Assessment Report
on
1996 Spring Drill Program
New Nadina Explorations Ltd.
Linda Caron

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORTS

DATE RECEIVED OCT 18 1996

ASSESSMENT REPORT on

1996 SPRING DRILL PROGRAM

SILVER QUEEN PROPERTY (Silver Queen Group)

NTS 93L/2 E

Lat: 54° 04'N Long: 126° 43'W

FILMED

New Nadina Explorations Limited Box 130, 330 Copper St. Greenwood, B.C. V0H 1J0

Linda Caron, P. Eng. September, 1996

TABLE OF CONTENTS

			Page
1.0	SUMM	ARY	1
2.0	INTRO	DUCTION	2
	2.2 Pro 2.3 His	cation, Access and Terrain operty and Ownership story mmary of Current Work Program	2 2 3 6
3.0	GEOLG	DGY	7
4.0	DRILLI	NG	8
5.0	RECO	MMENDATIONS	9
6.0	REFER	RENCES	10
		LIST OF FIGURES	
Figure	e 1 - Loca	tion Map	Page aft p. 2
Figure	2 - Clain	n Map	aft p. 2
Figure	e 3 - Drill I	Hole Location Map	in pocket
		LIST OF APPENDICES	
APPE	NDIX 1	Diamond Drill Logs	
APPE	NDIX 2	Analytical Results	
APPE	NDIX 3	Cost Statement	
APPE	NDIX 4	Statement of Qualifications	

1.0 SUMMARY

The Silver Queen property is located about 36 km south of Houston, B.C. with good road access. The property has seen a considerable amount of research, exploration and development work directed at polymetallic epithermal veins. The veins are strongly zoned, with higher gold values in the south (average grade of 0.24 opt Au at the south end of the No. 3 vein system). Alteration and mineralogy studies show a fluid flow from south to north, with gold values in the higher temperature southern zone. Property scale alteration mapping has identified a large high temperature zone to the south of the known veins which is felt to be prospective for bulk tonnage gold mineralization.

The current drill program was designed to test two targets within this southern high temperature zone. Hole 96S-01 and -02 tested the Owen Lake Fault zone, a major northwest trending structure felt to be at least in part responsible for mineralization at the Camp, Chisholm and Twinkle zones. Both holes intersected several narrow veins, with anomalous gold and base metal values, but failed to intersect any bulk tonnage type mineralization.

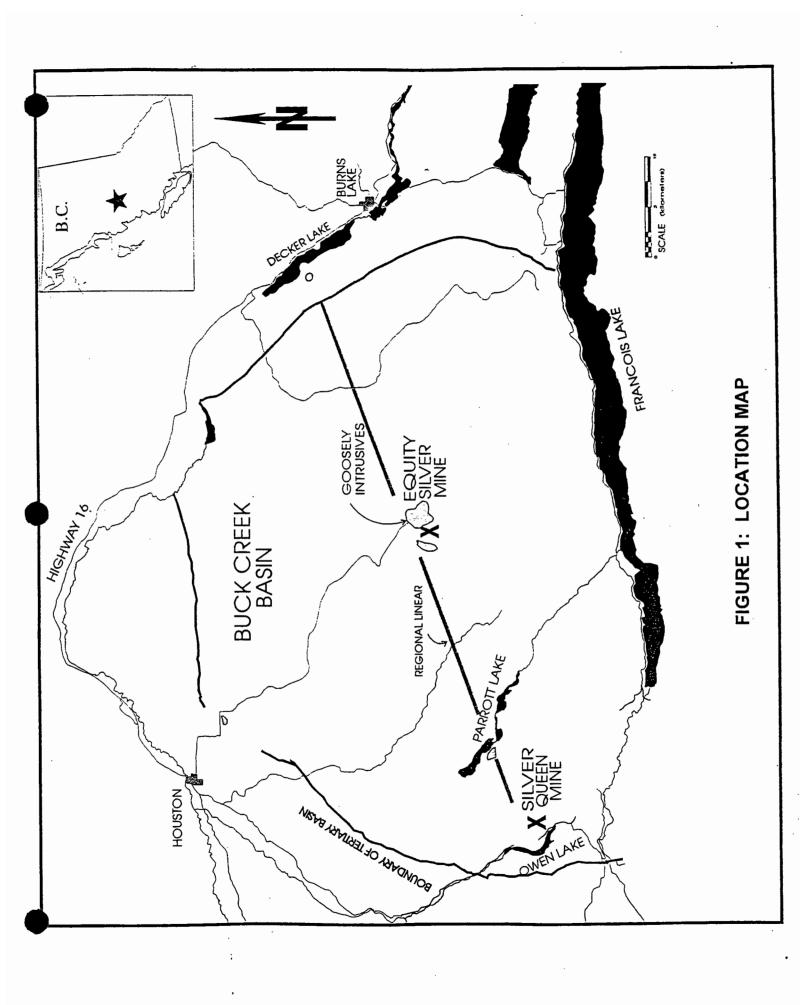
Holes 96S-03, -04 and -05 tested the Borrow Pit zone, an area of sericite-quartz-pyrite alteration in feldspar porphyry tuff, with stockworking quartz +/- pyrite veinlets, local silicification and anomalous gold to 500 ppb on surface. Almost 600 feet of this type of alteration was intersected in 96S-03. Holes 96S-04 and -05 intersected similar rocks, complicated by dyking and faulting. Gold and zinc values are consistently anomalous throughout the altered tuff, but sub-economic. Values are in the range of 50-400 ppb Au and up to 5,000 ppm Zn. No further work is recommended in this area.

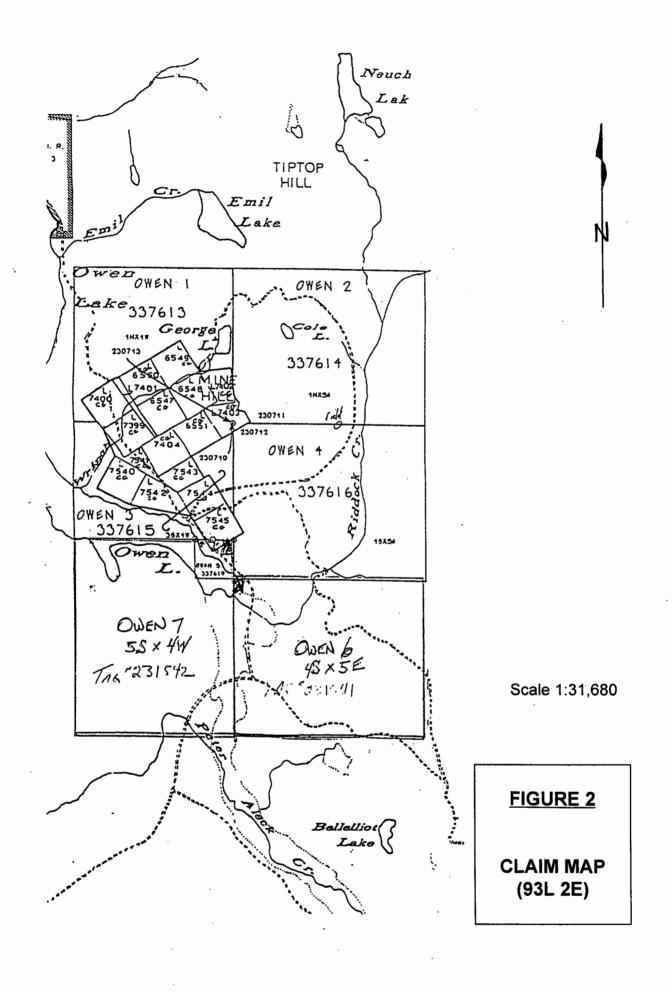
These two targets have been sufficiently tested by the current drill program and do not justify further drilling. A number of excellent targets remain within the southern high temperature zone which require drill testing. A geophysical survey should be done prior to any further drilling to define structures, particularly the southern extensions of the No. 3, S26 and Church structures.

2.0 INTRODUCTION

2.1 Location, Access and Terrain

The Silver Queen property is situated in central B.C., about 36 km south of Houston, and 30 km southwest of the Equity Silver Mine, on NTS map sheet 93L/2E as shown in Figure 1. Access to the property is south from Houston on the Morrice River-Owen Lake Forestry road, a good all-weather road which branches south from Highway 16 three kilometres west of Houston.


The property is situated just east of Owen Lake. Much of the property occupies a moderate southwest facing slope. Close to Owen Lake and in the southeastern portion of the property, the ground is relatively flat. Vegetation is generally heavy, with poplar, willows and heavy ground cover, and with local spruce and fir forest. Elevations range from 2,500 feet at Owen Lake, to more than 4,000 feet at the top of Tip Top Hill. Outcrop is relatively scarce and overburden exceeds 100 feet in some areas.


2.2 Property and Ownership

The property consists of 6 located and 17 crown granted mineral claims as detailed below and shown on Figure 2. (Note that the Owen 5 claims has now been abandoned as it is included within Owen 7) All claims are owned 100% by New Nadina Explorations Limited.

Claim Name	CG/Located	<u>Units</u>	Record #	Expiry Date
Owen 1	4 post	16	337613	July 11, 2001
Owen 2	4 post	20	337614	July 10, 2001
Owen 3	4 post	12	337615	July 11, 2001
Owen 4 ' '	4 post	20	337616	July 10, 2001
Owen 6	4 post	20	346115	May 23, 2001
Owen 7	4 post	20	346116	May 24, 2001
Silver King	CĠ	1	L 6547	• .
Tyee	CG	1	L 6548	
Silver Queen	CG	1	L 6549	
Silver Tip	CG	1	L 6550	
IXL	CG	1	L 6551	7
Earl No. 1	CG	1	L 7399	,
Earl No. 2	CG	1	L 7400	
Earl No. 1 Fr	CG	1	L 7401	
Earl No. 3	CG	1	L 7402	
IXL No. 3	CG	1	L 7403	
Lucy	CG	1	L 7404	
Mary	CG	1	L 7540	
Lily Fraction	CG	1	L 7541	
Mary Fraction	CG	1	L 7542	
Asta Fraction	CG	1	L 7543	
Mae No. 1	CG	1	L 7544	
Mae	CG	1	L 7545	

Expiry dates listed are after filing this report.

2.3 History

The present Silver Queen property was historically comprised of two separate properties, the Silver Queen and the Cole Lake properties which were managed separately (except for the period 1928-43), until 1985. A considerable amount of exploration and development has been done on the property. A summary of this work is presented in point form below. For simplicity, the pre-1985 history of exploration of the two properties is discussed separately.

Pre 1985 History - Silver Queen Property:

- 1912 mineralization discovered, three adits driven on the Wrinch vein system
- 1915 38 tons of ore (31% Pb and 6 oz Aq) shipped from two shallow shafts
- 1923 optioned to Federal Mining and Smelting Co., more than 500 ft of drifting done from the three adits
- 1928 Silver Queen and Cole Lake properties acquired by Owen Lake Mining and Development Company, Cole Shaft sunk, a 3,000 ft cross-cut driven
- Canadian Exploration (now Placer Development) purchased Silver Queen claims, and optioned Cole Lake property; surface and underground mapping and sampling completed
- 1943 option on the Cole Lake ground dropped, work continued on Silver Queen veins until
- 1963 Nadina Explorations Ltd optioned Silver Queen claims; aggressive program of diamond drilling, trenching, and underground development on the No. 3 vein - traced Wrinch vein system south to the "Ruby Extension zone"
- 1966 Nadina continued underground and surface work on the property
- 1967 property optioned to Kennco Explorations; geological mapping, soil sampling and IP survey done; several deep holes drilled to test for porphyry copper mineralization
- 1968 Nadina continued work on Silver Queen veins, soil sampling, trenching, diamond drilling and underground mapping done
- 1969 BC Ministry of Energy, Mines and Petroleum Resources mapped entire property in detail, as well as the area surrounding Owen Lake. Nadina completed 4,000 ft of drifting, 51 drill holes (both underground and surface) plus airborne geophysical surveys
- 1970 Northgate Explorations optioned the property from Nadina; did extensive underground check sampling, 13,500 ft of surface drilling, 1,500 ft of underground drilling and 4,200 ft of drifting and raising
- 1971 Bralorne Can Fer Resources Limited and Pacific Petroleum Ltd. optioned the property, and formed the Bradina Joint Venture; feasibility study prepared by Dolmage Cambell and Associates, surface EM and IP surveys, 6,000 ft of surface drilling and 800 ft of drifting and raising done

- 1972 property put into production in March, 1972, using equipment from Bralorne's recently closed gold mine in southern B.C.
- operations ceased September, 1973 due to an over design of the mill and complex metallurgy. 200,000 tons of ore milled. Drill indicated reserves on the Wrinch vein system at mine closure were 577,600 tonnes averaging 3.7 g/t Au, 257 g/t Ag, 6.53% Zn, 1.49% Pb, and 0.49% Cu. During 1972-73, 47 surface holes and 68 underground holes, totalling over 20,000 ft drilled.
- 1974 5,900 ft of drilling done, JV agreement terminated
- 1977 Nadina purchased Silver Queen property outright in 1977; Placer retained backin right, which hampered the involvement of larger companies in the property optioned by New Frontier Petroleum Ltd, the successor company to Frontier Explorations Ltd. which held the Cole Lake property. Limited deep surface drilling done and the option dropped in 1978.
- 1980 Nadina reorganized as New Nadina Explorations Ltd.; a major program of backhoe trenching done, as well as surface drilling and rehabilitation of underground workings.
- 1981 rehabilitation completed, additional drifting done, and 28 underground and 4 surface drill holes drilled (a total of over 8,000 ft).
- 1982 Campbell Resources did detailed re-evaluation of the Silver Queen property in 1982, completed limited metallurgical testing
- 1983-84 New Nadina completed 7,500 ft of surface diamond drilling in 15 holes

Pre 1985 History - Cole Lake Property:

- 1915 Cole vein system staked as the Diamond Belle group
- 1928 property was acquired, along with the Silver Queen property, by the Owen Lake Mining and Development Company; Cole shaft sunk
- 1941 Canadian Exploration optioned property, completed mapping and sampling. Option dropped in 1943.
- 1967 considerable trenching and some drilling was done on the Cole Lake veins by Frontier Explorations Ltd, who had acquired the ground in this area in 1960, and done minor work in the early 1960's
- 1972 Frontier Explorations did EM survey, as well as percussion drilling and 1,500 ft of diamond drilling on George Lake Lineament Vein
- 1980 backhoe trenching done by Frontier
- 1981 New Frontier sold all its mining interests to Bulkley Silver Resources Ltd, who attempted to raise money to complete the Earl Adit which would intersect the Cole Vein system at depth. Insufficient funds were raised and only 100 feet of this drive was completed.

Post 1985 History

- 1985 Bulkley Silver optioned the New Nadina ground to put the entire camp under one management; a max-min EM survey and 6 diamond drill holes were completed
- 1987 JV formed between Pacific Houston Resources Inc (previously Houston Metals Corp, the successor to Bulkley Silver), and New Nadina. In excess of \$7,500,000 was spent on exploration on the property during 1987 and 1988, including 35,000 ft of diamond drilling and 8,100 ft of tunnelling, cross-cutting, and declining; minor metallurgical work done
- indicated reserves estimated at 1.7 million tons of 2.7 g/t Au, 328 g/t Ag, and 6.19% Zn; significant levels of Cd, Ga, Ge, In, Sb and Bi contained in the ore
- 1989 University of British Columbia became involved under NSERC grant; Numerous studies done including geological mapping, structural studies, 2 MSc theses (mineralogy, ore reserves), 1 PhD thesis (alteration)

"in situ mining resource" determined to be:

Central area: 708,134 tons @ 0.086 opt Au, 4.78 opt Ag, 0.19% Cu,

0.82% Pb, 5.43% Zn (thickness 5.95 ft)

South area: 220,266 tons @ 0.152 opt Au, 8.15 opt Ag, 0.54% Cu,

0.89% Pb, 5.67% Zn (thickness 4.6 feet)

- 1990 Pacific Houston bankrupt, New Nadina assumed the debts and purchased the claims outright from Pacific Houston. Also in 1990, an agreement was reached with Placer, whereby Placer signed over all remaining rights to the property.
- 1991 New Nadina addressed site remediation through a study by consultant Tom Higgs, to develop a system of treating zinc rich mine drainage prior to release into the environment.
- 1992 A tailings pond/wetland passive treatment system was implemented to treat mine drainage.
- 1993 present

Ongoing water sampling by New Nadina to test mine drainage, as required by the Ministry of Environment

- 1995 New Nadina Explorations abandoned the old Silver 4 claim and restaked the property as the current Owen 1 5 claims. A thorough compilation of previous data was initiated. Reclamation work was done to address water contamination concerns.
- 1996 New Nadina Explorations completed a PIMA alteration study of the property, identifying a prospective high temperature zone to the south. The Owen 6 and 7 claims were staked to the south and the Owen 5 abandoned, as it was included within the Owen 7. The Cole Creek grid was established in the high temperature zone, and soil/rock sampling and geological mapping done. 5 diamond drill holes were drilled, as detailed in this report.

2.4 Summary of Current Work Program

Five NQ diamond drill holes were drilled in May, 1996, for a total of 3,041 feet. Drilling was done under contract by Beaupre Diamond Drilling of Princeton, B.C.. Core was logged and split at the Silver Queen Mine site. Logging and sampling was done by L. Caron and J. Hutter, and core sawing by M. Hutter and B. Smith. Program supervision and drill hole lay-out was done by G. Stewart. A total of 214 core samples were collected and sent to Min-En Labs in Smithers for sample prep, and from there to Min-En Labs in Vancouver for 30 element ICP plus Au analysis.

3.0 GEOLOGY

The regional geology of the Silver Queen area has been described by a number of workers and will not be repeated in any detail here. The reader is referred to Church and Barakso (1990), Cheng (1995), Hood (1991) and Leitch, et al (1991) for excellent in-depth descriptions of the area geology. In brief, the property is situated on the western edge of the Buck Creek Basin, a resurgent caldera delineated by a series of Tertiary stocks, and along a prominent regional structure (interpreted as a radial fracture), which also passes through the Equity Silver Mine. In the southwest portion of the property, Telkwa Formation conglomerate of the Early to Mid Jurassic Hazelton Group occurs, unconformably overlain by volcanics and sediments of the Upper Cretaceous Kasalka Group. Known veins at the Silver Queen property are hosted by the Kasalka Group rocks. A basal polymictic conglomerate is overlain by a thick sequence of tuffs and lahars, followed by a thick andesite flow and sill unit, and intruded by microdiorite intrusives. Eocene andesitic flows cover the older rocks in part. At least three different Tertiary dykes or stocks are recognized cutting the older rocks and constraining the age of vein mineralization at about 51 Ma.

The rocks in the mine area are tilted as a result of block faulting and dip gently north to northwest. Two main sets of faults cut the rock sequence, an early, pre to syn-mineral northwest trending set, and a later post-mineral northeast trending set. Most of the veins occur along northwest trending structures, and are offset by the post-mineral, northeast trending faults.

A considerable amount of exploration has been devoted to the series of polymetallic veins on the property. Veins are typically 1 - 2 metres in width, with disseminated to massive pyrite, sphalerite, galena, chalcopyrite, tennantite and tetrahedrite, and with Cu-Pb-Ag-Bi sulfosalts and electrum, in a gangue of quartz, carbonate or barite. The veins are strongly zoned from south to north and much effort has been made to study changes in alteration and mineralogy within the veins (ie. Hood, 1991, Cheng, 1995). These and other studies, suggest a fluid flow from south to north, with gold enrichment in the higher temperature southern zones.

A property scale alteration study was completed to define a high temperature zone prospective for bulk tonnage gold mineralization, south of the known veins. Portable infrared spectrometry techniques were used to observe the change from sericite to illite, and thus define a zone of higher temperature. Drilling was then done to test major structures within this high temperature zone, particularly where these structures cut more permeable units which might be more suitable for bulk tonnage mineralization than the brittle microdiorite which typically hosts vein type mineralization.

4.0 DRILLING

Five holes were drilled during May, 1996 as described below. Drill hole locations are plotted on Figure 3 and logs are included in Appendix 1. Analytical results for core samples are contained in Appendix 2.

Drill Hole	Co-ordinates (Cole Creek Grid)	Azimuth	Dip	Depth (feet)
96S-01	1+95 N 0+05 W	225°	-45.5°	655'
96S-02	3+50N 0+50W	225°	-45.5°	755'
96S-03	0+30N 5+25E	225°	-44.5°	827'
96S-04	0+30N 5+25E	225°	-68.5°	349'
96S-05	0+15S 4+35E	155°	-45°઼	445'

Holes 96S-01 and -02 were drilled to test the Owen Lake Fault, a major northwest trending fault zone which may in part control mineralization at the Chisholm, Twinkle and Camp Vein systems. The coarse fragmental volcanic unit (lahar) near the base of the Kasalka Group was intersected essentially throughout both holes. Clasts of dominantly light grey-green, generally strongly clay-chlorite altered feldspar porphyry tuff occur within a weakly propylitic altered fine feldspar rich matrix. Minor interbeds of feldspar porphyry tuff occur within the fragmental unit. Hole 96S-01 tested the Owen Lake Fault zone north of the Chisholm zone, intersecting several major fault zones, up to 100 feet in width. A number of relatively narrow veins were intersected with grades to 0.148 opt Au, 7.41 opt Ag and 9.15% Zn over 0.4'. A silicified zone within one main structure returned 0.05 opt Au over 10 feet. Hole 96S-2 was drilled to test the Owen Lake Fault in the vicinity of the Twinkle zone. Again, the main fault zone was in the order of 100 feet in width, with a number of smaller (20-40' wide) structures in the footwall. The number of veins intersected was significantly less than in 96S-01, and a maximum of 0.044 opt Au and 0.78% Zn over 1.5' was returned from one sample in the hole.

Holes 96S-03 and -04 were drilled to test the Borrow Pit zone, an old roadcut with good stockworking quartz-pyrite veinlets in altered feldspar porphyry tuff, and anomalous gold to 500 ppb from surface grab samples. Hole 96S-03 drilled through a thick sequence of fine to medium sericite-quartz-pyrite altered crystal tuff, cut by minor rhyolite and pulaskite dykes and by numerous fault zones. The tuff is variably silicified and cut by stockwork quartz +/- pyrite veinlets, over an interval of about 600 feet, before passing into a relatively unaltered contact zone and then a similarly unaltered coarser close packed crystal tuff (or coarser grained intrusive?). Very minor carbonate-sphalerite veins were encountered in the hole. The altered tuffaceous unit was anomalous in gold and zinc throughout (50-500 ppb Au and up to 5,000 ppm Zn). The maximum value returned from this hole was a sample of vein material grading 7.75% Zn, 1.73% Pb and 535 ppb Au over 0.3 feet. Hole 96S-04 drilled deeper in the same section as 96S-03, intersecting similar altered feldspar porphyry tuff for about 100' before passing into a complex zone of faulting and dykes. A massive fine rhyolite dyke was drilled essentially down dip from 156' to the end of the hole at 349'. As in 96S-03 the altered tuff was elevated in gold and zinc (to about 250 ppb Au and 4500 ppm Zn).

Hole 96S-05 drilled from the Borrow Pit to the south to test the Cole Creek Fault. Again, variable silicification and stockwork quartz-pyrite veinlets in feldspar porphyry tuff was intersected, to a depth of about

280 feet, cut by numerous dykes and faults. The hole then passed into similar close packed feldspar crystal tuff (or possibly intrusive?) to the bottom of the hole, again cut by numerous dykes and structures. As in holes 96S-03 and -04, zinc and gold values are elevated throughout the hole, to a maximum of about 300 ppb Au and 5600 ppm Zn.

