Assessment Report on 1995 Fall Drill Program Tam O'Shanter Property

Kettle River Resources Ltd. Linda Caron, P.Eng. Sept, 1996

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORTS

SEP 1 3 1996

ASSESSMENT REPORT

on

1995 FALL DRILL PROGRAM

TAM O'SHANTER PROPERTY
NTS 82E/2 E&W

Lat: 49° 05'N Long: 118° 44'W

FILMED

Kettle River Resources Ltd. Box 130, 330 Copper St. Greenwood, B.C. VOH 100

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

Linda Caron. P. Eng. September, 1996

24,543

TABLE OF CONTENTS

			Page
1.0	SUMMAI	RY	1
2.0	2.1 2.2 2.3	DUCTION Location, Access and Terrain Property and Ownership History Summary of Work Done, Sept, 1995 - Nov, 1995	2 2 2 3 5
3.0	GEOLO	GY AND STRUCTURE	6
4.0	DRILL	ING	8
5.0	RECOM	MENDATIONS	10
6.0	REFER	ENCES	11
		LIST OF FIGURES	Page
Figur	e 1 - 1	Location Map	aft p.2
Figur	e 2 -	Claim Map	aft p.2
Figur	e 3 -	Drill Hole Location Map	aft p.8
		LIST OF APPENDICES	
APPEN	DIX 1	- Diamond Drill Logs	
APPEN	DIX 2	- Drill Sample Results	
APPEN	DIX 3	- Cost Statement	

APPENDIX 4 - Statement of Qualifications

1.0 SUMMARY

The Tam O'Shanter property consists of 33 claims, totalling 129 units, located about 5 kilometres west of Greenwood, B.C. This report describes the September - October 1995 drill program on the property.

The claims are underlain by volcanics and sediments of the Late Paleozoic Knob Hill and Attwood Groups, intruded by Cretaceous and Tertiary dykes and stocks, and covered in part by Tertiary (Eocene) sediments and volcanics. The Tertiary rocks form the eastern part of the Toroda Creek Graben in this part of the property. A major northeast trending fault, the Deadwood Fault, runs through the property, forming the eastern boundary of the graben. A large epithermal alteration system occurs in the Tertiary sediments adjacent to this fault. Epithermal alteration and veining also occurs to the east of the fault in the older Knob Hill Group rocks, with locally significant gold values.

Previous drilling identified a northwest trending structurally controlled vein, the Wild Rose vein, at the contact of Attwood Group sediments and overlying (older) Knob Hill volcanics. The vein is mesothermal in nature, averaging 1 - 2 metres in thickness, and with grades up to 20.6 g/t. The current drill program was designed to test the Wild Rose vein east of the discovery area, near the low grade bulk tonnage zone intersected in Hole 92-27. Drilling also tested the Laocoon zone, an area of highly altered quartz diorite (Golden Fleece) intrusive cutting Knob Hill Group cherts.

Five holes were drilled (a total of 797 metres). Holes 95-06 and -07 tested the Wild Rose Fault in the area of Hole 92-27, which collared essentially on the fault and drilled parallel to the structure. Hole 95-08 stepped back and tested the structure deeper in the same section, intersecting the fault at a depth of 245 metres down dip. The fault measures 5 to 10 metres in width where intersected by the drill holes, comprised of numerous small (typically 0.5 m wide) veins within a wide zone of silicified breccia. The hanging wall of the fault is elevated in gold with values in the range of 100-500 ppb Au, over widths of up to 180 metres. Veins within the fault returned values of 1- 2 g/t Au in this section.

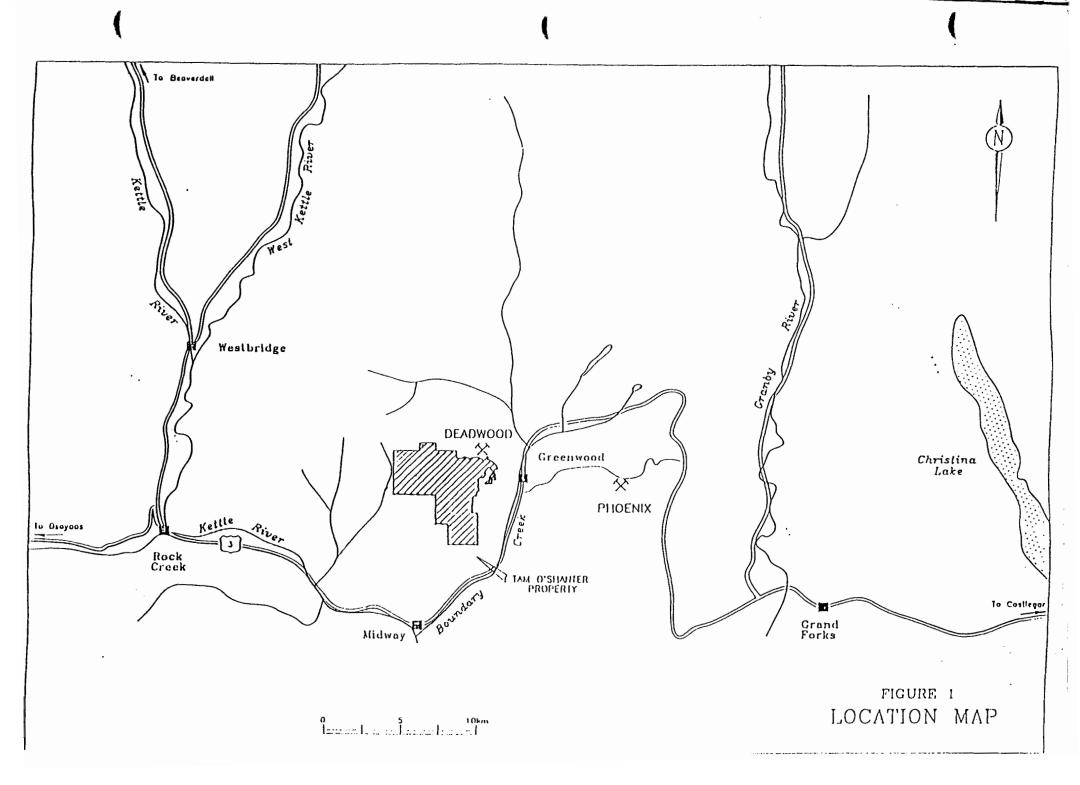
Holes 95-09 and 95-10 tested the Laocoon zone, a contact area between altered Golden Fleece quartz diorite and Knob Hill Group chert and metasediments. Numerous B phase dykes cut earlier rocks. Gold, silver and copper values were not anomalous.

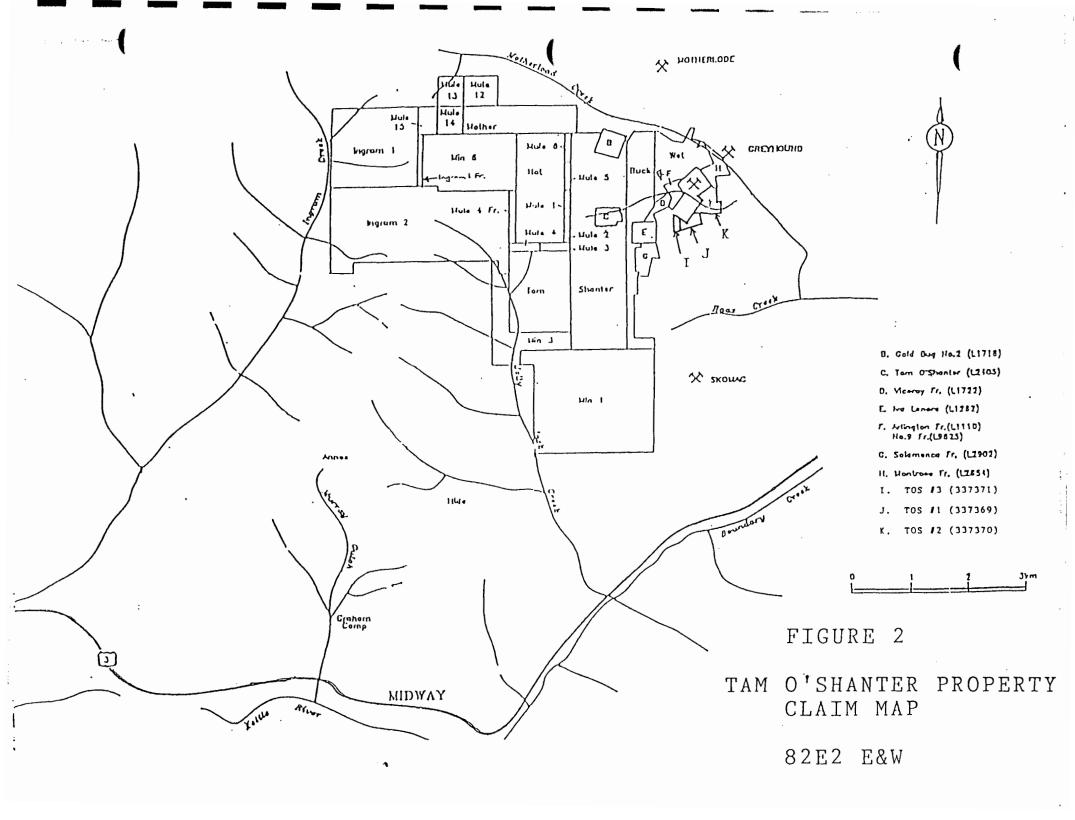
As a result of the current drilling program and detailed mapping done in the area of the Wild Rose structure, the geology appears to be much more complicated, but better understood, that previous interpretations. In particular, at least seven different intrusive events can be recognized, and it appears that the contact areas of one of these intrusives (the Golden Fleece quartz diorite) with the Knob Hill Group is an important control in gold mineralization. Detailed mapping is recommended to identify areas of favorable geology and structure, especially in the area north of the Wild Rose Fault, where little work (and no drilling) has been done.

2.0 INTRODUCTION

2.1 Location, Access and Terrain

The Tam O'Shanter property is located about 5 kilometres west of Greenwood, B.C. (see Figure 1). Access to the property is from Greenwood, via the Motherlode road. The claims can be reached either from a branch road heading west from the Motherlode road, just south of the Deadwood flats, or via an old logging road which heads south off the Motherlode road at kilometre 6.


The claims are situated on the north facing slope of the Motherlode Creek valley, and on the ridge between Ingram and Motherlode Creeks. Elevations range from 1460 metres in the southern part of the claim group, to 915 metres in the eastern section. The terrain is hilly, with several steep cliffy sections. The forest cover is moderate, with mature pine, larch and fir forest and minimal underbrush.


The climate is generally quite dry, with hot summers and little rainfall. Snowfall is minimal, generally less than 1 metre. In the area of current exploration, water for drilling is available from two old drill collars.

2.2 Property and Ownership

The Tam O'Shanter property consists of 33 mineral claims (129 units), as shown in Figure 2 and summarized below. All claims are owned 100% by Kettle River Resources Ltd. Work documented in this report is filed on the Tam 96A Group, as shown in Figure 2.

82 00 79 81 50 51 52 53	1 18 20 12 1 6 1 1 1 1 9 1	04/29/98 06/05/97 01/08/99 12/22/98 12/23/98 03/14/98 03/15/98 03/14/98 03/14/98 03/14/98 03/15/98 06/29/2001 06/30/2001 06/30/2001
		· · · · · · · · · · · · · · · · · ·
8 () (8 1) 1) 1) 1) 1) () ()	82 00 79 81 50 51 52 53 54 55 01	82 1 00 18 79 20 81 12 50 1 51 6 52 1 53 1

Claim Name	Record #	# of units	Expiry Date
Mule 4	327005	1	06/30/2001
Mule 5	327006	1	06/30/2001
Mule 6	327007	1	06/30/2001
Ingram 1 Fr.	327668	1	07/11/2001
Tos #1	337369	1	06/30/2001
Tos #2	337370	1	06/30/2001
Tos #3	337371	1	06/30/2001

^{*} Expiry dates are after acceptance of this report.

2.3 History

A number of showings occur on the Tam O'Shanter property and a significant amount of work has been done on the claims in the past. A detailed description of the history of the area prior to 1990 is given in Lee (1990). The following is taken largely from this, with several additions.

Exploration in the area dates back to 1981 with the discovery of the Motherlode, about 1 kilometre north of the Tam O'Shanter property, in the Deadwood Camp. In 1894, the first record of work is documented on the Buckhorn, immediately adjacent to the Montrose Fr. and Arlington Fr, No 9 claims of the Tam O'Shanter property. As a result of these discoveries, exploration in the area has historically concentrated on copper prospects in the older rocks.

- 1896 A 40 foot shaft is reported on the Iva Lenore and on the Goldconda. On the Last Chance, a 65 foot shaft was sunk (BCDM Annual Report 1896).
- 1898 A 35 foot shaft is reported on the Iva Lenore, and a 40 foot shaft on the Emerald. Considerable work is reported to have been done on the Iron Pyrites and Herbert Spencer (BCT 1898).
- 1903 The Emerald (L1263) and Gold Bed (L1388) Crown Grants were issued (BCDM Annual Report 1903).
- 1904 Bengal (L2375) and Tam O'Shanter (L2405) Crown Grants issued (BCDM Annual Report 1904).
- 1906 Goldconda Fr.(L2149) and Laocooon (L2147) Crown Grants issued (BCDM Annual Report 1906).
- 1908 Salamanca Fr. (L2902) Crown Grant issued (BCDM Annual Report 1908).
- 1912 X.L.C.R. (L1556s) and X.L.C.R. Fr.(L1557s) Crown Grants issued (BCDM Annual Report 1912).
- 1919 Tam O'Shanter (L2405) Crown Grant issued (different grantee than 1904 reference, same lot) (BCDM Annual Report 1919).
- 1921-23 Work was recorded on the Tam O'Shanter. 2 old shafts (from the turn of the century?) and a recent cross-cut tunnel and an inclined shaft are documented. Work in 1921 included 300 feet of drifting and a 75 foot raise (BCDM Annual Report 1921, 1922, 1923). Work is also described on the Goldconda.
- 1933 Considerable work reported on the Goldconda (BCDM Annual Report 1933).

- 1964 Silver Dome Mines did extensive work on claims in the Iva Lenore and Tam O'Shanter area. 10 miles of road were built, 13,000 feet of stripping and 6,118 feet of diamond drilling done. Line cutting, magnetometry and soil sampling were also done. Assessment Report 562 covers the soil and magnetometer surveys. There is no (public) record of drilling or trenching, although a later report shows the locations.
- 1966-67 Utah did a geophysical survey (IP, resistivity) Assessment Report 1067.
- 1966-67 San Jacinto Exploration did an IP survey (Assessment Report 881).
- 1969 Consortium of companies including Silver Dome did aeromag survey (Assessment Report 1878).
- 1972 Sun Oil did percussion drilling (Sun Oil, 1972)
- 1972 Phelps Dodge did minor geological mapping and data compilation (Assessment Report 4125).
- 1973 Mapletree Exploration had topo base of area surveyed and completed a geological mapping and percusion drilling program in the area (Dickinson and Simpson, 1973).
- 1973-74- Mascot Mines drilled 27 percussion drill holes. Drill logs are available, but no analytical results (Assessment Report 5023).
- 1975 Oneida Resources acquired property.
- 1979 Oneida drilled 3 diamond drill holes (1560 feet). Target was porphyry Cu-Mo mineralization. Discovered new zone on intense hydrothermal alteration (Assessment Report 8795).
- 1981 G. Rayner completed detailed mapping around the Bengal Shaft area. Several old trenches elsewhere on the property were re-explored using a backhoe (Rayner, 1981).
- 1982 Oneida Resources amalgamated with three other companies to form New Frontier Petroleum.
- 1983 200 feet of backhoe trenching was done near the Bengal shaft and about 100 feet of trenching was done about 1.5 km north of this to test copper staining exposed by a recent logging road. new Frontier Petroleum went into receivership, giving the Receiver an interest in the property. The remaining interest was transferred to a subsidiary of New Frontier, Bulkley Silver Resources.
- 1984 H. Shear prepared a compilation of data on the Tam O'Shanter property for Bulkley Silver Resources (Shear, 1984).
- 1984-85- Geological mapping and interpretation was done in the Tam O'Shanter area for Kettle River Resources Ltd. by J. Fyles (Fyles, 1984-85).
- 1985-87- Bulkley Silver Resources merged to form Houston Metals. Houston Metals was rolled back to form Pacific Houston.
- The property was examined by Echo Bay Mines and BP Selco. The 1979 drill core was relogged and a brief report was prepared (Fraser, 1987; Wong, 1987).

