NTS 94F/7W

Omineca Mining Division

Latitude $57^{\circ} 22^{\prime} \mathrm{N}$ Longitude $124^{\circ} 51^{\prime} \mathrm{W}$

Owners: Ecstall Mining Corporation, Inmet Mining Corporation Operator: Inmet Mining Corporation

AKIE 96C Group
AKJE 96D Group

Akie 1
Akie 2
Akie 3
Akie 4
Akie 5
Akie 6
Akie 7
Akie 12
Akie 21

Akie 8
Akie 9
Akie 10
Akie 13
Akie 14
Akie 15
Akie 16
Akie 17
"onologic? branç - SSESSMENTREPOR*

TABLE OF CONTENTS

1. INTRODUCTION 1
1.1. Location, Access and Physiography 1
1.2. Mineral Rights 3
1.3. Previous Work 3
2. GEOLOGY 5
2.1. Regional Geology 5
2.2. LOCAL 6
3. SOIL GEOCHEMISTRY 9
3.1. Sampling Procedure 9
3.2. Results 10
3.3. SUMMARY OF SOIL GEOCHEMISTRY 13
4. DIAMOND DRILLING 15
4.1. Results 15
5. CONCLUSIONS AND RECOMMENDATIONS 19
6. COST STATEMENT 21
7. REFERENCES 23
8. STATEMENT OF QUALIFICATIONS 24

LIST OF TABLES

Table 1 Akie Soil Geochemical Statistics 12
Table 2 Akie Diamond Drilling Summary 16
LIST OF APPENDICES
Appendix I IPL Laboratory Procedures
Appendix II IPL 1995 Soil Geochemical Analytical Certificates
Appendix III 1995 Akie Diamond Drill Logs
LIST OF FIGURES
Figure 1 Akie Location Map 2
Figure 2 Akie Claim Map 4
Figure 3 Generalized Geology Map, Akie Claims 7
Figure 4 Generalized Stratigraphic Section, South Gataga Area 8
Figure 5a $\mathrm{Pb}-\mathrm{Zn}$ Soil Geochemical Map, 1:10,000 Scale in pocket
Figure 5b Ag - Ba Soil Geochemical Map, 1:10,000 Scale in pocket
Figure 5c Cd - As Soil Geochemical Map, 1:10,000 Scale in pocket
Figure 5d Fe - Mn Soil Geochemical Map, 1:10,000 Scale in pocket
Figure 6 Soil Compilation Map in pocket
Figure 7 Diamond Drilling Location Map in pocket
Figure 8 Section 2400S 17

GATAGA PROJECT, AKIE CLAIMS SOIL GEOCHEMICAL AND DIAMOND DRILLING ASSESSMENT REPORT

1. INTRODUCTION

In June of 1992, Inmet Mining Corporation (formerly Metall Mining Corporation) optioned the AKIE claims in the southern Gataga district from Ecstall Mining Corporation to assess their potential for hosting a SEDEX-style $\mathrm{Ba}-\mathrm{Zn}-\mathrm{Pb}-\mathrm{Ag}$ massive sulphide deposit. A three year program of compilation, soil geochemistry and prospecting resulted in the 1994 discovery of narrow, high grade massive sulfide mineralization in outcrop which was then drill tested to depths of 300 m . In 1995, line cutting, soil, geological and geophysical surveys were conducted to further evaluate the property. As well, deep drilling of the defined mineralization continued to intersect the mineralized zone to depths of $700-800 \mathrm{~m}$ below surface. This report describes the results of a 1485 sample, soil geochemical survey and a seven hole, $4949.7 \mathrm{~m} N Q, B Q$ diamond drilling program carried out on the Akie claims during the period of June 12, 1995 to November 12, 1995.

1.1. Location, Access and Physiography

The AKIE claims are located in the western ranges of the Rocky Mountains, 250 km northwest of MacKenzie, B.C. and 25 km southeast of the Cirque Deposit. (Figure 1) The claims are accessed via helicopter from the Finbow logging camp 35 km to the southwest on the Finlay River. Road access is gradually improving in the area as logging roads are being constructed in the Del Creek water shed. As of 1995, the Del Creek road is within 18 km (direct flight) of the property and acts as a staging area for the mobilization of drilling equipment. Topographic relief on the AKIE claims is moderate to steep with elevations ranging from 850 m in the Akie River valley to 1980 m on mountain tops. Tree line occurs at approximately 1700 m ASL. The alpine is a mix of talus and grassy slopes. Creek valleys and treed slopes are covered by a dense forest of pine, balsam and spruce.

FIGURE 1
AKIE PROJECT LOCATION MAP INMET

1.2. Mineral Rights

For the described assessment, the AKIE claims have been divided into two groups - AKIE 96C GROUP and AKIE 96D GROUP (Figure 2). The status of these claims is as follows:

AKIE 96C GROUP

Claim	Record No.	Units	Month of Record
AKIE 1	240791	3	June
AKIE 2	240792	6	June
AKIE 3	240793	3	June
AKIE 4	324822	4	April
AKIE 5	324823	16	April
AKIE 6	324824	6	April
AKIE 7	324825	20	April
AKIE 12	329535	20	August
AKIE 21	333352	18	January

AKIE 96D GROUP

Claim	Record No.	Units	Month of Record
AKIE 8	327931	6	July
AKIE 9	327932	12	July
AKIE 10	327933	4	July
AKIE 13	329536	20	July
AKIE 14	329537	15	August
AKIE 15	329538	6	August
AKIE 16	329539	8	August
AKIE 17	330626	16	August

1.3. Previous Work

The AKIE claims were originally staked in 1978 by Rio Canex as part of the Dog claim group to cover an area of anomalous lead in stream sediment silt samples.
During the period of 1979 to 1981 geological, soil geochemical and VLF surveys were

FIGURE 2
completed. Several zones of anomalous $\mathrm{Pb}, \mathrm{Zn}, \mathrm{Ag}$ and Ba in soils were outlined in areas underlain by Gunsteel Shales, however, no follow-up evaluation of the soil anomalies was done. Mapping and prospecting did discover two zones of nodular barite on the ridge adjacent to the Fluke claims but no base metal mineralization was discovered. In 1985, the Dog claims were allowed to lapse.

During this earlier period of exploration the south Gataga district was also mapped by MacIntyres (1981).

In 1989 Ecstall Mining Corporation staked the Akie 1, 2 and 3 claims adjacent to the southern edge of the Fluke claims and in 1992 optioned the claims to Inmet Mining Corporation. From 1992 to 1994 Inmet Mining Corporation staked additional ground and conducted further soil surveys to define areas of anomalous metal enrichment within the Gunsteel formation. In 1994, prospecting along the trend of the soil anomalies lead to the discovery of narrow high grade massive sulfides in Cardiac Creek ($16.0 \% \mathrm{Zn}, 2.8 \% \mathrm{~Pb} / 40 \mathrm{~cm}$). The new massive sulfide discovery was then drill tested by 12 diamond drill holes defining an 1400 m long mineralized sheet tested to depths of 300 m below surface. As well, additional ground was staked, the soil grid was extended and the property was covered by a VLF-Resistivity survey.

2. GEOLOGY

2.1. Regional Geology

The AKIE claims occur on the northeastern margin of the Kechika Trough which is the southern extension of the Selwyn Basin - a 1200 km belt of sediments which were deposited off the western edge of ancestral North America. The Kechika Trough is a 180 km long, northwesterly trending belt of Early Cambrian to Triassic sediments which occur in a number of southwest dipping thrust fault slices. A detailed review of the stratigraphy and descriptions of the various formations of the South Gataga area is given by MacIntyre (1992).

Exploration activity in the area has concentrated on stratiform barite-sulphide showings which are hosted in Middle to Upper Devonian shales of the Gunsteel Formation. Notable occurrences in the belt include Driftpile Creek, Mt. Alcock, Elf, Cirque and Akie. The most developed prospect is the Cirque deposit which contains an estimated 38 m Tonnes @ 8.0\% Zn and $2.2 \% \mathrm{~Pb}$.

2.2. Local

The Akie River area has been mapped at $1: 50,000$ scale by MacIntyre (1981) and a generalized geology map and stratigraphic section are shown in Figures 3 and 4.

The Akie claims are underlain by a northwest trending package of Devonian age shales, siltstones and localized limestones and conglomerate which overlie Silurian age calcareous siltstones of the Road River Group. This package of rocks is folded into a series of both northwest and southeast plunging synforms and antiforms and is in thrust contact to the southwest with Ordovician siltstones, shales, limestones, and minor pyroclastic volcanics of the Road River Group.

Exploration activity on the property is focused within a $400-600 \mathrm{~m}$ wide band of black, recessive weathering shale of the Middle-Upper Devonian Gunsteel Formation which has been covered by the main grid. These rocks occur as a narrow northwest trending southwest dipping package which overlies Silurian age Road River calcareous siltstones to the northeast and is in thrust contact to the southwest by Ordovician siltstones, shales and limestones also of the Road River Group.

In 1994, massive sulphide mineralization was discovered on surface at the base of the Gunsteel Formation. Mineralization occurs within several, centimeter scale beds of finely laminated, fine grained massive pyrite-sphalerite-galena interbedded with barren black shales of the Gunsteel Formation. The mineralization is exposed over a width of 6.2 m and a continuous chip sample across the widest bed returned $16.0 \% \mathrm{Zn}$ and $2.8 \% \mathrm{~Pb}$ over 40 cm . The discovery has been called the Cardiac Creek zone which to date has been defined by drilling over a strike length of 1500 m and tested to depths of $700-800 \mathrm{~m}$ below surface.

FIGURE 4

GENERALIZED STRATIGRAPHY - SOUTH GATAGA AREA
(after MacIntyre 1992)

3. SOIL GEOCHEMISTRY

In $1995,53.15 \mathrm{~km}$ of line cutting and the collection of 1664 soil geochemical samples was carried out on the Akie claims in the following areas to:
i) re-establish the grid and re-define the soil anomalies on the north end of the main grid (L600S to L200N), where earlier, less permanent grids (1992 and 1993) had defined an 800m long $\mathrm{Pb}-\mathrm{Ag}$ anomaly.
ii) continue the main grid and soil coverage to the southeast up to the Elf property along the trend of the previously defined soil anomalies associated with the Cardiac Creek horizon.
iii) evaluate perspective Gunsteel stratigraphy to the east of previous work with widely spaced recconasance soil lines which were extended from the main grid.

Grid lines were established using chain and compass, slope corrected and cleared of brush for ease of access. As the line cutting and soil sampling for lines 600 S to 200 N has already been claimed in previous assessment reports, the costs of reestablishing the grid and re-soil sampling has not been claimed for again in this report.

3.1. Sampling Procedure

Samples of the B soil horizon were collected at 25 metre intervals along 200 meter spaced cut, flagged and picketed grid lines on the main grid. Reconnaissance grid lines were line extensions of the main soil grid approximately every 600 m . Along these reconnaissance lines the B soil horizon was collected also at 25 m intervals. The B soil horizon is poorly developed, rocky, grey to brownish grey in colour and occurs at depths ranging between 5 cm and 25 cm below surface. Soil samples of 300 to 500 grams were placed in Kraft paper bags, labeled by grid location, dried in the field and then sent to IPL Labs in Vancouver for analysis. Each sample was analyzed for Pb, Zn, $\mathrm{Ag}, \mathrm{Ba}, \mathrm{Cd}, \mathrm{Mn}, \mathrm{As}$ and Fe using an ICP technique. Laboratory procedures for sample preparation and analysis are included in Appendix I.

3.2. Results

Analytical certificates are included in Appendix II and the 1994 and 1995 soil geochemical data is plotted at 1:10,000 scale on Figures $5 a$ to 5 d . Statistical data for all Akie soil sampling is presented in Table 1. Frequency histograms were generated for each element to determine the type of population distribution (normal or log normal). Anomalous values are those greater than mean plus two standard deviations for normal populations or geometric mean plus two standard deviations for log normal populations.

As In the main grid area line 000N to 400S, two 200m anomalies within Gunsteel shales associated with the Fluke Ridge Pb anomaly. Line 2400S to 2800S a linear anomaly within the Gunsteel formation close to the Cardiac Creek horizon and several other single station anomalies. On the reconnaissance grid, 400 S to $800 \mathrm{~S}, 400 \mathrm{~m}$ anomaly in the Pinstripe shales and rare single station anomalies. The anomaly on line 3150 S could be significant as it lies at a shale / Limestone contact.

Ag From line 200N to 2600S several long linear anomalies which occur east of the property's eastern boundary within Gunsteel equivalent rocks. Rare single station anomalies within the Gunsteel formation on the main grid.

Ba On the main grid there are several 400-800m linear anomalies within the Gunsteel formation and several 800-1400m linear anomalies along the Gunsteel - Road River contact from lines 1400S to 4600S. South of the Akie River, from line 7200 S to 7400 S there is a 200 m anomaly which can be extrapolated north of the river up to line 4600S. There are also numerous single station anomalies overlying Gunsteel formation in the main grid area, and one anomalous sample from the South Zinc anomaly area. There are no barium anomalies on any of the reconnaissance lines.

Cd Large anomalous area east of the base line on lines 4200S to 4600S within the Gunsteel Formation. Line 5400-5600S, 200m anomaly at the base of the Gunsteel formation. Several single station anomalies on both the main grid and reconnaissance grid. 1000 m linear anomaly within the South Zinc anomaly area.

Mn Spotty single station anomalies within Gunsteel formation covered by the main grid. South of the Akie River, greater concentration of Mn anomalies mainly within the Road River calcareous siltstones. Several one and two line anomalies within the South Zinc anomaly area.

Fe
$\mathrm{Pb} \quad$ North end of the main grid on Fluke Ridge, large lead anomaly $1000 \mathrm{~m} x$ 200 m with many soil values over 150 ppm . 1400 S to 2800 S , three subparallel linear lead anomalies, two within the Gunsteel formation, the most westerly being shorter and weaker and the third anomaly lying proximal to the Gunsteel - Road River contact. Line 4800S to 5800S, linear anomaly within the Gunsteel at or proximal to the Road River contact. Line 6200 S to 7000 S extrapolation of lead anomaly across the Akie River within the Gunsteel formation with soil value of 697 ppm lead on line 7000S. Line 7200S to 7400S, 200 m anomaly within Gunsteel shales. Three single station anomalies within the South Zinc anomaly. No significant anomalies on the reconnaissance grid.
$\mathrm{Zn} \quad$ The largest zinc anomaly on the property which also contains some of the highest zinc values (up to $1.12 \% \mathrm{Zn}$) lies east of Silver Creek from lines 5200S to 6600S and is referred to as the South Zinc anomaly. This $1500 \mathrm{~m} \times 500 \mathrm{~m}$ anomaly overlies Gunsteel shales at the Gunsteel Limestone - Road River contact which is the folded equivalent of the Cardiac Creek time horizon. On the main grid, there are several spotty single station anomalies except from line 4200 S to 6000 S where there is an irregular $400 \mathrm{~m} \times 300 \mathrm{~m}$ anomaly from line 4200 S to 4600 S , a linear anomaly from 5000 S to 5600 S along the Gunsteel Road River contact and several single and one line multistation anomalies. On the reconnaissance grid there are very few single station anomalies but the anomalies on lines $800 \mathrm{~N}, 000 \mathrm{~N}$ and 1400 S may be significant as they lie on projected contacts.

Table 1: Akie Soil Geochemical Statistical Data

Elenent	Unis	Min.	Max:	N	Distriuton	Mean/Geometrie Mear	Standara Devintion	Anomalous Matues:
As	ppm	2.50	313	2736	Log Normal	1.314	0.408	135
Ag	ppm	0.05	23	2753	Log Normal	-0.381	0.545	5.1
Ba	ppm	122	18,601	2753	Log Normal	3.309	0.260	6745
Cd	ppm	0.05	222.3	2753	Log Normal	-0.542	0.794	11.1
Cu	ppm	3	175	970	Log Normal	1.293	0.259	65
Fe	\%	0.33	20.17	2753	Log Normal	0.280	0.223	5.3
Mn	ppm	6	12,186	2753	Log Normal	2.063	0.487	1089
Pb	ppm	1.0	3186	2753	Log Normal	1.540	0.223	97
Zn	ppm	14.0	17,917	2753	Log Normal	2.262	0.372	1014

3.3. Summary of Soil Geochemistry

A summary map of the soil geochemical data is compiled in Figure 6 to identify areas with significant multi-element soil anomalies of a scale indicative of a world class SEDEX $\mathrm{Ba}-\mathrm{Zn}-\mathrm{Pb}$ deposit, or, in the case of the reconnaissance grid, identify those areas which will require further work to define drill targets.

South Zinc Anomaly (A):
The south zinc anomaly is a $1500 \mathrm{~m} \times 500 \mathrm{~m}$ area of highly elevated zinc (up to $1.12 \% \mathrm{Zn}$) hosted by the Gunsteel shales proximal to the Gunsteel shale, Limestone, Road River contact which is the folded equivalent of the Cardiac Creek time horizon. This anomaly remains open to the southeast. Within this large zinc anomaly two multielement linear trends have been defined by spotty $\mathrm{Ba}, \mathrm{Pb}, \mathrm{Cd}, \mathrm{Fe}, \mathrm{Mn}$ and As anomalies; A1) an $900 \mathrm{~m} \mathrm{Cd}, \mathrm{Fe}, \mathrm{Mn}, \mathrm{As}$ and Pb anomaly and A 2) an $1100 \mathrm{~m} \mathrm{Ba}, \mathrm{Pb}$, Cd, Fe and Mn anomaly. This is an excellent drill target which requires further mapping and prospecting to define rock orientations prior to drilling.

Akie Reconnaissance Grid:

Five anomalous areas (H through L) have been identified on the reconnaissance grid which will require additional mapping, prospecting, line cutting and soil sampling to assess their significance and define suitable drill targets.
Anom. $\mathrm{H}: \quad \mathrm{An} 400 \mathrm{~m} \mathrm{~Pb}, \mathrm{Zn}, \mathrm{As}, \mathrm{Fe}$ and Cd anomaly on lines 400 S to 800 S below the 1995 core shack. Exposure in this area is fairly good and additional mapping and prospecting may explain this anomaly.

Anom. I: $\quad \mathrm{Zn}, \mathrm{Ba}$ and Cd anomaly on line 800 N
Anom. J: $\quad \mathrm{Zn}, \mathrm{Fe}, \mathrm{Mn}$ and Cd anomaly on line 1400 S along a projected shale limestone contact. This could be significant as this is probably Cardiac Creek time equivalent.

Anom. K: $\quad \mathrm{Ag}, \mathrm{Mn}$ and Cd anomaly within Gunsteel shales on line 800 S .
Anom. L: An $600 \mathrm{~m} \mathrm{Ag}, \mathrm{As}, \mathrm{Mn}$ anomaly in Gunsteel shales on line 2600 S .

Akie Main Grid (Anomalies B Through G):

Relative to the rest of the property, the western panel of Gunsteel formation that is covered by the Main grid is a highly anomalous shale package and is the prime exploration target on the property. The main grid covers the Cardiac Creek Horizon which occurs at the base of the Gunsteel formation and any soil anomaly associated with this contact should be given a high priority. Several significant soil anomalies have also been defined in the Cardiac Creek hanging wall and are associated with known nodular barite occurrences. Following is a brief description of the major multi-element soil anomalies from the main grid:
Anom. B: The Fluke Ridge Pb anomaly is an $1000 \mathrm{~m} \times 200 \mathrm{~m}$ lead anomaly which overlies Gunsteel shales with local internal barium, arsenic and iron anomalies. This anomaly is partially associated with a narrow nodular barite horizon located on the top of Fluke Ridge as well as potential Pb enrichment in the Cardiac Creek hangingwall which, due to folding, the horizon is not exposed in this area.

Anom. C: A 1800 m primarily Pb and Ba anomaly with spotty $\mathrm{As}, \mathrm{Ag}, \mathrm{Cd}, \mathrm{Zn}$ and Fe associated with the north end of the Cardiac Creek mineralization and approximately 1 km of strike extension grid north along the Gunsteel Road River contact.

