GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORTS

DATE RECEIVED

JUN 18 1996

GEOLOGICAL, GEOCHEMICAL AND GEOPHYSICAL REPORT

on the

CRANBERRY RIDGE PROPERTY

COMPRISING THE CRANBERRY RIDGE GROUP, AND DAD GROUP OF MINERAL CLAIMS

1.

BEAVERDELL AREA GREENWOOD MINING DIVISION, BRITISH COLUMBIA

> N.T.S. 82E/06 49⁰ 24' North latitude 119⁰ 06' West longitude

OWNER: ST. ELIAS MINES LTD. 604 - 700 WEST PENDER ST. VANCOUVER, B.C. V6C

OPERATOR: ST. ELIAS MINES LTD. 604 - 700 WEST PENDER ST. VANCOUVER, B.C. V6C 1G8

REPORT BY: LEONARD GAL M.SC. P. GEO. WHITE WOLF EXPLORATIONS LTD.

DATE: MAY 31, 1996

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

FILMED

TABLE OF CONTENTS

Page

Summary and Conclusions 1
Introduction 1
Location and Access
Physiography, Vegetation and Climate
Claim Information and Property Ownership
Property History and Previous Work
Regional Geology
CRANBERRY RIDGE Property Geology
Mineralization and Alteration 11
CRANBERRY RIDGE Property 11
Dad Claims
Gabe, W#1 Claims 11
Dad E Claim
Lori, Berry Claim 17
Geochemical Survey
Dad Grid 17
Gabe / W#1 Grid
Dad E Grid
Geophysical Surveys
Magnetometer Survey
Dad Grid 19
Gabe - W#1 Grid
Dad E Grid 19
VLF-EM Survey
Dad Grid
Gabe - W#1 Grid
Dad E Grid 20

TABLE OF CONTENTS continued

	Page
Recommendations	20
References	27
Certificate	28
Statement of Costs	29
APPENDICES	30
I. Rock Sample Descriptions	
II. Rock Sample Assay Results	
III. Soil Sample Assay Results	

LIST OF FIGURES

1	Property Location Map	2
2.	Claim Map and Grid Location	4
3.	Regional Geology Map	6
4.	Property Geology POCH	¢ЕТ
5	Dad Grid Geology and Sample Locations	8
6.	Gabe/W#1 Grid Geology and Sample Locations	9
7.	Dad E Grid Geology and Sample Locations	. 10
8	Dad Claim: Mine Workings and Sample Locations	. 13
9.	W#1 Claim: Mine Workings and Compilation Map	. 14
10.	Dad E Claim: T-1 Trench	. 15
11.	Lori Claim - Goldbug Showing	. 16
12 - 15.	Dad Grid Soil Geochemical Maps: Cu, Pb, Zn, As, POCH	ζET
16 - 20.	Gabe/W#1 Grid: Soil Geochemical Maps: Cu, Pb, Zn, As, Ag POCH	¢ΕΤ
21 - 25.	Dad E Grid: Soil Geochemical Maps: Cu, Pb, Zn, As, Ag POCH	ζET
26 - 28	Total Field Magnetic Data (Dad, Gabe, Dad E Grids) POCH	¢ЕТ
29 - 31	VLF-EM Uncorrected Dip AngleData (Dad, Gabe, Dad E Grids) POCH	¢ЕТ
32 - 34.	Total Field Magnetic Contour Maps 2	1-23
35 - 37.	VLF-EM Fraser - Filtered Profiles	4-2 6

SUMMARY AND CONCLUSIONS

The CRANBERRY RIDGE Property comprises the 100 units Cranberry Ridge Group of 11 claims and the 43 unit Dad Group of 10 claims, in the historic Beaverdell Camp of southern B.C. The property covers ground prospective for vein hosted precious metal deposits, based on known occurences on the property and geological comparisons with the nearby Highland Bell Silver Mine. Several showings are present on the property, including two old mines and many older trenches, pits and adits that uncover mineralized veins. At least 435m of underground workings have been developed on mineralized quartz veins. Some very high gold and silver grades have been obtained from samples on the property, including 165g/t (5.83 oz/T) Au and 825g/t (29 oz/T) Ag over 30cm from the "T-1" trench and 272g/t (9.59 oz/T) Ag from the Dollar (Inyo-Ashworth) Mine. Past work in the area dates to the turn of the century. Since 1975, when high grade gold was discovered in the T-1 trench in the Logan Creek area, a number of operators have conducted geochemical soil sampling and geophysical surveys over the area. Although these surveys were successful in delineating "target areas", only minor shallow drilling was completed.

The geology of the property consists mainly of Middle Jurassic Nelson granodiorite. The intrusive is cut by a number of quartz and lesser carbonate veins with strongly chlorite-carbonate-clay - silica altered envelopes. The general trend of the veins is E - W. The host rock lithologies, vein structure, alteration and mineralization on the CRANBERRY RIDGE Property is similar in character to that found at the Highland Bell Mine.

INTRODUCTION

From August 28 to November 15 1995, a crew of 2 to 4 persons employed by White Wolf Explorations Ltd., carried out an exploration program on the Cranberry Ridge Group of claims on behalf of St. Elias Mines Ltd., the optionee of the property. This exploration program consisted of the establishment of grids on the Dad, Gabe / W 1 claims and the Dad E claim, for a total of 43.85 line kilometres. These grids were to reestablish control for mapping, soil sampling and magnetic and VLF-EM surveys. Grid locations are shown on Figure 2. Grid lines were established at 100m intervals orthogonal to a baseline. The lines were surveyed with a Silva compass and hip-chain, and stations flagged at 25m intervals. The grids were used as a base for detailed outcrop mapping at 1:10,000 scale. All trenches, adits and other workings were tied into the grid with hip-chain and compass. All showings found in the course of mapping were sampled.

A total of 1295 soil samples were collected on three grids, and outcrop mapping was also done in these areas. A total of 94 rock samples were collected from the property. Total field magnetic and VLF-EM surveys were also performed on the gridded areas.

LOCATION AND ACCESS

The CRANBERRY RIDGE Property is located 290 kilometers east of Vancouver, near Beaverdell on the West Kettle River (Figure 1). The property is in the Greenwood Mining Division, and is centered at approximately $49^{\circ}24$ 'N latitude and $119^{\circ}06$ ' W. longitude on NTS Map Sheet 82 E/6E. Beaverdell lies on Highway 33; Kelowna and the junction with Highway 97 lies 80 km to the north, while Rock Creek and the junction of Highways 3 and 33 is 45 km to the south. A network of secondary roads and logging roads access the parts of the property along Logan Creek, Tuzo Creek, and Cranberry Ridge.

PHYSIOGRAPHY, VEGETATION AND CLIMATE

The property is situated within the Monashee Mountains of the Southern Interior Physiographic Region, and elevations range from 760 meters along the West Kettle River to over 1,300 meters, along the crest of Cranberry Ridge. Slopes are moderate. Vegetation consists mainly of fir, larch and pine, much of it mature second growth. Some of the area has been recently logged or burned over. There is relatively little underbrush, and open grassy areas are not uncommon. Outcrops are fairly sparse except locally on

the east flanks of ridges, where small bluffs with talus aprons occur. The climate features warm summers and mild winters. The West Kettle Valley is fairly dry in the summers, although not as dry as the Okanangan valley to the west. Average yearly precipitation is 50cm. A snow pack of 1 to 1.5 meters begins to accumulate in November and lingers in places into May.

CLAIM INFORMATION AND PROPERTY OWNERSHIP

The CRANBERRY RIDGE Property, located in the Greenwood Mining Division is composed of the Cranberry Ridge Group (11 Mineral Claims totaling 100 units) and the Dad Group (10 Mineral Claims totalling 43 units) and the 20 unit One Gun claim. The claims are owned by St. Elias Mines Ltd., optioned from Madman Mining Co. Ltd. under terms which are beyond the scope of this report. Further claim information is presented in the Table below. Claims are shown on Figure 2.

CLAIM NAME	CLAIM TYPE	TENURE NUMBER	NUMBER OF UNITS	Anniversary Date *
Dad E	4-post	337008	18	June 19, 1996
Dad S	4-post	337009	9	June 22, 1996
Gabe	4-post	337010	14	June 23, 1996
Lori	4-post	338912	16	Aug. 4, 1996
Berry	4-post	338909	20	Aug. 6, 1996
Eddy	4-post	338911	18	Aug. 8, 1996
Sackett #1	2-post	338904	1	Aug. 12, 1996
Sackett #2	2-post	338905	1	Aug. 12, 1996
Sackett #3	2-post	338906	1	Aug. 12, 1996
Sackett #4	2-post	338907	1	Aug. 12, 1996
W #1	4-post	214181	1	July 27, 1996
Total Number Claim U	nits		100	

CRANBERRY RIDGE GROUP

DAD GROUP

Claim Name	CLAIM TYPE	TENURE NUMBER	NUMBER OF UNITS	Anniversary Date *
Dad	4-post	336989	20	June 19, 1996
Ducky	4-post	338910	15	June 22, 1996
Bat 1	2-post	342137	1	June 23, 1996
Bat 2	2-post	342138	1	Aug. 4, 1996
Bat 3	2-post	342139	1	Aug. 6, 1996
Bat 4	2-post	342140	1	Aug. 8, 1996
Bat 5	2-post	342141	1	Aug. 12, 1996
Bat 6	2-post	342142	1	Aug. 12, 1996
Bat 7	2-post	342143	1	Aug. 12, 1996
Bat 8	2-post	342144	1	Aug. 12, 1996
Total Number Claim	Units		43	

* Upon acceptance of this report for assessment purposes

PROPERTY HISTORY AND PREVIOUS WORK

The CRANBERRY RIDGE Property is located within the historic Beaverdell Mining Camp. Exploration dates to the late 1880's, with the discovery of silver on Wallace Mountain in 1897, and production of silver from as early as 1901. The Highland Bell Mine silver mine was in continuous production from 1913 to 1989. At closure in 1989, the mine had produced a total of over 46 million oz. Ag, 25 million lbs. Pb and 30 million lbs. Zn, with minor Cd, Cu and Au.

The CRANBERRY RIDGE Property, has seen sporadic exploration activity since the turn of the century. In the 1920's the Inyo-Ashworth (Dollar) and neighbouring Lucky Boy and Carmi mines were undergoing development. Work continued into the 1930s and then waned, as more exploration and effort were focused in the Wallace Mountain area, particularly the Highland Bell Mine and neighbouring smaller mines which by that time had achieved regular production. In the late 1960's and early 1970's, various operators were active in the area, notably Husky Oil which undertook a large scale reconnaissance program in the Carmi area. In 1975 a high grade gold showing was discovered in the area north of Logan Creek on Cranberry Ridge, which touched off renewed interest in the area. Through the 1980's various operators have held ground on Cranberry Ridge and in the Dad/Ducky claims area, undertaking work programs that generally included soil geochemical surveys, VLF-EM and magnetic geophysical survey and geological mapping and sampling. Short diamond drill holes have been collared on the W#1, Dad E and Lori/Berry claims at various times from the 1960's to the 1980's.

REGIONAL GEOLOGY

The area is within the Omineca Crystalline Belt, a NW trending belt dominated by plutonic and high grade metamorphic rocks. Regional geology is presented in Figure 3, simplified from G.S.C. Maps 6-1957 and 15-1961 by Little and 1736-A by Templeman-Kluit.

The Beaverdell area is underlain principally by middle Jurassic Nelson plutonics. The lithologies are dominantly quartz diorite, monzonite and granodiorite. Quartz may range from trace to 20% by volume.

Both potassic and plagioclase feldspars are present, while mafic minerals include hornblende and biotite in varying amounts. Feldspar and/or amphibole may occur as coarse grained crystals, but the rock is generally equigranular and moderately foliated. In the Beaverdell area this foliation generally trends E-W to SSE-NNW.

The Nelson Plutonics intrude greenstones, amphibolites, mafic schists, meta-wackes and lesser limestone of the Carboniferous and older Anarchist Group. This sedimentary and volcanic package occurs as isolated rafts or roof pendants surrounded by the younger intrusive.

The Valhalla intrusions (granite and granodiorite) of Jurassic-Cretaceous age are distinguished from the Nelson Plutonics by their porphyritic nature and general lack of foliation. The contacts between the units are locally gradational, although clearly crosscutting relationships have been observed as well. The regional-scale Okanagan Batholith surrounds the Nelson plutonics in the Beaverdell area and is considered to be equivalent in age to the Valhalla intrusives.

The Coryell Group are Eocene porphyritic felsic intrusions that occur throughout south central B.C. They include the Beaverdell Stock which outcrops on the West Kettle River valley bottom just south of the Beaverdell townsite, as well as numerous plugs and dykes on Cranberry Ridge. The Coryell syenites are likely coeval with the Eocene Marron Group of felsic to intermediate volcanic rocks. These trachytes, andesites and lesser tuff and shale interbeds outcrop in erosional remnants on Cranberry Ridge and in fault bounded outliers throughout the Okanagan region.

Fine grained mafic dykes are the youngest intrusive rocks in the area, and are related to regionally significant Miocene plateau basalts. A 24m wide dyke occurs on the south end of Cranberry Ridge, but most of the dykes are generally smaller.

CRANBERRY RIDGE PROPERTY GEOLOGY

Outcrop mapping at a scale of 1:10 000 was carried out on three grids established on the property (Figure 3). In addition, outcrops were mapped along roads and traverses on claim lines. Outcrops are quite scarce on much of the property, even on the moderate slopes.

On the Dad grid (Figure 5), the dominant lithology is granodiorite. A moderately banded gneiss outcrops on the NE part of the Dad claim, above Beaverdell Creek. It is likely of an igneous protolith and may represent a sheared margin of the pluton. The foliation strikes N-S with a moderate west dip. Outcrops of Anarchist Group slates occur further north and east of the grid area.

On the Gabe/W#1 grid (Figure 6) are sparse outcrops of variably altered granodiorite.

The Dad E grid (Figure 7) is also underlain largely by granodiorite. A northwest trending dyke of potassium feldspar porphyry granite occurs on the south central portion of the grid, probably equivalent to the Coryell Group. Numerous fine grained mafic dykes of probable Miocene age intrude the granodiorite, particularly north of Logan Creek near the T-1 and T-3 trenches. The strike of these dykes is NE to SE. Additional dykes occur on the northeast part of the Dad claim, and on the south end of Cranberry Ridge above Tuzo Creek.

Additional outcrops of granodiorite and feldspar porphyry occur on Tuzo and Eugene Creeks. On the west half of the Dad S claim are outcrops of a buff weathering feldspar crystal tuff or possibly a fine grained rhyodacite, belonging to the Eocene Marron Group. The contact with the intrusive rocks strikes NNE across the Tuzo Creek valley, apparently not offset by the fault thought to exist in the valley.

Smith (1975) documented three prominent fracture sets in the Nelson plutonics of Cranberry Ridge. The strike and dip of these are (on average): 040/sub-vertical, 110/N, and 350/50-60W. The first two orientations are likely related to NE and E trending mineralized quartz veins that occur throughout the area. Most vein attitudes measured during the current study strike E to NE with moderate to steep dips both north and south. Vein attitudes at the Dad adit (Figure 8) tend to strike more northerly, often with shallow dips.

DAD N 0 O ۱1 DAD AD Ó see/figure 21/for sample locations 1 Ó Ò Beaverde 1 600 m 400 100 200 300 LEGEND SCALE [1] Granodiorite (Mid Jurassic NELSON PLUTONICS) locally gneissose Mafic dyke (Miocene) ST. ELIAS MINES LTD. 2 Potassium Feldspar Porphyry (Eocene CORYELL SYENITE) 3 Feldspar crystal tuff, trachyte (Eocene MARRON GROUP) **CRANBERRY RIDGE PROPERTY** 4 Slates, volcanics (Carboniferous and older ANARCHIST GROUP) Greenwood M. D. N.T.S. 82 E/06E Geological contact 50 Vein Outcrop DAD GRID \frown 3 Open cut Adit Shaft **GEOLOGY &** ==== Road Trench O Cabin Sample location T∎H SAMPLE LOCATIONS Claim line Marsh

Figure 5

December 1995

and the second state of the se

. .

MINERALIZATION and ALTERATION

CRANBERRY RIDGE PROPERTY

Several pits trenches, adits and other workings on the property expose widespread zones of base and precious metal mineralization. Mineralization is almost totally restricted to the granodiorites, and occurs as vein or shear hosted sulphides with enveloping altered granodiorite in relatively thin limonitic and bleached fracture or shear zones. Vein gangue is generally quartz, with lesser carbonate and chlorite. Generally pyrite is the most common sulphide, with sphalerite, galena and chalcopyrite in varying amounts. Banded sulphide - quartz textures are fairly common. Brecciation of the host granodiorite is locally observed, as is enveloping fault gouge. The wall rocks adjacent to the veins are generally oxidized (rusty), often bleached and silicified with chloritic and clay alteration. Carbonate, epidote, and hematite were also observed as alteration products within and adjacent to veins. Individual veins range from hairline stringers to 30-40cm, and up to 2m at the extreme. Individual veins often pinch and swell, and may both occupy fault gouge zones or be offset by later structures. Quartz veins measured at showings throughout the property strike mainly from NE to E, with variably north or south dips.

A summary of the main showings follows, grouped according to the claim on which they occur:

DAD CLAIM

The DAD claims cover the ridge between Beaverdell Creek and the West Kettle River north of Beaverdell. On the west side of this ridge at 3450 feet elevation, an old adit is found that leads to some 305m (1000') of underground workings (Figure 8). A short 6m adit was driven 400m to the south of the Dad adit. From the size of the dump at the main adit, it is likely that some ore was shipped from this mine, although no mention is made of this property in an early (Reinecke, 1915) report on the Beaverdell Camp (Kallock and Goldsmith, 1980). The adit is cut into variably chloritized medium grained granodiorite, with some areas of potassium feldspar alteration. The westernmost 23m (75 feet) of the adit (nearest the portal) cuts across strongly sheared, faulted and altered granodiorite with several sulphide bearing quartz veins. The mineralized veins have an average orientation of 308/42N. The largest vein near the portal is up to 45cm wide and is followed for 11m along a crosscut. Many of the veins pinch and swell along strike or are cut by post-mineral shears. Vein mineralization tends to show banded textures and comprises pyrite, galena sphalerite chalcopyrite and traces of bornite. Grabs from the main dump have assayed up to 28.4g/t (1oz/T) Ag and 56.7g/t (2oz/T) Au.

Soil geochemical and VLF-EM surveys have been done over the area, outlining some anomalous zones. Minor smaller showings have also been found on the property with up to 23.8 g/t (0.84 oz/T) Ag. In the current program, samples BDRL-17 and BDRL-19 from quartz veins in the adit yielded 33.8 g/t Au (1.19 oz/T) and 51.4g/t Au (1.81oz/T) respectively.

GABE, W#1 CLAIMS

The W#1 claim covers the workings of the old Dollar (Inyo-Ashworth) mine (Figure 9). The workings consist of 2 adits (one is 90m long), a collapsed shaft (originally 43m deep with crosscuts at the 23m and 41m levels), and numerous pits and trenches. In 1919, the Inyo-Ackworth property became the leading prospect on Cranberry Ridge when gold was found in quartz veins. Assay values of 17g/T (0.6oz/t) Au and 272g/T (10oz/t) Ag from grab samples have been recorded. In 1925, 14 tons of ore was shipped to the Trail smelter. Total production from 1918 to 1927 was 1171kg Zn, 1158kg Pb, 3639kg Ag and 62g Au (E. Dickson, pers. comm. 1995). The mineralization occurs in quartz veins up to 45cm wide within a rusty, fractured and chlorite altered shear, 1-2m wide, which dips vertically and runs nearly E-W across the property. Surface and underground workings outline the shear for 300m strike length. The shear zone has been outlined and extended by geochemical and VLF-EM methods. In addition VLF surveys have delineated 2 parallel anomalies. In 1966, 3 short diamond drill holes (totaling 100m) tested part of

the structure, although results are unknown. In the current program, a sample from the north end of the long trench assayed 2.2g/t (0.076oz/T) Au and 103ppm Ag.

DAD E CLAIM

The DAD E claim covers trenches where high grade gold has been documented, along with several short adits and prospecting pits. The T-1 trench is 70m long, cut into granodiorite and several mafic dykes that are oriented E-W and cut the granodiorite (Figure 10). Mineralization occurs along the contact of the two rocks, as well as in several parallel trending quartz veins in shears and fracture zones. Disseminated sulphides occur within both the granodiorite and the mafic dykes, and malachite and limonite staining is common in the adjacent fractured granodiorite. A sample taken in 1975 from this trench assayed a remarkable 165g/t (5.83 oz/T) Au and 825g/t (29.1oz/T) Ag with 1.57% Cu over 30cm (12") (Smith, 1975; Kim , 1981). Subsequent resampling confirmed the high grade gold and silver. Gold values were obtained from sulphide bearing quartz veins (73.7g/t (2.6 oz/T) over 0.9m), altered granodiorite (23g/t (0.82 oz/T) and apparently unaltered granodiorite (2.3g/t (.08 oz/T)) (Sookochoff, 1990). The vein system is oriented at 120/60-70S with vein widths ranging from 5-91cm (2-36"), in chloritic sheared granodiorite, and on the mafic dyke contacts. Sulphide assemblages include pyrite with lesser chalcopyrite, bornite and traces of sphalerite and galena. Visible gold has been observed (Smith, 1975). Unfortunately, the trench is currently heavily slumped and partly covered.

The T-2 and T-3 trenches to the west also expose slightly altered granodiorite and an E-W trending mafic dyke. In the T-2 trench, two thin quartz veins occur in a rusty, malachite-bearing shear subparallel to the trench walls at 050/60W. A thin quartz vein (orientation 042/70S) occurs in the south part of the T-3 trench, and disseminated sulphides are present in the granodiorite as well as the mafic dyke at the north end of the trench. A sample across 30m (100') of the T3 trench yielded 1.2g/t (0.043 oz/T) Au (Smith, 1975).

Further workings in the area include 2 flooded adits 600m north of the trenches (the Cabin adits) and a series of three short adits and trenches approximately 500m south of the T1-T3 trenches. In the Cabin adits north of the T1-3 trenches, west striking quartz veins with coarse pyrite are followed. The host granodiorite is highly fractured, bleached and oxidized.

Since 1975, various operators have conducted soil geochemical surveys, magnetic and VLF-EM surveys, trenching prospecting and mapping. Several diamond drill holes totaling 2186 feet were completed for Apollo Developments in the area in 1991 (News Release quoted in Vancouver Stockwatch, June 5, 1991). DDH 91-1 intersected "a 14m sulphide zone, of which a 1.8m section assayed 960 ppb Au and 15.5 ppb Ag". A second hole (DDH 91-2) "returned a section of 5.12 oz/ton over an intersected length of 1.5m". Whether the preceding assay refers to gold or silver is not known. Zone B was apparently the area of the T-1 trench. Here, "A 2.6m wide zone was intersected which returned a weighted average grade of 0.066 oz/ton Au and 0.15 oz/ton Ag. The zone included 2cm sulphide bearing quartz veins which assayed 1.31 oz/ton Au and 0.34 oz/ton Au". A brief inspection of some of the drill core left on site reveals that weakly altered granodiorite was sampled with some thin quartz veins and sulphide zones.

The previously known showings were all outlined by soil geochemical sampling, and several new geochemical anomalies were discovered. VLF-EM surveys have variously outlined E-W and NW trending anomalies, depending upon grid orientation and transmitting signal location and frequency. Quartz veins of both orientations were observed in outcrop, although the NW trending veins observed on surface were largely barren.

Samples taken during this program from the now heavily slumped and covered T-1 trench include 0.8g/t (0.028oz/T) Au (T1-D). A grab sample from near the portal of the northernmost of the two Cabin adits yielded 8.28g/t (0.292 oz/T) Au and 45.6ppm Ag, which is higher than any previous reported grades from these workings.

LORI, BERRY CLAIMS

The Lori and Berry claims cover several former Crown Grants and includes the Goldbug and Boston showings. At the Goldbug showings above Tuzo Creek (Figure 11), a 22m adit strikes E and exposes a quartz vein at the end of the adit with abundant magnetite, pyrite and galena. The granodiorite wall rock is hornblende porphyritic and weakly altered with some epidote and chlorite. A short distance uphill are a series of test pits. These expose rusty granodiorite, variably fractured with some thin quartz veins and gouge zones. The veins contain pyrite and minor galena, while the surrounding granodiorite has sparsely disseminated pyrite.

On the current Lori claim, 4 short diamond drill holes were completed in 1984 (Crowe, 1985). The deepest of these reached only 16m (52.5'), and some of the holes intersected variably chloritized and silicified horizons within the granodiorite. One assay from chlorite-epidote altered monzonite with disseminated pyrite and magnetite yielded 164 g/t (5.8 oz/T) Ag, 1.5% Pb and 0.5% Zn.

The Boston showing is on the Berry Claim about 5km up the Tuzo Creek Road, approximately 30m northeast off the road. A caved adit was driven on a 2m (7') thick bull quartz vein oriented at 084/60S. The adjacent granodiorite is quite rusty and altered, and seems to carry more sulphides than the vein. A small pit just above the adit exposes the granodiorite, and a much thinned quartz vein. Gold and base metal values were low, up to 15 ppb Au, 11.4 ppm Ag and 2908 ppm Zn.

GEOCHEMICAL SURVEY

A total of 1295 soil samples were collected at 25m station intervals from the three grids. Additional samples were taken along reconnaissance lines on the Lori claim. A layer of volcanic ash a few cm thick was often encountered near the top of the B horizon, and may have had a dampening effect on the geochemical signature of the soils, i.e. leading to lower than normal values. Although soil geochemical values seem low due to the effect of ash, anomalous areas are still apparent. Soil geochemistry plotted for Cu, Zn, Pb, As, and Ag are presented in Figures 12-25. The mean maximum and standard deviations for the soil assay data are presented below:

ELEMENT	MINIMUM	MAXIMUM	MEAN	STD. DEVIATION
Au	2.5 ppb	1971 ppb	9.2 ppb	60.84
Ag	0.1 ppm	33.3 ppm	0.22 ppm	0.958
As	2.5 ppm	117 ppm	10.1 ppm	6.94
Cu	0.5 ppm	486 ppm	22.1 ppm	19.59
Pb	1.0 ppm	2943 ppm	19.7 ppm	83.76 -
Zn	0.5 ppm	1804 ppm	106.0 ppm	85.43

DAD GRID

The higher copper values are concentrated mainly on the west side of the grid. Elongate E-W anomalies occur over the Dad adit (especially downslope) and 250m north, perhaps indicating parallel structures. An interesting copper high occurs on L1300E, between 1850N and 2000N at the western margin of the grid. This series of high copper values (>80 ppm, to a maximum of 109 ppm) should be ground checked, although the slope is likely talus covered.

The strongest Zn anomalies occur over the Dad adit (269 ppm maximum) and the smaller adit to the south, and also downslope from the Dad adit. There seems to be a slight E-W elongation of two anomalies North of the Dad adit, perhaps indicative of a mineralized structure. The Pb geochemistry is very spotty (62 ppm maximum at Dad adit), although there is an interesting anomaly 200m east and

upslope of the smaller adit south of the Dad adit. It is likely that the lead background level is lower on this grid, as the 15 ppm contour (not shown) do show fair agreement with zinc.

Weak arsenic anomalies occur south of the Dad adit, and in the SW corner of the grid. The maximum value is only 20 ppm.

Silver and gold values are weak and very spotty with a maximum of 3.7 ppm and 71 ppb respectively.

GABE/W#1 GRID

Copper values are fairly erratic overall, with a maximum of 118 ppm at the Dollar Mine workings. Anomalies occur northeast of the Dollar Mine at the north end of line 1300E, and at 2700E, 8300N.

Lead and zinc values on this grid are noticeably higher than the others. In addition to the Dollar Mine area, there are three main anomalous areas: the NW corner of the grid (L600E-700E), just NW of the Dollar Mine, and at approximately 7700+50N on lines 700E and 800E. Elevated lead values are in good agreement with zinc, and the east side of the grid (lines 1100E-1400E) is generally >20 ppm Pb. A large Pb anomaly occurs south of the Dollar Mine on line 1200E.

In contrast to Pb, the As values seem higher on the west side of the grid. A significant anomaly on lines 700E and 800E between 8100N and 8300N partly corresponds with elevated Cu.

Although a peak silver value of 33.3 ppm occurs at the Dollar Mine, the general trend of the zone is not well outlined by Ag. This is in contrast to past biogeochemical studies (Morrison, 1990) (Figure 9). Anomalies do exist at the north end of lines 700E-900E, and just south of the Dollar Mine workings on line 100E. Gold soil geochemistry does show elevated values around the Dollar Mine workings (maximum 1971 ppb Au). Further Au soil anomalies occur at lines 600E-800E between 8200N-8400N, lines 700E-800E at 7800N, 1100E-1200E at 7900N, and 1400E at 7600+50N.

Generally, there are two main areas of multi element anomalies. The first is in the vicinity of the Dollar Mine workings, to the south and downslope to the east, probably at least partly due to dispersion from the main zone. The second area is northwest of the Dollar Mine, near the W#1/One Gun claim boundary, upslope from the Dollar Mine. This area merits further investigation.

DAD E GRID

Copper anomalies occur on the east end of lines 2500N-2800N, the west end of lines 1800N-2000N, and just south of the Cabin adits. The other showings on the grid lack strong Cu anomalies, although a maximum of 486 ppm Cu was obtained near the T-1 trench.

Lead and zinc anomalies show a general agreement although Zn is more widespread. The Cabin adits showing and group of 3 adits 500m south of the T-1 trench have good geochemical lead signatures with maxima of 106 ppm and 104 ppm Pb respectively. The anomalies at the T-1 trench are very localized, however. A strong zinc anomaly occurs along the east side of the grid, to a maximum of 509 ppm, particularly between the Cabin adits and T-1 trench. This is likely due to downslope creep and dispersion from showings uphill to the west. Further Zn anomalies are present on the west end of line 3100N, 300m NW of the T-1 trench on line 2800N, and on L1800N.

The silver anomalies occur just downslope from the T-1 trench (to 3.4 ppm) and in the area SE of the three adits 500m to the south of the T-1 trench. The latter anomalies are coincident with Cu.

Some larger arsenic anomalies occur along lines 3000N-3200N, to a maximum of 25 ppm As, and include the Cabin adits. At the east end of lines 2700N and 2800N are anomalies coincident with Cu. In general the anomalous areas are restricted to the north part of the grid.

GEOPHYSICAL SURVEY

The established grids were used to conduct total field magnetics and VLF-EM surveys over the area. The VLF-EM survey was performed with a Geonics Ltd. EM-16 instrument, using Seattle as the transmitting frequency. The uncorrected dip angle data is presented in Figures 41-43. The data was Fraser filtered and dip angle profiles were plotted over the corresponding grids (Figure 47-49). Unfortunately, in the case of the Dad E grid, survey lines were oriented E-W, thus making it difficult to delineate E-W structures in the area. Total field magnetics were measured with a Scintrex ENVI-MAG proton magnetometer. Total field measurements are presented in Figures 38-40. A dedicated base station was established to take continuous readings over the day to correct for diurnal variation. The raw data was processed into plottable contoured form by T. Hasek, P.Eng. Contoured magnetic plots are shown on Figures 44 - 46.

MAGNETOMETER SURVEYS

DAD GRID

The total field magnetic data is presented in Figure 44. The magnetic relief is on the order of 400-500 Nt (gammas). The strong gradient between lines 1400E and 1300E is likely due to technical problems and not considered reflective of geology. In general, the southeastern quadrant of the grid has somewhat higher magnetics than the balance of the area, and relative lows occur on the northeast and northwest corners. A very strong magnetic low occurs at 1500N between 1300E and 1400E. This anomaly is also apparent from the vertical gradient data. It's significance and geologic validity are not known.

GABE-W#1 GRID

The total field magnetic data are presented in Figure 45. The total field data are limited in range, with a relief of 400 Nt (gammas). The trend of the shear - vein zone at the Dollar Mine corresponds roughly to a magnetic high centered at 800+75N and 1200E. A similar anomaly is found approximately 200m to the northwest at 8200+75N and 1000+00E.

DAD E GRID

The total field magnetic data are presented in Figure 46. The Dad E grid data has the highest magnetic range of over 1900 Nt (gammas) and in turn provides the most information. Two magnetic highs are centered at approximately 3300N ,1900E and 2000N, 2150E. These highs seem to be connected by a series of N-S and E-W trending linears. A well defined E-W high trends across the grid from 2200N to 2000N. Lesser E-W anomalies occur on lines 2400N-2500N between 1500E and the east side of the grid, and between 1100E and 1400E on line 1800N. Since the grid lines are also E-W, it is possible that these features may be artificial, although the high at the west side of the grid on line 2100N corresponds well with outcropping mafic dykes, known from past surveys to have a positive magnetic signature. North trending anomalies occur between 1600N and 2400N and 2000E to 2200E; and a second occurs between 2800N and 3400N from 1800E to 1900E. In a general sense, the magnetic high areas correspond quite well to areas of outcrop However, the Eocene Coryell syenite dyke does not appear to be differentiable from the Jurassic Nelson Plutonics.

Magnetic low anomalies are minor, although an interesting north trending anomaly occurs between lines 2600N and 2900N at 1200E.

Generally, the similarities between the various intrusive bodies make geologic interpretations based on magnetics difficult. The best correlation seems to be between relative magnetic highs and areas of outcropping rock, with much of the grid areas being magnetically quiet. Possible linear magnetic highs may be related to mafic dykes on the Dad E grid. At the T-1 trench, mineralization is apparently related to the mafic dyke contacts, therefore these anomalies may be of some importance.

VLF-EM SURVEY

DAD GRID

The Fraser filtered profiles plotted over the Dad grid are shown in Figure 47. A number of northeast and northwest - trending anomalies are apparent. There is no apparent anomaly directly over the Dad adit mineralization, but a fairly strong northwest trending conductor occurs about 100m east of the portal, and this could correspond with alteration and veining observed at the far end of the workings (Figure 8).

GABE - W#1 GRID

The Fraser filtered profiles plotted over the Gabe - W#1 grid are shown in Figure 48. Dominantly northeast - trending anomalies are apparent. These are essentially parallel with the mineralized shear - vein system exposed by the workings of the Dollar Mine. Offsets of the northeast trending features may be due to later faulting.

DAD E GRID

The Fraser filtered profiles are presented in Figure 49. There are many small anomalies and several longer ones, oriented generally northeast and northwest. A strong anomaly is not observed over the T-1 trench area, however this may be because the grid lines were oriented parallel to the east-west strike of the mineralized veins, thus making them difficult to delineate. Just south of the T-1 trench is a major northwest - trending structure that coincides with Logan Creek, and likely represents a fault.

RECOMMENDATIONS

In light of the previous work and the results of this work program, the Cranberry Ridge properties seem to have a good potential for hosting precious metal vein deposits. In order to follow up on the results of the current program, a number of recommendations can be made:

- 1. Cleaning out and mapping sampling of Dad and W-1 workings, with careful attention paid to structural details.
- 2. Resample T-1 trench, and other workings that returned good values or have associated geochemical anomalies.
- 3. Follow up geochemical anomalies not associated with known showings. Cat stripping or trenching will be required. Geochemical anomalies at the edges of gridded areas should be further defined with additional soil sampling.
- 4. Review past and current VLF-EM survey data, and follow up on most promising anomalies. Local areas may be resurveyed with 50m line spacings to better define possible ore related structures.
- 5. Mapping and prospecting should be continued over areas not investigated during the current program.
- 6. Following expanded VLF-EM surveys, structurally detailed mapping and careful sampling, and followup of existing anomalies with trenching or stripping, a series of drill holes may be prioritized. Initially these should be on the order of 250-400 feet long, and further holes may be planned if initial results are favourable.

REFERENCES

B.C. Minister of Mines	Annual Reports, Inyo-Ackworth: 1923 (p. A184), 1925 (p. A199), 1930 (p. 220), 1933 (p. 154), 1966 (p. 191)		
Beckman, H. and Smith, E.R (1973)	Argentia Option - Report on Geophysical Surveys; BCMEMPR Assessment Report #4384		
Crowe, G.G. (1985)	Diamond Drilling Report on the Goldbug Group; BCMEMPR Assessment Report #14317		
Kallock, P. and Goldsmith, L.B. (1980)	Geological Investigation of Sun and Moon Mineral Claims; BCMEMPR Assessment Report #8916		
Kim, H. (1981)	Report on the 1981 Geological and Geochemical Surveys of the Dell-Kuz Claims: BCMEMPR Assessment Report #9557		
Kregosky, R. (1981)	Prospecting Report on the Bill Claim: BCMEMPR Assessment Report #10044		
Little, H.W. (1961)	Geology, Kettle River (West Half), British Columbia; Geological Survey of Canada, Map 15-1961		
Lloyd Exploration Ltd. (1970)	Geological, Geochemical and Geophysical Report, Carmi Area; BCMEMPR Assessment Report #3740		
Morrison, M. (1979)	A Report on Surface Geological Mapping of the W 1 and W 2 Mineral Claims; BCMEMPR Assessment Report #7358		
Morrison, M. (1990)	Biogeochemical Assessment Report on the W 1 and W 2 Mineral Claims; BCMEMPR Assessment Report #****		
Rineke, L (1915)	Ore Deposits of the Beaverdell Map Area, Geological Survey of Canada Memoir 79		
Saunders, C.R. (1971)	Geochemical Report on a Portion of the Doorn Property; BCMEMPR Assessment Report #3110		
Smith, E.R. (1973)	Geological Report on the Argentia Property; BCMEMPR Assessment Report #4385		
Smith, E.R. (1975)	Report on Geologic and Magnetic Surveys on the Doorn Group; BCMEMPR Assessment Report #5441		
Sookochoff, L. (1990)	Geochemical and Geophysical Assessment Report on the Y Claim Group; BCMEMPR Assessment Report #20849		
Tempelman-Kluit, D.J. (1989)	Geology, Penticton, British Columbia; Geological Survey of Canada, Map 1736A, scale 1:250 000		
Vancouver Stock Watch	News Release - Apollo Development Inc June 4, 1991		
White, W.H. (1949)	The Beaverdell Silver Camp, Minister of Mines, B.C., Annual Report, pp. 138-148		

STATEMENT OF QUALIFICATIONS

I, Leonard Gal, of Kelowna, British Columbia hereby certify that:

- I am a Professional Geoscientist registered in good standing of the Association of Professional Engineers and Geoscientists of British Columbia.
- I am a graduate of the University of British Columbia, with a B.Sc. in Geology (1986);
- I am a graduate of the University of Calgary, with a M.Sc. in Geology (Metamorphic Petrology) (1989);
- I have been engaged in geological work more or less continuously since 1986, in British Columbia, the Northwest Territories, Saskatchewan and the United States;
- The information in this report is based on published and unpublished reports on claims now covered by the CRANBERRY RIDGE Property, on the results of a work program conducted on the Property by White Wolf Explorations Ltd. from September to November 1995, and on a personal visit to the property from November 10 to 12, 1995.;
- I have no interest in the CRANBERRY RIDGE Property, or any other property within a 10 kilometer radius, or in the securities of St.Elias Mines Ltd., nor do I expect to receive any

Signed this <u>31</u> day of June, 1996.

been and Tal

Leonard Gal M.Sc., P.Geo.

CRANBERRY RIDGE PROPERTY COST of WORK PROGRAM - PHASE I

DESCRIPTION	DATES	RATE	SUB - TOTAL
Leonard Gal, M.Sc, P. Geo.	Nov 9 - Nov 13	4 days @ \$375.00	\$1,500.00
M.H. Sanguinetti, P.Eng.	Sept 8 - 12	Contract Rate inclusive	1,999.59
John Young, B.Sc. (Geology)	Aug 26 - Nov 15 various dates	45 days @ \$275.00	12,375.00
Gerard Gallissant, B.Sc. (Geography)	Aug 26 - Nov 15 various dates	56 days @ \$265.00	14,840.00
Alex Smith - field tech	Aug 26 - Nov 15 various dates	42 days @ \$200.00	8,400.00
Peter Brampton - field tech	Aug 26- Sept 17	21 days @ \$200.00	4,200.00
Crew board (food)		172 man/days @ \$52.00 m/d	8,944.00
Camp rental	1 x 12 x 14, 1 x 10 x 12 and 1 x 14 x 16 tents, c/w propane heat-stove, tarps, cots, kitchen equipment, dimension lumber to construct camp, 4kw & 600 watt generators, electrical - hand tools, camp chain saw	2.5 months @ \$2,650.00/month	6,625.00
Vehicle rentals (2) 1 ton 4x4 crewcabs	Aug 26 - Nov 15 various dates	60 days @ \$135.00	8,100.00
VLF-EM rental	Geonics EM-16	1 month @ \$750.00	750.00
Magnetometer & related equipment rental	Scintrex Envi Mag- Gradiometer c/w Base Station - 486 portable computer etc.	3 weeks - @ \$725.00 + set up \$200.00	2,375.00
ATC rental	Honda 250cc - Big Red	52 days @ \$30.00	1,560.00
Survey supplies, fuel & oils (consumable)	Flagging, Topofil, sample bags, pickets etc.		1,520.00
Analytical analysis (Bondar Clegg Inchape) North Vancouver	All samples: Au by FA c/w AA finish 34 element ICP Analysis	1,295 soils samples 94 rocks samples	23,273.62
Drafting & digital base map prep	Lumina Drafting & Norman Wade		4,500.00
Data plot & processing	in house labour (John Young)		1,185.28
Communications	Long Distance phone & facsimile charges		232.51
Freight	Greyhound Bus	samples and supplies	119.00
Engineering	L.P. Gal, M.Sc., P.Geo.	report preparation	3,200.00
Compilation of previous data	B.C. Yukon Chamber of Mines, BC Geological Branch		325.00
Project supervision office overhead			3,976.00
SUBTOTAL			<u>\$110,000.00</u>
GST	#R137581930	\$110,000 @ 7.0%	7,700.00
TOTAL			\$117,700.00

From the totals in the table above, costs are apportioned between the Dad Group (43 units) and the Cranberry Ridge Group (100 units) in the following manner: Geophysics (magnetometer and VLF surveys) are divided 16% to Dad Group, 84% to Cranberry Ridge Group (because the Dad Grid was 7line km, 16% of total). Geochemical assay costs and freight are divided 22% to Dad Group, 78% to Cranberry Ridge Group, as the 287 soil samples and 20 rock samples from the Dad Group represent 22% of the total. All other categories are divided 30% Dad Group, 70% Cranberry Ridge Group, as the 43 units of the Dad Group are 30% of the 143 unit total. Apportioning the costs on this basis results in expenditures of \$30,691.09 on the Dad Group and \$79,308.91 on the Cranberry Ridge Group, exclusive of G.S.T.

APPENDIX 1

ROCK SAMPLE DESCRIPTIONS

DAD CLAIM

DAD ADIT (See Figure 21)

- Dad-1: Selected grab. Vein material from dump at portal, white and blue ribbon-banded quartz with pyrite, galena, chalcopyrite and sphalerite. (1.779oz/T Au, 4.9%Zn).
- Dad-2: 20cm channel. Quartz vein on shear crossing portal with pinch and swell inclusions, pyrite, chalcopyrite, malachite and galena.
- Dad-3: 10cm channel. Quartz vein in side drift, sheared, with pyrite, chalcopyrite, galena and sphalerite in gouge.
- Dad-4: 10cm channel; Narrow, sheared quartz vein with pyrite, galena, sphalerite and chalcopyrite.
- Dad-5: 2.5cm channel. Narrow quartz veinlet with trace amounts of sulphide.
- Dad-6: 15 cm channel. Sheared granodiorite with trace pyrite, irregular quartz vein.
- Dad-7: 10cm channel. At end of stub, quartz vein of 1-3 cm width in shear, minor pyrite.
- Dad-8: 10 cm channel. Quartz vein on back near end of drift with pyrite, limonitic staining (0.326 oz/T Au).
- Dad-9: 20cm channel. Quartz vein with 5cm of limonitic and chloritic sheared gouge on margins, strikes parallel to tunnel, pyrite and minor malachite stain (0.530 oz/T Au).
- Dad-10: 32cm channel. White quartz vein in tunnel mouth, pinch and swell, with pyrite and malachite.
- BDRL-17: 15cm chip. 15-20cm quartz vein, shallow dipping and cut off by opposite dipping shear. From 15-20m into adit, at back (1.193 oz/T Au).
- BDRL-18: 12cm chip. Quartz vein with malachite in rusty shear.
- BDRL-19: Grab. 8-20cm quartz vein at crosscut. Partly brecciated and broken by small faults (1.807 oz/T Au).
- BDRL-20: Grab. Quartz vein material from main dump at portal with galena, pyrite, arsenopyrite ? (0.322 oz/T Au).

DAD MINOR ADIT (400M SOUTH OF MAIN ADIT)

DAD 1: 40cm chip. Quartz vein 35cm at 030/70

UNNAMED DAD PIT (at crest of ridge)

- Dad-11: Grab. Sugary and vein quartz in altered gneissic? granodiorite, sheared, with traces of pyrite.
- BDRL-23: Grab. Silicified, rusty intrusive with thin vertical quartz veinlet. From 2x3m prospect pit.

DAD - DUCKY CLAIM LINE AREA

- BDRL-21: 1m chip. Slightly rusty shear zone with thin quartz lenses in gneissic granodiorite.
- BDRL-22: 1m chip. Shear-fracture zone in gneissic granodiorite with 40cm quartz vein, slightly pyritic.
- BDRL-24: Grab. Silicified, highly fractured granodiorite with quartz veinlets.

GABE - W#1 CLAIMS

INYO-ASHWORTH (DOLLAR) MINE (See Figure 22)

- T-10: Selected grab. Quartz vein rubble in trench mineralized with pyrite, sphalerite, galena, arsenopyrite(?) (8.5% Zn).
- T-11: 1m channel. Sheared pyritic fissure vein on back at decline.
- T-12: Im chip. Quartz with limonite, pyrite, galena sphalerite at 23m on S wall of adit.
- T-13: selected grab. Quartz vein material on lower dump with pyrite, galena, limonite.
- T-14: selected grab. Vuggy quartz with pyrite from dump beside main shaft.
- Gabe 1_A : Grab. pyrite, sphalerite in quartz vein from trench.
- Gabe 2_A : 2m chip. Limonitic shear at adit portal.
- Gabe 5_A : 2m chip. Shear at portal.
- Gabe 5_B : 3cm chip. Quartz vein at 240/80, 8m into adit.
- Gabe 5_C : 3cm chip. Quartz vein at 240/80, 18m into adit.
- BDRL-09: 40cm chip. 4m inside of upper adit, on back, across rusty fracture zone hosting 15cm pyritic quartz vein.
- BDRL-10: 2.5m chip. Between two shear fracture zones exposed at portal of adit. More or less same as T-11 above. Quartz vein thin but some pods of galena adjacent.
- BDRL-11: Grab. 1.5-2.5m quartz vein from 5m within lower adit. Pyrite and galena noted.
- BDRL-12: 25cm chip. Rusty shear zone at portal of lower adit, with 1.5cm quartz vein.
- BDRL-13: Grab. From dump at shaft, banded coarse pyrite and fine galena in quartz.
- BDRL-14: Grab. Rusty, silicified and bleached intrusive with thin quartz vein from near collar of small timbered and flooded shaft.
- BDRL-15: Grab. From dump at main shaft. Vuggy, rusty quartz vein and bleached, rusty intrusives.

DAD S CLAIM

SOUTHEASTERN (DAD S) ADIT

- SA-1: Grab. Quartz vein stringers with pyrite in shear in diorite at lower adit.
- SA-2: 70cm chip. Quartz vein within limonitic shear, silicified hanging wall at upper adit.
- BDRL-01: Grab. Dump at decline above main shaft. Pyrite, chalcopyrite, sphalerite and trace galena in chlorite carbonate altered intrusive.
- BDRL-02: 1.5m Chip. Across rusty fracture zone with trace galena.
- BDRL-25: Grab. 40m into main adit, north wall. Chloritic altered, rusty coated intrusive with abundant pyrite.
- BDRL-26: 10cm chip. 13m into adit, south wall. Narrow rusty fault ? zone with quartz, chlorite and carbonate alteration, pyrite cubes.
- BDRL-27: 20cm chip. Rusty fracture zone on the south side of the decline portal.
- BDRL-28: Grab. Slightly chlorite altered, pyritic intrusive rock adjacent to BDRL-27.
- TR1_J: 5cm chip. Quartz vein at 266/60S.
- $TR1_K$: 50cm chip. Silicified quartz material with pyrite, galena at 220/84S.
- TR1_L: Grab. Quartz vein material from pit, no visible sulphides.
- TR1_M: Grab. Quartz carbonate vein at 040/66.

DAD E CLAIM

T-1 TRENCH (See Figure 23)

- T-1: Grab. Quartz vein material at 6m station, pyritic.
- T-2: 40cm chip. Sheared limonitic quartz vein at 17m in silicified diorite.
- T-3: 1m chip. Intersection of fractures with quartz vein, andesitic dykes and diorite with limonite at 25m.
- T-4: 15cm chip. Contact of dyke and diorite at 32m, fractured with malachite, azurite on fracture faces and quartz veinlets in pyritic shear along contact. Andesitic dyke is pyritic.
- T-5: 1m grab. Copper stained granodiorite with very minor quartz veins at 39m. Local chalcopyrite in quartz veining and quartz stockwork.
- T-6: 0.5m grab. quartz stockwork in andesite, pyritic, pinch and swell quartz stringers with pyrite at 47m.
- T-7: 15cm grab. Quartz stringers with pyritic margins in mixed volcanic at 65m, sheared.
- T1_A: Grab. 1cm quartz vein at 280/50 with pyrite.
- T1_B: Grab. Mafic dyke with pyrite.
- $T1_C$: Grab. Quartz vein 340/70 with pyrite.
- $T1_D$: Grab. 3cm quartz vein at 280/70.
- T1_E: Grab. Altered granodiorite with malachite, azurite.
- T1_F: Grab. Altered granodiorite with pyrite.
- BDRL-03: Grab. 5m east of sample T-2 above. Rusty, bleached, altered intrusive rubble.
- BDRL-04: 40cm chip. Rusty quartz vein with pyrite.

T-2 TRENCH

- T-8: 20cm chip. Quartz vein in varying from 5 cm to 30 cm wide in pyritic, malachite stained shear in granodiorite at 16m.
- T-9: 30cm chip. Silicified fracture zone at 32m end of trench, contact of andesite dyke and granodiorite, altered kaolinitic and quartz stockwork with pyrite and malachite (3.6% Zn).
- T2_A.: Grab. 6cm quartz vein at 230/60. Oxidized with pyrite.
- $T2_B$: Grab. 6cm quartz vein at 230/60. Oxidized with pyrite.
- T2_C: Grab. Bleached granodiorite with pyrite.
- BDRL-05: 15cm chip. Rusty fractured granodiorite with thin quartz stringers. pyrite, malachite, chalcopyrite noted.

T-3 TRENCH

T3_A: Grab. Altered granodiorite with pyrite.

CABIN ADITS

TR1_I : Grab. From dump of northernmost adit. Pyrite rich quartz vein material.

LORI CLAIM

GOLDBUG SHOWING ADIT (See Figure 24)

- Lori-2: 13cm chip. Narrow veinlet at end of short adit with local pods of massive pyrite to 5cm.
- Lori-3: Selected grab. Quartz vein material with pyrite and epidote from dump, vuggy.

BDRL-06: Grab. Quartz vein material from dump, pyritic.

TEST PITS

- BDRL-07: Grab. 15cm rusty granodiorite hosting quartz stringers
- BDRL-08: Grab. Representative sample from rusty granodiorite with some pyritic quartz vein.
- TR1_U: Grab. Quartz vein with pyrite.
- TR1_v: Grab. 3cm quartz vein at 210/50
- TR1_w: Grab. Silicified diorite with pyrite.

BERRY CLAIM

BOSTON SHOWING

- BDRL-29: 2.5m chip. Rusty bull quartz vein.
- BDRL-30: 2m chip. rusty, chloritized granodiorite with quartz stringers; chlorite carbonate epidote hematite alteration.
- BDRL-31: 1.2m chip. Rusty altered granodiorite with quartz veinlets in test pit above collapsed adit.
- TR1_s: Grab. Altered granodiorite with pyrite.
- $TR1_T$: 1.5cm chip. Quartz vein in granodiorite at 084/60S.

REMAINDER OF PROPERTY

- TR1_A: Grab. Mafic dyke with pyrite.
- TR1_B: Grab. Altered granodiorite with pyrite.
- TR1_C: Grab. 1.5cm quartz vein at 230/50 in altered granodiorite.
- TR1_D: Grab. Quartz vein float from test pit.
- TR1_E: Grab. Altered granodiorite with pyrite, quartz stringers.
- $TR1_G$: 10cm chip. Quartz vein with pyrite at 248/50.
- TR1_H: 25cm chip. Quartz vein at 250/43N.
- $TR1_{N}$: Grab. Quartz vein float from high-grade dump at pit.
- TR1₀: 15cm chip. Quartz vein 164/54 at adit.

APPENDIX II

Geochemical Lab Report Rock Samples

CLIENT: WHITE WOLF EXPLORATION	PROJECT: NONE	GIVEN			
REPORT: V95-01098.0 (COMPLETE)	DATE PRINTED:	26-SEP-95	PAGE	38	
			• • • • • • • • • • • • • • • •		.: ·

SAMPLE ELEM	NENT TA TÌ Zr NITS(PPM PCT PPM <10 <.01 <1				
95-DAD-M-03	<10 <,01 <1				
95-DAD-M-04 * 95-DAD-S-M-01	<10 <.01 <1 <10 <.01 <1				
	in the Delaya San T				
				• • •	
				÷.	