- 1988 Pacific Houston had the present Tam grid established and an IP survey completed (Arnold, 1989a). Three diamond drill holes (2,645 feet) were drilled to test anomalies resulting from the above program (Arnold, 1989b).
- 1990 Kettle River Resources Ltd. and Dentonia Resources Ltd. acquired the current Tam O'Shanter property by staking and purchasing the interest held by the Receiver and by Pacific Houston. The claims were optioned to Minnova Inc as part of a larger block of ground. An airborne magnetic and VLF/EM survey was done by Aerodat over the entire property. In the Tam O'Shanter area, the 1988 grid was reestablished. Geological mapping, ground geophysics (mag & VLF/Em), and rock and soil sampling were done over the grid area (Lee, 1990).
- Minnova continued to work on the property. The 1988 grid was expanded (The Tam 91 grid) with an additional 25.9 line kilometres established. Soil and rock sampling was done over the grid, and geological mapping was done. IP and magnetometry was run over a portion of the grid, and 20 diamond drill holes were completed to test soil and geophysical targets. The Wild Rose property adjacent to the Tam O'Shanter property was optioned and grid work was done over a portion of this property as well (Clayton, 1992).
- 1992 Minnova established the Wild Rose grid over their main area of interest, completed detailed mapping over the grid, and drilled an additional 19 diamond drill holes on the property. Several drill holes were also done on the adjoining Wild Rose property. The options were dropped on both properties early in 1993 (Heberlein, 1993, Heberlein and McDowell, 1992).
- 1995 Kettle River Resources completed a compilation of previous work, 935 metres of NQ drilling in 5 hole to test the Wild Rose Fault (see Assessment Report filed Sept, 1995) plus detailed mapping in the Wild Rose area, and the drill program described in this report.

2.4 Summary of Work Done, September, 1995 - November, 1995

Five NQ diamond drill holes were drilled in September and October, 1995, for a total of 797 metres. Drilling was done under contract by Beaupre Diamond Drilling of Princeton, B.C. Core was logged and split at Kettle River's core storage facility at Boundary Falls, B.C.. Logging was done by L. Caron, with sawing and splitting done by C. Esovaloff. Drill supervision and lay-out of drill sites was done by T. Parsons. A total of 156 drill core samples were collected and sent to Min-En Labs for 31 element ICP plus Au analysis. Seven samples were tested for metallic gold. The program was supervised by G. Stewart.

3.0 GEOLOGY AND STRUCTURE

The Greenwood area has been mapped on a regional basis by Fyles (1990), and prior to this, by Little (1983) and Church (1986). Fyles' mapping shows the pre-Tertiary rocks form a series of thrust or detachment slices, which lie above a basement high grade metamorphic complex. A total of at least five thrust slices are recognised, all dipping gently to the north, and marked in many places by bodies of serpentine. Fyles' interprets these serpentinite bodies as representing part of a disrupted ophiclite suite, belonging to the Knob Hill Group of late Paleozoic age. Commonly, these serpentinite bodies have undergone Fe-carbonate alteration to listwanite, as a result of the thrusting event.

The oldest rocks in the camp belong to the late Paleozic Knob Hill Group of dominantly volcanic affinity, and consist mainly of chert, greenstone and related intrusives, and serpentine. Overlying these rocks are sediments and volcanics (largely argillite, siltstone, limestone and andesite) of the late Paleozic Attwood Group. In many cases evidence for thrusting is seen by the older Knob Hill Group rocks resting over the younger Attwood Group rocks. Rocks of the Knob Hill and Attwood Groups are unconformably overlain by the Triassic Brooklyn Formation, represented largely by limestone, clastic sediments and pyroclastics. The historically important skarn deposits in the Greenwood area (i.e. Phoenix, Motherlode-Greyhound) area hosted within the Triassic rocks.

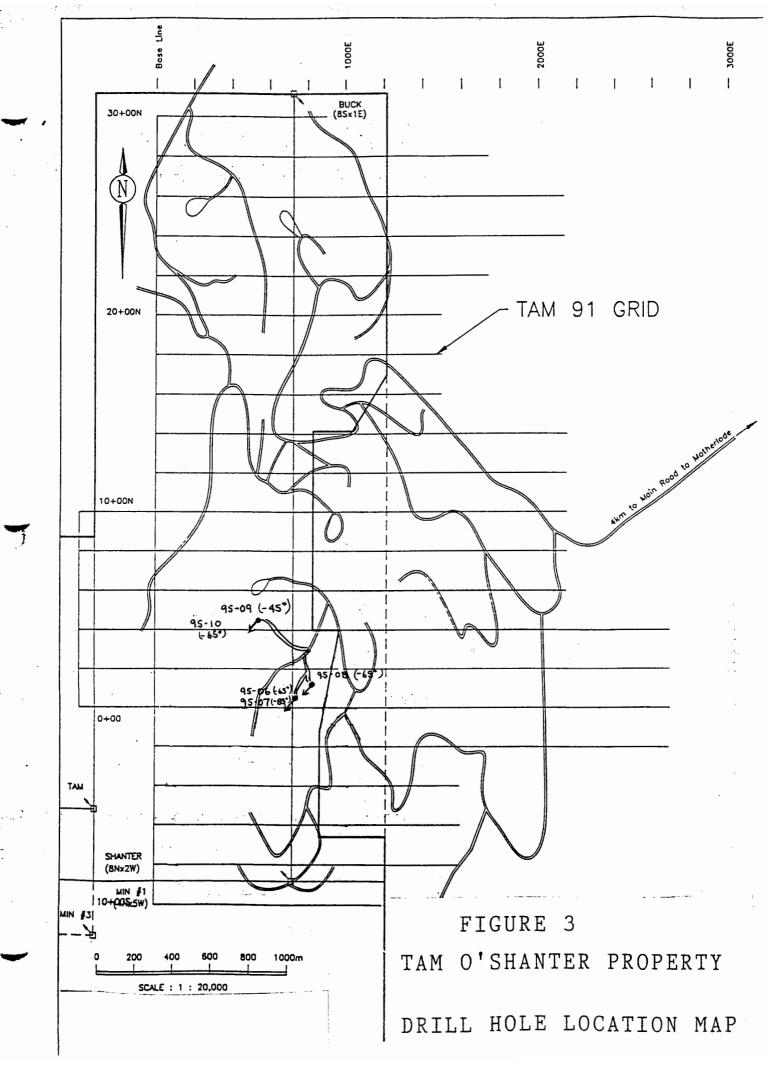
Three separate intrusive events are known regionally to cut the above sequence, the probable Jurassic aged Lexington porphyry, and the Cretaceous Nelson intrusives, and the Eocene Coryell pulaskite dykes and stocks. Tertiary sediments and volcanics unconformably overly the older rocks. The distribution of these Tertiary rocks is largely controlled by series of north-south trending faults which form the Toroda Creek graben in the western portion of the map area, and the Republic graben in the east.

The Tam O'Shanter property is located at the eastern boundary of the Toroda Creek graben. A large area of mixed chert, greenstone and related diorite intrusives of the Knob Hill Group occurs in the area of drilling in the eastern portion of the property. These rocks are separated from underlying sediments and conglomerate which may belong to the (younger) Attwood Group by a major northwest trending, moderate northeast dipping fault (the Wild Rose Fault). This makes the Wild Rose fault a thrust/detachment fault, a theory which is supported by the serpentinite and listwanite encountered in drilling along the structure. A 1-3 metre wide gold bearing quartz vein occurs along the Wild Rose Fault, with grades up to 20.6 g/t Au over 1.2 metres. Intense alteration of Tertiary dykes along the fault zone is evidence of very late stage alteration event, although an earlier higher temperature event may be responsible for some of the gold.

Intrusive activity on the property is much more complex than previous workers have described. In the area of drilling, the earliest intrusive is the Knob Hill Group Diorite. Ultramafic rocks are seen cutting Knob Hill rocks, but their relationship to other intrusives is unknown. Next in the sequence of intrusives is the Golden Fleece quartz diorite, which is typically strongly altered and named for the type locality at the Golden Fleece workings. There are some similarities between the Golden Fleece intrusive and the Lexington quartz-feldspar, suggesting a possible Jurassic age to the Golden Fleece. Contact areas of the Golden Fleece intrusive with Knob Hill group rocks seems to be an important control for gold mineralization. The Golden Fleece intrusive is cut by relatively fresh "B-phase" dykes and stocks of probable Nelson affinity. Three distinct, probable Tertiary aged dykes cut earlier intrusives, including a dark gabbroic dyke, which may be related to olivine basalt flows? seen on surface, and a coarse quartz-eye dyke both of which are

unknown elsewhere in the camp, and the typical pulaskite dykes which are common throughout the area. In the northern portion of the property, the Paleozoic rocks are intruded by a fine to medium grained diorite of the Cretaceous Nelson Group. Low grade copper mineralization is known at a number of locations within and near the contacts of this intrusion (ie. the Tam O'Shanter, Buckhorn and Iva Lenore showings). The relationship of this intrusive to the "B-phase" unit to the south is unknown at this time.

A moderate west dipping, north-south trending Tertiary fault (the Deadwood Fault) forms the eastern margin the Toroda Creek graben and separates the older rocks from the Tertiary cover to the west. Tertiary pulaskite dykes also cut the older rocks. A large area of epithermal alteration (silica flooding, hydrothermal brecciation and widespread argillic alteration) occurs in the Tertiary sediments adjacent to this structure. Epithermal alteration (silicification and chalcedonic veining) also occurs to the east in the older rocks. Widespread silicification, argillic and phyllic alteration with elevated gold values (ie. 0.9 g/t over 63 metres) occurs in the Knob Hill rocks adjacent to the Wild Rose Fault.


4.0 DRILLING

Five NQ diamond drill holes were drilled on the property by Beaupre Diamond Drilling of Princeton, B.C. to test the Wild Rose Fault zone. Drill hole locations are shown on Figure 3, and specifications of the holes are listed below. Complete drill logs are contained in Appendix 1, with analytical results of drill samples contained in Appendix 2.

DRILL HOLE	CO-ORDINATES*	AZIMUTH	DIP	DEPTH
TAM-95-06	0+46 N 7+45 E	220°	-65°	129.8 m
TAM-95-07	0+46 N 7+45 E	220°	-85°	199.3 m
TAM-95-08	1+00 N 8+40 E	220°	-65°	231.3 m
TAM-95-09	4+40 N 5+60 E	220°	-45°	123.7 m
TAM-95-10	4+40 N 5+60 E	220°	-65°	112.8 m

Co-ordinates are given on the Tam 91 grid.

Hole 95-06 and 95-07 tested the Wild Rose fault in same section as Hole 92-27, drilling to the west to cut the fault rather than paralleling it as Hole 92-27 had done. Hole 95-06 tested the fault 80 metres vertically below surface, while Hole 95-07 intersected the fault 170 metres below surface. Both holes had wide intersections of Golden Fleece quartz diorite, plus chill and contact breccia phase cutting older Knob Hill Group chert and metavolcanics above the fault. The Golden Fleece phase may be moderately to strongly altered (silicified, sericitized) and cut by stockworking quartz veinlets. Later fresh B phase dykes cut earlier rocks. Gold values are anomalous and erratic throughout the hanging wall zone, with values ranging from 8 ppb to 940 ppb, but generally 100-500 ppb, over widths up to 180 metres. The Wild Rose Fault is a wide zone, 5 to 10 metres in width where intersected by the drill holes, comprised of an intensely silicified tectonic breccia with clasts of Golden Fleece and Knob Hill Group rocks in a very fine siliceous matrix. Hole 92-07 also revealed a Tertiary dyke intruding along the fault zone, as well as a 0.5 metre wide, early high temperature white quartz vein. This vein ran 1.85 g/t Au, 0.27% Cu and 9.0 g/t Ag. Below the Wild Rose Fault, both holes intersected zones of mylonite/silicified, sheared intrusive before passing into Attwood Group sediments.

Hole 95-08 tested the fault zone at depth in the same section as Holes 95-06 and -07. The hole collared 180 metres from the surface trace of the fault, drilling perpendicular to the strike of the fault. No Golden Fleece intrusive was intersected in this hole, however a wide zone of mottled and sheared mylonite similar to that in the bottom of Holes 95-06 and -07 occurred. Below this are Knob Hill Group rocks, cut by later, fresh B phase dykes and by a late Tertiary gabbroic dyke which intrudes along the hanging wall of the Wild Rose Fault. The Knob Hill rocks are bleached, clay altered and weakly silicified over a width of about 30 metres, with anomalous Au values (93-622 ppb). The fault was intersected 205 metres vertically below surface, was 6 metres in width and comprised of narrow early white quartz veins cutting altered Knob Hill and possible altered Golden Fleece rocks. One quartz vein, 0.51 metres in width, returned 1137 ppb Au, 0.6% Cu and 20.4 g/t Ag, with highly anomalous As. Below the fault a narrow zone of Knob Hill Group rocks was intersected before ending the hole in typical Attwood Group sediments.

Hole 95-09 and 95-10 tested the Laocoon zone, a contact area between altered Golden Fleece quartz diorite, and Knob Hill Group chert and metasediments. Numerous B phase dykes cut earlier rocks. Gold, silver and copper values are not anomalous, with the exception of one sample running 173 ppb Au.

5.0 RECOMMENDATIONS

Detailed mapping is recommended to identify areas of favorable geology north of the Wild Rose Fault where little work has been done, prior to any further drilling on the property. In particular, the area of the Golden Fleece workings needs detailed mapping and sampling. The intersection of the Wild Rose structure with the Deadwood Fault remains untested by drilling.

6.0 REFERENCES

- Arnold, R.R., 19891.

 Induced Polarization Report of the Tam O'Shanter Properyt, Greenwood Area, Greenwood Mining Division; Private Report for Houston Metals Corp.
- Arnold, R.R., 1989b.

 Diamond Drilling Report on the Tam O'Shanter Property, Greenwood Area,
 Greenwood Mining Division, for Houston Metals Corp. Filed for
 Assessment.
- Assessment Report 562.

 Soil and Geophysical Surveys on the Silver Dome Property, Deadwood Area, Greenwood, 1964.
- Assessment Report 4125.

 Geological Mapping on the Bombini Group, Deadwood Creek, for Fury Explorations, 1972.
- Assessment Report 5023.

 Percussion Drill Logs on the program completed May-June 1974 on the San Jacinto and Gotcha Groups, Deadwood Camp, Greenwood Mining Division, by Mascot Mines and Petroleum Ltd., 1974.
- BCDM Annual Reports 1896, 1903, 1904, 1906, 1908, 1912, 1919, 1921, 1922, 1923, 1933.
- BCT (Boundary Creek Times), 1898 Christmas issue.
- Caron, L., 1995. 1995 Spring Drill Program on the Tam O'Shanter Property by Kettle River Resources Ltd. Filed for Assessment September 1995.
- Church, B.N., 1986.

 Geological Setting and Mineralization in the Mount Attwood=Phoenix area of the Greenwood Mining Camp. BCDM Paper 1986-2.
- Clayton, C.J., 1992.

