

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORTS

> DATE RECEIVED AUG 2 7 1996

Tomcat Claim Group

(including the Tomcat and Climax Claims)

Rock Geochemical Report

Nicola M.D. NTS 92H 15E 49°52'N; 120°36'W (Annual Work Approval Number: KAM96-1500535-184)

For: Leonard J. Harris 830-355 Burrard Street Vancouver, B.C.

FILMED

By: E. McCrossan P.Geo., F.G.A.C. (604)681-7362

> GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

July 16, 1996

Table of Contents

Summary	1
Introduction	1
Location and Access	2
Claim Data	2
Topography, Vegetation and Climate	3
History and Previous Work	3
Regional Geology	4
Local Geology	4
Geochemical Sampling	5
Conclusions and Recommendations	6
References	7
Cost Statement	8
Statement of Qualifications	9
Appendix I: Rock Sample Descriptions	10
Appendix II: Assay Results	14

-

Î

.

Figures:

- 1) Location Map (after page 2)
- 2) Claim Map (after page 3)
- 3) Rock Geochemistry: Sample Locations and Copper Results

Summary

The Tomcat Claim Group is located southeast of Merritt, B.C. within the Intermontane Belt of the Canadian Cordillera.

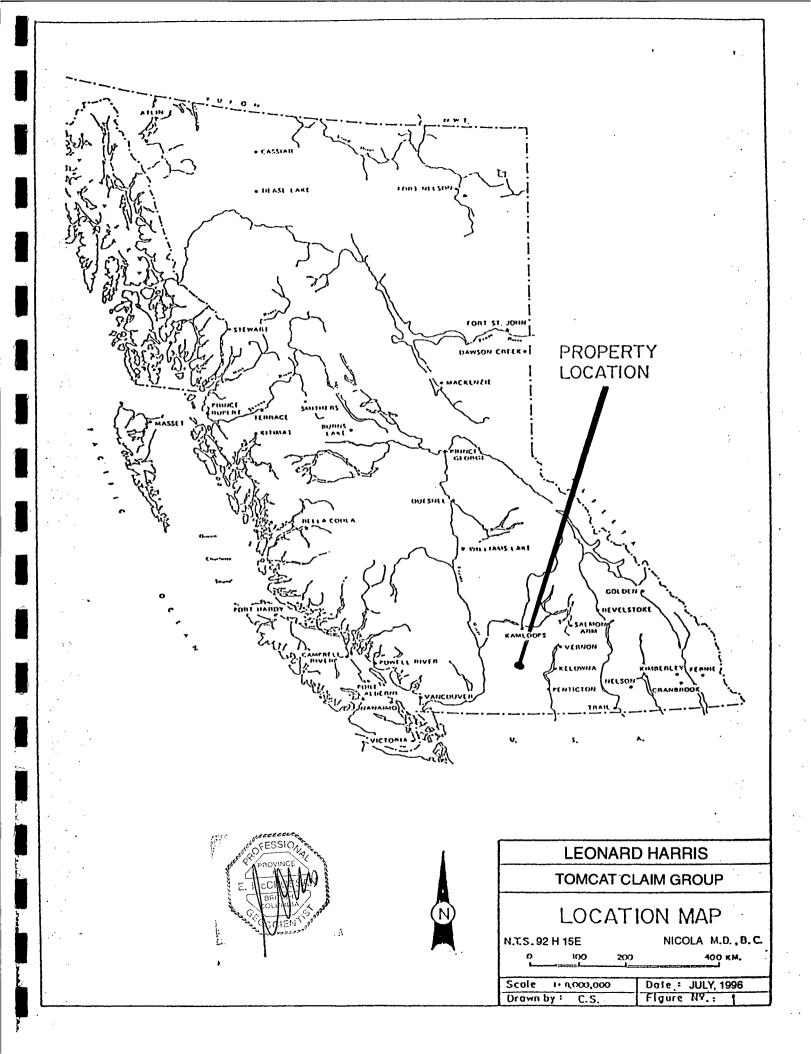
It is situated in a geological setting favourable for the formation of Cu-Au porphyry, skarn, vein, shear and/or breccia deposits.

The claims are underlain predominantly by marine volcanics of the Central Belt within the Upper Triassic Nicola Group. A fault bounded monzonite to diorite stock has also been mapped in the northeastern portion of the Tomcat claim.

Mineralization on the property consisted of pyrite, chalcopyrite, bornite, galena, sphalerite, tetrahedrite, magnetite, chalcocite, malachite and azurite. It was associated with shear zones, breccias, quartz-carbonate veinlets and stringers, and fracture sets.

Assay results were anomalous in Cu, Pb, Zn and Ag. Lesser anomalies were also present for Mo, Cd, As and Au.

Twenty-two of the rock samples collected from the Tomcat property assayed greater than 0.4% Cu, and eight of those samples carried over 1% Cu. A selected composite sample taken from an ore pile adjacent to a small open cut on the Climax claim returned 6.5% Cu. Another sample taken from a small shear zone assayed 4.85% Cu and 297.1 gpt Ag.


