GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORTS

DATE RECEIVED

SEP 2 2 1996

THE INDATA PROPERTY OMINECA MINING DIVISION CENTRAL BRITISH COLUMBIA: Geology, Exploration History and

1996 Diamond Drilling Programme

NTS 93N/6W Latitude 55°23'N Longitude 125°19'W Omineca Mining Division

Prepared For

CLEAR CREEK RESOURCES LIMITED EASTFIELD RESOURCES LTD. Vancouver, British Columbia

By

David G. Bailey, Ph.D., P.Geo.

BAILEY GEOLOGICAL CONSULTANTS (CANADA) LTD.

4759 Mapleridge Drive

North Vancouver, B.CGEOLOGICAL SURVEY BRANCH V7R 3T5 ASSESSMENT REPORT

August 20, 1996

CONTENTS

1. SUMMAR	Y	1
2. CONCLUS	SIONS	3
3. INTRODU	CTION	4
3.1 G	eneral Statement	4
3.2 L	ocation, Access and Physiography	6
3.3 M	Aineral Tenements	6
4. GEOLOGY	(8
4.1 F	Regional Geology and Mineralization	8
4.2 0	Seology of the Indata Property	10
	4.2.1 Lithologies	10
	4.2.2 Structure and Metamorphism	12
	4.2.3 Mineralization and Hydrothermal Alteration	14
5. EXPLORA	TION HISTORY	16
5.1 G	General Statement	16
5.2 1	983 - 1990 Exploration	16
5.3 1	995 - 1996 Exploration	20
6. DISCUSSI	ON	24
6.1 S	ummary of Exploration Results to Date	24
6.2 P	ossible Mineral Deposit Models	25
7. REFEREN	CES AND BIBLIOGRAPHY	26
8. CERTIFIC	ATE	. 27
Annordia	Europe diture Ototom ant	
Appendix 1.		28
Appendix 2.	Diamond Drill Logs, 1996 Diamond Drilling Programme	30
Appendix 3:	Ceruncates of Analyses, 1996 Diamond Drilling Programme	43

BAILEY GEOLOGICAL CONSULTANTS (CANADA) LTD.

TABLES

1. Mineral claims of the Indata property.	6
2. Summary of drilling results, Indata property.	21

FIGURES

1. Location of the Indata property.	5
2. Indata property: claims disposition and topography.	7
3. Generalized geological setting of the Indata property.	9
4. Generalized geological interpretation of the Indata property.	11
5. Geology of the central part of the Indata property and locations of drillholes and trenches.	13
6. Indata property: extent of ground exploration to date.	17
7. Indata grid area: arsenic and copper soil geochemistry.	19

٠

BAILEY GEOLOGICAL CONSULTANTS (CANADA) LTD.

1. SUMMARY

The Indata property, located about 130 kilometres to the northwest of Fort St. James in central British Columbia, is the subject of an option agreement between Clear Creek Resources Limited and the holder of the property, Eastfield Resources Ltd. The property is accessible by all-weather forestry roads from Fort St. James and can also be accessed by float plane to a lake, Albert Lake, on the western side of the property. The property consists of ten mineral claims totalling 139 units and which are in good standing at the date of this report.

The region in which the Indata property occurs is covers the boundary between two major terranes, the Mesozoic Quesnel Terrane to the east, largely underlain by mafic and intermediate volcanic rocks into which mafic to felsic intrusions of Lower Jurassic to Cretaceous age have been emplaced, and the Cache Creek Terrane to the west. The Cache Creek Terrane consists largely of argillaceous metasedimentary rocks, limestone and some mafic to intermediate volcanic strata and chert. Intrusive rocks within this terrane comprise ultramafic - mafic complexes (of which some may be ophiolitic) and intermediate plutons of the Trembleur Intrusive Suite. The contact of the two terranes is marked by a high angle, northwesterly-striking fault, the Pinchi Fault.

The Indata property covers strata thought to be that of the Cache Creek Terrane, consisting of limestone with minor interbedded argillaceous strata, and andesitic volcanic rocks of probable tholeiitic affinity. These latter rocks record a greenschist facies mineral assemblage of regional metamorphism. Much of the Indata property area is covered by glacial and fluvioglacial deposits of Quaternary age. Contacts between carbonate and volcanic rocks are thought to be faults, interpreted as splays of the Pinchi Fault, although nowhere have these contacts been observed because of Quaternary cover. Geological mapping and data from diamond drilling indicates that numerous westerly-striking normal faults cut the property.

Known mineralization of the Indata property consists of arsenopyrite-pyrite-stibnite-chalcopyrite - bearing quartz and quartz-carbonate veins which, adjacent to mafic-ultramatic contacts contain anomalous to high grade quantities of gold and silver, and disseminated and fractured-controlled chalcopyrite-pyrite mineralization possibly related to a "porphyry-type" magmatic-hydrothermal system.

Exploration of the property began only in 1984 by Imperial Metals Corporation after staking part of the area during regional exploration of the Pinchi Fault zone. Following initial soil sampling and the staking of additional claims, a four hole diamond drilling programme was completed by Imperial to explore at depth copper mineralization seen in outcrop near the northeast side of Albert Lake. This programme resulted in the discovery of low grade chalcopyrite - pyrite mineralization (about 0.1% copper) to depths of less than 100 metres from the surface. In 1986 Eastfield Resources Ltd. entered into a joint venture with Impenal and undertook a programme of grid establishment, soil sampling and hand trenching and geophysical surveying, followed by diamond drilling in 1987, 1988 and 1989 and trenching with a bulldozer-mounted backhoe. The drilling programmes resulted in the discovery of polymetallic quartz and quartz-carbonate veins with elevated precious metal values (up to over 1.5 oz over an intersection of four metres but commonly between several hundred to a few thousand parts per billion gold), generally striking to the north and controlled by a fault dipping shallowly to the east. These polymetallic veins are commonly enveloped by a zone of silicification in volcanic rocks and a thickening-downwards zone of talc-magnesite alteration in ultramafic rocks.

In 1995, after construction of a road through the southern part of the Indata property, built to Ministry of Forestry standards for log haulage, a small trenching programme was completed adjacent to the northeastern part of Albert Lake, over the copper zone defined by soil sampling. Sampling of one of these trenches (Trench 7) returned analyses which averaged 0.36% copper over a length of 75 metres.

In 1996 Clear Creek Resources Limited carried out a small diamond drilling programme in the area of anomalous copper in soils adjacent to the northeastern part of Albert Lake. Results of this programme confirmed the existence of subsurface copper mineralization indicated by the results of Imperial Metal's previous (1985) drilling but, in this area, of low grade (0.1% - 0.2% over downhole lengths of up to about 100 metres). However, this programme was preliminary only and tested only a very small part of the area covered by anomalous soil copper geochemistry.

It has not yet been established whether there is a genetic association between the zone of disseminated and fracture-controlled chalcopyrite-pyrite mineralization and the polymetallic veins drilled by Eastfield Resources. However, soil geochemical coverage suggests that there is a metal zonation from a copper-dominated zone in the west to a polymetallic zone dominated by arsenic, antimony and elevated precious metals to the east, in turn suggesting that a single magmatic-hydrothermal system of "porphyry"-type may be applicable for the Indata area. Only a small part of this possible system has been tested and there is good potential for the discovery of economic copper-gold mineralization on the property, not only of "porphyry"-type but also skarn mineralization at contacts of intrusions and Cache Creek limestone. In addition, because of the difficulty of drill-testing the polymetallic veins for their gold contents owing to the gold particle sparcity (nugget) effect, the potential of the vein system for hosting economic gold mineralization has not yet been defined.

2. CONCLUSIONS

1. Exploration of the Indata property has defined two contrasting styles of metallic mineralization within the property area; i) arsenopyrite-stibnite-pyrite-chalcopyrite veins with elevated to highly enriched precious metal contents in quartz and quartz-carbonate veins and ii) disseminated and fractured-controlled chalcopyrite-pyrite mineralization within propylitized andesitic volcanic rocks.

2. While a genetic relationship between the two types of mineralization has not yet been established, it is possible that the polymetallic veins enriched in gold and silver represent a distal hydrothermal facies to the more central copper zone related, perhaps, to an intermediate to felsic intrusion which is not exposed in the low lying, glaciofluvial and glacial deposits-covered area adjacent to Albert Lake.

3. Exploration to date has allowed an evaluation of only a small part of the Indata property (less than 20%) and the potential of the property to host an economic deposit enriched in precious metals has not yet been realised.

4. Only two types of mineral deposits have been considered at Indata to date, that of disseminated ("porphyry") copper mineralization and gold-enriched polymetallic veins. It is concluded that potential for copper-gold skarn deposits also exists within the Indata property area.

5. Although disseminated and fracture-controlled chalcopyrite mineralization intersected in drillholes to date has a low gold content, there is a possibility that gold enriched chalcopyrite mineralization may be discovered if gold-enriched veins are genetically related to the disseminated copper mineralization. In other words, there is a possibility of a metal zonation within which precious metal enrichment with copper mineralization may occur. Only a small part of this hydrothermal system has been drill tested.

3. INTRODUCTION

3.1 General Statement

In 1996 a nine hole diamond drilling programme totalling 650.8 metres was undertaken to test the northern part of a zone of copper sulphide mineralization underlying the Schnapps claims of the Indata property in central British Columbia. Previous work by had indicated the presence of chalcopyrite in volcanic rocks in this area (see Bailey et al., 1989) and the 1996 drilling programme was designed to confirm previous results and to establish the habit of mineralization.

The drilling programme was carried out by Clear Creek Resources Limited under the terms of an option agreement between Clear Creek and Eastfield Resources Ltd., the holder of the claims.

3.2 Location, Access and Physiography

The Indata property is located about 130 kilometres to the northwest of Fort St. James, British Columbia (Figure 1), within the Omineca Mining Division. Access to the property is from Fort St. James via the Leo Creek Forestry Road to near Tchentlo Lake and thence on a road built by Eastfield to the northern part of the property. This road was built to Ministry of Forestry logging road standards and provides good access for trucks and heavy machinery such as drill rigs and bulldozers. Away from this road, however, access within the property boundaries is on foot only except for a few areas where helicopter landing sites have been prepared.

Albert Lake on the western side of the property is suitable for float plane use and provides good access to the western copper zone.

The Indata property covers an upland area between Indata Lake to the east and Albert Lake to the west (Figure 2). Whereas the central part of the property is of relatively low relief, the topography slopes steeply down towards Albert and Indata Lakes. The area is covered by thick spruce, balsam and pine, in places of commercial grade, although low lying areas are swampy with a dense cover of alder and poplar.

Figure 1. Location of the Indata property.

BAILEY GEOLOGICAL CONSULTANTS (CANADA) LTD.

3.3 Mineral Tenements

The Indata property consists of ten claims, totalling 139 units, listed in Table 1. The disposition of these claims is shown in Figure 2. The writer has not carried out a title search of the Indata claims and has not verified ownership although he has no reason to doubt that the claims are as purported to be by Eastfield. The writer has inspected Legal Corner Posts of all but the Indata 1 claim during exploration activities in 1989.

Table 1

Mineral Claims of the Indata Property

(Expiry Date does not include 1996 exploration expenditure assessments)

CLAIM NAME	NO. OF UNITS	RECORD NO.	EXPIRY DATE
Indata 1	20	239378	February 3, 2000
Indata 2	15	239379	February 3, 2000
Indata 3	20	240192	October 22, 1997
Indata 4	16	240193	October 25, 1997
Indata 5	6	241741	April 4, 1998
Schnapps 1	20	238722	November 14, 1998
Schnapps 2	20	238723	November 14, 2000
Schnapps 3	8,	238859	August 20, 2000
Schnapps 4	10	238860	August 20, 2000
Schnapps 5	4	238893	Sept. 13, 1998

Figure 2. Indata property: claims disposition and topography. Contour interval 50 metres.

4. GEOLOGY

4.1 Regional Geology and Mineralization

The Indata property lies near the contact of two major terranes of the Canadian Cordillera, the Quesnel Terrane to the east and the Cache Creek Terrane to the west. The contact between these terranes is marked by the Pinchi Fault, a high angle reverse fault of regional extent (Figure 3), and associated splay faults. The Quesnel Terrane consists of mafic to intermediate volcanic rocks of the Upper Triassic - Lower Jurassic Takla Group intruded by a composite batholith, the Hogem Batholith with intrusive phases which range in age from Lower Jurassic to Cretaceous.

The Cache Creek Terrane in the region comprises mainly argillaceous metasedimentary rocks intruded by diorite to granodiorite plutons, the Trembleur Intrusive Suite, and small ultramatic stocks. Some of these latter intrusions may, however, be of ophiolitic origin. A northwest-striking fault bounded block adjacent to the Quesnel Terrane is underlain largely by limestone within which a sliver of matic and intermediate volcanic rocks is preserved. Both the limestone and volcanic rocks are considered here to be part of the Cache Creek Group but the evidence for this is equivocal as similar strata occur within the Takla Group elsewhere in the region. However, metamorphic grade of the Takla Group volcanic rocks is rarely higher than zeolite facies of regional metamorphism while that of the volcanic rocks underlying the Indata property is of greenschist grade, suggesting that these strata are of Cache Creek affinity, not Takla Group.

The dominant structural style of the Takla Group is that of extensional faulting, mainly to the northwest. In general Takla Group rocks are tilted but not folded except in the eastern part of the Quesnel terrane, adjacent to the Omineca (Wolverine) Terrane. In contrast, strata of the Cache Creek Group have been folded and metamorphosed to lower to middle greenschist facies and, in argillaceous rocks, preserve a penetrative deformational fabric. However, extensional faults are also common within the Cache Creek Group and probably represent the effects of postcollisional uplift. In addition to high angle extensional faults, thrust faults are inferred within the Cache Creek Group and which are thought to have emplaced ophiolitic assemblages on to younger fine grained marine sedimentary strata.

Known mineral occurrences within the region also reflect the environment in which these occurrences are found. Within the Takla Group mineral deposits tend to be associated with intermediate and felsic intrusions and are commonly gold-enriched copper porphyries.

Figure 3. Generalized geological setting of the Indata property.

Porphyry-style mineralization also occurs within the Cache Creek Group but no such deposits are known within the Indata region. Known mineral occurrences within the Cache Creek Group of the region include podiform chromite lenses within peridotite bodies to the west of the Indata property and a carbonate hosted polymetallic occurrence to the north of Indata (Lust Dust). "Homestake"-style gold mineralization is represented by the Snowbird deposit near Fort St. James to the south of the Indata region, at Mt. Sir Sidney Williams to the north of Indata and at Indata itself where arsenopyrite-stibnite-chalcopyrite-pyrite veins with enriched precious metals occur at the contact of mafic and ultramafic rocks. In addition, the Pinchi Fault zone hosts a number of small mercury occurrences of which one, Bralorne, was large enough to support a small mining operation in the 1940's.

4.2 Geology of the Indata Property

4.2.1 Lithologies

The Indata property is underlain by two main supracrustal assemblages, i) limestone with minor intercalated shale and ii) andesitic volcanic rocks which were deposited under marine conditions. Limestone crops out as prominent hills and bluffs in the northem, western and southem parts of the area. Although generally massive, in places bedding is defined by thin shaley partings and by intraformational limestone conglomerate. Breccias formed by carbonate dissolution are displayed within a karst topography in the southwestern part of the Indata property area. Fusilinid (*Verbeekinidae*) foraminifera collected from similar limestone of the Cache Creek Group (Monger, 1977) suggest that the age of the limestone at Indata is Permian.

Volcanic rocks underlying the Indata property are of andesitic composition and can be subdivided into two broad units. In the western part of the property volcanic rocks consist of pillow lava, pillow breccia, coarse tuff breccia and fine grained crystal lithic tuff. The dominant mafic mineral in these rocks is amphibole, now represented by tremolite/actinolite but was probably hornblende prior to alteration. In a few cases minor orthopyroxene phenocrysts have been noted suggesting that the volcanic rocks are of tholeiitic affinity and, thus, probably should be included in the Cache Creek Group and not the Lower Mesozoic Takla Group volcanics. These latter rocks are of alkalic to subalkalic composition and the only pyroxene recognised is clinopyroxene, usually augite or diopsidic augite.

Figure 4. Generalized geological interpretation of the Indata property.

The second volcanic unit consists of massive to poorly bedded volcanic tuff with variable amounts of amphibole phenocrysts. Although commonly poorly bedded, bedding planes and fining upwards sequences can be recognised in places.

Intrusive rocks recognised on the Indata property range in composition from ultramafic to granite and underlie the central part of the property area. Hornblende diorite occurs as a pluton which extends along part of the eastern side of the central part of the property and as dykes. The bulk of this pluton has a fine- to mediumgrained hypidiomorphic granular texture although both marginal phases of the pluton and the dykes are porphyritic. A small part of the pluton is of quartz diorite composition although primary quartz is generally absent. While diorite dykes are common within the volcanic rocks of the property, no diorite intrusions have been observed within the limestone unit, suggesting that the diorite and volcanic rocks are of similar age and are either older than the massive limestone or that the limestone is allochthonous with respect to the volcanics and was emplaced adjacent to the volcanic strata after volcanism and plutonism had ceased.

Intruding both volcanic rocks and diorite are ultramafic bodies, serpentinised to varying degrees but which preserve textures suggesting that the original rock was peridotite and pyroxenite. Cross fibre chrysotile veins and veinlets occur throughout these bodies. To the south of Radio Lake (Figure 4) a differentiated ultramafic-mafic intrusion occurs, consisting of a coarse-grained clinopyroxenite core, surrounded by peridotite and, in turn, enclosed by medium- to coarse-grained hornblende \pm clinopyroxene gabbro.

The youngest intrusive rocks of the Indata property consist of medium- to coarse-grained grey and reddish grey biotite quartz monzonite and granite (Figure 4). Whereas all other intrusive rocks in the area have been emplaced only into volcanic strata, this unit also intrudes limestone of the Cache Creek Group.

A large part of the Indata property is covered by glacial and fluvioglacial deposits although drilling indicates that this cover is no more than a few metres thick, even in lowlying areas such as adjacent to Albert Lake.

4.2.2 Structure and Metamorphism

The area covered by the Indata property can be divided into two structural domains, i) that area underlain by carbonate rocks which is characterised by

BAILEY GEOLOGICAL CONSULTANTS (CANADA) LTD.

Figure 5. Geology of the central part of the Indata property and locations of drillholes and trenches. See Figure 4 for location.

BAILEY GEOLOGICAL CONSULTANTS (CANADA) LTD.

concentric folds and the development of a penetrative fabric in finer grained clastic interbeds and ii) that area underlain by volcanic strata which has undergone brittle deformation only. Contacts between carbonate and volcanic strata are obscured by young cover but are inferred to be northwesterly-striking faults. Drilling and geological mapping in the central part of the Indata property has indicated the presence of a number of westerly-striking faults which show normal displacements of a few metres to a few tens of metres.

Carbonate rocks have generally been recrystallised with the common development of sparry calcite while fine grained clastic interbeds display a greenschist facies mineral assemblage. The assemblage actinolite/tremolite chlorite - epidote within the matrix of volcanic rocks also suggests the attainment of greenschist grade of regional metamorphism in these strata, in turn indicating, as noted above, that the volcanic assemblage may be included within the Cache Creek Group and not the Takla Group where regional metamorphic grade is mainly that of zeolite facies, subgreenschist grade.

4.2.3 Mineralization and Hydrothermal Alteration

The Indata property covers a number of metallic mineral occurrences which may be divided into two main types; i) pyrite-arsenopyrite-stibnite-chalcopyrite mineralization in quartz and quartz-carbonate veins, commonly with elevated precious metal contents and ii) disseminated and fracture controlled chalcopyrite-pyritepyrrhotite mineralization of porphyry-type.

Polymetallic veins have been recognised in the central part of the property (Figure 5) within andesitic volcanic rocks and serpentinised ultramafics. Where drilled, the veins generally occupy a northerly-striking fault zone dipping shallowly to the east and which, in ultramafic rocks, shows intense carbonate and talc alteration ranging in width from a few metres to over 50 metres in deeper and more easterly parts of the fault. Proximal to the veins in volcanic rocks, especially adjacent to ultramafic contacts, alteration is dominated by silicification and the formation of quartz-carbonate veinlets but silicification is not common within ultramafic rocks.

Disseminated and fracture controlled pyrite-chalcopyrite-pyrrhotite mineralization occurs in a zone extending along the northeastern side of Albert Lake where it coincides with a well defined induced polarization anomaly. The relationship

between this style of mineralization and the polymetallic veins has yet to be established although it is possible that the polymetallic vein mineralization represents an outer zone to a central, copper-dominated part of the same hydrothermal system. Hydrothermal alteration related to this zone of copper mineralization appears to be that of a propylitic mineral assemblage although, because the volcanic rocks hosting this mineralization appear to have been metamorphosed to greenschist grade of regional metamorphism, it is difficult to distinguish between pervasive propylitization and the metamorphic greenschist mineral assemblage from the limited work to date. Because of poor outcrop and the paucity of drilling within the copper zone and in areas away from the polymetallic veins, a regional hydrothermal zonation which may be related to a magmatic source has not been established within the Indata property. Such a study is clearly required in order to aid in determining the nature of the mineralizing system at Indata.

ł

5. EXPLORATION HISTORY

5.1 General Statement

Unlike many mineralized areas of British Columbia which have a long history of prospecting and exploration, mineralization of the Indata property was not discovered until 1985 following regional exploration along the Pinchi Fault system. At that time initial work was undertaken to define the zone of copper mineralization adjacent to Albert Lake in the western part of the property. The polymetallic veins remained undetected until a zone of limonitic soil to the east of the copper zone was sampled and found to be extremely anomalous in arsenic. Subsequent trenching and diamond drilling resulted in the recognition of the polymetallic vein system.

Exploration of the Indata property has been concentrated in the central part of the property, in the area of known mineralization (Figure 6). Recent construction of a road through the property will facilitate exploration in those areas which have yet to be intensively explored.

5.2 1983 - 1990 Exploration

In 1983 Impenal Metals Corporation ("Impenal") staked the Schnapps 1 and Schnapps 2 claims during regional exploration of the Pinchi Fault zone, to cover an inferred splay of the Pinchi Fault. In 1984 Impenal staked additional claims following the release of geochemical data by the B.C. Ministry of Mines which indicated anomalous copper, silver and mercury in a stream sediment sample collected from a channel draining Radio Lake (Figure 5). At this time Impenal also conducted a preliminary soil sampling programme of which results indicated the presence of anomalous copper in soils to the north and east of Albert Lake. This programme was followed in 1985 by additional soil sampling, six line kilometres of induced polarisation surveying and the drilling of four diamond drillholes totalling 231 metres. The locations of these drillholes is shown in Figure 5. Holes 1 and 2 intersected copper mineralization in amounts of about 0.1% - 0.2% in the area where anomalous copper in soils had been determined previously.