Geogerenical Lab Report

BER UNITS PPB OPT PPM PPM PPM PPM PPM PPM PPM PPM PPM P	ENT: WHIT	e wolff, e		ON						 														PROJE DATE					F	AGE	3A
DAD-H-03 DAD-H-04 DAD-H-	IPLE IBER			1	-	- 1. ant				1.565				1.00			2.504		6 N												
	DAD-M-02 DAD-M-03 DAD-M-04 DAD-S-M-0	1	2302 >10000	1.539	2.3 14.9	90	127 508	551 645	647 4958	77 64	5 32	11.0 46.0	<5 6	<5 56	<50. <55.	91 20	489 <10 681 <10	22 24	159 124	5 <20 < <1 <20 ·	<20 <20	3 0.3 <1 0.4	59 0.22 18 0.19	2.43 1.47	<.01 <.01	0.12 0.19	50 33	5 3	<2 5 <2 4	া ব	V V
			• •		-											× .															
										6.8 79		da Sele														-					
																				с 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			2								
						е (4) 2																				1				- 1.1 	

	Bondar	Clegg esting Services	5			Geo Lab Report	emical	
	TE WOLL EXPLORATION -01098.0 (COMPLETE)			 	PROJECT: NO DATE PRINTE	DNE GIVEN D: 26-SEP-95	PAGE 2B	z
VMPLE JMBER	ELEMENT TA TÌ Zr UNITS PPM PCT PPM							4
)RL-18	<10 0.11 7							
DRL-19	<10 0.10 4							
)RL-20	<10 0.11 4							
)RL-21	<10 <.01 <1							
)RL-22	<10 0.02 3							
)RL-24	<10 0.11 <1							
)RL-25	<10 0.20 3							
)RL-26	<10 0.02 <1							•
)RL-27	<10 0.18 3							
)RL-28	<10 0.13 2							
)RL-29	<10 0.06 <1							
RL-29 RL-30	<10 0.08 <1							
RL-31	<10 0.06 6							
RL-32	<10 0.07 1							
RL-33	<10 0.13 2							
	-							:
)RL-34	<10 0.04 4							:
₩L-35	<10 0.24 3							
₩L-36	<10 0.09 1							
)RL-37	<10 0.20 3							
₩L-38	<10 0.15 6					<i>t</i> e		
RL-39	<10 0.01 2							
RL-40 RL-41	<10 0.13 3 <10 0.10 1					. 3	•	
RL-41 RL-42	<10 0.10 1					}		
-DAD-E-G-	2,555555555							
070 - E-G-								
-DAD-E-M-	01 <10 <.01 <1							
-DAD-G-01	1202024/002							
-DAD-G-02	-55566565			•				
-DAD-G-03							•	
-DAD-M-01						•		

.

CLIENT: WHITE WOLF EXPLORATION

REPORT: V95-01098.0 (COMPLETE)

SAMPLE	ELEMENT	Au30	Au	-	AgOL	Cu	Pb		ZnOL		- 39 C				As		Fe		-14	· · · · · ·	·	V Sn					Ca			Şr		Ga			
UMBER	UNITS	PPB (OPT	PPM	PPM	PPM	PPM	PPM	PCT	PPM	PPM P	PM	PPM	PPM	PPM	PPM	PCT	PPM PP	MP	PM PP	MP	PM PPM	PPM	PPM	PCI	PCT	PCT	PCT	PCT	PPM	PPM	PPM	PPM	PPM	PPM
ORL - 18		, 1796		>50.0	62	1253	<2	265		17	7	23	0.9	16	<5	<5	>10.00	452 <1	0	26	3	51 <20	<20	<1	1.1	0.12	1.13	<.01	0.07	86	5	<2	3	2	<5
FORL-19		63	1997) 1997 - 1997	0.2	- 1. 12	72	- 4	56	na na Sina sa	3	9	8	<0.2	<5	<5	<5	2.44	1231 <1	0	27 2	4	37 <20	<20	ेड्	2.33	0.76	8.24	0.06	0.10	144	4	<2	17	<1	<5
forl-20		141		0.6		149	6	66		4	17	14	<0.2	<5	<5	<5	4.35	877 <1	0	46 4	6	84 <20	<20	6	3.9	0.98	3.60	0.05	0.0	143	9	-4	18	<1	9
forl-21	•	7		2.1		1143	<2	104		7	17	80	0.8	9	<5	<5	9.35	1872 <1	0	9 1	9	<1 <20	<20	4	0.1	5 0,50	7.35	<.01	<.01	49	3	<2	5	<1	<5
TORL-22		12		2.1		1001	<2	46		11	12	75	1.0	13	<5	<5	>10.00	1052 <1	0	<1 2	3	<1 <20	<20	23	0.52	2 0.02	4.38	<.01	<.01	3	5	2	<1	1	<5
TORL-24		1016		1.3	14	74	5	94	ter (8	9	14	1.2	<5	6048	10	3.93	524 <1	0	64 4	3	43 <20	<20) 2	1.7	1.33	0.37	0.08	0.97	28	5	<2	20	<1	8
TORL-25		12		0.3		106	2	55	9 I.E.	5	20	16	<0.2	<5	8	<5	3.03	256 <1	0 1	01 8	6	53 <20	<20) 5	1.4	1.15	1.10	0.15	0.37	42	8	<2	17	<1	6
Torl-26		6		<0.2		26	16	30		3	7	7	<0.2	<5	20	<5	0.97	197 <1	0	64	3	16 <20	<20	12	5.04	0.16	6.91	<.01	0.02	41	3	9	3	<1	<5
torl-27		7		0.3		125	2	55	et e	3	14	16	<0.2	<5	<5	<5	2.59	238 <1	0	59 7	3	46 <20	<20) 5	1.2	0.88	0.97	0.11	0.25	35	7	~2	11	<1	6
torl-28		<5		<0.2		110	3	48		4	43	30	<0.2	<5	ব্য	<5	2.86	358 <1	0	98 3	6	69 <20	<20		2.20	0 1.40	1.69	0.19	0.31	62	2	<2	18	<1	. ⊲5
TORL-29		<5		0.7		327	<2	54	ай 1914 г.	11	18 1	06	<0.2	9	<5	<5	7.65	513 <1	0	32 16	5 1	70 <20	<20	13	1.44	1.19	2.31	0.10	0.30	33	24	<2	8	<1	7
forl-30		<5		0.4		30	<2	36		10	7	13	1.0	7	<5	<5	8,95	2483 <1	0	75	2	11 <20	27	4	1.0	0.03	8.88	<.01	<.01	3	7	<2	<1	<1	<5
IORL-31		<5		1.4		943	<2	40		12	6	19	1.2	6	<5	<5	5.47	619 <1	0	5 3	0	7 <20	<20	8	0.67	0.04	9.45	0.04	<.01	58	5	<2	<1	<1	<5
IORL-32		148	194 - N	3.8	÷.	478	<2	971	h.	15	14	36 🖓	10.8	15	47	<5	>10.00	103 <1	0	6 3	1	<1 <20	80	28	1.46	5 0.07	0.81	0.12	0.05	96	6	<2	5	1	<5
'ORL-33		37		2.3		1143	2	35		10	9	51 .	0.5	12	<5	<5	>10.00	182 <1	0	20 1	7	27 <20	31	17	3.40	6 0.42	1.68	0.33	0.10	151	5	2	8	2	<5
ORL - 34		10		<0.2		65	3	42		3	2	5	0.5	<5	8	<5	1.44	725 <1	0	24	6	22 <20	<20) ु 5	1.11	0.03	>10.00	<.01	<.01	74	3	<2	<1	<1	<5
ORL-35		<5		0.5	1	38	<2	18		3	<1	4	<0.2	<5	<5	<5	3.11	219 <1	0	45 3	0	67 <20	<20	3	0.8	2 0.86	0.82	0.12	0.10	78	6	<2	8	<1	<5
ORL-36		109		0.4	÷	65	. 7	31	é je. Nativ	4	3	12	<0.2	<5	1900	<5	2.64	215 <1	0	37 4	6	30 <20	<20) 2	2.00	0.40	1.87	0.25	0.10	75	5	2	11	<1	<5
ORL-37		9		0.4		177	5	31	8 - i.	5	23	12	0.3	<5	27	<5	3,04	176 <1	0	60 8	4	49 <20	<20	5	2.26	5 0.9 7	1.81	0.21	0.44	112	8	- 4	13	<1	6
ORL-38		15		0.5		185	3	20	$\left\{ 2, 1 \right\}$	6	19	11 -	0.3	<5	52	<5	2.15	133 <1	0	14 7	6	21 <20	<20	8	1.50	0.08	2.04	0.14	0.03	62	8	2	3	<1	<5
					4.2 1711 - 2						de la composición de la compos	·	- Alto		· .				è. P	,× ×	97 94									i di si Sectore					
ORL-39		<5		0.7		245	<2	16	No. 1	8	4	12	0.3	<5	ব	<5	- 20 X X X X	527 <1	S		8	2 <20		1.000		- 영송 영양	>10.00	282.5		- 2636	· 3	<2	<1	<1	<5
ORL-40		9	۰.	0.3		32	4	17		4	8	18	<0. 2	<5	- 33 r		2,56		S	20 4	81	24 <20		- : - 옷		0.31	1.39	10.00		- N. 200	6	<2		<1	-
ORL-41	•	178		3.4		699	<2	64	199	10	13		1.0	12			이 같아요.	147 <1	8 C	<u>,28</u>	÷	4 <20		1.22		0.19	1.42	- 302 - 22		<u>, 1996 - 1</u>	6	<2	8	2	
ORL-42		24		0.8		125	<2	737			12		10.2	<5	- 2.02.3	<5	4.19	e in eg	8	2×3	2.0		÷	e S	· ·	0.64	0.93	-2943	· ·		10	<2	8	1	-
5-DAD-E-G	-01	>10000	0.553	>50.0	66	15575	11	71		4	12	21	3.7	<5	<5	<5	3.86	960 1		33 8	8	13 <20	<20		0.98	0.67	1.80	0.02	0.27	' <u>58</u>	7	2	13	(1)	<5
5-DAD-E-M	-01	>10000	0.460	31.3		1144	3	44		12	8	27	0.8	19	<5	<5	5.62	629 <1	0	13 12	3	8 <20	<20	<1	0.70	0.50	1.27	<.01	0.24	54	3	<u>2</u>	10	<1	<5
5-DAD-G-0	1	>10000	1.219	46.5		5311	7933	>20000	5.2	7	4	44 4	99.7	18	338	<5	9.92	299 <1	Ó	9 9	4	<1 <20	57	`_≦1	0.18	0.08	0.55	<.01	0.05	15	2	*2	2	া	<5
5-DAD-G-02	2	>10000	0.679	40.8		6890	>10000	14092		8	7	28 3	82.7	12	175	<5	6.79	411 <1	0	14 11	9	<1 <20	<20	<1	0.34	0.17	1.33	<.01	0.10	30	2	<2	4	<1	<5
5-DAD-G-03	3	2400		3.2		399	414	1881		14	4	8	14.7	<5	5	<5	1.19	534 <1	0	43 14	1	7 <20	<20	5	0.58	0.28	1.35	<.01	0.23	23	5	<2	8	ି <ୀ	<5
5-DAD-M-O	1	>10000	0 448	13.1	문문을	706	481	2932		19	6	18	26.0	9	339	<5	6.12	308 <1	0	27 13	Ô	1 <20	<20	<1	0.51	0.16	0.18	<_01	0.24	6	3	<2	3	<1	<5

Geochemical

PAGE 2A

Report

PROJECT: NONE GIVEN

DATE PRINTED: 26-SEP-95

PAGE 1A

PROJECT: DAD PROJ

DATE PRINTED: 11-OCT-95

REPORT: V95-01202.0 (COMPLETE)

SAMPLE	ELEMENT	Au30	Au	•	Agol	Cu	PL		ZnOL	2		Co	¥	Bi		Sb	Fe	Mn	1005	Ba	1.57.33		Sn	8		AL	- 2000	88			(Sr	Y	Ga		- 33.73	Sc
NUMBER	UNITS	PPB	OPT	PPM	PPM	PPM	PP	PPM	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PCT	PC1	r PCT	PCI	PPM	PPM	PPM	PPM	PPM	PPM
Y-0101	>	10000	0.326	4.7		253	194	579	- 383	8	2	9	10.7	<5	19	<5	1.49	499	<10	40	132	6	<20	<20	10	0.60	0.36	1.95	i <.01	0.2	43	5	<2	7	<1	<5
Y-0102	>	10000	0.530	>50.0	56	3231	>10000	13503		° 7	1	25	303.3	7	238	<5	6.92	349	<10	12	95	3	<20	<20	21	0.60	0.24	0.98	3 0.01	0.25	29	5	~2	6	<1	<5
Y-0103		6589	28 I.	12.5	S.,	1732	3445	12308		12	8	12	128.1	<5	59	<5	2.05	332	<10	17	262	2	<20	<20	6	0.23	0.08	0.41	<.01	0.08	3 10	1	<2	3	<1	<5
Y-0104		16	친물	0.4	-282	87	27	93	18	6	4	6	0.6	<5	5	ক	1.81	279	<10	30	81	40	<20	<20	10	0.94	0.41	0.99	0.08	0.11	58	6	<2	6	<1	<5
63276		11		<0.2		15	61	87		2	2	11	⊲0.2	<5	8	ব	2.61	831	<10	188	65	33	<20	<20	16	1.53	1.15	3.53	6 0.03	0.41	185	8	<2	20	<1	<5
63277		35		10.2		300	>10000	2008		19	4	14	4.2	15	39	<5	5.35	1673	<10	132	86	16	<20	<20	20	1.13	0.54	0.16	6 0.02	0.34	27	6	<2	12	<1	<5
63278		10	관건	1.3		70	542	198		15	2	19	0.4	10	4	ব	>10.00	1454	12	17	87	26	<20	24	40	1.45	0.78	2.46	0.09	0.30	237	3	<2	12	2	<5
63279		4886		12.3	- 1933	350	133			64	<1	7	<0.2	18	43	<5	6.20	212	<10	33	181	2	< 20	<20	15	0.34	0.02	0.10	0.01	0.17	' 19	<1	<2	<1	2	ح
63280		56		0.5		164	69	23		9	7	16	0.2	<5	~5	<5	2.08	146	<10	172	193	5	<20	<20	6	0.33	0.06	0.21	<.01	0.16	22	2	<2	3	<1	<5
63281		6082		22.2		216	20	34		43	2	12	⊲0.2	6	ৎ	ব	3.14	426	14	119	119	13	<20	<20	11	0.72	0.33	0.66	0.01	0.34	41	3	<2	7	<1	<5
63282		3344		10.6		39	17	86		8	4	17	⊲0.2	<5	< 5	<5	3.30	1115	<10	118	47	31	<20	<20	16	1.61	1.24	2.99	0.01	0.40	115	8	<2	29	<1	<5
63283		872		2.6		146	14	166		16	14	38	⊲0.2	8	< 5	ব	7.44	1451	<10	18	69	71	<20	<20	30	2.70	2.16	2.21	0.01	0.41	57	10	<2	46	1	6
63284		138		2.9	3.8	18974	360	175		9	5	17	4.3	ব্য	ব	ব	2.75	1094	<10	311	108	27	<20	<20	18	1.63	1.09	1.28	0.02	0.37	62	9	<2	23	<1	ح
63285		41		<0.2	- 2528	83	10	43	-263	2	1	6	⊲0.2	ব	4	ব	1.60	923	<10	158	93	12	<20	<20	13	1.09	0.71	3.45	0.01	0.39	114	6	~2	15	<1	<5
63286		86		0.5		49	7	57		4	5	13	⊲0.2	ব	\$	ৎ	2.22	1237	<1D	209	75	24	<20	<20	17	1.30	0.98	4.15	0.01	0.33	122	8	<2	20	<1	<5
63287		1694		33.3		1503	187	6592		39	2	13	82.5	40	-5	<5	8.17	267	<10	140	122	17	<20	<20	23	0.80	0.36	0.14	0.02	0.25	18	4	~2	6	1	ৎ
63288		920		9.1	-334	5647	52	>20000	3.6	12		18	463.4			ব	2.57	707	<10	19	79	10	<20	66	14	0.89	0.37	1.79	<.01	0.24	38	7	2	8	<1	<5
63289		5112	3.23	>50.0	82	1593	>10000	>20000	8.5	11	7	17	1114.5	22	253	<5	6.%	338	<10	6	237	<1	<20	532	17	0.10	0.02	0.03	<.01	0.06	3	<1	≺2	<1	<1	<5
63290		636		>50.0	63	215	>10000	2148		18	1	7	23.6	6	137	<5	3.79	815	<10	29	135	5	<20	<20	16	0.53	0.07	0.11	0.01	0.33	6	4	~2	3	<1	<5
63291		5239		>50.0	98	257	8070	821		13	1	10	8,1	27	559	6	>10.00	23	15	43	119	<1	<20	<20	36	0.19	< <u>.</u> 01	0.02	0.01	0.27	4	<1	2	<1	2	<5
63292		2300		29.3		462	>10000	9737	198	7	5	9	142.7	ব	116	ব	3.44	2212	<10	21	150	8	<20	<20	13	0.68	0.42	1.53	0.01	0.25	50	4	<2	8	<1	<5
63293		1851		24.1		174	2044	7402		15	4	9	93.4	ব	173	ব	6.14	66	<10	7	218	<1	<20	<20	14	0.07	<.01	0.04	<.01	0.06	3	<1	2	<1	1	<5
63294	>	10000	1.779	>50.0	66	13333	>10000	>20000	4.9	5	5	45	533.1	8	282	<5	8.04	268	<10	8	147	<1	<20	132	22	0.17	0.07	0.78	<.01	0.06	17	1	2	2	<1	<5
63295		1990		6.5		240	3723	945		16	7	4	10.1	ব	49	ব	1.70	244	<10	23	243	4	<20	<20	5	0.21	0.05	0.20	<.01	0.11	6	1	<2	1	<1	<5
63296		6676		13.7		2162	9889	13302		8	4	25	222.9	10	67	ব	3,16	751	<10	26	111	6	<20	<20	11	0.65	0.34	1.92	0_01	0.27	45	4	~2	5	<1	ব
63297		7638		7.5		490	2170	2095		6	<1	13	60.7	ব	11	<5	1.97	576	<10	55	101	9	<20	<20	1D	0.75	0.53	3.00	<.01	0.27	80	7	2	8	<1	<5
63298		25		1.4		16	42	95		9	8	15	0.9	5	\$	<5	1.60	534		2									0,02	8	2000000	3	2	5	<1	<5
63299		<5		0.3		38	88	164		8	4	11	1.2	<5	-5	<5	2.28	704	<10	64	13 2	36	<20	<20	15	1.43	1.08	1.83	0.05	0.21	58	7	~2	17	<1	<5
63300		24		≪0.2		23	26	101		2	1	9	0.4	⊲5	6	⊲	1.83	797	<10	31	76	29	<20	<20	15	1.26	0.91	5.85	0.02	0.16	137	9	~2	16	<1	<5

LIENT: WHITE WOLF EXPLORATION REPORT: V95-01202.0 (COMPLETE)

PROJECT: DAD PROJ DATE PRINTED: 11-OCT-95 PAGE 1B

Lab

Report

Geochemical

SAMPLE	ELEMENT TA TI Zr		
NUMBER	UNITS PPM PCT PPM		
Y-0101	<10 <.01 <1		
Y-0101	<10 <.01 <1		
Y-0102	<10 <.01 <1		
Y-0103	<10 0.11 2		
63276	<10 <.01 <1		
0210			
63277	<10 <.01 <1		
63278	<10 0.05 <1		
63279	<10 0.02 <1		
63280	<10 <.01 <1		
63281	<10 <.01 <1		~
63282	<10 <.01 1		
63283	<10 0.01 2		
63284	<10 <.01 1		
63285	<10 <.01 <1		
63286	<10 <.01 <1		
63287	<10 <.01 <1		
63288	<10 <.01 <1		
63289	<10 <.01 <1		
63290	<10 <.01 <1		
63291	<10 <.01 <1		
63292	<10 <.01 <1		
63293	<10 <.0 1 <1		
63294	<10 <.01 <1		
63295	<10 <.01 <1		
63296	<10 <.01 <1		
63297	<10 <.01 <1		
63298	<10 <.01 <1		
63299	<10 0.02 <1		
63300	<10 0.01 <1		

(n)

PAGE 1A

PROJECT: LPG-CIQUENAS

DATE PRINTED: 4-DEC-95

CLIENT: WHITE WOLF EXPLORATION

REPORT: V95-01630.0 (COMPLETE)

					 48			 2005 t.c	······				_		 8				 	1.333				 . 243								And	••••••		······	 170368	
SAMPLE	ELEMENT	Au30	Au		- X2	gOL		Pb		ZnOL					8. 1	As		67093	Mn	- 263				Sn		La	AL	Mg	Ca			Sr				Nb	
NUMBER	UNITS	PPB	OPT	PP	M	PPM	PPM	PPM	PPM	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCI	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCI	PCT	PCI	PCT	PCT	PPM I	PPM F	PPM I	PPM F	PPM F	PPM
BRDL-01		346		48.	0		3849	1361	>20000	5.1	7	2	13	105.7	27	18	ক	4.87	4024	<10	8	47	21	<20	<269	9	1.29	1.03	7.31	<.01	0.24	297	9	2	19	8	<5
3RDL-02		137		10.	6		318	>10000	2362	£.	16	<1	6	5.8	<5	51	<5	4.52	1067	<10	183	87	19	<20	<20	7	1.10	0,37	0.17	0.01	0.40	31	5 -	<2	10	5	<5
BRDL-03		50		0.	5 👸		90	199	208		3	2	9	<0.2	ব	ব্চ	<5	3.27	354	<10	212	77	38	<20	<20	5	1.17	0.85	0.31	0.04	0.31	23	4	4	14	- 4	<5
BRDL-04		72		0.	8		553	72	118		4	10	17	0.3	<5	ক	ব	3.86	407	<10	32	116	13	<20	<20	7	1.16	0.62	0.38	0.02	0.34	15	4	2	15	4	<5
BRDL-05		769		10.	8		1680	168	8641		82	3	12	112.4	23	7	ব	2.57	195	<10	35	161	6	<20	<20	3	0.62	0.19	0.06	0.02	0.23	3	2	~2	5	2	<5
BRDL-06		1666		7.	4		72	99	155		286	3	1	0.5	<5	26	<5	1.69	73	<10	20	216	2	<20	<20	1	0.15	<.01	0.05	<.01	0.08	6	<1	~ 2	<1	<1	<5
BRDL-07		710		3.	4		80	107	242		14	<1	2	1.0	ব	49	ব	2.63	350	<10	77	79	19	<20	<20	9	1.32	0.32	0.55	0,05	0.30	87	4	7	8	4	<5
BRDL-08		18		0.	4 🦉		12	21	111		5	<1	4	⊲0.2	<5	4	ব	2.25	356	<10	52	85	13	<20	<20	17	0.90	D.36	0.38	0.05	0.26	54	5 Š	9	7	5	<5
BRDL-09		873		26.	4 🖉		108	4963	1902		5	2	3	21.5	ব	101	ক	2.62	875	<10	27	149	7	<20	<20	7	0.49	0.08	0.14	<.01	0.28	7	4	<2	3	3	<5
BRDL-10		1946		>50.	0	105	403	>10000	2477		9	1	2	32.5	<5	98	ব	3.48	1618	<10	32	102	7	<20	<20	7	0.67	0.17	0.63	<.01	0.35	18	5	~2	6	4	<5
BRDL-11		3817		16.	6		123	4902	16200		10	7	14	140.1	ব	336	ক	7.74	986	<10	18	141	4	<20	<20	5	0.56	0.21	1.06	<.01	0.19	17	5	~2	6	5	<5
BRDL-12		868		25.	- 39		142	6738	2021		8	1	4	11.5	ব	67	ক	2.96	1299	<10	32	114	11	<20	<20	9	0.74	0.31	0.16	0.01	0.30	6	7	<2	6	6	<5
BRDL-13		989		>50.	0	55	157	>10000	10514		6	2	2	129.1	<5	229	ৎ	7.80	175	<10	8	190	<1	<20	37	<1	0.11	<.01	0.10	~.01	0.06	4	<1	<2	<1	<1	<5
BRDL-14		90		9.	9		352	2621	619		4	1	1	3.6	ব	36	ব	3.11	131	<10	36	162	9	<20	<20	6	0.66	0.08	0.10	0.01	0.42	5	3	2	2	3	<5
BRDL-15		1001		4.	1		42	892	1199		3	2	3	13.7	\$	85	ব	2.46	1187	<10	27	140	8	<20	<20	5	0.59	0.21	0.67	<.01	0.29	15	2	<2	4	1	<5
BRDL-16		85		0.	9		76	195	354		3	5	2	4.0	ব	10	<5	0.92	125	<10	35	302	4	<20	<20	1	0.25	0.04	0.03	<.01	0.13	2	<1	<2	1 3	<1	<5
BRDL-17	;	10000	1.193	15.	0	1	1854	396	8055		25	3	23	48.8	\$	124	<5	5.25	601	<10	14	152	10	<20	<20	5	0.87	0.40	0.84	<.01	0.34	22	5	2	8	5	<5
BRDL-18		3787		4.	4 🖉		78 0	85	6648		8	5	15	32.7	<5	105	ব	2.98	590	<10	42	200	7	<20	<20	3	0.58	0.15	1.20	<.01	0.22	21	3	≺2	4	3	<5
BRDL-19	;	10000	1.807	>50.	0	65 S	5144	>10000	>20000	2.7	19	5	27	156.3	5	188	ব	7,30	442	<10	20	208	3	<20	<107	2	0.51	0.12	0.37	<.01	0.21	16	3	<2	4	3	<5
BRDL-20	:	10000	0.322	>50.	0	55 5	5098	>10000	>20000	8.0	16	5	40	559.7	<5	376	<5	>10.00	343	<10	7	153	<1	<20	<554	5	0.24	0.05	0.72	<.0 1	0.10	17	1	2	2	2	<5
BRDL-21A		587		1.	1		61	171	256		2	1	6	2.0	ব	196	<5	2.18	423	<10	95	77	13	<20	<20	8	1.15	D.68	2.34	0.04	0.33	65	6	3	13	6	<5
BRDL-21B		539		0.	7 🖉		96	100	158		4	5	9	1,4	<5	9	<5	1.99	439	<10	19	128	49	<20	<20	4	0 .81	0.77	1.59	0.06	0.09	21	5	7	16	5	<5
BRDL-23		11		0.:	3 🖉		124	58	64		7	20	9	<0.2	ব	ক	<5	1.85	244	<10	23	117	41	<20	<20	8	0.76	0.14	1.07	0.10	0.06	62	11 🖉	9	3	17	<5
BRDL-24		12		0.	3		12	24	25		3	1	2	0.3	<5	31	<5	0.89	117	<10	32	159	<1	<20	<20	14	0.32	0.02	0.11	0.08	0.20	6	2	2	2	2	<5
BRDL-25		23		10.	4		763	>10000	>20000	3.7	21	2	14	118.4	\$	14	<5	5.07	1453	<10	21	117	23	< 20	<212	5	0.95	0.79	1.54	0.02	0.22	62	7	≪2	15	6	<5
BRDL-26		ح		0.	6		7	289	126		5	2	10	<0.2	<5	ৎ	<5	3,44	1337	<10	27	72	25	<20	<20	8	1.32	a .%	4.22	0.02	0.32	101	12	2	20	11	<5
BRDL-27		20		1.	5		54	440			12		13			28					;			100000		· · · · · · ·				0.03		3333333				8	-
BRDL-28		6		4.	2		115	709	2908		10	2	9			23				100000										0.01		363336	- 83		- 33	33333	
BRDL-29		15		10.	2		17	114	20		541			<0.2	8		_			200000										<.01					- 33		4
BRDL-30		12		6.	۵		224	48	175		375	11	11	0.5	33	5	5	5.75	2488	<10	38	95	91	<20	<20	13	2.86	1.59	1.61	0.07).53	68	11 🛞	13 :	38 े	41	6

:

	HITE WOLF EXPLORATION	PROJECT: LPG-CIQUENAS
REPORT: V	95-01630.0 (COMPLETE)	DATE PRINTED: 4-DEC-95 PAGE 1B
SAMPLE	ELEMENT Ta Ti Zr	
NUMBER	UNITS PPM PCT PPM	
0001 01	<10 <.01 <1	
BRDL-01 BRDL-02	<10 <.01 <1	
BRDL-03	<10 <.01 2	
BRDL-04	<10 <.01 2	

DRDE 04		
BRDL-05	<10 <.01 2	
BRDL-00		
	<10 <.01 1	
BRDL-06	<10 × 01 1	
BRDL-00		

	200000000		
BRDL-08	<10 0.13	5	
BRDL-09	<10 <.01	1	
BRDL-10	<10 <.01	<1	
BRDL-11	<10 < .01	1	
BRDL-12	<10 <.01	2	
BRDL-13	<10 <.01	1	
BRDL-14	<10 <.01	1	
BRDL-15	<10 <.01	<1	
BRDL-16	<10 <.01	1	
BRDL-17	<10 <.01	2	
BRDL-18	<10 <_01	1	
BRDL-19	<10 <.01	2	
BRDL-20	<10 <.01	2	
BRDL-21A	<10 0.01	1	

<10 0,11 1

<10 0.18 5

<10 0.08 2

BRDL-07

BRDL-21B

BRDL-23

Bondar-Clegg & Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, (604) 985-0681

	Dondar Cl Inchcape Test	legg ting Services	Geoche Lab Report	
CLIENT: WHI	ITE WOLF EXPLORATION 5-01630.0 (COMPLETE)		PROJECT: LPG-CIQUENAS DATE PRINTED: 4-DEC-95	PAGE 2B
SAMPLE NUMBER	ELEMENT TA TÍ Zr UNITS PPM PCT PPM			
BRDL-31	<10 0.16 3			

•;

*

. /

~

1994 - 19**9**5 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994

÷.,

	TE WOLF EXPLOR -01510.0 (OCM								UECI: CIÇ E PRIMISI		-95	PACE 2A	
Sample Numeer	<u>element</u> UNTIS	Ag PPM	AgOL PPM	Cu PPM	CLOL FCT	Pb PPM	Zn PPM	Mo PPM	Ni PPM	Co PPM	bo MRR	Bi PPM	As PPM
R2 T2-C R2 T3-A		5.1 0.2		263 0 82		47 8	6027 220	18 11	9 10	5 2	219.8 2.8	ব্ ব	থ থ

*i*5 22:59:47

...,

	THE WOLF EXPLOR -01510.0 (COM								uect: Ciç E Priniei		-95	PAGE 2B	•
Sample Number	ELEMENT UNITIS	Sb PPM	Fe PCT	Mn PPM	Te PPM	Ba PPM	CI PRM	V PRM	Sn PPM	. W PPM	Ia PPM	Al PCT	Mg PCT
R2 T2-C R2 T3-A		ও	1.09	1125 206	⊲ 0 ⊲0	179 50	199	8 14	<0 <0	<0 20	7 17	0.46	0.05

£ 23:00:14

•••

												, 19 ³⁴ 94	
	E WOLF EXPLOR -01510.0 (COM								UECT: CIQ E PRINIEL		95	PAGE 2C	
Sample Number	ELEMENT UNITS	Ca RCT	Na PCT	K FCT	Sr PPM	y PPM	Ga PPM	Li PFM	ND PPM	SC PPM	Ta PFM	Ti RT	Zr PPM
R2 T2-C R2 T3-A		4.45 0.23	⊲0.01 0.06	0.18 0.20	125 11	7 3	8 8 8	2 5	0 0 0	00	⊲ 0 ⊲0	<0.01 <0.01	⊲ 1

REPORT: V95-01510.0 (COMPLETE)

CLIENT: WHITE WOLF EXPLORATIO REPORT: V95-01510.0 (COMPLEI						CIQUENAS VIED: 14-NOV-	95 PA	Ge 1a	
	Ag AgOL FM PRM	Ou OuOL PPM PCT	Pb PPM	Zn PPM	Mo N PEM PE		Od PPM	Bi PPM	As FFM
R2 DAD-1 Dav (muss) >5(R2 CABE-1 Gabe French >5(R2 CABE-2A Gabe 2 adir 37		155 1591 509 215 47	804 1654 8137 5148 1553	409 1941 19169 2620 567	21 1 23 1 23 1 26 1 14 1	9 18 0 4	2.2 15.2 367.5 13.0 4.9	16 111 17 7 ≪5	<5 351 137 43
R2 CABE-5B Gasse 5 adii 22 R2 CABE-5C (upper) 1 R2 CABE-6A 12 R2 CABE-6B Gass War 24	.9 .0 .4 .2 .1	85 12 128 233 22	8120 116 6628 8430 287	19273 265 1238 10190 665	14 1. 11 1 16 1. 21 1	4 26 1 3 5 2	260.5 2.1 11.2 111.2 1.6	7 ব্ ব্ ব্ ব্ ব্ ব্ ব্ ব্ ব্ ব্ ব্ ব্ ব্	324 15 107 350 <
R2 TRI-C (R2 TRI-D 14 R2 TRI-E 2	.2 .5 .2 .5 .4	5 54 29 1527 23	81 79 137 14 50	57 204 14 259 47	18 1 13 26 1 29 1 27 1	8 11 9 ⊲ 7 36	0.3 ⊲0.2 0.2 0.8 0.2	ব্ট ব্য 172 33 7	^ ^ ^ ^
R2 TRI-H (R2 TRI-I N of good trench. 45 R2 TRI-J CAUS VA AV. partal (.4 .4 .6 .7 .4	23 16 82 9 211	15 11 125 32 >10000	100 12 770 60 567	74 1 16 1 22 2 6 29 1	5 1 1 11 7 8	1.1 <0.2 33.8 0.3 1.3	9 9 9 9 9 9	V V 19 V 27
R2 11RI-M 2 R2 11RI-N 0	.0 .9 .3 .2 .9	21 267 63 9 196	1043 1351 39 45 >10000	160 1041 24 27 4412	91	3 0 1 8 2	0.3 5.8 ⊲0.2 ⊲0.2 27.5	⁶ ଏ ଏ ଏ ଏ ଏ ଏ	% የ ለ ለ ለ ለ ለ ለ ለ ለ ለ ለ ለ ለ ለ ለ ለ ለ ለ ለ
R2 TRI-Q 2 2 2 2 30 4 30 4 50 R2 TRI-R " 4 R2 TRI-S 11 R2 TRI-T 5	.0 140 .4 .2 .8	398 85 524 13 10	9491 2021 363 207 86		32 1 27 1 166 1 405 2 18	7 1 0 14	234.2 4.4 1.2 0.3 ⊲0.2	16 <5 21 123 7	392 35 マママ
R2 TRI-W 3 R2 TI-A 3 R2 TI-B 6	.8 .0 .1 .0	95 19 15 303 551	137 149 41 12 17	110 49 33 60 34	33 1 19 1 13 1 231 23 23 2	0	9:2 9:5 9:3 9:2 9:2	381 11 <5 19 10	27 115 マママ
R2 TI-F R2 TI-F T2-A T2 Trench 31	.0 .6 > .8 .1 .5	798 20000 2.0 147 3358 1073	14 28 15 303 76	25 122 117 7559 3860	15 1 8 1 15 1 42 1 21 1	2 10 3 17	0.2 5.0 <0.2 89.7 41.1	8 5 7 77 9	00000

, 95 ZZ:58:06

-

-74.--

	JENF: WHFIE PORT: V95-0									JECT: CIQ E PRINIED		95 :	PAGE 1B	
	MPLE MEER	ELEMENT UNITS	Sd PPM	Fe PCT	Mn PPM	Te PFM	Ba PPM	Cr PRM	V PRM	Sn PPM	W PPM	la PPM	Al PCT	Mg FCT
R2	ADIT-1		7	>10.00	1436	15	28	104	20	2 0	Q0	15	0.70	0.46
R2	DAD-1		4	0.66	. 147	⊲0	14	262	3	2 0	Q 0	Þ	0.11	0.02
	CABE-1		ব	8.70	222	⊲0	8	252	々	2 0	Q 0	タ	0.19	0.02
	CABE-2A		4	4.05	1037	⊲0	50	158	13	2 0	<20	11	0.81	0.17
R2	CABE-5A		4	1.89	1183	⊲0	43	203	15	Q 0	∕20	12	0.89	0.30
	GABE-58		4	6.36	1158	⊲0	13	178	4	<20	<20	. 3	0.47	0.15
	CABE-5C		4	0.56	1561	⊲0	15	207	4	<20	<20	່ 5	0.37	0.05
	CABE-6A		\$	2.95	95	⊲ 0	18	302	3	<20	Q 0	2	0.27	<0.01
	CABE-6B		\$	6.64	165	4 0	22	251	4	<20	Q 0	d 1	0.27	0.01
R2	TRI-A		ব	3.48	1465	⊲0	74	115	23	Q 0	Q 0	13	1.78	0.68
	TRI-B		ব	0.40	198	⊲0	10	340	3	Q 0	<20	4	0.09	0.04
	TRI-C		4	3.40	1865	<10	23	86	55	Q 0	$\triangleleft 0$	9	2.55	1.97
	TRI-D		4	0.39	245	$\triangleleft 0$	18	341	2	<20	20	4	0.07	0.03
	TRI-E		\$	>10.00	1708	34	7	47 -	15	33	Q 0	55	1.08	0.46
R2	TRI-F		ব	2.41	378	⊲0	109	281	4	Q 0	Q 0	2	0.28	0.17
R2	TRI-G		ব	3.01	343	⊲0	44	267	11	Q 0	81	6	0.86	0.35
	TRI-H		ব	0.69	80	⊲0	102	347	. 2	2 0	<20	4	0.07	⊲0.01
R2	TRI-I		4	4.43	117	25	16	346	4	Q 0	20	る	0.24	0.02
R2	TRI-J		ব	2.48	955	⊲0	378	80	31	Q 0	<20	13	1.55	1.17
R2	TRI-K		ব	5.57	94	⊲0	33	205	8	2 0	Q 0	3	0.34	0.03
	TRI-L		ব	4.06	581	⊲0	26	144	17	Q 0	Q 0	5	0.70	0.47
	TRI-M		4	0.41	5046	⊲0	60	35	4	Q 0	Q 0	32	0.26	0.05
	TRI-N		4	1.22	214	⊲0	32	153	20	<0	2 0	7	0.49	0.13
	TRI-0		4	0.76	270	⊲0	42	169	8	<20	Q 0	19	0.79	0.19
R2	TRI_P		20	3.27	89	⊴0	10	248	3	2 0	Q 0	4	0.03	<0.01
	TRI-Q		~ 92	>10.00	62	d 0	7	252	4	<20	Q 0	1	0.10	⊲0.01
	IRI-R		ব	1.62	65	⊲0	82	308	1	<20	Q 0	9	0.40	0.01
	TRI-S		4	5.45	1884	⊲0	37	83	83	Q 0	2 0	19	2.70	1.33
	TRI-T		4	0.60	64	⊲0	6	406	3	<20	2 0	4	0.09	⊲0.01
R2	TRI-U		ব	3.13	213	40	46	105	13	Q 0	Q 0	12	0.66	0.15
	TRI-V		ব	2.75	205	⊲0	66	298	7	<20	< 0	6	0.52	0.03
R2	TRI-W		ব	2.99	851	d 0	70	194	10	Q 0	2 0	14	1.01	0.03
	TI-A		4	2.10	805	⊲0	78	163	16	<20	2 0	5	0.98	0.63
	TI-B		4	>10.00	205	35	309	32	34	31	<20	38	0.84	0.28
R2	TI-C		ব	>10.00	204	1 0	13	188	13	2 0	Q 0	3	1.07	0.51
	TI-D		ব	5.93	231	1 0	15	136	7	Q 0	2 0	З	0.72	0.27
	TI-E		ব	1.78	1156	⊲9	354	115	19	Q 0	2 0	16	1.32	0.65
	TI-F		ব	4.53	1282	<10	88	71	73	Q 0	Q 0	13	2.18	1.85
	T2-A	~	- ব্য	4.32	250	⊲0	28	168	11	2 0	2 0	2	0.88	0.35
	T2-B		্ব	4.04	432	40	27	130	13	Q 0	Q 0	7	1.07	0.65

- 4

,*1*5 22:58:44

van: •

and a second and a

CLIENT: WHITE REPORT: V95-0									JECT: CIQ E PRINIED		95	PAGE 1C	
Sample Number	ELEMENT UNITS	Ca PCT	Na PCT	K FCT	Sr FFM	y PPM	Ga PRM	Li PPM	ND FFFM	SC PFM	Ta PFM	Ti RT	Zr PFM
R2 ADIT-1		1.56	⊲0.01	0.04	119	2	Q	7	2	ব	⊲0	0.02	4
R2 DAD-1		0.08	⊲0.01	0.02	5	Ā	2	Ā	Ā	\$	$\triangleleft 0$	<0.01	Ā
R2 CABE-1		0.20	⊲0.01	0.13	8	Ā	Q	Ā	Ā	\$	<10	<0.01	4
R2 CABE-2A		0.20	0.01	0.35	11	6	Q	6	4	4	⊲0	<0.01	4
R2 CABE-5A		0.17	0.02	0.36	11	6	Q	6	4	ব	⊲0	⊲0.01	4
R2 CABE-58		C.76	⊲0.01	0.18	24	2	Q	6	4	ব	⊲0	⊲0.01	4
R2 GABE-5C		2.04	⊲0.01	0.19	30	2	Q	2	4	4	$\triangleleft 0$	<0.01	4
R2 CABE-6A		0.02	⊲0.01	0.19	4	4	Q	4	4	4	⊲0	<0.01	Q
R2 GABE-68		0.03	0.01	0.21	9	4	Q	4	4	4	⊲0	⊲0.01	4
R2 TRI-A		0.72	0.06	0.33	107	5	Q	18	4	4	⊲0	0.03	4
R2 TRI-B		0.02	⊲0.01	0.01	3	٩	0	1	d	ব	⊲0	⊲0.01	⊲,
R2 TRI-C R2 TRI-D		4.51	<0.01	0.12	157	6	5 A	42	4	6		0.13	1
R2 IRI-E		0.32 1.45	⊲0.01 ⊲0.01	<0.01 0.03	9 25	2	0 0 0	1	⊲ 2	র হ	4 0 ⊲0	<0.01 0.02	۵.
R2 TRI-F		0.72	<0.01 <0.01	0.03	31	4 2	2 V	4 3	ړ ک	00	₫ 0	<0.02 <0.01	2 Q
						2		J	1		~10		~
2 TRI-G		0.46	0.02	0.36	24	4	Q	7	4	4	⊲0	⊲0.01	4
R2 TRI-H		0.03	⊲0.01	0.02	3	\triangleleft	Q	4	4	. <	⊲0	⊲0.01	\triangleleft
R2 TRI-I		0.56	⊲0.01	0.15	9	1	Q	4	4	4	$\triangleleft 0$	⊲0.01	4
R2 TRI-J		4.33	0.02	0.38	192	8	Q	17	々	ব	⊲0	⊲0.01	\triangleleft
R2 TRI-K		0.05	0.03	0.22	108	1	4	4	4	4	⊲0	<0.01	4
R2 TRI-L		0.12	0.04	0.18	13	4	Q	8	4	4	⊲0	⊲0.01	م ب
R2 TRI-M		>10.00	0.02	0.12	1303	2	Q	2	d 1	5	⊲0	⊲0.01	2
R2 TRI-N		0.59	0.08	0.09	48	6	00	2	Ø 1	5	<0> </td <td>0.09</td> <td>3 2</td>	0.09	3 2
R2 TRI-0		1.56	0.07	0.21	4 6	2	8 8 8	6	∀	5	<0	0.03	√ √
R2 TRI-P		0.06	⊲0.01	0.01	16	4	Q	2	4	ব	⊲0	⊲0.01	4
R2 TRI-Q		0.11	⊲0.01	0.08	5	4	Q	4	1	ব	⊲0	<0.01	4
R2 TRI-R		0.06	0.02	0.29	5	4	Q	6	4	ব	$\triangleleft 0$	⊲0.01	2
R2 TRI-S		1.17	0.05	0.84	34	12	Q	47	1	6	$\triangleleft 0$	0.18	Þ
R2 TRI-T		0.02	⊲0.01	0.04	2	4	Q	4	4	4	$\triangleleft 0$	⊲0.01	4
R2 TRI-U		0.24	0.06	0.25	34	3	Q	4	4	ব	⊴0	0.10	4
R2 TRI-V		0.11	0.02	0.30	30	1	Q	2 1	4	ব	⊲0	0.02	Ø
R2 TRI-W		0.04	0.03	0.83	110	1	Q	1	4	ব	$\triangleleft 0$	0.08	2
R2 TI_A		1.58	⊲0.01	0.39	79	4	2	9 5	4	4	$\triangleleft 0$	<0.01	1
R2 TI-B		0.27	⊲0.01	0.37	32	4	2	5	2	4	⊲0	<0.01	4
R2 TI-C		0.05	0.02	0.32	10	1	Q	9	1	4	⊲0	⊲0.01	4
R2 TI-D		0.33	0.01	0.29	12	3	Q	6	4	\$	⊲0	<0.01	< <
R2 TI-E		1.32	0.02	0.37	53	10	Q	13	4	4	⊲0	<0.01	1
R2 TI-F	-	2.56	0.02	0.34	68	9	Q	42	4	6	⊲0	0.02	1
12-A		0.09	0.02	0.22	8	2	Q	7	4	0	⊲0	<0.01	1
2 T2-B		-0.17	0.02	0.30	5	5	Q	10	4	ব	$\triangleleft 0$	⊲0.01	4
			•										

11/14/95 13:39:24 (604) 985-1071->

.

(: |

. 494. SV - - - - -6846699626

CLIENT: WHITE WOLF EXPLORATION REPORT: V95-01510.4 (COMPLETE)

PROJECT: CI	iquenas
DATE PRINE	D: 14-NOV-95

PACE 1

SAMPLE NUMBER	ELEMENT UNITIS	WC-150 CM	WI+150 g	Au-150 Opt	Au+150 OPT	Au Tot. OPT
RW ADIT-1		187.8	32.67	⊲0.001	⊲0.01	⊲0.001
RW DAD-1		270.8	55.29	0.001	0.07	0.013
RW CABE-1		165.1	47.44	0.082	0.05	0.076 -
RW CABE-2A		189.2	50.06	0.018	0.02	0.018
RW CABE-5A		155.0	14.53	0.001	0.02	0.003
RW CABE-5B		159.1	83.10	0.010	0.01	0.008
RW CABE_5C		175.8	53.18	0.003	⊲0.01	0.003
RW CAEE-6A		124.2	63.12	0.006	0.01	0.007
RW CABE_6B		153.5	61.01	0.005	0.01	0.005
RW TRI-A		112.4	50.51	<0.001	0.01	0.002
RW TRI-B		166.7	53.56	⊲0.001	⊲0.01	⊲0.001
HW TRI_C		184.6	63.24	⊲0.001	⊲0.01	⊲0.001
RW TRI-D		126.0	54.83	0.002	⊲0.01	0.003
RW TRI-E		114.4	59.89	⊲0.001	⊲0.01	⊲0.001
W TRI-F		169.8	58.07	0.002	⊲0.01	0.001
W TRI_G		110.8	40.77	⊲0.001	0.01	0.002
W TRI-H		167.2	36.56	⊲0.001	⊲0.01	<0.001
W TRI-I		113.6	51.59	0.233	0.42	0.292
W TRI-J		217.0	26.18	0.001	⊲0.01	0.001
RW TRI_K		69.8	41.18	0.004	⊲0.01	0.003
RW TRI-L		141.6	7.73	0.011	⊲0.01	0.011
RW TRI-M		51.0	65.77	0.007	⊲0.01	0.003
W TRI_N		152.5	75.83	<0.001	⊲0.01	0.002
W TRI-0		135.2	47.74	<0.001	⊲0.01	⊲0.001
rw IRI-P		274.7	32.74	0.001	0.01	0.003
RW TRI-Q		136.2	52.02	0.018	0.02	0.018
RW TRI-R		208.8	27.82	0.001	⊲0.01	0.001
RW TRI_S		183.9	113.86	0.001	⊲0.01	⊲0.001
W TRI-T		97.5	63.85	<0.001	⊲0.01	⊲0.001
RW TRI_U		174.3	59.53	<0.001	⊲0.01	0.001
W TRI-V		131.7	24.83	0.007	⊲0.01	0.006
RW TRI-W		34.4	37.97	0.036	0.02	0.030
RW TI-A		118.9	86.19	0.021	0.02	0.023
₩ TI_B		135.9	66.50	0.013	0.02	0.014
₩ TI-C		129.8	17.24	0.008	⊲0.01	0.007
RW TI-D		229.9	62.94	0.028	0.02	0.028
V TI-E	~	147.4	36.54	0.001	0.01	0.002
N TI-F		198.2	74.52	0.011	0.01	0.012
FW T2-A		, 172.1	- 41.70	0.057	0.05	0.054
₩ 12_B		193.6	68.95	0.014	0.01	0.013

s 13:39:49

(604) 985-1071->

CLIENT: WHITE WOLF EXPLORATION REPORT: V95-01510.4 (COMPLETE) HOJECT: CIQUENAS DATE PRINTED: 14-NOV-95

PAGE 2

SAMPLE	<u>ELEMENT</u>	Wt-150		Au-150	Au+150	Au Tot.
NUMBER	UNITS	CM		Opt	OPT	OPT
RW 12-C		171.4	28.29	0.013	0.02	0.015
RW 13-A		116.6	60.34	⊲0.001	⊲0.01	0.002

 $\gamma \gamma j$

APPENDIX III

Geochemical Lab Report Soil Samples

•

Bondar Clegg Inchcape Testing Services		Geocomical Lab Report
IENT: WHITE WOLPHEXPLORATION PORT: V95-01352.0 (COMPLETE)	PROJECT: CIQ DATE PRINTED	
and the first sector was the sector and the sector of the	Li Nb Sc Ta Ti	.
MBER UNITS PPB PPM PPM PPM PPM PPM PPM PPM PPM PPM	PM PPM PPM PPM PCT	PPM
		_
BE L700E 8000+50N 11 < 2 18 20 148 3 9 8 < 2 < 5 22 < 5 1.94 529 <10 127 7 35 <20 <20 10 2.12 0.52 0.29 0.02 0.13 27 3 <2		
BE L700E 8000+75N 6 0.2 16 23 158 4 10 9 <.2 5 24 5 2.11 605 <10 127 8 39 <20 <20 10 2.16 0.56 0.31 0.02 0.15 29 3 <2 3 BE L700E 8100+00N <5 <.2 14 18 132 3 8 8 <.2 5 22 <5 1.92 359 <10 99 8 37 <20 <20 10 1.73 0.52 0.31 0.02 0.19 28 3 <2		
BE L700E 8100+00N <5 <.2 14 18 132 3 8 8 <.2 <5 22 <5 1.92 359 <10 99 8 37 <20 <20 10 1.73 0.52 0.31 0.02 0.19 28 3 <2 38 8 L700E 8100+25N 21 0.3 18 29 176 3 10 8 <.2 <5 29 <5 2.20 414 <10 138 8 37 <20 <20 10 2.37 0.56 0.32 0.02 0.20 40 3 3		
BE L700E 8100+50N <5 <.2 14 19 184 3 8 17 <.2 <5 20 <5 2.79 1351 <10 238 8 47 <20 <20 15 2.12 1.01 0.68 0.01 0.18 63 7 <2 3		
		2
BE L700E 8100+75N <5 0.9 11 335 158 3 9 7 <.2 5 20 5 1.86 341 <10 90 9 37 <20 <20 10 1.35 0.49 0.27 0.02 0.14 28 2 <2	13 ~1 ~5 ~10 0.00	
3E L700E 8200+00N <5 0.3 20 23 205 3 11 7 0.2 <5 28 <5 1.76 424 <10 126 8 29 <20 <20 14 1.68 0.36 0.48 0.02 0.12 40 8 <2 2		
3E L700E 8200+25N 14 0.6 54 25 149 3 10 10 <.2 <5 32 <5 2.48 666 <10 81 9 48 <20 <20 23 1.69 0.69 0.61 0.03 0.19 44 15 <2 2		
3E L700E 8200+50N 24 0.9 35 17 181 3 12 9 <.2 5 31 5 2.26 413 <10 87 10 40 <20 <20 17 1.95 0.54 0.37 0.03 0.15 34 10 <2 3		
3E L700E 8200+75N 7 0.8 47 19 126 3 10 9 <.2 <5 32 <5 2.22 374 <10 54 9 44 <20 <20 22 1.56 0.54 0.41 0.02 0.14 37 16 <2 2	1	
SE CTORE OZOUFTSM 7 0.8 47 17 120 5 10 7 X.2 3 52 25 2122 514 10 54 7 44 20 20 22 135 0.54 0.41 0.02 0.14 51 10 22 1		
BE L700E 8300+00N <5 1.6 133 34 182 4 14 8 2.8 <5 48 <5 2.28 661 <10 109 8 33 <20 <20 24 2.22 0.41 1.32 0.03 0.12 60 22 <2 3	38 <1 <5 <10 0.05	7
BE L700E 8300+25N <5 0.6 58 13 108 4 12 7 0.6 59 33 5 2.10 350 <10 73 11 36 <20 <20 21 1.66 0.47 0.63 0.03 0.15 41 14 <2 2		
3E L700E 8300+50N 16 0.4 15 16 250 2 10 8 0.6 <5 24 <5 1.99 553 <10 124 8 35 <20 <20 10 1.77 0.45 0.35 0.02 0.16 35 3 <2 1	10 CAN	
3E L700E 8300+75N 52 0.4 13 26 324 3 10 8 0.9 <5 16 <5 2.16 431 <10 120 10 40 <20 <20 11 1.57 0.58 0.29 0.02 0.16 31 2 <2 1	ತಿ ಕಡೆತು	
3E L700E 8400+00N <5 0.3 14 36 532 2 9 6 1.1 <5 14 <5 1.74 412 <10 160 7 31 <20 <20 9 1.87 0.44 0.21 0.02 0.14 30 2 <2 1		
		· ·
3E L700E 8400+25N 16 0.4 11 56 406 3 7 7 1.2 <5 21 <5 2.01 472 <10 123 7 38 <20 <20 10 1.60 0.58 0.35 0.02 0.24 38 3 <2 1	16 -1 -5 -10 0 00	. 7
3E L700E 8400+25N 16 0.4 11 56 406 3 7 7 1.2 <5 21 <5 2.01 472 <10 123 7 38 <20 <20 10 1.60 0.58 0.35 0.02 0.24 38 3 <2 1 3E L700E 8400+50N <5 0.5 16 74 365 3 8 9 0.4 <5 26 <5 2.22 504 <10 143 7 40 <20 <20 10 2.08 0.65 0.32 0.02 0.22 35 3 <2 1	en en an al data	
그는 것이 같아. 그는 것이 가지 않는 것이 집에서 가지 않는 것이 있는 것이 있는 것이 있는 것이 없는 것이 없는 것이 없는 것이 없다.		
3E L700E 8400+75N 42 0.7 22 136 493 4 10 10 2.4 <5 57 <5 2.47 903 <10 230 8 42 <20 <20 11 2.44 0.65 0.32 0.02 0.21 38 3 <2 1		
BE L700E 8500+00N 9 0.6 32 207 548 4 11 13 1.0 <5 58 <5 3.37 781 <10 234 9 59 <20 <20 13 2.44 1.02 0.51 0.01 0.27 42 3 <2 3		
3È L800E 7500+00N <5 <.2 14 20 224 3 10 8 <.2 <5 21 <5 1.83 482 <10 122 7 33 <20 <20 9 1.96 0.41 0.24 0.03 0.12 27 3 <2 1		10
	i	•
3E L800E 7500+25N <5 0.3 13 21 205 2 9 7 0.3 <5 14 <5 1.69 450 <10 116 7 29 <20 <20 10 1.81 0.37 0.29 0.02 0.12 28 3 <2		
JE L800E 7500+50N 16 0.3 13 15 148 2 8 8 0.2 <5 12 <5 1.88 512 <10 111 7 34 <20 <20 9 1.41 0.42 0.24 0.02 0.10 27 2 <2		
IE L800E 7500+75N <5 0.4 18 33 177 3 8 8 0.2 5 23 5 1.84 669 <10 131 7 29 <20 <20 11 1.96 0.40 0.32 0.02 0.10 43 4 <2 1		
HE L800E 7600+00N 6 0.4 19 30 192 3 10 8 <.2 <5 29 <5 2.17 580 <10 109 8 36 <20 <20 13 2.48 0.49 0.28 0.02 0.13 30 6 <2 2	20	
NE L800E 7600+25N 29 < 2 11 24 121 3 7 7 < 2 <5 18 <5 1.96 454 <10 161 7 30 <20 <20 9 1.94 0.42 0.20 0.02 0.11 38 2 <2 1	18 <1 <5 <10 0.05	5
IE L800E 7600+50N 12 0.2 11 22 102 3 8 7 <.2 <5 13 <5 1.85 263 <10 110 7 29 <20 <20 10 1.93 0.42 0.23 0.02 0.12 26 4 2 2		
IE L800E 7600+75N 15 < 2 12 31 111 3 7 8 < 2 <5 20 <5 2.16 397 <10 82 7 38 <20 <20 10 1.72 0.52 0.23 0.01 0.11 26 3 <2 1		
IE L800E 7700+00N 9 0.2 11 110 267 4 8 8 0.4 <5 18 <5 2.21 697 <10 134 7 34 <20 <20 12 2.47 0.50 0.33 0.01 0.13 43 4 <2 2		
JE L800E 7700+25N <5 D.3 12 46 242 4 8 8 1.1 <5 16 <5 2.21 1662 <10 367 8 30 <20 <20 12 2.11 0.56 0.56 0.01 0.12 101 4 <2 2		
IE LBOOE 7700+50N 65 <.2 12 24 126 3 8 7 <.2 <5 18 <5 1.89 562 <10 96 7 35 <20 <20 9 1.64 0.43 0.29 0.01 0.12 33 2 <2 1	14 <1 <5 <10 0.07	1

