SEP 10 1996 Gold Commissioner's Office VANCOUVER, D.C.

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORTS

> DATE RECEIVED SEP 1 9 1996

## **1995 SUMMARY REPORT**

## **ON THE**

## SO LONG CLAIM GROUP

Located in the Shuswap Area Kamloops Mining Division NTS 82L/14E

50° 47' North Latitude 119° 03' West Longitude

-prepared for-

# EQUITY ENGINEERING LTD.

-prepared by-

Henry J. Awmack, P.Eng.

June, 1996



GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

#### SUMMARY

The 8-unit So Long property covers 200 hectares of a partially logged ridge six kilometres southwest of Sicamous in south central British Columbia. The property is easily accessible by truck along a network of gravel and dirt logging roads. The Trans-Canada Highway and two rail lines pass within a kilometre of the property.

A stratiform massive pyrrhotite-sphalerite-galena occurrence (the Adit Zone) was discovered on the So Long property in the late 1950's and investigated in the next few years by a 120 metre adit and fourteen short diamond drill holes. In 1977, Granges drilled another 13 short holes on the Adit Zone and a second, parallel, zone of stratiform sulphides (Conductor B); their best intersection graded 8.0% Pb, 1.9% Zn and 100 g/tonne Ag over 1.4 metres. Small geochemical and geophysical surveys were completed by several operators through the 1980's. All claims subsequently lapsed and the NDP 1991-1996, So and Long claims were staked in September 1995 by Equity Engineering Ltd..

The So Long property is underlain by micaceous quartzite and mica schist of the Hadrynian or Lower Paleozoic Silver Creek Formation. Four phases of deformation have produced isoclinal folding whose schistosity and compositional layering trend east-west and dip at 50-65° to the north. The Adit Zone and Conductor B each consist of multiple lenses or sheets of massive pyrrhotite, sphalerite and galena with lesser pyrite, chalcopyrite and quartz-mica or plagioclase augen. These sheets, which conform to schistosity within mica schists, have been drill-tested along 330 metres (Adit Zone) and 350 metres (Conductor B). The Adit Zone, Conductor B and Conductor C, which parallels them to the south, may lie along fold limbs of a single sulphide horizon.

The massive sulphide horizon has a well-defined geophysical and geochemical expression. A ground VLF-EM survey shows strong conductors associated with the Adit Zone and Conductor B, and extends them by 70 and 400 metres, respectively. To the south, a third strong conductor, C, is defined for 400 metres parallel to the Adit Zone and Conductor B. Each of these conductors remains open in both directions. Ground magnetic highs generally accompany the conductors. Soil geochemical anomalies for lead and zinc occur in the vicinity of the conductors, extending the Adit Zone by a further 450 metres, Conductor B by 150 metres and indicating potential for mineralization along Conductor C.

The So Long prospect exhibits many similarities to five Shuswap-style massive sulphide deposits located in a belt from twenty to seventy kilometres east in the Shuswap Metamorphic Complex. These deposits, which contain up to 5 million tonnes grading 7.5% Pb and 2.5% Zn, are characterized by thin, conformable, regionally extensive massive sulphide (mainly pyrrhotite and sphalerite) horizons in platformal successions dominated by marble, schist and quartzite. Potentially economic mineralization is commonly found in the hinge areas of isoclinal folds, where thickening has occurred. On the So Long prospect, the isoclinal fold hinges have not been defined or explored.

Future exploration should consist of systematic grid-based electromagnetic, magnetic and soil geochemical surveys, extending far enough to close off the known anomalies and possibly define fold hinges. This should be accompanied by prospecting along the conductor traces and by detailed geological mapping, leading to definition of diamond drill targets.

# 1995 SUMMARY REPORT ON THE SO LONG CLAIM GROUP

## TABLE OF CONTENTS

|      |                                                             | Page                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | SUMMARY                                                     | .i.                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | INTRODUCTION                                                | .1.                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | LIST OF CLAIMS                                              | .1.                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | LOCATION, ACCESS AND GEOGRAPHY                              | .1.                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | PROPERTY EXPLORATION HISTORY                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4.1  | Previous Work                                               | .2.                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4.2  | 1995 Exploration Program                                    | .3.                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | REGIONAL GEOLOGY                                            | .3.                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5.1  | Massive Sulphide Deposits                                   | .4.                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| •••• | GEOLOGY AND MINERALIZATION                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6.1  | Geology                                                     | .6.                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6.2  | Mineralization                                              | .6.                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | SOIL GEOCHEMISTRY                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7.1  | Previous Work                                               | .7.                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7.2  | 1995 Soil Survey                                            | .8.                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | GEOPHYSICS                                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8.1  | Electromagnetic Surveys                                     | .8.                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8.2  | Magnetic Survey                                             | .9.                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | DIAMOND DRILLING                                            | .9.                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | DISCUSSION                                                  | .12.                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | 4.1<br>4.2<br>5.1<br>6.1<br>6.2<br>7.1<br>7.2<br>8.1<br>8.2 | SUMMARY<br>INTRODUCTION<br>LIST OF CLAIMS<br>LOCATION, ACCESS AND GEOGRAPHY<br>PROPERTY EXPLORATION HISTORY<br>4.1 Previous Work<br>4.2 1995 Exploration Program<br>REGIONAL GEOLOGY<br>5.1 Massive Sulphide Deposits<br>GEOLOGY AND MINERALIZATION<br>6.1 Geology<br>6.2 Mineralization<br>SOIL GEOCHEMISTRY<br>7.1 Previous Work<br>7.2 1995 Soil Survey<br>GEOPHYSICS<br>8.1 Electromagnetic Surveys<br>8.2 Magnetic Survey<br>DIAMOND DRILLING<br>DISCUSSION |

## APPENDICES

| Appendix A | Bibliography              |
|------------|---------------------------|
| Appendix B | Statement of Expenditures |
| Appendix C | Rock Sample Descriptions  |
| Appendix D | Petrographic Descriptions |
| Appendix E | Analytical Certificates   |
| Appendix F | Engineer's Certificate    |

# LIST OF FIGURES Figure 1 Location Map Figure 2a Claim Map (1:50,000) Figure 2b Claim Map (1:5,000) Figure 3a Regional Geology (1:100,000)

- Figure 3bRegional Structure (1:100,000)Figure 4Massive Sulphide Deposits (1:1,000,000)Figure 5Compilation Map (1:5,000)Figure 61995 Geochemistry (1:5,000)
- Figure 7 VLF-EM Survey (1:5,000)
- Figure 8 Magnetometer Survey (1:5,000)

# .1. .1. .3. .3. .4. .6. .7. .8. .9.

Following

Page

# LIST OF TABLES

Ĺ

| | | |

| Table 2.0.1 | Claim Data                           | .1.  |
|-------------|--------------------------------------|------|
| Table 6.2.1 | Adit Zone Mineralization             | .6.  |
| Table 6.2.2 | Conductor B Mineralization           | .7.  |
| Table 9.0.1 | Adit Zone Diamond Drilling Summary   | .10. |
| Table 9.0.2 | Conductor B Diamond Drilling Summary | .11. |

## 1.0 INTRODUCTION

The So Long claim group covers two stratiform massive sulphide occurrences in south-central British Columbia with potential for hosting a Shuswap-type zinc-lead-silver deposit (Figure 1). Eight claims were staked in September 1995 to cover the known showings and their projected strike extensions. This was followed by limited prospecting and geochemical sampling. This report details results from the 1995 program and summarizes all previous data available on the property.

## 2.0 LIST OF CLAIMS

The So Long property consists of 8 contiguous 2-post mineral claims in the Kamloops Mining Division of British Columbia, as summarized in Table 2.0.1 (Figures 2a and 2b). These claims are oriented at an azimuth of 130° and lie entirely on Crown land of Salmon Arm Provincial Forest. Records of the British Columbia Ministry of Energy, Mines and Petroleum Resources indicate that the claims are owned by the author. Separate documents indicate that they are held in trust for Equity Engineering Ltd..

## TABLE 2.0.1 CLAIM DATA

| Claim<br>Name | Tenure<br>Number | No. of<br>Units | Record<br>Date | Expiry<br>Year |
|---------------|------------------|-----------------|----------------|----------------|
| NDP 1991      | 340186           | 1               | Sept. 24, 1995 | 1996           |
| NDP 1992      | 340187           | 1               | Sept. 24, 1995 | 1996           |
| NDP 1993      | 340188           | 1               | Sept. 24, 1995 | 1996           |
| NDP 1994      | 340189           | 1               | Sept. 24, 1995 | 1996           |
| NDP 1995      | 340190           | 1               | Sept. 24, 1995 | 1996           |
| NDP 1996      | 340191           | 1               | Sept. 24, 1995 | 1996           |
| So            | 340192           | 1               | Sept. 25, 1995 | 1996           |
| Long          | 340193           | 1               | Sept. 25, 1995 | 1996           |
|               |                  | 8               |                |                |

## 3.0 LOCATION, ACCESS AND GEOGRAPHY

The So Long property lies between Shuswap and Mara Lakes, six kilometres southwest of Sicamous, British Columbia, centred at 50° 47' north latitude and 119° 03' west longitude. The claims straddle a northeasterly-trending ridge which lies between Mara Lake to the southeast and Salmon Arm of Shuswap Lake to the northwest. Topography is gentle along the ridge top and moderate, with elevations ranging from 900 metres above sea level on the ridge top to approximately 550 metres on the slopes down to the lakes (Figure 2b).

The Trans-Canada Highway and the Canadian Pacific Railway main line follow the shore of Shuswap Lake, less than one kilometre northwest of the NDP 1991-1992 claims. A Canadian Pacific branch line runs along the western shore of Mara Lake, passing within a kilometre southeast of the So and Long claims. An unmaintained logging road, passable by two-wheel drive vehicles, leaves the Trans-Canada Highway eight kilometres west of Sicamous and climbs three kilometres to the So Long property. Branch roads pass through each of the claims. The entire property has been logged at







least once. The most recent clearcuts are approximately ten years old, covering the majority of the NDP 1995, NDP 1996, So and Long claims on the ridgetop and southern slope; they are revegetating with alder, spruce and lodgepole pine. The remainder of the property was logged thirty to fifty years ago and is covered by second-growth red cedar, Douglas fir and tamarack.

The So Long property is subject to a continental climatic regime, with warm summers and cold winters. Snowfall is moderate with an accumulation of one to two metres during the winter. Fieldwork could be carried out most of the year.

### 4.0 PROPERTY EXPLORATION HISTORY

### 4.1 Previous Work

The first reported work in the So Long project area was the driving of a 26 metre adit in 1958 under a logging road exposure of pyrrhotite, sphalerite and galena in micaceous quartzite. Tractor trenching by Annis Mines Ltd. in 1964 exposed this mineralization uphill to the east (BCDM, 1964). In 1965, the adit was lengthened to 38 metres (BCDM, 1965). By the following year, the adit was reported to extend 49 metres and a series of pits had exposed the Adit Zone along a strike length of 120 metres. Similar mineralization was also reported in trenches 240 metres south of the Adit Zone, along a trend later known as "Conductor B" (BCDM, 1966). In addition, fourteen short diamond drill holes were drilled along 350 metres of the Adit Zone in 1966, but only drill sections with minimal detail are available; collar locations are taken from Leishman and Gruenwald (1990, Fig. 5). Annis Mines carried out minor tractor trenching on their claims in 1967 and 1970, before allowing them to lapse.

In 1973, Sicamous Resources Ltd. carried out geological mapping and cut a grid with lines 61 metres (200') apart. The grid was covered by a VLF-EM survey and 179 soil samples were taken at 61 metre intervals along the grid lines outside of the trenched area. Of the soil samples, 51 exceeded 50 ppm Pb, 57 exceeded 500 ppm Zn and 48 were greater than 1.1 ppm Ag (Black, 1973). In 1976, Sicamous extended their soil grid to the southeast, taking 181 soil samples on 61 metre centres. This showed a continuation of the +500 ppm Zn soil geochemical anomaly identified to the northwest in 1973, with a maximum value of 3520 ppm Zn (Black, 1976).

In 1977, Granges Exploration Aktiebolag cut a 25.2 line-kilometre grid, with a baseline trending 045°. Crosslines, trending 135°, were cut 75 metres apart and labelled 1N, 2N, etc. Granges commissioned a pulse EM survey which defined four strong east-west conductors (Conductors A-D), two of which coincided with massive sulphide mineralization in the Adit Zone and Conductor B (White, 1977). The following year, Granges and Maverick Mountain Mines carried out a soil survey (not in the public record) and drilled 13 shallow holes, totalling 549 metres, on the Adit Zone and nine holes on Conductor B. Partial results are reported by Leishman and Gruenwald (1990) and the author has obtained sketchy drill logs.

In 1982, Caltex Hydrocarbons Inc. carried out a proton magnetometer survey over Granges grid lines south of their baseline. A magnetic high 12,000 nT above background was identified immediately south of Conductor B and attributed to unrecognized magnetite or pyrrhotite mineralization. Sixty-seven soil samples were taken at 25 metre spacings from Granges' lines in the vicinity of Conductors B, C and D, returning values up to 490 ppm Pb and 860 ppm Zn from Conductor B and 106 ppm Pb from Conductor C (Gruenwald, 1982).

In 1987, 2.15 kilometres of magnetometer/VLF-EM survey was carried out over a new grid with north-south crosslines run from an east-west baseline (Leishman and Gruenwald, 1987). An additional 2.9 kilometres of magnetometer/VLF-EM was run the following year (Leishman, 1989). In 1989, previous data was compiled, 6 rock and 24 soil samples were taken and a further 3.3 kilometres of magnetometer/VLF-EM survey was run (Leishman, 1990).

### 4.2 1995 Exploration Program

The NDP 1991-1996 claims were staked on September 24, 1995. Staking of the So and Long claims was finished the following day. Prospecting and soil sampling were carried out on September 25 over the NDP 1991-1996 claims, in order to confirm previous work and evaluate the nature of mineralization. All fieldwork and staking was carried out using a magnetic declination of 21.5° east of true north. Eleven samples were taken from mineralized float and outcrop; descriptions are attached in Appendix C. Petrographic descriptions for four polished thin sections were prepared by Dr. Jeff Harris and are included in Appendix D.

Two soil lines, oriented at 040°, were run from the #1 posts for the NDP 1995-1996, So and Long claims, with 36 samples taken at 50 metre intervals (25 metre intervals across the expected strike of mineralization on line 1500N from 500-700N). Rock and soil samples were analyzed geochemically for gold and by ICP for 32 elements at Chemex Laboratories in North Vancouver. Rock samples were also analyzed geochemically for barium. Five overlimit rock samples were assayed for zinc, three for silver and three for lead. Whole rock XRF analysis was performed on three low-sulphide rock samples. Analytical certificates form Appendix E.

### 5.0 REGIONAL GEOLOGY

The Sicamous/Salmon Arm area is underlain by three metamorphic assemblages derived from Hadrynian to Paleozoic sedimentary and volcanic rocks (Figure 3a). The Shuswap Assemblage consists of high-grade metamorphic rocks of the Shuswap allochthon that lie structurally beneath the Eagle River detachment fault. Above the detachment are low- to medium-grade metamorphic rocks of the Mount Ida and Eagle Bay assemblages. The nature of formational contacts within the Mount Ida assemblage, and between the Mount Ida and Eagle Bay assemblages, is not clear (Johnson, 1990).

Johnson (1990) divides the Eagle Bay assemblage into a tripartite sedimentary succession consisting of: clean white marble (**Unit Em**); thinly interbedded calc-silicate schist, marble, quartz-sericite-chlorite phyllite, metasiltite, quartzite and mica schist (**Unit Ec**); and a thick succession of micaceous quartzite interbedded with pelitic to semipelitic biotite-quartz-muscovite schist (**Unit Eq**). Epidote-biotite-chlorite-actinolite schists (**Unit Eca**) are abundant within Unit Ec, locally cross-cutting calcareous strata, and are interpreted as mafic metavolcanic extrusives and intrusives. Further north, Schiarrizza and Preto (1984) have mapped felsic volcanics and subvolcanic intrusions in the Eagle Bay Formation, associated with volcanogenic massive sulphide prospects.

The Mount Ida assemblage was divided by Johnson (1990) into three formations. The Sicamous Formation (**Unit Isc**) consists of grey, fine-grained, phyllitic marble and







FIG. 19. Sketch of proposed deformational sequence. Units II and V are presented as markers. The upper slide surface is shown to illustrate the fourth-phase folding event. This surface intersects the ground surface only on the west side of the lake and is above ground on the east side.

From Nielsen (1982)



calcareous and carbonaceous phyllites. Johnson (1990) correlates it to Unit Ecm of the Eagle Bay assemblage and Lower Paleozoic strata of the Lardeau Group. The Tsalkom Formation (**Unit Ita**) comprises mafic metavolcanics; they may correlate with the Fennel Group of the Slide Mountain Terrane or the Cambro-Ordovician Jowett Formation in the Kootenay Arc. The Silver Creek Formation (**Unit Isq**), which underlies the So Long claim group, contains semipelitic to pelitic quartz-muscovite and garnet-biotite-quartz-muscovite schists, micaceous and feldspathic quartzites, and minor carbonate and mafic schist. It is extensively intruded by sills and dykes of leucocratic granite, which is absent in overlying formations. Ordovician granodioritic orthogneiss underlies and partially interfingers with the Silver Creek Formation, implying an Ordovician or older age for it (Okulitch, 1989). The Silver Creek, which resembles Unit Eq of the Eagle Bay assemblage and Unit Su of the Shuswap assemblage, may be correlative with the Lower Paleozoic Lardeau Group or Hadrynian to Lower Cambrian strata of the Windermere and Hamill Groups (Johnson, 1990).

In a study of metamorphic and structural relationships on both sides of Mara Lake, Neilsen (1982) described four phases of deformation in the vicinity of the So Long property (Figure 3b). First-phase deformation is penetrative, with the development of a pervasive schistosity, rootless intrafolial folds, and significant transposition of layering. Folds are recumbent and tight to isoclinal; small scale folds trend slightly east of north. Second-phase structures are the most common fold form in the area. Tight to isoclinal folds with rounded hinges and planar limbs trend east-west. On the So Long property, northward vergence suggests the upper limb of a large recumbent antiform. Third-phase folding trends northwesterly, with upright, asymmetrical, open to closed folds. Units dipping gently northeast at the north end of Mara Lake give way to southwesterly dipping units further south; Neilsen places the axial trace of a 16-kilometre wavelength fold passing through the So Long property. The fourth phase consists of symmetric, upright open folds trending north-south.

### 5.1 Massive Sulphide Deposits

Two groups of massive sulphide deposits have been explored in the vicinity of the So Long property, termed "Shuswap" and "Adams Plateau" types in this report (Figure 4). It is not inconceivable that these have a common volcanogenic origin, changed in mineralogy and form by the high-grade metamorphism and structural deformation of the Shuswap Metamorphic Complex.

### Adams Plateau Deposits

Volcanogenic massive sulphide (VMS) prospects have been identified within different stratigraphic sequences within the felsic/mafic/sedimentary Eagle Bay Formation on the Adams Plateau, centred 70 kilometres northwest of the So Long property. These prospects share the following characteristics: (1) they are polymetallic, with high barite and precious metal contents; (2) they are associated with intense sericite-quartz alteration.

The **Rea** deposit (243,000 tonnes grading 2.25% Zn, 2.14% Pb, 0.53% Cu, 6.5 g/tonne Au and 73.3 g/tonne Ag) is composed of three massive sulphide-barite lenses overlying alkali basalt tuffs which have been entirely altered to a silica-sericite assemblage. The lenses are overlain by coarse clastic metasedimentary rocks (Hoy, 1986).

The **Homestake** deposit (1,011,000 tonnes grading 4.0% Zn, 2.5% Pb, 0.55% Cu, 240 g/tonne Ag and 28% barite) consists of massive barite-sulphide lenses near



-

the top of a succession of altered felsic tuffs, which overlie andesite tuffs and are overlain by intercalated clastic sediments and andesite tuffs. The footwall rocks are intensely altered and sheared sericite-quartz schists and chlorite phyllite (Hoy and Goutier, 1986; Hoy, 1986).

### Shuswap Deposits

Several stratiform zinc-lead-silver deposits, considered by Hoy (1987) to be of syngenetic exhalative origin, have been explored within the Shuswap and Monashee metamorphic complexes (Figure 4). These prospects, scattered over an area of 40 x 200 kilometres, share the following characteristics: (1) thin, conformable, regionally extensive, massive sulphide(-magnetite) horizons in platformal successions dominated by marble, schist and quartzite; (2) sulphides comprised of pyrrhotite and sphalerite, with minor galena and pyrite; (3) deformed and metamorphosed to amphibolite grade jointly with enclosing strata (Hoy, 1987).

The **River Jordan** deposit (2.6 million tonnes grading 5.1% Pb, 5.6% Zn and 35 g/tonne Ag) consists of a sulphide-rich layer, up to six metres thick, composed of a "fine-grained intimate mixture of sphalerite and pyrrhotite with conspicuous eye-shaped lenses of grey, watery quartz and scattered grains of pyrite and galena. Locally, it is well-layered, and includes minor pods and lenses of calc-silicate gneiss, schist, marble or barite. It is within a calcareous succession of calc-silicate gneiss, micaceous schist, marble and quartzite" (Hoy, 1982).

