	Province of British Columbia	Ministry of Energy, Mine Petroleum Re GEOLOGICAL SURV	esources	. V	ASSESSMENT REPORT
G	TITLE OF REPORT [type of Cological + Geor				➡ TOTAL COST ■ 13,072.57
AUTHOR(S)	Wesley Ravi		GNATURE(S)	Wesley	Raven
	ORK PERMIT NUMBER(S)/DATE(S F WORK - CASH PAYMENT EVEN		1300293	-7702	YEAR OF WORK 1996
	6) (on which work was done)(Bear Chaco Bean 12053)	1 (31 Charo	2051) Ben A (312.054)
MINERAL INVE MINING DIVISI LATITUDE OWNER(S)	s sought <u>Gold,</u> INTORY MINFILE NUMBER(S), IF H ON <u>OMINECA</u> 56 <u>°</u> 0 <u>8'</u> M. Ashton	N	126 ° -	0 12W	ł _* (at centre of work)
Va	HESS - 609 W. Hesting MCOUVER, BCC 16B 4W4	<u>ys St.</u>			
OPERATOR(S)	[who paid for the work] Mal Metals Corp	ponation 2			
	ness 0-355 Burra ancouve, BC NGC 2G8				
Proper Volca	EOLOGY KEYWORDS (lithology, a ty is undulary nics com prised	by Lowe to of green to	<u>Middle</u> o purple	Juressic	Hazelton Group tutt. Lapilli
Miner	alization comprised	of manow vi	cins tra	m 0,1 to	<u>Lepidot alterotion</u> <u>1.0 metris with</u> trend 338/60°SW
^	TO PREVIOUS ASSESSMENT WO		ORT NUMBERS		· · · · · · · · · · · · · · · · · · ·

TYPE OF WORK IN EXTENT OF WORK THIS REPORT (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
EOLOGICAL (scale, area)		
Ground, mapping <u>Reconnerssonce</u>	Churo Bear 1, 3,4	5300.00
Photo interpretation		
GEOPHYSICAL (line-kilometres)		
Ground		
Magnetic		
Electromagnetic		
Induced Polarization		
Radiometric		
Seismic		
Other		
Airborne		
GEOCHEMICAL		
number of samples analysed for)		1004 12
Soil91	Charo Bean 1	1384.13
Silt		
Rock7	Checo Bear 1, 3, 4	246.10
Other		
DRILLING (total metres; number of holes, size)		
(total metres; number of holes, size) Core		
Core		
RELATED TECHNICAL		
Sampling/assaying	Chaco Bear 1	5179.34
Sampling/assaying		
Mineralographic		
PROSPECTING (scale, area)		
PREPARATORY/PHYSICAL Line/grid (kilometres) 5.4 line - Kilometres	Choco Bear 1	963.00
	Checo vear	10 200-
Topographic/Photogrammetric (scale, area)		
Legal surveys (scale, area)		
Road, local access (kilometres)/trail		
Trench (metres)		
Trench (metres)		

:

-	SUB-RECORDER RECEIVED	
	OCT 1 5 1996	
	M.R. # \$	
	VANCOUVER, B.C.	

SUMMARY

DATE RECEIVED OCT 18 1996

A limited exploration program consisting of rock and soil geochemical sampling was completed on the Chaco Bear Project on behalf of Imperial Metals Corporation. The property is located approximately 150 kilometres north of Smithers, B. C., in the Skeena Mountains. The property consists of four 4-post claims which are owned by a private individual with Imperial earning an interest from the vendor.

This report describes the exploration program completed on the claims from July 18 to July 23, 1996. Work consisted of flagged-line grid establishment for subsequent soil geochemical surveys and rock sampling of various showings throughout the claims. A total of 7 rock and 91 soil samples were collected.

The rock sampling confirmed the presence of anomalous gold and copper mineralization from areas previously sampled by Suncor Inc. in 1984 and 1985. Results include a high of 22.16 g/t gold and 6.81% copper from rock sample #CB004. The soil sampling outlined a few areas of anomalous gold, silver and copper. Silver shows a modest anomaly in the southern portion of the grid; copper anomalies are found in the southern and western parts of the grid while gold anomalies occur as single station highs.

Further work would be required to fully evaluate the property. This work should include mapping and prospecting throughout the claims, particularly in the northern half,

which has received less work than the southern portion of the project. In addition, the various rock, soil, and geophysical anomalies previously outlined by Suncor in 1984 and 1985 should be followed up. A number of highly anomalous gold and copper assays were received from the Suncor work and should be further examined to see if the veins sampled are of sufficient grade, width and/or density to be further developed.

FILMED

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

TABLE OF CONTENTS

Summary	
Introduction	1
Location and Access	1
Physiography and Vegetation	2
Claim Status	2
History and Previous Work •	3
Regional Geology	4
Property Geology	5
Exploration Program	5
Rock Sampling	6
Soil Geochemical Surveys	7
Conclusions and Recommendations	8
Statement of Expenditures	10
Certificate of Qualifications	
W. Raven, P. Geo.	
Bibliography	

LIST OF TABLES

Table 1	Claim Information
Table 2	Rock Samples

LIST OF FIGURES

Location Map	Following Page 1
Claim Map	Following Page 3
Regional and Property Geology Map	Following Page 4
Rock Sample Locations	Following Page 6
Soil Sampling Grid Location	Following Page 7
Soil Geochemistry (Au)	Following Page 7
Soil Geochemistry (Ag)	Following Page 7
Soil Geochemistry (Cu)	Following Page 8
	Claim Map Regional and Property Geology Map Rock Sample Locations Soil Sampling Grid Location Soil Geochemistry (Au) Soil Geochemistry (Ag)

3

6

LIST OF APPENDICES

Appendix 1 Analytical Results


INTRODUCTION

This report discusses the results of a limited exploration program completed on the Chaco Bear project on behalf of Imperial Metals Corporation, who is optioning the property from a private individual, J. Ashton. Work completed consisted of a flagged grid for soil geochemical surveys in the northwest portion of the property and rock sampling of anomalous areas throughout the claims. The work was completed intermittently between July 18 to July 23, 1996.

LOCATION AND ACCESS

The property is located in the Omineca Mining Division in NTS map area 94D/2. The claims are located at the headwaters of the Driftwood River approximately 5 kilometres west of Bear Lake, which is approximately 160 kilometres north of Smithers, B. C. The claims are centred at 56°08'N latitude and 126°56'W longitude (Figure 1).

Access to the property is obtained by helicopter from Smithers, B. C. A network of logging roads up the Nilkitkwa River valley to the Nilkitkwa logging camp provide road access to within 45 kilometres south-southeast of the property. Alternatively, a larger camp could be mobilized to the north end of the Bear Lake via float plane with helicopter support providing daily access to the claims. The B.C.R. Dease Lake extension rail line leaves from Fort. St. James and passes by the east side of Bear Lake providing the closest non-airsupported access. The rail access would provide the

cheapest transportation of heavy equipment to the area, though the service does not run during the winter months.

PHYSIOGRAPHY AND VEGETATION

The Chaco Bear claims encompass the headwaters of the Driftwood River valley in the Skeena Mountains district. The topography is quite rugged with steep sided mountain slopes and knife edge ridges. Elevations range from 1,380 metres in the Driftwood River Valley and 1,020 metres in the northeast portion of the property, to 2,183 metres on the ridge traversing the southwestern portion of the claims.

Most of the property is above treeline in alpine terrain. Alpine vegetation consists of small bushes and grasses with local areas of moss. Lower portions of the Driftwood River valley contain stunted trees including spruce and some pine. Large talus slopes are present throughout the claims and are generally devoid of vegetation except for small mosses and lichen.

The claims are snow covered for a good portion of the year resulting in a fairly narrow window within which to conduct exploration surveys. A typical field season would last from roughly mid-June to mid-October.

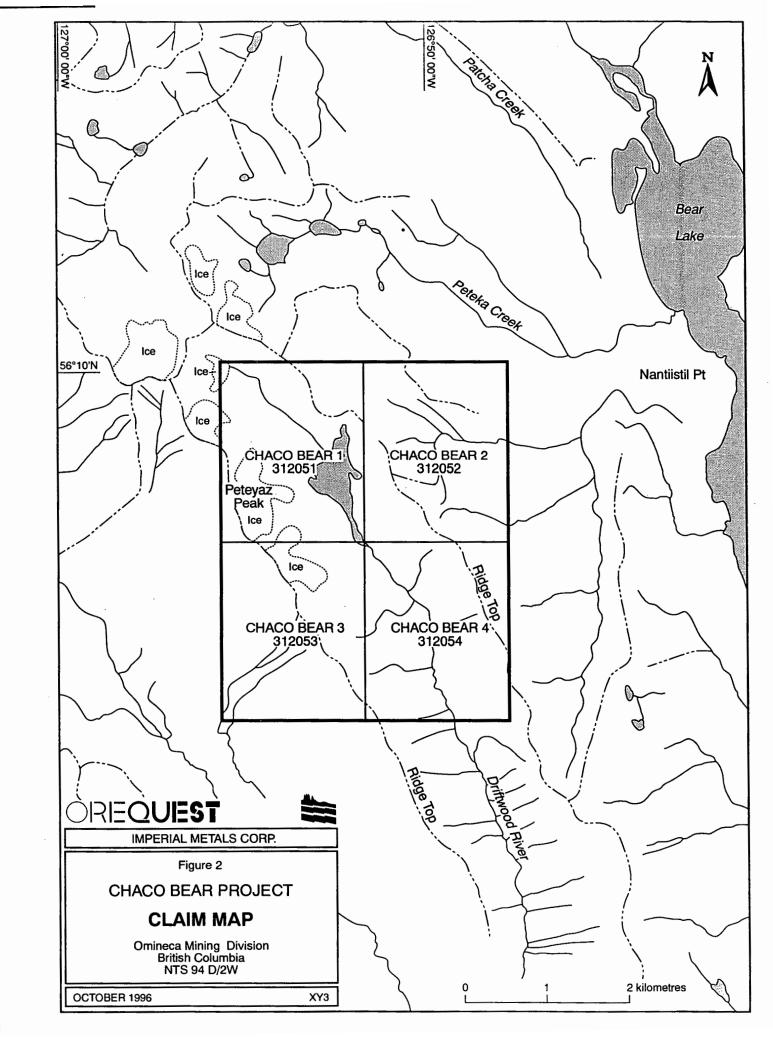
CLAIM STATUS

The property is comprised of four contiguous mineral claims, the Chaco Bear #1-4 claims, located in the Omineca Mining Division. The claims are comprised of 80 units

encompassing an area of 2000 hectares (4942 acres). The claims are currently registered to J. M. Ashton who has a 100% interest. Imperial Metals has the option to earn a 100% interest in the project from the vendor over a seven year period. The claim blocks are shown in Figure 2. Table 1 lists relevant information for the respective claims. Complete title opinions and individual option agreements are beyond the scope of this report. Detailed information on these matters can be obtained from the companies or their solicitors.