•

Geochemical Lab Report

ENT: WH	ITE WOLF	PLOR/	TION							U																• • •								PROJ	ECT:	CIQ	JENAS		
	5-01352.0																																				24-0CT-9	5 F	PAGE 4
						••••••	••••••									•••••		•••••	•••••		•••••	••••••	•••••	• • • • • • • • •			•••••	•••••			••••••		•••••						
PLE	ELEMENT	Au30	Áġ	Cu	Pb	Zn	Ńó	Ni	C	cd	Bi	Ás)	Sb	Fe	Йn	Te	Ba	Cr	V	Sn	W	La	ÁL	Mg	C	a N	а	ĸ	Sr	Y	Ga	Li	Nb	Sċ	Ta	Ti	Zr		
BER	UNITS		1.5.62		1000		2 dd 1		1.11				S. 199		1.7.1.				·		- 1 - C							CÌ	PPM I	PP M	PPM	PPM	PPM	PPM	PPM	PCT	PPM		
			: .																																				
e 1800e	7700+75N	24	0.7	17	99	230	3	10	ç	0.2	<5	. 37	<5	2.39	434	<10	70	7	40	<20 ·	<20	14	2.55	0.51	0.3	1 0.0	1 0.	10	29	6	2	19	1	<5	<10	ò.07	5		
E L800E	7800+00N														788																								
E L800E	7800+25N				1.5						1.1				340		. :		1981		- No - C		·					610								2 - 2 -			
E L800E	7800+50N	7	0.3	13	17	202	3	11	į	3 0.5	<5	22	<5	2.04	339	<10	94	8	36	<20	<20	11	1.76	0.44	0.2	<u>.</u> 6 0.0	2 0.	12	27	3	<2	27	<1	<5	<10	0.10	7		
E L800E	7800+75N	<5	0.3	13	12	93	3	8	į	3 <.2	-5	15	<5	2.12	286	<10	61	8	41	<20	<20	11	1.24	0.50	0.3	0.0.0	2 0.	12	27	3	<2	22	<1	-5	<10	80.0	6		
			. پېښې .	; 			ليبيب													÷	-			· · · · · ·	- <u>ê</u> m					÷		÷		<u></u>		<u>1911-191</u> 1911-1	,		
e l800e	7900+00N	<5	0.5	14	17	185	3	10	1	3 <.2	<5	20	<5	2.03	287	<10	109	8	36	<20	<20	10	1.97	0.46	0.3	2 0.0	2 0.	14	32	3	4	20	<1	<5	<10 /	0.09	8		
E L800E	7900+25N	11	0.6	15	22	225	4	11	Ś	0.4	<5	23	<5	2.16	523	<10	158	8	37	<20	<20	10	2.07	0.49	0.3	z o.o	2 0.	13	37	2	<2	19	<1	<5	<10	0.10	7		
E L800E	7900+50N				1.5		1.2	-			- 1. A		- 1 1 1 1		484		A& 3 1		S 6.		didat		-1 N.N.		- 2.	÷.,	2.2	2.97								1 2 4			
	7900+75N	9	0.3	20	15	91	2	8	Ś	.<.2	<5	25	<5	2.21	380	<10	55	7	45	<20	<20	14	1.35	0.66	0.3	7 0.0	2 0.	17	35	5	<2	14	<1	<5	<10	0.08	3		
	8000+25N	• •	5 .		بدن معد ا	** ****					1.00			<	1997,975		5,835				1128 -		° 125.				- 1920 1940	Y 12											
		h .	93	ς ΄							- 244	e e	<u>i</u> ter								<u></u>						1	19 A.											
E L800E	8000+50N	6	<.2	15	40	149	3	8	10	<.2	<5	20	ব্য	2.52	9 58	<10	186	7	40	<20	<20	11 :	2.22	0.66	0.47	7 0.0	1 0.	14	41	3	<2	24	1	<5	<10	0.07	3		
	8000+75N	<5	<.2	12	37	173	2	6		3 <.2	<5	19	<5	2.15	469	<10	89	7	40	<20	<20	10	1.68	0.57	0.2	9.0.0	2 0.	13	30	3	<2	18	<1	<5	<10, (0.08	. 2		
	8100+00N		1010	*****	- C.		20.90.00	~		· · · ·	- C. S.				541		1.5				- 20				- 5 - 5		- 50					- A .							
	8100+25N	<5	0.2	13	45	178	3	7		3 <.2	্ব্য	30	<5	2.04	646	<10	120	6	34	<20	<20	9 :	2.11	0.50	0.2	9 0.0	2 0.	12	32	3	<2	17	<1	<5	<10 i	80.0	4		
	8100+50N	25	0.3	14	47	222	3	8	10	0.5	<5	29	<5	2.32	910	<10	133	7	42	<20	<20	10	1.80	0.64	0.3	0.0	2 0.	15	33	3	<2	16	<1	<5	<10 i	0.07	2		
										2							성장											ĝĉ								s de pr			
E 1.800E	8100+75N	<5	0.3	14	37	288	3	8	ं	3 0.7	ব	25	ব্য	2.12	457	<10	102	8	39	<20	<20	11	1.76	0.55	0.2	9 0. 0	2 0.	16	32	3	<2	18	<1	<5	<10	0.09	4		
	8200+00N			÷		÷		÷		÷÷•••					662		****				••••							800 T								2.000			
	8200+25N	23	0.5	18	28	220	3	9	4	0.4	<5	31	<5	2.31	579	<10	133	9	41	<20	<20	12	1.93	0.59	0.3	3 0.0	2 0.	16	35	3	<2	18	<1	<5	<10 i	0.10	7		
	8200+50N		- 52 -		1.00		- Y 2 3 3		- 11-22	21	- 10.34	÷	- 333.43	•	547		4 X.J		19 J.		. 222 C				- S AN			88 -								- 2 A			
	8200+75N				11.0		12.14	:	. ÷	: ·	1.09		1.140		415		24.25		- 10 P		12.20		s 16.1		 32. 		2011	. A.		· •		2.012		2.42.3		5. w.z.s.	,		
							<u> </u>		2														4384		<u>.</u>	84	78	- 		2. <u>7</u> 2	-	2				Ē.		•	
F 1800F	8300+00N	<5	< 2	11	16	66	2	7			<5	8	<5	1.69	285	<10	59	8	31	<20	<20	11	1.35	0.44	0.2	÷ 0.0	2 0.	16	24	3	<2	18	<1	<5	<10	0.10	4		
	8300+25N				5.		. 1.8						237		275		1.5.7		- 6 5 -		2 X A 4		A. 25.0		- <u>6</u> - 64		22-	6 X. C.		÷ .		24		1.0.1		5 (S. 2)			
	8300+25N				2		- 62, 62			5	1.16		1.364		275		11527		1.000		933 A		8.12.2		- 21 338		- 22.5	w				. X.		1.0		51.55			
	8300+75N_		1.15				- NA 1999		- 2 J.A	84					20220		- 2020 - P		2020.eru)		2000-1		91.0057		- 3 År			28 C				· .		1 N		de sade	1		
	8400+00N		- X 1 X 1								11.20				285	•							C - C - E					900 W	•	•					• • •	<u> </u>			
: LOUUE	0400700N	0	0.5	12		110		,		``. `	20		. Č.	1.72		10		'	- J J 	~20	~2U	,		0.40	. 0.20		20.	25	52	2	5		۰.						
- 1 8005	B/ 00 - 25N	Æ		11	<u></u>		ું							1 74	261	-10	20	0	74	~20	-20	10	1 07	0.30		(n n	1 0	1.2	77		~2	A	-1		-10		E		
	8400+25N	-	. 25		1.5		44.3		1.11.1		- CU 82	Č.	-8686		261		- S. S		0-0560 C		en e		d 1806 -		1.		- 20	6 X - 1		5.25						de la cara			
	8400+50N						- 1 A.				1.1.1.		- 6 CB- 5		567		5.1 5		11.1				 5.57 		1 560		- 21 to	k											
	8400+75N		100		1.22		1000	ć	- 200		- 122				516		2.2.8		- 244		222	_	1 12		1.1		. 85 t.	22		- 2°				1.01		S. A.A.			
	8500+00N				1.5	, . · · ·	÷.				1.1				525		2.021																		_		4		
E 1900E	7500+00N	<5	<;2	15	14	111	2	10		s <.2	3	25	<2	1.98	297	<1U	102	8	54	<20 ·	20	9	1.95	0.41	0.2	1 0.0	2 0.	14	0	2	5	14	<1	\$	<10 (0.09	9		

Geochemical Lab Report

	HITE WOLF							-																								CT: C Print		ENAS 24-0ct-95	PAGE	E 5
MPLE MBER		AU30 Ag PPB PPM		- 5. SV		1.665		- 333		-200 T		2.1		s a sá	1.10						·· .	Mg Pct		Na PCT			· · ·			ND PPM F						
3E L9008	7500+25N	45 <.2	14	18	177	3	12	8 0	.3	<5	19	5 1.	.99	775 <1	0 18	59	33	<20	<20	9	1.96	0.47	0.35	0.02	ö.13	35	2	<2	17	1	ج <	10 0.	.09	5		
3E L900E	7500+50N	<5 <.2	23	20	.146	3	10	9 0	.3	ব	20	52.	24	718 <1	0 17	19	40	<20	<20	9 2	2.03	0.58	0.34	0.02	0.16	34	3	<2	17	1	<5 <	10 Ó.	.09	6		
3E L9008	E 7500+75N	1 <5 0.3	ି 14	27	142	3	8	8 <	.2	ক_	20	5_1.	.74 👷	468 <1	0 12	4 6	28	<20	<20	10	2.08	0.37	0.34	0.02	0.11	. 30	4	.<2_	21	_1_	<5 <	10_0.	08	6		
3E L9008	e 7600+25N-	* <5 <.2	16	17	119	3	9	9 <	.2	ব	18	5 2.	.11	983 <1	0 16	9	34	<20	<20	10	1.79	0.54	0.38	0.02	0.16	36	3	<2	17	1	<5 <	10 Ö.	08	3		
3E L900E	E 7600+50N	<5 0.5	16	11	- 79	2	9	8 <	.2	<5	12	5 1.	.82	218 <1	0 5	8 9	30	<20	<20	11	1.60	0.37	0.34	0.03	0.14	25	4	2	21	1	<5 <	10 Ó.	09	7		
3E L900E	7600+75N	6 0.6	29	16	93	3	8	8 <	·.2	<5	21	5 2.	.03	427 <1	08	4 7	34	<20	<20	15	2.03	0.45	0.41	0.02	0.17	31	11	<2	29	<1	<5 <	10 0.	08	8		
3E_L900E	7700+00N	<5 0.3	12	13	98	3	7	7 <	.2	<5	9	5 1.	83	459 <1	0 119	2 5	32	<20	<20	8	1.63	0.42	0.26	0.02	0.17	27	3	<2	14	<1	<5 <	10 0.	07	4		
IE L900E	7700+25N	<5 0.3	: 15	12	70	3	8	- 7 <	.2	<5	13	5 2.	07	338 <1	0 7	7 7	39	<20	<20	11 '	1.66	0.56	0.31	0.02	0.18	28	5	<2	22	<1	<5 <	10 0.	09	3		
3E L900E	7700+50N	<5 0.3	13	12	81	2	7	7 <	.2 °	<5	15 🖣	5 1.	91	326 <1	08	2 7	35	<20	<20	10	1.78	0.51	0.26	0.02	0.17	26	4	2	18	<1	<5 <	10 0.	09	5		
3E L900E	7700+75N	6 0.3	15	20	112	3	9	9 <	.2	<5	19	5 2.	.29	411 <1	0 18	2 6	37	<20	<20	9 2	2.69	0.55	0.27	0.02	0.17	31	3	4	23	<1	<5 <	10 0.	07	5		
3E L9008	e 7800+00n	<5 0.2	11	13	91	3	8	8 <	.2	<5	9	5 1.	97	387 <1	0 11	8	35	<20	<20	10	1.67	0.53	0.27	0.02	0.16	32	3	<2	15	1	ও <	10 Ó.	09	4		
3E L900E	E 7800+25N	1 -52	. 11	14	109	3	9	8 <	.2	<5	12	5 1.	93	405 <1	0 14	1. 9	33	<20	<20	10 2	2.00	0.47	0.24	0.02	0.14	28	3	<2	16	<1	<5 <	10 Ö.	09	6		
3E L900E	= 7800+50N ⁻⁵	≯-<5 <.2	11	15	120	4	8	8 <	.2	<5	12 🔮	51.	.99	793 <1	0 177	2 8	34	<20	<20	9	1.95	0.52	0.33	0.02	0.15	37	2	<2	20	<1	<5 <	10 0.	08_	3		
3E L900E	e 7900+00N	<5 0.2	13	10	107	3	8	8 <	.2	⊲5	11	52.	.05	539 <1	0 18	5 8	37	<20	<20	9	1.63	0.60	0.35	0.01	0.18	28	3	<2	15	1	<5 <	10 0.	07	1		
3E L9008	E 7900+25N	<5 <.2	11	10	110	3	8	8 <	.2	\$	10	51.	94	625 <1	0 14	88	34	<20	<20	8	1.57	0.53	0.22	0.01	0.15	26	2	<2	15	<1	<5 <	10 0.	07	2		
3E L900E	5 7900+50N	.6 <.2	12	10	103	3	8	8 <	.2 ⁸	~ 5	9	5 1.	91	545 <1	0 139	, ,	33	<20	<20	9	1.66	0.47	0.20	0.01	0.15	26	2	<2	13	<1	ক <	10 0.	07	3		
3E L900E	E 7900+75N	<5 0.3	. 11	15	111	3	8	7 <	.2 🦉	5	8	5 1.	77	458 <1	0 15	5 7	25	_<20	<20	8	1.78	0.46	0,19	0.02	0.15	29	2	<2	15	<1	ক <	10 0.	07	3_		
3E L9008	8000+00N	<5 0.2	10	13	89	2	7	8 <	.2	<5	9	5 1.	88	518 <1	0 90	5 8	34	<20	<20	8	1.37	0.57	0.29	0.02	0.18	28	2	<2	19	1	<5 <	10 O.	08	2		
3E L9008	E 8000+25N	<5 <.2	16	10	130	3	7	8 <	.2	<5	8	52.	.09	700 <1	0 13	79	38	<20	<20	8	1.48	0.72	0.32	0.01	0.16	35	3	<2	20	<1	<5 <	10 0.	08	<1		
3E L9008	e 8000+50N	<5 0.4	14	14	117	2	10	7 <	.2	<5	13	5 1.	76	359 <1	0 14	88	31	<20	<20	10 2	2.01	0.41	0.26	0.02	0.14	32	3	2	14	<1	<5 <	10 0.	09	12	. .	
E L900E	E 8000+75N	<5 0.3	, 12	13	109	3	10	8 <	.2	<5	12	5 1.	8 5	297 <1	0 110) 9	31	<20	<20	9	1.93	0.41	0.24	0.02	0.11	30	3	3	14	<1	<5 <	10 0.	09	.7		
E L900E	8100+00N	<5 0.3	13	16	144	2	9	7 <	.2	<5	15 🤻	5 1.	74	570 <1	0 14	5 8	25	<20	<20	9	1.73	0.40	0.28	0.02	0.11	37	3	<2	14	<1	<5 <	10 0.	08	7,		
E 1900E	8100+25N	<5 0,8	10	15	117	2	7	6 <	.2	<5	15	5 1.	51	593 <1	0 14	2 7	25	<20	<20	7	1.37	0.32	0.41	0.01	0.10	45	2	<2	12	1	<5 <	10 0.	07	4,		
E 1900E	8100+50N	<5 <.2	9	11	64	3	9	7 <	.2	<5	11 📲	5 1.	87	306 <1	0 82	2 9	33	<20	<20	9	1.60	0.43	0.21	0.02	0.15	24	2	<2	17	<1	<5 <	10 Ó.	10	6		
E 1900	8100+75N	<5 <.2	13	14	113	3	10.	8 <	2	ধ	17	5 2.	13	558 <1	0 147	9	36	<20	<20	10 2	2.14	0.52	0.29	0.02	0.17	32	3	<2	18	<1	<5 <	10 Ô.	09	4		
E 1900	e 8200+00 N	<5 0.2	14	12	113	Ž	8	9 <	.2 ³	<5	19	5 2.	16	377 <1	0 11	5 8	39	<20	<20	11	1.77	0.54	0.21	0.02	0.17	27	3	<2	15	<1 3	<5 <	10 Ö.	09	4		
IE L900	E 8200+25N	15 <.2	17	13	77	3	6	9 <	.2 [°]	<5	19	5 2.	27	469 <1	0 8	1 7	47	<20	<20	9	1.39	0.69	0.32	0.01	0.27	32	3	<2	13	<1	<5 <	10 0.	08	1		
	E 8200+50N	23 0.3	: 14	11	83	3	7	7 <	.2	<5	15	5 1.	94	377 <1	0 97	2 6	38	<20	<20	8	1.44	0.53	0.32	0.02	0.22	34	2	<2	12	<1	<5 <	10 0.	08	2		
	E 8200+75N	<5 <.2		÷ .		- C C		1.2.2.1.1		- X. C.	- N.	0.0	- 19	8888 · · ·		÷ .	1.1		10000		: X		1.19.1		X 25 -						÷		1.2	1		•
	E 8300+00N	<5 <.2			· ·	1.000				100		- A-C		XX6.32 * .	- 28.5	81 - E			30 X 2 f -		6 - 18 <i>al</i> -		2013 C		どくみんい		1.1						1.5	3		

										vic	es	3				l														Geo Lat Rej	b	emic t	al
EPORT: V95-01352	EXPLORAT	ION	-	<u> </u>			9		<u> </u>			••••••														• •			CT: CIG Printed	UENAS 1: 24-0	ст-95	PAGE	7
	ENT Au30 ITS PPB P				100			- 3 el 1		21266	Fe CT	Mini Te PPM PPM			12.0	sn k PM PPK			Mg PCT	Ca PCT			Sr PPM					SC PM P		Zr PPM			
ABE L1000E 8000+ ABE L1000E 8000+ ABE L1000E 8100+ ABE L1000E 8100+ ABE L1000E 8100+ ABE L1000E 8100+	75N <5 0 00N <5 0 25N <5 0 50N <5 0	.3 .6 .5 .4	10 13 14 15	27 235 82 541 26 148	2 3 3 3	10 9 10 8	7 0.9 8 3.9 8 0.2 9 <.2	9 <5 5 <5 2 <5 2 <5	9 22 21 14	<5 1. <5 2. <5 2. <5 2.	81 02 1 04 15	424 <10 470 <10 1085 <10 727 <10 559 <10 564 <10	114 204 152 124	10 8 8 8	32 < 33 < 35 < 38 <	20 <20 20 <20 20 <20 20 <20	10 9 10 10 10	1.56 1.90 1.93 1.79	0.38 0.48 0.52 0.58	0.25 0.27 0.35 0.23	0.02 0.02 0.02 0.01	0.12 0.12 0.14 0.15	32 37 42 31	333	<2 <2 <2 <2	11 15 15 16	<1 <1 <1 <1	<5 < <5 < <5 < <5 <	10 0.07 10 0.08	7 3 4 4			
ABE L1000E 8200+ ABE L1000E 8200+ ABE L1000E 8200+ ABE L1000E 8200+	25N <5 0 50N <5 0 75N <5 <	.3 .3 .2	12 13 11	15 192	3 3 3	9 11 7	8 <.2 9 <.2 7 <.2	2 <5 2 <5 2 <5	17 22 10	<5 2. <5 2. <5 1.	01 21 83 1	517 <10 299 <10 492 <10 1939 <10	103 127 298	9 11 7	33 <2 37 <2 32 <2	20 <20 20 <20 20 <20	9 10 7	2.03 1.96 1.73	0.41 0.50 0.53	0.21 0.25 0.59	0.02 0.01 0.01	0.10 0.13 0.13	23 28 61	3 3 2	3 <2 <2	20 16 22	1 1 <1	<5 < <5 < <5 <	10 0.09 10 0.09 10 0.06	5 4 2			
ABE L1000E 8300+ ABE L1000E 8400+ ABE L1000E 8400+ ABE L1000E 8400+ ABE L1000E 8400+ ABE L1000E 8400+	00n <5 0 25n <5 0 50n 14 0	.3 .3 1 .5 1	11 11 11	20 136	2 3 4	8 8 9	7 <.2 7 <.2 8 <.2	2 <5 2 <5 2 <5	6 13 16	<5 1.1 <5 1.1 <5 1.	57 81 79	415 <10 218 <10 587 <10 615 <10 548 <10	66 133 105	10 7 6	27 <2 32 <2 31 <2	20 <20 20 <20 20 <20	13 8 7	1.18 1.72 1.85	0.47 0.45 0.41	2.94 0.27 0.23	0.03 0.02 0.02	0.12 0.11 0.10	152 41 27	4 2 2	<2 <2 <2	22 16 16	<1 <1 1	<5 < <5 < <5 <	10 0.10	7 6 7			
;ABE L1000E 8500+1				16.124				2 5			ta ta subscription of the		※約124~2010年の日本の「「「「「「「」」」、「「」」、「」、「」、「」、「」、「」、「」、「」、「」、		38 ◀			2.31		0.21		0.12		2		21 21 21 21 21 21 21 21 21 21 21 21 21 2							
																										•. 	: :.						¥

CLIENT: WHITE WOLF EXPLORATION REPORT: V95-01353.0 (COMPLETE)

PAGE

PROJECT: CIQUENAS

DATE PRINTED: 20-OCT-95

SAMPLE	ELEMENT	Au30	Ag	Cu	Pþ	Zn	Mo) Ni	Co	o Co	l Bi	As	Sþ	Fe	Mn	Te	Ba	Cr	y y	Sn	W.	La	AL	Mg	Ca	Na	ĸ	. Sr	Y	Ga	Li	Nb	Sc	Ta	a Ti	Zr
UMBER	UNITS																																			
ABE L1100E	7500+00N	<5	0.4	14	22	248	1	9	8	8 <0.2	2 <	5	<5	1.83	599	<10	161	9	31	<20	<20	15	1.80	0.31	0.28	0.03	0.09	34	5	<2	13	5	<5	<10	0.08	11
ABE L1100E	7500+25N	<5	0.4	20	23	188	2	10	9	? <0.2	2 <5	10	<5	2.17	448	<10	152	10	38	<20	<20	17	2.06	0.43	0.31	0.03	0.12	29	6	4	22	7	<5	<10	0.10	12
ABE L1100E	7500+50N	ৰ্ব	1.4	31	39	214	3	10	9	9 <0.2	2 <5	17	<5	2.28	623	<10	190	9	39	<20	<20	20	2.30	0.44	0.40	0.03	0.14	34	12	: 4	49	12	-5	<10	0.09	<u>)</u> 12
ABE L1100E	7500+75N	<5	<0.2	16	39	201	1	8	Į	8 <0.2	2	i; 11	<5	2.03	565	<10	148	8	34	<20	<20	. 15	1.87	0.37	0.29	0.02	0.11	27	5	2	17	5	<5	<10	0.07	11
ABE L1100E	7600+00N	6	0.5	35	27	145	2	11	ç	? ⊲0.2	2 <	20	ব	2.27	591	<10	144	9	39	<20	<20	23	2.27	0.42	0.52	0.03	0.12	37	18	3	67	17	\$	<10	0.10	13
ABE L1100E	7600+25N	<5	<0.2	23	29	160	3	10	10	0.2	. <5	19	<5	2.44	520	<10	157	9	46	<20	<20	17	2.05	0.57	0.30	0.02	0.17	37	6	4	19	6	ব্য	<10	0.09	11
ABE L1100E	7600+50N	<5	<0.2	24		127			- 20.3	0 <0.2							• .				1.2.2.5		영양 가 다		SC 884		19 A A A		- 1 A M		1993				0.08	
ABE L1100E	7600+75N	<5	<0.2	27	28	196	1	10	10	0 <0.2	2 <5	26	<5	2.35	653	<10	186	9	43	<20	<20	: 15	2.04	0.54	0.36	0.03	0.16	42	5	4	18	5	ব	<10	0.10	12
ABE L1100E	7700+00N	6	<0.2	19	25	120	2	9	10	0.2	<	18	5	2.36	432	<10	130	8	45	<20	<20	17	2.23	0.52	0.32	0.02	0.15	34	6	3	18	6	<5	<10	0.10	9
ABE L1100E	7700+25N	13	<0.2	13	13	72	1	6	1	3 ⊲.2	! <	8	<5	2.01	350	<10	78	7	44	<20	<20	14	1.27	0.49	0.35	0.02	0.14	31	5	<2	11	5	<5	<10	0.08	2
ABE L1100E	7700+50N	6	<0.2	11	14	88	1	6	. 8	3 <0.2	. <	6	<5	1.94	378	<10	87	6	41	<20	<20	12	1.23	0.52	0.36	0.02	0.14	33	4	<2	12	5	<5	<10	0.08	2
ABE L1100E	7700+75N	<5	<0.2	17	15	100	1	9	8	3 <0.2	. <	13	<5	1.91	337	<10	143	7	38	<20	<20	14	1.85	0.43	0.28	0.02	0.13	28	5	2	14	5	<5	<10	0.09	13
ABE L1100E	7800+00N	<5	<0.2	28	27	104	3	11	10	0.2	<	27	<5	2.27	310	<10	170	8	39	<20	<20	19	2.65	0.42	0.32	0.03	0.14	- 38	10	4	26	10	<5	<10	0.11	18
ABE L1100E	7800+25N	7	<0.2	17	19	98	2	8	ç	, <0.2	<	11	<5	2.03	340	<10	138	7	38	<20	<20	14	1.98	0.42	0.31	0.02	0.13	31	5	2	16	4	<5	<10	0.09	11
ABE L1100E	7800+50N	69	<0.2	1 9	71	269	2	9	Ş	2 <0.2	<	12	\$ 5	2.20	574	<10	137	8	42	<20	<20	13	1.48	0.49	0.44	0.02	0.15	43	3	2	15	4	<5	<10	0.08	4
ABE L1100E	7800+75N	14	<0.2	18	17	94	2	8	8	3 <0.2	<	6	<5	1.81	283	<10	101	6	35	<20	<20	14	1.63	0.38	0.29	0.03	0.13	27	5	2	14	5	<5	<10	0.09	14
ABE L1100E	7900+00N	<5	<0.2	9	8	80	<1	6	(ś <0.2	2 <	6	<5	1.72	336	<10	93	5	35	<20	<20	12	1.24	0.42	0.33	0.02	0.10	38	4	<2	12	4	<5	<10	0.06	2
ABE L1100E	7900+25N	34	<0.2	12	11	77	' 1	6	. 8	B <0.2	<	8	<5	2.02	361	<10	76	6	44	<20	<20	13	1.27	0.52	0.35	0.02	0.13	35	4	<2	13	4	<5	<10	0.08	4
ABE L1100E	7900+50N	<5	<0.2	13	12	115	1	8	8	8 <0.2	<u> </u>	10	<5	1.96	507	<10	113	7	41	<20	<20	13	1.48	0.49	0.32	0.02	0.12	33	4	2	14	4	<5	<10	0.08	5
ABE L1100E	7900+75N	8	<0.2	19	22	165	1	8	8	8 <0.2	2 <5	<5	ব	2.03	463	<10	123	8	38	<20	<20	14	1.90	0.42	0.36	0.02	0.09	36	5	2	17	5	ব	<10	0.09	8
ABE L1100E	8000+00N	19	<0.2	17	32	316	1	9	ç	<0.2	<5	<5	<5	2.37	492	<10	102	12	46	<20	<20	15	1.49	0.57	0.33	0.02	0.12	34	3	2	18	4	<5	<10	0.11	5
ABE L1100E	8000+25N	<5	<0.2	18	20	255	3	9	\$	~ 0.2	<5	<5	<5	2.20	541	<10	135	8	38	<20	<20	18	2.41	0.49	0.37	0.03	0.12	34	7	4	26	7	<5	<10	0.09	10
ABE L1100E	8000+50N	<5	<0.2	15	15	118	2	8	10	<0.2	<5	<5	<5	2.38	620	<10	122	8	45	<20	<20	15	1.82	0.69	0.36	0.02	0.15	39	. 4	3	20	5	<5	<10	0.07	3
ABE L1100E	8000+75N	13	<0.2	19	18	108	3	8	Ś	, <0.2	<5	13	<5	2.35	469	<10	121	7	45	<20	<20	13	2.05	0.55	0.33	0.02	0.15	35	4	4	16	3	<5	<10	0.08	4
ABE L1100E	8100+00N	<5	<0.2	14	35	185	2	. 8	3	3 <0.2	<5	11	<5	2.06	556	<10	136	7	37	<20	<20	13	2.19	0.46	0.29	0.02	0.13	33	4	- 4	19	4	ক	<10	0.07	6
ABE L1100E	8100+25N	<5	<0.2	19	38	219	3	9	Ş	> <0.2	<5	<5	<5	2.30	456	<10	116	9	42	<20	<20	18	2.47	0.49	0.31	0.02	0.13	31	7	4	21	7	<5	<10	0.09	10
ABE L1100E	8100+50N	<5	<0.2	12	38	148	- 1	7	1	B <0.2	<	<5	<5	2.17	677	<10	122	7	40	<20	<20	16	2.02	0.50	0.36	0.02	0.15	33	5	2	19	5	\$	<10	0.09	5
ABE L1100E	8100+75N	<5	⊲0.2	11	23	143	2	9	Į	8 <0.2	. <	<5	\$	2.16	437	<10	117	8	40	<20	<20	13	2.13	0.49	0.30	0.02	0.18	31	3	3	18	4	<5	<10	0.10	5
ABE L1100E	8200+00N	9	<0,2	11	13	134	1	8	ł	8 <0.2	. <5	8	-5	1.88	549	<10	119	7	38	<20	<20	12	1.45	0.44	0.37	0.02	0.16	36	4	<2	13	4	<5	<10	0.08	4
ABE L1100E	8200+25N	<5	<0.2	12	12	133	1	10	1	₿ <0.2	<	<5	<5	1.88	587	<10	140	9	37	<20	<20	15	1 56	0 30	0 31	0 02	0 12	41	1	2	13	4	5	<10	0.10	6

CLIENT: WHI																																			:T: C					
REPORT: V95	-01353.0	(COM	LETE)																•••••		•••••											DATE	ΕP	RINT	ED:	20-	OCT-95	PAGE	2
SAMPLE	ELEMENT	Au30	Ag	Cu	Pb	Zn	Mo	Ni	Co	Cd	Bi	As	Sb	Fe	Mr	a Te	Ba	Cr	v	Sn	W	La	AL	Mg	g (Ca	Na	ĸ	Sr	Ŷ	Ga	Li	Nb	s	ic T	a	Ti	Zr		
Number	UNITS	€\$ PPB	PPM	PPM	PPM	PPM	PPM	PPM	PM	PPM	PPM	PPM	PPM	PCT	PP	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PC	T P	ÇT I	PCT	PCT	PPM	PPM	PPM	PPM	PPM	PP	M PP	M	PCT	PPM		
GABE L1100E	8200+50N	<5	0.2	15	14	144	2	12	8	<0.2	<5	<5	<5	1.85	497	· <10	136	. 10	35	<20	<20	16	1.75	0.39	9 0.3	33 0.	.03	0.12	37	5	2	13	6	<	5 <1	0 0	. 10	11		
GABE L1100E																																								
GABE L1100E						142																																		
GABE L1100E	8300+25N	I <5	<0.2	21	23	144	2	9	9	<0.2	<5	<5	<5	2.12	738	<10	154	7	38	<20	<20	16	2.43	0.53	3 0.3	33 0.	.03	0.15	40	7	4	20	7	<	5 <1	0 0	.07	10		
GABE L1100E																																								
GABE L1100E	8300+75N	<5	<0.2	24	18	82	3	9	8	⊲0.2	<5	ৎ	<5	2.10	311	<10	123	8	37	<20	<20	14	2.69	0.45	5 0.3	36 0	.03	0.14	32	6	4	34	7	<	5 <1	0 0	.09	11		
GABE L1100E																																								
GABE L1100E					17																																			
GABE L1100E	8400+50N		<0.2			163																																		
GABE L1100E	8400+75n	<5	<0.2	11	17																																			
GABE L1100E	8500+00N	<5	<0.2	10	12	113	2	9	9	<0.2	<5	<5	<5	2.21	481	<10	103	9	41	<20	<20	15	1.77	0.56	5 0.2	28 0.	.02	0.14	36	3	3	17	4	<	5 <1	0 0	.09	4		
GABE L1200E	7500+00N	∣ <5	<0.2	15	39	108	3	8	9	<0.2	<5	7	<5	2.24	541	<10	135	8	42	<20	<20	15	2.35	0.45	5 0.3	30 0.	.01	0.10	29	4	5	19	5	<	5 <1	0 0	.09	6		
GABE L1200E	7500+25N	6 1	<0.2	16	37	157	3	9	9	<0.2	<5	11	<5	2.16	408	<10	133	8	41	<20	<20	15	2.20	0.44	4 0.2	26 0.	.02	0.10	23	4	3	17	4	<	5 <1	0 0	.08	5		
GABE L1200E	7500+50N	6	<0.2	11	21	102	1	8	7	<0.2	<5	10	<5	1.64	370	<10	117	6	34	<20	<20	11	1.43	0.33	3 0.2	28 0.	.02	0.10	28	3	<2	12	4	<	5 <1(0 0	.08	6		
GABE L1200E	7500+75N	11	0.3	12	20	105	< 1	9	6	<0.2	<5	14	<5	1.56	348	<10	123	6	31	<20	<20	10	1.52	0.29	9 0.2	21 0.	.02	0.08	25	3	<2	12	4	<	5 <1(0 0	.07	6		
GABE L1200E	7600+00N	<5	<0.2	12	19	116	1	9	6	<0.2	<5	7	<5	1.45	368	<10	122	6	28	<20	<20	11	1.45	0.27	7 0.2	25 0.	.02	0.11	30	4	<2	11	4	<	5 <10	0 O	.07	10		
GABE L1200E	7600+25N	<5	<0.2	12	21	106	1	7	7	<0.2	<5	8	<5	1.56	308	<10	95	6	32	<20	<20	12	1.26	0.28	3 0.1	18 0.	.02	0.09	20	3	<2	11	4	<	5 <10	0 0	.07	7		
GABE L1200E	7600+50N	<5	<0.2	11	27	119	2	7	8	<0.2	<5	5	<5	1.68	223	<10	70	6	35	<20	<20	12	1.52	0.30	0.3	300.	.02	0.07	25	4	<2	12	4	<	5 <10	0 0	.08	10		
GABE L1200E	7700+00N	8	<0.2	24	74	202	3	10	10	<0.2	<5	11	<5	2.24	423	<10	134	9	41	<20	<20	14	1.93	0.45	5 0.2	26 0.	.02	0.11	30	4	3	16	5	<	5 <1	0 0	.09	14		
GABE L1200E	7700+25N	25	<0.2	22	178	294	2	9	10	<0.2	<5	16	<5	2.33	978	<10	236	9	37	<20	<20	17	2.28	0.46	5 0.3	32 0.	.02	0.14	43	6	4	20	6	<	5 <1(0 0	.08	10		
GABE L1200E	7700+50N	7	0.2	18	79	164	2	8	8	<0.2	<5	10	<5	1.%	682	<10	175	7	33	<20	<20	16	2.12	0.36	5 0.3	31 0.	.02	0.10	32	7	4	20	7	<	5 <1(0 0	.08	11		
GABE L1200E	7700+75N	15	1.5	72	88	222	5	11	9	<0.2	<5	18	<5	2.27	516	<10	126	9	33	<20	<20	32	2.83	0.41	0.6	65 0.	.04	0.12	47	44	5	94	41	<	5 <1(0 0	. 10	25		
GABE L1200E	7800+00N	11	<0.2	26	68	203	2	9	9	<0.2	<5	12	<5	2.10	407	<10	129	9	36	<20	<20	23	2.14	0.42	2 0.3	33 0.	.03	0.13	37	13	2	49	13	<	5 <1(0 0	.09	12		
GABE L1200E	7800+25N	<5	<0.2	23	93								2.5				2.00		- 32.55		1.0.7		SS 20. 1. 20.		- 200200	0.00 i -		20 N S 20 -		- 50 au		1.2000			2.2		2,0000			
GABE L1200E	7800+50N				84		100									*	1.00000		5515		6.000		SS 2 35 2.		- 22.623	839C T		SC 1 SC - 1		- A.					A		6.635 1			
GABE L1200E	7800+75N	10	0.2	18	74	183	4	8	9	<0.2	<5	18	<5	2.31	557	<10	120	7	41	<20	<20	14	1.68	0.51	0.3	30 0.	01	0.14	28	3	2	18	4	<	5 5 <1(្ល័	.05	2:		
GABE L1200E					56						12200				10.000.000		10000		100006	× .	2121.2		 OCCUPY 			2002 - E		20 militar (Seco						1.32	6 Y	2012	2.000 M			
GABE L1200E					45										· · · · · ·				1.1 C 2000 L		- N. S.		1 2 2 3		22.55	2.52		21.5.1.1.1		120.0		o . e e				- 10 M	6 DO 101 - 1			
GABE L1200E					51																		1.1.1.1		10.000	2.50%		511 5												
GABE L1200E					64												- 1 A AL		1 10,000		- 000000 F		8 ° A ° F									- 2000 D			C 1		N 2 N			
UNDE LIZUUE	1300+138	00	-0.¢	21	04	200	2	,	10	-0.2	2.2	-		L.,O	502	10	is)	0	40	~20	~20	N N	6.11	0.53	, U.3	י בי.	02 (v. 14	27		2	<i>c</i> >	y	0	<iu< td=""><td><u>ب</u>و ر</td><td>. 10</td><td>12</td><td></td><td></td></iu<>	<u>ب</u> و ر	. 10	12		

chemical G Lab Report

	WHITE WOLF E																															PRO.	JECT	1: 010	UENA:	5	
REPORT:	v95-01353.0	(COM	PLETE)		•••••••••																	••••				•••••					DATE	E PR	INTED	: 20-	-OCT - 95	PAGE 3
SAMPLE	ELEMENT	F Au30	Ag	Cu	Pb	Zn	Мо	Ni	Co	Cd	Bi	As	ŞÞ	Fe	Mn	Te	Ba	Cr	V	Sn	Ŵ	La	Al	Mg	L Ca	n Na	a	K Sr	Y	Ga	Li	Nb	Sc	: Ta	Tì	Zr	
NUMBER	UNITS	S PPB	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PCT	PCT	PC	T PC	T PPM	PPM	PPM	PPM	PPM	PPM	I PPM	PCT	PPM	
GABE L12	, 00e 8000+00N	I <5	<0.2	18	35	124	3	8	8	<0.2	<5	<5	<5	1.93	765	<10	138	7	33	<20	<20	17	2.29	0.42	0.39	0.0	2 0.1	1 39	7	5	22	7	<5	5 <10	80.0	6	
GABE L12	00E 8000+25N	8 1	<0.2	24	45	156	4	10	10	<0.2	<5	19	<5	2.28	657	<10	153	9	41	<20	<20	17	2.32	0.50	0.29	0.0	2 0.1	2 29	6	5	19	6	<5	i <10	0.08	5	
GABE L12	00e 8 000+50N	I <5	<0.2	19	38	134	2	10	9	<0.2	<5	9	<5	2.34	456	<10	147	7	42	<20	<20	14	2.80	0.50	0.31	0.0	2 0.1	4 38	3	4	21	4	<5	5 <10	0.09	6	
GABE L12	00e 8000+75N	I <5	<0.2	17	30	152	1	7	9	<0.2	<5	14	<5	2.29	538	<10	151	7	40	<20	<20	13	1.80	0.52	0.32	0.0	1 0.1	1 42	3	<2	18	3	<5	i <10	0.05	2	
GABE L12	00e 8100+00N	I <5	<0.2	16	30	150	2	8	8	<0.2	<5	13	<5	1.98	814	<10	164	7	35	<20	<20	11	1.91	0.44	0.26	6 0.0	2 0.1	1 28	3	2	14	4	5	5 <10	0.06	4	
GABE L'12	00E 8100+25N	20	0.4	22	61	253	2	8	9	0.5	<5	15	<5	2.04	458	<10	128	7	38	<20	<20	15	1.87	0.47	0.24	0.0	2 0.1	1 26	.5	2	14	6	5	<10	0.07	8	
	ODE 8100+50						· · · ·		- 27		199		•		10.014		12/29		-322.5		X		1.000		-3.993		8						1.5		838J.	-	
	00e 8100+75N																								- 6.8 - 6									i <10			
GABE L12	00E 8200+00N						· · · ·		•						2022				- C. C. C. C.		1.111.1		- M.C. 13		- 16 H.M.B		- C	1 A 4	- 2.2		1.24.5			5 <10	- 200 - 100 - 1		
GABE L12	00e 8200+25)		- 1 P. + 36		1000												1.1.1.1				1994.3				- 91 S Q Z			2						5 <10	S - 201		
	00E 8200+50N		<0.2												20,255				2.20		22 ×		1.12		- 4,544°		0.00	•			- 22	-	200	5 <10	\$388.	-	
	00e 8200+75N		<0.2	11											· · ·								· ·		- X - 2 C						23			s <10	8,203	-	
	00E 8300+00N		<0.2														- C. C. L.				- 200 A						· · · ·						2.07	i <10	X X 233		
GABE L12	00e 8300+25N	I <5	<0.2	11	200														1.2211		50004		10.00		- 19 - G -						1.1			<10	- 69 Marco		
SABE L12	00E 8300+50N	19	<0.2	11	28	93	1	6	8	<0.2	<5	<5	<5	2.07	560	<10	116	. 7	40	<20	<20	12	1.35	0.53	0.26	5 0.0	2 0.2	2 25	3	<2	16	3	4	5 <10	0.07	2	
GABE L12	00e 8300+75N	6	<0.2	13	37	91	2	6	9	<0.2	<5	<5	<5	2.34	577	<10	117	8	46	<20	<20	14	1.64	0.63	0.33	5 0.0	2 0.2	2 31	3	2	19	4	-5	s <10	0.08	2	
GABE L12	00E 8400+00N	1 21	<0.2	17	368	193	4	7	11	<0.2	<5	12	<5	2.90	589	<10	100	8	49	<20	<20	23	2.26	0.68	0.32	2 0.0	1 0,2	2 29	7	3	23	7	<5	5. <10	0.07	4	
GABE L12	00E 8400+25N	1 7	<0.2	10	58	166	2	7	10	<0.2	<5	<5	<5	2,42	870	<10	176	8	43	<20	<20	16	1.72	0.62	0.43	0.0	2 0.2	4 31	5	4	18	5	<5	i <10	0.08	3	
GABE L12	00E 8400+50N	I <5	<0.2	9	24	177	2	6	8	<0.2	<5	<5	<5	2.07	1108	<10	349	7	36	<20	<20	14	1.72	0.54	0.31	0.0	2 0.1	7 25	3	3	17	4	<5	i <10	0.07	3	
GABE L12	00e 8400+75N	8	<0.2	11	30	169	2	6	9	<0.2	<5	<5	<5	2.25	455	<10	172	7	42	<20	<20	14	1.51	0.61	0.28	3 0.0	2 0.2	1 25	4	2	17	3	<5	5 <10	0.07	4	
GABE L12	00E 8500+00N	<	<0.2	10	16	90	2	6	9	<0.2	<5	<5	<5	2.13	811	<10	140	8	39	<20	<20	14	1.52	0.57	0.31	0.0	2 0.2	2 31	3	3	21	4	<5	5 <10	0.07	2	
GABE L13	00e 7500+00N	I <5	<0.2	32	44	100	4	8	8	<0.2	<5	7	<5	2.04	364	<10	115	7	38	<20	<20	16	2,08	0.39	0.26	0.0	2 0.1	0 26	9	3	18	8	\$	i <10	0.09	17	
GABE L13	00E 7500+25N	I <5	<0.2	21	28	69	4	7	8	<0.2	\$	<5	<5	2.03	307	<10	108	7 ·	38	<20	<20	. 12	1.98	0.41	0.21	0.0	2 0.1	2 23	3	2	20	4	<5	<10	0.08	4	
GABE L13	00E 7500+50N	I <5	<0.2	. 16	23	67	2	7	8	<0.2	<5	5	<5	1.97	355	<10	98	7	37	<20	<20	13	1.93	0.37	0.23	0.0	2 0.1	1 26	4	2	15	4	<5	<10	0.09	10	
GABE L13	00e 7500+75N	<5	<0.2	14	20	9 8	1	8	7	<0.2	<5	8	<5	1.78	475	<10	123	6	33	<20	<20	11	1.71	0.33	0.26	0.0	2 0.0	9 26	4	<2	13	4	<5	<10	0.08	9	
ABE L13	00E 7600+00N		<0.2						~						- 535		226.61		- 2000 (r)		- XX / X.				- 8.786				- N. NO.		1.121		<5	<10	0.08	ម្	
GABE L13	00e 7600+251	17	<0.2	L, 11	1					<0.2	1.0				1000		10,000		- 18 Y.		226.24		14.11	·.	- 81181	9	- U N 7	-Q			. 0.9		4	<10	0.07	3	
GABE L13	00e 7600+50)	I <5	<0.2	18	20	107	1	9	8	<0.2	5	9	<5	1.79	342	<10	130	6	33	<20	<20	13	1.65	0.36	0.21	0.0	2 0.1	1 24	5	<2	14	5	<5	<10	0.07	10	
GABE L13	00e 7600+751	N <5	0.3	11	20	141	1	10	7	<0.2	<5	<5	<5	1.63	455	<10	119	6	30	<20	<20	; 11	1.60	0.30	0.25	0.0	2 0.1	0 31	4	<2	13	4	<5	[°] <10	0.07	8	
GABE L13	00E 7700+00	N <5	<0.2	12	21	124	1	8	7	<0.2	<5	6	<5	1.65	449	<10	132	6	31	<20	<20	11	1.56	0.29	0.22	2 0.0	2 0.0	8 28	3	<2	13	3	<5	<10	0.07	10	

4

	ITE WOLF E 95-01353.0			、																															QUENA		
EPORT: V7			PLEIE	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		•••••			•••••••••	•••••						•••••					•••••	•••••		•••••				•••••			····	DATE	PRI	NTE	D: 20	-OCT-95	PAGE
SAMPLE	ELEMENT	Au30	Ag	Cu	Pb	Zn	Mo	Ni	Co	Cd	Bi	As	Sb	Fe	Mr	n Te	e Ba	Cr	1	V SI	n. พู	La	AL	Mg	Ca	Na	ĸ	Sr	Ŷ	Ga	Li	Nb	Sc	Та	Ti	Zr	
UMBER	UNITS	PPB	PPM	PPM	PPM	774	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PP	PP	M PPN	PPM	PPI	ș ppi	1 PPM	PPM	PCT	PCT	РСТ	РСТ	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM	
SABE L1300	1e 7700+25N	<5	0.2	17	28	縵	2	8	8	<0.2	<5	<5	ے۔ ح5	1 84	405	. <1	 n 14r	1' A	2	21	1 ~20	13	1 70		ົ່ວດ		0 10	25		~2	14	,	~	-10	0.07		
	E 7700+50N		<0.2		- 7																														0.07		
	E 7700+75N	_	<0.2		4.43	135										-									11,202,0						1.1.1.1.1				0.09		
	E 7800+00N		1 A F T		34						001				- C. 2000 (1																						
	e 7800+25N		<0.2																																0.08		
ABE 1300	e 7800+50N	<5	<0.2	19	31	143	. 1	8	. 8	<0 2	<5	7	<5	2 05	4.84	<1	0 13/	7	- 75	8 <21	1 <20	14	1.75	0 41	0.20		0.12	70			14	5	- E :	-10	0.07	0	
	E 7800+75N		<0.2		5 A				· · · · ·		- 1 - C		· · ·								- C. C.				- 100000 Q		- N.A. 181		1.1.1.1014		1.1.2				0.07		
	E 7900+00N		- 19 E E E		35																																
	E 7900+25N		<0.2			230															A. A. A. A.			- 1	- 10 A OC 44								20.50		0.07		
	E 7900+50N		- 19 A N		42												1000																				
		-	ा २३ र छ। ि			• • •	. 7	-			1				775				्	<u> </u>	्रहा ्र		1005				- 71 - 14					Ŭ			Ň	10	
GABE L1300	e 7900+75n	27	0.2	24	48	149	3	9	9	<0.2	<5	14	<5	2.02	377	· <1	0 121	7	39	9 <20) <20	16	1.77	0.43	0.28	0.02	0.15	28	7	2	16	7	<5	<10	0.08	15	
GABE L1300	E 8000+00N	<5	<0.2	21		160																			- N. S. S. S.		1.1								0.07		
GABE L1300	E 8000+25N	12	<0.2	27	47	159	3	9	10	<0.2	<5	18	<5	2.38	515	<1	0 165								- 1 N										0.09		
GABE L1300	e 8000+50N	6	<0.2	21	34	130	2	8	8	<0.2	<5	7	<5	2.02	449	<1	0 116				1.00		(a) S = 1, (b)		- 100 L C Q		- 20 A 1970				- 20 - 0 -		4.5		0.08		
SABE L1300	e 8000+75N	<5	<0.2	19	33	134	2	7	8	<0.2	\$	8	< 5	2.02	453	<1	0 123		- 12 A.	· ·	1000		- D. A. 1994	· · ·	-202.2000		- 15 M L 16		· · · ·		1000		100 A. A.				
GABE L1300	e 8100+00N	7	<0.2	18	24	147	2	9	8	<0.2	<5	11	<5	2.10	436	<1	0 130	8	42	2 <20) <20	12	1.52	0.51	0.29	0.02	0.20	25	3	<2	15	3	<5	<10	0.08	3	
GABE L1300	e 8100+25n	6	<0.2	13	56	261	2	7	8	0.8	<5	<5	<5	1.99	643	<1	0 196	7	35	5 <20	<20	12	1.64	0.44	0.31	0 .0 2	0.13	31	3	2	21	3	<5	<10	0.06	4	
GABE L1300	e 8100+50N	6	<0.2	15	28	447	2	6	7	1.3	<5	<5	<5	2.03	379	· <1(0 99	7	37	7 <20) <20	14	1.48	0.45	0.25	0.02	0.17	25	5	<2	34	6	<5	<10	0.08	7	
GABE L1300	E 8100+75N	<5	<0.2	14	54	165	1	6	8	<0.2	<5	<5	<5	2.18	815	<1	0 139	6	41	1 <20) <20	14	1.45	0.51	0.38	0.01	0.25	37	4	2	18	4	<5	<10	0.07	2	
GABE L1300	e 8200+00N	33	<0.2	16	94	325	2	7	10	<0.2	<5	8	<5	2.45	1988	<1	0 258	8	40) <20) <20	15	2.01	0.58	0.54	0.01	0.22	57	4	5	22	4	\$	<10	0.06	2	
GABE L1300	e 8200+25N	16	<0.2	15	39	244	2	6	9	<0.2	<5	6	<5	2.34	543	<1	0 85	7	47	7 <20	<20	15	1.52	0.56	0.32	0.02	0.21	26	5	2	21	5	<5	<10	0.09	4	
SABE L1300	e 8200+50N	<5	<0.2	24	25	97	2	8	11	<0.2	<5	9	<5	2.75	823	<10	0 120	9	54	÷ <20	<20	18	1.80	0.70	0.36	0.02	0.32	32	7	3	24	7	<5	<10	0.09	3	
SABE L1300	e 8200+75n	<5	<0.2	18	21	77	2	7	9	<0.2	<5	6	<5	2.28	508	<1	95	8	47	7 <20) <20	14	1.62	0.59	0.35	0.02	0.26	28	5	3	19	5	<5	<10	0.10	4	
ABE L1300	e 8300+00n	<5	<0.2	17	22	107	2	8	8	<0.2	<5	9	<5	1.93	340	<10	95	7	38	3 <20	<20	12	1,57	0.41	0.27	0.02	0.15	26	4	<2	15	4	<5 ·	<10	0.08	5	
ABE L1300	e 8300+25n	<5	<0.2	24	21	144	2	9	8	<0.2	<5	<5	<5	1.94	550	 <10) 131	7	36	s <20	<20	13	1.66	0.42	0.39	0.02	0.17	37	5	<2	19	5	<5	<10	0.08	9	
GABE L1300	e 8300+50N	40	<0.2	26	31	202	3	11	10	<0.2	<5	9	<5	2.19	511	े : <10) 152	9	40) <20	<20	14	1.71	0.48	0.34	0.02	0.18	42	5	3	21	5	<5	<10	0.08	<i>4</i> 9	
SABE L1300	e 8300+75n	<5	<0.2	20	- 1 Q - 1	158			1 2 2									Y.)	- 2000	1943, L.			088-E N)	0.50	- 1990 P		- 96 (* 1964) 1964 - 1965 - 1966 -		St		3,263.5					8	
ABE L1300	e 8400+00n	<5	<0.2	32	27	109	3	9	10	<0.2	<5	8	<5	2.28	593	<10	0 124	8	43	s <20	<20	17	1.94	0.53	0.38	0.02	0.23	34	7	- 4	24	7	<5	<10	0.09	7	
GABE L1300	E 8400+25N		11 P		33										1.1.1.1.1.1.1.1		10000	· ·		2 C 1	- COC. OL		4. Sectors	G	1,00000		- 1911 - 1915 - 19		1.11		- 2.66 X -				2020 C.C	5	
GABE L1300	E 8400+50N	<5	0.4	49	57	242	4	10	12	<0.2	<5	13	<5	2.99	1858	<10	220	. 10	50) <20	<20	33	3.11	0.65	0.95	0.02	0.27	59	26	8	46	24	<5 -	<10	0.08	8	

6

にいたいであるというです。

ŝ.