The **Cottonbelt** deposit (725,000 tonnes grading 6% Pb, 5% Zn and 50 g/tonne Ag) has been traced on surface for 2.5 kilometres and a further two kilometres in drilling, with average widths of 1-2 metres. The most common style of mineralization consists of semi-massive to massive sphalerite, galena and magnetite in olivine-pyroxene-amphibole calc-silicate gneiss. Layers of massive magnetite-sulphides are interlayered with calc-silicate gneiss, sillimanite gneiss, impure marble and amphibolite; immediate hanging wall and footwall rocks are commonly calc-silicate gneiss or impure marble (Hoy, 1987).

The **Ruddock Creek** deposit (5 million tonnes grading 7.5% Zn and 2.5% Pb in the E Zone, where the sulphide-bearing horizon is thickened in the hinge of an isoclinal fold) is in a succession of calcareous schist, quartzite and impure marble. One or more layers of massive sphalerite, pyrrhotite and galena are contained within a sequence of interlayered calcareous quartzite, marble and minor schist which reaches a maximum of 15 metres thickness (Hoy, 1987).

The **Big Ledge** deposit (6.5 million tonnes grading 4% Zn) can be traced for 10 kilometres within a succession of thin-bedded quartzite, marble and calcareous and pelitic schist. At least four layers of massive pyrite or pyrrhotite and dark sphalerite are hosted by a calcareous graphitic schist, interlayered with calcareous quartzite, calc-silicate gneiss and marble. Sulphides are also disseminated through the schist (Hoy, 1987).

The **Colby** deposit (1 million tonnes grading 7% Zn), located twenty kilometres east of the So Long property, has five mineralized zones identified along six kilometres of marble, quartzite and calc-silicate gneiss stratigraphy. Dark sphalerite, pyrrhotite and pyrite are disseminated through a calcite marble which is structurally overlain by calc-silicate gneiss with crude layers of the same sulphides (Hoy, 1987).

### 6.0 GEOLOGY AND MINERALIZATION

#### 6.1 Geology

Very little geological mapping has been reported on the So Long property and none was done by the author. Regional mapping shows it to be entirely underlain by the Silver Creek Formation of semipelitic to pelitic quartz-muscovite and garnet-biotitequartz-muscovite schists, micaceous and feldspathic quartzites, with minor carbonate and mafic schist. The most obvious lithology is a thick-bedded micaceous quartzite, with a few percent muscovite along poorly-developed cleavages in a clean quartzite containing traces of cubic pyrite. It forms a series of bluffs running east-west north of Conductor B on the NDP 1996 and Long claims. Closer to the massive sulphide horizon, outcrops are scarce and lithologies are medium-bedded, commonly 5-20 centimetres in thickness. Different protoliths are indicated by variations in muscovite and biotite contents, each of which can range from 0-50% in micaceous quartzites or mica schists. Compositional layering is parallel to foliation, generally trending 260-280° and dipping 45-65° north (Figure 5).

#### 6.2 Mineralization

The Adit Zone and Conductor B, the main showings previously reported on the So Long property, were examined by the author; samples 485822-23, 485842-43 and 485847-50 were taken from the adit dump, a road cut above the adit and trenches on Conductor B. Samples 485844-46 were taken from float boulders which extend Conductor B mineralization 300 metres to the east of previous work (Figures 5, 6). Mineralization was examined in outcrop only in the Adit Zone road cut and in one of Granges' trenches on Conductor B.

The Adit Zone road cut exposes at least five metres of micaceous quartzite with biotite-galena-sphalerite forming millimetre-scale bands and lenses parallel to foliation (sample 485848). Structurally above this lies a 50 centimetre band of quartz-biotite schist containing quartz augen in a crenulated biotite matrix with semi-massive galena, pyrite, sphalerite and minor chalcopyrite and pyrrhotite (sample 485847). Samples 485849 and 485850 were taken from mineralized boulders on the adit dump. These are somewhat similar to 485847, with crenulated biotite schist containing quartz augen, but the main sulphide is pyrrhotite and lead-zinc values were much lower. Table 6.2.1 summarizes results for Adit Zone mineralization.

| Sample | Sample | Au    | Ag      | As    | Ba    | Cu    | Pb    | Zn    |
|--------|--------|-------|---------|-------|-------|-------|-------|-------|
| Number | Width  | (ppb) | (ppm)   | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) |
| 485847 | Float  | 25    | 65.1g/t | 22    | 585   | 1420  | 8.27% | 8060  |
| 485848 | Float  | <5    | 6.2     | <2    | 295   | 694   | 4760  | 4190  |
| 485849 | Float  | 15    | 12.4    | 12    | 350   | 3150  | 4080  | 3660  |
| 485850 | Float  | 20    | 25.4    | 28    | 290   | 3160  | 8700  | 3190  |

### TABLE 6.2.1 ADIT ZONE MINERALIZATION

A 25 centimetre wide layer of massive pyrrhotite-galena-sphalerite, conformable to foliation and stratigraphy, is exposed in one of Granges' backhoe trenches on Conductor B. Chip sample 485843 assayed 3.15% Pb and 1.31% Zn across this massive sulphide layer. The structural hanging wall (485844) to this sulphide layer is a muscovite schist with seams of extremely fine-grained pyrite and narrow guartz(-



galena-sphalerite) veins parallel to foliation.

Several float boulders of massive pyrrhotite-sphalerite-galena-chalcopyrite were found and sampled in Granges' trenches and further to the east. All were located near the trace of VLF Conductor B or its projected eastward extension. Sample 485846, with 1.82% Zn, was located 300 metres southeast of the easternmost drill hole, along the trend of Conductor B but 200 metres southeast of the limits of geophysical surveying. Table 6.2.2 summarizes rock geochemical results from Conductor B.

#### TABLE 6.2.2 CONDUCTOR B MINERALIZATION

| Sample<br>Number | Sample<br>Width | Au<br>(ppb) | Ag<br>(ppm) | As<br>(ppm) | Ba<br>(ppm) | Cu<br>(ppm) | Pb<br>(ppm) | Zn<br>(ppm) |
|------------------|-----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| 485822           | Float           | 10          | 92.6g/t     | <2          | 155         | 2680        | 7.70%       | 2.64%       |
| 485823           | Float           | <5          | 4.6         | <2          | 420         | 107         | 4990        | 5300        |
| 485842           | 50 cm           | <5          | 4.0         | <2          | 690         | 150         | 2610        | 1390        |
| 485843           | 25 cm           | <5          | 51.4g/t     | <2          | 210         | 1680        | 3.15%       | 1.31%       |
| 485844           | Float           | <5          | 8.0         | 2240        | 165         | 3260        | 2110        | 3.96%       |
| 485845           | Float           | <5          | 3.0         | 8           | 80          | 6680        | 1200        | 3.68%       |
| 485846           | Float           | <5          | 3.6         | 162         | 70          | 1200        | 2240        | 1.82%       |

Four polished thin sections from Conductor B mineralization were examined by Dr. J.F. Harris (Appendix D). The massive sulphide mineralization was described as fine-grained pyrrhotite, altering to secondary pyrite and marcasite, and containing tiny grains and clumps of sphalerite and galena. Silicate inclusions within the massive sulphides are composed of individual or aggregated mica flakes and quartz grains. A few inclusions are distinct in composition (for instance, granular plagioclase in section 485822) suggesting that they represent "mechanically incorporated clasts in an original sulfide sediment".

## 7.0 SOIL GEOCHEMISTRY

## 7.1 Previous Work

Several campaigns of soil geochemical sampling have been carried out on the So Long property. These surveys are of limited utility, because:

1) The Sicamous Resources grids (1973-76) were not tied into topography and their soil anomalies cannot be accurately located on the ground.

2) Granges never filed their 1978 soil survey for assessment, and it is not publicly available.

3) Caltex (1982) and Gruenwald/Leishman (1989) took only 91 close-spaced soil samples from selected areas in the vicinity of electromagnetic conductors.

In general, however, these soil surveys returned strong anomalies for lead, zinc and silver. In the later surveys, which can be tied into topography, these anomalies are coincident with electromagnetic conductors and massive sulphide mineralization.



#### 7.2 1995 Soil Survey

A total of 36 soil samples were taken in 1995 along two lines spaced 500 metres apart (Figures 5 and 6). This survey, with samples generally at 50 metre spacings, was designed to confirm the reported association between geochemical anomalies and electromagnetic conductors, and to search for an eastern extension to Conductor B. Both objectives were realized.

Soil samples were taken at 25 metre intervals between 500N and 700N on line 1500E, to test the projected intersection of Conductor B. Sample 1500E 550N was highly anomalous in lead (1035 ppm), zinc (4530 ppm), copper (485 ppm) and silver (1.4 ppm). Subsequent prospecting revealed a boulder of massive pyrrhotite with sphalerite and chalcopyrite (#485846) within five metres of this sample; it is thought to represent the eastward continuation of Conductor B. Although geochemical values were highest at 550N, all samples from 525N to 675N exceeded 500 ppm Zn, along with up to 160 ppm Pb and 1.4 ppm Ag. This 150 metre wide anomaly could be related to geochemical dispersion from a single massive sulphide zone near 550N, or could indicate a wider zone of mineralization (Figure 5).

Leishman's (1990) VLF-EM survey showed that Conductor B passes through line 1000E near 500N. This soil sample returned 144 ppm Cu, 100 ppm Pb and 356 ppm Zn and is flanked by samples with lower copper and lead values. Sample 1000E 950N returned 206 ppm Pb, the second highest value from the 1995 survey. It lies along the postulated eastward extension of the Adit Zone (Conductor A), 450 metres east of any geophysical surveying or drilling.

Conductor C was not tested by either of the 1995 soil lines. Its projected eastern and western extensions lie immediately south of the 1995 lines (Figure 5).

### 8.0 GEOPHYSICS

### 8.1 Electromagnetic Surveys

In 1977, Granges commissioned a pulse EM survey over the So Long project area, outlining four east-west conductors (White, 1977). From 1987 to 1989, Gruenwald and Leishman carried out 8.35 kilometres of VLF-EM, confirming and refining the location of Conductors A-C (Figure 7).

Conductors A and B mark the location of massive pyrrhotite-sphalerite(-galenapyrite) mineralization (Figure 5). Conductor A (the Adit Zone) has been tested by an adit and short diamond drill holes along 180 metres. The conductor axis, as defined by Fraser-filtered contours, lies about 40 metres north of the surface trace of massive sulphides, as exposed in the road cut and adit. The sulphide horizon dips 50° toward the north, so it would pass under the conductor axis at a depth of about 50 metres.

Conductor B has been defined by Leishman (1990) along 800 metres. Four diamond drill holes and several backhoe trenches define northward-dipping massive sulphide mineralization along its western end. Similar to the electromagnetic expression of the Adit Zone, the surface trace of the massive sulphides lies approximately 40 metres south of the conductor axis. The diamond drill holes and trenching on the west end of Conductor B only test 60 metres of its strike length. Hole



G8, located 280 metres further east along this conductor, provides its only other surface or sub-surface exposure; this hole intersected 2.0 metres of massive pyrrhotite-chalcopyrite-galena. Two zinc-bearing massive sulphide boulders were found in 1995 a few tens of metres south of the axis of Conductor B; these are located 100 and 200 metres southeast from hole G8. East of the limits of the VLF survey, a zinc-bearing massive sulphide boulder and highly anomalous soil geochemistry probably mark the eastern extension of the massive sulphide mineralization responsible for Conductor B.

The axis of Conductor B is not linear. This slightly irregular trace could be due to short fault offsets. Equally likely, it could reflect a stratiform massive sulphide horizon which has been folded along with the enclosing lithologies. As such, the irregularities likely represent parasitic folds along the limbs of larger isoclinal folds.

A third strong east-west conductor (C) lies 350 metres south of Conductor B and is defined along 300 metres of strike length. No trenching, drilling or prospecting has been carried out on Conductor C to determine whether it too is caused by massive sulphide mineralization. One positive indication is a soil sample which returned 115 ppm Pb from over the axis of Conductor C (Leishman, 1990).

Although speculative, it appears quite possible that Conductors B and C form two limbs of an isoclinal fold. Conductor A could form a third limb as shown in Figure 5, explaining the strong similarities between mineralization in the Adit Zone and along Conductor B. Neilsen's (1982) structural analysis of the Mara Lake area predicts exactly this sort of east-southeast trending Phase I isoclinal folding (Figure 3b).

#### 8.2 Magnetic Survey

Leishman (1990) reported on a 8.3 kilometre proton magnetometer survey on the So Long property (Figure 8). This showed very high magnetic relief, with values ranging from 46,950 to 68,337 nT. Some of the highest values lie along Conductor B, especially associated with Fraser-filtered values above 40. These magnetic highs are undoubtedly due to pyrrhotite in massive sulphide mineralization. However, some sections of Conductor B (such as 3W 1S) are highly conductive but exhibit only background magnetic values, indicating that pyrrhotite is not an important component of sulphide mineralization there.

Conductor A (the Adit Zone) is partially marked by a magnetic high with a peak value of 59,800 nT. At the adit itself, however, magnetic values are background at 57,800 nT, despite the presence of pyrrhotite in mineralized boulders on the dump.

The magnetic high centred at 4W 1+50N, with three readings above 60,000 nT, remains unexplained. It lies between Conductors A and B, where no mapping, trenching or drilling has been carried out.

#### 9.0 DIAMOND DRILLING

Two programs of diamond drilling have been carried out on the So Long property (Figure 5). Annis Mines drilled fourteen short holes on the Adit Zone in 1966; handdrawn sections with assays and brief lithological notes are available for holes A66-1 to 5, 8 to 10 and 12-14. In 1978, Granges drilled 13 holes totalling 549 metres on the Adit Zone and Conductor B. Drill logs and partial assay results have been obtained from past operators. Survey data and significant intersections for the Adit Zone and Conductor B are summarized in Tables 9.0.1 and 9.0.2, respectively.



| Drill  | Az.  | Dip  | Total        | Interse         | ection       | Int.         | Cu   | Pb   | Zn   | Ag    |
|--------|------|------|--------------|-----------------|--------------|--------------|------|------|------|-------|
| Hole   | (0)  | (0)  | Depth        | From            | То           | Length       | (%)  | (%)  | (%)  | (g/t) |
|        |      | • •  | ( <b>m</b> ) | ( <i>m</i> )    | ( <b>m</b> ) | ( <b>m</b> ) |      |      |      |       |
| A66-1  | ???  | -45? | 36.6         | 10.7            | 11.3         | 0.6          | 0.05 | 1.07 | Tr.  | 18.9  |
| A66-2  | ???  | -70  | 30.8         | 7.6             | 8.4          | 0.8          | Tr.  | 1.17 | 0.08 | 35.0  |
|        |      |      |              | 17.1            | 17.7         | 0.6          | 0.11 | 1.97 | 1.45 | 37.7  |
|        |      |      |              | 23.3            | 27.0         | 3.7          | 0.13 | 1.38 | 0.16 | 24.0  |
| A66-3  | ???  | -45? | 76.2         | 19.8            | 20.1         | 0.3          | 0.18 | 2.19 | 3.55 | 34.3  |
| A66-4  | ???  | -65  | 46.3         | N.S             | 5.A.         |              |      |      |      |       |
| A66-5  | ???  | -70  | 39.3         | 24.7            | 25.1         | 0.4          | 0.08 | 2.45 | 0.09 | 27.4  |
| A66-8  | ???  | -45? | 71.6         | N.S             | 5.A.         |              |      | 4.00 |      |       |
| A66-9  | ???  | -35  | 50.0         | 26.2            | 27.4         | 1.2          | 0.12 | 1.30 | 0.07 | 3.4   |
|        |      |      |              | 31.7            | 32.2         | 0.5          | 0.14 | 2.58 | 0.28 | 10.9  |
|        |      |      |              | 33.2            | 35.1         | 1.9          | 0.14 | 1.73 | 1.73 | 14.3  |
|        |      |      |              | 38.7            | 39.6         | 0.9          | 0.20 | 1.50 | 2.20 | 20.6  |
|        |      |      |              | 41.5            | 42.4         | 0.9          | 0.22 | 1.60 | 2.80 | 12.0  |
| A66-10 | ???  | -60  | 58.8         | No As           | ssays        |              | 0.05 | 4.00 | 4.00 |       |
| A66-12 | ???? | -/5  | 46.2         | 15.8            | 16.8         | 1.0          | 0.05 | 1.60 | 1.20 | 5.1   |
|        |      |      |              |                 | 19.8         | 2.1          | 0.15 | 0.88 | 2.00 | 17.9  |
|        | 000  | 45   |              | 31.7            | 32.3         | 0.6          | 0.10 | 1.70 | 2.35 | 0.8   |
| A66-13 | 277  | -45  | 26.5         | N.S             | 5.A.         |              |      |      |      |       |
| A66-14 |      | -90  | 25.0         |                 | ssays        | 20           | 0.00 | 4 40 | 0.05 | 40.7  |
| G78-1  | 205  | -45  | 40.7         |                 | 10.1         |              | 0.33 |      | 0.95 | 12.1  |
|        |      |      |              | 10.3            | 10.9         | 0.0          | 0.43 | 4.92 |      | 30.7  |
| 079.4  | 205  | 70   | 26.2         | 19.4            | 22.9         |              | 0.20 | 2.20 | 1.14 | 20.0  |
| G78-4  | 205  | -70  | 30.3         | 20.2            |              | 0.4          | 0.45 | 3.97 |      | 24.3  |
| C70 E  | 205  | A E  | 20.2         | 22.3<br>  No ^/ | 24.0         | <b>∠.</b> ∠  | 0.00 | 1.09 | 0.91 | 10.9  |
| 070-5  | 203  | -40  | 57.2         | 10 A            | 10 0         | 07           | 0.26 | 1 20 | 0.20 | 127   |
| 610-0  | 205  | -40  | 57.3         | 10.3            | 19.0         | 0.7          | 0.30 | 1.29 | 0.20 |       |
|        |      |      |              | 23.2            | Z1.I         | 1.9          | 0.12 | 1.54 | 4.15 | 14./  |

TABLE 9.0.1 ADIT ZONE DIAMOND DRILLING SUMMARY

Note: N.S.A. means No Significant Assays (>1% Cu, Pb or Zn)

10

Cu Pb Zn Int. Ag Drill Az. Dip Total **Intersection** Length (%) (%) (%) Hole From То  $(\mathbf{g}/t)$ (0) (0) Depth (**m**) (m) (**m**) (**m**) 57.9 N.S.A. 195 G78-2 -55 1.30 175.5 0.5 0.10 9.05 -75 48.9 6.0 6.5 G78-3 195 185 118.0 No Assavs G78-7 -50 ??? ??? ??? ???? 28.6 15.1 16.7 1.6 G78-8 ??? -45 G78-9 27.7 ??? -55 No Assavs ??? No Assays 27.3 G78-10 195 ??? ??? ???? ??? 3.3 G78-11 195 -45 20.4 15.0 18.3 1.4 -70 22.9 17.2 18.6 0.04 7.96 1.94 100.5 G78-12 195 0.6 0.04 0.37 1.68 8.6 G78-13 -90 27.1 22.0 22.6 \_\_\_\_ 23.8 0.04 1.45 0.84 35.0 25.0 1.2

TABLE 9.0.2 CONDUCTOR B DIAMOND DRILLING SUMMARY

Note: N.S.A. means No Significant Assays (>1% Cu, Pb or Zn)

Granges' core descriptions are very brief and not too useful. Their sampling was quite spotty, leaving the following sections unsampled, among others:

G78-2, 32.73-33.43m: "more pyrrhotite, also galena & calco under 1%"

**G78-3**, 32.15-32.83m: "more sulphides - py & pyrrhotite, discernible galena & calco" **G78-3**, 47.85-48.94m: "15% pyrrhotite - some calco, end of hole"

**G78-4**, 10.64-12.50m: "5 to 10% sulphides, mostly pyrite, minor visible calco"

**G78-4**, 12.50-13.62m: "5% pyrite, 5% pyrrhotite, low values in copper and lead"

**G78-5**, 4.26-30.17m: "very minor sulphides with some galena from 7.19 to 7.31, very small blebs elsewhere"

**G78-6**, 19.35-19.53m: "20 to 30% pyrite and pyrrhotite - visible calco, galena, sphalerite"

**G78-6**, 19.60-19.96m: "5-10% pyrite, 5% pyrrhotite - visible calco, galena & sphalerite" **G78-6**, 20.11-20.88m: "5-10% sulphides, mostly pyrite, some pyrrhotite - visible calco, galena, sphal"

**G78-6**, 22.71-23.35m: "same as above" (including 23.13-23.35m: "nice sphal. and galena")

**Ğ78-6**, 28.13-28.25m: "nice galena"

G78-6, 30.90-31.03m: "20% sulphides - nice galena"

G78-7, 20.42-20.57m: "visible sphalerite"

G78-7, 93.72-94.18m: "few narrow seams - visible sphalerite & galena"

G78-7, 104.39-105.00m: "visible calco & galena in narrow fractures in quartz"

G78-9, 20.40-20.57m: "visible calco, galena and sphalerite in streaks and blebs"

The holes directed at the Adit Zone intersected a series of zinc- and lead-bearing sulphide zones over core lengths of up to 16.2 metres (26.2-42.4m) in hole A9. Hole G1, the one which was most thoroughly sampled, intersected 4.6 metres grading 2.36% Pb and 1.20% Zn separated by 5.2 metres from a second 2.0 metre interval grading 2% combined Pb-Zn. The drilling tested 180 metres of strike length of the Adit Zone. It is not clear whether holes A13 and A14, drilled 150 metres further west, hit the zone or not, since sections show sulphide-bearing intervals, but no sampling was done.