TABLE 1 - CLAIM INFORMATION

Claim Name	Record No.	No. of units	Current Expiry Date*
Chaco Bear 1	312051	20	August 6, 1997
Chaco Bear 2	312052	20	August 6, 1997
Chaco Bear 3	312053	20	August 6, 1997
Chaco Bear 4	312054	20	August 6, 1997
- 11	1 0	. 1. 1.	

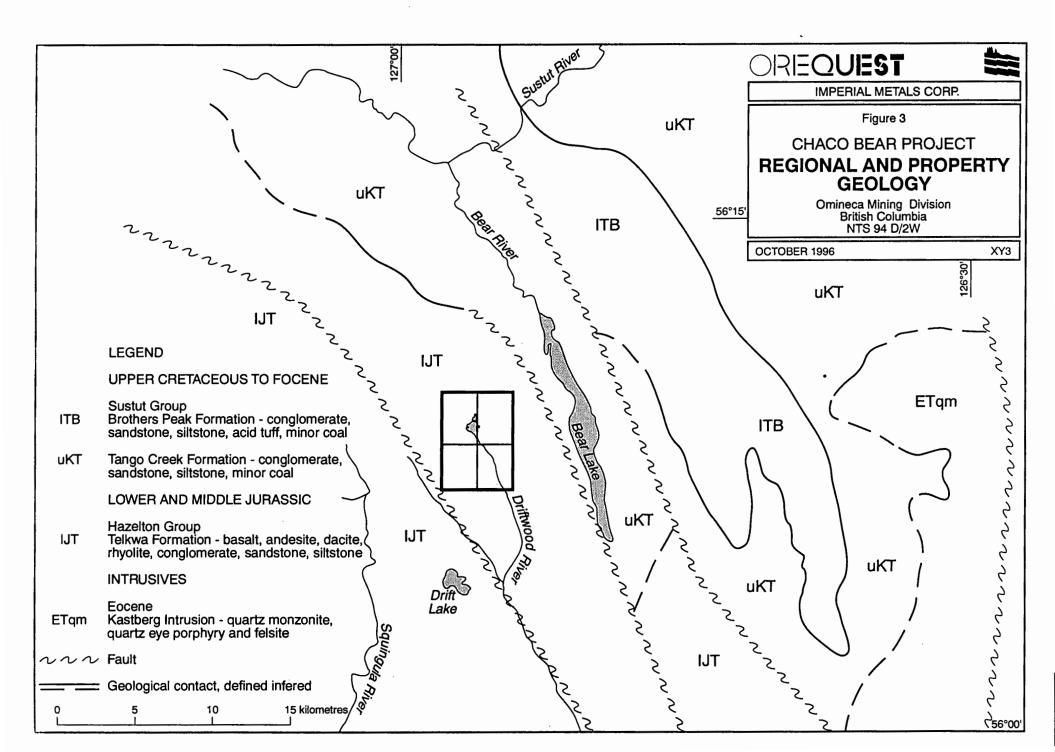

* pending approval of assessment credit applied for with this report.

HISTORY AND PREVIOUS WORK

Very little recorded exploration work has been completed on the Chaco Bear claims but the property has been examined by previous operators. A brief summary of the previous work history is provided below:

1948 - Area is mapped as part of a regional survey of the McConnell Creek Area by C. S. Lord, Geological Survey of Canada Memoir 251.

1968 - Cominco stakes the Dave claims over a portion of the present day claims and completes electromagnetic (horizontal loop) geophysical surveys totalling.7.8 line-miles. The survey was unsuccessful in locating any conductive zones.



- 1984 Suncor Inc. Resources Group of Calgary, Alberta, stakes the Peteka 1-4 claims and completes preliminary stream sediment sampling and prospecting. The surveys outline anomalous gold and copper values in the stream sediments collected from the Driftwood River valley as well as from the rock samples.
- 1985 Suncor Inc. Resources Group completes further detailed exploration surveys consisting of prospecting, geological mapping, soil geochemical surveys, rock sampling, and magnetic and VLF-EM geophysical surveys. Most of the work was completed over a 15.25 line km grid along the Driftwood River valley over the central portion of the present day Chaco Bear 3 claim. The surveys were successful in locating several areas of anomalous soil and rock geochemistry as well as zones of anomalous magnetics and several VLF-EM conductors.

REGIONAL GEOLOGY

The area was first mapped by C. S. Lord between 1941 to 1945, the results of that work were reported in 1948 in Geological Survey of Canada Memoir 251. Lord classified the rocks in the area as belonging to the Upper Jurassic division of the Takla Group Volcanics. He further subdivided the units into a lower section of predominantly volcanic rocks and an upper section of mostly sedimentary rocks, with lesser intercalated volcanic units. Richards, 1976, has re-classified the rocks as forming part of the Hazelton Group volcanics.

The Lower to Middle Jurassic aged Hazelton Group, in the McConnell Creek map area, is further subdivided into an upper unit of mostly sedimentary rocks and a lower unit of mostly volcanic rocks. The Chaco Bear claims are underlain primarily by lower members of the Hazelton Group volcanics (Figure 3).

PROPERTY GEOLOGY

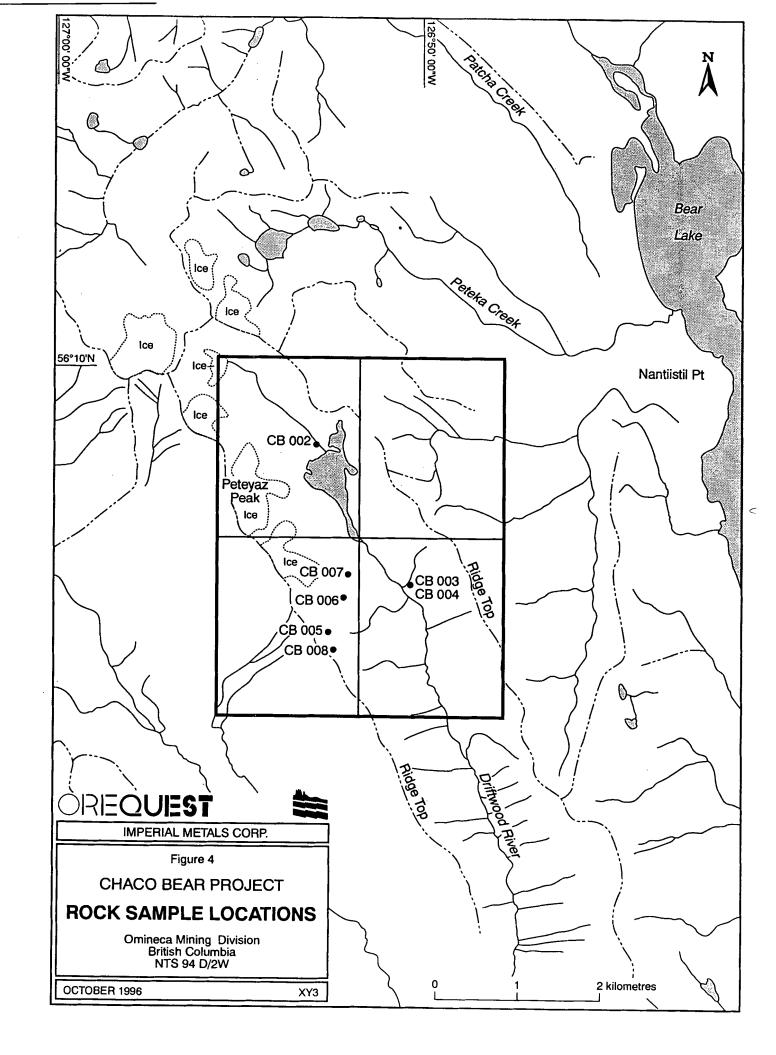
No detailed geological mapping was completed during the short exploration program. The most detailed work available on the property was completed by Suncor Inc., Resources Group in 1984 and 1985. That work focused on the southern half of the present day claims, east and west of the Driftwood River. Their mapping indicates the property is underlain primarily by volcanic rocks of the Hazelton Group, with minor sedimentary units also present.

Three main rocks types were encountered and were subdivided as follows; mafic lava flows, mafic to intermediate tuff and agglomerates, and interflow sediments. These units have been intruded by quartz-feldspar porphyry dykes believed to be related to the Tertiary aged Katsberg Intrusion, which is comprised of quartz monzonite, quartz-eye porphyry and felsite.

EXPLORATION PROGRAM

A limited exploration program was completed on the property between July 18 to July 23, 1996. The work consisted of rock sampling of previously outlined anomalous areas and grid based soil geochemical surveys. A total of 7 rock samples and 91 Bhorizon soil samples were collected and sent for analysis. The samples were analyzed by Eco-Tech Laboratories Ltd. in Kamloops, B. C. for gold and a 28 element ICP analysis. Any gold, silver, or copper values exceeding the detection limits were subsequently assayed.