 Assessment Report on the 1991 Drilling on the Tam 91 Group near Greenwood, Greenwood Mining Division.
- Cochrane, D.R., J. Cerne, and G.White, 1969.

 Assessment Report on Aeromagnetic Survey over the Deadwood Camp, for Silver Dome and Crown Silver Mines Ltd. Assessment Report 1878.
- Dickinson, R.A., and J.G. Simpson, 1973.

 A Report on Geology and Percussion Drilling, 1973, Greenwood Property, Project 441; Private Report for Mapletree Exploration Corp.
- Diamond Drill Logs and Misc. Geochemical and Geophysical Maps from 1991 and 1992

 Work Programs on Tam O'Shanter Property, by Minnova Inc.

- Dodds, A. and A. Watson, 1967.

 A Geophysical Report on an Induced Polarization Survey, Deadwood Property, near Greenwood, for San Jacinto Explorations Ltd. Assessment Report 881.
- Fraser, S., 1987.
 Report on the Tam O'Shanter Properyt, Greenwood Area; Private Report for Echo Bay Mines Ltd.
- Fyles, J.T., 1984-85.

 Notes on the Geology of the Mother Lode Tam O'Shanter Area; Private Report prepared for Kettle River Resources.
- Heberlein, D., 1993.

 Assessment Report on 1992 Diamond Drilling of Tam 93 Group, for Minnova Inc.
- Heberlein, D., and M. McDowell, 1992.

 Assessment Report on the 1992 Diamond Drilling Program on the Tam A and Tam B Groups, for Minnova Inc.
- Lee, L.J., 1990.

 Assessment Report on the Tam 90 Group, Greenwood Mining Division.
- Little, H.W., 1983.

 Geology of the Greenwood Map area, British Columbai. GSC paper 79-29.
- Rayner, G.H., 1982.

 Geological Report on the Tam O'Shanter Claim Group, Greenwood Mining Division, B.C.; Private report for New Frontier Petroleum.
- Shear, H.H., 1984.

 Report on the Tam O'Shanter Property, Greenwood Mining Division, B.C.;

 Private Report for Bulkley Silver Resources Inc.
- Stewart, G.O.M., 1980.

 Drilling assessment report on the Tam O'Shanter Property, Shanter Claim,
 Greenwood, Greenwood Mining Division. Assessment Report 8795.
- Sun Oil, 1972.

 Percussion Drilling Report by Sun Oil, private company report.
- Wong, R.H., 1987.

 Tam O'Shanter core logs, Holes 79-1 to 79-3; Private report by BP Selco.
- Young, M.J., 1967.

 Geophysical Report on the Toney Group of Mineral Claims, Greenwood Mining Division, for Utah Construction and Mining Co. Assessment Report 1067.

APPENDIX 1

Diamond Drill Logs

Hole Tam 95-06

To test the Qtz-eye porphyry, 4 oz intercept, and large low grade area in Hole 92-27, and to test the Wild Rose Fault in the sample plane as 92-27.

Easting:

Northing: Tam 91 Grid 0+46 N 7+45 E

Azimuth:

220°

-65° (no dip test)

Dip: Depth: 129.8 metres

Drilled Sept 30 - Oct 1, 1995 Drilled by: Beaupre Drilling

Logged by: L. Caron

Core stored at Boundary Falls.

Inte	Interval Rock type		Description			Sa	ample		
From (m)	To (m)			Alteration	Mineralization	Sample Number	From (m)	To (m)	Interval (m)
0	2.8	Overburden	0 - 2.4 m Casing 2.4 - 2.8 m Rubble of ultramafic						
2.8	3.4	Ultramafic	Dark bluey-grey, strongly magnetic, mod soft, serpentinized ultramafic	Mod qtz and carb vnlts + small silic'd (qtz flood) zones.	5-10% diss py	128551	2.4	3.4	1.0
3.4	73.5	Golden Fleece Intrusive	Large interval of qtz diorite (rare qtz eye) intrusive. Top 30 m or so is complex zone of contact bx, chilled margin, dykes of B phase. Qtz eyes are v difficult to see throughout but espec in top complex zone where they are cracked and overprinted by fine py & py vnlts. At 31.4 m becomes good, massive Golden Fleece intrusive.						
			3.4 - 4.85 Golden Fleece int, Fe stained, cut by numerous qtz strings which incorporate 2-3 mm qtz eyes. Soft, perv clay alt'd. Looks like Hole 92-27 intersept near 4 oz zone. This also somewhat resembles Tert fsp porpy dyke as in Holes 95-03, 04, and 05. @ 4.85 m is sharp bx contact zone (3 cm wide) @ 65° with dark intrusive + grey chert frags in silic'd intrusive mrtx.	3.4 - 4.85 Abund grey qtz stringers, dom @ 15-25° to C/A, rare fluor xtals. Perv clay alt'n.	3.4 - 4.85 2-5% fine diss py	128552	3.4	4.85	1.45
			4.85 - 5.7 B PHASE DYKE (or poss Olivine Basalt dyke). V fng, dark grey with epid alt'n. Loks like fng B phase dyke. Occass see large qtz eyes but these look to be ang frags of qtz eye unit within this fng intrusive (this is not always obvious). See irreg tight bx zones with	4.85 - 5.7 Minor ep with qtz in tight vns and bx zones	4.85 - 5.7 Hairline qtz-py stringers + 2-5% diss py.	128553	4.85	5.7	0.85

dark intrus, white qtz, grey chert + qtz-eye porph. Rare oliv (or could be clots of epid??). @ 5.7 m is sharp contact with grey qtz-eye porph @ 45°						
5.7 - 10.5 Complex interval of pale grey-brown chilled Golden Fleece + contact bx with grey chert clasts in intrusive mtrx + large irreg dyke?/clasts of dark grey B phase + v soft, clay alt'd stressed	5.7 - 10.5 V minor qtz-carb- py stringers	5.7 - 10.5 v minor py	128554	5.7 8.2	10.5	2.5
looking intrusive. Minor rusty fracs.						
10.5 - 12.5 Golden Fleece int. Med grained, grey, rare qtz eyes. 25% euhedral (saus) fsp, avg 1mm, rare 2-3 mm qtz eyes, 20% small qtz	10.5 - 12.0 Py altering mafics, fsp saus, minor	10.5 - 12.0 5% py - altering mafics + diss	128556	10.5	12.5	2.0
phenos/gmass qtz, 15% mafics (being alt'd to py) in fng qtz rich gmass.	grey qtz vnlts 12.0 - 12.5 silic'd, bx, v rusty	12.0 - 12.5 5-10% py	128557	12.5	15.5	3.0
12.5 - 20.6 DARKER, MORE MAFIC INTRUSIVE (prob B phase, or poss Knob Hill?)	12.5 - 13.5 Fsp saus. Mod perv	12.5 - 20.6 Minor diss py +	128558	15.5	18.2	2.7
12.5 - 13.5 Good porph intrus test with 50% 1-2mm fsp (saus) in str clay alt'd mtrx. Grey colour. Good alt'n front @ 60° @ 13.5 m. 13.5 - 20.6 Darker grey. Looks fng but text sim to above on split surface. Strongly alt'd to clay/chl/2ndary bio. V soft. >>> mafic	clay-chl alt'n. Alt'n front @ 13.5 m @ 60°to C/A.	py vnlts. Locally up to 5%. Tr cpy.	128559	18.2	20.6	2.4
component than in Golden Fleece. Could be alt'd B phase, or poss Knob Hill Group.	13.5 - 20.6 Str chl-clay alt'n + reddish 2ndary biotite. Minor qtz+carb vning.					
	@17.2 m 4 cm white qtz vn @30°					
20.6 - 31.2 CONTACT ZONE. CHILL ZONE - CONTACT BX ZONE, above main body of Golden Fleece intrusive.	20.7 - 31.2 Minor grey qtz	20.6 - 20.7 Minor py (after	128560	20.6	23.1	2.5
20.6 - 20.7 White chill zone, 60% fine granular qtz cut by dark chl vnlts.	vnlts, minor white clay/seric on fracs.	mafics) + diss	128561	23.1	25.6	2.5
20.7 - 31.2 Contact/intrusive bx zone with irreg zones & bx frags of pale br chilled Golden Fleece/rhyolite?, grey & white chert,	@ 23.5 m 3 cm zone of parallel	20.7 - 31.2 1-2% diss py,	128562	25.6	28.1	2.5
older fsp porph intrusive (as in 12.5 - 13.5) in intrusive qtz-eye porph mtrx. In places bx frags avg 1-3 cm and make up 40-50% of the rx. Other places bx frags exceed 5-8 cm, or rx may be pale br	grey-white banded qtz vnlts @ 40°to C/A	minor py vnlts, locally up to 5% coarse diss py	128563	28.1	31.2	3.1
chilled qtz-eye proph for 20-30 cm with no bx frags.	31.1 - 31.2 @ lower contact is zone of 10% vugs, with white clay					
	partially filling					

.

	31.2 - 73.5 GOLDEN FLEEC	E INTRUSIVE	vugs + > py than					
	1 (above	2. 2. 22.0				
			31.2 - 33.0 Mod-	31.2 - 33.0	128564	31.2	33.0	1.8
1 1			str py+ clay?/seric	Minor py + tr cpy in vuggy				
1 1]		alt'n. Soft, local	vnlts with qtz.				1 1
			greenish caste.	I-2% diss py.				
1 1	1		33.0 - 34.9	Locally py	128565	33.0	34.9	1.9
1			Vuggy, locally	stringers define			1	1
1 1	1		silic'd & cut by	weak fabric.			1	
			qtz-py strngrs &	Also local 1-2			1	
1			bx zones . Bx	cm zones of		i	i	
1 1			zones are	massive py + tr			1	
1	1		epithermal looking	сру.			İ	1 1
1 1	1		with kaolinized	17		1	ĺ	i i
			intrus frags & fsp	34.0 - 34.9			1	1
			in grey qtz mrtx -	5% fine py				1.
1			may have up to		128566	34.9	38.0	3.1
			10% vugs to 0.5					
1	39.2 - 40.4 This zone is paler	grey, med grained with strong intrus	cm locally. Sharp		128567	38.0	41.0	3.0
1	texts.		upper and lower				1] [
			contacts @ 33.0 &		128568	41.0	44.0	3.0
			34.9 m @ 20° to				1	1 1
	1		C/A.	34.9 - 60.8	128569	44.0	47.0	3.0
1 1			34.9 - 60.8	2-5% py, diss &		l	1	1 1
1 []		Fsp saus, Py	as partial alt'n of	128570	47.0	50.0	3.0
1 1			partially altering	mafics + locally	120070	1	1	
1 1			mafics. Mod soft.	as large patches. Minor hairline	128571	50.0	53.0	3.0
1 1			Minor grey qtz + white clay/seric	py vnlts. Minor	120371	30.0	33.0	1 3.0
1 1			vnlts. Pale	cpy, gen with py	128572	53.0	56.0	3.0
			greenish tinge	in large patches.	120372	33.0	30.0	3.0
1			(from seric?). Rx	in targe pateries.	100573	560	50.4	1
			are slightly harder		128573	56.0	58.4	2.4
			here, texts blurred		100551		(0.0	
			and sugary looking		128574	58.4	60.8	2.4
			than in 31.2 - 33.0.					
			Is this weaker alt'n		128575	60.8	63.8	3.0
			or poss d.t. silica					
		ned fsp porphyry with rare qtz-eyes.	here (ie.phyllic)?	60.8 - 66.7	128576	63.8	66.7	2.9
		ned and paler than above or below.	60.8 - 66.7 Fsp	5% py - diss,				
	Rare chert clasts to 6 cm.		saus. Mafics part	vnlts, and part				
			alt'd to py. Minor	alt'n of mafics				
			grey chalc &	a.c.n or manos				
			xtalline qtz vnlts					
			with chl &			i		
			with chl &			<u> </u>		

				clay/seric zones					
				within. Vns dom @ 40°& 80°to					
				C/A. Minor white					
				seric? on fracs.	İ				1
			66.7 - 70.2 Med grey-green Golden Fleece with rare qtz eyes.		<u>66.7 - 70.2</u>	128577	66.7	68.4	1.7
			Finer grained than above and darker. Stronger alt'n than above	66.7 - 70.2	5% py - dom in	120377	00.7	00.1	• • • • • • • • • • • • • • • • • • • •
			with seric fsp & zones of silic'n, bx & vning throughout.	Fsp pale green, sericitized, mafics	large patches with tr cpy in	128578	68.4	70.2	1.8
				chlitized. Local	silic'd zones &		1		
				silic'd or silic'd bx zones to 30 cm	vns.				
				within this	1				
				interval. 30% of			i		
				this interval is					
				silic'd intrus or vning. Qtz vns are					
				clear-white, may					
				have fluor, may					
				also have py as					
				selveges and may					
				be banded clear- white-grey qtz &					
				may be vuggy with					
				qtz or fluor druse.	Ì				
	1	ĺ	70.2 - 73.5		70.2 - 73.5			İ	
			Pale grey, med grained qtz-eye fsp porph as in 60.8-66.7. Mod soft, mod alt'd & increasingly vuggy from 71.5 - 73.5.	70.2 - 73.5 Fsp saus. Pale	5% py, as part. alt'n of mafics,	128579	70.2	73.5	3.3
			sort, mod ait d & increasingly vuggy from 71.3 - 73.3.	green-grey mod	coarse clots.		Ì		
				soft, sericitized	diss, & +/- with				
				mtrx. Mafics part	qtz in vnlts.				
				alt'd to py. Minor					
				qtz vnlts may be vuggy.					
73.5	85.6	Contact /	Complex zone of I)Intrusive bx with angular clasts of chert &	Local silic'd zones.	2-5% py - finely	128580	73.5	76.5	3.0
		Intrusive	intrusive + large qtz eyes with fng, often chilled intrusive mtrx.	Mod-abund white	diss + vnlts +	128581	76.5	79.5	3.0
		Breccia	Clasts range from <0.5 cm to >6 cm. Bx is mtrx supported with	qtz+/-carb vnts & space finning +	hairline stringers	128582	79.5	82.5	3.0
			gen 20-40% clasts. and 2)Pale br chilled Golden Fleece and 3) Med	grey qtz vnlts	may define weak fabric	128583	82.5	85.6	3.1
			grained med gry-green qtz-eye porph with saus fsp.	,	@80° to C/A.				
85.6	90.1	Fault Zone	Mixed zone of chert/qtz frag bx with black pyritic mtrx, chert,		85.6 - 85.8				
			intrusive, gouge/vning. Core is very broken - poor recoveries.		10-15% py -	128584	85.6	88.0	2.4
	1		85.6 - 85.8 Bx - 40% ang frags, 3mm - 3cm in size, of alt'd intrus,		coarse clots & v			1	
	(1	1 85.6 - 85.8 Bx = 40% and Irags, 5mm = 5cm in size. Of all a initus.		fine in bx mtrx				