Granges tested Conductor B with nine holes. Hole G7, collared well back from Conductor B, stopped short of the projected zone of mineralization. Holes G2, G3, G9 and G10 may also have been stopped short of the best mineralization. The remaining

four holes intersected massive sulphides on two sections 350 metres apart, with the best intersection grading 7.96% Pb, 1.94% Zn and 100 g/tonne Ag over 1.4 metres in G12. The zone remains untested between these sections and along strike from them.

#### **10.0 DISCUSSION**

The So Long property covers two stratiform massive sulphide occurrences similar to Shuswap-style zinc-lead-silver deposits. Mineralization examined on surface is very similar to the "fine-grained intimate mixture of sphalerite and pyrrhotite with conspicuous eye-shaped lenses of grey, watery quartz" described for the other Shuswap-style deposits, as is the So Long's position within a platformal succession dominated by mica schist and quartzite. Five Shuswap-style massive sulphide deposits have been defined in the area, with reserves up to 5 million tonnes grading 7.5% Zn and 2.5% Pb; none has yet proven economic due to narrow thicknesses and structural complexity. The So Long prospect, which is in slightly less-deformed strata outside the Shuswap Metamorphic Complex, may exhibit less structural complexity.

Two east-trending zones of stratiform pyrrhotite-sphalerite-galena±chalcopyrite mineralization have been recognized on the So Long property: the Adit Zone and Conductor B. Multiple lenses of sulphide mineralization are present over a maximum width of 16 metres core length within each zone. Drill intersections grade up to 7.96% Pb, 1.94% Zn and 100 g/tonne Ag over 1.4 metres (Conductor B) and 1.54% Pb and 4.15% Zn over 1.9 metres (Adit Zone). Mineralization within the two zones is very comparable, with similar host lithologies, textures, widths and grades. Regional structural interpretations suggest that the Adit Zone and Conductor B occur along two limbs of an isoclinal fold; Conductor C, which has never been drilled, could form a third east-west fold limb.

At other Shuswap-type massive sulphide deposits, such as Big Ledge and Ruddock, the sulphide sheets are attenuated along fold limbs and thicken substantially along the hinges of isoclinal folds. Reserves at these two deposits are confined to the hinge areas, where potentially economic thicknesses and grades are present. On the So Long property, the two (assumed) fold hinges between the Adit Zone, Conductor B and Conductor C have not been defined, much less tested by drilling.

The nature of the So Long massive sulphide occurrences makes them an easy target to explore. The Adit Zone and Conductor B are shown up well by magnetic and electromagnetic surveys, due to the conductive and magnetic properties of the pyrrhotite which comprises the bulk of the massive sulphide sheets. The mineralization is reflected by soil geochemistry, since overburden is not excessively thick. Prospecting has been used successfully to show the presence of pyrrhotite-sphalerite-galena boulders along the trend of geochemical and geophysical anomalies. Outcrop, while not abundant, should be sufficient to determine the stratigraphic and structural setting of mineralization, provide a geological framework for the property and guide interpretation of anomalies in areas of limited outcrop.

The So Long prospect has never received a systematic evaluation. Soil geochemistry and ground geophysics have been carried out on a piecemeal basis without defining the limits of the geochemical and geophysical anomalies. Diamond drilling has been limited to a 330 metre portion of the Adit Zone and two sections across Conductor B, located 350 metres apart. Zinc-bearing massive sulphide boulders have been found up to 450 metres east of the easternmost drilling on Conductor B.

Conductor C has never been drilled or even prospected, despite its anomalous soil geochemistry. All drilling to date has been shallow, averaging 45 metres total length on the Adit Zone and 42 metres on Conductor B. Available drill assays are incomplete and numerous mineralized sections were left unsampled.

The So Long prospect shows excellent potential for discovery of economic zinclead-silver massive sulphide mineralization. Work to date has shown the presence of sub-economic mineralization of this type in two areas and has shown the effectiveness of several geophysical and geochemical techniques in extending these along strike. Only 680 metres strike length of the massive sulphide sheet has been drilled, out of a probable strike length in excess of 3,700 metres. The best geological targets, namely the isoclinal fold hinges, have not been evaluated.

Respectfully submitted,

Henry J. Awmack, P.Eng. EQUITY ENGINEERING LTD.

Vancouver, British Columbia June, 1996



13

# APPENDIX A

Ι.

**BIBLIOGRAPHY** 

## **BIBLIOGRAPHY**

**Black, J.M. (1973)**: Geological and Geochemical Report on the Joanne and Mouse Claims; British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report #4,453.

Black, J.M. (1976): Geochemical Report on the Bon Claim; British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report #5,864.

**Gruenwald, W. (1982)**: Geological, Geophysical and Geochemical Report on the Jeff and Big J#3 Claims; British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report #10,745.

**Hoy, T. (1982)**: Stratigraphic and Structural Setting of Stratabound Lead-Zinc Deposits in Southeastern B. C.; CIM Bulletin, No. 840, p. 114-134.

**Hoy, T. (1986)**: Alteration, Chemistry and Tectonic Setting of Volcanogenic Massive Sulphide-Barite Deposits at Rea Gold and Homestake, Southeastern British Columbia (82M/4W), <u>in</u> Exploration in British Columbia; British Columbia Ministry of Energy, Mines and Petroleum Resources, p. B7-B19.

**Hoy, T. (1987)**: Geology of the Cottonbelt Lead-Zinc-Magnetite Layer, Carbonatites and Alkalic Rocks in the Mount Grace Area, Frenchman Cap Dome, Southeastern British Columbia; British Columbia Ministry of Energy, Mines and Petroleum Resources Bulletin 80, 99 pages.

**Hoy, T. and F. Goutier (1986)**: Rea Gold (Hilton) and Homestake Volcanogenic Sulphide-Barite Deposits, Southeastern British Columbia (82M/4W), <u>in</u> Geological Fieldwork 1985; British Columbia Ministry of Energy, Mines and Petroleum Resources Paper 1986-1, p. 59-68.

**Johnson, B.J. (1989)**: Geology of the West Margin of the Shuswap Terrane near Sicamous and Implications for Tertiary Extensional Tectonics, <u>in</u> Geological Fieldwork 1988; British Columbia Ministry of Energy, Mines and Petroleum Resources Paper 1989-1, p. 49-54.

**Johnson, B.J. (1990)**: Geology Adjacent to the Western Margin of the Shuswap Metamorphic Complex (Parts of 82L, M); British Columbia Ministry of Energy, Mines and Petroleum Resources Open File 1990-30.

Leishman, D.A. (1989): Geophysical Report on the LG-1 Mineral Claim; British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report #18,701.

**Leishman, D.A. (1990)**: Geochemical and Geophysical Report on the LG-1 Mineral Claim; British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report #19,824.

**Leishman, D.A. and Gruenwald, W. (1987)**: Geophysical and Geological Report on the LG-1 Mineral Claim; British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report #15,523.

Lukawesky, K.W. (1989): Geophysical Report on the S.J. #1 Mineral Claim; British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report #18,903.

**Neilsen, K.C. (1982)**: Structural and Metamorphic Relationships Between the Mount Ida and Monashee Groups at Mara Lake, British Columbia; Canadian Journal of Earth Sciences, Vol. 19, p. 288-307.

**Okulitch, A.V. (1979)**: Lithology, Stratigraphy, Structure and Mineral Occurrences of the Thompson-Shuswap-Okanagan Area, British Columbia; Geological Survey of Canada Open File 637.

**Okulitch, A.V. (1989)**: Revised Stratigraphy and Structure in the Thompson-Shuswap-Okanagan Map Area, Southern British Columbia; Geological Survey of Canada Paper 89-1E, p. 51-60.

**Schiarizza, P. and V.A. Preto (1984)**: Geology of the Adams Plateau - Clearwater Area; British Columbia Ministry of Energy, Mines and Petroleum Resources Preliminary Map 56.

Wheeler, J.O. and P. McFeely (1991): Tectonic Assemblage Map of the Canadian Cordillera and adjacent parts of the United States of America; Geological Survey of Canada Map 1712A, scale 1:2,000,000.

White, G.E. (1977): Geophysical Report on a Pulse Electromagnetometer Survey; British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report #6,621.



1.

**j**•

# STATEMENT OF EXPENDITURES

| STATEMENT OF EXPENDI    | TURES  |
|-------------------------|--------|
| NDP 1991-1996, SO, LONG | CLAIMS |
| September 25, 1995      | ;      |

6

| PROFESSIONAL FEES AND WAGES:<br>Henry J. Awmack, P.Eng. (Field)<br>0.5 days @ \$425/day<br>Henry J. Awmack, P.Eng. (Repor<br>9.25 days @ \$425/day<br>Kelly Owerko, Geologist<br>1.0 day @ \$350/day                      | \$<br>rt) | 212.50<br>3931.25<br>350.00                                                                       |                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------|---------------------------------|
| 2.5 hours @ \$25/hr                                                                                                                                                                                                       |           | 62.50                                                                                             | \$<br>4,556.25                  |
| EQUIPMENT RENTAL: (Equity Engine                                                                                                                                                                                          | erin      | g Ltd.)                                                                                           |                                 |
| 4x4 Truck<br>1 day @ \$80/day                                                                                                                                                                                             |           |                                                                                                   | 80.00                           |
| EXPENSES:<br>Chemical Analyses<br>Materials and Supplies<br>Maps and Publications<br>Drafting<br>Printing and Reproductions`<br>Meals<br>Automotive Fuel<br>Tolls<br>Telephone Distance Charges<br>Courier<br>Petrography | \$        | 819.07<br>2.13<br>18.83<br>612.50<br>238.07<br>60.17<br>61.73<br>9.35<br>16.08<br>14.80<br>619.00 | 2,471.73                        |
|                                                                                                                                                                                                                           |           | Subtotal:                                                                                         | \$<br>7,107.98                  |
| GST:                                                                                                                                                                                                                      |           | TOTAL:                                                                                            | \$<br>497.56<br><b>7,605.54</b> |

# APPENDIX C

1.

Ì

ľ

Í

# **ROCK SAMPLE DESCRIPTIONS**

# MINERALS AND ALTERATION TYPES

| AZ | azurite        | BA | barite          | BI | biotite      |
|----|----------------|----|-----------------|----|--------------|
| BO | bornite        | CA | calcite         | CB | Fe-carbonate |
| ČČ | chalcocite     | CL | chlorite        | CP | chalcopyrite |
| ĊŬ | native copper  | CV | coveilite       | CY | clay         |
| EP | epidote        | FM | ferromolybdite  | FP | feldspar     |
| GA | garnet         | GE | goethite        | GL | galena       |
| GR | graphite       | HE | earthy hematite | HS | specularite  |
| HZ | hydrozincite   | JA | jarosite        | KF | K-feldspar   |
| MC | malachite      | MG | magnetite       | MN | Mn-oxides    |
| MO | molybdenite    | MR | mariposite      | MS | sericite     |
| MT | marcasite      | MU | muscovite       | NE | neotocite    |
| PO | pyrrhotite     | PX | pyroxene        | PY | pyrite       |
| QZ | quartz veining | Si | silica          | SP | sphalerite   |
| TA | talc           | то | tourmaline      | Π  | tetrahedrite |

# **ALTERATION INTENSITIES**

| m  | medium      | S | strong | tr | trace |
|----|-------------|---|--------|----|-------|
| vs | very strong | w | weak   |    |       |