In 1986 Eastfield Resources Ltd. ("Eastfield") entered into a joint venture with Imperial and assumed operatorship of the project. Eastfield expanded the soil geochemical and geophysical coverage and carried out limited hand trenching. Soil sampling carried out by Eastfield extended the copper anomaly adjacent to Albert Lake and established several areas

Figure 6. Indata property: extent of ground exploration to date. The entire property has been covered by an aeromagnetic survey.

of anomalous arsenic in soils to the east of the copper anomaly in the central northern part of the property. The grid was also extended to as far as 30+00 north although limited work has been carried out in this area. The distribution of arsenic and copper in soils over the Indata property is shown in Figure 7, a compilation of all soil sampling programmes undertaken to date.

Geophysical surveying of the Indata property during this period consisted of VLF-EM, magnetometer and induced polarization surveying. Anomalous VLF-EM results generally reflect topography and interpreted bedrock response from this survey is equivocal. Magnetic surveying (total field) defined ultramafic bodies extremely well, especially those serpentinised intrusions as magnetite formation is a product of serpentinisation. Induced polarization surveying (time domain pole - dipole method) carried out by Eastfield also outlined the ultramafic bodies where, in this case, the chargeability response appears to be related to magnetite, not sulphide, content. In addition, a moderate to high chargeability response is evident along the western side of a zone of anomalous copper in soils (see Figure 7) and which subsequent drilling (in 1996 - see below)suggested that it reflects disseminated and fracture controlled sulphide mineralization. Geophysical coverage of the Indata property is shown in Figure 6.

In 1987 Eastfield undertook a six hole diamond drilling programme (306 metres) in an area in which anomalous arsenic, silver and gold were detected in soils. The locations of these drillholes is shown in Figure 5. This drilling programme intersected quartz - sulphide veins with significant gold values in places (up to 0.32 oz/tonne over 1.2 metres) and silver in amounts typically between one and three ounces per tonne. Sulphide minerals were mainly pyrite, arsenopyrite, stibnite and chalcopyrite in a gangue of quartz and carbonate.

Additional drilling was conducted on this vein system in 1988 and 1989 and although a high gold value of 1.5 ounces per tonne over an interval of four metres was intersected in drillhole 88-I-12, gold values commonly ranged from several hundred to several thousand parts per billion. Interestingly, silver values obtained from samples collected from the 1988 and 1989 drilling programmes were much lower than those obtained from the 1987 programme, suggesting a metal zonation. Drilling results from the penod 1985 - 1989 are summarised in Table 2.

In 1989 42 trenches, totalling 2,211 metres, were excavated in areas of anomalous soil geochemistry, using a Caterpillar D3 bulldozer with a backhoe attachment. In most

BAILEY GEOLOGICAL CONSULTANTS (CANADA) LTD.

Figure 7. Indata grid area; arsenic and copper soil geochemistry. For location see Figure 4.

BAILEY GEOLOGICAL CONSULTANTS (CANADA) LTD.

cases the geochemical anomalies were found to be caused by sulphide mineralization with elevated precious metals in quartz veins similar to the ones which had been intersected in drillholes.

As well as drilling and trenching, geological mapping at a scale of 1:2000 was carried out over the northern two thirds of the property (excluding the Indata 1 claim and most of the Schnapps 2 and 5 claims - see Figure 2) and prospecting was undertaken over the northern part of the property. This latter work indicated the presence of anomalous copper and gold in "grab" samples of rocks collected to the north of Albert Lake but, because sampling was not systematic, no significance can be placed on the analytical values obtained from these samples. Results do, however, indicate the presence of possible gold and copper mineralization on Indata 2 and 3 claims and which, perhaps, is reflected in the arsenic and copper soil geochemistry in this part of the property area (Figure 7).

In 1990 the Indata property was covered by an airborne magnetic survey flown at 200 metre line spacings in an east-west direction. This survey, although confirming results of earlier ground magnetic surveying, did not provide any new information on which to base furthur exploration.

5.3 1995 - 1996 Exploration

Following the period 1983 - 1989, no further exploration of the Indata property was undertaken until 1995 when a programme of trenching the copper zone (now referred to as the "Lake Zone") to the north and east of Albert Lake was undertaken. This programme was facilitated by the construction of 17 kilometres of road from the Tchentlo Lake forestry road in the south, allowing an excavator to be transported to the northern part of the Indata property. Results of this programme included 0.36% copper over a length of 75 metres (Trench 7 - see Figure 5).

In 1996 Clear Creek assumed operatorship of the Indata project and nine diamond drillholes were attempted in, and adjacent to, the Lake Zone but three holes were not completed owing to difficult drilling conditions. Three holes were completed in the area of Trench 7 (holes 96-I-1, 2 and 3) while three were collared from a drill pad constructed about 300 metres to the southeast (holes 96-I-4, 5 and 9). Holes 96-I-6, 7 and 8 were not completed. Locations of these drillholes are shown in Figure 5. Table 2 lists the significant results of this programme. Drill logs are shown in Appendix 1 while analytical results are given in Appendix 2. From this limited drilling programme low grade copper mineralization was confirmed in the Lake Zone but by no means was the programme sufficient to fully

 Table 2

 Summary of Drilling Results, Indata Property.

 (all lengths and intercept depths in metres)

Year	DDH	Depth	Dip	Azimuth	Coordinates	From	То	Lengthm	Au (ppb)	Ag (ppb)	Сu(%)
1985	85-1	63.1	-45	060	350N/400W	1.9	7.1	6.2			0.15
	1			Γ		21.1	27.0	6.9			0.11
				· ·		37.0	46.3	9.3			0.20
						48.5	50.3	1.8			0.15
						57.1	63.1	5.6			0.22
	85.2	76.8	-45	090	345N/350W	12.2	14.7	2.5			0.10
						42.7	45.3	2.5			0.62
	85-3	57.0	-45	090	050S/150E		No	Intercept			
	85-4	33.5	-45	090	047N/343E		No	Intercept			
1987	87-l-1	50.6	-45	295	075N/425E	18.9	20.7	1.8	1320	0.2	<0.05
						23.8	26.2	2.4	1647	55.,2	0.28
						26.2	27.4	1.2	500	41.8	0.31
						27.4	29.9	2.5	1805	114.4	0.44
	87-1-2	46.6	-90	-	075N/425E		No	Intercept			
	87-1-3	52.7	-45	325	075N/425E	24.1	28.3	4.2	3245	126.6	0.32
	87-1-4	53.6	-45	265	075N425E	24.2	26.2	2.0	1496	124.4	0.31
						27.7	28.3	0.6	950	51.3	0.19
						29.9	31.1	1.2	9835	51.4	0.51
	.87-1-5	54.3	-45	295	050S/440E	42.5	44.5	2.0	1209	104.5	0.85
						44.5	45.7	1.2	5000	56.2	. 0.35
						45.7	46.6	0.9	510	48.1	0.30
	87-1-6	47.5	-90		050S/440E	41.9	44.5	2.6	761	52.9	0.51
1988	88-I-1	51.5	-45	270	025N/422E	31.7	33.2	1.5	309	69.9	0.22
	88.1-2	54.6	-90		025N/425E	33.5	35.0	1.5	310	49.2	0.12
	88-1-3	79.6	-45 ,	270	100S/422E		No	Intercept			
	88-1-4	21.6	-90		100\$/423E		No	Intercept			
	88-1-5	84.4	-65	270	100S/423E	37.0	38.0	1.0	443	21.6	0.13
						40.0	41.0	1.0	524	0.1	<0.05

Year	DDH	Depth(m)	Dip	Azimuth	Coordinate	From	То	Length	Au(ppb)	Ag(ppm)	Cu(%)
	88-1-6	114.0	-45	270	150N/449E		No	Intercept			
	88-I-7	110.3	-56	260	350N/417E	48.5	49.0	0.5	1020	1.3	0.14
	88-1-8	150.0	-75	260	350N/419E	41.5	42.0	0.5	3845	1.3	0.11
	88-1-9	122.2	-46	270	400N/449E	44.8	45.3	0.5	320	1.3	0.06
						55.5	56.5	1.0	548	1.9	0.16
						58.5	59.5	1.0	3922	1.7	0.13
						59.5	60.5	1.0	347	1.6	0.16
	88-I-10	128.6	-65	270	400N/450E	53.0	53.5	0.5	2605	2.8	0.06
						53.5	54.5	1.0	470	6.0	0.43
						55.0	55.5	0.5	2875	1.1	0.08
						56.0	58.0	2.0	677	0.7	0.09
	88-I-11	103.0	-90		400N/451E	66.0	67.0	1.0	6150	4.0	0.43
						76.0	80.0	4.0	47260	2.0	<0.05
	88-1-12	85.3	-45	270	450N/431E	54.0	54.5	0.5	653	5.9	0.08
						61.1	61.6	0.5	462	1.9	0.15
						64.3	65.0	0.7	372	1.7	0.19
	88-I-13	81.4	-90		450N/436E		No	Intercept			
	88-1-14	91.7	-45	270	510N/495E	59.5	60.3	0.8	358	21.6	1.32
	88-i-15	110.0	-45	270	550N/481E	20.4	21.4	[.] 1.0	494	0.9	0.05
	3					81.0	83.0	2.0	1355	2.9	0.11
	88-I-16	119.2	-45	290	700S/200E		No	Intercept			
	88-I-17	61.3	-45	290	605S/269E		No	Intercept			
	88-I-18	60.4	-75	290	605S/270E		No	Intercept			
	88-1-19	76.5	-45	290	470S/395E	26.0	26.7	0.7	420	9.2	0.17
	88-1-20	67.4	-45	240	808N/247E		No	intercept			
4	88-1-21	111.6	-45	270	150N/525E	81,8	82.3	0.5	270	34.3	0.10
	88-1-22	137.5	-55	265	062N/485E	57.7	59.1	1.4	1229	42.9	0.25
	_լ 88-I-23	76.5	-45	290	620S/307E	32.7	33.1	0.4	585	41	<0.05
1989	89-I-1	122.2	-90		402S/503E	33.9	34.1	0.3	2157	15.5	0.78
						106.0	107.0	1.0	576	1.4	<0.05
	8 9 -1-2	103.9	-60	270	600N/480E	93.8	95.0	1.2	559	1.6	<0.05
	89-1-3	110.0	-90		600N/480E		No	Intercept			

Year	DDH	Depth(m)	Dip	Azimuth	Coordinate	From	То	Length	Au(ppb)	Ag(ppm)	Cu(%)
	89-1-4	152.7	-90		404N/553E		No	Intercept			
	89-1-5	154.2	-90		468N/580E		No	Intercept			
	89-1-6	140.5	-60	270	468N/580E	19.6	22.8	3.2	10	354.1	0.12
	89-1-7	183.2	-90		417N/350E	110.4	112.4	2.0	1335	1.7	0.12
						138.8	139.4	0.6	988	7.5	0.98
	89-1-8	138.6	-60	270	417N/349E	106.1	107.0	0.9	653	1.1	0.07
						125.1	126.1	1.0	872	0.2	
	89-1-9	209.1	-90		290N/550E	133.9	134.2	0.3	429	1.3	0.11
						159.4	160.1	0.7	1903	. 7.2	0.11
					·	161.6	162.4	0.8	4837	3.1	0.23
						172.2	172.7	0.5	7209	6.7	0.67
	89-1-10	283.2	-60	295	505S/322E	188.0	200.8	12.8	269	0.2	<0.05
	89-1-11	91.7	-90		505\$/322E	48.8	49.8	1,0	138	10.5	<0,05
	89-1-12	175.6	-60	270	402N/503E	98.0	99.0	1.0	331	28.4	<0.05
						102.7	104.4	1.7	1825	23.3	<0.05
	89-l-13	152.7	-62	230	398N/505E	92.7	93.7	1.0	261	0.5	0.06
						108.2	109.3	1.1	5162	1.3	<0.05
1996	96-I-1	108.8	-60	048	255N/420W	11.3	108.8	97.5	<100	<0.2	0.12
						11.3	57.3	46.0	<100	<0.2	0.17
						87.3	108.8	21.5	<100	<0.2	0.15
	96-1-2	151.5	-60	045	350N/380W	3.0	151.5	148.5	<100	<0.2	0.09
	Ì					17.0	38.0	21.0	<100	<0.2	0.13
	96-1-3	73.2	-50	315	350N/450W	5.2	73.2	68	<100	<0.2	0.10
_						17.0	38.0	21.0	<100	<0.2	0.23
	96-1-4	78.6	-45	060	100N/025W	8.2	78.6	70.4	<100	<0.2	0.09
					·	14.0	43.6	29.6	<100	<0.2	0:15
	96-1-5	84.2	-75	060	100N/025W	6.1	54.0	47.9	<100	<0.2	0.10
	96-1-6	26.5	-47	09 0	015N/100E		No	Intercept			
	96-1-7	26.5	-50	120	015N/100E		No	Intercept			
	96-1-8	17.7	-50	060	015N/100E	······	No	Intercept	,		
	96-1-9	83.8	-60	120	100N/025W	11.2	48.0	36.8	<100	<0.2	0.09

,

evaluate this zone. Drillholes 96-I-4, 5 and 9 intersected altered dykes of dioritic composition cutting andesitic volcanic rocks in which chalcopyrite and possibly chalcocite suggesting that a high level magmatic system may be defined in the poorly exposed area adjacent to the eastern side of Albert Lake.

6. DISCUSSION

6.1 Summary of Exploration Results to Date

Results of exploration of the Indata property may be summarized as follows.

1. A discontinuous zone of anomalous arsenic in soils, accompanied by some elevated gold, silver and copper values occurs mainly to the east of the baseline between lines 15S and about 7N where it continues to the northwest, west of the baseline. A broad zone of anomalous copper in soils occurs between about 13S and 7N; east of the baseline this zone has associated anomalous arsenic but to the west of the baseline anomalous copper in soils is not normally accompanied by arsenic, suggesting a geochemical or mineral zonation in bedrock.

2. Induced polarization surveying indicates a zone of possible sulphide mineralization in bedrock coinciding more or less with the zone of anomalous copper in soils west of the baseline. Anomalous induced polarization response over ultramafic bodies is thought to reflect high magnetite content.

3. Drilling results indicate that arsenic in soils to some extent reflects arsenopyrite-rich polymetallic quartz and quartz-carbonate veins with elevated gold and silver contents while a broad zone of anomalous copper in soils west of the baseline possibly reflects disseminated and fracture-controlled chalcopyrite-pyrite mineralization of magmatic-hydrothermal origin.

4. Metal dispersion related to glacial transport does not appear to be a significant factor in the interpretation of soil geochemical survey results in that drilling has shown that high geochemical values in soils are generally reflected by sulphide mineralization in underlying bedrock. To some extent downslope metal dispersion may have occurred in areas of high topographic relief but insufficient drilling has been undertaken to prove this to be the case. There is the possibility that in low lying areas, especially adjacent to the eastern side of Albert Lake, that elevated metal content in soils may be of either hydromorphic origin or related to the scavenging effect of organic compounds in the soil. However, if this were the case, one would expect concentration of several metals, not just copper, for example, as shown in Figure 7.

6.2 Possible Mineral Deposit Models

Two possible models of ore deposits may be interpreted from results of work to date over the Indata property, that of a magmatic-hydrothermal porpyhry system and that of polymetallic mineralization related to a mafic - ultramafic "listwanite"-type model. The spatial relationships of i) arsenic and copper in soils and ii) polymetallic vein mineralization with elevated precious metals and disseminated copper mineralization with low precious metal content suggests that vein mineralization of relatively low temperature deposition is distal to the more centrally disposed, higher temperature, copper mineralization and the two types of mineral occurrences reflect a common genesis related to a high level intermediate to felsic intrusive body. This intrusion may in part be represented by the quartz monzonite body mapped in the south central part of the Indata property and interpreted to extend to the northwest under cover adjacent to Albert Lake (Figure 4). On the other hand, diorite dykes intersected in drillholes 96-I-4, 5 and 9 may suggest a dioritic pluton at depth in the Albert Lake area.

It is also possible, however, that the polymetallic vein mineralization is genetically unrelated to the disseminated and fracture-controlled chalcopyrite-pyrite mineralization. Chalcopyrite-pyrite mineralization may be related to intermediate and felsic intrusions of Topley Intrusive Suite age (Upper Triassic to Lower Jurassic) or Francois Lake-age intrusions (Cretaceous) of which both intrusive suites are represented elsewhere in the region. The polymetallic vein mineralization seems to be spatially related to mafic - ultramafic contacts and veins and associated envelopes of silification and talcmagnesite alteration and, at least in some cases, are hosted by low angle, easterly-dipping structures which may possibly be thrust faults. This setting is similar to that of the Erickson camp in the Cassiar region, the Atlin deposits of northern British Columbia, the Snowbird deposit near Fort St. James and to the Mother Lode veins of California. Initially described by Buisson and Leblanc (1986) and extended to include the "listwanite model" deposits of British Columbia by Ash and Arksey (1990), this type of mineralization has been tectonically and genetically linked to ophiolite emplacement (Nixon and Hammack, 1991). However, in almost all regions where listwanite-type deposits occur, tonalite and diorite intrusions are also present, sometimes with elevated base and precious metal contents and it is conceiveable that magmatic-hydrothermal "porphyry-style" mineralization related to diorite bodies may be genetically related to listwanite-type mineralization in an evolving hydrothermal system developed during terrane collision.

At this stage there are insufficient data to link the two types of mineralization at Indata but spatially there is strong support for a common origin and that the distribution of metals may be explained by zonation within a single magmatic-hydrothermal system.

BAILEY GEOLOGICAL CONSULTANTS (CANADA) LTD.

7. REFERENCES AND BIBLIOGRAPHY

Armstrong, V.E., 1947: Fort St. James Map Area, Cassiar and Coast Districts, British Columbia. *Geol. Surv. Can.* Mem. 252.

Ash, C.H. and Arksey, R.L. 1990: The listwanite-gold association in British Columbia; *in* Geological Fieldwork 1989, *B.C. Ministry of Energy, Mines and Petroleum Resources*, Paper 1990-1, p. 359-364.

Buisson, G. and Leblanc, M. 1986: Gold-bearing listwaenites (carbonatized ultramatic rocks) from ophiolite complexes; *in* Metallogeny of Basic and Ultrabasic Rocks, (*Eds.* M.J. Gallagher, C.R. Neary and H.M. Prichard), *The Institute of Mining and Metallurgy*, p.121-131.

Bailey, D.G., Garratt, G.L. and Morton, J.W., 1989: 1989 summary of the Indata Project. *Mincord Exploration Consultants Ltd.* Report for Eastfield Resources Ltd.

Monger, J.W.H. 1977: Upper Paleozoic rocks of the western Cordillera and their bearing on Cordilleran evolution; *Can. J. Earth Sci.*, vol. 14(8), p.1832-1859.

Morton, J.W., 1996: Indata Project, Omineca Mining Division. Geochemical till sampling and trenching programme. *Assessment Report to B.C. Geol Surv .* (Filed October 23, 1995).

Nixon, G.T. and Hammack, J.L. 1991: Metallogeny of ultramafic-mafic rocks in British Columbia with emphasis on the platinum-group elements; *in* Ore Deposits, Tectonics and Metallogeny in the Canadian Cordillera, *B.C. Ministry of Energy, Mines and Petroleum Resources,* Paper 1991-4, p.125-158.

Scott, A., 1989: Induced polarization/resistivity surveys, Indata property. *Report to* Eastfield Resources Ltd.

8. CERTIFICATE

I, David Gerard Bailey of 4759 Mapleridge Drive, North Vancouver, British Columbia, hereby certify that:

1. I am a consultant geologist and principal of Bailey Geological Consultants (Canada) Ltd. with offices at the above address;

2. I am a graduate of Victoria University of Wellington, New Zealand (B.Sc. Hons. in geology, 1973) and of Queen's University, Kingston, Ontario (Ph.D. in geology, 1978);

3. I have practised the profession of geologist continuously since graduation;

4. I am a registered Professional Geoscientist of the Association of Professional Engineers and Geoscientists of British Columbia;

5. I hold memberships in the Society of Economic Geologists, the Association of Exploration Geochemists, the Canadian Institute of Mining and Metallurgy, the Canadian Institute of Mining and Metallurgy, the Geological Association of Canada and the Geological Society of America;

6. I supervised the 1996 diamond drilling programme described in this report.

Signed at North Vancouver, British Columbia this twentith day of August, 1996.

David G. Bailey, Ph.D., P.Geo. EDESION PROVINCE OF D. G. BAILEY BRITISH COLUMBIA SCIEN

APPENDIX 1

STATEMENT OF EXPENDITURES 1996 DIAMOND DRILLING PROGRAMME

BAILEY GEOLOGICAL CONSULTANTS (CANADA) LTD.

A1. EXPENDITURE STATEMENT

1. Contract Fees and Salaries

	Bailey Geological Consultants (Canada) Ltd; project supervision	
	and report preparation; 15 days @ \$500.00/day	7500.00
	R.Yorston; core logging; 11 days @ \$300/day	3300.00
	V.Guinet; project preparation, expiditing and logistics;	
	21 days @ \$250/day	5200.00
	Eastfield Resources Ltd. (J.W. Morton); 4 days + expenses	1587.34
	Contract drilling 650.8 metres (Britten Brothers)	44317.49
	Core analyses; 181 samples and preparation	4241.50
	Hat Lake Logging Ltd. (drill pad preparation, snow removal and	
	drillrig moves)	16157.50
2.	Disbursements	
	Air travel (R.Yorston)	391.11
	Accomodation and meals	5813.25
	Materials and supplies	2849.37
	Truck rental (1 month @ \$1800.00/month)	1800.00
	Skidoo, camp and tools rentals (1 month @ \$500.00/month)	500.00
3.	Management Fee	
	Guinet Management Inc. (10%)	9365.76
4.	GST	
	7% on salaries and management fees	1444.60

Totai

104467.92

APPENDIX 2

DIAMOND DRILL LOGS 1996 DIAMOND DRILLING PROGRAMME

BAILEY GEOLOGICAL CONSULTANTS (CANADA) LTD.