Rock Sampling

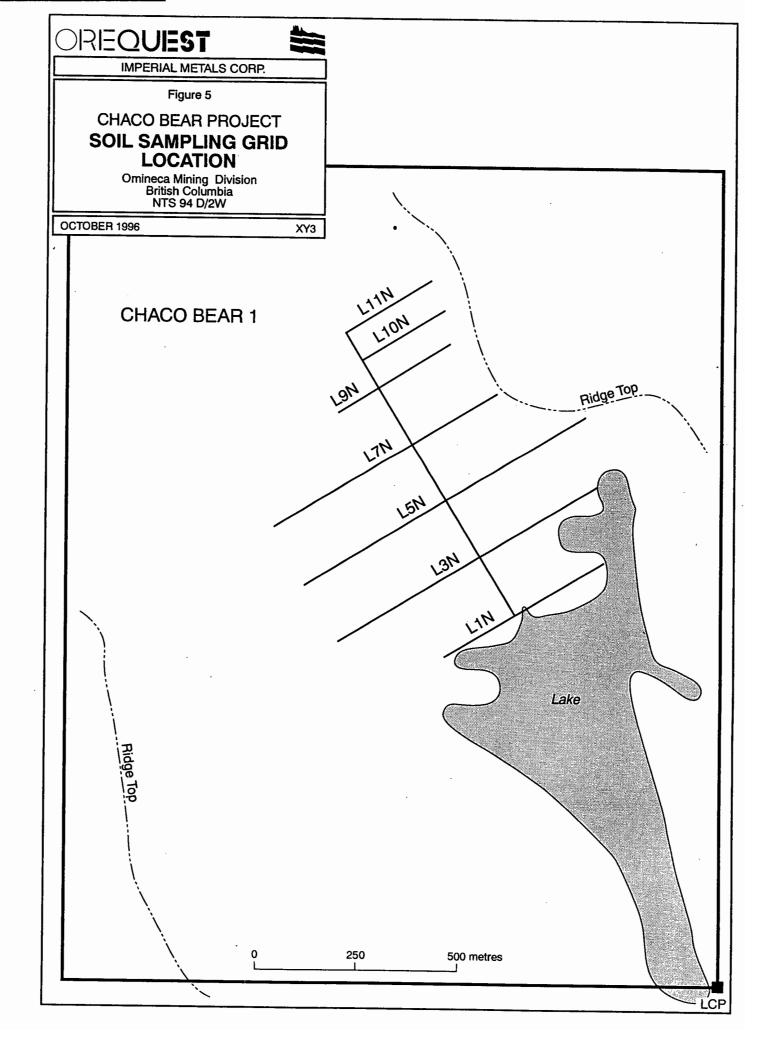

/

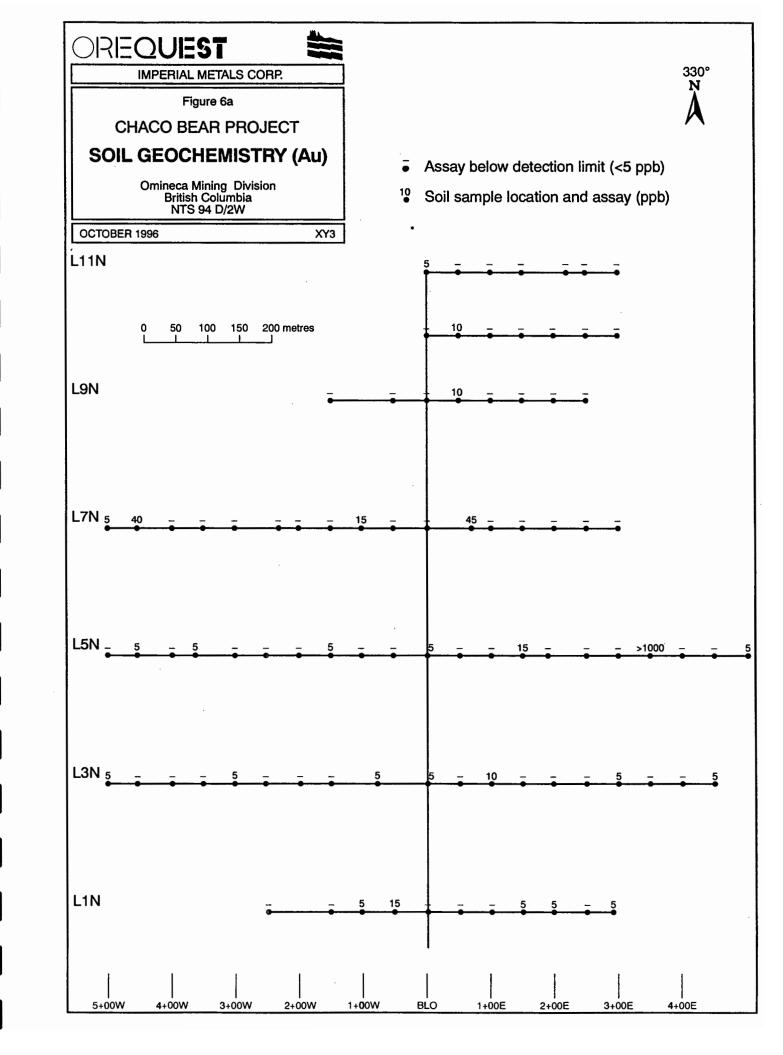
Several rock samples were collected from various locations throughout the property. The samples are grabs and/or chips as shown on the accompanying table; locations of the samples are plotted on Figure 4.

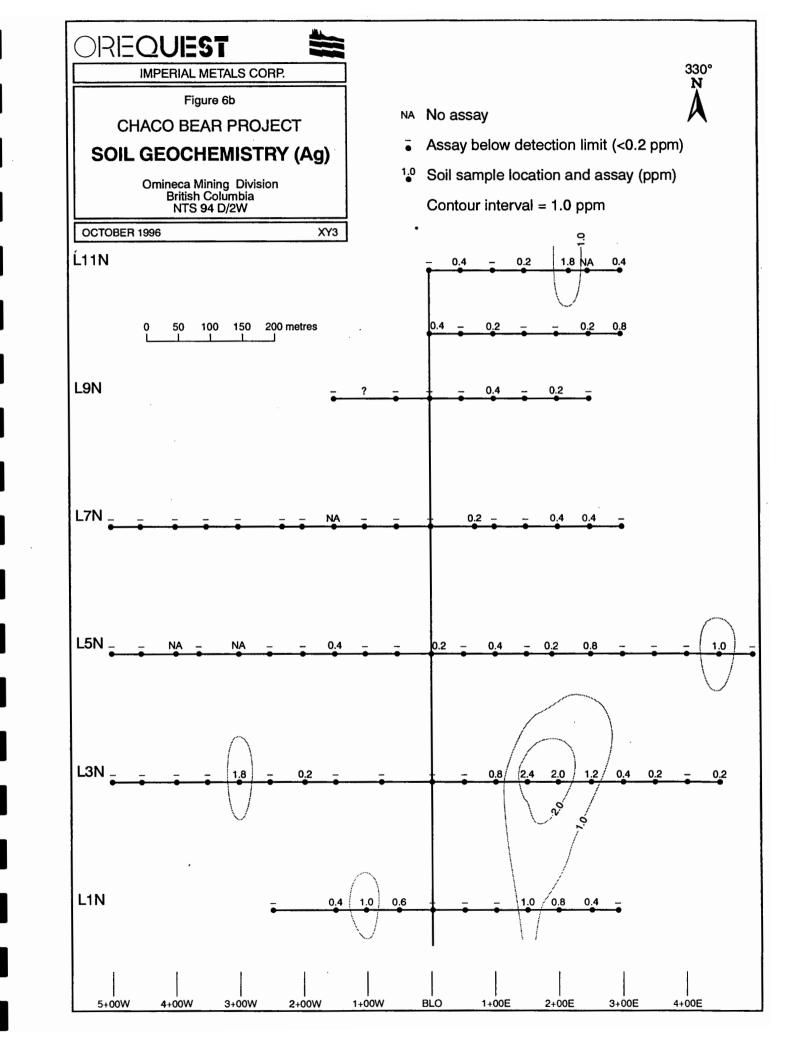
Sample No.	Туре	Location	Lithology	Au (ppb)	Cu%
CB 002	Chip - 0.5 metres	Chaco Bear 1	Quartz-carbonate veining in andesite with chalcopyrite, malachite and azurite	705	0.63
CB 003	Float	Chaco Bear 4	Andesite with weak carbonate stringer veins and epidote. Has 3- 6% fine pyrite.	5	0.02
CB 004	Float	Chaco Bear 4	Float boulder of quartz vein? with semi-massive chalcopyrite (10- 20%) specular hematite (10%) and pyrite (2-3%)	22.16 g/t	6.81
CB 005	Grab	Chaco Bear 3	Gossan Zone Silicified 2-5% dissem. pyrite	145	0.08
CB 006	Grab	Chaco Bear 3	Silicified andesite/dacite. Strong epidote, 1-4% fine disseminated pyrite	5	0.01
CB 007	Grab	Chaco Bear 3	Silicified andesite or dacite. Epidote as blotches. Strong gossan. Has 2-6% fine disseminated pyrite.	5	0.01
CB 008	Chip - 15 cm	Chaco Bear 3	Massive specular hematite vein	525	0.02

TABLE 2 - ROCK SAMPLES

The results indicate that anomalous concentrations of gold and copper are present in some of the samples. Further work would be required to fully evaluate the results.

