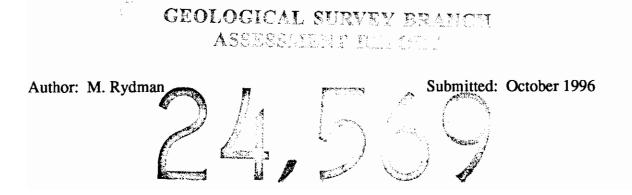


GEOLOGICAL SURVEY BEANCH ASSESSMENT REPORTS
DATE RECSIVED OCT 19 1995

DIAMOND DRILL REPORT

on the

SAWMILL MINERAL CLAIM GROUP


Cariboo Mining Division

93B/8E and 8W

(Latitude 52°30', Longitude 122°15')

TAR GIB

OWNER and OPERATOR Gibraltar Mines Limited P.O. Box 130 McLeese Lake, B.C. VOL 1P0

TABLE OF CONTENTS

1. INTRODUCTION
2. MINERAL CLAIMS 1
3. TOPOGRAPHY AND GEOLOGY 2
4. DRILL PROGRAM
4.1 Objective
4.2 Discussion
4.3 Results 4
4.4 Interpretation5
5. STATEMENT OF COSTS 6
6. CONCLUSION
7. BIBLIOGRAPHY
8. LIST OF FIGURES
Figure 1 - Location Map
Figure 2 - Claim Map
Figure 3 - Drill Hole Location Map
APPENDIX A : STATEMENT OF QUALIFICATIONS
APPENDIX B : DRILL LOGS
APPENDIX C : ASSAY PROCEDURES
APPENDIX D : ASSAY CERTIFICATES

1. INTRODUCTION

The Sawmill Mineral Claim Group is part of the Gibraltar Mines Limited McLeese Lake property. It lies about 6.5 km south of the Gibraltar Mines plant site, along the southern flank of Granite Mountain. Access is via a network of old logging roads which connect the property to the paved road leading from McLeese Lake to the plant site. The location of the claim group is shown in Figure 1.

The first claims of the Sawmill Group were staked in 1978 to cover a large I.P. anomaly and several older copper prospects. Of the prospects, the most important was the Iron Mountain property on which the first recorded work dates back to 1925. The chief focus of work for Gibraltar Mines was the I.P. anomaly which was located west of Iron Mountain over an area of very limited rock exposure. The anomaly had been outlined in 1978 and was attributed to a graphitic source rather than sulphide mineralization. Diamond drilling in 1979 by Gibraltar Mines revealed that extensive pyrite and chalcopyrite mineralization occurred within the I.P. zone. By 1981, approximately 30 million tons graded at 0.28% total copper and 0.022% molybdenite of open pit inventory had been outlined. More diamond drilling and I.P. surveys followed from 1982 to 1990 but little change was made in the inventory. Most of the above work is covered in Minister of Mines Reports and assessment reports (see Bibliography).

The area covered by this diamond drill program is located approximately 1 km east of the southern tip of Cuisson Lake. Five vertical diamond drill holes totaling 1031.7 m (3385 feet) were completed during the period June 14 to June 22, 1996, by L.D.S. Diamond Drilling Ltd. of Kamloops, B.C. The whole core was assayed except for a representative four-inch segment taken every ten feet which was retained and stored at Gibraltar Mines. Four holes were drilled on the COLE 1 mineral claim and one hole was drilled on the TIM 1 mineral claim.

2. MINERAL CLAIMS

The mineral claims of the Sawmill Mineral Claim Group are shown in Figure 2. Information on these claims is tabulated in Table 1. All of these claims belong to Gibraltar Mines Limited.

NAME	RECORDED DD/MM/YY	TENURE NUMBER	UNITS
AARON 1	26/06/79	204162	1
BARB 1	14/11/79	204217	12
BRENT 1	14/11/79	204218	6
BRUCE 1	29/06/81	204518	12
COLE 1	28/08/78	204116	9
DOUG 1	26/06/79	204160	3
	continued on ne	xt page	

	RECORDED	TENURE	
NAME	DD/MM/YY	NUMBER	UNITS
	continued from	previous page	
GEOFF 1	29/05/79	204159	9
JANIS 1	14/11/79	204219	3
KATE 1	29/06/81	204516	12
PAUL 1	29/06/81	204519	12
RYAN 1	26/06/79	204161	1
TIM 1	28/08/78	204115	2
WD 1	29/06/81	204517	6
		•	
TOTAL NUM	IBER OF UNITS		88

Table 1 MINERAL CLAIMS

3. TOPOGRAPHY AND GEOLOGY

The Sawmill Mineral Claim Group lies along the southern flank of Granite Mountain and extends to the Beaver Valley Road (see Figure 1). Relief is relatively gentle, with elevations ranging from about 950 m to 1150 m above sea level. Much of the area has been logged during the past thirty years and second growth pine-fir forest is common. Drainage in the area is good, except for the low lying areas in the southeast portion of the claim group.

The Sawmill Mineral Claim Group covers a broad contact zone formed between the Permian Cache Creek Group and the Upper Triassic Granite Mountain Batholith. Within the claim area, the Cache Creek Group consists of volcanic flows, tuffs, breccia and sediments mainly of andesitic to dacitic composition, with minor interbeds of graphitic schist and impure limestone. These rocks have been regionally metamorphosed to the Greenschist Facies and have undergone a much higher grade of metamorphism along the contacts of the Granite Mountain Batholith.

The plutonic rocks underlying the Sawmill Group belong to the Granite Mountain Batholith which is a zoned, peraluminous, subalkaline body and can be subdivided into at least four phases. These phases are:

1. Border Phase Diorite

This phase consists of a broad zone of assimilated and recrystallized rock formed between the mafic rich Cache Creek Group and the intrusive batholith. This hybrid zone incorporates a baffling array of intermediate rock types and rapid textural variations which closely reflect the country rock composition at its outer edge and that of the parent magma at its inner edge. Typical Border Phase Diorite consists of saussuritized plagioclase (45-50%), chloritized hornblende (35%) and fine grained quartz ($\leq 15\%$). Textures are variable, with grain sizes of 1 to 5 mm. Mafic rich quartz diorites are also present and these are most prevalent near contacts with the Mine Phase Tonalite.

2. Mine Phase Tonalite

Mine Phase Tonalite is the major host rock for the Gibraltar ore deposits. It has a relatively uniform mineralogical composition of saussuritized andesine plagioclase (50%), chlorite (20%) and quartz (30%). The chlorite appears to be derived from biotite and minor hornblende. Accessory minerals may include magnetite and rutile. Plagioclase is variously altered to albite-epidote-zoisite and muscovite. The rock is generally equigranular with a grain size of 2 to 4 mm. Rock fabrics range from isotropic to intensely schistose. In most cases the unmineralized rock is only weakly foliated and the degree of penetrative deformation increases proportionally with alteration.

3. Granite Mountain Phase Trondhjemite

The trondhjemite consists of saussuritized plagioclase (45%), chloritized biotite (10%) and quartz (\geq 45%). Grain size is about 2 to 4 mm near contacts with the Mine Phase Tonalite but reaches 8 to 10 mm away from the contacts. The quartz commonly occurs as large grains or grain aggregates set in a finer grained, inequigranular matrix of quartz, plagioclase and minor chlorite. Foliation throughout the trondhjemite body tends to be weak or absent except along contacts with the Mine Phase or Leucocratic Phase.

4. Leucocratic Phase

Associated with all ore grade mineralization are minor zones of fine grained rock classified as Leucocratic Phase due to a prevailing quartz-plagioclase composition and general lack of mafic minerals. The term is used to describe leucocratic, porphyritic quartz diorite as well as quartz porphyry and quartz plagioclase porphyry. In thin section, the quartz plagioclase porphyry has a fresh appearance with coarse quartz phenocrysts up to 8 mm in diameter and oligoclase phenocrysts up to 5 mm in diameter. The phenocrysts, which make up 50 to 60% of the rock, are set in a fine grained quartz-plagioclase-sericite groundmass with a felsophyric texture that shows little sign of recrystallization.

The ore and gangue mineralogy of the Sawmill ore zone is very similar to that of the Gibraltar deposits. Pyrite, chalcopyrite and molybdenite occur in veins and shears accompanied by various combinations and concentrations of quartz, chlorite, carbonate, sericite and epidote. There is, however, one ore type not found in the Gibraltar deposits. This is referred to as a quartz-gypsum zone which is characterized by gypsum veins and often strong chalcopyrite mineralization accompanied by minor bornite. Pyrite is invariably weak or absent, and the zone is interpreted to represent the extreme low sulphide end of the pyrite-chalcopyrite zoning system.

A large pyrite zone has been outlined within the Sawmill ore zone. It covers all rock types but appears strongest along the Cache Creek side of the contact. In general, the pyrite zone occurs above and overlaps into the ore zone. Concentrations above three percent define the limits for the pyrite zone.

The structural controls for the Sawmill ore zone consist of westerly and northwesterly striking shear zones which dip southerly. The overall configuration of rock units and ore grade also suggest that fold structures are present. In general, the ore zone lies along the contact formed between the Mine Phase Tonalite and the older rocks. The ore is not confined to any one rock type but is best developed in the Mine Phase Tonalite and weakest in the Leucocratic Phase. The Sawmill ore zone is cut off towards the northwest by a large fault system which is referred to as the West Boundary Fault. This fault is considered to be a wide north trending system, dipping to the west, with numerous individual zones separating wedges and blocks of displaced rock.

4. DRILL PROGRAM

4.1 Objective

The purpose of the Sawmill drill program was to test the current geological model and to search for new mineralization at depth.

4.2 Discussion

Diamond drilling occurring between 1979 and 1990 confirmed the presence of significant amounts of sulphide copper mineralization in the Sawmill area. Current geological modeling and recent mineral resource development showed that the potential for mineral resource improvement was good. Accordingly, five vertical NQ diamond drill holes totaling 1031.7 m (3385 feet) were drilled in and around the known Sawmill ore zone (see Figure 3) to test the current geological model and search for additional ore along the down dip extension of the system.

4.3 Results

The main rock type intersected throughout all of the drill holes was Border Phase Diorite. Metavolcanics of the Cache Creek Group occurred as intersections varying in lengths between 3 m and 23 m in holes 96-12, 96-13 and 96-15. There were two holes that encountered Mine Phase Tonalite with consistent ore-grade. Hole 96-14 ended with 13 m of tonalite and 96-16 finished the hole with 63 m of Mine Phase Tonalite. Very narrow intersections of the Leucocratic Phase were encountered in most holes except for 96-14 which contained two intervals with lengths of 25 m and 27 m.

Drill hole 96-12 was generally a low-grade hole with a weak pyrite zone (~2% py) between 67 m and 137 m.

Drill hole 96-13 encountered a high-grade zone between 107 m and 186 m which overlaps the bottom of a strong pyrite zone (>3% py) occurring near the top of the hole between 40 m and 134 m.

Drill hole 96-14 intersected a weak pyrite zone directly below the overburden to 55 m and a deep high-grade zone occurring between 110 m and 183 m. A narrow zone of high level ore-grade material occurring between 52 m and 67 m is associated with the pyrite zone.

Drill hole 96-15 consists of a high-grade zone at surface to a depth of 58 m with an associated weak pyrite zone. Intermittent ore grade intervals occur to a depth of 100 m.

Drill hole 96-16 is generally low in pyrite and consists of an upper high-grade zone, 12 m to 40 m, and a deep high-grade zone for the last 72 m of the hole.

A summary of drill hole results is given in Table 2. Detailed data can be found in Appendix B - Drill Logs.

		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AVAND	LEGIUN		NTERSECTION
DDH	LENGTH (m)	FROM - TO (m)	TCu (%)	MoS2 (%)	Ag (oz/ton)	MINERALIZATION
96-12	215.5	94.5 - 149.5	0.16	0.010	0.037	py-cp-Mo-mag
96-13	215.5	131.0 - 186.0	0.27	0.016	0.045	py-cp-Mo-mag
96-14	215.5	116.0 - 171.0	0.28	0.017	0.030	py-cp-Mo-mag
96-15	169.8	12.8 - 67.8	0.32	0.008	0.048	py-cp-(Mo)-(cc)
96-16	215.5	160.5 - 215.5	0.27	0.019	0.034	py-cp-Mo-mag

TCu = total copper mag = magnetite

py = pyritecc = chalcocite

cp = chalcopyrite () = minor amount

Mo = molybdenite

Table 2 SUMMARY OF DRILL HOLE RESULTS

4.4 Interpretation

All five of the drill holes confirmed the presence of the Sawmill mineralized system and further enhanced the geological model. Holes 96-13, 96-14 and 96-16 encountered deeper mineralization along the down dip extension of the system. The grade of this deeper mineralization is generally weaker than the mineralization found at higher levels.

5. STATEMENT OF COSTS

1996 Drilling on the Sawmill Mineral Claim Group

Diamond Drilling Costs L.D.S. Diamond Drilling Ltd. of Kamloops, B.C. Contracted Cost = \$43,275.21	\$43,275.21
Supplies	
Sample Bags $350 @ \$0.27/bag = 94.50$	
Misc. (flagging, topo thread, etc.) = 25.00 Total Supplies \$119.50	\$ 119.50
Total Supplies \$119.50	5 119.50
Vehicle Costs	
$3/4$ ton 4×4 truck rented from	
Lake City Ford Ltd. of Williams Lake, B.C.	
1095.00/month @ 0.5 months = 547.50	\$ 547.50
Sample Preparation and Assay Costs	
Gibraltar Mines Laboratory (5 assays per sample)	
319 samples @ \$24.50/sample = \$7,815.50	\$ 7,815.50
Personnel Costs	
Supervision	
G. Barker 30 hrs. @ $$41.26/hr. = $1,237.80$	
Field Work, Core Logging and Report Preparation	
M. Rydman 150 hrs. @ \$29.60/hr. = \$4,440.00	
Core Logging	
D. Poon 100 hrs. @ $27.26/hr. = 2.726.00$	
Total Personnel Costs\$8,403.80	\$ 8,403.80
	\$70 171 F1

Total Cost for 1996

<u>\$60.161.51</u>

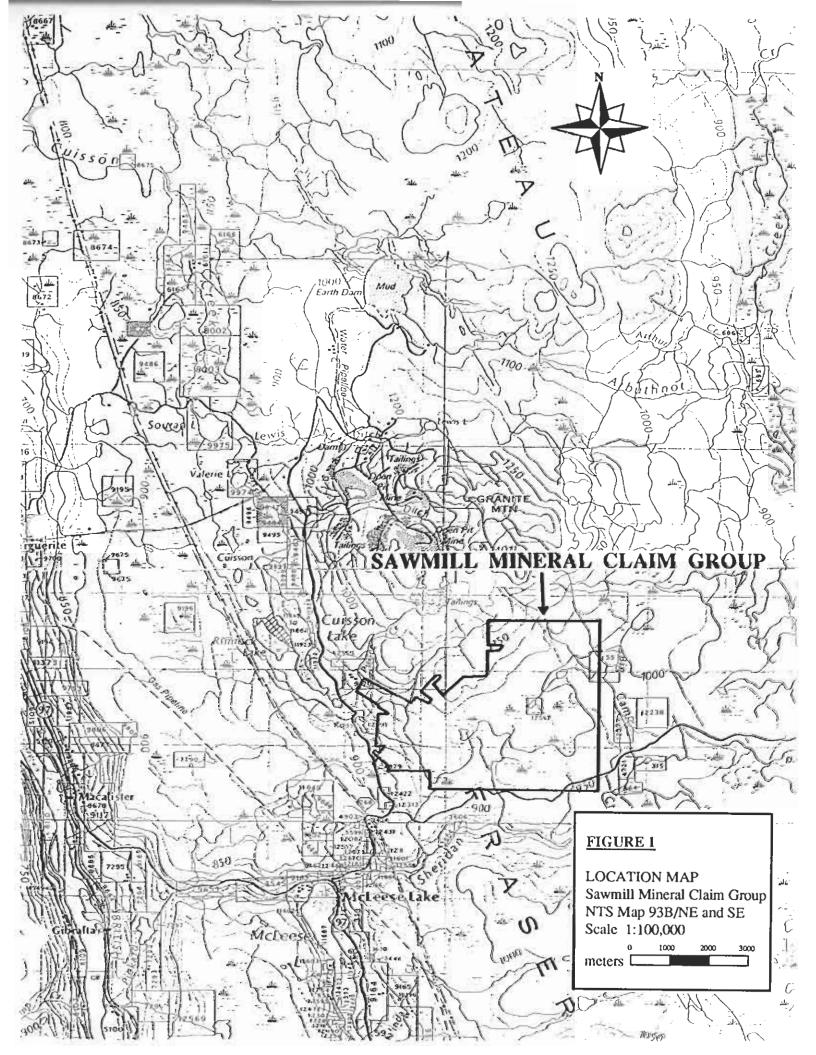
6. CONCLUSION

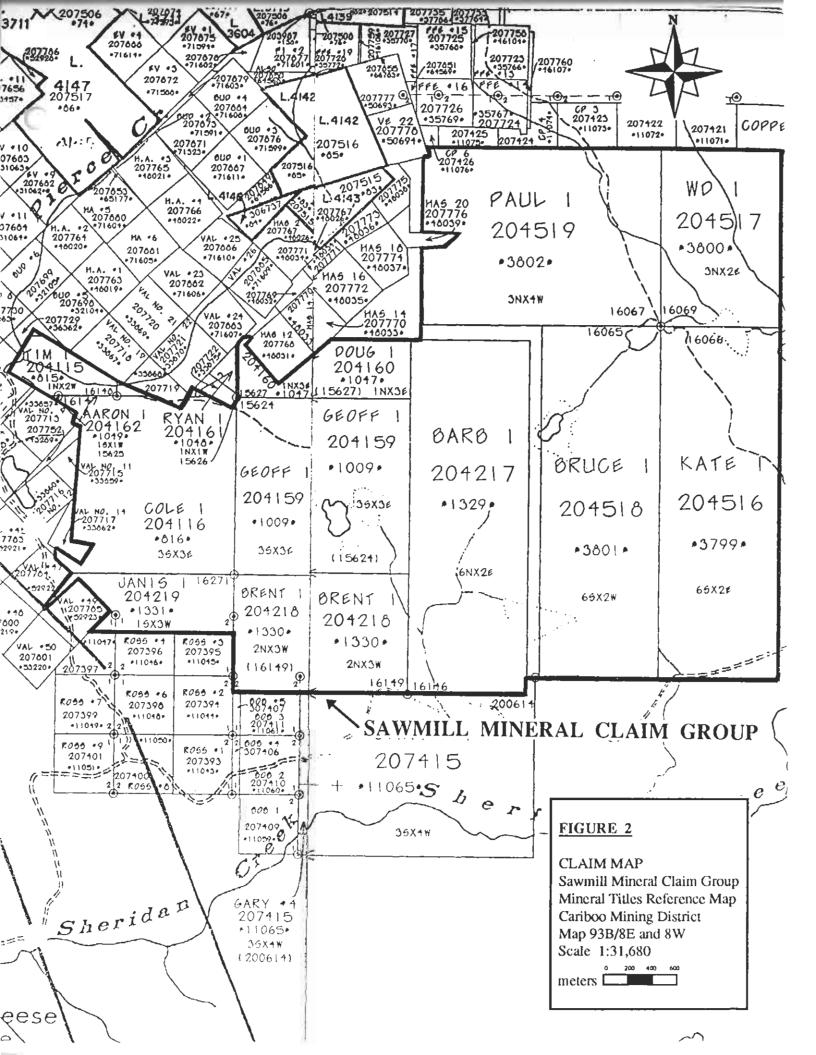
The information received from the five diamond drill holes on the Sawmill Mineral Claim Group enhanced the geological model and verified the down dip extension of the Sawmill mineralized zone. The high level ore found in holes 96-14, 96-15 and 96-16 could possibly increase the ore reserves, however the deeper mineralization encountered may not be economical due to a higher strip ratio. Further delineation drilling on the Sawmill ore zone is required to properly determine the extent and economic viability of this deposit.

Murray Rydman

M. Rydman Exploration Geologist GIBRALTAR MINES LIMITED

7. BIBLIOGRAPHY


- 1. B.C. Minister of Mines Annual Report
 - 1925, pp. 156
 - 1956, pp. 33
 - 1957, pp. 16
 - 1972, pp. 135
- 2. Bysouth, G. D., Diamond Drill Report on the Cole Claim, August, 1979.
- 3. Bysouth, G. D., Diamond Drill Report on the Cole Claim, April, 1980.
- 4. Bysouth, G. D., Diamond Drill Report on the Ross Group, November, 1980.
- 5. Walcott and Associates Limited, A Report on an Induced Polarization Survey, Sawmill Claims, February, 1982.
- 6. Bysouth, G. D., Diamond Drill Report on the Sawmill Zone, February, 1987.
- 7. Bysouth, G. D., Diamond Drill Report on the Sawmill Zone, November, 1990.


8. LIST OF FIGURES

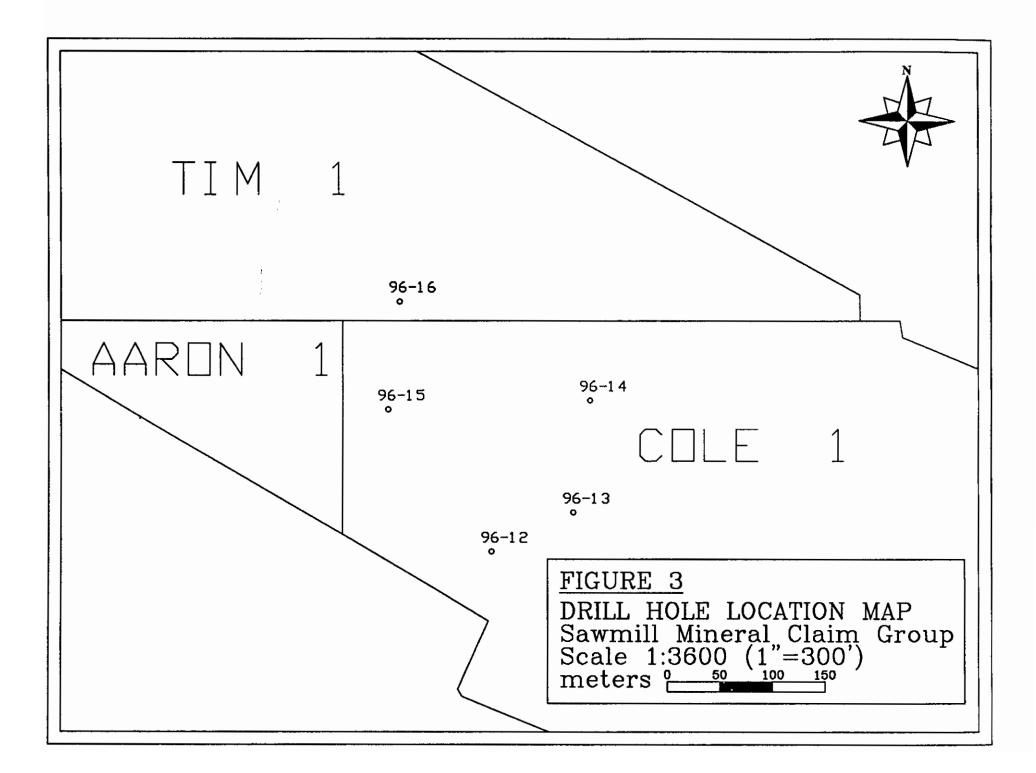

Figure 1 - Location Map

Figure 2 - Claim Map

Figure 3 - Drill Hole Location Map

APPENDIX A : STATEMENT OF QUALIFICATIONS

STATEMENT OF QUALIFICATIONS - Murray Rydman

I, Murray Rydman, of Gibraltar Mines Limited, McLeese Lake, British Columbia, do certify that:

- I am a graduate of the University of Alberta, with a Bachelor of Science with Specialization in Geology, dated 1992.
- From 1992 to the present I have been engaged in mining and exploration geology in British Columbia.
- I personally participated in the field work and aided in the interpretation of the results.
- I personally logged the core of two of the diamond drill holes.

Munay Rydman

Murray Rydman, B.Sc.

APPENDIX B : DRILL LOGS

CONTRACT RES CONTRACT AND DODING				S LIMIT								Hole			-	-			
LOCATION Annul Acea			RING -			• • -	32 406.611		_ CORI	SIZE	<u>. MX</u>		L	OCCED	BY_D	bck I	-ann		
DATE COLLARED June 14, 1996			IGTH <u>703</u>	ť	LONGITUD			<u> </u>	_SCAI	E OF		<u> = 10 </u>	0	ATE	July 3	3, 199	6		
DATE COMPLETED JUNE 16, 1996			-90*		ELEVATIO		2972.613	_	REM				-	_		10 10 10 10 10 10 10 10 10 10 10 10 10 1			
ROCK TYP	ES and	ALTER	ATION SYM	BOLS		-						BOLS and		_					
BORDER PHASE DIORITE 0	TZ NE	IN .					adly broken rock zult gouge	bo =b	teratio: curite prnite roken i	d	up ≂c	Isseminate	d Mr	ol̃≃nn× Юz≂py	agnetite alachite rolusite alybden	1	7X 7	= quor = rock = sous = soric	surite
CACHE CREEK META VOLLANIO				Ĩ				bx =b	reccia	9	g = g	ouge	m	m = bo	oderate		sph	= spho	lerite
				5			C79030 8C79030	$\operatorname{carb} = \operatorname{carb}$	orbonai Naicecli		r = g	iarnet ypsum			n direc			= stron = stock	
BLEUCOCRATIC PHASE						1.	iner emount	chl = cl				emotite			idmonil			= tetra	
× ×						<u> (())</u> v	ery minor amount		rysoco	lla li	m =li	monite	PY	<u>і = ру</u>			wk	= weak	
		GRAPHIC LOG					ZONE ESTIMATE			1		L		<u> </u>	SSAY I	RESULT	<u>s</u>		
ROCK TYPES and ALTERATION	JOLIATION ANGLE &	riv V	(veins) ANGLE TO	STRUCTURE (veloa) WIDTH	MINERALIZATION	*	LEACH CAP -	67'	FOOTAGE	CORE RECOVERY	R.Q.D.	SAMPLE	x	*	π	7	7.	oz/ton	TOTAL
	UNTENSITY	a Freakage	CORE AXIS		Derreasing Order of s Abundance	PYRIT	SUPERGENE -					NUMBER	TCu	ASCu	CNSCu	ASFe	MoSz	Ag	a
-																			
								-		{									
-								-											
-				}			•	-						L					
-							Ì	-				ļ		[1	
							ONB ESTIMATI	- 60'											
-				ł										i i					
-			140			-	CASING TO	65			<u> </u>								L
BORDER PHASE DIORITE 45' 1077-	AL			B. hrinka	stz-chl-py-lim-(cp)		-fine grained c and sometimes	P+PY -	67	98	07	87681	25					A11	ŀ.
Chi (30-40%), plag(45%), sta (5-15%)	~	70	40°			۲.5	cryptocrystaling	CMa]			27	87001	.05	<.01		2,00	<.001	-041	1.
- the chi varies in content and - speckles a right network of .			ั้นฮิ	hrinxy	ALZ-CHI-PY-CP-MO GLZ-CHI-PY-MO-CP		Can be wen												\vdash
plagt GtZ. The place is strongly -	1 1				, , , , , , , , , , , , , , , , , , ,					96									[
saussurited.	au,	1	40	PURKIN	gtz-chi-Ay-((cp))	_		-											
	,~0	1 1	140 40 50"	6 6 1 2 2	ep-gtz-chl-carb-(py)-(p)	0.7		-	77		33	87682	,04	<,01		2.32	<.001	.032	·
-		21 1	2	1				-											
CACHE CREEK		C 10	40	11	322-carb-chi-(p+)-lept			-						L					Ļ
chi (50-75%), ep (35-35%), gtelE-100		4	40	3 83	gt 2-chi-pt-cp			2		00									
- sharp contact between the corder.	≀ ∣	c,	40% 60	1"+0 1"x 7	ep-sta-py-carb		the second	and the second		98	1.00								
Phose Diorite and the Meta-Vokanic	10					1.0	and the second of	100	01	Sec. 2	57	87683	.10	<.01	ABD.	3.26	4.001	.044	.1
- rock is quite melanocratic with . epicht as the dominant minerals.		c"	60 to 10	2.404.45	q= gt 2 carb (py)	120	the second second second	dia and	Xt	ALC: NO	cim.	diam'r ar		-	A street		main.	-	-
Theep is seen in vein or	and the second second	ti an	110	159	ste-carb-ch	1.00	The state of the second second	the second second	and the local division of the local division	COLUMN TWO IS	(1000)	State of the local division in which the	1	1	1000	TO SHE	ALC: NO	1	100