	-29		DBILL		Inclination	Bearing	PROPERTY	INDATA	Length		_			1	ole N	10	F 9L				
	الرجد	Minco		Collar	-60-	048	Location	10.	Vert.	Comp	<u>)</u>		heet	1	of	2					
	•	Consultan	HOLE				Elevation		Bearing					-1	0000	d by	<u>.</u>	C.B			
		Ltd.	RECORD				Coordinates	255N 4+20W	Began F	=b 11/01	Com	leter	161	12 9	ampl	lad by		90		·	
		χ							Core Siz	e NG	Reco	verv		%	ampi	ieu by					
F00	TAGE	RECOV.	DES	CRIPTIO	N			MINERALIZATIC	N	GRAPH		S	AMP	LES				SSAY	s		
Me	tres	7.							•	LOG		No. , F	From: 1	Toul							
0	10.67		Casing							- 11			-			u H	<u> </u>	-f			
10.67	11.35		Till							t						Pm Pp	<u> </u>				
11.35	17.37	75	ANDESITE FIRE OFEI	ned ca	i a ran u la	- be come		Truck dire on c	e te	t					-+-						
			stornely fact	med a	lowon hole.	Moderate	chlaste	have have party	y, - py.	t		, ,	1.201	4 20 3	- 12	10 110					
· ·			and colorite a	ma fra	atures on	d in arou	ndmass			t		2 1	14.29	7 37 3							
			Fractures - 4	5-55	to C.A. P	1 decately	maginetic					3 1	222	10,42 2		66 0		+			-
			14.6 - 15.5	Stome	tecturing	and one	e. Fr. H									570 19					
				strong ca	late and	childrente a	Inc fractures									220 1					
				J			Jucinities					2 3		27.7 2	70 10	2/01 7					
17.37	395	88	ANDESITE EDU AD inal (en in an	Jar Gelde	anthic an	en to accepted	Trade to GIP A					-4-1 12		20 /		<u>-</u>				
1	2.02		M. Janata Constant	T J L	45 - 20 10	C.A. E	Y	Mar die th	- Jun an		-		<u></u>	20.2 3	د ا •	901 73		+			
				ing at	1. 011.1	(61 ×	aloue (any cag uss the	manont			<u>-</u>	212	33.2		106 51					·
			comminy calco	- area c	my sched.		ang tractur	weak the twee co	TCELL.		- H	13	3.2	36.7	$-1^{''}$	267 76					
			planes. Plan	- Calco	and chi	: in open s	pace triling	po = coy = py of 2	<u>D-30 70</u>		- <u>-</u>	<u> </u>	26.2	39.2	- 2	633 17					
	-		constrained by trac	Hures.	10-30-+0	<u>C.A.</u>		C.A. inequilarity dis	-cobuted.	E []	μ	<u>1</u> 3	29.2	42.2	-1"	965 18		+			
<u> </u>			27.32 - 27.55	- cales	the chieri	te verning		Occasional Fracture	matra (led	EII	Η	2 4	224	452	4	15 5					
			chilbotte crated	Fracti	Met Commo	nonly slic	Rensided	chi + cal + clay.			Ч	3 4	45.2 4	48.2	17	768 12					
20.0			<u></u>	1 (1	1		·			F	$-\mu$	4 4	182 3	51.2	62	2/0 47	<u> </u>				
29.5	39.7	190	FELSIC DYKE Deform	ed, fele	spathic	with fr	acture	Diss. Po				<u>s</u> 4	<u>51.2</u>	543 3	1 10	071 15		_			
<u> </u>			controlled he	matite	and po	Hemotit	e prosibly	···· · · · · · · · · · · · · · · ·		F {].	4	<u>(</u> 3	14.3	57.3	0 7	99 16					
<u> </u>			attac matic ph	emocity	the Selver	e of quad	tz & caleste					z∳z	7.3 6	6.3	2	40 11					
<u> </u>				~ .57	· · · · · · · · · · · · · · · · · · ·						μ	8 +	فإدع	63.3	- 1 4	- 4					
				<u> </u>							Ľ	9 6	3.3 4	66.3 .		B9 2					
29.7	69.7	87	ANDESITE The grain	ed eque	granular.	<u>. teldepe</u> i	thic and	Diss. Pa, cpy +	Py		2	<u> </u>	6.3 4	69.3 -	2	62 14					
			tocally par vi	anively	charite a	itered.	Diss. magneto	· Fracture conti	ailed		2	<u></u>	9.3 7	22.3	9	1 3					
			blatching_epide	te unter	increased	magnet	ste at	po, t cpy at 20-	30- 10 64		2	2 7	2.3 7	25.3 .	1	7 17					
			52.3-53.1 5	racture	controlled	Po blebs	± cpy.	is irregular.			2	3 12	5.3	78.3	5	7 17					
·			Salfistes dec	receing	dampele.	Treequ	darly	7			2	4 Z	18.3	81.3 .	_ 10	04 17					
L			distributed a	aleite	reinlets.	1 set at	- 10 × 20° to	····			2.	s ļs	8/3 1	B4.3 .)	8 16					
L			C.A. enothic	with c	plante at	50 - 60	· to c.A.			:	2	h. [8	84.3 8	27.3 .	_ 2	1 18					
			Epistole at his	ch angle	to 60° to	. c. A.				:	2	7 8	7.3 9	0.3 .	7	12 17					
L			62.1-61.3	PH AT	a cpy vein	~ 1 cm.	wide with			:	2	a 1	10.3 9	18.3 .	25	70 17					
			quarty + co	iste						:	2	2 9	3.3 9	6.3 .	4	76 16					
			Questa veix	ing ga	conclus c</td <td>m unde a</td> <td>2 60° to C.A.</td> <td></td> <td></td> <td>: </td> <td>3</td> <td>1</td> <td>6.3.9</td> <td>7.3 '</td> <td>2.</td> <td>76 16</td> <td></td> <td></td> <td></td> <td></td> <td></td>	m unde a	2 60° to C.A.			:	3	1	6.3.9	7.3 '	2.	76 16					
	i		which Tocall	4 conto	in sulfid	<i>cs.</i>					E	1 9	1.3 1	02.3	24	124 16					
	· · ·		very fine di	Es. may	retite there	ughout so	uction:			:	3	2 10	2.3 /	5.3 .	29	121 14					
			·····							:	В	3 10	05.3 1		5 16:	59 15					
69.7	79.9	95	PYROXENE ANDESTE VI	ecy time	grand	with 0-3	2 (to 2 mm)	Diss. man 4 /	2	:	L										
			enhedged brow	m pyrme	ene phens	crysts.	Rock is	Minor calate, 1	leins !	:		:									
			Tight areenish	grey.	Possibly a	ndesste de	1kan	- to 15 cm 70° to c.	A	:											
L			Relatively un	altered	- falsic	Contact	t_with	chlorite stringers	10-15°											-	
			under huina	unit a	st 45° to	C.A.		to C.A.		.										-+	
			· · · · · · · · · · · · · · · · · · ·														1				
													-				-			-	
																	+	1			
																	1	1			
																		+†		-+	
							the second s														

	~	· · · · · · · · · · · · · · · · · · ·	<u> </u>	Inclination	Begring	PROPERTY		Longth					1.0.0				<u> </u>		
	- جسم ا	MINCO		Collar		Location		Hor Con		Ve	t Com			e NO.	<u>T</u>	96 -	1		
	. 3	Exploration	HOLE			Elevation		Bearing	<u>np.</u>	Ve	I. Com	p			<u> </u>	<u>1 2</u>	<u> </u>		
	{	Ltd.	RECORD			Coordinates		Beggn		<u> </u>	molete			nolod	<u>bu</u>				
								Core Siz	ze	Re	Covery	·	%	ipieu	by				
F00	TAGE	RECOV.	DES	SCRIPTION			MINERALIZATIO	N	GRA	PHIC		SAMPI	FS	1		4	SAVE		
									LO	G	No. 1	From 1	To tLengt						
78.9	83.0	87	ANDESITE Grey fine	e arained earling	ular - felo	dsouthic	41% diss mas. Min	~	F					+			+	+	
			81.18 and 84	1.8 Minor egidots	Filled am	ugdules	epidale veinlets. Trac	e dis	Εl	1									
			81.6 - 82.0	Highly Fractur	ed and write	L'calcite_	Do. At 99.0 m is a	. Scm	Εl	1								-	
			veinlets	at 30 to C.A.			no ven a 20 to C.t	۹.	Εl	1									
									Ł										
83.0	87.0	95	PYROXENE ANDESITE Je	ery fine grained	greenish gree	1 with up to	Trace dies. pa. Hinor c	hl. and	£										
			17 (< 1mm)	binnich enhadral	pyroxene	phenserysts_	calcite remilets 40-70	toc.A.	ŧ										
				<u> </u>					£ .										
87.0	95.5	83	ANDES ITE Hongordy riti	c equigranular	infatly coor	sor grined	4 17. diss. mappe	tite	ŁΙ										
			them above.	Amygde bidal in	upper 20 c	m	trace pe + py, cp	4	£				_						
<u> </u>	+		91.2 - 94.2	chlorite on Fractu	re planes.				ţ										ŀ
			Gradational	contact.	-				£ (•.		
					· · · · · · · · · · · · · · · · · · ·				ŧ		L								
95.5	96.4	100	HORN BLENDE ANDES ITE	Fire grained eq	ngranular g	greenich	Trace diss po, 2	PJ . CPY	F					<u> </u>		-		-+	
—			grey with p	sendomorphs (du	the grey aft	er			F										
			amphitosle -	to 5%. Contact	with unde	clying unit			E I		┝∤								
	<u> </u>		30° 4-0 C.H.	•					E I										
9. 11	1.51	15	ALDER FE Francisco I						E								+		
10.9	192.6	62	ANDESTIC PAC Arounda	measure growner	grey, equi	ch a st	Chlorite and minor e	pidote	t										
			10.6 -102.8	Strongly tract	the late	deine	<u>cpy+ 3% 2.3%</u>	<u>.</u>	£								+	<u> </u>	
-			und subtit	ac at a 30° to C.A	Defermed	han techo	vernets and pleas. It	acture_	t					+					
			Gaza etas d	a apple hours	(material 3	• to C.A.	Silicified att on the	ing.											
							Some dias. C.P.4.										-+		
105.6	108.8	98	ANDESITE (DEFORMED) F	emetratively def	ormed ander	ite.	Trace diss, pp = 4	-0	ţ ļ									-+	
			Eendoranu	loc to product	ie.		1	•]	F					1			-+		
			1 3						Εl										
					•														
													_						
									F										
									F					<u> </u>			$ \rightarrow $		
									FI	1							-+		
	<u> </u>				· · · · · · · · · · · · · · · · · · ·				F							_+			· ·
		· · · ·							ΕI										
									F				_						
—									ΕI					<u>├</u> _					
	<u>├ </u>								E					├ 		+		_	
		<u>_</u>							E I					┥					
									E									-+-	
			· · · · · · · · · · · · · · · · · · ·						E										
														┝──┤			\rightarrow		
	11																-+		
													_		-+		-		
																		-+-	
	1						······································												

	~			1	Inclination	Begring	PROPERTY	T ID AT D	Lingth				(Hal						
	جر ا	MINCO	RD DRILL	Colling	-602-	outs'	Location	TADALA	Hor Com	n V	art Con				7 46	- 2			
	3	Exploration	. HOLE			010	Elevation	ALL ZONE	Bearing	<u>. </u>	en.con	ι μ .	- Sne		01	<u> </u>			
		Ltd.	PECOPD				Coordinates	3+50N 3+80W	Beggn 6	his las C	omplet	od CL 12/		nolod	<u>ру к</u> Би	<u> </u>			
									Core Size	ENQR	ecover	V 9	6	ipieu	<u></u>				
F00	TAGE	RECOV.	DES	SCRIPTIO	N			MINERALIZATIO	N	GRAPHIC	T	SAMPLE	S	T		ASSA	YS		
									·	LOG	No.	From To	Lengt)	Icu i	Δ				
0	3.0		Casing							-				Ppm	ppb		+		
3.0	21.0	90	ANDESITE Fine grave	ed can	iaromular.	Strong Fra	ctures chlorite	vd.			34	3.0 6.0	3.0 #	338	13		-		
			5.0 - 5.9	andon 1	hairline 5	ractures 1	realed by	272 or less comt	oined		35	6.0 9.1	, .,	1358	16		1		
			calcite Occ	asimol co	late lens.	Prophytic	alteration	sulphides in secti	m.		36	9.0 12.	0 "	2270	12				
			6.1 - 9.75	weately	quartz fla	roded and	minor	con usually rims Pt	, Py		37	12.0 15.	ö "	631	11		-		
			quart-	veinlet.	Increase	ed 24,00,0	cony to 17.	decreasing and so	increasing		38	15.0 18.	0 "	2784	16				
			er less as	diss. A	nd blebs to	2 ma a	nd in	domentale.	,		39	18.0.21.	• ••	1471	15		1		
			this fract	ures.					-		40	21.0 2.4.		337	14				
			14.5 - 18.35	silmila	x to 6.1 - "	9.75 with	5-7% cpy				41	24.0 27		1128	15				
L			from	17.25 -1	7.65	· · · · · · · · · · · · · · · · · · ·	• /				42	27.0 30	0 -	356	15				
L	L		Blotches of	epidate	to 5 cm	Sporadi	cally occur				43	30.0 33	0 -	1312	15				
			from 17.0 - 7	21.0.							44	33.0 34		180	16				
			19.4 - 19.L 1	s mineas	ed quarty.	- carb. vei	lets with				45	36.0 39	0	234	16				
			3-5% 004 0	and lesse	po assoca	ated with	questa.			:	46	39.0 42	• •	19	16				
<u> </u>						t					. 47	42.0 45		1071	15				
21.0	48.0	85	ANOE'S ITTE Fine grain	ed. Gen	recally les	s altered	than	Total sulfider			48	45.0 48	.0 "	1338	15				
ļ			shave section	Deca	aimal sili	ca - epidet	e lens with	LL 17.			49	48.0 51.	0 "	621	13				
ļ			t sulphidies.								50	51.0 54	<u>• </u>	1360	15				I
<u> </u>		·	29.5 cering de	un 2 cm	granty-equid	lote vendet	for 20 cm				51.	54.0 57.	• •	379	15		<u> </u>		ļ
┣	\vdash		30.6 is a 1.5	in quar	tz - tourmat	ine ven (5° +0 (.A.				52	57.0 60	- 0	5712			1		L
			32.0 13 4 10	- quarts	, filled Fra	eture fol	Lowing C.A.	· ··· · · · · · · · · · · · · · · · ·			53	60.0 63	• •	1765	-17				L
<u> </u>			for 25 m	(-37	gay Con	ing down	a 2 cm				54	63.0 66.	<u>• </u>	954	15		1		<u> </u>
<u> </u>			calcite ve	m for 3	ocn.						55	66.0 69	• ^	373	. 16			· · · · · ·	<u> </u>
			24.0 15	cm etz.	tourmaline	venut.			{		56	69.0 72	<u>°</u>	170	13		+		
			28.0 - 41.7 15	Increa	hiotch	as and st	-reads of		<u> </u>		57	72.0 75.	• <u>•</u>	3725	14				
			Cpixote,	1. 1. 0		A 1 . 1 . 1			[38	75.0 78.	°	329	14		-		
				Honguy C	raciuna c	the states	some				39	AT.0 81.		357	13				
		,	<u> </u>	- 00 cm	105F 601°C	•			[1,1	01.0 84		1225	-13				
40	40.0	95	Addage Stick He		cilizite -	ц <u>і</u> Ц.	id in Constant	5.1() at mainly				97 4 40		108 3	13				
10.0				rechte l	- SALEL	the second	a hadred	Level to be some	ence -		11	90 0 93	o	144	12				
			hu ciliza (local con		hi and or	amodelates	some ted by longer	harmen		14	93.0 94	• •	500	13				
			lacal chinci	tined G	notice and	a Loss cal	(city an) Arte	entrone Sulfides	(mtolet		45	91.0 99	0 .	823	12				
	;		then about	a chim			- de-	by a mag of allight	istim		11	99.0 107		763	14				
			At 49.5 is 20	(man of)	dicconinde	1	+ 2-3%	and Erectures			17	109 . 105.		690	12		1		
			At 53.2 16 15	(m. 1)	••			(0, 2) = 0	e cherry -		4.9	1050 108		514	13				
			At 58.8 is 20	cm f	257. 600	04. 30 in	a siliceme	17 sulfishes for earlier	cection		69	108.0 111.		390	13		1 1		
			irreaular ha	nd comb	ined with	disseminate	d mifides				70	111.0 114		921	16		t		
			3								71	114.0 117.	• •	555	11				
											72	117.0 120		183	n				
																	1		
								· · · ·					1						
									F										
																_			
									-				1	 					
L	!								E				1				1 1		

	~~~		DDUU	Г — — — — — — — — — — — — — — — — — — —	Inclination	Bearing	PROPERTY		Length					1	Hole	No						
	الرمهر	MINCO	RD DRILL	Collar			Location		Hor Con	10	Ver	t Com			She	at -	<u></u>	76 - 2	2			
1	٦,	Consultan	, HOLE				Elevation		Bearing	·P.					1.00	and h	<u>~</u>	<u> </u>	<u> </u>	<u> </u>		
	(	Lid.	RECORD				Coordinates		Beggn		Cor	nolota			Sam		<u>hu</u>				<u> </u>	
1		χ							Core Siz	7P	Rec	OVer		9/	Jun	pieu	<u>oy</u>					
F00*	TAGE	RECOV.	DES	CRIPTIO	N			MINERALIZATIO	N	GRAP	HIC		SAMP	/01		<u> </u>		AC	CAVC			
	1									LÖC	3	No. 1	From		I south	~	•	AS.	SAIS	1		
60.0	77.0	95	ANDESITE DOCK AND	arean of	the arained.	Enidate	Hereton	(17 total culence		- T-	Tţ			<u> </u>	y	<u>Cu</u>	Hu I		-+	+		
	1		in blatches and	around	hairly for	ture 6	hert and	Con and laster as our d	n section	t						ppm	POP				-+	
			lesses calette fill	ed for	the second	ally the e	5	in storake last in su	uss and	t							$\vdash$					
			Vat 1 per me					(Indel and it is the	<u>quariz</u>	t									-+			<u> </u>
								THEOREM STORES.		t		73.	120 0	1 <b>2</b> 2 4	2.	107	10		$\rightarrow$			
72.0	75.0	95	ANDESITE As about hu	+ in cre	ned quart	2 flooded	2000	Section interior 2-	3.17			7.1.	122 - 1	42.0	3.	277	10			-+		
			and mineraliz	atim		9		total Gulfidad	<u> </u>	t		75	123.6 1	20.	3.0 -	120	/6					
			fra 72,6 - 730		the 2-52			is the 22 so that a			1 1		126.0 1	29.0		011	12					
			En 74.0 - 74.	5 6.14	Jex 3-52					t ľ	[ ]	76	127.0 1	22.0		5211	12					
										t		20	152.0 1	25.0		524	14			ť		
75.0	136.0	80	ANDESITE (acal quest	- en date	filled for	where .	rith	417 L		t 1	[	18	125.0	38.0		1436	17					
1			Concell, min		fides 2.	4	Ll. mort	the contraction	<u>es</u>		I I	-79 -	128.0	171.0		724	14		-+			-
			and in the Fra	مناجع الم	inches a mo		J. H. S. L.			t	1 F	-80	14.0	144.0		07	10		-+			
			all said is ad	Locally	. eakly and	rohumitic	Than				{	81	144.0	147.0		01	13		$\rightarrow$	+		
			from 83.4 - 84.	0 () ()	a the edge						1 F	82	147.0	120.0		76	13			+		
			wath	2 37. 4	Wides		<u></u>				1 F	02	150'0	121.21	1.2.m	×84.	16			$\rightarrow$		
1			From BT. #8 - 90	.52 304	Em. lost con	r-e		······································			i F									+		
			For 191.2 - 15	2.2 de	illing down	waran fr	acture		· · · · · · · · · · · · · · · · · · ·		ł ł								-+			
			with	1-37. 6	ulfides.												$ \rightarrow$					
			From 102.7 - 18	5.1 15	. 9m lost	Castre					ŀ·ト											
<u> </u>			5	5.7 sha	red and us	H Gulta			· ·												$\rightarrow$	
			From U.P.S U	2.0 10.0	idda disse	minated	ulaie aucita										-+		$\rightarrow$	+	-+	
			to Imp	2.29	total aurit	te.	absc-pgesie													+		
			From 117.0 - 1	210 644	the survey of	A goowad	C 5 7 5				1 1						i					
				1.2	Past	- gr daret	<u></u>										$\rightarrow$	. +	<u> </u>			
<u> </u>			From 121 - 124	.0	und come to	2.4 m los	terre										+					
·						<u></u>		······································			l F									+		
124.0	120 0	90	DYKE Did and t	- black	aphanitic	. duke	Final	Py t cou			1 F											—
1.0	1.5		disseminant	6.000	a trad	* con Co	ntatic	1-32											-+-		-+	
			blaached and	cilizer.	for Di			TELES XLPP/QL			ł						$\rightarrow$			+-		
			From 134.2	~ /39 2		let come									- · ·				-+-	-+		
-			1001													-				-+	-+	
120 0	151.42	45	ANDESITE Fractured	and	akly mine	calized of	+ dula	Tital culfilas	117					-+			-+			-+	-+	
13.0	101.10		conta et		6.000			COLOR BRIDES	- 1.15		1											
			Gragon isle	L-	and on the same	In alter	v d				, h								-+-		+	
					porte interior		• ± < A				i h									-+	-+	
	1		· · · · · · · · · · · · · · · · · · ·	< 1%	t cor	10000 70	· · · · · · · · · · · · · · · · · · ·										-+				-+	
			At 144 a 3	<u> </u>		ta una in .	18 au ter										+				$\rightarrow$	
			AL 144.2 -	<u> </u>	in quart		aline my			:		<u>_</u>							-+-		-+	
			HT_(110-1	110	-gratt	3-700000	BALINE YOUN	· · · · · · · · · · · · · · · · · · ·		:												
-	1		AL ISLA	14 4		to an in	12			:							+			<u> </u>		
					- Guar		•		:		-+							-+-	-+-			
									:							-+			-+-	-+		
										: 1							+					
										:							-+			-+	+	
	1																+					



