GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORTS

JUN 18 1996

SOIL GEOCHEMICAL ASSESSMENT REPORT MUSKWA PROPERTY

Muskwa Group 1

Muskwa Group 2

Muskwa 1

Muskwa 6

Muskwa 2

Muskwa 7

Muskwa 3

Muskwa 8

Muskwa 4

Muskwa 9

Muskwa 5

Muskwa 10

Muskwa 11

JUN 07 1996 old Commissioner's Offic VANCOUVER, B.C.

Omineca Mining District

NTS: 94F 7/E, 94F 2/E

Latitude: 57 14' N

Longitude: 124 33' W

Owner and Operator:

Inmet Mining Corporation

3 rd Floor 311 Water Street Vancouver, British Columbia

V6B 1B8

FILMED

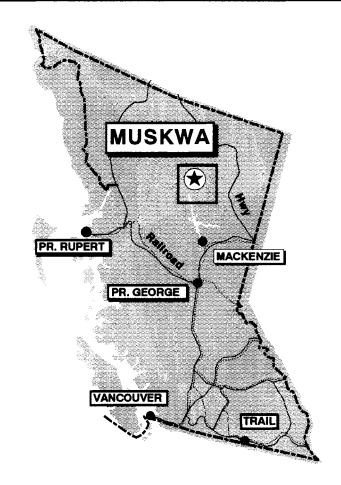
GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT APRIL 30, 1996

John Kapusta, P. Geo. Inmet Mining Corporation Paul Baxter, P. Geo. Inmet Mining Corporation

Vancouver, B.C.

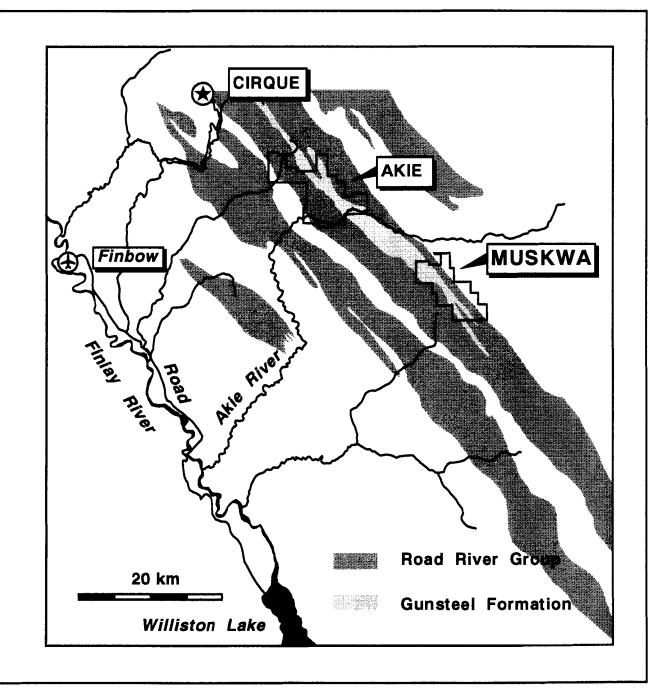
TABLE OF CONTENTS

		Page				
1. IN	ITRODUCTION	3				
1.	1 Location, Access and Physiography	3				
1.	5					
1.	1.3 Previous Work					
2. G	EOLOGY					
2.	1 Regional	7				
2.	2 Property	7				
3. S	OIL GEOCHEMISTRY	10				
3.	1 Sampling Procedure	10				
3.	2 Results	10				
3.	3 Summary of Soil Geochemistry	14				
4. C	ONCLUSIONS AND RECOMMENDATIONS	16				
5. R	EFERENCES	16				
	LIST OF TABLES					
Table 1	Muskwa Soil Geochemical Statistical Data	11				
	<u>FIGURES</u>					
Figure 1	Location Map	4				
Figure 2	Claim Map	6				
Figure 3	Muskwa Property Geology	8				
Figure 4	Generalized Stratigraphy - South Gataga Area	9				
Figure 5	Pb-Zn in Soils, 1:10,000 scale	in pocket				
Figure 6	Ag-Ba in Soils, 1:10,000 scale	in pocket				
Figure 7	As-Fe in Soils, 1: 10,000 scale	in pocket				
Figure 8	Cd-Mn in Soils, 1:10,000 scale	in pocket				
Figure 9	Soil Geochemistry Trend Compilation	15				
	<u>APPENDICES</u>					
Appendix	"A" Statement of Expenditures					
Appendix	•	es, IPL Analytical				
	Certificates					
Appendix	c "C" Statement of Qualifications					


1. INTRODUCTION

In April of 1995 Inmet Mining Corporation staked the Muskwa property. During 1995 a preliminary soil geochemical survey was conducted to assess the properties potential to contain a shale hosted massive sulphide deposit. A total of 27.90 kilometers of cut line grid was established prior to the geochemical survey being conducted. This report describes the results of the soil geochemical survey conducted between July 9, 1995 and September 15, 1995.

1.1 Location, Access and Physiography


The Muskwa property is located approximately 255 kilometers northwest of MacKenzie, British Columbia (Figure 1). During the 1995 field season the claims were accessed using a Northern Mountain Helicopters Inc., Hughs 500D helicopter that was based at the Finbow logging camp. The Finbow logging camp is located approximately 50 kilometers to the west of the property.

Topographic relief on the property is moderate to steep with elevations ranging from 1,000 meters in the valley bottoms to 2,100 meters on the mountain tops.

MUSKWA PROPERTY
LOCATION MAP
INMET

MINING

1.2 Mineral Rights

The Muskwa Property consists of eleven claims totaling 170 units (Figure 2). Present Claim status is as follows:

Claim	Record	Units	Mining	Expiry	New Expiry	
Name	Number		District	Date	Date	
Muskwa 1	335553	15	Omineca	April 29, 1996	April 29, 1999	
Muskwa 2	335575	16	Omineca	April 29, 1996	April 29, 1999	
Muskwa 3	335576	20	Omineca	April 29, 1996	April 29, 2000	
Muskwa 4	335577	20	Omineca	April 29, 1996	April 29, 2000	
Muskwa 5	335578	12	Omineca	April 30, 1996	April 30, 1999	
Muskwa 6	335579	18	Omineca	April 30, 1996	April 30, 1999	
Muskwa 7	335580	18	Omineca	April 30, 1996	April 30, 2000	
Muskwa 8	335581	9	Omineca	April 30, 1996	April 30, 2000	
Muskwa 9	335582	20	Omineca	April 30, 1996	April 30, 2000	
Muskwa 10	335583	16	Omineca	April 30, 1996	April 30, 1999	
Muskwa 11	335584	6	Omineca	April 29, 1996	April 29, 1999	

Total

170 Units

The Muskwa Property has been Grouped as follows:

Mi	uskwa	Grou	ın 1	
IAI	73 <i>L</i> /440		ו שג	

Muskwa Group 2

Claim Name	Record Number	Units	Claim Record Name Number	Units
Muskwa 1	335553	15	Muskwa 6 335579	18
Muskwa 2	335575	16	Muskwa 7 335580	18
Muskwa 3	335576	20	Muskwa 8 335581	9
Muskwa 4	335577	20	Muskwa 9 335582	20
Muskwa 5	335578	12	Muskwa 10 335583	16
Total	83	Units	Muskwa 11 335584	6
			Total 87	Units

1.3 Previous Work

The Muskwa property was originally staked in 1979 by Cominco Ltd. as the Gnome property. Between 1979 and 1985 Cominco conducted exploration on the Gnome property. This work consisted of geological mapping, soil, and stream sediment sampling as well as whole rock lithogeochemical sampling. The soil sampling programs conducted by Cominco outlined three areas on the Gnome property containing anomalous geochemical results. Cominco allowed the Gnome property to lapse.

In 1995 the previous Gnome property was restaked as the Muskwa property by Inmet Mining Corporation.

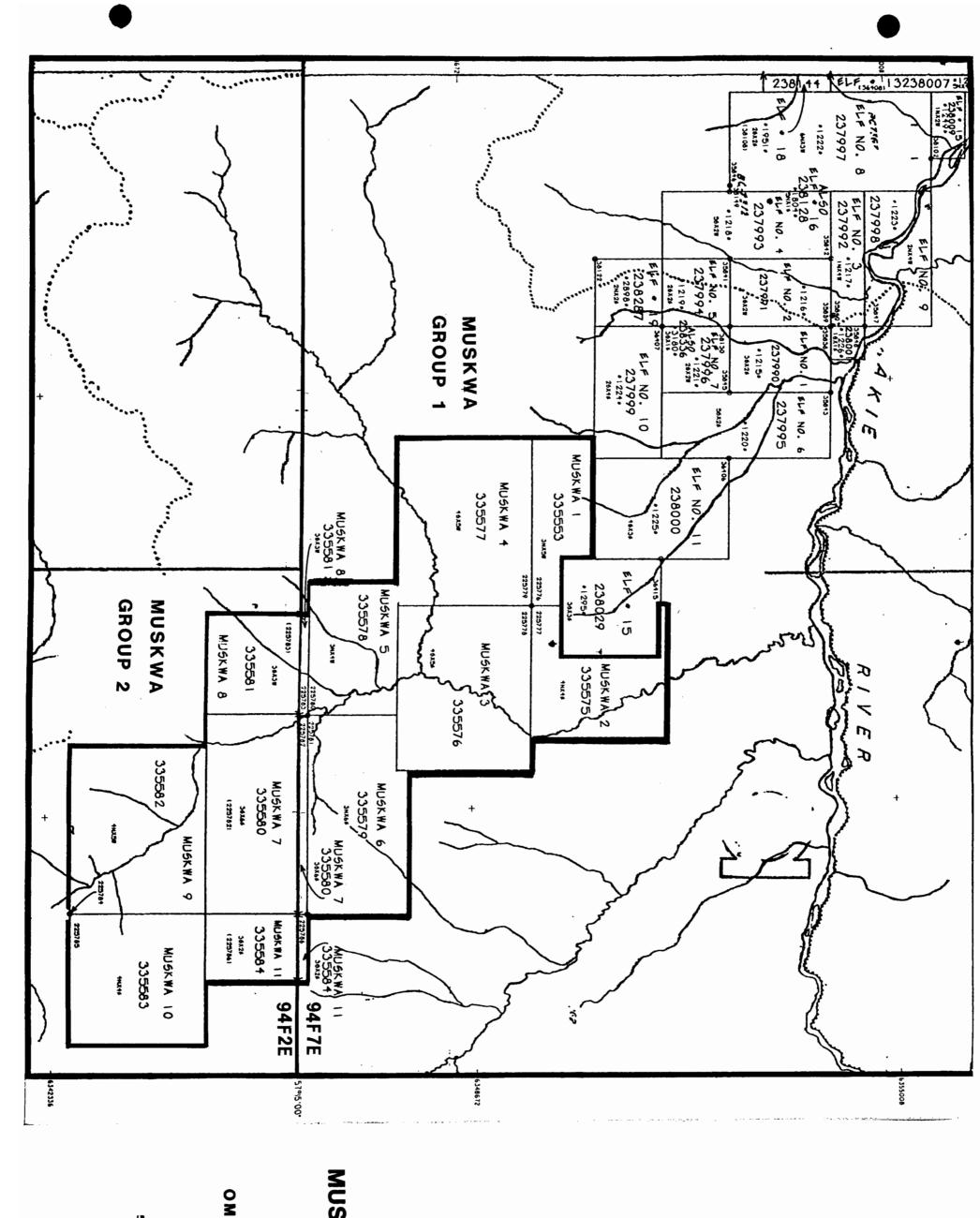
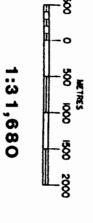
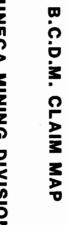




FIGURE 2

MUSKWA PROPERTY

OMINECA MINING DIVISION

2. GEOLOGY

2.1 Regional

The Muskwa claims are situated in the South Gataga District, located on the northeastern margin of the Kechika Trough. The Kechika Trough is a 180 kilometer long, northwesterly trending belt of Early Cambrian to Triassic sediments that were deposited off the western edge of ancestral North America. A detailed review of the stratigraphy and descriptions of the various formations is given by MacIntyre (1992).

Exploration activity in the area has concentrated on stratiform barite-sulphide showings that occur in Middle to Upper Devonian shales of the Gunsteel Formation. The most notable barite-sulphide occurrences in the belt include Driftpile, Mt. Alcock, Cirque, Akie, and the Elf prospect.

2.2 Property

The Akie River area has been mapped at 1:50,000 scale by MacIntyre (1981) and the Muskwa property by Cominco (B.C.D.M. Assessment Reports 8,334 and 9,722). A generalized geology map and stratigraphic column for the Muskwa property and the South Gataga Area are presented in figure 3 and 4.

The Muskwa claims are underlain by a northwest trending package of Devonian age shales, siltstones and localized limestone's that overlie Silurian to Ordovician age siltstones and shales.

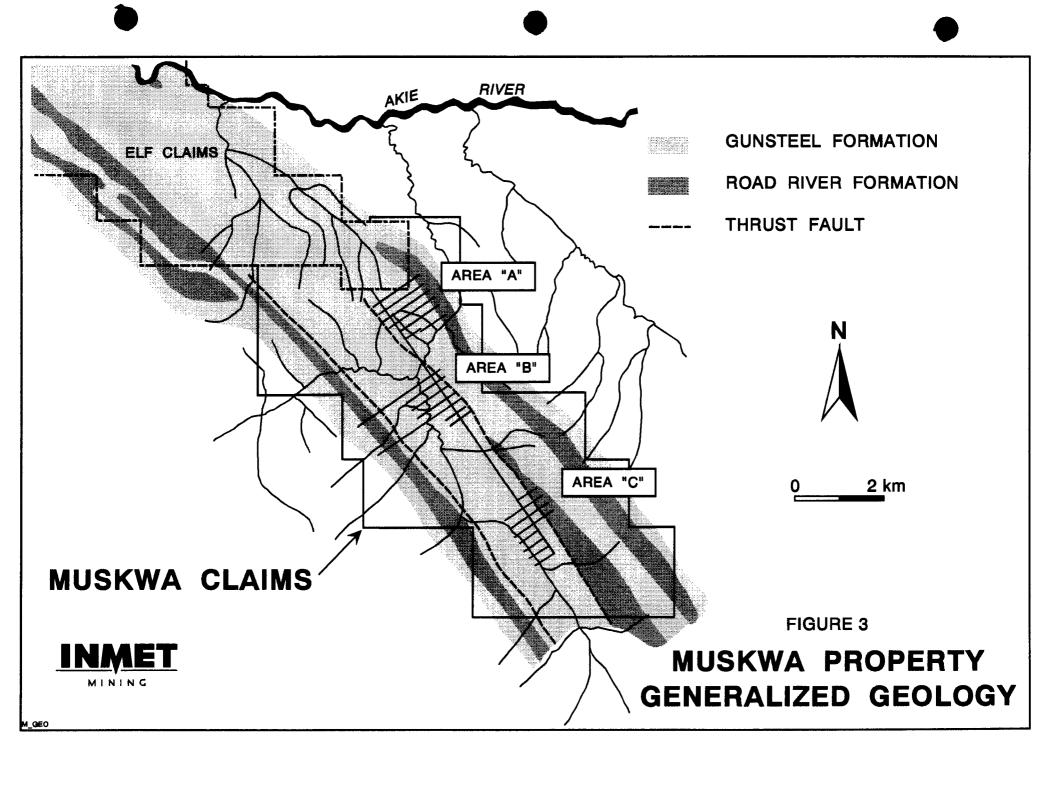


FIGURE 4
GENERALIZED STRATIGRAPHY - SOUTH GATAGA AREA
(after MacIntyre 1992)

M_STR

	FORMATION	AGE	ROCK TYPE	
• 0	WARNEFORD	MISSISSIPPIAN UPPER DEVONIAN	CHERT PEBBLE CONGLOMERATE SILTSTONE EAF	
	мs _{мs} GUNSTEEL мs	MIDDLE - UPPER DEVONIAN	SHALE, BEDDED NODULAR BARITE MASSIVE SULPHIDES	UP
	KWADACHA	LOWER - MIDDLE DEVONIAN	FOSSILIFEROUS LIMESTONE ROAD I GRO	—
		SILURIAN ORDOVICIAN	SHALES, SILTSTONES, CHERTS	

3. SOIL GEOCHEMISTRY

During 1995 Inmet Mining Corporation conducted a program of soil geochemical sampling on the Muskwa property. During this program a total of 27.90 kilometers of cut line grid was established on which 816 soil samples were collected. The program commenced on July 9, 1995 and was completed by September 15, 1995.

The soil sampling program was designed to confirm both the location and strength of soil anomalies previously defined by Cominco. A 7.20 kilometer base line was established at approximately the same location and orientation as the original Cominco base line. From this base line, grid lines with 200 meter separations were established at three specific locations. The locations being between 400S and 1400S (Area A), 2400S and 3550S (Area B), and from 5800S to 7200S (Area C). These three locations represent areas where Cominco had obtained anomalous results from their previous soil sampling programs.

3.1 Sampling Procedure

Samples were collected from the B soil horizon, at 25 meter intervals along 200 meter spaced grid lines. The B soil horizon is generally poorly developed on the property. Soil samples of approximately 500 grams were placed in Kraft paper bags, labeled with the grid location, dried in the field and shipped to IPL Labs in Vancouver for analysis. Each sample was analyzed for Pb, Zn, Ag, Ba, Cd, Mn, As and Fe using an ICP technique. Laboratory procedures for sample analysis are included in Appendix B. Average scape depth range is 30 – 50 centre metros.

3.2 Results

Results for the soil sampling program are plotted on Figures 5 to 8 at a scale of 1:10,000 and analytical certificates are included in Appendix B. Statistical data for the Muskwa soil sampling is presented in Table 1. Frequency histograms were generated for each element to determine the type of population distribution (normal or log normal). Where populations displayed a log normal distribution the data was normalized. Anomalous values are those greater than mean plus two standard deviations.

Table 1: Muskwa Soil Geochemical Statistical Data

Element	Units	Minimum	Maximum	N	Distribution	Mean/Geometric	Standard	Anomalous
		Value	Value			Mean	Deviation	Value
Pb	ppm	9.00	287.00	816	Log Normal	1.57	0.14	71.0
Zn	ppm	31.00	54,229.00	816	Log Normal	2.43	0.43	1,948.0
Ag	ppm	0.05	26.00	816	Log Normal	-0.19	0.45	5.1
Ва	ppm	317.00	40,454.00	816	Log Normal	3.27	0.27	6,450.0
As	ppm	29.00	226.00	816	Log Normal	1.83	0.11	112.0
Fe	%	0.59	29.62	816	Log Normal	0.38	0.22	6.6
Cd	ppm	0.05	1,005.50	816	Log Normal	-0.28	0.93	38.0
Mn	ppm	13.00	51,425.00	816	Log Normal	2.10	0.54	1,512.0

Due to the spatial separation of the three Areas, significant results from each will be discussed individually.