/hama/gibi/ryhmas/aspin/hog_shaal.dvg

	i l	GRAPHIC	STRUCTURE	STRUCTURE			BOTTOM DEPTHS ZONE ESTIMATE ACTUAL				<u> </u>		A	SSAY I	RESULT	2	г · · -т	
ROCK TYPES and ALTERATION	FOUATION	-	(veins) ANGLE TO CORE AXIS	(veins) WIDTH	MINERALIZATION	x	LEACH CAP	FOOTAGE ILOCKS	ESTIMATED CORE RECOVERT	R.Q.D.	SAMPLE NUMBER	76	*	*	*	7	ez/ten	TOTAL C.
		E Footoge (1052110			r mite	SUPERCENE REMARKS				NOMBER	TCu	ASCu	CNSCu	ASF.	MoSz	Ag	(X)
aged blebs, which appear		ζ Į	H0°	5" 1015 20	gtz-carb-chi-py-(ip)													
and kninghe op blevs range om hrin to to in diameter ad the frequency or number of	ND .		- 30'	74	gtz-carb-chi	0.7		97	99	ಟ	87684	.04	<.01		3,52	<.001	.035	.04
eve blebs vary from interval.		100	-12	2"	stz-carb-chl-(2)								1					
ominant matrix in which . he op blobs milde. Na visible .			₽ 70°	April 1 (1997)	gtz-carb-cht-(py)-lcp)		-		95				1					
slag can be seen which contribut o the overall darkness of the ock. There is some minor carb	4		30°4040°	ο [™] α-μ × 3	ep-gez-chi-py	1.0		107		17	87685	.05	<.01		4.00	<.00	.038	. 10
with the gtz.			}? }	η,	brx w/carb (py) - ((cp))			110	85									
ORDER PHASE DIORITES 11/21 + 6 227 -11 (50-60%), plas (30-40%), gtz (5-15%) - 51 milar to previous Barder			- 70*	13.14	ep-gtz-chl-carb gtz-chl-Mo-py-cp		-large ste veins from - 110 % 120' supply abundant pytCpjalang		90									
phase Diorite except for chit -	ND		4 1	- •	gtz-py-Mo-(cp)	120	with cryptocastalline.	117		57	87686	.13	<.01		8.90	.200	.050	.45
h inter		120			Stz-Py-Mo-cp													
-			40		gEZ-py-Mo-(cp) gtz-py-chl-Mo-(cp)			· ·	100									
-	<i>U</i> ių I		40*	·		13.0		127		83	87687	.17	<.01		8.78	.040	.053	. 35
		130	40"	2"	922-py-Mo-(cp)		-											
some bands and "fingering" of - Cache Creek Meta-Valcanics			50		gtz-carb-chl-(cp)-(py)				100									
within the Border Phase Diorite. Some sections of Border Phase Diorite border a chlorite Dorkenel	ND to		40	CONTRACTOR OF THE	gtz-py-chl-(cp) gtz-Mo-chl-(cp)-(py)	1.5		137		87	87688	າສ	<,01		3.54	.014	.047	- 20
Tonalite, in this interval.		140		•	ep-gtz-chl			, , , , , , , , , , , , , , , , , , , ,										
		L	50	23'	gtz-carb-chl-(cp)				98									
10	UL of				stz-chi-py-(cp)	1.0				50	87689	.22	<.01	1	3.00	.013	.041	-16
and the second se	HOLK	150	80		9==- Mo-carb-lep)			147	-		01001			dillo				

••

		GRAPHIC	:					OM DEPT		-					A	SSAY F	RESULT	s		
ROCK TYPES and ALTERATION	FOLIATION ANGLE &	Alts	STRUCTURE (velns) ANGLE TO	(veins)	MINERALIZATION	ESTIMATE %	ZONE LEACH CAP LEACHABLE DX.	ESTMATE	ACTUAL	FOOTAGE		R.Q.D.	SAMPLE	7.	ĸ	7.	×	x	oz/ton	CSTRAT
	NTEXSITY	2 J Footage (ECORE AXIS	WIDTH		PYRITE	LINE ZONE SUPERGENE R	EMARKS			RECOVERT		NUMBER	TCu	ASCu	CNSCu	ASFe	MoS ₂	Ag	(X)
		रे हि	50	म	ep-g=z-carb-chl-pylilep															
		4	70	55"	gtz-(chi)-(carb)	0.8	1		-		'20	20	07/90					onl	0.2.0	
	КР	X k	307-40	hrln×3	gtz-chl-py-(cp)	0.8			-	157		83	87690	.09	<.01		2.78	.001	.032	0.
		1160	40	hrlnx4	glz-chl-py-lep)				-						•					
			400	14	ep-322-ch)-(py)-(cp)						100									
-	Gir		40	hichx2	ste-chl-py-lep) ste-carb-chl				-				07(0)	~ •						
-	1 - 6	1 1	30"	-	D	1.0			-	167		80	87691	.20	<.0		3,55	.003	.047	' .¢
	40°⊎K	1170	30	2	gtz-py-carb-((cp))	ĺ			-											
EUCOCRATIC PHASES 178' to 180'			60°4.70°	' 5" रू 4" x 3	ep-gtz-chl-carb		1										,			+
a place at rich parchary with	4 1	0	50 1 70	hrhotyxi	gtz-chi-carb-py-cp-mo				-		100		07/00							
sharp contact with surrounding :	NØ		- 30		gtz-py-carb-(cp)	3.0			-	177		67	87692	.10	<.01		3.37	.003	.023	
a plagt gtz rich porphyry with sharp contact with surrounding Dorder phase Diorite The plag is not sausurited in the Leuceratic sections, unlike the plag in the Bander Phase Diorite several it to		8.180	1 0*	5	gtz-carb-py-((cp) .		.		-											1
Border Phase Diorite Several 1" to .			= 80°	1" to 3"	Leucocrafic Phase					1										+
l'sections of the Leucicratic - phase can be seen from 170%			40"	۵ "	ep-gtt-carb-chl		Chi T			· ·	100									
190'.	ND	N K			gtz-chl-py	<.5				187	}	73	87693	.06	<,01		1.80	<.001	.023	× .
		190	- 90"	1 ¹⁰	gtz-carb-chl-py-cp ep-gtz-carb-chl				-											
				hrhbits	gtz-chl-py-(cp)	<u>}.</u>	<u> </u>			1										+
		1	,		ep-gtz-chi		11		-	1	100									
:	ND		Inor	I -	gtz-chi-py-l(cp))	0.6			-	197	ĺ	90	87694	.10	<.01		2.61	<.001	1.029	1 2
			` ``	1		ł														
		1300	50	1.11 4	gtz-chl-carb-py-(cp)		K			1					l					+
			1 10		ep-gtz-ch1-(py)				-		100								[
	Οų		70	15"105"02	ep-azz-chi	0.6	lept			207		73	87695	.07	<.01		2.92	.009	.021	
Condition of a state of the state of the		1000	40	holme 3	stz-chi-py-lop)	125	10.000			1001	Contraction of the local division of the loc	100	1000	h. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	120	all is	in the second	àda.	-	in a

ł ł

1

		GRAPHIC LOG					BOTTOM DEPTHS						A	SSAY 1	RESULT	S				
ROCK TYPES and ALTERATION	ANGLE &	& Altn	(veine) ANGLE TO	STRUCTURE (veine) WIDTH	MINERALIZATION	ESTIMATE %	LEACH CAP LEACHABLE OX.	ROOTACE	ESTIMATED CORE RECOVERT	R.Q.D.	SAMPLE	x	x	x	x	7.	oz/Ion	1014		
	INTENSITY	if" Ži Footoge i				PTRIL	SUPERCENE REMARKS				NUMBER	ĭC⊔	ASCu	СИЗСЦ	ASF.	MoSz	Ag	(X		
			140°		gtz-chi-py-(cp) gtz-carb-chi				୳ୢଃ											
	ND		703	井 メコ	ep-gtz-chi-py	0,6	-	<u>515</u>		70	87696	.15	<.01		2.80	.002	.028			
		1990			3tz-ch1-py-(1cp)) 3tz-ch1-py-(cp)		- increase in cp 10 pv -						• •							
-					gtz-chi-py-cp-Mo		Tatio		100	73			-							
-	<i>d</i> iy		100		gtz-py-chi-(cp)	2.5	-	<u>227</u>		13	87697	./5	<.01		3.22	.002	.030	.		
CHE CREEK META-VOLCANICS				-	Stz-chl-carb-py-cop) Stz-carb-chl-py		-lorge blebs of -											-		
7' to 302'			50'	4"++5"+2	gtz-chl-carb-py-(cp)		-lorge blebs of - magnetite in this - interval	<u>- 237</u>	97		07/00				7.00					
imilar to previously described but with a significant carbon composed iome sections of abundant ep that appear like a pseudo-breccia	au			I	gtz-ch1- carb-py-(cp) mag-gtz-carb-ch1-py-cp	25		<u>237</u>		37	87698	-12	<,0		3.89	.003	.030	.		
hat appear like a pseudo-brekkia		2 <u>240</u>	l o°		gtz-chl-carb-py-cp				100											╞
	би		1		gtz-ch1-(py)-(Ma)-(lep))						\$	27699	,15	1 < 31		3.47	. 003	0.29		
-	ND		1	, ,	gtz-chl-carb-py-cp gtz-chl-py-(cp)	9.0		247			01011	,12	1.01			,015		.		
		4 250 2	1 10"		gtz-chl-py-(cp)	··			100					Au				┢		
	ND		40" 30" to 40"		gtz-chl-py-(cp)	3.5			100	77	87700	.20	<.01	4	4.59	.003	.051	.		
		4 1260	7		822-ch1- Py-cp. 822-ch1- Py-(cp)			257				,		ррь						
			40'	Ļ∎x∂	gtz-carb-py-(cp)]		100									╞		
	ND				gtz-carb-chl-(cp) gtz-carb-chl-cp-py	2.5	carb att +			73	87701	<i>_</i> 27	<.01		5.07	.004	.058			
100 A 100 A 100		1270	1 10"	1. No. Martin Street and Street and	Ste-carb-chi-py-llop)		Million and a star	267	and a	T.J	07701	-	101	1940			-			

.

.

			PHIC						OM DEPT							A	SSAY	RESULT	S		
ROCK TYPES and ALTERATION	FOLIATION ANGLE &	Į	.0G	STRUCTURE (veina) ANGLE TO	(velos)	MINERALIZATION	ESTIMATO %	ZONE LEACH CAP LEACHABLE CX.	ESTIMATE	ACTUAL	TOOTAGE		R,Q.D.	SAMPLE	м	7.	*	*	X	ez/ton	ISTINA TOTAL
	INTERSITY	F.	tructure	CORE AXIS	WIDTH		FIRIT	LIN. ZOHE SUPERGENE	EMARKS			RECOVERY		NUMBER	1Cu	ASCu	CNSCu	ASFe	MoSz	Ag	оно (X)
		7	<mark>∛ •0•№</mark> /	10"	La E	gtz-chi-py-cp		<u>}</u>	LMARAJ	-											
	ИЛ	5+0+0+0		40"	15"	5tz·corb-(ργ)-((ρ) atz-corb-msg-py-((ρ)	1-0	ep1			277	100	67	87702	.14	<.0)		3.02	,003	.043	L, -
		122	enla	4	1.1	gtz-ch1-py-(cp)				-		1									
020ER PHASE DUARTE DIORITES 19' to 285' hi(to: 503), plag (30-253), gt 2(3-103), wilds?			1	10"	211	gtz-chi-carb-py-cp atz-chi-py-(cp)		<u>-</u>	-	-		98				:					
similar to previously described - sections but with less plag	0U/	++		· -		gtz-chl-py-(cp) atz-chl-py-(cp)	2.5			1.1.1	287		53	87703	.19	<,01		4.38	.004	.044	. 1
_		Fâ	<u>90 [</u> 1	0"	f."	3tz- py-chl-carb-(cp)											<u> </u>		L	L	
· · ·		+ + - + - +		40" o"		gtz-chi-py-cp gtz-chi-py-(cp)				-		98	53	87704				6.05		0.50	
-	рИ			40° 4" gtz-cp-py-chi	3,0				297		22	87709	,23	<.01	ļ	6.33	1.007	.038			
-		Fc 3	00	40"	\$* 10 1 × 2	gtz-chi-py-cp				-											
ORDER PHASE QUARTE DIORITES		č		40°650°		gtz-chl-py-carb-(cp)						99					-				
03' to 337' h1 (35-45%), plag(30-40%), gt2(5-15%), cartles		R		40	hr!nto \$1 × 5	gtz-chi-py-(cp)				-			67	87705		<.01	ļ	3.70	003	034	
-mineralgically similar to previously] described sections but the plag is -	Эм	И	à	40	tux2	922-ch1-py-(cp)	0.0			-	307		67	51,05	-11	<,0		5.10			·
not saussuritized at all	ţ	13	SIOR	01.20	hrlnx4	gtz-cht-py-cp				-							Í]	
		14		40*		gtz-chi-py-cp				1 1	:	99									
-		ß		30" ++ 40'	t bit va	Stz-chl-carb-py-cp				-		''		0-7-104				_			ļ
-	M	1	1	110" hohra gtz-chi-py	gtz-chi-py	1.5	i		-	317		57	87706	.13	<,01	}	3.42	,006	040		
-	320 1/10720 hrinxa gtz-chi-carb-py-la	gtz-chl-carb-py-(cp)				-															
		N		0° 16 20°	hrin to:	gtz-carb-mag-py				-		95					1				
-		M		40.	\$"×ə	gtz-ch1-cm-b-py-(cp)	1.5			-			33	87707	111	<.01		4.00	.004	017	
a management of the second	ND			0	5	gtz-carb-chl	1.5	10000		-	307	-	ود	011-1	.14		Carl	1.00		1.03/	
10 - 1 - 1 - 1 - 1 - 1	and a	13	30	30 1.50	1 ×2 ~	gtz-chl-py-(cp).	100	1 Later	-	and in case of	Seales.	-		Andrea	Distantion in which the	in Sold	18	1	1000	wyinc/he	

GIBRALTAR MINES LIMITED (MCLEESE LAKE PROPERTY) DIAMOND DRILL LOG Hole No. 96-12 Page 5 of 12

.

		GRAPHIC					BOTTOM DEPTHS						A	SSAY I	RESULT	S		
ROCK TYPES and ALTERATION	FOLIATION ANGLE &	4	(veins) ANGLE TO	STRUCTURE (veine) WIDTH	MINERALIZATION	7.	LEACH CAP	FOOTAGE	CORE CORE RECOVERT	R.Q.D.	SAMPLE	7.	ѫ	7	7.	*	oz/ton	TOTAL
	INTENSITY	2 Z Fostoge	SCORE AXIS			PYRITE	UIL ZOHE SUPERCENE REMARKS		RUCOVILIE		NUMBER	TCu	ASCu	CNSCu	ASF.	MoSz	Ag	()
			특 0*	hch x2	giz-chi-cp-py		-											
	۵'n	1	/ 0° to 10°	hein 성갑33	gtz-chl-py-(cp)	1.0			98	63	27708	.14	<.01		3,25	.008	.041	
		1	30"+-40"	holn to z k3	9+2-CLU-py-(cp)		-	337										
		- 340			gtz-chi-py													1
ACHE CREEK META-VOLCANICS: -	$\frac{100}{10} = \frac{100}{10} = 1$	100				1												
61(50-602) ed 25-252) 2tz (5-102)		27709	12			3.55	NIS	033										
similar to previously described	1 04	C 1			-	0.5	-	347	.5	61.001	,12	<.01		3.77	,010		Ί	
Volcanics		U ((4)	30'10 40°	hrlnx3	gtz-chl-py-(cp)		-											1
			// 30*	hrin xa	ste-chi-py-(cp)													t
]	¢	40	<u>ل</u> ر	gtz-chi-py-((cp))	1			100						·			}
	NØ	t				1.0	-	357		70	87710	-12	<,01		2.83	.010	-034	4
:	1	ç	40	ł	gtz-carb-py-chl-(cp)]	-	1.2.1	, 98		-	. !						
······································	┨───┤	4360	10-10-20	hrhx3	922-ch1-py-cp 922-ch1-py-(cp)	<u> </u>												╞
		Ç T		1			-	,		98	2-7-71							
:	0N		40"	1-	gtz-chi-py-cp					60 877		87711	.10	<.01		2.96	.011	.026
		Ę		4 ⁴	Leucocrotic Phase	1.0	-	367		60								ľ
		4370	N 10°7020°		gtz-chl-py-carb-cp		-											
:	1	* 	N 40°		gtz-chl-py-(cp)		-		100									
		C + 1	40	t *	gtz-mag-chi		-		.~~	73	877i2				2.20	101	225	
	ND	ц г	20*	t*xa	atz-chl-py-lcp)	1.0	-	377		75	87718	.10	.01		5.27	1.011	.04-	Ί
		* - 380	80°	33"	Tonalite(non-soussuritized)		· · · · · · · · · · · · · · · · · · ·		7									
		* . C. . *	30 1040	hrlatolised	gtz-chl-py-(cp)		-		120							1		
	1	L+	1/ 40*	hrinx3	gtz-chi-py-((cp))		-		140	A-7	0-2-7.12			ļ		0.0-	A211	
Souther and the second second second	DU	4		A	Provide a second s	2.0		387		87 877	61115	.16	.01		4.03	.005	.039	1
A DE CONTRACTOR OF THE OWNER	30% 40" hrlntog \$ gtz-ch-py-(cp)					384	and in case	1000	1000	Adapt.	100	a filia da	distant.	1000	(Table)	l		

, /heavy/gb1/rydman/waster/bog_street.dog

· · · · · · · · · · · · · · · · · · ·		GRAPHI	C				BOTT	OM DEPT							A	SSAY P	RESULT	S		
ROCK TYPES and ALTERATION	FOLIATION ANGLE &	114	STRUCTURE (veina) ANGLE TO	STRUCTURE (velna)	MINERALIZATION	estmate %	LEACH CAP LEACHABLE OX		ALIUAL	FOOTAGE		R.Q.D.	SAMPLE	%	7.	*	7.	7.	oz/ton	CSTIM TOTA
	WIDNSIFY	a J J Footage	SCORE AUS	WIDTH		PYRITE	LINE ZONE SUPERGENE	REMARKS			RECOVERT		NUMBER	TCu	ASCu	СИЗСи	ASF.	MoS ₂	Ag) a
		T.	40°	\$"×0	gtz.chi-py-(cp)				-											Γ
		¢	10	1.9	GUZ-CHI-PY-(cp)				-		∞	93	67701	1.0						
-	ы	¢.	40	51×2	3t2-chi-py-cp	1.0			-	397		כוי	87714	,15	.01		3.00	.007	.vsa	
		¥ 9 1 100	140	5"	str-carb-chl				-						·					Ĺ
		+	40'		Bonder Phase Quartz Divrite				-											┢
		<u>د</u> ب	40		Atz-chipy-(lip)		1		-	1	100									
-	div to		40		gez-chl-py-(cp)	1.5			-	1472221		47	87715	.15	.01		4.08	.010	.040	
	80°wk		70"		st2-carb-ch1-py-lip				-	407			-							Ì
		<u>4410</u>			gtz-carb-chi-py-(cp)	ļ	0													╞
ORDER PHASE QUARTE DIORITES		2	// HO				II.		-		100									
11/ 10- Frit) and un with at 2 10-15/2000 (10)	4	9	= 90*	6"+09"*2	Leucocratic Phase		plas M		-			73	87716		.01		5.18	.004	.049	
Section is unlike other Border Phase Quarts Diorites in which play content is significantly higher in this section. There is also strong	** 80°34r	420	\$ 80°	h-htsまん	ytz-plag-chi-py-((cp))	0.0			-	<u>47</u>			017.0	•11	.01			,	,,	
foliation of the chi into thin .		1	=90	tu xə	gtz-carb-py-(cp)				-											t
stringers.			= 80°	hrintiges	gtz-chl-py-(cp)				-	ſ ſ	100									
	80-98 str	M	\$ 80'	11-04 × 5	stz-carb-py-(cp)	2.0	_		-	427		83	87717	.15	.01		5.47	,005	,050	4
		430		31	gtz-chl-carb-py-(cp)				-	181										
		1	60°to 70°		gtz-carb-py-Mo-lep)					}	100									T
-	UD	6	60	heletażxy	gtz-carb-py-(cp)		}				100		017710						}]
	\$	M	700	눌 ^u	gtz-chl-carb-py-(cp)	0.0				437		80	87718	<i>.</i> a1	.01	1	5.21	.013	.053	1
-	80° yhr	1 Muura	60 1 70	\$"×2	gtz-chl-carb-mag-(cp)-(py)							1								
	<u> </u>	7440	4001060		atz.carb-py-cp]	Į									╀
	145	KI –	75+280	~	gtz-chl-carb-(cp)-(py)		1		-	1	97									
	10		140	-	gtz-mg-carb-chi-cp	1.5	CLIA mest		0	11.1-7		40	87719	.24	.01		3.72	.017	.059	5
the state of the second second	80md	M		 An and the second s	gtz- carb-mog-chl-laste	and the second second	Tem	istin i	100	447	The second			-		-			-	
and the second s		1450	10	1.01	and the second back	-	1	1	10.3	100	Profiles .	-	Section 2.	and the	بالتبالية	14 miles	4. Kay	S. Mary	play/lay	

GIBRALTAR MINES LIMITED (MCLEESE

(MCLEESE LAKE PROPERTY) DIAMOND DRILL LOG

Hole No. 46-12 Page 7 of 12 ASSAY RESULTS

ROCK TYPES and ALTERATION	FOLIATION ANGLE &	-	(veine)	STRUCTURE (veins)	MINERALIZATION	x	ZONE ESTIMATE ACTUAL LEACH CAP CONTRACTOR CONTRACTOR CAP CONTRACTOR CONTRACTO	AGE		R.Q.D.	SAMPLE	*	7,	*	x	*	oz/kon	LISTINA TOTAL
	NTENSITY	a A Z Footage j	ANGLE TO CORE AXIS	WIOTH		PYRITE	LIM. ZOME BUDGENE BUDG		ECOVERT		NUMBER	TC u	ASCU	CNSCu	ASF.	MoSz	Ag	сни (Х
	Ni)) to 30°mod		90° 40° 50° 30°	10"+2 14" hrlnx3	gtz-chi-cnrb gtz-chi-mug-py-(cp) gtz-mug-chi-py-(cp) gtz-chi-py-(cp) gtz-chi-((cp))	0.7	<u>54</u>	57	98	77	87750	.20	.0}	Au 1 Ppb	વ.મન	.02)	.032	.c
	US to Comort	/ tot+/	40° =90° =90°	heholitza	stz-chi-py-(cp) stz-mag-carb ep-gt+ chl-carb	< ,5) Prissi Prise 20 H6		100	53	87721	.14	.01		1.65	.005	,025	
	ND to 90od			3.4 Ц	3t Z-carb-mag GtZ-chi-ep-(py)-(cp) ep-GtZ-(py)-(cp)	₹.5	- 47		95	50	87722	.15	.01		1.62	,014	.021	
	13) 70-00 70-00	1 1	₹70° 7 7 7 90°	hrinte <u>i</u> sa 5'	gtz-chi-carb-py-(cp) brx+39 w/carb-(py)-(cp) gtz-chi-py	↑ < 5	- fault zonz from 492'to 516', with several sections of brx tminac 93. There is no hem staining visible in this zonz.		80	13	87793	.31	.01		1.57	.014	.041	
	ND to 80°wk		10	3" 4"	gtz-chi-mag ep-gtz-carb gtz-ep-chi-(py)-(cpi ep-gtz-carb	< .5) - meg is megnetic only when powlered in this interval. ep+plagt 49		90	13	87724	.09	.01		1.39	.004	.025	
	æ		1 1	ц' Ъ	brx w/ corb-1(py1)-((,p)) gt2-ch1-carb gt2-carb-mag	4.5	- poor core recovery for the interval	57	60	90	87725	.14	•01	aŭ	2.20	.006	.028	

.

GIRRALTAR MINES LIMITED (MOLEESE LAKE PROPERTY) DIAMOND DRULLING Hole No. 94-12 Prop. 2 of 12

ROCK TYPES and ALTERATION	FOLIATION		STRUCTURE (veins)	STRUCTURE (veins)	MINERALIZATION	ESTMATE %	BOTTOM DEPTHS ZONE ESTIMATE ACTUAL LEACH CAP LEACHAGEE OX.	POOTAGE	ESTIMATED : COME	8.Q.D.	SAMPLE	7.	*	SSAY F	*		oz/toл	LITAL
	NTERSTY		ANGLE TO	WIDTH		PYRIT	LINL ZOHE	BLOCKS	RECOVERY		NUMBER	TCu	ASCu	CNSCu	ASFe	MoSz	Ag	(X
	AN F		- 20°	र्मु भ	3==-ch1-py-(cp) brx w/carb-(py)	0.6		517	90	30	87736	.08	<.01		1.30	.007	.02a	
		15-20	70°		gtz-chi-carb-py gtz-chi-carb-py-cp			1111										
			1 20° 40° 40°1050°		gtz-chl-py-cp gtz-chl-py-cp gtz-chl-py-((p))	0.7	}gh ↑	597	100	90	87727	.18	<,01		a.05	.0al	.033	
		5.30	10° 10° 80°	ちょ +o5*×3 しょ	9tz-chl-py-((cp)) 9tz-mag-chl-py-(cp) 9tz-mag-chl-(py-(cp) 9tz-carb				100									-
	DN E		40	-3ª toa'xa ty"	gtz-mas-ch1-(cp)-(py) gtz-carb-ch1-(cp)-(py)	<.5		537		67	87728	.1a	<.01		1.85	.011	.027	
· · ·		540	400	5	8tz-ch1-cp-(py)-(m.) 8tz-ch1-carb-(mag)-(py)				99				Ĺ					$\left \right $
	au		40°	helaxa	gtz-ep-chl-mag-(py) gtz-carb-chl-(cp)	<.5	CLIT -	, 547		70	87729	.15	<_01		2.25	_008	.030	
		1550	· · · · · ·		gtz-chi-carb-cp-(py) gtz-chi-mag-(py)-(cpi	<u>. </u>	- Vugsy or pitted looking -											
	A A A		1 10° 1 0° 30°70°	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	gt 2 - carb - ch-1 - fry- ((cp))	0.6	Border Phase Quarte Dionite	557	100	77	87730	.10	<.01		2.19	.004	.030	
	78wk	560	70"1080"	は"わら"メス	9+2-carb-py-(cp)								 					-
i a solution for	iù to to		/ 30° to 40° / 40° / 40°	6 ¹¹	gtz-mag-carb-chi gtz-(chi) gtz-ep-chi-py-Kcpi	2.5		567	97	67	87731	الم	<,01		J. 7I	.003	.036	
and the second	-	570	30"+040"	hrlaxa	922-ep-ch1-(1)	1.5	States and	120	ninis.	010	abia)	1256	100	int.	infra.	/manuel		

.

GIBRALTAR MINES LIMITED (MCLEESE LAKE PROPERTY) DIAMOND DRILL LOG Hole No. 96-12 Page 1 of 12

		GRAPHIC LOG					BOTTOM DEPTHS	-	1			,	AS	SSAY R	ESULT	<u>s</u>		
ROCK TYPES and ALTERATION	FOLIATION ANGLE &	ette 4	STRUCTURE (velna) ANGLE TO	STRUCTURE (veins) WIDTH	MINERALIZATION	7	LEACH CAP	FOOTAGE	ESTIMATED COME RECOVERT	R.O.D.	SAMPLE	7.	7.	7	7	7	oz/ton	6511 1012
	MURSET	ž Ži Footoge	3			PYREIE		Ì			NUMBER	TCu	ASCu	CNSCu	ASFe	MoS2	Ag	
		1	40	hrlnxa	at z-chi-py-(cp)			1										Γ
	1 00		1 100	10	gtz-carb-(py)	1		-	99						<u> </u>		0.12	
	4		1 40	£1×2	gtz-ep-mag-chi-py-(ip)	2.5	>epich17	577		70	87732	.13	<.01		2.10	.006	,033	ļ
	50°~~ed	580	20°	3	gt2-mag-chi-(cp)					†				.				
COCRATIC PHASE : 588' + 591'		1280	160.	<u>}</u> ,	922.ep-ch1-(cp)		/	1	27				-					t
(45-55%), y=z(20-30%), chi(15-20%)			40*	14	gtz-chi-py-(cp)			1	97									I
impetant looking section in ontrast to the surrounding	au l		70		gtz-ch1-(py)-(cp)	2.0				57	87733	.10	<.01		3.35	,006	.029	
itted, carb-rich Border Phase wartz Diorite.] [3	1 200	13*	gtz-py-chl-(1p)			587										
uartz Diorile.		590		1.	gt 2- mag-(py)-(cp)			-										↓
		°	140		gtz-ch1-ep-py-(cp)-(Mo)			1	95	'								
	LND	1	1 IO°		gtz-ep-chl-py-(cp)-(no)			-			-7721				2	.006	020	
] % [1	1 20°	4	gtz-mag-cht-(cp)	<.5		597		63	87734	,રા	<.01		a.05	.006		ļ
	50°wk	1600	1/ 10-1620	1 " ? 	stz-chi-carb-ep-(cp) stz-mag-ep-chi-carb-(cp)			-		Į								
			N40°	14 H	gtz-chi-carb-py-(p)-(Mo)			1	00									†
	1		100	1-	atz-mag-((,p))	ļ		1 ′	99									
	- ND - to	1	11	L .		<.5		1,		20	87735	.12	<.01		2.13	.004	.025	,
	40 mail	2			at 2 - ch1-mag-(py)-(cp)			607										
		1610	/40°	3"	gtz-ch1-carb-ep-(py)-(cp)	ļ		4									<u> </u>	4
	1	KI I		hrlnx3	gt2-carb-ch1-py-(cp)		}	1	99									
	00	1	20" to 40"	1 n x 3	gtz-mag-(py)-(cp)	1.0	magtt]			87736	22	< 11		2.60	.006	.030	,
	- to -50°		0. 9 90	til to by x2	gtz-mag-((cp)).	1	("3''	617		80	011-50	14.5	01		2,00			
		ALA	120 40	a" 1 ⁴	Gt 2 - mag - chl - carb - la) (cf Gt 2 - mag - (carb) - la) - (cp))	1										
	-			hrinx3	gtz.chl-mag-(cp))	1		-								1
		4	/ 30°	는데 중에	gtz-mag-(cp)			-	100	i i								ł
	EV -		140	7.0 8	9==-(c)-(ch)	0.6	repl	627		77	87737	.19	<.01		2.43	.002	.025	1
	60°	2		181 18.0	And a state of the second s	10.0		- bat		-			-	5	-	100	10	
and the second second second second	-	1630	1 20 10 40	14" 10 x 24	gte-py-carb	100	P	1		and the second	where the	1000	, and the second			/17 th 1000		4

		GRAPHIC LOG	;				BOTTOM DEPTHS						A	SSAY P	RESULT	s		
ROCK TYPES and ALTERATION	NICATION		STRUCTURE (veine) ANGLE TO CORE AXIS	STRUCTURE (veins) WIDTH	MINERALIZATION	75	LEACH CAP	FOOTAGE	ESTIMATED CORE RECOVERY	R.Q.D.	SAMPLE	*	%	x	*	7.	oz/ton t	TOTAL
	NTORSITY I	Toologe	52			PYRTE	LIML ZONE				NUMBER	TCu	ASCu	CNSCU	ASF0	MoS2	Ag	(X
	au		40* 50* 30°	7."	gtz-chl-carb-ру gtz-chl-(<p) gtz-carb-(chl)</p) 	<.5		637	97	47	877333	.08	<.01		1.27	.003	.025	
-		640	40.	1 .	gtz-carb-chu		∾aśł 	.0.91.										
			40		gtz-carb-Kcp»				98				:					
	AN .		40°	1 3	gtz-chl-py-(cp) gtz-mag-carb-(cp)	٤.5		647		63	87739	.14	<.0)		1.74	.007	.026	
	[2650 1	50°	\$"	922-CW-PY-(cp))		99									F
+	M		40	j.	gt2-ch1-py-((cp))	<.5	magit			50	87740	.12	<.01		2.37	.010	.025	
	50 mail	660	10	1" 1-"	gtz-mag-chl-(cp) Gtz-mag-((cp))			65 <u>7</u>										
to 2' sections of core between 60' and 680' appear nearly ionalitic in assemblage as the gtz component rises	ND	<u>7.607 I</u>	40° 40' 45°		gtz-corb-chl gtz-py-chl-l(p)) gtz-corb-chl	4.5	gt 2 T souss atm	,	95	67	87741	.06	<.01		1.90	.003	.021	
The gire component that	4o° ⊷K	1670	40	5 15 15	gtz-ch-py-cp gtz-mag.(py)-((cp))		saus atri	667										
	AK		X 0"+ 80"	3"	stz-meg-(py)-((cp)) stz-(ch1)-((cp))		- brass-like metallic cooling from drill rods covering sections of core from 670' to		100		a-2-711-7					007		
-	та 40°		60"	4.63%2	gtz-carb-chl	0.6	683'.	677		63	87742	.07	<.01		1.71	.003	.019	
	_	1680	40	a" hrhxa	gtz-chl-py-(cp) gtz-chl-py-cp	<u> </u>												┝
	NB		1	311	322-Py-carb				96		0-1-7.110				2 44	608	025	
and an Alexandra	to to		40	<u>з</u> Гн	gtz-carb (py)-(cp)	2.5		637		40	87743	.15	<.01		5.42	,008	.035	

۰. 3

i

선물 이상에서 가슴을 다.