Further work, including detailed geological mapping, geochemical sampling and geophysical surveys, is recommended for the Tomcat Claim Group.

Introduction

The Tomcat Claim Group is located 35 km SE of Merritt, B.C. within the Intermontane Belt of the Canadian Cordillera.

It is situated in a geological setting favourable for the formation of Cu-Au porphyry deposits; skarn or replacement deposits; and/or auriferous quartz-carbonate vein, shear or breccia deposits.

The Highland Valley Copper Mine, a porphyry copper deposit located north of Merritt, contains published reserves of 539.7 million tonnes grading 0.42% Cu (January 1, 1995). The mine is owned by Cominco Ltd. (50%), Rio Algom Ltd. (33.6%), Teck Corp. (13.9%) and the Highmont Mining Company (2.5%).

The Similco (Copper Mountain) Mine owned by the Princeton Mining Corporation and located south of Princeton, B.C.; contains published reserves of over 135 million tonnes grading 0.36% Cu plus additional gold and silver credits (January 1, 1995).

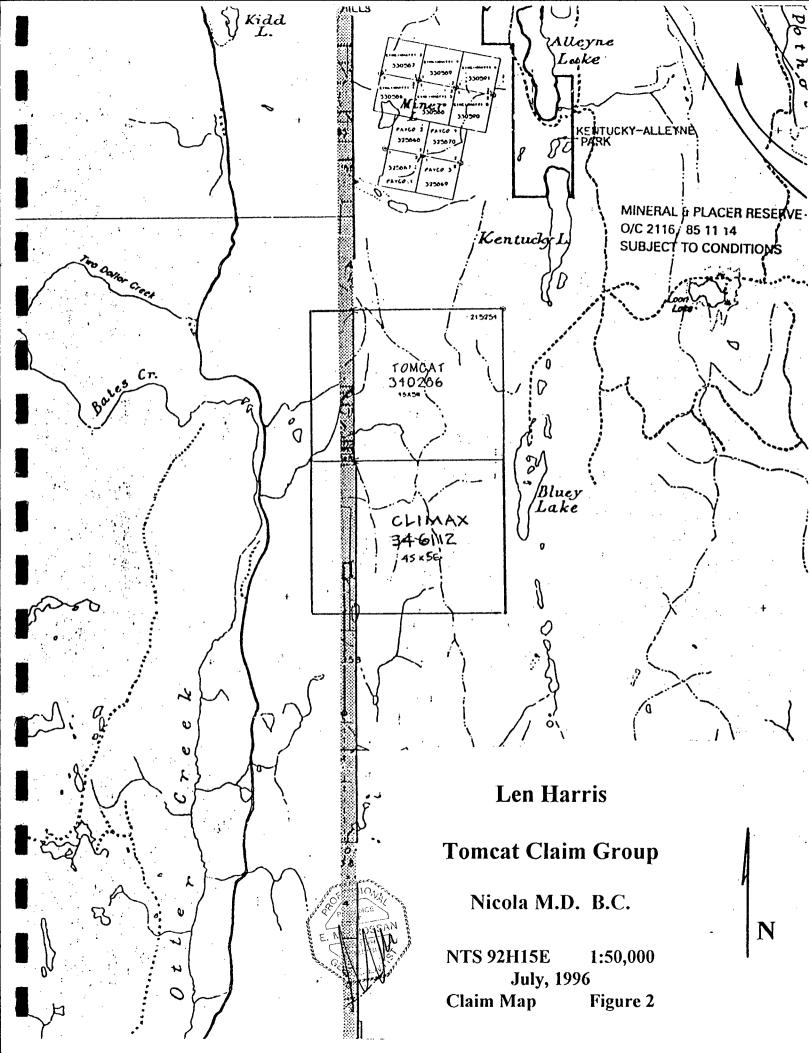
The Elk-Siwash North Mine; a vein deposit owned by Fairfield Minerals Ltd. and located southeast of Merritt; contains stockpiled, probable and possible reserves of over 123,000 tonnes grading 27.43 gpt Au (Jan. 1/96). Between 1992 and 1994 Fairfield produced 1,586 kg (51,000 oz) of gold from ore averaging 97.7 gpt (2.8 opt) Au over 0.4 metres.

This report describes assessment work carried out on the Tomcat and Climax claims during July 10 and 11, 1996. (Annual work approval number: KAM96-1500535-184)

Location and Access

The Tomcat Claim Group is located 35 km southeast of Merritt in the Nicola Mining Division of B.C. (Figure 1).

The property is road accessible via highways 97C and 5A which passes through the settlement of Aspen Grove.


From Aspen Grove, highway 5A is followed south for approximately 12 km where a logging road heads east toward Missezula Lake.

This road and other secondary logging roads are followed east and north for approximately 5 km to the southwestern corner of the Climax claim.

Claim Data

<u>Claim Name</u>	Tenure #	<u># of Units</u>	Expiry Date
Tomcat	340286	20	Sept. 26/97
Climax	346112	20	May 11/98

The claims are owned 100% by Leonard J. Harris (Figure 2).