Area A

Lead \ Zinc

Numerous single station lead and zinc anomalies are present in this grid area. The majority of these anomalies appear to be spatially associated with the contact between the Gunsteel Formation and the Road River Group. The most continuous zinc anomaly extends from L 1000S between 650E and 725E to L 1450S between 575E and 625E. There are no coincident lead, zinc anomalies in this area.

Silver \ Barium

Numerous single station silver anomalies are present in this grid area. Three of these anomalies appear to be spatially associated with the contact between the Gunsteel Formation and the Road River Group. These anomalies extend from L 400S at 700E to L 1200S at 750E.

There are no barium anomalies present in this grid area.

Arsenic \ Iron

Numerous single to two station coincident and single element arsenic, iron anomalies are present in this grid area. A weakly defined trend extends from L 600S at 650E to L 1450S at 600E. This trend is similar to that displayed by other elements in this area.

A second coincident to single element trend extends from L 600S between 525E to 425E and L 800S between 500E to 400E. The best arsenic response, 226 ppm from the 1995 program is situated in this anomaly at 425E on L 600S.

Cadmium \ Manganese

A coincident to single element anomaly extends from L 1000S between 700E and 650E to L 1450 S at 675E. Again this is a similar trend to that displayed by other elements in this area.

Area B

Lead \ Zinc

A strong coincident lead, zinc anomaly is present in this area extending from L 2600S between 075W and 150W to L 3000S at 225W. The best lead response 287 ppm from the 1995 sampling program is situated in this trend at 075W on L 2600S. Single station lead anomalies may extend this anomalous trend to L 3550S at 250W. This trend is still open to the south towards Area C.

A second lead only anomaly is also present in this area extending from L 3400S between 050E and 025W to L 3550S between 050E and the base line. This trend is still open to the south towards Area C.

Silver \ Barium

Numerous single station barium anomalies are present in this grid area, along with only one single station silver anomaly.

A barium anomaly occurring on L 3200S between 1700W and 1725W is situated over the contact area between the Gunsteel Formation and the Road River Group.

A second barium anomaly is located on L 3400S at 025E to L 3550S at 025E. This anomaly is also coincident with a lead anomaly mentioned above.

Arsenic \ Iron

This area contains only one single station coincident anomaly and one single station arsenic anomaly.

Cadmium \ Manganese

A coincident to single element anomaly extends from L 2600S between 100W and 150W to L 3000 S at 375W.

Area C

Lead \ Zinc

A strong partially coincident lead, zinc response is present in this area extending from L 6000S at 125E to L 6400S at the base line. The best zinc response, 54,229 ppm from the 1995 program is situated in this anomaly at 075E on L 6200S. This anomalous trend may be continuous to the south, located to the east of the base line.

A second weakly developed zinc trend is present, extending from L 6200S between 350W and 425W to L 7000S at 225W.

Silver \ Barium

A large, significant barium anomaly is present in this grid area. This anomaly is located to the west of the base line and extends from L 6400S to L 7200S, and is open to the south. The strongest barium response, 40,454 ppm from the 1995 sampling program is situated in this tend at 175W on L 6800S.

Only two single station silver anomalies are present in this grid area, and they are not coincident with the barium anomaly.

Arsenic \ Iron

A strong iron anomaly partially coincident with a single station arsenic anomaly is present in this area. The iron anomaly extends from L 5800S at 175E to L 6400S at 050E. The strongest iron response, 29.62% from the 1995 sampling program is situated in this tend at 075E on L 6200S.

A second two station iron, arsenic anomaly is present on L 6200S between 350W and 375W.

Cadmium \ Manganese

A strong coincident to single element anomaly is present in this area extending from L 5800S at 175E to L 6400S at the base line. The strongest cadmium response, 1005.60 ppm and manganese response 51,425 ppm are situated in this trend at 125E on L 6000S. This trend is similar to that displayed by other elements in this area.

A second weakly developed coincident to single element trend extends from L 6200S between 375W and 425W to L 7000S between 175W and 225W.

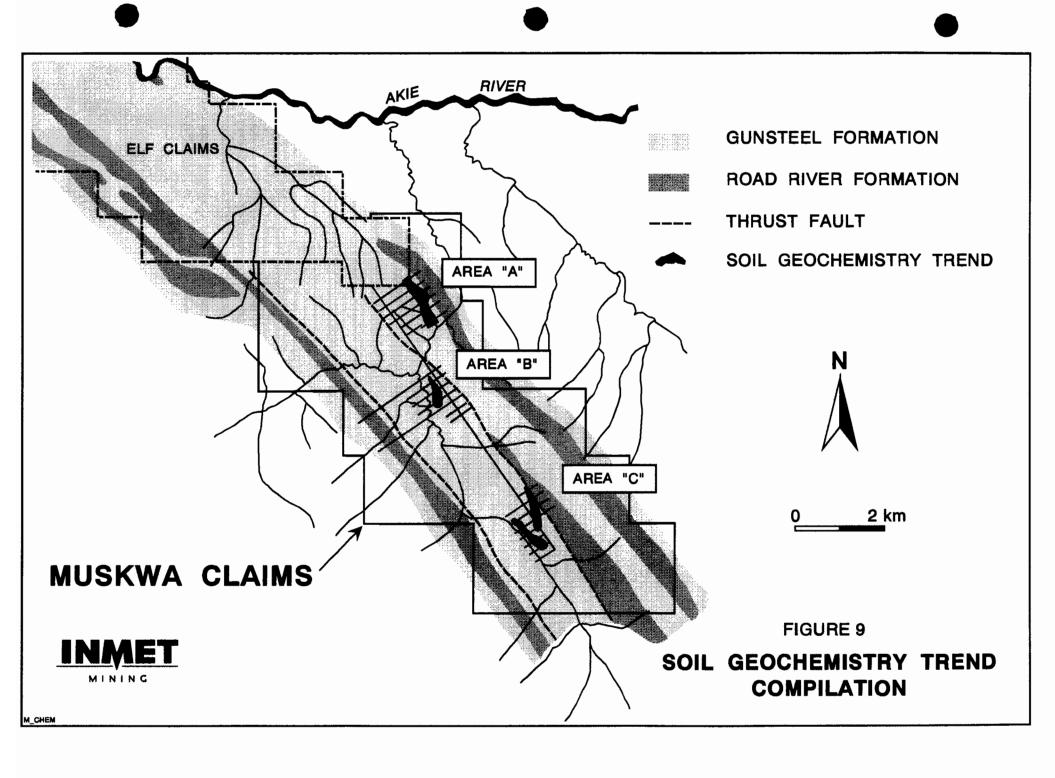
3.3 Summary of Soil Geochemistry

The anomalous results for all elements from each of the areas explored have been grouped into trends. This information is presented in Figure 9, Soil Geochemistry Trend Compilation Map.

Area A

The anomalous trend highlighted on the map has over one kilometer strike length extending from L 400S between 775E and 650E to L 1450S between 700E and 525E, and is still open to both the north and south. In this trend there can be found highly anomalous results for all elements with the exception of barium. The elements generally display a poor coincident relationship to each other.

From a geologic perspective this trend is situated at or proximal to the contact between the Gunsteel Formation and the Road River Group. Massive sulphide mineralization present on the Akie property occurs at or near the contact between the Gunsteel Formation and the Road River Group.


Area B

The anomalous trend highlighted on the map has a strike of at least 600 meters extending from L 2400S at the base line to L 3000S between 200W and 375W. The elements present in this trend display a strong coincident multi-element relationship to each other. Only barium and silver are not present in this trend.

The strong coincident nature of this anomaly represents an attractive exploration target for drill testing.

Area C

In Area C there are two geochemically anomalous trends present. The first of these has a minimum strike length of one kilometer extending from L 5800S between 200E and 100E to L 6600S at the base line. This trend is still open to the north and also potentially to the south. To the south grid lines 6600, 6800 and 7000 will have to be extended to the east to test the strike extent in this direction. This trend displays a very strong coincident multi-element relationship. Gossans present in this immediate area may indicate the trend represents a "transported" anomaly. However, the strong coincident multi-element signature to this anomaly and its position over Gunsteel Formation shales makes this a very attractive exploration target for drill testing.

The second trend is more weakly developed and has a strike length of approximately one kilometer, extending from L 6200S between 325W and 450W to L 7000S between 150W and 300W. This trend has a coincident zinc, iron, cadmium, manganese and locally barium signature.

Both of the anomalous trends present in this area should be considered highly significant due to their strong geochemical signatures and location over Gunsteel Formation shales.

4. CONCLUSION AND RECOMMENDATIONS

The well developed geochemical trends present in Areas B and C offer excellent exploration targets for drill testing.

Prior to the drill testing of the above mentioned trends additional line cutting and soil sampling is recommended between Areas B and C, south of area C and to the east of the base line south of line 6400 S.

5. REFERENCES

- Baxter, P., 1994. Soil Geochemical, Geophysical and Diamond Drilling Assessment Report Akie Claims, N.T.S. 94 F 7/W
- Kuran, V. M.,1981. Geological, and Geochemical, Report On The Gnome Group Akie River Area, Cominco., Mineral Resources Branch Assessment Report, Number 9,722
- MacIntyre, D.G., 1981. Geology of the Akie River Ba-Pb-Zn Mineral District. B.C.M.E.M.P.R., Preliminary May 44.
- MacIntyre, D.G., 1992. Geological Setting and Genesis of Sedimentary Exhalative Barite and Barite-Sulphide Deposits, Gataga District, Northeastern British Columbia. Exploration and Mining Geology, Vol. 1, No. 1, pp 1-20.
- Pride K. R., 1980. Geological, and Geochemical, Report On The Gnome Group Akie River Area, Cominco., Mineral Resources Branch Assessment Report, Number 8,334
- Rhodes D., 1986. Assessment Report Geochemical Report On The Gnome Group Akie River Area, Cominco., Mineral Resources Branch Assessment Report, Number 14,610

APPENDIX "A"
STATEMENT OF EXPENDITURES
EXPENDITURE ALLOCATION

IPL International Plasma Laboratory	\$ 6,617.70
Hendex Exploration Services Ltd	14,650.00
Northern Mountain Helicopters Inc	13,254.75
Camp Costs - Buffalo Head (Finbow) Camp	4,420.00
Eagle Mapping Services Ltd	13,945.00
Report Preparation and Draughting	2,500.00
Total	\$ 55 387 A5

Expenditure Allocation

The total expenditure is to be divided equally for the entire 170 units that comprise the Muskwa 1 and Muskwa 2 Claim Groups.

Muskwa Group 1 contains 83 claim units. Deemed expenditures for Muskwa Group 1 are:

Muskwa Group 2 contains 87 claim units. Deemed expenditures for Muskwa Group 2 are:

$$87 \times 325.80 = 28,344.60$$

Statement of Expenditures:						
IPL International Plasma Laboratory Invoice 95G2102, July 29, 1995:						
			is at \$8.10/s	ample	\$2,551.50	
Invoice 95G280			at \$8 10/sa	mnle	324.00	
Invoice 9510802			at 40 . 10/34	pic	524.00	
			is at \$8.10/s	ample	1,701.00	
Invoice 95I2102						
252 San	nples, preparation	on and analysi	is at \$8.10/s	ample	2,041.20	
Total					\$6,617.70	
Hendex Explo		es Ltd.				
Invoice July 19,						
					\$5,850.00	
		cut at \$500/kn	n	• • • • • • • • • • • • • • • • • • • •	3,400.00	
Invoice August 2		ing and sail se	ampling at C	AEO/dov	3,600.00	
Invoice Septem		ing and son sa	amping at a	450/uay	3,000.00	
		ing and soil s	ampling at \$	450/day	1,800.00	
Total					\$14,650.00	
Northern Mou	ntain Helicopt	ters inc.				
Date	Flight Ticket #	Invoice #	Hours	Rate	Cost	
July 9, 1995	100407	32631	0.65	\$685/hr.	\$445.25	
July 10, 1995	100412	32631	1.20	\$685/hr.	\$822.00	
July 13, 1995	100418	32628	1.20	\$685/hr.	\$822.00	
July 14, 1995	100422	32809	1.10	\$685/hr.	\$753.50	
July 15, 1995	100426	32809	1.20	\$685/hr.	\$822.00	
July 16, 1995	100428	32809	1.10	\$685/hr.	\$753,50	
July 17, 1995	100431	32809	0.70	\$685/hr.	\$479.50	
Aug. 29, 1995	125975	33555	1.00	\$685/hr.	\$685.00	
Aug. 31, 1995	121887	33555	1.00	\$685/hr.	\$685.00	
Sept. 1, 1995	121889	33891	0.80	\$685/hr.	\$548.00	
Sept. 3, 1995	121891	33891	0.80	\$685/hr.	\$548.00	
Sept. 4, 1995	121892	33891	1.30	\$685/hr.	\$890.50	
Sept. 8, 1995	128802	33891	1.30	\$685/hr.	\$890.50	
Sept. 9, 1995	128803	33891	0.90	\$685/hr.	\$616.50	
Sept. 10, 1995		33891	1.30	\$685/hr.	\$890.50	
	128804					
CANHII INDE	120006	24024				
Sept.11, 1995	128806	34034	0.90	\$685/hr.	\$616.50 \$685.00	
Sept.13, 1995	128810	34034	1.00	\$685/hr.	\$685.00	
Sept.13, 1995 Sept.14, 1995	128810 128814	34034 34034	1.00 1.10	\$685/hr. \$685/hr.	\$685.00 \$753.50	
Sept.13, 1995	128810	34034	1.00	\$685/hr. \$685/hr. \$685/hr.	\$685.00	

Camp Costs

Fletcher Challenge -- MacKenzie Woodlands Division -- Buffalo Head (Finbow)

Camp

Hendex Exploration Services Ltd. Employees	
Rick Henderson 19 days at \$85/day (Invoice 960515, 960585)\$	1,615.00
July 9,10,13,14,15,16,17, August 29,31, September 1,3,4,8,9,10,11,13,14,15	
Martin Thomas 19 days at \$85/day (Invoice 960515, 960585)\$	1,615.00
July 9,10,13,14,15,16,17, August 29,31, September 1,3,4,8,9,10,11,13,14,15	
Malcolm Bullanoff 7 days at \$85/day (Invoice 960515)	\$595.00
July 9,10,13,14,15,16,17	
Oliver Yeager 7 days at \$85/day (Invoice 960515)	\$595.00
July 9,10,13,14,15,16,17	
Total 52 days at \$85/day	\$4420.00

Eagle Mapping

Trim Files	\$ 1,770.00
Orthophoto	
Total	\$13,945.00

Report Preparation and Draughting

Report Preparation	
John Kapusta 6 days at \$250/day	\$1,500.00
Draughting	
Total	\$2,500.00

APPENDIX "B" SAMPLE PREPARATION AND ANALYTICAL PROCEDURES IPL ANALYTICAL CERTIFICATES

2036 Columnia Streat Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fex (604) 879-7888

Method of sample preparation for Soil or Silt

- (a) Water content in sample is removed by convection in a low temperature dryer (T < 60 Degrees C.).
- (b) Dried samples are passed through an 80 mesh sieve. The minus 80 mesh fraction is transferred to a new bag for subsequent analyses. The plus 80 mesh fraction is discarded unless otherwise instructed.
- (c) If an insufficient amount of sample is less than 80 Mesh, the entire sample is passed through a 35 Mesh screen. The -35 Fraction is then pulverized and used as the portion for analyses.

QUALITY CONTROL

Cross contamination is minimized by constant cleaning of preparation equipment with high velocity compressed air. Ring pulverizers are cleaned with a quartz sand charge.

Method of ICP Multi-element Analyses

- (a) 0.50 grams of sample is digested with diluted squa regia solution by heating in a hot water bath for 90 minutes, then cooled, bulked up to a fixed volume with demineralized water, and thoroughly mixed.
- (b) The specific elements are determined using an Inductively Coupled Argon Plasma spectrophotometer. All elements are corrected for inter-element interference. All data are subsequently stored onto computer diskette.
 - * Aqua regia leaching is partial for Al. Ba, Ca, Cr, K, La, Mg, Na, St, Sn, Sr, Th, Ti, W and Zr.

QUALITY CONTROL

The machine is first calibrated using six known standards and a blank. The test samples are then rum in batches.

A sample batch consists of 38 or less samples. Two tubes are placed before a set. These are an Inhouse standard and an acid blank, which are both digested with the samples. A known standard with characteristics best matching the samples is chosen and placed after every fifteenth sample. After every 38th sample (not including standards), two samples, chosen at random, are reweighed and analysed. At the end of a batch, the standard and blank used at the beginning is rerun. The readings for these knowns are compared with the pre-rack knowns to detect any calibration drift.

