GEOLOGICAL SURVEY BRANCH
ASSESSMENT REPORTS

JUL 2 3 1996

SOIL RECONNAISSANCE GEOCHEMICAL ASSESSMENT REPORT

ON THE
DOT AND SIN CLAIMS
DOT 1-3
SIN 1-3
93M 1/E; 8E

OMINECA MINING DIVISION

55 15'N 126 08'W

OWNED BY
LAWRENCE HEWITT
P.O. Box 340
TELKWA, B.C.
VOJ 2X0

PREPARED BY
COLIN HARIVEL, P.Geo.
SMITHERS, B.C.

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

24,479

FILMED

RECEIVED
GOVERNMENT AGENT
SMITHERS

JUL 1 9 1996

NOT AN OFFICIAL RECEIPT

TRANS #

TABLE OF CONTENTS

Location and Access
Claims and Ownership
Summary of Work1
Regional Geology1
Geology of the Claims Area
Geochemistry 6
Conclusions and Recommendations
Statement of Costs
Statement of Qualifications, C. Harivel9
Bibliography9
List of Figures
Figure 1, The General Location of the Claims
List of Appendices

Appendix 1: Soil and rock sample analytical results

Appendix 2: Rock sample descriptions

THE DOT AND SIN MINERAL CLAIMS, 93M 1/E, 8E

Location, General Description and Access:

The DOT and SIN mineral claims are located in the Nakinilerak Lake area, east of Babine Lake, in west-central British Columbia. The general location is shown on Figure 1 and the claims configuration are shown on Figure 2. The claims are centered at about 55 15'N and 126 08'W. on NTS maps 93M 1/E, 8E. Elevations range from about 2800 feet ASL to about 3700 feet ASL and the northwesterly-southeasterly grain to the subdued topography is the result of glacial processes.

The area is accessible from the town of Granisle by means of the Babine Lake ferry and logging roads along the eastern side of Babine Lake. The camp on the claims is reached after 28 km. on the Nak Lake Forestry Road and a few kilometres on subsidiary road to the northeast. The camp is about 5.5km by helicopter from the landing on Nak Lake. The town of Smithers is the nearest service centre some, 100 kilometres southwesterly by road. Smithers has daily air-service to Vancouver.

Claims and Ownership:

The claims comprise the Dot and Sin mineral claims, the details of which are listed below, and are owned by Lawrence Nourse Hewitt of P.O. Box 340, Telkwa, B.C. V0J 2X0.

Т	٠.	h	ما	1
	м	v	ĸ	

CLAIM NAME	RECORD #	# OF UNITS	DUE DATE	CLAIM NAME	RECORD#	# OF UNITS	DUE DATE
Dot 1	335722	16	7 May '96	Sin 1	223781	20	6 Aug '96
Dot 2	335723	1	7 May '96	Sin 2	223782	15	6 Aug '96
Dot 3	335724	1	7 May '96	Sin 3	223783	12	6 Aug.' 96

Summary of Work:

Work in the area was conducted between October 22 to November 10, 1995 by Kaaren Soby and October 22, 23 and October 30 to November 8 by Lawrence Hewitt. Robin Day conducted field work from October 30 through November 8, 1995. Specifically, work was conducted by prospectors Kaaren Soby, Lawrence Hewitt, and geologist Robin Day and included: prospecting traverses, collection, examination and recording of observations of boulders during traverses, sawing and staining of samples at a field camp and a number of soil sample traverses. For further details see *Statement of Costs*, p.8.

The samples were analysed for trace element content by Min-En Labs of North Vancouver.

Regional Geology:

The north Babine region is underlain mainly by volcanic and associated sedimentary rocks of the lower Jurassic Hazelton Group into which felsic rocks of the Babine Igneous Suite (BIS) have been intruded. These plutons can host porphyry copper deposits (of which some are enriched in gold such as the former producers of Bell Copper and Granisle). To the east, Triassic Topley Instrusions penetrate an older volcanic suite.

Structurally the region is dominated by the products of brittle deformation, namely northwesterly-striking faults and fractures. Northwesterly faults are considered to have controlled the emplacement of BIS intrusions, although such faults have undergone some post-intrusion movement.