Topography, Vegetation and Climate

The relief within the Tomcat Claim Group is moderate with subcropping and outcropping ridges trending northerly throughout the property. Small ponds and swampy areas are located within topographically low areas around and between the ridges.

Elevations on the property range between 3,500 to 4,500 feet above mean sea level.

Vegetation and climate is typical for the south-central interior (Tulameen Land District-Thompson Plateau) of B.C. Vegetation density was moderate and did not hinder field work.

History and Previous Work

Several mineral occurrences are plotted within the Tomcat and Climax claims on the B.C. Geological Survey Tulameen Minfile Map (NTS 092HNE). These include the Tomcat, Portland, Bloo, Boomerang, Bluey, No 19, Zig 3, and Nor 30 occurrences which contain Cu, Ag & Pb mineralization.

Previous work within the claims include:

- 1. 1900-1905: Portland Mining Co. excavated a shaft and drift for an approximate total extent of 67 metres. A sample taken in 1913 from the dump material adjacent to the shaft assayed 0.4% Cu. Another sample taken from a nearby open cut assayed 0.9% Cu (Tomcat claim).
- 2. 1906-1913: Prospecting and trenching by W. Murray (Tomcat).
- 3. 1956: Fidelity Uranium Mines Ltd.; trenching and geological mapping (Climax claim).
- 4. 1965: Pyramid Mining Co. Ltd. drilled 13 holes totalling 1042 metres. The first hole returned 0.32% Cu over 45.7 metres (Tomcat).
- 5. 1967: Scope Development Ltd. and Alscope Consolidated Ltd. conducted trenching, soil sampling, geophysical surveys and some diamond drilling (Tomcat).
- 6. 1976-1981: F. Gingell; geological, geochemical, and geophysical surveys (Tomcat).
- 7. 1985: Vanco Explorations Ltd.; geological, geochemical and geophysical surveys (Tomcat & Climax).

8. 1987: Laramide Resources Ltd.; geological, geochemical and geophysical surveys (Tomcat & Climax).

Regional Geology

The Tomcat Claim Group lies within the Intermontane Belt of the Canadian Cordillera in an area underlain by the Upper Triassic Nicola Group.

The Nicola Group consists of marine volcanics and sediments that were probably deposited in an island arc setting.

Around the study area, Preto (1979) divided the Nicola Group into three separate assemblages (or belts) based upon different lithologies and depositional facies.

1. The Central Belt contains well bedded marine sediments; reefal limestones; and volcanic flows, breccias, tuffs and lahar deposits of andesitic to basaltic composition.

2. The Eastern Belt includes trachyandesitic to trachybasaltic porphyry flows, flow breccias, lapilli tuffs, lahars, sandstones and siltstones.

3. The Western Belt is composed of calcareous volcanic sediments; cherty limestones; and andesitic to dacitic flows, breccias and tuffs.

Comagmatic intrusive rocks composed of diorite, with lesser monzonite and syenite, tend to be associated with the Central Belt of the Nicola Group.

Regional structures in the area trend north-south, northeasterly, and northwesterly.

Several mines and advanced mineral exploration or development projects are located within the Nicola Group in the south-central interior of B.C.

Besides the Highland Valley, Similco, and Elk mines described above; other mines in the area include the Craigmont Cu-Fe skarn deposit near Merritt, the Afton-Ajax Cu-Au porphyry near Kamloops, and the Hedley Tailings and Nickel Plate gold mines near Princeton.

Local Geology

The Tomcat Claim Group is underlain predominantly by marine volcanics of the Central Belt within the Upper Triassic Nicola Group. A fault bounded monzonite to diorite stock

of Upper Triassic to Lower Jurassic age has also been mapped in the northeastern portion of the Tomcat claim by Preto (1979).