	WHITE WOLF E V95-01353.0			-										•																					QUENA D: 20	s -0ct-95	PAG
			•••••				••••					•••••					-																	•••••	•••••		
SAMPLE	ELEMENT																2							Mg													
IUMBER	UNITS	6 PPB	PPN	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PP	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCŢ	PCT	PCT	PCT	PCŢ	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM	
ABE L14	00E 8200+50N	14	<0.2	23	48	165	5	11	11	<0.2	<5	18	<5	2.51	624	<10	150	9	45	<20	<20	15	2.13	0.59	0.36	0.02	0.23	31	4	5	25	5	<5	<10	0.09	6	
ABE L14	00E 8200+75N	11	<0.2	31	59	159	4	9	10	<0.2	<5	10	<u></u> 5	2.33	1222	<10	133	8	39	<20	<20	21	2.18	0.49	0.49	0.02	0.18	33	13	6	27	12	<5	<10	0.07	5	
ABE L14	00E 8300+00N	19	<0.2	34	38	98	5	11	12	<0.2	<5	16	<5	2.55	482	<10	100	8	49	<20	<20	18	1.96	0.58	0.36	0.02	0.18	30	7	4	21	7	<5	<10	0.09	7	
ABE L14	00E 8300+25N	16	<0.2	19	36	134	4	9	9	<0.2	<5	21	<5	2.14	747	<10	146	8	38	<20	<20	12	1.68	0.44	0.37	0.02	0,13	33	3	4	19	3	<5	<10	0.08	4	
ABE L14	00e 8300+50N	<5	<0.2	17	19	107	2	, 6	8	<0.2	<5	8	<5	1.93	828	<10	116	7	36	<20	<20	10	1.26	0.43	0.38	0.01	0.22	35	2	<2	11	2	<5	<10	0.07	ି 1	
			•							:	e e					è	- 1.2 - 11.5																		1917		
ABE L14	00E 8300+75N	∣ <5	<0.2	32	22	120	3	10	10	<0.2	ବ	22	\$	2.72	819	<10	114	9	-51	<20	<20	16 :	2.17	0.64	0.41	0.01	0.16	34	5	4	18	5	ର	<10	0.07	2	
ABE L14	00E 8400+00N	38	<0.2	32	40	198	4	9	11	<0.2	<5	19	<5	2.37	1396	<10	169	8	43	<20	<20	16	1.89	0.54	0.70	0.02	0,26	47	7	5	21	7	<5	<10	0.Q7	. 4	
ABE L14	00E 8400+25N	∣ <5	<0.2	16	13	· 98	2	. 6	8	<0.2	<5	8	<5	1.64	1042	<10	106	6	33	<20	<20	9	1.03	0.39	0.44	0.01	0.18	31	2	<2	11	2	<5	<10	0.07	1	
ABE L14	00E 8400+50N	I <5	<0.2	24	21	102	3	10	10	<0.2	<5	. 16	<5	2.38	631	<10	165	9	46	<20	<20	14	2.11	0.59	0.34	0.02	0.25	38	4	4	18	4	<5	<10	0.09	5	
ABE L14	00E 8400+75N	<5	<0.2	2 13	16	130	្ពា	6	7	<0.2	<5	<5	<5	1.75	428	<10	90	7	36	<20	<20	10	1.22	0.41	0.28	0.02	0.20	25	3	<2	10	3	ర	<10	0.08	2	•
ABE L14	00E 8500+00N	< s	<0.2	2 15	12	73	2	6	7	<0.2	<5	<5	<5	1.79	442	<10	78	6	38	<20	<20	11	1.14	0.39	0.33	0.02	0.21	28	4	<2	9	4	<5	<10	0.08	3	
ABE L15	iooe 7500+00N	ا ح ا	<0.2	2 13	34	151	3	7	8	<0.2	<5	<5	<5	2.15	622	<10	171	6	36	<20	<20	17	2.08	0.38	0.36	0.02	0,11	31	7	3	24	7	<5	<10	0.06	6	
ABE L15	iooe 7500+25N	I <5	<0.2	18	26	88	5	8	9	<0.2	<5	7	45	2.17	700	<10	181	7	35	<20	<20	17 3	2.35	0.40	0.30	0.02	0.12	32	8	5	24	8	\$	<10	0.07	11	
ABE L15	00E 7500+50N	<5	<0.2	! 14	17	53	3	6	7	<0.2	<5	ৎ	<5	1.57	245	<10	73	6	31	<20	<20	9	1.10	0.27	0.18	0.01	0.11	18	2	<2	15	3	ৎ	<10	0.05	6	
ABE L15	00e 7500+75N	<5	<0.2	14	11	57	1	5	6	<0.2	<5	5	\$	1.63	286	<10	65	5	30	<20	<20	10	1.01	0.34	0.23	0.02	0.10	20	3	<2	19	3	<5	<10	0.05	3	
ABE L15	00e 7600+00N	<5	<0.2	2 17	16	79	2	5	7	<0.2	<5	<5	<5	1.84	407	<10	104	6	32	<20	<20	14	1.65	0.37	0.22	0.02	0.09	24	6	<2	17	5	5	<10	0.05	11	
ABE L15	00E 7600+25N	I <5	<0.2	16	19	73	3	7	7	<0.2	<5	<5	<5	1.83	445	<10	119	6	32	<20	<20	14	1.61	0.36	0.21	0.02	0,10	23	5	<2	18	5	<5	<10	0.05	7	
ABE L15	00E 7600+50N	<5	<0.2	2 17	19	81	3	7	8	<0.2	<5	<5	<5	1.93	422	<10	108	6	33	<20	<20	15	1.57	0.40	0.26	0.02	0.13	28	6	<2	19	6	<5	<10	0.05	11	
ABE L15	00E 7600+75N	· <5	<0.2	: 17	23	106	2	7	7	<0.2	<5	<5	<5	1.77	490	<10	107	6	31	<20	<20	14	1.68	0.34	0.20	0.02	0.09	23	6	<2	14	5	<5	<10	0.06	12	
ABE L15	100e 7700+00N	10	<0.2	: 10	17	89	2	6	7	<0.2	<5	<5	<5	1.65	393	<10	102	6	29	<20	<20	10	1.22	0.32	0.19	0.01	0.10	23	2	<2	14	2	<5	<10	0.05	6	
ABE L15	00e 7700+25N	. 7	<0.2	16	16	47	2	5	6	<0.2	<5	<5	<5	1.60	269	<10	64	5	30	<20	<20	12	0.99	0.33	0.19	0.01	0.09	22	4	<2	16	4	<5	<10	0.06	6	
	OOE 7700+50N		1 A R X			56	2	6	. 7	<0.2	<5	5	<5	1.64	309	<10	103	6	28	<20	<20	13	1.49	0.26	0.19	0.02	0.09	21	5	<2	19	5	<5	<10	0.06	10	
	00E 7700+75N	_	<0.2							<0.2	12.2						100	_	232		1203		142	0.40	\$1.22				- 21		22		·		- <u>7</u> 1 - 333		
	00E 7800+00N		<0.2		1.2.4		~		×	<0.2	2.50						- 30 S.		- 6 - 8		18 S.		1.00	0.38	- 22-03-6- i		우는 것		- NG -		14. St.		- 20		- X - M - A		
	00E 7800+25N						1 EN				- CC 22				- 1973-te		1.000				- 19-9 L		, i se s	0.38	- S - S - S - S - S - S		8 H F F				1985		181		- 923993.		
ABE L15	iooe 7800+50n	5	<0.2	23	31	95	3	6	7	<0.2	5	<5	<5	1.74	370	<10	94	6	30	<20	<20	12	1.43	0.36	0.31	0.02	0.14	32	4	<2	19	4	<5	<10	0.06	6	
	00E 7800+75N		<0.2				. C.				- 1 C				- 22.0		- 335	•	. 63		1000		19.00	0.34	1231-2203		31.00		14 B.		1.00		1.88		0.07	- L	
	00E 7900+00N		<0.2		 (2005) 						1994		1.5		- Y 3		25,21		1.000	-			8.181.6	0.35	- 26,5 (3), (3), (3), (3), (3), (3), (3), (3),		S 13		1.52		. 8.2		189.3		S 8683.		
	00E 7900+25N		<0.2	S	- CO -		- C. C.		1.1.1								- 36675		1222	2	0.0827		0.2.8%	0.45	- 322,2000	8	23.1.22				X2001		2 X		2.2857		
	100E 7900+50N		20110		21		1.2		1.11				1.1		1912	÷.	10.8			5	- CORCE -		3120		1204230		·		- 82		-33.7		- 19 I		255.333		

PAGE 1

PROJECT: CIQUENAS

DATE PRINTED: 30-OCT-95

EPORT: V95-01286.0 (COMPLETE)

DE L1800N 1700+50E <5 0.3 18 22 109

-3

MPLE MBER	ELEMENT UNITS																								Ca PCT	Na PCT								Ta PPM			
DE L1800N	1000+00E	<5	0.2	19	10	56	2	6	7	<.2	<5	11	<5	1.94	347	<10	125	6	36	<20	<20	12	1.79	0.32	0.29	0.02	0.11	30	6	<2	1Q	1	<5	<10 0	0.07	10	
DE L1800N	1000+25E	· <5	<.2	12	9	55	2	5	6	<.2	<5	6	<5	1.60	272	<10	159	6	28	<20	<20	9	1.38	0.22	0.24	0.02	0.12	31	4	<2	11	<1	<5	<10 0	0.06	8	
DE L1800N	1000+50E	14	0.3	31	15	71	Ś	8	11	<.2	<5	11	<5	2.98	392	<10	201	8	53	<20	<20	18	2.06	0.50	0.31	0.02	0.15	31	10	2	15	<1	<5	<10 0	0.09	15	
DE L1800N	1000+75E	<5	<.2	10	8	60	2	5	7	<.2	<5	<5	<5	1.87	477	<10	194	7	35	<20	<20	9	1.37	0.28	0.31	0.02	0.10	36	3	<2	11	<1	<5	<10 0	0.06	4	
DE 11800N	1100+00E	<5	<.2	8	7	29	2	4	. 6	<.2	< 5	<5	<5	1.87	271	<10	80	7	39	<20	<20	9	0.91	0.25	0.21	0.01	0.13	24	3	<2	9	<1	<5	<10 0	0.06	3	
DE L1800N	1100+25E	. 6	<.2	19	8	40	2	5	7	<.2	<5	<5	<5	2.07	292	<10	129	6	38	<20	<20	13	1.39	0.30	0.27	0.02	0.15	32	7	~2	11	<1	<5	<10 0	.06	5	
DE L1800N	1100+50E	7	0.2	23	9	41	2	4	7	<.2	<5	<5	<5	2.06	301	<10	151	7	38	<20	<20	14	1:33	0.30	0.28	0.02	0.11	32	7	<2	13	<1	<5	<10 0	.06	6	
JE L1800N	1100+75E	<5	0.3	18	10	55	3	5	8	<.2	<5	7	<5	2.15	475	<10	152	7	38	<20	<20	`13	1.61	0.31	0.30	0.02	0.13	34	6	<2	13	<1	<5	<10 0	.06	8	
DE L1800N	1200+00E	<5	0.2	22	10	48	3	6	7	<.2	<5	9	<5	2.02	227	<10	143	6	34	<20	<20	12	1.77	0.28	0.25	0.02	0.14	31	5	2	17	<1	<5	<10 0	.07	12	
DE L1800N	1200+25E	<5	0.2	12	8	43	2	4	6	<.2	<5	<5	<5	1.75	235	<10	104	6	33	<20	<20	11	1.25	0.24	0.24	0.02	0.11	34	4	<2	10	<1	<5	<10 0	.06	5	
DE L1800N	1200+50E	<5	<.2	10	6	29	2	4	6	<.2	<5	<5	<5	1.98	188	<10	64	9	44	<20	<20	11	0.87	0.26	0.24	0.02	0.08	23	4	<2	7	<1	<5	<10 0	.07	5	
DE L1800N	1200+75E	<5	<.2	i 11	8	53	3	5	7	<.2	<5	<5	<5	2.04	383	<10	146	8	39	<20	<20	9	1.16	0.29	0.31	0.01	0.11	39	3	<2	10	<1	< 5	<10 0	.05	3	
DE L1800N	1300+00E	<5	0.2	11	9	50	2	6	7	<.2	<5	6	<5	2.10	259	<10	114	7	40	<20	<20	9	1.39	0.31	0.22	0.02	0.10	29	3	<2	10	<1	<5	<10 0	.06	4	
DE L1800N	1300+25E	13	<.2	23	11	50	3	6	8	<.2	<5	10	<5	2.23	306	<10	145	7	39	<20	<20	14	1.71	0.35	0.24	0.02	0.13	33	7	<2	13	<1	<5	<10 0	.07	12	
DE L1800N	1300+50E	<5	0.3	16	14	67	3	6	9	<.2	<5	10	<5	2.30	529	<10	205	7	38	<20	<20	12	1.95	0.40	0.33	0.02	0.16	39	5	<2	15	<1	<5	<10 0	.07	8	
DE L1800N	1300+75E	<5	0.3	44	6	29	<1	2	2	0.5	<5	<5	<5	0.54	182	<10	107	2	10	<20	<20	8	0.62	0.15	>10.00	0.02	0.05	328	4	<2	6	<1	<5	<10 0	.01	1	
.DE L1800N	1400+00E	<5	<.2	11	17	94	3	6	8	<.2	<5	7	<5	2.00	812	<10	210	7	32	<20	<20	9	1.63	0.36	0.40	0.02	0.15	51	3	<2	16	1	<5	<10 0	.07	5	
JE L1800N	1400+25E	<5	<.2	16	14	98	4	8	10	<.2	<5	8	<5	2.67	782	<10	239	8	41	<20	<20	12	2.28	0.51	0.31	0.01	0.17	34	4	<2	24	1	<5	<10 0	.07	4	
DE L1800N	1400+50E	20	0.4	23	21	193	3	7	9	0.5	<5	9	<5	2.33	991	<10	404	7	30	<20	<20	14	2.02	0.44	0.68	0.02	0.17	69	8	<2	28	<1	<5	<10 0	.06	4	
DE L1800N	1400+75E	<5	0.4	36	17	88	5	12	12	<.2	<5	14	<5	3.20	410	<10	155	23	51	<20	<20	20	2.57	0.74	0.40	0.02	0.20	41	10	3	37	<1	5	<10 0	.08	18	
DE L1800N	1500+00E	<5	0.4	67	22	96	5	10	11	<.2	<5	15	<5	2.82	515	<10	183	13	33	<20	<20	26	3.33	0.53	0.68	0.03	0.15	52	17	3	76	<1	<5	<10 0	.10	32	
DE L1800N	1500+25E	<5	0.5	42	13	78	3	8	9	<.2	<5	17	<5	2.13	371	<10	189	6	29	<20	<20	19	2.36	0.45	0.51	0.04	0.11	50	14	<2	36	<1	<5	<10 0	.08	23	,
DE L1800N	1500+50E	<5	0.4	41	14	59				-				1.83				6	24	<20	<20	15	2.16	0.36	0.45	0.03	0.11	45	11	<2	34	<1	<5	<10 0	.07	17	
DE L1800N	1500+75E	<5	0.3	29	14	72	4	7	8	<.2	<5	10	<5	2.32	368	<10	159	9	32	<20	<20	17	2.30	0.48	0.52	0.02	0.19	42	9	3	48	1	<5	<10 0	.09	16	
DE L1800N	1600+00E	<5	0.2	17	13	89	2	7	8	<.2	<5	9	<5	2.01	698	<10	232	7	34	<20	<20	12	1.57	0.42	0.38	0.02	0.16	44	5	<2	17	<1	<5	<10 0	.06	5	
DE L1800N	1600+25E													3.53				12	70	<20	<20	13	1.51	0.56		0.01											
DE L1800N	1600+75E													2.57				9	39	<20	<20	38	2.49	0.35	0.29	0.01	0.12	30	4	<2	17	<1	<5	<10 0	.08	8	
DE L1800N	1700+00E													2.48					- 2		A			0.36		0.02											
DE L1800N	1700+25E	<5	5 0.3	13	15	79	3	5	7	<.2	<5	8	<5	1.89	467	<10	255	6	31	<20	<20	15	1.72	0.32	0.31	0.02	0.17	59	6	<2	21	<1	<5	<10 0	.07	10	

Bondar-Clegg & Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, (604) 985-0681

8 <.2 <5 7 <5 2.38 481 <10 203 8 38 <20 <20 19 1.97 0.47 0.28 0.02 0.22 49 11 <2 30 <1 <5 <10 0.08 14

Geometrical Lab Report

PAGE 2

1.1410

PROJECT: CIQUENAS DATE PRINTED: 30-OCT-95

.IENT:	WHITE WOLF EXPLORATION	
:PORT:	V95-01286.0 (,COMPLETE)

	01200.0	(,		- /																												07		~141	τν		- 75
MPLE	ELEMENT	A1130	۸a	C 11	Ph	7n	Mo	Ni		• C	l Ri	۸c	sh	Fe	Min	Te	Ra	Cr	v									Sr	v	6.9	13	Nh	5c	Ta	тi	7r	
			- 1. T																					-													
MBER	UNITS	PPB	PPM	PPM	PPM	PPM	PPM	PPF	1 PPr		1 PPM	PPM	PPM	PUI	PPM	PPM	PPM	PPM	PPM	I PPM	PPM	PPM	PUI	PUI	PUT	PCT	PLI	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PUT	PPM	
	4700.77			-7		4/7	,					10			704	.10	à7/	,	÷.,	-70				• • •	0.00	o			••		- /		-				
DE L1800N																	1.1.1.1.1.1								0.28												
DE L1800N											1.2						< e .		12.2					0.57			· ·								· · .		
DE L1800N																	10 A							0.40	0.35												
DE L1800N											· · ·		 		1.1.1		·		1 g . 4					0.46	0.60												
VDE L1800N	1900+00E	<5	0.3	20	17	85	4	. 7	/ 10) <.?	2 :<5	11	<5	2.68	592	<10	186	8	40	<20	<20	20 2	2.46	0.46	0.35	0.02	0.20	34	10	<2	25	<1	<5	<10	0.09	17	
		_								·		: _	12				цá	_	:											_			_			_	
VDE L1800N	•										5						·								5.89												
DE L1800N																	1.1.								1.01												
\DE L1800N	1900+75E	-					-																	0.54									-				
VDE L1800N	2000+00E	25	0.2	33	16	80	3	ć	5 8	3 <.?	2 <5	7	<5	2.01	561	<10	158	7	26	<20	<20	16 3	2.07	0.48	0.50	0.03	0.17	46	10	<2	46	<1	<5 ·	<10	0.07	13	
10E L1800N	2000+50E	24	0.6	100	17	82	4	6	5 10) <.?	2 <5	7	<5	2.31	702	<10	104	10	30	<20	<20	26	1.88	0.57	0.93	0.03	0.15	109	26	<2	47	<1	<5 ·	<10	0.06	8	
																							·														
VDE L1800N	2000+75E	<5	<.2	23	19	84	3	5	3 5	> <.?	2 <5	17	<5	2.25	691	<10	283	7	34	<20	<20	16 3	3.21	0.42	0.35	0.03	0.11	50	7	2	20	1	<5 ·	<10	0.10	19	
VDE L1800N	2100+00E	16	0.2	27	14	92	3	ć	5 10) <.;	2 <5	9	<5	2.88	1174	<10	195	8	48	<20	<20	23 2	2.14	0.72	0.52	0.02	0.28	45	17	<2	32	<1	5	<10	0.06	7	
VDE L1800N	2100+25E	10	0.8	45	17	82	3	ć	5 12	2 <	2 <5	<5	<5	2.95	655	<10	146	8	48	<20	<20	20	1.71	0.62	0.33	0.02	0.18	30	11	<2	19	<1	<5 ·	<10	0.06	7	
\DE L1800N		-																						0.33	0.37					_							
VDE L1800N	2100+75E	36	<.2	16	10	70	3	7	۲ S	> <.;	2 <5	6	<5	2.20	411	<10	117	9	38	<20	<20	15 °	1.59	0.37	0.22	0.02	0.14	25	5	<2	15	<1	<5 ·	<10	0.08	11	
DE L1800N	2200+00E	<5	<.2	19	12	94	3	10) \$	> <.?	2 <5	5	<5	2.52	415	<10	102	13	45	<20	<20	18 ⁻	1.78	0.44	0.24	0.01	0.19	28	4	<2	15	1	<5 ·	<10	0.10	10	
VDE L1800N	2200+25E	<5	<.2	15	11	59	3	8	3 8	3 <.:	2 <5	<5	<5	2.34	553	<10	90	10	43	<20	<20	18 '	1.34	0.37	0.25	0.01	0.12	25	4	<2	11	<1	<5 ·	<10	0.08	5	
VDE L1900N	1000+00E	<5	<.2	12	7	46	3	5	57	' <.i	2 <5	<5	<5	2.03	318	<10	133	14	34	<20	<20	11	1.39	0.32	0.22	0.02	0.13	33	3	<2	25	<1	<5	<10	0.06	3	
NDE L1900N	1000+25E	<5	<.2	37	13	76	4	8	3 13	\$ <.2	2 <5	9	<5	3.11	794	<10	257	12	46	<20	<20	17 2	2.17	0.69	0.39	0.02	0.16	44	8	<2	28	1	<5 ·	<10	0.08	5	
NDE L1900N	1000+50E	<5	0.5	68	17	62	4	8	3 11	<.2	? <5	10	<5	2.85	577	<10	247	6	36	<20	<20	20 2	2.75	0.57	0.48	0.03	0.22	68	15	<2	44	<1	<5 ·	<10	0.10	24	
DE L1900N	1000+75E	5	0.4	64	15	9 8	4	7	7 16	5 <.2	? <5	8	<5	3.56	1005	<10	263	7	47	′ <20	<20	21 2	2.25	0.80	0.76	0.02	0.32	91	16	<2	28	<1	<5 ·	<10	0.08	8	
DE L1900N	1100+00E	<5	<.2	37	15	76	4	8	3 12	? <.?	2 <5	10	<5	2.98	998	<10	264	7	38	s <20	<20	17 3	2.51	0.60	0.40	0.02	0.17	56	10	<2	32	1	<5 ·	<10	0.08	9	
DE L1900N	1100+25E	<5	0.3	30	16	97	5	8	3 12	2 0.4	5	<5	<5	3.04	767	<10	239	7	38	s < 20	<20	16 2	2.25	0.54	0.39	0.02	0.22	53	9	<2	30	<1	<5 ·	<10	0.07	8	
DE L1900N	1100+50E	<5	<.2	31	13	62	5	8	3 10) <.2	2 <5	7	<5	2.61	278	<10	173	7	36	<20	<20	12 2	2.32	0.49	0.24	0.02	0.17	36	3	4	26	1	<5 ·	<10	0.08	11	
DE L1900N	1100+75E	<5	0.4	29	13	65	3	6	5 5).<.2	2 <5	6	<5	2.28	421	<10	184	6	35	<20	<20	14 3	2.02	0.40	0.32	0.02	0.18	43	7	<2	19	<1	<5	<10	0.07	13	
DE L1900N	1200+00E	<5	0.3	25	10	49	3	6	5 8	3 O.3	5 -5	8	<5	2.06	377	<10	126	7	36	<20	<20	12	1.78	0.34	0.25	0.02	0.12	31	7	<2	14	<1	<5 ·	<10	0.07	10	
DE L1900N	1200+25E	<5	0.4	27	10	52	2	5	5 7		2 <5	11	<5	1.81	400	<10	145	5	28	3 <20	<20	12	1.90	0.33	0.30	0.03	0.12	41	7	<2	14	<1	<5 ·	<10	0.07	12	
DE L1900N			0.2	23	11	61	3	6	5 7		2 <5	14	<5	1.93	341	<10	207	6	29	<20	<20	12	1.97	0.35	0.28	0.03	0.17	46	6	2	16	<1	<5 •	<10	0.07	14	
DE L1900N			5 0.5	40	13	78	4	ç	2	3 <.2	2 <5	12	<5	2.18	391	<10	177	6	32	<20	<20	15 3	2.06	0.42	0.51	0.03	0.13	57	11	<2	56	1	<5 ·	<10	0.08	14	
DE L1900N																									0.54	0.03	0.12	45	13	3	65	<1	<5 •	<10	0.09	11	

PAGE 3

PROJECT: CIQUENAS

DATE PRINTED: 30-OCT-95

EPORT: V95-01286.0 (COMPLETE)

ADE L1900N 2100+75E

		-																																		//
AMPLE		Au30 Ag PPB PPM																					•		Na PCT	K PCT								Ti PCT I		
ADE L1900N	1300+25E	<5 <.2	14	16	83	3	7	10	<.2	<5	5	<5	2.40	1763	<10	270	7	36	<20 <	20	14 1	.94	0.46	0.41	0.02	0.18	43	6	<2	20	<1	<5	<10 (.08	3	
ADE L1900N	1300+50E	<5 0.2	24	16	103	4	8	11	<.2	5	9	<5	2.55	1159	<10	263	8	36	<20 <	20	16 2	.32	0.47	0.35												
ADE L1900N	1300+75E	6 0.5	38	13	55	3	7	9	<.2	<5	9	<5	2.08	449	<10	129	7	33	<20 <	20	16 1	.90	0.47	0.61	0.03	0.14	68	10	<2	24	<1	<5	<10 0	0.07	15	
ADE L1900N	1400+00E	<5 <.2	19	16	98	4	7	10	<.2	< 5	11	<5	2.59	1057	<10	278	8	34	<20 <	20	20 2	.43	0.59	0.42	0.02	0.27	56	11	<2	31	<1	<5	<10 0	0.08	7	
ADE L1900N	1400+25E	7 <.2	11	9	46	2	5	6	<.2	<5	6	<5	1.65	266	<10	167	6	24	<20 <	20	81	.60	0.28	0.26												
ADE L1900N	1400+50E	12 0.3	16	12	56	3	6	8	<.2	<5	9	<5	2.31	440	<10	138	9	37	<20 <	20	39 1	.49	0.56	0.66	0.02	0.17	62	9	<2	19	<1	< 5	<10 0	0.06	6	
ADE L1900N	1400+75E	24 0.3	30	20	117	5	10	11	0.2	<5	11	<5	2.94	1051	<10	219	14	41	<20 <	20	41 2	. 17	0.60	0.66	0.02	0.18	69	16	<2	28	<1	6	<10 C	.06	8	
ADE L1900N	1500+00E	11 <.2	23	12	83	5	6	9	<.2	<5	5	<5	2.58	615	<10	169	7	36	<20 <	20	22 1	.58	0.32	0.33	0.02	0.17	38	9	<2	17	<1	<5	<10 C	0.06	10	
ADE L1900N	1500+25E	43 <.2	12	11	90	5	8	9	<.2	<5	5	<5	2.45	901	<10	283	16	33	<20 <	20	16 1	.45	0.40	0.33	0.02	0.18	36	4	<2	19	<1	<5	<10 C	.06	3	
ADE L1900N	1500+50E	23 <.2	20	15	68	3	6	8	<.2	<5	10	<5	2.24	582	<10	282	5	29	<20 <	20	19 2	. 14	0.39	0.58	0.02	0.16	63	10	<2	45	<1	<5	<10 0	0.07	14	
ADE L1900N	1500+75E	10 0.5	22	14	55	4	6	7	<.2	<5	8	<5	1.90	471	< 1 0	276	5	23	<20 <	20	17 2	.41	0.35	0.47	0.04	0.14	54	9	<2	57	<1	<5	<10 0	.08	19	
ADE L1900N	1600+00E	18 0.3	21	17	134	4	9	10	<.2	<5	8	<5	2.37	794	<10	284	8	40	<20 <	20	14 1	.87	0.38	0.29	0.02	0.13	. 33	5	<2	15	<1	<5	<10 0	.07	7	
ADE L1900N	1600+50E	<5 <.2	11	23	82	5	9	7	<.2	<5	16	<5	2.26	376	<10	178	8	37	<20 <	20	27 3	.08	0.32	0.22	0.01	0.09	23	[:] 3	5	15	1	<5	<10 0	.09	10	
ADE L1900N	1600+75E	15 0.3	15	22	149	3	8	6	<.2	<5	7	<5	2.02	412	<10	532	7	23	<20 <	20	38 1	.80	D.31	0.43	0.02	0.25	54	8	<2	20	<1	<5	<10 0	.04	7	
ADE L1900N	1700+00E	<5 <.2	9	13	63	3	6	6	<.2	<5	<5	<5	1.94	231	<10	192	7	32	<20 <	20	14 1	.65	0.26	0.28	0.02	0.15	29	4	2	14	<1	<5	<10 Ö	.07	11	
		•								d ^{la}						1		- 2		•				2 E		· •										
ADE L1900N	1700+25E	7 <.2	12	14	69	4	6	8	<.2	<5	<5	<5	2.13	408	<10	181	7	35	<20 <	20	14 1	.93	0.37	0.24	0.02	0.16	26	5	<2	18	<1	<5	<10 0	80.0	9	
ADE L1900N	1700+75E	6 <.2	15	18	68	4	6	8	<.2	<5	7	<5	2.12	397	< 1 0	215	7	34	<20 <	20	12 1	.72	0.34	0.27	0.02	0.14	30	5	<2	18	<1	<5	<10 0	.06	8	
ADE L1900N	1800+00E	<5 <.2	17	21	102	5	7	10	<.2	6	9	<5	2.63	800	<10	196	7	39	<20 <	20	15 2	.03	0.49	0.32	0.01	0.21	33	7	<2	23	<1	<5	<10 0	0.07	8	
ADE L1900N	1800+25E	<5 0.3	21	36	118	7	8	11	<.2	7	<5	<5	2.75	831	<10	194	7	38	<20 <	20	16 2	.75	0.57	0.33	0.02	0.13	34	8	2	26	<1	<5	<10 0	0.07	11	
ADE L1900N	1800+50E	<5 0.3	21	30	117	9	9	9	<.2	11	<5	<5	2.19	459	<10	157	7	29	<20 <	20	15 1	.97	0.35	0.24	0.02	0.16	28	6	5	24	<1	<5	<10 0	.06	7	
ADE L1900N	1800+75E	40 0.5	24	16	104	4	9	9	0.3	<5	11	<5	2.32	549	<10	175	7	39 39	<20 <	20	16 2	. 19	0.40													
ADE L1900N	1900+00E	<5 0.8	46	18	73	6	9	7	<.2	<5	9	<5	1.76	478	<10	138	5	21	<20 <	20	29 2	.62	0.31	0.59	0.03	0.11	61	27	2	62	<1	<5	<10 0	0.10	24	
ADE L1900N	1900+50E	<5 0.2	13	16	104	5	7	9	<.2	<5	<5	<5	2.63	587	< 1 0	229	7	29	<20 <	20	17 2	.33	0.39	0.45	0.02	0.26	35	9	<2	27	<1	<5	<10 0	0.07	15	
ADE L1900N	1900+75E	<5 0.5	21	55	166	7	7	13	0.4	<5	<5	<5	3.30	1521	<10	393	6	30	<20 <	20	21 2	.06	0.54	0.63	0.02	0.34	40	13	<2	28	<1	<5	<10 0	.04	5	
ADE L1900N	2000+50E	<5 <.2	24	18	259	4	8	12	0.7	6	9	<5	2.80	2845	<10	393	8	35	<20 <	20	15 2	.23	0.58	0.62	0.02	0.21	53	6	<2	34	<1	<5	<10 0	.05	2	
ADE L1900N	2000+75E	6 <.2	14	13	84	3	7	8	<.2	<5	<5	<5	2.30	438	<10	143	9	39	<20 <	20	11 1	.64	0.36	0.27	0.02	0.16	29	2	<2	18	<1	<5	<10 0	.08	7	
ADE L1900N	2100+00E	<5 0.4	18	13	72	3	5	9	<.2	<5	<5	<5	2.44	423	<10	97	7	39	<20 <	20	13 1	.16	0.46	0.29	0.01	0.17	25	4	<2	14	<1	<5	<10 0	.05	3	
ADE L1900N	2100+25E	<5 0.6	45	22	83	4	8	11	<.2	<5	11	<5	2.80	424	<10	201	8	42	<20 <	20	19 2	.43	0.53	0.25	0.03	0.17	38	8	3	22	<1	<5	<10 Ö	.09	18	
ADE L1900N	2100+50E	<5 0.3	24	17	108	4	9	9	<.2	<5	11	<5	2.23	420	<10	180	9	38	<20 <	20	16 2	.31	0.35	0.29	0.03	0.13	35	6	3	15	<1	<5	<10 0	.10	13	
										C				4.11				1.1																		

Bondar-Clegg & Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, (604) 985-0681

9 0.2 19 15 108 3 7 9 <.2 <5 9 <5 2.18 703 <10 180 7 34 <20 <20 12 1.92 0.38 0.32 0.02 0.16 32 4 <2 16 <1 <5 <10 0.07 6

Geocemical Lab Report

LIENT: WHITE WOLL E EPORT: V95-01354.0	(PLORATION		PROJECT: CIQUENAS DATE PRINTED: 24-0CT-95 PAGE 1
	5	Zn Mo Ni Co Cd Bi As Sb. Fe. Mn Te Ba Cr. V. Sn. W La Al. Mg. Ca Na K. Sr. Y. Ga Li	
UMBER UNITS	PPB PPM PPM PPM	PM PPM PPM PPM PPM PPM PPM PCT PPM PPM PPM PPM PPM PPM PPM PPM PCT PCT PCT PCT PCT PPM PPM PPM PPM	PPM PPM PPM PCT PPM
00 100 0/1 00+0010	-5 - 2 14 19	23 5 6 10 <.2 <5 <5 7 2.50 425 <10 80 7 43 <20 <20 30 2.94 0.50 0.70 0.02 0.17 133 7 5 20	7 5 -10 0 04 7
OR 100 C/L 00+00NW OR 100 C/L 00+25NW	2	06 2 4 7 <.2 <5 <5 <5 2.33 384 <10 66 8 43 <20 <20 29 1.18 0.35 0.33 0.01 0.15 29 8 <2 15	
OR 100 C/L 00+20NW	2 S S S	01 3 5 6 <.2 5 5 5 1.89 528 <10 144 8 31 <20 <20 23 1.47 0.29 0.49 0.02 0.14 73 5 <2 13	in
OR 100 C/L 00+75NW		38 3 7 <.2 <5 <5 <5 2.24 631 <10 113 7 39 <20 20 25 1.39 0.36 0.42 0.01 0.20 50 6 <2 15	
OR 100 C/L 100+00NW	10 T 10 T 10 T 10 T	59 2 3 7 <.2 <5 <5 <5 2.40 418 <10 46 7 46 <20 <20 26 0.80 0.32 0.37 0.01 0.11 27 5 <2 10	
		이는 이것, 그의 이것이 않았는 것이 없는 것이 없는 것이 많았다. 중에게 하는 것이	
OR 100 C/L 100+25NW	<5 <.2 7 5	53 2 3 6 <.2 <5 <5 <5 2.35 271 <10 40 7 45 <20 <20 24 0.85 0.27 0.37 0.01 0.15 33 5 <2 10	5 <5 <10 0.06 3
OR 100 C/L 100+50NW	. 87	94 3 6 9 <.2 <5 <5 <5 2.82 363 <10 64 9 53 <20 25 1.72 0.53 0.46 0.02 0.17 43 5 2 21	
OR 100 C/L 100+75NW	<5 <.2 15 11	10 4 6 8 <.2 <5 <5 <5 2.49 380 <10 69 10 47 <20 <20 31 1.79 0.43 0.42 0.02 0.17 44 7 3 19	7 <5 <10 0.10 8
OR 100 C/L 200+00NW	<5 <.2 15 10	26 4 6 10 <.2 <5 <5 <5 3.09 606 <10 93 10 57 <20 <20 32 1.50 0.51 0.47 0.02 0.16 42 7 2 23	7 <5 <10 0.08 3
OR 100 C/L 200+50NW	<5 3.5 156 201	85 7 9 9 <.2 <5 <5 <5 2.63 360 <10 153 12 42 <20 <20 39 2.58 0.52 0.91 0.03 0.12 90 15 4 58	15 <5 <10 0.10 18
		an a	and the second
OR 100 C/L 200+75NW		50 3 7 9 <.2 <5 <5 <5 2.83 488 <10 86 10 48 <20 <20 35 2.04 0.52 0.44 0.02 0.20 41 11 2 52	14 J
OR 100 C/L 300+25NW	1 V V	97 2 5 6 <.2 <5 <5 <5 2.00 313 <10 80 8 33 <20 <20 26 1.39 0.32 0.36 0.02 0.24 35 8 <2 15	i A L
OR 100 C/L 300+50NW		41 2 5 6 <.2 <5 <5 <5 1.89 282 <10 46 8 38 <20 <20 32 1.00 0.39 0.48 0.02 0.13 38 9 <2 12	
OR 100 C/L 300+75NW	0 X XX	04 3 6 7 < 2 <5 <5 <5 2.10 414 < 10 84 9 40 < 20 30 1.43 0.38 0.45 0.02 0.16 45 6 2 15	14 A 1743
OR 100 C/L 400+00NW	<50,5 % 28	97 3 5 8 <.2 <5 <5 <5 2.18 643 <10 87 8 35 <20 <20 32 1.45 0.40 0.43 0.02 0.20 41 9 <2 15	8 <5 <10 0.08 6
	· · · · · · · · · · · · · · · · · · ·	15 5 8 10 <.2 <5 <5 <5 2.62 852 <10 150 10 42 <20 <20 24 3.01 0.48 0.49 0.02 0.17 80 6 5 25	4 × × × 10 0 00 4
DR 200 C/L 00+00NW		70 5 7 9 <.2 <5 <5 <5 2.94 729 <10 105 9 49 <20 <20 25 2.67 0.56 0.54 0.02 0.11 102 4 4 22	and a hill a
CR 200 C/L 00+25NW CR 200 C/L 00+50NW		16 4 7 10 <.2 <5 <5 <5 3.31 617 <10 119 11 59 <20 <20 35 1.73 0.54 0.44 0.02 0.24 44 9 3 21	
JR 200 C/L 00+75NW		50 3 8 9 <.2 <5 <5 <5 2.54 607 <10 179 10 44 <20 <20 32 2.01 0.50 0.48 0.02 0.21 54 8 4 21	
DR 200 C/L 100+00NW		80 4 8 9 <.2 <5 <5 <5 2.41 501 <10 163 11 42 <20 <20 28 1.99 0.48 0.33 0.02 0.20 37 6 4 20	a state for a second
JK 200 C/L 100+000W	0		*
R 200 C/L 100+25NW	<5 0.2 15 15	92 3 7 8 <.2 <5 <5 <5 2.28 330 <10 159 9 41 <20 <20 27 1.93 0.40 0.35 0.02 0.17 39 6 2 18	6 <5 <10 0.09 18
R 200 C/L 100+50NW		63 3 7 7 <.2 <5 <5 <5 1.91 411 <10 174 8 33 <20 <20 23 1.92 0.34 0.31 0.03 0.15 36 6 2 17	
R 200 C/L 100+75NW		22 3 7 9 <.2 <5 <5 <5 2.49 577 <10 179 9 43 <20 <20 29 1.83 0.51 0.43 0.02 0.22 45 6 3 20	
R 200 C/L 200+00NW		87 3 5 8 <.2 <5 <5 <5 2.50 430 <10 99 8 47 <20 <20 27 1.28 0.47 0.35 0.01 0.17 29 6 <2 16	
R 200 C/L 200+25NW	<5 <.2 8 19	44 3 4 7 <.2 <5 <5 <5 2.17 365 <10 91 8 39 <20 <20 26 1.30 0.39 0.39 0.02 0.23 38 5 <2 16	5 <5 <10 0.09 5
		그 설비 사업은 사업을 가장 전에 가장을 통하는 것에 드셨다. 것을 들었다. 나는	
₩ 200 C/L 200+50NW		193 3 6 8 <.2 <5 <5 <5 2.46 341 <10 121 9 42 <20 <20 27 1.63 0.41 0.37 0.02 0.22 38 6 2 18	
x 200 c/l 200+75N₩		21 3 6 8 <.2 <5 <5 <5 2.49 375 <10 74 9 40 <20 <20 32 1.53 0.56 0.49 0.02 0.23 49 8 3 19	
R 200 C/L 300+25NW		50 4 10 11 0.7 <5 <5 <5 2.05 3486 <10 426 11 20 <20 <20 70 1.46 0.42 1.24 0.01 0.25 145 12 7 18	1 A A A A A A A A A A A A A A A A A A A
)R 200 C/L 300+50NW		88 4 11 7 <.2 <5 <5 <5 1.87 905 <10 199 12 20 <20 <20 46 2.34 0.44 0.64 0.03 0.19 75 9 4 26	
XR 200 C/L 300+75NW	<5 0.7 17 207	60 4 8 9 0.5 <5 <5 <5 2.05 3249 <10 292 7 20 <20 <20 51 1.85 0.29 1.18 0.02 0.21 134 8 4 20	7 <5 <10 0.04 3

	B		da ape	r (Te	CI sti	eg ing	g Sei	rvi	ices	5			(C I F	Geoq Lab Repo	ort	nical
LIENT: WHIT EPORT: V95-	TE WOOF EX	(COMPLETE)			0	~~~																: CIQUE		95	PAGE 2
AMPLE Umber		Au30 Ag PPB PPM	·	4		i Co C M PPM PP	Chr.	As PPM P	ŚŚ Fe PM PCT		e Ba (M PPM PI	Cr V PM PPM	Sn PPM	W L PPM PF	.a Ál MPCT	Mg PCT I	Ca N PCT P(Sr Y PPM PPM	Ga L PPM PP	i Ni Mippi	SC 1 PPM PF	⊺a Tî PM PĊT∣	Zr PPM		
or 200 c/l or 200 c/l or 200 c/l or 200 c/l or 200 c/l	400+25NW 400+50NW 400+75NW	10 0.5	24 90	878 547 1130 1248 1461	6 4 3 5 4	7 10 0. 7 10 0. 5 7 <. 6 7 0. 6 8 4.	3 <5 2 <5 7 <5	<5 <5 <5	<5 2.64 <5 2.39 <5 2.69	1443 <10 1910 <10 991 <10 901 <10 1410 <10	0 243 0 173 0 113	8 32 6 23 7 27	<20 <20 <20	<20 4 <20 3 <20 3	60 2.55 (66 2.47 (67 2.55 (67 2.48 (61 2.15 ().52 0).33 0).41 0	.71 0.0 .67 0.0 .60 0.0	02 0.20 1 03 0.30 02 0.30	84 9 103 10 75 9 64 10 84 7	5 2 7 2 6 2 5 2 5 2	7 9 5 8 3 9	9 <5 < 8 <5 < 9 <5 <	0 0.06 0 0.10 0 0.08 0 0.08	14		
								- 																		
															「「「「「「「「「「「「」」」」」」「「「」」」」」」」」」」」」」」」」」									;	*	
																										v

÷.

EPORT: V95-01355.0 (COMPLETE)

PROJECT: CIQUENAS DATE PRINTED: 24-OCT-95 PAGE 2

						4:	_	5i.		123		2.	_																								•••••••••••••
AMPLE		LEMENT								2. 3		1.00.1													•	Ca	Na									Ti	
JMBER		UNITS	PPE	PPM	i ppm	PPM	PP	1 PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PP	1 PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PCT	PCT	PCT	PCŤ	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM
/L95s	1600+50	S	<5	0.5	13	<2	10	5 3	9	14	0.4	<5	. <5	. 7	4.29	77	9 12	.53	15	88	<20	<20	23	2.64	1.65	0.64	0.01	n 20	52	ö	7	54	9	Ŕ	~10	0.14	6
/L95S	1700+00	S	· <5	0.2	12	<2	17	1.00														1 a a a a			0.77	· · .		0.18				29			<10	6. 6	-
/L95S	1700+509	5	<5	0.2	28	4	8	1.25		1.00		1.				- 1 X N				. 22.3				2.48		0.84		11 1.				41				0.10	_
/L95S	1800+009	s	<5	0.4	19	4	. 8			1.00		1.1.4		2,000		1.07		Sec. 1		1.1.5				2.35		0.49				2.	<2				<10	11.1	_
/L95S	1800+50	s	<5	0.2	15	5	8	11.55		2.7		1.000		10.000						1.1.1.1		Sec. 1		S. 54	0.97	0.57		- 10 - 10 - 1			<2			1.1	<10	6.00	_
																	÷.					1								•	-		·	Ĩ.,			-
/L95S	1900+009	S	<5	0.2	22	8	14	2 3	8	13	1.0	<5	ব	5	3.54	620	5 <10	41	12	83	<20	<20	22	2.67	1.47	0.89	0.01	0.22	69	9	5	37	9	8	<10	0.08	4
/L95S	1900+50	s	<5	<.2	17	Ż	8	7 .1	6	5	<.2	<5	. <5	<5	1.59	29	5<10	85	: 6	27	<20	<20	12	2.12	0.38	0.30	0.04	0.15	32	7	<2	15	7	<5	<10	0.08	16
/L95S	2000+009	s	<5	i < 2	2 12	<2	5	52	- 5	7	<.2	<5	<5	<5	2.26	35	5 <10	41	9	50	<20	<20	19	1.18	0.70	0.45	0.02	0.18	32	5	<2	15	5	ব	<10	0.08	6
/L95S	2000+50	S	<5	0.9	103	10	18	7	12	24	0.7	<5	<5	<5	5.90	144	7 15	65	18	114	<20	<20	32	3.61	2.06	0.82	0.01	0.30	44	26	9	49	25	12	<10	0.04	7
/ L9 5S	2100+00	s	<5	<.2	2 17	4	10	> _1	. 8	10	0.6	ব	: - 5	<5	2.20	65	2 <10	96	8	40	<20	<20	11	2.36	0.87	0.50	0.03	0.14	54	4	2	29	4	ব	<10	0.10	9
				· ' .								n de la Frank				-	ļ			1111 2111 - 1 2122 - 1								14									
/L95S	2100+50	S	<5	; <.2	41	7	12	1200		1.304	\$	- No 33 -		- St 123-	÷	1444		11,000		10.00				N	1.62	0.90	0.01	0.25	75	5	7	45	5	6	<10	0.15	5
/L 9 5S	2200+009	S	<5	0.3	24	- 4	ୁ ମ	32		2.5.0		1		- N. G. W.		16.68		560 m.		1. 1.65	· .	1. XXX		2.87		1.22		4 1.0			5	39	5	<5	<10	0.14	5
/L95S	2200+50	S	<5	0.4	26	10	7	? 5			÷.	1000		-0.086		- C. B. A.		208.54			3	See 1		3.20		0.45	0.03	0.29	49	4	6	32	4	<5	<10	0.11	22
′L95s	2300+009	S	<5	0.3	28	7	100) 3			5. S.	1.1.1.	<	1.1				1.14		1.111		A 366		2.58		0.57	0.02	0.15	42	8	3	35	8	5	<10	0.04	4
′L 9 5S	2300+509	5	<5	0.2	18	4	103	52	7	6	0.4	<5	ं <5	<5	1.78	294	<10	105	7	30	< 20	<20	13	2.21	0.48	0.33	0.03	0.15	39	4	<2	19	5	<5	<10	0.08	13
			•				·		· ·				_		: 		e. Et li							- 일이에서 - 전이에서		이 사람이 사람들이										i u U a Ar	
	2400+009			1.1.1.4		1.1.41			÷.,	12.222	÷	1.0000		100,000	é.	11.0.95	8	2000		10.000		20202		2.93		0.51		- 14 C S.		10 - Carl 1		- 1622		1.12		0 - N.A. (
	2400+509			- 31.5		1.2		4. J		12.54	S	- 200		1128		10.44		1.14		1997		- 1999 - A		1.03		0.36		- B. P.	_			1.11		25		0.05	
	2500+00			10 5	33					÷				S			e 1			- 43 5				1.31		0.68											-
	2500+509		-			5.		1.1.1.		- 1 Mari		1.00		1.22		2.1		- 1.1		.463		1.1.1.		1.51		0.69											5
′L95S	2600+009	S	<5	×.2	2 5	_ <2	30	5 - 1	3	4	0.3	<5	<5	<5	1.76	21.	5 <10	36	6	36	<20	<20	29	0.79	0.29	0.41	0.02	0.11	27	5	<2	9	5	<5	<10	0.07	7
/1 050	2600+50		10	<.2	28	23	7	2 1	: 	12	0.2	~		- 	7 57	1050	1 ~10	21	8	70	~20	~20	26	2.42	1 20	1.86	0 01	à 16	"	12	2	70	12	ź	-10	0.01	
	2700+50				· 20 · 37					3.52		1. 6								Sec. 1				1.93		0.63		10 C		1.4.4							
	2800+00			0.2			103									1.000				- Co. v.		1.000		1.91		0.47		7.10			<2	1.12			<10 (5.11.1	4
	2800+50		-	1.1.1	114		7			- 1200				1.1.61		- 5 SC 3		6. s. s.		- 202		1.500		3.39		2.65				8		24			<10		3
	2900+00			1.1.1	20		8	5 A A		17.6		1.1.1.1.1.1.1		Sec. 64		1.				1400	1	1.20		3.16		1.35		and the second				39		÷.	<10 (
2753	2700+00.	,	~		. 20	, v	0			1					2.40	\sim		Ű		ि	-20			3.10	0.00		0.05	0.20	112	Ĭ	,			ેં		5.15	0
195s	2900+50	S	<5	1.4	74	11	13	5 5	11	14	<.2	<5	<5	<5	4.51	827	- 11	70	15	82	<20	<20	44	2.50	1.17	0.76	0.01	0.30	48	23	6	39	23	7	<10 i	0.05	6
	3000+00		-	- Å - E	48	111.0	175	de.		1.00161				6.000		i den s	- N	1.1.2		- 2008-	2 - C	0.6666		3.30		1.47		20.000		15, 6, 76, 11		1.1.1				0.09	
	3000+50			· · · ·	101	- A		16.5	× .		e	- 18 A		1.00		- 100 di		2		10.000		- 126.67	-	4.27		1.36		S 8-9-9		1.10		1.1		·	<10 (9
	3100+009							÷.,		1935		20.000		100.00		1.436				2.2.6		1.000		4.26		1.24		18 18 A.		1.6.01		1.0		A 14			
	3100+50		-			100				1.000		- 6-63 -		10.000		5.488		- 1. N.		1999		1.00.0		4.64		2.90		Section				- C				0.00000	-
					- /			•				-	2.																	-			-	•			_

VHITE WOLF EXP V95-01355.0 (LE ELEMENT A	COMPLETE	N E) Cu	Pb Zr	n Mo	Ni C	Co Cd	Bi	As	Sb Fe	Mn	Те	Ba PPM G	Cr PPM P	V S	n W MPPM	La Al PPM PCT	Mg	Ca PCT	Na K PCT PCT	Sr PPM	Υ (PPM P	Ga Li	D# Nb		CIQUEN TED: 2 Ti	24-0CT-95 Zr	PAGE
L95S 3200+00S L95S 3200+50S L95S 3300+00S L95S 3300+50S L95S 3400+00S	<5 0.4 <5 0.4 <5 0.4 <5 0.6 <5 0.7 <5 0.6	30 46 44 41 48	4 104 5 76 5 90 4 99 <2 102	3 5 4 5 5 4 2 3	5 1 6 1 7 1 8 1	10 0.3 12 <.2 12 <.2 15 0.5 17 <.2	ড ড ড ড ড ড	<5 <5 <5	<5 3.14 <5 3.66 <5 3.50 <5 4.04 <5 5.01	607 654 692 686	<10 <10 12 12	94 55 78 112	8 5 9 7 8 6	58 <2 71 <2 67 <2 91 <2	0 <20 0 <20 0 <20 0 <20 0 <20	17 2.18 25 2.18 25 2.38 23 3.59 24 3.20	1.24 1.24 1.50	0.45 0 0.72 0 0.65 0 0.86 0	.02 0.17 .01 0.22 .02 0.23 .03 0.54 .02 0.75	37 56 50 56	7 10 13 8 1 9 1	2 29 3 28 4 29 15 25 18 28	7 10	<5 <10 6 <10 6 <10	0.05 0.06 0.07 0.21	2 4 4 17 7	
.95s 3400+50s	< 0.8	48	<2 128		10 2	20 <.2			9 5.05	1084	10	76		23. 2	0 <20	24 4.03	2.04	1.09 0	.02 0.47	58		22 33	7 7	10 <10	0.33	4	
																								「「「「「「「「」」」」「「「「「」」」」「「「」」」」「「」」」」」「「」」」」			

	chc	ar	ar De I	C 'es	le sti	eg ng	g Se	r	vice	8							-								PR	LIFCT -	L	lab Rep		mical	
v95-01355.0 (COMPLET	TE)	0 5 70	Ma					Ch Ea	Ma	To		<u> </u>		~ 11			_			× 0-		0-		DAT	E PRI	ITED: 2	24-001	-95	PAGE 3	
BER UNITS			Pb Zn PPM PPM		PPM (Co Ca PPM PPM	PPM	AS PPM	SD Fe PPM PCT	PPM	PPM	pa PPM	PPM	V PPM PI	SN W PM PPM	PPM	PCT PC	g T P	CT P(IA I CT PC	K Sr T PPM	T PPM		PPM		SC TA	I TI				
k/L95S 3200+00S R/L95S 3200+50S R/L95S 3300+00S R/L95S 3300+50S R/L95S 3400+00S	<5 0.4 <5 0.4 <5 0.6 <5 0.6	5 44 7 41	4 104 5 76 5 90 4 99 <2 102	3 4 5 4 3	5 6 7 8 12	10 0.3 12 <.2 12 <.2 15 0.5 17 <.2		ও ও ও ও ও ও ও	<5 3.14 <5 3.66 <5 3.50 <5 4.04 <5 5.01	686	<10 12 12	55 78 112	9 8 10	71 < 67 < 91 <	20 <20 20 <20 20 <20	25 25 23	2.18 1.1 2.18 1.2 2.38 1.2 3.59 1.5 3.20 1.8	4 0. 4 0. 0 0.	72 0.0 65 0.0 86 0.0	02 0.1 01 0.2 02 0.2 03 0.5 03 0.5	2 56 3 50 4 56	10 13 8	2 3 4 15 18	28 29 25	10 13 8	6 <10	0.06 0.07 0.21	2 4 4 17 7			
R/L95s 3400+50s	<s 0.1<="" td=""><td>8 48</td><td><2 128</td><td>3</td><td>10</td><td>20 <.2</td><td>ৎ</td><td>ব</td><td>9 5.05</td><td>1084</td><td>10</td><td>76</td><td>14</td><td>123 <</td><td>20 <20</td><td>24</td><td>4.03 2.0</td><td>4 1.</td><td>09 0.0</td><td>02 0.4</td><td>7 58</td><td>7</td><td>22</td><td>33</td><td>7</td><td>10 <10</td><td>0.33</td><td>4</td><td></td><td></td><td></td></s>	8 48	<2 128	3	10	20 <.2	ৎ	ব	9 5.05	1084	10	76	14	123 <	20 <20	24	4.03 2.0	4 1.	09 0.0	02 0.4	7 58	7	22	33	7	10 <10	0.33	4			
																							•					•			
		장하는 것 않는 것 같아?									and the second																				
																									and the state of the						•
																									[1] M.C. Witsenson, in A. D. Martin, and M.M. Martin, Phys. Rev. B 48, 000 (1996).				sy.		