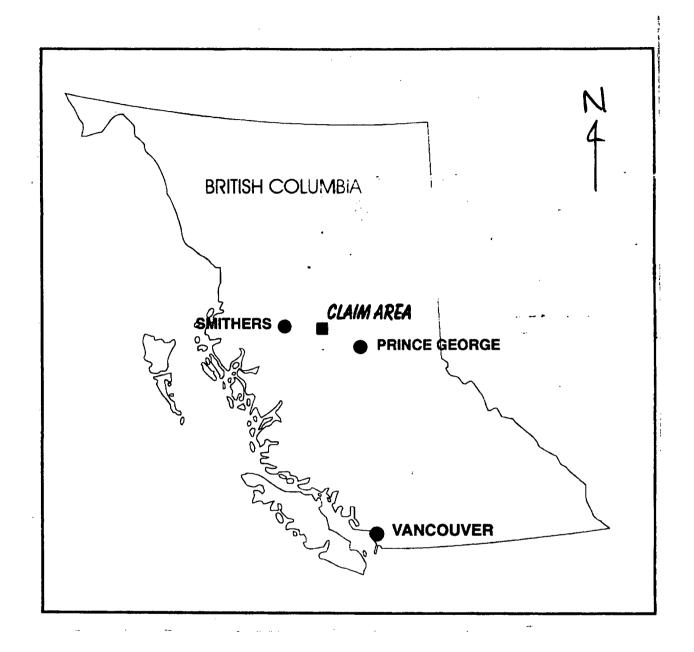


Figure 1 - The General Location of the Claims

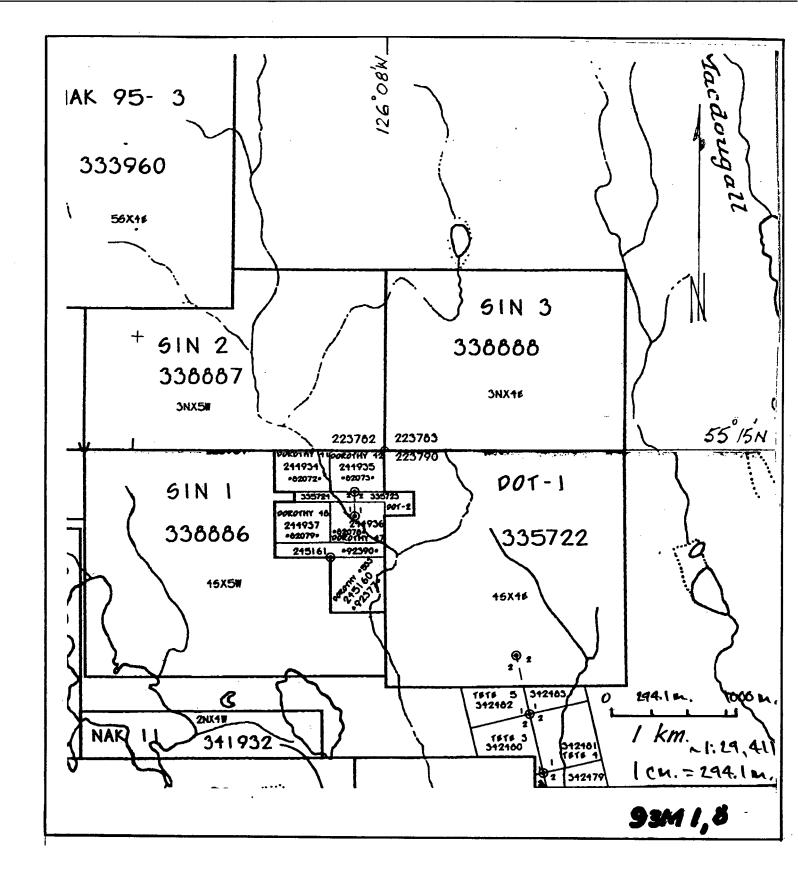


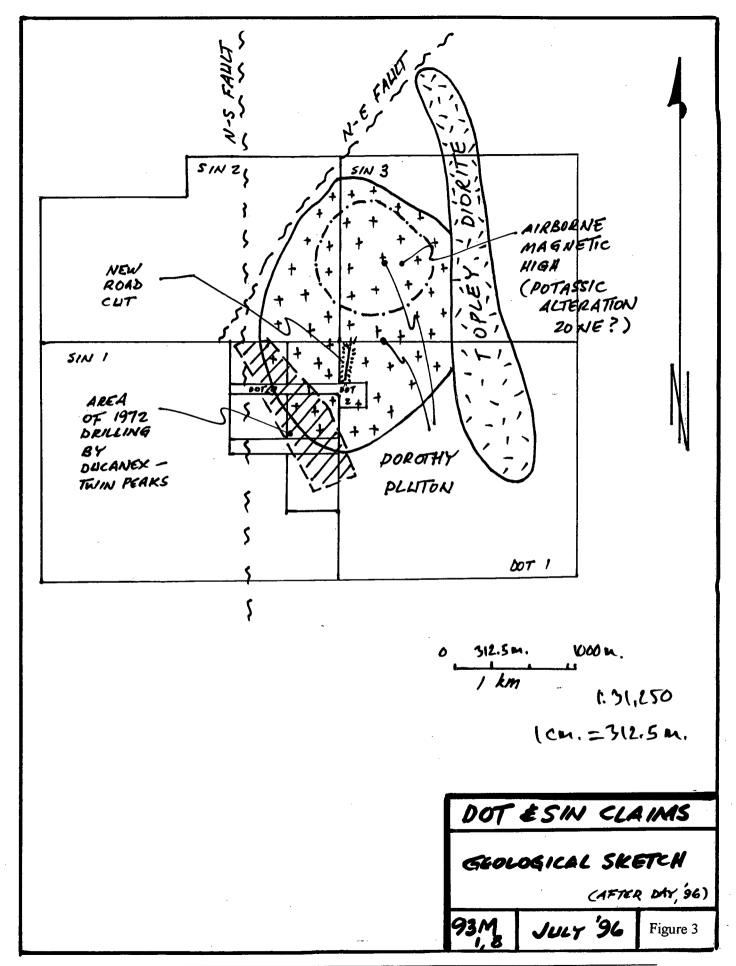
Figure 2 - The Claim Map

Geology of the Claims area:

This section taken largely from notes provided by Robin Day.

"The Dot and Sin claims cover the Dorothy pluton which is located in the Babine Lake area (NTS 93M) within the Intermontane Belt, which comprises a variety of oceanic and island are assemblages. This belt was accreted to the North American craton in late Triassic to Early Jurassic time.

Babine Lake area biotite feldspar porphyry (BFP) intrusions form a K-rich, calc-alkaline, magnetite series igneous suite with alkaline-like trace element chemistry (Ogryslo, et al. 1995). Thin section petrology by Woolverton (1973) indicates that the Dorothy pluton is likely a trachytic variety of BFP which has been subjected to at least two periods of alteration. This may in part explain the high gold content of calc-alkaline porphyry systems such as at Bell Mine and is favourable for the possibility of a gold enriched Cu-porphyry system within the Dorothy pluton.


Mineralized samples of BFP collected from a new logging road cut the Dot claims exhibit variable bornite, chalcopyrite mineralization with secondary biotite and sericite. Pyrite content varies from 3-10% and the BFP is weakly calcareous. Black coloured oxides (cupriferous?), minor native copper and cuprite have been observed in hand specimens.

As seen in the new logging road cut (shown on Figure 3), the Dorothy pluton has a thin leached cap underlain by a 1-2 metre thick limonite-rich zone which overlies fresh BFP. Minor native copper adjacent to black copper(?) oxides and minor cuprite suggests that some of the fine-grained copper sulphide identified as bornite may in fact be supergene copper minerals such as chalcocite-covellite-digenite."

A quartz-feldspar-porphyry (QFP), apparently devoid of sulphide, occurs within the Dorothy pluton.

Drilling performed in the claims area by previous operators (Ducanex - Twin Peaks) was focussed on the SW edge of the Dorothy pluton, straddling the intrusive-hornfels contact zone and weak potassic(?) to propylitic alteration zones. This drilling was directed towards a low chargability anomaly.

High grade copper-gold mineralization in breccia, found during the 1994-95 field seasons, suggests the presence of a mineralized breccia pipe associated with the Dorothy plutonic porphyry system.

Geochemistry:

The samples collected from the claims area were analysed by Min-En Labs of North Vancouver using standard ICP methods for 31 elements and geochem. Au - fire assay. The results are included as Appendix 2. Samples submitted for analysis averaged 500 g. in the case of rocks, 200g. in the case of soils and up to 1kg in the case of drill core (sampled from previous drilling programmes, the core from which was stored on the property).

Soil samples, shown on Figure 4 (in pocket), taken on two reconnaissance lines with sample spaced 100 apart, were from a variety of material, most commonly fine textured till with boulders. Samples were taken from a depth of 10 to 60 cm, depending on the nature of the near-surface organic material.

Rock samples, mostly sub-rounded to sub-angluar boulders encountered in wide-ranging traverses on the claims, were examined for alteration and mineralization, described in the field and submitted for analysis.

Core samples from a variety of rock types, alteration styles and degrees of mineralization were selected from stored core. The exact location of drill holes from which samples were taken is not known. The intent was to orient the surface prospecting investigations by getting a current multi-element analysis of the rock types, mineralization and alteration encountered. The results for this suite of analyses (KC-95-01 through 70) are included in Appendix 2.

A total of 88 soil samples, 14 rock samples and 70 core samples were submitted for analysis. The following observations are based on knowledge and experience in the area in the interpretation of geochemical results.

Of the soil samples, a few were anomalous for copper (> 60 ppm by inspection) and 14 anomalous for gold (> 12 ppb by inspection).

Of the rock samples (KR-95-1 through 14), only 2 had values greater than 100 ppm Cu. Values ranged from 4 to 133ppm. A brief field description of the samples is included as Appendix 2.

Despite significant thicknesses of glacial till and related deposits, soil samples L5000N, 2800E and 3700E have elevated levels of copper at 311 and 108 ppm respectively and both these samples have gold results above the interpreted threshold at 17 and 15ppb respectively. The highest gold result in soils was 28ppb at 5500N, 5500E with samples ranging to a low of 1ppb Au. Sample results are plotted on Figure 4 (in pocket). The dominant up-ice direction being northwest, these results may reflect a mineralized source off the claims. Elevated gold and a weak copper anomaly farther east along the reconnaissance sample lines may reflect sources to the northwest and covered by the existing claims.

Conclusions and Recommendations:

The claims are in the region of profitable past-producing copper porphyry deposits.

