

JUN 1 8 1996

JUN 12 12.55 Gold Commissioner's Office VANCOUVER, B.C.

ASSESSMENT REPORT ON 1995 GEOLOGICAL, GEOCHEMICAL, AND GEOPHYSICAL WORK ON THE BALD 1-3 CLAIMS

BALD 1-3 (334960-334962)

CARIBOO MINING DISTRICT, BRITISH COLUMBIA NTS 93A/13,14 & 93H/3,4

OWNER AND OPERTATOR

Kennecott Canada Inc.

354-200 Granville Street

Vancouver, B.C.

V6C 1S4

FILMED

24,459

DATE: January 19, 1996

AUTHORS: A.G. S. Davies, D. Green

COMMODITY: Au, Ag

LOCATION: Wells-Barkerville Area, Central British Columbia

 NTS
 93A/13,14 & 93H/3,4

 UTM Zone
 10U, NAD27

 Northing
 5874000

 Easting
 600500

 Lat
 53⁰ 01'

 Long
 121⁰ 30'

SUMMARY

The Bald 1-3 claims are located in the Cariboo Mining District, approximately 5 kilometres south of the town of Barkerville, at the head of Williams Creek. Comprised of 48 units, the claims cover the broad, open ridges of Bald Mountain, and Mount Proserpine, and extend down into the headwaters of five past-producing placer creeks. Access to the claims is via helicopter, based in Quesnel, or by ATV from Barkerville and Wells on historic mining trails. The claims were staked in April 1995 to cover a regional geophysical anomaly. 1995 property work consisted of geological mapping, soil, rock and drainage sampling, and multi-parameter airborne geophysics. All ground work was conducted in August 1995.

Rocks underlying the property belong to the Barkerville Terrane, and include phyllite, quartzite, metasiltstone, and meta-conglomerate. These metasediments form part of an intensely deformed sequence of lower Paleozoic continental margin sediments within the Barkerville Terrane. Rare exposures of andesite porphyry, microdiorite and rhyolite dikes were mapped.

Poly-phase deformation has affected all stratified units on the property, and records a transition from ductile to brittle deformation from the Triassic to the Tertiary, respectively. Northwest trending, bedding-parallel cleavage is the most obvious structural element, and is responsible for overall lithologic distribution. Isoclinal folding of this cleavage, two and possibly three episodes of veining and several orientations of high-angle faults were also identified.

Vein mineralization was sparse, and only present in one of four mappable vein sets. The highest gold value obtained was 200 ppb from a sample of quartz vein containing galena, pyrite, bismuthinite, and tetrahedite (?). Associated elements were Ag, Bi, Sb and Pb. Weak hydrothermal (carbonate) alteration was spatially associated with an andesite porphyry dike in Wolverine Cirque.

Results from the airborne geophysical survey show a strong stratigraphic control on both EM resistivity, and magnetic response. Silica-rich quartzites are shown as resistivity highs, while graphitic metapelites are deep resistivity lows. Striping of magnetic data parallel to stratigraphy is likely indicative of detrital magnetite content within well-sorted metasandstone.

iii

Economic gold values were not located on the Bald Mountain Property during the 1995 field program. No significant alteration was encountered which could have suggested the presence of buried mineralization. Results of the airborne geophysics do not point to buried mineralization. No further work is recommended at this time.

TABLE OF CONTENTS

.

TABLE OF CONTENTS	
LIST OF APPENDICES	
LIST OF TABLES	
1. INTRODUCTION:	
1.1 LOCATION AND ACCESS	
1.2 PHYSIOGRAPHY, VEGETATION AND CLIMATE	
1.3 CLAIMS	
1.4 PREVIOUS WORK	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1.5 1995 WORK PROGRAM	
2. GEOLOGY	
2.1 REGIONAL GEOLOGY	
2.2 PROPERTY GEOLOGY	
2.2.1 Metasedimentary Rocks	
2.2.2 Igneous Rocks	
3 ALTERATION AND MINERALIZATION	
2.1 PECIONAL METALLOCENY	
3.2 PROPERTY MINER ALIZATION	
3.2.1 Curretz Voining	
3.2.7 Gaute 2 Configuration	
3.3 PROPERTY ALTERATION	
4. GEOCHEMISTRY	
4.1 ROCK GEOCHEMISTRY	
4.2 SOIL GEOCHEMISTRY	
4.3 DRAINAGE GEOCHEMISTRY	
5. GEOPHYSICS	
6. CONCLUSIONS AND RECOMMENDATIONS	
7. REFERENCES	
8 STATEMENT OF EXPENDITURES	

v

LIST OF APPENDICES

- Apendix A. Sampling methodology and analytical procedures
- Apendix B. Rock sample descriptions and analytical results
- Apendix C. Soil sample analytical results
- Apendix D. Drainage sample analytical results
- Apendix E. Dighem I-Power survey equipment

LIST OF FIGURES

Figure 1.	Location Map
Figure 2.	Claim Map
Figure 3.	Regional Geology Map
Figure 4a, 4b.	1:5,000 Property Geology Map
Figure 5.	1:10,000 Sample Location Map
Figure 6.	Plot of gold in rock samples
Figure 7.	Plot of silver in rock samples
Figure 8.	Plot of lead in rock samples
Figure 9.	Plot of bismuth in rock samples
Figure 10.	Gold in soil and drainage samples
Figure 11.	Silver in soil and drainage samples
Figure 12.	Lead in soil and drainage samples
Figure 13.	Bismuth in soil and drainage samples
Figure 14.	Contoured total field magnetics
Figure 15.	Contoured 7200 Hz resistivity .
Figure 16.	Contoured 900 Hz resistivity
Figure 17.	Contoured potassium radiometrics
Figure 18.	Contoured uranium radiometrics
Figure 19.	Contoured thorium radiometrics
Figure 20.	Contoured VLF (Seattle, Washington: 24.8 KHz)

Figure 21. Contoured VLF (Cutler, Maine 24.8: KHz)

LIST OF TABLES

Table 1. List of Claims

Table 2. Formations of the Barekerville Terrane.

1. INTRODUCTION:

The Bald Mountain property was staked in April, 1995 to cover ground at the headwaters of five historic placer gold creeks. A combination of the location relative to placer gold deposits and the existence of a discrete regional magnetic anomaly beneath Bald Mountain and Mount Proserpine lead to . selection of the target area. Historic work adjacent to, and within the property boundaries had focussed on vein mineralization, and narrow high grade gold targets. Exploration for bulk-tonnage low grade mineralization has not been undertaken, and was the purpose of this program.

Work conducted during late July and August, 1995 included: 1:5000 scale geological mapping, geochemical sampling, and a multi-parameter helicopter geophysical survey. Work was conducted to evaluate low-grade bulk-mineable replacement mineralization, or previously unrecognised intrusion related mineralization.

1.1 Location and Access

The Bald Mountain property is located at the headwaters of Williams creek, 4-5 km south-southeast of the town of Barkerville, British Columbia (Figure 1). The property is roughly centered at UTM coordinates 600500 East and 5874000 North, (Zone 10) and covers the corners of mapsheets 93A/13, 93A/14, 93H/03, and 93H/04.

Access is via historic mining trails, which originate in Barkerville and Wells, reach within 1km of the property, and connect with well marked hiking/skiing/skidoo trails which traverse the property. The historic mining roads are locally rugged and the use of ATV's is recommended. Alternatively, access to the property can be obtained by helicopter based in Quesnel approximately 85 km to the west.

1.2 Physiography, Vegetation and Climate

The Bald Mountain property is within the northern Quesnel Highlands, which consists of broad ridges and mountains divided by deeply incised river valleys. Elevations on the property range from 4800 feet to 6200 feet. Pleistocene glaciation sculpted much of the present day topography, and deposited considerable glacial debris at lower elevations. A prominent north facing cirque (Wolverine cirque), is testament to Holocene alpine glaciers which have only recently retreated.

First growth spruce cover much of the property below elevations of 6100 feet, above which alpine flora exist. Boggy meadows are common at lower elevations proximal to streams. Outcrop is abundant in Wolverine cirque; however, elsewhere it is rare, and limited to scattered exposures along ridge crests, stream banks and breaks in topography. Quartz vein felsenmeer is common in alpine areas.

The climate is characterized by moderate to high precipitation and a wide temperature range. In summer, daily temperature highs are between 10° C to 25° C, and evenings are cool with temperatures occasionally dropping below 0° C. Winters are cold, and temperatures of minus -20° C to -30° C are common. The ground is generally snow-free from late June through early September.

1.3 Claims

Claim Name	Units	Tenure Number	Staking Date	Expiry Date*
Bald 1	16	334960	April 20,1995	April 20, 1999
Bald 2	18	334961	April 20,1995	April 20, 1999
Bald 3	18	334962	April 20,1995	April 20, 1999

*Subject to acceptance of this report.

Table 1. Bald Mountain claim information

1.4 Previous Work

British Columbia's largest placer production has come from the Cariboo district. Placer gold was discovered in 1860, with mining continuing to the present day. The Bald Mountain property is located at the headwaters of five drainages, all of which have recorded placer production; Williams Creek (85,530 oz), Antler Creek (33,652 oz), Grouse Creek (14,435 oz), Jack O' Clubs Creek (6,916 oz) and Swifeet River (2,765 oz) (Levson and Giles, 1993). Evidence for historic placer working on the property is common along Williams creek and its tributaries, and to a lesser degree along the upper reaches of Grouse creek.

Lode gold mining began in the early 1870's meeting with little succes until 1933 at which time the Cariboo Gold Quartz mine began production, followed shortly afterwards by the opening of the Island Mountain mine in 1934. The Cariboo Gold Quartz mine produced 626,755 oz of gold, and is currently being drill tested for bulk mineable ore. The Island Mountain mine and adjoining Mosquito Creek mine have a combined production of 604,000 oz, and also are under currently under exploration for bulk mineable ore.

A caved in adit is located at the base of Wolverine cirque, and a 2810 feet adit extends from the Richfield property at the head of Mink gulch into the northwestern portion of the Bald Mountain property (Sutherland Brown, 1957). Neither of the adits appear to have intersected significant mineralization. Trenched quartz veins are common throughout the property.

1.5 1995 Work Program

A total of 12 days were spent on the property, from August 18 to 29, during which time a 3 person crew conducted 1:5,000 scale geological mapping, contour and ridge line soil sampling, rock sampling and stream sediment sampling. A 200 line kilometre multiparameter airborne geophysical survey was flown by Dighem I Power in late July. A small base-camp was flown in by helicopter and located near the centre of the property. Exploration work was carried out by Kennecott (Vancouver) geologists: A. Davies, D. Green, and N. Thomas.

2. GEOLOGY

2.1 Regional Geology

Rocks of the Bald Mountain property are part of the Barkerville Terrane, which is located within the Omineca morphogeological belt. The Barkerville Terrane is dominated by Pre-Cambrian and Paleozoic grit, quartzite, and pelite, with lesser amounts of limestone, volcaniclastic rocks, and intrusions (Struik, 1988). Depositon occured in an oceanic continental shelf and slope environment, with detritus primarilly derived from the North American craton. The Barkerville Terrane is fault bounded by the Cariboo Terrane to the east and to the west by the Slide Mountain and Quesnel Terranes (Figure 3).

Structural complexity, minimal fossil control, and lack of marker beds inhibits stratigraphic mapping.
Stratigraphic units are often defined only by subtle variations or concentrations of particular lithologies.
Table 2 describes formations of the Barkerville Terrane as identified by Struik (1988):

Rocks of the Barkerville Terrane are highly deformed and record a history from oldest to youngest of: 1) shear, 2) ductile shortening and 3) brittle shortening and extension. Pervasive bedding parallel cleavage, local mylonites and isoclinal, commonly rootless folds formed in response to compression and shear during eastward overthrusting of the Antler Formation (Slide Mountain Terrane) during the latest Triasssic (?). Two or more sets of cleavage and folds formed during ductile shortening, and are superimposed on earlier bedding parallel cleavage. Folds are dominantly north-west trending, asymetric, similar, range from open to isoclinal, and have moderately to shallowly dipping cleavages. Ductile folding is presumably related to collision of the two land masses of North America and Quesnellia with peak metamorphism occuring in the Early Jurassic (?). Brittle shortening and extension is evidenced by crenulations, kinks, broad open small-scale folds and extensional faults which overprint all other structures. It is inferred that, coincident with uplift, the structural setting changed from brittle compression to extension in response to change in the Late Cretaceous from a primarily transpressional tectonic regime to a northerly-directed transtensional strike-slip regime.

Table 2. Table of formations for the Barkervile Terrane (Struik, 1988)

2.2 Property Geology

Underlying the Bald 1-6 claims is a thick sequence of intensely deformed, Early to Mid Paleozoic metasedimentary rocks of the Snowshoe Group. These strata have been intruded by several high level intermediate to felsic dikes, which likely postdate Jurassic, if not Cretaceous age deformation. Three or more phases of deformation, spanning the Triassic to Tertiary, have imparted strong northwest-southeast trending S_1 and S_2 foliations, as well as tight to open, northwest-southeast trending F_2 folds, and several orientations of brittle faults.

2.2.1 Metasedimentary Rocks

Metasedimentary rocks underlying the Bald Mountain property are, in decreasing order of abundance: Quartzite, phyllitic quartzite, phyllite, meta-siltstone, graphitic pelite, and meta-conglomerate and minor conglomeratic mica schist. Metamorphic, and structural overprints hinder identification of small scale stratigraphic variations, and all but obscure primary bedding. Bedding has been transposed into the plane of S_1 foliation, and is now defined by gross and subtle changes in compositional layering parallel to S_1 . Three litho-stratigraphic units have been defined on the basis of their dominant lithology. These units are referred to as unit I, unit II, and unit III, and are described below.

Unit I: Phyllite/ Phyllitic quartzite/ Meta-siltstone/ Meta-conglomerate

Rocks of unit I represent the deepest strucural and stratigraphic(?) level on the property and are best exposed in Wolverine cirque which disects the hinge zone of a large antiform. Exposure in the cirque is excellent and consists primarilly of five to fifeeteen metre interbeds of phyllite, "dirty" quartzite, siltite, and lesser conglomerate. Phyllite is generally silver-gray and exhibits a typical phyllitic sheen. Quartzite is light gray to brown-gray and generally contains impurities (dominantly pelite) which produces a darker "dirty" appearance and allows for local development of a micaceous foliation. Siltite (meta-siltstone) is light to medium gray and is is transitional in appearance between the phyllite and "dirty" quartzite. Conglomerate layers are situated at the top of the unit and consist of gray, granule to pebble sized siliceous clasts in a siliceous matrix. Large (up to 2.5m wide) discontinuous rod-like quartz veins and small scale folds are concentrated within the unit near the summit of Bald Mountain and are associated with the hinge of the antiform.

Unit II: Graphitic Pelite

Graphitic pelite lies structurally and stratigraphically(?) above unit I. Rocks are meta-mudstone, dark grey to black, highly graphitic and locally contain 0.5-3% disseminated euhedral pyrite. Pyrite occurs as cubes up to 8 mm across, although average 2-6 mm. Narrow (0.5-2 cm) milky white quartz veinlets are abundant, intensely folded, and contain little or no sulphide. The rocks are locally phyllitic, although in general are dull to waxy in apperance and lack the typical lustrous micaceous sheen characteristic of phyllites. Deformation is strong and shown by numerous, small scale, open to tight folds. The unit is outlined on the airborne geophysics by an extreme resistivity low, likely a consequence of the high graphite content.

Unit III: Quartzite

Unit III quartzites represent the highest structural and stratigraphic(?) level on the property. Rocks are pale buff-grey, orange to olive, weather resistantly, commonly underly ridge crests and form cliffy exposures. Due to its resistant nature quartzite is represented by a greater relative abundance of outcrop than other rock types, which likely does not represent true lithologic abundances. Composition ranges from pure quartzite to micaceous or highly pelitic "dirty" quartzite. Quartz ranges from fine grained to granular, although individual grains in many rocks are often fused beyond recognition. The rocks are generally massive with a poor to moderately developed cleavage, except for highly micaceous quartzite which has cleavage that is well defined by micaceous layers and often has a schistose texture. Tight to isoclinal folds occur, although are uncommon and difficult to identify due to the poor development of S_1 cleavage in this unit. Narrow quartz veins are ubiqitous, commonly planar with random orientations, occur locally in high density and rarely contain sulphide.

2.2.2 Igneous Rocks

No igneous rocks had been identified within the boundaries of the Bald Mountain property prior to 1995 fieldwork. Mapping has identified three igneous units, which all occur as dikes: Quartz-hornblende-plagioclase phyric andesite, hornblende-plagioclase microdiorite, and flow banded rhyolite. The former two units occur on the property, while the only exposures of rhyolite are located 1.2 km to the west of the property, on the northeast flank of Mount Agnes.

Unit IV: Quartz-hornblende-plagioclase phyric andesite

Only two andesite dikes were located, one on the eastern edge of Wolverine Cirque, and the other on the ridge west of Williams Creek. Many boulders of this unit were observed in both Williams Creek and McCallum Gulch, suggesting that more dikes may exist beneath overburden cover. The unit is non-magnetic, blocky and pale grey-brown weathering, and occurs as steep-dipping, northwest trending dikes which are 2 -5 metres thick. Fine, dark green to black clots of hornblende, anhedral resorbed plagioclase and 1 to 3 mm euhedral quartz phenocrysts are set in a light brown, aphanitic matrix.

Unit V: Hornblende-plagioclase microdiorite

Microdiorite dikes occur in the headwaters of an unnamed tributary of Williams Creek, in the northwest corner of the property, and subcrop in the saddle which separates Bald Mountain from Mount Agnes. Fine grained plagioclase, hornblende, and pyroxene (?) comprise these pale green dikes, which are 1 - 2 metres wide with variable strikes, and steep dips.

Unit VI: Rhyolite

A 3-4 metre wide, undeformed rhyolite dike is exposed crosscutting foliated quartzite in subcrop and outcrop for aproximately 100 m on the northwest flank of Mount Agnes. The dike is fresh in appearance, cream to buff, aphanitic with trace fine rusty flakes of siderite, has flow banded margins, and is oriented 153/74 SW.

2.2.3 Structural Geology

Bedding, although not easily identified, is generally steep to moderate and dips to the northeast. A pervasive bedding-parallel foliation (S_1) affects all of the metasediments and is the most prominent deformation fabric on the property. Bedding locally appears transposed parallel to this foliation. Development of highly deformed veinlets, common in many rocks, may be related to S_1 deformation.

Large scale folds are indicated by repititions of stratigraphy and further characterized by tracing stratigraphy outlined on resistivity maps. Small scale folds deform the S_1 foliation on an outcrop scale, and are likely subsidiary to the large scale folds which have parallel fold hinges. A rare, weakly developed steeply dipping S_2 foliation may be axial planar to the folds.

Conspicuous veins on the summit of Bald Mountain have an intimate structural relationship with folds. Veins are linear, discontinuous rods which parallel fold hinges and occupy dilation zones within small scale folds. Deformation of subsidiary veins, occuring proximal to the main veins and cross-cutting S_1 foliation, indicates veins formed during folding. Vein density is greatest in the hinge zones of large scale folds. A secondary, related vein set comprises narrow planar veinlets which occupy fractures transverse to the folds.

The Barkerville fault is a regional-scale, northerly trending structure which transects the western half of the property. A pronounced gully, with associated ankeritic alteration, cuts across the top of Bald Mountain and is interpreted to be the surface trace of the fault.

