GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORTS

> DATE RECEIVED JUN 1 8 1996

MICROGOLD PROPERTY

KAMLOOPS AND NICOLA MINING DIVISIONS

JUN 1 0 1936 Gold Commissioner's Office VANCOUVER, B.C.

N.T.S. 921/8W

LATITUDE 50° 24' NORTH

LONGITUDE 120° 23' WEST

GEOLOGICAL AND GEOCHEMICAL ASSESSMENT REPORT

FOR

CANQUEST RESOURCE CORPORATION

by

J.E.L. (Leo) Lindinger, P. Geo.

MAY 22, 1996

FILMED

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

-

-

-

TABLE OF CONTENTS	DACE
SUMMARY	1 I
INTRODUCTION	2
LOCATION AND ACCESS	2
CLIMATE, TOPOGRAPHY AND VEGETATION	2
PROPERTY	3
HISTORY	6
REGIONAL GEOLOGY	8
LOCAL GEOLOGY	8
STRUCTURE	9
ALTERATION AND MINERALIZATION	10
GEOCHEMISTRY	11
CONCLUSIONS	11
RECOMMENDATIONS	12
STATEMENTS OF EXPENDITURES	14
REFERENCES	15
STATEMENT OF QUALIFICATIONS	16
	TABLE OF CONTENTS SUMMARY INTRODUCTION LOCATION AND ACCESS CLIMATE, TOPOGRAPHY AND VEGETATION PROPERTY HISTORY REGIONAL GEOLOGY STRUCTURE ALTERATION AND MINERALIZATION GEOCHEMISTRY CONCLUSIONS RECOMMENDATIONS STATEMENTS OF EXPENDITURES REFERENCES

MICROGOLD A	LSSESSMENT	REPORT	MAY 1996
-------------	-------------------	--------	----------

LIST OF TABLES and FIGURES

TABLE 1 - PROPOSED EXPLORATION PROGRAM	13
FIGURE 1 - LOCATION MAP	after page 1
FIGURE 2 - CLAIM MAP	7
FIGURE 3 - REGIONAL GEOLOGY	8
FIGURE 4 - FIGURE AND DRILL HOLE LOCATION	8
FIGURE 5a,b,c - SAMPLE LOCATION	back pocket
FIGURE 5d - SAMPLE LOCATION, GOLD, AND GEOLOGY	back pocket
FIGURE 6a,b,c - GOLD RESULTS	back pocket
FIGURE 7 - LEGEND	back pocket
FIGURE 7a,b,c - GEOLOGY	back pocket
FIGURE 8 - PROPOSED DEEP DRILL HOLES	back pocket

LIST OF APPENDICES

APPENDIX I - CERTIFICATES OF ANALYSES

APPENDIX II- SAMPLE DESCRIPTIONS and GEOCHEMICAL VALUES

SUMMARY

The Microgold Property is located north of Stump Lake, British Columbia, NTS 92I/8W, in the Nicola and Kamloops Mining Divisions.

Epithermal style gold mineralization hosted by Upper Triassic Nicola Group volcanic and sedimentary rock, and in younger overlying sediments has been found on the Property. These rocks are part of the Quesnel Terrane within the Intermontane Tectonic Belt. Gold and silver exploration date back to the 1800's in the Stump Lake area and from the early 1980's on the Microgold Property.

A program of rock chip sampling for gold and 29 element ICP and fluid inclusion studies coincident with geological mapping was completed in March 1996. This program covered a 900 meter north south area striking down the west side of Kullagh Lake south towards the Cindy Occurence. The work was designed to establish part of a surface geochemical data base, provide a detailed data set for fluid inclusion studies, and to complete some detailed geological mapping of the same area. 142 selected rock samples of epithermal style quartz veining, quartz carbonate veining, quartz breccia and stockwork zones, silicified Nicola volcanics and Tertiary sediments, and hydrothermally altered Nicola lithologies were sampled. The geochemical results included up to 6.4 ppm gold, 6.8 ppm silver, 5575 ppm arsenic, and 909 ppm molybdenum, 615 ppm barium, and 293 ppm chromium. The average gold value was 442 ppb (0.013 o/t). Gold in quartz veining is moderately to weakly associated with silver, arsenic, barium, calcium, chromium, and strontium. Gold in wall rock may be associated with iron, nickel, and phosphorus but the dataset is extremely limited.

Past analysis of historic data in the Kullagh Lake area suggest that favourable targets for bonanza gold mineralization at depth may occur at the structural intersections of deep long lived north to northwest striking west dipping thrusts, Tertiary age north striking steeply dipping sub-regional structures and secondary northeast to east striking dilatant structures, whose up dip projections contain significant volumes of hydrothermally alterated rock hosting low to medium grade gold mineralization. This program confirmed that the best gold results were obtained from north striking shallow dipping finely banded chalcedonic, weakly pyritic quartz (breccia) veins at or near east trending structures. Steeply dipping (feeder?) veins are often nearby.

Other exploration targets are at the West Zone where veins hosting up to 4.11 g/t gold are found.

A \$1,000,000 multiphased program of continued mapping and resampling of surface material in the Kullagh Lake and West Zones to delineate near surface ore or surface indicators to deep mineralization, trenching and drilling of shallow low grade targets, first phase deep drilling, and continued evaluation of resistivity highs on the remainder of the Property is proposed.

INTRODUCTION

This report and the completed work program described within was prepared at the request for Mr. John Bissett and Mr. Ian de W. Semple of CanQuest Resource Corporation, to fulfil assessment requirements for part of its Microgold Property. This program was completed in March 1996 included establishing a control line down 102+00 E (the west side of Kullagh Lake) from 78+00 N to 87+00 N. This line was compassed and tight chained at 25 M stations with 1 by 3 cm by 0.5 M pickets. Steeper areas were slope corrected. This line was used for control during the following sampling and mapping program. Quartz vein material was taken approximately every 5 meters along a north south orientation. If quartz vein material was not present altered host rock material was sampled. Each sample of most quartz vein samples w . taken for later fluid inclusion studies. A preliminary geological mapping excercise of the sampled areas was also completed. Accompanying the following report are figures showing the area worked, sample location, gold results and geological mapping.

LOCATION and ACCESS

The Microgold Property is located north-west of Stump Lake, approximately 40 Km south of Kamloops B.C. The Property is centred at Latitude 50° 24' North, Longitude 120° 23' West, and at UTM Zone 10 Co-ordinates 5586000 M N, 686000 M E as shown NTS 92I/8W. The Property lies in both the Nicola and Kamloops Mining Divisions. Primary access is via Provincial Highway 5A which passes through the southeast part of the Property on the west side of Stump Lake. Several range-logging roads cross through the Property providing good access. Frolek Cattle Company, and the Stump Lake Ranch own or lease the surface rights to the entire area for grazing purposes.

CLIMATE, TOPOGRAPHY AND VEGETATION

The Property lies in the semi-arid intermontaine climatic zone. Topography is

moderately rolling grassland with occasional groves of ponderosa pine and poplar at lower elevations. At higher elevations and north facing slopes, mixed interior fir, lodgepole pine, and spruce predominate. Rainfall is less than 50 cm/year, temperatures range from -30 to +40 degrees centigrade. Water is available from 8 km long Stump Lake and several smaller lakes.

PROPERTY

The Property consists of 9 four-post and 113 two-post contiguous mineral claims, containing 225 units covering 5500 hectares. The Property straddles a Mining Division boundary, with approximately 55 percent of the property in the Kamloops Mining Division, with the reminder in the Nicola Mining Division. The March 1996 work program was completed on the Epic #6 and Epic#7 Groups. Selected claim information on the Groups is tabulated below and shown in Figure 2.

CLAI	<u>M NAME</u>	GROUP(S)	MINING DIV.	TENURE	<u>NO.UNITS</u>	EXPIRY DATE*						
					yy/mm/dd							
Cin		6.7	Kamloops	217069	20	96/10/07						
Micro	gold	6\$,7\$	Nicola	237060	9	97/06/21						
F-1		7 \$	Kamloops	319781	1	97/08/07						
F-2		7\$	Kamloops	319782	1	97/08/07						
Epic	6	6	Kamloops	322521	1	96/11/12						
Epic	7	6	Kamloops	322522	1	96/11/12						
Epic	8	6	Kamloops	322523	1	96/11/12						
Epic	9	6	Kamloops	322524	1	96/11/12						
Epic	10	6	Kamloops	322525	1	96/11/12						
Epic	11	6	Kamloops	322526	1	96/11/12						
Epic	12	6	Kamloops	322527	1	96/11/12						
Epic	13	6	Kamloops	322528	1	96/11/12						
Epic	14	7	Kamloops	322529	1	96/11/11						
Epic	15	7	Kamloops	322530	1	96/11/11						
Epic	16	7	Kamloops	322531	1	96/11/11						
Epic	17	7	Kamloops	322532	1	96/11/11						
Epic	18	7	Kamloops	322533	1	96/11/11						
Epic	21	7	Kamloops	322534	1	96/11/11						
Epic	22	7	Kamloops	322535	1	96/11/11						
Epic	39	6\$	Kamloops	335081	1	97/04/16						
Epic	40	6 \$	Kamloops	335082	1	97/04/16						
Epic	41	6\$	Kamloops	335105	1	97/04/16						
Epic	42	6\$	Kamloops	335106	1	97/04/16						
Epic	43	6\$	Kamloops	335107	1	97/04/16						
Epic	44	6\$	Kamloops	335108	1	97/04/16						
Epic	45	6\$	Kamloops	335109	1	97/04/16						
Epic	46	6\$	Kamloops	335110	1	97/04/16						
Epic	47	6 \$	Kamloops	335111	1	97/04/16						
Epic	48	6 \$	Kamloops	335112	1	97/04/16						
Epic	49	6 \$	Kamloops	335113	1	97/04/16						
Epic	50	6 \$	Kamloops	335114	1	97/04/16						
Epic	51	6\$	Nicola	335083	1	97/04/16						
Epic	52	6\$	Nicola	335084	1	97/04/16						

<u>CLA</u>	M NAME	GROUP(S)	MINING DIV.	TENURE	NO.UNITS	EXPIRY DATE*
Epic	53	6\$	Nicola	335085	1	97/04/16
Epic	54	6\$	Nicola	335086	1	97/04/16
Epic	55	6\$	Nicola	335087	1	97/04/16
Epic	56	6 \$	Nicola	335088	1	97/04/16
Epic	57	6\$	Nicola	335089	1	97/04/16
Epic	58	6\$	Nicola	335090	1	97/04/16
Epic	59	7\$	Kamloops	335115	1	97/04/16
Epic	60	7\$	Kamloops	335116	1	97/04/16
Epic	61	7\$	Kamloops	335117	1	97/04/16
Epic	62	7\$	Kamloops	335118	1	97/04/16
Epic	63	7\$	Kamloops	335119	1	97/04/16
Epic	64	7\$	Kamloops	335120	1	97/04/16
Epic	65	7\$	Kamloops	335121	1	97/04/16
Epic	66	7\$	Kamloops	335122	1	97/04/16
Epic	67	7\$	Kamloops	335123	1	97/04/16
Epic	68	7 \$	Kamloops	335124	1	97/04/16
Epic	69	7\$	Kamloops	335125	1	97/04/16
Epic	70	7\$	Kamloops	335126	1	97/04/16
Epic	71	7\$	Kamloops	335127	1	97/04/16
Epic	72	7 \$	Kamioops	335128	1	97/04/16
Epic	73	7\$	Kamloops	335129	1	97/04/16
Epic	74	7\$	Kamloops	335130	1	97/04/16
Epic	75	7\$	Kamloops	335131	1	97/04/16
Epic	76	7\$	Kamloops	335132	1	97/04/16
Epic	77	7\$	Kamloops	335133	1	97/04/25
Epic	78	7\$	Kamloops	335134	1	97/04/25
Epic	79	7\$	Kamloops	335135	1	97/04/25
Epic	80	7\$	Kamloops	335136	1	97/04/25
Epic	81	6 \$	Nicola	335139	1	97/04/16
Epic	82	6 \$	Nicola	335140	1	97/04/16
Epic	83	6\$	Nicola	335141	1	97/04/16
Epic	84	6\$	Nicola	335142	1	97/04/16
Epic	85	6\$	Nicola	335143	1	97/04/16
Epic	86	6 \$	Nicola	335144	1	97/04/16

<u>CLAI</u>	M NAME	<u>GROUP(S)</u>	MINING DIV.	TENURE	<u>NO.UNITS</u>	EXPIRY DATE*
Epic	87	6\$	Nicola	335145	1	97/04/16
Epic	88	6 \$	Nicola	335146	1	97/04/16
Epic	89	6\$	Nicola	335147	1	97/04/16
Epic	90	6 \$	Nicola	335148	1	97/04/16
Epic	91	6 \$	Nicola	335149	1	97/04/16
Epic	92	6 \$	Nicola	335150	1	97/04/16
Epic	93	6\$	Nicola	335151	1	97/04/16
Epic	94	6 \$	Nicola	335152	1	97/04/16
Epic	95	6\$	Nicola	335153	1	97/04/16
Epic	96	7\$	Kamloops	335137	1	97/04/25
Epic	97	7\$	Kamloops	335138	1	97/04/25
TOTA	AL UNITS		Group	Epic#6	72	
			Group	Epic#7	62	

Notes: The Group # indicates the claims upon which work was performed to complete the work requirements on the claims to which assessment work was applied. The claims to which assessment work was applied are designated with \$ symbol adjacent to the appropriate Group # in the Group Column.

*upon acceptance of the assessment work which this report documents.

HISTORY

The Following history is excerpted from Darrel Johnsons' 1994 report.