\_ Equity Engineering Ltd. \_

| EQUITY ENGI                                                                                                    | NEERING LTD.                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                            | ROCK SAMPLE DESCRIPTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                          | Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ge-1-                                                                                                                        |                                                                                          |                                                                                            |                                                                            |                                                                    |                                                                               |
|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------|
| roperty :                                                                                                      | So Long Project                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                            | NTS : 82L/14E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Date : Sept                                                                                                                                                                                                                                                                                | tember 25, 1995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                            |                                                                                          |                                                                                            |                                                                            |                                                                    |                                                                               |
| Sample No.                                                                                                     | UTM :                                                                                                                                                                                                                                            | 5628 830 N                                                                                                                                                                                                                                                 | Type : Float                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Alteration :                                                                                                                                                                                                                                                                               | sqz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Au                                                                                                                           | Ag                                                                                       | Ba                                                                                         | Cu                                                                         | Pb                                                                 | Zn                                                                            |
|                                                                                                                |                                                                                                                                                                                                                                                  | 355 310 E                                                                                                                                                                                                                                                  | Strike Length Exp. : m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Metallics :                                                                                                                                                                                                                                                                                | trCP, 80%PO, 2%PY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (ppb)                                                                                                                        | (ppm)                                                                                    | (ppm)                                                                                      | (ppm)                                                                      | (ppm)                                                              | (ppm)                                                                         |
| 485822                                                                                                         | Elevation:                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                            | Sample Width : m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Secondaries:                                                                                                                                                                                                                                                                               | WHE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                                                                                                           | 92.6g                                                                                    | t 155                                                                                      | <b>268</b> 0                                                               | 7.77%                                                              | 2.64%                                                                         |
|                                                                                                                | Orientation                                                                                                                                                                                                                                      | : /                                                                                                                                                                                                                                                        | True Width : m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Host :                                                                                                                                                                                                                                                                                     | Massive Sulphide ??                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                              |                                                                                          |                                                                                            |                                                                            |                                                                    |                                                                               |
| Comments :                                                                                                     | Very fine-grain<br>Sample taken o                                                                                                                                                                                                                | ed pyrrhotite-py<br>n road among the                                                                                                                                                                                                                       | rite-chalcopyrite with 10-15% quart<br>trenches southeast of adit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tz eyes <1-2mm. Ch                                                                                                                                                                                                                                                                         | nalcopyrite is on late frac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tures.                                                                                                                       |                                                                                          |                                                                                            |                                                                            |                                                                    |                                                                               |
| Sample No.                                                                                                     | UTM :                                                                                                                                                                                                                                            | 5628 830 N                                                                                                                                                                                                                                                 | Type : Float                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Alteration :                                                                                                                                                                                                                                                                               | m-sBI, sMS, sQZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Au                                                                                                                           | Ag                                                                                       | Ba                                                                                         | Cu                                                                         | Pb                                                                 | Zn                                                                            |
|                                                                                                                |                                                                                                                                                                                                                                                  | 355 300 E                                                                                                                                                                                                                                                  | Strike Length Exp. : m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Metallics :                                                                                                                                                                                                                                                                                | trCP, 5%PO, trPY, trSP?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (ppb)                                                                                                                        | (ppm)                                                                                    | (ppm)                                                                                      | (ppm)                                                                      | (ppm)                                                              | (ppm)                                                                         |
| 485823                                                                                                         | Elevation:                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                            | Sample Width : m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Secondaries:                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <5                                                                                                                           | 4.6                                                                                      | 420                                                                                        | 107                                                                        | 4 <b>99</b> 0                                                      | 5300                                                                          |
|                                                                                                                | Orientation                                                                                                                                                                                                                                      | :280 /40 N                                                                                                                                                                                                                                                 | True Width : m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Host :                                                                                                                                                                                                                                                                                     | Quartz < sericite schist.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                              |                                                                                          |                                                                                            |                                                                            |                                                                    |                                                                               |
| Comments :                                                                                                     | Bands of sulphic                                                                                                                                                                                                                                 | de and biotite s                                                                                                                                                                                                                                           | ubparallel to foliation (280/40N).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Very fine-grained                                                                                                                                                                                                                                                                          | d disseminated sulpides as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | well.                                                                                                                        |                                                                                          |                                                                                            |                                                                            |                                                                    |                                                                               |
|                                                                                                                | Collected from                                                                                                                                                                                                                                   | waste pile on e                                                                                                                                                                                                                                            | dge of trench.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                              |                                                                                          |                                                                                            |                                                                            |                                                                    |                                                                               |
| Sample No.                                                                                                     | UTM :                                                                                                                                                                                                                                            | 5628 870 N                                                                                                                                                                                                                                                 | Type: Chip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Alteration :                                                                                                                                                                                                                                                                               | sMS, 20%QZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Au                                                                                                                           | Ag                                                                                       | Ba                                                                                         | Cu                                                                         | Pb                                                                 | Zn                                                                            |
| •                                                                                                              |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                            | •• •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>4</i>                                                                                                                     | (                                                                                        | (000)                                                                                      | (000)                                                                      | (000)                                                              | (000)                                                                         |
|                                                                                                                |                                                                                                                                                                                                                                                  | 355 260 E                                                                                                                                                                                                                                                  | Strike Length Exp. : 2 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Metallics :                                                                                                                                                                                                                                                                                | trGL, 10%PY?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (ppb)                                                                                                                        | (ppm)                                                                                    | (ppm)                                                                                      | (ppii)                                                                     | (ppm)                                                              | (ppm)                                                                         |
| 485842                                                                                                         | Elevation:                                                                                                                                                                                                                                       | 355 260 E                                                                                                                                                                                                                                                  | Strike Length Exp. : 2 m<br>Sample Width : 50 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Metallics :<br>Secondaries:                                                                                                                                                                                                                                                                | trGL, 10%PY?<br>mGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (ppo)<br><5                                                                                                                  | (ppm)<br>4.0                                                                             | 690                                                                                        | 150                                                                        | 2610                                                               | 1390                                                                          |
| 485842                                                                                                         | Elevation:<br>Foliation                                                                                                                                                                                                                          | 355 260 E<br>: 260 / 45 N                                                                                                                                                                                                                                  | Strike Length Exp. : 2 m<br>Sample Width : 50 cm<br>True Width : 50 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Metallics :<br>Secondaries:<br>Host :                                                                                                                                                                                                                                                      | trGL, 10%PY?<br>mGE<br>Hangingwall Muscovite sch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (ppb)<br><5<br>ist                                                                                                           | (ppm)<br>4.0                                                                             | 690                                                                                        | 150                                                                        | 2610                                                               | 1390                                                                          |
| 485842<br>Comments :                                                                                           | Elevation:<br>Foliation<br>Hangingwall to<br>quartz veins pa                                                                                                                                                                                     | 355 260 E<br>: 260 / 45 N<br>485843. Green m<br>rallel foliation                                                                                                                                                                                           | Strike Length Exp. : 2 m<br>Sample Width : 50 cm<br>True Width : 50 cm<br>uscovite plates with seams of black<br>with sparse galena (sphalerite?) i                                                                                                                                                                                                                                                                                                                                                                                                                     | Metallics :<br>Secondaries:<br>Host :<br>cextremely fine-gr<br>in late fractures.                                                                                                                                                                                                          | trGL, 10%РҮ?<br>mGE<br>Hangingwall Muscovite sch<br>rained powdery pyrite. Тwo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (ррв)<br><5<br>ist<br>10cm                                                                                                   | 4.0                                                                                      | 690                                                                                        | 150                                                                        | 2610                                                               | 1390                                                                          |
| 485842<br>Comments :<br>Sample No.                                                                             | Elevation:<br>Foliation<br>Hangingwall to 4<br>quartz veins pa<br>UTM :                                                                                                                                                                          | 355 260 E<br>: 260 / 45 N<br>485843. Green m<br>rallel foliation<br>5628 870 N                                                                                                                                                                             | Strike Length Exp. : 2 m<br>Sample Width : 50 cm<br>True Width : 50 cm<br>uscovite plates with seams of black<br>with sparse galena (sphalerite?) i<br>                                                                                                                                                                                                                                                                                                                                                                                                                 | Metallics :<br>Secondaries:<br>Host :<br>cextremely fine-gr<br>in late fractures.<br>Alteration :                                                                                                                                                                                          | trGL, 10%PY?<br>mGE<br>Hangingwall Muscovite sch<br>rained powdery pyrite. Two<br>sMU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (ppb)<br><5<br>ist<br>10cm<br>Au                                                                                             | 4.0<br>Ag                                                                                | 690<br>Ba                                                                                  | (рыл)<br>150<br>Си                                                         | 2610<br>Pb                                                         | 1390<br>Zn                                                                    |
| 485842<br>Comments :<br>Sample No.                                                                             | Elevation:<br>Foliation<br>Hangingwall to 4<br>quartz veins pa<br>UTM :                                                                                                                                                                          | 355 260 E<br>: 260 / 45 N<br>485843. Green m<br>rallel foliation<br>5628 870 N<br>355 260 E                                                                                                                                                                | Strike Length Exp. : 2 m<br>Sample Width : 50 cm<br>True Width : 50 cm<br>uscovite plates with seams of black<br>with sparse galena (sphalerite?) i<br>Type : Chip<br>Strike Length Exp. : 2 m                                                                                                                                                                                                                                                                                                                                                                          | Metallics :<br>Secondaries:<br>Host :<br>cextremely fine-gr<br>in late fractures.<br>Alteration :<br>Metallics :                                                                                                                                                                           | trGL, 10%PY?<br>mGE<br>Hangingwall Muscovite sch<br>rained powdery pyrite. Two<br>SMU<br>trCP, 70%PO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (ppb)<br><5<br>ist<br>10cm<br>Au<br>(ppb)                                                                                    | Ag<br>(ppm)                                                                              | Ba<br>(ppm)                                                                                | Cu<br>(ppm)                                                                | 2610<br>Pb<br>(ppm)                                                | 2n<br>(ppm)                                                                   |
| 485842<br>Comments :<br>Sample No.<br>485843                                                                   | Elevation:<br>Foliation<br>Hangingwall to A<br>quartz veins pa<br>UTM :<br>Elevation:                                                                                                                                                            | 355 260 E<br>: 260 / 45 N<br>485843. Green ma<br>rallel foliation<br>5628 870 N<br>355 260 E                                                                                                                                                               | Strike Length Exp. : 2 m<br>Sample Width : 50 cm<br>True Width : 50 cm<br>uscovite plates with seams of black<br>with sparse galena (sphalerite?) i<br><br>Type : Chip<br>Strike Length Exp. : 2 m<br>Sample Width : 25 cm                                                                                                                                                                                                                                                                                                                                              | Metallics :<br>Secondaries:<br>Host :<br>cextremely fine-gr<br>in late fractures.<br>Alteration :<br>Metallics :<br>Secondaries:                                                                                                                                                           | trGL, 10%PY?<br>mGE<br>Hangingwall Muscovite sch<br>rained powdery pyrite. Two<br>SMU<br>trCP, 70%PO<br>vsGE, white sulphate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (ppb)<br><5<br>ist<br>10cm<br>Au<br>(ppb)<br><5                                                                              | (ppm)<br>4.0<br>Ag<br>(ppm)<br>51.4g                                                     | (ppm)<br>690<br>Ba<br>(ppm)<br>t 210                                                       | Cu<br>(ppm)<br>1680                                                        | 2610<br>Pb<br>(ppm)<br>3.15%                                       | Zn<br>(ppm)<br>1.31%                                                          |
| 485842<br>Comments :<br>Sample No.<br>485843                                                                   | Elevation:<br>Foliation<br>Hangingwall to A<br>quartz veins par<br>UTM :<br>Elevation:<br>Foliation                                                                                                                                              | 355 260 E<br>: 260 / 45 N<br>485843. Green m<br>rallel foliation<br>5628 870 N<br>355 260 E<br>: 260 / 45 N                                                                                                                                                | Strike Length Exp. : 2 m<br>Sample Width : 50 cm<br>True Width : 50 cm<br>uscovite plates with seams of black<br>with sparse galena (sphalerite?) i<br><br>Type : Chip<br>Strike Length Exp. : 2 m<br>Sample Width : 25 cm<br>True Width : 25 cm                                                                                                                                                                                                                                                                                                                        | Metallics :<br>Secondaries:<br>Host :<br>cextremely fine-gr<br>in late fractures.<br>Alteration :<br>Metallics :<br>Secondaries:<br>Host :                                                                                                                                                 | trGL, 10%PY?<br>mGE<br>Hangingwall Muscovite sch<br>rained powdery pyrite. Two<br>SMU<br>trCP, 70%PO<br>vsGE, white sulphate<br>Massive Sulphide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (ppb)<br><5<br>ist<br>10cm<br>Au<br>(ppb)<br><5                                                                              | (ppm)<br>4.0<br>Ag<br>(ppm)<br>51.4g                                                     | 690<br>Ba<br>(ppm)<br>t 210                                                                | Cu<br>(ppm)<br>1680                                                        | 2610<br>Pb<br>(ppm)<br>3.15%                                       | Zn<br>(ppm)<br>1.31%                                                          |
| 485842<br>Comments :<br>Sample No.<br>485843<br>Comments :                                                     | Elevation:<br>Foliation<br>Hangingwall to A<br>quartz veins par<br>UTM :<br>Elevation:<br>Foliation<br>Granges trench.<br>quartz-muscovite                                                                                                       | 355 260 E<br>: 260 / 45 N<br>485843. Green m<br>rallel foliation<br>5628 870 N<br>355 260 E<br>: 260 / 45 N<br>Massive fine-gue<br>e fragments (2-5u                                                                                                       | Strike Length Exp. : 2 m<br>Sample Width : 50 cm<br>True Width : 50 cm<br>uscovite plates with seams of black<br>with sparse galena (sphalerite?) i<br>Type : Chip<br>Strike Length Exp. : 2 m<br>Sample Width : 25 cm<br>True Width : 25 cm<br>rained pyrrhotite with sparse clust<br>mm).                                                                                                                                                                                                                                                                             | Metallics :<br>Secondaries:<br>Host :<br>k extremely fine-gr<br>in late fractures.<br>Alteration :<br>Metallics :<br>Secondaries:<br>Host :<br>ters of very fine-g                                                                                                                         | trGL, 10%PY?<br>mGE<br>Hangingwall Muscovite sch<br>rained powdery pyrite. Two<br>SMU<br>trCP, 70%PO<br>vsGE, white sulphate<br>Massive Sulphide<br>grained chalcopyrite, 20-300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (ppb)<br><5<br>ist<br>10cm<br>Au<br>(ppb)<br><5<br>X rounde                                                                  | (ppm)<br>4.0<br>Ag<br>(ppm)<br>51.4g                                                     | 690<br>Ba<br>(ppm)<br>t 210                                                                | Cu<br>(ppm)<br>1680                                                        | 2610<br>Pb<br>(ppm)<br>3.15%                                       | Zn<br>(ppm)<br>1.31%                                                          |
| 485842<br>Comments :<br>Sample No.<br>485843<br>Comments :<br>Sample No.                                       | Elevation:<br>Foliation<br>Hangingwall to A<br>quartz veins par<br>UTM :<br>Elevation:<br>Foliation<br>Granges trench.<br>quartz-muscovito<br>UTM :                                                                                              | 355 260 E<br>: 260 / 45 N<br>485843. Green murallel foliation<br>5628 870 N<br>355 260 E<br>: 260 / 45 N<br>Massive fine-gue<br>e fragments (2-50<br>5628 760 N                                                                                            | Strike Length Exp. : 2 m<br>Sample Width : 50 cm<br>True Width : 50 cm<br>uscovite plates with seams of black<br>with sparse galena (sphalerite?) i<br><br>Type : Chip<br>Strike Length Exp. : 2 m<br>Sample Width : 25 cm<br>True Width : 25 cm<br>rained pyrrhotite with sparse clust<br>mm).<br><br>Type : Float                                                                                                                                                                                                                                                     | Metallics :<br>Secondaries:<br>Host :<br>k extremely fine-gr<br>in late fractures.<br>Alteration :<br>Metallics :<br>Secondaries:<br>Host :<br>ters of very fine-g<br>Alteration :                                                                                                         | trGL, 10%PY?<br>mGE<br>Hangingwall Muscovite sch<br>rained powdery pyrite. Two<br>SMU<br>trCP, 70%PO<br>vsGE, white sulphate<br>Massive Sulphide<br>grained chalcopyrite, 20-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (ppb)<br><5<br>ist<br>10cm<br>Au<br>(ppb)<br><5<br>X rounde<br>Au                                                            | (ppm)<br>4.0<br>Ag<br>(ppm)<br>51.4g<br>cd                                               | 690<br>Ba<br>(ppm)<br>t 210<br>Ba                                                          | Cu<br>(ppm)<br>1680                                                        | 2610<br>Pb<br>(ppm)<br>3.15%                                       | Zn<br>(ppm)<br>1.31%<br>Zn                                                    |
| 485842<br>Comments :<br>Sample No.<br>485843<br>Comments :<br>Sample No.                                       | Elevation:<br>Foliation<br>Hangingwall to A<br>quartz veins par<br>UTM :<br>Elevation:<br>Foliation<br>Granges trench.<br>quartz-muscovito<br>UTM :                                                                                              | 355 260 E<br>: 260 / 45 N<br>485843. Green mm<br>rallel foliation<br>5628 870 N<br>355 260 E<br>: 260 / 45 N<br>Massive fine-gu<br>e fragments (2-50<br>5628 760 N<br>355 700 E                                                                            | Strike Length Exp. : 2 m<br>Sample Width : 50 cm<br>True Width : 50 cm<br>uscovite plates with seams of black<br>with sparse galena (sphalerite?) i<br>Type : Chip<br>Strike Length Exp. : 2 m<br>Sample Width : 25 cm<br>True Width : 25 cm<br>True Width : 25 cm<br>True Width : 25 cm<br>True Width : 25 cm<br>Sample Width : 25 cm<br>True Width : 25 cm<br>True Width : 25 cm                                                                                                                                                                                      | Metallics :<br>Secondaries:<br>Host :<br>k extremely fine-gr<br>in late fractures.<br>Alteration :<br>Metallics :<br>Secondaries:<br>Host :<br>ters of very fine-g<br>Alteration :<br>Metallics :                                                                                          | trGL, 10%PY?<br>mGE<br>Hangingwall Muscovite sch<br>rained powdery pyrite. Two<br>SMU<br>trCP, 70%PO<br>vsGE, white sulphate<br>Massive Sulphide<br>grained chalcopyrite, 20-300<br>1%CP,trGL,60%PO,2%PY,trSP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (ppb)<br><5<br>ist<br>10cm<br>Au<br>(ppb)<br><5<br>X rounde<br>Au<br>(ppb)                                                   | (ppm)<br>4.0<br>(ppm)<br>51.4g<br>d<br>Ag<br>(ppm)                                       | 690<br>Ba<br>(ppm)<br>t 210<br>Ba<br>(ppm)                                                 | Cu<br>(ppm)<br>1680<br>Cu<br>(ppm)                                         | 2610<br>Pb<br>(ppm)<br>3.15%<br>Pb<br>(ppm)                        | Zn<br>(ppm)<br>1.31%<br>Zn<br>(ppm)                                           |
| 485842<br>Comments :<br>Sample No.<br>485843<br>Comments :<br>Sample No.<br>485844                             | Elevation:<br>Foliation<br>Hangingwall to A<br>quartz veins part<br>UTM :<br>Elevation:<br>Foliation<br>Granges trench.<br>quartz-muscovita<br>UTM :<br>Elevation:                                                                               | 355 260 E<br>: 260 / 45 N<br>485843. Green mm<br>rallel foliation<br>5628 870 N<br>355 260 E<br>: 260 / 45 N<br>Massive fine-gue<br>fragments (2-50<br>5628 760 N<br>355 700 E                                                                             | Strike Length Exp. : 2 m<br>Sample Width : 50 cm<br>True Width : 50 cm<br>uscovite plates with seams of black<br>with sparse galena (sphalerite?) i<br>Type : Chip<br>Strike Length Exp. : 2 m<br>Sample Width : 25 cm<br>True Width : 25 cm<br>True Width : 25 cm<br>True Width : 25 cm<br>True Width : 25 cm<br>Sample Width : 26 cm                                                                                                                                                                                                                                  | Metallics :<br>Secondaries:<br>Host :<br>K extremely fine-gr<br>in late fractures.<br>Alteration :<br>Metallics :<br>Secondaries:<br>Host :<br>ters of very fine-g<br>Alteration :<br>Metallics :<br>Secondaries:                                                                          | trGL, 10%PY?<br>mGE<br>Hangingwall Muscovite sch<br>rained powdery pyrite. Two<br>SMU<br>trCP, 70%PO<br>vsGE, white sulphate<br>Massive Sulphide<br>grained chalcopyrite, 20-30<br>1%CP,trGL,60%PO,2%PY,trSP<br>vsGE, white sulphate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (ppb)<br><5<br>ist<br>10cm<br>Au<br>(ppb)<br><5<br>X rounde<br>Au<br>(ppb)<br><5                                             | (ppm)<br>4.0<br>(ppm)<br>51.4g<br>cd<br>Ag<br>(ppm)<br>8.0                               | 690<br>Ba<br>(ppm)<br>t 210<br>Ba<br>(ppm)<br>165                                          | Cu<br>(ppm)<br>1680<br>Cu<br>(ppm)<br>3260                                 | Pb<br>(ppm)<br>3.15%<br>Pb<br>(ppm)<br>2110                        | Zn<br>(ppm)<br>1.31%<br>Zn<br>(ppm)<br>3.96%                                  |
| 485842<br>Comments :<br>Sample No.<br>485843<br>Comments :<br>Sample No.<br>485844                             | Elevation:<br>Foliation<br>Hangingwall to A<br>quartz veins par<br>UTM :<br>Elevation:<br>Foliation<br>Granges trench.<br>quartz-muscovita<br>UTM :<br>Elevation:<br>Orientation                                                                 | 355 260 E<br>: 260 / 45 N<br>485843. Green mm<br>rallel foliation<br>5628 870 N<br>355 260 E<br>: 260 / 45 N<br>Massive fine-gu<br>e fragments (2-5m<br>5628 760 N<br>355 700 E<br>: /                                                                     | Strike Length Exp. : 2 m<br>Sample Width : 50 cm<br>True Width : 50 cm<br>uscovite plates with seams of black<br>with sparse galena (sphalerite?) i<br>Type : Chip<br>Strike Length Exp. : 2 m<br>Sample Width : 25 cm<br>True Width : 25 cm<br>True Width : 25 cm<br>True Width : 25 cm<br>Type : Float<br>Strike Length Exp. : m<br>Sample Width : 60 cm<br>True Width : m                                                                                                                                                                                            | Metallics :<br>Secondaries:<br>Host :<br>K extremely fine-gr<br>in late fractures.<br>Alteration :<br>Metallics :<br>Secondaries:<br>Host :<br>ters of very fine-g<br>Alteration :<br>Metallics :<br>Secondaries:<br>Host :                                                                | trGL, 10%PY?<br>mGE<br>Hangingwall Muscovite sch<br>rained powdery pyrite. Two<br>SMU<br>trCP, 70%PO<br>vsGE, white sulphate<br>Massive Sulphide<br>grained chalcopyrite, 20-30<br>1%CP,trGL,60%PO,2%PY,trSP<br>vsGE, white sulphate<br>Massive pyrrhotite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (ppb)<br><5<br>ist<br>10cm<br>Au<br>(ppb)<br><5<br>X rounde<br>Au<br>(ppb)<br><5                                             | Ag<br>(ppm)<br>51.4g<br>(ppm)<br>53.4g<br>(ppm)<br>8.0                                   | 690<br>Ba<br>(ppm)<br>t 210<br>Ba<br>(ppm)<br>165                                          | Cu<br>(ppm)<br>1680<br>Cu<br>(ppm)<br>3260                                 | Pb<br>(ppm)<br>3.15%<br>Pb<br>(ppm)<br>2110                        | Zn<br>(ppm)<br>1.31%<br>Zn<br>(ppm)<br>3.96%                                  |
| 485842<br>Comments :<br>Sample No.<br>485843<br>Comments :<br>Sample No.<br>485844<br>Comments :               | Elevation:<br>Foliation<br>Hangingwall to A<br>quartz veins par<br>UTM :<br>Elevation:<br>Foliation<br>Granges trench.<br>quartz-muscovita<br>UTM :<br>Elevation:<br>Orientation<br>3 60x70x80cm boo                                             | 355 260 E<br>: 260 / 45 N<br>485843. Green murallel foliation<br>5628 870 N<br>355 260 E<br>: 260 / 45 N<br>Massive fine-gue<br>e fragments (2-50<br>5628 760 N<br>355 700 E<br>: /<br>ulders pushed up                                                    | Strike Length Exp. : 2 m<br>Sample Width : 50 cm<br>True Width : 50 cm<br>uscovite plates with seams of black<br>with sparse galena (sphalerite?) i<br><br>Type : Chip<br>Strike Length Exp. : 2 m<br>Sample Width : 25 cm<br>True Width : 25 cm<br>rained pyrrhotite with sparse clust<br>mm).<br><br>Type : Float<br>Strike Length Exp. : m<br>Sample Width : 60 cm<br>True Width : m<br>by cat (or from trench) 100m at 32                                                                                                                                           | Metallics :<br>Secondaries:<br>Host :<br>cextremely fine-gr<br>in late fractures.<br>Alteration :<br>Metallics :<br>Secondaries:<br>Host :<br>Metallics :<br>Secondaries:<br>Host :<br>Secondaries:<br>Host :<br>20 degrees from 485                                                       | trGL, 10%PY?<br>mGE<br>Hangingwall Muscovite sch<br>rained powdery pyrite. Two<br>SMU<br>trCP, 70%PO<br>vsGE, white sulphate<br>Massive Sulphide<br>grained chalcopyrite, 20-30<br>1%CP,trGL,60%PO,2%PY,trSP<br>vsGE, white sulphate<br>Massive pyrrhotite<br>5845. Fine-grained massive J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (ppb)<br><5<br>ist<br>10cm<br>Au<br>(ppb)<br><5<br>X rounde<br>Au<br>(ppb)<br><5<br>PO with                                  | Ag<br>(ppm)<br>51.4g<br>(ppm)<br>51.4g<br>(ppm)<br>8.0                                   | (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                     | Cu<br>(ppm)<br>1680<br>Cu<br>(ppm)<br>3260                                 | Pb<br>(ppm)<br>3.15%<br>Pb<br>(ppm)<br>2110                        | Zn<br>(ppm)<br>1.31%<br>Zn<br>(ppm)<br>3.96%                                  |
| 485842<br>Comments :<br>Sample No.<br>485843<br>Comments :<br>Sample No.<br>485844<br>Comments :               | Elevation:<br>Foliation<br>Hangingwall to 4<br>quartz veins part<br>UTM :<br>Elevation:<br>Foliation<br>Granges trench.<br>quartz-muscovite<br>UTM :<br>Elevation:<br>Orientation<br>3 60x70x80cm boo<br>clusters of very                        | 355 260 E<br>: 260 / 45 N<br>485843. Green marallel foliation<br>5628 870 N<br>355 260 E<br>: 260 / 45 N<br>Massive fine-gue<br>fragments (2-50<br>5628 760 N<br>355 700 E<br>: /<br>ulders pushed up<br>y fine-grained Cl                                 | Strike Length Exp. : 2 m<br>Sample Width : 50 cm<br>True Width : 50 cm<br>uscovite plates with seams of black<br>with sparse galena (sphalerite?) i<br>Type : Chip<br>Strike Length Exp. : 2 m<br>Sample Width : 25 cm<br>True Width : 26 cm<br>True Width : 60 cm<br>True Width : 60 cm<br>True Width : m<br>by cat (or from trench) 100m at 32<br>P and blebs PY, with subangular Q2-                                                                                         | Metallics :<br>Secondaries:<br>Host :<br>K extremely fine-gr<br>in late fractures.<br>Alteration :<br>Metallics :<br>Secondaries:<br>Host :<br>ters of very fine-g<br>Alteration :<br>Metallics :<br>Secondaries:<br>Host :<br>20 degrees from 485<br>MU fragments (2-15                   | trGL, 10%PY?<br>mGE<br>Hangingwall Muscovite sch<br>rained powdery pyrite. Two<br>SMU<br>trCP, 70%PO<br>vsGE, white sulphate<br>Massive Sulphide<br>grained chalcopyrite, 20-30<br>1%CP,trGL,60%PO,2%PY,trSP<br>vsGE, white sulphate<br>Massive pyrrhotite<br>5845. Fine-grained massive T<br>5mm). TrGL,CP on fractures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (ppb)<br><5<br>ist<br>10cm<br>Au<br>(ppb)<br><5<br>X rounde<br>Au<br>(ppb)<br><5<br>PO with<br>in one c                      | Ag<br>(ppm)<br>51.4g<br>(ppm)<br>53.4g<br>(ppm)<br>8.0                                   | Ba<br>(ppm)<br>t 210<br>Ba<br>(ppm)<br>165<br>e fragn                                      | Cu<br>(ppm)<br>1680<br>Cu<br>(ppm)<br>3260                                 | Pb<br>(ppm)<br>3.15%<br>Pb<br>(ppm)<br>2110                        | Zn<br>(ppm)<br>1.31%<br>Zn<br>(ppm)<br>3.96%                                  |
| 485842<br>Comments :<br>Sample No.<br>485843<br>Comments :<br>Sample No.<br>485844<br>Comments :<br>Sample No. | Elevation:<br>Foliation<br>Hangingwall to A<br>quartz veins part<br>UTM :<br>Elevation:<br>Foliation<br>Granges trench.<br>quartz-muscovita<br>UTM :<br>Elevation:<br>Orientation<br>3 60x70x80cm boo<br>clusters of very                        | 355 260 E<br>: 260 / 45 N<br>485843. Green mm<br>rallel foliation<br>5628 870 N<br>355 260 E<br>: 260 / 45 N<br>Massive fine-gu<br>e fragments (2-5r<br>5628 760 N<br>355 700 E<br>: /<br>ulders pushed up<br>y fine-grained Cl<br>5628 690 N              | Strike Length Exp. : 2 m<br>Sample Width : 50 cm<br>True Width : 50 cm<br>uscovite plates with seams of black<br>with sparse galena (sphalerite?) i<br>Type : Chip<br>Strike Length Exp. : 2 m<br>Sample Width : 25 cm<br>True Width : 60 cm<br>True Width : m<br>Sample Width : 60 cm<br>True Width : m<br>by cat (or from trench) 100m at 32<br>P and blebs PY, with subangular QZ-                                                                                           | Metallics :<br>Secondaries:<br>Host :<br>K extremely fine-gr<br>in late fractures.<br>Alteration :<br>Metallics :<br>Secondaries:<br>Host :<br>ters of very fine-g<br>Alteration :<br>Metallics :<br>Secondaries:<br>Host :<br>20 degrees from 485<br>HU fragments (2-15<br>Alteration :   | trGL, 10%PY?<br>mGE<br>Hangingwall Muscovite sch<br>rained powdery pyrite. Two<br>SMU<br>trCP, 70%PO<br>vsGE, white sulphate<br>Massive Sulphide<br>grained chalcopyrite, 20-30<br>1%CP,trGL,60%PO,2%PY,trSP<br>vsGE, white sulphate<br>Massive pyrrhotite<br>5845. Fine-grained massive f<br>5mm). TrGL,CP on fractures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (ppb)<br><5<br>ist<br>10cm<br>Au<br>(ppb)<br><5<br>X rounde<br>Au<br>(ppb)<br><5<br>PO with<br>in one c<br>Au                | Ag<br>(ppm)<br>51.4g<br>(pm)<br>8.0<br>(pm)<br>8.0<br>(uartzit                           | Ba<br>(ppm)<br>t 210<br>Ba<br>(ppm)<br>165<br>e fragn<br>Ba                                | Cu<br>(ppm)<br>1680<br>Cu<br>(ppm)<br>3260<br>nent.<br>Cu                  | Pb<br>(ppm)<br>3.15%<br>Pb<br>(ppm)<br>2110                        | Zn<br>(ppm)<br>1.31%<br>Zn<br>(ppm)<br>3.96%<br>Zn                            |
| 485842<br>Comments :<br>Sample No.<br>485843<br>Comments :<br>Sample No.<br>485844<br>Comments :               | Elevation:<br>Foliation<br>Hangingwall to A<br>quartz veins part<br>UTM :<br>Elevation:<br>Foliation<br>Granges trench.<br>quartz-muscovita<br>UTM :<br>Elevation:<br>Orientation<br>3 60x70x80cm boo<br>clusters of very                        | 355 260 E<br>: 260 / 45 N<br>485843. Green mm<br>rallel foliation<br>5628 870 N<br>355 260 E<br>: 260 / 45 N<br>Massive fine-gu<br>e fragments (2-5r<br>5628 760 N<br>355 700 E<br>: /<br>ulders pushed up<br>y fine-grained Cl<br>5628 690 N<br>355 760 E | Strike Length Exp. : 2 m<br>Sample Width : 50 cm<br>True Width : 50 cm<br>uscovite plates with seams of black<br>with sparse galena (sphalerite?) i<br>Type : Chip<br>Strike Length Exp. : 2 m<br>Sample Width : 25 cm<br>True Width : 26 cm<br>True Width : 60 cm<br>True Width : 60 cm<br>True Width : m<br>by cat (or from trench) 100m at 32<br>P and blebs PY, with subangular QZ-<br>Type : Float<br>Strike Length Exp. : m                                               | Metallics :<br>Secondaries:<br>Host :<br>Kextremely fine-gr<br>in late fractures.<br>Alteration :<br>Metallics :<br>Secondaries:<br>Host :<br>Secondaries:<br>Host :<br>Secondaries:<br>Host :<br>20 degrees from 485<br>MU fragments (2-15<br>Alteration :<br>Metallics :                 | trGL, 10%PY?<br>mGE<br>Hangingwall Muscovite sch<br>rained powdery pyrite. Two<br>SMU<br>trCP, 70%PO<br>vsGE, white sulphate<br>Massive Sulphide<br>grained chalcopyrite, 20-30<br>1%CP,trGL,60%PO,2%PY,trSP<br>vsGE, white sulphate<br>Massive pyrrhotite<br>5845. Fine-grained massive I<br>5mm). TrGL,CP on fractures<br>trCP, 50%PO, 20%PY, SP?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (ppb)<br><5<br>ist<br>10cm<br>Au<br>(ppb)<br><5<br>X rounde<br>Au<br>(ppb)<br><5<br>PO with<br>in one c<br>Au<br>(ppb)       | Ag<br>(ppm)<br>51.4g<br>(d<br>Ag<br>(ppm)<br>8.0<br>(uartzit<br>Ag<br>(ppm)              | Ba<br>(ppm)<br>t 210<br>Ba<br>(ppm)<br>165<br>e fragn<br>Ba<br>(ppm)                       | Cu<br>(ppm)<br>1680<br>Cu<br>(ppm)<br>3260<br>ment.<br>Cu<br>(ppm)         | Pb<br>(ppm)<br>3.15%<br>Pb<br>(ppm)<br>2110<br>Pb<br>(ppm)         | Zn<br>(ppm)<br>1.31%<br>Zn<br>(ppm)<br>3.96%<br>Zn<br>(ppm)                   |
| 485842<br>Comments :<br>Sample No.<br>485843<br>Comments :<br>Sample No.<br>485844<br>Comments :<br>Sample No. | Elevation:<br>Foliation<br>Hangingwall to A<br>quartz veins part<br>UTM :<br>Elevation:<br>Foliation<br>Granges trench.<br>quartz-muscovite<br>UTM :<br>Elevation:<br>Orientation<br>3 60x70x80cm box<br>clusters of very<br>UTM :<br>Elevation: | 355 260 E<br>: 260 / 45 N<br>485843. Green mm<br>rallel foliation<br>5628 870 N<br>355 260 E<br>: 260 / 45 N<br>Massive fine-gr<br>e fragments (2-5r<br>5628 760 N<br>355 700 E<br>: /<br>ulders pushed up<br>y fine-grained CP<br>5628 690 N<br>355 760 E | Strike Length Exp. : 2 m<br>Sample Width : 50 cm<br>True Width : 50 cm<br>uscovite plates with seams of black<br>with sparse galena (sphalerite?) i<br>Type : Chip<br>Strike Length Exp. : 2 m<br>Sample Width : 25 cm<br>True Width : 26 cm<br>True Width : 60 cm<br>True Width : 60 cm<br>True Width : m<br>by cat (or from trench) 100m at 32<br>P and blebs PY, with subangular QZ-<br>Type : Float<br>Strike Length Exp. : m<br>Sample Width : 15 cm | Metallics :<br>Secondaries:<br>Host :<br>Kextremely fine-gr<br>in late fractures.<br>Alteration :<br>Metallics :<br>Secondaries:<br>Host :<br>Secondaries:<br>Host :<br>Secondaries:<br>Host :<br>20 degrees from 485<br>MU fragments (2-15<br>Alteration :<br>Metallics :<br>Secondaries: | trGL, 10%PY?<br>mGE<br>Hangingwall Muscovite sch<br>rained powdery pyrite. Two<br>SMU<br>trCP, 70%PO<br>vsGE, white sulphate<br>Massive Sulphide<br>grained chalcopyrite, 20-30<br>1%CP,trGL,60%PO,2%PY,trSP<br>vsGE, white sulphate<br>Massive pyrrhotite<br>5845. Fine-grained massive I<br>5845. Fine-grain | (ppb)<br><5<br>ist<br>10cm<br>Au<br>(ppb)<br><5<br>X rounde<br>Au<br>(ppb)<br><5<br>PO with<br>in one c<br>Au<br>(ppb)<br><5 | Ag<br>(ppm)<br>51.4g<br>(ppm)<br>51.4g<br>(ppm)<br>8.0<br>(uartzit<br>Ag<br>(ppm)<br>3.0 | (ppm)<br>690<br>Ba<br>(ppm)<br>t 210<br>Ba<br>(ppm)<br>165<br>e fragn<br>Ba<br>(ppm)<br>80 | Cu<br>(ppm)<br>1680<br>Cu<br>(ppm)<br>3260<br>ment.<br>Cu<br>(ppm)<br>6680 | Pb<br>(ppm)<br>3.15%<br>Pb<br>(ppm)<br>2110<br>Pb<br>(ppm)<br>1200 | Zn<br>(ppm)<br>1.390<br>1.31%<br>Zn<br>(ppm)<br>3.96%<br>Zn<br>(ppm)<br>3.68% |

