12	<10	2.66	1111	5	0.02	20	2210	12	<5	<20	33	0.09	<10	177	<10	<1	98	
6	A-95-387	220	<.2	3.63	10	120	<5	3.36	1	39	131	414	12.20	<10	3.81	1363	3	0.02	27	2200	12	<6	<20	58	0.13	<10	224	<10	<1	78	
7	A-95-388	5	<.2	2.09	<5	80	<5	2.13	<1	18	48	406	6.67	<10	1.98	772	3	0.01	9	1350	8	5	<20	39	0.09	<10	108	<10	<t< td=""><td>67</td><td></td></t<>	67	
8	A-95-389	835	<.2	2,83	15	85	5	6.12	2	31	60	81	8.73	<10	3.06	1215	1	0.01	11	1640	10	15	<20	87	0.13	<10	175	<10	<1	60	
9	A-95-390	10	<.2	4.14	5	85	<5	5.42	1	42	45	399	8.43	<10	4.98	1599	<1	0.03	17	2210	12	15	<20	83	0.19	<10	257	<10	<1	97	
10	A-95-391	45	<.2	2.13	20	105	<5	0.68	<1	65	67	90	7.24	<10	1.76	827	2	0.02	11	2070	14	5	<20	17	0.09	<10	118	<10	<1	104	11
11	A-95-392	>1000	0.6	1.88	170	155	25	0.89	<1	169	39	137	14.70	<10	1.44	665	12	<.01	8	2020	30	<5	<20	17	0.08	<10	203	<10	<1	194	Γ
12	A-95-393	100	<.2	2.80	15	55	<5	2.64	<1	61	17	125	5.83	<10	2.92	1252	<1	0.02	9	1640	8	20	<20	38	0.10	<10	166	<10	<1	76	
13	A-95-394	5	<.2	3.18	15	75	<5	2.31	<1	35	28	241	7.98	<10	3.29	1424	3	0.02	12	2290	16	<5	<20	36	0.10	<10	188	<10	<1	74	ł
14	A-95-395	700	<.2	1.66	80	130	15	0.79	<1	263	- 44	45	8.93	<10	1.29	956	4	0.02	9	1680	34	<5	<20	20	0.07	<10	134	<10	<1	408	
15	A-95-396	20	<.2	2.41	30	135	15	1.52	2	123	29	77	8.66	<10	1.97	1210	2	0.01	13	1830	28	10	<20	26	0.11	<10	110	<10	1	390	
16	A-95-397	625	<.2	2.83	35	110	5	1.57	2	224	35	153	10.40	<10	2.73	1540	2	<.01	25	1630	24	<5	<20	33	0 14	<10	188	<10	<1	519	
17	A-95-398	5	<.2	1.49	20	105	<5	0.70	<1	24	32	19	3.39	<10	0.94	654	<1	0.01	5	1850	14	5	<20	33	0.08	<10	46	<10	2	136	
18	A-95-399	5	< 2	1.57	55	130	<5	2.48	1	36	49	49	3.76	<10	1.46	995	<1	0.04	16	1940	36	20	<20	39	0.13	<10	100	<10	3	176	ł
19	A-95-400	5	0.8	1.27	50	120	<5	1.29	<1	33	58	87	3.84	<10	1.04	722	<1	0.05	20	2420	32	10	<20	30	0.11	<10	84	<10	3	144	
20	A-95-401	5	0.4	1,79	65	95	5	2.49	<1	45	66	33	3.73	<10	1.76	1067	<1	0.03	27	2180	30	25	<20	41	0.11	<10	112	<10	4	280	
21	A-95-402	5	<.2	1.14	80	80	10	1.08	<1	32	77	56	6.09	<10	0.93	633	2	0 05	14	1820	48	<5	<20	39	0 12	<10	143	<10	<1	147	
22	A-95-403	355	29.6	1.15	45	120	<5	3.50	2	23	97	4959	4.30	<10	0.93	954	<1	0.05	16	2100	30	10	<20	46	0.15	<10	146	<10	3	147	1
23	A-95-404	5	0.8	1.17	45	230	<5	871	4	15	51	65	3.13	<10	1.03	1529	<1	0.03	13	1650	32	10	<20	94	0.09	<10	92	<10	2	176	
24	A-95-405	5	0.6	1.31	35	565	<5	6.65	3	13	84	46	3.46	<10	1.12	1616	<1	0.03	12	1530	32	15	<20	93	0.11	<10	96	<10	3	195	
25	A-95-408	5	1.8	1.19	25	160	<5	4.66	2	16	53	153	4.25	<10	0.73	1150	<1	0.04	11	1500	20	5	<20	81	0.15	<10	104	<10	5	76	

Values in ppm unless otherwise reported

TEUTON RESOURCES CORPORATION AS 95-4037

l

ECO-TECH LABORATORIES LTD.

.

Et#	Tag #	Au(ppb)	Ag	AI %	As	Ba	BI	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	NI	P	Pb	Sb	Sn	Sr	TI %	U	v	w	Y	Zn	
26	A-95-407	5	0.6	1.40	20	65	<5	5.56	1	14	59	43	2.94	<10	1.35	1602	<1	0.05	12	1570	12	15	<20	64	0.12	<10	122	<10	- 4	174	
27	A-95-408	5	1.4	1.32	45	115	<5	1.88	1	27	125	293	3.87	<10	0.91	850	<1	0.06	27	2230	42	10	<20	80	0.13	<10	84	<10	4	172	
28	A-95-409	5	1.0	1.60	40	90	<5	3.96	3	23	58	167	4.35	<10	1.60	1512	<1	0.04	20	1890	32	15	<20	49	0.11	<10	143	<10	2	214	
29	A-95-410	5	0.8	1.78	55	150	<5	0.96	2	16	96	38	4.38	<10	1.55	1450	<1	0.03	12	1330	48	15	<20	22	0.09	<10	120	<10	2	370	
30	A-95-411	30	0.2	1.69	55	265	<5	2.65	1	21	42	24	4.61	<10	1.51	1514	<1	0.01	10	1240	52	15	<20	46	0.11	<10	69	<10	з	340	
																															1
31	A-95-412	5	<.2	4.55	15	100	<5	4.13	2	42	98	276	9.67	<10	4.39	2074	1	0.01	22	2150	<2	<5	<20	55	0.16	<10	238	<10	<1	175	1
32	A-95-413	735	<.2	2.35	15	110	<5	1.90	2	40	60	57	6.69	<10	1.68	1417	2	0.01	9	1270	12	<5	<20	32	0.13	<10	96	<10	2	281	
33	A-95-414	>1000	0.2	1.92	20	105	5	0.78	<1	59	42	58	6.05	<10	1.28	879	3	0.01	5	1240	10	<5	<20	31	0.09	<10	64	<10	2	102	
34	A-95-415	>1000	<.2	2.05	15	110	<5	1.16	<1	59	35	99	7.21	<10	1.53	962	1	<.01	8	2010	6	<5	<20	24	0.08	<10	108	<10	<1	117	
35	A-95-416	20	0.2	3.55	15	85	<5	1.11	1	37	88	769	8.03	<10	3.29	2028	2	0.02	18	1820	6	5	<20	24	0.13	<10	163	<10	<1	116	
36	A-95-417	5		1.90	5	80	-	1.40	<1	18	55	113	4.39	<10			-	0.02	5		10	10	<20	47	0.13	<10	62	<10	4	100	
37	A-95-418	>1000	<.2	2.39	15	75		1.23	<1	27	35	139	6,18	<10	2.08	1542	<1	0.01	13	1220	10	5	<20	29	0.15	<10	119	<10	3	97	
38	A-95-419	20	0.8		20	70	<5	3.67	1	41	60	655	6.50	<10	2.39	1659	<1		14		- 4	10	<20	102	0.14	<10	133	<10	<1	150	
30	A-95-420	5	<.2		<5	80	-	3.48	1	40	28	305	9.96	<10		2508	-	0.01	26		<2	<5	<20	67	0.15	<10	203	<10	<1	142	
40	A-95-421	275	<.2	5.42	20	370	<5	2,97	1	46	77	444	12.00	<10	5.78	1815	1	0.01	26	1960	<2	<5	<20	53	0.16	<10	319	<10	<1	122	Clone
41	A-95-422	495	0.6	3.60	145	125	-8	0.77		134	70	740	13.80	~10	3.36	1520	-	<.01	22	1690		<5	<20	19	A 11	<10	273	<10	<1	465	10101
42	A-95-423	>1000		0.26	65	55	30	0.12	- i	12	88	76	> 15	<10	0.10	232		<.01	23	180	190	<5	<20	8	0.11 0.03	<10	313	<10	<1	84	
43	A-95-424	280		4.85	55	105		1.55	2	51	90		11.30	<10	4.84			0.01	-	2060	2	<5	<20	28		<10	295	<10	<1	356	
44	A-95-425	140		4.80	45	80	-	3.87	_										25	2000 1960	-	<0 <5			0.20				•	300	
45	A-95-426	>1000	4.2				15		2	50 77	59	121	9.00	<10	4.48			0.01			2	-	<20	51	0.17	<10	232	<10	2 <1	804	
40	A-83-420	21000	۹.4	1.00	210	120	15	0.37	4		25	280	> 15	<10	1.25	10404	23	<.01	13	840	54	10	<20	16	0.04	<10	239	<10		004	
45	A-95-427	720	0.2	2.10	25	95	5	0.57	<1	30	49	83	6.51	<10	1.51	1093	<1	0.01	6	1260	20	<5	<20	15	0.11	<10	93	<10	2	285	
47	A-95-428	350	<.2	1.81	20	80	<5	0.73	<1	39	28	65	5.40	<10	1.32	844	1	<.01	3	1250	20	5	<20	20	0.11	<10	68	<10	4	119	
48	A-95-429	>1000	1.0	2.81	1455	55	<5	3.44	<1	216	37	163	7.77	<10	1.75	941	84	<.01	11	1670	18	<5	<20	62	0.07	<10	139	<10	<1	68	
49	A-95-430	5	<.2	2.68	50	285	<5	3.87	<1	26	44	71	5.88	<10	2.08	1060		0.02		1760	10	15	<20	96	0.11	<10	153	<10	<1	76	
50	A-95-431	>1000	<.2	3.64	135	95	<5	2.86	<1	92	51	398	10.10	<10	3.02	1356	4	0.01	18	1660	12	<5	<20	62	0.09	<10	188	<10	<1	386	1
			_				-																								
51	A-95-432	5		4.60	130	75		1.62	<1	50	55		10.30	<10	4.35		1			1680	20	<5	<20	29	0.20	<10	319	<10	3	97	
52	A-95-433	440	<.2		100	80	<5	3.96	<1	52	49		11.30	<10		1437	4			1780	8	<5	<20	55	0.20	<10	262	<10	<1	116	1
53	A-95-434	>1000	<.2		110	75	5	3.74	<1	140	58		10.10	<10		1152	1		21	1880	8	<5	<20	53	0.15	<10	246	<10	<1	73	
54	A-95-435	10	<.2	4.90	30	165	10	2.42	<1	46	77	154	9.52	<10	5.46		<1			2090	<2	<5	<20	39	0.22	<10	301	<10	2	66	
55	A-95-436	5	<.2	3.76	35	905	<5	6,18	<1	35	75	145	7.70	<10	4.17	1494	<1	0.03	21	1910	<2	10	<20	112	0.19	<10	255	<10	<1	74	
56	A-95-437	5	< 2	4.34	35	155	10	1.81	<1	43	73	125	8,10	<10	4.88	1449	<1	0.03	23	2140	<2	<5	<20	44	0.20	<10	256	<10	2	67	
57	A-95-438	665		4.39	55	125	<5	2.75	<1	59	68	353	9.09	<10	4.79			0.02		2000	12	10	<20	40	0.16	<10	283	<10	<1	96	
58	A-95-439	>1000	0.4		350	85	-	1.90	<1	343	61		10.80	<10	2.75		-	<.01		1860	10	<5	<20	24	0.11	<10	226	<10	<1	295	
59	A-95-440	>1000	0.4		145	90	-	1.51	4	148	66	1299	9.73	<10		1872	<1			2040	18	10	<20	19	0.18	<10	254	<10	3	403	
60	A-95-441	310	<.2		100	100	<5	0.83	<1	117	53	646	9.63	<10	2.49	962		0.02		1550	18	<5	<20	14	0.15	<10	169	<10	<1	85	1
		310		2.03		100	-0	0.00	- 1		05	040	0.00	-10	2.48		-	0.02			10	-0	-20		0.10		100			05	1
61	A-95-442	>1000	1.2	3.85	210	95	<5	0.83	2	371	41	2434	11.60	<10	3 55	1341	4	<.01	22	2300	16	5	<20	15	0.15	<10	208	<10	<1	236	1
62	A-95-443	>1000	<.2	4.40	80	100	<5	5.60	1	167	105	328	9.19	<10	4.44	2071	<1	0 02	22	2380	24	<5	<20	77	0 20	<10	263	<10	2	79	1
63	A-95-444	5	<.2	3.85	45	95	<5	1.32	6	40	34	960	7.74	<10	3.52			0.02		2760	122	15	<20	40	0.24	<10	189	<10	9	100	1
64	A-95-445	5	<.2	3.87	30	65	10	3.36	1	42	84	137	8.42	<10	3.96	1975	<1	0.02	20	2490	14	<5	<20	69	0.22	<10	210	<10	5	109	1
65	A-95-446	465		3.18	25	115	5	1.41	1	44	27	83	9.16	<10	2.87	1427	<1	<.01	19	1820	24	<5	<20	37	0.17	<10	194	<10	<1	228	1
							_																								1

TEUTON RESOURCES CORPORATION AS 95-4037

1

ECO-TECH LABORATORIES LTD.

,

1

•

Et#	Tag#	Au(ppb)	Ag	AI %	As	Ba	BI	Ça %	Cd	Co	Cr	Çu	Fe %	La	Mg %	Mn	Мо	Na %	Nł	P	Pb	Sb	Sn	Sr	TI %	U	v	w	Y	Zn	
66	A-95-447	5	<.2	3.46	10	65	<5	1.94	1	41	- 34	147	9.38	<10	3.64	1520	<1	0.01	20	2100	<2	<5	<20	39	0.17	<10	233	<10	<1	70	
67	A-95-448	5	<.2	4.20	15	95	<5	5.08	4	51	28	1103	10.20	<10	4.57	2122	<1	0.02	26	1760	<2	10	<20	73	0.24	<10	317	<10	<1	69	
68	A-95-449	5	0.6	3.73	15	100	<5	1.79	4	37	33	1313	10.70	<10	3.60	1922	<1	0.01	20	1960	6	<5	<20	33	0.18	<10	264	<10	<1	84	
69	A-95-450	>1000	0.8	1.91	140	80	10	0.36	<1	123	31	57	6.92	<10	1.15	689	8	<.01	16	1700	30	<5	<20	10	0.08	<10	126	<10	<1	315	
70	A-95-451	90	<.2	1.58	30	70	10	1.10	<1	50	25	71	6.57	<10	1.16	840	<1	0.02	9	1910	16	<5	<20	28	0.12	<10	100	<10	2	212	
71	A-95-452	435	<.2	2.03	40	110	10	1.74	3	137	36	62	6.28	<10	1.70	1151	<1	0.01	5	1900	42	10	<20	35	0.13	<10	112	<10	2	1023	
72	A-95-453	45	1.4	2.97	35	115	<5	4.17	8	78	31	2193	9.17	<10	2.76	1927	<1	<.01	20	1850	24	5	<20	61	0.20	<10	171	<10	<1	739	
73	A-95-454	5	<.2	3.93	30	80	10	4.89	2	39	59	94	9.05	<10	4.76	2083	<1	0.01	29	1790	14	10	<20	105	0.20	<10	252	<10	<1	81	
74	A-95-455	5	<.2	1.48	30	185	<5	0.79	<1	16	20	74	4.88	<10	1.07	689	<1	<.01	- 4	1830	16	5	<20	32	0.07	<10	61	<10	<1	83	
75	A-95-456	5	<.2	1.10	30	180	<5	0.91	<1	22	37	43	4.86	<10	0.74	588	3	0.02	5	1610	12	5	<20	26	0.07	<10	72	<10	1	100	
76	A-95-457	5	_	1.42	5	85	10	1.55	<1	12	31		4.50	<10	0.97	805	1			1730	14	10	<20	37	0.07	<10	70	<10	3	79	
77	A-95-458	45	<.2		15	85	5	1.76	1	29	30	15	3.88	<10	0.83	759	1	0.01	-	1820	12	5	<20	38	0.06	<10	71	<10	2	138	
78	A-95-459	610	0.4		20	240	5	1.84	2	53	23	20	4.23	<10	1.05	937	<1		-	1760	16	10	<20	42	0.08	<10	63	<10	2	355	1
79	A-95-460	10	<.2	3.18	20	235	<5	0.78	1	32	21	287	10.20	<10	2.56	1664	7	0.01	22		60	<5	<20	22	0.16	<10	186	<10	<1	100	al ne
80	A-95-461	80	8.2	3.69	75	115	<5	0.55	<1	62	18	4048	11.20	<10	2.51	1194	4	<.01	21	2100	188	<5	<20	15	0.18	<10	210	<10	<1	375	plone
81	A-95-462	520	2.4	0.93	60	175	<5	0.26	<1	30	52	101	3.89	<10	0.44	261		<.01	5	1490	12	<5	<20	9	0.02	<10	54	<10	<1	209	
82	A-95-463	400	1.0		75	180	<5	0.41	<1	80	66	55	2.73	<10	0.51	451		< 01	6		12	5	<20	12	0.04	<10	62	<10	3	162	
83	A-95-464	110		1.36	15	120	-	2.18	<1	22	34	22	3.89		1.07	756	<1		-	1760	18	10	<20	42	0.07	<10	71	<10	2	182	
84	A-95-465	>1000			30	70	<5	1.87	<1	49		27	4.11	<10	1.08	847		0.02		1730	20	10	<20	49	0.07	<10	70	<10	<1	173	
85	A-95-466	5				75	-	2.39			34		3.15		0.97		-		-	1780	10	10		38	0.06	<10	64	<10	2	61	
60	A-80-400	5	<.2	1.19	15	/6	<5	2.39	<1	10	41	18	3.15	<10	0.97	631	<1	0.02	•	1780	10	10	<20	30	0.08	10	04	10	4	01	
86	A-95-487	5	<.2	1.28	20	105	<5	1.33	<1	10	29	28	3.10	<10	0.84	726	<1	0.02	4	1800	14	10	<20	27	0.08	<10	64	<10	5	65	
87	A-95-468	5	<.2	1.47	15	80	<5	2.14	<1	15	40	51	3.59	<10	1.19	803	<1	0.03	3	1780	18	15	<20	66	0.07	<10	74	<10	1	59	1
88	A-95-469	10	<.2	1.37	25	110	5	1.24	<1	24	43	17	4.25	<10	0.95	753	<1	0.02	4	1810	18	10	<20	34	0.10	<10	71	<10	2	121	1
89	A-95-470	5	<.2	1.44	40	115	<5	1.29	<1	28	47	72	5.78	<10	1.00	783	2	0.03	5	1670	22	5	<20	34	0.10	<10	85	<10	2	114	
90	A-95-471	5	<.2	1.70	15	85	<5	1.73	<1	10	24	20	3.68	<10	1.24	739	<1	0.01	4	1770	10	15	<20	49	0.08	<10	51	<10	1	62	
91	ERK-95-392	245	0.2	2,17	20	195	<5	0.90	<1	22	41	629	6.24	<10	1.58	838	3	0.01	-	1340	22	<5	<20		0.12	<10	89	<10	3	122	
92	ERK-95-393	>1000	0.8	2.25	85	185	<5	0.55	<1	104	42	453	12.30	<10	1.59	884	9	<.01	7	1060	22	<5	<20	17	0.09	<10	138	<10	1	100	1
93	ERK-95-394	95	<.2	3.50	15	260	<5	2.64	1	41	55	178	10.10	<10	3.27	1264	3	0.02	17	1970	20	<5	<20	54	0.14	<10	194	<10	<1	66	
94	ERK-95-395	>1000	0.2		60	230	<5	1,18	<1	98	18	255	11.20	<10		1243		0.01		2340	16	<5	<20	29	0.10	<10	239	<10	<1	69	
95	ERK-95-398	850	<.2	2.94	35	175	<5	2.10	<1	63	32	268	8.09	<10	2.65	1172	3	0.02	14	2200	12	10	<20	35	0.10	<10	157	<10	<1	118	
	EBV 05 207		- 2	200	10	120	-			20	22	424	7 70	-10	2.24	1027		0.02	10	2250	14		~20	27	0.11	~10	122	<10	<1	71	
96	ERK-95-397	5		2.68	10	120		1.54	<1	29	33		7.70	<10	2.31			0.03		2250	14	5 <5	<20	32 63	0.11	<10 <10	132 159	<10	<1	149	
97	ERK-95-398	>1000	1.0		155	315	<5	2.67	<1	296	39		11.70	<10	1.37	864		0.02		1610	24	-	<20		0.08				1		
98	ERK-95-399	35	<.2		15	95	<5	2.54	1	41	51	55	4.75	<10	1.12	770		0.05	-	1740	14	<5	<20	68	0.09	<10	88	<10	•	134	
99	ERK-95-400	530	0.6		35	355	<5	2.68	2	120	42	123	4.83	<10	0.88	806	-	<.01		1500	40	10	<20	72	0.04	<10	85	<10	<1	181	
100	ERK-95-401	5	<.2	1.38	20	180	<5	1.99	<1	24	26	18	4.34	<10	0.87	838	<1	0.01	3	1820	14	10	<20	34	0.06	<10	55	<10	2	149	
101	ERK-95-402	40	<2	3.58	270	75	10	0.91	<1	41	93	179	10.80	<10	3.19	905	9	0.01	23	2090	44	<5	<20	21	0.15	<10	164	<10	<1	78	
102	ERK-95-403	5	< 2		110	60	10	0.75	<1	41	93		11.10	<10	4.73		-	0.01	-		24	<5	<20	16	0.15	<10	226	<10	<1	95	
103	ERK-95-404	390		2.48	50	170	<5	0.42	<1	20	36	174	5.23	<10	1.73	973	_	0.01		1310	30	10	<20	11	0.09	<10	71	<10	5	106	
104	ERK-95-405	245		2.58	85	145	<5	0.38	<1	33	28	180	5.86	<10		1007	-	<.01	-	1310	24	10	<20	12	0.07	<10	61	<10	4	128	
105	ERK-95-408	>1000		1.93	105	190		0.60	<1	63	34		13.80			810		<.01		1190	18	<5	<20		0.09	<10	198	<10	<1	87	
	2111-03-400	- 1000		1.85		100		5.00					13.00		1.4.1								-10		0.00					~	T

CERTIFICATE OF ASSAY AS 95-4033

0.04

TEUTON RESOURCES CORPORATION 509-675 W. HASTINGS STREET VANCOUVER, B.C. V6C 1N2

ATTENTION: DINO CREMONESE

17 Rock samples received in Stewart Sept. 25,1995 in Kamloops Oct. 2, 1995

PROJECT #: None given SHIPMENT #: None given P.O.#: None given Samples submitted by: D. Cremonese

	ET #.	Tag #	Au (g/t)	Au (oz/t)	Co (%)	
	4	ERK-95-357	19.62	0.572	0.02	
	5	ERK-95-358	9.94	0.290	-	
.9-19	9	ERK-95-362	43.82	1.278	-	(lone
	11	ERK-95-364	8.06	0.235	-	
	13	ERK-95-366	1.55	0.045	-	
areas a	16	DC-95-110	58.74	1.713	0.07	

QC DATA:

Standard:			
Su-1A		-	-

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/95Teuton#2

5-Oct-95

TEUTON RESOURCES CORPORATION

509-675 W. HASTINGS STREET VANCOUVER, B.C. V6C 1N2

ATTENTION: DINO CREMONESE

162 Rock samples received in Stewart Oct. 5,1995 (Wet) in Kamloops Oct. 12, 1995

PROJECT #: None given

SHIPMENT #: None given

P.O.#: None given

Samples submitted by: Alex Walus

			Au	Au	Co	Te	
****	ET #	. Tag #	(g/t)	(oz/t)	(%)	(%)	
	3	A-95-384	9.18	0.268	-	-	
	11	A-95-392	7.94	0.232	-	<.01	
	14		-	-	0.02	-	
	16		-	-	0.02	-	
	17	A-95-398	-	-	-	<.01	
	21	A-95-402	-	-	-	<.01	
~~	33	A-95-414	4.35	0.127	-	-	
	34	A-95-415	1.62	0.047	-	<.01	
	37	A-95-418	3.88	0.113	-	-	
~~~	42	A-95-423	132.33	3.859	-	<.01	
	45	A-95-426	23.52	0.686	-	-	
	48	A-95-429	2.64	0.077	0.02	-	1 ( lone
	50	A-95-431	1.21	0.035	-	-	
يىلەتلەر س	53	A-95-434	1.75	0.051	-	-	
	58	A-95-439	5.29	0.154	0.03	-	
	59	A-95-440	1.16	0.034	-	-	
The second s	61	A-95-442	4.73	0.138	0.03	-	
	62	A-95-443	1.75	0.051	-	-	
	69	A-95-450	2.05	0.060	-	-	
	76	A-95-457	-	-	-	<.01	
	84	A-95-465	1.22	0.036	-	-	
	92	ERK-95-393	15.89	0.463	-	-	
	94	ERK-95-395	2.35	0.069	-	-	
	97	ERK-95-398	2.92	0.085	0.03	-	

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

**TEUTON RESOURCES CORPORATION AK 95-4037** 

18-Oct-95

25-Oct-95

	Au	Au	Co	Te	As	
ET #. Tag #	(g/t)	(oz/t)	(%)	(%)	(%)	ı
105 ERK-95-406	7.93	0.231	-	-	-	
109 ERK-95-410	10.21	0.298	-	-	-	
112 ERK-95-413	12.96	0.378	-	-	-	
114 ERK-95-415	7.26	0.212	-	-	-	
115 ERK-95-416	13.21	0.385	-	-	-	
118 ERK-95-419	3.64	0.106	-	-	-	
125 ERK-95-426	1.85	0.054	-	-	-	
126 ERK-95-427	1.36	0.040	-	-	-	
127 ERK-95-428	3.13	0.091	-	-	-	
129 ERK-95-430	53.72	1.567	-	-	-	
130 ERK-95-431	1.81	0.053	-	-	-	
132 ERK-95-433	6.67	0.195	0.03	•	-	
135 ERK-95-436	1.83	0.053	-	-	-	
136 ERK-95-437	43.44	1.267	-	-	-	
137 ERK-95-438	5.71	0.167	-	-	-	
142 ERK-95-443	1.03	0.030	-	-	-	
143 ERK-95-444	6.93	0.202	0.03	-	-	
145 ERK-95-446	5.55	0.162	0.06	-	-	
147 ERK-95-448	2.68	0.078	0.04	-	0.77	
148 ERK-95-449	44.88	1.309	0.07	-	1.02	
149 ERK-95-450	4.31	0.126	0.06	-	1.34	
151 ERK-95-452	31.66	0.923	0.15	-	1.25	
153 ERK-95-454	3.29	0.096		-	-	
154 ERK-95-455	3.79	0.111	0.03	-	-	ļ
155 ERK-95-456	12.72	0.371	0.40	-	2.07	
156 ERK-95-457	17.91	0.522	0.47	-	2.40	
157 ERK-95-458	1.67	0.049	0.02	-	-	
159 290A	111.82	3.261	-	-	-	
QC/DATA:						
Standard:						
STD-L	1.98	0.058	-	-	-	
STD-L	1.98	0.058	-	-	-	
Mp-IA		-	-	-	0.84	

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer .

XLS/95Teuton#2

TEUTON RESOURCES CORPORATION AS 95-4037

-

ECO-TECH LABORATORIES LTD.

,

`

_	Et #.	Tag#	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Çr	Cu	Fe %	La	Mg X	Mn	Мо	Na %	NI	P	Pb	\$b	\$n	Sr	TI %	U	v	w	Y	Zn	
	106	ERK-95-407	125	<.2	1.60	20	120	<5	1.75	<1	31	38	105	4.26	<10	1.11	752	<1	0.02	5	1830	16	10	<20	52	0.07	<10	70	<10	3	68	
	107	ERK-95-408	415	0.2	1.23	15	115	<5	1.76	<1	28	41	320	4.24	<10	0.81	568	1	0.03	3	1700	18	5	<20	58	0.08	<10	88	<10	2	38	1
	108	ERK-95-409	145	<.2	0.82	25	125	<5	1.14	<1	17	51	31	4.10	<10	0.28	557	<1	0.02	3	1770	38	<5	<20	54	0.08	<10	58	<10	2	108	
	109	ERK-95-410	>1000	3.8	0.46	100	145	10	0.78	1	40	33	249	8.48	<10	0.06	546	8	<.01	2	1600	44	50	<20	46	0.05	<10	177	<10	<1	102	
	110	ERK-95-411	175	<.2	1.10	15	100	10	0.71	1	21	27.	31	4.77	<10	0.62	810	1	0.02	4	1820	12	<5	<20	19	0.08	<10	70	<10	1	175	
	111	ERK-95-412	35	<.2	1.18	10	95	10	1.08	<1	11	41	35	4.20	<10	0.72	658	2	0.03	5	1830	22	<5	<20	30	0.05	<10	71	<10	2	170	
	112	ERK-95-413	>1000	2.4	2.56	20	140	15	0.61	<1	39	40	153	11.00	<10	1.60	1912	6	<.01	6	1510	22	5	<20	19	0.05	<10	122	<10	<1	335	
	113	ERK-95-414	10	<.2	0.88	20	185	5	2.72	1	7	32	28	3.48	<10	0.39	774	2	0.02	4	1850	26	5	<20	48	0.06	<10	51	<10	4	90	
	114	ERK-95-415	>1000	1.6	2.75	230	130	<5	1.06	1	41	40	616	> 15	<10	2.23	1232	20	<.01	12	1660	78	<5	<20	25	0.08	<10	256	<10	<1	425	
	115	ERK-95-418	>1000	1.6	2.37	115	410	<5	1.64	2	40	49	646	15.00	<10	1.74	1337	32	<.01		1120	32	<5	<20	32	0.08	<10	220	<10	<1	413	
1	118	ERK-95-417	365	<.2	4.32	85	80	<5	1.54	<1	33	35	243	9.58	<10	4.21	1222	4	0.02	15	2190	16	5	<20	31	0.16	<10	316	<10	<1	63	
1	117	ERK-95-416	355	<.2	5.26	85	125	<5	1.75	<1	58	29	233	11.50	<10	4.73	1599	3	0.01	14	2290	14	<5	<20	32	0.17	<10	288	<10	<1	107	6
1	118	ERK-95-419	>1000	<.2	3.63	105	140	<5	5.37	<1	119	57		10.00	<10	3.76	1374		0.01		1670	4	<5	<20		0.13	<10	250	<10	<1	103	p.
1	119	ERK-95-420	35	<.2	4.28	50	85	<5	2.60	<1	42	79	106	9.05	<10	5.07	1272	<1			2000	10	10	<20	-	0.15	<10	243	<10	<1	63	
1	120	ERK-95-421	5	<.2	3.84	45	65	10	6.48	<1	42	61	147	8.61	<10	4.15	1503	<1	0.02		1900	10	10	<20		0.17	<10	254	<10	<1	72	none
1	121	ERK-95-422	5	<.2	4.80	75	100	10	1.92	<1	37	25	119	9.75	<10	4.64	1570	2	0.02	14	2380	14	10	<20	46	0.20	<10	342	<10	2	87	$\cup$
1	122	ERK-95-423	70	<.2	4.25	120	75	<5	2.03	<1	43	33	241	9.76	<10	3.96	1267	6	0.02	16	2230	16	<5	<20	48	0.11	<10	295	<10	<1	70	ł
1	123	ERK-95-424	35	<.2	4.58	260	90	<5	0.71	<1	47	14	396	11.60	<10	4.02	1140	7	0.01	17	2080	20	<5	<20	18	0.12	<10	331	<10	<1	63	
1	124	ERK-95-425	260	<.2	3.66	1010	65	<5	0.55	<1	64	25	365	13.10	<10	2 88	862	11	0.01	14	2300	18	<5	<20	13	0.17	<10	272	<10	<1	59	
1	125	ERK-95-426	>1000	<.2	4.86	1015	60	<5	0.97	<1	51	26	321	11.60	<10	4.66	1206	4	0.01	15	2240	16	<5	<20	23	0.17	<10	330	<10	∢1	64	
1		ERK-95-427	>1000	<.2	4.18	270	75	<5	0.76	<1	43	24	278	9.94	<10	3.91	975	56	0.02	11	2140	20	<5	<20	16	0.20	<10	273	<10	1	80	
1	127	ERK-95-428	>1000	0.8	3.28	1185	80	<5	0.73	<1	33	9	234	10.90	<10	3.05	760	68	0.02	3	2330	30	<5	<20	19	0.18	<10	227	<10	<1	66	
1	128	ERK-95-429	15	<.2	0.82	95	275	5	0.57	<1	4	27	39	3.35	<10	0.11	261	2	0.01	1	1900	10	<5	<20	15	0.07	<10	45	<10	3	13	1
1		ERK-95-430	>1000	4.0	1.01	115	90	15	0.35	<1	29	22	110	14.60	<10	0.56	372	17	<.01	4	1010	136	<5	<20	15	0.08	<10	166	<10	<1	53	
1	130	ERK-95-431	>1000	0.6	4.48	1955	70	<5	0.75	<1	63	16	360	13.70	<10	3.39	1051	12	0.02	8	2020	24	<6	<20	20	0.17	<10	283	<10	<1	69	
1		ERK-95-432	675	₹.2	4.00	625	65	<5	1.05	<1	74	20	380	10.60	<10	3.06	1024	8	0.02	12	1850	20	<5	<20	19	0.15	<10	256	<10	<1	138	
		ERK-95-433	>1000	1.8	4.76	5400	65	<5	1.71	<1	363	49		14.20	<10			39	0.01		1940	24	<5	<20		0.13	<10	278	<10	<1	190	
		ERK-95-434	790		4.31	1125	55	-	2.04	<1	72	51		10.80	<10	3.23			0.01		2170	18	5	<20		0.15	<10	263	<10	<1	110	
-		ERK-95-435	40	<.2	4.96	75	65		3.71	<1	38	60		10.40		4.56			<.01		2090	12	<5	<20	-	0.17	<10	293	<10	<1	88	
1	135	ERK-95-436	>1000	0.4	2.72	655	85	<5	0.55	<1	34	35	118	6.12	<10	1.91	921	9	0.02	9	1570	18	<5	<20	14	0.02	<10	162	<10	<1	102	
		ERK-95-437	>1000		3.90	1465	80	<5	0 48	<1	48	9		> 15	<10	2.22			< 01		1240	64	<5	<20		0.02	<10	227	<10	<1	176	
		ERK-95-438	>1000		3.48	995	55	<5	3 98	<1	46	28		8.66	<10	2.45					1440	76	5	<20		0.02	<10	127	<10	<1	241	
1		ERK-95-439	80		2.48	60	60	<5	2.45	<1	13	44		4.95	<10	2.04	903	4	0.02	-	1680	16	10	<20		0.01	<10	198	<10	<1	96	1
1		ERK-95-440	200	<.2	5.16	95	170	<5	3.61	<1	47	110		10.40	<10	5.18	1808	2	0.01		2110	18	<5	<20		0.17	<10	323	<10	<1	107	
1	40	ERK-95-441	10	<.2	4.09	55	170	5	6.01	<1	61	66	150	9,18	<10	4.06	1549	<1	0.02	20	2090	12	6	<20	77	0.17	<10	288	<10	<1	92	
		ERK-95-442	5		4.52	30	70	10	3.60	<1	50	49		9.91		4.59			0.02		1960	18	<5	<20		0.21	<10	285	<10	<1	98	
		ERK-95-443	>1000	<.2	4.19	435	85	<5	2.17	<1	180	20		9.46	<10	3.68	1225	3			2320	14	<5	<20		0.11	<10	195	<10	<1	90	
		ERK-95-444	>1000		3.78	510	305		3.05	<1	302	24		11.20	<10	3.21		8			1960	8	<5	<20		0.09	<10	203	<10	<1	100	
		ERK-95-445	175		2.34	175	55	<5	1.21	<1	36	18		8.57	<10	1.74	759	6		-	1470	18	<5	<20		0.06	<10	62	<10	<1	115	
1	45	ERK-95-446	>1000	17.6	1.88	6115	75	<5	1.10	<1	671	26	2918	> 15	<10	1.33	504	76	<.01	1	1310	22	<5	<20	23	0.06	<10	85	<10	<1	217	1

.

Page 4

#### TEUTON RESOURCES CORPORATION AS 95-4037

ECO-TECH LABORATORIES LTD.

,

Et #	. Tag #	Au(ppb)	Ag	A! %	As	Ba	Bi	Ca %	Cď	Co	Cr	Cu	Fe %	La	Ma %	Mn	Mo	Na %	NI	P	Pb ·	Sb	Sn	Sr	TI %	U	v	w	Y	Zn	
Statute of the local division of the local d	ERK-95-447	280		3.65	130	75		3.17	<1	55	17			_			<1		_	2350	10	5	<20		0.18	<10	155	<10	4	160	I
147	ERK-95-448			3.51		85	<5		<1	335	23				1.83	725		0.02	14		28	<5	<20	10	0.07	<10	195	<10	<1	60	
148	ERK-95-449			3.48		95	<5	0.48	<1	698	9		> 15		2.18	742		<.01			36	<5	<20	8	0.12	<10	290	<10	<1	67	
149	ERK-95-450			4.37		65	<5	0.94	<1	655	10	840				1214	66	<.01			4	<5	<20	21	0.08	<10	269	<10	<1	57	
150	ERK-95-451	185		4.41	225	215	-	4.04	<1	48			10.50	. –	3.86		4			1950	10	5	<20	85	0.15	<10	263	<10	<1	65	
100	ENR-90-401	100	<b>-</b>		220	210	-5			40	30		10.50	-10	3.00	1240	-	0.01	10	1850	10	0	-20	80	0.15	-10	205	-10	~ 1		
151	ERK-95-452	>1000	20	4.09	>10000	95	<5	2.92	<1	1638	26	710	13.00	<10	3.13	911	37	<.01		1680	22	<5	<20	65	0.05	<10	212	<10	<1	87	pone
152	ERK-95-453	100	< 2		185	110	<5	4.20	<1	35	33	267	8,18	<10	2.80	1058	2			2330	18	10	<20	84	0.14	<10	180	<10	4	75	$  \cup \cdot$
153	ERK-95-454	>1000	0.4		225	130	<5	1.93	<1	90	45	581			1.69	754	_	<.01	. –	1810	14	<5	<20	44	0.08	<10	114	<10	<1	192	
153	ERK-95-455	>1000	2.4		775	185	<5	1.24	<1	343	39	1007	7.99		1.18	616		<.01		1570	8	15	<20	35	0.03	<10	83	<10	<1	234	
155	ERK-95-455			1.53		110	-	1.68	<1		55		12.50		1.08	634		<.01	-	1360	38	<5	<20	30 45	0.03	<10	125	<10	<1	345	
100	EKK-95-400	21000	, <b>2</b> .0	1.55	-10000	110	-9	1.00		4137	55	1230	12.00	10	1.00	034	21	<.01	-	1300	30	×5	~20	40	0.02	10	125	<10	~	345	
150	ERK-95-457	>1000		2.21	10000	115	-	1.24	<1	4812	35	1472	> 15	~10	1.80	1102	29	- 01	- 1	1210	30	15	<20	31	0.03	<10	147	<10	<1	411	
156									<1											1310	38							<10	•		1
157	ERK-95-458	>1000		2.97	930	155		3 21		312	35	853			2.29					2120	32	<5 6	<20	73	0.11	<10	139		<1	168	
158	ERK-95-459	25	The rest of the lot of	2.13	280	215		1.02	<1	72	52	83			1.28	027	a subsection of the second	0.01	-	1450			<20	34	0.05	<10	47	<10		119	1
159	290A	>1000	7.4		140	170	<8	1.21	<1	44	78	381	> 15			730		<.01	-	1270	42	<5	<20	35	0.09	<10	203	<10	<1	63	
160	291A	625	0.2	2.02	40	250	<5	1.37	1	33	82	968	5.38	<10	1.28	849	2	0.01		1350	14	10	<20	31	0.10	<10	60	<10	- 4	68	
																	-		-		••										
161	MM95-#5	265		1.00	100	120	<5	1.01	<1	18	78	103						<.01	-	1140	24	<5	<20	22	<.01	<10	55	<10	<1	45	
162	DC-95-113	40	7.0	3.49	15	310	<8	1.70	1	33	53	4933	6.61	<10	2.35	882	7	<.01	14	2030	34	20	<20	48	<.01	<10	101	<10	<1	138	
	<b>.</b>																														
QC/DA																															
Resplit			~ ~				10				420	20			0.00			- 01	7	40	24	-	~20	-1	- 01	-10	12	~10	-1	161	
	A-95-382		0.4		95	45	10	0.04	<1	10	130	29	6.36		-	605	5	<.01	•	40	26	<5	<20	<1	<.01	<10	12	<10	<1		
	A-95-417	10	< 2		10	80	<5	1.39	<1	18	67	112	4.37	<10	1.46		<1		5	1080	6	10	<20	44	0.13	<10	62	<10	4	99	
	A-95-452	350	<.2		50	120	10	1 82	3	125	34	70	6.26	<10	1.67		1	0.01	8		30	5	<20	36	0.11	<10	109	<10	<1	1046	
	ERK-95-407	130	< 2		30	125	<5	1.88	<1	30	41	111	4.26	<10			2			1810	14	10	<20	55	0.08	<10	70	<10	3	66	
R/S 141	ERK-95-442	5	<.2	4.46	30	80	10	3.64	<1	48	53	131	9.79	<10	4.44	1681	<1	0.02	20	1960	10	5	<20	54	0.25	<10	290	<10	<1	97	
B																															
Repeat 1	A-95-382	5							_			_			_	_			-			_		_							
10	A-95-391	35		2.10	20	100	5	0.66	<1	55	56	88	7.18	<10	1.74	824	2	0.02	11	2040	14	10	<20	14	0.09	<10	116	<10	<1	104	
		5		1.17	45	105	<5	1.26	1	31	55	86	3.68	<10	0.98	702	<1	0.02		2280	28	10	<20	26	0.10	<10	79	<10	3	140	
19	A-95-400		0.0	1.17	40	105	•0	1.20	•	31	00	00	3.00	10	0.90	702	-	0.04	19	2200	<b>X</b> 0	10	~20	20	0.10	-10		-10	3	140	
38	A-95-417	10		1 60	225		15	0.17	:		25	274	> 15	<10	1.28	2	22	<.01	13	910	58	<5	<20	14	0.04	10	224	<10	<1	813	
45	A-95-426	>1000	3.8	1,58	225	110	15	0.37	1		<b>4</b> 0	2/0	× 10	<10	1.20	4	22	<.01	13	810	50	-0	×20	1.4	0.04	10	224	10		013	
54	A-95-435	15	- 2	4.96	25	165	10	2,39	<1	45	77	156	9.62	<10	5.64	1416	<1	0.02	28	2150	4	5	<20	40	0.17	<10	293	<10	<1	68	
71	A-95-452	340		1.97	45	110	15	1.70	2	135	35	59	6.18	<10	1.67			0.01		1910	44	5	<20	36	0.12	<10	108	<10		1026	
					. =				_						2.48			<.01		2090	188	<5	<20	15	0.18	<10	207	<10	<1	372	
80	A-95-461	75		3.63	70	115	<5	0.54	<1	61	18		11.10	<10							22	-5		35			86	<10	1	115	
89	A-95-470	5		1.48	45	120	5	1.31	<1	29	48	61	5.86	<10	1.02	797				1690		-	<20		0.09	<10					
106	ERK-95-407	120	<.2	1.55	20	105	<5	1.73	<1	31	38	108	4.28	<10	1.11	752	<1	0.02	D	1810	1 <b>6</b> -	5	<20	50	0.07	<10	68	<10	2	68	
115	ERK-95-418	>1000	1.6	2.37	110	410	<5	1.64	1	40	48	638	14.50	<10	1.75	1335	31	<.01	9	1100	30	<5	<20	31	0.07	<10	214	<10	<1	412	
124	ERK-95-425	290		3.61	1035	60	<5	0.53	<1	63	25		13.00	<10	2.85	854		<.01		2260	20	<5	<20	14	0.16	<10	269	<10	<1	58	
141	ERK-95-442	200		4.54	40	70	5	3.61	<1	49	49		9.99	<10	4.57			0.02		1960	14	5	<20	• •	0.20	<10	265	<10	<1	99	
					245	210	<5	3.99	<1	53	35		10.40	<10	3.79		3			1960	12	5	<20	84	0.15	<10	258	<10	<1	66	
150	ERK-95-451	170	<.2	4.34	_		-				75			<10		749	-	<.01		1290	40	<5	160	34	0.10	<10	210	<10	<1	63	
159	290A	-	8.0	1.72	110	175	<5	1.20	1	42	/5	411	> 15	< 10	0.02	/ 48	19	4.01	9	1280	40	-0	100	34	0.10	~10	210	-10	~1	03	

### APPENDIX III

DRILL HOLE LOGS DDH-95- 1 to 13

TEUTON	RESOURCES	CORP.
--------	-----------	-------

Page 1 of 2

Hole # 95-01

Azimuti	n: 270 d	egrees	Dip: - 55 degrees Depth 88.39 m		Date: Oc	t 31 / 199	5	Logged	by: ERK		
Met	erage	Rock Type	Alteration, Mineralization	Sample	Sample	Interval		Ass	ay / Geod	hem	
From	To		& Structure Description	No.	From	То	Width		T	Au(ppb)	Ag(ppm)
P.o M.S					1						
1.37	15.25	Chlorite - Hematite mineralized	Mottled green-red. @ 1.5 m, rock consists of approx. 0.5 m of mylonit	e with 46401	1.37	2.25	.88m			15	<.2
		zone	fragments up to 1 cm in hematite matrix. Fragments ( green chloritic	) 46402	2.25	3.25	1.0m			25	<.2
			approx. 80 % of rock. Below mylonite is brecciated chlorite- hematite	zone 46403	3.25	4.25	1.0m			50	<.2
			-strong post-mineralization calcite veinlet stockwork ( random orientat	ion) 46404	4.25	5.25	1.0m			170	<.2
			apprxox. 8 % of the zone. @ 4.45 m - 2 cm massive pyrite veinlet. Zo	one 46405	5.25	6.25	1.0m			<5	<.2
-			has about 20 5 hematite occurring as wispy stringers. @ 11.25 m - n	arrow 46406	6.25	7.25	1.om			20	<.2
added to at at a stree of the			chloritic zone with interstitial, blebby as well as coarse cube pyrite app	erox. 46407	7.25	6.25	1.0m			775	0.8
			4-5 % over a 0.3 m interval. @ 9.1 m a vug with coarse crystalline ca	Icite 46408	8.25	9.25	1.0m			5	<.2
			crystals. @ I3m 4 fine grained flakes of visible gold.	46409	9.25	10.25	1.0m			40	<.2
				46410	10.25	11.25	1.0m			5	<.2
				46411	11.25	12.25	1.0m			10	<.2
				46412	12.25	13.25	1.0m	0.52			0.6
				46413	13.25	14.25	1.0m			115	<.2
		t a constant and a constant of the paper of the paper of the paper of the second s		46414	14.25	15.25	1.0m			20	<.2
15.25	16.68	Lapilli Tuff	Rock is brecciated, foliated, green with strong chlorite along foliations.	Minor 46415	15.25	15.98	.73m			5	<.2
			hematite veinlets, limonite along some fractures. Strong calcite veinle	ets 46416	15.98	16.68	.7m			20	<.2
1			along stockwork Calcite veinlets cross-cut mineralization.								
16.68	21.44	Chlorite - Hematite Mineralized	At 17.48 - 18.15 m Semi-massive hematite, minor malachite along	46417	16.98	17.48	.8m			5	<.2
		Zone	fractures. Hematite occurs as veins, micro and macro veinlets as well	las 46418	17.48	18.15	.77m	0.083			< 2
			pervasive patches and interstitial grains. Chlorite approx 8 %.	46419	18.15	19.15	1.0m			50	<.2
	Prof. Vier. 1 Names and Prov. Society of the			46420	19.15	20.15	1.0m			5	<.2
Folipionis ; selecterariagene ;				46421	20.15	21.15	1.0m			5	<.2
11) - 11 ( <b>18</b> ) <b>(19</b> ) - 11 (19)				46422	21.15	22.44	1.29m			5	<.2
					1 10 10 10 10 10 10 10 10 10 10 10 10 10						
<b></b>					1						
							· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
	n man pagi né né hat kan a kan										
						1					
An In 1999 1 48 19 19 19 19 19					and a second probability of the last of		1	1	1		

	T	Ε	บ	T	0	ľ	1	R	RE	S	0	U	IR	C	E	S	С	0	R	Ρ	
--	---	---	---	---	---	---	---	---	----	---	---	---	----	---	---	---	---	---	---	---	--

Page 2 of 2

Hoie # 95-01

-

Azimut	n: 270 d	egrees	Dip: - 55 degrees Depth 88.39 m		Date: Oc	t 31 / 199	5	Logged by: ERK			
Mete	erage	Rock Type	Alteration, Mineralization	Sample	Sample	Interval		Ass	ay / Geoc	hem	
From	To		& Structure Description	No.	From	To	Width	Au(opt)	Ag(opt)	Au(ppb)	Ag(ppm
21.44	28.82	Lapilli Tuff	Green, weakly foliated with minor narrow hematite stringers. Very strong	46423	22.44	23.44	1.0m			10	<.2
			calcite stockwork with calcite veins up to 2-3 cm. Minor epidote with pyrite	46424	23.44	24.44	1.0m			15	<.2
			at 26m	46425	24.44	25.44	1.0m			5	<.2
				46425A	25.44	26.44	1.0m			5	<.2
				46426	26.44	27.44	1.0m			10	<.2
				46427	27.44	28.2	.76m	and the state of t		5	<.2
		a a second and a second second second and a second s		46428	28.2	29	.80m			5	< 2
28.82	33	Hematitic Mylonite Zone	Sheared @ 35-40 degrees to the CA. Has appearance of lapilli tuff-	46429	29	30	1.0m			20	<.2
			fragments up to 1 cm [ ( calcareous ) bleached and silicified ] approx 70 %	46430	30	31	1.0m			55	<.2
			in hematite and chlorite matrix. Some massive hematite veinlets up to 5 mm	46431	31	32	1.0m			525	<.2
<b>1</b>			Traces pyrite. Overall appearance is red-green mottled.	46432	32	33	1.0m			750	<.2
33	64	Hornblende-Feldspar Porphyry ?	Contact zone with hematite zone is broken rubble, then bleached siliceous	46433	33	34	1.0m			45	<.2
		alan ar senten kun analasi daga kana pangana ng mara per pangana kana na	intrusive. Intrusive ? is fine grained hornblende and feldspar crystals in an	46434	34	35	1.0m	and and a support of the state		100	<.2
	1 - 1999 - M. Y. G. GARLER - 1999		aphanitic ground mass. Rock has been brecciated with strong quartz-calcite	46435	35	36	1.0m			15	<.2
	and for the second second		stockwork along fractures. Locally appears to be crushed. Minor pyrite as	46436	36	37.5	1.5m			20	<.2
			blebs approx 1-2 %. Minor epidote at 54.9m. Quartz-calcite veinlets	46437	37.5	39	1.5m	and an internet and and an and and an or		30	<.2
			approx. 75 degrees to CA. Local weak foliation. Phenocrysts approx 15-20	46438	39	40.5	1.5m			35	<.2
			% of rock	46439	40.5	42	1.5m			55	<.2
				46440	42	43.5	1.5m			40	<.2
			E.O.H. 64m	46441	43.5	45	1.5m			25	<.2
				46442	45	46.5	1.5m			45	<.2
				46443	46.5	48	1.5m			40	<.2
				46444	48	49.5	1.5m			25	<.2
				46445	49.5	51	1.5m			20	<.2
				46446	51	52.5	1.5m			30	<.2
				46447	52.5	54	1.5m			10	<.2
				46448	54	55.5	1.5m			60	<.2
				46449	55.5	57	1.5m			360	<.2
				46450	57	58.5	1.5m			45	<.2
				46451	58.5	60	1.5m	-		30	<.2
		anna a physiol 1911; deal a colonaria anna anna a canadan anna ann		46452	60	61.5	1.5m			20	<.2
				46453	61.5	63	1.5m			15	< 2
l				46454	63	64	1.0m			120	<.2

Page	Э	of	3
------	---	----	---

y y y y y y y y y y y y y y y y

zimuth: 270	degrees		Dip: - 45 degrees	Depth 64 m	Depth 64 m Date: Oct 31 / 1995		95	Logged	by: ERK			
Meterage		Rock Type		Alteration, Mineralization	Sample	Sample	Interval		Ass	ay / Geod	hem	
From	То			& Structure Description	No.	From	То	Width	Au(opt)	Ag(opt)	Au(ppb)	Ag(ppm
				an and and a star of the second s								
					48512	74.5	78	1.5m			5	<.2
			11. pl. 1		46513	76	77.5	1.5m			15	<.2
		ng ant i man i man, in i ma a shi na			46514	77.5	79	1.5m			5	<.2
					48515	79	80.5	1.5m			10	<.2
					48516	80.5	82	1.5m			5	<.2
		ar a na ann an ann ann an an an an an an a			46517	82	83.5 85	1.5m			5 10	<.2
					46518	83.5	1	1.5m			1	<.2
					46519	85	86.5	1.5m 1.89m	-		20 25	<.2 <.2
					46520	86.5	88.39	1.0911		+	25	<b>K.Z</b>
								+				+
												+
								+		1		+
						•						
			PERCENTION OF THE PERCENT			1	+					
		······································				1 	+	+				
			an a							+		+
								+		+		
							1	+	-	+		
								+		+	+	+
							+					-
						1					+	
	angessetten ander sets son angestal ballante					<u> </u>				-		
										+		+
										+		+
·····									1	+		+
						•						+
								+				+
									-			
							+					-
		a statistica and a statist										+
										+	f	+
							1					

Page 1 of 3

zimuth: 2	70 degre	95	Dip: - 45 degrees	Depth 64 m		Date: Oc	t 31 / 199	5	Logged	by: ERK		1
Meterag	je	Rock Type	Alterat	ion, Mineralization	Sample	Sample	Interval		Ass	ay / Geod	chem	
From	То		& Stru	cture Description	No.	From	То	Width	Au(opt)	Ag(opt)	Au(ppb)	Ag(ppm
					40.457	4.97	- F-	1.00-			70	
1.37	11.47	Chlorite-Hematite Mineralized	Mottled green-red hematite zone.		46455 46456	1.37 2.59	2.59 3.59	1.22m 1.0m			70 15	<.2 <.2
	+	LUNG		<ol> <li>Strong calcite veinlets along fractures</li> <li>rse patches of green chlorite along some</li> </ol>	48457	3.59	4.59	1.0m			80	<.2
	+			te is very pervasive @ 3.59m- blebs of	46458	4.59	5.59	1.0m			20	<.2
	+			licite veiniets approx, 12 %. @ 4.0m	46459	5.59	8.53	1.04m	+		15	<.2
	· • · · · · · · · · · · · · · · · · · ·		there is a narrow 1 cm massive pyril		46460	6.53	7.53	1.0m	+	+	<5	<.2
	1			e venner ity up degrees to the CA	46461	7.53	8.53	1.0m	1	+	10	<.2
	1				46462	8.53	9.47	.94m			180	<.2
	1				46463	9.47	10.47	1.0m	-	1	5	<.2
					46484	10.47	11.47	1.0m	-		380	<.2
	1	· · · · · · · · · · · · · · · · · · ·	1			10.47						
11.47	12.19	Chlorite Schist ( Lapilli Tuff )	Pyritic green chloritic schiat 1.ocal	crackle braccia fragments. Heavy black	46485	11.47	12.74	1.27m		†	70	<.2
				ox. 7-8 % as coarse patches up to 4 cm	46466	12.74	13.74	1.0m			10	0.4
	1			drai crystals and as laminations approx		1			1			
				agments up to 5 mm. Some K-feid, ?					-	1	1	
	-		siterarion in crackle breccia fragmen							1		-
	1		10-15 %									1
							1	1	1		1	
12.19	18.37	Chlorite-Hematite Zone	Strongly crackle breccisted with a ve	ny strong calcite stockwork. Hematite	46467	13.74	14.74	1.0m			30	<.2
				wispy stringers and veinlets. @ 15 m	46468	14.74	15.74	1.0m	0.04			<.2
	1		and the second	prox. 40 % of rock. Contact zone with	46469	15.74	18.74	1.0m	1.41			2
••••••••••••••••••••••••••••••••••••••	1			cube pyrite patches, cubes and velns								
			in black chloritic rich rock. Pyrite ap									
16.37	18.29	Diorite	Fine grained, dark green crystalline i		46470	18.74	17.74	1.0m		+	120	<.2
				Weak calcite stockwork, very minor	46471	17.74	18.29	.55m			140	<.2
			amounts of hematite generally assoc	iated with pyrite veinlets.					-		+	+
18.29	23.45	Hematite-Chiorite Mineralized	At 18.29-20.46 is strong hernatite w	th massive to semi-massive stringers	46472	18.29	19 04	0.75			35	<.2
		Zone/Lapilli Tuff	Heavy chlorite ( locally almost black	). Section is mottled red- green with	46473	19.04	20.46	1.42			210	<.2
			ebundant wispy hematite veinlets. A	Anor siliceous veinlets. Strong calcite	46474	20.46	20.78	0.3	1		465	1.4
			stockwork approx. 5-7 %. @ 20.48-	20.76 there is 5 cm of massive pyrite in	46475	20.76	22.15	1.39			310	<.2
			footwall of massive hematite stringer	from 20.76-22.15, green calcareous	46476	22.15	23.45	1.3		-	10	<.2
				Chlorite with minor hematite at 22.15-						1		-
			23.45 Moderate hematite alteration	with hematite approx. 10 %. Foliation								
			approx. 30 degrees to the CA. Calci	te veinlets approx. 80 degrees to CA.								

Page	2	òf	Э
------	---	----	---

Hole # 95-02

zimuth: 2	70 degree	85	Dip: - 45 degrees	Depth 64 m		Date: Oc	ct 31 / 199	95	Logged	by: ERK		
Meterag	je	Rock Type	Alterat	lon, Mineralization	Sample	Sample	Interval		Ass	ay / Geoc	hem	
From	То		& Stru	cture Description	No.	From	То	Width	1			Ag(ppm
				and a sub-transformer and particular transformer back back over 1 and a sub-transformer							1	
23.45	44.5	Lapilli Tuff	Andesite lapilli tuff, weakly pyritic, w	akly foliated. Strong calcite stockwork	46477	23.45	24.45	1.0m			10	<.2
			( minor quartz-calcite ). Locally silicit	ed.	46478	24.45	25.45	1.0m			30	<.2
		( 			48479	25.45	26.45	1.0m			15	<.2
					48480	26.45	27.45	1.0m			15	<.2
					46481	27.45	28.45	1.0m			5	<.2
					46482	28.45	30.45	2.0m			20	<.2
					46483	30.45	32	1.55m			10	<.2
					46464	32	33.5	1.5m			5	<.2
	+	1			46485	33.5	35	1.5m			<5	<.2
					46486	35	36.5	1.5m			10	<.2
		l			46487	36.5	38	1.5m			5	<.2
	· • · · · · · · · · · · · · · · · · · ·	1			46488	38	39.5	1.5m			20	<.2
					46489	39.5	41	1.5m			45	<.2
					46490	41	42.5	1.5m			20	<.2
	1				46491	42.5	44	1.5m			15	<.2
44.5	46	Chloritic- Hematitic Mylonite	Strongly foliated, brecciated with line	ations at 30 degrees to the CA	46492	44	45.5	1.5m			5	<.2
			Hematite approx. 10 %. Minor pyrite		46493	45.5	47	1.5m			75	<.2
48	88.39	Hornblende-Feldspar Porphyry	Fina grained , grey diorite with fine g	nained euhedral feldspar crystals in	48494	47	48.5	1.5m			35	<.2
			an aphanitic ground mass. Feldspar	attered to clay. Crackle breccia with	46495	48.5	50	1.5m			15	<.2
			strong calcite-minor quartz stockwork	approx. 15 % of the rock. Local	46496	50	51.5	1.5m			60	<.2
			patches of silicification and K-feld at	eration. Abundant clay on fractures.	46497	51.5	53	1.5m			15	<.2
			Pyrite < 1 %.		46498	53	54.5	1.5m			25	<.2
					46499	54.5	56	1.5m			70	<.2
				E.O.H. 88.39m	46500	56	57.5	1.5m			15	<.2
					48501	57.5	59	1.5m			20	<.2
					46502	59	60.5	1.5m			10	<.2
					46503	60.5	62	1.5m			15	<.2
					46504	62	63.5	1.5m			10	<.2
					46505	63.5	65	1.5m			5	<.2
					46506	65	66.5	1.5m			10	<.2
					46507	66.5	68	1.5m			5	< 2
					46508	68	69.5	1.5m			25	<.2
					46509	69.5	71.5	2.0m			30	<.2
					46510	71.5	73	1.5m			5	<.2
					46511	73	74.5	1.5m		1	15	<.2

Page 1 of 2

Azimut	h: 207 d	legrees	Dip: -45 degrees	Depth 64 m		Date: No	v 1 / 199	5	Logged	by: ERK	<u>.</u>	
Met	erage	Rock Type	Alteration	a, Mineralization	Sample	Sample	Interval		Ass	ay / Geo	chem	
From	То		& Struct	ure Description	No.	From	То	Width	Au(opt)	Ag(opt)	Au(ppb)	Ag(ppm
1.37	11.44	Chlorite- Hemstite Zone	Mettled group/rod homatite oblogie	rene breceisted with quark cathoosts	46521	1.37	2.44	1.07m			80	<.2
1.37	(1.44		stockwork approx. 5 % as micro veil	zone, brecciated with guartz-carbonate	46522	2.44	3.44	1.0m			15	<.2
				conste associated with patches of green	46523	3.44	4.44	1.0m			80	<.2
			chlorite. Traces malachite on vuggy		46524	4.44	5.44	1.0m			10	<.2
					48525	5.44	6.44	1.0m			35	<.2
					46526	6.44	7.44	1.0m			30	1.6
†					46527	7.44	8.44	1.0m	+		70	<.2
					46528	8.44	9.44	1.0m	0.052			<.2
					46529	9.44	10.44	1.0m	0.002		620	1.8
					46530	10.44	11.44	1.0m	•		485	0.2
*****			** parts a set of a s	a a an a' bhaile ann an	1 40000				1			
11.44	17.69	Lapilli Tuff	Weakly mottled with hematite string	ers. Locally hematite zones up to 10 cm	46531	11.44	12.44	1.0m			105	<.2
			1	with above zone approx. 15 cm. Approx	46532	12.44	13.44	1.0m			15	<.2
			7-10 % cube and disseminated pyrit	e Highly chloritic. Strong quartz-calcite	46533	13.44	14.44	1.0m			10	<.2
1			stockwork approx. 7-8 %. Locally vi		46534	14.44	14.44	1.0m			15	<.2
			1		46535	15.44	16.44	1.0m			20	<.2
					46536	16.44	17.44	1.0m			35	<.2
					46537	17.44	18.44	1.0m			25	<.2
17.69	18.54	Chlorite- Hematite Zone	Mottled red- green, calcareous. Her	matite approx 15 %. Brecciated	46538	18.44	19.44	1.0m			20	<.2
					46539	19.44	20.44	1.0m			25	<.2
								4.0				
18.54	64	Lapilli Tuff		oliation @ 45 degrees to the CA. Local	46540	20.44	21.44	1.0m			5	<.2
				ilicification. @ 19.1-19.44 m - coarse	48541	21.44	22.44	1.0m				<.2
				-23.44 m - mottled red - green chlorite	46542	22.44	23.44	1.0m			10	<.2
			hematite zone with sparse pyrite. F		46543	23.44	24.44	1.0m	+		5	<.2
			grained pyrite. Some local sections		46544	24.44	25.44	1.0m			5	<.2
			Moderate guartz-calcite stockwork.		46545	25.44	26.44	1.0m	+		5	<.2
			mylonitic sections. Locally crackle b		46546	28.44	27.44	1.0m	+		15	<.2
				ult gouge sections. @ 41 -43 m, shear	46547	27.44	28.44	1.0m	1		15	< 2
			zone with poor recovery. Zone is highly rusty and broken.	prily rusty and Droken.	46548	28.44	29.44	1.0m			10	<.2
			_	∧ ₩ 04	46549	29.44	30.44	1.0m			5	<.2
			E.	O. H. 64 m	46550	30.44	31.44	1.0m			10	<.2
					46551	31.44	32.44	1.0m	+		5	<.2
					48552	32.44	33.44	1.0m	+		5	<.2 <.2

Page 2 of 2

Azimuth: 20	07 degrees		Dip: -45 degrees	Depth 84 n	1	Date: No	v 1 / 199	5	Logged by: ERK				
Meterag		Rock Type	Alter	ation, Mineralization	Sample	Sample	Interval		Ass	ay / Geo	chem		
From To	o		& St	ructure Description	No.	From	То	Width	Au(opt)	Ag(opt)	Au(ppb)	Ag(ppm)	
			······································		46554	34.44	36	1.58			10	<.2	
					46555	36	37.5	1.5m			5	<.2	
					46558	37.5	39	1.5m			<5	,.2	
		ar ar san ar na marana ar ar 1944 bir garlarda hallana ar ar			46557	39	40.5	1.5m			205	<.2	
					46558	40.5	42	1.5m	0.037			0.4	
	ĺ				46559	42	43.5	1.5m	0.132			0.6	
					46560	43.5	45	1.5m			160	<.2	
					46561	45	46.5	1.5m			180	<.2	
	ļ				46562	46.5	48	1.5m			65	<.2	
					46563	48	49.5	1.5m			110	<.2	
					46564	49.5	51	1.5m			65	<.2	
					46565	51	52.5	1.5m			140	<.2	
					46566	52.5	54	1.5m			135	<.2	
					46567	54	55.5	1.5m			270	<.2	
			······································		46568	55.5	57	1.5m			30	<.2	
					46569	57	58.5	1.5m			20	<.2	
					46570	58.5	60	1.5m			5	<.2	
					48571	60	61.5	1.5m			105	<.2	
					46572	61.5	63	1.5m			5	<.2	
					46573	63	64	1.5			85	<2	
			A CARLES AND A CONTRACTOR OF A CARLES AND A										
												1	
									1				
					and a manufacture of the second se								
										inana, kada anas, man ini ka ka kata a a isa	1		
1											1		
									1				
									+				

Hole # 95-04

Azimut	h: 207 d	egrees	Dip: - 55 degrees	Depth 76.2 m		Date: No	ov 1 / 199	5	Logged	by: ERK		
Met	erage	Rock Type	Alteratio	n, Mineralization	Sample	Sample	Interval		Ass	ay / Geod	chem	
From	То		& Struc	ture Description	No.	From	To	Width	Au(opt)	Ag(opt)	Au(ppb)	Ag(ppm
1.37	17	Hematite- Chiorite Zone	Mottled red- green chlorite- hematik	e zone. 🔞 3 -4 m coarse chiorite	46576	1.37	2	0.63m	1		5	<.2
				trong wispy hematite veinlets approx.	46577	2	3	1.0m			5	<.2
				5.79 - semi-massive to massive hematite	46578	3	4	1.0m			5	<.2
				te with fine dusting of Visible Gold?	48579	4	5	1.0m			15	<.2
				Intz-calcite veins associated with chlorite.	46580	5	6	1.0m			15	<.2
				e blebs. Strong quartz- calcite stock-	46581	6	7	1.0m	1		60	< 2
			work with a random orientation app	ox. 7 % of the zone. Some stockwork	48582	7	8	1.0m			15	<.2
			veins up to 3 cm. Locally minor ma	lachite along oxidized fractures. @15.79	46583	8	9	1.0m			80	<.2
			to 17 m, strong mylonite zone, very	calcareous.	48584	9	10	1.0m			80	<.2
					46585	10	11	1.0m			10	<.2
		1			46586	11	12	1.0m	0.03			<.2
					46587	12	12.94	0.94m			515	<.2
					46588	12.94	14.04	1.1m	1.465			1.4
					46589	14.04	15.04	1.0m	1.372			2.6
					46590	15.04	16.04	1.0m	0.067			0.6
					46591	16.04	17	0.96m			25	<.2
17	19	Lapilli Tuff	Dark green, foliated, chloritic lapilli t	uff. Weak hematite as wispy stringers.	46592	17	18	1.0m			140	<.2
			Fine quartz- calcite veinlets along a	ockwork fractures. Pyrite approx. 1-2 %	46593	18	19	1.0m			5	<.2
			as disseminated grains. Foliation a	t 55 degrees to the CA								
19	21	Hematite- Chlorite Zone	Mottled green/red with wispy hemat	ite stringers approx. 12 %. Traces pyrite	46594	19	20	1.0m			5	<.2
			Quartz-calcite stockwork approx. 3	%.	48595	20	21	1.0m			5	<.2
21	64.88	Lapilii Tuff	From 24 -25 m, narrow hematilic se	ctions in green, foliated tuff. Local black	46596	21	22	1.0m			5	<.2
			chloritic sections. Foliated @ 30 de	grees to the CA. Local crackle	46597	22	23	1.0m			5	<.2
			brecclated with strong quartz-calcito	stockwork. Minor pyrite as disseminat-	46598	23	24	1.0m			130	<.2
			ed grains and veinlets. @ 31 -32 hi	ghly schistose @ 30 degrees to the CA.	46599	24	25	1.0m			5	<.2
			Local cobble sized fragments in a c	hloritic fine grained matrix. @ 55 - 56 m	46600	25	26	1.0m			5	<.2
			hematite rich fragments in the tuff.		46601	26	27	1.0m			5	<.2
					46602	27	28	1.0m			15	<.2
					46603	28	29	1.0m			5	<.2
					46604	29	30	1.0m			5	<.2
					46605	30	31	1.0m			45	<.2
					46606	31	32	1.0m			5	< 2

Page 2 of 2	
-------------	--

Azimuti	h: 207 d	egrees	Dip: - 55 degrees Depth 76.2 m		Date: No	v 1 / 199	5	Logged	by: ERK	
Met	erage	Rock Type	Alteration, Mineralization	Sample	Sample	Interval		Ass	ay / Geochem	
From	То		& Structure Description	No.	From	То	Width	Au(opt)	Ag(opt) Au(ppb)	Ag(ppm
										·····
				46607	32	33	1.0m	+	5	<.2
				46608	33	34.5	1.5m		5	<.2
				46609	34.5	36.5	2.0m		5	<.2
				46610	36.5	38	1.5m		5	<.2
				46611	38	39.5	1.5m		5	<.2
				46612	39.5	41	1.5m		5	<.2
				46513	41	42.5	1.5m		70	<.2
				46614	42.5	44	1.5m		30	<.2
				46615	44	45.5	1.5m		40	1
1				46616	45 5	47	1.5m		35	<.2
				46617	47	48.5	1.5m		705	0.4
				46618	48.5	50	1.5m	0.048		2.2
				46619	50	51.5	1.5m	0.117		1.4
				45620	51.5	53	1.5m		5	<.2
				46621	53	54.5	1.5m		5	<.2
				46622	54.5	56	1.5m		5	<.2
				46623	56	57.5	1.5m		15	<.2
				48624	57.5	59	1.5m	1	10	<.2
				46625	59	60.5	1.5m		10	6.6
				48826	60.5	62	1.5m		5	7.8
		······································		46627	62	63.5	1.5m		165	2.8
				46628	63.5	65	1.5m		35	0.2
• • • • • • • •				48629	65	66.5	1.5m		5	<.2
				1						1
64.88	70.1	Feldspar porphyry dyke	Medium grained feldspar phenocrysts, subhedral to auhedral in a fine grained	46630	66.5	68	1.5m		5	<.2
			groundmas. Dark grey in colour. Minor fine calcite-quartz veinlets. Dissem-	46631	68	70	2.0m		5	<2
		1	inated fine grained pyrite < 1 %. Approx. 0.3 m chill margin at upper contact	46632	70	71.5	1.5m		10	<.2
			at 30 degrees to CA. Bottom contact is sheared and clay rich.							
70.1	76.2	Lapilli Tuff	As above from 21 - 64.68. Contact is fault. Locally argillaceous	46633	71.5	73	1.5m		5	0.2
70.1	102	Septim 1 Mit	The second from 21 - 07,00. Control is facil. Locally arginadedua	46634	73	74.5	1.5m	+	5	0.4
				4635	74.5	76.2	1.7m		5	0.4
				-035	/4.0	10.2				1
			Е. О. Н. 76.2 т					+		+

Page 3 of 3

Azimuth: 207 degre	es	Dip: - 65 degrees	Depth 91.49 m		Date: No	v 2 / 199	5	Logged	by:ERK		
Meterage	Rock Type	Alteration, Mineralizatio	on	Sample	Sample	Interval		Ass	ay / Geo	chem	
From To		& Structure Descriptio	1	No.	From	То	Width			Au(ppb)	Ag(ppm)
				6068	83	84.5	1.5m			60	<.2
				6069	84.5	86	1.5m	0.348			2.6
				6070	86	87.5	1.5m			60	0.4
				6071	87.5	89	1.5m			890	0.6
				6072	89	91.44	2.44m			10	<.2
						-		+			
				1. 7% - Ig-n gran bilanaan							
								+			
								+			
						a' di Talan - Aya a Jaka a Bahara ayanan yangg					
						· · · · · · · · · · · · · · · · · · ·					
										[	
								+			

i i

i

Page 2 of 3

Hole # 95-05

.

.

1

1

:

Azimut	h: 207 d	egrees	Dip: - 65 degrees	Depth 91.49 m		Date: No	ov 2 / 199	5	Logged	by:ERK		
Met	terage	Rock Type	Alteration, Minera	lization	Sample	Sample	Interval		Ass	ay / Geoc	chem	
From	To		& Structure Desc	ription	No.	From	То	Width	Au(opt)	Ag(opt)	Au(ppb)	Ag(ppm
												البيودي ليجارب كالمتعمل
					48675	36	37	1.0m			85	<.2
					46676	37	38	1.0m			655	<.2
	••• ••• •				46677	38	38.5	0.5m			75	<.2
	•··				48678	38.5	40	1.5m	0.032			0.8
					48679	40	41	1.0m			15	<.2
					46680	41	42	1.0m			10	<.2
41.5	91.44	Lapilli Tuff	Green, locally foliated, as well as locally K-felds	par altered. Very strong	46681	42	43	1.0m			25	<.2
			calcite- quartz stockwork. Locally crackle brec	ciated . 🙆 45.72 - 48.8-	46682	43	44	1.0m			25	<.2
			narrow hematite rich sections with some massiv	e pyrite. Calcite veins up to	46683	44	45.5	1.5m			20	<.2
			2 cm Pyrite approx 3 - 4 % in above section.	Overall pyrite approx 1 - 2 %	46584	45.5	47	1.5m			255	<.2
			Minor shearing at 60.5 m as well as 53.5 - 55 m	2 85 - 86 arsenopyrite	46685	47	48.5	1.5m			20	<.2
			with pyrite in stringers approx. 5 %.		48686	48.5	50	1.5m	0.03			<.2
					46887	50	51.5	1.5m			10	<.2
			E. O. H. 91.44	m	46668	51.5	53	1.5m			15	<.2
	····				46689	53	54.5	1.5m			20	<.2
					46690	54.5	56	1.5m	-		10	<.2
					46691	56	57.5	1.5m			5	<.2
					46692	57.5	59	1.5m			5	<.2
		I			46693	59	60.5	1.5m			5	<.2
					46694	60.5	62	1.5m			5	< 2
	N				46695	62	63.5	1.5m			_5	<.2
					46696	63.5	65	1.5m			10	<.2
	······				46697	65	66.5	1.5m			215	<.2
					46698	66.5	68	1.5m			245	<.2
			an - Marine Marine -		46699	68	69.5	1.5m			50	< 2
					46700	69.5	71	1.5m			15	<.2
					6060	71	72.5	1 5m			60	<.2
					6061	72.5	74	1.5m			170	< 2
					6062	74	75.5	1.5m			5	<.2
					6063	75.5	77	1.5m			160	₹.2
		-			6064	77	78 5	1.5m			915	<.2
	- and a second				6065	78.5	80	1.5m			510	<.2
					6066	80	81.5	1.5m			160	0.2
					6067	81.5	83	1.5m			80	0.6

Page 1 of 3

Azimuth: 207 d	legrees	Dip: - 65 degrees Depth 91.49	m	Date: No	v 2 / 199	5	Logged	by:ERK		
Meterage	Rock Type	Alteration, Mineralization	Sample	Sample	Interval		Ass	ay / Geoc	:hem	
From To	1	& Structure Description	No.	From	То	Width	Au(opt)	Ag(opt)	Au(ppb)	Ag(ppm
0.7 41.5	Chlorite-Hematite Zone	Same as holes 94 - 1 to 94 - 4. @ 4.2 - 4.5 m, quartz - calcite stockwork	48640	0.7	2	1.0m			160	<.2
		with chlorite blebs and specularite veinlets approx. 0.5 mmm form up to 20 %	46641	2	3	1.0m			10	<.2
		of veinlets. Locally brecciated with guartz-calcite healing hematite rich	46642	3	4	1.0m			30	<.2
		fragments. @ 14 - 15 m, semi-massive hematite with very fine grained	46643	4	5	1.0m			5	<.2
		yellow sulphide ? Overall strong calcite stockwork. 23 - 27, semi-mass-	46844	5	6	1.0m			5	<.2
		ive to massive stringers with local silicification-section is highly sheared.	46645	6	7	1.0m			10	<.2
		27 - 31 - week hematite elteration. 2 31 - 33 - highly sheared with fault	46646	7	8	1.0m			15	<.2
	· · · · · · · · · · · · · · · · · · ·	zone at 31 - 32 m. Fault appears to be at 30 degrees to the CA. 20 38.75 -	46847	88	9	1.0m			5	<.2
		39.4 - massive hematite with specularite blebs. 🙆 35.5 - 36 - hematite	48648	9	10	1.0m			15	<.2
		stringers parallel to the CA. Limonite and malachite along fractures.	46649	10	11	1.0m			225	<.2
			46650	11	12	1.0m			75	<.2
· · · · · · · · · · · · · · · · · · · · · · · · · · · · ·	-		46651	12	13	1.0m			180	<.2
	-		46652	13	14	1.0m			650	<.2
			46653	14	15	1.0m	0.048			<.2
			46654	15	16	1.0m			190	<.2
			46855	16	17	1.0m			15	<.2
			46656	17	18	1.0m			10	<.2
			48657	18	19	1.0m			60	<.2
			46858	19	20	1.0m			10	<.2
			48659	20	21	1.0m			10	<.2
			46660	21	22	1.0m			15	<.2
			46661	22	23	1.0m	+		210	<.2
			46682	23	24	1.0m	0.087			< 2
			46663	24	25	1.0m			515	0.4
			46664	_25	26	1.0m	0.352			0.4
			46665	26	27	1.0m			245	<.2
			46666	27	28	1.0m			135	<.2
			46667	28	29	1.0m			40	< 2
			46668	29	30	1.Qm			5	<.2
			46669	30	31	1.0m			10	<.2
			46670	31	32	1.0m	0.087			3.8
			46671	32	33	1.0m	0.333			0.2
			46672	33	34	1.0m			415	0.2
			46673	34	35	1.0m	0.036			5.6

Page 1 of 4

Hole # 95-06

Azimuth: 207 c	legrees	Dip: - 75 degrees	Depth 122.52 m		Date : No	ov. 3 / 19	95	Logged	by: ERK		
Meterage	Rock Type	Alteration	, Mineralization	Sample	Sample	Interval		Ass	ay / Geoc	chem	
From To	1	& Struct	ure Description	No.	From	To	Width	Au(opt)	Ag(opt)	Au(ppb)	Ag(ppm
0.7 44	Chlorite-Hematite Zone	Crackle brecciated with local sillcific	ation. Minor quartz veintets with	11751	0.7	1	0.3m	1		120	0.4
	and the second sec		arbonate - quartz veinlet with blebs of	11752	1	2	1.0m			10	<.2
		specularite. Minor specularite assoc		11753	2	3	1.0m			80	< 2
		A REAL PROPERTY AND A REAL	with massive hematite stringer @ 20	11754	3	4	1.0m			20	<.2
			ow fauit zone . Chiorite-hematite zone	11755	4	5	1.0m	1		115	<.2
			artz-carbonate stockwork. In silicified	11756	5	6	1.0m			5	<.2
	And the second s	areas, core is light red with very stro	ng quartz-carbonate stockworks. Minor	11757	6	7	1.0m			125	<.2
			reas of massive hematite. @ 26 - 27.24	11758	7	8	1.0m			90	<.2
		m- fault zone. Highly sheared and c	ay rich. @ 28.5 - 29, highly brecciated	11759	8	9	1.0m			5	<.2
		crackled. @ 26.5 m - narrow pyrite	ich section with approx. 3 - 4 % pyrite.	11760	9	10	1.0m			5	<.2
				11761	10	11	_1 0m			5	<.2
				11762	11	12	1.0m			5	<.2
				11763	12	13	1.0m			5	<.2
		· · · · · · · · · · · · · · · · · · ·		11764	13	14	1.0m			5	<.2
				11765	14	15	1.0m			5	<.2
				11766	15	16	1.0m			70	<.2
				11767	16	17	1.0m	0.063			0.4
				11768	17	18	1.0m	0,915			0.6
				11789	18	19	1.0m			10	<.2
				11770	19	20	1.0m			25	0.4
	-			11771	20	21	1.0m	ļ		5	<.2
				11772	21	22	1.0m			5	<.2
				11773	22	23	1.0m	 		45	<.2
i 	 			11774	23	24	1.0m			20	<.2
				11775	24	25	1.0m			25	<.2
				11776	25	26	1.0m			25	<.2
				11777	26	27	1.0m			15	<.2
		·		11778	_27	28	1.0m			100	<.2
. <u> </u>		-	n alland som föllanda grundfölga av an angen fra störationen allahanden allahanden at förstanden er	11779	28	29	1.0m	Ļ	L	50	< 2
				11780	29	30	1.0m			25	<.2
				11781	30	31	1.0m		; +	10	<.2
			an administrative comments comments and the segments of these as the second	11782	31	32	1.0m			5	<.2
	-			11783	32	33	1.0m			20	<.2
				11784	33	34	1.0m	1		15	< 2
				11785	34	35	1.0m		1	15	<.2

zimuth:	207 de	grees	Dip: - 75 degrees Depth 122.52 m		Date : No	ov. 3 / 19	95	Logged	by: ERK	
Meter	age	Rock Type	Alteration, Mineralization	Sample	Sample	Interval		Ass	ay / Geochem	
mor	То		& Structure Description	No.	From	To	Width	Au(opt)	Ag(opt) Au(pp	b) Ag(ppn
				11786	35	36	1.0m		5	<.2
				11787	36	_ 37	1.0m		60	<.2
				11788	37	38	1.0m		15	<.2
		and a second address spaces of the state of		11789	38	39	1.0m		10	<.2
		and a subscription of the		11790	39	40	1.0m		40	<.2
		) 		11791	40	41	1.0m		20	<.2
				11791A	41	42	1.0m		45	<.2
				11792	42	43	1.0m		10	<.2
				11793	43	44	1.0m		20	<.2
				11794	44	45	1.0m		15	<.2
				11795	45	48	1.0m	+	25	<.2
44	57	Lapilli Tuff / Chlorite Hematite	Tuff with sections of chloritic - hematilic rich portions up to 1 m in lenght.	11798	45	40	1.0m		25	1
		Zone	52 m _ 2 - 3 cm wide massive pyrite seams. Overall pyrite as disseminations as well as veinlets approx. 3 %. Quartz - calcite stockwork varying from 10 -	11797	47	48	1.0m		15	<.2
		where we are the state of the s	75 degrees to the CA approx 5 - 7 %. Local hematite patches associated	11798	47	49	1.0m		15	2
·		and and a second design of the second s	vith strong calcite - quartz. Minor limonite on fractures.	11799	49	50	1.0m		20	<.2
			With strong carcle - quartz, which innorme of machines.	11800	50	51	1.0m		10	<.2
				11801	51	52	1.0m		10	<.2
				11802	52	53	1.0m		250	<.2
				11803	53	54	1.0m	+	245	<.2
		n a distance designed statistics. Also, and approximation statistics with the second statistics.		11804	54	55	1.0m		345	<.2
				11805	55	56	1.0m		150	<.2
				11806	56	57	1.0m	0.043		<.2
				11907	57	58	1.0m		260	<.2
						*****				
57	115.57	Lapilli Tuff	Green wekly foliated tuff. @ 62 - 63 m, highly broken with limonite along	11808	58	59.5	1.5m		5	<.2
			fractures. @ 57 - 58 m, pyritic sections in brecciated rock up to 5 cm wide	11809	59.5	61	1.5m		5	<.2
			(pyrite approx. 7 % in interval) @ 65 - 65.5 pyritic vein approx 2 cm sub-	11810	61	62 5	1.5m		40	<.2
			parallel to the CA. @ 66 - 67.2, abundant clay in highly broken section.	11811	62.5	64	1.5m		10	<2
			Minor hematite rich fragments. Fine grained disseminated pyrite approx. 2	11812	64	65.5	1,5m		740	0.6
			% in section. Local silicification and K-feldspar alteration. Pervasive	11813	65.5	67	1.5m		10	< 2
			moderate quartz-calcite stockwork. @ 72 - 115.72 m, strong silicification	11814	67	68.5	1.5m		5	<.2
			and K-feldspar alteration. Locally fine grained pyrite up to 15 %. Overall	11815	68.5	70	1.5m		125	<.2
			approx. 10 % pyrite content in above section. @ 111.76 m, narrow 1 cm	11816	70	71.5	1.5m		25	<.2

#### DRILLLOG_XL8 96/2/8 Hole # 95-96

Azimutl	h: 207 de	grees	Dip: - 75 degrees Depth 122.52 m		Date : No	ov. 3 / 19	95	Logged	by: ERK		
Met	erage	Rock Type	Alteration, Mineralization	Sample	Sample	Interval		Ass	ay / Geoche	m	
From	То	<u> </u>	& Structure Description	No.	From	То	Width	Au(opt)	Ag(opt) A	u(ppb)	Ag(ppm)
					I				II		
			rich shear zone	11818	73	74.5	1.5m			15	<.2
				11819	74.5	76	1.5m			100	<.2
				11820	76	77.5	1.5m			140	<.2
				11821	77.5	79	1.5m			125	<.2
				11822	79	80.5	1.5m	0.112			1.6
				11823	80.5	82	1.5m	0.056		426	0.4
				11824	82	83.5	1.5m	+		435	<.2
				11825 11826	83.5 85	85 86.5	1.5m 1.5m			495 80	<.2 <.2
				11827	86.5	88	1.5m	+		40	<.2
				11828	88	89.5	1.5m			25	<.2
			·····	11829	89.5	91	1.5m			40	<.2
		annes a data ann a chuir an chuir ann an chuir bha bha bha ann an ann an Anna		11830	91	92.5	1.5m	+		40	<.2
				11831	92.5	94	1.5m			50	<.2
• • • • • • • • • • • • • • •				11832	94	95.5	1.5m			30	<.2
				11833	95.5	97	1.5m			90	0.6
	<b></b>			11834	97	98.5	1.5m			20	<.2
~~~~~				11835	98.5	100	1.5m			30	<.2
				11836	100	101.5	1.5m			60	0.8
	an			11837	101.5	103	1.5m	1		70	0.8
				11838	103	104.5	1.5m			60	<.2
				11839	104.5	106	1.5m			20	0.2
				11840	106	107.5	1.5m	0.059			1.6
		and an an an and the provide state of the provide state and the pr		11841	107.5	109	1.5m			365	0.8
		an a		11842	109	110.5	1.5m			10	<.2
				11843	110.5	112	1.5m			700	3.4
				11844	112	113.5	1.5m			110	1.2
				11845	113.5	115	1.5m			5	< 2
115.52	117.7	Diorite/Feldspar Porphyry	Porphyritic with euhedral and subhedral feldspar crystals in a fine grained	11846	115	116.5	1.5m			5	< 2
			matrix. Weak calcite stockwork. Upper contact appears to be a shear	11847	116.5	118	1.5m			5	<.2
			contact. Minor pyrite. Lower contact at 20 degrees to the CA				+				
117.7	122.52	Lapilli Tuff	Dark grey, fine grained. Very weak calcite stockwork.	11848	118	119.5	1.5m			5	<.2
				11849	119.5	121	1.5m		-	5	< 2

zimuth	: 207 degree	25	Dip: - 75 degrees	Depth 122.52 m		Date : No	ov. 3 / 19	95	Logged	by: ERK		
Mete	rage	Rock Type	Alteratio	on, Mineralization	Sample	Sample	Interval		Ass	ay / Geo	chem	
From	То		& Struc	ture Description	No.	From	То	Width	Au(opt)	Ag(opt)	Au(ppb)	Ag(ppm
						T		7				
			<u>E</u> ,	O. H. 122.8 m	11850	121	122.8	1.8m			5	<.2
				and a second								
									+			
									1			
·												
	••••••••••••••••••••••••••••••••••••••		 						+			
									+			
1			· · · · · · · · · · · · · · · · · · ·				14 k	1				
								+				
							-					
							and Malantana, Sources, and					
									+			
								+				· · · · · · · · · · · · · · · · · · ·

Page 1 of 2

Zimut	h: 173 d	egrees	Dip: - 45 degrees Depth 76.2 m		Date: No	ov 3 / 199	5	Logged	by: ERK		
Met	erage	Rock Type	Alteration, Mineralization	Sample	Sample	Interval		Ass	ay / Geoc	hem	
From	To		& Structure Description	No.	From	То	Width	Au(opt)	Ag(opt)	Au(ppb)	Ag(ppm
1.37	21	Chiorite - Hematite Zone	Mottled red/green chlorite - hematite zone, Generally weak quartz - calcite	11851	1.37	2	1.0m		1	345	<.2
	61	Chivine - Hemane Lone	stockwork up to 13 m, then moderately strong veins in stockwork. Local	11852	2	3	1.0m	+		20	,.2
			coarse patches of green chlorite either separately or with quartz - calcite.	11853	3	4	1.0m			40	<.2
			At 13 - 13 5 m , massive hematite with strong quartz - minor chlorite veinlets.	11854	4	5	1.0m	1		280	<.2
	general a na agus ar ar a dhua baa		At 16 - 16.3 m, massive hematite as cement to coarse breccia fragments (11855	5	6	1.0m			20	<.2
			Fragments are hematite - chlorite altered). @ 17.1 - 17.5 m, massive	11856	6	7	1.0m			10	<.2
			hematite with heavy carbonate - magnetic with chalcopyrite and bornite	11857	7	в	1.0m			5	<.2
			veinlet at 17.1 m From 13 - 19 m, local dark fine grained zones (heavy	11858	8	9	1.0m			45	<.2
			chlorite).	11859	9	10	1.0m			10	<.2
			· · · · · · · · · · · · · · · · · · ·	11860	10	11	1.0m			115	<.2
				11861	11	12	1.0m			80	<.2
				11862	12	13	1.0m			360	<.2
				11863	13	14	1.0m	0.597			0.6
				11864	14	15	1.0m			140	<.2
				11865	15	16	1.0m	0.085			<.2
				11866	16	17	1.0m	0.328			0.6
				11867	17	18	1.0m	0.179			8.6
				11868	18	19	1.0m			200	<.2
				11869	19	20	1.0m			110	<.2
				11870	20	21	1.0m			45	<.2
21	30.6	Lapilli Tuff	Green, highly chloritic with approx. 5 - 6 % hematite. Local pyrite patches	11871	21	22	1.0m			50	<.2
			plus rare rusty veinlets. Foliated at 30 degrees to the CA. Rock appears to	11872	22	23	1.0m			5	<.2
	-	and a set of a second state of the filler state state and the second state of the second state of the second st	have been heavily chlorite attered, then brecciated with hematite and chlorite	11873	23	24	1.0m			10	< 2
			cementing the fragments @ 26.5 - 30.6 , highly broken with abundant	11874	24	25	1.0m			5	<.2
	-		limonite along fractures.	11875	25	26	1.0m			15	<.2
				11876	26	27	1.0m			5	<.2
				11877	27	28	1.0m			260	<.2
				11878	28	29	1.0m			830	< 2
				11879	29	30	1.0m	0.079			< 2
				11880	30	31	1.0m			60	< 2
30.6	34.13	Feldspar Porphyry	Medium grained euhedral and subhedral feldspar crystals in a fine grained	11881	31	32	1.0m			10	
			matrix. Top contact is a fault- bottom contact is chill margin @ 30 degrees	11882	32	33	1.0m			5	
			to the CA. Minor fracturing with rare, tiny calcite veinlets. Trace disseminat-	11883	33	34	1.0m			5	

TEUTON	RESOURCE	S CORP.
--------	----------	---------

i

TEUTON F	RESOURCES COR	Ρ.	Page 2 of 2							Hole	# 95-07
Azimuth: 173 de	grees	Dip: - 45 degrees	Depth 76.2 m		Date: No	v 3 / 199	5	Logged	by: ERK		
Meterage	Rock Type	م	Nteration, Mineralization	Sample	Sample	Interval		Ass	ay / Geoc	chem	
From To			& Structure Description	No.	From	To	Width	Au(opt)	Ag(opt)	Au(ppb)	Ag(ppm)

			ed pyrite. Dark grey colour.							
34.13	76.2	Lapilli Tuff	Grey green with moderate quartz - calcite stockwork.	11884	34	35	1.0m	0.077		<.2
			dyke - coarse cube pyrite approx. 5 %. @ 47.85 - lost circulation. From	11885	35	36	1.0m		5	<.2
			50.7 - 56 m, heavy pyrite as laminations approx. 25 %. Minor local	11886	36	37	1.0m		5	<.2
			hematite rich fragments.	11887	37	38	1.0m		5	<.2
				11888	38	39	1.0m		10	<.2
			E. O. H. 78.2 m	11889	39	40	1.0m		120	<.2
				11890	40	41	1.0m		5	<.2
				11891	41	42	1.0m		30	<.2
				11892	42	43	1.0m		30	<.2
				11893	43	44.5	1.5m	0.049		<.2
				11894	44.5	46	1.5m		5	<.2
				11895	46	47.5	1.5m		20	<.2
			, 1	11896	47.5	49	1.5m		10	<.2
				11897	49	50.5	1.5m		15	<.2
		1		11898	50.5	52	1.5m		15	<.2
į				11899	52	53.5	1.5m		20	<.2
				11900	53.5	55	1.5m		35	<.2
				11901	55	58	1.0m		20	<.2
				11902	56	57.5	1.5m		10	<.2
				11903	57.5	59	1.5m		40	<.2
				11904	59	60.5	1.5m		165	< 2
				11905	60.5	62	1.5m		20	<.2
	F . bet been			11906	62	63.5	1.5m		20	<.2
				11907	63.5	65	1.5m		150	<.2
				11908	65	66.5	1.5m		705	<.2
				11909	66.5	68	1.5M		480	<.2
				11910	68	69.5	1.5M		425	<.2
				11911	69 .5	71	1.5M		700	<.2
				11912	71	72,5	1.5M		335	<.2
				11913	72.5	74	1.5M		90	< 2
				11914	74	76.2	2.2M		10	<.2

Page 1 of 3

Hole # 95-08

-

Azimut	h: 173 d	legrees	Dip -55 degrees	Depth 103.93		Date:No	v 3 / 1995		Logged	by:ERK		
Met	erage	Rock Type	Alteratio	on, Mineralization	Sample	Sample	interval		Ass	ay / Geod	chem	
From	То		& Struc	ture Description	No.	From	То	Width			Au(ppb)	Ag(ppr
1.37	36.68	Chlorite - Hematite Zone	Mottled red - green, generally mod	erate quartz - calcite stockwork with blebs	11915	1.37	2	0.63			165	<.2
			and patches of coarse green chlor	ite. From 15 - 18.3 - very strong quartz -	11916	2	3	1.0m			200	<.2
			calcite stockwork, mostly @ 70 - 8	0 degrres to the CA 👩 15.24 - 15.7,	11917	3	4	1.0m			705	<.2
			massive hematite with veinlets of s	pecularite. Fine grained visible gold	11918	4	5	1.0m			210	<.2
			in above interval Massive hematite	stringers @ 16.1 and 17.3 m, generally	11919	5	6	1.0m			10	<.2
			0 1 - 0.2 m wide. 🙋 18.95 - 32 m	generally chloritic rock with weak	11920	6	7	1.0m			10	<.2
			hematite alteration @ 20 - 20.5 m	, fault gouge and highly broken rock.	11921	7	8	1.0m	<u></u>		5	<.2
		 	From 18.95-32 m, generally mode	ata quartz - caicite velning. 🙋 29 m,	11922	8	9	1.0m			30	<.2
			vuggy calcite veiniets. Minor disse	minated pyrite. @ 32 m, strongly mottled	11923	9	10	1.0m			5	<.2
			hematite - chiorite zone.		11924	10	11	1.0m			10	<.2
					11925	11	12	1.0m			280	<.2
					11926	12	13	1.0m			25	<.2
					11927	13	14	1.0m			750	<.2
		1 4			11928	14	15	1.0m	0.235			<.2
					11929	15	16	1.0m	4.882			3.4
					11930	16	17	1.0m	0.101			<.2
					11931	17	18	1.0m			315	<.2
					11932	18	19	1.0m			55	<.2
					11933	19	20	1.0m			50	<.2
					11934	20	21	1.0m			10	<.2
					11935	21	22	1.0m			20	<.2
		+			11936	22	23	1.0m	+		5	<.2
					11937	23	24	1.0m			15	<.2
					11938	24	25	1.0m			5	<.2
					11939	25	26	1.0m			5	< 2
					11940	26	27	1.0m			5	<.2
					11941	27	28	1.0m			5	<.2
					11942	28	29	1.0m			5	<.2
					11943	29	30	1.0m			10	< 2
					11944	30	31	1.0m			5	1
					11945	31	32	1.0m			85	3.2
					11946	32	33	1.0m			5	< 2
					11947	33	34	1.0m			5	<.2
					11948	34	35	1.0m			5	.2
					11949	35	36	1.0m			5	<

TEUTON RESOURCES CORP. Pege 2 of 3

Azimut	h: 173 d	egrees	Dip -55 degrees	Depth 103.93		Date:Nov	v 3 / 1995	;	Logged	by:ERK			
Met	erage	Rock Type	Alteratio	n, Mineralization	Sample	Sample	Interval		Ass	ay / Geod	chem		
From	To		& Struc	ture Description	No.	From	To	Width	Au(opt)	Ag(opt)	Au(ppb)	Ag(ppm)	
36.8	40.9	Feldspar Porphyry	At 36.8 - 37, chilled margin. 🙋 40.	9, contact is highly sheared with clay	11950	36	37	1.0m			5	<.2	
			along fractures. Rock is simillar to	intersections of dyke in other holes.	12551	37	38	1.0m			5	<.2	
					12552	38	39	1.0m			5	<.2	
					12553	39	40	1.0m			5	<.2	
					12554	40	41	1.0m			5	<.2	
40.9	44	Chlorite - Hematite Zone	Weak bematite alteration . Mottled (sd - green, minor pyrite - calcite veinlets	12555	41	42	1.0m			5	< 2	
			offset by later barren quartz - calcit		12556	42	43	1.0m			5	<.2	
					12557	43	44	1.0m			5	<.2	
44	103.93	Lapilli Tuff	Crackle brecciated, locally quartz -	calcite veins up to 0.6 m . Strong pyrite	12558	44	45	1.0m			5	<.2	
	103.55			2 67.5 - 75.3 m, highly broken locally	12559	45	46	1.0m			225	<.2	
				along fractures. @ 78.33 -84.73, highly	12560	46	47	1.0m	+		175	<.2	
				@ 11.7 - 101.3, pyrite along foliation	12561	47	48	1.0m			35	<.2	
				cone. Abundant ilmonite on fractures in	12562	48	49.5	1.5m			25	<.2	
				m calcite veinlet with blebs of chalco-	12563	49.5	51	1.5m			5	<.2	
			pyrite. @ 60.7, Narrow pyrite - arse		12564	51	53	2m			5	<.2	
				· · · · · · · · · · · · · · · · · · ·	12565	53	54.86	1.86m			105	0.6	
					12566	54.86	55.5	0.64m			5	<.2	
			E. (). H. 103.93 m	12587	55.5	57	1.5m			5	<.2	
					12568	57	58.5	1.5m			10	<.2	
					12569	58.5	60	1.5m			45	0.4	
					12570	60	61.5	1.5m			755	<.2	
					12571	61.5	63	1.5m			10	<.2	
					12572	63	64.5	1.5m			10	<.2	
					12573	64.5	66	1.5m			15	<.2	
					12574	66	67.5	1.5m		ļ	45	<.2	
					12575	67.5	69	1.5m			150	<.2	
					12576	69	70.5	1.5m	ļ		135	<.2	
					12577	70.5	72	1.5m	+		35	<.2	
					12578	72	73.5	1.5m	0.07			2.2	
					12579	73.5	75	1.5m			580	1.2	
					12580	75	76.5	1.5m			60	<.2	
					12581	76.5	78	1.5m			10	<.2	

zimuth: 173 degre	88	Dip -55 degrees	Depth 103.93	Date:No	v 3 / 1995	5	Logged	by:ERK		
Meterage	Rock Type	Alteration, Mineraliz	ation Sample	Sample	Interval		Ass	ay / Geo	chem	
From To		& Structure Descrip	No.	From	То	Width	Au(opt)	Ag(opt)	Au(ppb)	Ag(ppm)
									l	
			12582	78	79.5	1.5m			15	<.2
			12583	79.5	81	1.5m	0.066	ļ		1,2
			12584	81	82.5	1.5m	+		160	<.2
			12585	82.5	84	1.5m	+		300	<.2
			12586	84	85.5	1.5m	+		70	<.2
			12587	85.5	87	1.5m			35	<.2
			12588	87	68.5	1.5m	+		40	<.2
na a charachan balanna ann an an a' dhachan ann an bhailteann an bhailteann an bhailteann an bhailteann an bhai			12589	88.5	90	1.5៣			45	<.2
			12590	90	91.5	1.5m	+		35	<.2
			12591 12592	91.5 93	93 94.5	1.5m	+		45 20	<.2
			12592	93 94.5	96 96	1.5m	+		375	<.2 0.4
			12594	96	97.5	1.5m			80	<.2
			12595	97.5	99	1.5m			50	<.2
			12596	99	100.5	1.5m			5	<.2
			12597	100.5	102	1.5m	1		180	<.2
			12598	102	103.93	1.93m	1		75	<.2
			12000	102	103.85	1.8511	-			
									1	
						+				
						1		t		
						1				
		1919-1919 - 19				1				
					<u> </u>	1	1			
				1						
						•	1			
								1		
								1		
			anaratan da marti lahar mbandaki kati kati kati kati kati kati kati k	t			1			
							1	t		

Azimuth: 173 de	grees	Dip: - 70 degrees	Depth 73.2m		Date:Nov	v 4 / 1995	3	Logged	by:ERK		
Meterage	Rock Type	A	Iteration, Mineralization	Sample	Sample	Interval		Ass	ay / Geod	:hem	
From To			& Structure Description	No.	From	То	Width	Au(opt)	Ag(opt)	Au(ppb)	Ag(ppm)

Page 1 of 2

1.37	45.22	Chiorite - Hematite Zone	Mottled red/purple - green with local strong crackle breccia containing	12501	1.67	2	0.33m		10	<.2
		andaran kara milaran Maria arikatan di Pamarakan Mandal Pam Mandal Manda (1990). Mila da maria da da da da da An	strong calcite - quartz veinlets cementing fragments. @ 3.65 m, highly	12502	2	3	1.0m	0.08		<.2
			broken, poor recovery. Locally approx. 15 % calcite - quartz veinlets. 👩 5 -	12503	3	4	1.0m		90	<.2
			5.5 m, narrow zone containing narrow massive hematite stringers and	12504	4	5	1.0m		55	0.4
			specularite veinlets. Strong chlorite blebs with calcite veins as well as large	12505	5	6	1.0m	0.072		<.2
			patches. @ 15 - 16.5, całcite approx. 20 %. @ 16.5 m , narrow 4 cm wide	12506	6	7	1.0m		100	<.2
			massive hematite stringer @ 45 degrees to the CA. @ 19 - 25.6 m, mixed	12507	7	8	1.0m		5	<.2
	ne atomti ana su sanatari se		zone of highly chioritic schist with laminations and blebs of pyrite locally up	12508	8	9	1.0m		5	<.2
			to 7 - 8 %. Highly brecciated and sheared with clay on fractures in above	12509	9	10	1.0m		65	<.2
			zone. Some calcite veins with coarse pyrite. From 25.6 - 37.6 m, dark green	12510	10	11	1.0m		100	<.2
			to black chlorite with semi-massive hematite. Minor disseminated pyrite	12511	11	12	1.0m		15	0.8
			overall. Traces malachite in section. @ 37.7 m, blebs of magnetite.	12512	12	13	1.0m		30	<.2
				12513	13	14	1.0m	ļ	20	<.2
				12514	14	15	1.0m		5	0.2
				12515	15	16	1.0m		5	<.2
		-		12516	16	17	1.0m		290	<.2
				12517	17	18	1.0m		5	<.2
				12518	18	19	1.0m	0,128		<.2
				12519	19	20	1,0m		220	<.2
				12520	20	21	1.0m	0.481		0.8
				12521	21	22	1.0m		255	<.2
				12522	22	23	1.0m		85	<.2
				12523	23	24	1.0m		50	<.2
				12524	24	25	1.0m		55	<.2
				12525	25	26	1.0m		65	<.2
				12526	28	27	1.0m		5	<.2
				12527	27	28	1.0m		5	<.2
				12528	28	29	1.0m		5	<.2
				12529	29	30	1.0m		120	<.2
Ī				12529A	30	31	1.0m		5	<.2
				12530	31	32	1.0m		5	<.2
				12531	32	33	1.0m		390	<.2
				12532	33	34	1.0m		100	<.2
				12533	34	35	1.0m		5	<.2
T				12534	35	35	1.0m		895	<.2