5.0 RECOMMENDATIONS

The current drill program has adequately tested the areas targeted by this program. Subsequent drilling in the southern high temperature zone should be directed at the southern extension of known gold bearing structures into this area (ie. the S26, Church, No. 3 vein structures). Geophysics (Max-min) should be done to define the position of these structures in the south prior to further drilling.

6.0 REFERENCES

Cheng, X.L., 1995.

A Quantitative Evaluation of Hydrothermal Alteration at Silver Queen Deposit, A Preciousand Base-Metal Epithermal Vein System in Volcanic Rocks. PhD thesis, University of British Columbia, 1995.

Church, B.N. and J.J. Barasko, 1990.

Geology, Lithogeochemistry and Mineralization in the Buck Creek Area, British Columbia. B.C. Geological Survey Branch, Paper 1990-2.

Hood, C., 1991.

Mineralogy, Paragenesis, and Mineralogical Zonation of the Silver Queen Vein System, Owen Lake, Central British Columbia. M.Sc. Thesis, University of British Columbia, 1991.

Leitch, C.H.B., C.T. Hood, X.L. Cheng and A.J. Sinclair, 1991.

Tip Top Hill volcanics: Late Cretaceous Kasalka Group rocks hosting Eocene epithermal base- and precious-metal veins at Owen Lake, west-central British Columbia. Canadian Journal of Earth Sciences, Vol 29, p. 854-864.

APPENDIX 1
DIAMOND DRILL LOGS

Hole Silver Queen 96S-1

To test the Owen Fault north of the Chisholm zone.

Northing:

Cole Creek Grid 1+95 N

0+05 W

Easting:

Azimuth: 225° -45°

Dip:

Depth:

655 feet

Drilled May 14-15, 1996 Drilled by: Beaupre Drilling

Logged by: J. Hutter

Core stored in shop at mine site.

(Note: original hand written logs are much more detailed in terms of recording positions of carb vnlts etc.)

Inte	rval	Rock type	Description				Sample	
From (feet)	To (feet)			Alteration	Mineralization	Number	from (feet)	to (feet)
0	42	Overburden						
42	505'	Coarse Fragmental Volcanic	Coarse fragmental volcanic (lahar), maroon-green colour, with <0.5->10cm clasts, dom light green alt'd fsp porph tuff, in green grey mtrx. Minor diss py. Occas carb in fracs. Weak prop alt'n. Massive core. Local shearing. Local narrow interbeds of fine-med xtalline fsp tuff.	Weak prop alt'n - hem/chl	Minor diss py, to 3%. V. minor carb +/- py-sphal vnlts.			
			42 - 42.5' VEIN Colloform carb, sphal, minor gal. Broken core, 70% recov.		42 - 42.5 Sphal, gal vn	128251	42	42.5
			42.5 - 43.5 silic'd, py, weakly sheared	42.5 - 43.5 silic'd	42.5 - 43.5 pyritic, '/2" py vn @ 90° @ 43'.	128252	42.5	43.5
			48.5' narrow shear @ 25° 49 - 51 shearing subpar to C/A 54.5' narrow shear @ 30°					
			56.5 - 57.5' narrow interbed of med grained, non-fragmental. Weak banding @ 50°. Occas white carb healed fracs, irreg. Occas fracs or weak shears @ 30-50° to C/A.			128253	60	70
			71 - 74' narrow interbed of med grained, non-fragmental, banded @					

40-50°. Vague contacts @ 30-50°. Narrow gougy shear @ 75' @ 50°.			128254	90	100
83 - 85' Sheared, broken core, minor gouge. Shearing @ 30° to C/A. ½" carb, py, sphal vnlt @ 95' @ 40°. 101 - 101.5' Weak shearing @ 70-80° with py.			128255	100	110
107' ½" carb-py-gal-sphal vnlt @ 30°.					
111 - 112' weak shearing @ variable angles with minor gouge			128256	110	120
115 - 121' Dark grey med xtalline fsp tuff, increasing py in vnlts and frac filling.		increased py, vnlts and fracs	128257	120	130
Upper contact @ 115' @ 60° to C/A Lower contact faulted @ 121' @ 80°.			128258 128259 128260	140 143.6 144	143.6 144 150
205 - 220' Finer tuff band, med grained, grey-gren to maroon, rare frags. Contact @ 205' @ 70°. @ 219' ½" qtz-py vnlt @ 70°.			128261 128262 128263 128264	160 200 220 227	170 210 227 230
231.2 - 235' VEIN and silic'd zone py-sphal-carb vnlts and stringers in silic'd py'd tuff, locally weakly sheared and bx.	231.2 - 235' silic'n with py- sphal-carb vnlts.	231.2 - 235' py-sphal-carb vnlts.	128265 128266 128267 128268	230 231.2 235 380	231.2 235 240 290
235 - 351' Coarse fragmental, maroon-green, v weak prop alt'n. Local weak shearing, minor diss py. V minor carb vnlts +/- qtz,			128269 128270 128271 128272	340 350 354.1 354.5	350 354.1 354.5 360
py, sphal to 1". 235 - 236' and	235 - 236'		128273	360	361.6
240 - 241' silic'd and pyritized. 332 - 336' Shear zone. Intermittent shearing/crush zones to 0.5' with gouge. Most at 40-60°. Low-mod diss	240 - 241' silic'd and py				
zones to 0.5 with gouge. Most at 40-60. Low-mod diss					

			@ 350.2 1.5" colloform carb vnlt @ 55° with minor sphal, py, minor soft silver min. 351-475' Coarse Fragmental as above, but maroon colour gone. 361.6-362.4' Vein Carb-barite-sphal-py. Upper contact @ 35°, lower contact @ 15°. 368.4-437.5' Fault zone. Silic'd, sheared, pyritic. Dom shearing @ 50° to C/A. Minor py-sphal-carb vnlts. 475-493.5' Coarse Fragmental unit as above, with weak maroon colour. 493.5-505' Fine-med fragmental unit, maroon colour, good hem on fracs. 2% diss py. Local shearing.	361.6 - 362.4 Vein		128274 128275 128276 128277 128278 128279 128280 128281 128282 128283 128284 128285 128286 128286	361.6 362.4 367.2 control 370 380 390 393.4 397 400 450 490 493.5 500	362.4 367.2 370 380 390 393.4 397 400 410 460 493.5 500 505
505	602.5	Fault Zone	505 - 602.5' Owen Lake Fault zone in fine fragmental unit. Maroon colour. Strong shearing, local gouge and clay zones. Minor carb vnlts. @ 602.5' drastic change from dark maroon above to dark green coarse fragmental (lahar) below.	Weak prop alt'n. Perv hem.	Minor diss py.	128288 128289 128290 128291 128292 128293 128294 128295 128296 128297	505 510 520 530 540 550 560 570 580 590	510 520 530 540 550 560 570 580 590 600
602.5	655'	Coarse Fragmental Volcanic	Dark green coarse fragmental volcanic (lahar). Gen buff frags, in fine fsp xtalline mtrx. Minor diss py. Minor carb vnlts, but less common than above. Minor shearing.	Weak prop alt'n - chl.	Minor diss py.	128298 128299 128300 128301 128302 128303	600 610 620 630 640 650	610 620 630 640 650 655

Drill Hole 96	S-1 Owe	n I ake F	Fault Zon	e north o	f Chiebol	m May 1	4.15.100	6 (cortific	nate # 69	0016 P)			— Т													
Dim Hole 30	3-1, 0	III Lake	2011	1011110	Chishol	iii, way i	4-13, 199	o (certino	.ale # 03	-0013-10																
Sample	from	to	length	AG	AL	AS	BA	BE	Bi	CA	CD	co	CR	CU	FE	GA	к	LI	· MG	MN	МО	NA	NI	Р	РВ	SB
Number	feet	feet	feet	PPM	%	PPM	PPM	РРМ	PPM	%	PPM	PPM	PPM	РРМ	%	PPM	%	PPM	%	PPM	РРМ	%	PPM	PPM	PPM	PPM
128251	42	42.5	0.5	0.1	0.19	1	135	0.1	31	2.92	100	11	10	149	4.27	1	0.16	2	0.79	10000	29	0.01	299	920	10000	134
128252	42.5	43.5	1	23.9	0.27	80	33	0.1	1	1.21	0.1	13	37	197	6.95	1	0.24	2	0.18	6392	10	0.01	20	1510	448	45
128253	60	70	10	0.7	0.39	62	286	0.1	1	4.11	0.1	10	20	16	4.26	1	0.23	6	0.73	3179	7	0.02	13	1740	31	2
128254	90	100	10	0.1	0.29	1	124	0.1	1	2.36	0.1	12	25	7	6.75	1	0.27	3	0.72	8718	9	0.01	25	1600	75	21
128255	100	110	10	0.9	0.27	52	56	0.1	1	0.89	0.1	14	23	8	6.3	1	0.26	3	0.22	10000	10	0.01	46	1630	637	31
128256	110	120	10	8.2	0.23	44	67	0.1	1	0.47	0.1	15	33	21	8.24	1	0.21	2	0.06	10000	12	0.02	33	1350	1617	35
128257	120	130	10	0.1	0.34	22	126	0.1	1	0.62	0.1	13	28	5	6.67	1	0.24	3	0.4	10000	9	0.02	32	1490	441	27
128258	140	143.6	3.6	0.1	0.33	56	226	0.1	1	1.22	0.1	12	27	7	4.28	1	0.35	2	0.29	10000	7	0.02	27	1250	373	10
128259	143.6	144	0.4	200	0.05	149	9	0.1	1	0.76	100	19	25	199	12.5	1	0.08	1	0.17	10000	38	0.01	98	490	10000	168
128260	144	150	6	0.1	0.31	128	122	0.1	1	1.61	0.1	15	27	18	4.95	1	0.33	2	0.3	10000	11	0.02	51	1630	894	33
128261	160	170	10	4.1	0.27	62	88	0.1	1	1.51	0.1	16	36	14	6.92	1	0.24	. 1	0.29	8053	10	0.02	24	1280	621	27
128262	200	210	10	0.1	0.46	31	496	0.1	1	4.52	0.1	11	18	10	3.73	1	0.25	4	0.73	4043	6	0.04	14	1690	89	3
128263	220	227	7	0.1	0.33	11	82	0.1	1	2.52	0.1	11	36	7	6.28	1	0.29	3	0.63	10000	9	0.03	27	1550	384	22
128264	227	230	3	0.1	0.24	193	61	0.1	1	0.59	0.1	11	32	22	7.13	.1	0.25	5	0.21	10000	11	0.02	56	1610	1399	39
128265	230	231.2	1.2	2.8	0.17	223	46	0.1	1	0.48	0.1	14	22	99	7.66	1	0.22	2	0.09	10000	14	0.02	31	1520	1885	40
128266	231.2	235	3.8	141.1	0.17	406	13	0.1	1	0.49	100	18	53	904	12.26	1	0.19	2	0.07	10000	39	0.02	, 55	1100	6136	180
128267	235	240	5	0.1	0.28	68	55	0.1	1	0.58	0.1	12	45	15	6.34	1	0.25	2	0.11	10000	10	0.02	38	1740	975	33
128268	280	290	10	0.1	0.42	142	485	0.1	!	4.03	0.1	11	29	21	3.71	1	0.31	5	0.58	7021	7	0.04	19	1680	164	8
128269	340	350	10	54	0.34	82	414	0.1	1	1.04	0.1	11	27	18	6.09	1	0.26	6	0.49	10000	10	0.03	40	1190	766	34
128270	350	354.1	4.1	44	0.37	1	298	0.1	1	1.48	0.1	12	1	31	6.03	1	0.33	5	0.53	10000	11	0.03	68	1220	1201	49
128271	354.1	354.5	0.4	0.1	0.14	1	39	0.1	20	1.24	0.1	16	32	124	6.16	1	0.17	3	0.27	10000	30	0.02	218	820	10000	173
128272	354.5	360	5.5	0.1	0.32	162	243	0.1	2	2.23	0.1	13	20	12	5.17	1	0.36	4	0.59	10000	10		59	1670	1352	32
128273	360	361.6	1.6	0.1	0.34	144	91	0.1	1	0.76	0.1	20	48	13	7.56	1	0.35	3	0.34	10000	13	0.02	66	1460	788	39
128274	361.6	362.4	0.8	125.5	0.1	257	42	0.1	11	3.81	100	13	41	287	5.14		0.11	2	0.11	10000	20	0.01	93	310	10000	147
128275	362.4	367.2	4.8	0.5	0.28	53	125	0.1	1	0.7	0.1	13	31	15	7.63	- 1	0.27		0.42	10000	11	0.02	44	1280	869	31
128276	367.2	370	2.8	94.9	0.17	370	43	0.1	7	1.34	100	9	32	140	4.42	1	0.21		0.13	10000	14	0.01	81	790	2602	61
	control sa			0.1	0.21	50	212	0.1	4	15	0.1	2	13	14	0.43	8	0.03	7	0.29	856	2	0.01	7	450	28	3
128278	370	380	10	0.1	0.29	1	90	0.1	1	2.13	0.1	12	28	6	6.9	1	0.26		0.72	8235	9	0.02	23	1490	185	19
128279	380	390	10	0.1	0.34	38	96	0.1	1	0.95	0.1	13	29	8	7.16		0.28		0.53	10000	10	0.02	43	1520	474	27
128280	390	393.4	3.4	1.4	0.26	299	38	0.1	1	0.55	0.1	18	38	142	8.25	1	0.25	!	0.1	7342	10	0.02	22	1760	1545	36
128281	393.4	397	3.6	200	0.21	903	30	0.1	1]	0.52	100	35	62	5653	13.41	1	0.2	1	0.02	570	51	0.01	18	1340	7711	420

	300 1,	344011 661	T T	one non	h of Chist	101111, 1912	, 141 13,	1330 (CE	micate #	03-0013	-17/								
Sample	from	to	length	SN	SR	TH	TI	U	v	w	ZN	Au-fire	Au-fire	Assay Au	Assay Au	Assay Ag	Assay Cu	Assay Pb	Assay
Number	feet	feet	feet	PPM	PPM	РРМ	%	PPM	PPM	PPM	PPM	PPB	g/tonne	oz/ton	g/tonne	oz/ton	%	%	
128251	42	42.5	0.5	8	99	4	0.01	24	22.9	83	10000	1960	2.18	0.064				1.58	2.
128252	42.5	43.5	1	4	7	1	0.01	1	4.7	3	2018	92							
128253	60	70	10	3	117	1	0.01	1	20.1	1	749	7							
128254	90	100	10	5	44	1	0.01	t	15.2	1	317	7							L
128255	100	110	10	5	51	1	0 01	1	7.1	3	1222	81							
128256	110	120	10	5	10	1	0.01	1	4.7	10	4505	102							
126251	120	130	10	5	19	1	0.01	1	17.7	2	1208	38							
12425	40	143.6	3.6	3	21	1	0.01	1	7.1	2	1078	10							
128259	6	144	0.4	11	51	1	0.01	1	11.4	248	10000	5060	5.07	0.148	254	7.41		1.67	9
128260	144	150	6	4	16	1	0.01	1	8	9	2912	144							
128261	160	170	10	5	. 8	1	0.01	1	6.9	5	2659	73							<u></u>
128262	200	210	10	3	161	1	0.01	1	26.2	1	400	6							
128263	220	227	7	4	49	1	0.01		15.9	1	740	9							
128264	227	230	3	5	9	1	0.01	1	7.7	- 6	2774	24							
128265	230	231.2	1.2	5	2	1	0.01	1[4.8	29	10000	41							1
128266	231.2	235	3.8	10	29	1	0,01	1	10.4	245	10000	540			179	5.22		0.62	9
128267	235	240	5	5	7	1	0.01	1	5.7	7	2559	33							
128268	280	290	10	3	152	1	0.01	1	17.4	1	595	37							
128269	340	350	10	5	195	- 1	0.01	1	33.2	5	2074	66							
128270	350	354.1	4.1	. 5	109	1	0.01	1	28.9	. 7	2623	134							
128271	354.1	354.5	0.4	7	798	1	0 01	14	20.2	69	10000	1840	1.99	0.058				5.3	2
128272	354.5	360	5.5	_ 5	100	- 1	0.01	1	20.4	- 6	2114	21						L	
128273	360	361.6	1.6	6	58	- 1	0.01	1	17	6	2424	69							
128274	361 6	362 4	0.8	- 6	1116		0 01	1	9.7	190	10000	1255	14	0.041	134	3.91		2.21	7
128275	362.4	367.2	4.8	- 6	63	1	0.01	1	16.2	10	4106	51							
128276	367.2	370	2.8	5	1143	1	0 01	1	7.9	73	10000	1680	1.77	0.052					2
128277	control s			1	152	1	0 01	1	9.6	3	171	- 6							
128278	370	380	10	5.	42	1	0.01	1	16.6	1	554	. 7							
128279	380	390	10	5	13	1	0.01		18	2	1449	10							
128280	390	393.4	3.4	5	2	1	0 01	1	6.1	23	9648	33							0
128281	393 4	397	3 6	10	24	1	0.01	1	2.8	268	10000	114	l		240	. 7	0 581	0 75	

.

Drill Hole 96	S-1, Owe	n Lake F	ault Zon	e north of	Chishol	n, May 1	4-15, 199	6 (certific	ate # 6S	-0015-R)		<u> </u>													1	
Sample	from	to	length	AG	AL	AS	ВА	BE	BI	CA	CD	co	CR	CU	FE	GA	K	LI	MG	MN	МО	NA	NI	Р	PB	SB
Number	feet	feet	feet	PPM	%	PPM	PPM	PPM	PPM	%	PPM	РРМ	PPM	PPM	%	PPM	%	PPM	%	PPM	PPM	%	PPM	PPM	PPM	PPM
128282	397	400	3	8.4	0.2	299	42	0.1	1	0.5	0.1	15	37	132	8.49	1	0.23	1	0.01	460	17	0.02	11	1420	3686	45
128283	400	410	10	0.1	0.34	232	143	0.1	2	0.88	0.1	13	34	42	5.67	1	0.34	1	0.27	10000	11	0.03	79	1620	1665	42
128284	450	460	10	6.2	0.29	71	401	0.1	1	2.4	0.1	8	22	8	4.34	1	0.27	1	0.56	10000	7	0.02	27	1430	396	7
128285	490	493.5	3.5	0.1	0.39	89	79	0.1	1	0.59	0.1	16	52	16	6.43	1	0.33	1	0.21	10000	10	0.02	43	1620	999	31
128286	493.5	500	6.5	0.1	0.22	29	67	0.1	1	0.76	0.1	19	51	18	8.97	1	0.19	1	0.08	10000	15	0.02	32	1800	1089	31
128287	500	505	5	0.1	0.3	1	69	0.1	1	0.76	0.1	13	57	14	8.88	1	0.2	1	0.12	7594	14	0.03	21	1990	738	27
128288	505	510	5	0.1	0.29	1	117	0.1	1	1.08	0.1	8	36	10	5.91	1	0.18	1	0.13	9305	11	0.04	24	2360	457	25
128289	510	520	10	0.1	0.38	1	105	0.1	3	2.09	0.1	1	28	1	1.3	1	0.19	1	0.03	387	2	0.04	2	1730	3	2
128290	520	530	10	0.3	0.27	1	61	0.1	1	3.45	0.1	1	24	1	0.4	1	0.14	1	0.01	72	1	0.03	1	1720	3	1
128291	530	540	10	0.1	0.34	1	113	0.1	3	1.99	0.1	1	21	2	1.76	1	0.17	1	0.02	127	2	0.04	2	1380	1	2
128292	540	550	10	0.1	0.27	1	97	0.1	6	2.03	0.1	1	28	1	1.86	1	0.12	1	0.02	56	3	0.04	2	1070	1	2
128293	550	560	10	0.1	0.27	1	140	0.1	2	1.33	0.1	8	25	1	3.72	1	0.16	1	0.24	803	5	0.04	8	890	4	2
128294	560	570	10	0.1	0.24	1	201	0.1	1	1.16	0.1	12	32	1	4.09	1	0.11	1	0.32	825	5	0.04	8	860	2	2
128295	570	580	10	0.1	0.38	1	148	0.1	2	2.12	0.1	6	18	2	3.15	1	0.18	1	0.18	522	4	0.05	5	1680	1	3
128296	580	590	10	0.3	0.41	1	104	0.1	2	2.92	0.1	2	23	5	1.59	1	0.19	1	0.06	182	4	0.06	3	1700	1	3
128297	590	600	10	0.1	0.33	1	180	0.1	4	1.41	0.1	4	17	4	2.74	1	0.16	1	0.11	560	4	0.05	, 5	1120	1	3
128298	600	610	10	0.1	0.3	42	122	0.1	1	2.98	0.1	11	28	17	2.54	1	0.18	1	0.26	3217	6	0.04	11	1990	36	4
128299	610	620	10	0.1	0.39	2	71	0.1	1	4.34	0.1	14	30	67	5.44	1	0.17	7	0.97	4503	9	0.03	19	1690	1	18
128300	620	630	10	0.1	0.41	3	119	0.1	1	4.26	0.1	17	32	42	5.23	1	0.16	6	0.91	3920	8	0.03	18	1730	3	2
128301	630	640	10	0.2	0.29	1	98	0.1	1	2.99	0.1	21	25	30	4.81	1	0.2	3	0.77	2862	8	0.04	17	1410	1	1
128302	640	650	10	0.6	0.31	1	229	0.1	1	2.8	0.1	17	27	30	3.98	1	0.2	4	0.58	2086	6	0.03	14	1680	4	3
128303	650	655	5	0.6	0.28	1	156	0.1	1	2.63	0.1	19	20	73	4.65	1.	0.2	4	0.64	3046	8	0.03	16	1780	10	5

Drill Hole	96S-1, (Owen Lak	e Fault 2	one nort	h of Chis	holm, Ma	y 14-15,	1996 (ce	rtificate #	6S-0015	5-R)								
Sample	from	to	length	SN	SR	TH	TI	U	٧	W	ZN	Au-fire	Au-fire	Assay Au	Assay Au	Assay Ag	Assay Cu	Assay Pb	Assay Zn
Number	feet	feet	feet	PPM	PPM	PPM	%	PPM	PPM	PPM	PPM	PPB	g/tonne	oz/ton	g/tonne	oz/ton	%	%	%
128282	397	400	3	5	3	1.	0.01	1	2.2	55	10000	179							2.15
128283	400	410	10	5	62	1	0.01	1	15.8	15	4289	1420	1.73	0.05					
128284	450	460	10	3	83	1	0.01	1	10.2	3	1437	88						,	
128285	490	493.5	3.5	5	1	1	0.01	1	8.5	8	3200	89							
128286	493.5	500	6.5	5	33	1	0.01	1	6.3	9	4217	215							
128287	500	505	5	5	4	1	0.01	1	12.1	3	2273	28							
128288	505	510	5	3	174	1	0.01	1	12.5	2	1194	14							
128289	510	520	10	1	230	1	0.01	1	16.7	2	22	8							
128290	520	530	10	1	283	1	0.01	1	5.8	1:	8	3							
128291	530	540	10	1	229	1	0.01	1	27.2	2	19	2							
128292	540	550	10	1	306	1	0.01	1	20.9	2	7	1							
128293	550	560	10	2	135	1	0.01	1	19.3	1	82	2							
128294	560	570	10	2	181	1	0.01	1	18.2	1	86	1							
128295	570	580	10	2	287	1	0.01	1	28.9	1	59	6							
128296	580	590	10	1	326	1	0.01	1	20.8	2	12	5							
128297	590	600	10	1	276	1	0.01	1	20.7	1	. 26	3							
128298	600	610	10	1	278	1	0.01	1	8.1	1	133	20							
128299	610	620	10	4	149	1	0.01	1	43.7	1	245	3							
128300	620	630	10	. 3	240	1	0.01	1	46.3	1	274	1							
28301	630	640	10	3	231	1	0.01	1	28.1	1	178	3							
128302	640	650	10	3	267	1	0.01	-1	26	1	117	1							
128303	- 650	655	5	3	155	1	0.01	1	25.2	1	188	4							

Hole Silver Queen 96S-2

To test the Owen Fault north of the 96S-1.