3. ALTERATION AND MINERALIZATION

3.1 Regional Metallogeny

Lode gold deposits in the Cariboo are concentrated along a narrow north-west trending strip of rocks termed the Barkerville Gold Belt (Hanson, 1935). Gold mineralization is associated with quartz veins and pyritic replacements of limestone, both of which are temporally and spatially related. Four vein sets have been recognized and occur throughout the belt: 1) transverse, 2) diagonal, 3) strike fault and 4)

bed veins. The strike fault and bed veins, commonly referred to as A-veins, are large and conspicuous with little or no economic merit; whereas. both the transverse and diagonal veins, referred to as B-veins, are narrow, inconspicuous, abundant and host significant gold mineralization (Johnston and Uglow, 1926 and Hanson, 1935). Auriferous quartz veins contain pyrite and arsenopyrite, lesser amounts of galena, bismuth-lead sulphide, scheelite, sphalerite, marcasite and telluride.

Struik (1988) implies stratigraphic, structural, and metamorphic control on the location of gold mineralization. Mineralization primarily occurs within the Downey and Harveys Ridge successions of the Snowshoe Group, with pyrite replacement pronounced in structurally thickened hinge zones of folds and gold bearing vein orientations controlled by regional fault and fracture patterns. Lode gold occurences are confined to rocks of chlorite grade metamorphism even though areas of higher grade metamorphism contain the same stratigraphy. Struik therefore suggests that gold mineralization and metamorphism are coeval, whereby gold precipitated in the cooler regime of a circulating meteoric hydrothermal system driven by a metamorphic heat anomaly.

3.2 Property Mineralization

3.2.1 Quartz Veining

Veining was located throughout the property (Fig 4.), although mineralization within these veins was sparse. Veins can be grouped into four sets, which reflect different structural elements and events.

• Group 1 veins are either pre or syntectonic with F_2 deformation, and are economically insignificant. They are centimetre scale, discontinuous and frequently harmonically folded.

• Group 2 trend north-northwest, parallel F_2 fold axes, dip steeply and are vertically discontinuous. Strike continuity of individual veins is as great as 250 m with widths from 0.30 m to 3.0 metre. They occupy zones of dilation or hinge zones in medium scale F_2 folds, which results in a rodshaped vein morphology. Although striking in appearance where they traverse the broad top of Bald Mountain, their strike continuity is deceiving.

13

• Group 3 veins occur as tension gash sets, and rarely as discrete, centimeter scale veins which are transverse to the northwest trending fold axial planes, and parallel to the dominant east-west joint set.

• Group 4 veins are the only set which yielded significant precious and base metal mineralization and their relationship to other the other vein sets is enigmatic. These veins trend west to west-northwest and dip steeply to the north and south, are vertically continuous, range from 0.20 to 0.40 metres thick. This vein set is likely equivalent to veins which are described regionally as 'diagonal veins'. Strike extent could not be determined due to overburden cover. Overal group 4 veins are scarce.

Spatial distribution of the various veins sets is controlled by structural setting. In general, group 1, 2 and 3 veins were concentrated in Wolverine Cirque and on the open ridge of Bald Mountain, which correlates with an interpreted antiformal hinge zone. Group 4 veins were identified on the eastern side of Wolverine Cirque, adjacent to the inferred southern extension of the Barkerville Fault, and on the north end of Proserpine Ridge above McCallum Gulch.

3.2.2 Vein Mineralization

Group 1 and 3 veins were not observed to contain sulphides and were composed entirely of milky, white vein quartz. Group 2 and 4 veins are composed of milky, white quartz, with occasional cavities containing rare euhedral quartz crystals. Gaugue mineralogy in group 2 veins includes quartz, with 0.5 to 3.0 cm clots of limonite or jarosite after calcite. Fracture surfaces are frequently covered in thin films of clear muscovite, and rare patches of elbow-twinned rutile. No sulphides were observed in any group 2 veins and assay results reflect the absence of mineralization.

Group 4 veins are composed of milky and clear quartz, have muscovite on fractures, and contain the only noteable mineralization located on the Bald Mountain property. Veins are auriferous and argentiferous with clots of massive pyrite, +/- galena +/- bismuthinite +/- tetrahedrite (?). Clots are up to 20 cm in diameter and commonly include subhedral to anhedral crystals of clear, grey quartz. Best exposures of this vein set are on the eastern edge of Wolverine Cirque where the Barkerville Fault lineament intersects the cirque. At this location, two group 4 veins, which weather rusty brown to

orange and contain up to 20 % sulphides, are exposed in a gully wall and talus slope. Veins located in Williams Creek, 0.75 km upstream from its junction with McCallum Gulch, were similar in character, mineralization and geochemistry to those in the cirque, and are likely group 4 veins. Galena-bearing, argentiferous veins on the northern end of Proserpine Ridge are similar in morphology to group 2 veins; however, they trend west to west-northwest, and are mineralogically similar to group 4 veins. These veins have been assigned to group 4 instead of group 2.

3.3 Property Alteration

Evidence of thermal and/or hydrothermal alteration on the property was scarce. Orange soil, and moderately to strongly iron carbonate altered phyllites were found spatially associated with the Barkerville Fault Lineament at the site of the Group 4 veins (Fig 4.). The area affected by this alteration was only a few tens of metres across. Also spatially associated with this alteration and veining was one of the only outcrops of intrusive rock, a hornblende-plagiocalse-quartz phyric andesite dike.

Hornfelsed and/or silicified phyllite and quartzite was found on the northeastern flank of the ridge trending north from Bald Mountain to Mink Gulch, at the headwaters of a small un-named creek flowing north into Williams Creek. Metasediments are hard, siliceous and green to greenish gray, and cut by several narrow, east-west trending diorite dikes.

4. GEOCHEMISTRY

A total of 70 rock, 172 soil and 5 stream sediment samples were collected during Bald Mountain property work in August of 1995. Soil and rock samples were analyzed for 32 elements by ICP, and for gold by fire assay with an AA finish. In addition, all rock samples were assayed for tungsten. Stream sediment samples were split into two fractions: -80 + 150 mesh and -150mesh. The coarser fraction was analysed for 32 elements by ICP, while the fine fraction was assayed for gold by fire assay with an AA finish, and analysed by UT10 and T24 for 27 elements. All rock and fine fraction samples were also assayed for tungsten. Analytical results are listed in Appendices B to D. Chemex Labs Ltd., North Vancouver B.C. performed all analyses. Sampling methodologies and analytical procedures are described in Appendix A.

15

4.1 Rock Geochemistry

Rock sample descriptions and results are included in Appendix B. Sample locations and selected elements are plotted in Figures 5 to 9. Of 70 rock grab and chip samples, only four returned gold values above the 5 ppb detection limit, ranging from 25 to 200 ppb gold. As described under "Vein Mineralization", only Group 4 veins contained visible sulphides; correspondingly, only group four veins returned anomalous precious and base metal geochemistry.

Samples of these quartz-galena-pyrite-bismuthinite-tetrahedrite (?) veins returned weakly anomalous gold (up to 200ppb), and anomalous silver (up to 153ppm), bismuth (up to 108ppm), antimony (up to 20ppm) and lead (greater than 10,000 ppm). Group 4 veins in Wolverine Cirque yielded the highest values; however, veins on the northern end of Mount Proserpine displayed the same, although weaker, elemental associations. There appears to be a good correlation between lead-bismuth-silver, and to a lesser extent gold and antimony in Group 4 veins. In cases where designation of vein group cannot be made in the field, the presence of silver-lead-bismuth +/- gold +/- antimony can be used to delineate Group 4 veins geochemically.

Silver values were highest in Group 4 veins and returned scattered values in other vein groups. Mercury and arsenic showed no strong correlations, although several high Mercury values (up to 380pp) were obtained from a cluster of Group 2 (?) veins in the upper reaches of Grouse Creek.

4.2 Soil Geochemistry

Soil samples were collected at 50 metre spacings on flagged and hip-chained, contour soil and ridgecrest lines (Fig.5, and Figs. 10-13). Samples were taken from B horizon soil, and included residual and colluvial material. Ridgecrest soils are residual and usually less than one metre thick. Soils on steeper slopes are colluvial, with local accumulations of talus fines. Valley floors and lower slopes were underlain by a combination of fluvial, colluvial and glacial debris.

Soil line locations were selected to cover the principle geophysical targets, and/or crosscut stratigraphy. Thresholds and anomalous levels were determined by inspection. Results were not encouraging, with few gold values exceeding detection. Soil geochemistry shows a moderate correlation between gold and silver, and weak correlation with lead and silver. Highest gold in soils came from the northwest end of Mount Proserpine, where four consecutive samples assayed between 15 and 50 ppb gold with up to 6.6 ppm silver. Geochemical results are listed in Appendix C.

4.3 Drainage Geochemistry

Major drainages, and minor gulches draining the Bald Mountain claims were sampled to aid in the identification of target areas. Sampling methodology and analytical procedures are described in Appendix A, and results are tabulated in Appendix D. Five, 5 kilogram samples were taken from medium energy trap sites such as mid-bar deposits, and sieved on-site to -10 mesh. Analyses were performed on two fractions: -80 to +150 mesh, and -150 mesh. The coarse fraction was analysed by 32 element ICP, and the finer fraction by organic extraction ICP, ICP-AES, fire-assay gold with AA finish, and a colourimetric tungsten assay.

Fine fraction results (Figures 10-13) are considered more representative than the coarser fraction, and were treated by more sensitive analytical procedures. Gold assays were only obtained for the fine fraction in order to test for fine gold, and to reduce the "nugget effect". Of the five samples, VR20077A from McCallum Gulch was the only anomalous gold value at 235 ppb.

5. GEOPHYSICS

A 211 line-kilometer Dighem^V electromagnetic/resistivity/magnetic/VLF/radiometric survey was flown over the Bald Mountain property by Dighem I Power from August 6 to August 9, 1995. This was accomplished using a Dighem^V multi-coil, multi-frequency electromagnetic system supplemented by a high sensitivity Cesium magnetometer, a 256-channel spectrometer and a four-channel VLF reciever (appendix E). Instrumentation was installed in an AS350B1 turbine helicopter which flew at an average airspeed of 114 km/h with an EM bird height of approximately 30m. A GPS electronic navigation system, utilizing a UHF link, ensured accurate positioning of the geophysical data with respect to the

17

base map. Visual flight path recovery techniques were used to confirm the location of the helicopter where visible topographic features could be identified. Geophysical data was processed to produce maps which display the magnetic, conductive and radiometric properties of the survey area (Figures 14-21).

An approximately 2 km wide, northwesterly trending, magnetic high transects the northeast half of the property shown on the contoured total field magnetics map. (Figure 14). Within the broad magnetic high is a narrow linear trend of highly magnetic rocks which terminates in a 400 m diameter circular feature. The narrow diameter and intensity of the circular anomaly suggest that it may reflect a shallowly buried intrusive body. No intrusive rock was found associated with the magnetic highs, nor are there indications of thermal alteration indicative of a shallowly buried intrusion. Magnetic highs parallel stratigraphy, underlie areas of quartzite and are likely the result of magnetite rich sands within the quartzite unit.

Contoured 7200 Hz resistivity and 900 Hz resistivity maps (Figures 15 and 16) define structure and distribution of litho-stratigraphic units exceptionally well because of contrasting conductivity of litho-stratigraphic units (Figures 23 & 24). Graphitic pelite correlates with resistivity lows and quartzite with resistivity highs.

Contoured potassium, uranium, and thorium radiometrics maps (Figure 17-19) indicate radiometric high distribution mimicking areas of elevated topography and creeks with large gravel bars. The survey was flown during a period of high rainfall and therefore areas of poor drainage and or abundant overburden cover are likely to have their radiometric signatures partially or completely masked.

VLF signals recieved from Seattle, Washington and Cutler, Maine are plotted on figures 20 and 21 respectively. Nothing of significance is noted.

6. CONCLUSIONS AND RECOMMENDATIONS

Geological, geochemical and geophysical surveys of the Bald 1-3 claims have failed to yield results of economic significance. Four distinct vein sets were identified, of which only one, Group 4, was

18

auriferous. Group 4 veins were narrow, only weakly auriferous, did not show any significant vein density, and do not represent a bulk mineable target.

Contour and ridge-line soil geochemistry showed no areas of elevated gold geochemistry that warrant further work at this time. Where these lines crossed areas underlain by magnetic highs no anomalous geochemical results were returned. In light of the lack of geochemical anomalies, or signs of thermal and/or hydrothermal alteration in rocks overlying these magnetic features, it is unlikely that buried intrusives are present.

A strong, northwest trending grain to both the magnetics and resistivity support the conclusion that the geophysics reflects stratigraphic distribution. The dominant northwest trending magnetic high, with its circular magnetic culmination underlying Mount Proserpine, is likely caused by disseminated detrital magnetic within the quartzite package. Structural thickening of this unit may result in local restricted peaks within the broader magnetic high.

Drainage geochemistry did not aid in the identification of previously unrecognized areas of mineralization. Interpretation of gold geochemistry is hindered by the unquantified effects of ubiquitous placer mining in the creeks draining Bald Mountain.

Based on the results of 1995 fieldwork on the Bald 1-3 claims do not warrant further work at this time.

7. REFERENCES

Hanson, G., 1935. Barkerville gold belt, Caricoo district, British Columbia; Geological Survey of Canada, Memoir 181, 42p.

Memon 101, 42p.

Johnston, W.A. and Uglow, W.L., 1926. Placer and vein gold deposits of Barkerville, Cariboo district, British Columbia; Geological Survey of Canada, Memoir 149, 246p.

Levson, V. M. and Giles, T.M., 1993. Geology of Tertiary and Quaternary gold-bearing placers in the Cariboo Region, British Columbia (93A, B, G, H); B.C. Ministry of Energy, Mines and Petroleum Resources, Bulletin 89, 201p.

Sutherland Brown, A., 1963. Geology of the Cariboo River area, British Columbia; British Columbia Department of Mines and Petroleum Resources, Bulletin 47, 60p.

Struik, L.C., 1988. Structural geology of the Cariboo gold mining district, east-central British Columbia; Geological Survey of Canada, memoir 421, 100p

8. STATEMENT OF EXPENDITURES

~ .	
<u> </u>	griee.
- N744	ai 1031

	\$36,225.09
	\$20,000.00
\$207.95	\$4302.09
\$2,516.34	
\$1577.80	
	\$2313.00
	\$1,800.00
	\$1,000.00
	\$1.000.00
	\$570.00
\$1,920.00	\$6,240.00
\$2,040.00	
\$2,280.00	
	\$2,280.00 \$2,040.00 \$1,920.00 \$1577.80 \$2,516.34 \$207.95

9. STATEMENT OF QUALIFICATIONS

I, Andrew G.S. Davies, with business address:

Kennecott Canada Inc. 354-200 Granville Street Vancouver, B.C. V6C 1S4

and residential address in Vancouver, British Columbia, do hereby certify that:

- 1. I am a geologist with Kennecott Canada Inc.
- I am a graduate of the University of British Columbia, Vancouver, with a degree in geology (B.Sc., 1994) and have been involved in geological work since 1987.
- 3. I am co-author of this report on the Bald claims, Cariboo Mining District, British Columbia, which is based on my personal examination of the ground during August, 1995, and on referenced sources.

January 19, 1996

Andrew G.S. Davies, B.Sc.

APPENDIX A

SAMPLING METHODOLOGY AND ANALYTICAL PROCEDURES

SAMPLING METHODOLOGY

All analyses were performed by Chemex Labs at 212 Brooksbank Ave., North Vancouver, B.C.. For detailed descriptions of the following analytical procedures, refer to the pages following the description of sample collection procedures. Chemex codes are noted with each procedure to allow cross referencing with the assay certificates.

Drainage Sampling

Stream sediment samples were collected from medium energy trap sites, preferably within the active channel. The preferred medium energy site was a mid-bar environment, where clay to sand-sized particles form the matrix for fine gravel to cobble sized clasts. All samples were screened on-site through a 12 mesh (1.7 mm) screen into a catch pan, with care being taken to reduce the amount of fine material washed over the edge of the pan. Approximately five kilograms of screened material, was collected at each site, stored in a poly bag and shipped to Chemex Labs in North Vancouver for further screening and analysis.

Chemex Labs dry-sieved the five kilogram samples through -80 mesh (180µm) and -150 mesh (105µm) and extracted two size fractions for analysis. The -80+150 mesh fraction was analyzed by standard 32 element IC. The -150 mesh fraction was anlyzed by ultra-trace organic extraction-inductively-coupled plasma spectrometry for 9 elements with low-level mercury by atomic absorption spectroscopy, and inductively-coupled plasma atomic emission spectrometry for 24 elements. In addition, the fine fraction was assayed for gold, by fire assay with atomic absorption spectroscopy finish, and tungsten colourimetry.

Rock Sampling

Both rock grab and chip samples were collected, with approximate, average sample weights of 3 kilograms. Rock samples were crushed and ring ground, and then analysed by 32 element ICP, colourimetric tungsten assay and gold by fire assay with an AA finish.

Soil Sampling

Soil sampling techniques are described in section 4.2. All soil samples were analysed by 32 element ICP, colourimetric tungsten assay and gold by fire assay with an AA finish.

Ring Grinding

Chemex Code: 208 Assay samples

A crushed sample split is ground using a ring mill pulverizer with a chrome steel ring set. The Chemex specification for this procedure is that greater than 90% of the ground material passes a 150 mesh screen. Grinding with chrome steel will impart trace amounts of iron and chromium to a sample.

Crushing

The entire sample is passed through TM Rhino crusher to yield a crushed product where greater than 60% of the sample passes a -10 mesh screen. A split in the range of 200-250g (weight depends on parameters requested) is then taken using a stainless steel Jones riffle splitter.

Different crushing codes are used depending on the weight of the original sample:

Chemex
CodeSample Weight2260 - 6 lbs (Small rock chip samples packed in porous bags only)2947 - 15 lbs27616 - 25 lbs27326 - 40 lbs27041 - 60 lbs

•

32-Element Geochemistry Package (32-ICP) Inductively-Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES)

A prepared sample (1.0g) is digested with concentrated nitric and aqua regia acids at medium heat for two hours. The acid solution is diluted to 25ml with demineralized water, mixed and analyzed using a Jarrell Ash 1100 plasma spectrometer after calibration with proper standards. The analytical results are corrected for spectral inter-element interferences.

	Chemex	Element	Detection	Upper
	Codes		Limit	Limit
	229	Digestion		
	2119	* Aluminum	0.01 %	15 %
	2118	Silver	0.2 ppm	0.02 %
	2120	Arsenic	2 ppm	1 %
-	2121	* Barium	10 ppm	1 %
	2122	* Beryllium	0.5 ppm	0.01 %
	2123	Bismuth	2 ppm	1 %
	2124	* Calcium	0.01 %	15 %
	2125	Cadmium	0.5 ppm	0.05 %
	2126	Cobalt	1 ppm	1 %
	2127	* Chromium	1 ppm	1 %
	2128	Copper	1 ppm	1 %
	2150	Iron	0.01 %	15 %
2	2130	* Gallium	10 ppm	1 %
	2132	* Potassium	0.01 %	10 %
	2151	* Lanthanum	10 ppm	1 %
	2134	* Magnesium	0.01 %	15 %
	2135	Manganese	5 ppm	1 %
	2136	Molybdenum	1 ppm	1 %
	2137	* Sodium	0.01 %	10 %
	2138	Nickel	1 ppm	1 %
	2139	Phosphorus	10 ppm	1 %
	2140	Lead	2 ppm	1 %
	2141	Antimony	2 ppm	1 %
	2142	* Scandium	1 ppm	1 %
	2143	* Strontium	1 ppm	1 %
	2144	* Titanium	0.01 %	10 %
	2145	* Thallium	10 ppm	1 %
	2146	Uranium	10 ppm	1 %
	2147	Vanadium	1 ppm	1 %
	2148	* Tungsten	10 ppm	1 %
1	2149	Zinc	2 ppm	1%
	2131	Mercury	1 ppm	1 %

* Elements for which the digestion is possibly incomplete.