Anom. D: A 1400 m discontinuous anomaly made up of smaller Ba and Pb anomalies and spotty Fe and Zn anomalies associated with baritic and pyritic Gunsteel shales. This anomaly may the continuation of anomaly B.

Anom. E: A 1600 m to 2200 m mainly $\mathrm{Pb}-\mathrm{Zn}$ anomaly with smaller $\mathrm{Ba}, \mathrm{Cd}, \mathrm{Fe}, \mathrm{As}$, and Ag anomalies representing the southerly strike extension of the Cardiac Creek zone and metal enrichment within the immediate hanging wall.

Anom. F: Primarily a $\mathrm{Ba}-\mathrm{Pb}$ anomaly with spotty $\mathrm{Zn}, \mathrm{As}, \mathrm{Mn}$ and Fe . The main portion of the anomaly is F 1 from line 7200 S to 7600 S. F 1 may be extrapolated across the Akie River to F 2 , a Ba, $\mathrm{Pb}, \mathrm{Zn}, \mathrm{As}, \mathrm{Mn}$ and Fe
anomaly on lines 6000S and 6200S which is associated with a nodular barite occurrences. F2 also has a weak continuation north to line 5200 S . Anom. G: Mainly a Mn anomaly from line 7000S to 7600 S with spotty Zn . This anomaly occurs along the Gunsteel - Road River contact with spotty enrichment within the Road River.

These six multi-element soil anomalies are at the drill ready stage and require drill testing to assess their significance.

4. DIAMOND DRILLING

In 1995, deep drilling of the Cardiac Creek zone continued to test the mineralization at depth. Seven drill holes totalling 4949.7m were attempted during the 1995 field season with only four holes completed successfully into the zone. As hole A-95-17 has previously been submitted for assessment, its costs will not be included in this report. Table 2 summarizes the 1995 Akie diamond drilling program. Diamond drill logs are included in Appendix III and drill hole locations, horizontal projections and core storage locations are shown in figure 7.

4.1. Results

The 1994 and 1995 diamond drilling programs have defined a relatively simple stratigraphic section which is illustrated in figure 8. Interbedded shale and laminar bedded py-sp-Ba-gn mineralization occurs at the base of the Gunsteel Formation and is underlain by thin, discontinuous units of bedded barite, limestone and limestone-shalesiltstone breccia. The zinc-lead mineralization is overlain by a thick sequence of variably silicified, graphitic black Gunsteel shales which are overthrusted by siltstones and silty shales and limestones of the Road River Group. The Gunsteel Formation is underlain by a very diagnostic, thick, calcareous siltstone interpreted to be of the Road River Group.

Table 2: AKIE Diamond Drilling Summary

Hole Mo:	liscation	Collar As:	collar 4	final Depth		Resules
A-95-13	3083S; 190W	050 ${ }^{\circ}$	-82^{0}	818.4m	$\begin{aligned} & 663.8-673.1: \\ & 663.8-671.5: \\ & 701.4-735.8: \\ & 701.4-734.1: \end{aligned}$	45\% laminar massive sulfides $2.86 \% \mathrm{Zn}, 0.50 \% \mathrm{~Pb}, 6.49 \mathrm{~g} / \mathrm{Ag} / 7.70 \mathrm{~m}$ Cardiac Creek laminar massive sulfides and shale $5.52 \% \mathrm{Zn}, 1.08 \% \mathrm{~Pb}, 10.45 \mathrm{~g} / \mathrm{t} \mathrm{Ag} / 32.7 \mathrm{~m}$
A-95-14	3390S; 285W	055 ${ }^{\circ}$	-79 ${ }^{0}$	124.1m		Hole abandoned due to excessive deviation
A-95-15	3390S; 285W	055 ${ }^{\circ}$	-84 ${ }^{0}$	578.2m		Hole abandoned in fault zone.
A-95-16	3820S; 135W	050 ${ }^{\circ}$	-83^{0}	741.3m	$\begin{aligned} & \text { 601.5-663.0: } \\ & \text { 625.3-659.9: } \end{aligned}$	Cardiac Creek laminar massive sulfides and shale $2.47 \% \mathrm{Zn}, 0.49 \% \mathrm{~Pb}, 6.20 \mathrm{~g} / \mathrm{Ag} / 34.60 \mathrm{~m}$
A-95-17	2400S; 350W	055 ${ }^{\circ}$	-87^{0}	829.1m	$\begin{aligned} & \hline 658.0-683.4: \\ & 658.0-662.1: \\ & 681.2-683.4: \\ & 716.6-813.3: \end{aligned}$	Cardiac Creek shale and laminar massive sulfides $1.28 \% \mathrm{Zn}, 0.19 \% \mathrm{~Pb}, 5.66 \mathrm{~g} / \mathrm{t} \mathrm{Ag} / 4.10 \mathrm{~m}$ $1.86 \% \mathrm{Zn}, 0.30 \% \mathrm{~Pb}, 6.70 \mathrm{~g} / \mathrm{Ag} / 2.20 \mathrm{~m}$ Shale siltstone limestone breccia.
A-95-18	3385S; 407W	055 ${ }^{\text { }}$	-87^{0}	1030.5m	$\begin{aligned} & \hline 926.2-939.9: \\ & 978.5-1012.1 \\ & 978.5-997.9 \end{aligned}$	Hanging wall laminar massive sulfides and shale $2.50 \% \mathrm{Zn}, 0.40 \% \mathrm{~Pb}, 5.86 \mathrm{~g} / \mathrm{t} \mathrm{Ag} / 13.70 \mathrm{~m}$ Cardiac Creek laminar massive sulfides and shale $5.14 \% \mathrm{Zn}, 0.88 \% \mathrm{~Pb}, 9.78 \mathrm{~g} / \mathrm{t} \mathrm{Ag} / 19.4 \mathrm{~m}$
A-95-19	2830S; 570W	035°	-88^{0}	828.1		Hole stopped due to winter conditions, to be completed in 1996.

Interbedded shale and laminar bedded py-sp-Ba-gn mineralization of the Cardiac Creek Horizon occurs at the base of the Gunsteel Formation. The diamond drilling to date has defined a steeply southwest dipping ($70-75^{\circ}$) zone of interbedded barren siliceous shales and finely laminated baritic massive sulfides comprised of pyrite-sphalerite-galena. The mineralized zone varies from 5-30m wide, has been defined over a strike length of 1500 m and tested to depths of 600-700m below surface. The Cardiac Creek mineralized horizon shows increasing grade and overall sulfide content downdip, however, the overall zinc and lead grades are low. Internal higher grade intervals are returning potentially economic grades and widths as seen in holes 11, 12, 13, and 18. These higher grade intervals are averaging 8.0-9.2\% zinc and 1.3-1.6\% lead over widths of approximately 7 meters.

In 1995, deep drilling of the Cardiac Creek zone identified a 3 to 6 m wide hanging wall zone of laminar bedded massive sulfide mineralization in holes A-95-13, and 18 approximately $20-30 \mathrm{~m}$ in the hanging wall of the main zone of mineralization. Zinc grades intersected to date are in the 2.5 to 2.9% range which are very similar to grades intersected in holes A-94-3 and 4. Assuming this new zone will also increase in grade and thickness down dip there is excellent potential to develop two economic zones at depth.

In the footwall of the mineralization, the Gunsteel Formation shows its greatest variability. The 1994 shallow drilling indicated the mineralization was either directly underlain by the Road River calcareous siltstone or underlain by thin discontinuous units of barite, heterolithic breccia or limestone which overly the calcareous siltstone. In 1995, the deeper drilling of the zone identified an increasing sediment influx in the form of an increasing thickness of footwall shale and breccia lithologies under the mineralization and above the Road River calcareous siltstones. This is best shown in figure 8, of section 2400S. Hole A-95-17 intersected the Cardiac Creek zone 220m downdip of hole A-94-9 and intersected a similar stratigraphic succession as defined by previous drilling with several significant footwall variations. 1.) The appearance of a
32.5 m zone of interbedded shale and laminar bedded nodular barite and laminar pyrite within the footwall of the zone which was not seen in the updip drilling, and 2.) The rapid appearance of an extremely thick footwall shale-siltstone-limestone and limestone-siltstone breccia which formed as debris was shed from a paleo-escarpment which would be controlled by syndepositional faulting. It is along such a structure that venting of hydrothermal fluids will be focused.

The Gunsteel shales, massive sulfide mineralization and footwall shales and breccias are underlain by a thick homogenous sequence of competent, barren, massive to weakly layered calcareous siltstone of the Middle to Late Silurian Road River Group.

5. CONCLUSIONS AND RECOMMENDATIONS

1994 and 1995 drilling of the Cardiac Creek massive sulfide zone has defined an extensive sheet of mineralization however, overall zinc grades to date are generally low. Increases in metal grades and sulfide content, metal ratios and paleo structure indicators indicate the core of the mineralization and potentially economic grades should lie further downdip. This deep target will be tested in 1996 by the completion of hole A-95-19 and further drilling downdip of holes 13 and 18.

1994 and 1995 soil geochemical surveys have outlined significant multi-element anomalies overlying perspective Gunsteel shales which will require diamond drilling to assess their significance. The majority of these anomalies are within the most westerly band of Gunsteel shales which to date has also seen the most exploration activity. The Cardiac Creek time horizon on strike to the south of the known mineralization represents one of the best drill targets. A coincidental 1800m multi-element soil anomaly associated with this horizon will be drill tested by several holes in 1996. Any weaker anomalies associated with this time horizon should be considered as significant and will require eventual drill testing.

The south zinc soil anomaly represents the largest anomalous area and highest zinc values on the property and its occurrence at the folded repetition of the Cardiac

Creek time horizon represents another high priority drill target. Additional mapping to confirm structural dips will be required prior to drill testing in 1996.

In the hangingwall of the Cardiac Creek time horizon, lead barium soil anomalies associated with known nodular barite occurrences will require drill testing to assess their significance.

Single station multi-element soil anomalies defined on the reconnaissance grid will require tighter line cutting soil sampling mapping and prospecting to assess their significance.
6. COST STATEMENT

1. GEOCHEMISTRY
i. Helicopter Support: Northem Mountain Helicopters\$21,098
ii. Accommodations: Finbow Logging Camp 117 man days @ \$85/man day $\$ 9,945$
iii. Contractor Costs: Hendex Exploration Serviceslinecutting and soil sampling\$31,642.90
iv. Analyses: IPL Labs
1485 samples @ \$8.25/sample \$12,251.25
v. Air Charters: NT Aircrew mob/demob, ship samples, freight $\$ 4,538.28$
v. Sample Shipment: Loomis\$265.75
vi. Salaries:
Paul Baxter 4 days @ \$250/day \$1000
Devin Denboer 1 day @ \$200/day \$200
John Kapusta 5 days @ \$250/day \$1250
Logan Kelly 22 days @ \$150/day $\$ 3300$
Jerii Cassidy 4 days @ \$150/day \$600

2. DRILLING

i. Helicopter Support: Northern Mountain Helicopters $\begin{array}{lr}\text { Bell } 205 \text { - Drill moves, mob/demob } & \$ 90,940 \\ \text { Hughes 500D - Drill support, shift changes } & \$ 341,095.75\end{array}$
ii. Accommodations: Finbow Logging Camp 225 man days @ \$85/man day
\$19,125
iii. Contractor Costs: J.T. Thomas Diamond Drilling Ltd.

Falcon Drilling Ltd.

A-95-13 to A-95-16, A-95-18 and A-95-19 \$548,585
iv. Analyses: Min-En Labs

203 Assay samples @ \$31.35/sample $\$ 6,364.05$
v. Sample Shipments: Loomis $\$ 368.50$
vi. Air Charters: NT Air

Sample shipment and freight charges \$8,098.87
vii. Radio Rental: Falcon Research Ltd.

Hand held FM radio rental
\$1,800
viii. Satellite Telephone: Infosat Telecommunications. Satellite Telephone rental $\$ 9,350$
vi. Salaries:

Paul Baxter 89 days @ \$250/day $\$ 22,250$ John Kapusta 38 days @ \$250/day \$9,500
Devin Denboer 25 days @ \$200/day \$5,000
Logan Kelly 8 days @ \$150/day \$1,200 Jerii Cassidy 56 days @ \$150/day $\$ 8,400$

3. REPORT PREPARATION

Paul Baxter 10 days @ \$250/day \$2,500
Sel Gokool (drafting)4 days @ \$200/day \$800
Map photocopying $\$ 62.50$
WOM
COST ALLOCATION
AKIE 96C Group 50\%
$\$ 1756.25$
AKIE 96D Group 50\%
\$1756.25

7. REFERENCES

Baxter, P., 1994. Soil Geochemical, Geophysical and Diamond Drilling Assessment Report, Akie Claims, NTS 94F/7W

MacIntyre, D.G., 1981. Geology of the Akie River Ba-Pb-Zn mineral district. B.C.M.E.M.P.R., Preliminary Map 44.

MacIntyre, D.G., 1992. Geological Setting and Genesis of Sedimentary Exhalative Barite and Barite-Sulphide Deposits, Gataga District, Northeastern British Columbia. Exploration and Mining Geology, Vol. 1, No. 1, pp 1-20.

Wells, G.S., 1992. Geochemical Assessment Report, AKIE claims, NTS 94F/7.

Wells, G.S., 1993. 1993 Summary Report, Gataga Project, YN, PIE and Akie Claims, Inmet Mining Corporation, company report.
8. STATEMENT OF QUALIFICATIONS

I, Paul Baxter certify that:

1. I hold a bachelor of Science degree, Honours Geology (1985) from the University of Alberta, Edmonton, Alberta.
2. I am a registered Professional Geologist with the Association of Professional Engineers, Geologists and Geophysicists of Alberta.
3. I have practiced my profession in exploration since 1986.
4. I have been a contract employee with Unmet Mining Corporation (Minnova Inc. And Meal Mining Corporation) since 1988 and a full-time employee since 1994.
5. I personally carried out or supervised the work described in this report.

Paul Baxter
Vancouver, B.C.

Date:

I, John D. Kapusta, certify that:

1. I am a resident of British Columbia, residing at 7260 Gilhurst Crescent, Richmond, V7A 1N9.
2. I am a graduate of the University of Manitoba, 1981 with a B.Sc. degree in Geology.
3. I have practiced my profession on a full time basis since 1981.
4. I am a fully qualified geologist, registered as a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
5. I have been employed by Inmet Mining Corporation as a full time employee since 1988.

I, Devin Denboer certify that:

1. I hold a bachelor of Science degree, Specialization Geology (1995) from the University of British Columbia, Vancouver, B.C..
2. I have been involved in mineral exploration for four summers.
3. I have been a seasonal contract employee with Inmet Mining Corporation (Metall Mining Corporation) from 1993 to 1995.

APPENDIX I

IPL LABORATORY PROCEDURES

2036 Cahumpis Strat Vencouver. ar Canade V5y 37 Phons (504) 879.7878 fox (604) 978.7888

Hethod of sample preparation Sor Soil or sile

(a) Water content in sample ia removed by convection in a Low temperature dryer (T c 60 Degrees C.1.
(b) Driad samples ars passed through an 80 aesh siave. The uinus 80 wesh fraction in transfarrad to a new bag for subsequert analyses. The plus 80 mesh fraction is discardod unlass otherwise instructed.
(C) If an irsuificiant amount of aample ls less than 80 Mesh, the artiro sample is passed threugh a 35 Mesh screen. The -35 Fraction is than pulverized anci used as the portion for analysea.

QUALITY CONTROL

Crese contamination is minimizad by constant cleaning of preparation equipment with high velocity compressed air. Ring pulverizers are claaned with a quartz sand charga.
(a) 0.50 grams of sample is digested with diluted aqua regia solution by banting in a kot water bath for 90 misutes, then cooled, bulked up to a fixed volune with denineralized water, and thoroughly mixed.
(b) The spacific elements are daternined using an Inductively Coupled argon plasma spactrophotomater. All Lements are corractad for inter-elenent interference. All data are subrequantiy stored onto computer disketto.

- Aqua regia laaching in partial for A1, Ba,Ca,Cr,K, $\mathrm{Ca}, \mathrm{Mg}, \mathrm{Na}, \mathrm{Sa}, \mathrm{Sn}, \mathrm{Sr}, \mathrm{mh}, \mathrm{Mi}, \mathrm{H}$ and Er .

QUALEFY CONTROL

The mach:ine is first calibrated using aix known standards and a blank. The test samplas are then 5 in in batchan.

A sample batch consists of 38 or leas anmples. Two tubes ars placed before a set. These are an Inhoute standard and an acid blank, wich are both dlqosted with the samplas. A known standard with characteristics bose matching tho samplon is chosen and placed afeer every fifteenth sample. After every 38th samplo inot inciuding etandards), two samples, chosen at randon, are reweighed and analysed. At the end 0 a bateh, the atandard and blank used at tha beginning is rerun. The readinga for these knowns are compared with the prearack knowns to derect any calibration drift.

