24620

EXPLORE B.C. PROGRAM GRANT 94/95A-3

Report on 1994 Diamond Drill Programs on the Alabama and Ingerbelle East Deposits, Copper Mountain Camp, Princeton, B.C.

Similco Mines Ltd.

2000 - 1055 West Hastings St.

Vancouver, B.C.

V6C3V3 LOGICAL SURVEY BRANCH

ASSESSMENT REPORT

Peter Holbek, M.Sc. P.Geo

Steven Blower, M.Sc December 14, 1995

E A3

FEB 2 8 1995

EXPLORE B.C. PROGRAM MEMPR

FILMED

TABLE OF CONTENTS

		Page
Exe	cutive Summary	i
1.	INTRODUCTION	
	1.1 Location and Access	1
	1.2 Physiography	1
	1.3 Property and Claim Status	3
	1.4 Exploration and Production History	3
	1.5 Current Mine Status and Exploration Program	7
2.	GEOLOGY	
	2.1 Regional Geological Setting	9
	2.2 Property Geology	11
	2.2.1 Stratified Rocks	
	2.2.1.1 Wolf Creek Formation	13
	2.2.1.2 Princeton Group	14
	2.2.2 Intrusive Rocks	15
	2.2.2.1 Copper Mountain Stock	17
	2.2.2.2 Voigt and Smelter Lake Stocks	18
	2.2.2.3 Lost Horse Intrusive Complex	18
	2.3 Structure	19
3.	MINERALIZATION AND ALTERATION	
	3.1 General Description of Mineralization	22
	3.2 General Description of Alteration	29
4.	DIAMOND DRILL PROGRAMS	
	4.1 Alabama Diamond Drill Program	34
	4.1.1 Overview	35
	4.1.2 Geology and Mineralization of the Alabama Deposit	35
	4.1.3 Drill Program Results	37
	4.1.4 Resource Estimation	47
	4.2 Ingerbelle East Diamond Drill Program	50
	4.2.1 Overview	50
	4.2.2 Geology and Mineralization	51
	4.2.3 Drill Program Results	52
5.	GEOPHYSICS	53
6.	CONCLUSIONS AND RECOMMENDATIONS	
	6.1 Conclusions and Recommended Program	55

TABLE OF CONTENTS continued

References Statement of Qual Cost Statement	ifications	56
Appendix l Appendix l		
	LIST OF FIGURES	
		page
Figure 1.1	Similco Mine Location Map	2
Figure 1.2	Claim and Land Status Map	in pocket
Figure 1.3	Copper Mountain Site Plan	5
Figure 2.0	Regional Geology	10
Figure 2.1	Geology of the Copper Mountain Camp	12
Figure 2.2	Total Field Magnetic Map: Copper Mtn.	16
Figure 2.3	Major Structures of the Copper Mountain Camp	20
Figure 3.1	Kriged Blast Hole Data - 3700 Bench Pit 1, Copper Mountain	24
Figure 3.2	Contoured Blast Hole Data - 2970 Bench Ingerbelle Pit, Similco Mines	25
Figure 3.3	Model of Structural Control on Sulphide Distribution, Copper Mountain Camp	27
Figure 3.4	Size, Grade and Precious Metal Dist. in Copper Mountain Ore Deposits	28
Figure 3.5	Distribution of Pervasive Alteration Types at Copper Mountain	31
Figure 4.1	Alabama Deposit: Geology and Location Plan of Drill Holes	38

LIST OF FIGURES continued.

Figure 4.2	Alabama Deposit: Location Plan of pre-1994 Drill Holes	44
Figure 4.3	Alabama Deposit: Location Plan of 1994 Drill Holes	45
Figure 4.4	Alabama Deposit: Plan View of Drill Results	46
Figure 4.5	Plan view of exploration drill results in Ingerbelle East deposit showing composited grades.	in pocket

EXECUTIVE SUMMARY

The Copper Mountain Camp encompasses all of the deposits and showings in and around Similco Mines' Ltd. land holdings in the Copper Mountain area of southwestern British Columbia. Copper Mountain is located 15 km south of the town of Princeton and 180 km east of Vancouver, B.C. Similco Mines Ltd. currently holds just under 12.5 thousand hectares of mineral claims and leases covering much of the Copper Mountain area. The Copper Mountain camp is divided into two sides by the north flowing Similkameen River.

Copper Mountain has a long history of exploration and development going back to the turn of the century. Early attempts at commercial production failed until 1925, when Granby Consolidated Mining, Smelting and Power Company commenced underground mining on the Contact ore deposit. Over the next thirty-two years, with an eight year closure between 1930 and 1937, Granby produced an estimated 35 million tons with an average grade of 1.08% copper. Newmont Mining Corporation of Canada, at first optioned part of the property, and later on purchased all of Granby's Copper Mountain holdings in 1967. Newmont discovered and put the Ingerbelle deposit into production in 1972. Additionally, they also delineated two other bulk tonnage, open-pitable deposits on the east side of the Similkameen River. In 1981, Newmont completed its mine plan in the Ingerbelle deposit and began mining in the Pit 2 and Pit 3 areas on Copper Mountain. Ore was crushed and transported by a conveyor system across the Similkameen River to the concentrator located on the west side of the River near the Ingerbelle deposit. In June of 1988, Newmont sold all of its Copper Mountain assets to Cassiar Mining Corporation, which later became Princeton Mining Corporation. Princeton initiated an exploration program which resulted in the development of the Virginia deposit in 1990. From 1988 to 1993, Princeton mined from the Pit 1, Pit 3 and Virginia deposit areas. Low copper prices forced the suspension of mining operations in November of 1993. A significant increase in the price of copper and the drop in the value of the Canadian dollar against its U.S. counterpart allowed the mine the restart in August, 1994. Ore from the Ingerbelle low-grade stockpile is currently being processed.

In the spring of 1993, Princeton began a new exploration program which has the short term goal of the definition of sufficient low-cost reserves for five years production, and the long term goal of systematically exploring the property to discover and develop economic reserves sufficient for the next twenty years. Results, to date, have been significant. Development of reserves is underway in two areas: the Alabama and Ingerbelle east deposits which could contain an aggregate mineable tonnage in excess of 50 million tons (at least under current economic conditions). Past and present exploration and geological data has been compiled, and ground evaluations carried out for seven "mine-site" target areas within reasonable haulage distance of current mine facilities. Phase 1 drill- exploration programs are proposed for the three highest priority target areas. Additionally, through the use of a helicopter-borne, multi-parameter geophysical survey eight regional target areas have been identified. A long term exploration program is required to systematically explore and advance these "grass-roots" target areas. It is proposed that exploration programs be conducted on three of these regional targets.

A 16,105 foot Phase 1 diamond drilling program was completed on the Alabama area in June, 1994. This program outlined potentially economic mineralization within an elliptically shaped area with surface dimensions of 2,400 feet by 1,100 feet (750 by 350 m). In-situ geological reserves for the Alabama are 21.6 million tons grading 0.312% copper and 0.16 g/tonne gold. The deposit is open to the southeast, west and to depth. The deposit is located near the Copper Mountain crusher and has favourable mining and metallurgical characteristics. A development target of mineable reserves of 30 million tons grading 0.35% Cu and 0.18 g/t Au is reasonable and would require a 44,800 foot Phase II diamond drill program consisting of 64 holes with an average length of 700'. Metallurgical testing, engineering and waste dump sterilization would also be required to bring the Alabama deposit to feasibility.

A reserve estimate on previous drilling in the Ingerbelle East area indicates 21.1 million tons grading 0.35% copper is present within a preliminary pit shell at a strip ratio of 1.66.

Installation of a new crusher near the Ingerbelle pit, and a recently completed 15,000 foot

Phase II drill program on the east extension of the Ingerbelle deposit has resulted in the

addition of new reserves to the property. Ore reserve estimation, pit optimization and mine planning are currently underway.

The recommended exploration program incorporating all of the above proposals is estimated to cost \$2.2 million as set out below.

A) Alabama Deposit: Phase II to feasibility.

	(\$000's)
Phase II drilling: 44,800'	1,210
Sterilization drilling: 8,000'	176
Metallurgical testing	34
Geology and Engineering	80
Subtotal	1,500
B) Property Target Exploration	
Compilation, geology supervision	90
Diamond drilling: 3 targets 14,600'	400
C) Regional Target Exploration	
Geology, Geochemistry, Geophysics	110
D) Contingency	100
Grand Total	2,200

1. INTRODUCTION

1.1 Location and Access

The mineral deposits of the Copper Mountain Camp are located 15 km south of the town of Princeton, B.C., 30 km north of the Canada-U.S.A. border and 180 km east of Vancouver (Fig. 1.1). The Similkameen River flows northerly through the camp, separating the Copper Mountain side, to the west, from the Ingerbelle side, to the east. Highway #3 from Vancouver passes immediately to the north of, and provides access to, the Ingerbelle deposits and the concentrator. The Copper Mountain side is accessed by the paved Copper Mountain Road which runs south from Princeton. The property is located in NTS map sheets 92H/8E and 92H/7W.

1.2 Physiography

Copper Mountain is located in a region of gentle to moderate topography with locally rugged relief adjacent to the Similkameen River canyon. Elevations range from a high of 1500 m near the summit of Copper Mountain to a low of 750 m in the Similkameen River. Most of the past mineral production has come from the areas adjacent to both sides of the Similkameen River and therefore a number of waste dumps are located on moderate to steep slopes above the river.

The predominant drainage pattern on Copper Mountain is rectilinear with intersecting north-south and east-west aligned valleys. The northerly trending drainage include the Similkameen River and Wolf Creek, whereas the easterly drainage consist of Lost Horse gulch and Smelter Lake. Both of the

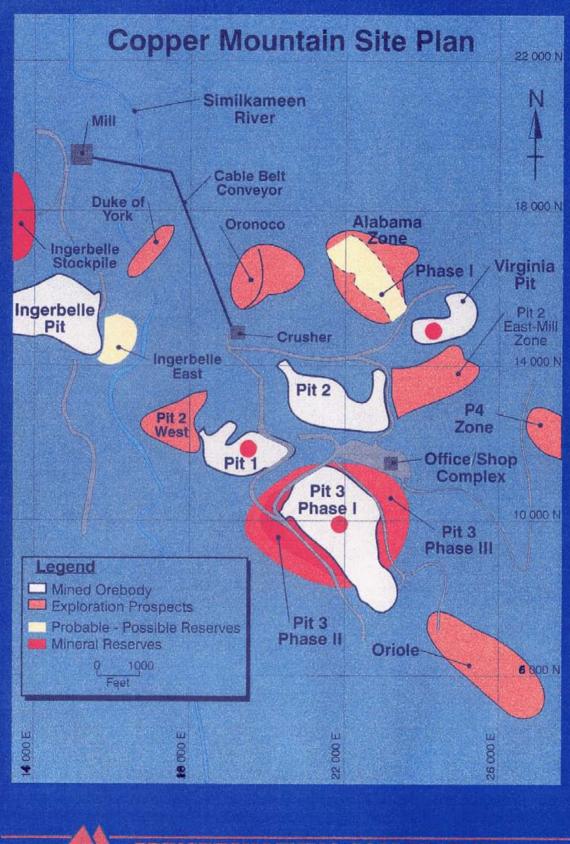
Figure 1.1

easterly trending drainages were originally cut by the Similkameen River as it successively cut its way downwards, and northwards, into its existing canyon.

Climate of the area is typical of the southern interior of British Columbia with hot dry summers and cool winters. A majority of the average annual precipitation of 50 cm falls during the spring and fall. Vegetation consists of grass lands and ponderosa pine in valleys and lower elevations with dense forests of lodgepole pine, Engelmann spruce and some Douglas fir at higher elevations.

1.3 Property and Claim Status

Similco's Copper Mountain property consists of 127 Crown Granted mineral claims, 155 located mineral claims, and 15 mining leases (derived from 52 original claims) covering an area of 12,409 hectares. Claims are all owned or under option to Similco Mines Ltd. Additionally, approximately 3,000 hectares of surface rights are owned by Similco. Approximately 20% of the claims have some form of Royalty agreement. Claims and land status is shown in Figure 1.2.


1.4 Production and Exploration History

The first mineral claims in the Copper Mountain area were staked in 1892 by R.A. ("Volcanic") Brown. During the next thirty years several attempts were made to achieve commercial production. A branch line of the Kettle Valley railway was extended from Princeton up along the Similkameen River and the Sunset Copper Company drove a haulage tunnel from the rail terminus into Copper Mountain to intersect the ore zone 1000' below the main showings. Milling difficulties and a drop in the price of copper forced the operation to close before any copper had been produced (Fahrni, 1950). Exploration during this period likely consisted of extensive prospecting and small physical workings by numerous

individuals as evidenced by claim staking and the small pits, trenches and adits that are widespread over the area. It appears that much of the exploration was near to the Similkameen River where outcrop was in relative abundance.

In 1923, the Granby Consolidated Mining, Smelting and Power Company took over the property and commenced production in 1925. The mine operated continuously until 1957, except for the period between 1930 and 1937. A majority of the production came from underground workings on the Contact deposit, where up until 1949 a little over 21 million short tons grading 1.23% copper had been extracted (Fahrni, 1950). During the later years of operation, ore was also mined from a number of small open pits. Total production is estimated at 35 million tons with an average grade of 1.08% copper (Macauley, 1970). Most of the exploration during the "underground era" took place adjacent to the mine, particularly along the northwest-trending main fault. However, a minor amount of work, including some diamond drilling was conducted in a few outlying areas.

Very little exploration or development work was carried out during the years between 1957 and 1965. However, in 1966, exploration was being conducted by Granby, Cumont Mines Limited, and Newmont Mining Corporation of Canada. Granby explored adjacent to the underground workings and tested within an area that would latter become Pit 2 (Figure 1.3). Cumont conducted geological mapping, geophysical and geochemical surveys, trenching and diamond drilling on its ground located peripheral to Granby's claims. Newmont optioned a block of Granby claims on the west side of the Similkameen River and carried out extensive geological, geophysical, trenching and diamond drill programs which resulted in the discovery and, ultimately, the delineation of the Ingerbelle deposit in 1969. Newmont purchased all of Granby's claims in late 1967, which allowed a unified, large-scale exploration program to be carried out. In addition to the Ingerbelle deposit, Newmont continued drilling where Granby had left off, and defined two, large "bulk-tonnage", open-pitable zones of mineralization surrounding the previous workings on Copper Mountain. Mill and concentrator facilities were constructed and production commenced from the Ingerbelle deposit in 1972 at the rate of

PRINCETON MINING CORPORATION

15,000 tons/day. Total drilling within the Ingerbelle area amounted to 243,140 feet (74,109 m) in 542 holes. Following start-up at Ingerbelle, exploration was again curtailed.

In 1980 Newmont carried out a fourteen hole diamond drill program on the area immediately to the east of the Ingerbelle deposit, where earlier drilling (during the Ingerbelle exploration) had identified mineralization. In spite of reasonably positive drill results, no further work was performed and in 1980, when the Ingerbelle pit was completed, Newmont dismantled the crusher adjacent to the concentrator and completed construction of a new crusher and conveying system in order to bring ore from Copper Mountain across the Similkameen River to the mill complex. Mining of Pit 2 commenced in early 1980 and was completed in 1985. Production from Pit 3 began in the spring of 1983. In 1986, Newmont carried out an exploration program, which consisted of geochemical and geophysical surveys, to the north and east of Pit 2. A rising gold price and the attractive gold grades led to a detailed mapping and diamond drill program being carried out on the Voigt Zone, a narrow east-trending zone of mineralization located 1.5 km northeast of Pit 2. Similco Mines Ltd. and the entire Copper Mountain Property was sold to Cassiar Mining Corporation (later to become Princeton Mining Corp.) by Newmont in June of 1988.

Princeton initiated a property scale exploration program which soon became focused in the Lost Horse Gulch area (immediately north of Pit 2) and culminated in the discovery and delineation of the Virginia Deposit in 1990, after which exploration was curtailed. Production during this time came from Pit 3 and Pit 1. Mining of Pit 1 was completed at the end of 1992 and was subsequently backfilled with waste from Pit 3. Limited mining from the Virginia Pit was carried out in 1991 and 1993. Due to low copper prices, mining operations were suspended in November, 1993.

1.5 Current Mine Status and Exploration Program

At the end of 1993, low strip-ratio reserves remaining at Copper Mountain totalled just over three million tons, including salvage from mined pits, and were located in Virginia and Pit 3 (Fig. 1.3). Approximately 10 million tons of low-grade (0.244% copper) material is located in the Ingerbelle stockpile and became available for processing with the installation of a new crusher, adjacent to the concentrator, in October, 1993. A significant tonnage of high strip-ratio reserves are available in the Pit 3 expansion (see below). A large tonnage low-grade, high strip-ratio resource is located along the south wall and at depth in Pit 2.

Ore (tons)	Grade	Strip Ratio
(000's)	%Cu	<u>W:O</u>
261	0.455	0.41
1,439	0.420	1.37
10,366	0.267	0 (includes salvage)
39,000	0.330	1.78
39,000 10,534	0.330 0.462	1.78 1.91
	(000's) 261 1,439	(000's)

On the advice of its consultants, who recognized significant exploration potential but a lack of systematic property-wide exploration (Burgoyne, 1992), Princeton Mining Corp. initiated a long-term exploration program in the spring of 1993. The exploration program has a short term goal of the discovery and delineation of sufficient "low-cost" reserves for five years mine production and a long term goal of systematically exploring the property to discover high quality reserves sufficient for twenty years of mine life.

The current exploration program is based on three key components:

- 1) a multi-parameter helicopter-borne geophysical survey covering a 175 square kilometre area around the mine-site;
- 2) a thorough compilation of all geological and exploration data from the past 70 years;
- 3) and a detailed documentation of the controls and characteristics of mineralization at Copper Mountain.

The latter component was carried out in conjunction with the Mineral Deposits Research Unit at The University of British Columbia. While all of these components are still ongoing in some form, initial results have identified eight "grass-roots" regional target areas, and allowed the prioritization and design of exploration programs for property target area. First phase ground evaluation of a number of target areas has been completed as well as a 16,105 foot (4,909m) diamond drill program on the Alabama deposit and a phase II 15,000 foot (4,572m) diamond drill program on the Ingerbelle East deposit. The two drill programs were partially funded by an Explore B.C. grant of \$143,000.

2 GEOLOGY

2.1 Regional Geological Setting

Copper-gold deposits of the Copper Mountain area are hosted by volcanic, and related intrusive rocks, of the Late Triassic Nicola Group (Dolmage, 1934; Preto, 1972). The Nicola Group consists primarily of a submarine island-arc assemblage of andesitic volcanic rocks and derived sedimentary rocks which are exposed in a 40 km wide north-trending belt that extends from the Canada-U.S.A. border in the south, to Kamloops Lake in the north (Fig. 2.0). Age correlative and compositionally similar belts of volcanic rocks extend along the length of British Columbia and into the Yukon Territory. The Nicola Group, with a stratigraphic thickness of up to 7.5 km is the main unit within Quesnellia, a northerly trending allocthonous tectonostratigraphic terrane in central British Columbia (Monger, et al., 1992). Quesnellia was likely accreted onto North America in mid-Mesozoic time.

The Nicola Group is divided into three, compositionally distinct, linear belts (referred to as the 'western, central and eastern volcanic belts') by north-trending fault systems; a fourth grouping, referred to as the eastern sedimentary assemblage is also recognized (Monger et.al., 1992). Copper Mountain occurs in the 'eastern volcanic belt'. Nicola Group rocks are intruded by Late Triassic to Early Jurassic alkalic and calc-alkalic plutonic rocks, some of which are demonstrably co-magmatic with their host volcanic rocks. In general, the alkalic intrusions are small and restricted to the eastern and central volcanic belts, whereas the calcalkalic intrusions are larger plutons and are evenly spread throughout the Nicola Group (Preto, 1979).

The origin of the Nicola Group is somewhat controversial. Preto (1977) relates Nicola volcanism to rifting due to the alakaline nature of the rocks and their spatial relationship to long-lived fault structures. However, on the basis of petrographic and trace-element geochemical data and that the volcanic belts young to the east, Mortimer (1987) suggests that the Nicola volcanics formed over an east-dipping subduction zone.

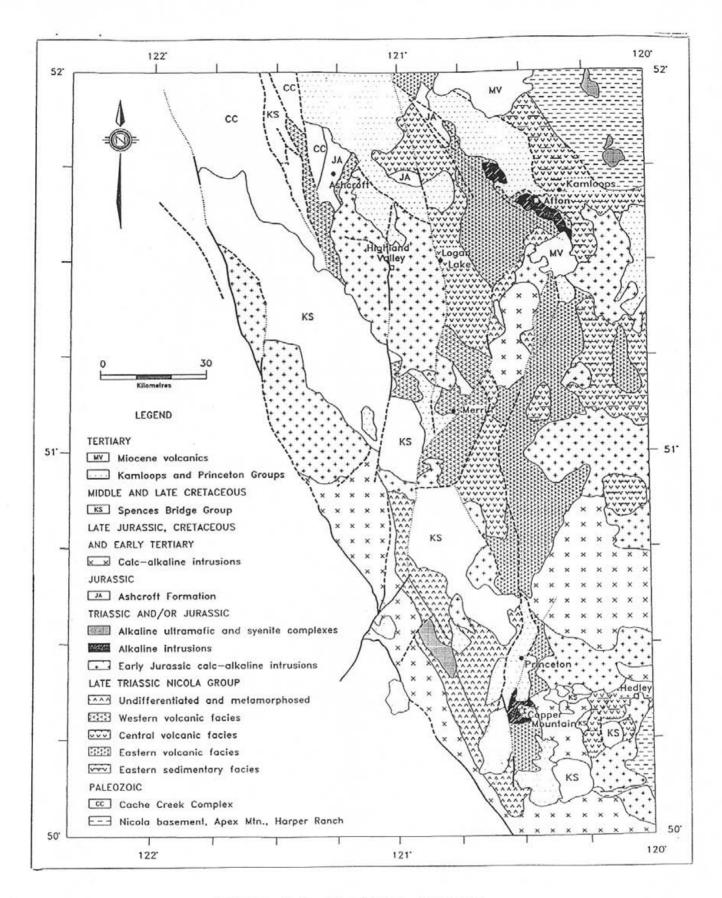
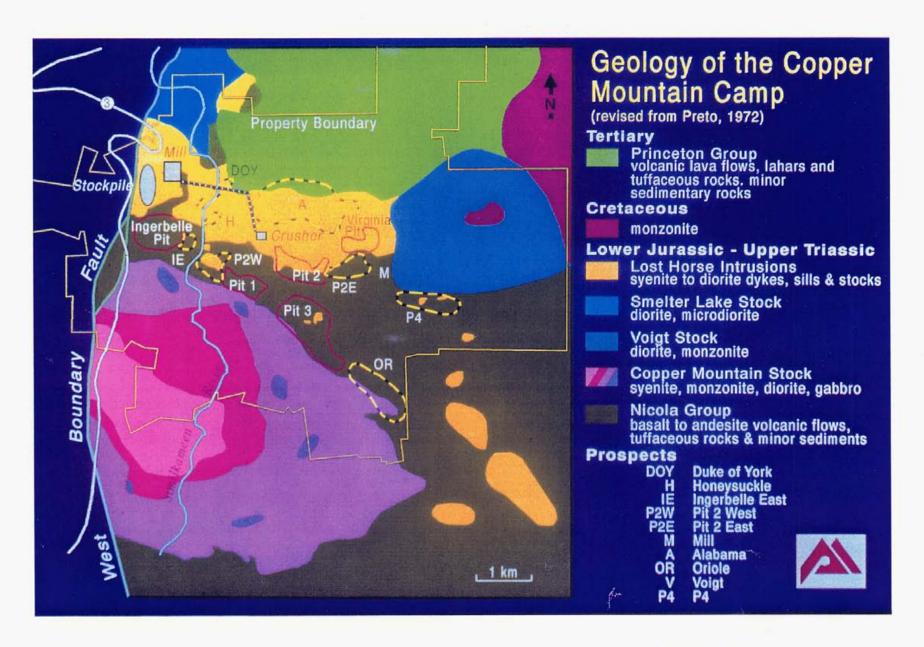



Figure 2.0 Regional Geology

2.2 Property Geology

Geology of the Copper Mountain area is dominated by the Copper Mountain stock, an elliptical shaped, compositionally zoned intrusion covering approximately 20 square kilometres. All significant mineralization discovered to date on the property lies to the north of this intrusion. Two smaller and not distinctly zoned but somewhat circular intrusions, the Smelter Lake stock and the Voigt stock are located approximately two kilometres to the north of the Copper Mountain stock (Fig. 2.1). The Lost Horse Intrusive Complex, which consists of a variety of cross-cutting dykes and irregularly shaped stocks and plugs, is located about 1 km north of the Copper Mountain Stock and between the Smelter Lake stock, to the east, and the Voigt stock, to the west. Hosting these intrusions, and forming a one to two km wide northwest trending belt, are Nicola Group volcanic rocks. Within the mineralized area identification of rock types can be exceedingly difficult largely due to gradational (?) intrusive contacts and the effects of contact metasomatism and hydrothermal alteration. Nomenclature between past workers at the outcrop scale is inconsistent, particularly with respect to alteration.

The eastern edge of the Copper Mountain camp is defined by the post-mineralization, Cretaceous Verde Creek pluton of quartz monzonite. The western edge of the camp is the Boundary fault (Preto, 1972; Montgomery, 1967), a north-south trending, west-dipping fault system with some right-lateral (?) and normal motion (Preto, 1972). The Boundary fault truncates both the Copper Mountain stock and the Nicola volcanic rocks, juxtaposing volcanic and sedimentary rocks from higher in the Nicola stratigraphy (Preto, 1972). Montgomery (1967) postulates reverse movement on the Boundary fault system but the degree of east-west extension during the Tertiary, as indicated by the Mine dykes, would favour normal movement. The Copper Mountain camp is limited in its northerly extent by overlying volcanic and sedimentary rocks of the Eocene Princeton Group.

2.2.1 Stratified Rocks

2.2.1.1 Wolf Creek Formation

Volcanic rocks and derived sediments of the Nicola Group at Copper Mountain are referred to as the Wolf Creek Formation (Preto, 1972; Dolmage, 1934). All workers at Copper Mountain have recognized that the Wolf Creek Formation consists of a sequence of well-bedded, fine-grained, well-indurated tuffaceous rocks or volcanic siltstones, turbidites and "cherts"; fine to coarse grained lapilli tuffs, breccias and agglomerates; feldspar phyric tuffs and/or flows; and fine-grained (pillowed) flows. What most workers can't seem to agree on is the overall structure and stratigraphy of these rock units and the relative significance of structure and lithology to mineralization.

Fahrni (1951) proposed a stratigraphy based on volcanic cycles consisting of coarse grained pyroclastic rocks at the base, followed by finer-grained fragmental rocks, flows and finally ash tuffs, greywackes and chert. Three such cycles were proposed for the mine area, occurring in simple fold structures with northwest trending, gently plunging fold axes (Fahrni, 1951). Fahrni (1951) was also a strong proponent of lithological control on the distribution of sulphide mineralization.

Recent work at the property, which consists of geological mapping of all five pit areas and much of the intervening ground has found no evidence of folding and only a limited amount of flat lying stratigraphy. It would appear that the Wolf Creek Formation has been broken into a myriad of fault blocks with highly variable displacements and rotation. Typically, bedding displays moderate to steep dips. Additionally, although locally some lithologies appear to be selectively well mineralized, there is no particular lithology that consistently carries better grade than average on the pit scale or camp scale; and grade distribution is mostly controlled by fault and fracture density. The degree of movement along fault structures, numerous cross-cutting dykes and irregularly shaped intrusions, plus the effects of

intrusion and hydrothermal alteration make it nearly impossible to correlate lithologic units for any great distance. Even discerning volcanic rocks from intrusive rocks in well-exposed pit walls is problematical. Thus, the best description of the Wolf Creek Formation is likely to be found in Preto (1972) where detailed mapping was also conducted well away from the mineralized areas.

2.2.1.2 Princeton Group

The Eocene Princeton Group contains a variety of volcanic and sedimentary rocks. These rocks have only been examined in outcrop and drill core in the area between Lost Horse Gulch and Smelter Lake. In general, the rocks exhibit flat to shallow dips. The lower part of the sequence is composed of poorly consolidated volcanic sandstones and wackes with lenses of mudstone and occasional coal seams. Large pieces of charcoal wood (Sequoia?) are locally abundant. Overlying these sedimentary layers are monomictic to polymictic volcanic conglomerates with maroon coloured hematitic matrices. These rocks are in turn overlain, probably unconformably, by fine-grained to aphanitic, medium green, amygdaloidal basalt flows. These flows are also juxtaposed against mineralized Nicola and Lost Horse intrusive rocks by graben-type structures within the Virginia and Alabama deposit areas.

It was initially thought that there was a possibility that a supergene copper enrichment zone might be preserved under the disconformably overlying Princeton Group volcanic rocks in the Alabama area. High resolution Induced Polarization (IP) surveys using the MIDAAS System suggested a shallow dipping unconformity. However, magnetic data from the airborne geophysical survey suggested relatively steep contacts and this has been confirmed by diamond drilling which invariably demonstrates a moderate to steep, north-dipping fault between the Princeton Group and underlying rocks. This east-west trending, north dipping fault is broken and staggered by numerous, small-displacement north-south trending faults.

A large elliptical body, with surface dimensions of about 700 by 500 m, of dark grey

hornblende phyric andesite is located on the western end of Lost Horse Gulch, immediately east of the angle station on the cable belt. Trachytic alignment of the phenocrysts in a circular pattern, no textural or compositional change over the 100 m vertical cliff face, and flanking deposits of coarse volcanic breccias indicate this body to be a preserved volcanic neck (Preto, 1972). This volcanic neck limits the northeastward potential of the Duke of York Zone of mineralization.

A large quartz porphyry rhyolite body is located approximately 1,500m north of the mill complex, on the east side of the Similkameen River. The rhyolite, which is either unconformably overlain by, or intrusive into, basalt flows of the Princeton Group, is pervasively argillically altered and is interpreted to be a flow-dome complex. Rock sampling indicates elevated but sub-economic gold values. The mineralogical and compositional similarities of the dome to the mine dykes suggest that the two units are correlative. However, the mine dykes are not observed cutting the stratified rocks of the Princeton Group and therefore if the dome and dykes are the same age, both must be slightly older than most of the Princeton Group.

2.2.2 Intrusive Rocks

Distribution of intrusive rocks on the property is best revealed by the airborne magnetometer map of total field magnetics (Fig. 2.2) which shows the high magnetite, commonly intrusive, rocks as red and the low magnetite (volcanic) rocks as blue. The intrusive-volcanic contacts, as revealed by the airborne data, correspond very well with geological mapping by Montgomery (1967) and Preto (1972). The magnetic data provides better definition than field mapping in areas of limited outcrop. For example, it reveals significantly more intrusive rocks in the Ingerbelle deposit area than surface mapping had indicated. Additionally, the magnetic data indicates that the Voigt Stock is circular in plan with a small non-magnetic core, which suggests a strong similarity to the Copper Mountain Stock. These changes have been incorporated into the revised geological map (Fig. 2.1).

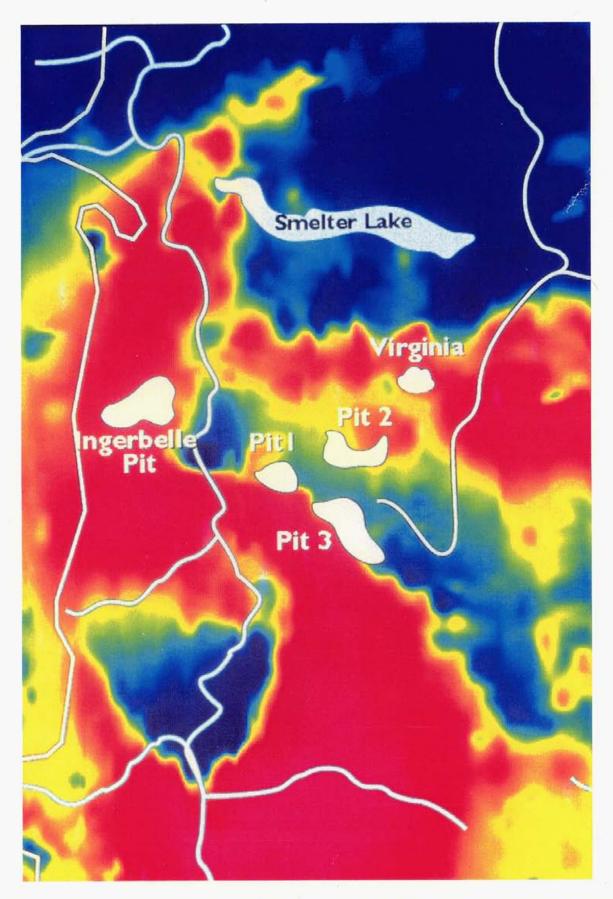


Figure 2.2 Total Field Magnetic Map of the Copper Mountain Area.

Jurassic intrusive rocks in the Copper Mountain camp have a silica-saturated alkalic affinity (Lang, 1993) resulting in the lack of either quartz or feldspathoid minerals. Texturally, the intrusive rocks range from medium-grained equigranular to fine to coarse-grained porphyritic. The intrusions can be subdivided into two groups on the basis of occurrence, mineralogy and texture. The first group consists of the Copper Mountain, Voigt and Smelter Lake stocks; the second group comprises the suite of the Lost Horse Intrusive Complex. All of the Copper Mountain intrusions carry rare phenocrysts of clear to pale grey apatite, which can be used to distinguish them from compositionally and texturally similar volcanic rocks of the Wolf Creek Formation (Preto,

2.2.2.1 Copper Mountain Stock

pers.comm., 1994).

The Copper Mountain Stock is a compositionally zoned, elliptically shaped intrusion located in the southeastern part of the map area. The outer margin of the stock is weakly to strongly foliated parallel to the outer contact and consists of medium-grained diorite to monzodiorite. Small bodies of gabbro and pyroxenite are reported to occur in the border phase (Montgomery (1967). The border phase is gradational into a middle zone of monzonite. The monzonite is visually distinct from the border phase because of its higher potassium feldspar content, lower mafic content and coarser grain size (Lang, 1993). The core zone of the Copper Mountain stock is a coarse-grained (pegmatoid texture) leucocratic perthitic syenite. This core phase is non-magnetic and has a fairly sharp outer contact with the intermediate phase. A minor amount of mineralization is reported from the core area, otherwise the Copper Mountain Stock is unmineralized. The concentric compositional zonation of the stock is attributed to in-situ fractionation processes rather than multiple intrusion due to the lack of cross-cutting phases (Montgomery, 1967). The magnetic signature of the Copper Mountain stock suggests a cylindrical intrusion that has been tilted to the northwest about 20 degrees. Although the stock is not mineralized, northeast trending fractures that are mineralized in the volcanic rocks of Pit 3 extend into the Copper Mountain stock and contain potassium feldspar-epidote-biotite alteration envelopes which indicates that emplacement of the stock was pre-mineral.

2.2.2.2 Smelter Lake and Voigt Stocks

The Smelter Lake and Voigt stocks are similar to the border phase of the Copper Mountain stock, consisting of equigranular to sub-porphyritic monzodiorites containing approximately equal amounts of augite and plagioclase, lesser poikilitic potassium feldspar, shreddy biotite that is commonly chloritized, magnetite and accessory minerals (Lang, 1993). These stocks are not noticeably concentrically zoned, however, magnetic data suggests that a small non-magnetic core zone is present in the Voigt stock. The only known mineralization in either of these stocks is the Voigt Zone, an easterly trending vein-like zone of mineralization that lies along strike with the core of the Virginia deposit and extends from the western edge of the Voigt stock for a distance of 2 kms. (see Section 4.4)

2.2.2.3 The Lost Horse Intrusive Complex

The Lost Horse Intrusive Complex (LHIC) is the name given to a confusing suite of dykes, sills and irregular shaped intrusions, primarily located in the Lost Horse Gulch area, but extending across the Similkameen River into the Ingerbelle area. There is a great degree of petrographical and textural variation in the LHIC rocks. This characteristic, together with variable hydrothermal alteration and generally poor surface exposure makes recognition of individual phases in outcrop extremely difficult. Exposure in open pits and drill core is somewhat better but even so recognition of, and correlation of, distinct phases is difficult.

Lang (1992, 1993) conducted a petrographic study of the LHIC, focusing primarily in the Virginia deposit, and described three main intrusive types based on petrographic characteristics and cross-cutting relationships. Lang's classification scheme and nomenclature has been adopted with some significant simplifications and modifications in order to obtain improved consistency among field workers. Three primary groupings (LH1, LH2 and LH3) are recognized on the basis of mineralogy, texture and age relative to mineralization. The LH1 category consists of dykes and irregular shaped plugs or stocks of equigranular, pyroxene

diorite that is very similar in appearance to the Voigt stock. LH1 rocks appear to be premineralization and are commonly weakly mineralized in the Lost Horse Gulch area; alteration is more commonly vein and fracture controlled than pervasive. Fine grained versions of the LH1 are easily mistaken for recrystallized, magnetite enriched, Wolf Creek volcanic rocks (and vice-versa) within mineralized areas. LH2 rocks are typically feldspar porphyritic, of monzonitic composition and spatially and temporally associated with mineralization. A pervasive potassium feldspar (+/- biotite, epidote and magnetite) alteration is common. A subtype, LH2f, is a commonly trachytic, feldspar megacrystic porphyry which is syn- to postmineralization. Pink, potassium feldspar altered LH2 rocks comprise the dominant fragment type in the magnetite breccia "pipes" occurring in the Pit 2 and Ingerbelle deposits. LH3 rocks range in composition from monzodiorite to syenite, are weakly porphyritic and cross-cut or are clearly post-mineralization. Within deposit areas LH3 rocks may display the effects of hydrothermal alteration. LH1 and LH2 dykes generally exhibit east-west to northeast trends, whereas the LH3 intrusions more commonly have northerly trends and form sills, which suggests emplacement at lower confining pressure.

2.3 Structure

Stratified rocks on the property do not display any significant folds and any discussion of structure on the property will concern itself entirely with faults and fractures. The orientation, amount of displacement and timing of moment of the faults on the property are important because faults have either localized mineralization or displaced it. The more significant faults have been well documented by previous workers (Preto, 1972; Macauley, 1970; Montgomery, 1967) however magnetic data from the recent airborne survey and recent exploration and compilation has revealed numerous other structures. Figure 2.3 illustrates the major known and inferred structures.

Fahrni et al. (1976) and Macauley (1973) recognize four main sets of faults in the deposit area. The first set consists of large-displacement, regional, northerly trending faults, of which

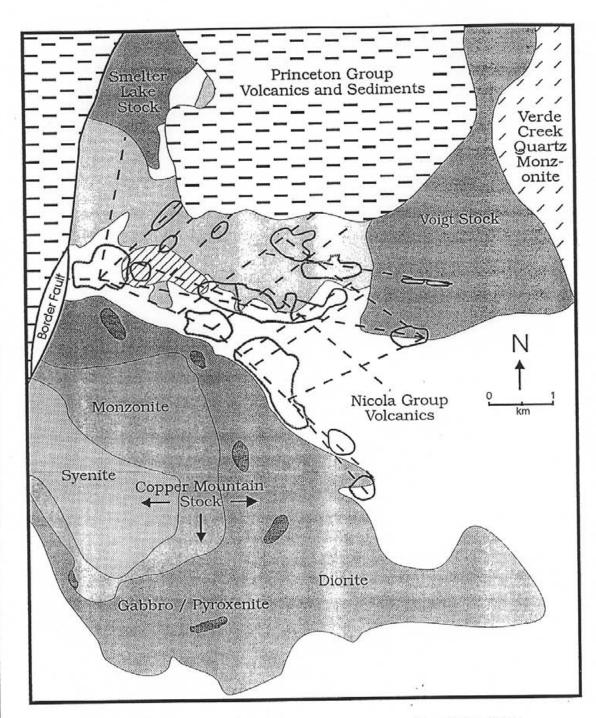


Figure 2.3 Major Structures of the Copper Mountain Camp.

the Boundary fault on the west side of the property is the best example (Fig. 2.1). The boundary fault dips moderately to west and has dip-slip movement that post-dates the eocene Princeton Group. Movement on the Boundary fault is likely related to east-west extension during the eocene, as indicated by the northerly trending mine dykes which have a collective thickness of nearly one kilometre in the property area.

The second set of structures consists of east-west trending, steeply south-dipping faults such as the Gully fault which appears to be the locus for much of the mineralization in the Ingerbelle and Ingerbelle East deposits. Other faults of this group would include the Pit fault in Pit 2 and the structure which hosts the Virginia and Voigt Zone mineralization. Macauley (1973) suggests 700 feet of normal displacement on the Gully fault. Displacement along the Pit fault and Voigt structure are not known.

The third set of faults trend northwest and includes the Main fault, which runs parallel to the north contact of the Copper Mountain stock and extends through the Oriole area, Pits 3 and 1 and the Ingerbelle East and Ingerbelle deposits, and the Alabama structure which parallels the southeast contact of the Voigt stock and hosts much of the Alabama mineralization. Although there is some post-mineral movement along the main fault, it was likely in existence for a long period of time as this structure would seem to be one of the dominant controls of mineralization in the camp.

The fourth set of structures trend northeast to east-northeast and appear to have localized mineralization in all of the mineralized areas except for the Virginia deposit and Voigt Zone mineralization. The mine breaks, recognized in the underground mine and belonging to this group, have some post-mineral movement resulting in minor offsets of mineralization.

The third and fourth sets of structures appear to be genetically related by having similar controls on mineralization and a geometric relationship that is typical of dextral simple shear (Blower, 1991). The north-northeast trending Tremblay and Honeysuckle faults (Preto, 1972) have Eocene movement and are likely related to movement along the Boundary fault and are not part of the mineralizing fracture system.

3. ALTERATION AND MINERALIZATION

3.1 General Description of Mineralization

The Copper Mountain area does not display a typical style and distribution of alteration and mineralization as can be observed in many porphyry copper deposits (eg: Lowell and Guilbert, 1970). The alteration and mineralization does, however, share some common features of alkalic style porphyry deposits, notably those in similar rocks such as the Afton and Ajax deposits near Kamloops (Kwong, 1987). The most conspicuous feature of the alteration and mineralization at Copper Mountain is the strong structural control. In many respects, the exploration and economic evaluation of the Copper Mountain deposits is more like that of vein and stockwork hosted precious metal deposits than conventional porphyry deposits.

Mineralization at Copper Mountain is widespread; to date ore has been extracted from five pit areas (Pits 1,2 and 3 and Ingerbelle and Virginia Pits) and an additional two areas (Ingerbelle east and Alabama) are currently being evaluated or prepared for production. A number of other mineralized areas are known and are listed as future exploration targets including: Mill Zone, the P4 Area, Oronoco/Diamond Dot, Pit 1 West, Duke of York, Oriole and Voigt Zone.

The structural control over the distribution of mineralization is operative from the camp scale down to the outcrop and even microscopic scale. Three dominant structural orientations exert control on the distribution of deposits within the camp as well as the mineralization within the deposits: northwest, northeast, and east-west (90-110). A fourth direction, north-south, exerts control not because of mineralization (although some north-south sulphide veins are observed in Pits 1 and 2) but rather because this is the orientation of minor faults and barren mine dykes which cause significant disruption of mineralization in all of the deposits except Ingerbelle. The prominent camp-scale structures, as determined from mapping and interpretation of the vertical magnetic gradient maps, are shown in relation to existing pits and exploration targets in Figure 2.3.

The effects of structural control are evident on the distribution of ore within the pits. Figure 3.1 shows the kriged grade distribution of 6m spaced blast holes on the 3700 bench within Pit

1. The strong northwest, northeast, and lesser east-west and north-south, trends of mineralization are evident. Excellent vertical continuity of these structures and mineralization results in a cluster of pipe-like ore zones. Manually contoured, higher copper grades of 6m spaced blast holes on bench 2970 in the Ingerbelle Pit (Fig. 3.2) demonstrate strong northwest and northeast controls on the mineralization. This level of structural control is not as evident at lower grades (0.2 to 0.4% Cu).

Mineralization ranges from massive to semi-massive sulphide (+/- magnetite) veins and vein stockworks to microveins and fracture fillings to disseminated. All mineralization types occur in all pits but the relative proportions of mineralization type varies from pit to pit. For instance, in Pit 2, massive sulphide veins and vein stockworks predominate with only minor disseminated sulphides, whereas in Pit 3 the dominant sulphide habit is microveins and fracture fill. The Ingerbelle, Ingerbelle East and Alabama deposits are characterized by structurally controlled bands of disseminated mineralization with only minor, semi-massive sulphide veins. The structures which control the distribution of disseminated sulphides are not commonly visually apparent in drill core. Although, in the Alabama deposit it seems that the structure which initially controlled sulphide deposition later controlled the emplacement of dyke-like Lost Horse Intrusions thereby marking its existence. Three types of intrusivemineralization relationships have been observed: when the mineralization and intrusion where temporally proximal, then the intrusive rock and the volcanic host are both mineralized; however, when the intrusion preceded mineralization then the contact area is mineralized. commonly with a majority of mineralization within the volcanic rock; and when the intrusion post-dated the mineralization then the volcanic rock on each side of the intrusive rock is mineralized.