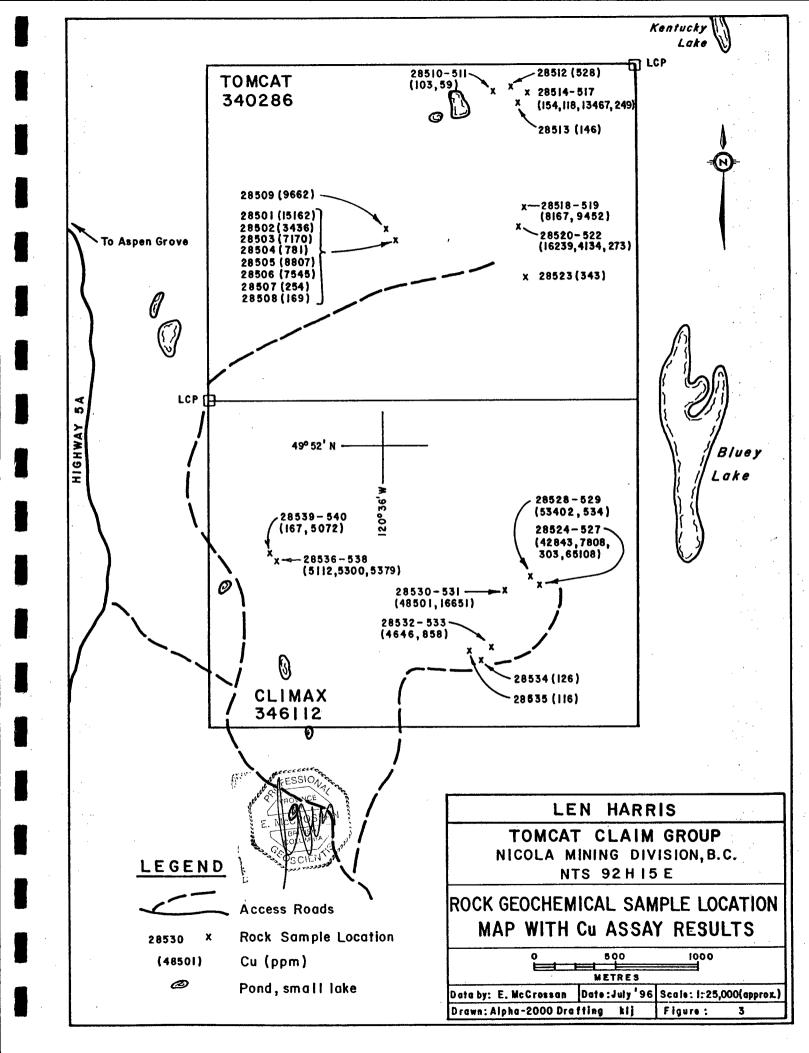
A variety of volcanic facies of andesitic to basaltic composition were noted on the property. These included plagioclase and/or pyroxene porphyries, crystal and lithic fragmental tuffs and agglomerates, flows, flow breccias, and lahar deposits. Andesites were generally green to grey and basalts were pink to purple to orange-brown in colour.

Mineralization on the claims included trace amounts or minor concentrations of pyrite, chalcopyrite, bornite, galena, sphalerite, tetrahedrite, magnetite, chalcocite, malachite and azurite. It was associated with shear zones and breccias, quartz-carbonate veinlets and stringers, and fracture sets.

Alteration products, generally associated with mineralized areas, consisted of hematite, chlorite, epidote, silica, carbonate, and minor sericite. Some of the lower grade alteration may have been due to weak regional metamorphism.

Limonite and pyrolusite, as well as malachite were common oxidation products. Ankeritic carbonate may also have been partly responsible for some of the more noticeable gossanous areas on the property.

The claim group is situated between the Allison and Kentucky-Alleyne faults which have been interpreted by Preto (1979) to be major regional faults which represent a rift system that controlled the emplacement of Nicola volcanic rocks, as well as the distribution of later Tertiary sediments.


Within the property, regional structures and volcanic units trend north-south to northnorthwesterly subparallel to the Allison and Kentucky Alleyne fault systems. Small shears and slickensided fault surfaces follow the same trend or are occasionally normal to it. Main fracture orientations also have a similar trend but may vary to the northwest (130°) or the northeast (045°).

Mineralization on the Tomcat Claim Group appears to be structurally controlled, epigenetic and may be related to a porphyry-like system.

There is also potential for the discovery of vein, shear, stockwork, or replacement deposits within the claim group area.

Geochemical Sampling

Forty rock samples were taken from outcrop and angular subcrop fragments on the Tomcat property.

Both grab and composite samples were collected of mineralized and relatively unaltered host rock material. Chip samples were also taken across, or adjacent to, minor shear zones or highly fractured and/or mineralized areas (see Appendix I for rock sample descriptions and Figure 3 for sample locations).

The samples were sent to Acme Analytical Laboratories and analyzed for 30 elements using ICP and Au using fire assay (results Appendix II).

Sample results were anomalous in Cu, Pb, Zn and Ag. Lesser anomalies were also present in Mo, Cd, As and Au.

Copper anomalies were widespread and twenty-two of the rock samples assayed greater than 0.4% Cu and eight of those samples carried over 1% Cu.

The highest Cu result of 6.5% was a selected composite grab sample taken from an ore pile located beside a small open cut on the Climax claim (sample #28527).

Another remarkable sample was a non-selective grab of a brecciated and silicified volcanic rock from the southern portion of the Tomcat claim (28520). It assayed 1.6% Cu, 0.97% Pb, 8.1% Zn, 20.8 gpt Ag, 237 ppm Mo and 999 ppm Cd.

Another grab sample from a 10 cm wide shear within a plagioclase porphyry (28530) containing quartz, epidote, pyrite, chalcopyrite, bornite, tetrahedrite, chalcocite and malachite carried 4.85% Cu and 297.1 gpt Ag.

Conclusions and Recommendations

Assay results were anomalous in Cu, Pb, Zn and Ag. Lesser anomalies were also present in Mo, Cd, As and Au.

Since the Tomcat claims lie within the Central Belt of the Nicola Group in a geological setting favourable for the formation of Cu-Au porphyry, skarn, vein, breccia and shear deposits; further work is warranted for the property.

It is recommended that previous operators on the property (see the History and Previous Work section, page 3) be contacted and a complete review made of their geochemical and geophysical data from the Tomcat Claim Group.