The area geology to the south and extending onto the subject claims as interpreted by Bailey, 1995, indicates a favourable environment for copper porphyry deposits. The relatively large area of identified Dorothy pluton, the existence of a quartz feldspar porphyry intrusive, and recent

observations (in new logging road excavations) of additional altered and mineralized intrusive demonstrate some geological complexity for the intrusive history in the claims area. Complexity in the aeromagnetic survey results over the area of the Dorothy pluton lends credence to the interpretation of multiple intrusive events, or, alternatively to extensive areas of intense hydrothermal alteration.

The nature of the mineralization observed in the new logging road cut suggests that porphyry-style copper mineralization forms a crescentic to annular halo within the Dorothy pluton and around a barren quartz feldspar porphyry (QFP) core.

It is likely that an extensive high chargability anomaly associated with the bulk of the Dorothy pluton was interpreted by previous operators as a pyrite halo and therefore not drill-tested.

Especially in light of the newly exposed bedrock of hydrothermally altered and copper mineralized BFP bedrock, exposed over a 600m length and open at both ends, the claims area warrants more intensive investigation.

STATEMENT OF COSTS

Wages:

Kaaren Soby, prospector; Oct. 22 to Nov. 10, 1995	\$ 6000.00
20 days @ \$300/day	\$6000.00
Lawrence Hewitt, prospector; Oct 22,23, Oct. 30 - Nov. 8, 1995	#2000 00
12 days @ \$250/day	\$3000.00
Robin Day, geologist: Oct 30, Nov 1 - 8, 1995	
10 days @ \$500/day	\$5,000.00
Expenses:	
Food;	
42 person days * \$30/day/person	\$1260.00
Camp:	
42 person days @ \$30/day/person	\$1260.00
Supplies:	•
42 person days @ \$15/day/person	\$630.00
Travel;	
Access and Egress (Truck and Barge)	\$1060.00
Rentals:	
Rock Saw; \$20/day for 15 days	\$300.00
Analyses:	
Min-En Invoices	\$3800.00
Freight:	
	\$296.00
Report Preparation:	
C. Harivel; 1 day @ \$500/day	\$500.00
Printing, photocopying	\$58.00
Total of costs	\$23,164.00

STATEMENT OF QUALIFICATIONS

- I, Colin Harivel, of mailing address P.O. Box 233, Smithers, B.C., do hereby state;
 - 1. that I am a member in good standing of the British Columbia Association of Professional Engineers and Geoscientists,
 - 2. that I graduated in geology (B.Sc.) in 1972 from the University of British Columbia, Vancouver, Canada,
 - 3. that since 1972 I have practised the profession of mineral exploration geology in British Columbia and Yukon, Canada, in Alaska, Washington, Arizona, New Mexico and Nevada, U.S.A. and in Australia, and
 - 4. that I am familiar with the area of the subject claims (the Dot 1-3 and Sin 1-3), and have worked in the region, searching for deposits similar to those sought on the subject claims.

Signed:

Colin Harrivel, P.Geo.

Dated:

July 1, 1996

BIBLIOGRAPHY

Bailey, D.; 1995: Summary Report: The Hautete Porpyhry Copper-Gold Prospect, Babine Lake Region, Central British Columbia: Unpublished geological report dated February 26, 1995.

Carter, N.C., 1976: Regional Setting of Porphyry deposits in west-central British Columbia. *In* Porphyry Deposits of the Canadian Cordillera (A. Sutherland Brown, ed.) Can. Inst. of Mining and Metall., Spec. Vol. 15, p 227-238.

Day, Robin; 1996: Notes on the DOT and SIN mineral claims after field work in spring of 1996.

Fahrni, K.L., Kim, H., Klein, G.H. and Carter, N.C., 1976: Granisle. *In Porphyry Deposits of the Canadian Cordillera* (A. Sutherland Brown, ed.) Can. Inst. of Mining and Metall., Spec. Vol. 15, p 239-244.

Richards, T. A., 1980: Geological Survey of Canada, Open File #720, 1980.

Richards, T.A., 1990: Geology of the Hazelton Map Area (93M). Geol. Surv. Canada, O.F. 2322, 1:250,000.

Soby, Kaaren, 1996: Field notes from 1995 work on the DOT and SIN claims.

APPENDIX 1 ANALYTICAL RESULTS

ATTN: LARRY HEWITT

PROJ:

MIN-EN LABS - ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

TEL:(604)327-3436 FAX:(604)327-3423

FILE NO: 5S-0202-SJ1+ DATE: 95/12/1

* soil * (ACT:F31

SAMPLE NUMBER	AG AL PPM %	AS PPM	BA PPM	BE PPM	BI PPM	CA %	CD PPM	CO PPM	CR PPM	CU PPM	FE %	GA PPM	К %	LI PPM	MG %	MN PPM	MO PPM	NA % F	NI Mqq		PB PPM		SN PPM F			I L		PPM P		u-fire PPB
L5000N-2500E L5000N-2600E L5000N-2700E L5000N-2800E L5000N-2900E	.5 1.88 .4 1.61 .3 .96 1.0 2.52 .3 1.38	1 1 1 1	318 187 155 455 212	1.9 1.6 1.2 2.7 1.5		.69 .58 .33 .78 .58	.1 .1 .1 .1	18 17 11 17 14	33 32 20 36 26	64 28 311 32	3.64 3.31 4.50 3.78	1 1 1 1	.05 .06 .05 .10	31 13 9 17 10	.60 .62 .34 .55	739 571 494 2776 813	1	.02 .01 .01 .02 .01	46 21	540 1700 1120 1850	117 41 32 43 35	1 1 3 1	4 3 5 5	1 1 1 1) 1 1	66.5 62.3 55.9 78.4 66.2	2 4 1 2 1	83 99 66 44	16 6 1 17 17
L5000N-3000E L5000N-3100E L5000N-3200E L5000N-3300E L5000N-3400E	.4 1.86 .2 1.45 .3 1.84 .7 1.87 .4 1.79	1 1 1 1	209 166 149 132 112	1.8 1.5 1.6 1.5 1.1	5	.43 .48 .42 .33 .13	.1 .1 .1 .1	16 14 15 12 8	28 23 26 27 14	46 70 35 25	3.53 3.48 2.32	1 1 1 1	.05 .04 .05 .04 .09	10 7 8 8 11	.44 .44 .50 .37 .23	782 715 522 358 512	2		22 25 19	1980 830 660 1060 2000	36 29 28 29 21	1 1 1 1	4 3 3 2	1 1 1	1 .0 1 .0 1 .0 1 .0)2)3)3	72.1 56.1 60.0 69.0 48.0	1 3 1 2	99 95 12 94	15 5 6 9 4
L5000N-3500E L5000N-3600E L5000N-3700E L5000N-3800E L5000N-3900E	.4 1.53 .7 1.89 .5 1.45 .8 1.75 .6 .36	1 1 1 1	291 144 152 169 129	1.8 1.6 1.6 1.6	6 5	.28 .32 .77 .54	.1 .1 .1 .1	12 14 16 14 2	25 32 30 26 9	60 108		1 1 1 1	.03 .04 .06 .06	9 8 9 11 1	.41 .57 .64 .43	809 345 849 544 331	2	.02 .01 .02 .02	24	610 1020 610 1060 680	35 27 31 33 12	1 1 1 1 3	5 3 3 1 2	60 1 1 1 227	1 .0 1 .0 1 .0 1 .0)4 1)4 1)3 1	57.1 70.0 63.8 58.7 9.6	2 1 2 1 2 1	86	5 7 15 8 7
L5000N-4000E L5000N-4100E L5000N-4200E L5000N-4300E L5000N-4400E	.1 .39 .7 1.17 .5 1.45 .7 2.37 .6 1.78	1 1 1 1	118 160 130 196 155	.3 1.1 1.1 1.8 1.5	5 9 5	.01 .70 .48 .50	.1 .1 .1 .1	2 9 17 14	25 26 34 29	31 38		1 1 1 1	.01 .03 .04 .07 .05	1 7 10 12 9	.08 .48 .58 .52	629 341 269 712 506	1 1	.01 .02 .02 .01 .02	5 18 18 24 23	800 330 470 3040 740	11 20 17 57 26	2 1 1 1 1	1 1 1 2 4 3	71 1 1 1 1	1 .0 1 .0 1 .0 1 .0)3 1)3 1)5 1	9.3 45.7 57.6 70.1 68.2	1 2 3 1 2 1	07	4 16 11 8 3
L5000N-4500E L5000N-4600E L5000N-4700E L5000N-4800E L5000N-4900E	.3 1.64 .8 2.10 .1 1.97 .5 1.87 .5 1.52	1 1 1 1	161 216 214 155 168	1.3 1.8 1.9 1.8 1.4	8 6 1 8	.75 .34 .04 .59	.1 .1 .1 .1	12 15 16 15 10	24 33 31 29 26	46 60 36	4.06	1 1 1 1	.04 .03 .05 .05	9 10 9 8 9	.55 .60 .43 .61	1031 459 1750 633 608	2 1	.01 .01 .01 .01	27	660 1330 1220 1990 630	24 25 40 30 24	1 1 1 1 1	3 3 3 3	1 1 1 1	1 .0 1 .0 1 .0 1 .0)4 1)3 1)4 1	56.9 72.3 71.5 71.1 56.5	2 1 2 1 3 2 2 1	45 78	12 4 5 4 3
L5000N-5000E L5000N-5100E L5000N-5200E L5000N-5300E L5000N-5400E	.4 1.54 .4 1.20 .5 1.46 .4 2.12 .1 1.97	1 1 1 1	141 145 104 155 215	1.3 1.3 1.3 1.8 1.8	6 1 7 8	.53 .06 .34 .31	.1 .1 .1	12 13 13 15 16	23 23 22 29 30	40 28 25	3.22 3.19 2.78 4.08 4.03	1 1 1 1	.03 .05 .03 .04 .05	9 7 6 13 9	.50 .54 .48 .42 .69	357 763 328 448 1858	2 1 1	.02 .02 .01 .01	19 19 16 28 29	490 730 470 1300 590	25 38 26 24 32	1 1 1 1 1	3 2 4 3	1 1 1 1	1 .0 1 .0 1 .0 1 .0)2 1)3 1	58.3 58.7 54.2 68.5 78.1	1 1 1 2 2 2 1 2 1	35 41	2 4 15 1 6
L5000N-5500E L5000N-5600E L5000N-5700E L5000N-5800E L5000N-5900E	1.1 3.74 .6 1.65 1.1 1.45 1.0 1.96 .8 1.71	1 1 1	179 182 117 130 199	2.7 1.3 1.3 1.6 1.4	9 1	.10 .21 .79 .46 .26	.1 .1 .1 .1	19 14 9 14 13	30 30 22 28 37	21 40 21	3.78	1 1 1 1	.06 .06 .03 .04	13 -10 4 8 8	.76 .82 .21 .47	978 1516 334 492 853	1 1 1	.02 .03 .01 .01	28 24 15 20 24	1770 850 600 970 850	36 29 28 30 29	7 1 1 1 1	4 3 3 3 3	1 1 1 1 34	1 .0 1 .0 1 .0	14 1 16 1	86.8 63.4 56.2 72.7 66.7	5 1 2 1 2 1 3 1 2 1	69 14 43	4 4 1 3 4
L5000N-6000E L5000N-6100E L5000N-6200E L5000N-6300E L5000N-6400E	1.2 2.14 .8 1.57 .4 1.60 .8 1.98 .5 1.76	1 1 1 1	174 123 116 104 154	2.2 1.4 1.3 1.6 1.4	8	.15 .81 .73 .55	.1 .1 .1	17 12 14 16 11	54 29 23 32 27	40 30 40	4.94 3.09 3.27 3.75 2.79	1 1 1	.05 .04 .05 .06 .03	11 11 9 11 13	1.10 .62 .57 .71 .60	744 505 726 446 838	1 1	.02 .02 .02 .02	33 20 20 24 19	1100 400 680 690 550	40 27 27 31 25	1 1 1 1 1	5 3 4 3	1 1 1 1	1.0		85.3 63.7 66.2 99.1 58.5	3 1 2 1 1 1 3 1 1 1	06 01 29	4 8 3 4 7
L5000N-6500E L5000N-6600E L5000N-6700E L5000N-6800E L5000N-6900E	.7 1.75 .8 1.83 .8 2.31 .5 2.06 .6 1.77	1 1 1 1	146 164 143 212 174	1.7 1.6 1.6 1.9 1.7	9 8 9 1	.68 .55 .83 .25 .19	.1 .1 .1 .1	15 15 16 19 15	28 30 36 41 29	26 30 51		1 1 1 1	.04 .04 .10 .07	10 9 12 13 11	.58 .61 .69 .78 .65	680 507 681 1457 919	1 2	.02 .01 .02 .02 .02		720 1090 1700 760 820	37 33 33 50 32	1 1 1 1	3 3 4 4 4	1 1 1 1	1.0		72.9 73.0 78.3 84.8 67.7	2 1 2 1 3 1 4 1 1 1	24 57 89	. 6 4 5 7 6
L5000N-7000E L5500N-2500E L5500N-2600E	.7 1.61 .8 1.05 .9 1.72	1 1	129 135 283	1.5 1.0 1.7	8 7 6 1	.90 .80 .05	.1 .1 .1	16 12 15	25 23 30	39	3.42 2.77 3.53	1 1	.04 .05 .06	5 7 8	.49 .54 .57	754 496 1123	1	.01 .02 .01	25 19 30	1280 410 500	29 27 37	1 1 1	3 3 3	1 1 9	1 .0 1 .0 1 .0	3 1	68.8 51.1 60.2	2 1 1 2 1	82	· 3 5 8
																											_		-	

PROJ:

ATTN: LARRY HEWITT

MIN-EN LABS - ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

FILE NO: 5S-0202-SJ3-

ATTN: LARRY HEWITT		LE NU: 35-0202-513.
SAMPLE	AG AL AS BA BE BI CA CD CO CB CU 55	DATE: 95/12/
NUMBER	PPM % PPM PPM PPM PPM PPM PPM PPM PPM PP	(7,01.15
L5500N-2700E L5500N-2800E L5500N-2900E L5500N-3000E L5500N-3100E	.4 1.65	3 2 110 8
L5500N-3200E L5500N-3300E	.7 2.31 1 121 1.8 8 .31 1 12 25 79 7 80 2.04 7 .29 556 1 .01 17 830 28 1 2 2 1 .02 1 58 2	8 2 114 5
L5500N-3500E L5500N-3600E L5500N-3700E	.9 1.73	3 2 152 8 0 3 137 14 0 3 214 17
L5500N-3800E L5500N-3900E L5500N-4000E L5500N-4100E	.4 1.37	3 3 207 13 5 1 128 2
L5500N-4200E L5500N-4300E	1 1.62 1 153 1.0 6 .57 .1 7 17 21 2.19 1 .05 9 .38 672 1 .02 17 550 21 2 2 11 1 .02 1 54.0 1 .9 2.29 1 144 2 2 13 .65 1 .06 9 .53 1532 2 .01 28 1240 24 1 .02 1 .02 1 .03 1 .03 1 .03 1 .03 1 .04 .05 9 .53 1532 2 .01 28 1240 24 1 .02 1 .03 1	2 100 5 3 1 97 4
L5500N-4400E L5500N-4500E L5500N-4600E L5500N-4700E	.3 1.57 1 135 1.3 5 .69 .1 10 23 42 3.77 1 .07 21 .65 552 3 .02 25 2780 61 1 5 1 1 .05 1 111.7 8 1.69 1 146 1.6 7 .58 .1 13 22 37 3.45 1 .07 13 .51 771 1 .02 20 560 28 1 2 1 1 .03 1 60.5 5 1.65 1 163 1.8 7 .64 .1 12 28 34 4.00 1 .05 9 .49 379 1 .01 27 1890 27 3 3 1 1 .03 1 61.8	7 4 213 3 5 2 96 6 8 2 155 4
L5500N-4800E L5500N-4900E L5500N-5000E L5500N-5100E	.8 1.50	3 155 2 112 6 2 99 3
L5500N-5200E L5500N-5300E	.2 1.88 1 147 1.5 4 .27 .1 12 25 32 3.39 1 .04 8 .47 400 2 .01 26 510 27 1 3 1 1 .03 1 61.0	2 97 1 2 106 5
L5500N-5400E L5500N-5500E L5500N-5600E L5500N-5700E	1.2 2.56	1 73 2 1 93 2 3 106 8 2 157 25
L5500N-5800E L5500N-5900E L5500N-6000E	.8 2.01 1 132 1.5 7 .51 1 11 30 7/ 7.27 1.07 16 .67 506 1 .02 24 620 35 1 4 1 1 .03 1 72.4	2 140 1 3 132 4 2 106 5
L5500N-6100E L5500N-6200E L5500N-6300E	1.0 2.40 1 190 1.6 8 .43 .1 15 30 38 3.73 1 .06 13 .58 455 2 .02 26 740 30 4 4 1 1 .04 1 67.3	3 164 5 3 99 8 3 146 4
L5500N-6400E L5500N-6500E KS-95-01 NO NUMBER	1.9 1.88 1 214 1.7 7 .48 .1 14 33 31 4.01 1 .05 12 .71 499 2 .02 27 880 36 2 4 1 1 .04 1 61.1 1.1 1.61 1 135 1.5 5 .62 .1 13 27 32 3.40 1 .08 12 .54 711 2 .01 26 750 37 2 4 1 1 .03 1 71.6 1.2 1.90 1 140 1.4 7 36 .1 38 1 87 7.13 1 .08 15 .69 >10000 7 .02 22 810 34 1 4 1 1 .03 1 71.6 1.2 1.90 1 140 1.4 7 36 .1 38 3 87 7.13 1 .08 15 .69 >10000 7 .02 68 11/0 117 4 7 1 1 .03 1 65.0	2 87 2 3 135 2 2 132 5 3 110 6
	130 1 140 1.4 7 .36 .1 13 29 84 3.46 1 .05 12 .61 431 2 .02 23 800 31 3 3 1 1 .03 1 97.0	5 562 14 2 104 17

:

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C. CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TEL (604) 847-3004 FAX (604) 847-3005

Assay Certificate

5S-0196-RA1

Company: HEWITT CO & ASSOCIATES

Date: NOV-10-95

Project:

copy 1. Hewitt Co. & Associates, Telkwa, B.C.

LARRY HEWITT / KAAREN SOBY Attn:

We hereby certify the following Assay of 18 CORE samples submitted NOV-03-95 by L. Hewitt.

Sample Number	Au-fire g/tonne	Au-fire oz/ton	
KC-95-41	.03	.001	· · · · · · · · · · · · · · · · · · ·
KC-95-42	. 05	.001	
KC-95-43	. 02	.001	
KC-95-44	. 02	.001	•
KC-95-45	.01	.001	•
KC-95-46	.01	.001	
KC-95-47	.01	. 001	
KC-95-48	. 01	. 001	
KC-95-51	.01	. 001	
KC-95-56	.01		
KC-95-57	.01	.001	
KC-95-58	.01	.001	
KC-95-59	.01	001	
KC-95-60	. 05	.001	
KC-95-61	.01	.001	
KC-95-62	.01	.001	
KC-95-63	. 02	.001	
KC-95-64	.02	.001	

Certified by

MIN-EN LABORATORIES

PROJ:

ATTN:

COMP: Larry Hewitt

MIN-EN LABS - ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

TEL:(604)327-3436 FAX:(604)327-3423

FILE NO: 6V-002 DATE: 96/

* rock * " (ACT

SAMPLE NUMBER	AG PPM	AL X	AS PPM	BA PPM	BE PPH	B1 PPN	CA %	CD PPN	CO PPM	CR PPH	CU PPH	fE %	GA PPM	K	LT PPM	MG %	MN PPM	MO PPM	NA X	NI PPM	P PPM	P8 PPM	SB PPM	SN PPM	SR PPH P	T#	TI % P	U PM	V PPH P		-uA HS
KR-95-01 KR-95-02 KR-95-03 KR-95-04 KR-95-05	5	1.41 1.21 .84 1.91 .87	1 42 19 46 73	76 100 110 145 55	2.8 2.8 2.3 3.2 3.2	11 8 8 8 10	1.05 .78 .58 .78	.1		13 47 61 100 18	30 3 133 3 32 2 15 3 129 4	.45 .39 .52	1 1 1	.14 .19 .16 .36	21 11 15 17 8	1.00 1.11 .82 2.52 .60		2 2 2 2 2	.07 .06 .05 .06	11 16 11 40	1970 1060 990 1350 1970	27 29 22 28 30	18 15 10 22 9	1	11 28 6 31 8	1 . 3 . 3 .	.08	1 5 1 4 1 4	9.4 9.3 10.1 20.6 56.7	34462	91 49 53 49 28
KR-95-06 KR-95-07 KR-95-08 KR-95-09 KR-95-10	.1 .1 .1	1.52 .36 2.41 .79 2.62	1 1 21 21	218 51 73 41 66	2.8 1.1 4.8 1.5 3.5	4 3 9 3 10	2.26 .32 1.52 2.26 2.18	.1	15 4 26 6 20	55 53 54 48 42	15 2 6 1 43 5 4 1 22 4	.92 .14 .46 .48	1 1 2 1	.07 .06 .03 .06 .03	22 20 29	.17 2.88 .86 2.02	1117 460 760	2 2 1 2 2	.03 .05 .04 .04	36 7 37 17 23	1380 480 830 920 460	27 10 37 15 33	18 5 27 10 33	1 1 1 1	57 9 6 22 1	1 :	.01 .01 .05 .01	1 1 10 1 2 1 9	7.5 7.5 3.3 8.8 0.3	4	57 70
KR-95-11 KR-95-12 KR-95-13 KR-95-14	.2	2.49 3.04 1.92 1.86	1 1 1	72 54 334 74	3.6 4.5 3.3 2.2	5 8 6 8	>15.00 2.46 2.40 1.98	.1	22 33 15 10	118 136 28 51	78 4 64 5 21 3 36 2	.10 .30 .61 .49	1 1 1	.06 .01 .12 .15	34 20 20 17	2.96 4.29 1.95 .58	1647 844 2011 192	1 1 3 3	.02 .02 .02 .22	47 66 36 12	870 350 1370 460	30 27 39 25	29 32 24 26	1 1 1	1 7 96 112	1 .	.01	1 13	39.5 38.7 48.1 40.0	7 6 3 2 6	59 88 99 56
							······································																				·				
		···											* 1																		-
						-											•												,		
<u> </u>		•		·			1	··							· .												···· •		-		
											,																				
													<u> </u>		<u></u>	:	:														