"Recorded mineral exploration history in the Stump Lake area dates from the late 1800's. Narrow quartz veins at Mineral Hill, southeast of Stump Lake, were mined primarily between 1916 and 1941. Total production is reported as 70395 tonnes averaging 3.74 grams per tonne gold, 111.75 grams per tonne silver, 0.03% copper, 1.42% lead, and 0.24% zinc. A small quantity of scheelite was recovered by reworking the tailings during the second world war.

During the 1960's and 1970's, sporadic base metal - oriented exploration targeted areas west and northwest of the Microgold property. Most of this work investigated copper and copper-molybdenum showings along the fault contact between the Nicola Horst and the regional volcanic assemblages. No commercial deposits were found."

Several old shallow test pits have been found on the Microgold property. Exploration work on the Microgold property since 1980, has focussed on epithermal style quartz-chalcedony veins and breccias, that contain anomalous concentrations of gold and indicator metals. Surface exploration work including geological mapping, multielement geochemistry, induced polarization, and diamond drilling. have delineated at least four zones south and west of Kullagh Lake. These are called the Kullagh Lake Zone, the Cindy Zone (B.C. Minfile # 92I/SE 134), the Redbird Occurrence (B.C. Minfile # 92I/SE 179), and the West Zone.

Other known mineralized areas on the property are the Bag (B.C. Minfile # 92I/SE 1) 4.5 km southeast of Kullagh Lake, and the Anderson Occurrence (B.C. Minfile # 92I/SE 166) located 1 km southwest of Anderson Lake, in the northwest part of the claims. In January 1994 CanQuest Resource Corporation contracted Dighem to conduct a helicopter borne VLF electro-magnetic, horizontal and vertical electro-magnetic and proton precession magnetic survey of the property.

During 1995 two reconnaissance geological mapping and sampling programs were conducted over aero-resistivity targets. These programs confirmed that the resistivity anomalies were generated by hornfelsed and hydrothermally altered bedrock. Pervasive silicification accompanied by argillic, epidote, and carbonate alteration were the most interesting alteration types found. In several areas within these zones epithermal style quartz and quartz carbonate breccia veins were located. Several veins were sampled and sent for gold and related pathfinder element analysis. Veins with gold reporting to 4.11 g/t were found on the crown of a small mountain about 2.5 km west of the Kullagh Lake occurrences. This zone is called the West Zone. These veins are near geochemical and

geophysical anomalies delineated by an earlier work program (White G.E.: 1985).

REGIONAL GEOLOGY

The Stump Lake area is located within the Intermontane Belt and underlain predominantly by rocks of the Quesnel Terrane. With the exception of small exposures of possibly Palaeozoic meta-sediments near Merritt 20 km south, the oldest rocks in the area are Upper Triassic to earliest Jurassic Nicola Group volcanics and sediments of oceanic island arc affinity. These rocks have been intruded by coeval plugs, stocks and small batholiths of dominantly alkalic rocks, and by slightly later batholithic calc-alkalic intrusives. These arc rocks were obducted onto western North America during the mid Jurassic. The resulting fabric is moderately to steeply dipping strata truncated and displaced by west and south dipping thrust faults.

Tertiary sediments were deposited in localized basins.

Tertiary subaerial volcanic and intrusive events include the Palaeocene megacrystic granitic rocks of the 30 km long Rocky Gulch Batholith within the Nicola Horst located immediately west of the Property. Slightly later Eocene Kamloops Group subareal bimodal rhyolitic and basaltic volcanism followed. These rocks form extensive blankets north of Stump Lake. Tertiary structures generated by transtensional tectonics initiated during the mid Cretaceous are dominantly north striking tensional features that crosscut and displace pre-existing rocks including Kamloops Group lithologies. Remnants of Miocene "Chilcotin Group" flood basalts are found to the north. The only Pleistocene basalts known occur south of Merritt.

Pleistocene to Recent accumulations of consolidated and unconsolidated glacial, interglacial and post glacial sediments cover large expanses of the area.

LOCAL GEOLOGY

The Microgold Property is underlain by Upper Triassic Nicola Group andesitic to basaltic volcaniclastic rocks on the Property's west and east sides with accumulations of epiclastic sediments including, argillite, sedimentary breccias, and laminated subaqueous tuffs

occupying a north striking 1.5 km wide swath starting 1 km west of the Kullagh Lake. Post Jurassic erosional remnants of heterolithic conglomerate with associated overlying finer grained sediments are found within a paleobasin now partially occupied by Kullagh Lake. Blankets of glacial till cover much of the Property.

STRUCTURE

The structural history of the area is relatively complex. Superimposed and sometimes reactivated structures originating from pre-collision (pre-Mid Jurassic), semi ductile, collision related (Mid Jurassic) north to northwest striking moderately south dipping thrust faults, followed by several episodes of late Mesozoic to late Tertiary brittle, post collision, dominantly transtensional north striking sub-vertical, with secondary conjugate northeast to east and northwest striking steeply dipping structures are found on the Property.

The Tertiary? north striking Moore Creek Fault and Stump Lake Fault strike through the Proterty on its west and east side respectively. At least two more related major faults are found between these structures. One is the Kullagh Lake Fault some 800 M west of the Stump Lake Fault, and another occupies a linear depression about 1.4 km west of Kullagh Lake. Another significant fault strikes just west of the Redbird occurrence some 700 M west of Kullagh Lake. Several smaller subparallel structures have been mapped. Most or all of these structures are steeply dipping to subvertical normal or reverse faults with apparent dextral displacement. Northeast to east striking steep dipping dilatant bridging structures are found throughout the property. Northwest striking structures appear to be at least partially reactivated collision related features, commonly hosting shear zones with ductile deformation fabrics indicating relatively deep movement along structure that have subsequently undergone hundreds if not thousand of meters of erosion. Many of these faults are now host to important gold bearing quartz veins.

ALTERATION AND MINERALIZATION

The Microgold Property hosts a known 1.7 km long zone of auriferous multi-episodic chalcedonic and sucrosic quartz veining, brecciation, stockworking and silicification. The veins, when near the apparent paleosurface, are commonly shallowly dipping to "flat lying", forming resistant tables and mounds, within the Kullagh Lake basin and the prominent dome of the Cindy Zone, 1 km to the south. More deeply eroded veins exposed elsewhere, tend to occupy steeply dipping structures, with a definite preference for fault intersections. In addition to quartz; calcite dolomite, and especially in the Kullagh Lake - Redbird area fluorite veining is common. The only noticeable metallic mineralization are small to moderate amounts of vein and wallrock hosted very fine grained pyrite and rarely chalcopyrite associated with areas of intense quartz veining and flooding. These zones are contained within argillically altered and bleached Nicola volcanics and epiclastic sediments within wider haloes of epidote, chlorite and carbonate alteration. Erosional remnants of overlying Kamloops Group? or older lacustrine and fluvial sediments, are locally silicified, hydrobrecciated, and also host gold bearing quartz (breccia) veins. Soft sediment hydrothermal features imply coeval mineralization and sediment deposition. The age of the mineralization appears to be Tertiary, associated with Kamloops Group extrusive activity..

Elsewhere on the Property, several large aero-resistivity anomalies similiar to the anomaly over the Kullagh Lake zone contain hornfelsed Nicola rocks. These resistant, brittle features are also host to structurally controlled, auriferous, epithermal style quartz veining, within pervasive silicified, and peripheral carbonate hydrothermal alteration zones.

The best gold values from this exploration program at Kullagh Lake appear to be associated north striking shallow dipping veins near, or adjacent to the intersection of steep east, northwest and southwest striking structures hosting steep dipping (feeder?) veining within envelopes of strongly hydrothermally altered and brecciated pre-Tertiary wall rock. These structural intersections provided channelways and readily formed dilatant zones suitable for multi-episodic vein formation.

Figure 1. Generalized geology of south central British Columbia (modified from Geological Survey of Canada, Map 232A).

GEOCHEMISTRY

142 select rock samples were sent to Eco-Tech Laboratories Ltd. of Kamloops, British Columbia to be analyzed for geochemical gold (parts per billion), and 29 element Induced Coupled Plasma (ICP) emission spectroscopy analyses.

The rock samples are prepared by drying if required, then crushed to -10 mesh. A 250 gram subsample is then pulverized to -140 mesh.

For gold a 15 gram subsample was taken of the pulp and fire assayed with atomic absorbtion finish. The other elements were analyzed by a pulverized subsample being digested by Aqua-regia solution and the digested solution fed in to the ICP analyzer. Quality control was maintained by periodically running a standard sample of known elemental values and re-running several samples from the same pulps and resplits from the crushed reject material.

CONCLUSIONS

The results of the sampling and mapping program indicate that gold mineralization appears to be hosted by multiepisodic chalcedonic quartz vein, quartz-carbonate vein, quartz breccia, quartz stockwork and silicified zones within argillically altered and pyritized Nicola metavolcanics and metasediments at shallow dipping north striking, with crosscutting east, northwest and northeast steeply dipping vein hosting structures. These structural intersections formed conduits and dilatant zones for hydrothermal fluid movement and related gold bearing quartz vein deposition. Gold was found to be associated with silver, arsenic, barium, with weak correlation with calcium, chromium, strontium, and antimony. A negative correlation with copper, iron, potasium, magnesium, nickel, cobalt and zinc was noted when comparing quartz vein material with altered and silicified hostrock.

RECOMMENDATIONS

Past evaluation of the Kullagh Lake and Cindy Zones suggest that structural intersections of north, with northeast and or easterly striking structures that display widespread hydrothermal alteration containing large volumes of highly anomalous gold mineralization are the best targets for deep drilling. The results of this sampling program from a geological and geochemical view reinforced this model. Three targets in the Kullagh Lake Zone have been proposed, these are; a, immediately south of the lake; b, directly under the middle of Kullagh Lake; and c, west of Kullagh Lake. The just completed rock sampling and structural mapping exploration program concentrated on the west Kullagh Lake area, with results reinforcing the existing model. Future programs designed to target favourable quartz veins, and dilatant zones containing gold mineralization as a guide to deeper high grade mineralization and potential low grade near surface ore should be continued throughout the Kullagh Lake area and the West Zone. Priority targets would be expanding the area just sampled to the west and east with more comprehensive sampling of vein and altered wallrock zones to further delineate near surface economic mineralization. In areas of masking overburden backhoe trenching should be considered. A drill program of shallow and deep drill holes to test for both shallow lowgrade and deep bonanza gold mineralization is proposed.

The proposed deep hole program is designed to intersect the target areas at least 300 m below the present surface. One proposed drill hole at the Cindy Zone is designed to test for the downdip extension of a large west dipping vein mapped on surface and intersected by numerous drill holes. (See Figure 8 for proposed drill hole locations).

The grid established during October 1995 should be extended to include the large hilltop of the West zone where the 4.11 g/t Au and 850 ppb Au samples were taken. Two short drill holes are proposed to intersect this a 150 m long quartz breccia vein hosting up to 850 ppb gold. Grid control should also be established in the Anderson Lake area and several resistivity highs located further north but east of the current line extending to the north end of the property.

Total Cost of this Proposed \$1,000,000:00

Table 1 - PROPOSED EXPLORATION PROGRAM

Project preparation	\$	20,000.00
Geological Mapping 30 days @\$330.day	\$	10,000.00
Soil and Rock Geochemistry (surface)	\$	10,000.00
Petrographics Lithogeochemical studies -surface - 50	\$	15,000.00
samples @ \$300/sample		
Geophysics - Electromagnetic and Induced Polarization	\$	30,000.00
Trenching - 1000m @ \$15.00/m	\$	15,000.00
Diamond Drilling - 10,310 m @ \$68.00/m	\$	710,000.00
Core Logging - 30 days @ \$330/day	\$	10,000.00
Core sampling - 2000 samples @ \$30/sample	\$	60,000.00
Petrographics Lithogeochemical studies -Diamond drill core	\$	30,000.00
samples - 100 samples @ \$300/sample		
Logistical Support	\$	15,000.00
Supervision - Project Management 25 days @ \$400/day	\$	10,000.00
Final Report	\$	15,000.00
SUBTOTAL	<u>\$</u>	950,000.00
Contingency @ 5% of \$1,000,000	\$	50,000.00
SCIEN Stand		
GRAND TOTAL PROPOSED PROGRAM	<u>\$</u>	<u>1.000.000.00</u>

STATEMENTS OF EXPENDITURES

Epic#6 Group - work prior to April 10, 1995

J.E.L. Lindinger, P.Geo.	Geological services 2.5 days @ \$300.day	y \$ 750.00
Bruce J. Perry	Geological services 2.5 days @ \$225/da	y \$ 562.50
Transportation	2 days 2 wheel drive @ \$40/day	\$ 80.00
Analyses	60 Rock Samples @ \$19.37/sample	\$ 1162.39
Field supplies	A CONTRACTOR OF	\$ 25.00
Report and Office Costs	N EN	S 95.11
Total Expenditures		вентон Основни <u>\$ 2675.00</u>
Portable Assessment cred	its 💦	SCIENTY \$ 725.00
Total to be applied for As	<u>\$ 3400.00</u>	

Epic#7 Group - work prior to April 10, 1995

J.E.L. Lindinger, P.Geo.	Geological services 3 days @ \$300.day	\$ 900.00
Bruce J. Perry	Geological services 2.7 days @ \$225/day	\$ 607.50
Transportation	3 days 2 wheel drive @ \$40/day	\$ 120.00
Analyses	82 Rock Samples @ \$19.37/sample	\$ 1588.61
Field supplies		\$ 30.00
Report and Office Costs		\$ 178.89
Total Expenditures		<u>\$ 3425.00</u>
Portable Assessment credi	ts	\$1075.00
Total to be applied for As	sessment Purposes Epic#7 Group	<u>\$ 4500.00</u>
Grand Total to be applied	for Assessment Purposes	<u>\$ 7900.00</u>

REFERENCES

- Gamble A.P.D. Hoffman S.J. 1985: Soil Geochemical Survey, Ground Magnetometer and VLF-EM and Resistivity test Surveys on the Cin, Dy and Microgold Claims for BP Minerals Ltd. BC-EMPR Assessment Report # 14,650.
- Gamble A.P.D. 1986 Diamond Drill Report, Cindy Project for BP Minerals Ltd. Unpublished Comapny Report.
- Lindinger J.E.L. June 1995; Geological and Geochemical Assessment Report on the Microgold Property for CanQuest Resource Corporation. B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report.
- Lindinger J.E.L. December 1995; Geological and Geochemical Assessment Report on the Microgold Property for CanQuest Resource Corporation. B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report.
- Moore, J.M. et al. 1990; Nicola Lake Region Geology and Mineral Deposits, B.C. Ministry of Energy, Mines and Petroleum Resources. Open File 1990-29.
- White, G.E. 1985; Geophysical Geochemical Exploration Report, Anderson 4 Bag 1 & 2 Claims, B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 13,88
- Wheeler J.O., & Palmer A.R. ed 1992 Geology of the Cordilleran Orogen in Canada. Geology of North America, volume G-2; Geology of Canada No. 4

STATEMENT OF QUALIFICATIONS

I, J E. L.(Leo) Lindinger, hereby do certify that:

I am a graduate of the University of Waterloo (1980) and hold a BSc. degree in honours Earth Sciences.