APPENDIX II

IPL 1995 SOIL GEOCHEMICAL

ANALYTICAL CERTIFICATES

CERTIFICAT ${ }^{\top}$ F ANALYSIS
 iPL SF2801

Min Limit	0.1	2	1	5	0.1	2	1	0.01
Max Reported*	100.0	20000	20000	10000	10000.0	10000	10000	5.00
Method	ICPM	ICPM	ICPM	ICPM	CBy	ICPM	ICPM	ICPM

 International Plasma Lab Ltd. 2036 Columbia St. Vancouver BC V5Y 3E1 Ph:604/879-7878 Fax: 604/879-7898

CERTIFICAT ${ }^{\text {r }}$
 F ANALYSIS
 iPL (」F2801

2036 Columbi

L. 62+00S 08+50E	S	0.1 ,	29.	160'	15	\leqslant	1199 :	136	2.49
L. 62+00S 08+75E	S	$<$	24 !	135\%	13	$\stackrel{1}{ }$	1585 2	60	1.37
L. 62+00S 09+00E	S	<	26 !	206 !	9	-1,	1422 :	225	2.23
L 62+00S 09+25E	S	0.2 .	22 !	853 !	7	2, 2	1361 :	169	2.17
L. 62+00S 09+50E	S	0.6%	198	355	11	2.9	1888 :	372	2.40
L. 62+00S 09+75E	\$	0.3 '	28	384	15	2.7	1793	402	2.85
L. 62+00S 10+00E	S	0.71	291/	257	14	+1, 3	2603 :	314	2.25
L 62+00S 10+25E	\$	1.1,	37	802 \%	$<$	+ 40	1959	627	3.36
L. 62+00S 10+50E	S	2.91	37/	291	15	2, 5	2689	719	3.17
L 62+00S 10+75E	\$	1.01	35\%	652	10	\%14,	1919	210	1.81
L 62+00s 11+00E	§	$0.3!$	361/	911	15	\%8,	1966	247	2.87
L 62+00S 11+25E	5	0.5 ;	30	1539	9	R184	1868:	282	2.60
L 62+00S 11+50E	¢	0.51	29 V	781 V	10	\% 6.6	1681 .	405	2.48
L 62+00S 11+75E	5	1.91	$32^{\prime \prime}$	973 V	15	\% 5.8	1986	353	2.83
L 62+00S 12+00E	F	1.1 '	32 L	1437 V	35	\% 84	2224	1606	3.21
L 62+00S 12+25E	§	0.3	35\%	552 に.	20	\% 8 S 3	2248.	246	3.11
L 62+00S 12+50E	S	0.8 i	33:-	3417	19	\% 81	2273-:	427	2.66
L 62+00S 13+25E	5	0.41	34	3311	30	\% 30%	1866	374	6.6\%
L 62+00S 13+75E	§	1.01	33%	3535	48	\%19.8	1380!	481	4.56
L 62+00S 14+00E	\$	1.1 '	37	2170	55	2, 9	1730	4100	6.6%
L 62+00S 14+25E	F	0.5 :	321	956	37	\% 8.9	3000 -	180	3.62
L 62+00S 14+50E	\$	1.0,	40	5231 V	28	\% 84	3029 ;	476	2.38
$1-62+00514+75 E$		0.3 .	451	2964 L	13	\%.44.5	1750.	667	1.85
L' 64+00S $01+50 \mathrm{E}$	5	7.1%	31.	551 V	17	\%) ${ }^{6}$	3003	205	2.11
L 64+00S 01+75E	$\stackrel{7}{5}$	1.31	30 :	313.	16	\% 21	2679	422	2.46
		0.51							3.06
L 64+00S 02+25E	§	0.3	26.	107	8	\% 0.5	1162	425	2.44
L 64+00S $02+50 \mathrm{E}$	\$	0.4	31.	142	11	\% \%	1201	545	3.55
L. $64+00502+75 E$	ξ	0.5	$25:$	166	9	\% 07	1116	436	2.60
L 64+00S 03+00E	¢	0.3	25	270	16) $\chi^{1} 6$	2057:	355	2.41
L 64+00S 03+25E		1.3	$41 v$	436	29		2359	330	2.60
L 64+00S 03+50E	5	0.8	31 V	487V	13	\% 8.8	1966	400	1.85
L 64+00S 04+00E	\$	0.8 :	41	3751%	13	2, 2 L	2214	419	2.39
L 64+00S 04+25E	5	1.2	71 V	1404	41	\%15,4	2813	705	2.75
L 64+00S 04+50E	\$	0.6	206	1715	46	\% 408	2902:	729	3.08
L 64+00S 04+75E	5	0.2 :	23.	$290{ }^{\circ}$	11) ${ }^{+}$	1313	344	1.45
L 64+00S 05+00E	¢	0.7 !	25.	136	10	2088	1424	398	1.92
L 64+00S 05+25E	5	0.3	30.	$249{ }^{\prime}$	14	\% 2 \%	1305	625	1.97
L 64+00S 05+50E	\$	0.6	22	197V	9	\% 08	1356	310	2.49

Min Limit	0.1	2	1	5	0.1	2	1	0.01
Max Reported*	100.0	20000	20000	10000	10000.0	10000	10000	5.00
Method	ICPM	ICPM	ICPM	ICPM	0 ICPM	ICPM	ICPM	ICPM

International Plasma Lab Ltd. 2036 Columbia St. Vancouver BC V5Y 3E1 Ph: 604/879-7878 Fax: 604/879-7898

CERTIFICAT:
 JF ANALYSIS

2036 Columbi
Vancouver. B
Camatia V5Y $3 E$
Phone (604) $879-7878$
inifanational plasma laborainartid
Client: Inmet Mining Corporation
iPL: 95F2801
Out: Jul 05, 1995 In: Jun 28, 1995 [040114:32: 52:59070595]
\square
$\mathrm{Mn} \quad \mathrm{Fe}$

Min Limit
 Max Reported*
 Method

0.1	2	1	5	0.1	2	1	0.01
100.0	20000	20000	10000	10000.0	10000	10000	5.00
ICPM	ICPM	ICPM	ICPM	CSI	ICPM	ICPM	ICPM
at Samp	S	oil R=	Rock C-	Core L=	$1 t \mathrm{P}=$	p	fined

$\begin{aligned} \text { Client: } & \text { Irmet Mining Corporation } \\ \text { Project: } & 677\end{aligned} \quad 434$ Soil

Out: Ju1 05, 1995 Int: Ju1 05, 1995
In 28, 1995

Page 9 of 12 [040114:32:58:59070595]

CERTIFICAT
 วF ANALYSIS
 iPL ur'2801

Canada V5Y 3 Phone (604) 879-7878
Fax (604) 879-7

Client: Irmet Mining Corporation 434 Soil
iPL: 95F2801
Out: Jul 05, 1995
In: Jun 28, 1995

Page 10 of 12
[040114:33:04:59070595]
Certified BC Assayer: David Chiu
$<V$
$L 70+00 S ~ 08+75 E$
$L \quad 70+00 S ~ 09+00 E$ BL 72+00S $000+00$
L $72+00 S 00+25 E$
L 72+00S 00+50E
L. 72+00S 00+75E

L 72+00S 01+00E
L 72+00S 01+25E
L 72+00S 01+50E
L 72+00S 01+75E

As

Mn
Fe
Z

L 72+00S 02+00E
L 72+00S 02+25E
L 72+00S 02+50E
L 72+00S 02+75E
L 72+00S 03+00E
L. 72+00S 03+25E

L 72+005 03+50E
L 72+00S 03+75E
L 72+00S 03+75E
L 72+00S 04+25E
9 .

2036 Columb:
iPL: 95F2801
Out: Jul 05, 1995
Page 12 of 12
iient: Inmet Mining Corporation 434 Soil

In: Jun 28, 1995

L 76+00S $00+50 \mathrm{~W}$
L 76+00S $00+75 \mathrm{~W}$
L 76+00S 01+00W
L 76+00S 01+25W
L 76+00S $01+50 \mathrm{~W}$

5	$0.2 V$	26 V	183 V	14	¢	1850 V	191	2.68
\$	0.1 V	15 V	96 C	<	8	2397 V	61	0.64
\$	$1.4 V$	25	356	10	\% X	2481 V	595	1.98
S	$0.4 V$	$31 /$	220	14	¢\%\%	3123 V	170	2.25

CERTIFICAT
iPL Y5F2905

2036 Columbi

Vancouver, B.
Canada V5Y 3 E
Phone (604) 879-7878 Fax (604) 879-7898

Client: Inmet Mining Project: 67760 Soil

Out: Ju1 09, 1995
In: Jun 29, 1995

Page 2 of 2
Section 1 of 1
Certified BC Assayer: David Chiu

Sample Name		$\begin{array}{r} \mathrm{Ag} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Zn} \\ \mathrm{ppm} \end{array}$	$\underset{\text { ppm }}{\text { As }}$	$\begin{gathered} \text { Cd } \\ \text { ppm } \end{gathered}$	$\begin{array}{r} \text { Ba } \\ \text { pprn } \end{array}$	Mn ppon	$\begin{array}{r} \mathrm{Fe} \\ \mathrm{Z} \end{array}$
L. 62+00S 25+00E	\$	0.16	31 V	$54 V$	9	¢ + ¢	1301.	34	0.70
L. 62+00S 25+25E	\$	$\leqslant 1$	32 V	$173 V$	17	\%2\%	1112	70	1.61
L 62+00S 25+50E	5	0.4	28 V	114 V	11	\% 0 \%	1688	85	1.04
L. 62+00S 25+75E	S	$0.7 v$	50 V	$313 v$	21	\% 2 2	1756 v	239	2.29
L. $62+00526+00 E$	§	0.91	34 V	$151 v$	12	\%	1447	322	1.56
L. 62+00S 26+25E	\$	0.2	28 V	$70^{\prime \prime}$	11	\%+\%	1679	25	0.91
L. $62+00 \mathrm{~S} 26+50 \mathrm{E}$	S	1.1%	$48 \cup$	293V	14	\% \%	1540	208	2.09
L. 62+00S 26+75E	S	0.6	26 V	143v	12	\%	1253	268	1.29
L. 62+00S 27+00E	\$	0.61	$44 V$	$186 v$	16	\% 089	1409	263	1.87
L 62+00S 27+25E	\$	0.6	38 V	$218 t$	14	\% 24	$1132 \sim$	371	1.73
L 62+00S 27+50E	\$	0.9 :	446	249	19	\% <	1263 V	274	2.52
L 62+00S 27+75E	\%	0.2"	32 L	1490	15	\% \% \%	1108'	48	1.53
L 62+00S 28+00E	\$	0.2	22	78%	11	\%, 8 \%	$689{ }^{\prime}$	35	1.10
L 62+00S 28+25E	§	0.2%	$19 v$	50 er	6	\& \%	815	31	0.69
L 62+00S 28+50E	年	0.5%	39 V	75	11	\%	1383	16	1.46
L 62+00S 28+75E	\$	0.6	37 V	80	29	\%2, 8	994 V	59	2.59
L 62+00S 29+00E	§	0.70	26 V	$66 V$	12		954 i	38	1.10
L 62+00S 29+25E	$\stackrel{\text { ¢ }}{ }$	0.71	36	155V	21	\% \% \%	1263	52	1.91
L 62+00S $29+50 \mathrm{E}$	$\mathfrak{5}$	0.5	$33 V$	112L	22	\%	1209	144	2.24
L 62+00S 29+75E	$\stackrel{3}{3}$	0.11 .	29 V	39.	11	\% \% \%	820	33	0.66
L 62+00S 30+00E	$\$$	0.7	$24 V$	$77 V$	11	\&	875	33	0.90

Canada V5Y 3ET


```
88 Samples
    Raw Storage:
    Pulp Storage:
```

$0=$ Rock $88=$ Soil

- 00Mon/Dis
-- 12 Mon/Dis

RECENED JUL 12 1095
[043016:31:01:59071095] Mon=Month Dis=Discard Rtn=Return Arc=Archive

Client: Imet Mining Corporation
Project: 677
iPL: 9560509

Out: Ju1 10, 1995
In: Ju1 05, 1995 [043016:35:34:59071095] [043016: 35: 34: 59071095]

3 Certified BC Assayer: David Chiu \qquad 1 120

[^0]International Plasma Lab Ltd. 2036 Columbia St. Vancouver BC V5Y 3E1 Ph:604/879-7878 Fax:604/879-7898

Client: Inmet Mining Corporation Project: 677 88 Soil
iPL: 95G0509
Out: Jul 10, 1995
In: Jul 05, 1995
Page 3 of 3
[043016:35:40:59071095]

Sample Name		$\begin{array}{r} \mathrm{Ag} \\ \mathrm{\rho pm} \end{array}$	$\underset{\text { ppm }}{\text { Pb }}$	$\begin{array}{r} \mathrm{Zn} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \text { As } \\ \text { ppm } \end{gathered}$	$\begin{gathered} \text { Cd } \\ \text { ppm } \end{gathered}$	$\begin{array}{r} \mathrm{Ba} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { Mn } \\ \text { ppm } \end{array}$	$\begin{gathered} \mathrm{Fe} \\ \mathrm{Z} \end{gathered}$
L 56+00S 27+75E	\$	0.9!	$35 \sim$	260 V	11	24	1416 :	226	1.54
L 56+00S 28+00E	S	0.2!	27	$192 v$	10	- $2 \times$	1113	131	1.59
L 56+00S 28+25E	S	0.9	330	244 V	8	3.5	1437:	139	1.84
L 56+00S 28+50E	S	0.6	19 V	1203 V	11	16\%	895 :	228	1.33
L 56+00S 28+75E	S	0.5	$31 \sim$	1439	16	10.0	1203 !	633	2.12
L 56+00S 29+00E	S	0.41	31	$766 V$	9	\% 8.2	1162	138	2.11
L 56+00S 29+25E	S	0.21	30 V	430 V	10	\% 38	1053	172	1.62
L 56+00S 29+50E	S	0.6 !	36 V	546 V	13	¢ 23	1116	282	2.08
L 56+00S 29+75E	S	$0.3!$	37 V	373 V	<	\% 0	1286 :	105	1.45
L 56+00S 30+00E	\$	0.3 :	38 V	428 V	13	¢ 26	1380 !	135	2.00

Sample Name		$\begin{gathered} \mathrm{Ag} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \text { Pb } \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Zn} \\ \mathrm{ppm} \end{array}$	$\underset{\text { ppm }}{\text { As }}$	$\begin{gathered} \mathrm{Cd} \\ \mathrm{ppo} \end{gathered}$	$\begin{array}{r} \mathrm{Ba} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { Mn } \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Fe} \\ \mathrm{Z} \end{array}$
L 56＋00S 14＋25E	5	1.71	38∇	983 v	13	348	1059 V	1591	2.21
L 56＋00S 14＋50E	§	0.31	46	404	12	22.	1380 V	576	1.52
L 56＋00S 14＋75E	\＄	$0.5{ }^{\prime}$	49 し	1280	11	146．0	1732 V	3008	1.29
L 56＋00S 15＋00E	S	0．2 ${ }^{1}$	42レ	$772 v$	17	\％24．2	1334.	1155	1.55
L 56＋00S 15＋25E	S	$0.2 V$	73 V	801 V	16	\％${ }^{\text {a }}$ S	$1467 \checkmark$	1380	2.19
L 56＋00S 15＋50E	\＄	0.46	$44 V$	411し	13	\％， 96	1687	1039	1.44
L 56＋00S 15＋75E	\＄	$<$	$90 \checkmark$	1017 L	20	\％ 8 \％	892 し	456	1.96
1．56＋00S 16＋50E	S	0.2	$60 \sim$	220～	13	\％ 2	1211V	378	1.54
L 56＋00S 16＋75E	§	0.9	$68 v$	4116	32	\％ 3.4	1675 l	299	2.40
L 56＋00S 17＋00E	\＄	1.16	85	$545 \sim$	27	，$\% 2$	1681	550	2.46
L．56＋00S 17＋25E	\＄	0.21	$45 \checkmark$	$113 v$	16	\％$<$ ，	1248 L	86	1.19
L．56＋00S 17＋50E	\％	0.7	39	106v	11	\％ 1	$1170 \sim$	107	1.04
L 56＋00S 17＋75E	S	$0.3 V$	$62 \downarrow$	$84 \sim$	23	\％	954 V	92	1.30
L 56＋00S 18＋00E	\＄	0.2	38	$93 \sim$	22	\％\％ 8	865 V	59	1.14
L 56＋00S 18＋25E	5	0.6	41 L	374	29	，	1735V	156	2.39
L 56＋00S 18＋50E	5	0.5	$35 \sim$	147	13	\％08	2452	60	1.52
L 56＋00S 18＋75E	\％	1.2	$39 \sim$	251 C	28	\％， 0	2124	69	2.88
L 56＋00S 19＋00E	\＄	0.3ℓ	$28 v$	$144 \sim$	14	\％\％	2876	83	1.69
L 56＋00S 19＋25E	5	0.7 V	33 r	292	25	\％ 8 \％	2810 V	116	2.87
L 56＋00S 19＋50E	\＄	0.51	362	341 V	29	\％ O 4	3369 V	61	2.96
$\underline{L} 56+00519+75 E$	5	1．1！	28	95 V	11	\％ 4	1798V	48	1.11
L 66＋00S 10＋25E	5	$0.2 V$	$301 /$	153V	14	\＄\％\％\％	944 L	355	2.18
L 66＋00S 10＋50E	\＄	$<V$	31L	84 V	10	\％ 8	903	161	1.98
L 66＋00S 10＋75E	$\stackrel{3}{*}$	$<V$	296	$190 \sim$	15		919	62	1.65
L 66＋00S $11+00 \mathrm{E}$	$\stackrel{3}{3}$	$<$	26L	$109 \sim$	10	\％\％	1115 ．	59	1.20
L 66＋00S 11＋25E	$\stackrel{3}{5}$	＜ 1	37.	$190 \sim$	16	\％，$\%$	1267	207	2.16
L 66＋00S 11＋50E	\＄	＜1，	43 c	214	15	\％	1279	361	2.81
L 66＋00S 11＋75E	\＄．	1.3	31ヶ	923 L	12	\％ 85	1205 L．	203	2.91
L 66＋00S 12＋00E	\＄	0.4 ！	31%	$1300 \sim$	8	\％ 10	1130%	232	4.22
L 66＋00S 12＋25E	§	0.4	28	637 L	14	\％ 8	$1174{ }^{\text {c．}}$	211	3.61
L 66＋00S 12＋50E	5	0.11	27	$250 \sim$	20	\％， 0,3	1342 b	166	3.37
L．66＋00S 12＋75E	ξ	1.8 ！	48ν	347 V	50	\％ 0,6	1361 \％	130	6.57
L 66＋00S 13＋00E	$\stackrel{5}{5}$	0.2	$12 v$	77%	6	\％0，	675！	425	1.18
L 66＋00S 13＋25E	ξ	$<$	$33 /$	256	9	\％0，6	909 ．	436	2.40
L 66＋00S 13＋50E	\＄	0.2	27 L	188 V	9	\％ 0.6	1132 V	553	2.15
L 66＋00S 13＋75E	5	0．11．	$17 \sim$	$85 V$	6	\％$\%$	621.	431	1.34
L 66＋005 14＋00E	5	<1	$30 \sim$	186	14	\％，\％	1378 L．	241	2.17
L 66＋00S 14＋25E	\＄	0.16	38%	172 v	19	\％	$1626{ }^{1}$	341	2.87
L 66＋00S 14＋50E	5	0.4	27 V	187	10	1， 0	1381 1－＊	300	1.76

Min Limit	0.1	2	1	5	0.1	2	1	0.01
Max Reported＊	100.0	20000	20000	10000	10000．0	10000	10000	5.00
Method	ICPM	ICPM	ICPM	ICPM	TCry	ICPM	ICPM	ICPM

Client: Inmet Mining Corporation Project: 677157 Soil
iPL: 95G0409
Out: Ju1 11, 1995 In: Ju1 04, 1995

M $\quad \mathrm{F}$

Page 5 of 5
[042115:19:31:59071195]

Sample Name		$\begin{array}{r} \mathrm{Ag} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Zn} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { As } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Cd} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Ba} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Mn} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Fe} \\ \mathrm{Z} \end{array}$
L 74+00S $1+50 \mathrm{~W}$	S	$<$	24	167	11	0.6	1781	119	1.26

miternational plasma iaboratory ltd．

iPL Y5G1301
2036 Columb Vancouver. B Canada V5Y 38 Plone (604) 879-7879 Fax (604) 879-785
 Project: 677 117 Soil

Out: Ju1 19, 1995
In: Jul 13, 1995
$\mathrm{Mn} \quad \mathrm{F}$

Mn	Fe
ppm	Z

L 44+00S 7+00
L 44+00S 7+25E
L 44+00S 7+50E
L 44+00S 7+75E
L. $44+005$ B+00E
L. $44+00 S 8+25$
L. $44+00 S \quad 8+50 \mathrm{E}$
L. $44+00 \mathrm{~S} \quad 8+75 \mathrm{E}$

L $44+00 \mathrm{~S} 9+00 \mathrm{E}$
L 44+00S 9+25E
L 44+00S $9+50 \mathrm{E}$
44+00S 9+75E
L 44+00S 10+00E
L 44+00S $10+25 E$
L. $44+00 S 10+50 \mathrm{E}$
L. $44+00 S 10+75 E$

L 44+00S 11+00E
L 44+00S $11+25 E$
L $44+00511+50 \mathrm{E}$
44+00S $11+75 E$
L 44+00S 12+00E
L 44+00S 12+25E
L $44+00512+50 \mathrm{E}$
44+00S 12+75E
L 44+00S 13+75E
L $44+00514+00=$ $44+00514+25 E$ L $44+00514+50 \mathrm{E}$
44+00S 14+75E
L 44+00S 15+00E
L 44+005 15+25E
$44+00 S 15+50 \mathrm{~F}$
$44+00515+75 E$
$44+00 S 16+00 \mathrm{E}$
L 44+00S 16+25E
L 44+00S 16+50E
44+00S 16+75E
L $44+00517+00 \mathrm{E}$
L $44+005$ 17+25E
iPL: 95G1301
$\mathrm{Ag} \quad \mathrm{P}$

2036 Colum
Vancouver. E
Canada V5Y 3
Phone (604) 879-7879 Fax (604) $879-7898$

CERTIFICAT JF ANALYSIS
iPL y5G1301

Client: Inmet Mining Corporation
Out: Jul 19, 1995 In: Jul 13, 1995

intermational plasmalabonatorylio

2036 Colum' Vancouver. L
Canada V5Y 3
Phone (604) $879-7870$
Fax (604) 8ī9-7498
intennaional plasma laboratory itd.
Client: Inmet Mining Corporation Project: 677 120 Soil
iPL: 9562101
Out: Ju1 25, 1995
In: Jul 21, 1995 [048612:22:56:59072695]
Page 1 of 4 [048612:22:56:59072695] Certified BC Assayer: David Chiu \cdots