ATTN: LARRY HEWITT

PROJ:

MIN-EN LABS - ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

TEL:(604)327-3436 FAX:(604)327-3423

FILE NO: 55-0202-R DATE: 95/12/

SAMPLE		A1									TEL:(604)		436	FAX:	(604)	327-34	23											* ,			95/12 ACT:F
SAMPLE NUMBER	PPM		AS PPM	PPM	PPW BE	BI PPM	CA %	CD PPM	CO PPM	CR PPM	CU FE	GA PPM	K %	L I PPM	MG	MN PPM	MO	NA	NI	Р	РВ	SB	SN	SR	TH	TI	U		W	ZN A	u-fir
KC-95-67 KC-95-68 KC-95-69 KC-95-70	2.4 2.9 2.0 2.6	2.88 2.40 2.45 2.13	1 1 1	43 89 61 69	1.8 2.6 1.9 1.8	11 4 6 10	2.45 1.58 1.68 2.56	.1 .1 .1	16 26 31 15	115 96 72 86	81 4.03 657 7.30 151 3.74 73 3.67	6 3 1 4	.30 .85 .29	9 5 10 7	.80 5 1.62 0 2.04 7 1.55	176 144 395 389	12 1 1 2	.42 .22 .37 .16	25 29 15 15	870 600 1820 1650	22 48 14 20	5 1 1 2	4 7 5 3	39 1 95 66	1 1 1 1	.06 .15 .09	1 1 1 1 1 1	V PPM 134.2 141.3 73.5 64.0	7 5 3 4	67 61 76 72	PP
										•																					

										***												-									
			·				·																				J				
								1361			V-14								-												
											**************************************													-							
															-																·
	-						;					·						<u></u>			•		***		•						
	-							-		·								-	~ · · · · ·			- 112									
				-			* 10																								
			,																												

PROJ:

ATTN: LARRY HEWITT / KAAREN SOBY

MIN-EN LABS -- ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

FILE NO: 5S-0196-RJ1 DATE: 95/11/10

ATTN: LARRY HEWI										TEL:	(604)3	27-34	36	FAX: (60	04)32	7-342	3										* rock *		CT:F31
SAMPLE NUMBER	AG AL PPM %	AS PPM	BA PPM	BE PPM	BI PPM	CA %	CD PPM	CO PPM	CR PPM	CU PPM	FE %	GA PPM			MG %	MN	МО	NA	NI	P	РВ	SB	SN	SR	TH	TI	U	V	W ZN
KC-95-41 KC-95-42 KC-95-43 KC-95-44 KC-95-45	2.4 1.76 3.8 1.55 4.0 1.63 2.6 1.18 3.1 1.18	1 1 1 19 1	76 42 127 21 23	1.8 3.2 2.7 3.2 2.5	1 1 13	1.03 2.90 2.04 1.85	.1 .1 .1 .1	24 48 37 76 36			5.45 10.84 8.58 11.80 8.30	1 1	.89	7 1	1.94 1.49 1.74 .83 .71	192 898 322 219 223	PPM 1 7 1 15 10	.08 .08 .15 .06	19 41 28 42 29	760 900 410 510 940	41 103 73 114 87	1 1 1 1	5 7 5 6	PPM 1 1 1	PPM 1 1 1	.17 .13 .37 .18	PPM PF 1 171. 1 272. 1 582. 1 234. 1 252.	1 4	M PPM 4 78 4 113 1 81 2 86 7 57
KC-95-46 KC-95-47 KC-95-48 KC-95-51 KC-95-56	3.3 1.19 2.7 .96 1.7 1.28 2.8 1.09 2.1 1.11	7 54 1 1 27	64 38 255 41	2.0 2.2 1.2 2.1 2.7	12 1 14 2 9 6 1 16 1	2.29 2.15 1.32 1.61 1.39	.1 .1 .1 .1	36 48 17 36 23	49 55	736 471 199 1099 206	6.36 6.79 3.30 6.96 8.69	1 1 1 1	.18 .07 .45 .09	3 1 3 6 1 3 2 1	.71 .26 .91 .62 .82 .13	344 229 227 163 154	1 26 34 2	.09 .11 .08 .11	25	380 70 1540 770 1500	60 66 24 65 83	1 1 1 1	2 4 2 4 4	1 1 67 1	1 1 1 1	.28 .25 .14 .25	1 430. 1 397. 1 91. 1 399.	7 8 3 8 9 5 0	3 61 3 47 5 55 3 46
KC-95-57 KC-95-58 KC-95-59 KC-95-60 KC-95-61	2.9 1.58 3.0 1.20 3.7 2.78 3.4 2.13 3.3 1.76	1 1 1 1	118 29 237 119 201	2.1 2.1 2.3 2.9 1.9	16 1 20 1 23 1 14 1 20 1	1.78 1.75 1.31 1.88 1.62	.1 .1 .1 .1	38 29 25 41 24	48 60 49 66 57	398 242 117 664 230	6.92 7.01 6.97 8.34 6.17	1 1 1 1	.53	3 1 2 5 2 5 1 4 1	.36 .58 .82 .99	310 260 363 372 308	14 1 1 1	.13 .15 .11 .09	27 22 16 19 24	600 1320 2280 1750 730	56 72 33 68 54	1 1 1 1 1	3 2 5 3	1 1 1 1	1 1 1 1	.17 .29 .31 .40 .28	1 168. 1 377. 1 203. 1 98. 1 74. 1 376.	1 7 9 5 1 1 4 3	4 46 7 58 5 57 1 75 3 73 3 64
KC-95-62 KC-95-63 KC-95-64	2.5 2.49 2.7 1.02 2.7 1.38	113	123 37 60	2.4 3.1 2.0	15 2 14 1 16 2	2.09 1.62 2.06	.1 .1 .1	51 91 33	61 66 60	322 570 271	6.96 10.90 6.56	1 1	.47 .21 .36	5 1 4 1 3 1	.56 .12 .08	278 196 207	1 1	.20 .06 .15	32 40	630 1260 790	51 111 64	1 1	4 5 3	1 1 1	1 1	.21 .18 .26	1 277. 1 157. 1 212.	2 6 5 3 9 5	61
					,	444,444														•	-								
																												··· • · • · · · ·	
																										- 4			
																···				-									
															741						• • • • • • • • • • • • • • • • • • • •								
					-		:																						
										-																			
																												· · · · · · · · · · · · · · · · · · ·	
			•																										

