

CYPRUS CANADA INC.

REPORT ON EXPLORATION AND DIAMOND DRILLING ON
THE TAURUS PROJECT, LULU NO. 2 CLAIM, LIARD MINING DIVISION, NORTHWESTERN BRITISH COLUMBIA (104P/5) LAT. $59^{\circ} 16^{\prime} 19^{\prime \prime}$ N, LONG. $129^{\circ} 42^{\prime} 4$ "W

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

David Broughton
Joseph Dion

/

TABLE OF CONTENTS

INTRODUCTION 1
LOCATION 1
HISTORY 1
CLAIMS 1
REGIONAL GEOLOGY 4
LOCAL GEOLOGY 4
DRILL HOLE GEOLOGY 6
GEOPHYSICS AND SOIL SURVEY 9
GEOPHYSICS 9
SOIL SURVEY 9
CONCLUSIONS 10
STATEMENT OF COSTS 11-13
REFERENCES 14
STATEMENTS OF QUALIFICATIONS 15-16
APPENDIX A Diamond drill logs, Assay Certificates At End
APPENDIX B Geophysical Report At End
TABLE 4

TABLE OF CONTENTS (cont.)

Page
LIST OF FIGURES
Figure 1 Location and index map diagrams modified from Nelson 2 and Bradford (1993) and Geological Fieldwork (1988).
Figure 2. Claim Locations $1: 50,000$ 3
Figure 3. Geology and Drill Plan Back Pocket
Figure 4. Drill Hole T96-79 7
Figure 5. Drill Hole T96-80 8

INTRODUCTION:

The Taurus Property consists of 3 groups of mineral claims owned by Cusac Gold Mines Ltd., International Taurus Resources Ltd. and Douglas Busat. Work filed in this assessment report was completed on the Lulu No. 2 claim owned by Douglas Busat.

An I.P. and soils survey was completed over a portion of the Lulu claim in August, 1995. Two NQ diamond drill holes were completed on the claim in early May, 1996.

LOCATION:

The Taurus Property is located 8 kilometres east of the townsite of Cassiar in northwestern British Columbia (Figure 1). Access to the property is via the paved Cassiar branch of Highway 37 from Watson Lake or Dease Lake.

HISTORY:

The Cassiar area was first explored for placer gold during 1874 after the gold rush along Dease Lake in 1873. The earliest claims on the Taurus Property still in good standing were staked in 1934 and 1936. These claims and others surrounding them were explored intermittently, with major diamond drilling programs in 1993 and 1994. The Taurus Mine to the northwest of the Lulu No. 2 claim mined 240,000 tons of ore averaging 0.15 oz . Au/ton from 1981 to 1988.

Cyprus Canada Inc. entered into joint venture agreements with International Taurus Resources Inc., Cusac Gold Mines Ltd., and Douglas Busat early in 1995, to explore their ground surrounding the old Taurus Mine.

CLAIMS

Table 1 contains the mineral claims on which the credit from exploration work is being applied too. The claims were surveyed by BC Land surveyors from the firm Underhill and Underhill using GPS equipment and transits.

Figure 1. Location and index map; diagrams modified from Nelson and Bradford (1993) and Geological Fieldwork (1989).

TABLE 1.

Mineral Claim	Record Number	Expiry Date After Assessment Credit Has Been Applied
Lulu No. 2	221887	$09 / 24 / 2006$
Bozo	221776	$07 / 10 / 2006$
Mountain Dew	221802	$09 / 18 / 2006$
Carl Fraction	342562	$12 / 06 / 1998$
Perry Fraction	338658	$07 / 22 / 1998$
Whale Fraction	338657	$07 / 22 / 1998$
Larry Fraction	342561	$12 / 05 / 1998$
Matt 1-6	$342555-560$	$12 / 04 / 1998$

REGIONAL GEOLOGY

The Taurus Property is located in the Sylvester allochthon which is a flat bottomed synclinorium of thrust stacked slices of Mississippian to Triassic ophiolite and island-arc type rocks, resting upon the miogeoclinal Cassiar Terrane (Nelson and Bradford, 1993). The property is predominantly underlain by flat lying massive and pillowed basalt flows, intercalated with lesser thicknesses of argillite. Ten kilometres west of the property the granite to granodiorite, Cretaceous Cassiar Batholith intruded the sediments of the Cassiar Terrane. Mineralization in the Taurus Property pre-dates the intrusion of the Cassiar Batholith. (Panteleyev and Diakow, 1982).

LOCAL GEOLOGY

The lithologies of the project area include six main rock units. These include massive basalt and magnetic pillow basalt (often with jasperoidal pillow selvages), which structurally overlie chert, argillaceous chert, argillite and mudstone. These sediments are exposed in structurally disturbed areas with graphitic fault zones and breccias.

Rock Descriptions

Basalt is dark to light green, aphanitic to phaneritic massive (T1) to intensely fractured. This unit is 100 to 250 metres thick, and hosts most of the mineralization occurring in the immediate vicinity of the property. Elsewhere on the Taurus Property this unit has intervals of pillow basalt with spherulitic jasperoidal patches (T1A), but this was not encountered during the current
drilling program. Altered versions of this unit are classified as T2 depending on the degree of the alteration present.

Chert (T7) and Argillaceous chert (T7A) are often faulted and sheared with graphite as fracture coatings, infilling brecciated areas and occurring along slickensided shear planes. Bedding is locally developed, but generally not recognized due to their faulted, broken up nature common along the contact with the overlying basalt.

Argillite (T6) is black, foliated, sheared and often graphitic with very little evidence of the original bedding/banding.

Structure

Much of the structural interpretation in the area of the Busat property is done from compilation of surface outcrop exposures, geophysical surveys, and information from surrounding properties and deposits. Outcrop is limited on the property to a few exposures along the Snowy Creek and adjoining creeks.