I have been practising my profession as an exploration and mine geologist continually for the past 15 years.

I am a fellow in good standing with the Geological Association of Canada (1987).

I am a registered member, in good standing as a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of the Province of British Columbia (1992).

I completed the mapping and supervised the sampling program described in this report.

I have no direct or indirect interest, financial or otherwise in Canquest Resource Corporation, or any of its assets including mineral properties, nor do I expect to receive any.

J.E.L.(Leo) Lindinger, P.Geo. May 22, 1996

J.E.L. Lindinger P.Geo. Consulting Geologist. 879 McQueen Dr. Kamloops, B.C. Tel/Fax. 604-554-6887

- -

APPENDIX 1

CERTIFICATE OF ANALYSIS

J.E.L. Lindinger P.Geo. Consulting Geologist. 879 McQueen Dr. Kamloops, B.C. Tel/Fax. 604-554-6887

• --

ECO-TECH KAN.

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY **ENVIRONMENTAL TESTING**

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (604) 573-5700 Fax (604) 573-4557

CERTIFICATE OF ASSAY AK 96-202

:

CANQUEST RESOURCE CORP. 830-470 GRANVILLE STREET VANCOUVER, B.C. V6C 1V5

ATTENTION: IAN De SEMPLE

No. of samples received: 142 Sample type: Rock PROJECT #: 9608CANQ SHIPMENT #: 1 Samples submitted by: L. Lindinger

		Au	Au
ET #	Tag #	(g/t)	(oz/t)
13	34263	1.51	0.04
47	34297	3.36	.0.10
66	34316	1.36	0.04
67	34317	1.59	0.05
82	34332	5.71	0.17
92	34342	6.38	0.19
93	34343	1.42	0.04
94	34344	1.81	0.05
99	34349	1.53	0.05
136	34451	. 1.88	0.06
137	34452	2.35	0.07
139	34454	2.60	80.0

OC DATA: Standard: STD-M

3.19 0.09

ECO-TECH LABORATORIES LTD. Por Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/96canquest

9-Apr-96

Page 1

21-May-96

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557 CANQUEST RESOURCE CORP. AK 96-202 830-470 GRANVILLE STREET VANCOUVER, B.C. V6C 1V5

ATTENTION: IAN De SEMPLE

No. of samples received: 142 Sample type: Rock PROJECT #: 9608CANQ SHIPMENT #: 1 Samples submitted by: L. Lindinger

Revised ICP Certificate: May 21, 1996

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	K%	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	<u> </u>	<u>v</u>	W	<u> </u>	Zn
1	34251	5	<.2	1.90	25	615	5	7.22	<1	<1	101	10	1.20	0.77	<10	0.10	386	4	0.04	3	500	<2	<5	<20	29	<.01	<10	63	<10	20	20
2	34252	10	0.2	0.49	150	135	<5	0.17	<1	1	108	16	1.60	0.12	<10	0.11	141	5	<.01	2	510	4	<5	<20	29	<.01	<10	21	<10	<1	12
3	34253	20	0.8	0.99	95	50	<5	1.17	<1	7	113	42	2.55	0.25	<10	0.21	3971	11	<.01	5	300	<2	<5	<20	16	<.01	<10	39	<10	5	59
4	34254	35	0.2	1.00	115	105	<5	0.50	<1	5	62	25	1.74	0.22	<10	0.21	398	26	<.01	4	480	<2	5	<20	13	<.01	<10	43	<10	4	42
5	34255	30	0.6	0.96	355	90	<5	2.23	<1	6	118	18	3.69	0.13	<10	0.65	2147	6	<.01	5	270	<2	<5	<20	21	<.01	<10	46	<10	2	42
6	34256	100	0.2	1.03	810	100	<5	0.10	<1	2	80	19	3.48	0.16	<10	0.38	273	19	<.01	2	430	2	10	40	16	<.01	<10	41	<10	<1	29
7	34257	10	<.2	1.92	135	90	<5	0.34	<1	16	89	107	5.15	0.18	<10	0.80	715	5	<.01	19	1780	<2	<5	60	16	<.01	<10	133	<10	<1	61
8	34258	30	0.2	1.18	230	150	5	0.22	<1	6	90	16	3.51	0.15	<10	0.54	804	14	<.01	4	740	<2	<5	20	16	<.01	<10	48	<10	1	63
9	34259	65	<.2	0.76	5575	130	10	0.25	<1	7	152	11	4.10	0.13	<10	0.35	306	14	<.01	18	980	4	265	40	22	<.01	<10	76	<10	<1	38
10	34260	5	0.2	2.05	10	115	<5	1.57	<1	18	39	243	4.66	0.10	<10	1.25	1340	4	0.02	6	1470	<2	<5	40	46	0.03	<10	92	<10	5	64
11	34261	380	0.4	0.11	95	70	<5	0.16	<1	<1	157	5	0.56	0.05	<10	0.01	52	37	<.01	5	50	<2	<5	<20	5	<.01	<10	4	<10	<1	3
12	34262	505	0.6	0.34	130	185	<5	0.50	<1	<1	171	4	0.88	0.24	<10	0.02	79	194	<.01	4	190	<2	<5	<20	10	<.01	<10	12	<10	<1	5
13	34263	>1000	1.0	0.58	245	45	<5	0.13	<1	2	140	9	2.74	0.08	<10	0.06	423	376	<.01	4	610	<2	10	<20	11	<.01	<10	39	<10	<1	11
14	34264	10	0.2	0.06	<5	<5	<5	0.05	<1	<1	138	2	0.21	<.01	<10	<.01	54	8	<.01	3	<10	<2	<5	<20	<1	<.01	<10	7	<10	<1	<1
15	34265	30	1.0	0.39	55	75	<5	1.13	<1	<1	151	5	0.42	0.13	<10	0.03	66	93	<.01	4	<10	<2	<5	<20	9	<.01	<10	130	<10	<1	2
16	34266	95	0.8	0.73	275	115	<5	0.60	<1	- 4	178	25	1.46	0.15	<10	0.19	197	176	<.01	4	350	<2	5	<20	23	<.01	<10	49	<10	1	14
17	34267	405	1.0	2.55	120	75	<5	3.65	<1	7	106	51	2.57	0.83	<10	0.72	287	58	<.01	5	640	<2	5	<20	21	<.01	<10	105	<10	3	34
18	34268	45	0.6	0.43	20	25	<5	0.97	<1	1	161	3	0.63	0.17	<10	0.05	83	29	<.01	4	100	<2	<5	<20	5	<.01	<10	18	<10	<1	5
19	34269	40	2.4	0.86	65	50	<5	3.30	<1	1	155	5	0.76	0.43	<10	0.06	88	112	0.02	5	140	<2	<5	<20	11	<.01	<10	28	<10	4	- 4
20	34270	135	<.2	0.56	1240	50	<5	0.11	<1	4	122	15	4.51	0.13	<10	0.17	187	37	<.01	4	250	<2	<5	20	11	<.01	<10	42	<10	<1	30
21	34271	5	0.2	0.66	55	70	<5	0.20	<1	6	77	14	1.98	0.18	<10	0.17	152	18	<.01	3	870	2	<5	<20	9	<.01	<10	24	<10	<1	18
22	34272	205	0.6	0.86	50	50	<5	8.16	<1	2	163	12	0.83	0.29	<10	0.14	85	61	0.10	4	190	<2	5	<20	26	<.01	<10	34	<10	7	8
23	34273	150	1.2	0.60	540	85	<5	1.48	<1	1	197	11	1.42	0.28	<10	0.04	67	337	0.01	6	180	<2	15	<20	16	<.01	<10	28	<10	<1	4
24	34274	590	9.6	0.31	765	60	<5	5.56	<1	<1	156	3	0.92	0.16	<10	0.02	93	78	0.08	3	100	<2	55	<20	17	<.01	<10	96	<10	6	3
25	34275	90	1.2	0.76	95	35	<5	4.67	<1	2	149	9	0.79	0.29	<10	0.13	85	29	0.04	4	160	<2	10	<20	14	<.01	<10	33	<10	5	6

CANQUEST RESOURCE CORP. AK 96-202 Revised ICP Certificate: May 21, 1996

ECO-TECH LABORATORIES LTD.