2036 Colum Vallicouver.
Canada V5Y 3
Phone (604) 879-7878 Fax (604) $879-098$

Phone（604） $879-7878$ Fax（604）879－790p
Client：Inmet Mining Corporation
Project： $677 \quad 120$ Soil

Project： 677120 Soil
In：Jul 21， 1995
［048612：23：08：59072695］
Certified BC Assayer：David Chiu

Sample Name		$\begin{array}{r} \mathrm{Ag} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Zn} \\ \mathrm{ppm} \end{array}$	As ppm	$\begin{array}{r} \text { Cd } \\ \text { ppm } \end{array}$	$\begin{array}{r} \text { Ba } \\ \text { ppon } \end{array}$	$\begin{array}{r} M n \\ \mathrm{ppn} \end{array}$	$\begin{gathered} \mathrm{Fe} \\ \mathrm{Z} \end{gathered}$			2
L 38＋00S 27＋50E	S	1.1 V	$20 \sim$	58 V	10	¢	1204V	27	0.67			
L 38＋00S 27＋75E	S	1.3 l	15 V	69 ～	8	¢	973	26	0.59			
L 38＋00S 28＋00E	S	0.4 C	$14 \sim$	49 V	6	\％	1365～	25	0.51			
L 38＋00S $28+25 E$	S	0.3 C	23 V	$36 \sim$	9	＜	15936	18	0.73			
L 38＋00S $28+50 \mathrm{E}$	S	0．2V	20 V	70 V	13	\％	1165	32	1.90			
I． $38+00 \mathrm{~S} 28+75 \mathrm{E}$	S	0.16	136	384	8	$<$	1240	19	0.74			
L 38＋00S 29＋00E	S	＜	$15 \sim$	36 L	7	－	1209 ${ }^{\text {L }}$	22	0.63			
L 38＋00S 29＋25E	S	0.51	18	66 レ	6	，\％	$1040 \sim$	27	1.23			
L 38＋00S 29＋50E	S	$0.3 V$	$22 v$	67 レ	8	¢	1427 V	25	0.96			
L．38＋00S 29＋75E	S	0.6 L	25	31 レ	18	\％	1086 し	22	1.12			
L 38＋00S 30＋00E	S	0.4 V	24	64 V	12	＜	1118 V	38	1.17			
L 50＋00S 15＋25E	S	0.5	$23 \sim$	100 L	8	，	730	47	1.11			
L 50＋00S 15＋50E	S	＜	19 V	54 C	5	\％\％	1407	36	0.78			
L 50＋00S 15＋75E	S	0.2	26 V	54 C	＜	\％，\％	1651	25	0.79			
L 50＋00S 16＋00E	S	0.2	$25 \sim$	34 c	6	\％\％	1544	30	0.70			
L 50＋00S 16＋25E	S	0.1	264	482	5	\％ 2 Q	1745	32	0.92			
L 50＋00S 16＋50E	S	0.1	216	38	7	\％，\％	2039	25	0.78			
L 50＋00S 16＋75E	S	＜	136	48°	$<$	）	1335	24	0.50			
L 50＋00S 17＋00E	S	0.3	46 V	215	16	）	2194	47	1.41			
L 50＋00S 17＋25E	S	0.6	16	$201 \sim$	8	\％	1235	57	1.03			
L 50＋00S 17＋50E	S	0.4	31 V	1102	13	\％184	1068	46	1.13			
L 50＋00S 17＋75E	S	0.1 L	17V	$56 \sim$	7	\％	1221V	37	0.97			
L 50＋00S 18＋00E	S	0.2 V	$28 \sim$	$94 V$	10	\％	1301～	45	1.09			
L 50＋00S 18＋25E	S	0.8 V	$38 v$	353V	20	\％ 0.6	3378 C	53	2.39			
L 50＋00S 18＋50E	$\stackrel{H}{\mathbf{S}}$	0.3 V	$34 レ$	$214 \sim$	19	\％\％\％	3575 L	39	1.83			
L 50＋00S 18＋75E	S	4.5 L	13 V	46 L	6	\％o，	1897 V	44	0.58			
L 50＋00S 19＋00E	S	0.8 V	$33 \sim$	103	9	\％，\％	2780 V	29	1.35			
L 50＋00S 19＋25E	S	$0.6 \sim$	$23 \sim$	93 V	9	\％\％\％	3444 C	25	1.10			
L 50＋00S 19＋50E	S	$1.5 V$	$18 \sim$	85v	6	\％ 0.4	3322 V	30	1.17			
L 50＋00S 19＋75E	S	0.60	16 C	58 C	9	\％	$1204 \sim$	27	0.67			
L 50＋00S 20＋00E	\＄	$0.5 \sim$	26	1936	9	\％， 8.8	4571し	31	1.52			
L 50＋00S 20＋25E	S	0.8 V	146	49 V	7	\％\％＜	13556	25	0.51			
L 50＋00S 20＋50E	S	$0.5 V$	48 V	2200	15	\％\％	$2222 \sim$	47	1.43			
L 50＋00S 20＋75E	S	0.76	26 V	199 J	19	\％\％\％	$3099 \sim$	45	1.95			
L 50＋00S 21＋00E	S	1.0 V	28	178	12	\％$\bigcirc 3$	3164 V	32	1.44			
L 50＋00S 21＋25E	\＄	1.16	15／	37 L	9	\％	1206	22	0.64			
L 50＋00S 21＋50E	S	1.06	18 V	$109 \sim$	10	\％ 10	2538	19	1.13			
L 50＋00S 21＋75E	S	2.46	20 L	212 \％	5	\％） 54	2808 ～	38	1.44			
L 50＋00S 22＋00E	S	0.9 L	13 C	38	6	\％	1564	28	0.62			

Min Limit	0.1	2	1	5	0.1	2	1	0.01
Max Reported＊	100.0	20000	20000	10000	10000.0	10000	10000	5.00
Mrellard	ICIM	ICIM	ICPP	ICRM	ICIM	ICIM	ICIM	ICPM

2036 Columl Vancouver, E

Canada V5Y Phone (604) $879-7878$ international plasma laboratoby ito

Client: Inmet Mining Corporation
Project: $677 \quad 120$ Soil
iPL: 95G2101
Out: Jul 25, 1995
Page 4 of 4
[018612:23:14:59072695] Fax (604) 879-789

Sample Name		$\begin{array}{r} \mathrm{Ag} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Zn} \\ \mathrm{ppm} \end{array}$	$\begin{aligned} & \text { As } \\ & \text { ppm } \end{aligned}$	$\begin{array}{r} \mathrm{Cd} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Ba} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { Mn } \\ \text { ppm } \end{array}$	$\begin{gathered} \mathrm{Fe} \\ \mathrm{Z} \end{gathered}$
L 50+00S 22+25E	S	0.6	19	95	12	\% +10	1866	37	1.05
L 50+00S 22+50E	S	1.1	24	188	9	0.6	2238	102	1.95
L 50+00S 22+75E	S	1.2	23	478	13	7 \%	2842	307	1.82

Inmet Mining Corporation	
Out: Aug 08, 1995	Project: 677
In : Aug 03, 1995	Shipper: Paul 8axter

$I D=C 034200$

In : Aug 03, 1995	Shipper: Paul 8axter	
POH: $677-703$	Shipment:	
Msg:	ICP(MuAc)08	

RECEIVED AUG 119995

159 Samples

$0=$ Rock 159=Soil

$0=$ Core $\quad 0=R C$ Ct $\quad 0=$ Pulp
$0=0$ ther Raw Storage: -- 00Mon/Dis

Analytical Summary

International Plasma Lab Ltd. 2036 Columbia St. Vancouver BC V5Y 3E1 Ph: 601/879-7878 Fax:604/879-7898

Client: Inmet Mining Corporation Project: 677 159 Soil
iPL: 95110303 \qquad Out: Aug 08, 1995 In: Aug 03, 1995

$M n$	Fe
ppm	Z

L31+50S 16+75E $L 31+50 S \quad 17+00 E$ L31+50S 17+25E $[31+50 S \quad 17+50 E$ L31+50S 17+75E
$131+50 S \quad 18+00 \mathrm{E}$ $131+50 \mathrm{~S} \quad 18+25 \mathrm{E}$ $\begin{array}{ll}L 31+50 S & 18+50 E\end{array}$ $\mathrm{L} 31+50 \mathrm{~S} \quad 18+75 \mathrm{E}$ L31+50S 19+00E

L31+50S 19+25E

 $\begin{array}{ll}L 31+50 S & 19+25 E \\ L 31+50 S & 19+50 E\end{array}$ $\begin{array}{ll}\text { L31+50S } & 19+50 E \\ L 31+50 S & 19+75 E\end{array}$ L31+50S 20+00E $\begin{array}{ll}\text { L31+50S } & 20+25 E \\ \text { L31+50S } & 20+50 E\end{array}$ L31+50S $20+75 \mathrm{E}$ $\begin{array}{ll}L 31+50 S & 21+00 E\end{array}$ $\begin{array}{ll}L 31+50 S & 21+25 E \\ 131+50 S & 21+50 E\end{array}$ $\begin{array}{ll}L 31+50 S & 21+75 E \\ 131+50 S & 22+00 E\end{array}$ L31+50S$22+00 E$ L31+50S 22+25E L31+50S 22+50E L31+50S 22+75E

L31+50S 23+00E L31+50S $23+25 E$ $\begin{array}{ll}\text { L31+50S } & 23+50 \mathrm{E}\end{array}$ L31+50S 23+75E L31+50S 24+00E

L31+50S 24+25 L31+50S 24+50E L31+50S 24+75E L31+50S $25+00 \mathrm{E}$ L31+50S $25+25 \mathrm{E}$
$\begin{array}{ll}L 31+50 S & 25+50 E\end{array}$ $L 31+50 S \quad 25+75 E$
$L 31+50 S \quad 26+00 \mathrm{E}$

Min Limit
Max Reported
Max Reported*
Method
ICPM ICPM ICPM ICPM n Ins=Insufficient Sample $S=$ Soil R=Rock $C=$ Core $\mathrm{L}=$ Silt $P=$ Pulp U=Undefined

Intiernational Plasma 1 Plasma lab Ltd. 2036 Columbia St. Vancouver be VSY 3.7.6.60/879-7878 Fax:604/879-7898

Client: Inmet Mining Corporation 159 Soil
iPL: 9510303
Out: Aug 08, 1995
In: Aug 03, 1995
[055317:17:45: 59080895]
Certified BC Assayer: David Chiu

Min Limit

Max Reportod*

0.1	2	1	5	0.1	2	1
100.0	20000	20000	10000	10000.0	10000	10000
10.01						

Metirod
ICPM ICPM ICPM ICPM ICPM ICPM ICPM ICPM
International Plasma Lab Itd. 2036 Columbia St. Vancouver BC V5Y 3F. 1 Ph: 604/879-7878 Fax: 604/879-7898

international plasma laboratoay lio
 Project: 677201 Soil
iIPL: 95111008
iPL 9 Sinoor

Page 1 of 6
Out: Aug 16, 1995 In: Aug 10, 1995 [059116: 48: 11:59081695] Certified BC Assayer: David Chiu

inteanational plasma laboratory ito.
Client: Inmet Mining Corporation Project: 677 201 Soil

Sample		$\begin{array}{r} \mathbf{A g} \\ \mathbf{p p m} \end{array}$	$\begin{array}{r} \text { Pb } \\ \text { ppn } \end{array}$	$\begin{array}{r} \mathrm{Zn} \\ \mathrm{ppp} \boldsymbol{n} \end{array}$	$\begin{aligned} & \text { As } \\ & \text { ppm } \end{aligned}$	$\begin{array}{r} \text { Cd } \\ \mathrm{p} p \mathrm{~m} \end{array}$	$\begin{array}{r} \text { Ba } \\ \mathbf{p p m} \end{array}$	Mn ppm	$\begin{array}{r} \mathrm{Fe} \\ \mathbf{Z} \end{array}$
L20+00S	31+75ES	1.1	39	225	60	\% 2 , 1	1163	132	2.03
L20+00S	32+00ES゙	1.3	34^{\prime}	230 V	61	श 1.2	1196	167	2.05
L20+00S	$32+25 E S$	0.9	32 V	175	63	1.5	1150	109	2.10
L20+00S	32+50ES	1.4	37 V	207 V	68	0.8	1202	147	2.13
L20+00S	$32+75 \mathrm{ES}$	1.0	32 V	183V	57	\bigcirc	1111	200	1.89
L20+00S	33+00ES	1.2	30^{V}	183	53	थr	1163	127	1.99

intermational plasma laboraioay lio

CERTIFICAT以 7 F ANALYSIS
 iPL $95 H 1606$

Canada V5Y 3E1
Client：Inmet Mining Corporation
： 95 H 1606 M
Out：Aug 23， 1995 In：Aug 16， 1995 ［061011：40：1］95］

Page 1 of 4
Section 1 of 1 Certified BC Assayer：David Chiu

Sample N	Name	$\begin{array}{r} \mathrm{Ag} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Zn} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { As } \\ \text { ppm } \end{array}$	$\begin{array}{r} \text { Cd } \\ \text { ppm } \end{array}$	$\begin{array}{r} \text { Ba } \\ \text { ppm } \end{array}$	$\begin{array}{r} \text { Mn } \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Fe} \\ \mathrm{Z} \end{gathered}$	Sample N	Name	$\begin{array}{r} \mathbf{A g} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Zn} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \text { As } \\ \text { ppm } \end{gathered}$	$\begin{array}{r} \mathrm{Cd} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { Ba } \\ \text { ppm } \end{array}$	$\begin{array}{r} \text { Mn } \\ \text { ppm } \end{array}$	$\begin{gathered} \mathrm{Fe} \\ \mathrm{Z} \end{gathered}$	，
l． $2+00 \mathrm{~N}$	21＋25ES	4.0	43	467	127	\％11	1695	138	5.4%	L 2＋00N	31＋00ES	1.5	29	76	56	＜0， 1	1179	34	1.04	
L 2＋00N	21＋50ES	2.1	28	210	75	\％ 1.7	1779	49	2.34	L 2＋00N	31＋25ES	1.4	28	72	55	＜0，1	1361	14	0.91	
L 2＋00N	21＋75ES	1.9	31	205	86	0.9	1613	35	2.51	L． $2+00 \mathrm{~N}$	31＋50ES	1.8	18	93	51	\％ 0 ， 1	751	22	0.73	
L 2＋00N	22＋00ES	0.9	31	100	59	＜0，1	1168	19	0.97	L 2＋OON	31＋75EŞ	6.0	17	41	45	\％ 0 O．	705	21	0.52	
L 2＋00N	22＋25ES	1.4	24	108	61	<01	1148	20	1.22	L 2＋00N	32＋00ES	6.9	22	90	62	\％ 80.1	658	15	1.25	
$12+00 \mathrm{~N}$	$22+50 \mathrm{ES}$	1.5	23	$7 ?$	54	<0.1	1270	1.3	0.87	L 2＋00N	32＋25E	2.0	38	111	61	\ll 0.1	816	20	1.31	
1． $2+00 \mathrm{~N}$	22＋75ES	1.1	31	142	81	0.1	1565	21	2.64	L 2＋00N	32＋50EŚ	0.5	32	110	84	\％ O ， 1	713	53	1.73	
L 2＋00N	23＋00ES	0.6	28	219	65	＜<1	1192	32	1.82	L 2＋00N	32＋75E\＄	0.3	15	42	48	＜0．1	944	25	0.73	
L $2+00 \mathrm{~N}$	23＋25ES	0.7	33	193	86	＜0．1	1475	28	2.25	L 2＋00N	33＋00E ${ }^{\text {S }}$	1.4	17	115	56	，＜0， 1	777	42	1.14	
L 2＋00N	23＋50ES	0.3	25	97	76	＜0．1	1292	27	1.36	L 2＋OON	33＋25ES	1.0	16	43	47	＜0，	822	31	0.80	
L． $2+00 \mathrm{~N}$	23＋75ES	0.8	35	186	79	＜ CO,	1407	25	1.73	L 2＋OON	33＋50E	0.3	27	88	62	\％ 0 Ol	1035	41	1.39	
L 2＋00N	24－00ES＇S	0.6	27	127	65	¢ 0 ，	1039	21	1.16	L 2＋00N	33＋75E䂞	0.6	27	125	78	＜0，1	1048	34	1.94	
L 2＋00N	24＋25EŞ	0.4	39	238	79	＜0，	960	20	1.79	L 2＋00N	34＋00ES	2.3	20	43	47	\％ 01	1010	27	0.98	
L $2+00 \mathrm{~N}$	24＋50ES	2.2	21	64	70	＜0，	3656	10	0.55	L 2＋00N	34＋25E\％	1.3	32	111	67	，＜0，	1289	89	2.16	
L． $2+00 \mathrm{~N}$	24＋75ES	6.2	34	158	84	＜0．1	4390	14	1.16	L 2＋00N	34＋50ES	4.4	30	112	75	＜0，	1515	35	2.22	
L． $2+00 \mathrm{~N}$	25＋00ES	1.2	21	48	58	＜0，	2964	16	0.65	L． $2+00 \mathrm{~N}$	34＋75E	8.3	33	44	70	＜0，	3545	21	1.55	
L 2＋00N	25＋25ES	0.7	23	237	51	＜0，	2875	23	0.79	L 2＋00N	35＋00ES	2.7	36	69	73	\％<0.1	3641	29	1.99	
L． $2+00 \mathrm{~N}$	25＋50ES＇	3.2	30	92	68	O\％1	3410	43	1.33	L 2＋00N	35＋25ES	9.9	37	58	90	\％ 8.1	7235	26	3.41	
L 2＋00N	25＋75ES	1.9	19	87	58	＜0， 1	2790	30	0.79	L 2400N	35＋50ES	3.7	53	72	79	\％ 0 －	4952	24	1.81	
L． $2+00 \mathrm{~N}$	26＋00ES	0.9	28	96	71	－0，	2565	43	1.19	L 2＋00N	35＋75E	1.4	30	88	68	\％ 80.1	1463	93	1.72	
L $2+00 \mathrm{~N}$	26＋25ES	0.6	31	106	85	$\bigcirc 0.3$	2653	22	0.98	L 2＋00N	36＋00E5	0.2	35	126	77	\％ 0	1176	63	1.75	
L． $2+00 \mathrm{~N}$	26＋50ES	1.1	17	40	66	＜0，	2062	16	0.51	L 2＋00N	36＋25ES	0.8	21	853	44	\％13．7	1890	483	1.94	
L． $2+00 \mathrm{~N}$	26＋75E鴀	1.3	27	100	74	\％0．1	3278	52	1.30	L $2+00 \mathrm{~N}$	36＋50E§	0.2	60	698	61	\％ 68	1229	364	2.84	
L． $2+00 \mathrm{~N}$	27＋00ES	2.0	30	79	73	\％＜ 0,	3879	30	1.23	L 2＋00N	36＋75ES	0.2	43	1031	61	\％， 3	1311	243	2.90	
L 2＋00N	27＋25EŚS	1.0	15	47	61	\％ 8 －	3020	32	0.78	L 2＋00N	37＋00E\＄	0.1	23	132	44	\％ 8 －	700	123	1.17	
L． $2+00 \mathrm{~N}$	27＋50ES	1.3	19	84	73	－0，	2559	18	0.87	L 2＋00N	37＋25E\＄	0.1	28	203	52	\％obl	902	272	1.58	
L $2+00 \mathrm{~N}$	27＋75EŚ	0.6	26	60	54	\＄0， 1	1930	25	0.33	L 2＋00N	37＋50E京	0.4	33	206	59	\％0．5	951	411	2.10	
L 2＋00N	28＋00ES	0.7	24	41	66	＜0，	2791	14	0.42	L $2+00 \mathrm{~N}$	37＋75ES	0.2	31	174	52	\％ 0	889	306	1.71	
L 2＋00N	28＋25ES	1.3	32	168	77	\％ 80	2826	25	1.38	L 2400N	38＋00E\＄	0.3	27	142	56	\％ 80	899	277	1.47	
L $2+00 \mathrm{~N}$	28＋50ES	1.2	29	91	84	\％ O	2572	23	0.93	L．4＋00S	$18+50 \mathrm{E}$	1.9	33	137	77	\bigcirc	1618	30	2.18	
L． $2+00 \mathrm{~N}$	28＋75ES	1.2	16	51	56	＜0，	2233	16	0.52	L 4＋00S	18＋75ES	1.4	30	164	77	\％$\% 2$	1691	32	2.27	
L 2＋00N	29100ES	2.0	25	118	86	\％＜0，	2334	28	1.41	L 4＋00S	19＋00ES	2.7	36	146	77	\％ 0,3	1682	30	2.32	
L． $2+00 \mathrm{~N}$	29＋25ES	3.0	34	108	82	＜0，	2453	21	1.42	L 4＋00S	19＋25ES	1.7	30	140	74	\％ 0.1	1604	25	1.61	
L $2+00 \mathrm{~N}$	29＋50ES	0.7	20	42	67	＜0．	1756	27	0.58	L．4＋00S	19＋50ES	2.2	29	162	93	\％$<$	1719	35	2.63	
L． $2+00 \mathrm{~N}$	29＋75ES	1.3	22	59	65	\＆0．	1891	24	0.72	L．4＋00S	$19+75 E$ S	1.6	29	160	83	$\bigcirc \mathrm{O}_{2}$	1540	37	2.48	
L． $2+00 \mathrm{~N}$	30＋00ES	0.5	21	55	68	＜ 81	2128	14	0.69	L 4t00S	20＋00E	0.7	32	126	74	\％ 80	1265	30	1.49	
L $2+00 \mathrm{~N}$	30＋25ES	0.4	23	107	61	＜ 0 O	2398	21	0.93	L 4＋00S	$20+25 E S$	0.2	23	92	63	¢0，	1049	40	1.00	
L 2＋00N	$30+50 \mathrm{ES}$	1.6	22	82	61	\％ 0 O1	2999	20	0.60	L 4＋00S	20＋50ES	0.4	25	102	63	\％ 80	1185	35	1.20	
$L 2+00 \mathrm{~N}$	30＋75E\＄	2.2	17	149	54	\％ 0	1710	20	0.66	L 4＋00S	20＋75E	6.7	34	137	66	\％ O	1336	52	1.99	