| QUITY ENGI | NEERING LTD.     |                  | ROCK SAMPLE DESCRIPTIONS          |                       | Pa                            | ige-2-      |         |               |                 |                 |                |
|------------|------------------|------------------|-----------------------------------|-----------------------|-------------------------------|-------------|---------|---------------|-----------------|-----------------|----------------|
| roperty :  | So Long Project  |                  | NTS : 82L/14E                     | Date : Septe          | ember 25, 1995                | -           |         |               |                 |                 |                |
| ample No.  | UTM :            | 5628 540 N       | Type : Float                      | Alteration :          |                               | Au          | Ag      | Ba            | Cu              | РЪ              | Zn             |
|            |                  | 355 970 E        | Strike Length Exp. : m            | Metallics :           | trCP, 30%PY, SP?              | (ppb)       | (ppm)   | (ppm)         | (ppm)           | (ppm)           | (ppm           |
| 85846      | Elevation:       |                  | Sample Width : 30 cm              | Secondaries:          | sGE                           | <5          | 3.6     | 70            | 1200            | 2240            | 1.8            |
|            | Orientation      | : /              | True Width : m                    | Host :                | Quartz biotite schist         |             |         |               |                 |                 |                |
| mments :   | 30x35x35cm bould | der in skid road | 2m south east of 1500E 550N. Nor  | n magnetic. Very fin  | ne-grained pyrite brecciat    | ing(?)      |         |               |                 |                 |                |
|            | quartz-biotite-r | muscovite augen. |                                   |                       |                               |             |         |               |                 |                 |                |
| mple No.   | UTM :            | 5629 110 N       | Type: Float                       | Alteration :          |                               | Au          | Ag      | Ba            | Cu              | Pb              | Zn             |
| •          |                  | 355 270 E        | Strike Length Exp. : m            | Metallics :           | <1%CP, 1%GL, 1%PO, 1%PY, 1%SP | (ppb)       | (ppm)   | (ppm)         | (ppm)           | (ppm)           | (ppm           |
| 35847      | Elevation:       |                  | Sample Width : 15 cm              | Secondaries:          | WGE, WHE, WJA                 | 25          | 65.1g   | t 585         | 1420            | 8.27%           | 806            |
|            | Orientation      | : /              | True Width : m                    | Host :                | Quartz-biotite schist or      | gneiss      |         |               |                 |                 |                |
| mments :   | Taken from bould | ders near hangin | g wall of 485848 in road cut. Gal | lena-sphalerite-(loca | al pyrrhotite) bands with     | coarse      |         |               |                 |                 |                |
|            | light red crenu  | lated biotite pa | rallel to foliation. Sulphides 1- | 2mm. Local pyrite     | or chalcopyrite on fractur    | es.         |         |               |                 |                 |                |
| ample No.  | UTM :            | 5629 110 N       | Type : Float                      | Alteration :          |                               | Au          | Ag      | Ba            | Cu              | РЬ              | Zn             |
| •          |                  | 355 270 E        | Strike Length Exp. : m            | Metallics :           | trCP, 1%GL, <1%PO, SP?        | (ppb)       | (ppm)   | (ppm)         | (ppm)           | (ppm)           | (ppm           |
| 5848       | Elevation:       |                  | Sample Width: 20 cm               | Secondaries:          |                               | <5          | 6.2     | 295           | 694             | 4760            | 419            |
|            | Foliation        | :280 / 50 N      | True Width : m                    | Host :                | Biotite quartzite             |             |         |               |                 |                 |                |
| mments:    | Creamed-coloured | d quartzite with | bands of biotite-galena-sphalerit | te along foliations.  | Fine-grained chalcopyrit      | e on cro    | ss-cutt | ing           |                 |                 |                |
|            | fractures. Spa   | ll from road cut | above adit. Zone way be >5m wide  | e. Mica schist on ha  | anging wall.                  |             |         | -             |                 |                 |                |
| ample No.  | UTM :            | 5629 160 N       | Type :                            | Alteration :          |                               | Au          | Ag      | Ba            | Cu              | Рb              | Zn             |
| •          |                  | 355 220 E        | Strike Length Exp. : m            | Metallics :           | 1%CP, 1%GL, 30%PO             | (ppb)       | (ppm)   | (ppm)         | (ppm)           | (ppm)           | (ppm           |
| 85849      | Elevation:       |                  | Sample Width: 20 cm               | Secondaries:          |                               | 15          | 12.4    | 350           | 3150            | 4080            | 366            |
|            | Orientation      | : /              | True Width : m                    | Host :                | Biotite schist                |             |         |               |                 |                 |                |
| omments :  | 20x35x35cm bould | der on adit dump | . Similar to <b>485850</b> .      |                       |                               |             |         |               |                 |                 |                |
|            |                  | 5420 140 N       | Tuna :                            | Alteration .          |                               | A.,         | 40      | Ba            | <b>C</b> 11     | РЬ              | 70             |
| ample NO.  | UIM :            | 3027 100 M       | strike Length Evo                 | Matallice +           | 1200 1201 50200 1200          | Au<br>(pph) | (nnm)   | 00<br>(nom)   | (pom)           | (000)           | 211<br>(mm     |
| 25850      | Flowstions       | JJJ 22V C        | Sample Lidth - 10 cm              |                       | CE                            | 20<br>20    | (ppiii) | 200<br>(hhii) | (ppiii)<br>3140 | (ppiii)<br>8700 | (Ppill<br>7/10 |
| 0000       | Clevalion:       | . ,              | Thus Uidth : 10 cm                | Boot                  | Biotite-guests achiet         | 20          | 23.4    | 670           | 5100            | 0/00            | 218            |
|            |                  | i /              |                                   |                       | biocite-quartz schist         |             |         |               |                 |                 |                |
| omments :  | Dump from adit.  | ITE SCHIST: CPE  | nulated with clear quartz augen.  | Loarse (2mm) pyrrhoi  | tite, wisps of galena and     | pyritë.     |         |               |                 |                 |                |

# APPENDIX D

ľ.

I

Į

Í

ľ

1

# PETROGRAPHIC DESCRIPTIONS

(Prepared by Dr. Jeff Harris of Vancouver Petrographics Ltd.)



#### MINERALOGY AND GEOCHEMISTRY

534 ELLIS STREET, NORTH VANCOUVER, B.C., CANADA V7H 2G6

TELEPHONE (604) 929-5867

Report for: Henry Awmack, Equity Engineering Ltd., 207 - 675 West Hastings St., VANCOUVER, B.C V6B 1N2 Report 95-98

-

November 21, 1995

#### PETROGRAPHIC EXAMINATION OF SAMPLES FROM THE SO LONG PROJECT

#### Introduction:

4 rock samples, numbered 485822, 485823, 485843 and 485845, were submitted for study. Typical portions of each sample were prepared as polished thin sections (slides 95-376X through 379X respectively).

#### Summary:

The two massive sulfide samples, 485822 and 485843, are of similar type. They consist of a matrix of evenly fine-grained pyrrhotite, extensively modified to secondary pyrite and minor marcasite. Sphalerite and galena occur as disseminations of tiny grains and grain clumps, 10 - 100 microns in size, throughout the Fe sulfide matrix.

Sphalerite appears dominant over galena in both the thin sections, which is at odds with the given assay data. Presumably the base-metal mineralogy shows compositional differentiation not apparent on the thin section scale.

A little chalcopyrite is also present, particularly in 485822 where it is mainly associated with localized gash veinlets of carbonate.

The minute grain size and intimate admixture of the Pb-Zn sulfides with the pyrrhotite/pyrite may present recovery problems in metallurgical treatment.

A silicate gangue component consisting essentially of quartz and muscovite occurs as clast-like inclusions throughout the massive sulfide. In 485822 these are largely individual flakes of mica or discrete quartz grains (though a few of the latter are polygranular). In 485843 the apparent clasts range up to 1 cm or more in size, and are commonly polygranular. They include aggregates of compact flaky muscovite, and of granular quartz, sometimes with intergrown mica. The origin of the silicate/sulfide relationship in these rocks is unclear. On the available evidence the most likely possibility is that the silicates are clasts incorporated into a deposit of exhalative sulfide at the time of deposition, either in their present form or since modified by recrystallization along with the sulfide matrix. Minor mobilization of sulfides into fractures and grain boundaries of the clasts is apparent in 485843.

Of the two low-sulfide samples, 485823 is an equigranular quartzmuscovite rock of metamorphic aspect. Its mineralogy is essentially identical to that of the silicate inclusions in the massive sulfide samples. It could be a micaceous quartzite of normal metasedimentary origin, or alternatively could be a metamorphosed impure chert representing a silicate-facies exhalite intercalated with, and fragmentally incorporated in, bedded sulfides. It includes minor disseminated pyrrhotite, sphalerite and galena.

Sample 485845 is a coarser-grained metamorphic schist in which plagioclase is strongly dominant over quartz, and the accessories are phlogopitic biotite and staurolite. It contains relatively abundant disseminated sulfides (pyrrhotite, pyrite and minor chalcopyrite) which appear to be primary constituents, partially remobilized during metamorphic recrystallization.

This rock does not resemble the silicate assemblage in the massive sulfides. The accessory mineralogy is typical of a pelitic metasediment in which case the high feldspar content may be of felsic igneous derivation (although the presence of staurolite is contraindicative).

Individual petrographic descriptions, plus a set of illustrative photomicrographs, are attached.

J.F. Harris Ph.D.

Estimated mode

| Pyrrhotite       | 20 |
|------------------|----|
| Secondary pyrite | 40 |
| Marcasite        | 10 |
| Chalcopyrite     | 1  |
| Sphalerite       | 7  |
| Galena           | 4  |
| Limonite         | 1  |
| Quartz           | 10 |
| Plagioclase      | 2  |
| Muscovite        | 4  |
| Carbonate        | 1  |

This sample consists of massive sulfides rather evenly speckled with small silicate mineral grains (and rare, coarser, polygranular lithic clasts).

The sulfide matrix is a mixture of Fe sulfides - clearly originating by modification of original massive pyrrhotite.

The latter survives as small, locally semi-connected, remnant patches, 0.2 - 0.5 mm in size, but the bulk of it has been converted to a compact, fine-grained aggregate of secondary pyrite and diffusely intergrown marcasite. This exhibits a distinctive, minutely porous "dry-bone" texture.

Accessory sphalerite and galena, plus traces of chalcopyrite, occur in minutely dispersed form throughout the Fe sulfide matrix, as individual tiny flecks, elongate lenticles and strings of grains - typically in the size range 10 - 100 microns. The galena and sphalerite occur both independently and in mutual intergrowth.

The Pb-Zn sulfides are seen in the remnant pyrrhotite patches as well as in the modified (pyrite/marcasite) variant, and appear to be primary, co-deposited phases. Their fine-grained character is consistent with the scale of granularity observed in the remnant host pyrrhotite.

Chalcopyrite is rare in dispersed form, but is locally prominent as grains 30 - 300 microns in size, intergrown with sparry carbonate (probably dolomite), in a couple of small, discordant veniform gashes.

The sectioned area is cut by a few thin limonite-filled veinlets.

The silicate component consists of individual flakes of muscovite, and discrete anhedral grains and polygranular aggregates of strainpolarized quartz and rare plagioclase, 0.05 - 0.2 mm in size. The sectioned area also includes one coarser (5 mm) patch of granular plagioclase with minor intergrown sericite.

Sample 485822 cont.

Except for forming rare marginal selvedges on a few quartz grains, the musocvite occurs as well-formed, discrete flakes, independent of the quartz. These flakes show an imperfect, but distinct, preferred orientation - paralleling the elongation of some of the quartzose "eyes", and of the sphalerite and galena disseminations and pyrrhotite remnants in the sulfide matrix.

The quartz grains and clumps commonly show minutely ragged contacts with the enclosing sulfides.

The origin of the silicate "eyes" is uncertain. They could be either mechanically incorporated clasts in an original sulfide sediment (exhalite), or remnants from wholesale replacement of a (previously disaggregated?) silicate host by pyrrhotite. The discrete outlines of the silicate grains, the striking lack of mutual intergrowth between the mica flakes and quartz, and the absence of sulfides within the silicates tend to favour the first possibility.

A third possibility is that the silicate "clasts" are actually products of metamorphic recrystallization of cherty and clayey accessory constituents co-precipitated with an exhalite sulfide host. This might explain the oriented fabric, but the great disparity in grain size between the silicates and the minutely microgranular sulfide matrix is not what one would expect. Also, the coarsest clast (of granular plagioclase) has the distinct appearance of a plutonic or gneissic clast. Estimated mode

87 Ouartz 1 Plagioclase Muscovite 10 Phlogopite trace Rutile trace Pyrrhotite 1.5 Sphalerite 0.5 Galena trace Limonite trace

This rock consists predominantly of quartz, as a mosaic aggregate of anhedral grains, 0.2 - 1.0 mm in size.

Muscovite is the principal accessory. It occurs as discrete flakes, 0.1 - 1.0 mm in length, in intergranular relation to the quartz matrix. In part the muscovite flakes coalesce to form slender, through-going schlieren.

The muscovite flakes and schlieren show a strong, locally sinuous parallelism which defines a distinct platy foliation. it is notable, however, that the quartz grain shapes only rarely display any preferred elongation - typically being equant/sub-polygonal, subinterlocking.

Scattered individual grains of plagioclase are a sparse intergrown accessory to the quartz. A minor component of the mica flakes shows the pale brown pleochroism characteristic of phlogopite.

The rock contains minor disseminated sulfides (mainly pyrrhotite) as sparse individual grains, about 0.2 mm in size; and as lenticular segregations to 1.0 mm or so in length, concordant with the foliation. The sulfides are sometimes mantled by muscovite flakes, and have the appearance of co-recrystallized primary components.