Et #,	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	К%	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
26	34276	110	1.4	0.40	55	90	<5	2.35	<1	<1	199	6	0.50	0.20	<10	0.04	53	157	0.01	4	30	<2	<5	<20	10	<.01	<10	51	<10	2	2
27	34277	400	0.6	0.34	20	30	<5	4.38	<1	<1	159	5	0.39	0.11	<10	0.03	70	21	0.06	4	30	<2	<5	<20	13	<.01	<10	28	<10	3	2
28	34278	275	1.2	0.95	210	45	<5	7.76	<1	2	157	4	1.35	0.34	<10	0.18	76	71	0.06	4	150	<2	<5	<20	23	<.01	<10	52	<10	8	8
29	34279	480	1.6	0.27	230	70	<5	3.14	<1	<1	157	5	0.87	0.17	<10	0.02	62	134	0.03	5	60	<2	10	<20	13	<.01	<10	21	<10	3	2
30	34280	700	0.8	1.81	225	45	5	1.96	<1	12	67	16	3.31	0.17	<10	1.03	498	65	0.02	5	1360	<2	10	<20	104	0.06	<10	82	<10	8	55
31	34281	70	<.2	0.85	1895	50	<5	0.24	<1	4	51	36	3.66	0.18	<10	0.33	103	64	0.02	4	1140	<2	<5	20	18	<.01	10	83	<10	<1	18
32	34282	40	<.2	2.77	675	65	<5	1.00	<1	34	33	73	8.06	0.14	<10	2.07	1380	9	0.01	15	1360	<2	<5	20	58	0.02	<10	185	<10	3	102
33	34283	300	0.2	0.65	15	25	<5	0.12	<1	8	166	11	1.93	0.03	<10	0.42	275	4	<.01	16	230	<2	<5	<20	5	<.01	<10	46	<10	<1	16
34	34284	110	1.8	0.59	50	165	<5	4.18	<1	<1	171	3	0.44	0.56	<10	0.02	72	241	0.02	4	30	<2	<5	<20	14	<.01	<10	34	<10	5	2
35	34285	40	0.8	1.22	45	55	<5	0.25	<1	11	97	31	3.43	0.11	<10	0.64	459	46	<.01	8	610	<2	<5	<20	12	< 01	<10	89	<10	2	59
																				-			-							_	
36	34286	275	1.2	0.18	50	60	<5	1.35	<1	2	210	8	0.77	0.09	<10	0.03	1333	12	<.01	5	660	<2	<5	<20	24	<.01	<10	11	<10	5	5
37	34287	80	0.6	2.75	175	210	<5	2.05	<1	21	63	61	6.11	0.44	<10	1.15	832	12	0.08	13	1260	<2	<5	20	68	<.01	<10	178	<10	4	67
38	34288	305	1.6	0.48	45	35	<5	0.22	<1	3	163	20	1.16	0.07	<10	0.28	135	129	<.01	8	400	<2	<5	<20	14	<.01	<10	57	<10	<1	10
39	34289	760	2.4	0.04	10	15	<5	0.17	<1	<1	234	5	0.45	0.01	<10	<.01	163	9	<.01	6	20	<2	<5	<20	4	<.01	<10	2	<10	<1	1
40	34290	40	<.2	2.54	<5	120	<5	2.59	<1	25	50	92	5.46	0.07	<10	1.94	1359	2	0.02	11	1460	<2	<5	20	115	0.06	<10	142	<10	5	75
																		_				_	_							-	
41	34291	340	1.2	0.18	10	55	<5	0.33	<1	<1	220	4	0.43	0.08	<10	0.02	86	8	<.01	4	70	<2	<5	<20	7	<.01	<10	6	<10	<1	2
42	34292	60	0.2	1.97	70	115	<5	0.99	<1	13	35	44	4.07	0.29	<10	0.90	486	24	<.01	8	910	<2	<5	40	51	<.01	<10	96	<10	2	53
43	34293	65	<.2	2.16	10	85	10	2.12	<1	27	55	47	4.87	0.10	<10	1.63	905	<1	0.02	17	1160	<2	<5	40	38	0.20	<10	136	<10	5	62
44	34294	200	0.8	1.15	160	100	<5	0.33	<1	11	86	61	3.25	0.23	<10	0.54	300	4	<.01	11	2220	<2	5	40	23	<.01	<10	71	<10	<1	33
45	34295	130	0.6	0.08	40	30	<5	0.09	<1	2	174	6	0.69	0.03	<10	0.01	102	7	<.01	4	50	<2	<5	<20	3	<.01	<10	4	<10	<1	4
46	34296	475	1.2	0.23	240	70	<5	0.34	<1	3	132	16	1.74	0.07	<10	0.06	264	11	<.01	5	280	<2	<5	<20	15	<.01	<10	28	<10	<1	10
47	34297	>1000	2.6	0.52	550	55	<5	8.47	<1	1	186	7	0.95	0.23	<10	0.04	140	628	0.14	5	300	2	15	<20	48	<.01	<10	26	<10	5	3
48	34298	175	0.4	0.17	25	75	<5	9.09	<1	<1	198	2	0.31	0.03	<10	<.01	271	9	0.18	4	90	<2	<5	<20	126	<.01	<10	2	<10	<1	1
49	34299	155	0.4	1.07	125	70	<5	0.32	<1	9	172	29	2.29	0.09	<10	0.70	406	10	<.01	18	870	<2	<5	<20	15	<.01	<10	43	<10	<1	27
50	34300	30	<.2	2.63	60	105	<5	0.78	<1	21	112	128	4.85	0.19	<10	1.34	524	9	<.01	18	2400	<2	<5	40	21	<.01	<10	88	<10	4	59
51	34301	220	0.8	0.84	165	315	<5	4.52	<1	<1	194	6	0.68	0.70	<10	0.04	167	42	0.02	6	90	<2	5	<20	32	<.01	<10	15	<10	2	5
52	34302	305	1.2	0.57	265	100	<5	0.31	<1	5	132	20	1.48	0.20	<10	0.10	371	64	<.01	5	270	<2	<5	<20	9	<.01	<10	38	<10	<1	19
53	34303	210	1.2	1.59	235	275	<5	6.01	<1	<1	173	13	1.24	1.05	<10	0.14	83	114	0.01	5	230	<2	<5	<20	28	<.01	<10	48	<10	6	7
54	34304	25	<.2	1.34	5	175	<5	2.71	<1	2	163	11	0.93	0.67	<10	0.16	135	12	<.01	7	150	<2	<5	<20	12	<.01	<10	35	<10	2	14
55	34305	170	0.6	0.67	175	195	<5	4.27	<1	<1	194	6	0.67	0.62	<10	0.03	193	44	<.01	6	80	<2	<5	<20	163	<.01	<10	13	<10	<1	4
56	34306	55	0.4	0.89	70	240	<5	7.78	<1	<1	179	4	0.51	1.01	<10	<.01	406	13	0.02	5	60	<2	<5	<20	81	<.01	<10	4	<10	2	3
57	34307	65	2.4	0.25	165	90	<5	6.43	<1	<1	164	4	0.61	0.25	<10	0.02	914	161	<.01	9	70	<2	<5	<20	306	<.01	<10	5	<10	<1	3
58	34308	615	0.6	0.11	40	25	<5	14.10	<1	<1	102	4	0.39	0.07	<10	0.05	662	8	<.01	4	110	<2	<5	<20	760	<.01	<10	4	<10	<1	5
59	34309	365	0.8	0.19	190	80	<5	2.88	<1	<1	237	3	0.64	0.14	<10	<.01	58	67	0.03	4	40	<2	10	<20	23	<.01	<10	5	<10	<1	1
60	34310	945	2.4	0.25	170	85	<5	6.40	<1	<1	169	5	0.61	0.25	<10	0.02	921	161	<.01	5	70	<2	<5	<20	308	<.01	<10	5	<10	<1	3

CANQUEST RESOURCE CORP. AK 96-202 Revised ICP Certificate: May 21, 1996

ECO-TECH LABORATORIES LTD.

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cď	Co	Cr	Cu	Fe %	К%	La	Mg %	Mn	Мо	Na %	Ni	Ρ	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zņ
61	34311	390	1.2	1.39	225	325	<5	5.10	<1	2	154	11	1.33	0.99	<10	0.13	199	35	0.01	6	340	<2	5	<20	35	<.01	<10	27	<10	1	16
62	34312	350	0.8	1.00	240	140	<5	0.32	<1	10	122	40	2.78	0.21	<10	0.48	398	15	<.01	22	720	2	<5	<20	27	0.02	<10	43	<10	<1	34
63	34313	315	0.8	1.02	145	85	<5	0.35	<1	9	157	35	2.48	0.24	<10	0.48	308	33	<.01	13	540	<2	<5	<20	22	0.01	<10	54	<10	<1	29
64	34314	30	<.2	2.76	10	85	<5	4.18	<1	38	150	132	6.77	0.33	<10	2.98	1375	1	0.01	41	2850	<2	<5	20	118	0.09	<10	201	<10	<1	93
65	34315	745	1.0	2.31	355	205	<5	3.79	<1	16	197	70	4.41	0.58	<10	0.83	349	225	0.27	22	1230	<2	<5	<20	69	0.03	<10	127	<10	<1	46
																															_
66	34316	>1000	2.8	1.10	525	460	<5	1.51	<1	<1	143	6	1.52	1.36	<10	0.04	67	318	0.01	4	220	<2	<5	<20	44	<.01	<10	24	<10	<1	7
67	34317	>1000	3.2	0.77	590	315	<5	11.70	<1	<1	120	4	0.95	0.84	<10	0.01	68	274	0.12	4	120	<2	35	<20	35	<.01	<10	11	<10	4	3
68	34318	410	0.8	0.70	75	45	<5	2.78	<1	7	103	21	1.82	0.13	<10	0.31	680	6	<.01	14	600	4	<5	<20	261	<.01	<10	29	<10	1	28
69	34319	580	1.6	0.97	295	405	<5	9.51	<1	<1	143	6	0.96	1.13	<10	0.02	439	125	0.02	5	380	<2	5	<20	156	<.01	<10	12	<10	2	4
70	34320	100	1.0	0.36	55	75	<5	10.40	<1	<1	140	3	0.45	0.20	<10	0.02	73	69	0.22	2	30	<2	5	<20	26	<.01	<10	37	<10	4	2
71	34321	760	2.0	0.94	165	415	<5	12.60	<1	<1	131	4	0.49	1.05	<10	0.02	113	128	0.10	5	110	<2	5	<20	40	<.01	<10	12	<10	2	3
72	34322	85	0.8	0.98	35	310	<5	12.30	<1	<1	90	5	0.44	0.82	<10	0.06	87	33	0.12	5	110	<2	10	<20	34	<.01	<10	33	<10	4	6
73	34323	150	0.6	1.80	145	365	<5	2.03	<1	2	138	23	1.78	1.33	<10	0.18	134	62	0.01	9	650	<2	<5	<20	30	0.01	<10	52	<10	1	21
74	34324	115	<.2	0.86	50	165	<5	11.80	<1	<1	119	6	0.64	0.69	<10	0.05	95	10	0.13	5	140	<2	<5	<20	27	<.01	<10	18	<10	5	7
75	34325	110	0.6	1.35	290	75	<5	0.38	<1	12	49	88	3.81	0.24	<10	0.59	639	20	0.02	7	1050	<2	<5	20	62	<.01	<10	66	<10	<1	38
							-							•					••••	·		-	-								
76	34326	105	<.2	1.66	275	90	<5	0.33	<1	16	44	66	4.82	0.20	<10	0.92	764	16	0.01	10	1240	<2	<5	20	23	<.01	<10	68	<10	<1	- 54
77	34327	210	0.6	1.93	420	265	<5	4.78	<1	6	152	38	2.54	1.13	<10	0.27	313	31	0.08	7	740	<2	20	<20	36	0.01	<10	88	<10	3	16
78	34328	180	<.2	3.24	150	305	<5	6.55	<1	17	173	88	4.81	0.85	<10	1.71	619	24	0.24	20	1450	<2	10	40	57	0.03	<10	151	<10	4	43
79	34329	35	0.4	0.48	45	105	<5	0.09	<1	7	158	18	1.40	0.14	<10	0.16	185	14	<.01	14	170	6	<5	<20	12	<.01	<10	28	<10	<1	31
80	34330	160	0.6	0.05	45	20	<5	0.06	<1	<1	234	6	0.54	0.01	<10	<.01	48	11	<.01	7	30	<2	<5	<20	3	<.01	<10	9	<10	<1	2
					-		_																					_			
81	34331	50	0.6	0.02	<5	10	<5	0.09	<1	<1	233	5	0.36	<.01	<10	<.01	50	2	<.01	6	370	<2	<5	<20	8	<.01	<10	2	<10	<1	<1
82	34332	>1000	3.6	0.72	1150	50	5	0.09	<1	4	188	25	3.60	0.09	<10	0.35	150	85	<.01	6	690	<2	20	20	10	<.01	<10	59	<10	<1	19
83	34333	305	0.8	1.00	1470	50	5	0.11	<1	3	135	7	3.66	0.12	<10	0.71	240	41	<.01	3	710	<2	40	20	13	<.01	<10	93	<10	<1	24
84	34334	95	2.2	0.09	215	25	<5	0.03	<1	1	241	5	0.84	0.06	<10	0.01	54	203	<.01	6	50	8	<5	<20	5	<.01	<10	12	<10	<1	3
85	34335	160	0.6	0.11	60	25	<5	0.21	<1	1	251	6	0.63	0.03	<10	0.05	82	12	<.01	7	110	<2	<5	<20	6	<.01	<10	9	<10	<1	2
86	34336	115	0.6	2.17	70	135	<5	0.78	<1	12	112	63	3.15	0.21	<10	1.16	315	68	<.01	9	1360	<2	5	<20	17	<.01	<10	76	<10	1	37
87	34337	180	1.2	2.94	140	100	<5	0.98	<1	16	81	80	4.82	0.25	<10	1 47	350	124	< 01	14	2310	<2	<5	40	31	<.01	<10	94	<10	<1	56
88	34338	135	0.6	0.31	30	40	<5	> 15	<1	<1	110	7	0.50	0.10	<10	0.11	1141	17	0.07	3	170	<2	5	<20	894	<.01	<10	11	<10	1	4
89	34339	205	0.6	1.53	180	185	<5	0.92	<1	10	78	41	2.83	0.28	<10	0.72	462	36	< 01	8	980	<2	<5	<20	38	< 01	<10	57	<10	<1	39
90	34340	230	0.6	0.17	15	<5	<5	> 15	<1	1	65	7	0.36	0.04	<10	0.16	1730	5	<.01	2	340	<2	5	<20	2322	<.01	<10	6	<10	<1	3
	·					-	-		-	-								-		-			•					-			
91	34341	170	1.6	0.92	45	215	<5	3.16	<1	<1	204	10	0.46	0.66	<10	0.06	89	237	<.01	4	190	<2	<5	<20	32	<.01	<10	89	<10	<1	3
92	34342	>1000	4.4	1.75	415	400	<5	6.55	<1	<1	188	12	1.84	1.01	<10	0.17	120	68	0.19	4	520	<2	5	<20	52	<.01	<10	50	<10	5	8
93	34343	>1000	2.8	0.62	290	330	<5	2.76	<1	<1	214	7	1.02	0.70	<10	0.02	57	293	<.01	5	160	<2	5	<20	20	<.01	<10	11	<10	3	2
94	34344	>1000	2.0	1.14	460	110	<5	0.42	<1	5	151	23	3.17	0.33	<10	0.40	318	266	<.01	5	900	<2	<5	<20	23	<.01	<10	47	<10	<1	25
95	34345	655	1.0	0.19	150	140	<5	3.37	<1	<1	245	5	0.66	0.17	<10	<.01	65	363	0.04	6	80	<2	5	<20	14	<.01	<10	15	<10	1	<1

CANQUEST RESOURCE CORP. AK 96-202

Revised ICP Certificate: May 21, 1996

ECO-TECH LABORATORIES LTD.