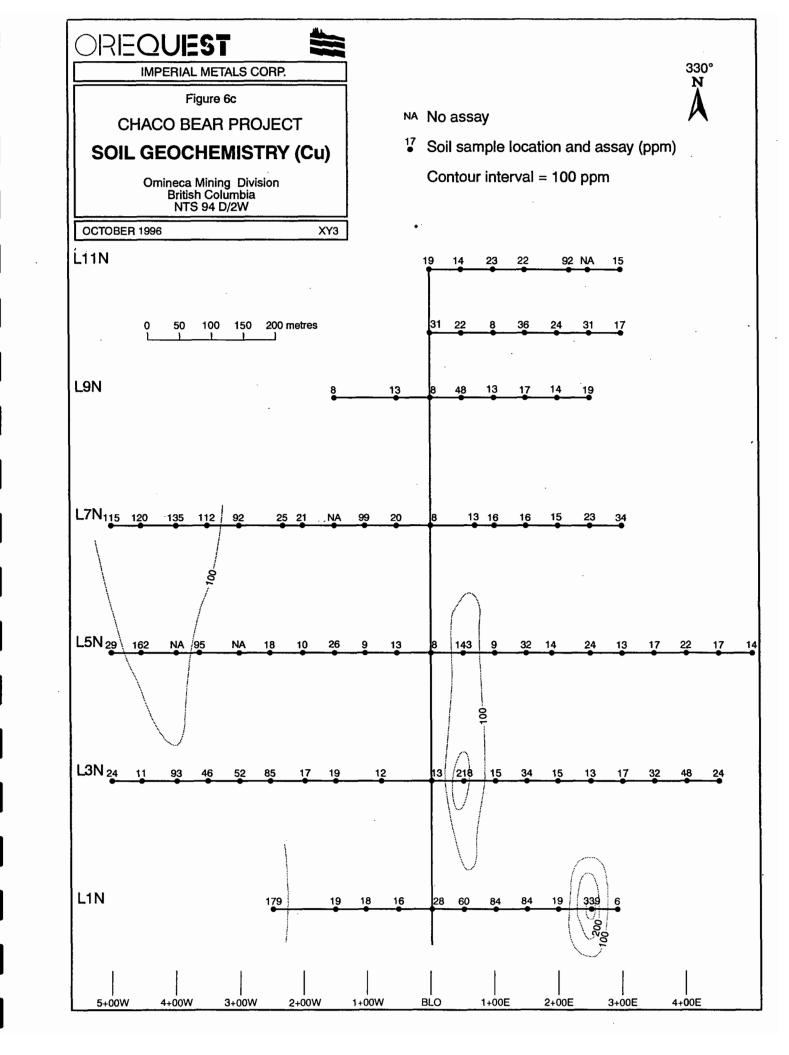



Soil Geochemical Surveys


A total of 91 B-horizon soil samples were collected from a flagged line grid. The grid was established off the northwest edge of the unnamed lake on the east side of the Chaco Bear 1 claim. The baseline trends 330° with cross lines at 200 metre intervals orthogonal to the baseline. Samples were collected at 50 metre intervals, where possible, along the cross lines. Snow conditions dictated the availability of sample locations, thus not all samples are evenly spaced along the grid lines (Figure 5).

Gold distribution in the soil samples is mostly as single station highs. The majority of samples returned assay results below the detection limits, with only three samples reporting values greater than 15 ppb gold. These locations and assays are as follows: L5N, 3+50E (> 1000 ppb), L7N, 4+50W (40 ppb) and L7N, 0+70E (45 ppb). The value of >1000 ppb gold is highly anomalous and should be followed up (Figure 6a).

Silver assays are generally fairly low with over half the samples returning values below the detection limits. An arbitrary value of 1.0 ppm was chosen as anomalous. All results \geq 1.0 ppm silver are found on the two southernmost lines, L1N and L3N with the exception of one value of 1.8 ppm on L11N, 2+20E. Most of these higher values are found as single station highs though there is a north-northeast trend, east of the baseline, on lines 1N and 3N with assays ranging from 1.0 to 2.4 ppm silver. Follow-up work would be required to evaluate the elevated silver values and determine their source (Figure 6b).


Copper assays are also fairly low throughout the grid area with 9 samples assaying greater than 100 ppm copper. These elevated copper results are located in two main areas, one near the west end of the grid on lines 5N and 7N with a high of 162 ppm copper, and the other just east of the baseline, on L3N and L5N, with a high of 218 ppm copper. Single station anomalies are found on L1N, 2+50W (179 ppm) and L1N, 2+50E (339 ppm) (Figure 6c).

In summary, no broadly anomalous trends for gold, silver, and copper are evident from the geochemical survey. However, the line and sample spacing is broad, a more detailed survey may further refine the anomalous areas outlined by the survey. Other elements were analysed but have not been plotted. Ranges for some of these elements are as follows: molybdenum (<1 to 6 ppm), lead (8 to 126 ppm) and zinc (42 to 275 ppm).

CONCLUSIONS AND RECOMMENDATIONS

A limited exploration program was completed on the Chaco Bear Project on behalf of Imperial Metals Corporation. The program was completed intermittently between July 18 to July 23, 1996. Work consisted of rock and soil geochemical surveys with a total of 7 rock and 91 soil samples collected and sent for analysis.

Previous work by Suncor, in 1984 and 1985, had outlined several areas of anomalous rock and soil geochemistry. The rock sampling program was intended to

check some of the better results. The soil sampling surveys were completed in a new area, previously untested, but hosting some anomalous rock sample results from the Suncor work.

The property is underlain by volcanic rocks of the Hazelton Group, which, on the claims, are comprised mostly of andesitic tuffs, lapilli tuff, and agglomerate. Lesser felsic volcanics also occur, comprised mainly of dacite tuff, and minor felsic dykes, 1-3 metres wide, are found throughout the claims.

The rock sampling confirmed the presence of anomalous gold and copper mineralization, mostly associated with quartz-carbonate veining. Mineralization includes pyrite, chalcopyrite, specular hematite, and malachite and azurite stain. The soil geochemical surveys outlined areas of anomalous gold, silver and copper from a flaggedline grid with broadly spaced samples.

Further work would be required to fully evaluate the claims. This should include mapping and prospecting throughout the property and follow-up of anomalous areas outlined by the Suncor work.

STATEMENT OF EXPENDITURES

Mob/Demob Airline tickets, wages	\$ 2500.00
Wages W. Raven 3.5 days @ 400.00/day P. McAndless 3.5 days @ \$400.00/day	1400.00 1400.00
Contractors Hobson Contracting Ltd.	963.00
Helicopter 2.6 hours @ \$715/hour + fuel, oil	2186.74
Sample Analysis 7 rocks @ \$35.16 /sample 91 soils @ \$15.21/sample	246.10 1384.13
Misc. Supplies	418.16
Food & Accommodation	574.44
Report and Drafting	2000.00
TOTAL	\$ <u>13072.57</u>

CERTIFICATE OF QUALIFICATIONS

I, Wesley D.T. Raven, of #108 - 1720 West 12th Avenue, Vancouver, British Columbia, hereby certify:

- 1. I am a graduate of the University of British Columbia (1983) and hold a B.Sc. degree in geology.
- 2. I have been employed as an exploration geologist on a full time basis since 1983.
- 3. I am a Fellow of the Geological Association of Canada.
- 4. I am currently retained as an independent consulting geologist by OreQuest Consultants Ltd., I hold no interest in OreQuest Consultants Ltd.
- 5. I am a Professional Geologist registered with the Association of Professional Engineers and Geoscientists of British Columbia.
- 6. The information contained in this report is from information listed in the Bibliography, and from onsite supervision of the exploration program.
- 7. I do not have nor expect to receive direct or indirect interest in the Chaco Bear project nor in the securities of Imperial Metals Corporation.
- 8. I consent to and authorize the use of the attached report and my name in the Company's Prospectus, Statement of Material Facts or other public document, providing the report is used in its entirety or any summary thereof is approved by the author.

ROVINCE Wesley Kan T. RAVEN CIEN

Wesley D.T. Raven, P.Geo.

DATED at Vancouver, British Columbia, this10th day of October, 1996.

BIBLIOGRAPHY AND REFERENCES

ASHTON, J. M.

1993: Induced Polarization Survey on the Chaco Bear Group Mineral Claims, NTS.94D, Omineca Mining Division, July 5, 1993.

DONNELLY, T.

1984: Geochemical and Prospecting Report on Peteka 1 to 4 Inclusive, Claims, Omineca Mining Division, for Suncor Inc., Resources Group, Assessment Report #14, 678.

EISBACHER, G. H.

1973: Sedimentary History and Tectonic Evolution of the Sustut and Sifton Basins, North-Central British Columbia, G. S. C. Paper 73-31.

HARTLEY, C.

1985: Geological, Geochemical Geophysical and Prospecting Report, Peteka 1 to 4 Claims, for Suncor Inc. Resources Group, Assessment Report #14,424.

JELETSKY, O. L.

1976: Takla Project: Preliminary Report on Stratigraphy and Depositional History of Middle to Upper Jurassic Stata in McConnell Creek Map Area (west half) British Columbia in Report of Activities, Part A, Geological Survey of Canada, Paper 76-1A, Report 13.

LORD, C. S.

1948: McConnell Creek Map-Area, Cassiar District, British Columbia, Geological Survey of Canada Memoir 251.

MEMPR

RICHARDSON, J.

1968: Geophysical survey Report on the Dave Group of Claims, Driftwood Creek, Omineca Mining Division, NTS 94 D/2, August 20, 1968, Assessment Report #1616.

RICHARDS, T.A.

1975: Takla Project: McConnell Creek Map Area (94D east half) in Report of Activities, Part A, Geological Survey of Canada, Paper 76-1A, Report 10.

WILTON, D. H., and SINCLAIR, A. J.

1978: Origin of the Sustut Copper Deposit, Central British Columbia (abs.): Canadian Institute of. Minerals and Metals Bulletin, V71, p. 129.

^{1992:} Minfile, Map 094D McConnell Creek, 1:250,000

APPENDIX I

Analytical Results

Ø 001

Post-It" Fax Note 7671E	Date 27 7 46 pages 2
TOPRESSET	From Sco Tech
Co. Dept. W. RAven	Co.
Phone #	Phone #
Fax #	Fax #
An assay + (cp.	to tollow

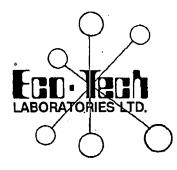
CERTIFICATE OF ANALYSIS AK 96-745

IMPERIAL METALS CORPORATION 420-355 BURRARD STREET VANCOUVER, B.C. V6C 2G8

11:42

26-Jul-96

ATTENTION: WES RAVEN


No. of samples received:7 PROJECT #:CHACO BEAR SHIPMENT #NONE GIVEN P.O.#: NONE GIVEN Samples submitted by:WES RAVEN

ET #.	Tag #		Au . (ppb)	Ag (ppm)	
1	СВ	002	705	1.2	
2	CB	003	5	0.1	
3	CB	004	>1000	1.9	
4	CB	005	145	0.1	
5	CB	006	5	0.1	
6	CB	007	5	0.1	
7	СВ	008	525	0.1	
<u>QC DA</u> Resplit					
1	CB	002	690	1.3	
Repeat	t:				
1	CB	002	. 700	1.2	
Standa	rd:				
GEO'96	6		145	1.2	

FCD-TECH LABORATORIES LTD. Per Roank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer

XLS/96Imperial

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (604) 573-5700 Fax (604) 573-4557

CERTIFICATE OF ASSAY AK 96-745

IMPERIAL METALS CORPORATION 420-355 BURRARD STREET VANCOUVER, B.C. V6C 2G8

ATTENTION: WES RAVEN

No. of samples received:7 PROJECT #:CHACO BEAR SHIPMENT #NONE GIVEN P.O.#: NONE GIVEN Samples submitted by:WES RAVEN