After doing so, detailed geological mapping and geochemical sampling should be carried out over the most prospective targets. This program could be followed by geophysical surveys and trenching if warranted.

References

- Preto, V.A. 1979: Geology of the Nicola Group between Merritt and Princeton B.C.; B.C. Ministry of Energy, Mines and Petroleum Resources Bulletin 69.
- B.C. Ministry of Energy, Mines, and Petroleum Resources 1992: Geological Survey Branch Minfile Map NTS 092HNE Tulameen.

Cost Statement

Work performed during July 10 and 11, 1996.

Geologist	\$800.00
Assistant	600.00
Truck rental	200.00
Fuel	100.00
Food & hotel	500.00
Assays	800.00
Report	400.00
Secretarial, copies, etc.	300.00
Drafting	300.00
Miscellaneous @ 10%	<u>400.00</u>
-	

Total

<u>\$4,400.00</u>

STATEMENT OF QUALIFICATIONS

I, Ed McCrossan, of 204-1225 Barclay Street, Vancouver, British Columbia hereby certify:

- 1. I am a graduate of the University of British Columbia (1984) and hold a B.Sc. degree in geology.
- 2. I have been employed in my profession by various mining companies since graduation and have worked on projects in Canada, U.S.A., Thailand, China, Chile, Bolivia, Peru, Venezuela, Central America, and Mexico.
- 3. I am a member of the Canadian Institute of Mining and Metallurgy, a Fellow of the Geological Association of Canada, and a registered member in good standing of the Association of Professional Engineers and Geoscientists of B.C.
- 4. The information and recommendations contained in this report are based upon a two day work program.
- 5. I consent to and authorize the use of the attached report and my name in the Company's Prospectus, Statement of Material Facts or other public documents.

Ed McCrossan Geologist, F.G.A.C., P.Geo.

DATED at Vancouver, British Columbia, this 22 day of

July, 1996.

Appendix I

Rock Sample Descriptions*

* Note that all terms used are field descriptions based upon visual inspection of hand specimens. No thin sections were prepared for these samples.

28501	Composite grab of andesite-basalt volcanic rock. Malachite disseminated and associated with quartz and/or quartz-carbonate stringers.
28502	4 ¹ / ₂ m chip across moderately fractured and altered andesite and basalt lithic-crystal fragmental tuffs and flows? Trace disseminated pyrite and malachite associated with fractures.
28503	Grab of limonitic and malachitic fracture with minor silicification. Lithology as above.
28504	Grab of brecciated and silicified andesite adjacent to a minor shear.
28505	As in 28501.
28506	Composite grab of dump material adjacent to Portland shaft within the Tomcat claim. Andesitic volcanics with hairline quartz stringers and malachite staining associated with fracture surfaces.
28507	As in 28506 but less altered and containing less malachite.
28508	Grab of andesite containing epidote veinlets and "stockwork" textures.
28509	Composite grab of moderately silicified and malachite stained and esite- basalt (fragmental tuff).
28510	Grab of moderately silicic and limonitic and esite-basalt tuff. Quartz stringers throughout with a trace of disseminated sulphide.
28511	Grab of quartz-carbonate (ankerite?) breccia.
28512	Angular float grab of andesitic lahar. Patchy silicification and pyritization associated with fractures. Less than 1% pyrite.
28513	Grab of angular float. Silicified andesite plagioclase porphyry. Moderate limonitic staining and quartz veinlets.

- 28514 1 m chip sample across a minor shear within dark green to black aphanitic andesites. Minor carbonatic, argillic, limonitic and malachitic alteration and oxidation products.
- 28515 Grab from shear sampled in 28514. The shear ranged from 1 to 15 cm wide and contained milled host rock fragments healed with a quartz-carbonate matrix. Alteration and oxidation as in 28514 plus chalcocite.
- 28516 Selective composite grab of silicified andesite containing quartz veinlets, traces of pyrite, chalcopyrite and bornite; and malachite.
- 28517 1 m chip across silicified and fractured andesites in the footwall of the minor shear sampled in 28515.
- 28518 Selective grab sample of moderate to intensely limonite stained andesite containing quartz veinlets and patches. Trace of disseminated pyrite and malachite throughout.
- 28519 Grab sample of brecciated and silicified volcanic. Quartz veinlets common. Limonite, pyrolusite, malachite, and chalcocite. Carbonate, chlorite, epidote and a trace of sericite.
- 28520 Grab sample of brecciated and silicified volcanic (as in 28519). Fine grained pyrite, galena, sphalerite, tetrahedrite? and smithsonite?
- 28521 2 m chip sample across brecciated and highly oxidized and ankerite stained volcanic. Trace to 1% pyrite and malachite. Trace of galena and sphalerite?
- 28522 3 m discontinuous chip sample across a moderately oxidized, fractured, and silicified volcanic. Trace pyrite.
- 28523 Composite grab of moderately limonite/ankerite stained volcanic or microdiorite.
- 28524 Grab of small (10 cm wide) shear within porphyritic andesite to basalt. Chalcocite and malachite. Epidote and carbonate alteration.
- 28525 1 m chip across the shear sampled in 28524. Basalt porphyry with minor chlorite, chalcocite and malachite.
- 28526 1 m chip through less altered host rock adjacent to previous sample locations (28524, 28525). Basalt porphyry with some lithic fragments. Minor chlorite and epidote alteration. Trace malachite.