At one end of the sectioned portion there is a local concentration of sulfides, as pockets up to 2.0 mm in size. These include components of sphalerite and galena in simple intergrowth with the pyrrhotite.

The host quartzite in the vicinity of the main sulfide concentration appears to be relatively enriched in plagioclase compared with the rock at large. There is evidence of local replacement of quartz grains marginal to, and incorporated within, the coarsest sulfide pockets. This is probably an effect of metamorphic remobilization.

This rock is clearly a product of metamorphic recrystallization. It may be a quartzite of normal sedimentary origin, or (consistent with the presence of disseminated pyrrhotite and Pb-Zn sulfides) could possibly represent the recrystallization of a sulfide-poor chert of exhalative origin. Estimated mode

| Pyrrhotite       | 25    |
|------------------|-------|
| Secondary pyrite | 30    |
| Marcasite        | 8     |
| Sphalerite       | 3     |
| Galena           | 2.5   |
| Chalcopyrite     | 0.5   |
| Quartz           | 22    |
| Plagioclase      | 0.5   |
| Muscovite)       | 6 5   |
| Sericite)        | 0.5   |
| Pyroxene         | trace |
| Rutile           | trace |
| Limonite         | 2     |

The sectioned portion of this sample is of closely similar macroscopic appearance to Sample 485822. The present sample has rather more abundant and evenly distributed quartz eyes, and includes one notably coarse lithic clast (of 1.3 x 0.6 cm).

Thin section examination confirms the similarity, although there are some recognizable differences.

The silicate eyes in this sample are quartz grains and muscovite flakes, typically ranging from 0.2 - 3.0 mm in size. The larger ones are often polygranular (mosaic or crenulate-margined aggregates of quartz, sometimes with a few intergrown flakes of muscovite and/or plagioclase) or, less commonly, essentially monomineralic aggregates of contorted sericite/muscovite. Rare, small, individual clasts of plagioclase are present, and a single clast is composed of fresh orthopyroxene, mantled by sericite.

The mica flakes in this sample tend to be somewhat more blocky than in 485822, and show only a very weak preferred orientation.

The massive sulfide matrix is of similar composition, consisting of partially altered pyrrhotite (converted to fine-grained secondary pyrite and intimately intergrown marcasite), with accessory sphalerite, galena and minor chalcopyrite as minutely disseminated accessories.

The fine granularity of the pyrrhotite protolith (on the scale 20 - 100 microns) is clearly revealed by the brownish-grey tarnish which distinguishes an intermediate stage between primary pyrrhotite and the secondary pyrite/marcasite end-product.

The sphalerite and galena are of similar mode of occurrence (randomly disseminated through the pyrrhotite) to that in 485822, but aresignificantly less abundant and even finer grained - individual

Sample 485843 cont.

grains or intergrown pockets seldom exceeding 50 microns. They also lack the common tendency to parallel elongation seen in the previous sample.

Rare traces of chalcopyrite occur in like manner. This sample lacks the carbonate segregations which host most of the chalcopyrite in 485822.

Another feature not noted in the other massive sulfide sample is the presence of traces of sulfides as intergranular threads, flecks and networks in some of the polygranular silicate clasts. Estimated mode

Ouartz 15 Plagioclase 48 Biotite 17 Chlorite 1 Staurolite 6 Sericite 1 Garnet trace Rutile trace Pyrite 5 Pvrrhotite 6.5 Chalcopyrite 0.5 Sphalerite trace

The appearance of the off-cut (strong white etch indicative of abundant plagioclase) clearly differentiates this rock from the other sulfide-poor sample (485823).

In thin section it is found to consist essentially of a varigranular intergrowth of plagioclase, quartz, biotite and staurolite. The quartz and plagioclase form an anhedral aggregate of grain size 0.2 - 2.0 mm. There are also occasional coarser plagioclase grains, to 4.0 mm or so - sometimes showing evidence of accretive crystal growth, and poikiloblastically sieved with granules of quartz and occasional staurolite.

The biotite is a phlogopitic variety, pleochroic from light orange to near colourless. It occurs rather abundantly throughout as suboriented flakes up to 1 mm or so in size, and as pockety/lenticular clumps of the same, sometimes crumpled and deformed. Locally the biotite is altered to chlorite.

Staurolite is another accessory, as randomly scattered subhedral grains 0.2 - 1.0 mm in size, often oriented parallel to the general crude foliation. The staurolite sometimes shows marginal alteration to felted sericite.

Sulfides form a prominent disseminated phase. They occur as lenticular pockets up to 5 mm or more in size, generally conformable to the textural grain of the silicate matrix, and in finer-grained form as delicate, semi-connected networks. The fine-grained sulfides clearly occupy an intergranular relation to the silicate aggregate, and locally penetrate and/or marginally replace the silicate grains along cleavages and microfractures. This feature, and the segregation of sulfides as lenticular clumps, are probably the result of remobilization of primary sulfides during metamorphic recrystallization. Sample 485845 cont.

The sulfides are predominantly pyrrhotite and pyrite. The latter forms subhedral-euhedral grains whilst the pyrrhotite is typically anhedral - mantling pyrite and sometimes cementing fractures in fragmented pyrite.

Minor chalcopyrite occurs mainly in fine-grained form as strings of grains apparently controlled by incipient microfracturing normal to the prevalent foliation of the host. It is also seen with pyrrhotite, filling fracture networks in pyrite.

This rock is a high-grade metamorphic of uncertain origin. The assemblage biotite/staurolite is characteristic of a pelitic schist, but the dominance of feldspar over quartz is atypical, and suggests possible felsic igneous affinities.

## PHOTOMICROGRAPHS

Photos are by reflected light at a scale of 1cm = 85 microns, except where otherwise stated. **SAMPLE 485822** 



**Neg. 383-0:** Typical field. Matrix of secondary pyrite/marcasite after pyrrhotite, showing dry-bone texture alternating with patches of better polished, compact, minutely fine-grained Fe sulfides. Dark elongate and equant grains are muscovite flakes and quartz grains. Small battleship-grey grains are muscovite flakes and quartz grains. Small battleship-grey grains are sphalerite. Tiny, light bluish-grey grains (sometimes associated with the sphalerite) are galena.



**Neg. 383-2:** Another field, showing patches of remnant pyrrhotite (buff colour) in altered matrix of dry-bone secondary pyrite/marcasite. Note small particle size and intimate association of the disseminated sphalerite (battleship-grey) and galena (light bluish grey) with the Fe sulfide matrix.



**Neg. 383-3:** Scale 1cm = 42 microns. Higher magnification to show detail of the mode of occurrence of the Pb-Zn sulfides. Note that galena (light bluish grey) occurs partly intergrown with the sphalerite (grey) and partly independent of it. The intergranular relationship of the galena to the pyrrhotite can best be seen in the unaltered patches (e.g. centre left).



**Neg. 383-4:** Chalcopyrite (yellow) intergrown with carbonate (dark grey) in a cross-cutting veinlet. The weak overall foliation, defined by the elongation of mica flakes and quartz eyes (dark) is readily apparent in this photo.



**Neg. 383-5:** Cross-polarized transmitted light. Scale 1cm = 0.17mm. Shows character of the silicate inclusions in the Fe sulfide matrix (opaque, black). These comprise sub-parallel individual flakes of muscovite (colours) and anhedral grains of quartz (white, grey). Note small-scale raggedness of the quartz outlines.

**SAMPLE 485823** 



**Neg. 383-6:** Cross-polarized transmitted light. Scale 1cm - 0.17mm. Typical field of quartzite. Shows slender sub-parallel flakes of muscovite (orange-green) intergranular to a mosaic of quartz (white-grey-black). The patchily turbid area at upper right is intergrown plagioclase. Compare with Neg. 383-5. This rock shows striking similarity to the silicate inclusions in the massive sulfide.

ifi



**Neg. 383-7:** Reflected light. Scale 1cm = 85 microns. Shows a pocket of galena (light grey with triangular black cleavage pits) and adjacent pyrrhotite (buff colour with dark alteration/oxidation; bottom) in quartzite. Note muscovite flake (right) penetrating (or partly enveloped by) the galena. Quartz in contact with the sulfides tends to show rounded outlines (partially replaced?). Sulfides marginal to the main pocket are present as an intergranular network in the quartzite matrix.



**Neg. 383-8** Shows style of alteration in parts of this sample. Dark patches are clumps of partially altered pyrrhotite (with granularity and cleavages emphasized by tarnish). These occur, along with silicate inclusions (dark grey), in a matrix of secondary pyrite/marcasite (cream colour).

iv



Neg. 383-10: Scale 1cm = 42 microns. Shows textural detail in an area of minutely crustified/pellety secondary pyrite/marcasite. Shows small particle size of disseminated sphalerite/galena intergrowths (e.g. upper centre). Darkest, irregular-shaped clumps are silicates.



Neg. 383-11: Scale 1cm = 0.17mm. Example of pyrrhotite as intergranular networks in coarse silicate inclusions. That at upper centre is a contorted mass of muscovite; that at bottom right is polygranular quartz. Grey veinlets (upper right; left centre) are limonite.



**Neg. 383-12:** Cross-polarized transmitted light. Scale 1cm = 0.17mm. Shows the polygranular character of many of the silicate clasts (?) in this sample. That at lower centre is quartz with intergrown muscovite. That at upper right is a contorted aggregate of muscovite. Others are polygranular quartz. Black background is the massive sulfide matrix.



**Neg. 383-13:** Cross-polarized transmitted light. Scale 1cm = 0.17mm. Typical field of feldspathic schist. Shows a cluster of biotite (colours; upper centre) and three subhedral grains of staurolite (cracked; high relief) in an angular mosaic of poorly-twinned plagioclase. The staurolite at bottom right is peripherally altered to felted sericite.

**SAMPLE 485845** 

# APPENDIX E

# ANALYTICAL CERTIFICATES



Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Го:

EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

A9529824

Comments:

| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                             |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ANALY IICAL P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HOCEDURES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NG LTD.                                                             | CHEMEX                                                                                                                                                                                                                                                                                                             | NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | METHOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DETECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | UPPEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                     | CODE                                                                                                                                                                                                                                                                                                               | SAMPLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DESCHIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | METHOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| our lab in Vancouver, BC.                                           | 100                                                                                                                                                                                                                                                                                                                | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Au ppb: Fuse 10 g sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>γ</b> λ-λλ <i>s</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| d on 19-0CT-95.                                                     | 2118                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ag ppm: 32 element, soil & rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ICP-AES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                     | 2119                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Al %: 32 element, soil & rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ICP-AES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                     | 2120                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | As ppm: 32 element, soll & rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ICP-AES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                     | 2121                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ba ppm: 32 element, soll & rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ICP-AES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                     | 2122                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Be ppm: 32 element, soll & rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ICP-AES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                     | 2123                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bi ppm: 52 element, Boli & rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ICP-AES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                     | 2129                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ca %: 34 element, soll & rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ICP-AES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| REPARATION                                                          | 2125                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ca ppm: 32 element, soll & rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ICP-AES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                     | 2127                                                                                                                                                                                                                                                                                                               | 1 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Co ppm: 32 element, soil & rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ICP-ABS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                     | 2120                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cr ppm: 32 element, soll & rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ICP-AES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                     | 2120                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cu ppm: 32 element, soll & rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ICP-ABS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DECODIDITION                                                        | 2130                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Fe wi 32 element, soll & rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ICP-AES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DESCRIPTION                                                         | 2130                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ga ppm: 32 element, soll & rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ICP-AES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                     | 2131                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hg ppm: 32 element, soll & rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ICP-AES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                     | 2132                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | K %: 32 element, soll & rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ICP-AES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| em ring to approx 150 mesh                                          | 2151                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | La ppm: 32 element, soll & rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ICP-AES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| g crush and split                                                   | 2134                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mg %: 32 element, soll & rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ICP-AES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1 Kg reject for 90 days                                             | 2135                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mn ppm: 32 element, soll & rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ICP-AKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| AQ Digestion charge                                                 | 2136                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | No ppm: 32 element, soll & rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ICP-AES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                     | 2137                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Na %: 32 element, soil & rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ICP-AES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                     | 2138                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N1 ppm: 32 element, soll & rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ICP-AES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                     | 2139                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P ppm: 32 element, soll & fock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ICP-AES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                     | 2140                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pb ppm: 32 element, soll & rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ICP-ABS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                     | 2141                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SD ppm: 32 element, soll & rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ICP-AES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                     | 2142                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SC ppm: 32 elements, soll & rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ICP-AES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                     | 2143                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sr ppm: 32 element, soll & rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ICP-AES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                     | 2144                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T1 %: 32 element, soil & rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ICP-AES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                     | 2145                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T1 ppm: 32 element, soll & rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ICP-ARS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                     | 2146                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U ppm: 32 element, soil & rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ICP-AES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                     | 2147                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V ppm: 32 element, soil & rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ICP-AES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| kage is suitable for                                                | 2148                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | W ppm: 32 element, soil & rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ICP-AES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1 and rock samples.                                                 | 2149                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Zn ppm: 32 element, soil & rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ICP-AES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| the nitric-aqua regia<br>incomplete are: Al,<br>La. Mg. Na. Sr. Ti. | 2891                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bappm: XRF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | XRF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                     | NG LTD.<br>bur 1ab in Vancouver, BC.<br>bd on 19-OCT-95.<br>PREPARATION<br>DESCRIPTION<br>em ring to approx 150 mesh<br>g crush and split<br>1 Kg reject for 90 days<br>AQ Digestion charge<br>skage is suitable for<br>1 and rock samples.<br>the nitric-aqua regia<br>incomplete are: Al,<br>La, Mg, Na, Sr, Ti, | NG LTD.<br>OUT lab in Vancouver, BC.<br>Did on 19-OCT-95.<br>PREPARATION<br>PREPARATION<br>DESCRIPTION<br>2119<br>2120<br>2121<br>2122<br>2123<br>2124<br>2125<br>2126<br>2127<br>2126<br>2127<br>2128<br>2130<br>2130<br>2131<br>2130<br>2131<br>2131<br>2132<br>2132<br>2139<br>2139<br>2139<br>2139<br>2139<br>2140<br>2141<br>2139<br>2139<br>2140<br>2141<br>2139<br>2140<br>2141<br>2142<br>2143<br>2144<br>2144<br>2144<br>2145<br>2146<br>2147<br>2148<br>2149<br>2149<br>2149<br>2149<br>2149<br>2149<br>2149<br>2149<br>2149<br>2149<br>2149<br>2149<br>2149<br>2149<br>2140<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>2141<br>21 | NG LTD.       CHEMEX<br>CODE       NUMBER<br>SAMPLES         our lab in Vancouver, BC.<br>bd on 19-OCT-95.       100<br>2118<br>11<br>2120<br>11<br>2120<br>11<br>2122<br>11<br>2122<br>11<br>2123<br>11<br>2124<br>11<br>2124<br>11<br>2125<br>11<br>2126<br>11<br>2126<br>11<br>2127<br>11<br>2126<br>11<br>2127<br>11<br>2128<br>11<br>2128<br>11<br>2128<br>11<br>2129<br>11<br>2129<br>11<br>2129<br>11<br>2129<br>11<br>2120<br>11<br>2121<br>11<br>2121<br>11<br>2121<br>11<br>2122<br>11<br>2123<br>11<br>2126<br>11<br>2127<br>11<br>2128<br>11<br>2130<br>11<br>2131<br>11<br>2132<br>11<br>2131<br>11<br>2132<br>11<br>2134<br>11<br>2135<br>11<br>2136<br>11<br>2137<br>11<br>2138<br>11<br>2138<br>11<br>2138<br>11<br>2138<br>11<br>2138<br>11<br>2139<br>11<br>2136<br>11<br>2137<br>11<br>2138<br>11<br>2138<br>11<br>2140<br>11<br>2141<br>11<br>2141<br>11<br>2142<br>11<br>2141<br>11<br>2142<br>11<br>2144<br>11<br>2145<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>11<br>2146<br>1 | NG LTD.       CHEMEX<br>CODE       NUMBER<br>SAMPLES       DESCRIPTION         pur lab in Vancouver, BC.<br>od on 19-OCT-95.       100       11       Au ppb: Fuse 10 g sample<br>Ag ppm: 32 element, soil & rock         2119       11       Al ppm: 32 element, soil & rock         2120       11       Re ppm: 32 element, soil & rock         2121       11       Be ppm: 32 element, soil & rock         2122       11       Be ppm: 32 element, soil & rock         2123       11       Be ppm: 32 element, soil & rock         2124       11       Co ppm: 32 element, soil & rock         2125       11       Co ppm: 32 element, soil & rock         2125       11       Co ppm: 32 element, soil & rock         2126       11       Fe ppm: 32 element, soil & rock         2126       11       Fe ppm: 32 element, soil & rock         2124       11       Erock         2125       11       Co ppm: 32 element, soil & rock         2126       11       Fe ppm: 32 element, soil & rock         2131       11       Hg ppm: 32 element, soil & rock         2132       11       K * 32 element, soil & rock         2134       11       Hg ppm: 32 element, soil & rock         2135       11       Hg ppm: 32 element, soil & rock | NG LTD.       CHEMEX<br>CODE       NUMBER<br>SAMPLES       DESCRIPTION       METHOD         pur lab in Vancouver, BC.       100       11       Au ppb: Fuse 10 g sample       FA-AAS         110       11       Ag ppm: 32 element, soil & rock       ICP-ARS         2110       11       Al ppi: S2 element, soil & rock       ICP-ARS         2120       11       As ppm: 32 element, soil & rock       ICP-ARS         2121       11       Ba ppm: 32 element, soil & rock       ICP-ARS         2122       11       Ba ppm: 32 element, soil & rock       ICP-ARS         2123       11       Ba ppm: 32 element, soil & rock       ICP-ARS         2124       11       CA for ppm: 32 element, soil & rock       ICP-ARS         2125       11       CA ppm: 32 element, soil & rock       ICP-ARS         2126       11       CA ppm: 32 element, soil & rock       ICP-ARS         2126       11       CA ppm: 32 element, soil & rock       ICP-ARS         2126       11       CA ppm: 32 element, soil & rock       ICP-ARS         2126       12       CA ppm: 32 element, soil & rock       ICP-ARS         2126       11       CA ppm: 32 element, soil & rock       ICP-ARS         2127       11       CA ppm: 32 eleme | NG LTD.     CHEMEX     NUMBER<br>SAMPLES     DESCRIPTION     METHOD     DETECTION<br>LIMIT       pur lab in Vancouver, BC.     100     11     Au prob: Fuse 10 g sample     FA-AAS     5       2119     11     Au prob: Fuse 10 g sample     FA-AAS     5       2119     11     Au prob: Fuse 10 g sample     FA-AAS     5       2119     11     Au prob: Fuse 10 g sample     FA-AAS     5       2119     11     Au prob: Fuse 10 g sample     FA-AAS     5       2120     11     Au prob: Fuse 10 g sample     FA-AAS     5       2121     11     Ba prom: 32 element, soil & rock     ICP-AES     0.2       2122     11     Ba prom: 32 element, soil & rock     ICP-AES     0.5       2124     11     Cd prom: 32 element, soil & rock     ICP-AES     0.5       2124     11     Cd prom: 32 element, soil & rock     ICP-AES     0.01       2124     11     Cd prom: 32 element, soil & rock     ICP-AES     0.01       2124     11     Cd prom: 32 element, soil & rock     ICP-AES     0.01       2124     11     Cd prom: 32 element, soil & rock     ICP-AES     0.01       2125     11     Cd prom: 32 element, soil & rock     ICP-AES     0.01       2126     11 |

CE

(EIA) - EQU

Project: P.O. # :

Samples su This repor

|                           | SAM                  | PLE PREPARATION                                                                                                        |
|---------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------|
| CHEMEX<br>CODE            | NUMBER<br>SAMPLES    | DESCRIPTION                                                                                                            |
| 205<br>226<br>3204<br>229 | 11<br>11<br>11<br>11 | Geochem ring to approx 150 mesh<br>0-3 Kg crush and split<br>Save 1 Kg reject for 90 days<br>ICP - AQ Digestion charge |
| * NOTE                    | 1.                   |                                                                                                                        |

The 32 ele trace met Elements f digestion Ba, Be, Ca T1, W.



Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

EQUITY ENGINEERING LTD. To:

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Page to be : 1-A Total Pages :1 Certificate Date: 17-OCT-95 Invoice No. :19529824 P.O. Number :EQU95-02 :EIA Account

Project : Comments: SO LONG

| ·····                                     |                                                                | _                                |                                       |                                   |                                      |                                  |                                  |                                                    |                            |                                        | CE                                      | RTIFI                     | CATE                       | OF A                                     | NAL                                      | <b>YSIS</b>                                  | /                                      | 49529                                | 824                                          |                                        |                                 |
|-------------------------------------------|----------------------------------------------------------------|----------------------------------|---------------------------------------|-----------------------------------|--------------------------------------|----------------------------------|----------------------------------|----------------------------------------------------|----------------------------|----------------------------------------|-----------------------------------------|---------------------------|----------------------------|------------------------------------------|------------------------------------------|----------------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------------|----------------------------------------|---------------------------------|
| SAMPLE                                    | PREP<br>CODE                                                   | 1                                | Au ppb<br>FA+AA                       | Ag<br>ppm                         | A1<br>%                              | As<br>ppm                        | Ba<br>ppm                        | Be<br>ppm                                          | Bi<br>ppm                  | Ca<br>%                                | Cđ<br>ppm                               | Co<br>ppm                 | Cr<br>ppm                  | Cu<br>ppm                                | Fe<br>%                                  | Ga<br>ppm                                    | Hg<br>ppm                              | R<br>%                               | La<br>ppm                                    | Mg<br>%                                | Mn<br>ppm                       |
| 85822<br>85823<br>85842<br>85843<br>85844 | 205 226<br>205 226<br>205 226<br>205 226<br>205 226            | 26<br>26<br>26<br>26<br>26       | 10<br>< 5<br>< 5<br>< 5<br>< 5<br>< 5 | 83.8<br>4.6<br>4.0<br>43.8<br>8.0 | 0.07<br>0.58<br>0.29<br>0.11<br>0.03 | < 2<br>< 2<br>< 2<br>< 2<br>2240 | < 10<br>40<br>10<br>< 10<br>< 10 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 238<br>2<br>6<br>116<br>38 | 0.01<br>0.01<br>0.01<br>0.02<br>< 0.01 | >100.0<br>27.0<br>5.5<br>80.5<br>>100.0 | 25<br>21<br>1<br>26<br>53 | 7<br>57<br>34<br>13<br>6   | 2680 ><br>107<br>150<br>1680 ><br>3260 > | 4.22<br>3.01<br>15.00                    | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1        | 0.02<br>0.31<br>0.16<br>0.04<br>0.01 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 0.02<br>0.49<br>0.20<br>0.01<br>< 0.01 | 700<br>320<br>115<br>105<br>600 |
| 85845<br>85846<br>85847<br>85848<br>85849 | 205 226<br>205 226<br>205 226<br>205 226<br>205 226<br>205 226 | 26<br>26<br>26<br>26<br>26<br>26 | < 5<br>< 5<br>25<br>< 5<br>15         | 3.0<br>3.6<br>58.2<br>6.2<br>12.4 | 0.14<br>0.34<br>2.11<br>1.09<br>2.51 | 8<br>162<br>22<br>< 2<br>12      | 10<br>10<br>10<br>20<br>10       | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 8<br>16<br>64<br>< 2<br>32 | 0.01<br>0.01<br>0.01<br>0.07<br>0.02   | >100.0<br>80.5<br>56.0<br>19.5<br>16.5  | 100<br>70<br>35<br>3<br>4 | 12<br>32<br>65<br>52<br>71 | 6680 ><br>1200 ><br>1420<br>694<br>3150  | 15.00<br>15.00<br>10.25<br>2.17<br>14.40 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 | 0.03<br>0.09<br>1.17<br>0.31<br>1.25 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 0.01<br>0.17<br>1.64<br>1.13<br>1.66 | 675<br>325<br>885<br>455<br>855 |
|                                           |                                                                |                                  |                                       |                                   |                                      |                                  |                                  |                                                    |                            |                                        |                                         |                           |                            |                                          |                                          |                                              |                                        |                                      |                                              |                                        |                                 |
|                                           |                                                                |                                  |                                       |                                   |                                      |                                  |                                  |                                                    |                            |                                        |                                         | <del>.</del>              | , <b>.</b> .               |                                          |                                          |                                              |                                        |                                      |                                              |                                        |                                 |
|                                           |                                                                |                                  | · ·                                   |                                   |                                      |                                  |                                  |                                                    |                            |                                        |                                         |                           |                            |                                          | ERTIFIC                                  | CATION:_                                     | 1.50                                   |                                      | ·<br>·                                       | i (Lo                                  |                                 |



Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Page ber :1-B Total Pages :1 Certificate Date: 17-OCT-95 Invoice No. : 19529824 P.O. Number : EQU95-02 Account :EIA

Project : Comments: SO LONG

|                                                |                                        |                                        | _                     |                              |                      |                           |                                 |                                          |                           |                                 |                                 | CE                                   | RTIFI                                        | CATE                                     | OF A                      | NAL                                       | YSIS                                       | <i>F</i>                        | \$9529824 |      |  |
|------------------------------------------------|----------------------------------------|----------------------------------------|-----------------------|------------------------------|----------------------|---------------------------|---------------------------------|------------------------------------------|---------------------------|---------------------------------|---------------------------------|--------------------------------------|----------------------------------------------|------------------------------------------|---------------------------|-------------------------------------------|--------------------------------------------|---------------------------------|-----------|------|--|
| SAMPLE                                         | PRI<br>COI                             | ep<br>De                               | Mo<br>ppm             | N                            | ia<br>%              | Ni<br>ppm                 | P<br>ppm                        | Pb<br>ppm                                | Sb<br>ppm                 | Sc<br>ppm                       | Sr<br>ppm                       | Ti<br>%                              | T1<br>ppm                                    | U<br>ppm                                 | V<br>ppm                  | W<br>ppm                                  | Zn<br>ppm                                  | Ba<br>ppm                       |           |      |  |
| 485822<br>485823<br>485842<br>485843<br>485844 | 205<br>205<br>205<br>205<br>205<br>205 | 226<br>226<br>226<br>226<br>226<br>226 | 6<br>1<br>1<br>2<br>3 | 0.0<br>0.0<br>< 0.0<br>0.0   | )1<br>)1<br>)1<br>)1 | 47<br>39<br>4<br>39<br>36 | 80 3<br>80<br>90<br>100 3<br>30 | >10000<br>4990<br>2610<br>>10000<br>2110 | 26<br>2<br>< 2<br>12<br>8 | < 1<br>< 1<br>< 1<br>< 1<br>< 1 | 1 <<br>2<br>9 <<br>3 <<br>< 1 < | 0.01<br>0.02<br>0.01<br>0.01<br>0.01 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 10<br>< 10<br>< 10<br>10<br>20           | 3<br>11<br>4<br>3<br>3    | 30<br>< 10<br>< 10<br>< 10<br>< 10<br>130 | >10000<br>5300<br>1390<br>>10000<br>>10000 | 155<br>420<br>690<br>210<br>165 |           |      |  |
| 485845<br>485846<br>485847<br>485848<br>485848 | 205<br>205<br>205<br>205<br>205<br>205 | 226<br>226<br>226<br>226<br>226<br>226 | 1                     | 0.0<br>< 0.0<br>0.0<br>< 0.0 | )1<br>)2<br>)1<br>)2 | 26<br>71<br>22<br>5<br>38 | 10<br>70<br>80 3<br>310<br>70   | 1200<br>2240<br>>10000<br>4760<br>4080   | 6<br>2<br>18<br>< 2<br>2  | < 1<br>1<br>2<br>1<br>4         | < 1 <<br>< 1 <<br>3<br>2<br>2   | 0.01<br>0.12<br>0.03<br>0.09         | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 20<br>10<br>< 10<br>< 10<br>< 10<br>< 10 | 5<br>12<br>33<br>13<br>36 | 80<br>< 10<br>< 10<br>< 10<br>< 10        | >10000<br>>10000<br>8060<br>4190<br>3660   | 80<br>70<br>585<br>295<br>350   |           |      |  |
| 485850                                         | 205                                    | 226                                    | < 1                   | 0.0                          | 2                    | 52                        | 90                              | 8700                                     | 2                         | 3                               | 2                               | 0.08                                 | < 10                                         | 10                                       | 27                        | < 10                                      | 3190                                       | 290                             |           |      |  |
|                                                |                                        |                                        | -                     |                              |                      |                           |                                 |                                          |                           |                                 |                                 |                                      |                                              |                                          |                           |                                           |                                            |                                 |           |      |  |
|                                                |                                        |                                        |                       |                              |                      |                           |                                 |                                          |                           |                                 |                                 |                                      |                                              |                                          |                           |                                           |                                            |                                 |           |      |  |
|                                                |                                        | `                                      |                       |                              |                      |                           |                                 |                                          |                           |                                 |                                 |                                      |                                              |                                          |                           |                                           |                                            |                                 |           |      |  |
|                                                |                                        |                                        |                       |                              |                      |                           |                                 |                                          |                           |                                 |                                 |                                      |                                              |                                          |                           |                                           |                                            |                                 |           |      |  |
|                                                |                                        |                                        |                       |                              |                      |                           |                                 |                                          |                           |                                 |                                 |                                      |                                              |                                          |                           |                                           |                                            |                                 |           |      |  |
|                                                |                                        |                                        |                       |                              |                      |                           |                                 |                                          |                           |                                 |                                 |                                      |                                              |                                          |                           |                                           |                                            |                                 |           |      |  |
|                                                |                                        |                                        |                       |                              |                      | <u></u>                   |                                 |                                          |                           |                                 | <u> </u>                        |                                      |                                              |                                          |                           |                                           |                                            |                                 | ,         | · 0. |  |

CERTIFICATION:



Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

ſ

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

A9531486

Comments:

| c                                   | CERTIFICATE A9531486 |                               |                                   |             |                      | ANALYTICAL                                                                    | PROCEDURES                   |                     |                        |
|-------------------------------------|----------------------|-------------------------------|-----------------------------------|-------------|----------------------|-------------------------------------------------------------------------------|------------------------------|---------------------|------------------------|
| (EIA ) - EC<br>Project:<br>P.O. # : | SO LON<br>EQU95      | GINEERING LTD                 | ).                                | CHEM        | EX NUMBE<br>SAMPLE   | S DESCRIPTION                                                                 | METHOD                       | DETECTION<br>LIMIT  | UPPER<br>LIMIT         |
| Samples<br>This rep                 | submitt<br>ort was   | ed to our lak<br>printed on 2 | o in Vancouver, BC.<br>25-OCT-95. | 3<br>3<br>3 | 33 3<br>12 3<br>16 5 | Ag oz/T<br>Pb %: Reverse Aqua-Regia digest<br>Zn %: Reverse Aqua-Regia digest | FA-GRAVIMETRIC<br>AAS<br>AAS | 0.1<br>0.01<br>0.01 | 20.0<br>100.0<br>100.0 |
|                                     | SAM                  | PLE PREP                      | ARATION                           |             |                      |                                                                               |                              |                     |                        |
| CHEMEX<br>CODE                      | NUMBER<br>SAMPLES    |                               | DESCRIPTION                       |             |                      |                                                                               |                              |                     |                        |
| 244                                 | 6                    | Pulp; prev.                   | prepared at Chemex                |             |                      |                                                                               |                              |                     |                        |
|                                     |                      |                               |                                   |             |                      |                                                                               |                              |                     |                        |
|                                     |                      |                               |                                   |             |                      |                                                                               |                              |                     |                        |
|                                     | <u> </u>             |                               |                                   |             |                      |                                                                               |                              |                     |                        |
|                                     |                      |                               |                                   |             |                      |                                                                               |                              |                     |                        |
|                                     |                      |                               |                                   |             |                      |                                                                               |                              |                     |                        |
|                                     |                      |                               |                                   |             |                      |                                                                               |                              |                     |                        |



Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Page Pages :1 Total Pages :1 Certificate Date: 25-OCT-95 Invoice No. : 19531486 P.O. Number : EQU95-02 Account :EIA

Project : SO LONG Comments:

|                                                |                                 |                |                  |                                      | CERTIFI                               | CATE OF ANALYSIS | A9531486  |   |
|------------------------------------------------|---------------------------------|----------------|------------------|--------------------------------------|---------------------------------------|------------------|-----------|---|
| SAMPLE                                         | PREP<br>CODE                    | Ag FA<br>oz/T  | Pb<br>%          | Zn<br>%                              |                                       | •                |           |   |
| 485822<br>485843<br>485844<br>485845<br>485846 | 244<br>244<br>244<br>244<br>244 | 2.7<br>1.5<br> | 7.77<br>3.15<br> | 2.64<br>1.31<br>3.96<br>3.68<br>1.82 |                                       |                  |           |   |
| 485847                                         | 244                             | 1.9            | 8.27             |                                      | ··· · · · · · · · · · · · · · · · · · |                  |           |   |
|                                                |                                 |                |                  |                                      |                                       |                  |           |   |
|                                                |                                 |                |                  |                                      |                                       |                  |           |   |
|                                                |                                 |                |                  |                                      |                                       |                  |           |   |
|                                                |                                 |                |                  |                                      |                                       |                  |           |   |
|                                                |                                 |                |                  |                                      |                                       |                  |           |   |
|                                                |                                 |                |                  |                                      |                                       |                  |           |   |
|                                                |                                 |                |                  |                                      |                                       |                  |           |   |
|                                                |                                 |                |                  |                                      |                                       |                  |           |   |
|                                                |                                 |                |                  |                                      |                                       |                  |           |   |
|                                                |                                 |                |                  |                                      |                                       |                  |           |   |
|                                                |                                 |                |                  |                                      |                                       | CERTIFICATION:   | Said come | 1 |



Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

A9533186

#### Comments:

# CERTIFICATE

A9533186

(EIA) - EQUITY ENGINEERING LTD.

Project: SO LONG P.O. # : EQU95-02

Samples submitted to our lab in Vancouver, BC. This report was printed on 13-NOV-95.

|        | SAM               | PLE PREPARATION                |
|--------|-------------------|--------------------------------|
| CHEMEX | NUMBER<br>SAMPLES | DESCRIPTION                    |
| 244    | 3                 | Pulp; prev. prepared at Chemex |
|        |                   |                                |
|        |                   |                                |
|        |                   |                                |
|        |                   |                                |

|                                                                                                                       |                       |                                                                                                                                                                                                                                                       | ANALYTICA   | L PROCEDURES                                                       |                                                              |                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| CODE                                                                                                                  | NUMBER<br>SAMPLES     |                                                                                                                                                                                                                                                       | DESCRIPTION | METHOD                                                             | DETECTION                                                    | Upper<br>Limit                                                                                                                      |
| 902<br>906<br>2590<br>903<br>908<br>905<br>1989<br>901<br>904<br>2540<br>2891<br>2067<br>2898<br>2973<br>2978<br>2974 | 333333333333333333333 | A1203 %: XRF<br>CaO %: XRF<br>Cr203 %: XRF<br>Fe203 %: XRF<br>MgO %: XRF<br>MgO %: XRF<br>MgO %: XRF<br>P205 %: XRF<br>S102 %: XRF<br>Ti02 %: XRF<br>Ti02 %: XRF<br>Total %<br>Ba ppm: XRF<br>Sr ppm: XRF<br>Sr ppm: XRF<br>Zr ppm: XRF<br>Y ppm: XRF |             | XRF<br>XRF<br>XRF<br>XRF<br>XRF<br>XRF<br>XRF<br>XRF<br>XRF<br>XRF | 0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01 | 100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>50000<br>50000<br>50000<br>50000<br>50000 |



Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Page per :1 Total Pages :1 Certificate Date: 13-NOV-95 Invoice No. : 19533186 P.O. Number : EQU95-02 :EIA Account

. . . . . . . . .

Project : Comments: SO LONG

|                            |                   | _        |                       |                      |                      |                      |                      |                      |                      |                      |                      | :RIIF                   |                      | : OF /               | ANAL                    | 1515              | <u> </u>        | 19533           | 186          |                   |                |
|----------------------------|-------------------|----------|-----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------------|----------------------|----------------------|-------------------------|-------------------|-----------------|-----------------|--------------|-------------------|----------------|
| SAMPLE                     | PR<br>CO          | ep<br>De | A1203 %<br>XRF        | CaO %C<br>XRF        | r203 %F<br>XRF       | e203 %<br>XRF        | K20 %<br>XRF         | Mg0 %<br>XRF         | Mn0%1<br>XRF         | Na20 % 1<br>XRF      | 9205 %<br>XRF        | sio2 %<br>XRF           | TiO2 %<br>XRF        | LOI %<br>XRF         | TOTAL<br>%              | Ba<br>ppm         | Rb<br>ppm       | Sr<br>ppm       | Nb<br>ppm    | Zr<br>ppm         | Y<br>ppm       |
| 485823<br>485842<br>485848 | 244<br>244<br>244 |          | 6.13<br>10.57<br>6.15 | 0.22<br>0.09<br>0.25 | 0.02<br>0.02<br>0.05 | 5.89<br>4.68<br>3.66 | 1.30<br>2.81<br>1.36 | 0.88<br>0.67<br>2.00 | 0.04<br>0.03<br>0.07 | 1.32<br>0.75<br>0.92 | 0.03<br>0.03<br>0.10 | 78.95<br>74.93<br>82.21 | 0.27<br>0.50<br>0.28 | 3.46<br>4.69<br>2.20 | 98.51<br>99.77<br>99.25 | 395<br>645<br>315 | 64<br>112<br>42 | 146<br>92<br>86 | 6<br>12<br>8 | 159<br>150<br>225 | 14<br>18<br>16 |
|                            |                   |          |                       |                      |                      |                      |                      |                      |                      |                      |                      |                         |                      |                      |                         |                   |                 |                 |              |                   |                |
|                            |                   |          |                       |                      |                      |                      |                      |                      |                      |                      |                      |                         |                      |                      |                         |                   |                 |                 |              |                   |                |
|                            |                   |          |                       |                      |                      |                      |                      |                      |                      |                      |                      |                         |                      |                      |                         |                   |                 |                 |              |                   |                |
|                            |                   |          |                       |                      |                      |                      |                      |                      |                      | <u></u>              |                      | -                       |                      |                      |                         |                   |                 |                 | •            | 5 (5 <b>5</b>     |                |

CERTIFICATION:



Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

EQUITY ENGINEERING LTD. o:

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

A9529825

Comments:

| RTIFIC                                         | CATE                                                                                    | A9529825                                                                   | ANALYTICAL PROCEDURES                                                                                                                                        |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                     |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
|------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| TY ENG<br>SO LONG<br>EQU95-0                   | INEERING LTD.<br>G<br>22                                                                | <b>_</b>                                                                   | CHEMEX                                                                                                                                                       | NUMBER<br>SAMPLES                                                               | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | METHOD                                                                                                                                                                                                                              | DETECTION<br>LIMIT                                                                                                                           | UPPER<br>LIMIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| bmitte<br>t was                                | d to our lab in<br>printed on 11-4                                                      | n Vancouver, BC.<br>OCT-95.                                                | 100<br>2118<br>2119<br>2120<br>2121<br>2122<br>2123                                                                                                          | 36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                                    | Au ppb: Fuse 10 g sample<br>Ag ppm: 32 element, soil & rock<br>Al %: 32 element, soil & rock<br>As ppm: 32 element, soil & rock<br>Ba ppm: 32 element, soil & rock<br>Be ppm: 32 element, soil & rock<br>Bi ppm: 32 element, soil & rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PA-AAS<br>ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES                                                                                                                                                            | 5<br>0.2<br>0.01<br>2<br>10<br>0.5<br>2                                                                                                      | 10000<br>200<br>15.00<br>10000<br>10000<br>100.0<br>10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| SAMF                                           |                                                                                         | RATION                                                                     | 2124<br>2125<br>2126                                                                                                                                         | 36<br>36<br>36                                                                  | Ca %: 32 element, soil & rock<br>Cd ppm: 32 element, soil & rock<br>Co ppm: 32 element, soil & rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ICP <b>-AES</b><br>ICP <b>-AES</b><br>ICP <b>-AES</b>                                                                                                                                                                               | 0.01<br>0.5<br>1                                                                                                                             | 15.00<br>100.0<br>10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| MBER<br>MPLES<br>36<br>36                      | Dry, sieve to<br>ICP - AQ Diges                                                         | DESCRIPTION<br>-80 mesh<br>stion charge                                    | 2127<br>2128<br>2150<br>2130<br>2131<br>2132<br>2151<br>2134<br>2135<br>2136<br>2137<br>2138<br>2139<br>2140<br>2141<br>2142<br>2143<br>2144<br>2145<br>2146 | 36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>3 | Cr ppm: 32 element, soil & rock<br>Cu ppm: 32 element, soil & rock<br>Fe %: 32 element, soil & rock<br>Ga ppm: 32 element, soil & rock<br>Hg ppm: 32 element, soil & rock<br>K %: 32 element, soil & rock<br>Mg %: 32 element, soil & rock<br>Mn ppm: 32 element, soil & rock<br>Mn ppm: 32 element, soil & rock<br>Na %: 32 element, soil & rock<br>Na %: 32 element, soil & rock<br>Na %: 32 element, soil & rock<br>Ni ppm: 32 element, soil & rock<br>P ppm: 32 element, soil & rock<br>Sc ppm: 32 element, soil & rock<br>Sc ppm: 32 element, soil & rock<br>Sr ppm: 32 element, soil & rock<br>Ti %: 32 element, soil & rock<br>Ti %: 32 element, soil & rock<br>Sc ppm: 32 element, soil & rock | ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES | 1<br>1<br>0.01<br>10<br>1<br>0.01<br>10<br>0.01<br>1<br>10<br>2<br>2<br>1<br>1<br>0.01<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | $\begin{array}{c} 10000\\ 10000\\ 15.00\\ 10000\\ 10.000\\ 10.000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1$ |  |  |  |  |  |  |
| nent I<br>als i:<br>or wh<br>ls pos<br>, Cr, ( | CP package is a<br>n soil and ra<br>ich the nitria<br>sibly incomplet<br>Ga, K, La, Mg, | suitable for<br>ock samples.<br>c-aqua regia<br>te are: Al,<br>Na, Sr, Ti, | 2147<br>2148<br>2149                                                                                                                                         | 36<br>36<br>36                                                                  | V ppm: 32 element, soll & rock<br>W ppm: 32 element, soll & rock<br>En ppm: 32 element, soll & rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ICP-AES<br>ICP-AES<br>ICP-AES                                                                                                                                                                                                       | 1<br>10<br>2                                                                                                                                 | 10000<br>10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |

# CEI

(EIA) - EQUI

Project: P.O. # :

Samples su This repor

| SAMPLE PREPARATION |                   |                                                     |  |  |  |  |  |  |  |  |  |  |
|--------------------|-------------------|-----------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| Hemex<br>Code      | NUMBER<br>SAMPLES | DESCRIPTION                                         |  |  |  |  |  |  |  |  |  |  |
| 201<br>229         | 36<br>36          | Dry, sieve to -80 mesh<br>ICP - AQ Digestion charge |  |  |  |  |  |  |  |  |  |  |
|                    |                   |                                                     |  |  |  |  |  |  |  |  |  |  |

\* NOTE 1: The 32 ele trace met Elements f

digestion Ba, Be, Ca T1, W.