ATT: Paul Baxter

F ANALYSIS CERTIFICATE iPL 95G2102

2036 Columbia Vancouver, B.C Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

0=Other

0= COLCEMPO C+ 1999 315 Samples

0= Rock 315= Soil Raw Storage: -- 00Mon/Dis -- 12Mon/Dis . 9 Pulp Storage:

[048715:06:44:59073195] Mon=Month Dis=Discard Rtn=Return Arc=Archive

Corpora	tion					
Project: 687						
Shipper: Pau'	1 Baxter	•				
Shipment:		I)>C(342	200	
						г
						١
cributio	n					l
ation	EN	RT	CC	IN	FX	þ
er St	1	2	2	2	1	ŀ
	DL	3D	5D	вт	BL	ŀ
	0	0	0	1	0	1
	Project: 687 Shipper: Pau hipment: cributio ation	Shipper: Paul Baxter hipment: Cribution EN er St 1	Project: 687 Shipper: Paul Baxter thipment: II Cribution EN RT er St 1 2 DL 3D	Project: 687 Shipper: Paul Baxter shipment: ID=CO cribution ation EN RT CC er St 1 2 2 DL 3D 5D	Project: 687 Shipper: Paul Baxter hipment: ID=C0342 Cribution ation EN RT CC IN er St 1 2 2 2	Project: 687 Shipper: Paul Baxter chipment: ID≈C034200 Cribution ation EN RT CC IN FX 1 2 2 2 1 DL 3D 5D BT BL

Ph: 604/681-3771 Fx:604/681-3360

-A	nalv	tic	al S	Summa	arv_			· _ · · · _ 				
ι	Code						Des	scription		E1ement	##	¥
		hod		Low	High							
01	771P	ICPM	Ag	0.1	100	ppm	Ag	ICP(Multi-Acid)		Silver	01	1
02	764P	ICPM	Pb	2	20000	ppm	Рb	ICP(Multi-Acid)	Depres	Lead	02	2
03	780P	ICPM	Zn	1	20000	ppm	Zη	ICP(Multi-Acid)		Zinc	03	3
04	753P	ICPM	As	5	10000	ppm	As	ICP(Multi-Acid)	Depres	Arsenic	04	1
05	757P	ICPM	Cd	0.1	10000	ppm	Cđ	ICP(Multi-Acid)		Cadmium	05	5
l												
06	754P	ICPM	Ва	2	10000	ppm	Ва	ICP(Multi-Acid)		Barium	06	5
07	766P	ICPM	Mn	1	10000	ppm	Mα	ICP(Multi-Acid)		Manganese	07	7
08	762P	ICPM	Fe	0.01	5.00	7	Fe	ICP(Multi-Acid)		Iron	90	3

CERTIFICATE F ANALYSIS iPL 95G2102

2036 Columbia et Vancouver, B.C ; Canada V5Y 3E1 Phone (604) 879-7879 Fax (604) 879-7898

Client: Inmet Mining Corporation Project: 687 315 Soil iPL: 95G2102

Out: Jul 28, 1995 In: Jul 21, 1995 Page 1 of 9 [048715:08:39:59073195]

Section 1 of 1

Certified BC Assayer: David Chiu

Sample Name		Ag ppm	Pb ppm	Zn ppm	As ppm	Cd ppm	Ba. ppm	Мп ррт	fe %	
BL 24+00S 00+00 L 24+00S 00+25E L 24+00S 00+50E L 24+00S 00+75E L 24+00S 01+00E	Contember Contem	0.1 0.2 0.1 0.3 0.5	31 36 36 36 36 37	183 248 237 242 689	55 63 55 71 69	0.2 0.1 0.4 4.1	852 900 803 1216 1017	71 119 172 133 190	1.59 2.17 1.67 2.68 2.75	
L 24+00\$ 01+25E L 24+00\$ 01+50E L 24+00\$ 01+75E L 24+00\$ 02+00E L 24+00\$ 00+25H	TREATTE CALCA	1.5 0.5 0.7 0.8	33 38 52 67 35	228 139 126 131 133	65 67 68 73 64	0.9 0.6 0.1 0.1	953 923 792 791 844	217 170 133 60 46	4.12 2.72 2.85 2.70 1.48	
L 24+00S 00+50M L 24+00S 00+75M L 24+00S 01+00M L 24+00S 01+75M L 24+00S 02+00M	urtetruit.	0.1 0.8 0.7 0.4 1.0	38 50 44 41 30	216 354 917 630 754	64 64	4.6 4.7 3.5 10.1	863 1439 1717 2246 1077	141 326 244 250 916	1.90 2.13 2.47 1.61 3.12	
L 24+00S 02+25H L 24+00S 02+50H L 24+00S 02+75H L 24+00S 03+25H L 24+00S 03+75H	EREPETREBLE	0.9 0.7 0.4 0.4 0.3	36 33 36 29 34	518 349 220 126 730	53 61 56 41 44	4.3 1.6 1.1 0.6 5.8	1170 1463 1384 1661 2408	595 327 208 269 363	2.99 2.72 2.46 1.44 1.88	
L 24+00S 04+00M L 24+00S 04+25M L 24+00S 04+50M L 24+00S 04+75M L 24+00S 05+00M	SPATHERATE	0.6 1.2 2.4 1.0 4.1	35 37 36 38 37	206 304 235 337 433	51 59 62 55 58	3.1 1.8 1.7 2.0 4.6	1173 1754 1535 1460 1190	742 220 254 362 226	2.19 2.21 1.92 2.10 2.09	
L 24+00S 05+25H L 24+00S 05+50H L 24+00S 05+75H L 24+00S 06+00H L 24+00S 06+25H	EPREMEMENT.	2.7 1.5 0.4 0.2 0.4	35 33 42 26 27	521 121 157 97 126	70 52 67 55 54	3.7 0.8 0.4 •	783 604 1307 1172 1947	154 36 152 42 116	3.68 1.69 2.27 0.92 1.26	
L 24+00S 06+50H L 24+00S 06+75H L 24+00S 07+00H L 24+00S 07+25H L 24+00S 07+50H	SPATREMENT	0.1 0.3 0.2 0.2 0.3	31 44 37 37 44	152 237 174 159 199	46 58 64	0.1 0.4	2034 1889 1573 1882 2247	27 121 110 94 117	0.60 1.60 1.93 2.10 2.29	
L 24+00S 07+75H L 24+00S 08+00H BL 26+00S 00+00 L 26+00S 00+25E	URTRURUE.	0.6 1.0 0.5 0.6	51 41 44 82	407 266 130 135	71 🎘	1.6 1.2 0.4	2733 2647 992 1101	102 77 104 49	2.94 2.29 3.69 3.83	

Min Limit Max Reported* Method

-=No Test ins=Insufficient Sample S=Soil R=Rock C=Core L=Silt P=Pulp U=Undefined m=Estimate/1000 Z=Estimate Z Max=No Estimate International Plasma Lab Ltd. 2036 Columbia St. Vancouver BC VSY 3E1 Ph:604/879-7878 Fax:604/879-7898

CERTIFICATE ANALYSIS iPL 95G2102

2036 Columbia Vancouver, B.C Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

Client: Inmet Mining Corporation Project: 687 315 Soil iPL: 95G2102

Out: Jul 28, 1995 In: Jul 21, 1995 Page 2 of 9 [048715:08:45:59073195]

Section 1 of 1 Certified BC Assayer: David Chiu

										 Ceremies ac Assayer. David Citia	
Sample Name		Ag ppm	Pb ppm	Zn ppm	As ppm	Cd	Ва ррт	Mn ppm	Fe %		
L 26+00S 00+50E L 26+00S 00+75E L 26+00S 01+00E L 26+00S 01+25E L 26+00S 01+50E	manama	1.1 0.4 1.0 0.6 0.6	32 41 31 40 37	123 116 123 112 118	67 70 65 66 65	0.2 0.6 < 0.8 0.3	1253 1101 1063 1043 1066	46 62 119 87 126	3.58 2.84 4.18 2.27 3.47		
L 26+00S 01+75E L 26+00S 02+00E L 26+00S 00+25W L 26+00S 00+50W L 26+00S 00+75W	CHERTHE	0.3 2.6 0.3 0.3	37 42 37 36 287	141 189 150 260 489	64	0.1 0.4 1.3 2.4	1185 1179 1272 1310 5709	47 84 68 216 160	3.04 6.5% 2.84 2.90 2.01		
L 26+00S 01+00W L 26+00S 01+25W L 26+00S 01+50W L 26+00S 01+75W L 26+00S 02+00W	ERENEMENE	1.7 0.7 2.1 0.2 0.5	42 37 30 30 46	10972 4434 6076 831 1369	51 42 52	49.3 69.4 70.1 14.1 2.3	1274 1053 1183 1287 1179	2223 1651 1028 321 96	6.6% 1.46 2.29 1.12 2.25		
L 26+00S 02+25W L 26+00S 02+50W L 26+00S 02+75W L 26+00S 03+00W L 26+00S 03+25W	でかられている	0.4 0.4 0.6 0.7 0.6	40 42 29 33 30	696 449 379 1000 955	66 64 55 59	6,7 3.8 4.3 8.4 5.6	1339 1420 1069 1555 1392	183 230 326 261 182	2.96 2.70 3.02 2.76 2.60		
L 26+00S 03+75W L 26+00S 04+25W L 26+00S 04+50W L 26+00S 04+75W L 26+00S 05+00W	TRINGTHE	0.4 0.2 0.6 0.3 0.5	34 33 36 30 38	238 150 187 201 283	53 54 53 56 54	1.4 0.4 0.6 1.1 2.8	2344 1397 2386 1412 2794	384 237 482 339 502	2.19 2.10 2.19 2.12 2.32		
L 26+00S 05+25W L 26+00S 05+50W L 26+00S 05+75W L 26+00S 06+00W L 26+00S 06+25W	ERECALATA	0.2 0.3 0.2 0.4 0.2	33 34 32 30 37	117 177 206 178 227	51 52 43 45 53	0.9 1.5 1.3 1.7	1662 1535 1509 1634 1908	244 296 475 418 222	1.96 2.14 1.89 1.89 2.09		
L 26+00S 06+50H L 26+00S 06+75H L 26+00S 07+00H L 26+00S 07+25H L 26+00S 07+50H	KRURURURUR	0.2 1.7 2.0 1.5 1.3	28 35 43 36 33	159 311 286 367 379	58 63	0.8 1.6 0.4 3.2 1.4	1516 2489 2432 3130 2606	222 214 337 209 138	1.80 2.19 3.02 2.51 2.49		
L 26+00S 07+75H L 26+00S 08+00H BL 28+00S 00+00 L 28+00S 00+25E	וחנהנהנה	3.4 0.4 0.4 0.5	48 25 34 32	189 43 106 124	63 49 58 64	0.5 4 0.9	2175 1320 1060 1134	162 25 35 69	3.92 0.86 1.70 2.12		

 Min Limit
 0.1
 2
 1
 5
 0.1
 2
 1
 0.01

 Max Reported*
 100.0
 20000
 20000
 10000
 10000.0
 10000
 5.00

 Method
 ICPM
 ICPM
 ICPM
 ICPM
 ICPM
 ICPM
 ICPM

--- No Test ins=Insufficient Sample S=Soil R=Rock C=Core L=Silt P=Pulp U=Undefined m=Estimate/1000 %=Estimate % Max=No Estimate International Plasma Lab Ltd. 2036 Columbia St. Vancouver 8C V5Y 3E1 Ph:604/879-7878 Fax:604/879-7898

CERTIFICATE ANALYSIS iPL 95G2102

2036 Columbia et Vancouver, B.C Canada V5Y 3E1 Phone (604) 879-7878/

Fax (604) 879-7898

Client: Inmet Mining Corporation iPL: 95G2102 Out: Jul 28, 1995 Page 3 of 9 Section 1 of 1
Project: 687 315 Soil In: Jul 21, 1995 [048715:08:52:59073195] Certified BC Assayer: David Chiu

Sample Name		Ag ppm	Pb ppm	Zn ppm	As ppm	Cd ppm	Ba ppm	Mri ppm	Fe	
L 28+00\$ 00+50E L 28+00\$ 00+75E L 28+00\$ 01+00E L 28+00\$ 01+25E L 28+00\$ 01+50E	CRETATOR	0.4 0.4 0.4 1.5 0.3	29 30 33 23 30	43 122 170 67 62	70 74	0.3 0.3 <	831 1142 987 538 538	30 46 54 36 32	0.61 2.97 4.02 0.90 1.04	
L 28+00S 01+75E L 28+00S 02+00E L 28+00S 00+25H L 28+00S 00+50H L 28+00S 00+75H	URURURURUS.	0.5 0.2 0.4 0.2 1.7	31 27 32 67 159	119 97 141 160 428	49 51 60 53	* * * 0.2	856 921 1064 1724 2378	37 39 92 40 72	1.55 1.16 1.98 1.25 5.1%	
L 28+00S 01+00W L 28+00S 01+25H L 28+00S 01+50H L 28+00S 01+75H L 28+00S 02+00W	MERCHENIA	0.5 1.0 3.3 0.7 1.0	53 42 40 53 41	106 179 263 288 238	79 76	1.0 4 0.3 0.5	1873 1564 2298 1581 1418	47 118 58 68 70	1.22 3.52 4.74 3.15 2.85	
L 28+00\$ 02+25M L 28+00\$ 02+50M L 28+00\$ 02+75M L 28+00\$ 03+00M L 28+00\$ 03+25M	SALRENDADA	0.3 1.8 0.9 0.6 0.6	39 94 50 47 43	361 4696 5787 293 444	117 6 78 8 73	0.7 2.0 4.9 1.3 3.5	1340 2433 2520 1630 2258	81 6349 9647 118 187	3.09 9.8% 7.0% 2.62 2.64	
L 28+00S 03+50H L 28+00S 03+75H L 28+00S 04+00H L 28+00S 04+50H L 28+00S 04+75H	ומנמנתנתנת	0.8 1.2 0.6 0.1 0.2	30 37 40 31 30	3061 1089 658 202 163	61 59 45	1.0 7.4 3.5 1.3 1.0	1181 1904 2130 1554 1503	788 395 368 361 330	4.41 3.11 2.37 2.06 1.96	
L 28+00S 05+00M L 28+00S 05+25M L 28+00S 05+50M L 28+00S 05+75M L 28+00S 06+00M	CREACTECT	0.1 0.1 < 0.1 0.1	30 29 28 29 28	123 199 141 132 132	40	0.3 1.5 0.6 0.8 0.6	1557 1255 1534 1562 1316	222 283 287 270 309	1.68 2.06 1.69 1.70 1.74	
L 28+00S 06+25M L 28+00S 06+50M L 28+00S 06+75M L 28+00S 07+00M L 28+00S 07+25M	SAURURURUR	0.8 0.6 0.4 0.4 0.7	44 28 25 42 44	281 103 126 387 584	69 52 60 72 68	1 5	2043 2573 2848 3122 3545	93 41 31 281 482	2.72 1.16 1.27 2.63 3.10	
L 28+00S 07+50W L 28+00S 07+75W L 28+00S 08+00W BL 30+00S 00+00	in tritain	0.2 1.1 0.4 0.4	38 42 33 31	264 466 73 142	73 72 52 63	0.8 1.0	2673 3333 2319 859	105 341 66 85	2.34 2.95 1.49 2.14	

 Min Limit
 0.1
 2
 1
 5
 0.1
 2
 1
 0.01

 Max Reported*
 100.0
 20000
 20000
 10000
 10000.0
 10000
 5.00

 Method
 ICPM
 ICPM
 ICPM
 ICPM
 ICPM
 ICPM
 ICPM

--- No Test ins=Insufficient Sample S=Soil R=Rock C=Core L=Silt P=Pulp U=Undefined m=Estimate/1000 %=Estimate % Max=No Estimate International Plasma Lab Ltd. 2036 Columbia St. Vancouver BC V5Y 3E1 Ph:604/879-7878 Fax:604/879-7898

CERTIFICATE F ANALYSIS iPL 95G2102

2036 Columbia eet Vancouver, B.C Canada V5Y 3E1 Phone (604) 879-7878

Fax (604) 879-7898

Client: Inmet Mining Corporation Project: 687 315 Soil iPL: 95G2102

Out: Jul 28, 1995 In: Jul 21, 1995 Page 4 of 9 [048715:08:58:59073195]

Section 1 of 1 Certified BC Assayer: David Chiu

Sample Name		84					α-	3.4	_		-
		Ag ppm	Pb ppm	Zn ppm	As ppm	Cd ppm	Ba ppm	Mn ppm	Fe %		•
L 30+00\$ 00+25E	ĕ		39	179	51	0.1	822	24	0.73		
L 30+00\$ 00+50E	ŧ	0.2	38	153	62	7.2	1151	33	1.28		
L 30+00S 00+75E		0.7	46	137	81	0.4	1359	53	2.86		
L 30+00S 01+00E		0.7	40	99	81	0.1	1383	31	2.67		
L 30+00S 01+25E		0.2	35	49	43	0.1	893	28	0.86		
L 30+00\$ 01+50E	Ś	0.5	47	59	71 🕮		1111	35	1.69		
L 30+00S 01+75E	CRECKE	1.5	47	63	97 🌕	 	1225	62	3.25		
L 30+00\$ 02+00E	\$	0.4	35	41	54 2000		1055	19	0.83		
L 30+00\$ 00+25M	Ś	0.6	39	316	61	2,8	1356	179	2.49		
L 30+00\$ 00+50W	SES	0.7	35	253	61		1259	206	2.35		
L 30+00S 00+75H	Š	0.6	37	329	54	2.9 0.1	1161	669	2.30		
L 30+00\$ 01+00W	Ş	0.4	37	165	66	0.1	1013	42	1.60		
L 30+00S 01+25H	trenence est	0.4	36	205	56	3.3 0.1	1110	87	1.66		
L 30+00\$ 01+50W	Ş	0.4	35	119	52	0_1	1034	34	0.99		
L 30+00\$ 01+75H	Ş	0.6	40	264	67	1.1	1535	90	2.95		,
L 30+00\$ 02+00W	\$	8.0	47	700	71	2.3 9.7	1516	277	3.07		
L 30+00S 02+25H	Ş	0.7	45	2838	72	9.7	1407	584	2.81		
L 30+00S 02+50W	22	0.3	49	437	78	0.6	2315	93	4.00		
L 30+00S 02+75H	ន្ធ	0.7	39	242	58 ∭		1136	58	1.78		
L 30+00\$ 03+00W	ş	0.2	34	93	52 🎆	 	1210	38	0.94		
L 30+00S 03+25M	CRURURUR	<	34	104	53	*	1612	30	0.97		
L 30+00\$ 03+50W	Ş	0.5	44	813		22.2	1917	4775	2.01		
L 30+00S 03+75H	Ş	1.2	46	1494	71	6.2	1632	2320	3.85		
L 30+00S 04+50W	Ş	0.7	49	695	68	5.0 1.8	5977	230	2.67		
L 30+00S 04+75W	ž	8.0	55	400	54	1.0	8898	452	2.22		
L 30+00S 05+00H		0.2	50	347	66	0.9 3.8	6664	164	2.49		
L 30+00S 05+25H		0.7	46	539	63	3.8	5783	215	2.46		
L 30+00S 05+50H	ş	0.3	36	706	46	6. í 3.6	2243	375	1.95		
L 30+00S 05+75H L 30+00S 06+00H		0.2 0.3	35 36	427 522	49 50	4.4	3831 2312	275 279	2.04 2.03		
L JOTOGS GOTOGN	33	0.5	30	JEE			2312	2/3	2.03		
L 30+00S 06+25H	Ş	0.2	38	464	51	3.4 2.0	2742	353	2.03		
L 30+00S 07+25H	Ş	0.3	46	317	60 🧱	2,0	1837	180	2.24		
L 30+00S 07+50W		0.9	41	489	56	3.6 1.5	2349	244	2.47		
L 30+00S 07+75H	ទ្ឋ ។	8.0	35	200	57	1.5	3126	200	1.55		
L 30+00S 08+00H	Ş	0.7	40	177	66	0.9	2632	235	1.77		
BL 32+00S 00+00	\$	0.3	66	324	67	0.3 4.8	3768	77	1.57		
L 32+00\$ 00+25E	§ :	0.5	42	517	56	4.8	2398	169	1.47		
L 32+00S 00+50E		0.1	36	162	55	0.3	1205	35	0.84		
L 32+00S 00+75E	ş	0.5	40	363	61	1.4	1581	170	1.32		

Min Limit Max Reported* Method 0.1 2 1 5 0.1 2 1 0.01 100.0 20000 20000 10000 10000.0 10000 10000 5.00 ICPM ICPM ICPM ICPM ICPM ICPM ICPM ICPM