Northing: Cole Creek Grid 3+50 N

0+50 W

Easting: Azimuth:

Dip: Depth: 225° -45.5°

755 feet

Drilled May 15-17, 1996
Drilled by: Beaupre Drilling
Logged by: L. Caron
Core stored in shop at mine site.

Inte	rval	Rock type	Description				Sample	
From	То			Alteration	Mineralization	Number	from	to
(feet)	(feet)						(feet)	(feet)
0	42	overburden						
42	244'	Coarse	42 - 110'	42 - 110'	42 - 110'			
	 	Fragmental	Pale maroon - green, weak chl-hem alt'n. Up to 40% ang	Weak propyl alt'n	minor py in frags			
		Volcanic	frags, range in size <0.5 cm to > 6 cm in size. Frags are	chl/hem.	& diss in mtrx			
1	Į .		dome pale green - buff chl-clay alt'd fsp porph tuff unit,				,	
			with lesser frags of dark red hematitic volcs + grey py rich					
i			frags (alt'd fsp porph tuff??) in fng grey-maroon mtrx.					
ļ		l .	Minor py.					
j .								
l '	İ		Cut by narrow gouge zones ie 56-57' @50°					
	[67' ½ - 1" @ 20°					
	i '		74' 3" @ 30-40°					
1								
ļ			110 - 200'	110 - 200'	110 - 200'			
			<< fragmental appearing than above, >> fsp porph text	Weak - mod	2-5% py - diss,			
			visible. Chl/clay alt'd fsp. Colour change to grey from	chl/clay alt'n	in frags & minor			
			maroon above. Frags are ghosty, large, fsp porphyritic. >>		vnlts.			
			py than above, diss in frags, minor vnlts					
	_		133' 2" barite vn					
			140 - 150' py vnlts +/- qtz at 50-85° to C/A, <5/ft		140 - 150'	128401	140	150

			150' 1.5" coarse py vn @ 50° 161.5 1" grey gouge @ 65° to C/A and below this a 3" zone of 50% py (bands parallel to gouge) + fine qtz bx frags in gougy mtrx 174.5 - 175.3 grey gouge zone 200 - 244' Change back to pale br-maroon fragmental is in 42 - 110', but with << py. Local zones where changes to grey >> py mtrx. Minor gouge and/or crackle zones @ 218' @ 50° 223.5' 229.5' @ 60° 238' @ 80°	200 - 244' weak prop alt'n chl/hem	py +/- qtz vnlts, <5/ft @ 50-85°	128402	150	160
244	332	Fault Zone	OWEN LAKE FAULT ZONE Major zone of crackling, gouge and tectonic bx of fragmental volcanic unit, but generally not much sulfide or alt'n. Lots of gouge and crush, but not much sense of huge hydrothermal sol'ns passing along the fault. Between gougy zones, rx are the same pale maroon-green, low temp, prop alt'n. Minor small frags of white qtz vn in gouge/bx zones. Minor py present, seems mainly to be a result of crushing up py alt'd fsp porph frags within fragmental unit. 295 - 305' Strong gouge bx zone with 5% (to locally 10%) py in mtrx and as vnlts.		Minor py. 295 - 305' 5% py in mtrx of tectonic	128404	295	305
			@ 332' sharp lower contact @ 35° to C/A		bx/fragmental			
332	485	Coarse Fragmental Volcanic	Coarse maroon fragmental volcanic, as in 200-244'. Clasts are dome green altd fine grained fsp porph tuff in purple mtrx. Cut by minor gougy zones and several amygdaloidal fsp porph dykes.	332 - 485' Weak prop alt'n of fragmental volc.	332 - 485' Trace fine diss py.			

			352 - 368 Fault/dyke zone 352 - 353.5 gouge/bx'd fragmental @ 30° to C/A 353.5 - 357 amygdaloidal fsp porph dyke, locally strongly bleached 357 - 361.5 fract'd fragmental with black py/chl +/- qtz xcutting vnlts, intraclast 361.5 - 362 bleached amyg fsp porph dyke 362 - 364 fract'd fragmental with py/chl intra-clast vnlts 364 - 368 dark br-maroon amyg fsp porph dyke, bleached @ contacts @ 30° to C/A		356 - 361.5' py/chl +/- qtz vnlts, up to 10/ft	128405	357	361.5
			377 - 379.5 Amygdaloidal Fsp Porph Dyke Dark brown-maroon fsp porph, amyd dyke, minor bleaching @ upper contact, 80° to C/A 407.5 - 408.5 gouge/bx zone @ 80° to C/A 422 - 435 Bx'd Fragmental/Fault Zone broken core, frags are smaller than in fragmental. Frags are bleached tuff + grey sulfide rich ? + maroon + bleached dyke. Late fault with early dyke along lower contact. Minor qtz on fracs.	422 - 435' minor qtz vning. Str clay alt'n.	422 - 435' 2 - 5% fine py in grey clasts + mtrx.	128406	422	435
485	755	Medium Fragmental Volcanic	485 - 515 Fragmental volcanic, similar to above. Frags are dom tuff, finer than above, with avg size about 2 cm. Interbedded with fng grey-green fsp porph tuff, with weak to mod alignment of fsp phenos @ 80°. Fng tuff interbeds @ 491- 493' @ 80° 502 - 503' 508.5 - 512' @ 80° Tuff interbeds have >> py than fragmental beds, to 2% finely diss + minor py stringers.	485 - 515' Mod prop alt'n chl/hem + weak clay. Min clay vnlts.	485 - 515' Tr py.			

	515 - 530'	515 - 529'	515 - 529'	128407	515	525
	Grey fragmental, strongly clay alt'd frags & mtrx, cut by	Str-mod argillic	5%, locally to			
	numerous narrow gougy zones, dom @ 50°, locally silic'd.	alt'n. Tuff frags	10% py, diss and	128408	525	535
	Also minor white clay vnlts @ 10-45° to C/A.	are white, str clay	vnlts, dom @			
		alt'd.	45°.	İ		
		520 520 -:1:-24	520 5201 1007			
		<u>529 - 530</u> silic'd.	529 - 530' 10% py, finely diss in			
			silic'd mtrx. ½"			İ
			py vn @45°.			
			py vii @45 .			
	530 - 565	530 - 565	530 - 565°			
	Maroon fragmental. Intensity of alt'n decreases	weak - mod alt'd.	Minor py.			
	downsection, colour change back to maroon. Tuff clasts	Clasts clay alt'd,				
	still clay alt'd, but mtrx less alt'd.	mtrx propyl.	ļ			
1 1						
		666 6053	565 5051	120400	565	535
	565 - 585'	565 - 585' weak - mod silic of	565 - 585' 5-10% fine diss	128409	565	575
	Grey fragmental, sharp contact @ 50°. 30% clasts, dom fsp porph tuff, <0.5 - 10 cm in size, in fng fsp porph pyritic	mtrx	py in mtrx +	128410	575	585
	mtrx. Clasts are << clay alt'd than above, mtrx different in		minor py vnlts.	120410		1 303
	that >> fsp xtals +>> py +>> harder (siliceous). Clasts		maior py vino.		,	
'	may be rimmed with clay occas. Get mod clay alt'd clasts,					
	but gen fresher, better preserved texts in clasts than above.					
	580 - 583' Maroon-green coarse fragmental with large					
	fsp porph clasts, but still silic'd py mtrx.		i		1	
			1			
	504 505) V.5 - 5 14 14 1 1					
	584 - 585' V fine fragmental text with weak-mod well				ļ	
	developed bedding @ 65-70°. Fine polymictic clast	, i				
	supported conglom? Minor ang white qtz frags. Looks like primary text.	' '			ļ	
	primary text.					
	585 - 640'	585 - 640'	585 - 640'	128411	585	595
	Grey fragmental as above by % clasts <<, appr 10% clasts	weak silic'n of	10% py, finely			
	in fsp porph, grey, pyritic mtrx.	mtrx	diss in mtrx +	128412	595	605
			minor vnlts to			

.

. . .

	@ 613' 1" bladed barite vn @ 85° to C/A within 4" zone		0.5" (ie 633' @	128413	605	615
	of coarse py (10%) + coloform rhodochrosite, black chl +		50°.)	1	1	
	poss minor sphal.		@ 613' minor	128414	615	625
	•		sphal?		1	
1				128415	625	635
	640 - 663'	<u>640 - 663'</u>	<u>640 - 663'</u>		1	
	Gradually becomes >> fragmental again, still grey colour,	clay alt'd frags +	10% fine py in	128416	635	645
	but 40-50% green fsp porph clasts in grey, mod soft, pyritic	mtrx	mtrx.			
	fsp porph mtrx. Alt'n becoming less intense than above.		1	128417	645	655
	<u>663 - 755'</u>	<u>663 - 755'</u>	<u>663 - 755'</u>	128418	655	665
	Maroon-green fragmental as @ top of hole. Clasts are dom	v weak prop alt'n	Tr py.			
	green fsp porph tuff, <0.5 cm - > 10 cm, avg 1-2 cm, 30-			128419	control	i
	40% clasts in fng fsp porph maroon mtrx. Massive, no		666 - 670'		sample	1
	gougy zones or evidence of faulting. V. minor clay-carb		to 10% py.	128463	666	667.5
	vnlts.			i		1
		,		128464	669	672.5
1 1	677 - 678' fsp porph tuff interbed @ 60° to C/A			1		
					1	1
	678' @ base of fsp porph are several narrow py-					1
	rhodochrosite + sphal vnlts parallel to contact				1 .	
					1	
	686 - 689' fsp porph tuff interbed @ 60° to C/A.					
	, i i i i i i i i i i i i i i i i i i i					
						

.

. :

Drill Hole 96	S-2, Owe	en Lake 1	Fault zon	e, Twinkl	e zone-ho	ole 84-15	area. Ma	v 15-17,	1996																	
								<u>, </u>																		
Sample	From	То	Length	AG	AL	AS	ВА	BE	BI	CA	CD	co	CR	CU	FE	GA	К	LI	MG	MN	МО	NA	NI	Р	РВ	SB
Number	feet	feet	feet	PPM	%	PPM	РРМ	PPM	PPM	%	PPM	PPM	PPM	PPM	%	PPM	%	PPM	%	PPM	PPM	%	PPM	PPM	PPM	PPM
128401	140	150	10	2.3	0.18	1	21	0.1	1	0.46	0.1	15	25	13	9.98	1.	0.18	2	0.01	1805	10	0.02	13	1450	256	22
128402	150	160	10	0.5	0.22	1	84	0.1	1	0.57	0.1	15	15	12	7.48	1	0.21	1	0.18	9109	10	0.02	26	1620	232	22
128403	160	170	10	1.2	0.26	. 1	124	0.1	1	1.21	0.1	14	28	74	6.07	1	0.24	1	0.3	5286	8	0.02	18	1640	389	.27
128404	295	305	10	1.4	0.25	1	111	0.1	1	0.89	0.1	13	16	14	6.74	1	0.25	3	0.27	6623	9	0.03	20	1510	506	21
128405	357	361.5	4.5	0.5	0.3	1	262	0.1	1	1.86	0.1	15	15	14	3.83	1	0.29	3	0.5	4235	8	0.04	16	1780	366	4
128406	422	435	13	2.8	0.25	1	208	0.1	1	1.98	0.1	20	19	49	2.83	1	0.2	2	0.27	5070	11	0.02	16	1590	120	7
128407	515	525	. ⊶10	1.3	0.19	1	90	0.1	1	3.2	0.1	10	23	11	1.81	1	0.12	2	0.04	4493	5	0.03	12	1230	67	5
128408	525	535	10	3.3	0.19	1	64	0.1	1	0.76	0.1	12	32	15	4.74	1	0.12	2	0.01	28	8	0.03	6	1470	546	7
128409	565	575	10	0.9	0.22	1	71	0.1	1	0.85	0.1	14	16	10	6.29	1	0.22	. 3	0.16	9360	10		24	1510	176	23
128410	575	585		_	0.23	1	149	0.1	1	0.74	0.1	11		8	4.94	1	0.23	3	0.16	9483	9	0.03	23	1460	179	8
128411	585	595			0.3	1	304	0.1	1	1.42	0.1	9	13		4.83	1	0.22	1	0.35	8593	8	0.04	24	1310	346	7
128412	595	605			0.21	1	176	0.1	1	1.52	0.1	14	23		5.32		0.21	1	0.33	10000	12	0.02	49	1510	1103	14
128413	605	615			0.22	1	69	0.1	1	0.65	0.1	14	18		6.76	1	0.22	1	0.21	10000	. 12	0.02	47	1580	794	14
128414	615	625			0.2	1	67	0.1	1	0.43	0.1	17	23	17	6.93	1	0.19		0.07	10000	12	0.03	36	1160	1038	15
128415	625	635		1.7	0.23	1	105	0.1	1	0.74	0.1	13	15		7.38	1	0.23		0.24	7519	10	0.03	21	1490	343	8
128416	635	645			0.25	1	156	0.1	1	1.81	0.1	14	20		5.41	1	0.23		0.44	6653	9	0.03	20	1670	154	- 6
128417	645	655		0.7	0.28	1	197	0.1	1	2.32	0.1	12	13	10	4.08	1	0.21	- 2	0.43	4427	7	0.03	15	1600	63	-4
128418	655	665	10	0.7	0.27	1	158	0.1	1	2	0.1	13	15	- 8	4.86		0.22		0.52	7257	9	0.03	22	1790	74	4
	control s			0.1	0.38	183	31	0.1	4	15	0.1	5	15	8	0.69	9	0.03	14	0.49	752	4	0.01	11	710	4707	7
128463	666	667.5	1.5		0.24	78	60	0.1	1	0.34	0.1	18	35	25	10.26		0.26	:	0.1	10000	15	0.03	38	910	1787	33
128464	669	672.5	3.5	2	0.38	1	298	0.1	1	1.91	0.1	13	21	30	4.61	1	0.26		0.43	9713	8	0.04	28	1300	433	11

•

× .

Drill Hole	96S-2, (Owen Lal	ke Fault 2	one, Twi	nkle zone	e-hole 84	-15 area,	May 15-	17, 1996						
Sample	From	То	Length	SN	SR	TH	TI	υ		w	ZN	Au-fire	Assay Au	Assay Au	Assay Z
Number	feet	feet	feet	PPM	PPM	PPM	%	PPM	PPM	PPM	PPM	PPB	g/tonne	oz/ton	9
128401	140	150	10	5	150	1	0.01	1	0.1	1	2245	115			
128402	150	160	10	5	258	1	0.01	1	2.2	1	995	69			
128403	160	170	10	4	644	1	0.01	1	3.3	2	2026	24			
128404	295	305	10	5	70	1	0.01	1	4.9	1	1237	27			
128405	357	361.5	4.5	3	197	1	0.01	1	10.5	1	648	5			
128406	422	435	13	2	243	1	0.01	1	5	1	481	14			
128407	515	525	10	1	323	1	0.01	1,	3.3	2	352	15			
128408	525	535	10	3	152	1	0.01	1	0.9	1	1253	30			
128409	565	575	10	4	185	1	0.01	1	2.9	1	403	38			
128410	575	585	10	3	175	1	0.01	1	4.1	1	545	44			
128411	585	595	10	4	260	1	0.01	1	6.6	1	971	31			
128412	595	605	10	4	160	1	0.01	1	5.2	3	2172	109			
128413	605	615	10	5	103	1.	0.01	1	5.4	2	2297	104			
128414	615	625	10	5	36	1	0.01	1	2.3	3	3405	107			
128415	625	635	10	4	132	1	0.01	1	3.3	1	1364	38			
128416	635	645	10	4	2515	1	0.01	1	7.8	1	804	14			
128417	645	655	10	3	619	1	0.01	1	14.5	1	441	10			
128418	655	665	10	4	275	1	0.01	1	9.7	1	488	11			
128419	control s	ample		1	140	1	0.01	1	13.9	2	32	1			
128463	666	667.5	1.5	6	81	1	0.01	1	4.6	12	7537	1467	1.51	0.044	0.78
128464	669	672.5	3.5	3	304	1	0.01	1.	11.7	2	2057	79			

Hole Silver Queen 96S-3

To test the Borrow Pit zone.

Easting:

Northing: Cole Creek Grid 0+30 N

.

5+25 E

Azimuth:

J - 23

Dip: Depth: 225° -44.5°

827 feet

Drilled May 17-18, 1996
Drilled by: Beaupre Drilling
Logged by: L. Caron/J. Hutter
Core stored in shop at mine site.

Inte	erval	Rock type	Description			San	nple Dat	a
From (feet)	To (feet)			Alteration	Mineralization	Number	From (feet)	To (feet)
0	31'	Overburden						
31	255'	Fsp Porph	31 - 140'	31 - 140	31 - 140	128304	31	40
		tuff	Buff-light grey, med grained. Fsp phenos avg 1mm, 5-20%,	seric-qtz-py. Perv	2% diss py. Py-	128305	40	46
			eroded, broken, clay altered. Narrow interbands of fragmental	clay alt'n and clay	qtz stockwork.	128306	46	51
			volcs - 10-30 cm wide. Faint banding @ 70-80° to C/A	alt'd fsp. 10-15%	1	128307	51	60
			Minor late cc, py/chl vnlts.	silic.	i	128308	60	70
				Mod well developed		128309	70	80
			65 - 84' Fault zone. Gouge and broken fsp porph, milled	qtz-py stockwork -		128310	80	90
		•	frags of porph and bleached dyke. 30°	20/ft. Weak selveges		128311	90	100
				to larger py vns.		128312	100	110
			105 - 125' Fault zone, as above. 40° to C/A.			128313	110	120
			@110' 0.3' highly silic'd with faint pink tinge	140 - 208'	140 - 170	128314	120	130
				qtz-seric-py	2 - 5% diss py	128315	130	140
			140 - 208'	Strong silic (20-30%)		128316	140	150
			Fine grained fsp porph tuff, sim to above, with original porph	Strong stockworking,	170 - 176.2	128317	150	160
			texts obscured by alteration. Sulfide rich frags, rotated and	to 60/ft.	Up to 10%	128318	160	170
			cut by stockwork vnlts. Still get interbands of fragmental, with		blebby py	128319	170	176.2
		•	med-coarse frags. Faint banding @ 45-55° to C/A.					
			Microfractured with strong stockworking, to 60/ft. Py incr					l
			downwards to vn @ 176.2'					

			144.4 - 145.8' Yellow-grey rhyolite dyke. Top contact 60°, bottom contact 90° 176.2 - 180.2' Massive py vn. Coarse xtalline, dul! yellow, massive py with qtz. Upper contact @ 20°? Upper 1.5' of vn is 50% qtz, 50% py, with xtalline qtz in cavities. Remainder of vn is massive py, < 10% qtz. 208 - 255' Slightly coarser grained fsp porph tuff. Cream-buff colour, light grey with greenish cast. Cream coloured alt'n selveges to py vnlts (albite alt'n?). Orig texts coming back, still silic and stockworking.	180.2 - 208 Qtz flooding, 40% 208 - 255' Silic and stockworking 20- 30/ft. Albite? alt'n selveges to vnlts silica	176.2 - 180.2 Massive coarse py/qtz 180.2 - 208 5% py 208 - 255' 2-5% diss py and py vnlts	128320 128321 128322 128323 128324 128325 128326 128327 128328 128329 128330	176.2 180.2 182.2 190 200 210 220 230 240 250 contr	180.2 182.2 190 200 210 220 230 240 250 255
255	300.5	Pulaskite Dyke	Brownish maroon, amygdaloidal fsp porph dyke. Intramineral. Locally bleached, buff alt'd zones 2-10 cm out along fracs and near contacts. Trace v. fine diss py and py on fracs. 1" white rhyolite @ 45° @ upper contact. Faulted lower contact @ 30° to C/A, with fault gouge and calcite in contact zone. Bleached near lower contact.		Trace v. fine diss py and py on fracs.	١		
300.5	587	Fsp Porph Tuff	300.5 - 315 Light grey-white, bleached fine-med grained fsp porph tuff. Fsp phenos rounded, broken, clay alt'd, 30% fsp phenos, avg lmm, med grey aphanitic mtrx. Strong silic - 30% and py-qtz stockworking (30/ft).	300.5 - 315 Strong silic - 30%. Albite? selveges to py vnlts. Good stockworking 30/ft.	2% diss py. Hairline-1mm py qtz stockworking fracs. Minor sphal with py in vnlts.	128331	300.5	310
			315 - 385 Change to cream coloured, med xtalline tuff, interbanded with med-coarse xtalline tuff (20 cm bands). Decrease in % silic, still good stockworking.	315 - 385 15-20% silic, 30/ft py-qtz (+/- sphal) stockwork.		128333 128334 128335 128336	320 330 340 350	330 340 350 360

.