A weak regional foliation trends 000 to 340° and dips steeply south. The Snowy Creek valley represents a prominent topographical feature associated with faulted/brecciated chert trending roughly northwest. A similar faulted and sheared chert unit is spatially associated with gold mineralization further to the west in the 88 Hill area of the Taurus Property. These structures occur at a high angle to mineralized pyritic quartz veins, which have a consistent 070 to 090 trend throughout the property area.

Abstract

Alteration Basalt is pervasively altered to a chloritic +/- calcite +/- epidote or zoisitic? assemblage, suggestive of a lower greenschist metamorphic assemblage (Nelson and Bradford, 1993). In some areas the basalt is strongly ankeritized with local calcite and quartz microveining, this alteration is generally associated with mineralization.

\section*{Mineralization}

Mineralization located near the Busat property includes the former Taurus Mine, to the northwest and the producing Cusac mine (formerly Erickson) to the southwest. The Taurus and Cusac mines exploited various lode gold quartz vein systems as high grade mineable structures within Sylvester basalts. Mineralization is associated with strongly altered, bleached basalts injected with pyritized quartz veins. Similar, pyritic quartz vein mineralization occurs locally on

the Lulu No. 2 claim, south of the Snowy Creek chert, where a grab sample ran $2.55 \mathrm{~g} / \mathrm{t} \mathrm{Au}$.

DRILL HOLE GEOLOGY

The 1996 exploration program consisted of a total of 259.7 metres of diamond drilling in two NQ holes. The first hole, T96-79, tested for mineralization associated with the northwest trending Snowy Creek chert. The second hole, T96-80, was designed to test an I.P. anomaly presumed to be the contact with argillite to the south of the grid. Refer to Figure 3 for the drill hole locations and geology of the property. Drill logs are in Appendix A.

Selected sections of core were split for assaying by Chemex Labs, Vancouver. The split samples were crushed to 90 percent minus 60 mesh, then a representative 200 to 400 gram split was riffled and pulverized. A one assay ton aliquot was fire assayed with an A.A. finish.

Hole T96-79 was collared on the Lulu claim boundary, at approximately 25+25E, $7+50$ S, and drilled to the south at minus 45 degrees. It encountered strongly altered and fractured mafic flow (T2) from the start of the hole at 9.75 metres to 26.05 metres. Fractured sections are often brecciated with local gouge and trace pyrite. Weakly altered mafic flow continues to 98.6 metres downhole with some sections strongly fractured and sheared but with little or no quartz and only minor pyrite. The rock is sheared and faulted from 98.6 to 138.15 metres within argillaceous chert (Snowy Creek chert). This is the expression of outcrop further up the valley and consists of cherty rounded clasts in an argillaceous (locally graphitic) matrix. It also contains areas of chloritic, graphitic fault gouge and local trace pyrite. The rest of the hole encountered alternating altered and weakly altered mafic flow which is locally fractured and brecciated but with no significantly mineralized areas. The hole ended at $\mathbf{1 5 8 . 2}$ metres.

The only assay above background ($0.03 \mathrm{~g} / \mathrm{Au}$) from the hole was from a quartz vein at the downhole contact of the argillaceous chert, which returned $0.27 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ over 2.0 metres. Assay results are included with the drill logs.

Hole T96-80 was collared at $12+00 \mathrm{E}, 10+00 \mathrm{~S}$ and drilled to the south at minus 50 degrees. It intersected intercalated faulted graphitic argillite and mafic flow with minor argillaceous chert. The hole collared in faulted graphitic argillite to 52.5 metres with local graphitic clayey gouge. The whole section is broken/blocky with 75 to 90% core recovery and 60 to 70% RQD. Ten metres of altered mafic flow (T2) occurs from 52.5 to 62.8 metres. The rock is light grey green bleached and locally fractured but lacks significant mineralization and quartz veining. The rest of the hole is comprised mainly of argilite with lesser

HOLE NO: T96-79

LOCATION: L $25+25 E, 7+505$
TARGET: SNOWY CREEK CUERT, SURFACE GRAB ASSAY.

EIG. 5 SUMMARY DRHL HOLE SECTION

HOLE NO: T96-80
LOCATION: LI2+OOE. $10+005$
TARGET: IP ANOMALY

EOH
101.5 m

1:1000
SECTION LOOKING WEST.
amounts of altered mafic flow and a small amount of chert in faulted brecciated argillite. The hole ended at 101.5 metres in foliated/sheared argillite. The only assay result above background ($0.03 \mathrm{~g} / \mathrm{t} \mathrm{Au}$) was returned from a fault zone at 70 metres which graded $0.07 \mathrm{~g} / \mathrm{t}$ Au over 2.0 metres.

GEOPHYSICS AND SOIL SURVEY

In preparation for these surveys approximately 2100 metres of 200 metre spaced lines with 25 metre stations was cut during the summer of 1995.

GEOPHYSICS

Lloyd Geophysics Ltd. of Vancouver was contracted to conduct I.P. and ground magnetics surveys on the 1995 grid. Their report is in Appendix B.

The I.P. survey was completed using a pole-dipole configuration with a dipole spacing of 50 metres, readings at $N=1$ through $N=6$, on 200 metre spaced lines. The magnetics survey was completed at 12.5 metre stations on the same lines. In general, the I.P. survey was successful in defining broad anomalous zones of mineralization and/or argillite, but due to the large spacing was unable to separate zones less than 25 metres wide.

The grid is dominated by the chargeability response associated with two distinct north to northwest trends associated with the Snowy Creek chert body. Low resistivities and high chargeabilities at the south end of the grid are assumed to be related to the underlying argillite to the south. The I.P. survey defines a marked break in the general northwest-southeast trends. This structure was mapped on surface and follows the prominent topographical feature along the Snowy Creek valley.

The magnetic survey is relatively featureless due to the negligible magnetic signature of the majority of the basalts, as well as the sediments. Magnetic highs are presumed to be related to magnetic jasperoidal basalt.