Ultra-Trace-10 (UT10)

The UT10 package combines results from two trace element procedures. Organic extraction followed by inductively coupled plasma spectroscopy is used to determine Ag, As, Bi, Cd, Cu, Mo, Pb, Sb, and Zn. Mercury is done separately by cold vapor AA to provide the lowest detection limit for this element.

Organic Extraction - Inductively-Coupled Plasma Spectroscopy

A prepared sample (2.00g) is digested with concentrated hydrochloric acid and potassium chlorate at low heat. The resulting solution is reduced to eliminate iron interference and trace elements are extracted with trioctyl-phosphine oxide into an organic solvent. The extract is then analyzed by inductively-coupled plasma spectroscopy.

This multi-element extraction is suitable for the analysis of soils, stream and lake sediments and other material which is not highly mineralized. If any element's upper limit is exceeded, the extraction capacity is exceeded and all elements for that particular sample will have to be reported as mineralized.

Chemex Codes	Element	Detection Limit	Upper Limit
1089	Antimony	0.2 ppm	0.1%
1092	Arsenic	0.2 ppm	0.5%
1094	Bismuth	0.2 ppm	0.5%
1095	Cadmium	0.1 ppm	0.01%
1097	Copper	0.2 ppm	0.5%
1933	Lead	0.5 ppm	0.5%
1939	Molybdenum	0.2 ppm	0.5%
1941	Silver	0.02 ppm	0.02%
1946	Zinc	1 ppm	0.5%

Mercury Atomic Absorption Spectroscopy

Chemex Code: 20

A prepared sample (1.00g) is digested with concentrated nitric-aqua regia acid for two hours. The digested solution is diluted to volume and homogenized. An aliquot of the solution is transferred to a reaction flask connected to an absorption cell. Stannous chloride is added to reduce the mercury which is then measured by cold vapour atomic absorption spectroscopy.

Detection Limit: 10 ppb

Upper Limit: 0.01%

24-Element Geochemistry Package (24-ICP)

Inductively-Coupled Plasma Atomic Emission Spectroscopy (ICP-AES)

The 24 element rock geochemistry package provides quantitative analysis of all major elements (except silicon) as well as most important trace elements.

A prepared sample (0.50g) is digested with perchloric, nitric and hydrofluoric acids to dryness. The residue is taken up in a volume of 25ml of 10% hydrochloric acid and the resulting solution is analyzed by inductively-coupled plasma atomic emission spectroscopy. Results are corrected for spectral interelement interferences.

Chemex	Element	Detection	Upper
Code		Limit	Limit
573	Aluminum	0.01 %	15 %
575	Parinee	10 mmm	1070
505	Darium	10 ppm	1%
575	Beryllium	0.5 ppm	0.01 %
561	Bismuth	2 ppm	1%
576	Calcium	0.01 %	25 %
562	Cadmium	0.5 ppm	0.05 %
569	Chromium	1 ppm	1 %
563	Cobalt	1 ppm	1 %
577	Copper	1 ppm	1 %
566	Iron	0.01 %	15 %
560	Lead	2 ppm	1 %
570	Magnesium	0.01 %	15 %
568	Manganese	5 ppm	1 %
554	Molybdenum	1 ppm	1 %
564	Nickel	1 ppm	1 %
559	Phosphorus	10 ppm	1%
584	Potassium	0.01 %	10 %
578	Silver	0.5 ppm	0.02 %
583	Sodium	0.01 %	10 %
582	Strontium	1 ppm	1 %
579	Titanium	0.01 %	10 %
556	Tungsten	10 ppm	1 %
572	Vanadium	1 ppm	1 %
558	Zinc	2 ppm	1 %

Gold

Fire Assay Collection/ Atomic Absorption Spectroscopy (FA-AA)

Chemex Code: 983

A 30g sample is fused with a neutral lead oxide flux inquarted with 6mg of gold-free silver and then cupelled to yield a precious metal bead.

These beads are digested for 30 mins in 0.5ml diluted 75% nitric acid, then 1.5ml of concentrated hydrochloric acid are added and the mixture is digested for 1 hr. The samples are cooled, diluted to a final volume of 5ml, homogenized and analyzed by atomic absorption spectroscopy.

Detection limit: 5 ppb

Upper Limit: 10,000 ppb

Chemex Code: 998 (oz/T)

Gold analyses are done by standard fire assay techniques. A prepared sample (1 assay ton (29.166 grams)) is fused with a neutral flux inquarted with 5 mg of Au-free silver and then cupelled. Silver beads for AA finish are digested for 1/2 hour in 1 ml diluted 75% nitric acid, then 3 ml of hydrochloric is added and digested for 1 hour. The samples are cooled and made to a volume of 10 ml, homogenized and analyzed by atomic absorption spectroscopy.

Any samples which assay over 0.4 oz/T (13.6 g/t) are automatically re-fire assayed using gravimetric finish. The gravimetrically determined gold content is substituted into the certificate of analysis.

Detection Limit: 0.001 oz/T

Upper Limit: 20 oz/T
Tungsten Assay

Chemex Code: 339 (WO, %)

A prepared sample (0.5 - 1.0 gram) is decomposed by a mixture of phosphoric, hydrofluoric and hydrochloric acid. Tungsten is then reduced with stannous chloride under carefully controlled conditions of temperature and acidity, and then complexed with thiocyanate. The solution is then analyzed against prepared standards by Spectrophotometer.

Detection Limit: 0.01 %

Upper Limit: 100 %

APPENDIX B

ROCK SAMPLE DESCRIPTIONS AND ANALYTICAL RESULTS

Sample	Easting	Northing	Rock	Rock Mo	difiers	Mineral	s				
Number		-	Туре		1 2	Mineral	1 %	Occur.	Minera	1%	Occur.
VR33016A	600173.92	5876487.8	QTZ	VEN		PYY	TR		GRA	•••••	
VR33017A	600278.91	5875947	QTZ	VEN		GAL	7	CLOTS	PYY	3	DIS
VR33021A	600254.11	5876173.9	PHY	VEN	:	QTZ		1	PYY	TR	DIS
VR33022A	600272.86	5876036.1	PHY	FOL		PYY	TR	DIS			
VR33027A	599990.57	5873880.9	QTT	VEN	ALT	QTZ	10	VEN			
VR33028A	599990.57	5873880.9	QTZ	VEN		PYY	1	CLOTS	GAL	10	CLOTS
VR33029A	599990.57	5873880.9	QTT	VEN					ŀ		
VR33030A	599231.77	5873589.7	QTZ	VEN	· · · · · · · · · · · · · · · · · · ·					1	
VR33031A	599530.4	5873411.9	QTZ	VEN		PYY	TR	CLOTS	••••••••••••••••••••••••••••••••••••••	1	
VR33032A	599654.49	5873805.2	QTZ	VEN	:	FEX			PYY		+
VR33033A	599645.17	5873810.9	QTZ	VEN	-	PYY	TR	:	FEX	-	
VR33034A	599642.81	5873820.3	QTZ	VEN	· · · · · · · · · · · · · · · · · · ·	PYY	TR		FEX		
VR33035A	599917.52	5873796.3	QTZ	VEN		FEX		• • • • • •		-	
VR33036A	599849.96	5873879.2	CGL	SCH		SER			·! ·	:	
VR33037A	599586.6	5873801.3	QTZ	VEN				-		;	
VR33038A	600898.54	5874018	QTT	VEN	SCH	PYY	2	-	MUSC	1	
VR33039A	601151.63	5874029.3	QTT	SCH		PYY	2	DIS	MUS	1	
VR33040A	601402.49	5874085.1	PHY			PYY	1	DIS	QTZ		
VR33041A	601478.15	5874103.8				• • • • •				1	
VR33042A	601495.41	5874104.4	VEN	QTZ					+	1	
VR33043A	601503.77	5874123.5	VEN	QTZ		•					
VR33044A	601511.14	5874123.6	QTT	VEN		PYY	TR	DIS	• · · · · · · · · · · · · · · · · · · ·	1	
VR33045A	599988.37	5873938.8	QTZ			1		1	· · · · · · · · · · · · · · · · · · ·	-	
VR33048A	599988.37	5873938.8	QTZ	VEN		GAL	15	CLOTS	PYY	5	CLOTS
VR33049A	599299.09	5872556.2	QTT	QTZ	VEN	FEX	TR	:			
VR33050A	599607.85	5872576.2	QTZ	VEN				1	1	! !	
VR33051A	599964.75	5872734.7	CNG	QTT		!					+
VR33052A	600082.81	5872736.3			!	:		1		1	└──- -
VR33053A	599969.56	5873259.7	QTZ	VEN		PYY	TR	DIS	· · ·	;	
VR33054A	599838.65	5873321.4	QTZ	VEN					1	<u> </u>	
VR33055A	599734.93	5873904.4	QTZ	VEN		RUT	TR?	·	<u>+</u>		
VR33056A	599729.04	5873875.5	QTZ	VEN		1				<u> </u>	
VR33057A	599709.04	5873866.7	QTZ	VEN	i	+		i	+	+	
VR33058A	599763.82	5873931.2	QTZ	VEN	·····	· · · · ·			• · · · · ·		
VR33059A	599918.02	5873934.1	QTZ			FEX	TR	1	ANK	TR	
VR33060A	599800.75	5873782.4	QTZ		· · · · ·	MUS		+	SER		1
VR33061A	599830	5873750	QTZ			1		1		1	ļ
VR33062A	599742.57	5873764.4	QTZ						•		
VR33063A	599522.16	5873720.7	QTZ		· · · · · ·		-			+	
VR33064A	599443.05	5873758.3				-		1			
VR33065A	599432.09	5873799.3	QTZ				- 	1	1		
VR33066A	599472.46	5873802.3	QTZ		_				-		
VR33067A	599629.07	5873823.7				F		1			
VR33068A	599604.9	5873827.3		······································	····				····		
VR33069A	599604.9	5873827.3								1	

Sample	Easting	Northing	Rock	Rock Modifiers	3	Minerals					
Number		_	Туре	1	2	Mineral	%	Occur,	Mineral	%	Occur.
VR33401A	600179.2	5873712	QTZ	VEN		1					
VR33402A	600309.3	5873855	SCH	PHY							
VR33403A	600303.2	5873846	PHY	SLS							
VR33404A	600578.4	5873731	QTZ	MIC	1	PYY	TR				
VR33405A	600697.6	5873601	QTT		1		-		,		J
VR33406A	600771.7	5873456	VEN	QTZ	PHY		1				
VR33407A	601065.4	5873521	QTT	VEN			1				1
VR33408A	601329.6	5873521	QTT			SX	TR	DIS		1	
VR33409A	601644.2	5873540	VEN	QTZ		SX	1	1		l	
VR33410A	601720	5873498	QTT	VEN		SX	TR			ł	
VR33411A	602271.3	5873557	QTT			GAL	1	DIS			
VR33412A	599883.3	5873991	VEN	QTZ		PYY	2	CLOTS		1	
VR33413A	599943.6	5874002	POR	QTZ	FSP		ĺ				
VR33414A	600109.4	5874103	VEN	QTZ		FOX	5	CLOTS		i	
VR33415A	600230.9	5874228	VEN	QTT		SX	TR			İ	
VR33416A	600347.1	58 74543	VEN	QTT		FOX	TR				
VR33417A	600453.1	5874647	VEN	QTT							
VR33422A	600526.6	5874720	SLT	GRA	PHY						
VR33423A	600855	5874965	CNG	QTZ	SHL						
VR33424A	600900.7	5875004	QTT	VEN							
VR33425A	600941.1	5875052	VEN	QTZ		SID	1	DIS			
VR33426A	601020.9	5875175	CNG	QTT	VEN				l .		
VR33427A	601161.1	5875253	VEN	QTZ		CASTS	TR				

-

Ċ		hen alytical Cher 212 Brook British Col PHONE: 6	nists * Geo sbank Av lumbia, Ci 504-984-0	L Chemists anada 221 FA	Abs Register North Var X: 604-98	ed Assaye ncouver /7J 2C1 84-0218	td.		To. Proje Comi	ENNEC 354 - 200 VANCOU V6C 1S4 ct : (ments: /	GRANV OGRANV UVER, BO CARIBOC	NADA IN	AYSON	CC: AN	DREW D	AVIES / DARWI	Page Nur Total Pag Certificate Invoice N P.O. Nur Account	nbei es :3 9 Date:2 0. :I 1ber :5 :K	A 9528015 0-504 (AVW
										CE	RTIFI	CATE	OF /	NAL	rsis	A952	8015		
SAMPLE	PREP CODE	λυ ppb Fλ+λλ	Ag ppm	A1 %	As ppm	Ва ррд	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg K ppb %	La ppm	Mg %	Mn ppm
VR33016 A VR33017 A VR33018 A	205 226 205 226 205 226 205 226	< 5 < 5 30	0.4 69.2 1.4	0.07 0.09 0.01	< 2 2	380 20 < 10	< 0.5 < 0.5 < 0.5	< 2 88 < 2	0.06 0.34 0.10	< 0.5 7.0 < 0.5	< 1 8 55	185 143 97	95 549	0.30 2.59 14.90	< 10 < 10 < 10	60 0.02 10 0.01 1000 < 0.01	< 10 < 10 < 10	0.01 0.03 0.10	10 30 110
VR33021 A VR33022 A	205 226 205 226	< 5 < 5	0.4 0.2	0.15 0.22	4 < 2	400 250	< 0.5 < 0.5	< 2 < 2	0.02 0.03	< 0.5 < 0.5	< 1 1	108 197	14 12	1.03 0 85	< 10 - 10	10 0.08 10 0.07	< 10 < 10	0.01 0.03	10 15
VR33027 A VR33028 A VR33029 A	205 226 205 226 205 226	< 5 200 < 5	< 0.2 153.0 0.2	0.34 0.02 0.12	< 2 < 2 < 2	90 < 10 130	< 0.5 < 0.5 < 0.5	< 2 108 < 2 -	0.01 0.01 < 0.01	< 0.5 6.0 < 0.5	8 1 10	101 151 98	16 47 16	2.57 0.88 9.11	< 10 < 10 < 10	< 10 0.09 < 10 < 0.01 < 10 0.04	10 < 10 < < 10 <	0.03 0.01 0.01	245 30 165
VR33030 A VR33031 A VR33032 A VR33032 A VR33033 A VR33034 A	205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5 </pre>	0.4 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.01 0.01 0.51 0.05	< 2 2 2 < 2 < 2 < 2	< 10 < 10 < 10 20 < 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 · < 2 · < 2 · < 2 · < 2 ·	< 0.01 < 0.01 < 0.01 0.02 < 0.01	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 2 6 12 < 1	211 183 198 202 191	10 B 9 14 4	1.76 0.67 1.07 1.55 0.50	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 0.01 < 10 < 0.01 < 10 < 0.01 130 0.06 10 0.01	< 10 < < 10 < < 10 < < 10 < < 10 < < 10 <	0.01 0.01 0.01 0.23 0.01	270 50 570 205 20
VR33035 A VR33036 A VR33037 A VR33038 A VR33038 A VR33039 A	205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5<</pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.04 0.21 0.04 0.69 0.12	2 < 2 24 4 10	< 10 60 10 30 20	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.01 0.13 < 0.01 0.08 < 0.01	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	1 6 5 9 1	186 115 167 124 90	8 8 3 12 2	0.66 2.27 3.43 2.95 1.24	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 0.01 20 0.06 30 0.02 380 0.05 200 0.08	<pre>< 10 < < 10 < < < 10 < < 10 < 10 < 10 < 10 < < 10 < </pre>	0.01 0.06 0.01 0.46 0.01	20 340 155 565 5
VR33040 A VR33041 A VR33042 A VR33043 A VR33044 A	205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5 </pre>	1.0 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.19 0.01 0.06 0.01 0.19	16 < 2 < 2 2 < 2	270 30 40 < 10 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 · < 2 · < 2 · < 2 · < 2 ·	< 0.01 < 0.01 0.18 < 0.01 0.18	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 < 1 1 1 2	68 188 154 208 136	7 1 2 20 4	1.49 0.32 0.79 0.62 0.95	< 10 < 10 < 10 < 10 < 10 < 10	150 0.09 < 10 0.01 10 0.02 < 10 < 0.01 < 10 0.01	10 < 10 <	0.02 0.01 0.01 0.01 0.01 0.08	10 185 395 75 595
VR33045 A VR33046 A	205 226 205 226	< 5 < 5	< 0.2 < 0.2	0.30 0.07	< 2	40 10	< 0.5 < 0.5	< 2 < 2	0.01 0.06	< 0.5 < 0.5	3 1	194 180	14 3	1.72	< 10 < 10	10 0.03 10 0.03	s < 10 s < 10	0.06	100 175
VR33048 A VR33049 A	205 226 205 226	145 < 5	>200 3.0	0.01 0.06	< 2 < 2	10 10	< 0.5 < 0.5	54 8	< 0.01 0.01	14.5 < 0.5	1 < 1	178 188	11 9	0.75 0.71	< 10 < 10	30 < 0.01 < 10 0.02	l < 10 < 2 < 10 <	: 0.01 : 0.01	5 50
VR33050 A VR33051 A VR33052 A VR33053 A VR33054 A	205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 5 < 5 < 5 < 5 < 5 < 5</pre>	0.2 < < 0.2 < < 0.2 < < 0.2 < 0.2 1.2 < 0.2 <	< 0.01 0.38 0.11 0.01 < 0.01	< 2 < 2 < 2 2 < 2 < 2	< 10 70 40 < 10 < 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 2 < 2 < 2	< 0.01 0.15 0.02 < 0.01 < 0.01	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 3 < 1 2 < 1	224 145 219 231 213	1 14 5 16 2	0.23 1.22 0.43 1.66 0.24	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 0.01 100 0.11 20 0.01 50 < 0.01 10 < 0.02	< 10	: 0.01 0.11 : 0.01 : 0.01 : 0.01	10 115 140 115 20
L															CATION			, _	