-- No Test ins=Insufficient Sample S=Soil R=Rock C=Core L=Silt P=Pulp U=Undefined m=Estimate/1000 %=Estimate % Max=No Estimate International Plasma Lab Ltd. 2036 Columbia St. Vancouver 8C V5Y 3E1 Ph;604/879-7878 Fax:604/879-7898

CERTIFICATE F ANALYSIS iPL 95G2102

2036 Columbia Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878/ Fax (604) 879-789

Client: Inmet Mining Corporation Project: 687 315 Soil

iPL: 95G2102

Out: Jul 28, 1995 In: Jul 21, 1995

Page 5 of 9 [048715:09:04:59073195]

Section 1 of 1 Certified BC Assayer: David Chiu

Sample Name Ag Рь Zη As Cd Ba Mn Fe Z ppm ppm ppm ppm ppm ppm ppm 2.39 L 32+00S 01+00E 210 1049 58 0.7 55 66 L 32+00S 01+25E 54 72 70 756 28 2.11 1.8 L 32+00S 01+50E 69 39 82 23 1.5 1006 2.22 54 L 32+00S 01+75E 0.6 55 57 793 59 1.48 L 32+00S 02+00E 2.8 57 31 80 0.4 792 20 2.76 L 32+00S 00+25W 1.2 69 306 83 0.9 2493 40 3.74 L 32+00S 00+50W 228 1.7 64 76 2561 74 4.26 L 32+00S 00+75H 3.4 57 388 99 13.1 1337 462 5.17 52 164 87 2276 L 32+00S 01+00W 0.8 0.1 40 3.07 L 32+00S 01+25W 1.4 51 112 74 0.4 1438 110 2.85 4.07 L 32+00S 01+50W 2.2 254 84 2195 25 L 32+00S 01+75H 326 76 0.5 5. 1% 3.2 55 1655 67 L 32+00S 02+00W 0.6 62 224 1469 52 2.48 63 77 384 82 3.70 L 32+00S 02+25H 1.0 3163 46 L 32+00S 02+50W 0.5 42 165 49 1728 45 1.28 L 32+00S 02+75H 0.6 67 586 83 0.6 2373 67 4.74 L 32+00S 03+00H 72 208 71 0.6 2613 2.67 3.4 59 0.2 2.28 BL 34+00S 00+00 1.2 74 184 67 3140 30 L 34+00S 00+25E 0.4 105 144 52 6983 25 1.06 179 64 0.3 3.32 L 34+00S 00+50E 0.4 397 6437 80 L 34+00\$ 00+75E 49 49 47 1907 48 0.77 0.2 0.3 72 1.22 L 34+00S 01+00E 39 59 1182 47 32 125 1.10 L 34+00S 01+25E 0.3 46 758 47 L 34+00S 01+50E 0.4 42 64 50 901 32 1.03 49 1079 1.56 0.6 144 29 L 34+00S 01+75E 1.03 L 34+00S 02+00E 8.0 39 52 43 497 26 247 2405 6.37 L 34+00S 00+25H 6.7 79 160 41 L 34+00S 00+50W 1.8 59 154 79 0.1 3228 36 2.84 L 34+00S 00+75H 1.0 62 135 94 3832 24 3,14 3386 L 34+00S 01+00W 2.0 55 112 26 2.83 L 34+00S 01+25H 0.9 51 116 85 3273 31 3.58 0.1 1.3 65 205 75 2027 27 2.59 L 34+00S 01+50W 56 209 101 0.4 2767 26 3,94 L 34+00S 01+75H 1.0 L 34+00S 02+00W 2.5 54 157 95 2179 60 4.98 0.9 3035 L 34+00S 02+25H 0.9 47 152 77 37 3,60 L 34+00S 02+50H 0.7 58 125 80 3204 41 3.08 0.3 55 2825 L 34+00S 02+75H 2.6 204 74 28 2.31 L 34+00S 03+00W 2.5 55 177 83 2543 32 5.7% BL 35+50\$ 00+00 1.4 104 150 109 0.7 2350 23 3.69

Min Limit 0.1 2 0.1 100.0 20000 20000 10000 10000.0 10000 10000 Max Reported* Method ICPM ICPM ICPM ICPM ICPM ICPM ICPM

TCPM --- No Test ins=Insufficient Sample S=Soil R=Rock C=Core L=Silt P=Pulp U=Undefined m=Estimate/1000 %=Estimate % Max=No Estimate International Plasma Lab Ltd. 2036 Columbia St. Vancouver BC V5Y 3E1 Ph:604/879-7878 Fax:604/879-7898

2

0.01

5.00

CERTIFICATE ANALYSIS iPL 95G2102

2036 Columbia Vancouver, B.C Canada V5Y 3E1 Phone (604) 879-783

Phone (604) 879-7878 Fax (604) 879-7898

Client: Inmet Mining Corporation Project: 687 315 Soil iPL: 95G2102

Out: Jul 28, 1995 In: Jul 21, 1995 Page 6 of 9 [048715:09:11:59073195]

Section 1 of 1 Certified BC Assayer: David Chiu

Project: 687	315 Soil					_		In: Ju	1 21, 1995	[048715:09:11:59073195]	Certified BC Assayer: David Chiu
Sample Name		Ag ppm	Pb ppm	Zn ppm	As ppm	Cd ppm	Ba. ppm	Mn ppm	Fe %		
L 35+50S 00+25E L 35+50S 00+50E L 35+50S 00+75E L 35+50S 01+00E L 35+50S 01+25E	en Caranta	0.4 1.2 0.4 0.1 0.3	77 75 35 32 34	155 383 102 90 96	58 73 57 62 54	1.5 0.6 0.3 0.3	6995 4878 1040 986 1009	41 1344 348 238 245	1.70 3.44 2.48 2.38 1.76		
L 35+50S 01+50E L 35+50S 01+75E L 35+50S 02+00E L 35+50S 00+25N L 35+50S 00+50N	בה נאנה נאנה נה.	0.2 1.2 0.3 1.5 2.9	39 44 37 38 45	126 428 75 107 335	62 77 60 93 76	1.5 0.4 0.7	1046 900 1030 1670 4852	64 104 50 111 42	1.37 3.10 1.91 3.73 3.48		
L 35+50S 00+75H L 35+50S 01+00H L 35+50S 01+25H L 35+50S 01+50H L 35+50S 01+75H	SPACE CREEK	0.2 0.5 1.5 1.3	35 45 38 41 48	70 307 193 136 130	69	0.1 0.1 0.1	1833 3208 2254 2544 2979	78 26 50 41 20	1.29 2.56 4.13 2.79 3.49		
L 35+50S 02+00M L 35+50S 02+25M L 35+50S 02+50M L 35+50S 02+75M L 35+50S 03+00M	italatata	1.1 0.8 1.0 4.8 0.6	39 39 80 41 54	156 158 267 258 330	83 888	0.4 0.3 <	2753 2441 3372 4231 3391	25 94 35 36 29	3.98 5.0% 3.01 4.76 3.05		
BL 58+00S 00+00 L 58+00S 00+25E L 58+00S 00+50E L 58+00S 00+75E L 58+00S 01+00E	SACREBICATOR	3.2 1.3 0.8 1.2 1.8	43 50 44 44 39	292 457 235 192 232	79 79	0.7 0.3 0.2 0.2	2334 1783 3272 2215 2644	59 65 40 110 38	4.57 3.70 3.03 3.41 3.61		
L 58+00\$ 01+25E L 58+00\$ 01+50E L 58+00\$ 01+75E L 58+00\$ 02+00E L 58+00\$ 02+25E	untrinital	0.4 1.4 1.2 2.2 1.7	44 44 40 46 37	226 237 317 180 93	59 77 70 76 60	0.8 2.8 4 0.2	2117 2027 2229 1993 1081	63 117 1667 67 124	2.05 3.75 8.1% 4.00 2.89		
L 58+00\$ 02+50E L 58+00\$ 02+75E L 58+00\$ 03+00E L 58+00\$ 03+25E L 58+00\$ 03+50E	incririan	0.6 8.2 1.2 1.2	25 38 37 27 41	246 1435 249 173 902	41 64 76 63 66	24.8 1.1 0.9	692 908 1429 1630 1112	35 250 72 92 241	1.19 2.67 3.95 2.78 2.08		
L 58+00\$ 03+75E L 58+00\$ 04+00E L 58+00\$ 04+25E L 58+00\$ 04+50E	ST CRECRECA	0.9 1.0 1.1 1.0	41 37 50 38	313 353 1463 779	77 65 109 74	2.5 4.3 17.7 6.0	1556 2000 728 1467	103 247 158 580	3.35 2.38 3.64 8.0%		

 Min Limit
 0.1
 2
 1
 5
 0.1
 2
 1
 0.01

 Max Reported*
 100.0
 20000
 20000
 10000
 10000.0
 10000
 5.00

 Method
 ICPM
 ICPM
 ICPM
 ICPM
 ICPM
 ICPM
 ICPM

⁻⁼No Test ins=Insufficient Sample S=Soil R=Rock C=Core L=Silt P=Pulp U=Undefined m=Estimate/1000 %=Estimate % Max=No Estimate International Plasma Lab Ltd. 2036 Columbia St. Vancouver BC V5Y 3E1 Ph:604/879-7878 Fax:604/879-7898

CERTIFICATE ANALYSIS iPL 95G2102

2036 Columbia Vancouver, B.C Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

Client: Inmet Mining Corporation Project: 687 315 Soil iPL: 95G2102

Out: Jul 28, 1995 In: Jul 21, 1995 Page 7 of 9 [048715:09:17:59073195]

Section 1 of 1 Certified BC Assayer: David Chiu

	313 3311								1 21, 1333	[040/13:03:17:330/3133]	Certified by Assayer, bavid Gift
Sample Name		Ag ppm	Pb ppm	Zn ppm	As ppm	Cd	Ba ppm	Mn ppm	Fe %		2.
L 58+00S 04+75E L 58+00S 05+00E BL 60+00S 00+00 L 60+00S 00+25E L 60+00S 00+50E	TRUMENTAL	1.8 1.6 0.4 0.6 1.1	64 49 50 33 104	442 110 361 319 261	131 60 72 57 65	3.9 0.1 0.8 <	969 940 2083 1620 3122	1443 21 67 34 46	6.2% 2.38 2.87 1.67 1.86		
L 60+00S 00+75E L 60+00S 01+00E L 60+00S 01+25E L 60+00S 01+50E L 60+00S 01+75E	enemene	1.1 0.9 2.0 0.5 0.9	76 37 85 41 38	246 246 3.2% 1086 1208	92 52 85 1 74 77	0.2 0.3 005.5 28.7 21.3	3416 5723 8576 3924 4889	105 49 5.1% 666 413	3.75 2.15 23% 3.52 2.78		
L 60+00S 02+00E L 60+00S 02+25E L 60+00S 02+50E L 60+00S 02+75E L 60+00S 03+00E	EREPETER	0.3 < 0.1 <	36 29 30 32 35	344 301 300 218 438	49 🎬 47	1.7 0.6 1.1 2.7 1.5	1647 1709 1370 1351 1395	236 166 157 384 249	2.68 1.97 1.81 1.52 2.23		
L 60+00S 03+25E L 60+00S 03+50E L 60+00S 03+75E L 60+00S 04+00E L 60+00S 04+25E	SACACACACA	0.1 0.4 < 0.4 <	33 34 31 30 40	235 271 273 147 308	47 49	1.6 0.8 0.1 <	1285 1522 1272 1193 1470	88 50 57 37 63	1.47 1.33 1.55 1.13 1.95		
L 60+00S 04+50E L 60+00S 04+75E L 60+00S 05+00E BL 64+00S 00+00 L 64+00S 00+25E	CACACACA	0.3 0.6 0.1 0.6 0.2	35 35 47 32 39	336 1190 614 1574 1477	58 70 66 56 68	0.8 8.0 0.7 15.8 7.3	1201 1001 978 5511 6821	52 167 36 238 380	1.73 3.16 2.57 1.47 2.44		
L 64+00S 00+50E L 64+00S 00+75E L 64+00S 01+00E L 64+00S 01+25E L 64+00S 01+50E	SACREMENTS	0.2 0.2 0.2 0.1	29 33 31 37 38	1494 1525 651 877 312	83 62 50 66 58	22.1 3.4 2.3 2.1 0.2	1539 1610 1582 1932 2696	535 134 74 119 103	9.6% 2.10 1.31 1.80 1.80		
L 64+00S 01+75E L 64+00S 02+00E L 64+00S 02+25E L 64+00S 02+50E L 64+00S 02+75E	SACACACACA	0.2 0.3 <	35 22 32 34 35	312 270 388 290 156	48 33 47 57 51	1.3 1.6 1.0 0.7	1259 1318 1711 1467 1371	215 79 218 199 110	1.45 1.18 1.46 2.42 1.47		
L 64+00S 03+00E L 64+00S 03+25E L 64+00S 03+50E L 64+00S 03+75E	**************************************	0.2 0.3	34 32 41 25	199 332 220 105	42 58 53 45	0.2 0.5 0.6 0.6	1721 1604 1094 1392	173 233 376 56	1.45 2.14 3.04 1.00		

 Min Limit
 0.1
 2
 1
 5
 0.1
 2
 1
 0.01

 Max Reported*
 100.0
 20000
 20000
 10000
 10000
 10000
 5.00

 Method
 ICPM
 ICPM
 ICPM
 ICPM
 ICPM
 ICPM
 ICPM

CERTIFICATF(F ANALYSIS iPL 95G2102

2036 Columbia 11 Vancouver, B.C Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

Client: Inmet Mining Corporation Project: 687 315 Soil

Corporation iPL: 95G2102

Out: Jul 28, 1995 In: Jul 21, 1995 Page 8 of 9 [048715:09:23:59073195]

Section 1 of 1 Certified BC Assayer: David Chiu

Sample Name		Ag PPM	РЬ РРМ	Zn ppm	As ppm	Cd ppm	Ba ppm	Mrs ppm	fe %			<u>.</u>
L 64+00S 04+00E L 64+00S 04+50E L 64+00S 04+75E L 64+00S 05+00E BL 66+00S 00+00	inmenence	0.4 1.0 1.6 2.2	40 37 41 38 58	101 689 1424 262 436	48 70 68 60 85	0.8 23.0 3.9 7.5	993 1119 1201 1216 1243	107 861 1429 101 3416	1.04 5.5% 3.47 3.48 3.54			
L 66+00S 00+25H L 66+00S 00+50H L 66+00S 00+75H L 66+00S 01+00H L 66+00S 01+25H	untreasure.	0.5 1.2 1.0 0.3 1.0	52 56 40 33 52	1377 600 957 78 468	75 69 58 45 71	4.0 1.6 9.7 1.0 2.7	6326 5184 6680 4363 1.0%	284 203 467 166 307	2.53 2.92 1.85 0.69 2.97			
L 66+00S 01+50W L 66+00S 01+75W L 66+00S 02+00W L 66+00S 02+25W L 66+00S 02+50W	itatrentren	0.1 1.0 1.3 0.3	46 44 48 40 41	314 210 576 1250 820	74 67 61 59	0.8 4.1 19.1 7.3	6077 3231 1.7% 4474 6081	100 101 625 86 101	2-26 1-92 2-74 1-26 1-97			
L 66+00S 02+75M L 66+00S 03+00M L 66+00S 03+25M L 66+00S 03+50M L 66+00S 03+75M	UR GREATER OR	0.2 0.4 0.3 0.6 0.3	37 44 39 38 42	357 531 633 2747 2167	61 62 52 59 58	1.4 7.0 13.1 56.2 41.7	3346 4169 3019 3435 3036	77 67 202 276 479	1.84 1.50 1.99 2.81 2.41			
L 66+00S 04+00W L 66+00S 04+25W L 66+00S 04+50W L 66+00S 04+75W BL 68+00S 00+00	ERTREBLE	0.5 < 0.3 1.3	45 45 50 42 50	661 761 392 1161 155	63 57 64 53 78	9.2 10.2 2.7 15.3 0.5	2602 6620 2729 2759 5730	251 149 141 933 52	2.61 2.50 2.66 2.93 2.94			
L 68+00S 00+25W L 68+00S 00+50W L 68+00S 00+75W L 68+00S 01+00W L 68+00S 01+25W	TREMEMBER	0.9 0.2 2.1 1.9 0.7	47 40 47 49 53	109 100 194 129 159	50 (iii)	0.2	4262 2653 5880 3898 4989	71 72 46 45 52	1.70 1.25 4.16 3.08 2.76			
L 68+00S 01+50M L 68+00S 01+75M L 68+00S 02+00M L 68+00S 02+25M L 68+00S 02+50M	STREATHERE	2.8 2.2 2.8 1.9 1.5	45 24 42 47 37	500 374 367 271 413	81 46 74 85 59	0.6 6.5 0.9 0.5 1.1	1.2% 4.0% 2.3% 7940 8999	87 268 65 133 94	3.08 1.69 2.93 3.52 2.47			
L 68+00S 02+75H L 68+00S 03+00H L 68+00S 03+25H L 68+00S 03+50H	CRURCRUR	0.3 0.3 0.3 0.9	39 49 41 38	657 374 330 636	64 59 59 58	1.2 2.1 1.9 3.2	1.2% 7327 6363 1.3%	123 290 212 115	2.31 2.71 2.70 2.09	 	 	

 Min Limit
 0.1
 2
 1
 5
 0.1
 2
 1
 0.01

 Max Reported*
 100.0
 20000
 20000
 10000
 10000
 10000
 10000
 5.00

 Method
 ICPM
 ICPM
 ICPM
 ICPM
 ICPM
 ICPM
 ICPM
 ICPM

-- No Test ins=Insufficient Sample S=Soil R=Rock C=Core L=Silt P=Pulp U=Undefined m=Estimate/1000 %=Estimate % Max=No Estimate International Plasma Lab Ltd. 2036 Columbia St. Vancouver BC V5Y 3E1 Ph:604/879-7878 Fax:604/879-7898

CERTIFICATE F ANALYSIS iPL 95G2102

2036 Columbia (:t Vancouver, B.C Canada V5Y 3E1 Phone (604) 879 -7878 Fax (604) 879 -7898

Client: Inmet Mining Corporation Project: 687 315 Soil iPL: 95G2102

Out: Jul 28, 1995 In: Jul 21, 1995 Page 9 of 9 [048715:09:29:59073195]

Section 1 of 1 Certified BC Assayer: David Chiu

Sample Name		Ag ppm	Pb ppm	Zn ppm	As ppm	Cd ppm	Ba ppm	Mn ppm	Fe %	
L 68+00S 03+75H L 68+00S 04+00H L 68+00S 04+25H	S. S	1.0 0.7 0.5	38 48 45	349 545 373	72	4.6 9.9 3.2	8630 4868 3718	89 2137 348	1.64 2.80 2.58	