MIN-EN LABS - ICP REPORT

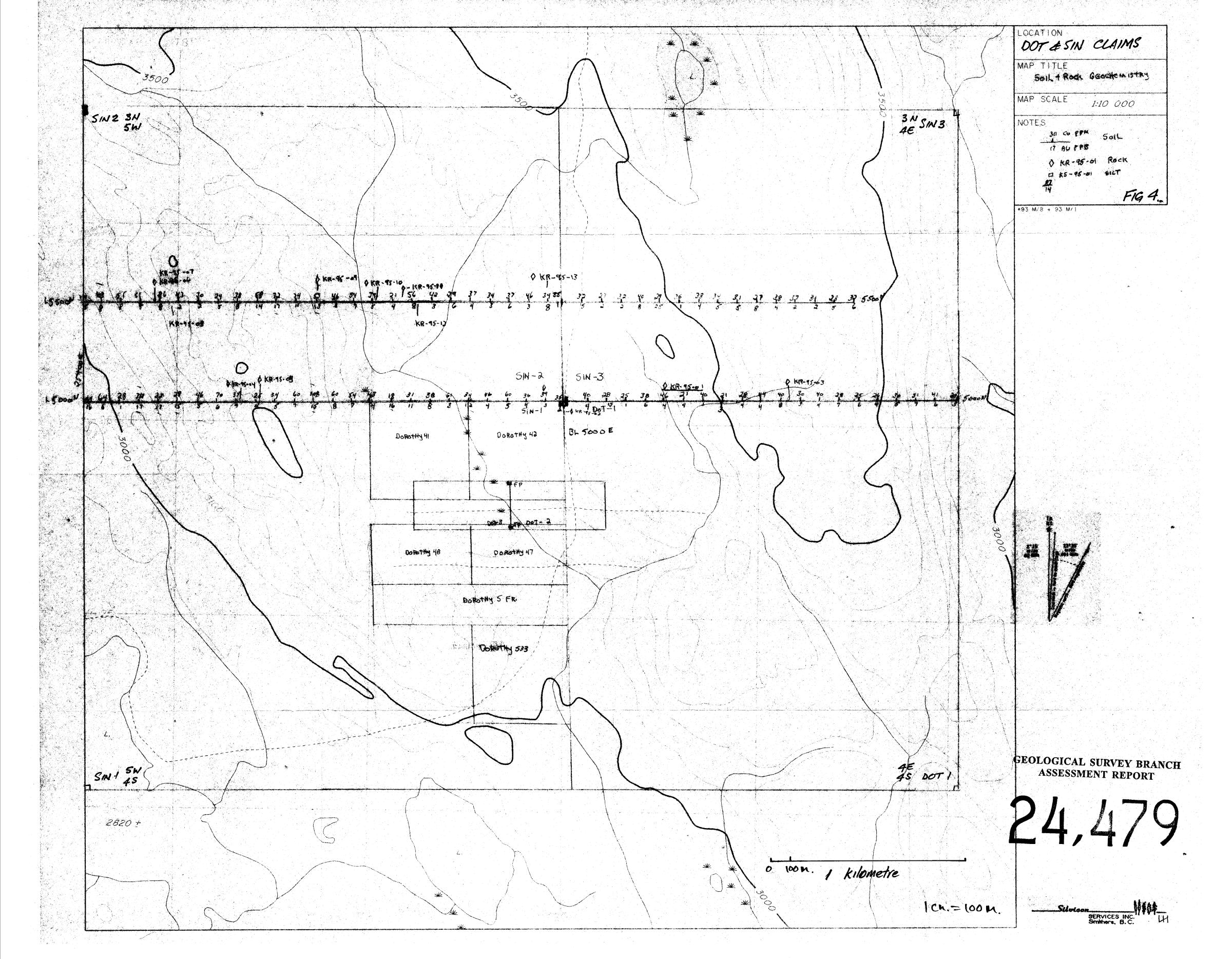
PROJ: ATTN: LARRY HEWITT 8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