	T	the state of the s		128337	360	370
		@360.5' ½" py-sphal-qtz vnlt @15°, cuts earlier py fracs.	·	128338	370	380
		Banded vnlt shows early black sphal, then py, qtz-cc, late				
	1	brown sphal.	i i		1	
	l i		i I		1	1
	1 1	385 - 448	385 - 448	128339	380	390
l		Still in cream coloured med xtalline tuff with 15-20% silic as	15-20% silic,	128340	390	400
į	·	above, but py frac density decreasing somewhat to 20/ft.	20/ft py-qtz (+/-	128341	400	410
į		Stockworking irreg developed - v well developed for 30-40	sphal) stockwork,	128342	410	412.7
		cm, then less so for 10-20 cm.	patchy	128343	412.7	413
	1	,		128344	413	420
		@ 410' start to get sparse cm scale open fissures, filled with		128345	420	430
	1	microxtalline py, no pref orientation, approx 1/metre.		128346	430	440
		,		128347	440	450
	1	412.7 - 413' 0.3' banded barite-sphal-py vn @ 90°.			ł	
		Early barite-sphal, late py, cut by py vnlt.	! !	•	1	ļ
			1 .		İ	
i		449 - 454.1	1		l ·	
	1	Pulaskite Dyke - Fsp porph, fine grained, bleached, chilled	1		l	
		dyke @ 30° to C/A	1		1	
			1		l	
	1.				1	
	1 1	454 - 480	454 - 480	128348	450	460
		Light grey & white fsp porph, still patchy stockwork as	15-20% silic,		l	
		above. Seems to be > developed in med-coarse xtalline tuff	20/ft py-qtz	128349	460	470
	1 '	than in v fine grained tuff. Still 15-20% silic. Patchy	stockwork - patchy.	128350	470	480
		stockwork.			i	
			l	128351	480	490
				128352	490	500
	1	480 - 587	480 - 587	128353	500	510
		Light-dark grey and white, med-fine grained fsp porph with	15-20% silic,	128354	510	520
	1	fragmental interbeds to 15-20 cm. Still 15-20% silic, still	20/ft py-qtz	128355	520	530
		20/ft stockwork.	stockwork	. 128356	530	540
				128357	540	550
		515 - 587 Locally well developed bx zones to 20 cm,		128358	550	560
		bx'd and cemented with fine py mtrx. Also crackle bx zones.		128359	560	570
				128360	570	580
	1			128361	580	590

587	738	Contact	Dark grey, light grey, cream-buff coloured. Generally	Albite selveges on	Diss and mm	128362	590	600
		Phase	massive core. Fine xtalline fsp-qtz porph, fsp phenos 10-50%	wide spaced py vns,	scale blebs py,	128363	600	610
			in aphanitic fsp+qtz? mtrx. Sparse qtz eyes. Locally bx texts	no pref orient.	to 5%.	128364	610	620
			(autobx), 10-30 cm wide.	Locally, 20 cm zones	1	128365	620	630
	1			mod stockworking.		128366	630	640
			Albite selveges to 1 cm wide on wide spaced py vns, no pref			128367	640	650
			orientation. Locally mod well dev stockwork but only over			128368	650	659
			20 cm wide zones.					
			@ 653' remnant frags rimmed by, part replaced by py					
			659 - 660' py-qtz vn, minor pink carb, sphal. Upper contact		659 - 660	128369	659	660
			@ 60°, lower @ 70-75°.		py-qtz vn, minor	128370	660	670
					sphal	128371	670	680
	1		@ 738' gradational contact over 10 cm @ 70° to C/A		}	128372	680	690
	1					128373	690	700
			,		ļ	128374	700	710
				i		128375	710	720
						128376	720	730
						128377	`730	740
738	827	Coarser	Massive, light & dark grey & white. Med grained, 2 fsps -		Diss and mm	128378	740	750
		packed	white fsp xtals, weakly chloritized, to 40%, dark grey fsp		scale blebs v	128379	750	760
		crystal tuff or	phenos, 30%. Fine grained qtz-py mtrx.		fine py, 2%.	128380	760	770
		possibly			Minor py fracs.	128381	770	780
		intrusive??	780 - 800 common narrow shears @ 40-60° to C/A			128382	780	790
						128383	790	800
			797.7 - 1" py-sphal-carb vnlt @ 40°, cut by narrow shear @			128384	800	810
			50°.			128385	810	820
						128386	820	827
			827' - End of Hole.					

rill Hole 9	96S-3, Borro	w Pit Zon	e, May 17	-18, 1996	(certifica	te # 6S-	0018-R)	·									=				\equiv \mathbb{I}					
				$ \neg$													[-							
Sample	From	To	Length	AG	AL	AS	BA	BE	BI	CA	CD	co	CR	Cυ	FE	GA	K	LI	MG	MN	MO	NA	NI	P	РВ	SE
Number	feet	feet	feet	PPM	%	PPM	PPM	PPM	РРМ	%	PPM	PPM	PPM	PPM	%	PPM	%	PPM	%	PPM	PPM	%	PPM	PPM	PPM	PPN
128304	31	40	9	3.4	0.28	1	102	0.1	1	0.91	0.1	9	22	376	5.11	1	0.26	1	0.22	4829	33	0.01	15	1110	118	10
128305	40	46	6	0.1	0.28	1	147	0.1	1	1.02	0.1	9	21	59	4.53	1	0.24	1	0.23	4624	30	0.01	14	1130	111	
128306	46	51	5	2.2	0.25	1	154	0.1	1	2.56	0.1	9	22	203	3.89	1	0.17	1	0.68	9428	10	0.01	25	1020	543	
128307	51	60	9	0.6	0.3	1	90	0.1	1	1.31	0.1	9	17	69	5.37	1	0.25	1	0.36	3912	33	0.01	14	1200	117	
128308	60	70	10	2.7	0.25	1	77	0.1	1	0.61	0.1	10	18	523	7.52	1	0.23	1	0.12	2754	21	0.01	13	1110	193	3
128309	70	80	10	1.6	0.27	1	62	0.1	1	0.5	0.1	10	23	424	7.76	1	0.22	1	0.13	6149	32	0.01	17	860	235	37
128310	80	90	10	0.1	0.25	1	67	0.1	1	0.61	0.1	10	19	159	6.72	1	0.21	1	0.16	8694	31	0.01	23	1030	152	24
128311	90	100	10	0.1	0.26	1	72	0.1	1	0.56	0.1	9	22	125	6.9	1	0.26	1	0,13	4389	14	0.01	15	1020	86	24
128312	100	110	10	1.2	0.27	1	69	0.1	1	0.52	0.1	10	23	102	7.72	1	0.25	1	0,11	5188	20	0.01	17	1070	93	2
128313	110	120	10	0.1	0.25	1	63	0.1	1	0.32	0.1	11	28	147	8.37	1	0.23	1	0.07	9967	34	0.01	26	850	190	30
128314	120	130	10	1.6	0.29	1	149	0.1	1	0.55	0.1	9	18	134	4.83	!	0.22	1	0.12	3947	12	0.01	13	1040	142	1
128315	130	140	10	0.2	0.34	1	108	0.1	1	0.47	0.1	8	36	145	4.71	1	0.25	1	D.11	7697	14	0.01	19	1280	124	1
128316	140	150	10	2.3	0.28	1	94	0.1	1	0.95	0.1	10	19	226	6.47	1	0.24	1	0,23	3091	18	0.01	13	1150	69	2
128317	150	160	10	1.9	0.25	1	87	0.1	1	0.73	D.1	10	21	121	6.8	1	0.23	1	0.14	2204	18	0.01	9	1150	29	2
128318	160	170	10	1.6	0.26	1	76	0.1	1	0.66	0.1	10	25	135	7.36	1	0.23	1	0.11	1323	19	0.01	10	1130	27	2
128319	170	176.2	6.2	0.1	0.24	1	48	0.1	1	0.38	0.1	12	30	16	10.89	1	0.2	1	0.05	391	27	0.01	11	950	42	2
128320	176.2	180.2	4	13.8	0.01	1	1	0.1	1	0.33	0.1	20	51	838	15	1	0.03	1	0.09	493	31	0.01	17	10	327	9
128321	180.2	182.2	2	0.1	0.1	1	21	0.1	. 1	0.19	0.1	14	30	32	15	1	0.12	1	0.01	67	38	0.01	10	260	1	2
128322	182.2	190	7.8	0.1	0.28	1	77	0.1	1	0.45	0.1	12	57	31	6.9	1	0.22	1	0.07	305	40	0.01	10	1050	10	2
128323	190	200	10	0.3	0.28	1	85	0.1	1	0.56	0.1	8	30	195	5.26	1	0.22	1	0.1	876	17	0.01	9	1090	96	3
128324	200	210	10	0.1	0.36	1	76	0.1	1	0.38	0.1	10	28	56	5.55	1	0.25	1	0.07	1598	29	0.01	8	1070	25	
128325	210	220	10	1.7	0.36	1	76	0.1	1	0.43	0.1	15	27	258	6.81	1	0.26	1	0.1	559	39	0.01	8	960	13	2
128326	220	230	10	3.7	0.38	1	79	0.1	1	0.38	0.1	22	38	361	6.85	1	0.26	1	0.08	376	34	0.01	7	970	34	3
128327	230	240	10	0.1	0.45	1	100	0.1	1	0.39	0.1	17	33	46	4.32	1	0.29	1	0.1	631	20	0.01	88	1120	31	
128328	240	250	10	2.6	0.38	1	108	0.1	1	0.48	0.1	12	24	242	5.08	1	0.25	1	0.12	516	50	0.01	9	1020	39	
128329	250	255	5	2.9	0.33	1	76	0.1	1	0.51	0.1	11	35	139	7.63	1	0.22	1	0.16	322	14	0.01	9	830	53	2
128330	control sam	ple		0.1	0.14	73	25	0.1	5	15	0.1	2	11	9	0.34	15	0.03	7	0.25	506	2	0.01	7	530	10	
128331	300.5	310	9.5	0.1	0.32	1	143	0.1	1	9.68	0.1	9	34	31	4.05	1	0.21	2	0.08	341	14	0.01	7	890	46	
128332	310	320	10	0.4	0.31	1	100	0.1	1	0.65	0.1	8	26	59	3.14	. 1	0.21	2	0.13	2886	19	0.01	10	1010	76	
128333	320	330	10	1.5	0.24	1	72	0.1	1	0.52	0.1	8	23	120	4 8	. 1	0.17	2	0.1	2035	10	0.01	10	940	244	
128334	330	340	10	0.3	0.25	1	106	0.1	1	0.69	0.1	9	26	55	3.69	1	0.18	2	0.16	3625	13	0.01	14	740	158	

Drill Hole	96S-3, Bor	row Pit Zor	ne, May 1															
Sample	From	То	Length	SN	SR	TH	T1.	U			ZN	Au-fire	Assay Au	Assay Au	Assay Ag	Assay Cu		
Number	feet	feet	feet	PPM	PPM	PPM	- %	PPM	PPM	PPM	PPM	PPB	g/tonne	oz/ton	%	%	%	%
128304	31	40	9	3	3	1	0.01	1	7.7	16	6550	127						0.7
128305	40	46	6	3	10	1	0.01	1	9.3	1	1168	31						
128306	46	51	5	3	15	1	0.01	1	8.2	10	3830	103						
128307	51	60	9	3	12	1	0.01	1	6	1	796	65						
128308	. 60	70	10	5	1	1	0.01	1	2.7	1	998	120						
128309	70	80	10	5	1	1	0.01	1	3.2	4	3230	212						
128310	80	90	10	4	3	1	0.01	1	4.2	7	3889	150						
128311	90	100	10	4	1	1	0.01	1	2.7	6	3817	92						
128312	100	110	10	5	1	1	0.01	1	2	5	3630	204						
128313	110	120	10	5	1	1	0.01	1	1.6	1	1291	125						
128314	120	130	10	3	19	1	0.01	1	4.7	7	3397	86						
128315	130	140	10	3	4	1	0.01	1	4.7	8	2962	116						
128316	140	150	10	3	11	1	0.01	1	6.9	4	2765	226						
128317	150	160	10	3	3	1	0.01	1	1.3	1	1092	191						
128318	160	170	10	5	2	1	0.01	1	1.4	4	3484	178						
128319	170	176.2	6.2	6	1	1	0.01	1	0.1	. 1	2077	163						
128320	176.2	180.2	4	17	1	1	0.01	1	0.1	1	3534	410						
128321	180.2	182.2	2	9	1	1	0.01	1	0.1	1	1160	98						
128322	182.2	190	7.8	3	3	1	0.01	1	1.2	1	416	87						
128323	190	200	10	3	13	1	0.01	1	1.8	1	155	151						
128324	200	210	10	3	1	1	0.01	1	2.3	1	123	149						
128325	210	220	10	3	1	1	0.01	1.	1	1	97	211						
128326	220	230	10	3	1	1	0.01	1	1	1	191	295						
128327	230	240	10	2	13	1	0.01	1	2.3	1	214	92						
128328	240	250	10	3	17	1	0.01	1	2.4	1	248	181						
128329	250	255	5	4	11	1	0.01	1	0.7	1	97	443						
128330	control sar	nple		1	509	1	0.01	1	8.7	3	20	4						
128331	300.5	310	9.5	2	24	1	0.01	1	1.3	1	419	56						
128332	310	320	10	2	20	1	0.01	1	1.9	2	658	96				•		
128333	320	330	10	3	7	1	0.01	1	0.8	1	1261	143						
128334	330	340	10	2	16	1	0.01	1	1.4	3	1647	64						

1

.

Davida d		Dia 7											-	——-	т	—-										,
Drill Hole 9	65-3, Borr	ow Pit Zor	e, May 1/	-18, 199	6 (certific	ate # 65-	0018-R)																			 -i
Sample	From	To	Length	AG	AL	AS	BA	BE	BI	CA	CD	co	CR	CU	FE	GA		Li	MG	MN	MO	NA.	NI		PB	
Number	feet	feet	feet	PPM	%	PPM	PPM	PPM	PPM	%	PPM	PPM	PPM	PPM	%	PPM		PPM	%	PPM	PPM	- %	PPM	PPM	PPM	SB
128335	340	350	10	0.4	0.28	1	80	0.1	' : : : 	0.66	0.1	7	28	23	3.25	11	0.2	2	0 12	2356	Б	0.01	9	920	151	5
128336	350	360	10	0.1	0.29	1	106	0.1		0,61	0.1	91	26	34	4.13	1	0.2	1	0.12	2843	14	0.01	11	940	569	7
128337	360	370	10	6.9	0.24	1	46	0.1		0.35	0.1	9	28	235	5 44	1	0.18	2	0.05	1331	12	0.01	10	870	770	31
128338	370	380	10	25.8	0.25	30	71:	0.1	1	0.38	D.1	11	28	686	7.77	1	0.18	2	0.06	1247	11	0.01	10	830	513	38
128339	380	390	10	04	0.28	1:	101	0.1	1	0.63	0.1	8	23	57	4,34		0.19	2	0 12	2930	10	0.01	12	950	378	8
128340	390	400	10	2.2	0.29	1	78	0.1	1	0.64	0.1	11	27	160	4.72	1	0.2	2	0.12	1864	8	0.01	8	1030	213	8
128341	400	410	10	2.2	0.25	1	131	0,1	1	1.03	0 1	11	25	342	4.34	1	0 19	2	0.23	2875	11	0.01	11	910	253	12
128342	410	412 7	2.7	1.8	0.24	1	103	0.1	1	0.6	0.1	9	28	70	4 47	1	0 19	2	0.11	1275	9	0.01	8	970	672	11
128343	412.7	413	0.3	61.9	0.02	1	37	0.1	1	0.09	100	9	25	431	7.31	1	0.03	2	0.01	2821	19	0.01	17	170	10000	84
128344	413	420	7	3	0.22	1	179	0.1	1	0.86	0.1	8	18	98	3.6	1	0.16	3	0.17	2520	- 6	0.01	10	930	556	9
128345	420	430	10	0.4	0.29	1	156	0.1	1	1.08	0.1		26	50	2.53	1	0.16	- 5	0.26	2874	12	0.01	11	720	143	- 6
128346	430	440	10	0.3	0.31	1	118	0.1	1	0 44	0.1	13	24	56	4.52	1	0.17	5	0.11	680	11	0.81	7	550	101	8
128347	440	450	10	0.5	0.3	1	156	0.1	1	1.34	0.1	9	21.	31	3.19	1	0 17	5	0.44	1824	- 6	0.02	11	750	111	3
128348	450	460	10		0.48	8	235	0.1	20	2.7	D.1	13	18	70	4,32	1	0 21	5	1.11	1453	7	0.05	16	1240	185	1
128349	460	470	10	1.6	0.3	1	125	0.1	1	0.77	0.1	10	25	37	3.56	1	0 19	3	0 17	1738		0.01		950	280	7
128350	470	480	10	2	0.29		83	0.1)	!	0.43	0.1	9	32	19	4.01	1	0.19	3	0.06	319	10	0.01	6	1020	88	7
128351	480	490	10	0.6	0.23	'	91	0.1		0.48	0 1	9	29	17	3.42		0 15	3	0.08	490	5	0 01	7	910	40	- 5
128353	490 500	500 510	10	1.2	0.27	1	72	0.1	- 1	0.3	0.1		33	20	3.3	- 1	0.18	:\	0 02	72	4	0 01	- 5	720	51	6
128354	510	520	10	1.5	0.32	22	71 96	0.1 0.1		0.56	0.1	9	26	36	3.83	: 	0.19 0.18		0.26	2641 886		0.01	12	640	331 215	
128355	520	530	10	77.2	0.25	316	87	0.1		0.65	100	10	35	1925	6.36	— -¦ 	0.16	 ;}	0.09	1731	15	0.02	15	750 740	2468	88
128356	530	540	10	17	0.3	13	114	0.1		0.29	0.1	e	23	109	4.26		0.17		0.03	91	- 13	0.02		790	128	11
128357	540	550	10	1,2	0.33	- 1	91	0.1		0.28	0.1	9	33	39	4 46	 '}	0.18	2	0.03	28	6	0.02	6	830	83	11
128358	550	560	10	2.2	0.28	— - 	100	0.1		0.24	0.1	10	29	180	5.65	1	0.17	2	0.03	114	8	0.02	7	620	104	15
128359	560	570	10	4.1	0.31	21	90	0.1	- 1	0.23	0.1	8	35	320	4.72		0.18	2	0 02	142	7	0.02	- 5	640	137	43
128360	570	580	10,	3.9	0.29	1	124	0.1	1	0.45	0.1	10	28	149	5.03	1	0.18	3	0.07	512	7	0.01	8	1010	691	23
128361	580	590	10	1.9	0.35	1	115	0.1	1	0.41	0.1	11	36	30	5.11	1	0.2	- 2	0 07	578	8	0.02	8	730	734	11
128362	590	600	10	2	0.26	1	70	0.1	1	0.71	0.1	9	27	45	4.28	1	0.16	2	0 18	1516	6	0.01	9	410	847	11
128363	600	610	10	14.9	0.25	1	101	0.1	1	0.37	0.1	9	32	147	5.11	1	0.18	2	0.07	727	8	0.01	9	550	2078	21
128364	610	620	10	4.6	0.24		94	0.1	1	0.31	0.1	10	27	64	5.51	1	0.16	1	0.05	285	7	0.01	9	580	636	12
128365	620	630	10	3	0.25	1	131	0.1	1	0.42	0.1	10	35	40	4.83	1	0.17	1	0 06	366	7	0.01	7	550	225	11

Drill Hole 9	6S-3, Borr	ow Pit Zor	ne, May 1		— <u>-</u>			<u> </u>							·I	····		
1										-								
Sample	From	То	Length	SN	SR	TH	Ti	Ų	V	w	ZN	Au-fire	Assay Au	Assay Au	Assay Ag	Assay Cu	Assay Pb	Assay Zn
Number	feet	feet	feet	PPM	PPM	PPM	%	PPM	PPM	PPM	PPM	PPB	g/tonne	oz/ton	%	%	%	%
128335	340	350	10	2	10	1	0.01	1	1.5	2	775	55						
128336	350	360	10	3	9	1	0.01	1	1.6	4	2383	46						
128337	360	370	10	3	57	1	0.01	1	1	42	10000	201						1.57
128338	370	380	10	5	1	1	0.01	1	0.6	6	4297	479						
128339	380	390	10	3	12	1	0.01	1	1.7	8	3307	61						
128340	390	400	10	3	8	1	0.01	1	1.4	1	1136	133						
128341	400	410	10	3	12	1	0.01	1	1.6	1	758	75						
128342	410	412.7	2.7	3	19	1	0.01	1	0.9	4	2361	52						
128343	412.7	413	0.3	6	561	1	0.01	1	0.1	227	10000	535					1.73	7.75
128344	413	420	7	2	64	1	0.01	1	1.4	12	5194	76						0.5
128345	420	430	10	1	25	1	0.01	1	2.1	1	477	19						
128346	430	440	10	2	53	1.	0.01	1	2	1	322	59						
128347	440	450	10	2	60	1	0.01	1	9.2	1	466	23						
128348	450	460	10	3	149	1	0.02	1	47.8	2	1480	84						
128349	460	470	10	2	17	1	0.01	1	1.8	2	1349	73						
128350	470	480	10	2	14	1	0.01	1	1.1	2	1132	79						
128351	480	490	10	2	28	1	0.01		0.9	1	115	37						
128352	490	500	10	1	13	1	0.01	1	1	1	49	39						
128353	500	510	10	2	27	1	0.01	1	2.4	3	1582	38						
128354	510	520	10	1	32	1	0.01	1	1.9	4	1475	54						
128355	520	530	10	4	33	1	0.01	1	1.8	169	10000	273						6.21
128356	530	540	10	2	12	1	0.01	1	1.2	_ 1	563	84						
128357	540	550	10	2	16	1	0.01	1	1.2	1	137	55						
128358	550	560	10	3	20	1	0.01	1	0.8	1	176	97						
128359	560	570	10	3	53	1	0.01	1	1	4	2328	53						
128360	570	580	10	3	44	1	0.01	1	1.6	11	4724	69						
128361	580	590	10	3	14	1	0.01	1	1.8	3	2094	35				-		
128362	590	600	10	2	29	1	0.01	1	1.9	4	2211	32						
128363	600	610	10	3	28	1	0.01	1	1.2	36	10000	95						1.22
128364	610	620	10	3	24	1	0.01	1	0.9	2	1979	56						
128365	620	630	10	3	33	1	0.01	1	1.1	6	3105	55						

Drill Hole 9	96S-3, Bon	row Pit Zor	ne, May 17	-18, 199	6 (certific	ate # 6S-	0018-R)								-							——				
			-		,																					
Sample	From	То	Length	AG	AL	AS	BA	BE	BI	CA	CD	co	CR	CU	FE	GA	к	LI	MG	MN	МО	NA	NI	P	PB	SB
Number	feet	feet	feet	PPM	%	PPM	PPM	PPM	PPM	%	PPM	PPM	PPM	PPM	%	PPM	%	PPM	%	PPM	PPM	%	PPM	PPM	PPM	PPM
128366	630	640	10	1.7	0.25	3	140	0.1	1	0.33	0.1	10	30	68	4.06	1	0.16	1	0.06	328	5	0.01	7	220	235	11
128367	640	650	10	1.4	0.33	1	146	0.1	1	0.58	0.1	11	37	26	4.55	1	0.2	2	0.13	1447	6	0.02	10	600	126	11
128368	650	659	9	1.3	0.29	. 3	110	0.1	1	0.88	0.1	10	36	26	4.07	1,	0.17	1	0.23	2848	7	0.02	12	590	308	8
128369	659	660	1	200	0.03	3602	8	0.1	1	0.46	0.1	20	44	10000	15	1	0.06	1	0.1	933	31	0.01	18	270	3437	391
128370	660	670	10	2.2	0.26	1	100	0.1	1	0.27	0.1	9	30	104	4.66	1	0.17	1	0.02	98	6	0.01	6	750	66	10
128371	670	680	10	2	0.29	22	202	0.1	1	0.86	0.1	8	25	59	3.71	1	0.2	2	0.14	1245	6	0.01	9	750	101	9
128372	680	690	10	2.8	0.26	1	123	0.1	1	1.26	0.1	9	34	60	4.69	1	0.17	2	0.3	2457	8	0.01	13	360	537	12
128373	690	700	10	1.3	0.29	38	57	0.1	1	1.44	0.1	8	31	22	3.16	1	0.16	3	0.31	1909	5	0.01	10	170	93	6
128374	700	710	10	5.8	0.24	1	92	0.1	1	0.63	0.1	9	33	53	4.33	1	0.17	2	0.13	3250	6	0.01	12	740	1007	16
128375	710	720	10	1.5	0.25	1	68	0.1	1	0.3	0.1	10	41	62	5.92	. 1	0.18	2	0.02	212	8	0.01	10	580	181	14
128376	720	730	10	0.1	0.21	1	77	0.1	1	0.39	0.1	8	38	33	5.78	1	0.16	1	0.01	289	14	0.01	6	200	74	8
128377	730	740	10	0.8	0.26	3	107	· 0.1	· 1	1.14	0.1	8	26	47	3.89	1	0.18	1	0.22	1345	5	0.01	10	590	106	9
128378	740	750	10	0.5	0.28	39	132	0.1	1	2.09	0.1	7	29	24	3.21	1	0.16	1	0.37	2552	5	0.02	10	610	143	6
128379	750	760	10	0.4	0.3	18	160	0.1	1	1.23	0.1	9	33	25	3.63	1	0.18	2	0.24	1575	4	0.02	10	380	80	- 6
128380	760	770	10	0.3	0.26	9	110	0.1	1	1.54	0.1	8	27	22	3.92	1	0.17	2	0.31	5705	6	0.01	16	500	150	8
128381	770	780	10	0.5	0.3	4	140	0.1	1	1.55	0.1	8	29	20	4.12	1	0.19	2	0.37	3944	6	0.01	14	640	75	7
128382	780	790	10	0.5	0.33	1	65	0.1	1	1.46	0.1	8	30	16		1	0.21	1	0.29	5967	. 9	0.01	17	980	190	7
128383	790	800	10	1	0.31	18	165	0.1	1	2.49	0.1	9	25	88	3.96	1	0.18	2	0.3	2663	6	0.01	11	670	350	13
128384	800	810	10	0.6	0.28	32	111	0.1	1	3.28	0.1	7	29	24	3.14	1	0.17	2	0.22	2080	6	0.02	10	540	58	7
128385	810	820	10	0.6	0.28	14	165	0.1	1	2.85	0.1	8	30	21	3.65	1	0.16	- 1	0.24	1826	5	0.02	9	290	57	8
128386	820	827	7	0.1	0.27	1	149	0.1	1	1.65	0.1	6	31	7	4.06	1	0.18	1	0.12	800	5	0.01	8	50	48	5

Sample	From	То	Length	SN	SR	TH	Ti	U		W	ZN	Au-fire	Assay Au	Assay Au	Assay Ag	Assay Cu	Assay Pb	Assay Z
Number	feet	feet	feet	PPM	PPM	PPM	%	PPM	PPM	PPM	PPM	PPB	g/tonne	oz/ton	%	%	%	9
128366	630	640	10	2	34	1	0.01	1,	1	2	928	42						
128367	640	650	10	3	31	1	0.01	1	1.8	1	629	37						
128368	650	659	9	3	40	1	0.01	- 1	1.9	3	1291	33						
128369	659	660	1	14	2	1	0.01	1	1.2	1	7032	1080	1.18	0.034	305	2.51		9.0
128370	660	670	10	3	44	1	0.01	1	1.1	1	189	92						
128371	670	680	10	2	85	1	0.01	1	2.1	1	741	36						
128372	680	690	10	3	42	1	0.01	1	2.1	5	2617	57						
128373	690	700	10	1	88	1	0.01	1	2.3	1	320	28						
128374	700	710	10	3	86	1	0.01	1	2	. 5	2287	66						
128375	710	720	10	3	79	1	0.01	1	1	1	413	129						
128376	720	730	10	3	96	1	0.01	1	0.5	1	350	80		<i>-</i>				
128377	730	740	10		156	1	0.01	1	2	1	₹ 591	22						
128378	740	750	10	2	497	1	0.01	1	2.5	1	412	21						
128379	750	760	10	2	86	1	0.01	1	1.9	1	582	21						
128380	760	770	10	2	45	1	0.01	1	2.3	1	397	28						
128381	770	780	10	3	41	1	0.01	1	2.4	. 1	309	19						
128382	780	790	10	2	113	1	0.01	!	2.8	1	431	23						
128383	790	800	10	2	87	1	0.01	1	2.4	3	1996	40						
128384	800	810	10	1	133	1	0.01		2.5		125	12						
128385 128386	810 820	820 827	7	2	141 159		0.01		2.4 1.5		179 63	10 9						
128380	020	02/			159	1	0.01	וי י	1.5	11	63	9					1	

÷

Hole Silver Queen 96S-4

To test the Borrow Pit zone deeper in the same section as 96S-3.