			. Cu
ET #.	Tag #		(%)
1	СВ	002	0.63
2	СВ	003	0.02
3.	СВ	004	6.81
4	CB	005	0.08
5	CB	006	0.01
6	CB	007	0.01
7	СВ	008	0.02

QC DATA:

Resplit:		
1	СB	002
Repeat:		
1	СВ	002
Standard:		
MPI-a		

0.62

0.62

1.42

O-TECH LABORATORIES LTD. Ørank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/96IMPERIAL

26-Jul-96

Page 1

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

2-Aug-96

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (604) 573-5700 Fax (604) 573-4557

CERTIFICATE OF ASSAY AK 96-745

IMPERIAL METALS CORPORATION 420-355 BURRARD STREET VANCOUVER, B.C. V6C 2G8

ATTENTION: WES RAVEN

No. of samples received:7 PROJECT #:CHACO BEAR SHIPMENT #NONE GIVEN P.O.#: NONE GIVEN Samples submitted by:WES RAVEN

ET #.	Tag #		Au Au Cu (g/t) (oz/t) (%)
1	CB	002	- 0.63
2	CB	003	0.02
3	СВ	004	22.16 0.65 6.81
4	CB	005	0.08
5	СВ	006	0.01
6	CB	007	0.01
7	CB	008	- 0.02
<u>QC DATA:</u> Resplit: 1	СВ	002	- 0.62
Repeat: 1 3	CB CB	002 004	- 0.62 19.28 0.56 -
Standard: MPI-a STD-M ⁻			1.42 3.22 0.09 -

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

Page 1

31-Jul-96

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

df/745r

XLS/961mperial

the law house go de la gala de la brit 1946 years

. to dispersion to

ICP CERTIFICATE OF ANALYSIS AK 96-745

IMPERIAL METALS CORPORATION 420-355 BURRARD STREET VANCOUVER, B.C. V6C 2G8

ATTENTION: WES RAVEN

No. of samples received:7 PROJECT #:CHACO BEAR SHIPMENT #NONE GIVEN P.O.#: NONE GIVEN Samples submitted by:WES RAVEN

Values in ppm unless otherwise reported

	Et #.	Tag #		Au(ppb)	Ag	AI%	As	Ba	Bi	Ca%	Cd	Co	Cr	Cu	Fe%	La	Mg%	Mn	Мо	Na%	Ni	Р	Pb	Sb	Sn	Sr	Ti%	U	<u>v</u>	W	Y	Zn
:	1	СВ	002	705	2.8	0.46	<5	65	<5	>10	46	10	105	6626	2.82	<10	0.09	3243	16	<0.01	3	470	672	<5	<20	27	0.01	<10	14		6	
	2	CB	003	5	1.0	3.50	<5	55	<5		3	24	49	41	8.95	<10	2.40	>10000	5	0.02	9	1210	168	<5	<20	34	0.16	<10	109	<10	<1	510
	3	СВ	004	>1000	4.2	0.10	<5	50	<5	0.02																						
	4	СВ	005			1.17					<1	29	90	1043	6.18	<10	0.51	3248	12	<0.01	6	440	6	<5	<20	34	0.02	<10	38	<10	12	25
	5	СВ	006	5	<0.2	1.70	20	35	<5	0.90				73	2.90	<10	1.34	1585	2	0.02	4	1020	80	<5	<20	59	0.15	<10	46	<10	2	98
	6	СВ	007	5	<0.2	2.42	<5	55	5	0.75		19		16	4.62	<10	2.21	1774	<1	0.01	2	1010	22	<5	<20	38	0.18	<10	73	<10	<1	88
	7	СВ	008	525	0.6	0.12	<5	135	<5	0.02	2	11	56	230	>10	<10	<0.01	51	18	<0.01	2	30	40	<5	<20	6	<0.01	30	8	<10	<1	28

QC/DATA Resplit: R/S 1	СВ	0 02	690	3.2	0.44	<5	70	<5	>10	47	9	52	5949	2.64	<10	0.09	3233	13 •	<0.01	3	430	686	<5	<20	28	<0.01	<10	13	<10	6	535
Repeat: 1	СВ	002	700	3.0	0.47	<5	70	<5	>10	46	10	110	6233	2.81	<10	0.09	3264	16 <	<0.01	4	510	686	<5	<20	29	<0.01	<10	15	<10	7	544
Standard GEO'96	:		145	1.2	1.72	65	160	<5	1.82	<1	18	60	78	3.90	<10	0.97	679	<1	0.02	24	700	22	<5	<20	58	0.11	<10	76	<10	3	72

FCO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

Page 1

7-Aug-96

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557 ICP CERTIFICATE OF ANALYSIS AK 96-775

IMPERIAL METALS CORPORATION 420-355 BURRARD STREET VANCOUVER, B.C. V6C 2G8

ATTENTION: PATRICK MCANDLESS

No. of samples received; 91 Sample type: Soll PROJECT #: Chaco Bear SHIPMENT #: None Given Samples submitted by: Hoeson Cont. Ltd.

Values in ppm unless otherwise reported

and the second second

	Et #.	Tag #	Au(ppb)	Ag	AI%	As	Ba	Bi	Ca%	Cd	Co	Cr	Cu	Fe%	La	Mg%	Mn	Мо	Na%	Ni	Ρ	РЬ	Sb	Sn	Sr	Ті%	U	v	w	Y	Zn
	1	L1N - 2+50 V	N <5	⊲0.2	2.23	- ব্য	135	<5	0.87	1	24	8	179	5.42	. <10	1.77	2273	1	0.02	9	1580	70	ঁৰ্জ	<20	49	0.11	<10	94	<10	6	159
	2	L1N - 1+50 V	N <5	0.4	0.59	<5	285	<5	1.46	<1	1	6	19	0.96	<10	0.16	557	1	0.01	4	1840	8	<5	<20	55	0.01	<10	27	<10	1	63
2	3	L1N - 1+00 V	N 5	1.0	1.33	<5	235	<5	0.22	<1	13	6	18	2.81	<10	0.31	7746	2	0.01	4	3560	16	<5	<20	11	0.02	<10	42	<10	<1	116
5	4	L1N-0+50 V	N 15	0.6	0.65	<5	65	<5	0.09	<1	4	5	16	2.11	<10	0.07	946	2	0.01	2	850	16	<5	<20	11	0.02	<10	53	<10	<1	48
1	5	L1N - 0+00 E	= <5	⊲0.2	2.95	<5	80	<5	0.06	<1	13	11	28	5.45	<10	0.70	972	3	0.01	7	1160	12	<5	<20	7	0.02	<10	111	<10	<1	119
Ş																															
2	6	L1N - 0+50 E	E <5	<0.2	1.95	<5	145	<5	0.96	<1	30	9	60	6.91	<10	2.25	1877	<1	0.03	11	1220	18	<5	<20	31	0.27	<10	169	<10	8	176
	7	L1N - 1+00 E	-5	<0.2	2.01	<5	140	⊲5	0.87	<1	31	11	84	7.31	<10	2.50	1770	<1	0.02	15	1200	24	<5	<20	27	0.25	<10	182	<10	7	176
	8	L1N- 1+50 E	£ 5	1.0	1.99	<5	230	<5	0.20	<1	22	9	84	4.97	<10	0.83	9874	3	<0.01	7	2160	28	<5	<20	6	0.03	<10	76	<10	1	110
	9	L1N - 2+00 E		0.8	1.38	<5	185	5	0.10	<1	14	8	19	4.49	<10	0.42	4507	3	<0.01	4	2620	18	<5	<20	6	0.02	<10	56	<10	<1	85
	10	L1N - 2+50 E	E <5	0.4	1.63	<5	105	⊲	0.07	<1	11	3	339	6.51	<10	0.19	5857	5	<0.01	5	2410	22	<5	<20	4	0.02	<10	71	<10	3	77
5	11	L1N - 2+90 E	-	<0.2		<5		<5	0.04	<1	2	7	6	1.93		0.07	379		<0.01	2	990	10	<5	<20	6	<0.01	<10	40	<10	<1	48
2	12	L3N - 5+00 V		<0.2		<5	90	<5	0.13	<1	16	9	24	4.35		0.41	1903		0.01		1760	18	<5	<20	16	0.08		117	<10	<1	82
2	13	L3N - 4+50 V		<0.2		<5	85	<5	0.16	<1	6	6	11	2.41		0.24	571		0.01		1720	12	<5	<20	21	0.04		70	<10	<1	65
5	14	L3N - 4+00 V		<0.2		<5	135	<5	1.84	1	10	6	93	2.40		0.73	1717		0.01		1830	34	<5	<20	39	0.02			<10	2	127
<u>r</u>	15	L3N - 3+50 V	v <5	<0.2	2.73	<5	145	<5	0.15	<1	17	7	46	4.69	<10	0.75	2262	2	0.01	5	1630	40	<5	<20	12	0,07	<10	107	<10	2	106
5																														•	
3	16	L3N - 3+00 V		1.8	2.43	-	300	<5	1.11	-	9	7		2.94		0.56	1145		0.01	-	2300	22	<5		27	0.01		79	<10	<1	74
	17	L3N - 2+50 V		<0.2	3.08		290	<5	0.95	<1	16	7	85	4.35		1.28	1425		0.01		2190	38	<5	<20	28	0.01		86	<10	<1	123
	18	L3N - 1+90 V		•			215	<5	0.67	1	13	6	17	3.28		0.36	2767	-	0.01		2610	24	<5	<20	24	0.01		118	<10	<1	104
2	19	L3N - 1+50 V		<0.2			110	<5	0.13	<1	9	11	19	3.20		0.45	911		0.01		1700	10	<5	<20		0.01		83	<10	<1	103
2	20	L3N-0+75 V	V 5	<0.2	1.48	.<5	85	<5	0.08	<1	8	4	12	4.27	<10	0,30	644	3	0.01	3	650	8	<5	<20	7.	0.03	<10	100	<10	<1	63
,	21	L3N - 0+00 E	5	<0.2	1.18	<5	85	5	0.04	<1	5	6	13	3.31	<10	0.09	715	2	0.01	2	850	12	<5	<20	8	0.02	<10	75	<10	<1	49
2	22	L3N - 0+50 E	< <5	<0.2	1.65	<5	270	<5	0.55	1	20	5	218	6:34	<10	0.92	2584	4	0.01	7	1470	34	<5	<20	15	0.05	<10	101	<10	12	123
5	23	L3N - 1+00 E	10	8.0	0.85	<5	280	<5	0.05	<1	13	7	15	3.41	<10	0.07	7265	3	0.01	3	1000	22	<5	<20	6	0.03	<10	67	<10	<1	51
5	24	L3N - 1+50 E	-		1.53		545	<5	0.06	<1	22	11	34	3.69		0.19 >		3	<0.01	5	2150	126	<5	<20	5	0.05	<10	51	<10	<1	73
>	25	L3N - 2+00 E	< <5	2.0	0.92	<5	765	<5	0.16	<1	19	9	15	2.93		0.08 >	10000	3	0.01	3	960	46	<5	<20	9	0.04	<10	53	<10	<1	79
														Pa	ge 1																

ECO-TECH KAM.