Min Limit
Max Reported*
Method

0.1 2 1 5 0.1 2 1 0.01 100.0 20000 20000 10000 10000.0 10000 10000 5.00 ICPM ICPM ICPM ICPM ICPM ICPM ICPM ICPM

--No Test ins=Insufficient Sample S=Soil R=Rock C=Core L=Silt P=Pulp U=Undefined m=Estimate/1000 %=Estimate % Max=No Estimate International Plasma Lab Ltd. 2036 Columbia St. Vancouver BC V5Y 3E1 Ph:604/879-7878 Fax:604/879-7898

BC V6B 1B8

ATT: Paul Baxter

CERTIFICATE F ANALYSIS iPL 95G2803

40 Samples

2036 Columbia et Vancouver, B.C Canada V5Y 3E1
Phone (604) 879 -7878
Fax (604) 879 -7898

[053214:00:17:59080195]

0≈0ther

0= Pu1p

Inmet Mining Corporat:	ion
Out: Aug 01, 1995 Project: 687	
In: Jul 28, 1995 Shipper: Paul 6	Baxter
PO#: 687-703 Shipment:	ID=C034200
Msg: ICP(MuAc)08	1
Msg:	
Document Distribution	
1 Inmet Mining Corporation	EN RT CC IN FX
3rd Floor - 311 Water St	1 2 2 2 1 1
Vancouver	DL 30 50 BT 8L

Baxter		aw Storag ulp Storag		00Mon/D 12Mon/D					 Mon=Month Rtn=Return	Dis=Discard Arc=Archive
ID=C034200	31	L: 1	C							
	1		Summary-						 	
	## Code	Met Title	e Limit Limit	Units Desci	ription		Element	##		
	}	hod	Low High	ı	-					
EN RT CC IN FX	01 771P	ICPM A	g 0.1 100	ppm Ag I(CP(Multi-Acid)		Silver	01		١
1 2 2 2 1	02 764P	ICPM P	b 2 20000	ppm Pb I(CP(Multi-Acid)	Depres	Lead	02		
DL 30 50 BT 8L	03 780P	ICPM Z	n 1 20000	ppm Zn I(CP(Multi-Acid)		Zinc	03		
0 0 0 1 0	04 753P	ICPM A	s 5 10000	ppm As I	CP(Multi-Acid)	Depres	Arsenic	04		
	05 757P	ICPM Co	d 0.1 10000	ppm Cd I(CP(Multi-Acid)		Cadmium	05		1
Ph: 604/681-3771	1									
Fx:604/681-3360	06 754P	ICPM Ba	a 2 10000	ppm Ba I(CP(Multi-Acid)		Barium	06		
	07 766P	ICPM Mi	n 1 10000	ppm Mn I(CP(Multi-Acid)		Manganese	07		
	08 762P	ICPM F	e 0.01 5.00	% Fe I(CP(Multi-Acid)		Iron	80		1

0=RC Ct

0= Core

RECEIVED AUG 0 8 1995

CERTIFICATE F ANALYSIS iPL 95G2803

2036 Columbia Vancouver, B.C Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

Client: Inmet Mining Corporation Project: 687 40 Soil

orporation iPL: 95G2803

Out: Aug 01, 1995 In: Jul 28, 1995 Page 1 of 2 [053214:00:21:59080195]

Section 1 of 1 Certified BC Assayer: David Chiu

Pb Cd Sample Name Ag Zn As Ba Mn Fe Z ppm pom ppm pon ppm ppm ppm BL 00+62S 0+00 3.0 53 292 74 0, 1 1790 75 2.76 0.5 38 329 L 00+62S 0+25E 56 1969 44 1.26 L 00+62S 0+50E 0.6 50 15483 89 337.7 2097 2.9% 12% 23 829.2 1.37 307 L 00+62S 0+75E 5.4% 42 921 < L 00+62S 1+00E 0.1 33 7421 223 71.5 2412 4459 11% L 00+62S 1+25E 37 3685 79 55.9 2361 1248 3.50 1.4 32.2 L 00+62S 1+50E 1.2 34 2564 63 3788 353 2.66 33 4.8 3349 L 00+62S 1+75E 1.0 497 59 69 1.90 36 L 00+62S 2+00E 1.2 1052 67 12.2 2842 204 2,66 L 00+62S 2+25E 0.9 32 922 10.0 3516 266 2.58 L 00+62S 2+50E 0.7 33 880 63 9.8 3129 277 2.47 L 00+62S 34 8.6 3880 270 2.37 2+75E 0.8 712 57 L 00+62S 3+00E 8.0 34 486 53 5.2 3929 362 1.86 2.4 L 00+62S 3+25E 0.6 32 213 58 1347 53 1.44 L 00+62S 3+50E 40 0.5 178 64 1109 73 1.90 L 00+62S 3+75E 0.5 38 217 64 0,3 1264 42 1.89 0. 1 L 00+62S 4+00E 0.3 35 179 57 1047 111 1.47 L 00+62S 4+25E 0.4 36 211 54 1058 60 1.62 0.5 L 00+62S 4+50E 34 254 51 1172 105 1.73 31 L 00+62S 4+75E 103 48 0.8 56 0.3 938 0.91 L 00+62S 5+00E 0.2 29 0.83 102 51 929 58 0.9 38 BL 00+64S 0+00 1.3 2864 63 40.4 5170 537 1.72 L 00+64S 0+25W 1.2 43 1680 62 31.2 4631 216 1.58 34 L 00+64S 1511 25.8 3797 1.55 0+50W 1.3 58 285 L 00+64S 0+75M 0.3 32 253 66 2658 45 1.37 1.77 L 00+64S 1+00W 0.7 43 1428 67 2669 173 4,3 L 00+64S 1+50W 1.3 23 169 46 2180 30 0.74 35 63 1351 85 1.62 L 00+64S 1+75W 0.4 113 L 00+64S 2+00W 29 63 0.4 114 1380 21 1.28 25 L 00+64S 2+25W 0.2 89 48 1082 29 0.86 L 00+64S 2+75W 0.6 29 332 60 1.1 8444 96 1.85 32 1.8 L 00+64S 3+00W 0.8 277 61 3988 103 1.77 31 L 00+64S 3+25W 0.4 176 59 2111 45 1.83 L 00+64S 3+50W 0.5 42 155 70 0,3 2569 49 1.93 26 0,8 2609 1.03 L 00+64S 3+75W 0.7 110 59 50 L 00+64S 4+00W 0.8 33 195 64 0.7 2447 82 2.15 34 L 00+64S 4+25W 1.1 291 59 4, 1 2174 107 2.46 L 00+64S 4+50W 0.5 34 233 2279 1.97 71 107 L 00+64S 4+75W 0.8 35 483 64 4.4 2292 168 2.27

0.01 0.1 2 5 0.1 2 Min Limit 1 Max Reported* 100.0 20000 20000 10000 10000.0 10000 10000 5.00 Method ICPM ICPM ICPM ICPM ICPM ICPM ICPM ICPM

--=No Test ins=Insufficient Sample S=Soil R=Rock C=Core L=Silt P=Pulp U=Undefined m=Estimate/1000 %=Estimate % Max=No Estimate International Plasma Lab Ltd. 2036 Columbia St. Vancouver BC V5Y 3E1 Ph:604/879-7878 Fax:604/879-7898

CERTIFICATE F ANALYSIS iPL 95G2803

2036 Columbia Vancouver, B.C Canada V5Y 3E1~ Phone (604) 879-7878 Fax (604) 879-7898

Client: Inmet Mining Corporation Project: 687

40 Soil

iPL: 95G2803

Out: Aug 01, 1995 In: Jul 28, 1995

Page 2 of 2 [053214:00:27:59080195]

Section 1 of 1

Certified BC Assayer: David Chiu

Sample Name			Ag ppm	Pb ppm	Zn ppm	As ppm	Cd	Ba. ppm	Mri ppm	Fe
L 00+64S 5+00W	XXV Š	į	0.6	34	370	64	3.9	2223	188	2.28

0.1 Min Limit 0.1 2 1 5 2 0.01 100.0 20000 20000 10000 10000.0 10000 10000 Max Reported* 5.00 Method ICPM ICPM ICPM ICPM ICPM ICPM ICPM --- No Test ins=Insufficient Sample S=Soil R=Rock C=Core L=Silt P=Pulp U=Undefined m=Estimate/1000 Z=Estimate Z Max=No Estimate

ATT: Paul Baxter

CERTIFICATE F ANALYSIS iPL 9510802

0= Rock 210= Soil

-- 00Mon/Dis

210 Samples

Raw Storage:

RECEIVED SEP 2 5 1995

0= Pu1p

0=Other

0=RC Ct

2036 Columbia Vancouver, B.C Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

[070714:58:52:59092095]

Mon=Month Dis=Discard

Inmet Mining Corporati Out: Sep 20, 1995 Project: 687 In: Sep 08, 1995 Shipper: Paul Ba	
PO#: Shipment:	ID=C034200
Msg: ICP(MuAc)08	
Msg:	
Document Distribution -	
1 Inmet Mining Corporation	EN RT CC IN FX
3rd Floor - 311 Water St	1 2 2 2 1
Vancouver	DL 3D 5D BT BL
BC V6B 1B8	0 0 0 1 0

Baxter		Pulp Stor	rage:		- 12Mo	on/Dis				 Rtn=Return	Arc=Archive
ID=C03420											
	₋ Analy	tica.	l Summ	ary—						 	
	## Code	Met Ti	itle Limit	: Limit l	Jnits D	escription		Element	##		
	-]	hod	Low	/ High							
EN RT CC IN F	X 01 771P	ICPM	Ag 0.1	100	ppm A	g ICP(Multi-Acid	1)	Silver	01		
1 2 2 2	1 02 764P	ICPM	Pb 2	20000	ppm P	b ICP(Multi-Acid) Depres	Lead	02		
DL 3D 5D BT B	L 03 780P	ICPM	Zn 1	20000	ppm Z	n ICP(Multi-Acid	i) i	Zinc	03		
0 0 0 1	0 (04 753P	ICPM	As 5	10000	ppm A	s ICP(Multi-Acid	l) Depres	Arsenic	04		
	05 757P	ICPM	Cd 0.1	10000	ррт С	d ICP(Multi-Acid	i) .	Cadmium	05		
Ph: 604/681-377	1				• •	,	•				
Fx: 604/681-336	0 06 754P	ICPM	Ba 2	10000	ppm B	a ICP(Multi-Acid	1)	Barium	06		
	07 766P	ICPM	Mn 1	10000	ppm M	In ICP(Multi-Acid	ı)	Manganese	07		
	08 762P	ICPM	Fe 0.01	5.00		e ICP(Multi-Acid		Iron	08		
						,					

0= Core

2036 Columbia Vancouver, B.C Canada V5Y 3E1 Phone (604) 879-7878

Fax (604) 879-789

0.01

5.00

ICPM

Client: Inmet Mining Corporation

iPL: 9510802 M

Out: Sep 20, 1995

Page 1 of 6 Section 1 of 1

Project: 687	210 S						In: S	ep 08, 1995 [07	0714: 58:				d BC As		David Chi	u
Sample Name	Ag ppm	Pb ppm	Zn ppm	As Cd ppm ppm	Ba ppm	Mn ppm	Fe %	Sample Name	Ag ppm	Pb ppm	Zn ppm	As Cd ppm ppm	Ва	Mn ppm	Fe %	
L 4+00S 0+00BL L 4+00S 0+25E L 4+00S 0+50E L 4+00S 0+75E	5 0.9 5 1.2	34 37 38 73	127 165 175 145	69 <0.1 88 <0.1 85 <0.1 80 <0.1	1385 1874 1693 600	97 58 127 86	2.08 2.97 3.28 3.84	L 4+00S 10+00E \$ L 4+00S 0+25M \$ L 4+00S 0+50M \$ L 4+00S 0+75M \$	1.2 2.1 1.6 1.4	26 29 26 27	82 159 216 147	61 <0.1 72 <0.1 78 <0.1 72 <0.1	1084 1976 1470 1881	36 64 118 57	1.25 2.71 3.40 2.33	
L 4+00S 1+00E		64	241	106 <0.1	808	47	4.19	L 4+00S 1+00W \$	1.2	32	144	64 < 0.1	2059	41	1.50	
L 4+00S 1+25E 1 L 4+00S 1+50E 1 L 4+00S 1+75E 1 L 4+00S 2+00E 1 L 4+00S 2+25E	5 0.8 1.4 1.0	46 32 24 29 44	2236 241 90 107 68	147 25.5 83 0.1 55 <0.1 64 <0.1 99 <0.1	1187 1371 972 1346 1206	238 55 122 55 44	2.35 2.03 1.09 1.57 1.64	L 4+00S 1+25M \$ L 4+00S 1+50M \$ L 4+00S 1+75M \$ L 4+00S 2+00M \$ L 6+00S 0+00BL\$	2.6 1.2 0.9 0.6 0.9	32 26 33 28 44	304 113 124 150 146	95 0.3 63 <0.1 69 <0.1 86 <0.1 76 <0.1	2161 1630 1404 1388 2084	207 34 110 284 36	3.99 1.58 2.23 4.36 1.85	
L 4+00S 2+50E 1 L 4+00S 2+75E 1 L 4+00S 3+00E 1 L 4+00S 3+25E 1 L 4+00S 3+50E	1.4 1.8 1.2	32 46 43 37 35	36 107 32 33 41	80 <0-1 133 <0-1 108 <0-1 94 <0-1 89 <0-1	1168 1187 1202 1079 1152	41 51 42 25 167	0.97 2.16 1.55 1.17 1.40	L 6+00S 0+25E \$ L 6+00S 0+50E \$ L 6+00S 0+75E \$ L 6+00S 1+00E \$ L 6+00S 1+25E \$	0.8 0.7 1.4 0.4 0.8	52 43 53 28 39	190 120 139 312 250	74 <0.1 62 <0.1 73 <0.1 69 <0.1 97 <0.1	2049 1170 1287 1248 1603	110 40 40 95 42	3.73 1.75 2.06 1.59 1.91	
L 4+00S 3+75E L 4+00S 4+00E L 4+00S 4+25E L 4+00S 4+50E L 4+00S 4+75E	0.7 0.4 0.4	26 30 32 24 21	35 52 36 48 47	66 <0.1 78 <0.1 77 <0.1 64 <0.1 76 <0.1	857 788 927 822 919	34 60 42 28 32	0.80 1.45 1.32 0.90 0.86	L 6+00S 1+50E \$ L 6+00S 1+75E \$ L 6+00S 2+00E \$ L 6+00S 2+25E \$ L 6+00S 2+50E \$	1.5 0.9 1.0 1.1 1.9	59 41 40 26 29	234 125 173 159 75	108 0.2 89 <0.1 101 <0.1 80 0.4 80 <0.1	1592 1276 1229 958 1161	97 45 75 126 42	3.37 2.02 3.66 2.98 1.71	
L 4+00S 5+00E 5 L 4+00S 5+25E 5 L 4+00S 5+50E 5 L 4+00S 5+75E 5 L 4+00S 6+00E	0.7 0.7 1.1	40 31 36 34 22	88 56 77 575 95	95 <0.1 85 <0.1 105 <0.1 100 <0.1 69 <0.1	1013 963 894 730 903	54 26 85 103 16	1.53 1.63 2.02 5.8% 1.02	L 6+00S 2+75E \$ L 6+00S 3+00E \$ L 6+00S 3+25E \$ L 6+00S 3+50E \$ L 6+00S 3+75E \$	0.6 0.6 1.0 0.9 1.1	30 32 35 41 46	215 41 137 98 177	93 0.2 66 40.1 83 40.1 96 40.1 91 40.1	1429 1003 982 1015 1138	58 28 56 58 33	3.48 0.78 2.58 2.01 2.42	
L 4+00S 6+25E 5 L 4+00S 6+50E 5 L 4+00S 6+75E 5 L 4+00S 7+00E 5 L 4+00S 7+25E 5	0.5 0.7 8.4	36 26 29 37 50	86 43 40 186 189	89 <0.1 64 <0.1 62 <0.1 81 0.4 87 <0.1	1010 818 897 959 1120	18 21 21 51 21	1.44 0.81 0.86 2.25 1.80	L 6+00S 4+00E \$ L 6+00S 4+25E \$ L 6+00S 4+50E \$ L 6+00S 4+75E \$ L 6+00S 5+00E \$	1.1 2.2 0.9 1.2 1.6	46 45 37 41 50	74 133 97 249 392	97 <0.1 226 <0.1 114 <0.1 120 0.6 153 0.1	965 1062 1046 976 1003	80 165 120 139 171	1.90 4.37 2.23 3.96 4.50	
L 4+00S 7+50E 5 L 4+00S 7+75E 5 L 4+00S 8+00E 5 L 4+00S 8+25E 5 L 4+00S 8+50E 5	0.9 0.5 2.5	46 21 23 61 50	167 130 127 143 280	79 <0.1 56 <0.1 68 <0.1 90 <0.1 98 0.9	1028 657 780 956 852	22 20 13 59 20	1.75 1.10 1.09 3.04 1.95	L 6+00S 5+25E \$ L 6+00S 5+50E \$ L 6+00S 6+00E \$ L 6+00S 6+25E \$	1.4 1.9 0.6 4.5 1.4	39 76 32 31 38	214 45 50 200 57	127 <0.1 63 <0.1 79 <0.1 83 0.1 72 <0.1	1062 765 946 1327 1178	136 21 21 72 17	3.60 1.38 1.14 2.84 1.35	
L 4+00S 8+75E 5 L 4+00S 9+00E 5 L 4+00S 9+25E 5 L 4+00S 9+75E	0.2 1.0	23 37 69 92	247 223 345 84	70 <0.1 80 <0.1 64 0.3 73 <0.1	2648 3339 4003 1823	20 60 251 31	1.21 2.38 4.17 2.00	L 6+00S 6+50E \$ L 6+00S 6+75E \$ L 6+00S 7+00E \$ L 6+00S 7+25E \$	2.3 1.8 1.2 1.1	50 44 31 84	414 125 160 205	149 <0.1 68 <0.1 70 <0.1 72 <0.1	1348 1254 949 1144	73 16 27 35	6.7 % 1.39 1.94 2.09	

Min Limit 0.1 0.1 2 0.01 0.1 2 0.1 100.0 20000 20000 10000 10000.0 10000 10000 5.00 100.0 20000 20000 10000 10000.0 10000 10000 Max Reported* Method ICPM ---No Test ins=Insufficient Sample S=Soil R=Rock C=Core L=Silt P=Pulp U=Undefined m=Estimate/1000 %=Estimate % Max=No Estimate International Plasma Lab Ltd. 2036 Columbia St. Vancouver BC V5Y 3E1 Ph:604/879-7878 Fax:604/879-7898