Ċ	Analy P	nical Chemis 12 Brooksb ritish Colum HONE: 604	tex text t	chemists e., N anada 221 FA	Register North Va X: 604-9	ed Assayer ncouver V7J 2C1 84-0218	d .	-	To: 3 V V Project Comme	ENNE 54 - 20 ANCO 6C 1S4 : ents:	COTT CA 0 GRAN UVER, B 4 CARIBOO ATTN: Ef	NĀDA IN VILLE ST C RIC FINL	IC. AYSON	CC: ANE	 DREW DA	AVIES / DAR	Page Number 3 Total Pages :3 Certificate Date: 25-SE Invoice No. :1952 P.O. Number :50-50 Account :KAVV
										CE	RTIFI	CATE	OF A	NALY	'SIS	A9	528015
SAMPLE	PREP CODE	Mo ppm	Na %	NÌ ppm	P	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U mqq	V ppm	W DDD	Zn DDM	W	
VR33016 A VR33017 A VR33018 A	205 226 205 226 205 226	4 < 9 < 1 <	0.01 0.01 0.01	3 29 395	140 110 30	4 > 10000 64	< 2 14 < 2	< 1 < 1 < 1	11 < 16 < 5 <	0.01 0.01 0.01	< 10 < 10 < 10	< 10 < 10 < 10	4 2 1	< 10 < 10 < 10	64 78 8	< 2 3 2	
VR33021 A VR33022 A	205 226 205 226	7 < 3 <	0.01 0.01	11 9	140 160	6 50	< 2 < 2	< 1 < 1	4 < 13 <	0.01 0.01	< 10 < 10	< 10 < 10	10 7	< 10 < 10	18 58	< 2 < 2	
VR33027 A VR33028 A VR33029 A	205 226 205 226 205 226	1 < 1 < 3 <	0.01 0.01 0.01	46 12 45	540 580 1800	28 >10000 120	< 2 20 < 2	1 < 1 < 1	3 < 4 < 14 <	0.01 0.01 0.01	< 10 < 10 < 10	< 10 < 10 < 10	3 1 3	< 10 < 10 < 10	62 12 42	2 < 2 < 2	_
VR33030 A VR33031 A VR33032 A VR33033 A VR33033 A	205 226 205 226 205 226 205 226 205 226 205 226	< 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 <	0.01 0.01 0.01 0.01 0.01	12 17 19 40 7	70 40 130 270 90	168 24 20 10 6	< 2 < 2 < 2 < 2 < 2 < 2 < 2	< 1 < 1 < 1 1 < 1	< 1 < < 1 < 2 < 5 < 2 <	0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 1 6 1	< 10 < 10 < 10 < 10 < 10 < 10	32 12 8 36 4	< 2 2 2 < 2 < 2 < 2	
VR33035 A VR33036 A VR33037 A VR33038 A VR33038 A	205 226 205 226 205 226 205 226 205 226 205 226	< 1 < < 1 < < 1 < < 1 < < 1 < < 1 <	0.01 0.01 0.01 0.01 0.01	12 15 30 30 8	80 980 250 280 70	8 6 4 14 28	< 2 < 2 < 2 < 2 < 2 < 2 < 2	< 1 1 1 1 < 1	1 < 13 < 1 < 4 < 1 <	0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	1 4 1 17 < 1	< 10 < 10 < 10 < 10 < 10 < 10	6 28 26 40 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2	
VR33040 A VR33041 A VR33042 A VR33043 A VR33044 A	205 226 205 226 205 226 205 226 205 226 205 226	1 < < 1 < < 1 < < 1 < < 1 < < 1 <	0.01 0.01 0.01 0.01 0.02	10 3 4 7 8	130 30 770 10 110	12 2 6 4 14	2 < 2 < 2 < 2 < 2 < 2	< 1 < 1 < 1 < 1 < 1 < 1	7 < 1 < 37 < < 1 < 6 <	0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	12 < 1 < 1 < 1 < 1 3	< 10 < 10 < 10 < 10 < 10 < 10	24 2 10 6 24	< 2 < 2 < 2 < 2 < 2 < 2	
VR33045 A VR33046 A	205 226 205 226	1 < < 1	0.01 0.01	9	180 140	38 26	< 2 < 2	< 1 < 1	4 < 6 <	0.01	< 10 < 10	< 10 < 10	10	< 10 < 10	34 8	< 2 < 2	
VR33048 A VR33049 A	205 226 205 226	< 1 < 1	0.01 0.01	3 3	30 110	>10000 268	118 < 2	< 1 < 1	11 < 2 <	0.01 0.01	< 10 < 10	< 10 < 10	1 1	< 10 < 10	2	< 2 3	
VR33050 A VR33051 A VR33052 A VR33053 A VR33053 A	205 226 205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 1 < < 1 <</pre>	0.01 0.01 0.01 0.01 0.01 0.01	3 20 4 19 4	< 10 880 150 70 < 10	148 6 10 138 6	< 2 < 2 < 2 < 2 < 2 < 2 < 2	< 1 < 1 < 1 < 1 < 1 < 1	<pre>< 1 < 21 < 4 < 1 < < 1 < < 1 < < 1 <</pre>	0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	< 1 8 2 1 < 1	< 10 < 10 < 10 < 10 < 10 < 10	< 2 18 2 42 < 2	< 2 2 < 2 < 2 11	

/

÷ ...

CERTIFICATION:

Τo. SENNECOTT CANADA INC.

Page Number .-A Total Pages :3 Certificate Date: 25-SEP-95 Invoice No. : 19528015 P.O. Number : 50-504 Account :KAVW

A0528015

354 - 200 GRANVILLE ST. VANCOUVER, BC V6C 1S4

E

ŧ

Chemex Labs Ltd.

North Vancouver

Analytical Chemists * Geochemists * Registered Assayers

British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

212 Brooksbank Ave.,

CERTIFICATE OF ANALVSIS

Project : CARIBOO Comments: ATTN: ERIC FINLAYSON CC: ANDREW DAVIES / DARWIN GREEN

															1313		-201			
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppb	R %	La ppm	Ng %	Mn ppm
VR33055 A	205 226	< 5	< 0.2	< 0.01	< 2	< 10	< 0.5	< 2 <	0.01	< 0.5	1	253	2	0.54	< 10	10 < 0.	01	< 10 <	0.01	85
VR33056 A	205 226	< 5	< 0.2	0.02	< 2	< 10	< 0.5	< 2 <	0.01	< 0.5	< 1	203	7	0.49	< 10	10 < 0.	01	< 10 <	0.01	50
VR33057 A	205 226	< 5	< 0.2	0.01	< 2	< 10	< 0.5	< 2 <	0.01	< 0.5	< 1	201	6	0.51	< 10	10 < 0.	01	< 10 <	0.01	40
VR33058 A	205 226	< 5	< 0.2	0.02	< 2	< 10	< 0.5	< 2	0.02	< 0.5	3	174	6	0.99	< 10	20 0.	01	< 10 <	0.01	365
VR33059 A	205 226	< 5	< 0.2	0.01	< 2	< 10	< 0.5	< 2 <	0.01	< 0.5	< 1	174	4	0.32	< 10	< 10 < 0.	01	< 10 <	0.01	15
VR33060 A	205 226	< 5	< 0.2	0.01	< 2	< 10	< 0.5	< 2 <	0.01	< 0.5	1	166	7	0.34	< 10	10 < 0.	01	< 10 <	0.01	50
VR33061 A	205 226	< 5	< 0.2	0.30	< 2	< 10	< 0.5	< 2 <	0.01	< 0.5	12	188	14	1.98	< 10	10 < 0.	01	< 10	0.17	480
VR33062 A	205 226		< 0.2	< 0.01	2	< 10	< 0.5	< 2 <	0.01	< 0.5	3	204	30	0.50	< 10	10 < 0.	01	< 10 <	0.01	20
VR33064 1	205 226		< 0.2	0.02	8	< 10	< 0.5	~ ~ ~ ~ ~	0.01	< 0.5	1	179	26	1.07	< 10	< 10 0.	01			75
		<u>``</u>				× 10	< 0.3		0.01	< 0.5	•	207	45	1.01	< 10	< 10 < 0.	01	< 10 <		
VR33065 A	205 226	< 5	< 0.2	0.17	12	10	< 0.5	< 2 <	0.01	< 0.5	17	199	98	5.08	< 10	30 0.	01	< 10	0.06	1280
VR33066 A	205 226	< 5	< 0.2	0.26	12	30	< 0.5	< 2	0.81	< 0.5	7	153	8	1.64	< 10	20 0.	07	< 10	0.41	280
VR33067 A	205 226	< 5	< 0.2	0.39	4	10	< 0.5	< 2	0.01	< 0.5	17	182	55	3.08	< 10	10 0.	02	< 10	0.22	160
VR33068 A	205 226		< 0.2	0.12	2	< 10	< 0.5	< 2	0.37	< 0.5	2	141	•	2.03	< 10	10 0.	02	< 10	0.12	470
× 601063	403 440	``	< U.A	0.05	<u> </u>	10	< 0.5	< 4	0.72	< 0.5	•	143	1	3.09	< 10	10 0.	91	< 10	0.19	420
WR33070 A	205 226	< 5	< 0.2	0.25	4	< 10	< 0.5	< 2	1.07	< 0.5	6	166	35	2.26	< 10	10 0.	02	< 10	0.32	1295
VR33401 A	205 226		< 0.2	0.02	< 2	< 10	< 0.5	< 2	0.06	< 0.5	2	175	•	0.59	< 10	10 < 0-	01	< 10	0.01	55
									0.00		-	1.0			× 10	10 < 0.				
VR33402 A	205 226	< 5	< 0.2	0.29	2	80	< 0.5	< 2	0.24	< 0.5	8	163	10	2.15	< 10	< 10 0.	08	< 10	0.11	485
VR33403 A	205 226	< 5	< 0.2	0.19	2	200	< 0.5	< 2 <	0.01	< 0.5	< 1	175	23	2.27	< 10	< 10 0.	10	10 <	0.01	30
VR33404 A	205 226	< 5	< 0.2	0.15	< 2	20	< 0.5	< 2 <	0.01	< 0.5	3	150	6	1.89	< 10	< 10 0.	06	10	0.02	100
VR33405 A	205 226	< 5	< 0.2	0.16	< 2	30	< 0.5	< 2 <	0.01	< 0.5	< 1	155	1	0.42	< 10	10 0.	10	10 <	0.01	30
VRJJ4UB A	205 226	< 5	< 0.2	0.10	< 2	20	< 0.5	< 2	0.07	< 0.5	1	177	8	0.71	< 10	< 10 0.	04	< 10 <	0.01	190
VR33407 A	205 226	< 5	< 0.2	0.07	< 2	10	< 0.5	< 2 <	0.01	< 0.5	< 1	181	3	0.46	< 10	10 0.	04	< 10 <	: 0.01	135
VR33408 A	205 226	< 5	< 0.2	0.24	< 2	40	< 0.5	< 2 <	0.01	< 0.5	< 1	136	2	0.77	< 10	< 10 0.	10	10	0.04	20
VR33409 A	205 226	< 5	< 0.2	< 0.01	< 2	< 10	< 0.5	< 2 <	0.01	< 0.5	< 1	194	1	0.29	< 10	< 10 < 0.	01	< 10 <	0.01	30
VR33410 A	205 226	< 5	< 0.2	0.16	6	40	< 0.5	< 2	0.01	< 0.5	< 1	213	5	0.84	< 10	10 0.	06	< 10	0.03	65
VR33411 A	205 226	< 5	17.8	0.06	< 2	10	< 0.5	46	0.01	< 0.5	< 1	171	4	0.27	< 10	30 0.	04	< 10 <	0.01	5
VR33412 A	205 226	< 5	< 0.2	0.03	< 2	10	< 0.5	< 2	0.37	< 0.5	3	150	14	1.18	< 10	< 10 < 0.	01	< 10	0.05	185
VR33413 A	205 226	< 5	< 0.2	1.88	2	90	< 0.5	< 2	0.90	< 0.5	11	182	22	1.81	< 10	< 10 0.	07	10	1.78	370
VR33414 A	205 226	< 5	< 0.2	0.10	< 2	20	< 0.5	< 2 <	0.01	< 0.5	2	197	19	1.54	< 10	10 0.	03	< 10	0.01	315
VR33415 A	205 226	< 5	< 0.2	0.10	< 2	10	< 0.5	< 2 <	0.01	< 0.5	< 1	181	2	0.68	< 10	< 10 0.	05	< 10 <	0.01	70
VR33416 A	205 226	< 5	< 0.2	0.07	< 2	10	< 0.5	< 2 <	0.01	< 0.5	< 1	216	5	0.85	< 10	10 0.	04	< 10 <	0.01	155
VR33417 A	205 226	< 5	< 0.2	0.11	12	30	< 0.5	< 2 <	0.01	< 0.5	< 1	257	18	0.85	< 10	< 10 0.	04	< 10 <	0.01	15

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To. SENNECOTT CANADA INC.

354 - 200 GRANVILLE ST. VANCOUVER, BC V6C 1S4

Page Numbe. B Total Pages :3 Certificate Date: 25-SEP-95 Invoice No. : 19528015 P.O. Number : 50-504 :KAVW Account

٢

Project : CARIBOO Comments: ATTN: ERIC FINLAYSON CC: ANDREW DAVIES / DARWIN GREEN

**

										CE	RTIF	CATE	OF A	NAL	(SIS	A	952801	5	
SAMPLE	PREP CODE	Mo ppm	Na. %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	D D	V ppm	W ppm	Zn ppm	W ppm			
VR33055 A	205 226	< 1 <	< 0.01	8	60	4	< 2	< 1	< 1 <	0.01	< 10	< 10	1	< 10	6	< 2			
VR33056 A	205 226	< 1 <	< 0.01	5	70	4	< 2	< 1	< 1 <	0.01	< 10	< 10	1	< 10	- 4	< 2			
VR33057 A	205 226	< 1 <	< 0.01	6	70	2	< 2	< 1	< 1 <	0.01	< 10	< 10	1	< 10	8	< 2			
VR33058 A	205 226	< 1 <	< 0.01	13	190	2	< 2	< 1	4 <	0.01	< 10	< 10	1	< 10	14	< 2			
VR33059 A	205 226	< 1 <	< 0.01	4	40	2	< 2	< 1	< 1 <	0.01	< 10	< 10	< 1	< 10	4	< 2			
VR33060 A	205 226	< 1 <	< 0.01	5	40	8	< 2	< 1	< 1 <	0.01	< 10	< 10	< 1	< 10	2	< 2			
VR33061 A	205 226	< 1 <	< 0.01	55	120	2	< 2	1	1 <	0.01	< 10	< 10	4	< 10	60	< 2			
VR33062 A	205 226	< 1 <	< 0.01	29	30	2	< 2	< 1	< 1 <	0.01	< 10	< 10	1	< 10	4	< 2			
VR33063 A	205 226	< 1 <	< 0.01	14	90	4	< 2	< 1	1 <	0.01	< 10	< 10	1	< 10	4	< 2			
VR33064 A	205 226	< 1 <	< 0.01	28	40	4	< 2	< 1	< 1 <	0.01	< 10	< 10	1	< 10	16	< 2			
VR33065 A	205 226	< 1 <	¢ 0.01	6Û	220	- 2	< 2	2	2 <	0.01	< 10	< 10	5	< 10	54	3			
VR33066 A	205 226	< 1 <	< 0.01	24	340	2	< 2	1	56 <	0.01	< 10	< 10	3	< 10	30	< 2			
VR33067 A	205 226	< 1 <	< 0.01	34	100	2	< 2	< 1	2 <	0.01	< 10	< 10	5	< 10	34	< 2			
VR33068 A	205 226	< 1 <	< 0.01	17	650	2	< 2	1	35 <	0.01	< 10	< 10	2	< 10	26	2			
VR33069 A	205 226	< 1 <	< 0.01	18	1790	< 2	< 2	1	75 <	0.01	< 10	< 10	2	< 10	64	< 2			
VR33070 A	205 226	< 1	0.02	14	220	80	< 2	1	60 <	0.01	< 10	< 10	3	< 10	26	< 2		 .	ALPERT.
VR33401 A	205 226	< 1 <	< 0.01	9	320	2	< 2	< 1	5 <	0.01	< 10	< 10	1	< 10	6	< 2			
									16	0 01		10							
VR33402 A	205 226	< 1 <	< 0.01	43	610	20	< 2	1	10 <	0.01	< 10	< 10	13	< 10	34	< 2			
VRJJAUJ A	205 226		< 0.01	11	450	40			1 2	0.01	< 10	< 10	23	< 10	58	× 4			
VR33405 A	205 226		< 0.01	1	190	a a	2.2			0.01	< 10	< 10	1	< 10		22			
VR33406 A	205 226	< 1 <	< 0.01	4	320	4	< 2	< 1	9 <	0.01	< 10	< 10	i	< 10	Ê	< 2			
VB33407 A	205 226	< 1 .	< 0.01	2		14	< 2	< 1	1.	0.01	< 10	< 10	1	< 10		6.2			·
VR33408 A	205 226	< 1	0.01		130	22	21	21	3 <	0.01	< 10	2 10	2	< 10	14	22			
VR33409 A	205 226	< 1 4	< 0.01	ž	10		22	21	< 1 <	0.01	< 10	< 10	< 1	< 10	2	22			
VR33410 A	205 226	< 1	< 0.01		120	14	< 2	< 1	2 <	0.01	< 10	< 10	1	< 10	12	22			
VR33411 A	205 226	< 1 <	< 0.01	2	30	4560	< 2	< 1	1 <	0.01	< 10	< 10	< 1	< 10	< 2	< 2			
VR33412 A	205 226	< 1 <	< 0.01	12	420	22	< 2	< 1	22 <	0.01	< 10	< 10	< 1	< 10	20	< 2	-		<u> </u>
VR33413 A	205 226	< 1	0.08	54	1270	20	< 2	2	16B	0.11	< 10	< 10	39	< 10	58	< 2			
VR33414 A	205 226	< 1 <	< 0.01	8	100	26	< 2	< 1	2 <	0.01	< 10	< 10	1	< 10	46	< 2			
VR33415 A	205 226	< 1 <	< 0.01	i.	70	2	< 2	< 1	1 <	0.01	< 10	< 10	1	< 10	8	< 2			
VR33416 A	205 226	< 1 <	< 0.01	3	60	16	< 2	< 1	1 <	0.01	< 10	< 10	1	< 10	24	< 2			
VR33417 A	205 226	< 1 <	< 0.01	3	180	180	< 2	< 1	6 <	0.01	< 10	< 10	2	< 10	20	< 2			

To: ENNECOTT CANADA INC.

354 - 200 GRANVILLE ST. VANCOUVER, BC V6C 1S4 Page Number A Total Pages :3 Certificate Date: 25-SEP-95 Invoice No. : 19528015 P.O. Number :50-504 Account : KAVW

1

C

ŧ

ŧ

1

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Project : CARIBOO Comments: ATTN: ERIC FINLAYS

Comments: ATTN: ERIC FINLAYSON CC: ANDREW DAVIES / DARWIN GREEN

2

ŧ

**

(,	_							CE	RTIFI	CATE	OF A	NAL	/SIS	4	9528	015		
SAMPLE	PRE	ep De	Au ppb FA+AA	Ag ppm	A1 %	As ppm	Ba ppn	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Eg ppb	K %	La ppm	Mg %	Mn ppm
VR33422 A	205	226	< 5	0.6	0.18	8	140	< 0.5	< 2 < 1	0.01	< 0.5	< 1	188	7	0.81	< 10	10	0.11	10 <	0.01	20
VR33423 A	205	226	< 5	< 0.2	0.26	4	40	< 0.5	< 2 1	0.10	< 0.5	11	106	14	2.26	< 10	< 10	0.07	10	0.08	275
VR33424 A	205	226	< 5	< 0.2	0.06	4	20	< 0.5	< 2	1.61	< 0.5	4	138	7	1.81	< 10	< 10	0.01	10	0.15	660
VR33425 A	205	226	< 5	< 0.2	< 0.01	< 2	< 10	< 0.5	< 2 (0.02	< 0.5	1	178	4	0.49	< 10	< 10 <	0.01	< 10 <	0.01	60
VR33426 A	205	226	< 5	< 0.2	0.06	< 2	50	< 0.5	< 2 < 0	0.01	< 0.5	< 1	146	7	0.67	< 10	< 10	0.02	< 10 <	0.01	20
VR33427 A	205	226	< 5	1.8	0.01	10	< 10	< 0.5	< 2 < 1	0.01	< 0.5	1	215	6	1.14	< 10	10 <	0.01	< 10 <	0.01	40

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: SENNECOTT CANADA INC.