SOIL SURVEY

Forty soil samples collected during the 1995 summer program were taken from the " B " horizon at 50 metre stations on 200 metre spaced lines. Sample depths ranged up to 0.5 metre. The samples were sent to Chemex Labs, Vancouver, where they were dried, sieved to minus 80 mesh, and fire assayed with an A.A. finish. Results are plotted on Figure 3, and indicate a number of weakly to
moderately anomalous responses. The 1996 drilling focussed on the I.P. and geological targets, therefore some of the soil responses remain unexplained.

CONCLUSIONS AND RECOMMENDATIONS

During 1995-96 an exploration program was carried out on the gridded portion of the Lulu No. 2 claim. This survey included two diamond drill holes, geological mapping, prospecting, soils and geophysics, and failed to outline any new significantly mineralized zones.

Due to a lack of any significant discovery or mineralized zone it is recommended that no further work be carried out at this time.

STATEMENT OF COSTS

Period of Work August 1-September 11, 1995

Geophysical Surveys Done By:	Lloyd Geophysics Inc.
	1007-1166 Alberni Street
	Vancouver, B.C.
	V6E 3Z3

I.P. survey (2.1 line km, 2 days @ \$1350) $\$ 2700.00$
Ground Magnetics survey (2.1 line km @ \$130) $\$ 273.00$
Room and Board for Geophysical Crew (2 days x 6 men x \$100) $\$ 1200.00$
Linecutting (2 men $\times 3$ days @ \$150) $\$ 900.00$
Geophysical Interpretation \& Report Writing \$1211.41Subtotal$\$ 6284.41$
Geological mapping, David Broughton, Cyprus Canada Inc.(2 days $\times \$ 250$)$\$ 500.00$

Soil survey, Tanya Sulkko, Cyprus Canada Inc, (address, Site 23, C30, RR\#6, Vernon, B.C.) (5 days @ \$125)$\$ 625.00$
Room \& board for soil sampler (5 days @ \$100) $\$ 500.00$
Gold assays of soil samples (40 @ \$20) $\$ 800.00$
(assays by Chemex Labs,212 Brooksbank Ave., N. Vancouver, B.C. V7J 2C1)Subtotal$\$ 2425.00$

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Period of Work: May 7-12, 1996} \\
\hline Diamond \& Drilling Do \& \& \& \begin{tabular}{l}
D.J. Drill 2115-1 \\
S. Surre
\end{tabular} \& Co. Ltd. St., C. V4A 8H6 \\
\hline Drill hole \& Metres \& Drilling \& Muds \& Tests \& Total \\
\hline T96-79 \& 158.2 \& \$8443.19 \& \$240.00 \& \$150.00 \& \$8833.69 \\
\hline T96-80 \& 101.5 \& \$5483.38 \& \$300.00 \& \$100.00 \& \$5883.38 \\
\hline Mobilizatio \& \& \& \& \& \$3900.00 \\
\hline D6 Cat \& 25hrs \& \& \& \& \$2375.00 \\
\hline Excavator \& 5 hrs \& \& \& \& \$625.00 \\
\hline Core Boxe \& s 40 @ \& \& \& \& \$360.00 \\
\hline Subtotal \& \& \& \& \& \$21977.07 \\
\hline \begin{tabular}{l}
Core sam \\
(assays b Chemex
\end{tabular} \& les assay \& Au g/t
mples @ \$

rooksbank \& per samp \& ver, B.C. \& $$
\frac{\$ 980.00}{}
$$

\hline \multicolumn{6}{|l|}{Camp and Other Costs}

\hline \multicolumn{5}{|l|}{Drillers Room \& Board (4 men x 6 days @ \$100)} \& \$2400.00

\hline \multicolumn{5}{|l|}{Fuel for drill, cat and backhoe (6 days $\times 2001 \times \$ 0.50 / \mathrm{I}$)} \& \$600.00

\hline \multicolumn{5}{|l|}{Wages \& benefits: Geologist, Joseph Dion, Cyprus Canada Inc (6 days @ \$200)} \& \$1200.00

\hline \multicolumn{6}{|l|}{| Wages \& benefits: Core splitter, Alan McChesney, |
| :--- |
| Cyprus Canada Inc (6 days @ \$150) |
| $\$ 900.00$ |}

\hline \multicolumn{5}{|l|}{Wages: Cook, Murdena MacDonald, Cyprus Canada Inc, (6 days @ \$150)} \& \$900.00

\hline
\end{tabular}

Room \& Board for Geologist, Geotechnician, Cook (3×6 days @ \$100) $\$ 1800.00$
Truck rental + gas (6 days @ \$50) $\$ 300.00$
(rental from Norcan Rentals, Mile 917.4 Alaska Highway, Whitehorse, Yukon, Y1A 3E5)
Report Writing Costs, David Broughton, Project Geologist, Cyprus Canada Inc., (2 days @ \$250) $\$ 500.00$
Map preparation: Draftsman, Zbijniew Wtyrwal, Cyprus Canada Inc,(2 days @ \$175)$\$ 350.00$
Subtotal $\$ 8950.00$

REFERENCES:

Nelson, J.L and Bradford, J.A., 1993. Geology of the Midway-Cassiar area, Northern British Columbia, MEMPR, Bulletin 83, 94p.

Panteleyev, A. and Diakow, L.J., 1982. Cassiar gold deposits, McDame map-area (104P/4,5); Geological Fieldwork 1981, MEMPR, Paper 1982-1, p 156-161.

STATEMENTS OF QUALIFICATIONS

I, Joseph Dion of Cyprus Canada Inc. do hereby certify that:

1. I am a contract geologist with Cyprus Canada Inc. and reside at 6303-315 Southampton Drive S.W., Calgary, Alberta, T2W 2 T6.
2. I have a BSc from The University of Saskatchewan, in 1987.
3. I have been employed as a contract geologist with Cyprus Canada since June, 1995.
4. I worked on the Taurus Property as a geologist in May 1996.