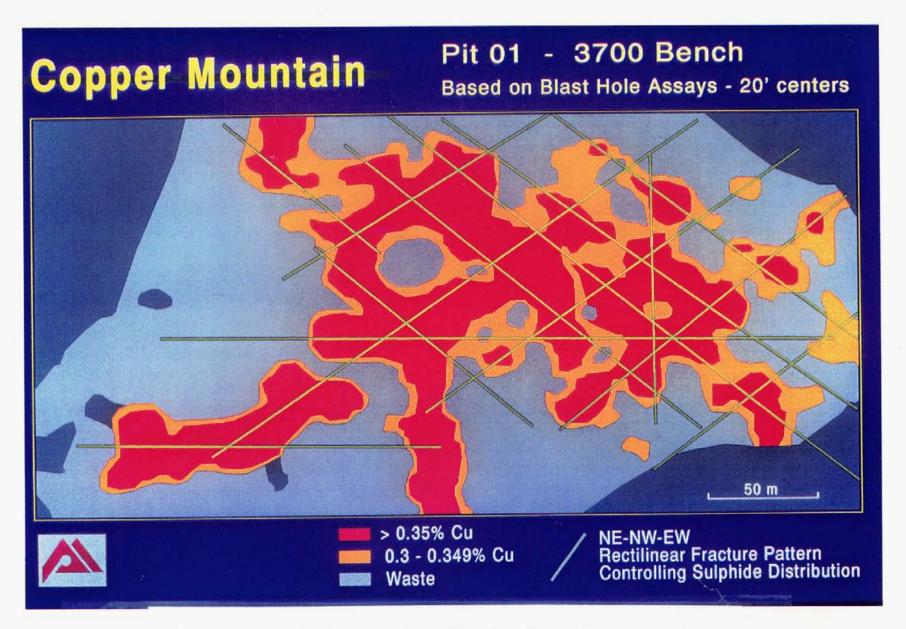


Figure 3.1 Kriged Grade Distribution from Blast Hole Data: Bench 3700, Pit 1 Deposit, Similco Mines, Copper Mountain.

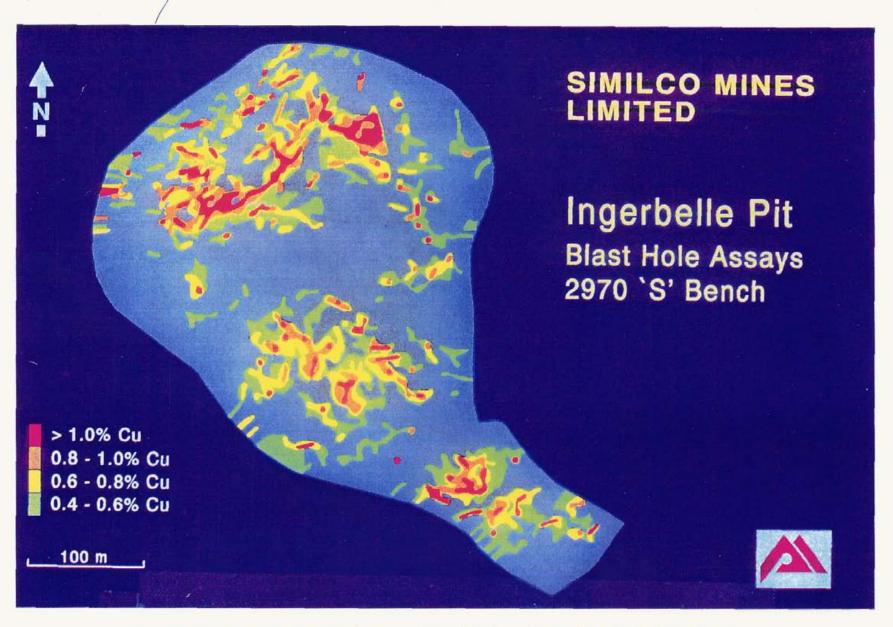
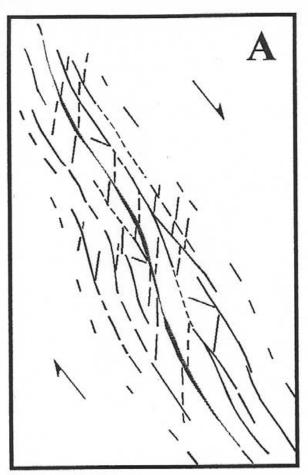
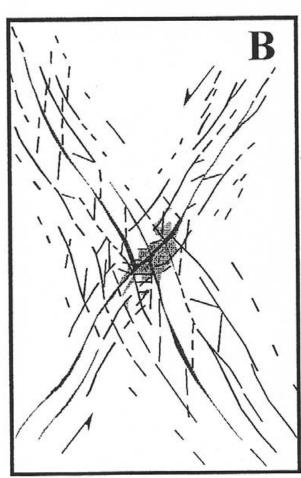



Figure 3.2 Contoured Grade Distribution from Blast Hole Data: Bench 2970, Ingerbelle Deposit, Similco Mines, Copper Mountain.

A generalized model illustrating the relationship of structures to sulphide habit and grade distribution is shown in Figure 3.3. Early vein and vein stockwork or fracture fill development is shown in Box A. Massive or semi-massive sulphide veins may form in vein openings on the main structure while smaller veins will form in adjacent fractures. Depending upon hydrothermal fluid flow, confining pressure, host rock rheology, fluid and host rock chemistry, disseminated mineralization will be weakly to well developed in a zone parallel to the main fracture. Box B illustrates intersecting structures where each structure will be mineralized as described above with the possible addition of a breccia forming at the structural intersection. Increased fluid flow could lead to the type of grade distribution shown in Box C. Almost all of the sulphide controlling structures at Copper Mountain are steeply dipping to vertical and therefore, it is difficult to evaluate mineralization (such as illustrated in Box C) with widely spaced vertical drill holes and inclined holes are far preferable.


Sulphide mineralogy of the camp is relatively simple, consisting of pyrite, chalcopyrite and bornite with other sulphide minerals only occurring in trace amounts. Gangue minerals include, in order of abundance: magnetite, calcite, potassium feldspar, albite, epidote and chlorite. The Copper Mountain camp is a low sulphide system with total sulphides ranging from 0.5 to a maximum of 10% with an overall average of about 2 to 3%. Ratio of iron to copper sulphides varies considerably with location. Bornite:chalcopyrite, silver:gold and copper:gold ratios are zoned from north to south, with higher ratios in the south which decrease northwards. Thus, bornite and silver contents are highest in Pit 3 and the Oriole area and decrease in Pits 1 and 2. Bornite is exceedingly rare in the Virginia, Alabama, Ingerbelle and Ingerbelle East deposits. Conversely, gold grades are higher in the reverse sequence (Fig. 3.4). A possible explanation for this zonation is related to thermal gradients around the Copper Mountain Stock. Although the Copper Mountain stock most likely predates mineralization the thermal regime caused by the emplacement and cooling of this large intrusive body would likely have dominated the area, thereby creating a mineralogical zoning pattern that is similar to porphyry systems where bornite is concentrated in the core zone, chalcopyrite dominates in the intermediate zone and pyrite is concentrated in the outer

Schematic Plan View showing Structural Control on Sulphide Distribution, Copper Mountain Camp

field of view is appropriate for the microscopic to megascopic scale

> > 0.4% Cu > 0.7% Cu > 1.0% Cu

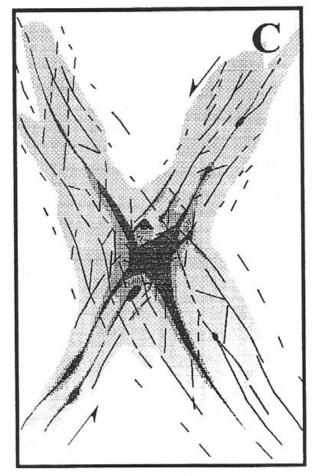
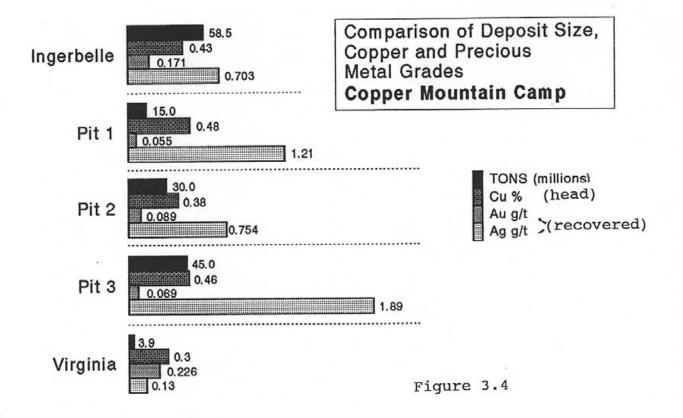



Figure 3.3

shell (Jones, 1992; Kesler, 1973; Jerome, 1966 and others). However, in a geologically complex area numerous other possible explanations exist, and would include depth zonation. That is, based on the inferred northwestward tilt of the Copper Mountain stock, the entire area may have been tilted in the same fashion so that deposits to the northwest are exposed at progressively deeper levels.

Gangue mineralogy and sulphide grain size have significant implications for exploration. The low amount of sulphides and high amount of calcite within the mineralization results in rocks that are acid consuming and consequently exposed mineralization is seldom gossanous. Additionally, the very slow oxidation of sulphides results in a negligible amount of chemical transport of metals within the surficial environment, limiting the effectiveness of soil geochemistry to areas of thin overburden or steep terrain where mechanical transport is more significant. Sulphide grain size is commonly so fine that sulphides cannot be seen without a fresh surface and a handlens, consequently prospecting and mapping has to be carried out with considerable care.

3.2 General Description of Alteration

Hydrothermal alteration within the mine area consists of both pervasive alteration (metasomatism) and structurally controlled (vein type) alteration. The variety of volcanic and intrusive lithologies, the overprinting of alteration assemblages, and the poor exposure between pit areas makes the recognition of property scale alteration zonation difficult. At the deposit scale, there does not appear to be any correlation between grade and alteration type or intensity (with the exception of a possible gold in copper correlation to potassic alteration).

The earliest alteration appears to have been a biotite-magnetite hornfelsing of the mafic volcanic rocks. This alteration typically produces a fine grained, hard, highly magnetic, black rock. In many places the resultant rock appears to be composed entirely of magnetite and biotite. This type of alteration occurs in all mineralized areas but is most strongly developed

peripheral to the Copper Mountain stock in the area of the Pit 1, Pit 3 and Ingerbelle deposits (Fig. 3.5). There are a number of locations where either the matrix or the fragments of fragmental volcanic rocks were selectively hornfelsed (altered) producing some visually enhanced fragmental textures. Empirical observation indicates that hornfelsed volcanic rocks commonly host the best grades of mineralization, particularly in the Pit 2, Pit 3 and the Alabama

deposits. Within these rocks very finely disseminated chalcopyrite forms at the expense of magnetite. It could be this feature that caused some of the early workers to refer to favourably mineralized horizons. Two types of pervasive alteration are named for their dominant feldspar mineral: sodic alteration or albitization (Na metasomatism), and potassic alteration (K metasomatism). Both types affect large volumes of rock, do not appear to be structurally controlled, at least on the outcrop scale, and can vary in intensity. Both alteration types do have structurally controlled counterparts that occur peripheral to the pervasive style and as later overprints on the pervasive style. Relative timing of the two alteration types, as indicated by cross-cutting relationships, is not consistent throughout the camp, but in general, the sodic alteration appears to have been slightly earlier than the potassic alteration.

Sodic alteration is conspicuous by its texturally destructive bleaching of darkly coloured rocks. Referred to as albite-epidote hornfels by Macauley (1970, 1973), sodic alteration changes grey plutonic rocks and black or green volcanic rocks to white, light grey and pale green, and is commonly accompanied by a reduction in grain size. Alteration mineralogy consists of albite with minor epidote, diopside and calcite. Sulphides associated with the alteration process generally occur in low concentrations, are very fine grained and pyrite content is greater than chalcopyrite. Sodic altered zones that make ore are frequently sulphide vein stockwork zones, which is probably a result of the more brittle nature of altered rock. It is typical of these zones to have less favourable metallurgical characteristics because of high work indices and lower recoveries.

Commonly, sodic alteration zones will have contacts that are gradational over 20 to 200 cm, and typically contain faint outlines of 2 to 3 mm euhedral feldspar grains, which are

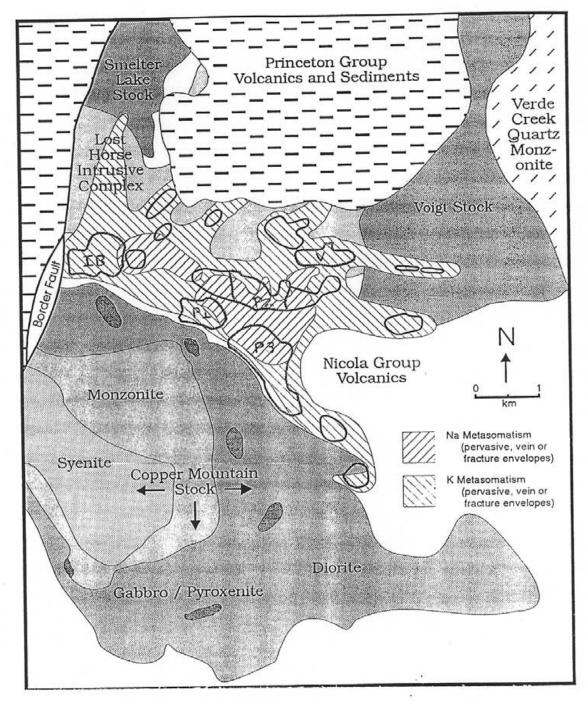


Figure 3.5 Distribution of Pervasive Alteration Types at Copper Mountain.

suggestive of intrusive protoliths. A spatial association of sodic alteration with hornfelsed volcanic rocks and the segregation of Na and Ca in one and K, Fe and Mg in the other suggests that there may be a genetic relationship between the two alteration types. Large zones of pervasive sodic alteration are constrained to the central part of the mine area occurring in the western ends of Pits 2 and 3, all of Pit 1 and the eastern part of the Ingerbelle Pit.

Structurally controlled sodic alteration is similar to pervasive alteration except that the alteration is restricted to narrow envelopes along "dry" fractures. In highly fractured rocks where the alteration envelopes merge, structurally controlled alteration becomes indistinguishable from pervasive alteration.

Potassic alteration is widespread, generally occurring outboard of the sodic alteration, but also within, and is quite variable in intensity. It is typically not texturally destructive, producing a pink wash (potassium feldspar) through the matrix, orthoclase replacement of, or overgrowths, on plagioclase phenocrysts and conversion of mafic minerals to biotite and magnetite (+/-chlorite). Potassic alteration is mostly associated with intrusive rocks of the Lost Horse Complex. Where this alteration is intense it is difficult to determine an altered rock from a fine-grained syenite. Disseminated epidote and chalcopyrite are commonly associated with potassic alteration. With the exception of albite veins, most of the veins, both sulphide bearing and non-sulphide bearing are likely associated with the late stages of potassic alteration.

A plethora of vein mineralogies and textures occur at Copper Mountain and are the major source of sulphide mineralization. Most of the vein types post-date the pervasive alteration. Classification of veins on the basis of mineralogy, texture, envelope and selvage assemblage has been attempted by Stanley et. al. (1994) and results in a considerable number of vein classes with a complex paragenesis. Only a brief generalized description will be given here.

The dominant silicate minerals occurring in veins, envelopes and selvages includes, in

approximate order of total abundance, orthoclase, epidote, magnetite, calcite, biotite, chlorite and scapolite. Albite veins, which are usually a salmon orange colour are only significant in the Ingerbelle deposit and the Oronoco exploration area. Similarly, late-stage scapolite veins have only been observed in the Ingerbelle Pit. Sulphide minerals consist of chalcopyrite, bornite and pyrite. Magnetite (+/- biotite and chlorite) - chalcopyrite - pyrite veins are ubiquitous but comprise a significant part of the mineralization in the northeastern mine area (east side of Pit 2, Virginia and Alabama deposits and Voigt Zone mineralization). Bornite - chalcopyrite veins (fracture fillings) with or without silicate envelopes and selvages are the main source of sulphides within Pit 3. Pegmatite textured veins composed of orthoclase, biotite, calcite, epidote (and in two locations, garnet) occur with or without sulphides and are generally restricted to the "core" of the mine area (Pit 1, Pit 3 and Pit 2).

4. DIAMOND DRILL PROGRAMS

4.1 Alabama Diamond Drill Program

4.1.1 Overview

This section presents a summary of the Phase I diamond drill program on the Alabama copper-gold deposit. The Alabama area was selected as the most likely target area that could produce a large economic deposit within a relatively short time-frame and limited exploration budget. The Alabama Zone was deemed the best target for a variety of reasons including: geology and alteration, geophysical signature, previous drill results, proximity to the crusher and topographic setting.

The Alabama Zone is situated 1km east of the Copper Mountain crusher (Figure 1.3) on the Lost Horse Gulch Ridge. Elevation at the top of the ridge is 4,050 feet but drops to 3,700 feet at the Virginia deposit.

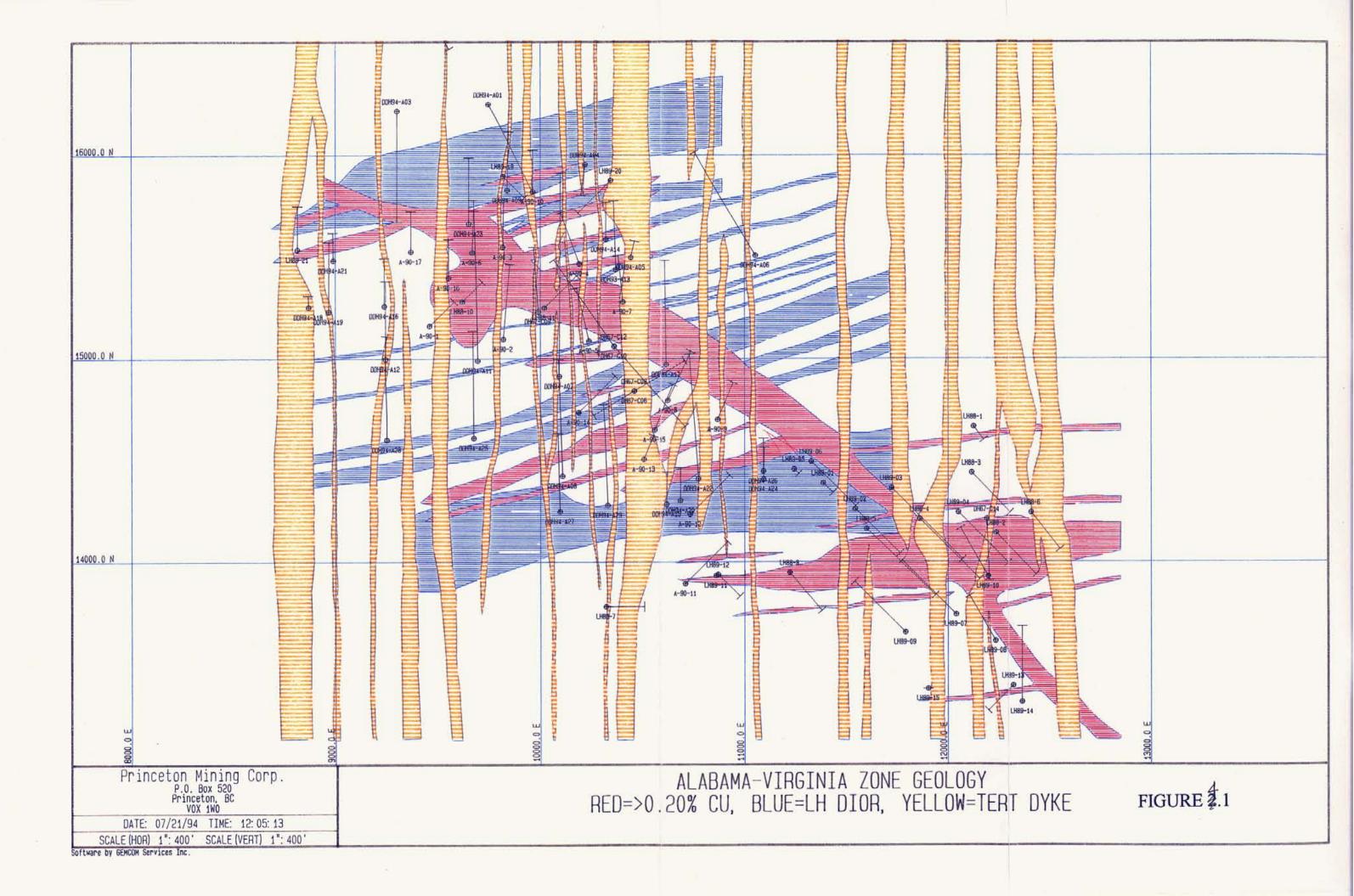
The objective of the Phase I drill program was to define a deposit with the potential to host at least 30 million tons of ore at a low strip ratio. It was originally anticipated that 18,000 to 22,000 feet of diamond drilling in holes spaced 400 to 600 feet apart would be required to achieve this objective. Extensively faulted and fractured ground resulted in higher drilling costs and consequently only 16,105 feet were drilled on the proposed budget.

4.1.2 Geology and Mineralization of the Alabama Deposit

Geology of the Alabama area is characterized by a complex of tabular dyke-like intrusive rocks cutting the Nicola volcanic rocks of the Wolf Creek formation. These rocks are overlain to the north by a thin to thick cover of Tertiary volcanic flows and sedimentary rocks. Where the Tertiary-Mesozoic contact is intersected by drilling it appears to be faulted. Pronounced east-west structural extension during Tertiary time has resulted in abundant north-south trending felsite and basalt dykes cutting the rocks of interest. Total volume of the dykes is in the order of 10% of the Alabama ridge area. Ground conditions on the Alabama ridge are poor due to extensive faulting and fracturing.

Nicola volcanic rocks consist predominately of fine-grained augite-phyric andesite to basalt flows and coarse fragmental rocks with minor fine-grained pyroclastics. The coarse fragmental volcanics, locally referred to as lapilli tuffs are commonly hornfelsed to a biotite-magnetite rich assemblage. It is believed that it is this unit that the "old-timers" referred to as the favourable horizon. However, in the Alabama area this fragmental unit appears to be vertical and although it is commonly well-mineralized it is not necessarily so and does not seem to carry grades in excess of the surrounding Lost Horse intrusive rocks.

The intrusive rocks at Alabama are part of the Lost Horse intrusive complex, an appropriate name for a confusing variety of intrusive compositions and textures. The Lost Horse intrusions have been subdivided into three sets based on age relative to mineralization: LH1, which is predominantly a pyroxene diorite appears to be pre-mineralization; LH2, which consists of a variety of feldspar phyric phases is syn-mineralization and believed to be intimately related to the source of mineralization; and LH3, which consists of post-mineral monzonite and syenite.


Alteration is pervasive in the Alabama area and makes it difficult to, not only, distinguish

between individual intrusive phases but also to distinguish between intrusive and some volcanic units. The most conspicuous alteration is pervasive potassium feldspar alteration which results in a pink wash throughout the rock, which, for example, results in a diorite protolith having the appearance and composition of a syenite. Potassic alteration is also manifested by potash rich veins and fracture fillings as well as by biotization. Sodic alteration or albitization (albite + epidote) which is common in Pits 1 and 3 is only locally present in the Alabama area. Propylitic alteration as defined by a chlorite + calcite + pyrite +/- epidote assemblage is observed in drill core on the north side of the Alabama deposit. An alteration zonation scheme and the relation of alteration to mineralization in the Alabama area has not yet been determined. The difficulty in defining specific zones of alteration can be appreciated if one considers the vast number of individual intrusive events, each with its own alteration halo, followed by movement along numerous faults, juxtaposing unrelated rocks and events.

Examination of historical data shows that vertical drill holes within Copper Mountain mineralization usually produces a seemingly eractic distribution of grades within the deposit areas. It is common to obtain wildly different grades and mineralized-intersection thicknesses over relatively short distances between holes (including some spectacular high-grade intersections). This, in turn, led to difficulties in making reserve estimations, particularly in smaller deposits such as the Virginia. It is felt that inclined (-45 degree) holes on the Alabama Zone would produce better geological and grade distribution information. Previous delineation and definition drilling at Copper Mountain was done with close-spaced vertical holes and therefore it is difficult to make direct comparisons between this program and early stage results obtained during the definition of other deposits. It is reasonable to assume that assay results within inclined holes will be less consistent (narrow intersections) than vertically drilled holes. However, assays between proximal holes should be more consistant among the inclined than the vertical holes. Inclined holes will more precisely define the lateral limits of mineralization than will the vertical holes and will reduce the risk of extrapolating high-grade intersections into areas of waste. Figure 4.1 is a conceptual plan of the Alabama-Virginia areas showing drill hole location, the main zones of mineralization (red), Lost Horse diorite

dykes (blue) and barren Tertiary dykes (yellow).

Mineralization at Alabama is more similar to the Ingerbelle deposit than any of the other known mineralization in the camp. Like Ingerbelle, all of the copper at Alabama occurs as chalcopyrite and is usually associated with pyrite and magnetite. The sulphides occur as disseminations and to a lesser extent as fracture and vein fillings within tabular, structurally controlled zones. The orientation of the main mineralized zone(s) at Alabama is 100 to 110 degrees with subordinate zones at 060 and 330; very similar to Ingerbelle. The Alabama and Ingerbelle deposits also share the same Cu:Au ratio of approximately 16,000. It is worth noting that the average length of above cut-off drill intersections in drill holes in the Ingerbelle deposit was 70 feet (Macauley, 1970) and that the deposit was drilled off with 542 holes totalling 243,139 feet.

4.1.3 Alabama Drill Program Results

A total of 16,105 feet of HQ and NQ diamond drilling has been completed in 29 holes. Drilling from the current program together with the previous drilling have defined a copper gold deposit that is elliptical in plan with surface dimensions of 2,400' by 1,100'. A preliminary sectional-type reserve estimate has identified an in-situ resource of 21.6 million tons grading 0.312% copper and 0.16 g/t gold.

Drilling was hampered by excessively broken ground which resulted in slower drilling, higher costs and a significant number of abandoned holes or holes which did not reach target depth. It is clear that both the drill orientation (north) and the shallow dip (-45) exacerbate the ground problems, however, steeper holes at different azimuths would produce both lower quality and quantity of geological data.

Figures 4.2, 4.3 and 4.4, show the location of pre-1994 drill holes, 1994 drill holes and an assay histogram plan of all Alabama drilling, respectively. Drill hole location co-ordinates are given in Table 4.1a for pre-1994 drilling and on Table 4.1b for 1994 Phase 1 drilling. A summary of 1994 Phase 1 drill results is given in Table 4.2. A more detailed list of composited drill hole intersections using two methods of compositing is given in Appendix II, following the drill logs.

The most recent drilling, holes 21 through 29, has extended the mineralized area to the southeast and it now appears that mineralization will extend to the southeast into the Virginia Zone (Figure 2.1). Holes that were drilled along the southern margin of the deposit encountered weak mineralization and, with the exception of the southeastern area, it does not appear likely that a significant volume of potential ore mineralization is likely to be present. Results of the westernmost holes are slightly more encouraging. Although the assay results are not high they are sufficient to indicate that the mineralization is still present and may

improve to the west, allowing the potential to expand the deposit in this direction.

The area of the potential ore deposit as indicated by drilling to date is contained within an elliptical shaped area with maximum dimensions of 2,400 by 1,100'. The deposit is partially closed to the north and south but remains open to the northwest and southeast. The dimensions of the mineralized area are similar to those of Pit 2 which hosted 29 million tons of ore grading 0.38% Cu with a 0.8:1 strip ratio. The Alabama deposit appears to be formed from a 200 to 400' thick band of relatively high grade mineralization (0.3 to 0.6% Cu) which trends approximately 110 degrees and flanked on both sides by lower grade, narrower zones. It is possible that the narrow peripheral zones are northeast or northwest trending structures.

A number of mineralization types have been recognized and preliminary metallurgical testing has been completed. A deep-penetration-high resolution IP survey (MIDAAS System) has been completed over the Alabama and Mill Zone areas, from the Cable belt in the west to Virginia Pit in the East. The survey indicates that the Alabama chargeability anomaly gets progressively deeper in the westerly direction until the cable belt area where a new strong anomaly occurs near surface. Additionally, the Mill Zone has a chargeability anomaly that is in the same order and size as the Alabama anomaly. The Midaas survey did not provide sufficient data to assist with the three dimensional interpretation of mineralized structures, nor did it demonstrate an ability to map out dykes at the reconnaissance scale (400 to 600' spaced lines).

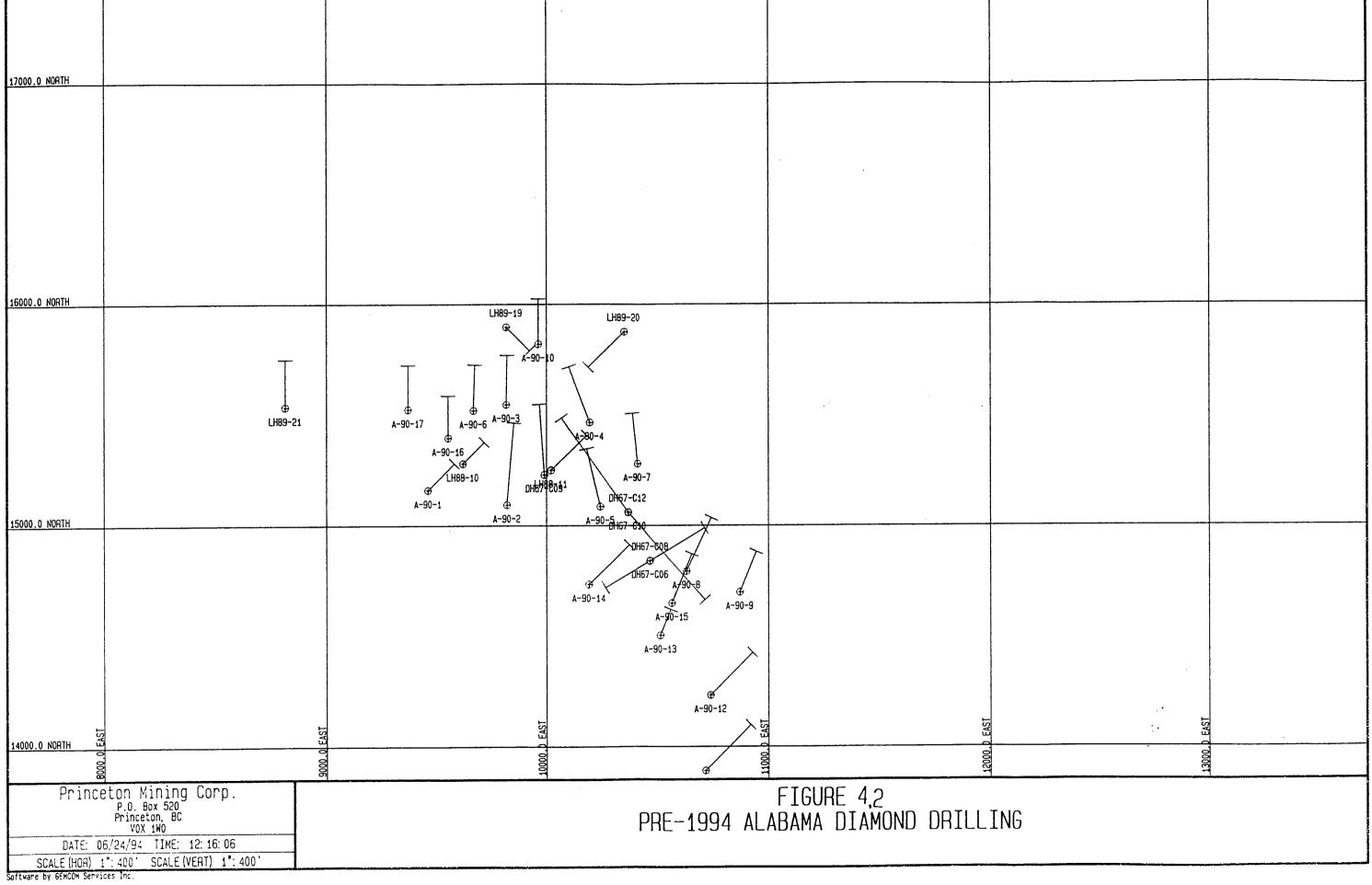
TABLE 4.1a
PRE - 1994 DRILL HOLE
LOCATION AND GRADE STATISTICS
SUMMARY

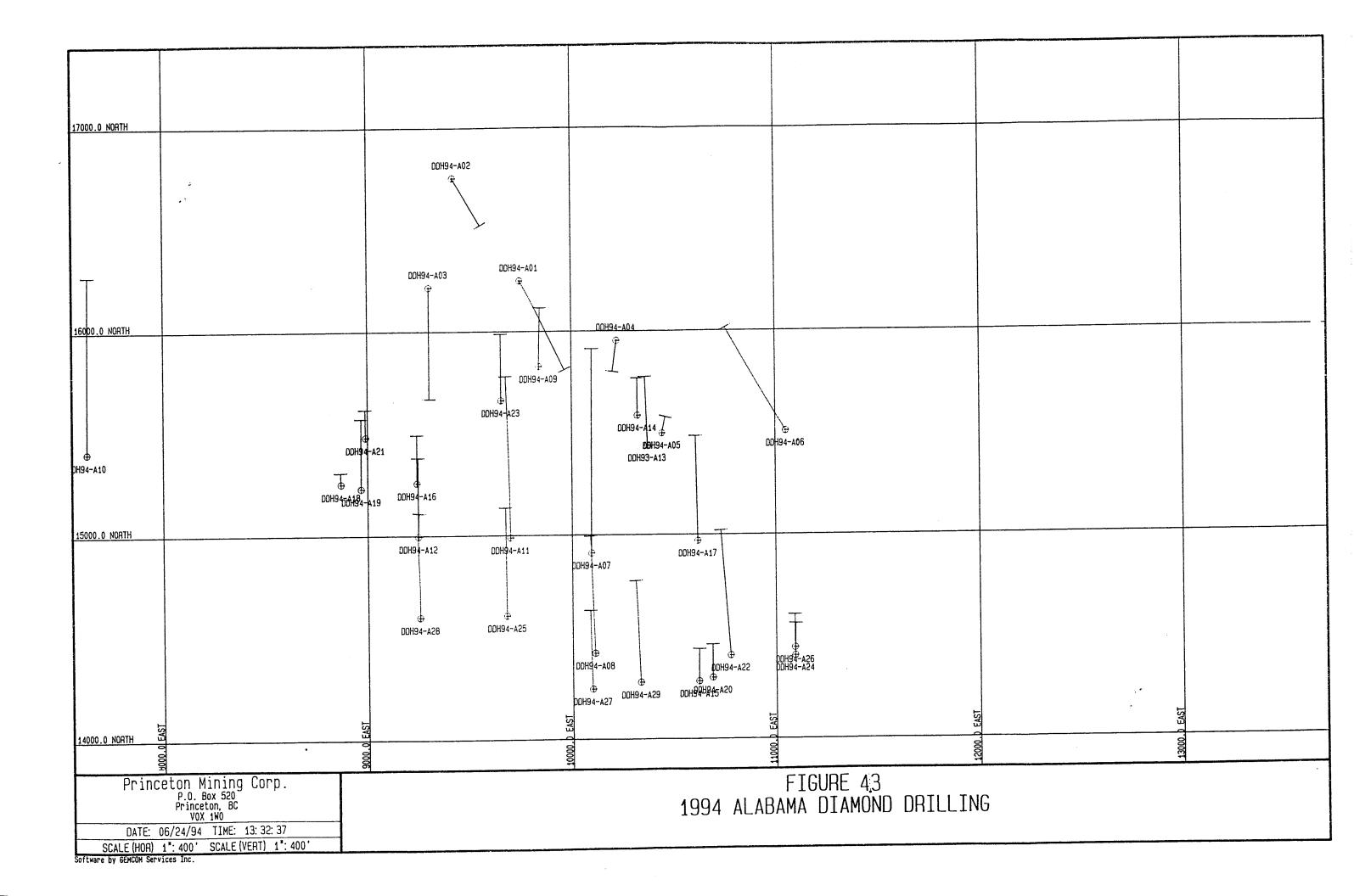
HOLE #	COLLAR NORTHING	COLLAR EASTING	COLLAR ELEVN. (FT)	AZM	DIP	LENGTH (FT)	RECOVERY (%)	LENGTH > 0.20% (%)	CU WAG > 0.20% CU (%CU)	AU WAG 0.20% (PPB AU)
C67-6	14840.00	10460.00	3903.00	59.00	-47.00	422	NA	7.1	0.42	NA NA
C67-8	14840.00	10460.00	3903.00	239.00	-46.00	336	NA	9.2	0.27	NA
C67-9	15230.00	9990.00	4078.00	356.00	-60.00	640	NA	32.3	0.38	NA
C67-10	15060.00	10360.00	3972.00	325.33	-45.00	748	NA	20.9	0.30	NA
C67-12	15060.00	10360.00	3972.00	138.67	-46.00	792	NA	16.8	0.55	NA
LH88-10	15280.00	9620.00	4083.00	45.00	-45.00	194	NA	74.0	0.39	NA
LH88-11	15250.00	10020.00	4073.00	45.00	-45.00	314	NA	44.6	0.43	NA
LH89-19	15896.59	9817.90	4044.01	135.00	-55.00	262	NA	4.2	0.29	NA
LH89-20	15875.13	10342.91	3954.98	225.00	-55.00	393	NA	29.0	0.48	NA
LH89-21	15535.32	8816.05	4028.25	360.00	-55.00	374	NA	15.5	0.37	NA
A90-1	15160.00	9460.00	4077.00	45.00	-45.00	240	NA	NSA	NSA	NA
A90-2	15093.92	9820.58	4085.55	5.00	` -45.00	525	NA	33.5	0.34	263
A90-3	15546.92	9818.10	4050.07	1.00	-45.00	315	NA	32.7	0.29	156
A90-4	15465.69	10189.95	4011.25	340.00	-55.00	467	NA	32.3	0.35	260
A90-5	15085.57	10237.13	3988.88	347.00	-55.00	467	NA	51.4	0.46	223
A90-6	15520.12	- 9667.87	4067.05	2.00	-55.00	360	NA	65.3	0.32	296
A90-7	15279.05	10402.92	3977.92	354.00	-55.00	400	NA	17.0	0.39	245
A90-8	14792.71	10624.75	3907.91	25.00	-55.00	465	NA	58.3	0.43	212
A90-9	14698.26	10867.52	3816.31	22.50	-55.00	345	NA	21.7	0.44	247
A90-10	15820.23	9963.39	4020.91	360.00	-55.00	357	NA	28.0	0.27	NA
A90-11	13890.81	10710.38	3582.52	45.00	-55.00	510	NA	19.6	0.36	NA
A90-12	14232.23	10733.52	3764.49	45.00	- 55.00	474	NA	8.4	0.63	NA
A90-13	14502.46	10506.39	3838.60	22.00	-55.00	220	NA	NSA	NSA	NA
A90-14	14733.78	10186.69	3908.19	45.00	-60.00	505	NA	19.8	0.34	NA
A90-15	14647.96	10558.98	3880.36	22.00	-60.00	480	NA	14.6	0.32	NA
A90-16	15396.02	9552.24	4069.91	360.00	-70.00	558	NA	16.7	0.31	NA
A90-17	15524.56	9368.52	4067.60	360.00	-60.00	400	NA	12.5	0.27	NA
TOTAL:						11563			0.38	238

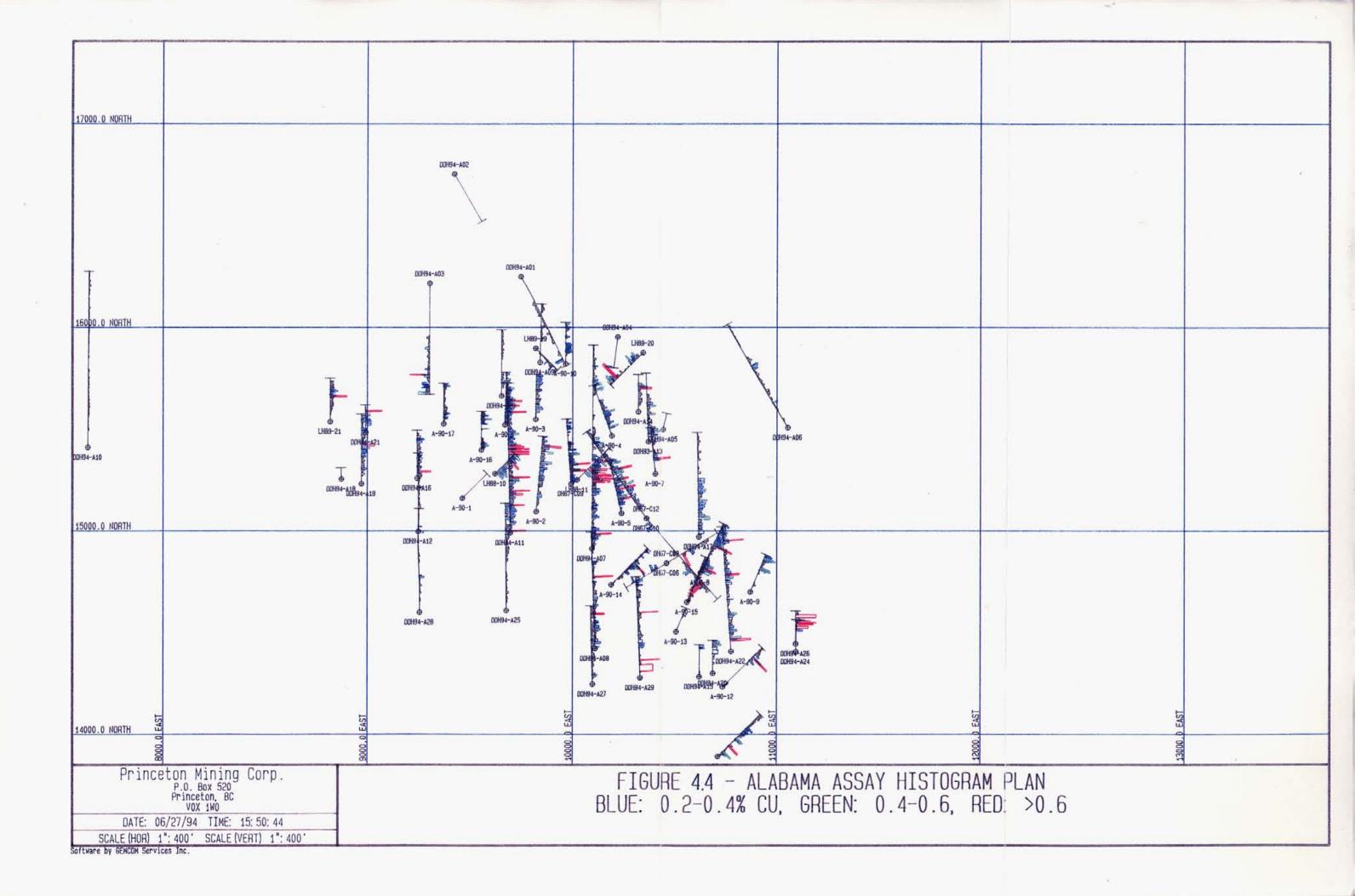
TABLE 4.1b 1994 DRILL HOLE LOCATION AND GRADE STATISTICS SUMMARY

HOLE #	COLLAR NORTHING	COLLAR EASTING	COLLAR ELEVATION (FT)	AZM	DIP	LENGT (FT)	RECOVERY (%)	LENGTH >0.20% CU (%)	CU WAG >0.20% CU (%)	AU WAG >0.20% CU PPB
94-A01	16248.89	9745.28	4047.19	149.00	-45.00	683	88	2.2	0.36	250
94-A02	16753.23	9418.92	3889.58	150.00	-45.00	379	90	NSA	NSA	
94-A03	16216.82	9300.53	4061,12	180.00	-45.00	773	73	11.4	0.37	118
94-A04	15959.99	10218.19	3978.00	187.63	-48.42	230	26	8.8	0.37	102
94-A05	15497.21	10442.11	3961.82	12.99	-54.01	140	100	NSA	NSA	NSA
94-A06	15505.90	11051.23	3852.16	328.42	-43.55	845	92	4.3	0.32	237
94-A07	14911.05	10092.36	4003.89	359.65	-44.17	1396	98	28.1	0.39	153
94-A08	14420.56	10108.09	3828.66	1.87	-43.20	836	95	17.2	0.36	214
94-A09	15827.47	9838.94	4035.12	1.35	-48.54	435	93	NSA	NSA	NSA
94-A10	15409.02	7629.48	4046.51	0.36	-42.68	1179	96	NSA	NSA	NSA
94-A11	14988.47	9694.76	4071.68	359.19	-46.38	1169	98	50.0	0.38	201
94-A12	14996.19	9245.48	4054.51	359.82	-44.14	537	95	4.8	0.35	164
94-A13	15437.56	10368.58	3980.37	357.94	-44.00	469	95	16.4	0.36	131
94-A14	15585.31	10319.55	3986.08	359.99	-43.93	254	95	11.8	0.47	102
94-A15	14281.51	10619.30	3784.94	0.57	-46.39	229	78	6.1	0.27	110
94-A16	15257.80	9239.54	4074.90	359.86	-42.79	321	97	10.6	0.29	146
94-A17	14969.05	10616.73	3952.76	359.04	-45.24	729	97	36.7	0.31	102
94-A18	15253.08	88.0788	4049.45	357.78	-46.02	81	100	NSA	NSA	NSA
94-A19	15230.50	8968.36	4055.05	0.08	-40.53	451	97	36.4	0.30	78
94-A20	14298.90	10686.15	3783.92	359.99	-46.54	236	83	33.9	0.30	148
94-A21	15482.25	8990.26	4064.17	359.02	-45.64	195	66	26.2	0.34	121
94-A22	14406.78	10774.30	3791.05	355.79	-45.78	882	89	23.4	0.39	191
94-A23	15662.24	9650.85	4073.67	358.81	-45.90	460	88	4.3	0.21	138
94-A24	14404.75	11091.71	3766.00	1.25	-46.54	229	89	12.7	0.37	148
94-A25	14607.21	9675.21	3933.57	359.51	-44.34	703	98	15.1	0.34	179
94-A26	14444.00	11091.00	3766.00	1.25	-4 5.00	229	85	30.6	0.76	332
94-A27	14245.67	10095.54	3778.51	357.91	-48.62	554	100	6.5	0.36	184
94-A28	14598.82	9251.73	3898.61	0.65	-4 3.03	732	100	3.3	0.28	143
94-A29	14276.92	10328.80	3785.21	357.67	-47.70	749	91	17.4	0.49	204
TOTAL:						16105			0.36	162

TABLE 4.2 - SUMMARY OF ALABAMA PHASE I


DRILL RESULTS


Hole#					
From	To	Thickness	% Cu	Au g/t	CuEq
DH94-A01		د			
630	645*	15	0.36	0.25	0.50
DH94-A02	hole	abandoned			
DH94-A03					
635	773	138	0.28	0.09	0.33
DH94-A04					
221	230*	9	0.38	0.1	0.44
94-A05	hole	abandoned			
94-A06					
464	500	36	0.28	0.14	0.36
94-A07					
32	151	119	0.19	0.07	0.23
214	313	99	0.19	0.06	0.22
366	643	269	0.42	0.15	0.50
452	575	123	0.59	0.18	0.69
717	763	46	0.26	0.13	0.33
DH94A08					
35	66	31	0.22	0.09	0.27
116	160	44	0.25	0.12	0.32
272	360	88	0.16	0.18	0.26
496	508	12	0.66	0.61	1.00
598	620	22	0.22	0.10	0.28
794	821	27	0.61	0.34	0.80
DH94AO9	по	significant	intersections		
DH94A10	no	significant	inter-		
DH94A11			sections]
60	981	921	0.28	0.16	0.37
incl 248	300	52	0.42	0.14	0.50
350	399	49	0.46	0.20	0.57
530	747	217	0.46	0.28	0.62
845	900	55	0.34	0.15	0.42
DH94A12					j
397	412	15	0.43	0.23	0.56
DH94A13					
39	109	70	0.30	0.12	0.37
184	204	20	0.29	0.09	0.34
242	266	24	0.30	0.07	0.34
DH94A14					
44	194	150	0.20	0.07	0.24
incl 154	184	30	0.47	0.10	0.53
DH94A15					
215	229*	14	0.23	0.009	0.24


Hole #		<u>, , , , , , , , , , , , , , , , , , , </u>					
From	To	Thickness	% Cu	Au g/t	CuEq		
DH94A16							
60	284*	224	0.15	0.09	0.20		
include. 240	265	25	0.26	0.16	0.35		
DH94A17							
14	409	395	0.25	0.09	0.30		
incl. 122	260	138	0.31	0.12	0.38		
DH94A19							
174	360	186	0.24	0.07	0.28		
420	451*	31	0.35	0.08	0.39		
DH94A20							
140	230*	90	0.29	0.16	0.38		
DH94A21					•		
53	150*	97	0.23	0.10	0.29		
DH94A22							
70	270	200	0.30	0.17	0.40		
514	564	50	0.38	0.17	0.48		
DH94A24							
197	229*	32	0.26	0.09	0.31		
DH94A25							
589	693	104	0.24	0.20	0.35		
DH94A26			•				
104	199*	95	0.56	0.27	0.71		
DH94A27							
268	322	54	0.17	0.13	0.24		
472	499	27	0.30	0.15	0.38		
DH94A28	No	significant	intersections				
DH94A29							
221	279	58	0.25	0.13	0.32		
684	741	57	0.24	0.28	0.40		

Copper equivalent (CuEq)based on \$385/oz Au and \$1.00/lbCu

* Hole abandoned prior to target depth

4.1.4 Resource Estimation

In order to evaluate the drill results to date an estimation of the indicated resource has been made. Spacing of drill holes and the nature of the mineralization is such that the reserve estimate must be considered preliminary until additional drilling is completed. The resource estimation should be kept in its proper context; it is not a reserve calculation with implied positive economics, but merely an indicated resource based on the drill results together with experience gained from historical production.