2604 573 4557

20:57

08/07/96

Open of the problem of the p														·													•						
E48. Tag# Aulpsh Au Ba Bi E47. Ca Ca Ca Ca Ca Ca Ca Fa May May Ni P Pi Sb Sin																										· · .							
E48. Tag# Aulpsh Au Ba Bi E47. Ca Ca Ca Ca Ca Ca Ca Fa May May Ni P Pi Sb Sin																																	
E48. Tag# Aulpsh Au Ba Bi E47. Ca Ca Ca Ca Ca Ca Ca Fa May May Ni P Pi Sb Sin																																	
E48. Tag# Aulpsh Au Ba Bi E47. Ca Ca Ca Ca Ca Ca Ca Fa May May Ni P Pi Sb Sin																																	
E48. Tag# Aulpsh Au Ba Bi E47. Ca Ca Ca Ca Ca Ca Ca Fa May May Ni P Pi Sb Sin																																	
E48. Tag# Aulpsh Au Ba Bi E47. Ca Ca Ca Ca Ca Ca Ca Fa May May Ni P Pi Sb Sin							•																										
E48. Tag# Aulpsh Au Ba Bi E47. Ca Ca Ca Ca Ca Ca Ca Fa May May Ni P Pi Sb Sin																																	
E48. Tag# Aulpsh Au Ba Bi E47. Ca Ca Ca Ca Ca Ca Ca Fa May May Ni P Pi Sb Sin	~													· TT /									-										
E48. Tag# Aulpsh Au Ba Bi E47. Ca Ca Ca Ca Ca Ca Ca Fa May May Ni P Pi Sb Sin	00	MPERIAL	METALS CORPOR	CATION								CP CEF	CULIC		JF ANA	LISIS	AK 96-	.115					E	CO-11		BOR	ATOR	ues l	TD.				
Lets Ligs As As As As As Corr Corr <th>ē,</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>_</th> <th></th> <th></th> <th></th> <th>-</th> <th>_</th> <th>_</th> <th></th>	ē,							_				-	_	_																			
27 L34. 3+00 E 5 0.4 128 5 200 -1 1 17 24. 4 11 17 24. 4 11 22 217 3 0.02 3 400 18 45 5 0.0 -1 11 20 3 22 217 3 0.02 3 450 10 6 45 10 7 10 10 22 217 40 0.23 400 3 0.001 13 285 450 6 0.00 10 11 20 22 277 40 0.03 100 13 45 5 20 27 27 40 0.04 100 11 20 11 10 24 427 410 10 10 11 10 11 10 10 11 10 10 10 10 10 10 10 10 10 10 10 10 10	-		and the second se	Au(ppb)	Ag	AI%	As	Ba	BI	Ca%	Cd	Co	Cr	Cu	Fe%	La	Mg%	Mn	Mo	Na%	Ni	P	Pb_	Sb	Sn	Sr	<u> </u>	<u> </u>	<u>v</u>	W	<u>Y</u>	Zn	
28 13.33 - 34.50 E -5 0.2 1.34 4.5 8.5 0.07 c1 1.12 20 32 1.15 4.1 1.12 20 32 1.15 4.5 1.11 1.11 20 32 2.3 4.6 0.01 33 0.01 13 2.5 20 5 0.5 0.01 13 2.5 1.00 1.1 1.01		26	L3N - 2+50 E	<5	1.2	0.77	5	320	<5	0.08	<1	22	6	13	3.49	<10	0.12 :	>10000	3	0.01	3	1160	20	<5	<20	7	0.03	<10	58	<10	<1	60	
29 L3N + 4400 E -5 0.2 2.80 +5 0.2 2.80 +5 0.2 2.87 5		27	L3N - 3+00 E	5	0.4	1.28	5	290	<5	0.90	<1	6	11	17	2.54	<10	0.22	2217	3	0.02	3	4930	10	<5	<20	30	<0.01	<10	48	<10	1	110	
29 L3N + 400 E 5 0.2 2.87 5 5 5 0.07 1 10 10 24 4.23 10 0.34 400 3 0.01 15 25 0.02 10 c1 83 30 L3N + 450 W 5 0.2 158 5 0.07 1 10 10 10 24 4.23 10 0.01 15 25 0.03 0.03 0.01 0.01 13 180 34 45 20 2 0.01 11		28	L3N - 3+50 E	<5	0.2	1.94	<5	85	<5	0.07	<1	11	20	32	5.21	<10	0.41	1154	4	0.01	8	1700	18	<5	<20	6	0.05	<10	77	<10	<1	105	
30 L3N- 4450 E 5 0.2 2.67 5 55 45 0.07 <1 10 10 24 4.27 <10 0.44 1988 4 0.01 5 2700 16 -5 -20 16 0.03 -10 0.01 0.01 24 4.27 <10 0.44 1988 4 0.01 15 2700 16 -5 -20 16 0.03 -10 0.01 0.01 0.01 0.01 0.01 10 10 10 1283 2 0.01 16 160 16 -5 -20 16 16 16 150 16 10 11 10 10 1283 2 0.01 16 16 16 16 16 16 16 16 10 128 100 18 1600 16 -5 -20 10 10 11 116 128 30 10 11 116		29	L3N - 4+00 E	<5	⊲0.2	3.66	<5	115	<5	0.11	<1	11	27	48	6.23	<10	0.34	400	3	0.01	13	2850	12	<5	<20	5				<10	<1	83	
Image: Second																																	
122 L5N 4:50 W 5 4:52 5 2:5 4:5 0:2 1:1 1:10 1:11 1:10 1:11 1:10 1:10 1:10 1:10 1:10 1:10 1:10 1:10 1:10 1:10 1:10 1:10 1:10 1:10 1:10 1:10 1:10 1:11 1:10 1:10 1:10 1:10 1:10 1:11 1:10 1:10				. •	•		•			0.01				•			0.11	1000	•	0.01	Ũ	2.00		~		•	0.00	-10		10		00	
122 L5N 4:50 W 5 4:52 5 2:5 4:5 0:2 1:1 1:10 1:11 1:10 1:11 1:10 1:10 1:10 1:10 1:10 1:10 1:10 1:10 1:10 1:10 1:10 1:10 1:10 1:10 1:10 1:10 1:10 1:11 1:10 1:10 1:10 1:10 1:10 1:11 1:10 1:10		21	151 5+00 14	· ~5	-0.2	1 09	~5	95	-6	0.26	-1	40	-	20	2 72	-10	0.00	4003	~	0.01	0	1420	40	-5	~~~~	40	0.00	.40	~~			07	
33 LSN- 4+00 45 47				+			-		-		•		-												-					. +			
$ \begin{array}{c} 34 \\ 158 \\ 158 \\ 356 \\ 158 \\$				-	<0.2	3.50	5	125	<2	0.35	<1	20	16	162	5.18	<10	1.20	1115	<1	0.02	13	1860	34	<5	<20	28	0.14	<10	102	<10	13	141	
35 L5N- 3+00 W <5 0.0 4 1 <th1< th=""> <th1< th=""> 1 <</th1<></th1<>												•				•	•			•	•			-	•	•	•	•	•	•	•	•	
$ 100 \ 100$				-	<0.2	3.34	<5	105	<5	0.45	<1	30	17	95	8.52	<10	1.98	2002	<1	0.01	18	1660	16	<5	<20	25	0.21	<10	159	<10	4	169	
$ \begin{array}{c} 37 \\ 100 \\$		35	L5N - 3+00 W	<5	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
$ \begin{array}{c} 37 \\ 100 \\$																																	
NM S LSN-1450 W S 0.4 160 S 0.1 1 11 26 3.33 <10 0.34 3739 3 0.01 7 1760 18 <5 <0.0 0.04 <10 7 1760 18 <5 <0.0 7 1760 18 <5 <0.0 7 1760 18 <5 <0.0 7 1760 18 <5 <0.0 7 1760 18 <5 <0.0 7 172 40 LSN 0+50 W 5 0.2 0.78 <5		36	L5N-2+50 W	<5	<0.2	1.69	<5	105	<5	0.16	<1	12	6	18	3.53	<10	0.65	1202	3	0.01	7	1540	10	<5	<20	15	0.04	<10	107	<10	<1	9 9	
$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $		37	L5N - 2+00 W	<5	<0.2	1.32	<5	75	<5	0.07	<1	8	6	10	2.74	<10	0.39	694	2	0.01	. 4	1190	10	<5	<20	9	0.02	<10	52	<10	1	68	
	м.	38	L5N - 1+50 W	5	0.4	1.60	<5	205	<5	0.12	<1	11	11	26	3.93	<10	0.34	3739	3	0.01	7	1760	18	<5	<20	10	0.04	<10	78	<10	<1	115	
	¥.	39	L5N - 1+00 W	<5	<0.2	1.67	<5	125	5	0.09	<1	14	8	9	4.95	<10	0.28	2105	4	0.01	6	1920	8	<5	<20	5	0.01	<10	101	<10	<1	124	
$ \begin{array}{c} 43 \\ 44 \\ 44 \\ 45 \\ 45 \\ 45 \\ 45 \\ 45 \\$		40	L5N - 0+50 W	<5	<0.2	1.40	<5	125	<5	0.06	<1	10	10	13	3.20	<10	0.27	2223	3	0.01	7	1840	14	<5	<20	8	0.01	<10	57	<10	<1		
$ \begin{array}{c} 43 \\ 44 \\ 44 \\ 45 \\ 45 \\ 45 \\ 45 \\ 45 \\$	E																••••			•						-			•••		•		
$ \begin{array}{c} 43 \\ 44 \\ 44 \\ 45 \\ 45 \\ 45 \\ 45 \\ 45 \\$	F.	41	L5N - 0+00 W	5	02	0.78	<5	70	<5	0.04	<1	8	3	8	2 47	<10	0 15	2046	2	0.01	2	850	12	<5	<20	2	0.02	<10	33	<10	1	49	
$ \begin{array}{c} 43 \\ 44 \\ 44 \\ 45 \\ 45 \\ 45 \\ 45 \\ 45 \\$	8			-			-		-		-	•	-	-							_			-	_								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Э			-			-																					-			•		
$ \begin{array}{c} 45 \\ 45 \\ 45 \\ 46 \\ 46 \\ 47 \\ 46 \\ 47 \\ 48 \\ 47 \\ 47 \\ 48 \\ 47 \\ 47 \\ 48 \\ 47 \\ 47$				-					-			-	-	-												-					•		
$ \begin{array}{c} 46 \\ 47 \\ 47 \\ 47 \\ 48 \\ 49 \\ 49 \\ 49 \\ 48 \\ 50 \\ 49 \\ 49 \\ 50 \\ 486 \\ 50 \\ 49 \\ 49 \\ 49 \\ 50 \\ 49 \\ 49 \\ 49 \\ 49 \\ 49 \\ 49 \\ 49 \\ 4$												•	-																			-	
$ \begin{array}{c} 47 \\ 48 \\ 49 \\ 49 \\ 49 \\ 49 \\ 49 \\ 40 \\ 45 \\ 49 \\ 40 \\ 45 \\ 49 \\ 40 \\ 45 \\ 49 \\ 40 \\ 45 \\ 49 \\ 40 \\ 45 \\ 49 \\ 40 \\ 45 \\ 49 \\ 40 \\ 45 \\ 49 \\ 40 \\ 45 \\ 49 \\ 40 \\ 45 \\ 49 \\ 40 \\ 45 \\ 40 \\ 40 \\ 45 \\ 40 \\ 40 \\ 40$		45	L5N - 1+90 E	<5	0.2	1.57	<5	125	<5	0.05	<1	8	12	14	3.94	<10	0.19	2191	3	<0.01	4	1570	20	<5	<20	6	0.05	<10	88	<10	<1	74	
$ \begin{array}{c} 47 \\ 48 \\ 49 \\ 49 \\ 49 \\ 49 \\ 49 \\ 40 \\ 45 \\ 49 \\ 40 \\ 45 \\ 49 \\ 40 \\ 45 \\ 49 \\ 40 \\ 45 \\ 49 \\ 40 \\ 45 \\ 49 \\ 40 \\ 45 \\ 49 \\ 40 \\ 45 \\ 49 \\ 40 \\ 45 \\ 49 \\ 40 \\ 45 \\ 49 \\ 40 \\ 45 \\ 40 \\ 40 \\ 45 \\ 40 \\ 40 \\ 40$				-					_										-		_		÷	-	_								
$ \begin{array}{c} 48 \\ 49 \\ 49 \\ 49 \\ 49 \\ 49 \\ 49 \\ 49 \\$											-																				-		
$\begin{array}{c} 49 \\ 50 \\ 100 \\ 1$	12										<1												20		<20	6	0.07	<10	110	<10	<1	53	
$\begin{array}{c} 49 \\ 50 \\ 100 \\ 1$	22	48		>1000	<0.2	1.60	<5	55	<5	0.03	<1	4	6	17	3.06	<10	0.18	331	2	0.01	3	1100	14	<5	<20	5	0.01	<10	64	<10	<1	58	
$ \begin{array}{c} 50 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $		49	L5N-4+00 E	<5	<0.2	1.58	<5	65	<5	0.07	<1	8	7	22	2.50	<10	0.54	443	1	<0.01	4	930	18	<5	<20	5	0.04	<10	66	<10	<1	84	
$ \frac{1}{90} \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	50	L5N - 4+50 E	<5	1.0	2.44	<5	320	<5	0.27	<1	7	9	17	3.07	<10	0.55	793	6	0.01	5	2670	14	<5	<20	24	0.01	<10	71	<10	2	110	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																																	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	04	51	L5N - 5+00 E	5	<0.2	1.57	<5	70	<5	0.06	<1	5	10	14	3.28	<10	0.22	458	2	0.01	3	1770	14	<5	<20	6	0.02	<10	66	<10	<1	67	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	36	52	17N - 5+00 W	5	<0.2	1.89	<5	105	<5	0.66	<1	24	8	115	6 26	<10	1.74	2418	2	0.02	9	1360	26	<5	<20	20	0.12	<10	109	<10	7	160	
$ \begin{array}{c} 54 \\ 55 \\ 55 \\ 17N - 3 + 50 \\ \hline N $	6																														-		
55 L7N-3+50 W <5 <0.2 2.01 <5 115 <5 0.63 <1 26 8 112 6.94 <10 1.79 2660 2 0.02 8 1400 36 <5 <20 20 0.11 <10 121 <10 6 174 56 L7N-3+00 W <5 <0.2 6.01 20 155 <5 0.53 <1 25 22 92 5.38 <10 1.42 1277 <1 0.02 25 2030 10 <5 <20 28 0.14 <10 118 <10 7 151 57 L7N-2+30 W <5 <0.2 3.41 10 195 <5 0.20 <1 15 13 25 4.95 <10 0.63 2912 3 0.01 8 1830 14 <5 <20 18 0.03 <10 121 <10 3 134		-							-		-		-										-								•		
56 L7N - 3+00 W <5 <0.2 6.01 20 155 <5 0.53 <1 25 22 92 5.38 <10 1.42 1277 <1 0.02 25 2030 10 <5 <20 28 0.14 <10 118 <10 7 151 57 L7N - 2+30 W <5 <0.2 3.41 10 195 <5 0.20 <1 15 13 25 4.95 <10 0.63 2912 3 0.01 8 1830 14 <5 <20 18 0.03 <10 121 <10 3 134													-																		-		
[∞] 56 L7N - 3+00 W <5 <0.2 6.01 20 155 <5 0.53 <1 25 22 92 5.38 <10 1.42 1277 <1 0.02 25 2030 10 <5 <20 28 0.14 <10 118 <10 7 151 57 L7N - 2+30 W <5 <0.2 3.41 10 195 <5 0.20 <1 15 13 25 4.95 <10 0.63 2912 3 0.01 8 1830 14 <5 <20 18 0.03 <10 121 <10 3 134	20	55	L/N - 3+50 W	\$	~0.2	2.01	<0	115	5	0.63		20	8	112	0.94	<10	1.79	2000	2	0.02	8	1400	30	29	~20	20	0.11	<10	121	<10	6	114	
57 L7N- 2+30 W <5 <0.2 3.41 10 195 <5 0.20 <1 15 13 25 4.95 <10 0.63 2912 3 0.01 8 1830 14 <5 <20 18 0.03 <10 121 <10 3 134	50			_					_															-		•				•	_		
				-					-		-								•					-							•		
58 L7N- 2+00 W <5 <0.2 2.43 5 80 <5 0.09 <1 11 12 21 4.44 <10 0.43 1389 3 0.01 7 2110 28 <5 <20 6 0.03 <10 74 <10 1 99 59 L7N- 1+50 W <5	~	-							-																						•		
59 L7N - 1+50 W <5 · · · · · · · · · · · · · · · · · ·	96		L7N-2+00 W	<5	<0.2	2.43	5	80	<5	0.09	<1	11	12	21	4.44	<10	0.43	1389	3	0.01	7	2110	28	<5	<20	6	0.03	<10	74	<10	1	99	
60 L7N- 1+00 W 15 <0.2 2.50 <5 85 <5 0.08 <1 14 13 99 5.21 <10 0.63 2778 3 0.01 8 2370 20 <5 <20 5 0.03 <10 86 <10 <1 130	È	59	L7N-1+50 W	<5	•	•	•	•	•	•	•	•	•	٠	•	•	•	٠	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	
	2	60	L7N - 1+00 W	15	<0.2	2.50	<5	85	<5	0.08	<1	14	13	99	5.21	<10	0.63	2778	3	0.01	8	2370	20	<5	<20	5	0.03	<10	86	<10	<1	130	
	08														_	_																	

