CRANBERRY RIDGE PROPERTY

COMPRISING THE CRANBERRY RIDGE GROUP, AND DAD GROUP OF MINERAL CLAIMS

BEAVERDELL AREA
GREENWOOD MINING DIVISION, BRITISH COLUMBIA

N.T.S. 82E/06
$49^{\circ} 24^{\prime}$ North latitude
$119^{\circ} 06^{\prime}$ West longitude
OWNER: ST. ELIAS MINES LTD.
604-700 WEST PENDER ST.
VANCOUVER, B.C. V6C
OPERATOR: ST. ELIAS MINES LTD.
604-700 WEST PENDER ST. VANCOUVER, B.C. V6C 1G8

REPORT BY: LEONARD GAL M.SC. P. GEO.
WHITE WOLF EXPLORATIONS LTD.
DATE: MAY 31, 1996

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

TABLE OF CONTENTS

Page
Summary and Conclusions 1
Introduction 1
Location and Access 1
Physiography, Vegetation and Climate. 1
Claim Information and Property Ownership 3
Property History and Previous Work 5
Regional Geology 5
CRANBERRY RIDGE Property Geology 7
Mineralization and Alteration 11
CRANBERRY RIDGE Property 11
Dad Claims 11
Gabe, W\#1 Claims 11
Dad E Claim 12
Lori, Berry Claim 17
Geochemical Survey 17
Dad Grid 17
Gabe / W\#1 Grid 18
Dad E Grid 18
Geophysical Surveys 19
Magnetometer Survey 19
Dad Grid 19
Gabe - W\#1 Grid 19
Dad E Grid 19
VLF-EM Survey 20
Dad Grid 20
Gabe - W\#l Grid 20
Dad E Grid 20

TABLE OF CONTENTS continued

Page
Recommendations 20
References 27
Certificate 28
Statement of Costs 29
APPENDICES 30
I. Rock Sample DescriptionsII. Rock Sample Assay Results
\qquadIII. Soil Sample Assay Results
LIST OF FIGURES
1 Property Location Map 2
2. Claim Map and Grid Location 4
3. Regional Geology Map 6
4. Property Geology POCKET
5 Dad Grid Geology and Sample Locations 8
6. Gabe/W\#1 Grid Geology and Sample Locations 9
7. Dad E Grid Geology and Sample Locations 10
8 Dad Claim: Mine Workings and Sample Locations 13
9. W\#1 Claim: Mine Workings and Compilation Map 14
10. Dad E Claim: T-1 Trench 15
11. Lori Claim - Goldbug Showing 16
12-15. Dad Grid Soil Geochemical Maps: $\mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{As}$, POCKET
16-20. Gabe/W\#1 Grid: Soil Geochemical Maps: $\mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{As}, \mathrm{Ag}$ POCKET
21-25. Dad E Grid: Soil Geochemical Maps: $\mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{As}, \mathrm{Ag}$ POCKET
26-28 Total Field Magnetic Data (Dad, Gabe, Dad E Grids) POCKET
29-31 VLF-EM Uncorrected Dip AngleData (Dad, Gabe, Dad E Grids) POCKET
32-34. Total Field Magnetic Contour Maps 21-23
35-37. VLF-EM Fraser - Filtered Profiles 24-26

SUMMARY AND CONCLUSIONS

The CRANBERRY RIDGE Property comprises the 100 units Cranberry Ridge Group of 11 claims and the 43 unit Dad Group of 10 claims, in the historic Beaverdell Camp of southern B.C. The property covers ground prospective for vein hosted precious metal deposits, based on known occurences on the property and geological comparisons with the nearby Highland Bell Silver Mine. Several showings are present on the property, including two old mines and many older trenches, pits and adits that uncover mineralized veins. At least 435 m of underground workings have been developed on mineralized quartz veins. Some very high gold and silver grades have been obtained from samples on the property, including $165 \mathrm{~g} / \mathrm{t}$ (5.83 $\mathrm{oz} / \mathrm{T}) \mathrm{Au}$ and $825 \mathrm{~g} / \mathrm{t}(29 \mathrm{oz} / \mathrm{T}) \mathrm{Ag}$ over 30 cm from the "T-1" trench and $272 \mathrm{~g} / \mathrm{t}(9.59 \mathrm{oz} / \mathrm{T}) \mathrm{Ag}$ from the Dollar (Inyo-Ashworth) Mine. Past work in the area dates to the turn of the century. Since 1975, when high grade gold was discovered in the T-1 trench in the Logan Creek area, a number of operators have conducted geochemical soil sampling and geophysical surveys over the area. Although these surveys were successful in delineating "target areas", only minor shallow drilling was completed.

The geology of the property consists mainly of Middle Jurassic Nelson granodiorite. The intrusive is cut by a number of quartz and lesser carbonate veins with strongly chlorite-carbonate-clay - silica altered envelopes. The general trend of the veins is $\mathrm{E}-\mathrm{W}$. The host rock lithologies, vein structure, alteration and mineralization on the CRANBERRY RIDGE Property is similar in character to that found at the Highland Bell Mine.

INTRODUCTION

From August 28 to November 15 1995, a crew of 2 to 4 persons employed by White Wolf Explorations Ltd., carried out an exploration program on the Cranberry Ridge Group of claims on behalf of St. Elias Mines Ltd., the optionee of the property. This exploration program consisted of the establishment of grids on the Dad, Gabe / W 1 claims and the Dad E claim, for a total of 43.85 line kilometres. These grids were to reestablish control for mapping, soil sampling and magnetic and VLF-EM surveys. Grid locations are shown on Figure 2. Grid lines were established at 100 m intervals orthogonal to a baseline. The lines were surveyed with a Silva compass and hip-chain, and stations flagged at 25 m intervals. The grids were used as a base for detailed outcrop mapping at $1: 10,000$ scale. All trenches, adits and other workings were tied into the grid with hip-chain and compass. All showings found in the course of mapping were sampled.
A total of 1295 soil samples were collected on three grids, and outcrop mapping was also done in these areas. A total of 94 rock samples were collected from the property. Total field magnetic and VLF-EM surveys were also performed on the gridded areas.

LOCATION AND ACCESS

The CRANBERRY RIDGE Property is located 290 kilometers east of Vancouver, near Beaverdell on the West Kettle River (Figure 1). The property is in the Greenwood Mining Division, and is centered at approximately $49^{\circ} 24^{\prime} \mathrm{N}$ latitude and $119^{\circ} 06^{\prime} \mathrm{W}$. longitude on NTS Map Sheet $82 \mathrm{E} / 6 \mathrm{E}$. Beaverdell lies on Highway 33; Kelowna and the junction with Highway 97 lies 80 km to the north, while Rock Creek and the junction of Highways 3 and 33 is 45 km to the south. A network of secondary roads and logging roads access the parts of the property along Logan Creek, Tuzo Creek, and Cranberry Ridge.

PHYSIOGRAPHY, VEGETATION AND CLIMATE

The property is situated within the Monashee Mountains of the Southern Interior Physiographic Region, and elevations range from 760 meters along the West Kettle River to over 1,300 meters, along the crest of Cranberry Ridge. Slopes are moderate. Vegetation consists mainly of fir, larch and pine, much of it mature second growth. Some of the area has been recently logged or burned over. There is relatively little underbrush, and open grassy areas are not uncommon. Outcrops are fairly sparse except locally on

the east flanks of ridges, where small bluffs with talus aprons occur. The climate features warm summers and mild winters. The West Kettle Valley is fairly dry in the summers, although not as dry as the Okanangan valley to the west. Average yearly precipitation is 50 cm . A snow pack of 1 to 1.5 meters begins to accumulate in November and lingers in places into May.

CLAIM INFORMATION AND PROPERTY OWNERSHIP

The CRANBERRY RIDGE Property, located in the Greenwood Mining Division is composed of the Cranberry Ridge Group (11 Mineral Claims totaling 100 units) and the Dad Group (10 Mineral Claims totalling 43 units) and the 20 unit One Gun claim. The claims are owned by St. Elias Mines Ltd., optioned from Madman Mining Co. Ltd. under terms which are beyond the scope of this report. Further claim information is presented in the Table below. Claims are shown on Figure 2.

CRANBERRY RIDGE GROUP

Clatm Name	Cluim Tyme	Tenure: Number	Number or Units	Anmiversary DATE:
Dad E	4-post	337008	18	June 19, 1996
Dad S	4-post	337009	9	June 22, 1996
Gabe	4-post	337010	14	June 23, 1996
Lori	4-post	338912	16	Aug. 4, 1996
Berry	4-post	338909	20	Aug. 6, 1996
Eddy	4-post	338911	18	Aug. 8, 1996
Sackett \#1	2-post	338904	1	Aug. 12, 1996
Sackett \#2	2-post	338905	1	Aug. 12, 1996
Sackett \#3	2-post	338906	1	Aug. 12, 1996
Sackett \#4	2-post	338907	1	Aug. 12, 1996
W \#1	4-post	214181	1	July 27, 1996
Total Number Claim Units			100	

DAD GROUP

CLAIM NAME	Clamm TYPE	Temure NUMBER	NUMBER or Units	ANNIVERSARY Date*
Dad	4-post	336989	20	June 19, 1996
Ducky	4-post	338910	15	June 22, 1996
Bat 1	2-post	342137	1	June 23, 1996
Bat 2	2-post	342138	1	Aug. 4, 1996
Bat 3	2-post	342139	1	Aug. 6, 1996
Bat 4	2-post	342140	1	Aug. 8, 1996
Bat 5	2-post	342141	1	Aug. 12, 1996
Bat 6	2-post	342142	1	Aug. 12, 1996
Bat 7	2-post	342143	1	Aug. 12, 1996
Bat 8	2-post	342144	1	Aug. 12, 1996
Total Number Claim Units			43	

* Upon acceptance of this report for assessment purposes

PROPERTY HISTORY AND PREVIOUS WORK

The CRANBERRY RIDGE Property is located within the historic Beaverdell Mining Camp. Exploration dates to the late 1880's, with the discovery of silver on Wallace Mountain in 1897, and production of silver from as early as 1901. The Highland Bell Mine silver mine was in continuous production from 1913 to 1989. At closure in 1989, the mine had produced a total of over 46 million oz. Ag, 25 million lbs. Pb and 30 million $\mathrm{lbs} . \mathrm{Zn}$, with minor Cd, Cu and Au .

The CRANBERRY RIDGE Property, has seen sporadic exploration activity since the turn of the century. In the 1920's the Inyo-Ashworth (Dollar) and neighbouring Lucky Boy and Carmi mines were undergoing development. Work continued into the 1930s and then waned, as more exploration and effort were focused in the Wallace Mountain area, particularly the Highland Bell Mine and neighbouring smaller mines which by that time had achieved regular production. In the late 1960's and early 1970's, various operators were active in the area, notably Husky Oil which undertook a large scale reconnaissance program in the Carmi area. In 1975 a high grade gold showing was discovered in the area north of Logan Creek on Cranberry Ridge, which touched off renewed interest in the area. Through the 1980's various operators have held ground on Cranberry Ridge and in the Dad/Ducky claims area, undertaking work programs that generally included soil geochemical surveys, VLF-EM and magnetic geophysical survey and geological mapping and sampling. Short diamond drill holes have been collared on the W\#1, Dad E and Lori/Berry claims at various times from the 1960's to the 1980's.

REGIONAL GEOLOGY

The area is within the Omineca Crystalline Belt, a NW trending belt dominated by plutonic and high grade metamorphic rocks. Regional geology is presented in Figure 3, simplified from G.S.C. Maps 61957 and 15-1961 by Little and 1736-A by Templeman-Kluit.
The Beaverdell area is underlain principally by middle Jurassic Nelson plutonics. The lithologies are dominantly quartz diorite, monzonite and granodiorite. Quartz may range from trace to 20% by volume.

Both potassic and plagioclase feldspars are present, while mafic minerals include hornblende and biotite in varying amounts. Feldspar and/or amphibole may occur as coarse grained crystals, but the rock is generally equigranular and moderately foliated. In the Beaverdell area this foliation generally trends E-W to SSE-NNW
The Nelson Plutonics intrude greenstones, amphibolites, mafic schists, meta-wackes and lesser limestone of the Carboniferous and older Anarchist Group. This sedimentary and volcanic package occurs as isolated rafts or roof pendants surrounded by the younger intrusive.
The Valhalla intrusions (granite and granodiorite) of Jurassic-Cretaceous age are distinguished from the Nelson Plutonics by their porphyritic nature and general lack of foliation. The contacts between the units are locally gradational, although clearly crosscutting relationships have been observed as well. The regional-scale Okanagan Batholith surrounds the Nelson plutonics in the Beaverdell area and is considered to be equivalent in age to the Valhalla intrusives.
The Coryell Group are Eocene porphyritic felsic intrusions that occur throughout south central B.C. They include the Beaverdell Stock which outcrops on the West Kettle River valley bottom just south of the Beaverdell townsite, as well as numerous plugs and dykes on Cranberry Ridge. The Coryell syenites are likely coeval with the Eocene Marron Group of felsic to intermediate volcanic rocks. These trachytes, andesites and lesser tuff and shale interbeds outcrop in erosional remnants on Cranberry Ridge and in fault bounded outliers throughout the Okanagan region.
Fine grained mafic dykes are the youngest intrusive rocks in the area, and are related to regionally significant Miocene plateau basalts. A 24 m wide dyke occurs on the south end of Cranberry Ridge, but most of the dykes are generally smaller.

CRANBERRY RIDGE PROPERTY GEOLOGY

Outcrop mapping at a scale of 1:10 000 was carried out on three grids established on the property (Figure 3). In addition, outcrops were mapped along roads and traverses on claim lines. Outcrops are quite scarce on much of the property, even on the moderate slopes.
On the Dad grid (Figure 5), the dominant lithology is granodiorite. A moderately banded gneiss outcrops on the NE part of the Dad claim, above Beaverdell Creek. It is likely of an igneous protolith and may represent a sheared margin of the pluton. The foliation strikes N-S with a moderate west dip. Outcrops of Anarchist Group slates occur further north and east of the grid area.
On the Gabe/W\#1 grid (Figure 6) are sparse outcrops of variably altered granodiorite.
The Dad E grid (Figure 7) is also underlain largely by granodiorite. A northwest trending dyke of potassium feldspar porphyry granite occurs on the south central portion of the grid, probably equivalent to the Coryell Group. Numerous fine grained mafic dykes of probable Miocene age intrude the granodiorite, particularly north of Logan Creek near the T-1 and T-3 trenches. The strike of these dykes is NE to SE. Additional dykes occur on the northeast part of the Dad claim, and on the south end of Cranberry Ridge above Tuzo Creek.
Additional outcrops of granodiorite and feldspar porphyry occur on Tuzo and Eugene Creeks. On the west half of the Dad S claim are outcrops of a buff weathering feldspar crystal tuff or possibly a fine grained rhyodacite, belonging to the Eocene Marron Group. The contact with the intrusive rocks strikes NNE across the Tuzo Creek valley, apparently not offset by the fault thought to exist in the valley.
Smith (1975) documented three prominent fracture sets in the Nelson plutonics of Cranberry Ridge. The strike and dip of these are (on average): $040 /$ sub-vertical, $110 / \mathrm{N}$, and $350 / 50-60 \mathrm{~W}$. The first two orientations are likely related to NE and E trending mineralized quartz veins that occur throughout the area. Most vein attitudes measured during the current study strike E to NE with moderate to steep dips both north and south. Vein attitudes at the Dad adit (Figure 8) tend to strike more northerly, often with shallow dips.

1

SCALE
Granodiorite (Mid Jurassic NELSON PLUTONICS) locally gneissose
\cdots Mafic dyke (Miocene)
2 Potossium Feldspar Porphyry (Eocene CORYELL SYENITE)
Feldspar crystal tuff, trachyte (Eocene MARRON GROUP)
Slates, volcanics (Carboniferous and older ANARCHIST GROUP)

${ }_{3}$ Open cut
 $\begin{array}{cc}= & \text { Shaft } \\ == & \text { Road } \\ 0 & \text { Cabin }\end{array}$

ST. ELIAS MINES LTD.
CRANBERRY RIDGE PROPERTY
Greenwood M D. NTS. 82 E/06E
GABE / W\#1 GRID
SAMPLE LOCATIONS

1

MINERALIZATION and ALTERATION

CRANBERRY RIDGE PROPERTY

Several pits trenches, adits and other workings on the property expose widespread zones of base and precious metal mineralization. Mineralization is almost totally restricted to the granodiorites, and occurs as vein or shear hosted sulphides with enveloping altered granodiorite in relatively thin limonitic and bleached fracture or shear zones. Vein gangue is generally quartz, with lesser carbonate and chlorite. Generally pyrite is the most common sulphide, with sphalerite, galena and chalcopyrite in varying amounts. Banded sulphide - quartz textures are fairly common. Brecciation of the host granodiorite is locally observed, as is enveloping fault gouge. The wall rocks adjacent to the veins are generally oxidized (rusty), often bleached and silicified with chloritic and clay alteration. Carbonate, epidote, and hematite were also observed as alteration products within and adjacent to veins. Individual veins range from hairline stringers to $30-40 \mathrm{~cm}$, and up to 2 m at the extreme. Individual veins often pinch and swell, and may both occupy fault gouge zones or be offset by later structures. Quartz veins measured at showings throughout the property strike mainly from NE to E , with variably north or south dips.
A summary of the main showings follows, grouped according to the claim on which they occur:

DAD CLAIM

The DAD claims cover the ridge between Beaverdell Creek and the West Kettle River north of Beaverdell. On the west side of this ridge at 3450 feet elevation, an old adit is found that leads to some 305 m (1000) of underground workings (Figure 8). A short 6 m adit was driven 400 m to the south of the Dad adit. From the size of the dump at the main adit, it is likely that some ore was shipped from this mine, although no mention is made of this property in an early (Reinecke, 1915) report on the Beaverdell Camp (Kallock and Goldsmith, 1980). The adit is cut into variably chloritized medium grained granodiorite, with some areas of potassium feldspar alteration. The westernmost 23 m (75 feet) of the adit (nearest the portal) cuts across strongly sheared, faulted and altered granodiorite with several sulphide bearing quartz veins. The mineralized veins have an average orientation of $308 / 42 \mathrm{~N}$. The largest vein near the portal is up to 45 cm wide and is followed for 11 m along a crosscut. Many of the veins pinch and swell along strike or are cut by post-mineral shears. Vein mineralization tends to show banded textures and comprises pyrite, galena sphalerite chalcopyrite and traces of bornite. Grabs from the main dump have assayed up to $28.4 \mathrm{~g} / \mathrm{t}$ ($10 z / \mathrm{T}$) Ag and $56.7 \mathrm{~g} / \mathrm{t}(20 \mathrm{z} / \mathrm{T}) \mathrm{Au}$.

Soil geochemical and VLF-EM surveys have been done over the area, outlining some anomalous zones. Minor smaller showings have also been found on the property with up to $23.8 \mathrm{~g} / \mathrm{t}(0.84 \mathrm{oz} / \mathrm{T}) \mathrm{Ag}$. In the current program, samples BDRL-17 and BDRL-19 from quartz veins in the adit yielded $33.8 \mathrm{~g} / \mathrm{Au}(1.19$ $\mathrm{oz} / \mathrm{T})$ and $51.4 \mathrm{~g} / \mathrm{Au}(1.81 \mathrm{oz} / \mathrm{T})$ respectively.

GABE, W\#1 CLAIMS

The W\#1 claim covers the workings of the old Dollar (Inyo-Ashworth) mine (Figure 9). The workings consist of 2 adits (one is 90 m long), a collapsed shaft (originally 43 m deep with crosscuts at the 23 m and 41 m levels), and numerous pits and trenches. In 1919, the Inyo-Ackworth property became the leading prospect on Cranberry Ridge when gold was found in quartz veins. Assay values of $17 \mathrm{~g} / \mathrm{T}(0.60 \mathrm{z} / \mathrm{t}) \mathrm{Au}$ and $272 \mathrm{~g} / \mathrm{T}(10 \mathrm{oz} / \mathrm{t}) \mathrm{Ag}$ from grab samples have been recorded. In 1925,14 tons of ore was shipped to the Trail smelter. Total production from 1918 to 1927 was $1171 \mathrm{~kg} \mathrm{Zn}, 1158 \mathrm{~kg} \mathrm{~Pb}, 3639 \mathrm{~kg} \mathrm{Ag}$ and 62 g Au (E. Dickson, pers. comm. 1995). The mineralization occurs in quartz veins up to 45 cm wide within a rusty, fractured and chlorite altered shear, $1-2 \mathrm{~m}$ wide, which dips vertically and runs nearly E-W across the property. Surface and underground workings outline the shear for 300 m strike length. The shear zone has been outlined and extended by geochemical and VLF-EM methods. In addition VLF surveys have delineated 2 parallel anomalies. In 1966, 3 short diamond drill holes (totaling 100 m) tested part of
the structure, although results are unknown. In the current program, a sample from the north end of the long trench assayed $2.2 \mathrm{~g} / \mathrm{t}(0.0760 \mathrm{z} / \mathrm{T}) \mathrm{Au}$ and 103 ppm Ag .

DAD E CLAIM

The DAD E claim covers trenches where high grade gold has been documented, along with several short adits and prospecting pits. The T-1 trench is 70 m long, cut into granodiorite and several mafic dykes that are oriented E-W and cut the granodiorite (Figure 10). Mineralization occurs along the contact of the two rocks, as well as in several parallel trending quartz veins in shears and fracture zones. Disseminated sulphides occur within both the granodiorite and the mafic dykes, and malachite and limonite staining is common in the adjacent fractured granodiorite. A sample taken in 1975 from this trench assayed a remarkable $165 \mathrm{~g} / \mathrm{t}$ ($5.83 \mathrm{oz} / \mathrm{T}$) Au and $825 \mathrm{~g} / \mathrm{t}(29.1 \mathrm{oz} / \mathrm{T}$) Ag with $1.57 \% \mathrm{Cu}$ over 30 cm (12 ") (Smith, 1975; Kim , 1981). Subsequent resampling confirmed the high grade gold and silver. Gold values were obtained from sulphide bearing quartz veins ($73.7 \mathrm{~g} / \mathrm{t}(2.6 \mathrm{oz} / \mathrm{T}$) over 0.9 m), altered granodiorite $(23 \mathrm{~g} / \mathrm{t}$ ($0.82 \mathrm{oz} / \mathrm{T}$) and apparently unaltered granodiorite ($2.3 \mathrm{~g} / \mathrm{t}(.08 \mathrm{oz} / \mathrm{T}$)) (Sookochoff, 1990). The vein system is oriented at $120 / 60-70$ S with vein widths ranging from $5-91 \mathrm{~cm}(2-36$ "), in chloritic sheared granodiorite, and on the mafic dyke contacts. Sulphide assemblages include pyrite with lesser chalcopyrite, bornite and traces of sphalerite and galena. Visible gold has been observed (Smith, 1975). Unfortunately, the trench is currently heavily slumped and partly covered.

The T-2 and T-3 trenches to the west also expose slightly altered granodiorite and an E-W trending mafic dyke. In the T-2 trench, two thin quartz veins occur in a rusty, malachite-bearing shear subparallel to the trench walls at 050/60W. A thin quartz vein (orientation $042 / 70 \mathrm{~S}$) occurs in the south part of the T-3 trench, and disseminated sulphides are present in the granodiorite as well as the mafic dyke at the north end of the trench. A sample across $30 \mathrm{~m}\left(100^{\prime}\right)$ of the T 3 trench yielded $1.2 \mathrm{~g} / \mathrm{t}(0.043 \mathrm{oz} / \mathrm{T}) \mathrm{Au}$ (Smith, 1975).

Further workings in the area include 2 flooded adits 600 m north of the trenches (the Cabin adits) and a series of three short adits and trenches approximately 500 m south of the $\mathrm{T} 1-\mathrm{T} 3$ trenches. In the Cabin adits north of the T1-3 trenches, west striking quartz veins with coarse pyrite are followed. The host granodiorite is highly fractured, bleached and oxidized.

Since 1975, various operators have conducted soil geochemical surveys, magnetic and VLF-EM surveys, trenching prospecting and mapping. Several diamond drill holes totaling 2186 feet were completed for Apollo Developments in the area in 1991 (News Release quoted in Vancouver Stockwatch, June 5, 1991). DDH 91-1 intersected "a 14 m sulphide zone, of which a 1.8 m section assayed 960 ppb Au and 15.5 ppb Ag ". A second hole (DDH 91-2) "returned a section of $5.12 \mathrm{oz} / \mathrm{ton}$ over an intersected length of 1.5 m ". Whether the preceding assay refers to gold or silver is not known. Zone B was apparently the area of the T-1 trench. Here, "A 2.6 m wide zone was intersected which returned a weighted average grade of 0.066 $\mathrm{oz} /$ ton Au and $0.15 \mathrm{oz} /$ ton Ag . The zone included 2 cm sulphide bearing quartz veins which assayed 1.31 $\mathrm{oz} /$ ton Au and 0.34 oz /ton Au ". A brief inspection of some of the drill core left on site reveals that weakly altered granodiorite was sampled with some thin quartz veins and sulphide zones.

The previously known showings were all outlined by soil geochemical sampling, and several new geochemical anomalies were discovered. VLF-EM surveys have variously outlined E-W and NW trending anomalies, depending upon grid orientation and transmitting signal location and frequency. Quartz veins of both orientations were observed in outcrop, although the NW trending veins observed on surface were largely barren.

Samples taken during this program from the now heavily slumped and covered $\mathrm{T}-1$ trench include $0.8 \mathrm{~g} / \mathrm{t}$ ($0.028 \mathrm{zz} / \mathrm{T}$) Au (Tl-D). A grab sample from near the portal of the northernmost of the two Cabin adits yielded $8.28 \mathrm{~g} / \mathrm{t}(0.292 \mathrm{oz} / \mathrm{T}) \mathrm{Au}$ and 45.6 ppm Ag , which is higher than any previous reported grades from these workings.

LORI, BERRY CLAIMS

The Lori and Berry claims cover several former Crown Grants and includes the Goldbug and Boston showings. At the Goldbug showings above Tuzo Creek (Figure 11), a 22 m adit strikes E and exposes a quartz vein at the end of the adit with abundant magnetite, pyrite and galena. The granodiorite wall rock is hornblende porphyritic and weakly altered with some epidote and chlorite. A short distance uphill are a series of test pits. These expose rusty granodiorite, variably fractured with some thin quartz veins and gouge zones. The veins contain pyrite and minor galena, while the surrounding granodiorite has sparsely disseminated pyrite.

On the current Lori claim, 4 short diamond drill holes were completed in 1984 (Crowe, 1985). The deepest of these reached only 16 m (52.5^{\prime}), and some of the holes intersected variably chloritized and silicified horizons within the granodiorite. One assay from chlorite-epidote altered monzonite with disseminated pyrite and magnetite yielded $164 \mathrm{~g} / \mathrm{t}(5.80 z / \mathrm{T}) \mathrm{Ag}, 1.5 \% \mathrm{~Pb}$ and $0.5 \% \mathrm{Zn}$.

The Boston showing is on the Berry Claim about 5 km up the Tuzo Creek Road, approximately 30 m northeast off the road. A caved adit was driven on a 2 m (7^{\prime}) thick bull quartz vein oriented at 084/60S. The adjacent granodiorite is quite rusty and altered, and seems to carry more sulphides than the vein. A small pit just above the adit exposes the granodiorite, and a much thinned quartz vein. Gold and base metal values were low, up to $15 \mathrm{ppb} \mathrm{Au}, 11.4 \mathrm{ppm} \mathrm{Ag}$ and 2908 ppm Zn .

GEOCHEMICAL SURVEY

A total of 1295 soil samples were collected at 25 m station intervals from the three grids. Additional samples were taken along reconnaissance lines on the Lori claim. A layer of volcanic ash a few cm thick was often encountered near the top of the B horizon, and may have had a dampening effect on the geochemical signature of the soils, i.e. leading to lower than normal values. Although soil geochemical values seem low due to the effect of ash, anomalous areas are still apparent. Soil geochemistry plotted for $\mathrm{Cu}, \mathrm{Zn}, \mathrm{Pb}, \mathrm{As}$, and Ag are presented in Figures 12-25. The mean maximum and standard deviations for the soil assay data are presented below:

EMEMENT.	MINMMUM	MAXIMOM	MEAN	SHO. DEVAATION
Au	2.5 ppb	1971 ppb	9.2 ppb	60.84
Ag	0.1 ppm	33.3 ppm	0.22 ppm	0.958
As	2.5 ppm	117 ppm	10.1 ppm	6.94
Cu	0.5 ppm	486 ppm	22.1 ppm	19.59
Pb	1.0 ppm	2943 ppm	19.7 ppm	83.76
Zn	0.5 ppm	1804 ppm	106.0 ppm	85.43

DAD GRID

The higher copper values are concentrated mainly on the west side of the grid. Elongate E-W anomalies occur over the Dad adit (especially downslope) and 250 m north, perhaps indicating parallel structures. An interesting copper high occurs on L1300E, between 1850 N and 2000 N at the western margin of the grid. This series of high copper values ($>80 \mathrm{ppm}$, to a maximum of 109 ppm) should be ground checked, although the slope is likely talus covered.

The strongest Zn anomalies occur over the Dad adit (269 ppm maximum) and the smaller adit to the south, and also downslope from the Dad adit. There seems to be a slight E-W elongation of two anomalies North of the Dad adit, perhaps indicative of a mineralized structure. The Pb geochemistry is very spotty (62 ppm maximum at Dad adit), although there is an interesting anomaly 200 m east and
upslope of the smaller adit south of the Dad adit. It is likely that the lead background level is lower on this grid, as the 15 ppm contour (not shown) do show fair agreement with zinc.

Weak arsenic anomalies occur south of the Dad adit, and in the SW corner of the grid. The maximum value is only 20 ppm .

Silver and gold values are weak and very spotty with a maximum of 3.7 ppm and 71 ppb respectively.

GABE/W\#1 GRID

Copper values are fairly erratic overall, with a maximum of 118 ppm at the Dollar Mine workings. Anomalies occur northeast of the Dollar Mine at the north end of line 1300E, and at 2700E, 8300N.