Northing:

Cole Creek Grid 0+30 N

Easting:

5+25 E

Azimuth:

Dip:

-68.5°

225°

Depth:

349 feet

Drilled May 18-19, 1996 Drilled by: Beaupre Drilling
Logged by: L. Caron
Core stored in shop at mine site.

Inte	rval	Rock type	Description				Sample	
From	To			Alteration	Mineralization	Number	from	to
(feet)	(feet)						(feet)	(feet)
0	22'	Overburden						
22	99'	Fsp Porph Tuff	22 - 75.4'	15-20% silic +	2-5% py - diss,	ĺ		
			Buff-grey fine fsp xtal tuff, 5% phenos in aphanitic mtrx.	qtz/chalc vns and	clots and	İ	,	
		ļ	Mod-str perv clay alt'n + local silic. Fsp to seric + locally	zones. Locally well	xcutting vnlts.	ł		
		İ	bright green clay-chl mix?. Also local chl-clay alt'd frags.	developed				
			Pyritic with 2-5% py, diss, clots and xcutting vnlts to 20/ft.	stockwork, to 20/ft				İ
		!	Local black hard, microxtalline, semi-metallic mineral as	py vnlts. Up to 2%			}	
			black specs and vn margins (sphal?). Local gouge and	black specs locally		128387	22	30
		ĺ	crush zones throughout, but generally massive with good	(sphal?) Fsp	<u>22 - 43.3'</u>]	İ	l
			recoveries.	phenos alt'd to	up to 5% py, diss	1		
				light green chl.	& narтоw ру +/-	128388	30	40
					qtz vnlts, appr	l		
	į .			<u>22 - 24'</u>	stockworking.	ļ	l	
	1	ļ		mod-str silic +	One set at 0-20°,	Ì	}	l
				chalc qtz flood	also set at 45°,			1
			@ 43.3 - 44.5' crackle zone with gougy infilling. Upper	zones. Minor	80°. Approx	128389	40	50
			contact sharp @ 45°. 2" qtz frag bx zone @ top.	black min.	15/ft. Vnlts may	Ì	İ	ĺ .
					have black Mn		[
			47 - 48.5' crackle zone, weak-mod, with minor gougy	<u>24 - 75.4'</u>	chl?/py?/sphal?	128390	50	60
			infilling. Sharp lower contact @ 45°.	Mod silic. Saus	selvege.		ł	l
				fsp and rare frags.				
			52.4 - 53.5' crackle zone, strong. Sharp upper and lower	Minor black specs	<u>43.3 - 75.4</u>		ĺ	
			contacts @ 45°. Narrow black sooty py vnlt @ upper	and needles.	up to 5% py, but	128391	60	70
			contact.		now dom as clots			

			61.8 - 62.6 crackle zone with narrow zone of coarse clotty py + qtz frags @ upper contact. 65.6 - 67' 1/2" grey gouge zone @ 0-10°, very low core angle. 75 - 75.4' gouge/crackle zone @ 40° to C/A.		and diss + minor vnlts. Density of py vnlts << than above, to 5-10/ft with dom direction 10-30° to C/A. @ 66.5' coarse py vnlt @ v low core angle 10°.			
			75.4 - 90' Start to see mottled test, pale greenish irreg clay alt'd zones (+locally frags) surrounded by grey irreg weakly silic'd zones. Rem fsp becoming much more visible. Less strongly alt'd than above. @79' 1" py/qtz/carb vn/gouge zone @ 40° to C/A. 80.4 - 81.4 weakly crackled	75.4 - 90' weak silic & mod perv clay alt'n. Weaker alt'n than above. Rare carb.	75.4 - 90' clotty and diss py to 5% + minor py +/- qtz vnlts, dom @ 20-45°. Py vning << than above. @ 89.5' .5-1" fing black py/bx vn/zone with clasts of coarse py + qtz/silic rx in fine black py silic mtrx.	128392 128393 128394	control sample	90
99	04.5	Post mineral	90 - 99' Grey, mottled looking, poss relic fragmental texture depicted by py replacing intra clast mtrx. Lower contact is 1/2" gouge zone @ 40°. Massive, relatively fresh looking post (intra?) min, fsp	90 - 99' weak-mod silic, perv clay-seric alt'n. Stronger alt'n than above but less intense than at top of hole. Minor carb filling vugs and fracs.	90 - 99' 5-10% ot (+chl?) in irreg patches and stockworking vnlts, may be a repl of mtrx between frags, appr 15/ft.	128395	90	104.5

		Chi alt'd dyke	porph dyke. Good euhedral fsp xtals, strongly alt'd to clear-pale green clay (seric). Sub-euhedral green mafics alt'd to clay-chl. Strong perv clay alt'n, but rem texts visible. Good fragmental text with 20% frags to 1 cm. Faulted upper (400) and lower (60) contacts.	clay, clay-chl alt'd phenos.				
104.5	127	Fault Zone	104.5 - 114.4 Major fault zone. Upper contact @ 60°, lower @ 45-50°. Mottled, variably silic'd - clay alt'd, py bx fsp porph tuff.	104.5 - 114.4 variably silic - weak-mod & perv clay alt'n. Mottled.	104.5 - 114.4 2-5% py - diss, clots and minor vnlts.	128397	104.5	114.4
			Gouge and crush zones @ 104.5 - 106' 110 - 111' 111.5 - 112.5' 113.5 - 114.4'					
			110.5 - 111.0 Buff bleached amgyd dyke or poss rhyol dyke. May be fragment? 114.4 - 118.0 Bx, grey, mottled looking as above with buff, fng rhyol dyke frags, also sulf frags. Silic'd non minz'd mtrx with clay alt'd frags. Well healed bx. Gouge at lower contact @ 30-40°.	114.4 - 118.0 Local zones of silica flood in mtrx, clay alt'd frags.	114.4 - 118.0 2% py - diss & repl frags.	128398	114.4	118.0
			118.0 - 118.7' Buff, fing rhyolite, crackled and healed with qtz. Faulted contacts, upper @ 30-40°, lower @ 75°.	118.0 - 118.7 str silic		128399	118.0	118.7
			118.7 - 120.1' Rhyol fit bx as in 114.4 - 118.0, mottled looking fragmental but with up to 20% buff rhyol frags to 1 cm. Lower contact 1" gouge @ 60°.	118.7 - 120.1 weak silic	118.7 - 120.1 2% py - diss	128400	118.7	120.1
			120.1 - 127' Rhyolite dyke Fng, buff, mod soft finely granular. Weak banded appearance by welded hairline bands @ 50° to C/A Sim in colour to bleached amyg dyke, but even where amyg dykes				-	

			· · · · · · · · · · · · · · · · · · ·					
	1	1	are intensely bleached, fsp and mafic xtals are visible.					
			0.1071.0.1					
i		1	@ 127' @ lower contact 1" grey gouge @ 80°					
127	156	A	Marine management in the second state of the s		127 - 129	<u> </u>	<u> </u>	
127	136	Amygdaloidal	Massive maroon coloured, intra-mineral amygdaloidal		up to 2% diss py.			
		Fsp Porph Dyke	dyke. Locally intense bleaching to buff colour, along fracs		up to 2 /6 uiss py.			
	1		and as envelopes to carb filled fracs and amygdules. Fracs and bleaching are @ very low core angles 0-10°.					
			and bleaching are @ very low core angles 0-10".					
	1							
		}	·					
1	1		Contacts are gougy,				1	
i	1		Top @ 127' 1" grey gouge @ 80°					
1	1	ł	Bottom @ 156' 3" pale grey gouge @ 80-90°. Looks like					
]	i	post dyke faulting. Paragenesis is:					
	ł	j	faulting/minz'n, amyg dyke, silic py stockwork minz'n,					
1	i		faulting, rhyol dyke, faulting (ie. dyke emplacement along					
			early faults and several stages of fault reactivation).					
156	349	Rhyolite Dyke	Massive, fine grained, sandy. Generally pale tan-buff					
			colour, gradually becoming pale pink down section to pink-	,			`	1
			maroon near base of section. (Start of maroon colour @					
İ			304'). Banded texture, locally swirled. Banding frequently			128420	170	180
	i		@ very low core angles 10-30°. Look to be drilling		·			
			essentially down this. Fresh looking but gen mod soft.					
			Minor seric on fracs. Rare clay &/or chl alt'd frags to 2 cm.					
		ĺ	Change in hardness with colour. Soft in buff-tan, harder in					
			maroon. Minor py and py rich frags.	1				

II																										
Drill Hole 96	S-4, Bor	ow Pit a	rea																							
Sample	From	То	Length	AG	AL	AS	BA	BE	BI	CA	CD	co	CR	CU	FE	GA	к	LI	MG	MN	МО	NA	NI	Р	PB	SB
Number	feet	feet	feet	PPM	%	PPM	PPM	PPM	PPM	%	PPM	PPM	PPM	PPM	%	PPM	%	PPM	%	PPM	PPM	%	PPM	PPM	PPM	PPM
128387	- 22	30	. 8	1.2	0.29	1	75	0.1	1	2.41	0.1	10	16	523	4.77	1	0.25	2	0.6	4628	19	0.01	14	1030	181	2
128388	30	40	10	2.3	0.25	1	118	0.1	1	2.18	0.1	9	20	220	4.55	1	0.23	3	0.54	5995	21	0.01	17	1170	318	4
128389	40	50	10	1.1	0.24	1	98	0.1	1	1.82	0.1	9	20	306	4.34	1	0.22	3	0.39	5460	28	0.01	16	1010	270	5
128390	50	. 60	10	5.4	0.22	1	62	0.1	1	0.65	0.1	10	30	263	6.53	1	0.25	2	0.14	6945	35	0.01	19	1070	460	24
128391	60	70	10	1.2	0.24	1	43	0.1	1	0.72	0.1	10	29	506	7.72	1	0.27	1	0.16	4732	36	0.01	16	1140	487	23
128392	70	80	10	1.3	0.19	1	36	0.1	1	0.43	0.1	12	39	303	10.21	1	0.23	1	0.05	3391	48	0.01	14	1010	101	24
128393	control s	ample		0.1	0.33	100	55	0.1	4	15	0.1	4	16	15	0.71	2	0.03	14	0.43	1954	3	0.01	11	640	37	7
128394	80	90	10	0.5	0.19	1	43	0.1	1	0.83	0.1	10	37	52	7.88	1	0.2	2	0.22	3692	26	0.01	13	960	54	20
128395	90	99	9	2	0.18	1	42	0.1	1	0.97	0.1	11	30	298	9.12	1	0.22	2	0.25	1921	37	0.01	12	890	24	19
128396	99	104.5	5.5	0.6	0.25	27	275	0.1	1	2.52	0.1	8	31	124	2.9	1	0.22	4	1.55	7375	7	0.01	22	970	10	1
128397	104.5	114.4	9.9	0.5	0.26	1	62	0.1	1	1.1	0.1	10	30	106	6.49	1	0.23	2	0.43	2803	20	0.01	13	1040	31	17
128398	114.4	118	3.6	0.5	0.27	1	81	0.1	1	0.59	0.1	8	37	130	4.74	1	0.23	2	0.11	731	18	0.01	6	780	46	6
128399	118	118.7	. 0.7	0.5	0.21	1	28	0.1	1	0.16	0.1	1	35	6	0.4	4	0.11	3	0.03	148	3	0.01	2	20	25	2
128400	118.7	120.1	1.4	0.8	0.21	1	66	0.1	1	0.52	0.1	8	27	131	4.55	1	0.16	4	0.12	560	13	0.01	7	340	86	6
128420	170	180	10	0.7	0.24	16	28	0.4	1	1.49	0.1	1	27	2	0.25	1	0.16	1	0.13	366	1	0.01	2	20	4	1

Drill Hole	965-4, 1	Borrow P	it area												
Sample	From	То	Length	SN	SR	TH	TI	U	v	w	ZN	Au-fire	Assay Au	Assay Au	Assay Zr
Number	feet	feet	feet	PPM	PPM	PPM	%	PPM	PPM	PPM	PPM		g/tonne	oz/ton	%
128387	· 22	30	8	3	42	1	0.01	1	8.1	1	1036	95			
128388	30	40	10	3	44	1	0.01	1	7	5	3155	122			
128389	40	50	10	3	22	1	0.01	1	6.4	2	2121	64			
128390	· 50	60	10	4	8	1	0.01	1	5.2	4	3108	239			
128391	60	70	10	5	1	1	0.01	1	1.2	6	4701	169			
128392	70	80	10	6	1	1	0.01	1	0.1	1	750	205			
128393	control s	ample		1	347	1	0.01	1	12.5	3	31	2			
128394	80	90	10	5	11	1	0.01	1	0.1	1	220	155			
128395	90	99	9	5	35	1	0.01	1	0.1	1	1422	242			
128396	99	104.5	5.5	3	29	1	0.01	1	21	1	986	46			
128397	104.5	114.4	9.9	4	18	1	0.01	1	6.3	1	1105	115			
128398	114.4	118	3.6	3	15	1	0.01	1	0.8	1	713	96			
128399	118	118.7	0.7	1	26	16	0.01	1	0.4	4	36	9			
128400	118.7	120.1	1.4	3	15	1	0.01	1	0.8	1	591	95			
128420	170	180	10	1	65	15	0.01	1	0.9	1	22	3			

,

Hole Silver Queen 96S-5

To test the Cole Creek Fault, south of the Borrow Pit zone.

Northing: Cole Creek Grid 0+15 S 4+35 E

Easting:

155°

Azimuth: Dip:

-45°

Depth: 445 feet

Drilled May 20-21, 1996
Drilled by: Beaupre Drilling
Logged by: L. Caron
Core stored in shop at mine site.

Inte	rval	Rock type	Description				Sample	
From (feet)	To (feet)			Alteration	Mineralization	Number	From (feet)	To (feet)
0	20'	overburden						
20	155	Fsp Porph Tuff	Fine-med crowded fsp porph, 2 fsp, 1-white, 1-buff. 50% fsp phenos, avg 1mm in fng mtrx. Fsp clay alt'd. Perv clay alt'n + silic'n.		2-5% py - diss and vnlts. Also cm scale coarse	128421	20	30
		-	20 - 60' Light grey-yellow colour. Py-qtz vnlts dom @ 50° to C/A, but some weak stockworking. Vnlts have narrow alt'n selveges, fng, v. hard, grey. Larger vnlts=larger selveges. Silic/Albite? Patchy rusty fsp - surface weathering. Minor carb vnlts, Minor black chl-Mn fracs and dendrites. Locally bx with fsp porph frags in silica py healed mtrx. ie. @ 32.5 - 33' 34' 6" bx zone, vuggy qtz/py, 20% coarse py 35.5' 1.5" qtz vn with 20% coarse py + sphal @ 40°	20 - 60' seric-qtz-py. 15-20% silic, weak stockwork - py (+qtz) vnlts avg 25/ft. Dom vnlt direc 50°. Silic/Albite selveges to 1cm on vnlts	y vnlts 32.5 - 36 zone of bx, >> py vning, qtz bx zones. Avg 15% py.	128422	40	50
			to C/A			128424	50	60
			36' 1" irreg massive py vn with qtz			128425	60	70
			60 - 90' Sim to above but less silic'd, qtz-py frac density becoming less, to avg of 15/ft. 50° is still dom direction of vning, but weak stockwork, esp low angle set @ 0-10° to	60 - 90' weak silic mtrx 10- 15%, fsp saus. Py	60 - 90' 2% diss py + vnlts (+/- qtz)	128426	70	80

	above. Alt'n of fsp Outside of selvege	rey alt'n selveges (albite?) to vnlts, as is most prom feature of alt'n selveges. fsp are buff, inside bluey-white, both soft, il-Mn fracs as above.	(+qtz) vnlts, avg 15/ft, dom @ 50°. Alt'n selveges to vns as above.		128427	80	90
.	68 - 68.5' Fng g fine silic py grey m	rey fragmental zone with 20% clasts in trx @ 60°.					
	88' small sprays	of black radiating needles - tourmaline??					
		grey fsp porph as above, but texts ter, more perv clay. Again, < qtz-py g 5-10/ft.	90 - 111' argillic alt'd. Fsp saus, mtrx clay alt'd.	90 - 111' 2% diss py	128428	90	100 -
	@ 110.5' ½" py/s	phal/carb vnlt @ 25° to C/A	Minor qtz py vnlts, avg 5-10/ft.		128429	100	110
	with >> qtz/py vnlts	r change to paler grey, silic'd fsp porph Good stockworking, avg 20/ft with se py vns, dom @ 40° which cut earlier	111 - 127.5' Silic'd, Appr 15%. Fsp saus. Good	111 - 127.5 2 - 5% py - diss & vnlts, common	128430	110	120
	narrow qtz-py fracs coarse py vns withi	and also blurp out along them (9 of these in this interval)/	stockwork, py (+ qtz) vnlts avg 20/ft.	coarse py vns to 2".	128431	120	130
		rey but softer than above. << py/qtz . Porph texts starting to get blurred by	perv clay, saus fsp. Py-qtz vnlts 10/ft.	127.5 - 138' 2-5% py, diss & minor vnlts l coarse dodec py	128432	130	140
	131 - 132.5 Dar perv clay	ker grey, v blurred porph texts, still soft,		vns with spahl, vuggy xtalling qtz to .5", @ 30° to			
	0.5", @ 30° to C/A.	this zone, 6 coarse dodec py vns up to Vuggy vns with xtalline terminated qtz ese cut earlier qtz-py vnlts.		C/A ie. 131', 133.5', 135.5', 138'			
		rey silic'd fsp porph with py/qtz vnlts, rection of 50° to C/A, avg 20/ft.	138 - 155.5' weak-mod silic, fsp saus, py-qtz vnlts	138 - 155.5' 2% py, diss & vnlts. Rare narrow	128433	140	150
			with alt'n selveges as	crse vuggy py-qtz	128434	150	160

•

•

				above, dom dir 45- 60°, avg 20/ft.	vnlts. Min black flecks - sphal?			
155	188'	Fault zone	Pale grey gouge with 70% bx clay alt'd fsp porph frags within. At upper contact is 1" dark grey py gouge zone @ 25-30° to C/A. 159 - 188 Pale grey perv clay alt'd fsp porph with numerous narrow gougy zones @ 40-70°, porph text becoming blurred by perv clay. V minor py-qtz vnlts. @169' @40°, 3mm black sooty py vn 171 - 172.5 Pulaskite Dyke Strongly bleached, buff-pale pink, intramineral dyke @ 25° to C/A. V soft, cheesy, cut by narrow black py-qtz vnlts, dom parallel to contact.	155.5 - 188' str argillic alt'n	155.5 - 159' minor py 159 - 188' 2-5% py - diss & vnlts	128435 128436 128437 128438	160 contr 170 180	170 180 190
188	278	Fsp Porph Tuff	188 - 203' Med grey colour, clearer fsp porph text than above and somewhat softer. Still minor gougy zones, 30-55° to C/A. Less intense argillic altn. No stockworking. 190 - 195' grey banding @ 20° - unusual. Not dt py/qtz vnlts or alt'n envelopes to these. Darker grey bands, up to 1 cm across, no text difference, but mtrx darker. Sim hardness.	188 - 203' weak arg alt'n	188 - 203' 1% py - diss and rare vnlts.	128439 128440	200	210
			203 - 224' Yellow-grey fsp porph, distinct porph texts, fresher than above, locally fsp green - chloritic.	203 - 224' weak argillic alt'n	2% diss py + rare vnlts.	128441	210	220

Γ	1		@ 210.5 2" bladed barite vn @ 45° to C/A.		I			T
			216 - 218' - Fault zone. Gougy and str argillic alt'n zone @ 30°	216 - 218' str arg alt'n/gouge				
			224 - 237' Grey fsp porph as above with >> perv clay alt'n and increased py/qtz vnlts, avg 5/ft. Minor gougy zones. @ 233' ½" qtz/coarse py vn @ 70° to C/A with 2" alt'n envelope.	224 - 237' mod argillic alt'n with increased py/qtz vnlts from, avg 5/ft	224 - 237' 2% py - diss & vnlts			
			237 - 238.5' Fault Zone strong gouge	:				
			238.5 - 265.5 'Pulaskite' dyke Fsp porph, gen strongly bleached, soft. Grey-maroon where unbleached. Cut by numerous clay-carb vnlts, dom @ 45°, with bleached envelopes.	;				
			265.5 - 271' Contact Phase as above. Grey fsp porph, weak silic'n with py vnlts dom @ 20°, also late ones xcutting this set, with alt'n envelopes. Vnlt density 2-5/ft. Alt'n increases adj to fault/dyke zone above. Some flecks of black metallic mineral (sphal?).	265.5 - 271' weak silic'n. 5/ft py vnlt density. Some flecks black min (sphal?)	265.5 - 271' 2% py - diss & vnlts		,	
			@ 271' @ 15°, 1" coarse dodec py vn 271 - 278' Coarse bx with 60% frags of minz'd fsp porph and contact phase, 1-6 cm, in fng pyritic mtrx. Pebble milled bx.		271 - 278' 5% py			
278	445	Close packed	278 - 310'	278 - 310'	278 - 310'	128446	285	295
210	443	Fsp Porph Tuff (or possible	Fine grained, massive, grey porphyritic tuff, weak argillic alt'n. Rare rem mafic phenos (px) visible. Locally str black flecks. Minor py vnlts. Rare gougy zones.	weak argillic alt'n	2-3% py - diss & rare vnlts	120440	263	273
		intrusive?)	,,			128447	295	305

TVI

.