EUI	TON I	RESOURCES CO	Page 2 of 2							Hole	# 95-09
zimutł	n: 173 de	egrees	Dip: - 70 degrees Depth 73.2m		Date:No	v 4 / 199	5	Logged	by:ERK		
Mete	erage	Rock Type	Alteration, Mineralization	Sample	Sample	Interva		Ass	ay / Geo	chem	
From	То		& Structure Description	No.	From	То	Width	Au(opt)	Ag(opt)	Au(ppb)	Ag(ppm)
		and an a second s		12535	36	37	1.0m			20	<.2
				12536	37	38	1.0m			80	0.6
		a an		12537	38	39	1.0m			20	<.2
				12538	39	40	1.0m	1		5	<.2
				12539	40	41	1.0m			10	<.2
				12540	41	42	1.0m			5	<.2
	n nganananan yén désa serengi penterang			12541	42	43	1.0m			5	<.2
	hala ya na shika ƙwallon 🖉 🖉 🖉 ƙwal	and an an and a second seco		12542	43	44	1.0m			60	<.2
	anna marantari matan itari a			12543	44	45	1.0m			5	<.2
45.22	51.8	Feldspar Porphyry Dyke	Same as Drill Holes 95 - 7+ 8. Fractured @ 30 degrees to the CA.	12544	45	47	2.0m			5	<.2
				12545	47	49	2.0m			5	<.2
				12546	49	52	3.0m			10	<.2
51.8	60	Chiorite - Hemetite Zone	Moderate chlorite - nematite alteration. Minor disseminated pyrite. Crackled	12547	52	53	1.0m	+			
			Weak calcite - quartz stockwork. @ 56 - 56.7 m , sheared, clay rich on	12548	53	54	1.0m				
			fractures.	12549	54	55	1.0m				
	rayd addaugh ab Do oo mary Co o			12550	55	56	1.0m	1			
				12601	58	57	1.0m			1	
				12602	57	58	1.0m				
				12603	58	59	1.0m				
	1. de plant a segur - a seu a seu a segur - a segur			12604	59	60	1.0m				
60	73.2	Lapilli tuff	At 72.5, massive pyrite veinlet approx. 2 cm wide. Patches of strong K-Feld	12605	60	61	1.0m			10	<.2
			alteration. Moderate calcite - quartz stockwork. Disseminated pyrite approx	12606	61	62	1.0m			10	<.2
			1 - 2 %. Local wek hematite zones approx. 4 - 5 cm wide.	12607	62	63	1.0m			5	<.2
				12608	63	64	1.0m			5	<.2
			E. O. H. 73.2 m	12609	64	65.5	1.5m	1		5	<.2
			L. O. H. 1942 III	12610	65.5	67	1.5m			5	<.2
		a ana ann an ann ann ann ann ann ann an		12611	67	68.5	1.5m			5	<.2
	N B 1940 PROVIDE ALLONG ALLONG ALLONG			12612	68.5	70	1.5m			5	<.2 <.2
				12612	70	71.5	1.5m			5 65	<. <u>2</u>
				12614	71.5	73.2	1	+	1		0.2

Azimuth: 155 de	grees	Dip: - 45 degrees	Depth 72.54 m		Date: No	v 4 / 199					
Meterage	Rock Type	A	Iteration, Mineralization	Sample	Sample	Interval		Ass	ay / Geoc	:hem	
From To			Structure Description	No.	From	To	Width	Au(opt)	Ag(opt)	Au(ppb)	Ag(ppm)

Page 1 of 2

2	26.4	Chlorite - Hematite Zone	Mottled red/green with coarse patches of green chlorite. Some veinlets of	12615	2	3	1.0m		20	0.3
			chlorite up to 5 mm. Generally very strong hematite alteration. Moderate	12616	3	4	1.0m		540	0.3
			calcite-quartz stockwork. Highly broken and fractured with malachite and	12617	4	5	1.0m	0.03		0.3
			limonite on fractures. @ 15 - 18.3, massive hematite and specularite	12618	5	6	1.0m		110	0.3
			veinlets. Traces chalcopyrite and pyrite. @ 20.9 - 22.2 m, massive hematite	12619	6	7	1.0m		120	0.3
			At 24.5 - 25.5, massive hematite.	12620	7	8	1.0m		80	0.3
	L			12621	8	9	1.0m		220	0.3
				12622	9	10	1.0m		30	0.3
				12623	10	11	1.0m		450	0.3
				12624	11	12	1.0m		350	0.3
				12625	12	13	1.0m		50	0.3
	ļ			12626	13	14	1.0m		100	0.3
	[12827	14	15	1.0m	ļ]	580	0.3
				12628	15	16	1.0m	1.34		1.7
				12629	16	17	1.0m	12.78		7.8
				12630	17	18	1.0m	0.78		0.5
				12631	18	19	1.0m	0.21		0.5
				12632	19	20	1.0m	0.36		0.3
				12632A	20	21	1.0m	0.13		0.3
				12633	21	22	1.0m	0.17		0.3
				12634	22	23	1.0m	0.43		0,4
				12635	23	24	1.0m		850	0.3
				12636	24	25	1.0m	0.11		2.4
				12637	25	28	1.0m	0.26		1
26.4	29 .1	Feldspar porphyry	Same as Drill Holes 95 -7,8 + 9. Chilled margins @ 45 degrees to the CA.	12638	26	27	1.0m		100	0.3
			Weakly fractured. No calcite veinlets.	12639	27	28	1.0m		120	0.3
				12640	28	29	1.0m		90	0.3
9.1	40.7	Chlorite - Hematite Zone	Generally chloritic, highly fractured, sheared with overall weak hematite	12541	29	30			50	0.8
			alteration. Approx. 10 % hematite. Minor pyrite along veinlets. Ø 34 - 40.1	12642	30	31			50	0.3
			m, local dense aphanitic sections with minor hematite stringers. Generally	12643	31	32			40	03
			weak calcite - quartz stockwork. Local patches of coarse cube pyrite.	12644	32	33	 		60	0.3
			Patches of K - feldspar atteration from 34 - 40.7 m.	12645	33	34			280	0.4
				12646	34	35			80	0.3

Azimuth	: 155 deg	jrees	Dip: - 45 degrees	Depth 72.54 m	-	Date: No	v 4 / 199	5	Logged	by: ERK		
Mete	rage	Rock Type	Alteratio	n, Mineralization	Sample	Sample	Interval		Ass	say / Geoc	hem	
From	То		& Struct	& Structure Description		From	То	Width	Au(opt)	Ag(opt)	Au(ppb)	Ag(ppm)
	1							1	1			T
		andaranna an	100 (100 (100 (100 (100 (100 (100 (100		12647 12648	35 36	36 37		+		810 360	0.3
		(1988-1996-1997) in Carllelo – offens Mariel – either Maldin, warmath) and he smaller stablements the Corres value	17 Marina 1896 - Marina Arrandor, 1997 - 19	ου, τοθεί τα το κοτογο, διάγτωθ τοριο το βορίτορο καθουφ στους, η χροποιοποιρηθηση, αυτό του χρητηρικούς τη βοδοποιου φουβγό, _{ήδο} σ	12648	30	37		+		310	0.3
					12650	38	39			1	260	0.3
				nananakété Minasaté aki tés a tanén tépéngganéténé najadi képejasi kanéngkaté téréné a nangkatété kanénang peg	12651	39	40			11	50	2.4
					12652	40	41		0.07			0.3
40.7	72 54 1	apilii Tuff	Same as in pravious, holes 61,40.7	, approx. 10 cm zone of pyrite veinlets.	12653	41	42	1.0m			40	0.3
				rig crackle brecciation. @ 44.4 - 45,	12654	42	43	1.0m			230	0.3
				% of the zone. Abundant limonite. @	12655	43	44	1.0m		11	30	0.3
				nonitic. @ 56.5 - 57.9 m, narrow zone	12656	44	45	1.0m	1	1	290	1.8
			of weak hematite alteration. @ 61 -		12657	45	46	1.0m			120	1.5
		anala kaona amin'ny faritr'o district designa designa designa designa designa designa designa designa de serve		cal pyrite stringers. @ 70.5 - 72.54 m,	12658	46	47	1.0m			70	1.1
ļ			strong K - feldspar alteration @ 69	5 - 70, pyrite along foliation with minor	12659	47	48	1.0m			60	0.9
		·	hematite. Local slickensides along a	shear surfaces.	12660	48	49	1.0m			20	0.3
					12661	49	50	1.0m			30	0.3
			E. C). H. 72.54 m	12662	50	51	1.0m			70	1.8
					12683	51	52	1.0m]	60	0.3
					12664	52	53	1.0m			30	0.3
		ar na na an		19 19 19 19 19 19 19 19 19 19 19 19 19 1	12665	53	54	1.0m		ļ	40	0.3
				*****	12666	54	55	1.0m	+	ļ	30	0.3
					12667	55	56	1.0m		ļ	40	0.3
					12668	56	57	1.0m		ļļ	510	0.3
<u> </u>				ar na an	12669	57	58	1.0m	+	ļ	280	0.3
					12670	58	59	1.0m			90	0.3
					12871	59	60	1.0m		<u>+</u>	20	0.3
				annan a gus aite gallanna ad ar ar far fasta fair at all alla sa a' fair ann a' galla da Barlan ann a Barlan, B	12672	60	61	1.0m	+	<u>+</u>	80	0.3
					12673	61	62.5	1.5		<u> </u>	70	0.3
					12674	62.5	64	1.5m	+	+	60	0.3
					12675	64	65.5	1.5m	+		50	0.3
					12676	6 5.5	67	1.5m			110	0.3
					12677	67	68.5	1.5m		·	80	0.3
		ana an			12678 12679	68.5 70	70 71.5	1.5m 1.5m	0.03	<u> </u>		0.3

zimuth: 1	55 de	grees	Dip: - 55 degrees	Depth 64 m		Date: No	v 4 / 199	5	Logged	by:ERK	
Metera	ge	Rock Type	Alterat	ion, Mineralization	Sample	Sample	Interval		Ass	ay / Geochem	_
From	To		& Stru	cture Description	No.	From	То	Width	Au(opt)	Ag(opt) Au(ppb) Ag(ppm
		1		n a gantan ang kanang kanan				·T	+	·	
			hematite stringers up to 5 cm, ap	prox. 30 % of interval. Massive hematite	12714	37	38	1.0m	0.05		3.1
			at 45.4 to 45.5 m is at 15 degree	s to the CA. Generally weak calcite-quartz	12715	38	39	1.0m	2.29		4.7
		e a far bala i sema talemana i a tendence solo a ser a serve a serve anno sema tenang and a sa anga ato a sa ag	stockwork.		12716	39	40	<u>1.0m</u>	1.01		3.7
					12717	40	41	1.0m	0.21		0.5
					12718	41	42	1.0m		260	0.3
					12719	42	43	1.0m		480	3.3
					12720	43	44	1.0m		820	0.3
					12721	44	45	1.0m		210	0.3
			ran a stand fra de seu of the car anna tara de la contra de seu de seu de seu de seu de seu de seu or de seu d		12722	45	46	1.0m		50	0.3
					12723	46	47	1.0m		60	0.3
					12724	47	48.3	1.3m	0.04		0.3
48.1	64	Lapilli Tuff	Green, foilated at 45 degrees to t	he CA. Crackled with strong calcite -	12725	48.3	50	1.7m		110	0.3
			quartz stockwork. Minor pyrite as	veinlets. @ 48.5 m, shear zone. @ 61 -	12725A	50	51.5	1.5		810	0.3
				, hematite altered with stringers < 2 mm.	12726	51.5	53	1.5		490	0.3
			Local coarse pyrite with the hema		12727	53	54.5	1.5m		40	0.3
					12728	54.5	56	1.5m		40	0.3
					12729	56	57.5	1.5m		30	0.3
				E. O. H. 64 m	12730	57.5	59	1.5m		260	0.3
			19 - Califord V -		12731	59	60.5	1.5m	1	220	0.3
					12732	60.5	62	1.5m		40	0.3
					12733	62	64	2.0m		780	0.3
								2.011			0.0
											+
								+		<u> </u>	
								+			
									+		
						<u> </u>					
								+	-		
						<u> </u>		<u> </u>	+		+
					+			+	+		
									_	L	

TEUTON RESOURCES CORP.

TEUTON I	RESOURCES COR	Ρ.	Page 1 of 2		Hole # 95-11											
Azimuth: 155 de	grees	Dip: - 55 degrees	es Depth 64 m Date: Nov 4 / 1995							Logged by:ERK						
Meterage	Rock Type	Alter	ation, Mineralization	Sample	Sample Interval			Ass	ay / Geoc	chem						
From To		& S1	& Structure Description				Width	Au(opt)	Ag(opt)	Au(ppb)	Ag(ppm)					

Page 1 of 2

2	29.48	Chlorite - Hematite Zone	Mottled red/green chlorite-hematite zone. Abundant hematite stringers < 5	12681	2	3	1.0m		100	0.3
			mm. Strong calcite - quartz veining @ 70 degrees to the CA. Abundant	12682	3	4	1.0m		110	0.3
			chlorite blebs in veining. Local areas of approx. 70 % chlorite. @ 16.3 - 17.1	12683	4	5	1.0m		80	0.3
		a de la constante en acapé antico de constante en constantente a montre faquante da constante de car a	massive hematite stringer with abundant malachite on locally highly broken	12684	5	8	1.0m	0.07		0.3
			sections. @ 17m, 2 cm section of massive specularite. @ 19 - 19.7m,	12685	6	7	1.0m		360	0.3
			massive hematite with coarse specularite velnlets. Contacts of massive	12686	7	8	1.0m		120	0.3
			specularite are highly chloritic. Minor local veinlets of chalcopyrite. @ 28.2	12687	8	9	1.0m		40	0.3
	-		m, narrow chalcopyrite veinlets with chlorite and guartz cross-cut hematite	12688	9	10	1.0m		30	0.3
			stringers. @ 28.5 - 29.48, abundant veinlets of chalcopyrite approx. 1 %.	12689	10	11	1.0m		20	0.3
			Contact with dyke (down hole) is a 1 cm massive chalcopyrite veinlet, local	12690	11	12	1.0m		30	0.3
			magnetite and traces to minor bornite. @ 27.5 - 28.8 m. massive hematite	12691	12	13	1.0m		60	0.3
			stringer up to 10 cm. Above section is locally vuggy.	12692	13	14	1.0m		70	0.3
				12693	14	15	1.0m		130	0.3
				12694	15	16	1.0m	0.07		0.3
				12695	16	17	1.0m	1.9		1.8
		· · · · · · · · · · · · · · · · · · ·		12696	17	18	1.0m	0.33		0.3
				12697	18	19	1.0m	1.07		0.3
				12698	19	20	1.0m	1.58		0.3
				12699	20	21	1.0m	0.19		0.3
				12700	21	22	1.0m	0.03		2.2
				12701	22	23	1.0m		510	4
				12702	23	24	1.0m		480	3
				12703	24	25	1.0m		250	0.3
	-			12704	25	26	1.0m		320	1.2
				12705	26	27	1.0m		120	0.3
				12706	27	28	1.0m	0.49		5.1
				12707	28	29,48	1.48m	0.19		8
9.48	33.7	Feldspar Porphyry Dyke	Same as in previous holes. Some fracturing @ 0 degrees to the CA.	12708	29.48	31	1.52m		180	0,5
				12709	31	33	2.0m		60	0.3
				12710	33	34	1.0m		130	0.3
33.7	48.1	Chiorite - Hernatite Zone	Rock is not as intensely altered as previous section. @ 38.7 - 39m, massive	12711	34	35	1.0m		90	0.4
			hematite with pyrite veinlet. Minor specularite veinlets associated with the	12712	35	36	1.0m		50	0.3
			massive hematite. @ 39.5 - 39.6, massive hematite. @ 40.4 - 41.5, massive	12713	36	37	1.0m		340	0.3

1

1

)

1

Page 1 of 2

Hole # 95-12

2 1) 1

Azimu	th: 155 d	agrees	Dip: - 65 degrees	Depth 76.2 m		Date: No	ov 5 / 199	5	Logged	by: ERK		
Me	terage	Rock Type	Alteratio	on, Mineralization	Sample	Sample	Interval		Ass	ay / Geoc	hem	
From	То		& Struc	cture Description	No.	From	To	Width	Au(opt)	Ag(opt)	Au(ppb)	Ag(ppm
	25.92								1			
1.6	35.83	Chlorite - Hematite Zone		rackle brecciation with calcite - quartz	12734 12735	1.6 3	3	1.4m			640 200	0.3
				ockwork approx. 7 %. 205 - 5.2 m, nlets. Local strong K-feldspar alteration as	12736	4	4 5	1.0m			320 920	0.3
				byrite as narrow fracture filling as well as	12737	5	6	1.0m	0.09		920	0.3
				m, bleached light green fragments in dark	12738	6	7	1.0m	0.00		50	0.3
				green pyritic chlorite rich section(chlorite	12739	7	8	1.0m			70	0.3
				yrite blebs and massive vein with calcite	12740	8	9	1.0m	0.04			0.3
				10 %). @ 24.8 - 35.83 m, brecciated and	12741	9	10	1.0m			80	0.3
			re-healed altered zone. Fragments	s resemble altered material at top of hole.	12742	10	11	1.0m			40	0.3
			Slickensides are present on shear	planes. Abundant malachite on weather-	12743	11	12	1.0m			60	0.3
			ed fracture surfaces.		12744	12	13	1.0m			40	0.3
					12745	13	14	1.0m			40	0.3
					12746	14	15	1.0m			30	0.3
			. II) ; ; iii ii) iiiii iiiiiiiiiiiiiiiii		12747	15	16	1.0m			20	0.3
			lan aligana ay ang		12748	16	17	1.0m			20	0.3
			nin dalam mandala sukan a sa sukan nakan wasa daka daka daka daka daka daka daka d		12749	17	18	1.0m			680	0.3
					12750	18	19	1.0m	+		260	0.3
		· · · · · · · · · · · · · · · · · · ·			12751	19	20	1.0m	0.03			0.3
					12752	20	21	1.0m			560	0.3
					12753	21	22	1.0m			350	0.3
					12754	22	23	1.0m			70	0.3
					12755	23	24	1.0m			60	0.4
					12756	24	25	1.0m	+		80	0.3
			af an an an a fair and a second a second a second a second and a second a second a second a second a second a s		12757	25	26	1.0m			40	0.3
					12758	26	27	1.0m			50	0.3
					12759	27	28	1.0m			100	0.5
					12760	28	29	1.0m			290	0.3
					12761 12762	29	30	1.0m			20	0.3
					12/62	30 31	31 32	1.0m			30 30	0.3
	na - anna agus na sua shaa kad				12764	32	33	1.0m			- 30 - 40	0.3
					12765	33	34	1.0m			40 120	0.3
					12766	34	35	1.0m			20	0.3
					12767	35	35.83	0.83m	1		120	0.3
								C.CONT	1			0.0

FEUT	ION	RESOURCES CO	DRP. Page 2 of 2		r			1		Hole	e # 95-12
Azimuth	h: 155 d	egrees	Dip: - 65 degrees Depth 76.2 m		Date: No	ov 5 / 199	5	Logged	by: ERK		
Mete	erage	Rock Type	Alteration, Mineralization	Sample	Sample	interval		As	say / Geo	chem	
From	om To 83 40.7 Feldspar Porphyry 7 55 Chlorite - Hematite Zone		& Structure Description	No.	From	То	Width	Au(opt)	Ag(opt)	Au(ppb	Ag(ppm)
35.83	40.7	Feldspar Porphyry	Same as in previous holes.	12768	35.83	38	2.17m			10	0.3
				12769	38	40.7	2.7m	ļ		10	0.3
40.7	55	Chlorite - Hematite Zone	Locally strong K-feldspar alteration with some local silicification. Hernatite	12770	40.7	42	1.3m	0.04			1
			stringers approx. 10 - 30 degrees to the CA. Rock appears to have been	12771	42	43	1.0m			40	0.3
			altered to fine grained chlorite, hematite rich rock, then brecclated with	12772	43	44	1.0m	ļ	·	30	0.4
	Meterage Rock Type From To 35.83 40.7 40.7 55 Chlorite - Hematite Zone	hematite, chiotite and calcite-quartz veinlets cementing the breccia. Minor	12773	44	45	1.0m			610	0.6	
		disseminated chalcopyrite. @ 54 - 55 m, strong calcite-quartz veining	12774	45	46	1.0m	0.05			0.7	
		with chlorite veinlets. Blebs of chalcopyrite along both types of veinlets.	12775	46	47	1.0m			60	0.3	
			12776	47	48	1.0m	0.08			3,1	
			12777	48	49	1.0m	+		480	0.3	
			12778	49	50	1.0m			270	0.3	
				12779	50	51	1.0m			90	0.3
				12780	51	52	1.0m			50	0.3
	1979 - 1981 - 1 979 - 1977 -			12781	52	53	1.0m		-	400	0.4
				12782	53	54	1.0m			60	0.3
				12783	54	55	1.0m			20	0.3
55	76.2	Lapilli Tuff	Chloritic, dark green, highly brecciated with strong micro-veinlets of quartz-	12784	55	56	1.0m	ļ		30	0.3
			calcite. @ 61 - 61.5 m, calcite-guartz veinlets with coarse cube pyrite in	12785	56	57.5	1.5m			30	0.3
			brecciated tuff. @ 62 - 67.06, highly brecciated, clay rich on fractures. @	12786	57.5	59	1.5m		<u></u>	30	0.3
			66.5 - 67, fault gouge with limonite on fractures. @ 66m, strong pyrite with	12787	59	60.5	1.5m			50	0.3
	cal bre 66 k c dis	k chlorite over widths of 20 cm. Overall pyrite approx 2 - 3 % in tuff as	12788	60.5	62	1.5m		+	20	0.3	
			disseminated grains and narrow vainlets. Weak hematite alteration as blebs	12789	62	63.5	1.5m	+		20	0.3
	disseminated grains and narrow veinlets. Weak hematite alteration as blebs 12789 62 63.5 1.5m and veinlets up to 66.5 m. @ 58 - 62 m, pyrite approx. 7 %. @67 - 76.2m, 12790 63.5 65 1.5m		40	0.3							
	highly broken, sheared with abundant clay. Local coarse cube pyrite blebs	12791	65	66.5	1.5m			50	0.5		
	up to 5 % in the above section.	12792	66.5	68	1.5m	+		40	0.3		
		12793	68	69.5	1.5m			40	0.3		
	E. O. H. 76.2 m	12794	69.5	71	1.5m			20	0.3		
			12795	71	72.5	1.5m	+		170	0.3	
			12796	72.5	74	1.5m			50	0.4	
				12696	74	76.2	2.2m			20	0.4

TEUTON RESOURCES CO	RP.
----------------------------	-----

Page 1 of 3

Hole # 95-13

Azimut	h: 155 d	egrees	Dip: - 75 degrees	Depth 97.54 m		Date: No	v 6 / 199	5	Logged	by:ERK		· · · · ·
Met	erage	Rock Type	Alteratio	on, Mineralization	Sample	Sample	Interval		Ass	ay / Geod	chem	
From	To		& Struc	ture Description	No.	From	То	Width	Au(opt)	Ag(opt)	Au(ppb)	Ag(ppm
1.4	50.4	Chlorite - Hematite Zone	Mottled red/green, with hematite st	ringers @ 10-30 degrees to the CA. @	12798	1.4	2	0.6m	1		360	0.3
				x. 15 cm wide. Strong chlorite as inter-	12799	2	3	1.0m			20	0.3
				alcite - quartz veinlets. Moderately	12800	з	4	1.0m	0.03			0.4
			strong calcite-quartz stockwork. L	ocal chalcopyrite along fracture as well	12801	4	5	1.0m	0.04			0.6
			as as in chlorite/ calcite-quartz vein	ilets. Local slickensides on fracture	12802	5	6	1.0m			380	0.3
			planes. @ 6.1 m, specularite veinle	ts with heavy chlorite in calcite-quartz	12803	6	7	1.0m			260	0.3
			veining. @ 12.2 m, sheared zone w	vith abundant clay on fractures in highly	12804	7	8	1.0m			50	0.3
			broken rock. @ 18 - 35, local stron	g silicification with patches of strong	12805	8	9	1.0m			810	0.3
			K-feldspar atteration. Zone has co	arse chlorite veinlets associated with	12806	9	10	1.0m			940	0.3
			calcite-quartz veinlets. Locally stro	ng appearance of mylonite. Locally semi-	12807	10	11	1.0m			120	0.5
			massive hematite as velnlets appro	x. 40 % of the core over 30 cm sections.	12808	11	12	1.0m			40	0.3
			Local chalcopyrite up to 1 % over 1	5 cm sections @ 40-45 m. Minor	12809	12	13	1.0m			650	0.3
			melachite along fractures and vugg	y veinlets. 🙋 18 - 35 m, abundant	12810	13	14	1.0m			30	0.3
			micro-veinlets along crackle brecclated roc	ated rock. @ 40 - 50.4, rock is very	12811	14	15	1.0m			30	0.3
			uniform withminor hematite veining	approx 3 %. Calcite/quartz/coarse	12812	15	16	1.0m			30	0.3
			chlorite veinlets @ 40 - 45 m.		12813	16	17	1.0m			60	0.3
					12814	17	18	1.0m			20	0.3
					12815	18	19	1.0m			30	0.3
					12816	19	20	1.0m			20	0.3
					12817	20	21	1.0m			30	0.3
					12618	21	22	1.0m			10	0.3
					12819	22	23	1.0m			20	0.3
					12820	23	24	1.0m			40	0.3
					12821	24	25	1.0m			20	0.3
					12822	25	26	1.0m			20	0.3
					12823	26	27	1.0m		1	180	0.3
					12824	27	28	1.0m]	60	0.3
					12825	28	29	1.0m		-	70	0.3
1					12826	29	30	1.0m			50	0.3
					12827	30	31	1.0m			100	0.3
1					12828	31	32	1.0m			40	0.3
					12829	32	33	1.0m		1	150	0.3
					12830	33	34	1.0m		ĺ	170	0.3
					12831	34	35	1.0m		1	30	0.3
					12832	35	36	1.0m		1	70	0.3

Azimut	n: 155 de	grees	Dip: - 75 degrees Depth 97.54 m		Date: No	v 6 / 199	5	Logged	by:ERK		
Met	erage	Rock Type	Alteration, Mineralization	Sample	Sample	Interval		Ass	ay / Geoc	hem	
From	То		& Structure Description	No.	From	То	Width	Au(opt)	Ag(opt)	Au(ppb)	Ag(ppm)
							.		• · · · · · · · · · · · · · · · · · · ·		1
				12833	36	37	1.0m			20	0.3
				12834	37	38	1.0m			210	0.3
				12835	38	39	1.0m			30	0.3
	-			12836	39	40	1.0m			60	0.3
	alaan aha ahaa bahaa ahaa ahaa ahaa ahaa a			12837	40	41	1.0m	0.08			1.4
				12838	41	42	1.0m			50	1.2
				12839	42	43	1.0m			20	0.4
				12840	43	44	1.0m			20	0.4
		<u> </u>		12841	44	45	1.0m	_		50	1.8
				12842	45	46	1.0m			60	5.2
				12843	46	47	1.0m			50	11.1
		} ∲		12844	47	48	1.0m			30	1.7
	an agamp 1010 a. 140 a.			12845	48	49	1.0m			20	0.3
				12846	49	52	3.0m			20	0.3
50.4	55.25	Feldspar Porphyry Dyke	As in previous holes. Traces microveinlets of calcite.	12847	52	54	2.0m			20	0.3
				12848	54	55.25	1.25m			10	0.3
55.25	97.543	Lepilli Tuff	Chloritic, mottled green/black. Locally highly brecclated with strong calcite-	12849	55.25	57	1.75m			10	0.3
			quartz stockwork. @ 63.5 - 65.3, K-feidspar altered, silicified with hematite	12850	57	58.5	1.5			20	0.3
			alteration. @ 61.5 - 62.5, highly broken. @ 71.2 - 72.5, hematite altered	12851	58 .5	60	1.5m			20	0.3
			with quartz veinlets. Minor semi-massive hematite, (vuggy, highly broken).	12852	60	61.5	1.5m			20	0.3
			At 73.7 - 74.3, large fault zone with gouge and sand. 20 73.5 - 75 m, very	12853	61.5	63	1.5m			30	0.3
			highly broken. 🙋 79.1 - 80.5 m, hematite altered. 2 86 - 87.5, hematite	12854	63	64.5	1.5m			30	0.3
			altered. Locally K-feidspar altered and allicified. Pyrite along veinlets,	12855	64.5	66	1.5m			30	0.3
			occasionally with black chlorite. Moderate quartz-calcite stockwork.	12856	66	67.5	1.5m			40	0.3
				12857	67.5	69	1.5m			20	0.3
				12858	69	70.5	1.5m			30	0.3
			E. O. H. 97.54 m	12859	70.5	72	1.5m	0.04			1.1
				12860	72	73.5	1.5m			720	3.3
				12861	73.5	75	1.5m			180	2.2
		n - Lan ya Antalan Marana ya Manana ya Antala ya Manana ya Kanana ya Kanana ya Kanana ya Kanana ya Kanana ya Ka I I I		12862	75	76.5	1.5m			20	0.8
	A., ANK - 11 A. L. ANK - 11 A .			12863	76.5	78	1.5m	T		620	2
				12864	78	79.5	1.5m			20	0.3
		f		12865	79.5	81	1.5m		1	50	0.6

EUTONR	ESOURCES CO	JRP.	Page 3 of 3						Hole	∍ # 95-1:
zimuth: 155 deg	rees	Dip: - 75 degrees D	Depth 97.54 m	Date: N	lov 6 / 199	/5	Logged	by:ERK		
Meterage	Rock Type	Alteration, Mineraliza	ation Sample	Sample	e Interval		Ass	say / Geoc	chem	
rom To		& Structure Descrip	ption No.	From	То	Width	Au(opt)	Ag(opt)	Au(ppb)	Ag(ppm)
				. <u></u>	1			,		
			12865A	A set of the set of th	82.5	1.5m	+	+'	100	2
	a () a sa ann an bha d'an a an bar an Nachtailte ann a' Ann an Alban an tha an Alban an Alban an Alban an Alban		12866	82.5	84	1.5m	+	t'	60	0.6
			12867	84	85.5 87	1.5m	++	t'	20	0.3
	рани на Палбина радации сол. Надалина Таказа III пол парала седила стор и заказата име и терерата		12868	85.5 85	88.5	1.5m	++	·'	10	0.3
			12870	88.5	90	1.5m	++	('	10	0.3
			12871	90	91.5	1.5m	++		10	0.3
			12872	91.5	93	1.5m			10	0.3
samerika daripas proprioris. Nanko faring matter bittanisme	yn megen men en meg men er yn werker o men en en en en men men men men er men men men men men men en en er her		12873	93	94.5	1.5m			10	0.3
			12874	94.5	96	1.5m			20	0.4
			12875	96	97.54	1.54m			20	0.3
	Marine and Marine Marine International production of the second									
	Territal with strategic static science and spectra second provide spectra spectra spectra spectra spectra spectra									
	and a first a first state of the state of th								+	
	annan - an taon ann an tao tao tao tao ann an tao ann ann ann ann ann ann ann ann ann a					+	'	+		
					_					
	אוריין איז			+						
turnung var var en fregeren verkter von en variatierten et e	a yan yang menghan separah sebarah di baran dara menghan di amar pada baran di dara menghan sebarah dari bahar			+					+	
	y ann ag ann a' ghfann an a' g a rainn an aith a fhair an an Anna Anna Anna An Anna An Anna An Anna Anna Anna A									
122 M 1 1 2 M 1 2 M 1 2 M 1 2 M 1 2 M 1 2 M 1 2 M 1 2 M 1 2 M 1 2 M 1 2 M 1 2 M 1 2 M 1 2 M 1 2 M 1 2 M 1 2 M 1	prominen an blind Nacilla's bir die auf Belander affanter, bit Balenberge all part Marger affantera			+			++			+
					+		++		+	+
	Rada af dhaaligna gan agaaganaanaan amaanar am gabar sa na nahar na mahar na mahar na naha ah na han ad a albu		nan di manganan di melanaki kakanan an di minan sara di menakkar akan saka di mangalaki sikan di sebah kakan di				+			
	angen an sangan na mangangkan ng mga ng m			1	+		++		1	
					+		++			
					-		+			
ar fað umat fragmannaðir liga var utegu stri í að verni veriðir verni með			ann an tha a same a formar a san an san san san san san san san sa							
	The set of									

APPENDIX IV

ASSAY RESULTS FOR THE DRILL PROGRAM

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

1

Values in ppm unless otherwise reported

TEUTON RESOURCES CORPORATION AS 95-1153 509-675 W. HASTINGS STREET VANCOUVER, B.C. V6C 1N2

ATTENTION: DINO CREMONESE

164 CORE samples received November 29, 1995 PROJECT #: None given SHIPMENT #: None given P.O.#: none given Samples submitted by: none given

Et #	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cđ	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	N	P	Pb	Sb	Sn	8r	TIN	U	<u>v</u>	W	Y	Zn
1	46401	15	<.2	2.47	<5	115	5	0.81	<1	37	22	90	7.67	<10	2.36	903	2	0.02	g	2180	8	10	<20	23	0.10	<10	132	<10	<1	93
2	46402	25	<.2	1.75	<5	75	5	1.25	1	23	24	72	8.17	<10	1.63	674	3	0.03	9		6	10	<20	29	0.08	<10	137	<10	<1	60
3	46403	50	<.2	2.12	10	150	<5	1.65	<1	26	32	206	7.47	<10	2.01	834	3	0.04	11	2210	8	10	<20	38	0.10	<10	148	<10	<1	78
4	46404	170	<.2	2.19	20	65	<5	1.88	2	38	28	286	9.08	<10	2.09	838	5	0.02	13		14	5	<20	31	0.09	<10	128	<10	<1	89
5	46405	<5	<.2	3.25	<5	85	10	6.35	<1	36	44	113	7.75	<10	3.90	1542	1	0.02	19	1930	8	25	<20	91	0.12	<10	178	<10	<1	138
8	46406	20	<.2	3.84	<5	460	15	5.51	1	35	38	112	8.23	<10	4.79	1545	<1		17		4	20	<20	114	0.14	<10	233	<10	<1	100
7	46407	775	08	3.51	<5	90	<5	4.95	<1	39	64	2333	9.98	<10	4.21	1284	3	0.02	22		4	20	<20	79	0.13	<10	224	<10	<1	65
8	46408	5	<.2	3 50	<5	95	<5	6.46	1	34	49	717	7.99	<10	4.19	1397	1	0.03	16		2	25	<20	99	0.13	<10	227	<10	<1	69
9	46409	40	<.2	3.10	<5	115	10	6.82	1	29	38	114	8.26	<10	3.57	1265	2	0.02	16		4	20	<20	122	0.13	<10	198	<10	<1	59
10	46410	5	<.2	3 32	<5	125	10	7.09	<1	30	62	82	7.66	<10	3.90	1387	1	0.02	20	2220	6	25	<20	125	0.10	<10	197	<10	<1	64
11	46411	10	<.2	2 93	10	105	<5	4.11	1	24	35	669	6.39	<10	2.88	1066	2	0.02	10	1960	6	20	<20	79	0.07	<10	124	<10	<1	53
12	46 412	>1000	0.6	3.56	<5	80	15	4.07	<1	29	47	61	8.90	<10	3.85	1152	3	0.02	15		4	15	<20	88	0.10	<10	208	<10	<1	60
13	46413	115	<.2	3.37	<5	145	<5	4.95	<1	33	44	301	6.34	<10	3.44	1302	3	0.03	15		10	15	<20	96	0.10	<10	212	<10	<1	59
14	46414	20	<.2	3.71	5	80	<5	5 59	4	34	43	177	9.01	<10	3.74	1337	4	0.04	18		10	15	<20	100	0.11	<10	207	<10	<1	69
15	46 415	5	<.2	3.29	15	95	<5	4.31	6	29	14	268	6.89	<10	3.20	1176	4	0.05	ε	2720	14	15	<20	84	0.10	<10	187	<10	1	55
16	46416	20	<.2	3.42	90	110	<5	3.92	<1	32	29	219	6.98	<10	3.42	1278	1	0.03	14		10	20	<20	73	0.09	<10	137	<10	1	57
17	46417	5	<.2	3.49	10	100	<5	5.30	2	36	40	334	7.04	<10	3.48	1502	1	0.03	17		6	15	<20	98	0.11	<10	188	<10	1	72
18	46416	>1000	<.2	2.62	65	390	<5	3.57	1	108	43	524	9.38	<10	2.42	1186	4	0.01	16		6	10	<20	64	0.11	<10	222	<10	<1	139
19	46419	50	<.2	3.03	45	80	<5	4.23	<1	41	27	168	7.55	<10	2.93	1385	3	0.01	14		12	15	<20	66	0.10	<10	144	<10	<1	164
20	46420	5	<.2	2.91	15	95	10	9.01	3	30	28	77	6.62	<10	2.78	1658	<1	<.01	13	1690	6	15	<20	128	0.12	<10	132	<10	<1	271
21	46421	5	<.2	2.39	15	100	5	6.27	<1	22	25	68	5.17	<10	2.32	1303	<1	<.01	g	1300	4	15	<20	90	0.09	<10	117	<10	<1	191
22	46422	5	<.2	3.71	45	100	5	9.21	1	36	43	132	7.84	<10	3.54	2299	1	0.02	14		8	15	<20	130	0.13	<10	209	<10	2	302
23	46423	10	<.2	3.66	20	70	20	7.32	4	35	24	117	7.99	<10	3.59	1925	2	0.02	13	2290	8	20	<20	106	0.12	<10	232	<10	<1	290
24	46424	15	<.2	3.77	35	130	15	6.69	2	33	49	108	7.84	<10	3.73	1847	4	0.02	15	2190	6	15	<20	107	0.10	<10	237	<10	<1	75
25	46425	5	<.2	3.19	75	105	<5	8.07	<1	41	40	158	7.08	<10	3.25	1859	3	0.02	20	1780	6	20	<20	106	0.09	<10	240	<10	<1	67

TEUTON RESOURCES CORPORATION AS 95-1153

ECO-TECH LABORATORIES LTD.

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Nł	Р	Pb	Sb	\$n	\$r	Ti %	U	v	W	Y	Zn
26	46425 A	5	<.2	3.18	70	100	10	7.44	<1	42	41	154	7.14	<10	3.28	1807	3	0.02	20	1790	6	20	<20	105	0.09	<10	245	<10	<1	67
27	46426	10	<.2	3.50	45	95	15	7.24	1	40	44	161	8.26	<10	3.40	1853	<1	0.03	20	1640	4	20	<20	119	0.16	<10	272	<10	<1	86
28	48427	5	<.2	3.64	55	80	10	6,96	<1	38	45	121	8.13	<10	3.65	1775	<1	0.02	20	1660	4	20	<20	122	0.16	<10	256	<10	<1	81
29	46428	5	< 2	3,48	10	355	10	6.62	<1	37	40	125	7.43	<10	3.54	1695	<1		17		4	15	<20	135	0.17	<10	238	<10	3	76
30	46429	20	<.2	3.34	10	105	<5	6.76	<1	39	43	233	7.82	<10	3.21	1393	<1		18		2	20	<20	136	0.18	<10	197	<10	3	62
	10120	20		0.01		100		0.70			10	200			0.21	1000	- •	0.00		1010	-	10	-10		0.10	-10	1.57		0	UL.
31	46430	55	<.2	3.67	<5	80	15	7.38	<1	19	56	34	9.95	<10	3.63	1477	2	0.01	15	1830	<2	10	<20	159	0.11	<10	217	<10	<1	56
32	48431	525	<.2	3.42	<5	95	5	5.27	2	44	45	124	9.40	<10	3.34	1297	2	0.01	13	1930	4	15	<20	103	0.14	<10	225	<10	<1	73
33	46432	750	<.2		10	80	<5	5.20	<1	56	37	285	5.10	<10	1.92	962	<1		10		4	20	<20	95	0.07	<10	151	<10	<1	79
34	46433	45	<.2	1.82	25	125	5	4.57	<1	13	35	84	3.94	<10	1.46	864		0.03	11	1510	4	15	<20	79	0.04	<10	155	<10	<1	46
35	48434	100	< 2	2.23	25	95	<5	4.60	<1	13	71	132	4.97	<10	1.81	962	_	0.02		1530	6	15	<20	116	0.03	<10	224	<10	<1	52
	-0-04	100		2.25	25	55	-0	4.00	- 1	15		1.52	4.07	-10	1.01	302	5	0.02	10	1000	0	15	~20		0.03	-	227	-10	~1	JZ
36	46435	15	<.2	2.10	15	85	10	3.31	<1	14	38	39	4.25	<10	1.74	766	3	0.04	8	1650	8	15	<20	94	0.02	<10	173	<10	<1	47
37	46436	20	<.2		25	90	<5	5.49	<1	19	40	178	5.10	<10	2.41	1162	4		11		8	15	<20	134	0.02	<10	169	<10	<1	59
38	46437	30	<.2	3.67	10	70	<5	7.22	<1	32	70	80	6.91	<10	4.02	1810	3		22		6	15	<20	173	0.05	<10	285	<10	<1	80
39	46438	35	< 2		10	140	15	7.04	<1	35	73	80	8.11	<10	4.75	1930	3		25		<2	25	<20	213	0.08	<10	291	<10	<1	81
40	46439	55	<.2	3.34	65	85	10	5.62	<1	25	31	71	7.06	<10	3.07	1438	6			1770	10	15	<20	126	0.03	<10	180	<10	<1	66
~~	-0-00	50	£	0.04	~	00		0.02	-1	20	51		, .00	-10	0.07	1-00		0.02	12	1770	10	15	~20	120	0.03	-10	100	10	-1	
41	46440	40	<.2	2.03	40	75	5	3.86	<1	13	34	20	4.26	<10	1.84	834	3	0.03	8	1710	8	15	<20	97	0.02	<10	162	<10	<1	54
42	46441	25	<.2	2.06	35	70	10	414	<1	10	52	39	4.23	<10	1.83	836	2	0.03	6	1630	4	15	<20	124	0.02	<10	188	<10	<1	54
43	48442	45	<.2	1.77	30	105	5	3.69	<1	9	37	38	3.73	<10	1.50	760	2	0.04	6	1630	6	15	<20	99	0.02	<10	172	<10	<1	46
44	46443	40	< 2	1.82	55	80	5	4 02	<1	7	37	36	3.92	<10	1.62	736	2			1600	4	15	<20	74	0.03	<10	182	<10	<1	48
45	48444	25	<.2	1.75	45	60	<5	3 47	<1	7	34	73	3.77	<10	1.61	713	_	0.03	6		4	15	<20	82	0.02	<10	175	<10	<1	45
	10111					•••		•			•••						-	0.00	·		•			-	0.02				-•	
46	46445	20	<.2	2.37	100	75	<5	3.26	<1	11	38	38	4.53	<10	2.20	871	2	0.03	9	1650	8	20	<20	75	0.03	<10	207	<10	<1	64
47	46446	30	< 2	2.17	100	95	5	3 01	<1	10	37	31	4.13	<10	2.06	828	3	0.04	8	1660	16	20	<20	83	0.03	<10	229	<10	<1	60
48	46447	10	<.2	1.87	55	70	<5	367	<1	10	38	47	3.88	<10	1.71	848	1	0.03	9	1610	8	20	<20	89	0.03	<10	189	<10	<1	48
49	46448	60	<.2	2.14	55	80	<5	3.21	1	10	37	40	4.21	<10	2.04	912	3	0.03	7	1680	18	15	<20	91	0.03	<10	205	<10	<1	67
50	46449	360	< 2	2.25	115	95	10	3.19	1	23	39	52	4.60	<10	2.02	894	1		9	1600	10	15	<20	90	0.04	<10	225	<10	<1	53
																			_											
51	46450	45	<.2	2.15	165	90	5	3.15	<1	27	37	32	4.05	<10	1.94	872	2	0.04	9	1740	12	15	<20	72	0.03	<10	235	<10	<1	48
52	46451	30	<.2	2.23	260	70	<5	4.02	<1	29	45	39	4.13	<10	2.14	963	2	0.04	10	1680	12	15	<20	73	0.03	<10	244	<10	<1	51
53	46452	20	<.2	2.08	50	75	5	4.17	<1	11	37	10	3.70	<10	2.01	994	2	0.05	7	1660	6	15	<20	97	0.03	<10	197	<10	2	48
54	46453	15	<.2	2.07	75	65	10	3.71	<1	13	37	15	3.74	<10	2.03	965	2	0.03	10	1730	14	20	<20	84	0.01	<10	209	<10	<1	51
55	48454	120	<.2	2.31	35	85	10	3.54	2	9	39	24	4.57	<10	2.20	1105	4	0.04	9	1760	44	10	<20	89	0.02	<10	212	<10	<1	113
56	46455	70	<.2	3.13	<5	165	5	1.17	2	40	8	101	6.95	<10	2.96	1106	4	0.02	10	2800	10	15	<20	27	0.10	<10	163	<10	<1	97
57	46456	15	<.2	1.73	5	90	10	2.21	<1	21	15	82	5.83	<10	1.67	749	1	0.03	5	1960	4	10	<20	44	0.08	<10	107	<10	<1	53
58	46457	80	<.2	2.00	30	90	5	0.81	1	32	15	115	7.40	<10	1.77	688	3	0.03	7	2190	10	<5	<20	22	0.08	<10	122	<10	<1	56
59	46458	20	<.2	1.79	<5	115	<5	2.10	1	23	28	615	6.46	<10	1.78	767	2	0.03	9	1940	8	<5	<20	44	0.08	<10	134	<10	<1	65
60	46459	15	<.2	3.57	5	595	<5	5.07	1	36	51	694	8.77	<10	4.13	1659	<1	0.03	22	2120	6	20	<20	89	0.15	<10	210	<10	<1	120
61	46460	<5	<.2	3.21	10	65	10	6.54	<1	34	39	98	7.06	<10	4.07	1490	<1	0.04	16	2190	6	20	<20	106	0.13	<10	229	<10	<1	114
62	46461	10	<.2	3.75	5	70	10	6.61	<1	33	41	122	8.06	<10	4.75	1597	<1	0.02	18	2290	6	15	<20	120	0.13	<10	216	<10	<1	96

TEUTON RESOURCES CORPORATION AS 86-1163

ECO-TECH LABORATORIES LTD.

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	81	Ca %	Cd	Co	Cr	Cu	Fa %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	8r	Ti %	U	V	W	Y	Zn
63	46462	180	<.2	3.52	10	60	<5	6.31	1	35	68	228	8.50	<10	4.36	1516	2	0.03	24	2080	4	15	<20	104	0.12	<10	216	<10	<1	77
64	46463	5	< 2	288	<5	55	15	7.49	1	31	55	80	7.52	<10	3.31	1305	2	0.02	18	2150	6	20	<20	125	0.12	<10	181	<10	<1	69
65	46464	380	<.2	3.26	<5	135	<5	5.93	1	33	38	276	8.56	<10	3.51	1263	2	0.02	19	2260	4	20	<20	102	0.12	<10	188	<10	<1	68
66	48465	70	< 2	3.41	95	85	<5	6.27	1	30	47	1095	8.52	<10	3.40	1370	4		16		6	15	<20	131	0.08	<10	143	<10	<1	58
67	48466	10	0.4	3.59	45	195	<5	8.13	1	31	41	661	7.12	<10		1655	<1		16		4	30	<20	162	0.12	<10	220	<10	<1	68
07	-0-00	10	0.4	0.00	Ň	100		0.10	•		-11					1000	- 1	0.00		2200	-				0.12		220			
68	46467	30	<.2	3.44	<5	195	<5	8.75	<1	34	44	180	6.86	<10	3.69	1667	<1	0.03	15	2230	4	25	<20	167	0.11	<10	201	<10	<1	90
69	46468	>1000	<.2	2.68	285	315	15	4.55	<1	210	7	106	6.72	<10	2.44	1082	4	0.03	10	2540	6	20	<20	452	0.07	<10	151	<10	<1	54
70	46469	>1000	2.0	3.42	435	85	15	2.90	<1	141	9	143	11.20	<10	3.20	1165	10	0.02	12	2430	16	5	<20	66	0.05	<10	160	<10	<1	61
71	46470	120	<.2	3.14	135	75	<5	1.27	<1	46	7	288	11.70	<10	2.81	938	17	0.04	7	2420	18	<5	<20	36	0.07	<10	158	<10	<1	56
72	48471	140	<.2	3.84	25	155	<5	2.75	<1	32	9	245	7.87	<10	3.65	1278	3	0.04	8	2780	10	10	<20	58	80,0	<10	205	<10	<1	62
73	48472	35	<.2	3.43	<5	70	<5	5.26	1	40	33	261	7.89	<10	3.23	1565	3	0.03	14	2500	18	20	<20	103	0.11	<10	193	<10	<1	81
74	48473	210	<.2	2.70	820	140	<5	2.47	<1	582	58	361	10.10	<10	2.40	1415	9	< 01	21	1960	12	5	<20	50	0.10	<10	164	<10	<1	302
75	46474	465	1.4	3.26	665	95	5	0.91	<1	82	71	327	> 15	<10	3.05	1648	16	0.03	24	1750	84	<5	<20	24	0.09	<10	159	<10	<1	179
76	46475	310	<.2	3.69	35	130	<5	9.29	1	41	60	127	7.91	<10	3.59	2388	5	0.02	19	1980	16	15	<20	149	0.13	<10	236	<10	<1	216
77	46476	10	< 2	3.09	60	110	5	9.33	<1	32	27	118	7.75	<10	2.88	1926	3	0.02	13	2020	10	15	<20	131	0,11	<10	223	<10	<1	182
							•				-						-												-	
78	46477	10	<.2	2.98	40	85	5	4.99	2	35	12	118	7.56	<10	2.99	1692	2	0.03	12	2100	18	10	<20	78	0.13	<10	225	<10	<1	280
79	46478	30	<.2	3.26	30	80	15	5.73	5	37	13	114	7.98	<10	3.26	2046	3	0.02	13	2260	18	20	<20	85	0.14	<10	269	<10	3	500
80	46479	15	< 2	3.50	35	95	10	5.70	6	34	14	103	8.02	<10	3.53	1997	<1	0.02	12	2240	22	10	<20	91	0.13	<10	238	<10	2	453
81	46480	15	< 2	3.63	225	75	15	6.51	2	39	40	117	9.49	<10	3.52	1709	4	0.02	20	1760	26	<5	<20	101	0.13	<10	245	<10	<1	102
82	46461	5	<.2	3.30	30	85	15	7.76	1	37	43	112	7.50	<10	3.34		3	0.03	19	1860	12	20	<20	123	0.14	<10	225	<10	<1	79
83	46482	20	<.2	3.36	40	140	15	7.72	<1	35	45	107	7.46	<10	3.54	1623	<1	0.03	18	1820	14	20	<20	126	0.19	<10	235	<10	2	75
84	46483	10	<.2	3.91	15	225	15	5.96	1	40	43	126	8.38	<10	4.03	1713	<1	0.03	22	1940	12	30	<20	109	0.21	<10	234	<10	4	95
85	46484	5	<.2	3.19	25	70	<5	5.67	<1	35	34	106	7.31	<10	2.91	1565	1	0.03	14	1710	18	15	<20	93	0.12	<10	168	<10	3	62
86	46485	<5	<.2	2.12	55	50	5	4.19	<1	22	27	56	5.30	<10	1.79	1126	3	0.02	6	1350	16	20	<20	92	0.06	<10	109	<10	1	62
87	46486	10	<.2	4.02	40	75	<5	6.10	<1	40	42	134	9.10	<10	3.90	2027	3	0.02	20	2000	18	15	<20	104	0.10	<10	258	<10	<1	125
					•																									
88	46487	5	<.2	3.89	30	55	15	7.69	<1	39	27	126	6.47	<10	3.81	2203	2	0.02	17	1880	18	15	<20	126	80.0	<10	241	<10	4	104
89	46488	20	< 2	4.01	30	100	<5	5.97	<1	63	37	178	8.57	<10	3.96	2065	3	0.02	21	1960	18	20	<20	107	0.07	<10	239	<10	1	131
90	46489	45	< 2	2.39	40	65	<5	6.38	<1	24	36	141	5.42	<10	2.20	1372	2	0.01	11	1750	16	10	<20	113	0.05	<10	146	<10	2	65
91	46490	20	<.2	4.13	25	75	<5	4.28	<1	42	17	240	9.25	<10	3.95	1820	3	0.02	15	2240	20	20	<20	83	0.07	<10	248	<10	<1	110
92	46491	15	<.2	3.02	25	60	<5	5.60	<1	26	12	116	6.76	<10	2.85	1535	3	0.02	10	1640	14	15	<20	99	0.08	<10	171	<10	з	65
93	46492	5	<.2	3.82	10	70	15	4.99	<1	41	32	118	8.68	<10	3.57	1362	_	0.01		2140	18	15	<20	104	0.10	<10	209	<10	<1	67
94	46493	75	<.2	2.98	55	85	<5	3.95	<1	23	37	156	7,88	<10	2.52	1037	4	0.02	12	1870	20	15	<20	84	0.05	<10	198	<10	<1	69
95	46494	35	<.2	1.88	10	75	5	2.54	<1	11	41	81	4.54	<10	1.72	687	2	0.02	9	1770	12	10	<20	50	0.04	<10	191	<10	<1	62
96	46495	15	<.2	1.99	20	80	<5	3.73	<1	14	44	106	3.93	<10	1.86	835	2	0.04	12	1810	26	20	<20	73	0.04	<10	206	<10	1	57
97	46496	60	<.2	1.89	5	85	10	4.25	<1	24	42	31	3.34	<10	1.86	897	<1	0.05	7	1770	24	25	<20	91	0.05	<10	199	<10	3	45
98	46497	15	<.2	2.32	5	65	5	3.46	<1	18	39	29	4.59	<10	2.28	91 9	<1	0.04		1790	16	15	<20	79	0.07	<10	201	<10	<1	56
99	46498	25	<.2	2.04	80	70	<5	5.38	<1	19	41	66	4.64	<10	1.87	1006	2	0.04	13	1650	18	20	<20	115	0.06	<10	196	<10	<1	44

TEUTON RESOURCES CORPORATION AS 95-1153

ECO-TECH LABORATORIES LTD.