Min Limit	0.1	2	1	5	0.1	2	1	0.01	0.1	2	1	5	0.1	2	1	0.01
Max Reported＊	100.0	20000	20000	10000	10000.0	10000	10000	5.00	100.0	20000	20000	10000	10000.0	10000	10000	5.00

$-=$ No Test ins＝Insufficient Sample $S=S o i 1 R=$ Rock $C=C o r e ~ L=S i l t ~ P=P u l p$ U＝Undefined m＝Estimate／1000 \％＝Estimate \％Max＝No Estimate
International Plasma Lab l．td． 2036 Columbia St．Vancouver BC V5Y 3E1 Ph：604／879－7878 Fax：604／879－7898

CERTIFICAT F ANALYSIS iPL y5H2305
international plasma lagoratory ito

Inmet Mining Corporation Out: Aug 29, 1995 In : Aug 23, 1995 POH:
Msg: ICP(MuAc)08 Msg:
Document Distribution
1 Inmet Mining Corporation 3rd Floor - 311 Water St Vancouver BC V6B 188

ATT: Paul Baxter

Project: 677
Shipper: Paul Baxter Shipment:

169 Samples Pulp Storage:
$0=$ Rock 169= Soil
-- 00Mon/Dis -- $12 \mathrm{Mon} / \mathrm{Dis}$

RECEIVES
$0=$ Core $\quad 0=R C C t$
$0=R C C t$
$0=P u l p$
$0=$ ther

2036 Columb
,et Vancouver, B.C. Canada V5Y $3 E 1$ Phone (604) 879-7878 Fax (604) 879-7898

2036 Columbi
Vancouver, B.C
Canada V5Y 3E1
Phone (604) 879-7878
Fax (604) 879-7898
Client: Inmet Mining Corporation
Project: $677 \quad 169$ Soil
iPL: 95H2305 M
Out: Aug 29, 1995
In: Aug 23, 1995
[064617:40:5] 95]
Page 3 of 5
5 Section 1 of 1 Certified BC Assayer: David Chiu

iPL 95H2905

Canada V5Y 3E
1995one (604) 879-7878
Fax (604) 879-7898

Client: Inmet Mining Corporation Project: 677
iPL: 95I0801 M Out: Sep 15, 1995
[070617:19:2] Page 1 of 3 Phone (604) 879-7878 Fax (604) 879-78

Client: Imet Mining Corporation
iPL: 9510801 M
Out: Sep 15, 1995
In: Sep 08, 1995
[070617:19:3] 95]
3 of
Section 1 of 1
Certified BC Assayer: Certified BC Assayer: David Chiu

Sample Name	$\begin{array}{r} \mathrm{Ag} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Zn} \\ \mathrm{ppm} \end{array}$	As ppm	$\begin{aligned} & \mathrm{Cd} \\ & \mathrm{ppm} \end{aligned}$	$\begin{array}{r} \mathrm{Ba} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { Mn } \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Fe} \\ \mathbf{Z} \end{array}$	Sample Name	$\begin{array}{r} \mathrm{Ag} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Pb} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \mathrm{Zn} \\ \mathrm{ppm} \end{array}$	As ppm	$\begin{array}{r} \mathrm{Cd} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Ba} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \mathrm{Mn} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \mathrm{Fe} \\ \mathrm{Z} \end{gathered}$	C
L58+00S 12+00E S	0.5	29	4023	53	19.6	2027	393	2.10										
L58+00S 12+25E S	1.6	28.	4622	47	79.0	1608	523	2.00										
L58+00S 12+50E S	1.0	35	4047	65	27.6	1652	406	4.88										
L58+00S 12+75E S	0.5	47 V	1708	74	\%.8	2948	227	3.44										
L58+00S 13+00E S	1.7	50°	8018」	69	71.0	3699	939	2.63										
L58+00S , 13+25E S	1.2	54%	$464 V$	67	+6.2	2795	109	2.17										
L.58+00S $13+50 \mathrm{ES}$	0.3	74.	2401	65	+14.9	1712	407	2.41										
L58+00S 13+75E S	0.4	41 ,	2657	82	$\bigcirc 7$	1412	263	2.50										
L58+00S 14+00E S	0.3	44.	2470	66	-33.7	1474	392	2.12										
L58+00S 14+25E	0.3	41	842	54	\% 8.9	1882	563	1.60										
L58+00S 14+50E S	0.3	77.	953:	63)222	2235	142	2.12										
L58+00S 14+75E S	0.4	37	$146 \cup$	50	+1,6	2397	75	0.92										
$158+00 \mathrm{~S} 15+00 \mathrm{E}$ S	1.0	70\%	147:	-63	$\cdots 2$	4440	107	1.24										
L64+00S 15+25ES	1.3 V		$1204 v$	67	-, 988	$2280 \mathrm{~V}$	470	3.20										
L64+00S 15+50E S	0.6 V	, 32V	$2932 v$	69	213.4	1443 V	657	2.87										
L64+00S 15+75E S	0.5 V	25 4	1439	57	\%11.2	1328 /	123	2.07										
L64+00S 16+00E S	1.6 V	$34 \sim$	$5477 v$	70	\% 54.9	1856 V	306	2.87										
L64+00S 16+25E S	0.3 V	34 V	$417 \checkmark$	73	\%1	2595 V	83	2.40										
L64+00S 16+50E S	1.1 V	37 V	584 V	68	\% $\%$	2903 V	244	2.10										
L64+00S 16+75E 5	0.7 V	37 V	543 V	70	\% 6.5	2745	206	2.34										
	$0.5 V$		$386 V$	60	\%2. 26	2308.	, 185	1.93										
L64+00S 17+25E	$0.4 V$	29V	959V	78	श 8.5	1915	141	3.18										
L64+00S 17+50E $\$$	0.4:/	31 V	3806	63	\% 8 ,	1939 :	81	2.22										
L64+OOS 17+75E	1.6%	, 33 V	1648 V	78	\% 8.5	2118	194	2.15										
L64+00S 18+00E 5	0.6 V	34 V	1940 V	81	2, 5.4	1790'	256	3.24										
	0.7 V					1142	333	1.87										
L66+00S 15+50E	1.5 V	37V	587%	82	\% 3.8	2999	284	2.77										
L66+00S 15+75E S	2.0 V	- 32\%	4691/	78	\% 3.2	4147 V	356	3.08										
L66+00S 16+00E S	1.0 V	, 18 V	219	47	\% 2.6	1249	304	2.06										
L66+00S 16+25E \$	1.8	34 V	2214	74	167	1839	500	3.03										
L66t00S 16+50E S	$1.5 \cup$	$46^{\prime \prime}$	1394 !	85	\%15.8	2874	793	3.28										
L66+00S 16+75E S	$1.7 V$	39	1915:	78	26.1	2264:'	1002	2.75										
L66+00S 17+00E S	1.9	, 33:	2354	72	\% 89.3	$2181 /$	1044	2.34										
L66+00S 17+25E \$	$1.0 \cup$	' 28 '/'	2366	52	\% 48.4	1920	575											
Min Limit	0.1	2	1	5	0.1	2	1	0.01		0.1	2	1	5	0.1	2	1	0.01	
Max Reported*	100.02	200002	2000010	10000	10000.0	100001	10000	5.00		100.0	20000	20000	10000	10000.0	10000	10000	5.00	
Method	ICPM	ICPM	ICPM	ICPM	, ICPPY	ICPM	ICPM	ICPM		ICPM								
--No Test ins=In	sufficie	ent Samp	ple $\mathrm{S}=$	Soil	$\mathrm{R}=$ Rock C	Core L=S	Silt P=	1 p U=U	fined $m=$	/ 1000	$\mathrm{z}=$ Est	imate 7	Max $=\mathrm{N}$	to Estima				

Internationa1 Plasma Lab Ltd. 2036 Columbia St. Vancouver BC V5Y 3E1 Ph: 604/879-7878 Fax: 604/879-7898
international plasma laboratoryito
iPL 95I2101
RECEIVED OCT 1

CERTIFICA F ANALYSIS
 iPL 95I2101

2036 Columb
Vancouver, B.
Canada V5Y 3E1
Phone (604) 879-787\%
Fax (604) 879-7898
Client: Immet Mining Corporation
Project: $677 \quad 64$ Soil
iPL: 9512101
Out: Sep 27, 1995
In: Sep 21, 1995
[077518:23:0] 95] ${ }^{\text {Page }} 1$ of 2
Section 1 of 1
Certified BC Assayer: David Chiu \qquad

APPENDIX III

1995 AKIE DIAMOND DRILL LOGS

> A-95-13
> A-95-14
> A-95-15
> A-95-16
> A-95-18
> A-95-19

minnova inc.

HOLE NUMBER: A-95-13

HOLE NUMBER: A-95-13 Mrinkove inc.						DATE: 19-February-1996
$\begin{aligned} & \text { FROH } \\ & \text { TO } \end{aligned}$	ROCK TYPE	texture And structure	$\left\lvert\, \begin{array}{\|l\|l\|} \hline \text { ANGLE } \\ \text { TO CA } \end{array}\right.$	alteration	mineralization	REMARKS
		1474.0-504.2 ${ }^{\alpha}$ «HT» Silicified or cherty graphitic shales. Possible fault zone. Moderately abumdant wormy quartz veining, brecciated, locus of shearing possibly at 505.5 m . $505.6-10 \mathrm{~cm}$ clay fault gouge.		474.0-504.2 Moderate-strongly silicified or cherty. Patchy $<1-3 \mathrm{~cm}$ quartz veining.	474.0-504.2 <1-3\% very finely disseminated pyrite. Traces of red and honey spalerite within quartz veinlets. Sphalerite ending at 489.3.	
$\begin{aligned} & 505.70 \\ & 701.40 \\ & 701 \end{aligned}$	gunsteel formation silicified, PYRITIC SHALES. «SIL PY SH"	Black, fine grained, more massive but still weakly foliated. Very minor graphite along foliation planes. 505.7-506.3 Quartz veining and brecciation associated with faulted upper contact. 505.7-525.6 Bedding a \qquad 526.4-527.2 2-3\% Nodular Barite 534.0 Foliation a \qquad 540.5 Foliation a \qquad 544.4-551.3 Silty shale, fine thite speckled appearance, noncalcareous. Bedding at \qquad 559.4 Foliation a \qquad 568.6 foliation a \qquad 581.7 Patchy white speckled calcareous silty - pyritic layering, defining bedding. 583.6 Begin to see $1-4 \mathrm{~mm}$ calcareous pyritic-baritic	10 15 15 20 25 25	Moderate to strongly silicified, patchy weaker silicification. Stronger silicification associated with areas of laminar and disseminated pyrite.	\{505.7-525.6\}-15\% LAM PY 15% very fine grained laminar bedded pyrite. 2-3x finely disseminated pyrite. 525.6-544.4 <1-2\% finely disseminated pyrite. \{54.4-551.3FOK-7X DISS PY 5-74 Disseminated pyrite. \{551.3-608.8 \ll3-4X DISS PY> 3-48 and locally, 5-75 finely disseminated pyrite.	Huch better RAD, more competent rock. Sharp decrease in graphite content.

HOLE NU	A-95-			minnova inc. DRILL HOLE RECORD		DATE: 19-February-1996
$\begin{gathered} \text { FRON } \\ \text { IO } \end{gathered}$	$\begin{aligned} & \text { ROCK } \\ & \text { TYPE } \end{aligned}$	texture and structure	$\begin{aligned} & \text { ANGLE } \\ & \text { TO CA } \end{aligned}$	alteration	hineralization	REMARKS
		nodules. Disseminated throughout to locally concen trated into thin beds. Barite content variable from 1-2\% to locally 10\% 584.6 Bedding a \qquad 585.2 foliation a \qquad 595.4 Bedding a \qquad 600.0 Bedding a \qquad 603.6 Bedding a \qquad 608.8-626.1 Calcareous nodular pyritic barite layers interbedded with pyrite. 612.0 Bedding a \qquad 626.1-642.8 Patchy nodular pyritic barite associated with pyritic laminations. Abundant woriny quartz-calcite veining with strong brecciated appearance in areas of veining. 642.710 cm of soft clay gouge. 648.8-648.9 possible locus of faulting. Strong sheared and milled appearance healed by quartz. Faulting possibly a 648.9-651.0 Bedding a \qquad 651.0-663.8 Black massive barren silicified shale. 663.8-673.1 Bedding fairly consistant between 65 and 75 degrees.	40 32 40 60 80 90	632.9-641.1 Weak wormy quartz-calcite veining.	591.2 Begin to see rare pyrite laminations. 599.6-600.8 15-20\% laminar bedded pyrite, 7-10\% nodular calcareous pyrite-barite. \{608.8-626.1\}10-15x LAM PY> 10-15\% finely laminar pyrite concentrated within $20-30 \mathrm{~cm}$ zones. Pyrite content within the $20-30 \mathrm{~cm}$ zones runs 30-40x. 3-5x finely disseninated pyrite within shales. 626.1-642.8 2-3\% finely disseminated pyrite, rare pyrite laminations. 642.7-648.9 1-2X sphalerite as mim scale red clots within quartz-calcite veins. $646.7-40 \mathrm{~cm}$ finely laminated massive pyrite partially distorted by faulting. 648.9-651.0 40-50\% finely laminated pyrite in 10-20 cm zones of massive pyrite. \{663.8-673.1 fu45\% LAM PY 45x finely laminar pyrite concentrated within $10-20 \mathrm{~cm}$ and up to 60 cm zones of massive pyrite. 2-3x very fine	666.1 Nautiloid fossil recovered from within sulfide laminations. Ho specific age significance.
HOLE NUMBER: A-95-13				DRILL HOLE RECORD	LogGed 8	PTB/DD PAGE:

HOLE NUME	ER: A-95-13	minnova inc. DRILL HOLE RECORD				DATE: 19-February-1996
$\begin{gathered} \text { FROM } \\ \text { TO } \end{gathered}$	$\begin{aligned} & \text { ROCK } \\ & \text { TYPE } \end{aligned}$	texture and structure	$\left\|\begin{array}{l} \text { ARGLE } \\ \text { TO CA } \end{array}\right\|$	alteration	MINERALIZATION	REMARKS
$\begin{array}{r} 761.40 \\ 70 \\ 783.00 \end{array}$	GUMSTEEL FORMATION SILICIFIED SHALE *SIL SH*	Black, fine grained, weakly foliated, occasional light grey calcareous silty laminations. silt and pyrite defining bedding a	55	Moderate to strongly silicified.	7-10\% pyrite as common singular pyritic laminations. 2-3x fine disseminated pyrite. \{761.4-783.00 «SIL SH*	
$\begin{array}{r} 783.00 \\ 10 \\ 801.30 \end{array}$	SHALE LIMESTONE SILTSTONE BRECCIA NSH LST - SLT BX ${ }_{0}$	Dark grey to black. 25-35\% subrounded $2 \mathrm{~cm} \cdot 60 \mathrm{~cm}$ (Ave. 10 cm) fragments of course fossiliferous crinoidal sand limestone, calcareous siltstone, pyritic siltstone and shale in a black shale matrix. Limestone fragments most common from 783.0-789.9. Mainly calcareous siltstone fragments below 789.9. Massive to weakly foliated, graphitic along foliation planes. Foliation averages around	45	Moderately silicified becoming weaker downole.	1-2x pyrite. Disseminated throughout and within occassional pyritic calcareous siltstone fragments.	
$\begin{array}{r} 801.30 \\ 70 \\ 818.40 \end{array}$	ROAD RIVER FORMATION CALCAREOUS SILTSTONE *R.R. CALC SLTST ${ }^{0}$	Dark grey, fine grained, massive, patchy weak layered appearance from light grey strongly calcareous man scale layers. \qquad END OF HOLE.	$\begin{aligned} & 70 \\ & 75 \end{aligned}$	Heakly calcareous, light grey layers strongly calcareous.	Trace of pyrite.	

PURPOSE: Test Cardiac Creek Zone downdip of A-94-12

COMPRENTS :

Depth (m)	Astronomic Azinuth	Dip degrees	Type of Test	flag	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	flag	Comments
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	$:$	-	.	-		-	\square	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	:	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	$\stackrel{-}{\square}$	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
$:$	$:$	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	$:$	-	-	.	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	\bullet	
-	-	\cdot	-	-		-	-	-	-	-	
\cdot		-	-	-		-	-	-	-	-	
-	-	-	-	$:$		-	-	-	:	$:$	
,	-	-	-	-		-	-	-	-	-	

HOLE NUM	ER: A-95-14	DRILL HOLE RECORD				DATE: 19 -February-1996
$\begin{aligned} & \text { from } \\ & \text { To } \end{aligned}$	$\begin{aligned} & \text { ROCK } \\ & \text { TYPE } \end{aligned}$	texture and structure	$\left\|\begin{array}{\|c\|} \text { ANGLE } \\ \text { TO CA } \end{array}\right\|$	al teration	mineralization	REmARKS
$\begin{aligned} & 0.00 \\ & 6.70 \end{aligned}$	casing					
$\begin{array}{r} 6.70 \\ 120 \\ 124.10 \end{array}$	ROAD RIVER FORMATION SANDY SILTSTONE *R.R. SS SL Tı	Gray/black siltstone interbedded with light grey, variably calcareaus beds. Moderately foliated, thinly bedded. Bedding defined by lighter grey beds, and is frequently distorted. Soft, noncalcareous. Rare limestone mud beds $20-40 \mathrm{~cm}$ thick 14.9 ${ }^{\text {m }}$ Bedding/foliation a \qquad 25.35-25.70 limestone - weakly foliated, bioclastic, soft, light grey. 32.1m Bedding/foliation a \qquad 47.0m Bedding/folistion a \qquad 53.6m Bedding/foliation a \qquad 78.2 m folistion a \qquad 90.1 m Bedding/foliation a \qquad 99.4 m Foliation a 114.1m Bedding a	28 30 30 32 30 25 25 25	Minor quartz/calcite veining.	$1-2 \mathrm{~cm}$ beds of disseminated pyrite, small clots of sphalerite (.5-1 cm) hosted in quartz/calcite veinletstrace amount. Slightly more abundant pyrite clots in quartz-calcite. 124.1 Hole stopped due to excessive deviation.	