- 28527 Selective composite grab of malachite stained basalt porphyry from ore pile adjacent to a small trench or open cut. Minor chlorite, epidote, silica and carbonate alteration. Trace pyrite and chalcopyrite associated with fracture surfaces and disseminated.
- 28528 Selective grab sample of malachite stained basalt porphyry adjacent to small shaft or test pit. As in 28527.
- 28529 Grab of less oxidized and altered host rock material from the same location as 28528.
- 28530 Grab sample from centre of small shear zone (10 cm) within andesite plagioclase porphyry. Traces to 2% pyrite, chalcopyrite, bornite, tetrahedrite?, chalcocite, and malachite. Epidote and quartz.
- 28531 1 m chip across the zone sampled in 28530.
- 28532 Grab of angular float derived from nearby subcrop. Agglomeratic basalt breccia or lahar. Moderate to intense limonitic and pyrolusitic staining; chlorite and epidote alteration; and quartz-carbonate veinlets. Trace of malachite as patches and disseminations.
- 28533 Composite grab of limonite stained basalt agglomerate-breccia. Quartzcarbonate veinlets.
- 28534 Grab sample of medium grey volcanic tuff or grainstone adjacent to a slickensided fault surface (epidote, silica, clays) with minor malachitic staining.
- 28535 Grab of andesitic tuff showing chlorite, epidote and malachite alteration/oxidation products. Quartz-carbonate veinlets.
- 28536 Grab of malachite stained material from the centre of a small shear (2-5 cm wide). Chalcocite and limonite. Volcanic lithic fragmental tuff.
- 28537 1 m chip in the footwall of the shear sampled in 28536. Andesite to basalt crystal-lithic fragmental tuff or tuff breccia. Traces of epidote, chlorite, bornite, chalcopyrite and malachite. Quartz and carbonate veinlets and fracture fillings. Minor limonitic staining.
- 28538 Selective grab of malachite stained fragmental tuff. As in 28537.
- 28539 Composite grab of limonitic stained fragmental volcanic. Minor chloritization and silicification.

28540 Grab of malachite stained fracture in fragmental volcanics (as above).

-

Appendix II

Assay Results

ACME	ANALYTICAL	LABORA	TOR	IES	LTD.

852 B. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 PAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Guardian Resources Corp., File # 96-2819 Page 1