			_					·	
			85.8 - 86.1 Pale grey-brown fine grained chilled intrusive, mod soft, cut by abund grey qtz vnlts. Weak fabric defined by qtz vnlts & hairline py strngrs @70° to C/A. 86.1 - 89.1 Med grained, pale grey Golden Fleece intrusive with rare qtz eyes, 50% alt'd fsp, with bx, gouge and silic'd zones @ 87.32-87.33; 87.55-87.80 Chert crackle zone 87.8-88.0 Gouge/qtz vn/chert bx zone @ 88.0-88.5 89.1 - 90.1 Grey chert- mod broken, with chl stringers and on fracs	85.8 - 86.1 Abund stkwrk grey qtz vnlts cutting less common earlier white qtz vnlts. Mafics alt'd to py. 86.1 - 89.1 Fsp saus, mafics alt'd to py + chl	85.8 - 86.1 10% py as part alt'n of mafics, with qtz in vnlts, and as hairline stringers 86.1 - 89.1 2% py, as part alt'n of mafics + with chl in hairline stringers 89.1 - 90.1 2% py - diss + with chl in stringers	128585	88.0	90.1	2.1
90.1	91.1	Chilled Intrusive / Contact Bx zone	Pale grey brown chilled intrusive with 20% large angular-round clasts of grey chert to 15 cm in size. Weak fabric defined by chl-py vnlts @50° to C/A.	Minor seric & chl on fracs. Minor qtz vnlts.	2% py - as narrow vnlts	128586	90.1	91.1	1.0
91.1	93.0	Chert	Grey - pale green chert. Textureless with rare clasts of pale br chilled, silic'd intrusive- also v fng & v siliceous, but characteristic pale br colour and rarely see rem fsp & qtz phenos + gmass qtz grains.	Minor chl on fracs and with py.	3% py - diss & as narrow vnlts.	128587	91.1	93.0	1.9
93.0	117.1	Silic'd Intrusive / Mylonite Zone	Majority of zone is medium grey, fine grained, hard with rem intrusive text visible. Looks to be same intrusive we've been in, although darker here and silic'd. Has stressed appearance with paler fing material around clasts of chert or silic'd int which gives weak fabric @ 60°. Hornfelsed looking zones locally near lower contact. Alsolocally get zones of paler grey, soft alt'd pyritic intrusive as higher in hole. Also, locally looks like grey chert, or poss so intensely silic'd intr that no texts left.	Gen mod-str silic'n. Mod white & grey qtz vnlts.	2-4% py - diss & coarse in vnlts.	128595 128588 128589	93.0 96.0 99.9	96.0 99.9 100.4	3.0 3.9 0.5
			99.4 - 100.4 Qtz vn - white, crackled looking with seric + py/chl on fracs. V. broken with poor recov. 102.0 - 102.1 10 cm qtz vn as above @50°to C/A.			128590	100.4	104.0	3.6
		-	102.3 - 102.4 Bx vn with 5 cm zone of massive py, then 5 cm of white qtz frags in py mtrx @55°to C/A.		102.3 - 102.4 40% py, 2% cpy in vn & bx intrx				

			102.4 - 103.6 Minor narrow qtz bx zones with intrus frags in qtz mtrx & occassional large patches of py.	mod pale-emerald green clay - poss marip? In vnlts &		128591	104.0	107.5	3.5
			106.9 - 107.0 Qtz bx zone with grey silic'd intr frags in whit qtz	on fracs.		128592	107.5	110.5	3.0
			107.3 - 107.5 Qtz bx zone as above, @ 10° to C/A, could be same zone as in 106.9-107.0, but running down zone?	104.2 - 106.9 Pale grey with saus fsp, soft alt'd mtrx		128593	110.5	113.5	3.0
			112.2 - 3 cm grey clay gouge zone	& mafics alt'd to py. Cut by		128594	113.5	117.1	3.6
				numerous grey qtz vnlts.					
117.1	129.8	Attwood Group Mudstone	Typical greenish-grey Attwood interbedded mudstone/grit with rare chert clasts. Gritty sst may be as ang clasts within mudstone. Locally weakly vuggy but unalt'd, unminz'd. Bedding @ 50°. 2 cm grey gouge zones @ 117.4m and 118.0 @ 60° @ 117.1 sharp contact @ 30°		1% euhedral diss py + py vnlts.				

Hole Tam 95-07

Test Hole 92-27 zone deeper in same section as Hole 95-06, same set-up as 95-06.

Northing: Tam 91 Grid 0+46 N

Easting:

7+45 E

Azimuth: Dip:

220° -85°

Depth:

199.3 metres

Drilled Oct 1-3, 1995

Drilled by: Beaupre Drilling Logged by: L. Caron Core stored at Boundary Falls.

Inte	rval	Rock type	Description			Sample			
From (m)	To (m)			Alteration	Mineralization	Sample Number	From (m)	To (m)	Interval (m)
0	2.1	Overburden				ivanioci	(111)	(111)	(111)
2.1	4.5	Ultramafic	Dark blue-grey, fng, strongly magnetic, 20-30% fine fsp visible, 70% fine mafics. Same as @ top of 95-06. Dyke cutting KH Group metavolcs, contact @ 80°.	Mod white qtz vning, dom @ 60°	5% diss py				
4.5	6.8	Knob Hill Group Metavolcs	Pale grey-green, fing, mod hard, up to 10% xenoliths of chert & dark alt'd intrusive. Flow bx? 4.5 - 5.7 Broken with rusty fracs, bleached gougy zone @ 5.6-5.7m.	v minor qtz vnlts	2-4% py, diss & vnlts				
6.8	8.9	Ultramafic	as in 2.1 - 4.5 m						
8.9	25.8	Knob Hill Group interbedded Metavolcs and Chert	8.9 - 16.1 Metavolc as in 4.5 - 6.8. Rem fsp, 20%, <1mm visible locally. Mottled appearance dt alt'n.	8.9 - 16.1 mod perv clay- chl, minor qtz vnlts	8.9 - 16.1 2% py, dom with qtz in vnlts.				
			16.1 - 16.45 Chert, v fng, grey, v hard, cut by minor buff clay-carb vnlts + py vns. 16.45 - 16.75 Metavolc as above 16.75 - 17.3 Chert as above	16.1 - 16.45 Minor buff clay- carb vns 16.45 - 16.75 as in 8.9 - 16.1	16.1 - 16.45 1-2% py 16.45 - 16.75 2% py, dom with qtz in vns	128601	16.75	18.4	1.65

	T	T	17.25 17.2 04-11	1725 172	1725 175	T	T		Τ
]	17.25 - 17.3 Qtz vn	17.25 - 17.3	17.25 - 17.5 2-5% fine py			٠.	
1				qtz vn, vuggy	2-3% Tine py				
1		i		open space, with	1		1		
				grey chert clasts				1	
		1		in drusy qtz vn,					1
1		1		30° to C/A.					1
								i	
	l	1	17.3 - 18.4 Metavolc, clast supported bx with 90+% ang	17.3 - 18.4	17.3 - 17.84				1
			clasts of alt'd volc, may be silic or clay alt'd with silic mtrx.	bx, silic mtrx	1-2% diss py			1	
			5% vugs with rusty clay partial filling.						i
1	[İ					1
			18.4 - 19.8 KH intrusive, med grained, mod fabric @ 40° to		<u> 18.4 - 19.8</u>	1			
			C/A defined by hairline mafic segregations alt'd partially to		3% py, part		Ì	į.	
			py. 60-70% fsp, 30% mafics, darker than G Fleece and		alt'n of mafics.				
			missing qtz.				1		1
			19.8 - 20.0 Metavolc as above			1		İ	
				İ					
			20.0 - 22.5 Chert as above, minor chl on fracs.		20 - 22.5	İ	1		
			20.7 - 20.8 narrow dyke of pale green alt'd intrusive	20.7 - 20.8 and	2-3% py,	ļ			
			21.1 - 21.5 alt'd dyke as above, @ 70°	21.1 - 21.5	except for tr.				i
			21.5 - 21.8 Fault zone. Tight bx with 60% clasts, avg <	str clay alt'n	in dykes		İ	ļ	ļ
			Icm of metavolc, chert and pale pink intrusive? + rare qtz	Sil Clay alt II	in dykes				
			eyes with greenish chl mtrx.						
			22.5 25.8 KII ii i- 18.4 10.8		22.5.25.8				
			22.5 - 25.8 KH intrusive as in 18.4 - 19.8m.		22.5 - 25.8	1			
1					3% py, part			1	
25.0	20 (alt'n of mafics				
25.8	39.6	Contact Bx	Contact phase of qtz-eye porph unit (G Fleece) with KH		2-3% py, diss				
ļ			Group. Mixes zone of KH metavolcs, qtz-fsp porph, and bx		and vnlts.		i		
			with clasts of chert and metavolcs in intrusive mtrx + chilled			128602	25.8	28.5	2.7
			G Fl intrusive. Minor fracs @ 40° show weak slicks + qtz						
]			vnlts.						
			28.5 - 29.7 Dyke of B phase intrusive		<u> 28.5 - 29.7</u>				
					5% py, diss				
			31.0 - 31.7 Zone has up to 10% epithermal grey-white bx vns		and vnlts.				
			@ 40°, to 3 cm wide. Bx vns may be open space, with small	10% epith qtz bx					
			ang alt'd clasts in fng silica mtrx.	zones to 3 cm		128603	29.7	31.7	2.0
				wide.					
نـــــا			1						

.

39.6	68.4	Golden Fleece	Pale grey, med grained with 30% fsp, 20% qtz phenos, 10% mafics, avg 1mm in fng gmass. Massive with good core	Mafics part alt'd to py + chl, fsp	5% py, diss and vnlts. Tr	128604	39.6	42.6	3.0
		Intrusive	recov. Up to 5% xenoliths locally, <1 cm, round to	saus (phenos and	cpy and minor				
			subangular, of dark grey mafic rich rx, part alt'd to py in	gmass). Mior	patchy				
			places. Also rare chert xenoliths. Mod soft with pale green	white qtz vnlts,	pyrrhotite	128605	47.7	50.2	2.5
			tinge from saus of fsp phenos & gmass fsp. Mtrx may have pink tinge locally. Local zones of contact bx as above ie)	rare grey qtz epith bx vnlts @	ie)47.8				
			41.9 - 42.7 @ 30° to C/A.	30° ie) 41.9,	ļ	128606	50.2	52.0	1.8
			11.9 - 42.7 @ 30 to C/A.	62.4m.		120000	30.2	32.0	
			47.7 - 52.0 Interval of >> qtz vning, espec 50.2 - 52.0. Low					ĺ	
			angle, white xtalline bull qtz with fng grey qtz selveges. Gen			128607	55.7	57.5	1.8
			unminz'd.						
			Pale grey gouge/intense clay alt'd zones @			128608	57.5	59.3	1.8
	1 1		55.7 - 55.75		İ		ł		
			56.5 - 56.6						
]]		57.2 - 57.25	500 601		120600	50.2	(2)	20
			57.8 - 57.83 @ 25° to C/A	59.3 - 62.1 str silic'd		128609 128610	59.3 62.1	62.1 63.8	2.9
	1		58.3 - 58.5	Str stric d		128611	63.8	66.8	3.0
			63.8 - 68.4 characteristic pale grey-yellow-br fng mod soft,			128612	66.8	69.3	2.5
			chill phase of G Fleece intrusive.						
68.4	69.3	Contact Bx	Contact phase of G Fleece intrusive, sim to above but with >>	Minor qtz vnlts	2-4% diss py				
			chilled intrus, < bx clasts of chert + ?, chilled mtrx soft.						
69.3	117.9	B phase	Dark grey, fng, hard. Massive with good core recov and	V minor qtz-py- chl vnlts + late	2% py dom as				
		intrusive	minimal qtz vning. Occas coarsens slightly to show 30-40% fine fsp about 0.5 mm. Here it looks like G Fleece is	epith qtz vnlts	large patches			ļ	
	1		intrusive into this by chilled G Fleece zones and contact bx	epitii qiz viits	with po and tr				
			zones, but relationships elsewhere suggest B phase intruded		cpy. Dom dir				
			late along pre-existing G Fl contact.		of py vnlts @				
					60° to C/A.				
			Becomes v fng, v hard locally. Rare xenoliths of chert + alt'd						
	[intrusive. A number of intervals of pale yellow chilled G						
			Fleece within, as remnants within B phase, or B phase	02.2 04.0					
			intruded as dykes into chilled G Fl.	92.2 - 94.0 str clay alt'n,	92.2 - 94.0	128613	92.2	94.0	1.8
			92.2 - 94.0 Chilled G Fleece with 10 cm weak epith bx zone within, Sharp lower contact @ 80° to C/A.	local gouge,	92.2 - 94.0 Minor py	120013	72.2	34.0	1.0
			within, Sharp tower contact to so to C/A.	minor qtz vnlts,	Millor py				
				10 cm epithermal		128614	95.8	98.5	2.7
				zone @ 93.2m					

			95.8 - 100.9 Chilled G Fl as above. Str clay alt'n. Also a number of intervals of KH chert, again remnants within B phase.	95,8 - 100.9 Str clay, str white clay on fracs, minor qtz and epith qtz	95.8 - 100.9 Minor py	128615	98.5	100.9	2.4
			105.5 - 106.1 Chert. 111.4 - 115.7 Mixed zone of chert, chilled G Fleece and B phase intrusive with mod qtz vning and str silic of G Fl. Mylonite zone?	vnlts and bx zones 111.4 - 115.7 Str silic, mod qtz vning dom @ 45°.	111.4 - 115.7 2-5% py	128616 128617	111.4 113.5	113.5 115.7	2.1 2.2
117.9	129.0	Contact Bx, Mylonite zone	Contact bx zone, sim to where seen above but stressed looking without good bx texts for the most part. Mylonite zone sim to 111.4 - 115.7. Chert frags are large, commonly > 6cm, make up to 15% of zone. Material between frags is chilled G Fl. Fol'n and dom dir of epithermal vning is 50° to C/A.	Mod white qtz vnlts and epith grey qtz vnlts and bx zones to 4 cm which may have fine py rich mtrx		128618	121.8	124.8	3.0
			122.0 - 122.7 Fault. v broken, poor recov, pyritic with qtz vning.	122.0 - 122.7 Fault zone	122.0 - 122.7 15-20% fine diss py				
129.0	169.6	Diorite intrusive	As in 95-08 109.8m Mixed sequence of dark green, med-fine grained, massive hard B phase intrusive as dykes dutting paler med grained intrusive, also massive but bleached and silic'd, more alt'd than typical B. Also intervals of KH chert and gst. Prob older intrusive cut by B dykes.	129.0- 153.1 silic'd throughout with zones of more intense silic + bleaching	Minor diss py throughout. Str py in qtz vns as selveges and bands.	128619	130.2	131.2	1.0
			132 - 133 chert/tuff weak bedding @ 50°.	130.2 - 131.2 intense silic, minor grey silica flood zones		128620	131.2	134.2	3.0
				133.0 - 133.8 bleached, silic'd 134.2 - 137.7		128621	134.2	135.9	1.7

				bleached, silic'd,	1	128622	135.9	137.7	1.8
				mod qtz vning		128623	137.7	137.7	2.2
				mod qiz viilig		120023	137.7	139.9	2.2
				139.9 - 153.1					
				bleached, silic'd,		128624	139.9	143.0	3.1
1	!			, , ,		120024	139.9	143.0	3.1
				mod qtz vning		128625	143.0	146.0	3.0
				152 1 165 1		120023	143.0	140.0	3.0
			153.1 - 165.1 Mottled, greenish-grey intrusive, soft, clay-chl	153.1 - 165.1 clay alt'd, mod		128626	146.0	149.0	3.0
						128020	146.0	149.0	3.0
			alt'd, cut by qtz vns, heavy py locally, local silie'd zones. V rare qtz eyes in soft, mottled stressed looking zones.	qtz vning and flood zones.		128627	149.0	151.0	2.0
			Trace que eyes in sort, mothed stressed looking zones.	153.5 - 153.9		120027	149.0	131.0	2.0
				int silic'd		128628	151.0	153.1	2.1
1				zone or chert?		120020	151.0	133.1	2.1
				Zone of chert?		128629	153.1	156.0	2.9
				154.3 - 154.6		12002)	133.1	150.0	1
				white qtz vn,	154.3 - 154.6				
				40% banded py	40% py as				
				. s.v bandea py	bands and				
					zones within	128630	156.0	159.0	3.0
					qtz vn,	. 30000			
					banding 60° to	128631	159.0	162.0	3.0
					C/A.		1 27.10		
				156.1 - 156.2		128632	162.0	165.1	3.1
				sulfide rich qtz	156.1 - 156.2				
				vn @ 45° to C/A	20% py, diss	128633	165.1	167.3	2.2
					and as bands				
}					within qtz vn,	128634	167.3	169.6	2.3
			165.1 - 169.6 Pale grey-yellow, typical G Fleece chill zone.		banding 45°.				
			Fine grained, hard, siliceous, rare mafics.						
169.6	196.3	Mixed zone	Complex section of tectonic and stressed contact bx. Looks		3-5% diss py				
		Wild Rose	like G Fleece intrudes along flt zone with existing qtz vn, flt						
		Fault	zone thus becomes a contact bx zone of intrusive, later						
		(169.6-182.1)	movement on flt and intrusion of Tert dyke causes tectonic bx						
		and Contact	overprint.						
		Bx zone							