.

		GRAPHIC					BOTTOM DEPTHS					_	A	SSAY	RESULT	S		
ROCK TYPES and ALTERATION	FOLIATION ANGLE &	4	STRUCTURE (velne) ANGLE TO CORE AXIS	STRUCTURE (veine) WIDTH	MINERALIZATION	7.	LEACH CAP	TOOTAGE	CORE	R.Q.D.	SAMPLE	7.	7.	*	*	*	oz/kon	m
	MENSITY	Z Footage	212		_	PYRITE	UM. ZONE SUPERGENE REMARKS		RECOVERY		NUMBER	TCu	ASCu	CNSCU	ASF®	MoSz	Ag	ľ
	er L			-	qtz-mag-carb-((p))				100									
	WO			3	stz-chipy-cp	<.5		697	4	63	87744	.24	<.01		2.12	,006	.024	,
		700		hrintəğirə	922-ch1-py-((cp))		-			ţ								
·····	NA	N I	70"		gtz-carb-chl gtz-py-chl-((cp))				98				:					Γ
	HO-K		30"		stz-chl-mag-carb-lphilip	<.5				50	87745	.12	<.01		1.83	.008	,016	
		1		8	707' * E.O.H.			:+07	·						'	-		
					Dick Poor													t
					100-100.0													
																		ļ
,							-						<u> </u>					╞
									}									
						ļ			Ì									╞
					·				ļ									
							:											1
								-										
Meridian States	1	140	in the second	1000	and a state of the								1.1	and a	in the second second	100		ł

.

LOCATION	SAWFILL	AKEA		85/	ARING	~	LATITUDE	(N)	38 39 7, 579		COR	SIZE		Q	1	OCCED	BY I	Nuere.	Y R	v dra	ř.
DATE COLL	ARED VUDE	16,199	6	LEN	NGTH	707'	LONGITUD	E (E)	42 307.771		SCAL	E OF	LOG	1 = 10'			July				
DATE COM	PLETED June	17 199	6	DIF		10.0	ELEVATIO	N	2 994.621		REMA	RKS						0			
		ROCK TYP	PES and	ALTER	ATION SYM	BOLS					MISCELL	ANEOU	S SYN	BOLS and	ABB	REVIATI	ONS				-
CACHE	PHASE DIORITE CREEX GROUP - VOLC / META-SE	يم 25? آيا ل	EUCOCR	-SEDI ATIC I	MENTS Phase	Ц	FCCIA or PSEUDD-8RECCH		adly broken rock ault gauge icrease ecrease	bo = b brx = b bx = b carb = c	ozurite ornite oroken (oreccia	d d rock s g s g	up =q iss =q p =q g =q r ≂q	halcopyrite uprite ilsseminate pidote jouge jarnet jypsum	m Mi Mi m ng	loľ=m nO₂=py o =m lođ=m ołCu=	agnetite alachite rolusite alybden oderate native an direc	e ille copper	rx saus ser sph str	= quor = rock = saus = seric = spha = stror = stoci	surite Ste Ierite Ig
	VOLCANICS		(CHLORI	TE) AL	NATE SER\ -T'N PHA≦	SE			fnuoma nont	chi = c	:hlorite	ĥ	∎m = i	etitome	pi	ied = pl	edmont		tet	= tetra	hedrit
				GRAPHI		-1	r	<u> (()) v</u>	ery minor amount BOTTOM DEP		hrysoco	lla li	m = 1.	Imonite	P)	/ = py				= weol	r
			FOLIATION	F F	1	E STRUCTURE	1		ZONE ESTIMATE	ACTUAL	FOOTAGE	LISTMATED	1		x	×	SSAY	RESULI	5	oz/ton	ESTRATE
ROCK	TYPES and ALTERA	TION	ANGLE &	_	ANGLE TO	S WIDTH	MINERALIZATION	7% Pynkite	LEACHABLE OX. 61' LIM. ZONE 100' SUPERGENE	100' 100'	- ROCAS	COME JECOVEJIY	R.Q.D.	SAMPLE NUMBER	TCu	ASCu	CNSCL	ASF	MoS ₂	Ag	TOTAL C CANNOE (X)
				2 Feologe					REMARKS						<u> </u>		ļ				
				ИC					OVB ESTIMATE	-	- 45										
BORDE	<u>R PHASE DIOR</u> (45'-76')	<u>075</u>	ŃD	<u>45</u> 1 1 50	× 0-60	6# %5#- %4"	rabble (some plotife) several epiliem storigers	< 0.5	MnDa-lim- (anit) or	frature	47	٩D	53	<u>6775</u>	.04	.01		1.56	<.001	.021	<.0:
+ str + 959	saus altin saus altin in size < to" lis evenly distri- nt does occur as		10		/ 20 - I0 - S0+**2+**	13" 83 33 * X0 * X4"	e interstitiai mal assoc w/ qt2-Min02-ank qt2-inn02-ank qt2-inn02-lim; ep-(ch1)-(qt2)	< 0.5	MnOs-lim or frac surfaces trought		57	95	નર	87752	.08	.07		1.59	<.001	-018	.04
				60 60	50	۲ <u>/</u>	e-grain size√, chl↑ (1') ← interstitial mal chl-ep-py		- possibly meta-v			90									
			לא	2222	, 10×3	26 257×33	ep-chi-(/im) brx-MinOg-lim	<0.5	MnOz-lim on fracti surfaces throughout	it in Erval It in Erval	67		- 3 3	87753	.06	.05		J.55	<.001	.0a1	.03
				70	~ 150×3 ~ 190×2	1/2+1+1/2"	atz-(ch)+(lim) atz-(ch)+(lim)				-										<u> </u>
			ND	1 × 1	= 80×4	313 + 124"	q1z-('im)	<0.5	lim-(NrJ2) on Frac surfaces throughout	ture Interval	- - - - - - - - - - - - - -	² 5	47	87754	.04	.02		a.37	<,001	-024	<.03
difference of	WING AT PARTY	2	1	E 80	70140	I*x*k	q)z-ep-(carb)		1.0.2		1							orma/gib1/			192

GIBRALTAR MINES LIMITED (MCLEESE LAKE PROPERTY) DIAMOND DRILL LOG

Hole No. 72-12 Page No. 1 of

1

haran/gib1/rydrnan/argint/hog_direct.dwg

The second s

d,

		GRAPHIC	;				BOTTOM DEPTHS							SSAY F	RESULT	S		
ROCK TYPES and ALTERATION	FOLIATION ANGLE &	Alt A	(veina)	STRUCTURE (veins) WIDTH	MINERALIZATION		LEACH CAP	FOOTAGE BLOCKS	ESTIMATED CORE INECOVERY	R.Q.D.	SAMPLE	7	7	x	*	76	oz/lon	
	INTENSITY	Ž Ž Fostage (CORE AXIS			PTRILE	SUPERGENE REMARKS				NUMBER	TCu	ASCu	CNSCu	ASF.	MoSz	Ag	(X
CACHE CREEX META-VOLCANIES (76'- 117') • 70% chi, 20% cp, x10% plag,			40+3	41+21+3" 6"+3 ¹ +3"	BONDER DWASE DIARTE V. FINE grain dies py In MERA-VOLCANICS BORDER PHASE DIARTE	0.5	(tin) on Fredure surfaces throughout interval	*7	150	63	\$77 55	.05	.02		2.74	<.001	.024	.0
<10% qtz, <10% carb • ep/carb occur as veins or		(P)	20×3	× -3	chi-may } mai on Fractures SURTER PHASE DIDRITE		- diss py											
 ver small deare the primeruly verbal set years in an assar ic chill around mass core appears dark green it capar 	Кр.	(1-2-1)-0	70×4	P 4	endiss py ep-carb	<0.5	(Imion Practure Surfaces throughout interval		<u> 9</u> 9	57	87756	.09	.03		2.84	<.001	.032	<
First 15' of this rock with has . Marrow bards of the previous .	50 TVK- 70d	0 0 0 2 200	. ?	ir.	brx (dists of rocks) ++ diss py		}7ch1, ?carb	97_										
Clorit E wit	60 wx-mod		A 60	1* 6* 1' 1/3*+1/8*	ip-chi+(sarb) cp-chi-carb-py-((cp)) SORDER PHASE D'ORITE 1tz-carb-fy-ff ass +veiriets gtz-carb-fp py-cp	J. 8	* black mineral asoc. with	_107	90	73	87757	.10	<.01		3,65	.001	,035	
tep , tch1, tcarb str blebs ep in chi rich matrix (112'-126')	60-70 str 60-79	0.0.0.0	60-70	25*3 25-74	lenses of carb } diss + venue py-cp diss + ve inlets py (cp) throughout interval	1.0	Py-carb vein ∼6 hardness fine grained lathes 60°-120° cleanage ∴ hornblende	, 1:7	90	27	87758	.15	.01		4.01	.004	.050	
		< 120 C			diss+veintets				98									-
	ND	130	?	a'	brx-frags w/dsspy ard stat gtz-ep-pied-chl-cp	1.2		127		57	87759	.10	.01		4.01	.002	.044	1-1
BARDER PHASE D'ORITE			∕ 50 2017 30 7	1* 1' 2'	1 chi Ichi				55					ALL			-	t
 similar to acove DIORITE with intervals of increased chl content noted 	ND				str diss + veinlets py (cp) throughout interval	2.0		137		37	87750	,25	<,01	З	5.10	.002	.074	1.

;

Millio martin

 $|\mathbf{r}|$

- G 1000 1100

ROCK TYPES and ALTERATION	FOLIATION ANGLE &			(enley)	(veina)	MINERALIZATION	7	LEACH CAP	FOOTAGE BLOCKS		R.Q.D.	SAMPLE	%	*	7	7	%	oz/ten	L'STIMATEL TOTAL CA
	DITENSITY	Tooto	5	IGLE TO RE AXIS	WSDTH		PYRITE	UML ZOHE SUPERGENE REMARKS	•	RECOVERY		NUMBER	TCu	ASCu	CNSCu	ASF€	MoSz	Ag	снюс (X)
CACHE CREEK META-VOLCANICS (140'- 210') • 65% ch1, 25% ep, <10% gts, < 5% carb • pp occurs as large bless and stringers in a fine grain	ŝ	1. N. N. M. M.	A		1 <i>2'</i>	dissectoregant ories & Fine grafets the troubles breecia - a angular sais s Disarte cause carre phase, Erisot Elik a chi k stata bex	3.0	L WO M, DV (C), SLUUSLE	- 47	75	<u>1</u> 2	2774,	*33	<.01		6.40	.006	.062	
stringers in a time grain. Shi rich matrix	ND	4 150 4 150				diss and hrin stringers of py(cp) throughout interval	1.0		157	а <u>у</u> 	30	\$7765	.06	<.01		3.25	<.001	.026	./a
·	ND	c :30 c : c : c : c : c : c : c : c : c : c :	, () () () () () () () () () () () () ()			Py-(cp) LEUCOCRATIC PHASE -urieven contents -py veins cutting the units brx-(gg)-py-(cp)	1.8		:57	90	37	27763	.12	<.01		3.80	<.001	.041	.18
	ND	C 170			4°0 ×6 hrln-1⁄4	py-cp.(Mo) numerous py-cp.Mo veins some assoc w/g'z(carb)	3.5	Mo assoc w/ qtz giving qtz a: blue-grey colour	, , ,	ąs	50	بە272%	.17	<,01		Ч,86	.002	.036	
	ND	120 120 120	5 0-		ky" hela-9/3	gtz-chi-py-cp-(Mo) numerous gtz-chi-(carb)- py-cp-(Mo) veins	4.5		157	99	57	87765	.16	.01		5.81	.003	.042	,38
	NÐ	C 190 C 190	/ 10			912-(carb)-py-(cp) 912-(carb)-(fy) 912-(carb)-(py-(cp)	3.0	numerous he'n by (cw/M)) stringers throughout interval	197	- <u>1</u>	37	87766	11	<.01		4.39	.001	.033	.22
	-12	2 200	40		14	gtz-(carb)-(ey)											/rytemen/i		

GIBRALTAR MINES LIMITED GRAPHIC

FOLIATION

STRUCTURE STRUCTURE

(MCLEESE LAKE PROPERTY) DIAMOND DRILL LOG BOTTOM DEPTHS

ESTMATE ACTUAL

ZONE

Hole No._____ Page____ of _/ . ASSAY RESULTS

m/gib1/ryamen/acpies/heg_stant.drg

		LOG					ZONE ESTMATE ACTUAL	F 1						22811		J		
ROCK TYPES and ALTERATION	FOLIATION ANGLE &	All A	(veins)	STRUCTURE (veins)	MINERALIZATION	x	LEACH CAP	FOOTAGE		R.Q.D.	SAMPLE	7	7.	z	×	7.	oz/kon	TOTAL OF
	OCTIONSITY	e i ∑ Foetage	ANGLE TO	WIDTH		PYRIE	UML ZOME SUPERGENE REMARKS		RECOVERY		NUMBER	TCu	ASCu	CNSCu	ASF.	HoS2	Ag	(%)
			50	1/2"	q ⁺ =		e-ste eo altin (mag)		:00									
	.vc	ć.	30-60	½5- X₁°	cp-(Mo) veins	3.0	-			80	97767	,24	<.0]		4.34	.002	.049	.35
			40	1	gtz. py-((cp))		-	507			ļ							
large Vep after 210' BORDER PHASE DIORITE		C 320 N	70	11 1/3 + 1/3 + 1/3	LEUCOCRATIC PHASE Carb-(gtz)			Ì						<u> </u>				<u> </u>
(210'- 379')		K I))				wk to no saussurite t	1	100									1
· 45% chi , 45% plag, <10% yiz	No.	MI	9-60	X10-14	Aunerous atz-(carb) veins	2.5	alt'n	217		20	87708	.15	<.01		4.10	.001	.035	.15
gte occurring mainly as veins • grain size generally between 1/20 - 1/0		K	<u>{</u>]		w/ low angle py-(p)-(Mo) stringers intersecting		6	411					1	1				
· degree of saussurite alt's	<u> </u>		71 51							<u> </u>							┟──┥	
varies			70	K"	gtz-(carb)-py-(cp)	ļ	wk to be saussurite]		98									
	ND	KI I	5 10-60	heb-12	numerous chl-gtz-py- (cp)-(Mo) veins	5.0	altin	227		57	87769	.10	<.01		5.74	.003	.023	.38
:	1	K I			(cp)-(ma; veins		-	Kai										
		K 232	1 20	1/3 '	qtz-(cerb)													
	1	R I					wk to no saussurite -	, ,	98	1								
	ND	K	20-40	16-14	numerous giz-carb-py- (cp)-(Mb) veins	4.0	altra	237		73	87770	.13	<.01		4.84	.007	.029	14
			4			•	-			1							'	
		N <u>242</u> /	<u></u>			¦:	-			<u> </u>								
		R I		10- 14	numerous chi-atz-carb-py-		wk to mod saussurite.		98		1		ł					
:	מא	K	40-70	10-14	(cp) - (Mo) veins	4,5	altin	247		53	87771	.15	<,01		4.96	.002	.028	1.3
		250		2/11	9+2- (carb)-(py)-(cp)-(Mo)				<u> </u>	Ì			l					ļ
			5 0-43	4	falded gtz-py vein		-											<u> </u>
	-	K I	'	V 17 [#]	veins chl-gtz-py-(cp)		mod saussurite altin -	1	95	1								
:	h D		10-70	16-1/3	Veins	4,0		357		57	87772	.15	<_01		5.92	.004	.025	1.2
	1	1260		-	Contraction of the local states of the local s	100	And the American Inter-			1		}						
	L	1	<u>71.</u>					L		1	L				and/abl/	land and the	L	A

ne/gib1/rydmae/aap

ROCK TYPES and ALTERATION	FOLIATION ANGLE &		STRUCTURE (veins)	STRUCTURE (veina)	MINERALIZATION		BOTTOM DEPTHS 20HE ESTMATE ACTUAL LEACH CAP LEACHABLE OX.	ROOTAGE	ESTIMATED CORE	R.Q.D.	SAMPLE	7,	7.	7	RESULT:		oz/ton	L'ETIMAN TOTAL (
	WTENSITY		ANGLE TO CORE AXIS	WIDTH		PYRITE	LIM. ZONE SUPERGENE REMARKS	ILCO'S	RECOVERY		NUMBER	ŢĊu	ASCu	CNSCu	ASFe	MoSz	Ag	(X)
	= 		? 20-40	2' %5-74	brx w/py(cp, mis rumerous chl-stz-py- (cp) veins	3,5	ແລະ ລະແລະເຊິ່ມຕີ∵ີ່ c ແມື່ນີ່ . 	(#20	ąي 	50	877-3	,14	<.0)		5.72	.003	.022	.)5
	ם וו ב ס וו ב	2 370 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0-22 ? 0-30		chl-qtz-caro-py brx-(gg-bac-on numerous chl-qtz-caro- py-((cp)) veins	3.0	Mod ร่อนระเหาะ เปรีก	\$77	35	53	27774	.11	<.01		5.19	.004	.019	.10
			20 20×6 40	Va V4 ×6 2V3"	chl-gtz-carb-py chl-gtz-carb-py-((cp)) gtz-carb-py-(mag)-(cp)	2.5	e-up altin mod saussukitn altin I	297	48	50	\$7795	,12	<.01		4.39	.005	.017	, 9÷
	- - - - - - - - -	RI ľ	30×3 40 30×3 0-20	841+3 2 ⁵	chi- (a†z)- py- ((cp)) g+z- (cari)- (py) chi- g+z- py chi- (g+z)- (cari)- py-(cf)- (i^si)	2.0	e-ep 2 'n	, ,	ag	75	87376	./2	<.01		4.19	.003	.020	.0
			30	1" 'X4"	numerous chi-otz-cart- py-licpi) stringers + Heb of Fine graind hornbi gtz-cart-py-liMel sheral fiz-ch-cart-py-liMe	index	*see description @ 108*	297	100		1.00 C 1.00							
		310	40×2 40 0-30	ki = 2 2/3 1/8 - 1/2	otz-chi-(carb)-py-((cp)) otz-(carb)-py several otz-chi-carb-py-((cp.) veins	3.5	wk to mod saus altin } } ep altin	307		83	87777	, IQ	<.01		4.SQ	,009	.017	.1:
			30+¥0 0-30	≫31+11 ∦a – №	atz-cz-co-py-(cc) numerous stringers o- gtz-chi-carb-py-(Mo)-((cp),	a.5	moo saus/ep a - n	רו <u>ב</u>	(20	73	87778	.11	.0		3,44	.008	.018	.10

(McLEESE LAKE PROPERTY) DIAMOND DRILL LOG GIBRALTAR MINES LIMITED

Hole No. Page -12 of

1

ASSAY RESULTS

		GRAPHIC	;				BOTTOM DEPTHS						A	SSAY F	RESULT	s		
ROCK TYPES and ALTERATION	FOLIATION ANGLE &	A Altr	STRUCTURE (velne) ANGLE TO CORE AXIS	STRUCTURE (veina) WIDTH	MINERALIZATION	7.	ZONE ESTIMATE ACTUAL LEACH CAP LEACNARE DX.	FOOTAGE	ESTIMATED CORE RECOVERY	R.Q.D.	SAMPLE	*	*	x	*	*	oz/lon	TOTAL
	INTENSITY	a A ↓ ↓ ↓ ↓ ↓ ↓	2			PYRTE	LIM. ZONE SUPERCENE REMARKS	-	RECOVERY		NUMBER	TCu	ASCu	CNSCu	ASFe	MoSz	Ag	(X
	-		3 20	11	den lierde en (Bir (Mo) Levede Mente Prése			-	120									
	- 110	K K	(0-35'r= 		\$2-ch - cars - py (Pos+((cp))	4,0	0:00 \$\$05 FV		0	73	87779	.09	<.01		4,64	.008	.oas	
		< 2 2 230	; V 9-53	V.*- X_1	SEVERA STREAMERS OF		jstricht ation	37										
	-		<u></u>		chl-atza care-cy=(ca)	h h			0.5									1
	- 115	X.	1625	Niles 1	112 - 2 - 4 A	3.0	we ep alth mod saus ath			53	877,82	.08	<.01		4.51	.008	.029	
	-		40		ats-(card) Several stringers of gtz-cht-caro-py-llep	5,0	mod saus an n	<u>377</u> .			0.1.164	.00			11			1
	-	> 3=0 >	() 20×3.	1 75	atz-carz-chi-py-(cp)			-										┢
		X I	20+3	X;*3	chi-gtz-earb- py-lop		mod sauslep altin		38									
	- ND		- 70 - 70	2	gtz-carb-(py)-(1ms) gtz-carb-ch1-hornblerde #	2.5	, · ·	- 347		77	87721	.08	.01		3,37	.004	.028	1
)) 350	e 4.5x3	Y4 +V5 + 4*	gtz-chi-py-(cp)		+ fine grained hornblende similarly noted @ 109'	-										
) 	45-65	1.	Interval of diss & veins of py-co glz-(carb)-py-(Mo)			-	100									Γ
	AND	2	X			5.0	wk to mod saus altin	-		67	87782	.24	<,01		6.37	.003	.058	
		3	0-20	X	sental pricht-py veins			- 3:17										
		365	() // 30×2	1512	gtz-chi-carb-py-sp	.												╞
			<u>.</u> ?	a	brx-gg w/atz-py vein			-	70									
	ND	3		ļ		4.5	wk saws alt'n	- - - 367		47	87783	<u>،</u> 35	<,01		6.30	.022	-062	4
		370	N-10-40	$k_{t}^{\mu} = t^{\mu}$	stark of gtz-carb-py-cp-Mo			-										
		Ş) 	à 3 ,	gtz-chi-carb-py-cp-Mo aternal allebs Bive is py(cp)(its)				95									T
	- ND		0-40	28"- X4"	gtz-cerb-chl-py-cp	5.5	mod saus altin			60	87784	.16	<.01		4.53	.013	,035	
100000 - 11000 - 11000	- 1 e	380	40	×*	gta-carb-py-Ma-(cp)	1 - I	Linescond March 19	<u>- 377</u>										

1

· · · · · · · · · · · · · · · · · · ·	GI		AR MINE	5 LIMIT	ED (MCLEESE LAKE	PROF	ERTY) DIAMOND DRIL		6		Hole	NO			Page		01	
		GRAPH					BOTTOM DEPTHS						A	SSAY F	ESULT	s		
ROCK TYPES and ALTERATION	FOLIATION ANGLE &	A ¹ h	STRUCTURE (Veins) ANGLE TO CORE AXIS	(veins)	MINERALIZATION	ズ	LEACH CAP	PORTAGE	•	R.Q.D.	SAMPLE	7.	76	76	7.	*	oz/ten	TOTAL
	PITDEITY	Tootoge	S.	WIDTA		PYREIE	LIM, ZONE SUPERGENE REMARKS		RECOVERY		NUMBER	тс∎	ASCu	CNSCu	ASFe	MoSz	Ag	(X)
LEVCOCRATIC RHASE (379'- 3535')	1		2	hein- Mi	numerous py-(cp) voins				23					Au				
808038 04455 DIAR - 1	ND		30	73' 3'	حم، - ١٩٤ - ((arb)- ٢٧- (cp) brx - (ag)- ((arb)- ٥٧- (cp)	3.0		394		27	87785	.a7	<,01	· · · ·	3.09	,012	.038	.16
MARCELL CODE		2 242	30+2		chi-giz-py-(cp)				-				•	PPb				
ACHE CREEK META-VOLCANICS (388'- 408')		212	A (0-20) x 3	12:23	4 ¹ 2 сихи-ру-(Мо)-((ср))				15 1				- e					
• a pseudo breccia from 388' to 408' ⇒ ep occurs as angular clasts in a chl rich matrix	1,0	Y.U.				6.0		297		43	\$7786	.12	<.01		5.00	.005	.026	.2
GIASTS IN & CA. FICA MATRIX		2 6 400 5	्रि इंग्रेस छ। मुर्ग स्ट		РУ-(ср) 2 ⁴ 2-(сагы)-(ру)													
		c c	Δ Δ	-	diss & hrln-75 stringers				45	67	A *\=							.
	ND				of py(cp) throughout interval	2.0		107		67	87787	.16	<.0}		2.95	,007	2027	.1:
BORDER PHASE DIDRITE (403'-707')	-	1 410						, ,	:15									\square
• wix to no saus alt n • wix egaltin	ЦЬ	Ŕ	30-60	1/3-1/4	(cp) veins	1.5				40	87789	.20	<.01		4.04	.006	.046	
· increase in chl (>50%)		× 420	17 X					97										
(423'-444') dark chi altin : • str foliation	ND	151	1 30	1/9" 1/4 + 1/2" 13"	chi-py atz-carb-(py)-(cp) gg-carb		-		વર									
• numerous carb (qtz) veins between faliations	80 str		20	7'	dark cht alt'n Wowerous bands of carb (gtz)-(py)-(cp)	2.0		1522		ฉз	87789	.19	<,01		4.13	.008	.057	
• increase in chi (>60%)	514	430	\$0+50+80	l"+H"+a"	bands of carb(9/2)-(py)-(cp) carb-9/2-(py)-(cp)													_
· core breaks and forms Any disks					· · · · · · · · · · · · · · · · · · ·				2)					<u>Au</u>				
 gradational contact between this wit and DIORITE 	str to	XX.	80	10'	dart chi alt's w/mamprous bands of carb-(gtz)-1997-199	a .s		437		10	877.90	.36	<.01	3 Реб	4.84	.019	.067	.)
line a manufacture	mod	440	ALITY A	allege	Bard ROMERCHER	- 24								~~~				

CIDENTAR MINES LIMITED (VALEESS LAKS DEODERTY) DIALOND DOUL LOC

a shirt of

the state of the state

Mate Me. .