	Et #.	Tag #	Au(ppb)	Ag	Al %	As	Ba	BI	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	NI	P	Pb	Sb	8n	\$r	Ti %	U	<u>v</u>	w	Y	Zn
-	100	46499	70	<.2	1.94	20	80	10	4.40	<1	17	45	18	3.88	<10	1.91	936	1	0.05	10	1690	16	25	<20	114	0.07	<10	197	<10	<1	45
	101	48500	15	< 2	1.95	55	55	5	2.82	<1	19	37	18	3.98	<10	2.15	864	1	0.03	10	1710	20	25	<20	64	0.05	<10	187	<10	<1	65
	102	46501	20	< 2	1.79	30	50	10	5.94	<1	9	39	3	3.26	<10	1.87	1054	<1	0.03	6	1580	14	20	<20	154	0.05	<10	179	<10	3	41
	103	46502	10	<.2	2.12	140	60	10	3.34	<1	26	43	3	3.82	<10	2.32	934	<1	0.03	10	1770	16	20	<20	87	0.06	<10	202	<10	<1	50
	104	46503	15	<.2	2.07	70	60	15	3.07	<1	20	41	3	3.72	<10	2.28	943	1	0.03		1770	18	15	<20	77	0.06	<10	195	<10	<1	48
	104	40303	15	L	2.07	10	00	10	0.07		20		Ŭ	0.72			0.10	•	0.00					-20		0.00					
	I OF	46504	10	- 2	1.84	20	55	15	2.98	<1	8	50	11	3.50	<10	1.94	873	<1	0.03	8	1790	18	20	<20	61	0.05	<10	194	<10	2	47
	105		5	<.2		20	60	10	4.43	<1	7	41	6	3.56	<10	1.92	998	2		-	1730	16	25	<20	99	0.04	<10	191	<10	2	46
	106	46505	-										34								1740	24	20	<20	156	0.03	<10	212	<10	<1	59
	107	46506	10	<.2	2.48	40	75	5	5.20	<1	12	42		4.64	<10	2.32	1232	2							132			189	<10	<1	57
	108	46507	5	<.2	2.26	85	70	10	3.90	<1	13	44	5	3.95	<10	2.24	1104	1		8		18	20	<20		0.03	<10				58
	109	46508	25	<.2	1.94	30	65	10	6.27	<1	10	38	5	3.43	<10	1.96	1288	2	0.04		1600	24	25	<20	126	0.03	<10	179	<10	4	20
				-							-			4.00		4 00	4407	•	0.00	•		40	45		440	0.02	-10	400	-10	- 4	80
	110	46509	30	<.2		25	90	10	4.07	<1	9	41	15		<10	1.99	1137		0.03	-	1740	40	15	<20	118	0.03	<10	188	<10	<1	62
	111	46510	5	<.2	2.01	35	60	5	3.85	2	11	38	18	3.83	<10	1.94	985	1	0.03		1710	48	25	<20	110	0.03	<10	205	<10	<1	79
	112	46511	15	<.2	2.15	5	70	5	4.39	2	5	43	6	3.75	<10	2.12		2		6		32	20	<20	184	0.02	<10	202	<10	<1	90
	113	46512	5	<.2	1.91	35	65	5	4.11	<1	10	42	14	3.30	<10	1.86	1014	2			1740	36	20	<20	141	0.01	<10	180	<10	<1	57
	114	46513	15	<.2	1.96	25	55	5	4.24	1	7	43	20	3.53	<10	1.99	1043	2	0.03	8	1710	30	20	<20	185	0.03	<10	190	<10	<1	62
	115	46514	5	<.2	2.27	75	60	<5	4.07	<1	8	38	16		<10	2.19	1056		0.02		1760	30	25	<20	141	0.02	<10	187	<10	<1	58
	116	46515	10	<.2	1.98	10	65	10	5.28	<1	6	42	7	3.60	<10	1.82	1068	3	0.03	8	1640	16	25	<20	180	0.01	<10	172	<10	<1	55
	117	46 516	5	< 2	2.22	15	85	<5	3.29	1	8	40	25	4.05	<10	1.97	882	3	0.04	10	1780	24	20	<20	119	0.02	<10	179	<10	<1	78
	118	46517	5	<.2	2.42	40	85	15	3.31	<1	10	40	9	4.34	<10	2.25	983	2	0.03	9	1900	24	20	<20	117	0.01	<10	188	<10	<1	73
	119	46516	10	< 2	2.34	90	75	10	3.28	<1	10	42	5	4.44	<10	2.19	970	4	0.03	10	1810	26	20	<20	92	0.01	<10	196	<10	<1	77
	120	46519	20	< 2	2.10	25	55	5	3.97	<1	7	41	7	4.10	<10	1.92	927	3	0.03	9	1790	20	20	<20	142	<.01	<10	190	<10	<1	72
	121	46520	25	<.2	2.21	10	70	10	4 63	<1	7	37	19	4.39	<10	1.97	929	3	0.03	6	1740	16	20	<20	142	<.01	<10	171	<10	<1	77
	122	46521	60	< 2		10	145	20	0.77	<1	65	48	47	11.00	<10	3.91	1314	3	<.01	24	2290	24	<5	<20	16	0.10	<10	152	<10	<1	115
	123	46522	15	<.2	3.35	<5	330	15	2.62	1	42	22	44	8.97	<10	3.31	1243	3	0.01	14		18	15	<20	46	0.08	<10	123	<10	<1	136
	124	46523	80	< 2	1.72	<5	90	15	2.97	1	22	30	29	5.70	<10	1.69	771		0.04		1740	10	10	<20	53	0.07	<10	103	<10	<1	76
	124	-0020	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			-0	50	10						0.10					• .• ·	-						-					
	125	48524	10	<.2	3.18	<5	120	20	1.46	<1	33	38	9	9.26	<10	3.04	1003	3	0.01	15	2130	20	15	<20	31	0.08	<10	163	<10	<1	95
	126	46525	35	< 2	3.63	<5	115	15	4.85	1	35	31		10.30	<10	3.97	1411	1	0.02	18	2310	20	10	<20	81	0.15	<10	237	<10	<1	94
	127	46526	30	1.6	3.78	30	85	<5	6.59	1	40	58	1012	8.30	<10	4.33	1771	2		21		18	35	<20	99	0.12	<10	231	<10	<1	105
	128	46527	70	<.2	2.17	20	190	10	3.14	1	23	30	83	6.33	<10	2.11	682	<1			1630	18	20	<20	69	0.10	<10	122	<10	<1	60
	129	46528	>1000	<.2	2.57	30	295	<5	1.90	1	51	37	221	9.74	<10	2.48	952	4			1480	20		<20	54	0.10	<10	162	<10	<1	72
	29	40020	21000	~.£	2.57	30	230	-0	1.30	'	51	0/	** '	0.14			001	-		•		20	•		•••	••				•	•-
	130	46529	620	1.8	3.41	15	80	<5	3 80	2	38	86	2348	9.78	<10	3.59	1402	2	0.02	27	2270	16	10	<20	68	0.10	<10	202	<10	<1	86
	131	46530	485	0.2		5	105	<5	2.96	2	59	65	1316		<10	3.29	1265	5		18		20	15	<20	82	0.11	<10	189	<10	<1	90
	132	46531	105	<.2		65	140	<5	3.77	5	36	32	433	7.97	<10	3.53	1557	2		12		24	20	<20	80	0.09	<10	154	<10	1	80
	133	46532	15	<.2	3.45	<5	100	10	3.51	5	26	15	70	7.66	<10	3.28	1283	2		6		22	25	<20	68	0.09	<10	160	<10	2	58
			10		3.45	<5	70	15	5.08	2	30	10	32	7.40	<10	3.42	1644	_	0.02	6		22	25	<20	104	0.10	<10	170	<10	2	72
	134	46533	10	<.2	3.57	< 3	/0	13	5.08	2	30	10	52	7.40	-10	3.42	1044	2	0.02	0	2150	~~	25	-20	104	0.10	-10		-10		, 2
	195	40534	45		4.10	15	e 0	F	5.64	2	30	57	123	8.26	<10	4.31	1865	2	0.02	18	2450	22	20	<20	111	0.10	<10	246	<10	<1	82
	135	48534	15	<.2		15	60	5	5.64	2	39	57						-		. –		28	20	<20	115	0.10	<10	240	<10	<1	109
	36	46535	20	<.2	3.97	20	65	<5	6.87	1	40	59	143	8.00	<10	4.10	1919	2	0.04	20	2200	20	20	<20	115	0.13	<10	234		~ 1	109

TEUTON RESOURCES CORPORATION AS 85-1163

ECO-TECH LABORATORIES LTD.

•

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	P	РЪ	Sb	Sn	8r	TI %	U	v	w	Y	Zn
137	48536	35	< 2	4.34	30	80	5	5.42	1	45	59	173	8.59	<10	4.63	2082	2	0.03	21	2520	24	20	<20	102	0.11	<10	310	<10	<1	169
138	46537	25	<.2	3.80	25	50	10	6.80	<1	41	49	175	8.32	<10	3.73	1929	3	0.03	18	2310	22	20	<20	113	0.13	<10	284	<10	<1	98
139	46538	20	<.2	3.85	155	60	20	8.07	<1	41	65	131	10.40	<10	3.74	2226	3	0.03	19	2300	24	10	<20	124	0.10	<10	282	<10	<1	107
140	46539	25	<.2	3.28	85	60	<5	7.41	<1	44	47	148	8.25	<10	3.12	1874	3	0.03	16	2370	30	15	<20	109	0.10	<10	237	<10	<1	93
141	46540	5	<.2	3.92	45	80	<5	7.98	2	42	79	142	9.01	<10	3.79	2281	1	0.02	22	2280	48	10	<20	106	0.13	<10	308	<10	<1	123
142	46541	5	<.2	3.78	30	80	10	7.31	1	44	64	152	9.02	<10	3.65	2218	5	0.02	20	2260	38	<5	<20	92	0.11	<10	274	<10	<1	136
143	46542	10	<.2	3.53	30	65	<5	9.08	2	43	67	219	9.59	<10	3.41	2014	11	0.01	22	2010	24	15	<20	108	0.08	<10	282	<10	<1	91
144	46543	5	<.2	4.18	60	90	5	5.34	1	47	51	167	9.85	<10	4.13	2081	4	0.02	24	2130	38	10	<20	66	0.12	<10	291	<10	<1	127
145	46544	5	<.2	3.85	40	80	<5	6.67	1	48	48	173	9.09	<10	4.01	1836	3	0.03	21	2260	32	25	<20	86	0.12	<10	274	<10	<1	115
146	46545	5	<.2	3.78	85	65	<5	8.81	<1	47	65	188	9.61	<10	3.80	1961	4	0.02	25	2260	32	15	<20	110	0.10	<10	285	<10	<1	91
147	46546	15	<.2	3.36	55	80	<5	9.01	<1	40	49	186	8.82	<10	3.06	1852	5	0.03	19	2200	38	15	<20	105	0.11	<10	266	<10	<1	85
148	46547	15	< 2	3.82	45	70	<5	7.96	<1	39	50	179	9.47	<10	3.65	1827	2	0.02	21	2160	38	20	<20	112	0.11	<10	267	<10	<1	87
149	46548	10	<.2	2.81	55	65	10	5.37	<1	28	41	78	6.04	<10	2.57	1209	<1	0.03	13	2040	32	20	<20	80	0.10	<10	178	<10	<1	64
150	46549	5	<.2	2.21	35	60	10	4.31	<1	23	36	53	4.49	<10	1.98	987	<1	0.03	10	1800	32	20	<20	84	0.07	<10	125	<10	<1	51
151	48550	10	<.2	2.14	40	60	10	4.01	<1	17	38	33	4.72	<10	1.85	923	<1	0.03	9	1830	32	15	<20	59	0.07	<10	144	<10	<1	50
152	46551	5	<.2	2.49	25	60	5	2.94	1	18	40	16	5.26	<10	2.18	955	3	0.03	9	1850	24	20	<20	42	0.07	<10	139	<10	<1	57
153	48552	5	<.2	2.43	15	60	15	3 36	<1	19	38	18	4.96	<10	2.16	918	1	0.03	11	1780	24	15	<20	50	0.08	<10	119	<10	<1	52
154	46553	15	<.2	2.33	5	75	15	3.05	<1	18	38	19	4.68	<10	2.09	864	<1	0.02	9	1810	24	25	<20	52	0.07	<10	119	<10	<1	49
155	48554	10	< 2	2.17	30	55	10	3.91	<1	18	45	31	4.65	<10	1.90	835	3	0.04	9	1800	26	25	<20	89	0.05	<10	153	<10	<1	52
156	46555	5	<.2	2.37	15	70	15	3.74	<1	18	41	23	4.83	<10	2.08	885	<1	0.03	10	1870	24	15	<20	68	0.06	<10	138	<10	<1	56
157	46556	<5	<.2	2.48	30	70	5	2.97	<1	18	38	16	5.12	<10	2.19	871	<1			1790	26	10	<20	69	0.06	<10	132	<10	<1	62
158	46557	205	<.2	2.43	50	75	10	4.65	<1	22	30	80	5.25	<10	1.96	986	2	0.03	9		30	15	<20	69	0.03	<10	131	<10	<1	90
159	46558	>1000	0.4	2 50	80	90	10	4.19	2	24	27	73	6.15	<10	1.83	933	24	0.02	11	2040	56	20	<20	62	0.04	<10	128	<10	<1	108
160	46559	>1000	0.6	3.12	170	120	<5	3 99	<1	53	21	215	8.30	<10	1.77	1033	7		18	2320	48	15	<20	64	0.03	<10	109	<10	<1	261
161	46560	160	<.2	4.15	185	75	15	7.10	<1	49	28	99	9.79	<10	3.40	1432	8	0.02	18	2420	40	15	<20	95	0.07	<10	229	<10	<1	133
162	46561	180	<.2	1.67	430	65	5	7.97	<1	20	41	47	4.29	<10	1.34	910	12	0.03		1820	24	20	<20	102	0.05	<10	160	<10	<1	58
163	46562	65	<.2	3.24	90	60	15	4.18	<1	29	33	106	8.03	<10	3.03	1183	3		17	2220	42	30	<20	79	0.11	<10	254	<10	<1	98
164	46563	110	<.2	4.32	600	65	15	5.99	<1	44	21	75	10.10	<10	4.08	1499	4	0.03	15	2240	40	20	<20	97	0.13	<10	293	<10	<1	100

I

	Auton	A (/4)	Autorb		A1		De	D:	0	~	0	0-	Cu	Fe		Ma	14-	140	Ala -	AII	P	Pb	Sb Sr	n Sr	Ti	υ	v	w	YZ	Zn
12547	Au(op/t)	Au(g/t)	Au(ppb)	Ag 0.3	Al 4.39	As 55	Ba 49	Bi 2	Ca 5.16	Cd 1.2	Co	Cr 17	205	ге 9.31		Mg	Mn 1485	Mo 1	Na 0.01	-	0.14	PD 7	4	120	0.2			2	1/2	2n 93
12548		0.30		0.3		20	95			1.2	+	16		9.92				1	0.01		0,134	10	•	85	0.19			2		128
12549		0.12		0.3	J.54 4	47	77	2		0.9	+	17	530	8.43				1	0.01		0.159			101	0.14			+	-+-	141
12548		0.04		0.3		12	37	2	6.01	0.5		16	157	7.3			1235	1	0.01	+	0.123	7	2	129	0.05		*****	++	-+-	98
12550		0.04		0.3		15	45	+		0.3		17	52	4.3					0.01	+	0.115	7	4	92	0.02					60
12602		0.02		0.3		15	98	+	+	0.4		20		5.28				1	0.01		0.146	5	6	67	0.02			++	-+-	68
12602		0.04		0.3		17	54	2		0.3		12		6.94				1	0.01		0.145	3	3	92	0.02		112	-		84
12603	and a state factors becaute strategy	0.04		0.3		19	29	+		0.6		17	150	7.74	-			1	0.01	-	0.12			136	0.11		203	1		94
12615		0.04		0.3		21	86	2		0.5		22		8.7	+				0.02	-	0.177	9		43	0.15	÷	154	++	+	64
12616		0.54		0.3		20	78			0.5		12	the second se	7.43				1	0.02		0,163	7	4	38	0.15			++	+	56
12617		1.02		0.3		34	98		+	0.4	43			9.34				1	0.01		0.185	+	9	31	0.15			-	-+-	68
12618		0.11	·	0.3		25	90	+		0,5		÷		8.74				1	0.02		0.207	7	9	32	0.16	_	150	1 1		81
12619		0.12		0.3		15	69	+		0.3		22		5.92			758	+	0.04		0.146		6	45	0.13	+	+	++	-	50
12619		0.12		0.3		15	57		2.1	0.3	+	18		5.52		1		+	0.04	-	0.139	+	8	38	0.1	5		++		49
12621		0.08		0.3		12	76	+		3.3		11	84	5.1				1	0.03		0.126		+	51	0.09	+	+	-	-+-	146
12622		0.22		0.3		8	99	+	1	0.4		13		4.12				1	0.05		0.151	6		33		+			-+-	52
12622		0.03		0.3		9	80	÷		0.4	+	13	and the second s	4.33					0.04		0.14	7	3	48	0.09		+		+	46
12623		0.45		0.3	· · · · · · · · · · · · · · · · · · ·	14	82	+	+	0.3	+	12		5.77	+			+	0.04		0.137	7	4	45	0.08	+	+	++	-+	53
12625		0.05	1	0.3		15	155			0.3	+	11	86	7.39	-				0.02			8	7	40	0.1	5	+	++	-+-	69
12626		0.03	1	0.3		30	88			0.4		15		6.67					0.03		0.136		4	58					-+	66
12627		0.58		0.3	3.3	24	200	+	+	1		26		7.69		+			0.01	+	0.176	+	+	74	0.13	-	130	-		95
12628		46.08		1.7		97		19	+	0.8	+	22		14.19				48			0.149		+	36	0.09	+	186	++		122
12629		40.00		7.8	1.05	155		20		0.5	+	36		20.81	7			120		5	0.104	34	+	21	0.05	-		++	\vdash	140
12629		26.7		0.5		118	103		1.38	0.5		17	and the second data in the second data	12.88	+			+	0.01		0.107	20	+	42		+		++	-+-	209
12630		7.24		0.5		83	95		·	0.4	+	33		13.24				3				15		22			165		\vdash	237
12632		12.48		0.3		120	119	+		0.6		20		15.62		+					0.141	32	+	37	0.14			++	·	254
12632A		4.36		0.3		145	122	÷		0.4	+	18	\$	13.17	+			3	+		0.196	+	+	31	0.14	+	152	-	-+	233
126325		5.76		0.3	1.1	271	130	+	-	0.2		19		18.43	+						0.193		+	24	0.15			++	\vdash	119
		14.68		0.3		107	279			0.6		+		14.69				-	0.01		0.147	30		29			185		-+	565
12634	+	0.85		0.4		47	71			0.0				11.17							0.147		+	37	0.12	+	166	++		630
12636		3.69		2.4	2.00	148	921	+			120	+		12.66			+	7		+	0.135	+		44	0.12	+			-+	1164
12637		8.92		4	3.02	102	161	+		12	+			11.66		+		+			0.161	132	+	32	0.1			++	┝─┾	986
				0.3			181	2	2	5.7	+	36		6.84		+			0.05		0.202	-		147	0.48				<u> </u>	287
12638		0.1				47	143	+	+	1.2		37	200		33		791	1	0.06		0.218			76					+	134
12639		0.12		0.3			143	÷	2.22	1.2	the second rates	39		5.35	+		· · · · · · · · · · · · · · · · · · ·	-	0.06	+	0.210	+	+	79		+		- t t		126
12640		0.09		0.3		24		+		+	and the second burgers			5.30 6.75	+				0.06				+	64	0.56	+		+ -+	-+	106
12641		0.05		0.8		35	240	+		2.5		23									0.208		+					· • • • • • • • • • • • • • • • • • • •		100
12642		0.05		0.3		10	94	2		1.5	+	27	199	6.82					0.03	· •				78				-++	∔ <u>↓</u>	
12643		0.04		0.3	4.1	23	106		3.18	1.4		34		7.23		+		+		· • • • • • • • • • • • • • • • • • • •	0.187	22	+	78	+	+=		++	h	117
12644		0.06		0.3	4.18	24	60	2	3.02	1.4	32	48	527	9.63	9	3.71	1264	9	0.02	22	0.214	17	5	10	0.13	5	179	2	L_L	10

	Au(op/t)	Auroth	Au(ppb)	40	AI	As	Ba	Bi	Са	Cd	Co	Cr	Cu	Fe	1.0	Mg	Mn	Мо	Na	Ni	D	Pb	Ch	Sn	e.	Ti	υ	v	w	Y Zn
12645	the second discovery and	0.28		0.4		17	66	2		1.3		3 16		7.94	5	3.42		3	0.01	14	0.171	65	2	50	86	0.13	5	v 91	2	95
12646		0.08		0.3	4.18	22	82	2		1.5		3 19		8.09	6	3.54	1206	4	0.02	15		40	7		69	0.13	5	96		70
12647	+	0.81			4.25	26	78	2		1.5		34		9.38	7	3.58		1	0.01	21	0.176	28	2		69	0.16	5	144	2	65
12648		0.36		0.3		24	60	2	3.52	1.2		56		9.82		3.37	1074	3	0.01	23	0.169	20	3		70	0.17		166	+	61
12649		0.31		0.3		10	44	2	4.95	0.8		3 75		10.14	15	3.94	1421	4	0.01	16	0.159	3	2		100	0.12	5	202	1	79
12650		0.26		0.3		39	66	2	1	1.7	-	60	+	11.98	7	3.96		3	0.01	18	0.172	11	4		23	0.15	5	167	2	65
12651		0.05		2.4	4.44	41	132	2	1.18	1.7		22	1	8.85	8	3.66		4	0.01	16	0.22	15	2		39	0.14	5	109	+	69
12652		2.25		0.3	4.07	62	80	2	4.53	1.1		45		8,17	5	3.38		4	0.02	20	0.179	59	3		92	0,19	5	154	++	128
12653		0.04		0.3	4.25	75	56	2	7.3	1.4		5 57		7.99	4	3.79	+	2	0.02	19	0.159	12	3		155	0.25	-	210	-	109
12654		0.23		0.3	5.16	40	51	2	4.8	0.5		55		8.82	2	5.05		1	0.02	21	0.179	9	2	1	124	0.25	5	255	· • • • • • • • • • • • • • • • • • • •	97
12655		0.03		0.3	4.71	37	152	2	6.01	0.8	+	55		8.48	2	4.28	1675	1	0.02	18	0.177	3	2		137	0.24	5	240		84
12656		0.29		1.8	4.7	359	24	2		3	+	58		15.83	4	3.83	1350	16	0.01	23	0.164	80	18		32	0.15	5	184	2	123
12657		0.12		1.5	4.03	163	37	2	7.57	1.7	10	36	524	11.28	3	3.07		3	0.01	22	0.153	20	3	1	138	0.09	5	202	++	70
12658		0.07		1.1	3.52	67	30	3	5.94	0.7		11	272	8.09	3	3.02	·	2		12	0.17	14	7		124	0.02	5	196	++	62
12659		0.06		0.9	4.75	70	74	2	3.6	0.6		2 37		9.03	3	4.28	1372	1	0.02	16	0.179	7	7		91	0.09	5	241	2	80
12660		0.02		0.3	4.71	57	40	2	4.53	0.3		45		8.52	1	4.51	1438	1	0.02	19	0.175	3	2	†	100	0.21	5	243		80
12661		0.03		0.3	4.31	55	35	2	4	0.4		14		8.8	4	3.61	1265	1	0.02	9	0.192	3	2		86	0.15	5	249	+	66
12662		0.07		1.8	3.31	135	40	2	0.84	0.7	52	2 23	1014	12,57	3	2.05	705	5	0.01	19	0.182	20	5		26	0.01	5	141	2	47
12663		0.06		0.3	2.66	70	92	2	0.9	0.4	17	30	159	5.89	8	2.12	682	1	0.04	10	0.159	4	8		33	0.02	5	171	2	47
12664		0.03		0.3	2.05	26	45	2	3.1	0.2	11	37	169	4.78	3	1.79	627	1	0.03	8	0.133	3	2		82	0.06	5	157	2	44
12665		0.04		0.3	2.21	29	44	2	3.08	0.3	16	36	170	5.06	2	2	649	1	0.04	11	0.136	3	3	1	69	0.11	5	164	2	46
12666		0.03		0.3	2.3	48	56	2	2.1	0.3		36		5.15	3	1.99	615	1	0.03	13	0.141	3	4		56	0.1	5	163	2	45
12667		0.04		0.3	3.18	49	33	2	2.16	0.4	29	23	225	7.39	3	2.74	774	1	0.02	14	0.151	3	7		49	0.13	5	208	2	54
12668		0.51		0.3	3.27	69	49	4	2.18	0.4	64	16	482	8.92	5	2.85	874	3	0.02	14	0.164	4	6		42	0.14	5	205	2	98
12669		0.28		0.3	2.94	49	38	2	3.45	0.4	36	22	225	6.89	4	2.56	847	1	0.02	11	0.144	3	2		61	0.08	5	189	2	53
12670		0.09		0.3	4.34	56	42	2	5.26	0.8	17	61	238	8.54	6	3.6	1376	1	0.01	16	0.15	3	5		85	0.08	5	214	2	84
12671		0.02		0.3	4.76	49	45	2	3.9	0.4	25	36	171	8.44	5	4.17	1415	1	0.02	14	0.171	3	2		75	0.05	5	227	2	147
12672		0.08		0.3	5.07	57	51	2	1.97	0.5	24	60	192	9.86	8	4.25	1355	1	0.01	20	0.178	3	3		44	0.06	5	234	2	103
12673		0.07		0.3	4.25	141	81	2	0.81	0.4	36	30	444	10.27	11	2.98	1137	2	0.01	13	0.174	4	6		25	0.02	5	159	2	61
12674		0.06		0.3	4.63	148	68	2	0.66	0.5	40	21	557	11.93	23	3.15	1077	2	0.01	12	0.176	3	13		22	0.04	5	178	2	53
12675		0.05		0.3	5.05	143	76	2	0.71	0.7	34	21	427	12.14	8	3.73	1313	3	0.01	19	0.179	3	13		26	0.05	5	200	2	70
12676		0.11		0.3	2.65	97	66	2	2.26	0.4	18	29	240	6.09	8	2.5	941	4	0.02	14	0.153	5	9		43	0.08	5	207	2	55
12677		0.08		0.3	2.04	68	54	2	3.05	0.3	16	32	255	5.02	11	1.82	765	3	0.01	10	0.142	6	5		54	0.04	5	176	2	60
12678		1.06		0.3	4.09	139	77	2	2.33	0.6	81	25	559	9.34	9	3.51	1216	11	0.01	21	0.142	21	6		45	0.03	5	222	2	155
12679		1.82		0.3	2.8	108	57	5	3.13	0.6	65	22	359	6.38	6	2.66	881	11	0.01	15	0.129	14	5		59	0.03	5	178	2	81
12680		0.09		0.3	3.57	67	61	2	1.5	0.2	19	17	171	7.03	8	3.22	772	3	0.01	13	0.128	3	3		36	0.1	5	210	2	63
12681		0.1		0.3	2.43	19	93	2	4.75	1.4	22	15	728	7.31	5	2.17	1128	1	0.03	12	0.169	5	9		64	0.15		156		65
12682		0.11		0.3	1.73	16	65	2	4.07	0.9		12	281	5.37	4	1.5	827	1	0.03	7	0.148	8	6		65	0.14	5	127	2	40
12683		0.06		0.3	1.67	11	311	3	3.55	0.5	34	12	185	4.49	3	1.52	784	1	0.03	5	0.138	3	7		70	0.11	5	93	++-	47

 $(i_1, \ldots, i_n) = (i_1, \ldots, i_n$

PAMPIE	Autonth	A (~ /h)	Automb	A	A.	1		D:	0-	0.1	0.	0	-	P -				1			_								10	
12684	Au(op/t)	Au(g/t) 2.52	to the set of the case manimum	Ag 0.3	AI 1.38	As 35	Ba	h	Ca	Cd	Co	+	Cu	Fe		Mg	Mn	Mo		Ni		Pb	Sb S	Sn 1		Ti			VY	
12685		0.36		0.3	+	÷	193 286	2	2.47 1.26	0.4	120	15	147 77	4.27 4.98	4		+		0.02	7	0.131	5	6 5			0.07	5		2	45
12686		0.12		0.3	* • • • • •	+	82	2		0.9		14	126	4.98					0.03		0.134	4	5		32	0.1	5			56
12687		0.04		0.3	÷========	+	104	2		0.9		11	128	4.00	5				0.03		0.132	3 5	3			0.09	5		2	52
12688		0.03		0.3		16	70			0.6		14	87	5.12		1.78			0.04	8	0,133	3	3		53 53	0.11	5 5		2	39
12689	h	0.02	+	0.3	··· · · · · · · · · · · · · · · · · ·	12	95		2.46	0.3		14	78	4.4	5	1.70	***		0.04	8	0.14	3	7			0.12	5		2	42
12690	<u>+</u>	0.03	+	0.3		+	94		2.31	0.4		14	101	4.09		1.4	632		0.05	5	0.14	3	7		54	0.12	5		2	30
12691		0.06		0.3		+	60			0.3		16	÷	4.63	+			1	0.08	6	0.146			+		0.14	5		2	44
12692		0.07	+	0.3		a contract and the second second	81	4		0.3	h	16		5.86				1	0.02	6	0.140		7	+		0.06			2	52
12693		0.13	+	0.3		19	52			0.2		14	123	7.32				1	0.02	8	0.130		5	-+		0.00	+		2	70
12694		2.52	 March 10 March 10	0.3		· · · · · · ·	55			0.6		12		6.65			942	1	0.02		0.157	8	6	+		0.12	+		2	54
12695		65.28		1.8		+	71		2.13	0.7	+	42		13.89			688	15		8	0.113	26	46			0.14			2	100
12696		11.36		0.3		4 - 1	109	2			143	+	242	8.38				2		12		- 20	14	+	+	0.14			2	209
12697	<u>├</u>	36.72	4 · · · · · · · · · · · · ·	0.3		÷	77	2	3.02		158	+	415	10.59	+			8		13	0.153			+		0.14			3	115
12698	L	54.25	+ + +	0.3		** * *	89	3			117	+	260	19.77		k	639	10			0.155	37				0.13			6	218
12699		6.52	+	0.3		+	88			0.4	•	+	139	10.39				1	0.01	÷ •			14	-+		0.15			2	344
12700		1.05	÷	2.2		• • • • • •	65		1.13	2.4		22	2853	10.26	+			2	+			4	11			0.13			2	107
12701		0.51			3.66		64	2	1.35	3.4	·	42		10.64				2		++	0.16	4				0.14	A		2	56
12702		0.48	d		3.26	t	119	2	1.68	1.9		32	+	9.46				1	0.01		0.157	6	7			0.13			2	58
12703	<u>├</u>	0.25	4 e	0.3		·	67	2	2.14	0.7		34	636	10.19	÷			1		12	0.159		13			0.13			2	61
12704		0.32		1.2		57	157	2		0.8		27	1629	9.62	+	+		1	0.01		0.167		15			0.13			2	88
12705		0.12	+	0.3		67	458	2			132	÷	358	10.15				2			0.169	14	2		76	0.1			2	136
12706		16.96		5.1			96	2	1.4	4.7		16		12.36	+ wi	1.46	+	39		7	0.166					0.08			3	122
12707		6.48	+	8			109	2	0.65	8.9		·	13269	10.85				48	+	25	0.189	21	17			0.08			2	219
12708		0.18	++	0.5	2.56	23	132	2	2.37	1	21	÷	674	6.11				2		++	0.22	9	7			0.55			2	111
12709		0.06	4	0.3		17	124	2	2.45	0.5		40	205		+	2.05	+	3			0.228	14	4			0.58			2	113
12710		0.13		0.3			85	2		8.6		44	583		16		1032	1	0.02		0.201	22	5			0.27			2	101
12711		0.09	÷	0.4		30	116	2	2.44	1		44	2360	7.97	7		1013	3	0.02		0.149	18	2			0.13			2	69
12712		0.05	1	0.3	2.84	9	190	2	5.26	1.1	the state of the s	33	260	6.54	7		1172	5			0.169		2	+-	112	0.1			2	81
12713		0.34		0.3	3.67	75	130	2	2.13	0.7		30	468	9,49	9		1104	1	0.01	15	0.173	18	4	+-		0.15			2	202
12714		1.81		3.1	3.09	383	105	2	1	1.4	368	÷ •	7343	10.72	13	pr. as	889	3		24	0.14	6	2	+	25	0.1			2	289
12715		78.4		4.7	2.07	141	86	15	0.89	0.4		17	735	13.52			689	6		7	0.086	5	13		24	0.07			5	87
12716		34.56	i i 1	3.7	1.65	·	89	8	0.79	1.3		12	1543	10.25		1.15	482	1	0.01	8	0.073	3	26		18	0.1		*****	2	75
12717		7.04		0.5	2.38	48	78	2	1.52	0.7	54	23	852	8.09	13	1.9	704	1	0.01	13	0.109	6	11	+-		0.11			2	92
12718		0.26		0.3		14	65	2	1.58	0.3	27		496	9.52	+ +		967	1	0.01			3	3	+		0.13			2	81
12719		0.48		3.3		40	81		0.87	1.6	59		4360	10.7	8	2.75	867	2			0.152	3			an na da ba	0.17		· · · · · · · · · · · · · · · · · · ·	2	83
12720		0.82		0.3	3.68	43	77		0.57	0.6		49	1464	14.22			690	2	0.01			7	2			0.21			2	73
12721		0.21		0.3		35	78	2	0.66	1.6	64		685	13.34			842		0.01			17	4	+		0.17	· · · · · · · · · · · ·	**************************************	2	71
12722		0.08			2.83	23	241		2.34	1.6		17	1906	7.53		2.35		in			0.168	30	4			0.14		· · · · · · · · · · · ·	2	58

0.01/01/0	A	A	A			L		-	-		-	-										L		_			1			
SAMPLE 12723	Au(op/t)		Au(ppb)		AI 3.02	As 52	Ba		Ca	Cd	Co	Cr	Cu	Fe		Mg	Mn	Mo	Na	+	P	Pb	÷	Sn		Ti		V		Zn
12723		0.06		0.3	3.02	52 52	324 47	2	4.83	0.6 0.7	61 59	32 28	421 420	5.74 6.88	5 3	2.51 2.56	1180 1119	1	0.01	15 14	0.15 0.142	5	2			0.12		110 140	2	98
12725		0.11		0.3	2.55	30	42	2	-	0.4		43	420	5.01	2	2.38	854		0.01	+	0.142	5							2	63
12725A		0.81		0.3	1.75	43	41		3.21	0.4	25	+	58	3.76	2	1.59	511		0.01	+ i	0.107	3	4		54	0.07	• • • • • • • •	163 151	2	38
12726		0.49		0.3	2.27	52	33	2		0.4	35	+	193	5,45	4	1.99	635		0.02	****	0.107	7	2		61	0.07	5	163	2	45
12727		0.04		0.3	4.01	26	21	2		0.5		93	83	7.05	3	3.81	1112		0.03	21	0.132	3			79	0.03	5	216	2	40
12728		0.04		0.3	3.9	12	20		4.76			71	99	7.88	2	3.36			0.01		0.132	3	-		90	0.15		217	2	48
12729		0.03		0.3	3.85	27	32		5.15			62	162	7.28	2		1103		0.02		0.123	4			94	0.13		212	2	55
12730		0.26	<u> </u>	0.3	3.96	30	26	2		0.5	+	64	249	7.64	5	3.24	1109	1	0.01		0.132	3			86	0.14		203	2	63
12731		0.22		0.3	3.38		58		4.05	0.7		42	170	6.96	9	2.78	823		0.01	+	0.123	3	+		83	0.11	+	188	2	49
12732		0.04		0.3	4.04	37	49		2.46	0.6	harmon	21	90	7.44	5	3.3	921	1	0.01	+	0.136	3	+			0.07		158		60
12733		0.78		0.3	2.99	37	37		4.32	0.5		24	159	5.85	3	2.68	985	1	0.01	÷	0.115	4				0.08	∔	159	2	53
12734		0.64		0.3		32	62		2.09	0.6			295	6.82	4	1.9	774	- 1	0.02		0.121	6			38	0.00	+	141		54
12735		0.32		1		26	69	4	1.57	0.7	1. a #1. m	13	795	5.48	5	1.32	579	1	0.05	÷ ·	0.124	4	+		32		5	103	2	59
12736		0.92		0.3		42	84	-5	1.22	0.2	1	+	93	5.72	6	1.19	525		0.03	8	0.128	6			27	0.1	5	94	2	96
12737		3.15		0.3		84	126	2	2.04	0.9		÷	120	7.42	6	1.09	552	1	0.01	6	0.128	19	+		54	0.09		122	2	63
12738		0.05		0.3		37	121	2	0.78		163	+	122	4.84	5	1.43	529	1	0.03	···· -··	0.14	6				0.09		77		82
12739		0.07		0.3		26	68	2	0.78	0.4			59	5.15	7	1.68	598	- 1	0.03	÷	0.161	4	7		20	0.14	5	75	2	86
12740	······	1.54		0.3		49	79	2		0.3		14	92	4.93	6	0.8	452		0.01		0.112	8			39	0.09	5	81	2	37
12741		0.08		0.3	·	22	64	2	1.24	0.3		12	81	5.9	7	1.82	687		0.03	÷	0,153	6	+			0.13	+		2	65
12742	••••••••••••••••••••••••••••••••••••••	0.04		0.3		14	76		1.22	0.3		11	97	5.47	6	1.8	686	1	0.03	9	0.151	9			28	0.15		93	2	68
12743		0.06		0.3	2.15	19	93	2	1.04	0.5		12	97	7.09	7	1.89	709	1	0.02		0.146	5				0.15				92
12744		0.04		0.3	1.96	9	193	2	1.68	0.2		11	93	4.78	5	1.7	658	1	0.02	7	0.141	5			45	0.13		84	2	61
12745	• • • • • • • • • • • • • • • • • • •	0.04		0.3	2.01	12	114	2	1.84	0.5	20	11	116	4.92	6	1,55	627	1	0.04	9	0.15	5	4		42	0.17	5	90	2	45
12746		0.03		0.3	2.16	4	82	2	3.37	0.4	27	10	98	4.58	5	1.65	778	1	0.04	10	0,145	4			90	0.13	5	82	2	65
12747		0.02		0.3	2.01	4	138	2	2.21	0.4	15	11	202	4.43	4	1.7	676	1	0.04	8	0,144	3	3		51	0.12	5	79	2	44
12748		0.02		0.3	2.14	9	129	2	1.63	0.4	÷	10	194	4.89	6	1.76	567	1	0.04	9	0.161	3	2		41	0.14	5	93	2	44
12749		0.68		0.3	1.8	13	530	2	1.8	0.4	14	11	316	5.29	5	1.51	557	1	0.05	8	0,136	6	6		50	0.13	5	100	3	34
12750		0.26		0.3	3.03	9	80	2	2.98	0.6	50	10	107	6.72	6	2.82	893	1	0.02	12	0.166	3	3		60	0.16	5	144	2	56
12751		1.08		0.3	3.36	13	78	2	3.58	0.6	39	32	101	7.45	5	3.12	1048	1	0.02	16	0.161	7	5		64	0.15	5	164	2	55
12752		0.56		0.3	3.76	44	114	2	1.07	0.7	82	10	104	6.97	8	3.34	1039	1	0.01	10	0.203	23	2		28	0.15	5	135	2	57
12753		0.35		0.3	3.09	21	76	2	2.72	0.6	82	7	82	6.66	8	2.96	1067	1	0.02		0.18	5	2		55	0.14	5	145	2	69
12754		0.07		0.3	2.87	19	77	2	3.62	0.8	22	20	155	6.61	4	2.7	1043	1	0.02			23	2		70	0.18		146	2	63
12755		0.06		0.4	3.5	46	24	2	3.46	4.1	24	21	1939	6.91	5	3.1	1230	1	0.03		0.184	27	2			0.17	5	158	2	72
12756		0.08		0.3	3.49	37	70	2	3.77	2	25	51	556	6.67	5	3.02	1373	3	0.02		0.169	42	2		64	0.18	5	145	2	74
12757		0.04		0.3	1.56	9	1207	2	4.31	0.6		10	101	3.74	3		845	1		7	0.112	4	2		83	0.11	5	83		47
12758		0.05		0.3	2.29	23	89	2	3.56	0.6		12	69	5.23	5		1001	1	0.02	-		8	11		57	0.13	5	86		108
12759		0.1		0.5	1.96	28	94	2	5.25	0.7		16	393	4.95		1.57		1	0.02		0.128	3	h		79	0.12	5	92		67
12760		0.29			2.32	15	63	2	4.04	0.4		10	99	5.31	6		1013	1			0.144	3	2			0.15	5	97		88

	A	Autot	Automb	100	AI	A.	Ва	D:	Са	Cd	Co	Cr	Cu	Fe	1.0	Ma	Mn	Мо	No	Ni	D	Pb	Sb Sr	0.	Ťi	υ	v	WY	Zn
SAMPLE 12761	Au(op/t)	Au(g/t)	Au(ppb)	Ag 0.3		As 13	Ба 78	2		0.5	14	+	89	4.15	Lа 6	Mg 1.68	739	MO 1	Na 0.02	7		5		43		5	v 69	2	99
12762		0.02		0.3		15	100	2		0.6	26	+	89	7.13	6		1137		0.02	13		4		71			114	2	120
12762		0.03		0.3		18	77		2.04	0.0		29	140	8.23	7			1	0.01					46			149	2	76
12764		0.04		0.3		17	77	2		0.7		42	159	9.54	5	+	1181	1		22	0,136	8		61	0.21		186	2	73
12765		0.12		0.3		15	86	2		0.8	26	+	101	8.83	6	÷			0.01	20	0.132			84	0.2	9	187	2	76
12766		0.02		0.3		5	76	2		0.5		12	441	6.77	5		1153	- 1	0.02		0.17	3		83	+ · · · · · · · · · · · · · · · · · · ·		201	2	82
12767		0.12		0.3		9	49	2		0.4		28	140	7.35	6		1267	1	0.02			3		69			231	2	107
12768		0.01		0.3		18		2		0.3		38	43	5.1	36		875	1		+ +	0.197	11	4	80		+	110	2	110
12769		0.01		0.3	·	16	154	2		0.5		43	27	5.25	39		902	1	+	÷ +	0.202		7	88			109	2	112
12770		1.45		1		28	75	2		0.6		36	226	9.37			1173		0.01	•+	0.16	+	2	58	····		191	2	8
12771	+	0.04		0.3	+	9	26	2		0.4		47	430	7.23	4		1356		0.02	22	0.158	4		58		+	189	2	123
12772		0.03		0.4		9	106		5.78	0.5		46	605	5,96	5		1426	1	+ · · · · · · · · · · · · · · · · · · ·		0.139			107			170	2	120
12773		0.61		0.6		8	50	÷	5.09	0.7		24	374	5,63	5		1121	1			0.136	3		85			133	2	64
12774		1.82		0.7		8	62		2.31	0.3	·	17	140	5.41	-		790	1		7	0.136	4	2	45			105	2	6
12775		0.06		0.3		10	36	2		0.7		23	223	7.11	6		1551	1		20	0.125	3	2	89	+	+	161	2	18
12776		2.7		3.1	T 1 1 1 1 1 1 1	10	50	2		2		23		5.69	2		1252		0.01		0.109	5	5	108		÷		2	214
12777		0.46		0.3		45	567			1.2		20		6.75	4			1			0.131	5	6	97	+	+	164	2	374
12778	∳	0.21	• • • • • • • • • • • • • • • •	0.3	• • • •	20	888	2		0.4	43		268	5.1			871	1			0.116	9	3	70	+		116	2	31:
12779		0.09		0.3	+	11	243	2		0.5	19	<u> </u>	201	5.44	1	2.08		1	+		0.108	3		68	+		131	2	201
12780	• ·	0.05		0.3	+	11	88			0.7	26	+		6,1	5			1			0.172	3		56		+	135	2	194
12781	+	0.4		0.4	3.21	37	66	2	3.85	1.4		16		7.15	5		1101	1	0.01	11	0.149	8	2	70	0.2	+	158	2	13
12782		0.06		0.3	÷	23	42		6.4	1.3		25		6.02	4	2.19		1	0.02	13	0,106	11	4	99	0.19	5		2	70
12783		0.02		0.3	+ · · · · · · · · · · · · · · · · · · ·	10	32	·		3.8		11	162	3.2	5	1.32	967	1	0.02	6	0.084	22	2	142	0.02	9	99	2	4
12784		0.03		0.3	3.97	29	47	2	5.71	0.7	24	19	210	6.95	2	3.4	1326	1	0.01	16	0.13	11	2	107	0.23	5	207	2	10
12785		0.03		0.3	4.03	30	29	2	4.52	0.6	22	23	84	6.6	3		1268	1	0.01	13	0.156	5	2	79	0.17	+	161	2	104
12786		0.03		0.3	4.04	42	24		3.57	0.8	28	+	196	7.24	4	3.48	1352	1	0.01	21	0.132	5	2	63	0.02	5	202	2	9
12787		0.05		0.3	4.12	45	23	2	1.36	0.7	29	16	205	7.85	6	3.81	1173	1	0.01	23	0.132	3	2	33	0.02	5	249	2	92
12788		0.02		0.3	3,76	33	95	2	3.77	0.6	25	15	99	7.08	4	3.41	1277	1	0.01	20	0.127	3	2	81	0.02	5	228	2	8
12789		0.02		0.3	4.08	43	49	2	5.69	0.6	and the second second	17	120	7.34	6	3.64	1701	1	0.01	24	0.131	3	3	109	0.1	5	261	2	7
12790		0.04		0.3	3.87	43	57	2	6.59	0.3	25	15	99	6.86	5	3.49	1654	1	0.01	22	0.118	3	2	156	0.11	5	249	2	7
12791		0.05		0.5	4.18	49	52	2	4.67	0.8	35	21	389	8.99	4	3.72	1495	8	0.01	24	0.109	7	2	92	0.05	5	266	2	7
12792		0.04		0.3	4.27	32	48	2	4.97	1	30	24	143	7.6	3	4.15	1598	1	0.01	27	0.122	3	2	112	0.12	6	261	2	9
12793		0.04		0.3	4.53	20	31	2	2.49	0.5	33	41	132	8.34	4	4.93	1217	12	0.01	31	0.132	3	4	62	0.06	5	268	2	90
12794		0.02		0.3	2.28	18	30	2	0.81	0.2	19	13	61	4.66	16	2.18	651	1	0.03	7	0.104	5	6	18	0.01	5	133	2	7
12795		0.17		0.3	2.39	26	37	2	0.98	0.2		20	151	6.27	14	2.17	717	11	0.02	11	0.101	7	6	21	0.03	5	150	2	8
12796		0.05		0.4	<u> </u>	30	27	2	1.1	0.6	31	24	238	8.47	7	3.94	1009	3	0.01	28	0.122	3	2	26	0.03	5	254	2	9
12797		0.02		0.4	3.24	32	21	2	3.99	0.4	25	16	245	6.8	7	2.91	1299	4	0.02	11	0.149	5	2	75	0.1		198	2	10
12798		0.36		0.3		21	102			0.2	127		127	6.83	8	2.18	831	1	0.03	14	0.163	5		33	0.15		118	2	9
12799		0.02		0.3		17	94		1.66	0.4		10	126	5.33	7		736	1	0.03			3	6	35	÷			2	9

SAMPLE	Au(op/t)		Au(ppb) Ag	AI	As			Ca	Cd	Co	Cr		+ f	La	Mg	Mn	Мо	Na	Ni		Pb	Sb S	Sn Sr	Ti	U	+	WY	Zn
12800		1.06	0.4			87	2		0.2	412		97	6.51	8		778	1	0.03	14		6	8		7 0.1		5 111	2	178
12801		1.46	0.6	1.72	102	114		0.77	0.2	254	A	223	12.69	12		521	2	0.01	12	0.112	14	18		1 0.1	5 5	5 171	6	120
12802		0.38	0.3	1.6	16	136		1.26	0.2	·	19	110	4.63	6	1.3	503	1	0.02	7	0.137	3	4		0.0	9 5	5 88	2	60
12803		0.26	0.3		53	237		1.11	0.2	173	16	99	5.98	9		506	1	0.02	10	0.139	5	3	3	1 0	1 5	5 104	2	63
12804		0.05	0.3		25	106		1.25	0.3	60	15	81	4.81	7	1.35	489	1	0.03	8	0.129	3		1	8 0	1 :	5 90	2	50
12805	 	0.81	0.3		39	85	2		0.2	16	17	138	6.41	12		595	1	0.02	4	0.137	5	5	4	1 0.1	2 5	5 121	2	54
12806		0.94	0.3	2.05	39	109	2		0.2	85	14	101	6.59	8	1.63	650	1	0.01	8	0.142	6	5		2 0.1	3 5	5 103	2	147
12807		0.12	0.5	1.57	16	100	2	2.74	0.7	34	5	178	2.73	3	0.94	561	1	0.01	6	0.122	6	3	4	6 0.0	7 6	5 44	2	79
12808		0.04	0.3	1.53	15	116	2	2.18	0.4	12	7	70	2.82	5	0.85	485	1	0.03	4	0.13	5	3	3	5 0.0	8 8	3 48	2	58
12809		0.65	0.3	1.57	6	90	2	1.89	0.2	22	5	29	3.04	3	0.92	450	1	0.02	4	0.127	3	2		8 0.0	7 10	46	2	102
12810		0.03	0.3	1.42	20	117	2	2.34	0.4	7	5	45	2.59	5	0.79	511	1	0.03	3	0.132	4	5		1 0.0	9 7	46	2	54
12811		0.03	0.3	1.35	12	100	2	2.46	0.3	19	6	29	2.93	4	0.72	452	1	0.03	5	0.122	3	2	4	9 0.0	8 11	50	2	80
12812		0.03	0.3	1.21	10	148	2	2.19	0.2	15	8	23	2.92	4	0.67	421	1	0.03	4	0.126	6	2	4	5 0.0	8 10	46	2	76
12813		0.06	0.3	1.35	10	134	2	2.09	0.3	18	5	36	3	4	0.76	439	1	0.03	4	0,131	5	2	3	9 0.0	9 5	47	2	97
12814		0.02	0.3	1.5	11	108	2	2.17	0.2	14	5	29	3.01	2	0.96	503	1	0.02	4	0.122	3	2		7 0.0	9 :	45	2	83
12815		0.03	0.3	1.45	15	366	2	3.31	0.3	19	7	37	3.24	5	0.99	614	1	0.03	4	0.129	3	8	1	9 0.0	8 8	56	3	71
12816		0.02	0.3	1.6	14	127	2	1.58	0.2	18	6	33	3.81	5	1.19	536	1	0.03	5	0.137	4	6		3 0.1	1 :	62	2	67
12817		0.03	0.3	0.98	12	59	2	2.81	0.2	6	9	40	3.38	4	0.68	422	1	0.05	3	0.124	3	4	4	8 0.0	7 :	67	3	33
12818	l	0.01	0.3	1.38	12	101	2	3.48	0.3	5	5	30	3.41	4	1.01	585	1	0.04	4	0.124	5	2	1	6 0	1 8	67	2	42
12819		0.02	0.3	1.59	12	90	2	2.55	0.4	10	6	45	3.08	4	1.2	589	1	0.03	3	0.123	3	6		6 0.0	8 8	46	2	104
12820		0.04	0.3	1.6	11	981	2	2.64	0.3	14	6	57	3.19	3	1.21	622	1	0.02	4	0.119	5	8	6	6 0.0	7 6	55	2	148
12821		0.02	0.3	1.58	10	125	2	1.58	0.3	7	5	32	2.55	3	1.07	474	1	0.02	3	0.132	3	6	1	1 0.0	8 5	40	2	132
12822		0.02	0.3	1.76	12	95	2	1.2	0.2	7	7	28	3.22	4	1.21	480	1	0.03	3	0.136	3	7	1	6 0.0	9 8	50	2	129
12823		0.18	0.3	1.59	18	75	2	2.2	0.2	26	9	48	4.25	4	1.28	589	1	0.03	5	0.137	3	4	4	2 0.1	1 :	71	2	152
12824		0.06	0.3	1.45	10	90	2	1.95	0.2	12	10	39	3,47	4	1.14	532	1	0.04	3	0.126	3	2	4	2 0.0	8 5	62	2	120
12825		0.07	0.3	1.71	11	87	2	1.62	0.2	7	10	197	3.38	6	1.28	549	1	0.03	3	0.131	9	4		7 0.0	9 :	59	2	148
12826		0.05	0.3	1.73	16	128	2	1.25	0.2	7	14	47	3.5	5	1.4	555	1	0.03	6	0.125	5	6		1 0.0	8 5	64	2	161
12827		0.1	0.3	1.57	15	72	2	1.42	0.4	8	13	57	3.38	5	1.18	500	1	0.04	5	0.131	5	5	3	2 0.0	9	66	2	144
12828		0.04	0.3	1.61	15	94	2	1.15	0.2	9	12	50	3.74	5	1.33	518	1	0.05	4	0.131	6	6	3	1 0.0	9 :	5 71	2	129
12829		0.15	0.3	1.64	18	73	2	1.11	0.3	48	10	85	3.89	5	1.29	517	1	0.04	3	0.131	5	6	2	6 0.0	9 5	67	2	193
12830		0.17	0.3	2.3	21	69	2	3.18	0.9	42	13	92	4.59	4	1.99	857	1	0.02	6	0.134	5	6	7	4 0.1	3 5	82		195
12831		0.03	0.3	3.25	12	30	2	6.98	0.8	24	55	105	5.83	4		1518	1	0.02	19	0.139	3	2	Ę	6 0.1	5 5	147	2	114
12832		0.07	0.3	2.92	28	67	2	3.83	0.8	45	15	78	7.13	5	2.64	1096	1	0.01	13	0.136		9	5	9 0.1			2	210
12833		0.02	0.3	1.79	8	79	2	2.55	0.6	16	+	34	2.98	3		558	1	0.01	6	0.127	6	2		0 0.		48	-	250
12834		0.21	0.3	1.83	66	73	2	2.46	1.6	21	10	268	3.26	5		712	1	0.02	4	0.127	3	14		2 0.0		· · · · · · · · · · · · · · · · · · ·	+	250
12835		0.03	0.3		8	612	2	1.69	0.5	21		256	4.1	4		731	1	0.03	2	0.127	4	5		0 0.0			f f	305
12836		0.06	0.3		11	456	2	1.99	0.5		12	582	3.99		1.24	667	2	0.02	4	0.12	3	7		4 0.0		1	· · · · · · · · · · · · · · · · · · ·	238
12837		2.85	1.4	+	108	206	4	3.43	1.8	149	÷	926	3.98		0.63	621	2		4	0.113	11			8 0.0			+ -+	312
12838		0.05	1.2		78	224	2	1.55	12.3		15	1192	4.15	6	+	639		0.02	4			12		7 0.0	-+	+	+ · · · · · · · · · · · · · · · · · · ·	265