Lead and zinc values on this grid are noticeably higher than the others. In addition to the Dollar Mine area, there are three main anomalous areas: the NW corner of the grid (L600E-700E), just NW of the Dollar Mine, and at approximately $7700+50 \mathrm{~N}$ on lines 700 E and 800 E . Elevated lead values are in good agreement with zinc, and the east side of the grid (lines $1100 \mathrm{E}-1400 \mathrm{E}$) is generally $>20 \mathrm{ppm} \mathrm{Pb}$. A large Pb anomaly occurs south of the Dollar Mine on line 1200E.

In contrast to Pb , the As values seem higher on the west side of the grid. A significant anomaly on lines 700 E and 800 E between 8100 N and 8300 N partly corresponds with elevated Cu .

Although a peak silver value of 33.3 ppm occurs at the Dollar Mine, the general trend of the zone is not well outlined by Ag. This is in contrast to past biogeochemical studies (Morrison, 1990) (Figure 9). Anomalies do exist at the north end of lines $700 \mathrm{E}-900 \mathrm{E}$, and just south of the Dollar Mine workings on line 100 E . Gold soil geochemistry does show elevated values around the Dollar Mine workings (maximum 1971 ppb Au). Further Au soil anomalies occur at lines $600 \mathrm{E}-800 \mathrm{E}$ between $8200 \mathrm{~N}-8400 \mathrm{~N}$, lines $700 \mathrm{E}-800 \mathrm{E}$ at 7800 N , I100E-1200E at 7900 N , and I400E at $7600+50 \mathrm{~N}$.

Generally, there are two main areas of multi element anomalies. The first is in the vicinity of the Dollar Mine workings, to the south and downslope to the east, probably at least partly due to dispersion from the main zone. The second area is northwest of the Dollar Mine, near the W\#1/One Gun claim boundary, upslope from the Dollar Mine. This area merits further investigation.

DAD E GRID

Copper anomalies occur on the east end of lines $2500 \mathrm{~N}-2800 \mathrm{~N}$, the west end of lines $1800 \mathrm{~N}-2000 \mathrm{~N}$, and just south of the Cabin adits. The other showings on the grid lack strong Cu anomalies, although a maximum of 486 ppm Cu was obtained near the T-1 trench.

Lead and zinc anomalies show a general agreement although Zn is more widespread. The Cabin adits showing and group of 3 adits 500 m south of the T-1 trench have good geochemical lead signatures with maxima of 106 ppm and 104 ppm Pb respectively. The anomalies at the T-1 trench are very localized, however. A strong zinc anomaly occurs along the east side of the grid, to a maximum of 509 ppm , particularly between the Cabin adits and T-1 trench. This is likely due to downslope creep and dispersion from showings uphill to the west. Further Zn anomalies are present on the west end of line $3100 \mathrm{~N}, 300 \mathrm{~m}$ NW of the T-1 trench on line 2800 N , and on L1800N.

The silver anomalies occur just downslope from the T-1 trench (to 3.4 ppm) and in the area SE of the three adits 500 m to the south of the $\mathrm{T}-1$ trench. The latter anomalies are coincident with Cu .

Some larger arsenic anomalies occur along lines $3000 \mathrm{~N}-3200 \mathrm{~N}$, to a maximum of 25 ppm As, and include the Cabin adits. At the east end of lines 2700 N and 2800 N are anomalies coincident with Cu. In general the anomalous areas are restricted to the north part of the grid.

GEOPHYSICAL SURVEY

The established grids were used to conduct total field magnetics and VLF-EM surveys over the area. The VLF-EM survey was performed with a Geonics Ltd. EM-16 instrument, using Seattle as the transmitting frequency. The uncorrected dip angle data is presented in Figures 41-43. The data was Fraser filtered and dip angle profiles were plotted over the corresponding grids (Figure 47-49). Unfortunately, in the case of the Dad E grid, survey lines were oriented E-W, thus making it difficult to delineate E-W structures in the area. Total field magnetics were measured with a Scintrex ENVI-MAG proton magnetometer. Total field measurements are presented in Figures 38-40. A dedicated base station was established to take continuous readings over the day to correct for diurnal variation. The raw data was processed into plottable contoured form by T. Hasek, P.Eng. Contoured magnetic plots are shown on Figures 44-46.

MAGNETOMETER SURVEYS

DAD GRID

The total field magnetic data is presented in Figure 44. The magnetic relief is on the order of $400-500 \mathrm{Nt}$ (gammas). The strong gradient between lines 1400 E and 1300 E is likely due to technical problems and not considered reflective of geology. In general, the southeastern quadrant of the grid has somewhat higher magnetics than the balance of the area, and relative lows occur on the northeast and northwest corners. A very strong magnetic low occurs at 1500 N between 1300 E and 1400 E . This anomaly is also apparent from the vertical gradient data. It's significance and geologic validity are not known.

GABE-W\#1 GRID

The total field magnetic data are presented in Figure 45. The total field data are limited in range, with a relief of 400 Nt (gammas). The trend of the shear - vein zone at the Dollar Mine corresponds roughly to a magnetic high centered at $800+75 \mathrm{~N}$ and 1200 E . A similar anomaly is found approximately 200 m to the northwest at $8200+75 \mathrm{~N}$ and $1000+00 \mathrm{E}$.

DAD E GRID
The total field magnetic data are presented in Figure 46. The Dad E grid data has the highest magnetic range of over 1900 Nt (gammas) and in turn provides the most information. Two magnetic highs are centered at approximately $3300 \mathrm{~N}, 1900 \mathrm{E}$ and $2000 \mathrm{~N}, 2150 \mathrm{E}$. These highs seem to be connected by a series of N-S and E-W trending linears. A well defined E-W high trends across the grid from 2200N to 2000 N . Lesser E-W anomalies occur on lines $2400 \mathrm{~N}-2500 \mathrm{~N}$ between 1500 E and the east side of the grid, and between 1100 E and 1400 E on line 1800 N . Since the grid lines are also $\mathrm{E}-\mathrm{W}$, it is possible that these features may be artificial, although the high at the west side of the grid on line 2100 N corresponds well with outcropping mafic dykes, known from past surveys to have a positive magnetic signature. North trending anomalies occur between 1600 N and 2400 N and 2000 E to 2200 E ; and a second occurs between 2800 N and 3400 N from 1800 E to 1900 E . In a general sense, the magnetic high areas correspond quite well to areas of outcrop However, the Eocene Coryell syenite dyke does not appear to be differentiable from the Jurassic Nelson Plutonics.

Magnetic low anomalies are minor, although an interesting north trending anomaly occurs between lines 2600 N and 2900 N at 1200 E .

Generally, the similarities between the various intrusive bodies make geologic interpretations based on magnetics difficult. The best correlation seems to be between relative magnetic highs and areas of outcropping rock, with much of the grid areas being magnetically quiet. Possible linear magnetic highs may be related to mafic dykes on the Dad E grid. At the T-1 trench, mineralization is apparently related to the mafic dyke contacts, therefore these anomalies may be of some importance.

VLF-EM SURVEY

DAD GRID
The Fraser filtered profiles plotted over the Dad grid are shown in Figure 47. A number of northeast and northwest - trending anomalies are apparent. There is no apparent anomaly directly over the Dad adit mineralization, but a fairly strong northwest trending conductor occurs about 100 m east of the portal, and this could correspond with alteration and veining observed at the far end of the workings (Figure 8).

GABE - W\#1 GRID

The Fraser filtered profiles plotted over the Gabe - W\#l grid are shown in Figure 48. Dominantly northeast - trending anomalies are apparent. These are essentially parallel with the mineralized shear vein system exposed by the workings of the Dollar Mine. Offsets of the northeast trending features may be due to later faulting.

DAD E GRID
The Fraser filtered profiles are presented in Figure 49. There are many small anomalies and several longer ones, oriented generally northeast and northwest. A strong anomaly is not observed over the T-1 trench area, however this may be because the grid lines were oriented parallel to the east-west strike of the mineralized veins, thus making them difficult to delineate. Just south of the T-1 trench is a major northwest - trending structure that coincides with Logan Creek, and likely represents a fault.

RECOMMENDATIONS

In light of the previous work and the results of this work program, the Cranberry Ridge properties seem to have a good potential for hosting precious metal vein deposits. In order to follow up on the results of the current program, a number of recommendations can be made:

1. Cleaning out and mapping - sampling of Dad and $\mathrm{W}-1$ workings, with careful attention paid to structural details.
2. Resample T-1 trench, and other workings that returned good values or have associated geochemical anomalies.
3. Follow up geochemical anomalies not associated with known showings. Cat stripping or trenching will be required. Geochemical anomalies at the edges of gridded areas should be further defined with additional soil sampling.
4. Review past and current VLF-EM survey data, and follow up on most promising anomalies. Local areas may be resurveyed with 50 m line spacings to better define possible ore - related structures.
5. Mapping and prospecting should be continued over areas not investigated during the current program.
6. Following expanded VLF-EM surveys, structurally detailed mapping and careful sampling, and followup of existing anomalies with trenching or stripping, a series of drill holes may be prioritized. Initially these should be on the order of 250-400 feet long, and further holes may be planned if intial results are favourable.

1

REFERENCES

B.C. Minister of Mines	Annual Reports, Inyo-Ackworth: 1923 (p. A184), 1925 (p. A199), 1930 (p. 220), 1933 (p. 154), 1966 (p. 191)
Beckman, H. and Smith, E.R (1973)	Argentia Option - Report on Geophysical Surveys; BCMEMPR Assessment Report \#4384
Crowe, G.G. (1985)	Diamond Drilling Report on the Goldbug Group; BCMEMPR Assessment Report \#14317
Kallock, P. and Goldsmith, L.B. (1980)	Geological Investigation of Sun and Moon Mineral Claims; BCMEMPR Assessment Report \#8916
Kim, H. (1981)	Report on the 1981 Geological and Geochemical Surveys of the Dell-Kuz Claims: BCMEMPR Assessment Report \#9557
Kregosky, R. (1981)	Prospecting Report on the Bill Claim: BCMEMPR Assessment Report \#10044
Little, H.W. (1961)	Geology, Kettle River (West Half), British Columbia; Geological Survey of Canada, Map 15-1961
Lloyd Exploration Ltd. (1970)	Geological, Geochemical and Geophysical Report, Carmi Area; BCMEMPR Assessment Report \#3740
Morrison, M. (1979)	A Report on Surface Geological Mapping of the W 1 and W 2 Mineral Claims; BCMEMPR Assessment Report \#7358
Morrison, M. (1990)	Biogeochemical Assessment Report on the W 1 and W 2 Mineral Claims; BCMEMPR Assessment Report \#****
Rincke, L (1915)	Ore Deposits of the Beaverdell Map Area, Geological Survey of Canada Memoir 79
Saunders, C.R. (1971)	Geochemical Report on a Portion of the Doorn Property; BCMEMPR Assessment Report \#3110
Smith, E.R. (1973)	Geological Report on the Argentia Property; BCMEMPR Assessment Report \#4385
Smith, E.R. (1975)	Report on Geologic and Magnetic Surveys on the Doorn Group; BCMEMPR Assessment Report \#5441
Sookochoff, L. (1990)	Geochemical and Geophysical Assessment Report on the Y Claim Group; BCMEMPR Assessment Report \#20849
Tempelman-Kluit, D.J. (1989)	Geology, Penticton, British Columbia; Geological Survey of Canada, Map 1736A, scale 1:250 000
Vancouver Stock Watch	News Release - Apollo Development Inc. - June 4, 1991
White, W.H. (1949)	The Beaverdell Silver Camp, Minister of Mines, B.C., Annual Report, pp. 138-148

STATEMENT OF QUALIFICATIONS

I, Leonard Gal, of Kelowna, British Columbia hereby certify that:

- I am a Professional Geoscientist registered in good standing of the Association of Professional Engineers and Geoscientists of British Columbia.
- I am a graduate of the University of British Columbia, with a B.Sc. in Geology (1986);
- I am a graduate of the University of Calgary, with a M.Sc. in Geology (Metamorphic Petrology) (1989);
- I have been engaged in geological work more or less continuously since 1986, in British Columbia, the Northwest Territories, Saskatchewan and the United States;
- The information in this report is based on published and unpublished reports on claims now covered by the CRANBERRY RIDGE Property, on the results of a work program conducted on the Property by White Wolf Explorations Ltd. from September to November 1995, and on a personal visit to the property from November 10 to 12,1995 .;
- I have no interest in the CRANBERRY RIDGE Property, or any other property within a 10 kilometer radius, or in the securities of St. Elias Mines Ltd., nor do I expect to receive any

Signed this 31 day of June, 1996.
Leon an val
Leonard Gal M.Sc., P. Geo.

CRANBERRY RIDGE PROPERTY

COST of WORK PROGRAM - PHASE I

DESK WHULON	10 4 ES	W4TE	S4B Y YOTAL
Leonard Gal, M.Sc, P. Geo.	Nov 9 - Nov 13	4 days@ \$375.00	\$1,500.00
M.H. Sanguinetti, P.Eng.	Sept 8-12	Contract Rate inclusive	1,999.59
John Young, B.Sc. (Geology)	Aug 26 - Nov 15 various dates	45 days @ \$275.00	12,375.00
Gerard Gallissant, B.Sc. (Geography)	Aug 26 - Nov 15 various dates	56 days @ \$265.00	14,840.00
Alex Smith - field tech	Aug 26 - Nov 15 various dates	42 days@\$200.00	8,400.00
Peter Brampton - field tech	Aug 26-Sept 17	21 days @ \$200.00	4,200.00
Crew board (food)		172 man/days @ \$ $52.00 \mathrm{~m} / \mathrm{d}$	8,944.00
Camp rental	$1 \times 12 \times 14,1 \times 10 \times 12$ and $1 \times 14 \times 16$ tents, c/w propane heat-stove, tarps, cots, kitchen equipment, dimension lumber to construct camp, 4 kw \& 600 watt generators, electrical hand tools, camp chain saw	$\begin{aligned} & \text { 2.5 months@ } \\ & \$ 2,650.00 / \text { month } \end{aligned}$	6,625.00
Vehicle rentals (2) 1 ton 4×4 crewcabs	Aug 26 - Nov 15 various dates	60 days @ \$135.00	8,100.00
VLF-EM rental	Geonics EM-16	1 month @ \$750.00	750.00
Magnetometer \& related equipment rental	Scintrex Envi MagGradiometer \mathbf{c} / \mathbf{w} Base Station - 486 portable computer etc.	$\begin{aligned} & \text { 3 weeks -@\$725.00 + set up } \\ & \$ 200.00 \end{aligned}$	2,375.00
ATC rental	Honda 250cc - Big Red	52 days @ \$30.00	1,560.00
Survey supplies, fuel \& oils (consumable)	Flagging, Topofil, sample bags, pickets etc.		1,520.00
Analytical analysis (Bondar Clegg Inchape) North Vancouver	All samples: Au by FA c/w AA finish 34 element ICP Analysis	1,295 soils samples 94 rocks samples	23,273.62
Drafting \& digital base map prep	Lumina Drafting \& Norman Wade		4,500.00
Data plot \& processing	in house labour (John Young)		1,185.28
Communications	Long Distance phone \& facsimile charges		232.51
Freight	Greyhound Bus	samples and supplies	119.00
Engineering	L.P. Gal, M.Sc., P.Geo.	report preparation	3,200.00
Compilation of previous data	B.C. Yukon Chamber of Mines, BC Geological Branch		325.00
Project supervision office overhead			3,976.00
SUBTOTAL			\$110,000.00
GST	\#R137581930	\$110,000@ 7.0\%	7,700.00
TOTAL			\$117,700.00

From the totals in the table above, costs are apportioned between the Dad Group (43 units) and the Cranberry Ridge Group (100 units) in the following manner: Geophysics (magnetometer and VLF surveys) are divided 16% to Dad Group, 84% to Cranberry Ridge Group (because the Dad Grid was 7 line $\mathrm{km}, 16 \%$ of total). Geochemical assay costs and freight are divided 22% to Dad Group, 78% to Cranberry Ridge Group, as the 287 soil samples and 20 rock samples from the Dad Group represent 22% of the total. All other categories are divided 30\% Dad Group, 70\% Cranberry Ridge Group, as the 43 units of the Dad Group are 30% of the 143 unit total. Apportioning the costs on this basis results in expenditures of $\$ 30,691.09$ on the Dad Group and $\$ 79,308.91$ on the Cranberry Ridge Group, exclusive of G.S.T.

APPENDIX 1

ROCK SAMPLE DESCRIPTIONS

DAD CLAIM

DAD ADIT (See Figure 21)
Dad-1: \quad Selected grab. Vein material from dump at portal, white and blue ribbon-banded quartz with pyrite, galena, chalcopyrite and sphalerite. ($1.7790 \mathrm{z} / \mathrm{T} \mathrm{Au}, 4.9 \% \mathrm{Zn}$).
Dad-2: $\quad 20 \mathrm{~cm}$ channel. Quartz vein on shear crossing portal with pinch and swell inclusions, pyrite, chalcopyrite, malachite and galena.
Dad-3: $\quad 10 \mathrm{~cm}$ channel. Quartz vein in side drift, sheared, with pyrite, chalcopyrite, galena and sphalerite in gouge.
Dad-4: $\quad 10 \mathrm{~cm}$ channel; Narrow, sheared quartz vein with pyrite, galena, sphalerite and chalcopyrite.
Dad-5: $\quad 2.5 \mathrm{~cm}$ channel. Narrow quartz veinlet with trace amounts of sulphide.
Dad-6: $\quad 15 \mathrm{~cm}$ channel. Sheared granodiorite with trace pyrite, irregular quartz vein.
Dad-7: $\quad 10 \mathrm{~cm}$ channel. At end of stub, quartz vein of $1-3 \mathrm{~cm}$ width in shear, minor pyrite.
Dad-8: $\quad 10 \mathrm{~cm}$ channel. Quartz vein on back near end of drift with pyrite, limonitic staining (0.326 oz/T Au).
Dad-9: $\quad 20 \mathrm{~cm}$ channel. Quartz vein with 5 cm of limonitic and chloritic sheared gouge on margins, strikes parallel to tunnel, pyrite and minor malachite stain ($0.530 \mathrm{oz} / \mathrm{T} \mathrm{Au}$).
Dad-10: $\quad 32 \mathrm{~cm}$ channel. White quartz vein in tunnel mouth, pinch and swell, with pyrite and malachite.
BDRL-17: $\quad 15 \mathrm{~cm}$ chip. $15-20 \mathrm{~cm}$ quartz vein, shallow dipping and cut off by opposite dipping shear. From $15-20 \mathrm{~m}$ into adit, at back ($1.193 \mathrm{oz} / \mathrm{T} \mathrm{Au}$).
BDRL-18: $\quad 12 \mathrm{~cm}$ chip. Quartz vein with malachite in rusty shear.
BDRL-19: Grab. $8-20 \mathrm{~cm}$ quartz vein at crosscut. Partly brecciated and broken by small faults (1.807 oz/T Au).
BDRL-20: Grab. Quartz vein material from main dump at portal with galena, pyrite, arsenopyrite ? (0.322 oz/T Au).

DAD MINOR ADIT (400M SOUTH OF MAIN ADIT)

DAD 1: $\quad 40 \mathrm{~cm}$ chip. Quartz vein 35 cm at $030 / 70$

UNNAMED DAD PIT (at crest of ridge)
Dad-11: Grab. Sugary and vein quartz in altered gneissic? granodiorite, sheared, with traces of pyrite. BDRL-23: Grab. Silicified, rusty intrusive with thin vertical quartz veinlet. From $2 x 3 m$ prospect pit.

DAD - DUCKY CLAIM LINE AREA
BDRL-21: 1m chip. Slightly rusty shear zone with thin quartz lenses in gneissic granodiorite.
BDRL-22: $\quad 1 \mathrm{~m}$ chip. Shear-fracture zone in gneissic granodiorite with 40 cm quartz vein, slightly pyritic.
BDRL-24: Grab. Silicified, highly fractured granodiorite with quartz veinlets.

GABE - W\#1 CLAIMS

INYO-ASHWORTH (DOLLAR) MINE (See Figure 22)
T-10: Selected grab. Quartz vein rubble in trench mineralized with pyrite, sphalerite, galena, arsenopyrite(?) ($8.5 \% \mathrm{Zn}$).
T-11: $\quad 1 \mathrm{~m}$ channel. Sheared pyritic fissure vein on back at decline.
T-12: $\quad 1 \mathrm{~m}$ chip. Quartz with limonite, pyrite, galena sphalerite at 23 m on S wall of adit.
T-13: selected grab. Quartz vein material on lower dump with pyrite, galena, limonite.
T-14: selected grab. Vuggy quartz with pyrite from dump beside main shaft.
Gabe 1_{A} : Grab. pyrite, sphalerite in quartz vein from trench.
Gabe 2_{A} : $\quad 2 \mathrm{~m}$ chip. Limonitic shear at adit portal.
Gabe 5_{A} : $\quad 2 \mathrm{~m}$ chip. Shear at portal.
Gabe 5_{B} : $\quad 3 \mathrm{~cm}$ chip. Quartz vein at $240 / 80,8 \mathrm{~m}$ into adit.
Gabe $5_{\mathrm{C}}: \quad 3 \mathrm{~cm}$ chip. Quartz vein at $240 / 80,18 \mathrm{~m}$ into adit.
BDRL-09: $\quad 40 \mathrm{~cm}$ chip. 4 m inside of upper adit, on back, across rusty fracture zone hosting 15 cm pyritic quartz vein.
BDRL-10: $\quad 2.5 \mathrm{~m}$ chip. Between two shear - fracture zones exposed at portal of adit. More or less same as T-11 above. Quartz vein thin but some pods of galena adjacent.
BDRL-11: Grab. $1.5-2.5 \mathrm{~m}$ quartz vein from 5 m within lower adit. Pyrite and galena noted.
BDRL-12: $\quad 25 \mathrm{~cm}$ chip. Rusty shear zone at portal of lower adit, with 1.5 cm quartz vein.
BDRL-13: Grab. From dump at shaft, banded coarse pyrite and fine galena in quartz.
BDRL-14: Grab. Rusty, silicified and bleached intrusive with thin quartz vein from near collar of small timbered and flooded shaft.
BDRL-15: Grab. From dump at main shaft. Vuggy, rusty quartz vein and bleached, rusty intrusives.

DAD S CLAIM

SOUTHEASTERN (DAD S) ADIT

SA-1: Grab. Quartz vein stringers with pyrite in shear in diorite at lower adit.
SA-2: $\quad 70 \mathrm{~cm}$ chip. Quartz vein within limonitic shear, silicified hanging wall at upper adit.
BDRL-01: Grab. Dump at decline above main shaft. Pyrite, chalcopyrite, sphalerite and trace galena in chlorite - carbonate altered intrusive.
BDRL-02: $\quad 1.5 \mathrm{~m}$ Chip. Across rusty fracture zone with trace galena.
BDRL-25: Grab. 40 m into main adit, north wall. Chloritic altered, rusty coated intrusive with abundant pyrite.
BDRL-26: $\quad 10 \mathrm{~cm}$ chip. 13 m into adit, south wall. Narrow rusty fault ? zone with quartz, chlorite and carbonate alteration, pyrite cubes.
BDRL-27: $\quad 20 \mathrm{~cm}$ chip. Rusty fracture zone on the south side of the decline portal.
BDRL-28: Grab. Slightly chlorite altered, pyritic intrusive rock adjacent to BDRL-27.
TR1 1_{J} : $\quad 5 \mathrm{~cm}$ chip. Quartz vein at $266 / 60 \mathrm{~S}$.
$T R 1_{K}: \quad 50 \mathrm{~cm}$ chip. Silicified quartz material with pyrite, galena at $220 / 84 \mathrm{~S}$.
$T R 1_{\mathrm{L}}$: Grab. Quartz vein material from pit, no visible sulphides.
TR1 1_{M} : Grab. Quartz - carbonate vein at 040/66.

T-1 TRENCH (See Figure 23)

T-1: Grab. Quartz vein material at 6 m station, pyritic.
T-2: $\quad 40 \mathrm{~cm}$ chip. Sheared limonitic quartz vein at 17 m in silicified diorite.
T-3: $\quad 1 \mathrm{~m}$ chip. Intersection of fractures with quartz vein, andesitic dykes and diorite with limonite at 25 m .
T-4: $\quad 15 \mathrm{~cm}$ chip. Contact of dyke and diorite at 32 m , fractured with malachite, azurite on fracture faces and quartz veinlets in pyritic shear along contact. Andesitic dyke is pyritic.
T-5: $\quad 1 \mathrm{~m}$ grab. Copper stained granodiorite with very minor quartz veins at 39 m . Local chalcopyrite in quartz veining and quartz stockwork.
T-6: $\quad 0.5 \mathrm{~m}$ grab. quartz stockwork in andesite, pyritic, pinch and swell quartz stringers with pyrite at 47 m .
T-7: $\quad 15 \mathrm{~cm}$ grab. Quartz stringers with pyritic margins in mixed volcanic at 65 m , sheared.
$\mathrm{T} 1_{\mathrm{A}}$: Grab. 1 cm quartz vein at $280 / 50$ with pyrite.
Tl_{B} : Grab. Mafic dyke with pyrite.
$\mathrm{T} 1_{\mathrm{C}}$: Grab. Quartz vein $340 / 70$ with pyrite.
Tl_{D} : Grab. 3 cm quartz vein at 280/70.
Tl_{E} : Grab. Altered granodiorite with malachite, azurite.
$\mathrm{T} 1_{\mathrm{F}}$: Grab. Altered granodiorite with pyrite.
BDRL-03: Grab. 5m east of sample T-2 above. Rusty, bleached, altered intrusive rubble.
BDRL-04: $\quad 40 \mathrm{~cm}$ chip. Rusty quartz vein with pyrite.

T-2 TRENCH

T-8: $\quad 20 \mathrm{~cm}$ chip. Quartz vein in varying from 5 cm to 30 cm wide in pyritic, malachite stained shear in granodiorite at 16 m .
T-9: 30 cm chip. Silicified fracture zone at 32 m end of trench, contact of andesite dyke and granodiorite, altered kaolinitic and quartz stockwork with pyrite and malachite ($3.6 \% \mathrm{Zn}$).
$T 2_{\mathrm{A}}$: \quad Grab. 6 cm quartz vein at 230/60. Oxidized with pyrite.
$\mathrm{T} 2_{\mathrm{B}}$: Grab. 6 cm quartz vein at 230/60. Oxidized with pyrite.
T2 ${ }_{\mathrm{C}}$: Grab. Bleached granodiorite with pyrite.
BDRL-05: $\quad 15 \mathrm{~cm}$ chip. Rusty fractured granodiorite with thin quartz stringers. pyrite, malachite, chalcopyrite noted.

T-3 TRENCH

$\mathrm{T} 3_{\mathrm{A}}: \quad$ Grab. Altered granodiorite with pyrite.

CABIN ADITS

TR1 1 : Grab. From dump of northernmost adit. Pyrite rich quartz vein material.

LORI CLAIM

GOLDBUG SHOWING ADIT (See Figure 24)
Lori-2: $\quad 13 \mathrm{~cm}$ chip. Narrow veinlet at end of short adit with local pods of massive pyrite to 5 cm .
Lori-3: \quad Selected grab. Quartz vein material with pyrite and epidote from dump, vuggy.
BDRL-06: Grab. Quartz vein material from dump, pyritic.

TEST PITS
BDRL-07: Grab. 15 cm rusty granodiorite hosting quartz stringers
BDRL-08: Grab. Representative sample from rusty granodiorite with some pyritic quartz vein.
TR1 1_{U} : Grab. Quartz vein with pyrite.
TR1 1_{V} : Grab. 3 cm quartz vein at 210/50
TR1 ${ }_{\text {w }} \quad$ Grab. Silicified diorite with pyrite.

BERRY CLAIM

BOSTON SHOWING
BDRL-29: $\quad 2.5 \mathrm{~m}$ chip. Rusty bull quartz vein.
BDRL-30: 2 m chip. rusty, chloritized granodiorite with quartz stringers; chlorite - carbonate epidote - hematite alteration.
BDRL-31: $\quad 1.2 \mathrm{~m}$ chip. Rusty altered granodiorite with quartz veinlets in test pit above collapsed adit.

TR1s: Grab. Altered granodiorite with pyrite.
$\mathrm{TR1}_{\mathrm{T}}$: $\quad 1.5 \mathrm{~cm}$ chip. Quartz vein in granodiorite at $084 / 60 \mathrm{~S}$.

REMAINDER OF PROPERTY

$\mathrm{TRI}_{\mathrm{A}}$: \quad Grab. Mafic dyke with pyrite.
TR_{B} : \quad Grab. Altered granodiorite with pyrite.
TR1c: \quad Grab. 1.5 cm quartz vein at $230 / 50$ in altered granodiorite.
TR1 ${ }_{D}$: Grab. Quartz vein float from test pit.
TR1 ${ }_{\mathrm{E}}$: \quad Grab. Altered granodiorite with pyrite, quartz stringers.
$\mathrm{TR1}_{\mathrm{G}}$: $\quad 10 \mathrm{~cm}$ chip. Quartz vein with pyrite at $248 / 50$.
TR_{H} : $\quad 25 \mathrm{~cm}$ chip. Quartz vein at $250 / 43 \mathrm{~N}$.
$T R 1_{\mathrm{N}}$: \quad Grab. Quartz vein float from high-grade dump at pit.
$\mathrm{TRI}_{\mathrm{O}}$: $\quad 15 \mathrm{~cm}$ chip. Quartz vein $164 / 54$ at adit.