354 - 200 GRANVILLE ST. VANCOUVER, BC V6C 1S4

Page Number B Total Pages :3 Certificate Date: 25-SEP-95 Invoice No. : 19528015 Invoice No. : 19528015 P.O. Number : 50-504 Account : KAVW

bail Files

CERTIFICATION:

Project : CARIBOO

Comments: ATTN: ERIC FINLAYSON CC: ANDREW DAVIES / DARWIN GREEN

						<u>.</u>				CE	RTIF	CATE	OF A	NAL	SIS	A	9528015	
SAMPLE	PREP CODE	Mo ppm	Na %	N1 ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	W ppm	Zn ppm	W ppm		
VR33422 A VR33423 A VR33424 A VR33425 A VR33426 A	205 226 205 226 205 226 205 226 205 226 205 226	6 < 1 1 < 1 < 1	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	4 35 13 7 4	560 770 230 60 130	206 < 2 2 2 90	< 2 < 2 < 2 < 2 < 2 < 2 < 2	< 1 1 < 1 < 1 < 1	14 < 13 < 37 < 1 < 3 <	0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	16 4 1 < 1 1	< 10 < 10 < 10 < 10 < 10 < 10	20 44 24 6 10	3 < 2 < 2 < 2 < 2 < 2 < 2		
VR33427 A	205 226	< 1	< 0.01	5	20	162	< 2	< 1	< 1 <	0.01	< 10	< 10	< 1	< 10	22	< 2	- n.	<u></u>

APPENDIX C

•

ANALYTICAL RESULTS FOR SOIL SAMPLES

		halytical Chem 212 Brooks British Colu PHONE: 6	I NEX hists * Geor sbank Ave umbia, Ca 04-984-0;	chemists e., 1 anada 221 FA	Abs Registere North Var X: 604-98	ad Assaye ncouver /7J 2C1 84-0218	td.	ł	To: Projec Comm	.=NNE0 354 - 200 VANCOI V6C 1S4 oft :	GRANU DORANU DVER, BO CARIBOC	NADA IN VILLE ST	IC. AYSON	CC: ANI		t AVIS / DA	RWIN	Page Num Total Page Certificate Invoice No P.O. Num Account	ber Date: ber	A 5 22-SEP-95 19527990 50-504 KAVW
										CE	RTIFI	CATE	OF A	NAL	/SIS	А	9527	990		
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	λ1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Eg ppm	K %	La ppm	Mg %	Mn ppm

VR 30009 A	216 20	2 20	< 0.2	1.64	24	170	< 0.5	< 2	0.04	0.5	6	34	24	5.76	10	1	0.08	20	0.16	295
VR 30010 A	216 20	2 < 5	0.6	1.31	16	190	< 0.5	< 2	0.04	< 0.5	4	22	18	3.09	< 10	< 1	0.09	30	0.16	175
VR 30011 A	216 20	2 5	< û.2	1.23	22	130	< 0.5	< 2	0.07	< 0.5	5	28	19	4.35	< 10	1	0.08	20	0.21	195
VR 30012 A	216 20	2 < 5	0.4	1.44	14	220	< 0.5	< 2	0.04	< 0.5	4	21	19	3.50	< 10	< 1	0.10	30	0.20	145
VR 30013 A	216 20	2 < 5	0.6	1.04	10	140	< 0.5	< 2	0.03	< 0.5	3	17	11	2.76	< 10	< 1	0.08	30	0.11	200
VR 30014 A	216 20	2 < 5	< 0.2	1.39	12	150	< 0.5	< 2	0.04	< 0.5	4	25	16	4.37	10	< 1	0.08	20	0.12	230
VR 30015 A	216 20	2 35	0.2	1.12	8	130	< 0.5	< 2	0.04	< 0.5	3	20	13	3.29	10	< 1	0.09	40	0.13	195
VR 30016 A	216 20	2 10	0.2	1.16	14	240	< 0.5	2	0.12	< 0.5	9	21	16	2.60	10	< 1	0.12	40	0.21	535
VR 30017 A	216 20	2 10	1.0	1.07	10	220	< 0.5	< 2	0.24	< 0.5	9	24	15	3.03	< 10	< 1	0.09	20	0.26	420
VR 30018 A	216 20	2 < 5	0.4	1.46	14	330	< 0.5	< 2	0.14	0.5	9	31	25	3.38	10	< 1	0.14	30	0.30	270
VR 30019 A	216 20	2 < 5	0.4	1.37	14	270	< 0.5	< 2	0.08	< 0.5	11	32	20	3.42	10	< 1	0.12	30	0.23	425
VR 30020 A	216 20	2 15	5.0	1.24	2	390	< 0.5	2	0.15	0.5	5	20	39	1.14	< 10	< 1	0.09	20	0.18	70
VR 30021 A	216 20	2 < 5	< 0.2	0.96	8	150	< 0.5	< 2	0.02	< 0.5	4	21	19	3.73	< 10	< 1	0.07	30	0.18	175
VR 30022 A	216 20	2 < 5	< 0.2	0.71	16	110	< 0.5	< 2	0.02	< 0.5	2	16	14	3.46	< 10	< 1	0.04	20	0.07	90
VR 30023 A	216 20	2 < 5	0.8	0.93	18	130	< 0.5	< 2	0.02	< 0.5	4	15	19	2.54	< 10	< 1	0.07	30	0.14	100
VR 30024 A	216 20	2 < 5	< 0.2	1.29	2	330	< 0.5	< 2	0.21	0.5	5	25	17	1.03	10	< 1	0.08	30	0.28	100
VR 30025 A	216 20	2 < 5	< 0.2	1.17	2	240	< 0.5	< 2	0.19	0.5	8	21	14	2.24	< 10	1	0.07	30	0.33	205
VR 30026 A	216 20	2 < 5	0.2	1.06	4	250	< 0.5	< 2	0.17	< 0.5	4	18	11	1.73	< 10	< 1	0.08	40	0.23	75
VR 30027 A	216 20	2 < 5	< 0.2	0.89	2	210	< 0.5	< 2	0.17	< 0.5	5	13	6	1.36	< 10	< 1	0.09	40	0.19	175
VR 30028 A	216 20	2 < 5	< 0.2	1.25	18	190	< 0.5	< 2	0.13	< 0.5	11	18	21	3.43	10	1	0.13	40	0.26	535
VR 30029 A	216 20	2 < 5	< 0.2	1.03	8	130	< 0.5	< 2	0.06	< 0.5	7	16	18	3.30	10	< 1	0.08	50	0.23	315
VR 30030 A	216 20	2 < 5	< 0.2	1.00	16	70	< 0.5	< 2	0.02	< 0.5	4	19	18	4.05	< 10	< 1	0.07	30	0.1B	170
VR 30031 A	216 20	2 < 5	< 0.2	1.13	8	70	< 0.5	2	0.03	< 0.5	3	19	14	3.82	10	< 1	0.07	30	0.14	100
VR 30032 A	216 20	2 < 5	< 0.2	1.05	14	40	< 0.5	< 2	0.02	< 0.5	3	20	14	4.39	10	< 1	0.05	30	0.15	110
VR 30033 A	216 20	2 < 5	< 0.2	1.30	12	70	< 0.5	2	0.06	< 0.5	9	22	27	3.91	10	1	0.10	40	0.28	405
VR 30034 A	216 20	2 35	0.2	0.7B	4	80	< 0.5	< 2	0.04	< 0.5	3	15	14	2.87	10	< 1	0.04	30	0.10	130
VR 30035 A	216 20	2 10	0.2	1.10	4	50	< 0.5	2	0.04	< 0.5	13	19	23	3.40	10	< 1	0.07	40	0.23	565
VR 30036 A	216 20	2 < 5	0.4	1.27	4	60	< 0.5	< 2	0.03	< 0.5	5	24	13	4.28	10	1	0.06	40	0.18	510
VR 30037 A	216 20	2 < 5	0.6	1.26	6	80	< 0.5	< 2	0.03	< 0.5	6	25	19	4.42	10	< 1	0.11	30	0.16	565
VR 30038 A	216 20	2 < 5	0.2	0.99	6	80	< 0.5	< 2	0.14	< 0.5	4	15	8	2.67	10	< 1	0.07	40	0.15	170
VR 30039 A	216 20	2 < 5	0.4	1.09	8	40	< 0.5	< 2	0.02	< 0.5	6	21	21	5.29	10	1	0.06	30	0.15	320
L	L					· <u>.</u>								CERTIE	CATION	Ì.	í .	. I	<u>]</u> .	
													·						· <u> </u>	·····

C	C	hen alytical Chem 212 Brooks British Colu PHONE: 60	Ists Geo bank Ave Imbia, Ca 04-984-0	chemists e., N anada 221 FA	Registere North Var X: 604-98	ed Assaye ncouver 7J 2C1 34-0218	t d.		Fo: N Project Comm		GRANV VER, BO ARIBOO	NADA IN VILLE ST. C RIC FINL/	C. AYSON	CC: AND	REW DAV	IS / DARWI	Page Numbe Total Pages Certificate Da Invoice No. P.O. Number Account	rB ;6 :19527990 :50-504 ;KAVW
										CE	RTIFI	CATE	OF A	NALY	SIS	A952	27990	
	PREP	Mo	Na *	Ni	P	Pb	Sb	SC	Sr	Ti %	T1 Dom	U	V	W	Zn			

VR 30009	х	216	202	4 < 0.0	01 17	620	44	< 2	1	8	0.05	< 10	< 10	57	< 10	52	
VB 30010	1	216	202	3 < 0.1	01 1 ⁴	450	38	< 2	1	- 9	0.02	< 10	< 10	32	< 10	54	
VR 30011	Â	216	202	3 < 0.0	01 20	570	38	2	ī	â	0.04	< 10	< 10	36	< 10	62	
VR 30012	Ä	216	202	3 < 0.0	01 1	600	38	< 2	1	ě	0.02	< 10	< 10	31	< 10	58	
NR 30013	Å	216	202	2 < 0.0	01 10	440	30	22	ī	8	0.02	< 10	< 10	26	< 10	32	
VR 30014	x l	216	202	3 < 0.0	1 1	650	30	< 2	ī	ĝ	0.02	< 10	< 10	40	< 10	42	
VR 30015	X	216	202	2 < 0.	01 13	2 560	28	< 2	1	9	0.02	< 10	< 10	32	< 10	42	
VR 30016	х	216	202	2 < 0.0	01 20	500	46	< 2	1	16	0.02	< 10	< 10	32	< 10	78	
VR 30017	λ	216	202	1 < 0.0	01 30	D 800	38	< 2	4	18	0.04	< 10	< 10	32	< 10	86	
VR 30018	X	216	202	2 < 0.0	01 21	3 410	44	< 2	3	16	0.06	< 10	< 10	41	< 10	82	
VR 30019	A	216	202	2 < 0.0	01 2:	L 390	50	< 2	2	12	0.04	< 10	< 10	38	< 10	74	
VR 30020	λ	216	202	1 < 0.0	01 30	580	2550	< 2	1	20	0.02	< 10	< 10	19	< 10	78	
VR 30021	λ .	216	202	2 < 0.0	01 10	5 520	74	< 2	1	9	0.01	< 10	< 10	24	< 10	50	
VR 30022	λ	216	202	2 < 0.0	01 12	2 720	30	< 2	< 1	9	0.01	< 10	< 10	25	< 10	34	
VR 30023	λ	216	202	2 < 0.0	01 19	9 390	32	< 2	1	9	0.01	< 10	< 10	25	< 10	54	
VR 30024	λ	216	202	< 1 < 0.0	01 24	300	58	< 2	2	20	0.04	< 10	< 10	26	< 10	82	
VR 30025		216	202	1 < 0.1	01 34	810	30	< 2	1	21	0.02	< 10	< 10	22	< 10	142	
VR 30026	- x	216	202	1 < 0.4	01 2:	L 570	52	< 2	ī	22	0.01	< 10	< 10	16	< 10	118	
VB 30027	N N	216	202	< 1 < 0.4	01 1	7 710	42	< 2	1	23	0.01	< 10	< 10	15	< 10	50	
VB 30028	Ň	216	202	2 < 0.0	01 24	L 920	B B	22	ī	22	0.01	< 10	< 10	22	< 10	94	
VB 30029	1	216	202	1 < 0.1	01 2	510	52	< 2	1	15	0.01	< 10	< 10	19	< 10	74	
VR 30030	A	216	202	2 < 0.	01 1	5 950	30	< 2	1	8	0.01	< 10	< 10	28	< 10	50	
VR 30031	A	216	202	1 < 0.	01 1:	1 510	70	< 2	1	7	0.01	< 10	< 10	27	< 10	36	
VR 30032	A	216	202	1 < 0.0	01 13	3 390	24	< 2	1	6	0.01	< 10	< 10	25	< 10	36	
VR 30033	λ	216	202	1 < 0.0	01 2	5 470	48	< 2	1	8	0.02	< 10	< 10	22	< 10	70	
VR 30034	λ	216	202	1 < 0.0	01 10	500	38	< 2	< 1	6	0.02	< 10	< 10	26	< 10	36	
VR 30035		216	202	1 < 0.	01 2	490	34	< 2	1	7	0.02	< 10	< 10	17	< 10	66	
VR 30036	X I	216	202	< 1 < 0.0	01 1	3 630	12	< 2	1	5	0.02	< 10	< 10	26	< 10	42	
VR 30037	λ	216	202	2 < 0.	01 1	5 890	28	< 2	1	8	0.02	< 10	< 10	36	< 10	54	
VR 30038	X I	216	202	< 1 < 0.	01 1	0 440	32	< 2	1	14	0.01	< 10	< 10	22	< 10	50	
VR 30039	λ	216	202	1 < 0.0	01 1	8 780	20	< 2	1	4	0.01	< 10	< 10	21	< 10	56	
									_								
L						<u></u>								(CERTIFIC	CATION:	Heni DMin

ŧ

h

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

ENNECOTT CANADA INC. To:

ł

354 - 200 GRANVILLE ST. VANCOUVER, BC V6C 1S4

1

Page Number ._-A Total Pages :6 Certificate Date: 22-SEP-95 Invoice No. : 19527990 P.O. Number : 50-504 Account : KAVW

ŧ

ł

**

t

Project : CARIBOO Comments: ATTN: ERIC FINLAYSON CC: ANDREW DAVIS / DARWIN GREEN

										CE	RTIFI	CATE	OF A	NAL	YSIS	/	\9527	990	~~	
SAMPLE	PREP CODE	ли ррђ Рл+лл	A g ppm	A1 %	As ppm	Ba ppm	Be	Bi ppm	Ca %	Cđ ppm	Со ррв	Cr ppm	Cu ppm	Fe %	Ga ppm	pH mqq	R %	La ppm	Mg X	Mn ppm
VR 30040 A	216 202	< 5	< 0.2	0.77	< 2	30	< 0.5	< 2	0.03	< 0.5	3	10	15	2.41	< 10	< 1	0.04	30	0.09	100
VR 30041 A	216 202	< 5	0.2	0.97	2	40	< 0.5	< 2	0.02	< 0.5		11	17	3.17	10	< 1	0.05	40	0.11	115
VR 30042 A	216 202	< 5	0.8	1.39	< 2	140	< 0.5	< 2	0.26	< 0.5	14	19	32	3.50	10	< 1	0.10	40	0.22	600
VR 30043 A	216 202		0.4	1.16	< 2	110	< 0.5	2	0.28	< 0.5	16	19	35	3.38	10	< 1	0.13	40	0.27	685
VR 30044 A	216 202	< 5	0.2	1.50	2	130	< 0.5	< 2	0.17	< 0.5	10	27	22	4.94	10	< 1	0.10	30	0.24	280
VR 30045 A	216 202	< 5	0.2	2.03	< 2	250	< 0.5	< 2	0.08	< 0.5	15	34	22	4.34	10	< 1	0.18	30	0.25	765
VR 30046 A	216 202	< 5	0.2	1.79	2	130	< 0.5	< 2	0.23	< 0.5	27	23	28	5.99	10	< 1	0.14	30	0.25	1485
VR 30047 A	216 202	< 5	0.4	1.68	2	180	< 0.5	< 2	0.25	< 0.5	14	29	23	3.70	10	< 1	0.13	30	0.33	855
VR 30048 A	216 202	< 5	< 0.2	1.23	< 2	70	< 0.5	2	0.04	< 0.5	8	26	23	4.62	< 10	< 1	0.10	30	0.29	290
VR 30049 A	216 202	35	< 0.2	1.46	< 2	110	< 0.5	2	0.09	< 0.5	15	27	21	4.16	< 10	< 1	0.08	30	0.29	420
VR 30050 A	216 202	< 5	< 0.2	2.01	8	100	< 0.5	< 2	0.06	< 0.5	50	39	74	6.32	< 10	< 1	0.07	20	0.38	1030
VR 30051 A	216 202	< 5	0.4	1.79	< 2	150	< 0.5	< 2	0.30	< 0.5	27	33	53	5.53	< 10	< 1	0.12	10	0.41	1840
VR 30062 A	216 202	< 5	< 0.2	1.22	< 2	60	< 0.5	< 2	0.05	< 0.5	8	26	30	4.86	10	< 1	0.04	20	0.19	565
VR 30063 A	216 202	< 5	0.2	0.75	18	40	< 0.5	< 2	0.05	< 0.5	8	18	34	4.75	10	< 1	0.04	30	0.10	525

ł

VR 30088 A VR 30089 A	216 202 216 202	< 5 < < 5	0.2	0.91	< 2	60 < 0.5 70 < 0.5	< 2 < 2	0.01 0.02	< 0.5 < 0.5	9 8	20 25	21 22	3.85 3.35	10 10	< 1 < 1	0.06 0.06	30 30	0.16 0.33	425 365
															} (<u>ب</u> (, , , ,	· · · .	

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers 212 Brocksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: .ENNECOTT CANADA INC.

354 - 200 GRANVILLE ST. VANCOUVER, BC V6C 1S4

Page Number .∠-B Total Pages :6 Certificate Date: 22-SEP-95 Invoice No. :19527990 P.O. Number :50-504 Account :KAVW

1. 1

.