_	Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	К%	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
-	96	34346	505	0.4	0.93	65	235	<5	9.34	<1	<1	183	5	0.47	1.14	<10	<.01	128	83	0.04	4	80	<2	5	<20	23	<.01	<10	11	<10	4	4
	97	34347	605	1.2	0.67	210	165	<5	6.85	<1	<1	174	6	0.67	0.72	<10	<.01	87	295	0.04	5	90	<2	10	<20	21	<.01	<10	7	<10	2	3
	98	34348	905	1.0	0.82	60	150	<5	10.70	<1	<1	172	4	0.45	0.66	<10	0.03	106	80	0.11	4	50	<2	<5	<20	34	<.01	<10	90	<10	3	4
	99	34349	>1000	1.4	1.21	85	385	<5	9.67	<1	<1	173	6	0.46	1.23	<10	0.03	90	98	0.04	4	60	<2	<5	<20	41	<.01	<10	79	<10	3	3
	100	34350	50	0.4	0.77	25	135	<5	0.22	<1	4	86	18	1.85	0.17	<10	0.18	162	15	<.01	10	730	6	<5	<20	43	<.01	<10	35	<10	<1	26
																		-						-								
	101	34401	115	0.8	1.28	155	60	<5	0.41	<1	10	62	17	3.17	0.24	<10	0.98	531	3	0.02	4	2020	<2	5	40	40	0.01	<10	49	<10	3	49
	102	34402	105	0.6	1.28	235	100	5	0.25	<1	10	43	12	3.45	0.19	<10	1.11	488	4	0.02	4	1420	<2	<5	40	19	0.01	<10	53	<10	<1	52
	103	34403	120	0.4	0.64	40	125	<5	0.53	<1	2	154	9	1 04	0.24	<10	0 17	128	74	0.02	5	230	<2	<5	<20	7	< 01	<10	55	<10	1	12
	104	34404	70	0.4	0.23	15	40	<5	2.88	<1	<1	231	4	0.45	0.08	<10	0.02	69	370	0.03	Ā	30	<2	<5	<20	13	< 01	<10	34	<10	3	2
	105	34405	80	0.2	0.72	45	80	<5	1 34	<1	2	225	10	1.03	0.23	<10	0.02	66	54	< 01	8	240	<2	<5	<20	15	< 01	<10	58	<10	<1	8
				•			•-		1.01	•	-	220			0.20		0.22				·	240	-		-10	.0				.10		Ŭ
	106	34406	250	0.6	0.76	50	105	<5	1.57	<1	<1	238	4	0.88	0.47	<10	0.07	85	79	<.01	4	1070	<2	<5	<20	20	<.01	<10	43	<10	3	3
	107	34407	370	0.6	0.77	100	105	<5	0.14	<1	3	91	6	1.94	0.18	<10	0.31	98	8	<.01	3	690	<2	<5	<20	20	<.01	<10	19	<10	<1	21
	108	34408	105	0.2	0.14	65	40	<5	0.07	<1	<1	190	7	0.76	0.08	<10	0.01	178	171	<.01	6	110	<2	<5	<20	14	<.01	<10	17	<10	<1	1
	109	34409	130	0.4	1.63	90	100	<5	0.35	<1	14	56	85	3.75	0.24	<10	1.01	551	9	0.01	5	1250	<2	<5	60	15	<.01	<10	42	<10	<1	53
	110	34410	330	1.2	0.17	90	35	<5	0.02	<1	2	247	16	0.82	0.07	<10	0.03	61	8	<.01	7	90	<2	<5	<20	5	<.01	<10	9	<10	<1	4
	111	34411	340	0.8	0.56	145	170	<5	5.43	<1	<1	241	5	0.76	0.46	<10	0.03	83	63	0.05	4	140	<2	5	<20	23	<.01	<10	13	<10	5	2
	112	34412	200	2.4	1.06	65	275	<5	2.20	<1	<1	217	5	0.50	0.85	<10	0.05	63	389	<.01	5	60	<2	<5	<20	18	<.01	<10	183	<10	<1	2
	113	34413	65	0.6	0.04	10	45	<5	> 15	<1	<1	99	3	0.84	<.01	<10	0.05	1831	17	<.01	4	330	<2	<5	<20	642	<.01	<10	4	<10	<1	5
	114	34414	300	1.0	1.97	390	120	<5	3.93	<1	11	160	61	2.54	0.74	<10	0.20	432	142	<.01	10	1100	<2	<5	<20	37	<.01	<10	100	<10	3	24
	115	34415	90	0.8	0.28	30	45	<5	10.80	<1	<1	187	7	0.56	0.10	<10	0.05	1950	18	0.04	4	130	<2	<5	<20	192	<.01	<10	22	<10	<1	3
	116	34416	60	<.2	1.20	5	190	<5	3.46	<1	3	137	11	0.96	0.88	<10	0.18	277	7	<.01	9	330	<2	<5	<20	46	<.01	<10	20	<10	<1	15
	117	34417	40	<.2	0.39	<5	20	<5	1.11	<1	4	251	13	1.07	0.01	<10	0.31	299	12	0.02	7	170	<2	<5	<20	7	<.01	<10	21	<10	<1	7
	118	34418	130	0.6	1.27	565	145	<5	1.25	<1	3	102	22	2.73	0.58	<10	0.16	166	46	<.01	6	1480	<2	30	40	68	<.01	<10	60	<10	4	17
	119	34419	520	0.6	0.52	115	160	<5	3.73	<1	2	284	7	0.86	0.38	<10	0.13	312	190	0.02	6	190	<2	10	<20	40	<.01	<10	23	<10	3	6
	120	34420	165	0.4	2.09	230	145	<5	1.77	<1	19	293	117	3.89	0.29	<10	1.96	651	125	0.08	24	1020	<2	10	<20	46	<.01	<10	115	<10	2	39
	121	34421	160	1.6	0.55	175	25	<5	0.59	<1	6	251	23	1.61	0.05	<10	0.44	288	125	<.01	9	230	<2	20	<20	13	<.01	<10	35	<10	<1	- 14
	122	34422	115	0.4	2.69	125	45	<5	0.26	<1	21	121	69	4.42	0.05	<10	2.76	401	20	<.01	12	830	<2	<5	<20	18	<.01	<10	148	<10	<1	41
	123	34423	15	<.2	0.55	<5	55	<5	1.53	<1	29	114	52	5.06	0.07	10	2.44	795	<1	0.07	132	4020	<2	<5	<20	114	0.11	<10	22	<10	8	76
	124	34424	530	0.8	0.29	30	45	<5	10.80	<1	<1	190	6	0.53	0.11	<10	0.05	1903	18	0.04	4	130	<2	<5	<20	194	<.01	<10	23	<10	<1	3
	125	34425	450	<.2	0.56	<5	55	<5	1.59	<1	29	117	52	5.03	0.07	10	2.44	801	<1	0.08	131	3980	<2	<5	<20	119	0.11	<10	23	<10	8	75
	126	34426	400	0.2	2.69	130	40	<5	0.27	<1	21	122	69	4.44	0.05	<10	2.77	409	20	<.01	12	860	<2	<5	<20	16	<.01	<10	149	<10	<1	41
	127	34427	170	1.6	0.55	180	30	<5	0.58	<1	7	248	23	1.62	0.05	<10	0.44	294	123	<.01	11	230	<2	20	<20	15	<.01	<10	35	<10	<1	14
	128	34428	505	0.4	2.03	235	140	<5	1.72	<1	19	282	113	3.79	0.27	<10	1.90	626	122	0.08	23	1020	<2	10	<20	45	<.01	<10	112	<10	2	39
	129	34429	550	0.6	0.52	120	160	<5	3.71	<1	2	279	7	0.85	0.37	<10	0.13	310	189	0.02	7	190	<2	<5	<20	38	<.01	<10	23	<10	3	6
	130	34430	345	0.6	1.33	590	150	<5	1.32	<1	3	105	24	2.85	0.60	<10	0.17	172	49	<.01	6	1600	<2	35	40	72	<.01	<10	62	<10	4	18

Page 4

ECO-TECH LABORATORIES LTD.

CANQUEST RESOURCE CORP. AK 96-202 Revised ICP Certificate: May 21, 1996

Et #.	Tag #	Au(ppb)	Ag	AI %_	As	Ba	Bi	Ca %	Cd	Co	Сг	Cu	Fe %	К%	La	Mg %	Mn	Мо	Na %	Ni	<u>P</u>	Pb	Sb	Sn	Sr	TI %	<u> </u>	<u>v</u>	<u></u>	Y	Zn
131	34431	150	<.2	0.40	<5	25	<5	1.10	<1	4	246	14	1.07	0.02	<10	0.31	299	12	0.02	7	190	<2	<5	<20	9	<.01	<10	21	<10	<1	7
132	34432	405	0.2	1.18	10	180	<5	3.39	<1	3	132	11	0.93	0.85	<10	0.18	259	7	<.01	9	320	<2	<5	<20	43	<.01	<10	20	<10	<1	15
133	34433	140	0.8	0.76	50	105	<5	1.59	<1	<1	239	4	0.88	0.47	<10	0.07	83	78	<.01	5	1070	<2	<5	<20	19	<.01	<10	43	<10	3	3
134	34434	570	0.6	1.97	390	120	<5	3.88	<1	11	156	59	2.50	0.72	<10	0.22	423	133	<.01	9	1070	<2	<5	<20	36	<.01	<10	98	<10	3	24
135	34435	915	6.8	1.03	265	60	<5	0.76	<1	7	103	20	2.40	0.19	<10	0.46	251	909	0.03	3	700	<2	<5	<20	14	<.01	<10	129	<10	<1	21
136	34451	>1000	2.2	1.04	60	270	<5	2.17	<1	<1	219	8	0.54	0.82	<10	0.05	122	383	<.01	6	70	<2	<5	<20	19	<.01	<10	180	<10	<1	2
137	34452	>1000	0.6	0.56	140	165	<5	5.42	<1	<1	243	48	0.78	0.45	<10	0.03	88	63	0.04	5	150	24	5	<20	23	<.01	<10	13	<10	5	3
138	34453	165	0.2	1.64	40	305	<5	2.68	<1	3	133	13	1.26	1.03	<10	0.18	225	17	<.01	10	440	<2	<5	<20	14	<.01	<10	29	<10	<1	23
139	34454	>1000	1.6	1.14	20	245	<5	7.29	<1	<1	161	8	0.62	1.01	<10	0.05	69	88	0.03	5	170	<2	<5	<20	21	<.01	<10	16	<10	<1	8
140	34455	300	0.6	1.51	180	365	<5	6.83	<1	<1	87	11	0.92	0.99	<10	0.11	87	124	0.02	4	440	<2	10	<20	47	0.01	<10	33	<10	1	11
141	34456	430	2.0	0.40	120	85	<5	8.28	<1	<1	167	4	0.46	0.30	<10	0.01	63	151	0.15	4	60	<2	<5	<20	25	<.01	<10	3	<10	2	2
142	34457	535	0.8	1.38	70	200	<5	11.50	<1	1	82	14	0.87	0.81	<10	0.13	118	39	0.19	4	360	<2	10	<20	44	<.01	<10	45	<10	6	10

CANQUEST RESOURCE CORP. AK 96-202 Revised ICP Certificate: May 21, 1996

l

I

l

1

ł

t

Ĩ.

.

ECO-TECH	LABORAT	ORIES LTD.
----------	---------	------------

Ĩ.

ł

1

1

Et #.	Tag #	Au(ppb)	Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	K%	La	Mg %	Mn	Mo	Na %	Ni	P	РЬ	Sb	Sn	Sr	Ti %	U	<u>v</u>	w	Y	Zn
<u>QC DATA</u> Resplit:	i.																														
R/S 1	34251	10	<.2	2.02	25	650	<5	7.83	<1	<1	88	12	1.22	0.82	<10	0.10	330	4	0.05	3	510	<2	5	<20	30	<.01	<10	65	<10	21	20
R/S 36	34286	300	1.2	0.19	50	60	<5	1.38	<1	2	197	10	0.76	0.09	<10	0.03	1401	6	<.01	6	670	<2	<5	<20	25	<.01	<10	12	<10	5	5
R/S 71	34321	700	2.0	0.91	175	405	<5	12.00	<1	<1	158	3	0.54	1.02	<10	0.02	127	132	0.10	4	110	<2	10	<20	38	<.01	<10	12	<10	2	3
R/S 106	34406	240	0.6	0.73	55	110	<5	1.61	<1	<1	222	5	0.84	0.46	<10	0.07	78	73	<.01	5	980	<2	<5	<20	19	<.01	<10	42	<10	3	3
R/S 141	34456	450	1.8	0.39	115	80	<5	8.31	<1	<1	200	3	0.48	0.29	<10	<.01	57	159	0.14	4	60	<2	<5	<20	21	<.01	<10	4	<10	2	2
Repeat:																															
1	34251	5	<.2	1.98	25	665	<5	7.58	<1	<1	106	11	1.22	0.80	<10	0.10	385	4	0.04	3	510	<2	<5	<20	30	<.01	<10	64	<10	21	21
10	34260	10	0.4	2.07	<5	115	<5	1.58	<1	18	39	240	4.63	0.11	<10	1.25	1321	4	0.02	5	1470	<2	<5	20	49	0.03	<10	93	<10	4	63
19	34269	50	2.4	0.88	70	55	<5	3.35	<1	1	157	5	0.77	0.44	<10	0.06	84	115	0.02	4	130	<2	<5	<20	10	<.01	<10	2 9	<10	4	4
36	34286	290	1.2	0.19	50	60	<5	1.38	<1	2	219	9	0.79	0.09	<10	0.03	1367	13	<.01	5	660	<2	<5	<20	23	<.01	<10	12	<10	4	5
45	34295	120	0.4	0.08	40	30	<5	0.10	<1	2	177	7	0.71	0.02	<10	0.01	110	7	<.01	4	50	<2	<5	<20	3	<.01	<10	4	<10	<1	3
54	34304	15	<.2	1.34	<5	175	<5	2.68	<1	2	163	11	0.92	0.67	<10	0.16	123	12	<.01	7	160	<2	<5	<20	13	<.01	<10	35	<10	2	14
71	34321	730	2.4	0.94	165	415	<5	12.60	<1	<1	129	4	0.49	1.05	<10	0.02	121	130	0.10	4	100	<2	10	<20	41	<.01	<10	12	<10	2	4
80	34330	150	0.6	0.05	40	25	<5	0.11	<1	1	231	7	0.54	0.01	<10	<.01	52	11	<.01	6	30	<2	<5	<20	5	<.01	<10	10	<10	<1	2
89	34339	220	0.6	1.55	180	185	<5	0.93	<1	10	78	41	2.85	0.28	<10	0.73	467	36	<.01	8	990	<2	<5	20	37	<.01	<10	58	<10	<1	39
106	34406	230	0.6	0.73	55	100	<5	1.55	<1	<1	235	4	0.91	0.45	<10	0.07	94	78	<.01	5	1030	<2	<5	<20	18	<.01	<10	42	<10	2	3
115	34415	80	0.6	0.27	30	45	<5	10.80	<1	<1	184	6	0.52	0.10	<10	0.05	1892	18	0.04	5	140	<2	<5	<20	194	<.01	<10	22	<10	1	3
124	34424	500	0.6	0.28	30	40	<5	10.90	<1	<1	186	6	0.52	0.11	<10	0.05	1898	19	0.03	4	130	<2	<5	<20	193	<.01	<10	23	<10	<1	3
141	34456	480	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Standard:																															
GEO'96		140	1.4	1.68	70	165	<5	1.70	<1	18	62	84	4.07	0.38	<10	0.97	640	<1	0.01	22	630	18	<5	20	58	0.11	<10	80	<10	5	70
GEO'96		150	1.2	1.77	70	165	<5	1.79	<1	18	62	83	4.10	0.38	<10	0.97	647	<1	0.01	24	680	20	<5	20	60	0.12	<10	80	<10	5	71
GEO'96		140	1.2	1.66	70	165	<5	1.68	<1	18	62	84	4.09	0.39	<10	0.98	630	<1	0.02	22	640	18	<5	<20	61	0.12	<10	81	<10	7	69
GEO'96		150	1.4	1.68	70	160	<5	1.66	<1	19	65	82	3.98	0.40	<10	0.88	640	<1	0.02	22	630	20	<5	<20	64	0.12	<10	83	<10	5	71
GEO'96		-	1.4	1.66	70	170	<5	1.60	<1	18	63	85	3.75	0.38	<10	0.98	624	<1	0.02	24	620	20	5	<20	63	0.12	<10	82	<10	7	70