SAMPLE	Au(op/t)	Au(g/t)	Au(ppb)	Αα	AI	As	Ba	Bi	Са	Cd	Co	Cr	Cu	Fe	La	Mg	Mn	Мо	Na	Ni	P	Pb	Sb	Sn	Sr	Ti	U	v	WY	Zn
12839	//d(op/t)	0.02		0.4		+	294	2	1.11	23.9	29			4.42	5	1.23	761	11	0.02	4	0.079	157	3	511	29	0.08			2	221
12840		0.02		0.4		+	530	2	2.15	3.8	44			3.81	5	1.15	794	5	0.03	5	0.078	80	2		58	0.1	5		+	241
12841		0.05		1.8	1.47	4	65	2	2.36	7.6	16	22	3935	3.58	5	1.06	744	4	0.02	3		44	2		42	0.08			++-	153
12842		0.06	+	5.2	1.42	6	71	2	2.84	2.2	14	16	· · · · · · · · · · · · · · · · · · ·	3.72	4	0.95	704	4	0.03	3	0.076	41	5		56		5		2	154
12843		0.05		11.1	1.74	8	143	2	3.24	2.3	14	+	6253	4.21	4	1.26	798	1	0.02	3	0.074	14	2		54	0.09			2	169
12844		0.03		1.7	1.68	6	54	2	2.37	1.3	13	15	2286	3.77	5	1.2	742	3	0.02	3	0.078	48	2		41	0.11	5		2	122
12845		0.02		0.3	2.23	9	52	2	2.94	0.5	16	13	401	4.49	7	1.65	893	1	0.02	8	0.093	19	2		67	0.13			2	155
12846		0.02		0.3	2.3	13	148	2	2.72	0.4	11	38	32	4.83	34	1.82	770	1	0.05	28	0.204	9	5		103	0.52	5	98	2	101
12847	1	0.02		0.3	2.29	12	98	2	2.63	0.3	11	37	21	4.83	32	1.81	762	1	0.05	30	0.207	11	5		92	0.49	5	94	2	100
12848		0.01		0.3	2.27	8	195	2	2.55	0.3	12	35	19	5.16	33	2.12	847	2	0.05	30	0.204	8	4		142	0.5	5	107	2	100
12849		0.01		0.3	3.73	14	76	2	5.69	0.9	28	16	111	6.99	1	3.47	1519	1	0.01	23	0.115	7	2		140	0.23			2	82
12850		0.02		0.3	2.42	19	46	2	3.77	0.7	11	13	44	4.48	5	1.97	1140	1	0.03	6	0.125	7	2		57	0.08	5	93	2	58
12851		0.02		0.3	1.77	19	197	2	3.93	0.5	8	10	42	3.58	4	1.29	935	2	0.03	2	0.128	6	2		64	0.03	5	64	2	46
12852		0.02		0.3	1.93	14	54	2	3.65	0.6	9	15	50	3.61	3	1,43	892	2	0.03	4	0,126	3	2	-	60	0.04	5	57	2	50
12853		0.03		0.3	2.05	14	150	2	2.88	0.9	9	8	137	3.94	4	1.47	816	1	0.02	2	0,134	11	4		52	0.03	5	55	2	61
12854		0.03		0.3	2.01	3	73	2	2.79	0.6	10	8	96	3.36	5	1.31	625	1	0.02	3	0.139	9	5		51	0.02	5	38	2	119
12855		0.03		0.3	1.54	8	68	3	2.73	2.6	13	10	147	3.17	3	0.92	590	6	0.03	3	0.137	27	4		63	0.04	5	42		218
12856		0.04		0.3	1.8	18	71	2	1.85	0.4	11	9	269	3.96	3	1.15	611	4	0.03	3	0.146	8	4		49	0.07	5	51	2	57
12857		0.02		0.3	1.73	15	69	2	2.95	0.6	9	9	74	3.55	5	1.06	620	3	0.04	2	0.143	4	3		70	0.02	7	47	2	4(
12858		0.03		0.3	1.86	10	63	3	2.28	0.5	9	12	79	3.89	5	1.17	599	3	0.04	3	0.139	5	2		55	0.01	5	55	2	46
12859		1.42		1.1	1.75	45	81	2	3.39	0.4	39	8	107	4.28	5	1.08	680	3	0.03	3	0.129	11	5		73	0.01	5	50	3	65
12860		0.72		3.3	2.37	89	89	3	2.31	1	174	6	1879	4.65	5	1.63	895	1	0.02	5	0.131	3	5		49	0.01	5	55	2	182
12861		0.18		2.2	1.81	107	157	2	0.76	0.9	61	12	390	3,61	12	1.1	442	2	0.02	3	0.105	5	8		25	0.01	5	44	3	139
12862		0.02		0.8	2.01	10	159	2	0.47	0.4	33	6	153	3.04	8	1.51	366	1	0.02	3	0.139	8	5		20	0.01	5	32	2	65
12863		0.62		2	1.83	46	77	3	0.51	0.5	96	14	353	3.54	14	1.18	329	2	0.01	4	0.114	6	9		15	0.01	5	34	2	127
12864		0.02		0.3	1.77	5	61	2	3.04	0.5	31	11	87	3.43	14	1.1	688	1	0.02	4	0.087	8	2		67	0.03	8	38	2	111
12865		0.05		0.6	1.66	16	81	2	2.3	0.5	43	17	104	3.52	11	1.03	588	2	0.02	3	0.089	7	7		58	0.03	7	40	2	111
2865A		0.1		2	1.64	47	85	2	1.72	0.8	61	12	343	2.93	12	1.02	423	1	0.01	5	0.105	7	9		33	0.01	5	26	2	115
12866		0.06		0.6	1.56	8	81	2	2.79	0.5	25	7	146	2.39	5	1.02	710	4	0.02	3	0.135	13	2		61	0.01	6	27	++ · ·	71
12867	-	0.02		0.3	1.86	15	67	2	2.69	0.8	13	7	102	3.15	3	1.29	763	2	0.02	4	0.132	18	6		60	0.01	5	39	2	43
12868		0.01		0.3	2.01	7	968	2	3.29	0.4	14	5	19	2.98	6	1.48	760	1	0.02	2	0.131	6	5		114	0.01	5	29	2	50
12869		0.01		0.3	1.92	7	68	2	2.53	0.2	17	6	34	2.81	6	1.41	623	1	0.02	3	0.138	6	3		66	0.01	5	35	2	56
12870		0.01		0.3	1.86	6	70	2	2.89	0.2	27	5	33	2.58	6	1.32	632	1	0.02	3	0.137	5	2		71	0.01	5	30	2	58
12871		0.01		0.3	1.51	10	59	2	3.23	0.2	24	7	46	2.67	4	1.08	584	1	0.04	4	0.134	6	2		86	0.01	5	40	2	54
12872		0.01		0.3	1.58	7	74	2	3.01	0.3	14	7	53	2.38	6	0.99	523	1	0.04	4	0.144	8	2		84	0.01	5	38	2	49
12873		0.01		0.5	1.83	12	194	2	2.1	0.5	13	5	74	2.52	6	1.18	508	1	0.01	1	0.136	17	2		+	0.01	5	32		65
12874		0.02		0.4	2.03	27	159	4	0.64	0.6	15	14	62	3.26	6	1.33	341	2	0.02	3	0.139	12	3			0.01	6		2	72
12875		0.02		0.3	1.66	20	82	2	2.5	0.8	16	7	88	2.73	3	1.08	459	1	0.02	3	0.134	6	3		+-	0.01	5			56

509-675 W. HASTINGS STREET VANCOUVER, B.C. V6C 1N2

ATTENTION: DINO CREMONESE

Received 226 Core samples.

PROJECT #: none given

SHIPMENT #: none given

P.O.#: none given

Metallic screen checks requested December 20, 1995

			Au	Au	Au	Au
	ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)
	10	6069	11.94	0.348		
	30	11767	1.81	0.053	-	-
	31	11768	18.03	0.526	31.37	0.915
	70	11806	1.46	0.043	-	-
	86	11822	3.84	0.112	-	-
	87	11823	1.93	0.056	-	-
	116	46586	1.04	0.030	-	-
	118	46588	36.63	1.068	50.23	1.465
	119	46589	47.42	1.383	47.03	1.372
	120	46590	2.31	0.067	-	-
	148	46618	1.59	0.046	-	-
	149	46619	4.02	0.117	-	-
	179	46653	1.64	0.048	-	-
	188	46662	2.98	0.087	-	-
	190	46664	12.06	0.352	-	-
	196	46670	2.31	0.067	-	-
	197	46671	11.43	0.333	-	-
	199	46673	1.25	0.036	-	-
	204	46678	1.09	0.032	-	-
,	212	46686	1.02	0.030	-	-
	00/04	* • •				

<u>QC/DATA:</u>

Standard: STD-M

-

3.20 0.093

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/95Teuton#3

22-Dec-95

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone 604-573-5700 Fax : 604-573-4557 TEUTON RESOURCES CORPORATION AK 95-1183 509-875 W. HASTINGS STREET VANCOUVER, B.C. V6C 1N2

ATTENTION: DINO CREMONESE

Received 226 Core samples. **PROJECT #: none given SHIPMENT #: none given**

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	Ai %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	TI %	U	V	W	Y	Zn
1	6060	60	<.2	1.92	210	55	5	5.25	<1	16	22	34	3.46	<10	1.57	868	1	0.01	1	1480	6	15	<20	133	<.01	<10	102	<10	<1	64
2	6061	170	<.2	1.80	90	45	5	4.85	<1	8	22	26	3.56	<10	1.33	798	2	0.01	1	1480	8	10	<20	129	<.01	<10	96	<10	<1	67
3	6062	5	<.2	2.01	40	45	5	6.59	<1	11	28	11	3.41	<10	1.76	1009	2	0.02	3	1480	6	15	<20	147	0.01	<10	133	<10	2	95
4	6063	160	<.2	1 93	100	65	10	4.95	<1	12	19	32	3.81	<10	1.65	829	2	0.02	<1	1410	14	15	<20	106	<.01	<10	116	<10	<1	74
5	6064	915	<.2	2.05	1280	55	10	5.19	<1	38	16	31	3.97	<10	1.55	895	3	0.02	<1	1350	8	10	<20	137	<.01	<10	84	<10	<1	62
6	6065	510	< 2	2.27	175	60	5	5.78	<1	9	13	38	4.20	<10	1.72	949	4	0.02	<1	1340	8	10	<20	105	<.01	<10	86	<10	<1	67
7	6066	160	0.2	2 21	160	70	<5	3.99	<1	14	20	52	4.00	<10	1.73	793	7	0.02	1	1500	8	15	<20	80	<.01	<10	80	<10	<1	72
8	6067	80	0.6	2.05	380	50	<5	2.98	<1	14	33	72	4.08	<10	1.75	687	8	0.02	4	1520	24	5	<20	68	<.01	<10	145	<10	<1	77
9	6068	60	< 2	2 28	490	90	5	5.73	<1	19	25	60	4.16	<10	1.98	996	3	0.03	3	1560	12	20	<20	95	<.01	<10	135	<10	<1	66
10	6069	>1000	2.6	2.60	8840	60	<5	5.85	<1	498	22	183	5.48	<10	2.11	1211	82	0.02	4	1780	10	20	<20	121	0.01	<10	156	<10	<1	97
11	6070	60	0.4	2.09	535	65	<5	4 54	<1	38	42	45	3.68	<10	1.92	869	9	0.03	12	1450	10	15	<20	101	0.01	<10	151	<10	<1	83
12	6071	890	06	2.22	2390	65	<5	2.87	<1	103	30	208	4.13	<10	1.90	737	6	0.02	5	1550	16	15	<20	82	<.01	<10	121	<10	<1	92
13	6072	10	<.2	2.12	95	60	<5	4.81	<1	14	14	28	3.73	<10	1.68	909	3	0.02	3	1500	8	20	<20	121	0.01	<10	77	<10	<1	59
14	11751	120	0.4	2.05	35	260	<5	3.72	<1	36	12	94	5.38	<10	1.92	1070	<1	0.02	1	2030	6	5	<20	69	0.10	<10	119	<10	<1	48
15	11752	10	<.2	2.27	5	115	<5	1.87	<1	34	13	77	6.16	<10	2.15	921	2	0.03	5	2190	8	20	<20	38	0.09	<10	116	<10	<1	50
16	11753	80	< 2	1.82	10	475	5	1 80	<1	57	21	70	5.09	<10	1.72	707	<1	0.03	2	1890	6	15	<20	4 4	0.08	<10	98	<10	<1	40
17	11754	20	<.2	1.98	<5	90	5	0.94	<1	48	12	52	5 40	<10	1.90	706	<1	0.04	<1	1870	4	<5	<20	22	0.07	<10	110	<10	<1	43
18	11755	115	< 2	2.00	<5	95	10	0.80	<1	32	13	73	6.50	<10	1.81	662	2	0.04	3	2080	6	<5	<20	19	0.07	<10	117	<10	<1	49
19	11756	5	<.2	1.78	<5	105	<5	0.86	<1	18	12	44	5.30	<10	1.66	595	1	0.05	1	2050	6	<5	<20	22	0.08	<10	106	<10	<1	37
20	11757	125	<.2	1.97	10	205	<5	1.56	<1	27	9	139	5.93	<10	1.83	745	<1	0.03	1	2210	4	<5	<20	38	0.09	<10	121	<10	<1	41
21	11758	90	<.2	1.97	10	120	10	2.18	<1	22	7	116	7.22	<10	1.87	806	2	0.03	3	2270	4	<5	<20	53	0.10	<10	146	<10	<1	42
22	11759	5	< 2	2.25	<5	80	10	3.16	<1	23	9	104	6.09	<10	2.20	983	1	0.03	5	2330	4	15	<20	60	0.10	<10	119	<10	1	44
23	11760	5	<.2	2.04	<5	70	<5	3.46	<1	22	9	168	5.70	<10	2.00	919	<1	0.03	3	2230	4	15	<20	67	0.11	<10	120	<10	1	41
24	11761	5	<.2	2.04	<5	70	<5	3.88	<1	20	7	90	5.33	<10	1.98	939	<1	0,03	2	2150	6	10	<20	72	0.10	<10	100	<10	1	42
25	11762	5	<.2	2.22	<5	90	<5	3.50	<1	21	14	90	5.41	<10	2.16	939	<1	0.03	3	1980	8	10	<20	85	0.10	<10	107	<10	<1	59

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

Values in ppm unless otherwise reported

TEUTON RESOURCES CORPORATION AK 95-1183 509-875 W. HASTINGS STREET VANCOUVER, B.C.

V6C 1N2

ATTENTION: DINO CREMONESE

Received 226 Core samples. PROJECT #: none given SHIPMENT #: none given

TEUTON RESOURCES CORPORATION AK 95-1183

ECO-TECH LABORATORIES LTD.

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	P	Pb	Sb	Sn	Sr	Ti %	<u> </u>	<u>v</u>	w	Y	Zn
26	11763	5	<.2	3.70	10	550	10	7.49	<1	33	36	78	7.91	<10	4.12	1632	<1	0.02	12	2010	8	20	<20	150	0.15	<10	218	<10	<1	103
27	11764	5	< 2	3.74	5	70	5	7.93	<1	36	30	94	7.57	<10	4.17	1562	<1	0 02	10	2310	6	25	<20	165	0.12	<10	215	<10	<1	111
28	11765	5	<.2	2.53	<5	80	5	8.16	<1	25	17	74	7.14	<10	2.62	1210	<1	0.02	6	1780	2	10	<20	145	0.12	<10	162	<10	<1	53
29	11766	70	<.2	2 89	<5	100	10	7.26	<1	29	23	106	7.47	<10	2.85	1295	2	0.02	10	2050	6	10	<20	134	0.10	<10	165	<10	<1	60
30	11767	>1000	0.4	3.31	500	105	<5	3.51	<1	392	55	671	9.53	<10	3.45	1141	4	0.01	12	1950	26	5	<20	75	0.10	<10	208	<10	<1	69
31	11768	>1000	0.6	3 85	<5	150	<5	3.31	1	82	30	208	9.67	<10	3.87	1287	5	0.01	12	2430	6	5	<20	71	0.10	<10	209	<10	<1	100
32	11769	10	<.2	2.68	25	50	<5	3.77	<1	29	3	555	6 63	<10	2.51	980	3	0.03	3	2610	4	15	<20	71	0.10	<10	144	<10	<1	49
33	11770	25	0.4	2 43	65	95	<5	3.62	<1	27	5	723	6.34	<10	2.25	868	3	0.03	4	2680	4	20	<20	69	0.10	<10	146	<10	<1	42
34	11771	5	< 2	2.89	<5	65	5	2.83	<1	27	7	92	6.42	<10	2.77	953	2	0.02	3	2800	6	15	<20	59	0.09	<10	138	<10	1	45
35	11772	5	<.2	2 57	<5	190	<5	3 04	<1	26	<1	217	6.42	<10	2.29	851	3	0.04	1	2770	14	10	<20	73	0.13	<10	169	<10	2	42
36	11773	45	< 2		15	70	<5	4.52	<1	31	<1	398	5. 88	<10	2.24	1007	7	0.04	<1	2690	12	20	<20	87	0.10	<10	148	<10	1	40
37	11774	20	<.2	2 91	10	50	<5	3 61	<1	34	<1	443	6.26	<10	2.69	1050	3	0.03	<1	2890	24	15	<20	68	0.09	<10	145	<10	1	47
38	11775	25	<.2	3.60	35	80	<5	2.68	<1	34	<1	251	6.81	<10	3.43	1167	2	0.03	<1	3070	12	20	<20	53	0.08	<10	167	<10	<1	59
39	11776	25	< 2	3.48	70	75	<5	2 05	<1	28	<1	102	6.35	<10	3.27	1160	1	0.03	<1	2920	10	25	<20	43	0.09	<10	152	<10	3	62
40	11777	15	< 2	3.64	35	85	<5	2.68	<1	34	<1	86	7.13	<10	3.54	1196	<1	0.03	2	2950	8	20	<20	56	0.10	<10	182	<10	<1	68
41	11778	100	<.2	3.90	15	70	<5	5.72	<1	35	45	138	7.33	<10	3.90	1608	<1	0.02	7	2290	4	10	<20	103	0.14	<10	165	<10	<1	95
42	11779	50	< 2	3.41	70	70	<5	5.84	<1	32	15	188	6.56	<10	3.21	1623	2	0.02	3	2510	24	20	<20	102	0.07	<10	148	<10	2	77
43	11780	25	<.2	3.67	85	120	<5	5.70	<1	34	107	191	7.52	<10	3.73	1685	3	0.01	18	2030	22	25	<20	95	0.07	<10	163	<10	<1	69
44	11781	10	< 2		<5	75	10	5.60	<1	29	40	92	7.39	<10	3.86	1317	<1	0.02	8	2220	8	15	<20	109	0.11	<10	215	<10	<1	64
45	11782	5	<.2	3.23	30	75	<5	7.24	<1	32	94	101	7.16	<10	3.98	1390	<1	0.02	17	1870	2	20	<20	141	0.12	<10	217	<10	<1	60
46	11783	20	< 2	3.14	20	35	5	6.60	<1	32	50	96	7.10	<10	3.91	1394	1	0 02	9	2180	2	10	<20	125	0.12	<10	222	<10	<1	63
47	11784	15	<.2	2.96	15	45	<5	6.70	1	31	22	87	6.91	<10	3.43	1402	<1	0.02	8	2290	4	20	<20	113	0.11	<10	186	<10	<1	78
46	11785	15	< 2	2.71	45	65	<5	4.81	<1	28	25	181	6.43	<10	2.96	1127	<1	0.01	8	1900	8	20	<20	80	0.13	<10	145	<10	<1	81
49	11786	5	<.2	3.69	15	45	<5	6.12	1	37	53	166	7.15	<10	4.40	1717	<1	0.02	13	2410	6	25	<20	107	0.13	<10	219	<10	<1	111
50	11787	60	< 2	2.78	10	45	<5	3.59	<1	41	12	97	6.86	<10	3.19	1093	<1	0.02	2	2480	6	15	<20	87	0.11	<10	192	<10	<1	57
51	11788	15	<.2	2.98	20	50	<5	4.38	<1	27	<1	52	7.21	<10	3.40	1108	3	0.02	3	2570	8	25	<20	68	0.10	<10	198	<10	2	48
52	11789	10	<.2	3.13	5	55	15	2.40	<1	36	<1	35	7.46	<10	3.47	1060	1	0.02	<1	2840	8	15	<20	56	0.10	<10	183	<10	<1	57
53	11790	40	<.2	2.86	10	50	<5	3.62	1	54	19	662	7.10	<10	3.24	1173	<1	0.02	5	2440	8	10	<20	73	0.13	<10	197	<10	<1	66
54	11791A	45	<.2	3.50	20	50	5	7.16	<1	34	45	68	6.79	<10	4.39	1839	<1	0.02	16	1830	6	30	<20	127	0.16	<10	223	<10	<1	88
55	11791	20	<.2	3.65	25	40	<5	5.64	<1	39	51	316	7.39	<10	4.50	1677	<1	0.02	15	2070	8	20	<20	102	0.16	<10	226	<10	<1	84
56	11792	10	<.2	3.94	10	215	5	6.43	1	40	55	95	7.48	<10	4.90	1929	<1	0.02	16	1890	6	20	<20	138	0.17	<10	250	<10	<1	104
57	11793	20	<.2	4.23	<5	415	<5	5.70	3	43	55	155	8.08	<10	4.75	1988	2	0.02	20	1840	6	20	<20	129	0.14	<10	268	<10	<1	98
58	11794	15	< 2	4.17	25	280	5	7 41	2	36	65	108	7.55	<10	4.53	2136	2	0.02	22	1950	38	15	<20	172	0.15	<10	267	<10	<1	89
59	11795	25	< 2	3.90	20	110	<5	3.48	2	42	25	291	7.88	<10	3.87	1627	2	0.02	16	2120	130	15	<20	76	0.16	<10	286	<10	<1	114
60	11796	25	1.0	4.06	<5	185	<5	5.22	3	31	29	857	7.98	<10	3.98	1983	3	0.02	19	2100	88	10	<20	127	0.15	<10	279	<10	<1	112

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

Values in ppm unless otherwise reported

TEUTON RESOURCES CORPORATION AK 96-1183

TEUTON RESOURCES CORPORATION AK 95-1183

509-675 W. HASTINGS STREET VANCOUVER, B.C. V6C 1N2

ATTENTION: DINO CREMONESE

Received 226 Core samples. PROJECT #: none given SHIPMENT #: none given

ECO-TECH LABORATORIES LTD.

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	P	Pb	Sb	Sn	Sr	TI %	U	<u>v</u>	W	Y	Zn
61	11797	15	<.2	397	20	90	<5	4 27	11	37	21	184	7.97	<10	3.96	1845	3	0.02	15	2110	90	20	<20	104	0.15	<10	269	<10	<1	79
62	11798	15	2.0	3,97	15	70	<5	5.66	6	36	25	1683	7.21	<10	4.08	2094	2	0.02	11	2120	60	20	<20	137	0.14	<10	232	<10	<1	185
63	11799	20	< 2	3 83	10	65	<5	3 62	11	29	29	480	8.69	<10	3.34	1677	9	0.01	18	2220	80	10	<20	89	0.12	<10	193	<10	<1	183
64	11600	10	< 2	3.74	45	75	<5	8.29	23	26	20	263	8.24	<10	3.39	2018	5	0.01	11	1890	66	15	<20	168	0.13	<10	205	<10	<1	82
65	11801	10	< 2	3 89	30	65	<5	5.07	1	37	22	170	8.28	<10	3.63	1743	3	0.02	20	2010	10	10	<20	108	0.16	<10	229	<10	<1	64
66	11802	250	< 2	3.86	250	60	15	4 34	<1	32	47	68	9.26	<10	3.68	1488	3	0.01	15	1900	34	<5	<20	94	0.12	<10	196	≺10	<1	77
67	11803	245	< 2	3 40	25	70	<5	5.52	3	39	12	235	7.01	<10	2.90	1382	2	0.02	12	2030	22	<5	<20	118	0.12	<10	173	<10	<1	180
68	11804	345	< 2	4.12	15	65	<5	2.94	1	33	24	403	8.52	<10	3 63	1361	4	0.01	15		32	10	<20	64	0.09	<10	168	<10	<1	161
69	11805	150	< 2	4 72	95	330	<5	5.95	<1	78	20	171	9.11	<10	4.22	1751	4	<.01	17	2100	22	15	<20	135	0.08	<10	197	<10	<1	230
70	11806	>1000	< 2	4 08	120	135	<5	6.53	<1	96	34	523	9.24	<10	3.66	1695	4	<.01	24	1490	12	5	<20	122	0.11	<10	234	<10	<1	114
71	11807	260	<.2	4.56	90	80	<5	8.82	2	39	35	435	9.89	<10	4.23	2244	3	<.01	22		34	10	<20	157	0.13	<10	279	<10	<1	84
72	11808	5	<.2	4 83	20	60	20	7.96	1	42	41	78	8 81	<10	4.72	2389	<1	0.01	23	1790	18	15	<20	150	0.17	<10	372	<10	<1	74
73	11809	5	<.2	5.13	90	60	10	7.17	<1	38	33	87	9.79	<10	4.96	2291	2	<.01	23	1670	26	10	<20	133	0.13	<10	355	<10	<1	92
74	11810	40	<.2	1.72	15	65	<5	4 32	2	11	23	77	3.42	<10	1.43	933	2	0.03	<1	1670	10	15	<20	84	0.04	<10	108	<10	<1	47
75	11811	10	< 2	2.10	55	110	<5	1.34	3	22	11	83	4.77	<10	1.64	787	4	0.04	<1	1890	14	10	<20	30	0.04	<10	109	<10	<1	60
76	11812	740	0.6	2.24	105	75	<5	4 28	<1	83	13	418	6.00	<10	1.74	1023	4	0.02	3	1760	38	5	<20	79	0.05	<10	111	<10	<1	72
77	11813	10	<.2	1.88	20	60	<5	2.51	1	16	10	121	4.12	<10	1.42	790	4	0.04	<1	1840	10	10	<20	46	0.06	<10	77	<10	2	63
78	11814	5	<.2	1.98	20	55	<5	1 68	<1	15	13	110	4.48	<10	1.48	765	7	0.03	<1	1970	10	5	<20	33	0.05	<10	70	<10	<1	61
79	11815	125	< 2	1.91	5	80	<5	1.73	<1	14	5	77	3.90	<10	1.37	729	2	0.02	<1	1800	8	10	<20	43	0.03	<10	60	<10	1	68
80	11816	25	<.2	1.81	<5	65	<5	2.96	1	12	10	69	3.67	<10	1.29	800	3	0.03	<1	1780	10	10	<20	68	0.03	<10	57	<10	2	59
81	11817	20	< 2	1.79	5	65	<5	2.82	<1	13	6	81	3.90	<10	1.23	768	5	0.03	<1	1740	10	5	<20	68	0.01	<10	64	<10	<1	55
82	11818	15	<.2	1.98	60	45	<5	5.99	<1	15	23	63	3.65	<10	1.49	1089	4	0.02	<1	1530	6	15	<20	198	0.01	<10	74	<10	<1	60
83	11819	100	<.2		235	45	<5	4.95	<1	35	23	25	3.31	<10	1.78	942	2	0.02	<1	1530	6	25	<20	95	0.01	<10	161	<10	<1	74
84	11820	140	< 2		145	45	<5	4.25	<1	20	29	64	4.41	<10	2.11	934	3	0.02	3	1650	6	15	<20	141	0.02	<10	171	<10	<1	70
85	11821	125	<.2		195	55	<5	5.20	<1	24	30	97	3.94	<10	1.62	965	7	0.01	5	1520	8	15	<20	193	<.01	<10	147	<10	<1	71
86	11822	>1000	1.6		2600	55	<5	6.50	<1	191	29	535	6.23	<10	1.76	1215	11	0.01	6	1690	10	20	<20	151	0.01	<10	192	<10	<1	73
87	11823	>1000	0.4	213	600	65	<5	6.05	<1	56	18	134	4.56	<10	1 69	1140	9	0.02	2	1480	8	15	<20	118	0.01	<10	158	<10	<1	88
88	11824	435	<.2	2.08	450	50	<5	5.75	<1	37	27	53	3.75	<10	1.88	1111	5	0.02	<1	1560	12	20	<20	116	0.01	<10	159	<10	<1	79
89	11825	495	<.2		250	50	<5	4.41	<1	28	20	81	3.95	<10	1.71	903	4	0.02	1	1530	12	10	<20	94	0.01	<10	166	<10	<1	71
90	11826	80	<.2		120	45	<5	6.04	<1	37	22	109	6.57	<10	3.01	1371	6	0.02	10	1790	10	25	<20	123	0.04	<10	249	<10	<1	73
91	11827	40	<.2		265	40	<5	7.38	<1	55	14	181	9.03	<10	4.08	1971	17	0.02	12	2270	16	10	<20	147	0.05	<10	342	<10	<1	87
92	11828	25	<.2		215	45	<5	6.73	<1	49	40	175	8.31	<10	4.26	1829	30	0.03	12		14	20	<20	159	0 05	<10	328	<10	<1	85
93	11829	40	<.2	3.24	170	35	<5	4.28	<1	35	24	119	6.86	<10	2.99	1363	15	0.02	8	1660	20	20	<20	124	0.03	<10	235	<10	<1	69
94	11830	40	< 2	4.53	140	65	10	6.97	<1	39	6	150	8.99	<10	3.93	1927	17	0.02	6	2160	22	10	<20	206	0.03	<10	303	<10	<1	104
95	11831	50	<.2	3.50	195	50	<5	7.65	<1	33	7	150	7.96	<10	2.86	1718	37	0.02	6	2290	22	15	<20	239	0.03	<10	267	<10	<1	89

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

Values in ppm unless otherwise reported

TEUTON RESOURCES CORPORATION AK 95-1183

TEUTON RESOURCES CORPORATION AK 96-1183

509-675 W. HASTINGS STREET VANCOUVER, B.C. V6C 1N2

ATTENTION: DINO CREMONESE

Received 226 Core samples. **PROJECT #: none given SHIPMENT #: none given**

ECO-TECH LABORATORIES LTD.

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Tł %	U	<u>v</u>	W	Y	Zn
96	46564	65	< 2	2.95	145	55	15	5 53	<1	26	18	46	6.14	<10	2.51	1138	3	0.02	5	1760	10	15	<20	88	0.08	<10	226	<10	<1	67
97	46565	140	<.2	1 98	180	50	<5	5.44	<1	20	27	124	4.92	<10	1.58	850	16	0.02	12	1490	12	20	<20	100	0.04	<10	144	<10	<1	50
9 8	46566	135	< 2	1.96	220	60	<5	3 41	<1	19	33	99	4.31	<10	1.66	768	3	0.02	9	1530	12	20	<20	68	0.06	<10	165	<10	<1	55
99	46567	270	<.2	2 37	235	50	<5	4.95	<1	25	34	137	5.37	<10	2.00	960	7	0.02	14	1710	12	15	<20	78	0.05	<10	158	<10	<1	45
100	46568	30	< 2	2 92	150	45	<5	5.40	<1	21	26	135	5.85	<10	2.50	1102	8	0.03	8	1980	12	15	<20	86	0.07	<10	192	<10	<1	52
101	46569	20	<.2	3.83	80	55	<5	3.32	<1	34	21	349	9.03	<10	3.11	918	10	0.03	13	2330	18	10	<20	59	0.09	<10	257	<10	<1	55
102	46570	5	< 2	3 55	80	50	<5	3.90	<1	41	24	372	9 17	<10	3.20	1125	4	0.03	19	2320	14	10	<20	84	0.09	<10	257	<10	<1	56
103	46571	105	< 2	2.10	730	50	5	4.27	<1	20	24	75	4.25	<10	1.85	897	4	0.04	5	1780	12	20	<20	82	0.07	<10	195	<10	<1	50
104	48572	5	< 2	1.92	50	40	5	5.01	<1	11	43	24	3.75	<10	1.66	946	4	0.04	11	1720	8	10	<20	99	0.05	<10	200	<10	<1	54
105	46573	85	<.2	3.46	80	45	<5	3.84	<1	25	25	110	7.06	<10	3.12	1191	10	0.02	13	2080	12	15	<20	82	0.10	<10	257	<10	<1	63
106	46576	5	<.2	2.54	<5	85	<5	1.93	1	26	15	66	6.04	<10	2.48	983	2	0.02		2490	14	15	<20	35	0.07	<10	106	<10	<1	70
107	48577	5	<.2	2.01	<5	60	<5	1.60	<1	20	12	47	5.38	<10	1.92	754	<1	0.04	2	2110	10	15	<20	32	0.07	<10	104	<10	<1	46
108	46578	5	<.2	1.90	<5	70	<5	1 76	<1	20	7	88	5.67	<10	1.78	723	1	0.03	з	2230	8	5	<20	34	0.07	<10	115	<10	<1	53
109	46579	15	<.2	2.73	5	80	<5	0.97	<1	26	6	186	7.07	<10	2.48	874	3	0.03	5	2540	16	10	<20	20	0.07	<10	124	<10	<1	70
110	46580	15	<.2	3.96	10	135	15	4,70	1	39	50	46	10.60	<10	4.10	1497	4	0.01	17	2230	16	15	<20	77	0 10	<10	220	<10	<1	110
111	46581	60	<.2	3.77	<5	80	15	4.82	<1	34	47	61	10.30	<10	4.02	1471	3	<.01	16	2180	16	5	<20	82	0.12	<10	214	<10	<1	104
112	46582	15	<.2	3.32	<5	60	20	5.37	<1	30	28	117	9.11	<10	3.71	1428	2	0.01	11	2360	16	<5	<20	93	0.12	<10	207	<10	<1	88
113	46583	80	<.2	3.77	<5	75	<5	5.59	1	36	27	123	8.51	<10	4.24	1553	1	0.02	9	2510	14	15	<20	107	0.12	<10	228	<10	<1	96
114	46584	80	< 2	1.84	<5	90	15	3.74	1	16	12	53	5.08	<10	1.87	910	<1	0.01	<1	1350	10	10	<20	67	0.09	<10	89	<10	<1	45
115	46585	10	<.2	1.99	<5	670	<5	3.00	<1	11	12	80	5.47	<10	1.95	806	1	<.01	<1	1260	6	20	<20	99	0.09	<10	91	<10	<1	39
116	46586	>1000	<.2	3.53	10	160	<5	3.19	2	53	41	197	9.01	<10	3.58	1441	5	<.01	7	2250	16	20	<20	89	0.08	<10	166	<10	<1	70
117	46587	515	<.2	3.64	5	60	<5	3.78	2	37	51	635	8.06	<10	3.76	1699	2	0.01	12	2510	18	15	<20	74	0.09	<10	179	<10	<1	95
118	46588	>1000	1.4	1.88	50	75	<5	2.14	<1	61	27	165	10.30	<10	1.61	1458	15	<.01	12	1780	12	<5	<20	47	0.08	<10	168	<10	<1	207
119	46589	>1000	2.6	2.14	90	75	5	3.80	<1	43	22	160	10.80	<10	2.04	1983	16	<.01	9	1690	22	10	<20	72	0.08	<10	166	<10	<1	258
120	46590	>1000	0.6	3.15	155	175	<5	4.72	<1	45	27	952	8.12	<10	3.10	2056	6	0.01	11	2290	12	40	<20	104	0.09	<10	167	<10	<1	468
121	46591	25	<.2	3.86	5	335	<5	7.21	<1	36	45	352	8.28	<10	4.18	1876	3	0.02	14	2410	22	20	<20	152	0.10	<10	198	<10	<1	95
122	46592	140	<.2	4.46	10	75	<5	7.00	1	42	52	132	7.83	<10	4.97	1972	1	0.02	13	2210	20	20	<20	123	0.09	<10	232	<10	<1	78
123	46593	5	<.2	3.97	20	185	<5	6.09	<1	35	46	156	7.07	<10	4.20	1777	<1	0.02	9	1920	16	20	<20	93	0.10	<10	220	<10	<1	86
124	46594	5	< 2	3 68	5	75	5	5.86	<1	36	47	85	7.72	<10	4.08	1824	<1	0.02	10	1950	20	20	<20	102	0.12	<10	237	<10	<1	102
125	46595	5	<.2	4.10	<5	55	15	4 69	1	38	3	73	8.71	<10	4.11	1878	1	0.01	6	1970	30	<5	<20	80	0.13	<10	208	<10	<1	107
126	46596	5	< 2	4.52	25	95	<5	5.90	1	47	<1	121	8.62	<10	4.60	2340	<1	0.02	6	1980	18	20	<20	94	0.13	<10	216	<10	<1	190
127	46597	5	< 2	4.11	5	55	<5	6.50	2	52	5	126	8.29	<10	4.09	2416	2	0.02	11	1960	22	25	<20	99	0.14	<10	210	<10	<1	287
128	46598	130	< 2	3.47	10	65	5	5.13	2	48	3	174	6.49	<10	3.34	2023	3	0.02	9	1980	24	10	<20	79	0.13	<10	205	<10	<1	326
129	46599	5	<.2	3.85	15	45	<5	5.20	1	43	8	130	8.66	<10	3.79	2093	3	0.02	11	2070	20	15	<20	77	0.14	<10	247	<10	<1	279
130	46600	5	<.2	4.26	35	60	<5	4.95	<1	46	2	152	9.73	<10	4.16	2063	2	0.02	8	2310	22	10	<20	78	0.16	<10	238	<10	<1	148

ECO-TÉCH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

Values in ppm unless otherwise reported

TEUTON RESOURCES CORPORATION AK 95-1183

TEUTON RESOURCES CORPORATION AK 96-1183 509-675 W. HASTINGS STREET VANCOUVER, B.C.

ATTENTION: DINO CREMONESE

Received 226 Core samples. **PROJECT #: none given SHIPMENT #: none given**

V6C 1N2

ECO-TECH LABORATORIES LTD.

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cđ	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	РЬ	Sb	\$n	Sr	<u>Ti %</u>	U	V	W	Y	Zn
131	46601	5	<.2	3 86	65	65	<5	10.90	<1	44	42	180	8.66	<10	3.59	2245	15	0.01	12	2020	20	10	<20	154	0.09	<10	223	<10	<1	93
132	46602	15	<.2	4.14	80	65	<5	10.40	<1	45	47	230	9.85	<10	3.77	2325	17	<.01	14	2190	30	5	<20	138	0.06	<10	203	<10	<1	82
133	46603	5	<.2	4 39	75	75	<5	6 33	<1	59	52	263	11.10	<10	4.18	2123	16	<.01	17	1940	34	5	<20	90	0.06	<10	220	<10	<1	86
134	46604	5	<.2	4 35	65	70	<5	7.24	<1	41	58	150	9.14	<10	4.39	1954	12	0.01	14	2160	28	25	<20	106	0.08	<10	250	<10	<1	90
135	46605	45	< 2	3 76	50	55	<5	10.10	2	42	50	145	8.97	<10	3.67	2083	16	0.02	13	2020	28	20	<20	162	0.09	<10	271	<10	<1	93
136	46606	5	<.2	4.21	110	80	<5	7 92	1	43	53	225	9.08	<10	4.23	2258	2	0.02	14	2180	42	30	<20	118	0.13	<10	303	<10	<1	140
137	46607	5	< 2	4 1 1	55	90	<5	5.51	<1	38	32	145	8.10	<10	4 12	1863	<1	0.02	12	2140	58	30	<20	81	0.14	<10	260	<10	<1	190
138	46608	5	<.2	2.20	30	75	<5	4.45	<1	22	36	80	4.76	<10	1.96	968	2	0.03	5	1800	24	20	<20	76	0.06	<10	164	<10	<1	54
139	46609	5	< 2	2 15	20	55	10	4.93	<1	13	39	24	4.25	<10	2.06	979	2	0.04	5	1840	16	15	<20	73	0.03	<10	179	<10	<1	44
140	46610	5	<.2	2.11	25	50	10	6.70	<1	12	33	22	3.85	<10	1.99	1240	4	0.04	4	1770	18	20	<20	126	0.01	<10	169	<10	2	48
141	46611	5	<.2	2.06	10	260	10	6.41	<1	12	40	38	4.04	<10	1.89	1036	3	0.03	3	1540	2	15	<20	127	0.02	<10	168	<10	1	38
142	466 12	5	<.2	2.29	10	60	10	6.25	<1	14	43	8	4.23	<10	2.18	1107	2	0.03	3	1570	<2	15	<20	133	0.04	<10	183	<10	2	42
143	46613	70	<.2	2.38	20	65	10	4.15	<1	17	42	19	4.60	<10	2.18	858	2	0.03	4	1710	2	10	<20	149	0.06	<10	160	<10	<1	47
144	46614	30	<.2	3.28	75	75	<5	5.73	1	28	41	203	7.43	<10	2,86	1304	3	0.03	7	1890	10	10	<20	143	0.07	<10	232	<10	<1	56
145	46615	40	1.0	5.47	95	85	<5	4.49	3	54	11	534	14.50	<10	4.70	1963	8	0.02	15	2340	18	<5	<20	100	0.07	<10	345	<10	<1	81
146	46616	35	<.2	2.57	40	70	10	4 79	1	19	36	49	5.09	<10	2.22	1104	2	0.03	3	1800	4	10	<20	122	0.04	<10	172	<10	2	69
147	46617	705	0.4	2.51	25	80	<5	4.91	2	18	37	98	4.97	<10	2.14	1084	4	0.03	5	1730	8	10	<20	114	0.04	<10	153	<10	<1	82
148	46618	>1000	2.2	3.80	55	95	15	7.37	2	40	28	83	8.52	<10	2.47	1441	10	0.01	7	1980	10	<5	<20	127	0.05	<10	167	<10	2	234
149	46619	>1000	1.4	3.95	50	85	10	6.46	2	31	25	150	8.70	<10	2.94	1507	11	0.01	6	1990	8	<5	<20	115	0.05	<10	200	<10	<1	215
150	46620	5	< 2	2.90	100	60	10	5.62	1	21	27	88	6.16	<10	2.59	1273	3	0.02	6	1810	6	10	<20	99	0.05	<10	213	<10	1	74
151	46621	5	<.2	2.20	20	75	<5	6.80	2	17	40	81	4.31	<10	1.73	1299	3	0.02	6	1610	8	5	<20	96	0.02	<10	112	<10	1	123
152	46622	5	< 2	3.03	65	150	15	8.05	<1	21	23	37	5.97	<10	2.43	1446	5	0.02	3	1730	4	15	<20	88	0.02	<10	126	<10	2	89
153	46623	15	<.2	3.12	30	115	15	6.66	<1	22	21	52	6.07	<10	2.46	1394	4	0.02	5	1800	<2	5	<20	92	0.02	<10	119	<10	1	101
154	46624	10	<.2	3.28	55	75	10	6.69	1	24	18	74	6.48	<10	2.57	1439	5	0.01	- 7	1840	2	20	<20	97	0.02	<10	120	<10	3	98
155	46625	10	6.6	2.13	1940	65	<5	3.00	<1	52	29	239	6.12	<10	1.21	816	198	<.01	9	1680	38	<5	<20	55	<.01	<10	85	<10	<1	99
156	46626	5	7.8	2.52	735	70	<5	1.75	16	41	39	135	7.03	<10	1.23	779	115	<.01	10	1580	422	<5	<20	31	0.01	<10	90	<10	<1	958
157	46627	165	2.8	2.08	1840	80	<5	2.97	<1	26	23	134	4.90	<10	1.14	813	89	0.01	8	1790	48	<5	<20	50	0 01	<10	66	<10	<1	121
158	46628	35	0.2	1 91	105	90	<5	3.74	<1	16	37	116	4.18	<10	1.35	678	4	0.02	9	1580	10	5	<20	61	0.07	<10	98	<10	4	69
159	46629	5	<.2	2.48	5	145	25	2.87	<1	27	67	22	6.30	30	2.37	1052	<1	0.04	33	2910	16	10	<20	87	0 44	<10	118	<10	18	111
160	46630	5	<.2	2.53	<5	840	20	4.29	1	22	77	22	6.20	30	2 24	1128	<1	0.04	34	2830	16	10	<20	151	0.42	<10	115	<10	17	109
161	46631	5	<.2	2.71	<5	310	30	3.27	2	25	67	21	6.45	30	2.43	1085	<1	0.05	28	2810	18	10	<20	108	0 37	<10	128	<10	16	113
162	46632	10	<.2	2 31	140	75	5	8 94	3	29	24	153	5.70	<10	1 36	1218	8	< 01	15	2090	44	10	<20	210	0.10	<10	72	<10	7	201
163	46633	5	0.2	2.32	440	65	<5	8.93	<1	33	18	148	6.22	<10	1.09	1382	9	<.01	12	2090	28	<5	<20	165	< 01	<10	62	<10	4	106
164	46634	5	0.4	2.43	55	100	<5	8.19	<1	25	16	123	5.92	<10	0.99	1278	10	<.01	8	2340	10	<5	<20	172	<.01	<10	63	<10	5	71
165	46635	5	0.4	2.28	50	70	<5	11.70	2	25	22	132	5.81	<10	0.94	1565	9	<.01	11	2140	24	<5	<20	274	0.01	<10	61	<10	4	110

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

;

TEUTON RESOURCES CORPORATION AK 95-1183

509-675 W. HASTINGS STREET VANCOUVER, B.C. V6C 1N2

ATTENTION: DINO CREMONESE

Received 226 Core samples. PROJECT #: none given SHIPMENT #: none given

Values in ppm unless otherwise reported

TEUTON RESOURCES CORPORATION AK 95-1183

ECO-TECH LABORATORIES LTD.

<u> </u>	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Çd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	V	w	Y	Zn
166	46640	160	< 2	2.52	<5	510	15	3.53	1	23	20	87	8.56	<10	2.43	1114	4	0.02	6	2330	4	15	<20	80	0.12	<10	158	<10	<1	61
167	46641	10	<.2	1.88	<5	95	5	1.57	1	16	27	70	5.37	<10	1.74	687	2	0.03	5	2010	4	5	<20	36	0.08	<10	105	<10	2	46
168	46642	30	< 2	1.96	<5	100	15	2 05	1	26	27	64	6.63	<10	1.76	842	3	0.04	6	2040	4	<5	<20	42	0.08	<10	122	<10	1	50
169	46643	5	<.2	1.96	<5	100	15	0.69	1	30	28	27	6.54	<10	1.65	580	4	0.05	6	2040	4	<5	<20	18	80 .0	<10	117	<10	<1	52
170	46644	5	<.2	1.83	<5	70	20	0.92	<1	20	34	38	6.36	<10	1.61	598	4		5		6	<5	<20	18	0.07	<10	123	<10	<1	40
		-								•							-		-		-	-	-							
171	46645	10	< 2	1.83	<5	70	5	2 16	1	21	18	73	5 68	<10	1.66	740	1	0.05	3	2040	6	10	<20	43	0.09	<10	106	<10	3	37
172	46646	15	< 2		<5	80	20	4.17	1	29	34	78	7.70	<10	2.04	1028	2		11		4	5	<20	71	0.12	<10	144	<10	3	47
173	46647	5	< 2		<5	80	15	4 1 1	1	28	20	131	7.50	<10	2.11	1023	3	0.03	9		6	15	<20	72	0.12	<10	136	<10	4	51
174	46648	15	< 2		<5	85	10	3.18	1	23	23	70	5.77	<10	1 70	792	<1	0.04	5		4	15	<20	65	0.12	<10	116	<10	4	46
175	46649	225	< 2		<5	135	20	5.24	1	35	46	90	8.71	<10	3.61	1371	<1			2080	8	10	<20	102	0.17	<10	205	<10	<1	86
175	-00-0	225		0.00	-0	100	10	9.24		00		50	0.71		0.01	10/1		0.02	••	2000	v		-20	101	0.17		200	-10		
176	46650	75	<.2	3.36	<5	655	10	4 46	2	25	48	90	9.55	<10	3.61	1209	1	<.01	9	1780	<2	5	<20	135	0.15	<10	173	<10	<1	63
177	46651	180	< 2		<5	115	<5	4.19	2	36	75	1083	9.00	<10	3.54	1275	<1	0.02	16		4	<5	<20	87	0.13	<10	215	<10	<1	56
178	46652	650	< 2	-	5	160	<5	5.00	3	49	44	609	9.85	<10	3.48	1435	2		.9		4	<5	<20	114	0.10	<10	205	<10	<1	113
179	46653	>1000	<.2		135	120	10	3.10	<1	250	35	230	9.95	<10	2.88	1258	4		25	2300	2	<5	<20	64	0.10	<10	166	<10	<1	364
180	46654	190	<.2		20	145	<5	4.44	<1	50	18	258	6.82	<10	2.73		<1			2370	2	10	<20	95	0.10	<10	128	<10	3	111
180	40004	190	•.2	2.90	20	140	•0	4.44	~1	30	10	200	0.02	-10	2.13	1210	~ 1	0.02	'	23/0	2	10	~20	90	0.10	-10	120	10	3	
181	46655	15	<.2	3.15	10	295	<5	3.53	1	37	12	208	6.29	<10	3.05	1138	3	0.03	7	2740	6	10	<20	61	0.10	<10	185	<10	<1	56
182	46656	10	< 2		<5	270	<5	6.26	2	30	33	286	8.75	<10	3.43	1360	3		10		6	10	<20	122	0.12	<10	194	<10	<1	48
183	46657	60	<.2		<5	160	15	8.44	2	21	36	200	8.26	<10	2.82	1326	2		10		4	10	<20	159	0.12	<10	162	<10	<1	39
184	46658	10	<.2		<5	180	<5	4.07	2	32	31	277	8.20	<10	3.14	1275	3		11		14	10	<20	104	0.11	<10	175	<10	2	65
185	46659	10	<.2	3.29	<5	85	<5	4.37	3	49	37	337	8.26	<10		1443		0.03	15		20	15	<20	105	0.12	<10	193	<10	1	121
105	40009	10	~.2	3.29	-3	00	-0	4.37	5	-9	57	557	0.20	-10	J. Z.Ł	1445	2	0.00	15	2/00	20	15	-20	105	0.12	-10	130	510	1	141
186	46660	15	<.2	3.27	110	420	<5	3.00	2	123	37	797	8.42	<10	3.05	1323	4	0.01	15	3060	8	20	<20	86	0.08	<10	152	<10	<1	198
187	46661	210	< 2	2.95	90	620	<5	4.29	3	108	25	414	8.23	<10	2.65	1242	4		9	2740	4	5	<20	116	0.10	<10	170	<10	<1	189
188	46662	>1000	<.2	2.63	400	590	<5	3.36	ĕ	266	55		10.10	<10	2.41	1149	7		11		4	<5	<20	82	0.11	<10	226	<10	<1	193
189	46663	515	0.4	3.28	235	180	<5	1.56	<1	203	85	-	11.40	<10	3.07	1263	6	<.01	9	1960	10	<5	<20	35	0.11	<10	260	<10	<1	315
190	46664	>1000	0.4	2.37	140	145	<5	3.38	11	178	63		13.40	<10	1.99	1085	11		18		6	<5	<20	56	0.10	<10	271	<10	<1	362
190	40004	21000	0.4	2.37	140	140	-5	3.30		170	05	012	13.40	-10	1.99	1005		~.01	10	1500	U	-5	-20		0.10	-10	2/1	-10	~1	302
191	46665	245	<.2	3 40	55	90	<5	3.72	2	65	22	454	8.32	<10	3.01	1590	4	0.02	8	2830	36	<5	<20	77	0.12	<10	179	<10	<1	192
192	46666	135	< 2	4.33	55	105	5	5.15	<1	37	61	241	9.56	<10	4.11	2117	2		16	2780	16	5	<20	95	0.14	<10	235	<10	<1	144
193	46667	40	< 2	4.25	35	75	<5	6.29	2	43	46	240	8.11	<10	4.22	1926	2		16	2800	30	20	<20	119	0 13	<10	237	<10	2	108
194	46668		< 2	4.20	<5	65	15	7.24	2	32	50	104	7.84	<10	4.32	1982	3		21	2520	24	15	<20	139	0.11	<10	250	<10	<1	103
195	46669	10	< 2	3.83	60	75	<5	7.74	<1	83	43	317	7.55	<10	3.66	2120	<1		13		12	5	<20	140	0.11	<10	203	<10	<1	138
190	40009	10	×.2	3.03	00	/3	-5	1.14	~1	65	40	317	7.55	\$10	3.00	2120	~1	0.02	15	2330	12	5	~20	140	012	~10	205	10	~1	130
196	46670	>1000	3.8	3.37	1325	105	<5	0.93	<1	582	41	5623	11.10	<10	2.97	1315	я	<.01	38	1990	8	20	<20	24	0 08	<10	160	<10	<1	276
197	46671	>1000	0.2	4.29	420	105	<5	1.89	<1	506	29	286	11.30	<10	3.91	1608	5		26		4	<5	<20	39	0.08	<10	147	<10	<1	170
198	46672	415	0.2	3.24	245	90	<5	4.25	<1	260		1157	6.32	<10	2.83	1347	3	<.01	11		6	15	<20	79	0.00	<10	124	<10	<1	117
199	46673	>1000	5.6	3.15	420	100	<5	3.22	<1	250	30	2539	8.93	<10	2.81	1236	3	<.01	12		4	10	<20	56	0.14	<10	165	<10	<1	116
200	46674	20	⊂.2	1.88	115	80	<5	2.84	<1	120	26	2039	4.86	<10	1.56	823	<1	0.01		1350	2	10	<20	49	0.13	<10	74	<10	3	59
200	40074	20	≤.∠	1.00	113	00	<0	2.04	~ 1	120	20	204	4.00			023	~1	0.01	3	1330	2	10	~20	43	0.13	\$10	/ 4	10	3	29
														1	Page 6															

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

i

TEUTON RESOURCES CORPORATION AK 95-1183

509-875 W. HASTINGS STREET VANCOUVER, B.C. V6C 1N2

ATTENTION: DINO CREMONESE

Received 226 Core samples. PROJECT #: none given SHIPMENT #: none given

Values in ppm unless otherwise reported

TEUTON RESOURCES CORPORATION AK 95-1183

ECO-TECH LABORATORIES LTD.