A key aspect to bear in mind is that most of the past drilling on the property was done with vertical holes, consequently comparisons with drill results from previous exploration is difficult. The methodology and assumptions required to estimate the resource are described below.

Methodology.

The method used to estimate the Alabama deposit resource is commonly known as the "sectional method" where geological interpretations of the mineralized zones are drawn on sections and plans and the sectional area of mineralization is assigned a grade on the basis of the grade of the drill holes within the area. Volume is calculated based on sectional area times a projected distance determined from the level plan. Tonnage is calculated using a tonnage factor of 11.5 cubic feet/ton, which is based on a specific gravity of 2.76. For most sections the projected distance totals 200 feet. While this distance does not fill all of the distance between sections it allows for dykes, which generally run parallel to the sections, and prevents data from being projected to distances beyond which they are reasonable. In most cases sectional blocks were simple parallelograms which was in keeping with the assumptions about mineralization and the limited amount of data. A side benefit of this was that it kept the volume calculations relatively simple. In general, preliminary geological interpretation of the mineralization on cross sections is consistent with the assumptions listed below.

Assumptions:

- a) Mineralization is planer or sheet like with excellent vertical continuity.
- b) Mineralization continuity is minimal in a north-south orientation (ie: has sharp contacts) and has moderate continuity in an east-west orientation (able to project for distances of up to 200'). In reality, the north-south mineralization boundaries will be defined by assay cut-offs and could be curvilinear.
- c) Mineralization extends to the 3500' elevation unless it is terminated at a higher elevation by drill data. This is based on an assumed pit depth of 500'. In reality, mineralization likely extends to considerable depths, but at the present time, drill data for the area below 3500' is limited.
- d) Mineralization extends to bedrock surface: the degree of oxidation was not considered.

Results:

Tabulation of the sectional blocks yields an indicated resource of 21.6 million tons grading 0.312% copper. Block dimensions, grades and calculated tonnages are listed in Appendix III. Only half of the gold assays had been completed at the time of the estimate, so gold was not used in the resource estimation. However, an average of all gold grades received to date associated with copper greater than or equal to 0.2% is 0.168 ppm. Because some of the copper grades included in greater than 0.2% intersections are below 0.2% copper it is likely that the average gold grade of the deposit will be lower than 0.168ppm, consequently 0.16 grams per tonne (0.0047 oz/T) was the number assigned to the indicated resource. Based on US \$1.00/lb Cu and US \$385/oz Au this would give a copper equivalent grade of 0.402% Cu. A hypothetical pit outline around the indicated mineralization has a contained tonnage of 38 million tons. This would suggest a strip ratio of 0.76, however, until an actual pit plan is completed to match the mineralization, this strip ratio should be considered as a rough "ball-park" estimate.

Discussion

At this point in time, the above indicated resource is still on track to achieve the targeted objective of 30 million tons grading >0.35% copper with a strip ratio of < 1.0. The deposit is still open in some areas, particularly to the southeast and will probably extend to depths well below the 3500' elevation. Additionally, there are some sections were drill holes intersected dykes and therefore mineralized zones were under-represented on those sections. (Conversely, only the major dykes were eliminated from the resource estimate and in-fill drilling could reveal a higher dilution factor, due to dykes, than anticipated.) With completion of Phase 2 drilling, pit optimization will eliminate some of the peripheral lower grade areas which will likely result in an overall higher average grade but will also result in lower tonnage. Although it is possible that in-fill drilling will lead to a reduction in tonnage and/or grade, it is considered less likely than an increase in tonnage/grade due to the reasonably good morphological and grade continuity between drill sections.

4.2 Ingerbelle East Diamond Drill Program

4.2.1 Overview

The Ingerbelle East deposit is situated immediately east of the Ingerbelle pit, and approximately 4,000 feet south of the new primary crusher. A 15,000 foot diamond drill program on the Ingerbelle East deposit commenced on June 29 and was completed on September 27, 1994. The objective of this program was to provide sufficient information in order to define mineable reserves, perform a pit optimization and develop a mine plan. The exploration target was a deposit containing approximately 30 million tons grading > 0.4% copper with a waste to ore ratio of 1.2:1. More specifically, the drill program was designed to: 1) verify the location, shape and grade of mineralization indicated by past drilling and; 2) extend known mineralization and/or delineate new mineralization within undrilled areas of the proposed pit area, thereby lowering the waste to ore ratio.

The Ingerbelle East area was first drilled in the late 1960's by Newmont during the exploration of the Ingerbelle deposit. Much of this early drilling was in vertical percussion holes with a few inclined diamond drill holes. Drill results were favourable but were not included in the Ingerbelle mine plan, possibly due to the difficult topography adjacent to the river. The area was further tested by a 12 hole 7,680 foot drill program in 1980. This drilling, which was all in angle holes, defined an easterly trending, well-mineralized zone at least 1000 feet long by 450 feet wide and 400 feet deep (Burgoyne, 1992). The mineralized zone appears to have a fairly sharp northern boundary but is open to depth. The southern boundary is only partially defined as steep topography has limited the amount of drilling.

A geostatistical reserve estimate was made prior to the current drill program. The estimate, which used a 0.2% cutoff grade, 40 foot bench composites, and a defined (preliminary) pit shell, indicated a within pit reserve of 21.1 million tons grading 0.35% copper at a 1.66 waste to ore ratio. This estimate does not incorporate geological controls on mineralization nor does

it include pit access, haulage ramps or detailed wall angle adjustments, and therefore should be considered as preliminary. A plan view showing exploration drill hole locations, relative to the previous Ingerbelle drilling and generalized results is given in Figure 4.5.

4.2.2 Geology of the Ingerbelle East Deposit

The geology and mineralization of the Ingerbelle East deposit compare very well with that of the Ingerbelle deposit, which is not remarkable since one is an extension of the other. Review of the blast hole assay plans from the Ingerbelle deposit reveals a strong structural control on mineralization with multiple, parallel, vertically dipping, northwest (340 degrees) and northeast (070 degrees) trending zones predominating (see Section 3.1). Sulphide minerals within these zones occur as disseminations, veins and fracture fillings. The structural zones appear to have gradational contacts and are better defined by copper grade than by any recognizable geological feature.

The geology of the Ingerbelle East area consists of a sequence of andesite flows, coarse pyroclastic rocks and derived sediments that have been intruded and altered by a numerous dykes of irregular shape and variable composition belonging to the Lost Horse Intrusive Complex. The volcanic rocks are commonly altered to a fine grained mass of albite, epidote and other minor minerals. Primary textures are all but obliterated. Bedding to core axis angles indicate variable, but usually steep dips, in marked contrast to the flat-lying stratigraphy described in older reports on the Ingerbelle and Copper Mountain deposits. The intrusive rocks host mineralization approximately 50% of the time but hornfelsed or albitized volcanic rocks appear to be the best ore hosts. Most of the area has been "washed" with later pervasive and fracture controlled potassic alteration.

The Ingerbelle deposit produced 59 million tons of ore grading 0.43% copper and 10 million tons grading 0.24% copper (low grade stockpile) with an overall waste to ore ratio of 1.42. The recovered gold grade is reported as 0.173 g/t. The gold head grades are not known but on the basis of 1,252 blast holes from benches 2930, 2970 and 3010 which have both copper

and gold assays the copper/gold ratio is 15,900 (Stanley, pers.comm., 1994). Using this ratio and an average copper grade of 0.43% gives an average gold grade of 0.27 g/t for the Ingerbelle deposit. Not surprisingly, this matches fairly closely the gold assays currently being obtained from the Ingerbelle East drilling.

4.2.3 Drill Program Results

Current drill results have confirmed the interpreted trends of mineralization and extended mineralization into areas previously classified as waste. In general, the Ingerbelle East drill results consist of discreet, moderate to high grade (0.3 to 1.0%Cu) intersections within larger areas of little or no grade. At first glance the distribution of grade appears to be erratic, however, closer examination reveals that the higher grade intersections occur along predictable structural trends, albeit commonly disrupted by barren, northerly trending vertical to flat, narrow zones of post-mineral (?) intrusive rock. Lower grade mineralization is also controled by structure although the orientations are difficult to determine because the number of possible correlations between intersections is so much higher. In order to develope appropriate kriging parameters for reserve estimation, an investigation into the variography of historical Ingerbelle drill results and blast hole drill results from the Ingerbelle Pit was carried out by Giroux (1995 in prep.) Preliminary results indicate that different grade ranges have differing structural controls and that certain structural directions exert different degrees of control in different areas. It also appears that mineralization in the Ingerbelle East deposit is more-or-less continuous with mineralization below the Ingerbelle pit and that the possibility exists to mine both deposits simultaneously. A new reserve estimate is currently being Preliminary estimates indicate that mineable reserves will be in the 40 to 50 prepared. million ton range grading better than 0.32% copper and 0.2 g/t gold. The strip ratio will be dependant upon whether an in-pit ramp is required but will be in the order of 2:1 because of the necessity of pushing back the existing pit walls.

5. GEOPHYSICS

A deep-penetration, high-resolution induced polarization and resistivity survey using the MIDAAS system was carried out over twelve lines, totaling 13.6 kms, between May 18 and May 25. The survey area covered the Alabama Ridge, from the Virginia deposit in the east, to the crusher and ore conveyor system in the west. The eastern lines were extended to the south in order to cover the Mill Zone area. A technical summary and instrument specifications are located within Appendix IV. The MIDAAS system is different from other IP systems in that the pole-dipole array for the entire line is laid out such that n=12. Additionally, the data, including the wave forms, are stored digitally allowing better error analysis and noise corrections.

The purpose of the geophysical survey was two-fold: it was hoped that complete coverage of the Alabama ridge area might reveal the direction of the primary mineralized structures so that drill orientation and spacing could be matched to intersect mineralization in the most cost-effective manner, and that changes in mineralization with depth could also be determined as was the case with the initial test lines carried out previously. (Lines 6600W and 8800W).

Results of the surey are shown in psuedo sections (Appendix III). In general the survey suffered from site difficulties related to topography, waste dumps and cultural noise (power lines, conveyor belts, roads etc.). The psuedo sections confirm that the mineralized area is comprised of subordinate semi-discrete zones of higher chargeability but line spacing is not dense enough to interpret the orientation of specific chargeability highs. The chargeability highs are closest to the surface in the area of 6600W and appear to become deeper towards the west, until line 8800W and 10400 where a chargeability highs appear near surface on the south end of the lines. The westernmost line, 10800 records the largest and most intense chargeability anomaly in the survey. This line is on the slope at the western end of the Alabama ridge more than 100m lower elevation than the other lines. Cultural noise from the conveyor belt and power lines make these results somewhat difficult to interpret but surface

outcrops do support the presence of a mineralized area. Strong to moderate chargeability anomalies where also detected in the Mill Zone area, upgrading this target. An improved interpretation of the MIDAAS data will be possible following comparisons of the geophysical data with drill results.

6. Conclusions and Recommendations

6.1 Conclusions

In spite of a long history of exploration, development and mining, the Copper Mountain property still has excellent exploration potential. Historically, exploration and mining have gone in cycles with new reserves being discovered and developed following most major exploration programs. Property wide, systematic exploration using modern methods has not been undertaken in recent time and initial results indicate that long term exploration has a good probability for success. To date, the deposits of Copper Mountain have produced approximately 1.7 billion pounds of copper. There is a reasonable likelihood that the ultimate production of the district could exceed 3 billion pounds.

Mineralization in the Copper Mountain area is hosted by Nicola Group volcanic rocks and intrusive rocks of the Lost Horse Intrusive Complex. Mineralization which occurs as veins, vein stockworks, fracture filling and zones of disseminated sulphides is controlled by northwest, northeast and east-west trending structures. Alteration styles within the camp are divided into hornfels, sodic and potassic assemblages and occur in early pervasive forms and later structurally controlled forms. A model for mineralization and alteration that accounts for the alteration and metal zoning in the camp would consist of:

- emplacement of the Copper Mountain, Smelter Lake and Voigt Stocks followed closely by intrusion of initial Lost Horse Intrusive phases (LH1),
- intrusion of LH2 and evolution of hydrothermal fluids,
- migration of hydrothermal fluids outwards from the margin of the Copper Mountain stock, initially along the strongest northwest trending structures (Main Fault) towards Ingerbelle and then along northeast structures.

Additional source areas for hydrothermal fluids, both within the above model and elsewhere in the Copper Mountain area, are probable which bodes well for future exploration.

Two deposits are currently undergoing development or feasibility studies: the Alabama and the Ingerbelle East. Phase 1 drilling on the Alabama deposit defined an in-situ resource of 21.6 million tons grading 0.312% copper and 0.16 g/t gold. At metal prices of US\$1/lb for copper and US\$385/oz for gold, the copper equivalent grade for Alabama is 0.402%, assuming gold recoveries similar to copper. The Alabama deposit is open to the west, southeast and to depth and additional drilling is likely to increase size, and possibly the grade of the deposit. It appears that Alabama mineralization is continuous into the Virginia deposit. An open pit on the southern part of the Alabama would likely be able to access about 3 million tons at 0.4% copper in and around the scheduled Virginia reserves. Proximity to the Copper Mountain crusher, favourable metallurgy (from initial testwork), and a favourable topographic setting to reduce both pre-stripping and the ultimate strip ratio, suggest that the Alabama deposit contains an economic resource in spite of relatively low copper grades. A phase II drill program consisting of 44,800 feet in 64 inclined holes is required to establish proven reserves and allow a feasibility study.

A diamond drill program to bring the Alabama resource to a stage where pit design and full economic studies could be conducted would consist of 64 drill holes with an average length of 700' for a total of 44,800 feet. In spite of the difficulties of drilling holes with northerly azimuths and -45 degree dips, this would be the recommended format, primarily because this orientation of drilling gives the most reliable information from which to calculate ore reserves. Four fences of drill holes on 240 to 270 degree azimuths would be required to verify the location and thicknesses of the north-south trending Tertiary mine dykes. The locations of the recommended holes are given in Table 6.1 and shown on plan in Figure 6.1.

Phase II diamond drilling on the Ingerbelle East deposit has confirmed the presence of a potentially economic body of copper-gold mineralization. The discovery of high grade mineralization (<0.6% Cu) along the Main fault at the south edge of the Ingerbelle East deposit, which appears to be continuous with high grade mineralization below the old Ingerbelle Pit, and has resulted in the possibility of mining the Ingerbelle East deposit in conjunction with an Ingerbelle expansion. Possible mining scenerios and pit designs are

currently being investigated.

A full program to bring the Alabama deposit to the feasibility stage would cost \$1.5 million as outlined below.

Total	1,500
Engineering/geotechnical studies	70
Metallugical testing	44
Sterilization drilling 8,000' @ \$22./ft.	176
Definition drilling: 44,800' @ \$27./ft.	1,210
	\$(000's)

5.2 Recommendations

A three tiered or level exploration program is proposed consisting of: development drilling through to feasibility on the Alabama deposit, property scale or exploration drilling on the Mill Zone, Oronoco and P4 areas, and regional grass-roots exploration on three of the regional target areas. Details and costs of the proposed exploration are outlined below. Proposed Exploration Budget:

A) Alabama Phase II Exploration Drilling to Feasibility

Grand Total	2,200
D) Contingency	130
IP surveys (40 line km)	40
Geochemistry (gridded soils and streams)	45
Grid establishment (50 line km)	10
Geological mapping and Supervision	15
C) Regional Exploration	
Subtotal	483
P4 Zone Phase 1 Drilling 3,600' @ \$27/ft.	<u>97</u>
Oronoco Phase 1 Drilling 3,000' @ \$27/ft.	81
Mill Zone Phase 1 Drilling 8,000' @ \$27/ft.	215
Geology and Supervision	60
Compilation and Base Map Preparation	30
B) Property Exploration	
Subtotal	1,500
Geology and Engineering	80
Metallurgical testing	34
Sterilization drilling: 8,000' @ \$22/ft.	176
Definition drilling: 44,800' @ \$27./ft.	1,210
	\$(000's)
71) Madama Thase it Exploration Diming to Tousion	109

References

Blower, S. 1992. The Structural Style of the Copper Mountain and Ingerbelle Porphyry Copper-Gold Deposits, British Columbia.
Unpublished paper for Geol. 911 Seminar, Queen's University, Kingston, Ontario

Burgoyne, A.A., 1992. An Evaluation of the Exploration and Reserve Potential of the Copper Mountain Mining Area, B.C. Unpublished report for Similco Mines Ltd., 24 pages.

Dolmage, V., 1934. Geology and Ore Deposits of Copper Mountain, British Columbia. Geological Survey of Canada, Mem. 171.

Fahrni, K.C., 1950. Geology of Copper Mountain. Unpublished Report for Granby Mines Ltd.

Fahrni, K.C., 1951. Geology of Copper Mountain. Canadian Institute of Mining and Metallurgy Bulletin, vol. 44 No. 469, pp. 317-324.

Fahrni, K.C., Macauley, T.N. and Preto, V.A.G., 1976. Copper Mountain and Ingerbelle. In Porphyry Deposits of the Canadian Cordillera, Ed. by A. Sutherland-Brown, Canadian Institute of Mining and Metallurgy, Spec. Vol. No. 15, pp. 368-375.

Holbek, P.M. and Blower, S., 1994. Phase 1 Diamond Drill Program on the Alabama Deposit: Copper Mountain British Columbia.
Unpublished company report for Similco Mines Ltd.

Huyck, H.L.O. 1986. Geological Observations at Copper Mountain: A Preliminary Report. Unpublished report for Newmont Mines Ltd. 12 pages.

Jones, B.K., 1992. Application of Metal Zoning to Gold Exploration in Porphyry Copper Systems. Journal of Geochemical Exploration, Vol. 43. pp 127-155.

Kesler, S.E., 1973. Copper, Molybdenum and Gold Abundances in Porphyry Copper Deposits. Econ. Geol. Vol. 68. pp. 106-112.

Kwong, Y.T.J., 1987. Evolution of the Iron Mask Batholith and its Associated Copper Mineralization. B.C.E.M.P.R. Bull. No. 77.

Lang, J.R., 1992. Preliminary Petrographic Observations in the Virginia Zone, Copper Mountain Camp, South-Central British Columbia. in Annual technical Report - Year 1, Copper-Gold Porphyry Systems of British Columbia, Chapter 9. Mineral Deposit Research Unit, The University of British Columbia.

Lang, J.R., 1993. Petrography and Preliminary Geochemical Evolution of Igneous Rocks in the Copper Mountain District. In Annual Technical Report - Year 2, Copper-Gold Porphyry Systems of British Columbia, Mineral Deposits Research Unit internal report, The University of British Columbia. Chap. 4.

Lowell, J.D., and Guilbert, J.M., 1970. Lateral and Vertical Alteration, Mineralization and Zoning in Porphyry Ore Deposits. Econ. Geol. Vol. 65, pp. 373-408.

Macauley, T.N., 1970. Geology of the Ingerbelle-Similkameen Deposits at Copper Mountain, B.C. Unpublished company report, Newmont Mining Company Ltd. 63 pages.

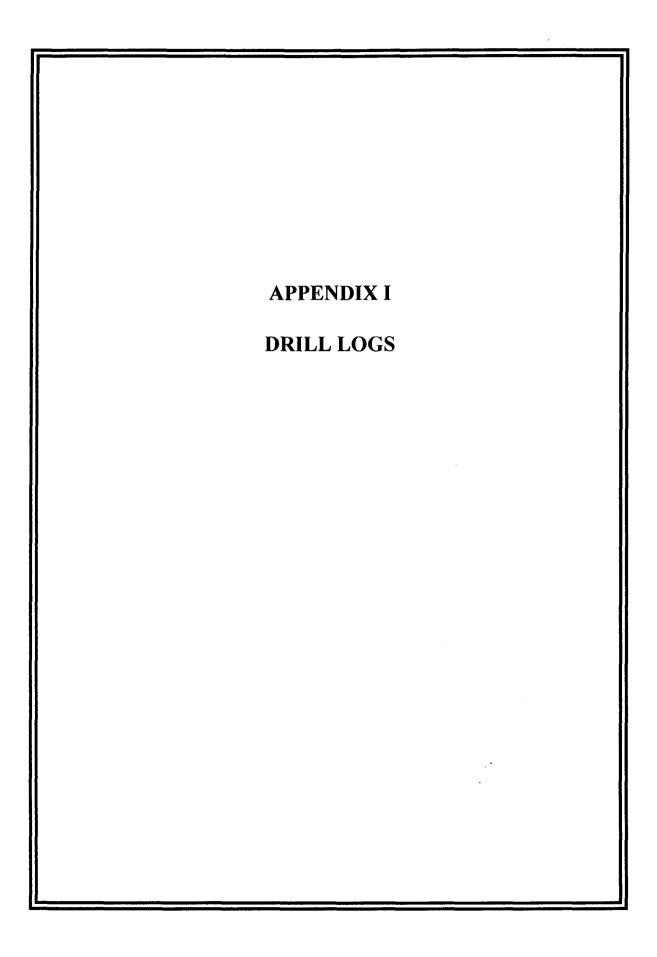
Montgomery, J.H., 1968. Petrology, Structure and Origin of the Copper Mountain Intrusions near Princeton, B.C. Unpublished Ph.D. Thesis, The University of British Columbia, 175 pages.

Monger, J.W.H., Wheeler, J.O., Tipper, H.W., Gabrielse, H., Harms, T., Struick, L.C., Campbell, R.B., Dodds, C.J., Gehrels, G.E. and O'Brian, J., 1992. Upper Devonian to Middle Jurassic Assemblages, Part B. Cordilleran Terranes in The Geology of the Cordilleran Orogen in Canada, The Geology of Canada, No.4, DNAG Vol. G2, pp. 281-328.

Mortimer, N., 1987. The Nicola Group: Late Triassic and Early Jurassic subduction-related Volcanism in British Columbia. Canadian Journal of Earth Sciences, Vol. 24, pp. 2541-2536.

Preto, V.A.G., 1972. Geology of Copper Mountain. British Columbia Department of Energy, Mines and Petroleum Resources, Bulletin 59, 87 pages.

Preto, V.A.G., 1977. The Nicola Group: Mesozoic Volcanism Related to Rifting in Southern British Columbia. in Volcanic Regimes in Canada, ed. by Baragar, W.R.A., Coleman, L.C., and Hall, J.M., Gelogical Association of Can. Spec. Paper No. 16, pp. 39-57.


Preto, V.A.G., 1979. Geology of the Nicola Group Between Merritt and Princeton. B.C.E.M.P.R. Bull. No. 69.

SIMILCO MINES LTD. EXPLORE B.C. GRANT 94/95A - 3 STATEMENT OF COSTS ALABAMA & INGERBELLE EAST DRILL PROGRAMS MARCH - SEPTEMBER 1, 1994

DIAMOND DRILLING		
Drill Contractor 8,000m @ 91.69/m	\$733,559.60	
Fuel	17,775.53	
Core Boxes (Robertson MFG.)	2,527.88	
Core Racks	7,707.85	
Survey Instrument (Pother Ent.)	3,852.00	
Core Splitters & Gopher	12,743.84	
Subtotal		\$778,166.34
GEOLOGY & ENGINEERING		
Geology (S. Blower, P. Thiersch)	42,290.40	
Engineering (J. Marlow)	14,504.00	
Surveying & Helpers	12,205.13	
Supervision (P. Holbek)	<u>21,070.11</u>	
Saftware & Commuting Secretarial	6,700	
Software & Computing, Secretarial	1,050.00	
Drafting Services Subtotal	<u> 1,030.00</u>	97,819.64
Subtotal		77,017.04
ANALYTICAL & METALLURGICAL		
Pioneer Labs (Au + RCP)	12,807.12	
Minesite (Cu Analysis & Met Testing)	11,915.15	
Subtotal		24,722.28
GEOPHYSICS		
Grid Layout & Line Costing	4,445.00	
Midaas Survey	<u>14,750.00</u>	
Subtotal		19,195.00
CLUBDIAN CONTROL OF A SERVING		
SUPPLIES & EQUIPMENT & TRANSPORT	077.04	
Deakin Equip	877.94	
Sample Bags	350.96	
Lumber	1,279.72	
Transport	11,140.00	
Accommodation	5,651.70	
Warehouse Supplies	1,225.87	
Subtotal	20,526.19	

\$940,429.45

Grand Total

Princeton Mining Corp. SIMILCO MINES LIMITED DRILL HOLE LOG

ALABAMA PROJECT ID :

HOLE / TRAVERSE ID :DDH94_A01

CORE HOLE SIZE

:NQ DATE STARTED :94/ 5/ 3

DATE COMPLETED GEOLOGGED BY

PLOT DATE

PROJECT LEADER LOCATION

:94/ 5/ 9 :PMH :94/NOV/ 6

:PMH

COLLAR AZIMUTH

:149.00 COLLAR DIP :-45.00 COLLAR ELEVATION :4047.19

COLLAR NORTHING :16248.88 :9745.28

COLLAR EASTING

COLLAR OFFSET COLLAR STATION

TOTAL LENGTH :683.0

MINING DIV .: SIMILKAMEEN NTS: 92H

PURPOSE: TEST NORTHWEST EXTENT OF ZONE

COMMENTS: BROKEN GROUND: HOLE LOST AT 683 FEET.

KEY INTERSECTIONS: FROM 630 TO 645; 15 FT. OF 0.36% CU, 0.25 G/T AU

SURVEY DATA AZIMUTH DEPTH DIP 0 -45.0149.0 -44.0154.0 205

SUMMARY REMARKS

Hole was collared on northern edge of known mineralization to test: a) northern extent of mineralization, b) depth of the Tertiary cover and possible supergene zone, and c) mineralization below the 400' vertical depth. The hole intersected 195' (135' vertical) of Tertiary volcanic and sedimentary rocks. Contact between the Lost Horse rocks and the Tertiary cover is a Horse rocks and the Tertiary cover is a fault. The top of the mineralization is unweathered. Most of the hole intersected weakly mineralized, propylitically altered diorite. Mineralization and potassic alteration increased at bottom of hole.

LEGEND

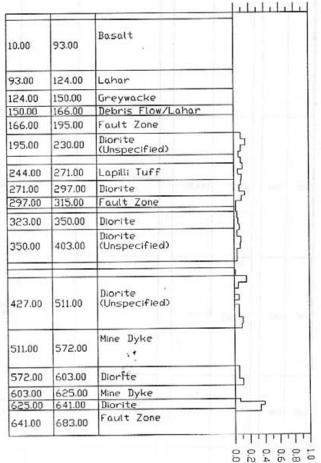
ECON. MINERAL:

D = DISSEMINATED MV = MICROVEIN/FRACT.FILL

// = VEINS AND PATCHES

D V= DISS. < VEINS/FRACTURE FILL

STRUCTURE ID:


CV = CALCITE VEIN QV = QUARTZ VEIN

M. - MAGNETITE VEIN FL = FAULT

D. - INTRUSIVE CONTACT

DRILL HOLE SUMMARY

FROM TO LITHOLOGY Cu% 0.6

DRILL HOLE: DDH94_A01
PAGE 2

FEET	RQI PPT	RECOVERY PPT		FROM	10	LITHDLOGY	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
.0		_	0.0	00	0.00	Casing					
50.0 -	50	980		0.00	93.00	Basalt			fine p grained (ORPHYR TIC	Grey-green, with pink-brown hematitic intervals, f.g. porphyritic basalt flow. In pink intervals phenos are rusty (sone specularite). In grey rack phenos appear to be olivine to phenos appear to be olivine to provide (1). Both units are weakly magnetic, Extensively fractured. Rare vesicles and foreign lithic fragments. Adigned phenocrysts.
1900	500	100	000	93,00	124.00	Lahar		REDBI H-BRD N	S CUARSE W GRAINED	FRAGMEN TAL	
	40	0	000	124.0	0 (150.00	Greywacke		DAPS: GPEY		INTERB	
150.0		00	990	150.0	00 166.00	Debris Flow/Lohar		GFE	CDAPSE (PA)NE	FRAGM	4 100 7 5 11
	+	75û	100	166	00 1950	Fault Zoty			. 15.0	4	Served mostly from hanging wall with a more amount from the lower unit, public, sand and breccia.

			_				L F		H94_				CHAL								PAGE	3
STRUCTURE ID	NANGLE TO CORE	U STRUCTURE ID		DANGLE TO CORE	K!	" Calcite	% Biotite	×	ER % EPIDOTE	ALT. FACIES	PYRITE HABIT	% Pyrite	CHALCOPYRITE HABIT	% Chlcopyrite		FROM	A	SSAMPLE NUMBER	CENGTH F+/10	Copper %	60LD 9/t	 0. 0
				1,0		,		e Pagasi Luci														
												-		-								
																						-
									uda f Vas Sana							-						
									:													
																						— 50 .0
																: .						
				÷											4)	,						-
																						-
_	_	-	1									-				0.0 0	195.0				: - :	-
								d Is	<i>*</i>							-						— 100 .0
FR	45																	ki sirg				- :
																					-	· -
BD	40											1.0										. h s
-		_	-							-	D	-					ي ا	Ç				— 150.0
BD	42												-									-
	-									-												-

:

DRILL HOLE: DDH94_A01
PAGE 4

FEET	ROD PPT	RECOVERY PPT	FROM		ГІТНОГОВА	MINOR LITH.		COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
180.0	750	100	166.00	195.00	ault Zone			VERY BARK GREY	BRECCIA TED		Derived mostly from hanging wall with a minor amount from the lower unit. Rubble, sand and breccia.
-	250	980	195.00	230.00	Diorite (Unspecified)			MIXED GREY AND	FINE GRAINED	MOTTLED	Quite altered, fine grained intrusive. Fs + Pyx therefore LHI. Pyx altered to Bi + CL. Rock appears to have been weakly albitized then potassically altered. Alteration and mineralization - variable on a small scale but consistent over the interval.
230.0 -	600	1000	230.00	244.00	 Diorite (Unspecified)			GREY GREEN	FINE GRAINED	VEINED	Like previous interval. Mafic mins altered to mag + chl. Rock commonly has a streaky appearance due to chlorite +/- mag fracture fillings with bleached or potassk haloes. These fractures are cut by EP(+/-SX) filled fractures. Py + He veins and calcite fractures are also
	200	990	244.00	271.00	Lapilli Tuff	Diorit (Unspried) Fault Zone	ecif	GREY GREEN	FRAGMEN TAL	SHEARED	Reasonably well sorted, rounded fragments, polymictic lapili tuff. Xtal fragments are common (>10%). Rock is low in magnetite. Variably, milheralized, rock is intermixed with diarite(?). 7-foot gouge zone in lower part of interval.
280.0 -	400	1000	271.00	297.00	Diorite (Unspecified)			GREY GREEN	FINE GRAINED	MOTTLED	Dark grey-green, fine grained rock. Fine grained equigranular intrusive texture is visible but quite attered. Quite magnetic, chloritized and cut by a myriad of calcite +/- mag, hem. Ep + Sxs veinlets and fracture fill. Veinlets cover all angles but shallower ones dominate. Lower part of interval may be volcanic but becomes extensively bleached approaching fault zone.
	00	450	297.00	315.00	Fault Zone		· · · · · · · · · · · · · · · · · · ·				Gouge till 305 ft - good recovery, 305-315 ft 5% recovery - basalt dyke fragments.
	600	900	315.00	323.00	Mine Dyke			DARK GREEN	FINE GRAINED	PORPHY	R
330.0	150	980	323.00	350.00	Diorite (Unspecified)			GREY GREEN	FINE GRAINEI		Shattered but otherwise like previous intervals. Sulphides extremely fine grained. Low angle chl env. on fractures.
	700	1000	350.00	403.00	Diorite (Unspecified			GREY GREEN	FINE GRAINE	D	Uverall a fairly homogeneous unit. Locally can be well endowed with v. fine CP (to 2%) but usually approx. (1%. Fractures commonly have chloritic envelopes and can be cored by calcite.

5	PAGE	F	2.4	A22	Α.				CHAL			1 []N			DDI ALT		L H	DRIL		CT	DI	C.T.
- 180.0	GOLD 9/t	Copper %	LENGTH F+/10	SSAMPLE NUMBER	10	FROM		% Chlcopyrite	COPYRITE HABIT	% Pyrite	PYRITE HABIT	% MAGNETITE			Chlorite		% Biotite	L % Calcite	UR TO CORE	C STRUCTURE ID	YANGLE TO CORE	A STRUCTURE ID
					95.0	0.00									Total S	e after		1100				
000 1100		0.090	100	I N(I	205.0	195.0		a l	D	12	D						William William					
-		0.150	100		215.0	205.0		0.3	DOD	.0	ים	5.0		2.5	10.0	20.0	20.0		5	SV 4	45	_
	0.550	0.090	100		225.0	215.0			D		D											
— 230	0.024	0.060	100	-1007	235.0	225.0			Dno									- 10	1 60	ili		
Tibe	0.580	0.090			244.0	235.0		0.3	DDGV	.0	DD	10.0	Sinc	2.5	10.0	10.0	20.0	1.0	10	x	30	·v
	0.090	0.110			254.0	244.0			V V		D>V											
-	0.011	0.050		a	262.0	254.0		0.3	V	1.0	D>V D>V	1.0		1.0	20.0	5.0		2.5	35	sv:	30	v
-	0.023	0.100			271.0	262.0			V		D>V D>V		\parallel				6					
- 28	0.049	0,090			280.0	271.0			D		D							in no				700
	0.021	0.070		Date of	1	290.0		0.3	DDD	2.5	D	5.0		1.0	20.0	20.0		5.0	20	VN	30	CV
-	0.029	0.100				290.0			J.		D		1						-			
-	0.009	0.020			323.0	305.0																
- 33	0.062	0.040		•	333.0	323.0	-)			DDD											
	0.020	0.050			343.0	333.0		0.3		1.0	DDD	10.0		N. IN		10.0			40	cv	10	cv
	0.027	0.070			353.0	343.0				100	D	17.			122	9329		in i				
	0.073	0.040			363.0	353.0		0.3		1.0	D	10.0		1.0	10.0	10.0		5.0	40	cv	40	SV

FEET	RQD PPT	RECOVERY PPT	FROM	10	LITHOLOGY	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
	700	1000	350.00	403.00	Diorite (Unspecified)		GREY GREEN	FINE GRAINED	ne.	Overall a fairly homogeneous unit. Locally can be well endowed with v. fine CP (to 2%) but usually approx. (1%. Fractures commonly have chloritic envelopes and can be cored by calcite. K-spar is pervasive but patchy. Sulphide filled fractures at 40 degrees are compatible with E-V strikes and vertical dips. Locally (very small areas) rock approaches f.g. Fs in black matrix.
0.0 —	400	950	403.00	414.00	Mine Dyke		VERY DARK GREY	FINE GRAINED	PORPHYR ITIC	Lower contact of 40 degrees corresponds with a N-S structure with vertical dip. Locally shattered.
	200	980	414.00	427.00	Fine-grained Feldspar Porphyry		MEDIUM GREY	FINE GRAINED	PORPHYR ITIC	I dan't think this is Lost Horse. Appears to be a Fs dacite, but it does have dissem. Py + nagnetite.
50.0 —	_ 500	990	427.00	511.00	Diorite (Unspecified)	Mine Mine Dyke	GREY GREEN	FINE GRAINED	VEINED	Similar to previous intervals. Locally more intense sulphidation (mostly Py). Some Mog. veinlets. Potassic alteration picks up towards botton of interval with modest increase in Cp.
0.0 -							10			· · · · · · · · · · · · · · · · · · ·
	700	990	511.00	572.00	Mine Dyke		VERY DARK GREY	FINE GRAINED	PORPHYR ITIC	Typical Dl. Px porphyry basalt dyke. A 5 ft section between 555 + 560 ft is 1/2 dior (CT at 0 degrees) indicating that hole is drilling sub-parallel to the dyke. Because dykes are N-S (commonly), hole may be deflected.

CANGLE TO CORE STRUCTURE ID	J STRUCT		DRIL			ALI	TER#		IDN	PYRITE HABIT	%	CHALCOPYRITE HABIT	% Chicopyrite			Α	OSAMPLE NUMBER	Y LENGTH		PAGE	7
O CORE	URE ID		% Calcite	% Biotite	% K-SPAR	% Chlorite	EPIDOTE	ACIES	TITE	HABIT	% Pyrite	HABIT	yrite		FROM	a	IUMBER	F t/10	Copper %	eα∟⊅ 9/¢	
										D		D			353.0	363.0		П		0.020	360.0
									100.0	D		00000			363.0	373.0			0.090	0.032	-
S∨ 40	CV		5.0		10.0	10.0	1.0		10.0	D	1.0		0.3		373.0	383.0			0.080	0.041	-
3 1 40			3.0		10.0					l D					383.0	393.0			0.040	0.023	-
															3 9 3.0	403.0			0.040	0.019	
		4						-		Jň	-	۱ň						-	-		
LC 40																					410.0
									1.0	0 0 0 0	1.0				417.0	427.0			0.010	0.002	-
		-						-				d D			427.0	437.0			0.160	0.115	-
										D D D		D D					,			0.005	
												D			437.0	447.0			0.050	0.025	
												000									
															457.0	466.0			0.060	0.012	— 460.0
MV 10	sv.	45	2.5		1.0	30.0			10.0				0.1							,	
												D			473.0	483.0			0.060	0.038	_
)				483.0	493.0			0.060	0.025	
)				493.0	503.0			0.110	0.034	
															503.0	511.0			0.100	0.022	-
					-	1	-			_ [/	1		-		•					510.0
C∨ 45	i cv	0	2.5																		-

DRILL HOLE: DDH94_A01 PAGE 8

FEET	ROD PPT	RECOVERY PPT	FROM	10	L LITHOLOGY	MINDR LITH.	COLDUR	TEXTURE 1	TEXTURE 2	REMARKS
540.0	700	990	511.00	572.00	Mine Dyke		VERY DARK GREY	FINE GRAINED	PORPHYR ITIC	Typical Di. Px porphyry basalt dyke. A 5 ft section between 555 + 560 ft is 1/2 dior (CT at 0 degrees) indicating that hole is drilling sub-parallel to the dyke. Because dykes are N-S (commonly), hole may be deflected.
				<i>4</i> - 1						
590.0 —	500	1000	572.00	603.00	Diorite (Unspecified)	Fault	GREY GREEN	WEAKLY PORPHYR ITIC	VEINED	Variably altered, dominantly a propylitic assemblage, but locally K-spar as pervasive patches and fracture ENV. Biotite (secondary) is also making an appearance. Cp is increasing - both diss. and Vn form. Veinlets criss-cross.
-	490	960	603.00	625.00	Mine Dyke		VERY DARK GREY	FINE GRAINED	PORPHYR ITIC	
640.0 —	700	1000	625.00	641.00	Biorite (Unspecified)		GREY GREEN	WEAKLY PDRPHYR ITIC	VEINED	Rock looks quite altered. Varies from fine to almost med grained. Matrix is altered to preenish-blue (albite + chi?). Abundant disseminated mag. Some diss. fresh black to red-brown biotite. Patchy pervasive pinking (K-spar?). Epidote prominent as veinlets, clots and patches. Fine disseminated wispy Cp
-	00	620	641.00	683.00	Fault Zone					Rubblized gouge + rock fragments. Core of zone appears to be felsite. Attempt to tricone from 670 to 683 ft, therefore no recovery. Couldn't keep hole open. Hole abandoned!
-										
690.0										**************************************

DRILL HOLE: DDH94_A01	PAGE	9
CHALCOPYRITE HABIT CHALCO	C 9	
COSAMPLE NUMBER COSAMPLE NUMBER CONTROPYRITE HABIT CONTROPYRITE CONTROPY	GOLD g/t	
		— 540.0
CV 45 CV 0 2.5		-
D D=V 572.0 582.0	0.060 0.046	
MV 30 SV 30 2.5 2.5 5.0 20.0 5.0	0.060 0.020	- 590.0
-	0.110 0.020	_
D D=V 592.0 603.0 N T T T T T T T T T T T T T T T T T T		_
D D=V 625.0 630.0	0.070 0.045	
2V 45 2.5 5.0 10.0 5.0 10.0 D D D=V 625.0 630.0 635.0 635.0 C D=V 635.0 645.0	0.390 0.210 0.340 0.270	— 640.0
635.0 645.0	0.540	
		690.0

Princeton Mining Corp. SIMILCO MINES LIMITED DRILL HOLE LOG PRHJECT ID : ALABAMA

HOLE / TRAVERSE ID :DDH94_A02 CORE HOLE SIZE :NQ

DATE STARTED DATE COMPLETED

GEOLOGGED BY

PLOT DATE PROJECT LEADER LOCATION

194/ 3/10 :94/ 3/12

:PMH :94/NOV/ 6

:PMH

COLLAR AZIMUTH

:150.00 COLLAR DIP -:-45.00

COLLAR ELEVATION :3889.58 COLLAR NORTHING 16753.23 :9418.92

COLLAR EASTING COLLAR OFFSET

COLLAR STATION TOTAL LENGTH

:379.0

MINING DIV .: SIMILKAMEEN NTS: 92H PURPOSE: TEST NORTHWEST EXTENT OF ZONE

COMMENTS: VOID IN TERT. VOLCANICS - HOLE LOST.