1

t

t

1

RCD-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

df/202/212 XLS/96Canquest

APPENDIX 2

SAMPLE DESCRIPTIONS and GEOCHEMICAL RESULTS

J.E.L. Lindinger P.Geo. Consulting Geologist. 879 McQueen Dr. Kamloops, B.C. Tel/Fax. 604-554-6887

- -

CANQU	EST RES	SOURCES SAMPLE AND ASSA	Y SUMM		THICKNES	S COMMENTS	(Aumnh)	۸a	AI %.	٨c	8a	BL	Ca %	Cd	Co	Cr	Cu Fe %	K%	1 a An %	Mn	Mo Na %	Ni	P	Ph	Sh	Qn	9r TI %		v	w	v	7n
10224	8717.5	34251 SUCE OV	JIKIKE		0.2	S COMPLETIN		< 2	1 90	25	615	5	7.22	<u>Cu</u>	<1	101	10 1 20	0.77	<10 010	386	4 0.04	3	500	<u>-2</u>	30		31 11 76	<10	- 63	<10	20	20
10222	8713.5	34252 SUCR OV-tr py	295	80	0.2	tr py	10	0.2	0.49	150	135	<5	0.17	<1	1	108	16 1.60	0.12	<10 0.11	141	5 <.01	2	510	4	<5	<20	29 < 01	<10	21	<10	<1	12
10241	8707	34253 Q Bx - tr-py	flat		0.2	tr py	20	0.8	0.99	95	50	<5	1.17	<1	7	113	42 2.55	0.25	<10 0.21	3971	11 <.01	5	300	<2	<5	<20	16 < 01	<10	39	<10	5	59
10242	8702	34254 sinter-laminated	fist		0.3		35	0.2	1.00	115	105	<5	0.50	<1	5	62	25 1.74	0 22	<10 0.21	398	26 <.01	4	480	<2	5	<20	13 <.01	<10	43	<10	4	42
10242	87	34255 QSTWK	120	90	0.15		30	0.6	0.96	355	90	<5	2.23	<1	6	118	18 3.69	0.13	<10 0.65	2147	6 <.01	5	270	<2	<5	<20	21 <.01	<10	46	<10	2	42
10247	8668	34256 sil Mudstone-QSTWK					100	0.2	1.03	810	100	<5	0.10	<1	2	80	19 3.48	0.16	<10 0.38	273	19 <.01	2	430	2	10	40	16 <.01	<10	41	<10	<1	29
10250	8676	34257 sil Mudstone-EPIDOTE					10	<.2	1.92	135	90	<>	0.34	<1	16	89	107 5.15	0.18	<10 0.80	715	5 <.01	19 1	1780	<2	<5	60	16 <.01	<10	133	<10	<1	61
10240	80/2	34238 SILMUGSTORE-EPIDOLE					30	0.2 e 2	0.76	5575	130	10	0.22		7	152	10 3.51	0.13	<10 0.34	304	14 < 01	4 10	740	<2	<) 265	20	16 <.01	<10	48	<10	-1	20
10245	8649	34260 clay alt tuff-EPIDOTE					5	0.2	2.05	10	115	<5	1.57	<1	18	39	243 4.66	0.10	<10 1.25	1340	4 0.02	6 1	1470	<2	20J <5	40	46 0.03	<10	92	<10	5	30 64
10221	8631.5	34261 LAM OV -vurgy	315	80	0.2		380	0.4	0.11	95	70	<5	0.16	<1	<1	157	5 0.56	0.05	<10 0.01	52	37 <.01	5	50	<2	<5	<20	5 < 01	<10	4	<10	<1	3
10226	8627	34262 LAM QV -VUggy	315	80	0.3		505	0.6	0.34	130	185	<5	0.50	<1	<1	171	4 0.88	0.24	<10 0.02	79	194 < 01	4	190	<2	<5	<20	10 <.01	<10	12	<10	<1	5
10230	8623	34263 LAM QV -vuggy	315	80	0.3		1510	1.0	0.58	245	45	<5	0.13	<1	2	140	9 2.74	0.08	<10 0.06	423	376 <.01	4	610	<2	10	<20	11 <.01	<10	39	<10	<1	11
10160	8611	34264 QV(BX)	340	25	0.8		10	0.2	0.06	<5	<5	<5	0.05	<1	<1	138	2 0.21	<.01	<10 <.01	54	8 < 01	3	<10	<2	<5	<20	<1 <.01	<10	7	<10	<1	<1
10159	8607	34265 QV(BX)	340	25	0.8		30	1.0	0.39	25	75	<)	1.13	<1	<1	151	5 0.42	0.13	<10 0.03	66	93 <.01	4	<10	<2	<5	<20	9 <.01	<10	130	<10	<1	2
10162	8602	34266 QV(BX)-IF PY	340 25	4) 70	0.8		405	1.0	2.55	120	75	<5	3.65	<1 <1	4	1/8	20 1.40 51 2.57	0 0 2	<10 0.19	197	58 < 01	4	300 640	<2	> •	<20	23 <.01	<10	49	<10	1	14
10158	8587	34268 CHALCEDONIC OV	25	90	0.3		45	0.6	043	20	25	<5	0.97	<1	í	161	3 0 63	0.05	<10 0.02	83	29 < 01	4	100	<2	<5	<20	5 < 01	<10	18	<10	د د1	5
10159	8584	34269 CHALCEDONIC QV	150	20	0.2		40	2.4	0.86	65	50	<5	3.30	<1	1	155	5 0.76	0.43	<10 0.06	88	112 0.02	5	140	<2	<5	<20	11 <.01	<10	28	<10	4	4
10159	8578	34270 QSTWK					135	<.2	0.56	1240	50	<5	0.11	<1	4	122	15 4.51	0.13	<10 0.17	187	37 <.01	4	250	<2	<5	20	11 <.01	<10	42	<10	<1	30
10160	8573	34271 silicified MUDSTONE					5	0.2	0.66	55	70	<5	0.20	<1	6	77	14 1.98	0.18	<10 0.17	152	18 < 01	3	870	2	<5	<20	9 <.01	<10	24	<10	<1	18
10163	8565.7	34272 CHALCEDONIC QV	150	15	0.2		205	0.6	0.86	50	50	<5	8.16	<1	2	163	12 0.83	0.29	<10 0.14	85	61 0.10	4	190	<2	5	<20	26 <.01	<10	34	<10	7	8
10166	8561	34273 CHALCEDONIC QV	150	15	0.4	** ***	150	1.2	0.60	540 745	85	<5	1.48	<1	1	197	11 1.42	0.28	<10 0.04	67	337 0.01	6	180	<2	15	<20	16 < 01	<10	28	<10	<1	4
10167	8000	34274 CHALCEDONIC QV	260	10	0.7	шру	00	9.0 1 7	0.31	201	35	5	4.67	<1	2	120	3 0.92	0.10	<10 0.02	93 95	78 0.08	٨	160	<2	10	<20	1/ <.01	<10	90	<10	ŝ	3
10168	8546	34275 banded white QV	260	80	0.4		110	1.4	0.40	55	90	<5	2.35	<1	<1	199	6 0.50	0.20	<10 0.13	53	157 0.01	4	30	~	<5	<20	14 \.01	<10	51	<10	2	2
10172	8542	34277 CHALCEDONIC QV	175	15	0.2	Gypsum	400	0.6	0.34	20	30	<5	4.38	<1	<1	159	5 0.39	0.11	<10 0.03	70	21 0.06	4	30	<2	<5	<20	13 <.01	<10	28	<10	3	2
10173	8534	34278 banded rusty QV	120	20	0.3		275	1.2	0.95	210	45	<5	7.76	<1	2	157	4 1.35	0.34	<10 0.18	76	71 0.06	4	150	<2	<5	<20	23 <.01	<10	52	<10	8	8
10182	8531	34279 massive banded QV	120	20	0.3	tr py	480	1.6	0.27	230	70	<5	3.14	<1	<1	157	5 0.87	0.17	<10 0.02	62	134 0.03	5	60	<2	10	<20	13 <.01	<10	21	<10	3	2
10183	8526	34280 clay ait. mudstone QSTWK	25	90	0.2		700	0.8	1.81	225	45	5	1.96	<1	12	67	16 3.31	0.17	<10 1.03	498	65 0.02	51	360	<2	10	<20	104 0.06	<10	82	<10	8	55
10187	8521	34281 clay altered tuff					70	<.2	0.85	1895	50	<5	0.24	<1	4	51	36 3.66	0.18	<10 0.33	103	64 0.02	4 1	140	<2	<5	20	18 <.01	10	83	<10	<1	18
10188	8210	34282 chior all tull -QSIWK	220	30	0.25		40	<.2 0.2	2.11	6/5 15	25	<>	0.12	<1	م د م	35	13 8.00	0.14	<10 2.07	275	9 0.01	15 1	220	<2	<)	20	58 0.02	<10	185	<10	3	102
10191	8505	34283 OBLIGED WILLE QV	330	30	15	trov	110	18	0.05	50	165	<5	4 18	<1	° <1	171	3 044	0.05	<10 0.42	72	241 0.02	4	30	<2	<5	<20	3 < 01	<10	40 34	<10	<1 5	2
10195	8499	34285 CHALCEDONIC OV	330	30	0.5	- 17	40	0.8	1.22	45	55	<5	0.25	<1	11	97	31 3.43	0.11	<10 0.64	459	46 <.01	8	610	<2	<5	<20	12 < 01	<10	89	<10	2	59
10198	8495	34286 CHALCEDONIC QV	330	30	1.5		275	1.2	0.18	50	60	<5	1.35	<1	2	210	8 0.77	0.09	<10 0.03	1333	12 <.01	5	660	<2	<5	<20	24 <.01	<10	11	<10	5	5
10198	8488	34287 chlor-epi alt tuff-QSTWK					80	0.6	2.75	175	210	<5	2.05	<1	21	63	61 6.11	0.44	<10 1.15	832	12 0.08	13 1	260	<2	<5	20	68 <.01	<10	178	<10	4	67
10217	8487	34288 BANDED ov - tuff frags	60	90	1.5		305	1.6	0.48	45	35	<5	0.22	<1	3	163	20 1.16	0.07	<10 0.28	135	129 <.01	8	400	<2	<5	<20	14 <.01	<10	57	<10	<1	10
10222	8465	34289 laminated QV - minor opal	5	40	0.25		760	2.4	0.04	10	15	<5	0.17	<1	<1	234	5 0.45	0.01	<10 <.01	163	9 < 01	6	20	<2	<5	<20	4 <.01	<10	2 .	<10	<1	1
10216	8408	34290 chlor-epi, alt tull					40	<.2 1 2	2.34	10	120	<>>	2.39	<1	25	20	92 0.40 A 0.43	0.07	<10 1.94	1309	2 0.02		400	<2	<>	20	115 0.06	<10	142	<10	2	75
10210	9430	34292 clay altered tuff-minor eni					60	0.2	1.97	70	115	<5	0.99	<1	13	35	44 4 07	0.00	<10 0.02	486	24 < 01	8	910	<2	<5 <5	40	51 < 01	<10	96 	<10	2	53
10218	8432	34293 clay altered tuff-minor epi.					65	<.2	2.16	10	85	10	2.12	<1	27	55	47 4.87	0.10	<10 1.63	905	<1 0.02	17 1	160	<2	<5	40	38 0.20	<10	136	<10	5	62
10197	8422	34294 laminated QV - vuggy	165	90	0.1		200	0.8	1.15	160	100	<5	0.33	<1	11	86	61 3.25	0.23	<10 0.54	300	4 < 01	11 2	220	<2	5	40	23 <.01	<10	71	<10	<1	33
10196	8414	34295 massive QV	165	90	0.3		130	0.6	0.08	40	30	<5	0.09	<1	2	174	6 0.69	0.03	<10 0.01	102	7 <.01	4	50	<2	<5	<20	3 <.01	<10	4	<10	<1	4
10199	8410	34296 massive QV	_		0.3		475	1.2	0.23	240	70	<5	0.34	<1	3	132	16 1.74	0.07	<10 0.06	264	11 < 01	5	280	<2	<5	<20	15 <.01	<10	28	<10	<1	10
10190	8315	34297 Isminated QV - vuggy	tist	•	.37		3360	2.6	0.52	250	55	<5	8.47	<1	1	186	7 0.95	0.23	<10 0.04	140	628 0.14	5	300	2	15	<20	48 <.01	<10	26	<10	5	3
10183	8310	34298 SUCRUSIC QV	310	2	0.2	tr ov	1/5	0.4	1.07	125	70	<5	9.09	<1	-	172	2 0.31	0.03	<10 0.70	406	10 < 01	4 18	90 870	<2	<5	<20	120 <.01	<10	43	<10	<1	27
10181	8304	34300 clay altered tuff-minor OV.	210	ŗ	0.2	~ P)	30	<.2	2.63	60	105	<5	0.78	<1	21	112	128 4.85	0.19	<10 1.34	524	9 < 01	18 2	400	<2	<5	40	21 < 01	<10	88 -	<10	4	59
10199	8292	34301 laminated QV -mudstone frags	360	20	0.2		220	0.8	0.84	165	315	<5	4.52	<1	<1	194	6 0.68	0.70	<10 0.04	167	42 0.02	6	90	<2	5	<20	32 < 01	<10	15	<10	2	5
10206	8288	34302 silicified mudstone					305	1.2	0.57	265	100	<5	0.31	<1	5	132	20 1.48	0.20	<10 0.10	371	64 <.01	5	270	<2	<5	<20	9 < 01	<10	38 ·	<10	<1	19
10215	8284	34303 massive QV -mudstone frags	360	10	0.2		210	1.2	1.59	235	275	<5	6.01	<1	<1	173	13 1.24	1.05	<10 0.14	83	114 0.01	5	230	<2	<5	<20	28 <.01	<10	48 (<10	6	7
10215	8279	34304 QV-BX mudstone frags	360	5	0.2		25	<.2	1.34	176	175	<5	2.71	<1	2	163	11 0.93	0.67	<10 0.16	135	12 <.01	7	150	<2	<5	<20	12 <.01	<10	35 •	<10	2	14
10216	82/5	34305 laminated QV-mildstone frags	360	5	0.2	flourite	55	0.0	0.07	70	240	<5	4.27	<1	<1	179	0 0.07 4 0.51	1.01		193	44 <.01	5	80 60	<2	<>>	<20	103 <.01 91 < 01	<10	13	<10	<1	4
10210	82.61	34307 laminated OV-midstone frags	360	5	0.2	nounc	65	2.4	0.25	165	90	<5	6.43	<1	<1	164	4 0.61	0.25	<10 0.02	914	161 < 01	9	70	<2	<5	<20	306 < 01	<10	5	<10	د د1	2
10224	8266	34308 semimassive QV -sucrosic	360	5	0.15		615	0.6	0.11	40	25	<5	14.10	<1	<1	102	4 0.39	0.07	<10 0.05	662	8 <.01	4	110	<2	<5	<20	760 <.01	<10	4	<10	<1	5
10225	8250	34309 CHALCEDONIC QV	360	5	0.2		365	0.8	0.19	190	80	<5	2.88	<1	<1	237	3 0.64	0.14	<10 <.01	58	67 0.03	4	40	<2	10	<20	23 <.01	<10	5	<10	<1	1
10224	8246	34310 CHALCEDONIC QV laminated	flat			flourite	945	2.4	0.25	170	85	<5	6.40	<1	<1	169	5 0.61	0.25	<10 0.02	921	161 <.01	5	70	<2	<5	<20	308 <.01	<10	5 ·	<10	<1	3
10223	8237	34311 banded QV W mudstone	flæt				390	1.2	1.39	225	325	<5	5.10	<1	2	154	11 1.33	0.99	<10 0.13	199	35 0.01	6	340	<2	5	<20	35 < 01	<10	27 •	<10	1	16
10223	8233	34312 silicified mudstone	fiat		A 45		350	0.8	1.00	240	140	<5	0.32	<1	10	122	40 2.78	0.21	<10 0.48	398	15 <.01	22	720	2	<5	<20	27 0.02	<10	43	<10	<1	34
10224	8228	34313 iaminated QV-mudstone irags	II SL		0.05		315	8.U 20	1.02	145	83 26	<>	U.35	<1	79 79	15/	57 2.48	0.24	<10 0.48	308	55 <.01 1 AA1	13	540 950	<2	<5 ~5	<20	22 0.01	<10	54 4	<10	<]	29
10222	8223	34315 massive SUCROSIC OV	fl#		0.1		745	1.0	2.31	355	205	<5	3,79	<1	16	197	70 4.41	0.58	<10 0.83	349	225 0.27	22 1	230	<2	<5	<20	69 0.03	<10	127	<10	<1	93 46
10218	8211	34316 laminated SUCROSIC OV	flat		0.2		1360	2.8	1.10	525	460	<5	1.51	<1	<1	143	6 1.52	1.36	<10 0.04	67	318 0.01	4	220	<2	<5	<20	44 < 01	<10	24	<10	<1	7
10220	8207	34317 laminated SUCROSIC QV	flat		1.1		1590	3.2	0.77	590	315	<5	11.70	<1	<1	120	4 0.95	0.84	<10 0.01	68	274 0.12	4	120	<2	35	<20	35 <.01	<10	11	<10	4	3
10220	8203	34318 silicified mudstone-minor qstwk	360	10	0.2		410	0.8	0.70	75	45	<5	2.78	<1	7	103	21 1.82	0.13	<10 0.31	680	6 <.01	14	600	4	<5	<20	261 <.01	<10	29	<10	1	28
10220	8199	34319 laminated SUCROSIC QV	360	10	0.15	p. bà	580	1.6	0.97	295	405	<5	9.51	<i< td=""><td><1</td><td>143</td><td>6 0.96</td><td>1.13</td><td><10 0.02</td><td>439</td><td>125 0.02</td><td>5</td><td>380</td><td><2</td><td>5</td><td><20</td><td>156 <.01</td><td><10</td><td>12 <</td><td><10</td><td>2</td><td>4</td></i<>	<1	143	6 0.96	1.13	<10 0.02	439	125 0.02	5	380	<2	5	<20	156 <.01	<10	12 <	<10	2	4