APPENDIX II

Geochemical Lab Report

Rock Samples

Inchcape Testing Services

CLIENT: WHITE WOLF EXPLORATION
REPORT: V95-01098.0 (COMPLETE)

SAMPLE ELEMENT Ta Ti Zr
NUMBER $\quad \therefore$ UNITS!PPM PCT PPM
$95-D A D-M-02 \quad<10<01<1$
$95-D A D-M-03 \quad<10<.01<1$
$95-$ DAD-M-04 * $<10<.01<1$
$95-D A D-S-M-01 \quad<10<.01<1$

Geop ${ }^{\circ}$?mical

IENT: WHITE WUL直EXPLORATION
PROJECT: NONE GIVEN
DATE PRINTED: 26-SEP-95
 Inchcape Testing Services

Pondar Clegg Inchcape Testing Services

PROJECT: NONE GIVEN
DATE PRINTED: 26-SEP-95

SAMPLE
NLMBER
TORL-18
TORL-19
TORL-20
TORL-21
TORL-22
TORL-24
TORL-25
TORL-26
TORL-27
TORL-28
TORL-29
TORL-30
IORL-31
IORL-32
ORL-33
ORL-34
ORL-35
ORL-36
ORL-37
ORL-38
ORL-39
ORL-40
ORL-41
ORL-42
5-DAD-E-G-01
5-DAD-E-M-01
S-DAD-G-01
i-DAD-G-02
i-DAD-G-03
;-DAD-M-01

[^0]
Bondar Clegg
 Inchcape Testing Services

Bondar Clegg Inchcape Testing Services

CLIENT: WHITE WOLF EXPLORATION
REPORT: V95-01630.0 (COMPLETE)

PROJECT: LPG-CIQUENAS
DATE PRINTED: 4-DEC-95

Bondar Clegg Inchcape Testing Services

PROJECT: LPG-CIQUENAS DATE PRINTED: 4-DEC-95 PAGE 2A

CLIENT: WHITE WOLF EXPLORATION	PROJECT: LPG-CIQueNAS	
REPORT: V95-01630.0 (COMPLETE)	DATE PRINTED: 4-DEC-95	PAGE 2A

CLIENT: WHITE WOLF EXPLORATION

PROJECT: LPG-CIQUENAS
DATE PRINTED: 4-DEC-95

```
SAMPLE ELEMENT Ta TIL_ Zr
NMBER
    UNITS PPM PCT PPM
    <100,10. 3
```

CITENS: WHITE WOTF EXPMCRATICN								PROUBCT: CIOUNAS					
REPRPI: V95-01510.0 (OMPEEIE)								DAIE PRINTD: $14-\mathrm{NON}-95$				PPGE 2A	
SAMPIE	ELPMENT	Ag	Agot	Cu	ars	Pb	Zn	Mo	Ni	Co	Od		As
NMEER	UNITS	PPM	PRM	PPM	PCT	LPM	PM	PM	PM	PPM	PPM		FP1
P2 T2-C		5.1		2630		47	6027	18	9	5	219.8		\leq
R2 T3-A		0.2		82		8	220	11	10	2	2.8		\checkmark

CuTEN: WHLIE WOTF EXPICRATICN								PROJEI: CIOMNS					
FEPCRT: V95-01510.0 (COMPEEIE)								[ATE PRINIED: $14-\mathrm{MON}-95$				PRCE 2B	
SAMPLE	ELPMENT	Sb	Fe	Mn	Te	Ba	Cr	V	S\%	W	La	Al	Mg
NMMER	UNITS	PPM	PCI	PRM	EPM	PRM	PPM	PM	EPM	PMM	PPM	PCI	FCI
R2 T2-C		σ	1.09	1125	<10	179	199	8	Q 0	20	7	0.46	0.05
R2 T3-A		5	0.77	206	<10	50	162	14	< 0	Q0	17	0.52	0.18

CITEN: WHIE WIS EXPLCRATICN RFPRRI: V95-01510.0 (COMPLEIE)

SRMPLE	Empen	Ca	Na	K	Sr
NMEER	UNITS	RCI	PCI	PCT	PM
R2 T2-C		4.45	$\infty .01$	0.18	125
R2 T3-A		0.23	0.06	0.20	11

PROECT: CIQIENS DATE PRTNIED: 14-NON-95

PPGE 2C
$\begin{array}{rr}\mathbf{Y} & \mathbf{G a} \\ \operatorname{PPM} & \text { PRM } \\ 7 & Q \\ 3 & Q\end{array}$

CTIENT: WHITE WIF EXPICRATION

CuIDN: WHITE WOLE EXTHORATION
ROPCRT: V95-01510.0 (COMPLEIE)

SAMIE	ETPMENL	Sb	Fe	M	Te	Ba	Cr	V	Sn	W	La	Al	Mg
NMBER	UNIS	PPM	PCT	PRM	FPM	PPM	PRM	PPM	PM	PM	PRM	PCT	PCI
F2 ADIT-1		7	>10.00	1436	15	28	104	20	80	80	15	0.70	0.45
R2 DAD-1		5	0.66	147	<10	14	262	3	80	Q 0	-	0.11	0.02
R2 CABE-1		5	8.70	222	40	8	252	\checkmark	Q0	80	4	0.19	0.02
F2 Cabe-2A		\checkmark	4.05	1037	40	50	158	13	80	20	11	0.81	0.17
R2 CABE-5A		σ	1.89	1183	10	43	203	15	Q 0	Q 0	12	0.89	0.30
F2 CABP-5B		5	6.36	1158	40	13	178	<1	80	20	3	0.47	0.15
R2 CABE-5C		5	0.56	1561	40	15	207	4	80	80	5	0.37	0.06
R2 CABE-6A		σ	2.95	95	40	18	302	3	20	80	2	0.27	<0.01
R2 CABE-6B		5	6.64	165	40	22	251	<	80	Q0	\checkmark	0.27	0.01
R2 IRT-A		\checkmark	3.48	1465	10	74	115	23	80	Q 0	13	1.78	0.68
R2 TRT-B		\checkmark	0.40	198	40	10	340	3	Q 2	20	<	0.09	0.04
R2 TRT-C		5	3.40	1865	40	23	86	55	20	80	9	2.55	1.97
R2 TRT-D		6	0.39	245	<10	18	341	2	20	20	<	0.07	0.03
R2 TRI-E		\checkmark	>10.00	1708	34	7	47	15	33	20	55	1.08	0.46
PR TRI-F		σ	2.41	378	40	109	281	4	<0	80	2	0.28	0.17
R2 TRI-G		σ	3.01	343	40	44	267	11	20	81	6	0.86	0.35
R2 TRI-H		σ	0.69	80	40	102	347	2	80	80	1	0.07	40.01
PR TRI-I		\checkmark	4.43	117	25	16	346	\square	20	80	4	0.24	0.02
R2 TRI-J		σ	2.48	955	40	378	80	31	20	20	13	1.55	4.17
R2 TRIK		σ	5.57	94	40	33	205	8	80	80	3	0.34	0.03
R2 TRT-L		σ	4.06	581	40	26	144	17	80	80	5	0.70	0.47
R2 TRIM		5	0.41	5046	40	50	35	4	80	80	32	0.26	0.06
R2 TRI-N		5	1.22	214	40	32	153	20	20	80	7	0.49	0.13
R2 TRI-0		σ	0.76	270	40	42	169	8	20	80	19	0.79	0.19
R2 TRI-P		20	3.27	89	40	10	248	3	80	80	\checkmark	0.03	<0.01
R2 TRT-Q		$\checkmark 92$	>10.00	62	40	7	252	\checkmark	20	80	1	0.10	<0.01
R2 TRI-R		5	1.62	65	10	32	308	1	80	20	9	0.40	0.01
PR TRIS		\checkmark	5.45	1884	40	37	83	83	20	20	19	2.70	1.33
PR TRI-T		σ	0.60	64	40	6	406	3	20	20	4	0.09	<0.01
R2 TRI-U		5	3.13	213	40	46	105	13	80	80	12	0.66	0.15
PR TRT-V		5	2.75	205	40	66	298	7	20	20	6	0.52	0.03
P2 TRIW		5	2.99	851	40	70	194	10	20	20	14	1.01	0.03
PQ TIA		5	2.10	805	40	78	163	16	80	80	5	0.98	0.63
P2 TI-B		5	>10.00	205	35	309	32	34	31	80	38	0.84	0.23
R2 TI-C		5	>10.00	204	40	13	188	13	Q 2	80	3	1.07	0.51
R2 TI-D		5	5.93	231	40	15	136	7	80	80	3	0.72	0.27
R2 TI-E		5	1.78	1156	40	354	115	19	20	20	16	1.32	0.65
P2 TI-F		5	4.53	1282	10	88	71	73	80	80	13	2.18	1.85
P2 T2-A	-	5	4.32	250	40	28	168	11	20	80	2	0.88	0.35
2 T2-B		5	4.04	432	40	27	130	13	80	80	7	1.07	0.66

STMEE	Elment	Ca	Na	K	Sr	Y	Ga	Ii	Nb	Sc	Ta	Mi	$2 r$
MMEER	UNITS	ECI	PCT	PCI	PM	PRM	PMM	PRM	PM	PRM	PPM	PCI	PM
R2 ADIT-1		1.56	$\infty .01$	0.04	119	2	Q	7	2	σ	40	0.02	4
R2 DAD-1		0.08	< 0.01	0.02	5	<	Q	4	<	\checkmark	40	$\infty .01$	\square
R2 CABE-1		0.20	0.01	0.13	8	<	Q	4	4	\checkmark	<10	<0.01	\checkmark
P2 CAbs-2A		0.20	0.01	0.35	11	6	Q	6	4	σ	<10	<0.01	\checkmark
R2 CABE-5A		0.17	0.02	0.36	11	6	Q	6	<	\checkmark	<10	$\infty .01$	\downarrow
R2 CABP-5B		0.76	<0.01	0.18	24	2	2	6	4	6	<10	<0.01	<
R2 CAEE-5C		2.84	<0.01	0.19	30	2	Q	2	4	5	40	<0.01	$<$
R2 CABE-6A		0.02	< 0.01	0.19	4	\checkmark	Q	4	4	5	40	40.01	<
R2 CABE-6B		0.03	0.01	0.21	9	<	Q	4	4	5	<10	$\infty .01$	$<$
R2 IRI-A		0.72	0.06	0.33	107	5	Q	18	<	σ	40	0.03	4
R2 TRI-B		0.02	4.01	0.01	3	\checkmark	Q	1	4	6	40	<0.01	<
R2 TRLC		4.51	<0.01	0.12	157	6	Q	42	4	6	40	0.13	1
R2 TRI-D		0.32	8.01	4.01	9	2	Q	1	4	σ	40	$\infty 0.01$	<
R2 TRI-E		1.45	4.01	0.03	25	4	Q	4	2	6	<10	0.02	2
R2 TRI-F		0.72	<0.01	0.11	31	2	Q	3	<	σ	40	40.01	<
2 TRI-G		0.46	0.02	0.36	24	4	Q	7	4	σ	40	40.01	4
R2 TRIH		0.03	\$0.01	0.02	3	<	Q	1	4	σ	<0	4.01	\checkmark
R2 TRI-I		0.56	<0.01	0.15	9	1	Q	4	4	σ	40	4.01	4
R2 TRIJ		4.33	0.02	0.38	192	8	Q	17	4	σ	40	40.01	4
R2 TRI-K		0.05	0.03	0.22	108	1	Q	4	4	σ	40	<0.01	<
R2 TRI-L		0.12	0.04	0.18	13	4	Q	8	4	σ	40	<0.01	4
R2 TRIM		>10.00	0.02	0.12	1303	2	Q	2	4	5	40	<0.01	2
R2 TRI-N		0.69	0.08	0.09	48	6	Q	2	4	6	40	0.09	3
R2 TRI-0		1.56	0.07	0.21	46	2	Q	6	4	6	40	0.03	2
R2 TRI-P		0.06	<0.01	0.01	16	<	Q	2	\downarrow	\checkmark	40	0.01	<
R2 TRI-Q		0.11	<0.01	0.08	5	4	Q	1	1	5	40	40.01	4
R2 TRIR		0.06	0.02	0.29	5	<	Q	6	4	5	10	<0.01	2
R2 TRIS		1.17	0.05	0.84	34	12	Q	47	1	6	40	0.18	\square
R2 TRIT		0.02	<0.01	0.04	2	4	Q	<	4	4	$\checkmark 10$	40.01	4
R2 TRIU		0.24	0.06	0.25	34	3	Q	4	<	\checkmark	80	0.10	4
R2 TRI-V		0.11	0.02	0.30	30	1	Q	2	\checkmark	5	40	0.02	4
R2 TRIW		0.04	0.03	0.83	110	1	Q	1	4	σ	<10	0.08	2
R2 TI-A		1.58	<0.01	0.39	79	4	Q	9	\square	5	< 10	4.01	1
R2 TI-B		0.27	0.01	0.37	32	4	Q	5	2	6	40	6.01	<
R2 TI-C.		0.05	0.02	0.32	10	1	Q	9	1	σ	<10	<0.01	4
R2 TI-D		0.33	0.01	0.29	12	3	Q	6	4	σ	40	$\infty 0.01$	<
P2 TI-E		1.32	0.02	0.37	53	10	Q	13	4	5	40	40.01	1
R2 TI-F		2.56	0.02	0.34	68	9	Q	42	4	6	40	0.02	1
- T2-A		0.09	0.02	0.22	8	2	Q	7	4	6	$\checkmark 10$	$\infty 0.01$	1
< T2-B		-0.17	0.02	0.30	5	5	Q	10	4	5	<0	<0.01	$<$

STMPIE	Elayen	Wh-150	WI4150	Au-150	Aut 150	Au Tot
M M ${ }^{\text {S }}$	UNISS	GM	g	OPI	OTI	OPI
FW ADIT-1		187.8	32.67	<0.001	<0.01	40.001
FW Dan-1		270.8	55.29	0.001	0.07	0.013
FW CABE-1		165.1	47.44	0.082	0.05	0.076
FW CABE-2A		189.2	50.06	0.018	0.02	0.018
FW CABE-5A		155.0	14.53	0.001	0.02	0.003
FW CABE-5B		159.1	83.10	0.010	0.01	0.008
FW CABE-5C		175.8	53.18	0.003	<0.01	0.003
FW CAEE-6A		124.2	63.12	0.006	0.01	0.007
FW CABE-6B		153.5	61.01	0.005	0.01	0.005
IW TRI-A		112.4	50.51	<0.001	0.01	0.002
FW TRI-B		166.7	53.56	40.001	0.01	40.001
FW TRI-C		184.6	63.24	<0.001	¢0.01	40.001
FW TRI-D		126.0	54.83	0.002	<0.01	0.003
FW TRI-E		114.4	59.89	<0.001	$\infty .01$	40.001
FW TRI-F		169.8	58.07	0.002	$\bigcirc 0.01$	0.001
W TRLC		110.8	40.77	<0.001	0.01	0.002
FW TRI-H		167.2	36.56	<0.001	<0.01	40.001
FW TRI-I		113.6	51.59	0.233	0.42	$0.292-$
FW TRIJ		217.0	26.18	0.001	<0.01	0.001
FW TRI-K		69.8	41.18	0.004	<0.01	0.003
FW TRI-L		141.6	7.73	0.011	$\bigcirc 0.01$	0.011
FW TRI-M		51.0	65.77	0.007	4.01	0.003
FW TRI-N		152.5	75.83	<0.001	4.01	0.002
FW TRI-0		135.2	47.74	<0.001	<0.01	40.001
FW TRL-P		274.7	32.74	0.001	0.01	0.003
FW TRI-Q		136.2	52.02	0.018	0.02	0.018
FW TRI-R		208.8	27.82	0.001	<0.01	0.001
FW TRIS		183.9	113.86	0.001	4.01	40.001
FW TRI-T		97.5	63.85	<0.001	<0.01	40.001
FW TRILU		174.3	59.53	<0.001	<0.01	0.001
FW TRI-V		131.7	24.83	0.007	<0.01	0.006
FW TRI-W		34.4	37.97	0.036	0.02	0.030
FW TT-A		118.9	86.19	0.021	0.02	0.023
FW TT-B		135.9	66.50	0.013	0.02	0.014
FW TI-C		129.8	17.24	0.008	<0.01	0.007
FW TT-D		229.9	62.94	0.028	0.02	0.028
WTI-E		147.4	36.54	0.001	0.01	0.002
NTI-F		198.2	74.52	0.011	0.01	0.012
FW T2-A		172.1	- 41.70	0.057	0.05	$0.054-$
FW T2-B		193.6	68.95	0.014	0.01	0.013

CIIENT: WEITE WOIF EXPICRITICN							PROECT: CIQENS	
REPMR1:	10.4 (0	(TEEIE)					DAIE PRDNILSD: $14-\mathrm{MON}-95$	PTCE
SAMPIE	ETPMENT	We-150	W14150	Au-150	Aut150	Au Tbe		
NMMER	UNITS	GM	g	OPI	OPI	WT		
KN T2-C		171.4	28.29	0.013	0.02	0.015		
WW TB-A		116.6	60.34	<0.001	<0.01	0.002		

APPENDIX III

Geochemical Lab Report
Soil Samples

Bondar Clegg
 Inchcape Testing Services

IENT: WHITE WOLP ${ }^{\text {PIEXPLORATION }}$
PORT: VY5-01352.0 (COMPLETE)

Geoc mical Lab
 Report

PROJECT: CIDUENAS DATE PRINTED: 24-OCT-95

MPLE
 UNITS PPB PPM PCT PPM PPM PPM PPM PPM PPM PPM PPM PCT PCT PCT PCT PCT PPM PPM PPM PPM PPM PPM PPM PCT PPM

BE LTOOE 8000+50N BE LTOOE $8000+75 \mathrm{~N}$ BE LTOOE 8100+00N BE LTOOE $8100+25 \mathrm{~N}$ BE LTOOE 8100+50N

$11<2$	18	20148	3	9	$8<.2$	<	22	<51.94	529	<10	127	7	35	<20	<20	10	2.12	0.52	0.29	0.02	0.13	27	3	<2	17	<1		<10	. 9	7
602	16	23158	4	10	$9<2$	5	24	<5 2.11	695	<10	127	8		<20	<20	10	2.16	. 0.56	0.	0.02	0.	29	3	<2	22	1		<10	10	2
$<5<2$	14	18132	3	8	$8<.2$	<5	22	<51.92	359	<10	99	8	37	<20	<20	10	1.73	0.52	0.31	0.02	0.19	28	3	<2	18	<1	<5	<10	0.11	5
210.3	18	29. 176	3	10	$8<.2$	< 5	29	< 2.20	414	<10	138	8	37	<20	<20	10	2.37	0.56	0.32	0.02	0.20	40	3	3	19	<1	<5	<10	0.09	7
$<5<.2$	14	19184	3	8	$17<.2$	<5	20	<52.79	1351	<10	238	8	47	<20	<20	15	2.12	1.01	0.68	0.01	0.18	63	7	<2	36	<1		<10	0.05	2
<50.9	11	335158	3	9	$7<.2$	\$5	20	<5 1.86	341	<10	90	9		<20	<20	10	1.35	0.49	0.27	0.02	0.14	28	2	<2	. 13	<1	\leq	10	09.	2
<0.3	20	23205	3	11	70.2	< 5	28	< 51.76	424	<10	126	8	29	<20	<20	14	$1: 68$	0.36	0.48	0.02	0.12	40	8	<2	22	<1	<5	<10	0.08	6
140.6	54	25149	3	10	10:<.2	< 5	32	<5 2.48	666	<10	81	9	48	<20	<20	23	1.69	0.69	0.61	0.03	0.19	44	15	<2	24	<1	<5	<10	0.09	7
240.9	35	17181	3	12	9 < 2	S 5	31	<5 2.26	413	<10	87	10	40	<20	<20	17	1.95	0.54	0.37	0.03	0.15	34	10	<2	31	<1	<5	<10	0.09	7
70.8	47	19126	3	10	$9<.2$	5 5	32	552.22	374	<10	54.	9	44	<20	<20	22	1.56	0.54	0.41	0.02	0.14	37	16	<2	23	<1	55	<10	0.09	5

BE LTOOE $8300+00 \mathrm{~N}$ 3E LTOOE $8300+25 \mathrm{~N}$ 3E LTOOE $8300+50 \mathrm{~N}$ 3E LTOOE $8300+$ TSN 3E LTOOE $8400+00 \mathrm{~N}$

< 51.6	133	34182	4	14	82.8	<5	48	<52.28	661	<10	109	8		<20	<20	24	2.22	0.41	1.32	0.03	0.12	60	22	<2	38	<1	$<5<1$	0.05	7
<50.6	58	13108	4	12	70.6	<5	33	<52.10	350	<10	73	11	36	<20	<20	21	1.66	0.47	0.63	0.03	0.15	41	14	<2	28	<1	$<5<10$	0.07	4
160.4	15	16250	2	10	80.6	<	24	< 21.99	553	<10	124	8	35	<20	<20	10	1.77	0.45	0.35	0.02	0.16	35	3	<2	14	<1	$<5<10$. 08	5
520.4	13	26324	3	10	80.9	5	16	52.16	43	<10	120	. 10			<20	11	1.57	0.58	0.29	0.02	0.16	31	2	<2	14	<1	<5<10	:09	2
<50.3	14	36532	2	9	61.1	<	14	<51.74	412		160	7	31	<20	<20	9	1.87	0.44	0.21	0.02	0.14	30	2	<2	18	<1	$<5<10$.09	5

Bondar Clegg
 Inchcape Testing Services

Geoctmical
 Lab
 Report

PROJECT: CIOUENAS
DATE PRINTED: 24-0CT-95 PAGE 4
 UNITS PPB PPM PCT PPM PPM PPM PPM PPM PPM PPM PPM PCT PCT PCT PCT PCT PPM PPM PPM PPM PPM PPM PPM PCT PPM

E L800E $7700+73 \mathrm{~N}$ E L800E $7800+00 \mathrm{~N}$ E L800e $7800+25 \mathrm{~N}$ E L800e $7800+50 \mathrm{~N}$ E L800e $7800+75 \mathrm{~N}$

240.7	17	99230	3	10	90.2	< 5	37	<52.39	$434<10$	70	7	40	<20	<20	142.55	0.51	0.3	0.01	0.10	29	6	2	19.				
<50.3	19	. 59298	4	10	91.0	<	30	< 22.21	$788<10$	172	8	36	<20	<20	152.61	0.47	0.36	0.02	0.13	41	7	<2	22	<1			09
140.2	11	12134	3	8	70.2	$<$	15	<5 1.84	$340<10$	64	8	37	<20	<20	111.34	0.43	0.30	0.02	0.13	25	4	<2	20	<1			10
70.3	13	17202	3	11	80.5	<5	22	<52.04	$339<10$	94	8	36	- 20	<20	111.76	0.44	0.26	0.02	0.12	27	3	<2	27	<1			. 10
<50.3	13	1293	3	8	$8<.2$	< 5	15	< 2.12	$286<10$	61	8	41	<20	<20	111.24	0.50	0.30	0.02	0.12	27	3	<2	22	<1	-5	<10	. 08

E L800E 7900+00N E L800E 7900+25N E L800E 7900+50N E L800E 7900+75N E L800E $8000+25 \mathrm{~N}$ E L800E 8000+50N E L800E $8000+75 \mathrm{~N}$ E L800E 8100+00N E L800E 8100+25N E L800E 8100+50N

E L800E 8100+75N E LBOOE $8200+00 \mathrm{~N}$ E LBOOE 8200+25N E L800E 8200+50N E L800E $8200+75 \mathrm{~N}$

E L800E 8300+00N三 L800E 8300+25N $\equiv L 800 E 8300+50 \mathrm{~N}$ \equiv L800E 8300+75 $\equiv \operatorname{L800E} 8400+00 \mathrm{~N}$

E L800E 8400+25N E L8OOE 8400+50N E L800E $8400+75 \mathrm{~N}$ E L800E 8500+00N E L900E 7500+OON

B-ndar Clegg

Inchcape Testing Services

Geoc ${ }^{\text {mical }}$ Lab Report

 3E L9OOE TSOO+5ON 3E L900E $7500+75 \mathrm{~N}$ 3E $1900 \mathrm{E} 7600+25 \mathrm{~N}^{-}$t 3E L900E 7600+50N

3E L900E $7600+75 \mathrm{~N}$ iE LSOOE $7 T 00+00 N$ IE L900E $7700+25 \mathrm{~N}$ iE L900E $7700+50 \mathrm{~N}$ IE L900E $7700+75 \mathrm{~N}$

3E L900E $7800+00 \mathrm{~N}$ IE L900E $7800+25 \mathrm{~N}$ 3E $1900 \mathrm{E} 7800+50 \mathrm{~N}=$ BE L900E $7900+00 \mathrm{~N}$ IE L900E $7900+25 \mathrm{~N}$

BE L900E $7900+50 \mathrm{~N}$ iE L900E $7900+75 \mathrm{~N}$ IE L900E $8000+00 \mathrm{~N}$ iE L900E $8000+25 \mathrm{~N}$ JE L900E $8000+50 \mathrm{~N}$

LE L900E $8000+75 \mathrm{~N}$ E L900E $8100+00 \mathrm{~N}$ E L900E $8100+25 \mathrm{~N}$ E L900E $8100+50 \mathrm{~N}$ E LgOOE $8100+75 \mathrm{~N}$

IE L900E $8200+00 \mathrm{~N}$ IE L900E 8200+25N IE L900E $8200+50 \mathrm{~N}$ IE L900E $8200+75 \mathrm{~N}$ IE L900E 8300+00N

50.2	11	13	3	8	8	5	9	511.97	387	<10 110	8	35	<20	10167			0.02	6	32	3	<2	15	1	$<5<100.09$	4
\ll 2	11	14109	3	9	$8<.2$	5	12	51.93	405	10141	9	$33<20$	<20	102.00	0.	0.2	0.02	0.14	28	3	<2	16	<1	$<5<100.09$	6
\ll 2	11	15. 120	4	8	$8<.2$	<	12	51.99	793	10172	8	$34<20$	<20	91.95	0.52	0.33	0.02	0.15	37	2	<2	20	<1	$5<10008$	3
50.2	13	10107	3	8	$8<.2$	5	11	52.05	639	<10185	8	$37<20$	20	91.63	0.60	0.35	0.01	0.18	28	3	<2	15	1	< <100.07	1
<5<.2	11	10.110	3	8	$8<.2$	5	10	<51.94	625	<10148	8	$34<20$	20	81.57	0.53	0.22	. 01	0.15	26	2	<2	15	<1	< $5<100007$	2
6 <.2	12	10.103	3	8	$8<.2$	5	9	5 51.91	545	10139	9	33	<0	91.68	0.47	0.20	0.01	0.15	26	2	<2	13	<1	10	3
<50.3	11	15.111	3	8	$7<.2$	5	8	51.77	458	<10155	7	$29 \leqslant 20$	20	81.78	0.	0.19	0.02	0.15	29	2	<2	. 15	<1	$5<100.07$	3
<50.2	10	1389	2	7	$8<.2$	5	9	51.88	518	$<10 \%$	8	$34<20$	<20	$81: 37$	0.57	0.29	0.02	0.18	28	2	<2	19	1	$\ll 100.08$	2
$<5<2$	16	10.130	3	7	$8<.2$	5	8	52.09	700	<10137	9	$38<20$	20	81.48	0.72	0.	0.01	0.16	35	3	<2	20	<1	< $5<100.08$	<1
< 0.4	14	14117	2	10	$7<.2$	5	13	51.76	359	<10 148	8	$31<20$	<20	102.01	0.41	0.26	. 0	0.14	32	3	2	14	<1	< 5100.09	12

		13109				,		51.85					31 <20	20	1					30	3				< 5100.0	
<50.3	13	16144	2	9	$7<.2$	<5	15	< 1.74	570		43	8	$29<20$	<20	1.	0.40	0.	0.02	11	37	3	<2	14	<1	$<5<100.08$	7
<50.8	10	15117	2	7	$6<.2$	< 5	15	551.51	593		142	7	$25<20$	<20	7	0.32	0.41	0.01	10	45	2	<2	12		$<5<100.07$	4
< 5 <2	9	1164	3	9	$7<.2$	< 5	11	51.87	\%	10	82	9	$33<20$	20	91.6				0.15	24	2	<2	17	<1	<5<100:10	6
								52.13																		

$0: 2$	14	12113	2	8	$9<.2$	<	19	52.16	377	116	8	$39<20<20$	11		0.21	. 02	17	27	3	<2	15	<1	<5<100.09	
$15<2$	17	137	3	6	<. 2	5	19	\$2.27	469	<10 81	7	$47<20<20$	91139	0.69	0.32	0.01	0.27	32	3	<2	13	<1	$<5<100.08$	1
230.3	14	1183	3	7	<.2	<	15	< 1.94	377	$10 \quad 92$	6	$38<20<20$	$81: 44$	0.53	0.32	0.02	0.22	34	2	<2	12	<1	$<5<100.08$	2
< $<$ <.2	11	1199	2	6	$8<$	<	11	\$2.04	592	<10 150	6	$37<20<20$	91.81	0.58	0.36	0.02	0.21	35	3	<2	18	<1	$<5<100.08$	1
												<20 <20											< <100.08	

BOndar Clegg
 Inchcape Testing Services

Geoc mical Lab Report

PROJECT: CIQUENAS
DATE PRINTED: 24-OCT-95 PAGE 6
 UNITS PPB PPM PCT PPM PPN PPM PPM PPM PPM PPM PPM PCT PCT PCT PCT PCT PPM PPM PPM PPM PPM PPM PPM PCT PPM