	~~~				Inclination	Bearing	PROPERTY	INDATA	Length					Hole	No	T 9/	. 3		 
	الرمبر	Minco		Collar	- 500-	315	Location		Hor. Com	D. V	ert. Con	np.		Shee	et i				
	{``	Consultan	HOLE				Elevation		Bearing					1.000	ied hy	DU.	<u></u>		
		Ltd.	RECORD				Coordinates	3150N 4+50W	Began	Febi3/96 C	omplet	ed EL	14/44	Som	pled h	v NE	¥		
		X	RECORD						Core Siz	ENQ R	ecover	V	%			1			
F00	TAGE	RECOV.	DES	CRIPTIO	N			MINERALIZAT	ION	GRAPHIC	1	SAME	PLES				ASSAY	S	
									•	LOG	No.	From I	Top	Length	GI I	·			
0	5.18		Dverburden												pom	wb l		<u> </u>	
										F					1) - I t				
5.18	11.1	95	ANDESITE Medium	mained	, Locally	amyadal	oidal	LE 170. sulfide		F	84	5.18	B.o	2.82 -	92 1	4			
			Very miner	Aissen	ninated of	icite					85	8.0	11.0	3.0.	317	14			
										FII	86	11.0	14.0	~	113	/3			
11.1	11.9	100	DIDRITE DYKE Fine are	ined .	Fine grained	L dissemi	noted by	1-37 fine arained	D 4	FII	87	14.0	17.0	~	803	/3			
			± com.	as in	hairline of	Fractures		2 00,404		E I I	88	17.0	ه.م		1728	13	1		
				•						E .	89	20.0	23.0		1035	14	-		
11.9	18.0	95	ANDESITE Medium as	ained .	Locally an	mygdaloid	al, Very	KIP total sulfid	الع	EII	90	23.0	26.0		958	15	1		
			minor dissen	ninated	sulfides.	Rove ho	irline				91	26.0	29.0	-	3301	15	1		
			fracture 1	with co	4 - 90.						92	29.0	32.0		3841	16	1		
											93	32.0	35.0		2953	15			
18.0	35.0	95	ANDESITE Increased e	pidote 6	lotches an	d' calcite	- epidote	cpy increased &	ut still		94	350	38.0	~	22.05	15			
L			healed fra	extures.	Local we	eak silic	Lous zones	17. or less.		E	95	38.0	41.0	-	996	16			
			with increa	used co	4. Increa	sed quart	12 healed			EII	96	41.0	44.0	u	451	15			
			fractures	downho	Je.	,					97	44.0	51.0	7.0	302	14			
L			At 32.	a is a	1.5 cm g	martz vein	75° to C.A.				98	51.0	55.5	4.5	130	14			
			worth	5-7%	cpm						99	55.5	60.0	4.5	23	14			
					• /						100	60.0	63.0	3.0	22	13			
35.0	73.15		ANDESITE Quartz	and car	chomate he	aled frag	tures are	Sulfides 22	170		101	63.0	46.0	-	2	13			
<u> </u>			mere. Les	s propy	ytic alter	ation the	n above				102	66.0	73,15	6.15	446	14			
ļ			section.	very mi	nor sulfo	ides. Very	blocky				L								
	[core dow	nhote.	Extremely	fracture	d												
	- 1		41.75 - 4	4.81	40 cm to	st core											1		
I			44.81 - 47	7.85 13	2.6 m						L					· .	<u> </u>		
<u> </u>			47.85 - 5	0.95 Is	m"														
<u> </u>			50.95 - 5	3.95 14	1.5 m	1, n		• • • • • • • • • • • • • • • • • • •			L								
L			53.95 - 5	57. 13	60 cm														
			57.0 - 4	6. 64 is	1.5 m														
			6.04 -6	3.09 1	.2 m	• • •											1		
			63.09 -6	6,14 is	5.,2m	<u> </u>						$ \downarrow \downarrow$							
L			66.14 - 1	69.19 i	5 .2 m														
<u> </u>	,		69.19 - 7	2.23	15 1.5 m						, 								
	<u> </u>		0.11				11 4 4	· · · · · · · · · · · · · · · · · · ·			·				_				
			130thom 4	to cm of	t hole is	strongly	bleached	·····				├							
			ergillic_e	altered	and with	abundant	epid ote.										1		
<u> </u>			Fault 3m	se	1	1.							· · · ·				1		
		i	Driller re	quests 3	TOPPING - NO	<u>e</u>						├							
				··· <u> </u>															
			· · · · · · · · · · · · · · · · · · ·										-+						
-																	+		
-	1																	+	
	1			· · · ·								\vdash		<u></u>			┼──┼		
	1																		

·	~			—	Inclination	Pageina	PROPERTY		115-04				T					
	- يحمر	ബന്ദര		Caller	inclination	Dearing	PROPERTY	LNDATA	Length				Hole	No.	I 96	-4		
	3	Exploration	HOLE	Condr	-45	060	Locution	··· <u>·</u> ································	Hor. Comp	. Ve	rt. Cor	np.	She	et i	of			
		Consultan					Lievation		Bearing				Log	ged by	R	KY		
Į	(γ <u>L:u.</u>	—— RECORD				Coordinates	400N 0125W	Began Fe	614/96 CC	mplet	ed Feb 15/96	San	<u>ipled</u> b	y			
		<u> </u>		_L	L			r +	Core Size	NQ R	ecover	<u>y %</u>	·					
16001	FAGE	RECOV.	DE	SCRIPTIO	N			MINERALIZATI	ON	GRAPHIC	1	SAMPLE	s			ASSAY	S	
	ļ	L				·			·	LOG	No.	From To	jLength	Cu iA	41	1	1	
<u> </u>	8.22	I	Overburden and broke	n bedro	ck				ł					ppm p	ры			
		L							F									
822	14:32	95	DIORITE Fine Acaina	d. hupa	hyssed. U	lery fine	py and	Total sulfides	L170 -		103	8.22 11.9	2.78	439	7			
L			lesser coy di	saeminat	hans relat	tent to	hairline		F		104	11.0 14.0	3.00	601	4			
	L		fractures.	Sulfides	i are minor	r			ŀ		105	14.0 17.0		1896	4			
			At 14.0 is e	l com a	north - toum	aline veir	let tou		F		106	17.0 20.0		1030	15			
				1	5		• • • • •				107	20.0 23.4	5 3.46	416	15			
14.32	17.5	100	ANDESITE Fine arained	. A se	of fracture	is contai	- 00- 604	Total aulfides 4	- 17-		108	23.45 24.0	2.65	2907	17			
			3				····				Line	74.0 79.0	3.0	1027	12			
17.0	23.2	95	DIORITE AS about	Afren	fractures	contain a	ichth.	Total Sulfider	<12 -		Lun	29 . 20	121	1060	14			
-			increaced	fine	amed cull	Cides	, , , , , , , , , , , , , , , , , , , ,				1	32 4 34	2.0	2744	13		+	
			A+ 19.4 ie	a la	enter de	ownalise	wein let		t		Lun -	261 20-	3.0	11176	12		\vdash	· ·
	1		+	Sulfide C	-poer S-2-E		A STORE T				1.12	20 2 1/2	44	11000			<u> </u>	
<u> </u>	1										111	21.2 43.6	7.4	262	16		\vdash	
22.2	20.0	95	ANDESITE Francis	ed Eca	د المعمل الم			5.167	17		114	43.6 46.5	2.9	353	() 		+	
13.0	21.0	- 12	BNUESTIE FINE QUAN		and a	n mor		Dule Bes up to			115	46.5 49.5	3.0	259	<u>/5</u>		+	
<u>بر ا</u>				5 6 51110	cens zone		mis massing	POC SECTION			Lue-	49.5 53.0	3.5	235	·		<u> </u>	
<u>├</u> ───			Sultid Ca		com 2ma	15 6000	T0.43 TO C.A		<u> </u>		μπ_	53.0 57.0	4.0	455	14		<u>↓</u>	
<u> </u>			- And Contam	3 60% 00	, 23% epg	and 122	py. Towerseline				LUB	57.0 60.0	3.0	21	13	- <u> </u>	<u> </u>	
			K asspectate	d unth	Suldides of	and gran	T3.		f		Lug_	60.0 63.0	3.0	407	13	_	 	
			The enti	re sect	MAL 15 VA	riably qu			f		120	63.0 66.0		588	12		\vdash	
			6 lood ee	r	nottled fi	ne que	tz but				121	66.0 69.0		95	12	-	\vdash	
			general	ly not w	Kl monera	treed.					122	69.0 72.0	4	37	13			
	<u> </u>										123	72.0 75.0		1206	14			
29.0	65.5	88	ANDESTE Fine grain	and and	point die	rite . A	ndesite is	Total Sulfides	<< 170		124	75.0 78.6	3.6	905	14			
			lo cally a	magdala	ridal. Gen	recally u	reakly			[]								
			astered	Rore 9	north - cas	xkonde - e	pidote		F									
•			vrinkets	Some	Fractured	6 blocking	cort		ŀ									
			section.	5		,			-							1	· . 1	
			Form	29.56 -	32.61 15 1	lom lost	LOTE		Ŧ							1		
			from	35.66 -	38.7) is 1	.em bot	core										[]	
			From	38.71 -	41.76 25	1.3 m	n		F									
			From.	53.95 -	56.99 15	bo cm "	••											
			From	56.99 -	60,04 14	30 00 "	-						1			1		
	1		, , , , , , , , , , , , , , , , 														<u> </u>	
45.5	72.7	90	ANDESITE Increa	sed and	the near of	mtact	it lower	Sulfilles chart	17.						-	1		
			unit. At	65.5 is	microut	ar 3 (m	au 40-1-2											
<u> </u>	1		haded for	(h. m.	roth 5-77	00 04 44	nd t cou						t1				+	
					Lainline	Last -	e with an										-+	
				78/4	- lou la	The come	- per				<u> </u>					+		
			A1 / 0 - 1	- 10-10-1	1.0 m 10	i lice i	(A + + +	· · · · · · · · · · · · · · · · · · ·	t									
			<u> </u>	<u> </u>	n questo ve	45 to	C.H. C.By	•	<u></u> [+ +		
	-		At 72.7 is	<u>4 4 600</u>	SULLCONS 31	m with	2-3% time py	zcpy	f							+ +		
70-	20.11	0.1						<i>m</i>	F				<u>├</u>			++	+	
12.1	18.64	<u>- 84</u>	QUARTZ MONZONITE	Irregular	, altered ,	fractured	contect	The dissemmated	Py and [++		
	1		Perthy	siliceous	andesite:	Local un	alk log-	cpy intermitterst to	1-2-2									
	1		0-10-1-1	rit	trom 75.29 -	78.64 1	lion list rare				1			I	1	1	1	

	~			1	Inclination	Bearing	PROPERTY	·····	Length					Hole	No		9/	<u> </u>			
	الرمع	MINCO	DRILL	Collar	- 75	0.60	Location		Hor Con		Vert	Comp		She	et 1	<u></u>	16-	5			—
	3	Exploration	HOLE				Elevation		Bearing	· <u>p</u> .		. comp.		1 00	and h	<u> </u>		· ·			
		Ltd.	PECOPD			1	Coordinates	1+00N Ot25W	Began	EL 15/al	Сол	npleted 6	L 16/01	San	nled	hy 5	EY_				
		ζ							Core Si	LE NQ	Rec	overv	<u>% % %</u>		picu						
F001	TAGE	RECOV.	DE	SCRIPTIO	N			MINERALIZATIO	N	GRAPH	IIC I	SA	MPLE	s	1		AS	SAYS			
	1									LOG		No. Fro	n-1 To	Length		. A., I			· .		
0	(all'		Casing							- 11					Dom	015				t	
										E I I					1						
hert	19.0	45	DIORITE Fine graine	d hypab	yesal. wea	thered, 1	imponitic and	Diss py, topy 4	- 12	EII	1										
			breccisted	and heated	by quartz	+ 14.5		Po and copy in occa	Ional			125 6.1	15.3	9.20	788	12					
			From 6.09 -	(1.2.8	4.2 m lest	60rs		hairline Fracture	or atz-			12.6 15.	19.0	3.7	1533	16					
	L		From 11.28 -	- 14.33	2.7 lost	core		tonomatine veinlet	10	1 1		127 19.	2 21.7	2.7	698	13					
L	L		Occasional	questa-	tourmaline	e veinlet	to 5 cm	Total subides	~ 1%	11	1	128 21.	7 24.7	3.0	743	15					
	ļ		with topy	, Local	disceminate	d py and	lesser cpy			1 1		129 24	7 27.7	3.0	777	15	·				
			usually rel	ated to	fractures	or at co	ntact.			£	L	130 27.	2 29.1	1.9	575	/2					
			//			•				1	L	131 29.	6 31.5	1.9	1503	14					
19.0	39.1	95	ANDESITE Fracture 21	me and b	lotchy, st	reaky epi	dote for	Cpy and Pa in hai	cline .	1 1	L L	132 31	5 33.4	2.1	102	14					
			1.5 at a	mtact.	1 or 2 gtz-	towr. t cp	y veinlets	fractures and rar	s gusty	F		133 33	6 36.6	3.0	947	14					
<u> </u>			at 27.0 m	·			1.4 5	tourmaline veinlet		F	1	134 36	6 39.1	2.5	323	13			_	 	
\square	ļ		A+ 23.7 i	3 & 10 cm	-quests & le	moded zone	writh 2-32	Querty flooded 37	nes have	F	ļ	135 39.	41.5	2.4	1198	15					
			<u></u>	if ides		:		diss. and streaky	cpy-po.	F	ļ	136 41	5 44.	2.5	794	14				\rightarrow	
			At 24.5 is	a 7 cm g	tz-tour ven	~ 45 to CI	<u>A. I Cpy</u>	Total subsides 1	-2%	F	ŀ	137 44	<u>0 47.0</u>	3.0	1009	14					
L			At 27.6 is	a 3 cm gt	y flooded z	me with	10% po e epy	for section.		F	ŀ	138 47	<u>0 48.1</u>	1.0	2078	11				-+	
			At 29.7 ar	<u>e qtz-equ</u>	dote streak	s for 2 c	m with 5-7%			F	ŀ	ग उस निह	<u>.e 51.e</u>	3.0	772	17	<u> </u>				
	·		fe-	and less	uc cpy					F .	ŀ	140 51	0 54.0	3.0	886	15				\rightarrow	
ļ			At 31.0 is	a 2.5 m	n gtz - epi	Lote vein	45° to C.A.	· · · · · · · · · · · · · · · · · · ·		F		141 54.	0 510	2	95	14					
┣			with	occasion	nal bleb of	coy and I	chalcocite!			F	ł	142 57.	<u>60,9</u>	4 "	.51	14					
			From 32.6	- 35.6. ca	re is very !	tine grain	ed siliceons			F	ŀ	143 60	<u>e 63.</u>	» ··	38	14			-		
			ando	body los	sible dyke	but aggin	rs to be			F		144 63	0 65.6	2.6	31	15					
			grade	utional fo	m greenis	volcania	. Dark rock		· · · · · · · · · · · · · · · · · · ·	F	ŀ	145 65	67.3	1.7	333	12	<u> </u>	· .			
			conto	ins a fe	<u>w streaks</u>	of cpy				F	ŀ	146 67.	3 71.3	4.0	40	15					
									·····	F	ŀ	147 71.	3 74.3	3.0	9	-12				+	
39.1	41.5	100	QUARTZ MONZONITE	_Pocphycy	Siliceou	Light gre	y weakly	3-5% disseminated	and	E	ŀ	148 74	3 77.3		144	14				-+	
<u> </u>			poc p	watie	with chlorit	byed or e	podutijed	lesser struky P. e	ma cpy	E	ŀ	149 17	3 80.3	·	304	/4					
			and	otten r	onnded gre	<u>me 1 ~ 31</u>	Licenus			E	ł	150 80.	5 84.2	-13.9	-58	18				-+	
	-		gcons	at mass,	- They d	usem h	A Po			t	ŀ			1		\vdash					
			and				•				ŀ									-	
415	44 .	100	ANDES THE BLOCKEL	for a la		t contrat	Section	17 total cultive.	+		H		+	-	1			+		-+	
11.2	17.0		ie also not	and other in	and 2 and le	Accessor	1 on - tour		, •• 9	F	· ł									-+	
<u> </u>			hicks and	streate						FII	· h			1							
			in the second second								t			1-					-		
44.0	48.0	100	QUARTZ MONZONNIE also	minor	ndesite. A	onzonite	is weakly	Diss. Do. con to 2.	-37.	FII	Ī										
	1		no cohu cit	ic with	chlorit is ed	arias in	a very	in per phary.		EII	Ī	:	-								
	1		Fine sili	CEDINS AM	mish aroun	dmass. w	kll minikrized			EII	T			1						-	
			at contac	*	3 0 0					EII			1								
										EII	L I										
48.0	49.0	100	ANDESITE, General	Un barren	<u>^.</u>			22 1% total sult	Fides												
)							[
49.0	54.0	90	QUARTZ MONZONITE	weakly m	inecalized.	Lacking	disseminate	170 or less to	tal												
L				Entrates 6	wt has occ	capional h	aucline	Sulfides		t											
!	ļ									E.				1							