	T	GR	APHIC					BOTTOM DEPTI	HS						A	SSAY	RESULT	S		
ROCK TYPES and ALTERATION	FOLIATION	E.Y	LOG	(veins)	STRUCTURE (veins)	MINERALIZATION	ESTIMATE	EGNE ESTIMATE LEACH CAP LEACHABLE OX.	ACIUAL	POOTAGE		R.Q.D.	SAMPLE	*	*	*	*	*	oz/ton	ESTIMAT SUTEAL
	INTENSITY	F .	Sinclure Sinclure	ANGLE TO CORE AXIS	WIDTH		PYRETE	LIM, ZOHE SUPERCENE REMARKS	_	a contra	RECOVERY		NUMBER	τCu	ASCu	CNSCu	ASFe	MoSz	Ag	(X)
			4	80 90 19142	107 105 - 12	Calecare-sta-min Non ice date st. Alto al og ca valas Mingto-care-py-co-(Ma)	1.5		1.1		~ŋ	30		3.9	<.0)		4.63	. 086	.056	
Vich With the saugust With ep altin			1 450 /	0-20	₩ Хё×≏	ch - (q"z", - 'sa++) - (pyl-(c+. q"z-ch!-cp				443			anua!	.38			7,65	.000		
	-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	/	20 [] 30	21 9_1	er - 1975) - 64 - (60) eki + fy- (4p)					ąç	37					3.25	01/	.043	
	- 115 		ľ	20	241 141 242	ch - caro- py · c u ch - caro- py · c u en - caro- py - (cp	1.5			957		37	\$7792		<.01		2.40	.036		
· · · · · · · · · · · · · · · · · · ·			Ì	10-30	1:5- 1/2 ⁺	scueral chi-tarz-py-lep) veins			-		18									
	ND		ĺ	0-:0 80	Х., ⁵ Х.,	9 ¹ z - (mag) - (py) = (pp) 9 ¹ z - (caric) - (py)	1.0		-	467		50	\$7743	.22	<.01		3.20	.011	_045	. 1
		1		10	84 ¹	chi-carb-(py)				,	92									
				10 40	7 <u>-</u>	.caric-qtz-py qtz-cp	2.5		-	, רכי		47	87794	.30	<.01		4.20	.021	.050	.5
	-		-180 X	29-60	2 ₀ -24	chi-(carbi-(gtz)-py-cp veins			-											
				20.60	×,"- 14-	chl-carb-gtz-py-(cp) veins	1.5		-		98	50	877 <i>95</i>	.19	<.01		2.83	.008	- 039	
			Y	40+30 60+30	19"×2 14"×2	chl-gtz-py chl-gtz-(er)		←ep aitin		487										
r chl ro saus alth			-	- 70	<i>'</i> %''	chil-gtz-(czsb)-cp			-		98	43	27795	.27	<.01		2.60	.016	.043	
				40	1	chl-(gtz)-cp-py	0.8			497			61175				2.00			
	1	1	500	40+2	94 ⁻	chl-gtz-cp-py	10.4			1	L	L				1	arra/gfa1,	1		

GIBRALTAR MINES LIMITED (Moleese lake property) DIAMOND DRILL LOG Hole No. Page 3 of 12

		GRAPHIC					BOTTOM DEPTHS						A	SSAY I	RESULT	s		
ROCK TYPES and ALTERATION	FOLIATION ANGLE &		STRUCTURE (velos) ANGLE TO CORE AXIS	(velna)	MINERALIZATION	*	LEACH CAP	FOOTAGE	ESTIMATED CONC RECOVERT	R.Q.D.	SAMPLE	7.	7	7	7.	*	oz/ton	CSTN TOTA
	INTERSETY	in J Taetage	21/10			PYRIT	SUPERGENE REMARKS		RECOVERT		NUMBER	TCu	ASCu	сизси	ASFe	MoS₂	Ag	((
	-		×>-30	74 * Y	gtz-(cars)-mag-(syl-(cs)				0.0									[
	1 60	() }	- 50	3	ajz-chi-(ay)-(cy) ntz-carb-chi-co-(Ma)	0.8				23							07/	
	1 Moka 1 75 1 Str	K I	~ ~ ~ ~	14	7,2-C419*C7 **5*(1.5)	0.0]	507			87797	.37	<.01		2.80	.012	,026	ŀ
	l str	X 510	50+5	24-5	ofe-caro-(cy)													
	-		- A A ?	55	only represented by 15 brx				75									
	1 60		<u>ь</u> -		, .	0.5	emposérie à core lost			27	87742	.a3	< 01		11.25	004	,050	
	- str		50	10'	dark chi alt'n w/ bands of chi/cart/plag/(giz)		diss py (cp) along foliations	552		<u> </u>	ਸ/ <i>7°</i> ਵੇਂ।	.~.			4.35			-
	-	\$ 520																
· igtz, vearb, vchi	-	R I					-		:00									
 some sections appear to be a otz/feid porph. 	50 str	3	50	10'	decrease in chl, bands of chl/plag/gtz	0.8	diss py-Mo-(cp) along foliations			80	87722	,15	< 01		3.14	.010	.063	
	ste	R I						527	<u> </u>		0.72				,			ľ
		530			} qtz/feld porph													L
tchi	-	ß	а 				-	,	79					Au				
· (532'-548') appears to be a	- mod		so	10'	increase in chi @ 532's bands of chi / olag/(cari)	0.8	veins 2 diss py-(cp) along foliations			53	87805	.22	<.01	4	3.32	,007	.043	Ι.
well faliated chl rich	- to Str				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		a.124.2 Toliarions .	531				10.04	10,01	ppb	2,24		-	1
BORDER PHASE DIORITE	1	\$ 545	5025	2,7×5	gtz-carb-(mag)-(py)													
	4		150	16-12	humerous giz-carb veins through at interval dark on alt n, grains stretched to form mod				95									
	- 50 mod		50	8'	dark of ait'n, grains	0.8	o ss pyicp; i org foliations			33	8180:	.41	<.01		3.64	.009	.048	
		XI I			foliation .	0.0	+00011015	597	2 +4	رد	2120.	• •			5.07		10 10	'
 mod ep altin begins @ 548' occurs as small bless 	<u>+~``</u>	\$ 550	1					1										
	4		40 150	1/2 - 2	gtz-chi gtz-chi		-	1	24									ſ
	d F	8			·	<0.5	-	1				0-		1	1 41	.007	020	
			}0-20	% "	ątz-mag-cp			557		63	\$7602	•27	<.01		01.70L		.050	ľ
Ballin Malazine conserve	2	560	YOXA	Y3 + Y2	qtz-mag-(py)			i										15

.

1.0

		GRAPHIC			[BOTTO	DM DEPTI							4	SSAY	RESULT	S		
ROCK TYPES and ALTERATION	FOLIATION ANGLE &	-	(veins)	STRUCTURE (veins)	MINERALIZATION	ESTIMATI %	ZONE LEACH CAP LEACHAIRLE OX.	ESTEMATE	ACTUAL	POOTAGE	CONC	R.Q.D.	SAMPLE	7.	7.	π	π	π	oz/ion	CST MAI
	DITENSITY	Tootoge	ANGLE TO	WIDTH		PYRITE	LIM, ZOHE SUPERGENE	EMARKS			RECOVERY		NUMBER	TCu	A2Cu	CNSCu	A2L0	MoSz	Ag	(X)
	-	3							-		ng									1
	-	<u> </u>	= TOKA	X;x2	g/=-(cp=:-				-											1
ep alth it sappears 5 S65'	- 110		# 40×3	12.2	4 2 - (c1 + b) - 'ap] - 'N >	1.0			-	a		53	5.55	1.22	< 01		2.85	.006	,037	1.02
12, 201	1	2	50	2	9 2- (car) - =4			an anosa .	-	567										
		1 575	40 × 4	3°*4	orz-(earb)-lepi-lovi atz-karbi-or-no		- one verify	nes mag	-											
Elotenes of es ait's 570' - 575'		Ž	1 30.20	X,**2	atz-(chi)- (cp)				-		98									
	AND		30	1/3*	carb-gtz-chi-(cp)	6,5			1 1	572		57	S7804	.17	.01		1.09	.008	,034	
		K	2 2 2 0 - 40		sink of gz-(ere)- (or)- (mail)		1		-	,										
		N 580 Z	251	1		}														
	-	3	40+30	13	gtz-(carb)-mag-(cp)				-		95					Au				
	- ND	ξ I		1	A le of de level have been	0.5			-			33	(China)	.22	~		2 82	009	,044	
		K)	40-60	15-12	stuk of giz (carb) - (P2g) - (Py) - (cp) veins	0.0			-	587		22	87805	1-31-04 	, 01	2 1000	9,09	,	,017	. "
	1	K 590				[_					Ì		274				
· ·			47=2	1642	ру-(ср)	[+				+
	1 1			1					-		95									
			40-60	15-12	stuck of gtz-(carb)-mag. (sy)-(c)	0.7			-			60	87/808	.46	.01		3.18	.011	.049	.0
			HOKY	46 × 4	ру-ср				-	597	·····									
	1	600		.,0 - 1	r r r				-											
	$\frac{1}{1}$		40-50	X Y4	stwk of atz-(zarb)- (zy), (mag)		1													
	1		2						-		98									
	- ND	K)	42-60	1/0-12	stwix of atz-(carz)-py	0.8	1		-			73	87867	.23	-01		1.93	.004	.033	1.0
	3	K			· ·		ewk epa	μ.	-	507			-							
	-	610	42-50	1-12	stuk of giz-karb)-py				-											
			50×12	215-72 11 21	stant of alte-leath - py LEUCACRATIC THRSE fell paran glz-Chi-leath				-		98									
	011	K	30-50	Xio - Xi	stuck of atz-(carb)-py-(cp) [one vein had mag]	0.6			-	617		67	87828	.07	. 0]		1.37	.001	.018	
	- 1	ו וע		1	[[one vein had mail]	1	K-wkepa	ปรัก	_	017				1		1			1	1

.

 GIBRALTAR MINES LIMITED
 (McLEESE LAKE PROPERTY)
 DIAMOND DRILL LOG
 Hole No.
 Page
 Of
 /2

 GRAPHIC
 BOTTOM DEPTHS
 ASSAY RESULTS

/hame/gib1/sydman/ouspice/log_stn

		GRAPHIC						DEPTHS	71141					A	SSAY	RESULT	s		
ROCK TYPES and ALTERATION	JOLIATION ANGLE &	4	(veina)	STRUCTURE (velos) WIDTH	MINERALIZATION	7	LEACH CAP		roon	CO	R.Q.D		%	7.	x	*	*	oz/ken	TOTA
	INTENSITY	čá ž Footoge	CORE AXIS			PYRITE	LIML ZONE SUPERGENE REM	ARKS				NUMBER	TCu	ASCu	CNSCu	ASFe	MoSz	Ag	() ()
mod op ator 521-6331	לא קאי		10-50	X [°] 5−22	qiz:(caro):(sy):(mag) stwh	<0.5				9	67	ST859	.14	.01		2.48	.008	,031	
		< < 630 /	10	1/2	gtz-mag		ľ		-		-								
- · · · · · · · · · · · · · · · · · · ·	-		40-60	21 - 24 12	Stark of 2"t - (carp) - py)- (ca)					2					Au				
	Np		73	12	cp-(4-2) a+z-maa 42z-ch-py-cp	0.5			D.	57	43	ETE'S	.40	.01	2	1.94	.005	.045	
	-	0 6 645	~40		LEUCOCRATIC PHOSE foldpoint	_									ррЬ				
	ND		H0+42420	X47+V47+1+ X57-V47	gtz-licol. several gtz-(ch)-(cars) veins	< 0.5				3	70	27811	.10	.01		1.16	.009	.019	
	1	× 650	40*5	J's⁼×S	gtz-(carb)				6										
	- ND - +»		0-20	1/9"	chl-(card)-py-cp stringer	0.5				, 99	43	578/1	.11	.01		2.01	.005	.030	
	-60 w×	669	40-60		stwik atz-(carb)·(chi)				4	2									
	- 60 wk	2 2	60 + 10	X4"=10	gtz-(carb)					9	; [-							+
UARTZ CARBONATE CHLORITE (SERICITE) ALT'N PHASE (6623'-676')	40 str cren	SARATARA 670	~ 40	72'	gtz-carb-chl-ser)-(py) W/large gtz-carb VCAS	0,5	carb is light coloured	ly orange		<u>;7</u>	\$3	27813	.08	,01		2.37	.005	.036	
	- 40-60 - str			7'	giz-caro-cni-(ser,-(syj-(cg)	0.5			-	<i>q</i> :	67					2.63		0(7	
Mail information of the	40 mod		577		e-magrop alorg crenulation e-small blebs carb	0.5				77	- 31	87814	.24	.01		2.60	.006	.063)

GIBRALTAR MINES LIMITED (MCLEESE LAKE PROPERTY) DIAMOND DRILL LOG Hole No. 36-13 Page // of 12

and the second second

heme/gib1/rydmen/aster/leg_she

		GRAPHI	c				BOTTOM DEPTHS	4			Hole			SSAY I	111 11.			
ROCK TYPES and ALTERATION	FOLIATION ANGLE &	41 4	(veins)	STRUCTURE (veloa) width	MINERALIZATION	7	ZOME EXTINATE ACTUAL LEACH GAP LEACHABLE OX.	- FOOTAGE		14.0.01	SAMPLE	7.	7.	76	z	*	oz/ton	TOTAL C
	DITENSITY	Tootoge	ANGLE TO CORE AXIS			PYRITE	UNI ZOWE SUMERGENE REMARKS		RECOVERY		NUMBER	TCu	ASCu	CNSCu	ASFO	MoSz	Ag	(X)
	-	2 X	/ 3:	1	py-cp ← twe small blebs same "c				93									
		Š	<	X4 = 3	qtz.(cars) throughout core	0.6		ot;		57	87815	.18	.01		3.30	.005	.948	.16
]	k 6 <u>35</u> K	s; *9+4		gtz-learb)-py-sp-mag			1										
mod to stree 2 th Golf-Jon	-		1-378		12-16250;=(b)=(cc.				98						LCO			
			50+10	Y2 + Y₹	2 ⁺ Z-M23-(cp)	< 0.5		607		47	87816	.08	.01		1.28	.002	,017	1.26
<u>, , , , , ,</u>		(† 705 (†	/ 30	X4"	qtz-(carb)-cp			-	95									
	1 15	707	32	 *a'	giz-(carb)-mag	< 0.5				60	87817	.14	.01		1.52	,002	.023	.03
		101				-		1 <u>707</u>										·
	-						E.O.H. @ 707'											
	-						E.O.H. @ 707' Niurray Ridman											
								-										
	-				1								-					
	-									1								
																	r	
	-				1		ļ	1		Į				ļ	-	/1740040/		

/hears/gib1/ryáman/scriter/teg_street.dvg

,

LOCATION SAWMILL AREA DATE COLLARED June 17, 1993		LEN		707'	LATITUDE	E (E)	19359.822	SCAI			/Q 1"=10'	D	OGGED	BY_1 Jujy	16,	199	Ryan	han
DATE COMPLETED Jure 19, 1991		DIP	ATION SYM	90°	ELEVATIO	N	2.166.843	_	ARKS	C CYL	BOLS and	ADDO	TVIATI	SMC				
808CER FHASE DIORITE LEVODERATIC PHASE CHLORITE PHASE PHASE			_				adhy broken rock adhy broken rock ault gouge brx = br brcrease ecrease shor amount ery minor amount chry = ct	teratio curite ornite oken eccio irbona iotcoci lorite	n c d rock e g te g te g	p = c iss = d p = e g = g r = g yp = g	halcopyrite uprite isseminate pidote ouge arnet ypsum ematite	mi mi d Mir Ma Na Na Na	ag = m(a) = m(agnetite alachite rolusite olybden oderate native on direc edmont	ite copper ctional	rx saus ser sph str StWk fet	= quari = rock = sous: = seric = spha = stron = stock = tetral = weak	surite lite literite 19 kworic hedrit
ROCK TYPES and ALTERATION	FOLIATION	•		STRUCTURE (veins)	MINERALIZATION	estimati %	BOTTOM DEPTHS ZOME ESTMATE ACTUAL LEACH CAP	FOOTAGE	ESTIMATED CORE	R.Q.D.	SAMPLE	*	A 72	SSAY	RESULT	s x	oz/ton	CSTMAJ
	WTENSITY	2 Foologe	SCORE ANS	WIDTH		PYRTE	LIN, ZONE RR' SS' SUPERGENE BO' SO' REMARKS	BLOCKS	RECOVERT		NUMBER	TCu	ASCu	CHSCL	ASFe	HoS2	Ag	санос (X)
					:		OVB ESTIMATE 48' CASING TO 53'											
BORDER PHASE DIORITE (53'-108') 10% -tz,45% plag, 45% chi First 17' the chi content is secrets	DND		2 ? 2 20-50	a' hein-Vy"	breectated and pitted gtz-chl- Ep-py veins wy str Tim Trumerous py stringers	3.5	ste limor fractures throughout interval	<u>53</u> 57	٩o	30	87821	.08	<.01		4.85	.004	.037	.03
• first 17 the chi content is secressed and the grains are contented • cfo" grain size • mod saus alt'n • areas of patchy ep alt'n • chi {	ND	7 60	30-50 ? :0-40	33 hein-95 131 85-77	brx-gg-hem-py numerous py stringers brx-> w/ py stringers numerous chl-py-(cp) stringers	1.5	←str lim - wk lim	67	85	27	87822	.14	.01		3.5/	.004	.030	.0±
1941	ND		30-40	h-h-4"		a.5	mod lin on fractures - throughout interval cc coating py	77	70	43.	87823	.16	.02	1000	3.55	.005	.032	.16

GIBRALTAR MINES LIMITED (MCLEESE LAKE PROPERTY) DIAMOND DRILL LOG Hole No. 96-14 Proce No. 1 of 12

		GRAPHIC	1	T		[OM DEPT							A	SSAY I	RESULT	5		1
ROCK TYPES and ALTERATION	FOLIATION ANGLE &	4	STRUCTUR (veins)	STRUCTURE	MINERALIZATION	estinati 7	ZONE LEACH CAP LEACHABLE OX.	ESTIMATE	ACTUAL	FOOTAGE	ESTIMATED CONC	R.Q.D.	SAMPLE	x	x	7	×	7.	oz/ton	CITMATED TOTAL On
	INTERSTLY	R Footuge	SCORE AXE	WIOTH		PYRITE	UM, ZOHE SUPERGENE R	EMARKS			RECOVER		NUMBER	TCu	ASCu	CNSCu	ASFe	MoS2	Ag	(X)
	115 115		49#19 / 39*2 / 100 / 30 / 30	14" %" 2"	$\begin{array}{l} cr &- p\gamma - \langle c_{2} \rangle \\ \phi &= p \ a_{1} (\gamma + p) \\ ch(-q^{2} z - p \phi - \langle c_{1} \rangle) \\ q^{-1} z - \langle c_{1} \rangle + \langle c_{2} \rangle - \langle c_{1} \rangle \\ q^{2} z - c_{2} (z - p) \\ q^{2} z - c_{2} (z - p) \\ q^{2} z - c_{1} (z - p) \\ q^{2} (z - c_{2}) \\ q^{2} z - c_{1} (z - p) \\ q^{2} (z - c_{2}) \\ q^{2} z - c_{1} (z - p) \\ q^{2} (z - c_{2}) \\ q^{2} z - c_{2} (z - p) \\ q^{2$	1,5				87	<i>9</i> 5	40	879Q.4	.12	.02		ર.7૨	.005	.027	.06
es a'≓r - £¥'− 7 ≴' -	No				zet: py ent-py g'z-chi-py-co-Mo g'z-chi-py-(cp)	1.5				97	95	13	87825	.20	.01		3.16	,007	.035	.07
	ND	3	4 (30x4 52 50x4 50x4 50x4 50x4 9-40	1/2 4 1/2 1/3 + 4 1/3 + 4 1/3	brx-33-hem-(ca-)-(ox) ehi-py-co chi-py qt-chi-ca-b-py-(cp) numerous gtz-chi-cy veins	2.0				107	85	27	87826	,15	.01		3.41	.009	-034	.12
(103'-126') • DOB Saussuritized BORDER PHASE D'ORITE (grey appearance) • 15% gtz , 55% plag, 25% cH , 5% crb.	 	<u>но</u>	70+30 40 40	14	chl-qtz-carb-py qtz-carb-py humerous chl-py-((cp) veins	٦.5)17	95	63	87827	.09	<,01		2.59	.007	.029	.05
 well faliated plug and chi wrapped around small giz augers carb occurs as blass or veins (126'-204') ron saussuritized BORDER 	mod Ho wk	× 120	40		humerous chi-py-(cp)) veins chi-(carb)- py-(cp)	3.0				127	95	33	87828		<.01		3.23	.005	. 038	.07
 PHASE DIORITE (grey approximate) IDTA gtz, HOTA dua HOTAL, IDTA at a well tollated as the above interval Carb occurs as blebs or veins 		× 130	777×3 70×6 \$ 30-70	1/3+3 1/4 + 5	carb-py carb-by faided giz-catb-py-(cp) vern	3.0	hrin py s throughout	trangers at interv	۵.	137	90	7	87829	.11	<.01		3.31	.011	.032	.06
· fine to med grained		140	70×5	ki¥5 Ya=	carb-atz carb-(atz)-((cp))		dentri		oilar									(nimen/	-	

GIBRALTAR MINES LIMITED (MCLEESE LAKE PROPERTY) DIAMOND DRILL LOG BOTTOM DEPTHS

Hole No. 16-14 Page 2 of 12

/mana/gh1/ryaman/uplar/mg_shout.dwg

and a state of

		LOG					ZONE	ESTMATE	ACTUAL	-		í			^	SSAT	RESULT	5		
ROCK TYPES and ALTERATION	FOLIATION ANGLE & INTENSITY	4	STRUCTURE (veins) ANGLE TO	STRUCTURE (veina) WIDTH	MINERALIZATION	ESTMATI 76 PYRETE	LEACH CAP LEACHABLE 07 LIM. ZONE			FOOTAGE BLOCKS	ESTIMATED CORE RECOVERY	8.Q.D.	SAMPLE	~	7.	x	7.	7.	oz/kon	TOTA
	1	A Footage	2120				SUPERCENE	REMARKS		4				TCu	ASCu	CNSCu	ASFe	MoSz	Ag	1
	1	N.	72×5	14:15	carba(qiz)-oy					1										Γ
	- <u>7</u> 5				hola-X5 py veiss throughout interval	2.0		•		147	<i>40</i>	23	27830	.09	<.01		3,41	.006	.029	æ
	-	150	. 3	151	5-x-> py veirs - saro vein					1		ļ		-						
	-	M	1?	3'5'	by - water	,				-	35									
	40-50		70.#5	X1=5	carb-py-((ca))	7.5						20	87831		< 01		3.69	007	.032	
] wk	K I			heln-ya ay veas throughout incrvat intervals went, Tplag	3.0				157		-	10101				2,01	,,	.0.74	1
	-	160	5044	31+2*+3*+2*	intervals wehl, Tplag					-										
,	-	И) ao	次	carb. atz. py- (cp)						90									Γ
	40-50	M I		1	blebs of carb and hrin-					1	10	37	07020				3.50	.010	~7>	
	- wk	MI			Ko py veins throughout interval	2.0				167		5/	87832	.14	<.01		3.50	.010	.033	2
	-	170	*1 ?	1'	bra->carb veins + py veins															
	-		40=3	1/2 - 3	gtz-carb-chi-py-(cs)		TRACT AN	S 10		1										t
	40-50	M I	- 20		atz-carb-mag? .	1000	# black m Fine m	inerally po as mixed o	with chil.		90									
	- wk		40×3	'a×a	ztz-(carb)- σγ-(cp)	2.0	2619 m	epretic with	20	177		33	87833	.26	.0		3.92	.013	.040	ľ
		180			hrin-12 py veins throughout		- passible	1 hornele	nde?											
	-				· · · · · · · · · · · · · · · · · · ·					1										t
	DND		_							1	35				ļ					
	+0		80+20+30	2, + 1, + 12	qtz-carb-py	1.5				187		40	87834	.29	10.		3.89	.013	-041	ŀ
	- 50 wk	K	A ?		brx -> py veins															ł
		190	\$ 10-40	14* 1/4*×3	atz-carb-py-(cp) atz-carb-py-(cp)		\			1		<u> </u>								╀
				~ -) letimon fr	acture so	ctaces :		रू					Au				
	- 40 mod				hrix-Xo py veins throughout interval	1.0)					17	87835	.40	.01	5	3.21	.016	.047	
					CONSIGNAL THE FRE	and and				197						Ppb				
Subserver and Subserver's	-	200	-mark-	distant.		-	(MIL-7+3)	120	144		1-									

 GIBRALTAR MINES LIMITED
 (McLEESE LAKE PROPERTY)
 DIAMOND DRILL LOG
 Hole No.
 96-14
 Page 3
 of 12

 GRAPHIC
 BOTTOM DEPTHS
 ASSAY RESULTS

T

		GRAPHIC				<u> </u>	BOTT	OM DEPT	HS		Ê I			1112.041	-	SSAY P	111000	_		
ROCK TYPES and ALTERATION	FOLIATION ANGLE &		(veins)	STRUCTURE (velns)	MINERALIZATION	estimati %	ZONE LEACH CAP LEACHABLE OX	ESTIMATE	ACTUAL	FOOTAGE		R.Q.D.	SAMPLE	*	7.	x	x	x	oz/ton	CSTRAFEG
	PTERSTIN	E Footoge (ANGLE TO	WIDTH		PYRIT	LIM, ZONE SUPERGENE	REMARKS		RUCAS	RECOVERY		NUMBER	TCu	ASCu	CNSCม	ASFe	14052	Ag	(X)
LEUCOCRFTC P-25E (204) - 1377) • 605 pluz 305 - 155 corr 55 corr	45-55 Hisd		r 50 (1928 -		giz-care ch - cp care-giz-gy) numerous py-co-Mo veins	0.5				207	25	33	87836	.25	,01		2,05	.023	.033	.13
 Manifestant Suistes Vers att att att att att of Vers att att att att att att att att att att	وو ـ م ۲۰۰۷	2	<i>t</i> .		atz-(cz-2)-17 og-cp-18 numerous py-cp-Mo veins	0.5	} tch;			217	<i>9</i> 5	47	87837	-23	<.01		1.70	.022	.030	.18
	40 Mod ta ∀X	220 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	*	1/2+1/2 hr:1n-1/0	q"z-(cars)- (Mo) numerous py-cp-Mo veins	0.5				-227	75	17	87838	.17	<.01		.96	.009	. 034	.03
	40-50 WR	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		hrln-Ko	numerous py-cp-Movelins	0.5				237	80	20	27839	.16	<.01		.81	.024	.029	./5
	40-50 wk	2 340 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 - د¦	heln-Xo	inumerous py-cp-Moveins	0.5	3 Tchi, to	ranze car		<u>_<u>2</u>47_</u>	90	33	87840	. 19	<.01		1.61	. <i>0</i> 22	.054	./8
	50 Mod to ND	250	50-60	h=h= %o .	numerous py-cp-staveins	0.5		24		257	90	43	87841	• 14	<,01		.77	.022	. ರಿವಂ	.12

GIBRALTAR MINES LIMITED (MCLEESE LAKE PROPERTY) DIAMOND DRILL LOG

Hole No. 76-14 Page 4 of 12

/home/git1/ryaman/acpiec/log_sheet.dwg

		GRAP	PHIC	r	T			BOTTOM DEPTHS	-			Hole		A		RESULT	s		
ROCK TYPES and ALTERATION	FOLIATION	A A		(velna) ANGLE TO	E STRUCTURE (velns) WIDTH	MINERALIZATION	7.	ZONE ESTIMATE ACTUAL LEACH CAP LEACHABLE DX.	FOOTAGE	COME	R.Q.D.	SAMPLE	7	. %	×	x	*	ez/lon	107/
	INTERSITY	T BA	ទី	CORE AXIS			PYRITE	LIAL ZOME	•	RECOVERY		NUMBER	TCu	ASCu	CNSCu	ASFe	MoSz	Ag	(
			176	чс	ht's-1/2	rui frans py-co-lia veirs	0.5) teal	367	: ag	60	£72%2	.23	<.0}		.93	.022	.024	,
	hip			50		nugarous py-ep-Na vers	< 6.5	E' of core elsing	277	90	17	87813	,12	اه.>		.65	.013	,018	
		. c 25	32		9"	MISSING CORE		S' of core missing, possibly from here due to large amount of drilling mud event and broken core	-	45	3	87844	.07	<,01		1.81	,007	,024	
BORDER PHASE DIORITE	- NP	° 1 29	10.	= 70×3	×, ×3	carb-(qt2)	<0.5		287										
(2879 - 5759) similar to DURITE unit starting this hole	1.2.1	l'al	1.1.1.1 Y	70		several carb-gtz veins	0.5		297.	85	27	87845	.13	<.01	'	3.53	.012	.033	•
wk ep altin 307'- 316'	- - - - - - - - - - - - - - - - - - -	°. 30		70 50=3 40	λų ×3	humerous py-(cp) veins carb-gtz-py-(cp) gtz-(carb)-(py)-(cp)	0.5	STCHI from above LEUCO	307	90	27	37846	-29	<,0		2.80	.011	.038	
	- 110	131 131	10	2	1	bex-hem bex-(hem) gr				33							. <u></u> ,		╞
	- to - 30-40 - mod	M		30-40		dar's chi alt'n with nurrerous carb-gtz-py veins	0.8		317		33	87847	.22	<.01		2.57	.005	-041	

The second s

/hears/glt:1/rydrian/mplor/heg_sheed.dwg

		GRAF	HIC				1	BOTTOM DEPTHS	Т					A	SSAY P	RESULT	S		
ROCK TYPES and ALTERATION	FOLIATION	1		STRUCTURE (veina) ANGLE TO	STRUCTURE (veins)	MINERALIZATION	7.	LEACHABLE OX.	OOTAGE		R.Q.D.	SAMPLE	7.	ѫ	≂	7,	7.	oz/ton	TUTAL C
	INTERSET	Toot	0ge (CORE AXTS	WIDTH		FYRITE	UNL ZOHE SUPERGENE REMARKS		RECOVERY		NUMBER	TCu	ASCu	CNSCu	ASFe	MoS2	Ag	(X)
vi≥ ≥= sl++ 321'+ 380'	E No	111		35	10	ate (care) - py ate = care) - py	0.5	- - - -		70	33	87848	10	<.01		174	,006	413	-
	-				9, <u>5</u>	эје- (ру)		-	327			- 97 9 116	.15	01		1.77	,	,020	
	-							white it and a	ľ	?5									<u>†</u>
				39	kr^(a)	numerous gz veirs	0.5	by ((cp)) throughout interval	337		¥7	87849	,17	<.01		1.68	,009	.023	, .53
	-	3	<u>1) ř</u>	- 	14	atz chl-py				85									+
	= tip		-	- 33			0.5		2112		37	87850	.13	<.01		ฉ. ฉฯ	.005	.028	.03
	-	35	;0 ;0	a : Juoxa	4.5.	bsx-gg atz-(carb)			.347										
	-			40 60×6	75×6	9 ⁺ z·(cari) 9 ⁺ z-(cari)		-		₹5									
	1 12					wh diss syles) throughout interval	< 0.5	1	357		40	87851	.[3	<_01		2.62	.008	.026	: .04
	-) <u>3</u> (50 / -	\$2	%₀ ¥3 ⁻	chl-py chl-py				98									+
		Ŋ.	-	60	¥3 ^{°°}	- diss op wik diss py giz-mag throughout chi-fy-op interval	<0.5			/3	57	87852	.22	<.01		2.48	.009	.025	5 .0
	1	37	, -	55		chi-FY-CP interval			367			-							
			ſ	- 27	22	4°2- (carb)		-		95								-	-
			5	0-40	×1	gtz-(ct.1)-(carb)-((cp))	< 0.5		377		40	87853	.13	<.01		2.04	.004	,017	<.0
	-	3	50				1	Tell sense	1.1	-		10.00	-						

ROCK TYPES and ALTERATION	FOLIATION		(veins)	STRUCTURE (veina)	MINERALIZATION	estavati X	BOTTOM DEPTH ZONE ESTMATE LEACH CAP		FORTAGE	ESTIMATED COME	R.Q.D.	SAMPLE	7.	7.	SSAY I	RESULT %		oz/Ion	ESTRA TOTA
	HITCHSETY		ANGLE TO	WIDTH		PYRITE	LIM. ZONE SUPERGENE REMARKS		BLOOKS	RECOVERY		NUMBER	TCu	ASCu	CNSCu	ASFe	MoSz	Ag	(
νίκερ α.⊺`r 20- Ηνο'	- 50 - mod	340	50 50×2 50×2	1.	numerous chi-ajz-sy-(cy x 1 =h(-ey-(cp) chi-cp chi-cp chi-qtz-py-(cs)	0.5			387		63	\$7854	, 29	<.0		2.86	,011	.029	9
	- 50 - Wk		50 30×3		$\frac{d^{4}z \cdot (c_{A}+b) - p\gamma}{dc_{A}+p\gamma} \leftarrow disc cp$ $\frac{dc_{A}+p\gamma}{c_{A}+q^{4}z - p\gamma}$	0.5			397	वन	37	87855	.30	<.01	<u>Au</u> 9 PPb	2.35	,009	.029	1.
	ND to to to	1 L	49	2' Va*	$\begin{cases} wk \ diss \ py \ (cp) \\ brx \rightarrow diss \ py \\ \\ q^{\dagger}z - (carb) \\ \end{cases} \begin{cases} wk \ diss + stringer \\ py \ (cp) \end{cases}$	0.5			407	90	37	87856	.30	<,01		1.99	-023	.028	3
	- 50	412	50 40 60	Ve 22" 24"	qtz-chl-cp qtz-(carb)-(chl) } rr-cp qtz-(py)-(cp)-(mag)				417	95	43	87857	,35	<.01		2.02	.012	.033	3
		j [40 40	73 16 × 4 10	qtz-(ру) сhi-(ру) chi-ру	0.5			437	90	50	87858	.30	<.01		2.08	.016	.026	6
	ND +0 50 wk	<u>430</u>	60 40×2 60	No + 3 241 241 241	chl-py.(cp) c-dist cp atz-(carb) atz-(carb)-mag-(py) tarb-(atz)	0.5	numerous py vein		437	99.0	â3	87859	.36	<.0)		2.63	.012	.033	3
·	-	440		X4*5	gtz-learb)-(mag)			-									(retman/		

GIBRALTAR MINES LIMITED (MCLEESE LAKE PROPERTY) DIAMOND DRILL LOG

Hole No. 96-14 Page 7 of 12

GIBRALTAR MINES LIMITED (MCLEESE LAKE PROPERTY) DIAMOND DRILL LOG Hole No.