	I		169.6 - 172.0 Pale grey-green, int silic'd bx zone. Tect/epith	169.6 - 172.0		128635	169.6	172.0	2.4
1			bx overprint to contact bx. Ang clasts of chert, qtz and intrus	int silic bx zone					
			in fng silica or silic'd intrus mtrx.						
1						128636	172.0	173.5	1.5
			172.0 - 173.5 Contact bx with chert +? clasts in mtrx of						
			chilled G Fl + silic'd G Fl. Also interval of softer more clay		İ	i			
	ŀ		alt'd G Fl as in large interval above flt.		<u>173.5 - 174.0</u>	128637	173.5	174.0	0.5
İ					Minor py and		i		
			173.5 - 174.0 White qtz vn, high temp looking, looks early,		сру.			İ	
			v irreg contacts.			120620	1740	126.5	2.5
			174.0 178.0 Streeted contact by gone on in 160.6 172.0	1740 1790		128638	174.0	176.5	2.5
			174.0 - 178.9 Stressed contact bx zone as in 169.6 - 172.0, but clay alt'd, not silic'd.	174.0 - 178.9 mod clay alt'd,					
1			out clay alt d, not sinc d.	mod qtz vning		128639	176.5	178.9	2.4
			178.9 - 182.1 Tertiary FP dyke. Massive, unaltd, chilled	and bx zones.		120037	170.5	170.5	2.7
			contacts @ 75° to C/A.	and ox cones.					
			182.1 - 196.3 Contact bx zone with indistinct large clasts of	<u> 182.1 - 196.3</u>					
			med grained intrusive and less common chert with mtrx of	mod-str perv					
			chilled or fine grained G Fleece intrusive. Mod-str perv clay-	clay-chl alt'n,					
			chl, stressed looking.	minor qtz vns	ļ				
1				and chl-seric on					
				fracs.					
196.3	199.3	Attwood	Characteristic Attwood Group sed in fw of Wild Rose Fault.	str seric on fracs.					
		Group seds	Pale green-brown mudstone with grit bands, bedding 20-30° to C/A.						

Hole Tam 95-08

To test the Wild Rose zone deeper in the same section as Holes 92-27, 95-06 and 95-07.

Northing: Tam 91 Grid 1+00 N Easting: 8+40 E

Azimuth: 220° Dip:

-65°

Depth:

231.3 metres

Drilled Oct 3-5, 1995

Drilled by: Beaupre Drilling Logged by: L. Caron

Core stored at Boundary Falls.

Inte	rval	Rock type	Description				Sample			
From	То			Alteration	Mineralization	Sample	From	To	Interval	
(m)	(m)			}	İ	Number	(m)	(m)_	(m)	
0	7.4	Overburden								
0	26.6	B phase	7.0 - 7.4 Fine grained, dark grey-green, weakly magnetic, B		Minor diss py					
		intrusive	phase dyke. Massive, unalt'd.	ļ	and py vnlts.					
		with					1			
		intermixed	7.4 - 10.8 Older intrusive, soft clay alt'd, broken with v rusty	7.4 - 10.8 perv	7.4 - 10.8	128651	7.4	10.8	3.4	
		Knob Hill	fracs, local heavy bands of py + mod qtz vning. Strongly	clay alt'd. Mod	Local band to	1				
1		Group	bleached locally.	qtz vning, may	50% py, to 0.5	Ì]			
		intusive +		be strongly	cm wide, with]	
		lesser chert	10.8 - 13.2 Massive fresh B phase dyke as above, with sharp	bleached	qtz.		ł		1 1	
		and gst	contacts @ 60°.			Ì			1	
			13.2 - 16.8 Older fsp rich intrusive as in 7.4 - 10.8 14.5 - 14.7 grey int clay alt'd/gouge zone 14.7 - 15.8 banded cherty zones - mylonite?	13.2 - 16.8 as in 7.4 - 10.8		128652	13.2	16.8	3.6	
			16.8 - 21.3 Massive fresh B phase dyke as above @ 50° to C/A.							
			21.3 - 24.4 Mixed zone of KH chert, muddy gst and str clay alt'd older intr with rusty fracs and mod qtz vning	21.3 - 24.4 str clay alt'd,	24.4 - 26.6 Minor qtz vnlts	128653 128654	21.3 24.4	24.4 26.6	3.1 2.2	
			24.4 - 26.6 Massive fresh B phase dyke as above, @ 70° to C/A	mod qtz vns and bx zones.	with 10% py + minor cpy					
					L			L	<u> </u>	

26.6	87.0	Mylonite	Mixed zone of pale green, fine-med grained, older intrus +	Mod qtz &	2-3% diss py +	128655	26.6	29.0	2.4
		zone	chert + gst, sheared looking, textures are mottled and	qtz/py vning.	>> py in cherty	ļ		1	1 1
			indistinct. Looks sim to contact bx/mylonite zone seen in	Min epitherm	clasts & minor	128656	29.0	31.4	2.4
	1	1	Holes 95-06 & -07. Mod qtz vning and qtz-py vning and	chalc bx zones.	py in qtz vns.	i	1	1	
1			minor epith chalc qtz bx zones. Mod broken with rusty fracs	Minor seric on			1	1	1 1
	i		and minor seric on fracs. Cut by rare late B phase dykes.	fracs. Local			1	1]
	1	İ		mod-str clay				1	
		ł	31.4 - 31.8 bx zone with 10-20% small chert + qtz vn clasts	alt'n.		128657	31.4	32.2	0.8
	1		in grey gougy py mtrx.					1	1 1
		İ				128658	32.2	35.4	3.2
			31.8 - 32.1 v broken, rusty				}		1 1
						128659	35.4	38.4	3.0
			32.1 - 32.2 grey epith chalc qtz bx zone with 10-20% small				1	1	1 1
			chert and intr clasts in grey chalc qtz mtrx.						
							1		1
			48.6 - 50.2 Dyke of fng dark grey B phase intrusive			i			
		Ì	51.8 - 57.6 aphanitic volc or poss chilled Knob Hill intrusive.						1
			Muddy grey, cherty appearance but not hard enough, abund	1			1		
			fine fsp on stain. Massive unalt'd with little vning.						1 1
			thie isp on stain. Massive dilate d with fittle villing.					İ	
	İ		70.7 - 73.3 aphanitic volc or chill zone as in 51.8 - 57.6m. V						
	ļ	ļ	sharp but irreg contacts.	1	1	1			1
	ļ	ĺ						İ	
1			79.0 - 85.0 Same contact bx/mylonite zone, but looks			128660	79.0	82.0	3.0
			slightly alt'd here. Zone is about 15% chert clasts with			128661	82.0	85.0	3.0
			stressed intrusive mtrx, may be chilled. Minor clay-chl on	[1	!			1 1
			fracs.	i			[İ	1 1
							İ		1
			81.3 - 81.4 bx zone with 30% small white qtz and chert						
			frags in grey qtz-py mtrx.		1				
			@ 85.0 bx/mylonite becomes dom aphan volc mtrx with only				1		1 1
			minor chert clasts and irreg zones						
87.0	109.8	Knob Hill	Pale grey-white, fng, v hard chert. Locally cut by tight	Minor late white	<u>87.0 - 99.6</u>				
		Group Chert	networking clear qtz vnlts (looks remobilized, not introduced	qtz-clay vnlts.	Minor diss py				
			silica), which can locally make up 30% of rx ie)93.0m	Minor chl+py on	& rare large				
			92.0 - 92.1 narrow yellowish chilled G Fleece dyke @ 60°	fracs.	patches				
	-		1 12.0 - 32.1 narrow yellowish chinica of recee dyke (b) 00						
	i								
	1		L						LJ

The second secon

		1	100 (100 0 -1 -11 - 1 - 1 - 1 - 1 - 1 - 1	T 00 (10(0	100 6 106 0			- 	7
			99.6 - 106.0 chert has v peculiar texture, small grey wavy	99.6 - 106.0	99.6 - 106.0				
		1	blebs, not visible on sawn surface.	Minor chl+py on	5% py - diss &				1
1				fracs. Rare	vnlts & large	1			
		ĺ		narrow bx zones	patches with chl		į		
1				to 1 cm with ang	on fracs				
				chert clasts					1 1
1				supported by					1
				grey pyritic soft	l]
				mtrx.					
109.8	180.0	Knob Hill	Mixed zone of dom older KH Group diorite intrusive, lesser	weak-mod qtz	2-3% py as repl			T	
1		Group	chert and gst, cut by dykes of fresh, B phase intrusive and	vning in KH dior	of mafics +	1			1 1
		intrusive,	pale yellow-grey chilled alt'd G Fleece intrusive.	& mod chl alt'n	with qtz in vns	l			1 1
		chert and			in KH intrus.		1		
		gst, intruded	109.8 - 118.3 KH diorite		Tr-1% py in G				
		by B phase			Fl and B phase				
		and G Fleece	118.3 - 118.4 B phase dyke @ 60°		dykes.	1	İ		1
		dykes							1 1
			118.4 - 119.2 KH diorite			ĺ			
			119.2 - 120.0 alt'd chilled G Fleece dyke	119.2 - 120.0					
			120.0 - 121.1 B phase dyke	str perv clay					
			121.1 - 122.0 KH Group greenstone						
			122.0 - 122.3 Alt'd Golden Fleece dyke with minor gouge	122.0 - 122.3					
			zone on lower contact	weak-mod perv clay		128662	126.6	129.3	2.7
			122.3 - 126.6 B phase dyke			128663	133.0	135.5	2.5
			126.6 - 133.8 KH Group diorite with slight increase in qtz			120003	133.0	133.3	2.3
			vning from 126.6-129.5m						
			133.8 - 138.3 KH Group greenstone, pale grey-green	135.1 - 135.4	133.8 - 135.1	128664	135.5	138.3	2.8
			aphanitic volc. Mod hard with minor irreg xenoliths of dark	alt'd zone in KH	3-5% py as				
			green mafic ?, part alt'd to py with bleached rims.	gst, gouge +	large patches,				
			137.8 - 138.2 crackle bx, silic'd	bleaching with	repl mafic xenol				
				abund qtz vnlts	in volcs				
				and pale pink					
				tinge.					

	138.3 - 140.8 KH Group diorite as above. Local bleaching	138.3 - 140.8	128665	138.3	140.8	2.5
	and str-int clay alt'n & minor silic'n. Mod qtz vning + py.	local str-int clay				1 1
'	and sa and only are in the same of the sam	alt'n &	1			
	140.8 - 142.8 KH greenstone	bleaching. Minor				
]]	1.1010	zones of str silic	1	ļ		
						1 1
	142.8 - 147.2 alt'd KH intrusive, stressed looking with rare	142.8 - 147.2	128666	142.8	145.0	2.2
	clasts of chert >> alt'd than above and cut by stockworking	pale bleached				1 1
	vnlts of qtz. 5cm gouge zone @ 145.9m	intrusive, gen		,		
	viii or digit sein Bonde gene @ a man	weak-mod clay	128667	145.0	147.2	2.2
	147.2 - 148.7 KH greenstone as above, massive, unalt'd	alt'd, locally	1			
1 1	117,2 11011	silie'd, stkwrk			1	
	148.7 - 155.9 B phase dyke, Sharp contacts @ 60°.	qtz vnlts. Alt'n				1 1
	Massive, fresh except for zone 151.4 - 153.6. 6cm gougy	stronger in zone				
	contact @ 60° @ 151.4.	142.8 - 144.6.			1	1
	3000000				1	
		<u>151.4 - 153.6</u>	128668	151.4	153.6	2.2
		alt'd, bleached,				1 1
1 1		int perv clay,	ļ			1 1
		mod vuggy qtz	ļ			
		vnlts				
				1		
	155.9 - 158.9 Mixed zone of KH chert, gst and intrusive,	<u>155.9 - 158.9</u>	128669	155.9	158.9	3.0
	stressed and alt'd (silic'd and perv clay) in intrusive zones.	mod-str clay		i		
		alt'n and				i i
	158.9 - 163.0 Massive fresh B phase dyke with 4 cm zone	bleaching, qtz				1 1
	of white qtz vning @ 90° to C/A.	vning and local			1	1 .
		silic'n in stressed				
		intrusive.				1
	163.0 - 166.2 Alt'd KH intrusive, weak bleaching and weak	163.0 - 166.2				
	clay-chl alt'n. Stressed looking.	weak bleaching	120670	1650	166.9	1.9
		and clay/chl	128670	165.0	100.9	1.9
	166.2 - 166.9 Mixed zone of volc & intrus, weak bx text.	alt'n. Min qtz				
	Contact bx??	vning				
		1660 1800			1	
	166.9 - 180.0 KH aphanitic volc	166.9 - 180.0	128671	175.1	177.5	2.4
		crackled with	128671	173.1	180.0	2.4
		network of tight	1280/2	177.5	100.0	12.3
		chl/qtz stringers				
				.1	<u> </u>	<u></u>

180.0	209.9	Tertiary Gabbroic Dyke	Dark grey-black med grained dyke. Mod magnetic. Darker and coarser grained than B phase dykes. Str chl on fracs. Porphyritic with 2-5% biotite phenos to 2mm, 5-10% subhedral px? to 3mm, both which are largely resorbed + 5% lath shaped fsp in fng dark mtrx. Rare chert frags. Sharp upper contact @ 30° to C/A.	Bleached zone @ contacts with clay/gouge.		128673	208.7	209.9	1.2
209.9	216.6	Wild Rose							
		Fault zone	209.9 - 211.7 KH gst with chert frags, mod chl, slicks on fracs @ 30°		209.9 - 211.7 Minor py	128674	209.9	211.7	1.8
			211.7 - 211.85 Qtz vn, white, massive, 2-5% cpy + lesser py as large patches. Sharp upper and lower contacts @ 70°.		211.7 - 211.85 2-5% cpy + lesser py	128675	211.7	211.85	0.15
			211.85 - 212.35 KH diorite?		211.85 - 212.35 minor py	128676	211.85	212.35	0.5
			212.35 - 212.86 Qtz vn, white, with up to 30% wall rx. Massive vn to 212.7, then becomes stockworking vn in wall rx. Vn @ 80° to C/A. 5% py, 5% cpy.		212.35 - 212.86 5% cpy, 5% py	128677	212.35	212.86	0.51
			212.86 - 213.7 Silic'd G Fl? Intrus cut by min qtz vnlts.	212.86 - 213.7 silic'd	212.86 - 213.7 5% py	128678	212.86	213.7	0.84
			213.7 - 213.92 Massive white qtz vn, tr py + cpy		213.7 - 213.92 tr py + cpy	128679	213.7	213.92	0.22
		-	213.92 - 215.9 clay alt'd G Fl intrus?, but by minor qtz vnlts + py vnlts. 215.9 - 216.0 Massive white qtz vn, unminz'd.	213.92 - 215.9 clay-seric alt'd	213.92 - 215.9 10% py - diss & vnlts	128680 128681 128682	213.92 215.9 216.0	215.9 216.0 219.0	1.98 0.1 3.0
216.0	228.0	Knob Hill	Locally looks like Attwood Group below.	Minor qtz vnlts	Minor py - diss				
		Group chert and gst	216.0 - 217.6 Grey-white chert & rare muddy interbeds.		and vnlts	128683	219.0	222.0	3.0
			217.6 - 221.0 v fng muddy looking, up to 15% clasts of chert to 5cm, muddy tuff??			128684	222.0	225.0	3.0
			@ 219.5 5 cm white-buff qtz/bx zone			128685	225.0	228.0	3.0

			221.0 - 228.0 slightly coarser grained, mod hard, fng fsp rich volc? or fine wacke? Cut by minor white qtz vnlts. May have slicks on fracs @ 70°. @ 228.0 1.5 cm qtz vn, heavily minz'd with py-cpy @ contact of volcs andseds @ 75° to C/A.			·	
228.0	231.3	Group sediments	Characteristic brown-grey Attwood group mudstone with gritty bands. Good bedding @ 60° to C/A. @ 228.0 contact @ 75° to C/A.				