Page 2

.

-															
	61	L7N - 0+50	W	<5	<0.2	1.85	<5	110	5	0.10	<1	13	8	20	4.22
	62	L7N - 0+00	E	<5	<0.2	1.55	<5	100	<5	0.06	<1	5	7	8	3.60
	63	L7N - 0+70	Е	45	0.2	1.02	<5	100	<5	0.03	<1	3	6	13	1.99
	64	L7N - 1+00	Ę	<5	<0.2	0.54	<5	60	<5	0.12	<1	3	5	16	1.75
	65	L7N - 1+50	Е	<5	<0.2	1.12	<5	170	<5	0.09	<1	5	6	16	3.28
	66	L7N - 2+00	E	<5	0.4	0.74	<5	130	<5	0.12	<1	2	7	15	1.61
	67	L7N - 2+50	Е	<5	0.4	0.37	<5	170	<5	0.21	<1	2	3	23	0.98
	68	L7N - 3+00	Ε	<5	<0.2	2.91	5	75	<5	0.10	<1	12	9	34	4.80
	69	L9N - 1+50	w	<5	<0.2	0.85	<5		<5	0.07	<1	2	4		1.33
	70	L9N - Snow	w	<5	•	•	•	*	+	•	•	•	•	+	•
	71	L9N - 0+50		<5	<0.2	1.65	<5	65	<5	0.04	<1	7	6	13	
	72	L9N - 0+00		· <5		0.78	<5		<5	0.22	<1 .	-	6	8	2.73
KAM	73	L9N - 0+50		10	⊲0.2	1.88	5	160	<5	0.19	<1	12	11	48	3.74
	74	L9N - 1+00	_	<5	0.4	0.64	<5	190	<5	0.13	<1	11	7	13	2.53
5 G	75	L9N - 1+50	Ε	<5	⊲0.2	1.73	<5	115	<5	0.06	<1	10	11	17	4.29
EC0-TECH			_	_			_		_			-			
ġ	76	L9N - 2+00		<5	0.2	0.97	<5	195			<1	5	5	14	2.04
ă	77	L9N - 2+50		<	⊲0.2	1.90	<5	135	<5	0.11	<1	9	10	19	3.84
	78	L10N - 0+00		<5	0.4	2.33	5	190	<5	0.23	<1	16	15	31	4.42
	79	L10N - 0+50	_	10	⊲0.2	2.00	10	120	<5	0.55	<1	13	10	22	3.96
	80	L10N - 1+00	Е	<5	0.2	1.78	4	175	<5	0.25	<1	8	9	8	2.87
	04	1100 4150	~	-5	-0.0	2 70	-	126	~F	0.12	-1	12	11	20	5.11
	81	L10N - 1+50		<0	<0.2	2.10	<0	135	~5	0.12	-1	14		30	3.11