11

Sheet1

Sheet1

EAST	NORTH	TAG#	MATERIAL	STRIKE	DIP T	HICKNES	S COMMENTS A	u(ppb)	Ag /	AI %	As	Ba	BI	Ca %	Cd	Co	Сг	CuFe %	К%	La Ag %	Mn	Mo Na %	NI	P Pt	8b	8n	Ser Ti%	U	<u>v</u> 1	V 1	<u>Y</u> Zn
10219	8195	34320	banded SUCROSIC QV	360	10	0.2		100	1.0	0.36	55	75	<5	10.40	<1	<1	140	3 0.45	0.20	<10 0.02	73	69 0.22	2	30 <	5	<20	26 < 01	<10	37 <1	0.	4 2
10218	8192	34321	banded SUCROSIC QV	flat			tr py	760	2.0	0.94	165	415	<5	12.60	<1	<1	131	4 0.49	1.05	<10 0.02	113	128 0.10	5	110 <	5	<20	40 <.01	<10	12 <1	0	2 3
10212	8189	34322	laminated SUCROSIC QV	flat				85	0.8	0.98	35	310	<>	12.30	<1	<1	90	22 1 29	0.82	<10 0.06	8/	33 0.12	2	110 <	. 10	<20	34 < 01	<10	33 <1	0.	4 6
10212	8169	34323	QSIWE-BX silicified mydetone-bydrofrechu	м				100	0.0 < 7	1.80	140	165	<5	11.80	<1	-1	110	6 0.64	1.33	<10 0.18	134	10 013	5	140 <3	, so 	<20	30 0.01	<10	19 <1	0	5 7
10202	8159	34325	clay sitered tuff-minor epi.					110	0.6	1.35	290	75	<5	0.38	<1	12	49	88 3.81	0.24	<10 0.59	639	20 0.02	71	050 <	<5	20	62 < 01	<10	66 <1	。 0 <	1 38
10199	8154	34326	clay altered tuff-minor epi.					105	<.2	1.66	275	90	<5	0.33	<1	16	44	66 4.82	0.20	<10 0.92	764	16 0.01	10 1	240 <2	<5	20	23 < 01	<10	68 <1	0 <	1 54
10201	8150	34327	silicified mudstone-minor qstwk				tr py	210	0.6	1.93	420	265	<5	4.78	<1	6	152	38 2.54	1.13	<10 0.27	313	31 0.08	7	740 <2	20	<20	36 0.01	<10	88 <1	0	3 16
10198	8144	34328	sheared tuff-minor epi-QSTWK.					180	<.2	3.24	150	305	<5	6.55	<1	17	173	88 4.81	0.85	<10 1.71	619	24 0.24	20 1	450 <3	10	40	57 0.03	<10	151 <1	0 .	4 43
10196	8140	34329	sheared tuff-minor epi-QSTWK					35	0.4	0.48	45	105	<5	0.09	<1	7	158	18 1.40	0.14	<10 0.16	185	14 <.01	14	170 0	<5	<20	12 < 01	<10	28 <1	0 <	1 31
10196	8130	34330	SUCROSIC QV-minor opal					160	0.6	0.05	45	20	<>	0.06	<1	<1	234	6 0.54 5 0.36	0.01	<10 <.01	48	11 <.01	1	30 <2	< >	<20	3 <.01	<10	9 <1	0 <	1 2
10170	8110	34331	silicified tuff-gossenous				trov	5710	36	0.02	1150	50	5	0.09	<1	4	188	25 3 60	0.09	<10 0.35	150	85 < 01	6	570 <2 690 <2	20	20	10 < 01	<10	50 <1	0 <	1 19
10170	8105	34333	silicified tuff-gossmous-OSTWR	2			- 17	305	0.8	1.00	1470	50	5	0.11	<1	3	135	7 3.66	0.12	<10 0.71	240	41 <.01	3	710 <2	40	20	13 < 01	<10	93 <1	0 <	1 24
10172	8100	34334	massive CHERTY QV			0.5	tr py	95	2.2	0.09	215	25	<5	0.03	<1	1	241	5 0.84	0.06	<10 0.01	54	203 <.01	6	50 8	<5	<20	5 <.01	<10	12 <1		1 3
10176	8095	34335	massive QV	flat		2.1		160	0.6	0.11	60	25	<5	0.21	<1	1	251	б 0.63	0.03	<10 0.05	82	12 < 01	7	110 <2	<5	<20	6 < 01	<10	9 <1	0 <	1 2
10174	8341	34336	silicified tuff				1.5m chan.	115	0.6	2.17	70	135	<ว	0.78	<1	12	112	63 3.15	0.21	<10 1.16	315	68 < 01	91	360 <2	5	<20	17 <.01	<10	76 <1	0	1 37
10175	8342	34337	silicified tuff-QSTWK				1.2m chan	180	1.2	2.94	140	100	<5	0.98	<1	16	81	80 4.82	0.25	<10 1.47	350	124 <.01	14 2	310 <2	<5	40	31 < 01	<10	94 <1	o <	1 56
10178	8343	34338	massive QV minor opai	150	10	0.5		130	0.6	1.57	190	40	<>>	> 13	<1	<1	79	/ U.DU	0.10	<10 0.11	467	1/ 0.0/ 36 < 01	3	170 <2 D90 <3) 5	<20	894 <.01	<10	11 <1 57 <1	0	1 4
10182	8341	34340	massive OV minor opal	150	10	1.1		230	0.6	0 17	15	<5	<5	> 15	<1	1	65	7 0.36	0.04	<10 0.12	1730	5 < 01	2	340 <2	5	<20	322 < 01	<10	6 <1	0 <	1 3
10184	8341	34341	massive QV cherty	150	10	1.1		170	1.6	0.92	45	215	<5	3.16	<1	<1	204	10 0.46	0.66	<10 0.06	89	237 <.01	4	190 <2	<5	<20	32 < 01	<10	89 <1	0 <	1 3
10142	8384	34342	laminated QV	150	10	0.7	tr py	6380	4.4	1.75	415	400	<5	6.55	<1	<1	188	12 1.84	1.01	<10 0.17	120	68 0.19	4	520 <2	. 5	<20	52 <.01	<10	50 <1	0	58
10140	8386	34343	laminated QV	150	10	0.7	tr py	1420	2.8	0.62	290	330	<5	2.76	<1	<1	214	7 1.02	0.70	<10 0.02	57	293 < 01	5	160 <2	5	<20	20 <.01	<10	11 <1	0	32
10138	8388	34344	silicified tuff-QSTWK					1810	2.0	1.14	460	110	<5	0.42	<1	5	151	23 3.17	0.33	<10 0.40	318	266 < 01	5	900 <2	<5	<20	23 <.01	<10	47 <1	0 <	1 25
10139	8386	34345	laminated QV	150	10	0.9	b	655	1.0	0.19	150	140	<5	3.37	<1	<1	245	5 0.66	0.17	<10 <.01	65	363 0.04	6	80 <2	. 5	<20	14 < 01	<10	15 <1	0	1 <1
10161	8242	34340	STICE OSIC OV - THOMAN	350	30	0.25	ur py tr py	505	0.4	0.93	210	230	<5	9.34 6.85	<1	<1 <1	174	5 0.47	1.14		128	83 0.04 295 0.04	4	80 <2 90 <2	. J	<20	23 < 01	<10	7 <1	0 0	4 4
10163	8232	34348	SUCROSIC OV - Viegy	350	30	0.25	trov	905	1.0	0.82	60	150	<5	10.70	<1	<1	172	4 0.45	0.66	<10 0.03	106	80 0.11	4	50 <2	<5	<20	34 < 01	<10	90 <1	0	3 4
10164	8228	34349	laminated QV-cherty	350	30	0.3	trpy	1530	1.4	1.21	85	385	<5	9.67	<1	<1	173	6 0.46	1.23	<10 0.03	90	98 0.04	4	60 <2	<5	<20	41 <.01	<10	79 <1	0 3	3 3
10169	8224	34350	silicified mudstone				tr py	50	0.4	0.77	25	135	<5	0.22	<1	4	86	18 1.85	0.17	<10 0.18	162	15 <.01	10	730 6	<5	<20	43 <.01	<10	35 <1	0 <	1 26
10195	8402	34401	silicified tuff-QSTWK					115	0.8	1.28	155	60	<5	0.41	<1	10	62	17 3.17	0.24	<10 0.98	531	3 0.02	4 2	020 <2	5	40	40 0.01	<10	49 <1	0 :	3 49
10196	8398	34402	silicified clay altered tuff.			• •		105	0.6	1.28	235	100	5	0.25	<1	10	43	12 3.45	0.19	<10 1.11	488	4 0.02	4 1	420 <2	<5	40	19 0.01	<10	53 <1	0 <	1 52
10198	8393	34403	QV-BX	15	10	0.1		120	0.4	0.64	40	125	<>>	0.53	<1	2	104	9 1.04	0.24	<10 0.17	128	74 0.02		230 <2	<>>	<20	7 < 01	<10	55 <1 24 <1	0	1 12
10195	8381	34405	OV-BX	15	10	0.5	tr ov	80	0.4	0.23	45	80	<5	1 34	<1	2	225	10 1 03	0.08	<10 0.02	66	54 < 01	8	30 <2 740 <7	. <5 <5	<20	15 < 01	<10	58 <1		1 8
10197	8377	34406	massive gy-minor banding	15	20	1.1	- 7)	250	0.6	0.76	50	105	<5	1.57	<1	<1	238	4 0.88	0.47	<10 0.07	85	79 < 01	4 1	070 <2	<5	<20	20 < 01	<10	43 <1	0	3 3
10194	8371	34407	silicified tuff-QSTWK	60	10	0.3		370	0.6	0.77	100	105	<5	0.14	<1	3	91	6 1.94	0.18	<10 0.31	98	8 <.01	3	590 <2	<5	<20	20 <.01	<10	19 <1	0 <	1 21
10201	8366	34408	QVBX	60	10	0.3		105	0.2	0.14	65	40	<5	0.07	<1	<1	190	7 0.76	0.08	<10 0.01	178	171 <.01	6	110 <2	<5	<20	14 <.01	<10	17 <1	0 <	1 1
10204	8360	34409	silicified tuff-QSTWK					130	0.4	1.63	90	100	<5	0.35	<1	14	56	85 3.75	0.24	<10 1.01	551	9 0.01	5 1	250 <2	<5	60	15 <.01	<10	42 <1	> 0	1 53
10199	8354.5	34410	QV-BX	flat		0.25		330	1.2	0.17	90	35	<5	0.02	<1	2	247	16 0.82	0.07	<10 0.03	61	8 < 01	7	90 <2	<5	<20	5 <.01	<10	9 <1	0 <	1 4
10195	8348	34411	BANDED OV	360	10	1.i 21	flourite	340	0.8	0.00	140	170	<5	2.43	<1	<1	241	5 0.70	0.40	<10 0.03	83 67	03 U.UD 200 < 01	4	40 <2 60 <2		<20	23 <.01	<10	13 <1	0 : •	2