TEL:(604)327-3436 FAX:(604)327-3423

O

FILE NO: 5S-0202-RJ1 DATE: 95/12/

* rock * (ACT:F3


SAMPLE NUMBER	AG AL PPM %		BA PPM	BE PPM	BI C	A CD	CO CR PPM PPM	CU PPM	FE % P		K L		MN PPM	MO PPM	NA NI % PPM		PB	SB S	N SR	TH PPM	TI U		W PPM	ZN A	u-fire
KC-95-01 KC-95-02 KC-95-03 KC-95-04 KC-95-05	2.4 1.43 2.2 2.09 1.8 1.63 2.4 2.41 4.8 3.13	1 1 1	47 51 68 21 48	2.5 3.1 1.8 1.9 2.7	1 1.6 13 1.5 5 1.5 1 2.9 1 3.3	9 .1 4 .1 5 .1 7 .1	40 86 42 87 23 48 24 107 23 70	1163 94 200 1621 4120	8.91 11.25 5.43 6.14 7.98	2 . 4 . 2 . 5 .	28 8 41 7 29 6 11 4 25 7	3 1.19 7 .97 5 .89 6 .60	182 28 56 142 355	4 . 6 . 9 .	.08 26 .19 33 .13 21 .20 21 .25 27	1110 580 680 1210	76 95 44 46	1 1	8 1 0 1 4 1 6 1 7 1	1 . 1 . 1 .	.03 1 .05 1 .05 1 .03 1	58.9 172.4 94.3 61.0 98.1	2 4 3 6 4	57 50 37 51 93	PPE 15 6 25 46
KC-95-06 KC-95-07 KC-95-08 KC-95-09 KC-95-10	4.9 .52 4.6 .27 1.5 .27 4.3 .42 2.5 .41	107 115	162 209 158 162 142	1.1 .9 .8 .8	1 2.20 1 2.00 1 2.40 1 1.80 1 1.80	3 .1 2 .1 3 .1 3 .1	10 170 20 92 8 63 14 114 11 156	5743 5560 207 3649 1334	2.03 2.20 1.78 1.72 1.48	1 .	22 2 14 1 14 1 17 2 16 1	2 .82 1 .71 1 .84 2 .63 1 .50	705 524 462 281 453	158 . 15 . 209 .	.08 14 .04 18 .04 13 .03 14 .05 13	1040 1140 930	31 18 26	7 1 5	6 45 2 29 1 51 2 33 3 92	1 . 1 . 2 . 3 .	01 1	25.2 19.0 25.0 26.8 20.2	8 5 3 7 8	53 39 48 42 39	140 112 17 56 54
KC-95-11 KC-95-12 KC-95-13 KC-95-14 KC-95-15	3.8 2.96 3.9 .90 5.7 1.16 5.2 2.40 1.6 .31	1 45	38 179 54 107 213	4.1 1.2 1.9 2.1 .5	1 2.2 1 1.3 1 1.7 1 2.6 1 .8	3 .1 5 .1 5 .1	38 98 76 133 43 114 53 91 8 99	2711 3915 7282 4517 912	13.74 3.23 5.24 6.25 1.04	5 .	06 6 35 6 25 7 47 9	.95	42 140 110 133 149	67 . 50 . 74 .	08 43 08 20 08 25 17 25 06 6	950 1330	33 54 46	5 6	9 1 3 25 4 1 5 286 1 31	1.	02 1 04 1 03 1 07 1 01 1	52.7 51.8 91.7 134.8 6.5	3 8 8 7 6	88 42 51 64 11	31 64 137 66
KC-95-16 KC-95-17 KC-95-18 KC-95-19 KC-95-20	1.4 .28 8.5 3.96 6.2 .96 2.4 .65 2.4 .32	42 1 86 56 62	60 79 110 64 194	.5 4.5 1.0 1.1	2 .55 1 3.24 1 1.52 1 1.95 1 2.99	.1	16 52 125 134 18 159 18 104 19 82	6985 1701 1846	.53 >15.00 2.49 2.40 1.84	5 .	18 1 40 8 35 6 30 3 14 1	1.05	25 191 152 88 1181	227 . 306 .	02 7 19 87 06 20 04 14 01 16	920 1150	7 135 23 23 25	3 2 8 3 4	1 16 4 1 3 33 3 57 4 135	1 .	01 1 12 1 05 1 01 1	4.5 238.2 61.0 16.0 14.3	3 7 10 5	11 123 50 24 46	80 99 18 19
KC-95-21 KC-95-22 KC-95-23 KC-95-24 KC-95-25	3.5 .31 10.7 .42 3.3 .42 2.7 .85 .1 .18	131 188 86 85 1	162 155 113 313 979	.7 1.6 .6 .8 .6	1 1.75 1 1.31 1 1.52 1 1.49 1 2.68	1 1	16 122 76 125 8 118 12 183 5 124	2827 9165 2491 1136 878	1.99 4.75 1.16 1.82 1.24	7	18 1 13 3 22 1 31 4 14 1	.54 .43 .60 .94	372	1755 . 688 . 1432 .	03 16 03 23 05 9 07 16 03 11	830 780 820 940 470	28 59 15 19 21	9	3 74 9 48 3 146 5 142 2 4160	1 . 7 . 6 .	01 1 01 1 01 1 05 1 01 1	16.7 19.5 21.7 42.1 7.4	6 6 6 9 5	49 44 30 40 22	34 60 26 30 7
KC-95-26 KC-95-27 KC-95-28 KC-95-29 KC-95-30	2.4 .82 2.0 .59 3.6 .89 1.4 .76 1.9 .25	2 241 61 61 447	503 73 168 164 52	2.7 1.2 1.2 2.5	1 1.42 1 1.81 1 .88 1 .88	.1 3 .1 1 .1	10 116 47 119 17 108 23 146 25 93	2043 1136 4977 337 490	1.47 8.12 2.53 2.48 6.91	1 2 1	35 5 40 3 47 4 47 4 14 1	.97 .74 1.19 1.08 1.31	162 234 85 96 222	293 . 43 . 412 .	06 11 06 33 07 26 08 16 04 27	990 760 1070 710 750	9 81 20 16 70	4	2 372 7 1 2 12 3 1 5 94	1 .1	07 1 07 1 09 1 08 1 01 1	48.4 42.9 65.5 60.2 19.0	5 2 5 7	50 59 42 43 64	47 38 107 14 25
KC-95-31 KC-95-32 KC-95-33 KC-95-34 KC-95-35	1.0 .39 2.5 .64 5.2 1.02 9.8 1.43 4.1 1.05	45 1 528 315 336	57 102 64 50 50	1.5 .9 4.7 3.7 4.0	1 2.15 1 1.43 1 4.44 1 2.86 1 2.35	.1	90 153	1765 3118 6380 >10000 3433	3.31 1.97 >15.00 12.85 12.54	1		.78 .80 1.00 1.54 1.10	145 470 273 379 391	270 . 261 . 32 .	07 22 06 15 03 123 04 57 05 45	1240 990 1150 1380 720	28 20 148 124 113	2		1 .0	01 1 03 1 02 1 07 1 05 1	24.0 49.4 64.3 211.0 98.9	6 5 5 1	36 41 81 41 75	17 44 109 196 52
KC-95-36 KC-95-37 KC-95-38 KC-95-39 KC-95-40	1.9 .96 3.1 .65 .1 .26 .4 .93 1.7 .28	90 75 1 1	36 137 112 133 30	1.6 .9 .6 .9	1 1.67 1 1.35 1 1.81 1 1.27 1 1.85	1	18 176 28 157 10 70 10 84 12 57	1466 4001 1997 2607 4409	4.47 2.03 1.35 1.80 2.48	3 .2 1 .5	52 5 29 3 18 1 53 10 22 1	1.17 .72 .62 1.22 .70	193 83 180 113 174	969 . 85 . 97 .	08 21 07 18 10 8 09 13 08 19	600 710 1160 1080 1280	37 21 10 1 25	1 1 1 1	43	1 .0 1 .0	09 1 05 1 01 1 07 1 01 1	123.0 42.8 11.8 50.2 13.8	8 1 1	52 37 41 46 52	16 39 48 38 22
KC-95-49 KC-95-50 KC-95-52 KC-95-53 KC-95-54	2.8 1.52 3.5 3.31 .7 1.33 .5 .94 1.2 .76	1 1 1 1	98 193 52 243 97	1.7 1.4 2.1 1.1 1.7	1 1.47 1 1.49 7 1.00 1 .92 1 1.14	.1	20 73 24 183 52 107 11 170 16 67	5448 3895 341 1534 2083	5.15 4.77 7.04 2.94 5.48	1 .6	10 12 57 8 52 8	1.82 2.50 1.11 1.15 1.10	114 188 74 212 253	19 .4 5 . 53 .	40 21 17 33 15 17	1750 350 1190 1040 1190	25 1 53 8 42	1 6	5 1 3 1 5 8	1 .3	34 1 14 1 10 1	111.7 224.6 94.5 59.0 122.1	1 10 2 6	62 75 41 50 65	52 57 16 33 34
KC-95-55 KC-95-65 KC-95-66	.3 .67 1.4 4.15 2.4 2.35	1 1 1	103 213 119	1.0 2.2 3.5	1 1.45 11 2.15 6 1.55	:1	8 119 22 99 86 84	1052 188 787	2.37 6.52 12.94	1 .2 1 2.2 1 1.1	20 16	1.08 2.45 2.10	333 ¹ 270 487	1 .	09 16 55 30 06 49	880 1240 750	13 10 91	1 3	1	1 .0	04 1 18 1	59.3 120.6 250.3	4 2	56 83 73	17 12 50
1																							-		

APPENDIX 2 ROCK SAMPLE DESCRIPTIONS

ROCK SAMPLE DESCRIPTIONS

Provided by Kaaren Soby

Label	Field Description
KR-95-01	Coarse-textured homblende feldspar porphyry; dark green/black patches;
	magnetite; pyrite infilling seams and as fine disseminations; minor sericitization
KR-95-02	Biotite feldspar porphyry (BFP) with minor diss. pyrite
KR-95-03	Granodiorite; v.f.g. diss. pyrite; moderately magnetite
KR-95-04	Biotite-altered hornblende feldspar diorite porphyry; weakly magnetic; 2% pyrite
KR-95-05	Homfels with pyrite stringers and diss. py.; Minor gypsum and limonite; dark patches of ghost porphyritic texture.
KR-95-06	Strongly altered andesitic BFP; patches of ghost BFP texture; moderately
	magnetic; widely scattered altered hornblende phenocrysts; fine scattered pyrite.
KR-95-07	Andesitic horfels(?); weakly magnetic with minor carbonate alteration.
KR-95-08	Diorite; biotite altered; strongly magnetic
KR-95-09	Granite
KR-95-10	Cherty tuff; with a few widely scattered dark fragments with minor patches of v.f.g. pyrite.
KR-95-11	Meta-limestone (?) - Outcrop
KR-95-12	Highly altered green rock; chloritized, minor patches of chalcopyrite and some diss. cpy.
KR-95-13	Granite; carbonate altered
KR-95-14	Granite; coarse-textured feldspar phenocrysts; patches of sericitization; patches of chalcopyrite; strongly magnetic.
KR-95-15	?; strongly altered; vuggy; quartz-carbonate; large quartz fragments; widely disseminated chalcopyrite; weakly magnetic