KEY INTERSECTIONS:

SURVEY DATA DEPTH DIP AZIMUTH 150.0 0 -45.0

SUMMARY REMARKS

Hole intersected 379' of Tertiary volcanic and sedimentary rocks. A felsite dyke was also cut indicating that the dykes are younger than some of the Princeton Group volcanics. Lower part of the hole is poorly consolidated, which together with the fault gouge contributed to the loss of the hole. Core tube assembly including the overshot and many drill rods were lost in the hole.

LEGEND

ECON. MINERAL:

D = DISSEMINATED MV = MICROVEIN/FRACT.FILL // = VEINS AND PATCHES

DKV= DISS. < VEINS/FRACTURE FILL

STRUCTURE ID:

CV = CALCITE VEIN QV = QUARTZ VEIN FL = FAULT

M∨ = MAGNETITE VEIN

IC = INTRUSIVE CONTACT

DRILL HOLE SUMMARY

Cu% FROM TO LITHOLOGY 0.6 0.4 0.2

			لتلتلتا	Щ
0.00	50.00	Casing		
50.00	103.00	Basalt		
103.00	154.00	Lahar		
154.00	243.00	CRYSTAL LITHIC TUFF		
243.00	293.00	Lahar		
293.00	305.00	Basalt		
305.00	346.00	Mixed Sedimentary Rocks	:	
350.00	379.00	Debris Flow/Lahar		

0.6 0.6 0.4 0.0

DRILL HOLE: DDH94_A02 PAGE 2

								PAGE	. 2					
			RECOV				Ę		ONIW		Æ	Ħ.	to e	
		ROD PPT	RECOVERY PPT	7			-TLHOLLOGY		MINOR LITH	COLOUR	TEXTURE	TEXTURE	REMARKO	
FE 0.0	ET	Ϋ́	7	FROM	a T	1 1	<u> </u>		<u>.</u>	₩		ro	8	7
	+			10 10										
						74								
				0.00	50.00		Casing					 7	en e	
	7			**										
									":					
50.0	4													-
									1			7.		
	-		~ ~ .									1.7	Med. grey on outside surface but dark green-black on fracture surface. Shattered atop but increasingly more competent with depth.	
		200	940	50.00	103.00		Basalt			MEDIUM GREY	FINE GRAINED	PORPHYR ITIC	competent with depth.	
	-													
		1												
100.0	-	:					· .							4
														ŀ
	-											- 1	Red brown to dark grey polymictic lahar. Frags from small to big, usually rounded but not flattened.	
		750	1000	103.00	154.00		Lahar			REDDIS H-BROW	FRAGMEN TAL	POORLY SORTED		
										N			·	
	-						·							
150.0	1							· · · · · · · · · · · · · · · · · · ·						1
		•											Fine grained, grey crystal - lithic ash tuff. Completely gradational with overlying and underlying units. Very similar in appearance to the BASL. Could be very hard to tell the two apart in outcrop. Lower 10 ft of interval is a crackle Bx with black devitrified volc. glass forming Bx+matrix. Locally shattered core.	
		500	1000	154.00	243.00		CRYSTAL LITHIC 1	TUFF		DARK GREY	FRAGMEN TAL		Could be very hard to tell the two apart in outcrop. Lower 10 ft of interval is a crackle Bx with black	
	4												Bx+matrix. Locally shattered core.	
	_]					<u> </u>			

5	TE	21.11	·	TII		LH			Ή94. ΓΕΡ <i>ί</i>				CHALC			4	AZZA	YS		PAGE	3
) STRUCTURE ID	ANGLE TO CORE	VIRUCIURE IN)	DANGLE TO CORE [Z Calcite	% Biotite	% K-SPAR	% Chlorite	% EPIDOTE	ALT. FACIES	PYRITE HABIT	% Pyrite	CHALCOPYRITE HABIT	% Chlcopyrite	FROM	<u> </u>	SSAMPLE NUMBER	LENGTH Ft/10	Copper %	GOLD 9/t	" — 0.0
												·		' :							· ·
																					_
																					— 50.0 -
																					- 100.0 -
												-									
														()			•				- 150.0
																	-				
											 1										3. 2. 4.

•

DRILL HOLE: DDH94_A02 PAGE 4

		_			PAGE	4				
FEET	ROD PPT	RECOVERY PPT	FROM	10	LITHOLDGY	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	RE MA ARK
180.0 —	200	1000	154.00	243.00	 CRYSTAL LITHIC TUFF		DARK GREY	FRAGMEN TAL		Fine grained grey crystal - lithic ash tuff. Completely gradational with overlying and underlying units. Very similar in appearance to the BASL. Could be very hard to tell the two apart in outcrop. Lower 10 ft of interval is a crackle Bx with black devitrified voic, glass forning Bx-matrix. Locally shattered core.
230.0										
	400	1000	243.00	293.00	Lahar		REDDIS H-BROW N	FRAGMEN TAL	PDDRLY SORTED	Like the 103-154 ft interval, but fewer fragments. Grey debris flow (273-283 ft) contains coal lenses.
280.0						Debris Flow/Laha r				
	350	1000	293.00	305.00	Basalt		VERY DARK GREY	BRECCIA TED	FINE GRAINED	Appears to be a brecciated basalt flow (Qi-Px phenocrysts) grades into conglonerate at base of interval.
330.0 -	100	800	305.00	346.00	Mixed Sedimentary Rocks	Volcanic Sandstone Fault Zone	MEDIUM BROWN	BEDDED	LAMINAT ED	Varied med, brown mudstone - poorly consolidated. Narrow section of coarse voic. sandstone. Fault at 316 ft contains a couple of fragments of what might be Lost Horse intrusive.
		1000	346.00	350.00	Felsite		MEDIUM TAN	FINE GRAINED	PORPHYR ITIC	Poorly consolidated volcanic debris in a mafic mud matrix. Becomes more rubbly and serpentized towards bottom.
380.0 -	100	950	350.00	379.00	Debris Flow/Lahar		DARK GREEN	FRAGMEN TAL	POLYMIC TIC	

STRUCTUR		E: DDH94_ACIES ALTERATI ALT. FACIES Chlorite	. 2	FRO % Chlcopyrite	S LENGTH F 1/10 Y A C)SAMPLE NUMBER S A TO	PAGE GOLD 9/t Copper %
	% K-SPAR % Biotite % Calcite	THE SES	ABIT ABIT	Tite FR	MBER	7 % % # 180.0
						- - 230.0
BD 50						- - 280.0 -
BD 55						- 330.0
						380.0

Princeton Mining Corp. SIMILCO MINES LIMITED : ALABAMA PROJECT ID

HOLE / TRAVERSE ID :DDH94_A03

CORE HOLE SIZE

DATE STARTED

DATE COMPLETED

GEOLOGGED BY PLOT DATE

PROJECT LEADER

NTS: 92H

LOCATION

:NQ

:93/ 3/12 :94/ 3/19

:PMH

:94/NDV/ 8

:PMH

MINING DIV .: SIMILKAMEEN

PURPOSE: TEST NORTHWEST EXTENT OF ZONE

COMMENTS: BROKEN GROUND: HOLE LOST AT 683 FEET.

KEY INTERSECTIONS:

FROM 630 TO 645; 15 FT. OF 0.36% CU, 0.25 G/T AU

COLLAR AZIMUTH

COLLAR NORTHING

COLLAR EASTING

COLLAR OFFSET

TOTAL LENGTH

COLLAR STATION

COLLAR ELEVATION :4061.12

COLLAR DIP

:180.00 :-45.00

:16216.82

:9300.53

:773.0

DEPTH	SURVEY DIP	DATA AZIMUTH
0	-45.0	149.0
205	-44.0	154.0

SUMMARY REMARKS

Hole was collared on northern edge of known Hole was collared on northern edge of known mineralization to test: a) northern extent of mineralization, b) depth of the Tertiary cover and possible supergene zone, and c) mineralization below the 400' vertical depth. The hole intersected 195' (135' vertical) of Tertiary volcanic and sedimentary rocks. Contact between the Lost Horse rocks and the Tertiary cover is a fault. The top of the mineralization is unweathered. Most of the hole intersected weakly mineralized, propylitically altered weakly mineralized, propylitically altered diorite. Mineralization and potassic alteration increased at bottom of hole.

LEGEND

ECON. MINERAL:

D = DISSEMINATED MV = MICROVEIN FRACTFILL

// = VEINS AND PATCHES

DOV= DISS. C VEINS/FRACTURE FILL

STRUCTURE ID:

CV = CALCITE VEIN OV = GUAFIC . FT.

MV = MAGNETITE VEIN FL = FA L

IC = INTRUSIVE CONTACT

DRILL HOLE SUMMARY

LITHOLOGY Cu% FROM TO 0.8 0.6 0.4 0.2

0.00	50.00	Casing	DO HOLL
50.00	96.00	Lahar	
150.00	185.00	Mudstone	
185.00	226.00	Debris Flow/Lahar	4
240.00	364.00	Debris Flow/Lahar	
364.00	426.00	Diorite	7
426.00	479.00	Monzonite	5
479.00	521.00	Monzonite	3
521.00	590.00	Monzonite (Undifferentiated)	- K
			⋾ ⋝−−
714.00	763.00	CRYSTAL LITHIC TUFF	₹_

FEET	ROD PPT	RECOVERY PPT	FROM	70	PAGE LITHELESY	MINDR LITH.	COLOUR	TEXTOS I	S 3dillAst	REMARKS
				HQL A						AND STATE OF THE S
			0.00	50,00	Casing	04 -346 t 30	1113/3	+		
į									= 1	672 447 4
- aa			J)AL						pi f s	ink coarse grained laher. Box 2 & 15 t of core missing – possibly drillers crewed up footage.
	500	750	50.00	96.00	Lanar		REDDIS CO H-BROW GR	IARSE FRAINED TA	RAUMEN	
										SWALL STATE
0.00.			96.00	125.00	Lahar		MED]UM TAN			
		+								
		00	125.0	150.00	Casing					
150.0			150	.00 185.00	Mudstone		VERY DARK BROWN	FINE GRAINED	REDDED	Varved mudstone, some thin sandy intervals Tops up fore crumbles as it does out therefore poorly consolidated.

DRILL HOLE: DDH94_A03

PAGE 4

FEET	ROD PPT	RECOVERY PPT	FROM	70	LITHOLOGY	4 MINOR LITH	COLOUR	TEXTURE 1	TEXTURE 2	REMARK.
180.0 -	0.		150.00	185.00	Mudstone		VERY DARK	FINE GRAINED	BEDDED	Varved mudstone, some thin sandy intervals. Tops up. Core crumbles as it
	300	650	185.00	226.00	Debris Flow/Lahar	Fault Zone	GREYIS H BROWN	CUARSE GRAINE D	POLYMIC TIC	Polymictic angular fragments in a gritty matrix.
230.0 -	250	1000	226.00	240.00	Greywacke		LIGHT GREY	FINE GRAINED	BEDDED	Bedded sandstone.
280.0 -	- 100	900	240.00	364.00	Debris Flow/Lahar			CDARSE GRAINED	POLYMIC TIC	Contains narrow intervals (4 ft) of MUDS. Dne large frag. mineralized diorite.
3300 -	the state of the s					Fault Zone				

CO STRUCTURE ID CORE CONTROL TO CORE CONTROL T		ALTER ALTER	2 Pyrite PYRITE HABIT AUT. FACIES A ALT. FACIES	TIO FROM CHALCOPYRITE HABIT	PAGE 5 SSAMPLE NUMBER Copper % 180.0
BD 65	lent inch				
100	Z E				
			and C	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
BD 65					— 230.0
	Tan Omin				
			THE STATE OF STATE OF	K	- 280.0
				A. 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CHINE TO SELECT SERVICE
				ė	- 330.0
			The state of the s		

Г

П

DRILL HOLE: DDH94_A03 PAGE 6 RECOVERY MINUR LITHOLOG) **TEXTURE TEXTURE** REMARKS COLOUR FROM PPT FEET TO 360.0 Contains narrow intervals (4 ft) of MUDS. One large frag. mineralized Fault Zone CDARSE POLYMIC GRAINED TIC 100 900 240.00 364.00 Debris Grey-green diorite with poorly defined or fuzzy xtal boundaries. Possibly some small xenoliths. Narrow 1/2' scapolite-epidote veinlets. Trace dissem. CP. 4' Kspar/epidote vein Contains 5% PY, 2% CP at 380 ft (35 deg. to CA) Diorite GREY GREEN FINE GRAINED 900 1000 364.00 426.00 (Unspecified 410.0 The most distinguishing feature of this altered intrusive is the amount of textural variability without losing its basic white Fx phenos in a dark matrix. Cut by a plethora of veinlets therefore EP, KF (+/-AB), SX, CL (+/-BI) and CB; form a stockwork with most veinlets in a combination of phases. Psuedo veinlets are defined by a lightening of matrix - albitization? Jominant vein orientation is 25 deg. but 45 deg. and D5's also occur. CP very fine grained FINE PORPHYR ITIC Monzonite (Undifferent MEDIUM GREY 426.00 479.00 750 1000 iated) 460.0 -Hornfels Subhedral, fine grained crowded Fs phenos in dark grey matrix. Cut by a myriad of salmon FS, EP, MG +/- SX and BI or CL veins, stringers and fracture fill. Top 5 ft of interval has salmon porphyroblasts and coarse speckles of PY, Veil mineralized, locally up to 2% CP. Calcite veinlets cut all other veins. Salmon feldspar, epidote, mag (+/- CL, BI) and SXs are all synchronous. Photo of mag spray in PY. Fault DRANGE FINE -GREY GRAINED CROWDED PHENDCR YSTS Monzonite (Undifferent Zone 1000 479.00 521.00 iated) 510.0 Fine grained crowded Fs porphyry. Locally partly aligned phenos. Very fine dissem. SXs. Minor SF-EP veining. FINE PORPHYR Monzonite (Undifferent MEDIUM

590.00

iated)

1000

950

521.00

						LL H	OLE							CHAL				224	vc		PAGE	7
STRUCTURE ID	EANGLE TO CORE	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	U STRUCTURE ID	DANGLE TO CORE	R % Calcite	% Biotite	% K-SPAR	A % Chlorite	TER % EPIDOTE	ALT. FACIES		PYRITE HABIT	% Pyrite	CHALCOPYRITE HABIT	% Chicapyrite	FROM	=======================================	C)SAMPLE NUMBER	D LENGTH F+/10	Copper %	GDLD 9/t	— 360.0
		1										D=V D=V		D=\ D=\	1	364.0	374.0			0.050	0.015	
						94	\$7 mg		1 3			D=V D=V		0=\ 0=\ 0=\ 0=\ 0=\		374.0	384.0			0.150	0.057	-
											a	D=V D=V D=V	506	D=\ D=\		384.0	394.0			0.050	0.011	
FV	35	5 0	CV	20	2.5			20.0	2.5		5.0	D=V	1.0	D=\	1.0	394.0	404.0			0.050	0.017	-
						11.00						D=V D=V D=V		D=\ D=\		404.0	414.0			0.030	0.013	— 410.0
											- 11	D=V D=V D=V D=V D=V V=D=V	207)=() -() -() -() -() -() -()		414.0	426.0	UTY-0		0.070	0.037	
-		-	Yes				e de la companya del companya de la companya del companya de la co					D=V		0=\ 0=\ 0=\	1	426.0	436.0			0.050	0.020	-
												D=\ D=\ D=\ D=\		0=\ 0=\ 0=\ 0=\ 0=\	V V	436.0	446.0	Car set ou		0.080	250.0	
sv	4	5	sv	25	1.0	1.0	10.0	2.5	10.0		10.0	D=1	1.0	Ŋ=	V0.3	446.0	456.0	re sull		0.210	0.040	
												D=\ D=\ D=\		0=' 0=' 0='	V	456.0	464.0			0.060	0.014	460.0
						-		1				D=\ D=\	1	D=	V	464.0	474.0	11111		0.100	0.016	
												0=\ 0=i	1	D=	V	474.0	479.0			0.070	0.016	
	1											Ď=	1	Ē		479.0	485.0			0.050	0.018	
							i.		-			D=\ D=\ D=\	1			485.0	495.0			0.040	0.010	
VI	Na	25	VI	15	1.0		20.0	5.0	10.0		10.0	D='	2.5		1.0	495.0	505.0			0.080	0.025	-
		200					L					0=' 0=' 0='	V			505.0	515.0			0.120	0.054	- 510.0
	1							+				D=	V			515.0	521.0			0.070	0 093	
	1															521.0	531.0			0.050	0.023	
					2.5			10.0	2.5		10.0			- [0.1	531.0	541.0			0,040	015	

FEET 540.0 -	RQD PPT	RECOVERY PPT	FROM	- i	LITHOLOGY	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
	950	1000	521.00	590.00	Monzonite (Undifferent lated)	here	MEDIUM GREY	FINE GRAINED	PDRPHYR ITIC	Fine grained crowded Fs porphyry. Locally partly aligned phenos. Very fine dissem. SXs. Minor SF-EP veining.
590.0 -	900	1000	590.00	593.00	Diorite		MEDIUM	FINE		Really quite similar to above except
	1000	1000	593.00	607.00	CRYSTAL LITHIC TUFF		VERY DARK GREY	PORPHYR ITIC	FRAGMEN TAL	This is the enigmatic unit from Pit Z. Depending upon where one looks it oppears to be a feldspar micro porphyry in a black matrix, but elsewhere it appears fragmental. Diverall it must be a crystal-lithic tuff which has been partially hornfelsed (BI + mag) in
	700	1000	607.00	625.00	Monzonite (Undifferent iated)		MEDIUM GREY	FINE GRAINED	CROWDED PHENDER YSTS	Fine grained crowded euhedral feldspar porphyry. Very fine sulphides disseminated peripheral to salmon veinlets. Black chlorite or BI(?) occurs in vein envelopes. Mafic grains appear to be completely converted to luecoxene, therefore might be LHI-DIDR??
	00	750	625.00	642.00	Diorite (Unspecified)	Fault Zone	LIGHT GREY	SHEARED	CONVERT ED TO FAULT	Completely shattered, so difficult to see what it is but presence of mafic phenos suggest LHI. Fault zone.
640.0 -	950	1000	642.00	659.00	CRYSTAL LITHIC TUFF	Magnetite	BLACK	FRAGMEN TAL	PORPHYR ITIC	Very subtle fragmental texture. Almost gradational into LH2. I'm not sure that this couldn't be an intrusion Bx. Cp may be more abundant than apparent as it occurs along micro-fractures.
	950	1000	659.00	690.00	Monzonite (Undifferent iated)	1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	MEDIUM GREY	FINE GRAINED	PORPHYS ITIC	CO-ningled.
690.0 -	600	1000	690.00	700.00	Diorite (Unspecified	and the same of th	DRANGE -GREY	FINE GRAINED	WEAKLY PORPHYR ITIC	May be some as above interval, but with more intense potassic alteration. Then again could be different unit - resembles the HBL porphyry.
			700.00	714.00	Fault Zone					Mostly gauge and rubble. Host rock is a grey-green HBL parphyry Locally high (approx. 40%) PY concentrations
	250	980	714.00	763.00	CRYSTAL LITHIC TUFF		VERY DARK GREY	FRAGMEN TAL	PORPHYS	Shear to previous intervals be that a none clearly volcate in Armay' 1 in creany green southern what is an

				DRI	LL	HOL	E: D	DH94.	_A0	3			CHAL				222	24		PAGE	9
STRUCTURE ID	RANGLE TO CORE	C STRUCTURE ID	DANGLE TO CORE	E % Colcite	% Biotite	X K-SPAR	A % Chlorite	T % EPIDOTE	ALT. FACIES	Z MAGNETITE	LOI	% Pyrite	COPYRITE HABIT	% Chicopyrite	FROM	10	SSAMPLE NUMBER	2 LENGTH Ft/10	Copper %	GOLD 9/t	540.0
						L (tac	u .				000		D		541.0	551.0			0.080	0.021	_
										Time.	DDD		DDDDDDD		551.0	561.0			0.050	0.012	
				2.5			10.0	2.5		10.0	D	0.3			561.0	571.0			0.080	0.027	
											DDD		DOD		571.0	581.0			0.070	0.034	
	_							13			D		0000	0,1	581.0	590.0	-1		0.100	0.044	
UC	20	1/5	25	5.0	4	0.0	+	2.5	-	10.0	5	0.3	46	0.1	590.0	593.0			0.080	0.026	590.0
00	_0	V 14	23	3.0		3.0					D=V		D=	V	593.0	600.0			0.220	0.160	
vz	45	sv	25	1.0		10.0	10.0	2.5		5.0	0=V	2.5]= []= []= []=	V _{2.5}	600.0	607.0			0.090	0.037	
											D				607.0	617.0			0.090	0.040	-
FV	15	VN	25	1.0			2.5	1.0		10.0	DDC	0.3)	617.0	625.0	1		0.080	0.030	
		-					5.0	1.0				2.5)	625.0	635.0			0.090	0.024	_
FT	U	CV	10	10.0			3.0	1.0			In In				635.0			-	0.380	0.092	6400
			-	-			1		\parallel	-	D=/			=V	638.0	641.0			0.250		- 640.0
SV	20	KN	25	1.0	10.0	5.0	1.0	2.5		20.0	D=/ D=/	/ z.s	0	=V 1.0 =V	651.0	659.0			0.140	0.043	
			T	\parallel							0=\ 0=\	V	0	=V] =V]	659.0	669.0			0.120	0.028	-
				2.5	2.5	5 2	5 10	5.0		5.0	0=' 0=' 0='	125	0	=V =V _{0.3}	669.0	679.0			0.100	0.045	-
											D= D=	V V	0	=V =V	679.0	690.0			0.050	0.048	
VN	25	s v	N 10	10	5.1	3 3	10 2	5 25		10.0	n= 	V 1.0]=V]=V]=V ^{1.0}	690.0	700.0			0.360	0.108	690.0
						1					D. 02. 53.	4		1-14	700.0	707.0			0.36	0.120	
CV	7(15.							7				707.0	714.0			0.29	0.055	-
_	+	+							2			V 5	1]=V _{1.0}	714.0				0.140	Sell Coulter Service	
14	1	1	1								I:	.1	i	1-1/1	716.0	720.0			0.23	3.00	

DRILL HOLE: DDH94_A03 PAGE 10 RECOVERY PPT MINOR LITH. **LITHOLOGY** TEXTURE TEXTURE REMARKS COLDUR FEET P 10 n 720.0 Completely shattered and gougy. Fault Zone CRYSTAL LITHIC TUFF FRAGMEN PORPHYR VERY DARK GREY 250 980 714.00 763.00 Very difficult drilling. Pulled rods to put on a tricone and hole collapsed. Was unable to redrill therefore hole abandoned. Fault Zone 763.00 773.00 770.0

				DRI	LL F	HOLE	: DI	H94	_AC	13			£						·		PAGE	11
S STRUCTURE ID	10 00	Ĭ	HANGLE TO CORE	RE % Calcite	% Biotite	% K-SPAR	AL % Chlorite	TER % EPIDOTE	A ALT. FACIES	×	PYRITE HABIT	% Pyrite	CHALCOPYRITE HABIT	% Chicopyrite		FROM	70	SSAMPLE NUMBER	Y LENGTH F+/10	Copper %	GDLD 9/t	r— 720.0
Γ	Τ				T				\prod		D=V		D=V			720.0	725.0			0.290	0.066	
							1	ļ		1	D=V		U=V			725.0	727.0		+	0.380	0.120	
											D=V		D=V			727.0	735.0			0.160	0.036	-
											D=A	25	Ď=Á			735.0	743.0			0.180	0.065	-
M'	V 20	VN	25	1.0	5.0	5.0				10.0	D=A	2.5	D=A	1.0		743.0	745.0			0.190	0.072	
											D=V D=V		D=V U=V			745.0	753.0			0.190	0.062	_
							1		П		N=V		10=1			753.0	755.0			0.550	0.160	1
											D=V N=V		0=V N=V			755.0	763.0			0.430	0.113	}
F	т з	+-											11-4		Ţ	763.0	773.0			0.570	0.180	— 770. 0

** 64

Princeton Mining Corp. SIMILCO MINES LIMITED DRILL HOLE LOG

PROJECT ID : ALABAMA

HOLE / TRAVERSE ID :DDH94_A04

CORE HOLE SIZE

DATE STARTED

DATE COMPLETED

GEOLOGGED BY PLOT DATE

PROJECT LEADER LOCATION

:SJB

:NQ

:PMH

:94/NDV/ 6

:94/ 3/28

COLLAR AZIMUTH

:187.60

COLLAR DIP :-48.40 COLLAR ELEVATION 3968.64 COLLAR NORTHING

COLLAR EASTING

:15952.71 :10217.89

COLLAR OFFSET COLLAR STATION

TOTAL LENGTH

:230.0

NTS: 92H

MINING DIV .: SIMILKAMEEN

PURPOSE: TEST MAGNETITE BRECCIA NE END OF ZONE

COMMENTS: HOLE ABANDONED IN RHYOLITE DYKE

KEY INTERSECTIONS:

FROM 221 TO 230; 9 FT. OF 0.38% CU, 0.10 G/T AU

SURVEY DATA AZIMUTH DIP DEPTH 187.6 -48.40

SUMMARY REMARKS

Hole was collared in dyke and was supposed to cross the contact at about 50' near the to cross the contact at about 30 hear the bottom of casing. Intended azimuth was 200 but compass distortion due to nearby magnetite concentrations resulted in an azimuth of 188. This azimuth resulted in a long intersection through a strong fault along the western margin of the dyke. The hole was abandoned when it could not be kept open.

LEGEND:

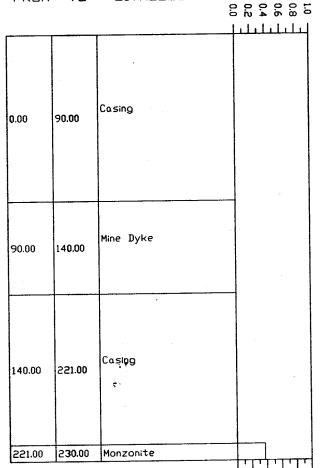
ECON. MINERAL:

D = DISSEMINATED MV = MICROVEIN/FRACT.FILL

// = VEINS AND PATCHES

D(V= DISS. < VEINS/FRACTURE FILL

STRUCTURE ID:


CV = CALCITE VEIN QV = QUARTZ VEIN

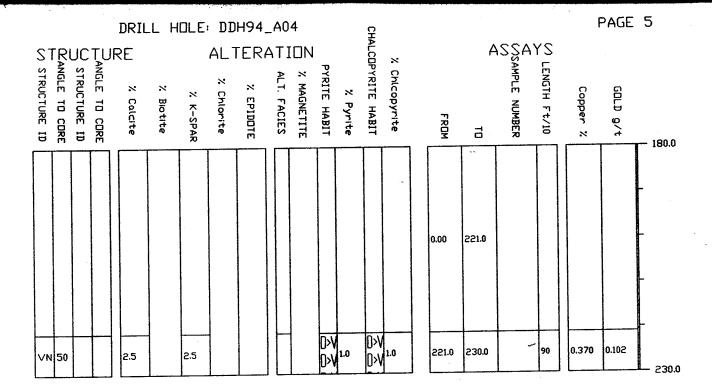
MV = MAGNETITE VEIN FL = FAULT

IC = INTRUSIVE CONTACT

DRILL HOLE SUMMARY

Cu% FROM TO LITHOLOGY

0.8 0.6 0.4 0.2


DRILL HOLE: DDH94_A04

PAGE 2 MINOR LITHOLOGY REMARKS FROM FEET 3 ď Casing 0.00 90.00 50.0 Rubbly core, looks like int. contact zone because of abundant xenoliths. Otherwise rock looks augpheric but intense K-F alt'n may obscure Fx. Py as coarse applopmenations and fracture Felsite Mine Dyke Orange-pink bladed megaporphyry. Sulphides have same occurrence as above. Dissem. Ep assoc. with Sx. 100.0 GREENI PORPHYR Mine Dyke Green to light grey Tertiary intermediate dyke with 5% white, medium-grained plagioclase phenocrysts. Very broken. 00 950 90.00 140.00 Pink to brick red intrusive. Med. grained mafic phenos (converted to mag + biotite?). Nicely juiced up with sulphicles - both disseminated and fracture controlled. EP is assoc. with Sx +/- MG +/- KF in veialets. Locally Fx are coarser, making rock look like LH2F. J. Lang took geochem sample here. Texture + pheno pop have subtle variations throughout the interval. Lowest 10 ft intense fracture controlled alt'n and oxidized adjacent 150.0 Casing 140.00 221.00 Continued casing due to poor ground conditions.

STRI	UC	TU		LL F	IOLE		1H94 ΓΕR				CHALC			4	AZZA	YS		PAGE	3
CANGLE TO CORE	STRUCTURE ID	ANGLE TO CORE	% Calcite	% Biotite	% K-SPAR	% Chlorite	% EPIDOTE		PYRITE HABIT	% Pyrite	CHALCOPYRITE HABIT	% Chicopyrite	FROM	10	SSAMPLE NUMBER	LENGTH Ft/10	Copper %	GDLD 9/t	 0.0
						about the fact that the contract of the contra				**									. • • • • • • • • • • • • • • • • • • •
			anderications on the tambanets of the tambanets and the tambanets of the tambanets of the tambanets of tambanets																-
																			- 50.0
					And the second desired to the second desired														-
		-											0.00	221.0					- 100.0
									**************************************				Annual de la companya						_
															. •				_ 150.0
						-					Andrew Control and the Control of th								-
									-					:					

DRILL HOLE: DDH94_A04 PAGE 4 MINOR LITH. LITHOLOGY TEXTURE TEXTURE 1 FEET P REMARKS COLOUR FROM 1 N 180.0 Continued casing due to poor ground conditions. Casing 140.00 221.00 Looks like a fine grained Fs-microporphyry with numerous phases Two feldspar, fine grained, equigranular Lost Horse monzonite with Monzonite (Undifferent iated) FINE GRAINED VEINED 1000 221.00 230.00 230.0

Princeton Mining Corp. SIMILCO MINES LIMITED DRILL HOLE LOG

PROJECT ID : ALABAMA

HOLE / TRAVERSE ID :DDH94_A05

CORE HOLE SIZE :HQ

DATE STARTED

DATE COMPLETED

GEOLOGGED BY

PLOT DATE

PROJECT LEADER LOCATION

:SJB

:94/NOV/ 6

:94/ 3/28

:PMH

COLLAR AZIMUTH

:12.99

:-54.01

COLLAR DIP COLLAR ELEVATION :3961.82

COLLAR NORTHING :15497.21

:10442.11

:

COLLAR EASTING COLLAR OFFSET

COLLAR STATION

TOTAL LENGTH

:140.0

MINING DIV .: SIMILKAMEEN NTS: 92H

PURPOSE: TEST MAGNETITE BRECCIA NE END OF ZONE

COMMENTS: HOLE ABANDONED IN RHYOLITE DYKE

KEY INTERSECTIONS:

DEPTH	SURVEY DIP	DATA AZIMUTH
0	-54.01	12.99

SUMMARY REMARKS

This hole was located to test a magnetite breccia zone exposed in a trench on the JuneBug claim. The hole was Hcollared in a dyke and due to hole and dyke orientation the hole was abandoned.

LEGEND

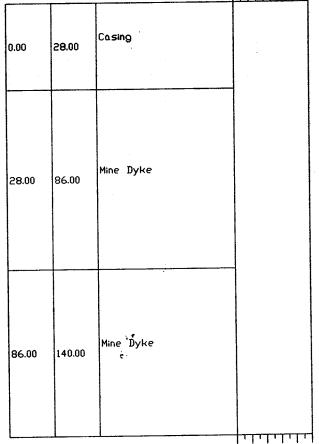
ECON. MINERAL:

D = DISSEMINATED MV = MICROVEIN/FRACT.FILL

// = VEINS AND PATCHES

DKV= DISS. < VEINS/FRACTURE FILL

STRUCTURE ID:


CV = CALCITE VEIN QV = QUARTZ VEIN

FL = FAULTMV = MAGNETITE VEIN

IC = INTRUSIVE CONTACT

DRILL HOLE SUMMARY

LITHOLOGY Cu% FROM TO 0.6 0.6 0.4 0.2 لبلبليانا

0.8 0.6 0.4 0.2

DRILL HOLE: DDH94_A05 PAGE 2 MINOR LITH. FEET P FROM ᆸ 0.0 Casing 0.00 28.00 Rusty, oxidized tertiary porphyry dyke. 50.0 GREENI COARSE PORPHYR SH-GRA GRAINED ITIC Mine Dyke 250 1000 28.00 86.00 Mine Dyke 100.0 Clay altered dyke (supergene), often crumbly textured. MEDIUM COARSE PORPHYR GREEN GRAINED ITIC Mine Dyke 86.00 140.00 100 1000

		OLE: DD	H94_A	105		유	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			· · · · · ·	F	PAGE	3
STRUCTUR	Ε	ALT	ERAT	_		ALCOP		Δ	ıS§A,	(S			
PANGLE TO CORE CONTRUCTURE ID CONTRUCTURE ID CONTRUCTURE ID CONTRUCTURE ID	% Biotite	% Chlorite % K-SPAR	% EPIDOTE	PYRITE HABIT % MAGNETITE ALT. FACIES	% Pyrite	% Chlcopyrite CHALCOPYRITE HABIT	FROM	10	SSAMPLE NUMBER	ENGTH Ft/10	Copper %	4/6 (T)	
													— 0.0
													-
													-
			-										-
													50.0
													_
													-
				1					4				
													-
													-
													— 100.
													-
													-
								•	₹.				

Princeton Mining Corp. SIMILCO MINES LIMITED DRILL HOLE LOG PROJECT ID : ALABAMA

HOLE / TRAVERSE ID :DDH94_A06 CORE HOLE SIZE :HQ

DATE STARTED

DATE COMPLETED GEOLOGGED BY

PLOT DATE

PROJECT LEADER LOCATION

194/ 4/ 3

:SJB :94/NOV/ 8

:PMH

COLLAR AZIMUTH

:328.42

COLLAR DIP :-43.55 COLLAR ELEVATION :3852.16

COLLAR NORTHING COLLAR EASTING

:15505.90 :11051.23

COLLAR OFFSET

COLLAR STATION TOTAL LENGTH

:845.0

MINING DIV .: SIMILKAMEEN NTS: 92H PURPOSE: TEST JUNE BUG IP CHARGEABILITY ANDMALY

COMMENTS: STRONG POTASSIC ALTERATION. HIGH PYRITE CONT-KEY INTERSECTIONS! T WEAK COPPER MINERALIZATION OF 0.28% CU, 0.14 G/T AU

SURVEY DATA DIP AZIMUTH DEPTH -43.55 328.42 331.00 830 -42.0

SUMMARY REMARKS

LEGEND

ECON. MINERAL:

D = DISSEMINATED MV = MICROVEIN/FRACT.FILL // = VEINS AND PATCHES

DCV= DISS. < VEINS/FRACTURE FILL

STRUCTURE ID:

CV = CALCITE VEIN QV = QUARTZ VEIN

MV = MAGNETITE VEIN FL = FAULT

IC = INTRUSIVE CONTACT

DRILL HOLE SUMMARY

Cu% FROM TO LITHOLOGY 0.6 لتلتلتليا Casing 0.00 50.00 72.00 50.00 Diorite Mine Dyke 72.00 130.00 130.00 150.00 CRYSTAL LITHIC TUFF 199.00 220.00 261.00 Diorite 228.00 Lapilli Tuff 309.00 327.00 Lapilli Tuff 327.00 359.00 Lapilli Tuff Lapilli Tuff 445.00 359.00 445.00 464.00 Lapilli Tuff 473.00 500.00 Monzonite 500.00 524.00 Monzonite 524.00 554.00 Lapilli Tuff Mine Dyke 569.00 660.00 710.00 Diocite 687.00 CRYSTAL LITHIC TUFF 710.00 750.00 765.00 78700 Lapan Tuff 787.00 850.00 necession.

DRILL HOLE: DDH94_A06 PAGE 2 RECOVERY PPT MINUR LITHOLOGY TEXTURE TEXTURE REMARKS LITH. COLOUR PPT FEET T 0.0 Casing 0.00 50.00 Equigranular, fine grained Lost Horse diorite that has undergone intense potassic alteration. 1% Cpy as n.g. disseminations in the diorite and within common 2-5nn nagnetite veins. 50.0 MAROON AND GRAY Diorite FINE GRAINED 750 50.00 72.00 (Unspecified Mine Dyke PALE 100.0 72.00 130.00 100 400 Andesitic crystol tuff with 19 deg. withic fragments, Fault. Fault Zone CRYSTAL GREY FRAGMEN TAL 1000 130.00 150.00 LITHIC TUFF GREEN Equigranular, fine grained Lost Horse donte with intense potossic alteration and 05% Cpy as disseminations in the diorite and within magnetite vers Upper contact is gradational Lower contact is a Forphyrical dioriternonzonite, intense cotossic alth. 05% Cpy as time bound in a contact of 20%. 150.0 MEDIUM FINE EQUIGRA MARDON GRAINED NULAR Diorite Fault . Zone 1000 150.00 161.00 (Unspecified 200 COAPSE POPPHIA GRAINED 1110 800 1000 161.00 165.00 Diorite Former for tony dyne containing 20%

-ch is share to even potassic although the property of th PALE 1000 165.00 168.00 Mine Dyke 400 Andesite 100 1000 168.00 178.00 Flow MEDIUM [CDAFT] [Corner] and property and to be trace 178.00 700 1000 189.00

DRILL HOLE: DDH94_A06
PAGE 4

FEET	RQD PPT	RECOVERY PPT	FROM	10	LITHOLOGY	MINOR LITH.	COLDUR	TEXTURE 1	TEXTURE 2	RE MARKS
180.0 —	700	1000	178.00	189.00	Diorite (Unspecified)		MEDIUM MAROON	CDARSE GRAINED	PORPHYR ITIC	Coarsely porphyritic diorite with trace Cpy, intense potassic alteration.
-	500	1000	189.00	199.00	Lapilli Tuff		GREY GREEN	FRAGMEN TAL	VEINED	Lithic lapilli (ghosts) tuff with a weak pervasive potassic alt'n. 1% Cpy as fine dissems. and occasional clusters or stringers.
	300	1000	199.00	220.00	Diorite (Unspecified)	Diorite (Unspecif ied)	MEDIUM MAROON	MEDIUM GRAINED	PORPHYR ITIC	Porphyritic Lost Horse diorite with intense potassic alt'n and trace Cpy.
-	100	1000	220.00	228.00	Monzonite (Undifferent iated)	Fault Zone	GREY GREEN	FINE GRAINED	MATRIX SUPPORT ED	Equigranular, fine grained, two feldspar intrusive with trace Cpy. Possibly a XLTF (?). Fault zone.
230.0 —	00	1000	228.00	261.00	Diorite (Unspecified)		MEDIUM MAROON	FINE GRAINED	EQUIGRA NULAR	Very rubbly and broken zone of potassically altered, equigranular diorite with 3% fine pyrite and trace Cpy.
	00	1000	261.00	270.00	Mine Dyke		PALE GREY			Probable tertiary dyke, most textures wiped out by intense clay alteration. 2% Py as bands + dissems. Totally broken.
80.0 -	400	1000	270.00	285.00	Lapilli Tuff	Magnetite	LIGHT GREY	FINE GRAINED	FRAGMEN TAL	Andesite lapilli tuff with a fine to medium matrix containing two feldspars; moderate potassic alteration. Trace Cpy (in magnetite veins at 270-272 ft).
	1000	1000	285.00	288.00	Monzonite		VERY	MEDIUM	PORPHYR	Black, porphyritic monzonite,
	900	1000	288.00	309.00	Lapilli Tuff		GREY GREEN	FINE GRAINED	FRAGMEN TAL	Lithic lapilli tuff with two feldspars in the matrix, contains 2-3% Py + trace Cp. Weak potassic and moderate epidote alt'n.
	1000	1000	309.00	327.00	Lapilli Tuff		GPAY AND MARDON	FINE GRAINED	FRAGMEN TAL	Lithic lapilli tuff with moderate potassic and epidote alt'n. Trace Cp.
330.0 —	900	1000	327.00	359.00	Lopati Tuff		GPE 1 GPEEN	FINE	FRAGMEN	Lithic lapilli tuff with traces of potassic and epidote alteration, common calcite veins 2-20mm thick with trace Cpy.

FEE1	RQD PPT	RECOVERY PPT	FROM	10	רוגאסרספא	MINOR LITH.	COLDUR	TEXTURE 1	TEXTURE 2	REMARKS
360.0										
	900	1000	359.00	445.00	Lapilli Tuff		GRAY AND MARDON	FINE GRAINED	FRAGMEN TAL	Lithic lapilli tuff with hornblende phyric lapilli displaying moderate potassic and epidote alteration. 1% Cpy throughout, 5% pyrite. Common magnetite veins 1-5mm thick.
410.0 -							MARULIN			
										Lithic locally tuff with weak potassic
460.0 -	850	1000	445.00	464.00	Lapilli Tuff			FINE GRAINED FINE GRAINED	FRAGMEN TAL	Lithic lapilli tuff with weak potassic alt'n (velns) and trace Cpy. Lithic lapilli tuff with moderate potassic alt'n (usually as 2cm envelopes around calcite/sulphide velns) with 5% pyrite and 0.5% Cpy.
	850 	1000	464.00	500.00	Lapilli Tuff Monzonite (Undifferent		GRAY AND	MOTTLED) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	envelopes around calcite/sulphide veins) with 5% pyrite and 0.5% Cpy. Equipranular MDNZ (rare, small xenoliths may be lithic (apilli) with moderate pervasive potassic alteration and 0.5% Cpy. This unit may be a tuff.
510.0					iated)	Lapilli Lapilli	MARGON			Equigranular MONZ (rare, small (1-2cm) xenoliths may be lithic lapili) with weak pervasive potasssic alt'n and trace Cpy.
	800	1000	500.00	524.00	Monzonite (Undifferent iated)		GREY GREEN			Lithic lapilli tuff, moderate K alt'n, mod. epidote alt'n, with 4% pyrite and
	750	1000	524.00	554.00	Lapilli Tuff		GRAY AND MARDON	FINE GRAINED	MOTTLED	10 EV C

DRILL HOLE: DDH94_A06 PAGE 8

FEET	ROD PPT	RECOVERY PPT	FROM	70	LITHOLOGY	MINOR LITH	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
540.0	750	1000	524.00	554.00	Lapilli Tuff		GRAY AND MARDON	FINE GRAINED	MOTTLED	Lithic lapilli tuff, moderate K alt'n, mod. epidote alt'n, with 4% pyrite and 0.5% Cpy.
_	500	1000	554.00	569.00	Monzonite (Undifferent iated)	Fault	GREY GREEN	FINE GRAINED	EQUIGRA NULAR	Fine equipranular monzonite with weak potassic and epidote altin, 2%, pyrite (one 3cm vein of Py) at 565 ft and trace Cpy.
-										
590.0 —		-								
-	100	1000	569.00	660.00	Mine Dyke		PALE GREY	BANDED		Broken, clay rich felsic dyke.
640.0 —										
	600	1000	660.00	673.00	Lapilli Tuff		GREY GREEN	FRAGMEN TAL	MOTTLED	Lithic lapilli tuff with weak potassic and epidote alteration, 3% pyrite.
	00 200	1000	673.00 675.00	675.00 682.00	Monzonite (Undifferent iated)		PALE LIGHT GREY	BANDED FINE GRAINED	EQUIGRA NULAR	and scapolite alteration + weak potassic alt'n.
690.0	850	1000	682.00	687.00	Mine Dyke	-	PALE GREY	BANDED		Felsic dyke. Porphyritic Lost Horse diorite with intense potassic and weak epidote
	200	1000	687.00	710.00	Biorite (Unspecified)		MEDIUM MAROON	PORPHYR ITIC	MEDIUM GRAINED	alteration. 3% pyrite.
	400	1000	710.00	750.00	CRYSTAL LITHIC TUFF		VERY BARK GREY			Dark grey/black crystal tuff with rare lithic lapilli, 2% pyrite and trace Cpy.