.....

	~~~			-	Inclination	Bearing	PROPERTY		Length					Hole	No -	- 94				
	] فرمبر	MINCO	RD DRILL	Collar			Location		Hor. Con	10.	Ver	t. Com	0	Shee	t 2	of 7	- 3			
	- 3	Exploration	, HOLE				Elevation		Bearing					1.000	ed by		· · · · · · · · · · · · · · · · · · ·			
	(	Lid.	RECORD				Coordinates		Beggn		Co	mnlete		Som	nled by					
									Core Siz	e	Re	Covery	/ %	1 001	picarp					
F00	TAGE	RECOV.	DES	CRIPTIO	N		1	MINERALIZATIO	DN .	GRAF	PHIC		SAMPLE	1		Δ	<u> </u>			
	1									LO	G	No.	From I To	Length		. 1		· .		
49.0	54.0	cont'd	fracture with		L CON E	51.P-	54.0				T								+	
110	21.0		increase to !!	7 disce	win stad a	16idas				<b>t</b> .							11			
			From 50.9 - 57	3.95 %	30 (m lock					t				1			1			
			Form 53.95 - 1	56.99 15	50 (00 100	tione				t							++			
					20.0.1.103					t				+			1 1			
54.0	151	90	ANDERITE Generally	harnen	Too of	care + ima	has some	44 17	JGJ.	t							<del>  -  </del>			
1-02		14	heak wa nie.	and the second	manit	Factured	contact.			t										
			I - Acc mitte	at beak	in pieces	of anota	manzmite			t							<u>├──</u> ┤	+		
			from 60.0	- 62.0	with 30 c	m lost cm	e.			F ľ				1			<u> </u>		-+	
									· · · ·	F							<u>                                      </u>	-+		_
65.L	67.3	90	ANDESITE More silico	ous and	altered	Part fine	arained	2.37 total cut	ite e	F				1			††	-+		
			diarity i	xture	Blocky care	. Fault a	+ 66.14			F										
			with 5 cm	anarta u	ein at fa	ult Vein h	ad 709. au										<u>     </u>			
			57	604 N	more dias	ماجاما ا	allicone											-+		
			andreite																	
<u> </u>																				
67.3	8447	90	ANNESITE LESSER die si	to Lo	cal quarte	flowled a	actions	17 ac less toth	1	F	1							+	+	
1	101.14		with weat	In disce	minated a	w) fides .	Diacite	au la les	<u> </u>											
			terturel		sually be	And 17. die	seminated											+		
			Do and	ensur co							ŀ			1						
			From 69	19 - 72.	23 13 80 00	m lost corr	د.									_				_
	1		· Andesite 4	ron 76.5	the E.O.	н.		· · · · · · · · · · · · · · · · · · ·		F				11						$\neg$
										F.										
										E							1.			
										E						·				
				-		·														
										:				· ·						
										:										
					_					:										
	<u> </u>					1944 1. J. 1						•		ļ						
	ļ		· · · · · · · · · · · · · · · · · · ·																	
														<b> </b>						
		:												-+			<u> </u>			
										.				-			↓ ↓	$\rightarrow$		
	<u> </u>		· · · · · · · · · · · · · · · · · · ·							:				$\vdash$			┟───┤			
										:				1			┣───┥			
										:				<b>├</b>				-+		
	1									:							<b>├</b> ──┤	+		
										:		-		ļ						
										:										

.

	~~		DRILL		Inclination	Bearing	PROPERTY	INDATA	Length					T	Hole M	No. J	= 94	- 6		
	- <b>S</b>	MINCO		Collar	- 47.0	090	Location		Hor. Com	ιp.	Ve	rt. Con	D.		Sheet	1	of			
	}	Consullan	, HOLE				Elevation		Bearing							d by	844			
1	(	Ltd.	RECORD				Coordinates	DLISN LLOOE	Began f	Feb 16/	a) (c	molet	od Edu	1/01	Samo	led by	CEY			
		X —						· · ·	Core Siz	e NO		cover	V	%	o dinipi					
F00	TAGE	RECOV.	DES	CRIPTIO	N			MINERALIZATIO	N	GRA	PHIC	T	SAMP	LES	T		Δ	SSAY		
										Ľ	ÖĞ	No.	From	TOIL	ength C	Δ.	7			.
0	4.51		Casing							- 1	<u> </u>	<u> </u>								
										F						ker tek				
4.57	26.52	39	ANDESITE All broken	2 Disce	s of core	Rubble.	and			F										
			around so	re Oc	sociand sil	icent o	icca	<1% total Sulf	dec	F		151	7.0	17.3 0	0.3 4	+2 13				
			bas py in	fract	ares to	2-37.				ΕI		152	17.3	21.5	1.2	12 14	_			
			Inte opre te	d drill	ing through	h fault -	zone and			ΕI										
			- chandened	t hale						ΕI										
·										E 1										
						·				ΕI				. 1				1		
										E I			·							
										Εİ										
										Εl										
			· .							t l										
										E										
L						1				-										
			•			·					1								_	
										t										
L			· · · · · · · · · · · · · · · · · · ·							:										
																	-			
										-	T .	L								
	<u>                                     </u>																			
			· · · · · · · · · · · · · · · · · · ·														_			
																	_			
											1									
								· · · · · · · · · · · · · · · · · · ·			ł									
									· [						-+-					
												i								
										:										
										:										
										:										
			· · · · · · · · · · · · · · · · · · ·							:										
										:				-						
			·				1.1			:								t		
										:								t		
-										:								t		
										:		i-								
	t									: 1										
										:										
			2							:										
										:							<u> </u>			
										:								H		
														- +-						
	1									:										
								a a a a a a a a a a a a a a a a a a a	(				,			-	· · · · · · · · · · · · · · · · · · ·			-

<b></b>	~~~				Inclination	Bearing	PROPERTY	LNDATA	Length						Hole	No.	Т 9	4~7				
	الرجب	MINCO		Collar	- 500	1200	Location		Hor. Com	np.	Ve	rt. Con	np.		Shee	et	1 0	1 1				
	}	Consultan	" HOLE				Elevation		Bearing				_		Log	ned b	v	RKV				
	(		RECORD				Coordinates	OHISN I HOOE	Began p	El 17/	96 CO	mplet	ed Feb	17/96	Sam	pled	by	1.51-1				
		<u></u>		L	[	1			Core Siz	e NQ	Re	cover	Y	%							· · · · · ·	
1500	AGE	RECOV.	DES	CRIPTIO	N			MINERALIZATIO	N	GRA	PHIC		SAM	PLES				AS	SAYS			
												No.	From	To	Length	Cu,	Au					
<u> </u>	9.1		Casing						·	F						ppm	peb.					
i	21 6	· · · · ·	ANDERITE			4. 1.				F												
	46.5	- 20	NOT THE BLOCK	cone.	some minor	Sections	near top	Z Martal Sul	Fides	E I		153	la'n ⁻	17.4	8.0	26	14			+		
				minor F	Printe with	+ cou	L SULCONS			ΕI		124	17.4	21.4	4.0		12					
<u> </u>			Germand		and loss I	Han 50%		· · · · · · · · · · · · · · · · · · ·		t	1	حعبر	1 <u>51.4</u>	26.5	5.1	63	/4	+		$\rightarrow$		
			fin hatte	- 3	aboot		how berg											+		+		
			······································							E										+		
									······	t ľ				·						+		
																			- +	+	<u></u>	
																				+	-+	
																				-+		
			•							Εl									-			
										E										-+		
						1																
<b></b>			•																			
<b> </b>							·															
			·										<u> </u>									
			-					······································	·····.	F												
<u> </u>				<u>.</u>	- <u></u>					-		⊢	<u>├</u>						-+			
<u> </u>			i							Eł			┝							+		
														- 1						+	<u> </u>	
											1							<del> </del>	·			-
	-											<u> </u>						-+	-+	+		
				· · ·		· · ·																
											· ·									-+	-+	
															· .							
					·····					:												
										:	1	<u> </u>										
								· · · · · · · · · · · · · · · · · · ·		:		· ·										
			-																			
<u> </u>																						
		· { · · ·										<u>                                     </u>	$\vdash$			$\rightarrow$					$\rightarrow$	
<u> </u>									[			<u>  </u>								+		$ \rightarrow $
					······								$\vdash$							-+		
										:									-+	+		$\neg$
										:										-+	-+	
																+			+	-+	-+	
·																				-		
										:												

<b></b>	-20-			T	Inclination	Bearing	PROPERTY	TUDATA	Length						Hole	No		01			 
	- کسم ا	Minco		Collar	- 500-	040	Location		Hor Con		V	ert Con			She	a †	<u> </u>	76	- 8		 
	1	Exploration	HOLE				Elevation		Bearing			001				ned h	<u>, c</u>				 
1	(	Lid.	RECORD				Coordinates	OHISN I HOOE	Beggn	Fab 1	las C	omniet	ed E	LIRL	Sar	unled	hy	KK)			 
		<u>΄</u>							Core Si	ze No		ecover	V IV	<u>%</u>	- 30/	pieu	51	• • • • •			 
FOO'	TAGE	RECOV.	DES	CRIPTIO	N			MINERALIZATIO	)N	GR4	PHIC	T	SAM	PLES	i	r		AS	SAY	5	 
	1								•	L	OG	No.	From	To	jLength	6	ALL				
0	6.1		Casing							FI				1	<u> </u>	00m	006				 
			<u>_</u>							F				1							 
6.1	17.7	47	ANDESITE Broken	nieces	and aro	und core	٤.	6 170 sulfides		τ I		156	7.6	12.4	4.8	35	14				 
			Occasie	DAL DA	in hairlin	e fract	une.			τI		157	12.4	17.7	5.3	10	13				 
			Holes	6.7 and	8 assume	d to be	deilling			τI			1	1							
				N-5 6	ault or pp	ssible inte	rection			F				1						· -	 
			with	E-W FA	ult.					Εl											 
			· · ·							ΕI											 
										FI											 
										ΕI											
										Εl											
										Łİ											
										£											
					·····					1 1				L							
					·	t				1 I			ļ	<u> </u>	L						 
L			•							F	1				ļ						 ļ
										1 7					ļ						 ļ
			· · · · · · · · · · · · · · · · · · ·							F				<b> </b>							<b> </b>
	<u> </u>				<i>i</i>					FI	.1.										 
			······································							FΙ											 
<u> </u>										El											 <u> </u>
							•••••			ΕI											─
<u> </u>	$\left  \right $									ŧI				<u> </u>			<u> </u>				 <u> </u>
										t											 <u> </u>
	1				****					t											 <u> </u>
										t											 <u> </u>
										Εl			1		1						-
	1-1									ΕI											 
										Εl					1						 <b></b>
					•					Εl											 
										Εl											 <u> </u>
										Εl											
	1									ΕI		1									
	· ·							· •		E I											
			· .							Εl											
		•								Εl											
		:								£											
										Εl											
			· · · · ·							£											
										£											 L
										£											 <u> </u>
<u> </u>	+						-14		<u> </u>	ŧ [											 ļ
										F											 <u> </u>
										1 1			·								 <u> </u>
1	1	1								ь I		1	1	1							4

	- 22				Inclination	Bearing	PROPERTY	TANATA	Length		·			Hole	No		9/ .	. 9			
	لمبر	MINC 0	RD DRILL	Collar	- 60-	1200	Location		Hor. Con	np.	Vert.	Comn		She	et.	<del>,</del>	1	<u></u>			
	\$	Consultan	L HOLE				Elevation		Bearing					Log	ned 1		12.7	<u>.</u>			
	(	Lid.					Coordinates	1+00N 0+25W	Began	Feb 18/96	Com	oleted 6	L 19/9L	San	npled	hv	-00	1			
		X	NECOND						Core Si	ZE NQ	Reco	very	%								
F00'	TAGE	RECOV.	DES	CRIPTIO	N			MINERALIZATIC	)N	GRAPH	c	SAN	IPLE	S	1		AS	SAYS	3		
								•	•	LOG		No. †From	To	Length	Cu	. Au .			·		
0	7.6		Casina							$\mathbf{F}$					0.00	Poh					
										Ŧ			1		1						
7.6	18.3	47	DIORITE Fine amined	1 huoa	hyssal, F	Broken a	nd	< 1% sulfide	5	F					-						<u> </u>
			and herbixe	k to it	1.5 m with	5.0 m 1	ost corr			F	- 1	58 11.2	14.5	3.3	329	12			~		
				· · · · · · · · · · · · · · · · · · ·						FII	5	59 14.5	18.3	3.8	423	42					
18.3	20,5	100	DIOBITE Frostwees 1	ith as	mot - c pid	lote be	aling and	Suffides to 17.	a	E I I		60 /8.3	20.5	5 2.2	2052	15					
			local gran	ta Ebé	dina		J	CPY 7 PU PPO		FIL	Ē	61 20.	23.5	3.0	398	2					
			At 20,2 c	ering d	own quests	- tournal	sine veinlet	17 13 1			Ē	162 23.	5 26.	5 3.0	990	3					[
L			for 15 cm.	Associa	ted streak	s and le	moes of			EII		63 24.	5 29.8	3.3	398	4					
	L			7.		. <u></u> .						164 29.4	32.4	12.6	180	7					
	L		<b>\</b> ,								E	165 32.4	33.8	1.4	1030	10					
20.5	29.8	90	DIORITE Weakly min	crolized	in some	siliceon	s fractures	< 12 total sult	fides		Ľ	166 33.9	36.3	2.5	220	3					
			Very minor	تسعدنه	inded po:	Diorite	broken					167 36.	3 38,7	2.4	1626	14					
		`	at bottom	contac	*				•			18 38.	1 42.0	3.3	1192	19					
<b></b>						<u>.</u>				1   1		169 42.	45.0	3.0	677	7					L
29.8	32.4	100	ANDESITE Weakly alt	ered	·					1		170 45.	2 48.0		1572	9					I
ļ	ļ		At 31.0 i	sa loo	-quartz ve	einlet 15°	to C.A.	< 170 Sulfides.				171 48.	51.0	<u> </u>	50	2					L
	ļ		± p	so and	much lesser	срч	. <u> </u>			1   1	L	172 51.0	54.0		55	4					<u> </u>
<b></b>			······································							1		73 54.0	57.0		80	22					I
32.4	33.8	100	DIORITE Contact with	h ande	site is be	o to cu	A. Weak	170 or less total	sulfides.	£		174 57.0	60.0	<u> </u>	95	42					
	<b> </b>		siliceous zon	as have	very fine	dissemm	ated cpy and			‡	Ļ	175 60.0	63.0	<u> </u>	49	4					L
	<u> </u>		Pe. Occasions	at hairli	se tracture	. with Pr	z t cpy	·····		F		176 63.0	66.0	<u> </u>	51	4					ļ
$\vdash$										F ·	-	77 66.0	69.0	<u> </u>	13	42				i	<b> </b>
33.8	36.3	_100	ANDESITE AT 33.9 in a	<u>.5 cm</u>	gts- tour, s	reinler 3	<u>• +• C.A.</u>	< 190 sublides	· · ·	F I I	-	178 69.0	72.0	24_*	8	42					<b> </b>
	-			Koch g	and cally w	<u>colely al</u>	tered and			F II	-	179 72.1	25.0	<u> </u>	17	21				··· · ·	<u> </u>
ļ	<u> </u>		- laselly use	alely 5	licified					F	-	180 75.	78.3	3.3	162	2					──
									<u> </u>	E	-	181 78.3	83.8	5.5	22						<b> </b>
36.3	38.1	42	ANDES, TZ Extreme 5	HIGHIC	ation of g	north Fi	voded, Jone	1-3% cpy and	20.	E	-	<u> </u>	+								<b> </b>
			wery minor	gnortz	monzontre.	Sul Lide	s related to			E	-  -										<u> </u>
			tractures							E	-			<u> </u>							l
				1 1			117.00		· · · ·	E	-		+	+							<u> </u>
38.1	45.0	90	GOHATZ MANZONITE . VE	cy proke	m core , r	m 49.81-	71.0> 15 1.5m	2 170 surges					+					$\rightarrow$			<u> </u>
	<u>├</u> ;		Lest Cers	LOCAL	Macrute re	later to	and - cpy	••••••••••			·		+								h
110		80	Della TT P. L	• 4	-1 - 1 -		A. A. 1. 01 2	1 IR sulfida													
75.0	18.3	_70	HNUEST /P lat many	$M_{\ell} = M_{\ell}$	extremely o	martin to had	( and site :		\	t			+								<u> </u>
<u> </u>	+		at contac	20 <u>,IVIA</u> 100	<del>г ре , сру _</del>																
			At (9.10		Jenes. Lis can dukli		of diate	-						1				+			
	<u>†</u>		FT 61. F	64 1	a smile	er of am				t		<u>-i-</u>									<u> </u>
	t		, , , , , , , , , , , , , , , ,		montene	· ·	- <u></u>					_	1								
78.3	82.9	20	DIDALTE VIATA MAR	4.4 . 3	motore last	cone . h	cilling	120 or loss diec	مامدة مدم					1							
1	1 2.0	- 28	Vionite Very Dive	<u></u>			· · · · · · · · · · · · · · · · · · ·	P	- na inate				<u> </u>	1					-+		
			very slokilly			<del>~ `` · · · · · · · · · · · · · · · · · ·</del>	······································		· · · · ·				1	<u> </u>							
														1	<u> </u>						·
· ·										F			1								
	1												1						T		

### **APPENDIX 3**

## CERTIFICATES OF ANALYSES 1996 DIAMOND DRILLING PROGRAMME INDATA PROPERTY

	ACME AN	CICAI	, LA	BORA	TOR	ES	LTD.		85	2 E	HA	STIN	GS S	ST.	VA	UV	ER B	c v	76A	1R6		PHO	NE (6	04)	253-	3158	5 F	AX(6	04)2		1716
	A A									GEC	OCHE	MIC	AL	ANA	LYE	SIS	CER	TIF	'IC2	ATE											<b>A</b>
	řŦ								<u>c</u>	<u>suir</u>	net	Man	age	med	t	Fil	.e #	96	5-0-	732											
	Ka Ka							Ya i			3	10 Ni	gel A	ve, V	ancou	wer B	C V5Y	219													
5	SAMPLE#	Mo	Cu	РЬ	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	۶r	Cd	Sb	Bi	٧	Ca	P	La	Сг	Mg	Ba	Ti	В	AL	Na	ĸ	W
		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	~	ppm	ppm	ppm	ppm	ppn	ppm	ppm	ppm	ppm	*	*	ppn	ppii	*	ppm	^	ppii		~	~	ppii
1	196-01 #1	19	2369	<3	16	.6	65	30	383	6.59	6	5	<2	<2	37	1.2	<2	2	201	2.19	.010	1	171 2	2.89	21	.02	<3 3	5.56	.18	.05	<2
1	96-01 #2	2	1363	<3	45	1.4	105	30	475	6.17	12	<5	<2	<2	40	1.3	3	<2	220	2.02	.007	1	245	3.53	45	.04	<3 4	.00	.19	.24	<2
1	196-01 #3	2	455	্র	21	<.3	98	25	273	3.71	5	<5	<2	<2	39	.4	. 5	2	157	1.28	.007	<1	298	3.20	29	.04	33	5.86	.27	.20	<2
1	(96-01 #4	4	1520	<3	29	.3	93	37	420	6.09	7	<5	.<2	<2	.51	1.0	2	~	204	1.27	.006	1	232	5.87	22	.03	<54	4.5/	.25	.13	~2
	96-01 #5	4	1017	د>	28	د.	105	20	347	5.00	4	<5	<2	<2	40	.5	<2	د	10/	1.25	.007	'	244 .	3.15	19	.05	<b>S</b> .		.24	. 10	~2
1	196-01 #6	5	1269	3	31	<.3	56	38	415	5.36	6	<5	<2	<2	62	.5	<2	<2	176	2.22	.008	1	84	2.68	29	.02	<3 3	3.88	.28	.10	<2
1	196-01 #7	2	518	3	56	<.3	120	27	597	5.12	5	<5	<2	<2	50	.8	2	<2	177	2.46	.005	1	349	3.36	34	.02	<3 /	4.13	.20	.13	<2
1	196-01 #8	5	2986	<3	53	.4	76	46	468	8.00	7	<5	<2 ⁻	<2	53	1.0	<2	<2	232	2.00	.005	<1	170	2.91	35	.03	<3 /	4.72	.26	.13	<2
	RE 196-01 #8	5	2892	<3	50	.4	73	42	443	7.64	3	<5	<2	<2	51	1.1	<2	<2	222	1.91	.004	1	158	2.78	35	.02	<3 /	4.54	.26	.12	<2
F	RRE 196-01 #8	5	2843	<3	53	<.3	80	47	526	8.23	<2	<5	<2	<2	56	1.6	2	<2	242	2.11	.004	1	179	3.02	38	.03	<3 /	4.87	.27	. 13	<2
	196-01 #9	5	1267	7	25	e 3.	60	38	520	x 07	4	<5	~2	<2	۵۵	12	2	0	214	1 98	.007	<1	115	3.53	48	.04	<3 /	4.23	.22	.26	<2
	196-01 #10	4	2633	<b>'</b>	18	< 3	38	38	555	6.25	6	<5	~	<2	25	.4	<2	~	177	2.80	.006	1	34	3.38	44	.02	<3	3.66	.14	.21	<2