CERTIFICATION:

1110

Project :

CARIBOO Comments; ATTN: ERIC FINLAYSON CC: ANDREW DAVIS / DARWIN GREEN

**

										CE	RTIFI	CATE	OF A	NALY	SIS	A9527990
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	ppm.	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	bbm A	V mqq	W ppm	Zn ppm	
VR 30040 A VR 30041 A VR 30042 A VR 30043 A VR 30043 A	216 202 216 202 216 202 216 202 216 202 216 202	< 1 < 1 < < 1 < 1 < 1 < < 1 <	0.01 0.01 0.01 0.01 0.01 0.01	11 9 32 33 24	450 250 640 690 680	44 30 50 78 40	2 2 2 < 2 < 2 < 2	< 1 1 3 5 2	5 - 4 24 25 19	< 0.01 0.01 0.02 0.03 0.03	< 10 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	14 14 20 23 32	< 10 < 10 < 10 < 10 < 10 < 10	34 44 90 104 92	
VR 30045 A VR 30046 A VR 30047 A VR 30048 A VR 30049 A	216 202 216 202 216 202 216 202 216 202 216 202	1 < 1 < 1 < 2 < 2 <	0.01 0.01 0.01 0.01 0.01 0.01	24 44 27 24 30	560 1240 1200 560 700	40 24 30 22 40	< 2 4 < 2 4 < 2	2 2 2 1 1	11 21 28 7 12	0.02 0.01 0.02 0.01 0.02	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	36 26 32 25 27	< 10 < 10 < 10 < 10 < 10 < 10	98 226 102 74 96	
VR 30050 A VR 30051 A VR 30062 A VR 30063 A	216 202 216 202 216 202 216 202 216 202	1 < < 1 < 2 < 1 <	0.01 0.01 0.01 0.01	85 71 32 30	1160 2100 860 1120	16 14 30 24	4 4 2 4	3 3 2 1	8 35 7 6	0.01 0.01 0.03 0.03	< 10 < 10 < 10 < 10 < 10	10 < 10 < 10 < 10	26 27 44 51	< 10 < 10 < 10 < 10 < 10	142 140 86 76	

٢

VR 30088 VR 30089	А А	216 202 216 202	< <	1 <	0.01 0.01	22 22	840 1030	< 2	2 2	1 1	3 < 0.01 4 < 0.01	< 10 < 10	< 10 < 10	16 17	< 10 < 10	42 58		
																	;	 ^

		R.	ł	l	ł		1	ł	I		L	t	1	1	ł	Ł		8	<i>_</i>	
	^			To: .ENNECOTT CANADA INC. ** Page Number .J-A Total Pages :6																
	Ar	ner alytical Cher 212 Brook	nists * Geo	chemists	ADS Registere	d Assaye	L Q .			354 - 20 VANCO V6C 1S4	0 GRANV UVER, BO	VILLE ST	•					Certificat Invoice N P.O. Nur	e Date: 2 lo. : 1 nber : 5	2-SEP-95 9527990 50-504
soft a discussion of the		British Col PHONE: 6	umbia, C 04-984-0	anada 221 FA	V X: 604-98	7J 2C1 4-0218			Projec Comn	ct : nents:	CARIBOO ATTN: EF) RIC FINL	AYSON	CC: ANI	DREW D	AVIS / D.	ARWIN G	Account REEN	: •	(AVW
				P						CE	RTIFI	CATE	OF A	NAL	rsis		49527	990		
SAMPLE	PREP CODE	ли ррв FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
VR 30093 A VR 30094 A	216 202 216 202	< 5 10	0.2 0.4	0.91 1.74	14 14	100 220	< 0.5 < 0.5	< 2 2	0.03 0.18	< 0.5 < 0.5	6 22	18 31	24 62	3.14 6.69	< 10 10	< 1 < 1	0.06 0.10	20 20	0.14 0.41	305 1980
VR 30095 A VR 30096 A VR 30097 A VR 30098 A VR 30099 A	216 202 216 202 216 202 216 202 216 202 216 202	< 5 < 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 0.2 0.2 0.2	1.24 0.89 1.02 0.48 1.20	16 20 10 4 4	130 190 220 180 160	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 2 2 2 2	0.08 0.09 0.22 0.19 0.07	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	9 9 11 2 12	26 20 21 10 25	29 47 32 19 28	4.26 3.47 3.52 1.85 3.39	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.08 0.08 0.07 0.04 0,06	20 20 10 20 30	0.28 0.23 0.20 0.08 0.35	225 205 1070 245 395
VR 30100 A VR 30101 A VR 30102 A VR 30103 A VR 30103 A	216 202 216 202 216 202 216 202 216 202 216 202	< 5 < 5 < 5 < 5 < 5 < 5 < 5	3.4 0.4 0.2 0.2 0.2	1.85 1.01 1.31 1.49 1.00	< 2 10 < 2 18 14	160 150 170 260 90	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 4	0.60 0.12 0.20 0.05 0.04	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	12 10 18 11 4	30 24 29 29 29	72 31 27 33 17	3.68 4.08 4.09 3.38 3.81	< 10 10 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.08 0.06 0.06 0.07 0.06	10 30 20 30 30	0.34 0.20 0.32 0.27 0.19	770 490 510 380 95
VR 30105 A VR 30106 A VR 30107 A VR 30108 A VR 30109 A	216 202 216 202 216 202 216 202 216 202 216 202 216 202	< 5 < 5 < 5 < 5 < 5 < 5	0.4 2.2 2.4 0.6 0.2	1.33 1.49 1.99 1.99 1.34	12 18 14 20 18	130 170 360 270 170	< 0.5 0.5 < 0.5 < 0.5 0.5	< 2 < 2 < 2 < 2 < 2 2	0.13 0.47 0.71 0.45 0.28	< 0.5 1.0 1.0 < 0.5 < 0.5	16 14 16 16 11	26 26 36 39 34	25 122 77 55 24	3.93 3.40 4.65 4.14 3.24	10 10 10 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.06 0.10 0.12 0.16 0.10	30 30 10 20 30	0.28 0.25 0.33 0.48 0.44	585 1005 975 965 485
VR 30110 A VR 30111 A VR 30112 A VR 30113 A VR 30113 A	216 202 216 202 216 202 216 202 216 202 216 202	<pre>< 5 10 < 5 50 < 5</pre>	0.2 0.4 < 0.2 0.2 0.2	1.20 1.43 1.02 1.57 1.65	24 8 14 4 6	130 140 100 190 170	< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.26 0.29 0.18 0.30 0.18	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	12 16 12 17 13	27 29 24 36 44	27 42 25 28 28	3.14 3.83 3.21 3.95 6.08	< 10 < 10 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.06 0.08 0.07 0.13 0.08	20 20 40 20 20	0.40 0.37 0.38 0.40 0.22	520 925 400 775 410
VR 30115 A VR 30116 A VR 30117 A VR 30118 A VR 30119 A	216 202 216 202 216 202 216 202 216 202 216 202	< 5 < 5 < 5 < 5 < 5 < 5 < 5	0.2 0.4 0.2 0.4 < 0.2	1.26 1.55 1.38 1.67 1.17	14 8 26 14 12	130 150 110 140 90	< 0.5 0.5 < 0.5 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.25 0.23 0.37 0.18 0.11	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	13 16 17 15 15	30 31 34 33 28	26 30 47 34 30	3.61 4.11 5.90 3.60 3.48	10 10 10 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.09 0.10 0.08 0.09 0.07	30 30 30 30 30	0.36 0.34 0.23 0.36 0.30	265 750 370 640 495
VR 30120 A VR 30121 A VR 30122 A VR 30123 A VR 30123 A VR 30124 A	216 202 216 202 216 202 216 202 216 202 216 202	< 5 < 5 < 5 < 5 < 5 < 5	0.4 0.6 < 0.2 < 0.2 < 0.2 < 0.2	1.68 1.68 1.26 0.71 0.65	18 4 16 6 20	100 140 60 40 40	< 0.5 < 0.5 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 2 < 2	0.27 0.18 0.26 0.03 0.02	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	21 16 20 3 6	31 32 32 12 12	44 30 56 13 23	4.63 4.09 5.77 2.46 4.33	< 10 < 10 10 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.07 0.07 0.04 0.04 0.04	30 20 30 30 30	0.30 0.44 0.50 0.06 0.06	405 545 380 350 240
VR 30125 A VR 30126 A VR 30127 A VR 30128 A VR 30128 A VR 30129 A	216 202 216 202 216 202 216 202 216 202 216 202	< 5 < 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.95 0.49 1.04 1.18 0.97	16 < 2 6 14 2	40 20 50 50 50	0.5 < 0.5 0.5 0.5 1.0	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.03 0.01 0.02 0.02 0.02	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 < 1 7 10 6	17 4 18 18 17	27 6 22 23 19	4.31 0.79 3.64 3.60 3.70	< 10 10 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.04 0.03 0.07 0.07 0.08	20 50 40 40 40	0.15 0.02 0.22 0.30 0.20	140 45 205 440 430
L										<u> </u>				CERTIFI		j		27	10	

	1		E	ŧ	L		1		t		t	L	ŧ	I		E	ł	1	
C						d Assayer	d.		To:EN 354 VAN V60	NNEC - 200 NCOU C 1S4	OTT CA GRANV VER, BC	NADA IN ILLE ST.	C.		••		Pa To In P.	ige Numbe ital Pages ertificate Da voice No. O. Number	r3-B :6 :te:22-SEP-9 :1952799(:50-504
	2 8 P	12 Brookst ritish Colur HONE: 604	oank Ave nbia, Ca 4-984-02	e., r anada 221 FAX	vortn van V X: 604-98	couver 7J 2C1 4-0218			Project : Comment	C ts: A	ARIBOO		AYSON	CC: AND	REW DA	VIS / DAI	Ad RWIN GR	EEN	KAVW
										CE	RTIFI	CATE	OF A	NALY	SIS	A	95279	90	
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	q mqq	Pb ppn	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V mqq	W ppm	Zn ppm				
30093 A 30094 A	216 202 216 202	2 < 2 <	0.01 0.01	17 63	840 1260	30 52	2 6	< 1 3	7 0 24 0	.01	< 10 < 10	< 10 < 10	29 33	< 10 < 10	52 176		·		
30095 A 30096 A 30097 A 30098 A 30099 A	216 202 216 202 216 202 216 202 216 202 216 202	1 < 1 < 7 < 2 < 1 <	0.01 0.01 0.01 0.01 0.01	38 45 23 18 41	670 360 1010 610 700	22 54 96 146 18	< 2 2 2 4	1 3 1 < 1 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.02 .01 .01 .01 .01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	35 19 34 24 21	< 10 < 10 < 10 < 10 < 10	88 124 98 80 104				
30100 A 30101 A 30102 A 30103 A 30104 A	216 202 216 202 216 202 216 202 216 202 216 202 216 202	1 < 1 < 1 < 1 < 1 <	0.01 0.01 0.01 0.01 0.01 0.01	87 35 45 40 23	1820 790 710 530 760	18 32 20 < 2 4	4 2 2 2 4	7 1 1 2 1	63 0 14 0 20 0 9 0 7 0	.01 .01 .01 .01 .01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	18 32 25 27 42	< 10 < 10 < 10 < 10 < 10 < 10	128 102 110 88 44				
30105 A 30106 A 30107 A 30108 A 30109 A	216 202 216 202 216 202 216 202 216 202 216 202	1 < 2 < 4 3 1 <	0.01 0.01 0.01 0.01 0.01	39 55 64 60 32	840 1040 2330 1430 470	38 98 68 54 42	< 2 4 2 4	2 4 3 4 3	20 0 39 0 95 0 50 0 19 0	.01 .02 .03 .04 .06	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 10 < 10 < 10 < 10	25 29 35 43 45	< 10 10 10 10 < 10	108 158 268 148 92				
30110 A 30111 A 30112 A 30113 A 30113 A	216 202 216 202 216 202 216 202 216 202 216 202	1 < 1 < 1 < 1 < 1 < 1 <	0.01 0.01 0.01 0.01 0.01	36 51 33 42 32	530 1210 440 1110 970	36 56 42 40 34	< 2 2 2 2 2 4	3 3 2 2 3	18 0 24 0 16 0 31 0 17 0	.03 .02 .02 .02 .02	< 10 < 10 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	33 32 25 35 65	< 10 < 10 < 10 10 10	126 154 84 102 98				
30115 A 30116 A 30117 A 30118 A 30119 A	216 202 216 202 216 202 216 202 216 202 216 202	< 1 < 1 < < 1 < < 1 < 1 < 1 <	0.01 0.01 0.01 0.01 0.01	50 42 51 52 47	810 730 730 960 700	26 68 64 36 34	< 2 4 4 2	3 3 3 2 1	22 0 24 0 31 0 20 0 11 0	.03 .03 .07 .03 .01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	29 36 54 31 27	< 10 10 10 10 < 10	82 124 104 110 82				
30120 A 30121 A 30122 A 30123 A 30123 A	216 202 216 202 216 202 216 202 216 202 216 202	1 < 1 < 1 < 2 < 2 <	0.01 0.01 0.01 0.01 0.01	61 43 68 11 18	760 850 1080 970 1020	76 30 12 32 28	2 2 4 < 2 2	3 2 3 < 1 < 1	24 0 16 0 25 < 0 9 0 12 < 0	.02 .01 .01 .01 .01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	29 25 18 24 20	< 10 10 10 < 10 < 10	108 112 148 34 46				
30125 A 30126 A 30127 A 30128 A 30128 A 30129 A	216 202 216 202 216 202 216 202 216 202 216 202	1 < < 1 < 1 < < 1 < < 1 < 1 <	0.01 0.01 0.01 0.01 0.01	16 4 19 23 15	740 280 520 500 720	30 12 16 18 16	4 < 2 2 2 2	< 1 < 1 1 1	12 < 0 6 < 0 6 0 5 < 0 5 < 0	.01 .01 .01 .01 .01	< 10 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	23 13 18 16 18	< 10 < 10 < 10 < 10 < 10 < 10	54 14 52 64 42				
									·····				<u></u>	CERTIFIC			< 12 .		×

C	C Ar	cher 212 Brook British Co PHONE: 0	ne) mista * Geo (sbank Av lumbia, C 604-984-0	chemists ve., h anada 0221 FA	Abs Registere North Var X: 604-98	ed Assaye ncouver /7J 2C1 84-0218	td.		To: Proje Comr	.=NNEC 354 - 200 VANCOU V6C 1S4 ct : (ments: /	COTT CAL D GRANV JVER, BO CARIBOO	NADA IN	C. AYSON	CC: ANI		AVIS / D	ARWIN (Page Nu Total Pag Certificat Invoice N P.O. Nur Account GREEN	mber ges :6 e Date:2 lo. :1 nber :5	A 22-SEP-99 9527990 50-504 KAVW
										CE	RTIFI	CATE	OF A	NAL	(SIS	ļ	9527	990		
SAMPLE	PREP CODE	λu ppb Fλ+λλ	Ag ppm	A1 %	As ppm	Ba ppm	Be	Bi ppm	Ca %	Cđ ppm	Со ррт	Cr ppm	Cu ppm	Fe	Ga ppm	Бд Шdđ	K %	La ppm	Mg %	Mn ppm
VR 30130 A VR 30131 A VR 30132 A VR 30133 A VR 30133 A VR 30134 A	216 202 216 202 216 202 216 202 216 202 216 202	< 5 < 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 0.2	1.31 1.09 1.20 0.93 1.16	8 10 6 4 16	70 50 60 30 30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.03 0.03 0.03 0.02 0.02	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	9 3 8 4 4	22 20 21 15 18	26 15 25 18 15	4.23 3.59 3.80 3.68 3.99	10 10 < 10 10 10	< 1 1 < 1 < 1 < 1	0.10 0.08 0.09 0.06 0.06	40 30 30 40 40	0.37 0.23 0.27 0.20 0.22	305 260 370 305 255
VR 30135 A VR 30136 A VR 30137 A VR 30138 A VR 30138 A	216 202 216 202 216 202 216 202 216 202 216 202 216 202	< 5 < 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.16 1.00 0.91 0.99 1.22	16 18 6 6 8	40 40 40 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.01 0.01 0.01 0.02 0.03	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 5 3 4 8	17 14 11 16 21	17 17 14 17 28	3.88 3.19 2.15 3.91 4.37	10 10 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.07 0.08 0.08 0.07 0.10	40 40 40 40	0.23 0.21 0.18 0.14 0.23	225 220 110 225 360
VR 30140 A VR 30141 A VR 30142 A VR 30143 A VR 30144 A	216 202 216 202 216 202 216 202 216 202 216 202	< 5 < 5 < 5 < 5 < 5 < 5	0.2 < 0.2 < 0.2 < 0.2 0.2 < 0.2	1.14 0.87 1.14 0.92 0.92	6 2 8 8 6	90 100 90 60 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< <u>2</u> < 2 < 2 < 2 2 2	0.03 0.02 0.03 0.03 0.02	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 3 4 5 6	17 17 21 16 15	10 14 16 16 20	2.47 3.60 3.48 3.03 5.87	10 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.10 0.09 0.10 0.08 0.06	40 40 30 30 30	0.15 0.09 0.21 0.17 0.12	115 350 160 320 770
VR 30145 A VR 30146 A VR 30147 A VR 30148 A VR 30148 A	216 202 216 202 216 202 216 202 216 202 216 202 216 202	< 5 < 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 0.2 0.8 0.2	0.55 1.30 1.14 1.20 0.80	4 < 2 6 40 16	40 70 50 1290 160	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.03 0.04 0.02 0.02 0.03	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	3 4 2 2 1	10 20 19 16 14	10 16 11 20 19	1.41 4.18 3.55 2.61 3.03	10 10 10 < 10 10	1 < 1 < 1 < 1 < 1 < 1	0.06 0.09 0.07 0.08 0.06	40 30 30 20 40	0.05 0.17 0.14 0.06 0.06	155 165 190 270 100
VR 30150 A	216 202		< 0.2	1.13	4	50	< 0.5	< 2	0.03	< 0.5	5	19	18	4.17	< 10	< 1	0.07	30	0.17	160
VR 30155 A VR 30156 A VR 30157 A VR 30158 A VR 30158 A VR 30159 A	216 202 216 202 216 202 216 202 216 202 216 202	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	< 0.2 < 0.2 0.2 < 0.2 < 0.2 < 0.2	1.32 1.05 1.45 1.44 1.43	4 < 2 < 2 8 4	60 40 60 100 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.03 0.03 0.06 0.13 0.05	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	14 4 8 4	20 15 19 24 19	19 8 15 12 13	3.10 1.81 2.19 2.75 2.18	10 10 10 10 10	1 < 1 < 1 1 1	0.07 0.06 0.05 0.07 0.06	40 50 40 40	0.34 0.26 0.22 0.34 0.25	375 155 85 195 145
VR 30160 A VR 30161 A VR 30162 A VR 30163 A VR 30163 A	216 202 216 202 216 202 216 202 216 202 216 202	<pre>< 5 < 5</pre>	< 0.2 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.21 1.72 0.94 1.09 0.93	8 16 18 12 10	50 90 30 40 30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 2 < 2 < 2 < 2 < 2	0.06 0.02 0.02 0.02	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 8 4 4 6	23 34 18 18 16	17 22 9 13 15	3.24 3.46 2.57 3.37 3.65	< 10 < 10 < 10 < 10 < 10 < 10	1 < 1 < 1 < 1 < 1 < 1	0.04 0.04 0.03 0.03 0.03	30 30 30 30 30	0.34 0.28 0.24 0.23 0.24	180 250 80 110 195
VR 30165 A VR 30166 A VR 30167 A VR 30168 A VR 30168 A VR 30169 A	216 202 216 202 216 202 216 202 216 202 216 202 216 202	<pre>< 5 < 5</pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.84 0.74 1.03 1.07 1.19	6 16 22 8 < 2	30 20 20 30 30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>< 2 2 < /pre>	0.03 0.02 0.02 0.03 0.03	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	3 2 6 5 6	15 10 20 19 19	12 3 46 18 17	2.85 1.84 6.78 5.40 4.55	10 10 < 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.04 0.03 0.03 0.04 0.04	30 40 30 40 30	0.12 0.07 0.26 0.21 0.17	305 55 170 295 340

ł

Ł

1

Ĩ

t

CERTIFICATION:

1 11

-7

. . .

Ĩ.