					LL H	HOLE	: DI)H94	_A0	6			유							PAGE	9
STRUCTURE ID	PANGLE TO CORE	STRUCTURE ID	MANGLE TO CORE	RE % Calcite	% Biotite	% K-SPAR	A % Chlorite	TER ; EPIDOTE	A ALT. FACIES		PYRITE HABIT	% Pyrite	CHALCOPYRITE HABIT	% Chicopyrite	FROM	A 10	SSAMPLE NUMBER	Y LENGTH F+/10	Copper %	GOLD 9/t	9 -
						T	Г	Г			П				534.0	544.0	П	10	0.180	0.160	540.0
MV	75	cv	40	5.0		10.0		5.0		5.0					544.0	554.0		10	0.110	220.0	-
								25			D=V D=V	25	D	0.1	554.0	562.0		08	0.090	0.021	-
						5.0		2.5			D=V D=V D=V N=V	2,3		0.1	562.0	569.0		07	0.070	0.012	
				11-1								err) i			100	alle Elev			200	-	-
Comment of the second			15		5							a III					-				— 590. -
BN	60			MINU STATE																	- 640
											D>\	1			660.0	667.0		07	0.040	0.013	
V	45			5.0		5.0		5.0			D> ₁	5.0			667.0	673.0		07	0.020	0.008	
		F	:	+	-	25				,	000	2.5			673.0	No.		02	0.030	0.014	
BN	70	-	 			2.5	-								682.0	687.0		05	0.040	0.013	
											D=	V			687.0	697.0		10	0.020	0.005	- 69
	25	.,				20.0		10	I		JJ=	C10			697.0	705.0		08	0.020	0.006	-
			112	2		40		Ĺ			D=				705.0	710.0		05	0.040	0.072	+
			100	- 7			2.00		1			1					1		11		1

П

Г

DRILL HOLE: DDH94_A06
PAGE 10

FEET 720.0 —	ROD PPT	RECOVERY PPT	FROM	10	LITHOLOGY	MINOR CITH.	COLOUR	TEXTURE 1	TEXTURE 2	RE MARKS
	400	1000	710.00	750.00	CRYSTAL LITHIC TUFF		VERY DARK GREY			
	250	1000	750.00	765.00	Diorite (Unspecified)		GREEN AND MAROON	PORPHYR ITIC	MOTTLED	Porphyritic LH2 diorite with moderate potassic alt'n + 4% pyrite.
770.0 -	700	1000	765.00	787.00	Lapilli Tuff		GREY GREEN	BANDED	FINE GRAINED	Lithic lapilli tuff with local layers (3 ft thick of cherty (?) ash tuff (reddish coloured). Weak potassic alt'n, 2% pyrite, conmonly in epidote veins.
820.0 -	750	1000	787.00	830.00	Diorite (Unspecified)	Lapilli	LIGHT MAROON			Generally equigranular diorite with local porphyritic zones and common xenoliths up to 2 ft thick of ash and lapill tuff. Moderate potassic alt'n, 0.5% pyrite. Lower contact is an intense fault.
8	00	1000	830.00	845.00	Mine Dyke		ME DIUM GREY			Med. grey felsite dyke. Intensely broken, brecciated at the top.

Princeton Mining Corp. SIMILCO MINES LIMITED DRILL HOLE LOG

PROJECT ID : ALABAMA

HOLE / TRAVERSE ID :DDH94_A07

CORE HOLE SIZE DATE STARTED

:HQNQ

DATE COMPLETED

GEOLOGGED BY

DEPTH

O

PLOT DATE PROJECT LEADER

LOCATION

:94/ 3/31

:SJB

:PMH

:94/NOV/ 6

COLLAR AZIMUTH

:359.70 :-44.20

COLLAR DIP COLLAR ELEVATION :4003.90

COLLAR NORTHING :14911.10 COLLAR EASTING

:10092.40

COLLAR OFFSET COLLAR STATION

TOTAL LENGTH

:1396.0

Cu%

1111111

MINING DIV .: SIMILKAMEEN NTS: 92H

PURPOSE: TEST DEEP MIDAAS IP(CHARGE) ANOMALY

COMMENTS: ALMOST CONTINUOUS WEAK TO STRONG MINERALIZATION

KEY INTERSECTIONS:

FROM 366 TO 643; 269 FT. OF 0.42% CU, 0.15 G/T AU

FROM TO

FROM 452 TO 575; 123 FT. OF 0.59% CU, 0.18 G/T AU

SURVEY DATA AZIMUTH DIP -44.20359.70

SUMMARY REMARKS

LEGEND

ECON. MINERAL:

D = DISSEMINATED MV = MICROVEIN/FRACT.FILL

// = VEINS AND PATCHES DCV= DISS. < VEINS/FRACTURE FILL

STRUCTURE ID:

CV = CALCITE VEIN QV = QUARTZ VEIN MV = MAGNETITE VEIN FL = FAULT

IC = INTRUSIVE CONTACT

DRILL HOLE SUMMARY

LITHOLOGY

0.6 0.4 0.6 0.2 72.00 Diorite 36.00 Diorite (Unspecified) 72.00 141.00 214.00 251.00 282.00 214.00 Diorite Lapilli Tuff 251.00 366.00 | 399.00 | Diorite 447.00 482.00 Diorite 494.00 526.00 Diorite 526.00 575.00 Diorite 593.00 643.00 Monzonite 682.00 Mine Dyke 643.00 828.00 790.00 Diorite 885.00 Rhyolite Mine Dyke 832.00 885.00 917.00 Diorite Rhyolite Mine Dyke 917.00 1049.0 1061.0 1108.0 Lapilli Tuff 1141.0 1186.0 Diorite 1186.0 1231.0 Lapilli Tuff Lapilli Tuff 1256.0 1317.0

DRILL HOLE: DDH94_A07 PAGE 2

					FAUL	<u> </u>				
FEET	RQD PPT	RECOVERY PPT	FROM	10	רוזאטרספא	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
0.0 -	I		0.00	8.00	Casing					
					Diarite		GREY	FINF		Equipranular, weakly magnetic Lost Horse diorite, weak epidote alt'n, 0.5% pyrite, 0.1% Cpy.
	- 50	750	8.00	32.00	(Unspecified		GREY GREEN	FINE GRAINED	EQUIGRA NULAR	
	00	1000	32.00	36.00	Diorite		MEDIUM RED	PORPHYR ITIC		Brick red, porphyritic diorite with 0.2% malachite, 0.1% Cpy, trace Py.
										Fine, equigranular diorite (monz?) with weak epidote veining surrounded by
50.0 -	100	850	36.00	72.00	Diorite (Unspecified)			FINE GRAINED	EQUIGRA NULAR	Fine, equipmenutar district (monz?) with weak epidote veining surrounded by Kspar envelopes. Ubiquitous (0.2%) fine malachite on fractures, with 0.2% fine dissem. Cpy.
	-							-		Continued LH1 diorite, but below oxidation. No malachite. 0.5% fine,
100.0	350	1000	72.00	141.00	Dionite (Unspecified			FINE GRAINED	EQUIGRA NULAR	oxidation. No malachite. 0.5% fine, dissem. Cpy.
	-									
	-									
	-					FAULT				
	800	1000	141.00	146.00	Mine Dyke		LIGHT BROWN			Rusty felsite dyke, with faults at both contacts.
1500	00	1000	146.00	151.00	Diorite (Unspecified		LIGHT BROWN	FINE GRAINED	EQUIGRA NULAR	Rusty, strongly broken and faulted LH1
150.0							,			Weakly potassic altered diorite containing 3% coarse phenocrysts (plag) in a med. matrix with 0.2% pyrite and 0.2% chalcopyrite.
	300	700	151.00	177.00	Diorite (Unspecified)		GRAY AND MARDON	MEDIUM GRAINED	PDRPHYR ITIC	
									-	
			177.00	184.00	Mine Dyke			FINE	PORPHYR	Broken and banded felsic dyke, with

			DRIL	L H								CHAL					000	75		PAGE	3
PANGLE TO CORE	C STRUCTURE ID	DANGLE TO CORE	Z Calcite	% Biotite		A % Chlorite	TER % EPIDOTE	ALT. FACIES		PYRITE HABIT	% Pyrite	CHALCOPYRITE HABIT	% Chicopyrite		FROM	10	SSAMPLE NUMBER	O LENGTH F t/10	Copper %	GOLD 9/t	- 0.0
П				The Total					242	1	192			o	0.00	8.00	Q DELINIO	08	Paul		
										DDD		D		8	3.00	18.00		10	0.090	0.030	
							2.5			D	1.0	000	0.1		18.00	32.00		14	0.090	0.023	
\mathbb{H}		Н			40.0		-	I		D	0.1	ĮĎ D	0.1		32.00	36.00		04	0.230	0.060	
			1				Day and			D					36.00	46.00		10	0.130	0.052	
				7-91	10.0		5.0	м		DOD	0.3	DDD	1.0		46.00	56.00		10	0.140	0.046	— 50.
										D		D			56.00	66.00		10	0.230	0.092	
										0000		D			66.00	72.00		06	0.340	0.100	
			-20				181			DDD					72.00	82.00		10	0.150	0.049	-
						2 13			ST	DDDDD)		82.00	92.00	mar	10	0.110	0.030	160
										DDD				011	92.00	102.0		10	0.180	0.047	<u> </u>
v			5.0		10.0	0	5.0	М		D	0.3		0.3		102.0	112.0	e and	10	0.210	0.076	
				10%	de ar				3						112.0	122.0	7637	10	0.210	0.078	
				117								1			1220	132.0		10	0.120	0.052	
															192 0	141.0	157	09	0.370	0.180	
3N 35	5 F	-						1		-		1			1400	151.0		05	0.220	0.068	l 15
	F	'														161.0		10	0.080	0.043	
CV 45	5		2.5		5.0		25									1710		10	0.070	0.047	
																	-		0.100	0.060	1
BN 15	5 F	T 15	-													1.4			0.000	500.0	1

DRILL HOLE: DDH94_A07
PAGE 4

FEET	RQD PPT	RECOVERY PPT	FR OM	184.00	PAGE LITHOLOGY Mine Dyke	4 MINOR LITH	COLOUR	TEXTURE 1	TEXTURE D	RESEARCH AND STATE OF THE STATE
	600	1000	184.00	214.00	Diorite (Unspecified		GRAY AND MARDON	MEDIUM GRAINED	PORPHYR	LH2 diorite with 4% coarse feldspar phenos, noderate pervasive potassic alteration and 0.4% Cpy as fine disseminations and coarse clusters within magnetite/epidote veins.
230.0 —	850	1000	214.00	251.00	Diorite (Unspecified)		GREY GREEN	FINE GRAINED	PORPHYR ITIC	Mixed fine grained (local, coarse grained) LH2 and ash tuffs (in layers 1-2 ft thick), contacts at 50 deg. TCA. 1% Cpy as fine dissems, and with pyrite in epidote/magnetite veins 1/4-2° wide, approx. 1 per ft.
	800	1000	251.00	282.00	Lapilli Tuff		GREY GREEN	FINE GRAINED	FRAGMEN TAL	Lithic lapilli tuff (local ash beds) with epidote, Kspar, calcite, magnetite, sulphide veins 1/2-2' wide, approx. 1 per 2 feet at 45-80 deg. TCA. 1.5% Cpy throughout as dissens, but primarly as coarse clusters within the veins.
280.0 —	700	1000	282.00	291.00	Diorite (Unspecified		GRAY AND MARDON	MEDIUM GRAINED	PORPHYR ITIC	Porphyritic LH2 with moderate potassic alteration, 0.5% pyrite, and 0.5% Cpy in one magnetite vein 1/2° thick at 289 ft at 65 deg. TCA (Cpy makes up 15% of the vein).
	950	1000	291.00	299.00	Lapilli Tuff		GREY GREEN	FINE GRAINED	FRAGMEN TAL	Little Loudy to FF with whom as televi-
	800	1000	299.00	303.00	Diorite		GRAY AND	FINE	FRAGMEN	Light to salnon pink LH2 with stringers of pyrite and 2% disseminated (in Lithic lapidi tuff with occasional kspar or epidote veins, 0.5% Cpy as very fine dissens + occasional clusters.
	700	1000	303.00	325.00	Tüff		ĞRĒĒN	GRAINED		Feldspar crystal tuff (generall)
30.0 -	150	1000	325.00	349.00	CRYSTAL LITHIC TUFF		GRAY AND MAROGN	FINE GRAINED	MOTTLED	non-magnetic, rare lapill) with moderate potassic altin (as vens with magnetite + fine Cpy) (py 05).
	100	600	349.00	366.00	Mine Dyke		PALE GREY	FINE	PORPHYR ITIC	Felsic intrusive appli

FEET	ROD PPT	RECOVERY PPT	FROM	To	LIHOLOGY	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
50.0 —	100	600	349.00	366.00	Mine Dyke		PALE GREY	FINE GRAINED	PORPHYR ITIC	Felsic intrusive dyke.
	500	1000	366.00	399.00	Diorite (Unspecified)		GRAY AND MARDON	FINE GRAINED	EQUIGRA NULAR	Fine LHI (textures almost obliterated by alteration; could be an andesite tuff or flow) with moderate potassic and epidote alt'n (commonly Kspar envelopes around epidote veins) and 1.5% Cpy as fine clusters.
0.0 —	250	1000	399.00	413.00	CRYSTAL LITHIC TUFF		GREY GREEN	FINE GRAINED	EQUIGRA NULAR	Fine crystal tuff (local lapilli) with weak potassic alt'n and 0.1% Cpy.
	700	1000	413.00	439.00	Diorite (Unspecified)		GREY GREEN	FINE GRAINED	PURPHYR ITIC	Fine, porphyritic LH2 with weak potassic + moderate epidote alt'n and 0.2% Cpy nostly in epidote/magnetite velns 1/8-1" wide, approx. 1 per 2 feet.
8	350	1000	439.00	447.00	Diorite (Unspecified)		GRAY AND MAROON	COARSE GRAINED	PORPHYR ITIC	Coarse, crowded porphyritic diorite, with intense potassic alt'n, moderate epiclote veining + 0.5% Cpy as fine clusters, dissens + in epidote veins.
.0.0 –	600	1000	447.00	482.00	Diorite (Unspecified)	* 44	VERY DARK GREEN	VEINED	FINE GRAINED	Textures almost obliterated by alt'n/min'n, with weak patchy Kspar alt'n. intense epidote veining (1/2-1* wide, approx. 1 per 4* at 60 deg. TCA), magnetite occurs as concentrated disseminations + occasionally as a preccia matrix. Cpy is present as 2% fine dissems + clusters + veins with epidote.
3	100	700	482.00	494.00	Diorite (Unspecified		GREY GREEN			Intensely broken fault zone, poor recovery and some possible narrow zones of tertiary dyke. 0.5% Cpy, weak potassic alt'n.
0.0 -	600	1000	494.00	526.00	Diorite (Unspecified		VERY DARK GREEN	VEINED	FINE GRAINED	Intense epidote veining, weak potassic alt'n, 2% Cpy as fine dissens, clusters, + in epidote veins.
					1 2 2 2	v	GPEY GPEEN	VEINED	FINE GRAINED	Fine Lost Horse diorite? (textures obliterated by alteration) with patchy potassic altro. Moderate epidote veining (1/8-1' wide, approx. 1 per 2 feet) and 1% Cpy as dissens. + epidote veins.

STRUCTI			DDH94 ALTER			CHAL			Δ	YA22	2	PAGE	7
C STRUCTURE ID CRANGLE TO CORE	% Calcite		% EPIDOTE	% MAGNETITE ALT. FACIES	% Pyrite	CHALCOPYRITE HABIT	% Chicopyrite	FROM		A SSAMPLE NUMBER	Copper %	GOLD 9/t	— 360.0
BN 50 LC 50								349.0	366.0		0.050	0.008	_ 360.0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					D	DDD		366.0	376.0	1	0.210	0.028	-
EV 30 CV 40		10.0	10.0	м	D D 5.0	DDD	1.0	376.0	386.0		0.340	0.090	
					D	D		386.0	393.0		0.340	0.160	-
	de de				D	D		393.0	399.0		06 0.440	0.086	
CV 70	5.0	5.0	2.5		D(V) 2.5	0 </td <td>0.1</td> <td>399.0</td> <td>409.0</td> <td>×</td> <td>0.190</td> <td>0.168</td> <td>3.4</td>	0.1	399.0	409.0	×	0.190	0.168	3.4
						100		409.0	413.0		0.390	0.215	- 410.0
					D=V D=V	04 04 04 04	1	413.0	423.0		10 0.170	0.065	-
EV 60 MV 60	2.5	2.5	5.0	W 2.5	0=V 0=V 0=V	04 04	0.3	423.0	433.0		10 0.200	0.083	-
					D=V	D<	1	433.0	439.0		0.180	0.205	Spen
EV 45		20.0	40.0	1 2.5	D=V 0=V 2.5	0=\ 0=\ 0=\	1.0	439.0	447.0		0.100	0.050	
						B		447.0	452.0		05 0.190	0.062	1
						A A		452.0	456.0		0.610	0.105	
EV 60		5.0	5.0	W 20.0	5.0	1/9	2.5	456.0	466.0		10 0.88	0.240	- 460.0
		to and	F 10			A A	9	466.0	476.0		10 0.53	0.160	-
						8		476.0	482.0		06 1.100	0.195	-
FT 60		2.5	2.5	W	D z.s		1.0	482.0	494.0	ini.	ız 0.33	0.086	
				$\parallel \parallel$	-	888		494.0	502.0		08 0.94	0 0.340	
The selection		g Maring				8	2	502.0	507.0		05 1.03	0.320	
EV 60		5.0	5.0	W 20.0	5.0			507.0	517.0	100	10 0.63	0.260	- 510.0
						8888	×	517.0	522.0		05 0.28	0.043	1
						8	<u> </u>	522.0	526.0		04 0.3	0.068	
E∨ 70		5.0	5.0	W 10.0	0=V 0=V 0=V		=V -V 1.0	526.	536.0		10 0.3		
					D=V	n.	-17	536.	546.0		10 0.7	0.180	1

Γ

Π

DRILL HOLE: DDH94_A07

	77			PAG	L HOLE	וועע:	94_A0	1493	
FEET PT	RECOVERY PPT	FROM	70	LITHOLDGY	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
400	1000	526.00	575.00	Diorite (Unspecified)	FAULT	GREY	VEINED	FINE GRAINED	Fine Lost Horse dignite? (textures obliterated by alteration) with patchy potassic alt'n. Moderate epidote veining (1/8-1° wide, approx. 1 per 2 fect) and 1% Cpy as dissens. + epidote veins.
90.0	1000	575.00	593.00	Mine Dyke		PALE GREY	BANDED		Banded rhyolite dyke with occasional bright red (henatite or cinnabar (?) mineral along grey siliceous bands with 0.5% dark grey, very fine grained netallic mineral.
100	1000	593.00	643.00	Monzonite (Undifferent lated)	FAULT .	GREY GREEN	FINE GRAINED	EQUIGRA NULAR	Fine, equigranular monzonite with epidote veins 1/8-1/2' wide, approx. 1 per 2.5 feet, often containing Cpy; 0.5% Cpy overall, mostly in epidote veins. Very broken core, numerous 1-2 foot faults.
10.0		III(d)		8 2 6111 (ABC) 8533 (188 453)	FAULT •			607	
50	750	643.00	682.00	Mine Dyke		PALE GREY	PORPHYR ITIC	BANDED	Tertlary rhyolite dyke.
00 —850	850	682.00	698.00	Monzonite (Undifferent iated)		GRAY AND MARDON	MEDIUM GRAINED	PORPHYR ITIC	Med. grained porphyritic monzonite with 0.2% Cpy, weak pervasive potassic alt'n.
- 450	1006	698.00	717.00	Basalt		GREY GREEN	AMYGDUL ES	l l	Late dyke cut by numerous calcite veins (pre-felsite). Lower contact at 60 deg. TCA,
	1770	717.00	725.00	Monzonite	. 11	GREY	FINE	EQUIGRA	Fine, equigranular monzonite with

DRILL HOLE: DDH94_A07

	70	RECOVERY			PAGE			Œ	Œ	7
FEET	RQD PPT	ERY PPT	FROM	급	ITHDLOGY	MINDR LITH.	COLOUR	EXTURE 1	EXTURE 2	REMARKS
0.0 —	800	1000	717.00	725.00	Monzonite (Undifferent	7 1	GREY GREEN	FINE GRAINED	EQUIGRA NULAR	Fine, equigranular monzonite with epidote veins 1/8-1' thick, approx. 1
	800	1000	725.00	729.00	Lapilli		GREY	GIVINE D	THOUSANT.	Lithic lapilli tuff, very little alt'n,
-	800	1000	729.00	733.00	Diorite		GREEN	FINE	EQUIGRA	0.2% Cpy as fine dissems. Fine, equigranular LH1 diorite with weak patchy F-alt'n and 0.1% Cpy; lower
	850	1000	733.00	737.00	Diorite		DARK	MEDIUM	PORPHYR	
	-	1000	755.00	737.00			GREY	GRAINED	ITIC	Lithic lapilli tuff, 3% pyrite, no chalcopyrite. Veak fault at upper
-	800	950	737.00	747.00	Lapilli Tuff		GREY GREEN	FINE GRAINED	FRAGMEN TAL	chalcopyrite. Weak fault at upper contact.
-	650	1000	747.00	753.00	Diorite (Unspecified		MEDIUM RED	PORPHYR ITIC	MEDIUM GRAINED	Porphyritic, red LH2 with patchy magnetite and rare epidote veins 1/16' wide. 0.1% Cpy as disseminations within
.0 —	800	1000	753.00	779.00	Diorite (Unspecified)		GRAY AND MAROON	PORPHYR ITIC	FINE GRAINED	Porphyritic, patchy red LH2 with common nagnetite veins/concentrations . 0.5%. Cpy associated with magnetite and epidate veins.
	950	1000	779.00	790.00	Lapilli Tuff		GRAY AND MAROON	FINE GRAINED	FRAGMEN TAL	Lithic lapilli tuff with moderate patchy potassic alth + epidote veins 1/4-1/2 wide, approx. 1 per 2 feet. 0.5% Cpy, usually assoc. with epidote veins and magnetite.
.0 —	800	1000	790.00	828.00	Diorite (Unspecified)		GRAY AND MAROON	FINE GRAINED	EQUIGRA NULAR	Fine, equigranular diorite with moderate patchy Kspar alt'n, common banded calcite veins up to 1' wide with Cpy clusters. 0.5% Cpy overall within the calcite veins and associated with nagnetite concentrations and veins.
	850	1000	828.00	832.00	Lapilli		GREY GREEN			Lithic lapilli tuff containing I foot of tert dyke at 830-831 ft. One Py/Cpy
	200	1000	832.00	885.00	Rhyolite Mine Dyke		PALE	FINE GRAINED	PORPHYR ITIC	Tentiary porphyritic rhyolite dyke with loca: flow banding parallel to the upper contact.
0.0 —					day to					
					1 1 1 1 1 1 1					Ena antigentulas diagras vali
	700	1000	885.00	917.00	Diorite (Unspecified		GRAY AND MARDON	FINE GRAINED	EQUIGRA NULAR	Fine aguignorular diorite with incommand patchy potacky potacky potacky epidode although the 6.2 Cov. associant in agnetite Possaria trachome, coloured sphalariate air diorite ven at 912 ft.

	DRII	L F	IDLE:	DI)H94	_A0	7			CHA								PAGE	11
C STRUCTURE ID	DRII JRE " Colcite	% Biotite	% K-SPAR	AL % Chlorite	R X EPIDOTE	A ALT. FACIES	N % MAGNETITE	PYRITE HABIT	% Pyrite	LCOPYRITE HABIT	% Chicopyrite	FROM		A T	CISAMPLE NUMBER	Y LENGTH F+/10	Copper %	GOLD 9/t	— 720.
V 45 EV 50	5.0	43	2.5	TAT 9	2.5	W		D>V		DV	-	717.0	-	725.0		08	0.260	0.140	, , ,
V 60 LC 50	2.5	-10	5.0	ŀ,	2.5	W		D	2.5 5.0	10	0.3	725.	1	729.0		04	0.500	0.280	gala la
V 60 LC 30			2.5		2.5	Ë	2.5]Ď	2.5		0.1	729.	0	737.0		08	0.380	0.205	
V 35 LC 60	2.5							D	5.0			737.	0	747.0		10	0.080	0.042	
C 20 FD 65	0.1		30.0			I	5.0	8	5.0	D	0.1	747.	0	753.0		06	0.100	0.025	-
								7		00000		753	.0	763.0		10	0.340	0.160	-
√ 70 M√ 60	2.5		10.0		2.5	м	5.0		5.0	000	1.0	763	.0	773.0		10	0.060	0.019	– 770
										Ď		773	.0	779.0		06	0.080	0.038	
		1						D>\		0>	V	779	.0	785.0		06	0.100	0.037	
V 50 EV 50			10.0		5.0		2.5	N>N	5.0	_l>,	1.0	785	.0	790.0		05	0.070	0.036	
								D=\ D=\	1	D>	V V	790	.0	800.0	24	10	0.130	0.059	
								D=\ D=\ D=\		0>				97/	13				
35 MV 70	5.0		10.0			M	1 5.0	D=/	V	D>	V V	810	.0	820.0		10	0.120	0.160	
								D=\ D=\	V) V	D>		820	0.0	828.0		08	0.050	0.480	82
JC 85 LC 6	0						t	D=1	2.5	V	1.0	828	3.0	832.0		04	0.100	0.120	-
																			-
BN 60												83	2.0	885.0		53			-
	*																		
														f					8
								D:	=V	-	/							0.105	-
CV 45	25		100		15	-	N 5.11	D	V 5.0	1	0.1	88	5.0	895.0		10	0.040	0.105	
									- VI - VI		v/	89	5.0	905.0		10	0.030	0.061	1

DRILL HOLE: DDH94_A07

					PAGE	12 HOLE	: אחת	94_AU	III la	
FEET	ROD PPT	RECOVERY PPT	FROM	10	LITHOLOGY	MINOR LITH.	COLDUR	TEXTURE 1	TEXTURE 2	REMARKS
900.0	700	1000	885.00	917.00	Diorite (Unspecified)	n a	GRAY AND MAROON	FINE GRAINED	EQUIGRA NULAR	Fine, equigranular cliorite with moderate patchy potassic alt'n (+ patchy epidote alt'n) with 0.1% Cpy assoc. with nagnetite. Possible trace honey coloured sphalerite in a Inm wide calcite vein at 912 ft.
-			SAZ S		4567 8.5 8277 44				10	
950.0 —	ous:		and the		SERV _					
-					TIME TO SECOND	ec .		V4II		
	300	1000	917.00	1049.0	Rhyolite Mine Dyke		PALE GREY	FINE GRAINED	PORPHYR ITIC	
1000.0 —				0 0						
					to a second					
				100	Cal 445	7. ut				
1050.0 -	91.9					FAULT				Fault at lower contact. Equigranular diorite, containing 10%
	500	1000	1049.0	1061.0	Diorite (Unspecified)	W:	GRAY AND MAROON	FINE GRAINED		Equigranular diorite, containing 10% pervasive Kspar + 0.25% Cpy as very fine disseminations, usually with magnetite patches 1/8-1/2 in dia.
59	700	1000	1061.0	1108-0	Lapilli Tuff		GREY GREEN	FINE GRAINED		Alligator skin textured fragmental (fine, black nonolithic clasts 1/8-1/2" in dia. in a lighter natrix), clasts are angular * matrix supported Otz is present in 1/2" wide veins with Py, Cpy + magnetite. Cpy is 0.5% within qtz/mag veins * as fine dissens.

STRUCTURE ID	CANGLE TO CORE	STRUCTURE ID	T-2000EC 10 CONT.		DRIL	L % Blotite	HOLE X K-SPAR	AL ×	TE	RA	ΤI		PYRITE HABIT		_	ALCOPYRITE HABIT	" Cuicopyrite			FROM		SAMPLE NUMBER	Y LENGTH Ft/10	Copper %		9061 8/4	- 900.0	
cv	45				2.5		10.0		2.5		м	5.0	D=V D=V D=V	5.0	llig.	V V V V V V V V V V	0.1		91	05.0	905.0 911.0 917.0		06	0.060	0.	061		
						in the						Berli								1 1001	o positi						- 950.l	.0
UC	5																			917.0	1049.		132					0.0
										¥															-	***	-	
F	a	60	κv	60	2.5		10.	0			1	1 2.	5			1 1		0.3		1049.	. i055	+	06			0.051	- 105	50.0
												w	-		III.		U			1061.	1071.		10	0.1	10	0.045		
0		60	01	/60	2.5		2.5	2				w			ű.					1071	1081		10	0.1	60	0.105		

DRILL HOLE: DDH94_A07
PAGE 14

FEET	ROD PPT	RECOVERY PPT	FROM	70	LITHOLOGY	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
1080.0 —	700	1000	1061.0	1108.0	Lapilli Tuff		GREY GREEN	FINE GRAINED	FRAGMEN TAL	Alligator skin textured fragmental (fine, black monolithic clasts 1/8-1/2' in dia. in a lighter matrix), clasts are angular + matrix supported Otz is present in 1/2' wide veins with Py, Cpy + magnetite. Cpy is 0.5% within qtz/mag veins + as fine dissens.
	200	1000	1108.0	1122,0	Diorite (Unspecified)	FAULT	MEDIUM GREEN	FINE GRAINED	EQUIGRA NULAR	Fine, equigranular diorite with 0.1% Cpy in one magnetite vein 1/2° thick at 1118 ft.
1130.0 -	650	1000	1122.0	1141.0	CRYSTAL LITHIC TUFF		GREY GREEN	MOTTLED	ALIGNED PHENOCR YSTS	Very fine crystal tuff, locally dust ('cherty') tuff with common magnetite velns 1/4-3' thick, approx. 5/10 feet. 0.5% Cpy as fine disseminations and within the magnetite veins.
1180.0 -	650	1000	1141.0	1186.0	Diorite (Unspecified)		GRAY AND MARCON	MEDIUM GRAINED	PORPHYR ITIC	Porphyritic Lost Horse diorite with moderate pervasive potassic alt'n and 0.5% Cpy in magnetite veins + some dissems + clusters.
	500	1000	1186.0	1231.0	Lapilli Tuff	•	GREY GREEN			Pyritic lithic lapilli tuff with traces of patchy potassic alt'n and no cpy.
1230.0 -	650	1000	1231.0	1256.0	Diorite (Unspecified)	46	GRAY AND MAROON		EQUIGRA NULAR	Fine, equigranular diorite with rare magnetite and flourite stringers and trace Cpy.
	700	900	1256.0	1317.0	Lapilli		GREY GREEN	FINE GRAINED		Lithic lapilli tuff with thick (2-6') epidate veins approx. 2/10 ft at 60

					L F	HOLE	: DD	H94	_A0	17			CHA							PAGE	15
S.	RANG	UC S	TU	RE			AL ⁻	rer.					LCOPY	2 0		Α	ASSE MASSE	YYS E			
RUCTURE ID	LE TO CORE	RUCTURE ID	LE TO CORE	RE % Calcite	% Biotite	% K-SPAR	% Chlorite	% EPIDOTE	ALT. FACIES	% MAGNETITE	PYRITE HABIT	% Pyrite	CHALCOPYRITE HABIT	% Chicopyrite	FROM	10	SSAMPLE NUMBER	NGTH Ft/10	Copper %	GOLD 9/t	— 1080.0
															1081.	1091.		10	0.080	0.064	_
cv	60	۵V	60	2.5		2.5			W						1091.	1101.		10	0.110	0.045	
				-		Pill.									1101.	1108.		07	0.130	0.024	
									-		D		D		1108.	1115.		07	0.090	0.009	100
MV	60	cv	40	2.5						2.5	ID	2.5	D	0.1	1115.	1122.		07	0.200	0.100	_
											XX XX		04	1	1122.	1132.		10	0.430	0.120	— 1130.0
M∨	60					2.5			w	5.0	A A	5.0	04 04 08 08	1.0	1132.	1141.		09	0.220	0.240	- 100
											Ø Ø		D </td <td></td> <td>1141.</td> <td>1151.</td> <td></td> <td>10</td> <td>0.090</td> <td>0.037</td> <td></td>		1141.	1151.		10	0.090	0.037	
									FA		A A		DY DY		1151.	1161.	41	10	0.260	0,100	
MV	50				- 11	10.0	- 100	l ex	м	2.5	NA A	5.0		1.0	1161.	1171.		10	0.050	0.027	
											Ø		D </td <td></td> <td>1171.</td> <td>1176.</td> <td></td> <td>05</td> <td>0.040</td> <td>0.043</td> <td></td>		1171.	1176.		05	0.040	0.043	
								100			Ø Ø				1176.	1186.		10	0.170	0.070	— 1180.0
											Ď				1186.	1196.		10	0.030	0.011	
											DDD				1196.	1206.	H	10	0.060	0.056	
cv	40			5.0		2.5		1		/	D				1206.	1216.		10	0.030	0.017	
											0000				1216	1226.		10	0.030	0.015	-
															1226.	1231.		05	0.040	0.029	1230.0
															18.91	1241		10	0120	0.031	
C	/			5.0		10.0				£ 10			111		1.41			311	0.090	0.195	
																			0.860	0.780	
E	/ 60			5.0		5.0		150											- 1	0.016	1

DRILL HOLE: DDH94_A07
PAGE 16

1260.	FEET	ROD PPT	RECOVERY PPT	FROM	70	PAGE	16 MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
	, , , , , , , , , , , , , , , , , , ,	700	900	1256.0	1317.0	Lapilli Tuff		GREY GREEN	FINE GRAINED		Lithic lapilli tuff with thick (2-6') epidote veins approx. 2/10 ft at 60 deg. TCA 0.1% Cpy as clusters within the epidote veins.
1310.	0 —		-	E -004.5		en:					en la college
	-	750	1000	1317.0	1323.0	Basalt		VERY DARK GREY	2		
		700	1000	1323.0	1345.0	Diorite (Unspecified)	FAULT		PORPHYR ITIC	MEDIUM GRAINED	Porphyritic diorite with moderate pervasive potassic alt'n + 0.1% disseminated Cpy. Fault at upper contact.
		800	1000	1345.0	1351.0	Lapilli Tuff		DARK GREY	FINE GRAINED	FRAGMEN	Lithic lapilli tuff with 2% pyrite.
1360	1.0 —	800	850	1351.0	1372.0	Diorite (Unspecified		GRAY AND MARDON		PORPHYR	Porphyritic L.H. diorite with 1/4-1/2' wide magnetite/Sx veins approx. 5/10 ft at 60 deg. TCA. 01% Cpy as clusters within the magnetite veins.
		400	1000	1372.0	1381.0	Lapilli Tuff		GREY GREEN	FINE GRAINED	FRAGMEN TAL	Lithic lapilli tuff with epidate veins + patches 1/2-3' thick, approx. 2 per 10 ft, at 70 deg. TCA. 0.1% Cpy assoc. with magnetite + epidate.
		100	800	1381.0	1388.0	Basalt					Basalt dyke.
		100	1000	1388.0	1396.0	Lapilli Tuff		GRE Y GREEN	FINE GRAINED	FRAGMEN TAL	Lithic lapilli tuff with local epidote veins + 2% Py.

					L F	IOLE	: DI	H94	_A0	17			오					43		PAGE	17
STRUCTURE ID	PANGLE TO CORE	STRUCTURE ID	DANGLE TO CORE	RE % Calcite	% Biotite	% K-SPAR	A % Chlorite	TER % EPIDOTE	A ALT. FACIES		PYRITE HABIT	% Pyrite		% Chicopyrite	FROM	10	SSAMPLE NUMBER	Y LENGTH Ft/10	Copper %	GOLD 9/t	_т — 1260.0
											D		V		1256.	1266.		10	0.060	0.016	
											D		V		1266.	1276.		10	0.080	0.012	-
											DOD		V		1276.	1286.		10	0.060	0.006	_
EV	60			5.0		5.0		5.0		2.5	DDD	5.0	V	0.1	1286.	1296.		10	0.060	0.013	-
					5						D		V		1296.	1306.		10	0.140	0.060	-
											D		V		1306.	1317.		11	0.020	0.004	1310.0
uc	45	LC	25						\parallel	-	1		∃,v,		1317.	1323.		06			-
											D		D		1323.	1334.		11	0.040	0.020	-
cv	50			2.5		10.0			М		DDDD	2.5	DOD	0.1	1334.	1345.		11	0.030	0.031	_
-						2.5	1		$\ \cdot\ $	1	10	2.5	1		1345.	1351.		06	0.010	0.004	
											600		V		1351.	1361.		10	0.030	0.014	1360.0
cv	45	MV	60	5.0		5.0			\	2.5	DDDD	2.5	V	0.1	1361.	1372.		11	0.040	0.018	1360.0
cv	50	EV	70	2.5		5.0		2.5		1.0		2.5	0= 0=	0.1	1372.	1381.		09	0.030	0.050	
		T							11		1		7		1381.	1388.		07			
cv	50	EV	70	2.5		2.5		2.5		1.0		2.5			1388.	1396.	2	08	0.050	0.031	-

П

Ī

П

П

Γ

П

ſ

Γ

Princeton Mining Corp. SIMILCO MINES LIMITED DRILL HOLE LOG

: ALABAMA PROJECT ID

HOLE / TRAVERSE ID :DDH94_A08 :HQNQ CORE HOLE SIZE :94/ 4/15 DATE STARTED :94/ 4/24 DATE COMPLETED :SJB GEOLOGGED BY :94/NOV/ 6

PLOT DATE PROJECT LEADER :PMH

LOCATION

COLLAR AZIMUTH :1.87 COLLAR DIP :-43.20

COLLAR ELEVATION :3828.66 COLLAR NORTHING :14420.56 :10108.09 COLLAR EASTING

COLLAR OFFSET COLLAR STATION

TOTAL LENGTH :836.0

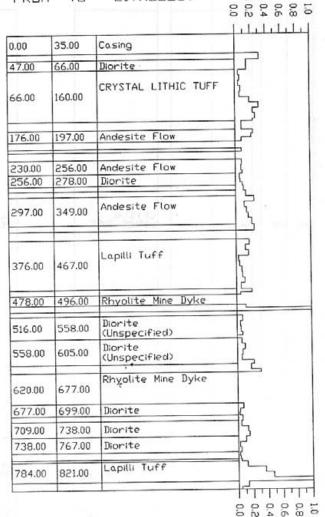
MINING DIV .: SIMILKAMEEN NTS: 92H

PURPOSE: TEST SOUTHEASTERN EDGE OF ZONE

COMMENTS: WEAK MINERALIZATION. RESULTS DISSAPOINTING RELATIVE TO SURFACE MINERALIZATION

KEY INTERSECTIONS: FROM 116 TO 160; 44 FT. OF 0.25% CU, 0.12 G/T AU FROM 272 TO 360; 88 FT. OF 0.16% CU, 0.18 G/T AU

SURVEY DATA AZIMUTH DIP DEPTH -43.201.87 0


SUMMARY REMARKS

LEGEND ECON. MINERAL: D = DISSEMINATED MV = MICROVEIN/FRACT.FILL // = VEINS AND PATCHES D(V= DISS. < VEINS/FRACTURE FILL

STRUCTURE ID:

CV = CALCITE VEIN QV = QUARTZ VEIN MV = MAGNETITE VEIN FL = FAULT IC = INTRUSIVE CONTACT

DRILL HOLE SUMMARY Cu% FROM TO LITHOLOGY

					DRIL PAGE	S F HOTE	: DDH	94_A0	8	
FEE	ROD PPT	RECOVERY PPT	FROM	10	LITHOLOGY.	MINDR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
	-	0.00	0.00	35.00	Casing	100 1413 163 160 100			63×	A SAC CONTRACT OF A SAC CONTRA
	1				JAIDS.	17.71% 17.71% 17.31%	::BM0		II (1	MATERIAL MANAGEMENTS
	-00	660	35.00	47.00	Andesite Flow	Q PTU ASLIA L pa	MEDIUM GREEN	BRECCIA TED	FINE GRAINED	Rusty andesite (?); brecciated with ANDS clasts 1/8-1' in dia. Supported by a limonite and calcite matrix. Very broken, 0.1% chalcopyrite as fine dissens.
	00	500	47.00	66.00	Diorite (Unspecified)	I SIC	MARDON AND GRAY	PORPHYR ITIC	MEDIUM GRAINED	Red porphyritic, intense potassic alt'n, with 0.1% Cpy as fine disseminations. Very broken.
					91/1/1	paci Nosi v				ZCEF-
	-			hal di	III OCTUBED	GO INC				MARMEN VERSION
0	300	800	66.00	160.00	CRYSTAL LITHIC TUFF	12 1010 1017 (0.10	GREY GREEN	FINE GRAINED	EQUIGRA NULAR	Fine grained two feldspar Xtal ash tuff (could be a fine LH or flow). Common Kspar (+/- Qtz?) veins 1/4-1/2' thick, approx. 15/10 ft; 0.1% Cpy as fine dissens. Within or without Kspar veins. Intensely broken.
ů	al months and a second							TMA	1.3300	THE STATE OF THE S
	-	toer		174	Dor te ith specified		GREY GREEN	MEDIUM GRAINED	EQUIGRA NULAR	Equigranular, ned. grained diorite with a weak pervasive potassic alt'n and weak epidote veining (veins 1/8-1/2' thick, approx. 4/10 ft. 0.1% Cpy as fine dissens. + within epidote veins. Large fault at upper contact.
			Se c		Ar wester		GREY GREEN	FINE GRAINED		Fine andesite with 10% white calcite veins that locally contain Cpy.