L24+00S 10+25W

L24+00S 10+50W \$

L24+00S 10+75H \$

L24+00S 11+00W S

L24+00S 11+50W \$

L24+00S 11+75W \$

L24+00S 12+00W \$

L24+00S 11+25W

0.4

0.4

0.5

0.7

0.7

0.3

1.9

0.4

37

41

64

38

27

39

41

30

160

186

605

449

347

233

477

172

63

55

60

66

53

62

76

56

<0.1

<0.1

1.8

1.8

0.1

<0.1

2.4

<0.1

2693

1744

8428

4933

4436

5591

3305

7062

39

31

150

280

214

313

330

166

1.45

1.55

2.59

2.90

1.82

1.60

2.79

1.61

CERTIFICATE ANALYSIS iPL 9510802

2036 Columbia Vancouver, B.C Canada V5Y 3E Phone (604) 879-7878 Fax (604) 879-7898-

Client: Inmet Mining Corporation iPL: 9510802 M Out: Sep 20, 1995 Page 3 of 6 Section 1 of 1 [070714:59:0] 95] Project: 687 210 Soi1 In: Sep 08, 1995 Certified BC Assayer: David Chiu Ag РЬ Zn Cd Fe Sample Name As Вa Mn Fe Sample Name Aq РЬ Zπ As Cd Вa Mn Z Z ppm L24+00S 13+25H \$ L 6+00S 7+50E \$ 2.7 151 59 64 <0.1 1392 18 2.38 0.3 32 89 63 <0.1 2503 61 1.80 L24+00S 13+50W \$ L 6+00S 7+75E \$ 4.7 89 201 104 <0.1 1510 40 2.92 44 193 72 3602 226 1.0 0.1 2.81 L 6+00S 8+00E 4.4 77 134 74 <0_1 1319 17 1.86 L24+00S 13+75W \$ 0.6 27 152 66 <0.1 2924 415 1.88 L 6+00S 8+25E \$ 4.9 48 68 51 <0.1 833 15 0.84 L24+00S 14+00W \$ 33 130 73 3279 279 2.16 0.8 <0.1 L 6+00S 8+50E \$ 1.7 57 57 52 <0.1 971 16 0.92 L24+00S 14+25W \$ 0.8 48 213 80 0.5 3834 353 2.48 L 6+00S 8+75E \$ 947 76 0.8 48 4.1 1730 232 2,07 L24+00S 14+50W S 1.0 41 154 93 0.3 4006 429 2.79 L 6+00S 9+00E \$ 60 1025 23.0 L24+00S 14+75W \$ 7.7 85 1169 1373 4.55 1.1 41 217 81 0.8 4431 278 2.38 L 6+00S 9+25E \$ 1.7 60 252 57 <0_1 1143 48 2.29 L24+00S 15+00W \$ 88 3546 1.2 43 170 0.6 199 2.62 L 6+00S 9+50E \$ 2.5 78 328 87 <0.1 1725 59 4.23 L24+00S 15+25W \$ 45 209 84 0.6 3672 187 2.67 1.2 L 6+00S 9+75E \$ 1.7 75 212 70 0.1 1513 31 2.47 L24+00S 15+50W \$ 1.2 49 141 85 0.5 2571 336 2.88 L 6+00S 10+00E \$ 47 197 78 1690 2.55 0.4 <0,1 91 L24+00S 15+75W \$ 0.6 24 210 93 1.9 3457 447 3.12 L 6+00S 0+25W 1.8 37 209 77 0_1 2039 37 3.14 L24+00S 16+00W S 36 201 57 0.6 5023 465 1.3 2.38 L 6+00S 0+50W 39 174 74 <0.1 2105 31 L24+00S 16+25W 28 222 56 0.7 3468 389 2.2 1.85 0.9 2.38 L 6+00S 0+75W 0.9 35 112 75 <0.1 2585 34 1.77 L24+00S 16+50W \$ 1.0 32 141 67 0.1 5478 328 2.70 <0.1 L 6+00S 1+00W \$ 1.0 33 170 78 2293 2.97 L24+00S 16+75W \$ 28 **53** 0.9 2806 56 0.4 196 320 1.84 L 6+00S 1+25W \$ 0.8 32 211 80 0.1 2029 56 3.43 L24+00S 17+00M S 245 57 3869 316 2.10 30 1.7 1.4 L 6+00S 1+50W 91 32 **57** 0.7 0.8 35 148 69 <0.1 2005 2.72 L24+00S 17+25W \$ 1.0 136 3859 761 2.53 L 6+00S 1+75H 1.0 31 119 73 <0.1 1767 116 2.34 L24+00S 17+50W \$ 1.4 31 176 56 1.1 3892 710 2.52 35 <0.1 L24+00S 17+75H \$ 2.64 L 6+00S 2+00W \$ 0.6 153 68 1537 89 2.56 0.7 220 53 1.0 287 30 3799 L24+00S 18+00W \$ 52 L24+00S 8+25H \$ 1.3 42 515 81 3.7 2815 557 2.79 0.3 22 137 <0.1 1714 2.03 115 L24+00S 8+50W S 2.5 36 378 64 7.2 2514 53 2.39 L24+00S 18+25H \$ 0.2 57 0.1 1228 262 1.89 26 164 386 74 1.7 L24+00S 18+50W \$ L24+00S 8+75H 0.8 40 3143 322 2.75 0.3 34 227 66 0.4 1442 320 2.46 L24+00S 9+00W 39 206 0.5 2621 72 L24+00S 18+75W \$ 59 <0.1 0.4 74 2.04 0.2 21 96 1125 61 1.29 L24+00S 9+25H 35 240 2274 50 L24+00S 19+00W \$ 64 0.6 63 0.8 1.83 0.1 31 143 <0.1 1344 436 1.69 L24+00S 9+50W 0.7 43 350 72 4.8 3166 114 2.30 L24+00S 19+25W \$ 0.1 25 169 61 <0.1 1383 155 2.11 L24+00S 9+75H S 34 3488 2.31 L24+00S 19+50W \$ 483 0.6 285 68 3.4 93 0.2 28 191 55 0.5 1328 2.15 56 0.8 2910 L24+00S 19+75W L24+00S 10+00W 2.6 251 96 41 3.33 0.2 24 281 56 0.8 1417 241 2.03

L24+00S 20+00W

L32+00S 3+25W

L32+00S 3+50H \$

L32+00S 3+75H S

L32+00S 4+25H \$

L32+00S 4+75H \$

L32+00S 4+00W

L32+00S 4+50W

0.3

0.7

0.7

0.5

0.7

0.4

0.5

0.1

29

19

19

22

41

21

18

13

245

190

131

95

175

105

99

56

64

55

55

53

68

60

49

49

0.1

0.4

<0.1

<0.1

<0.1

<0.1

<0.1

<0,1

1563

1676

2154

1238

1447

1306

1244

1449

99

40

32

48

41

33

30

31

2.08

1.28

1.09

1.17

1.84

1.00

0.86

0.59

L24+00S 12+25H S 0.6 28 150 58 <0.1 5153 139 2.03 L32+00S 5+00M \$ 27 323 68 2154 84 2.85 0.3 L24+00S 12+50W S 1.8 44 269 53 1.0 8117 441 2.81 L32+00S 5+25H \$ 0.2 29 419 79 1.6 1937 230 3.45 ₹0.1 L24+00S 12+75W 0.3 30 154 54 <0.1 3521 161 2.66 L32+00S 5+50W 0.1 17 108 52 2070 29 0.94 26 52 L32+00S 5+75H \$ 1.5 L24+00S 13+00W \$ 0.2 62 <0.1 1784 48 1.05 0.5 30 291 64 3342 110 2.08 2 2 Min Limit 0.1 1 0.1 2 0.01 0.1 0.1 2 0.01

Max Reported* 100.0 20000 20000 10000 10000.0 10000 10000 5.00 100.0 20000 20000 10000 10000.0 10000 10000 5.00 Method ICPM **ICPM** --=No Test ins=Insufficient Sample S=Soil R=Rock C=Core L=Silt P=Pulp U=Undefined m=Estimate/1000 Z=Estimate Z Max=No Estimate

International Plasma Lab Ltd. 2036 Columbia St. Vancouver BC VSY 3E1 Ph:604/879-7878 Fax:604/879-7898

2036 Columbia Vancouver, B.C Canada V5Y 3E1-Phone (604) 879-7878 Fax (604) 879-7898

0.01

5.00

ICPM

2

Client: Inmet Mining Corporation Project: 687 210 Soil

iPL: 9510802 M

Out: Sep 20, 1995 In: Sep 08, 1995

Page 5 of 6 [070714-59-1] 95]

Section 1 of 1 Certified RC Assaver: David Chiu

Project: 687	210 Sc	oi 1					In: S	ep 08, 1995 [0	70714: 59:	1] 95]		С	ertifie	d BC Ass	ayer: D	avid Chiu	
Sample Name	Ag	Рь	Zn	As Co		Mn	Fe	Sample Name	Ag	Рь	Zn	As	Cd	Ba	Mn	Fe	
L	ppm	ppm	ppm	ррт ррт	ppm	ppm	Z		ppm	ppm	ppm	ppm	ppm	ppm	ppm	7	
L32+00S 6+00W \$	0.6	27	193	60 3, 1	2369	71	1.73	L32+00S 16+50W \$	<0.1	39	124	67	0,1	5325	417	2.66	
L32+00S 7+00H \$	<0.1	18	212	43 0.2	1485	397	1.87	L32+00S 16+75H \$	0.1	28	117	62	<0.1	6364	423	2.31	
L32+00S 7+25H \$	0.3	27	277	57 2.0		327	2.18	L32+00S 17+00H \$	0.1	33	144	68	0.3	8638	348	2.27	
L32+00S 7+50H \$	0.2	26	271	52 2.0		325	2.02	L32+00S 17+25H \$	<0.1	30	141	51	0.4	8106	550	2.07	
L32+00S 7+75H \$	0.4	27	290	60 1,4	2015	309	2.00	L32+00S 17+50W §	0.1	28	416	58	2.2	6390	302	2.31	
L32+00S 8+00H \$	0.3	27	284	56 0.4	1853	209	1.92	L32+00S 17+75W Š	1.3	27	333	52	2.6	7347	203	2.01	
L32+00S 8+25W \$	0.4	25	413	56 0,4 63 1,8	2280	350	1.85	L32+00S 18+00W \$	<0.1	25	286	53	0.8	1825	451	1.91	
L32+00S 8+50H \$	0.5	26	292	60 2.8	2512	279	1.68	L32+00S 18+25H \$	<0.1	31	166	51	0,6	1751	453	1.82	i
L32+00S 8+75H \$	0.3	30	205	75 < 0 . 1		271	1.77	L32+00S 18+50W \$	0.1	35	271	56	0.5	3634	422	1.90	
L32+00S 9+00M \$	0.3	30	131	59 <0,1	1567	51	1.40	L32+00S 18+75W \$	0.1	35	320	64	1.3	5352	530	2.29	
L32+00S 9+25H Š	0.2	18	109	60 1.0	1546	81	1.02	L32+00S 19+00W \$	<0.1	30	240	67	<0.1	4637	126	2.22	1
L32+00S 9+50H \$	0.4	31	229	63 3.4	2417	251	1.80	L32+00S 19+25H \$	<0.1	30	310	69	ξ0.1	2266	153	2.42	
L32+00S 9+75H \$	0.3	23	209	61 <0.1	1830	143	1.94	L32+00S 19+50H \$	<0.1	27	254	ഹ 🍍	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4609	200	2.54	
L32+00S 10+00H \$	0.3	31	194	68 <0.1	960	69	3.00	L32+00S 19+75H \$	0.1	31	304	62	0.6 <0.1	4111	859	2.51	
L32+00S 10+25H \$	0.4	27	133	67 <0.1	1663	236	1.54	L32+00S 20+00W \$	0.1	30	234	63	-n 1	1761	449	1.82	
	0			***************************************		250	11.54	ESERGIO EGROOM W	0.1	3-0	257	03 §	BBBARB	1701	***	1.02	
L32+00S 10+50N S	0.2	28	186	69 <0.1		246	1.90										
L32+00S 10+75W §	0.1	18	106	58 <0.1	1912	101	1.06	Ì									
L32+00S 11+00₩ Ş	0.2	28	166	64 (<0.1	17 44	204	1.94	1									
L32+00S 11+25H \$	0.2	29	221	57 <0.1	1999	199	1.93										
L32+00S 11+50H \$	0.3	30	197	61 <0.1	21 3 3	455	1.79	İ									
L32+00S 11+75W \$	0.2	30	165	53 <0.1	2295	439	1.40										
L32+00S 12+00H \$	0.5	36	342	63 0,8	2545	1043	2.72										
L32+00S 12+25H \$	0.3	35	254	63 ((3.1	2335	644	2.39										ĺ
L32+00S 12+50H \$	0.3	32	261	51 0.1	2283	428	2.01										
L32+00S 12+75H \$	0.2	28	216	58 <0.1	2120	727	1.55										
L32+00S 13+00H \$	0.3	24	200	56 <0,1	2166	399	1.29										
L32+00S 13+25W \$	0.2	31	332	60 0.1	2223	531	1.99										
L32+00S 13+50H \$	0.2	30	196	58 66.1	2423	595	1.68										
L32+00S 13+75W \$	0.2	42	625	61 1.3	2273	930	2.58										l
L32+00S 14+00W \$	0.3	36	627	68 0.8	2612	859	1.92										
L32+00S 14+25H Š	0.3	33	433	61 0.2	2247	570	1.98										
L32+00S 14+50H \$	0.3	38	440	57 0.9	2070	732	2.16										
L32+00S 14+75H \$	0.3	47	271	61 0,6	2085	451	2.01										
L32+00S 15+00W \$	0.2	37	186	65 0.4	2153	609	2.15										
L32+00S 15+25H \$	0.2	35	221	54 0.8	2195	542	2.17										
L32+00S 15+50H \$	0.2	32	160	84 <0.1	2632	317	2.19										
L32+00S 15+75H \$	<0.1	25	111	50 <0.1	2052	298	1.91										Ì
L32+00S 16+00W \$	0.5	40	73	63 0.2	3821	273	2.58										,
L32+00S 16+25H \$	0.3	35	61	73 <0.1	4004	362	2.63										
				, o somether	7007		2.05										

2 2 Min Limit 0.1 5 0.1 2 0.01 0.1 0.1 Max Reported* 100.0 20000 20000 10000 10000.0 10000 10000 5.00 100.0 20000 20000 10000 10000.0 10000 10000 ICPM ICPM ICPM ICPM ICPM ICPM ICPM ICPM Method ICPM ICPM ICPM ICPM ICPM ICPM ICPM

-=No Test ins=Insufficient Sample S=Soil R=Rock C=Core L=Silt P=Pulp U=Undefined m=Estimate/1000 %=Estimate % Max=No Estimate International Plasma Lab Ltd. 2036 Columbia St. Vancouver BC V5Y 3E1 Ph:604/879-7878 Fax:604/879-7898

2036 Columbia eet Vancouver, B.(Canada V5Y 3E1 Phone (604) 879-7878

RECEIVED .

INTERNATIONAL PLASMA LABORATORY LTO.					VE(LIVED OCT 11	100r Fax	(604) 879 - 7898
Inmet Mining Corporati Out: Sep 29, 1995 Project: 687 In: Sep 21, 1995 Shipper: Paul Ba		Ra Pu	Samples w Storage: ip Storage:		252= Soil	0=RC Ct		[077614:48:29:59100295] Mon=Month Dis=Discard Rtn=Return Arc=Archive
Msg: ICP(MuAc)08 Msg: Document Distribution - 1 Inmet Mining Corporation 3rd Floor - 311 Water St Vancouver BC V6B 1B8 ATT: Paul Baxter	1 2 2 2 1 DL 30 5D BT BL	## Code 01 771P 02 764P 03 780P 04 753P 05 757P 06 754P 07 766P	hod ICPM Ag ICPM Pb ICPM Zn ICPM As ICPM Cd ICPM Ba ICPM Mn	Limit Limit U Low High 0.1 100 2 20000 1 20000 5 10000 0.1 10000 2 10000 1 10000 0.01 5.00	ppm Ag ICP(Multi-Acid) ppm Pb ICP(Multi-Acid) ppm Zn ICP(Multi-Acid) ppm As ICP(Multi-Acid) ppm As ICP(Multi-Acid) ppm Cd ICP(Multi-Acid) ppm Ba ICP(Multi-Acid) ppm Mn ICP(Multi-Acid) % Fe ICP(Multi-Acid)	Zinc	## 01 02 03 04 05 06 07 08	

CERTIFICATION ANALYSIS iPL 9512102

2036 Columbi Vancouver, B.C Canada V5Y 3E1 Phone (604) 879-7878

Fax (604) 879-7898

Client: Inmet Mining Corporation Project: 687 252 Soil iPL: 95I2102 M

International Plasma Lab Ltd. 2036 Columbia St. Vancouver BC V5Y 3E1 Ph:604/879-7878 Fax:604/879-7898

Out: Sep 29, 1995 In: Sep 21, 1995 Page 1 of 7 [077614:48:3] 95]