	Ana	hen hylical Chemi 212 Brooksi British Colui PHONE: 60	1 CX sts * Geod bank Ave mbia, Ca 4-984-02	chemists b., M unada 221 FA)	abs Registere North Van V K; 604-98	d Assaye couver 7J 2C1 4-0218	t d. ⊸		To: Projec Comm	.ENNE(354 - 20 VANCO V6C 1S4 t : ients:	COTT CA 0 GRANY UVER, B 1 CARIBOO ATTN: EI	NADA IN VILLE ST C D RIC FINL	IC. AYSON	CC: AND	** DREW DAV	Page Number , ,-B Total Pages :6 Certificate Date: 22-SEP-95 Invoice No. : 19527990 P.O. Number :50-504 Account : KAVW IS / DARWIN GREEN
										CE	RTIFI	CATE	OF A	NALY	'SIS	A9527990
SAMPLE	PREP CODE	Mo ppm	Na %	Nİ ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	M M	Zn ppm	
VR 30130 Å VR 30131 Å VR 30132 Å VR 30133 Å VR 30133 Å	216 202 216 202 216 202 216 202 216 202 216 202	1 < 1 < < 1 < 1 < < 1 < < 1 <	0.01 0.01 0.01 0.01 0.01	23 12 20 14 12	690 640 570 780 620	20 12 20 12 14	< 2 2 2 2 4	1 < 1 < 1 < 1 1	7 6 3 < 4	0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	23 25 22 16 20	10 < 10 < 10 < 10 < 10 < 10	62 38 58 40 40	
VR 30135 Å VR 30136 Å VR 30137 Å VR 30137 Å VR 30138 Å VR 30139 Å	216 202 216 202 216 202 216 202 216 202 216 202	< 1 < < 1 < < 1 < < 1 < 2 < 1 <	0.01 0.01 0.01 0.01 0.01 0.01	15 15 10 14 26	670 550 670 670 820	20 18 12 22 28	< 2 2 < 2 2 4	1 1 < 1 1 1	3 < 3 < 4 < 4	0.01 0.01 0.01 0.01 0.01	< 10 < 10 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	16 14 14 21 21	< 10 < 10 < 10 < 10 < 10 < 10	42 48 32 40 58	
VR 30140 A VR 30141 A VR 30142 A VR 30143 A VR 30143 A VR 30144 A	216 202 216 202 216 202 216 202 216 202 216 202	1 < 5 < 1 < 4 <	0.01 0.01 0.01 0.01 0.01	8 10 14 13 22	570 1010 1040 740 1390	16 38 26 20 20	2 4 2 4 2 2	1 < 1 1 < 1 1	10 23 7 8 11	0.01 0.01 0.01 0.01 0.01	10 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	21 31 25 28 24	< 10 < 10 < 10 < 10 < 10 < 10	32 40 44 38 60	
VR 30145 A VR 30146 A VR 30147 A VR 30148 A VR 30148 A VR 30149 A	216 202 216 202 216 202 216 202 216 202 216 202	< 1 < 2 < 1 < 5 < 4 <	0.01 0.01 0.01 0.01 0.01 0.01	10 14 7 7 8	410 670 550 1260 590	16 16 16 66 142	< 2 6 < 2 4 < 2	< 1 1 < 1 1	9 6 5 16 9	0.01 0.01 0.02 0.01 0.02	10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	25 32 29 34 30	< 10 < 10 < 10 < 10 < 10 < 10	26 42 26 18 30	
VR 30150 A	216 202	1 <	0.01	12	500	46	< 2	1	4	0.01	< 10	< 10	31	< 10	40	
VR 30155 A VR 30156 A VR 30157 A VR 30158 A VR 30158 A VR 30159 A	216 202 216 202 216 202 216 202 216 202 216 202	1 < 1 < < 1 < 1 < 1 <	0.01 0.01 0.01 0.01 0.01 0.01	20 9 13 24 11	480 320 380 720 390	22 14 18 20 16	2 2 < 2 < 2 < 2 < 2	1 1 1 2 1	4 5 7 12 7	0.01 0.02 0.02 0.03	< 10 10 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	18 14 24 24 23	< 10 < 10 < 10 < 10 < 10 < 10	60 32 36 86 42	
VR 30160 A VR 30161 A VR 30162 A VR 30163 A VR 30163 A	216 202 216 202 216 202 216 202 216 202 216 202	1 < 1 < 1 < 2 < < 1 <	0.01 0.01 0.01 0.01 0.01	17 20 12 11 13	420 590 500 430 660	10 22 6 16 14	< 2 2 2 2 2 2 2 2	1	4 6 3 3 3	0.04 0.02 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	24 21 18 23 11	< 10 < 10 < 10 < 10 < 10 < 10	54 66 32 38 46	
VR 30165 A VR 30166 A VR 30167 A VR 30168 A VR 30168 A VR 30169 A	216 202 216 202 216 202 216 202 216 202 216 202	1 < < 1 < 1 < 1 < 1 <	0.01 0.01 0.01 0.01 0.01	7 4 15 13 10	980 810 1270 2740 1240	14 12 18 24 20	< 2 < 2 < 2 < 2 < 2 < 2	< 1 < 1 1 1 < 1	4 4 3 5 4	0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	26 17 15 44 24	< 10 < 10 < 10 < 10 < 10 < 10	24 10 60 42 36	

È

R

Ł

ł

ł

N. MARICOME

l

ľ

Ë

L L

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: .ENNECOTT CANADA INC.

ł

354 - 200 GRANVILLE ST. VANCOUVER, BC V6C 1S4 Page Number . J-A Total Pages :6 Certificate Date: 22-SEP-95 Invoice No. : 19527990 P.O. Number :50-504 Account :KAVW

ł

Project : CARIBOO Comments: ATTN: ERIC FINLAYSON CC: ANDREW DAVIS / DARWIN GREEN

**

										CE	RTIFIC	CATE	OF A	NAL	YSIS		9527	990		
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be	Bi ppm	Ca %	Cđ ppm	Со ррт	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
VR 30170 A VR 30171 A VR 30172 A VR 30172 A VR 30173 A VR 30174 A	216 202 216 202 216 202 216 202 216 202 216 202	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5 </pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.86 1.02 0.91 1.00 0.55	14 10 4 8 8	30 30 30 30 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.04 0.02 0.02 0.02 0.01	< 0.5 < 0.5 0.5 < 0.5 < 0.5 < 0.5	7 8 10 4 2	15 16 22 15 7	15 21 33 15 5	3.45 3.54 5.05 3.22 0.89	10 10 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.05 0.05 0.06 0.03 0.03	40 40 40 50 60	0.10 0.15 0.17 0.11 0.02	515 755 670 290 35
VR 30175 A VR 30176 A VR 30177 A VR 30177 A VR 30178 A VR 30179 A	216 202 216 202 216 202 216 202 216 202 216 202	< 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.72 0.89 1.26 1.08 1.17	2 10 20 8 < 2	20 20 40 30 100	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 2 2	0.01 0.01 0.03 0.01 0.04	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	1 5 4 4 5	11 13 17 10 13	8 22 20 9 11	1.24 4.74 5.73 2.57 2.39	10 < 10 10 10 10	< 1 < 1 < 1 < 1 < 1	0.04 0.04 0.04 0.04 0.04	60 30 40 50 60	0.02 0.10 0.12 0.08 0.12	50 280 160 140 520
VR 30180 A VR 30181 A VR 30182 A VR 30183 A VR 30184 A	216 202 216 202 216 202 216 202 216 202 216 202	<pre>< 5 < 4 5 < 5 < 5 < 5 < 5 < 5 </pre>	< 0.2 0.4 < 0.2 < 0.2 < 0.2	0.83 1.46 0.98 1.37 1.32	14 < 2 10 20 2	20 40 10 30 20	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 < 2 < 2 < 2 2	0.01 0.01 0.01 0.01 0.02	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 3 2 4 4	9 14 17 13 18	14 21 16 13 16	3.21 2.83 4.33 3.55 4.84	< 10 < 10 < 10 10 10	< <u>1</u> < 1 < 1 < 1 < 1	0.02 0.04 0.02 0.03 0.04	40 30 30 50 40	0.10 0.09 0.14 0.09 0.23	85 130 100 105 125
VR 30185 A VR 30186 A VR 30187 A VR 30188 A VR 30188 A VR 30189 A	216 202 216 202 216 202 216 202 216 202 216 202	< 5 < 5 < 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 0.2 < 0.2 < 0.2	1.18 1.83 1.44 0.84 1.18	6 12 < 2 8 14	20 40 90 30 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.03 0.03 0.11 0.04 0.04	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 18 12 7 13	13 26 22 16 20	16 64 18 18 35	3.84 7.92 2.74 6.55 4.73	10 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.04 0.05 0.08 0.03 0.05	60 30 30 30 30	0.16 0.41 0.28 0.11 0.21	135 525 785 365 890
VR 30190 A VR 30191 A VR 30192 A VR 30192 A VR 30193 A VR 30194 A	216 202 216 202 216 202 216 202 216 202 216 202	<pre>< 5 < 5 </pre>	< 0.2 0.2 < 0.2 < 0.2 0.2	1.29 0.92 1.15 1.01 0.70	< 2 14 < 2 < 2 B	40 40 30 30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 2 < 2 < 2 < 3	0.07 0.07 0.07 0.04 0.04	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 6 4 7 4	18 16 19 14 10	17 21 12 21 10	2.09 5.05 3.46 4.37 2.15	10 < 10 10 10 10	< 1 < 1 < 1 < 1 < 1	0.04 0.04 0.05 0.03 0.03	50 30 20 30 30	0.43 0.22 0.24 0.31 0.07	115 90 185 125 85
VR 30195 A VR 30196 A VR 30197 A VR 30197 A VR 30198 A VR 30199 A	216 202 216 202 216 202 216 202 216 202 216 202	<pre>< 5 < 5 </pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.35 1.06 1.26 0.76 1.03	14 18 20 22 < 2	40 60 90 50 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 4 < 2 < 2 < 2	0.05 0.04 0.25 0.06 0.11	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	10 6 11 4 6	21 17 17 11 14	18 13 16 16 14	5.66 3.14 3.40 4.11 2.33	10 10 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.04 0.06 0.07 0.04 0.06	30 40 40 50 40	0.33 0.16 0.19 0.07 0.21	285 210 605 125 235
VR 30200 A VR 30201 A VR 30202 A VR 30203 A VR 30203 A VR 30204 A	216 202 216 202 216 202 216 202 216 202 216 202	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	< 0.2 < 0.2 2.0 < 0.2 1.0	1.07 1.85 2.09 1.77 1.70	6 < 2 2 12 10	50 140 170 80 200	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 4 < 2 < 2 < 2 < 2	0.11 0.06 0.09 0.04 0.06	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	15 21 17 23 5	18 35 30 24 24	20 34 42 35 13	3.65 4.51 2.11 3.59 1.49	10 10 10 < 10 10	< 1 3 < 1 < 1 < 1	0.06 0.10 0.09 0.07 0.08	40 40 40 40 30	0.28 0.39 0.37 0.36 0.33	425 1085 135 715 80
VR 30205 A VR 30206 A VR 30207 A VR 30208 A VR 30209 A	216 202 216 202 216 202 216 202 216 202 216 202	<pre> < 5 < 5 < 5 < 5 < 5 < 5 </pre>	3.0 2.0 2.0 < 0.2 1.2	1.41 2.32 4.54 2.68 2.23	22 22 2 14 14	140 340 210 260 310	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.05 0.09 0.09 0.10 0.15	< 0.5 < 0.5 < 0.5 1.0 < 0.5	9 24 89 44 16	20 41 36 37 42	29 47 131 40 21	5.89 12.05 3.86 10.80 4.31	< 10 < 10 < 10 < 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.07 0.05 0.07 0.11 0.06	30 20 20 30 30	0.17 0.29 0.33 0.44 0.37	250 595 1805 1200 390
l <u></u>	┺═┻┷╌┉	.															···-			

CERTIFICATION:_

Chemex Labs L Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

ł

L To: **ENNECOTT CANADA INC.**

Ł

354 - 200 GRANVILLE ST. VANCOUVER, BC V6C 1S4

Î

Page Number B Total Pages :6 Certificate Date: 22-SEP-95 Invoice No. :19527990 P.O. Number :50-504 Account :KAVW

Ĩ

Γ

ł

Project : CARIBOO Comments: ATTN: ERIC FINLAYSON CC: ANDREW DAVIS / DARWIN GREEN

ł

1

**

				.		.			_ <u></u>	CE	RTIFI	CATE	OF A	NALY	'SIS	A9527990
SAMPLE	PREP CODE	Mo	Na %	Ni ppm	p ppm	Pb ppm	SD ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U mqq	V ppm	W mgg	Zn ppm	
VR 30170 A VR 30171 A VR 30172 A VR 30173 A VR 30173 A	216 202 216 202 216 202 216 202 216 202 216 202	1 - 1 - 2 - 2 - 1 -	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	11 12 20 10 4	810 1030 1350 680 190	8 16 20 8 < 2	< 2 2 < 2 2 < 2 < 2	< 1 < 1 1 1 < 1	7 5 < 7 4 < 4 <	0.01 0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 10	< 10 < 10 < 10 < 10 < 10 < 10	28 22 22 19 12	< 10 < 10 < 10 < 10 < 10 < 10	36 38 64 30 12	
VR 30175 A VR 30176 A VR 30176 A VR 30177 A VR 30178 A VR 30179 A	216 202 216 202 216 202 216 202 216 202 216 202	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	7 16 10 8 8	320 950 590 310 490	< 2 20 16 < 2 4	< 2 4 < 2 < 2 < 2	< 1 1 1 < 1 1	4 < 3 < 4 < 8	0.01 0.01 0.01 0.01 0.01	10 < 10 < 10 < 10 < 10 10	< 10 < 10 < 10 < 10 < 10 < 10	15 11 32 12 20	< 10 < 10 < 10 < 10 < 10 < 10	16 44 46 28 52	
VR 30180 A VR 30161 A VR 30182 A VR 30183 A VR 30183 A VR 30184 A	216 202 216 202 216 202 216 202 216 202 216 202	1 - 1 - 1 - 2 -	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	8 6 10 8 9	430 380 580 390 740	12 10 6 10 14	2 < 2 < 2 < 2 < 2 2	< 1 1 < 1 1 1	3 < 2 < 2 < 4 4	0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	11 11 17 17 27	< 10 < 10 < 10 < 10 < 10 < 10	32 24 30 28 42	
VR 30185 A VR 30186 A VR 30187 A VR 30187 A VR 30188 A VR 30189 A	216 202 216 202 216 202 216 202 216 202 216 202	2 - 3 - < 1 - 1 - 1 -	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	9 44 17 13 23	500 1080 790 1060 580	4 36 42 20 14	4 6 < 2 4 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 < 3 < 14 5 8	0.01 0.01 0.01 0.01 0.01 0.02	10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	20 16 21 26 28	< 10 < 10 < 10 < 10 < 10 < 10	38 92 56 58 84	
VR 30190 A VR 30191 A VR 30192 A VR 30193 A VR 30193 A	216 202 216 202 216 202 216 202 216 202 216 202	< 1 < 1 < < 1 < < 1 < < 1 <	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	26 15 10 18 8	480 700 600 560 330	14 16 6 10 < 2	2 2 < 2 6 < 2	1 < 1 < 1 < 1 < 1 < 1	8 < 6 < 5 < 3 < 4 <	0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	11 12 19 16 17	< 10 < 10 < 10 < 10 < 10 < 10	70 48 48 56 24	
VR 30195 A VR 30196 A VR 30196 A VR 30197 A VR 30198 A VR 30199 A	216 202 216 202 216 202 216 202 216 202 216 202	1 ·	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	19 16 18 11 14	550 560 710 380 730	22 18 18 14 22	6 < 2 < 2 < 2 < 2 < 2	1 1 1 T 1	6 8 21 6 < 11 <	0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 10	< 10 < 10 < 10 < 10 < 10 < 10	24 17 21 16 12	< 10 < 10 < 10 < 10 < 10 < 10	88 56 80 46 50	
VR 30200 A VR 30201 A VR 30202 A VR 30203 A VR 30203 A VR 30204 A	216 202 216 202 216 202 216 202 216 202 216 202	< 1 + 3 + 2 + < 1 +	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	22 42 53 79 23	460 530 480 430 370	18 22 26 12 28	1 2 2 2 < 2	1 3 2 1	11 8 10 6 9	0.01 0.03 0.02 0.01 0.02	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	17 35 24 18 17	< 10 < 10 < 10 < 10 < 10 < 10	62 104 110 146 56	
VR 30205 A VR 30206 A VR 30207 A VR 30208 A VR 30208 A VR 30209 A	216 202 216 202 216 202 216 202 216 202 216 202	10 - 5 - 1 - 2 -	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	22 32 94 119 28	980 900 740 500 450	28 34 16 8 12	4 6 4 6 2	1 3 8 9 3	12 10 8 9 9	0.01 0.04 0.04 0.06 0.10	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	22 43 34 40 60	< 10 < 10 < 10 < 10 < 10 < 10	78 224 166 502 116	
h	_ 									<u> </u>						· · · · · · · · · · · · · · · · · · ·

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: .ENNECOTT CANADA INC.

354 - 200 GRANVILLE ST. VANCOUVER, BC V6C 1S4 Page Number ...-A Total Pages :6 Certificate Date: 22-SEP-95 Invoice No. : 19527990 P.O. Number :50-504 Account : KAVW

Project : CARIBOO Comments: ATTN: ERIC FINLAYSON CC: ANDREW DAVIS / DARWIN GREEN

ł

**

	<u></u>					<u> </u>		o'			RTIFI		OF A	INAL	/SIS		A9527	990		<u></u>
SAMPLE	PREP	Ац ррб	Ag	A1	As	Ba	Be	Bi	Ca	Cđ.	Co	Cr	Cu	Fe	Ga	Hg	R	La	Mg	Mn
	CODE	ГА+АА	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	%	ppm
VR 30210 A VR 30211 A VR 30212 A VR 30213 A VR 30213 A VR 30214 A	216 202 216 202 216 202 216 202 216 202 216 202	< 5 < 5 5 5 5 5 5 5 5	< 0.2 < 0.2 0.4 < 0.2 0.2	1.73 0.86 1.16 1.66 1.62	< 2 2 < 2 6 < 2	220 190 160 130 80	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 < 2 < 2 < 2 < 2	0.11 0.13 0.09 0.07 0.07	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	8 8 7 12 10	40 21 27 30 35	21 13 17 27 24	5.33 3.05 3.40 3.98 4.77	10 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.07 0.07 0.05 0.06 0.06	30 40 40 40 40	0.28 0.16 0.24 0.40 0.32	295 625 225 375 295
VR 30215 A	216 202	< 5	< 0.2	1.12	2	30	< 0.5	4	0.02	< 0.5	4	19	18	5.36	10	< 1	0.03	40	0.13	180
VR 30216 A	216 202	< 5	< 0.2	0.94	< 2	100	< 0.5	2	0.11	< 0.5	10	18	36	5.07	10	< 1	0.06	40	0.18	225
VR 30217 A	216 202	< 5	< 0.2	1.04	8	50	< 0.5	< 2	0.04	< 0.5	10	14	42	6.13	10	< 1	0.03	50	0.18	145

•••	10	3	3.75	20 18	20 18	22 16	11 11	< 0.5 < 0.5	0.28	< 2 6	0.5 0.5	· <	70 70	< 2 6	1.71 1.33	0.2	<	< 1	202	216 216	28 A 29 A	3022 3022	
< 1	< 10	1	3.11	42	42	146	9	< 0.5	0.11	< 2	0.5) <	130	2	2.44	0.2	5	< !	202	216	30 7	3023	V
																			1				l
																							١
																							ł
																							Ì
	< 10	1	3.11	42	42	146	9	< 0.5	0.11	< 2	0.5		130	2	2.44	0.2	3	< !	202	216	30 A	302	

CERTIFICATION:

Ł

ŧ

Chemex Labs Ltd.