ST	Ŗ	JC	ŢUI		L F	IOLE:		н94. ГЕR					CHALCO	×			A	SŞA	YS	F	PAGE	3
STRUCTURE ID	ANGLE TO CORE	STRUCTURE ID	DANGLE TO CORE	% Calcite	% Biotite	% K-SPAR	% Chlorite	X EPIDOTE	ALT. FACIES	% MAGNETITE	PYRITE HABIT	% Pyrite	CHALCOPYRITE HABIT	% Chicopyrite	100	FROM	10	OSAMPLE NUMBER	ENGTH F t/10	Copper %	60LD 9/t	- 0.0
															0.	.00	35.00		35	0.54		-
cv				5.0									000	0.1	3	5.00	47.00		12	0.320	0.120	PH 834
cv	0				en p	20.0	u C		İ		0000	1.0	DDDD	0.1	4	7.00	66.00		19	0.150	0.079	— 50.0 -
													0=	M	6	56.00	76.00		10	0.040	0.026	-
											000000		D='	V	7	76.00	86.00		10	0.060	0.028	
									-	100			D=	V	8	86.00	96.00	(\$5.111.7)	10	0.040	0.020	-
											DOD		D= D=	V V		96.00	106.0		10	0.070	0.027	100.0
K	50	cv		1.0		10.0		1.0	М	a		1.0	D= D=	V _{0.1}		106.0	116.0		10	0.060	0.032	
									ŀ				D: D:	·V		116.0	126.0		10	0.190	0.105	-
													D:	=V =V		126.0	136.0		10	0.310	0.160	
					1			ā					0	=V =V =\/		136.0	146.0		10	0.230	0.110	-
)	10	=V =V =V		146.0	156.0		10	0.260	0.105	150.0
						_			4				In	=V 		156.0	160.0		04	0.230		1
E	V 3:	5 C	V 60	2.5		5.0				W				0.1		160.0	168.0		80	0.080	0.025	
	V 50			5.0		2.5				w	1) 2:) =V 0.1	-	168.0	176.0		08	0.080		1

Π

					PAGE	= 4					
FEET	ROD PPT	RECOVERY PPT	FROM	10	LITHOLOGY		MINDR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
0.0 —	400	1000	176.00	197.00	Andesite Flow			GREY GREEN	FINE GRAINED		Fine andesite with 10% white calcite veins that locally contain Cpy. Overall, Cpy 0.1%.
	550	1000	197.00	210.00	Basalt	-1.80					Basalt dyke.
	650	1000	210.00	216.00	Monzonite (Undifferent			MEDIUM GREEN			Porphyritic monzonite with minor pyrite + no Cpy.
	550	1000	216.00	230.00	Basalt	lies.					Basalt dyke.
30.0 —	650	900	230.00	256.00	Andesite Flow	100		GREY GREEN	VEINED	MATRIX SUPPURT ED	Fine andesite (could be ash tuff?) with weak potassic veining + trace disseminated chalcopyrite.
	350	900	256.00	278.00	Diorite (Unspecified)			MARDON AND GRAY	MEDIUM GRAINED	EQUIGRA NULAR	Intense potassic alt'n in a med. groined, equigranular diorite. 0.2% Cpy as fine clusters + dissems. assoc. with magnetite veins.
30.0 —	800	1000	278.00	287.00	Andesite Flow			GREY GREEN	FINE GRAINED	MATRIX SUPPORT ED	Andesite with a subtle upper contact (appears gradational), Kspar veins (dykes?) (deins), approx. 3 per 10 ft at 20-60 deg. TCA. Trace chalcopyrite with the epidote/Kspar veins.
	200	1000	287.00	297.00	Dionite (Unspecified)			GRAY AND MARDON	PORPHYR ITIC	MEDIUM GRAINED	Porphyritic, coarse to med. grained diorite with intense potassic alt'n +
30.0 -	400	900	297.00	349.00	Andesite Flow			GREY GREEN	FINE GRAINED	MATRIX SUPPORT ED	Fine andesite, locally med. grained (maybe LH1 dykes?) containing numerous Kspar + epidote veins (approx. 10/10 feet, 1/4-1/2' wide at 60 deg. TCA). One 2' Mag vein at 300 ft at 60 deg. TCA contains 2% Cpy. Overall, Cpy is (0.1%).
	00	1000	349.00	360.00	Diorite (Unspecified		*		11 <u>0</u>		Intensely broken and faulted LH2 diorite with weak potassic alt'n + 0.1% Cpy as fine dissems.

DRILL HOLE: DDH94_A08
PAGE 6

FEET 60.0 —	ROD PPT	RECOVERY PPT	FROM	10	LITHOLOGY	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
-	150	1000	360.00	376.00	Basalt	Diorite	Vd Vd	3 O	m) 1	LH2 xenolith.
			St.							
10.0 —	650	1000	376.00	467.00	Lapilli Tuff		GREY GREEN			30% lithic lapilli in an aphanitic (locally 'cherty') matrix with occasional 2-3' magnetite veins (approx. 1 per 10 ft.) at 60 deg. TCA containing 2% Cpy. Minor Kspar + epidote veins. 0.1% Cpy overall within magnetite veins.
-	II lie		0100 p		* 1019 4	Diorite		Val.		
	500	1000	467.00	478.00	Diorite (Unspecified		GRAY AND MARDON	PORPHYR ITIC	MEDIUM GRAINED	Porphyritic LH2 with a 2' calcite/qtz (7) vein at 60 deg. TCA at 468 ft with 3% Cpy. Overall, Cpy is 0.1%.
			478.00	496.00	Rhyolite Mine Dyke		PALE GREY	BANDED	PORPHYR ITIC	Tertiary rhyolite dyke.
	00	1000	496.00	508.00	Diorite (Unspecified		MEDIUM GREEN	FINE GRAINED	EQUIGRA NULAR	Crumbly and broken, faulted LHI(?) with patches of 5% magnetite, 0.2% Cpy associated with the magnetite; 6° of gouge at 506 ft contains 2% Cpy.
10.0 —	50	1000	508.00	516.00	Rhyolite Mine Dyke		PALE GREY			Tertiary rhyblite dyke.
	200	1000	516.00	558.00	Diorite (Unspecified		GREY GREEN	PORPHYR ITIC	MEDIUM GRAINED	Porphyritic LHI with local zones of Kspar veining (approx. 4/10 ft, 1/2-1 thick). 0.1% Cpy as very fine disseminations. Fault.

			-		LL F	HOLE					11X		CHAL			,	C C A	vc		PAGE	7
3 STRUCTURE ID	YANGLE TO CORE	STRUCTURE ID	DANGLE TO CORE [R % Calcite	% Biotite	% K-SPAR	AL % Chlorite	T " EPIDOTE	ALT. FACIES		PYRITE HABIT	% Pyrite	CHALCOPYRITE HABIT	% Chicopyrite	FROM		SSAMPLE NUMBER	1 LENGTH F+/10	Copper %	GDLD 9/t	- 360.0
FT		LC	10						100	Biff				E :	360.0	376.0		16		i per	
											D <v< td=""><td></td><td>D<!--</td--><td></td><td>376.0</td><td>386.0</td><td></td><td>10</td><td>0.170</td><td>0.095</td><td></td></td></v<>		D </td <td></td> <td>376.0</td> <td>386.0</td> <td></td> <td>10</td> <td>0.170</td> <td>0.095</td> <td></td>		376.0	386.0		10	0.170	0.095	
							11 31		-		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		386.0	396.0		10	0.120	0.048	_
											D <v< td=""><td>an I</td><td>0<!--</td--><td></td><td>396.0</td><td>406.0</td><td>-</td><td>10</td><td>0.160</td><td>0.105</td><td>LINE I</td></td></v<>	an I	0 </td <td></td> <td>396.0</td> <td>406.0</td> <td>-</td> <td>10</td> <td>0.160</td> <td>0.105</td> <td>LINE I</td>		396.0	406.0	-	10	0.160	0.105	LINE I
											D <a D<a< td=""><td></td><td>D<!--</td--><td></td><td>406.0</td><td>416.0</td><td></td><td>10</td><td>0.030</td><td>0.008</td><td>— 410.0</td></td></a<></a 		D </td <td></td> <td>406.0</td> <td>416.0</td> <td></td> <td>10</td> <td>0.030</td> <td>0.008</td> <td>— 410.0</td>		406.0	416.0		10	0.030	0.008	— 410.0
EV	30	cv	20			2.5		1.0	W	1.0	D <v D<v< td=""><td>2.5</td><td>0<\ 0<\ 0<\</td><td>0.1</td><td>416.0</td><td>426.0</td><td></td><td>10</td><td>0.040</td><td>0.025</td><td></td></v<></v 	2.5	0<\ 0<\ 0<\	0.1	416.0	426.0		10	0.040	0.025	
											D </td <td></td> <td>04 04 04 04 04</td> <td></td> <td>426.0</td> <td>436.0</td> <td></td> <td>10</td> <td>0.070</td> <td>0.062</td> <td></td>		04 04 04 04 04		426.0	436.0		10	0.070	0.062	
											D </td <td></td> <td>0<!--</td--><td></td><td>436.0</td><td>446.0</td><td></td><td>10</td><td>0.080</td><td>0.044</td><td></td></td>		0 </td <td></td> <td>436.0</td> <td>446.0</td> <td></td> <td>10</td> <td>0.080</td> <td>0.044</td> <td></td>		436.0	446.0		10	0.080	0.044	
													D<	1	446.0	456.0		10	0.110	0.061	_
											04/ 04/		04 04 04 04		456.0	467.0		11	0.060	0.029	— 460.0
cv	60			2.5	2.5	10.0			м		D>/	2.5	V	0.1		473.0		06	0.200	0.110	-
_	H	-		-	-				1		Π»\	_	-V		473.0	478.0		05	0.050	0.028	-
BN	70								-						478.0	496.0		18			-
-	-	-							1				[]=\ D-\		496.0	502.0		06	0.120	0.059	
FT		LC	55			2.5				2.5		2.5	D=/	0.3	502.0	508.0		06	1.200	1.160	
															508.0	516.0		08			510.0
											11. 11				516.0	526.0		10	0.070	0.033	
KN	/ 60			2.5		50				e e		0.2	1	6:	526.0	536.0		10	0.040	0.027	-
													15.		1.54.0	546.0		10	0.050	0.019	1

П

П

Ħ

DRILL HOLE: DDH94_A08

PAGE 8

		RECL			PAGI			_		
FEET	RQD PPT	RECOVERY PPT	FROM	10	רוואטרטפא	MINDR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
-	200	1000	516.00	558.00	Diorite (Unspecified)	0.00()	GREY GREEN	PORPHYR ITIC	MEDIUM GRAINED	Porphyritic LH1 with local zones of Kspar veining (approx. 4/10 ft, 1/2-1" thick). 0.1% Cpy as very fine disseminations. Fault.
			2701	202	e, Ame	Basalt	lou loi			
			neon.			lae i				Porphyritic diorite with a weak, patchy potassic alt'n; hematite stringers (purplish) 1/16-1/8' thick, approx. 4 per 10 ft, trace dissem. Cpy. Basalt
	600	1000	558.00	605.00	Diorite (Unspecified	and .	GRAY AND MAROON	PORPHYR ITIC	MEDIUM GRAINED	per 10 ft, trace dissem. Cpy. Basalt dyke.
90.0 —	17.	-	1000	122		-	H	usii		
-				Name	5.80	Table 1			na v	Aphanitic dust tuff with a weak
22	500	1000	605.00	620.00	1,3	Diorite	DARK GREEN	ALIGNED PHENDER YSTS	CRACKLE BX	Ichloritic crockle breccio and trace
5			in.		8351	Ligiter				
40.0 —	400	1000	620.00	677.00	Rhyolite Mine Dyke	Case (Care)	PALE GREEN	PORPHYR ITIC	BANDED	Rhyolite dyke.
90.0 -	650	1000	677.00	699.00	Diorite (Unspecified)		GRAY AND MAPOON	POPPHYR ITIC	MEDIUM GRAINED	Moderately potassic altered LH2 diorite with 0.1% Cpy as blebs/clusters up to 1/4° in dia. assoc. with potassic zones. Fault at upper contact.
	750	1000	699.00	709.00	Diorite (Unspecified			FINE GFAINED	THE	Albite/sericite (?) altered LH2 with clusters of Cpy (0.2% overall).
	600	1000	709.00	738.00	Don'te Unspecition		1.4° 1.4° 1.4°	MI 1/1/W - W1/W 1	rgerme [11]	Moderately potassic altered digrite with 1.5% Cpy in magnetite/calcite with 1.5% Cpy in magnetite/calcite with 1.84° thick, approx. 3/10 ft at 20-40 deg. TCA.

				DRIL	L H						CA.	à E	1119	CHA		ar)19	1,119	^ -	C C A	Y C	F	PAGE	9
STRUCTURE ID	RANGLE TO CORE	STRUCTURE ID	UANGLE TO CORE	E % Calcite	% Biotite	% K-SPAR	AL % Chlorite	ER : EPIDOTE	ATT ALT. FACIES		70	% ryrice	· D. 51+0		% Chicopyrite		FROM	10	CISAMPLE NUMBER	2 LENGTH Ft/10	Copper %	GOLD 9/t	T 540.0
П	m				16/1			THE STREET						D C			536.0	546.0		10	0.050	0.019	
KV	60			2.5		5.0			W			0.3	3	Ď	0.1		-	552.0		06 06	0.070	0.038	-51 -101
									-					6		-		558.0		H			-
			5	-	30	152	120							Ď			558.0	568.0		10	0.060	0.024	
										04				000			568.0	578.0		10	0.100	0.052	
KV	60	н∨	40	2.5		5.0			\\w				3	n	0.0		578.0	588.0		10	0.070	0.032	-
				3		No.	**					D		DDD			588.0	598.0		10	0.060	0.024	— 590.0
		Ji		la seed of	11 10	E CHI						D D D					598.0	605.0	100	07	0.220	0.125	
			TC= 1						1		Ī]=V]=V ₁]=V	0	D	0.0		605.0	615.0		10	0.180	0.075	-
		LC	65	2.5		1.0		1.0]=V]=V_		D	L		615.0	620.0		05	0.310	0.095	-
																	620.0	644.0	Herc	24			- 640.0
				1	-		-	1									644.0	647.0		03	0.000	0.020	
BI	V 5	5												96									
																	647.0	677.0		30			
-			+	-		-						D>V D>V	1				677.0	687.0		10	0.07	0.02	7
c	v	30		2.5		10.	0			М		D>/				0.1	687.	0 693.0)	06	+	-	-
				1								U~1	1	-			693.			06	$\exists \vdash$		-
C	:V	50								L		D.A			\/		699.	0 709.	0	10	0.00	50 0.08	-
,	ΜV	30				10	.0		-	М	2.5	D<	V V 2.5		V V	1.0	709.	0 719	0	1	0.0	40 0.0	08

П

DRILL HOLE: DDH94_A08

FEET 720.0 —	ROD PPT	RECOVERY PPT	FROM	10	PAGE	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REM PRKO
_	600	1000	709.00	738.00	Diorite (Unspecified)		GRAY AND MAROON	MEDIUM GRAINED	PORPHYR ITIC	Moderately potassic altered diorite with 1.5% Cpy in magnetite/calcite veins 1.78-4" thick, approx. 3/10 ft at 20-40 deg. TCA.
-			738.00	767.00	Diorite (Unspecified)		GRAY AND MARDON	MEDIUM GRAINED	PORPHYR ITIC	Moderately potassic altered diorite with (1% magnetite veins and (1% Cpy.
770.0 —	300	1000	767.00	780.00	Diorite (Unspecified)		PALE GREEN	FINE GRAINED	PORPHYR ITIC	Moderate albite/sericite (?) alteration with common calcite veins containing fluorite (?), trace Cpy.
			780.00	784.00	Diorite		PALE GREEN	FINE GRAINED	PORPHYR ITIC	Moderate potassically altered porph. diorite.
	450	1000	784.00	821.00	Lapilli Tuff		GREY GREEN	FINE GRAINED	FRAGMEN TAL	Lithic lapilli tuff with 20% beds of 'cherty' dust tuff; 0.5% Cpy in magnetite/calcite veins (1/4-1' thick, approx. 3/10 ft) or in their Kspar envelopes or as fine dissens, with fine epidote.
820.0 —			821.00	836.00	Lapilli Tuff		GREY GREEN	FINE GRAINED	FRAGMEN TAL	Lithic lapilli tuff with trace Cpy.

					L F	HOLE	: DD	Н94	_A0	8			오							PAGE	11
STRUCTURE ID	CANGLE TO CORE	STRUCTURE ID	HANGLE TO CORE	RE % Colcite	% Biotite	% K-SPAR	A % Chlorite	ER % EPIDOTE	ALT. FACIES		PYRITE HABIT	% Pyrite	CHALCOPYRITE HABIT	% Chlcopyrite	FROM	7	SSAMPLE NUMBER	C LENGTH F+/10	Copper %	GDLD 9/t	" – 720.0
											D <a< td=""><td></td><td>V</td><td>Coec:</td><td>719.0</td><td>729.0</td><td></td><td>10</td><td>0.130</td><td>0.075</td><td></td></a<>		V	Coec:	719.0	729.0		10	0.130	0.075	
MV	30					10.0			M	2.5	0 <v< td=""><td>2.5</td><td>V</td><td>1.0</td><td>729.0</td><td>738.0</td><td></td><td>09</td><td>0.150</td><td>0.095</td><td></td></v<>	2.5	V	1.0	729.0	738.0		09	0.150	0.095	
											D		D		738.0	748.0		10	0.100	0.100	-
MV	1V 30				10.0			м	0.1	DDDD	0.1	DDD	0.1	748.0	758.0		10	0.020	. 0.022	-	
					16					D		D		758.0	767.0		09	0.040	0.016		
											000	25	ã	0.0	767.0	774.0		07	0.020	0.018	770.0
CV	30										D	2.5	D	0.0	774.0	780.0		06	0.030	0.012	
cv	30					10.0			М		Ô	2.5	Î	0.0	780.0	784.0		04	0.040	0.017	
											D=V D=V D=V		D=\	1	784.0	794.0		10	0.120	0.062	-
CV	20	MV	ຂຄ	5.0		5.0		2.5		2.5	D=V	2.5	D=\ D=\ D=\	1.0	794.0	804.0	12	10	0.360	0.335	
	CV 50 WV 50		0.0		5.0	2			W 2.5	0=V N=V		D=\ D=\ D=\	N=V	804.0	814.0		10	0.470	0.195		
											0=\ 0=\		D=/		814.0	821.0		07	1.160	0.560	— 820.0
cv	20	м∨	20	5.0		5.0		2.5	W	2.5	0=\ 0=\	25	DDD	0.0	821.0	831.0		10	0.130	0.068	-
											D=\ N=\	/	D		831.0	836.0		05	0.040	0.025	

Π

П

Ī

F

Princeton Mining Corp. SIMILCO MINES LIMITED DRILL HOLE LOG

PROJECT ID : ALABAMA

HOLE / TRAVERSE ID :DDH94_A09

CORE HOLE SIZE

DATE STARTED

DATE COMPLETED

GEOLOGGED BY

PLOT DATE PROJECT LEADER

LOCATION

:94/ 5/ 9

:SJB

:94/NOV/ 8

:PMH

COLLAR AZIMUTH

...:-45.00

:

COLLAR DIP COLLAR ELEVATION :4035.12

:15827.47

COLLAR NORTHING COLLAR EASTING

:9838.94

COLLAR OFFSET

COLLAR STATION

TOTAL LENGTH

:434.0

MINING DIV .: SIMILKAMEEN NTS: 92H

PURPOSE: TEST DEEP NORTHERN IP ANOMALIES

COMMENTS: HOLE FAILED TO REACH TARGET DEPTH DUE TO BADLY KEY INTERSECTIONS: GROUND.

DEPTH	SURVEY DIP	DATA AZIMUTH
0	-45.0	0.00

SUMMARY REMARKS

Hole was abandoned short of the target when casing unscrewed and fell down the hole.

LEGEND

ECON. MINEPAL D = DISSEMINATED M. - MICES.EIN FRACTFILL // = VENC 440 +41 ---DOVE BISS & VERY FRACTORS FILE

STRUCTURE II

DRILL HOLE SUMMARY

LITHOLOGY FROM TO

Cu%

0.00	22.00	Casing	
22.00	49.00	Rhyolite Mine Dyke	
49.00	74.00	Diorite (Unspecified)	
74.00	181.00	LH2 Diorite	
181.00	235.00	Andesite Flow	
243.00	298.00	Andesite Flow	
298.00	330.00	Andesite Flow	
330.00	451.00	Diorite (Unspecified)	

FEET	RQD PPT	RECOVERY PPT	FROM	10	ГІТНОГОВА	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
		5	0.00	18.00	Casing				100	
					TRAST IAT				d or	Liminotic oxidation.
	-00	750	18.00	62.00	Conglomerate			POLYMIC TIC		LIM TON ZIMBER
0 -		914		2 3	10Ĥ T					Bedded, fine to coarse tertiary wacke.
	50	1000	62.00	77.00	Greywacke/Ep ivolcaniclas tic		PALE GREY		000	Bedded, Fine to Coarse tertiary wacke.
				124						TAMES TO SAME
0 -								-		
	00	1000	77.00	162.00	Conglomerate		DARK GREY	POLYMIC TIC		Polymict tertiary conglomerate with common rhyolite clasts.
	-									
.0 -					T = 1 ar-signal.					
	100	1000	162.00	169.00	Diorite (Unspecifico		W. 13. W	1102 1		Course perphyritic Lost Horse of the with a faint pink caste (weak perses attm) and 2% very fine
	350	1000	169.00	186.00	CPYTIAL LITHIC THEF		:11:			in the (Fspar) tuff (?) with the constraint of t

DRILL HOLE: DDH94_A08
PAGE 4

FEET	ROD PPT	RECOVERY PPT	FROM	TO	LITHOLOGY	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
	400	1000	176.00	197.00	Andesite Flow		GREY GREEN	FINE GRAINED		Fine andesite with 10% white calcite veins that locally contain Cpy. Uverall, Cpy 0.1%.
Г	550	1000	197.00	210.00	Basalt					Basalt dyke.
Γ.	650	1000	210.00	216.00	Monzonite (Undifferent		MEDIUM GREEN			Porphyritic monzonite with minor pyrite + no Cpy.
-	550	1000	216.00	230.00	Basalt					Basalt dyke.
230.0 -	650	900	230.00	256.00	Andesite Flow		GREY GREEN	VEINED	MATRIX SUPPORT ED	Fine andesite (could be ash tuff?) with weak potassic veining + trace disseminated chalcopyrite.
	350	900	256.00	278.00	Diorite (Unspecified)		MARDON AND GRAY	MEDIUM GRAINED	EQUIGRA NULAR	Intense potassic alt'n in a med. grained, equigranular diorite. 0.2% Cpy as fine clusters + dissens. assoc. with nagnetite veins.
280.0 -	800	1000	278.00	287.00	Andesite Flow		GREY GREEN	FINE GRAINED	MATRIX SUPPORT	Andesite with a subtle upper contact (appears gradational), Kspar veins (dykes?) (deins), approx. 3 per 10 ft at 20-60 deg. TCA. Trace chalcopyrite with the epidote/Kspar veins.
	200	1000	287.00	297.00	Diorite (Unspecified)		GRAY AND MARDON	PORPHYR ITIC	MEDIUM	Porphyritic, coarse to med. grained diorite with intense potassic alt'n + 0.1% chalcopyrite assoc. with magnetite veins 1/8-1" wide, approx. 3 per 10 ft. at 50 deg. TCA.
T-an-	A STATE OF THE STA	900	297.00	349.00	Andesite Flow		GREY GREEN	FINE GRAINED	MATRIX SUPPORT E D	Fine andesite, locally ned grained (maybe LHI dykes?) containing numerous Kspar + epidote veins (approx. 10/10 feet, 1/4-1/2' wide at 60 deg. TCA). Die 2' Mag vein at 300 ft at 60 deg. TCA contains 2% Cpy. Diverall, Cpy is (0.1%.
Г	¥ =	-		36000	Dionite (Unspecified					Intensely broken and faulted LHZ diorite with weak potassic alt'n + 0.1% Cpy as fine dissens.

						L	HOL			H94			140			CHAL				CCV	VS		PAGE	5
STRUCTURE ID	YANGLE TO CORE	STRUCTURE ID	HANGLE TO CORE	IKE	, Z CALCITE	Z BIOTITE		% K-SPAR	A % CHLORITE	TER % EPIDOTE	ALT. FACIES			PYRITE HABIT	% PYRITE	CHALCOPYRITE HABIT	% CHALCOPYRITE	FROM	10	SAMPLE NUMBER	2 LENGTH F t/10	Copper %	GDLD 9/t	ır— 180.0
EV							1.0			5.0	W			D=V	5.0	DC	0.0	179.0	186.0	//204		0.130	0.043	180.0
										Tile.				D=V D=V		D		186.0	196.0		10	0.060	0.033	
									0.00	191				D=V D=V D=V D=V D=V D=V		0000000		196.0	206.0		10	0.050	0.013	-
			100											D=A D=A D-A	2.5		0.0	206.0	216.0		10	0.080	0.037	-
																		216.0	226.0		10	0.050	0.011	-
											4		H	D=V		ĮĎ,		226.0	230.0		04		0.013	230.0
						1 5	The second					l		DO		DD		230.0	240.0	5-	10	0.050	0.016	
EV	50						1.0	0	1.0	1.0		/		000	2.5		0.0	240.0	250.0		10	0.040	0.021	
											4			DCC		D C		250.0	260.0		10	0.070	0.047	
FT				1	.0							1		0000	2.5		0.1	260.0	272.0		12	0.170	0.016	
FT																								- 280.0
LC	30																	272.0			101			
																			•					3301

DRILL HOLE: DDH94_A09

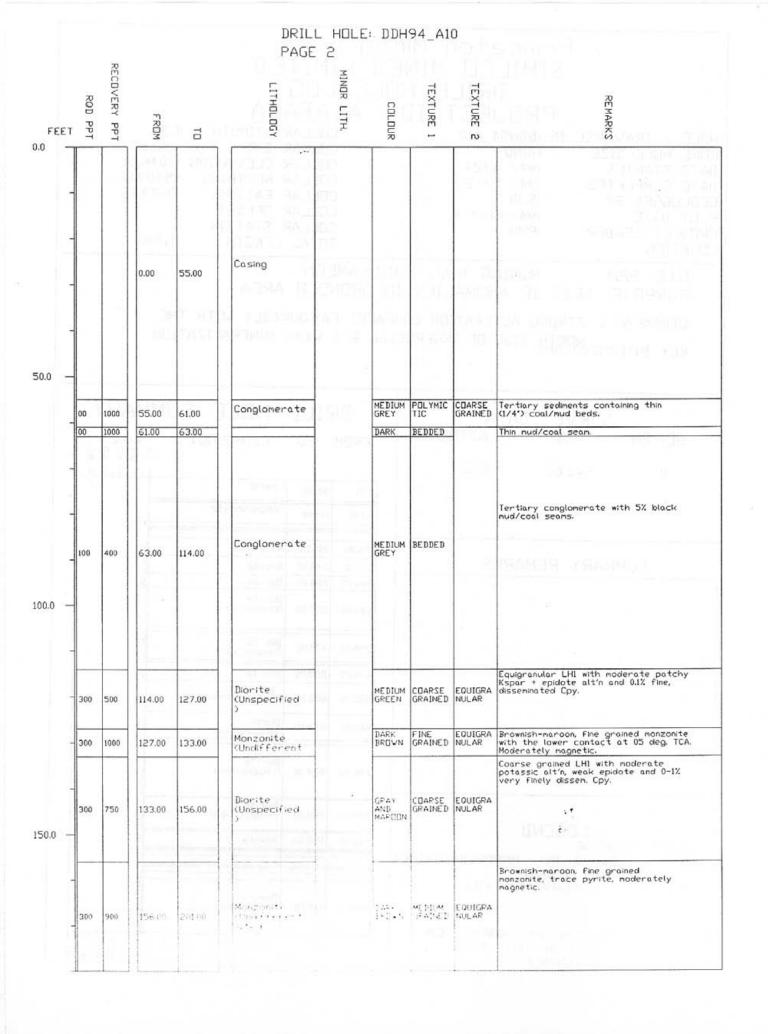
FEET	ROD PPT	RECOVERY PPT	FROM	11	LITHOLOGY	MINOR LITH.	COLDUR	TEXTURE 1	TEXTURE 2	REMARKS
- 00.0	50	1000	287.00	373.00	Basalt		VERY DARK GREEN		М	Tertiary basalt dyke.
	200	1000	373.00	387.00	Lapilli Tuff		GREY GREEN	FRAGMEN TAL	MEDIUM GRAINED	Lithic lapilli tuff with indistinct 1/2'-2' thick diorite lapilli in a med. grained feldspar rich matrix. Trace Lpy. Rare magnetite veins 1/4' wide at 15 deg. TCA.
	400	1000	387.00	412.00	Diorite (Unspecified)	2	GRAY AND MARDON	GRAINED	EQUIGRA NULAR	Moderate potassic alt'n in a fine to medium grained, equigranular diorite with indistinct contacts. 0-2% very fine chalcopyinte as disseminations associated with magnetite.
0.0 —	100	1000	412.00	434.00	Lapilli Tuff		GREY GREEN	FINE GRAINED	FRAGMEN TAL	Lithic lapilli tuff, intensely broken, with occasional magnetite/carbonate veins (2/10 ft) at 65 deg. TCA containing coarse Cpy + pyrite (0.1% Cpy overall).

Princeton Mining Corp. SIMILCO MINES LIMITED DRILL HOLE LOG PROJECT ID : ALABAMA

HOLE / TRAVERSE ID :DDH94_A10
CORE HOLE SIZE :HQNQ
DATE STARTED :94/ 4/24
DATE COMPLETED :94/ 5/ 2
GEOLOGGED BY :SJB
PLOT DATE :94/NOV/ 8

PROJECT LEADER :PMH
LOCATION :

COLLAR AZIMUTH :0.36
COLLAR DIP :-42.68
COLLAR ELEVATION :4046.51
COLLAR NORTHING :15409.01
COLLAR EASTING :7629.48


COLLAR OFFSET : COLLAR STATION :

TOTAL LENGTH :1179.0

NTS: 92H MINING DIV.: SIMILKAMEEN PURPOSE: TEST IP ANOMALIES IN ORONOCO AREA

COMMENTS: STRONG ALTERATION COMPARES FAVOURABLY WITH THE KEY INTERSECTIONS: SIDE OF INGERBELLE BUT WEAK MINERALIZATION

SURVEY DA DEPTH DIP 0 -42.68		FROM		HOLE SU	Cu% 8 % 2 % 8 4 4 4 1 1 1 1 1
		0.00	55.00	Casing	200
	2	63.00	114.00	Conglomerate	
		156.00	201.00	Monzonite	
SUMMARY REMAI	RKS	201.00	248.00	Diorite	}
		248.00	284.00	Diorite	
		284.00	387.00	Diorite (Unspecified)	
		398.00	470.00	Diorite (Unspecified)	200
		478.00	525.00	Diorite	,
		525.00	605.00	Syenite (Undifferentiated)	
		605.00	674.00	Diorite (Unspecified)	
		686.00	824.00	Diorite (Unspecified)	
LECEND		828.00	908.00	Diorite (Unspecified)	
LEGEND ECON. MINERAL:		912.00	956.00	Diorite	-
T = DISSEMINATED MV = M	ICROVEIN/FRACT.FI	L			
= VEINS AND PATCHES VEINS/FRACTU THE CTUPE ID: ALCITE VEIN OV =	RE FILL	1038.0	1179.0	Diorite (Unspecified)	

27	RI	ıc	TI			L H			H94. ГЕР <i>н</i>				CHALC	×		stsin	SSA	YS	F	PAGE	3
STRUCTURE ID	ANGLE TO CORE	STRUCTURE ID	HANGLE TO CORE	LΓ	Z CALCITE	% BIOTITE		% CHLORITE	% EPIDOTE	ALT. FACIES	PYRITE HABIT	% PYRITE	CHALCOPYRITE HABIT	% CHALCOPYRITE	FROM	10	SSAMPLE NUMBER	LENGTH F 1/10	Copper %	GDLD 9/t	- 0.0
													a G								
												II.ALT U									-
														ipcH	0.00	114.0		114			— 50.0 -
							311	dvec.								mat's					
BD	70																	T			— 100.0
							10.0	2.5	10.0		DDD	0.1	DDD		114.0	127.0		13	0.050	1.060	
LC	5						20.0			I	0000	0.0		3	127.0	133.0		, 06	0.000	0.003	-
											D		D		133.0	143.0	la Heal la	10	0.010	0.012	-
κ∨	60						10.0	2.5	2.5	М	DDDD	0.0	0000		143.0	156.0 f	•	13	0.010	0.006	— 150.0
															156.0	166.0		10	0.000	500.0	-
							20.0								166.0	176.0		10	0.020	0.016	-
															176.0	201.0		25	0.010	0.032	1

П

Ī.

DRILL HOLE: DDH94_A10

					PAGE	E 4		_		
FEET	ROD PPT	RECOVERY PPT	FROM	10	ГІТНОГОС А	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
180.0 —	300	900	156.00	201.00	Monzonite (Undifferent iated)		DARK BROWN	MEDIUM GRAINED	EQUIGRA NULAR	Brownish-maroon, fine grained monzonite, trace pyrite, moderately magnetic.
230.0 —	200	1000	201.00	248.00	Diorite (Unspecified)	11000	GRAY AND MARDON	CDARSE GRAINED	EQUIGRA NULAR	Coanse LHI with weak patchy potassic alt'n and occasional epidote veins 1/4-1/2' thick in 2/10 ft at 55 deg. TCA.
280.0 -	250	650	248.00	284.00	Diorite (Unspecified)	Diorite (Unspecified)				Diorite (maybe LH2 or even andesite flow) with moderate sericite and clay alteration and local talc alt'n 39 deg. dissem. henatite. Strong fault zone.
330.0 -	650	1000	284.00	387.00	Diorite (Unspecified)		GRAY AND MARDON	CDARSE GRAINED	EQUIGRA NULAR	Coarse grained, slightly porphyritic diorite with common epidote + Kspar veins/envelopes approx. 7/10 ft, 1-4' thick at 0-80 deg. (commonly 50 deg.); trace Cpy is associated with minor pyrite within epidote veins.
						15				

DRILL HOLE: DDH94_A10 PAGE 6 RECOVERY MINGR L11HOLOGY EXTURE EXTURE REMARKS COLOUR FROM PPT FEET T -N 360.0 Coarse grained, slightly porphyritic diorite with common epidote + Kspar veins/envelopes approx. 7/10 ft, 1-4 thick at 0-80 deg. (commonly 50 deg.); trace Cpy is associated with minor pyrite within epidote veins. EQUIGRA NULAR Diorite COARSE (Unspecified 650 1000 284.00 387.00 AND MAROON GRAINED Coarse grained, slightly porphyritic diorite with Kspar + epidote veins 1-4' thick in 15/10 ft, occasionally coalescing to form massive bands. 0.1% pyrite + trace Cpy in the epidote veins. Diorite EQUIGRA NULAR CHARSE MARDON AND GREEN 700 1000 387.00 398.00 (Unspecified GRAINED 410.0 Coarse grained, slightly porphyritic diorite with Kspar + epidote veins/envelopes approx. 7/10 ft, 1-4' thick at 0-80 deg. (commonly 50 deg.); trace Cpy is associated with minor pyrite within epidote veins and as fine disseninations. Diorite EQUIGRA GRAY COARSE AND MAROON GRAINED 800 1000 398.00 470.00 (Unspecified NULAR 460.0 Coarse, almost porphyritic diorite with intense potassic and epidote alt'n in veins, envelopes and patches (Ksparveins 1-3' thick approx. 10/10 ft at 50 Diorite MARDON CDARSE GRAINED EQUIGRA NULAR 1000 470.00 478.00 (Unspecified AND GREEN 500 Coarse, magnetic (fine disseminated magnetite) diorite with occasional (2/10 ft) Kspar + epidote veins 1-4* thick at approx. 40-50 deg. TCA. Cpy is trace as very fine disseminations. Diorite EQUIGRA NULAR LIGHT CDARSE GRAINED (Unspecified 900 1000 478.00 525.00 510.0 Red, fine equigranular syenite (?) with trace Cpy. Chilled margins + lack of alt'n indicate that it is post— (coarse, altered diorite above and below). Syenite (Undifferent MEDIUM RED FINE GRAINED EQUIGRA NULAR 850 1000 525.00 605.00

ia ted)

		10	T)H94				CHAL			^	V22	V C		PAGE	9
O STRUCTURE ID	YANGLE TO CORE	STRUCTURE ID	ANGLE TO CORE	E % CALCITE	% BIOTITE	% K-SPAR		TER X EPIDOTE		PYRITE HABIT	% PYRITE	COPYRITE HABIT	% CHALCOPYRITE	FROM	10	SSAMPLE NUMBER	D LENGTH Ft/10	Copper %	GDLD g/t	540.0
UC	40	LC	50			0.1					0.0			535.0	595.0		60			- - - 590.0
										D				595.0	605.0		10	0.010	0.005	-
										D		D D D		605.0	615.0		10	0.030	0.005	-
										DO		D D D		615.0	625.0		10		0.014	-
										DO				625.0	635.0		10	0.010	0.021	-
κv	50	EV	50			5.0	0.1	5.0	W	DDD	0.0	D	0.0	635.0	645.0		10	0.010	0.010	640.0
										D		DDDD		645.0	655.0		10	0.010	0.007	
										DDDD		0000		655.0	665.0		10	0.010	0.009	-
										D		D		665.0	674.0		09	0.010	0.009	
EV	10	LC	10			30.0		10.0	I	ÔOO	0.0			674.0	686.0		12	0.010	0.006	
		l								D				686.0	696.0		. 10	0.010	it unts	690.0
F	/ 65	KV	65			10.0		2.5	M	000		D		696.0	706.0	-	10	0 «	1100	
			00									000		706.0	716.0		in in			
][71-0	72+1)		:	•		20

0.7			T11		L F	HOLE							CHAL				422	74		PAGE	13
3 STRUCTURE ID	YANGLE TO CORE	STRUCTURE ID	ANGLE TO CORE	R % Calcite	% Biotite	% K-SPAR	×	TE % EPIDOTE	ALT. FACIES		PYRI		CHALCOPYRITE HABIT	% Chlcopyrite	FROM	TO	SSAMPLE NUMBER	LENGTH Ft/10	Copper %	GDLD 9/t	— 900.0
EV						5.0	2.5	2.5	м	0.1	0=V _o . 0=V	.3	D=V D=V	0.0	898.0	908.0		10	0.020	0.004	
UC	60	LC	70												908.0	912.0		04			- 1
											D		D		912.0	922.0		10	0.020	0.001	-
											D D D		000		922.0	932.0		10	0.020	0.006	
EV	60					2.5		10.0	W		D	.0	D	0.1	932.0	942.0		10	0.070	0.012	-
											D		D		942.0	949.0	13	07	0.010	200.0	
											D		D		949.0	956.0		07	0.010	0.007	- 950.0
EV	60	FD	20			2.5		10.0	W			1.3		0.0	956.0	959.0		03	0.010	0.022	
UC	5					-	-		-			1	D		959.0 963.0	963.0		04	0.010	0.005	
EV	60	FO	50			2.5		10.0	w		1 -).3	D	0.0	970.0	976.0		06	0.010	0.005	-
													Ô		976.0	986.0		10	0.010	0.015	-
EV	50	MV	60			5.0	2.5	5.0	M .	1.0	D	0.3	DDD	0.0	986.0	996.0		10	0.020	0.001	-
											ğ		D		996.0	1001.		05	0.010	0.003	- 1000.0
EV	45	LC	75			5.0		2.5	М		100	0.3	ğ	0.0	1001.	1006.	<u></u>	05		0.008	
											Î Î		Ô		1006.	1013.		07		0.015	-
CV	50	K	50	2.5		10.0	2.5	5.0	M		D	0.3	D	0.0	1013.	1020.		07		0.001	
									1		D=V D=V		D=\	1	1020.	1029.		09	0.030	0.040	
KV	70					10.0	5.0	2.5	M	2.5	D=N D=N	2.5	D=/ D=/	1.0	1029.	1038.		09	0.030	0.008	
													D		1038.	1049.		11	0.040	0.007	
											D D D		DDD		1049.	1059.		10	0.050	0.047	— 1050.0
						5.0	2.5	5.0	M		D	0.1		0.1	1059.	1069.		10	0.010	0.006	
											D				1069	1079.		10	0.010	0.006	

DRILL HDLE: DDH94_A10
PAGE 14

FEET 1080.0	ROD PPT	RECOVERY PPT	FROM	10	LITHOLOGY	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS	- 5
1080.0											
			E00) II		2549	Diorite Unspecified)			y.	Moderate fault. Large, intense fault zone.	
1130.0 —	500	1000	1038.0	1179.0	Diorite (Unspecified)	ied)	GRAY AND MARDON	COARSE GRAINED	EQUIGRA NULAR		
1					Service of the servic						
				4	4000 1						

					LL F	HOLE	: DI)H94	_A1	0			유							PAGE	15
STRUCTURE ID	PANGLE TO CORE	STRUCTURE ID	MANGLE TO CORE	IRE % Calcite	% Biotite	% K-SPAR	A % Chlorite	TER % EPIDOTE	ALT. FACIES		PYRITE HABIT	% Pyrite	CHALCOPYRITE HABIT	% Chicopyrite	FROM	- A	SSAMPLE NUMBER	Y LENGTH Ft/10	Copper X	60LD 9/t	— 1080.0
											D		D		1079.	1089.		10	0.100	250.0	7622850000
											000		D		1089.	1099.		10	0.020	0.023	
											D				1099.	1109.		10	0.030	0.041	
													0000		1109.	1119.		10	0.070	0.015	
											DDD		0000		1119.	1129.		10	0.010	0.002	
						5.0	2.5	5.0	M			0.1		0.1	1129.	1139.		10	0.020	0.003	— 1130.0
															1139.	1149.		10	0.030	0.014	
											D		D		1149.	1159.		10	0.030	0.019	
											D		D		1159.	1169.		10	0.030	0.009	
											DDD		D		1169.	1179.		10	0.040	0.016	

Princeton Mining Corp. SIMILCO MINES LIMITED : ALABAMA PRIJECT

HOLE / TRAVERSE ID :DDH94_A11

CORE HOLE SIZE DATE STARTED

:HQNQ :94/ 4/26

DATE COMPLETED

:PMH

GEDLOGGED BY PLOT DATE

:94/NOV/ 8

PROJECT LEADER LOCATION

:PMH

COLLAR AZIMUTH

:359.19

COLLAR DIP

:-46.38 COLLAR ELEVATION :4071.68 :14988.47

.

COLLAR NORTHING COLLAR EASTING

:9694.76

COLLAR OFFSET

COLLAR STATION

TOTAL LENGTH

:1169.0

MINING DIV .: SIMILKAMEEN NTS: 92H PURPOSE: TEST SW END OF MINERALIZED ZONE (DEEP)

COMMENTS: MODERATE TO STRONG MINERALIZATION OVER MOST OF

KEY INTERSECTIONS: FROM 60 TO 981; 921 FT. OF 0.28% CU, 0.16 G/T AU FROM 530 TO 747; 217 FT. OF 0.46% CU, 0.28 G/T AU

SURVEY DATA

DEPTH DIP

AZIMUTH

0

-46.38

359.19

SUMMARY REMARKS

Hole was targeted to test western edge of previously drilled area. Fairly continuous mineralization from 60 to 647 ft. After 647 mineralization from 60 to 647 ft. After 647 ft only patches of good grade mineralization (fault zones could conceal some grade). Best mineralization appears to be in the volcanics; LLTF and ANDS with the LLTF looking like the classic EU found in Pit2 and Ingerbelle. The LH2D - barley porphyry is also commonly well mineralized. There appears to be an association between Cp and Ep veins. Dominant vein orientations are relatively consistent but do vary with depth down the hole. Vein angles are typically less than fault and fracture angles. Veins are commonly perpendicular suggesting both NE and NW trends (although the 45 deg. trends could E-W).

LEGEND

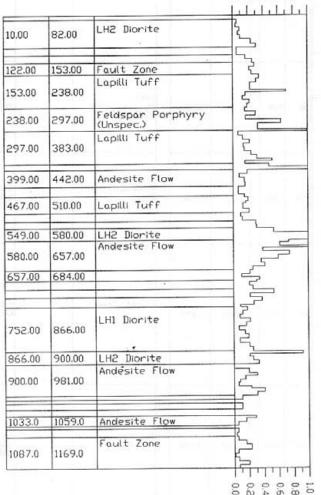
ECON. MINERAL:

D = DISSEMINATED MV = MICROVEIN/FRACT.FILL

// = VEINS AND PATCHES

DOV = DISS. OVEINS/FRACTURE FILL

STRUCTURE ID:


CV = CALCITE VEIN QV = QUARTZ VEIN

MV = MAGNETITE VEIN FL = FAULT

IC = INTRUSIVE CONTACT

DRILL HOLE SUMMARY

FROM TO LITHOLOGY Cu%

SI.	RI	IC	TUI	DRII RF	LL F	IOLE	DI Al	H94 TER	_A1	1 [[]N			CHALC	×			SSA	YS		PAGE	3
STRUCTURE ID	ANGLE TO CORE	STRUCTURE ID	ANGLE TO CORE	% CALCITE	% BIOTITE	% K-SPAR	% CHLORITE	TER Z EPIDOTE	ALT. FACIES	% MAGNETITE	PYRITE HABIT	% PYRITE	DPYRITE HABIT	% CHALCOPYRITE	FROM	16	SSAMPLE NUMBER	LENGTH F+/10	Copper %	GOLD 9/t	- 0.0
															0.00	10.00		10			
											DDD		D		10.00	20.00		10	0.050	0.026	
													000000		20.00	30.00	4	10	0.040	0.240	
											D		D		30.00	40.00		10	0.090	0.041	
IC .	45				10.0	20.0		5.0		10.0	D	0.0	0000	0.1	40.00	50.00		10	0.070	0.051	
											000		0000		50.00	60.00		10	0.100	0.048	- 50.0
											0000		DODD		60.00	72.00		12	0.240	0.107	
											D		0000		72.00	82.00		10	0.310	0.113	
										9	D	54			82.00	92.00		10	0.050	0.013	
FO	20					20.0	5.0	5.0		2.5			D	0.0	92.00	102.0		10	0.050	0.016	
											D		D		102.0	112.0		10	0.170	0.103	100.0
cv	20	EV	25	5.0			20.0	5.0		10.0	DD	0.0	DDDDD	0.0	112.0	122.0		10	0.260	0.160	
											מן		40		122.0	132.0		10	0.290	0.114	
															132.0	142.0		10	0.220	0.011	
						Ė		1 10							142.0	153.0	•	11	0.250	0.009	
								No.	+		<u>D</u>				153.0			10	0.350		150.0
M∨	85	KV	35	1.0		2.5	5.0	1.0		10.0	DDDD	2.5		2.5				10	0.310	0.105	
		1.5.4									D				163.0			10	0.230		

П

П

П

Γ

PAGE 4

FEET 180.0	Ted und	RECOVERY PPT	FROM	0	LITHOLOGY	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKO
230.0	00	1000	153.00	238.00	Lapilli Tuff		VERY BARK GREY	FRAGMEN TAL	VEINED	The enigmatic unit. Coarse fragmental?? Frags are irregular in shape, black Fs porphyry. Set in a grey Fs porphyry. Frags do have the appearance of being altin. Very fine dissem. Py + Cp to 5% in darker areas. Abundant diss. Ep + Cl (after mafics?) and vein and fracture fill Ep. Narrow Mag + Ep vein starts interval. Upper part of interval quite broken. Salmon + Sx vein 194-196ft.
280.0	00	1000	238.00	297.00	Feldspar Porphyry (Unspec.)		MIXED GREY AND	CROWDED PORPHYR Y	SERIATE	Sane unit throughout interval but variable in colour; pink to gray depending upon pervasive K-spar alt'n (?); and variable Fx density and morphology. Almost LH2F in places. Sulphides variable but appear to average about 1% each. Cp enriched zones at contacts.
					0.011					
330.0	00	1000	297.00	383.00	Lapilli Tuff		VERY DARK GREY	FRAGMEN TAL	PORPHYR ITIC	I think this was originally a Volc but top 40 ft of interval resembles an intrusive Bx(?), mostly composed of fine grained black matrix-feldspar porphyry. Approx. 2 ft of intensely mineralized (Cp approx. 15%) rock at upper contact. Ift of FLT gouge at 328ft. Norrow zone 2 ft of weakly mineralized MBx at 344 ft.