ly le				·			_		830	- 35!	5 8u	rran	1 St	., Va	ncouver	BC	V6C 2G8				<u></u>				· .	•					
SAMPLE#	Mo ppm	Cu ppm		2n ppm	-			Nn ppm		As ppm							81 V ppmippen	Ca X		La ppm				11 X		AL X		X X			
B 28501 B 28502 B 28503 B 28504 B 28505	<1 <1 1	15162 3436 7170 781 8807	8 <3 <3 <3 3	43 79 50 61 67	6.8 1.1 2.3 .3 3.1	7 5	14 1 15	1959 1578 1701	4.36 5.47 4.26 4.52 4.91	6 <2 6	ৎ ৎ5 ৎ5	<2 <2 <2	<2 <2 <2	109	3.5 1.2 1.2	\$ \$ \$ \$ \$ \$	15 218 <2 289 <2 229 <2 275 13 232	2,60 1.59 3.81	.156 .101 .172	11 8 15	20 16 13	2.95	55 52 30	.26 .22 .20	3 a 6 1 5 a	2.98		.28 .08 .43	222	8 3 7 <2 6	
B 28506 B 28507 B 28508 B 28509 B 28510	<1 1	7545 254 169 9662 103	45000	68 89 60 52 45	<.3 1.5	18 27 14	23 17 3	1256 1042 1697	4.56 4.46 2.41 4.70 3.60	6 2 <2	دې دې دې	<2 <2 <2	<2 <2 <2	327 1262	1.5	<2 <2 <2	8 209 <2 240 2 132 14 238 6 125	2,80 4,64 1,52	.180 .165 .132	13 10 10	32 42 33	2.79	64 15 69	.23 .21 .22	7 2 17 2 <3 2	2.65 2.10 2.18	.07	.12 .05 .14	2 <2 4	5 3 4 8 4	
B 28511 RE B 28511 B 28512 B 28513 B 28514	1 <1 1 <1 <1	59 59 528 146 154	3	32 35 96 52 70	<.3 .3	5 8 8	10 13 18	887 1080 1238	2.07 2.10 3.30 3.84 4.20	3 7 12	دې دې	<2 <2 <2	<2 <2 <2	155 156 182 142 168	.6 1.7 .8	<2 <2 <2	2 79 2 81 <2 82 <2 118 2 260	3.61 4.20 4.87	.247 .157 .166	11 12 15	6 7 10	1.40 1.95 1.12	23 115 85	.01 .02	3 3 6 1	.45 .95 1.16	.05 .03 .07	.24 .36 .27	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	45672	
B 2B515 B 28516 B 28517 B 28518 B 28519	<1 <1 <1	118 13467 249 8167 9452	3 6 17 <3 5	66 11 96 80 21	1.8	3 5 11	<1 17 16	1574 1402 1176	4.15 1.69 4.75 5.22 2.29	10 4 <2	ৎ ৎ ৎ	<2 <2	<2 <2 <2	318 193	3.2	<2 <2 6	2 280 6 362 <2 360 16 240 16 94	26.97 10.14 6.08	.076 .149 .155	10 12 12	16 20 11	.99 2.93 1.19	63< 103 314	.01 .08 .04	6 <3 3 3 *	.83 3.06 1.85	.04 .02 .36 .04 .03	.12 .50 .28	15 <2 2	6 <2 14 8 <2	
B 28520 B 28521 B 28522 B 28523 B 28523 B 28524	21 1 <1	16239 4134 273 343 42843	1885 43 14	38303 428 205	7.3	2 4 5	9 15 13	1842 1350 1461	5.06	67 11 5	دج ج ح	<2 <2 <2	<2 2 <2	277 100	539.6 5.8 3.6	6 6 <2	31 61 5 86 6 57 <2 94 39 244	5.52 4.05 3.13	.077 .213 .163	5 12 12	3 4 6	1.30	116< 352 141	.01 .01	3 10 <3	.40 .67 .50	.04	.30 .37 .31	20 <2 <2	15 6 <2 4 314	
B 28525 B 28526 B 28527 B 28528 B 28528 B 28529	2 3 1	7808 303 65108 53402 534	ح 60 7	74 29 20	12.2 .9 75.3 151.0 1.0	2 <1 5	14 6 3	879 1130 899		<2 11 20	<5 10 <5	<2 <2 <2	<2 <2 <2	67 106	.2 5.9 2.3	4 7 <2	13 173 5 202 9 316 <2 158 <2 177	1.25 7.07 4.20	.151 .162 .155	\$1 B 7	9 9 6	1.45	50 15 100	.17 .22 .20	3 5 15 4 8 1	5.79 4.40 1.51	.07	. 14 .04 .03	21 <2	6 <2 3 10 <2	
B 28530 B 28531 B 28532 B 28533 STANDARD C2/AU-R	2		<3 <3 11	136 75 91	1.0	<1 <1 1	<1 6 13	1172 1442 1712	4.21 3.34 .3.51	<2 6 9	ও ও ও	<2 <2 <2	2 2 2 2	36 153 199	.9 1.6 1.8	<2 <2 2	7 959 3 424 4 100 9 120 21 76	1.81 4.36 5.31	.133 .151 .173	8 13 13	5 5 3	1.76 1.56 1.78	37 125 93	.02	<3 2 3 11	2.52 .52 .63	.05 .03 .02	.05 .30 .42	18 <2 <2	2 <2 3 <2 490	
	THIS ASSA'	LEACH	IS PA MMENDE	RTIAL D FOR	FOR MIN	I FE	SR (CORE	CA P Samp	LA CR	MG 8 F CU	PB 2	B H) AND 5 > 1) LIM) (%, A(TED FO	NR NA	OR ONE H K AND A & AU > 1	NL.		DILU	ITED	10 1	DINL	WETH	WATE	ER.					

46 SIGNED BY ...

- SANPLE TYPE: ROCK AU** ANALYSIS BY FA/ICP FROM 30 GH SAMPLE. Samples beginning 'RE' are Reruns and 'ARE' are Reject Reruns.

DATE RECEIVED: JUL 12 1996 DATE REPORT MAILED:

P.04/04

AAA		• •			(Guar	di	n)	Res	oure	es	Co	.	I	FIL	E #	96	-281	9			•		Page	2			
SAMPLE#	Ho Cu ppm ppm		Zn ppm	Ag ppm	Ní ppm	Ćo ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	11 h pprn	Sr ppn	Cd ppm	Sb ppn	8i ppm	V ppm	Съ %	P X	La ppm	Cr Mg ppm X	Ba ppm	Ti X	8 Al ppm %	Na X	K X	V ppm	Au**
8 28534 B 28535 B 28536 B 28537 B 28538	1 126 <1 116 1 5112 1 5300 1 5379	८३ ८३ ८३ ८३ ९३	76 191 69 94 117	.6 .7 3.1 2.3 2.9	7 5 11 4 8	16 8 10	1217 1215 2278 2157 2228	3.45 4.95 4.63	19 17 <2 <2 <2	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	< < < < < < < < < < < < < <> <> <> <>> <>> <>>> <>>> <>>><>>><>>><>>><>>><>>><>>><>>><>>><>>><>>><>>><>>><>>><>>><>>><>>><>>><>>><>>><>>><>>><>>><>>>>	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	77 179 140 97 113	<.2 <.2 .9 .4 .6	2 2 2 6 3 2 2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	143 363	3.86 2.49 11.91 6.86 7.67	. 142 . 127 . 138	11 10 11 10 13	6 1.50 8 1.99 13 1.34 13 1.67 11 1.83	53 60 124 107 57	.15 .22 .25 .21 .22	32 2.76 15 2.15 45 7.44 25 4.42 18 5.03	.06 .05 .04 .04 .04	.06 .06 .05 .04 .11	<2 <2 5 <2 5 <2	< 1 1
8 28539 8 28540 8 28541 6 28542 8 28543	1 167 <1 5072 1 142 7 181 <1 151	3 <3 13 16 3	90 96 129 114 104	.7 2.9 1.2 1.3 .8	<1 3 21 29 2	7 14 31	1343 1961 682 761 925	4.10 3.50 4.53	<2 <2 14 43 <2	ও ও ১ ৩ ৩ ৩ ৩	8 8 8 8 8 8 8 8 8 8	< < < < < < < < < < < < < < < <> </td <td>60 104 82 98 73</td> <td><.2 <.2 .6 1.3 <.2</td> <td>~ ~ ~ ~ ~ ~ ~ ~ ~</td> <td>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td> <td>135 363 192 221 245</td> <td></td> <td>.128 .125 .134</td> <td>13 11 13 9 11</td> <td>4 1,36 10 1.59 53 .60 45 .76 11 .85</td> <td>40 74 30 19 111</td> <td>.19 .22 .14 <.01 .21</td> <td>18 2.38 30 5.58 5 1.65 <3 .91 7 1.81</td> <td>.04 .04 .06 .03 .03</td> <td>.08 .03 .05 .01 .06</td> <td><u> </u></td> <td>< 1</td>	60 104 82 98 73	<.2 <.2 .6 1.3 <.2	~ ~ ~ ~ ~ ~ ~ ~ ~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	135 363 192 221 245		.128 .125 .134	13 11 13 9 11	4 1,36 10 1.59 53 .60 45 .76 11 .85	40 74 30 19 111	.19 .22 .14 <.01 .21	18 2.38 30 5.58 5 1.65 <3 .91 7 1.81	.04 .04 .06 .03 .03	.08 .03 .05 .01 .06	<u> </u>	< 1
B 28544 8 28545 8 28546 8 28547 B 28548	<1 28 <1 17 <1 28 1 152 <1 156	8 13 8	202 221 209 104 85	.9 .8 1.0 1.4 .6	7 4 6 22 5	14 20 22	2945 3107 3506 1266 960	7.25 7.92 5.34	<2 2 <2 17 <2		<2 <2 <2 <2 <2 <2 <2	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	298 291 281 129 50	2,6 3,8 3,8 <,2 <,2	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	2222 22 22 24	147 160 229	25.39 27.12 27.56 4.03 3.60	.004 .009 .139	4 5 14 7	5 9.15 7 9.83 3 9.59 37 1.53 3 1.22	9 9	<.01 <.01 <.01 <.01 .20	 <3 .28 <3 .24 <3 .29 <3 .60 11 3.12 	.05 .06 .06 .04 .09	.01 .01 .02 .05 .20	~~~~~	<
B 28549 B 28550 B 28551 Re B 28551 B 28552	2 54 2 56 1 121 1 122 1 53	4 5 <3	77 85 110 108 86	.8 .8 .9 .8 1.0	5 8 6 1	13 17 15	952 1258 1226 1196 1054	4.64 4.67 4.64	8 <2 <2 2 10	८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८	2 2 2 2 A	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	93 118 72 70 54	2.4 .2 <.2 <.2 .2	3 <2 <2 <2 5	<2 <2 4 <2 <2	188 185 165 162 180	3,75 3,66 2,14 2,04 2,62	.080 .087 .084	5 6 7 7 5	7 1.33 6 1.59 8 1.54 7 1.52 6 1.36	45 66 106 104 51	.27 .27 .29 .28 .25	20 3.46 26 3.75 12 3.28 14 3.26 25 3.18	.16 .11 .10 .10 .10	.07 .08 .13 .13 .10	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	
8 28553 B 28554 B 28555 B 28556 Standard C2/AU-R	3 21 5 22 1 52 2 7 19 61	20 <3 4	95 69 92 77 141	.8 .9 .7 6.8	1 6 2 1 70	7 12 8	1053 1145 1124 1124 1149 1176	4.56 4.34 4.07	12 13 3 4 37	<5 <5 <5 21	<2 <2 <2 <2 <7	<2 <2 <2 <2 <2 34	76 52 32 45 53	1.1 <.2 .6 .5 19.7	2 3 3 <2 15	<2 <2 4 3 21	150 151 177 160 74		.076 .081 .122	6 7 6 7 41	8 1.51 9 1.72 6 1.92 6 1.38 65 .95	60 46 37 70 199	.26 .28 .29 .20 .09	10 3.21 11 3.10 7 2.71 36 3.28 25 2.05	.17 .11 .08 .09 .06	.09 .10 .06 .15 .15	<2 <2 <2 <2 11	< 45

* *

** TOTAL PAGE.004

Sample type: ROCK. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

.