.

.

			@ 22.75m sharp contact @ 70° to C/A.		T	T	1	T	
			Comment of the commen	21.75 - 22.75		128710	22.75	25.75	3.0
				perv clay-seric,					
		İ		mod qtz vnlts		128711	25.75	28.75	3.0
						1	İ		
22.75	114.5	Knob Hill			Minor py.	128712	34.7	36.7	2.0
		Group	22.75 - 55.8 Metased. Grey-brown mottled colour with	22.75 - 55.8		}			
		Qtzite-	possible weak bedding @ 50°. Very hard. Locally	v siliceous,					
1		Chert, cut by	segregations of qtz in fine muddy rx, gen fng, locally	minor qtz vnlts.					
		numerous B	granular.			128713	36.7	38.6	1.9
		phase dykes		<u>34.7 - 38.6</u>		}			
		which may be		local bx zones					
		altered		with silic mtrx,	1				
				mod-str qtz					1
				vnlts.		100714	55.0	57.0	1
			55 9 57 2 Ale'd Dahasa dulu Francisco de manuali	55.0 57.2		128714	55.8	57.3	1.5
			55.8 - 57.3 Alt'd B phase dyke. Fng, mod soft, perv chl- clay with rusty fracs and minor qtz-py vnlts. Sim to 62.5 -	55.8 - 57.3 perv chl-clay.		}	1		
			66.0m.	Minor qtz-py				-	1
			00.011.	vnlts. Rusty		128715	57.3	60.3	3.0
			57.3 - 62.5 Grey chert with rusty fracs and up to 5% vugs	fracs.		120/13	77.5	00.5	3.0
			with qtz druse & tan clay.	liacs.					
			1—						
			62.5 - 66.0 Alt'd B phase dyke as in 55.8 - 57.3 m with perv	62.5 - 66.0	62.5 - 66.0				1
1			chl-clay alt'n. Contact @ 80° to C/A.	as in 55.8 - 57.3	1-2% py, as				
					vnlts with qtz				
			66.0 - 68.1 Grey chert, fine grained, locally finely granular.		+ hem.	1			1
			68.1 - 74.3 B phase dyke. Massive, unalt'd except in chill	<u>68.1 - 74.3</u>	<u>68.1 - 74.3</u>				
			zones, str magnetic.	weak-mod ep-	5% py, diss &				
	- 1			hem with qtz in	on fracs with				1
1 1				vnlts. Mod clay	chl.				
				alt'n.					
			742 750 0						
			74.3 - 75.9 Grey chert as above.		74.3 - 75.9				
1					5% py, diss				
					and on fracs with chl.				
	i		75.9 - 77.3 Alt'd B phase dyke. Fng, soft, perv chl-clay.	<u> 75.9 - 77.3</u>	with chi.				
			Sharp gougy contacts @ 70° to C/A. Rusty fracts and local	Mod-str perv	75.9 - 77.3	128716	75.9	77.3	1.4
			gougy zones. Weakly magnetic near upper contact where	clay. Minor qtz	2-5% py - diss	120/10	13.9	11.5	'."
L			Boas, Zones. Weakly magnetic near apper contact where	ciay, willor qtz	2-370 py - uiss		l.,	<u> </u>	

·			alt'n less intense.	vnlts.	and vnlts.	1	1	T	1
			MIL II 1000 MICHIGO.						
			77.3 - 88.6 Grey chert as above. @ 88.6 m sharp contact @	77.3 - 88.6	77.3 - 88.6				
			25° to C/A.	Minor qtz vnlts	2% py - diss &				
				@ 60°. Minor	on fracs with		1		
1				chl/py on fracs.	chl.				
						128717	88.6	89.9	1.3
			88.6 - 96.2 B phase dyke. Fng, magnetic, unalt'd in core,	88.6 - 96.2	88.6 - 96.2				
			muddy, non magnetic, clay-chl alt'd adj to contacts.	clay-chl alt'd adj	2% py - diss	128718	89.9	92.1	2.2
				to contacts.	and vnlts.				
			96.2 - 102.2 Grey chert, locally vuggy with qtz and clay			128719	92.1	96.2	3.9
			filling.						
			96.2 - 98.3 Local bx zones and grey chert clasts in tight			128720	96.2	99.2	3.0
			grey mtrx.						
						128721	99.2	102.2	3.0
]]			102.2 - 107.3 Alt'd B phase dyke, gen str-int alt'd.	<u> 102.2 - 107.3</u>	102.2 - 107.3	128722	102.2	104.7	2.5
			@ 102.2 contact @ 70°	str - int clay-chl	Minor py with		1	1	1
1			@ 107.3 contact @ 25°	alt'n. Minor qtz	qtz +/- hem in	128723	104.7	107.3	2.6
				vnlts.	vnlts.				
			107.3 - 114.5 Grey-dark grey, fng chert.						
114.5	123.7	B phase	Dark grey, massive fresh fng fsp-px porph, magnetic B	Minor qtz +/-	Minor py with				
	m	intrusive	phase intrusive cut by minor qtz +/- hem/py/ep vnlts.	hem/py/ep vnlts	qtz in vnlts. Tr	128724	117.2	120.2	3.0
		• ••			сру.				

Hole Tam 95-10

To test Laocoon zone deeper in section below 95-09

Northing: Tam 91 Grid 4+40 N Easting: 5+60 E

Azimuth: 220°

Dip:

-65° (no dip test) 112.8 m

Depth:

Drilled Oct 7-8, 1995

Drilled by: Beaupre Drilling Logged by: L. Caron Core stored at Boundary Falls.

Inte	rval	Rock type	Description			Sa	mple		
From (n1)	To (m)			Alteration	Mineralization	Sample Number	From (m)	To (m)	Interval
0	3.7	Overburden			 	Number	(111)	(111)	(m)
3.7	12.5	Golden Fleece Qtz	3.7 - 7.8 as in 95-09 0-9.6 m Med grained, grey Golden Fleece intrusive, broken with Fe-Mn fracs.		3.7 - 7.8 2-5% diss py	128726	3.7	6.4	2.7
		Diorite	6.4 - 7.8 bleached, rusty, perv clay alt'n	6.4 - 7.8 Bleached, perv		128727	7.8	7.8	2.3
			7.8 - 12.5 Chill zone, as in 95-09 9.6 - 10.9 m, Grey-buff, weakly rusty, fine grained granular text. @ 12.5m v sharp contact @ 90°.	clay, minor rusty qtz vnlts 7.8 - 12.5 Mod rusty vuggy qtz vnlts.	7.8 - 12.5 Minor py	128729	10.1	12.5	2.4
12.5	112.8	Knob Hill Group Metaseds and Chert cut by B phase dykes and rare G F1? dykes	12.5 - 46.8 as in 95-09 22.75-55.8m Grey-muddy br chert/metased, mottled, weak bedding? @ 50°, Mod to extrem hard, fng. Local qtz segregations.	Minor qtz vnlts. Local brownish caste, may be fng secondary biotite? 28.6 - 29.8 10% qrey xtalline qtz stkwrking vuggy vnlts.	Тг ру	128730	28.6	29.8	1.2

	1	1		·		
36.7 - 37.5 crackled looking with 10% limonite stained vugs and minor qtz vns.	36.7 - 37.5 crackled, 10% vuggy, minor qtz vns.		128731	36.7	39.0	2.3
39.0 - 45.8 green-red ep/hem skarn zone. Hard to tell protolith.	39.0 - 45.8 skarny 39.0 - 41.7 bleached, perv hem, str clay, weak chl-ep		128732	39.0	41.7	2.7
41.7 - 45.2 is dark green, gen soft, muddy chl-clay-ep alt'd, may be B phase dyke? Weak-mod magnetic. 45.8 - 46.8 rx broken with rusty fracs, no good contact	41.7 - 45.2 str clay-chl-ep altn 45.2 - 45.8 as in 39.0 - 41.7	41.7 - 45.2 5% py, diss and vnlts.	128733	41.7	45.2	3.5
with chert. 46.8 - 55.0 Grey-green chert-metased as above, hard, mottled appearance, locally crackled with weak chl on fracs 55.0 - 60.2 B phase dyke, Gen fng, dark grey, weak-mod magnetic, massive with mod clay-chl altn at edges. Chert	55.0 - 55.8 muddy green, mod-str clay-chl	46.8 - 55.0 2% py. 55.0 - 60.2 Minor py with				
xenoliths. 60.2 - 71.9 Grey chert with minor chl on fracs. 67.8 - 68.3 and 70.1 - 70.5 narrow muddy alt'd B phase dykes with sharp lower contacts @ 80°.	59.8 - 60.2 weak chl-clay 67.8 - 68.3 and 70.1 - 70.5 mod clay-chl 71.9 - 81.5	60.2 - 71.9 Minor py, tr cpy. 71.9 - 81.5				
71.9 - 81.5 B phase dyke as in 55.0 - 60.2, locally alt'd.	Minor qtz +/- py/ep/hem vnlts. 71.9 - 73.8 str chl-clay 80.3 - 80.5 weak-mod chl-clay	2% py in vnlts.	128735	71.9	73.8	2.9

81.5 - 84.9 Grey chert as above. 84.9 - 85.8 B phase dyke, weak-v weak chl-clay alt'n, sharp contacts @ 45°. 85.8 - 92.6 Grey chert as above 92.6 - 94.8 typical B phase dyke, locally alt'd. 94.8 - 101.7 Grey chert as above. 101.7 - 112.0 Pale grey massive intrusive, probably Golden Fleece but less distinct texts that at top of hole. Texts blurred by weak-mod perv silic'n. Looks like mafic-plag phenos in fing qtz rich gmass. 101.7 - 102.0 is contact bx zone with large clasts of chert and gst in fing intr mtrx. 112.0 - 112.2 Unalt'd B phase dyke, sharp upper contact @ 90° to C/A, irreg lower contact.	84.9 - 85.8 weak-v. weak chl clay 92.6 - 92.7 93.9 - 94.0 94.5 - 94.8 mod chl-clay alt'n 101.7 - 112.0 weak-mod silic'n, minor qtz +/- py vnlts.	101.7 - 112.0 10% py, diss + vns.	128736 128737 128738	101.7 105.2 108.5	105.0 108.5 112.0	3.3 3.5 3.5
112.2 - 112.8 Knob Hill group chert and metaseds as above.						

APPENDIX 2

Drill Sample Results

MIN-EN LABS - ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

FILE NO: 5V-0443-RJ1+2
DATE: 95/10/20
* ROCK * (ACT:F31) 0

PROJ: #20

ATTN: L.CARON											TEL	:(604)	327-3	436	FAX:	: (604	327-3	423										*	ROCK	*	(ACT:F31
SAMPLE NUMBER	AG PPN	AL %	AS PPM	BA PPM	BE PPM	EI Mag	CA %	CO PPM	CO PPM	C# PPM	CU PPM	FE %	CA PPM	K K	L I PPM		MN PPM	MO PPM	NA %	NT MAG					SR T	K TI M %	U MPR	V PPM		ZN PPH	Au-fire PPB
128551 128552 128553 128554 128555	.1 1.2 .5 .4	.73 3.29 1.47 2.30 3.11	1 1 1	139 78 51 40 60	3.2 4.6 2.9 3.1 3.7	9 14 9 9	4.15 1.55 1.90 5.06 3.94	.1 .1 .1 .1	69 49 37 42 47	220 51 90 172 188	50 34 28 55 46	5.40 7.63 5.25 5.52 5.80	1 1 1 1	-01 -06 -14 -08 -14	25 10 13	5.00 4.25 2.03 3.24 4.65	1192 1487 680 1530	1 1 1 1	-01 -01 -03 -02 -02		460 1980 1140 760 830	22 47 51 58 167	1 6 2 4 6	6 1 2 3 5	80 1 23 60	1 .01 1 .01 1 .12 1 .05 1 .06	1 1 1	37.2 103.0	4 1 4 7	46 97 49 77 638	33 11 10 26 8
128556 128557 128558 128559 128560	.5 1.3 1.3 .6	.97 3.08 1.85 2.29 3.39	1	22	3.1 4.1 4.0 3.3 4.5	8 4 3 7	3.94 3.49 4.64 3.96 2.26	.1 .1 .1 .1	44 45 49 44 52	104 215 311 196 209	50 99 81 74 120	5.01 7.25 6.27 4.81 7.46	1 1 1 1	.05 .05 .01 .01	27 11 17 25	3.41 4.61 6.33 5.38 5.30	1323 847 736 1069	1 1 1 1	.01 .01 .01 .01 .01	489 331 227	1250 810 640 930	54 14 11 35	1 4 1 1 5	5 1 6 3 5 1 5	98 52	1 .01 1 .01 1 .02 1 .02 1 .01	1	96.5	1 6 7 4 5	60 114 58 56 75	35 61 33 18 27
128561 128562 128563 128564 128565	5.6 3.1 6.0	2.95 2.73 2.44 1.88	1 1 377 1 1	38 51	3.8 4.2 4.3 4.7 3.9	8 12 11 13	1.20 2.95 .78 .66 1.45	.1 .1 .1 .1	39 39 39 34 30	169 164 114 17 29		6.34 7.06 7.76 9.46 8.91	1 1 1 1	-08 -07 -08 -17 -22	25 22 25 24	3.43 3.67 3.03 2.07 1.87	916 782 415 669	1 1 3 2 63	.01 .01 .01 .01	88 39 36	940 1050 1000 1080 830	50 595 326 365	8 7 28 9 11	4 4 2 4	6 1 1	1 .01 1 .01 1 .01 1 .01 1 .01	1 1	93.6 119.1 99.3 108.3 65.3	1	62 76 509 918 134	29 80 382 194 224
128566 128567 128568 128569 128570	6.0 1.9 1.2 3.8 1.1	2.44 2.43 2.61	1 1 1	42 43 46 58 76	4.8 4.4 3.8 4.1 4.3	13 9 11 11	.91 3.53 2.64 1.04	11.2 .1 .1 .1	28 29 23 28 29	13 28 16 21 22	413 322 432 431	10.34 9.13 7.32 8.26 8.93	1 1 1	-18 -15 -14 -18 -18	30 27 31 26	2.24 2.10 1.93 1.89 2.05	339 382 464 428	24 2 1 1	.01 .01 .01	22 26 27	1110 1140 1180 1240	119 96 258 92	23 10 9 12 9	3	19 1	1 .01 1 .01 1 .01 1 .01 1 .01	1 1 1	119.2 112.9 110.9 128.4	1 1 1	131 129 685 88	447 198 81 50 78
128571 128572 128573 128574 128575	4.3 3.2 1.9 1.8 3.0	2.51 2.23 2.06	1 1 1	62 59 58 51 42	3.9 4.2 4.4 4.3 3.2	11 11 8 3	1.62 .73 .79 .51 .55	.1	29 31 37 34 24	20 22 29 26 35	744	8.06 8.55 8.99 8.93 6.52	1 1 1 1	.19 .17 .21 .22 .18	27 29 27 23	1.81 2.00 1.95 1.69 1.98	406 211 262	1 8 1 2 3	.01 .01 .01 .01	29 32 31 24	1100 1150 1110 1110 1090	336 127 118 203	11 12 13 13	3 3 3 2	1 1	1 .01 1 .01 1 .01 1 .01 1 .01	1	99.0 99.4 94.3 72.4 98.1	1 1 1 1	112 1050 153 97 568	158 110 202 90 178
128576 128577 128578 128579 128580	2.4 1.7 1.5 2.1 1.0	2.58 3.07 1.99	1 1 1 1	57 71 54 50 27	3.7 3.6 4.0 4.1 2.9	1	.55 .90 1.22 1.05 .53	.1 .1 .1 .1	35 37 40 33 21	29 44 57 29 68	968 534 578 731 441	7.77 7.53 7.63 7.90 5.05	1 1 1 1	-26 -34 -26 -23 -15	24 30 37 24	1.63 1.26 2.07 2.28 1.81	110 244 165 162	1 3 10 19 31	.01 .01 .01 .01	30 51 23 44	1100 920 1120 1170 1270	82 76 117 50	10 8 8 10 5	2 2 2 2 2	1 1 1	1 -01 1 -01 1 -01 1 -01 1 -01	1 1 1 1	73.3 41.9 82.9 120.4 45.2	1 1 1 1 2	52 41 64 255 39	236 405 164 67 43
128581 128582 128583 128584 128585	1.2	1.94 2.75 2.81 1.60	1	36 28 30 33 24	3.0 2.9 3.7 4.1 2.6	3 4 6 3	.53 1.30 3.37 1.25 1.36	.1 .1 .1 .1	27 24 33 36 19	36 71 114 146 72	364 270	5.65 4.69 6.83 7.34 4.41	1 1 1 1 1	.21 .18 .14 .16 .15	23 27 27 18	1.44 1.90 3.39 3.17 1.95	598	11 13 2 1 5	.01 .01 .01 .01	34 48 85 85 39	980 750 870 790 720	70 46 58 82 45	6 5 7 3	3	1	1 .01 10. 1 10. 1 10. 1 10. 1	1 1 1 1	44.0 37.9 92.3 86.9 41.2	1 2 3 12 2	76 41 56 119 32	355 99 297 99 56
128586 128587 128588 128589 128590	1.5 .1 3.6	1.23 2.13	1 1 1 283	44 27 65 47 44	1.8 2.3 3.3 2.0 4.5		.74 .74 .50 5.05 3.68	.1 .1 .1 .1	14 19 27 9 46	63 90 87 111 285	249 395 80	3.03 4.02 6.37 3.43 9.09	1 1 1 1	.28 .13 .18 .23 .15	12 25 12 25	1.05 1.10 2.63 2.67 3.55	175 3377 678	5 4 2 7	.01 .01 .01 .01	36 28 84 39 318	610 350 810 450 490	31 43 60 118 88	1 2 8 3 1	2 1 3 3 5 1	1 1 1 93	1 .01 1 .01 1 .01 1 .01 1 .01	1 1 1 1	13.4 19.4 48.0 30.2 43.4	10	21 40 51 234 69	38 71 106 126 495
128591 128592 128593 128594 128595		2.74 2.74 2.78	1 1 1 1	31 33 22 41 33	3.1 3.9 3.1 3.2 4.0		.96 .75 1.01 3.70 .63	.1 .1 .1 .1	23 38 27 27 27 35	89 134 197 176 132		5.36 7.59 5.12 4.85 7.34	1 1 1 1	.14 .15 .11 .09 .14	28 24 26	3.54 3.23 3.36 3.31 2.65	448 465 644 967 308	5 4 2 1	.01 .01 .01 .01	79 101 69 74 73	730 530 110 60 800	36 68 44 40 69	7 8 6 7 5	3 4 3 20 3	1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 .01 1 .01 1 .01 1 .01 1 .01	1 1 1 1	71.6 85.5 147.6 155.6 52.5	2 4 8 8 4	108 70 77 98 54	225 132 52 46 128
																															-