					DR	RIL	L H	OLE	DI	H94	_A1	1			CHA							PAGE	5
STRUCTURE ID	CEANGLE TO COR	20	C STRUCTURE II	LANGLE TO CORE	RE . CALCUIT	e carcino	% BIOTITE	% K-SPAR	A % CHLORITE	TER	A ALT. FACIES	IO % MAGNETITE	PYRITE HABIT	% PYRITE	LCOPYRITE HABIT	% CHALCOPYRITE	FROM	Α 10	SSAMPLE NUMBER	CENGTH F t/10	Copper %	GOLD 9/t	
	m	T	7	m		-		70			Г	I	Tito	П	TD		173.0	183.0		10	0.230	0.060	- 180.0
			d	OFF A									D		D		183.0	192.0		09	0.230	0.044	
			T)	10-0		A		15/1	MI				D		D		192.0	197.0		05	0.710	0.280	
			Ţ						10. 211	-			0000000		DD		197.0	207.0		10	0.170	0.065	-
4 V	85	5 1	ΚV	35	1.0			2.5	5.0	1.0		10.0	DDD	2.5	D	2.5	207.0	217.0		10	0.130	0.045	an de
													DDD		DOD		217.0	227.0		10	0.220	0.044	
								Die	100				D		D		227.0	238.0		11	0.190	0.055	— 230.0
						1 (20)		I S	10			T	000		000		238.0	248.0		10	0.160	0.050	
													DDD		DDD		248.0	258.0		10	0.300	0.086	
							200						D		D		258.0	268.0		10	0.170	0.074	
EV	8	0	IC	30	1.0		20.0	20.0	5.0	10.0		5.0	D		DDDD		268.0	278.0		10	0.640	0.180	
													DODO		D		278.0	288.0		10	0.330	0.117	— 280.0
													0		D)	288.0	295.0		07	0.330	0.117	-
	+		_		1	-		-		-	╁	+	0=	V	0=	M	295.0	300.0		05	0.990	0.360	-
												b	D=	V V	D= D=	: V : V	300.0	310.0		10	0.070	0.036	
													0= 0= 0=	V	D= D= D=	V	310.0	320.0		10	0.130	0.041	
F	/ 7	75	KV	25	1.	0		10.0		10.0		10.0	D= D=	V V ₁₀	D= D=	=V =V _{1.0}	320.0	330.0		10	0.220	0.095	330.
,		*				100				238			0:	V	0:	=V] =V]	330.0	340.0		10	0.140	0.081	550.
													D:	-V -V	0:	=V =V	340.0	350.0		10	0.150	0.063	
													0		0	=V =V =\/	350.0	360.0		10	0.240	0.130	

Γ

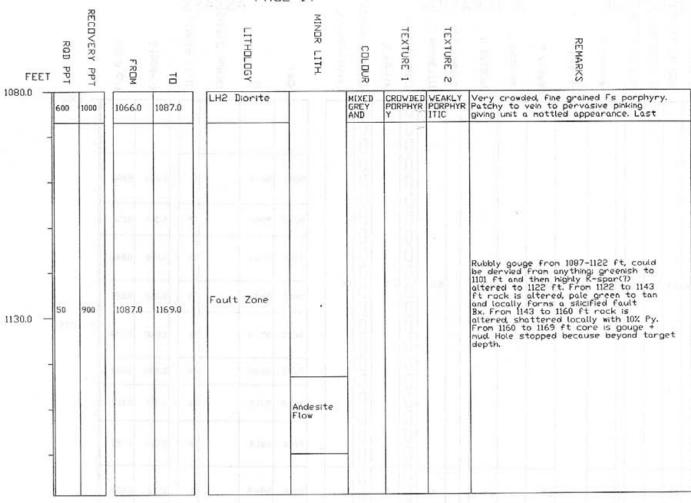
DRILL HOLE: DDH94_A11

		20			PAGI	L HOLE E 6	DDI	1211		
FEE:	RQD PPT	RECOVERY PPT	FROM	10	LITHOLOGY	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
60.0 -	500	1000	297.00	383.00	Lapilli Tuff		VERY DARK GREY	FRAGMEN TAL	PORPHYR ITIC	I think this was originally a Volc but top 40 ft of interval resembles an intrusive Bx(?), mostly composed of fine grained, black matrix-feldspar parphyry. Approx. 2 ft of intensely mineralized (Cp approx. 15%) rock at upper contact. Ift of FLT gouge at 328ft. Narrow zone 2 ft of weakly mineralized MBx at 344 ft.
	150	1000	383.00	399.00	Feldspar Porphyry (Unspec.)	Fault Zone	PALE RED	PORPHYR ITIC	VEINED	Healed, brecciated, re-activated FLTZ intruded by LH2D. Locally sulphide to 10%.
10.0 -	200	1000	399.00	442.00	Andesite Flow		GREY GREEN	WEAKLY PORPHYR ITIC	VEINED	Typical (?) augite porphyry Nicola volcanic. Less magnetite than normal. Strongly hematized and weakly magneitc, chlorite + sulphide vehilets have narrow KF (SF) envelopes and are cared by later calcite.
60.0 -	250	1000	442.00	467.00	LH2 Megacrystic Porphyry		PALE	MASSIVE	ALIGNED PHENDCR YSTS	Classic LH2F. Pink with med. grained pink phenos and aligned megacrystic white phenos. Sparse med. grained diss. Cp. Drusy calcite infills, fractures.
	500	1000	467.00	510.00	Lapilli Tuff	LH2 Diorite	GREY GREEN	FRAGMEN TAL		Not particularly well mineralized for this unit. Strong Ep veining. Grey-green LH2D dykes to 3 ft thickness.
20e0E										
510.0 -	800	1000	510.00	531.00	LHZ Diorite		PALE GREY	PORPHYR ITIC	XENOLIT HS	Crowded Fx porphyry. Light grey but patchy pink matrix. Mafic minerals gone to Cl + Ep xenoliths of LHI.
	800	1000	531.00	549.00	Lapilli Tuff		VERY DARK GREY	FRAGMEN TAL	BRECCIA TED	Fairly typical EU. Fairly well mineralized. Bottom part of interval is a crackle Bx with pink LH2D forming the matrix. 4' of fault gouge with a 2' Mag-Hen-Sx vein on lower margin at 541

						L H	OLE			_A11			CHAL			EI19	C C A	VC		PAGE	7
STRUCTURE ID	CANGLE TO CORE	STRUCTURE ID	TANGLE ID COKE	UF	E % CALCITE	% BIOTITE	% K-SPAR	A " CHLORITE	E % EPIDOTE	A ALT. FACIES	PYRITE HABIT	% PYRITE		% CHALCOPYRITE	FROM	A	SSAMPLE NUMBER	D LENGTH F t/10	Copper %	GDLD 9/t	— 360.0
			I								D=V D=V		0=V 0=V		360.0	370.0		10	0.320	0.121	300.0
EV	75	KV	/ 2!	5	1.0		10.0		10.0	10.0	0=V D=V	1.0	0=V 0=V	1.0	370.0	376.0		06	0.520	0.22.0	
									Q.		D=V N=V D=V		In-V		376.0	383.0		07	0.160	0.069	-
						7					D=V N=V		D=V D=V D=V D=V		383.0	391.0		08	0.480	0.240	
VN	45	CV	7	5	10.0		20.0	2.5			D=V D=V D=V	2.5	D=V D=V	5.0	391.0	399.0		08	1.130	0.460	
											000		D		399.0	409.0		10	0.190	0.062	
													DOD		409.0	419.0		10	0.080	0.020	— 410.0
cv	75	K	V 4	5	10.0		1.0	10.0		2.5	D	1.0	D	1.0	419.0	430.0		11	0.150	0.120	
						13	 17 18				DDDD		DDD		430.0	442.0		15	0.160	0.048	
					701			0.7					D D	1/2	442.0	452.0		10	0.070	0.037	
cv	45	SI	н 4	5	1.0	20.0	20.0	10.0	1.0	5.0	D	0.3	D	0.3	452.0	462.0		10	0.070	0.032	— 460.0
											ĬĎ D		DOD		462.0	469.0		07	0.150	0.130	
											DD		D		469.0	479.0		10	0.200	0.059	
				1				-			D		D		479.0	484.0		05	0.170	0.079	-
EV	45	5 10	2 7	70	2.5		5.0	10.0	10.0	10.0	DOOD		0000	0.3	484.0	499.0		15	0.130	0.055	-
											DDDD		0000		499.0	510.0		11	0.210	0.065	
		+				12									510.0	520.0	÷	10	0.100	0.033	510.0
10	45	5 V	/N	45		31100		10.0	10.0	5.0	DDD		DDDD	0.1	520.0	530.0		10	0.120	0.038	
FT	61	0 E	:v	45	2.5		10.0		5.0	s.o.		2.5	D=1	V	530.0	540.0		10	0.300	0.128	

DRILL HOLE: DDH94_A11
PAGE 8

FEET	RQD PPT	RECOVERY PPT	FROM	70	LITHOLOGY	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
40.0 —	800	1000	531.00	549.00	Lapilli Tuff		VERY DARK GREY	FRAGMEN TAL	BRECCIA TED	Fairly typical EU. Fairly well mineralized. Bottom part of interval is a crackle Bx with pink LHZD forming the matrix. 4' of fault gouge with a 2' Mag-Hem-Sx vein on lower margin at 541
	700	1000	549.00	580.00	LH2 Diorite	Fault Zone Mine Dyke Fault Zone	MIXED GREY AND	CROWBED PORPHYR Y	XENDLIT HS	Variable from bleached gray to strongly 'pinked', Approx. 5% xenoliths of Volc. rock. 10 ft thick mine dyke in lower part of interval. In each nargin of dyke rock is shattered, faulted and locally intensely mineralized over 2-3 ft. Xenolith abundance in lower 4 ft is so great as to form a breccia.
90.0 —	650	1000	580.00	657.00	Andesite Flow		VERY DARK GREY	FINE GRAINED		Interval is cut by numerous faults (602, 611, 619, 629, 638, 645, 654 ft) and dykes to dykelets of LH2 (600-606 ft). 3 ft of 10% Cp 596-599 ft. Otherwise pretty typical E.U. Locally albitic fractures become dense enough to cause a pseudo Bx texture and to classify the albitization as pervasive. Cp is nore visible after splitting.
	400	1000	657.00	684.00	344	Andesite Flow	PALE	MEDIUM GRAINED	EQUIGRA NULAR	Texturally quite variable. Pink-red felspathic matrix (hard to see individual Fx) with 20% mafic phenos (Hbl?) that are a mix of Cl and Ep. Also some 'pure' Ep phenos. Locally abundant 'fresh' biotite. Bi-rich areas have more Sx which occur as coarse blebs. Resembles epidote bearing intrusive in Ingerbelle pit. Approx. 4% apatite.
90.0 –	300	980	684.00	707.00	Diorite (Unspecified)	Lapilli Tuff	DARK GREY	PDRPHYR ITIC	ALIGNED PHENDCR YSTS	Dark grey Fs porphyry. Two types of Fx: white, subround, med. grained and pink, fine grnd, euhedral and aligned. Cut by Icm Py - pink (SF) feldspar veins. Locally well mineralized.
	00	900	707.00	727.00	Fault Zone					Mostly gouge that goes to a powder when dry. Derived from LH2. The 2 SH directions are perpendicular.


					LL F	IOLE						CHA							PAGE	9
STRUCTURE ID	CANGLE TO CORE	STRUCTURE ID	MANGLE TO CORE	RE % CALCITE	% BIOTITE	% K-SPAR	A CHEDRITE	TER " EPIDOTE	Z MAGNETITE ALT. FACIES	PYRITE HABIT	% PYRITE	CHALCOPYRITE HABIT	% CHALCOPYRITE	FROM	A 10	SAMPLE NUMBER	Y LENGTH F+/10	Copper %	GOLD 9/t	 540.0
FT		EV		2.5		10.0		5.0	5.0	D	2.5	0=V D=V	2.5	540.0	549.0		09	0.310	0.150	340.0
										D=V O=V D=V		D=V		549.0	560.0		11	0.540	0.260	
BV	55	DC	10	1.0	20.0	20.0	5.0	2.5	5.0	D=V D=V	2.5	V=0 V=0 V=0 V=0 V=0 V=0	2.5	560.0	565.0		05	1.370	0.910	
15000										D=V		D=V		565.0	575.0		10			
										0=V N=0 V=0		N=N N=0		575.0	580.0		05	1.610	1.650	
										D=V		0=V 0=V		580.0	585.0		05	0.740	0.260	
										0=V		D=V D=V D=V D=V D=V		585.0	595.0		10	0.620	0.290	— 590.0
										D=V		D=V		595.0	600.0	11	05	1.880	0.960	-
										D=A		D=V		600.0	608.0		08	0.390	0.320	
										D=V D=V D=V D=V D=V		D=V		608.0	618.0		10	0.750	0,440	
VN	20	IC	70	5.0		10.0		5.0	10.0	0=V 0=V 0=v		0=\ 0=\ 0=\	1	618.0	628.0		io	0.600	0.380	76
										D=V D=V		D=\ D=\ D=\	1	628.0	638.0		10	0.370	0.250	
										D=V D=V D=V D=V D=V		D=\ O=\ D=\		638.0	648.0		10	0.420	0.270	- 640.0
										D=\ D=\	1	0=\ 0=\	1	648.0	657.0		09	0.260	0.210	_
												, ·		657.0	667.0		10	0.220	0.065	-
CV	25	IC	45	1.0	10.0	20.0	10.0	5.0	2.5		1.0		1.0	667.0	675.0		08	0.110	0.040	}
														675.0	683.0		08	0.350	0.150	1
-	H	H	+	╟	-	-		+	1	D </td <td>1</td> <td>D</td> <td></td> <td>683.0</td> <td>688.0</td> <td></td> <td>05</td> <td>0.310</td> <td>0.126</td> <td></td>	1	D		683.0	688.0		05	0.310	0.126	
61	70		/ 70	2.5	10.0	5.0		5.0	5.0	D </td <td>25</td> <td>04</td> <td>V1.0</td> <td>688.0</td> <td>697.0</td> <td>;</td> <td>• 09</td> <td>0.210</td> <td>0.076</td> <td>- 690.0</td>	25	04	V1.0	688.0	697.0	;	• 09	0.210	0.076	- 690.0
21	//0		7 70	2.5	10.0	3.0		5.0		D </td <td>V] V]</td> <td>04 04 </td> <td>V V</td> <td>697.0</td> <td>707.0</td> <td></td> <td>10</td> <td>0.260</td> <td>0.072</td> <td></td>	V] V]	04 04 	V V	697.0	707.0		10	0.260	0.072	
	76	121	1 45											707.0	717.0		10	0.540	0.690	-
1		101												717.0	727.0		10	0.220	0.160	1

FEET 00.0 —	RQD PPT	RECOVERY PPT	FROM	11	LITHOLOGY	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
	200	970	900.00	981.00	Andesite Flow	Fault Zone Fault Zone	- VERY DARK GREY	FINE GRAINED	MASSIVE	Fine grained, dark grey rock, ever so slightly porphyritic with tiny white Fx's. Grain size suggests Volc as does the mafic phenos but Mag and Wp texture is reminiscent of LHI. Reasonably well mineralized. Bi or black chlorite along some fractures. Oute badly broken with numerous narrow gouge zones; commonly at 70 deg. to CA.
2 2 3	100	900	981.00	992.00	LH1 Diorite	Fault Zone	LIGHT	WEAKLY PORPHYR ITIC	FINE GRAINED	
0.00 -	100	980	992.00	1001.0	Mine Dyke LH3 Monzonite		PALE	PORPHYR ITIC		Post mineral. Pink, apatite bearing albite (?) porphyry with K-spar matrix. Albites + biotite very altered.
	250	1000	1017.0	1033.0	LH2 Diorite		DARK GREY	WEAKLY PORPHYR ITIC	SERIATE	Could be LHI. Very fine grained but distinctly porphyritic with 2 Fx sizes. Plentiful diss. biotite.
*00	350	1000	1033.0	1059.0	Andesite Flow		VERY DARK GREY	FINE GRAINED		Cp assoc. with calcite - hematite veinlets. Locally well mineralized, but otherwise a 'nondescript' unit.
	-		1059.0	1066.0	Mine Dyke				PORPHYR ITIC	
	20			1087.0	LH2 Diorite		MIXED GREY AND	CROWDED PORPHYR Y	WEAKLY PORPHYR ITIC	Very crowded, fine grained Fs porphyry. Patchy to vein to pervasive pinking giving unit a mottled appearance, Last 3 ft are ANDS.

0.7		n i	0	TII			L H								CHAL				022	24		PAGE	13
) STRUCTURE ID	YANGLE TO CORE	O STRUCTORE ID	CTOLICTIES IN	ANGLE TO CORE [RE , carcine	200	% Biotite	% K-SPAR	Z Chlorite	ER % EPIDOTE	- ALT. FACIES L		PYRITE HABIT	% Pyrite	CHALCOPYRITE HABIT	% Chicopyrite	FROM	- T	SSAMPLE NUMBER	LENGTH F+/10	Copper %	GOLD 9/t	− 900.0
							ige Bri	ra-	Tes.			ion.	DDD		DDD								
													D		D		912.0	923.0		11	0.200	0.080	-
													D		D		923.0	930.0		07	0.310	0.130	
													D		DDD		930.0	940.0		10 -	0.150	0.048	
v	50	c	V	70	2.5	5		1.0		2.5		5.0	000	2.5	DDD	1.0	940.0	947.0		07	0.080	0.021	
								E.					D		D		947.0	957.0		10	0.060	0.033	— 950.0
													000		DDDD		957.0	963.0		06	0.230	0.109	-
													D		Ď		963.0	971.0		08	0.410	0.160	-
													0000		D		971.0	981.0		10	0.310	0.105	
cv	45	5			1.0			1.0	10.0	5.0		2.5	10	2.5	Ô	0.1	981.0	992.0		11	0.110	0.036	
											\parallel		n		n		992.0	1001.		09			— 1000.
							10.0	30.0				2.5					1001.	1017.		16	0.110	0.049	-
_	-	-				_					1		ĮĎ.		D	\vdash	1017.	1023.		06		0.038	
ZV	45	5 2	V	5	2.	5	20.0	2.5	5.0	2.5		2.5	D	5.0	DDD	0.3	1023.	1033.		10		0.029	
-		+	-		-		-				╁		D		D=\	1	1033.	1039.		06	0.290	0.156	
	1	5		45		5		1.0	30.0				D </td <td></td> <td>D=1</td> <td></td> <td>1039.</td> <td>1049.</td> <td>. •</td> <td>10</td> <td>0.160</td> <td>0.072</td> <td></td>		D=1		1039.	1049.	. •	10	0.160	0.072	
													0 </td <td></td> <td>D='</td> <td>V V</td> <td>1049.</td> <td>1059.</td> <td></td> <td>10</td> <td>0.050</td> <td>0.013</td> <td>- 1050</td>		D='	V V	1049.	1059.		10	0.050	0.013	- 1050
	•	•				-							D	0.3	n-	\/	1059.	1066.		07			
	.2	2		. 1			40		10.0	2.5			D D	2.5	D		1066.	1077.		11	0.050	0.019	-
									E 17]D				1077.	1087.		10	0.030	0.016	1

П

- [

Princeton Mining Corp. SIMILCO MINES_LIMITED DRILL HOLE LOG PROJECT ID : ALABAMA

HOLE / TRAVERSE ID :DDH94_A12 CORE HOLE SIZE :HQ :94/ 5/ 3 DATE STARTED :94/ 5/ 7 DATE COMPLETED :SJB GEOLOGGED BY PLOT DATE :94/NOV/ 8 PROJECT LEADER

LOCATION

:PMH

COLLAR AZIMUTH :359.82 COLLAR DIP :-44.14 COLLAR ELEVATION :4054.51 :14996.19 COLLAR NORTHING COLLAR EASTING :9245.48 COLLAR OFFSET

COLLAR STATION

TOTAL LENGTH :537.0

MINING DIV .: SIMILKAMEEN NTS: 92H PURPOSE: TEST AREA 400 FT. WEST OF DH94-A11

COMMENTS: SAME LITHOLOGIES AS A11 BUT WEAK MINERALIZATION KEY INTERSECTIONS: FROM 39 PROLIZATION FROM 0.43% CU, 0.23 G/T AU


SURVEY DATA DIP AZIMUTH DEPTH 0 -44.14 359.82

SUMMARY REMARKS

LEGERID ECON. MINERAL: D = DISSEMINATED MV = MICPOVEIN/FPACTEILL // = VEINS AND PATCHES DOVE DISS. - VEIN FEATURE FILL STRUCTURE ID IN = CAUCINE LEG. IN LANGUE OF THE MA EMARKTITE SET.

DRILL HOLE SUMMARY

Cu% FROM TO LITHOLOGY 0.8 0.6 0.4 0.2 ليلتليليا Casing 0.00 46.00 Basalt 112.00 46.00 Rhyolite Mine Dyke 112.00 157.00

					DRIL PAGE	S T HOTE	DDH	94_A12	2	
FEET	ROD PPT	RECOVERY PPT	FROM	10	LITHOLOGY	MINDR LITH.	COLDUR	TEXTURE 1	TEXTURE 2	REMARKS
-			267							
			0.00	46.00	Casing					
				prince for	n na pain		in a		Vig-	
.0 -					PE	P Popular	1			
.0 -								K.		
					D IL					Late basalt dyke. Intense fault at 60-85 degrees.
	300	900	46.00	112.00	Basalt		DARK GREY	FINE GRAINED		*
										region to a section
.0 -										
P.	-									
	-									Rhyolite mine dyke with Fs and Hb phenocrysts, Contacts are not visible.
	400	1000	112.00	157.00	Rhyoute Mine Dyke		LIGHT	MEDIUM GRAINED	PORPHYR ITIC	
0.0 -										· ·
	650	1500	157.00	168 00		1		FINE		Andesite with abou 20% of interval made up of lost horse dykes from .5 to 3' thick at a wide range of orientations. Magnetite veins up to 1' thick. Cp occurs as fine dissiminations and as clusters within the mag. veins.
	250	:::5	;68					· · · · · · · · · · · · · · · · · · ·	PHEPHOE 1115	occurs as fine dissiminations and as clusters within the mag veins. Red-pink slightly porphyritic dionite which is intensly K-spar altered 0.2% Ip as fine grained disseminations and as clusters within veins. More alization increases towards bottom or interval.

Princeton Mining Corp. SIMILCO MINES LIMITED DRILL HOLE LOG PROJECT ID : ALABAMA

HOLE / TRAVERSE ID :DDH94_A12 CORE HOLE SIZE :HQ :94/ 5/ 3 DATE STARTED :94/ 5/ 7 DATE COMPLETED :SJB GEOLOGGED BY :94/NOV/ 8 PLOT DATE :PMH

PROJECT LEADER LOCATION

COLLAR DIP :-44.14 COLLAR ELEVATION :4054.51 COLLAR NORTHING :14996.19 COLLAR EASTING :9245.48 COLLAR OFFSET

COLLAR AZIMUTH

COLLAR STATION

:537.0 TOTAL LENGTH

:359.82

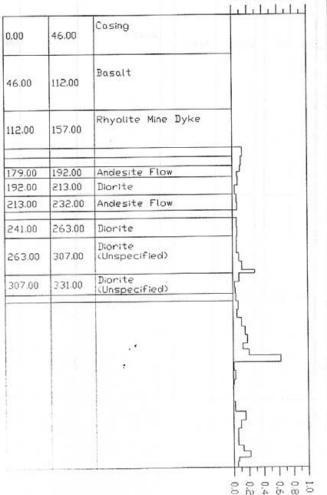
MINING DIV .: SIMILKAMEEN NTS: 92H PURPOSE: TEST AREA 400 FT. WEST OF DH94-A11

COMMENTS: SAME LITHOLOGIES AS A11 BUT WEAK MINERALIZATION KEY INTERSECTIONS: FROM 397 TO 412; 15 FT. OF 0.43% CU, 0.23 G/T AU

SURVEY DATA DEPTH DIP AZIMUTH -44.14 359.82

SUMMARY REMARKS

LEGENT ECON_ MINERAL: D = DISSEMINATED MV = MICPOVEINDERACTFILL // = VEINS AND PATCHES DOV = DISS. & VEINS/FRACTURE FILE


STRUCTURE ID

CV = CALCINE VEIN (0) - 4-72 yelle Mo = MACHETITE VEIN (0) - 44

IC = POTEUSIVE SHOW T

DRILL HOLE SUMMARY

Cu% FROM TO LITHOLOGY 0.6 0.6 0.4 0.2 لطيليليليل Casing 46.00

FEET	ROD PPT	RECOVERY PPT	FROM	10	רוזאטרטפא	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
30.0	750	1000	179.00	192.00	Andesite Flow		GREY GREEN	FINE GRAINED		Fine-grained andesite (possibly a crystal tuff) with epidote and K-Spar veins. 0.5% Cp disseminated and in veins.
	300	1000	192.00	213.00	Diorite (Unspecified)		MARDON AND GRAY	MEDIUM GRAINED	PORPHYR ITIC	Reddish LH2 with K-Spar and epidote veins. 0.1% very fine-grained disseminated Cp.
230.0	500	1000	213.00	232.00	Andesite Flow		GREY GREEN	FINE GRAINED	PORPHYR'	Speckled augite phyric andesite with 15% reddish Lost Horse intrusive as dykes up to 3 feet thick. 0.2% Cp.
230.0	00	500	232.00	241.00	Basalt		PALE GREEN	CONVERT ED TO FAULT		Clay-rich, (fault gouge) basalt dyke.
	00	500	241.00	263.00	Diorite (Unspecified)		MEDIUM RED	MEDIUM GRAINED	PORPHYR ITIC	Strongly shattered and intensly altered LH2 with local magnetite veins and hematite-calcite lenses. 0.1% Cp.
280.0 —	700	1000	263.00	307.00	Diorite (Unspecified)		MEDIUM RED	MEDIUM GRAINED	PORPHYR ITIC	Weakly potassically altered, porphyritic diorite with a trace of Cp.
	400	700	307.00	331.00	Dionite (Unspecified)		LIGHT GPEEN	MEDIUM GRAINED	FDEFH1 F	Broken and moderately sericitically aftered porphyritic diarite. Runs along a fault zone (??).
330.0 -		1000	331.00	340.00	Diorite (Unspecified)		GPEEN AND MAPOO!	GRAINED	PERFORE	Forphyrytic diorite which grades from strong to weak sericite-potassic niteration down the interval.

S	ΓD	HC	TH		LL F	HOLE		H94 TER		2	SIACE	CHAL				222	24.		PAGE	5
) STRUCTURE ID	LANGLE TO CORE	STRUCTURE ID	ANGLE TO CORE	R % CALCITE	% BIOTITE	% K-SPAR	Z CHLORITE	Z EPIDOTE	ALT. FACIES	% MAGNETITE	Φ.	DPYRITE HABIT	CHALCOPYRITE	FROM	10	SSAMPLE NUMBER	LENGTH Ft/10	Copper %	GOL⊅ 9/t	- 180.0
FV		KV				2.5		1.0			D=V D=V _{1.0}	D='	V 0.3	179.0	186.0		07	0.100	0.044	180.0
Ĺ	50										D=V	0=	V	186.0	192.0		06	0.060	0.027	-
											D	DDD		192.0	202.0		10	0.070	0.028	
ΚV	50	EV	50	2.5		10.0			w	1.0	D 0.1	D		202.0	213.0		11	0.030	0.008	
											0=V 0=V	0= 0=	V	213.0	223.0		10	0.050	0.025	-
KV	10	EV	45	2.5		5.0		2.5	M	0.1	D=V =V _N=V) D= D=	V 0.3	223.0	232.0		09	0.060	0.026	- 230.0
FT														232.0	241.0		09			
											V=0 V=0 V=0	0= 0= 0=	V V V _{0.1}	241.0	252.0		11	0.050	0.014	
MV	70			1.0		20.0			I	1.0	D=V D=V	D=	V I	252.0	263.0		11	0.060	0.011	-
											D=V D=V D=V	n- 0= 0= 0=	V I	263.0	273.0		10	0.050	0.023	-
											0=V 0=V 0=V 0=V e.s	0= 0= 0=	V	273.0	283.0		10	0.050	0.030	- 280.0
MV	70			1.0		2.5		2.5	W		D=V =V D=V	5 D= D= D=	0.0 V	283.0	293.0		10	0.080	0.037	
											D=V	D=	·V I	293.0	303.0		10	0.120	0.057	_
											D=V	D=	V	303.0	307.0		04	0.290	0.109	
											0=V D=V			307.0	317.0		10	0.080	0.020	-
FT						1.0					D=V D=V	, [0.0	317.0	324.0		07	0.020	0.018	-
											0=V 0=V			324.0	331.0	•	07	0.030	0.006	330.0
KV	20			2.5		5.0			\ \		D ou		0.0	331.0	340.0		09	0.040		
														340.0	350.0		10	0.070		
														350.0	360.0		10	0.050		

	DRILL H						CHAL			^	C C A	VC		PAGE	7
CANGLE TO CORE CRANGLE TO CORE CRANGLE TO CORE CONTROLLE TO CORE	X SIDTIFE X BIDTIFE	A % CHLDRITE	CR % EPIDOTE		PYRITE HABIT	% PYRITE	COPYRITE HABIT	% CHALCOPYRITE	FROM	10	SSAMPLE NUMBER	2 LENGTH Ft/10	Copper %	60LD 9/t	— 360.0
									360.0	370.0		10	0.110		
									370.0	380.0		10	0.160		
									380.0	390.0		10	0.190		
									390.0	397.0		07	0.130		
									397.0	404.0		07	0.210		-
									404.0	412.0		08	0.630		410.0
									412.0	422.0		10	0.010		-
									422.0	433.0		11	0.030		-
									433.0	439.0		06	0.010		
									439.0	459.0		20			
				G+3					459.0	471.0	*	12	0.020		— 460.0 -
									471.0	481.0		10	0.160		
									4810	491.0		10	0.100		
									491.0	501.0		10	0.060		
									5010	511.0		10	0.060		510.0
									511.0	519.0		. 07	0.130		
									518.0	525.0		07	0.220		ŀ
									5250	530.0		05	0.076		1
									5200	537.0	L	07	010		

I

Princeton Mining Corp. SIMILCO MINES LIMITED DRILL HOLE LOG

PROJECT ID : ALABAMA

HOLE / TRAVERSE ID :DDH94_A13

CORE HOLE SIZE

:HQ :94/ 6/ 8 DATE STARTED

DATE COMPLETED GEOLOGGED BY

PLOT DATE PROJECT LEADER

LOCATION

:PMH :94/NOV/ 8

:PMH

COLLAR AZIMUTH

:357.94 :-44.00

COLLAR DIP COLLAR ELEVATION :3980.37

COLLAR NORTHING COLLAR EASTING

:15437.56 :10368.58

COLLAR OFFSET

COLLAR STATION

:469.0 TOTAL LENGTH

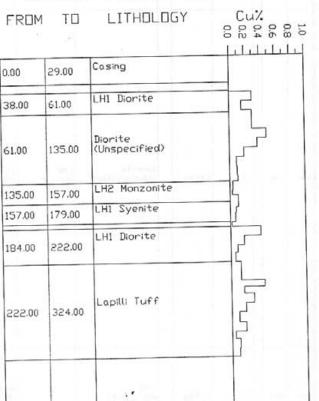
MINING DIV .: SIMILKAMEEN NTS: 92H

PURPOSE: TEST EASTERN EDGE OF MINERALIZATION

COMMENTS: HIGH MAGNETITE MINERALIZATION UNTIL 324 FT. AT

KEY INTERSECTIONS: POINT RELLE SHITS FELS. TYKET. OF 0.30% CU, 0.12 G/T AU FROM 242 TO 246; 24 FT. OF 0.30% CU, 0.07 G/T AU

SURVEY DATA AZIMUTH DIP DEPTH 357.94 0 -44.00


SUMMARY REMARKS

An interesting hole. Difficult to tell if the upper part of the hole is LHID or LLTF due to intense Mag stockworking. What I originally thought was a psuedo Bx caused by stockworking. I now think is in fact lapilli tuff. This is a more logical fit with style of mineralization locally. with style of mineralization. Locally mineralization is strong but overall the grades will probably turn out fair to middling. However, a good possibility of reasonable grade right at surface. The realatively steep angles of Mag veins to core suggest an E-W strike with a steep southerly dip or a moderate dip (45 deg.) and a NW or NE trend. The 45 deg. intrusive contacts suggest E-W striking vertical days with style of mineralization. Locally

LEGEND

SIDN MIMEPAL I = II SEMINATED MV = MICROVEIN/FRACT.FILL .EIT AMM PATCHES THE STATE OF THE FILL

DRILL HOLE SUMMARY

Mine Dyke

111111

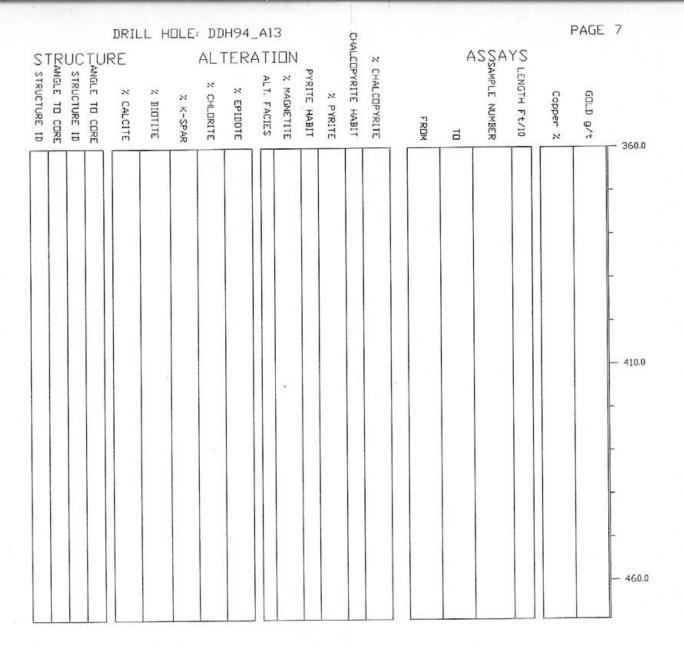
0.6

324.00 469.00

DRILL HOLE: DDH94_A13 PAGE 2

FEET	RQD PPT	RECOVERY PPT	FROM	10	LITHOLOGY	MINDR LITH.	COLDUR	TEXTURE 1	TEXTURE 2	REMARKS
-			0.00	29.00	Casing				8	Charles and the second
			29.00	38.00	Overburden	64 (1 (846) 83 (244) 841 (346)		Tan		Fragments of TPG in clay rich till.
0.0 —	. 00	700	38.00	61.00	LH1 Diorite		LIGHT GREY	FINE GRAINED		Very broken, partially oxidized. Some exotic fragments; possible fallen in from above. Based on similarity to next interval, this interval is probably bedrock.
-			AMY			190				nist ryping
-					- 100 mm 2	and the second				0,00
-00.0 —	950	1000	61.00	135.00	Diorite (Unspecified)	LH2 Diorite	VERY DARK GREY	MOTTLED	VEINED	An unusual rock. Appears to be mostly LH1 but locally resembles LH2 (some Fx-B) porphyry LH2 'veins'). Rock is strongly pervasively Mag and chlorite or biotite altered and cut by an intense stockwork of magnetite (+/- Sx) veins, commonly with K-spar envelopes and epidote (+/- Sx's) veins. Vein angles are dominantly 70 degrees but range to 45 deg. In places, rock is a Bx or psuedo Bx - but not the classic MBx. 1-2% v.fine grnd Cp. At least part
										THE STATE OF THE S
50.0 —	800	1000	135.00	157.00	LH2 Monzonite		MIXED GREY AND	FINE GRAINED	CROVDED PORPHYR Y	Grey pink, fine grained, 2-size, crawded feldspar parphyry; Fine, fresh dissem, biotite, natrix is pink, Fs phenos are white. All mafics other than Bi are gone to chlorite (+/- Ep +/- Ms?). Rare dissem, and vein form pyrite.
	650	1000	157.00	179.00	LH1 Syenite		MEDIUM RED	EQUIGRA NULAR		Rock is superficially and Ep perphyrasyente. Pink to brack rod natrice Active Pyx. Chi. Mag. Bi Ep and anatrice grains. Weekly mineralized Upper cut by numerous magnetice.

DRILL HOLE: DDH94_A13
PAGE 4


FEE		RECOVERY PPT	FROM	01	FILHDERA	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
180.0	400	1000	179.00	184.00	LHS		MIXED GREY	MEGACRY STIC		Fairly typical for megacrystic porphyry. Pinkish matrix and more
	650	950	184.00	222.00	LH1 Diorite	LH2 Fault Zone	DARK	FINE GRAINED	EQUIGRA NULAR	Similar to the 61-135 ft interval, only not as well mineralized, 2.5 ft inclusion of LH2M.
230.0					10 m m			Vi		
280.0	750	1000	222.00	324.00	Lapilli Tuff		DARK GREY	FRAGMEN TAL	WEAKLY PORPHYR ITIC	Bark matrix fragmental with lighter fragments. Still weakly porphyritic (some of the upper intervals logged as LHID may be this unit with fragments obscured by alteration. Med. grained dissen. Py and lesser v.fine grand Cp. 2 narrow intrusive dykes (to 1 ft) in lower half of interval. Fault gouge at 293-294 ft.
						LH2 Syenite				
330.0	-				Vic Dyke		PALE TAN	PORPHYR ITIC		Typical non-banded, pale cream mine dyke with (10% Fs phenocrysts. Hole terminated.

	T 1	01	10	Tit	DF	RIL	L F	IOLE	: DI)H94	_A1	3			CHAL				Δ	422	24.		PAGE	5
3 STRUCTURE ID	באואטרב זים כמאר	Average to cook	STRUCTURE ID	DANGLE TO CORE	K L	N ON CITE	% BIOTITE	% K-SPAR	T % CHLDRITE	% EPIDOTE	ALT. FACIES	MAGNETITE	PYRITE HABIT	% PYRITE	COPYRITE HABIT	CHALCOPYRITE		FROM	A	C)SAMPLE NUMBER	LENGTH Ft/10	Copper %	60LD 9/t	— 180.0
IC	_	_				-	10.0	20.0	5.0	2.5		10.0	D	1.0	D=V	0.1	175	9.0	184.0		05	0.020	0.007	180.0
													D=V D=V D=V		D=/		184	4.0	194.0		10	0.400	0.155	
6					5.0				20.0			20.0	D=V		D=V D=V D=V	0.1	19	4.0	204.0		10	0.180	0.033	-
CV	-	U			3.0	,			20.0				D=V		D=\ D=\	1	20	4.0	212.0		08	0.090	0.009	_
													D=V D=V D=V D=V D=D		D=/		21	2.0	222.0		10	0.060	0.010	_
													DD		D		22	22.0	232.0		10	0.130	0.023	- 230.0
													DDDD		000		23	32.0	242.0		10	0.130	0.021	
													D		D		24	42.0	249.0		07	0.440	0.125	
													D		DDDD		24	49.0	256.0		07	0.170	0.039	
													DDD		DOD		25	56.0	266.0		10	0.300	0.042	_
IC	4	15	MV	40					20.0	2.5		10.0	DDDD	2.5	D	1.0	26	66.0	276.0		10	0.190	0.028	-
											-		DDD		DDD		s	76.0	287.0		11	0.100	0.017	- 280.0
													D		000		2:	87.0	297.0		10	0.190	0.029	
													DDDD			1	2	97.0	305.0		08	0.050	0.006	-
													Ď)	3	05.0	315.0		10	0.110	0.023	_
													0				3	15.0	324.0		09	0.100	0.010	
																								- 330.0
					0.0100.0																			-
															83	10								

Γ

Γ

DRILL HOLE: DDH94_A13 PAGE 6 RECOVERY PPT MINDR LITH. LITHOLOGY TEXTURE 2 RQD PPT REMARKS FROM T 360.0 Typical non-banded, pale cream mine dyke with <10% Fs phenocrysts. Hole terminated. 410.0 PALE PDRPHYR ITIC Mine Dyke 500 1000 324.00 469.00 460.0

Princeton Mining Corp. SIMILCO MINES LIMITED DRILL HOLE LOG PROJECT ID : ALABAMA

HOLE / TRAVERSE ID :DDH94_A14

CORE HOLE SIZE

DATE STARTED

DATE COMPLETED

GEOLOGGED BY PLOT DATE PROJECT LEADER

LOCATION

:HQ :94/ 5/.6 :94/ 5/ 7

:PMH :94/NDV/11

:PMH

COLLAR AZIMUTH

:359.99 :-43.93

COLLAR DIP COLLAR ELEVATION :3986.08

:15585.31 :10319.55

COLLAR EASTING COLLAR OFFSET

COLLAR NORTHING

COLLAR STATION

TOTAL LENGTH

:254.0

:

NTS: 92H

MINING DIV .: SIMILKAMEEN

PURPOSE: TEST MAG-RICH MINERALIZATION NW OF A13

COMMENTS: MODERATE TO WEAK MINERALIZATION. HOLE WAS TERM-

KEY INTERSECTIONS! IN FELSITE 1 PYKE 194; 150 FT. OF 0.20% CU, 0.07 G/T AU INCL 154 TO 184; 30 FT. OF 0.47% CU, 0.10 G/T AU

DEPTH	SURVEY	The state of the s
0	-43.93	359.99

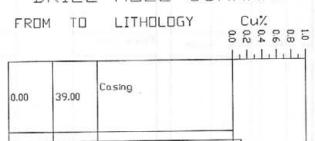
SUMMARY REMARKS

This hole was stepped north and slightly west of DDH94-A13 in order to try and finish the section. Unfortuantely this hole also encountered the dyke at 194' and was terminated. Top of the hole is similar to A13 but not as well mineralized. Both holes contain enough magnetite to cause the problems encountered with compass readings in this area. in this area.