Joseph Dion

STATEMENT OF QUALIFICATIONS

I, David Broughton of Cyprus Canada Inc. do hereby certify that:

1. I am a staff project geologist with Cyprus Canada Inc. and reside at 1134 50B Street, Delta, B.C., V4M 2W1.
2. I have a Bsc and Msc from The University of Waterloo, Ontario in 1984 and 1987, respectively.
3. I have been employed as a geologist with Cyprus Canada since November 1992.
4. I have worked on the Taurus Property since January 1995.

APPENDIX A

DRILL LOGS, ASSAY CERTIFICATES

Chemex Labs Ltd.
Analytical Chemists * Geochemists * Registered Assayers
212 Brooksbank Ave., North Vancouver V7J 2C1 British Columbia, Canada
PHONE: 604-984-0221 FAX: 604-984-0218

TO: CYPRUS CANADA INC.
322 WATER ST.
VANCOUVER, BC V6B 186
Project: TAURUS
Comments: ATTN: JOE DION CC: DAVID BROUGHTON

Page Number: 1 Total Pages Certificate Date: 31 -MAY-96 Invoice No. $: 19619159$ P.O. Number Account :MVM

CERTIFICATE OF ANALYSIS A9619159

Chemex Labs Ltd.
Analytical Chemlsts * Geochemists " Registered Assayers

To: CYPRUS CANADA INC.
322 WATER ST
VANCOUVER, BC V6B 1B6
Project :
Project: $\begin{aligned} & \text { TAURUS } \\ & \text { Comments: } \\ & \text { ATTN: JOE DION CC: DAVID BROUGHTON }\end{aligned}, ~=~$

Chemex Labs Ltd.
Analytical Chemists * Geochemists* Reglstered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada North Vancouver
V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: CYPRUS CANADA INC.
322 WATER ST. VANCOUVER, BC V6B 1B6
Project: TAURUS
Comments: ATTN: JOE DION CC: DAVID BROUGHTON

Page Number : 1
Total Pages
Certificate Date: 31 -MAY-96

Account

Anaytical Chemksts " Geochemists " Registered Assayers
British Columbia, Canada \quad V7J 2C1
PHONE: 604-984-0221 FAX: 604-984-0218
Comments: ATTN: DAVID BROUGHTON

| CERTIFICATE |
| :--- | A9531142

(MVM) - CYPRUS CANADA INC.
Project: TAURUS
P.O. \#:
samples submitted to our lab in Vancouver, BC. This report was printed on 18-0CT-95.

Code 1000 is used for repeat gold analyses
It ahows typical sample rariability due to coarse gold effecti. Each value is correct for ita particular rubsample.

Chemex Labs Ltd.

Analytical Chemists * Geochemists ${ }^{\circ}$ Registered Assayers

Analytical Chemists * Geochemists * Reglstered Assayers
212 Brooksbank Ave., North Vancouver V7J 2C1 Bitish Columbia, Canada V7J 2C1
PHONE: 604-984-0221 FAX: 604-984-0218

Page kes..oer Total Pages Certificate Date: 18-OCT-95 Invoice No. : I 9531142 P.O. Number Account :MVM

Chemex Labs Ltd.

Analytical Chemists * Geochemists ${ }^{*}$ Reglstered Assayers
212 Brooksbank Ave., North Vancouver 212 Brooksbank Ave.,
British Columbia, Canada PHONE: 604-984-0221 FAX. 604 V7J 2C1
PHONE: 604-984-0221 FAX: 604-984-0218
o: CYPRUS CANADAINC.
322 WATER ST.
VANCOUVER, BC
V6B 1 B6

CERTIFICATE	A9531144

(MVM) - CYPRUS CANADA INC.
Project: TAURUS
P.O.\#:
samples submitted to our lab in Vancouver, BC. This report was printed on 19-0cT-95.

SAMPLE PREPARATION		
$\begin{aligned} & \text { CHEMEX } \\ & \text { CODE } \end{aligned}$	NUMBER SAMPLES	DESCRIPTION
201	212 212	Dry, siove to -80 mesh save reject

Code 1000 is used for repeat gold amalyses It show typical sample variability due to coarse gold effecte. Each Value correct for its partioular aubsample.

Chemex Labs Ltd.
Analytical Chemists * Geochemists," Registered Assayers
\qquad British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218
*: cyprus canada inc.
322 WATER ST VANCOUVER, BC V68 1 Bf

Project: TAURUS
Comments: ATTN: DAVID BROUGHTON

Page
Total Pages: 6
Certificate Date: 19-OCT-95
Invoice No. : I 9531144
P.O. Number Account

CERTIFICATE OF ANALYSIS A9531144

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Reglstered Assayers
\qquad British Columbia, Canada V7J2C1 PHONE: 604-984-0221 FAX: 604-984-0218

O: cyprus canada inc 322 WATER ST.
VANCOUVER, BC VANCOU
V6B 1 B6

Project: Tommente: TAURUS
Comments: ATTN: DAVID BROUGHTON

Page Ner :2
Cotalifages : 6 -OCT-95 Certificate Date: $19-\mathrm{OCT}-95$
Invoice No. 19531144 nvoice No. $\begin{array}{ll}\text { P.O. Number } \\ \text { Account } & \text { :MVM }\end{array}$

Chemex Labs Ltd.

o: CYPRUS CANADA INC

Page M. eer :3
Certificate Date: 19-OCT-95 Certificate Date: $19-O C T-95$
nvoice No. $: 19531144$ P.O. Number

Account :MVM

Anaktical Chemisis * Geochemists * Registered Assayers

322 WATER ST. VANCOUVER, BC V6B 1 B6

Project:

TAURUS Comments: ATTN: DAVID BROUGHTON

APPENDIX B

GEOPHYSICAL REPORT

CYPRUS CANADA INC.