3E L900E 8300+25N	90.3	16	1284	3	7	$9<.2$	<	15	< 22.28	575	<10	0100	7	45	<20	<20	91.56	0.68	0.33	0.02	0.26	38	3	<2	13	<1		100.09	1
BE L900e 8300+50N	<50.4	16	1784	3	9	$8<.2$	< 5	16	<5 2.13	371	1 <10	08	8	41	<20	<20	91.85	0.57	0.28	0.02	0.19	33	2	2	15	<1	<5	100.10	3
BE L900e 8300+75N	<50.3	15	19104	3	7	$8<.2$	< 5	13	< 2.11	423	$3<10$	085	7		<20	<20	81.46	0.63	0.30	0.01	0.23	32	2	<2	12	<1	< 5	100.08	1
3E L900E 8400+00N	<51.0	10	29213	3	7	80.3	-5	18	<5 1.92	563	$3<10$	0126	6	35		<20	81.58	0.55	0.26	0.02	0.19	33	2	<2	15	<1	<	100.07	3
3E L900E $8400+25 \mathrm{~N}$	<50.4	10	33192	2	7	$7<.2$	< 5	20	<51.53	797	$7<10$	1175	6	25	<20	<20	71.63	0.33	0.	. 02	0.10	34	2	<2	14	<1	< 5	100.07	4
3E L900E 8400+50N	350.6	14	13122	3	10	$8<.2$	< 5	19	< 1.80	207	$7<10$	062	8	34	20	<20	91.50	0.35	0.2	0.02	0.11	30	3	2	12	<1		00.10	6
3E. L900E 8400+75N	<50.7	18	26120	3	7	$10<.2$	< 5	28	<5 2.41	429	$9<10$	089	8	52	<20	<20	91.56	0.8	0.36	0.02	0.27	46	3	<2	14	<1	5	100.09	1
SE L900E 8500+00N	<50.8	15	13175	3	10	$8<.2$	<5	18	< 51.84	635	<10	0131	7	34	<20	<20	81.87	0.4	0.23	0.02	0.11	31	2	<2	14	<1	<5	100.08	7
3E L1000e $51500+00 \mathrm{~N}$	$<5<2$	16	1999	3	9	$8<.2$	<	21	< 51.84	426	<10	0115	7	33	<20	<20	102.07	0.44	0.21	0.02	0.14	22	3	<2	14	<1	< 5	100.08	7
3E L1000E $5150+25 \mathrm{~N}$	380.4	15	1895	3	9	$8<.2$	< 5	22	< 51.86	372	<10	0131	7	34	<20	<20	102.09	0.46	0.30	0.02	0.13	29	4	2	14	<1	< 5	<10 0.09	11
3E L1000E $7500+50 \mathrm{~N}$	<. 2	13	19131	2	6	$8<.2$	<	15	< 1.87	670	$0<10$	0114	7	37		<20	81.44	0.60	0.30	0.01	0.14	30	2	<2	16	<1		100.09	<1
3E L1000E $7500+75 \mathrm{~N}$	< 5 <2	12	15115	2	6	$7<.2$	5	8	< 11.76	734	\ll10	0131	7	34	<20	<20	71.31	0.53	0.34	0.01	0.19	33	2	<2	11	<1	< 5	100.08	1
IE L1000e $7600+00 \mathrm{~N}$	100.3	14	16128	3	8	$7<.2$	< 5	20	< 51.70	507	<10	0150	6	29	<20	<20	81.85	0.44	0.32	0.02	0.17	34	3	<2	14	1	< 5	100.07	6
ie Lloooe $7600+25 \mathrm{~N}$	0.2	10	12110	2	6	$6<.2$	5	9	51.69	484	$4<10$	0115	7	34	<20	<20	71.14	0.48	0.32	0.02	0.19	29	2	<2	12	<1	< 5	<10 0.08 .	<1
3E L1000e 7600+50N	<50.4	22	25116	3	10	9 < 2	< 5	32	<5 2.10	. 405	<10	0129	7		<20	<20	122.50	0.45	0.30	0.03	0.12	31	6	3	20	<1		<10 0.11	15
IE L1000E 7600+75N	50.3	19	25151	3	11	10 <.2	<	31	<52.22	522	$2<10$	0166	8	39	<20	<20	112.40	0.48	0.35	0.02	0.13	31	4	<2	19	≤ 1	< 5	<100.10	12
IE L1000E $7700+00 \mathrm{~N}$	17 <. 2	14	1382	2	7	$8<.2$	5	19	¢ 2.07	480	<10	0.88	7	45	<20	<20	91.37	0.68	0.43	0.02	0.29	38	4	<2	10	<1	5	<100.10	1
IE L1000E $7700+25 \mathrm{~N}$	120.4	12	14159	2	11	$7<.2$	5	20	<51.76	524	<10	0127	8		<20	<20	91.66	0.39	0.26	0.02	0.13	29	3	<2	13	<1	< 5	100.08	6
3E L1000e $7700+50 \mathrm{~N}$	0.3	15	14101	2	8	8 <.2	< 5	17	<51.88	336	<10	0103	7	36		<20	91.67	0.49	0:29	0.02	0.16	29	3	<2	13	<1	5	100.09	7
IE L1000E $7700+75 \mathrm{~N}$	<50.3	17	15138	3	9	$7<.2$	5	23	51.75	430	<10	0135	6			<20	91.91	0.41	0.31	0.02	0.15	36	4	<2	14	<1		100.08	7
IE L1000E 7800+00N	50.4	9	13177	2	9	$7<.2$	< 5	11	<51.72	424	<10	0164	7	30	<20	<20	81.44	0.40	0.28	0.02	0.13	38	2	<2	15	<1		<10 0.07	3
E L1000e $7800+25 \mathrm{~N}$	170.4	11	1286	2	4	$6<.2$	< 5	9	< 1.59	434	<10	085	6	33	<20	<20	71.09	0.42	0.32	0.02	0.19	29	2	<2	9	<1	<	100.08	2
E L1000e $7800+50 \mathrm{~N}$	<50.4	13	15106	2	8	$7<.2$	< 5	11	<51.77	380	<10	08	6	34	<20	<20	81.36	0.44	0.27	0.02	0.20	28	2	<2	10	<1	< 5	100.08	5 ,
E L1000E $7800+75 \mathrm{~N}$	60.4	21	1065	2	6	$8<.2$	5	16	552.04	373	$3<10$	064	6	47		20	91.16	0.61	0.44	0.02	0.25	40	4	<2	9	<1		<100.09	$?$
E LIOOOE $7900+00 \mathrm{~N}$	<50.6	16	17.91	2	7	$8<.2$	\leqslant	18	<5 1.99	339	<10	068	7			<20	91.25	0.56	0.38	0.02	0.22	34	3	<2	10	<1	5	<100.09	2
IE L1000E 7900+25N	111.2	29	21183	3	9	80.3	5	28	< 22.11	591	$1<10$	0108	7			<20	122.16	0.48	0.49	0.03	0:21	33	6	<2	42	<1		100.10	10
IE L1000E 7900+50N	60.6	25	1395	3	8	80.2	5	24	<5 2.10	495	$5<10$	091	7		<20	<20	91.27	0.63	0.44	0.02	0.30	45	4	<2	9	<1	< 5	100.08	<1
IE L1000E 7900+75N	<51.7	14	52186	3	11	80.5	5	20	\$2.05	339	<10	0116	8		<20	S20	101.61	0.49	0.33	0.02	0.20	36	2	<2	15	<1	5	100.10	6
IE L1000E B000+00N	132.0	14	53218	3	11	80.5	5	19	51.88	40	<10	0130	8	33		20	101.71	0.42	0.37	0.02	0.18	39	3	<2	14	<1		<100.09.	6
IE L1000E 8000+25N	<1.2	14	43202	3	11	80.3	< 5	19	\$ 1.99	312	<10	0114	8	33	<20	<20	81.89	0.48	0.26	. 0.02	0.17	31	2	2	15	<1		<10 0.09	5

Bundar Clegg
 Inchcape Testing Services

Geo ${ }^{\wedge}$ 'emical Lab

```
AMPLE
```

 UNITS PPB PPM PCT PPM PPM PPM PPM PPM PPM PPM PPM PCT PCT PCT PCT PCT PPM PPM PPM PPM PPM PPM PPM PCT PPM

[^1]
Bondar Clegg Inchcape Testing Services

Ge hemical

PROJECT: CIQUENAS DATE PRINTED: 20-OCT-95 PAGE 2

[^2]PROJECT: CIOUENAS
DATE PRINTED: 20-0CT-95

Gochemical
Report

PROJECT: CIQUENAS
DATE PRINTED: 20-OCT-95
PAGE 4

GABE LI300E $8400+75 \mathrm{~N}$ GABE LTH00E $7500+00 \mathrm{~N}$ GABE LILOOE $7500+25 \mathrm{~N}$ GABE LI400E $7500+50 \mathrm{~N}$ GABE LI400E $7500+75 \mathrm{~N}$

GABE LI400E 7600+00N GABE LI400E $7600+25 \mathrm{~N}$ gabe li400e $7600+50 \mathrm{~N}$ GABE LIU00E $7600+75 \mathrm{~N}$ GABE L1400E $7700+25 \mathrm{~N}$

GABE L1400E 7000+50N GABE L1400E $7700+75 \mathrm{~N}$ GABE LI4OOE 7800+00N GABE L1400E $7800+25 \mathrm{~N}$ GABE LIU00E $7800+50 \mathrm{~N}$

GABE L1400E 7800+75N GABE LI400E $7900+00 \mathrm{~N}$ GABE L1400E $7900+25 \mathrm{~N}$ GABE LI400E 7900+50N GABE L1400E $7900+75 \mathrm{~N}$

GABE L1400E 8000+00N GABE LI400E $8000+25 \mathrm{~N}$ GABE L1400E $8000+50 \mathrm{~N}$ GABE LTHOOE $8000+73 \mathrm{~N}$ GABE LILOOE $8100+00 \mathrm{~N}$

GABE L1400E $8100+25 \mathrm{~N}$ GABE L1400E 8100+50N GABE L1400E 8100+75N GABE L1400E 8200+00N GABE L1400E $8200+25 \mathrm{~N}$

Bondar Clegg
 Inchcape Testing Services

Goachemical Lau Report

CLIENT: WHITE HOLF EXPLORATION
REPORT: V95-01353.0 (COMPLETE) DATE PRINTED: 20-OCT-95 PAGE 6

Gochemical Lao Report

PROJECT: CIQUENAS DATE PRINTED: 20-OCT-95

GABE L1500E 7900+75N GABE LI500E 8000+001 GABE L1500E $8000+25 \mathrm{~N}$ GABE L1500E $8000+50 \mathrm{~N}$ GABE L1500E 8000+75N

Gabe lisooe $8100+00 \mathrm{~N}$ GABE L1500E $8100+25 \mathrm{~N}$ GABE L1500E 8100+50N GABE L1500E $8100+75 \mathrm{~N}$ GABE LI500E $8200+00 \mathrm{~N}$

GABE L1500e $8200+25 \mathrm{~N}$ GABE L1500E $8200+50 \mathrm{~N}$ GABE L1500E $8200+75 \mathrm{~N}$ GABE L1500E $8300+00 \mathrm{~N}$ GABE L1500E $8300+25 \mathrm{~N}$

GABE L1500E $8300+50 \mathrm{~N}$ GABE L1500E $8300+75 \mathrm{~N}$ GABE LI500E 8400+00N GABE L1500E $8400+25 \mathrm{~N}$ GABE L1500e 8400+50N

GABE LIS00E $8400+75 \mathrm{~N}$ GABE LI500E $8500+00 \mathrm{~N}$

Bondar Clegg
 Inchcape Testing Services

IENT：UHITE WOL FIEXPLORATION ：PORT：VO5－01286．0（ COMPLETE ）

Geochemical Lab
 Report

PROJECT：CIQuENAS
DATE PRINTED：30－0CT－95
PAGE 1 UNITS PPB PPF PPM PCT PPM PPM PPM PPM PPM PPM PPM PPM PCT PCT

Ca Na K Sr y Ga Li Nb Sc Ta Ti \quad Zr PCT PCT PCT PPM PPM PPM PPM PPM PPM PPM PCT PPM

IDE LIBOON 1000＋00E LDE LIB00N $1000+25 \mathrm{E}$ DE LIBOON 1000＋50E DE LIBOON 1000＋TJE DE LIB00N 1100＋00E

DE L1800N 1100＋25E DE L1800N $1100+50 \mathrm{E}$ DE LIBOON 1100＋TSE IDE LIB00N 1200＋00E DE LIBOON $1200+25 E$

IDE LIBOON 1200＋50E DE LIBOON $1200+\pi$ E DE LIBOON 1300＋00E ．DE LI800N $1300+25 \mathrm{E}$ DE L1800N 1300＋50E DE L1800N 1300＋7万E DE LIBOON 1400＋00E DE L1800N 1400＋25E DE LI800N 1400＋50E DE LIB00N 1400 +75 E

DE LI800N 1500＋00E DE L1800N 1500＋25E DE LIBOON $1500+50 \mathrm{E}$ DE L1800N $1500+$ 万SE DE LIBOON 1600＋00E DE L1800N 1600＋25E DE L1800N $1600+$ 万5E DE L1800N $1700+00 \mathrm{E}$ DE L1800N $1700+25 E$ DE LI800N 1700＋50E

<50.2	19	10	56	2	6	$7<.2$	＜ 5	11	<51.94	$347<10125$	6	$36<20$	＜20		1.790 .32
$<5<.2$	12.	9	55	2	5	$6<.2$	＜ 5	6	<51.60	$272<10159$	6	$28<20$	＜20		1.380 .22
140.3	31	15	71	3	8	$11<.2$	<5	11	<52.98	$392<10201$	8	$53<20$	＜20		2.060 .50
$<5<.2$	10	8	60	2	5	$7<.2$	＜	＜	<51.87	$477<10194$	7	$35<20$	＜20		1.370 .28
$<5<.2$	8	7	29	2	4	$6<.2$	<5	＜	<51.87	$271<10 \quad 80$	7	$39<20$	<20		0.910 .25
$6<.2$	19	8	40	2	5	$7<.2$	<5	<5	<52.07	$292<10129$	6	$38<20$	<20	13	1.390 .30
70.2	23	9	41	2	4	$7<.2$	＜ 5	＜5	<52.06	$301<10151$	7	$38<20$	<20		1.330 .30
<50.3	18	10	55	3	5	$8<.2$	<5	7	＜5 2.15	$475<10152$	7	$38<20$	<20	13	1.610 .31
<50.2	22	10	48	3	6	$7<.2$	＜ 5	9	<52.02	$227<10143$	6	$34<20$	<20	12	1.770 .28
<50.2	12	8	43	2	4	$6<.2$	<5	＜ 5	<51.75	$235<10104$	6	$33<20$	<20		1.250 .24
$<5<.2$	10	6	29	2	4	$6<.2$	<5	＜ 5	＜5 1.98	$188<10 \quad 64$	9	$44<20$	<20		0.870 .26
$<5<.2$	11	8	53	3	5	$7<.2$	<5	<5	<52.04	$383<10146$	8	$39<20$	<20		1.160 .29
<50.2	11	9	50	2	6	$7<.2$	<5	6	＜ 22.10	$259<10114$	7	$40<20$	＜20		1.390 .31
$13<.2$	23	11	50	3	6	$8<.2$	<5	10	<52.23	$306<10145$	7	$39<20$	<20	14	1.710 .35
<50.3	16	14	67	3	6	$9<.2$	<5	10	＜ 52.30	$529<10205$	7	$38<20$	＜20		1.950 .40

$\begin{array}{llllllllllllllllllllllllll}<5 & 0.3 & 16 & 14 & 67 & 3 & 6 & 9 & <.2 & <5 & 10 & <5 & 2.30 & 529 & <10 & 205 & 7 & 38 & <20 & <20 & 12 & 1.95 & 0.40\end{array}$
$0.29 \quad 0.020 .11 \quad 30 \quad 6 \quad<2 \quad 10 \quad 1<5<10 \quad 0.07 \quad 10$
$0.24 \quad 0.020 .12 \quad 31 \quad 4<2 \quad 11<1<5<100.06 \quad 8$ $\begin{array}{llllllllll}0.31 & 0.02 & 0.15 & 31 & 10 & 2 & 15 & <1 & <5 & <10\end{array} 0.09 \quad 15$
$0.310 .020 .10 \quad 36 \quad 3<2 \quad 11<1<5<100.06 \quad 4$
$0.210 .010 .13 \quad 24 \quad 3<2 \quad 9<1<5<100.06 \quad 3$
$0.270 .020 .15 \quad 32 \quad 7<2 \quad 11<1<5<100.06 \quad 5$
$0.280 .020 .11 \quad 32 \quad 7<2 \quad 13<1<5<10 \quad 0.06 \quad 6$

$\begin{array}{lllllllllll}0.25 & 0.02 & 0.14 & 31 & 5 & 2 & 17 & <1 & <5 & <10 & 0.07\end{array} 12$

$0.24 \quad 0.020 .08 \quad 23 \quad 4<2 \quad 7<1<5<100.07 \quad 5$
$0.310 .010 .11 \quad 39 \quad 3<2<10<1<5<100.05<3$
$0.220 .020 .10 \quad 29 \quad 3<2 \quad 10<1<5<100.06 \quad 4$
$0.24 \quad 0.020 .13 \quad 33 \quad 7<2 \quad 13<1<5<100.07 \quad 12$
$0.330 .020 .16 \quad 39 \quad 5<2 \quad 15<1<5<100.07 \quad 8$

Bondar Clegg
 Inchcape Testing Services

IENT: WHITE WOL EXPLORATION

PROJECT: CIOUENAS
DATE PRINTED: 30-OCT-95
 UNITS PPB PPM PCT PPM PPM PPM PPM PPM PPM PPM PPM PCT PCT
$\mathrm{Ca} \mathrm{Na} \quad \mathrm{K}$ Sr Y Ga Li Nb Se Ta Ti Zr PCT PCT PCT PPM PPM PPM PPM PPM PPM PPM PCT PPM

IDE L1800N 1700+75E DE L1800N 1800+OOE DE L1800N $1800+50 E$ DE L1800N $1800+$ TSE DE L1800N 1900+00E

DE L1800N $1900+25 E$ DE L1800N 1900+50E IDE L1800N 1900+TSE IDE L1800N 2000+00E IDE L1800N 2000+50E DEE L1800N $2100+00 E$ IDE LI800N $2100+25 E$ DE LI800N $2100+50$ E HE L1800N 2100+T3E

DE L1800N 2200+00E DE L1800N $2200+25 \mathrm{E}$ DE L1900N 1000+00E LDE L1900N $1000+25 E$ IDE LI900N 1000+50E

IDE LI900N 1000+75E DE L1900N $1100+00 \mathrm{E}$ DE L1900N $1100+25 E$ DE L1900N $1100+50 \mathrm{E}$ DE L1900N $1100+73 E$

DE L1900N $1200+00 \mathrm{E}$ DE L1900N 1200+25E DE L1900N 1200+50E DE L1900N 1200+75E DE L1900N 1300+00E

<5	0.6	23	41	163	4	6	9	$<.2$	<5	10	<5	2.62	706	<10	236	6	34	<20	<20	18	2.01	0.40
10	0.8	31	35	100	4	7	10	$<.2$	<5	6	<5	3.09	450	<10	109	9	49	<20	<20	19	1.77	0.57
6	0.3	24	18	88	3	6	9	$<.2$	<5	12	<5	2.41	450	<10	154	7	39	<20	<20	16	1.85	0.40
<5	0.2	28	13	83	4	6	10	$<.2$	<5	8	<5	2.63	837	<10	193	7	40	<20	<20	19	1.83	0.46
<5	0.3	20	17	85	4	7	10	$<.2$	<5	11	<5	2.68	$592<10$	186	8	40	<20	<20	20	2.46	0.46	

7	0.3	41	10	55	1	3	4	0.9	<5	7	<5	1.02	286	<10	86	3	15	<20	<20	11	1.30	0.34
6	0.5	77	24	89	5	7	11	0.4	<5	9	<5	2.58	1245	<10	105	7	35	<20	<20	18	2.18	0.73
<5	0.5	35	19	87	3	8	10	$<.2$	<5	12	<5	2.69	435	<10	140	8	40	<20	<20	19	2.16	0.54
25	0.2	33	16	80	3	6	8	$<.2$	<5	7	<5	2.01	561	<10	158	7	26	<20	<20	16	2.07	0.48
24	0.6	100	17	82	4	6	10	$<.2$	<5	7	<5	2.31	$702<10$	104	10	30	<20	<20	26	1.88	0.57	

<5	$<.2$	23	19	84	3	8	9	$<.2$	<5	17	<5	2.25	691	<10	283	7	34	<20	<20	16	3.21
16	0.2	27	14	92	3	6	10	$<.2$	<5	9	<5	2.88	1174	<10	195	8	48	<20	<20	23	2.14
10	0.8	45	17	82	3	6	12	$<.2$	<5	<5	<5	2.95	655	<10	146	8	48	<20	<20	20	1.71
9	0.2	19	17	123	3	8	8	0.2	<5	11	<5	1.98	1032	<10	215	8	32	<20	<20	13	1.81
36	$<.2$	16	10	70	3	7	9	$<.2$	<5	6	<5	2.20	411	<10	117	9	38	<20	<20	15	1.59

$\begin{array}{lllllllllllllllllllllllllllll}<5 & <.2 & 19 & 12 & 94 & 3 & 10 & 9 & <.2 & <5 & 5 & <5 & 2.52 & 415 & <10 & 102 & 13 & 45 & <20 & <20 & 18 & 1.78 & 0.44\end{array}$

| 5 | 0.4 | 64 | 15 | 98 | 4 | 7 | 16 | $<.2$ | <5 | 8 | <5 | 3.56 | 1005 | <10 | 263 | 7 | 47 | <20 | <20 | 21 | 2.25 | 0.80 |
| ---: | :--- |
| <5 | $<.2$ | 37 | 15 | 76 | 4 | 8 | 12 | $<.2$ | <5 | 10 | <5 | 2.98 | 998 | <10 | 264 | 7 | 38 | <20 | <20 | 17 | 2.51 | 0.60 |
| <5 | 0.3 | 30 | 16 | 97 | 5 | 8 | 12 | 0.4 | 5 | <5 | <5 | 3.04 | 767 | <10 | 239 | 7 | 38 | <20 | <20 | 16 | 2.25 | 0.54 |
| <5 | $<.2$ | 31 | 13 | 62 | 5 | 8 | 10 | $<.2$ | <5 | 7 | <5 | 2.61 | 278 | <10 | 173 | 7 | 36 | <20 | <20 | 12 | 2.32 | 0.49 |
| <5 | 0.4 | 29 | 13 | 65 | 3 | 6 | 9. | $<.2$ | <5 | 6 | <5 | 2.28 | $421<10$ | 184 | 6 | 35 | <20 | <20 | 14 | 2.02 | 0.40 | |

$\begin{array}{llllllllllllllllllllllllllll}<5 & 0.3 & 25 & 10 & 49 & 3 & 6 & 8 & 0.3 & <5 & 8 & <5 & 2.06 & 377 & <10 & 126 & 7 & 36 & <20 & <20 & 12 & 1.78 & 0.34\end{array}$
 $\begin{array}{llllllllllllllllllllllllllll}<5 & 0.2 & 23 & 11 & 61 & 3 & 6 & 7 & <.2 & <5 & 14 & <5 & 1.93 & 341 & <10 & 207 & 6 & 29 & <20 & <20 & 12 & 1.97 & 0.35\end{array}$
 $\begin{array}{lllllllllllllllllllllllllllll}<5 & 0.3 & 55 & 14 & 61 & 3 & 8 & 8 & <.2 & <5 & 11 & <5 & 2.35 & 254 & <10 & 162 & 7 & 30 & <20 & <20 & 16 & 2.23 & 0.48\end{array}$
$0.28 \quad 0.020 .23 \quad 48 \quad 10<2 \quad 24<1<5<100.06 \quad 13$ $0.300 .010 .15 \quad 28 \quad 8<2 \quad 19<1<5<100.05 \quad 4$ $0.350 .020 .15 \quad 37 \quad 8 \quad<2 \quad 18<1<5<100.0711$ $0.60 \quad 0.02 \quad 0.25 \quad 54 \quad 10<2<22<1<5<100.06 \quad 11$ $0.350 .020 .20 \quad 34 \quad 10<2 \quad 25<1<5<100.09 \quad 17$
$5.890 .030 .09330 \quad 8<2 \quad 25<1<5<100.02 \quad 3$ $1.010 .03 \quad 0.21 \quad 156 \quad 12<2 \quad 72 \quad 1<5<100.07 \quad 8$ $0.460 .020 .25 \quad 67 \quad 11<2<36<1<5<100.09 \quad 17$ $0.50 \quad 0.030 .17 \quad 46 \quad 10<2 \quad 46<1<5<10 \quad 0.07 \quad 13$ $0.930 .030 .15109 \quad 26<2 \quad 47<1<5<100.068$
$\begin{array}{lllllllllll}0.35 & 0.03 & 0.11 & 50 & 7 & 2 & 20 & 1 & <5 & <10 & 0.10\end{array} 19$ $\begin{array}{llllllllll}0.52 & 0.02 & 0.28 & 45 & 17 & <2 & 32 & <1 & 5 & <10\end{array} 0.06 \quad 7$ $0.330 .020 .18 \quad 30 \quad 11<2 \quad 19<1<5<100.06 \quad 7$ $0.370 .020 .14 \quad 35 \quad 4 \ll 214 \quad 1<5<100.08 \quad 7$ $0.220 .020 .14 \quad 25 \quad 5<2 \quad 15<1<5<100.08 \quad 11$
$0.240 .010 .19 \quad 28 \quad 4<2 \quad 15 \quad 1<5<100.10 \quad 10$
 $0.220 .020 .13 \quad 33 \quad 3<2 \quad 25<1<5<100.06 \quad 3$ $0.390 .020 .16 \quad 44 \quad 8<2 \quad 28 \quad 1<5<100.08 \quad 5$ $0.48 \quad 0.030 .22 \quad 68 \quad 15<2 \quad 44<1<5<10 \quad 0.10 \quad 24$
$\begin{array}{llllllllllll}0.76 & 0.02 & 0.32 & 91 & 16 & <2 & 28 & <1 & <5 & <10 & 0.08 & 8\end{array}$ $0.40 \quad 0.020 .17 \quad 56 \quad 10<2<32 \quad 1<5<100.08 \quad 9$ $0.390 .020 .22 \quad 53 \quad 9<2 \quad 30<1<5<100.07$ $\begin{array}{llllllllll}0.24 & 0.02 & 0.17 & 36 & 3 & 4 & 26 & 1 & <5 & <10\end{array} 0.08 \quad 11$

10 $0.300 .030 .12 \quad 41 \quad 7<2 \quad 14<1<5<100.07 \quad 12$ $\begin{array}{llllllllll}0.28 & 0.03 & 0.17 & 46 & 6 & 2 & 16 & <1 & <5 & <10 \\ 0.07 & 14\end{array}$ $0.510 .03 \quad 0.13 \quad 57 \quad 11<2 \quad 56 \quad 1<5<100.08 \quad 14$ $\begin{array}{llllllllllll}0.54 & 0.03 & 0.12 & 45 & 13 & 3 & 65 & <1 & <5<10 & 0.09 & 11\end{array}$

Bondar Clegg Inchcape Testing Services

Geo emical Lab
Report

PROJECT: CIQUENAS
DATE PRINTED: 30-0CT-95
 UNITS PPB PPM PCT PPM PPM PPM PPM PPM PPM PPM PPM PCT PCT

Ca Na K Sr Y Ga Li Nb Sc Ta Ti Zr PCT PCT PCT PPM PPM PPM PPM PPM PPM PPM PCT PPM

IADE L1900N 1300+25E

 ADE L1900N 1300+50E ADE L1900N 1300+75E ADE L1900N 1400+00E ADE L1900N $1400+25 E$ADE L1900N $1400+50 \mathrm{E}$ ADE L1900N 1400+73E ADE L1900N 1500+00E ADE L1900N 1500+25E IADE L1900N $1500+50 \mathrm{E}$

IADE L1900N 1500+75E

 ADE L1900N 1600+00E ADE L1900N $1600+50$ E ADE L1900N $1600+75 E$ ADE L1900N $1700+00 \mathrm{E}$ADE L1900N $1700+25 E$ ADE L1900N $1700+75 E$ ADE L1900N 1800+00E ADE L1900N 1800+25E ADE L1900N 1800+50E

ADE L1900N 1800+75E ADE L1900N $1900+00 \mathrm{E}$ ADE L1900N 1900+50E ADE L1900N 1900+75E ADE L1900N $2000+50$ E

ADE L1900N 2000+75E ADE L1900N 2100+00E ADE L1900N $2100+25 E$ ADE L1900N $2100+50$ E ADE L1900N $2100+73 E$

$<5<2$	14	1683	3	7	$10<.2$	<5	5	<5	2.40	76	<10	270	7	36	<20	<20	14	46
<50.2	24.	16103	4	8	$11<.2$	5	9	<5	2.55	1159	<10	263	8	36	<20	<20	162.3	0.47
60.5	38	1355	3	7	$9<.2$	<5	9	<5	2.08	449	<10	129	7	33	<20	<20	161.90	0.47
$<5<.2$	19	1698	4	7	$10<.2$	< 5	11	<5	2.59	1057	<10	278	8	34	<20	<20	202.43	0.59
$7<.2$	11	946	2	5	$6<.2$	<5	6		1.65	266	<10	167	6	24	<20	<20	81.60	0.28

$\begin{array}{lllllllllllllllllllllllllllll}12 & 0.3 & 16 & 12 & 56 & 3 & 6 & 8 & <.2 & <5 & 9 & <5 & 2.31 & 440 & <10 & 138 & 9 & 37 & <20 & <20 & 39 & 1.49 & 0.56\end{array}$

 $\begin{array}{lllllllllllllllllllllllllllll}43 & <.2 & 12 & 11 & 90 & 5 & 8 & 9 & <.2 & <5 & 5 & <5 & 2.45 & 901 & <10 & 283 & 16 & 33 & <20 & <20 & 16 & 1.45 & 0.40\end{array}$ $\begin{array}{lllllllllllllllllllllllllll}23 & <.2 & 20 & 15 & 68 & 3 & 6 & 8 & <.2 & <5 & 10 & <5 & 2.24 & 582 & <10 & 282 & 5 & 29 & <20 & <20 & 19 & 2.14 & 0.39\end{array}$
$0.410 .020 .18 \quad 43 \quad 6<2 \quad 20<1<5<100.08 \quad 3$ $0.350 .02 \quad 0.24 \quad 40 \quad 8 \quad<2 \quad 23<1<5<100.08 \quad 6$
$\begin{array}{llllllllllll}0.61 & 0.03 & 0.14 & 68 & 10 & <2 & 24 & <1 & <5 & <10 & 0.07 & 15\end{array}$
$0.420 .020 .27 \quad 56 \quad 11<2 \quad 31<1<5<100.08 \quad 7$
$0.26 \quad 0.020 .15 \quad 35 \quad 2<2 \quad 18<1<5<100.05 \quad 7$
$\begin{array}{lllllllllll}0.66 & 0.02 & 0.17 & 62 & 9 & <2 & 19 & <1 & <5 & <10 & 0.06\end{array} \quad 6$ $\begin{array}{llllllllll}0.66 & 0.02 & 0.18 & 69 & 16 & <2 & 28 & <1 & 6 & <10\end{array} 0.06 \quad 8$
$\begin{array}{lllllllllll}0.33 & 0.02 & 0.17 & 38 & 9 & <2 & 17 & <1 & <5 & <10 & 0.06 \\ 10\end{array}$
$0.330 .020 .18 \quad 36 \quad 4<2 \quad 19<1<5<100.06 \quad 3$
$\begin{array}{lllllllllll}0.58 & 0.02 & 0.16 & 63 & 10 & <2 & 45 & <1 & <5 & <10 & 0.07\end{array} 14$
$0.470 .040 .14 \quad 54 \quad 9<2 \quad 57<1<5<100.08 \quad 19$
$0.290 .020 .13 .33 \quad 5<2 \quad 15<1<5<100.07 \quad 7$
$\begin{array}{llllllllllll}0.22 & 0.01 & 0.09 & 23 & 3 & 5 & 15 & 1 & <5 & <10 & 0.09 & 10\end{array}$
$0.430 .020 .25 \quad 54 \quad 8 \quad<2 \quad 20<1<5<100.04 \quad 7$