ŧ

Ē

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: _NNECOTT CANADA INC.

354 - 200 GRANVILLE ST. VANCOUVER, BC V6C 1S4 Page Number 3 Total Pages :6 Certificate Date: 22-SEP-95 Invoice No. :19527990 P.O. Number :50-504 Account :KAVW

Project : CARIBOO Comments: ATTN: ERIC FINLAYSON CC: ANDREW DAVIS / DARWIN GREEN

...

Ē

			·····							CE	RTIF	CATE	OF A	NALY	SIS	A9527990	
SAMPLE	PREP CODE	Mo ppm	Na %	NÍ ppm	P mqq	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	W	Zn ppm		
VR 30210 A VR 30211 A VR 30212 A VR 30213 A VR 30214 A	216 202 216 202 216 202 216 202 216 202 216 202	3 < 1 < < 1 < 1 < 1 <	0.01 0.01 0.01 0.01 0.01	21 13 19 25 25	500 450 410 630 660	12 8 12 10 12	< 2 2 4 < 2 2	2 1 1 2 2	9 9 7 7 7	0.07 0.04 0.04 0.03 0.03	< 10 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	66 44 35 33 36	< 10 < 10 < 10 < 10 < 10 < 10	96 48 52 86 68		
VR 30215 A VR 30216 A VR 30217 A	216 202 216 202 216 202 216 202	1 < 1 < 1 <	0.01 0.01 0.01	11 24 24	750 840 770	16 16 18	< 2 2	1 1 1	3 9 6	0.01 < 0.01 < 0.01	< 10 < 10 < 10	< 10 < 10 < 10	29 15 16	< 10 < 10 < 10	38 74 70		

ł

VR VR VR	30227 30228 30229	λ λ λ	216 216 216	202 202 202	<	1 1 2	< 0 < 0 < 0).01).01).01	25 23 15	940 760 570	38 20 18	4 2 < 2	2 2 1	30 28 6 <	0.01 0.01 0.01	< 10 < 10 < 10	< 10 < 10 < 10	19 22 22	< 10 < 10 < 10	70 76 56	
VR	30230	λ	216	202	<	1	< 0).01	42	760	14	< 2	8	20	0.18	< 10	< 10	67	< 10	76	
																					;

.

APPENDIX D

ANALYTICAL RESULTS FOR DRAINAGE SAMPLES

•

.

1 **Chemex Labs L** td. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

1 To: NNECOTT CANADA INC.

354 - 200 GRANVILLE ST. VANCOUVER, BC V6C 1S4

Page Number Total Pages : Certificate Date: 20-SEP-95 :19528010 :50-504 :KAVW Invoice No. P.O. Number Account

ŧ

ŧ

Project :

.

£

ŧ

CARIBOO Comments: ATTN: ERIC FINLAYSON CC: ANDREW DAVIES / DARWIN GREEN

ŧ

Ē

ŧ

**

ŧ

						CERTIFICATE OF ANALYSIS A9528010									
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm AAS	Al % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K% (ICP)	Mg % (ICP)
VR 20077A-150 VR 20078A-150 VR 20079A-150 VR 20080A-150 VR 20080A-150 VR 20081A-150	216 285 216 285 216 285 216 285 216 285 216 285	235 40 10 < 5 < 5	< 0.2 0.6 0.4 < 0.2 < 0.2	3.67 3.78 4.70 5.55 6.10	630 440 2180 2080 940	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 2 2 < 2 < 2 < 2	0.94 0.46 0.45 0.29 0.40	< 0.5 0.5 < 0.5 0.5 0.5	14 41 17 23 22	50 68 113 68 108	31 79 37 23 30	3.26 8.21 3.70 3.52 4.46	0.87 1.13 1.17 1.64 1.46	0.48 0.59 0.81 0.68 1.05
L	LL,,	.		<u>I</u>	1	.1	L	. L	J. "_,	CE	RTIFICATIO	DN:	Janin	$\mathbb{R}^{(1)}$	S.r.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: INNECOTT CANADA INC.

> 354 - 200 GRANVILLE ST. VANCOUVER, BC V6C 1S4

Page Number 3 Total Pages :1 Certificate Date: 20-SEP-95 Invoice No. :19528010 P.O. Number :50-504 Account :KAVW

t

Project : CARIBOO

Comments: ATTN: ERIC FINLAYSON CC: ANDREW DAVIES / DARWIN GREEN

**

CERTIFICATE OF ANALYSIS A9528010

			T	т	T	<u>r</u>									
SAMPLE	PREP CODE	Mn ppm (ICP)	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)	W ppm		
VR 20077A-150 VR 20078A-150 VR 20079A-150 VR 20080A-150 VR 20081A-150	216 285 216 285 216 285 216 285 216 285 216 285	580 940 695 2250 1195	1 2 2 1 1	0.80 0.41 0.51 0.62 0.78	28 95 60 49 80	710 740 780 690 880	64 70 38 30 36	115 72 75 69 101	0.41 0.16 0.22 0.27 0.20	64 B4 112 65 117	< 10 < 10 < 10 < 10 < 10 < 10	82 164 126 134 146	3 4 3 3 4		
		-													
				:					-						
		_		[[CEF		N:_ 13	ا مىئا:(1. Zec; 5	ler

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: INNECOTT CANADA INC.

354 - 200 GRANVILLE ST. VANCOUVER, BC V6C 1S4

Page Number Total Pages . . Certificate Date: 27-SEP-95 Invoice No. : 19528011 P.O. Number : 50-504 Account : KAVW

Project : CARIBOO

Comments: ATTN: ERIC FINLAYSON CC: ANDREW DAVIS / DARWIN GREEN

**

						CERTIFIC	ATE OF A	NALYSIS	A95	28011	
SAMPLE	PREP	Ag ppm	As ppm	Bi ppm	Cd ppm	Cu ppm	Hg ppb	Мо ррт	Pb ppm	Sb ppm	Zn ppm
VR 20077A-150 VR 20078A-150 VR 20079A-150 VR 20080A-150 VR 20081A-150	2993296 2993296 2993296 2993296 2993296 2993296	0.30 1.08 0.58 0.42 0.50	49.4 25.8 13.8 8.6 11.4	0.2 1.0 0.4 0.2 0.4	0.3 1.3 0.8 1.2 1.2	28.2 76.8 39.2 27.0 32.0	10 30 30 100 40	1.4 1.8 1.4 1.0 0.8	28.0 51.0 43.0 22.5 33.0	0.4 0.2 0.2 3.0 < 0.2	71 153 110 107 109

CERTIFICATION:

ŧ

Æ

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

t To: ENNECOTT CANADA INC.

1

Ĕ

354 - 200 GRANVILLE ST. VANCOUVER, BC V6C 1S4

Page Number Total Pages : 1 Certificate Date: 22-SEP-95 Invoice No. : 19528009 P.O. Number : 50-504 Account :KAVW

ž

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Ł

Project : CARIBOO Comments: ATTN: ERIC FINLAYSON CC: ANDREW DAVIES / DARWIN GREEN

Ť

R

**

CERTIFICATION:_

.

t

					_											rsis		\9528	009			
	SAMPLE	PR CO	ep D e	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Eg ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm
22222	R 20077A-80 R 20078A-80 R 20079A-80 R 20079A-80 R 20080A-80 R 20081A-80	202 202 202 202 202 202	229 229 229 229 229 229	0.6 0.4 0.4 < 0.2 0.2	0.44 0.55 0.88 0.72 1.02	62 28 28 10 16	70 90 130 1220 40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.53 0.28 0.26 0.13 0.23	0.5 0.5 < 0.5 0.5 0.5	13 34 16 19 18	12 14 28 12 24	33 68 39 22 26	3.58 7.24 4.02 3.09 3.83	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.02 0.02 0.02 0.03 0.01	20 10 20 30 20	0.28 0.65 0.58 0.25 0.49	445 730 555 1475 815	1 < 1 < 1 < 1 < 1 < 1
				:																		
																				•	•	
L-																			<u>, , , , , , , , , , , , , , , , , , , </u>	13-20	Re	•

ŧ

ł

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: .ENNECOTT CANADA INC.

f

Ë

354 - 200 GRANVILLE ST. VANCOUVER, BC V6C 1S4

Page Number B Total Pages : 1 Certificate Date: 22-SEP-95 Invoice No. : 19528009 P.O. Number : 50-504 Account : KAVW

Ë

I

Project : CARIBOO

Comments: ATTN: ERIC FINLAYSON CC: ANDREW DAVIES / DARWIN GREEN

**

											CERTIFICATE OF ANALYS			NALYSIS	A9528009	9	
SAMPLE	PR CO	EP DE	Na %	N1 ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U DDm	V ppm	W ppm	Zn ppm	<u> </u>	
VR 20077A-80 VR 20078A-80 VR 20079A-80 VR 20080A-80 VR 20081A-80	202 202 202 202 202 202	229 229 229 229 229 229	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	29 69 55 37 65	450 510 560 430 580	74 30 12 10 16	< 2 < 2 < 2 < 2 < 2 < 2 < 2	2 2 3 1 3	23 23 18 12 20	0.02 0.02 0.04 0.01 < 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	17 14 28 13 26	< 10 < 10 < 10 < 10 < 10 < 10	96 144 120 104 122		
			I														
													·····			! .	

APPENDIX E

•

DIGHEM V SURVEY EQUIPMENT

•

•

SURVEY EQUIPMENT

This section provides a brief description of the geophysical instruments used to acquire the survey data:

Electromagnetic System

Model: DIGHEM^V

Type: Towed bird, symmetric dipole configuration operated at a nominal survey altitude of 30 metres. Coil separation is 8 metres for 900 Hz, 5500 Hz and 7200 Hz, and 6.3 metres for the 56,000 Hz coil-pair.

Coil orientations/frequencies:	coaxial	900 Hz
	coplanar ,	900 Hz
	coaxial	5,500 Hz
	coplanar	7,200 Hz
	coplanar	/ 56,000 Hz
Channels recorded:	5 inphase cl	annels
	5 quadratur	e channels
	2 monitor c	hannels
Sensitivity:	0.06 ppm a	t 900 Hz
·	0.10 ppm a	t 5,500 Hz
	0.10 ppm a	t 7,200 Hz
	0.30 ppm a	t 56,000 Hz
Sample rate:	10 per seco	nd

The electromagnetic system utilizes a multi-coil coaxial/coplanar technique to energize conductors in different directions. The coaxial coils are vertical with their axes

in the flight direction. The coplanar coils are horizontal. The secondary fields are sensed simultaneously by means of receiver coils which are maximum coupled to their respective transmitter coils. The system yields an inphase and a quadrature channel from each transmitter-receiver coil-pair.

Magnetometer

Model:	Picodas 3340
Туре:	Optically pumped Cesium vapour
Sensitivity:	0.01 nT
Sample rate:	10 per second

The magnetometer sensor is towed in a bird 20 m below the helicopter.

Magnetic Base Station

Model: GSM-19T

Type: Digital recording proton precession

Sensitivity: 0.20 nT

Sample rate: 3 seconds

A digital recorder is operated in conjunction with the base station magnetometer to record the diurnal variations of the earth's magnetic field. The clock of the base station is synchronized with that of the airborne system to permit subsequent removal of diurnal drift.

Spectrometer

Manufacturer: Exploranium

Model: GR-820

Type: 256 Multichannel, Potassium stabilized

Accuracy: 1 count/sec.

Update: 1 integrated sample/sec.

The GR-820 Airborne Spectrometer employs four downward looking crystals (1024 cu. in.) and one upward looking crystal (256 cu. in.). The downward crystal records the radiometric spectrum from 410 KeV to 3 MeV over 256 discrete energy windows, as well as a cosmic ray channel which detects photons with energy levels above 3.0 MeV. From these 256 channels, the standard Total Count, Potassium, Uranium and Thorium channels are extracted. The upward crystal is used to measure and correct for Radon.

The shock-protected Sodium Iodide (Thallium) crystal package is unheated, and is automatically stabilized with respect to the Potassium peak. The GR-820 provides raw or Compton stripped data which has been automatically corrected for gain, base level, ADC offset and dead time.

VLF System

Manufacturer:	Herz Industries Ltd.		
Туре:	Totem-2A		
Sensitivity:	0.1%		
Stations:	Seattle, Washington; Cutler, Maine;	NLK, NAA,	24.8 kHz 24.0 kHz

The VLF receiver measures the total field and vertical quadrature components of the secondary VLF field. Signals from two separate transmitters can be measured simultaneously. The VLF sensor is housed in the same bird as the magnetic sensor, and is towed 20 m below the helicopter.

Radar Altimeter

Manufacturer:Honeywell/SperryType:AA 220Sensitivity:0.3 m

The radar altimeter measures the vertical distance between the helicopter and the ground. This information is used in the processing algorithm which determines conductor depth.

Analog Recorder

Manufacturer:	RMS Instruments
Туре:	DGR33 dot-matrix graphics recorder
Resolution:	4x4 dots/mm
Speed:	1.5 mm/sec

The analog profiles are recorded on chart paper in the aircraft during the survey. Table 2-1 lists the geophysical data channels and the vertical scale of each profile.

Channel Name	Parameter	Scale units/mm	Designation on digital profile
1X9I	coaxial inphase (900 Hz)	2.5 ppm	CXI (900 Hz)
	coaxial quad (900 Hz)	2.5 ppm	CXQ (900 Hz)
3P41	coplanar inphase (900 Hz)	2.5 ppm	CPI (900 HZ)
SF4Q	coplanar quad (900 Hz)	z.s ppm	CPQ (900 Hz)
2271	coplanar inphase (7200 Hz)	5 ppm	CPI (7200 HZ)
2P/Q	coplanar quad (7200 Hz)	s ppm	CPQ (7200 Hz)
4X/1	coaxial inphase (5500 Hz)	s ppm	CAI (5500 Hz)
4X/Q	coaxial quad (5500 Hz)	5 pm	CXQ (5500 Hz)
5P51	copianar inphase (56000 Hz)	10 ppm	CPI (56 KHZ)
5P5Q	coplanar quad (56000 Hz)	10 ppm	CPQ (56 KHZ)
ALIR	altimeter	3 m	ALT
MAGC	magnetics, coarse	20 nT	MAG
MAGF	magnetics, fine	2.0 nT	1
VF1T	VLF-total: primary stn.	2%	
VF1Q	VLF-quad: primary stn.	28	
VF2T	VLF-total: secondary stn.	2%	
VF2Q	VLF-quad: secondary stn.	2%	1
CXSP	coaxial spherics monitor		
CPSP	coplanar spherics monitor		CPS
CXPL	coaxial powerline monitor		CXP
CPPL	coplanar powerline monitor		CPP
4XSP	coaxial spherics monitor		4XS
TC	radiometrics-Total Count	200 cps	TC
К	radiometrics-Potassium count	20 cps	K
TH	radiometrics-Thorium count	2 cps	TH
U	radiometrics-Uranium count	2 cps	U

 Table 2-1.
 The Analog Profiles
Table 2-2. The Digital Profiles

Channel <u>Name (Freq)</u>	Observed parameters	Scale units/mm
MAG ALT CXI (900 Hz) CXQ (900 Hz) CPI (900 Hz) CPQ (900 Hz) CPQ (900 Hz) CXI (5500 Hz) CXQ (5500 Hz) CPI (7200 Hz) CPI (7200 Hz) CPQ (7200 Hz) CPQ (56 kHz) CPQ (56 kHz) 4XS CXP CPS CPP TC K TH U	magnetics bird height vertical coaxial coil-pair inphase vertical coaxial coil-pair quadrature horizontal coplanar coil-pair inphase horizontal coplanar coil-pair quadrature vertical coaxial coil-pair inphase vertical coaxial coil-pair quadrature horizontal coplanar coil-pair inphase horizontal coplanar coil-pair inphase horizontal coplanar coil-pair quadrature horizontal coplanar coil-pair quadrature coaxial spherics monitor coplanar spherics monitor coplanar spherics monitor radiometrics-Total Count radiometrics-Thorium count radiometrics-Thorium count	5 rfT 6 m 2 ppm 2 ppm 2 ppm 2 ppm 4 ppm 4 ppm 4 ppm 10 ppm 10 ppm 10 ppm
	Computed Parameters	
DFI (900 Hz) DFQ (900 Hz) RES (900 Hz) RES (7200 Hz) RES (56 kHz) DP (900 Hz) DP (7200 Hz) DP (56 kHz) CDT	difference function inphase from CXI and CPI difference function quadrature from CXQ and CPQ log resistivity log resistivity log resistivity apparent depth apparent depth apparent depth conductance	2 ppm 2 ppm .06 decade .06 decade .06 decade 6 m 6 m 1 grade

Digital Data Acquisition System

Manufacturer:	RMS Instruments
Model:	DGR 33
Recorder:	RMS TCR-12, 6400 bpi, tape cartridge recorder

The digital data are used to generate several computed parameters. Both measured and computed parameters are plotted as "multi-channel stacked profiles" during data processing. These parameters are shown in Table 2-2. In Table 2-2, the log resistivity scale of 0.06 decade/mm means that the resistivity changes by an order of magnitude in 16.6 mm. The resistivities at 0, 33 and 67 mm up from the bottom of the digital profile are respectively 1, 100 and 10,000 ohm-m.

Tracking Camera

Type: Panasonic Video

Model: AG 2400/WVCD132

Fiducial numbers are recorded continuously and are displayed on the margin of each image. This procedure ensures accurate correlation of analog and digital data with respect to visible features on the ground.

Navigation System (RT-DGPS)

Model:	Sercel NR106, Real-time differential positioning	
Туре:	SPS (L1 band), 10-channel, C/A code, 1575.42 MHz.	
Sensitivity:	-132 dBm, 0.5 second update	
Accuracy:	< 5 metres in differential mode, + 50 metres in S/A (non differential) mode	

The Global Positioning System (GPS) is a line of sight, satellite navigation system which utilizes time-coded signals from at least four of the twenty-four NAVSTAR satellites. In the differential mode, two GPS receivers are used. The base station unit is used as a reference which transmits real-time corrections to the mobile unit in the aircraft, via a UHF radio datalink. The on-board system calculates the flight path of the helicopter while providing real-time guidance. The raw XYZ data are recorded for both receivers, thereby permitting post-survey processing for accuracies of approximately 5 metres.

Although the base station receiver is able to calculate its own latitude and longitude, a higher degree of accuracy can be obtained if the reference unit is established on a known benchmark or triangulation point. The GPS records data relative to the WGS84 ellipsoid, which is the basis of the revised North American Datum (NAD83). Conversion software is used to transform the WGS84 coordinates to the system displayed on the base maps.

Field Workstation

Manufacturer: Dighem

Model: FWS: V2.65

Type: 80486 based P.C.

A portable PC-based field workstation is used at the survey base to verify data quality and completeness. Flight tapes are dumped to a hard drive to permit the creation of a database. This process allows the field operators to display both the positional (flight path) and geophysical data on a screen or printer.