A GEOPHYSICAL ASSESSMENT REPORT ON AN INDUCED POLARIZATION AND GROUND MAGNETOMETER SURVEY
 ON THE TAURUS PROPERTY
 CASSIAR, BRITISH COLUMBIA

LIARD MINING DIVISION

LATITUDE $59^{\circ} \mathbf{2 0}^{\prime}$ NORTH
LONGITUDE $129^{\circ} \mathbf{4 7}^{\prime}$ WEST
NTS 104P/5

BY

LLOYD GEOPHYSICS INC.

S. John A. Cornock, B.Sc. and
John Lloyd, M.Sc., P.Eng.

JANUARY, 1996

VOLUME 1 OF 2
Page
1.0 INTRODUCTION 1
2.0 PROPERTY LOCATION AND ACCESS 1
3.0 PROPERTY STATUS AND CLAIM HOLDINGS 1
4.0 GEOLOGY 5
5.0 INSTRUMENT SPECIFICATIONS 5
5.1 Induced Polarization Survey
5.2 Ground Magnetometer Survey
6.0 SURVEY SPECIFICATIONS 8
6.1 Induced Polarization Survey
6.2 Ground Magnetic Survey
7.0 DATA PROCESSING 8
8.0 DATA PRESENTATION 9
9.0 DISCUSSION OF RESULTS 9
10.0 CONCLUSIONS AND RECOMMENDATIONS 13
LIST OF FIGURES
Figure 1 Property Location Map 2
Figüre 2 BRGM IP-6 Receiver Parameter 6
Figure 3 Interpreted Faults 12

APPENDICES

Personnel Employed on Survey

Appendix \mathbf{A} Appendix B Appendix C

Certification of Authors

1.0 INTRODUCTION

During the periods of March 18 to April 30, 1995 and August 15 to September 11, 1995, Lloyd Geophysics Inc. conducted Induced Polarization (IP) and ground magnetic surveys on the Taurus property near Cassiar, British Columbia, for Cyprus Canada Inc.

The purpose of the surveys was to locate zones of sulphide mineralization associated with goldbearing quartz veins.

2.0 PROPERTY LOCATION AND ACCESS

The Taurus property is located in northwest British Columbia approximately 130 kilometres north of Dease Lake, B.C. and about 5 kilometres from the former town of Cassiar, B.C. (Figure 1). It lies within the Liard Mining Division, NTS 104P/5 at coordinates $59^{\circ} \mathbf{2 0}^{\prime}$ north latitude and $129^{\circ} 47^{\prime}$ west longitude.

Access to the property is by truck north along Highway 37 to the junction at Jade City and then west for approximately 10 kilometres along the road to Cassiar.

3.0 PROPERTY STATUS AND CLAIM HOLDINGS

The area covered by the geophysical surveys is comprised of the following claims as provided by Cyprus Canada Inc.:

Claim Name	Record Number	No. of Hectares
ADD 1-4	$1268-1271$	30.819
MISS DAISY 1-2	$331105-331106$	3.37
HOPEFULL 1-4	524	86.10
PANDA	885	$?$
MMIFR	1744	1.006
HIGHGRADE	929	3.52
HILLSIDE	928	10.20
ALTA 3	804	500

ALTA 4	131	297
ELAN 2	1171	476
EL 1 FR	1700	6.11
MARK I-IV	$339214-339217$	31.84
TOR 2	332630	0.159
WINGGOLD 1-2	$6743-6744$	37.2
TOD 7-8	$57648-57649$	26.35
ROY FR	5213	3.57
THRUSH	7329	15.6
PERRY FR	635656	19.1
BOZO 16	621	25.0
MOUNTAIN DEW	718	404
RICHVEIN	510	$?$
HANNA 9	554	$?$
COOT 1-4	$956-959$	$? .9$
VAL 11-14	$54915-54918$	10.855
ROY 1-4	$55511-55514$	262.7
PORTAL 1-2	$1045-1046$	117.845
ATLAS 1-11	$69566-69576$	50.73
COPCO 1-6	$5213-5218$	66.71
MACK 1-4	$515-518-$	

4.0 GEOLOGY

The region is underlain by sediments and volcanics of the Carboniferous-Permian Sylvester Group. Low angle thrust faults and normal east-west striking faults are the dominant structural features.

Locally, ankeritic volcanic rocks contain pyrite and auriferous quartz veins. The veins dip
steeply to the south and have extensive wall rock alteration zones of pyrite and ankerite. The veins vary from a few inches to a few feet in width. The enveloping alteration zone may be from 10 to several 10's of feet wide.

In 1993, the recognition of low grade gold occurring in basaltic rocks has led to a new approach to exploration. There are now 2 types of targets viz. quartz veins and open pit bulk tonnage low grade gold in basalts.

5.0 INSTRUMENT SPECIFICATIONS

5.1 Induced Polarization Survey

The equipment used was a time domain measuring system consisting of a Wagner Leland/Onan motor generator set and a Mark II transmitter manufactured by Huntec Limited, Toronto, Canada and a 6 channel IP-6 receiver manufactured by BRGM Instruments, Orleans, France. The Wagner Leland/Onan motor generator supplies in excess of 7.5 kilowatts of 3 phase power to the ground at 400 hertz via the Mark II transmitter.

The transmitter was operated with a cycle time of 8 seconds and the duty cycle ratio: [(time on)/(time on + time off)] was 0.5 seconds. This means the cycling sequence of the transmitter was 2 seconds current "on" and 2 seconds current "off" with consecutive pulses reversed in polarity.

The IP-6 receiver can read up to 6 dipoles simultaneously. It is microprocessor controlled, featuring automatic calibration, gain setting, SP cancellation and fault diagnosis. To accommodate a wide range of geological conditions, the delay time, the window widths and hence the total integration time is programmable via the keypad. Measurements are calculated automatically every 2 to 4 seconds from the averaged waveform which is accumulated in memory.