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	Ρ	Pb	8b	8n	Sr	TIN	U	V	W	Y	Zn
201	46675	85	< 2	4 03	140	315	<5	6.40	<1	146	27	544	8.34	<10	3.73	1918	2	0.01	10	2060	4	15	<20	141	0.12	<10	177	<10	<1	188
202	46676	655	<.2	3.60	80	80	<5	4 49	<1	117	26	575	8.81	<10	3.28	1480	5	<.01	10	2030	8	5	<20	78	0.15	<10	185	<10	<1	187
203	46677	75	<.2	3 60	255	75	<5	3.31	<1	210	40	1126	8.03	<10	3.33	1436	2	<.01	9	1760	2	5	<20	58	0.11	<10	145	<10	<1	206
204	46678	>1000	0.8	3.27	95	100	<5	5.16	2	63	58	551	> 15	<10	3.15	1686	14	<.01	15	890	10	<5	<20	104	0,10	<10	242	<10	<1	254
205	46679	15	<.2	3 79	10	55	<5	6.60	1	37	58	384	7.98	<10	3.94	1975	<1	0.02	15	1900	<2	20	<20	135	0.19	<10	250	<10	1	227
206	46680		< 2	3 79		75	<5	5.56	2	37	55	561	8.21	<10	4.11	1797	<1	0.02	16	1970	46	15	<20	126	0.20	<10	261	<10	3	127
208	46681	10	< 2	4.18	-5	60	5	6.28	6	40	59	235	8.96	<10	4.33	1996	<1	0.02	16	1950	32	<5	<20	134	0.17	<10	273	<10	<1	123
		25	-		<5		-		0		46	235 151	8,72	<10	3.54	1840	2	0.02	14	2020	18	10	<20	123	0.17	<10	249	<10	<1	
208	46682	25	<.2	3.80	15	95	10	6 19 6.45	4	35 37	40 51	151	8.40	<10	3.80	1712	3	0.02	16			<5	<20	138	0.10	<10	253	<10	<1	91 75
209	46683	20	< 2	4.02	<5	85	10		2		•••	505	0.40 7.13		2.58		-			1680	18	<o< td=""><td><20 <20</td><td></td><td>0.08</td><td></td><td>255 119</td><td></td><td>-</td><td>111</td></o<>	<20 <20		0.08		255 119		-	111
210	46684	255	<.2	2.98	65	85	<5	4.43	2	37	34	202	1.13	<10	2.30	1231	4	0.02	10	1000	12	5	<20	93	0.06	<10	119	<10	<1	
211	46685	20	<.2	3.81	10	80	<5	8.59	1	32	10	392	7.69	<10	3.61	1628	3	0 01	9	1690	8	20	<20	158	0.12	<10	235	<10	3	120
212	46686	>1000	< 2	3.88	55	85	<5	6.87	1	44	12	251	8.21	<10	3.61	1454	6	0.01	8	1690	4	15	<20	142	0.10	<10	212	<10	<1	111
213	46687	10	< 2	1.94	10	50	5	4.80	<1	14	42	57	3.78	<10	1.74	838	1	0 03	5	1540	4	10	<20	123	0.04	<10	157	<10	<1	42
214	46688	15	< 2	2.06	10	55	10	3.99	<1	16	37	11	3.90	<10	1.92	866	2	0.03	4	1620	2	15	<20	115	0.02	<10	177	<10	1	46
215	46689	20	<.2	1.73	20	60	<5	4.42	<1	15	43	8	3.34	<10	1.57	706	2	0.04	5	1600	<2	10	<20	98	0.01	<10	156	<10	2	48
							_												-											
216	46690	10	<.2	1.94	25	55	5	3.40	<1	19	40	32	3.80	<10	1.74	667	<1	0.03	8	1600	2	15	<20	70	0.04	<10	175	<10	<1	53
217	46691	5	< 2	2.09	30	55	5	3.22	<1	19	41	13	4.02	<10	1.84	697	2	0.03	5	1620	4	15	<20	80	0.02	<10	177	<10	<1	54
218	46692	5	<.2	2.17	35	55	10	5.15	<1	14	39	16	3.94	<10	2.00	874	3	0.03	8	1620	2	10	<20	116	0.01	<10	178	<10	<1	54
219	46693	5	< 2	2 58	15	75	10	2.77	<1	14	45	19	4.71	<10	2.31	767	4	0.03	8	1710	8	10	<20	79	0.01	<10	163	<10	<1	58
220	46694	5	< 2	2.10	35	80	10	1.60	<1	16	40	21	4.06	<10	1.81	612	2	0.03	6	1550	6	10	<20	40	0.03	<10	156	<10	<1	47
221	46695	5	<.2	2.23	55	70	5	3.11	<1	15	41	28	4.25	<10	1.97	752	2	0.03	6	1660	6	10	<20	60	0.02	<10	171	<10	<1	56
222	46696	10	< 2	2 13	185	70	10	3.46	<1	15	33	37	3.93	<10	1.98	774	1	0.03	6	1630	12	15	<20	82	0.03	<10	178	<10	<1	57
223	46697	215	< 2	1.94	185	65	<5	5.97	<1	28	55	61	4.10	<10	1.65	1026	3	0.02	13		8	10	<20	99	0.01	<10	172	<10	<1	51
224	46698	245	< 2	2.10	195	75	10	3.57	<1	18	48	71	4.49	<10	1.71	796	3	0.02	3	1610	8	15	<20	75	0.01	<10	176	<10	<1	78
225	46699	50	< 2	1.98	95	65	10	5.02	<1	16	39	21	4.06	<10	1.70	907	1	0.02	4	1560	4	15	<20	89	0.01	<10	160	<10	<1	56
						••						- '													/					
226	46700	15	<.2	2.07	170	55	5	4.62	<1	15	38	41	4.13	<10	1.83	873	2	0.02	2	1570	6	15	<20	107	<.01	<10	163	<10	<1	58

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

i

TEUTON RESOURCES CORPORATION AK 96-1183 509-675 W. HASTINGS STREET VANCOUVER, B.C. V&C 1N2

ATTENTION: DINO CREMONESE

Received 226 Core samples. PROJECT #: none given SHIPMENT #: none given

ECO TECH LABORATORIES I TO

Values in ppm unless otherwise reported

TEUTON RESOURCES CORPORATION AK 95-1183

TEUTON	RESOUR	CES CORPO	DRATH	ON AK	95-118	3															E	CO-T	CH LA	BORA	TORIES	LTD.				
Et #.	Tag #	Au(ppb)	Aa	AI %	As	Ba	81	Ca %	Cd	Co	Cr	Cu	Fe %	La	Ma %	Mn	Мо	Na %	NI	Р	РЪ	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
					te antiqui y dista litar a se							a longest of this particular																		
QC/DATA Resplit:	i																													
R/S 1	6060	50	<.2	1.99	230	60	10	5.05	<1	17	30	32	3.52	<10	1.61	873	2	0.02	2	1520	8	10	<20	125	0.01	<10	109	<10	<1	63
R/S 36	11773	45	<.2	2.55	15	70	<5	4.76	<1	32	2	398	5.96	<10	2.30	1059	7	0.03	2	2760	14	10	<20	90	0.09	<10	147	<10	<1	43
R/S 71	11807	205	<.2	4 40	80	65	<5	8.54	1	38	47	407	9.61	<10	3.99	2158	2	<.01	26	1530	36	10	<20	147	0.15	<10	275	<10	<1	86
R/S 106	46576	5	< 2	2 45	10	85	5	1.95	<1	27	10	59	6.19	<10	2.40	953	2	0.03	5	2570	22	10	<20	33	0.07	<10	107	<10	<1	73
R/S 141	46611	10	<.2	213	10	305	10	6.23	1	13	41	37	4.28	<10	1.93	1063	2	0.02	6	1600	4	10	<20	128	0.02	<10	178	<10	2	41
R/S 176	46650	30	< 2	3 39	<5	645	10	4.26	1	25	46	98	9.44	<10	3.64	1189	3	<.01	9	1800	6	<5	<20	126	0.16	<10	173	<10	<1	63
R/S 211	4668 5	30	<.2	3.63	<5	80	<5	8.31	2	32	13	363	7.57	<10	3.41	1575	5	0.01	8	1650	10	10	<20	147	0.12	<10	230	<10	2	119
Repeat:																														
1	6060	70	< 2	2.07	220	60	5	5.44	<1	17	23	36	3.59	<10	1.65	903	2	0.02	2	1570	6	20	<20	139	<.01	<10	109	<10	<1	65
10	6069	>1000	2.2	2.44	8605	50	<5	5.55	<1	480	21	173	5.26	<10	2.00	1154	80	0.02	5	1710	12	25	<20	110	0.01	<10	149	<10	<1	96
19	11756	5	< 2	171	<5	105	5	0.84	<1	17	12	42	5.07	<10	1.59	570	1	0.04	<1	1940	6	5	20	22	0.08	<10	103	<10	<1	35
36	11773	35	<.2	2.37	15	65	<5	4.28	<1	29	<1	381	5 60	<10	2.13	959	6	0.04	<1	2560	12	10	20	81	0.10	<10	142	<10	2	39
45	11782	10	<.2	3.33	25	70	<5	7.49	1	33	108	103	7.44	<10	4.18	1439	1	0.02	24	1960	4	25	<20	1 44	0.12	<10	225	<10	<1	82
54	11791A	55	<.2	3.57	20	55	10	7.23	≺1	35	41	66	6.95	<10	4.39	1870	<1	0.02	13	1850	6	30	<20	128	0.15	<10	227	<10	<1	97
71	11807	250	<.2	4.38	90	80	<5	8.58	<1	38	33	429	9.59	<10	4.06	2168	3	<.01	22	1500	32	15	<20	153	0.13	<10	269	<10	<1	82
80	11816	30	<.2	1.75	10	60	<5	2.83	<1	11	10	65	3.54	<10	1.23	769	2	0.03	<1	1700	10	15	<20	64	0.03	<10	55	<10	2	58
89	11825	550	<.2	2.11	260	65	5	4.76	<1	31	21	85	4.25	<10	1.81	975	4	0.02		1660	14	20	<20	102	0.01	<10	178	<10	<1	75
106	46 576	10	<.2	2.56	<5	90	10	1.95	<1	27	6	64	6.14	<10	2.50	993	2	0.03	4	2510	12	15	<20	38	0.07	<10	108	<10	<1	71
115	46585	10	<.2	2.19	<5	720	<5	3.26	<1	12	13	87	5.94	<10	2.07	880	1	<.01	2	1400	8	10	<20	107	0.09	<10	99	<10	<1	43
124	46594	5	< 2	3 92	<5	85	10	6.03	1	42	50	90	7.93	<10	4.11	1926	2	0.02		2040	22	10	<20	117	0.11	<10	246	<10	<1	118
141	46611	5	<.2	2.04	10	255	<5	6.34	1	13	39	38	4.00	<10	1.86	1024	3	0.03		1510	4	15	<20	126	0.02	<10	166	<10	1	38
150	46620	5	< 2	2.92	105	60	15	5.63	<1	22	26	69	6.18	<10	2.59	1280	3	0.02		1810	6	10	<20	100	0.06	<10	215	<10	2	75
159	46629	5	<.2	2.33	<5	135	20	2.71	<1	26	60	20	5.95	30	2.22	99 3	<1	0.04	30	2930	16	15	<20	81	0.45	<10	111	<10	18	106
176	46650	10	<.2	3.39	<5	660	15	4.45	1	25	49	91	9.66	<10	3.63	1208	<1	<.01	-	1790	<2	10	<20	135	0.16	<10	177	<10	<1	63
185	46659	10	< 2	3.33	<5	90	<5	4.42	3	51	46	342	8.40	<10	3.25	1461	5	0.03		2720	22	20	<20	108	0.13	<10	197	<10	2	123
194	46668	5	<.2	4.38	20	60	15	7 40	1	33	49	110	8.01	<10	4.51	2031	2	0.02		2610	22	15	<20	143	0.12	<10	259	<10	<1	104
211	46685	20	<.2	3.73	5	75	<5	8.50	2	32	20	374	7.63	<10	3.53	1614	4	0.01		1680	10	15	<20	150	0.11	<10	232	<10	2	120
220	46694	5	<.2	2.07	35	80	10	1.61	<1	16	35	20	4.05	<10	1.79	608	2	0.03	3	1520	6	15	<20	39	0.03	<10	155	<10	<1	48

18-Dec-95	
ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4	

Phone: 604-573-5700 Fax : 604-573-4557

TEUTON RESOURCES CORPORATION AK 95-1183 509-675 W. HASTINGS STREET

VANCOUVER, B.C. V6C 1N2

ATTENTION: DINO CREMONESE

Received 226 Core samples. PROJECT #: none given SHIPMENT #: none given

Values in ppm unless otherwise reported

TEUTON RESOURCES CORPORATION AK 95-1183

ECO-TECH LABORATORIES LTD.

Et #. Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	TI %	U	V	W	Y.	Zn
QC/DATA:																													
Standard: GEO'95	150	1.0	1.76	65	165	<5	1.60	<1	16	55	81	3.76	<10	0.84	694	<1	0.02	24	620	20	<5	<20	54	0.12	<10	78	<10	R	75
GEO'95	150	1.0	1.69	60	160	<5	1.66	<1	18	54	83	3.75	<10	0.87	705	<1	0.02	21	630	20	<5	<20	57	0.11	<10	77	<10	6	76
GEO 95	150	10	1.70	60	160	<5	1 64	<1	18	56	80	3.75	<10	0.86	702	<1	0.02	20	620	22	<5	<20	59	0.11	<10	77	<10	5	79
GEO'95	150	1.0	1.70	65	160	<5	1.62	<1	18	55	80	3.71	<10	0.82	691	<1	0.01	22	620	20	5	<20	51	0.10	<10	71	<10	5	76
GEO'95	150	14	1.86	65	185	10	1 92	<1	19	65	86	4.38	<10	0.99	755	<1	0.02	22	760	20	<5	<20	65	0.12	<10	83	<10	5	74
GEO'95	150	12	1 63	65	165	<5	1 67	<1	17	62	78	3.89	<10	0.89	677	<1	0.02	22	690	20	<5	<20	56	0.11	<10	73	<10	٨	72
GEO'95	150	1.2	1.58	55	170	5	1.67	<1	17	61	75	3.82	<10	0.85	665	<1	0.02	24	680	20	5	<20	58	0.10	<10	71	<10	4	73

df/1183\1183B XLS/95Teuton#3 ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A. Sc. T. B.C. Certified Assayer

CERTIFICATE OF ASSAY AK 95-1196

TEUTON RESOURCES CORPORATION

509-675 W. HASTINGS STREET VANCOUVER, B.C. V6C 1N2

ATTENTION: DINO CREMONESE

224 CORE samples received

PROJECT #: none given

SHIPMENT #: none given

P.O.#: none given

Samples submitted by: none given Metallic screen check request December 20, 1995

				M	ETALLIC SCR	EEN ASSAY
			Au	Au	Au	Au
	ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)
	9	11840	2.03	0.059	-	
	32	11863	21.86	0.638	20.47	0.597
	34	11865	2.92	0.085	-	-
	35	11 8 66	26.63	0.777	11.26	0.328
	36	11 8 67	6.13	0.179	-	-
	48	11879	2.04	0.059	-	-
	53	11884	2.65	0.077	-	-
	62	11893	1.69	0.049	-	-
	97	11928	8.06	0.235	-	-
	98	11929	117.44	3.425	160.56	4.682
	99	11930	3.47	0.101	-	-
	121	12502	2.76	0.080	-	-
	124	12505	2.48	0.072	-	-
	137	12518	4.29	0.125	-	-
	139	12520	20.23	0.590	16.49	0.481
	193	12578	2.40	0.070	-	-
	198	12583	2.25	0.066	-	-
• •	223	12614	1.11	0.032	-	-

3.2

QC/DATA:

Standard:	
MED	

0.093

22-Dec-95

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax . 604-573-4557 TEUTON RESOURCES CORPORATION AK 95-1196 509-875 W. HASTINGS STREET VANCOUVER, B.C. V&C 1N2

ATTENTION: DINO CREMONESE

Received 224 Core samples. PROJECT #: none given SHIPMENT #: none given

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ça %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	<u>v</u>	w	Y	Zn
1	11832	30	<.2	3.36	70	65	5	6.03	<1	32	18	119	8.15	<10	2.77	1532	29	0.02	7	2100	12	10	<20	136	0.03	<10	251	<10	<1	79
2	11833	90	0.6	3.44	130	60	5	5.27	<1	52	11	124	8.52	<10	2.89	1409	18	0.02	5	2730	22	10	<20	135	0.04	<10	255	<10	<1	84
3	11834	20	<.2	3.59	65	55	<5	8.46	<1	33	<1	139	8.27	<10	3.25	1708	7	0.02	2	21 6 0	10	10	<20	220	0.02	<10	270	<10	<1	73
4	11835	30	<.2	3.76	55	60	<5	6.07	<1	38	<1	151	8.83	<10	3.44	1505	6	0.02	4	2360	8	15	<20	125	0.03	<10	284	<10	<1	76
5	11836	60	0.8	3.87	65	65	<5	7.12	1	32	10	242	10.20	<10	3.17	1846	12	0.02	10	1910	12	10	<20	142	0.03	<10	268	<10	<1	145
6	11837	70	0.8	4.30	560	75	<5	5.80	<1	38	9	293	10.70	<10	3.74	1782	21	0.02	12	1970	10	10	<20	154	0.03	<10	290	<10	<1	128
7	11838	25	<.2	3.80	65	55	<5	6.06	<1	36	17	228	9.02	<10	3.43	1588	14		9	2040	10	10	<20	147	0.05	<10	294	<10	<1	94
8	11839	20	0.2	3.93	130	65	<5	7.71	1	41	42	213	9.10	<10	3.51	1810	18		14	1800	10	5	<20	185	0.04	<10	252	<10	<1	99
9	11840	>1000	1.6	3.55	7585	70	<5	5.41	<1	301	12	447	9.86	<10	2.66	1607	25	<.01	6	1760	88	15	<20	172	0.03	<10	123	<10	<1	160
10	11841	365	0.8	2.88	1395	70	<5	4.15	<1	101	4	248	7.85	<10	2.23	1180	9		1	1930	68	5	<20	96	0.03	<10	118	<10	<1	157
				2.00			-										-					-								
11	11842	10	< 2	1.88	405	50	<5	3 69	<1	21	4	55	4.20	<10	1.44	963	3	0.02	<1	1690	20	10	<20	85	<.01	<10	56	<10	<1	81
12	11843	700	3.4	1.87	45	55	<5	4.40	5	15	9	421	4.35	<10	1.46	931	6	0.02	<1	1650	252	15	<20	101	0.02	<10	77	<10	1	116
13	11844	110	1.2	4.20	220	70	10	7 36	3	42	11	167	9.58	<10	3.49	1969	53	0.01	11	1920	238	10	<20	138	0.10	<10	284	<10	<1	163
14	11845	5	<.2	2.96	70	95	5	6.57	<1	24	21	79	6.20	<10	2.56	1451	3	0 02	5	1780	24	10	<20	136	0.12	<10	148	<10	4	86
15	11846	5	< 2	2.05	35	120	15	4.93	<1	25	35	39	5.17	20	1.90	843	<1	0.03	19	2490	14	10	<20	140	0.35	<10	101	<10	11	82
16	11847	5	<.2	2.29	<5	405	20	2.69	<1	23	61	20	6.03	20	2.19	999	<1	0.03	29	3100	16	5	<20	122	0.34	<10	95	<10	13	101
17	11848	5	<.2	2.31	<5	210	25	2.71	1	24	59	18	5.90	20	2.06	978	<1	0.03	32	3000	20	10	<20	113	0.31	<10	90	<10	12	100
18	11849	5	<.2	2.41	<5	105	25	3.59	1	25	69	19	5.85	20	2.07	984	<1	0.03	33	3080	20	10	<20	128	0.36	<10	95	<10	12	101
19	11850	5	<.2	2 39	<5	150	25	4.78	i	24	60	20	5.66	20	1.99	986	<1	0.03	30	3020	24	10	<20	174	0.42	<10	99	<10	13	99
20	11851	345	< 2	1.87	<5	115	10	1.50		20	25	100	6.08	<10	1.68	777	3		8	2120	a	5	<20	31	0.07	<10	99	<10	<1	45
20	11001	545	6	1.07				1.50	•	20	20		0.00		1.00		•	0.00	•		•	-		•					·	
21	11852	20	<.2	1.67	<5	110	<5	2.91	1	18	28	127	6.00	<10	1.51	850	3	0.02	11	2110	6	5	<20	47	0.07	<10	104	<10	<1	41
22	11853	40	<.2	1.80	<5	190	<5	2.94	1	19	40	82	5.75	<10	1.64	893	1	0.03	12	2150	4	10	<20	54	0.09	<10	107	<10	2	48
23	11854	280	<.2	1.78	<5	115	10	2.30	1	23	47	101	6.34	<10	1.62	621	3		11	2060	6	5	<20	41	0.07	<10	113	<10	1	51
24	11855	20	< 2	1.98	<5	530	<5	2.37	1	18	29	348	5.81	<10	1.78	882	3	0.03	13	2150	6	5	<20	51	0.09	<10	98	<10	2	49
25	11856	10	<.2	2.21	15	740	15	1.45	<1	20	46	92	6.67	<10	1.95	824	5	0.03	20	2330	10	5	<20	50	0.08	<10	112	<10	1	52

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax 604-573-4557

TEUTON RESOURCES CORPORATION AK 95-1196 509-675 W. HASTINGS STREET VANCOUVER, B.C. V&C 1N2

ATTENTION: DINO CREMONESE

Received 224 Core samples. **PROJECT #: none given SHIPMENT #: none given**

ECO-TECH LABORATORIES LTD.

Values in ppm unless otherwise reported

TEUTON RESOURCES CORPORATION AK 95-1196

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	BI	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	P	Pb	Sb	Sn	<u>Sr</u>	TI %	U	V	W	Y	Zn
26	11857	5	<.2	1.55	<5	110	10	1.14	1	18	47	83	5.57	<10	1.32	567	3	0.03	14	1890	8	5	<20	27	0.07	<10	104	<10	<1	37
27	11858	45	< 2	1.64	5	125	10	0 85	<1	18	50	73	6.38	<10	1.38	524	5	0.03	14	2040	8	<5	<20	21	0.08	<10	108	<10	<1	42
28	11859	10	< 2	1.49	<5	100	10	1 55	<1	13	44	74	4.86	<10	1.33	815	3	0.03	13	1730	6	<5	<20	39	0.06	<10	80	<10	<1	39
29	11860	115	< 2	2 79	<5	110	<5	2 90	1	42	44	471	7.65	<10	3.11	1148	2	0.02	15	2050	10	20	<20	58	0.12	<10	175	<10	<1	68
30	11861	80	< 2	3.98	<5	85	<5	4 93	1	33	53	250	9.58	<10	4.65	1684		0.02	23		12	10	<20	91	0.14	<10	253	<10	<1	79
00	1.001			0.00			-0	4 00		00		200	0.00				-	0.02		2.00					0				.,	
31	11862	360	< 2	3 48	<5	115	15	4 66	2	48	42	132	10.20	<10	3.41	1540	5	0.01	16	2290	12	<5	<20	101	0.12	<10	203	<10	<1	99
32	11863	>1000	0.6	2.10	145	250	15	2.25	1	115	28		12.00	<10	1.59	1007	20	<.01	10		18	<5	<20	54	0.07	<10	181	<10	<1	105
33	11864	140	< 2		<5	145	10	1.96	<1	46	27	96	7.88	<10	2.34	1279	6	< 01	17		12	<5	<20	41	0.06	<10	91	<10	<1	124
	11865		<2		<5	135	10	2 38	2	63	35	97	9.37	<10	2.43	1365	6	<.01	14		12	5	<20	52	0.08	<10	159	<10	<1	277
34		>1000							2	59			11.20		2.15				22		18	15	<20	48	0.08	<10	151	<10	<1	845
35	11866	>1000	06	2.69	20	295	20	1.68	2	29	32	125	11.20	<10	2.15	1185	12	<.01	22	22/0	10	15	~20	40	0.00	10	151	-10	- 1	040
36	11867	>1000	86	2.34	220	155	<5	1.37	7	75	36	9020	13.00	<10	1.94	898	16	< 01	15	1320	18	15	<20	31	0.08	<10	195	<10	<1	386
37	11868	200	<.2		<5	105	<5	2.08	25	48	37	1340	10.40	<10	3.45	1338	6	<.01	17		24	10	<20	50	0.09	<10	151	<10	<1	203
38	11869	110	< 2		10	95	<5	2.24	27	41	46	346	9.14	<10	3.68	1435	6	< 01	16		34	10	<20	50	0.10	<10	167	<10	<1	123
39	11870	45	<.2	3.49	15	115	<5	1.86	3	25	22	336	7.31	<10	3.09	1128	5	0.01	9		52	15	<20	41	0.06	<10	119	<10	<1	75
40		40 50	< 2	3.25	25	85	<5	2.63	2	31	12	295	7.52	<10	2,72	1173	6	0.01	-	2720	18	15	<20	54	0.08	<10	133	<10	<1	102
40	11871	50	<.Z	3.20	25	00	<0	2.65	2	31	12	290	1.52	10	2.12	11/3	6	0.01	5	2720	10	15	~20	54	0.00	10	133	-10	-	102
41	11872	5	<.2	3 20	<5	105	10	4.89	1	28	7	43	6.72	<10	2.94	1178	<1	<.01	<1	2600	12	15	<20	87	0.13	<10	116	<10	5	65
42	11873	10	< 2	3.81	<5	100	10	3.43	<1	30	7	66	8.33	<10	3.49	1278	2	<.01	<1	2680	12	15	<20	66	0.10	<10	137	<10	2	145
_		5		3.50	-			3.91					7.55	<10	3.25	1296	2	<.01	<1		12	15	<20	71	0.10	<10	118		4	125
43	11874	•	<.2		<5	95	10		<1	28	1	54	8.25									20						<10	3	
44	11875	15	< 2	4.01	<5	105	20	4.36	1	34	26	77		<10	3.66	1483	2	<.01	4		14		<20	82	0.11	<10	142	<10	-	246
45	11876	5	<.2	4.00	30	85	<5	2 68	2	36	40	100	8.20	<10	3.83	1366	2	<.01	a	2920	22	10	<20	52	0.09	<10	134	<10	2	154
40	11877	260	- 2	4.12	26	140	15	2.24	2	20	<1	126	9.40	<10	3.84	1443	2	<.01	5	3080	16	<5	<20	46	0.09	<10	137	<10	<1	285
46		260			25				2	39									9		40	20	<20	91		<10			<1	
47	11878	830	< 2	3.61	25	150	<5	4.67	2	38	37	181	8.50	<10	3.40	1590	_	<.01	-						0.14	-	203	<10	< <u> </u>	211
48	11879	>1000	<.2	4.50	65	155	<5	0.98	8	74	35		13.10	<10	3.72	1465	7		12		140	<5	<20	37	0.18	<10	195	<10	1	333
49	11880	60	<.2	2.75	40	470	25	2.08	1	27	52	42	7.08	30	2.34	1059	2	0.03	27	3130	28	15	<20	73	0.34	<10	128	<10	12	124
50	11881	10	<.2	2.37	<5	165	30	3.26	<1	27	59	27	6.19	20	2.10	1023	<1	0.03	27	3190	26	15	<20	104	0.39	<10	103	<10	14	112
~	44000			0.00			~		~	~	50	~	8 07	~	2.04	1007		0.00	27	2000	~		-00		0.20	-10	0.0	-10	10	
51	11682	5	<.2	2.33	5	150	25	2.72	2	24	53	21	6,07	20			<1	0.03	27		26	15	<20	89	0.30	<10	96	<10	12	111
52	11883	5	<.2	2.19	<5	145	25	2.75	1	25	63	21	6.04	20	2.02	1006	<1	0.03	31	3140	26	10	<20	78	0.37	<10	97	<10	13	108
53	11884	>1000	<.2	3.75	200	85	15	2.25	2	77	45	202	10.60	<10	3.50	1373	7		19		26	15	<20	56	0.23	<10	221	<10	4	133
54	11885	5	<.2	3 52	110	75	10	8.07	1	39	49	118	8.49	<10	3.42	1873	1	0.02	13		22	15	<20	146	0.20	<10	232	<10	2	165
55	11886	5	<.2	4.06	50	115	10	9.09	2	39	71	128	8.67	<10	4.07	2262	<1	0.01	15	2080	22	15	<20	160	0.19	<10	313	<10	3	124
		_																			• •									
56	11887	5	<.2	3.65	50	90	15	7.09	<1	38	22	130	9.21	<10	3.31	1792	4			2250	24	10	<20	117	0.16	<10	218	<10	<1	88
57	11888	10	< 2	4.06	20	75	15	6.06	2	40	29	127	10.20	<10	3.81	1625	6	0.02	14		26	10	<20	98	0.14	<10	258	<10	<1	92
56	11889	120	< 2	2.39	35	75	<5	4.94	<1	24	62	120	5.56	<10	2.11	960	4	0.02			18	15	<20	87	0.08	<10	164	<10	<1	57
59	11890	5	<.2	1.90	10	65	5	3 39	<1	9	47	28	4.51	<10	1.69	870	3	0.02	6		16	10	<20	86	0.03	<10	174	<10	<1	47
60	11891	30	<.2	2.00	10	185	10	4.74	<1	10	52	45	4.57	<10	1.79	825	3	0.02	9	1690	14	15	<20	96	0.04	<10	162	<10	<1	47

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Values in ppm unless otherwise reported

TEUTON RESOURCES CORPORATION AK 95-1196

Phone: 604-573-5700 Fax : 604-573-4557

i.

TEUTON RESOURCES CORPORATION AK 95-1196 509-675 W. HASTINGS STREET VANCOUVER, B.C. V&C 1N2

ATTENTION: DINO CREMONESE

Received 224 Core samples. PROJECT #: none given SHIPMENT #: none given

ECO-TECH LABORATORIES LTD.

La Mot% Mo Na% NI P Pb Sb Sr Ti% ν w ¥ Zn Ba BI Ca% Cd Co Cr Cu Fe% Mn Sn u Et #. Tag # Au(ppb) Ag Al% As 72 3 40 196 <10 3.06 1197 3 0.02 13 1940 26 5 <20 117 0.11 <10 218 <10 <1 30 280 21 44 7 74 61 11892 30 <.2 5 4 77 <1 3.30 1489 0.02 16 2140 28 10 <20 91 0.13 <10 222 <10 <1 62 62 11893 >1000 < 2 3.70 75 85 15 4.75 1 32 21 135 8.72 <10 5 20 146 <10 1233 8 0.01 18 1870 20 15 <20 104 0.06 <10 214 <10 <1 56 <.2 2.71 40 70 <5 5.85 <1 51 6.49 2 39 63 11894 5 18 15 103 0.05 <10 207 <10 <1 60 105 <5 <1 17 58 135 5.93 <10 2.12 851 4 0.02 16 1690 <20 64 11895 20 < 2 2.52 65 6.18 293 4.61 215 105 10 3.61 <1 41 20 160 11.30 <10 3.99 1710 8 0.02 11 2280 30 <5 <20 61 0.05 <10 <10 <1 71 65 11896 10 < 2 192 10.10 <10 3.24 1310 9 0.02 12 2450 26 10 <20 67 0.02 <10 267 <10 <1 62 15 <.2 3.95 180 115 <5 2.91 39 28 66 11897 <1 7 2290 28 <5 <20 113 0.11 <10 264 <10 <1 71 85 15 32 19 191 12.70 <10 3.90 1652 6 0.01 67 11898 15 < 2 5 05 40 6.22 1 13 2190 32 <5 <20 65 0.09 <10 253 <10 <1 78 1492 7 0.01 68 11899 20 < 2 4.92 150 115 <5 373 1 39 25 256 12.70 <10 3.91 69 11900 35 < 2 3.91 160 80 <5 6.69 <1 46 10 408 10.40 <10 2.96 1445 6 0.01 11 2210 32 <5 <20 99 0.08 <10 169 <10 <1 62 55 1286 9 <.01 12 2130 42 <5 <20 75 0.11 <10 174 <10 <1 67 70 20 < 2 4 22 150 90 <5 4 61 <1 18 516 12.40 <10 317 11901 40 12 358 9.81 <10 3 04 1296 5 0.01 8 2030 30 10 <20 103 0.14 <10 189 <10 <1 64 71 11902 10 < 2 3.74 115 115 <5 4 90 2 <5 3.49 47 12 307 10.70 <10 3.29 1381 4 0.02 7 2150 34 <5 <20 59 0.10 <10 211 <10 <1 98 72 11903 40 < 2 4 28 105 110 2 3 0.02 24 10 <20 84 0.06 <10 134 <10 <1 92 73 11904 165 < 2 3.23 20 85 10 5.20 23 22 37 6.61 <10 2.37 1143 5 1890 1 <10 163 74 95 <5 <1 36 12 195 8.61 <10 2.67 1220 6 0.02 6 1890 32 <5 <20 71 0.02 <10 <1 74 11905 20 < 2 3 42 80 3.65 172 2 96 88 2.92 1390 3 0.02 3 2280 26 10 <20 113 0.07 <10 <10 75 11906 20 < 2 3.57 65 100 10 6.14 <1 29 19 8.06 <10 <10 2.32 0.02 13 1870 24 10 <20 96 0.08 <10 129 <10 108 25 30 6 50 1199 4 1 76 11907 150 < 2 2.97 20 80 10 5.95 1 54 3 1610 22 10 <20 81 0.05 <10 101 <10 3 96 46 31 4.27 <10 1.61 1055 0.02 9 77 11908 705 <.2 2.08 405 65 10 5.38 <1 34 0.05 74 <10 4 0.02 12 2070 30 20 <20 85 <10 178 <10 <1 116 78 11909 480 <.2 3.14 125 70 15 5.19 <1 29 42 6.87 2.54 1291 80 5 <1 39 57 71 7.30 <10 2.58 1417 82 0.02 14 2000 98 15 <20 91 0.07 <10 181 <10 1 126 79 11910 425 <.2 3 28 150 6.02 80 700 <.2 2.19 55 65 10 4.84 <1 18 39 31 4.72 <10 1 63 955 3 0.02 7 1680 20 10 <20 86 0.05 <10 106 <10 1 65 11911 1321 9 0.02 8 2410 30 5 <20 58 0.05 <10 217 <10 <1 92 81 11912 335 <.2 4.55 55 90 20 3 26 27 16 69 10.20 <10 3.63 1 90 15 25 10 28 10.50 <10 3.98 1868 8 0 02 8 2640 32 <5 <20 76 0.03 <10 224 <10 <1 136 82 11913 90 <.2 4.86 40 4.65 <1 10 2360 28 5 <20 103 0.03 <10 191 <10 <1 107 75 25 17 7 0.01 83 11914 10 <.2 4.61 15 25 5.64 1 12 9.55 <10 3.85 1621 20 5 <10 159 <10 <1 11915 165 < 2 2.21 <5 125 <5 2.42 2 29 23 321 8.14 <10 1.97 979 4 0.03 9 2530 <20 40 0.10 61 84 3 0.05 4 2060 16 5 <20 49 0.09 <10 113 <10 <1 45 85 11916 200 < 2 1.67 <5 160 10 3.04 1 23 31 86 5.86 <10 1.47 809 <10 900 <1 0.03 3 1870 10 <20 65 0.09 <10 110 <10 2 48 150 33 24 130 5 63 1 46 14 86 11917 705 <.2 1.62 <5 <5 4.29 2 9 1950 18 10 <20 46 0.08 <10 86 <10 2 53 10 33 55 5 02 <10 1.54 733 3 0.04 87 11918 210 <.2 1.75 <5 120 2.30 1 31 0.08 56 88 11919 10 <.2 1 83 <5 840 10 2.65 2 24 37 70 5.90 <10 1.62 828 4 0.04 12 1960 16 10 <20 63 <10 103 <10 2 22 30 68 1.86 779 4 0.04 12 2320 20 10 <20 27 0.08 <10 112 <10 1 58 89 10 < 2 2 15 5 175 10 1.23 <1 6.48 <10 11920 7 1890 16 <5 <20 53 0.07 <10 105 <10 43 90 5 1.46 <5 90 5 2.12 2 18 48 102 5.49 <10 1.31 678 3 0.04 1 < 2 11921 13 2270 22 <5 38 0.10 <10 91 11922 30 < 2 2.01 10 110 15 2.01 <1 26 29 78 7.41 <10 1.85 891 3 0.03 <20 119 <10 1 51 0.03 18 2570 20 <5 <20 44 0.11 <10 128 <10 3 53 5 < 2 2.06 <5 125 <5 1.84 <1 26 39 234 7.46 <10 1.89 861 4 92 11923 12 2060 16 10 <20 51 0.09 <10 118 <10 2 40 <5 85 <5 2.54 18 36 218 5.72 <10 1.26 694 3 0.05 93 11924 10 <.2 1.47 1 688 2 0.04 12 1940 14 <5 <20 38 0.09 <10 103 <10 2 40 94 11925 280 <.2 1.47 <5 90 5 1.78 1 18 43 87 5.31 <10 1.29 25 3.50 <5 95 20 3.64 36 7 66 8,70 <10 3.56 1220 3 0.02 7 2850 28 15 <20 73 0.14 <10 202 <10 <1 98 95 11926 <.2 1

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

1

TEUTON RESOURCES CORPORATION AK 95-1196 509-875 W. HASTINGS STREET VANCOUVER, B.C. V&C 1N2

ATTENTION: DINO CREMONESE

Received 224 Core samples. **PROJECT #: none given SHIPMENT #: none given**

ECO-TECH LABORATORIES LTD.

Et	#. Tag #	Au(ppb)	Ag	Ai %	As	Ba	BI	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	<u>Sb</u>	Sn	Sr	TIN	<u> </u>	V	w	Y	Zn
96	11927	750	<.2	3.04	10	105	<5	3.30	1	74	27	391	8.85	<10	2.90	1232	2	0.02	15	2690	28	<5	<20	65	0.14	<10	188	<10	1	123
97	11928	>1000	< 2	2.03	95	130	10	1.96	1	344	41	111	8.59	<10	1.58	954	7	<.01	14	1890	22	<5	<20	46	0.10	<10	159	<10	<1	214
98	11929	>1000	3.4	1.99	270	135	5	2.87	1	211	15	185	13.00	<10	1.51	981	198	<.01	12	1910	38	5	<20	64	0.09	<10	174	<10	<1	179
99	11930	>1000	< 2	3.29	5	130	20	2.74	2	85	63	177	> 15	<10	3.09	1280	14	<.01	33		28	<5	<20	69	0.13	<10	194	<10	<1	81
100	11931	315	<.2	3.06	<5	155	10	3.63	2	41	67	106	12.10	<10	2.86	1220	9		16		24	<5	<20	84	0.13	<10	156	<10	<1	55
																						-				, -				
101	11932	55	<.2	3.24	<5	155	<5	3.46	2	37	58	554	11.20	<10	3.00	11 59	6	<.01	21	2950	38	<5	<20	78	0.12	<10	170	<10	<1	53
102	11933	50	< 2	3.41	5	115	<5	3.54	20	35	50		11.20	<10	3.05	1255	11		25		58	<5	<20	70	0.13	<10	189	<10	<1	64
103	11934	10	<.2		5	90	<5	4.20	2	34	67		10.50	<10	3 65	1450	8	0.02	29	3030	30	10	<20	83	0.14	<10	205	<10	<1	73
104	11935	20	< 2		35	125	5	4 30	2	38	65	220	10.60	<10	4.20	1563	9	0.02	23		28	10	<20	92	0.15	<10	228	<10	<1	84
105	11936	5	< 2	3.89	<5	150	<5	6.85	2	36	66	214	9.64	<10	3.55	1697	6		31	3040	28	10	<20	120	0.15	<10	198	<10	<1	97
		•			-			0.00	-				2.01				-	0.01		00.0	20		-10	120	0.10	-10				
106	11937	15	< 2	3.01	15	65	<5	3.49	2	40	30	325	7.64	<10	2.85	1102	12	0.03	14	2690	4	10	<20	77	0.10	<10	141	<10	<1	58
107	11938	5	< 2	3 49	<5	90	5	4 83	1	33	25	189	7.99	<10	3.40	1267	3		12		2	10	<20	94	0.11	<10	163	<10	<1	65
108	11939	5	<.2	4.32	25	140	<5	4.03	1	31	42	197	8.73	<10	4.28	1335	5		14		<2	15	<20	97	0.13	<10	208	<10	<1	77
109	11940	5	<.2	4 2 4	20	90	<5	3.85	<1	33	40	199	8.05	<10	4.41	1277	1	0.02	13		2	10	<20	99	0.14	<10	212	<10	2	75
110	11941	5	< 2	4.39	25	85	<5	5.00	2	35	42	297	8.66	<10	4.45	1481	4		17		44	15	<20	107	0.13	<10	229	<10	<1	112
		-					•		-																					
111	11942	5	<.2	4.18	20	95	<5	5.38	1	29	32	301	8.37	<10	4.17	1416	2	0.02	11	2710	54	10	<20	127	0.14	<10	200	<10	<1	112
112	11943	10	<.2		15	75	<5	4 09	<1	27	4	180	8.03	<10	3.54	1310	2	0.03	5		30	10	<20	101	0.13	<10	187	<10	<1	84
113	11944	5	1.0	3.81	15	130	<5	3.78	1	21	5	857	7.92	<10	3.54	1261	<1	0.03	2		16	5	<20	88	0 11	<10	192	<10	<1	105
114	11945	85	3.2		30	135	<5	4.11	2	49	5	1509	7.35	<10	3.25	1280	<1	0.02	3		96	10	<20	86	0.11	<10	161	<10	1	128
115	11946	5	<.2	3.00	10	370	5		1	25	5	93	6.59	<10	2.67	1360	1	0.02	-	2580	24	15	<20	110	0.10	<10	139	<10	2	82
		-					-		•		-								-		- ·								-	~
116	11947	5	<.2	3.44	<5	70	10	4.10	1	33	<1	135	7.39	<10	3.15	1366	2	0.02	2	2760	10	20	<20	88	0.11	<10	156	<10	2	82
117	11948	5	<.2	3.12	<5	70	<5	4.13	1	30	<1	164	8.91	<10	2.95	1165	<1			2770	10	20	<20	87	0.12	<10	165	<10	2	73
118	11949	5	<.2	3.32	<5	105	<5	4.92	1	36	3	218	6.70	<10	3.13	1254	<1	0.02	3		8	20	<20	108	0.13	<10	148	<10	5	70
119	11950	5	<.2	3.55	45	155	30	2.97	1	39	33	172	7.25	<10	3.32	1268	<1	0.03	15	2640	22	10	<20	86	0.20	<10	176	<10	11	96
120	12501	10	< 2	1.93	<5	95	<5	3.20	1	109	27	139	6.46	<10	1.80	1023	3		5		6	15	<20	58	0.11	<10	133	<10	2	46
					-		-						•				•	•	•		v			•••	•				-	
121	12502	>1000	<.2	1.65	15	85	5	3.34	1	156	13	120	5.57	<10	1.50	885	2	0 03	2	1870	8	10	<20	59	0.08	<10	118	<10	2	45
122	12503	90	<.2	1.41	10	100	5	2.59	1	100	16	96	5.13	<10	1.28	692	2		1	1830	10	5	<20	51	0.06	<10	117	<10	4	45
123	12504	55	0.4	1.43	20	90	10	1.57	<1	99	18	63	4.96	<10	1.29	574	1	0.04	2		12	10	<20	32	0.08	30	110	<10	2	51
124	12505	>1000	< 2	1.74	75	145	10	2.85	1	261	14	130	6.00	<10	1.58	802	2		6		12	15	<20	51	0.09	50	120	<10	2	51
125	12506	100	<.2	1.58	25	100	<5	3.50	1	143	19	78	5.03	<10	1.50	789	<1		-	2010	6	10	<20	56	0.07	<10	100	<10	2	43
									•	1-10			0.00					0.00	-	2010	Ū			00	0.07		100		-	
126	12507	5	<.2	2.21	<5	85	10	1.79	<1	59	8	80	6.00	<10	2.12	897	1	0.03	4	2290	10	10	<20	37	0.08	<10	103	<10	2	55
127	12508	5	< 2	2.24	5	75	<5	2.01	1	55	15	88	5.83	<10	2.21	926	1	0.03	5		8	15	<20	46	0.08	<10	101	<10	2	56
128	12509	65	<.2	2.38	5	125	10	2.24	2	37	11	129	7.71	<10	2.42	982	3		-	2300	12	10	<20	47	0.09	<10	147	<10	<1	52
129	12510	100	<.2	2.25	15	420	5	1.89	<1	18	11	99	6.75	<10	2.23	929	<1	0.01	2		4	10	<20	36	0.09	<10	111	<10	<1	64
130	12511	15	0.8	2.36	<5	110	10	1.40	<1	33	9	61	5.48	<10	2.22	878	2	0.02	4	2370	12	20	<20	35	0.08	10	78	<10	2	70
		.0	0.0	2.00						00		01	0.40	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0,0	2	0.02	-	10.0		20	20	55	0.00	.0	,0	-10	4	10

Values in ppm unless otherwise reported

TEUTON RESOURCES CORPORATION AK 95-1196

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Values in ppm unless otherwise reported

TEUTON RESOURCES CORPORATION AK 95-1196

Phone: 604-573-5700 Fax : 604-573-4557

TEUTON RESOURCES CORPORATION AK 95-1196

509-675 W. HASTINGS STREET VANCOUVER, B.C. V&C 1N2

ATTENTION: DINO CREMONESE

Received 224 Core samples PROJECT #: none given SHIPMENT #: none given

ECO-TECH LABORATORIES LTD.

Cd Co La Mg% Mn Mo Na% NI P Pb Sb Sn Sr TI% - 11 v w Y Zn Et #. Tag # Au(ppb) Ag Al% As Ba Bi Ca % Cr Cu Fe % 12512 <5 110 <5 36 16 103 5.28 <10 1.73 772 <1 0.03 3 2050 12 15 <20 66 0.08 <10 95 <10 3 43 131 30 <.2 1.92 2 45 <1 67 776 10 <20 45 97 <10 48 12513 20 <.2 2.14 10 105 10 1.81 <1 29 12 5.57 <10 1.95 <1 0.03 3 2240 10 0.09 <10 2 132 <20 <10 58 <5 26 67 4.85 <10 1.95 941 0.03 5 1940 <2 20 69 0.08 <10 98 <1 133 12514 5 0.2 2.07 <5 50 3.60 1 25 1 77 134 12515 5 <.2 3.35 <5 75 10 6.43 1 30 30 139 9.06 <10 3.55 1526 1 0.01 11 2110 <2 10 <20 93 0.13 <10 202 <10 <1 90 15 81 42 87 8.57 <10 4.06 1512 2 0.02 14 2320 10 15 <20 120 0.13 <10 217 <10 <1 74 135 12516 290 <.2 3.70 5 6 41 2 12517 5 4 07 10 110 <5 6 34 2 36 65 278 7 99 <10 4.68 1577 <1 0.02 16 2300 12 25 <20 123 0.14 <10 245 <10 <1 80 136 < 2 >1000 < 2 3.95 20 120 <5 5 70 3 75 30 267 8.28 <10 3.98 1708 2 0.02 11 2470 16 20 <20 97 0.11 <10 206 <10 <1 62 137 12518 137 233 <10 3.73 0.02 11 2480 12 <20 82 0.11 <10 207 <10 59 138 12519 220 <.2 3.73 65 115 <5 4.34 1 34 7.94 1534 <1 10 1 74 12520 >1000 0.8 4 53 145 125 15 2 38 2 163 45 83 9.48 <10 4.54 1648 4 0.01 14 2720 22 10 <20 47 0.07 <10 213 <10 <1 139 63 55 <5 50 53 343 7,76 <10 3.57 1665 <1 0.02 14 2420 24 10 <20 113 0.11 <10 172 <10 <1 140 12521 255 <.2 3.62 90 6 60 2 473 7.00 <10 2.77 1304 2 0.02 8 2470 20 10 <20 95 0.12 <10 168 <10 3 52 12522 85 <.2 2.85 <5 70 <5 5.84 2 36 14 141 166 8.56 <10 2680 10 <5 <20 78 0.11 <10 199 <10 64 15 90 5 4 37 36 10 3.51 1398 2 0.02 7 <1 142 12523 50 <.2 3.63 1 55 2 29 760 <10 2.96 1261 3 0.02 9 2430 20 15 <20 84 0.11 <10 205 <10 58 143 12524 < 2 3 08 40 140 <5 4 65 34 7.31 1 12525 65 <.2 30 140 <5 2.80 36 21 263 8.07 <10 3.29 1349 2 0.02 7 2780 12 5 <20 53 0.10 <10 167 <10 <1 83 144 3 56 1 145 12526 5 <.2 2.67 <5 750 15 2 80 1 30 <1 117 7.81 <10 2.69 1070 1 0.02 3 2940 10 <5 <20 90 0.11 <10 159 <10 <1 60 256 7.88 <10 3.09 1364 <1 0.02 11 2160 15 <20 78 0.14 <10 174 <10 65 146 12527 5 <.2 3.12 <5 330 <5 472 2 29 30 8 1 5 <.2 2.63 5 760 5 3.79 2 22 21 126 7 23 <10 2 55 1022 <1 0.01 9 2160 8 15 <20 80 0.13 <10 141 <10 1 61 147 12528 3.76 14 2390 8 <20 0.15 <10 215 110 100 39 27 36 <10 1568 0.01 10 111 <10 3 148 12529 120 <.2 362 <5 15 6 48 1 8.71 1 <2 180 64 149 12530 5 <.2 3.11 25 65 15 7.58 1 32 30 81 7.17 <10 3.44 1373 <1 0.01 9 2270 15 <20 123 0.14 <10 <10 <1 21 29 82 3.07 1162 2 0.01 10 1890 <2 15 <20 129 0.14 <10 148 <10 <1 52 150 12531 390 <.2 2.71 15 1280 10 6.49 1 7.19 <10 12532 100 <5 125 < 5 5 87 25 76 312 8.91 <10 3.38 1270 2 0.01 16 1920 4 5 <20 107 0.14 <10 196 <10 <1 51 151 <.2 3 00 1 5 1180 <5 <5 <1 17 32 73 4.92 <10 1.63 756 <1 0.01 8 10 <20 81 0.10 <10 77 <10 3 34 1.68 85 4 38 152 12533 5 <.2 55 1820 <20 <10 142 153 12534 895 <.2 2.51 <5 80 15 3.55 2 40 40 89 8.04 <10 2.79 947 2 0.01 10 6 10 62 0.13 <10 <1 20 2.56 <5 285 15 5.04 39 7 99 7.34 <10 2.91 1127 2 0.02 5 2570 4 10 <20 93 0.12 <10 187 <10 3 47 154 12535 < 2 1 75 36 1558 7.51 <10 1189 <1 0.02 10 2460 15 <20 95 0.13 <10 204 <10 2 55 155 12536 80 0.6 2.85 <5 <5 5.26 2 66 3.32 4 45 0.02 10 2500 10 <20 112 0.13 <10 235 70 156 12537 20 <.2 3 51 <5 130 <5 5.76 2 39 212 7 75 <10 4 14 1547 <1 4 <10 2 <5 95 <5 40 60 306 8.02 <10 4.52 1551 2 0.03 15 2450 10 15 <20 112 0.11 <10 267 <10 <1 70 157 12538 5 <.2 3 78 5 21 2 51 192 3.97 2 0.02 11 2430 18 10 <20 137 0.12 <10 249 <10 2 63 12539 10 <.2 3.41 <5 145 <5 7.10 2 34 8.19 <10 1612 158 <5 215 10 2 35 74 129 8.33 <10 4.59 1624 3 0.02 16 2260 20 20 <20 114 0.12 <10 274 <10 <1 70 159 12540 5 <.2 3.85 6.10 160 12541 5 < 2 3.35 <5 75 <5 6.37 3 35 49 237 7.36 <10 3.83 1504 7 0.02 13 2170 98 10 <20 108 0.12 <10 277 <10 <1 71 0.02 12 2160 20 <20 127 0.13 <10 231 189 12542 60 3.86 <5 85 <5 6.63 2 38 39 560 7 63 <10 4 30 1826 <1 18 <10 <1 161 08 <20 109 0.15 218 <5 65 10 29 164 7.72 <10 4.38 2079 <1 0.02 11 2340 14 15 <10 <10 2 144 162 12543 5 < 2 3.96 6.19 2 40 163 12544 5 <.2 3.02 25 125 15 3.00 <1 31 37 87 6.62 20 2.91 1329 <1 0.02 24 3080 18 15 <20 76 0.27 <10 130 <10 10 153 164 12545 5 <.2 2.53 10 225 20 3.10 <1 24 43 26 5.74 20 2.22 1015 <1 0.04 29 3060 22 15 <20 116 0.31 <10 99 <10 13 101 22 15 <20 102 0.32 165 <5 150 20 3.12 27 42 25 5.67 20 2.24 997 <1 0.04 27 3120 <10 100 <10 13 99 12546 10 < 2 2 46 1

Page 5

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

1

TEUTON RESOURCES CORPORATION AK 95-1196

509-675 W. HASTINGS STREET VANCOUVER, B.C. V6C 1N2

ATTENTION: DINO CREMONESE

Received 224 Core samples PROJECT #: none given SHIPMENT #: none given

ECO-TECH LABORATORIES LTD.