$0.24 \quad 0.02 \quad 0.16 \quad 26 \quad 5<2 \quad 18<1<5<10 \quad 0.08 \quad 9$
$\begin{array}{lllllllllllllllllll}0.27 & 0.02 & 0.14 & 30 & 5 & <2 & 18 & <1 & <5 & <10 & 0.06 & 8\end{array}$
$\begin{array}{lllllllllll}0.32 & 0.01 & 0.21 & 33 & 7 & <2 & 23 & <1 & <5 & <10 & 0.07 \\ 8\end{array}$
$\begin{array}{lllllllllll}0.33 & 0.02 & 0.13 & 34 & 8 & 2 & 26 & <1 & <5 & <10 & 0.07\end{array} 11$
$\begin{array}{llllllllllllll}0.24 & 0.02 & 0.16 & 28 & 6 & 5 & 24 & <1 & <5 & <10 & 0.06 & 7\end{array}$
$\begin{array}{llllllllllll}0.28 & 0.02 & 0.14 & 33 & 10 & <2 & 19 & <1 & <5 & <10 & 0.09 & 16\end{array}$ $\begin{array}{lllllllllll}0.59 & 0.03 & 0.11 & 61 & 27 & 2 & 62 & <1 & <5 & <10 & 0.10\end{array} 24$
$0.450 .020 .26 \quad 35 \quad 9<2 \quad 27<1<5<100.07 \quad 15$
$0.630 .020 .34<40 \quad 13<2 \quad 28<1<5<100.04 \quad 5$
$0.62 \quad 0.02 \quad 0.21 \quad 53 \quad 6<2 \quad 34<1<5<100.05 \quad 2$
$0.27 \quad 0.020 .16 \quad 29 \quad 2<2 \quad 18<1<5<100.08 \quad 7$
$0.29 \quad 0.010 .17 \quad 25 \quad 4<2 \quad 14<1<5<100.05 \quad 3$
$\begin{array}{lllllllllll}0.25 & 0.03 & 0.17 & 38 & 8 & 3 & 22 & <1 & <5 & <10 & 0.09 \\ 18\end{array}$
$\begin{array}{llllllllll}0.29 & 0.03 & 0.13 & 35 & 6 & 3 & 15 & <1 & <5 & <10 \\ 0.10 .10 & 13\end{array}$
$0.320 .020 .16 \quad 32 \quad 4<2 \quad 16<1<5<100.07 \quad 6$
 UNITS PPB PPM PCT PPM PPN PPM PPM PPM PPM PPM PPM PCT PCT PCT PCT PCT PPM PPM PPM PPM PPM PPN PPM PCT PPM

OR $100 \mathrm{C} / \mathrm{L} 00+00 \mathrm{NH}$ OR $100 \mathrm{C} / \mathrm{L} 00+25 \mathrm{NH}$ OR $100 \mathrm{C} / \mathrm{L} \quad 00+50 \mathrm{NW}$ OR $100 \mathrm{c} / \mathrm{L} \quad 00+75 \mathrm{NW}$ OR $100 \mathrm{C} / \mathrm{L} \quad 100+00 \mathrm{NW}$ OR $100 \mathrm{C} / \mathrm{L} 100+25 \mathrm{NW}$ OR $100 \mathrm{C} / \mathrm{L} 100+50 \mathrm{NH}$ OR $100 \mathrm{C} / \mathrm{L} 100+75 \mathrm{NW}$ OR $100 \mathrm{CLL} 200+00 \mathrm{NH}$ OR $100 \mathrm{C} / \mathrm{L} 200+50 \mathrm{NW}$

OR $100 \mathrm{C} / \mathrm{L} 200+75 \mathrm{NH}$ OR $100 \mathrm{C} / \mathrm{L} 300+25 \mathrm{NH}$ OR $100 \mathrm{C} / \mathrm{L} 300+50 \mathrm{NW}$ OR $100 \mathrm{C} / \mathrm{L} 300+7 \mathrm{SNW}$ OR $100 \mathrm{C} / \mathrm{L} \quad 400+00 \mathrm{NW}$

<5	16	18	123	5	6	$10<.2$	<5	< 5	72.50	425	10	80	7	43	<20	<20	302.94	0.50	0.70		0.17	133	7	5	20	7		100.06	
$<5<.2$	11	6	106	2	4	$7<.2$	<5	<5	< 2.33	384	<10	66	8	43	<20	<20	291.18		0.33		. 15	29	8	<2	15	7		00.06	6
$<5<.2$	13	12	701	3	5	$6<.2$	<5	<	< 1.89	528	<10	144	8	31	<20	<20	23	0.29	0.49		0.14	73	5	<2	13	5		100.06	6
$<5<2$	10	10	138	3	3	$7<.2$	< 5	<	<2.24	63	10	113	7	39	<20	<20	25	0.36	0.42		0.20	50	6	<2	15	6		00.07	5
< 5 < 2	8	4	59	2	3	$7<.2$	5	<5	52.40		<10	46	7	46	<20	<20	260				0.	27	5	<2	10	5		00.05	2
\lll 2	7	5	53	2	3	$6<.2$	5	<5	< 52.35		<10	40	7	45	<20	<20	240.85	0.27	0.3	0.01	0.15	33	5	<2	10	5		100.06	3
$<5<2$	14	13	94	3	6	$9<.2$	5	<5	52.82	363	<10	64	9	53	<20	<20	25	0.53	0.	0.02	0.17	43	5	2	21	5		<100.08	6
< $<$ <. 2	15	11	110	4	6	$8<.2$	< 5	5	< 2.49	380	<10	69	10		<20	<20	31	0.43	0.42		0.17	44	7	3	19	7		<10 0:10	8
\ll $<.2$	15	10	126	4	6	$10<.2$	<	<	53.09	606	10	93	10		<20	<20	321.50	0.51		0.02	0.16	42	7	2	23	7		00.08	3
53.5			2285		9	9 <.	<	<	52.63			15	12		<20		392.5			0.03	.	90	15	4	58	15		0	18

R $200 \mathrm{C} / \mathrm{L} 100+25 \mathrm{NH}$ R $200 \mathrm{C} / \mathrm{L} \quad 100+50 \mathrm{NW}$ R $200 \mathrm{c} / \mathrm{L} 100+$ TSNu R $200 \mathrm{C} / \mathrm{L} 200+00 \mathrm{NW}$ R $200 \mathrm{C} / \mathrm{L} 200+25 \mathrm{NH}$

* $200 \mathrm{CLL} 200+50 \mathrm{NW}$ R $200 \mathrm{C} / \mathrm{L} \quad 200+75 \mathrm{NH}$ R $200 \mathrm{c} / \mathrm{L} 300+25 \mathrm{NW}$ R $200 \mathrm{c} / \mathrm{L} 300+50 \mathrm{NW}$ \$ $200 \mathrm{C} / \mathrm{L} 300+75 \mathrm{NH}$

OR $200 \mathrm{C} / \mathrm{L} 00+00 \mathrm{NW}$〇 $200 \mathrm{c} / \mathrm{L} 00+25 \mathrm{NW}$ ${ }^{2} 200 \mathrm{C} / \mathrm{L} \quad 00+50 \mathrm{NW}$ $\geqslant 200 \mathrm{C} / \mathrm{L} 00+75 \mathrm{NW}$ OR $200 \mathrm{CLL} \quad 100+00 \mathrm{NL}$

<50.2	15	192	3	7	$8<.2$	<5	<5	2.28	330	10			<20	<20		0.4		0.02	0.17	39			18	6		0.09	
<.2	13	263	3	7	$7<.2$	5	<5	551.9	411	10174	8	33	<20	<20	23				0.1	36		2	17	6	<5	100.08	
<. 2	$13 \quad 12$	122	3	7	$9<.2$	< 5	<	<5 2.49	57	17	9	. 43	<20	<2	291.83	0.51	0.43	0.02	0:22	45	6	3	20	6	<5	<10 0.09	
<5 <.2	1312	87	3	5	$8<.2$	< 5	<5	< 52.50	430	1099	8	47	<20	<2			0.35		0.17	29	6	<2	16	6	<	100.07	
<5<.2	19	244	3	4	$7<.2$	<	<5	< 52.	365	<10 91	8				26				0.23	38	5	<2	16	5	<	100.09	
<.2	1114	193	3	6	$8<.2$	5	<5	5		10121	9	42	< 20	80					0.22	38	6	2	18	6	,	100.09	
0.4	2341	521	3	6	8	5	< 5	< <2.49	375	74	9	40	<20	<20				0.02	3	49	8	3	19	8	< 5	100.09	
<. 2	25132	450	4	10	11.0 .7	55	<5	< 22.05	3486	426	11	20	<20	<20				0.01	25	145	12	7	18	10		0	
<50.4	9112	38	4	11	7	5	<5	51.87	905	199	12	20	<20	<20	2.34				19.	75		4	26	7		00.05	
0.	17207	560	4		90.5	<	<5	52.05		<10292		20			511.85	0				134	8	4	20	7		<100.04	

Bondar-Clegg \& Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, (604) 985-0681
UMBER \quad UNITS PPB PPM PCT PPM PPM PPM PPM PPM PPM PPM PPM PCT PCT PCT PCT PCT PPM PPM PPM PPM PPM PPM PPM PCT PPM

OR $200 \mathrm{C} / \mathrm{L} 400+00 \mathrm{NW}$	<52.4		462	878	6	7	10.0 .5	<5	<5	< 5	2.67	1443	<10	122	8	28	<20	<20	50	2.55	0.43	88	2	0.21	84	9	5	21	8	$<5<10$	0.06	
OR $200 \mathrm{ch} / \mathrm{L} 400+25 \mathrm{NW}$	<50.5	19	71	547	4	7	100.3	<	<5	<	2.64	1910	<10	243	8	32	<20	<20	46	2.47	0.52	0.71	0.02	0.20	103	10	7	7	9	$<5<10$	0.10	
OR $200 \mathrm{C} / \mathrm{L} 400+50 \mathrm{NW}$	<50.4	24		30	3	5	$7<.2$	<5	<5	$<$	2.39	99	<10	173	6	23	<20	<20	37	2.55	0.33	0.67	0.03	0.30	75	9	6	25	8	$<5<10$	0.08	1
OR $200 \mathrm{C} / \mathrm{L} 400+75 \mathrm{NW}$	100.5	26	131	1248	5	6	70.7	< 5	<	<	2.69	901	<10	113	7	27	<20	<20	37	2.48	0.41	0.60	0.02	0.30	64	10	5	3	9	$<5<10$	0.08	14
OR $200 \mathrm{C} / \mathrm{L} 500+00 \mathrm{NW}$	<50.5	27	219	1461	4	6	84.0	<5	<5	<	2.55	1410	<10	153	8	28	<20	<20	41	2.15	0.45	0.84	0.02	0.21	84	7	5	21	8	$<5<10$	00.07	

Bondar Clegg Inchcape Testing ${ }^{\text {© }}$ - ces

CLIENT: WHITE WOHF EXPLORATION
REPORT: VOS-01355.0 (COMPLETE)

ELEMENT Au3O Ag Cu
UNITS PPB PPM PPM P.

$R_{E}=$ CON

SAMPLE
NUMBER
R/L95S $00+005$ R/L95s 00+50s R/L95S $100+00 \mathrm{~S}$ R/LOSS 100+50s R/LOSS $200+005$

R/L95S 200+50S R/L95S 300+50S R/L95S 400+00S R/L95S 400+50S R/L95S $500+00 \mathrm{~S}$

R/L95s 500+50s R/L95s $600+005$ R/L95s $600+50 \mathrm{~S}$ R/L95s $700+00 \mathrm{~s}$ R/L95s 700+505

R/L95s 800+50S R/L95S 900+005 R/L95S $900+50 \mathrm{~S}$ R/L95s 1000+00s R/L95S 1000+50S

R/L95s $1100+005$ R/L95S 1100+50S R/L95S $1200+005$ R/L95S 1200+50S R/L95S $1300+00 \mathrm{~S}$

R/L95S $1300+50 \mathrm{~S}$ R/L95S $1400+00$ S R/L95S $1400+50 \mathrm{~S}$ R/L95S 1500+00s R/L95S $1600+00 \mathrm{~S}$
<50.317 s
$<5<2214$
$\begin{array}{llll}5 & 0.2 & 24 & 2\end{array}$
$20<.2 \quad 14<21$

$<50.466<276 \quad 6 \quad 11 \quad 13<.2<5<5<53.851345<10<391280<20<20251.631 .19$
 $<5<22018150 \quad 3 \quad 9 \quad 8 \quad 0.3<5<5<52.53618<10187 \quad 9 \quad 43<20<20 \quad 132.350 .81$

$<50.215 \quad 5 \quad 87 \quad 2 \quad 7$ 8 $8<.2<5<5<52.36430<10 \quad 97 \quad 9 \quad 46<20<20 \quad 171.810 .69$

$<50.362 \quad 2366 \quad 6 \quad 6 \quad 100.8<5<5<53.25 \quad 544<10 \quad 31 \quad 1057<20<20 \quad 211.681 .10$

$\begin{array}{lllllllllllll}0.34 & 0.03 & 0.24 & 33 & 4 & <2 & 17 & 4 & <5 & <10 & 0.08 & 7\end{array}$ $\begin{array}{lllllllllll}0.53 & 0.02 & 0.27 & 46 & 6 & <2 & 17 & 6 & <5 & <10 & 0.10\end{array} \quad 3$
$\begin{array}{llllllllll}0.45 & 0.02 & 0.22 & 36 & 6 & <2 & 19 & 6 & <5<10 & 0.08 \\ 2\end{array}$ $\begin{array}{lllllllllll}0.39 & 0.02 & 0.16 & 33 & 4 & <2 & 29 & 4 & <5 & <10 & 0.08\end{array} 3$ $0.510 .020: 22 \quad 51 \quad 6 \quad 3 \quad 33 \quad 6 \quad<5<100.09 \quad 8$
$\begin{array}{lllllllllllllllll}1.27 & 0.01 & 0.08 & 45 & 19 & 2 & 26 & 18 & 10 & 10 & <01 & 2\end{array}$
$0.420 .020 .15 \quad 36 \quad 5<2<28 \quad 5 \quad<5<100.07 \quad 5$
$0.330 .02 \quad 0.18 \quad 37 \quad 3<2 \quad 36 \quad 4<5<100.08 \quad 7$
$0.45 \quad 0.020 .17 \quad 31 \quad 9<2 \quad 18 \quad 8 \quad<5<100.05 \quad 4$
$0.39 \quad 0.03 \quad 0.19 \quad 40 \quad 5 \quad<2 \quad 22 \quad 5 \quad<5<100.07 \quad 5$
$0.47 \quad 0.030 .33 \quad 53 \quad 6 \quad 2 \quad 35 \quad 6 \quad<5<100.11 \quad 8$
$0.330 .020 .14 \quad 34: 4<2 \quad 18 \quad 4<5<100.06 \quad 9$
$0.450 .020 .18 \quad 42 \quad 8<2 \quad 24.8<5<100.06 \quad 3$
$0.30 \quad 0.020 .13 \quad 33 \quad 4<2 \quad 23 \quad 4<5<100.06 \quad 5$

$0.39 \quad 0.010 .26 \quad 30 \quad 8 \quad<2 \quad 26 \quad 8 \quad 7<10 \quad 0.05 \quad 2$
$0.320 .02 \quad 0.26 \quad 32 \quad 4 \quad 2 \quad 32 \quad 4 \quad<5<100.07 \quad 3$
$0.530 .010 .14 \quad 37 \quad 7<2 \quad 30 \quad 7 \quad<5<100.03 \quad 1$
$0.450 .020 .16 \quad 37 \quad 6<2 \quad 23 \quad 6 \quad 5<100.08 \quad 1$
$0.510 .020 .1646 \quad 7<2 \quad 28 \quad 7<5<100.07 \quad 2$
$0.390 .020 .17 \quad 35 \quad 7<2 \quad 27 \quad 8 \quad \ll 100.09 \quad 7$
$0.470 .010 .12 \quad 40 \quad 7<2 \quad 28 \quad 7<5<100.07$

PROJECT: CIQUENAS
DATE PRINTED: 24-OCT-95 PAGE 1

Fe Mn Te Ba $\mathrm{Cr} \quad \mathrm{V}$ Sn W La Al Mg
\because PPM PPM PPM PPM PPM PPM PPM PPM PCT PCT
$\mathrm{Ca} \mathrm{Na} \quad \mathrm{K}$ Sr Y Ga Li Nb Sc Ta Ti Zr PCT PCT PCT PPM PPM PPM PPM PPM PPM PPM PCT PPM

Geo emical Lab
 Report

PROJECT: CIOUENAS
DATE PRINTED: 24-OCT-95
 UNITS PPB PPM PCT PPM PPM PPM PPM PPM PPM PPM PPM PCT PCT

Ca Na K Sr $\quad \mathrm{Y}$ Ga Li Nb Sc Ta Ti $2 r$ PCT PCT PCT PPM PPM PPM PPM PPM PPM PPM PCT PPM

LO5S $1600+505$ LL95s 1700+00s ll95s 1700+50S LL95S 1800+00s LL95S 1800+50S

LO5s 1900+00s LL95S 1900+50s LL95S 2000+00s LL95S 2000+50S LL95S 2100+00s
/L95s 2100+50s /L95s 2200+00s LO5S 2200+50s 'L95s 2300+00s 'LOSs 2300+50s
'Loss $2400+00 \mathrm{~s}$ 'L95s 2400+50s 'LOSs 2500+00s 'L95S 2500+50s 'LOSs 2600+00s
'LOSS 2600+50s 'LO5s 2700+50s 'L95s 2800+00s 'L95s 2800+50s L95s 2900+00s

LOSS 2900+50s Le5s 3000+00s LOSs $3000+50 \mathrm{~s}$ 'LO5S $3100+00 \mathrm{~s}$ 'L95S 3100+50S

0.5	13	<2106	3	9	140.4	<5	<5	74.29	779	12	53	15	88		20		2.641 .65		0.01	0.29	52	9	7	54	9		00.14	
<50.2	12.	<2177	2	6	90.7	55	<	<5 2.40	2433	10	286	10	44	<20	<20		240.77	0.46	0.03	0.18	54	4	4	29	5		<10 0.08	
<50.2	28	485	3	7	130.5	< 5	<5	<53.52	681	<10	35	12	78	20	20		481.51	0.84	. 02	0:24	65	6	4	41	6		100.10	
< 0.4	19	84	3	9	130.2	<	<5	<5 3.85	: 762	<10	22	15	75	<20	<20		2.351 .61	0.	0.01	0.18	27	7	<2	43	7		$10<.01$	
<50.2	15	82	2	6	90.6	5	<5	<5 2.74	: 482	<10	60	9	59	<20	<20	22	20.97	0.5	2	0.22	45	7	<2	25	7	5	00.09	5
< 0.2	22	8142	3	8	131.0	<5	<	53.54	626	<10	41	12	83	<20	<20		2.671 .47	0.89	. 01	0.22	69	9	5	37	9		100.08	
<5 <.2	17	87	1	6	<.2	< 5	<5	< 51.59	295	<10	85	6	27	<20	<20		2.120 .38	0.30	0.04	0.15	32	7	<2	15	7		<10 0.08	
<5 <.2	12	<2.55	2	5	$7<.2$	<5	<5	< 2.26	356	<10	41	9	50	<20	<20		1.180 .70	0.45	0.02	0.18	32	5	<2	15	5		<10 0.08	
<50.9	103	10189	7	12	240.7	< 5	< 5	<5 5.90	1447	15	65	18	114	<20	<20		3.612 .06	0.82	. 01	0.30	44	26	9	49	25		100.04	
<5<2	17	109	1	8	100.6	< 5	< 5	52.20	652	<10	\%	8	40	<20	<20		360.87	0.	03	0.14	54	4	2	29	4	<	100.10	
\lll 2	41	7129	3	9	150.4	<	<	53.88	657	11	26	13	82	<20	<2		2.891 .62	0.90	. 01	0.25	75	5	7	45	5		00.15	
< 0.3	24	98	2	9	130.3	<5	<	73.12	591	<10	22	14	68	<20	20		2.871 .56	1.22	0.01	0.24	100	5	5	39	5		<10 0.14	5
<50.4	26	1079	5	8	110.8	5	\checkmark	62.82	398	<10	118	9	47	<20	20		201.04	0.45	. 03	0.29	49	4	6	32	4		100.11	22
<50.3	28	100	3	8	110.3	55	<5	53.14	614	<10	52	11	57	<20	20		. 581.27	0.57	02	0.15	42	8	3	35	8	5	0.04	
<50.2	18	4103	2	7	60.4	\leqslant	<5	<51.78	294	<1	105	7	30	<20	<20		210.48	0.33	03	0.15	39	4	<2	19	5		100.08	13
<50.2	65	<2 76	3	7	90.5	5	<5	<52.50	559	<10	104	8	51	<20	20		2.930 .9	0.	0.04	0.16	42	7	4	28	7	<5	10 0.12	25
< 0.4	20	<242	2	5	$8<.2$	5	<5	\$5 2.92	532	<10	41	10	63	<20	<20	22	030.49	0.36	0.01	0.14	28	8	<2	13	8	<	<10 0.05	
<50.3	33	<264	2	8	$8<.2$	< 5	<	< 52.63	592	<10.	63	11	55	<20	<20	25	310.75	0.68	0.03	0.17	40	10	<2	17	10	<	<100.06	
<50.3	36	<2 74	2	7	$8<.2$	< 5	< 5	< 2.74	569	<10	73	10	56	<20	<2		1.510 .75	0.69	0.03	0.19	46	11	<2	18	10		100.08	
<5 < 2	5	<2 36	1	3	40.3	<	<5	< 51.76	213	<10	36	6	36	<20	<20		0.790 .29	0.41	. 22	0	27	5	<2	9	5		100.07	
$10<.2$	28	<273	4	6	120.2	55	5	<53.53	1050	<10	21	8	79	<20	<20		2.421 .29	1.86	0.01	0.10	66	13	2	30	12		<10 0.01	2
210.7	37	12103	5	9	$13<.2$	< 5	<	<55.82	649	13	55	14	98	<20	<20	76	. 930.90	0.63	0.02	0.24	55	12	<2	22	11	5	<10 0.07	
<50.2	13	103	2	7	$7<.2$	< 5	< 5	< 2.77	480	<10	111	10	48	<20	<2		1.910 .67	0.47	0.02	0.19	48	4	<2	23	5		<100.07	
< 0.5	114	871	6	25	160.6	<5	<	62.78	1528	<10	59	12	52	<20	<20		3.390 .8	2.	0.03	0.29	188	8	9	24.	8		100.08	3
< $5<.2$	20	680	4	7	80.5	5	<5	62.46	468	<10	85	12	48	<20	<20		60	1.35	0.03	0.20	112	6	5	39	6		100.13	8
<51.4	74	11136	5	11	14 <. 2	<	<5	< 54.51	827	11	70	15	82.	<20	<20		2.501 .17	0.76	0.01	0.30	48	23	6	39	23		100.05	6
<50.6	48	5179	5	9	142.5	5	<	5 54.49	1084	11	44	16	101	<20	<20		3.301 .31	1.47	0.02	0.24	102	16	12	35	16		<10 0.09	. 3
<51.0	101	<2135	4	8	140.7	5	6	105.47	754	15	41	13	91.	<20	<20		4.271 .52	1.36	0.02	0.18	108	17	14	48	17		<10 0.10	9
<51.2	96	<2208	4	11	150.7	5	< 5	55.93	621	13	27	21	126	<20	<20		4.261 .67	1.24	0.02	0.15	78	28	11	40	28		<10 0.07	3
50.6	59	1498	4	12	121.2	< 5	<5	93.3	1026	11	49	13		<20	<20		4.641 .01	2.90	0.02	0.30	286	8	11	25	8		<10 0.07	2

Bondar Clegg
 Inchcape Testing Services

Geq 'emical Lab Report

PROJECT: CIQUENAS
date printed: 24-OCT-95

Bondar Clegg
 Inchcape Testing Services

PROJECT: CIQUENAS
DATE PRINTED: 24-OCT-95 PAGE 3
 UNITS PPB PPM PCT PPM PPM PPM PPM PPM PPM PPM PPM PCT PCT PCT PCT PCT PPM PPM PPM PPM PPM PPM PPM PCT PPM

<50.4	30	4104	3	5	100.3	<5	<5	<5 3.14	607	<10	94	8	58	<20	<20		2.18	1.13	0.45	0.02	0.17	37	7	2	29	7		<10	. 05	2
< 50.4	46	576	4	6	$12<.2$	< 5	<	<5 3.66	654	<10	55	9	71	<20	<20	25	2.18	1.24	0.72	0.01	0.22	56	10	3	28	10	6	0	0.06	4
<50.6	44	590	5	7	$12<.2$	$<$	<5	<5 3.50	692	12	78	8	67	<20	<20	25	2.38	1.24	0.65	0.02	0.23	50	13	4	29	13	6	<10	0.07	4
<50.7	41	499	4	8	150.5	<	< 5	<5 4.04	686	12	112	10	91	<20	<20	23	3.59	. 50	0.86	0.03	0.54	56	8	15	25	8	9	10	0.21	17
<50.6	48	<2 102	3	12	$17<2$	45.	<5	<5 5.01	868	<10	89	28	125	<20	<20	24	3.	1.86	1.00	0.02	0.75	57	9	18	28	9	10	10	0.28	7
<0.8	48	<2 128	3	10	20<. 2	<	< 5	95.05	1084	10	76	14	123	<20	20:		. 03	2.04	1.09	0.02	0.47	58	7	22	33	7	10	<10	0.33	4

Bondar Clegg
 Inchcape Testing Services

CLIENT: WHITE WOKF EXPLORATION

REPORT: V95-01355.0 (COMPLETE)

spaple

 wMBER UNITS PPB PPM PCT PPM PPM PPM PPM PPM PPM PPM PPM PCT PCT

Ca $\mathrm{Na} K$ Sr \ddot{Y} Ga Li Nb Sc Ta Ti Zr
PROJECT: CIQUENAS
DATE PRINTED: 24-OCT-95 PAGE 2

2/L95s 1600+505 $2 /$ LO5s $1700+005$ l/loss 1700+50s :/LOSS 1800+00s lloss $1800+505$
/L95s 1900+00s 1195s 1900+505 LLSSS 2000+00s LL95s $2000+505$ LOSS 2100+00s

LO5S 2100+50s LS5S 2200+005 L95s 2200+50s L5SS 2300+005 LO5S 2300+50S
.955 $2400+005$ 95s 2400+505 95s 25000005 95s 2500 50 S 95s 2600+005

95s $2600+50 \mathrm{~s}$ 75s $2700+50 \mathrm{~s}$ 75s $2800+005$ rss $2800+505$ $1552900+005$

5s $2900+50 \mathrm{~s}$ ss $3000+005$ 5s $3000+505$ $553100+005$ 5S $3100+50 \mathrm{~s}$

Geochemical
 UNITS PPB PPM PCT PPM PPM PPM PPM PPM PPM PPM PPM PCT PCT PCT PCT PCT PPM PPM PPM PPM PPM PPM PPM PCT PPM

Gochemical

PRoject: ciouenas
date printeo: 24-cct-95
 number UNITS PPB PPB PPM PCT PPM PPM PPM PPM PPM PPM PPM PPM PCT PCT PCT PCT PCT PPM PPM PPM PPM PPM PPM PPM PCT PPM

DAD LI300E $1200+00 \mathrm{~N}$ DAD LI300E $1200+25 \mathrm{~N}$ DAD LI300E 1200 5 50N DAD L1300E $1200+75 \mathrm{~N}$ DAD LI300E 1300+OON

DAD LI300E 1300+25N DAD LI300E 1300 50 N DAD LI300E $1300+75 \mathrm{~N}$ DAD LIBOOE 1400+OON DAD LI300E $1400+25 \mathrm{~N}$

DAD LIBOOE $1400+75 \mathrm{~N}$ DAD LI300E 1500+00N DAD LI300E $1500+25 \mathrm{~N}$ DAD L1300E 1500+50N DAD LI300E $1500+\bar{T}$ N

DAD LI300E 1600+00N DAD L1300E $1600+25 \mathrm{~N}$ DAD LI300E 1600 50 N DAD L1300E $1600+75 \mathrm{~N}$ DAD LI300E 1700+0ON

DAD LI300E $1700+25 \mathrm{~N}$ DAD LI300E 1800+50N DAD LI300E $1800+75 \mathrm{~N}$ DAD LI300E 1900+00N DAD LI300E $1900+25 \mathrm{~N}$