10185	8338	34413	BANDED QV	360	10	1.5	nounc	65	0.6	0.04	10	45	<5	> 15	<1	<1	99	3 0.84	<.01	<10 0.05	1831	17 < 01	4	330 <2	<5	<20	642 < 01	<10	4 <1	0 <	1 5
10186	8333	34414	BANDED Q-CARBONATE V	360	10	1.5		300	1.0	1.97	390	120	<5	3.93	<1	11	160	61 2.54	0.74	<10 0.20	432	142 < 01	10 1	100 <2	<5	<20	37 < 01	<10	100 <1	0	3 24
10188	8328	34415	BANDED Q-CARBONATE V	flat		1.5	flourite	90	0.8	0.28	30	45	<5	10.80	<1	<1	187	7 0.56	0.10	<10 0.05	1950	18 0.04	4	130 <2	<5	<20	192 <.01	<10	22 <1	0 <	1 3
10216	8185	34416	quartz mudstone breccia	flat				60	<.2	1.20	5	190	<5	3.46	<1	3	137	11 0.96	0.88	<10 0.18	277	7 <.01	9	330 <2	<5	<20	46 <.01	<10	20 <1	0 <	1 15
10212	8177	34417	massive vitreous QV	360	10	0.2		40	<.2	0.39	<5	20	<5	1.11	<1	4	251	13 1.07	0.01	<10 0.31	299	12 0.02	7	170 <2	<5	<20	7 <.01	<10	21 <1	0 <	1 7
10175	8137	34418	QV-BX	360	20	0.1		130	0.6	1.27	262	140	<5	1.25	<1	3	102	7 0.96	0.28	<10 0.16	212	40 <.01	6 14	180 <2	30	40	68 < 01	<10	60 <1		4 1/ 7 ∠
10150	8098	34419	CHALCEDONIC QV-BX	360	15	0.2		165	0.6	2.09	230	145	<5	3.73	<1	19	293	117 3.89	0.30	<10 1.96	651	125 0.02	24 10)20 <2	10	<20	46 < 01	<10	23 1		7 39
10163	8081	34421	BANDED OV-VUREY	70	55	0.25		160	1.6	0.55	175	25	<5	0.59	<1	6	251	23 1.61	0.05	<10 0.44	288	125 <.01	9	230 <2	20	<20	13 < 01	<10	35 <1) <	1 14
10156	8066	34422	quartz-tuff frag. breccia	150	60	0.3		115	0.4	2.69	125	45	<5	0.26	<1	21	121	69 4.42	0.05	<10 2.76	401	20 < 01	12	330 <2	<5	<20	18 <.01	<10	48 <1) <	1 41
10160	8057.5	34423	SHEAR ZONE - silicified	330	85	1.1		15	<.2	0.55	<5	55	<5	1.53	<1	29	114	52 5.06	0.07	10 2.44	795	<1 0.07	132 4)20 <2	<5	<20	114 0.11	<10	22 <1	0 1	876
10169	8086	34424	QCALCITE VEIN	70	25	0.25		530	0.8	0.29	30	45	<5	10.80	<1	<1	190	6 0.53	0.11	<10 0.05	1903	18 0.04	4	30 <2	<5	<20	194 < 01	<10	23 <1) <	1 3
10167	8081	34425	LANDIATED OV	330	90 25	0.3	and fist	400	<.2	0.56	<5 130	22 40	<5	1.59	<1 <1	29	117	52 5.03 60 4.44	0.07	10 2.44	400	<1 0.08 20 < 01	131 33	780 <2 260 <2	<>	<20	119 0.11	<10	23 <1	5 A	8 75 1 41
10162	8019	34427	O-CALCITE BX	360	20	0.3		170	1.6	0.55	180	30	<5	0.27	<1	7	248	23 1 62	0.05	<10 2.77	294	123 < 01	11 3	230 <2	20	<20	15 < 01	<10	35 <1) <) <	1 41
10162	8007	34428	QV-BX	340	70-30	0.3		505	0.4	2.03	235	140	<5	1.72	<1	19	282	113 3.79	0.27	<10 1.90	626	122 0.08	23 10	20 <2	10	<20	45 <.01	<10	12 <1	5 3	2 39
10161	7985	34429	QV	flat		0.4		550	0.6	0.52	120	160	<5	3.71	<1	2	279	7 0.85	0.37	<10 0.13	310	189 0.02	7	90 <2	<5	<20	38 <.01	<10	23 <1) :	36
10153	7924	34430	SUCROSIC QV-minor opal	70	15	0.35		345	0.6	1.33	590	150	<5	1.32	<1	3	105	24 2.85	0.60	<10 0.17	172	49 <.01	6 10	500 <2	35	40	72 <.01	<10	62 <1	<u>،</u> د	4 18
10131	7964	34431	SUCROSIC QV-minor opal	70	15	0.35	A	150	< 2	0.40	<5	25	<5	1.10	<1	4	246	14 1.07	0.02	<10 0.31	299	12 0.02	7	90 <2	<5	<20	9 < 01	<10	21 <1) <	1 7
10131	7947	34432	CHALCEDONIC VEIN-BX	70	25	0.25	tr py	405	0.2	1.18	10	180	<) <5	3.39	<1	3	132	11 0.93	0.85	<10 0.18	259	7 <.01	9 2	120 <2	<5	<20	43 <.01	<10	20 <1) <)	1 15
10152	7936	34434	silicified tuff-OSTWK					570	0.0	1.97	390	120	<5	3 88	<1	11	156	+ 0.88 59 2.50	0.72	<10 0.07	423	133 < 01		,,,∪ <2)70 <7	<) <5	<20	19 5.01 36 < 01	<10	+> <1 98 <1	· ·	, 3 3 74
10420	7710	34435	LAMINATED QV	180	30	0.2	mod py	915	6.8	1.03	265	60	<5	0.76	<1	7	103	20 2.40	0.19	<10 0.46	251	909 0.03	3 1	200 <2	<5	<20	14 <.01	<10 1	29 <1) <1	1 21
10167	8205	34451	SUCROSIC QV	350	30	0.3	t r py	1880	2.2	1.04	60	270	<5	2.17	<1	<1	219	8 0.54	0.82	<10 0.05	122	383 <.01	6	70 <2	<5	<20	19 < 01	<10 1	80 <1) <1	1 2
10168	8201	34452	SUCROSIC QV	350	30	0.3	tr py	2350	0.6	0.56	140	165	<5	5.42	<1	<1	243	48 0.78	0.45	<10 0 03	88	63 0.04	5	50 24	5	<20	23 <.01	<10	13 <10) 1	53
10169	8196	34453	silicified mudstone - QSTWK	350	30			165	0.2	1.64	40	305	<5	2.68	<1	3	133	13 1.26	1.03	<10 0.18	225	17 <.01	10 4	40 <2	<5	<20	14 <.01	<10	29 <10) <1	23
10170	8188	34454	LAMINATED QV	350	30	0.3		2600	1.6	1.14	20	245	<5 ~5	7.29	<1	<1	161	8 0.62	1.01	<10 0.05	69	88 0.03	5	70 <2	<5	<20	21 < 01	<10	16 <10) <1	8
10172	81/9 91∡2	34433	STICE OSIC OV	350	30			300 430	0.0 2.0	1.21	120	202	<5	0.85 ຊາຂ	<1	<1	87 167	4 0.44	0.99	<10 0.11	8/ K2	124 0.02	44	r+∪ <2 60 -?	10 ~*	<20	4/ 0.01 25 ਵ^1	<10	ا[> ور ۱۱- ۶	, 1 , 1	. 11 2 7
10175	8158	34457	LAMINATED OV	350	30	0.3		535	0.8	1.38	70	200	<5	11.50	<1	1	82	14 0.87	0.81	<10 0.01	118	39 019	4 3	60 <2	10	<20	44 < 01	<10	45 <10) (5 10
			···· ••··· ••			-			-		-																				

· 《新台湾》中发展中国主要。

26.00.00.00

公司 经自己的财产 的复数形式

LEGEND LITHOLOGIC UNITS

QUATERNARY Glacial, fluvioglacial, fluvial, lacustrine, coluvium, and landslide deposits.

TERTIARY

EOCENE TKAMLOOPS GROUP

Ek	KAMLOOPS GROUP
Ekqs	Silica sinter
Ekqv —	quartz (breccia) vein
Ekb	Basalt – subaerial flows and breccias
Ekg	Gabbroic intrusives-(Basaltic feeders?)
Ekr	Rhyolite — subaerial tuffs, flows and domes
Ekri	Rhyolitic quartz eye porphyry intrusives

EARLY JURASSIC TO EOCENE

ASHCROFT FORMATION? early-mid Jurassic sediments JEc Conglomerate

JEm - Mudstone, greywacke

MESOZOIC

EARLY JURASSIC - LATE TRIASSIC

	TJI	Intrusive rocks – dominantly granodiorites
	Nim	Intrusive rocks - metamorphosed equivalents of abov
		TRIASSIC
	TNe	NICOLA GROUP Eastern facies — subarial
		volcanics and derived sediments
	TNev	Volcanics — undifferentiated
Ī	TNebx2	Breccia — Type 2 — Andesitic volcaniclastic
ĺ	TNef	Homblende porphyry andesitic – basaltic flows
	TNebx1	Breccia – type 1 – Porphyritic basalt,limestone
		clast breccia sediment
[TNea	Siltstone, volcanic greywackes
ĺ	TNes	Undifferentiated volcanic derived sediments

ALTERATION AND MINERALIZATION

carb carbonate alteration and veining epi epidote alteration and veining sil silicification arg argillic ankeritic alteration and veining ank **Propylitic** alteration prop QSTWK Quartz stockwork

KEY

~ ~

Geological Contact - defined, approximate, assumed Fault - defined, approximate, assumed

 \cdots \times Outcrop area - large, small Claim post - location known

Bedding - strike (075 true N), dip -60 degrees

Strike (075 true N), dip -60 degrees (left hand rule)

Vein strike and dip

Diamond drill hole collar. Strike of hole indicated. Proposed Diamond drill hole collar and direction. Rock sample location and identifier. Grid line Microgold co-ordinate system

GEOLOGICAL SURVEY BRANCH

ASSESSMENT REPORT

FIGURE 7

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

4.4.694.4