			AK MINE	(BOTTOM DEPTHS		-		1			SSAY			01	
ROCK TYPES and ALTERATION	FOUATION		(veins)	(veins)	MINERALIZATION	75	ZOHE ESTMATE ACTUAL ELEACH CAP LEACHABLE DX.	FOOTAGE		R.Q.D.	SAMPLE	%	*	*	*		oz/ton	ESTIMATES TUTAL CA
	YEERGINH V	E Z Foetage (ANGLE TO	WIOTH		PYRATE	UM. ZONE SUPERCENE 		RECOVERY		NUMBER	TCu	ASCu	CNSCu	ASFe	MoSz	Ag	(X)
• WE EP air'n 140'- 451'	1.2		50 50 × 3	10 - 3	atz-(car:mzo-cu 5'z-(carzi-(muj)-(cyi-(cp)				٩٥					Au				
	- to - 50 v.1		50	74 7	a ⁴ 2-m1g-(cp) g1z-ch1-cp- by	<0.5		447		30	87865	.25	<.01	1 ppb	ຊ.ຊາ	.014	.025	.'0
		450	4012	10 42	2-2-ch-00		e-hem on fracture -											<u> </u>
				<u>,</u> ,	brx-hem				55									
 Same antin ↓ 20 754" Sigt = 1, 20 marks for, approximated 			130	2 %	9+2- carb-py	0.5		457		27	8786)	-14	<.01		2.19	.020	.023	.63
- Curb + 450'+ 480'		() () ()	-0 -7 40	<u>2</u> 2	chi- Ezicarb-py carp-(9+2)-(chi) 9+2-(carb)-py													
. Cars (136 - 130				%4 [™] ≠5	gtz-carb-mag=py	0.8	well faliated with cards		95	50	87862	.24			3.16	010	.048	
			50 50x 2	17	carb-otz 4ta-carb-chl-py	0.0	of Early , minor py(ep) veits	467		טר	2/204	• 617	<,01		3.10	.019	10-18	,08
· · · ·			40 30=2+60=2	1/3 + 18 + 12 +2	mag gtz-carb-py-cp				98									
	140-55	'A I			9+2-(c2rb)-py	1.0	well foliated with bands - of carb, minor py (cp) -			60	87863	.21	<.01		2.85	.011	.035	.04
		490	40-50	heln-Xsi	numerous qtz-carb-py-(cp) veins		Veins	477										
• wk saus 2 wk ep ait'r. begins 2 480'				N3 0 1. 0 1. 9 1	gta-(carb)-mag-py				95									
			= 40×3	24 + /3 + 74	gtz-chl-py-(cp)	0.7		487		50	87864	.32	<.01		2.03	.029	.027	.08
		490			> numerous py-(cp) veixlets													
									95					Au				ļ
			40	<i>k₀− ′</i> 4	numerous gtz-cni-py-(cp) veins	0.5		497		47	87865	.28	<.0	3	ຊ.ຊາ	.020	.025	.26
		500	=				-							ррь				

		GRAPHIC	R MINES			1	PERTY) DIAMOND DRIL		×		Hole	1101-						1.00
ROCK TYPES and ALTERATION	FOLIATION	LOG	STRUCTURE (veins)	STRUCTURE (veina)	MINERALIZATION	estnaati 76	ZONE ESTIMATE ACTUAL LEACH CAP LEACHABLE DX.		ESTIMATED CORE	R.Q.D.	SAMPLE	7,	7.	SSAY F	7		oz/ton	TUTAL
	WTEHSITY	A Fortage	ANGLE TO CORE AXIS	WIDTH		PYRITE	LIM. ZONE SUPERGENE REMARKS		RECOVERY		NUMBER	TCu	ASCu	CNSCu	ASF.	MoS2	Ag	(X)
		5:0	~ 2		rumerous dis-chi-cy-(cd) Veirs	0.7		507	<i>q</i> 5	60	87866	.33	<.01		२,००	.019	.026	.0
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				n:- = erous ytz-ch - =;-(cf), veins R' =f str diss py	1.2		517	75	53	87867	.29	<.01		2.23	.018	.026	.1
	- - - - - - - - - - - - - - - - - - -	520		kein- Vy	ouverous of 2+ chi-py-(cr) veins	0.5		527	a g	67	ସ7868	.31	.01		2.27	.014	_ 029	
	- - - - - - - - - - - - - - - - - - -	ia r		35*147 21	atz-(carb) atz-(chl)-(cp)) numerous chi-atz-(py) } purerous py-cp	< 0,5		537	äš	63	87869	.21	<.01		2.00	.011	.021	
		540	. 50	<u>a" </u>	<u>ajz-(carb)-(chl)-(cp)-(rag)</u> diss+hrln veins py-cp-Mo? theoxymout interval	0.5		547	95	67	87870	. 27	<.01	Au 1 ppb	Q.67	.020	.028	-
(549-561') • wel foliated • carb alt'n present • no ep/saus alt'n	- - - - - - - - - - - - - - - - - - -	550	3	hrln-15	giz-carb-chi humerous giz-py-(cp) veins mag	0,8		557	ज _र	57	87871	.20	<.01		2.44	.oal	.044	

an and the second s

· .

GIBRALTAR MINES LIMITED (MCLEESE LAKE PROPERTY) DIAMOND DRILL LOG Hole No. 96-1- Page 9 of 12

/hene/git/ryamaa/aster/lag_steet.dag

		GRAPHIC LOG	-1				ZONE	OM DEPT ESTIMATE	ACTUAL					_	A	SSAY	RESULT	S		
ROCK TYPES and ALTERATION	FOLIATION ANGLE &	A Alto	(veina) ANGLE TD	STRUCTURE (veine) WIDTH	MINERALIZATION	7	LEACH CAP LEACHABLE DX.		ACIUAL	FOOTAGE	ESTIMATED CORE RECOVERY	R.Q.D.	SAMPLE	x	7	7	*	%	oz/ton	TOTAL
	INTENSITY	a f J Foetoge	CORE AXIS			PYRIE	SUPERGENE	EMARKS					NUMBER	TCu	ASCu	CHSCU	ASF0	MoS ₂	Ag	(3
5411- 5681 • WR Episaus altin	ED WA		50		5°2-54 Filene-305 g ² 2-54-(10) Veins	0,5				.567	د ٥	2 2	87873	.15	<.01		2.55	,008	.023	.0
	50 Wik 50 Mind	2 2 3 3	2	ľ V	bx g==-ch-ia-=============== humerous sy-(cp) veins a== g===(ce=================================	1.0				577	14	5**	97 873	,37	<.01	2	3.97	.039	.057	
LEUCOCRETIC PHASE (5751-6642) indistinct plag grains around gra augens votor col occurred as toin	50 mod		~ 83	ې ^د	g ² z-zzrp-ch1 βρικηστουσ g ² z-zzrp-ch1 βργ-2ρ veins brx-(gy)-(cγ) } diss py	0.8				587	90 9	47	37874	.22	<.01		1.84	.008	.056	ы. П
bands between foliations • Increase in ch! 587-585' approach in 388058 PHASE DioRits • Minor carb	50 mod	570 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 7 5 7	50	hrin-Ve	tumerous py-(ip) veins along foltations	0.8				597	98	43	87875	.36	<.01	<u>Ац</u> 6 ррь	1.46	.029	,035	
	50 mod	5 5 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7	3 50	Q' hrin-Vg	c-vix Mo along foliations brx-gg numerous py-(cp)-("o)veins along foliations	0.5				607	95	37	87876	.]9	<.01		,84	2012	.022	
	40 mod	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ΫO	iccia- Vt	numerous py-lept-lmolveins along foliations	1.2				617	વર્	63	87877	.11	<.01	:	.70	.013	.017	

GIBRALTAR MINES LIMITED (MCLEESE LAKE PROPERTY) DIAMOND DRILL LOG Hole No. 16-14 Page 10 of 12

/heave/gtb1/rytman/acpter/beg_sheet.dwg

		GRAPHIC				ł	ZONE	ESTEMATE	ACTUAL						A	SSAY P	RESULT	S		-
ROCK TYPES and ALTERATION	FOLIATION	å Alto	STRUCTURE (velna) ANGLE TO CORE AXIS	STRUCTURE (veina) WIOTH	MINERALIZATION	76	LEACH CAP			FOOTAGE		R.Q.D.	SAMPLE	%	7.	×	x	7.	oz/ton	TOTAL
	REDARCE	AL Toologe	2	WOTH		PYRITE	limi, zone supergene R	MARKS			AECOVERT		NUMBER	TCu	ASCu	сыгсл	ASFe	MoS2	Ag	0
centri ted S	30-45 જાણકો	19 19	0-50 20-50	24 34 298	ptzikari)-pyiop-11.5 humetous pyikai-1113 ven alora tollations	Ŀэ			-	627	aş	23	97.87 8	-11	< .01		.46	-026	-019	.1
	50 200	2 (530 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	. So	heine 243	numerous Mo-co-pylvens along foilations	0.5				537	19	- Ţ	S7879	,06	<,01		. 40	.016	.015	
crenulated {	50 Nod	2 2	60 50×2	brin-2	numerous cy-Mo-log veins along foliations giz-chl-carb-(Mo)	0.5				647	95	37	37880	.05	.01		.42	.008	.013	
	50-60 1r od	ີ <u>650</u> ອີ ອີ ອີ ອີ ອີ	No.	hein-X	numerous py-cp-Ma voins along talvations	0.5				<u>557</u>	ġ s	60	ଟ୍ୟନ୍ତା	./3	<.01		.46	.022	.018	
CHLORITE DARKENED MINE	50 (*>0	· 660	50	hr1n- 4	/ SIF diss and		e sharp c	nntact S	03	567	601	70	ଟ୍ଟମ ଟନ୍ଦର	.19	<.01		1.36	.020	.021	
PHASE TONALITE (664% - 707') • med grained • 25% pla, 35% chl, 20% plag • wk saus and ep alt'n	40 WX 40 44	> < 670 > >	40	<u>م</u>	atz-(carb)- py veinlets cp(py) str diss and veinlets of cp(py) throughout interval	-					<u>۽</u> د.	67	\$7883	.32	<.01		2.06	OIC	.033	

11 I II #5 1

18

100

GIBRALTAR MINES LIMITED (MCLEESE LAKE PROPERTY) DIAMOND DRILL LOG

Hole No. 96-14 Page // of 12

																-	
										-							_
 						E.O.H. 19 707' Manag Protinan											
 с Ж	< > < > 707	7		 mod disc and veinists of pyrep troubert interval	0.6	-	707	100	67	37 <i>586</i>	,18	<,01	 2.32	.013	.038	./s	
40 w ^x	< > < > > > > 70			et+ jos as, ven s* σt Equip through satisfierd	1,0			38	63	87895	.26	<,0}	1.84	. 010	.027		
박호 wK	> < < > < > < > < > < > < >		•	ste dissi ann an dis ef sy sei Trieversut Diterve	19		- - - - -	a ₂	63	8758-	.41	<.01	2.21	. 029	.033	.12	

BOTTOM DEPTHS

REMARKS

ZOHE

ESTIMATE LEACH CAP

PYRETE LINE ZONE

% LEACHABLE DR.

SUPERGENE

ESTIMATE ACTUAL

FOOTACE ESTIMATES

BLOCKS RECOVERY

CORE R.Q.D.

GIBRALTAR MINES LIMITED (MCLEESE LAKE PROPERTY) DIAMOND DRILL LOG

MINERALIZATION

GRAPHIC

LOG

Footoor

ANGLE & 4

NTENDIN

k

ROCK TYPES and ALTERATION

STRUCTURE STRUCTURE

(veins)

WIDTH

(zolev)

ANGLE TO

Hole No. _____Page_12_61_12

X

ASCU CNSCU ASFe

%

TCu

SAMPLE

NUMBER

%

ASSAY RESULTS

ス

%

MoSz

oz/ton ESTMATEO

Ag

TITAL Cu

CRADE

(%)

LOCATION	_	BEA	RING -		LATITUDE	(N)	32852.644		E SIZE			L	OGGED	BY_()	14 8	1]
DATE COLLARED June 19, 1946			GTH_55	2'	LONGITUD		-8727.261 *				1'= 10'		ATE						
DATE COMPLETED June 20. 1996			- 90*		ELEVATION	NN	2928,748				estr P								_
ROCK TYP	ES and	ALTERA	ATION SYMB	JOLS							BOLS and								
DEORDER PHASE GUARTZ				Ц			adiy braken rock az =	alteration azurite bornite	ci d	up ≂o Iss ≂o	chalcopyrite suprite disseminate	nd Mr	ag = mc al = mc $nQ_2 = py$	alachite roiualte	•	rx saus	= quart = rock = sauss	surīte	
PLACHE CREEK META				Ц		⊯ In	bx = corb≈	broken 1 breccia carbonat	9 19 9	g = g r = g	pidole Jouge Jarnet	na	o ≕rmo od≃rmo tCu=i	eterate native	copper	sph str	= serici ≈ sphal ≈ strong	lerite 9	
ALTERATION PHASE				[]		() m	ninor amount chi = ery minor amount chry =	cholcocit chlorite chrysoco	h	em = h	ypsum hemailte Imonite	ple	o) ≕no ad ≕pla ⇒ = pyr	Inombe		tet	= stock = tetroh = weak	hedrite	-
	[]	GRAPHIC	·['	['		-	BOTTOM DEPTHS	1					A	SSAY F	RESULT	s			1
ROCK TYPES and ALTERATION		A)tr	STRUCTURE (veins)	STRUCTURE (velna)	MINERALIZATION	x	LEACH CAP	FOOTAGE		R.Q.D.	SAMPLE	x	x	7	*	x	oz/kon	ESTMATES TOTAL CA	
		ed.kj. z Feotage (S CORE AXIS		Decreasing Order of ; Abundance		LIN, ZONE 481 92' SUPERGENE 20' 30' REMARKS		RECOVERT		NUMBER	TCu	ASCu	CNSCu	ASFe	MoSz	Ag	CRADE (X)	
							OVE ESTIMATE 37'			·					•				
BORDER PHASE QUARTE DIORITE: 42' to 53' chi(45-558), plag(35-45%), gtz(5-10%)- tole slots off with striking in tractures. The Plag is weakly	UD to to		} ? .:	3'	gl.2+ch1-py-lim brx w/lim-py-leci" (gl2-ch1-py-lim-(cp)-(cc))	3.5	Some by Grains most	47	95	13	87961	.28	.03	<u>Аи</u> 5 ррь	6.46	.006	.041	. 15	
saussurifized and the childisplays a mod-str foliation. The grain - size for the Border Phase Quartz Diarity is generally quite firm.	1 1	1 50 %	HO	1.,	32- py-carb-chl.ce- (c)	4.0	likely ce		୳ଃ	30	87962	.28	.04		6.16	005	.040	.30	
	ug mad	- 60 ·			322. chl. py-lin-liplike)			57		50	•••		,-,		00	,000		.80	,
CACHE CALL METAL NOLCANICUS - 58 +0 231 Chi (40-70%)-29(30-352), 15+ (5-10%)			/ 40" // 40"	Concerner.	3-2 p				97										
- sharp contact between the two rack types. The Laine (neek represents a sharp rise in chi and ep: h a penda-brecciated texture.			/ 30°	1 "	gtz-ch1-py-(cp) gtz-ch1-py-lim-(cc)	3.0)ep??	67.	14	50	87963	.28	.05	121	4,17	.005	, 035	.90	Ì
a pseudo-brecciated texture.	<u> </u>	<u>-170 ľ</u>		[°	b ((((()))	L	V	1			<u> </u>			<u>^</u>		and and a		minut d	5

GIBRALTAR MINES LIMITED (MCLEESE LAKE PROPERTY) DIAMOND DRILL LOG Hole No. ____ Page No. 1 of ___

		GRAPHIC	;					TOM DEPT							A	SSAY F	RESULT	S		
ROCK TYPES and ALTERATION	FOLIATION		(veine)	STRUCTURE (velne)	MINERALIZATION	ESTIMATE 75	ZONE LEACH CAP	ESTIMATE	ACTUAL	FOOTAGE		R.Q.D.	SAMPLE	76	z	×	z	x	oz/ton	TOTAL
	INTENSITY	E Footage	ANGLE TO	WIOTH		PYRITE	LIML ZOME SUPERGENE	REMARKS		turas	RECOVERY		HUMBER	ĩCu	ASCu	CNSCu	ASFe	MoS2	Ag	(X
				김 씨글 것이	322-CH-PY (cp)													_		
			- 70	3103	gt 2 - 6+1 - 19-4 - (1p)				-		:00		270/11				c ~ (
-	- '9D E		40	1.1	ste py- m-cc	35			1	77		1,3	87954	.40	.02		5.36	.006	.045	·
		-	364.40	2-12-20	stz-py-chi-lig-(ii)				1					•						
REER PHASE GUARTE DIDRITES	┟╼╍╞		140	1 M	set chippins											۵.,				┢
(He 307)			96*	25 - SERVICE	Stz Chi Py-lim- (1)		į.				:20					Au				
1 (45-60%), play 35 401), 4-5 (5-182) Sumilar to provide the rised Berler Phase Gaurtz Diamtes		4	140	20 DX 8	Berger of the strength of (b)	2.6	Pri		=			67	87965	,27	, 01	4	3.21	.017	.034	Ι.
Border Please Quarts Diarates	10 . K		140"	6199	atz-chi py-linisp	0.10			-	<u>-83</u>						PPb				Į
	11	<u>295 </u>	/ / H-5	\$~v3	gtt-ch1-py- 10- (10)		- maritable i	+ main 20										<u> </u>		-
] [13	S3+brx w/corb-him. (p)		from 6	ar in 10.	, uillo -		90									ļ
	au	1	10	4	Sta-chi-py-(LP)	1.0	Same +	bra.	Storing			-7	87966	.27	.01		3.88	.003	.039	{
-						1.0			1	97		÷	87-100	• • • •	-01					
	1	100	30	1 40	stz.chl-py-(cp)				- 1											
			10	a.e.	atz-carb-py-lip															Γ
], E	1 1	- 207	墙	gtz-carb-hem						85									
	J au	1	7	3'	box 1gg w/carb-ham-ipy)-lep)	2.0			4	'07		30	87967	,23	<.0]		4.39	.007	.041	
			100	1" 3	322-Chi-py-(1)				-											
	<u>] </u>	110	/ 40*	<u> </u>	atz-carb-chi-py-(cp) atz-carb-chi-py-(cp)]							<u> </u>				╀
	1 1		2 40°		gt.2. chi-py-carb (cp)				1		85									
	AN	1				1.5			-			30	87968	.17	<,01		5.01	.004	.037	
-	1		2	2'	britigg w/carb-hem				1	117					-					ł
		1120	1 20"	4	gtz-chl-py-carb-(cp)															⊥
-	1		30 4-110	375843	Ste-M-chl-(1p)		Ľ.		-		25					1			1	
	1. k		120	5	S-2 pricht carbolig	60	Launa A		-		ا ^د . ا			20			14 2	.008		
		4	10	4"	glz chi-py-cp	5.0	Pritt		-	127		30	87969	-32	.01		د ۲۰ ۱	1,008	1.07	1
and the second se	- I	1	30+030*		stz-PV-ch1-carb-cp		11		-		1							i		

GIBRALTAR MINES LIMITED

(MCLEESE LAKE PROPERTY) DIAMOND DRILL LOG

Hole No. 14-15 Page 🍐 ef

		GRAPHI	c					OM DEPT							A	SSAY	RESULT	s		
ROCK TYPES and ALTERATION	FOLIATION	44	(veina)	STRUCTURE	MINERALIZATION	ESTIMATI 74	ZOHE LEACH CAP LEACHABLE OX	1	ACTUAL	FOOTAGE	ESTIMATED CORE	R.Q.D.	SAMPLE	ĸ	7.	7	7.	7	oz/ion	
	PULDARITY	हैं दूर Footage	ANGLE TO	WIDTH		PYRIC	LINE ZOME SUPERGENE	EMARKS			RECOVERT		NUMBER	TCu	ASCu	CNSCu	ASF	MoSz	Ag	(X)
			\ 30° 0° 41° 43°		3-2 PY-chlicarb (cp) 322-py-chlicarb (cp) gliz-chlipy-cp gliz-chlipy-cp	4.0			-	13.7	:00	83	27970	.26	<.01	Au 4 Ppb	12.3	.007	.047	32
			/ 50° / 40° / 30° / 40°	450152) 11 31 14 3	GLZ ENT. PY. Copi at 2 py. chi. Copi gi 2 py. chi. Copi program. chi. fipi gi 2 py. chi. fipi gi 2 py. chi. corb. cp at 2 py. chi. corb. cp	7.0			-	147	100	87	87971	.aa	<_01		11.3	.008	.047	. 30
		150 150	1 3 30" 40"1+50"	li hrinx4 \$73	92- parent - [p brew/carb-py-(cp) gtz-ch)-py-cp gtz-chl-py-cp	3.0	with c	meg iniki ihi in ti	rlayered. his introd	157	વિષ્ઠ	53	87972	•51	.01		9.77	.016	.071	.50
		160	50° +++10° +0 +10° 1 20°	3" 4" to15"rg 4"	gtz-py-ep-chi-(cp) mag-gtz-chi-py-cp gtz-ep-py-chi-cp gtz-py-chi-(cp) gtz-chi-py-lip)	3.0				167	кс	60	87973	1,19	.01	<u>Аи</u> 22 РРЬ	8.74	110,	.101	, 85
CACHE CREEK META-VOLCAMILSS 1777 to 125 Chi (60-757), ep(20-258), sta(5-107) - Similar to previously descented meta-volcanics			μη 170° 170°	5" 6" 6"	92-2-chl-py-(cp) 92-2-chl-(mog) 922-chl-py-cp	1.5	Phot			177	100	67	87974	•28	4.01		3.91	-014	·058	.23
			20° - 20° // 20°	4*++**13 1" 8*++4***3	922-661-84-69) \$2-661-84-69 clutocratic trac g2x-661-84-69 g2x-661-84-69	2.5				187	100	87	87975	· 23	2.01	Au 3	4:05	.012	.050	.95
		190	N 40°	Ľ۳ a	gtz-py-chi-(cp)					1			20-1	de	si dis	PPb				

GIBRALTAR MINES LIMITED (MCLEESE LAKE PROPERTY) DIAMOND DRILL LOG Hole No. <u>16-15</u> Page BOTTOM DEPTHS GRAPHIC

of

		GRAPHIC		0		1	BOTT	OM DEP							A	SSAY I	RESULT	S		
ROCK TYPES and ALTERATION	FOLIATION ANGLE &		STRUCTURE (veins) ANGLE TO	STRUCTURE (veina)	MINERALIZATION	ESTIMATE %	ZOHE LEACH CAP LEACHABLE OX		ACTUAL	FORTACE	ESTMATED COME		SAMPLE	z	7.	x	7.	z	ox/Ion	ESTIM
	WITENSTPH	a ∑ ∑ Foetoge	SCORE AXIS	WIDTH		PYRIC	LINL ZONE SUPERCENE	REMARKS			RECOVERY		NUMBER	1Cu	ASCu	сизсл	ASFe	NoS2	Ag	0
Some forthe forek Mein Volcanis; anterlaying a signiced with setting of the Solution Phase Disorte			रे 25 110 10° 10°	hrinx5 G ¹ S ¹ L ¹ YA	3:5 (4,6) (4) 3:5 (4,6) (4) 3:5 (4,6) (4) 3:5 (4,6) (4)	1-5			-	197	100	73	279176	16	5.01		4.77	.004	•042	
ACUE CREEK, META-VOLCA (11:5) 07' 10 2191 NICEO-7087, CAND (S-158), Stol 5-153	ы		1 01 1 40 1 30 1 30	1	322 сп. руссано-(1) 322 саго-ру (12) 322 сп. саго-ру.(12) 3-2 саго-ру.(12)	1.5	grodual chi e fo territar	incrial più in ch	illy.	303	160	50	87977	.14	2.01		3-02	.066	1014	
REER PHASE QUARTZ DIORITE: 14 10 233 14 10 10 233 14 10 10 10 10 10 10 10 10 10 10 10 10 10		1 <u>210</u> 1 1 2 2	- 90"	5.40	322- chi-carb - py-(cp) Ex +35 - «(arb- py- ks- (cp) gt2-carb - chi- cp gt2-carb - «(py))	0.7				217	97	23	87978	·25	د.01		3.20	·011	.046	
osticite is typical of a Border Mase biorite the plos is with to mod saussuritized.	UD.	3	40° = 70° = 70° 0°		stz-carb-chl-py-cp stz-carb-chl-py-(cp) stz-carb-chl-(py) stz-carb-chl-py-(cp)	<.5	in the	ly i w is tana P-ase	tite whe	1	98	57	879.79	, 2,4	2.01		2.97	.010	·050	
	ир		30" /30"1-30 40"	5" hr]n t====================================	gtz-py-carb-chi-((cp)) gtz.carb-chi-py.(cp) ep-gtz.ch)	3.0			-	237	:00	47	87980	•12	2.01		2·8 7	.011	1036	
	аң			š hrhxa	922-caro-hem 922-ch-py 922-ch-py-(cp) 922-ch-cp-py	<.5			-	247	95	60	इन्द्रश	.20	<·ci		2:34	1013	.042	