1

					,	
	@290 - 290.5 grey gougy zone @ 45°			128448	305	315
	310 - 400'	<u>310 - 400'</u>	310 - 400'	120440	303	313
1	Massive, paler grey, fine grained porph tuff, sim to above	weak argillic alt'n	2-5% diss py	{	1	
	but with weak-mod well developed banding @ 40° to C/A			128449	315	325
1 1	(ie near vertical). Rare py vnlts, dom @ 45°, the majority of	l	j	128450	325	335
1 1	these are coarse and look like the late set, some have	1		128451	335	345
1 1	bleached alt'n selveges. Locally get black min as flecks.			128452	345	355
1 1	0.447		1	128453	355	365
]] [@ 357' 1/2 " py/sphal/carb vnlt @ 45°	1		128454	365	375
1 1 1	@ 272' 6" by some with 100/ sooms dedoc my late of	1	1	128455 128456	375 385	395
1 1	@ 373' 6" bx zone with 10% coarse dodec py, lots of black min, minor sphal + qtz.			128457	395	405
1 1	black littli, littlior spilat + qtz.		}	120437	393	1403
	@ 386' 1" gouge zone @ 75°			}		
	@ 395.5 1" gouge zone @ 70°]
	400 - 424.5			İ		
]	Massive, grey equigranular close packed fsp xtal tuff (or	400 - 424.5	400 - 424.5	128458	405	415
1 1	intrusive?). Good equig texts. Rare frags (xenoliths).	mod argillic alt'n	2% diss py	128459	415	425
	Argillic alt'n >> d.t. faults @ 403.5, 424'. Min qtz + py/qtz)	}
1 1	vnlts @ 30-50° to C/A.		!	1	١.	i [
1 1						
	403.5 - 404.5 Gouge & v strong clay alt'n @ 50° to C/A			ļ		
	424.5 - 428' FAULT ZONE			}		
1 1	grey fault gouge & frags of tuff		1		1	l i
1 1	g.by man gongs as mags of tan			128460	425	435
1 1	428 - 440'	428 - 440'	428 - 440'	128461	435	440
l l	Massive grey intrusive as in 400 - 424.5'	mod argillic alt'n	2% diss py)]
				(
	440 - 442.5 Amygdaloidal Dyke.					, !
	Maroon-grey, fng, amygdaloidal dyke, strongly bleached at					
	contacts, @ 45-60° to C/A.				j	
						ĺ
			J		L	

		442.5 - 445 Massive grey tuff as in 400 - 424.5, but v. weak silic'n.	442.5 - 445' v weak silic	442.5 - 445' 2% diss py	128462	442.5	445
ļ		@ 443' 1" grey gouge zone @ 45° to C/A.					
į							

.

										· · · · · · · · · · · · · · · · · · ·															—т	
Drill Hole 96	S-5 Borr	ow Pit a	os May	20.21 10	06																					
Dia riole so	3-3, 0011	OWFILE	ca, iviay	20-21, 15	,30																					-
Sample	From	То	Length	AG	AL	AS	BA	BE	В	CA	CD	co	CR	CU	FE	GA	к	LI	MG	MN	мо	NA	NI	P	PB	SB
Number	feet	feet	feet	PPM	%	PPM	PPM	PPM	PPM	%	PPM	PPM	PPM	PPM	%	PPM	%	PPM	%	PPM	PPM	%	PPM	PPM	PPM	РРМ
128421	· 20	30	10	0.5	0.37	1	88	0.1	1	0.28	0.1	11	37	16	4.96	1	0.19	1	0.02	351	8	0.01	7	850	36	6
128422	30	40	10	2.6	0.18	1	58	0.1	1	0.42	0.1	13	40	30	8.42	1	0.09	1	0.06	1548	13	0.01	12	750	166	10
128423	40	50	10	1.3	0.25	1	118	0.1	1	1.27	0.1	10	34	22	3.91	1	0.15	1	0.14	2300	10	0.01	11	820	57	6
128424	. 50	60	10	0.8	0.33	1	117	0.1	1	3.08	0.1	10	33	19	3.96	1	0.17	2	0.32	2571	8	0.01	12	1010	23	5
128425	60	70	10	0.8	0.26	1	108	0.1	1	3.02	0.1	9	35	24	3.75	1	0.14	1	0.29	1880	7	0.01	10	900	37	5
128426	70	80	10	1.2	0.25	1	156	0.1	1	2.36	0.1	7	32	21	3.64	1	0.16	1	0.34	4982	7	0.01	16	1020	269	6
128427	80	90	10	6	0.23	1	143	0.1	1	2.01	0.1	9	39	99	4.34	1	0.15	1	0.25	5922	8	0.01	17	880	366	9
128428	90	100	10	2.9	0.3	1	122	0.1	1	1.07	0.1	9	39	29	3.87	1	0.21	1	0.14	8166	7	0.01	21	1080	657	10
128429	100	110	10	4.1	0.22	1	123	0.1	1	0.83	0.1	9	39	59	4.08	1	0.17	1	0.07	3737	7	0.01	13	1100	920	15
128430	110	120	10	2.9	0.27	1	126	0.1	1	0.59	0.1	8	26	25	3.88	1	0.17	1	0.05	2371	7	0.01	10	890	777	10
128431	120	130	10	23.4	0.19	1	60	0.1	1	0.42	0.1	10	45	96	8.69	1	0.15	1	0.03	667	11	0.01	9	750	355	13
128432	130	140	10	4.5	0.23	1	97	0.1	1	0.43	0.1	11	33	83	5.66	1	0.15	1	0.03	641	9	0.01	- 8	1090	227	15
128433	140	150	10	4.2	0.24	1	72	0.1	1	0.61	0.1	9	39	82	3.66	1	0.16	1	0.1	1368	13	0.01	8	1110	2235	14
128434	150	160	10	3	0.24	1	54	0.1	1	1.06	0.1	10	31	233	4.49	1	0.16	2		4977	11	0.01	17	1020	722	15
128435	160	170	10	1.4	0.27	1	50	0.1	1	2.42	0.1	9	33	19	4.16	1	0.19	1	0.42	6317	10	0.01	19	1020	463	6
128436	control sa	mple		0.1	0.26	173	35	0.1	4	15	0.1	4	16	9	0.48	10	0.03	10		618	4	0.01	9	520	12	7
128437	170	180	10		0.24	1	108	0.1	1	2.15	0.1	14	26	21	5.47	1	0.16	2	0.59	2895	11	0.01	15	1080	165	4
128438	180	190	10		0.28	15	68	0.1	1	1.56	0.1	10	31	53	3.56	1	0.19		0.37	2936	10	0.01	12	1140	56	- 5
128439	190	200	10		0.23	36	56	0.1	1	1.42	0.1	10	29	445	4.79	1	0.17		0.36	4391	10	0.01	14	1130	138	11
128440	200	210	10		0.29	1	81	0.1	1	0.84	0.1	10	34	374	5.16		0.2		0.2	10000	13	0.01	42	1150	769	64
128441	210	220	10		0.24	8	52	0.1	1	1.47	0.1	8	47	135	4.17		0.2	2	0.37	5422	11	0.01	16	1120	416	17
128442	220	230	10		0.28	59		0.1	1	2.04	0.1	9	27	468	4.66		0.21		0.57	5303	11	0.01	16	1100	62	
128443	230	238.5	8.5	4.5	0.28	1	88	0.1	1	1.45	0.1	10	38	561	5.49		0.21		0.31	9800	11	0.01	26	1150	313	15
128444	265.5	275	9.5	3.3	0.23		58	0.1	1	1.05	0.1	14	33	88	8.13		0.16		0.18	1776	17	0.01	12	1070	299	28
128445	275	285	10	2.5	0.27	1	71	0.1	1	1.62	0.1	11	34	46	5.54	1	0.17	- 2	0.39	3771	14	0.01	14	1250	301 242	
128446	285	295	10	2	0.28		74	0.1	1	2.16	0.1	9	29	86	4.68		0.18		0.6	6394	11	0.01	20	1120	385	13
128447	295	305	10	4.1	0.26		56	0.1		2.02	0.1	10	28	229	5.45		0.2		0.53	6753	11	0.01	22	1110	108	6
128448	305	315	10	1.6	0.2		54	0.1	!	2.41	0.1	9	29	47	4.32		0.17		0.63	7779 3807	11	0.01	14	1010	118	7
128449	315	325	10	1.5	0.21	1	81	0.1	1	1.47	0.1	10	29	33	5.18	!	0.17		0.36	3607	''	0.01	14]	1010	110	

								·	I		Γ		 -1		
Drill Hole	96S-5,	Borrow P	it area, N	lay 20-21	, 1996										
Sample	From	То	Length	SN	SR	TH	TI	U	٧	W	ZN	Au-fire	Assay Au	Assay Au	Assay Zr
Number	feet	feet	feet	PPM	PPM	PPM	%	PPM	PPM	PPM	PPM	PPB	g/tonne	oz/ton	. %
128421	. 20	30	10	. 3	129	1	0.01	1	1.1	1	128	47		·	
128422	30	40	10	5	86	1	0.01	· 1	0.1	4	4009	110			
128423	40	50	10	3	1503	1	0.01	. 1	1.4	1	471	50			
128424	50	60	10	3	1442	1	0.01	1	3.6	1	184	36			
128425	60	70	10	3	581	1	0.01	1	3.5	1	181	37			
128426	70	__ 80	10	3	392	1	0.01	1	2.8	4	1888	47			
128427	80	90	10	3	648	1	0.01	1	1.9	5	2640	68			
128428	90	100	10	3	40	1	0.01	1	3.1	7	3317	44			
128429	100	110	10	3	26	1	0.01	1	1.6	5	2665	68			
128430	110	120	10	3	25	1	0.01	1	1.1	5	2727	71			
128431	120	130	10	5	10	1	0.01	1	0.1	3	3163	227			
128432	130	140	10	3	28	1	0.01	1	0.3	10	5434	67			
128433	140	150	10	3	19	1	0.01	1	1.3	13	5619	50			0.53
128434	150	160	10	. 3	20	1	0.01	1	2.2	5	3028	58			0.55
128435	160	170	10	3	34	1	0.01	1	3.3	4	2374	27			
128436	control s	ample		1	258	1	0.01	1	10.4	1	33	1			
128437	170	180	10	3	70	1	0.01	. 1	21.8	1	847	23			
128438	180	190	10	2	18	1	0.01	1	3.3	1	615	40			
128439	190	200	10	3	13	1	0.01	1	2.1	1	807	118			
128440	200	210	10	4	13	1	0.01	. 1	4.1	4	2417	133			
128441	210	220	10	3	80	1	0.01	1	3	5	2413	79			
128442	220	230	10	3	11	1	0.01	1	3.2	1	264	84			
128443	230	238.5	8.5	4	19	1	0.01	1	3.1	3	2166	86			
128444	265.5	275	9.5	5	13	1	0.01	1	8.0	1	999	57			
128445	275	285	10	3	11	1	0.01	1	2.1	1	969	37			
128446	285	295	10	3	12	1	0.01	1	3.7	1	1718	49			
128447	295	305	10	3	7	1	0.01	1	3.2	2	2325	139			
128448	305	315	10	3	7	1	0.01	1	3.9	1	1277	40			
128449	315	325	10	3	10	1	0.01	1	2.2	1	1070	52			

)

Drill Hole 96	S-5, Bor	row Pit a	rea, May	20-21, 1	96																					
Sample	From	To	Length	AG	AL	AS	BA	BE	BI	CA	CD	СО	CR	CU	FE	GA	к	LI	MG	MN	МО	NA	NI	Р	PB	SB
Number	feet	feet	feet	PPM	%	PPM	PPM	PPM	PPM	%	PPM	PPM	PPM	PPM	%	PPM	%	PPM	%	PPM	PPM	%	PPM	PPM	PPM	PPM
128450	325	335	10	3.6	0.21	1	32	0.1	1	1.44	0.1	9	36	176	5.11	1	0.18	2	0.34	3605	9	0.01	12	1100	309	17
128451	335	345	10	0.9	0.26	1	42	0.1	1	1.94	0.1	9	35	17	4.76	1	0.19	2	0.59	3707	9	0.01	15	1070	53	3
128452	345	355	10	1.4	0.2	1	55	0.1	1	2	0.1	9	30	35	4.87	1	0.16	2	0.55	5030	11	0.01	18	1080	149	5
128453	355	365	10	2.1	0.27	1	51	0.1	1	1.67	0.1	10	32	174	5.02	1	0.21	2	0.4	4421	11	0.01	15	1110	176	11
128454	365	375	10	2	0.22	1	79	0.1	1	1.85	0.1	9	41	63	5.41	1	0.19	1	0.47	4512	11	0.01	15	1070	242	7
128455	375	385	10	1.7	0.26	3	98	0.1	1	2.17	0.1	9	26	25	3.87	· 1	0.21	2	0.55	4861	9	0.01	15	1030	121	5
128456	385	395	10	1.7	0.21	1	59	0.1	1	2.18	0.1	9	27	49	4.33	1	0.2	2	0.51	5962	12	0.01	18	1190	127	6
128457	395	405	10	1.9	0.24	14	72	0.1	1	2.6	0.1	9	30	48	3.71	1	0.16	2	0.69	5562	10	0.01	16	1150	153	4
128458	405	415	10	1.5	0.22	57	53	0.1	1	3.12	0.1	9	36	202	3.46	1	0.11	3	0.8	4498	10	0.01	15	1260	39	3
128459	415	425	10	5.4	0.27	14	68	0.1	1	3.67	0.1	8	28	220	3.64	1	0.16	1	0.66	5378	9	0.01	17	1230	226	3
128460	425	435	10	2.8	0.22	1	78	0.1	1	2.29	0.1	9	35	177	4.79	1	0.18	1	0.57	7833	10	0.01	22	1230	215	5
128461	435	440	5	2	0.24	1	82	0.1	1	1.73	0.1	9	30	64	5.44	1	0.17	1	0.34	10000	14	0.01	28	1200	250	13
128462	442.5	445	2.5	1.9	0.25	89	176	0.1	1	3	0.1	7	27	464	3.22	1	0.17	1	0.76	8764	10	0.01	25	1280	139	6

Drill Hole	96S-5, I	3orrow P	it area, M	lay 20-21	, 1996										
Sample	From	To	Length	SN	SR	TH	T	U	٧	W	ZN	Au-fire	Assay Au	Assay Au	Assay Z
Number	feet	feet	feet	PPM	PPM	PPM	%	PPM	PPM	PPM	PPM	PPB	g/tonne	oz/ton	9
128450	325	335	10	3	6	1	0.01	1	2	1	504	71			
128451	335	345	10	. 3	6	1	0.01	1	3	. 1	514	16			
128452	345	355	10	3	7	1	0.01	1	2.7	1	781	26			
128453	355	365	10	3	7	1	0.01	1	2.9	1	1311	49			
128454	365	375	10	3	12	1	0.01	1	2.7	1	1336	228			
128455	375	385	10	3	15	1	0.01	1	4.8	1	308	122			
128456	385	395	10	3	12	1	0.01	1	4.1	3	2092	47			
128457	395	405	10	3	17	1	0.01	1	5.2	1	1199	39			
128458	405	415	10	3	21	1	0.01	1	6.4	1	171	72			
128459	415	425	10	3	27	1	0.01	1	5.7	1	997	291			
128460	425	435	10	3	11	1	0.01	1	3.1	1	1295	118			
128461	435	440	5	3	12	1	0.01	1	2.5	5	2738	77			
128462	442.5	445	2.5	3	26	1	0.01	1	4.8	1	603	85			

•

,

.

APPENDIX 2 ANALYTICAL RESULTS

COMP: NEW NADINA EXPL LID

MIN-EN LABS - ICP REPORT

PROJ: SILVER QUEEN 8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 FILE NO: 65-0015-RJ1+2+3 DATE: 96/05/31

TEL:(604)327-3436 FAX:(604)327-3423 ATTN: LINDA CARON * rock * (ACT: F31) AL AS BA CD CO CR NA SB SAMPLE BE BI CH FE GA LI MG HΟ HI 89 54 SR TH T! Au-fire PPM PPM PPK % PPH % PPH PPN PPM PPM NUMBER PPH X PPM PPM PPM PPM PPN PPM PPM Z PPM PPM PPM PPM X PPM PPM PPM PPM PPB 128251 . 19 2.92 >100.0 11 149 4.27 .16 .79 >10000 29 .01 299 920 >10000 134 1 135 83 >10000 1960 .01 24 22.9 1.21 13 37 197 6.95 2 .18 6392 10 .01 128252 23.9 .27 80 33 .24 20 1510 448 45 2018 -01 34 .39 10 20 128253 62 286 4.11 16 4.26 .23 6 .73 3179 .02 13 1740 31 2 .1 3 117 .01 20.1 749 12 7 9 .01 128254T .29 1 124 2,36 25 6.75 .27 3 .72 8718 25 1600 .1 75 21 5 44 _01 1 15.2 317 327 23 51 128255 .9 .27 52 56 .89 . 1 14 8 6.30 .26 3 .22 >10000 10 .01 46 1630 637 10 31 _01 7.1 1222 81 10 .21 128256 8.2 .23 67 . 1 15 21 8.24 .06 >10000 12 -02 1350 1617 35 10 .01 4505 102 4.7 10 1282571 .34 22 126 .62 13 28 5 6.67 .24 3 .40 >10000 9 .02 32 1490 27 19 .1 441 .01 17.7 1208 38 1282587 56 226 1.22 12 27 4.28 1 .35 2 .29 >10000 -02 27 1250 373 .33 10 21 .01 1078 10 >200.0 .05 149 .76 >100.0 19 25 199 12.50 _17 >10000 38 .01 490 128259 9 1 .08 98 >10000 168 11 51 .01 1 11.4 248 > 10000 5060 128 122 15 27 18 4.95 .33 .30 >10000 11 .02 1282601 .31 1.61 .1 51 1630 894 33 16 .01 1 8.0 2912 144 .24 128261 4.1 .27 62 1.51 16 6.92 .29 8053 10 .02 621 27 .01 6.9 2659 73 128262 .46 31 496 4.52 11 18 10 3.73 .73 4043 6 .04 14 1690 89 3 . 1 .01 26.2 400 .63 >10000 128263 J .33 11 82 2.52 . 1 11 36 6.28 .29 3 .03 27 1550 384 22 49 15.9 740 .01 . 1 128264 .24 193 .59 .48 .1 11 32 22 7.13 .25 5 .21 >10000 11 .02 56 1610 1399 39 5 9 2774 61 1 .01 7.7 99 128265 2.8 .17 223 14 22 7.66 2 .09 >10000 14 .02 31 1520 1885 40 29 >10000 41 46 1 .01 4.8 1.2 .49 >100.0 18 53 904 12.26 .19 39 .02 3.8 128266 128267 141.1 .17 406 13 _07 >10000 55 1100 6136 180 10 29 .01 10.4 245 >10000 540 2 .11 5 .25 12 45 .28 68 55 .58 15 6.34 .11 >10000 10 .02 38 1740 975 - 33 .01 5.7 2559 33 29 21 19 1680 128268 .42 142 485 4.03 11 3.71 7021 .04 164 152 .01 17.4 595 37 54.0 10 1282697 .34 82 414 1.04 11 27 18 6.09 .26 6 .49 >10000 10 .03 40 1190 766 34 195 .01 2074 1 33.2 66 128270 44.0 .37 1 298 1.48 . 1 12 31 6.03 1 .33 5 .53 >10000 11 .03 68 1220 1201 49 5 109 .01 1 28.9 2623 134 1.24 .1 32 124 -17 .27 >10000 -02 218 128271 .14 39 20 16 6.16 30 820 >10000 173 798 .01 14 20.2 69 > 10000 1840 20 12 2114 2.23 13 5.17 .59 >10000 10 .03 .01 128272 .1 .32 162 243 .36 59 1670 1352 32 100 20.4 21 20 48 13 7.56 .35 .34 >10000 .02 .34 3 13 66 1460 1.6 128273 144 91 .76 788 39 6 58 .01 1 17.0 2424 69 128274 .10 257 42 13 287 5.14 2 .11 >10000 20 .01 3.81 >100.0 41 .11 93 310 10000 147 125.5 11 6 1116 -01 9.7 190 >10000 1255 31 4.8 128275 .28 53 125 .70 -1 13 15 7.63 1 .27 1 .42 >10000 11 .02 44 1280 869 31 6 63 1 .01 1 16.2 10 4106 51 2.3 1.34 >100.8 9 32 .01 140 4.42 .21 .13 >10000 .01 128276 94.9 _17 370 43 14 81 790 2602 61 5 1143 7.9 73 >10000 1680 50 212 5.00 .03 -856 -01 16 128278 .29 2.13 12 28 6.90 -26 .72 8235 9 .02 23 1490 1 90 6 185 5 42 .01 16.6 554 10 128279 .34 38 .95 13 29 38 8 7.16 .28 1 .53 >10000 10 .02 43 152D 474 27 13 96 -1 1 .01 1 18.0 1449 18 .26 299 .55 142 8.25 1 .25 .10 7342 10 .02 128280 1.4 38 22 1760 1545 36 2 23 3.4 1 .01 1 6.1 964B 33 .52 >100.0 128281 >200.0 .21 903 30 35 62 5653 13.41 .20 .02 570 51 .01 18 1340 7711 420 10 24 2.8 268 >10000 114 .01 .20 299 42 .50 15 37 132 8.49 .23 .01 460 17 11 1420 128282 8.4 .02 3686 -01 2.2 55 > 10000 179 10 1282831 .34 232 143 .88 13 34 42 5.67 .34 .27 >10000 11 .03 79 1620 1665 1 15.B .1 .1 42 62 .01 15 4289 1420 128284 .29 71 401 2,40 8 22 8 4.34 .27 .56 >10000 7 20. 3 10 6.2 . 1 27 1430 396 83 .01 1 10.2 1437 88 52 .59 6.43 .21 >10000 89 128285 . 39 89 79 16 16 10 .02 43 1620 999 31 5 1 .01 1 8.5 8 3.5 3200 .1 .76 8.97 128286 .22 29 67 19 51 18 -19 .08 >10000 15 -02 32 1800 1089 31 5 33 .01 6.3 9 4217 215 .76 57 14 21 1990 128287 .30 69 13 14 8.88 .20 .12 7594 .03 738 27 .01 1 12.1 28 2273 24 2360 128288 .29 117 1.08 8 36 10 5.91 1 .18 .13 9305 11 .04 457 25 174 .01 1 12.5 1194 .1 1.30 128289 .38 1 105 .1 3 2.09 .1 1 28 1 .19 _03 387 2 .04 2 1730 3 2 230 .01 22 . 1 1 16.7 128290 .3 .27 1 61 3.45 24 .40 1 .14 .01 72 1 .03 1 1720 1 283 1 .01 1 5.8 8 10 1.76 .02 222 128291 .34 1 113 1.99 21 .17 127 .04 2 1380 229 19 .01 27.2 .27 .02 56 10 128292 97 2.03 .1 1.86 . 12 .04 2 1070 306 .01 20.9 .27 1.33 25 1 140 8 3.72 1 .16 .24 803 5 .04 135 10 128293 2 8 890 .01 1 19.3 82 10 32 4.09 .32 825 5 .04 2 128294 .24 201 _ 1 1.16 12 .11 8 860 181 .01 18.2 86 .18 128295 .38 148 2.12 .1 6 18 2 3.15 1 .18 522 4 .05 5 1680 3 287 1 .01 1 28.9 59 10 2.92 23 5 1.59 -19 .05 182 4 .06 128296 .41 104 -1 2 3 1700 3 326 .01 1 20.8 12 2.74 2.54 5.44 10 .11 4 .05 .33 180 1.41 17 . 16 560 128297 1120 3 276 .01 1 20.7 26 17 3217 11 . 18 -26 .04 11 1990 36 133 245 20 3 128298 .30 42 122 . 1 28 6 278 .01 1 8.1 .39 Ž 71 4.34 14 30 67 . 17 .97 4503 .03 149 . 1 19 1690 18 43.7 128299 1 .01 10 17 32 .91 ż 240 128300 3 119 4.26 42 5.23 . 16 3920 8 .03 18 1730 3 2 274 -41 . 1 . 1 1 6 1 .01 1 46.3 10 25 30 .77 2862 .04 128301 .29 98 2.99 .1 21 4.81 1 .20 3 В 17 1410 3 231 .01 28.1 178 3 10 128302 128303 L .31 229 2.80 17 27 30 3.98 .20 .58 2086 6 .03 14 1680 3 267 .01 1 26.0 3 117 3046 8 5 1 156 2,63 .1 19 20 73 4.65 1 420 .64 .03 16 1780 10 155 1 .01 1 25.2 188

Υï ø

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS - ASSAYERS - ANALYSTS - GEOCHEMISTS

VANCOUVER OFFICE: 82B2 SHERBROOKE STREET VANCOUVER, B.C. CANADA V5X 4EB TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TEL (504) 847-3004 FAX (604) 847-3005

Assay Certificate

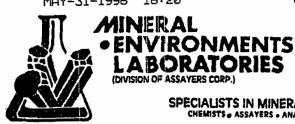
6S-0015-RA1

Company: NEW NADINA EXPL LTD

Date: MAY-31-96

Project:

SILVER QUEEN


Atm: LINDA CARON

We hereby certify the following Assay of 24 ROCK samples submitted MAY-24-96 by L. Caron.