The window widths of the IP-6 receiver can be programmed arithmetically or logarithmically. For this particular survey the instrument was programmed arithmetically into 10 equal window
widths or channels, $\mathrm{Ch}_{0}, \mathrm{Ch}_{1}, \mathrm{Ch}_{2}, \mathrm{Ch}_{3}, \mathrm{Ch}_{4}, \mathrm{Ch}_{5}, \mathrm{Ch}_{6}, \mathrm{Ch}_{7}, \mathrm{Ch}_{8}, \mathrm{Ch}_{\mathbf{9}}$ (see Figure 2). These may be recorded individually and summed up automatically to obtain the total chargeability. Similarly, the resistivity $\left(\rho_{2}\right)$ in ohm-metres is also calculated automatically.

The instrument parameters chosen for this survey were as follows:

Cycle Time $\left(T_{\mathrm{c}}\right)$	$=8$ seconds
Ratio (Time On)	$=1: 1$
(Time Off)	$=0.5$
Duty Cycle Ratio	$=120$ milliseconds
$\frac{\text { (Time On) }}{\text { (Time On) }+(\text { Time Off) }}$	
Delay Time ($\left.T_{\mathrm{D}}\right)$	$=90$ milliseconds
Window Width (t_{p})	$=900$ milliseconds

BRGM IP-6 RECEIVER PARAMETERS

Figure 2

5.2 Ground Magnetometer Survey

The magnetometer equipment used was the Omni proton precession magnetometer system consisting of 2 Omni Plus magnometers manufactured by EDA Instruments Inc., Toronto, Canada.

The system is completely software/microprocessor controlled and measures and stores in memory the total field component of the earth's magnetic field.

The instrument also identifies and stores in memory the location and time of each measurement and computes the statistical error of the reading and stores the decay and strength of the signal being measured.

Throughout each survey day, a similar base station magnetometer measures and stores in memory the daily fluctuations of the earth's magnetic field. At the end of each survey day the field data is merged with the base station data and diurnal corrections are automatically applied to the field data.

6.0 SURVEY SPECIFICATIONS

6.1 Induced Polarization Survey

The configuration of the pole-dipole array used for the survey is shown below:

The dipole length (x) is the distance between P_{1} and P_{2} and mainly determines the sensitivity of the array. The electrode separation (nx) is the distance between C_{1} and P_{1} and mainly determines the depth of penetration of the array.

On the Taurus property the Induced Polarization survey was carried out with the current electrode, C_{1}, south of the potential measuring dipole $\mathrm{P}_{1} \mathrm{P}_{\mathbf{2}}$. Here the survey lines were 200 metres apart and measurements were taken for $\mathrm{x}=50$ metres and $\mathrm{n}=1,2,3,4,5$ and 6 .

6.2 Ground Magnetometer Suryey

The ground magnetic data was collected on lines 200 metres apart using a station interval of 12.5 metres.

7.0 DATA PROCESSING

The IP and magnetic data collected was processed in the field at the end of each survey day using a portable 486 computer and a Fujitsu printer.

The IP pseudo-sections were plotted out in the field and contoured using in-house software based on the mathematical solution known as kriging.

In our Vancouver office, the data was transferred to mylar and colour plots produced using a Hewlett-Packard DesignJet 650C plotter.

8.0 DATA PRESENTATION

The data obtained from the surveys described in this report is presented on 31 pseudo-sections and 16 contour plan maps as outlined below:

Line No	Dwg No	Line No	Dwg No
3400W	95365-01	200W	95365-17
3200w	95365-02	0	95365-18
3000W	95365-03	200E	95365-19
2800W	95365-04	400E	95365-20
2600W	95365-05	600E	95365-21
2400w	95365-06	800E	95365-22
2200w	95365-07	1000E	95365-23
2000W	95365-08	1200E	95365-24
1800W	95365-09	1400E	95365-25
1600W	95365-10	1600E	95365-26
1400W	95365-11	1800E	95365-27
1200W	95365-12	2000E	95365-28
1000W	95365-13	2200E	95365-29
800W	95365-14	2400E	95365-30
600W	95365-15	BLO	95365-31
400W	95365-16		

Plan Maps (Scale 1:5000)

Chargeability	21 Point Triangular Filter	$95365-32$
Resistivity	21 Point Triangular Filter	$95365-33$
Total Field Magnetic Profiles	$95365-34$	
Total Field Magnetic Contours	$95365-35$	

Chargeability $\mathrm{N}=1$ 95365-36
Resistivity $\quad N=1 \quad 95365-37$
Chargeability $\mathrm{N}=2$ 95365-38
Resistivity $\quad N=2$ 95365-39
Chargeability $\mathrm{N}=3$ 95365-40
Resistivity $\quad \mathrm{N}=3$ 95365-41

Chargeability N $=4 \quad 95365-42$
Resistivity $N=4$ 95365-43
Chargeability $\mathrm{N}=5$ 95365-44
Resistivity $N=5$ 95365-45
Chargeability $N=6$ 95365-46
Resistivity $N=6$ 95365-47

9.0 DISCUSSION OF RESULTS

An IP response depends largely on the following factors:

1. The volume content of sulphide minerals
2. The number of pore paths that are blocked by sulphide grains
3. The number of sulphide faces that are available for polarization
4. The absolute size and shape of the sulphide grains and the relationship of their size and shape to the size and shape of the available pore paths
5. The electrode array employed
6. The width, depth, thickness and strike length of the mineralized body and its location relative to the array
7. The resistivity contrast between the mineralized body and the unmineralized host rock

The sulphide content of the underlying rocks is one of the critical factors that we would like to determine from the field measurements. Experience has shown that this is both difficult and unreliable because of the large number of variables, described above, which contribute to an IP response. The problem is further complicated by the fact that rocks containing magnetite,
graphite, clay minerals and variably altered rocks produce IP responses of varying amplitudes.