GIBRALTAR MINES LIMITED (MCLEESE LAKE PROPERTY) DIAMOND DRILL LOG Hole No. 515 Page 4 of 10

1

1000

/home/abl/retnen/water/teg_stard.derg

	1	GRA	PHIC					BOTTOM DEPTHS						A	SSAY	RESULT	s		
ROCK TYPES and ALTERATION	FOLIATION	ule a		(velna) ANGLE TO	STRUCTURE (veins) WIDTH	MINERALIZATION	7	LEACH CAP	FOOTAGE	ESTIMATED CORE	R.Q.D.	SAMPLE	7.	7.	x	7.	7.	oz/ton	CSTNATER TOTAL CH
	MIDISTY	÷.	hage v	CORE AXIS			PYRITE	UM, ZONE SUPERGENE REMARKS		RECOVERY		NUMBER) TCu	ASCu	CNSCu	ASFe	MoSz	Ag	GRADE (X)
		M-	1.	10	helexa.	gee openie pyrep		-											
				ะ 40	1 Hat 15	Ste (P-chi-(p))	۲.5	-	357	ମ	73	27982	15	4.01		2.03	·c67	1736	-04
	1	N.		103	ή "	gtz-carb-hem		-	102173				:						
		X		- ¶0"	heimeg	gtz.chi-py-cp				100									
	<u>J</u> r.	ß.	f	10°%-40°	Frhx3	Stz-chi-Py-cp	<.5	-	247	ł	63	27983	•16	101		2.17	.009	.039	.07
		Ma.	ĸ	! 0"	1.: 4	3-2-ch1-py. (1p)		-	- *1										1
	- 	M		1 60*	\$"x2	stz-chi-py-cp		- gradual increasing chl - in this interval -		97	·								
	<i>a</i> u	M		1 10"	1 . 1	gl2-chl-carb-py-lep)	/ [10		37984	.13			1.44	.007	linte	-05
			80	40*	hrlnxa	Stz. chl-py-lip)	< 5		277	 	53	37701	15	6.01		2'23		·c4/	-05
CACHE CREEK META-VOLCANICS		N		40	3.0 4	glz-carb.py.cp.ch]		Gr					Au				
chi (60- 303), gt2 (9-10%), cord (0-20%), ep	- 10	K.	ł	70'	heloxa	gtz-chl-py-cp		Ch17		95		DHOAE					ou		
- these meta-volcanics are composed completely of children some sections.	4	N	ł	40	3"	ep-gtz-chi	0.1		287		дЗ	87985	•34	\$.01	4 ppb	3:50	1011	·05B	.15
with specks and stringers of	1	12	30		hrinzy	Stz-ch1-cp-py			1						· ·			<u> </u>	L
gt =+ carb throughout the core.	1	i t	ļ)' -	1	gtz-chl-py-cp		- possible massive hirtbled in this interval infilled with stations the hol-		99							1		
	GN E	۲. ۲		40*	hrlnxa a"	gtz-chi-py-cp Leurocratic Phase	4.5	is black with hardness - ts and has a block			16	87986	·26	6.01		1.70	.007	.053	.13
		Ł.		90	1"	hol-gtz-chi		1 scale but they not -	297				.20	2.01		2'''			
QUARTE CARBONATE LALORITET	1	43	<u> </u>	- 701.50	b '	922-carb-py-cp		display characteristic] 20 cleavage.	ł			· ·				ļ		<u> </u>	┼───
207' 1- 120'	-	L L L		70 40 13	_	atz-carb-py-cp				96									
Carb(75-952), chi(5-152), q22(5-103) - - sharp contact between the meta-	+ 13 +0		ſ		7. 24	atz-carb-chi-py-(p)	4.5		207		60	87987	.17	2.01		4.56	.004	.061	.,4
volconic unit and the Quart 2 Carb, The Quart 2 Carb Gppears leucocratic	80md	i.	ľ	70.	3	ць в - сано - сен - рт-кру			307								10	100	Contraction of
in carb-rich (90+2) sections. The .	1	23	10	ļ		L		·	1										L

GIBRALTAR MINES LIMITED (MCLEESE LAKE PROPERTY) DIAMOND DRILL LOG

/hame/ath1/sydmen/explor/heg_sheet.d

100100-000

S. . .

Hole No. 96-15 Page 5 of 10

		GRAPHIC	1		· · · · · · · · · · · · · · · · · · ·			OM DEPT			1		China Co		A	SSAY F	RESULT	S		_
ROCK TYPES and ALTERATION	FOLIATION ANGLE &		STRUCTURE (veins) ANGLE TO	(velna)	MINERALIZATION	ESTIMATE 75	ZONE LEACH CAP LEACHABLE DX.	ESTIMATE	ACTUAL	FOOTAGE BLOCKS	CONC	R.Q.D.	SAMPLE	7.	⊼	7	*	7.	oz/lon	CSTRMATTO TOTAL CU
	INTENSITY	faatage .	CORE AXIS	WIDTH		PYRIE	LIM. ZOHE SUPERGENE R	EMARKS		80003	RECOVERY		NUMBER	TCu	ASCu	CNSCu	ASFe	MoSz	Ag	CRADE (X)
Chi is well solicity) within this - carbours	ML 40 Hfidir	1.20	10 77 76 90	arians gu hriandiri gi	gestarb-py-cp) gestarb-py-cp) gestarb-py-ch-cp gestarb-mag	C-6				<u>317</u>	100	60	27988	• 33	2:01		4.95	.007	1074	
- Blifferston y Stories, of Contro (1994) Product Schultz and Schul Bollow Americ Lands	ui to to	3.80	40" 570" 80" - 10 - 70" - 70"	5" ×3 55 1 × 3 35" 6" 51" 55 1.00	gle energine py celi energine py gle magnearcical (pip) gle carlo-cel gle carlo-cel	₹.5				327	100	36	૬4વ૬૧	•23	4.cl		3:43	•008	·c58	36
BORDER PHASE DUARTE LIDRITES 309 to 357' Chillip 457), proglamably, whether and - Simular to the Border Phase Bienter opproaching a Mine Phase Torable, previously described.	diu	340	30" 30"- 40" 50"	hrh×4	etz mag chi-lep 12 chi cp 12 chi py-cp 12 chi py ep 22 chi	<.5				<u>337</u>	100	87	\$79%	-14	2.01		2,00	.016	.036	. 15
	Lin		40" 26" 30" +40"	4"x0 3"+3 3"x0	gtz py-chi gtz py-chi	0.6				347	100	77	87991	.09	. 2.01		2.02	.007	·026	.05
	ND	× 350	\$ shuk 40° 30°	and the second sec	ep-glz-chi glz-chi-py-(mo)-(lepi carb-him	< 5				35_7	99	60	87992	•14	4.01		2:59	·010	.035	.04
	ио	240	2 20. = 20 / 40° / 40°	hrmx2	gtz-сы-рү-(ср) gtz-сы-рү-сү gtz-сы-рү-сү	4.5	hanse han	<u> </u>		367		47	87993	•//	<.ci		2.61	.001	.033	.04

GIBRALTAR MINES LIMITED (MCLEESE LAKE PROPERTY) DIAMOND DRILL LOG

Hole No. 96-15 Page 6 of 10

me/ght/rydman/

1	 l/rydma	-	/140_144	1.600
	100			
	2.241			

]	LOG	U		1		ZOVE ESTIMATE ACTUAL	ŧ	łĮ				A	SSAT 1	KF20FI	12		
ROCK TYPES and ALTERATION	FOLIATION	Alter Alter	(veins) ANGLE TO	STRUCTURE (voins) WIDTH	MINERALIZATION	7	LEACH CAP	FOOTAGE		R.Q.D.	SAMPLE	7.	7.	z	7.	x	ez/len	
	, Internetiever	A F Z Footop				PYRIE	LINIL ZONE SUPERGENE REMARKS		RECOVERY		NUMBER	TCu	ASCu	CNSCu	ASF.	MoSz	Ag	SMADE (X)
			40"	\$"×2	etz. (1.) magripy) gzz. mag-chi (py)(1.;				98									Ĩ
	19D		11 3.5 - 11 j		gta-rhi-fry-cp gta-ch-cors-py-api	5.>		377		60	37994	•13	6.01		3.26	1007	10:19	.04
		1280	46		9 91.8-0247							:						
	- vij		30	1	Sta Comman py -p				95		87995							
			40	۲ ۲	gte (Hi mog (py)-((p)) gte chi-conio (py)	۲.5		-387		40	84715	.09	2-01		2.33	·as	<i>•035</i>	02
		<u>7390</u> 1	40	8 411	gtz py-chi-inro				05									
		3	4.0	7	ate mag-chi	<.5		20-1		53	87996	.09	2.01		2.35	.005	,034	.02
		1 1 400	40"		ep-gez-chi		· · ·	397		-								
-the play in the Border Proce Diaries, gradually becomes non-ransaritized			1200	ľ	stz-chi-py-carb-(p)				100			:						
in chitcarb	UN		140	15	gtz-chi-caro. (y)-(cp)	1.0	chl+carb1	407		70	27997	·09	2.01		2.90	1006	-030	.06
		<u> 410</u>	/ HO"	+ · · · ·	3-2-ChI-py GLZ-ChI-CAFD-PY		1											
			- 90°						99									
	ND	3	40° 1 20° 70°	**************************************	gt2-carb-ch1-(1cp)) (i=2-carb-ch1-(1cp)) it2-m2g-ch1-(cp) gt2-(arb-py-(cp)	Հ .5		417		6	87998	·10	<.01		3.11	1010	044	.04
CHARTE CARBONATE LALORITES		<u>A Haili</u> A	103.50	brlet3	122-cw-carb-py-(cp)				97									-
completer 452), emiliorably upply not	ij) to	い い む		1	gtz coro-chi-mag-py-lif gtz-carb-mag-licpi	<.5		497		83	87999	•10	2.01		4.21	010	.046	-06
Quartz Carbonale units but with slightly more chil overall.	70,00)	430		la.	gtz-carb-chi-py-(cp)			<u>. मङ्</u> र						120	6/8	1	-	and i

GIBRALTAR MINES LIMITED (MCLEESE LAKE PROPERTY) DIAMOND DRILL LOG GRAPHIC LOG BOTTOM DEPTHS

Hole No. 96=15 Page 7 of 10

ASSAY RESULTS

		GRAPH	IC .					ZOHE	TOM DEPT	HS ACTUAL						A	SSAY	RESULT	S		
ROCK TYPES and ALTERATION	FOLIATION ANGLE &	419 4		veins) GLE TO	STRUCTURE (voins) WIDTH	MINERALIZATION	7.	LEACH CAP			POOTAGE BLOCKS		R.Q.D.	SAMPLE	%	7.	*	ѫ	7.	oz/tan	CSIMATED
	BITTNSITY	A Z Foatog	- LCOR	RE AXIS	WIDTH		PYRIE	SUPERCENE	REMARKS			PECOVERY		NUMBER	YCu -	ASCu	CNSCu	ASFe	MoSz	Ag	(X)
			200	e -	510	gzz-carb-py-(cp)		3		-											
	NjÙ 4o		- 70)	1	1	strucht-caro-tip	1.5) che î			1127	001	70	<i>930</i> 00	.12	<-01		z 45	1004	·051	.07
	3Cfrid	140	1.47		nrin¥3	still chi-carb-cp				-	437				:			- /			
			1 0		NE 10	at the state of the				-		1.00									
		3	50	1	nrinksi	$\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \right)$		N IL CO		2		100	-1-1	60CDI							
	Ň	8	845			3-2- 1- 8P- (P	< 5	7 F 10 WK HEM	_	-	447		77	88001	·08	2.01		1.66	·cc‡	.031	.05
-		450	110		incha a	atta-chl-cp revenue-py-inp		}		-											
		3	70		h-laxa	1322- Ch)-(py)		Î.		-		98									
			40			hem-carb	 / F	mx him	~	-		10	53	~~~~							
	Gи	N .	140		hrla	glz chi-ep-(p)	1.5	[-	437		22	<i>3</i> 8009	.07	201		1.73	.003	1019	.53
·		160			inninků	ep- glz (h)- py-(cp))		-											
		2	140	Þ	100	gtz-chi-py-lep				2		100									
	61	1	100		hrla	ste-chi-py-cp	1.0			-			60	00002				1.74			.02
	40'wk		40			Point R. P. Collector	<5			-	467	 		33003	·07	2.61		11/4	.004	1018	. 00
		1470				ep-gl=z-ch1															
-		3	H90			gtz-carb-py-llip"				-		100									
	4 心	3	190		~	gtz-carb-chi	<.5			-			43	88004		İ.,		2.73	7	.012	:02
	35-90 ~~d	5	- 80			Stz. chl. cart-mag-py	<			-	477			3200 1	·07	2.01		2.12	1007		
	med	- 470	140			jtt - carb chi py-lip)				-							ļ				
-sections of this interval the Francis and annula the Casitz		X	80			Ste chi carb- py				-		39									
Carbonate and alternation phose.	- UU UU		- 10 - 20		5	Quarta Corbonate Chiente	₹.5	Corbit		-	487		47	88005	.07	2.01		2.26	.004	.015	.04
	80'mad	490	= 40	;	hrlnka	gtz.chl-py.cp)		-											-

GIBRALTAR MINES LIMITED (MCLEESE LAKE PROPERTY) DIAMOND DRILL LOG

Hole No. 96-15 Page 2 of 10

		GRAPHIC		[τομ σερι								SSAY	RESULT	s		
ROCK TYPES and ALTERATION	FOLIATION	4	(vefor) ANGLE TO	STRUCTURE (veina) WIDTH	MINERALIZATION	x	ZOME LEACH CAP LEACHAINE DX	ESTIMATE.	ACTUAL	FOOTAGE		R.Q.D.	SAMPLE	z	7	7	7	7.	ox/ton	CITIMATUR TOTAL CL
	RIENSITY	č Z Footope (CORE AXIS			PYRITE	LIML ZOME SUPERGENE	REMARKS			HECOVERY		NUMBER	TCu	ASCu	CNSCu	ASFe	WoS2	Ag	CRADE (X)
	HÌÙ 20 78°-X		50°		ste cht py ste cht py	٤.5				<u>497</u>	100	57	4900b	07	(ic)		1.85	-003	1009	62
	()4 15 76.4		40° 36° 4640° 407 407	12°40	922-642 117-84.69 67-322-64 622-64-661 822-68-6-661 11-64-(6)	ح.ح				507	29	73	38007	.06	<icl< td=""><td></td><td>1.67</td><td>.05</td><td>·ct6</td><td>.54</td></icl<>		1.67	.05	·ct6	.54
	ik tei bőrnid	530	40" 40" 1 10" 1 30"	it" hrin hrinxa	giz-chi py-leps siz-carb-chi-py giz-carb-chi giz-chi-py-llips	5. پ				517-	100	60	3200S	.06	201		2:31	.003	·c/5	. 03
	Ni) to 701md	530	40° 70° 40°	h bisks hehes	gtz-chi-py-(cp) gtz-carb-chi gtz-meg-chi-rp gtz-carb-chi-(py)	د.5) Icarbî Inem we			5 2 7.	100	ю	82009	·06	2.01		2.58	.101	-03	,05
	ND +0 عاني:لا		- 40' 50"	5" helo	gtz-chi-ep gtz-chi-(py).(cp) gtz-chi-mag. py-(cp)	د .5	<u> </u>			537	100	63	\$\$010	·10	(01		1.39	.006	·cc8	.03
	uj) to Yoʻwk	540	0	hrln z",2	922-051-Py 922-051-px (p) 922-051-py-(p) 922-mag-061	4.5) hen wk			547	100	67	88C11	.06	2-01		1:42	.005	.009	.04

GIBRALTAR MINES LIMITED (MCLEESE LAKE PROPERTY) DIAMOND DRILL LOG Hole No. 96-15 Page 3 of 10

1

/hame/git1/ryaman/aphor/hag_short.deg

		GRAPHIC		Ĩ		1		TTOM DEP								55AY	RESULT			
ROCK TYPES and ALTERATION	FOLIATION ANGLE &		STRUCTURE (veins) ANGLE TO	(vetns)	MINERALIZATION	7.	ZONE LEACH CAP LEACHABLE	1100	ACTUAL	FOOTAGE	ESTIMATLD CORE RECOVERY	R.Q.D.		%	%			*	ļ.	TOTAL C
	SHITENSETY	a Li Zi Footoge (ANGLE TO CORE ANDS			PYRITE	LIM. ZONE SUPERGENE	REMARKS	<u> </u>		RECOVERT		NUMBER	TCu	ASCu	CNSCu	ASFe	MoS2	Åg	(3)
	\$ \$		+ +0"	hrln hrln	922-ch1-p7-5p1 922-ch1-p1 922-ch1-p1-1p1-15 957-4-E.0.H Ded for	<.5			-	55 <i>1</i>		70	88013	1			1.44	1005	• 658	. 66
					Wid her				-											
																		:		
	1				1	<u> </u>	1			t	l		ł	L			verne/gille1	/rydman/	/wcpher/her	<u> </u>

GIBRALTAR MINES LIMITED (MCLEESE LAKE PROPERTY) DIAMOND DRILL LOG Hole No. 96-15 Page 10 of 10

. .

LOCATION Sammel Acea		BE	ARING -		LATITUDE	(N)	188. 7/7		E SIZE	NG	Hole		OGGED					
DATE COLLARED June 20, P??		LE	IGTH 70	7'	LONGITUD	1.					1"=10"		ATE					
DATE COMPLETED June 22, 199	6	DIP	-90°		ELEVATION	·	2935.602				was	arte	sian	-	Distant.			_
ROCK TYP	es and	ALTER	ATION SYM	BOLS					LANEOL	S SYN	BOLS and	ABBR		ONS				
BORDER PHASE QUARTZ DIORITE QUA LEUCOCRATIC PHASE CH MINE PHASE TONALITE	LORIT		ENES MI				bo = b ault gouge brx = b bx = b bcrease corb = c ecreose cc = c binor amount cht = c ery minor amount chry = c	zurite ornite roken reccia arbona holcoci hlorite	c d rock e 9 te 9 te 9	up ≕c [ss =d p =e g =g r =g yp ≃g em =h	llsseminate pidote jouge	m Mr Mr Mr NC NC	ag = mo al = mo $D_2 = py$ $D_3 = mo od = mo if Cu = D_1 = mo od = pte if cu = pte if$	alachite rolusite olybden oderate native n direc edmont	ite copper ctional	rx saus ser sph str SIWk tet	= quar = rock = saus = seric = spha = stron = stock = tetra = weak	isurfi ite ite ite ite ite ite ite ite ite it
	.	GRAPHI					BOTTOM DEPTHS	{					A	SSAY	RESULT	S		
ROCK TYPES and ALTERATION	FOLIATION ANGLE &	-	(veins)	STRUCTURI (veina) WIDTH	MINERALIZATION	z	LEACH CAP	FOOTAGE	ESTIMATED COME	R.Q.D.	SAMPLE	*	z	z	π	z	oz/ten	LISTIMA TOTAL
	DITENSITY	a Foologe	CORE AXIS		Decreasing Order of S Abundance	PYRTE	LUM, ZOHE 115' 115' SUPERGENE 110' 110' REMARKS		AECOVERT		NUMBER	тсч	ASCu	CNSCu	ASFe	MoSz	Ag	(X)
							DUS ESTIMATE RO'											
02022 PHASE QUARTY DIORITES 15' 40 24' LAI(40-507,1, plag(408), gtz(108)	ND	30	10°	hrinza a' heloxy	322-Chi-lim-py brx w/lim-Mn3-llpy3-llcpli atz-chi-lim-(p)/cpl-llmpli	٤.5	at the top of the holt.	37	90	7	87891	.10	,05	Au 2 ppb	1.55	.006	.014	6
EUCOCRATIC PHASES 34" to 33" 122(50-70%), plag(30-40%), chl(5%) typically czz-pag parphyry with few structures visible	6		1 20°	fracture hrb 1 ¹¹	11m-MnOg-met gtz-chi-lim-py-lip gtz-lim-(py)-(cp)				90					PPS				
	E C	000 10	40	3 1r 3	gtz lim-chl-(cp)-(py)	く.5		37		20	87892	.//	.04		.79	.005	-017	
BORDER PHASE DULLETS DIGRATES		2	400	14.	Leucocrotic Phage													
38 to 275' chi(40-502), plag(40%), gt2(102), ep(102) - similar to previous Border Phase Quarty Diorise with a general fine to medium groin assembloge.	UU to	NA 1	40°	hrlnx4 hrlnx5	gtz-chl-py-(cp) . gtz-chl-cp	۲.5		47	93	হ্য	87893	.23	.01		1.85	.009	.025	
Quarte Diprite with a general time	110 1-		and the second se	and the second se	the second se	and the second se	-											

GIBRALTAR MINES LIMITED (MCLEESE LAKE PROPERTY) DIAMOND DRILL LOG Hole No. 96-16 Page No. 1 of the

Crosseen with the set of the set of the 14 - /harns/glb1/rydrom/mphr/hog_shoulderg

		GRAPHIC	1			1		OM DEPT				·		NO		_	RESULT	'S		
ROCK TYPES and ALTERATION	FOLIATION ANGLE &	Alto	STRUCTURE (veins) ANGLE TO	STRUCTURE (veloa) WIDTH	MINERALIZATION	7	ZOHE LEACH CAP LEACHABLE (2)	ESTMATE (.	ACTUAL	FOOTAGE BLOCKS		R.Q.D.	SAMPLE	7.	x	*	*	*	oz/ton	ESTRAT TOTAL
	MUDISITY	α ⊢ ∦ Γootage ;	CORE AXIS			PYRIC	LINA, ZOME SUPERGENE	REMARKS			RECOVERY		NUMBER	ĩCu	ASCu	CNSCu	ASF.	MoSz	Ag	(X)
	<u>()</u>	22727272 8	0° 10°	1 H Frachurz	322-061-00-147 952-061-00-609 16	۷.5	notice -	te and tu sha a indiri	s star.	57	95	90	87894	.39	.01		<u></u> ର.5।	.020	,036	. =
	Си		40* / 40* / 40*	hrhxa H	gtz-chi-cp gtz-chi-cp gtz-chi-cp	<.5	CONTOIN	13 In 5 [73 Ft 1		67	90	30	87875	.57	.03	<u>Аи</u> З <i>РР</i> Ь	2 <i>.96</i>	.021	.042	
		70	- 70°	fracture	lim-hem-py-cc) Chirep?	ξ.								· ·				-
	al,		10°	fracture	· ·	<i><.</i> 5			-	<u>77</u>	96	27	87896	.34	.01		2.09	.013	.033	. i
			60.	ž,	922-061-09 822-061-04-(4)-(4) 922-00-061-6091						95									
		90	40"	1.	gtz-meg-lepi g22-carb-py	<i>4.5</i>				87_		53	84894	.25	.01		2.29	,018	,027	' . i
			- 70°	hrb	hem-nat Cu? ep-rite-ch1-py-loc) gtz-ch1-py-lim-(rp)	<.5	-perfect	en in fi radiating irile visi	cactures		9 <u>5</u>	7	87898	.37	.08		2.32	.016	.031	
		- 100	}? 2		orx w/ Im-py-az-(molilip		the or	×	-	L						7 <u>-</u>				
	1			3	ionx w/ herr-cario-lin /12) (m) gtz-mag-py-lim-(cp)	<.5			-	107	\$5	13	87899	.29	.04	5	2.78	.017	.035	, .
	-	110	10	200	922-ch-py-cp-(cc)															

,

GIBRALTAR MINES LIMITED (MeLEESE LAKE PROPERTY) DIAMOND DRILL LOG Hole No. 16-16 Page _ of _ 6

		GRAPHIC	;				BOTTOM DEPTHS						A	SSAY F	RESULT	s		
	FOLIATION	EDC F	STRUCTURE			ESTMATE	ZONE ESTMATE ACTUAL	FORTAGE				7	z	x	x	7.		
ROCK TYPES and ALTERATION	ANGLE &		(velns) ANGLE TO	(veins)	MINERALIZATION	x	LEACHABLE OX.	BLOCKS		R.Q.D.	SAMPLE			~				TOTAL CH
	BITENSITY	ι.	CORE AXIS	WIDTH		PYNETE	LIM. ZOHE SUPERGENE		RECOVERT		HUMBER	TCu	ASCu	CNSCu	ASFe	MoSz	Ag	(X)
		E Footage		bring2			REMARKS											· · ·
		2	40	201022	3-2-61-94-1-1-169					1			1	Au				
		(1	10	\$ 10,73	gea-corb-lays-llips				98		87900							
-	NL		0	10	ALE-chil-care-py tepil	2.5	Ch'+(orb)	1177		47	87100	.32	<.01		3.23	.017	.043	.07
-			0"	fracture	Non-carb				'			· ·		ррь				
		120	/ 40°		22- 102- Care)					:						<u> </u>
-		3 1		, krin	,				23				ļ					
		1 1	1:0	(in	3 - chief					43	87901	.22	<.01		2.49	.011	.031	N
	, við	1	1.0	1.	12- P1-CL1-(1P)	∠.5	plag?	107	!	чо	01101				~ ' '			.06
		130	1 20'	7.10	n== chi-py-lips		}											
			10°		\$12-Ch1. PY-(cp)								<u> </u>					
			40		gtz-chl-py		-		100			1						
-	ND		40	ľ	at2-ch1-py	<.5				53	87902	.09	<.01		2.37	.007	.024	.04
	1			4	325-CNI-FY		-	137					ļ					
	ł	1140	/ 40°	hdoxa	gtz-chl-py-(cp)		_											
		7	50	hrin	gtz-chi-(py)-(cp)		- possible fault zone from 144" to 149", with a purchar		90				1					
		M	40	1	3+2- Mo-chi- (cp)		bors and minor 3		90					ļ				
	ND	1 1		5'	brx+(c;) w/ rem.carb-(p)-britis	2.5		147		17	87903	.17	<.01	1	2.00	.021	.026	.03
			<u>A</u> }(2	or KI (Gy W MEM CONDIDATION)	1	-	<u>, , - , 7</u>									ł	
MINE PHASE TONALITES 155' to 170'		150		<u>τ</u> α.	9=== mag - (py)		-								<u> </u>		·	
Plag 40-457, 1422(20-35%), chi(20-30%)	1	X I	40	-	stz-chi-py-cp		-str hern in fractures. from 160' to 215'	1	90									{
- increased at 2 content and lighter -						<.5	-	1			27004	10			2.11	021	.024	. 04
Overall appearance relative to the Border phase Quartz Diarite. Noticeable	ND I		\40 *		gtz-(Mo)-(py)-(cp)	5.5	-	157		33	87904	.18	<.01				. val 1	
increase in grain sizes associated - with the Tonalite also.	49.62		40°	hein	3= 2 - c+1- cp												ļ	ļ
with the Tanalite also.		5/60	140	*"	Ate. carb-hem								┣─					┼───
		K	140	3.0	atz - chi-carb-py. ".				97				1					}
	w :	N		3	9.2	4.5	-	1		60	87905	.08	<.01		1.49	.006	.016	.0a
	HOUK	K,	30°		gtz-ep-(py)-((cp))		-	167			01.00		· · ·					.va
Carlo and Alline Links	-UVK	\$170	40	hrln	gtz-chi-py	-0	:	1	Ì								1	

•

11.110.010

•

GIBRALTAR MINES LIMITED (MCLEESE LAKE PROPERTY) DIAMOND DRILL LOG Hole No. 76:16

Page_ 3 ef 12

/home/gla1/ryaman/acplos/log_shee

								OM DEPT							A	SSAY F		5	-	
ROCK TYPES and ALTERATION	FOLIATION ANGLE &	Altr	(velna)	(velos)	MINERALIZATION	estimate X	ZOHE LEACH CAP LEACHABLE OX	ESTIMATE	ACTUAL	FOOTAGE	ESTINATED CONE	R.Q.D.	SAMPLE	*	7.	x	*	x	oz/ten	CSTMATU TOTAL C
	NTERSTER	a ≩ Footoge (ANGLE TO	WIDTH		PYRTE	LIM. ZOME SUPERGENE	EMARKS		BLOCKS	RECOVERY		NUMBER	ĩCu	ASCu	CNSCu	ASFe	MoSz	Ag	(X)
	du -		1 45	103	brx w/ hem-care gcz-chi-py-Mo-(p) gtz-chi-py	۲.5			-	177	73	43	87936	.10	<.0)		2.15	.008	.024	.02
	- UN		0°	hrin Fracture	922. Corb. chi-((py))-().p" 922. chi-py-(cp) hem-carb 922. carb-chi-py-((cp)	4.5	chi?			187	97	30	87907	,15	<.01		3.02	.007	.03	دم.
	<u>د</u> ر، ۲		? 1 0°	prjuxg 7.: 2,	gtz-chi-py ' gtz-chi-py ' gtz-chi-py '	<.5	· pros-ble +0 193	+013 ⁴ / C	ine 1909 - 	197	90	iO	87908	,18	<,01		2.32	-014	.027	.0
	- - - - - - - - - - - - - - - - - - -		50" 40" 16"5-30"	hchn ti ⁿ hclnxs	gt2.carb.ch1 gt2.ch1.py-(mol-(cp) gt2.ch1.py-(mol-(cp)) gt2.ch1.carb.py(cp)	۲,5				2 <u>07</u>	95	43	87909	_16	<.01		3.18	.009	.035	.0.
	AN F		10° 30° 7=10°	hrln hrlnxa j ä"	gtz-chl-py-ep-(cp) gtz-chl-hem-carb-py gtz-chl-py-11(cp) gtz-mg-(cp)	4.5				217	98	63	87910	.10	<.0)		a.01	,003	.017	.05
		7	40° 20°40 30°	a" 1" hrlnxa	chi-atteneno-(cp) gtz-mag-(cp) gtz-ep-chi-py(cp) chi-py-cp	<.5				227	100	73	87911	.12	<.01		1.75	.002	.oai	-0

.