Ag Al%

Au(ppb)

As Ba Bi Ca% Cd Co

٠ <10 0.39 660 2 0.02 4 1840 18 <5 <20 6 0.01 <10 57 <10 <1 142 <10 0.15 1008 2 0.01 4 1140 8 <5 <20 9 < 0.01 < 10 55 <10 <1 116 <10 0.58 2459 3 0.01 8 1690 20 <5 **2**0 7 0.01 <10 58 <10 1 149 <10 0.10 4622 2 0.01 5 1480 12 <5 <20 <10 <1 81 10 0.03 <10 41 <10 0.51 1776 3 0.02 8 1130 16 <5 <20 6 0.02 <10 83 <10 <1 163 <10 0.13 499 2 0.02 4 2060 74 10 <5 20 12 < 0.01 < 10 34 <10 1 <10 0.45 945 3 0.02 7 1480 <20 7 0.02 <10 75 <10 <1 16 <5 136 <10 0.53 3181 3 0.01 9 2480 18 <5 <20 14 0.03 <10 80 <10 2 156 30 0.85 2383 2 0.02 9 1880 10 <5 <20 11 0.02 <10 59 <10 17 166 <10 0.35 3184 2 0.01 5 2380 10 <5 <20 7 0.01 <10 58 <10 6 132 <10 0.73 1269 3 0.01 9 1120 12 <5 <20 6 0.02 <10 92 <10 2 194 1+50 L10N - 2+00 E <5 <0.2 2.61 <5 110 10 0.18 <1 16 11 24 5.81 <10 1.01 1180 3 0.02 10 970 14 <5 <20 8 0.04 <10 105 <10 <1 275 82 31 6.06 <10 0.83 4143 4 0.01 11 2190 22 <5 <20 6 0.04 <10 106 3 248 83 L10N - 2+50 E <5 0.2 2.58 5 165 <5 0.13 <1 20 15 <10 <5 0.20 <1 6 8 17 2.48 <10 0.23 1770 2 0.01 4 2700 10 <5 <20 10 0.01 <10 42 <10 2 115 84 L10N - 3+00 E <5 0.8 1.69 5 155 12 <5 <20 5 0.02 <10 64 85 L11N - 0+00 E 5 < 0.2 1.75 <5 80 5 0.07 <1 10 13 19 3.58 <10 0.48 1701 2 0.01 6 2260 <10 <1 135 86 L11N - 0+50 E 0.4 1.21 10 360 0.91 7 8 14 2.81 10 0.27 3996 2 0.01 6 2810 12 <5 <20 19 0.02 <10 37 <10 8 162 <5 <5 <1 8 23 3.65 <10 0.61 1768 2 0.01 8 1380 12 <5 <20 16 0.03 <10 74 <10 160 87 L11N - 1+00 E <5 <0.2 1.75 < 130 <5 0.23 <1 11 1 13 22 3.63 <10 0.59 1668 3 0.02 10 1540 12 <5 <20 11 0.03 <10 68 3 167 L11N - 1+50 E 0.2 2.06 <5 150 <5 0.31 <1 11 <10 88 <5 L11N - 2+20 E 1.8 1.76 5 200 <5 1.62 <1 13 5 92 2.54 10 0.91 3287 2 0.02 5 2070 18 <5 <20 17 0.01 <10 45 <10 14 154 89 <5 ٠ . ٠ ٠ . ٠ ٠ . • * . ٠ . ٠ ٠ . 90 L11N - 2+50 E <5 ٠ ٠ . . 7 1730 <5 <20 3 0.02 <10 66 <10 5 135 <5 0.14 <1 12 . 7 15 4.13 10 0.85 2628 3 0.01 14 2 192 91 L11N - 3+00 E <5 0.4 2.01

ICP CERTIFICATE OF ANALYSIS AK 96-775

Cr Cu Fe% La Mg%

<10 0.55

<10 0.17

<10 0.06

<10 0.11

<10 0.08

<10 0.07

<10 0.76

<10 0.06

<10 0.09 Mn

1184

305

884

446

1969

356

1717

1003

432

Mo Na%

3

0.01

2 0.01

2 0.01

1 0.01

3 0.01

2 0.01

<1 0.02

3 0.01

1 0.01 ECO-TECH LABORATORIES LTD.

8

Sn Sr Ti% U V

8 0.02 <10

<20 10 0.02 <10 70

0.02 <10

4 < 0.01 < 10 40

6 0.02 <10 34

11 < 0.01 < 10 32

9 <0.01 <10

8 < 0.01 < 10 16

5 0.03 <10 95 <10

w

<10

<10

<10

<10

<10

86 <10

94 <10

22 <10 Y Zn

1

<1

<1

<1

<1

<1

<1

<1 140

1 42

127

57

46

51

50

65

92

Ni P Pb

6 1410

3 790

2 1770

3 1080

3 740

4 1720

2 1540

7 1050

2 1710

Sb

<5 <20

<5 <20

<5

<5

<5

<5 <20

<5 <20

<20

<20

<20

12

12

20

8

16

14

8 <5 <20

20

6 <5

Page 3

a a state and all the light of the second states and

Et #.

IMPERIAL METALS CORPORATION

Tag #

4557 573 **B**604 20:59

08/07/96

IMPERIAL I	METALS CORPO	RATION							10	CP CEF	RTIFIC.	ATE C	OF ANA	LYSIS	AK 96-	775					E	СО-ТІ		ABO	ATOR	IES L	TD.			
Et #	Tag #	Au(ppb)	Ag	<u>AI%</u>	As	Ba	Bi	Ca%	Cd	Co	Cr	Cu	Fe%	<u> </u>	Mg%	Mn	Mo	Na%	NI	P	Pb	Sb	Sn	Sr	<u>Ti%</u>	U	<u>v</u>	<u>w</u>	Ŷ	z
OC/DATA: Repeat:																											·			
1	L1N - 2+50 W	<5	<0.2	2.33	<5	145	<5	0.92	1	25	9	187	5.58	<10	1.82	2361	1	0.02	10	1610	72	<5	<20	53	0.11	<10	98	<10	6	16
10	L1N - 2+50 E	<5	0.6	1.69	<5	110	<5	80.0	<1	12	3	345	6.84	<10	0.18	5970	5	<0.01	4	2470	22	<5	<20	4	0.02	<10	77	<10	3	8
19	L3N - 1+50 W	< 5	<0.2	1.51	<5	110	<5	0.15	<1	10	11	20	3.30	<10	0.45	982	2	0.01	6	1760	12	<5	<20	14	0.01	<10	85	<10	<1	10
28	L3N - 3+50 E	<5	0.2	1.92	<5	85	<5	0.07	<1	10	20	31	5.21	<10	0.40	1148	4	0.01		1700	18	<5	<20	6	0.05	<10	77	<10	<1	11
36	L5N - 2+50 W	<5	<0.2	1.65	<5	105	<5	0.16	<1	12	6	18	3.41	<10	0.63	1220	2	0.01		1570	10	<5	<20	16	0.04	<10	102	<10	<1	10
45	1+90 E	<5	0.2	1.49	<5	125	<5	0.06	<1	8	12	15	4.00	<10	0.20	2138	з	0.01	4	1500	20	<5	<20	7	0.05	<10	87	<10	<1	7
54	17N - 4+00 W	<5	⊲0.2	2.02	<5	125	<5	0.66	1	26	8	134	6.66	<10	1.76	2779	2	0.02	8	1460	36	<5	<20	21	0.11	<10	116	<10	7	173
63	L7N-0+70 E	70	0.4	0.98	<5	100	<5	0.03	<1	2	6	12	1.96	<10	0.04	878	2	0.01		1850	20	<5	<20	5	<0.01	<10	39	<10	<1	4
71	19N - 0+50 W	<5	⊲0.2	1.61	<5	65	<5	0.04	<1	7	6	12	2.55	<10	0.38	665	2	0.01	4	1840	16	<5	<20	6	0.01	<10	56	<10	<1	12
80	L10N - 1+00 E	<5	0.4	1.70	<5	170	<5	0.25	<1	7	8	8	2.74	<10	0.32	3166	2	<0.01	5	2300	8	<5	<20	7	0.02	<10	55	<10	6	12
89	L11N- 2+20 E		1.6	1.77	5	195	<5	1.63	<1	13	5	92	2.56	10	0.92	3263	2	0.02	6	2130	20	<5	<20	17	0.01	<10	45	<10	14	14
Standard:																														
GEO'96		150	1.2	1.85	65	160	<5	1.84	<1	19	65	84	4.31	<10	1.02	735	<1	0.02	25	740	18	<5	<20	60	0.12	<10	83	<10	3	6
GEO'96		150	1.0	1.85	70	160	<5	1.90	<1	19	65	85	4.37	<10	1.02	747	<1	0.02	22	760	16	<5	<20	61	0.12	<10	83	<10	4	69
GEO'96			1.0	1.77	65	165	<5	1.87	<1	19	63	82	4.26	<10	1.00	756	<1	0.01	22	770	16	<5	<20	60	0.11	<10	80	<10	4	70

Note: * = Insufficient sample to perform ICP

ECO-TECH KAM.

Q 004

df/775 XLS/961mperia#2

Page 4

ECO-TECH LABORATORIES LTD. Grank J. Pezzotti, A.Sc.T. B.C. Certified Assayer