......

CLEAR: UNITE UNITE UNITE OUNCE PROPERTION PROPEL CONSENT: 057-056 COL PB 2:1 No. PI / COLPBA Mole 2 Report: 057-01375.01 COMPLETE) DUEE PROPE CLEARING ALOD A, DU PB 2:N MO NI CO CI BI AS 55 Fe HN TE BS CF V SN V LS AL MO COLPS 2: P 7 54 9 BL IN BS CF BI TI 2: PERMINER 2: ADVID A, COLPB 2: P 7 54 9 BL IN BS CF BI TI 2: PERMINER 2: ADVID A, COLPB 2: P 7 54 9 BL IN BS CF BI TI 2: PERMINER 2: ADVID A, COLPB 2: P 7 54 9 BL IN BS CF BI TI 2: PERMINER 2: ADVID A, COLPB 2: P 7 54 9 BL IN BS CF BI TI 2: PERMINER 2: ADVID A, COLPB 2: P 7 54 9 BL IN BS CF BI TI 2: PERMINER 2: ADVID A, COLPB 2: P 7 54 9 BL IN BS CF BI TI 2: PERMINER 2: ADVID A, COLPB 2: P 7 54 9 BL IN B, SE TA TI 1: PERMINER 2: ADVID A, COLPB 2: P 7 54 9 BL IN B, SE TA TI 1: PERMINER 2: ADVID A, COLPB 2: P 7 54 9 BL IN B, SE TA TI 1: PERMINER 2: ADVID A, COLPB 2: P 7 54 9 BL IN B, SE TA TI 1: PERMINER 2: ADVID A, COLPB 2: P 7 54 9 BL IN B, SE TA TI 1: PERMINER 2: ADVID A, COLPB 2: P 7 54 9 BL IN B, SE TA TI 1: PERMINER 2: ADVID A, COLPB 2: P 7 54 9 BL IN B, SE TA TI 1: PERMINER 2: ADVID A, COLPB 2: P 7 54 9 BL IN B, SE TA TI 1: PERMINER 2: ADVID A, COLPB 2: P 7 54 9 BL IN B, SE TA TI 1: PERMINER 2: ADVID A, COLPB 2: P 7 54 9 BL IN B, SE TA TI 1: PERMINER 2: ADVID A, COLPB 2: P 7 54 9 BL IN B, SE TA TI 1: PERMINER 2: ADVID A, COLPB 2: P 7 54 9 BL IN D,											ry	/ice	S]	Geor Lab Repo		mical	
DAPLE ELBERT HUGO Ag LD P6 2/2 MO HI GO CH BI As S5 Fe Min Te Ba Cr V Sn V La AI Ng LD FE CT PCT PCT PCT PCT PCT PCT PCT PCT PCT			- · · ·						-																							95	PAGE 2	,
MINE PRI														•••••		•••••	·····		•••••			••••••	•••••			•••••			•••••					
VIUSS 1000-063 $5 0.5 13 - 2106 - 3$ 9 14.0.4 $5 - 74.29$ 770 12 53 15 86 - 20 22 24.0.1 0.40 0.01 0.29 52 9 7 54 9 8 - 10 0.14 6 VIUSS 1000-063 -60.2 12 2 17 0.5 6 -0.2 12 0.7 0.5 0.0 0.2 22 17 0.5 0.0 0.2 18 0.4 0.0 0.2 18 0.4 0.0 <												and a																						
Vices Single Vices	NUMBER	U	1113 FFD FFF	1 PPP		rrn 1	FFM F			rrn,	Frit	rrij rul		rrn	çen i				ų rri			101	ru	Frit	rrn				re r	rn ru	rrn			
VI.055 TOM-505 0.0 2.2 2.4 4.5 3 7 13.0 4 4 4 5 5 7 10.0 2 VI.055 1800+005 0.0 1 0.2 4 3 9 150.2 4 3 5 10.0 4 4 4 4 6 4 10.0 2 VI.055 1800+005 5 0.2 2 1 6 0.5 0.5 0.2 2 7 4 10.0 6 4 10 6 5 3.5 6 2 10 0.5 0.5 0.0 0.2 2 7 2 10.00 6 VI.055 1000+050 5 0.2 2 8 10 6 5 3.5 6 20 20 10.0 10.0 2 7 2 10 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 <	₹/L95S	1600+50s	<5 0.5	5 13	<2	106	3	9	14 0.4	5	ح	7 4.29	779	12	53	15	88	<20 <20	j z	2.64 1.65	0.64	0.01	0.29	52	9	7	54	9	8 -	10 0.14	6			
1/1958 180000540.4194483913.0.2445472137421010101/1958 1800405550.215582269920202023.151.00.40.101.87743774100.0031/1958 1800405550.22281310555537840.000.222774100.0041/1958 1800405550.22111 <td>₹/L95S</td> <td>1700+00S</td> <td><5 0.2</td> <td>2 12</td> <td><2</td> <td>177</td> <td>2</td> <td>6</td> <td>9 0.7</td> <td><5</td> <td><5</td> <td><5 2.40</td> <td>2433</td> <td><10</td> <td>286</td> <td>10</td> <td>44</td> <td><20 <20</td> <td>D 17</td> <td>2.24 0.77</td> <td>0.46</td> <td>0.03</td> <td>0.18</td> <td>54</td> <td>4</td> <td>4</td> <td>29</td> <td>5</td> <td><5 •</td> <td>10 0.00</td> <td>2</td> <td></td> <td></td> <td></td>	₹/L95S	1700+00S	<5 0.2	2 12	<2	177	2	6	9 0.7	<5	<5	<5 2.40	2433	<10	286	10	44	<20 <20	D 17	2.24 0.77	0.46	0.03	0.18	54	4	4	29	5	<5 •	10 0.00	2			
$y_{1}y_{55} + 1900+050$ < 5 0 2 6 9 6 5 2 1 6 5 2 1 6 5 2 1 <	₹/L958	1700+50s	<5 Ö.2	2 28	4	85	3	7	13 0.5	<5	<5	<5 3.52	681	<10	35	12	78	<20 <20	0 1	3 2.48 1.51	0.84	0.02	0.24	65	6	4	41	6	6 -	10 0.10	2			
$ \begin{array}{c} 1.955 \ 1900+005 \\ .50,2 \ 22 \ 8 142 \ 3 \ 8 \ 13 \ 1,0 \ 5 \ 5 \ 5 3.54 \ 626 \ 10 \ 41 \ 12 \ 85 \ 20 \ 420 \ 22 \ 2.67 \ 1.47 \ 0.89 \ 0.01 \ 0.22 \ 69 \ 9 \ 5 \ 37 \ 9 \ 8 \ 10 \ 0.06 \ 16 \ 1.45 \ 1200 \ 120 \ 120 \ 120 \ 1200 \ 120 \ 120 \ 120 \ 120 \ 1200 \ 120 \ 12$:/L95S	1800+00s	<5 0.4	19	4	84	3	9	13 0.2	<5	<5	<5 3.85	762	<10	22	15	75 •	<20 <20	2	5 2.35 1.61	0.49	0.01	0.18	27	7	<2	43	7	7 -	10 <.01	3			
1955 1909+50S $4 \le 2$ $2 \le 7$ $2 \le 7$ $2 \le 7$ $4 \le 5$ $5 \le 7 \le 2$ $5 \le 2 \ge 2$ $5 \le 7 \le 2$ $5 \le 2 \ge 2$ $5 \le 7 \le 2$ $5 \le 7 \le 2$ $5 \le 2 \ge 2$ $5 \le 2 \ge 2$ $5 \le 7 \le 2$ $5 \le 7 \le 2$ $5 \le 2 \ge 2$ $5 \le 2$ $5 \le 2$ $5 \ge 2$ $5 = 7 \times 2$ $5 \le 7 \times 2$ $5 \le 2$ $5 \ge 2$ $5 \le 2$ $5 \ge 2$ $5 \ge 7$ $5 = 7 \times 5 $ $5 = 7 \times 10.006$ $6 < 10 \times 0.5$ $5 = 5 \times 10.056$ $5 = 7 \times 2 = 7 \times 2$ $7 \le 2 = 7 \times 2 = 7 \times 2 = 7 \times 2$ $7 = 2 = 7 \times 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2$:/L95s	1800+50s	<5 0.2	2 15	5	82	2	6	9 0.6	<5	<5	<5 2.74	482	<10	60	9	59	<20 <20	0 2	2 1.72 0.97	0.57	0.02	0.22	45	7	<2	25	7	<5 <	10 0.09	5			
$1.955 1900+505$ $4 \le 2.2 17 2 2 57$ $2 57 7 < 2.2 4 \le 5 5$ $5 5 7 < 2.5 7 < 2.5 5 7 < 2.5 5 7 < 2.5 5 7 < 2.5 5 7 < 2.5 5 7 < 2.5 5 7 < 2.5 5 7 < 2.5 5 7 < 2.5 5 7 < 2.5 5 7 < 2.5 5 7 < 2.5 5 7 < 2.5 5 7 < 2.5 5 7 < 2.5 5 7 < 2.5 5 7 < 2.5 5 7 < 2.5 5 7 < 2.5 5 7 < 2.5 5 7 < 2.5 5 7 < 2.5 5 7 < 2.5 5 7 < 2.5 5 7 < 2.5 5 7 < 2.5 5 7 < 2.5 5 7 < 2.5 5 7 < 2.5 5 7 < 2.5 5 7 < 2.5 5 7 < 2.5 5 7 < 2.5 5 7 < 2.5 5 7 < 2.5 5 7 < 2.5 5 7 < 2.5 5 7 < 2.5 5 7 < 2.5 5 7 < 2.5 7 < 2.5 5 7 < 2.5 5 7 < 2.5 7 < 2.5 5 7 < 2.5 7 < 2.5 7 < 2.5 7 < 2.5 7 < 2.5 7 < 2.5 7 < 2.5 7 < 2.5 7 < 2.5 7 < 2.5 7 < 2.5 7 < 2.5 7 < 2.5 7 < 2.5 7 < 2.5 7 < 2.5 7 < 2.5 7 < 2.5 7 < 2.5 7 < 2.5 7 < 2.5 7 < 2.5 7 < 2.5 7 < 2.5 7 < 2.5 7 < 2.5 7 < 2.5 7 < 2.5 7 < 2.5 7 < 2.5 7 < 2.5 7 < 2.5 7 < 2.5 7 < 2.5 7 < 2.5 7 < 2.5 7 < 2.5 7 < 2.5 7 < 2.5 7 < 2.5 7 < 2.5 7 < 2.5 7 < 2.5 7 < 2.5 7 < 2.5 7 < 2.5 7 < 2.5 7 < 2.5 7 < 2.5 7 < 2.5 7 < 2.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < 7.5 7 < $									44 L L	·					128	:) (. 32	بند مع							2	_	<u>.</u>		2.					
1958 2000-005 $4 \le 2, 2 \le 2, 5 \le 2, 5 \le 7, 4 \le 2, 5 \le 7, 4 \le 4, 5 \le 4, 5, 26, 356 < 10, 41, 9, 50, 20, 20, 10, 11, 8, 0, 70$									21 C			1.44.44	dia ang ka		1.11			3.5	9	· ·	. : : :		1						· ·	· · · ·				
1955 2000+50S $\leq 0, 9 \ 103$ 10 189 7 12 20.07 $\leq < < < < < < < < < < < < < < < < < < <$		-																												1.175				
1955 2100+005 $45 \cdot 2$ 17 4 109 1 8 10 0.6 $45 \cdot 45 \cdot 22$ 652 10 8 4 0 200 11 2.36 0.67 0.50 0.30 0.4 4 2 2 4 $45 \cdot 10$ 10 9 1055 2100+505 $45 \cdot 22$ 4 98 2 9 13 0.3 45 $45 \cdot 23$ 12 14 48 20 20 18 2.89 1.62 0.90 0.10 25 5 5 7 45 5 6 10 15 5 5 7 45 5 6 2.29 13 2.7 6 4 5 2 2 14 68 2.0 2.01 0.21 0.51 0.4 6 32 5 5 1.4 64 10 17 13 2.01 0.4 6 32 4 4 4 2 2 7 4 5 1 2.2 0.20 13 2.21 0.4 0.33 0.00 1.1 2.2																														A 84				
Lyss 2100+505 $45 + 2 + 1$ $7129 + 3 + 9$ $9 + 5 + 0 + 45 + 5 + 5 + 3.88 + 657 + 11 + 26 + 13 + 82 + 20 + 20 + 18 + 2.89 + 1.62 + 0.90 + 0.01 + 0.25 + 75 + 5 + 7 + 45 + 5 + 6 + 10 + 0.15 + 5 + 155 + 2200 + 505 + 20 + 10 + 24 + 10 + 5 + 10 + 25 + 10 + 10 + 25 + 10 + 10 + 25 + 10 + 10 + 25 + 10 + 10 + 10 + 10 + 10 + 10 + 10 + 1$													- 5 X X		1.2.2		1.1	242	2	1.00														
1055 2200+005 $< 5 0.3 24 4 96 2 9 13 0.3 45 4 5 73.12 591 < 10 22 14 68 20 20 17 2.57 1.56 1.22 0.01 0.24 100 5 5 39 5 45 <10 0.14 5$	195s	2100+00S	<5 <.2	2 17	4	109	1	8	10 0.6	0	<>	<> 2.20	072	<10	уD.	8	40	<20 <21		2.30 0.07	0.90	0.05	0114	54	4	۲	29	4		10 0.10				
1055 2200+005 $< 5 0.3 24 4 96 2 9 13 0.3 45 4 5 73.12 591 < 10 22 14 68 20 20 17 2.57 1.56 1.22 0.01 0.24 100 5 5 39 5 45 <10 0.14 5$	1 OSe	2100+505	45 2 2	6 41	7	120	3	0	15 0.4	ંક	5	<5 3.88	657	11	26	13	82 ·	<20 <20	0 1	3 2.89 1.62	0.90	0.01	0.25	75	5	7	45	5	6 -	10 0.15	5			
L955 2200+50s -50,4 26 10 79 5 8 11 0.3 c 5 2.28 28 28 10 11 15 2.20 20 13 2.20 10 2.5 2.20 15 2.20 0.5 0.20 15 2.21 15 7 0.20 20 15 2.21 0.5 0.20 15 2.21 0.5 0.20 15 2.21 0.5 0.20 15 2.21 0.4 0.3 0.00 0.15 39 4 2 19 5 5 10 0.00 13 0.55 2000-50s -50 2 7 6 0.4 -5 5 1.78 294 10 15 2.02 15 2.03 0.6 0.51 0.04 0.16 42 7 4 28 7 -5 4 10 5 2.02 15 2.03 0.65 0.03 0.16 10 4 10 5 2.02 13 1.03 0.40 11 10 5			~ ~ ~				-					- C-							és a	5 S. S. S.	1 44 3		- AL - S. J.				· · · · ·			11.2.4				
1955 2300+005 -50.3 28 7 100 3 8 11 0.3 -5 5 3.14 614 40 52 11 57 200 20 17 2.58 1.27 0.57 0.20 0.15 42 8 3 35 8 5 <10.04																					- 10 As		- X 1 A 6							A 1.2				
$\begin{array}{c} 1.955 \ 2300+505 \\ 55 \ 2400+005 \\ 55 \ 2400+005 \\ 55 \ 2400+505 \\ 51 \ 240 \ 240 \ 25 \ 512 \ 45$																					0.57	0.02	0.15	42	8	3	35	8	5 <	10 0.04	4			
955 2400+005 <5 0.2 65																					0.33	0.03	0.15	39	4	<2	19	5	<5 <	10 0.08	13			
955 2400+505 -5 0.4 20 + 2 42 2 5 8 + 2 + 2 5 8 + 2 + 2 5 5 + 5 2 + 2 + 2 5 5 + 2 + 2 + 2 5 5 + 2 + 2 + 2 5 5 + 2 + 2 + 2 + 5 5 5 + 2 + 2 + 2 + 5 + 5 + 2 + 2 + 2 + 5 + 5	•/=•						171											ei/			¹¹							:						
955 2400+505 -5 0.4 20 + 2 42 2 5 8 + 2 + 2 5 8 + 2 + 2 5 5 + 5 2 + 2 + 2 5 5 + 2 + 2 + 2 5 5 + 2 + 2 + 2 5 5 + 2 + 2 + 2 + 5 5 5 + 2 + 2 + 2 + 5 + 5 + 2 + 2 + 2 + 5 + 5	.95s	2400+00S	<5 0.2	65	<2	76	3	7	9 0.5	<5	<5	<5 2.50	559	<10	104	8	51 -	<20 <20	0 1	5 2.93 0.96	0.51	0.04	0.16	42	7	4	28	7	ار ة (10 0.12	25			
955 2500+505 <5 0.3 36 <2 74 2	.955	2400+50s	<5 0.4	20	<2	42	2	5	8 <.2	<5	<5	<5 2.92	532	<10	41	10	63 ·	<20 <20	0 2	2 1.03 0.49	0.36	0.01	0.14	28	8	<2	13	8	-5	10 0.05	2			
955 2600+00s <5 < 2 5 < 2 36 1 3 4 0.3	.955	2500+00S	<5 0,3	33	<2	64	2	8	8 <.2	<5	<5	<5 2.63	592	<10	63	11	55	<20 <20	0 2	5 1.31 0.75	0.68	0.03	0.17	40	10	<2	17	10	<5 •	10 0.0	4			
955 2600+505 10 < 2 28 < 2 73	.95s	2500+50s	<5 0.3	36	<2	74	2	7	8 <.2	<5	<5	<5 2.74	569	<10	73	10	56	<20 <20	03	1 1.51 0.75	0.69	0.03	0.19	46	11	<2	18	10	<5 ·	10 0.08	5			
958 2700+50s 21 0.7 37 12 103 5 9 13 <.2 <5 <5 <5 5.82 649 13 55 14 98 <20 <20 76 1.93 0.90 0.63 0.02 0.24 55 12 <2 22 11 5 <10 0.07 4 1	95s	2600+00s	<5 <.2	2 5	<2	36	1	3	4 0.3	<5	<5	<5 1.76	213	<10	36	6	36 ·	<20 <20	0 2	0.79 0.29	0.41	0.02	0.11	27	5	<2	9	5	<5 <	10 0.07	7			
958 2700+50s 21 0.7 37 12 103 5 9 13 <.2 <5 <5 <5 5.82 649 13 55 14 98 <20 <20 76 1.93 0.90 0.63 0.02 0.24 55 12 <2 22 11 5 <10 0.07 4 1												an da Tagina							2 2											· · · · ·				
>55 2800+00s <5 0.2 13	95S	2600+50s	10 <.2	28	<2	73	4	6	12 0.2	<5	<5	<5 3.53	1050	<10	21	8	79	<20 <20	0 2	5 2.42 1.29	1.86	0.01	0.10	66	13	2	30	12	.6 <	10 0.01	2	•		
>55 2800+50s <5 0.5 114	75S	2700+50s	21 0.7	37	12	103	5	9	13 <.2	<5	<5	<5 5.82	649	13	55	14	98	<20 <20	07	5 1.93 0.90	0.63	0.02	0.24	55	12	<2	22	11	5 •	10 0.07	4 1	,	•	
55 2900+00s <5 <.2 20 6 80 4 7 8 0.5 <5 6 2.46 468 <10 85 12 48 <20 <20 22 3.16 0.68 1.35 0.03 0.20 112 6 5 39 6 <5 <10 0.13 8 5s 2900+50s <5	75s	2800+00S																																
55 2900+505 <5	75S	2800+50s																																
55 3000+00s <5 0.6			<5 <.2	20	. 6	80	4	7	8 0.5	<5	5	6 2.46	468	<10	85	12	48	<20 <20	0 2	2 3.16 0.68	1.35	0.03	0.20	112	6	5	39	6	ব •	10 0.13	8			
55 3000+00s <5 0.6							19										ġŢ.						n de la composition de la comp		``. .,		· . ·							
55 3000+50s <5 1.0 101 <2 135 4	5 S	2900+50s																																
55 3100+005 <5 1.2 % <2 208 4 11 15 0.7 <5 <5 5.93 621 13 27 21 126 <20 <20 47 4.26 1.67 1.24 0.02 0.15 78 28 11 40 28 14 <10 0.07 3	55	3000+00s																																4
	58	3000+50s																																
5s 3100+50s <5 0.6 59 14 98 4 12 12 1.2 <5 <5 9 3.37 1026 11 49 13 69 <20 <20 24 4.64 1.01 2.90 0.02 0.30 286 8 11 25 8 7 <10 0.07 2	5s	3100+00s											2000.0		- X		- N.M.						- A - N A				10.0		A	No. 10 a	č			
	5S	3100+50s	<5 0.6	5 59	14	98	4	12	12 1.2	<5	<5	9 3.37	1026	11	49	13	69	<20 <2	0 2	4 4.64 1.01	2.90	0.02	0.30	286	8	11	25	8	7 •	10 0.07	2			

.

Bondar Clegg Inchcape Testing Services

TE

V95-01355.0 (COMPLETE)

) LE	ELEMEN	Au30	Ag	Cu	Pb	Zn	Мо	Ni	Çọ	Cd	Bi	As	Sb	Fe	Mn	Te	Ba	Сг	V	Sn		Į La	а ,	AL	Mg	Ca	Na	ĸ	Sr	Y	Ga	Ļi	Nb	Sc	Ta	Ţi	Zr	
, BER	UNITS	S PPB	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PP	A PPN	1 P	СТ	PCT	PCT	PCT	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM	
J		ţ																																				
Ŕ∕L95S	00+00s	<5	0.3	17	9	118	2	8	7	0.8	<5	49	<5	2.19	385	<10	138	9	44	.<20	<20	0 13	5 1.	82 0	0.69	0.34	0.03	0.24	33	4	<2	17	4	<5	<10	0.08	7	
≀/L 9 5S	00+50S	<5	<.2	21	4	74	3	9	8	0.2	\$ 5	5	\$	2.53	471	<10	65	11	59	<20	<20) 17	7 1,	37 0	0.87	0.53	0.02	0.27	46	6	<2	17	6	<5	<10	0.10	3	
₹∕L95S	100+00s	<5	0.2	24	2	81	2				1.6			2.36	Q				- 19			÷						0.22		6	<2	19	6	<5	<10	0.08	2	
:/L 95 S	100+50s	20	<,2	14	<2	109	2	7	7	<.2	<5	<5	\$ 5	2.35	393	<10	112	10	47	<20	<20	D 17	7 1.	54 0	0.69	0.39	0.02	0.16	33	4	<2	29	4	<5	<10	0.08	3	
:/L 9 5S	200+00S	<5	0.3	27	68	138	3	10	11	0.9	5	् <5	<5	3.21	600	<10	136	13	60	<20	<20	20	D 2,	47 1	1.11	0.51	0.02	0.22	51	6	3	33	6	<5	<10	0.09	8	
	200.500	Æ	• •	66	~2	76	4	11	17		~5		~5	3.85	17/5	~10	30	12	80	~20	-20	ר ר ר	5 1	<u> </u>	1 10	1.27	0 01	0.08	/5	10	2	26	19	10	~10	2 01	2	
•	200+50S	_	:		- ন্যু		2		·		100			2.83			14 B		1011		121			8 S -		1004		0.15		1.53	<2	100				0.07		
•	300+50S	-		17 20		104 150	-		~					2.53	1.11		0.07		100		- 23			94 A		1997		0.18	-		<2					0.08		
-	400+00S		<u>₹</u>			89		-					- X	2.75			- 12 -		1202		- 7223	9.5	- X	- K.S.		- 203 <u>88</u> .		0.17		.18		18		19.5		0.05	4	
	400+50S 500+00S		- 0 + S	18	• 7	122	-	-		÷	1,626.5		- C - C	2.07	27 Se - C		100							195 A.		2 C 2 C 2		0.19		- 87 I	_	- 8 A		- 63		0.07	5	
1/1932	500+005	~	8:5	10	ୖୖୄ	166					<u></u>		्	2.07													0.05		40	1		88				84.91 ⁰	-	
:/L95S	500+50S	<5	0.5	29	14	147	3	. 11	10	0.4	<5	<5	<5	2.70	645	<10	131	12	57	<20	<20	D 10	5 2.	31 (0.98	0.47	0.03	0.33	53	6	2	35	6	<5	<10	0.11	8	
	600+00S	6	<.2	12	5	192	2	6	7	0.3	<5	<5	<5	2.16	612	<10	163	9	39	<20	<20	12	2 1.	87 (0.69	0.33	0.02	0.14	34	4	<2	18	4	<5	<10	0.06	9	
:/L95S	600+50S	<5	0.4	21	7	98	3	7	10	0.5	<5	<5	<5	3.21	591	10	44	11	65	<20	<20	19	9 1.	59 1	1.21	0.45	0.02	0.18	42	8	<2	24	8	<5	<10	0.06	3	
:/L95S	700+00S	<5	0.2	11	8	135	2	7	8	0.4	<5	<5	<5	2.53	712	.<10	141	9	47	<20	<20) 13	31.	93 (.86	0.30	0.02	0.13	33	4	<2	23	4	<5	<10	0.06	5	
:/L 9 5s	700+50S	<5	0.5	34	7	99	3	8	11	<.2	<5	5	<5	3.65	779	<10	57	13	75	<20	<20	0 20	5 1.	86 1	1.21	0.56	0.02	0.25	50	15	<2	28	14	6	<10	0.06	3	
							_	_	-		_	_	_					-								197				_			_				••	
	800+50S													2.36					23.55		144	e	1.4	12.1	0.69	<u> 1998</u>		0.14				- 12		12		0.07		
	900+00S			22	-			-			· · · ·		1.12	3.81	1 11 4				- 32			· · · · ·	- 50	8 Y .		8.597		0.26	_		<2	200		1		0.05	2	
•	900+50S	-	<u>ج</u> .2											2.94						÷ .	- 193	-				1.5.28		0.26		1.0		32		10		0.07		
•	1000+00S		200	20		73	11		1.11		- S.C.			2.79	- S - 21		1.000				1.22.5	8	- 12.2					0.14		1.2		- X.S		·		0.03	. 1	
/L95S	1000+50S	<5	\$.2	7	<2	23	<u>ارچ</u>	<1	<1	1.1	ે	<>	2	0.05	130	<10	10	د .	1	<20			۷ .	U/ U	J.09	>10.00	<.01	0.01	181	Ч.	~2	- S	11	8	<10	* .UI	S ≤I 	
						ې د د		÷.,			ૣૺૼ	; 	- -	2.39	790	~10	74	11	54		-20	1	् 7 1	15 (0 45	0 /7	0 02	0.14	20		<2	17		્રેટ	~10	0.08	2	
	1100+00S			14			. 1X				- 225		2.26			£	223		1.03		- 326	φ	. 47	12 L		- 1997.	÷	0.18		~	<2		_	· · · · · ·		0.08	3	
•	1100+50S		0.3		×	•	- 20							2.54 2.79	. Anores		. 24		7,2222	× 1	10.00			NY 2		1.186.335		0.13			<2	- 8×		123		0.08	3	
	1200+00S	-	- 4 F S	52	5.27	0114								2.95			- 1010-		10.00		11222	e :		*****		1004088		0.16				- 13		1.85		0.08	1	
	1200+50S		. ; A	33	1.14	90								3.35			20.		1.002			0.00				- 336X		0.16		- E		- 200		100		0.07		
/1955	1300+00S	< 3	0.5	99	Š	.100	5	. 0		0.7		~	ૅ	:	0,2	~10	5	. 12	ૢૻૻૼ	-24	1				1.20		0.02	2.10	40			. 5	. '					
/1955	1300+50S	<5	0.3	. 62	2	366	6	6	10	0.8	<5	<5	<5	3.25	544	<10	31	10	57	<20) <20	0 21	1 1.	68 1	1.10	0.39	0.02	0.17	35	7	<2	27	8	<5	<10	0.09	7	
	1400+005		0.3		- 이 - 프	121	6,004		- 2.31		Y.		1.66	3.34	10,000	2	1997		1.5636		· · · · ·	0 19		allan -		0.47	0.01	0,12	40	7	<2	28	7	<5	<10	0.07	2	
	1400+505			- 34		227	4	7	.11	1.1	<5	<5	<5	3.36	587	10	38	9	60) <20) <2(0 18	82.	23	1.28	0.56	0.01	0.25	51	5	2	33	5	<5	<10	0.07	4	
	1500+00S	-	i <.2		. 2	153								3.32	10 Q		- 22		62	<20	1 <20	0 18	8 2.	00 1	1.27	0,66	0.01	0.26	63	5	<2	26	5	<5	<10	0.06	5	
	1600+005			2 10			10				2.1			2.25					39	<20) <20	0 10	0 2.	41 (0.73	0.28	0.02	0.16	31	2	<2	29	3	<5	<10	80.0	5	
							4		10						1927				• <i>3</i> 56				11.1			2433		******				191				ere ber		

Geochemical

4

PAGE 1

Lab Report

PROJECT: CIQUENAS

DATE PRINTED: 24-OCT-95

CLIENT: WHITE WOLF EXPLORATION

REPORT: V95-01284.0 (COMPLETE)

											1.1.1						· · ·										Na			Y					· · .		1
MBER	UNIŢS	PPB	PPB	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCI	PPM	PPM	PPM	PPM	PPM	PPM I	PPM F	PPM	PCI	PCI	PCI	PCI	PCI	PPM	PPM	PPM	PPM	PPM	PPM P	M I	PCT	PPM
D L1300E 1	: 1200+00N	6		<.2	29	16	73	3	10	9	<.2	<5	9	<5	2.63	536	<10	115	10	36	<20	<20	15	2.21	0.63	0.37	0.02	0.25	40	7	2	22	<1	<5 <	10.0	. 10	14
D L1300E 1	1200+25N	<5		<.2	40	11	76	3	8	10	<.2	<5	6	<5	2.97	680	<10	88	10	39	<20	<20	16	2.17	0.72	0.46	0.02	0.34	45	9	<2	24	<1	<5 <	10 0	.09	11
D L1300E 1	1200+50N	<5	1.1	<.2	36	12	109	4	7	11	<.2	<5	8	<5	3.07	1221	<10	:111	5	38	<20	<20	17	2.27	0.95	1.05	0.01	0.29	62	· 9	<2	27	1	<5 <	10 0	.07	4
D L1300E 1	1200+75N	<5		<.2	40	11	90	3	8	11	<.2	<5	12	<5	3.04	922	<10	.123	7	42	<20	<20	18	2.46	0.76	0.57	0.02	0.38	48	10	<2	25	<1	<5 <	10 0	.10	16
ND L1300E 1	1300+00N	<5		<.2	60	22	111	3	8	13	<.2	<5	16	<5	3.34	1230	<10	113	5	41	<20	<20	17	2.58	0.94	0.75	0.01	0.35	58	11	<2	28	1	<5 <	10 0	.09	7
ND L1300E 1	1300+251	~5	a a		· 60	12	87	7	8	10	< 2	-5	10	~ 5	2 83	. 405	<10	96	. 6	34	<20	<20	15	2 62	0 74	0 55	0.02	0 34	51	7	. 4	26	<1	<5 ×	: 10 0	10	14
AD L1300E 1		<5			100				- E		100 Sc.		1.5		2126		- 1977 S		1.1.1		6 SS 8 -		1 C. C. C.		8 (* S.);		- 11 A.1.A		- C 2		. P.			<5 <	1.0		- 253
AD L1300E 1		<5									Sec. 6		104		< C 172		- N1 3		· · · ·		24.94 C		12.5		26,002,007		- 9 i v V		1.63		· .			<5 <			201
AD L1300E 1		<5			25,23		82				2,1,22,1		- 500		200 A				-				10.00		90 M 1991.	2	- 4 1 P.P.							<5 <			
AD L1300E '		<5					74				21 A 200		1.1.1		· ·								18		은 나온 가지		$X \in \mathcal{O}(S)$. ee .					<5 <	1.1		1.1
E LIDUCE	1400-238	.,			् ^ह ै,			· •	्रेष्ट्र				: • • •		8.				, ,	、		20	ंड.						- 55		1		1			,	1
AD L1300E	1400+751	<5		<.2	40	12	98	3	8	10	<.2	<5	11	<5	2.	5	T	<u>م</u> ر	V	/		<20	17	2.15	0.69	0.70	0.01	0.32	55	10	<2	20	<1	<5 <	10 0	.06	5
AD L1300E		<5					63									6	0	' ک <u>ر</u>	- 0				· · · ·		21355		- S - M -		. 84		C 102			<5 <	200		
D L1300E		8		. –			89									-do	١	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		1					1.00									<5 <			
D L1300E		<5		. –			123				1100				2	Ŝ		2							영수용 문		- \$19 A S		- 32		- C (V)			<5 <	2011		- 18 Y
AD L1300E		<5					96		S.		1.1.2					5		1)	<20	15	2.47	0.67	0.56	0.02	0.36	51	7	<2	24	.1	<5 <	10 0	.09	11
									ي الحالي المنظر ال		- 200 - 2		ų.		2	(÷.		ar an Baile		- BREC I NUZ			-							
AD L1300E	1600+00N	<5		<.2	35	. 11	114	3	8	11	<.2	<5	16	<5	3						Q.	<20	18	2.63	0.90	0.57	0.02	0.42	51	8	<2	29	<1	<5 <	10 0	.10	12
D L1300E	1600+25N	<5		<.2	26	11	87	3	8	10	<.2	<5	7	<5	;						0	<20	15	1.70	0.67	0.42	0.02	0.27	37	8	<2	. 19	<1	<5 <	10 0	.07	6
AD L1300E	1600+50N	<5		<.2	37	11	107	3	9	10	<.2	<5	7	<5	2.>>	701	215		ায়ক -		0	<20	15	2.07	0.70	0.63	0.02	0.41	50	8	<2	23	<1	<5 <	10 0	.08	9
AD L1300E	1600+75N	<5	1.11																															<5 <			
AD L1300E	1700+00N	<5	1955	<.2	39	13	92	3	9	8	<.2	<5	13	<5	1.91	630) <10) 143	4	27	<20	<20	14	2.61	0.47	0.56	0.03	0.18	44	9	<2	20	1	<5 <	10 0	.10	17
AD L1300E	1700+25N	<5	-	<.2	24	7	62	2	8	8	<.2	<5	<5	<5	1.71	385	i <10) 39	7	32	<20	<20	12	0.55	0.42	0.90	0.02	0.06	30	5	<2	7	<1	<5 <	10 0	.04	2
AD L1300E		<5			37		 A - O 		· · ·		- C - L - Q - L		1.12				- C. M. M	6			1,000				- C								· · · ·	<5 <			ું રૂ
D L1300E		<5					S 15				- C - C - C - C - C - C - C - C - C - C				- a tra Sec. 4			97 - C							- 10 C C C - 10 C				1. (1) (1)				2.4	<5 <	- N. N.		5
AD L1300E		<5			5.11		2.22		- 2 - X		- X A X -				N S A.	-	- X 3N	A 14			·		× .		- S. C. C. S.									<5 <			1
AD L1300E		<5			1 A A				- NO		 NOC. 				- 2 mgra		- 11.44		- 52° -		- C				- COD 24 - M									<5 <			2
					1.19											. ·		¥.,	· ; *		·						Prog	· 	٩.								
AD L1300E	1900+50N	<5	a fasta																															<5 <			5
AD L1300E	1900+75N	<5	1.21																															<5 <			2
AD L1300E	2000+00N	<5																																<5 <			1.4.20
AD L1300E	2000+25N	<5																																<5 <			5
AD L1300E	2000+50N	<5	•	<.2	2 35	. 21	125	3	12	- 11	<.2	<5	8	<5	2.52	881	1 <10	0 103	10	46	<20	<20	13	1.57	1.02	1.69	0.02	0.25	56	5	<2	20	<1	<5 <	10 0	.07	1

chemical

PAGE 1

Lad Report

PROJECT: CIQUENAS DATE PRINTED: 24-OCT-95

Geocemical Lab Report

.IENT: WH	ITE WOLF	KPLORA	TION																													PROJ	ECT:	: CIQ	UENA	S		
PORT: V9	5-01284.0	(COMPI	LETE)																												DATE	PRI	NTED	: 24	-OCT-	-95	PAGE 2
MPLE	ELEMENT	Au30 i	AuRewi	1 Ag	Cu	Pb	Zn	Mo	Ni	Co	Cd	Bi	As	sb	Fe	e M	n Ţ	e Ba	Cr	٧	/ Sn	W	Lä	Al	Mg	Ca	n Na	a K	Śr	Y	Ga	Li	NЬ	Sc	Ťa	Ti	Źr	
MBER	UNITS	PPB	PPE	B PPM	PPM	P PM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCI	PP	m pṗ	M PPM	PPM	PP	I PPM	PPM	PPM	PCT	PCT	PCT	PC	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM	
ມ L 1300 E	2000+75N	<5		<.2	25	18	124	3	10	10	<.2	<5	7	<5	2.37	78	9 <1	0 147	10	38	3 <20	<20	13	1.67	0.66	0.43	5 0.02	2 0.25	36	6	<2	17	` 1	<5	<10	0.07	5	
D L1300E	2100+00N	· <5		< . 2	29	23	181	3	11	11	<.2	<5	<u>,</u> 11,	<5	2.68	144	0 <1	0 200	10	42	2 <20	<20	14	1.97	0.82	0.55	0.0	0.51	41	6	<2	20	<1	<5	<10	0.08	6	
d L1300E	2100+25N	<5		<.2	27	19	122	4	11	10	<.2	<5	16	<5	2.81	58	9 <1	Ö 161	10	44	<20	<20	16	2.40	0.78	0.37	0.02	0.34	36	7	2	22	<1	<5	<10	0.10	13	
D L1300E	2100+50N	<5		<.2	26	18	132	4	11	11	<.2	ব	15	<5	2.84	119	8 <1	0 216	, ÿ	44	<20	<20	13	2.39	0.84	0.44	0.02	2 0.34	41	5	<2	23	<1	<5	<10	0.10	5	
d L1300E	2100+75N	<5		0.2	26	18	107	3	12	10	<.2	<5	9	<5	2.61	61	7 <1	0 95	11	48	3 <20	<20	15	1.56	0.86	0.53	0.02	2 0.39	40	6	<2	17	× 1	<5	<10	0.08	4	
D L1400E	1200+00N	<5		<.2	21	23	159	3	8	11	<.2	<5	6	<5	2.86	129	1 <1	0 143	6	35	<20	<20	17	2.50	0.80	0.68	s ö.oz	2 0.48	58	8	<2	26	<1	<5	<10	0.10 [.]	11	
D L1400E	1200+25N	<5		<.2	22	15	192	4	8	12	<.2	<5	13	<5	2.89	171	6 <1	0 176	7	39	> <20	<20	15	2.65	0.88	0.75	0.02	0.36	65	6	<2	31	<1	<5	≈10 (0.10	8	
D L1400E	1200+50N	<5		<.2	19	15	145	4	8	12	<.2	<5	16	<5	2.94	112	6 <1	0 159	5	40	<20	<20	16	2.97	0.85	0.50	0.02	2 0.25	53	6	<2	31	<1	<5	<10 I	0.11	12	
D L1400E	1200+75N	<5		<.2	19	11	157	4	8	10	<.2	<5	9	<5	2.29	175	0 <1	0 261	ŝ	31	<20	<20	11	1.82	0.78	1.01	0.02	0.34	89	4	<2	29	×1	<5	<10 (0.07	7	
d L 1400e	1300+00N	<5		<.2	24	14	121	3	9	10	<.2	<5	16	<5	2.75	63	5 <1	0 140	7	38	<20	<20	15	2.61	0.72	0.45	0.02	2 0.28	47	7	2	26	<î	<5	<10	0.10	15	
d L1400E	1300+25N	<5		<.2	22	11	87	3	8	11	<.2	<5	9	<5	2.94	59	8 <1	0 103	7	40	<20	<20	15	2.18	0.76	0.41	0.02	0.40	40	5	<2	24	<1	<5	<10	0.11	10	
D L1400E	1300+50N	<5		0.2	41	11	186	3	9	10	<.2	<5	13	<5	2.41	68	4 <1	0 13 0	7	36	<20	<20	10	2.14	0.80	0.34	0.03	0.25	42	4	<2	30	<1	<5	<10 (0.11	10	
D L1400E	1400+00N	<5		<.2	38	10	126	4	8	12	<.2	ব	14	<5	2.78	91	3 <1	0 139	Ś	38	<20	<20	11	2.40	0.94	0.84	0.02	0.35	81	5	<2	31	<1	<5 ·	<10 I	0.09	ŝ,	
D L1400E	1400+25N	9	$\cdot \cdot \cdot \cdot$	<.2	40	14	126	4	10	13	<.2	<5	20	<5	3.27	76	4 <1	0 144	. 7	47	· <20	<20	16	2.89	0.95	0.59	0.02	2 0.30	65	7	2	32	<1	<5	<10 (0.11	13	
D L1400E	1400+50N	<5		<.2	24	13	107	4	8	11	<.2	<5	16	<5	2.98	85	1 <1	0 144	7	44	<20	<20	14	2.57	0.87	0.47	0.02	2 0.26	54	5	<2	29	1	<5	<10 (0.12	11	
D L1400E	1400+75N	<5		<.2	40	12	88	4	9	11	<.2	<5	8	<5	3.10	65	7 <1	0 102	9	49	> <20	.<20	17	1.99	0.85	0.43	0.02	0.39	37	8	~2	22	<1	<5	<10	0.10	9	
D L1400E	1500+00N	<5		<.2	42	13	119	4	10	14	<.2	<5	12	<5	3.62	94	8 <1	0 133	9	54	<20	<20	17	2.80	1.10	0.52	0.02	0.49	47	7	<2	33	ì	<5	<10	0.13	12	
D L1400E	1500+25N	<5		<.2	28	15	94	4	9	11	<.2	<5	9	ব	3.02	100	4 <1	0 138	7	44	<20	<20	15	2.45	0.89	0.54	0.02	0.42	44	6	<2	27	1	<5	<10 (0.11	11	
D L1400E	1500+50N	<5		<.2	44	11	120	4	9	13	<.2	ব	13	<5	3.32	125	9 <1	0 142	7	52	<20	<20	16	2.55	1.14	0.90	0.02	0.44	78	6	~2	33	<1	<5	<10 (0.11	9	
d L 1400 E	1500+75N	<5		<.2	22	17	162	3	8	10	<.2	<5	11	<5	2.60	154	9 <1	0 206	6	32	<20	<20	13	2.17	0.71	0.71	0.02	0.29	62	6	2	28	<1	<5 ²	<10 (0.08	6	
D L1400E	1600+00N	<5		<.2	25	12	94	3	8	10	<.2	<5	ব	<5	2.79	81	6 <1	0 97	8	42	<20	<20	14	1.82	0.81	0.39	0.02	0.30	33	5	~2	21	≈1	<5	<10 (0.09	5	
0 L1400E	1600+50N	<5		<.2	28	14	112	4	10	12	<.2	5	15	<5	3,11	81	1 🐴	0 113	7	43	<20	<20	16	2.58	0.91	0.45	0.02	0.34	39	8	~2	27	1	<5	<10 (0.10	11	
) L1400E	1600+75N	<5	÷,	<.2	33	15	121	4	9	12	<.2	ব	11	ব	3.15	92	1 <1	0 159	7	43	<20	<20	16	2.67	0.93	0.60	0.02	0.41	51	8	<2	30	<1	<5	<10 I	0.10	. 11	
	1700+00N	259&	72	80.4	58	62	269	4	7	16	1.5	<5	8	<5	4.05	141	7 <1	0 33	6	49	<20	<20	22	1.80	1.55	1.30	<.01	0.16	50	12	<2	39	.*1	<5	<10	<.01	<1	
	1700+25N	7			1000 a.		1804		1.1				10.22		- 0.70270		2.50	24.0	- 10 C C C	50	<20	<20	21	2.28	1.09	0.62	0.01	0.29	40	15	~2	27	<1	<5	<10 (0.05	7	
) L1400E	1700+50N	<5		<.2	30	13	88	3	10	11	<.2	<5	7	<5	2.93	89	9 <1	0 110	8	41	<20	<20	17	2.01	0.80	0.47	0.02	0.41	37	10	<2	23	<1	<5	<10	0.08	10	
D L1400E	1700+75N	<5	1. 20		1.1.6.661		90		1. COOK 1.				10.0000011		- 00000000				2.266	41	<20	<20	17	2.50	0.87	0.58	0.02	0.61	55	10	<2	26	<1	<5	<10 (0.10	18	
	1800+00N	<5		َ ۲.2			- 888 i		- C 20		AC 267		0.0396		121.1223			0 119	- A C		- 10 A		1.4.4		- A. 19394.		- 96-6-6	0.34	1 A A		1.00				a shekara a s		N 16 M 1	
	1800+25N	<5		<.2	·	•	and the second	4	9	10	<.2	<5	13	<5	2.68	71	4 <1	0 153	8	36	<20	<20	16	2.48	0.69	0.40	0.02	0.38	40	9	<2	26	<1	<5	<10 (0.10	21	
	1800+50N	<5					90		1		· · · · ·		5.26.25		- 35 (2003)			X.1	 				1.251		14 12 2		- N. 1	0.50	20.00				2		. 304 f.		1992 1	
		-				-		-	43	_	817	-			1.15		3		f.												-					-	1992	

4

CLIENT: WHITE	· · · ·																																		QUENA			
REPORT: V95-0	01284.0	(Comp	PLETE)						••••••						•••••		·····															DATE	E PRI	NTE	D: 24	-OCT-	95	PAGE 4
SAMPLE	ELEMENT	Au30	AuRew1	Ag	Cu	РЬ	Zn	Mo	Ni	Co	Cd	Bi	Ås	Sb	Fe	Mr	Ť	e Ba	Cr	v	Sn	W	Là	Al	Mg	Ca	Na	κ	Sr	Y	Ga	Li	ŇЬ	Sc	Ta	Ti	Zr	
NUMBER	UNITS	PPB	PPB	PPM	PPM	PPM	PPM	PPM	PPM	PPM P	PM	PPM	PPM	PPM	PCT	PPM	I PPI	I PPM	PPM	PPM	PPM	ppm i	PPM	PCT	PCT	PCT	PCT	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM	
DAD L1500E 16	600±50N	<5		2.2	19	17	80	. z	Ŕ		2	<5	14	. ~5	2 56	580		n 07	4	27	<20	<20	13 2	2 /N	0 55	0 /8	ίΩτ	0 36	<u>.</u> .	4	ò	25	1	-5	~10	0.08	15	
DAD L1500E 16		15			1.5.5		0.05.3		- 97	4	- 60		14.4		-> - 5 X		- 240	e 1	1. 147	-	- 352				121 800						1.100				1.000	0.09	30	
DAD L1500E 17		16			58		12.347		- X.	3	: 91 I		6.6		NC 285	s		NC-1	(c.		24.5		< <		2		- A - 23 - 4		1.1						1.1.5	0.06		
DAD L1500E 17		<5	an an An an		1-8-0.		1.20		12.5	i.	- 144		- 5 S.		$\sim 0.5h$		1.24	2	. X.		1.68		(2)		- 6 - 16V		Sec. 1. 1.		35 S		. 5					0.09		
DAD L1500E 17		7	ada Alakara		2.5		1213		1.257	2	185		(73)		3,25855		- 540	S .			. San -		1.1.1		10.00						1.1.5				51.5	0.12	10	
	100.201	,		. 	-10		1999 1999 - 1					:	Ŷ.									-20			••••		0.02			•		21				0.12	15	
DAD L1500E 17	700+75N	<5	ر. :	<.2	31	15	85	3	9	10 <	.2	<5	10	<5	2.60	630) <1(0 145	8	40	<20	<20	15 2	2.48	0.70	0.46	0.02	0.30	47	6	<2	26	 <1	<5	<10	0.11	17	
DAD L1500E 18	800+00N	6		<.2	33	15	102	3	10	ୀୀ ବି	.2	<5	15	<5	2.90	i 813	1	0 137	10	46	<20	<20	16 2	2.43	0.82	0.40	0.02	0.41	40	5	<2	28	<1	<5	<10	0.10	7	
DAD L1500E 18	800+25N	9			38				1 S		10 C - 1				Sec. 1.										 5.4 		0.02										6	
DAD L1500E 18	800+50N	6		<.2	26	13	105	3	9	11 <	.2	<5	6	<5	2.74	937	' <1(0 139	11	45	<20	<20	18 2	2.08	0.73	0.47	0.02	0.28	41	7	~2	24	1	<5	<10	0.09	4	
DAD L1500E 18	800+75N	<5	· · · · · ·	0.2	30	16	101	3	12	9 0	.2	<5	11	<5	2.28	653	s <10	0 127	11	39	<20	<20	16 1	1.55	0.66	0.64	0.02	0.29	45	7	<2	15	- 1	<5	<10	0.05	2	
DAD L1500E 19	900+00N	<5	÷	< 2	23	16	118	3	់រុំរ	9 0	.2	<5	10	<5	2.12	843	<	0 172	10	36	<20	<20	15 1	1.53	0.51	0.63	0.02	0.29	48	6	<2	14	1	<5	<10	0.06	3	
DAD L1500E 19		<5			25				1.2.1				1.4		5								2.2		Sec. 25. 1		ö.02										6	
DAD L1500E 19		<5		e ==	1000		. 92	·:	1.367		- 200 -		1.000		- 20 - 2009r		- 2.22.2	2011			525555		アダント・		- 50 XXX 80	e	 A. A. A. 		1. N. M.							0.07	2	
DAD L1500E 1		<5	· · ·		 3.0000 		a dia katalah taka		- 199, 299		1. J.		1.1.6.5		- Osta - Osta A	196 - C		egenere.	- 1. CO C		- 1990-999 P		- 100 a -		00100000		0.02		1 S S A		- 1 S 1995						2	
DAD L1500E 20		<5																																		0.07	2	
									83											. •	<u> (</u>		96		- (13.) - 13.										C. 3 - 54		14	
DAD L1500E 20	000+25N	<5		<.2	21	13	94	5	9	8	.2	<5	6	<5	2.07	646	5 <10	0 131	10	32	<20	<20	16 1	1.48	0.48	0.41	0.02	0.21	34	7	<2	14	<1	<5	<10	0.06	4	
DAD L1500E 2	000+50N	<5		0.2	24	14	80	3	10	10 <	.2	<5	9	<5	2.52	596	5 <1(0 129	12	44	<20	<20	17 '	1.60	0.69	0.49	0.01	0.23	43	7	<2	16	<1	<5	<10	0.05	2	
DAD L1500E 2	000+75N	<5		0.3	31	12	87	4	11	11 •	.2	<5	8	<5	2.78	790) <1(0 132	11	47	<20	<20	16 1	1.42	0.78	0.59	0.01	0.24	39	7	<2	15	<1	<5	<10	0.04	1	
DAD L1500E 2	100+00N	<5		<.2	31	14	116	3	10	80	.2	<5	10	<5	1.94	692	2 <10	0 173	8	31	<20	<20	13 1	1.55	0.41	0.55	0.02	0.16	40	6	<2	13	<1	<5	<10	0.06	5	
DAD L1500E 2	100+25N	<5		<.2	22	14	87	3	ា	9 •	.2	<5	10	<5	2.37	453	5 <10	0 119	11	40	<20	<20	15 1	1.71	0.47	0.31	0.02	0.14	27	6	<2	14	1	<5	<10	0.07	5	
						40	444		44	• •		~5	의 다 같은	~5	<u>,</u> ,,	51/	- 24	0 123	10	74	~20	~20	1/	1 40	0 50	0 37	0.02	0 21	71	4	0	15	-1	~5	210	0 07	7	
DAD L1500E 2		<5 -			30																															0.07,	1.5	
DAD L1500E 2		<5 5																									0.02										3,	
DAD L1500E 22		<5 																									0.01										្ទ័	
DAD L1600E 12		<5																									0.02										<u>_</u>	
DAD L1600E_1	200+25N	<5		<.2	50	12	्राट	5	ે	у ч	•2	<>	0	<>	2.41) < [1	0 70	0	39	~ 20	<20	17	1.30	0.09	0.42	0.02	0.15	51	0		10	्रा	0		0.07		
DAD L1600E 1	200+50N	<5	- 	< 2	24	23	179	4	7	10 0	.3	<5	្ប	<5	2.59	1593	5 <1	0 198	- 7	36	<20	<20	17	1.98	0.69	0.95	0.01	0.48	78	7	<2	23	1	<5	<10	0.06	6	
DAD L1600E 12		<5			1.3663	<u>.</u>	105																													0.10	19	
DAD L1600E 1		<5			1.00		148						- A.C. A.M.		- Million (1997)								- 19 C		- 10 - NAV		Sec. 5.44				1.4					0.11	10 A.	
DAD L1600E 1		<5			- A.A.		- No. 600 - 1		- X X - X -	10	C 1271		1.3-85		- X.C.X			A 1			1. A. A.		A production of the		- 33 - 33 6		- X × X X		22.22		- 10 A A A					0.11	1,000	
DAD L1600E 1		<5																							- 34 - 44 - 44 - 44 - 44 - 44 - 44 - 44	· .			· · ·						1.0.00	0.12	2.201	
DAD LIQUUE I	NOCTOOL				21	1-4	103		10				.0		,															-				2			- J.	