Section 1 of 1 Certified BC Assayer: David Chiu

Cd Sample Name Aq Pb Zn As Cd Вa Mn Fe Sample Name Aq РЬ Zn As Ba Mn Fe Z Z ppm ррт ррт ppm L 8+00S 0+25W \$ 2.6 4.72 L 8+00S 0+25E \$ 43 291 96 1,7 1455 189 4.02 42 181 99 <0.1 2041 122 1.2 L 8+00S 0+50E S 51 121 108 <0.1 1383 60 2.75 L 8+00S 0+50W \$ 4.5 34 115 72 <0.1 1801 39 1.51 0.6 278 96 1.1 67 L 8+00S 0+75W S 37 82 <0.1 116 L 8+00S 0+75E \$ 0.7 43 1430 3.19 0.9 264 1492 4.14 79 2.65 L 8+00S 1+00E \$ 0.7 29 358 0.9 1456 56 L 8+00S 1+00W \$ 2.3 39 487 94 0.8 1451 54 3.08 L 8+00S 1+25W S L 8+00S 1+25E \$ 0.7 40 387 88 1370 28 2.55 2.2 36 205 96 <0.1 1689 59 4.41 1.6 L 8+00S 1+50E S 0.8 40 260 129 <0.1 1433 38 4.86 L 8+00S 1+50W S 2.0 33 168 111 <0.1 39 4.12 1959 L 8+00S 1+75E \$ 2.1 35 319 77 6.4 1459 179 3.16 L 8+00S 1+75W S 1.2 39 199 87 <0.1 1816 41 3.21 L 8+00S 2+00W \$ L10+00S 0+25E \$ L 8+00S 2+00E S 41 194 117 0.3 1091 29 4.34 1.2 30 242 100 <0.1 1718 51 4,10 0.9 L 8+00S 2+25E \$ 1.9 40 105 79 0.3 1201 66 2,20 0.6 33 287 88 1.1 1358 70 3.54 2.3 45 162 102 0.1 1238 41 2.37 L10+00S 0+50E \$ 0.5 47 1039 175 2,7 1035 63 7.9% L 8+00S 2+50E \$ 2.2 150 77 <0.1 114 3.24 L10+00S 0+75E \$ 34 82 169 3.74 L 8+00S 2+75E \$ 36 1162 1.0 1289 1.6 957 L 8+00S 3+00E \$ L10+00S 1+00E \$ 1.2 38 182 70 <0, 1 1165 30 1.53 0.8 42 239 77 0.9 1420 59 3.18 L10+00S 1+25E \$ L10+00S 1+50E \$ 285 96 24 2.79 75 40 2.92 L 8+00S 3+25E \$ 3.0 49 <0,1 1533 0.8 44 309 0.6 1421 2.91 L 8+00S 3+50E \$ 1.8 40 111 84 <0,1 1315 28 1.59 0.5 48 287 98 1.4 1117 44 L 8+00S 3+75E \$ 2.3 37 108 80 0.1 965 67 2.05 L10+00S 1+75E \$ 1.6 42 2221 104 9.6 1574 101 3.74 132 4.35 55 334 117 4.05 L 8+00S 4+00E \$ 2.2 44 78 <0,1 1109 82 L10+00S 2+00E \$ 2.0 111 1.1 1997 86 L10+00S 2+25E \$ 36 21.0 4.26 L 8+00S 4+25E 1.3 37 108 <0.1 1102 61 2.58 2.5 1392 96 1544 1223 L 8+00S 4+50E S L10+00S 2+50E \$ 42 3.2 1200 1.7 33 184 77 0.1 897 38 1.98 1.4 570 122 49 6.1% L 8+00S 4+75E \$ 1.1 35 76 74 <0.1 1024 16 1.12 L10+00S 2+75E \$ 0.6 34 272 66 968 47 1.73 0.7 26.0 20 201 L10+00S 3+00E \$ 37 1133 49 1.64 L 8+00S 5+00E \$ 268 <0.1 317 46 137 0.8 482 61 L 8+00S 5+25E \$ 43 123 86 <0.1 995 26 2.20 L10+00S 3+25E \$ 1.2 35 510 79 1.2 1194 109 4.69 2.9 30 L10+00S 3+50E \$ 38 <0.1 1214 38 1.68 L 8+00S 5+50E \$ 113 60 <0.1 755 17 1.25 2.1 169 64 1.4 53 L 8+00S 5+75E \$ 3.1 45 293 88 0.3 826 32 3.80 L10+00S 3+75E \$ 2.2 39 299 89 1.5 1194 3.84 50 0.5 1254 56 3.73 70 0.2 964 49 2.53 L10+00S 4+00E \$ 2.3 196 74 L 8+00S 6+00E \$ 36 160 1.6 L 8+00S 6+25E \$ 33 987 63 3.16 L10+00S 4+25E \$ 3.1 37 94 93 <0.1 1451 14 2.74 1.2 117 87 0.1 <0.1 53 3.00 L10+00S 4+50E \$ 39 173 91 0.1 1244 20 3.71 L 8+00S 6+50E \$ 1.3 34 144 1172 1.6 L 8+00S 6+75E \$ 0.6 36 123 73 <0.1 1073 30 1.39 L10+00S 4+75E \$ 4.1 34 151 87 0.6 1040 81 3.92 34 L 8+00S 7+00E \$ 0.8 36 109 74 <0.1 1054 84 1.97 L10+00S 5+00E \$ 2.6 238 107 <0.1 1133 58 5.3% 37 57 L10+00S 5+25E \$ 33 82 0.7 1288 39 3.32 75 0.1 0.9 171 L 8+00S 7+25E \$ 0.7 184 1203 3.12 L 8+00S 7+50E \$ 5.1 56 295 75 1.3 1461 86 5.2% L10+00S 5+50E \$ 1.7 33 161 107 <0.1 1151 5.07 0.2 0.1 L 8+00S 7+75E \$ 1.1 52 141 64 1468 82 2.44 L10+00S 5+75E \$ 1.6 34 163 74 1396 34 1.88 79 L 8+00S 8+00E \$ 1.5 50 236 68 0.3 2825 101 3.78 L10+00S 6+00E \$ 2.9 266 111 <0.1 1508 26 4.67 1326 32 4.53 285 64 2309 299 L10+00S 6+25E \$ 3.8 55 275 1.0 L 8+00S 8+25E 0.4 44 <0.1 4.83 91 L 8+00S 8+50E 0.3 42 339 64 <0.1 2664 359 4.14 L10+00S 6+50E \$ <0.1 27 3750 45 85.2 858 5068 16% 4335 54 <0.1 587 L10+00S 6+75E \$ 129.1 655 187 L 8+00S 8+75E \$ <0.1 31 77 1050 5.97 0.3 19 6976 41 501 29 172.5 4813 20% L 8+00S 9+00E \$ <0.1 51 <0.1 1467 5.37 L10+00S 7+00E \$ <0.1 12 9050 364 <0.1 44 38 2552 491 5.7% L10+00S 7+25E \$ 55 0.9 905 45 1.67 L 8+00S 9+25E \$ 58 <0.1 0.5 31 128 L 8+00S 9+50E \$ <0.1 49 34 56 <0.1 3600 598 6.5% L10+00S 7+50E \$ 0.4 33 850 62 3.9 1463 825 6.0% 38 21.7 2234 5.1% L10+00S 7+75E \$ 2,4 1860 394 3.92 L 8+00S 0+00BL\$ 894 77 5013 41 457 76 1.1 1.3

Min Limit 2 2 0.01 2 2 0.01 0.1 5 0.1 0.1 5 0.1 1 1 1 100.0 20000 20000 10000 10000.0 10000 10000 5.00 100.0 20000 20000 10000 10000.0 10000 10000 5.00 Max Reported* ICPM ICPM ICPM ICPM Method ICPM --- No Test ins=Insufficient Sample S=Soil R=Rock C=Core L=Silt P=Pulp U=Undefined m=Estimate/1000 %=Estimate % Max=No Estimate

2036 Columbia Vancouver, B. Canada V5Y 3E1 Phone (604) 879-7878

Phone (604) 879-7878 Fax (604) 879-7898

Client: Inmet Mining Corporation Project: 687 252 Soil iPL: 9512102 M

Out: Sep 29, 1995 In: Sep 21, 1995 Page 3 of 7 [077614:48:4] 95]

Section 1 of 1 Certified BC Assayer: David Chiu

Project: 087	232 30						111. 3	ep 21, 1995 (U/	/614:48:	4] 30]		Certifie	O DC ASS	sayer: D	avia Chiu	
Sample Name	Ag ppm	Pb ppm	Zn ppm	As Co ppm ppm		Мо ррт	Fe %	Sample Name	Ag ppm	Pb ppm	Zn ppm	As Cd ppm ppm	Ba ppm	Ma ppm	Fe %	
L10+00S 8+00E \$ L10+00S 8+25E \$ L10+00S 8+50E \$ L10+00S 8+75E \$ L10+00S 9+00E \$	0.7 0.6 0.3 0.8 <0.1	74 46 44 34 46	350 542 369 292 155	75 <0.1 68 1.5 67 <0.1 69 0.7 52 <0.1	2059 2071 1752	247 171 954 684 732	4.15 2.98 7.87 5.77 8.17	L12+00S 5+25E \$ L12+00S 5+50E \$ L12+00S 5+75E \$ L12+00S 6+00E \$ L12+00S 6+25E \$	1.5 2.2 2.5 2.2 2.0	95 35 43 41 49	489 363 317 240 210	119 0.6 77 2.0 87 1.9 54 0.1 87 5.0	1608 1216 1219 956 1278	102 30 36 38 52	5.6% 2.54 3.20 1.99 2.82	
L10+00S 9+25E \$ L10+00S 9+50E \$ L10+00S 9+75E \$ L10+00S 10+00E \$ L10+00S 0+00BL\$	0.4 <0.1 0.6 0.8 0.9	28 42 51 37 26	194 264 253 182 1461	57 0.2 66 <0.1 63 <0.1 54 0.1 64 25.0	1168 1600 1531	301 376 1241 558 1835	3.72 5.6% 5.4% 4.40 8.6%	L12+00S 6+50E \$\tilde{S}\$ L12+00S 6+75E \$\tilde{S}\$ L12+00S 7+00E \$\tilde{S}\$ L12+00S 7+25E \$\tilde{S}\$ L12+00S 7+50E \$\tilde{S}\$	1.1 2.9 0.4 1.2 8.3	35 30 31 30 34	360 2237 1294 392 4947	88 2.2 80 9.9 66 10.9 76 9.4 74 79.9	1320 1499 1149 841 533	66 84 426 93 294	3.33 3.19 4.37 2.66 4.70	
L10+00S 0+25H \$ L10+00S 0+50H \$ L10+00S 0+75H \$ L10+00S 1+00H \$ L10+00S 1+25H \$	1.0 1.2 0.6 1.7 1.9	32 33 27 37 24	264 234 249 510 300	92 1.3 80 0.4 101 <0.1 87 0.9 71 1.9	1786 1355 1505	79 69 97 129 252	3.82 3.38 6.37 4.21 3.91	L12+00S 7+75E \$ L12+00S 8+00E \$ L12+00S 8+25E \$ L12+00S 8+50E \$ L12+00S 8+75E \$	0.7 0.2 0.5 0.6 1.1	35 26 38 35 52	994 178 245 345 751	87 6.5 52 0.4 73 0.9 71 1.9 66 4.7	1173 887 1356 1445 1845	161 57 113 204 574	3.74 1.77 2.40 2.51 4.23	
L10+00S 1+50M \$ L10+00S 1+75M \$ L10+00S 2+00M \$ L12+00S 0+00BL\$ L12+00S 0+25E \$	1.4 2.4 2.3 1.5	28 36 39 37 36	170 177 147 259 207	77 0.3 84 0.3 76 0.1 81 1.8 78 <0.1	1592 2246 1919	168 55 46 64 78	3.32 2.91 2.87 2.86 4.53	L12+00S 9+00E \$\begin{array}{c} \text{L12+00S} & 9+25E \\ \text{L12+00S} & 9+50E \\ \text{L12+00S} & L	0.3 0.1 0.4 0.3 <0.1	33 38 36 38 25	135 148 121 135 93	63 <0.1 70 <0.1 59 <0.1 55 <0.1 45 1.6	1383 1168 1289 1276 946	1022 532 906 412 365	7.3% 5.6% 4.51 4.46 2.45	
L12+00S 0+50E \$\times \text{L12+00S} 0+75E \$\times \text{L12+00S} 1+00E \$\times \text{L12+00S} 1+25E \$\times \text{L12+00S} 1+50E \$\times \text{L12+00S} 1+50E \$\text{L12+00S} 1+50E \$\text{L12+00S} \$\text{L12+00S} 1+50E \$\text{L12+0OS} \$\text{L12+0OS} 1+50E \$\text{L12+0OS}	0.6 0.8 1.6 3.0 2.8	51 45 30 40 34	559 261 646 185 299	76 1.2 86 0.6 78 1.2 95 0.4 79 1.7	1399 1865 1111	77 49 47 40 44	2.47 3.27 3.63 2.61 3.68	L14+00S 0+00BLS L14+00S 0+25E S L14+00S 0+50E S L14+00S 0+75E S L14+00S 1+00E S	1.2 1.6 0.7 0.8 0.3	37 61 39 26 36	613 294 816 1198 529	63 5.4 87 1.1 81 4.1 63 12.0 61 4.9	3370 1122 1563 1393 1074	221 44 106 338 100	2.03 3.15 2.91 3.82 2.60	
L12+00S 1+75E \$ L12+00S 2+00E \$ L12+00S 2+25E \$ L12+00S 2+50E \$ L12+00S 2+75E \$	0.9 0.8 3.9 1.3 0.6	36 31 43 35 32	237 239 494 540 223	74 1.3 64 1.8 98 3.7 78 1.7 60 1.7	1526 1591 1758	59 32 103 164 45	3.18 1.64 4.26 4.28 1.96	L14+00S 1+25E \$\frac{5}{5}\$ L14+00S 1+50E \$\frac{5}{5}\$ L14+00S 1+75E \$\frac{5}{5}\$ L14+00S 2+25E \$\frac{5}{5}\$	0.4 0.5 0.5 1.7 0.7	31 32 36 35 35	923 459 210 140 491	61 6.3 76 2.1 75 0.7 61 2.1 71 3.3	1232 1534 1374 1254 2214	157 82 78 31 131	2.91 2.43 3.20 1.40 2.37	
L12+00S 3+00E \$ L12+00S 3+25E \$ L12+00S 3+50E \$ L12+00S 3+75E \$ L12+00S 4+00E \$	1.5 1.1 0.9 1.0 1.0	25 50 30 40 35	493 309 284 328 2085	54 6.9 91 1.5 79 1.7 77 1.7 77 8.9	2060 1177	53 78 104 57 188	1.58 3.63 3.88 3.61 3.66	L14+00S 2+50E \$\ \text{L14+00S} 2+75E \$\ \text{S} \\ \text{L14+00S} 3+00E \$\ \text{S} \\ \text{L14+00S} 3+25E \$\ \text{L14+00S} 3+75E \$\ \text{S} \\	0.6 8.0 2.3 2.3 2.9	29 53 43 48 52	280 293 213 266 423	53 8.3 88 2.7 79 1.0 82 1.5 111 2.9	1370 1477 1851 2279 2156	40 33 74 127 168	1.66 2.90 2.95 4.43 3.90	
L12+00S 4+25E \$ L12+00S 4+50E \$ L12+00S 4+75E \$ L12+00S 5+00E \$	0.9 2.0 1.3 1.0	46 48 44 41	494 174 273 193	74 6.8 81 3.3 81 1.7 77 0.8	1310 1212	89 26 98 23	3.13 2.52 4.22 1.74	L14+50S 4+00E \$ L14+50S 4+25E \$ L14+50S 4+50E \$ L14+50S 4+75E \$	1.8 1.5 3.5 4.5	42 37 42 37	259 190 330 314	72 4.0 77 0.9 78 4.5 68 10.9	1378 1324 1130 873	47 98 134 83	2.51 2.51 2.25 2.53	

2 Min Limit 0.1 5 0.1 2 0.01 2 5 0.1 0.1 2 0.01 100.0 20000 20000 10000 10000.0 10000 10000 Max Reported* 5.00 100.0 20000 20000 10000 10000.0 10000 10000 5.00 Method ICPM --=No Test ins=Insufficient Sample S=Soil R=Rock C=Core L=Silt P=Pulp U=Undefined m=Estimate/1000 %=Estimate % Max=No Estimate International Plasma Lab Ltd. 2036 Columbia St. Vancouver BC VSY 3E1 Ph:604/879-7878 Fax:604/879-7898

2036 Columbia Vancouver, B.t Canada V5Y 3E1 Phone (604) 879-7848

Phone (604) 879-7878 Fax (604) 879-7898

Client: Inmet Mining Corporation Project: 687 252 Soil iPL: 9512102 M

Out: Sep 29, 1995 In: Sep 21, 1995 Page 5 of 7 [077614:48:5] 95]