GIBRALTAR MINES LIMITED (MCLEESE LAKE PROPERTY) DIAMOND DRILL LOG BOTTOM DEPTHS

Hole No. <u>76 %</u>Page 4 of

/hears/gho1/rydrian/asplet/leg_ubeal.darg

 $\mathcal{A} = \{ \mathbf{x}_{i} : i \in \mathcal{A}, i \in \mathcal{A}, i \in \mathcal{A}, i \in \mathcal{A} \}$

		GRAPHIC	~					OM DEPT								SSAY F	RESULT	S		
ROCK TYPES and ALTERATION	ANGLE &	Alto	(veina)	STRUCTURE	MINERALIZATION	esidmati %	ZONE LEACH CAP LEACHABLE OX.			DOTAGE	ESTIMATED CORE	R.Q.D.	SAMPLE	%	×	x	×	7.	ez/ten	12.311 1707
	INTENSITY	n K Footage	ANGLE TO	WIDTH		PYRITE	LIM. ZOHE SUPERCENE	EMARKS		uuus	RECOVERY		NUMBER	TCu	ASCu	CNSCu	ASFe	MoS ₂	Ag	1
			30° 	hc hx3	lytz-chi-py,mog-lip) 362 py-(mil-%) 962.mag-chi- py ¹⁻⁶ p	< 5				037	120	63	87912	.08	<.01		2.06	.005	.017	,
		К К ЭЧО К	10° /40 /30		gtz-eint-carb-(pyl-hyd) gtz-eint-carb-(pyl-hyd) gtz-cint-carb yy-hyd						75									
	КĎ	250	1 0° / 40°	1.	gtz-carb-(pj)-l(p) gtz.chl.cp	<.5	Crew ?			993 (147)	96	43	87913	.14	<.01		2.09	.004	.019	
	нD		50° 7 40°	1	j=e-carb-(pp) brx+ggw/carb-(py) gzz-carb-((cp))	٤.5				ə <u>5</u> 7	90	60	87914	.17	<.01		1.99	.007	.021	
	11) 1- 1-0 [°] rrad	- <u>360</u>	140° 30° 140°	helptig	gtz-carb gtz-chl-cp-py gtz-chl-mag-cruzi-"cp"	<.5			+ + + + + + + +	<u> 267</u>	97	53	87915	.18	<.01		A.86	.010	.028	
RTZ CARBOWATE L'HLORITE: 1 to 2901 1 (45-552), gtz(20-301), CJ (25-352) adual transition from Border all Custor District with increasing Listics and carb alter.		- 270	40° 60° 40° 40°	hrln×4	記=-mag-ch!-(cp) 計=-ch1-py-(cp) 計=-ch1-py-(cp) 目=-corb-ch1-mag-((cp))	<.5				277	100	40	87916	•34	<.01		3.48	.015	.046	;
	40 mad 40 mad 60 shr	2280		6	gtz-carb-chtingt	<u>۲.5</u>				<u>-</u> /	100		87917							

GIBRALTAR MINES LIMITED (MCLEESE LAKE PROPERTY) DIAMOND DRILL LOG

BOTTOM DEPTHS

_Page <u>5</u> of <u>1</u>2 Hole No. 14 . 14 ASSAY RESULTS

GIBRALTAR MINES LIMITED (MCLEESE LAKE PROPERTY) DIAMOND DRILL LOG Hole No. <u>16-16</u> Page of 2

.

		GRAPHI	AK MINE	3	ED (MOLELSE LARE			OM DEPT			-		HOID		_	SSAY F	-ruge			-
ROCK TYPES and ALTERATION		LOG		STRUCTURE (vains)	MINERALIZATION		ZOHE LEACH CAP LEACHABLE DX.	ESTIMATE		POOTAGE	ESTIMATED CORE	R.Q.D.	SAMPLE	z	7.	3	*	7.	oz/ton	TURAL 6
	HTIDNSITY	Footoge	SCORE AXIS	WIDTH		PYRTE	LIM. ZONE SUPERGENE	EMARKS		LOCKS	RECOVERY		NUMBER	TCu	ASCu	CNSCu	ASF.	MoSz	Ag	(X)
BORLER FILE QUARTE DIORITES 290' 20 500' Chi (HO- DOL), plas (HS2), 311 (5-152) Sandar H. Brann H. Brann H. Brann	21.2 ×	××××××××	20" \ :0" \ :20" \ :40"		gtier carlo gtier chi-may-carlo-lipi gtier chi-carlo-may-lipi gtier chi-may-carlo-py-lipi	<.5				297	100	33	87918	,20	<.01		1.79	.013	.034	24
	Ud to K	30	140°	hotoxa	gto care hen gtz.chl.py gtz.caro-chl.py.((cp))	<i><.</i> 5				307	100	60	87919	.06	<,01		1.24	, 006	.024	ŋ
		12222	7 75" 70" 70" 70"	0	gtz-chi-py-(cp) gtz-chi-nog-(cp)) gtz-chi-nog-(cp))	₹.5		_		<u>317</u>	100	60	87930	.08	<.01		1,44	.003	. 034	0
		330	55 10° 10°	hrints 33	312-carb-ch1 312-ch1-py-(cp)) 312-(ch1)-((cp)) 312-ch1-py-(cp)	٤.5				327	100	77	87921	.10	<,0)		1.76	.004	.027	, ,
· · · · · · · · · · · · · · · · · · ·	ND	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	40° 40° / 30°		gtz-chi-py-(cp) gtz-chi-py-(cp) gtz-chi-py ep.gtz-chi	₹.5				337	100	33	87922	.06	<.01		1.25	.003	.023	
		340	1 0°	15 15 15 15 15 15 15 15 15 15 15 15 15 1	gtz.carb.hom brx w/1m_(fy) att.carb.mog.chi gtz-py-chi gtz-chi-py-(cp)	< .5	- some be could f in the likely f of the	rom the hole.	5 	347	95	27	87923	.10	<.01		1.52	.005	.034	0. 1

.

-

		GRAPHIC		9 D				OM DEPT							A	SSAY I	RESULT	\$		
ROCK TYPES and ALTERATION	FOLIATION ANGLE &		(veina)	STRUCTURE (veine) WIDTH	MINERALIZATION	7	ZONE LEACH CAP LEACHABLE OX	ESTIMATE	AGRIAL	FOOTAGE	CONC	R.Q.D.	SAMPLE	*	*	*	7.	*	oz/lon	TETAL 6
	BATORSTY	nd. K	ANGLE TO	WUIN		PYRITE	limi zohe Supergene	EMARKS			RECOVERY		NUMBER	ŢC⊔	ASCu	CNSCu	ASF.	MoSz	Ag	(25)
		9	407	hrlnx2	BLE-essi-py				-											
	<u>نار</u> ح		HO	11	Sterchill Pr-14				-		95	33	448.00)	0.0			1.20	.006	600	
	- 49°uk	350	- 70'	111	322-621- P1-(1p)	< 5				357			87924	.09	<.01		1.47	.000	1043	. 9
			150° to 70°	hrinx?	Street price				-		37								<u> </u>	
	6	M	50	rilars.	st 2 chi carsing the light				-		1.1	í	1.00 M							
	to	7	40"	1:12	nte-corb.chi-py-cp	<.5			-	367		37	87925	.18	<.01]	1.82	.013	.035	
	-	370	50		gtz - carb-llipi				-				1							
			\ '5' ?	3' 2'	gtz- (caro) bix w/ carb-hem-(py). "epil				-		95									
	4 1	M	50	3"	gtz-ep-ch1-(py)-((p)	<.5			-	3-1-1		43	57986	.08	<.01		1.61	.006	.026	
	40mad	380	30"+240"	\$ 10273	atz chi-carb-(mog)-(py)				-	377	·				ĺ					
	-		2	6	brx w/ carb-hem-(py)					f										<u> </u>
	3	e la	1		3+2-ch1-py-(cp)-(ma)				-		°.0									
	- 		(40° V	hrinx8	3+2. CW-PY- (CP)	0.6	1		-	-387		47	87997	.18	<.01	-	1.59	.022	1.028	0.
	-	390	10'	<u>1</u> :	gtz-chi-(cpi-(py)				-											
Sharp contact between the Border Phase Guartz Electric and a			1 201-40	hrlnxa	gtz.ch1-py-(cp)				-		90									
carb-rich gtz+play porphyry	- ND		ы	q''	Leucocratic Phose	く.5			-		,-	20	87928	1.7			1113	.010	0.24	
at 3941.	4500	и I	/ 40°	l °	gtz-chl-carb-py-((cp))				-	_397			07 200	+13	<.01	ļ	675		, Ual 7	
		400		1	box+gg w/carb-hem-(py)					i										-
		K T	/ Ho ²		3tx-(1)-py-(1)				-	ł	0									
	1 10		√ 10*	15	322-chi-carb				-	1	- 25	27	87929	.11	<.01		1.61	.017	. 022	
	- yemed	K I	9 ⁴⁰	1	gtz-chi-py-(cp)	0.6			-	407			20121318	·"	1.01					Ίľ
States and a second sec		410	40°	hrhx4	gtz-chl-py-kcp)1-llma												+ETIA/19801.			

-

GIBRALTAR MINES LIMITED (MCLEESE LAKE PROPERTY) DIAMOND DRILL LOG Hole No. 46-16 Page 7 of 3

		LOG	STRUCTURE (veins)		MINERALIZATION	X PYRETE	ZONE ESTIMATE ACTUAL	FOOTAGE BLOCKS	CORE RECOVERY	R.Q.D.	ASSAL RESULTS							
ROCK TYPES and ALTERATION	FOLIATION ANGLE & INTENSIETY	4 VI					LEACH CAP					*	7.	x	x	7.	ог/юл	-
			S CORE AXIS				UM. ZONE SUPERCENE RÉMARKS				NUMBER	TCu	ASCu	CNSCu	ASF∎	MoSz	Ag	(F)
		M	40		1 = - chi - py - ((cp))								-					
		0	1 10"	3	gt=-ch1-(24)				95									
	72 97 - 1	Ы	<u>/</u> 20	hrinx3	gt2 carb her	4.5		417		35	77930	.12	<.01		1.81	.022	.022	୍ .୍ର୍
1		420	1457	Service 5	St. t . chil-py-(cp)									ŀ				
	1	N 4 <u>20</u>	عوسا ز	hinx3	starch py-(cp)				25		· · · ·					<u> </u>		
	1		120	4	gle-carb-ch			1	-15									
	- 45 - ++ -		60"	ə"	33 - rearis - (py)	< 5		1127		43	87931	.15	<.01		1.90	.005	.033	.63
	6-6	DJ I	40	51	sterch - py - (lep))			427										
		1430	40"	1.0	11te-carb-chl-(py)			1	05							<u> </u>		<u> </u>
		M	45	hrlax3	gled 1-carb-py-cp			1	95									
	14		40		Le carb-chi	<.5	corbi	112-4		97	87932	.16	<.01		2.32	.008	.038	.04
	µÓk	N 1440	ू म ट		ytz-chi-py-(cp)			<u>437</u>										
	<u> </u>		120	helos2	12-cW-(cp)			1										
	5	M	10" 1040"	1 ×3	ste-chl-carb-py			1	90									{
	1 fr (14)	KI I	209		ate-carb-mag-cp	1 <.5		1 111-1		47	\$7933	.18	<.01		2.99	.012	.048	0.05
	48-2		40	1	gtz-carb-chl-py			447									1	
EUCOLEATIC PHASE : 455" to 464"	<u> </u>	1 450	140	18 hrln×4	atz-chl-carb - py-cp			1				<u> </u>						──
12= (35-45%), Fag(30%), Carb(303), C+ (5-108)		Ы	40	1	gt 2-mag-carb-py-(cp)]	97				!				ł	
gradual increase in carb in the Border Phase Rusta Diorite with	2				stz-chl-carb-py. (p)	0.7		1		80	87934	.19	<.01		3.44	.010	.055	.08
	1.0 str		45	1			Carb 11	457			01.51							
Lewicerstic finase	-	5 460	11 20		322-py-carb]								L		
	1	e S	140°	1	3== - carb-py-(cp)				25									1
	ND		140		py-giz-caro-lep)				C,							100		
	40 mad		40		stz-mag-py-lop	9.0		467		63	87935		<.01		12:22	1.008	.050	6. 1
	101.00	470	40	hen to the	gtz-chl-carb-py-cp			1										
and to be more than	<u> </u>		<u></u>		1		<u>u</u>		h			·			erra/plat	(mutanan (- silve Bar	

GIBRALTAR MINES LIMITED (MCLEESE LAKE PROPERTY) DIAMOND DRILL LOG ESTDIATE LEACH CAP

Hole No. 16.16 Page 3 of 12

ASSAY RESULTS

	SOLIATION		1	STRUCTURE			ZONE LEACH CAP	OM DEPT	ACTUAL								RESULT	<u> </u>	1	1-
ROCK TYPES and ALTERATION	ANGLE &	4	ANGLE TO	(vetna) WIDTH	MINERALIZATION	1	LEACHABLE OX			FOOTAGE BLOCKS	COME	R.Q.D.	SAMPLE	*	%	*	7.	7.	oz/kon	TOTAL
	WITCHSETY	E Foetoge	CORE AXIS			PYRIE	LIN. ZONE SUPERGENE	EMARKS			RICCYERT		NUMBER	TCu	ASCu	CHSCu	ASFe	MoS2	Ag	(3
			v µd.	3-3-5	gliz-chi-py-laps)		<u>_</u>	CMARINO	-											-
	- iù	K I	10	5 × 3	sta-carb-chi				-		1:50									
	- ಸಿ - ವಿಶ್ವೇ ೧		5 40	1-5-1	5-2-ci- 1913-py-(cp)	1.5			-	477		57	\$7925	.38	<,01		3.85	.010	. 063	
		480	40"	1	12- py- carls - (19)	ļ	1		-								ļ			
	-		40		122-caro-py-icp)	1			-		Ŷ2.			·						t
	L.		1 (140		52	[-		12									
	- 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5				Pre an one-by- (ch)	1.0			-	487		30	87937	.17	<.01		1.96	.019	. 035	
	1 3 5 7 6	490	1 140	inclose 4	ALZ CONTENTS - PY-(CP)				-	- : <u></u>										
			140°	hrln x 5	gtz-chl-pri-cp						95						····			t
	10	0	40	ι. Έ	atz-mag-(py)-(1)				-	Ī	21									
	140 140 mad		1040°	nrinx 10	Ste-chlip-py	1.0			-	497		47	87938	.40	<.01		2.62	.011	.042	•
		500	/ 30'	.⊥ . 4	stz-carb-(h1-(py)				-											
HLORITE DARKENED MINE		K	<u>२</u> मर्ग	ti xa	gtz-carb-chl-py-(cp)	<u> </u>						<u> </u>								┢
HASE TONALITE: 500' +. 647'	sè.	Ŕ.	30 5 45	4.43	422. chl - py - (2)		Trank		-		97				ļ]	
noticeable rise in gete and fight	1 + 1		401	12	atz-chl-carb	0.7	18-3+32	ዮ	-	507	ł	60	27939	.20	<.01		2.13	.011	.029	1.
decrease in chi from the both Prove Quarts Broke There is a checken of entert between shell the rock types. The chlorite Barbind	140 **				922-ch1-py-(cp)		D.		-	-~										
The rock types. The chlarite bartind	-	X	100	51	gtz-(Mo)-(cp)		-minar to									Au				t
larger grain sizes compared to		KJ	40*	\$ to \$ x2	gtz.chl-zy-kp)	[Stornid Sio'to E		• • • • • • • - -		00,					1.22				ļ
the Border Phase Disrite.	3.6	K1	40	11 2	gtz- carb-mag-rhl-(1p)	1.0			-	517		60	87940	.31	< .01		2,06	,059	.035	
	1.0~0	520	30	ndaxs	stz-chipy.cp	ŀ			-							ppb				
			141	at a lat at	322-chi-py-cp)						00								<u> </u>	t
	<u>.</u>		40	10	ep-gtz-chi				-		- 1 ⁻¹ -1									
	t₀ Ho/wK				P .	1.0	i (arbî		-	527		43	0794	.23	<.01		2.23	_012	.03	
Z nakowi wina katalah mana katalah kata	1.1	520			stz-cht-py-(cp)-(140) hem-carb	1			-											
the manage water and the second	-	1 - 201	1.00	I. Gologe	C Diagona	L	<u>v </u>			t					I	<u>الم</u>	verne/gib1	/rytimen/	j menter/heg	اد رو اد رو

GIBRALTAR MINES LIMITED (MCLEESE LAKE PROPERTY) DIAMOND DRILL LOG

Hole No. 96-16 Page 9 of 12

	- <u> </u>	GRAPHIC				Γ					r	1:00mm	NO		SSAY I				- 7
ROCK TYPES and ALTERATION	FOLIATION ANGLE &	LOG	STRUCTURE (velne)	STRUCTURE (veina)	MINERALIZATION	ESTIMATE 75		AATE ACTUAL	FOOTAGE	CONE	R.Q.D.	SAMPLE	7.	X	7	7.	7	oz/ton	
	BUTCHSITY	i≓ ∦ Footage	ANGLE TO			PYRITE	LIM. ZOME SUPERGENE REMAS	IKS	- (LOOK)	RECOVER		NUMBER	TCu	ASCu	CNSCu	ASFe	MoSz	Ag	GRADE (X)
	11111111	× × × × 540	y software	helo trig s 3	922-ch1-py-(1p) 922-ch1-py-(1p) 922-ch1-py-(1p)	1.0			537	98	47	:7992	.15	<.01		1.85	.017	.026	.07
	ND	< < 5.50	1 09 25 1 10° 2 40° f=50°	्य - म	ytz chi py-op gi e mag-ciro-lip) gez-chi-carb gez-chi-carb-py-lipi	07			547	13	33	ડ્રવન્મ3	.13	<.01		1.49	.011	.027	.06
	- 13 - 13 - 45		7 20 7 307-240 7 40° 7 40°	~~~~~ 노	jtz - chi - py - (cp) gtz - chi - (cp) - (py) gtz - py - (ili gtz - meg - chi - (arb - (py)	0.7			157	96	37	84844	.18	<.01		2.15	.011	.029	. 05
	1 1 1 1 1 1 1 1 1 1	222	40° 40°		12- chi- py- (cp) glz-carb-chi-py- (rp) glz-chi-py- (cp)	٤.5			567	95	37	87945	.22	<.0}		1.53	.015	.029	. 04
<u> </u>	ND 40 30°-40°		1 0° // 30° to 40° / 10°	古" heln×a 長11	atz-chl-py-lep) gtz-chl-carb-py-cp gtz-cht-carb-py gtz-mag-carb-(py)-(cp)	0.6			- - - - 577	98	50	87946	.19	<.01		3.13	.010	,032	-03
	-	N 3	(10 //301) 46 -	hrlax3 hrax2 3 ¹	322-CHI-PY-(1) 922-CHI-PY-(1) bx+85 W/ carb-(1))-(1(p)) 922-CHI-PY-(1)	٤,5	Net Joan		- - - - - - - - - - - - - - - - - - -	95	37	5794 7	.26	<.01		2.94	,015	.035	.09

GIBRALTAR MINES LIMITED (MCLEESE LAKE PROPERTY) DIAMOND DRILL LOG Hole No. 44.16 Poge 10 of 2

/here/sh1/man/mater/ing_stant.dug

	1	GRAPHIC					BOTTOM DEPTHS	-					Α	SSAY I	RESULT	S		_
ROCK TYPES and ALTERATION	ANGLE &		STRUCTURE (velna) ANGLE TO	(veine)	MINERALIZATION	estmate %	LEACH CAP	FOOTAGE		R.Q.D.	SAMPLE	%	7.	*	7	*	oz/ton	EST M
	INTERSITY	E Footage ;	CORE AXIS	WIDTH		PYREE	LIM. ZONE SUPERGENE REMARKS		RECOVERY		NUMBER	ŢĊu	ASCu	CNSCu	ASFe	MoSz	Ag	7
ections of the internet There is a straight and more in the internet more is the Quarte Conserve Children internet in plane	282		1.5*		sta-clificara-py-mag-lep) glir 1-1. pr.cp glizz carto-shi-gap-(p) (af (3.6	1:316	597	98	Q	87948	. ગ્રા	<.01		2.83	.012	.033	
	- Crim	600		3" lot x3	GER - Green and Byg- cp	-97)					:						
	T VL		1 30° - 70°	41) 10	elteronno-on-rob elteronno-on-rob		From 5170 to E.O.H The Syppine is a Clear sight brents		.01	23		36	<.01		3.23	.012	650	
	- +0 K - ::	× 610	40 40 40	e 11	gta-chl-py-(cp) sip-chl gtz.chl.corio-py-(No)-(cp	0.7	in grade stands to be associated while the	507		2	\$794 9		1,07			.012	.037	
			N/1,-0	3"64"+2 5 m2"+3	5=2-ch1-Fy-(cp) 34P		dist of the cp is . dist or in numerous . Stringtrs for this gyp rich zone.		'à,	7.				Au			020	Γ
		× 6-20	40°	10 D	gtz-chi-py-lop ep-gtz-chi	1.0	epî -	617		70	57950	,29	<.01	г РРЬ	2.60	.023	.034	
			70	7.0	glz-ch1-py-cp gyp			-	100		UE constru							ŀ
			49% 50	51+2	stz-chl-py-carb-cp-Mo syp ηtz-chl-cp-Mo	<.5		627		§7	87951	.27	<.01		1.90	.048	.028	
· · ·		x 630	40	1 II 2	gtz-mag-chi-py-cp			-	100									t
	50°WK		40	5"	922-CLL PY-CP mog. =12-(p)-(py)	<.5	∱‱ئ	<u>637</u>		93	87952	•53	<.01		1.82	.014	.026	
	K	640	150		546 976		J		~									╞
	ان بن ان بن ان بن ان		60	h-hx4	ziv chilippinnes ×β. qte-chil-carb+py-cp	0.6		647	8	77	87953	.28	٢.0١		3,10	.024	-041	
Accession - Internet		650	130	4.	gyp-carb ate-chl-carb-py-cp		-											

3

.

GIBRALTAR MINES LIMITED (MCLEESE LAKE PROPERTY) DIAMOND DRILL LOG

LOG Hole No. <u>96-16</u> Page <u>11</u> of <u>18</u>

Did Poor

	1	GRAPH	c					OM DEPT								SSAY I	RESULT	S		
ROCK TYPES and ALTERATION	FOLIATION ANGLE &		(aujev)	STRUCTURE (veins)	MINERALIZATION	сатыал 7	LEACH CAP	LISTIMATE	ACTUAL	FOOTAGE		R.Q.D.	SAMPLE	76	7	₹	7.	76	oz/ton	
	OTEXSEY	Tootage	ANGLE TO	WIDTH		PYRITE	SUPERGENE	EMARKS			RECOVERY		NUMBER	TCu	ASCu	CNSCu	ASF.	MoSz	Ag	(X)
· · · · · · · · · · · · · · · · · · ·	-	K.		hele x3	211				-											
		KI	350	Section 14	GE ILS CALO HA (P. No				-	ł	100			l i						
	2	2	20	1. H	the man - (put -)	<.5			-	657		90	87954	.29	<.01		2.11	.028	.033	ļ.
	H.K.		of at 01 3		ang.				-	1001										
		1660	\$ 50° fo \$10"	1.14	git z etter er er pre- i plani	<u> </u>			-											
thing a set of a set		K I	16		Sta KHI-GUP (P)				-		100					Au				
1 1, 11 - Fant from -07 -0467	14			brinky	ng a trainin generation in				-			<i>.</i>								
	40	0	30	1	3-2 ch carpigit. Y	1.5			-	<u>467</u>		30	87955	1.28	<.01	I .	२.०५	.023	,036	1.
	Band	5 I	N 110	5.45	SIP				-							ррЬ				ł
	1	670			2+2-ch1-py-1:p)					1										
	1	N	50		Stz-cial-cp.py				-	ţ	100									
	1 40	KI I	C. S. Samuel B	100 T 3 2 1 1 1 1 1	Ste-shi-cp-py				-			0					2.07	10	AU.0	
	- ++ - אָה'אַג	K I	NO 1000	Selar 2	STP Stz-CHI-py-cp	<.5			-	677		90	87956	1234	<.01		a.07	.010	.079	ή.
•		KI	100	1.11	1000				-											
· · · · · · · · · · · · · · · · · · ·	1	680	10	1.042	5+2-0-1-GYP-(++)-(1)															+
	-	7 K		4 -					-]	100									
	- Q - [N a	40	3	SYP				-	}			87957	.47	<.01		2.27	.029	.045	5 3
	- ++ - 935.42	KJ I	40 1050		Blz.chl. mag-py-cp	< 5			-	687		87	01121	1			~~~ /	,		
	1	X 690	10	h AR	34P gtz-chl.py-cp				-											
INE PHASE TONALITE: 697 & E.O.H		K OID	120" 10 40"		atz-ch1-py-(cf)						,									+
4105(40-50%), 512/25-30%), chi(20-35%)		N N	40	1	54P - ((w))		-			1	100									
the mine phase condition has a lighter overall color due to the	1 KD	K		ľ	-	1 < .5			-	1		27	87958	1.27	<.01	1	1,68	.015	.038	8
Consume alter compared with	1	6	1 HD	hr h. to y xb	stz-chi-cp	<u>`</u>	^		-	697			01.50							
is a sharp contact between the	1	K Im	- 90°	Story M	522-161-242-24-(cp)	!			-	1	1		{							
when the state which generally	4	KI 🐨	45		GUT CARD-LA	<u> </u>				1	Į	}			1					\top
Sector 20	「心」	1	140	10	ALL YLL DEPISORD PY -CP	4.5			-	-	105	33	64959	40	<.01		1.77	.016		
	- +ε -]50°ωk	2	130		ALE COTO . Chilipp	\`."			-	1		13			10.		1.11	1016		4
	100 00	P	30 1040	3××3	gtz.chl-cp.py					707	·									
	-				707 # E.O.H.				-	-	1			1			1			1

GIBRALTAR MINES LIMITED (MoLEESE LAKE PROPERTY) DIAMOND DRILL LOG

Hole No. 46 16 Poge 12 of 18

APPENDIX C : ASSAY PROCEDURES

All core was bucked and assayed at the Gibraltar Mines Limited laboratory facilities. The core was sampled in 3.05 m (10 feet) sections (core was not split). Each sample was crushed and passed through a Jones Splitter to produce a small representative sample for pulverizing to 100 mesh. The pulverized material was used for assaying then stored as a "pulp" sample for an indefinite period of time. The splitter reject material was bagged and stored until assaying was completed then the "waste" rejects were discarded and the "high grade" rejects were stored at the mine for approximately one year.

The following assay procedures were applied to the samples:

Acid Soluble Copper

Acid soluble copper analysis (oxide copper minerals) is carried out on 1 g samples dissolved in 50 ml of 30% H_2SO_4 for 90 minutes at room temperature, agitating regularly. The remaining solution was then bulked to 200 ml with H_2O . A portion of filtered solution was then assayed using standard atomic absorption techniques.

Total Copper

Total copper analysis was carried out on 2 g samples dissolved in 15 ml of HNO_3 and digested until fumes were expelled. 20 ml of HCl was then added, with the sample digesting for a further five minutes. This solution was then bulked to 200 ml with H₂O. A portion of filtered solution was then assayed using standard atomic absorption techniques.

Acid Soluble Iron

Acid soluble iron analysis was done on 1 g samples dissolved in 15 ml of HNO₃. The sample was then boiled until fuming was finished, with an additional 20 ml of HCl being added and boiled until fuming was complete. The remaining solution was then bulked to 200 ml with H_2O . A portion of filtered solution was then assayed using standard atomic absorption techniques.

Molybdenum Sulfide

 MoS_2 analysis was carried out on 2 g samples dissolved in 15 ml of a KClO₃ saturated HNO_3 and boiled until fuming was complete. 20 ml of HCl was then added, with digesting occurring for a further five minutes. AlCl₃ was added to bring the solution to excess of 1000 ppm Al. The remaining solution was then bulked to 200 ml with H₂O. A portion of filtered solution was then assayed using standard atomic absorption techniques.

<u>Silver</u>

Silver analysis was carried out on 30 g samples dissolved in 50 ml of HNO₃, then brought to a boil. 100 ml of HCl was then added and dissolved at room temperature for 4 hours, agitating regularly. The remaining solution was bulked to 200 ml with H_2O . A portion of filtered solution was then assayed using standard atomic absorption techniques.

APPENDIX D : ASSAY CERTIFICATES

ASSAY CERTIFICATE

EXPLORATION

6 Date July 19

Sample No.	% Cx. Cu.	Total Cu.	% MoSi	A 5 5	02/TonAg	ppm As	96-1
87681	ζ.σ!	05	< . 00	A.S. Fe	· 021	.7	/
82		.04	6-0 61	2.32	- 632	1-1	
83		.10	4.001	3.26	- 044	1.5	
84	· · · ·	.04	< . OU1	3.52	- 035	1.2	
85		105	<.001	4.00	-038	1:3	
36		.(3	· 200	8-90	.050	1.7	
82		.17	1040	8.78	-053	1.9	
විරි		121	. G14	3.54	.047	1.6	
3)		.22	1013	3.00	,041	1.4	
90		. 09	1001	2.78	.032	(.(
<u> </u>		20	. 003	3.55	- 047	1.6	
92		, I D	1003	3-37	. 023	B	
93	,	.06	2 001	1.80	-023	(B)	
- 94		.10	<.001	2.61	-029	(•0	
95	4	.07	. 669	2.92	.021	、7	$] \vee]$
		-					
87751	. 01	·04	2.061	1.56	.02/	、フ	
52	- 07	- 68	C.001	1.59	-018	•6]
53	105	-06	ζ. συ 1	2.55	.021	.7	
54	102	.04	2.001	2.37	. 024	۰ 8	
55	102	. 05	2.001	2.74	.024	.8	
56	.03	.09	[100.]	2.84	-032	1.1	7
52	C.01	. 10	1.061	3.65	.035	1.2]
58	• • • • • •	15	1004	4-01	-050	1.7	1
59		.10	1002	4.01	.044	1.5	
60	<.01	-25	.002		.074	2.5	
61	٢.0١	.22	1006	6.40	.062	21	4
62	e.01	.06	C:001	6.40	. 026	19	-
63	(.01	.12	6.001	3.80	.041	1.4	
			L				-1
L							

S 8 .

cc: Assay Lab.

a second a second s

J.

m. No. Mill - 1

. No. Mill - 1

GIBRALTAR MINES LIMITED ASSAY CERTIFICATE

EXPLORATION

Sample No	% Ox. Cu.	Total Cu.	% MoSz	A.S. Fe	oz./T. Ag	
<u>4</u>						· · · · ·
6-13 	4.01		.002	4.86	.036	
65	.01	. 16		5.81	.042	
	< 01			4.39		
67	<.01	.24	.002	4.34	.049	
	< .ol	.15		4.10	.035	
୍ୱେ	<.01			5.74	023	
70	<.01	. 13		4.84	029	
7	<.01			4.96	.028	
72	< .01			5.92	.025	
73	اه. ک			5.72	.022	
74	<.ol	·11	.004	5.19		
	اه، >	,12		4.39	.017	
1 76	<. 01	.12	. 003	4.19	.020	
	<.01	.12		4.52		
		ļ	Bere.	3.44	. 028	
79	10. >	.09		4.64	.025	
8c	. <.01	. 08		4.51	.029	
8i				3.37	.028	
	<u> </u>	.24	.003	6.37	.058	
83		.35	.022	6.30	. 062	-
	<-01	. 16	.013	4.53	.035	
85	<.01	.27	:012	3.09	038	
86	4.01	.12		5.00	.026	
81	×.01	.16	.007	2.95	. 027	
K-12						96-12
876%	<. 01	.15	. 002	2.80	. 028	
97		.15	002	3.22	.030	
98	<.0	.12	.003	3.89	.030	
99		. 15	. 003	3.47	.029	
L.						
· · · · · · · · · · · · · · · · · · ·			· .	r L		

c: Assay Lab. 1.41

ASSAY CERTIFICATE

XPLORATION

96-12 .96 1 % Date .