Analytical Chemists \* Geochemists \* Registered Assayers North Vancouver V7J 2C1 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Page Total ber :1-A :1 s Certificate Date: 11-OCT-95 Invoice No. : 19529825 P.O. Number : EQU95-02 :EIA Account

Project : Comments: SO LONG

|                                                                         |                                                    |                                  |                                                                    |                                                |                                      |                                        |                                 |                                     |                                        |                                      | CERTIFICATE OF ANALYSIS                            |                            |                            |                             |                                      |                                              |                                        | 49529                                |                                  |                                      |                                    |
|-------------------------------------------------------------------------|----------------------------------------------------|----------------------------------|--------------------------------------------------------------------|------------------------------------------------|--------------------------------------|----------------------------------------|---------------------------------|-------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------------------|----------------------------|----------------------------|-----------------------------|--------------------------------------|----------------------------------------------|----------------------------------------|--------------------------------------|----------------------------------|--------------------------------------|------------------------------------|
| SAMPLE                                                                  | PREP                                               |                                  | Au ppb<br>FA+AA                                                    | Ag<br>ppm                                      | A1<br>%                              | As<br>ppm                              | Ba<br>ppm                       | Be<br>ppm                           | Bi<br>ppm                              | Ca<br>%                              | Cđ<br>ppm                                          | Co<br>ppm                  | Cr<br>ppm                  | Cu<br>ppm                   | Fe<br>%                              | Ga<br>ppm                                    | Hg<br>ppm                              | K<br>%                               | La<br>ppm                        | Mg<br>%                              | Mn<br>ppm                          |
| 1000E 0000N<br>1000E 0050N<br>1000E 0100N<br>1000E 0150N<br>1000E 0200N | 201 2<br>201 2<br>201 2<br>201 2<br>201 2<br>201 2 | 29<br>29<br>29<br>29<br>29       | <pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5</pre>               | 0.2<br>< 0.2<br>0.2<br>< 0.2<br>< 0.2          | 1.77<br>1.72<br>3.21<br>2.86<br>2.76 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 250<br>190<br>230<br>290<br>350 | < 0.5<br>< 0.5<br>0.5<br>0.5<br>0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2        | 0.18<br>0.20<br>0.30<br>0.22<br>0.24 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 6<br>9<br>10<br>10<br>8    | 14<br>21<br>26<br>26<br>19 | 8<br>8<br>17<br>13<br>10    | 1.71<br>2.07<br>2.55<br>2.08<br>2.11 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1        | 0.10<br>0.10<br>0.18<br>0.11<br>0.10 | 10<br>10<br>10<br>10<br>< 10     | 0.25<br>0.42<br>0.41<br>0.46<br>0.33 | 740<br>390<br>390<br>535<br>1130   |
| 1000E 0250N<br>1000E 0300N<br>1000E 0350N<br>1000E 0400N<br>1000E 0450N | 201 2<br>201 2<br>201 2<br>201 2<br>201 2<br>201 2 | 29<br>29<br>29<br>29<br>29<br>29 | <pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5</pre>        | 0.2<br>< 0.2<br>0.4<br>1.0<br>1.0              | 2.57<br>2.68<br>2.49<br>3.55<br>3.42 | 2<br>< 2<br>< 2<br>2<br>2<br>2         | 260<br>210<br>310<br>190<br>200 | 0.5<br>0.5<br>0.5<br>0.5<br>0.5     | < 2<br>< 2<br>< 2<br>< 2<br>< 2        | 0.25<br>0.18<br>0.26<br>0.15<br>0.19 | < 0.5<br>< 0.5<br>0.5<br>0.5<br>1.0                | 10<br>13<br>9<br>5<br>7    | 21<br>26<br>20<br>12<br>17 | 14<br>21<br>20<br>14<br>12  | 2.38<br>2.61<br>3.05<br>2.49<br>2.24 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1        | 0.13<br>0.10<br>0.11<br>0.07<br>0.09 | 10<br>10<br>< 10<br>< 10<br>< 10 | 0.38<br>0.48<br>0.40<br>0.23<br>0.30 | 375<br>245<br>880<br>480<br>660    |
| 1000E 0500N<br>1000E 0550N<br>1000E 0600N<br>1000E 0650N<br>1000E 0700N | 201 2<br>201 2<br>201 2<br>201 2<br>201 2<br>201 2 | 29<br>29<br>29<br>29<br>29       | <pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5</pre>        | 0.2<br>0.4<br>< 0.2<br>0.2<br>0.2              | 3.14<br>2.97<br>1.60<br>2.78<br>3.11 | 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2   | 190<br>310<br>100<br>180<br>310 | 0.5<br>0.5<br>0.5<br>0.5<br>0.5     | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 0.19<br>0.23<br>0.31<br>0.20<br>0.29 | 1.0<br>1.5<br>0.5<br>0.5<br>< 0.5                  | 2<br>7<br>17<br>8<br>10    | 17<br>17<br>25<br>16<br>20 | 144<br>12<br>30<br>11<br>10 | 0.90<br>2.41<br>3.02<br>2.14<br>2.45 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 | 0.06<br>0.09<br>0.14<br>0.08<br>0.16 | < 10<br>< 10<br>20<br>< 10<br>10 | 0.18<br>0.29<br>0.45<br>0.29<br>0.34 | 65<br>1440<br>1405<br>385<br>420   |
| 1000E 0750N<br>1000E 0800N<br>1000E 0850N<br>1000E 0900N<br>1000E 0950N | 201 2<br>201 2<br>201 2<br>201 2<br>201 2<br>201 2 | 29<br>29<br>29<br>29<br>29<br>29 | <pre>&lt; 5 &lt; 5</pre> | 0.2<br>< 0.2<br>< 0.2<br>0.2<br>0.2            | 3.28<br>3.36<br>3.21<br>3.26<br>3.21 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 220<br>250<br>290<br>320<br>220 | 0.5<br>0.5<br>0.5<br>0.5<br>1.0     | < 2<br>< 2<br>< 2<br>< 2<br>< 2        | 0.22<br>0.20<br>0.17<br>0.23<br>0.18 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 9<br>12<br>10<br>8<br>17   | 19<br>29<br>31<br>19<br>25 | 14<br>19<br>16<br>11<br>30  | 2.08<br>2.65<br>2.38<br>2.08<br>3.14 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>10   | < 1<br>< 1<br>< 1<br>< 1<br>< 1        | 0.09<br>0.10<br>0.09<br>0.08<br>0.07 | 10<br>10<br>< 10<br>< 10         | 0.33<br>0.49<br>0.53<br>0.31<br>0.33 | 325<br>810<br>515<br>1165<br>325   |
| 1000E 1000N<br>1500E 0500N<br>1500E 0525N<br>1500E 0550N<br>1500E 0575N | 201 2<br>201 2<br>201 2<br>201 2<br>201 2<br>201 2 | 29<br>29<br>29<br>29<br>29<br>29 | <pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5</pre>        | 0.2<br>0.4<br>0.2<br>1.4<br>0.2                | 4.26<br>4.47<br>2.82<br>6.73<br>2.39 | < 2<br>2<br>< 2<br>2<br>2<br>< 2       | 190<br>280<br>140<br>310<br>360 | 0.5<br>1.0<br>0.5<br>5.5<br>0.5     | < 2<br>< 2<br>< 2<br>2<br>< 2<br>< 2   | 0.24<br>0.14<br>0.15<br>0.40<br>0.21 | < 0.5<br>0.5<br>0.5<br>11.0<br>5.5                 | 8<br>9<br>28<br>4          | 18<br>15<br>22<br>40<br>12 | 12<br>14<br>13<br>485<br>10 | 2.42<br>2.36<br>2.59<br>5.36<br>1.65 | 10<br>10<br>< 10<br>10<br>< 10               | < 1<br>< 1<br>< 1<br>1<br>< 1          | 0.09<br>0.08<br>0.09<br>0.24<br>0.08 | < 10<br>< 10<br>10<br>10<br>< 10 | 0.26<br>0.24<br>0.34<br>0.44<br>0.16 | 180<br>555<br>315<br>2620<br>780   |
| 1500E 0600N<br>1500E 0625N<br>1500E 0650N<br>1500E 0675N<br>1500E 0700N | 201 2<br>201 2<br>201 2<br>201 2<br>201 2<br>201 2 | 29<br>29<br>29<br>29<br>29<br>29 | <pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5</pre>        | 1.4<br>1.0<br>0.6<br>0.4<br>0.2                | 4.63<br>3.41<br>3.54<br>3.82<br>2.36 | < 2<br>< 2<br>< 2<br>2<br>< 2<br>< 2   | 220<br>270<br>230<br>210<br>210 | 1.0<br>0.5<br>0.5<br>0.5<br>0.5     | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 0.19<br>0.24<br>0.26<br>0.19<br>0.26 | 4.5<br>0.5<br>0.5<br>1.5<br>0.5                    | 18<br>11<br>11<br>11<br>11 | 22<br>32<br>26<br>16<br>31 | 49<br>36<br>28<br>15<br>24  | 2.70<br>2.90<br>2.67<br>2.25<br>4.12 | 10<br>10<br>10<br>< 10<br>< 10               | < 1<br>< 1<br>< 1<br>< 1<br>< 1        | 0.11<br>0.17<br>0.13<br>0.08<br>0.16 | < 10<br>10<br>10<br>< 10<br>10   | 0.33<br>0.62<br>0.47<br>0.25<br>0.42 | 610<br>345<br>380<br>840<br>640    |
| 1500E 0750N<br>1500E 0800N<br>1500E 0850N<br>1500E 0900N<br>1500E 0950N | 201 2<br>201 2<br>201 2<br>201 2<br>201 2<br>201 2 | 29<br>29<br>29<br>29<br>29<br>29 | <pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5</pre>        | 0.2<br>< 0.2<br>< 0.2<br>0.2<br>< 0.2<br>< 0.2 | 3.21<br>3.10<br>2.75<br>3.81<br>2.92 | < 2<br>< 2<br>< 2<br>2<br>< 2<br>< 2   | 230<br>390<br>550<br>230<br>260 | 0.5<br>1.0<br>0.5<br>1.0<br>1.0     | < 2<br>< 2<br>< 2<br>< 2<br>< 2        | 0.37<br>0.35<br>0.36<br>0.39<br>0.29 | < 0.5<br>0.5<br>< 0.5<br>< 0.5<br>< 0.5            | 19<br>10<br>9<br>10<br>14  | 29<br>29<br>17<br>26<br>24 | 13<br>14<br>12<br>15<br>19  | 2.82<br>2.47<br>2.25<br>2.47<br>3.34 | 10<br>10<br>< 10<br>< 10<br>< 10             | < 1<br>< 1<br>< 1<br>< 1<br>< 1        | 0.20<br>0.19<br>0.15<br>0.16<br>0.20 | 10<br>10<br>10<br>20             | 0.50<br>0.45<br>0.28<br>0.42<br>0.61 | 1255<br>1105<br>1415<br>455<br>860 |
| 1500B 1000N                                                             | 201 2                                              | 29                               | < 5                                                                | < 0.2                                          | 3.70                                 | < 2                                    | 220                             | 1.0                                 | < 2                                    | 0.15                                 | < 0.5                                              | 15                         | 35                         | 26                          | 2.94                                 | 10                                           | < 1                                    | 0.15                                 | 10                               | 0.60                                 | 305                                |
|                                                                         | LL                                                 |                                  |                                                                    |                                                |                                      |                                        |                                 |                                     |                                        |                                      |                                                    |                            |                            |                             | ERTIFIC                              |                                              | 1-1-                                   | -C_1                                 | DI                               | 110                                  |                                    |

CERTIFICATION:



# Chemex Labs Ltd. Analytical Chemists \* Geochemists \* Registered Assayers

212 Brocksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: EQUITY ENGINEERING LTD.

207 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2 Page Total Auges :1 Certificate Date: 11-OCT-95 Invoice No. :19529825 P.O. Number :EQU95-02 Account :EIA

Project : SO LONG Comments:

|                                                                         |                                 |                                        |                                 |                                      |                             |                                   |                                 |                                        |                                         |                            | CERTIFICATE OF ANALYSIS              |                                              |                                              |                            |                                              |                                  | A9529825 |
|-------------------------------------------------------------------------|---------------------------------|----------------------------------------|---------------------------------|--------------------------------------|-----------------------------|-----------------------------------|---------------------------------|----------------------------------------|-----------------------------------------|----------------------------|--------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------|----------------------------------------------|----------------------------------|----------|
| SAMPLE                                                                  | PRE<br>COD                      | PE                                     | Mo<br>ppm                       | Na.<br>%                             | Ni<br>ppm                   | P<br>ppm                          | Pb<br>ppm                       | Sb<br>ppm                              | Sc<br>ppm                               | Sr<br>ppm                  | Ti<br>%                              | T1<br>ppm                                    | U<br>ppm                                     | V<br>ppm                   | W<br>ppm                                     | Zn<br>ppm                        |          |
| 1000E 0000N<br>1000E 0050N<br>1000E 0100N<br>1000E 0150N<br>1000E 0150N | 201<br>201<br>201<br>201        | 229<br>229<br>229<br>229<br>229        | < 1<br>< 1<br>< 1<br>< 1        | 0.03<br>0.02<br>0.04<br>0.03         | 21<br>23<br>62<br>44        | 1230<br>610<br>2020<br>950        | 16<br>12<br>12<br>12            | < 2<br>< 2<br>< 2<br>< 2<br>< 2        | 1<br>1<br>2<br>3                        | 22<br>18<br>46<br>23       | 0.08<br>0.08<br>0.12<br>0.14         | < 10<br>< 10<br>< 10<br>< 10                 | < 10<br>< 10<br>< 10<br>< 10                 | 28<br>29<br>32<br>33       | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | 198<br>210<br>208<br>166         |          |
| 1000E 0250N<br>1000E 0250N<br>1000E 0300N<br>1000E 0350N                | 201<br>201<br>201<br>201<br>201 | 229<br>229<br>229<br>229<br>229        | <1<br><1<br><1<br><1<br><1      | 0.03<br>0.01<br>0.02<br>0.02         | 57<br>41<br>29<br>20        | 720<br>570<br>2540<br>1370        | 26<br>26<br>60<br>102           | < 2<br>< 2<br>< 2<br>< 2<br>< 2        | 2 2 1 1                                 | 41<br>22<br>40<br>21       | 0.12<br>0.12<br>0.09<br>0.12         | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 33<br>32<br>35<br>32<br>30 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 240<br>156<br>408<br>416         |          |
| 1000E 0450N<br>1000E 0500N<br>1000E 0550N<br>1000E 0550N                | 201<br>201<br>201<br>201        | 229<br>229<br>229<br>229<br>229        | < 1<br>< 1<br>< 1<br>< 1<br>< 1 | 0.03                                 | 24<br>30<br>20<br>48        | 1790<br>1120<br>3860<br>700       | 42<br>100<br>34<br>56           | < 2<br>< 2<br>< 2<br>< 2<br>< 2        | 2<br>1<br>2<br>3                        | 28<br>41<br>34<br>41       | 0.12                                 | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | 29<br>18<br>31<br>34       | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | 720<br>356<br>774<br>282         |          |
| 1000E 0650N<br>1000E 0700N<br>1000E 0750N<br>1000E 0800N                | 201<br>201<br>201<br>201        | 229<br>229<br>229<br>229               | < 1<br>< 1<br>< 1               | 0.04<br>0.04<br>0.03<br>0.02         | 44<br>82<br>54<br>40        | 660<br>350<br>700<br>650          | 14<br>14<br>12<br>12            | < 2<br>< 2<br>< 2<br>< 2               | 2 2 2 2 2 3                             | 35<br>53<br>28<br>21       | 0.13<br>0.13<br>0.15<br>0.15         | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | 37<br>36<br>33<br>42       | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | 274<br>526<br>152<br>138         |          |
| 1000E 0850N<br>1000E 0900N<br>1000E 0950N                               | 201<br>201<br>201               | 229<br>229<br>229<br>229               | < 1<br>< 1<br>< 1               | 0.02<br>0.03<br>0.02                 | 48 22 50                    | 640<br>2740<br>270                | 8<br>44<br>206                  | < 2 < 2 < 2 < 2                        | 3 2 2 2                                 | 22<br>48<br>42             | 0.15<br>0.13<br>0.12                 | < 10<br>< 10<br>< 10                         | < 10<br>< 10<br>< 10<br>< 10                 | 39<br>33<br>42             | < 10<br>< 10<br>< 10<br>< 10                 | 122<br>236<br>144                |          |
| 1500E 1550N<br>1500E 0525N<br>1500E 0525N<br>1500E 0550N<br>1500E 0575N | 201<br>201<br>201<br>201<br>201 | 229<br>229<br>229<br>229<br>229<br>229 | < 1<br>< 1<br>< 1<br>< 1        | 0.03<br>0.03<br>0.03<br>0.03<br>0.03 | 82<br>42<br>376<br>12       | 1400<br>910<br>1310<br>4480       | 32<br>38<br>1035<br>42          | < 2<br>< 2<br>< 2<br>< 2               | 2<br>2<br>4<br>1                        | 25<br>21<br>93<br>45       | 0.14<br>0.11<br>0.13<br>0.09         | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | 35<br>31<br>36<br>44<br>25 | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | 354<br>536<br>4530<br>1110       |          |
| 1500E 0600N<br>1500E 0625N<br>1500E 0650N<br>1500E 0675N<br>1500E 0700N | 201<br>201<br>201<br>201<br>201 | 229<br>229<br>229<br>229<br>229<br>229 | < 1<br>< 1<br>< 1<br>< 1<br>1   | 0.02<br>0.03<br>0.03<br>0.03<br>0.03 | 128<br>54<br>54<br>33<br>26 | 1790<br>420<br>520<br>1610<br>980 | 126<br>152<br>120<br>160<br>124 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 31<br>35<br>42<br>36<br>67 | 0.13<br>0.14<br>0.15<br>0.14<br>0.09 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 35<br>37<br>38<br>33<br>39 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 2230<br>956<br>524<br>856<br>466 |          |
| 1500E 0750N<br>1500E 0750N<br>1500E 0800N<br>1500E 0850N<br>1500E 0900N | 201<br>201<br>201<br>201        | 229<br>229<br>229<br>229<br>229        | < 1<br>< 1<br>< 1<br>< 1        | 0.02<br>0.03<br>0.03<br>0.03         | 85<br>65<br>59<br>48        | 1300<br>940<br>1110<br>1020       | 14<br>10<br>12<br>12            | < 2<br>< 2<br>< 2<br>< 2<br>< 2        | 2 3 2 3 3                               | 74<br>60<br>84<br>88       | 0.13<br>0.13<br>0.09<br>0.14         | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 38<br>38<br>30<br>34       | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | 374<br>390<br>252<br>162         |          |
| 15008 0950N<br>15008 1000N                                              | 201<br>201                      | 229<br>229                             | < 1                             | 0.01                                 | 49                          | 510                               | 18                              | < 2                                    | 2                                       | 58<br>25                   | 0.07                                 | < 10<br>< 10                                 | < 10<br>< 10                                 | 37<br>43                   | < 10<br>< 10                                 | 142                              |          |
|                                                                         |                                 |                                        |                                 |                                      |                             |                                   |                                 |                                        | im                                      |                            |                                      |                                              |                                              |                            |                                              |                                  |          |

thai Ollia CERTIFICATION:\_

# APPENDIX F

# ENGINEER'S CERTIFICATE

# **ENGINEER'S CERTIFICATE**

I, HENRY J. AWMACK, of 1735 Larch Street, Vancouver, in the Province of British Columbia, DO HEREBY CERTIFY:

1. THAT I am a Consulting Geological Engineer with offices at Suite 207, 675 West Hastings Street, Vancouver, British Columbia.

2. THAT I am a graduate of the University of British Columbia with an honours degree in Geological Engineering.

3. THAT I am a member in good standing of the Association of Professional Engineers and Geoscientists of British Columbia.

4. THAT this report is based on fieldwork carried out under my direction during September 1995, on publicly-available reports and on drill logs and sections graciously provided by Doug Leishman and Werner Gruenwald. I have examined the property in the field.

DATED at Vancouver, British Columbia, this  $28^{\text{K}}$  day of  $30^{-1}$ , 1996.

Henry J. Awmack, P.Eng.