DAD LI300E 1900+50N DAD LI300E $1900+75 \mathrm{~N}$ DAD LI300E 2000+00N DAD LI300E 2000+25N DAD LI300E 2000+50N

B8ndar Clegg
 Inchcape Testing Services

IENT: wifIE wol hexploparion

Geoc ${ }^{\text {mical }}$
 Lab Report

:PORT: V95-01284.0 (COMPLETE)
PROJECT: CIQUENAS DATE PRINTED: 24-OCT-95

D LI300E 2000+75N D LISOOE 2100+00N D LI300E 2100+25N D LI300E 2100+50N D L1300E 2100+75N

Bondar Clegg
 Inchcape Testing Services

CLIENT: WHITE Wofry EXPLORATION

IAD L1400E $1800+75 \mathrm{~N}$ JAD L1400E $1900+00 \mathrm{~N}$ JAD L1400E $1900+25 \mathrm{~N}$ JAD L1400E 1900+50N JAD L1400E $1900+75 \mathrm{~N}$

JAD L1400E 2000+00 JAD L1400E 2000+25N JAD L1400E 2000+50N JAD L1400E 2000+75N JAD LI400E $2100+00 \mathrm{~N}$

JAD L1400E $2100+25 \mathrm{~N}$ JAD LI400E 2100+50N JAD LILOOE $2100+75 \mathrm{~N}$ JAD L1500E 1200+00N JAD L1500E $1200+25 \mathrm{~N}$

JAD L1500E $1200+50 \mathrm{~N}$ JAD L1500E $1200+75 \mathrm{~N}$ SAD L1500E $1300+00 \mathrm{~N}$ JAD L1500E $1300+25 \mathrm{~N}$ JAD L1500E $1300+50 \mathrm{~N}$

JAD LI500E $1300+75 \mathrm{~N}$ JAD L1500E $1400+00 \mathrm{~N}$ JAD L1500E $1400+25 \mathrm{~N}$ JAD L1500E $1400+50 \mathrm{~N}$ JAD L1500E $1400+$ TSN

JAD L1500E $1500+00 \mathrm{~N}$ JAD L1500E $1500+25 \mathrm{~N}$ JAD L1500E $1500+75 \mathrm{~N}$ JAD L1500E $1600+00 \mathrm{~N}$ JAD L1500E $1600+25 \mathrm{~N}$

Bondar Clegg
Inchcape Testing Services

DAD L1500E $1600+50 \mathrm{~N}$ DAD L1500E $1600+75 \mathrm{~N}$ DAD L1500E $1700+00 \mathrm{~N}$ DAD L1500E $1700+25 \mathrm{~N}$ DAD L1500E $1700+50 \mathrm{~N}$

DAD L1500E $1700+75 \mathrm{~N}$ DAD L1500E 1800+00N DAD L1500E $1800+25 \mathrm{~N}$ DAD L1500E $1800+50 \mathrm{~N}$ DAD L1500E $1800+75 \mathrm{~N}$

DAD LIS00E $1900+00 \mathrm{~N}$ DAD L1500E $1900+25 \mathrm{~N}$ DAD L1500E $1900+50 \mathrm{~N}$ DAD L1500E 1900+75N DAD L1500E $2000+00 \mathrm{~N}$

DAD L1500E $2000+25 \mathrm{~N}$ DAD L1500E 2000+50N DAD L1500E $2000+75 \mathrm{~N}$ DAD L1500E 2100+00N DAD L1500E $2100+25 \mathrm{~N}$

DAD LIS00E $2100+50 \mathrm{~N}$ DAD L1500E $2100+75 \mathrm{~N}$ DAD L1500E $2200+00 \mathrm{~N}$ DAD L1600E $1200+00 \mathrm{~N}$ DAD L1600E $1200+25 \mathrm{~N}$

DAD L1600E 1200+50N DAD L1600E $1200+75 \mathrm{~N}$ DAD L1600E $1300+00 \mathrm{~N}$ DAD L1600E $1300+25 \mathrm{~N}$ DAD L1600E $1300+50 \mathrm{~N}$

<. 2	18	17	89	3	8	<. 2	< 5	14	<5.56	58	1097	6		<20		132.40		0.48		0.36	44	6	<2	25	<1		0.08	15
0.3	37	24	158	3	9	100.3	<5	13	<52.81	493	10: 69	7	32		<20	16	0.72	0.58	0.03	0.30	54	8	3	26	<1		00.09	15
0.4	58	46	185	4	9	130.6	<	6	<53.55	2053	10126	8	46	<20	<20	22	0.99	0.66	0.01	0.39	49	15	<2	30	<1		0.06	4
<. 2	37	14	123	4	10	13 <2	<	12	<3.49	967	<10110	9		<2	<20	202	1.06	0.55		0.44	52	9	<2	31	<1		00.09	10
<. 2	46.	22	113	3	10	12 <.2	<5	7	<3.01	922	114	9		<2	<20	18	0.93	0.45	0.02	0.40	41	7	<2	34	<1		0.12	15
<. 2	31.	15	85	3	9	$10<2$	<5	10	< 2.60	630	<10 14	8			<20	152.48	0.70	0.46	0.02	30	47	6	<2	26	<1	< 5	00.11	17
<. 2	33	15	102	3	10	11 <.2	<5	15	<52.90	813	10137	10		<20	<20		0.82	0.40		0.41	40	5	<2	28	<1		<100.10	. 7
<. 2	38	13	89	3	9	11 <.2	<	11	<5 2,83	850	10112	13			<20	18	0.8			0.25	39	8	<2	29	1	<5	100.09	6
<. 2	26	13	105	3	9	11 <.2	<	6	<52.74	937	<10 139	11		<20	<20	18	0.	0.47	0.	0.28	41	7	<2	24	1	<	100.09	4
0.2	30	16	101	3	12	0.2	<5	11	< 2.28	653	<10. 12	11			<20	16	0.66	0.64	0.02	0.29	45	7	<2	15	1		100.05	2
<. 2	23	16	118	3	11	0.2	< 5	10	2.12	843	72	10			<20	151.53	0.51	0.63		0.29	48	6	<2	14	1		00.06	3
<. 2	25	16	134	3	11.	90.3	<	11	<5 2.26	953	10183	10	36	20	<20	15.1 .6	0.54	0.57		0.37	46	7	<2	15	1		00.07	6
<. 2	31	20	112	3	14.	11 <2	<5	7	<52.71	88	10114	13		<20	20	181.	0.81	0.	0.02	0.36	38	8	<2	17	1	< 5	<10 0.07	2
0.3	34	19	126	3	17.	120.3	<	13	<5281	714	<10 113	14		<20	<20	181.	0.86	0.	0.	0.31	39	8	<2	17	1		<100.07	2
<. 2	32	17	102	3	14	11 <2	-5	9	<52.66	635	<10 109	13			<20	18				0.30	39	8	<2	16	1	$<$	00.07	2
<. 2	21.	13	94	5	9	$8<2$	<5	6.	< 2.07.	646	131	10.		<20	2	16	0.	0.4		21	34	7	<2	14	<1	<5	00.06	4
0.2	24	14	80	3	10	10 <2	<5	9	<52.52	59	129	12		<20	<20	17	0.69		0.01	0.23	43	7	<2	16	<1		100.05	2
0.3	31	12	87	4	11	11 <. 2	< 5	8	<52.78	790	132	11			20	16	0.78	0.59	0.01	0.24	39	7	<2	15	<1		100.04	1
<. 2	31	14	116	3	10	0.2	<	10.	<51.94	692	<10 173	8		<20	<20	131	0.41	0.	0.02	0.16	40	6	<2	13	<1	<	100.06	5
<. 2	22	14	87	3	11	9 <. 2	<5	10	< 22.37	453	<10 11	11		<20	<20	: 15			0.02	0.14	27	6	<2	14	1	<5	00.07	5
<. 2	30	18	121	3	12	$9<.2$	< 5	5	<2.22	514	<10 123	10			<20	14	0.50	0.	0.02	0.21	31	6	<2	15	<1		100.07	7
<. 2	28	19	129	3	12	10 <. 2	<	8	<52.40	638	<10 113	11		<20	<20	151.46	0.64	0.	0.02	0.17	36	6	<2	15	<1	<	10 0.07,	2
<. 2	23	17	100	3	12	110.2	<	8	<52.68	595	<10. 93	12	50	20	<20	171.5	0.84	0.4	0.02	0.36	35	7	<2	16	1		00.09	
<. 2	15	7	65	2	8	$7<2$	<5	5	<52.12	444	<10 90	9	36	<20	<20	121.	0.5	0.		0.11	35	3	<2	13	<1	< 5	0.0 .07	5
<. 2	30	12	72	3	7	$9<2$	<5	6	<52.47	566	<10 96	8		<20	<20	171				0.15	37	8	<2	18	<1	<5	00.07	7
<. 2	24	23	179	4	7	100.3	<5	11.	<52.59	1593	<10 198	7		<20	<20	171.	0.69	0.	0	0.48	78	7	<2	23	1		0.06	\bigcirc
<. 2	25	14	105	5	10	12 <.2	<5	13	<53.31	807	<10 158	8		<20	<20	202.8	0.86	0.58	0.0	0.44	56	10	2	33	<1	<	00.10	19
<. 2	21	14	148	4	9	$13<2$	<5	19	<53.29	1305	<10 189	8		<20	<20	172.6	0.95	0.43	0.02	0.32	48	5	<2	35	1	<	100.11	8
<. 2	15	15	120	3	10	10 <2	<	17	<52.74	964	<10 213	7			<20	153.02	0.72	0.40	0.02	0.24	57	5	<2	29	<1		<10 0.11	17
<. 2	21	14	103	4	10	11 <.2	<5	16	<52.99	554	<10 165	8		<20	<20	153.06	0.84	0.34	0.02	0.23	43	5	4	33	<1		<10 0.12	18

PROJECT: CIOUENAS
DATE PRINTED: 24-OCT-95
PAGE 5
;AMPLE RMBER

IAD L1600E 1300+TSN IAD L1600E $1400+00 \mathrm{~N}$ IAD L1600E $1400+25 \mathrm{~N}$ AD L1600E 1400+50N IAD L1600E $1400+75 N$

AD L1600e $1500+00 \mathrm{~N}$ AD L1600E 1500+25N AD L1600E $1500+50 \mathrm{~N}$ AD L1600E $1500+75 \mathrm{~N}$ AD L1600E $1600+00 \mathrm{~N}$

AD L1600E 1600+25N AD L1600E $1600+50 \mathrm{~N}$ AD L1600E $1600+75 \mathrm{~N}$ AD L1600E $1700+00 \mathrm{~N}$ AD L1600E $1700+25 \mathrm{~N}$

AD L1600E $1700+50 \mathrm{~N}$ AD L1600E $1700+75 \mathrm{~N}$ AD L1600E 1800+00N AD L1600E $1800+25 \mathrm{~N}$ AD L1600E 1800+50N

AD L1600E $1800+75 \mathrm{~N}$ AD L1600E 1900+00N AD L1600E $1900+25 \mathrm{~N}$ AD L1600E 1900+50N 4D L1600E $1900+75 \mathrm{~N}$

AD L1600E $2000+00 \mathrm{~N}$ AD L1600E $2000+75 \mathrm{~N}$ AD L1600E 2100+00N AD L1600E $2100+25 \mathrm{~N}$ AD L1600E $2100+50 \mathrm{~N}$

BOndar Clegg

Inchcape Testing Services

 UNITS PPB PPB PPM PCT PPM PPM PPM PPM PPM PPM PPM PPM PCT PCT PCT PCT PCT PPM PPM PPM PPM PPM PPM PPM PCT PPM

D LI600E $2100+75 \mathrm{~N}$ D LI600E 2200+00N D LITOOE $1200+00 \mathrm{~N}$ D LIT00E $1200+25 \mathrm{~N}$ D LIT00E 1200+50N
<5 <5. <5 <5

D LIT00E $1200+75 N$ D L1700E 1300+00N D L1700E 1300+25N D L1700E 1300+50N D L1700E $1300+75 \mathrm{~N}$

Geochemical Lab

PROJECT: CICUENAS
DATE PRINTED: 24-OCT-95

D LIT00E 1400+00N D LIT00E $1400+25 \mathrm{~N}$ D LITOOE 1400+50N D L1700E 1400+75N D L1700E $1500+00 \mathrm{~N}$

D LIT00E $1500+25 \mathrm{~N}$ D LIT00E $1500+50 \mathrm{~N}$ D LITOOE 1500+75N D LIT00E 1600+00N D L1700E $1600+25 \mathrm{~N}$

D L1700E $1600+50 \mathrm{~N}$ D L1700E $1600+75 \mathrm{~N}$ D LIT00E 1700+00N D L1700E $1700+25 \mathrm{~N}$ D LIT00E 1700+50N

D L1700E 1700+75N D L1700E 1800+00N D L1TOOE 1800+25N D LITOOE 1800+50N D LITOOE $1800+75 \mathrm{~N}$

Bondar Clegg
 Inchcape Testing Services

CLIENT: LHITE WOUF EXPLORATION

REPORT: V95-01284.0 (COMPLETE)

DAD L1T00E 1900+00N DAD L1700E 1900+25N DAD L1700E $1900+50 \mathrm{~N}$ DAD L1700E $1900+75 \mathrm{~N}$ DAD L1700E $2000+00 \mathrm{~N}$

DAD L1700E $2000+25 \mathrm{~N}$ DAD L1700E 2000+50N DAD L1700E $2000+75 \mathrm{~N}$ DAD L1700E 2100+OON DAD L1700E $2100+25 \mathrm{~N}$

DAD L1700E $2100+50 \mathrm{~N}$ DAD L1700E $2100+75 \mathrm{~N}$ DAD L1TOOE $2200+00 \mathrm{~N}$ DAD L1800E $1200+00 \mathrm{~N}$ DAD L1800E $\quad 1200+25 \mathrm{~N}$

DAD L1800E $1200+50 \mathrm{~N}$ DAD L1800E $1200+75 \mathrm{~N}$ DAD L1800E $1300+00 \mathrm{~N}$ DAD L1800E $1300+25 \mathrm{~N}$ DAD L1800E $1300+50 \mathrm{~N}$

DAD L1800E $1300+75 \mathrm{~N}$ DAD L1800E $1400+00 \mathrm{~N}$ DAD L1800E $1400+25 \mathrm{~N}$ DAD L1800E $1400+50 \mathrm{~N}$ DAD L1800E $1400+75 \mathrm{~N}$

DAD L1800E $1500+00 \mathrm{~N}$ DAD L1800E $1500+25 \mathrm{~N}$ DAD L1800E $1500+50 \mathrm{~N}$ DAD L1800E $1500+75 \mathrm{~N}$ DAD L1800E $1600+00 \mathrm{~N}$

[^3] Bondar Clegg Inchcape Testing Services

Ger-hemical

 NMMBER UNITS PPB PPB PPM PCT PPM PPM PPM PPM PPM PPM PPM PPM PCT PCT PCT PCT PCT PPM PPM PPM PPM PPM PPM PPM PCT PPM

DAD L1800E $1600+50 \mathrm{~N}$ DAD L1800E $1600+7511$ DAD L1800E $1700+00 \mathrm{~N}$ DAD L1800E $1700+25 \mathrm{~N}$ DAD L1800E $1700+50 \mathrm{~N}$

DAD L1800E $1800+00 \mathrm{~N}$

 DAD L1800E $1800+25 \mathrm{~N}$ DAD L1800E $1800+50 \mathrm{~N}$ DAD L1800E $1800+75 \mathrm{~N}$ DAD LIB00E $1900+00 \mathrm{~N}$DAD L1800E $1900+25 \mathrm{~N}$ DAD LI800E 1900+50N DAD L1800E $1900+75 \mathrm{~N}$ DAD L1800E 2000+00N DAD L1800E $2000+25 \mathrm{~N}$

DAD L1800E $2000+50 \mathrm{~N}$ DAD L1800E $2000+75 \mathrm{~N}$ DAD L1800E $2100+00 \mathrm{~N}$ DAD L1800E $2100+25 \mathrm{~N}$ DAD L1800E 2100+50N

DAD L1800E $2100+75 \mathrm{~N}$ DAD L1800E 2200+0ON

<. 2	19	10	66	3	6	7 <.2	5	9	< 1.9	540	<10141	6	28	<2	<20	131.84	0.49	0.36	0.02	0.19	35	5	<2	18	<1		100.08	7
<. 2	22	10	65	3	7	$7<2$	<	10.	<51.94	742	<10 184	7	28	<20	<20	131.75	0.53	0.38	0.02	0.17	42	5	<2	23	1	<	100.08	7
<. 2	30	13	87.	3	8	$8<.2$	<	9	< 2.16	549	<10 146	7	33		<20	152.16	0.54	0.35	0.02	0.17	38	7	<2	26	1	< 5	00.09	12
<.2	24	13	71	3	7	$7<.2$	<5	9	<52.00	597	<10129	7	32	<20	<20	141.96	0.51	0.36	0.02	0.14	35	7	<2	20	1		00.09	9
<. 2	17	10	58.	3	6	$8<.2$	<	8	<2202	750	<10138	7	32	<20	<20	111.41	0.60	0.35	0.	0.14	31	4	<2	18	<1		<10 0.07	3
<. 2	17	16	110	4	8	$8<.2$	<5	9	<52.18	761	<10 174	7	34	<20	<20	122.0	0.55	0.36	0.	0.16	36	4	<2	18	1		100.09	5
<. 2	18	18	126.	5	8	$10<2$	<5	12	< 2.67	954	<10 163	9	42	<20	<20	152.10	0.72	0.28	0.01	0.18	32	4	<2	22	1		<10 0.09	4
0.2	39	15	111	5	7	$8<.2$	<5	15	< 2.04	1384	<10 164	7	29	<20	<20	162.12	0.51	0.62	0.02	0.14	43	8	<2	33	1	<	<10 0.07	5
<. 2	27	14	177	3	7	80.3	< 5	15	<51.91	3181	<10.646	5	24	<20	<20	121.98	0.49	1.01	0.02	0.18	112	4	<2	20	<	<5	00.07	5
0.2	20	16	103	4	7	$8 \leqslant 2$	<5	15	<52.17	99	<10323	6		<20	<20	13.2	0.52		0.02	0.14	71	5	<2	29	1	<5	100.07	7
<. 2	50	15	138	5	7	$12<2$	<5	<	<53.18	1585	<10219	7	51	<20	<20	142.72	1:24	1.21	0.01	0.51	107	5	<2	33	<1	<	100.07	1
<. 2	25	13	71	4	8	$8<2$	<	6	< 2.27	580	<10 110	7	38	<20	<20	152.15	0.57	0.34	0.02	0.15	35	5	<2	21	1	<5	<10 0.10	8
<. 2	24	15	70	3	7	8 <, 2	<5	10	$<52,12$	576	<10. 118	7	35	<20	<20	142.01	0.52	0.32	0.02	0.13	31	6	< 2	19	<1	<	<10 0.09	9
<. 2	25	12	69	3	7	$8<2$	<5	10	< $2: 28$	491	<10 100	7	37	<20	<20	152.	0.56	0.3	0.02	0.15	30	7	<2	20	<1	<	<10 0.10	10
<. 2	23	14	74	4	8	$9<2$	<5	8	<2.44	528	<10 116	8		<20	<20	162	0.64	0.	0	14	32	6	<2	20	1	\checkmark	00.10	9
<. 2	22	14	79	3	9	10 <.2	<5	13	<52.66	770	<10 145	10	45	<20	<20	172.24	0.73	0.34	0.02	0.19	40	7	<2	24	1		00.11	6
<. 2	21	16	78	4	9	$9<.2$	$<$	20	< 2.57	501	<10 181	8	41	<20	<20	142.78	0.65	0.25	0.02	0.16	42	4	3	24	1	<	<10 0.11	10
<. 2	18	15	92	3	8	$8<2$	<5	9	<2.09	670	<10 131	7	33	<20	<20	132.08	0.51	0.35	0.02	0.12	34	5	<2	16	1	<	<10 0.09	10
<. 2	18	18	86	3	8	$8 \leqslant 2$	<	12	<2.07	617	<10132	7	32	<20	<20	132.14	0.51	0.31	0.02	0.12	34	6	<2	17	<1	<	<100.09	11
<. 2	16	17	138	3	8	8 s 2	5	12	< 2.17.	1189	<10315	10		<20	<20	111.82	0.63	0.51	0.01	0.17	60	3	<2	22	<1		100.07	4
<.2	26	15	84	3	7	$7<2$	<	13	< 1.91	931	<10: 181	8	30	<20	<20	121.85	0.55	0.63	0.02	0.21	58	5	<2.	20	1		100.08	9
<. 2	31	15	70	4	8	$8<.2$	<	11	<5 2.07	603	10116	11	32			1.	0.64	0.49	0.02	0.18	35	6	<2	23	1		0 0.09.	9

Geoc mical
 Lab
 Report

PROJECT: CIOUENAS
DATE PRINTED: 24-0CT-95
 UNITS PPB PPN PPM PPM PPM PPM PPM PPM PPM PPH PPM PPM PCT PPM PPM PPM PPM PPM PPM PPM PPM PCT PCT PCT PCT PCT PPM PPM PPM PPM PPM PPM PPM PCT PPM

E L600E $7500+00 \mathrm{~N}$ E L600E $7500+25 N$ E L600E $7500+50 \mathrm{~N}$ E L600E $7500+75 \mathrm{~N}$ E L600E 7600+00N

E L600E $7600+25 \mathrm{~N}$ E L600E $7600+50 \mathrm{~N}$ E L600E $7600+75 \mathrm{~N}$ E L600E $7700+00 \mathrm{~N}$ E L600E $7700+25 \mathrm{~N}$

IE L600E $7700+50 \mathrm{~N}$ IE L600E $7700+75 \mathrm{~N}$ IE L600E $7800+00 \mathrm{~N}$ IE L600E $7800+25 \mathrm{~N}$ iE L600E 7800+50N

E L600E $7800+75 N$ E L600E $7900+00 \mathrm{~N}$ E $1600 \mathrm{E} 7900+25 \mathrm{~N}$ E LGOOE 7900+50N E L600E $7900+75 \mathrm{~N}$

E LGOOE B000+00N

 E L600E 8000+25N E L600E 8000+50N E L600E 8000+75N E L600E 8100+00NE L600E 8100+25N E L600E 8100+50 N - K E L600E 8200+00N E L600E 8200+25N E L600E $8200+50 \mathrm{~N}$

 $<\begin{array}{lllllllllllllllllllll}5 & <.2 & 18 & 13 & 92 & 2 & 7 & 8 & <.2 & 5 & 14 & 5 & 1.95 & 452 & <10 & 150\end{array}$
$735<20<20 \quad 121.810 .470 .240 .020 .08 \quad 22 \quad 3<213<1<5<100.08 \quad 4$
$6 \quad 30<20<20 \quad 111.80 \quad 0.36 \quad 0.28 \quad 0.020 .08 \quad 27 \quad 3<2: 12<1<5<100.08 \quad 7$

$\begin{array}{llllllllllllllllll}<5 & 0.2 & 17 & 20 & 93 & 4 & 8 & 8 & <.2 & 5 & 10 & 5 & 2.03 & 697 & <10 & 170 \\ <5 & <2 & 17 & 46 & 146 & 4 & 7 & 8 & 0.3 & 5 & 14 & 5 & 1.83 & 597 & <10 & 137 \\ <5 & 0.3 & 70 & 10 & 44 & 3 & 7 & 5 & <.2 & 5 & 13 & 5 & 1.54 & 143 & <10 & 102 \\ <5 & <2 & 20 & 13 & 67 & 3 & 7 & 8 & <.2 & 5 & 14 & 5 & 1.95 & 356 & <10 & 108 \\ <5<2 & 19 & 12 & 70 & 3 & 8 & 9 & <.2 & 5 & 13 & 5 & 2.26 & 539<10 & 108\end{array}$
$736<20<20 \quad 112.340 .500 .340 .020 .11,43 \quad 4<217<1<5<100.08 \quad 7$
$7 \quad 33<20<20 \quad 111.860 .440 .320 .020 .10 \quad 38 \quad 3<2 \quad 18 \quad 1<5<100.08 \quad 4$
$8 \quad 27<20 \leqslant 20 \quad 211.560 .360 .410 .020 .08 \quad 38 \quad 13 \quad 3 \quad 30<1<5<100.08 \quad 6$
$632<20<20 \quad 92.210 .480 .300 .020 .18 \quad 33 \quad 2 \quad 329<1<5<100.08 \quad 5$
$941<20<20 \quad 131.990 .640 .350 .020 .18 \quad 36 \quad 4 \quad<225<1<5<100.09 \quad 3$

Geochmical Lab Report

PROJECT: CIQUENAS DATE PRINTED: 24-OCT-95 PAGE 2

MPLE
 UNITS PPB PPM PPM PPM PPM PPM PPM PPM PPM PPM PPN PPM PCT PPH PPM PPM PPM PPM PPM PPM PPM PCT PCT PCT PCT PCT PPM PPM PPM PPM PPM PPM PPM PCT PPM

BE L600E $8200+75 \mathrm{~N}$ BE L600E 8300+00N BE L600E $8300+25 \mathrm{~N}$ BE L. $600088300+50 \mathrm{~N}^{7}$ BE L600E $8400+00 \mathrm{~N}$

BE L600E $8400+25 \mathrm{~N}$ 3E L600E $8400+50 \mathrm{~N}$ 3E L600E $8400+75 \mathrm{~N}$ 3E L600E $8500+00 \mathrm{~N}$ be LTOOE 7500+00N

BE LTOOE $7500+25 \mathrm{~N}$ BE LTOOE $7500+50 \mathrm{~N}$ BE LTOOE $7500+75 \mathrm{~N}$ BE LTOOE 7600+00N 3E $1700 E 7600+25 \mathrm{~N}$

3E LTOOE $7600+50 \mathrm{~N}$ 3E LTOOE $7600+75 \mathrm{~N}$ 3E LTOOE $7700+00 \mathrm{~N}$ 3E LTOOE $7700+25 \mathrm{~N}$ 3E LTOOE $7700+50 \mathrm{~N}$

3E LTOOE $7700+75 \mathrm{~N}$ 3E LTOOE $7800+00 \mathrm{~N}$ 3E L700E $7800+25 \mathrm{~N}$ 3E LTOOE $7800+50 \mathrm{~N}$ 3E LTOOE $7800+75 \mathrm{~N}$

CLIENT: WHITE WOLF FEXPLORATION

Georahemical
 Lab
 Report

REPORT: V95-01286.0 (COMPLETE
PROJECT: CIOUENAS
DATE PRINTED: 30-0CT-95

SAMPLE
vUMBER
 UNITS PPB PPM PCT PPM PPM PPM PPM PPM PPM PPM PPM PCT PCT

Ca $\quad \mathrm{Na} \quad \mathrm{K} \quad \mathrm{Sr} \quad \mathrm{Y}$ Ga Li Nb Sc Ta $\mathrm{Ti} \quad \mathrm{Zr}$ PCT PCT PCT PPM PPM PPM PPM PPM PPM PPM PCT PPM

JADE L1900N $2200+00 \mathrm{E}$ JADE L1900N 2200+25E JADE L1900N 2200+50E JADE L2000N $1000+00 \mathrm{E}$ JADE L2000N $1000+25 E$

Jade lzooon 1000+50e)ADE L2O00N 1000+75E JADE L2OOON $1100+00 E$ JADE L2OOON 1100+25E jade lzooon $1100+50 \mathrm{E}$

JADE L2000N $1100+75 E$ JADE L2OOON 1200+00E JADE L2000N 1200+25E JADE L2000N 1200+50E JADE L2000N $1200+75 E$

IADE L2OOON 1300+00E IADE L2000N 1300+25E IADE L2000N $1300+50 \mathrm{E}$ IADE LZOOON 1300+75E IADE LZOOON $1400+00 \mathrm{E}$

IADE L2000N $1400+25 E$ IADE L2OOON 1400+50E IADE L2000N 1400+75E ADE L2000N $1500+00 E$ ADE L2000N $1500+25 E$

ADE L2000N $1500+50 \mathrm{E}$ ADE L2OOON $1500+75 E$ ADE L2000N $1600+00 E$ IADE LZOOON 1600+25E IADE L2000N $1600+50$ E
$\begin{array}{lllllllllllllllllll}5 & 0.3 & 36 & 16 & 131 & 4 & 12 & 11<2 & <5 & 11 & <5 & 3.07 & 557 & <10 & 141 & 13 & 56 & <20 & <20 \\ 16 & 16 & 16 & 0.63\end{array}$
 $\begin{array}{lllllllllllllllllllll}<5 & <.2 & 29 & 15 & 83 & 4 & 10 & 10 & <.2 & 5 & 11 & <5 & 2.79 & 597 & <10 & 130 & 11 & 47<20 & <20 & 23 & 2.44 \\ 0.51\end{array}$
 $\begin{array}{llllllllllllllllllllll}11 & 0.3 & 24 & 12 & 55 & 3 & 6 & 9 & <.2 & <5 & 7 & <5 & 2.56 & 398 & <10 & 234 & 8 & 43 & <20 & <20 & 18 & 2.04 \\ 0.43\end{array}$

 $\begin{array}{llllllllllllllllllllll}<5 & <.2 & 24 & 12 & 57 & 3 & 6 & 9 & <.2 & <5 & 7 & <5 & 2.47 & 347 & <10 & 193 & 7 & 37 & <20 & <20 & 15 & 1.95 \\ 0.47\end{array}$
 $\begin{array}{lllllllllllllllllllllllll}<5 & <.2 & 106 & 18 & 76 & 5 & 7 & 11 & <.2 & <5 & 5 & <5 & 2.71 & 1088 & <10 & 219 & 5 & 29 & <20 & <20 & 20 & 1.91 & 0.55\end{array}$
$\begin{array}{llllllllllllllllllllllllll}<5 & <.2 & 39 & 14 & 106 & 4 & 7 & 12 & <.2 & 5 & 10 & <5 & 3.06 & 894 & <10 & 260 & 7 & 40 & <20 & <20 & 15 & 2.15 & 0.57\end{array}$