Sample Number	Au-fire g/tonne	Au-fire oz/ton	Ag g/tonne	Ag oz/ton	Pb %	Zn %	
128251 128252 128253 128254 128255	2.18	.064			1.58	2.92	
128256 128257 28258 28259 128260	5.07	.148		7.41		9.15	
128261 128262 128263 128264 128265						1.19	
128266 128267 128268 128269 128270			179.0	5.22	. 62	9.28	
128271 128272 128273	1.99	.058			5.30	2.27	
128274	1.40	.041	134.0	3.91	2.21	7.05	

Certified by_

Me

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS . ASSAYERS . ANALYSTS . GEOCHEMISTS

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C. CANADA V5X 4EB TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TEL (604) 847-3004 FAX (604) 847-3005

Assay Certificate

6S-0015-RA2

Date: MAY-31-96

Company:

NEW NADINA EXPL LTD

SILVER QUEEN

Project: Aun:

LINDA CARON

We hereby certify the following Assay of 24 ROCK samples submitted MAY-24-96 by L. Caron.

Number g/tonne oz/ton g/tonne oz/ton \$ \$ 128275 128276	Zn	Pb	Cu	Ag	Ag	Au-fire	Au-fire	Sample
128276	.	*	¥	oz/ton	g/tonne	oz/ton	g/tonne	Number
128276			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					128275
128277 128278 128280 128281	2.66					.052	1.77	
128280 128281								128277
128280 128281 128282 128283 1.73 128284 128285 128286 128287 128288 128289 128290 128291 128292 128293 128294								128278
128281 240.0 7.00 .581 .75 128282 128283 1.73 .050 128284 128285 128286 128287 128288 128289 128299 128291 128293 128294 128295 128295								128279
128281 240.0 7.00 .581 .75 128282 128283 1.73 .050 128286 128287 128288 128289 128290 128291 128292 128293 128294 128295 128295	. 95		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*********				128280
128282 128284 128285 128286 128287 128288 128289 128290 128291 128292 128293 128294	9.90	. 75	.581	7.00	240.0			
1.28283 1.73 .050 128285 128286 128287 128288 128289 128290 128291 128292 128293 128294 128295	2.15							
128285 128287 128288 128289 128290 128291 128292 128293 128294 128295 128296						.050	1.73	
128286 128288 128289 128290 128291 128292 128293 128294 128295 128296								128284
128286 128288 128289 128290 128291 128292 128293 128294 128295 128296	.,			~~~~~				128285
128287 128289 128290 128291 128292 128293 128294								
128288 128290 128291 128292 128293 128294 128295 128296								
128289 128290 128291 128292 128293 128294 128295 128296								
128291 128292 128293 128294 								
128291 128292 128293 128294 								128290
128292 128293 128294 128295 128296								
128293 128294 128295 128296								
128294 128295 128296								
128295 128296			,					
128296								
128298						•		
149439								149470

Certified by

COMP: YEW MADINA EXPL LTD

PROJ: SILVER QUEEN

AT.N: LINDA CARON

MIN-EN LABS --- ICP REPORT 8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

TEL:(604)327-3436 FAX:(604)327-3423

FILE NO: 65-0018-RJ1+ DATE: 96/05/3 - + rock * (ACT:F31 D

																															: ⋾
SAMPLE NUMBER	AG PPN	AL %	AS PPH	BA PPM	BE PPH	BI PPM	CA Z	CD PPM		PPK P		FE G	H	K LI X PPH	NG X	PPH	MO PPH	% F	NI PPH	P PPM			SN PPM P	SR PN P	TH T	I U % PPM	PPK	/ ₩ PPM	2H PP H	Au-fire PPB	- בַּ
128304 128305 128306 128307 128308	3.4 .1 2.2 .6 2.7	.28 .28 .25 .30	1 1 1 1	102 147 154 90 77	.1	1 1 1	.91 1.02 2.56 1.31	.1 .1 .1	9 9 10	22 2	59 4 03 3 69 5	.11 .53 .89 .37	1 .2 1 .2 1 .1 1 .2 1 .2	4 1 7 1 5 1	.23 .68 .36	4829 4624 9428 3912 2754	30 10 33	.01 .01 .01	25 1 14 1	130 020	118 111 543 117 193	10 5 5 5 32	33335	3 10 15 12	1 .0 1 .0 1 .0 1 .0		7.7 9.3 8.2 6.0 2.7	10	6550 1168 3830 796 998	127 31 103 65 120	955T-
128309 128310 128311 128312 128313	1.6 .1 .1 1.2	.27 .25 .26 .27	1 1 1	62 67 72 69 63	.1 .1 .1	1 1 1	.50 .61 .56 .52	.1 .1 .1	10 10 9 10 11	23 4 19 1 22 1 23 1	24 7 59 6 25 6 02 7	7.76 3.72 3.90 7.72 3.37	1 .2 1 .2 1 .2 1 .2	2 1 1 1 6 1 5 1	.13 .16 .13	6149 8694 4389 5188	32 31 14 20	.01 .01 .01	17 23 15 15 17	860 030 020	235 152 86 93 190	32 24 24 26 30	5 4 4 5 5	1 3 1 1 1	1 .0 1 .0 1 .0	1 1 1 1 1 1 1 1	3.2 4.2 2.7 2.0	7 6 5	3230 3869 3817 3630 1291	212 150 92 204 125	+ - 0. 7.
128314 128315 128316 128317 128318	1.6 .2 2.3 1.9 1.6	.29 .34 .28 .25 .26	1 1 1	149 108 94 87 76	.1 .1 .1	1 1 1 1	.55 .47 .95 .73 .66	.1 .1 .1	9 8 10 10	36 1 19 2 21 1	45 4 26 6 21 6	.83 .71 .47 .80	1 .2 1 .2 1 .2 1 .2	5 1 4 1 3 1	.11	3947 7697 3091 2204 1323	14 18	.01 .01 .01	19 1; 13 1 9 1		142 124 69 29 27	11 10 25 22 23	3	19 4 11 3	1 .0 1 .0 1 .0 1 .0	1 1	4.7 4.7 6.9 1.3	7 8	3397 2962 2765 1092 3484	86 116 226 191 178	
128319 128320 128321 128322 128323	13.8 13.8 -1 -1 -3	-24 -01 -10 -28 -28	1 1 1 1	48 1 21 77 85	.1 .1 .1 .1	1 1 1 1	.38 .33 .19 .45 .56	.1 .1 .1 .1	12 20 14 12 8	51 8 30 57	38 >15 32 >15 31 6		1 .2 1 .0 1 .1 1 .2 1 .2	3 1 2 1 2	.05 .09 .01 .07	391 493 67 305 876	31 . 38 .	.01 .01 .01	17 10 10 10	950 10 260 950	42 327 1 10 96	23 97 25 23 30	6 17 9 3	1 1 1 3 13	1 .0 1 .0 1 .0 1 .0		.1 .1 .1 1.2 1.8	1 1 1	2077 3534 1160 416 155	163 410 98 87 151	
128324 128325 128326 128327 128328	1.7 3.7 .1 2.6	.36 .36 .38 .45 .38	1 1 1 1	76 76 79 100 108	.1 .1 .1 .1	1 1 1 1	.38 .43 .38 .39 .48	.1 .1 .1 .1	10 15 22 17 12	27 25 38 3	58 6 61 6 46 4	-55 -81 -85 -32 -08	1 .25 1 .26 1 .26 1 .25 1 .25	6 1 6 1 9 1	.07 .10 .08 .10	1598 559 376 631 516	39 34 20	.01 .01 .01 .01 .01	8 9 7 9 8 11	070 960 970 120 020	25 13 34 31 39	9 26 31 7 9		1 1 1 13 17	1 .0 1 .0 1 .0 1 .0 1 .0	1 1	2.3 1.0 1.0 2.3 2.4	1 1 1 1	123 97 191 214 248	149 211 295 92 181	בי הוא הוא
128329 128330 128331 128332 128333	2.9 .1 .4 1.5	.33 .14 .32 .31 .24	1 73 1 1	76 25 143 100 72	.1 .1 .1	1 5 1 1	.51 >15.00 .68 .65	.! .! .! .!	11 2 9 8 8	11 34 26	9 31 4 59 3	.63 .34 15 .05 .14		3 7 1 2 1 2		322 506 341 2886 2035	2 . 14 .		7 5 7 8 10 10	330 530 390 310 340	53 10 46 76 244	26 7 6 6 9	1 5	11 09 24 20 7	1 .0° 1 .0° 1 .0° 1 .0°		2.7 8.7 1.3 1.9	1 3 1 2	97 20 419 658 1261	443 4 56 96 143	Ö
128334 128335 128336 128337 128338	.3 .4 .1 6.9 25.8	.25 .28 .29 .24 .25	1 1 1 1 30	106 80 106 46 71	.1 .1 .1 .1	1 1 1 1	.69 .66 .61 .35 .38	.1 .1 .1 .1	9 7 9 9	28 2	23 3 34 4 35 5	.69 .25 .13 .44	1 .18 1 .20 1 .20 1 .18 1 .18	3 2	.12	3625 2356 2843 1331 1247	14 .	01 01 01	9 9 11 9 10 8	740 220 240 370 330	158 151 569 770 513	6 5 7 31 38	3	16 10 9 57	1 .01 1 .01 1 .01 1 .01	1	1.4 1.5 1.6 1.0	3 2 4 42 >	1647 775 2383 10000 4297	64 55 46 201 479	
128339 128340 128341 128342 128343	2.2 2.2 1.8 61.9	.28 .29 .25 .24 .02	1 1 1 1	101 78 131 103 37	.1 .1 .1 .1	1 1 1 1	.63 .64 1.03 .60 .09 >	.1 .1 .1 .1 100.0	8 11 11 9	27 16 25 34	60 4 42 4 70 4	.34 1 .72 1 .34 1 .47 1	. 19 1 . 20 1 . 19 1 . 19 1 . 03	2 2 2	.23	2930 1864 2875 1275 2821	8.	01 01 01	8 10 11 9 8 9		672	8 12 11 84	3 1		1 .01 1 .01 1 .01 1 .01 1 .01		1.7 1.4 1.6 .9	8 1 1 4 227 >	3307 1136 758 2361 10000	61 133 75 52 535	
128344 128345 128346 128347 128348	3.0 .4 .5 2.0	.22 .29 .31 .30 .48	1 1 1 1 8	179 156 118 156 235	.1 .1 .1 .1	1 1 1 1 20	.86 1.08 .44 1.34 2.70	.1 .1 .1 .1	8 13 9 13	26 6 24 5 21 3	60 2 56 4 31 3	.60 1 .53 1 .52 1 .19 1	1 .16 1 .16 1 .17 1 .17	5 5	.26 -11 -44	2520 2874 680 1824 1453	12 . 11 . 6 .	01 01 02 1	11 7 7 5	30 20 50 50 40	556 143 101 111 185	9 6 8 3	1 2	54 53 50 59	1 .01 1 .01 1 .01 1 .01	1 1	1.4 2.1 2.0 9.2 7.8	12 1 1 1	5194 477 322 466 1480	76 19 59 23 84	504
128349 128350 128351	1.6 2.0 .6	-30 -29 -23	1 1	125 83 91	.1 .1 .1	1 1	.77 .43 .48	.1 .1 .1	10 9 9	32 1	19 4	.56 1 .01 1 .42 1	1 .19	3	.17 .06 .08	1738 319 490	10 .	01 1 01 01	6 10	50 20 10	280 88 40	7 7 6	2 1	17	1 .01 1 .01 1 .01	1 1	1.8 1.1 .9	2 2 1	1349 1132 115	73 79 37	327 342
																															Ň

COMP: NEW HADINA EXPL LTD PROJ: SILVER QUEEN

ATTH: LINDA CARON

MIN-EN LABS -- ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

FILE NO: 6S-0018-RJ3+4

DATE: 96/05/31 3

* rock * (ACT:F31) =

I IN. LINUA W																												
SAMPLE NUMBER	AG PPM	AL X	AS PPN	BA PPM	BE PPM	B1 PPM	CA %	CD PPN	CO CI			GA PPM	X PP	M	IG MN % PPH	PPH	MA N % PP	N PI		PH P	SB S PM PP			71	PPH PPH		PPM	Au-fire PPB
128352 128353 128354 128355 128356	.4 1.2 1.5 77.2 1.7	.27 .32 .31 .25	1 22 1 316 13	72 71 96 87 114	.1	1 1 1 1 1	.30 1.03 .56 .65	.1 .1 .1 >100.0	7 3 9 2 8 2 10 3 9 2	6 36 4 44 5 1925	3.30 3.83 3.07 6.36 4.26	1 1	.18 .19 .18 .16 .17	1 .0 2 .2 1 .0 1 .0 2 .0	6 2641 9 886 9 1731	7 . 5 . 15 . 8 .	01 1 02 01 1 02	6 7: 5 7: 7 7:	0 3 50 2 50 2 50 2 70 1		6 7 8 8 11	1 1 2 2 1 3 4 3 2 1	7 1 2 1 3 1	.01 .01 .01 .01	1 1.0 1 2.4 1 1.9 1 1.8 1 1.2	3 4 1 169	1475 >10000 563	39 38 54 273 84
128357 128358 128359 128360 128361	1.2 2.2 4.1 3.9 1.9	.33 .28 .31 .29	1 1 21 1	91 100 90 124 115	.1	1 1 1	.28 .24 .23 .45	.1 .1 .1	9 3 10 2 8 3 10 2 11 3	9 180 5 320 8 149	4.46 5.65 4.72 5.03 5.11	1 1	.17 .18	2 .0 2 .0 2 .0 3 .0 2 .0	3 114 12 142 17 512	8 - 7 - 7 -	02 02	6 8: 7 6: 6 6: 8 10: 8 7:	20 1 40 1 10 6	37 91		2 1 3 2 3 5 3 4 3 1	3 1 4 1	.01 .01 .01 .01	1 1.2 1 .6 1 1.0 1 1.6 1 1.8	1 4	137 176 2328 4724 2094	55 97 53 69 35
128362 128363 128364 128365 128366	2.0 14.9 4.6 3.0 1.7	.26 .25 .24 .25	1 1 1 3	70 161 94 131 140	.1	1 1 1	.71 .37 .31 .42 .33	.1 .1 .1 .1	9 2 9 3 10 2 10 3 10 3	2 147 7 64 5 40	4.28 5.11 5.51 4.83 4.06	1 :	.16 .16 .16 .17 .16	2 .1 2 .0 1 .0 1 .0	727 5 285 6 366	8 · 7 · 7 ·		9 58	0 20 30 6 50 2	36	1 2 1 1 1	2 2 3 2 3 2 3 3 2 3	8 1 4 1 3 1	.01 .01 .01 .01 .01	1 1.9 1 1.2 1 .9 1 1.1	36	1979 3105	32 95 56 55 42
128367 128368 128369 128370 128371	1.4 1.3 >200.0 2.2 2.0	.33 .29 .03 .26	1 3 3602 1 22	146 110 8 100 202	.1 .1 .1	1 1 1 1	.58 .88 .46 .27 .86	.1 .1 .1	11 3 10 3 20 4 9 3 8 2	6 26 4 >10000 0 104	4.55 4.07 >15.00 4.66 3.71	1 :	.20 .17 .06 .17 .20	2 .1 1 .2 1 .1 1 .0 2 .1	3 2848 0 933 2 98 4 1245	31 . 6 . 6 .	02 1 01 1 01 01	0 60 2 59 8 27 6 75 9 75	70 34 70 34 50 1	08 37 39 66 01	21 1/ 10 :	3 3 3 4 4 3 4 2 8	0 1 2 1 4 1	.01 .01 .01 .01 .01	1 1.8 1 1.9 1 1.2 1 1.1	3 1 1	629 1291 7032 189 741	37 33 1080 92 36
128372 128373 128374 128375 128376	2.8 1.3 5.8 1.5	.26 .29 .24 .25 .21	1 38 1 1 1	123 57 92 68 77	.1 .1 .1 .1		1.26 1.44 .63 .30	.1 .1 .1 .1	9 3 8 3 9 3 10 4 8 3	22 3 53 1 62	4.69 3.16 4.33 5.92 5.78	1 1		2 .0 1 .0	1 1909 3 3250 2 212 1 289	6. 8.	01 1 01 1 01 1	0 58 6 20	70 50 10 30 1	93 07	2 6 6 4 8		B 1 6 1 9 1	.01 .01 .01 .01	1 2.1 1 2.3 1 2.0 1 1.0 1 .5	5 1	2617 320 2287 413 350	57 28 66 129 80
128377 128378 128379 128380 128381	.8 .5 .4 .3	.26 .28 .30 .26	3 39 18 9	107 132 160 110 140	.1 .1 .1	1 1 1	1.14 2.09 1.23 1.54 1.55	.1 .1 .1 .1	8 20 7 25 9 3 8 2 8 2	9 24 3 25 7 22	3.89 3.21 3.63 3.92 4.12	1 .	.18 .16 .18 .17 .19	2 .2	7 2552	6.	02 1	0 59 0 61 0 38 6 50 4 64	10 1 10 1 10 1	06 43 80 50 75	6 8	2 156 2 497 2 86 2 49 3 49	7 1 6 1 5 1	.01 .01 .01 .01	1 2.0 1 2.5 1 1.9 1 2.3 1 2.4	1 1	591 412 582 397 309	22 21 21 28 19
128382 128383 128384 128385 128386	.5 1.0 .6 .6	.33 .31 .28 .28 .28	1 18 32 14 1	65 165 111 165 149	.1 .1 .1 .1	1 1	1.46 2.49 3.28 2.85 1.65	.1 .1 .1 .1	8 30 9 21 7 21 8 30 6 3	5 88 9 24 0 21	4.01 3.96 3.14 3.65 4.06		.21 .18 .17 .16 .18	2 .3	2 2080 4 1826	9 . 6 . 5 . 5 .	01 1 02 1 02	0 54 9 29	0 3		3 7 8	2 11. 2 8: 1 13: 2 14: 2 15:	7 1 3 1 1	.01 .01 .01 .01	1 2.8 1 2.4 1 2.5 1 2.4 1 1.5	3 1 1	431 1996 125 179 63	23 40 12 10 9

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS - ASSAYERS - ANALYSTS - CEOCHEMISTS

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C. CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TEL (604) 847-3004 FAX (604) 847-3005

Assay	Certi	<u>ficate</u>

6S-0018-RA1

Company:

NEW NADINA EXPL LTD

Date: MAY-31-96

Project:

SILVER QUEEN

Attn:

LINDA CARON

We hereby certify the following Assay of 24 ROCK samples submitted MAY-27-96 by L. Caron.

Sample	Zn			
Number	*		 	
128304	. 70			
128305				
128306				
128307				
128308				
128309			 	
128310				
128311				
128312				
128313			 	
128314				
128315				
128316				
128317				
128318			 	
128319			 	
128320		•		
128321				
128322				
128323				
128324				
128325				
128326				
128327				٠.

Certified by

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS - ASSAYERS - ANALYSTS - CEOCHEMISTS

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C. CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TEL (604) 847-3004 FAX (604) 847-3005

Assay	<u>Certificate</u>
_	

6S-0018-RA2

Company: NI

NEW NADINA EXPL LTD

Date: MAY-31-96

Project: Atm: SILVER QUEEN LINDA CARON

We hereby certify the following Assay of 24 ROCK samples submitted MAY-27-96 by L. Caron.

Sample	₽b	Zn	
Number	*	. 8	
128328			
128329			
128330			
128331			
128332			
128333			
128334			
128335			
128336			•
128337	•	1.57	
128338			
128339			•
128340			
128341			
128342			
128343	1.73	7.75	
128344		.50	
128345			
128346			·
128347			
128348	•		
128349			
128350			
128351			1

Certified by_

THAN

MIN ERAL
• EN VIRONMENTS
LABORATORIES
(DIVISION OF ASSAYERS CORP.)

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS - ASSAYERS - ANALYSIS - CEOCHEMISTS

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C. CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3476 TATLOW ROAD SMITHERS, B.C., CANADA VOJ 2NO TEL (604) 847-3004 FAX (604) 847-3005

<u>Assav</u>	Certifica	ate

6S-0018-RA3

Company:

NEW NADINA EXPL LTD

Date: MAY-31-96

Project: Atm: SILVER QUEEN LINDA CARON

We hereby certify the following Assay of 24 ROCK samples submitted MAY-27-96 by L. Caron.

Sample	Au-fire	Au-fire	Ag	Cu	Zn	
Number	g/tonne	oz/ton	-	8	¥	
128352				•		
128353						
128354						
128355					6.21	
128356						
128357						
128358						
128359						
128360						
128361						•
128362						
128363					1.22	
128364					1.22	
128365						
128366						
128367				·		
128368						
128369	1.18	.034	305.0	2.510	.81	
128370	1.10		303.0	2.310	. 41	
128371						
128372						
128373						
128374						٠.
128375						

Certified by___

The state of the s

JUN-85-1996 16:24

MIN-MY LABS &

". **0**8

COMP: NEW MADENA EXPL LTD.