Geogeemical Lab Report

CLIENT: WHI	TE WOLT E	XPLORA	TION	_																											PRO	ECT :	CIC	QUENA	AS		
REPORT: V95	5-01284.0	(COMP	LETE))																											DATE	PRI	NTEC): 2/	4-0CT-	95	PAGE 5
SAMPLE	ELEMENT	A. 70			÷	Dh	. 70	Ma		co da	р;	**	ch	Èà	Min	Tá	Po	Ċ.		°-								< c	~				••••	T 4			
JUMBER	UNITS		11 22 3				1.500		de la	PPM PPM						1.00					:	5.5.6															
IONDER	UNITS	FFD	FFE	ירריו	rra	rrn	. icia	FFM		rna rini	FFR	ίπ	rn		TTA	T P		r r r	rra				r ru		r ci	101	FCI	I FFM	ггн	FFM	FFM	ггн	FFR	rrm	FUI	FFM	
AD L1600E	1300+75N	<5		<.2	24	17	123	5	9	9 <.2	<5	15	-5	2.51	514	<10	139	7	36	<20) <20) 15	2.52	2 0,63	0.28	0.02	2 0.20	33	6	2	24	<1	<5	<10	0.10	14	
AD L1600E	1400+00N	<5		.<.2	22	17	154	4	9	11 <.2	<5	17	<5	2.98	906	<10	162	7	46	<20	<20) 19	2.85	5 0.75	0.37	0.02	0.34	4 46	9	<2	29	1	<5	<10	0.12	15	
AD L1600E	1400+25N	<5		3.7	26	26	132	4	9	11 <.2	12	12	<5	2.96	749	<10	190	7	43	<20) <20) 15	2.8	5 0.70	0.39	0.02	0.27	7 46	8	<2	27	<1	<5	<10	0.12	15	
AD L1600E	1400+50N	<5	21 ar	.<.2	23	12	110	3	ੇ7ੇ	8 <.2	_ < 5	8	<5	1.98	1544	<10	208	6	. 27	<20) <20) 12	2 1.69	9 0.50	0.99	0.01	0.10	5 78	5	<2	: 16	<1	<5	<10	0.05	4	
AD L1600E	1400+75N	<5		<.2	40	15	ৃস্চ	3	7	10 <.2	<5	7	<5	2.40	747	<10	107	7	36	<20) <20	18	3 1.94	4 0.66	0.72	0.02	0.18	3 48	10	<2	25	<1	<5	<10	0.08	8	
				e l							1										ţ.				84. 		ġ.			옷꾼							
AD L1600E	1500+00N	6	کر دی ہے۔ د	<.2	16	13	99	3	9	9 <.2	<5	ব	<5	2.38	821	<10	155	8	36	<20) <20) 14	2.07	7 0.58	0.42	0.02	0.17	7 43	5	<2	18	1	<5	<10	0.08	9	
AD L1600E	1500+25N	6	1.1.1	<.2	16	12	69	3	9	9 <.2	<5	10	<5	2.43	566	<10	141	9	39	<20) <20) 15	2.14	4 0.58	0.27	0.02	0.12	2 33	5	<2	18	<1	<5	<10	0.10	13	
AD L1600E	1500+50N	<5		<.2	28	12	102	4	10	10 <.2	ব	16	<5	2.93	635	<10	121	11	46	<20) <20	22	2 2.29	9 0.77	0.38	0.01	0.14	4 33	11	<2	23	<1	<5	<10	0.09	7	
AD L1600E	1500+75N	<5			27					10 <.2				1. 6.6																÷.							
AD L1600E	1600+00N	<5		<.2	24	13	88	. 4	8	9 <.2	<5	11	<5	2.52	911	<10	110	8	41	<20) <20) 15	5 1.9	1 0.64	0.48	0.01	0.15	5 36	6	<2	19	1	<5	<10	0.08	4	
		_		-					. 1 .					÷				24	- 4							6.65				غ	~~					-	
AD L1600E		<5	1.11		1,00000				1.2.2	11 <.2		S. 31		- de 1 9 4		1.4.4		5 G.		- and a de		1		- A 1 6 3		X										× 2	
AD L1600E		<5			. (* es		S. 24.	4		11 <.2				- S.C. & S.	e	2.0		- 22.3		- 8:33	81	1.1		-3.5		$-\alpha = 2\pi c$		S		1.12				1 - C - C - A			
AD L1600E		<5	÷.,		23		- A-C	-	1.100.1	12 <.2 11 <.2				5		1.1.1		1.00								 A - A - A 		2 M. 1		· · · ·				1.55			
AD L1600E		<5 -			69					16 <.2				- N. C. A. A.				· .								N											
AD L1600E	1700+250	<5		<.2	.32	10	70	2	10	10 5.2		13	3	4.22	901		104			~20		, 1	. 2.4.		0.01	0.01	0.5	, 41 	10	~ ~ ~	50	יר	~	210	0.10	1	
·	1700+500				22	10	89	. 7		9 <.2		8	~5	2 40	683	<10	127	11	41	<20	1 20	1	1 4	4 0 7		0.01	n 19	3 35	4	3	17	<1	<5	<10	0.07	×.	
AD L1600E		্ ব			 				- C. C. J	8 <.2	82 - E	- 1.23S		- 20200200		- 2323	C	- C. C. Z.					c	- 22 - 22 23		- 161 A A		11.0000		- 1.62 A		- NG 2				8	
AD L1600E		<5	· · · ·		26		5.000.000		133206.1	12 <.2	ö. –	5.0000		- VAC 233		- 2222	5.6	. s. Sr.		5,000		22.4				- Set A.		12.4 -		1.5.5		1 A A A A A A A A A A A A A A A A A A A				5	
AD L1800E		<5			1.1.1.1.1.1		11111	2	9.2691	10 <.2	s	< 3330		-814.0		- 5 K B	S	. 5.2		- 6.853	÷.			~ -2.0		- S. K.Z		1.1		1,004				1.1.1.1.1		4	
AD L1600E		<5							- CC 24 - 1	9 <.2				- 10 - 10 - 11 -		10.00														- N						7	
AD 110002	1000+304	•			1		 		00											2	_		2	149	>	ş. v.			-	1							
AD L1600E	1800+75N	<5		<.2	18	11	76	3	9	8 <.2	<5	9	<5	2.26	425	<10	88	ាំ	42	<20) <20	1	5 1.55	5 0.56	0.30	0.02	0.13	5 28	5	<2	12	1	<5	<10	0.08	5	
AD L1600E		<5					1 A			9 <.2				- 1 N.				S-						A 1.444.44		1.1										7	
AD L1600E		<5			16		NAME IN THE REPORT		200	8 <.2		- A. S		- Section and	5	- 4,5 &	÷.	- x x X.			8 e -					- 2010-004		26.21		- 52.52				28-34-1	-		
AD L1600E		<5		*	36		1011030	5	9	8 <.2	ব	9	ব	2.14	436	<10	109	10	37	<20) <20	1	5 1.85	5 0.47	0.38	0.02	0.12	2 29	7	~2	17	<1	ব	<10	0.08	8	
4D L1600E		<5			14 A		1		- SC SC 7	7 4.2		1.1		いいいきょう		- Y 197		 2.25 		25.23						-2.222	6.7	1000		1.000				· · · · · ·		9	
		-							ŚŻ		ć						t,	신신				1.		1	.et 1	Å.								223			
AD L1600E	2000+00N	<5	$\sim \sqrt{2}$	<.2	21	12	103	3	9	8 <.2	ব	15	-5	1.99	461	<10	134	9	34	<20) <20) 12	5 1.74	4 D.46	0.34	0.02	0.14	\$ 33	5	2	13	<1	ব	<10	0.08	6	
AD L1600E		<5	1. · · ·		- C		100000-001		- ACC 2004	8 <.2		1000		- 11 N. A. A.							Sec. 1			- Da 200 d		- A. C.A.A.				1.00						- C - 14	
AD L1600E		<5							· · · ·	8 <.2		· · · · ·		- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10				1 A A		2.5.5	A			- A - A 9	·											.: 4	
AD L1600E		<5	1. T		1.00		- C		- C N	8 <.2	5 i i i i i i i i i i i i i i i i i i i	 2.6564. 		- 100 A 2009		in the second second		- C - AR-		- COCO	0 M .			- 100 C - 100 C						1. N. S. S				1. C. C. M.		8	
AD L1600E	-	<5			1.00001					7 <.2		- 20000		- X., XXXX		- Sec. 202	G	1.22			S 22													10.00 A		· · · · · · · · · · · ·	
	_,							-	., S.				2	160-		(No.)				2.3				1.11										42		s station	

Geochemical Lab Report

der se en de la section de

:

	ITE WOLFFE			,						-																									PRO. DATE				NAS 24-0	CT-	95	PAGE 6
MPLE MBER	ELEMENT UNITS		1.5.5	A	۰.	:		1.1.5				 													•			7				Sr PPM										
D L1600E	2100+75N	<5		<.	2	26	16	115	3	11	7	<.2	<5	14	<5	1.88	649	? <1	0 17	1	8	30 <	20 •	<20	12	1.88	3 0.3	39 0.	.45	0.02	0.13	37	6	<2	14	1	<5	5 <1	ō o.	08	7	
D L1600E	2200+00N	· <5		.<	2	18	11	91	3	10	7	' <.2	<5	8	<5	1.98	44	<1	0 14	8 1	Ö	35 <	20	<20	13	1.69	0.4	6 0	.32	0.02	0.13	31	5	<2	14	<1	<5	5 <1	Ó 0.	08	6	
D L1700E	1200+00N	<5		.<	2	36	15	172	4	8	11	<.2	<5	9	<5	2.96	1449	? <1	0 25	0 · ·	7	39 <	20 •	<20	15	2.51	0.8	39 0.	.50	0.02	0.27	65	5	<2	28	1	<5	i <1	Ó 0.	08	5	
D L1700E	1200+25N	<5		<.	2	14	17	186	3	8	9	<.2	<5	11	<5	2.46	1596	5 <1	0 23	6	7	33 <	20 •	<20	12	2.20	0.0	53 0.	.40	0.02	0.17	45	4	<2	20	<1	<5	i *1	Ö O.	68	3	
D L1700E	1200+50N	<5			2	27	13	95	3	7	8	<.2	<5	6	<5	2.01	594	i <1	0 11	6	5	29 <	20	<20	12	1.89	0.5	50 0.	.37	0.02	0.14	31	6	<2	18	<1	<5	; <1	0 0.	07	11	
D L1700E	1200+75N	<5		<.	2	31	18	107	4	7	11	0.3	<5	9	<5	2.86	852	2 <1	0 12	3	6	39 <	20 •	<20	18	2.19	0.8	34 0	.46	0.02	0.36	45	11	<2	28	<1	<	; <1	0 0.	07	11	
D_L1700E	1300+00N	<5		ं <.	2	64	23	143	4	8	° 9	2.0	<5	12	<5	2.17	547	7 - 1	0 10	2	6	32 <	20	<20	17	2.14	0.5	58 0.	.50	0.03	0.17	39	12	<2	26	<1	<	i <1	0.0.	09	16	
D L1700E	1300+25N	6		0.	2	50	46	194	3	8	8	1.1	<5	14	<5	2.06	456	5 <1	0 9	5	6	31 <	20	<20	16	1.98	3 0.5	8 0.	.53	0.03	0.12	37	11	<2	22	<1	<5	; ~1	οo.	08	15	
D L1700E	1300+50N	12		<.	2	26	22	142	4	8	[:] 10	<.2	<5	11	<5	2.69	1040) ~1	0 20	3	6	32 ×	20	<20	17	2.38	3 0.7	73 0.	.48	0.02	0.17	47	9	<2	26	<1	<5	i <1	Ö 0.	05	7	
D L1700E	1300+75N	<5		<.	2	24	13	74	4	7	8	<.2	ব	11	<5	2.27	622	2 <1	0 11	2	7	36 <	20	<20	16	2.39	0.5	57 0.	.39	0.02	0.11	33	7	<2	20	1	5	<1	0 0.	10	12	
D L1700E	1400+00N	<5		्<.	2	27	12	66	3	8	9	<.2	ব	13	<	2.35	511	ं	0 12	5	7	37 <	20	<20	16	2.40	0.0	53 0.	.36	0.02	0.11	38	7	2	21	1	<	; <1	0 O.	10	11	
D L1700E	1400+25N	<5	4 (¹)	·	2	25	9	52	2	_4	6	<.2	<5	حه	<5	1.44	424	• <1	0 10	0 (1)	4	23 <	20 •	<20	11	1.52	2 0.6	58 5	.44	0.05	0.11	198	4	<2	15	<1	<	5 < 1	0 0.	05	6	
D L1700E	1400+50N	<5		<.	2	21	13	73	4	8	10	<.2	ব	10	ব	2.59	382	2 <1	0 14	7	7	39 <	20 •	<20	13	2.58	3 0.7	76 0	.36	0.03	0.25	38	4	4	24	<1	<u>`</u> 5	5 <1	0 0.	10	14	
D L1700E	1400+75N	ব		`<.	2	25	12	81	3	8	5	<.2	<5	14	ব	2.23	67	5 <1	0 15	2	7	32 <	20 •	<20	14	2.09	0.7	71 0.	.39	0.02	0.19	47	7	<2	21	<1	<	; < 1	0 0.	08	6	
D L1700E	1500+00N	ব		0.	3	24	9	74	3	7	8) <.2	<5	9	<5	2.24	385	5 <1	09	5	6	31 <	20 •	<20	14	2.11	0.0	53 0.	.41	0.03	0.28	30	6	ి. 2 ం	19	ং	5	; <1	0 0.	09	14	
D L1700E	1500+25N	ব্য		0.	2	46	11	222	4	9	13	0.2	<5	10	ব্য	3.15	1602	2 <1	0 38	4	7	43 <	20	<20	14	2.58	3 1.	I 3 1.	.84	0.01	0.54	142	5	<2	; 31	<1	े र	; <1	0 0.	10	4	
D L1700E	1500+50N	<5		.<.	2	21	11	51	3	8	7	<.2	<5	9	<5	1.92	40	<1	0 11	3	6	30 k	20 •	<20	13	2.20	0.4	6 0	.42	0.03	0.15	34	7	2	⁻ 18	1	<	; <1	0 0.	10	19	
D L1700E	1500+75N	-5		<.	2	14	9	58	3	7	7	· <.2	<5	7	<5	1.96	819	7 <1	0 18	3 🔅	7	31 <	20 •	<20	11	1.70	0.5	51 0.	.46	0.02	0.18	43	3	<2	16	<1	<	; <1	0 0.	07	4	
D L1700E	1600+00N	্ব		0.	3	57	12	158	4	8	12	<.2	<5	17	<5	3,19	130	। २१	0 28	3	8	48 <	20 •	<20	14	2.81	1.1.2	23 0	.87	0.01	0.42	89	5	<2	33	<1	: <	; <1	0 0.	09	4	
D L1700E	1600+25N	ব		۲.	2	49	11	245	4	9	14	<.2	ব	11	<5	3.52	2056	5 <1	0 48	1	8	54 <	20 •	<20	17	2.50) 1.2	23 0	.83	0.02	0.43	88	5	<2	42	<1	· <5	; <1	0 0.	10	2	
d l 1700 e	1600+50N	<5		<.	2	26	9	112	4	8	10	<.2	<5	7	<5	2.94	807	7 <1	0 12	0	7	46 <	20 •	<20	11	2.32	2 1.0	8 0	.47	0.01	0.23	45	3	<2	26	<1	<5	5 <1	0 0.	07	2	
D L1700E	1600+75N	<5		<.	2	36	12	87	5	10	10	<.2	<5	5	<5	2.60) 458	3 ~1	0 12	6	8	42 <	20	<20	17	2.57	0.7	2 0	.37	0.03	0.18	36	7	4	32	<1	<5	i <1	0 0.	12	,18	
D L1700E	1700+00N	<5		<.	2	37	12	63	3	9	8	<.2	<5	13	<5	2.32	40	5 <1	0 12	5	9	39 <	20	<20	17	2.18	3 0.5	56 0	.40	0.03	0.19	37	8	3	23	<1	<5	; <1	Ö 0.	10	16	•
D L 1700E	1700+25N	<5		<	2	19	12	93	<u> </u>	9	s ک	· <.2	<5	9	<5	2.24	1290) <1	0 24	9	9	31 🗧	20 •	<20	14	2.18	3 0.5	54 0	.51	0.02	0.26	42	5	<2	20	- ì	<5	; <1	ÖO.	08	6	
d L1700E	1700+50N	<5		े <.	2	17	13	84	3	12	10) <.2	<5	11	<5	2.46	63	3 <1	0 18	02	2	36 <	20	<20	11	2.34	0.7	76 0	.36	0.02	0.21	42	3	2	24	Ť	· <5	i <1	Ö 0.	09	6	
d l1700e	1700+75N	<5		<	2	40	12	71	3	4	7	<.2	<5	13	<5	1.82	805	5 <1	0 14	4	6	26 <	20	<20	14	1.74	0.4	7 0	.53	0.02	0.17	50	8	<2	25	<1	<	5 ×1	0 0.	07	6	
D L1700E		<5	2.63		_			- 12.00		101104		2.277				- X - 77A	25		699 A				- C. S. S.					0.12		のうたみ		43									4	
D L1700E		<5				1.1.1.1		10.5 (a) (a)				1.1.1		5 A		 - Col. 1995.4 							No. 1		0.0		- 22, 2	2 S -		(a) < (b)		48									8	
D L1700E		ক																														52										
	1800+75N	<5																														33										

CLIENT: WHITE WONF EXPLORATION PROJECT: CIQUENAS REPORT: V95-01284.0 (COMPLETE) DATE PRINTED: 24-OCT-95 PAGE 7 SAMPLE ELEMENT AU30 AURev1 Ag Cu Pb Zn Mo Ni Co Cd Bi As Sb Mn Te Ba Cr K Sr Y Ga Li Nb Sc Ta ti Zr PPM PPM PPM PPM PPM PPM PPM PCT PPM PPM PPM PPM PPM PPM PPM PPM PPM NUMBER UNITS PPB PPB PPM PPM PPM PCT PCT PCT PCT PCT PPM PPM PPM PPM PPM PPM PPM PPM PCT PPM 13 8 <.2 <5 12 <5 2.10 1258 <10 265 7 30 <20 <20 11 1.79 0.58 0.53 0.01 0.22 55 DAD L1700E 1900+00N <.2 16 133 <5 3 <2 19 1 <5 <10 0.08 · 4 72 8 <.2 <5 10 <5 2.34 765 <10 188 8 36 <20 <20 12 1.93 0.64 0.32 0.02 0.17 39 DAD L1700E 1900+25N <.2 16 10 3 8 4 <2 21 <5 1 <5 <10 0.09 - 5 DAD 11700E 1900+50N <5 <.2 21 12 59 8 <.2 <5 8 <5 2.06 479 <10 105 6 33 <20 <20 14 2.15 0.51 0.31 0.02 0.14 29 6 2 19 1 <5 <10 0.09 10 <.2 <5 9 <5 2.52 739 <10 173 8 40 <20 <20 15 2.34 0.74 0.52 0.02 0.22 41 DAD L1700E 1900+75N <5 <.2 32 14 9 7 <2 25 1 <5 <10 0.10 - 8 7 32 <20 <20 15 2.07 0.56 0.55 0.03 0.14 33 8 <5 2.01 457 <10 79 DAD L1700E 2000+00N <5 <.2 63 12 61 8 < 2 <5 9 <2 22 1 <5 <10 0.09 17 DAD L1700E 2000+25N <5 0.2 41 13 10 <.2 <5 8 <5 2.51 607 <10 84 8 41 <20 <20 18 2.19 0.76 0.53 0.02 0.17 35 10 <2 29 1 <5 <10 0.10 ° 0 DAD L1700E 2000+50N <5 <.2 26 9 71 3 7 11 < 2 <5 6 <5 2.82 668 <10 97 9 46 <20 <20 14 1.75 1.00 0.44 0.01 0.22 39 3 <2 24 1 <5 <10 0.07 2 10 <.2 <5 <5 <5 2.75 508 <10 82 11 47 <20 <20 13 1.85 0.77 0.28 0.01 0.16 30 3 <2 20 <1 <5 <10 0.08 DAD L1700E 2000+75N <5 <.2 16 11 3 7 <.2 <5 11 <5 1.96 675 <10 139 7 31 <20 <20 12 1.98 0.47 0.33 0.02 0.13 37 5 <2 16 DAD L1700E 2100+00N <.2 18 12 3 8 1 <5 <10 0.08 <5 6 16 12 94 2 8 <.2 <5 10 <5 2.21 782 <10 165 8 35 <20 <20 12 2.17 0.58 0.37 0.02 0.15 39 4 <2 18 DAD L1700E 2100+25N <5 <.2 1 <5 <10 0.09 6 8 < 2 <5 12 <5 2.10 901 <10 125 7 33 <20 <20 11 2.15 0.51 0.31 0.02 0.14 36 4 <2 16 DAD L1700E 2100+50N <5 0.2 18 18 121 1 <5 <10 0.08 - 3 9 35 <20 <20 12 2.10 0.55 0.37 0.02 0.15 41 <.2 17 12 82 8 8 <.2 <5 11 <5 2.14 711 <10 176 5 <2 16 1 <5 <10 0.09 7 DAD L1700E 2100+75N <5 3 9 32 <20 <20 12 1.71 0.49 0.41 0.02 0.12 30 8 < 2 <5 6 <5 1.98 650 <10 137 6 <2 20 <1 <5 <10 0.08 DAD L1700E 2200+00N <5 <.2 25 11 83 4 9 7 6 29 <20 <20 13 1.94 0.42 0.41 0.02 0.16 47 6 <2 15 1 <5 <10 0.08 7 7 < 2 <5 12 <5 1.96 873 <10 192 DAD L1800E 1200+00N <5 <.2 19 12 97 3 8 <.2 12 52 2 7 7 < 2 <5 <5 <5 1.97 368 <10 73 9 34 <20 <20 14 1.08 0.49 0.28 0.01 0.13 26 4 <2 11 <1 <5 <10 0.07 .3 DAD L1800E 1200+25N <5 6 6 27 <20 <20 11 1.82 0.36 0.27 0.02 0.09 30 7 6 <.2 <5 9 <5 1.75 387 <10 95 4 <2 13 <1 <5 <10 0.08 <5 <.2 15 10 69 3 10 DAD L1800E 1200+50N 7 < 2 <5 13 <5 1.94 449 <10 100 6 31 <20 <20 13 1.82 0.45 0.31 0.02 0.11 33 7 6 <2 14 DAD L1800E 1200+75N <5 <.2 16 12 61 3 1 <5 <10 0.08 10 72 7 7 < 2 <5 5 <5 1.87 400 <10 122 6 28 <20 <20 11 1.77 0.41 0.22 0.02 0.11 28 4 <2 14 <1 <5 <10 0.08 - 1Ö DAD L1800E 1300+00N <5 <.2 13 11 3 7 8 <.2 <5 6 <5 2.24 359 <10 74 8 34 <20 <20 13 1.49 0.57 0.25 0.01 0.11 33 3 <2 14 <1 <5 <10 0.06 2 9 69 3 DAD L1800E 1300+25N <5 <.2 14 9 < 2 <5 13 <5 2.39 672 <10 111 7 36 <20 <20 17 2.15 0.58 0.36 0.01 0.13 31 8 <2 20 <.2 24 101 3 7 1 <5 <10 0.08 6 DAD L1800E 1300+50N <5 14 8 <.2 <5 10 <5 2.10 760 <10 149 6 31 <20 <20 13 1.84 0.53 0.35 0.02 0.16 39 6 <2 17 1 <5 <10 0.07 <5 <.2 27 10 95 3 6 DAD L1800E 1300+75N <.2 17 12 75 3 8 8 <.2 <5 7 <5 2.21 479 <10 136 6 34 <20 <20 14 2.29 0.49 0.28 0.02 0.17 35 6 2 19 <1 <5 <10 0.09 11 DAD L1800E 1400+00N 6 8 <.2 <5 12 <5 2.31 436 <10 124 7 37 <20 <20 15 2.28 0.56 0.27 0.02 0.12 34 6 2 19 1 <5 <10 0.10 <.2 16 11 DAD L1800E 1400+25N <5 11 65 3 - 7-7 < 2 <5 10 <5 2.06 421 <10 95 6 33 <20 <20 14 2.05 0.47 0.28 0.02 0.10 31 6 <2 15 <1 <5 <10 0.09 DAD L1800E 1400+50N <5 <.2 17 10 60 3 7 7 <5 1.82 571 <10 140 6 28 <20 <20 12 1.81 0.41 0.34 0.02 0.10 36 4 <2 13 <1 <5 <10 0.08 3 7 6 < 2 <5 8 DAD L1800E 1400+75N 6 <.2 14 11 7 <5 1.98 733 <10 149 6 30 <20 <20 12 1.83 0.46 0.31 0.02 0.12 35 10 83 3 7 7 < 2 <5 4 <2 14 <1 <5 <10 0.07 DAD L1800E 1500+00N <5 <.2 -14 10 <.2 <5 12 <5 2.69 1820 <10 522 7 36 <20 <20 15 2.70 0.76 0.61 0.02 0.18 82 4 <2 26 1 <5 <10 0.10 5 15 216 3 DAD L1800E 1500+25N <5 0.2 38 6 <5 2.17 417 <10 103 8 < 2 <5 7 36 <20 <20 14 2.05 0.55 0.28 0.02 0.11 28 5 2 16 <1 <5 <10 0.09 DAD L1800E 1500+50N 65 3 7 <5 <.2 15 12 6 30 <20 <20 13 1.99 0.44 0.39 0.02 0.12 38 7 <.2 <5 12 <5 1.97 579 <10 129 4 <2 16 DAD L1800E 1500+75N <5 <.2 15 11 3 1 <5 <10 0.09 6 5 7 8 < 2 <5 10 <5 2.06 517 < 10 124 6 33 < 20 < 20 13 2.01 0.46 0.35 0.01 0.13 34 6 <2 15 1 <5 <10 0.08 6 DAD L1800E 1600+00N <5 <.2 22 14

CLIENT: WH	4.																																D: 24	AS 4-OCT	-95	PAGE 8
SAMPLE NUMBER	ELEMENT UNITS		-	· · · ·				· · · ·	Co Co PPM PPM		1.6.1.1														Na PCT										_	
DAD L1800E	1600+50N	<5	<.2	19	10	66	3	6	7 < 2	<5	9	<5	1.96	540	<10	141	ő	28	<20	<20	13	1.84	0.49	0.36	0.02	0.19	35	5	<2	18	<1	<5	<10	0.08	7	
DAD 11800E	1600+75N	<5	<.2	22	10	65	3	7	7 <.2	<5	10	<5	1.94	742	<10	184	7	28	<20	<20	13	1.75	0.53	0.38	0.02	0.17	42	5	<2	23	1	<5	<10	0.08	7	
DAD L1800E	1700+00N	<5	·<.2	30	13	87	3	8	8 <.2	ব	9	<5	2.16	549	<10	146	÷ 7	33	<20	<20	15	2.16	0.54	0.35	0.02	0.17	38	7	<2	26	1	<5	<10	0.09	12	
DAD L1800E	1700+25N	<5	<.2	24	13	71	3	7	7 <.2	<5	9	. <5	2.00	597	<10	129	7	32	<20	<20	14	1.96	0.51	0.36	0.02	0.14	35	7	<2	20	· 1	<5	<10	0.09	9	
DAD 11800E	1700+50N	<5	<.2	17	10	58	3	6	8 <.2	<5	8	<5	2.02	750	<10	138	7	32	<20	<20	11	1.41	0.60	0.35	0.01	0.14	31	4	<2	18	<1	<5	<10	0.07	3	
DAD L1800E	1800+00N	<5	<.2	17	16	110	4	8	8 <.2	<5	9	<5	2.18	761	<10	174	7	34	<20	<20	12	2.00	0.55	0.36	0.02	0.16	36	4	<2	18	1	<5	<10	0.09	5	
DAD L1800E	1800+25N	<5	<.2	18	18	126	5	8	10 <.2	<5	12	<5	2.67	954	<10	163	9	42	<20	<20	15	2.10	0.72	0.28	0.01	0.18	32	4	<2	22	1	<5	<10	0.09	Â,	
DAD 11800E	1800+50N	<5	0.2	39	15	111	5	7	8 <.2	<5	15	<5	2.04	1384	<10	164	7	29	<20	<20	16	2.12	0.51	0.62	0.02	0.14	43	8	<2	33	1	<5	<10	0.07	5	
DAD L1800E	1800+75N	<5	<.2	27	14	177	-		8 0.3		- 1949É		Art. Sec.		1.56				1.00.00		3.5		Ser A h		- 16 - 18 Sec.				5							
DAD L1800E	1900+00N	6	0.2	20	16	103	4	7	8 <.2	<5	15	<5	2.17	996	<10	323	6	27	<20	<20	13	2.07	0.52	0.63	0.02	0.14	71	5	<2	29	1	<5	<10	0.07	7	
DAD 11800E	1900+25N	<5	<.2	50	15	138	5	7	12 <.2	<5	ব	<5	3.18	1585	<10	219	7	51	<20	<20	14	2.72	1.24	1.21	0.01	0.51	107	5	<2	33	<1	<5	<10	0.07	1	
DAD 11800E	1900+50N	<5	<.2	25	13	71	4	8	8 <.2	<5	6	<5	2.27	580	<10	110	7	38	<20	<20	15	2.15	0.57	0.34	0.02	0.15	35	5	<2	21	[:] 1	<5	<10	0.10	8	
DAD 1.1800E	1900+75N	<5	<.2	24	15	70	3	7	8 <.2	-5	10	. <5	2.12	576	<10	118	7	35	<20	<20	14	2.01	0.52	0.32	0.02	0.13	31	6	<2	19	<1	<5	<10	0.09	9	
DAD 11800E	2000+00N	<5	<.2	25	12	69	3	7	8 <.2	<5	10	. <5	2.28	491	<10	100	7	37	<20	<20	15	2.15	0.56	0.32	0.02	0.15	30	7	<2	20	<1	ব	<10	0.10	10	
DAD 11800E	2000+25N	<5	<.2	23	14	74	4	8	9 <.2	<5	8	ঁ	2.44	528	<10	116	8	41	<20	<20	16	2.15	0.64	0.31	0.02	0.14	32	6	<2	20	. 1	ব	<10	0.10	9	
		•						<u>.</u>							1	2-	- 51 135						- Me	2					- - 50 *				1.1			
DAD 11800E	2000+50N	<5	<.2	22	14	79	3	9	10 <.2	<5	13	<5	2.66	770	<10	145	10	45	<20	<20	17	2.24	0.73	0.34	0.02	0.19	40	7	<2	24	1	ব	<10	0.11	6	
DAD 11800E	2000+75N	-5	<.2	21	16	78		- S. S. J	9 <.2		- <u></u>	_	44,000,000		12.36		101,001		1.130	+			Sec. 8.3.		Sec. 14				5				. 4.		1652.1	
DAD 11800E	2100+00N	<5	<.2	18	15	92		12.000	8 <.2		1.000		100 i 6666 -								· · · ·															
DAD 11800E	2100+25N	<5	<.2	18	18	86		- 027 33 -	8 <.2		100.00		A		1.00				- 200		- S				- A - A		1.1						Sec. 6. 16			
DAD 11800E	2100+50N	<5	<.2	16	17	138	3	8	8 <.2	ر ه ا	12	ব	2.17	1189	<10	315	10	32	<20	<2 0	11	1.82	0.63	0.51	0.01	0.17	60	3	<2	22	<1	<5	<10	0.07	4	
DAD 11800E	2100+75N	<5	<.2	26	15	84	3	7	7 <.2	ব	13	<ऽ	1.91	931	<10	181	8	30	<20	<20	12	1.85	0.55	0.63	0.02	0.21	58	5	<2	20	1	<5	<10	0.08	9	
0AD L1800E		<5	<.2	31	15	70	4	8	8 <.2	<5	11	<5	2.07	603	<10	116	11	32	<20	<20	14	1.85	0.64	0.49	0.02	0.18	35	6	~2	23	1	<5	<10	0.09	, 9	
																																				×

Geochemical Lab Report

ENT: WHI	TE HOLF	PLORATIO	~						0																						PR	OJEC	T: CI	QUENA	S		
ORT: V95	6-01352.0 (COMPLET	E)																												DA	TE P	RINTE	D: 24	-0CT-95	PAG	£ 1
IPLE IBER	ELEMENT UNITS	Ali30 Ag PPB PPM									<u> </u>														+						NIJ Š PPM PP						
E L600E	7500+00N	<5 <.2	11	8	75	2	5	7	<.2	<5	9	<5	1.69	345	<10	93	7	31	<20	<20	12 1	.40	0.38	0.25	0.02	0.08	24	3	<2	13	<1 <	5 <1	0 Ó.Ó	76			
E L600E	7500+25N	15 <.2	8	, 7	30	2	4	6	<.2	<5	<5	<5	1.79	232	<10	37	7	36	<20	<20	17 0	.83	0.41	0.32	0.01	0.12	24	5	<2	12	<1 <	Š <1	0 0.0	74			
E L600E	7500+50N	<5 0.3	24	15	69	3	7	7	<.2	<5	11	<5	1.87	304	<10	126	7	30	<20	<20	14 2	2.18	0.36	0.29	0.02	0.08	27	8	3	33	<1 <	5 <1	0.0	8 11			
E L600E	7500+75N	<5 0.6	34	19	84	. 4	8	7	<.2	<5	16	<5	2.07	431	<10	160	7	31	<20	<20	18 2	2.67	0.40	0.48	0.03	0.12	44	15	2	61	<1 <	5 <1	0.0	9 17	-		
E L600E	7600+00N	67 0.2	14	12	64	3	6	6	<.2	<5	8	<5	1.54	841	<10	114	6	25	<20	<20	12 1	.60	0.34	0.43	0.02	0.12	34	7	<2	31	<1 <	5 <1	0.0	7 4			
E 1600E	7600+25N	6 0.3	15	13	59	3	7	7	<.2	<5	9	<5	1.84	412	<10	104	7	33	<20	<20	13 1	.88	0.48	0.33	0.02	0.11	28	6	<2	31	<1 3	5 <1	0.0	8 5			
	7600+50N	<5 <.2																																			
	7600+75N	<5 0.2				1 N J N L		1.1.2		- C. S. 197		- CC - C		 Second state 		1										S. 1.								0			
	7700+00N	<5 <.2	·		1	وسيفسع والخذ	the second s		THE OWNER AND			analahaha babu b								0.00000000				- SS - 2 - 2		12012005						- Ch	10 a				
	7700+25N	<5 0.3																																			
E 1600E	7700+50N	<5 0.3																																			
3E L600E	7700+75N	<5 0.3																																			
3E L600E	7800+00N	<5 0.2																																			
E L600E	7800+25N	<5 0.3																																			
E 1600E	7800+50N	7 <.2	24	22	90	4	8	8	<.2	<5	16	ক	2.09	558	<10	160	7	37	<20	<20	12 2	2.18	0.56	0.32	0.02	0.16	43	3	<2	21	<1 _*	5 <1	0.0	84			
E 1600E	7800+75N	<5 0.2	17	20	93	4	8	8	<.2	ব্য	10	<5	2.03	697	<10	170	7	36	<20	<20	11 2	2.34	0.50	0.34	0.02	0.11	43	4	<2	17	<1	5 <1	0.0	87			
E L600E	7900+00N	<5 <.2																																			
E L600E	7900+25N	<5 0.3																																			
	7900+50N	<5 <.2																																			
E L600E	7900+75N	<5 <.2	19	12	70	3	8	9	<.2	-5	13	45	2.26	539	<10	108	9	41	<20	<20	13 1	1.99	0.64	0.35	0.02	0.18	36	4	<2	25	<1	5_<1	0 0.0	9 3	-	•	
E 1600E	8000+00N	<5 <.2																																			
E L600E	8000+25N	-5 <.2	17	12	110	3	9	10	<.2	<5	20	ব্চ	2.54	840	<10	169	8	46	<20	<20	11 å	2.52	0.74	0.36	0.01	0.12	56	3	<2	24	<1 <	S <1	0 0.0	7 3	,		
E L600E	8000+50N	<5 <.2	14	12	68	3	7	8	<.2	ব	13	<5	2.12	389	<10	90	7	38	<20	<20	12 2	2.03	0.57	0.34	0.01	0.15	30	3	<2	26	<1 <	Ś <1	0.0	83	1		
E L600E	8000+75N	<5 <.2	17	15	79	3	9	9	<.2	5	16	<5	2.31	317	<10	84	8	41	<20	<20	13 2	2.33	0.59	0.30	0.01	0.16	30	3	4	27	<1 <	5 <1	0 0.0	93	-		
	8100+00N	ر ه د.	19	14	98	3	9	9	<.2	ঁ	18	ব্য	2.18	459	<10	127	8	38	<20	<20	12 2	2.33	0.55	0.29	0.02	0.17	32	3	<2	21	<1 े	5 <1	0.0	94			
		5	:- -	1		요? - 독일:								1									~ ~~	× 18										å,			
	8100+25N																														<1 ×						
	8100+50N-	天 41 0.3	26	- 19	97	. 3	8	8	<.2	0	26	9	1.99	287	<10	21	. 8	್ತಿಂತಿ	<20	< <u>2</u> 0	15	.00	0.45	0.50	0.02	0.14	ູ ວ1 70	្ម	2	20 11		5 <1		<u>o 7</u> 7 7	-		
	8200+00N	<5 <.																																			
	8200+25N	<5 <.																																			
E L600E	8200+50N	21 <.	2 10	53	233	2	6	6	0.6	<5	7	<5	1.54	743	<10	139	6	29	<20	<20	9	1.54	0.41	0.58	0.02	0.16	57	2	~2	15	<1 •	() <1	0.010	/ Z			

PAGE 2

8 < 2 17 22 171 3 8 9 < 2 3 19 5 2.18 531 <10 195 8 36 <20 20 11 2.13 0.54 0.43 0.01 0.15 42 3 <2 18 <1 55 <10 0.06 2 26 0.3 20 28 154 3 12 10 < 2 3 37 3 2.39 432 < 10 127 8 41 < 20 < 20 11 2.54 0.65 0.31 0.02 0.14 28 3 2 20 < 1 < 5 < 10 0.08 5

3E L700E 8000+00N

3E L700E 8000+25N

Geochemical Lab Report

CLIENT: WHI REPORT: V95	•.																														OJECI			AS 0-OCT	-95	PAGE	4
SAMPLE NUMBER		Au30 Ag PPB PPM																						Na PC1	a k PCT	(Sr PPM											
)ADE L1900N)ADE L1900N																							0.38 0.35														
ADE L1900N		<5 <.2	29	15	83	4	10	10 <.	2 !	5 1	<	5 2.79	597	<10	130	11	47	<20	<20	23 2	.44 ().51	0.38														
)ADE L2000N)ADE L2000N																							0.30 0.34											-			
)ADE L2000N	1000+50E	<5 <.2	14	9	54	3	6	8 <.	2 <	5 <	; <	5 2.42	505	<10	154	8	45	<20	<20	12 1	.41 0	0.38	0.35	0.02	2 0.16	5 40	4	<2	17	1	<5 •	<10 0	.07	4			
ADE 12000N																					.22 0		0.32	0.02	2 0.20	31	8	<2	24	<1	<5 <	<10 0	.09	12			
ADE L2000N																							0.34														
ADE L2000N																							0.74 1.06											+			
ADE 12000N	1100+75E	<5 <.2	39	14	106	4	7	12 <.	2 5	5 10) <	5 3.06	894	<10	260	7	40	<20	<20	15 2	. 15 0	.57	0.69	0.02	2 0.23	48	9	<2	51	<1	<5 <	10 0	.06	5			
ADE L2000N	1200+00E	<5 0.2	32	12	55	3	6	9 <.	2 <	56	5 <	5 2.55	490	<10	149	7	32	<20	<20	15 1	.79 0	.38	0.43	0.02	0.18	31	10	<2	30	<1	<5 <	10 0	.07	8			
ADE L2000N	1200+25E																						0.32	0.02	0.21	29	5	<2	17	1	<5 <	:10 0	.07	6			
ADE L2000N																							0.25	0.02	0.11	27	5	3	22	<1	<5 <	10 0	.08	12			
ADE L2000N	1200+75E	<5 0.2 -	29	17	135	4	8	15 <	2 <	5 <5	;	5 3.41	1124	<10	790	7	38	<20	<20	18 2	.16 0	.72	0.53	0.02	0.24	45	10	<2	27	<1	<5 <	(10 Ö	.05	3			
ADE L2000N	1300+00E	<5 <.2	21	13	84	3	7	9 <.	2 <	5 <5	i <	5 2.27	602	<10	226	7	39	<20	<20	13 1	.86 0	.45	0.35	0.02	0.20	34	5	<2	22	<1	<5 <	:10 0	.08	7			
ADE L2000N	1300+25E	15 0.3	25	14	70	3	8	9 <.	2 <	5 5) <	5 2.14	479	<10	233	8	37	<20 ·	<20	15 2	.09 0	.46	0.45	0.03	0.17	46	8	<2	20	<1	<5 <	10 0	.09	14			
ADE L2000N															2.5.5								0.38	0.01	0.17	37	3	<2	20	<1	<5 <	10 0	.03	1			
ADE L2000N								1 -							1								0.51											-			
ADE L2000N	1400+00E	<5 0.3	44	17	109	4	10	12 <.	2 <5	5 17	· <	5 2.99	1047	<10	249	10	47	<20	<20	18 3	.05 0	.59	0.35	0.02	0.17	34	9	<2	34	1	<5 <	:10 0	.09	4	÷		
ADE L2000N	1400+25E	<5 0.2	25	15	96	4	11	12 <.	2 <	5 9	> <	5 3.22	1295	<10	320	11	50	<20	<20	18 2	. 18 0	.79	0.36	0.02	0.17	34	9	<2	32	1	5 <	10 0	.07	5			
ADE L2000N	1400+50E	7 0.2	28	18	118	4	9	12 0.	2 <5	5 17	' <	5 3.03	685	<10	265	10	50	<20 ·	<20	17 2	.29 0	.65	0.33	0.02	0.17	38	8	<2	32	1	<5 <	10 Ó	.08	4	•		
ADE L2000N	1400+75E	6 0.3	32	10	59	3	7	6 <.	2 <5	57	' <	5 1.75	209	<10	167	6	31	<20	<20	15 1	.70 0	.30	0.43	0.03	0.09	48	8	2	30	<1	<5 <	10 0	.07	14			
ADE L2000N	1500+00E	8 0.2	20	14	64	3	6	9 <.	2 <5	5 5) <	5 2.23	381	<10	223	7	34	<20	<20	23 1	.93 0	.37	0.25	0.02	0.21	35	7	2	16	<1	<5 <	10 0	.08	11			
ADE L2000N	1500+25E	<5 <.2	16	26	96	5	9	8 <.	2 <5	5 15	<	5 2.25	1298	<10	373	7	33	<20	<20	70 2	.39 0	.41	0.71	0.02	0.19	82	7	<2	22	<1	<5 <	10 0	.07	6			
ADE L2000N	1500+50E	<5 <.2	13	13	67	4	7	8 <.	2 <	57	. <	5 2.20	265	<10	144	8	40	<20	<20	16 1	.85 0	.36	0.18	0.02	0.14	24	3	3	15	<1	<5 <	10 0	.09	9			
ADE L2000N	1500+75E	N 14										5 1.84			-9-0-1				2.5.2				0.79		·												
ADE L2000N	1600+00E	8 <.2	12	17	152	3	7	7 <.	2 <	5 6	. <	5 2.02	844	<10	184	7	32	<20 ·	<20	34 1	.64 0	.34	0.28														
ADE L2000N	1600+25E	8 0.5	15	12	61	2	7	7 <.	2 <	5 10) . <	5 1.85	245	<10	201	7	32	<20	<20	12 1	.94 0	.30	0.28											9			
ADE L2000N	1600+50E	<5 <.2	16	10	58	2	6	6 <.	2 <5	5 12	<	5 1.67	317	<10	154	7	31	<20 ·	<20	12 1	.65 0	.26	0.26														

PORT: V95-01286.0 (COMPLETE)

PROJECT: CIQUENAS DATE PRINTED: 30-OCT-95 PAGE 5

PORT VYJ	01200.0			,																													07					
MPLE	ELEMENT	AU30	Δ π	<u></u>	Ph	7n	Mo	Ni	Co	сd	Ri	As	sb	Fe	Mr	. Т <i>і</i>	e Ba	Cr		v sr	n	V I.	 Э	A1	Ma	Ca	Na	ĸ	Sr	Ŷ	Ga		Nb	Sc	Ta	Ti	7r	•
		PPB P	-																																	PCT		
MBER	UNITS	PPB P	PM 1	PPM	PPM	PPM	PPM	FFM	PPM	FFM	rrm	PPM	FFM	FUI	PFF	1	1 FFM	FFM	FF	m PPI		19 FF	TI I	FUI	PUT	PUT	FUI	FUI	PPM	FFM	FFM	PPM	FFM	FFM	PPP	PUI	PPM	
DE L2000N	1600+75E	<5 <	.2	13	10	46	2	6	6	<.2	<5	8	<5	1.69	222	2 <10	0 206	7	2	8 <20	0 <2	0 1	21	.76 (0.28	0.29	0.02	0.12	35	5	3	15	<1	<5	<10	0.08	17	
DE L2000N		-																						.95 (0.08		
DE L2000N														2.29					3	2 <20	0 <2	0 1	7 2	2.09 0	0.46											0.06		
DE L2000N														2.77										3.38 (0.10		
DE L2000N																	÷.,		4	3 <20	0 <2	0 1	92	2.86	0.52	0.30	0.02	0.14	34	7	<2	29	1	<5	<10	0.08	10	
								-																														
DE L2000N	1800+25E	<5 0	.6	24	32	134	11	9	11	<.2	<5	9	<5	3.17	526	5 <10	D 214	8	4	3 <20	0 <2	0 2	0 2	2.31 (0.48	0.31	0.02	0.21	39	8	<2	28	<1	<5	<10	0.09	12	
DE L2000N	1800+50E	24 0	.5	30	23	210	8	9	21	0.4	6	<5	<5	4.43	1606	5 <1 (0 300	7	4	5 <20	0 <2	0 2	4 2	2.22 (0.73	0.54	0.01	0.18	63	11	<2	35	`<1	5	<10	0.03	2	
DE L2000N	1800+75E	90	.7	26	28	132	7	8	9	0.8	<5	11	<5	2.29	834	<1	0 226	7	3	4 <20	0 <2	0 1	72	2.58 (0.39	0.35	0.02	0.13	38	9	<2	17	<1	<5	<10	0.09	13	
DE L2000N	1900+00E	12 0	.2	20	25	148	5	8	10	0.5	<5	° 15	<5	2.56	875	> <10	0 318	7	3	5 <2	0 <2	0 1	8 2	2.71 (0.43	0.36	0.02	0.15	31	9	<2	22	1	<5	<10	0.10	14	
DE L2000N	1900+50E	80	.9	40	96	367	13	10	18	2.0	<5	11	<5	4.29	1380) <1(0 483	6	3	\$9 <20	0 <2	0 2	33	5.07 (0.67	0.63	0.03	0.24	46	14	<2	43	<1	5	<10	0.07	10	
DE L2000N	1900+75E	10 2	.0	53	104	503	11	10	16	3.0	<5	12	<5	4.09	1458	3 <1(0 732	7	3	i9 <20	0 <2	0 2	4 2	2.65 (0.60	0.75	0.02	0.26	52	15	<2	38	1	5	<10	0.06	8	
DE L2000N	2000+00E	15 0	.5	29	48	246	6	7	11	0.6	<5	6	. <5	3.00	615	i <1(0 266	8	4	0 <20	0 <2	0 1	9 2	2.10 (0.43	0.36	0.02	0.22	35	9	<2	2 8	<1	<5	<10	0.07	8	
DE L2000N	2000+25E	11 0	.3	20	24	136	3	6	8	<.2	<5	14	<5	2.02	977	' <1(0 346	7	2	9 <20	0 <2	0 1	1 2	2.15	0.33	0.36	0.02	0.17	37	3	<2	27	1	<5	<10	0.08	10	
DE L2000N	2000+50E													1.75										2.38 (0.50	0.03	0.11	51	10	2	77	1	<5	<10	0.09	17	
DE L2000N	2000+75E	<50	.4	17	17	98	4	8	7	<.2	<5	11	<5	1.88	355	5 <10	0 206	10	2	28 <20	0 <2	0 1	22	2.20 (0.31	0.35	0.03	0.16	42	4	3	33	<1	<5	<10	0.09	14	
1		•																																				
DE L2000N	2100+00E	<50).2	26	20	98	4	9	11	<.2	<5	13	<5	2.62	420) <1(0 228	7	4	0 <2	0 <2	0 1	12	2.71 0	0.50	0.28	0.02	0.17	41	3	4	22	1	<5	<10	0.09	8.	
DE L2000N	2100+25E	80).5	31	15	97	4	7	9	<.2	<5	9	<5	2.39	647	/ <10	0 216	8	3	8 <2	0 <2	0 1	72	2.33 (0.42	0.37	0.02	0.14	37	7	<2	17	<1	<5	<10	0.08	12	
DE L2000N	2100+50E	60).2	38	17	165	5	9	15	<.2	<5	11	<5	3.51	1020) <1(0 314	8	4	5 <2	0 <2	0 2	53	3.04 (0.91	0.61	0.02	0.30	46	15	<2	33	1	7	' <10	0.07	8	
DE L2000N	2100+75E	90).4	24	27	128	4	7	11	0.2	<5	10	<5	2.57	1209	> <10	0 338	7	3	2 <2	0 <2	0 1	92	2.18 (0.48	0.53	0.02	0.24	39	10	<2	24	<1	<5	<10	0.07	7	
DE L2000N	2200+00E	<5 0	.3	21	19	90	4	9	11	<.2	<5	16	<5	2.42	455	5 <10	0 257	7	3	4 <2	0 <2	0 1	52	2.60	0.43	0.37	0.02	0.16	41	5	3	23	1	<5	<10	0.09	13	
																~																						Ŷ
DE L2000N	2200+25E																									0.47	0.02	0.15	44	4	<2	15	1	<5	<10	0.09	8	
DE L2000N	2200+50E	<5 <	.2	18	12	107	2	9	7	<.2	<5	15	<5	1.79	553	3 <10	0 139	9	3	SO <2	0 <2	0 1	61	1.95 (0.34	0.27	0.03	0.11	32	5	<2	14	1	<5	<10	0.09	10	>
DE L2400N	1000+25E	<5 0	.3	15	12	82	2	8	7	<.2	<5	13	<5	1.87	431	<1	0 113	8	3	5 <2	0 <2	0 1	12	2.36 (0.40	0.33	0.03	0.11	32	5	2	17	1	<5	<10	0.10	13	1
DE L2400N	1000+50E												· .	1.79	1.1									1.97 (0.24	0.02	0.11	30	3	2	15	1	<5	<10	0.08	11	
DE L2400N	1000+75E	<5 <	.2	16	9	100	2	7	8	<.2	<5	13	<5	1.99	1123	5 <1	0 165	8	3	8 <2	0 <2	0	91	.91 (0.47	0.62	0.02	0.17	54	3	<2	17	1	<5	<10	0.08	4	
DE L2400N	1100+00E	<5 <	< . 2	20	. 9	89	3	8	11	<.2	<5	11	<5	2.73	67	5 <1	0 122	10	5	51 <2	0 <2	0 1	32	2.40 (0.76	0.52	0.02	0.26	49	7	<2	30	<1	<5	<10	0.09	7	
DE L2400N	1100+50E	<5 0).3	18	10	62	4	6	10	<.2	<5	13	<5	3.18	47	5 <1	0 133	7	4	7 <2	0 <2	0 1	8 1	1.86	0.97	0.58	0.02	0.23	37	13	<2	40	<1	7	′ <10	0.03	3	
DE L2400N	1100+75E	70	0.2	13	9	44	2	5	7	<.2	<5	11	<5	1.88	256	5 <1	0 97	7	3	\$9 <2	o <2	0 1	2 1	1.63	0.30	0.28	0.02	0.06	31	5	<2	11	1	<5	<10	0.08	10	
DE L2400N	1200+00E	<5 <	<.2	19	18	86	4	8	11	<.2	<5	10	<5	2.84	227	3 <1	0 261	9	4	7 <2	0 <2	0 1	6 2	2.41 (0.80	0.51	0.02	0.18	51	9	<2	34	1	<5	<10	0.05	3	

Bondar-Clegg & Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, (604) 985-0681

DE L2400N 1200+25E <5 <.2 19 18 121 4 9 11 <.2 <5 13 <5 2.84 1932 <10 295 9 45 <20 <20 16 2.85 0.73 0.67 0.02 0.31 57 7 <2 35 1 <5 <10 0.06 6

<5 <.2 26 15 214

37

LIENT: WHITE WOLF EXPLORATION EPORT: V95-01286.0 (COMPLETE)