604 327 3423

. Ø2

MIN-EN LABS

OCT-20-1995 16:00

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS - ASSAYERS - ANALYSTS - GEOCHEMISTS

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C. CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD

SMITHERS, B.C. CANADA VOJ 2NO TEL (604) 847-3004 FAX (604) 847-3005

Metallic Assay Certificate

5V-0472-RM1

Company: KETTLE RIVER RESOURCES LTD

Date: NOV-03-95

Project: 20

copy 1. Kettle River Resources, Greenwood, B.C.

Attn: LINDA CARON

We hereby certify the following Metallic Assay of 7 PULP samples submitted OCT-27-95 by LINDA CARON.

********	***	*****	* * *	*****	* * *	******	******	* * *	******	******	* * *	*******	*****	* * :	*****	********
Sample	*	Total	•	+150 M	*	Assay Va	lue Au	ŧ	Total	Weight Au	*	Metalli	c Au	*	Net	Au
Number	*	•				+150(g/t)						(oz/ton)			(oz/ton)	{g/t}
128563		487.0		57.36		.43	,45	•	0.025			0.001	0.05		0.013	0.45
128564	•	452.7	•	46.70	*	.43	.28	*	0.020	0.114	*	0.001	0.04	•	0.009	0.30
128565	٠	447.0	*	27.21	*	.49	.23	•	0.013	0.097	*	0.001	0.03	*	0.007	0.25
128566	*	415.4	•	23.97	•	1.44	.69	ŧ	0.035	0.270	•	0.002	0.08	•	0.021	0.73
128590	*	473.2	•	44.40	•	.66	. 54	•	0.029	0.232	•	0,002	0.06	*	0.016	0.55
128591	*	517.3	*	61.39		.23	.22	*	0.014	0.100	•	0.001	0.03	+	0.006	0.22
128592	*	494.8	•	35.14	*	.12	.11	•	0.004	0.051	*	0.000	0.01	ŧ	0.003	0.11

COMP: KETTLE I

PROJ: #20

ESOURCES LTD

MIN-EN LABS - REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

FILE NO: 5V-0448-RJ1+2

DATE: 95/10/27

ROJ: #20 TTM: L.CAROM										ì		SHERBRO L:(604)		-		UVER, :(604)			EB										* 1	rock		95/10/7 [ACT:F3]
SAMPLE NUMBER	AG PPM	AL %	AS PPM	BA PPM	BE PPM	B I PP		CD PPH	CO PP M	CR PPM	CU PPM	FE X	GA PPN	K %	L I PPM	KG X	MH PPM	MO PPM	NA X	N1 PPH		PB PPM			SR PPM	TH PPH	TI % PI	U PH	V PPM F	W PPH	ZN / PPH	Au-fire PPB
128601 128602 128603 128604 128605	.7 -1 -4 1.6 3.1	2.90 2.98 3.18 2.61 2.34	1 1 1 1	228 29 25 63 65	4.7 5.3 5.3 4.8 5.0	11 11	1.04	.1 .1 .1 .1	41 49 50 24 29	105 139 204 46 23	77 78 110 257 333	6.73	1 1 1 1	.06 .13 .12 .20 .15	26 30 29	4.06 3.65 3.76 2.32 1.68	1411	16 2 3 2 2	.01 .01 .01 .02 .02	169 43	920 1470 1140 1010 1000	93	16 12 14 15 18	45442	1 1 79 68	1 1 1	.01 .01 .01 .01 .01		3.9	6 9 3	362 76 215 238 847	18 24 32 58 193
128606 128607 128608 128609 128610	.6 1.6 1.9 1.3	2.39 2.30	1 1 1 1	134 51 88 66 34	4.7 3.7 4.3 4.0 4.0	11 11 12	9.77 3.86 3.05 2.78 1.42	.1 .1 .1	38 18 23 21 23	17 13 12 17 17	230 269 325 227 259	7.15 5.33 6.32 6.05 5.76	1 1 1 1	-13 -15 -14 -12 -19	24 23 18	1.01 1.87 2.08 1.97 1.90	614 447	3 6 2 3	.01 .01 .01 .05	18 20 19	780 1150 1220 1160 1240	64 67 62	17 16 17 15 15	3	376 150 100 69	1 1 1	.01 .01 .01 .01		4.2	2 2 2 2	49 48 43 43 41	300 287 99 102 940
128611 128612 128613 128614 128615	1.0 1.3 .2 1.3	2.62 3.14 3.79	1 1 1 1	32 20 18 17 24	6.6 7.4 6.1 7.2 6.2	14 17 13	1.43 1.06 3.78 .87 2.75	.1 .1 .1 .1	59 74 51 60 50	231 163 129 231 246	162	12.28 9.45 11.42	1 1 1 1		24 38	4.59 2.75 2.50 5.02 4.45	1664 710	1 1 4 1	.01 .01 .01 .01	218 138 198	1010 1030 1200 910 1010	116 100	14 7 20 13 16	2 1 1 2 4	1 1 1 1	1 1 1	.03 .01 .02 .01	1 12 1 12 1 13 1 17 1 17	8.4 4.7 3.3	7 7 9	101 92 106 144 780	72 581 85 188 415
128616 128617 128618 128619 128620	1.3 2.0 3.2 1.1 1.5	2.35 2.67 3.01	13 73 12 1	22 31 25 46 40	2.9 4.8 5.5 5.1 3.8	12 13 13	2,35 3,20 2,73 3,12 2,27	.1 .1 .1 .1	17 32 39 42 29	99 130 192 190 81	115 407 207 117 69	3.68 6.73 8.13 7.45 5.47	2 1 1 1		28 32 27	2.10 3.65 3.33 3.62 2.35	322 580 514 990 586	2 1 1 1	.04 .04 .01 .06 .07		400 720 780 1070 1090	57 97 65	13 16 12	4 4 5	103 244 70 162 43	1 1 1	.02 .03 .01 .03 .07	1 10 ⁴ 1 8: 1 13:	9.0 9.6 2.1 3.7 5.1	6 8 9 4	42 58 148 81 50	187 237 235 161 82
128621 128622 128623 128624 128625	1.6 2 1.7 2 1.7 2 1.0 2	2.42 2.08 2.54 2.73	1 1 1 1	30 36 45 44 34	4.2 4.4 3.5 4.7 5.2	12 15 12 15	2.62 2.91 1.62 2.91 2.60	.1 .1 .1 .1	32 30 29 31 33	42 32 32 28 71	62 114 32 62 143	6.10 6.30 4.99 6.41 7.51	1 1 1 1	.05 .07 .07 .10	18 11 21 20	2.37 2.50 2.15 2.69 2.83	678 794 548 780 699	2 2 2 3 1	.05 .05 .09 .04 .03	53 52 50 59	1380 1300 1450 1340 1400	61 53 59 68	13 14 11 14 14		54 99 46 133 108	1 1 1		1 9		4 2 3 2 3	72 59 49 63 60	116 796 75 137 328
128626 128627 128628 128629 128630	1.0 2 1.4 2 1.1 2 1.4 3 1.3 3	2.18 2.47 3.26 3.46	1 1 1	32 38 43 22 33	5.3 4.5 4.5 5.9 5.1	16 14 14	2.25 2.47 2.47 2.19 2.45	.1 .1 .1	33 31 33 44 34	43 37 39 191 246	145 46 49 499 293	8.00 6.49 6.38 9.05 7.12	1 1 1 1	.05 .05 .07 .09	12 14 32 31	2.22 2.34 2.76 4.23 4.21	688 753 749 582 496	3 1 1 1	.04 .05 .05 .01	41	1860 1660 1430 780 810	64 57 73 47	10 10 13 15 16		67 82 74 16 139	1	.07 .11 .08 .01	1 116 1 116 1 8 1 90		3 2 2 7 10	58 61 66 90 73	246 111 72 482 485
128631 128632 128633 128634 128635	1.3 3 .9 3 .8 2 .7 2 1.0 2	2.56 2.23 2.92	1 1 1 1	33 31 31 80 26	5.5 5.6 3.4 4.9 3.5	10 8	2.27 1.41 1.20 .71 .34	.1 .1 .1 .1	41 40 20 30 23	313 288 127 213 133	255 277 126 231 141	7.46 8.04 4.66 6.90 4.68	1 1 1 1	.11 .10 .13 .11	30 21 28 21	4.81 4.26 2.49 3.70 2.22	547 502 323 411 219	1 5 2 1 15	.01 .01 .01 .01 .01	164 161 73 162 113	850 770 450 430 330	57 43 54	17 16 13 11 9	4 1 3 3 3	110 27 47 1	1 1 1 1 1	.01 .01 .01	1 88 1 45 1 55	5.7 8.7 5.5 5.7 1.9	12 12 6 9 6	78 73 41 53 44	365 88 140 81 61
128636 128637 128638 128639	4.8 2 9.0 1 2.3 2 1.6 2	2.15	152 312 1	44 12 41 37	4.0 3.4 4.4 4.0	9	.29 1.86 2.93 2.45	.1	26 32 43 22		266 2731 828 196	5.43 4.46 6.31 5.31	1 1 1	.21 .03 .15 .14	26	2.57 2.71 3.92 3.49	254 444 938 689	13 11 1 2	.01 .01 .01	79 177 386 123	420 80 480 390	52 53	13 9 7 12	3 4 5 3	35 141 105	1.	.01 .01 .01 .01	1 31	1.6 1.6 5.4 8.6	15	52 106 76 354	363 1673 191 154
																	****								* 7							
					···		· 															·— <u>,</u>						,		•		
1																																

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS - ASSAYERS - ANALYSTS - GEOCHEMISTS

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C. CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TEL (604) 847-3004 FAX (604) 847-3005

Assav Certificate

5V-0448-PA1

Company: K

KETTLE RIVER RESOURCES LTD

Date: OCT-30-95

Project:

#20

Attn:

L.CARON

We hereby certify the following Assay of 2 pulp samples submitted OCT-27-95 by Linda Caron.