Et #. Tag # Au(ppb) Ag Al% As Ba BI Ca% Cđ Co Cr Cu Fe% La Mg% Mn Mo Na% Ni Р РЬ Sb Ŝn Sr Ti% U v w Y Zn 166 12551 5 <.2 2.41 <5 235 20 2.16 1 25 43 30 5.97 20 2.40 1084 <1 0.04 27 2980 18 5 <20 62 0.30 <10 105 <10 13 102 12552 <.2 2.46 10 135 2.78 22 5.73 20 2.12 979 <1 0.04 28 3160 15 <20 88 0.30 97 12 102 167 5 15 <1 24 44 24 <10 <10 52 15 168 12553 5 < 2 2.47 10 155 30 2.76 <1 25 22 5.81 20 2.22 1052 <1 0.04 28 3150 26 <20 88 0.34 <10 100 <10 14 103 2.18 169 12554 5 <.2 2.35 15 125 25 <1 27 50 20 6.05 20 2.42 1016 <1 0.04 30 3130 26 15 <20 63 0.32 <10 101 <10 14 109 52 17 2060 212 170 12555 5 <.2 4.33 25 100 15 613 1 39 54 7.84 <10 4.36 1737 <1 0.02 18 15 <20 118 0.17 <10 <10 4 129 171 12556 5 <.2 3.92 <5 60 15 861 2 34 46 70 7.11 <10 4.59 2137 <1 0.02 16 2070 14 20 <20 166 0.17 <10 233 <10 2 109 5 < 2 3 93 <5 265 20 7 00 2 37 49 80 7.39 <10 4.50 2014 <1 0.02 16 2070 16 20 <20 164 0.16 <10 247 <10 3 88 172 12557 173 12558 5 < 2 2.70 15 130 10 8.07 1 25 37 49 4.96 <10 2.68 1455 <1 0.02 8 1800 12 20 <20 191 0.10 <10 177 <10 2 58 60 70 <5 8.17 <1 39 22 113 4.56 <10 1.80 1274 <1 0.02 4 1550 8 15 <20 157 0.06 <10 133 <10 3 51 174 12559 225 < 2 216 45 75 29 4 1690 10 175 12560 175 < 2 2.38 <5 5.95 <1 20 120 5.42 <10 1.92 1069 <1 0.02 10 <20 130 0.08 <10 154 <10 2 52 176 12561 35 <.2 3.59 20 75 <5 3.23 1 36 <1 286 8.90 <10 2.96 885 4 0.03 2 2620 18 5 <20 83 0.11 <10 218 <10 <1 53 177 12562 25 <.2 3.49 60 80 <5 5.30 1 34 <1 303 8.72 <10 3.02 1400 12 0.03 1 2650 16 15 <20 114 0.12 <10 224 <10 2 50 75 52 534 10.90 7 2490 22 <5 178 12583 5 <.2 3.87 130 <5 4.05 1 10 <10 3.30 1254 14 0.02 <20 91 0.11 <10 254 <10 <1 58 130 95 <5 4 72 38 15 304 10.10 <10 3.68 1530 5 0.02 8 2340 24 10 <20 90 0.10 <10 284 <10 <1 72 179 12564 5 < 2 4.29 1 12565 105 0.6 90 85 <5 3 64 2 73 8 685 13.80 <10 3,78 1362 11 0.02 15 2240 24 <5 <20 74 0.10 <10 277 <10 ء 1 76 180 4 64 12566 5 <.2 4.23 75 65 10 5.34 2 31 17 223 10.30 <10 3.53 1398 5 0.02 5 2270 18 10 <20 94 0.10 <10 281 <10 <1 65 181 12567 5 <.2 85 70 <5 8.07 2 36 15 290 9.64 <10 2.75 1413 6 0.01 7 2020 18 <5 <20 136 0.07 <10 219 <10 56 182 3.62 <1 183 12568 10 < 2 4.03 105 75 <5 5.82 2 38 10 264 9.85 <10 3.11 1249 7 0.02 9 2350 18 10 <20 113 0.05 <10 251 <10 <1 67 184 12569 45 0.4 3 82 105 75 <5 2.92 32 18 499 8.83 <10 3 1 2 1042 8 0.02 11 2190 20 15 <20 64 0.02 <10 258 <10 <1 73 1 178 5 15 <20 755 10 60 <5 5.36 <1 22 29 4.58 <10 2.04 950 0.02 2 1740 12 117 0.01 <10 185 <10 <1 58 185 12570 <.2 2.24 12571 10 <.2 2.10 <5 60 10 4.13 17 32 17 4.01 <10 2.02 799 2 0.03 5 1750 12 15 <20 98 0.03 <10 146 <10 <1 42 186 <1 <.2 1.99 65 5 5.20 <1 21 33 27 3.71 <10 1.99 905 1 0.03 6 1770 12 15 <20 107 0.04 <10 181 187 12572 10 15 <10 2 42 188 12573 15 <.2 2.00 20 60 5 4.97 <1 16 30 28 3.82 <10 1.86 857 2 0.02 4 1750 12 20 <20 95 0.02 <10 165 <10 <1 47 45 75 15 7.92 2 19 40 30 9.41 <10 4.11 1607 10 0.01 8 1900 14 15 <20 145 0.05 <10 243 <10 <1 87 189 12574 < 2 4.52 15 12575 150 3.93 30 70 20 7.17 20 42 17 7.84 10 3.60 1383 8 0.01 3 2230 14 10 <20 139 0.05 <10 273 <10 <1 120 190 < 2 1 191 12576 135 <.2 3.64 1325 75 5 7.58 <1 155 16 162 8.20 <10 3.17 1474 9 0.02 10 2310 18 15 <20 139 0.11 <10 271 <10 1 155 192 12577 35 <.2 4.33 100 90 <5 6 87 1 39 21 250 9.65 <10 4.07 1666 4 0.02 21 2160 16 10 <20 141 0.12 <10 343 <10 2 98 193 12578 >1000 2.2 4.64 525 95 <5 7.96 1 101 17 1280 10.60 10 4.04 1686 7 <.01 13 2300 22 5 <20 156 0.05 <10 309 <10 <1 162 9.70 2 2220 265 100 <5 2 63 696 20 2.32 1451 0.01 18 10 <20 <10 225 194 12579 580 1.2 3.05 7 7.15 4 184 0.03 <10 121 1 10 42 25 60 100 125 <5 2 21 22 134 5.74 <10 2.30 1163 0.02 7 2260 <20 103 0 01 <10 143 <10 195 12580 <.2 2.88 4.89 <1 124 10 <.2 55 70 10 5.01 2 12 30 13 3.70 <10 1.50 871 2 0.02 5 1780 14 20 <20 95 <.01 <10 95 <10 110 196 12581 1.90 <1 27 50 <10 1.95 0.03 5 1880 20 15 <20 43 < 01 <10 197 12582 15 < 2 2 38 70 85 <5 1.64 <1 14 4.39 620 4 126 <10 <1 88 198 12583 >1000 1.2 2 33 2645 80 <5 4.65 <1 267 26 239 5.26 <10 1.86 1030 3 0.02 4 1740 18 15 <20 105 0.01 <10 140 <10 <1 88 199 12584 160 2.35 280 90 <5 3.47 <1 44 28 92 4.62 <10 2.11 830 2 0.02 4 1760 26 15 <20 88 0.02 <10 180 <10 <1 97 <.2 57 200 12585 300 <.2 2.37 195 80 5 2.94 <1 22 31 86 4.86 <10 2.12 807 3 0.02 6 1850 26 20 <20 <.01 <10 195 <10 <1 85

Values in ppm unless otherwise reported

TEUTON RESOURCES CORPORATION AK 95-1196

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557 TEUTON RESOURCES CORPORATION AK 96-1196 509-675 W. HASTINGS STREET VANCOUVER, B.C. V&C 1N2

ATTENTION: DINO CREMONESE

Received 224 Core samples. PROJECT #: none given SHIPMENT #: none given

Values in ppm unless otherwise reported

TEUTON RESOURCES CORPORATION AK 95-1196

ECO-TECH LABORATORIES LTD.

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Ne %	Ni	P	Pb	Sþ	Sn	Sr	TI %	U	<u>v</u>	w	Y	Zn
201	12586	70	<.2	3.32	245	90	<5	4.23	<1	36	23	181	7.63	<10	2.75	1269	4	0.03	7	2270	26	10	<20	81	0.07	<10	253	<10	<1	117
202	12587	35	< 2	4.14	215	80	10	5.97	1	33	15	157	9.03	<10	3.73	1814	13	0.02	12	2430	30	15	<20	109	0.10	<10	314	<10	<1	122
203	12588	40	<.2	4.23	180	100	5	6.10	2	33	16	190	8.99	<10	4.00	1885	8	0.02	13	2410	28	15	<20	111	0.11	<10	299	<10	<1	115
204	12589	45	<.2	3.97	185	75	<5	7.00	1	44	20	197	9.01	<10	3.60	1772	22	0.02	12	2450	28	20	<20	133	0.07	<10	305	<10	<1	116
205	12590	35	<.2	3.71	165	75	<5	5.14	1	36	19	220	8.93	<10	3.41	1734	5	0.02	10	2450	26	<5	<20	117	0.13	<10	285	<10	2	122
206	12591	45	<.2	3.97	115	80	15	5.25	2	38	15	200	9.14	<10	3.74	1799	3	0.02	9	2640	28	10	<20	132	0.16	<10	290	<10	2	132
207	12592	20	< 2	3 56	170	75	<5	7.46	1	41	4	181	8.22	<10	3.35	1814	23	0.02	7	2240	28	15	<20	154	0.10	<10	277	<10	4	85
208	12593	375	0.4	2.94	1155	50	<5	> 15	11	82	6	231	6.65	10	2.62	2614	8	0.02	6	1820	18	15	<20	248	0.05	<10	223	<10	17	205
209	12594	80	< 2	4 20	120	85	15	6 33	1	45	15	172	9.37	<10	3.92	15 39	14	0.02	17	2350	24	15	<20	149	0.06	<10	353	<10	1	88
210	12595	50	<.2	4.62	70	65	15	9.93	1	43	14	145	9.92	<10	4.43	2112	10	0.01	22	2010	26	<5	<20	230	0.07	<10	378	<10	1	96
211	12596	5	<.2	3.90	165	75	<5	6.77	1	34	14	136	8.29	<10	3.75	1697	6	0.01	17	1860	22	25	<20	175	0.05	<10	306	<10	<1	75
212	12597	180	1.2	3.18	240	80	<5	6.85	2	42	12	626	8.71	<10	2.79	1498	23	0.02	11	2130	28	10	<20	171	0.04	<10	225	<10	<1	88
213	12598	75	<.2	3.00	455	75	<5	5.72	<1	34	14	111	6.60	<10	2.55	1174	10	0.02	4	2050	42	15	<20	125	0.02	<10	163	<10	<1	101
214	12605	10	<.2	4 29	20	100	10	4.26	2	40	21	79	9.56	<10	4.50	1506	8	0.02	24	2030	34	15	<20	92	0.05	<10	319	<10	1	95
215	12606	10	<.2	4.47	15	75	15	7.53	1	41	14	88	9.17	<10	4.50	1842	5	0.02	20	1990	26	10	<20	147	0.04	<10	296	<10	1	101
216	12607	5	<.2	4.70	<5	80	10	8.34	2	40	14	89	9.72	<10	4.77	2052	7	0.02	23	1900	24	20	<20	171	0.04	<10	324	<10	1	134
217	12608	5	<.2	4.59	15	130	5	9.71	2	37	32	102	8.62	<10	4.78	2196	5	0.01	20	2160	30	10	<20	182	0.07	<10	345	<10	2	117
218	12609	5	<.2	4.84	10	110	15	7.12	2	45	46	111	9.26	<10	5.10	2091	8	0.02	28	2160	32	15	<20	148	0.05	<10	369	<10	2	120
219	12610	5	<.2	4.06	25	80	10	5.18	<1	34	18	131	8.08	<10	4.14	1704	7	0.02	14	2630	32	15	<20	106	0.04	<10	263	<10	4	97
220	12611	5	<.2	5.00	10	95	20	5.49	1	46	32	135	9.37	<10	5.38	1913	7	0.02	26	2180	38	10	<20	120	0.04	<10	344	<10	2	105
221	12612	5	<.2	5.44	<5	195	15	5.84	1	43	39	95	9.89	<10	6.08	2016	6	0.02	30	1790	38	<5	<20	137	0.04	<10	393	<10	~1	109
222	12613	65	<.2	4.37	25	70	<5	6.99	2	47	29	267	9.01	<10	4.25	1910	9	0.02	21	1920	30	15	<20	128	0.02	<10	318	<10	<1	119
223	12614	>1000	0.2	1.90	45	65	<5	6.56	1	22	24	263	4.66	<10	1.52	1142	6	0.02	2	1270	18	10	<20	125	<.01	<10	135	<10	<1	87
224	12529 A	5	<.2	3.56	15	100	15	7.1 9	1	35	35	47	8.73	<10	3.61	1492	<1	0.02	14	2660	26	15	<20	124	0.17	<10	217	<10	<1	109

1

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

TEUTON RESOURCES CORPORATION AK 95-1196 509-675 W. HASTINGS STREET

)

1

1

VANCOUVER, B.C. V6C 1N2

ATTENTION: DINO CREMONESE

ECO-TECH LABORATORIES LTD.

Received 224 Core samples. PROJECT #: none given SHIPMENT #: none given

Values in ppm unless otherwise reported

TEUTON RESOURCES CORPORATION AK 95-1196

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Tì %	U	v	w	Y	Zn
QC/DATA	L			<u></u>																						in nambalanini wa napara		A REAL PROPERTY AND A REAL PROPERTY.	andonina anta a farita d	in de Manuel de La companya de la
Resplit:	44000												~ ~~																	
R/S 1 R/S 36	11832 11867	30 >1000	<.2 7.8	3.33 2.37	70 225	60 165	10 <5	6.16 1.35	<1	32 80	20 38	117 8949	8.42 12.90	<10	2.73	1544 960	47	0.02	8 17	2180 1360	14	15	<20 <20	131	0.03	<10	252	<10	<1	88
R/S 30	11902	>1000	<.2	3.92	110	105	<5 <5	4.58		41	.36 14	362	12.90	<10 <10	3.22	900 1281	18 6	<.01 0.01	10	2090	22 34	20 <5	<20 <20	35 95	0.07 0.15	<10	183	<10	<1	448
R/S 106	11902	10	<.2	2.91	20	50	<5 <5	4.56	1	41	28	319	7.79	<10	2.65	1109	14	0.01	10	2090	34 4	<5 10	<20 <20	96 86	0.15	<10 <10	195 148	<10 <10	<1 <1	67
R/S 141	12522	60	<2	2.92	<5	50 75	<5	5.50	2	35	13	431	7.16	<10	2.82	1286	2		7	2560	24	5	<20	95	0.10	<10	173	<10	3	63 54
A/3 141	12322		~. £	2.92	-5	/5	-5	5.50	2	35	13	401	1.10	10	2.02	1200	2	0.02	'	2300	24	3	~20	90	0.12	10	1/3	10	3	34
R/S 176	12561	30	<.2	3,76	30	70	<5	3.35	1	36	<1	291	9.47	<10	3.03	941	4	0.02	3	2810	26	10	<20	82	0.10	<10	228	<10	<1	59
R/S 211	12596	5																												
Repeat:																														
1	11832	25	<.2	3.31	65	60	<5	5.92	1	32	19	119	8.04	<10	2.73	1510	30	0.02	9	2090	14	15	<20	133	0.03	<10	248	<10	<1	79
10	11841	350	0.8	2.85	1460	75	<5	4.16	<1	106	8	245	7.87	<10	2.21	1176	9	0.01	3	1970	74	10	<20	95	0.03	<10	117	<10	<1	159
19	11850	5	<.2	2.36	<5	150	25	4.80	<1	25	61	19	5.62	20	1.95	976	<1	0.03	37	3020	22	10	<20	173	0.45	<10	102	<10	14	99
38	11867	>1000	8.6	2.29	215	150	<5	1.37	7	74	35	8913	12.30	<10	1.93	893	15	<.01	14	1360	18	10	<20	32	0.07	<10	181	<10	<1	388
45	11876	5	<.2	3.97	35	85	10	2.68	2	36	43	95	8.21	<10	3.81	1361	4	<.01	10	2990	26	20	<20	51	0.08	<10	131	<10	2	156
			-																			_								
54	11885	10	<.2	3.65	115	80	15	8.55	1	41	47	122	8.97	<10	3.55	1970	3		13		24	5	<20	150	0.20	<10	240	<10	2	178
71	11902	15	<.2	3.80	110	115	<5	4.94	1	40	17	363	9.91	<10	3.11	1312	5	0.01	10	2040	30	<5	<20	103	0.14	<10	191	<10	<1	64
80	11911	640	<.2	2.18	60	70	10	4.85	<1	19	48	31	4.72	<10	1.65	957	3	0.02	8	1660	20	<5	<20	85	0.05	<10	105	<10	1	64
89	11920	10	<.2	2.09	<5	170	10	1.20	<1 2	22	25	65	6.34	<10	1.79	765	3	0.04	9	2280	22	5	<20	30	0.08	<10	109	<10	<1	58
106	11937	10	<.2	3.01	10	65	<5	3.49	2	40	28	329	7.65	<10	2.83	1103	11	0.03	15	2750	8	10	<20	76	0.10	<10	141	<10	<1	60
115	11946	5	<.2	2.99	<5	400	<5	5.34	1	26	5	90	6.66	<10	2.63	1372	1	0.02	3	2650	24	15	<20	111	0.11	<10	140	<10	2	85
124	12505	>1000	<.2	1.69	70	160	15	2.83	<1	263	15	129	5.96	<10	1.52	798	1	0.03	5	2030	18	<5	<20	53	0.09	<10	118	<10	4	52
141	12522	70	<.2	2.85	<5	75	<5	5.81	2	35	14	453	6.86	<10	2.77	1290	2	0.02	7	2450	18	10	<20	99	0.12	<10	168	<10	4	51
150	12531	380	<.2	2.76	5	1290	15	6.55	<1	22	32	82	7.35	<10	3.14	1176	<1	0.01	10	1890	6	15	<20	145	0.15	<10	150	<10	1	53
159	12540	5	<.2	3.86	<5	190	5	6.10	2	36	75	134	8.41	<10	4.54	1637	1	0.02	17	2330	22	15	<20	111	0.12	<10	271	<10	<1	73
176	12561	30	<.2	3.63	20	65	<5	3.24	<1	36	<1	287	9.14	<10	2.96	896	4	0.02	3	2710	18	10	<20	78	0.11	<10	219	<10	<1	55
185	12570	705	<.2	2.23	20	65	<5	5.41	<1	23	30	186	4.56	<10	2.03	963	6	0.02	3		14	15	<20	116	0.01	<10	185	<10	<1	50 60
194	12579	580	1.2	3.05	250	100	<5	9.71	3	62	8	685	7.21	20	2.31	1457	5	0.02	2	2230	18	15	<20	183	0.03	<10	226	<10		123
211	12596	5	<.2	4.32	165	85	<5	7.50	1	37	15	151	9.17	<10	4.08	1869	5	0.02	18	2070	28	15	<20	195	0.06	<10	335	<10	<1	78
Standard.		· ·			100	00		7.00	•	0,	10		•	-10	1.00		Ū	0.02		20/0	20	10	-20		0.00		000	-10		/0
GEO'95		150	1.0	1.63	65	165	5	1.75	<1	18	62	76	4.05	<10	0.87	694	<1	0.02	24	710	22	5	<20	56	0.11	<10	75	<10	4	79
GEO'95		150	1.0	1.60	70	175	10	1.80	1	19	60	75	4.16	<10	0.84	703	<1	0.01	23	770	22	15	<20	55	0.11	<10	74	<10	5	77
GEO'95		150	1.0	1.63	70	175	10	1.80	<1	19	70	74	4.20	<10	0.85	697	<1	0.02	22	770	22	5	<20	56	0.12	<10	76	<10	4	75
GEO'95		150	1.0	1.76	75	170	<5	1.81	<1	19	52	82	4.01	<10	0.98	717	<1	0.02	23	700	22	10	<20	58	0.11	<10	78	<10	5	81
GEO 95		150	1.2	1.74	65	155	<5	1.85	<1	16	54	83	3,96	<10	1.00	712	<1	0.02	21	706	24	<5	<20	58	0.12	<10	79	<10	4	76
GEO'95		150	1.0	1.86	70	175	<5	1.93	<1	20	54	84	4.30	<10	1.04	746	<1	0.02	23	690	20	10	<20	63	0.12	<10	84	<10	5	77
GEO'95		150	1.0	1.82	70	170	<5	1.93	<1	21	57	82	4.23	<10	1.00	756	<1	0.02	24	710	22	10	20	64	0.12	<10	83	<10	6	79

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T.

19-Dec-95	

18-16- Ar

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557 Values in ppm unless otherwise reported XLS/95Teuton#3

TEUTON RESOURCES CORPORATION AK 95-1196 509-675 W. HASTINGS STREET VANCOUVER, B.C. V&C 1N2

,...,

ATTENTION: DINO CREMONESE

Received 224 Core samples. PROJECT #: none given SHIPMENT #: none given

B.C. Certified Assayer

CERTIFICATE OF ASSAY AS 95-1153

TEUTON RESOURCES CORPORATION 509-675 W. HASTINGS STREET VANCOUVER, B.C. V6C 1N2

ATTENTION: DINO CREMONESE

164 CORE samples received November 29, 1995

- PROJECT #: none given
- SHIPMENT #: none given
- P.O.#: none given
- Samples submitted by: none given Metallic screen check request December 20, 1995