Section 1 of 1 Certified BC Assaver: David Chiu

Project: 087	232 30						111. 3	ep 21, 1995 (07	/614:48:	21 321		Certifie	XI DC AS	sayer: L	lavid Chiu	ZA
Sample Name	Ag ppm	Pb	Zn ppm	As Cd ppm ppm	Ва	Mn ppm	Fe %	Sample Name	Ag ppm	Pb ppm	Zn ppm	As Cd ppm ppm	Ba ppm	Mn	Fe %	
L14+50S 5+00E \$ L14+50S 5+25E \$ L14+50S 5+50E \$	3.0 12.0 5.8	37 48 55	728 1491 259	97 9.4 97 24.4 99 2.8	1225 855 898	229 242 74	4.58 4.32 3.83	L60+00S 4+75H \$ L60+00S 5+00H \$ L62+00S 0+25H \$	1.5 3.0 6.1	26 32 43	176 224 241	66 0.6 69 0.3 83 0.3	1803 2124 2043	81 89 69	2.71 3.01 3.39	
L14+50S 5+75E \$ L14+50S 6+00E \$	5.0 3.7	41 47	3951 13691	83 69.9 92 200.6	705 924	2275 8652	3.87 6.7%	L62+00S 0+50W \$ L62+00S 0+75W \$	0.2	19 17	108 126	64 <0.1 49 <0.1	1717 1104	31 30	1.05 1.05	
L14+50S 6+25E \$\tilde{S}\$ L14+50S 6+50E \$\tilde{S}\$ L14+50S 6+75E \$\tilde{S}\$	2.8 1.5 0.8	40 34 38	821 1217 1320	78 16.6 61 37.2 64 114.9	1148 806 1148	422 156 2240	3.61 1.98 3.23	L62+00S 1+00W \$ L62+00S 1+25W \$ L62+00S 1+50W \$	0.3 1.6 0.6	46 29 36	236 2852 446	82 1.0 61 17.8 76 3.6	1553 1338	105 318	2.81 1.70	
L14+50S 7+00E \$ L14+50S 7+25E \$	1.2 2.7	38 37	786 1394	88 7.9 81 23.6	1504 1483	1023 1112	3.65 3.68	L62+00S 1+75H \$ L62+00S 2+00H \$	0.6 1.1	32 30	228 191	76 3,6 64 <0,1 61 0,7	2285 1633 1387	61 48 97	2.06 1.83 2.79	
L14+50S 7+50E \$ L14+50S 7+75E \$ L14+50S 8+00E \$	1.6 1.4 1.2	35 30 27	1306 634 632	80 17.0 63 21.9 49 34.1	1402 1381 822	345 762 523	3.04 2.88 2.47	L62+00S 2+25H \$ L62+00S 2+50H \$ L62+00S 2+75H \$	0.8 0.3 0.9	30 24 27	212 338 313	85 0.3 70 8.5 75 2.2	1534 2247	57 103	3.71 3.82	
L14+50S 8+25E \$ L14+50S 8+50E \$	0.8	37 35	600 549	60 8.4 61 13.7	1850 1476	908 634	4.88	L62+00S 3+00M \$ L62+00S 3+25M \$	0.4 0.7	29 33	261 292	67 0.9 76 0.4	1879 1827 3000	140 182 102	3.66 2.00 2.67	
L14+50S 8+75E \$ L14+50S 9+00E \$ L14+50S 9+25E \$	0.5 0.4 0.2	36 26 32	420 322 223	65 6,2 53 5,7 69 <0,1	1675 1321 2001	509 795 706	3.45 3.55 5.00	L62+00S 3+50H \$ L62+00S 3+75H \$ L62+00S 4+00H \$	0.7 <0.1 0.7	22 9 24	6321 2.9 % 8723	159 91.8 111 298.1 58 8.0	5610 480	1009 9366	9.4% 20%	
L14+50S 9+50E \$ L14+50S 9+75E \$	0.2 0.3	27 26	346 149	62 1.1 49 0.2	1007 1030	249 250	3.84 1.60	L62+00S 4+25M \$ L62+00S 4+50M \$	0.5 0.9	27 25	6758 1267	85 40.7 71 7.8	2394 1741 2214	4117 4705 331	3.91 4.40 2.71	
L14+50S 10+00E \$ L60+00S 0+25H \$ L60+00S 0+50H \$	0.2 0.8 0.9	29 35 23	173 387 9344	61 0.8 84 1.0 79 276.7	1319 2374 2715	433 48 2.0%	3.09 3.37 2.10	L62+00S 4+75H \$ L62+00S 5+00H \$ L70+00S 0+00BL\$	0.5 <0.1 0.8	18 25	2762 190	49 21, 1 46 1, 1	2012 1447	548 280	1.99 1.92	
L60+00S 0+75M \$ L60+00S 1+00M \$	0.6 0.5	30 32	684 1083	70 9.0 71 64.6	1835 2689	1169 2443	1.91	L70+00S 0+25M \$ L70+00S 0+50M \$	0.5 1.2	29 30 33	166 242 332	49 0.2 63 <0.1 70 1.3	1666 2507 2126	48 31 58	0.96 1.42 2.06	
L60+00S 1+25W \$ L60+00S 1+50W \$ L60+00S 1+75W \$	1.5 2.8 0.6	20 46 26	1346 254 139	70 71.9 80 0.9 57 <0.1	1912 2105 1313	5642 88 58	2.15 3.10 1.17	L70+00S 0+75H \$ L70+00S 1+00H \$ L70+00S 1+25H \$	0.4 0.6 1.0	19 25 31	141 172 336	55 <0.1 58 0.8 68 1.5	2266 2690	27 33	0.82 1.09	
L60+00S 2+00H \$ L60+00S 2+25H \$	1.6 0.5	43 36	277 395	73 <0.1 64 0.9	2083 1852	36 48	1.84	L70+00S 1+75M \$	0.7 1.5	29 22	194 409	62 <0.1 52 5.4	3766 2845 9921	101 46 1299	1.86 1.37 1.23	
L60+00S 2+50M \$ L60+00S 2+75M \$ L60+00S 3+00M \$	0.3 0.6 0.8	38 34 28	216 233 184	59 0.3 64 <0.1 56 <0.1	1488 2155	59 29	1.62 1.48	L70+00S 2+00W \$ L70+00S 2+25W \$	1.2	23 19	935 3793	56 5.8 76 42.4	1.0%		1.60 4.20	
L60+00S 3+25H \$ L60+00S 3+50H \$	1.6 0.4	31 20	214 200	56 <0.1 59 0.3 61 <0.1	2003 1651 1614	29 85 25	1.25 2.34 1.26	L70+00S 2+50W \$ L70+00S 2+75W \$ L70+00S 3+00W \$	1.1 2.6 1.2	26 26 25	843 1491 797	73 7.0 66 8.6 54 8.2	9150 8879 4342	190 127 224	1.94 1.86 1.75	
L60+00S 3+75N \$ L60+00S 4+00M \$ L60+00S 4+25N \$	0.5 0.6 0.4	36 36 36	295 196 253	74 0.5 62 1.2 63 <0.1	2076 1523	. 71 . 40	3.02 1.74	L70+00S 3+25W \$ L70+00S 3+50W \$	0.9 1.3	23 25	926 1041	48 10.8 68 6.3	419 5 8795	356 192	2.14 2.74	
L60+00S 4+25W \$	2.3	25 	244	63 <0.1 61 5.0	2128 1866	40 101	1.89 1.66	L70+00S 3+75M \$ L70+00S 4+00M \$	2.1 1.2	30 29	780 967	63 7.5 67 11.5	5129 1.0%	485 1690	2.28 2.28	

Min Limit 0.1 0.1 2 5 1 0.01 0.1 2 0.1 2 0.01 Max Reported* 100.0 20000 20000 10000 10000.0 10000 10000 5.00 100.0 20000 20000 10000 10000.0 10000 10000 5.00 Method ICPM ICPM ICPM ICPM ICPM ICPM ICPM **ICPM** ICPM ICPM ICPM ICPM ICPM ICPM ICPM ICPM ---=No Test ins=Insufficient Sample S=Soil R=Rock C=Core L=Silt P=Pulp U=Undefined m=Estimate/1000 % Estimate % Max=No Estimate

International Plasma Lab Ltd. 2036 Columbia St. Vancouver BC V5Y 3E1 Ph:604/879-7878 Fax:604/879-7898

CERTIFICATA F ANALYSIS iPL 95I2102

2036 Columbia Vancouver, B. Canada V5Y 3E1 Phone (604) 879-7878

Fax (604) 879 7898

Client: Inmet Mining Corporation

iPL: 95I2102 M

Out: Sep 29, 1995

Page 7 of 7 Section 1 of 1

Project: 687	252 Sc	ri1						In: S	ep 21, 1995	[077614:49:0] 95]				Certified BC Assayer: David Chiu						
Sample Name	Ag ppm	Pb ppm	Zn ppm	As ppm	Cd ppm	Ba. ppm	Mn ppm	Fe Z	Sample Name	Ag ppm	Pb ppm	Zn ppm	As ppm	Cd ppm	Ba ppm	Mn ppm	fe %			
L72+00S 0+00BLS	1.4	36	377	73	3.3	1.4%	203	2.00												
L72+00S 0+25W \$	1.4	25	300	53	1.9	B077	57	1.33												
L72+00S 0+50W \$	0.6	37	350		2.3	1.0%	174	2.32												
L72+00S 0+75H \$	0.7	29	322	58	1.5	1.0%	47	1.42	ļ											
L72+00S 1+00W \$	0.5	22	141	57	0.6	6632	34	0.88												
L72+00S 1+25H §	1.6	33	584	62	2.1	8967	124	2.12												
L72+00S 1+50W §	0.5	39	342	76	1.6 0.7	8751	89	2.83	ļ											
L72+00S 1+75W \$	0.3	29	222	71	0.7	5226	87	2.45	[
L72+00S 2+00W \$	0.3	29	187	61	1.8	5482	56	1.81												
L72+00S 2+25H §	0.7	31	208	68	1.4	5647	127	2.65	1											
L72+00S 2+50H \$	0.2	36	361	76	5.2 6.4	9771	545	3.85												
L72+00S 2+75H \$	0.7	28	420	68	6.4	1.7%	154	2.28												
L72+00S 3+00W \$	0.5	26	416	69	5.7	7771	223	2.52												
L72+00S 3+25H \$	0.6	27	843	59	8.4	9412	166	1.85												
L72+00S 4+25H \$	<0.1	40	284	63	2.8	1897	253	2.34												
L72+00S 4+50H \$	<0.1	42	314	71	2.9	2158	249	2.57												
L72+00S 4+75W \$	<0.1	37	253	55	2.9 3.0	1731	303	2.35												
L72+00S 5+00W \$	0.3	38	228	64	1.5	2119	169	2.35												
**				eg.cee	and the second															
									'											
									·											
									•											
									•											
								'												

APPENDIX "C"
STATEMENT OF QUALIFICATIONS

Statement of Qualifications

I, John D. Kapusta, do hereby certify that:

I am a resident of British Columbia, residing at 7260 Gilhurst Crescent, Richmond, V7A1N9.

I am a graduate of the University of Manitoba, 1981 with a B.Sc. Degree in Geology, and have practiced my profession on a full time basis since 1981.

I am a fully qualified geologist, registered as a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of the Province of British Columbia.

I have been employed by Inmet Mining Corporation as a full time employee

since 1988.

John Kapusta -- Project Geologist

KAPUSTA

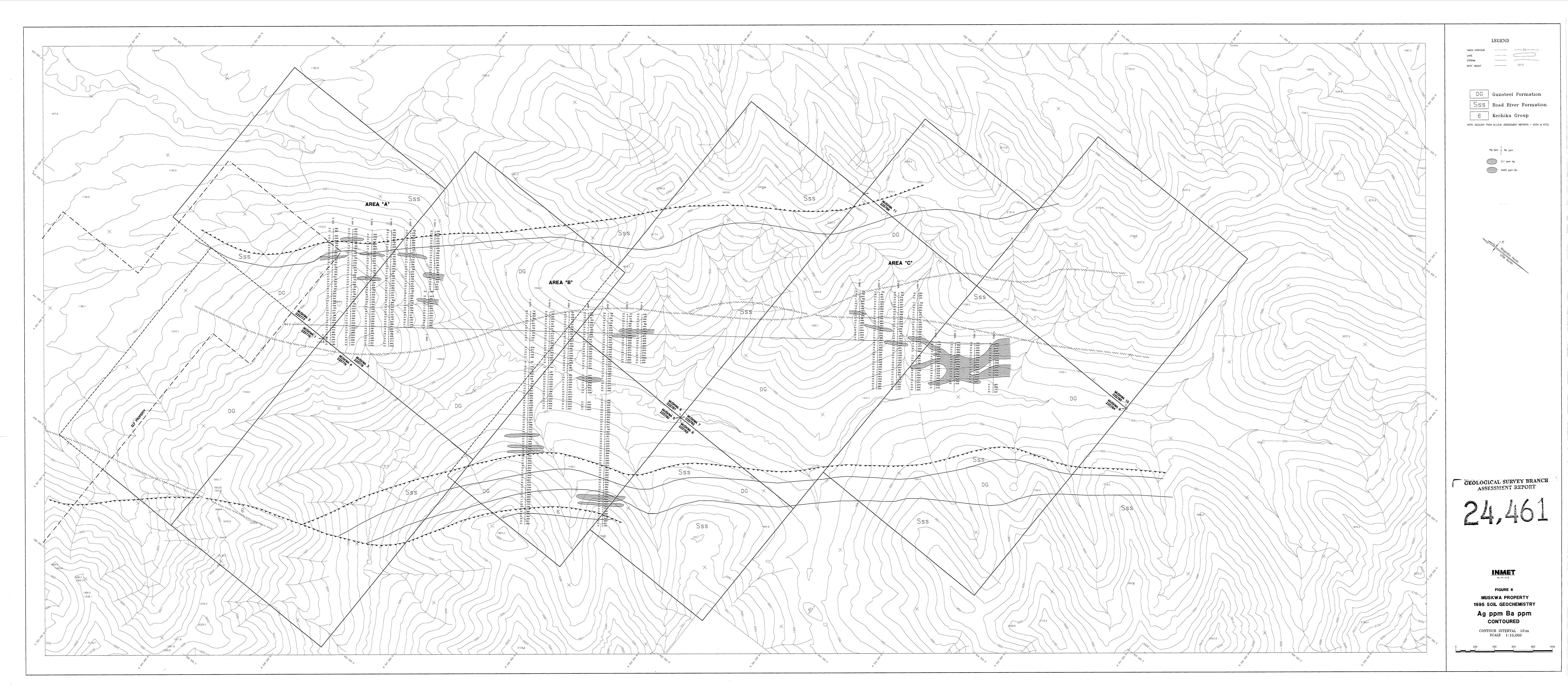
Inmet Mining Corporation

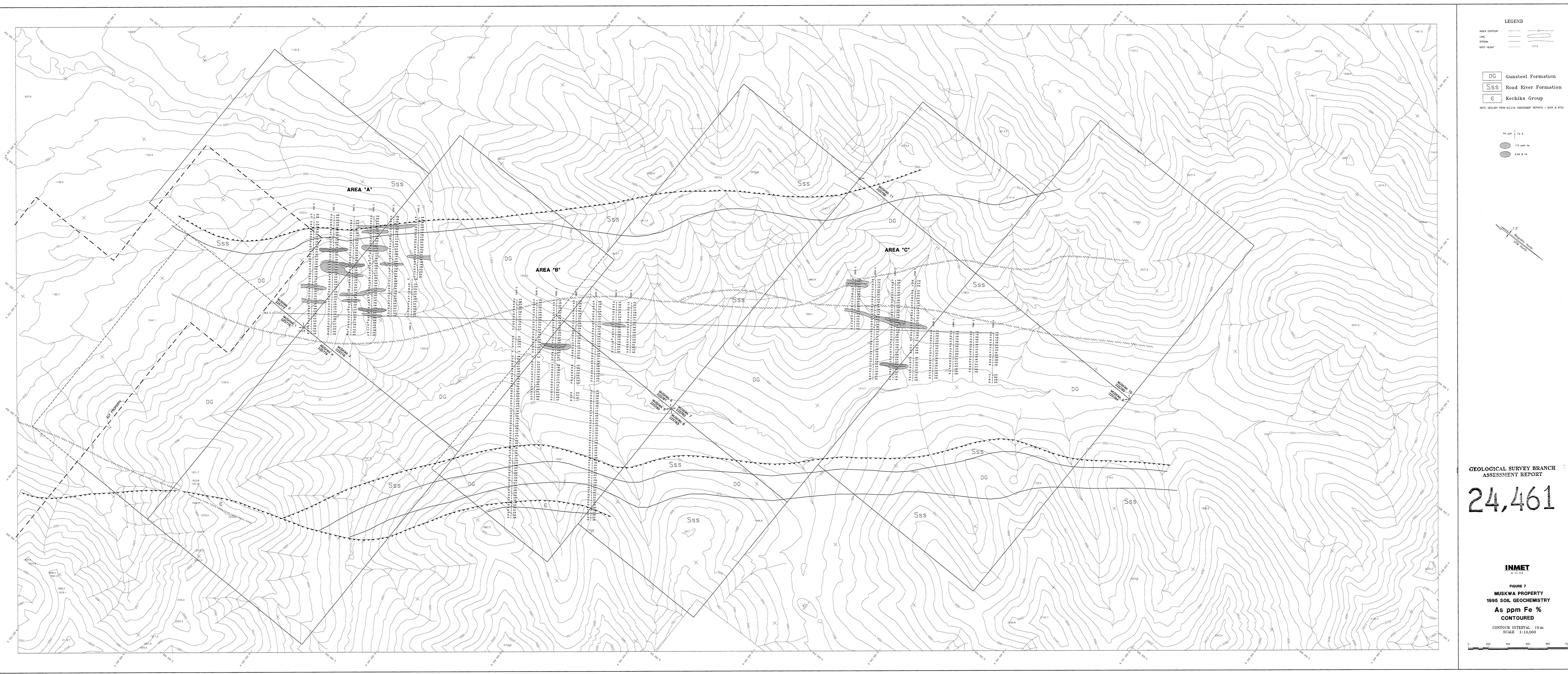
I, Paul Baxter certify that:

I hold a B.Sc. Degree, Honours Geology (1985) from the University of Alberta, Edmonton, Alberta.

I am a registered Professional Geologist with the Association of Professional Engineers, Geologists and Geophysicists of Alberta.

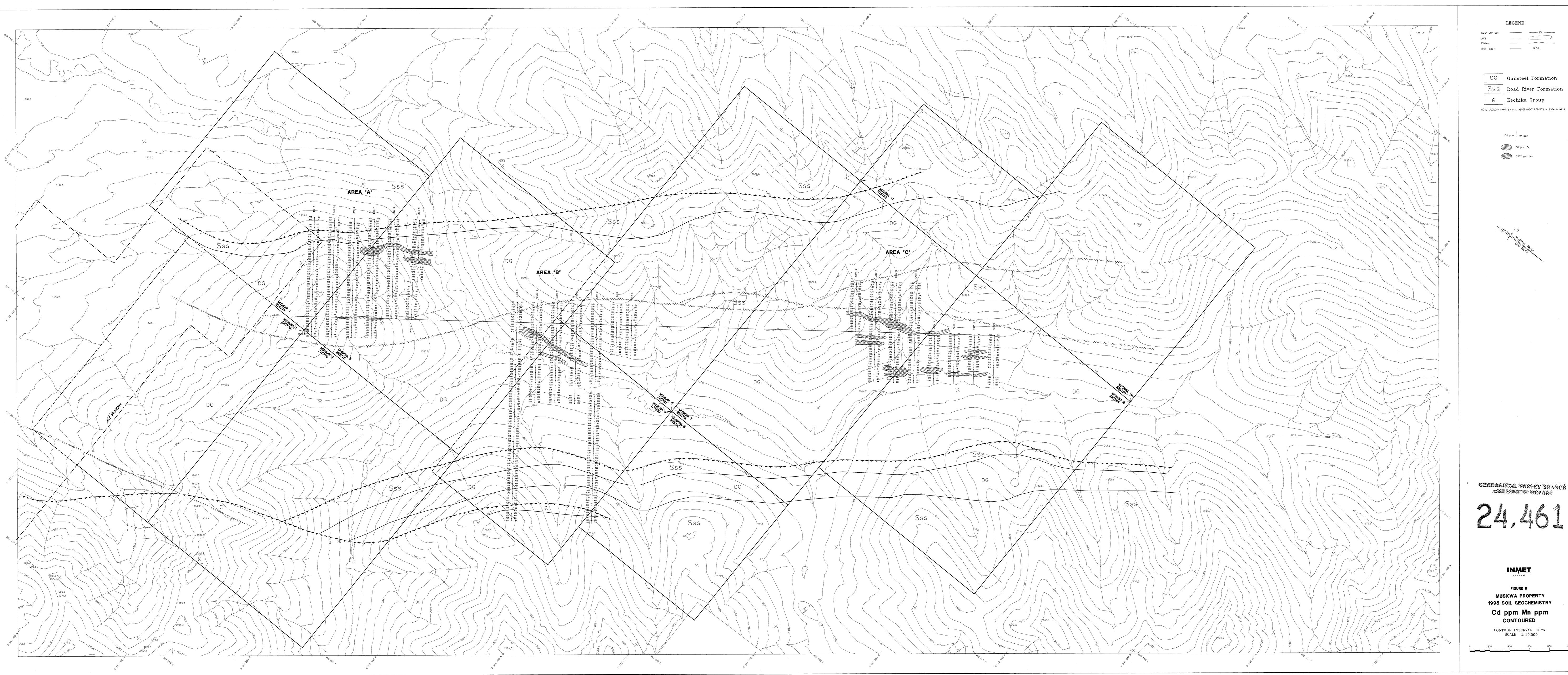

I have practiced my profession in exploration since 1986.


I have been a contract employee with Inmet Mining Corporation (Minnova Inc. And Metall Mining Corporation) since 1988 and a full-time employee since 1994.


Paul Baxter -- Project Geologist

Inmet Mining Corporation

APPENDIX "D"
STATEMENT OF WORK -- COPY



GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

As ppm Fe % CONTOURED

CONTOUR INTERVAL 10 m SCALE 1:10,000

E Kechika Group

Cd ppm Mn ppm

1512 ppm Mn

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

Cd ppm Mn ppm

CONTOUR INTERVAL 10 m SCALE 1:10,000