A detailed study has been made of the pseudo-sections which accompany this report. These pseudo-sections are not sections of the electrical properties of the sub-surface strata and cannot be treated as such when determining the depth, width and thickness of a zone which produces an anomalous pattern. The anomalies are classified into 4 groups: definite, probable, and possible anomalies and anomalies which have a deeper source. These latter anomalies are mostly related to deeper overburden cover.

This classification is based partly on the relative amplitudes of the chargeability and to a lesser degree on the resistivity response. In addition the overall anomaly pattern and the degree to which this pattern may be correlated from line to line is of equal importance.

An analysis of the IP/Resistivity data has, first of all, shown that a strong correlation exists between the chargeability and resistivity data. With the exception of a few small, localized zones, areas which exhibit increased chargeability closely coincide with resistivity lows. This is an interesting feature as it can greatly facilitate the mapping of the lithologies and structures.

A feature which stands out strongly is a northwest-southeast trending linear which has a high chargeability response with a coincident resistivity low. This linear has been interpreted as a fault which extends from the northwest comer of the grid to an area around 200W/600S (Fig.3). This fault essentially divides the grid into a northern half characterized by chargeability lowsresistivity highs and a southern half which, for the most part, contains chargeability highsresistivity lows.

The high chargeability-low resistivity values in the southwest part of the grid, which extend across the southem boundary of the property, are indicative of argillaceous sediments. However, it is encouraging that 3 drill holes in this area (T95-12,T95-15 and T95-16) discovered gold mineralization within basalts situated immediately above the argillites. These 3 drill holes are located in an area where the resistivities are not at their lowest but are grading into a higher
resistive area to the east. Where the resistivities are greater than about 150 ohm-metres, it appears likely that these are areas in which the gold-bearing basaltic rocks overlie the argillaceous sediments and are therefore good targets. As for the chargeability, there is no discernable difference between the data collected in areas known to contain basaltic rocks and those which do not. The chargeability values remain quite high in the 30 to 35 millisecond range over the basalts and the argillites. This is most likely due to the underlying argillites "overprinting" the basaltic response resulting in an overall chargeability high. The magnetic data provides no helpful clues either as the argillites exhibit a consistently low response while the basalts are known to have variable magnetic responses depending on the degree of alteration and/or variation in mineral composition.

The previously mentioned resistivity high to the east is a circular feature which is centered around $1000 \mathrm{~W} / 1000 \mathrm{~S}$ and is approximately 2 kilometres in diameter. The resistivities vary locally within this feature from 500 to 2500 ohm-metres probably due to an increase or decrease in overburden thickness. Bisecting this circular resistivity high is another interpreted fault which strikes approximately 45° and extends off the grid area to the southwest and northeast (Fig. 3). This fault trends along the west flank of a series of chargeability anomalies and cuts off the northwest-southeast fault at 200W/600S and possibly offsets it to the northeast.

Three holes (T95-10, T95-11 and T95-17) which were drilled into a chargeability anomaly in this circular resistivity anomaly again found gold-bearing basalts. Based on the resistivity, there is evidence to suggest that the gold-bearing basalts found here and those discussed earlier in the southwest area of the grid are continuous but under deeper overburden.
Further to the east, the IP data depicts a number of chargeability highs that flank zones which have a high magnetic response. The strongest of these chargeability anomalies is centered at 1000E/400S and contains values up to 35 milliseconds. Another anomaly is located to the south of this one at around 900 S between lines 1600 E and 2200 E . Here, the chargeabilities are slightly lower and are believed to represent more of the same basalts that overlie the argillites which, from the IP/Resistivity data lie directly to the south.

f this one at around 900 S between lines 1600 E and 2200 E . Here, the chargeabilities are slightly lower and are believed to represent more of the same basalts that overlie the argillites which, from the IP/Resistivity data lie directly to the south.

Another area of interest is in the northeast corner of the grid where there are a number of narrow, closely spaced and strong magnetic highs within a strong magnetic low. The high resistivities associated with this area are indicative of a quartz vein system similar to those found in the Taurus Mine and elsewhere on the property. This area is also geophysically similar to the area around 400 N between lines 600 E and 1200 E and an area close to the baseline from lines 200W to 800 W . This latter area has previously been drilled and produced encouraging results.

Finally, the high chargeability-low resistivity zone located in the northwest corner of the grid is thought to again represent argillites. The adjacent magnetic high appears to locate more basalts which have not had their magnetic minerals altered. It is not certain whether or not the degree of alteration in the basalts is related in any way to the occurence of gold. A couple of drill holes in this magnetic high may answer this question.

10.0 CONCLUSIONS AND RECOMMENDATIONS

The IP/Resisitvity and ground magnetic surveys described in this report have depicted a number of zones and trends which-are believed to represent good gold-bearing targets worthy of further exploration by drilling. The resistivity data in particular worked well in mapping the location of the basalts.

Two large faults have been interpreted to exist on the property and are shown on the included map (Figure 3).

A total of 4375 metres of drilling in 49 holes has been recommended to test the geophysical targets. These holes are listed below in order from west to east, not in order of priority.

Hole \#	Line	Station	Angle	Depth(m)
1	3400W	1250N	-90	75
2	3400W	1050N	-90	75
3	3200W	850N	-90	75
4	3200W	1050N	-90	75
5	3200W	1250N	-90	75
6	3000W	1050N	-90	75
7	2400W	750S	-90	75
8	2400W	9505	-90	75
9	2400W	1150S	-90	75
10	2000W	$550 S$	-90	75
11	2000W	7505	-90	75
12	2000w	$950 S$	-90	75
13	2000w	1150S	-90	75
14	2000w	1350S	-90	75
15	1600w	700S	-90	75
16	1600W	9005	-90	75
17	1600w	1100S	-90	75
18	600E	550N	-45/000	100
19	600E	200S	-45/000	100
20	600E	450S	-45/000	100
21	600 E	650 S	-45/000	100
22	800E	400N	-45/000	100
23	800 E	300N	-45/000	100
24	800E	0	-45/000	100
25	800E	2005	-45/000	100
26	800E	400S	-45/000	100
27	800E	600 S	-45/000	100
28	1000E	300N	-45/000	100
29	1000E	200N	-45/000	100