				· · · · · · · · · · · · · · · · · · ·		
Sample No.	% Gx. Cu.	Total Cu.	% MoS1	A.S. Fe	02 /Tim Aic	(96-12)
87700	4.01	.20	.003	4.59	(051	
01	1	.27	.004	5.07	:058	
. 02-		.14	1003	3.02	c 2/3	
03		.19	· 00×	4-38	1044	
04	-	.23	.00×	6.33	- 058	
- <u> </u>			1003	633 370	1034	
26		13	.006	3.42	1 640	
<u></u>		14	1006	4.00	. 037	
58		.14	. 008	4.00	c 641	
02		12	(618	3-55	1033	
10		.12	<0(0	2.83	1034	
		(10)	· 011	2.96	026	
				· · · ·		
87783		.20	.006	4.04	1046	
82		.19	1008	4.13	1057	
90			.019	4.84	1867	
21		. 38	. 686	4.63		
. 92	·	122		3.25	1 043	
93		.22		3.20	1 645	
94		.30	1202	4.20	0 250	
95		.19	< 06 8		:039	-
91		.27	-016	1	1043	
		.37	1.6/2		. 036	
98	1	123	. 604	4435	1050	
99		.15	-010	3.41	1063	
9000		122		3.32	. 0×3	
01		. 41	1009	3,32 3.64	.028	
0-		· 27		242	. 630	
0		122		2.85	-037	
						_
Y						
			· · · · · · · · · · · · · · · · · · ·			

Assay Lab.

😫 🖉 - Martin Martin Martin - Ma

5-

96-12

GIBRALTAR MINES LIMITED ASSAY CERTIFICATE

EXPLORATION____

. % Ox. Cu.	Total Cu.	% MoS ₂	% A.S. Fe	02./T. Ag	
		008	2.09	.034	
01	22		2.82	.044	
61			3.18	.049	
	. 23		1.93	033	
0			1.37	.018	
	.14		2.48	031	
01	.40	.005	1.94	.045	
			1.16	.919	· · · · · · · · · · · · · · · · · · ·
			2.01	. 030	
			2.37	.036_	
.01	. 24	006	2.60	.063	
.01			2.20	.048	
. 01	8	. 002	1.58	.024	
	.14	02	1.52	.023	
· · ·		<u> </u>			96-12
	10		3.29	.025	· · · · · · · · · · · · · · · · · · ·
01	. 16	.005	4.03	.034	
0	15	.007	3.00	.032	
		. 010	4.68		
0L			5.18	.049	
.01		- 005	5.47	050	
. 01		.013	5.21	.053	· \
. 01		.017	3.72		
	. 20	.021	2.42	. 032	
.01	. 14	. 005	1.65	.025	
.01		.014	1.62	. 021	
01		. 014	1	.041	
0	9	.004	1.39	.025	
		.006	2.20	.028	\mathbb{V}
	اه ا ا 	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	01 22 009 01 46 011 01 23 004 01 23 004 01 07 001 01 14 008 01 40 005 01 10 007 01 $.10$ 007 01 $.10$ 007 01 $.10$ 007 01 $.10$ 007 01 $.08$ 005 $.01$ $.08$ 005 $.01$ $.08$ 005 $.01$ $.08$ $.002$ $.01$ $.08$ $.002$ $.01$ $.14$ 002 $.01$ $.16$ $.007$ $.01$ $.15$ $.007$ $.01$ $.15$ $.017$ $.01$ $.24$ $.017$ $.01$ $.24$ $.017$ $.01$ $.24$ $.017$ $.01$ $.24$ $.017$ <	o1 $.17$ $oo8$ 2.07 $o1$ 22 $os9$ 2.62 $o1$ 22 $os9$ 2.62 $o1$ 23 $os9$ 1.37 $o1$ 23 $os4$ 1.93 $o1$ 23 $os4$ 1.93 $o1$ $.14$ $os8$ 2.48 $o1$ $.14$ $os6$ 2.48 $o1$ $.10$ $os7$ 1.94 $o1$ $.10$ $os7$ 1.94 $o1$ $.10$ $os7$ 1.94 $o1$ $.10$ $os7$ 1.94 $o1$ $.10$ $os7$ 2.01 $o1$ $.10$ $os7$ 2.01 $o1$ $.18$ $os5$ 2.37 $o1$ $.18$ $os6$ $.022$ 1.58 $o1$ $.16$ $.0s7$ 3.29 $o1$ $.10$ $.01$ 3.29 $o1$ $.15$ $.0s7$ 3.50 $o1$ $.15$ <	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

ssay Lab. کې . Assayer . D. A. U.

ASSAY CERTIFICATE

XPLORATION

July 19 Date .

ÌС 19

Sample No.	% Ox. Cu.	Total Cu.	% MoS1	A.S. Fe	02/TonAg	96-12
37726	<.01	.08	,007	1.30	, 022.	
2		.10	1021	2:05	(033	
28		112	(0(1	1.85	1027	
29		. 15	.008	2.29	1030	
30		10	.004	219	(630	
31		e11	1003	(.71	1036	
32		(13)	,006	2.10	(633	
33		10	- 066	3.35	:029	
34		(21	1006	2.05	(630	
35		.12	1.004	2.13	1025	
36		122	.006	2.60	° 630	1
37		. 19	1002	2.43	1025	/
		· DB	.003	1.27	(029	
33		14	1007	1.74	. 626	
40		.12	(010	2.37	.025	
41		.06	1003	(.90	1621	
42		107	_003	(.71	.019	
. 43	•	.15	(008	3.92	1035	
44		124	.006	2.12	1024	1
45		(12	-608	1.83	1016	\vee
						-
82891	105	10	-006	1.55	1014	
02	-04	1.11	-005	.79	1.017	
23	101	• 23	1009	1-85	1025	
94	.01	• 39	.020		1036	
2.9	103	.57	1621	2.96	042	
96	- 01	r 34	(613	2.09	× 633	
87821	<.0(,08	1664	4.85	. 1037	
2	2.01		,001		_030	

and the second

Assayer

n. No. Mill - 1

96-13

GIBRALTAR MINES LIMITED ASSAY CERTIFICATE

EXPLORATION

s. 1

Date July 10 1996

 \bigcirc

96-1

			· · · · · · · · · · · · · · · · · · ·			
Sample No	% Gx. Cu.	Total Cu.	% Mos	A.S.Fe	02/TonAg	PPm Re
87681	2.61	05	< .001	2.00	1.021	.7
82	1.	.04	6-0 61	2.32	- 032	(-1
83		.10	4.001	3.26	- 044	1.5
84		.04	<.001	3.52	- 035	1.2
85		105	<.001	12.00	-038	1:3
36		.(3	· 200	8-90	.050	1.7
82		.17	104D	8.78	-053	1.8
200		151	· 614	3.54	.047	1.6
39		.22	.613	3.00	-041	1.4
90		.09	1001	2.78	.032	(.(
81		.20	. 003	3.55	- 047	1.6
92		.10	1003	3-37	. 023	B
93		.06	2 001	1.80	-023	(· 0
94		.10	<.001	2.61	-029	(•0
95	~	.07	. 669	2.92	.021	、7
87751	. 01	.04	2.001	1.56	.021	、7
. 52	07	- 68	C.001	1.59	-018	•6
53	105	-06	6.007	2.55	-021	.7
. 54	102	.04	2.001	2.37	. 024	۰8
55	102	.05	2.001	2.74	.024	. 8
56	.03	.09	<.001	5-84.	-032	1.1
5?	C.01	. 10	1 061	3.65	.035	12
58	: 01	.15	1004		-650	1.7
59	.01	.10	1002		.044	1.5
60	<-01	-25	.002		· 07+	2.5
61	<.01	.22		140	1062	2.1
62	C-01	.06	C.001	6.40	. 026	19
63	5.01	.12		3.80	.041	1.4
· · · · · · · · · · · · · · · · · · ·			1			1.7
						-
-				t the second		
		I		1	· 2017년 11년 11년 11년 11년 11년 11년 11년 11년 11년	Self-Self-Self-Self-Self-Self-Self-Self-

c: Assay Lab.

3

96-13

GIBRALTAR MINES LIMITED

LAPLORATION

	% Ox. Cu.	Total Cu.	% MoS1	A. 5. Fe	oz./T. Ag	(96-13)
Sample No	% Ox. Cu.		N 11001	A.S. TE	52.71.13	
96-13						
87764	<u> </u>	. 17	.002	4.86	.036	
65				5.81	.042	
66	<u> </u>	.		4.39	033	
<u> </u>	<.o1	24	.002	4.34		
68	<u> </u>			4.10	.035	
69	<,01	0		5.74	.023	
	<.01	. 13	.007	4,84	.029	\
71				4.96	. 028	
		.15		5.92	.025	
73		.14		5.72	.022	
74	اه. >	· · · · · · · · · · · · · · · · · · ·	.004	5.19	.019	
	<	.12	. 00.5	4.39	.917	
76	<.01	.12	. 003	4.19	.020	
<u> </u>	<.01	.12	600	4.52	.017	
78		JI	800	3.44	1.028	
79	5-91	. 69	. 008	4.64	.025	
80	. < 01	.08	800	4.51	.029	
81		80		3.37	.028	
82	5-01	.24	.003	6.37		
	< . 91	.35	.022	6.30		
	<-01	. 16	. 013			
	5.01			4.53	.035	<u>↓</u>
86				3.09	.038	
87	<.01	ļ		5.00	.026	
96-12				2.95	. 027	¥
876%						
	<u> </u>	.15		2.80	. 028	
97			002	3.22	0.30	
<u>98</u> 69	اه.ک	.12	.003	3.89		
99	<.01		. 003	3.47	.029	· · · · · · · · · · · · · · · · · · ·
L					ł	

cc: Assay Lab.

Account The A 11

ASSAY CERTIFICATE

Date

Assayor .

.19

EXPLORATION

Sample No.	% Cx. Cu.	Total Cu.	% MoSi		02 Him ficy	
277 22	4.01	.20	. 003	4.59	1051	
C '	(. 27	-004-	5.07	:058	
07-		.14	1003	3.02	1043	
05		.19	.00×	4-38	1044	
OL		123	. 00×	6.33	- 058	
<u>e</u> ;		.11	.003	3.70	1034	
		13	.006	3.42	1 640	
		14	1006	4.00	. 037	
The second se		.14	. 008	3.25	c c 4/	
€ 2		:12	1018	3-55	1033	
1.15		.12		2.83	1034	
		10	.011	2.96	. 626	
						96-13
87733		.20	.006	4.04	1046	
		:19	2008		1057	
<u> </u>			1019	4.84	1067	
<u> </u>		. 38	. 686	4.63		
	• •	122		3.25	1 0/3	
		.22		3.20	1645	
)+		.30	1021	1. 21	0 25 0	
\$5		.19	< 00 B		:039	
) (.27	-016	1		
		.37	0.6/2		. 036	1-1-
92		,23	. 6.64	4.35	1050	1
·		15	-010	3.4	1063	1 /
000		122		3.32	- 043	
0		. 41	1009	3,32 3.64 242	.088	
<u>,</u>		· 27		242	. 630	+
0		(22	:006	2.85	-037	
· · · · · · · · · · · · · · · · · · ·		·				
· · · · · · · · · · · · · · · · · · ·						
· ·			1			

oc: Assay Lab.

EXPLORATION

Sample No.	. % Cx. Cu.	Total Cu,	% MoSa	% A. 5. Fe	oz./T. Ag	
96-13						96-13
87804				2.09	. 934	
			<u>Peo</u>	2.82	.044	
cla		.46		3.18	.049	
07		. 23	. 004	1.93	. 0 33	
6		.07	.001	1.37	.918	
69		.14	8	2.48	.031	
10		.40		1.94	.045	
	01		209	1.16	-019	
12			.005	2.01	.030	
(3				2.37	.036	
14		. 24	.006	2.60	.063	
15				2.29	.048	
16	. 01	. 98	. 002	1.58	.024	
		.14		1.52		V
96-12						
87712	01	.10		3.29	. 025	
13			005	4.93	.034	
	. 01		007	3,00	.0.32	
15	10.	15	010	4.58	.040	
16	.01		004	5.18	.049	
			<u>6705</u>	5.47	.050	
18	01			5.21	.053	
19			-017	3.72		
20	10.	. 20		2.42	. 0.32	
21		. 14	005	1.65	.025	
22	.01	. 15	.014	1.62	.021	
23		. 31	. 014	2.57	.041	
	0	. 09	.004	1.39	.025	
25	.01		.006	2.20	.028	
)			1			

31

cc: Assay Lab.

GIBRALTAR MINES LIMITED ASSAY CERTIFICATE

EXPLORATION

96-14 Date July 19 19 96

<u> </u>					02/TonAg	
Sample No.	% Gx. Cu.	Total Cu.	% MoSi	A.S. Fe	, 022	
87726	6.01	· 0 <i>0</i>	, 607	1.30	(033	
21		.10	1021	2:09		
23	 	112	(0(1	1.85	1027	
29		. 15	:008	2.29	1030	
30		10	.004	219	(630	
-31		<u> </u>	1003	(.71	1036	
. 32.		13	,006	2.10	(633	
33		10	- 066	3.35	1029	
34		(21	006	2.05	1630	
35		.12	.004	2.13	1025	
36		122	.006	2.60	×030	
37		. 19	1002		1025	
		·DB	.003	1.27	1029	
33		.14	1007	1.74	1026	
40		. 12_	(610	2.37	.029	
41		.06	1003	1.90	1021	
42		:07	_063	(.71	.019	
43	· ·	.15	1008	3.92	.035	
44		124	.006	2.12	1024	
45		(12	-608	1.83	1016	
						Gern H.
82801	105	:10	.006	1.55	.014-	
92	.04	11	-0.05	.79	.617	
23	101	.23	.009	1.85	1025	
94	. 01	. 39	.020		1036	
0<	1.03	1.57	1621	2.96	1.042	
95	01	(34-	1613		1033	i i
						96-14
878 7-1	<.01	08		4.85	1037	
2		14	400.	3.51	_030	12
·			1000			
_ <u></u>						
Service Service			a set of the			
And the owner of the local of t	بر جمعان	and all the set	A SEALS IN	and the second		Contra Contra Contra

30

EXPLORATION

Sample No.	% Gx. Cu.	Total Cu.	% MoSi	% A. 5. Fe	cz./T. Ag	
16-14						96-14
87823	.02	.16	.005	3.55	.032	
.24	.01	. 12	.905	2.72	.0.27	
25	. 01	. 20	.007	3.16		
26	<.01	. 15	.90g	3.41		
27 .	<.01	.09	007	2.59	.029	
28	<.01		.005	3.23	.038	
29	<.01		.00	3.31	.032	1
30	<-01	.09	.006	3.41	.029	
31	<.01	ii		3.69	.032	1
32	10.>		010	3.50	.033	1
33	.01	. 26	.913	3.82	.040	
34		. 29	.023	3.89	.041	
35	01	.40	.016	3.21	.047	
36	10.		.023	2.05	.033	
	<u> </u>	. 23	.022	1.70		
	(م >			0.96	934.	
<u>F</u>	(,و)			0.81	.029	
40	4.01			1.61		
41	<-01		022	9.77	. 020	
42	< 0)		022	0.93	.024	
43	<-01	12	013	0.65	.018	
44	<-01			<u>_</u> 8i	.024	
45	<.01		012	3.53	. 033	
46	<.91	29		2.80	.038	1
47				2.57	.041	4
48		15	.006	1.74	.923 /	
49	<-01	17		1.68	. 023	· · · ·
50	<u> </u>			2.24	.028	V
)						

cc: Assay Lab.

Assayer . D. A. W.

96-14

ASSAY CERTIFICATE

<u>. Explorations - 191, -14</u>

 $(\hat{\mathbb{P}})$

Sa	mple No.	% Ox. Cu.	Total Cu.	% MoSz	A.S.Fe	oz./T. Ag	96-14
	27251	5 01	. 13	608	2.62		
21 - L	50	5.0L	22	900	2.45	025	_/
3	01	2.01	13		2.04		
-	54	6.91	. 29	. 011	2.36	029	
5	55	5.01	.30	.009	2.35	. 029	1
	56	4.01	.30	. 023	1.99	.028	
	57	4.01	.35	.012	2.02	033	
	58	< 01	30		2.08	.026	
	5	(0)	.36	. 012	2.68	.033	
4	60	5.01		.014	2.29	.025	
	lo1	< 01	.14	.020	2.19	.023	
	50	<u> </u>		.019	3.16	.948	
12	62	4.01	. 21		2.85	.035	
	64	<u> </u>		. 0.29	2.93	. 02.7	
5	65		.28	.020	2.21	.025	
6	66	4.91	. 33	- 919	2.00	.026	
7	67	5.01	. 29	018	2.23	.026	
12	50	.01			2.27	.029	
9	69	<	. 21		2.00	.921	
ZC	70.	<u> </u>	. 27		2.67		
1	71	<u> </u>	. 20	. 02)	2.44	_,044	
22	72	اه. ک		5.00	2.55	.023	
23	73	< .01	.37	.039	2.97	057	
54	74	(م. >	. 22		1.84	.056	
25	75	.0	. 36		1.46	.0.35	
>6	76	< .01		.012	0.84	.022	1
27	77	5.01		. ol 3	0.70	.017	I
28	7-8	5.91		,026	0.46		V
)							

cc: Assay Lab.

Assayer

1

EXPLORATION

Date 29 JULY 19.96

Sample No.	% Gx. Cu.	Total Cu.	% MoSi	% A. 5. Fe	cz./T. Ag	
96-14						96-14
87879	<.01		. 216	0.40	.015	
80		.05	.008	0.42		
81	<. 0]	.13	.022	0.46		
82	(ol	.19	.020	1.36		
83	<.01	. 32	.016	2.06	.033	
84	<.01		.029	2.21	.033.	
85	<.01	. 26	.010	1.84	.027	
86	<.01	.18		2.32	.028	V
96-16						
87897	01	. 35		2.29	027	
98		.37	.016	2.32	.031	
- 99		. 29	017	2.78	.035	
87900	< .01		017	3,23	. 043	
eL	<.01	. 22		2.49	.031	
02	<.01		.007	2.37	.024	
•3	< 01		.021	2.00	.926	
		.18	.921	3.11	.024	
05	<. 01	8	.006	1.49		
	5.01		800.	2.15	024	
07	< 01		.007	3.02	. 0.3/	
o8	< -01		.014	2.32	.027	
<u> </u>	٢.0١	. 16	-009	3.18	.035	
10	<,91	. 19	003	2.01	.017	
	< 01	12	002	1.75	.021	
	د.01	08		2.06	. 017	
	5.91	14	004	2.09	.019	
4	5.01	17		1.99	.021	
15	10.>	.18	. 910	2.86	.028	
16	<u> </u>	. 34	. en 5	3.48	.046	
)						
~						

cc: Assay Lab.

Assayer ... D. A. . W.

EXPLORATION 96.16

Sample No.	% Gx. Cu.	Total Cu.	% MoSi	% A. 5. Fe	oz./T. Ag	
37945	6.01	. 22	. 915	2.53	.029	
46 .	4 01	. 19	,010	3.13	.032	
47	6.01	. 26	. 0.15	2.94	.035	
48	4.01	. 21		2.83	.033	
49	< 01	,36	.012	3.23	.037	
50	< 01	. 29		2.60	032	
51	<.01		.0.48	1.90	.028	
52	<u> </u>			1.82	.026	
53	<u> </u>	.28	.024	3.10	.041	
54	<.01	. 29	. 028	2.11	.033	
55	<.01	.28	.023	2.04	.036	
56	< 01	. 39		2.07	.044	
57	< 01	.47	.029	2.27	.045	
) 58	< .01	. 2.7	015	1.68		
EOH 46-16 37959	<u>اہ. ک</u>	.40	-016	1.77		
STAKT 84-15	03		.006	6.46	.041	96-19
62	. 04		.005_	6.16	-040	
63	.05	. 28	.005	417		
64		.40	.006	5.36	.045	
65		. 27		3.21	.034	
65			3	3.88	039	
67	4.01	.23	007	4.39		
68	5.01		.004	5.01	.037	
69		. 32	. 008	.14.3	.047	
70.	<.01	.26		12.3	047	1
71	5-91			11.3	.047	
<u> </u>	0I		.016	9.77	.071	
73	o)	1.19	.01)	8.74	, 101	\checkmark
1						
(her more well)						

Assayer

EXPLORATION

Date July 31 . 19 96

Assayer

Sample No.	% Gx. Cu.	Total Cu.	% MuSi	40 A. 5. Fe	oz./T. Ag	46-12
37974	2.01	123	1014	3.91	. 058	1 1
75		.23	1012	4.05	,050	-
76	-	.16	1004	4.77	. 042	-
<u> </u>		114	. 006	3.02	· 044	-
		.25	1011	3.00	. 046	+
29		.24	. 010	2.97	1050	-
80		,12	. 611	2.87	. 036	-
31		.20	1613	2.34	-042	-
82	Sa	.15	1007	2.03	-036	-
83		. 16	1608	2.17	.039	-
84		.13	. 667	2.23	. 041	ł
85	-	34	1611	3-50	. 058	-
36		.26	.007	2.79		
87		17	1 584	4.56	,061	-
33		.33	1007	4.95	1074	-
31		.23	1008	3.43		- 1
90		.14	.016	2.00	. 036	- 1
91		.09	,007	2.02	1026	
92		114	018	2.59	. 035	
23		11	. 009	2.61	.033	- /
26		• 13	, 007	3.26	1049	- 1
95		109	1005	2.33	1038	
26		.09	1 005		1038	
97		.09	6 00 5	2.90		+
28		. , D	. 010	3.11	1044	
29		. / 0	(010	4,21	,046	FT
80000		.1.2	. 004	2.45	1051	F
0/		108	1564	1.66	0037 .	11
· · · · · · · · · · · · · · · · · · ·						
isay Lab.					15	

GIBRALTAR MINES LIMITED ASSAY CERTIFICATE

EXPLORATION

96-15 No Ang O' , 19

Sample No.	% Ox. Cu.	Total Cu.	% MoSi	% A. 5 Fe	cz./T. Ag	96-15
88002	C.01	. 07	.063	1.73	.019	- (
03	C.01 -	. 07	1004	1.74	.018	-)
04	6 01	. 67	100K	2.73	.012	$ \leq 1 $
20	6.01	.07	1004	2.26	1815	
06 07	<.01	107	1003	1.85	.009	-
07	C.01	. 06	.005	1.67	.008	re
00	6.01	. 66	. 003	2.31	.015	- 1
09	6.01	108	1001	258	1013	- I
)0	6.01	10	. 001	1.39	1 00 8	-
12	<. 01	. 06	.005	1.42	1009	
12	< 01-	105	. 005	1.94	1 002	~
	<u> </u> -					
		· · · ·				
						1
	<u> </u>					
	<u> </u>					ļ
6						
A State Land Constrained						1

EXPLORATION

ily19 Date .

()

Sample No.	% Gx. Cu.	Total Cu.	% MoSi	A.S. Fe	02/TonAg	
37726	6.01	· OB	,007	1.30	, 022	
27		.10	(021	2.05	(033	
23		112	(0(1	1.85	1027	
29		. 15	1008	2.29	1030	
70		10	.004	219	(630	
31		411	1003	(.71	1036	
32		(13)	,006	2.10	(633	
33		10	- 066	3.35	1029	
34		:21	.006	2.05	1630	
35		.12	1004	2.13	1025	
36		122	.006	2.60	* 630	
37		. 19	1002	2.43	1025	
		OB	,003	1.27	1029	
33		114	1007	1.74	. 626	
40		12	(610	2.37	.029	
41		.06	1003	(.90	1021	
42		107	-063	(.71	.019	
. 43	•	.15	(008	3.92	1035	
462		124	.006	2.12	:024	
45		(12_	-608	1.83	1016	
						96-16
87891	1005	:10	.00 G	1.55	1014	
	.04		-005	.79	.617	
23	.01	.23	:009	1-85	1025	
96	.01	. 39	.020	2.51	1036	
295	103	.57	1621	2.96	.042	
96	- 01	134	(613	2.09	4033	\vee
						•
378 721	<.0(,08	1604	4.85	(037	
27	. 01	14-	,004	3.51	_030	1
2						
						*
1	Color M. Ashir	star was				

cc: Assay Lab.

ASSAY CERTIFICATE

EXPLORATION

Sample No.	% Gx. Cu.	Total Cu.	% Mo\$1	% A.S. Fe	CZ/T. Ag	
96-14						
87879	4 91			0.40	.015	
80				0.42	.913	
81	<. 01			0.46	310	
82	4.91		.020	1.36	.021	
83	5.01	. 32	.016	2.06		
84	< 01		.029	2.21	.033	
	<.01	26	<u>0</u>	1.84		
86	<.01	-18	.013	2 32	.028	
96-16			é=			96-16
87897	ol	25		2 29	.027	
- 98			.016	2.32	.031	
9	04	. 29		2.78	.035	
87900	<u> </u>	. 32	017	3.23	. 043	
의	<_01		. 011	2.49	. 031	
02	<.01	09	.007	2.37	.024	
	< 01		.021	2.00	.926	
		18	.921	2.11	.024	
		8	6	1.49	. 016	
06	< 01	. 10		2.15	.024	
		-15		3.02	0.31	
<u>08</u>	<.01		. 914	2.32	.027	
	K.01			3.18	035	
10	4.01	. 10		2.01	.017.	
	< 01			1.75	021	<u></u>
	<.01	. 98	.005	2.06	. a)7	
	<.01	.14		2.59		
		.17		1.99	.021	
	< 01		. 910	2.86	028	
)16	<.01	. 34	. 015	3.48	.046	¥

CHARGE A CARD AND A CA

And and

cc: Assay Lab.

Account T. A. I.

96-16

61- dP - NOLTASOLAX3

	Sample No.	% Cx. Cu.	Total Cu.	% MoS2	% A.5. Fe	02./T. Ag	96-16
	87917	6.01	24		3.85	.056	
n	13 .	6.01	.20	013	1.79	.034	
2	١٩	<.el	. 06	.006	1.24	.024	
	30	د.ما	.08	003	1.44	.034	
5	21	4.91		.004	1.76	.027	
	22	5.01	6	.003	1.25	.023	
	32	4.01		.005	1:52	. 024	
	1	C.01	9		1.29	.23	
	25	<.01			1.82		
,	110	<.01			1.61	. 026	
e	\mathcal{O}_{L}^{+}	<.01	.18	.022	1.59	o28	1
2	56	6.91	.13	.010	1.43		
2	29	5.01	. 11	.017	1.61	. 022	
	30	< .01	.12	.022	1.81	.022	
5	31	<.01		.005	1.90_	033	
6	32	5-01	16	.408	2.32	038	1
2	33	<u> </u>	18	.012	2.99	.048	
8	34	5,91	. 19	.010	3.44	. 055	
î	35	5-01			3.32	. 050	
20	36	4,01		. 010	3.85	.063	
2.1	37	د ـ ٥١	.17	, 919	1.96	.035	
22	65	6.01	.40	.011	2.62		
23	39	4-01	. 20		2.13	.029	
<u>Ът</u>	40	4.0	.3)	. 0.59	2.06	.035	
25	41	5.01	. 23	. 012	2.23	.03/	
ж.	42	4,01		. 017	1.85	.026	ŝ
27	43	5.01		.011	1.49		1
38	44	له-ما		.011	2.15	. 029	V
)							
成長	a half a barry	Diff. Indiff.					

R. ment and Gala

cc: Assay Lab.

Assayer ... M.C. /D.A.W.

ASSAY CERTIFICATE

EXPLORATION - 96-10

Sample No.	% Gx, Cu.	Total Cu.	% MoSz	40 A. 5. Fe	CZ./T. Ag	96-16
37945	4.01	. 22	. 915	2.53	.029	
Alla .	4.01		, 910	3,13	,032	
47	<_01	. 26	015	2.94	.035	
48	<.e1		012	2.83	.033	
49	5.01	.36		3.23	.037	
50	< 01	. 29	.023	2.60		
51	5.01	27	0.48	1.90	.028	
52	Siel -	. 23	.014	1.82	.026	
51	s.al	.28	.024	3.10	.041	
5	5.01	29	0.23	2.11	.033	
55	<.91		.023	2.04	.036	
56	5.01	. 39	018	2.07	.044	1
<u>.</u>	<.01	.47	.029	2.27	.045	1
59	< 01	27	.015	1.68	. 038	
8=959	5.01	.40	.016	L.77	.034	V
7441 295/5			. 006	646		
67	.04			616	.040	
192	.05	.2.8	005	26.17	035	
62		.40		5.36	.045	
65	:01	. 27	017	3.21	.034	
00	_01	.27	. 003	3.88	.037	
2 ¹	6.01	23	.007	4 39		
67	5.01		.004	5.01		
27		.32			.037	
· 0F			.008	14.3		
71	5.01			123		
1	5.0/		6		.047	
E E			.016	9-77		
		1.19	au	.8.74	, Iol	
N	· · · · · · · · · · · · · · · · · · ·					
2					-	

cc: Assay Lab.