	196-01 #11	1	1965	7	18	<.3	53	40	631	8.28	16	<5	<2	<2	20	1.3	<2	<2	189	2.75	.006	i	87	3.80	26	.01	4	4.22	.06	.12	<2
	196-01 #12	6	415		15	<.3	58	36	499	6.72	<2	<5	<2	<2	35	1.5	<2	<2	175	1.20	.006	1	115	4.18	19	.01	<3	4.23	.11	.10	<2
	196-01 #13	4	1768	15	16	<.3	48	45	536	8.19	5	<5	<2	<2	19	.8	2	<2	218	.90	.005	1	58	5.29	31	.03	<3	4.80	.07	.20	<2
				-		_		-			-	-	-				-	-					-			~~	,				
	196-01 #14	17	6210	8	19	.3	42	31	339	6.23	5	<5	<2	<2	51	1.1	2	<2	192	1.54	.004	1	170	3.65	- 34	.02	4	4.32	.14	.19	<2
	196-01 #15	10	1071	6	1/	<.3	60	20	257	6.08	,	<5 -5	<2	<2	/8 /0	<.2	~2	2	191	2.40	.004	<1	152	2.10	20	.01	~~~	4.20	.50	.04	~2
	196-01 #16	1 2	(99	8	19	<.>	61	27	222	2.22	4	<5 -5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2	47	-4	-2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	201	1 97	.007		204	2.30	27	.03	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2.71	. 34	16	-2
	KE 190-UI #10	2	950	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10	<. 3 7	59	20	203	5 77	~2	5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	58		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10/	1 70	.007	1	100	2.47	27	. 03	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7 80	.50	15	<2
	RRE 190-01 #10	1	650	10	10	<b>`.</b> 」	20	21	290	1.51	2	~	12	~2	50	• 7	~2	~2	174	1.70	.005	•	177	2.31	-	.05		5.0/			
	196-01 #17	1	240	3	10	<.3	44	16	210	4.01	2	<5	<2	<2	26	<.2	<2	2	184	1.25	.013	1	97	1.66	49	.05	3	2.23	.21	.22	<2
	196-01 #18	<1	60	<3	11	<.3	23	18	300	5.50	3	<5	<2	<2	22	.5	<2	5	222	2.01	.013	1	36	1.38	17	.02	<3	1.68	.12	.12	2
	196-01 #19	<1	89	5	14	<.3	48	26	248	5.76	6	<5	<2	<2	27	.9	<2	<2	220	1.29	.006	<1	207	1.94	29	.03	<3	2.36	.18	.09	2
	196-01 #20	3	262	5	12	<.3	36	25	190	3.33	2	<5	<2	<2	24	.2	35	2	153	1.14	.008	<1	73	.69	21	.03	<3	1.29	.18	.06	<2
	196-01 #21	<1	91	<3	8	<.3	36	16	176	2.57	2	<5	<2	<2	25	.3	<2	2	120	1.20	.007	<1	66	.54	26	-02	<3	1.47	.23	.08	2
	STANDARD C2	21	55	39	130	6.4	78	35	1026	3.76	43	19	6	33	49	20.1	20	24	69	.51	.096	41	60	.84	179	.07	21	1.75	.06	.13	13

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: CORE <u>Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.</u>

DATE RECEIVED: FEB 19 1996 DATE REPORT MAILED: Fela 26 96

SIGNED BY ..... p. TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

ACME ANALY	TICA	L L	ABOR	ATOR	RIES	LTD		8	52 B	5. H <i>i</i>	Asti	NGS	ST.		COU	VER	BC	V6A	1R6	5	PH	one (	(604	) 253	-31	58	FAX (	6	253	-171	6
									GE	OCH	EMI	CAL	AN	Ary	<b>818</b>	CE	RTI	FIC	ATE												
				<u>Gui</u>	net	Ma	nag	eme	ent	PRO	<u>jec</u> 310 n	<u>T (</u> igel	<u>IND</u> Ave,	<u>ATA</u> Vanco	) <u>C</u> uver	LEA BC V5	<u>R C</u> Y 2L9	REE	K	F11	e #	96	-07	65						Ľ	
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	K %	₩/ ppm	u** ppb
196-09-159 196-09-160 196-09-161 196-09-162 196-09-163	1 1 2 <1 4	423 2052 388 990 398	13 8 3 <3 5	48 38 24 21 15	<.3 <.3 <.3 <.3 <.3	50 40 32 42 44	49 42 34 62 41	657 647 756 466 419	7.75 6.81 6.90 8.01 6.78	3 2 2 2 2 2 2	<	<2 <2 <2 <2 <2 <2 <2	~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4 6 4 3 5	.8 .9 .8 .2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3 ~? ~? ~? ~? ~?	206 188 230 222 199	.23 .40 .49 .27 .54	.013 .013 .013 .013 .013 .015	<1 <1 <1 <1 <1	69 52 14 67 89	5.60 5.54 4.85 5.65 4.66	71 32 37 37 30	.06 .06 .07 .06 .06	33333 3333	5.03 4.81 4.54 4.89 4.23	.02 .02 .04 .03 .04	.15 .10 .32 .29 .23	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 15 2 3 4
196-09-164 196-09-165 196-09-166 196-09-167 196-09-168	<1 9 4 43 <1	180 1030 220 1626 1192	5 3 3 3 3 3 3	22 19 23 27 26	<.3 <.3 <.3 <.3 .7	40 51 59 55 44	24 43 38 62 38	455 378 519 623 376	4.13 7.45 5.78 8.59 6.04	6 <2 <2 3 3	ও ও ও ও ও	<2 <2 <2 <2 <2 <2 <2 <2	% % % % % % % %	9 5 6 4 6	.3 .3 .3 1.1 .9	6 2 3 4 4	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	136 188 147 202 182	1.05 .39 .51 .23 .48	.025 .014 .017 .014 .016	<1 <1 <1 1	68 114 162 185 97	2.33 4.97 4.33 5.67 3.94	21 25 29 16 31	.16 .06 .10 .06 .04	3 3 3 3 3 3	2.32 4.44 3.94 5.02 3.33	.09 .04 .06 .03 .05	.13 .17 .21 .09 .25	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7 10 3 14 19
196-09-169 RE 196-09-169 RRE 196-09-169 196-09-170 196-09-171	1 <1 <1 2 <1	677 689 746 1572 50	4 3 3 3 3 3	26 26 28 14 31	<.3 <.3 <.3 <.3 <.3	35 37 37 68 73	35 38 41 47 31	369 372 415 341 354	5.62 5.90 6.37 7.20 6.02	<2 <2 <2 3 <2		<2 <2 <2 <2 <2 <2 <2 <2 <2	8888 8888 8888 8888 8888 8888 8888 8888 8888	7 7 8 10	.8 .3 .4 .7 <.2	% ~ % ~ %	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	172 178 191 184 165	.55 .58 .62 .49 .54	.014 .014 .015 .015 .015	<1 <1 <1 <1 <1	46 48 52 142 159	4.13 4.35 4.69 4.39 4.59	30 28 32 47 50	.05 .06 .06 .08 .07	3 3 3 3 3 3 3 3 3	3.75 4.02 4.32 4.17 4.13	.08 .08 .08 .06 .07	.17 .18 .19 .36 .27	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7 12 15 9 2
196-09-172 196-09-173 196-09-174 196-09-175 196-09-176	<1 <1 <1 <1 <1	55 80 95 49 51	3 3 3 3 4	14 16 16 14 9	<.3 <.3 <.3 <.3 <.3	77 85 96 92 37	30 36 36 21 17	311 270 313 268 263	4.99 6.80 6.34 3.91 3.99	3 5 4 3 4	১ ১ ১ ১ ১ ১ ১ ১	<2 <2 <2 <2 <2 <2 <2	~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	30 28 13 12 14	.2 .3 .3 <.2 .2	<2 2 4 3 2	<2 ~ 2 ~ 2 <2 ~ 2 <2 ~ 2	136 170 140 107 112	1.06 1.16 .81 .79 1.43	.016 .012 .011 .013 .012	<1 <1 <1 <1	187 191 258 239 64	4.01 3.86 4.14 2.93 1.98	61 64 17 30 34	.05 .06 .04 .04 .03	3 3 3 3 3 3 3 3	4.17 4.45 3.66 2.64 2.26	.20 .19 .09 .08 .10	.50 .36 .09 .18 .19	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	4 <2 <2 4 4
196-09-177 196-09-178 196-09-179 196-09-180 196-09-181	<1 <1 <1 1 1	13 8 17 162 22	<3 <3 <3 8 <3	12 8 36 13	<.3 <.3 <.3 <.3 <.3	55 32 29 58 30	20 15 14 24 22	319 214 196 298 317	3.67 3.16 3.18 4.12 4.67	3 2 2 3		<2 <2 <2 <2 <2 <2 <2	<> <> <> <> <> <> <> <> <> <> <> <> <> <	12 10 16 12 8	.2 <.2 <.2 <.2	3 3 2 5 3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	93 112 120 126 162	1.04 .68 1.01 .74 .68	.008 .014 .015 .014 .012	<1 <1 <1 <1 <1	225 70 51 158 42	2.70 1.84 1.58 2.50 2.18	15 30 53 34 22	.03 .04 .06 .05 .05	3 3 3 3 3 3 3 3 3 3	2.48 2.03 2.28 2.54 2.21	.07 .11 .18 .11 .09	.08 .18 .32 .16 .11	~~~~ ~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
STANDARD C2/AU-R	22	57	40	123	6.3	68	37	1191	3.92	42	20	8	37	53	21.6	16	21	74	.58	.102	43	65	.90	183	.08	24	1.90	.06	.15	12	498
DATE RECE	IVEI	ICP - THIS ASSAY - SAM <u>Sampl</u>	E .500 LEACH RECC IPLE 1 .es be	) GRAM I IS P DMMEND TYPE: eginni 2 1996	A SAMP PARTIA DED FO CORE ing <u>'</u> R	LE IS L FOR R ROC <u>A</u> E <u>' ar</u>	S DIGE R MN F X AND NU** A <u>re Rer</u> <b>REP</b> (	STED E SR CORI	WITH CA P E SAMF SIS BY and 'F	3ML 3 LA CR PLES I (FA/I RE' a	-1-2 MG B F CU CP FR <u>re Re</u>	HCL-H A TI PB ZN OM 30 ject	NO3-H B W A AS > GM S Rerun 8 / 9	120 AT ND LI 1%, AMPLE	95 D MITED AG >	DEG. C D FOR 30 PP	FOR NAK M&A BY	one H and A U > 1	OUR A L. 000 F	AND IS	DILU	YE, C	O 10	ML WI 16, J.1	TH WA WANG;	CERT	IFIED	B.C.	ASSA	TERS	

#### ACME ANALYTICAL LABORATORIES LTD.

## 852 E. HASTINGS ST. COUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (69 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Guinet Management File # 96-0832 Page 1

310 Nigel Ave, Vancouver BC V5Y 2L9

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Со ррп	Mn ppm	Fe %	As ppm	U PPm (	Au ppm	Th ppm p	Sr Spm	Cd ppm	Sb ppm	Bi opm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	⊺i %	B ppm	Al %	Na %	К %	₩ ppm	Au** s ppb	AMPLE lb	
I 96-01 22 I 96-01 23 I 96-01 24 I 96-01 25 I 96-01 26	1 1 1 <1	17 57 104 18 21	4 <3 <3 7 <3	9 7 6 6	<.3 <.3 <.3 <.3 <.3	45 60 34 26 34	12 17 14 12 17	119 194 154 181 203	1.86 2.49 3.10 3.55 3.16	<2 <2 <2 <2 <2 <2 <2	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 <2 <2 <2 <2 <2 <2 <2	16 16 20 31 30	.2 .7 .5 .7 .2	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	95 119 154 189 191	.91 1.26 1.07 2.06 1.27	.007 .007 .009 .020 .012	<1 <1 <1 <1 <1	186 173 107 56 97	.95 1.11 .93 1.10 1.00	211 109 126 176 108	.04 .03 .04 .08 .06	<3 <3 <3 <3 <3	1.29 1.54 1.63 2.77 2.20	.13 .16 .19 .21 .34	.32 .18 .24 .37 .34	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 2 2 2 2 7	17 17 17 16 18	
I 96-01 27 I 96-01 28 I 96-01 29 I 96-01 30 I 96-01 31	1 2 3 1 2	712 2570 476 276 2424	<3 12 7 5 <3	13 18 8 6 7	<.3 <.3 <.3 <.3 <.3	76 50 58 25 29	33 32 26 20 20	244 336 165 135 91	5.84 6.71 6.29 4.89 4.84	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	38 28 35 32 57	1.0 1.6 1.0 .6 .7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	201 214 190 210 195	1.33 .99 .68 .78 1.11	.006 .005 .007 .007 .008	1 1 1 <1	284 263 278 120 183	2.50 3.15 2.51 2.22 1.08	32 37 29 43 23	.02 .02 .03 .04 .02	<3 <3 <3 <3 <3 <3	3.22 3.34 2.65 2.53 2.52	. 18 . 15 . 15 . 18 . 24	.12 .17 .15 .24 .10	< < < < < < < < < < < < < < < < <> </td <td>7 17 5 4 34</td> <td>17 17 16 16 16</td> <td></td>	7 17 5 4 34	17 17 16 16 16	
I 96-01 32 I 96-01 33 I 96-02 34 I 96-02 35 I 96-02 36	1 1 5 6 5	2921 1659 338 1358 2270	<3 5 3 3 4	6 5 55 34 36	<.3 <.3 <.3 <.3 <.3	94 43 318 246 151	31 23 50 45 48	126 123 894 541 492	7.17 5.53 5.55 4.84 6.52	3 2 2 5 2 5	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	~? ~? ~? ? ?	43 39 10 3 3	.7 1.3 1.7 .5 1.0	<2 <2 <2 <2 <2 <2 <2	<2 3 2 7 2 7	261 223 155 94 144	1.08 .65 3.57 1.19 .55	.005 .008 .005 .006 .004	<1 <1 <1 <1 <1	475 328 942 621 450	1.53 1.53 7.45 5.21 6.72	19 25 25 9 4	.02 .02 .02 .02 .03	<3 3 <3 4 5	2.88 2.43 4.73 3.64 5.09	.23 .14 .01 .03 .03	.07 .13 .02 .04 .02	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	57 19 2 13 17	14 15 13 16 12	
RE I 96-02 36 RRE I 96-02 36 I 96-02 37 I 96-02 38 I 96-02 39	5 4 4 5 2	2350 2313 631 2784 1471	3 <3 9 8 <3	36 37 22 18 12	<.3 <.3 <.3 .3 <.3	158 159 199 45 43	48 47 45 36 32	505 497 457 391 327	6.70 6.57 6.35 6.49 6.20	<2 <2 <2 <2 <2 <3	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	~? ~? ~? ~? ?	3 3 48 76	1.4 1.4 1.0 1.6 1.1	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 3 4 2 2	147 145 160 175 193	.56 .55 .50 .83 .77	.005 .005 .006 .007 .009	<1 <1 <1 <1 <1	465 454 630 124 87	6.95 6.78 6.60 4.92 4.60	1 6 9 11	.03 .03 .03 .04 .04	3 7 3 3 3 3 3	5.22 5.13 4.92 4.80 4.15	.03 .03 .02 .11 .05	.02 .02 .02 .04 .08	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	19 15 6 9 7	- 11 16 15	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																																	
I 96-02 45 I 96-02 46 RE I 96-02 46 RRE I 96-02 46 I 96-02 47	$\begin{array}{c} 1 & 96 - 02 & 41 \\ 1 & 96 - 02 & 42 \\ 1 & 96 - 02 & 42 \\ 1 & 96 - 02 & 43 \\ 1 & 96 - 02 & 43 \\ 1 & 96 - 02 & 44 \\ 1 & 102 & 5 & 18 & (3.3 & 53 & 40 & 392 & 6.76 & 2 & (5.2 & (2.12 + 1.11 + (2.14 + 1.11 + (2.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + 1.14 + $																																
I 96-02 48 I 96-02 49 I 96-02 50 I 96-02 51 I 96-02 52	1 1 6 22	1338 621 1360 379 5712	3 <3 <3 6 9	26 29 35 14 19	<.3 <.3 <.3 <.3 .4	127 197 198 54 61	39 42 48 37 50	535 618 666 359 428	5.73 6.18 6.43 5.12 8.51	3 <2 <2 <2 <2 <2	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2	17 7 11 35 42	1.2 .6 .7 .8 1.5	<2 <2 <2 <2 <2 <2 <2	<2 2 2 2 2 2 7	159 137 171 229 222	.58 .65 1.32 .60 .48	.010 .006 .004 .014 .006	<1 1 <1 <1 <1	388 541 549 129 188	5.70 6.73 6.99 5.52 6.70	5 <1 3 13 8	.03 .02 .02 .08 .05	<3 <3 <3 <3 <3 <3	4.45 5.04 5.26 4.45 5.89	.04 .02 .02 .04 .07	.02 .01 .01 .17 .02	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	5 5 11 4 16	15 13 15 15 14	
I 96-02 53 I 96-02 54 STANDARD C2/AU-R	3 1 22 CP -	1765 954 61	<3 3 42 GRAM	17 22 126	<.3 <.3 6.4	45 54 72 IS D	39 42 39	409 583 1113 TED	7.02 8.15 4.04	<2 <2 42 3ML 3	<5 <5 19	<2 <2 7 HCL	<2 <2 38	55 55 55 3-H2	.6 1.4 22.0	<2 <2 19 95 D	4 2 19 EG.	217 228 75 C FO	.78 1.30 .56 R ONE	.009 .008 .103	<1 <1 44 R AND	112 143 66 IS	5.26 6.18 .90 DILU	24 5 188 TED T	.07 .04 .07	<3 <3 22 ) ML	5.16 6.05 1.87 WITH	.13 .10 .06	.14 .03 .14	<2 <2 14	6 6 458	17 15 -	

ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000-PPB

- SAMPLE TYPE: CORE AU** ANALYSIS BY FA/ICP FROM 30 GM SAMPLE.

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: FEB 27 1996 DATE REPORT MAILED: // A. () AL SIGNE

SIGNED BY ..... D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS





CHE ANALYTICAL

•

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U PPm (	Au ppm	Th ppm (	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na X	K %	W ppm	Au** S ppb	AMPLE lb	
I 96-02 55 I 96-02 56 I 96-02 57 I 96-02 58 I 96-02 59	6 6 8 6 4	373 170 3725 329 357	3 4 <3 7 <3	18 25 29 27 29	<.3 <.3 <.3 <.3 <.3	46 52 44 48 54	36 35 54 36 32	554 585 701 715 705	6.35 6.40 7.93 6.58 6.53	3 5 3 3 11	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7 17 11 13 11	<.2 <.2 .3 <.2 .2	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2	207 223 209 219 194	.61 .70 .79 1.11 1.03	.008 .009 .006 .009 .012	<1 <1 <1 <1 <1	117 213 110 183 202	4.56 4.71 5.06 5.34 4.94	7 19 17 10 17	.06 .06 .05 .04 .06	<3 <3 <3 <3 <3 <3	4.07 4.21 4.38 4.85 4.22	.04 .05 .04 .07 .05	.06 .20 .14 .10 .18	<2 <2 <2 <2 <2 <2 <2	6 2 30 3 7	16 13 14 14 15	
I 96-02 60 I 96-02 61 I 96-02 62 I 96-02 63 RE I 96-02 63	1 2 3 5 6	525 1083 789 415 439	<3 4 4 11	33 36 38 35 37	<.3 <.3 <.3 <.3 <.3	56 77 146 210 223	35 37 39 36 36	695 788 710 585 605	6.00 6.58 5.85 4.93 5.09	7 2 ~2 3 4	<5 <5 <5 <5 <5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 <2 <2 <2 <2 <2 <2 <2 <2	5 5 4 6 7	<.2 .3 <.2 .2 <.2	<2 <2 <2 <2 <2 <2 <2 <2 <2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	185 211 150 114 118	.42 .47 .45 .52 .54	.009 .008 .011 .011 .009	<1 <1 <1 <1 <1	155 129 300 510 526	5.00 5.19 5.01 4. <b>75</b> 4.92	17 5 <1 10 8	.06 .06 .04 .05 .05	3 5 3 3 3 3 3 3	4.17 4.44 4.19 3.63 3.82	.04 .04 .03 .05 .05	.14 .04 .01 .08 .09	~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~	3 9 7 6 5	15 13 12 15	
RRE I 96-02 63 I 96-02 64 I 96-02 65 I 96-02 66 I 96-02 67	5 3 2 5 2	433 500 823 763 690	3 3 3 3 3 3	35 28 31 33 35	<.3 <.3 <.3 <.3 <.3	210 144 212 178 173	35 37 47 38 40	567 575 725 762 743	4.78 5.46 6.36 5.65 6.36	<2 2 2 2 2 3	<5 <5 <5 <5 <5	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<2 <2 <2 <2 <2 <2 <2	6 5 3 4 4	.8 <.2 .5 .6 .2	<2 <2 <2 <2 <2 <2 <2	~2 5 7 7 7 7 4	110 157 140 133 149	.51 .44 .57 .99 .89	.010 .008 .003 .004 .004	<1 <1 <1 <1 <1	483 319 563 561 485	4.61 4.78 6.19 6.11 5.80	12 8 1 3 1	.04 .05 .03 .02 .02	3 3 3 3 3 3 3	3.55 3.73 4.94 4.91 4.83	.05 .05 .03 .03 .03	.08 .08 .01 .01 .01	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8 6 5 8 8	15 15 14 13	
I 96-02 68 I 96-02 69 I 96-02 70 I 96-02 71 I 96-02 72	3 3 6 9 2	514 390 921 555 183	<3 6 3 <3 <3	33 10 8 15 22	<.3 <.3 <.3 <.3 <.3	123 59 55 52 47	37 46 44 41 28	736 390 317 412 465	6.23 6.44 5.69 5.83 4.84	3 <2 <2 3 3	<5 <5 <5 <5 <5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	5 2 2 11	<.2 .4 <.2 <.2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	171 247 227 222 170	1.02 .34 .28 .50 1.86	.005 .008 .010 .010 .014	<1 <1 <1 <1 1	366 207 169 193 136	5.35 5.54 4.59 4.71 3.71	3 22 36 20 8	.02 .05 .06 .04 .05	<3 <3 4 3 4	4.45 4.41 3.52 3.68 3.16	.03 .02 .03 .03 .04	.01 .19 .31 .11 .04	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	14 10 9 7 6	13 13 16 11 11	
1 96-02 73 1 96-02 74 1 96-02 75 1 96-02 76 1 96-02 77	3 3 1 2 2	192 277 128 94 524	3 3 5 5 6	13 13 10 8 9	<.3 <.3 <.3 <.3 <.3	49 50 31 23 41	26 27 28 28 31	317 287 226 245 210	3.44 4.75 4.33 4.79 4.22	<2 11 4 4 <2	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 <2 <2 <2 <2 <2 <2 <2	3 3 5 3 6	<.2 <.2 <.2 .2 .2 .4	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2	151 196 206 218 156	.66 .41 .40 .30 .43	.011 .015 .015 .018 .018	<1 <1 <1 1 1	183 66 53 20 100	3.78 3.90 3.54 3.34 2.94	19 22 17 35 28	.04 .05 .04 .06 .05	<3 3 4 <3 <3	2.77 2.83 2.94 2.93 2.53	.03 .05 .06 .06 .06	.11 .18 .16 .27 .17	3 2 2 2 2 2 2 2 2	4 2 3 3 4	10 10 12 13 14	