-

PURPOSE: Test Cardiac Creek Horizon downdip of massive sulfides in hole A-95-12

HOLE NUM	ER: A-95-15	DRILL HOLE RECORD				DATE: 19 - February-1996
$\begin{aligned} & \text { FROM } \\ & \text { To } \end{aligned}$	$\begin{aligned} & \text { ROCK } \\ & \text { TYPE } \end{aligned}$	texture and structure	$\left\|\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|} \hline \text { TO CO CA } \end{array}\right\|$	alteration	Mineralization	remarks
$\begin{aligned} & 0.00 \\ & 6.70 \\ & 6.70 \end{aligned}$	casing					
$\begin{array}{r} 6.70 \\ 70 \\ 223.80 \end{array}$	ROAD RIVER FORMATION siltstone aR.R. SLIST "	Interbedded light grey siltstone with darker grey/black silty shale. Light grey beds are soft and strongly calcareous to non-calcareous with no visible difference to indicate the change in CaCO3 content. Darker beds are silty shale to shale, noncalcareous, soft, occasionally graphitic thinly bedded, and are occasionally concentrated in up to 1 m . beds. The entire unit is well bedded and foliated with the strongest foliation parallel to bedding. Beds are thinly bedded with regular zones of very distorted bedding (anastimosing beds). Where beds are distorted the majority of of rock is the lighter grey siltstone with very thin layers of darker s.s. throughout rare limestone mud beds. $(20-40 \mathrm{~cm}$.) 8.0 Bedding a 20.0 Bedding/Foliation a \qquad 31.6 foliation a \qquad 35.6 foliation a \qquad 44.2 Foliation a \qquad 50.4-51.0 limestone mud beds. 56.8 Bedding a \qquad 68.4 Foliation a \qquad 84.2 Bedding/Foliation ${ }^{2}$ \qquad 94.8 Foliation a \qquad 103.6 Bedding/foliation a \qquad 119.8-125.2 Intense veining and brecciation, graphite associated with calcite/quartz veins/veinlets.	24 24 24 30 30 30 30 25 20 25	119.8-125.2 Intense calcite veining up to 30 cm thick. Minor quartz with the calcite.		

OLE NUM	ER: A-95-15	minnova inc. DRILL HOLE RECORD				DATE: 19-February-1996
$\begin{gathered} \text { FROM } \\ \text { TO } \end{gathered}$	ROCK TYPE	texture and structure	$\begin{array}{\|l\|} \hline \text { ANGLE } \\ \text { TO CA } \end{array}$	alteration	mineralization	REMARKS
		veining and brecciation. Very few silty beds. Well foliated and bedding appears distorted by foliation. Graphite occurs as massive chunks hosted in quartz/cc veins, as euhedral crystals in small veinlets, and disseminated in the black shale. 270.8-273.4 FLT 270.8 Faut t is at approximately 270.8-271.4 Black graphitic mud.(fault gouge) 271.4-272.0 Massive quartz with graphitic stringers noticeable slickenside perpendicular to dip direction of fault. Pale blue/green mineral present in quartz occurring in fractures, very soft and powdery. 272.0-273.4 Graphitic shale. Very soft and rubbly to gougy.	20	and subsequent rehealing.	occasional concentrations in qtz/cc veins. Pyrite occuring as follows: -thin flat wisps parallel to foliation -disseminated -thin beds of concentrated disseminated py. -irregular clots usually associated with calcite.	
$\begin{array}{r} 290.10 \\ 10 \\ 309.60 \end{array}$	GUNSTEEL FORMATION GRAPHITIC SHALE *GF SH»	Black, graphitic shale, well foliated, soft, (because of graphite content). Core splits easily on foliation planes. 303.9 foliation a \qquad 320.0 foliation a \qquad	$\begin{aligned} & 35 \\ & 40 \end{aligned}$	Hinor quartz/ce veinlets, frequently with subhedral graphite crystals within.	<1\% Pyrite disseminated within silty beds and as brassy siliceous veins. 290.1-294.3 2-3X wispy disseminated pyrite drawn into the foliation.	
$\begin{array}{r} 309.60 \\ \text { TO } \\ 449.40 \end{array}$	gUnsteel FORMATION CHERT, SILICIFIED SHALE बCHT SIL SH *	Black, very fine grained, foliated with strongly graphitic foliation/bedding planes. Bedding poorly developed, locally well developed graphitic ribbon banded chert. 330.8-334.1 Silicified or cherty shales with $\mathbf{3 - 5 \%}<1-1 \mathrm{~mm}$ white calcareous barite nodules with pyrite cores. Bedding a 340.3 sedding a \qquad	45 50	309.6-360.3 Pervasive silicification or cherty graphitic shales.	309.6-330.8 1-2\% disseminated pyrite. 330.8-334.1 1-2X disseminated pyrite. Also very faint pyritic laminations, total sulfide content very difficult to estimate. 334.1-342.9	

hole num	R: A-95-15	minhova inc. DRILL HOLE RECORD				DATE: 19-February-1996
$\begin{gathered} \text { FROM } \\ \text { TO } \end{gathered}$	ROCK TYPE	texture and structure	$\left\|\begin{array}{\|l\|} \text { ANGLE } \\ \text { TO CA } \end{array}\right\|$	alteration	MINERALIZATION	REMARKS
		Foliation a 421.7 30 cm with 70% up to 5 mm dark grey round calcareous nodules. 423.6 Pyrite Bedding a \qquad 430.7 Pyrite Bedding a \qquad 431.4 foliation a \qquad 1438.9-450.6 aCHT» Massive chert becoming graphitic and locally ribbon banded below 444.5. 450.6 More foliated, stronger shale appearance, still cherty or silicified. 453.2 foliation a \qquad \{463.1-463.5 FwFLT 。 Fault zone. 40 cm of black graphitic clay fault gouge. Fault possibly a Fault zone, 90% black clay graphitic fault gouge.			1422.0-438.9 $\times 10 \%$ LAM PYM 10\% pyrite as ultra fine grained pyrite laminations. 450.6 Common extremely fine and faint pyrite laminations. Overall sulphide content <3\%.	-
$\begin{array}{r} 449.40 \\ 10 \\ 543.80 \end{array}$	GUNSTEEL FORMATION SILICIFIED SHALE CSIL SH)	Black, fine grained, weakly foliated silicified shales. Minor graphite along foliation planes. Faintly bedded defined by very faint pyritic laminations and minor calcareous, lighter grey laminations. Very patchy <1m zones of 1Z<1-1mm barite nodules. 453.2 foliation a 1463.1-463.5 ${ }^{\text {raFLT» }}$ Fault zone. 40 cm of black graphitic clay fault gouge. Fault possibly a \qquad 1466.1-468.8 - wFLT> Fault zone. 90% black clay graphitic fault gouge. 474.4 Bedding a	35 20 20	Pervasive moderate to strong silicification.	Common extremely fine and faint pyrite laminations. Overall sulphide content e3\% pyrite.	

MINNOVA INC.

HoLE MLT	A-95-	mianova inc. DRILL HOLE RECORD				DATE: 19-February-1996
$\begin{gathered} \text { FROM } \\ \text { To } \end{gathered}$	$\begin{aligned} & \text { ROCK } \\ & \text { TYPE } \end{aligned}$	texture and structure	$\left\|\begin{array}{c} \text { ANGLE } \\ \text { TO CA } \end{array}\right\|$	alieration	mineralization	REMARKS
						268.2 m . Drill past wedge and intersect well developed fault gouge. Abandon hole at 275.5 m .

HOLE RUMBER: A-95-15				ASSAY SHEET														DATE: 19-February-1996	
Sample	$\underset{(m)}{\text { From }}$	$\begin{aligned} & \text { To } \\ & \text { (m) } \end{aligned}$	Length (m)	$\begin{gathered} 2 n \\ \% \end{gathered}$	$\begin{gathered} \mathrm{Pb} \\ \% \end{gathered}$	$\begin{aligned} & \text { ASSAY } \\ & \mathrm{Ag} \\ & \mathrm{~g} / \mathrm{t} \end{aligned}$	$\begin{gathered} \mathrm{Ba} \\ \mathbf{x} \end{gathered}$	$\begin{gathered} \text { cd } \\ x \end{gathered}$	$\stackrel{s}{s}$	$\begin{array}{r} 2 n \\ \text { ppm } \end{array}$	$\begin{gathered} \text { pb } \\ \text { ppm } \end{gathered}$	$\underset{\mathrm{pppm}}{\mathrm{Ag}}$	$\begin{gathered} \mathrm{Ba} \\ \mathrm{Ppm} \end{gathered}$	$\begin{gathered} \text { Cd } \\ \text { ppm } \end{gathered}$	$\begin{gathered} \text { Cu } \\ \text { ppr } \end{gathered}$	$\begin{gathered} \text { EOCHE } \\ \text { Se } \\ \text { ppm } \end{gathered}$	$\begin{gathered} \mathrm{CAL} \\ \mathbf{H g} \\ \mathrm{ppb} \end{gathered}$	s.G.	COMMENTS
	0.00	0.00	0.00																
				Total amount of samples= Total length sampled =					$\begin{aligned} & 1 \\ & 0.0 \mathrm{M} \end{aligned}$										

PURPOSE: Test Cardiac Creek horizon 300 m downdip of holes AS \& 4 .

HOLE NU	ER: A-95-16	minnova inc. DRILL HOLE RECORD				DATE: 19-February-1996
$\begin{aligned} & \text { FROM } \\ & \text { TO } \end{aligned}$	$\begin{aligned} & \text { ROCK } \\ & \text { TYPE } \end{aligned}$	texture and structure	$\left\|\begin{array}{\|l\|l\|} \hline \text { ANGLE } \\ \mathrm{TO} \end{array}\right\|$	alteration	mineralization	REMARKS
$\begin{aligned} & 0.00 \\ & 80 \\ & 8.20 \end{aligned}$	casing					
$\begin{array}{r} 8.20 \\ 59 \\ 59.00 \end{array}$	gunsteel formation «SH"	Black, very fine to fine grained, strongly foliated shales. Soft; foliation is sub pll to core axis resulting in broken and very blocky core. 8.2-12.40 Med. to strongly oxidized on fracture surfaces. CAB Foliation a 11.80 m a \qquad 12.40-12.80 Fault, 95% very vuggy; no gouge CA Foliation a 14.50 m a- CA Foliation a 18.10m a \qquad \qquad 18.20-18.30 50\% Quartz vein. 30X quartz veins, very strongly sheared shales with minor graphitic gouge. 22.00-23.60 Interval weakly sheared. 90% graphitic gouge; less than 50x recovery. 26.50-27.40 FAULT 50% recovery; very strongly sheared shales; local gouge; gouge sections must have been washed out. CA Foliation a 30.60m a \qquad 132.70-35.10 ${ }^{\text {aFLT» }}$ Very strongly sheared; common graphitic gouge; minor quartz veins. Recovery is approximately' 80%.	10 20 19	8.2-59.00 Fol iation surfaces are moderate to strongly graphitic.	Trace disseminated pyrite. Minor blebby barite with pyrite cores, 3-5\% 18.10m - 1cm pyrite rich bed, 50\% p'll to foliation. 5\% Disseminated pyrite.	27.70-30.70 Litho sample BCD 33746

Hole number: A-95-16		minnova inc. DRILL HOLE RECORD				$\begin{gathered} \text { DATE: } 19 \text { - February- } 1996 \\ \text { REMRRKs } \\ \hline \end{gathered}$
$\begin{gathered} \text { FRON } \\ T O \end{gathered}$	$\begin{aligned} & \text { ROCK } \\ & \text { TYPE } \end{aligned}$	texture and structure	$\begin{array}{\|l\|} \hline \text { ANGLE } \\ \text { TO CA } \end{array}$	al ieration	hineralization	
		38.40-38.70 FAULT $30 x$ Quartz veins; very rubbly, strongly sheared shales; very gougy. CA Foliation a 38.9m a \qquad 40.90-41.20 FAULT 10\% Quartz veins. Very rubbly; strongly sheared shales, 50% gouge. Very strongly sheared, common gouge sections to 40 cm . 15% quartz veins; locally milled in gouge sections. 55.00-59.00 FAULT Moderately sheared, minor gouge seams. Very local quartz veins.	16	Graphite content appears to increase down hole; this may be a function of the fault and shearing though.		
$\begin{gathered} 59.00 \\ 100 \\ 601.50 \end{gathered}$	GUNSTEEL FORMATION SILICIFIED SHALE AND CHERT «SIL SHx	Black fine grained, silicified shate, massive to weakly foliated. Local zones of interbedded chert and lighter grey silt. \$59.00-67.50 ${ }^{2} \mathrm{NCHT}, \mathrm{SHm}$ Dark grey to black. Interbedded sequence of very fine grained black shales and dark grey laminated to bedded cherts; chert makes up 50\% of the sequence. Interval between 64.90 to 67.50 very similar to that in hole A-94-15 between $447.40-$ 449.40. 50.90-60.40 Minor quartz veining. CA Bedding a 61.50 a \qquad 61.50-61.80 Interval is moderately calcareous.	48	Shales are moderate to strongly silicitied; minor graphite.	5X Pyrite. Very fine grained; very finely laminated; minor disseminated. 59.60-59.70 Disseminsted to weakly blebby Barite Horizon.	Pronounced bended texture.

OLE NUS	A.95-	minnova inc. DRILL HOLE RECORD				DATE: 19-February-1996
$\begin{gathered} \text { FROM } \\ \text { TO } \end{gathered}$	$\begin{aligned} & \text { RRCK } \\ & \text { TYPE } \end{aligned}$	texture and structure	$\begin{array}{\|l\|l\|} \hline \text { ANGLE } \\ \text { TO CA } \end{array}$	alteration	mineralization	REmARKS
		up hole side has moved up on a 41 degree plane; 50% quartz carbonate veins. 166.75-167.70 Minor amount of veining with evident thrusting. 167.70-167.90 25\% Quartz carbonate veins 167.90-169.20 Minor quartz veining. 169.20-169.40 20\% Quartz carbonate veins. \{169.40-171.70\} ©SLT BX> This interval contains 10% calcareous silty fragments from 3 mm to 5 cm . Some appear to be well developed layering while host bedding uraps around, others appear to be open space fillings; these are commonly pyritic. 171.70-171.75 faULt a \qquad Gougy. 172.40 Six cm septarian nodule. 176.80-177. 10 Moderately sheared. 177.50-189.00 Interval has a weak pinstripped look due to sulphide beds to 1 mm and dark grey interbeds of silt, <1mm-2mm. CA Bedding a 177.90 a - ---.. - From a pyrite interbed. 179.20-179.50 Moderately sheared, 10\% quartz veining. 180.10-180.30 Minor quartz veining and a shear with gouge. 188.00-188.40 «FLT» Very gougy, <20\% recovery.	32		carbonate veins.	172.80-175.80 Litho Sample BCD \#33751

MINNOVA INC.

HOLE NLM	R: A-95-16			minnova inc. DRILL HOLE RECORD		DATE: 19-February-1996
$\begin{aligned} & \text { FROH } \\ & \text { TO } \end{aligned}$	$\begin{aligned} & \text { ROCK } \\ & \text { TYPE } \end{aligned}$	texture and structure	$\left.\begin{array}{\|l\|} \hline \text { ANGLE } \\ \text { TO CA } \end{array} \right\rvert\,$	alteration	mineralization	REMARKS
		530.80 Bedding a 539.80-557.80 Black strongly silicified shale with common $10-20 \mathrm{~cm}$ wide zones of finely laminar pyrite. Intergrown with pyrite laminations are common <i-1mm calcareous pyritic, baritic? nodules as separate laminations. 540.10-541.0 Bedding from 55-70 degrees. 552.00 Bedding a \qquad 557.00 Bedding a \qquad 557.80-597.20 Massive, weakly foliated, strongly silicified black shale. 579.50 Bedding 2 \qquad 586.40 25cm Thrust fault. Brecciated and silica healed. Faulting a \qquad \597.20-601.50\|《TH FLT» Thrust fault. Brecciated and healed by abundant quartz veining. Locally strongly milled and silice healed. 599.50 30 cm Strongly sheared and milled a \qquad	40 55 65 58 65 30		\{539.80-557.80\|~10-12\% LAM PY> 10-12\% laminar bedded very fine pyrite. 2-3\% brassy 1mm pyrite intergrown within baritic nodules within pyritic laminations. 2-4X finely disseminated pyrite within shates. 557.80-575.60 3-5\% finely disseminated pyrite. 575.60-579.70 20\% Finely laminar fine grained pyrite. \$579.70-597.20 «TK DISS PY» 5-7h very finely disseminated pyrite.	
$\begin{array}{r} \hline 601.50 \\ \mathrm{TO} \\ 663.00 \end{array}$	CARDIAC CREEK ZONE. INTERBEDDED SHALE AMD LAMINAR MASSIVE SULPHIDES. «SH LAM MS»	Black, massive, moderate to strongly silicified shale interbedded with $10-20 \mathrm{~cm}$ zones of thin laminar bedded very fine grained massive sulphides <1\% dark grey round calcareous septarian nodules. Mainly within massive sulphide beds. 603.30 Bedding ఐ	55	Moderate to strongly silicified. Sulphide zones; stronger silicification	Sulphide beds are finely laminar with minor shale laminations.interbedded shale zones 2-3\% finely disseminated pyrite, 2-3\% coarser brassy disseminated pyrite with massive sulphide beds. 601.50-602.80 - 15\% Pyrite. 602.80-604.10 - 23\% Pyrite.	

PURPOSE; Test Cardiac Creek Zane donndio of A-94-12.

COMMENTS .

Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	flag	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	flag	Comments
548.60	-	$-55^{\circ} 0{ }^{\circ}$	ACID	OK		-	-	-	-	-	
609.60	-	-49 ${ }^{\circ} 0^{1}$	ACID	ok		-	-	-	-	-	
61.00	$47^{\circ} 0^{\circ}$	-83030'	SIHG.SHOT	OK		-	-	-	-	-	
122.00	$33^{\circ} 0^{\prime}$	-82030'	SIWG.SHOT	OK		-	-	-	-	-	
182.90	$31^{\circ} 0{ }^{\circ}$	-810301	SING.SHOT	OK		-	-	-	-	-	
243.80	$26^{\circ} 0$	-80³0'	SIMG.SHOT	OK		-	-	-	-	-	
304.80	$20^{\circ} 0^{1}$	-75930	SING.SHOT	OK		-	-	-	-	-	
426.70	$15^{\circ} 01$	$-61^{\circ} 0^{1}$	SING. SHOT	OK		-	-	-	-	-	
487.70	$17^{\circ} 0^{1}$	$-53^{\circ} 30^{\prime \prime}$	SING. SHOT	OK		-	-	-	-	-	
670.60	$23^{\circ} 0{ }^{\circ}$	-46 301	SIMG.SHOT	OK		-	-	-	-	-	
731.50	$25^{\circ} 00$	-440 ${ }^{\circ}{ }^{\prime \prime}$	SIMG. SHOT	OK		-	-	-	-	-	
792.50	$27^{\circ} 01$	$-40^{\circ} 0^{1}$	SING.SHOT	OK		-	-	-	-	-	
847.30	$322^{\circ} 01$	-530 0°	sing. SHOT			-	-	-	-	-	
908.30	$55^{\circ} 0^{1}$	-51 ${ }^{\circ} 0$	sIMG.SHOT			-	-	-	-	-	
969.30	$89^{\circ} 01$	$-43^{\circ} 01$	SIHG. SHOT			-	-	-	-	-	
-	-	-	\bullet	-		$:$	$:$	-	\bullet	-	
-	-	-	-	-		-	-	-	-	-	
-	-	$\stackrel{-}{-}$	-	-		-	$\stackrel{-}{-}$	-	-		
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
.	-	-	-	-		:	-	\square	-	-	
-	-	$:$	-	-		$:$	-	-	$:$	-	

						DATE: 19-February-1996
$\begin{gathered} \text { FROM } \\ \text { To } \end{gathered}$	$\begin{aligned} & \text { ROCK } \\ & \text { TYPE } \end{aligned}$	texture and structure	$\left\|\begin{array}{\|l\|} \hline \text { ANGLE } \\ \text { TO CA } \end{array}\right\|$	alteration	MINERALIZATION	REMARKS
$\begin{aligned} & 0.00 \\ & 40 \\ & 4.00 \end{aligned}$	casimg					
$\begin{gathered} 4.00 \\ 40 \\ 4.90 \end{gathered}$	road river GROUP interbedded LIMESTOME and shale aR.R. LST S H)	Striped light to dark grey, thinty bedded, light grey mud to fine sand limestone and darker grey calcareous shales. Well layered/foliated, bedding probably transposed. 12.80 Bedding/foliation a \qquad 14.80 - Graded bedding indicating tops domnhole. 26.00 Bedding/fotiation a \qquad 38.30 Bedding ${ }^{2}$ \qquad	10 35 20			29.00-34.00 - Rubbly core recovery, numerous clay and sand filted areas.
$\begin{aligned} & 44.90 \\ & 96.50 \\ & 90 \end{aligned}$	ROAD RIVER GROUP CALCAREOUS SILISTOKE «R.R. SLTST»	Dark grey, fine silt, well layered/foliated, weakly calcareous. Occasional <icm light grey lime mud and siltstone beds at top of unit. Some thin beds pulled apart. 48.40 Layering/foliation a \qquad 72.50 Layering/foliation a \qquad 78.60-89.30 Fault zone. Extremely rubbly core. $80.30 ; 30 \mathrm{~cm}$ of brecciation and fault gouge. Fault gouge a Gradational lower contact over 1-2 meters.	$\begin{aligned} & 20 \\ & 21 \\ & 25 \end{aligned}$		Trace of pyrite.	A much different unit than the calcareous siltstone shut down rock.
$\begin{array}{r} 96.50 \\ 708.30 \\ 208.30 \end{array}$	ROAD RIVER GROUP SILTSTONE «R.R. SLTST か	Light grey, patchy dark grey, silt to locally fine sand. Strong streaky - foliated appearance due to wispy to anastonosing dark grey mm partings and laminations. Locally weakly cal careous. 100.50 Bedding/foliation? a 126.00 Foliation a \qquad 156.40-158.80 Broken rubbly core recovery, minor fault gouge. 168.10-170.00	$\begin{aligned} & 22 \\ & 20 \end{aligned}$		Trace brassy pyrite concretions.	

HOLE NUM	ER: A-95-18	DRILL HOLE RECORD				DATE: 19-February-1996
$\begin{gathered} \text { FROM } \\ \text { TO } \end{gathered}$	$\begin{aligned} & \text { ROCK } \\ & \text { TYPE } \end{aligned}$	texture and structure	$\left\|\begin{array}{\|c\|} \hline \text { AMGLE } \\ \mathrm{TO} \end{array}\right\|$	alteration	mineralization	REMARKS
		Fault zone or severely ground up core. Recovery mainly sand shale-siltstone chips. 182.00 Foliation a \qquad 198.00 Foliation a \qquad	$\begin{aligned} & 20 \\ & 20 \end{aligned}$			
$\begin{aligned} & 208.30 \\ & \text { TO } \\ & 235.40 \end{aligned}$	ROAD RIVER GROUP SILTSTONE \&R.R. SLTST *	Dark grey, finer grained than previous siltstone, common 0.5 cm wide light grey calcareous silt interbeds pulled apart parallel to foliation. Weakly graphitic along foliation planes. 232.50-235.40 Lower contact very rubbly, gougy in last 10 cm .			Trace of pyrite.	
$\begin{aligned} & 235.40 \\ & 246.00 \end{aligned}$	road river GROUP LImestone LR.R. LST"	Light grey, fine grained, thinly bedded and laminated to locally massive. Thin shale laminations at top grading into previous unit. 238.20 Layering a	22	Common calcite veining.		
$\begin{aligned} & 246.00 \\ & 521.10 \end{aligned}$	ROAD RIVER GROUP siltistone ©R.R. SLTST *	Light grey, coarse sitt, strong layer/foliated appearance due to very thin micaceous partings. Layering/foliation very shallow to core axis. Occasional calcareous layers and darker grey shaley beds. 252.40 foliationa 269.50-295.70 Interbedded siltstone and dark grey to black shale. Interbeds of shale 1-3m thick with common slem stretched out and broken light grey silt beds. Approximately 70% shale, 30% siltstone. 279.10 foliation a \qquad 295.70-318.30 Interbedded siltstone and shale, 70X siltstone, 30\% shate. 318.30-326. 10 80\% Black shale, 20\% light grey siltstone. Common light grey <1-1cm silty and locally calcareous beds within shales.	13			

hole num	: A-95-18	minnova inc. DRILL HOLE RECORD				DATE: 19-February-1996
$\begin{gathered} \text { FROM } \\ \text { TO } \end{gathered}$	$\begin{aligned} & \text { ROCK } \\ & \text { TYPE } \end{aligned}$	texture and structure	$\left.\begin{aligned} & \text { ANGLE } \\ & \text { TO CA } \end{aligned} \right\rvert\,$	ALTERATION	MIMERALIZATIOH	REMARKS
$\begin{array}{r} 556.40 \\ \mathrm{TO} \\ 578.40 \end{array}$	GUNSTEEL formation aGS SHo	Sheared and quartz/calcite veined, graphitic and broken to rubbly, poor recovery. Heavily sheared, black to grey/black, silty, graphitic shale with abundant calcareous silty fragments. All bedding has been drawn into foliation due to fault structure. Occasional calcite veins that contain recrystalized graphite within them. Local graphitic gougy zones. Foliation/shearing is at approximately 80 degrees through unit. Core is very soft and commonly broken to rubbly. Shearing and brecciation of moderately silicified shale, very minor graphite in fault. 100\% recovery due to rehealing by quartz(minor calcite).	55			
$\begin{array}{r} 578.40 \\ 70 \\ 926.20 \end{array}$	gunsteel formation SILICIFIED SHALE 《SIL SH"	Black shale is moderately silicified and contains zones of disseminated pyrite, both within black shale and silty beds. Contains zones of laminar bedded pyrite. Common calcareous concretions (up to 30 cm wide). 595.00 Bedding a 595.40-596.40 Moderately to strongly silicified shale is brittley fractured with about 5 cm of movement measured off of a displaced quartz vein (596.60). 596.90 Bedding/foliation a \qquad 611.70 Bedding/foliation a \qquad 623.70 Bedding/Foliation a \qquad 645.50 Bedding/Foliation a \qquad 652.70 Bedding/foliation a \qquad \{665.40-667.20 ${ }^{\text {a }}$ CHT» Chert: Blue-grey, massive, broken and rubbly, intense quartz veining due to brittle nature of chert. 690.40-728.30	65 $\begin{aligned} & 45 \\ & 60 \\ & 65 \\ & 70 \\ & 65 \end{aligned}$		578.40-606.00 - <1X Diss. pyrite. 606.00-611.00 - 3-5\% disseminated pyrite with lacal zones conc. dissem. pyrite, possibly representing bedding.	

HOLE NLMM	ER: A-95-18			minnova inc. DRILL HOLE RECORD		DATE: 19-February-1996
$\underset{T O M O}{\substack{\text { ROOM }}}$	$\underset{\text { TYPE }}{\text { ROCK }}$	texture and structure	$\left\lvert\, \begin{aligned} & \text { ANGLE } \\ & \text { TO CA }\end{aligned}\right.$	alteration	hineralization	REMARKS
		932.40 Bedding a \qquad 932.90-933.80 Massive barren shale, weak foliation a \qquad 937.05937 .20 Fault Zone. Mostly brecciated shale and quartz veins, minor fault gouge. 937.90-938.20 Fault Zone. Brecciated, graphitic minor quartz veining.	78 60	Below 932.90 barren shales beconing moderate to strongly silicified.		s1\% Zinc. 10x Zinc. 7\% 2n <1\% Zinc. 2\% Zinc. <1\% Zinc. 1\% Zinc. <1Z Zinc. <1\% Zinc.
$\begin{aligned} & 939.90 \\ & 978.50 \\ & 978 \end{aligned}$	GUNSTEEL FORMATION BARITIC PYRITIC SHALES «BA PY SHヵ	Black, fine grained, soft, massive to weakly foliated shales hosting cormon $2-3 \mathrm{~cm}$ zones of fine laminar pyrite. Laminar pyrite zones often contain nodular pyritic barite and <icm calcareous septarian nodules. 1939.90-940.70 ${ }^{\text {aCHTw }}$ Dark grey massive chert. Minor quartz-calcite veining. 945.20 Bedding a \qquad 953.00 Grading within a pyrite bed indicates tops uphote.	78	Silicification gradually increasing downhole.	Overall sulphide content 5-87 pyrite as $\mathbf{2 - 3} \mathrm{cm}$ and locally $5-7 \mathrm{~cm}$ of fine laminar beds. 1-2X disseminated pyrite within shates. 940.50 Trace red sphalerite within quartz-calcite veins.	

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline HOLE NUM \& ER: A-95-18 \& \& \& minnova inc. dRILL HOLE RECORD \& \& DATE: 19-February-1996 \\
\hline \[
\begin{gathered}
\text { FROM } \\
\text { TO }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { ROCK } \\
\& \text { TYPE }
\end{aligned}
\] \& texture and structure \& \[
\left.\begin{aligned}
\& \text { ANGLE } \\
\& \text { TO CA }
\end{aligned} \right\rvert\,
\] \& alteration \& MINERALIZATION \& REMARKS \\
\hline \& \& \begin{tabular}{l}
957.30-957.90 \\
50-60\% Laminar bedded sulphides thinly laminated with silicified shales. Bedding often distorted due to 10-15\% dark grey calcareous nodules. \\
960.10-962.70 \\
Thinly laminated shale, laminser pyrite and nodular to bedded light grey strongly calcareous baritic? beds. 10-15\% dark grey calcareous septarian nodules. \\
965.6-968.5 \\
Interlaminated pyrite, shale, 5\% calcareous nodular barite, \(7-8 x\) light grey, strongly calcareous beds (limestone?) and 5-10\% dark grey calcareous nodules. \\
966.5 \\
10 cm milled and quartz vein healed fault zone. \\
 \\
966.6-967.4 \\
strong cherty appearance. \\
968.5-978.5 \\
Massive silicified shale hosting \(<20 \mathrm{~cm}\) wide zones of laminar pyrite and shale with common septarian nodules. \\
971.2 Bedding at
\end{tabular} \& 72

64 \& \begin{tabular}{l}
Below 957.90 shales weak to moderately silicified, stronger silicification i areas with increased laminar pyrite.

962.70-965.60

Strongly silicified.

968.5-978.5

moderate to strongly silicified.

 \&

957.30-957.90-50-60\% Laminar bedded pyrite.

960.10-961.30-25\% Fine laminar pyrite 961.30-962.70 - 15-20\% Fine laminar pyrite.

965.6-966.6 10-15\% finely laminar pyrite.

966.6-967.4 1-2\% disseminated pyrite

967.4-968.2 50\% fine laminar pyrite

968.2-968.5 60\% laminar massive pyrite 968.5-978.5 3-4\% finely disseminated pyrite, 7-10\% fine laminar pyrite within $\mathbf{2 0} \mathrm{cm}$ zones.
\end{tabular} \&

\hline \[
$$
\begin{array}{r}
978.50 \\
\text { TO } \\
1012.10
\end{array}
$$

\] \& cardiac CREEK ZONE. LAMINAR MASSIVE SULFIDES \& SHALE adS-SHD \& | Thinly laminated massive pyrite-sphalerite interbedded with black silicified massive shale. Laminar massive sulfide zones contains $7-8 \%<1 \mathrm{~mm}$ calcareous flecks which contain coarser brassy pyrite grains. Massive sulfides also contain occesional round calcareous nodules which are more abundant within higher grade sections. |
| :--- |
| 978.5-979.0 Bedding at | \& 55 \& moderate to strongly silicified shale, strongly silicified massive sulfides. \& | Sulfides thin laminar bedded mix of pyrite and sphalerite. Minor galena generally associated with nm calcareous flecks and gashes. |
| :--- |
| 978.5-979.0 85X (aminar sulfides <1.1\% galena 979.0-979.9 66\% sulfides, mainly pyrite | \& | Zinc Estimates |
| :--- |
| 6\% Zn |
| 18 Zn |

\hline
\end{tabular}

HOLE RUM	ER: A-95-18	minnova inc. DRILL HOLE RECORD				DATE: 19-February-1996
$\begin{gathered} \text { FROM } \\ \text { TO } \end{gathered}$	$\begin{aligned} & \text { ROCK } \\ & \text { TYPE } \end{aligned}$	texture and structure	ANGLE TO CA	ALTERATION	mineralization	REMARKS
		1000.3-1001.3 Massive strongly silicified shale. 1001.3-1001.8 Bedding at 1003.8 Bedding at 1008.3-1009.6 Rare calcareous nodules, mainly in first 10 cm of interval. 1010.0 Bedding at - 1010.7-1011.2 return of calcareous nodules, 5-7x nodules.			1000.3-1001.3 <1x disseminated pyrite 1001.3-1001.8 30x laminar sulfides 1001.8-1003.6 7-10\% laminar pyrite 1003.6-1004.4 35x laminar pyrite 1004.4-1005.1 15x laminar pyrite, 3-4\% disseminated pyrite 1005.1-1006.3 15\% laminar pyrite, 3-4\% disseminated pyrite. 1006.3-1007.5 $37 x$ laminar pyrite 1007.5-1008.3 30\% laminar pyrite, 4-5\% disseminated pyrite. 1008.3-1009.6 80\% laminar pyrite. Several 1-2 cm bands of massive pyrite with possible sphalerite. 1009.6-1011.2 70\% Laminar pyrite. 1011.2-1012.1 15x laminar pyrite.	0 <18 $2 n$ 0 $1-2 \% \mathrm{Zn}$ $<1 \% \mathrm{Zn}$
$\begin{array}{r} 1012.10 \\ \text { TO } \\ 1016.30 \end{array}$	GUHSTEEL FORMATION LIMESTONE BRECCIA «LST BX, LAM PYo	Dark grey, fine to coarse grained, massive but thinly bedded. 40-50\% dark grey rounded to irregular shaped limestone fragments? to thin layers which are a mix of crystalline limestone which looks like septarian nodules and fragments of a coarse limestone sand which may contain small crinoid oscicles. Ligestone fragments hosted in a matrix of shale and pyrite laminations 1015.2-1016.0 silicified shale, minor nodular pyritic barite. Bedding at	80	Strongly silicified	1012.1-1012.6 $7 x$ Laminar pyrite 1012.6-1013.5 25X laminar pyrite 1013.5-1015.2 35x laminar pyrite 1015.2-1016.3 5\% Laminar pyrite	Not the typical fossiliferous limestone which overlies the Road River.
$\begin{array}{r} 1016.30 \\ \mathrm{TO} \\ 1019.10 \end{array}$	nODULAR AND BEDDED BARITE aNCO BDD BA D	First 45 cm very thinly laminated strongly catcareous barite and fine nodular barite coalescing into thin beds. Remainder of unit silicified shate hosting 25\% nodular barite disseminated to concentrated in thin beds and 5x solid barite beds. Barite beds often distorted.		Strongly silicified shates. Strongly calcareous berite nodules and beds.	4-5x pyrite disseminated within shales and barite nodules.	
$\begin{array}{r} 1019.10 \\ 10 \\ 1024.90 \end{array}$	GUNSTEEL formation THINLY BEDDED SHALE	Dark grey to black, fine grained, thinly bedded shates. Bedding defined by cormon $<1-2 \mathrm{~mm}$ lighter grey silty laminations. Bedding at	80	Nonsilicified	5-7X pyrite, disseminated and within silty laminations. 	

HOLE NUMBER: A-95-18				minnova inc. DRILL HOLE RECORD		DATE: 19-February-1996
$\begin{gathered} \text { FROA } \\ \text { TD } \end{gathered}$	ROCK TYPE	texture and structure	$\left\lvert\, \begin{aligned} & \text { ANGLE } \\ & \text { TO CA } \end{aligned}\right.$	alteration	mineralization	REMARKS
	«SH\%					
$\begin{array}{r} 1024.90 \\ 10 \\ 1030.50 \end{array}$	gunsteel FORMATIOM SHALE SILTSTONE breccia «SH SLT BX»	$1-3 \mathrm{~cm}$ rounded and stretched fragments of black shale and medium grey, white speckled siltstone fragments in a dark grey to black shaley matrix. Rare fragments of Road River calcareous siltstone. Local thin bedding of shates similar to previous unit. 1029.0 Bedding at 1030.5 E.O.H.	75		2-3\% disseminated pyrite.	1030.5 Reached the limit of the drill. Unable to proceed, Hole too flat. Hole stoppped.