ADE L2400N 2200+50E

PROJECT: CIQUENAS DATE PRINTED: 30-0CT-95 PAGE 7

4

~

5

0.96 0.02 0.13 82 9 <2 23 <1 <5 <10 0.05

AMPLE ELEMENT AU30 Åg CU Pb Zn Mo Ni Co Cd Bi As Sb Te Ba Cr V Sn Fe Al Y Ga Li Nb Sc Ta Ti Zr La K Sr MBER PCT PC1 PCT PCT PCT PPM PPM PPM PPM PPM PPM PPM PCT PPM ADE L2400N 2000+50E 7 12 <.2 <5 13 <5 2.97 1482 <10 256 6 <2 28 <1 <5 <10 0.03 17 <.2 14 11 107 4 8 39 <20 <20 15 1.93 0.78 0.39 0.01 0.23 29 3 11 0.3 24 12 95 3 7 8 <.2 <5 9 <5 2.47 543 <10 243 7 32 <20 <20 17 2.45 0.52 0.36 0.02 0.30 35 12 2 32 <1 <5 <10 0.07 18 ADE L2400N 2000+75E 15 0.4 18 15 88 38 7 <.2 <5 17 <5 1.95 221 <10 232 7 28 <20 <20 11 2.27 0.34 0.26 0.03 0.14 30 ADE L2400N 2100+00E 4 4 25 1 <5 <10 0.07 16 9 <.2 <5 8 <5 2.40 389 <10 173 7 35 <20 <20 12 1.74 0.56 0.33 0.02 0.16 34 5 <2 23 <1 <5 <10 0.05 10 ADE L2400N 2100+25E 12 0.6 21 10 88 36 8 <.2 <5 10 <5 2.21 472 <10 222 7 32 <20 <20 14 1.94 0.43 ADE L2400N 2100+50E 25 0.3 26 11 91 3 6 0.37 0.02 0.18 32 7 <2 28 <1 <5 <10 0.06 12 15 <5 1.90 1618 <10 413 7 27 <20 <20 11 2.08 0.41 ADE L2400N 2100+75E 6 <.2 13 17 138 8 <.2 <5 0.45 0.02 0.17 41 4 <2 21 1 <5 <10 0.07 5 6 ADE L2400N 2200+00E <5 <.2 27 15 95 8 <.2 <5 15 <5 1.88 904 <10 274 6 27 <20 <20 11 1.88 0.41 0.70 0.03 0.15 45 5 <2 26 <1 <5 <10 0.07 6 6 7 10 <.2 <5 10 <5 2.68 573 <10 225 8 43 <20 <20 16 1.90 0.51 ADE L2400N 2200+25E 9 0.2 26 13 90 0.38 0.02 0.17 34 7 <2 19 1 <5 <10 0.07 7

9 0.7 <5 12 <5 2.10 3687 <10 615 7 30 <20 <20 15 2.16 0.52

•

CLIENT: WH	ITE WOLF E	XPLOR	ATION	- ۱						-																								PRO	IFC	T: CIQ		AC		
REPORT: V9	5-01295.0	COM	PLETE	.)																																		7-NOV-95	DACE	
		•			•••••		•••••			•••••		•••••	•••••			•••••	•••••	••••••	•••••			•••••							••••••					DATE	: Fi	KINIED	• (-104-32	PAGE	
SAMPLE	ELEMENT	Au30	Ag	Cu	Pb	Zn	Мо	Ni	Co	Cd	Bi	As) sb	Fe	Mn	Te	e Ba	Сг	v	Sn	W	La	A	ιM	g (Ca	Na	ĸ	Sг	Y	Ga	Li	ΝЬ	Sc	т	a Ti	71	r		
NUMBER																																				M PCT				
,																																								
DADE 12200)N 1000+25E	11	0.3	36	12	75	6	9	11	<.2	<5	<5	<5	2.78	807	<10	295	11	38	<20	<20	27	2.27	7 0.6	5 0.3	58 0	.01 (0.26	32	16	<2	32	<1	<5	<1	0 0.06	Ş	2		
V DADE L2200	N 1000+50E	102	<.2	45	16	90	6	11	12	<.2	<5	5	<5	2.64	1758	<10	491	14	36	<20	<20	23	2.3	0.5	0 0.5	57 0	.02 (0.31	41	12	<2	32	<1	5	<1	0 0.06	8	3		
DADE L2500	IN 1000+00E	<5	0.3	16	63	93	2	4	6	<.2	<5	12	<5	1.69	288	<10	79	: 6	37	<20	<20	10	1.20	0.2	7 0.2	24 0	.02 (0.10	23	4	<2	9	<1	<5	<1	0 0.07	4	4		
DADE L2500																																								
DADE L2500	N 1000+50E	<5	<.2	11	7	64	2	6	7	<.2	<5	9	<5	1.98	274	<10	97	6	36	<20	<20	11	1.75	0.4	0 0.3	50 0	.02 0	0.18	28	4	2	17	<1	<5	<1	0 0.08	9	>		
																					÷.,																			
DADE L2500	N 1000+75E	<5	<.2	13	10	54	2	6	7.	<.2	<5	16	<5	1.84	257	<10) 103	6	33	<20	<20	11	1.95	5 O.3	7 0.3	50 O	.02 0	0.17	31	4	2	19	<1	<5	<10	0 0.08	11	1		
	IN 1100+00E																																							
	N 1100+25E																																							
	N 1100+50E																																							
DADE L2500	IN 1100+75E	<5	<.2	6	- 5	. 33	2	3	5	<.2	<5	<5	<5	1.46	191	<10	53	6	33	<20	<20	9	0.86	5 0.2	5 0.2	23 0	.02 0	0.14	19	. 3	<2	8	<1	<5	<10	0 0.07	3	\$		
						•					1				<u>ج</u>																	Ę,		· · ·						
DADE L2500																																								
DADE L2500																																								
DADE L2500																																				0 0.07				
DADE L2500																																								
DADE L2500	IN 1300+00E	<5	< . 2	17	7	52	2	5	6	<.2	<5	9	<5	1.80	233	_<10	91	6	39	<20	<20	10	1.23	5 0.2	5 0.2	23 0	.02 0	0.09	23	4	<2	8	<1	<5	<10	0 0.06	- 8	\$		
					_	_			-	-		-						_	·		· .											÷.,								
DADE L2500																																				0 0.07				
DADE L2500																																				0 0.07				
DADE L2500																																				0 0.07				
DADE L2500																																				0 0.05				
DADE L2500	N 1400+25E	<5	0.2	18	8	62	2	6	6	<.2	\$	y	<5	1.65	216	<10	133	5	29	<20	<20	11	1.64	0.3	0 0.2	7 0	.02 0	0.15	30	4	2	12	<1	<5	<10	0 0.07	10)		
0405 1 2500	1/00.505	Æ		7	F	52	2	7	F		-5	~F		1 66	277	-10				-20	-20	~	~ ~ ~							-					•		-			
DADE L2500					-																																			
DADE L2500																																				0 0.07				
DADE L2500																														· · · ·						0 0.06				
DADE 12500																																		- 2.2		0 0.05				
DADE L2500	N 1500+75E	(<.2	y		21	2	0	Q	۲.2	. 52	٥	8	1.74	211	<10	141	2	21	<20	<20	9	1.50	0.5	2 0.2	0 U.	.02 0	. 19	21	2	<2	10	<1	4	<10	0.06	4	,		
DADE 1 2500	1400-005	~	• •	27	11	7/		4	·.	- 2	~5	16	~5	1 5/	215	~10	1/5	5	29	~20	~20	10	1 57			2 0	~ ~	17	20	Ē	-2	4 5					47			
DADE 12500			0.4	23	Π.	74	2	0	0	2	2	10	2	1.94	¢12	- 10	140		20	~20	~20	10	1.5/	0.20	<u>د ب</u>	2.0.	.04 0	. 15	20	Ş	<u>~</u> 2	15	<1	0	<10	0.07	13	- Ala		
DADE 12500			~ 2	7	ः इ	57	2	1	5		-5	~5	-	1 70	204	~10	170	F	20	~20	<20	0	0 74	0.44	.: 0.0.37	7 0	02.0		27		~	_					-	ў. ,		
DADE 12500															F.		1.25				1.5200		2.1.2			611 - L		N 1.1				1.001				0.06				
DADE 12500																																1 A A A A A A A A A A A A A A A A A A A		- C C -		0.05				
DADE L2500	N 1700+00E	0	·.2		2	43	2	2	2	1.2	2	0	0	1.94	100	10		0	20	~ 20	<20			0.2	9 V.2	υŪ.	.02 0	. 10	24	ڊ	<2	11	<1	\$	<10	10.00	6			

DADE L2500N 2000+75E 872 3.4 486 13 71 DADE L2500N 2100+00E 82 0.5 64 22 91

CLIENT: WHITE WOLF EXPLORATION REPORT: V95-01295.0 (COMPLETE)

DADE L2500N 1700+25E <5 <.2 7

DADE L2500N 1700+50E <5 <.2 8

DADE L2500N 1700+75E

DADE L2500N 1800+00E

DADE L2500N 1800+25E

DADE L2500N 1800+50E

DADE L2500N 1800+75E

DADE L2500N 1900+00E

DADE L2500N 1900+50E

DADE L2500N 1900+75E

DADE L2500N 2000+00E

DADE L2500N 2000+50E

DADE L2500N 2100+25E

DADE L2500N 2100+50E

DADE L2500N 2100+75E

DADE L2500N 2200+00E

DADE L2500N 2200+25E

DADE L2500N 2200+50E

DADE L2600N 1000+25E

DADE L2600N 1000+50E

DADE L2600N 1000+75E

DADE L2600N 1100+00E

DADE L2600N 1000+00E <5 <.2 9

SAMPLE

NUMBER

PAGE 2

	1C	nc	ar)e	I	e	SU	n	\mathbf{g}_{\cdot}	56	P	V1	ce	S																					ICC	pon	
WOLF E																																			JENAS : 7-	NOV-95	
ELEMENT																														Li							
UNITS	ș PPB	B PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PCT	PCT	PCT	PCT	PPM	PPM	PP M	PPM PI	PMI	PPM	PPM	PCŢ	PPM		
700+25E																														6							
700+50E	<5	i <. 2	8	4	29	1	3	5	<.2	<5	<5	<5	1.52	181	<10	60	6	32	<20	<20	13	0.73	0.18	0.20	0.02	0.09	21	4	~2	7	<1	<5	<10	0.06	2		
700+75E	6	5 <.2	6	6	45	2	3	5	<.2	<5	<5	<5	1.46	355	<10	86	6	28	<20	<20	11	0.86	0.26	0.21	0.02	0.16	25	3	<2	9	<1	<5	<10	0.06	3		
800+00E	<5	0.2	11	13	104	2	6	6	<.2	<5	6	<5	1.89	387	<10	211	6	31	<20	<20	12	1.79	0.31	0.25	0.02	0.15	28	4	<2	16	<1	<5	<10	0.06	8		
800+25E																														13							
800+50E	: <5	i <.2	14	9	78	2	5	7	<.2	<5	7	<5	1.96	405	<10	238	6	29	<20	<20	12	1.85	0.39	0.28	0.03	0.26	29	6	<2	17	<1	<5	<10	0.07	13		
800+75E	<5		12	9	95	2	4	7	<.2	<5	<5	<5	1.86	862	<10	156	7	34	<20	<20	11	1.05	0.42	0.41	0.02	0.21	33	4	<2	12	<1	<5	<10	0.05	2		
900+00E	<5	i <.2	12	9	99	3	5	7	<.2	<5	<5	<5	1.86	617	<10	176	7	34	<20	<20	11	1.08	0.36	0.46	0.01	0.14	36	4	<2	14	<1	<5	<10	0.06	2		
900+50E	<5	<.2	17	8	100	3	6	8	<.2	<5	10	<5	2.14	300	<10	204														19							
900+75E																														13							
2000+00E	15			1						z siji Srijer			:																					s ní De D			
000+50E	<5	0.3	25	12	78	3	6	10	<.2	<5	13	<5	2.51	639	<10	153	6	41	<20	<20	18	2.41	0.59	0.34	0.01	0.15	28	10	~2	27	<1	<5	<10	0.08	0		
000+75E																																					
100+00E																														41							
100+25E																																					
	-						_	1			-			1.040		2.5		37								1.1				100			10				
100+50E	10	0.8	73	17	111	- 5	7	12	<.2	5	8	<5	2.94	1245	<10	637	5	39	<20	<20	21	2.51	0.88	0.73	0.02	0.24	45	18	0	46	c 1	5	<10	0 04	4		
100+75E														555		1. C										- CC - CA - CC -				39		1.15		22 C 1 C 0			
200+00E	_									• •• :				1767		101.5						X 12		1.6 1.55		S. 111				24		1.0					
200+25E	-	1.1.1				· · ·						. 555		· · · · ·		×. • .		N 16		· · · ·				N. NO.		1.1.1.1.1				14				2335	-		
200+50E										· · ·												· ·								34				- S L. M			
000+00E	6		٥		74	1	7	ي ج	: ~ 2	~	~5	~	1 50	200	<10	63	5		~20	~20	10	0.05	0.27	0.20	0 02	0 17	77		-2	8 •	.1	, E		<u> </u>			
000+25E																														9							
000+25E																														9.4							
																· · ·		- 2																			
000+75E																														12							
100+00E																				- 81 X				S						10 <				e e e e e e e e e e e e e e e e e e e			
100+25E	<5	<.2	10	7	55	2	5	6	<.2	<5	7	<5	1.53	380	<10	97	6	32	<20	<20	11	1.33	0.27	0.26	0.02	0.11	25	4	<2	9 <	(1)	<5	<10	0.08	6	i,	
100+50F	<5	< 2	11	7	68	2	6	6	< 2	<5	<5	<5	1.59	374	<10	106	6	32	<20	<20	11	1 30	0 20	0.26	0 02	0 12	24	1	~2	10	1	× .	-10	0 07	1	<u></u>	

DADE L2600N 1100+25E <5 <.2 10 7 55 DADE L2600N 1100+50E <5 <.2 11 7 68 2 6 6 < 2 < 5 < 5 < 5 1.59 374 < 10 106 6 32 < 20 < 20 11 1.39 0.29 0.26 0.02 0.12 24 4 < 2 10 < 1 < 5 < 10 0.07 4 5 DADE L2600N 1100+75E 8 <.2 7 4 40 2 3 5 <.2 <5 <5 5 1.65 215 <10 63 6 39 <20 <20 11 0.82 0.30 0.25 0.02 0.12 20 3 <2 7 <1 <5 <10 0.08 2 <5 <.2 9 5 43 2 3 6 <.2 <5 <5 <5 1.71 320 <10 93 6 35 <20 <20 10 1.09 0.29 0.25 0.02 0.19 22 DADE L2600N 1200+00E 4 <2 8 <1 <5 <10 0.07 6 DADE L2600N 1200+25E <5 0.2 18 7 47 2 5 7 <.2 <5 9 <5 1.79 229 <10 110 5 33 <20 <20 12 1.64 0.30 0.36 0.02 0.23 33 6 <2 11 <1 <5 <10 0.07 14

CLIENT: WHITE WOLF EXPLORATION REPORT: V95-01295.0 (COMPLETE)

PROJECT: CIQUENAS DATE PRINTED: 7-NOV-95 PAGE 3

SAMPLE	ELEMENT	Au30	Ag	Cu	Pb	Zn	Mo	Ni	Co	Cd	Bi	As	SÞ	Fe	Mn	Te	Ba	Cr	V,	Sn	W	La	AĻ	Mg	Ca	Na	ĸ	Sr	Y	Ga	Ļį.	Nb	Sc	Ta	Ti	Zr	
NUMBER	UNITS	PPB	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM	PPM	PPM	PPM	PPM	PPM I	PPM	PPM	РСТ	PCT	PCT	PCT	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM	
DADE L2600N	1200+50E	<5	<.2	14	8	65	2	5	6	<.2	<5	8	<5	1.48	302	<10	87	5	29	<20	<20	9	1.34	0.23	0.24	0.02	0.09	26	4	<2	25	<1	<5	<10	0.07	7	
DADE L2600N	1200+75E	6	<.2	10	3	38	2	4	6	<.2	<5	<5	<5	1.74	232	<10	47	7	40	<20	<20	12	0.85	0.30	0.25	0.02	0.10	20	4	`<2	15	<1	< 5	<10	0.08	5	
DADE L2600N	1300+00E	<5	<.2	16	7	46	2	5	7	<.2	<5	<5	<5	1.86	548	<10	65	7	39	<20	<20	11	0.93	0.38	0.65	0.02	0.13	35	5	<2	19	<1	<5	<10	0.06	2	
DADE L2600N	1300+25E	<5	<.2	14	7	60	2	5	. 7	<.2	4	9	<5	1.84	269	<10	86	6	37	<20	<20	10	1.44	0.33	0,25	0.02	0.11	25	3	<2	11	<1	<5	<10	0.07	8	
DADE L2600N	1300+50E	<5	<.2	13	8	54	2	5	6	<.2	<5	6	<5	1.71	262	<10	76	6	37	<20	<20	9	1.04	0.29	0.26	0.01	0.11	21	3	<2	8	<1	<5	<10	0.06	4	
DADE L2600N	1300+75E													1.61							300		÷.,		- S + S (S										0.07		
DADE L2600N	1400+00E	<5	<.2	17					-				1.1	1.40							12. N				- C. 144						· :				0.06	•	
DADE L2600N	1400+25E	<5	<.2	62			1.1.1.1							1.66	75 S				- 2.2		199 R.		1.50		- 13 1 24		- 11.58						- C - C - C - C - C - C - C - C - C - C	<10	1.10		
DADE 12600N	1400+50E		÷ 5.	32	· ·				· · ·		1.00		- 2.3	1.65	15 <u>(6</u> 5 m)				1.12		Q		· · · · .		1.1.2.2		- 1 M - 1								0.07		
DADE L2600N	1400+75E	<5	0.3	20	10	72	2	6	7	<.2	\$: 10 :	<5	1.81	282	<10	148	6	32	<20	<20	. 12	1.39	0.29	0.39	0.02	0.18	30	. 5	<2	15	<1	<5	<10 (0.06	. 6	
DADE L2600N	1500+00E	8	<.2	14	5	44	2	4	6	<.2	<5	6	<5	1.78	232	<10	72	6	38	<20	<20	10	0.88	0.28	0.29	0.01	0.13	24	4	<2	8	<1	<5	<10	0.05	2	
DADE L2600N				11		37	. 1 .	4	5	<.2	<5	7	<5	1.57	253	<10	92	5	33	<20	<20	8	0.94	0.21	0.33	0.02	0.15	27	3	<2	8	<1	<5	<10	0.06	6	
DADE L2600N	1500+50E	<5	<.2	. 11	8	58	2	6	: 5	<.2	<5	10	<5	1.34	218	<10	113	4	25	<20	<20	8	1.35	0.19	0.21	0.03	0.09	22	4	<2	11	<1	<5	<10	0.06	11	
DADE L2600N	1500+75E	<5	<.2	12	7	58	2	6	5	<.2	<5	11	<5	1.48	213	<10	100	5	28	<20 ·	<20	8	1.29	0.23	0.20	0.02	0.15	24	3	<2	10	<1	<5	<10	0.06	7	
DADE L2600N	1600+00E	<5	<.2	12	6	58	2	6	5	<.2	<5	<5	<5	1.51	200	<10	108	6	29	<20	<20	10	1.04	0.23	0.21	0.02	0.10	22	3	<2	8	<1	<5	<10	0.06	7	
DADE L2600N	1600+25E	<5	<.2	10	4	71	1	5	5	<.2	ৎ	7	<5	1.29	359	<10	195	5	23	<20	<20	8	0.99	0.16	0.39	0.02	0.10	39	3	<2	7	<1	<5	<10	0.05	3	
DADE L2600N	1600+50E	<5	<.2	10	5	22	· 1	3	4	<.2	<5	<5	<5	1.51	157	<10	36		÷ •		20. Z		·				1.1.1.1		- C.		1. A		···.	<10			
DADE L2600N	1600+75E	<5	<.2	42										1.65			1.00		5.57		1.046		1.000		- 1 A A A A A A A A A A A A A A A A A A									<10	1999 B. S.		
DADE L2600N	1700+00E		· · ·	10							· · · · · ·			1.00			- X - X -		. 12		1.2		1 N S (2)		- ere e g		- N 1 6 6		- 19 A.	2	101		4 T.Y.	<10	S 12		
DADE L2600N	1700+25E	12	<.2	14	. 7	75	7	6	9	<.2	\$	<5	<5	2.73	457	<10	306	4	36	<20	<20	16	1.71	0.55	0.29	0.02	0.24	22	9	<2	23	<1	<5	<10	0.03	7	
DADE L2600N	1700+50E	<5	<.2	9	5	53	2	5	6	<.2	<5	<5	< 5	1.99	329	<10	163				-																
DADE L2600N	1700+75E	8	<.2	15			1.2						· · ·	2.24	- C. C.				2.4						- AL 199		- N. 1999							<10	1.1.2.2		
DADE L2600N	1800+00E	11	<.2	15							- N. M. A. A.			2.24									·		2.000					<2	13	· <1	<5	<10	0.04	3	
DADE L2600N	1800+25E	12	<.2	13	7	70								2.05					0.5		1910	-	· · · · ·		0.23		1.112.11.1		- 1979, I		1.2			<10	- C	6	
DADE L2600N	1800+50E	\$	<.2	9	6	60	2	4	6	<.2	<5	8	<5	1.78	262	<10	99	5	33	<20	<20	8	1.14	0.31	0.20	0.01	0.15	20	. 3	<2	12	<1	<5	<10	0.05	4	
DADE L2600N	1800+75E	<5	<.2	10	. 7	60							1.120	1.62					20.20		13.11		1 A M		$\leq < 1$										0.05		
DADE L2600					10									2.39							S.2. + -														0.05		
DADE L2600N	1900+25E													1.97	- 12 Y Y								. C.,		- C. K.										N 14 -		
DADE L2600N	1900+50E													1.66							- C	-											1	<10	er 11.		
DADE L2600N	1900+75E	<5	<.2	29	11	247	4	7	11	1.5	<5	<5	<5	2.61	825	<10	422	7	37	<20	<20	21	1.97	0.51	0.43	0.01	0.21	35	11	<2	27	<1	5	<10 (0.03	3	

7

6.4

CLIENT: WHITE WOLF EXPLORATION REPORT: V95-01295.0 (COMPLETE)

•

SAMPLE

NUMBER

DADE L2700N 2200+50E

DADE L2800N 1000+00E DADE L2800N 1000+25E

DADE L2800N 1000+50E

DADE L2800N 1000+75E

DADE L2800N 1100+00E

DADE L2800N 1100+25E

DADE L2800N 1100+50E

DADE L2800N 1100+75E

DADE L2800N 1200+25E

DADE L2800N 1200+50E

DADE L2800N 1200+75E

DADE L2800N 1300+00E

DADE L2800N 1300+25E

DADE L2800N 1300+75E

DADE L2800N 1400+00E

DADE L2800N 1400+25E

DADE L2800N 1400+50E

DADE L2800N 1400+75E

PAGE 6

PROJECT: CIQUENAS

DATE PRINTED: 7-NOV-95

ELEMENT AU30 Ag CU Pb Zn Mo Ni Co Cd Bi As Sb Fe Mn Te Ba Cr V Sn W La Al Mg Са Na K Sr Y Ga Li Nb Sc Ta Ti Zr 7 0.3 70 14 257 10 11 18 1.2 <5 14 <5 3.71 911 <10 134 8 49 <20 <20 20 2.67 0.70 0.57 0.02 0.15 68 9 <2 36 <1 5 <10 0.09 8 12 <.2 10 6 57 2 5 6 <.2 <5 7 <5 1.70 362 <10 90 6 35 <20 <20 10 1.32 0.28 0.28 0.02 0.11 27 3 <2 11 <1 <5 <10 0.07 6 <5 <.2 18 7 51 2 5 7 <.2 <5 13 <5 1.95 302 <10 89 6 41 <20 <20 12 1.60 0.36 0.25 0.03 0.12 24 5 <2 13 <1 <5 <10 0.08 10</p> 6 <.2 10 6 66 2 5 7 <.2 <5 6 <5 2.00 279 <10 97 7 44 <20 <20 10 1.06 0.28 0.28 0.02 0.08 27 3 <2 10 <1 <5 <10 0.06 3 <5 <.2 10 5 50 2 5 6 <.2 <5 8 <5 1.77 277 <10 78 6 39 <20 <20 10 1.08 0.26 0.26 0.02 0.10 25 3 <2 9 <1 <5 <10 0.07 5</p> 12 <.2 9 7 57 2 5 7 <.2 <5 <5 <5 1.89 286 <10 93 7 39 <20 <20 10 1.32 0.32 0.28 0.02 0.13 25 2 <2 13 <1 <5 <10 0.06 4 6 <.2 13 7 51 2 4 7 <.2 <5 9 <5 1.86 390 <10 88 6 41 <20 <20 11 1.23 0.39 0.32 0.02 0.18 28 4 <2 13 <1 <5 <10 0.08 4 12 <.2 11 7 66 2 5 7 <.2 <5 7 <5 2.00 681 <10 132 7 44 <20 <20 10 1.24 0.33 0.32 0.02 0.12 29 3 <2 11 <1 <5 <10 0.06 3 12 <.2 13 9 72 2 6 7 <.2 <5 12 <5 2.06 459 <10 143 7 43 <20 <20 11 1.53 0.31 0.26 0.02 0.09 28 4 <2 12 <1 <5 <10 0.07 7 8 0.3 13 7 81 2 6 7 <.2 <5 13 <5 1.96 494 <10 162 7 38 <20 <20 11 1.50 0.30 0.36 0.02 0.09 32 4 <2 15 <1 <5 <10 0.07 4 7 <.2 11 14 87 2 5 7 <.2 <5 9 <5 1.70 593 <10 144 5 31 <20 <20 9 1.44 0.36 0.38 0.02 0.21 34 3 <2 11 <1 <5 <10 0.07 3 -5 <.2 14 10 110 2 6 6 <.2 <5 11 <5 1.72 455 <10 211 5 29 <20 <20 12 1.67 0.34 0.39 0.03 0.24 36 5 <2 12 <1 <5 <10 0.08 8</p> 13 <.2 13 8 60 2 5 7 <.2 <5 6 <5 1.90 386 <10 115 6 38 <20 <20 12 1.27 0.37 0.32 0.02 0.23 28 4 <2 10 <1 <5 <10 0.09 6 <5 <.2 8 5 48 2 3 6 <.2 <5 <5 <5 1.64 425 <10 94 6 37 <20 <20 11 0.75 0.33 0.29 0.02 0.18 24 4 <2 6 <1 <5 <10 0.08 2</p> DADE L2800N 1300+50E <5 <.2 13 8 62 2 4 7 <.2 <5 7 <5 1.76 365 <10 128 6 35 <20 <20 10 1.12 0.34 0.30 0.02 0.16 26 3 <2 10 <1 <5 <10 0.08 4 <5 <.2 8 7 70 2 5 5 <.2 <5 8 <5 1.58 358 <10 133 6 31 <20 <20 9 1.20 0.28 0.23 0.02 0.15 23 2 <2 10 <1 <5 <10 0.07 3</p> <5 <.2 8 8 50 2 5 6 <.2 <5 <5 <5 1.67 280 <10 103 6 35 <20 <20 10 1.12 0.29 0.26 0.02 0.16 26 3 <2 10 <1 <5 <10 0.07 2 <5 <.2 8 8 66 2 5 6 <.2 <5 9 <5 1.74 270 <10 131 6 34 <20 <20 10 1.35 0.29 0.26 0.02 0.17 26 3 <2 12 <1 <5 <10 0.07 6 6 <.2 11 9 68 2 5 7 <.2 <5 8 <5 1.83 286 <10 128 6 35 <20 <20 10 1.45 0.29 0.26 0.02 0.13 26 3 <2 12 <1 <5 <10 0.07 6 8 < 2 10 5 34 2 4 6 < 2 <5 <5 <5 1.84 201 <10 64 7 42 <20 <20 10 0.82 0.25 0.24 0.02 0.11 23 3 <2 9 <1 <5 <10 0.06 4

2 6 6 <.2 <5 19 <5 1.75 343 <10 203 5 29 <20 <20 12 1.80 0.28 0.30 0.02 0.15 34 6 <2 16 <1 <5 <10 0.07 8 DADE L2800N 1500+00E <5 <.2 21 11 86 2 4 6 <.2 <5 6 <5 1.60 455 <10 156 6 31 <20 <20 10 1.08 0.26 0.32 0.02 0.13 32 3 <2 11 <1 <5 <10 0.06 2 DADE L2800N 1500+25E < 5 0.4 9 11 81 DADE L2800N 1500+50E 11 <.2 25 8 47 3 4 8 <.2 <5 8 <5 2.13 626 <10 117 7 41 <20 <20 15 1.08 0.45 0.98 0.02 0.12 43 8 <2 16 <1 <5 <10 0.06 2 13 < .2 15 10 59 3 6 9 < .2 <5 13 <5 2.35 229 <10 137 7 43 <20 <20 14 1.73 0.35 0.21 0.02 0.12 23 5 2 17 <1 <5 <10 0.08 9 DADE L2800N 1500+75E DADE L2800N 1600+00E DADE L2800N 1600+25E 11 <.2 12 6 64 3 6 8 <.2 <5 7 <5 2.54 623 <10 140 8 48 <20 <20 13 1.30 0.36 0.22 0.01 0.14 20 3 <2 12 <1 <5 <10 0.06 3 7 <.2 9 8 59 2 4 7 <.2 <5 6 <5 1.88 367 <10 140 6 32 <20 <20 10 1.48 0.29 0.21 0.02 0.16 22 3 <2 16 <1 <5 <10 0.06 7 DADE L2800N 1600+50E 2 5 7 <.2 <5 11 <5 2.09 539 <10 168 6 26 <20 <20 19 1.66 0.58 0.61 0.03 0.15 47 13 <2 32 <1 <5 <10 0.05 5 DADE L2800N 1600+75E < 5 0.4 35 9 60 4 5 12 0.5 <5 11 <5 3.37 1178 <10 434 6 46 <20 <20 25 1.76 0.63 0.83 0.01 0.27 43 13 <2 26 <1 6 <10 0.02 2 DADE L2800N 1700+00E 6 0.3 28 27 124 9 <.2 14 12 110 5 5 11 <.2 <5 <5 <5 3.26 914 <10 250 6 49 <20 <20 15 1.46 0.61 0.33 0.01 0.19 21 7 <2 19 <1 <5 <10 0.03 2 DADE L2800N 1700+25E

CLIENT: WHITE WOLF EXPLORATION

DADE L2800N 1700+50E

DADE L2800N 1700+75E

DADE L2800N 1800+00E DADE L2800N 1800+25E

DADE L2800N 1800+50E

DADE L2800N 1800+75E DADE L2800N 1900+00E

DADE L2800N 1900+25E

DADE L2800N 1900+50E

DADE L2800N 1900+75E

DADE L2800N 2000+00E

DADE L2800N 2000+25E DADE L2800N 2000+50E

DADE L2800N 2000+75E

DADE L2800N 2100+00E

DADE L2800N 2100+50E

DADE L2800N 2200+00E

DADE L2800N 2200+25E

DADE L3000N 1000+50E

SAMPLE

NUMBER

REPORT: V95-01295.0 (COMPLETE)

PROJECT: CIQUENAS DATE PRINTED: 7-NOV-95 PAGE 7 ELEMENT Au30 Ag Cu Pb (Źn) Mo Ni Co Cd Bi (As) Sb Fe Mn Te Ba Cr V Sn W La Al Ca Na K Sr Y Ga Li Nb Sc Ta Ti Zr 12 <.2 15 24 123 5 8 11 <.2 <5 17 <5 2.68 1631 <10 395 6 39 <20 <20 18 2.76 0.54 0.54 0.02 0.24 35 8 <2 30 1 <5 <10 0.07 9 6 <.2 15 15 125 5 6 11 <.2 <5 6 <5 3.02 1681 <10 381 6 41 <20 <20 22 2.39 0.53 0.42 0.02 0.22 31 12 <2 28 <1 5 <10 0.05 7 <5 <.2 13 12 89 5 7 10 <.2 <5 12 <5 2.72 1100 <10 313 6 37 <20 <20 21 2.50 0.52 0.31 0.02 0.23 27 11 <2 32 <1 <5 <10 0.08 16</p> 9 <.2 22 20 112 4 10 12 <.2 <5 17 <5 3.10 1106 <10 177 10 52 <20 <20 22 3.02 0.78 0.48 0.02 0.18 35 14 <2 58 <1 7 <10 0.07 11 6 <.2 14 10 59 3 5 7 <.2 <5 12 <5 2.10 328 <10 186 7 33 <20 <20 14 1.89 0.40 0.27 0.02 0.18 27 7 <2 29 <1 <5 <10 0.07 15 <5 <.2 17 8 81 3 5 7 <.2 x5 7 <5 1.88 742 <10 183 6 32 <20 <20 12 1.51 0.32 0.36 0.02 0.17 34 6 <2 19 <1 <5 <10 0.06 8</p> 7 0.4 24 13 79 4 7 8 < .2 <5 7 <5 2.27 577 <10 186 10 38 <20 <20 15 1.83 0.43 0.31 0.02 0.16 28 7 <2 30 <1 <5 <10 0.07 7 4 6 8 <.2 <5 13 <5 2.19 407 <10 153 9 37 <20 <20 14 1.91 0.39 0.25 0.02 0.14 27 5 <2 24 <1 <5 <10 0.08 11 6 <.2 18 11 72 16 < .2 9 6 67 3 3 7 < .2 <5 <5 1.99 344 <10 78 9 41 <20 <20 10 0.87 0.38 0.26 0.01 0.11 25 3 <2 10 <1 <5 <10 0.05 1 8 87 3 6 7 < 2 5 6 5 1.89 313 < 10 127 7 32 < 20 < 20 12 1.67 0.34 0.26 0.02 0.13 31 4 < 2 14 < 1 < 5 < 10 0.06 4 7 <.2 16 11 0.2 12 5 70 3 4 7 <.2 <5 <5 <5 2.21 281 <10 63 8 44 <20 <20 12 0.94 0.46 0.31 0.02 0.15 29 4 <2 11 <1 <5 <10 0.06 2 <5 <.2 18 9 105 3 6 7 <.2 <5 <5 1.94 445 <10 141 6 33 <20 <20 11 1.72 0.34 0.27 0.02 0.15 33 4 <2 13 <1 <5 <10 0.07 8</p> 6 <.2 37 15 121 7 5 9 <.2 <5 15 <5 2.07 717 <10 154 5 30 <20 <20 11 1.40 0.37 0.35 0.02 0.11 45 3 <2 15 <1 <5 <10 0.04 2 22 0.2 11 7 71 3 5 7 <.2 5 6 5 1.84 261 <10 85 7 33 <20 <20 9 1.39 0.26 0.29 0.02 0.15 32 2 <2 15 <1 <5 <10 0.07 8 13 1.6 86 22 54 28 3 21 <.2 11 <5 <5 5.51 384 <10 88 3 31 <20 <20 18 1.35 0.37 0.31 0.02 0.19 53 6 <2 16 <1 <5 <10 0.01 <1 DADE L2800N 2100+25E <5 <.2 21 8 66 3 5 7 <.2 55 5 <5 1.81 468 <10 122 5 31 <20 <20 11 1.50 0.29 0.23 0.02 0.11 28 4 <2 16 <1 <5 <10 0.07 7 6 < 2 37 16 129 6 6 10 0.4 <5 21 <5 2.38 869 <10 160 9 42 <20 <20 12 3.29 0.60 1.20 0.02 0.18 102 3 <2 22 <1 <5 <10 0.06 3 DADE L2800N 2100+75E 29 < 2 17 11 109 8 7 7 < 2 <5 9 <5 2.00 396 <10 121 20 33 <20 <20 13 1.74 0.37 0.27 0.02 0.11 30 4 <2 16 <1 <5 <10 0.08 9 <5 <.2 38 12 221 5 6 6 0.4 5 13 5 1.58 602 <10 113 5 21 <20 <20 9 1.88 0.25 0.35 0.03 0.13 36 3 <2 24 <1 <5 <10 0.08 7</p> <5 0.6 127 18 183 9 9 15 0.3 <5 19 <5 2.91 660 <10 228 5 29 <20 <20 18 3.36 0.47 0.47 0.03 0.27 53 9 <2 31 <1 <5 <10 0.11 26</p> 5 10 14 1.4 <5 15 <5 2.87 1158 <10 215 6 36 <20 <20 17 2.89 0.61 0.58 0.03 0.27 58 8 <2 31 <1 <5 <10 0.09 12 DADE L2800N 2200+50E 6 0.2 90 20 255 DADE L3000N 1000+00E - 19 0.2 22 11 60 4 7 8 <.2 <5 16 <5 2.19 445 <10 204 7 39 <20 <20 16 2.01 0.39 0.37 0.02 0.19 36 8 <2 20 <1 <5 <10 0.08 7 DADE L3000N 1000+25E 18 0.2 23 14 88 5 7 10 <.2 <5 13 <5 2.58 946 <10 258 8 41 <20 <20 19 2.13 0.48 0.46 0.01 0.28 34 9 <2 24 <1 <5 <10 0.07 3 8 <.2 26 16 91 6 7 11 <.2 <5 15 <5 2.64 1008 <10 384 8 33 <20 <22 2.47 0.50 0.48 0.02 0.25 31 13 <2 32 <1 <5 <10 0.05 6 DADE L3000N 1000+75E <5 <.2 25 12 78 4 6 10 <.2 55 12 52 47 59% <10 215 6 31 <20 <20 21 2.13 0.45 0.39 0.02 0.31 33 12 <2 27 <1 <5 <10 0.07 13 DADE L3000N 1100+00E 15 0.2 34 14 92 5 7 12 <.2 <5 16 <5 2.85 1101 <10 248 7 36 <20 <20 26 2.63 0.52 0.46 0.02 0.28 41 17 <2 39 <1 <5 <10 0.07 11 DADE L3000N 1100+25E 10 <.2 30 13 74 5 7 11 <.2 <5 15 <5 2.83 699 <10 206 10 40 <20 <20 24 2.59 0.59 0.32 0.02 0.23 35 14 <2 42 <1 <5 <10 0.07 9 DADE L3000N 1100+50E <5 <.2 24 15 110 5 8 13 <.2 <5 12 <5 2.80 1512 <10 277 10 40 <20 <20 17 2.43 0.54 0.51 0.02 0.20 45 8 <2 29 <1 <5 <10 0.07 5 DADE L3000N 1100+75E 15 < .2 22 10 60 7 7 10 < .2 <5 8 <5 2.61 434 <10 139 15 44 <20 <20 17 2.05 0.50 0.27 0.02 0.19 27 8 <2 29 <1 <5 <10 0.08 9

DADE L3000N 1200+00E <5 <.2 18 11 71 6 7 9 <.2 <5 9 <5 2.31 517 <10 250 14 35 <20 <20 15 2.10 0.46 0.32 0.02 0.20 34 7 <2 28 <1 <5 <10 0.07 10

CLIENT: WHITE WOLF EXPLORATION REPORT: V95-01295.0 (COMPLETE)

•

PROJECT: CIQUENAS DATE PRINTED: 7-NOV-95 PAGE 8

SAMPLE		Au30 Ag PPB PPM																																T İ PCT	
×.																																			
DADE L3000N		8 0.4		12	43	9	6	8	<.2	<5	10	<5	1.88	260	<10	154	21	32	<20) <20	15	2.10	0.37	0.39	0.04	0.10	43	8	2	20	<1	<5	<10	0.09	23
DADE L3000N		6 0.3																						0.37					<2	19	<1	<5	<10	80.0	14
DADE L3000N		<5 0,2																											<2	23	<1	<5	<10	0.08	15
DADE L3000N		13 <.2																											<2	15	<1	<5	<10	80.0	12
DADE L3000N	1300+25E	<5 <.2	10	6	36	2	4	6	<.2	5 >	<5	<5	1.78	224	<10	87	7	41	<20) <20	10	1.06	0.27	0.25	0.02	0.09	25	3	<2	9	<1	<5	<10	0.08	4
		-		_		_			_	2																									
DADE L3000N		<5 <.2								- 14 -				- 12 A.		· .								0.26											
DADE L3000N		<5 <.2						· · ·		10.00														0.29											
DADE L3000N		<5 <.2		100				· · · · · ·		- 194 M						100								0.39											
DADE L3000N		12 0.3								1.1256		- CS (1919-03										0.27											
DADE L3000N	1400+50E	11 <.2	, 12	9	51	- 2	6	6	<.2	\$	14	<5	1.79	230	: <10	124	6	- 31	<20) <20	10	1.64	0.27	0.22	0.03	0.13	29	3	<2	18	<1	<5	<10 (0.09	10
DADE 1 3000H	1/00+755	11 0 7	14	10	50	2		7		20 C	47	-5	2 01	254	-10	47/	,	77	-20		47					• • •			_			_			
DADE L3000N DADE L3000N		11 0.3																						0.31											
DADE LOOUN		32 0.2																						0.30											
DADE LOUON DADE LOUON		6 <.2										19 JF	1.99											0.26											
		10 0.2				· ·		- M.				100		- 2659										0.59											
DADE L3000N	1500+755	<5 <.2	15	Ÿ	20	2	0	0	×.2	ି	\$	ें	2.35	230	< 10	122	'	43	<2U	· <20	10	1.30	0.28	0.25	0.02	0.14	- 26	Ş	<2	13	<1	< <u>5</u>	<10 (1.08	8
DADE L3000N	1600+00E	5 0.6	17	16	67	2	6	7	< 2	<5	11	<5	1 62	213	<10	127	6	25	<20	. ∠ 20	11	1 57	0.24	0 / 0	0.04	0 15	70	5	~2	77	-1	-5	-10 (0.07	•/
DADE L3000N		IS IS																																	
DADE L3000N		<5 <.2																																	
DADE L3000N		<5 <.2																						1.55											
DADE L3000N		6 0.3																						1.20											
						-	-			10	-	- G.				- <u></u> -		्रह		ः <u>अल्</u> डः				• • • • •	•		~		·L	20			-10 ;		0
DADE L3000N	1700+25E	IS IS	IS	IS	IS	IS	IS	IS	IS	IS	IS	IS	IS	IS	IS	IS	IS	IS	IS	IS	IS	IS	IS	IS	15	IS	IS	IS	IS	15	15	IS	IS	IS	IS
DADE L3000N	1700+50E	<5 0.2																																	
DADE L3000N	1700+75E	9 <.2																																	3
DADE L3000N	1800+00E	7 <.2																																	1
DADE L3000N	1800+25E	7 0.2																															· · · · ·	A 14 14	
																										0.445								3191	•
DADE L3000N	1800+50E	<5 0.2	17	15	96	4	7	8	<.2	<5	15	<5	2.29	432	<10	171	7	41	<20	<20	15	2.11	0.37	0.31	0.02	0.16	35	5	<2	18	<1	<5	<10 0	0.08	12 😨
DADE L3000N	1800+75E																																		2
DADE L3000N	1900+00E	8 0.5																																	
DADE L3000N	1900+25E	15 IŞ																																	
DADE L3000N	1900+50E	81 3.2																																	

CLIENT: WHITE WOLF EXPLORATION REPORT: V95-01295.0 (COMPLETE)

PROJECT: CIQUENAS DATE PRINTED: 7-NOV-95 PAGE 9

SAMPLE	ELEMENT																																Sc			
NUMBER	UNITAS	PPB I	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM	PPM	PPM	PPM	PPM	PPM	I PPM	PPM	PCT	PCT	PCT	PCT	PCT	PPM	PPM	PPM	PPM	PPM	PPM F	PPM	PCT	PPM
DADE L3000N	1900+75E	38 (0.9	65	51	255	21	9	16	1.1	<u><</u> 5	11	<5	4.72	912	<10	982	4	25	<20) <20	29	2.72	0.39	0.40	0.02	0.22	44	18	<2	28	<1	<5 ·	<10 0	.05	8
DADE L3000N	2000+00E	19 (0.4	67	14	91	3	6	10	0.4	<5	12	<5	2.61	855	<10	194	6	40	<20) <20	32	1.92	0.49	0.47	0.01	0.16	31	22	<2	22	<1	<5 ·	<10 0	.06	4
DADE L3000N	2000+25E	9 (0.4	22	15	120	3	9	9	<.2	<5	13	<5	2.12	656	<10	254	7	35	<20) <20	15	2.11	0.38	0.32	0.03	0.21	36	6	<2	20	<1	<5 •	<10 0	.08	9
DADE L3000N	2000+50E	IS	IS	IS	IS	IS	IS	IS	15	IS	IS	IS	IS	IS	IS	IS	15	IS	IŞ	IS	15	IS	IS	IS	IS	IS	IS	IS	IS	IS	IŞ	IS	IS	IS	IS	IS
DADE L3000N	2000+75E	16 (0.3	19	14	117	3	7	7	<.2	<5	10	<5	1.94	407	<10	181	6	35	<20) <20	13	1.76	0.27	0.32	0.02	0.12	34	4	<2	13	<1	<5 •	<10 0	.07	9
DADE L3000N	2100+00E	15	IŞ	IS	IS	IS	IS	IS	IS	IS	IS	IS	IS	IS	15	IS	IS	IS	IS	IS	5 IS	IS	IS	IS	IS	IS	IS	IS	IS	IS	IS	IS	IS	IS	IS	IS
DADE L3000N	2100+25E	16 (0.3	18	13	80	3	6	8	<.2	<5	10	<5	2.29	601	<10	167	7	41	<20) <20	14	2.00	0.41	0.28	0.02	0.12	29	4	<2	16	<1	<5 •	<10 0	.08	. 8
DADE L3000N	2200+50E																						1.155	0.43	1111					_		-				
DADE L3100N	-																							0.43	15, 1 P. 1		· •						- Tr			•
DADE L3100N	1000+25E	11 (0.2	32	25	120	4	8	10	<.2	<5	23	<5	2.64	1129	<10	395	6	35	<20	<20	16	3.34	0.45	0.37	0.03	0.14	37	-6	<2	25	<1	<5 •	<10 0	.09	9
DADE L3100N	1000+50E	<5 ·	<.2	32	15	104	3	10	9	<.2	<5	19	<5	2.33	512	<10	247	7	37	<20	<20	16	2.66	0.44	0.32	0.03	0.20	40	6	<2	22	<1	<5	<10 0	.11	14
DADE L3100N	1000+75E	7 (0.2	43	21	127	3	7	12	<.2	<5	15	<5	2.41	1940	<10	375	4	30	<20	<20	19	2.46	0.50	1.18	0.02	0.15	76	13	<2	20	<1	<5 <	<10 0	.04	5
DADE L3100N	1100+00E	25 •	<.2	21	12	79	3	7	10	<.2	\$	15	<5	2.63	629	<10	272	7	42	<20	<20	21	2.47	0.63	0.49	0.02	0.33	38	12	<2	31	<1	<5	<10 0	.09	10
DADE L3100N	1100+75E	10	<.2	43	12	105	5	8	12	<.2	<5	7	<5	2.72	1122	<10	458	9	34	<20) <20	23	2.00	0.56	0,62	0.02	0.33	42	13	<2	27	<1	<5 <	<10 0	.05	7
DADE L3100N	1200+00E	7 -	<.2	21	15	77	4	8	10	<.2	<5	8	<5	2.70	542	<10	323	6	33	<20) <20	23	2.26	0.51	0.38	0.02	0.32	30	13	<2	27	<1	<5	<10 0	.07	13
DADE L3100N	1200+25E	13 (0.2	22	13	64	4	6	8	<.2	<5	13	<5	2.17	485	<10	307	4	26	<20	<20	14	2.08	0.36	0.35	0.02	0.25	29	6	<2	26	<1	<5 •	<10 0	.06	7
DADE L3100N	1200+50E	15	<.2	20	9	40	3	5	7	<.2	\$	8	<5	1.96	240	<10	228	5	34	<20	<20	13	1.62	0.32	0,26	0.02	0.15	25	5	<2	21	<1	<5 <	<10 0	.06	11
DADE L3100N	1200+75E	6 •	5.2	17	10	52	2	5	8	<.2	<5	10	<5	2.13	656	<10	269	6	37	<20	<20	15	1.57	0.38	0,39	0.02	0.15	33	9	<2	23	<1	<5	<10 0	.07	4
DADE L3100N	1300+00E	<5 •	<.2	21	12	65	3	6	9	<.2	<5	11	<5	2.34	627	<10	288	6	38	<20	<20	19	2.00	0.56	0.41	0.02	0.22	. 38	13	<2	32	<1	<5 <	<10 0	.07	9
DADE L3100N	1300+25E	ا ه د	< .2	17	.8	54	2	5	. 7	<.2	5	9	<5	1.88	443	<10	187	5	31	<20	<20	12	1.52	0.38	0.22	0.02	0.16	33	6	<2	27	<1	<5	<10 0	.06	3
DADE L3100N	1300+50E	<5 :	< . 2	21	10	70	2	5	8	<.2	<5	14	<5	1.97	425	<10	145	6	37	<20	<20	13	1.72	0.36	0.32	0.02	0.16	36	6	<2	17	<1	<5 <	<10 0	.07	9
DADE L3100N	1300+75E	<5 ·	< . 2	19	11	58	3	6	, 8	<.2	<5	14	<5	2.00	273	<10	148	6	36	<20	<20	12	1.71	0.40	0.34	0.02	0.13	36	5	<2	29	<1	<5	<10 0	.08	10
DADE L3100N	1400+25E	<5	< . 2	14	9	42	2	6	8	<.2	<u>ح</u>	8	<5	1.95	411	<10	133	5	29	<20	<20	10	1.68	0.34	0.30	0.02	0.17	31	4	<2	26	<1	<5 <	<10 0	.06	8
DADE L3100N	1400+50E		112	_	- 12-		77 - 1				S. 2. 4 -		- 201	2.00	14,254				- 4 N.		1924		요즘 같은	0.32	2월 1975				÷ 8.,		- 18 A		0.83	- 11 - Şi	101	
DADE L3100N	1400+75E	<5 ·	<.2	24	16	124	3	7	9	<.2	<5	19	<5	2.37	1196	.<10	524	5	32	<20	<20	12	2.23	0.38	0.58	0.02	0.12	41	4	<2	23	<1	\$ 5 \$	<10 0	.05	4
DADE L3100N	1500+00E						× .						1.5		1.000		- Y				11203.5			0.42	0.000		· · ·		20		2.5		1.1	· · ·	• •	ية 5
DADE L3100N	1500+50E								•		~ ~		0.0								20.2		1.181		5 A 1 Y											2 🔮
DADE L3100N	1500+75E												10						0.0				1.4.5	0.36	-9-9-78 Se				. ×							
DADE L3100N		-																					1.60	0.24	1 ST M		2122									
DADE L3100N	1600+50E	9	<.2	21	17	189	6	9	13	0.4	\$	14	<5	3.35	3247	<10	845	8	50	<20	<20	15	2.06	0.72	0.64	0.02	0.13	41	6	<2	34	<1	6 <	10 0.	.05	3

CLIENT: WHITE WOLF EXPLORATION

REPORT: V95-01295.0 (COMPLETE)

PROJECT: CIQUENAS DATE PRINTED: 7-NOV-95 PAGE 10

4

SAMPLE	ELEMENT	Au30	Ag.	Cu	Pb	Zn	Mo	Ni	Co	Cd	Bi	As	Sb	fe	Mn	Te	Ba	Cr	v	Sn	W	La	AL	Mg	Ca	Na	κ	Sr	Y	Ga	Li	Nb	Sc	Ta	Ti	Zr
NUMBER	UNIT\$	PP B P	PM	PPM	PP₩	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PCT	PCT	PCT	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM
	•																																			
DADE L3100N	1600+75E	10 <	.2	13	9	61	3	6	8	<.2	<5	7	<5	2.39	359	<10	155	7	44	<20	<20	12	1.55	0.43	0.19	0.01	0.09	19	3	<2	17	<1	<5	<10	0.06	4
DADE L3100N		18 <	.2	28	13	81	4	7	9	<.2	<5	8	<5	2.63	452	<10	259	6	39	<20	<20	18 2	2.07	0.37	0.34	0.01	0.15	25	7	<2	19	<1	<5	<10	0.06	12
DADE L3100N	1700+25E	6 <	.2	13	10	98	5	7	9	0.3	\$ 5	<5	<5	2.51	587	<10	204	7	40	<20	<20	14 ⁻	1.69	0.42	0.27	0.02	0.15	23	4	<2	25	<1	<5	<10	0.06	4
DADE L3100N	1700+50E	<5 <	.2	14	9	82	3	6	10	<.2	< <u>5</u>	5	<5	3.04	521	<10	193	7	49	<20	<20	21	1,62	0.50	0.27	0.01	0.22	22	10	<2	22	<1	<5	<10	0.05	9
DADE L3100N	1700+75E	<5 <	.2	16	8	56	4	5	10	<.2	\$ 5	ৎ	<5	2.72	509	<10	116	7	47	<20	<20	21	1.10	0.46	0.33	0.01	0.11	26	11	<2	20	<1	<5	<10	0.04	4
										-																										
DADE L3100N	1800+00E	<5 <	.2	9	8	73	2	4	6	<.2	\$	10	<5	1.59	381	<10	122	5	30	<20	<20	1 0 ·	1.28	0.25	0.26	0.02	0.10	29	3	· <2	11	<1	<5	<10	0.06	6
DADE L3100N	1800+25E														1 A A A A A A										10000		0.15				2.5					• -
DADE L3100N	1800+50E																		· · · · ·								0.12		· · · ·							
DADE L3100N	1 8 00+75E	<5 <	.2	13	8	59	2	5	, 7	<.2	\$ 5	10	<5	2.08	586	<10	143	6	35	<20	<20	15 f	1.57	0.40	0.42	0.01	0.26	32	8	<2	18	<1	<5	<10	0.06	7
DADE L3100N	1900+00E	<5 <	.2	18	12	61	3	6	9	<.2	5	11	<5	2.20	735	<10	146	6	35	<20	<20	17 2	2.08	0.42	0.35	0.02	0.18	27	8	<2	26	<1	<5	<10	0.07	10
													:		÷.				:		÷.,				n na A Liner										n ng	
DADE L3100N	1900+25E																										0.27									
DADE L3100N	1900+50E	<5 <	.2	15	11	63	3	6	9	<.2	<5	9	<u>.</u> <5	2.43	672	<10	144		1.1		2.2						0.36		:-	_	- 3	-	100			
DADE L3100N	1900+75E	<5 <	.2	14	10	54	2	5	8	<.2	<5	13	<5	2.35	695	<10	146	5	33	<20	<20	19 2	2.03	0.50	0.39	0.02	0.29	31	12	<2	32	<1	<5	<10	0.06	12
DADE L3100N	2000+00E										· ·			2.88									· ·				0.12									
DADE L3100N	2000+25E	19 0	.3	23	23	105	3	8	10	<.2	<u>_</u>	23	<5	2.69	708	<10	158	6	46	<20	<20	17 3	5.30	0.67	0.50	0.02	0.24	47	8	<2	35	<1	<5	<10 (0.11	16
																									1											
DADE L3100N	2000+50E								1.1		Q. 36										1.11.11				12,122,22		0.20		- 1 A A		- A				1 - C - C - C - C - C - C - C - C - C -	
DADE L3100N	2000+75E													2.90											1.2.101.1.1		0.36									
DADE L3100N	2100+00E													2.64					· · · ·		1.5				N 1995		0.20				2.5		- CC 2		3128	
DADE L3100N	2100+25E										-			1.88			- C								11.1.1.1		0.19				- 24 -					-
DADE L3100N	2100+50E	<5 <	.2	56	11	67	4	5	8	<.2	<5	<5	<5	2.03	470	<10	113	5	32	<20	<20	14 2	2.02	0.43	0.35	0.02	0.11	30	8	<2	28	<1	<5	<10 (0.07	11
DADE L3100N	2100+75E																								1.1		0.22								Y - 0 - 1	
DADE L3100N	2200+00E																1.1.4				10.0		·		000,000		0.22		· · ·						1.00	
DADE L3100N	2200+25E	<5 <	.2	25	19	119	4	6	10	<.2	<5	11	<5	2.46	1638	<10	201	6	39	<20	<20	13 2	2.60	0.69	0.70	0.02	0.22	55	5	<2	37	<1	<5	<10 (0.08	4
DADE L3100N	2200+50E	<5 <	.2	21	15	99	4	6	9	<.2	\$	8	<5	2. 29	1130	<10	198	5	33	<20	<20	11 2	2.79	0.64	0.54	0.02	0.22	54	4	<2	33	<1	<5	<10	0,08	7