I 96-02 78 I 96-02 79 I 96-02 80 RE I 96-02 80 RRE I 96-02 80	4 6 2 2 2	1436 924 117 117 120	3 <3 <3 <3 3 3	7 5 5 6	<.3 <.3 <.3 <.3 <.3	23 33 20 21 21	35 37 16 15 17	221 125 109 112 120	4.78 4.97 2.55 2.61 2.73	5 3 <2 <2 <2 <2	<5 <5 <5 <5 <5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 <2 <2 <2 <2 <2	8 5 10 11 11	.5 <.2 <.2 .3 .3	<2 <2 <2 <2 <2 <2 <2 <2 <2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	201 181 134 138 144	.47 .47 .83 .85 .92	.015 .016 .015 .015 .015	1 1 <1 1	15 55 17 17 20	2.76 3.18 1.46 1.49 1.57	30 8 12 8 12	.06 .04 .03 .04 .04	<3 4 <3 <3 <3	2.59 2.83 1.77 1.82 1.90	.08 .07 .10 .10 .11	.33 .04 .05 .04 .05	<2 2 3 2 4	8 10 3 4 <2	14 14 15 -	
I 96-02 81 I 96-02 82 I 96-02 83 I 96-03 84 I 96-03 85	2 1 1 4 8	87 96 282 92 317	5 5 3 3 3 3	6 7 26 44 28	<.3 <.3 <.3 <.3 <.3	20 25 72 236 195	15 19 34 35 35	115 191 459 810 485	2.78 3.69 5.70 4.84 4.33	<2 5 9 6 2	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	7 14 30 3 5	.4 .2 .3 .4 <.2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	154 146 173 94 76	.47 .91 1.87 .59 .35	.014 .012 .003 .006 .005	1 <1 <1 <1	15 24 216 674 498	1.86 1.98 3.97 5.41 4.07	8 8 11 <1 6	.04 .03 .02 .03 .02	3 3 3 3 3 3 3	1.73 2.31 4.25 4.13 3.22	.07 .12 .12 .02 .04	.06 .03 .03 .01 .01	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<2 4 5 3 9	15 15 16 14 14	
1 96-03 86 I 96-03 87 Standard C2/AU-R	4 3 26	113 803 62	<3 4 43	26 24 133	<.3 <.3 6.8	168 103 73	32 47 40	402 419 1169	3.87 6.12 4.24	2 4 43	<5 <5 20	<2 <2 8	<2 <2 40	8 38 57	.3 .9 22.7	<2 <2 21	<2 <2 23	78 139 80	.57 1.10 .60	.006 .007 .106	<1 <1 47	437 261 72	3.66 3.83 .97	6 11 195	.02 .03 .08	<3 <3 26	3.17 4.27 1.99	.10 .22 .06	.02 .02 .15	<2 <2 14	11 8 477	13 13 -	





.

SAMPLE#	Mo ppm p	Cu F pm pp	vb Z om pp	(n A Xm pp	n ya N	i Co m ppm	Mn ppm	Fe %	As ppm	U ppm j	Au ppm (	Th ppm p	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	8 ppm	Al %	Na %	К %	W / ppm	vr** s	AMPLE Lb	
I 96-03 88 I 96-03 89 I 96-03 90 I 96-03 91 I 96-03 92	3 17 4 10 4 9 6 33 4 38	28 35 58 09 41	3 2 3 3 3 2 3 2 3 2 4 2	9 <. 0 <. 6 <. 7	.3 7 .3 9 .3 12 .4 8 .6 8	8 39 7 30 2 34 1 39 4 40	374 346 430 656 412	5.65 4.92 4.94 6.71 6.53	4 2 ~2 2 2	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	< < < < < < < < < < < < < < < <> <> <> <	44 33 35 49 54	1.0 1.4 1.1 1.7 1.7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4 2 3 2 2	129 113 111 179 196	1.44 2.46 2.89 3.78 1.87	.005 .009 .006 .006 .006	<1 1 <1 <1 <1	138 220 275 167 202	3.44 3.76 4.38 4.92 4.42	11 4 4 4 13	.03 .03 .03 .02 .03	34 34 35 35	4.32 4.21 4.66 5.22 5.38	.28 .24 .22 .20 .26	.02 .01 .01 .03 .04	< < < < < < < < < < < < < < < <> <> <> <	41 25 15 16 80	13 14 15 15 16	
I 96-03 93 I 96-03 94 RE I 96-03 94 RRE I 96-03 94 I 96-03 95	5 29 9 22 9 22 10 22 6 9	53 05 51 70 96	6 2 3 2 3 2 3 2 7 1	22 . 20 . 21 . 22 .	.4 2 .3 3 .3 3 .3 3 .3 3	2 34 2 29 2 27 1 29 4 27	297 370 364 373 343	5.69 5.36 5.34 5.43 5.25	<2 9 <2 <2 4	<5 <5 <5 <5 <5 <5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	22 39 39 40 27	.6 .3 1.1 1.5 1.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2000	222 197 199 202 215	.98 1.54 1.52 1.56 1.00	.010 .009 .010 .009 .012	<1 1 1 1	9 30 29 31 41	2. <b>86</b> 3.48 3.46 3.54 3.45	26 8 13 8 22	.06 .04 .04 .04 .05	<3 3 3 4 5 4 3 3	3.41 4.26 4.26 4.39 3.55	.23 .25 .25 .26 .17	.18 .04 .05 .05 .14	< < < < < < < < < < < < < < < < < <> </td <td>56 46 49 55 9</td> <td>15 15 - 16</td> <td></td>	56 46 49 55 9	15 15 - 16	
I 96-03 96 I 96-03 97 I 96-03 98 I 96-03 99 I 96-03 100	3 4 1 3 1 1 <1 1	51 02 30 23 22	(3 1 (3 1 (3 1 (3 1 (3 1 (3 1	8 <. 6 <. 8 <. 6 <.	.3 12 .3 9 .3 14 .3 13 .3 3	2 20 0 21 0 27 8 26 5 14	337 226 242 201 209	3.13 2.91 3.17 3.32 3.24	<2 <2 6 <2 8	<5 <5 <5 <5 <5	~? ~? ~? ~? ~?	~ ~ ~ ~ ~ ~ ~ ~ ~	30 18 12 18 45	<.2 .7 .8 1.0 .7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	44422	107 110 92 120 177	.98 1.35 .86 .81 1.59	.008 .007 .007 .012 .017	<1 <1 <1 <1	409 346 545 454 86	3.22 3.04 4.17 3.86 2.05	5 19 12 9 23	.03 .03 .02 .03 .03	<3 <3 5 3 6	3.07 3.26 3.87 3.54 3.08	.15 .21 .13 .15 .23	.06 .06 .02 .02 .02	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	3 6 2 2 2 2	15 14 14 14 13	
I 96-03 101 I 96-03 102 I 96-04 103 I 96-04 104 I 96-04 105	<1 1 4 <1 4 3 6 7 18	2 · 46 · 39 01 · 96 ·	(3 1) (3 1) (3 1) (4 3) (3 1) (3 1) (3 1)	2 <.  8 <.  6 <.  7 <.  3 <.	.3 10 .3 11 .3 16 .3 2 .3 3	7 17 1 27 8 36 6 28 8 33	217 470 703 598 552	2.07 3.88 5.01 6.55 5.63	<2 <2 5 <2 5 2 2	<5 <5 <5 <5 <5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	< < < < < < < < < < < < < < < < < < <	12 55 6 4 6	.5 .7 .8 1.1 .9	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4 <2 2 4 2	65 133 126 205 146	1.17 2.75 .47 .18 .48	.005 .005 .007 .013 .012	<1 <1 <1 <1	505 362 332 36 38	2.88 3.28 4.90 3.62 3.72	7 33 12 18 21	.01 .01 .04 .06 .07	5 7 <3 3 4	2.99 4.35 3.78 3.53 3.44	.17 .28 .06 .06 .07	.02 .02 .07 .16 .18	< < < < < < < < < < < < < < < < < <> </td <td>&lt;2 4 2 4 6</td> <td>13 14 17 14 14</td> <td></td>	<2 4 2 4 6	13 14 17 14 14	
I 96-04 106 I 96-04 107 I 96-04 108 I 96-04 109 RE I 96-04 109	7 10 1 4 7 29 4 10 4 10	30 16 07 27 28	3 2 6 3 3 2 3 2 3 2 3 2 6 2	2 <. 2 <. 27 . 22 <. 22 <.	.3 4 .3 8 .3 6 .3 8 .3 9	2 39 0 30 2 56 6 46 2 45	723 835 617 664 665	6.76 5.37 7.50 6.67 6.69	<2 5 6 4 4	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6 11 6 5 5	1.1 1.1 1.4 1.2 1.0	~~~~~~	~2 ~2 ~2 ~4 ~2	176 134 191 179 179	.46 .64 .43 .41 .41	.009 .008 .008 .008 .008	<1 <1 <1 <1 <1	39 178 94 179 182	5.00 4.52 5.19 5.75 5.81	12 14 10 9 6	.04 .05 .05 .06 .06	<3 <3 4 8 <3	4.42 3.81 4.22 4.74 4.78	.03 .04 .04 .03 .03	.13 .15 .12 .19 .18	<2 <2 <2 <2 <2 <2 <2 <2	2 2 19 3 4	15 15 17 12	
RRE I 96-04 109 I 96-04 110 I 96-04 111 I 96-04 112 I 96-04 113	3 10 2 10 6 27 4 14 3 10	32 68 44 75 90	4 2 14 2 12 1 <3 2 5 2	21 <. 29 <. 15 <. 20 <.	.3 8 .3 8 .3 3 .3 5 .3 4	8 44 8 48 3 49 4 46 9 38	658 756 446 720 765	6.62 7.88 5.52 7.17 6.77	4 7 6 <2	<5 <5 <5 <5 <5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	6 8 6 9	.9 1.0 .9 1.2 1.0	~~~~	<2 3 <2 2 3	177 186 201 200 188	.41 .52 .37 .42 .53	.010 .003 .009 .007 .006	<1 <1 1 <1	178 235 44 1 <b>86</b> 130	5.74 6.01 4.24 6.38 5.61	7 16 38 15 6	.05 .05 .05 .05 .05	4 3 3 6 3	4.72 5.17 3.54 5.15 4.73	.03 .04 .05 .02 .03	.18 .24 .38 .11 .11	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	3 5 8 2 4	14 13 12 14	
I 96-04 114 I 96-04 115 I 96-04 116 I 96-04 117 I 96-04 118	2 3 1 2 1 2 3 9 <1	53 59 35 55 21	9 2 5 1 <3 1 11 2 5 3	22 <. 19 <. 15 <. 20 <. 32 <.	.3 5 .3 3 .3 3 .3 11 .3 11	6 31 7 25 2 29 1 42 6 38	664 613 542 706 725	4.87 4.05 5.10 6.58 5.91	<2 2 4 2 2	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 <2 <2 <2 <2 <2 <2 <2	7 7 9 7 10	.5 .6 1.1 1.5 .8	~~~~~	\$ \$ \$ \$ \$ \$ \$ \$	151 136 157 176 148	.61 .60 .74 .59 .73	.006 .006 .016 .007 .005	<1 <1 <1 <1 <1	136 90 44 258 422	3.98 2.99 3.11 5.19 5.11	17 14 30 27 12	.06 .05 .08 .06 .05	43333	3.40 2.66 3.02 4.44 4.35	.07 .08 .08 .06 .06	.18 .19 .26 .30 .16	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4 4 5 ~2	15 15 14 14 13	
I 96-04 119 I 96-04 120 STANDARD C2/AU-R	1 4 <1 5 25	07 88 60	4 1 6 2 42 13	18 <. 22 <. 31 6.	.36 .36 .57	7 29 2 34 5 39	629 576 1148	5.21 6.19 4.16	2 2 45	<5 <5 17	<2 <2 8	<2 <2 39	9 12 56	1.3 1.0 22.6	<2 <2 18	<2 <2 18	137 173 79	.73 .83 .58	.006 .009 .106	<1 <1 45	202 153 66	3.85 4.14 .94	24 23 196	.05 .07 .08	<3 <3 27	3.47 3.86 1.98	.08 .09 .06	.28 .26 .15	<2 <2 14	5 7 464	13 12 -	





**A**A

ACHE ANALYTICAL				ACHE ANALYTICAL
SAMPLE#	Cu Pb Zn Ag Ni Co Mn Fe As ppm ppm ppm ppm ppm ppm ppm % ppm	U Au Th Sr Col Sb Bi ppm ppm ppm ppm ppm ppm ppm ppm ppm	V Ca P La Cr Mg Ba Ti B Al M xpm % % ppm ppm % ppm % ppm %	Na K WAu**SAMPLE %% ppm ppb lb
I 96-04 121 I 96-04 122 I 96-04 123 I 96-04 124 I 96-04 125	95       4       27       <.3	<pre>&lt;5 &lt;2 &lt;2 15 .9 2 3 19 &lt;5 &lt;2 &lt;2 16 .5 &lt;2 3 11 &lt;5 &lt;2 &lt;2 9 .7 &lt;2 &lt;2 18 &lt;5 &lt;2 &lt;2 9 .7 &lt;2 &lt;2 18 &lt;5 &lt;2 &lt;2 9 .9 &lt;2 2 17 &lt;5 &lt;2 &lt;2 5 1.0 &lt;2 2 19</pre>	92       .76       .013       <1	16 .40 <2 <2 12 12 .11 <2 <2 13 12 .46 <2 8 14 13 .42 <2 12 14 06 .05 <2 <2 12
I 96-05 126 I 96-05 127 I 96-05 128 I 96-05 129 I 96-05 130	1533       <3	<5 <2 <2 7 1.7 <2 <2 15 <5 <2 <2 8 1.1 <2 3 14 <5 <2 <2 8 .6 <2 <2 19 <5 <2 <2 6 1.0 <2 2 15 <5 <2 <2 6 1.0 <2 2 15 <5 <2 <2 11 .8 <2 <2 11	57       .37       .009       <1	09 .14 <2 18 16 05 .14 <2 7 13 10 .31 <2 6 15 11 .23 <2 13 15 13 .11 <2 <2 12
I 96-05 131 I 96-05 132 I 96-05 133 I 96-05 134 I 96-05 135	1503       <3	<5 <2 <2 7 .5 <2 <2 7 <5 <2 <2 17 .6 <2 <2 10 <5 <2 <2 10 1.3 <2 <2 18 <5 <2 <2 8 .8 <2 <2 12 <5 <2 <2 8 .8 <2 <2 12 <5 <2 <2 7 .2 <2 15	72       1.04       .009       <1	16 .08 6 26 14 09 .27 <2 <2 14 14 .43 <2 4 14 12 .33 <2 6 13 15 .34 <2 8 15
RE I 96-05 135 RRE I 96-05 135 I 96-05 136 I 96-05 137 I 96-05 138	1822       <3	<5	52       .37       .013       <1	15 .35 <2 8 - 17 .35 <2 6 - 13 .13 <2 5 14 10 .20 <2 6 14 10 .28 <2 13 11
I 96-05 139 I 96-05 140 I 96-05 141 I 96-05 142 I 96-05 143	772       <3	<5	141       .61       .009       <1	11       .11       <2
I 96-05 144 I 96-05 145 I 96-05 146 I 96-05 147 I 96-05 148	31       3       22       <.3	<5	125       .72       .009       <1	09       .03       <2
I 96-05 149 RE I 96-05 149 RRE I 96-05 149 I 96-05 150 I 96-06 151	304       5       129       <.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	145       .51       .006       <1	14 .02 <2 8 14 .14 .02 <2 8 - .15 .02 <2 8 - .15 .05 <2 8 - .15 .05 <2 2 18 .07 .17 <2 <2 13
I 96-06 152 I 96-07 153 Standard C2/AU-R	12 4 16 <.3 65 24 322 3.89 <2 26 3 17 <.3 44 21 360 3.55 <2 59 42 125 6.2 71 39 1102 3.99 46	<pre>&lt;5 &lt;2 &lt;2 12 .4 &lt;2 &lt;2 1 &lt;5 &lt;2 &lt;2 7 .6 &lt;2 &lt;2 1 19 8 35 56 21.9 15 19 7</pre>	114       .78       .009       <1	12 .10 <2 3 14 13 .13 <2 <2 14 .07 .16 14 442 -

					¢	Gı	uin	et	Mai	naç	jem	ent		F		E #	96	5-0	832	2								I	Pag	e 5		ACRE AMALYTICAL
SAMPLE#	Mo Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	sb	Bi	۷	Ca	Ρ	La	Cr	Mg	Ba	Ti	B	Al	Na	κ	W	Au**	SAMPLE	
	ppm ppm	ppm	ppm	ppm	ppm	ppm	ppm	~ ~ ~	ppm	ppm	ppm	ppm	ppm	ppm	pm	ppm	ppm	*	%	ppm	ppm	<u>×</u>	ppm	<u>×</u>	ppm	<b>X</b>	~ ~ ~	<u> </u>	ppm	ppb	lb_	
I 96-07 154	1 197	<3	13	<.3	106	35	460	4.97	4	<5	<2	<2	7	.3	2	<2	138	.66	.010	<1	259	3.95	26	.06	<3	3.12	.05	.41	<2	11	12	
I 96-07 155	<1 65	<3	15	1.3	58	26	297	4.04	2	<5	<2	<2	9	.2	3	<2	121	.57	.011	<1	83	2.42	10	.05	<3	2.16	.06	.08	38	4	14	
I 96-08 156	<1 35	<3	17	<.3	113	30	419	3.92	2	6	<2	<2	7	.3	2	<2	96	.97	.007	<1	351	3.68	6	.03	<3	2.70	.04	.05	<2	6	14	
I 96-08 157	<1 10	3	17	<.3	60	26	359	4.06	3	5	<2	<2	12	<.2	3	<2	105	.68	.008	1	171	3.23	11	.07	<3	2.60	.05	.12	<2	<2	13	
I 96-08 158	1 329	<3	12	<.3	40	30	509	5.16	<2	<5	<2	<2	6	.2	<2	<2	146	.34	.010	<1	47	3.91	18	.07	<3	3.41	.05	.16	<2	6	12	
RE I 96-08 158	1 334	<3	12	<.3	40	30	504	5.09	2	<5	<2	<2	6	<.2	2	<2	144	.34	.010	<1	52	3.86	18	.07	<3	3.39	.05	.16	<2	6	-	

Sample type: CORE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

T							<u>Gr</u>	line	<u>et l</u>	<u>(an</u>	<b>age</b> 310	<b>≥me</b> Nige	<u>nt</u> L Av	F e, V	'il€ ancou	e # ver	96 BC V	5-0 57 2	832 L9	2	Pa	ge	1									
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Min ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sʻb ppm	Bi ppm	V ppm	Ca %	P <b>X</b>	La ppm	Cr ppm	Mg X	Ba ppm	⊺i %	8 ppm	Al X	Na %	K %	W / ppm	Au** S ppb	AMPLE lb
1 96-01 22 1 96-01 23 1 96-01 24 1 96-01 25 1 96-01 26	1 1 <1 <1 1	17 57 104 18 21	4 <3 <3 7 <3	9 7 6 6 6	<.3 <.3 <.3 <.3 <.3	45 60 34 26 34	12 17 14 12 17	119 194 154 181 203	1.86 2.49 3.10 3.55 3.16	<2 <2 <2 <2 <2 <2 <2 <2 <2	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2	16 16 20 31 30	.2 .7 .5 .7	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	95 119 154 189 191	.91 1.26 1.07 2.06 1.27	.007 .007 .009 .020 .012	<1 <1 <1 <1 <1	186 173 107 56 97	.95 1.11 .93 1.10 1.00	211 109 126 176 108	.04 .03 .04 .08 .06	\$\$\$\$\$	1.29 1.54 1.63 2.77 2.20	. 13 . 16 . 19 . 21 . 34	.32 .18 .24 .37 .34	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 2 2 2 2 7	17 17 16 18
I 96-01 27 I 96-01 28 I 96-01 29 I 96-01 30 I 96-01 31	1 2 3 1 2	712 2570 476 276 2424	<3 12 7 5 <3	13 18 8 6 7	<.3 <.3 <.3 <.3 <.3	76 50 58 25 29	33 32 26 20 20	244 336 165 135 91	5.84 6.71 6.29 4.89 4.84	<> <> <> <> <> <> <> <> <> <> <> <> <> <	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	38 28 35 32 57	1.0 1.6 1.0 .6 .7	<2 <2 <2 <2 <2 <2 <2	2 2 2 2 2 2 2 2 2 2 2 2 2 2	201 214 190 210 195	1.33 .99 .68 .78 1.11	.006 .005 .007 .007 .008	1 1 1 <1	284 263 278 120 183	2.50 3.15 2.51 2.22 1.08	32 37 29 43 23	.02 .02 .03 .04 .02	3 3 3 3 3 3 3 3 3	3.22 3.34 2.65 2.53 2.52	.18 .15 .15 .18 .24	.12 .17 .15 .24 .10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7 17 5 4 34	17 17 16 16 16
I 96-01 32 I 96-01 33 I 96-02 34 I 96-02 35 I 96-02 36	1 1 5 6 5	2921 1659 338 1358 2270	<3 5 <3 <3 4	6 5 55 34 36	<.3 <.3 <.3 <.3 <.3	94 43 318 246 151	31 23 50 45 48	126 123 894 541 492	7.17 5.53 5.55 4.84 6.52	3 2 2 5 2 5 2	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2	43 39 10 3 3	.7 1.3 1.7 .5 1.0	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 3 <2 7 <2	261 223 155 94 144	1.08 .65 3.57 1.19 .55	.005 .008 .005 .006 .004	<1 <1 <1 <1	475 328 942 621 450	1.53 1.53 7.45 5.21 6.72	19 25 25 9 4	.02 .02 .02 .02 .03	<3 3 3 4 5	2.88 2.43 4.73 3.64 5.09	.23 .14 .01 .03 .03	.07 .13 .02 .04 .02	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	57 19 2 13 17	14 15 13 16 12
RE 1 96-02 36 RRE I 96-02 36 I 96-02 37 I 96-02 38 I 96-02 39	5 4 5 2	2350 2313 631 2784 1471	3 <3 9 8 3	36 37 22 18 12	<.3 <.3 <.3 .3 <.3	158 159 199 45 43	48 47 45 36 32	505 497 457 391 327	6.70 6.57 6.35 6.49 6.20	<2 <2 <2 <2 <2 <2 <2 <2 <2 <3	<5 <5 <5 <5 <5	~? ~? ~? ~? ~?	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	3 3 48 76	1.4 1.4 1.0 1.6 1.1	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 3 4 2 2 2	147 145 160 175 193	.56 .55 .50 .83 .77	.005 .005 .006 .007 .009	<1 <1 <1 <1	465 454 630 124 87	6.95 6.78 6.60 4.92 4.60	1 6 9 11	.03 .03 .03 .04 .04	3 7 3 3 3 3	5.22 5.13 4.92 4.80 4.15	.03 .03 .02 .11 .05	.02 .02 .02 .04 .08	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	19 15 6 9 7	- 11 16 15
1 96-02 40 1 96-02 41 I 96-02 42 I 96-02 43 I 96-02 44	3 1 <1 1 <1	337 1128 356 1312 180	6 <3 8 3 6	17 18 18 15 13	<.3 <.3 <.3 <.3 <.3	50 53 51 52 45	33 40 28 30 25	391 392 360 519 291	5.80 6.76 4.89 5.59 4.35	<2 2 2 2 4 2	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	34 129 31 15 23	1.1 1.0 .7 1.4 .6	<2 <2 <2 <2 <2 <2	4 5 2 2 2 2 2	175 186 148 153 132	.48 .67 .66 2.30 1.60	.011 .011 .013 .013 .013	<1 <1 <1 <1	142 207 211 222 192	5.16 5.41 4.48 4.28 3.12	32 16 8 3 6	.09 .06 .07 .06 .06	3 3 3 3 3 3 3 3 3 3	4.30 4.79 3.53 3.38 2.64	.05 .06 .06 .05 .07	.29 .12 .09 .03 .02	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	3 19 7 13 2	14 15 15 15
1 96-02 45 I 96-02 46 RE I 96-02 46 RRE I 96-02 46 I 96-02 47	1 1 1 2 1	234 19 18 19 1071	3 3 3 3 3 3 3	13 17 16 18 22	<.3 <.3 <.3 <.3 <.3	39 40 41 45 52	21 20 20 21 <b>33</b>	297 300 294 302 490	3.90 3.50 3.43 3.65 5.29	<2 <2 4 <2 4	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	17 15 14 15 12	.5 1.0 .2 .7 .3	<2 <2 <2 <2 <2 <2	2 <2 <2 <2 <2 <2	128 101 98 105 164	1.29 2.32 2.29 2.45 1.40	.012 .013 .014 .014 .014	1 <1 <1 <1	137 160 156 166 237	2.62 2.54 2.44 2.62 4.67	8 3 3 1	.06 .05 .05 .05 .06	<3 <3 <3 <3 <3 <3	2.36 2.25 2.15 2.33 3.68	.10 .09 .08 .09 .05	.04 .02 .02 .02 .03	<2 <2 <2 <2 <2 <2 <2	3 2 2 <2 6	16 16 - 15
I 96-02 48 I 96-02 49 I 96-02 50 I 96-02 51 I 96-02 52	1 1 6 22	1338 621 1360 379 5712	3 <3 <3 6 9	26 29 35 14 19	<.3 <.3 <.3 <.3 .4	127 197 198 54 61	39 42 48 37 50	535 618 666 359 428	5.73 6.18 6.43 5.12 8.51	3 <2 <2 <2 <2 <2	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	17 7 11 35 42	1.2 .6 .7 .8 1.5	<2 <2 <2 <2 <2 <2	<2 2 <2 <2 7	159 137 171 229 222	.58 .65 1.32 .60 .48	.010 .006 .004 .014 .006	<1 <1 <1 <1	388 541 549 129 188	5.70 6.73 6.99 5.52 6.70	5 <1 3 13	.03 .02 .02 .08 .05	<3 <3 <3 <3 <3	4.45 5.04 5.26 4.45 5.89	.04 .02 .02 .04 .07	.02 .01 .01 .17 .02	< < < < < < < < < < < < < < < < < < < <	5 5 11 4 16	15 13 15 15 14