HOLE NUMBER: A-95-				ASSAY SHEET														DATE: 19-February-1996	
Sample	$\begin{gathered} \text { From } \\ \text { (m) } \end{gathered}$	$\begin{aligned} & \text { To } \\ & \text { (m) } \end{aligned}$	length (m)	$\begin{array}{r} 2 n \\ \boldsymbol{x} \end{array}$	$\begin{gathered} \text { Pb } \\ \boldsymbol{x} \end{gathered}$	$\begin{aligned} & \text { ASSAY } \\ & \mathrm{Ag} \\ & \mathrm{~g} / \mathrm{t} \end{aligned}$	88 8	$\begin{gathered} c d \\ \underset{Z}{c} \end{gathered}$	$\stackrel{\mathbf{S}}{\mathbf{x}}$	$\begin{array}{r} 2 n \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Pb} \\ \text { ppm } \end{gathered}$	$\underset{\mathrm{ppma}}{\mathrm{Ag}}$	$\begin{gathered} \mathrm{Ba} \\ \mathrm{ppm} \end{gathered}$	$\underset{\text { cod }}{\text { cd }}$	$\underset{\text { pp× }}{\substack{\text { cu }}}$	$\begin{gathered} \text { EOCHE } \\ \text { Se } \\ \text { ppmo } \end{gathered}$	$\begin{array}{r} \mathrm{CAL} \\ \mathrm{Hg} \\ \mathrm{ppb} \end{array}$	s.G.	COMMENTS
34061	860.70	861.90	1.20	. 11	. 01	2.4	1.01												
34062	861.90	863.10	1.20	. 15	. 03	2.5	1.26												
34063	863.10	864.30	1.20	. 22	. 03	2.2	1.93												
34064	925.20	926.20	1.00	. 37	. 03	1.4	. 67												
34065	926.20	927.30	1.10	1.16	. 28	6.7	2.87							35.0	56			3.00	
34066	927.30	928.40	1.10	1.74	. 25	5.4	5.17							83.7	46			2.98	
34067	928.40	929.20	0.80	4.62	. 67	8.9	5.06							100.0	52			3.17	
34068	929.20	930.00	0.80	6.03	. 85	10.7	4.37							100.0	73			3.10	
34069	930.00	931.10	1.10	. 59	. 13	1.3	6.51							22.0	16			2.71	
34070	931.10	932.20	1.10	6.51	1.08	11.8	4.65							100.0	67			3.08	
34071	932.20	932.90	0.70	5.48	. 80	9.2	5.03							100.0	68			3.04	
34072	933.30	933.80	0.50	. 45	. 10	1.4	4.87							18.7	19			2.72	
34073	933.80	934.40	0.60	4.49	. 78	9.5	3.05							100.0	82			3.09	
34074	934.40	934.90	0.50	. 65	. 11	2.4	6.34							23.6	23			2.79	
34075	934.90	936.10	1.20	2.83	. 50	6.8	4.64							100.0	54			3.17	
37751	936.10	937.90	1.80	1.52	. 23	3.6	3.88							79.0	43			2.79	
37752	937.90	939.00	1.10	. 72	. 07	3.0	5.09							41.7	46			2.68	
37753	939.00	939.90	0.90	. 83	. 14	5.4	4.72							43.0	79			2.83	
37754 37755	939.90 941.10	941.10 942.30	1.20 1.20	. 14	. 02	1.9 1.3	.85 1.18												
37756	942.30	943.50	1.20	. 34	. 09	1.1	1.17												
37757	943.50	944.40	0.90	. 35	. 04	2.8	. 92												
37758	954.90	956.10	1.20	. 16	. 01	2.7	1.47							5.8	36				
37759 37750	956.10	957.30	1.20	. 10	. 01	3.2	1.71							. 1	35				
37760	957.30	957.90	0.60	. 01	. 03	7.6	2.01							. 1	65				
37761	957.90	960.10	2.20	. 24	. 02	1.4	2.41							11.5	22				
37762	960.10	961.40	1.30	. 01	. 02	5.4	10.50							. 9	48				
37763	961.40	962.70	1.30	. 01	. 03	3.9	13.70							. 9	40				
37817	962.70	965.60	2.90	. 05	. 02	2.3	4.49							. 1	39				
37764	965.60	966.60	1.00	. 02	. 02	3.2	14.40							. 9	35				
37765	966.60	967.40	0.80	. 24	. 01	. 9	2.63							6.8	18				
37766	967.40	968.50	1.10	. 41	. 04	5.9	3.59							. 1	47				
37767	974.00	975.20	1.20	. 53	. 06	1.2	1.15											2.67	
37768 37769	975.20	977.40	2.20	. 35	. 04	1.6	1.68											2.64	
37769	977.40	977.80	0.40	1.60	. 25	4.1	2.99											2.90	
37770 37771	977.80 978.50	978.50 979.00	0.70 0.50	.75 4.24	.11 .68	1.7 7.5	1.72 4.13											2.60	
							4.13							100.0	53			2.95	

HOLE MUM	BER: A-95	-18		assay sheei													DAIE: 19-February-1996	
Sample	From (m)	$\begin{aligned} & \text { To } \\ & \text { (m) } \end{aligned}$	Length (m)	$\begin{gathered} 2 n \\ z \end{gathered}$	$\begin{gathered} \mathrm{Pb} \\ \mathbf{\%} \end{gathered}$	$\begin{aligned} & \text { ASSA } \\ & \mathrm{Ag} \\ & \mathrm{~g} / \mathrm{t} \end{aligned}$	$\begin{gathered} \mathrm{Ba} \\ \text { \% } \end{gathered}$	$\begin{gathered} \text { cd } \\ \% \end{gathered}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{z} \end{aligned}$	$\begin{array}{r} 2 n \\ \text { ppm } \end{array}$	$\begin{gathered} \mathrm{Pb} \\ \text { ppn } \end{gathered}$	$\begin{array}{r} \text { Ag } \\ \text { ppon } \end{array}$	$\begin{gathered} \text { Ba } \\ \text { ppr } \end{gathered}$	$\underset{\mathrm{ppro}}{\mathrm{~cd}}$	$\begin{gathered} \mathrm{Cu} \\ \mathrm{ppm} \end{gathered}$	$$	s.g.	COMMENTS
37772	979.00	979.90	0.90	2.09	. 46	6.0	4.68							100.0	46		2.97	
37773	979.90	980.90	1.00	2.08	. 39	6.5	4.72							93.5	55		3.05	
37774	980.90	981.50	0.60	. 66	. 12	1.7	3.46							28.2	27		2.69	
37775	981.50	982.70	1.20	4.75	. 89	10.4	3.79							100.0	67		2.90	
37776	982.70	983.30	0.60	. 34	. 10	1.3	3.64							10.6	21		2.71	
3777	983.30	984.10	0.80	4.19	. 91	11.0	3.43							100.0	66		3.07	
37778	984.10	984.90	0.80	5.81	. 93	11.4	3.50							100.0	52	'	3.14	
37779	984.90	985.60	0.70	4.01	. 78	9.3	5.11							100.0	46		3.03	
37780	985.60	986.20	0.60	2.76	1.12	10.1	3.48							100.0	49		3.10	
37781	986.20	987.40	1.20	16.20	1.80	16.4	1.76							100.0	46		3.48	
37782	987.40	988.40	1.00	12.90	1.70	16.5	1.88							100.0	52		3.33	
37783	988.40	989.40	1.00	3.02	1.01	12.4	2.65							100.0	48		3.03	
37784	989.40	990.20	0.80	5.20	. 86	11.7	3.79							100.0	46		3.13	
37785	990.20	991.10	0.90	3.84	. 79	9.9	3.79							100.0	49		3.01	
37786	991.10	991.50	0.40	10.40	1.78	20.9	3.09							100.0	57		3.42	
37787	991.50	992.20	0.70	4.32	1.45	13.2	4.21							100.0	58		3.02	
37788	992.20	992.80	0.60	17.80	2.44	22.2	2.31							100.0	67		3.39	
37789	992.80	993.60	0.80	. 38	. 13	1.5	3.11							14.4	23		2.71	
37790	993.60	994.30	0.70	3.53	. 80	9.4	4.17							100.0	59		2.97	
37791	994.30	995.00	0.70	6.70	1.16	12.2	3.10							100.0	70		3.09	
37792	995.00	996.10	1.10	. 97	. 18	2.1	3.68							43.2	26		2.70	
37793	996.10	996.90	0.80	2.64	. 51	7.9	3.73							100.0	51		3.00	
37794	996.90	997.90	1.00	3.30	. 56	6.5	4.72							100.0	55		3.00	
37795	997.90	998.70	0.80	. 74	. 12	2.3	2.21										2.68	
37796	998.70	999.20	0.50	3.36	. 52	6.1	1.64										2.92	
37797	999.20	1000.30	1.10	. 52	. 10	1.6	1.21							23.3	27			
37798	1000.30	1001.30	1.00	. 39	. 04	1.2	1.48							16.4	19			
37799	1001.30	1001.80	0.50	2.03	. 39	3.5	1.91							100.0	65			
37800	1001.80	1003.60	1.80	. 74	. 05	2.0	1.08							30.0	44			
37801	1003.60	1004.40	0.80	. 45	. 06	3.7	1.10							2.6	73			
37802	1004.40	1005.10	0.70	. 53	. 03	2.1	1.28							11.7	37			
37803	1005.10	1006.30	1.20	. 38	. 03	2.3	1.86							3.4	30			
37804	1006.30	1007.50	1.20	. 84	. 09	4.6	1.73							7.0	55			
37805	1007.50	1008.30	0.80	. 48	. 04	3.3	2.57							1.9	21			
37806	1008.30	1009.60	1.30	1.84	. 23	7.8	2.43							18.7	28			
37807	1009.60	1011.20	1.60	. 32	. 05	6.5	1.24							.1	32			
37808	1011.20	1012.10	0.90	. 19	. 05	3.6	1.16							. 1	26			

PURPOSE: Deep test of the Cerdiac Creek zone, dommip of hole A-11.

COMMENTS :

Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	flag	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	flag	Comments
23.80	-	$-88^{\circ} 01$	ACID	ak		-	-	-	-	-	
61.00	$25^{\circ} 0$	$-84^{\circ} 01$	SING.SHOT	OK		-	-	-	-	-	
121.90	$22^{\circ} 0$	-83 301	SING.SHDT	OK		\bullet	-	-	-	-	
182.90	$24^{\circ} 0$	$-83^{\circ} 01$	SING.SHOT	OK		-	-	-	\cdot	-	
243.80	$21^{\circ} 0$	-8300 0	SING.SHOT	OK		-	-	-	\because	-	
304.80	$21^{\circ} 0$	$-83^{\circ} 01$	SING.SHOT	OK		\bullet	-	-	-	-	
365.80	$16^{\circ} \mathrm{D}$	$-81^{\circ} 01$	SING. SHOT	OK		-	-	-	-	-	
426.70	$14^{\circ} \mathrm{O}$	$-80^{\circ} 01$	SING.SHOT	OK		-	-	-	-	-	
487.70	$14^{\circ} \mathrm{O}$	-790 01	SING. SHOT	OK		-	-	-	-	-	
548.60	$18^{\circ} 00$	$-74^{\circ} 0{ }^{1}$	SING.SHOT	OK		-	-	-	-	-	
609.60	$25^{\circ} 0$	-67 ${ }^{\circ} 01$	SING.SHOT	OK		-	-	-	-	-	
670.60	$27^{\circ} 01$	$-65^{\circ} 01$	SING. SHOT	OK		-	-	-	\bullet	-	
710.50	$22^{\circ} 0^{1}$	$-64^{\circ} 01$	SING. SHDT	OK		-	-	-	-	-	
773.30	$29^{\circ} 0^{\prime}$	$-50^{\circ} 01$	SING.SHOT	OK		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	\bullet	
-	-	-	-	-		\bullet	-	$:$	-	-	
:	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	\square	-	-		\bullet	$\stackrel{-}{-}$	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	

						DATE: 19-February-1996
$\begin{gathered} \text { fROM } \\ \hline 0 \end{gathered}$	$\begin{aligned} & \text { ROCK } \\ & \hline \text { PPPE } \end{aligned}$	texture and structure	$\left.\begin{array}{\|c\|} \hline \text { aNGLE } \\ \mathrm{TO} \end{array} \right\rvert\,$	al teration	mineralization	REMARKS
$\begin{array}{r} 0.00 \\ 14.00 \\ 14.00 \end{array}$	casing					
$\begin{aligned} & 14.00 \\ & 52.10 \\ & 52.10 \end{aligned}$	ROAD RIVER GROUP ORDOVICIAN GRAPTOLITIC SHALES. «R.R. GRAPT SHo	Black, fine grained, well foliated, moderately hard. Cormon straight graptolites (digraptus?) along foliation planes. 21.00 Foliation ${ }^{2}$... 51.70-52.10 Fault Zone. Sheared, graphitic healed by calcite quartz veining.	$\begin{aligned} & 15 \\ & 17 \end{aligned}$		3-5\% Finely dissseminated pyrite.	Broken, rubbly core recovery.
$\begin{aligned} & 52.10 \\ & 59.10 \\ & 59.10 \end{aligned}$	ROAD RIVER GROUP uR.R. SHゅ	Black, finegrained, well foliated. Common $<1 \mathrm{~cm}$ calcareous pyritic lenses/beds transposed and pulled apart by foliation. 55.0-56.20 Massive, light grey limestone. 58.60 Foliation a \qquad	24		2.3\% fine pyrite disseminated within calcareous lenses.	
$\begin{array}{r} 59.10 \\ 59 \\ 13.10 \end{array}$	ROAD RIVER GROUP SHALEY LIMESTONE. «R.R. SHY L STı	Dark grey, fine grained, foliated limestone mud, shaley limestone. Occaissional 2-3m wide beds of massive light grey, cleaner limestone. 64.80 foliation a \qquad 71.30-73.60 Dark grey to black, muddy limestone with abundant $\leqslant 1 \mathrm{~cm}$ light grey, transported lenses. 71.80 foliation a \qquad \$73.60-77.80 \| 4 FAULT fault Zone. 73.60-75.30 < 10\% recovery of graphitic shale and gouge. 75.30-76.80 strongly graphitic sheared shale. 76.80-77.80 Milled fault breccia. Faulting a \qquad Below 77.80 Well bedded light and dark grey, fine grained	23 36		71.30-73.60 5\% Pyrite, disseminated and fine laminations.	

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline LE NU \& A-95-19 \& \multicolumn{4}{|c|}{minnova Inc. DRILL HOLE RECORD} \& DATE: 19-February-1996 \\
\hline \[
\begin{aligned}
\& \text { FROM } \\
\& \text { TO }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { ROCK } \\
\& \text { TYPE }
\end{aligned}
\] \& texture and structure \& \[
\left|\begin{array}{l}
\text { ANGLE } \\
\text { TO CA }
\end{array}\right|
\] \& ALTERATION \& Mineralization \& REMARKS \\
\hline \& \& \begin{tabular}{l}
I imestone mud. Bedding thickens generally <10cm, darker grey beds usually thicker, up to 20 cm . \\
78.30 Bedding a \(\qquad\) \\
88.00 Bedding a \(\qquad\) \\
Foliation a \(\qquad\) \\
90.90-91.30 \\
Fault Zone. Brecciated limestone with 5 cm sheared and calcite veined healed lower fault \\
contact a \\
95.40 Bedding a \(\qquad\) \\
106.30 Bedding a \(\qquad\) \\
102.50-123.90 Limestone. \\
125.00 Bedding a \(\qquad\) \\
133.00 Bedding a \(\qquad\) \\
140.1-142.0 very broken and rubbly; fault? \\
142.2 Bedding a \\
147.0 Bedding a \\
152.0 Bedding a \\
160.2-161.0 Fault, abundant gouge at \\
163.4-163.6 fault, abundant gouge at \\
163.7-197.5 \\
Core is very broken and rubbly, rare to see a piece of core over 5 cm in length. \\
167.0-169.2 Fault, local gouge sections to 30 cm . Core broken to \(<1 \mathrm{~cm}\) fragments. \\
175.5-177.7 milled and healed quartz-carbonate and limestone. \\
\{177.7-179.8| बFAULTs \(^{2}\) \\
Common gouge seams and quartz-carbonate veins to 10 cm .
\end{tabular} \& 33
35
44

42
20
22
10
15
10
25
10
20
55 \& 158.8-160.2 30X quariz - carbonate veins. \& \&

\hline
\end{tabular}

HOLE RUM	ER: A-95-19	minnova inc. DRILL HOLE RECORD				DATE: 19-february-1996
$\begin{array}{r} \text { FRON } \\ \text { TO } \end{array}$	ROCK TYPE	texture and structure	$\begin{array}{\|l\|} \hline \text { ANGLE } \\ \text { TO CA } \end{array}$	alteration	HINERALIZATION	REMARKS
		194.9 Bedding a 197.5-206.5 Thin well bedded limestone with very minor, <5\%, interbeds of siltstone and shale. Local cross-cutting quartz-carbonate veins to 5 cm . 205.2 Bedding 206.5-213.1 Predominantly thin to medium bedded limestone, minor calcareous siltstone and $10 x$ interbedded strongly graphitic black shale. 211.2 Bedding	18 30			
$\begin{array}{r} 213.10 \\ \text { TO } \\ 246.90 \end{array}$	ROAD RIVER GROUP SHALE *R.R. SH*	Bleck, fine grained, thinly bedded graphitic shale interbedded with 5-20x timestone and calcareous siltstone. 213.1-227.6 Thin black graphitic shale with 15-20\% interbedded limestone and calcareous siltstone. Entire unit is strongly sheared. \{213.1-218.5 fafaulis Very broken and rubbly, rubbly sections in excess of 1 m . Common gouge seams, local healed breccia sections, common quartz-carbonate veins which are also brecciated. 227.6-246.9 95\% thinly bedded black graphitic shales, minor limestone to limy siltstone interbeds. Bedding contorted throughout interval. 227.6-231.0 Strongly sheared and contorted. 233.5-234.4 Strongly sheared and contorted. 242.3-246.9 Very braken and rubbly, local gouge sections. No solid core pieces over 5 cm .		226.6-227.6 90\% quartz-carbonate veins		
$\begin{array}{r} 246.90 \\ \text { TO } \\ 636.00 \end{array}$	ROAD RIVER GROUP. INTERBEDDED SILTSTONE and shale. *R.R. SLT-S H\$	Light grey thinly bedded siltstone interbedded with black shale. Sequence of alternating siltstone rich and shale rich intervals. 246.9-315.5 70x light grey siltstone interbedded with black shale. Beds are $<1 \mathrm{~cm}$ alternating silt and shale. Siltstone is locally calcareous with minor			Local patchy disseminated pyrite, pyrite can also occur as cores to carbonate blebs.	

HOLE NUMBER: A-95-19
minnova inc.

HOLE NUM	ER: A-95-19	minhova inc. DRILL HOLE RECORD				DATE: 19-February-1996
$\begin{aligned} & \text { FROM } \\ & \text { TO } \end{aligned}$	$\begin{aligned} & \text { ROCK } \\ & \text { TYPE } \end{aligned}$	texture and structure	$\left.\begin{array}{\|c\|} \hline \text { ANGLE } \\ \text { TO CA } \end{array} \right\rvert\,$	alteration	mineralization	REMARKS
		Siltstone with 20-25\% interbedded black shate. Bedding at $\leqslant 1 \mathrm{~cm}-1.5 \mathrm{~m}$ 561.1 Bedding at 577.9 Bedding at 587.7 Bedding at \$593.1-595.01××AULTı Badly broken, local gouge and quartz veins. 604.7-611.5 Mainly black shale with $10 \%<1-8 \mathrm{~cm}$ siltstone interbeds. 605.0 Bedding at 611.5-636.0 Mainly medium grey laminated to thinly bedded siltstone. 623.3 bedding at -.......... 629.9-636.0 Becoming weakty brecciated, bedding folded and distorted, minor quartz-calcit No fault gouge devel opment.	33 37 36 40 36 40		local patchy pyrite	
$\begin{aligned} & 636.00 \\ & 828.10 \\ & 828 \end{aligned}$	GUNSTEEL FORMATION. GRAPHITIC SHALE. aGRAPH SIL SHID	Black, very fine grained, weakly foliated with strongly graphitic foliation planes. Locally more strongly foliated or locally massive. 636.0-641.6 Quartz-calcite veining adjacent to fault contact. 646.5 Foliation 652.3 45 cm of dark grey massive chert. 653.0 fotiation at - 654.11 cm wide siliceous shear at 1657.1-659.5 $1 \times \times$ FAULTs fault zone. Strongly graphitic shale, graphitic fault gouge, poor recovery. 662.2 foliation at	40 $\frac{65}{73}$ 40	Moderately silicified throughout. 636.0-641.6 10X quartz-calcite veins. 10 cm strong veining at contact.	Rare pyrite laminations possibly secondary and parallel to foliation. 636.0-641.6 cormon brassy pyrite and traces of sphalerite within quartz-calcite veins. 644.7-649.1 5% pyrite as common <<1mm discontinuous singular laninations and wisps parallel to foliation.	

HOLE NUM	A-95-1	minnova inc. DRILL HOLE RECORD				DATE: 19-February-1996
$\begin{aligned} & \text { FROM } \\ & \text { TO } \end{aligned}$	$\begin{aligned} & \text { ROCK } \\ & \text { TYPE } \end{aligned}$	texture and structure	$\begin{array}{\|c\|} \hline \text { ANGLE } \\ \text { TO CA } \end{array}$	alteration	mineralization	REMARKS
		810.8 Fault Zone. 20 cm strongly graphitic gougy shales. Faulting possibly at 813.4 Bedding at - 814.1 Foliation at 814.5 Bedding at 818.7-818.8 Fault. 10 cm of layered milled, sheared and silica healed fault. Layering curved, faulting possibly 818.9 Bedding at Below 822.9 strongly silicified shales, weakly graphitic along foliation planes. 824.0 foliationat			822.9- 5-7\% ultra fine disseminated pyrite.	828.1 Rods broke 260 feet of f bottom run down hole with tap. Break off tap in fault zone at 657 m . Drilling out tap but freeze 5500 feet of water line. Hole stopped for the winter, to be continued in 1996.

[^0]: Method ICPM ICPM ICPM ICPM \because ICPM ICPM ICPM ICPM