Sample	Au-fire	Au-fire
Number	g/tonne	oz/ton
128610 128637	.96	.028

Certified by_

MIN-EN LABORATORIES

COMP: KETTLE . .. R RESOURCES

MIN-EN LABS — JP REPORT

PROJ: #20

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

ATTN: LINDA CARON

TEL:(604)327-3436 FAX:(604)327-3423

FILE NO. - √-0476-RJ1+ -DATE: 95/11/0 💆

* rock * (ACT:F31 SAMPLE CO CU FE GA PB SB SN SR TH TI ZN Au-fire AS BA BE 81 CA χ % PPM PPM ሂ % PPH PPH PPH PPH PPH X PPH % PPM PPH PPH PPH PPH PPH PPH PPH % PPM PPM PPM PPH NUMBER PPM PPM PPM PPM **899** 566 .4 3.65 382 145 8.29 .09 36 4.57 1448 .01 195 820 20 1 1 128.4 128651 36 2 2.06 41 1 11 .01 128652 1 2.10 320 106 6.77 .09 37 4.91 1125 215 600 96.8 76 29 .5 3.13 25 2.5 .1 60 .01 1 8 7 1 .01 1 1 1.51 31 104 79 5.06 54 70 660 .01 79.7 47 128653 -1 2.21 20 1.8 . 1 -14 25 2.46 505 .02 48 294 7.14 2.0 34 132 21 3.29 831 .05 910 26 10 27 1 131.5 128654 .8 2.73 28 1 3.59 .10 3 1 .07 61 70 32 .2 2.77 31 203 126 6.16 . iû 27 3.42 880 _ÜÌ 74 690 20 8 155 1 .01 1 108.5 4 62 53 128655 1 4.70 . 1 36 210 ç 126656 .1 3.33 87 2.6 i 3,02 44 325 714 / 44 _07 38 5.06 1583 .01 610 10 .ûî 103.5 6 83 34 3.99 1127 49 229 93 35 128657 .6 2.91 28 2.4 2 2.14 296 132 7.12 -05 .01 390 9 .01 1 79.7 91 235 7.00 25 34 123 .12 25 3.60 563 .01 59 1540 10 1.3 3.07 19 1 .96 .01 1 124.7 79 128658 .1 23 2.86 347 37 2.0 31 99 274 6.71 56 2060 128659 1.1 2.56 .13 .01 8 .01 1 80.5 78 67 36 .79 18 2.70 840 128660 .2 1,99 20 1.8 1 1.87 24 129 453 5.38 .17 .01 75 1270 1 .01 1 60.9 54 61 23 256 128661 .9 1.66 29 1.5 1 1.30 57 366 4.49 .25 12 1.83 426 .01 51 650 67 6 1 .01 30.4 216 291 52 189 8.79 610 13 128662 .4 3.92 .1 2.53 27 2.6 2 2.34 1 3.14 -1 .1 .08 31 4.96 1064 .01 179 12 .01 1 133.7 97 96 2.2 31 86 18 2.50 658 .01 69 880 23 71 54 71 96 5.64 128663 126 -11 1 .01 74.2 30 3.36 34.4 128664 34 1.3 1 1.42 14 61 .14 11 1.50 350 _01 27 130 7 1 .01 31 .1 1.62 .1 45 128665 .4 2.73 29 2.3 1 2.16 . 1 35 242 200 7.21 1 -09 23 2.99 689 .03 92 1020 25 10 1 -04 1 123.4 7 108 2.2 128666 .4 2.75 26 1 4.78 32 256 152 6.61 -07 30 3.29 870 .01 100 1020 19 9 9 .03 1 132.2 93 22 37 246 47 7.13 27 3.06 732 130 1030 90.7 75 .4 2.45 7 2.07 .06 .04 26 1 10 1 .07 190 128667 .3 3.30 43 2.6 212 115 9.07 43 4.01 1020 170 1120 28 1 144.2 Ž 4 2.90 . 1 55 1 .06 .01 13 1 .01 102 622 128668 4 3-48 24 21 2.4 1 4.95 41 276 127 7.77 .05 42 4.51 1005 .01 137 730 14 11 50 1 .02 1 139.4 85 174 128669 39 32 4.37 1306 156 450 148 165 128670 4.6 3.38 1 3.08 256 142 7.01 .07 .01 1 10 1 1 .01 1 96.5 764 . 1 70 128671 5.4 1.72 25 1.4 1 .62 21 275 4.23 1 .19 13 1.69 323 .01 40 200 357 1 .01 29.7 1 1363 142 .1 1.50 13 1.40 196 128672 30 1.3 _51 .1 17 68 37 3.10 1 .37 .01 28 290 31 7 1 .01 1 29.2 1 117 11 225 128673 .2 3.07 25 2.3 1 2.46 23 32 4.99 - 10 45 3.83 564 .01 41 2470 4 119 1 .01 1 108.2 4 108 30 2.9 38 46 4.34 577 128674 .3 3.86 1 1.33 .1 246 180 7.52 .11 .01 132 830 6 1 11 1 1 .01 1 110.0 86 175 2 35 128675 4.4 .22 158 6 .7 1 1.76 .1 7 170 3238 1.22 .01 3 1.09 129 .01 26 40 11 1 1 .01 8.2 8 16 3.0 1.96 1165 16 13 6.79 1067 30 3 51.D 413 128676 2.0 1 6.66 81 868 431 4.94 .01 .01 797 6 219 1 .01 28 10 3.48 830 220 20.4 1.28 3340 2.1 1 5.11 47 235 6008 6.30 .03 .01 90 .01 244 73 54 5.4 311 57 99 1137 128677 6 32.5 .13 .01 2.7 2.42 102 38 1 4.44 36 123 573 5.35 19 3.03 644 .01 110 910 34 5 9 52 93 128678 1 1 60.5 .1 123 1662 1.59 90 47 8 .01 5 1.60 681 27 11 41 128679 4_9 _48 138 .01 -01 13.4 2.3 2.09 21 2.47 283 990 35 128680 36 1.9 1 1.91 21 65 538 5.44 . 18 .01 60 1 6 24 1 .01 51.9 56 61 . 1 128681 1.2 .09 194 6 .5 6 4-06 3 146 52 1.02 .01 1 1.14 279 1 .01 14 50 10 1 114 .01 5.2 10 14 .1 1 7 2.23 1 3.02 1 .01 128682 1_9 1.31 46 1.5 15 110 104 2.86 .12 13 2.20 286 -01 63 450 17 3 82 28.7 142 . 1 37 1.9 220 .10 507 .01 128 370 6 546 30 148 5.10 27 3.46 157 56 .01 100,0 128683 2.2 2.54 .1 132 128684 1.8 2.34 31 1.6 2 2.85 23 210 126 4.60 1 .08 19 3.05 444 .01 57 10 67 5 47 1 .01 1 140.7 238 128 1 -1 43 .08 21 2.82 439 .01 50 160 128685 1.9 2.04 39 1.7 2 2.85 18 211 89 4.05 4 93 1 .01 1 92.7 604 327 3423 20 1106 95-09

SOURCES

COMP: KETTLE R.

ATTH: LINDA CARON

PROJ: 20

LAUCCOON

MIN-EN LABS -8282 SHERBROOKE ST., VANCE.

REPORT , B.C. V5X 4E8

TEL:(604)327-3436 FAX:(604)327-3423

5/11/07 (ACT:F31) * rock *

FILE NO

175-RJ1

SAMPLE NUMBER	AG AL	AS PPH	BA PPN	BE PPH	BI CA		CO PPH	CR PPH	CU PPM	FE X	GA PPH	X X	L1 PPM	HG X	НN РР Н	МО РРМ	NA X	14 H44	P PPH	PB PPH	SB PPM	SN PPH P	SR PM P		TI L X PPI	l P	PH PI	PH PP		PPB	
128701 128702 128703 128704 128705	.9 1.13 .8 1.11 .6 .95 .5 .67 .9 1.04	1 1 1	131 151 168 15 51	.9 1.0 .8 .6 1.0	1 1.16 1 1.30 1 .41 1 .15 1 .53	-1	10 9 10 5	35 39 29 94 36	253 2 270 2 220 2 113 1 412 2	.45 .60 .15	1 1 1 1	.14 .20 .20 .10	6 6 8 1	.94 .95 .65 .85	292 312 167 150 137	1 1 1 2	.03 .03 .01 .01	11 11 10 15 13	750 770 80	33 27 29 8 29	1 1 1 1	2 2 1 2	21 25 1 1	1 .0	01 1 01 1 01 1	1 35 1 32 1 30 1 40	.7 .7 .7 .7 .0.0	1 4 1 5 1 5 4 3 1 6	4 7 7	15 12 23 63 31	
128706 128707 128708 128709 128710	.6 1.12 .8 .67 1.1 1.17 1.2 1.29 1.0 1.04	1 1 1 1	66 38 69 202 419	1.0 .7 1.2 1.3 1.0	1 .46 1 .59 1 3.00 1 2.19 1 1.74	.1	14 10 10 14 13	71 59 37 38 70	167 1 309 2 613 3	1.40 2.90 5.09	1 2 2 1 1	.12 .12 .17 .24 .16	7 6 1 9 1	1.30 .74 1.01 1.15 1.18	276 164 278 229 256	2 3 1 1 3	.01 .01 .03 .01	21 18 14 18 31	170 810 890	14 10 22 24 12	1 1 1 1	2 1 2 3 2	1 79 63 29	1 .0	0 1 0 1 0 1	1 21 1 55 1 58		3 4 1 3 1 3 3 3		36 38 17 34 32	
128711 128712 128713 128714 128715	.7 .89 .8 1.00 .5 .75 1.5 3.06 .5 .62	1 1	40 27 17 30 12	.9 1.0 .8 2.4 .8	1 1.18 1 .67 1 .49 1 .67 1 .37	.1	10 13 11 31 12	75 66 75 103 67	43 1 75 1 89 1 392 6 93 1	1.99 1.49 5.93	1 1 1 1	.13 .17 .15 .15 .10	13 1 10 1 43 3	1.17 1.42 1.09 5.67 .86	128	1 3 3 1 1	.01 .01 .01 .01	23 27 23 65 22	510 790 2120	6 13 9 29 14	1 1 1 1	1 2 1 7 1	4 1 1 1	1 .		1 32 1 22 1 125	.5	3 3 2 5 3 3 1 10 2 3)1 32	37 14 9 54 59	
128716 128717 128718 128719 128720	.1 2.73 1.0 3.83 1.5 2.84 1.1 3.51 .5 .39	1 1 1 1	147 65 120 76 10	3.1 2.8 2.4 2.7	10 2.08 6 3.98 7 4.74 3 4.61 2 1.20	1	49 40 33 33 9	246 33 36 65 58	79 8 90 8 56 6 135 7 47 1	3.39 3.58 7.76	1 1 1 1	.59 .15 .31 .15	45 4	3.66 3.91 3.58 4.09 .61	1300 1613 365	1 1 1 1	.01 .01 .02 .01	48 43 65 15		55 28 35 30 18	1 1 1 1	5 1 8 1	1 16 63 28 11	1 .0 1 .0 1 .0	01 1	1 149 1 130 1 129 1 124 1 11).3).4 .7 .4	1 9 1 9 2 2		14 56 22 23 21	
128721 128722 128723 128724	.6 .39 1.3 2.84 1.3 2.81 3.0 1.13	8 1 1 38	8 64 99 149	2.7 2.9 1.2	2 .85 6 4.63 6 3.15 1 2.54	.1	39 35 29	70 63 45 298	66 1 78 7 161 7 1135 3	7.11	1 1 1	.06 .18 .32 .07	32 3	.50 5.41 2.87 1.90	1414 1606	1 1 1	.01 .01 .01 .03	62	360 2380 2680 1890	17 37 39 20	1 1 1	1 6 1 3	1 20 32 68	1 .0	02 1 05 1	1 141 1 137	7.3	1 8	22 33 30 4	27 18 13 32	
																				,											
							************											~													
	:* 						Malak										•														

NOV-07-1995 13:42

SEU L'AB-NIM

604 327 3423

COMP: KETTLE RIVER RESOURCES

MIN-EN LABS --- P REPORT

PROJ: #20

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

DATE: 95/11/07

-0489-RJ1

FILE K

ATTN: LINDA CARON TEL:(604)327-3436 FAX:(604)327-3423 * rock * (ACT:F31) K LI % PPM SAMPLE CR CU FE GA AL AS BA ΒE BI CA COD £0 NG HA 1 M PB SB SN SR TH TI V W ZN Au-fire NUMBER % PPH PPH PPH PPN % PPM PPM PPM PPM % PPM PPM PPM PPN % PPM % PPM PPM PPM PPM PPM PPM % PPH PPM PPM PPM PPB 128726 .7 1.07 .92 47 240 2.27 .22 .95 265 2 .08 690 24 2 2 3 37.6 2 132 .9 _1 10 6 8 3 1 .01 10 285 2.80 14 10 4 20 29 65 53 173 128727 **.6 1.10** 37 1.1 .41 -1 29 -22 -94 469 .01 580 1 .81 33.0 1 100 .7 .90 .7 .69 32 223 1.72 .20 .99 26 230 29.3 128728 -9 .18 63 8 276 .01 3 86 .1 _01 15 26.0 35 51 177 1.63 .20 7 .78 195 6 ,01 26 170 15 3 44 128729 -8 .48 _ 1 .01 1 83 9 .96 19 49 11 1.26 235 3 .01 5 128730 1.0 .38 183 2.47 . 15 29 640 22 1 .01 1 29.8 2 30 27 5 .16 .14 .50 386 .55 2434 21 100 40 620 13 33 34 18 128731 .5 17 8 386 1 .01 .49 109 1.14 6 .01 18 5 15.2 4 1 328 4.55 1.7 25 23 .01 33.1 128732 .1 .75 14 .58 .04 48 1 _01 2.0 1 17.9 27 263 3.51 .52 423 1 .04 36 770 128733 .8 1.17 1 .96 .1 21 42 2 .03 6 28 1 _03 56 35 3.16 783 11 59 246 1 .07 1 .05 60 1390 128734 1.7 2.06 2.1 4 5.30 .1 31 80 5.25 23 7 165 1 _05 1 119.2 128735 .3 .89 14 24 38 416 3.53 .09 7 .87 1086 5 -01 31 960 38 1 1.3 1 .57 .1 3 1 1 .01 1 25.6 128736 .4 2.49 1 36 2.7 1 1.05 .1 41 245 323 6.70 .08 18 3.01 2027 .01 89 1520 9 114 26 23 1 40 1 .01 1 118.2 128737 36 54 67 4.03 23 5.30 .12 1.3 1.47 1 104 1.8 5 4.90 7 3.23 .1 16 15 2.01 594 .06 22 1110 26 5 62 55 1 .01 1 110.9 1 35 1.6 1.45 38 100 2.1 12 2.04 293 1 .06 128738 26 1190 1 .02 1 89.9 MIN-EN LABS 604 327 3423 שר

APPENDIX 3

Cost Statement

COST STATEMENT	
Labour: G. Stewart 5 days @ \$450/day L. Caron 20 days @ \$200/day T. Parsons 10 days @ \$175/day C. Esovaloff 15 days @ \$100/day	\$ 2,250.00 4,000.00 1,750.00 1,500.00 \$ 9,500.00
Drilling Beaupre Diamond Drilling 2614 feet @ \$13/ft mob/demob, cat work, supplies	\$ 33,982.00 2,449.15 \$ 36,431.15
Geochemical Analyses (31 element ICP, plus Au) Min-En Labs, Vancouver. 156 samples @ \$20.69 (including shipping) 7 metallic gold assay @ \$50.00	\$ 3,227.64 350.00 \$ 3,577.64
Supplies General Field Supplies Saw blades	\$ 360.00 500.00 \$ 860.00
Transportation Vehicle rental 20 days @ \$45/day Fuel	\$ 900.00 265.00 \$ 1,165.00
Office Expenses Phone, fax Drafting and office supplies Misc	\$ 30.00 120.00 25.00 \$ 175.00
TOTAL:	\$ 51,708.79

APPENDIX 4

Statement of Qualifications

STATEMENT OF QUALIFICATIONS

I, Linda J. Caron, certify that:

h. lav

- 1. I am an exploration geologist residing at Bubar Road (RR #2), Rock Creek, B.C.
- 2. I obtained a B.A.Sc. in Geological Engineering (Honours) in the Mineral Exploration Option, from the University of British Columbia (1985).
- I graduated with an M.Sc. in Geology and Geophysics from the University of Calgary (1988).
- 4. I have practised my profession since 1987 and have worked in the mineral exploration industry since 1980.
- 5. I am a member in good standing with the Association of Professional Engineers and Geoscientists of B.C. with professional engineer status.
- 6. I am employed by Kettle River Resources Ltd. as an exploration geologist.

Linda Caron

STATEMENT OF QUALIFICATIONS

I, George Stewart certify that I:

Was born in Halifax, Nova Scotia, Canada and attended Elementary and High School in Halifax, N.S.

1957 - 1962	Attended St. Mary's University and Dalhousie University, studied Geology.
1959 - 1960	Sheep Creek Mines Ltd., Engineer Department
1960 - 1967	Geologist for Kenno (Western) Ltd.
1967 - 1970	Exploration/Mine Manager Nadina Exploration Ltd.
1970 - 1973	Mine Manager for Colt Resources Ltd.
1975 - 1981	Exploration Manager for New Frontier and New Nadina
1981 - 1986	Mine/Exploration Manager for Dentonia Resources Ltd, Kettle River Resources Ltd.
1986 - 1987	Attended Gemological Institute of America.
1986 - 1993	Exploration Manager for Kettle River Resources Ltd,
1994 - present	Exploration Manager for Kettle River Resources Ltd, and New Nadina Explorations Ltd.

George O.M. Stewart