I 96-02 53 I 96-02 54 STANDARD C2/AU-R	3 1 22	1765 954 61	<3 3 42	17 22 126	<.3 <.3 6.4	45 54 72	39 42 39	409 583 1113	7.02 8.15 4.04	<2 <2 42	<5 <5 19	<2 <2 7	<2 <2 38	55 55 55	.6 1.4 22.0	<2 <2 19	4 2 19	217 228 75	.78 1.30 .56	.009 .008 .103	<1 <1 44	112 143 66	5.26 6.18 .90	24 5 188	.07 .04 .07	<3 <3 22	5.16 6.05 1.87	.13	.14 .03 .14	<2 <2 14	6 6 458	17 15 -

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: FEB 27 1996 DATE REPORT MAILED: March 4/96 SIGNED BY ......D. TOYE, C. LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

**Guinet Management** FILE # 96-0832

Page 2

SAMPLE#	Mo	Cu ppn	Pb ppm	Zn	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm j	Sr ppm	Cd ppm	Sb ppm	Bi ppm	v ppm	Ca X	P %	La ppm	Cr ppm	Mg X	8a ppm	Ti X	B ppm	Al X	Na X	K X	W ppm	Au** ppb	SAMPLE lb	
1 96-02 55 1 96-02 56 1 96-02 57 1 96-02 57 1 96-02 58 1 96-02 59	6 6 8 6 4	373 170 3725 329 357	3 4 <3 7 <3	18 25 29 27 29	<.3 <.3 <.3 <.3 <.3	46 52 44 48 54	36 35 54 36 32	554 585 701 715 705	6.35 6.40 7.93 6.58 6.53	3 5 3 11	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2	7 17 11 13 11	<.2 <.2 .3 <.2 .2	<2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	207 223 209 219 194 1	.61 .70 .79 1.11 1.03	.008 .009 .006 .009 .012	<1 <1 <1 <1 <1	117 213 110 183 202	4.56 4.71 5.06 5.34 4.94	7 19 17 10 17	.06 .06 .05 .04 .06	3 3 3 3 3 3 3	4.07 4.21 4.38 4.85 4.22	.04 .05 .04 .07 .05	.06 .20 .14 .10 .18	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6 2 30 3 7	16 13 14 14 15	
I 96-02 60 I 96-02 61 I 96-02 62 I 96-02 63 RE I 96-02 63	1 2 3 5 6	525 1083 789 415 439	<3 4 4 4 11	33 36 38 35 37	<.3 <.3 <.3 <.3 <.3	56 77 146 210 223	35 37 39 36 36	695 788 710 585 605	6.00 6.58 5.85 4.93 5.09	7 2 <2 3 4	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2	5 5 4 6 7	<.2 .3 <.2 .2 <.2	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2	185 211 150 114 118	.42 .47 .45 .52 .54	.009 .008 .011 .011 .009	<1 <1 <1 <1 <1	155 129 300 510 526	5.00 5.19 5.01 4.75 4.92	17 5 <1 10 8	.06 .06 .04 .05 .05	ও ১ ৩ ৩ ৩ ৩ ৩ ৩	4.17 4.44 4.19 3.63 3.82	.04 .04 .03 .05 .05	.14 .04 .01 .08 .09	<2 3 <2 2 2 2	3 9 7 6 5	15 13 12 15	
RRE 1 96-02 63 1 96-02 64 1 96-02 65 1 96-02 66 1 96-02 66 1 96-02 67	5 3 2 5 2	433 500 823 763 690	⊲ ⊲ 3 3 √ 3 √ 3 √ 3	35 28 31 33 35	<.3 <.3 <.3 <.3 <.3	210 144 212 178 173	35 37 47 38 40	567 575 725 762 743	4.78 5.46 6.36 5.65 6.36	<2 2 2 2 2 2 3	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	6 5 3 4 4	.8 <.2 .5 .6	<2 <2 <2 <2 <2 <2 <2 <2 <2	<2 5 2 2 4	110 157 140 133 149	.51 .44 .57 .99 .89	.010 .008 .003 .004 .004	<1 <1 <1 <1	483 319 563 561 485	4.61 4.78 6.19 6.11 5.80	12 8 1 3 1	.04 .05 .03 .02 .02	3 3 3 3 3 3 3 3 3	3.55 3.73 4.94 4.91 4.83	.05 .05 .03 .03 .03	.08 .08 .01 .01 .01	<2 <2 <2 <2 <2 <2 <2 <2 <2	8 6 5 8 8	- 15 15 14 13	
1 96-02 68 1 96-02 69 1 96-02 70 1 96-02 71 1 96-02 72	3 3 6 9 2	514 390 921 555 183	<pre>&lt;3 6 3 &lt;3 &lt;3 &lt;3</pre>	33 10 15 22	<.3 <.3 <.3 <.3 <.3	123 59 55 52 47	37 46 44 41 28	736 390 317 412 465	6.23 6.44 5.69 5.83 4.84	3 <2 <2 3 3	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	5 2 2 2 11	<.2 .4 <.2 <.2 .4	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 <2 <2 <2 <2 <2	171 247 227 222 170	1.02 .34 .28 .50 1.86	.005 .008 .010 .010 .010	<1 <1 <1 <1 1	366 207 169 193 136	5.35 5.54 4.59 4.71 3.71	3 22 36 20 8	.02 .05 .06 .04 .05	<3 <3 4 3 4	4.45 4.41 3.52 3.68 3.16	.03 .02 .03 .03 .04	.01 .19 .31 .11 .04	<2 <2 <2 3 <2	14 10 9 7 6	13 13 16 11 11	
1 96-02 73 I 96-02 74 I 96-02 75 I 96-02 76 I 96-02 77	3 3 1 2 2	192 271 128 94 524	3 3 5 5 6	13 13 10 8	<.3 <.3 <.3 <.3 <.3 <.3	49 50 31 23 41	26 27 28 28 31	317 287 226 245 210	3.44 4.75 4.33 4.79 4.22	<2 11 4 4 <2	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 <2 <2 <2 <2 <2 <2	3 3 5 3 6	<.2 <.2 <.2 .2 .2	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	151 196 206 218 156	.66 .41 .40 .30 .43	.011 .015 .015 .018 .018	<1 <1 <1 1	183 66 53 20 100	3.78 3.90 3.54 3.34 2.94	19 22 17 35 28	.04 .05 .04 .06 .05	<3 3 4 <3 <3	2.77 2.83 2.94 2.93 2.53	.03 .05 .06 .06	.11 .18 .16 .27 .17	3 <2 2 <2 2	4 2 3 3 4	10 10 12 13 14	
1 96-02 78 1 96-02 79 1 96-02 80 RE 1 96-02 80 RRE 1 96-02 80	4 6 2 2 2	1430 924 111 111 120	5 3 <3 7 <3 7 <3 ) 3	, <u>, , , , , , , , , , , , , , , , , , </u>	<.3 <.3 <.3 <.3 <.3	23 33 20 21 21	35 37 16 15 17	221 125 109 112 120	4.78 4.97 2.55 2.61 2.73	5 3 <2 <2 <2	<5 <5 <5 <5 <5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 <2 <2 <2 <2 <2 <2	8 5 10 11 11	.5 <.2 <.2 .3 .3	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	201 181 134 138 144	.47 .47 .83 .85 .92	.015 .016 .015 .015 .016	1 1 <1 <1	15 55 17 17 20	2.76 3.18 1.46 1.49 1.57	30 8 12 8 12	.06 .04 .03 .04 .04	<3 4 <3 <3 <3	2.59 2.83 1.77 1.82 1.90	.08 .07 .10 .10 .11	.33 .04 .05 .04 .05	<2 2 3 2 4	8 10 3 4 <2	14 14 15 -	
I 96-02 81 I 96-02 82 I 96-02 83 I 96-03 84 I 96-03 85	2 1 1 4	8 90 28 91 31	7 5 5 5 2 <3 2 <3 7 <3	20 20 21	<pre>     &lt;.3     &lt;.3     &lt;.3     &lt;.3     &lt;.3     &lt;.3     &lt;.3     &lt;.3 </pre>	20 25 72 236 195	15 19 34 35 35	115 191 459 810 485	2.78 3.69 5.70 4.84 4.33	<2 5 9 6 2	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 <2 <2 <2 <2 <2 <2	7 14 30 3 5	.4 .2 .3 .4 <.2	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	154 146 173 94 76	.47 .91 1.87 .59 .35	.014 .012 .003 .006 .005	1 1 <1 <1 <1	15 24 216 674 498	1.86 1.98 3.97 5.41 4.07	8 8 11 <1 6	.04 .03 .02 .03 .02	८२ ८२ ८२ ८२ ८२	1.73 2.31 4.25 4.13 3.22	.07 .12 .12 .02 .04	.06 .03 .03 <.01 .01	<2 2 <2 <2 <2	<2 4 5 3 9	15 15 16 14 14	
I 96-03 86 I 96-03 87 STANDARD C2/AU-R	4 3 26	11 80 6	3 <3 3 4 2 43	20 24 133	<.3 <.3 6.8	168 103 73	32 47 40	402 419 1169	3.87 6.12 4.24	2 4 43	<5 <5 20	<2 <2 8	<2 <2 40	8 38 57	.3 .9 22.7	<2 <2 21	<2 <2 23	78 139 80	.57 1.10 .60	.006 .007 .106	<1 <1 47	437 261 72	3.66 3.83 .97	6 11 195	.02 .03 .08	<3 <3 26	3.17 4.27 1.99	.10 .22 .06	.02 .02 .15	<2 <2 14	11 8 477	13 13 -	



ð

			e e	
TTC		Guinet Management	FILE # 96-0832	Page 3
SAMPLE#	Mo Cu Pb Zn Ag Ni ppm ppm ppm ppm ppm ppm	Co Min Fe As U Au Th Sr ppm ppm % ppm ppm ppm ppm	Cd Sb Bi V Ca P La Cr Mg Ba Ti B Al ppm ppm ppm ppm % % ppm ppm % ppm % ppm %	Na K WAu**SAMPLE X X ppm ppb lb
1 96-03 88 1 96-03 89 1 96-03 90 1 96-03 91 1 96-03 92	3       1728       <3	39       374       5.65       4       <5	1.0       <2	.28       .02       <2
1 96-03 93 1 96-03 94 RE 1 96-03 94 RRE 1 96-03 94 1 96-03 95	5 2953 6 22 .4 22 9 2205 <3 20 .3 32 9 2251 <3 21 .3 32 10 2270 3 22 .3 31 6 996 7 17 <.3 34	34       297       5.69       <2	.6<2	.23       .18       <2
I 96-03 96 I 96-03 97 I 96-03 98 I 96-03 99 I 96-03 100	3       451       <3	20       337       3.13       <2	<pre>&lt;.2 &lt;2 4 107 .98 .008 &lt;1 409 3.22 5 .03 &lt;3 3.07 .7 &lt;2 4 110 1.35 .007 &lt;1 346 3.04 19 .03 &lt;3 3.26 .8 &lt;2 4 92 .86 .007 1 545 4.17 12 .02 5 3.87 1.0 &lt;2 &lt;2 120 .81 .012 &lt;1 454 3.86 9 .03 3 3.54 .7 &lt;2 &lt;2 177 1.59 .017 1 86 2.05 23 .03 6 3.08</pre>	.15       .06       <2
I 96-03 101 I 96-03 102 I 96-04 103 I 96-04 104 I 96-04 105	<pre>&lt;1 2 &lt;3 12 &lt;.3 107 1 446 &lt;3 18 &lt;.3 111 &lt;1 439 4 36 &lt;.3 168 3 601 &lt;3 17 &lt;.3 26 7 1896 &lt;3 13 &lt;.3 38</pre>	17       217       2.07       <2	.5       <2	.17       .02       <2
I 96-04 106 I 96-04 107 I 96-04 108 I 96-04 109 RE I 96-04 109	7 1030 <3 22 <.3 42 1 416 6 32 <.3 80 7 2907 <3 27 .3 62 4 1027 <3 22 <.3 86 4 1028 6 22 <.3 92	2       39       723       6.76       <2	1.1       <2	.03       .13       <2
RRE 1 96-04 109 I 96-04 110 I 96-04 111 I 96-04 112 I 96-04 113	3       1032       4       21       <.3	3       44       658       6.62       4       <5	.9       <2	.03       .18       <2
1 96-04 114 I 96-04 115 I 96-04 116 I 96-04 117 I 96-04 118	2 353 9 22 <.3 56 1 259 5 19 <.3 37 1 235 <3 15 <.3 32 3 955 11 20 <.3 111 <1 21 5 32 <.3 116	5       31       664       4.87       <2	.5       <2	.07       .18       <2
I 96-04 119 I 96-04 120 STANDARD C2/AU-R	1 407 4 18 <.3 67 <1 588 6 22 <.3 62 25 60 42 131 6.5 75	7 29 629 5.21 2 <5 <2 <2 9 2 34 576 6.19 2 <5 <2 <2 12 5 39 1148 4.16 45 17 8 39 56	1.3       <2	.08 .28 <2 5 13 .09 .26 <2 7 12 .06 .15 14 464 -



**Guinet Management** FILE # 96-0832

Page 4

ACRE ANALYTICAL

SAMPLE#	Mo Cu ppm ppm	Pb ppm (	Zn Ag opm ppm	Ni Co ppm ppm	Mn ppm	Fe % (	As opmip	U A pom pp	u Th m ppn	Sr ppm	Cd ppm	Sb ppm p	Bi V xpm ppm	Ca %	P %	La ppm (	Cr ppm	Mg E X pr	Ba Ti xm %	8 ppm	Al X	Na %	к %р	W Au om p	u** SAN ppb	IPLE lb	
I 96-04 121 I 96-04 122 I 96-04 123 I 96-04 124 I 96-04 125	<1 95 1 37 4 1206 3 905 2 788	4 <3 <3 5 <3	27 <.3 21 <.3 17 <.3 13 <.3 22 <.3	53 31 111 30 33 55 69 50 70 44	544 497 494 416 684	6.38 4.28 6.34 6.14 6.64	4 3 5 5 4 <2	<5 < <5 < <5 < <5 < <5 <		15 16 9 9 5	.9 .5 .7 .9 1.0	2 <2 <2 <2 <2 <2 <2	3 192 3 119 <2 189 2 174 2 192	.76 1.31 .39 .48 .30	.013 .006 .009 .009 .007	<1 <1 <1 <1 <1	138 3. 330 3. 26 4. 103 4. 202 5.	81 3 90 1 03 3 31 3	57 .10 6 .04 59 .07 53 .06 10 .06	<3 3 <3 3 4 3 7 4 <3 4	.86 .35 .84 .02 .40	.16 .12 .12 .13 .06	.40 .11 .46 .42 .05		<2 <2 8 12 <2	12 13 14 14 12	
I 96-05 126 I 96-05 127 I 96-05 128 I 96-05 129 I 96-05 130	4 1533 2 698 5 743 4 777 3 575	<3 5 8 <3 7	20 .4 16 <.3 16 <.3 14 <.3 12 <.3	39 37 91 37 31 38 36 36 37 26	509 490 449 357 353	5.99 6.06 6.81 5.64 4.46	4 3 <2 <2 <2	<5 < <5 < <5 < <5 <		2 7 2 8 2 8 2 6 2 11	1.7 1.1 .6 1.0 .8	<2 <2 <2 <2 <2 <2 <2 <2 <2	<pre>&lt;2 157 3 141 &lt;2 198 2 153 &lt;2 118</pre>	.37 .41 .31 .35 .66	.009 .008 .007 .009 .007	<1 <1 <1 <1 <1	71 3. 165 4. 31 4. 46 3. 63 3.	97 54 17 97 20	14 .06 10 .06 28 .07 20 .06 16 .05	<3 3 <3 4 <3 4 23 1 8 3	.74 .03 .03 .70	.09 .05 .10 .11 .13	. 14 . 14 . 31 . 23 . 11	<2 <2 <2 <2 <2 <2	18 7 6 13 <2	16 13 15 15 12	
I 96-05 131 I 96-05 132 I 96-05 133 I 96-05 134 I 96-05 135	12 1503 5 102 3 947 1 323 3 1798	<3 4 6 5	10 <.3 16 <.3 14 <.3 18 <.3 7 <.3	18 20 25 21 34 33 55 20 23 35	192 276 301 449 276	2.61 3.30 6.23 4.58 4.76	<2 3 <2 2 2	<5 < <5 < <5 < <5 <		2 7 2 17 2 10 2 8 2 7	.5 .6 1.3 .8 .2	<2 <2 <2 <2 <2 <2	<2 72 <2 107 <2 184 <2 128 <2 150	1.04 .79 .68 .68 .37	.009 .020 .010 .013 .013	<1 1 <1 <1 <1	19 1. 30 2. 41 3. 156 2. 18 3.	.99 .67 .68 .96 .02	10 .04 29 .14 39 .08 38 .09 34 .07	27 2 9 2 3 3 5 2 <3 2	.04 .48 .84 .83 .84	.16 .09 .14 .12 .15	.08 .27 .43 .33 .34	6 <2 <2 <2 <2	26 <2 4 6 8	14 14 13 15	
RE I 96-05 135 RRE I 96-05 135 I 96-05 136 I 96-05 137 I 96-05 138	4 1822 4 1818 1 794 7 1008 4 2078	<3 9 <3 3 4	9 <.3 8 <.3 12 <.3 11 <.3 9 <.3	24 3 24 34 65 3 59 3 39 38	6 403 5 386 1 331 5 428 3 324	4.87 4.91 5.42 6.21 6.67	3 2 3 3 4	<5 < <5 < <5 < <5 < <5 <		2 7 2 7 2 11 2 6 2 5	.9 1.1 1.1 .5 1.3	<2 <2 <2 <2 <2 <2	<2 152 <2 152 <2 130 6 195 <2 190	.37 .38 .63 .62 .34	.013 .012 .009 .009 .009	<1 <1 <1 <1	24 3. 24 3. 152 3. 124 4. 93 3.	.05 .06 .56 .54 .88	32 .08 34 .08 18 .05 25 .06 41 .06	5 2 5 2 6 3 3 2 3 2	2.88 2.90 3.42 4.16 3.83	.15 .17 .13 .10 .10	.35 .35 .13 .20 .28	<2 <2 <2 <2 <2	8 6 5 6 13	- 14 14 11	
I 96-05 139 I 96-05 140 I 96-05 141 I 96-05 142 I 96-05 143	4 772 2 886 <1 95 1 51 <1 38	<ul> <li>&lt;3</li> <li>&lt;3</li> <li>&lt;3</li> <li>&lt;3</li> <li>&lt;3</li> <li>&lt;4</li> </ul>	11 <.3 12 <.3 13 <.3 15 <.3 16 <.3	65 37 76 29 60 30 58 24 55 25	2 265 229 263 353 341	4.46 4.31 4.43 4.34 3.76	<2 <2 <2 4 2	<5 · <5 · <5 · <5 ·	<2 < <2 < <2 < <2 < <2 < <2 <	2 7 2 12 2 16 2 15 2 19	.8 .9 .8 .4 1.2	<2 <2 <2 <2 <2 <2	2 141 <2 126 3 131 <2 141 2 136	.61 .72 .78 1.42 1.91	.009 .010 .008 .008 .009	<1 1 1 <1 1	216 3. 164 3. 118 2. 163 2. 164 3.	.38 .23 .58 .74 .18	16 .05 12 .04 30 .05 8 .05 20 .09	3 3 3 3 3	5.11 5.02 2.89 5.12 5.03	.11 .13 .19 .15 .15	.11 .07 .22 .07 .12	<2 <2 <2 <2 <2 <2	15 15 <2 <2 <2	17 15 14 14 14	
1 96-05 144 1 96-05 145 1 96-05 146 1 96-05 147 1 96-05 148	<1 31 <1 333 <1 48 <1 9 1 144	3 6 3 4 5	22 <.3 27 <.3 20 <.3 17 <.3 21 <.3	78 24 68 54 49 25 61 25 51 35	4 415 3 597 5 473 5 455 2 494	4.52 7.48 5.41 4.94 6.34	<2 3 <2 2 <2	<5 · <5 · 5 · <5 ·	<2 < <2 < <2 < <2 < <2 <	2 6 2 5 2 5 2 7 2 5	.6 1.6 .6 1.1 1.0	<2 <2 <2 <2 <2 <2	<2 125 4 210 <2 182 <2 170 <2 200	.72 .89 .57 .51 .35	.009 .007 .010 .008 .011	<1 <1 <1 <1 <1	213 3. 155 4. 119 3. 163 3. 129 3.	.54 .34 .51 .28 .48	8 .03 5 .04 6 .04 10 .04 18 .05	ব্য ব্য ব্য ব্য	3.07 3.82 3.23 3.02 3.34	.09 .09 .08 .10 .08	.03 .03 .03 .06 .10	<2 <2 <2 <2 <2 <2	<2 <2 6 <2 3	15 12 15 12 14	
I 96-05 149 RE I 96-05 149 RRE I 96-05 149 I 96-05 150 I 96-06 151	1 304 1 300 1 300 <1 58 1 42	5 3 6 3 3 3 3	129 <.3 131 <.3 134 <.3 21 <.3 23 <.3	50 3 51 3 51 3 57 2 75 3	3       407         4       406         5       411         2       329         1       446	5.01 4.97 5.02 3.32 5.16	<2 2 4 3 <2	<5 <5 <5 <5 <5	<2 < <2 < <2 < <2 < <2 <	2 5 2 5 2 5 2 8 2 8	1.4 .9 1.0 .4 1.0	<2 <2 <2 <2 <2 <2	<2 145 <2 143 <2 144 <2 103 <2 146	5.51 50 52 52 53 52 50 52 50 50 50 50 50 50 50 50 50 50 50 50 50	.006 .005 .007 .009 .011	<1 <1 <1 <1 <1	106 2. 106 2. 107 2. 142 2. 154 3.	.90 .88 .91 .25 .52	6.03 6.03 8.03 12.04 14.07	ব্য ব্য ব্য ব্য ব্য	2.65 2.63 2.62 2.01 3.02	.14 .14 .15 .15 .07	.02 .02 .02 .05 .17	<2 <2 <2 <2 <2 <2	8 8 2 <2	14 - 18 13	
1 96-06 152 1 96-07 153 STANDARD C2/AU-R	<1 12 <1 26 23 59	2 4 5 3 9 42	16 <.3 17 <.3 125 6.2	65 2 44 2 71 3	4 322 1 360 9 1102	3.89 3.55 3.99	<2 <2 46	<5 <5 19	<2 < <2 < 8 3	2 12 2 7 5 56	.4 .6 21.9	<2 <2 15	<2 114 <2 120 19 78	.78 .74 .58	.009 .011 .102	<1 <1 44	150 2 107 2 70	.47 .47 .90 1	14 .04 12 .05 89 .09	<3 <3 24	2.18 2.14 1.96	.12 .13 .07	.10 .13 .16	<2 <2 14	3 <2 442	14 14 -	

ACME YTICAL LABORATORIES LTD. COUVER BC V6A 1R6 852 E. HASTINGS ST. PHONE(604)253-3158 FAX(604) -1716 GEOCHEM PRECIOUS METALS ANALYSIS Guinet Management File # 96-0732R 310 Nigel Ave, Vancouver BC V5Y 2L9 SAMPLE# Au** ppb I96-01 #1 128 196-01 #2 196-01 #3 23 196-01 #4 196-01 #5 19 12 25 73 51 56 **I96-01** #6 **I96-01** #7 I96-01 #8 RE 196-01 #8 55 RRE 196-01 #8 I96-01 #9 I96-01 #10 16 17 Ī9ĕ-ŏī #ī1 18 5 I96-01 *#*12 I96-01 #13 12 I96-01 #14 I96-01 #15 47 15 16 I96-01 #16 RE 196-01 #16 16 RRE 196-01 #16 16 196-01 #17 11 I96-01 #18 I96-01 #19 4 2 I96-01 #20 14 I96-01 *#*21 3 517 STANDARD AU-R 30 GRAM SAMPLE FIRE ASSAY AND ANALYSIS BY ICP/AA. - SAMPLE TYPE: CORE PULP Samples beginning 'RE' are Reruns and 'RRE' are Refect Reruns. lauch 7/96 DATE RECEIVED: FEB 29 1996 DATE REPORT MAILED: SIGNED BY ..... D. TOYE, C. LEONG, J. WANG; CERTIFIED B.C. ASSAYERS • >

AAA							Gu	in	et	Mai	nag	ſen	ent	:	F	ILI	E #	90	6-0	832	2								I	ag	e 5		ACHE AMAL VTICAL
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe *	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca	P ¥	La	Cr	Mg	Ba	Ti	B	AL	Na	ĸ	W	Au**	SAMPLE	27 h z h
	ppm	ppii	phil	ppii	pp	ppiii	ppiii	ppiii	~	ppiii	ppii	ppii	ppii	ppiii	ppii	ppm	ppii	ppiii	~	~	ppii	ppii	^	ppin	^	ppin	~	~		ppm	μρο		
I 96-07 154	1	197	<3	13	<.3	106	35	460	4.97	4	<5	<2	<2	7	.3	2	<2	138	.66	.010	<1	259	3.95	26	.06	<3	3.12	.05	.41	<2	11	12	
I 96-07 155	<1	65	<3	15	1.3	58	26	297	4.04	2	<5	<2	<2	9	.2	3	<2	121	.57	.011	<1	83	2.42	10	.05	<3	2.16	.06	.08	38	4	14	
I 96-08 156	<1	35	<3	17	<.3	113	30	419	3.92	2	6	<2	<2	7	.3	2	<2	96	.97	.007	<1	351	3.68	6	.03	<3	2.70	.04	.05	<2	6	14	
1 96-08 157	<1	10	3	17	<.3	60	26	359	4.06	3	5	<2	<2	12	<.2	3	<2	105	.68	.008	1	171	3.23	11	.07	<3	2.60	.05	.12	<2	<2	13	
1 96-08 158	1	329	<3	12	<.3	40	30	509	5.16	<2	<5	<2	<2	6	.2	<2	<2	146	.34	.010	<1	47	3.91	18	.07	<3	3.41	.05	.16	<2	6	12	
			-	-			_ •			-		-	-	•	-	-	-									-					•		
RE I 96-08 158	1	334	<3	12	<.3	40	30	504	5.09	2	<5	<2	<2	6	<.2	2	<2	144	.34	.010	<1	52	3.86	18	.07	<3	3.39	.05	.16	<2	· 6	-	

٦