				METALLIC SCREEN ASSAY					
			Au	Au	Au	Au			
	ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)			
~~~	12	46412	11.92	0.348	-	-			
	18	46418	2.00	0.058	-	-			
	69	46468	1.39	0.041	-	-			
A	70	46469	28.90	0.843	35. <b>94</b>	1.048			
	129	46528	1.79	0.052	-	-			
	159	46558	1.27	0.037	-	-			
	160	46559	4.51	0.132	-	-			

XLS/95Teuton#2

22-Dec-95

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

## APPENDIX V

## PETROGRAPHIC STUDY REPORT by ALEX WALUS

# GEOLOGY OF GOLD BEARING ZONES ON THE CLONE 1 CLAIM RED MOUNTAIN AREA, STEWART, BRITISH COLUMBIA

#### LITHOLOGY

The portion of the Clone 1 claim which hosts the gold bearing shear zones discovered in 1995 is underlain by a package of andesitic pyroclastic and volcaniclastic rocks intruded by andesite (see geology map). The area to the northeast of the zones is occupied by an andesite breccia composed primarily of angular andesite (with occasional dacite and diorite fragments reaching up to 1.0m in diameter) set in a lapilli-tuff matrix cemented by hematite. To the northeast, the hematite content in the matrix decreases and the rock passes to a mixed, hematite cemented and nonhematitic green coloured volcanic andesite breccia. Southwest of this unit is a conformable major andesite intrusion. Further to the southwest are units consisting of andesite lapilli-tuff and limonitic argillite/siltstone to mud supported lapillistone, both intruded by andesites which form bodies with irregular, diffused, difficult to trace borders. In the northwest portion of the mapped area (beyond

Trench 27) andesite lapilli-tuff is absent as a result of its

replacement by andesite. Andesite ranges from hornblende +biotite to feldspar porphyritic with minor occurrences of augite porphyritic and aphanitic andesites. Groundmass in porphyritic varieties is aphanitic and, to a lesser extent, fine grained.

#### TECTONIC FEATURES

The whole mapped area hosting the gold bearing mineralization is underlain by a weak cataclasite-mylonite zone which features both ductile and brittle styles of deformation. The former is best developed in argillite/siltstone which shows fairly good foliation; in other, more stress resistant lithological units it is expressed by the stretching of some fragments and locally by weak foliation. The latter style is expressed in the form of intensive fracturing with local zones of shearing and brecciation.

Both pre and post mineralization faults are present in the area and they do not have any preferred orientation. The dominating fracture system in the area has an orientation of 320 degrees with moderate dips to the northeast or southwest.

#### GOLD BEARING SHEAR ZONES

#### GENERAL DESCRIPTION

Gold bearing shear zones within the Clone 1 claim vary in width from 0.6 to 10.0m. Brittle forms of deformation dominate with intensity ranging from fracturing to strong shearing.

Ductile forms of deformation are present locally as weak to moderate foliation and sporadically stretched out fragments. A portion of the H-1 zone between Trenches 47 and 57 is developed on the contact between hornblende porphyritic andesite and andesite lapilli-tuff. A section of the S-2A zone between Trenches 23 and 34 is located on the contact between argillite/siltstone (Unit 1) and andesitic rocks (Units 2, 3a, 3b).

Strike of the zones range from 300 to 340 degrees with 320 being the dominant direction (which coincides with prevalent tectonic orientation in Stewart region). Dips are generally vertical with slight deviations either to the southwest or northeast.

On the northwest end, the gold bearing zones are terminated by a major fault. Because the zones were discovered late in the field season, there was not enough time to attempt a correlation of geology on both sides of this fault. For the same reason, no trenching or sampling was done to the southeast of Trenches 8, 9, 81, although it appears likely that the zones continue further

southeast at least to the boundary of the ice field (i.e. for another 80-100 m).

Both hematite rich, sulphide poor (H-1, H-2) and hematite poor, sulphide rich (S-2A, S-2B, S-1) gold bearing zones often have little surface expression because their alteration assemblages do not differ much (visually) from those of the wallrock. Sulphide rich zone S-2A has little limonite stain; zone S-1 has abundant limonite, but is covered mostly by talus.

#### H-1 ZONE

The H-1 is the richest gold bearing zone discovered to date on the property. The 191 m long zone consists of K-feldspar, Fe-rich chlorite, hematite, sericite, quartz and calcite (listed in order of relative abundance). Gold in the zone is associated with a quartz-hematite-magnetite-chalcopyrite paragenesis identified by means of a petrographic microscope; it is not, however, readily recognisable in the field. Native gold was noted in Trenches 4 and 15. In a few places, trace pyrite and tennantite were noted, and, locally, minor amounts of secondary copper minerals are present which include malachite, chrysocola and possibly dioptase.

The zone is often cut by 2-10mm wide veinlets containing quartz, calcite, Fe-rich chlorite and less frequently specularite.

One set of these veinlets with greater lateral continuity is oriented parallel to the zone with vertical to very steep northeast or southwest dips. Another set of shorter less continuous veinlets cut the zone roughly perpendicular to its strike with shallow dips to the northwest or southeast. An ice field obscures the H-1 zone on the northwest end, whereas the northeast half of Trench 77 terminates it at its southeast end. Below Trench 77, the structure which hosts the gold bearing H-1 zone may be shifted to the northeast, continuing further to the southeast.

The boundaries of the hematite rich, sulphide poor H-1 and H-2 zones were establish primarily on the basis of high hematite content and to lesser degree by the abundance of quartz, chlorite, calcite and specularite veinlets. Zone boundaries defined in this way have often, however, poor correlation with gold assays. Width of the H-1 zone based on assays ranges from 2.35m (Trench 21) to 7.5m (Trench 15).

#### H-2 ZONE

This structure traced by three trenches over a length of 18 metres averages 1.5m in width and has potential to be extended on both ends. Mineralogically and geochemically the zone is very similar to the H-1 and that is why it is assumed that gold in the

zone is associated with a quartz-hematite-magnetite-chalcopyrite assemblage. This, however, is not certain since such paragenesis was not observed.

#### S-2A ZONE

This zone can be traced over a strike length of 507 metres. On the northern side it is terminated by a major fault as inferred by an abrupt change in lithology. On the other end the zone very likely reaches Trench 81 where it probably merges with the structure which hosts the H-1 zone. Zone width evaluated on the basic of high sulphide and/or limonite content shows fairly good correlation with gold values and ranges from 0.6m (Trench 37) to 6.0m in Trench 18.

The zone is composed of K-feldspar, sericite, Fe-rich chlorite, calcite and locally subordinate amounts of very fine, disseminated hematite. Gold is associated with pyrite and arsenopyrite with their combined content reaching 15%; locally limonite, minor chalcopyrite and secondary copper minerals (malachite, chrysocola, dioptase(?) were noted.

The section of the S-2A between Trenches 18 and 23 and the short S-2B zone are devoid of arsenopyrite. Here the gold is associated with pyrite and possibly also with a gold bearing

quartz-hematite-magnetite-chalcopyrite paragenesis.

#### S-2B ZONE

This short zone branches off the main S-2A structure in the area of Trench 10 and continues for 40 metres towards Trench 22 where it abruptly ends.

### S-1 ZONE

This high-grade gold zone was traced for 95 metres (with possibility for extension at the northwest end), and has a width ranging from 1.3 to 2.0m. It features a high sulphide content (pyrite + arsenopyrite) of up to 25% (partly oxidized to limonite), associated with sericite, Fe-rich chlorite and quartz. Most of the zone is covered by overburden.

### ALTERATION-MINERALIZATION PROCESSES

This section refers to gold bearing shear zones S-1, S-2A, S-2B, H-1, H-2 and 7 other shear zones located on the geology map because they all show many similarities in alteration and geochemistry.

#### K-FELDSPAR ALTERATION

This initial very strong pervasive alteration affected all shear zones in the area. Two samples taken from Trenches 55 and 81 assayed as much as 8.57 and 8.94% potassium, respectively, which, after accounting for some potassium in sericite, translates to at least 50% K-feldspar content.

#### GOLD BEARING QUARTZ-HEMATITE-MAGNETITE-CHALCOPYRITE PARAGENESIS

This mineral assemblage introduced after K-feldspathization occurs in the H-1 and probably also in the H-2 zones and is responsible for very high gold assays from Trenches 4, 14, 15, 78 and 81. Descriptions of minerals comprising this paragenesis compiled from microscopic examination of thin sections CL-E-341, CL-212, CL-287, CL-423, CL TR-81, D11-17.6 are as follows:

- Quartz forms irregular grains ranging from 0.05 to 2.0mm in size.
- Hematite occurs as dense aggregates of very fine grains up to 0.01mm in size and as specularite with crystal forms ranging from small short laths to flakes up to 1.5mm long, often banded together in contorted subparallel aggregates.
  - Magnetite is the most characteristic mineral of this assemblage forming either separate subhedral to euhedral

crystals measuring from 0.02 to 0.5mm across or aggregates of such crystals reaching 1.0mm in size.

Chalcopyrite occurs always in subordinate amounts forming either inclusions within magnetite or separate patches and blebs.

Other minerals occurring locally in this paragenesis in trace to minor amounts include: native gold (thin sections: CL-E-341, CL-212, CL-287, CL-423 and D11-17.6), biotite and muscovite (CL-E-341), green mica (CL-212), carbonaceous opaque (CL-E-341, CL-212).

Native gold occurs as grains reaching 0.05 mm in diameter embedded in quartz, hematite and magnetite. Analyses of several gold grains from thin section CL-212 showed its high purity of at least 95 %.

#### SERICITE-CHLORITE ALTERATION

Examination of thin sections indicate that this event postdated gold bearing quartz-hematite-magnetite-chalcopyrite paragenesis. This alteration composed of sericite, Fe-rich chlorite and minor disseminated opaque minerals occurs practically in all shear zones, but it is most intense in zones S-1, S-2A and S-2B.

#### GOLD BEARING PYRITE-ARSENOPYRITE PARAGENESIS

This high gold mineral paragenesis occurs in S-1, S-2A and S-2B zones. Timing of this event is uncertain, it is either contemporaneous with sericite-chlorite alteration or as indicated by thin section CL-344 was introduced later. Gold seems to be present in both pyrite and arsenopyrite. A portion of the S-2A zone between trenches 18 and 23 and zone S-2B has no arsenopyrite and gold is likely associated with pyrite. It is not clear whether the absence of arsenopyrite is caused by just local variation in pyrite-arsenopyrite distribution along the shear zone or represents a separate mineralizing event.

#### HEMATIZATION

This alteration is understood here as an introduction of numerous disseminated extremely fine (usually up to 0.005mm across) particles of hematite (hematite dust).

It is by far the most visible alteration, often giving a red colour to the rocks which masks to a large degree other alteration/mineralization assemblages. Weak to strong hematization is present in all shear zones except S-1. The bulk of this alteration occurs in the H-1 zone and in an area just northeast of this zone up to the contact between the hornblende porphyritic

andesite and hematite cemented volcanic andesite breccia. The intensity of the alteration increases towards the volcanic breccia indicating that this lithological unit is a source of hematite.

Hematization does not appear to be associated with gold mineralization, it makes, however, shear zones more visible. Hematization comprises a period of time beginning before the introduction of gold bearing quartz-hematite-magnetite-chalcopyrite mineralization and ending before the introduction of quartzcalcite-chlorite-specularite veinlets.

#### QUARTZ-CALCITE-CHLORITE-SPECULARITE VEINLETS

The veinlets were formed last in the sequence of alterationmineralization events and are present throughout the whole area with the zones H-1 and H-2 hosting the largest amount of them. They form simple extension veins usually up to 1.0 cm in width.

#### COBALT

Very high cobalt assays up to 0.71% were reported from the area of Trenches 8, 9 and 81 and separately from one grab sample MM#1 taken close to Trench 77. No cobalt minerals were detected in two thick polished sections CL-TR-135 and CL-TR-9. Attempts to detect primary cobalt minerals by means of XRD were also

unsuccessful. A secondary cobalt mineral, erythrite, was noted in Trenches 69 and 81. At least some of the cobalt seems to be associated with arsenopyrite (and possible pyrite) as indicated by their strong positive correlation.

#### MAGNETISM AND ITS CORRELATION WITH GOLD

Magnetic anomalies in the area may derive from two or possible three different magnetites:

- Primary subhedral to euhedral magnetite associated with quartz-hematite-chalcopyrite and trace of native gold, present in all high gold samples from the H-1 zone and in Trench 81.
- Secondary magnetite after hematite observed in thin section CL-287 (sample A-95-287 of Trench 15) which is not likely to be associated with gold.
- 3. Primary, mostly anhedral magnetite occurring in paragenesis with quartz-pyrite-hematite-chalcopyrite-tennantite was noted only in sample ERK-95-446 from Trench 70 (this sample assayed 0.162 opt. gold). It is not clear, however, whether this mineral assemblage represents a separate mineralizing event or just a modification of the gold bearing quartz-hematitemagnetite-chalcopyrite mineral assemblage.

#### GEOCHEMISTRY

Examination of assay and ICP results from 81 trenches enabled a differentiation of shear zones according to their specific geochemical signatures.

- 1. Zones H-1, H-2, S-2B and part of S-2A between trenches 18 and 23 are characterized by high gold assays (up to 8.66 opt, cf. sample A-95-277 from Trench 10) associated with iron. Sporadically there are elevated arsenic values up to 254 ppm and cobalt values up to 298 ppm, both showing no correlation with gold values.
- 2. The S-1 zone plus a portion of the S-2A zone between Trenches 25 and 37 feature consistently high gold values ranging between 0.08 and 2.4 opt associated with high arsenic values ranging from 1915 ppm to 2.4% along with elevated cobalt values up to 1826 ppm. Both arsenic and cobalt show fairly good correlation with gold.
- 3. All other shear zones have variable gold results of up to 0.088 opt (sample A-95-360 from Trench 43) associated with elevated arsenic and cobalt ranging up to 765 and 263 ppm, respectively, both showing a weak to moderate correlation with gold.

4. The area comprising Trenches 8, 9 and 81 is characterized by high cobalt contents measured in tenths of a percentage point (up to 0.71%, cf. sample A-95-228 from Trench 9) and associated with high arsenic reaching over 1% in many samples; gold values are moderate to high (up to 1.71 opt, cf. grab sample DC-110).

Samples belonging to all four designated geochemical types show anomalous values in silver, molybdenum, copper and zinc with the first two showing good and the last two elements very poor correlation with gold values. Silver is slightly elevated up to 29.6 ppm (sample A-95-403 from Trench 51). Molybdenum in a majority of the samples is elevated up to 50 ppm, a few samples have higher contents measured in hundreds of ppm with the highest value being 576 ppm recorded in sample A-95-222 from Trench 7. Copper values are often in hundreds of ppm up to 3007 ppm recorded in sample A-95-211 from Trench 4. Zinc values are slightly elevated in part of the samples with the highest content of 1177 ppm recorded in sample A-95-301 from Trench 17.

### CONCLUSIONS

The new area of high grade gold mineralization discovered by

Teuton Resources in 1995 bears many features characteristic of a hyphothermal environment.

These include:

- Association of gold with magnetite and arsenopyrite
- Presence of biotite and muscovite (thin section CL-E-341) as well as tremolite (thin section CL 344) in paragenesis with ore minerals.
- Widespread presence of Fe-rich chlorite
- Ag poor gold

There were at least two major mineralizing events in the area, both associated with high gold values, these are: quartz-hematitemagnetite-chalcopyrite and pyrite-arsenopyrite.

Lithological contacts appear to exert a certain control over gold mineralization.

Magnetism in the area derives from magnetite coming from two or possible three different sources of which only one source, i.e., quartz-hematite-magnetite-chalcopyrite paragenesis, is associated with high gold values.

#### RECOMMENDATIONS

In the area of the gold bearing zones some of the existing

trenches should be extended to reveal the full width of the zones. An effort should be made to extend the zones to the northwest and southeast.

All areas to the north, northeast and northwest should be prospected including areas previously examined. Rock, silt and soil samples should be collected with anomalous values in arsenic, cobalt and molybdenum in addition to gold and silver being an indicator of mineralization types discovered in 1995 on the Clone 1 claim. Geological mapping should be carried out over the entire area of interest.

The most promising areas should be designated for trenching, sampling and detailed mapping along with magnetometer and VLF geophysical surveys in order to outline drill targets. Magnetic anomalies should be used in conjunction with other data to designate drilling targets. All attempts should be made to minimize the loss of gold bearing specularite in drilling process.

#### APPENDIX I

### DESCRIPTIONS OF THIN SECTIONS FROM CLONE 1 CLAIM

#### PROCEDURE

Rock specimens were prepared by Vancouver Petrographics; 8 thin sections, 11 polished thin sections and 3 polished thick sections were made, which were subsequently described by A. Walus using a standard petrographic microscope. All offcuts along with some thin sections were stained by sodium cobaltinitrite solution for K-feldspars. Several gold grains in samples A-95-212 were analysed for purity in the Cominco Laboratory using a scanning electron microprobe.

Note* Percentage values used in descriptions refer in proportion to the whole thin section area unless otherwise stated.

#### POLISHED THIN SECTION A-95-212 (TRENCH 4)

About 30% of the sample is made up of semi-opaque rock composed 55% of very fine-grained (0.005-0.01mm) hematite. Hematitized rock was in turn partly replaced by a gold bearing paragenesis comprising the following minerals:

- Quartz (50%), consists of strongly strained grains (0.2-1.0 mm in size) forming irregular replacements and veinlets (at least 2 stages); there are numerous inclusions of hematite from previous assemblage.
  - Magnetite (10%), forms separate subhedral to euhedral grains 0.05 to 0.3mm in size and aggregates of such grains up to

0.3mm in thickness.

- Carbonaceous opaque (5%), make up irregular patches 0.002-0.1mm in size.
- Green mica (?) (2%), small patches of very fine grained crystals.
- Chalcopyrite (0.5%), as tiny (<0.02mm) blebs in magnetite and quartz.
- Native gold, 40-50 grains up to 0.06mm in diameter imbedded in quartz lesser in magnetite; it shows strong association with carbonaceous opaque.

There is late 0.5cm wide vein composed of quartz and specularite developed as strongly elongated crystals

#### POLISHED THIN SECTION CL-E-341

#### (SAMPLE ERK-95-341 OF TRENCH 14)

Fine-grained mosaic of hematite crystals up to 0.02mm long intergrown with non-opaque minerals comprises 40% of the sample.

Later paragenesis forming veinlets and large replacement patches consists of:

- quartz (25%) developed as strongly strained grains 0.2 to
   2.0mm;
- specularite (25%) occurring as aggregates of tabular crystals and as contorted, foliated to micaceous masses;
- magnetite (15%) forming single, subhedral to euhedral crystals
   0.05 to 0.2mm across or more frequently aggregates of such grains up to 1.5mm in size;
  - chalcopyrite (0.5%) occurring as blebs 0.005 0.7mm across, mostly within magnetite;

- biotite (1%) and muscovite (1%) forming crystals 0.02-0.3mm in size;
- carbonaceous opaque (<0.5%).

native gold, about 20 grains, ranging in size from 0.002 to 0.02mm. Most of them are included within magnetite, the remainder is associated with specularite, fine grained hematite and quartz.

Later assemblage (2-3%) of sericite with lesser chlorite and fine grained quartz fills breaks within quartz and constitutes contorted veinlets along borders of quartz grains.

There are a few replacement patches (2%) composed of Fe-rich chlorite converted partly to biotite. Timing of these is uncertain.

### POLISHED THIN SECTION CL 287

### (SAMPLE A-95-287 OF TRENCH 15)

The rock consists of extremely fine grained hematite (40%) to large extent replaced by strongly strained to weakly sheared quartz (45%) 0.02-0.5mm in size, forming irregular replacements and veinlets (often crossing each other). Associated with quartz are the following ore minerals:

- magnetite (3%), as subhedral to anhedral grains 0.05-0.5mm
  across;
- chalcopyrite (0.5%) forming small blebs 0.01-0.05mm in size;
- native gold, approximately 20 grains 0.005 to 0.1mm in diameter embedded in quartz.

Across thin section there are three late veinlets as follows: 1mm wide quartz-carbonate veinlet and 2 parallel veinlets 2-3mm wide composed of contorted, micaceous crystals of specularite up to

2.0mm long, converted in 85% to magnetite.

# POLISHED THIN SECTION CL 423

### (SAMPLE A-95-423 OF TRENCH 78)

The rock is composed 85% of quartz grains 0.1 to 2.0mm across with abundant dusty opaque dominated by tiny particles of hematite. Another 13% consists of specularite developed as needles and aggregates of parallel contorted long crystals. There are several grains of gold 0.01-0.05mm in size imbedded in quartz.

#### POLISHED THIN SECTION D11-17.6 (DDH95-11, 17.6m)

The rock is composed of strained quartz grains up to 1.5mm across, locally fractured to brecciated with open spaces filled with fine grained hematite (20%), Fe-rich chlorite (1%) and minor (<0.5%) magnetite and chalcopyrite.

There are approximately 50 grains of native gold in the sample reaching 0.02mm across associated with hematite and quartz.

Introduction of carbonates (7%) was the last event.

### POLISHED THIN SECTION CL TR 81 (TRENCH 81)

Following alteration-mineralization stages can be distinguished in the sample:

- Pervasive, almost complete replacement by K-feldspar, the sample assayed as much as 8.94% potassium which translates to at least 50% K-feldspar (after taking into account sericite). The primary rock can not be identified due to complete alteration.
- 2). The rock was strongly fractured to brecciated followed by

introduction of quartz (5%) forming irregular grains from 0.05 to 1.0mm accompanied by following ore minerals:

-Magnetite (3%) forming scattered subhedral grains 0.05-0.3mm in size

-Hematite (2%) forming mostly tiny (0.005-0.01mm) disseminated grains lesser small irregular patches up to 0.1mm in size and in one spot it occurs as well developed laths 0.2mm long -Chalcopyrite (0.5%), irregular grains and patches measuring from 0.02 to 0.5mm in size.

- 3). Subsequent alteration assemblage consists of sericite (15%) and Fe-rich chlorite (10%)
- 4). Last stage is represented by several veinlets (2%) with quartz, carbonate and Fe-rich chlorite

#### POLISHED THICK SECTION CL TR 9

#### (ARSENOPYRITE VEIN - SAMPLE A-95-228 OF TRENCH 9)

The sample contains 85% arsenopyrite grains up to 1.0mm across which were brecciated and the resulting open spaces filled by nonopaque minerals and chalcopyrite (5%) forming irregular patches up to 0.2mm across lesser filling cracks in arsenopyrite.

## POLISHED THICK SECTION CL TR 135 (SAMPLE A-95-135, GRAB)

The sample is composed of grains up to 1.0mm across of arsenopyrite (57%) and pyrite (15%), containing blebs and patches 0.01-0.1mm in size of chalcopyrite (2%). Opaque minerals were subsequently brecciated and the resulting open spaces filled by non-opaque minerals with lesser very fine grained hematite developed as irregular patches. This late mineral assemblage

comprises remaining 15% of the sample.

## POLISHED THICK SECTION CL TR 70 (SAMPLE ERK-95-446 OF TRENCH 70)

Sample consists of 30% quartz accompanied by ore minerals introduced in the following time sequence:

- Hematite (5%), as elongate crystals up to 0.3mm long
- Pyrite (30%) forming masses of fractured to brecciated grains
- Magnetite (25%), mostly as massive anhedral magnetite replacing pyrite, occasionally as subhedral single crystals; it has slightly different tinge compare to magnetite from high gold quartz-hematite-magnetite-chalcopyrite paragenesis
- Chalcopyrite (5%), contemporaneous with magnetite, as blebs, patches and short veinlets
- Tennantite (5%), contained primarily in one 2.0mm wide shear vein

### THIN SECTION CL 392

#### (SAMPLE A-95-392 OF TRENCH 47)

The rock underwent the following stages of alteration:

- An early stage of very strong pervasive K-feldspar alteration (60%)
- 2. Introduction along fractures of extremal fine grained hematite (15%) forming irregular veinlets and disseminations. In two places representing 10% of thin section, hematite cements strongly strained anhedral quartz grains 0.05-1.0mm in size (5%)
- 3. Chlorite-sericite alteration (10%)
- 4. Late Fe-rich chlorite, quartz and carbonate veining (10%)

### THIN SECTION CL TR 5 (TRENCH 5)

One portion of the sample (25%) is composed of anhedral grains 0.02-0.5mm across of K-feldspar, which is believed to be secondary and lesser quartz.

This part of thin section was than fractured to brecciated followed by introduction of Fe-rich chlorite (10%), sericite (7%), carbonate (4%) and hematite (5%) which form irregular veinlets, replacement patches and lesser disseminations.

Another 70% of the thin section represents similar rock, except that later alteration is much more intense with sericite comprising 30%, Fe-rich chlorite 20% and hematite 10%.

Two 0.5-2.0mm wide crenulated veinlets containing hematite and Fe-rich chlorite comprise remaining 5% of the sample.

#### THIN SECTION CL P.M. DYKE

#### (SAMPLE TAKEN FROM A DYKE, 15 M NE FROM TRENCH 14)

#### MICROGABBRO (DIABASE)

The rock is composed 50% of moderately K-feldspar altered laths of plagioclase 0.5-1.0mm long displaying diabasic texture. Primary mafic minerals are represented by clinopyroxene (15%) ranging in size form 0.02 to 1.0mm. The latter and to lesser degree plagioclase are replaced in 40 to 80% by chlorite, uralite, tremolite-actinolite, zoisite and biotite.

The rock contains also 5% of euhedral magnetite (?) crystals, in most part altered to hematite.

### THIN SECTION CL-395

#### (SAMPLE A-95-395 OF TRENCH 50)

The following sequence of events was establish in the sample. 1). Very strong K-feldspar alteration.

- 2). Sericitization introduced along the fractures
- Brecciation followed by introduction of Fe-rich chlorite (10%) with extremal fine grained hematite (10%) forming irregular patches and disseminations.
- Introduction of regular 2-3mm wide vein of Fe-rich chlorite with lesser guartz and carbonate.

#### POLISHED THIN SECTION CL 419

#### (SAMPLE A-95-419 OF TRENCH 57)

Sample is composed of strongly K-feldspar (60%) altered rock which was subsequently fractured to brecciated followed by introduction of sericite, quartz, Fe-rich chlorite, carbonates and minerals of epidote group which comprise irregular veinlets and replacement patches which make up remaining 40% of thin section. The time relations between these later minerals were not possible to establish.

There are several large subhedral plagioclase grains which may represent phenocrysts.

#### POLISHED THIN SECTION CL TR 55 (TRENCH 55)

Primary rock can not be established due to almost complete Kfeldspar alteration (60%). Several larger mineral grains may represent feldspar phenocrysts of which a few seem to be of plagioclase.

Later assemblage (15%) is composed of sericite-Fe-rich chlorite and very fine grained hematite.

Thin section is cut by 1.0-2.0cm wide late vein (30%) composed of well formed crystals of Fe-rich chlorite with lesser quartz and specularite.

#### POLISHED THIN SECTION CL 344

#### (SAMPLE A-95-344 OF TRENCH 39)

The rock displays the following successive stages of alteration-mineralization:

- A primary rock is not possible to determine due to almost complete alteration. Several larger grains are of plagioclase. First phase of alteration consists of very strong pervasive K-feldspar replacement (45%).
- 2. Partial replacement (30%) of the K-feldspar altered rock by Fe-rich chlorite with subordinate amount of hematite (1-2%) often developed as small laths.
- 3. Formation 0.1-1.0cm wide veinlets (15%) with Fe-rich chlorite, fibrous tremolite, humite (?) and locally quartz. They contain anhedral highly fragmented grains of pyrite (3%), arsenopyrite (1%) and chalcopyrite (0.5%) ranging in size from 0.01 to 1.0mm
- Late introduction of carbonate (10%) replacing former mineral assemblages

## THIN SECTIONS CL 3a(2) AND CLR 3a (COMBINED DESCRIPTION) REPRESENTING HORNBLENDE PORPHYRITIC ANDESITE (UNIT 3a)

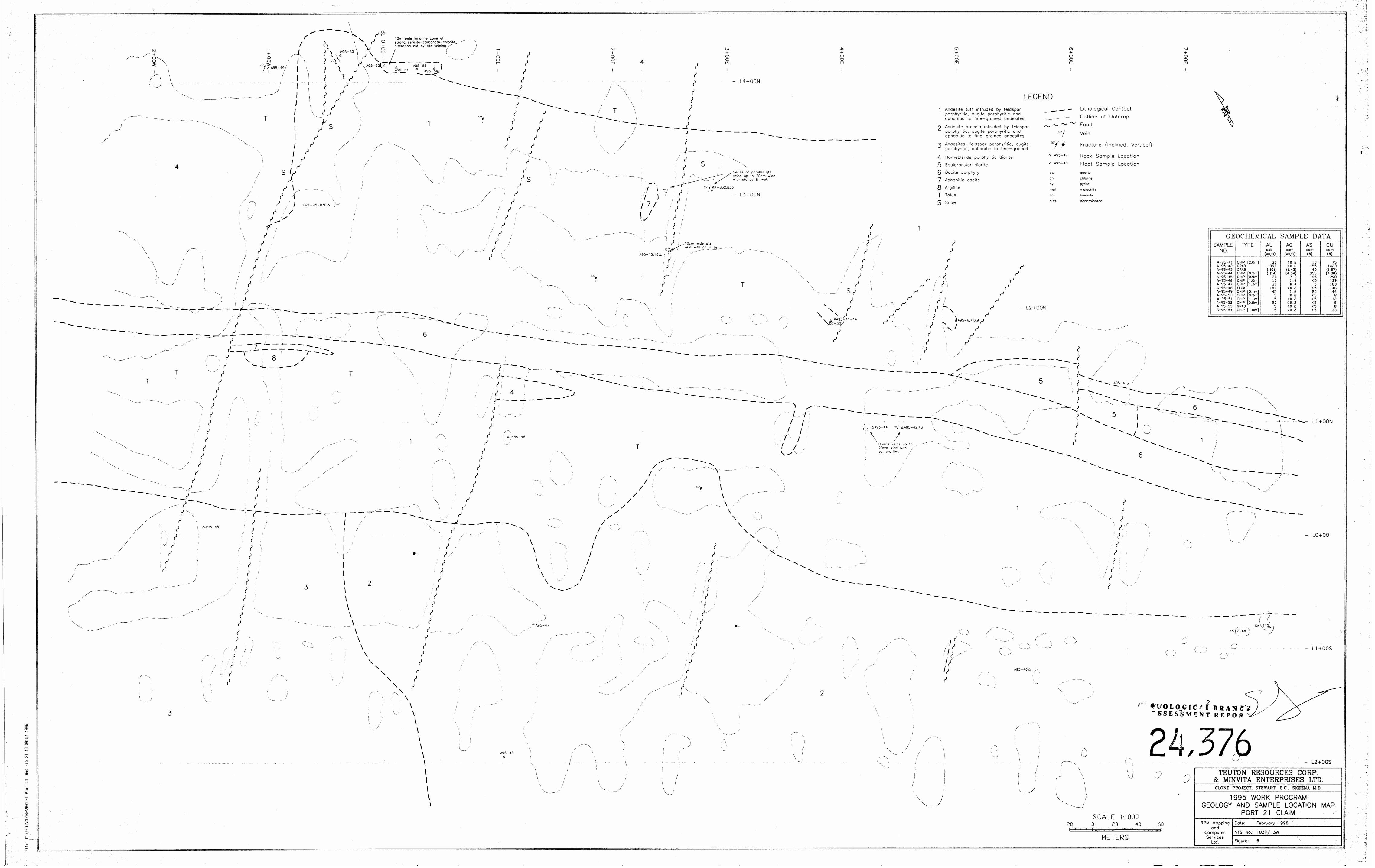
#### ANDESITE (?)

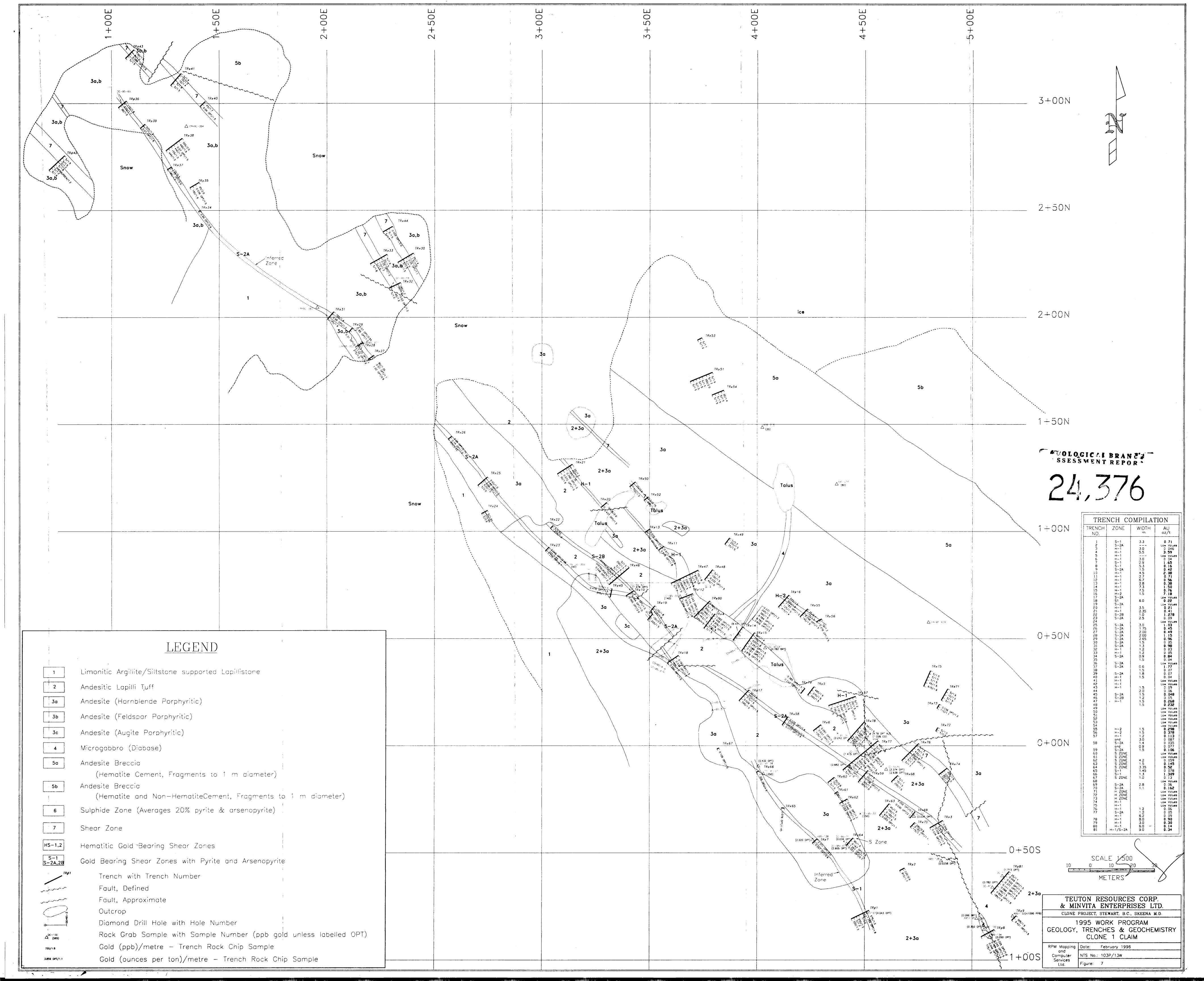
The rock consists of 10-20% feldspar (?) phenocrysts 0.05-0.5mm in size, 10-15% completely altered hornblende and/or biotite phenocrysts up to 1.5mm long and 1-2% apatite crystals; these are set in very fine grained groundmass. Both phenocrysts and groundmass are very strongly altered to K-feldspar (which seems to represent the earliest alteration), sericite, chlorite with lesser carbonate and extremely fine-grained patchy to disseminated hematite (1-3%).

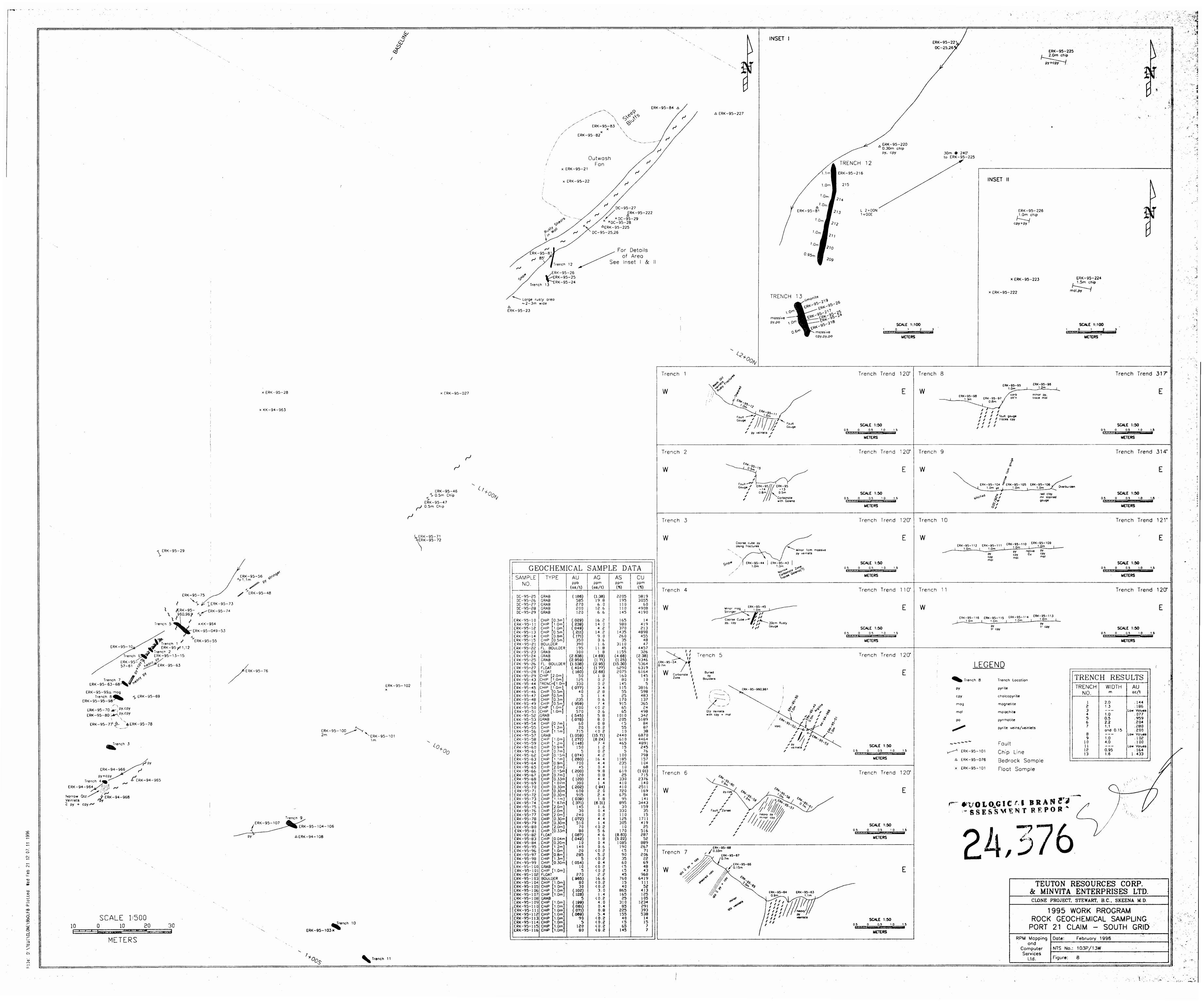
## THIN SECTIONS CL 5aHBr AND CL HBr (COMBINED DESCRIPTION) REPRESENTING MATRIX OF HEMATITE CEMENTED VOLCANIC ANDESITE BRECCIA

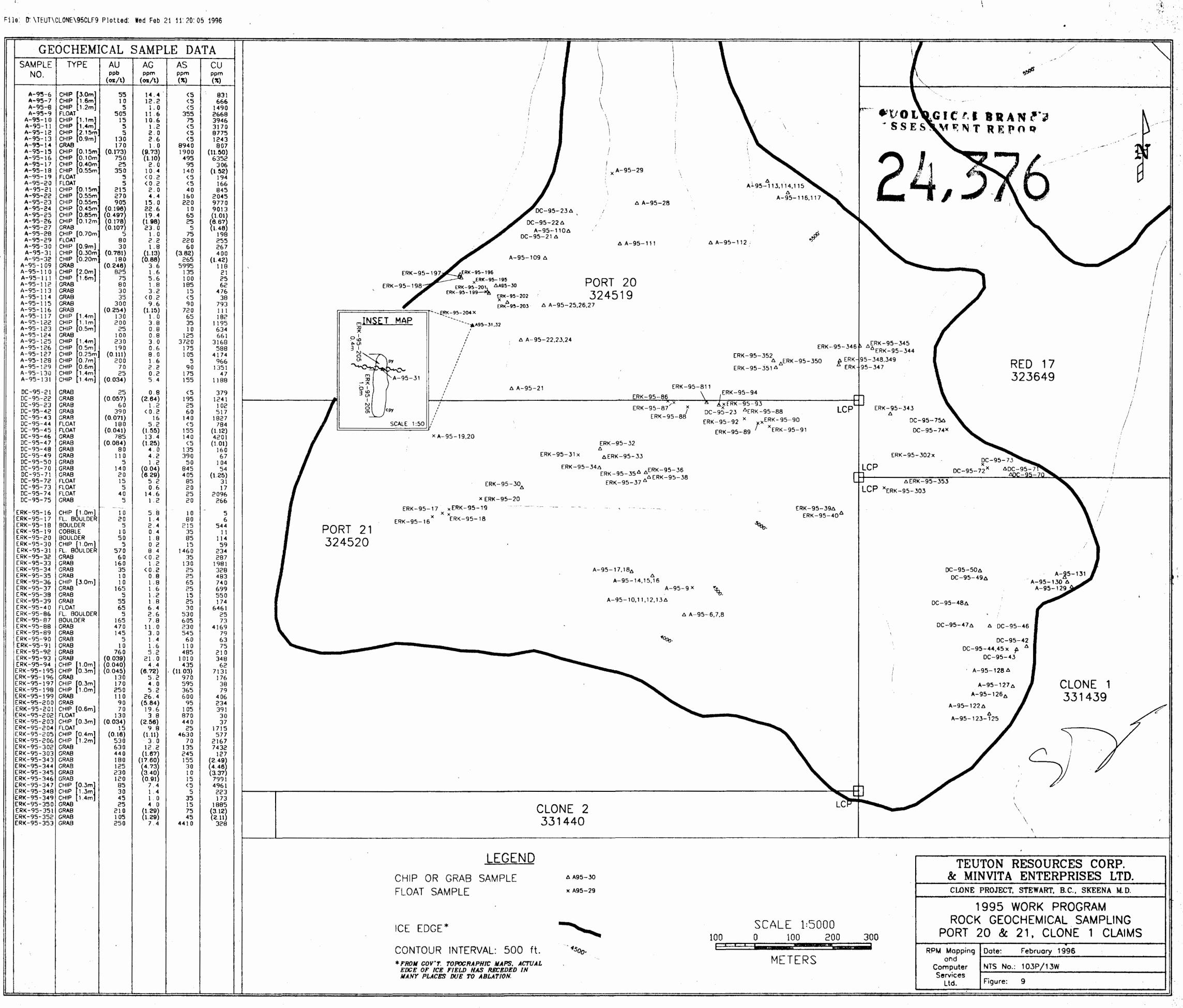
Macroscopically the rock is of hematitic breccia with fragments ranging from 0.3 to 2.0cm. Under the microscope fragments are strongly to completely altered to sericite, carbonate, quartz and Fe-rich chlorite. There is 1-5% of strongly resorbed quartz crystals possibly volcanic in origin. The rock contains 5-10% very fine grained hematite forming irregular diffused patches and hematite dust. The origin of hematite is uncertain.

#### THIN SECTION CL TR 75 (TRENCH 75)

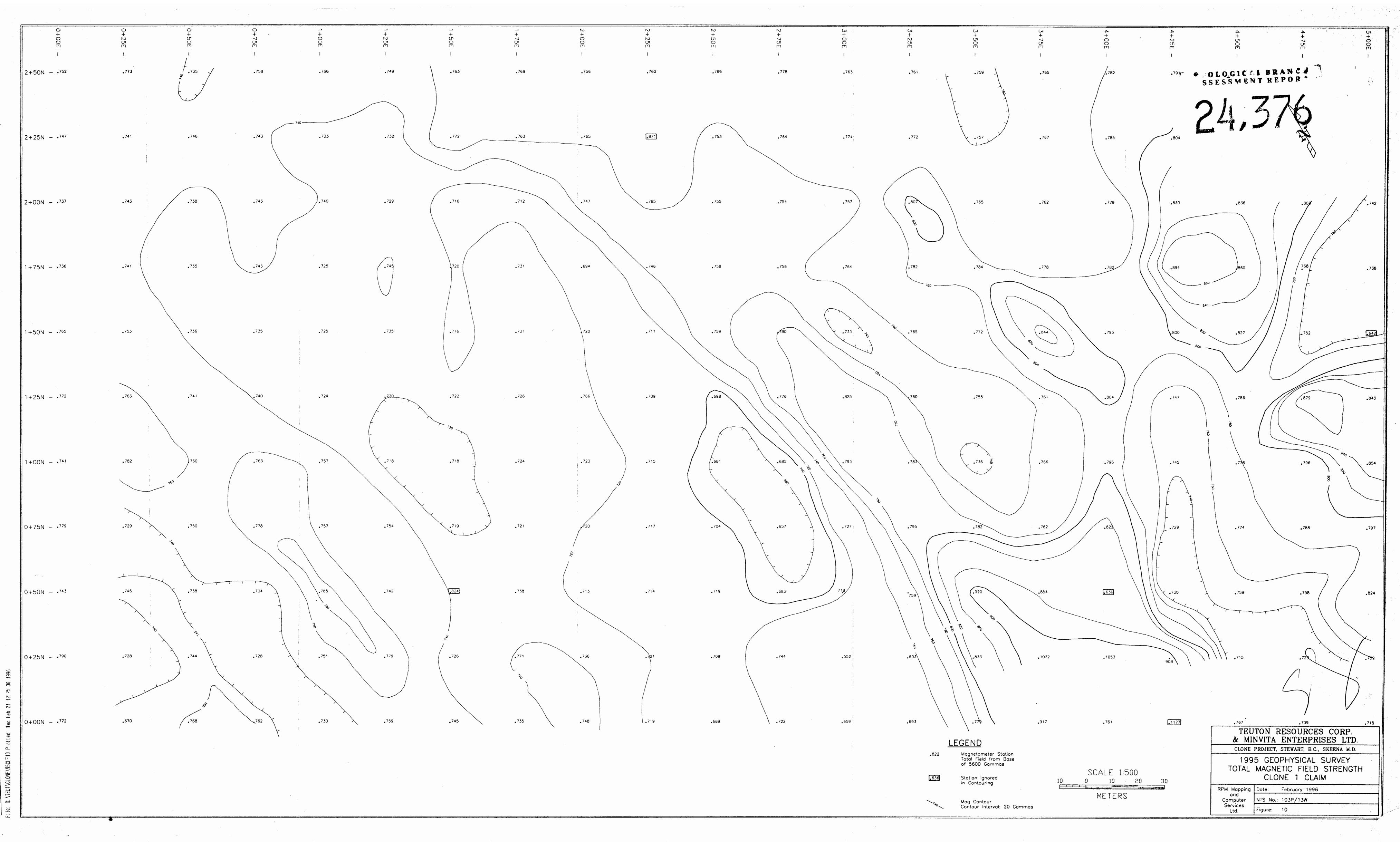

The following succession of events can be determined from the thin section.

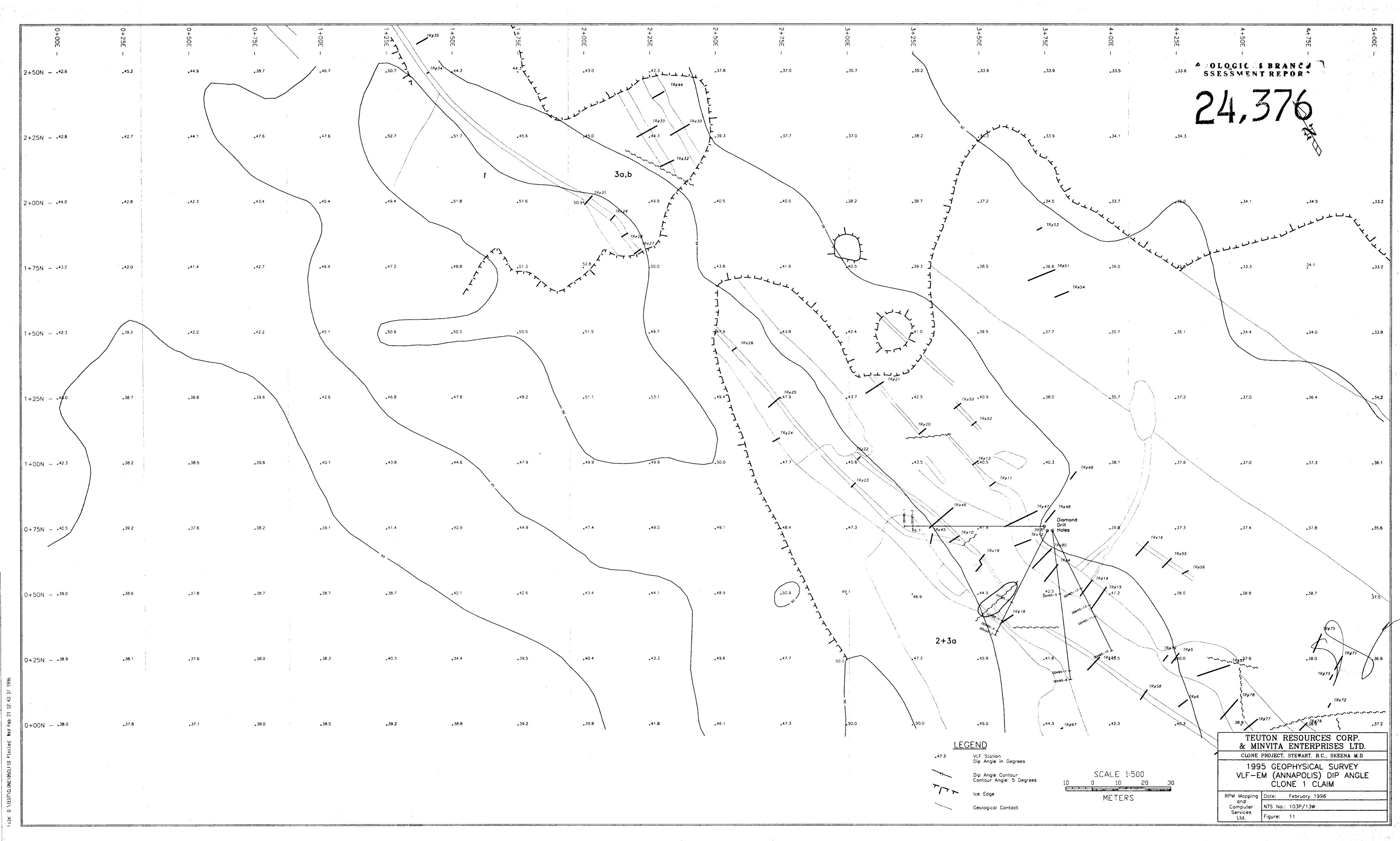

- Very strong pervasive K-feldspar alteration obliterating primary rock texture, several large elongate grains represent probably primary mafic minerals (hornblende and/or biotite) completely replaced by chlorite, sericite and opaque minerals.
   Fracturing followed by introduction of sericite (10%), Fe-rich
  - chlorite (10%) and extremal fine grained hematite (10%)


occurring as irregular veinlets, patches and disseminations.
3. Formations of 1.0cm wide vein with coarse quartz and minor specularite. The latter is developed as aggregates of thin-tabular crystals.

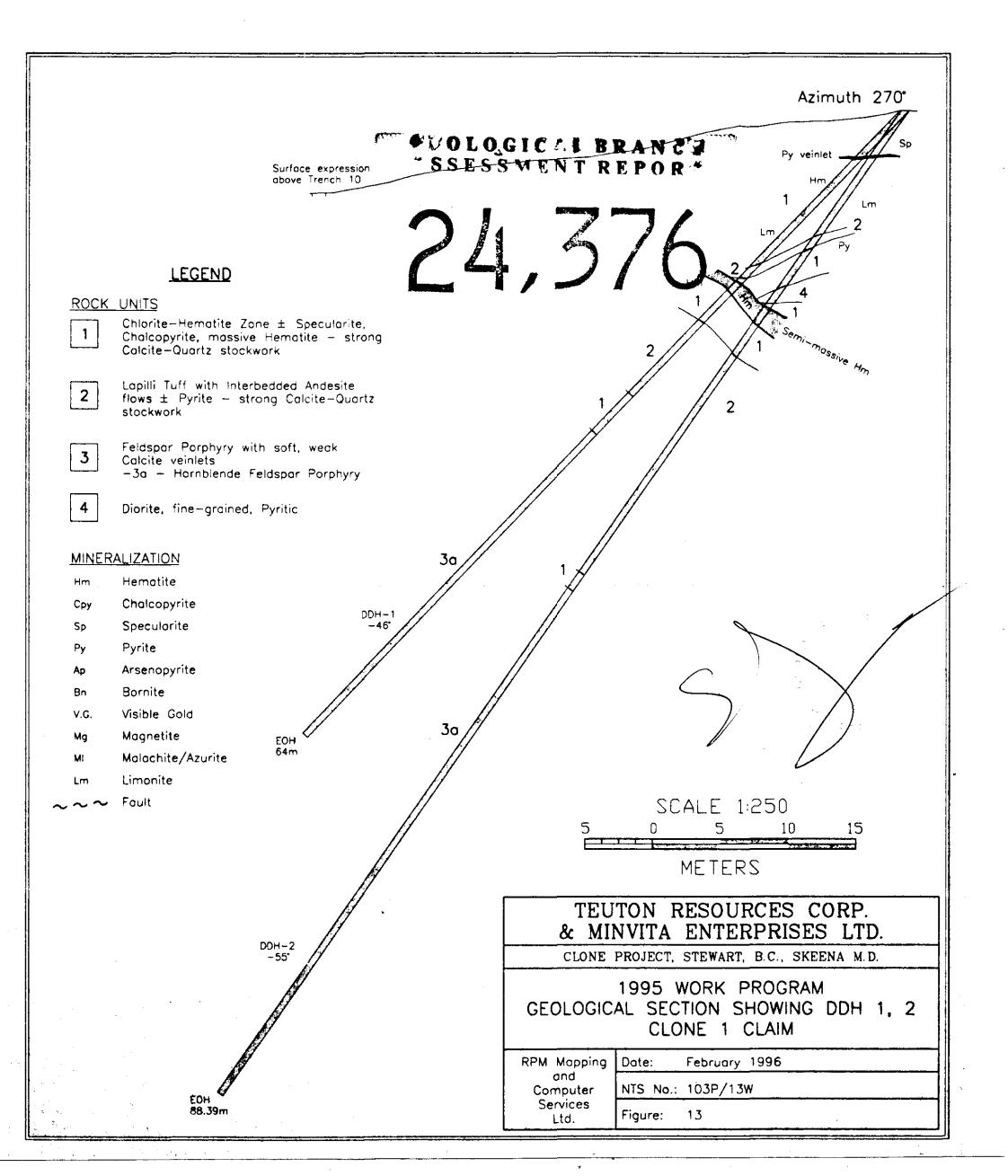

#### POLISHED THIN SECTION CL TR 44 (TRENCH 44)

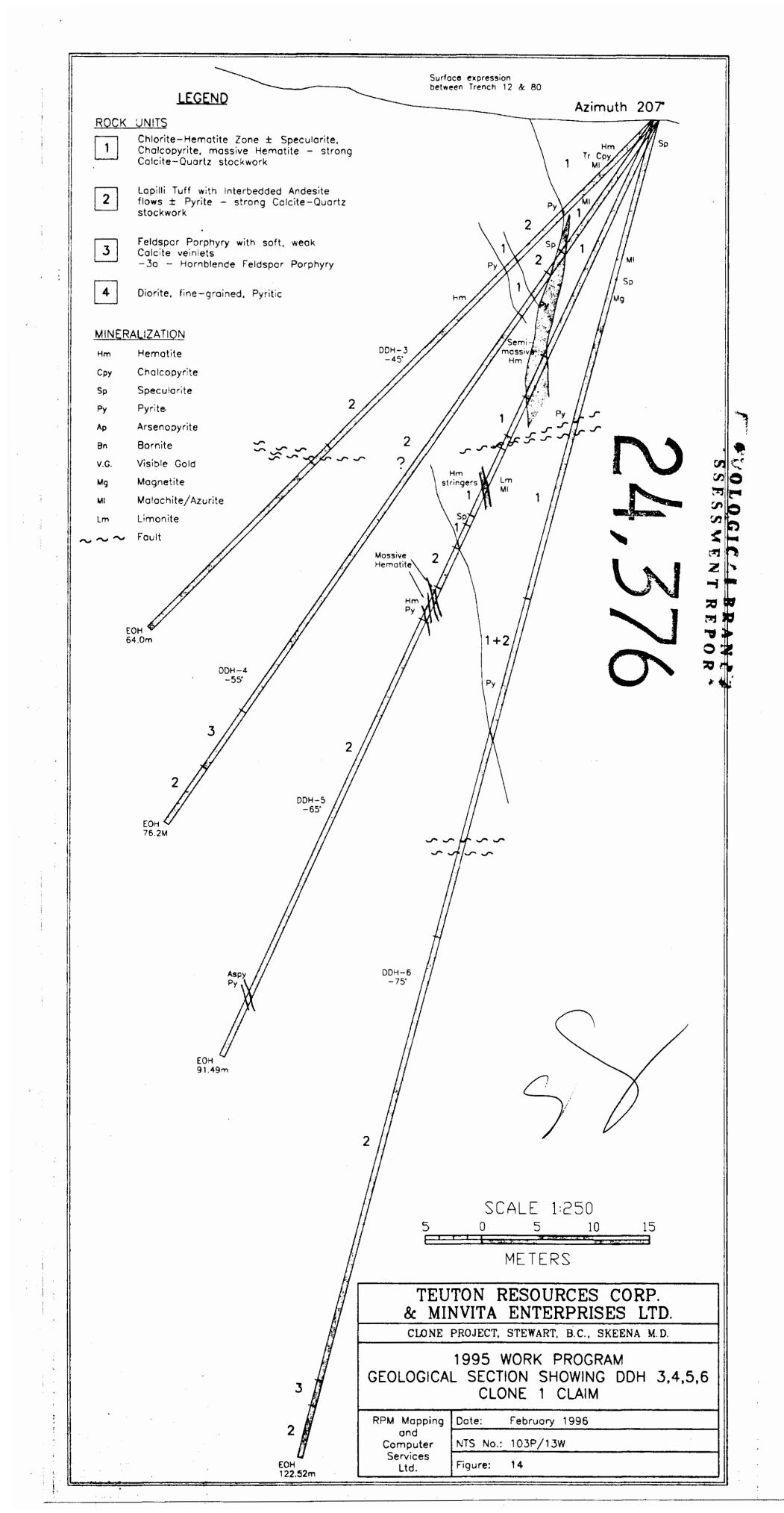
The bulk of the sample is composed of different size Kfeldspar grains believed to be secondary in origin. A few grains are of plagioclase. The rock contains abundant dusty hematite. The rock was subsequently fractured followed by sericitization (10%). There are several late veinlets of quartz, Fe-rich chlorite, carbonate and plagioclase.

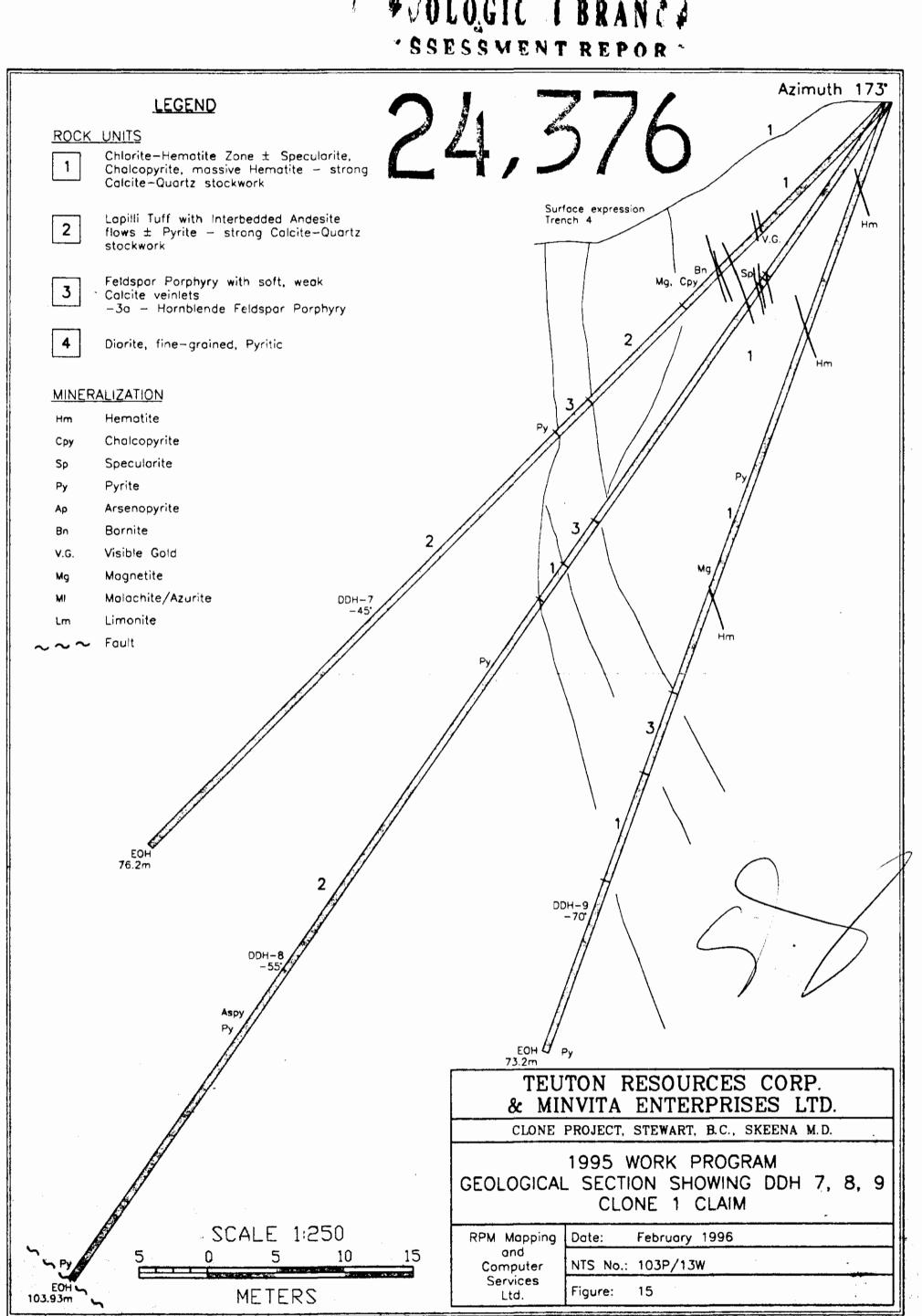


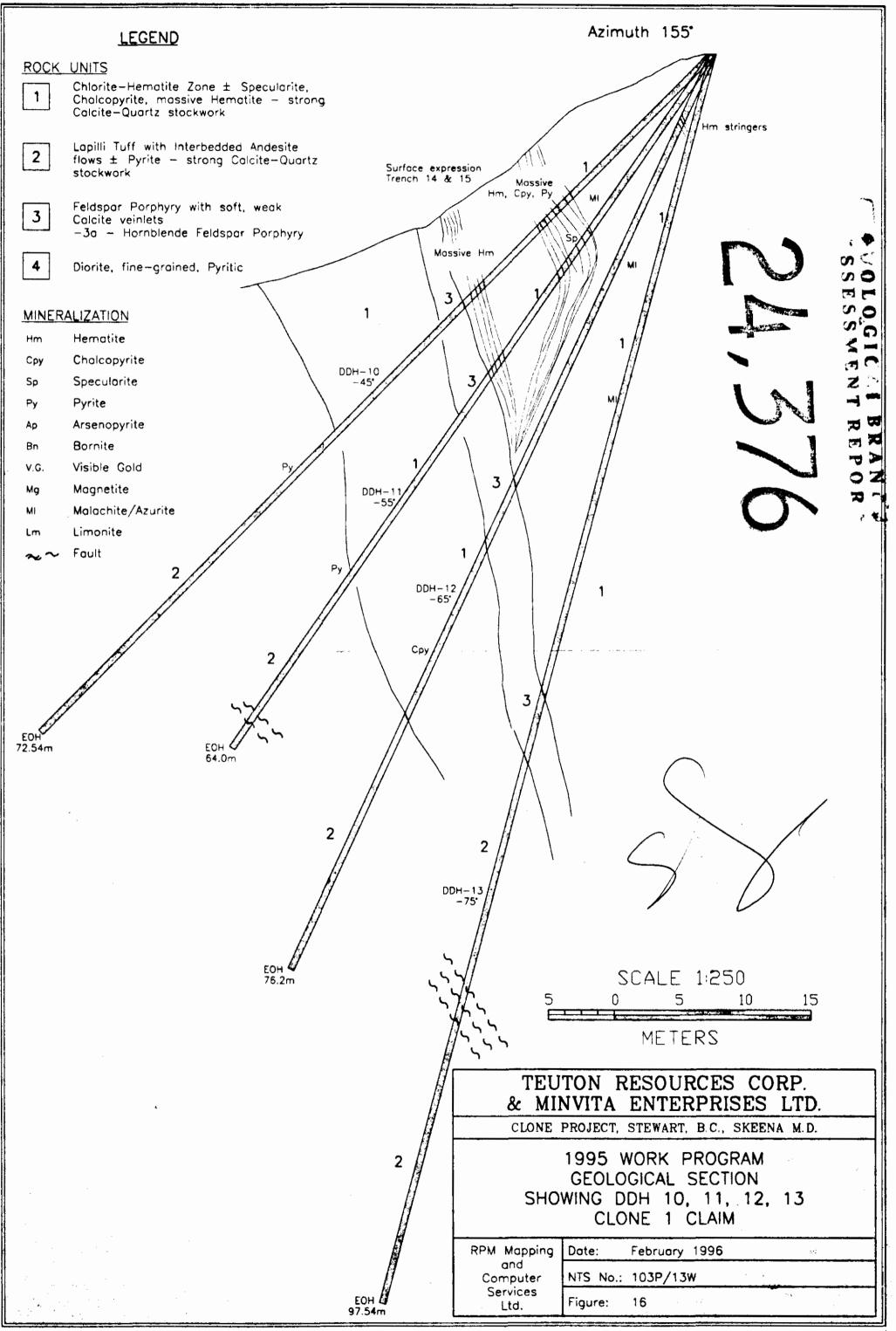



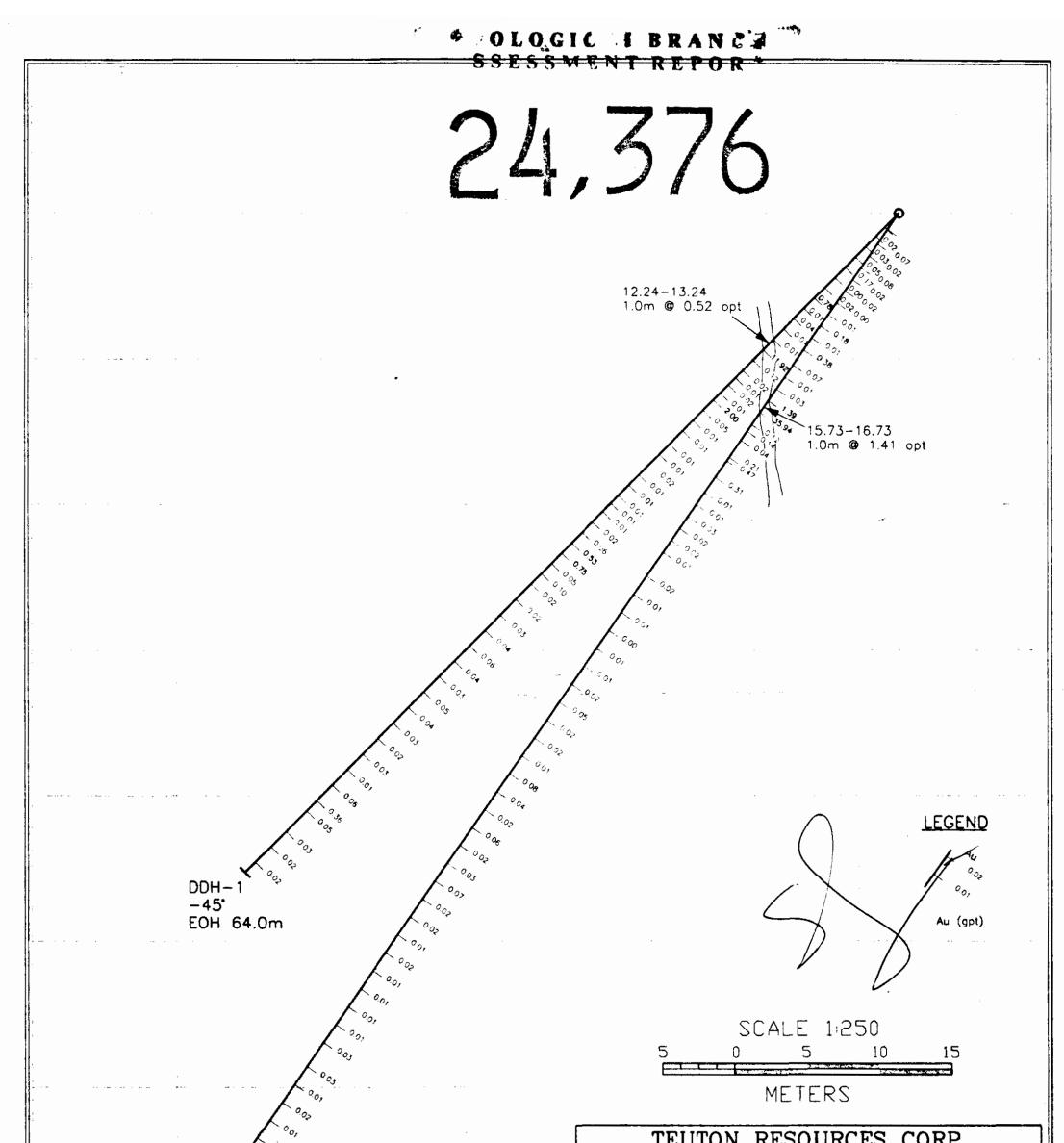




1 3

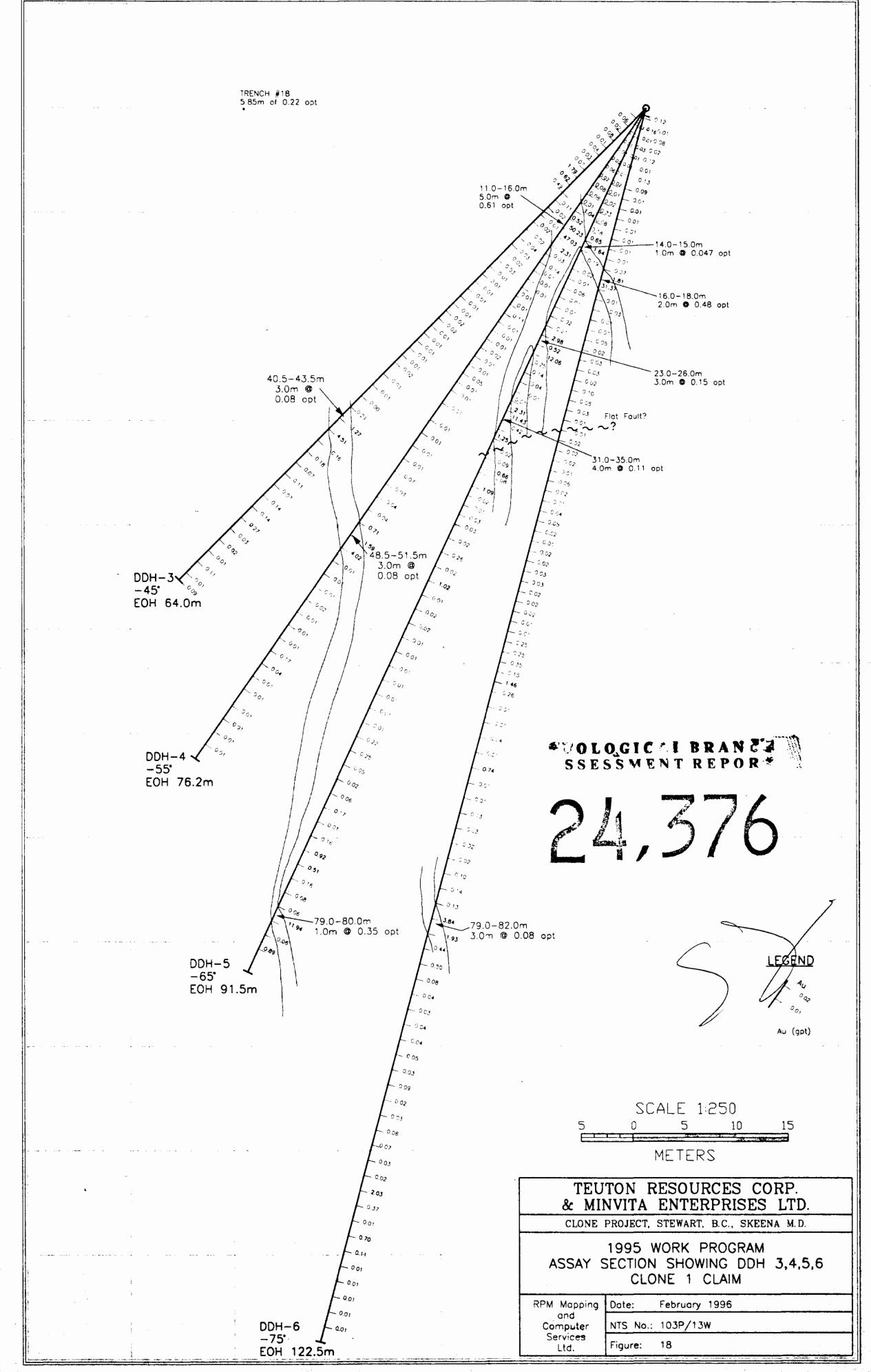




Feb Wed



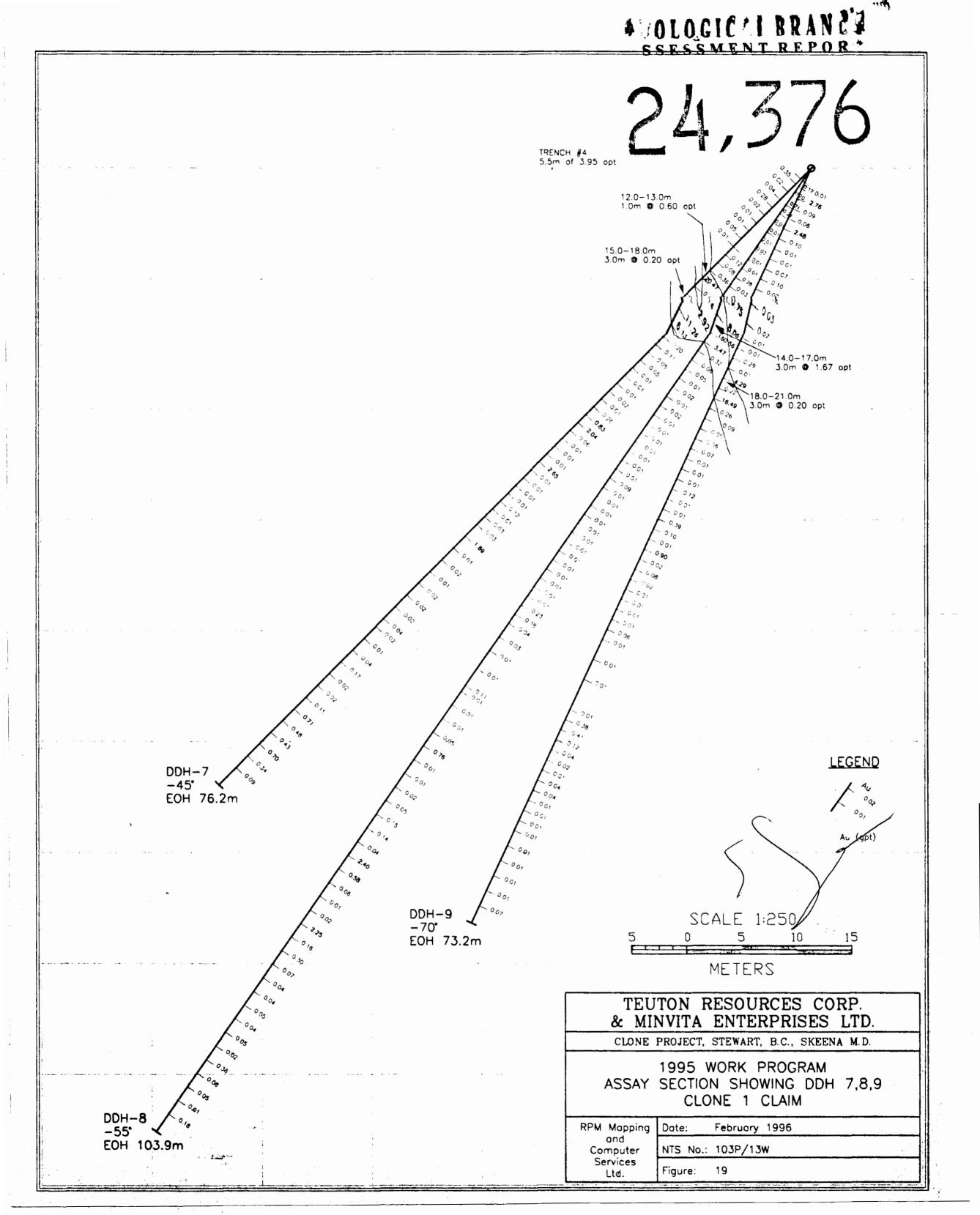


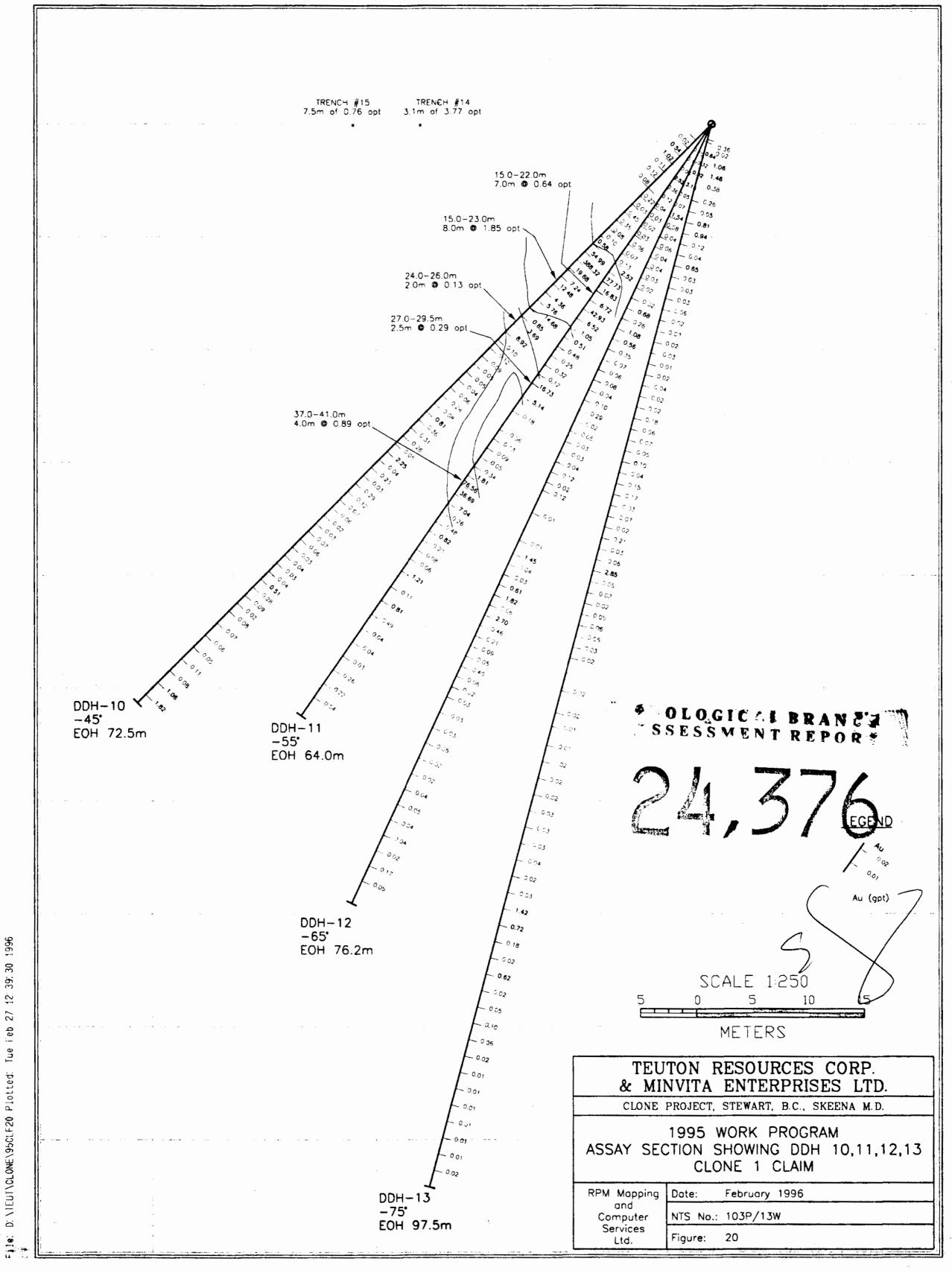







	TEUTON RESOURCES CORP. & MINVITA ENTERPRISES LTD.
$\int_{0}^{0}$	CLONE PROJECT, STEWART, B.C., SKEENA M.D.
DDH-2 -55	1995 WORK PROGRAM ASSAY SECTION SHOWING DDH 1, 2 CLONE 1 CLAIM
EOH 88.4m	RPM Mapping Date: February 1996
	and Computer NTS No.: 103P/13W
	Services Ltd. Figure: 17


ġ




1

f

!





27 D: VIEUT/CLONE/95CLF20 Plotted: Tue Feb