30	1000 E	0	$-45 / 000$	100
31	1000 E	200 S	$-45 / 000$	100
32	1000 E	400 S	$-45 / 000$	100
33	1000 E	600 S	$-45 / 000$	100
34	1200 E	500 N	$-45 / 000$	100
35	1200 E	200 S	$-45 / 000$	100
36	1200 E	400 S	$-45 / 000$	100
37	1200 E	600 S	$-45 / 000$	100
38	1600 E	150 N	$-45 / 000$	100
39	1600 E	0	$-45 / 000$	100
40	1600 E	850 S	-90	75
41	1800 E	850 S	-90	75
42	2000 E	200 N	$-45 / 000$	100
43	2000 E	100 N	$-45 / 000$	100
44	2000 E	850 S	-90	75
45	2200 E	200 N	$-45 / 000$	100
46	2200 E	850 S	-90	75
47	2400 E	200 N	$-45 / 000$	100
48	2400 E	300 N	$-45 / 000$	100
49	2400 E	400 N	$-45 / 000$	100

The completion of these 49 holes will depend on the success of the initial 10 or 12 holes.

Respectfully submitted,
LLOYD GEOPHYSICS INC.

S. John A. Cornock, B.Sc.

Project Geophysicist

John Lloyd, M.Sc., P. Eng.
Senior Geophysicist

APPENDIX A

PERSONNEL EMPLOYED ON SURVEY

Name	Occupation	Address	Dates Worked
J. Lloyd	Geophysicist	\#455-409 Granville Street Vancouver, B.C. V6C 1T2	Jan 09/96
J. Comock	Geophysicist	\#455-409 Granville Street Vancouver, B.C. V6C 1T2	April 11-21/95 Aug 15-31/95 Jan 4,5,8/96
F. Dziuba	Geophysicist	\#455-409 Granville Street Vancouver, B.C. V6C 1T2	Mar 18 - Apr 30/95 Aug 21-29/95
A. Lloyd	Geophysical Technician	\#455-409 Granville Street Vancouver, B.C. V6C 1T2	Aug 15-Sept 11/95
C. Bilquist	Geophysical Technician	\#455-409 Granville Street Vancouver, B.C. V6C 1T2	Aug 15-Sept 11/95
B. Westerberg	Geophysical Technician	\#445-409 Granville Street Vancouver, B.C. V6C 1T2	Mar 18 - Apr 30/95
S. Garrett	Geophysical Technician	\#455-409 Granville Street Vancouver, B.C. V6C 1T2	Aug 15-Sept11/95
M. Cordiez	Helper	\#455-409 Granville Street Vancouver, B.C. V6C 1T2	Mar 18 - Apr 30/95
A. Savard	Helper	\#455-409 Granville Street Vancouver, B.C. V6C 1T2	Mar 18 - Apr 30/95
D. Dennis	Helper	\#455-409 Granville Street Vancouver, B.C.V6C 1T2	Mar 18 - Apr 30/95

APPENDIX B

COST OF SURVEY AND REPORTING

Lloyd Geophysics Inc. contracted the mobilization/demobilization and the data acquisition on a per diem basis. Truck charges, living and travelling expenses, data processing, computer plotting, map reproduction and interpretation and report writing were additional costs. The breakdown of these costs is as follows:
Mobilization/Demobilization and $\$ 91870.78$
Data Acquisition
Truck 8645.71
Living and Travelling 2153.21
Data Processing and Computer Plotting 5200.20
Consumables 9034.65
Interpretation and Report Writing 1875.00
Subtotal \$ 118716.55
G.S.T. 8310.15
Total Cost: \$ 127026.70

APPENDIX C

CERTIFICATION OF AUTHORS

I, John Lloyd, of \#455-409 Granville Street, in the City of Vancouver, in the Province of British Columbia, do hereby certify that:

1. I graduated from the University of Liverpool, England in 1960 with a B.Sc. in Physics and Geology, Geophysics Option.
2. I obtained the diploma of the Imperial College of Science, Technology and Medicine(D.I.C.), in Applied Geophysics from the Royal School of Mines, London University in 1961.
3. I obtained the degree of M.Sc. in Geophysics from the Royal School of Mines, London University in 1962.
4. I am a member in good standing of the Association of Professional Engineers in the Province of British Columbia, the Society of Exploration Geophysicists of America, the European Association of Exploration Geophysicists and the Canadian Institute of Mining and Metallurgy.
5. I have been practising my profession for over thirty years.

Vancouver, B.C.

I, John A. Comock, of \#455-409 Granville Street, in the City of Vancouver, in the Province of British Columbia, do hereby certify that:

1. I graduated from the University of British Columbia in 1986 with a B.Sc. in Geology and a minor in Geophysics.
2. I am a member in good standing of the Society of Exploration Geophysicists of America, British Columbia Geophysical Society, British Columbia and Yukon Chamber of Mines and the Northwest Mining Association.
3. I have practiced my profession continuously since 1987.

Vancouver, B.C.

CYPRUS CANADA INC.

Resistivity (oum-m)
10005 0505 spos osos egos 7505 tgos egos egos
$N=1$
$N=2$
$N=3$
$N=4$
$N=5$
$N=6$
28.

CUARCIEABILITY (MSEC)
$N=1$
$N=2$
$N=3$
$N=4$
$N=5$
$N=6$

TAURUS PROJECT
cassur matish coungan
LINE: 2200E

CURRENT EECTROOE a SOUTH OF POTENTN DPOLE PP

DEFinte
proakile minmith
posstrue eoverecta
N DEPTM
SCNE 1:5000
CONTOUR NTERVNS APP.ctwreensirt : 20 (mace) APP RESSITMTY : 200 (chmm)
 Tr: Humbec Ma2 Modal 7500 BE EDA P-8