$\begin{array}{llllllllll}0.38 & 0.02 & 0.21 & 37 & 4 & <2 & 18 & 1 & <5 & <10 \\ 0.10 & 11\end{array}$ $\begin{array}{llllllllll}0.35 & 0.02 & 0.13 & 35 & 4 & <2 & 16 & 1 & <5 & <10 \\ 0.09 & 10\end{array}$ $0.380 .020 .16 \quad 43 \quad 8 \quad<2 \quad 41<1<5<100.11 \quad 13$ $0.300 .020 .15 \quad 32 \quad 5<2 \quad 17<1<5<100.08 \quad 6$ $0.34 \quad 0.02 \quad 0.16 \quad 40 \quad 10 \quad 2 \quad 21<1<5<100.08 \quad 16$
$0.350 .020 .16 \quad 40 \quad 4<2 \quad 17 \quad 1<5<100.07 \quad 4$ $0.320 .020 .20 \quad 31 \quad 8 \quad<2 \quad 24<1<5<100.09 \quad 12$ $\begin{array}{llllllllll}0.34 & 0.02 & 0.16 & 34 & 7 & 2 & 23 & <1 & <5 & <10\end{array} 0.07 \quad 10$ $0.740 .020 .17 \quad 48 \quad 16<2 \quad 40 \quad 1<5<100.05 \quad 6$ $1.060 .020 .13 \quad 62 \quad 23<2 \quad 41<1<5<100.04 \quad 7$
$0.690 .020 .23 \quad 48 \quad 9<2 \quad 51<1<5<100.06 \quad 5$ $0.430 .020 .18 \quad 31 \quad 10<2 \quad 30<1<5<100.078$ $0.320 .020 .21 \quad 29 \quad 5 \quad<2171 \lll 100.07 \quad 6$
 $0.530 .020 .24 \quad 4510<2 \quad 27<1<5<100.05 \quad 3$
$739<20<20 \quad 131.860 .45 \quad 0.350 .020 .20 \quad 34 \quad 5<2<22<1<5<100.08 \quad 7$ $0.450 .030 .17 \quad 46 \quad 8<2<20<1<5<100.09 \quad 14$ $0.380 .010 .17 \quad 37 \quad 3<2 \quad 20<1<5<100.03 \quad 1$ $0.510 .020 .16 \quad 48 \quad 7<2<331<5<100.07 \quad 6$ $0.350 .020 .17 \quad 34 \quad 9<234 \quad 1<5<100.09 \quad 4$
$0.360 .020 .17 \quad 34 \quad 9<232 \quad 1 \quad 5<100.07 \quad 5$ $0.330 .020 .17 \quad 38 \quad 8<2 \quad 32 \quad 1<5<100.08 \quad 4$ $0.430 .030 .09 \quad 48 \quad 8 \quad 2 \quad 30<1<5<100.0714$ $0.250 .020 .21 \quad 35 \quad 7 \quad 2 \quad 16<1<5<100.08 \quad 11$ $0.710 .020 .1982 \quad 7<2 \quad 22<1<5<100.07 \quad 6$
$0.180 .020 .14 \quad 24 \quad 3 \quad 3 \quad 15<1<5<100.09 \quad 9$ $0.790 .030 .14 \quad 80 \quad 13 \cdot 3 \quad 54<1<5<100.078$ $0.28 \quad 0.010 .10 \quad 40 \quad 4<2 \quad 15<1<5<100.04 \quad 2$ $0.280 .020 .11 \quad 40 \quad 4 \quad 3 \quad 14<1<5<100.07 \quad 9$ $0.260 .020 .10<68<2 \quad 10<1<5<100.0610$

IENT: WHITE HOL $F_{\text {REXPLORATION }}$ PORT : V95-01286.0 (COMPLETE)

ELEMENT Au30 Ag Cu Pb Zn Mo Ni Co Cd Bi As Sb Fe Mn Te Ba Cr V Sn H La Al Mg UNITS PPB PPM PCT PPM PPM PPM PPM PPM PPM PPM PPM PCT PCT

DE L2000N 1600+75E DE L2000N 1700+00E DE L2000N $1700+25 E$ DE L2000N $1700+75 E$ DE L2OOON 1800+00E DE L2000N $1800+25 \mathrm{E}$ DE L2000N 1800+50E DE L2000N 1800+75E DE LZOOON 1900+00E DE L2OOON 1900+50E DE L2000N 1900+75E DE L2000N 2000+00E DE L2000N 2000+25E DE L2000N 2000+50E DE L2000N 2000+75E DE L2000N 2100+00E DE L2000N 2100+25E DE L2000N 2100+50E DE L2000N 2100+75E DE L2000N $2200+000$

DE L2000N $2200+25 E$ DE L2000N 2200+50E DE L2400N $1000+25 E$ DE L2400N $1000+50 \mathrm{E}$ DE L2400N 1000+75E

DE L2400N $1100+00 \mathrm{E}$ DE L24OON $1100+50$ E DE L24OON 1100+TBE DE L2400N 1200+00E DE L2400N 1200+25E

<. 2	13	1046	2	6	$6<.2$	< 5	8	<5 1.69	222	<10 206	7	28×2	<20	12	1.760 .28
140.4	30	1362	3	8	$9<.2$	<	12	<5 2.44	399	<10 192	8	$44<20$	<20	21	. 950.46
<50.2	19	16107	4	6	$9<.2$	< 5	14	<52.29	1340	<10 329	7	$32<20$	<20	17	090.46
60.4	37	26116	5	8	$11<.2$	< 5	14	<5 2.77	747	<10 642	6	$34<20$	<20	29	3.380 .61
80.2	25	24125	6	8	$11<.2$	<5	16	< 2.91	727	346	8	$43<20$	<20	19	2.860 .52
<50.6	24	32134	11	9	$11<.2$	< 5	9	<53.17	526	<10 214	8	$43<20$	<20	20	2.310 .48
240.5	30	23210	8	9	210.4	6	<5	<5 4.43	1606	<10 300	7	$45<20$	<20	24	2.220 .73
90.7	26	28132	7	8	90.8	< 5	11	<52.29	834	<10 226	7	$34<20$	<20		2.580 .39
120.2	20	25148	5	8	100.5	<5	15	<52.56	879	<10 318	7	$35<20$	<20		2.710 .43
0.9	40	96367	13	10	182.0	<5	11				6				. 070.67

 $\begin{array}{llllllllllllllllllllllllllllll}15 & 0.5 & 29 & 48 & 246 & 6 & 7 & 11 & 0.6 & <5 & 6 & <5 & 3.00 & 615 & <10 & 266 & 8 & 40<20 & <20 & 19 & 2.10 & 0.43\end{array}$ $110.320 \quad 24136 \quad 3 \quad 6 \quad 8<.2<514<52.02974<10346$

$<50.2 \quad 26 \quad 20 \quad 98 \quad 4 \quad 9 \quad 11<.2<5 \quad 13<5 \quad 2.62420<10228 \quad 7 \quad 40<20<20 \quad 112.710 .50$ $80.5 \quad 31 \quad 15 \quad 97 \quad 4 \quad 7 \quad 9<.2<5 \quad 9 \quad<52.39 \quad 647<10216 \quad 8 \quad 38<20<20 \quad 172.330 .42$
 $90.4 \quad 24 \quad 27128 \quad 4 \quad 7 \quad 110.2<5 \quad 10<52.571209<10338 \quad 7 \quad 32<20<20 ~ 192.180 .48$

0.3	23	20129	3	0	$9<.2$	<	16	<5 2.21	886	<10 188	10	36	<20	20		93
< $5<.2$	18	12107	2	9	$7<.2$	<	15	< 51.79	553	<10 139	9	30	<20	<20		1.950 .34
<50.3	15	1282	2	8	$7<.2$	<	13	<5 1.87	431	<10 113	8	35	<20	<20		2.360 .40
< $5<.2$	12	1178	3	7	$6<.2$	<	10	<5 1.79		<10 132	8	33	<20	<20		1.970 .35
< $<$ <.2	16	9100	2	7	$8<.2$	<5	13	<5	123	<10 165	8	38	<20	<20		1.910 .47
<5 <. 2	20	89	3	8	$11<.2$	<5	11	< 2.73	673	<10 122	10	51	20	<20		2.400 .76
<50.3	18	1062	4	6	$10<.2$	< 5	13	<53.18	473	<10133	7	47	<20	<20		1.860 .97
70.2	13	44	2	5	$7<.2$	<	11	<5 1.88	256	<10 97	7	39	<20	<20		1.630 .30
$<5<.2$	19	1886	4	8	$11<.2$	<	10	< 2.84	2278	<10 261	9			< 2		2.410 .80
< $<$ <.2	19	18121	4	9	11 <. 2	<	13	<5		10295	9			20		2.850 .73

 PCT PCT PCT PPM PPM PPM PPM PPM PPM PPM PCT PPM
$\begin{array}{llllllllll}0.29 & 0.02 & 0.12 & 35 & 5 & 3 & 15 & <1 & <5<10 & 0.08 \\ 17\end{array}$ $\begin{array}{llllllllll}0.48 & 0.02 & 0.20 & 56 & 14 & <2 & 37 & <1 & <5 & <10\end{array} 0.08 \quad 14$ $0.530 .020 .19 \quad 62 \quad 10<2 \quad 29<1<5<100.06 \quad 6$ $\begin{array}{llllllllll}0.48 & 0.03 & 0.21 & 78 & 20 & <2 & 39 & <1 & 5<10 & 0.10\end{array} 26$

$0.310 .020 .21 \quad 39 \quad 8<2 \quad 28<1<5<100.0912$ $0.540 .010 .18 \quad 63 \quad 11<2<35<1 \quad 5<100.03 \quad 2$ $0.350 .020 .13 \quad 38 \quad 9<2 \quad 17<1<5<100.09 \quad 13$ $\begin{array}{llllllllll}0.36 & 0.02 & 0.15 & 31 & 9 & <2 & 22 & 1 & <5<10 & 0.10\end{array} 14$ $0.630 .030 .24 \quad 46 \quad 14<2<33<15<100.0710$
$\begin{array}{lllllllllll}0.75 & 0.02 & 0.26 & 52 & 15 & <2 & 38 & 1 & 5 & <10 & 0.06 \\ 8\end{array}$ $0.360 .020 .22 \quad 35 \quad 9<2 \quad 28<1<5<100.07 \quad 8$
 $\begin{array}{llllllllll}0.50 & 0.03 & 0.11 & 51 & 10 & 2 & 77 & 1 & <5 & <10 \\ 0.09 & 17\end{array}$ $0.350 .030 .16 \quad 42 \quad 4 \quad 3 \quad 33<1<5<100.09 \quad 14$
$\begin{array}{llllllllll}0.28 & 0.02 & 0.17 & 41 & 3 & 4 & 22 & 1 & <5 & <10\end{array} 0.09 \quad 8$ $\begin{array}{llllllllll}0.37 & 0.02 & 0.14 & 37 & 7 & <2 & 17 & <1 & <5<10 & 0.08 \\ 12\end{array}$ $\begin{array}{lllllllllll}0.61 & 0.02 & 0.30 & 46 & 15 & <2 & 33 & 1 & 7<10 & 0.07 & 8\end{array}$ $0.530 .020 .24 \quad 39 \quad 10<2 \quad 24<1<5<100.07 \quad 7$ $\begin{array}{llllllllll}0.37 & 0.02 & 0.16 & 41 & 5 & 3 & 23 & 1 & <5 & <10\end{array} 0.09 \quad 13$
$0.470 .020 .15 \quad 44 \quad 4<2 \quad 15 \quad 1<5<100.09 \quad 8$ $0.270 .030 .1132 \quad 5<2 \quad 14 \quad 1<5<100.09 \quad 10$ $\begin{array}{llllllllll}0.33 & 0.03 & 0.11 & 32 & 5 & 2 & 17 & 1 & <5 & <10\end{array} 0.10 \quad 13$ $0.240 .020 .11 \quad 30 \quad 3 \quad 2 \quad 15 \quad 1<5<100.08 \quad 11$ $\begin{array}{llllllllll}0.62 & 0.02 & 0.17 & 54 & 3 & <2 & 17 & 1 & <5 & <10\end{array} 0.08 \quad 4$
$0.520 .020 .26 \quad 49 \quad 7<230<1<5<100.09 \quad 7$
$\begin{array}{llllllllll}0.58 & 0.02 & 0.23 & 37 & 13 & <2 & 40 & <1 & 7<10 & 0.03 \\ 3\end{array}$
$0.28 \quad 0.020 .06 \quad 31 \quad 5<211 \quad 1<5<100.08 \quad 10$
$0.510 .020 .18 \quad 51 \quad 9<2<34 \quad 1<5<100.05 \quad 3$
$0.67 \quad 0.020 .31 \quad 57 \quad 7<2 \quad 35 \quad 1<5<100.06 \quad 6$

Bondar Clegg
 Inchcape Testing Services

LIENT: WHITE WOL*क凡 EXPLORATION

Geo emical
 Lab
 Report

PROJECT: CIQUENAS
EPORT: VOS-01286.0 (COMPLETE) DATE PRINTED: 30-0CT-95

$\mathrm{Ca} \mathrm{Na} \quad \mathrm{K} \quad \mathrm{Sr} \quad \mathrm{Y}$ Ga Li Nb Sc Ta Ti Zr PCT PCT PCT PPM PPM PPM PPM PPM PPM PPM PCT PPM

PROJECT: CIOUENAS
DATE PRINTED: 30-OCT-95 PAGE 7
LIENT: WHITE WOLFEXPLORATION

AMPLE		30 Ag	Cu	Pb	7 n	Mo	Ni	Co cd	Bi	As	Sb	Fe	Mn		Ba	Cr																		2r
MBER	UNITS	PPB PPM	PPM	PPM	PPM	PPM	PPM	PPM PPM	PPM	PPM	PPM	PCT	PPM	PCT	PC	PCT	PCT	PCT		PPM	PPM	PPM			PPM	PCT	PPM							
IDE L2400N	2000+50E	$17<.2$	14	11	107	4	7	$12<.2$	< 5	13	< 5	2.97	1482	<10	256	8	39	<20	<20	15	1.93	0.78	0.39	0.01	0.23	29	6	<2	28	<1	<5	<10	0.03	3
TDE L2400N	$2000+75 \mathrm{E}$	110.3	24	12	95	3	7	$8<.2$	< 5	9	<5	2.47	543	<10	243	7	32	<20	<20	17	2.45	0.52	0.36	0.02	0.30	35	12	2	32	<1	<5	<10	0.07	18
IDE L2400N	2100+00E	150.4	18	15	88	3	8	$7<.2$	< 5	17	<5	1.95	22	<10	232	7	28	<20	<20	11	2.27	0.34	0.26	0.03	0.14	30	4	4	25	1	<5	<10	0.07	6
IDE L2400N	$2100+25 E$	120.6	21	10	88	3	6	$9<.2$	<5	8	<5	2.40	389	<10	173	7	35	<20	<20	12	1.74	0.56	0.33	0.02	0.16	34	5	<2	23	<1	< 5	<10	0.05	10
IDE L2400N	$2100+50 \mathrm{E}$	250.3	26	11	91	3	6	$8<.2$	<5	10	<5	2.21	472	<10	222	7	32	<20	<20	14	1.94	0.43	0.37	0.02	0.18	32	7	<2	28	<1	<5	<10	0.06	12
IDE L2400N	2100+75E	$6<.2$	13	17	138	4	6	$8<.2$	<5	15	<5	1.90	161	<1	413	7	27	<20	<20	11	2.08	0.4	0.45	0.02	0.17	41	4	2	21	1	<5	<10	0.07	5
IDE L2400N	$2200+00 E$	$<5<2$	27	15	95	4	6	$8<.2$	<5	15	<5	1.88	904	<10	274	6	27	<20	<20	11	1.88	0.41	0.70	0.03	0.15	45	5	<2	26	<1	< 5	<10	0.07	6
IDE L2400N	$2200+25 \mathrm{E}$	90.2	26	13	90	4	7	$10<.2$	<5	10	<5	2.68	573	<10	225	8	43	<20	<20	16	1.90	0.51	0.38	0.02	0.17	34	7	<2	19	1	< 5	<10	0.07	7
IDE L2400N	$2200+50 \mathrm{E}$	< $5<.2$	26	15	214	3	7	90.7	<5	12	<5	2.10	3687	<10	615	7	30	<20	<20	15	2.16	0.52	0.96	0.02	0.13	82	9	<2	23	<1	< 5	<10	0.05	4

Bondar Clegg Inchcape Testing Services

CLIENT: WHITE WOLF EXPLORATION

REPORT: V95-01295.0 (COMPLETE)

PROJECT: CIQUENAS DATE PRINTED: 7-NOV-95 PAGE 1

\checkmark DADE L2200N $1000+25 E$ dade lzzoon 1000+50e DADE L2500N $1000+00 E$ DADE L2500N 1000+25E DADE L2500N $1000+50 \mathrm{E}$
dADE L2500N 1000+TSE DADE L2500N $1100+00 \mathrm{E}$ DADE L2500N $1100+25 E$ DADE L2500N 1100+50E DADE L2500N $1100+75 E$

DADE L2500N 1200+00E DADE L2500N 1200+25E DADE L2500N 1200+50E DADE L2500N 1200+75E DADE L2500N $1300+00 E$

DADE L2500N $1300+25 E$ DADE L2500N 1300+50E DADE L2500N 1300+75E DADE L2500N $1400+00 E$ DADE L2500N $1400+25 E$

DADE L2500N 1400+50E DADE L2500N $1400+$ TSE DADE L2500N $1500+25 E$ DADE L2500N 1500+50E DADE L2500N 1500+73E

DADE L2500N 1600+00E DADE L2500N 1600+25E DADE L2500N $1600+50 \mathrm{E}$ DADE L2500N 1600+73E DADE L2500N $1700+00 E$

 Is

Bondar Clegg
Inchcape Testing Services
CLIENT: WHITE WOLF EXPLORATION

Go chemical

PROJECT: CIQUENAS
DATE PRINTED: 7-NOV-95 PAGE 2
 NUMBER $\quad \therefore \quad U N I T S$ PPB PPM PCT PPM PPM PPM PPM PPM PPM PPM PPM PCT PCT PCT PCT PCT PPM PPM PPM PPM PPM PPM PPM PCT PPM

DADE L2500N $1700+25 E$ DADE L2500N 1700+50E DADE L2500N 1700+75E DADE L2500N 1800+00E DADE L2500N 1800+25E

DADE L2500N $1800+50$ E DADE L2500N 1800+TSE DADE L2500N $1900+00 E$ DADE L2500N $1900+50 \mathrm{E}$ DADE L2500N $1900+75 E$

$<5<2$	7	$4 \quad 24$	2	3	$5<.2$	<	<5	<1.53	$156<10$	46	7	34	<20	<20	12	0.55	0.1	0.20	0.01	0.07	21	3	<2	6	<1	<	<10	. 06	
$<5<.2$	8	429	1	3	$5<.2$	<	< 5	< 11.52	$181<10$	60	6	32	<20	<20	13	0.73	0.18	0.20	0.02	0.09	21	4	<2	7	<1	< 5	<10	0.06	
$6<.2$	6	645	2	3	5<.2	<	<5	< 51.46	$355<10$	86	6	28	<20	<20	11	0.86			0.02	0.16	25	3	<2	9	<1	$<$	<10	0.06	
<50.2	11	13104	2	6	6	$<$	6	<51.89	$387<$	21	6	3	<20	<	12	1.79		0.25	0.02	5	28	4	<2	16	<1	<		. 06	
$9<.2$	38	844	2	4	. \times. 2	<5	<	<5.1	$516<10$	187	7	43	<2	<20	16	0.9	0.37	3.67	2	0.13	85	13	2	13	<1	<5		04	
$<5<.2$	14	978	2	5	$7<$	<	7	<51	$405<10$	238	6	29	<20	<20	12	1.85	0.39	0.28	0.03	0.26	29	6	2	17	<1	<	10	7	13
$<5<2$	12	995	2	4	$7<.2$	<	<	<1.86	$862<10$	156	7	34	<20	<20	11	1.05	2		2	0.21	33	4	<2	12	<1	$\leqslant 5$	<10	. 05	
$<5<.2$	12	9. 99	3	5	$7<.2$	<	<	<11.86	$617<10$	176	7	34	<20	<20	11	1.08	0.36	0.46	0.01	0.14	36	4	<2	14	<1	<		06	
$<5<.2$	17	8100	3	6	$8<.2$	< 5	10	< 52.14	$300<10$	204	6	36	<20	<20	10	1.97	0.39	0.23	0.02	0.11	27	3	<2	1.	<1	<	<10	0.07	
200.4	28	1182	3	5	70.5	<	9	$\leqslant 1.69$	$418<10$	176	5	29	<20	<20	11	1.71	0.31	0.63	0.03	0.10	49	6	<2	13	<1	< 5	<10	0.06	

DADE L2500N 2000+00E DADE L2500N 2000+50E DADE L2500N 2000+75E DADE L2500N 2100+00E DADE L2500N 2100+25E

DADE L2500N 2100+50E DADE L2500N 2100+73E DADE L2500N $2200+00 E$ DADE L2500N $2200+25 E$ DADE L2500N 2200+50E

DADE L2600N 1000+00E DADE L2600N $1000+25 E$ DADE L2600N $1000+50$ E DADE L2600N $1000+75 E$ DADE L2600N $1100+00 E$

Is

<. 2	10	7	55	2	5	$6<.2$	< 5	7	<51.53	38		97	6			<20					0.02	0.11	25	4	<2	9	<1			8	6
5	11	7	68	2	6	6	<	<	< 5	3	<10	106	6	32	<20	<	11	1.39	0.29	0.26	0.02	0,12	24	4	<2	10	<1	<		07	4
$8<2$	7	4	40	2	3	5 <.	< 5	<5	51	21	<10	63	6	39	<20	<2	11	0.82	0.30	0.25	0.02	0.12	20	3	<2	7	<1	<		0.08	2
$<5<.2$	9	5	43	2	3	6<.2	<	<	< 51	32	10	93	6	35	<20	<20	10	1.09	0.29	0.25	0.02	0.19	22	4	<2	8	<1	5	<10	0.07	6
	18	7	47	2	5	7 <.2	<	9	<51.79	229		10		33		20						23	33		<2	11				07	4

DADE L2600N 1100+25E DADE L2600N $1100+50 \mathrm{E}$ DADE L2600N $1100+75 E$ DADE L2600N 1200+00E DADE L2600N $1200+25 E$

CLIENT: WHITE WOLF EXPLORATION
REPORT: V95-01295.0 (COMPLETE) NUMBER .. UNITS PPB PPM PCT PPM PPM PPM PPM PPM PPM PPM PPM PCT PCT PCT PCT PCT PPM PPM PPM PPM PPM PPM PPM PCT PPM

DADE L2600N 1200+50 DADE L2600N 1200+75E DADE L2600N $1300+00 \mathrm{E}$ DADE L2600N $1300+25 E$ DADE L2600N 1300+50E

DADE L2600N $1300+75 E$ DADE L2600N 1400+00 DADE L2600N 1400+25 DADE L2600N 1400+50 DADE L2600N $1400+73 E$

DADE L2600N 1500+00E DADE L2600N 1500+25 DADE L2800N 1500+50E DADE L2600N $1500+75 E^{2}$ DADE L2600N 1600+00E

DADE L2600N 1600+25 DADE L2600N $1600+50 \mathrm{E}$ DADE LL600N 1600+73E DADE LL2600N 1700+00E DADE L2600N 1700+25E

DADE L2600N $1700+50 E$ DADE L2600N 1700+73E DADE L2600N 1800+00E DADE L2600N $1800+25 E$ DADE L2600N 1800+50E

DADE L2600N 1800+75E DADE L2600N 1900+00E DADE L2600N 1900+25E dADE L2G00N 1900+50E DADE L2600N $1900+75 E$

Bondar Clegg
 Inchcape Testing Services

CLIENT: WHITE WOLF EXPLORATION
REPORT: V95-01295.0 (COMPLETE)
 NUMBER $\quad \therefore \quad$ UNITS, PPB PPM PCT PPM PPM PPM PPM PPM PPM PPM PPM PCT PCT PCT PCT PCT PPM PPM PPM PPM PPM PPM PPM PCT PPM

DADE L2700N $2200+50 \mathrm{E}$ DADE L2800N $1000+00 E$ DADE L2800N $1000+25 E$ DADE L2800N 1000+50E DADE L2800N 1000+75E

DADE L2800N $1100+00 E$ DADE L2800N $1100+25 E$ DADE L2800N $1100+50 \mathrm{E}$ DADE L2800N $1100+73 E$ DADE L2800N $1200+25 E$

DADE L2800N 1200+50E DADE L2800N $1200+75 E$ DADE L2800N 1300+00E DADE L2800N $1300+25 E$ DADE L2800N 1300+50E

DADE L2800N 1300+75E DADE L2800N $1400+00 E$ DADE L2800N 1400+25E DADE L2800N $1400+50 \mathrm{E}$ DADE L2800N $1400+75 E$

DADE L2800 N $1500+00 \mathrm{E}$ DADE L2800N $1500+25 E$ DADE L2800N 1500+50E DADE L2800N $1500+75 E$ DADE L2800N $1600+00 E$

 $13<213 \quad 8 \quad 60 \quad 2 \quad 5 \quad 7<.2<5 \quad 6 \quad<51.90$

 IS IS

DADE L2800N $1600+25 E$ DADE L2800N 1600+50E DANE L2800N 1600+75E DADE L2800N $1700+00 \mathrm{E}$ DADE L2800N $1700+23 E$

$11<.2$	12	664	3	6	$8<.2$	\leqslant	7	<52.54	623		140	8	48	<20	<20	13	1.30	0.36	0.22	0.01	0.14	20	3	<2	12	<1	<5		. 06	3
$7<.2$	9	859	2	4	$7<.2$	<5	6	≤ 51.88	367	<10	140	6	32	<20	<20	10	48	0.29	0.21	0.02	0.16	22	3	<2	16	<1	<		6	7
<50.4	35	960	2	5	$7<.2$	< 5	11	<52.09	53	<10	168	6	26	<20	<20	19	. 66	0.58	0.61	0.03	0.15	47	13	<2	32	<1	< 5		0.05	5
60.3	28	27.124	4	5	120.5	5	11	<53.37	1178	<1	434	6	46	<20	<20	25	1.76	0.63	0.83	0.01	0.27	43	13	<2	26.	<1	6		0.02	2
$9<.2$	14	12110	5	5	$11<.2$	<5	<5	<5 3.26	914	<10	250	6	49	<20	<20	15	1.46	0.61	0.33	0.01	0.19	21	7	<2	19	<1	<5		0.03	2

CLIENT: WHITE hOLF EXPLORATION
REPORT: V95-01295.0 (COMPLETE)
 NLMBER $\quad \therefore \quad$ UNITS PPB PPM PPM PPM PPM PPN PPM PPN PPN PPM PPN PPN PCT PPM PPM PPM PPM PPM PPM PPM PPM PCT PCT PCT PCT PCT PPM PPM PPM PPN PPM PPM PPM PCT PPN