PROJ: SILVER QUEEN ATTM: Linda Caron

MIN-EN LABS - ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. VSX 4E8

TEL:(604)327-3436 FAX:(604)327-3423

PATE: 96/06/05 * rock * (ACT:F31)

•	TIM. LING CO							-					יכן דיטט	0.4.0	177.	1004)	JC1 J4C												***************************************	•
	SAMPLE MUMBER	AG PPM	AL %	AS PPH	BA PPM	BE PPH	B1 PPH	CA X	CO PPM	CO PPN	CR PPM	DU PPN	FE		L1 PPH	MG	MN PPM		NA X F	NI PPH PF		PR SI	SN PPN	SR PPM F	TH T	L LI C PPM	-		Au-fire PPB	
(128387 128388 128389 128390 128391	1.2 2.3 1.1 5.4 1.2	.29 .25 .24 .22 .24	1 1 1	75 118 98 62 43	.1	1 1 1	2.41 2.18 1.82 .65 .72	.1	10 9 70 10	16 20 20 30 29	523 220 306 263 506	4.77 4.55 4.34 6.53 7.72	1 .25 1 .23 1 .22 1 .25 1 .27	3.	.60 .54 .39 .14 .16	4628 5995 5460 6945 4732	19 . 21 . 28 . 35 . 36 .	.01 .01	14 103 17 117 16 101 19 107 16 114	0 3	18 4 70 5 50 24	4	42 44 22 8 1	1 .0° 1 .0° 1 .0° 1 .0°		8.1 7.0 6.4 5.2 1.2	1 1036 5 3155 2 2121 4 3108 6 4701	95 122 64 239 169	-;
	128392 128393 128394 128395 128396	1.3 .1 .5 2.0 .6	.19 .33 .19 .18 .25	100 1 1 1 27	36 55 43 42 275	.1	1 4 : 1 1	.43 15.00 .83 .97 2.52	.1	12 4 10 11 8	39 16 37 30 31	303 15 52 298 124	10,21 ,71 7.88 9.12 2.90	1 .23 2 .03 1 .20 1 .22 1 .22	5	.05 .43 .22 .25	3391 1954 3692 1921 7375	4B . 3 . 26 . 37 . 7 .	01 01 01	14 101 11 64 13 96 12 89 22 97	0 3	31 24 37 7 34 20 24 15	5	347 11 35 29	1 .01 1 .01 1 .01 1 .01	1 1	.1 12.5 .1 .1 21.0	1 750 3 31 1 220 1 1422 1 986	205 2 155 242 46	,
	128397 128398 128399 128400 128401	.5 .5 .8 2.3	.26 .27 .21 .21 .18	1 1 1 1	62 81 28 66 21	.1 .1 .1	1 1 1 1	1.10 .59 .16 .52 .46	-1 -1 -1 -1	10 8 1 8 15	30 37 35 27 25	106 130 6 131 13	6.49 4.74 .48 4.55 9.98	1 .23 1 .23 4 .11 1 .16 1 .18		.43 .11 .03 .12	2803 731 148 560 1805	20 . 18 . 3 . 13 . 10 .	01 01 01	13 104 6 78 2 2 7 34 13 145	0 4 0 2 0 8	11 17 15 6 15 6 16 6 16 2	1 3	18 15 26 15 150	1 .01 1 .01 16 .01 1 .01	1	6.3 .8 .4 .8 .1	1 1105 1 713 4 36 1 591 1 2245	115 96 9 95 115	
	128402 128403 128404 128405 128406	.5 1.2 1.4 .5 2.8	.22 .26 .25 .30 .25	1 1	84 124 111 262 208	.1	1 1 1	.57 1.21 .89 1.86 1.98	.1	15 14 13 15 20	15 28 16 15 19	12 74 14 14 49	7.46 6.07 6.74 3.83 2.83	1 .21 1 .24 1 .25 1 .29 1 .20	1 1 3 3 2	.18 .30 .27 .50 .27	9109 5286 6623 4235 5070	10 - 8 - 9 - 8 - 11 -	02 03 04	26 162 18 164 20 151 16 178 16 159	0 38 0 50 0 36	9 27 6 21 6 4	5 3	258 644 70 197 243	1 .01 1 .01 1 .01 1 .01 1 .01	1 1 1	2.2 3.3 4.9 10.5 5.0	1 995 2 2026 1 1237 1 648 1 481	69 24 27 5 14	
	128407 10 128408 10 128409 10 128410 10 128411 10	1.3 3.3 -9 .1	.19 .19 .22 .23 .30	1 1 1 1	90 64 71 149 304	-1 -1 -1 -1	1 1 1 1	3.20 .76 .85 .74 1.42	.1	10 12 14 11 9	23 32 16 25 13	11 15 10 8 12	1.81 4.74 6.29 4.94 4.83	1 .12 1 .12 1 .22 1 .23 1 .23	2 3 3 1	.04 .01 .16 .16	4493 28 9360 9483 8593	9.	03 03 03	12 123 6 147 24 151 23 146 24 131	0 54 0 17 0 17	6 23	3	323 152 185 175 260	1 .01 1 .01 1 .01 1 .01	1	3.3 .9 2.9 4.1 6.6	2 352 1 1253 1 403 1 545 1 971	15 30 38 44 31	
-	128412 10 128413 10 128414 10 128415 10 128416 10	2.9 3.9 7.3 1.7	.21 .22 .20 .23 .25	1 1	176 69 67 105 156	.1	t 1 1 1	1_52 _65 _43 _74 1_81	.1	14 14 17 13 14	23 18 23 15 20	15 14 17 12 12	5.32 6.76 6.93 7.38 5.41	1 .21 1 .22 1 .19 1 .23 1 .23	1 1 1 1	-21	10000 10000 10000 7519 6653	12 . 12 . 10 .	02 03 03	49 151 47 158 36 116 21 149 20 167	0 79 0 103 0 34	14 14 18 15 13 6	5 4	160 103 36 132 2515	1 .01 1 .01 1 .01 1 .01	1	5.2 5.4 2.3 3.3 7.8	3 2172 2 2297 3 3405 1 1364 1 804	109 104 107 38 14	
	128417 10 128418 10 128419 128420 128421	.7 .1 .7	.28 .27 .38 .24 .37	1 1 183 16	197 158 31 28 88	.1	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.32 2.00 15.00 1.49 .28	.1	12 13 5 1	13 15 15 27 37	10 8 8 2 16	4.08 4.86 .69 .25 4.96	1 .21 1 .22 9 .03 1 .16 1 .19		.43 .52 .49 .13	4427 7257 752 366 351	9 .	10	15 160 22 179 11 71 2 2 7 85	0 7	3 4 4 4 4 7 4 1 6 6	3 4 1 1 3	619 275 140 65 129	1 .01 1 .01 1 .01 15 .01 10 .01	1		1 441 1 488 2 32 1 22 1 128	10 11 1 3 47	
	128422 128423 128424 128425 128426	2.6 1.3 .8 .8	.18 .25 .33 .26 .25	1 1 1 1 7	58 118 117 108 156	.1 .1 .1	1 1 1	.42 1.27 3.08 3.02 2.36	-1 -1 -1 -1	13 10 10 9 7	40 34 33 35 32	30 22 19 24 21	8.42 3.91 3.96 3.75 3.64	1 -09 1 -15 1 -17 1 -14 1 -16	1 1 2 1	-06 -14 -32 -29 -34	1548 2300 2571 1880 4982	13 . 10 . 8 . 7 .	01 81 01	12 75 11 82 12 101 10 90 16 102	0 5	7 6	3 3	86 1503 1442 581 392	1 .01 1 .01 1 .01 1 .01	1 1	.1 1.4 3.6 3.5 2.8	4 4009 1 471 1 184 1 181 4 1888	110 50 36 37 47	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	128427 128428 128429 128430 128431	6.0 2.9 4.1 2.9 23.4	.23 .30 .22 .27 .19	1 1 1 1	143 122 123 126 60	-1 -1 -1 -1	1 1 1 1	2.01 1.07 -83 -59 -42	.1 .1 .1 .1	9 9 8 10	39 39 39 26 45	99 29 59 25 96	4.34 3.87 4.08 3.88 8.69	1 .15 1 .21 1 .17 1 .17 1 .15	1 1 1	.25 .14 .07 .05 .03	5922 8166 3737 2371 667	8 - 7 - 7 - 11 -	01 01 01	17 88 21 108 13 110 10 89 9 75	0 65 0 92 0 77	7 10 20 15 7 30	333	648 40 26 25 10	1 .01 1 .01 1 .01 1 .01	1	1.9 3.1 1.6 1.1	5 2640 7 3317 5 2665 5 2727 3 3163	68 44 68 71 227	, , (
,	128432 128433 128434	4.5 4.2 3.0	.25 .24 .24	1 1	97 72 54	.1	1 1	.43 .61 1.06	.1	11 9 10	33 39 31		5.66 3.66 4.49	1 .15 1 -16 1 .16	1 1 2	.03 .10 .20	641 1368 4977	9 . 13 . 11 .	61	8 109 8 111 17 102	0 223	5 14	3	28 19 20	1 -01 1 -01 1 -01	1	.3 1.3 2.2	10 5434 13 5619 5 3028	67 50 58	240 740

PROJ: SILVER QUEEN

ATTH: Linda Caron

MIN-EN LABS - ICP REPORT 8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

TEL:(604)327-3436 FAX:(604)327-3423

FILE NO: 65-0021-R1344 DATE: 96/06/05 * rock * (ACT:F31)

SAMPLE	AG	AL	AS	BA	BE	81	CA	CO	00	ER	CU	FE	GA	K	LI	NG		NO NI	NI NI	P	PB		SN S	R TH	TI	U	V		Au-fire
, NUMBER	PPM	- 2	PPH	PPH	PPN	PPH	X	PPH	PPH	PPH	PPH	X	PPM		PPM	<u> </u>	PPN P	PH 1	C PPH	PPH		PPH P	PM PPI			PPH		PPM PP	
128435	1.4	.27	1	50	· .1	3	2.42	.1	. 6	33	19	4.16	. 1	-19		.42	6317	10 .0		1020	463	6	3 3		-01	1	3.3	4_2374	
128436	-1	.26 .24	173	35 108	-}	4 :	15.00 2.15	-1	1,4	16 26	9 21	.48 5.47	10	.03 .16		. 36 . 59	618 2895	4 .01		520 1080	12 165	<i>(</i>	1 251		-01 -01		10.4 21.8	1 33	
128437 128438	1.0	.28 .28	15		- ;	- 1	1.56	- 1	10	31	53	3.56	- 1	.19	1	.37		10 .0		1140	56	Š	2 1		:01	i'	3.3	615	40
128439	3.7	.23	36	68 56	;	1_	1.42	1	10	29	445	4.79	_ <u>i</u>	_17		.36		10 .01		1130	138	11	<u>3</u> ii		.01	1	2.1	1 807	118
128440	7.6	.29	1	81	.1	1	.84	-1	10	34	374	5.16	1	,20		. 20 :	>10000	13 .01		1150	769	64	· 4 13	5 1	.01	1	4.1	4 2417	
128441	4.3	.24	_8	52	- 1	1	1.47	.1	8	47	135	4.17	1	.20		. 37	5422	11 .01		1120	416	17	3 8		-01	1	3.0	5 2413	
128442	2.9	.28 .28	59	92	- !	1	2.04 1.45	-1	10	27 38	468 561	4.66 5.49	- 1	.21 .21		.57 .31	5303 9800	11 .01 11 .01		1100 1150	62 313	15	3 1]	.01]	3.2	1 264	84
128443 128444	4.5 3.3	.23	1	88 58	.1	i	1.05	.1	10 14	33	88	8.13	i	.16		. 18	1776	17 .01		1070	299	28	5 13	i	.01	i	3.8	3 2166 1 999	86 57
128445	2.5	.27	1	71	.1	1	1.62	-1	11	34	46	5.54	1	.17	2	39		14 .01	14	1250	301	7	3 1		.01	1	2.1	1 969	
128446	2.0	.28	1	74	. 1	1	2.16	-1	9	29	86	4.68	1	.18		.60	6394	11 .01		1120	242	.6	3 12	1	10.		3.7	1 1718	49
128447	4-1	.26	1	56	-1	- }	2.02	-]	10	28 29	229 47	5.45	!	.20		.53 .63		11 .01 10 .01		1110 1140	385 108	15	3		.01	1	3.2	2 2325	139
128448 128449	1.5	.20 .21	i	54 81	:i	i	2.41 1.47	.i	10	29	33	4.32 5.18	1	.17		.36		10 .01 11 .01		1010	118	7	3 10		-01 -01	1	3.9 2.2	1 1277 1 1070	40 52
128450	3.6	.21	1	32	.1	1	1.44	.1	9	36	176	5.11	1	.18		.34	3605	9 .01		1100	309	17	3 6	1	-01	1	2.0	1 504	71
128451	9	26.	1	42	.1	1	1.94	- 1	9	35	17	4.76	- 1	-19		.59	3707	9 .01		1070	.53	3	3 6	1	.01	1	3.0	1 514	
128452 128453	2.1	.20	- }	55 51	-?	- 1	2.00 1.67	-1	10	30 32	35 174	4.87 5.02	- 1	. 16 .21		.55 .40	503D 4421	11 .01 11 .01		1080 1110	149 176	11	3 4		.01 .01		2.7 2.9	1 781 1 1311	26 49
128454	2.0	.22	į	79	.;	i	1.85	. i	9	41	63	5.41	i	.19		47		11 -01		1070	242	` 7	3 12	: i	.oi		2.7	1 1336	
128455	1.7	.26	3	98	.1	1	2.17	.1	9	26	25	3.87	1	.21	Ž.	.55	4861	9 .01	15	1030	121	5	3 15		-01	1	4.8	1 308	
128456	1.7	.21	. 1	59	.1	1	2.18	-1	9	27	49	4.33	1	.20		.51		12 .01		1190	127	6	3 12		.01	1	4.1	3 2092	47
128457	1.9	.24	14 57	72	-!	1	2.60 3.12	-1	9	30 36	48 202	3.71 3.46	1	.16		.69 .80		10 -01 10 -01		1150 1260	153 39	4 7	3 17 3 21		.D1	1	5.2	1 1199	39
128458 128459	1.5 5.4	.22	14	53 68	Ξi	i	3.67	Ξi	á	28	220	3.64	•	-11 -16		.66	5378	10 .01 9 .01		1230	226	3	3 27		.01		6.4 5.7	1 171 1 997	72 291
128460	2.8	.22	1	78	.1	1	2.29	.1	9	35	177	4.79	1	.18		57		10 .01		1230	215	5	3 11		.01		3.1	1 1295	118
128461	2.0	.24	_1	82	1	1	1.73	-1	9	30	64	5.44	1	.17		.34 >		14 -01		1200	550	13	3 12		.01	1	2.5	5 2738	77
128462	1.9 24.9	.25	89 78	176 60	-1	1	3.00 .34	- 1	18	27 35	464 25 1	3.22 10.26	- }	.17		.76 .10 >		10 .01 15 .03		1280 910	139 1787	33	3 26 6 81	1	-01 .01	1	4.28	1 603 12 7537	1467
/128464 3.5	2.0	.38	1	298	:1	i	1.91	:1	13	21	30	4-61	i	.26		43	9713	8 .04		1300	433	11	3 304	1	.01	1 1	1.7	2 2057	79
I																													

166-667.5

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS - ASSAYERS - ANALYSTS - GEOCHEMISTS

MIN-EN LABS *

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C. CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TEL (604) 847-3004 FAX (604) 847-3005

Assay Certificate

6S-0021-RA4

Company:

NEW NADINA EXPL LTD.

Date: JUN-05-96

Project:

SILVER QUEEN

Attn. Linda Caron

We hereby certify the following Assay of 1 ROCK samples submitted MAY-28-96 by L. Caron.

Sample	Au-fire	Au-fire	Zn	
Number	g/tonne	oz/ton	ŧ	
128459				
128460				
128461				
128462				
128463	1.51	.044	. 78	
3128464				

Certified by

MINERAL • EN VIRONMENTS LABORATORIES (DIVISION OF ASSAYERS CORP.)

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS - ASSAYERS - ANALYSTS - GEOCHEMISTS

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C. CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TEL (604) 847-3004 FAX (604) 847-3005

Assay	<u>Certi</u> j	<u>ficate</u>
-------	----------------	---------------

6S-0021-RA2

Company:

NEW NADINA EXPL LTD.

Date: JUN-05-96

Project: Attn: SILVER QUEEN Linda Caron

We hereby certify the following Assay of 2 ROCK samples submitted MAY-28-96 by L. Caron.

Samp Numb		Zn %
1284 1284 1284 1284	12 13 14	
1284 1284 1284 1284	17 18 19 20	
1284 1284 1284 1284	21 22 23 24 25	
1284 1284 1284 1284	26 27 28 29	
1284 1284 1284	31 32 33	53 55

Certified by_

The

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS - ASSAYERS - ANALYSTS - GEOCHEMISTS

MIN-EN LABS '

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C. CANADA: V5X 4EB TELEPHONE (604) 327-3438 FAX (604) 327-3423

₽.02

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TEL (604) 847-3004 FAX (604) 847-3005

Ass	ay Certificate	•		:			6S-0018-RA3	
Company: Project: Atm:	NEW NADINA SILVER QUEEN LINDA CARON	V	מד			Date	э: JUN-05-96	
We hereb	y <i>certif</i> y the follo I MAY-27-96 by	owing Assay L. Caron.	of 24 ROC	CK samples				
Sample Number		Au-fire g/tonne	Au-fire oz/ton	Ag g/tonne	Ag oz/ton	Cu °	Zn %	
128352 128353 128354							·	
128355 128356							6.21	•
128357 128358 128359								
128360 128361								
128362 128363 128364	•						1.22	
128365 128366		••••						· <u>-</u>
128367 128368 128369		1.18	. 034	305.0	8.90	2.510	.81	
128370 128371 								
128373 128374 128374								

Certified by

APPENDIX 3

COST STATEMENT

COST STATEMENT

LABOU	JR G. Stewart L. Caron J. Hutter B. Smith M. Hutter	10 days @ \$450/day 6 days @ \$200/day 6 days @ \$200/day 7 days @ \$100/day 3 days @ \$100/day	·	\$ 4,500.00 1,200.00 1,200.00 700.00 300.00 \$ 7,900.00
DRILLI	NG Beaupre Diamond Drilli 3041 feet @ \$13.00/ft mob cost reclamation, site prep,			\$ 39,533.00 2,000.00 4,336.83 \$ 45,689.83
ANALY		er - 30 element ICP plus Au 21.00 (including shipping)		\$ 4,494.00 210.00 \$ 4,704.00
SUPPL	IES Saw blades General field supplies (Generator rental Fuel	bags, etc)		\$ 1,000.00 380.00 1,000.00 60.00 \$ 2,440.00
TRANS	SPORTATION AND ACC Vehicle rental 10 day Room and board 23 m Airfare	s @ \$50/day		\$ 500.00 1,150.00 <u>850.00</u> \$ 2,500.00
OFFIC	E EXPENSES Phone, fax Drafting and office sup Misc.	plies	TOTAL:	\$ 65.00 120.00 30.00 \$ 215.00 \$63,448.83

APPENDIX 4

STATEMENT OF QUALIFICATIONS

STATEMENT OF QUALIFICATIONS

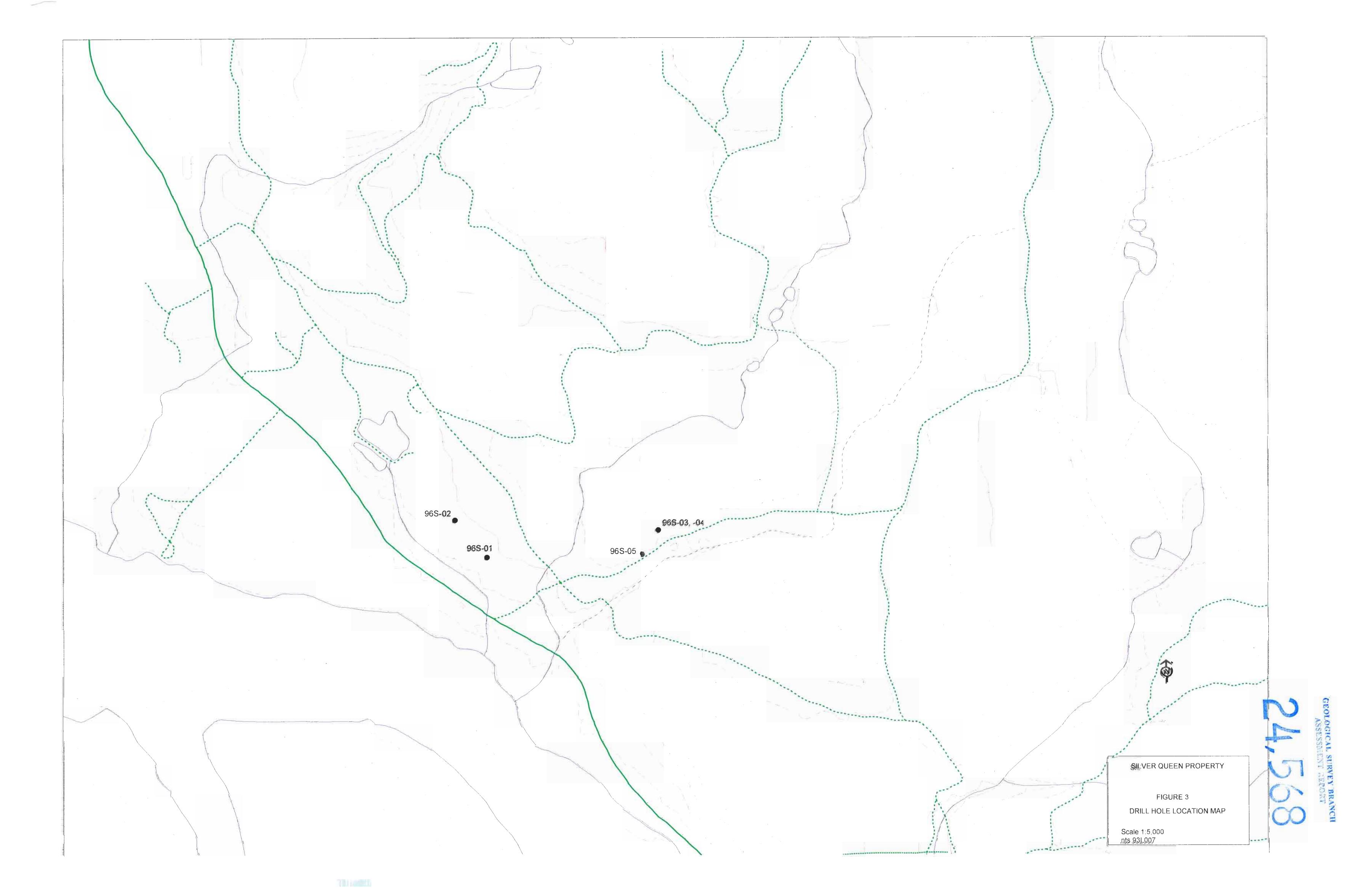
I, Linda J. Caron, certify that:

- 1. I am an exploration geologist residing at Bubar Road (RR #2), Rock Creek, B.C.
- 2. I obtained a B.A.Sc. in Geological Engineering (Honours) in the Mineral Exploration Option, from the University of British Columbia (1985).
- I graduated with an M.Sc. in Geology and Geophysics from the University of Calgary (1988).
- 4. I have practised my profession since 1987 and have worked in the mineral exploration industry since 1980.
- 5. I am a member in good standing with the Association of Professional Engineers and Geoscientists of B.C. with professional engineer status.

h- Caur Sept 25/96

6. I am employed by Kettle River Resources Ltd. as an exploration geologist.

Linda Caron


STATEMENT OF QUALIFICATIONS

I, George Stewart certify that I:

Was born in Halifax, Nova Scotia, Canada and attended Elementary and High School in Halifax, N.S.

1957 - 1962	Attended St. Mary's University and Dalhousie University, studied Geology.
1959 - 1960	Sheep Creek Mines Ltd., Engineer Department
1960 - 1967	Geologist for Kenno (Western) Ltd.
1967 - 1970	Exploration/Mine Manager Nadina Exploration Ltd.
1970 - 1973	Mine Manager for Colt Resources Ltd.
1975 - 1981	Exploration Manager for New Frontier and New Nadina
1981 - 1986	Mine/Exploration Manager for Dentonia Resources Ltd, Kettle River Resources Ltd.
1986 - 1987	Attended Gemological Institute of America.
1986 - 1993	Exploration Manager for Kettle River Resources Ltd,
1994 - present	Exploration Manager for Kettle River Resources Ltd, and New Nadina Explorations Ltd.

George O.M. Stewart