Genhemical Lab Report

CLIENT:	WHITE	WOLF E)	PLORAT	ION																														PP	OJEC	:T: C	IQUE	NAS			
REPORT:	V95 -01	413.0 (COMPL	ETE)																													DA	ATE P	RINT	ED:	30-0	CT-95	PAGE	1
SAMPLE	Ε	LEMENT	Au30	Ag	Cu	Pb	Zn	Mo	Ni	Co	Cd	Bi	As) _{sb}	Fe	Mm	. Те	e Ba	ı Cr	• •	/ Sr	n k	Į La	a /	AL M	lg.	Ca	Na	ĸ	Sr	Y	Ga	Li	Nb	Sc	Та	Ti	Zr			
NUMBER		UNITS	PPB P	PM P	PPM I	PPM	PPM	PP M	P PM	PPM I	P PM	PPM I	PM	PPM	PCT	PPM	PP	1 PPN	I PPM	I PPI	i ppi	M PPN	1 PP	M PC	CT PC	T	PCT								· · ·						
L2200N	1300+00	E																							5 0.4		0.37	<.01	0.15	36	7	<2	15	<1	<5	<10	0.05	6			
L2200N	1300+75	E	12 0	.3	19	10	58	3	7	8	<.2	<5	17	<5 2	2.14	309	· <10	165	9	42	2 <20	0 <20) 1 1	1 1.6	8 0.3	54 (0.24	0.01	0.10	29	5	<2	9	<1	<5	<10	0.07	13			
L2200N	1400+00	E	<50	.4	20	12	67	2	7	7	<.2	<5	12	<5 2	2.02	279	· <1() 145	6 8	3 42	2 <20	0 <20) 1	1 1.5	55 0.3	52 (0.20 (0.01	0.08	24	4	<2	7	<1	<5	<10	0.07	8			
L2200N	1400+25	Ε																							18 0.2		0.18	0.01	0.10	21	2	<2	7	<1	<5	<10	0.06	5			
L2200N 1	1400+50	E	<5 <	.2	9	9	60	2	7	6	<.2	<5	9	<5 1	.73	242	<10	0 141	8	3.6	5 <2(0 <20) 8	8 1,2	29 0.2	25 (0.20 (0.01	0.08	22	Ş	<2	7	<1	<u><</u> 5	<10	0.06	7			
L2200N	1400+75	E	90	.3	15	12	70	2	7	? ·	<.2	<5	12	<5 2	2.04	379	<10	189	8	3 41	<20	0 <20) 9	9 1.4	6 0.2	28 (0.19 (0.01	0.09	30	2	<2	10	<1	<5	<10	0.06	7			
L2200N	1500+00	E	<5 0	.3	31	7	61	2	6	7	<.2	<5	11	<5 2	2.02	334	<10) 135	8	33	<20	0 <20	13	3 1.4	9 0.3	59 (0.47 (0.02	0.13	39	9	<2	21	<1	<5	<10	0.07	. 8			
L2200N	1500+25	E	<5 0	.3	17	9	66	3	7	7	<.2	<5	15	<5 2	2.21	236	<10	179). 9	45	<20	0 <20	12	2 1.8	35 0.3	53 (0.26 (0.02	0.10	30	5	2	13	<1	<5	<10	0.08	13			
L2200N	1500+75	E	<5 <	.2	9	6	51	3	4	6	<.2	<5	<5	<5 2	2.10	337	' <1(171	8	3 43	<20	0 <20	0.10	0 0.9	2 0.2	25 (0.22	<.01	0.10	19	2	<2	8	<1	<5	<10	0.04	1			
L2200N 1	1600+00	Ε	<5 0	.2	14	10	81	3	7	7	<.2	<5	9	<5 2	2.25	272	<1(234	9	9 44	<20	0 <20) 11	1 1.5	50 0.3	51 . (0.28	<.01	0.11	25	3	<2	9	<1	<5	<10	0.05	4			
L2200N	1600+25	E	70	.2	16	8	64	2	6	6	<.2	<5	10	<5 1	.82	288	<10	166	5 7	37	<20	0 <20	11	1 1.4	5 0.2	23 (0.20 (0.01	0.10	22	4	<2	9	<1	<5	<10	0.06	9			
L2200N			<5 <							1		1.1		:								1.12.13			33 0.1		0.22		- er - er -						1.11		Sec. 1				
L2200N	1600+75	E	<5 0	.3	14	10	57	3	5	6	<.2	<5	8	<5 1	.81	171	<10) 233	7	31	<20	0 <20) 12	2 1.5	56 0.2	25 (0.21 (D .01	0.11	28	5	2	14	<1	<5	<10	0.06	11			
L2200N	1700+00	Ē	<5 <	.2	12	4	25	2	4	5	<.2	<5	<5	<5 2	2.00	136	<10) 57	8	44	<20	0 <20) 15	5 0.6	6 0.2	20 0	0.21 •	<.01	0.07	17	5	<2	5	<1	<5	<10	0.04	4	•		
L2200N	1700+25	E	<5 <	.2	9	5	42	2	4	4	<.2	<5	<5	<5 1	.51	167	′ <1(83	6	28	3 <20	0 <20) 9	9 0.9	9 0.1	5 (0.17 (0.01	0.11	18	3	<2	7	<1	<5	<10	0.05	6			
																									-		i e														
L2200N	1700+50	E	6 <	.2	6	2	26	1	3	4	<.2	<5	<5	<5 1	.69	211	<10	56	5 7	42	2 <20	0 <20) 8	B Q.5	51 0.1	8 (0.19	<.01	0.08	17	2	<2	4	<1	4	<10	0.04	<1			
L2200N	1700+75	E	24 <	.2	6	3	51	1	3	4	<.2	<5	<5	<5 1	.56	296	<10) 136	7	35	<20	0 <20) 8	8 0.6	2 0.1	4 (0 .25 ·	<.01	0.08	27	2	<2	4	<1	5	<10	0.04	<u><1</u>	·		
L2200N	1800+00	ε	9 <	.2	9	7	63	2	5	5 ·	<.2	<5	11	ব্চ 1	.74	204	<10) 174	7	34	<20	0 <20	5	B 1.2	28 0.2	23 (0.16 (0.01	0.09	20	2	<2	7	<1	<5	<10	0.05	4			
L2200N	1800+25	E	11 <	.2	7	3	33	2	3	5 ·	<.2	<5	<5	<5 1	.78	182	<10) 58	8	44	<20	0 <20) 9	9 0.6	\$4 0.2	26 (0.22 •	<.01	0.08	20	2	<2	4	<1	<5	<10	0.05	<1			
L2200N	1800+50	E	13 <	.2	8	6	81	2	4	5	<.2	<5	<5	<5 1	.76	310	.<10	0 115	8	35	<20	0 <20) 7	7 0.8	31 0.1	9 (0.14 •	<.01	0.07	18	2	<2	6	<1	<5	<10	0.04	1			
12200N	1800+75	E	14 <	.2	9	5	41	1	4	5	<.2	<5	<5	<5 1	.80	204	<10) 53	8	42	2 <20	0 <20) 10	0 0.6	3 0.2	21 (0.20	<.01	0.07	19	3	<2	5	<1	<5	<10	0.04	<1			
L2200N	1900+00	E	60	.3	13	9	81	2	7	6	<.2	<5	7	<5 1	.71	281	<10) 141	8	33	<20) <20) 10	0 1.2	23 0.2	21 (0.24 (0.01	0.08	28	3	<2	7	<1	<5	<10	0.06	7			
L2200N 1	1900+25	E	<5 <	.2	7	<u>`4</u>	27	1	3	5	<.2	<5	<5	<5 1	.73	185	:<10) 52	8	40	<20) <20) 10	0 0.6	5 0.2	20 (0.17 (0.01	0.08	17	3	<2	5	<1	<5	<10	0.05	. 2			
12200N	1900+50	E	<5 0	.3	14	9	71	2	6	6	<.2	<5	12	<5 1	.87	256	<1 () 134	8	37	<20) <20) 1 1	1 1,5	2 0.2	3 (0,25 (0.02	0.08	29	4	<2	8	<1	<5	<10	0.06	11			
L2200N 1	900+75	E	28 0	.4	16	18	186	4	6	8	<.2	<5	<5	<5 2	2.74	226	<10) 150) 	47	<20) <20	12	2 1.0	5 0.2	9 (0.33 (0.01	0.14	30	5	<2	10	<1	< 5	<10	0.03	2	-		
L2200N 2	2000+00	E	60	.5	17	11	77	3	6	6	<.2	<5	10	<5 1	.63	236	<10) 137	6	5 28	् । <20) <20) 5	9 1.8	8 0.2	24 (0.32 (0.02	0.07	33	4	3	13	<1	ৎ	<10	0.07	9	ě,		
L2200N 2			15 0	· · ·						1.0		11.1				1.008		- 27				- 22 Y	`	2.2.2	1 0.4		0.23 (0.01	0.09	23	5	<2	11	<1	<5	<10	0.07	11	5		
L2200N 2			12 0	.3	16	7	90	3	6	9	<.2	<5	<5	<5 2	2.77	498	<10) 183	5 10) 55	<20) <20	1	1 1.2	26 0.5	3 (0.21 •	<.01	0.13	23	4	<2	11	<1	<5	<10	0.05	2			
L2200N										5.5.2		1.00		<5 1		9 1		1.197		20				- 1913	3 0.3		0.18 (0.01	0.08	20	3	<2	10	<1	<5	<10	0.08	5			
L2200N														- C.C.		- 20 Marca				39	<20	0 <20) \$	9 1.6	59 0.4	0 0	0.14 •	<.01	0.08	17	2	<2	9	<1	<5	<10	0.06	2			
														1.1.12		1.20																				•					

CLIENT: WHITE WOLF EXPLORATION

Gemhemical
Lab
Report

PAGE 2

PROJECT: CIQUENAS

	: WHITE N : V95-014)																																CTQU NTED:		
SAMPLE	E	LEMENT	r Au3	0 4	١g	Cu	Pb	Zn	Mo	Ni	Co	Cd	Bi	As) s	b	fe	Mn	Te	Ba	Cr	v	Sn	W	La	AL	l Mg	Ca	Na	ı k	Sr	- Y	Ga	Li	Nb	Sc	T	a Ţ	i 7	Zr
NUMBER		UNITS	,											~						· · ·		PPM	PPM	PPM	PPM	PCT	Г РСТ	PCT	PCI	PCT	PP	PPM	PPM	PPM	PPM	PPM	PP	M PC	T PF	PM
.2200N	2100+50	É	2	3 0.	.4	17	8	80	3	7	7	<.2	<5	7	<	5 2.	00	275	<10	190	8	37	<20	<20	12	1.54	4 0.32	0.18	0.01	0.07	20) 4	<2	. 7	<1	<5	<1	0 0.0	6, '	11
.2200N	2100+75	Ę	<	50,	,4	24	12	104	5	7	9	<.2	ح	9	<	52.	46	1288	<10	250	8	41	<20	<20	19	2.45	5 0.41	0.32	<.01	0.08	32	2 12	<2	12	<1	<5	<1	0 0.0	5	3
.2200N	2200+00	Ĕ	<	5 0.	4	31	19	125	7	10	8	<.2	<5	<u>ິ</u> 19	<	5 2.	39	1656	<10	292	8	39	<20	<20	11	2.92	2 0.36	0.32	<.01	0.0	29	> 4	<2	9	1	<5	<1	0.0 0	5	3
.2300N	1000+00	N	<	5 0.	.4	61	13	73	6	9	9	<.2	<5	18	<	5 2.	74	402	<10	98	11	54	<20	<20	13	2.97	7 0.50	0.20	<.01	0.05	20) 4	4	12	2	<5	<1	0.0 0	8	8
.2300n	1000+50	N	<	5 <,	2	9	11	71	4	9	9	<.2	<5	6	<	5 2.	56	574	<10	185	10	43	<20	<20	10	2.46	§ 0.55	0.41	0.01	0.16	31	2	<2	25	<1	<5	<10	0 0.0	8	6
2300N	1000+75	N	<	5 <.	2	8	9	67	3	8	8	<.2	<5	12	<	5 2.	47	704	<10	178	9	46	<20	<20	10	2.30	0.48	0.26	<.01	0.18	25	5 2	<2	19	<1	<5	<1	0 0.1	0	5
	1100+50	· •• •			19 A.		· · · · ·	36				<.2		<i>6</i>		Sec.		283		1.000	· .		2.1	0000		2.22	3 0.26											0.0		
	1100+75		<	5 <.	.2	14	8	44	3						1.50			1 A 34		157	8	47	<20	<20	14	1.00	0.37	0.25	<.01	0.11	18	3 7	<2	9	<1	<5	<10	0 Q.Q	5	2
	1200+00			B <.	2	12	11	78	4	5	8	ົ<.2	~~ ~5	্ব	<	5 2.	37	1156	<10	553	7	39	<20	<20	16	1.43	3 0.43			- 20.34						342		0 0.0		2
.2300N	1200+25	N	<	5 <	2	14	10	70	4	6	9	<.2	<5	8	<	52.	60	5 9 4	<10	291	8	41	<20	<20	19	1.91	0.41	0.41	0.01	0.26	29	> 11	<2	18	<1	<5	<10	0 0.0	6 1	11
2300N	1200+50	N	<	5 0.	.3	15	8	67	4	6	8	<.2	<5	11	<	5 2.	54	464	<10	273	7	39	<20	<20	17	1.62	2 0.42	0.22	0.01	0.15	24	9	<2	18	<1	<5	<1	0.0	6	8
2300N	1200+75	N	<	5 0.	.3	20	8	50	3			<.2	· · · ·					- C. K			8	43	<20	<20	13	1.86	5 0.34	0.32	0.02	0.10	27	6	<2	28	<1	<5	<1	0.0	8 1	15
2300N	1300+00	N	<	5 0.	3	17	8	56	2	7	7	<.2	ح	12	<	5 1.	98	307	<10	197	8	40	<20	~ 0	12	1.53	3 0.32	0.34	0.01	0.08	29	> 5	<2	11	<1	<5	<1	0.0 0	7	9
2300N	1300+25	N	<	5 0.	.3	19	8	46	2	6	7	<.2	<5	11	<	5 2.	80	217	<10	152	8	46	<20	<20	11	1.40	0.24	0.22	0.01	0.07	22	2 4	<2	. 7	<1	<5	<1	0.0	6 1	10
2300N	1300+50	N	<	5 <	2	8	5	42	2	5	6	<.2	<5	9	<	5 2.	07	367	<10	110	8	45	<20	<20	9	1.02	2 0.29	0.23	<.01	0.10) 22	2 2	<2	9	<1	<5	- <1(0.0	6	2
.2 3 00N	1300+75	N	<	5 <	.2	21	8	52	2	7	7	<.2	<5	ू 11	<	5 2.	07	255	<10	173	8	40	<20	<20	i 11	1.51	1 0.31	0.26	0.01	0.10) 30) 6	~2	13	່ <1	<5	<1	0 0.0	6 1	11 _
2300	1400+00	N	1	2 0.	.3	28	9	56	3	8	7	<.2	-5	<u> </u>	<	52.	07	340	<10	173	8	37	<20	<20	14	1.95	5 0.42	0.31	0.02	0.10	35	5 7	<2	19	: <1	<5	<1 (0 0.0	7	13
2300N	1400+25	N	1	30.	.9	55	13	111	3	7	10	<.2	<5	<u>ु</u> 17	<	52.	87	960	·<10	380	9	39	<20	<20	25	2.01	0.55	0.89	0.01	0.16	80) 24	<2	29	<1	<5	<10	0 0.0	3	4
23000	1400+50	N	3	9 0.	4	27	7	61	2	7	5	:<.2	5	<u> </u>	5	51.	55	187	<10	150	6	27	<20	<20	<u>)</u> 11	1.45	5 0.27	0.36	0.02	0.08	33	57	2	22	. <1	<5	: <1(0 0.0	6 1	11
2300	1400+751	N	<	5 0.	.3	13	6	63	2	7	6	<.2	\$	9	ं	5 1.	84	257	.<10	129	8	38	<20	<20	11	1.43	3 0.28	0.30	0.02	2 0.11	26	5.4	<2	14	, <1	4	ଁ <1(୍	0.0	7	9
2300N	1500+00	N	<	5 <	2	8	5	38	2	4	5	<.2	5	<5	<	5 1.	72	232	<10	83	7	38	َ 20>	<20	7	1.04	4 0.21	0.20	0.02	. 0.10	17	2	<2	14	· <1	<5	<1	0 0.0	6	4
	1500+25		<	5 <.	.2	10	6	36	2	4	6	<.2	<5	<5	<	5 2.	11	173	<10	67	8	46	<20	<20	8	0.73	3 0.28	0.19	0.01	0.11	16	5 3	<2	9	<1	<5	<1	0 0.0	4	2
	1500+75				÷ •		- NO 1		1.1.22						- 3214	÷		C. A. C. A.		211		29	<20	<20	7	1.49	9 0.26	0.17	0.01	0.12	19	2	<2	17	<1	<5	< 1	0 0.0	5	3
	1600+00			5 0.							10.00	× •••		CF 1		W (2000)				157		22	<20	<20	9	0.67	7 0.27	8.45	0.01	0.10	85	5 4	<2	6	<1	ব্য	ं<1(0 0.0	2	1
	1600+25		<	5 🗧	2	9	9	56	3	5	6	<.2	<5	6	<	5 2.	19	262	<10	176	10	44	<20	<20	9	1.14	4 0.31	0.24	0.01	0.12	18	32	<2	10	<1	<5	<10	0 0.0	6	4
2300N	1600+50	N	1	7 <	.2	19	10	52	- X - X				- 280	2	- NS.	201		- 0.272		145		100		- 339		19 M	8 0.28	12,000			- C	· · ·						0 0.0	200	
2300	1600+75	N	<	5 <	.2	18	10	53						-				112201		135	-			<20			0 0.25			****			:				夜 二	0 0.0		
L2300	1700+00	N	<	5 <	.2	7	5	33	2	4			- 20		- 09	÷ -		1.126		81		20 X.		29-23		- N 1 1 2	4 0.18	- 0. YO BY		- 1993						- 290 -		0 0.0	2	
L2300	1700+25	N			2.5			34		-						2		2.5		80				<20	-		7 0.19			1144						~~~		0.0	25	7
L2300	1700+50	N	<	5 <	.2	12	7	90	1	6	5	<.2	<5	10	1 <	51.	55	227	<10	174	7	30	<20	<20	7	1.21	1 0.18	0.18	0.02	30.0	23	53	<2	10	<1	<5	<10	0.0	5	6

CLIENT: WHITE WOLF EXPLORATION

REPORT: V95-01413.0 (COMPLETE)

AMPLE UMBER		.EMEN UNIT																									Mg PCT	5.5				:				-	с Ta м. PPM		
2300N	1700+75	1	2	5 <.	2	13_	12	53	. 3	2.	6 _	6	<.2	<5	10	< <u>5</u>	1.74	193	<10	110	. 7.	35	<20	<20	21	,18	0.22	0.19	0.02	2 0.1	1 23	<u>3</u>	≤	22	<u>1</u>		<u>5_<10</u>	0.05	8
2300N	1800+00	1	6	5 <.?	2	17	7	60	2	2	5	5	<.2	<5	6	<5	1.62	185	<10	106	6	31	<20	<20	81	.16	0.18	0.18	0.02	2 0.0	3 20) 4	. <	2 14	<1	<	5 <10	0.05	9
2 300 N	1800+25	1	<	5 <.?	2	77	9	47	' 1	1	7	5	1.1	<5	6	<5	1.35	626	<10	147	6	24	<20	<20	14 0	.92	0.29	5.56	0.02	2 0.1	2 80	13	<	2 10	<1	<	5 <10	0.03	2
2300N	1800+75	1					1.2					- Y -		- 13 e		- 9 y .		14400.0					12	22.2.22.1			0.26			-	i							 	
2300N	1900+00	1	54	4 <	2	11	6	39	2	2	5	5	<.2	ব	<5	<5	1.87	176	<10	66	ື 8	41	<20	<20	90	.81	0.22	0.17	0.01	0.1	0 18	3	<	2 7	<1	<	5 <10	0.05	4
														22								•																	
2300N	1900+25	4	<	5 <.	2	13	6	43	2	2	6	7	<.2	<5	<5	<5	2.21	214	<10	53	9	49	<20	<20	9 0	.88	0.32	0.17	0.01	0.1	4 18	2	~2	2 9	<1	<	5 <10	0.05	3
2300N	1900+50	4	<	5 <	2	14	8	77		2	7	6	<.2	<5	8	<5	1.64	285	<10	137	7	30	<20	<20	8 1	.50	0.22	0.19	0.02	2 0.1	23	3	<2	2 10	i <1	<	5 <10	0.06	.10
2300N	1900+75	1	<	5 0.	2	15	11	81	3	5	8 🤅	6	<.2	<5	7	<5	1.95	240	<10	174	8	33	<20	<20	10 1	.67	0.29	0.20	0.02	2 0.1	30	4	<2	2 12	<1	<	5_<10	0.06	7
2300N	2000+00	1 · · ·	<	5 <	2	8	7	59		2	5	5	<.2	<5	<5	ব্চ	1.71	232	<10	97	6	32	<20	<20	8 1	.26	0.27	0.18	0.02	2 0.1	1 20	3	<	2 10	<1	<	5 <10	0.06	8
2300N	2000+25	1	10	5 <	2	10	6	126		2	6.	5	<.2	5	7	ଟ	1.52	437	<10	298	6	24	<20	<20	71	.49	0.24	0.22	0.02	2 0.1	3 26	3	. <	2 13	<1	<	5 <10	0.05	6
				1.1						j.								288		- 62				120			_											11	
2300N	2000+50	1	. 1	B <	2	15 :	9	85	2	2	5	7	<.2	<5	7	ব্চ	2.11	223	<10	188	6	.35	<20	<20	91	.51	0.32	0.21	0.02	2 0.1	1 22	4	<2	2 14	<1	<	5 <10	0.05	9
2300N	2000+75	1	<	5 <	2	9	8	100	17 2	2 5	7	5	<.2	ৎ	9	<5	1.47	311	<10	242	. 7	24	<20	<20	71	.35	0.19	0.22	0.02	2 0.1	1 28	3	<2	2 13	_ <1	<	5 <10	0.05	7
2300N	2100+00	1	<	5 <	2	21 (5	[:] 29)	í ·	<1	1	0.3	<5	<5	<5	0.44	85	<10	114	2	11	<20	<20	70	.31	0.54	>10.00	0.03	0.0	5 365	2	<2	2 6	· <1	<	5 <10	<.01	<1
2300N	2100+25	1	3	6 <	2	34	9	75	4	4	8	10	<.2	5	<5	ক	3.00	492	<10	135	10	55	<20	<20	13 1	.88	0.58	0,32	0.01	0.1	3 28	6	<2	2 19	. <1	<	5 <10	0,05	. 7
2300N	2100+50	1	<	5 0.	3	18	12	141	4	4	7	8	<.2	ব	7	حه	2.10	892	<10	267	7	35	<20	<20	91	.93	0.31	0.37	0.01	0.0	38	3	- <2	2 12	<1	<	5_<10	0.03	3
				- ś.						į.		Sai-						192										192		44								х. Х.	
2300N	2100+75	1	3	7 <	2	33	9	108	1	2	8	6	<.2	4	ৎ	ক	1.49	239	<10	138	. 6	25	<20	<20	71	.59	0.30	0.25	0.02	2 0.1	3 30	4	- 2	2 14	· <1	<	5 <10	0.05	6
2 30 0N	2200+00	1	<	5 0.	2	13	8	83		3	7	6	<.2	ব্হ	6	ব	1.77	272	<10	194	7	32	<20	<20	71	.54	0.26	0.21	0.02	2 0.0	3 25	2	<	2 11	<1	<	5 <10	0.06	7
2300 n	2200+25	1		7 <.	2	53	11	144	4	4	10	7	<.2	<5	16	ব	2.19	1043	<10	379	9	35	<20	<20	10 2	.42	0.41	0.43	0.02	2 0.0	39	5	<2	2 15	<1	<	5 <10	0.07	6
2300 n	2200+50	1		6 <	2	14	11	106		3	8	7	<.2	ব	5	<5	2.01	439	? < 10	312	8	33	<20	<20	9 2	2.03	0.39	0.31	0.02	2 0.0	3 26	3	~	2 13	<1	<	5 <10	0.07	6
2900N	1000+00	Ξ	<	5 <	2	13	6	31	-	2	5	6	<.2	<5	<5	<5	2.04	252	<10	86	8	50	<20	<20	9 1	.05	0.35	0.26	0.02	2 0.0	7 17	4	~2	2 16	<1	<	5 <10	0.05	5
												2.2				1				-																	•	•	
2900N	1000+25	•	<	5 0,2	2	13	8	39		2	6	6	<.2	<5	6	<5	1.78	182	<10	109	6	31	<20	<20	91	.51	0.28	0.43	0.02	2 0.0	23	4	~2	2 24	<1	<	5 <10	0.06	7
2900N	1000+50		<	5 <.	2	16	4	33		2	5.	7	< . 2	<5	6	<5	2.35	225	<10	57	10	57	<20	<20	10 0	.87	0.35	0.29	0.01	0.0	7 17	' 5	<2	2 15	<1	<	5 <10	0.05	4
2900N	1000+75		<	5 <.;	2	14	6	39		2	5	6	<.2	<5	6	<5	1.79	297	<10	97	. 7	37	<20	<20	8 1	.21	0.26	0.32	0.02	2 0.1	2 19	5	<2	2 13	<1	<	5 <10	0.05	: 4
2900N	1100+00	5	<	5 <	2	10	5	39	1	2	5	6	<.2	<5	<5	<5	2.08	204	<10	72	7	45	<20	<20	91	.14	0.36	0.21	0.01	0.0	3 15	3	<	2 12	<1	<	5 <10	0.04	2
2900N	1100+25	•	<	5 <.2	2	14	9	48	3	3	7	7	<.2	ব্য	13	<5	1.99	344	<10	136	7	38	<20	<20	10 1	.61	0.38	0.31	0.02	2 0.1	1 24	5	<	2 14	· <1	<	5 <10	0.05	6
	1400.50	-			, n	12	. 7	F /						~	4	~5	1 70	241	10	110	7	75	~20	~20	8 1		0.30	0.25	0.03		2 20	ż) 1E	_1		5 ~10	0.05	5
	1100+50													- ÷								- 66		1.000		,		- 1979 - 1976 1977 - 1976 1977 - 1976		- 14 B (S)	 	25		19.8		- 22	5 <10 5 <10	- 20,03	
	1100+75			11. A			- 30 I		1.1.1	÷		. 55					1.54							<20		. 19	0.24		÷.	-23 (23)				1.1.1.1.1.1.1	~~	- :	Y		
	1200+00																1.69					- 99		<20			0.26	- 124 - 2,2		11.54		• •		13.4		1.0	5 <10	- 61833	
	1200+25													- 22			1.83					. 191		<20		1.27	0.31										5 <10	- X (1) (
2900N	1200+50	E	<	5 <.	2	7	8	74		2	5	5	<.2	<2	<5	<5	1.48	55	<10	198	6	51	<20	<20	6 1	ڊ0,	0.22	0.25	0.01	Ų.10	1 25	2	~2	8	<1	0	in 10, د	0.04	2

Genetical

PAGE 3

Lab Report

PROJECT: CIQUENAS

DATE PRINTED: 30-OCT-95

Genhemical Lab Report

	WHITE WO								<u>ت</u>																										CT: C			7-05	DAC	E 4
KEPURT	: V95-0141	5.0 (W	mrle (-)						· · · · · · •			· · · · · · · · · · · ·	·····																	· · · · · · •			VIC 1	PRINT	CD: 2	-0L	C4-1	PAG	- 4
SAMPLE	ELE	MENT AU3	0 Aq	Cu	Pb	Zn	Mo	Ni	Co	d	Bi	As)	Sb	Fe	Mn	Te	Ba	Cr	v	Sn	. W	La	A	ιM	g C	a	Na	ĸ	Sr	Y	Ga	Li	Nb	Sc	Та	Ti	Zr			
NUMBER	U	NITS (PP	B PP	PPM	PPM	PPM	PPM	PPM	PPM PI	PM P	PM P	P M F	PM	РСТ	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PC	T PC	T PC	T F	PCT	PCT	PPM	PPM	PPM	PPM	PPM	PPM	I PPM	PCT	PPM			
	1200+75E																								9 0.2															
	1300+00E								6 <																										<10					
	1300+25E								5 <		- · · ·		· ·		· · ·											e -									<10	×				
	1300+50E								7 <						- C - C - C										1.5.5.1	N	1.1		_					112	<10	19 A. 22				
L2900N	1300+75E	2	7 <.4	. 15		43	4	.	5 <		\$ 2	•	< <u>,</u>	.01	220	< 1U	I I I I	. 0	50	<20	, <20	. 10	· 1.3	0 0.2	5 U.4	. I U.	.01 0	.07		-	~~	12			<10	0.05	0			
L2900N	1400+00E								6 <																	2 0.	.01 0	. 16	25	3	<2	12	<1	<5	<10	0.05	6			
L2900N	1400+25E								6 <																	22 0.	.01 0	14	24	. 3	<2	12	<1	<5	<10	0.05	. 5			
L2900N	1400+50E								6 <																	8 0.	.02 0	.10	18	2	<2	14	<1	<5	<10	0.05	4			
L2900N	1400+75E								6 <												2.00			8 0.2	117	- X				- 2					<10	C				
L2900N	1500+00E		7 <.?	2 9	6	41	1	4	5 <	.2	< 5	<5	<5 1	.72	276	<10	89	7	40	<20) <20	7	0.6	6 0.2	3 0.2	22 0.	.01 0	.08	21	2 	<2	5	<1	<5	<10	0.05	<1			
L2900N	1500+25E	1	0 <.2	2 39	5	64	2	5	70	.4	<5	<5	<5 1	.78	711	<10	144	8	36	<20) <20	13	0.9	4 0.4	8 1.3	31 O .	.02 0	12	51	12	<2	13	<1	<5	<10	0.03	2			
L2900N	1500+50E	5	0 0.3	5 19	11	81	3	8	7 <	.2	<5	14	< <u>s</u> 2	2.10	435	<10	223	8	38	<20) <20	11	1.4	9 0.2	9 0.2	26 0.	.02 0	.09	23	5	<2	13	<1	<5	<10	0.05	6			
L2900N	1500+75E		8 <.2	2 18	10	76	3	8	. 7 <	.2	<5	8	<5 2	2.13	383	<10	297	7	38	<20) <20	11	1.7	3 0.3	2 0.2	24 0.	.02 0	.11	26	5	<2	15		<5	<10	0.05	6	•		
L2900N	1600+00E	3	3 <.2	2 9	é	44	3	5	6 <	.2	45	<5	<5 1	.99	214	<10	147	7	37	<20) <20	8	1.1	1 0.2	6 0.1	5 0.	.01 0	.09	19	3	<2	15	· <1	<5	<10	0.05	5			
L2900N	1600+50E	<	5 <.2	2 23	13	89	3	9	<u>8</u> <	.2	<5	13	<5 2	2.47	382	<10	260	8	43	<20) <20	15	1.9	2 0.3	7 0.2	23 0.	.02 0	. 11	26	7	<2	18	<1	< <u>5</u>	<10	0.06	10			
	···· —		. 2.			-		•	1	. .	, F	•/	: 	70	255	-11	210			~20) <u>~</u> 20		1 0	3 0.3	7 O 1		n 2 in	07	2/	··· .	ว	17	-1	~5	<10	0 04	14			
	1600+75E								8 <										- 10		- 849		110	5 0.4		S28		1 - D. F.		. N. A.		- 15 dada		1.1.1.1.1.1.1	<10	4		- 41 - 1		
	1700+00E								9 < 8 0												1.27		1.1.1	6 0.4											<10	원가 제품				
	1700+25E		5 <.						11 <								,		8.A					6 0.5	. 영영	×2.	:			2 S	-	- 34		- 12	<10	1111				
	1700+50E								8 <										1.87		- 1946		2.11	0 0.3	1.1.2018-0	38.1		Y		- 18 C		- 3.2		1.00	<10					
LZYUUN	1700+75E	Ì				, ,2			ઁ	••		Ŭ,					1				127							1		-						4198 	÷			
L2900N	1800+00E	<	5 <.7	2 16	15	99	4	8	9 <	.2	<5	12	<5 2	2,64	1512	<10	551	7	40	<20) <20	20	2.4	3 0.4	9 0.6	50 0.	.01 0).15	40	13	<2	24	່ 1	<5	<10	0.06	. 9			
L2900N	1800+25E	•	5 <,	2 14	21	112	5	7	11 <	.2	<5	9	<5 2	2.97	1954	<10	414	9	49	<20) <20	18	3 2.1	4 0.6	4 0,4	2 0	.01 0	.15	28	10	<2	29	: <1	<5	<10	0.05	6			
	1800+50E								8 <										40	<20) <20	15	1.6	5 0.5	1 0.2	29 0.	.01 0	.22	22	8	<2	22	 <1	<5	<10	0.05	7			
	1800+75E								8 <										34	<20) <20	16	1.8	6 0.4	7 0.3	53 0	.01 0).25	25	11	<2	26	ຸ <1	ব্	<10	0.05	10	-		
L2900N	1900+00E								8 <										40	<20) <20	13	1.6	9 0.5	5 0.4	6 0	.01 0).18	32	8	<2	31	<1	5	<10	0.04	5			
							1			2	Æ	0		1 80	/ 21	-11	1 770	<u>،</u>	22		1 - 20	10		74 N 2	0 1 7	5 Ω	02 0	15	् रर	7	0	21	: : - - 1	ح	<10	۵.۵		3		
	1900+25E			200 C			N		6 <		- 0 C C				1.12								25.5	74 0.2		381 C - T -	4	1.1.2		Cash		1.6313			<10	33.90.	:			
	1900+50E		· · · ·				- 1 . A .		6 <		111		10.0		CC		1.1.1		(S) {	-	- 1984	9. L	2.49	24 0.2	17 - O 19	S. P		97. N.P.,		1964).		-2.95		1, 200, 200	<10	2016년:				
	1900+75E								7 <											· · · · ·	- 222	· · ·	- 1 M	7 0.3	Second States	in Section 1		i.	••	Sec. Ash			····	-	<10	10.00				
	2000+00E								70												200.00		- 2112	0.3 0.03	1000	877 - E				- A										
L2900N	2000+25E		14 0.	2 30	5 1	J 152	3	6	8 0	.6	<>	1	\$ 9 .7	2.20	414	<1	ν iδ	, ,	58	<20	u <2L	12		NY U.3	0 0.4	24 U.	.01 0	. 12	25	1	~2	12	~1	-	<10	0.04	'	~		

CLIENT: WHITE WOLF EXPLORATION PROJECT: CIQUENAS REPORT: V95-01413.0 (COMPLETE) DATE PRINTED: 30-OCT-95 PAGE 5 SAMPLE ELEMENT AU30 Ag CU Pb Zn Mo Ni Co Cd Bi As V Sn W La AL Sb Fe Te Ba Cr Mg Ca Na K Sr Y Ga Li Nb Sc Ta Ti Zr NUMBER PCT PPM PPM PPM PPM PPM PPM PPM PPM PCT PCT PCT PCT PCT PPM PPM PPM PPM PPM PPM PPM PCT PPM L2900N 2000+50E 14 <.2 18 10 136 4 7 7 0.3 <5 <5 <5 2.15 360 <10 162 7 37 <20 <20 9 1.59 0.32 0.25 0.01 0.10 31 3 <2 13 <1 <5 <10 0.05 7 4 7 7 <.2 <5 6 <5 2.14 328 <10 190 7 35 <20 <20 0.25 0.02 0.15 31 3 <2 15 <1 <5 <10 0.06 14 L2900N 2000+75E <5 0.2 20 11 105 9 1.83 0.33 4 7 8 0.8 <5 <5 <5 2.66 409 <10 95 8 40 <20 <20 11 1.95 0.45 L2900N 2100+00E 0.35 0.01 0.09 27 5 <2 70 <1 <5 <10 0.05 14 <.2 45 10 134 12 9 97 3 6 6 < .2 <5 10 <5 1.62 227 <10 136 5 24 <20 <20 9 1.76 0.26 L2900N 2100+25E 15 0.2 24 0.23 0.02 0.09 27 5 <2 18 <1 <5 <10 0.06 16 6 10 10 0.2 <5 14 <5 2.48 387 <10 212 8 39 <20 <20 12 2.70 0.35 L2900N 2100+50E <5 0.2 37 14 180 0.14 0.02 0.07 22 5 3 18 <1 <5 <10 0.09 21 18 407 14 11 22 2.4 <5 11 <5 3.09 688 <10 171 7 35 <20 <20 13 2.49 0.37 0.27 0.02 0.13 33 L2900N 2100+75E 114 0.8 99 9 <2 19 <1 <5 <10 0.08 15 6 10 10 0.4 <5 12 <5 2.45 288 <10 182 7 34 <20 <20 12 2.65 0.36 0.26 0.02 0.08 40 6 3 15 <1 <5 <10 0.08 23 L2900N 2200+00E <5 0.6 55 15 158 37 0.5 57 19 509 11 11 13 1.8 <5 17 <5 3.02 591 <10 253 7 34 <20 <20 10 2.61 0.42 0.23 0.02 0.10 47 4 <2 24 <1 <5 <10 0.08 13 L2900N 2200+25E L2900N 2200+50E 29 0.3 45 14 194 7 9 9 0.3 <5 7 <5 2.68 252 <10 161 8 40 <20 <20 10 2.24 0.39 0.20 0.02 0.09 34 3 3 27 <1 <5 <10 0.08 16 L3000N 1000+00E <5 <.2 11 7 55 2 7 7 <.2 <5 6 <5 2.16 334 <10 109 9 49 <20 <20 8 1.37 0.32 0.17 0.01 0.07 20 2 <2 11 <1 <5 <10 0.06 5 3. . . L3000N 1000+25E <5 <.2 13 6 56 27 7 <.2 <5 7 <5 2.13 269 <10 136 8 46 <20 <20 9 1.42 0.31 0.21 0.01 0.09 25 3 <2 10 <1 <5 <10 0.07 -7 7 <.2 <5 10 <5 2.24 266 <10 103 8 49 <20 <20 8 1.36 0.36 0.20 0.01 0.08 21 3 <2 10 <1 <5 <10 0.05 L3000N 1000+50E 8 0.2 12 7 55 2 5 - 5 L3000N 1000+75E 18 0.3 12 8 61 26 7 <.2 <5 8 <5 2.19 277 <10 113 8 46 <20 <20 8 1.43 0.32 0.23 0.01 0.09 26 3 <2 10 <1 <5 <10 0.05 4 6 <.2 <5 6 <5 1.75 479 <10 148 7 36 <20 <20 7 1.24 0.27 0.25 0.01 0.08 29 2 <2 10 <1 <5 <10 0.05 <5 0.2 10 6 67 2 .6 - 3 L3000N 1000+00E 3 6 7 <.2 <5 6 <5 2.22 456 <10 75 8 37 <20 <20 11 1.55 0.40 0.52 0.02 0.10 27 7 <2 35 <1 <5 <10 0.06 < 5 0.3 23 8 42 4 L3000N -1000+25E 6 <.2 <5 9 <5 1.61 287 <10 114 L3000N 1100+50E <5 <.2 14 8 52 2 6 6 30 <20 <20 8 1.38 0.23 0.23 0.02 0.07 23 4 <2 9 <1 <5 <10 0.05 8 7 <.2 <5 7 <5 2.15 320 <10 112 8 45 <20 <20 7 1.01 0.39 0.19 <.01 0.10 18 2 <2 9 <1 <5 <10 0.04 L3000N 1100+75E 9 <.2 13 8 76 2 6 1 7 31 <20 <20 12 1.88 0.40 6 3 35 <1 <5 <10 0.07 <5 0.3 33 11 70 3 8 6 <.2 <5 10 <5 1.75 158 <10 113 0.49 0.02 0.10 28 7 L3000N 1200+00E 5 <.2 <5 7 <5 1.48 173 <10 119 6 2 15 <1 <5 <10 0.06 11 5 27 <20 <20 10 1.52 0.24 0.40 0.02 0.08 25 L3000N 1200+25E <5 0.3 18 8 45 2 6 6 6 <.2 <5 <5 1.75 222 <10 132 7 36 <20 <20 9 1.35 0.26 0.23 0.02 0.08 18 4 <2 10 <1 <5 <10 0.05 8 L3000N 1200+50E <5 <.2 13 6 47 2 <5 <.2 17 10 50 3 6 6 <.2 <5 6 <5 1.81 268 <10 161 7 36 <20 <20 9 1.50 0.26 0.21 0.01 0.09 22 3 <2 9 <1 <5 <10 0.05 7 L3000N 1200+75E 5 6 <.2 <5 <5 <5 1.81 265 <10 142 8 39 <20 <20 9 1.08 0.26 0.21 0.01 0.09 18 4 <2 9 <1 <5 <10 0.05 - 5 L3000N 1300+00E 15 < 2 12 6 43 3 6 26 <20 <20 0.21 0.01 0.09 17 3 <2 15 <1 <5 <10 0.05 L3000N 1300+25E <5 <.2 11 8 49 2 5 5 <.2 <5 11 <5 1.51 205 <10 125 7 1.11 0.22 - 4 L3000N 1300+50E 6 45 2 5 5 <.2 <5 <5 <5 1.54 266 <10 115 7 30 <20 <20 8 1.11 0.29 0,24 0.01 0.11 18 3 <2 10 <1 <5 <10 0.05 5 <5 <.2 8 8 31 <20 <20 14 2.05 0.37 3 7 7 <.2 <5 14 <5 2.03 312 <10 170 0.41 0.02 0.15 26 9 <2 22 <1 <5 <10 0.06 11 L3000N 1300+75E <5 0.4 29 9 60 8 <.2 <5 10 <5 2.15 354 <10 196 9 40 <20 <20 9 1.66 0.36 0.33 0.02 0.12 25 3 <2 14 <1 <5 <10 0.06 L3000N 1400+00E <5 <.2 14 10 77 3 8 4 4 <5 < 2 11 8 99 2 7 6 <.2 <5 <5 1.89 321 <10 254 8 36 <20 <20 6 1.28 0.31 0.27 0.01 0.12 31 1 <2 11 <1 <5 <10 0.04 2 1 L3000N 1400+25E 3 7 7 <.2 <5 5 <5 2.34 251 <10 117 9 51 <20 <20 11 1.10 0.37 0.22 0.01 0.17 20 5 <2 10 <1 <5 <10 0.05 4 L3000N 1400+50E 11 <.2 21 7 58 0.34 0.02 0.10 28 3 <2 10 <1 <5 <10 0.06 <5 0.2 14 12 87 2 6 6 <.2 <5 14 <5 1.58 515 <10 258 6 28 <20 <20 8 1.67 0.25 7 L3000N 1400+75E 6 7 <.2 <5 6 <5 2.59 356 <10 480 6 37 <20 <20 16 1.52 0.34 0.26 0.01 0.18 23 8 <2 13 <1 <5 <10 0.03 6 L3000N 1500+00E 6 <.2 53 9 69 4

PROJECT: CIQUENAS

CLIENT: WHITE WOLF EXPLORATION

	: V95-01413.0			•																														D	ATE F	RINTE	ED: 3	0-0CT-95	PAGE 6
SAMPLE																												Na	5 . K	(s	r۱	' Ga	Li	Nb	Sc	Ta	Ţi	Zr	
NUMBER	UNITS	PPB	PPM	PPM	PPM	PPM	I PP	Ņ PI	P m I	PPM	PPM	PPM	PPM	PPM	PCT	PP	PP	I PP	PPI	1 PP	m pp	M P	PM F	PM	PCT	PCT	PCT	PCT	PCI	r pp	M PPI	I PPM	PPM	PPM	PPM	PPM	PCT	PPM	
L3000N	1500+25E	37	<.2	17	11	128	3	5	7	10	<.2	<5	<5	<5	3.35	980	<10	58	5 6	5 - 4	7 <2	0 <	20	13	2.01	0.49	0.21	<.01	0.13	31	8 3	s <2	21	1	<5	<10 (0.01	1	
L3000N	1500+50E	<5	<.2	13	8	84		4	7	9	<.2	<5	<5	<5	3.23	374	<1	0 423	3 8	8 4	8 <2	20 <	20	14	1.66	0.38	0.24	0.01	0.13	32	2 5	<2	16	<1	<5	<10 (0.04	5	
L3000N	1500+75E	7	<.2	9	6	42	2	2	4	7	<.2	<5	<5	<5	2.17	426	<1	0 20	1 8	3 4	4 <2	20 <	20	7	0.94	0.27	0.23	<.01	0.10	2 2	1 2	<	10	<1	<5	<10 (0.03	<1	
	1600+00E																								2.00	0.31		0.01	0.0	32	0 6	<2	9	<1	<5	<10 (0.04	4	
	1600+25E	10	<.2	96	9	53	5 . •	2	6	5	0.3	< 5	<5	<5	1.49	621	<10	0 28	8	72	:1 ⊲2	0 <	20	21	1.40	0.37	3.57	0.03	0.08	89	5 19	~2	21	<1	<5	<10 (0.03	4	
I 3000N	1600+50E	<5	<.2	15	9	52	2	4	10	9	<.2	<5	<5	<5	2.63	511	<1	0 240	5 1	5 4	8 <2	0 <	20	12	1.48	0.41	0.25	0.01	0.11	1 2	0 3	<	18	<1	<5	<10 (0.05	3	
	1600+75E																						2.15		1. 1110	0.67	- 1 A 20, 900 9	· ·	- 41 H I							<10 0	9 K C K C - 4		
	1700+00E		•																							0.88	- <u>199</u> 773	<.01	0.15	5 2	8 16	<2	28	<1	7	<10 (0.02	2	
	1700+25E																									0.26	0.39	0.02	0.10	2	7 4	<2	37	<1	<5	<10 (0.04	5	
	1700+50E																									0.38	- K. 1969 (69)	68	- 202020-5	8 (J			ess	25	1.12	<10 (810.0		
1 3000N	1700+75E	<5	<.2	12	8	44		2	5	6	.2×	ৎ	6	<5	1.87	160) <1	0 16	5	7 2	27 <2	20 <	20	12	1.62	0.27	0.31	0.02	0.10	0 2	9 5	2	29	<1	<5	<10 0	0.06	15	
	1800+00E							14 C		- 20.				1.16					*		· .		- A. A.			0.31	 	0.01	0.08	s 1	B 2	<2	13	<1	<5	<10 0	0.05	7	
	1800+25E											- 2 - S 2 - S		1,200	· · · · · · · · · · · · · · · · · · ·				- C.	1.6	125 C		10010			0.42		0.01	0.11	1 2	3 5	∣<2	17	<1	<5	<10 0	0.06	7	
	1800+50E		<.2																							0.45		0.01	0.17	72	8 6	s <2	19	<1	<5	<10 (0,03	3	
	1800+75E	<5	<.2																							0.32		0.01	0.1	52	6 (o <2	16	; < 1	\$	<10 (0.06	9	•
1 3000N	1900+00E	-5	< 2	. 11	12	57		4	7	•		<5	7	<5	2.48	959) <10	0 14	4 4	7 4	3 <2	20 <	20	15	1.69	0.47	0.36	0.01	0.21	ែ 2	9 10) <2	21	ें <1	<5	<10 (0.06	8	
	1900+25E																			22			10.00 H		. 1994 C.	0.53	() / () () () () () () () () () () () () ()			· · ·						<10 (y Cogética,		
	1900+50E																									0.48	- 1 X X X X		1.000						- 1.N	<10 0	é ne tru		
	1900+75E														2.37						where a		100203			0.49	20A/12293	0.01	0.21	1 2	8	<	17	<1	<5	<10 (0.05	5	
	2000+00E		2022					N 2				2.4	1 ⁴		2.63		5 A	1.00	• .		W. 1	- 35	8898 N.		QC 232	0.63	441,266.5	0.01	0.25	52	9	<2	18	<1	<5	<10 (0.04	6	
130000	2000+25E	7	< 2	17	8	3 161	1	3	6	9	0.9	<5	<5	<5	2.81	676	5 · <1	0 20	7 (9 4	6 <2	20 <	20	16	1.57	0.64	0.32	0.01	0.19	2 2	7 9	<	21	ं <1	<5	<10 (0.04	5	
	2000+50E																						- N			0.44	- 1 - 22	0.01	0.13	3 2	5 6	5 <2	26	<1	<5	<10 (0.05	14	
	2000+75E		1.5.15												2.31						N 1					0.39	0.23	0.01	0.13	3 2	3 2	<2	17	<1	<5	<10 (0.07	12	
	2100+00E																						- 911		1.14.5	0.42	 A - 433 		- N 2 - 1				- 193			<10 (요즘이가요		
																										0.36			- X . D	÷ -	1.00	е. —	- 210	-	1.0	<10 (n na Sec		
LOUUN	2100+25E		11 M. 14 M.			ř.,				×.	-						ч. Ч		÷.	•	÷.									•									
L3000N	2200+50E																									0.42			- 12 C - 5	8 ° -				12	100		2 S M S	13 🖏	
L3100N	1000+00E 3																								1.55	0.32	0.34	0.02	2 0.07	7 2	6 4	<2	13	<1	<5	<10 (0.06	7 5	
L3100N	1000+25E														2.20										112.0	0.39	- 10-979-98	<.01	0.09	2 2	3	<2	10	 <1	<5	<10 (0.04	2	
L3100	1000+50E																									0.29		0.01	0.13	3 2	2 . 2	<2	14	<1	<5	<10 0	0.06	5	
L3100	1000+75E	6	5 <.2	22	10	5	8	2	8	7	<.2	<5	6	<5	2.07	28	3 <1	0 10	1	7 3	<u>s</u> 9 <2	20 <	<20	12	1.82	0.38	0.27	0.01	0.1	1 2	7 6	5. 2	23	. <1	<5	<10 (0.07	9	

Ge chemical Lab Report

PAGE 7

	WHITE WC V95-0141																																ED: 3	
PLE BER			-									SD F PPM PC			e Ba 1 PPM				W PPM		AL PCT	-	Ca PCT	Na PCT	K PCT								T i PCT	
	1100+00E											<5 1.9											0.54											
	1100+75E		0.3		• `							<5 1.6											0.48		· •									
	1200+00E		< . 2				2					<5 1.8		· .			200					0.31	0.27		1.1.1.1									
	1200+25e 1200+50e		<.2 <.2									<5 1.8 <5 1.7		A 1			- 203	<20 <20	1948 I		i në se	0.27 0.22	0.24 0.29		194,000,000								0.05	6 4
oon '	1200+75E	<5	<.2	13	7	43	2	6	7 <.2	<5	. 8	<5 1.9	8 19	6 <1	108	. 8	.43	<20	<20	9	1.36	0.29	0.20	0.01	0.09	18	3	<2	8	<1	<5	<10	0.06	8
) noc	1300+00E	10	<.2	14	7	96	2	5	6 <.2	<5	. 6	<5 1.6	8 50	50 <10	243	7	32	<20	<20	9	1.30	0.23	0.28	0.02	0.09	28	4	<2	8	<1	<5	<10	0.05	. 5
DON '	1300+25E	6	<.2	29	8	41	2	6	7 <.2	<5	<5	<5 1.9	4 70	59 <10) 85	8	42	<20	<20	11	88.0	0.45	1.64	0.02	0.11	48	8	<2	10	<1	<5	<10	0.03	<1
	1300+50E		<.2			42	2	4	- 24			<5 1.8	22	-97			112.5	<20	28 B B		69 Y E	0.26	0.26		S 1.1								1. 1.14	
DON '	1300+75E	<5	<.2	8	7	56	2	6	6 <.2	<5 	<5	<5 1.8	6 34	•0 <10	146	8	40	<20	<20	8	1.19	0.27	0.28	0.01	0.13	25	2	<2	9	<1	<5	<10	0.05	5
NON '	1400+25E	<5	<.2	12	7	57	3	7	6 <.2	<5	<5	<5 2.0	0 20	0 <10) 170	7	39	<20	<20	9	1.51	0.32	0.25	0.01	0.15	23	3	2	12	<1	<5	<10	0.06	7
	1400+50E	<5	<.2	9		72	2	5		2.25		<5 1.6						<20				0.23	0.22					<2			5 T.		0.04	3
DON 1	1400+75E	26	<.2	8	6	55	2	6	5 <.2	<5	<5	<5 1.6	7 2	53 <10	125	8	35	<20	<20	7 (0.92	0.28	0.21	0.01	0.14	19	2	<2	8	<1	<5	<10	0.06	2
													•				1																	
							•																											
																									. '									
																						-								-				
							: 11												Ś.															
																					· · · .		ing te										영국 JAC 1월 1월 1일	
																															· •			
							j.						·.										in. Maria				. :		 1011				1.8.3 6.2.1	
							4		<u>.</u>																				1.4.					
													1.2																					
													· ·	. :				d.			. KP													

Bondar-Clegg & Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, (604) 985-0681

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

. .

うちにはなるがないであるないのであるのである。 「「「「「「」」」」」

•

2

,465

GABE SOIL GEOCI	
SILVER IN	Ppm
December 1995	Figure 20

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

-		T
	3500+00	
	3400+00N	
	HINESS CARESS CA	
	2000-000 2000-000 2000-000 2000-000 2000-000 2000-000 2000-000 2000-000-	
	19292 19	
	864.93 864.93	
	2000-000 10 10 10 10 10 10 10 10 10 10 10 10	
	1000 00 10 10 10 10 10 10 10 10 10 10 10	
	2000-001 10 10 10 10 10 10 10 10 10 10 10 10	
		1
		1
	LEGEND ST. ELIAS MINES LTD.	7
	CRANBERRY RIDGE PROPERTY	-

۰,

.

Greenwood M. D.