DADE	L2800N	$1700+50 \mathrm{E}$	$12<.2$	15	24	123	5	8	$11<.2$	5	17		< 2.68	1631	$1<10$	0395	6	39	$9<20$	<20	182.76	60.54	40.54	0.02	0.24	35	8	<2	30	1		<10	. 07	9
DADE	L2800N	$1700+75 E$	$6<.2$	15	15	125	5	6	$11<.2$	<5	6		<53.02	1681	$1<10$	0381	6	41	$1<20$	$0<20$	222.39	0.53	0.42	20.02	0.22	31	12	<2	28	<1		<10	0.05	7
DADE	L2800N	$1800+00 \mathrm{E}$	$<5<.2$	13	12	28	5	7	$10<.2$	\checkmark	12		< 2.72	1100	$0<10$	0313	6	37	$7<20$	<20	212.50	0.52	20.31	10.02	0.23	27	11	<2	32	<1	< 5	<10	0.08	16
DADE	L2800N	$1800+25 E$	$9<.2$	22	20	112	4	10	$12<.2$	<	17		53.10	1106	<10	0177	10	52	$2<20$	$0<20$	223.02	20.78	0.48	0.02	0.18	35	14	<2	58	<1		<10	0.07	11
DADE	L2800N	1800+50E	$6<.2$	14	10	- 59	3	5	$7<.2$	< 5	12		< 2.10	328	<10	O 186	7	33	$3<20$	<20	141.89	0.40	0.27	7 0.02	0.18	27	7	<2	29	<1	<	<10	0.07	15
DADE	L2800N	1800+73E	$<5<.2$	17	8.	8.81	3	5	$7<.2$	$\checkmark 5$	7		< 1.88	742	< 10	183	6	32	$2<20$	<20	121.51	10.32	0.36	0.02	0.17	34	6	<2	19.	<1	<	<10	0.06	8
DADE	L2800N	1900+00E	70.4	24	13	379	4	7	$8<.2$	5	7		< 2.27	577	< 10	0186	10	38	$8<20$	<20	151.83	0.43	30.31	10.02	0.16	28	7	<2	30	<1	<	<10	0.07	7
DADE	L2800N	$1900+25 E$	$6<.2$	18	11	172	4	6	$8<.2$	5	13		< 2.19	407	$7<10$	0153	9	37	$7<20$	<20	141.91	10.39	0.25	0.02	0.14	27	5	<2	24.	<1	< 5	<10	0.08	11
DADE	L2800N	$1900+50 \mathrm{E}$	$16<.2$	9	6	$6 \quad 67$	3	3	$7<.2$	5	<5		<51.99	344	<10	078	9	41	$1:<20$	$0<20$	100.87	7 0.38	0.26	0.01	0.11	25	3	<2	10	<1	5	<10	0.05	1
DADE	L2800N	1900+75E	$7<.2$	16	8	887	3	6	$7<.2$	5	6		<51.89	313	$3<10$	(127	7	32	$2<20$	<20	121.67	70.34	0.26	0.02	0.13	31	4	<2	14	<1	$<$	<10	0.06	4
DADE	L2800N	2000+00E	110.2	12	5	570	3	4	$7<.2$	<5	<5		52.21	281	<10	063	8	44	$4<20$	<20	120.94	0.46	0.31	0.02	0.15	29	4	<2	11	<1	<5	<10	0.06	2
DADE	L2800N	$2000+25 \mathrm{E}$	$<5<.2$	18	9	9105	3	6	$7<.2$	5	<5		< 1.94	445	<10	141	6	33	3 <20	0	111.72	0.34	40.27	0.02	0.15	33	4	<2	13	<1	<5	<10	0.07	8
DADE	L2800N	2000+50E	$6<.2$	37	15	5121	7	5	$9<.2$	$<$	15		65.2 .07	717	$7<10$	0154	5	30	$0<20$	<20	111.40	0.37	0.35	0.02	0.11	45	3	<2	15	<1	<5	<10	0.04	2
DADE	L2800N	2000+75E	220.2	11	7	771	3	5	7	5	6		<51.84	261	$1<10$	$0 \quad 85$	7	33	$3<20$	<20	91.39	0.26	0.29	0.02	0.15	32	2	<2	5	1	5	<10	0.07	8
DADE	L2800N	2100+00E	131.6	86	22	24	- 28	3	$21<.2$	11.	<5		55.51	384	$4<10$	0.88	3	31	$1<20$	$0<20$	181.35	0.37	0.31	0.02	0.19	53	6	<2	16.	<1	5	<10	0.01	1
DADE	L2800N	2100+25E	$<5<.2$	21	8	866	3	5	$7<.2$	5	5	5	< 51.81	468	<10	122	5	31	$1<20$	<20	111.50	0.29	0.23	0.02	0.11	28	4	<2	16	<1	<5	<10	0.07	7
DADE	L2800N	2100+50E	$6<.2$	37	16	6129	6	6	100.4	5	21		¢ 2.38	869	<10	160	9	42	2 <20	<20	123.29	0.60	1.20	0.02	0.18	102	3	<2	22	<1	<5	<10	0.06	3
DADE	L2800N	2100+75E	$29<.2$	17	11	1109	8	7	$7<.2$	<	9		52.00	396	<10	0121	20	33	33 <20	<20	131.74	0.37	0.27	0.02	0.11	30	4	<2	16	<1	<5	<10	0.08	9
DADE	L2800N	$2200+00 E$	<5	38	12	221	5	6	60.4	5	13		51.58	602	<10	0113	5	21	$1<20$	$0<20$	91.88	0.25	0.35	0.03	0.13	36	3	<2	24	<1	<5	<10	0.08	7
DADE	L2800N	$2200+25 E$	<50.6	127	18	183	9	9	150.3	<	19		<22.91	660	<10	0228	5	29	$9<20$	<20	183.36	60.47	0.47	0.03	0.27	53	9	<2	31	<1	< 5		0.11	26
DADE	L2800N	2200+50E	60.2	90	20	255	5	10	141.4	<5	15		<52.87	1958	<10	0215	6	36	6 <20	<20	172.89	0.61	0.58	0.03	0.27	58	8	<2	31	<1	<5	<10	0.09	12
DADE	L3000N	1000+00E	0.2	22	11	160	4	7.	$8<.2$	<5	16		-5 2.19	445	<10	204	7	39	$9<20$	<20	162.01	0.39	0,37	0.02	0.19	36	8	<2	20	<1	<5	<10	0.08	7
DADE	L3000N	$1000+25 E$	180.2	23	14	- 88	5	7	$10<2$	<	13		52.58	946	<10	258.	8	41	$1<20$	<20	192.13	0.48	0.46	-0.01	0.28	34	9	<2	24	<1	<5	<10	0.07	3
DADE	L3000N	1000+50E	$8<.2$	26	16	¢ 91	6	7	$11<.2$	< 5	15		52.64	1008	<10	0384	8	33	3 <20	<20	222.47	0.50	0.48	0.02	0,25	31	13	<2	32	<1	<5	<10	0.05	6
DADE	L3000N	1000+75E	$<5<2$	25	12	2.78	4	6	$10<2$	\leqslant	12		< 2.47	594	4 <10	0215	6	31	$1<20$	<20	212.13	3.45	0.39	0.02	0.31	33	12	<2	27	<1	<5	<10	0.07	13
DADE	L3000N	1100+00E	150.2	34	14	492	5	7	$12<.2$	<5	16		<52.85	1101	- <10	248	7	36	\ll20	<20	262.63	0.52	0.46	0.02	0.28	41	17	<2	39	<1	<5		0.07	11
DADE	L3000N	$1100+25 E$	$10<.2$	30	13	374	5	7	$11<.2$	< 5	15		<52.83	699	<10	206	10	40	$0<20$	<20	242.59	0.59	0.32	0.02	0.23	35	14	<2	42	<1	<5		0.07	9
DADE	L3000N	$1100+50 \mathrm{E}$	$<5<.2$	24	15	5110	5	8	$13<2$	< 5	12		<52.80	1512	<10	277.	10	40	$0<20$	<20	172.43	0.54	0.51	0.02	0.20	45	8	<2	29	<1	< 5	<10	0.07	5
DADE	L3000N	1100+73E	$15<.2$	22	10	060	7	7	$10<2$	< 5	8		< 2.61	434	<10	139	15	44	$4<20$	$0<20$	172.05	0.50	0.27	0.02	0.19	27	8	<2	29	<1	<5	<10	0.08	9
DADE	L3000N	1200+00E	$<5<.2$	18	11	171	6	7	$9<.2$	<	9		< 2.31	517	<10	250	14	35	<20	<20	152.10	0.46	0.32	- 0.02	0.20	34	7	<2	28	<1	<5		0.07	10

CLIENT: HHITE HOLF EXPLORATION
REPORT: V95-01295.0 (COMPLETE)
 NUMBER $\quad \therefore \quad$ UNIT太 PPB PPM PCT PPM PPM PPM PPM PPM PPN PPM PPM PCT PCT PCT PCT PCT PPM PPM PPM PPM PPM PPM PPM PCT PPM

DADE L3000N $1200+25 \mathrm{E}$ DADE L3000N 1200+50E DADE L3000N ${ }^{1} 1200+75 E$ DADE L3000N $1300+00 E$ DADE L3000N 1300+25E

DADE L3000N $1300+50 \mathrm{E}$ DADE L3000N $1300+75 E$ DADE L3000N $1400+00$ DADE L3000N $1400+25 E$ DADE L3000N 1400+50E

DADE L3000N $1400+75 \mathrm{E}$ DADE L3000N 1500+00E DADE L3000N $1500+25 \mathrm{E}$ DADE L3000N 1500+50E DADE L3000N 1500+75E

DADE L3000N 1600+00E DADE L3000N $1600+25 E$ DADE L3000N 1600+50 DADE L3000N $1600+75 \mathrm{E}$ DADE L3000N 1700+00E

DADE L3000N $1700+25 E$ DADE L3000N 1700+50E DADE L3000N 1700+75E DADE L3000N 1800+00E DADE L3000N 1800+25E

DADE L3000N $1800+50 \mathrm{E}$ DADE L3000N $1800+75 E$ DADE L3000N 1900+00E DADE L3000N 1900+25E DADE L3000N 1900+50E

 is is

IS is

 is

Gochemical

CLIENT: WHITE WOLF EXPLORATION
REPORT: V95-01295.0 (COMPLETE)
ROJECT: CIQUENAS
DATE PRINTED: 7-NOV-95
 NLMBER $\because \quad U N$ 罢 S PPB PPM PCT PPM PPM PPM PPM PPM PPM PPM PPM PCT PCT PCT PCT PCT PPM PPM PPM PPM PPM PPM PPM PCT PPM

DADE L3000N 1900+75E DADE L3000N 2000+00E DADE L3000N $2000+25 E$ DADE L3000N 2000+50E DADE LSOOON 2000+75E

DADE L3000N $2100+00 \mathrm{E}$ DADE L3000N 2100+25E DADE L3000N 2200+50E DADE L3100N 1000+00E DADE L3100N $1000+25 E$

DADE L3100N 1000+50E DADE L3100N 1000+75E DADE L3100N $1100+00 \mathrm{E}$ DADE L3100N 1100+75E DADE L3100N 1200+00E

DADE L3100N $1200+25 E$ DADE L3100N 1200+50E DADE L3100N 1200+75E DADE L3100N 1300+00E DADE L3100N 1300+25E

DADE L3100N 1300+50E DADE L3100N 1300+75E DADE L3100N 1400+25E DADE L3100N 1400+50E DADE L3100N 1400+75E

DADE L3100N $1500+00 E$ DADE L3100N 1500+50E DADE L3100N 1500+75E DADE L3100N $1600+00 E$ DADE L3100N $1600+50 \mathrm{E}$

 $\begin{array}{lllllllllllllllllllllllllllllllllllll}9 & 0.4 & 22 & 15 & 120 & 3 & 9 & 9 & <.2 & <5 & 13 & <5 & 2.12 & 656 & <10 & 254 & 7 & 35 & <20 & <20 & 15 & 2.11 & 0.38 & 0.32 & 0.03 & 0.21 & 36 & 6 & <2 & 20 & <1 & <5 & <10 & 0.08 & 9\end{array}$ is is

$9<.2$	12	1262	3	8	<. 2	<5	11	2.30	538	0173	8	40		20					26		<2	20		<5 <10 0.08	
2	12	50	3	7	$8<.2$	5	12	. 52.28	326	106	10	41	20	20	121.5	0.41	0. 19	0.010 .11	20	3	<2	18	<1	$5<10$	2
5	10	1084	2	6	$7<.2$	5	9	< 51.9	48	10179	7	36	<20	<20	91.51			0.020 .16	25	2	<2	18	<1	<5 <10	
< 5 <. 2	14	1083	2	6	$6<.2$	< 5	12	<5 1.50	. 391	10190	5	25		<20	91.			0.030 .11	29	4	<2	16	1	$<5<100.06$	6

PROJECT: CIQUENAS
DATE PRINTED: 7-NOV-95
PAGE 10
 NUMBER $\therefore \quad \therefore \quad$ UNIT $\$$ PPB PPM PCT PPM PPM PPM PPM PPM PPM PPM PPM PCT PCT PCT PCT PCT PPM PPM PPM PPM PPM PPM PPM PCT PPM

DADE L3100N 1600+75E DADE L3100N 1700+00E DADE L3100N $1700+25 E$ DADE L3100N $1700+50 \mathrm{E}$ DADE L3100N 1700+75E

						$8<$	<		<5 2.39	359	10	155		44		<20		1.55				0.09	19	3	<2	17	<1			0.06	
$18<.2$	28	13	81	4	7	$9<.2$	<	8	<52.63	452	10	259	6	39	<20	<20		2.07	0.37	0.34	0.01	,	2	7	<	19.	<1	< 5		. 06	12
$6<.2$	13	10	98	5	7	90.3	5	<5	<52.51	587	<10	204	7	40	<20	<20		69	0.42	0.27	0.02	0.15	23	4	<2	25	<1	<		. 06	4
$<5<2$	14	9	82	3	6	$10<.2$	5	5	<53.04	52	<10	193	7	49	<20	<20		62	0.50	7	1	0.22	22	10	<2	2	1	<		. 05	9
$<5<.2$	16	8	56	4	5	$10<.2$	<	<	<52.72	509		116	7			<20		0	0.	. 33	. 01	11	26	11	<2	20	<1				

DADE L3100N 1800+00E DADE L3100N $1800+25 E$ DADE L3100N 1800+50E DADE L3100N 1800+75E

 DADE L3100N $1900+50 \mathrm{E}$ DADE L3100N 1900+73E DADE L3100N 2000+00E DADE L3100N 2000+25E

DADE L3100N 2000+50E DADE 13100 N 2000+75E DADE L3100N 2100+00E DADE L3100N 2100+25E DADE L3100N 2100+50E

DADE L3100N 2100+75E DADE L3100N $2200+00 E$ DADE L3100N 2200+25E DADE L3100N 2200+50E

Bondar Clegg
 Inchcape Testing Services

CLIENT: WHITE hOLF EXPLORATIO

REPORT: V95-01413.0 (COMPLETE)

PROJECT: CIOUENAS DATE PRINTED: 30-0CT-95

SAMPLE NUMBER
 UNITS ' PPB PPM PCT PPM PPM PPM PPM PPM PPM PPM PPM PCT PCT

Ca $\mathrm{Na} K$ Sr Y Ga Li Nb Sc Ta Ti Zr PCT PCT PCT PPM PPM PPM PPM PPM PPM PPM PCT PPM

L2200N 1300+00E L2ZOON 1300+73E L2200N 1400+000 L2200N 1400+25E L2200N 1400+50E

L2ZOON 1400+TSE L2200N $1500+00 \mathrm{E}$ L2200N $1500+25 \mathrm{E}$ L2200N 1500+73E L2200N 1600+00E

L2200N $1600+25 E$ L2200N $1600+50 \mathrm{E}$ L2200N $1600+73 E$ L2200N $1700+00 E$ L2200N $1700+25 E$

L2200N 1700+50E L2200N $1700+75 E$ L2200N 1800+00E L2200N 1800+25E L2200N 1800+50E

L2200N 1800+73E L2200N 1900+00E L2200N $1900+25 \mathrm{E}$ L2200N 1900+50E L2200N 1900+ $73 E$

L2200N 2000+00E L2200N $2000+25 \mathrm{E}$ L2200N 2000+50E 12200N 2100+00E L2200N $2100+25 \mathrm{E}$

Bondar Clegg
 Inchcape Testing Services

CLIENT: WHITE WOLF EXPLORATION
REPORT: V95-01413.0 (COMPLETE)

PROJECT: CIQUENAS
DATE PRINTED: 30-OCT-95

SAMPLE NMMER

L2200N 2100+50E L2200N $2100+73 E$ L2200N 2200+00E L2300N $1000+00 \mathrm{~N}$ L2300N $1000+50 \mathrm{~N}$

L2300N $1000+75 \mathrm{~N}$ L2300N $1100+50 \mathrm{~N}$ L2300N $1100+75 \mathrm{~N}$ L2300~N 1200000N L2300N $1200+25 \mathrm{~N}$

L2300N $1200+50 \mathrm{~N}$ L2300N $1200+75 \mathrm{~N}$ L2300N 1300+00N L2300N $1300+25 \mathrm{~N}$ L2300N $1300+50 \mathrm{~N}$

L2300N $1300+75 \mathrm{~N}$ L2300N $1400+00 \mathrm{~N}$ L2300N $1400+25 \mathrm{~N}$ L2300N 1400+50N L2300N $1400+75 \mathrm{~N}$

L2300N $1500+00 \mathrm{~N}$ L2300N $1500+25 \mathrm{~N}$ L2300N $1500+75 \mathrm{~N}$ L2300N $1600+00 \mathrm{~N}$ L2300K $1600+25 \mathrm{~N}$

L2300N $1600+50 \mathrm{~N}$ L2300N $1600+75 \mathrm{~N}$ L2300N $1700+00 \mathrm{~N}$ L2300N $1700+25 \mathrm{~N}$ L2300N $1700+50 \mathrm{~N}$

ELEMENT Au30 Ag Cu Pb Zn Mo Ni Co Cd Bi AS Sb fe Mn Te Ba $\mathrm{Cr} \quad \mathrm{V}$ Sn H La Al Mg UNITS ' PPB PPM PCT PPM PPM PPM PPM PPM PPM PPM PPM PCT PCT
$\mathrm{Ca} \mathrm{Na} \quad \mathrm{K}$ Sr Y . Ga Li Nb Sc Ta Ti $\mathbf{Z r}$ PCT PCT PCT PPM PPM PPM PPM PPM PPM PPM PCT PPM

Bondar Clegg
Inchcape Testing Services

$\underset{\text { Laf }}{\text { Gemical }}$ Report

PROJECT: CIOUENAS DATE PRINTED: 30-OCT-95 PAGE 3
 NUMBER

L2300N $1700+75 \mathrm{~N}$ L2300N $1800+00 \mathrm{~N}$ L2300N $1800+25 \mathrm{~N}$ L2300N $1800+75 \mathrm{~N}$ L2300N 1900+00N

L2300N $1900+25 \mathrm{~N}$ L2300N $1900+50 \mathrm{~N}$ L2300N $1900+75 \mathrm{~N}$ L2300N $2000+00 \mathrm{~N}$ L2300N $2000+25 \mathrm{~N}$

L2300N $2000+50 \mathrm{~N}$ L2300N $2000+75 \mathrm{~N}$ L2300N $2100+00 \mathrm{~N}$ L2300N $2100+25 \mathrm{~N}$ L2300N $2100+50 \mathrm{~N}$

L2300N $2100+75 \mathrm{~N}$ L2300N $2200+00 \mathrm{~N}$ L2300N $2200+25 \mathrm{~N}$ L2300N $2200+50 \mathrm{~N}$ L2900N 1000+00E

L2900N 1000+25E L2900N 1000+50E L2900N 1000+75E L2900N $1100+00 \mathrm{E}$ L2900N 1100+25E

L2900N 1100+50E L2900N 1100+75E L2900N 1200+00E L2900N 1200+25E L2900N 1200+50E

Bondar Clegg
 Inchcape Testing Services

SAMPLE
 \therefore UNITS ! PPB PPM PPM PPN PPM PPM PPN PPM PPM PPM PPM PPM PCT PPM PPM PPM PPM PPM PPM PPM PPM PCT PCT
NUMBER

L2900N $1200+73 \mathrm{E}$ L2900N 1300+00E L2900N $1300+25{ }^{\circ} \mathrm{E}$ L2900N 1300+50E L2900 $1300+75 \mathrm{E}$
L2900N 1400+00E L2900N 1400+25E L2900N 1400+50E L2900N 1400+73E L2900N 1500+00E

L2900N 1500+25E L2900N 1500+50E L2900N 1500+75E L2900N 1600+00E L2900N $1600+50 \mathrm{E}$

L2900N 1600+73E L2900N 1700+00E L2900N $1700+25 E$ L2900N 1700+50E L2900N 1700+TBE

L2900N 1800+00E L2900N $1800+25 \mathrm{E}$ L2900N 1800+50E L2900N 1800+TSE L2900N 1900+00E

L2900 $1900+25 E$ L2900N 1900+50E L2900N 1900+75E L2900N $2000+00$ E L2900N 2000+25E
 $\begin{array}{lllllllllllll}<5 \ll 2 & 17 & 7 & 85 & 3 & 6 & 7<.2 & <5 & 10 & <5 & 1.91 & 289 & <10 \\ 226\end{array}$ $\begin{array}{lllllllllllll}27 & <.2 & 13 & 7 & 43 & 2 & 5 & 5 & <.2 & <5 & 6 & <5 & 1.61\end{array} \quad 228<10191$
 $\begin{array}{llllllllllllll}<5 & <.2 & 13 & 7 & 67 & 2 & 6 & 6 & <.2 & <5 & 7 & <5 & 1.94 & 321 \\ 16 & <.2 & 10 & 7 & 49 & 2 & 5 & 6 & <.2 & <5 & 5 & <5 & 1.82 & 202\end{array}<10113$ $\begin{array}{ccccccccccccccc}<5 & 0.2 & 16 & 8 & 65 & 2 & 7 & 6 & <.2 & <5 & 11 & <5 & 1.81 & 255 & <10 \\ 7 & 141 \\ 7 & <.2 & 9 & 6 & 41 & 1 & 4 & 5 & <.2 & <5 & <5 & <5 & 1.72 & 276 & <10 \\ 89\end{array}$

$\begin{array}{llllllllllllllll}10 & <2 & 39 & 9 & 64 & 2 & 5 & 7 & 0.4 & <5 & <5 & <5 & 1.78 & 711 & <10 & 144\end{array}$

<. 2	19	1172	3	8	$8<.2$	5	14	< 2.38	255	219	8	$43<20$			33
$41<.2$	13	67	5	7	$9<.2$	5	7	< 53.09	646	202	8	$50<20$	<20		. 850.42
< $5<.2$	12	13112	4	7	80.2	< 5	10	<5 2.25	490	588	6	$30<20$	<20		. 860.44
11 <. 2	22	1589	5	10	. $11<.2$	$\leqslant 5$	12	< 53.1	1069	56	8	$45<20$	<20		760.57
< $<$ < 2	10	1052	4	6	$8<.2$	5	8	<5 2.45	462	234	8	42	<20	13	1.900 .37
$<5<.2$	16	1599	4	8	$9<.2$	< 5	12	<52	12	551	7	$40<$	<20		2.430 .49
$<5<2$	14	21112	5	7	$11 \times .2$	<5	9	<52.97	1954	<10 414	9	49×20	<20		. 64
<5<.2	9	10. 71	3	6	$8<.2$	< 5	5	< 2.58	873	<10 321	8	$40<20$	<20	15	. 650.51
11 <. 2	10	71	2	6	$8<.2$	5	<5	<5 2.49	919	10341	7	$34<20$	<20		47
<.2	11	1177	3	6	8 <. 2	S	10	< 2.56	880	<10 341	8	$40<20$			1.690 .55

< $<$	9	9	64	2	6	$6<.2$	5	9	< 51.80		10339	6	23	$<20 \leqslant 20$		0.29
$6 \leqslant .2$	15	9	41	2	6	$6<.2$	5	6	<51.74	345	10199	8	30	$<20<20$. 26
380.2	25	33	95	3	5	<. 2	5	8	< 2.02	506	10267	6	31	$<20<20$		11.470 .33
$8<2$	17	7	76	3	5	70	5	< 5	< 2.18	420	10104		43	$20<20$		80.910 .34

Ca $\mathrm{Na} K$ Sr Y Ga Li Nb Sc Ta $\mathrm{Ti} \quad \mathrm{Zr}$ PCT PCT PCT PPM PPM PPM PPM PPM PPM PPM PCT PPM
$0.210 .010 .11 \quad 21 \quad 3 \ldots \leq 2 \ldots \leq 1 \leq 5 \leq 10.05 \quad 4$ $0.240 .010 .13 \quad 22 \quad 3<2 \quad 11<1<5<100.05 \quad 4$ $0.210 .010 .12 \quad 22 \quad 2<2 \quad 11<1<5<100.05 \quad 2$ $0.180 .020 .14 \quad 22 \quad 4<2 \quad 17<1<5<100.06 \quad 6$ $0.210 .010 .09 \quad 23 \quad 4<2 \quad 12<1<5<100.05 \quad 6$
$0.220 .010 .16 \quad 25 \quad 3<2 \quad 12<1<5<100.05 \quad 6$ $0.220 .010 .1424,3<2 \quad 12<1<5<100.05 .5$ $0.180 .020 .10 \quad 18 \quad 2<2 \quad 14<1<5<100.05 \quad 4$ $0.260 .020 .10 \quad 23 \quad 5<2 \quad 11<1<5<100.06 \quad 10$ $0.220 .010 .08 \quad 21 \quad 2<2 \quad 5<1<5<100.05<1$
$1.310 .020 .1251 \quad 12<2 \quad 13<1<5<100.03 \quad 2$ $0.260 .020 .09 \quad 23 \quad 5<2 \quad 13<1<5<100.05 \quad 6$ $0.240 .020 .1126 \quad 5<2 \quad 15<1<5<100005 \quad 6$ $0.150 .010 .09 \quad 19 \quad 3<2 \quad 15<1<5<100.05 \quad 5$

$0.180 .020 .07 \quad 24 \quad 5 \quad 2 \quad 13<1<5<100006 \quad 14$ $0.230 .010 .1121 \quad 5<2 \quad 17<1<5<100.05 \quad 6$ $0.690 .010 .13 \quad 47 \quad 6<2 \quad 21<1<5<100.04 \quad 5$ $0.280 .010 .10 \quad 26 \quad 8 \quad<2 \quad 27<1 \quad \leqslant<100.05 \quad 8$ $0.20<.010 .10 \quad 21 \quad 6<2 \quad 17<1<5<100.06 \quad 9$
$0.60 \quad 0.010 .15 \quad 40 \quad 13<2 \quad 24 \quad 1<5<100.06 \quad 9$ $0.420 .010 .15 \quad 28 \quad 10<2 \quad 29<1<5<100.05 \quad 6$ $0.290 .010 .22 \quad 22 \quad 8<2 \quad 22<1<5<100.05 \quad 7$ $\begin{array}{llllllllll}0.33 & 0.01 & 0.25 & 25 & 11 & <2 & 26 & <1 & 5<10 & 0.05 \\ 0.46 & 0.01 & 0.18 & 32 & 8 & <2 & 31 & <1 & 5 & <10 \\ 0.0\end{array}$ $0.350 .020 .1533 \quad 7<2<1<1<5<100.04<8$ $0.210 .010 .15236<216<1<5<100.048$ $0.270 .020 .1425 \quad 6<2 \quad 26<1<5<100.05 \quad 9$
$0.20<.010 .12 \quad 17 \quad 3<2 \quad 9<1<5<100.03 \quad 2$

PROJECT: CIQUENAS
DATE PRINTED: 30-0CT-95 PAGE

G chemical

PROJECT: CIQUENAS DATE PRINTED: 30-OCT-95 PAGE 6

SAMPLE NUMBER

L3000N 1500+25E L3000N 1500+50E L3000N 1500+75E L3000N $1600+00 \mathrm{E}$ L3000N 1600+25E

L3000N 1600+50E L3000N $1600+73 \mathrm{E}$ 13000N $1700+00 \mathrm{E}$ L3000N $1700+25 E$ L3000N 1700+50E

L3000N 1700+75E L3000N $1800+00 \mathrm{E}$ L3000N $1800+25 E$ L3000N 1800+50E 13000 $1800+75 E$

L3000N 1900+00E L3000N $1900+25 \mathrm{E}$ L3000N 1900+50E L3000N 1900+75E L3000N 2000+OOE

L3000N 2000+25E L3000N 2000+50E L3000N $2000+75 \mathrm{E}$ 3000N $2100+00 \mathrm{E}$ 3000N 2100+25E

L3000N 2200+50E L3100N 1000+00E L3100N 1000+25E L3100N 1000+50E L3100N 1000+75E

ELEMENT Au30 Ag Cu Pb Zn Mo Ni Co Cd Bj As Sb Fe Mn Te Ba Cr V Sn H La Al Mg UNITS' PPB PPM PCT PPM PPM PPM PPM PPM PPM PPM PPM PCT PCT

Ca $\mathrm{Na} K \mathrm{Sr} \mathrm{Y}$ Ga Li Nb Sc Ta Ti Zr PCT PCT PCT PPM PPM PPM PPM PPM PPM PPM PCT PPM

Gq :hemical

 NUMEER $\quad \therefore$ UNITS § PPB PPM PCT PPM PPM PPM PPM PPM PPM PPM PPM PCT PCT PCT PCT PCT PPM PPM PPM PPM PPM PPM PPM PCT PPM

L3100N $1100+00$ E L3100N 1100+75E L3100N 1200+00ㅌ L3100N 1200+25E L3100N 1200+50E

L3100N $1200+75 \mathrm{E}$ L3100N 1300+00E L3100N 1300+25E L3100N 1300+50E L3100N 1300+75E

L3100N 1400+25E L3100N 1400+50E L3100N 1400+75E

$9<.2$	42	9.	57	2	7	$7<.2$	< 5	< 5	<51.98	452	<10	63	7	37	<20	<20		1.68	0.42	0.54	0.02	0.09	27	7	<2	42	<1		<10	0.06	5
<50.3	36	10	51	2	6	$6<.2$	< 5	7	<51.68	303	<10	87	7	31	<20	<20		1.52	0.36	0.48	0.02	0.12	27	8	<2	31	<1	<		0.06	8
$<5<.2$	21	10	73	2	7	$7<.2$	<	13	<51.81	333	<10	128	7	34	<20	<20		1.58	0.31	0.27	0.02	0.12	22	4	<2	17	<1	5	<10	0.06	7
$<5<2$	18	11	98	2	7	$7<.2$	<	12	<51.83	409	<10	142	6	36	<20	$\leqslant 20$		1.40	0.27	0.24	0.01	0.08	21	3	<2	9	<1	5	<10	0.05	6
$<5<.2$	10	7	49	2	5	$6<.2$	<	9	<51.72	168	<10	123	6	31	<20	<20		1.45	0.22	0.29	0.02	0.08	18	3	<2	18	<1	< 5	<10	0.05	4
$<5<2$	13	7	43	2	6	$7<.2$	5	8	<5 1.98	196	<10	108	8	43	<20	20		1.36	0.29	0.20	0.01	0.09	18	3	2	8	<1	<5	10	0.06	8
$10<.2$	14	7	96	2	5	$6<.2$	\leqslant	6	<51.68	560	<10	243	7	32	<20	<20		1.30	0.23	0.28	0.02	0.09	28	4	<2	8	<1	< 5	<10	0.05	5
6 <.2	29	8	41	2	6	$7<.2$	<	<5	<51.94	769	<10	85	8	42	<20	<20		10.88	0.45	1.64	0.02	0.11	48	8	2	10	<1	< 5	10	. 03	<1
$<5<.2$	9	5	42	2	4	$6<.2$	55	<5	<51.86	274	<10	100	7	41	<20	<20		0.9	0.26	0.26	0.01	0.13	21	3	<2	7	<1	<5	10	. 05	2
$<5<2$	8	7	56	2	6	6 <.2	< 5	<5	<51.86	34	<1	146	8	40	<20	<20		1.19	0.27	0.28	0.01	0.13	25	2	<2	9	<1	<5		0.05	5
$<5<2$	12	7	57	3	7	$6<.2$	< 5	<5	< 22.00	200	<10	170	7	39	<20	<20		1.51	0.32	0.25	0.01	0.15	23	3	2	12	<1	\leqslant	<10	0.06	7
$\leqslant 5<2$	9	8	72	2	5	$5<.2$	5	<	<51.62	447	<10	278	7	30	<20	<20		1.23	0.23	0.22	0.01	0.13	29	2	<2	9	<1	<	10	0.04	3
$26<.2$	8	6	55	2	6	$5<.2$	55	< 5	<51.67	253	<10	125	8	35	<20	<20		0.92	0.28	0.21	0.01	0.14	19	2	<2	8	<1	<	<10	0.06	2

(
-
GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT
24,465

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

24,465

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

OLS 人 人
GEOLOGICAL SURVEY BRANCH
ASSESSMENT REPORT
24,465

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

24,465

GEOLOGICAL SURVEY BRANCH ASGESSMENT REPORT
24,465

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT
24,465

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

GEOLOGICAL SURVEY BRANCH
ASSESSMENT REPORT
24,465

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

[^0]: Bondar-Clegg \& Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, (604) 985-0681

[^1]:

[^2]:

[^3]: Bondar-Clegg \& Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, (604) 985-0681