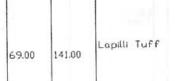
LEGEND

ECON. MINERAL: D = DISSEMINATED MV = MICROVEIN/FRACT.FILL

// = VEINS AND PATCHES D(V= DISS. < VEINS/FRACTURE FILL

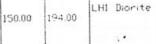

STRUCTURE ID:

CV = CALCITE VEIN QV = QUARTZ \EIN


MV = MAGNETITE VEIN FL = FAUL

IC = INTRUSIVE CONTACT

DRILL HOLE SUMMARY


LH2 Diorite

64.00

44.00

ALL LL - N + 0 0 0

ST	ŖĮ	JC	ŢUI		LL F	IOLE		H94. ГЕР					CHALCO	×		A	SŞA	YS		AGE	3
STRUCTURE ID	ANGLE TO CORE	STRUCTURE ID	NGLE TO CORE	CALCITE	% BIOTITE	% K-SPAR	% CHLORITE	% EPIDOTE	ALT. FACIES	% MAGNETITE	PYRITE HABIT	% PYRITE	PYRITE HABIT	% CHALCOPYRITE	FROM	10	SSAMPLE NUMBER	ENGTH Ft/10	Copper %	GOLD 9/t	0.0
			10.0									712									
								Table													-
									-				DDD		44.00	54.00		10	0.110		- 50.0
IC	40	VZ	1		20.0	10.0	5.0	2.5		10.0		2.5	D	1.0	54.00	64.00		10	0.100		-
Н	20								F		D=\				64.00	74.00		10	0.180		-
											D=\ D=\ D=\	1	0=\ 0=\ 0=\ 0=\		74.00	84.00		10	0.180		
											D=/		0=/ 0=/ 0=/ 0=/ 0=/		84.00	94.00		10	0.180		
											D=\ D=\	M.	D=/	1	94.00	104.0		10	0.080		100.0
sv	70	MV	45	2.5	20.0	5.0		1.0		20.0	[]=\	1.0	[D=	0.3	104.0	114.0		10	0.120		
											D=1	V V	0=1 0=1 0=1	M	114.0	124.0		10	0.170		-
											0= 0= 0=	M	D= D=	V V	124.0	134.0		10	0.130		
											D= D=		D= D=		134.0	144.0		10	0.040		-
IC	\$0									-				1	144.0	154.0 :		10	0.090		150.0
)	154.0	164.0		10	0.650		
M	/ 50	C	45	1.0		20.0	10.0	5.0		5.0)			164.0	174.0		10	0.460		-
															174.0	184.0		10	0.310		1

Ī

Γ

Γ

DRILL HOLE: DDH94_A14
PAGE 4

					PAGE	_ 4				
FEET	ROD PPT	RECOVERY PPT	FROM	70	LITHOLOGY	MINOR LITH.	COLDUR	TEXTURE 1	TEXTURE 2	REMARKS
30.0 —	300	1000	150.00	194.00	LH1 Diorite	Fault Zone	ME DIUM GREY	FINE GRAINED	EQUIGRA NULAR	A speckled, more or less equigranular grey rock. The mottled texture hints at a fragmental past but this could be due to alteration and the abundance of mafic grains (now chlorite and epidote) is suggestive of an LHI texture. However no apatite was observed and
	200	1000	194.00	254.00	Mine Dyke		WHITE			The enemy!!, white massive with rare feldspar grains wrecking havoc on our carefully orchestrated drill program. Foiled again, hole shut down.
30.0 —									211	
				go.						

Princeton Mining Corp. SIMILCO MINES LIMITED DRILL HOLE LOG

ALABAMA PRIJECT ID

HOLE / TRAVERSE ID :DDH94_A15

CORE HOLE SIZE

:HQ :94/ 6/ 7

DATE STARTED DATE COMPLETED

GEOLOGGED BY PLOT DATE

:94/NOV/ 9

PROJECT LEADER

LOCATION

:PMH

:PMH

COLLAR AZIMUTH COLLAR DIP

:0.57 :-46.39

COLLAR ELEVATION :3784.94 COLLAR NORTHING :14281.51 COLLAR EASTING

COLLAR OFFSET

:10619.30

COLLAR STATION

TOTAL LENGTH

:229.0

NTS: 92H

MINING DIV .: SIMILKAMEEN

PURPOSE: TEST SOUTHWARD EXTENSION FROM DH90-A09

COMMENTS: SQEEZING GROUND FORCED ABANDONEMENT OF HOLE

KEY INTERSECTIONS:

FROM 215 TO 229; 14 FT. OF 0.23% CU, 0.09 G/T AU

SURVEY DATA AZIMUTH DEPTH DIP 0 -46.3900.57

SUMMARY REMARKS

Hole was drilled to test southward extension of good grade mineralization interspersed by 1990 holes A-9 and A-15. Although hole was collared on a trench with no dyke, the dyke must dip underneath the trench. The presence of mineralized LLTF in the bottom of the hole warrants another the bottom of the hole warrants another attempt to drill this area. Hole was drilled to test southward extension of good grade mineralization interspersed by 1990 holes A-9 and A-15. Although hole was collared on a trench with no dyke, the dyke must dip underneath the trench. The presence of mineralized LLTF in the bottom of the hole warrants another attempt to drill this area.

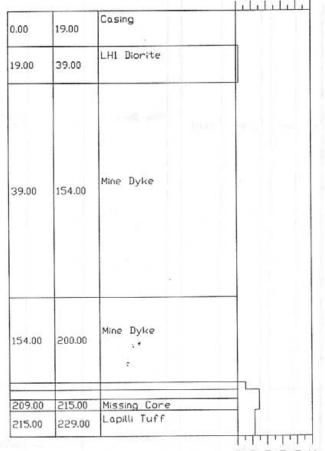
LEGEND

ECON. MINERAL:

D = DISSEMINATED MV = MICROVEIN/FRACT.FILL

= VEINS AND PATCHES

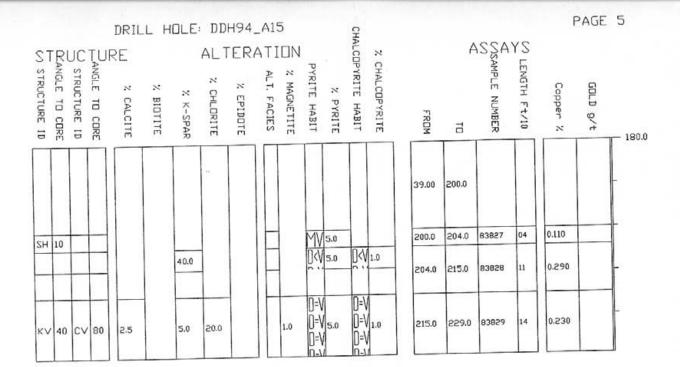
DIVE DISS. < VEINS/FRACTURE FILL


THE THE ID:

A CITE VEIN QV = QUARTZ VEIN WELLINE VEIN FL = FAULT... IVE CENTACT

DRILL HOLE SUMMARY

LITHOLOGY FROM TO


Cu% 0.6

STRUCTURE ID	CHANGLE TO CORE	STRUCTURE ID	HANGLE TO CORE				AL	TER " EPIDOTE	ΑТ	IDN	PYRITE HABIT	% PYRITE	CHALCOPYRITE HABIT	% CHALCOPYRITE	FROM	10	SSAMPLE NUMBER	S LENGTH F+/10		PAGE GDLD 9/t	3
		100										15.	i i		0.00	19.00	, -1				
1.37	10	AV	0			2.5	30.0	5.0		2.5	Don	0.0			19.00	29.00	83830	10	0.030		
	10	l v									Ď				29.00	39.00	83831	10	0.030		
					100 ft																- 50.0
															39.00	200.0					- - - - - - - - - - - - - -

DRILL HOLE: DDH94_A15

					PAL	L 4				
FEET	RQD PPT	RECOVERY PPT	FROM	70	LITHOLOGY	MINDR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
180.0 —	00	700	154.00	200.00	Mine Dyke	Fault Zone Fault	PALE GREEN			Same as above, but with a greenish hue, possibly because most of this interval is sheared. Same as above, but with a greenish hue, possibly because most of this interval is sheared.
			200.00	204.00	Fault Zone			CONVERT ED TO	BRECCIA TED	Clay fault gouge/fault breccia. Mostly derived from mineralized intrusive
	00	1000	204.00	209,00	LH2 Monzonite		PALE	FINE GRAINED		Rock is fine grained and completely pinked, obliterating most primary
		00	209.00	215.00	Missing Core					Triconed through rubble. Triconed through rubble.
	00	550	215.00	229.00	Lapilli Tuff		VERY DARK GREEN	FRAGMEN TAL		Rubbly core but some pieces big enough to recognise fragmental texture. Strongly pyritized; minor chalcopyrite. Weakly veined (Kspar envelopes on sulphide fractures). Rubbly core but some pieces big enough to recognise fragmental texture. Strongly pyritized;

Princeton Mining Corp. SIMILCO MINES LIMITED : ALABAMA PRHJECT

HOLE / TRAVERSE ID :DDH94_A16 CORE HOLE SIZE :HQ

DATE STARTED

DATE COMPLETED

GEOLOGGED BY PLOT DATE

PROJECT LEADER

LOCATION

194/ 6/ 8

:PMH :94/NOV/ 9

:PMH

COLLAR AZIMUTH

:359.86

:-42.80 COLLAR DIP COLLAR ELEVATION :4074.90

COLLAR NORTHING :15257.80 :9239.54 COLLAR EASTING

COLLAR OFFSET

COLLAR STATION

:321.0 TOTAL LENGTH

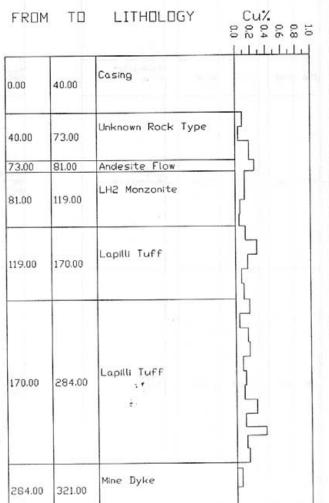
MINING DIV .: SIMILKAMEEN NTS: 92H PURPOSE: TEST NORTHWEST TREND OF MINERALIZATION

COMMENTS: MINERALIZATION PRESENT BUT LOW GRADE. HOLE MAY KEY INTERSECTANTS, BEEN FRAMPED PREMATURELY FY. BASALTS, DYEF, 0.09 G/T AU INCL 240 TO 265; 25 FT. DF 0.26% CU, 0.13 G/T AU

SURVEY DATA DEPTH DIP AZIMUTH -42.80359.86 n

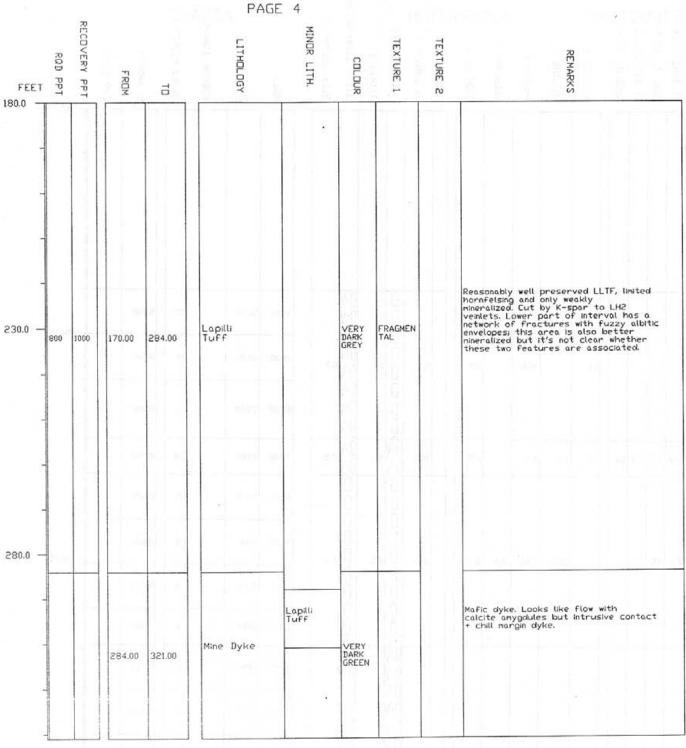
SUMMARY REMARKS

Hole is predominately fragmental volcanic with LH2 intrusive at the top and tertiary basalt dyke at the bottom. The LLTF is weakly mineralized - less than normal - and may indicate that hole is on edge of system. However, the 40 ft hybrid zone at the top of the LLTF is quite well mineralized.


LEGEND

ECON MINERAL: D = DISSEMINATED MV = MICROVEIN/FRACT.FILL * VEINE AND PATCHES I THE PIECE VEINS/FRACTURE FILL

11 14 E III


W. MELEN OV = DUARTZ VEIN
W. MELEN FL = FAULT
WILLIAM TO THE TRANSPORTER OF THE TRANSPORT

DRILL HOLE SUMMARY

TTTTTT

DRILL HOLE: DDH94_A16 PAGE 2 RECOVERY MINUR LITHOLOGY EXTURE EXTURE REMARKS LITH. FROM PPT PPT -LUR FEET O n 0.0 Casing 0.00 40.00 2 boxes of core which were accidently tipped over and therefore core is jumbled. Dxidized to approx. 55 ft. Rock consists of an unusual Hbl (?) porphyry like the Volc. fragments in Pit 3. A fragmental textyure is locally visisble but might be caused by alteration (psuedo Bx) and xenoliths. Dverall the rock has an intrusive character but is both texturally and compositionally variable over the interval. 50.0 MIXED GREY AND PORPHYR Unknown FRAGMEN 150 900 40.00 73.00 Rock Type ITIC TAL Medium grey andesite with equal proportions of fine feldspar and mafic grains. Cut by fine Mag stringers and Kspar + calcite + epidote + biotite + ME DIUM GREY FINE GRAINED EQUIGRA NULAR Andesite 250 1000 73.00 81.00 Flow Fine grained version of the barley porphyry, Weakly mineralized. Intense pink envelopes on epidote veinlets. LH2 MIXED GREY AND WEAKLY PORPHYR ITIC CROWDED PORPHYR 100.0 - 650 1000 81.00 119.00 Monzonite A very unusual alteration/lithology interval. Rock appears to have been a fragmental or breccia (either intrusive or extrusive) with His porphyry, andesite and LHIB (?) Fragments. Rock is cut by numerous veins and patches of K-spar and/or salmon feldspar. From 131-134 ft rock appears to be a well mineralized K-spar + carbonate healed fault Bx which cuts CAxis at 20 deg. Overall quite well mineralized. Lopilli Tuff BRECCIA TED FRAGMEN MIXED 170.00 400 920 119.00 GREY TAL AND 150.0 Peasonably well preserved LLTF, limited isonafetsing and only weakly mineralized. Cut by Krspar to LH2 vehicts. Lower part of interval has a retwork of fractures with fuzzy albitic 800 1000

Princeton Mining Corp. SIMILCO MINES LIMITED AL ABAMA PROJEC

HOLE / TRAVERSE ID :DDH94_A17

CORE HOLE SIZE

:HQ

DATE STARTED

194/6/8

DATE COMPLETED GEOLOGGED BY PLOT DATE

LOCATION

PROJECT LEADER

:PMH

:94/NOV/ 9

:PMH

COLLAR AZIMUTH COLLAR DIP

:359.04 :-45.24

COLLAR ELEVATION :3952.76 :14969.05 COLLAR NORTHING

COLLAR EASTING

:10616.73 1

COLLAR OFFSET COLLAR STATION

:729.0 TOTAL LENGTH

MINING DIV .: SIMILKAMEEN NTS: 92H

PURPOSE: TEST MINERALIZATION NORTH OF DDH94-A15

COMMENTS: STRONG TO MODERATE MINERALIZATION IN UPPER PART KEY INTERSECTIONS, WEAKENS 140 THEON 35 FT. OF 0.25% CU, 0.09 G/T AU INCL 122 TO 260; 138 FT. OF 0.31% CU, 0.12 G/T AU

SURVEY DATA DIP AZIMUTH DEPTH 359.04 -45.240

SUMMARY REMARKS

Drill hole was collared on top of the connector zone and drilled to the north. The core is heavily fractured and oxidized to 134'. Most of the hole is variably altered feldspar porphyry intrusive (LH2) with minor andesite and possibly diorite (LH1). Quite intensly altered overall with minoralization moderate to locally strong mineralization moderate to locally strong in the upper half of the hole and visibly weaker in the lower half. Some very strong magnetite alteration near the top of the

LEGEND

ECON. MINERAL:

D = DISSEMINATED MV = MICROVEIN/FRACT.FILL

// = VEINS AND PATCHES

D(V= DISS. < VEINS/FRACTURE FILL

STRUCTURE ID:

CV = CALCITE VEIN QV = QUARTZ VEIN

MV = MAGNETITE VEIN FL = FAULT

IC = INTRUSIVE CONTACT

DRILL HOLE SUMMARY

Cu% FROM TO LITHOLOGY 0.6 0.6 0.4 0.2

44.00 68.00 Lapilli Tuff 68.00 122.00 LHZ Diorite 134.00 157.00 Andesite Flow 157.00 228.00 LHZ Monzonite 228.00 314.00 (Unspecified)				علىلىلىلى
134.00 157.00 Andesite Flow 157.00 228.00 LH2 Monzonite 228.00 314.00 Diorite (Unspecified) 314.00 346.00 LH1 Diorite 346.00 409.00 LH2 Diorite 409.00 442.00 Mine Dyke 442.00 489.00 LH2 Diorite 489.00 534.00 Anygdaloidal Basalt Dyke 534.00 608.00 LH2 Diorite LH2 Diorite	10.00	44.00	LH2 Diorite	77
134.00 157.00 Andesite Flow 157.00 228.00 LH2 Monzonite 228.00 314.00 Diorite (Unspecified) 314.00 346.00 LH1 Diorite 346.00 409.00 LH2 Diorite 409.00 442.00 Mine Dyke 442.00 489.00 LH2 Diorite 489.00 534.00 Anygdaloidal Basalt Dyke 534.00 608.00 LH2 Diorite LH2 Diorite	44.00	68.00	Lapilli Tuff] {
157.00 228.00 LH2 Monzonite 228.00 314.00 Diorite (Unspecified) 314.00 346.00 LH1 Diorite 346.00 409.00 LH2 Diorite 409.00 442.00 Mine Dyke 442.00 489.00 LH2 Diorite 489.00 534.00 Amygdaloidal Basalt Dyke 534.00 608.00 LH2 Diorite LH2 Diorite	68.00	122.00		
157.00 228.00 Diorite (Unspecified) 314.00 346.00 LH1 Diorite 346.00 409.00 LH2 Diorite 409.00 442.00 Mine Dyke 442.00 489.00 LH2 Diorite 489.00 534.00 Amygdaloidal Basalt 534.00 608.00 LH2 Diorite 608.00 642.00 LH2 Monzonite LH1 Diorite LH1 Dior	134.00	157.00	Andesite Flow	
228.00 314.00 (Unspecified) 314.00 346.00 LH1 Diorite 346.00 409.00 LH2 Diorite 409.00 442.00 Mine Dyke 442.00 489.00 LH2 Diorite 489.00 534.00 Amygdaloidal Basalt 534.00 608.00 LH2 Diorite 608.00 642.00 LH2 Monzonite LH1 Diorite	157.00	228.00	LH2 Monzonite	4
314.00 346.00	228.00	314.00		2
346.00 409.00	314.00	346.00	LH1 Diorite	
442.00 449.00 LH2 Diorite 489.00 534.00 Amygdaloidal Basalt 534.00 608.00 LH2 Diorite 608.00 642.00 LH2 Monzonite LH1 Diorite	346.00	409.00	LH2 Diorite	73
489.00 489.00 Amygdaloidal Basalt 534.00 608.00 LH2 Diorite 608.00 642.00 LH2 Monzonite LH1 Diorite	409.00	442.00	Mine Dyke	
534.00 608.00 LH2 Diorite 608.00 642.00 LH2 Monzonite LH1 Diorite	442.00	489.00	LH2 Diorite	
608.00 642.00 LH2 Monzonite	489.00	534.00	Amygdaloidal Basalt Dyke	
LH1 Diorite	534.00	608.00	LH2 Diorite	[
	608.00	642.00	LH2 Monzonite	
	642.00	707.00	LH1 Diorite	1

DRILL HOLE: DDH94_A17 PAGE 2

FEE1	RQD PPT	RECOVERY PPT	FROM	10	ГІТНОГОВА	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
			0.00	10.00	Casing	6	,			IN LINE INTERIOR IN
	20	900	10.00	44.00	LH2 Diorite		PALE RED	MEDIUM GRAINED	WEAKLY PORPHYR ITIC	'Rubblized' orange-pink diorite. Sulphioles are 75% gone to limonite + malachite. Mag. only partially gone to hematite.
	1 14		1 120	ari s		001 101			1119	Intensely magnetite impregnated rock (+/- Bi and Chl). Moderately well
0.0 -	30	1000	44.00	68.00	Lapilli Tuff	USO F you	BLACK		w15.	Intensely magnetite impregnated rock (+/- Bi and Chl). Moderately well mineralized with fine Cp in fracture vehilets and disseminations. Core is nostly rubble with limonitic +/- nalachite on fracture faces.
	240	850	68.00	122.00	LH2 Diorite	Magnetite Vein	PALE RED			Most of core is rubble. Could be highly altered LHI. Coarse aggregates of mafic minerals give rock a spotted appearance. Locally porphyritic feldspars typical of LH2. Thick Mag + Ep + Kspar + Py + Cp vein from 90 to 95 ft. Rock is still very limonitic.
0.0 -										The second of th
	250	970	122.00	134.00	Andesite Flow		VERY DARK GREY	VEINED	FINE GRAINED	Oute broken and limonitic. 3° of gouge (fault) at bottom of interval marks bottom of oxidation. Intense magnetite veining with or without salmon feldspar envelopes.
50.0	50	960	134.00	157.00	Andesite Flow		MEDIUM GREY	FINE GRAINED		Core is mostly rubble. Could have been a fragmental but too altered to tell. Possible early albitization followed by a pervasive wash of chlorite, magnetite and sulphides.
	100	910	157.00	228.00	LH2 Monzonite	Fault Zore	PACE SED	PDFPHYF		Shattered zone of rubble, mostly Kspar- altered LH2 porphyry but minor volcanic material and fault gouge.

, FEE1	RQD PPT	RECOVERY PPT	FROM	10	LITHOLOGY	MINDR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
180.0	100	910	157.00	228.00	LH2 Monzonite	Andesite Flow	PALE	PDRPHYR ITIC		Shattered zone of rubble, mostly Kspar altered LH2 porphyry but minor volcanic material and fault gouge.
230.0 -	900	1000	228.00	314.00	Diorite (Unspecified	LH2 Diorite	MIXED GREY AND	EQUIGRA NUL AR	VEINED	Unusual rock, not porphyritic but too altered to clearly distinguish between intrusive and volcanic. Patchy to pervosive pinking commonly with abundant black clots of very fine grained biotite or chlorite. Strong dissen. nagnetite + Mag veins, well mineralized.
330.0 -	450	1000	314.00	346.00	LH1 Diorite		GREY GREEN	MEDIUM GRAINED	EQUIGRA NULAR	
	400	1000	346.00	409.00	LH2 Diorite		PALE	PORPHYR ITIC	MEDIUM GRAINED	Quite variable texture. Barley porphyry. Interval may include up to 50% intensely potassic altered LHID.

CI		10	T11	DRI	LL H	HOLE	: DI)H94	_A17	T		CHAL			^	A22	YC	ı	PAGE	5
STRUCTURE ID	YANGLE TO CORE	STRUCTURE ID	ANGLE TO CORE	RE % CALCITE	% BIOTITE	% K-SPAR	T ' CHLORITE	% EPIDOTE	% MAGNETITE ALT. FACIES	PYRITE HABIT	% PYRITE	COPYRITE HABIT	% CHALCOPYRITE	FROM	10	SSAMPLE NUMBER	D LENGTH Ft/10	Copper %	GOLD 9/t	"— 180.0
										D		DD		179.0	189.0			0.060		
							Sur			DDDD		D		189.0	199.0			0.230		
VN	45			2.5		20.0	10.0	1.0	10.0	0000	1.0	0000	0.3	199.0	209.0		4	0.260		
										D		DO		209.0	219.0			0.340		1
										D D D =\		0000		219.0	228.0			0.220		-
										D=\ D=\ D=\	1	D=V D=V D=V		228.0	240.0			0.390		- 230.0
										D=\ D=\		D=V D=V		240.0	250.0			0.230		
										D=\ D=\ D=\ D=\	1	D=V D=V D=V		250.0	260.0			0.450		
sv	45	KV	45	1.0	2.5	20.0	20.0	5.0	10.0	D=\ D=\	2.5	D=\ N=\	2.5	260.0	274.0			0.060		-
										D=/ D=/	1	D=\ D=\ D=\	1	274.0	284.0			0.160		- 280.0
						12.5 14.1 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15	8-			D=\ D=\ D=\	V	D=\ D=\		284.0	294.0			0.170		
										0=\ 0=\	N	D=\ D=\ D=\	A	294.0	304.0			0.120		-
										D=\ D=\	V)	D=\ D=\		304.0	314.0		Ī	0.260		-
										D	1	D		314.0	324.0			0.370		-
M∨	50	ΕV	45	1.0		2.5	10.0	2.5	2.5	000	2.5	DDD	1.0	324.0	334.0			0.410		- 330.0
									l lan	0000		0000		334.0	346.0	1 52 11 72		0.210		-
	4"			2.5	12.5	30.0	5.0	2.5	5.0		2.5		1.0	346.0	356.0			0.290		-
							5	CSTA				D		356.0	366.0			0.200		1

DRILL HOLE: DDH94_A17

FEET 60.0 —	ROD PPT	RECOVERY PPT	FROM	001	PAGE	6 MINDR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
	400	1000	346.00	409.00	LH2 Diorite	9 (6H)	PALE RED	PORPHYR ITIC	MEDIUM GRAINED	Quite variable texture. Barley porphyry. Interval may include up to 50% intensely potassic altered LHID.
	100	900	409.00	442.00	Mine Dyke		LIGHT	WEAKLY PORPHYR ITIC		Both contacts are faulted.
60.0 —	200	1000	442.00	489.00	LH2 Diorite	Amygdaloi dal Basalt	MIXED GREY AND	CROWDED PORPHYR Y		Unusual interval, highly fractured LH2 with 14 ft of nested dyke. Lower part of interval grades into grey LH2 becoming more and more like dark grey LH1, which is cut by albite veins with 1' bleached (albitized envelopes).
10.0 —	950	1000	489.00	534.00	Amygdaloidal Basalt Dyke			FINE GRAINED	AMYGDUL ES	Anygolaloidal (?) basalt dyke.
,	900	1000	534.00	608.00	LH2 Diorite		LIGHT GREY	WEAKLY PORPHYR ITIC	SERIATE	Highly variable interval, appears to be a nix of Int. Fs porphyry rocks with possible volc. and/or LHI inclusions.

2	TP	110	۲.	TII			Н)H94 TER				CHALL	F)			A A	AZZ	YS		PAGE	7
3 STRUCTURE ID	ANGLE TO CORE	O STRUCTURE IN	CIBLICILIDE IN	ANGLE TO CORE	RE % CALCITE	2 500	3111018 %				% MAGNETITE		% PYRITE	CHALCOPYRITE HABIT	CHALCOPYRITE		FROM	10	SSAMPLE NUMBER	LENGTH Ft/10	Copper %	GOLD 9/t	200
Г		T	T									D		D			356.0	366.0			0.200		T 360.0
												DDD		DODD			366.0	377.0			0.200		
AB	45	E	~	25	2.5	2.5	5	30.0	5.0	2.5	5.0	D D D	2.5	DDDD	1.0		377.0	388.0			0.350		-
												DDD		DDD		VIII I	388.0	399.0		i s	0.140		HET .
											1	DDD					399.0	409.0			0.370		— 410.0
																	409.0	443.0					-
											•												-
												DOD		000			443.0	454.0	ah.	71.5	0.140		
A	/ 30	0 0	·V	45	1.0			20.0		2.5	2.5	000000	2.5		0.3		454.0	468.0					— 460.0
												000					468.0	478.0			0.040		
								100				DDD					478.0	488.0			0.040		
ic	40	0															488.0	534.0	e F	•			— 510.0 -
ic	41	0 0	cv	20	5.0	10	0.0	10.0	5.0		2.5		5.0		0.3	3	534.0	544.0			0.130		

FEET 540.0	ROD PPT	RECOVERY PPT	FROM	10	PAGE LITHDLOGY	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
590.0 —	900	1000	534.00	608.00	LH2 Diorite		LIGHT GREY	WEAKLY PORPHYR ITIC	SERIATE	Highly variable interval, appears to be a nix of Int. Fs porphyry rocks with possible volc. and/or LHI inclusions. Predominately fine grained weakly porphyritic rock with abundant f.g. pyrite. Later fx porphyries with white fx in dark grey matrix. A strong IP response is anticipated fron this rock type.
- 640.0 —	700	1000	608.00	642.00	LH2 Monzonite		PALE RED	PORPHYR ITIC		White and pink Fx in a pink natrix. Could be Fine grained version of LH2F.
690.0	760	1000	642.00	707.00	LHI Biorite		MEDIUM GREY	MEDIUM GRAINED	VEINED	Appears equigranular but locally can be nicro porphyry. Cut by Mag +/- Chl +/- Bi +/- Ep stockwork. Locally an intrusive Bx. Patchy pervasive Kspar alteration.
		5900	- 07 6n	721 m	LH2 Megocrystic For phyry		PALE	MAFIC PHENDCR YSTS	ALIGNED PHENDER YSTS	Quite broken. Feldspar phenos to 1'. Veakly mineralized.
				- 1	Mary Dyke		LIGHT GREEN			

0.	T C		т.						H94.					CHAL			^	22A	75		PAGE	9
STRUCTURE ID	YANGLE TO CORE	STRUCTURE ID	LANGLE TO CORE	X CALCITE	, 81011F		% K-SPAR	CHLDRITE	ER % EPIDOTE	T ALT. FACIES	Z MAGNETITE	PYR	% PYRITE	CHALCOPYRITE HABIT	% CHALCOPYRITE	FROM	07	OSAMPLE NUMBER	LENGTH Ft/10	Copper %	GOLD 9/t	540.0
												D		D		534.0	544.0		\Box	0.130		540.0
												000		DO		544.0	554.0			0.060		-
														000000		554.0	564.0			0.040		_
												D		D		564.0	574.0			0.030		
IC	40	CV	50	5.0	10.0	1	10.0	5.0			2.5	Ď	5.0	D	0.3	574.0	582.0			0.040		
												DDD		DDD		582.0	589.0			0.040		
												DDD		000		589.0	599.0			0.160		— 590.0
												DDD		0000		599.0	609.0			0.030		
												D		D		609.0	619.0			0.010		
EV	45			1.0	20.	0	20.0	10.0	5.0		5.0	IU	1.0	DDD	0.0	619.0	630.0			0.030		
												DDD		DDD		630.0	642.0			0.030		640.0
												0=\		D=\ D=\ D=\		642.0	652.0			0.070		040.0
												0=\ 0=\ 0=\	A	D=/ D=/	1	652.0	662.0			0.050		
												D=\ D=\		D=\ D=\		662.0	672.0			0.130		
K	50	M	70	2.5			20.0	20.0	5.0		10.0	D=\ D=\ D=\	2.5	D=' D=' O='	0.1	672.0	0.589			0.060		
												D=/	1	D='	1	682.0	690.0			0.050		
												D=\ D=\	1	D= D=	1	690.0	700.0	:	1	0.070		690.0
												D=1	V]	D=		700.0	707.0			0.040		1
							304	1 011	25		1.0		10		0.1	707.0	721.0			0.010		
-			-						-		+0	Į.	-	Ī		721.0	729.0		+			1

Princeton Mining Corp. SIMILCO MINES LIMITED DRILL HOLE LOG

PROJECT ID : ALABAMA

HOLE / TRAVERSE ID :DDH94_A18 :HQ

CORE HOLE SIZE DATE STARTED

DATE COMPLETED GEOLOGGED BY

PLOT DATE PROJECT LEADER

LOCATION

:94/ 5/15 :94/ 5/15

:PMH

:94/NOV/ 9

:PMH

COLLAR AZIMUTH

:357.78

:8870.68

COLLAR DIP :-46.02 COLLAR ELEVATION :4049.45 COLLAR NORTHING :15253.08

COLLAR EASTING

COLLAR OFFSET 1 COLLAR STATION

TOTAL LENGTH

:81.0

MINING DIV .: SIMILKAMEEN NTS: 92H

PURPOSE: TEST MINERALIZATION ON WEST END OF ZONE

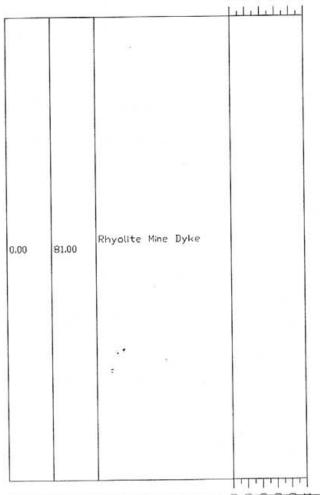
COMMENTS: HOLE COLLARED IN DYKE (SURPRISE!) AND TERMINATED AT 81 FEET.

DEPTH	SURVEY DIP	
0	-46.02	357.78

SUMMARY REMARKS

Hole was located to the east of felsite dyke outcrop and directly to the north of volcanic and/or LHI outcrop. Intersecting dyke in this hole was a surprise and indicates that dykes can have other trends besides north-south, or alternatively, indicates that dykes can pinch and swell indicates that dykes can pinch and swell dramatically.

LEGEND


ECON. MINERAL: D = DISSEMINATED MV = MICROVEIN/FRACT.FILL // = VEINS AND PATCHES DEV= DISS. C VEINS/FRACTURE FILL

CIFLATURE ID:

FIG. - ALCITE VEIN QV = QUARTZ VEIN W. WARRINE VEIN FL = FAULT THE SAME CONTACT

DRILL HOLE SUMMARY

Cu% LITHOLOGY FROM TO 0.8 0.6 0.4 0.2 لتلتليلتانا

0 8 2 4 6 0

Princeton Mining Corp. SIMILCO MINES LIMITED : ALABAMA PROJECT

HOLE / TRAVERSE ID :DDH94_A19

CORE HOLE SIZE DATE STARTED

:94/ 5/24

DATE COMPLETED

GEOLOGGED BY PLOT DATE

PROJECT LEADER

LOCATION

0

:HQ

:SJB

:94/NOV/ 9

:PMH

COLLAR AZIMUTH

:0.08

:

COLLAR DIP :-40.53 COLLAR ELEVATION :4055.05

:15230.50

COLLAR NORTHING COLLAR EASTING

:8968.36

COLLAR OFFSET

COLLAR STATION TOTAL LENGTH

:451.0

MINING DIV .: SIMILKAMEEN NTS: 92H

PURPOSE: TEST MINERALIZATION ON WEST END OF ZONE

COMMENTS: HOLE IS LOCATED JUST NE OF A18. HOLE ENCOUNTERED KEY INTERSECTIONS: MINERALIZATION 360, 186 FT. OF 0.24% EU; 0.07 G/T AU INCL 420 TO 451; 31 FT. OF 0.35% CU, 0.08 G/T AU

SURVEY DATA AZIMUTH DEPTH DIP -40.5380.000

SUMMARY REMARKS

This hole was drilled to test the west margin of the Alabama mineralized area. Despite the presence of diorite both to the north and south of the collar location, the hole started in felsite dyke. The hole is weakly and sporadically mineralized over most of its length, suggesting some potential for ore in this area.

LEGEND

ECON. MINERAL:

D = DISSEMINATED MV = MICROVEIN/FRACT.FILL // = VEINS AND PATCHES

DKV= DISS. < VEINS/FRACTURE FILL

STRUCTURE ID:

CV = CALCITE VEIN OV = QUARTZ VEIN

FL = FAULT MV = MAGNETITE VEIN

IC = INTRUSIVE CONTACT

DRILL HOLE SUMMARY

FROM TO LITHOLOGY

Cu%

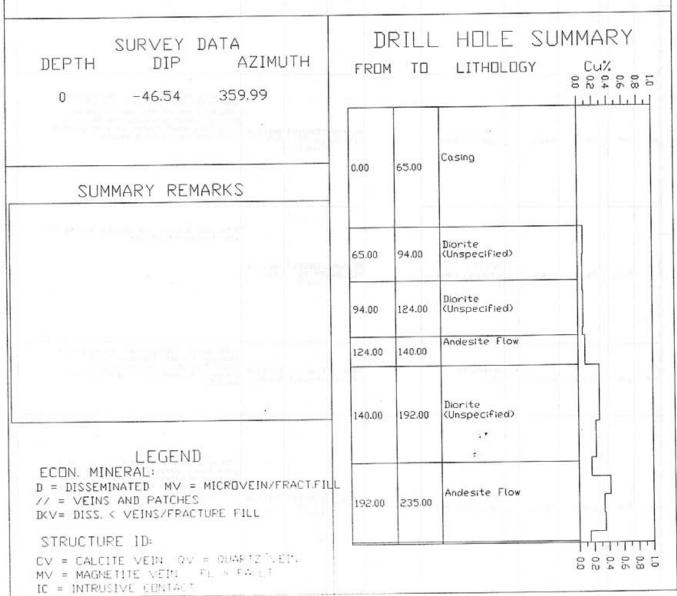
0 0 0 0 0 0

0.00	22.00	Casing	
22.00	49.00	Rhyolite Mine Dyke	
49.00	74.00	Diorite (Unspecified)	
74.00	181.00	LH2 Diorite	
181.00	235.00	Andesite Flow	
243.00	298.00	Andesite Flow	
298.00	330.00	Andesite Flow	
		.5	
330.00	451.00	Diorite (Unspecified)	

Princeton Mining Corp. SIMILCO MINES LIMITED ID : ALABAMA PROJECT

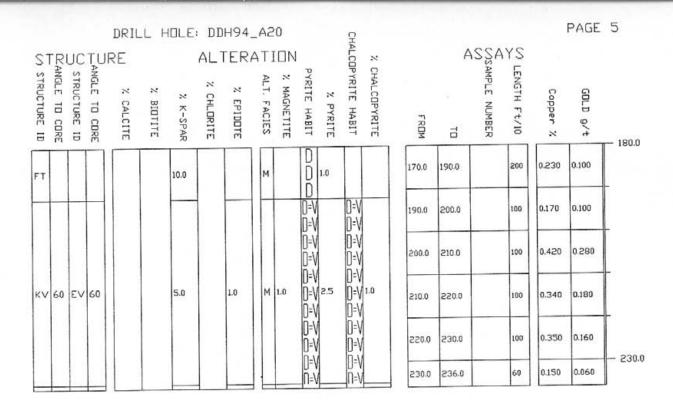
HOLE / TRAVERSE ID :DDH94_A20 CORE HOLE SIZE :HQ :94/ 5/27 DATE STARTED DATE COMPLETED GEOLOGGED BY :94/NDV/11 PLOT DATE

PROJECT LEADER


LOCATION

:PMH

COLLAR AZIMUTH :359.99 COLLAR DIP :-46.54 COLLAR ELEVATION :3785.00 :14290.00 COLLAR NORTHING :10700.00 COLLAR EASTING COLLAR OFFSET COLLAR STATION TOTAL LENGTH :236.0


MINING DIV .: SIMILKAMEEN NTS: 92H PURPOSE: TEST CONNECTOR ZONE MINERALIZATION

COMMENTS: HOLE WAS DRILLED ADJACENT TO DDH94-A15 AND SUF-KEY INTERSECTIONS A SIMILAR FATE ABANDONED IN FAUL JO ZONE, 0.16 G/T AU INCL 200 TO 230; 30 FT. OF 0.37% CU, 0.15 G/T AU

T2	RI	ıc		DRIL			н94 ГER					CHALC	*			SSA	YS		PAGE	3
STRUCTURE ID	ANGLE TO CORE	STRUCTURE ID	ANGLE TO CORE	E % CALCITE	% BIOTITE	% K-SPAR	% EPIDOTE		% MAGNETITE	PYRITE HABIT	Z PYRITE	OPYRITE HABIT	% CHALCOPYRITE	FROM	10	OSAMPLE NUMBER	LENGTH Ft/10	Copper %	GOLD 9/t	⊢ 0.0
		21																		
				-1										0.00	65.00					
																				- - 50.0
							2.5							65.00	80.00	18	150	0.070	0.040	
								<u> </u>		D				80.00	100.0		200	0.060	0.040	
							2.5			D	1.0			100.0	120.0		200	0.070	0.020	100
														120.0	124.0		40	0.060	0.040	1
EΥ	20	cv	20	1.0			1.0			0=' 0=' 0='	V 1.0			124.0	140.0		160	0.090	0.050	-
FT						10.0		M			1.0			140.0	170.0		300	0.280	0.120	— 150 -
)			170.0	190.0		200	0.230	0.100	

FEE	RQD PPT	RECOVERY PPT	FROM	10	PAG	E 4 MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
180.0	00	500	140.00	192.00	Diorite (Unspecified)	Fault Zone	PALE GREY	CONVERT ED TO FAULT	BRECCIA TED	Intensely clay altered white to light grey fault gouge zone. Possibly sone surface weathering as well. IX visible pyrite, no visible Cp. Prinary textures are obliterated.
	100	800	192.00	235.00	Andesite Flow	list.	GRAY AND MARDON		EQUIGRA NULAR	Moderately broken dark green/grey andesite. Cut be numerous K-spar, Ep, Mg. Ca veins. 0.5% Cp associated with K-spar-Ep stringers.
230.0										

Princeton Mining Corp. SIMILCO MINES LIMITED DRILL HOLE LOG PROJECT ID : ALABAMA

HOLE / TRAVERSE ID :DDH94_A21

CORE HOLE SIZE

DATE STARTED

DATE COMPLETED GEOLOGGED BY

PLOT DATE

PROJECT LEADER

LOCATION

:HQ :94/ 5/30

:SJB

:94/NDV/11

:PMH

COLLAR AZIMUTH

:359.02

COLLAR DIP :-45.64 COLLAR ELEVATION :4064.17 COLLAR NORTHING :15482.25

COLLAR EASTING

:8990.26

COLLAR OFFSET

COLLAR STATION

TOTAL LENGTH :195.0

MINING DIV .: SIMILKAMEEN NTS: 92H

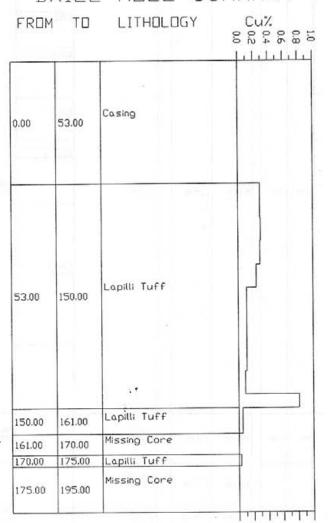
PURPOSE: TEST WEST END OF ZONE; NORTH OF A19

COMMENTS: HOLE WAS COLLARED IN SOLID DUTCROP BUT ROCK QUI-KEY INTERSECTIONS PEGENERATED 53 TH RUBBLE TO FT. EFABANDONED. 0.10 G/T AU

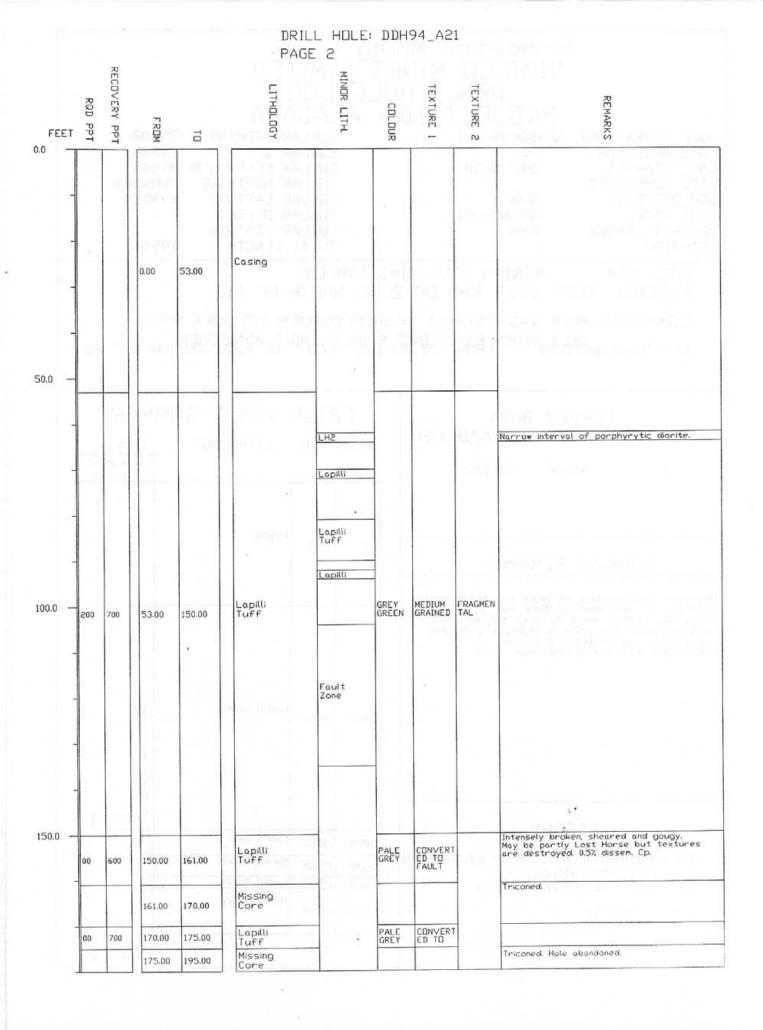
SURVEY DATA DEPTH DIP AZIMUTH -45.64 359.02

SUMMARY REMARKS

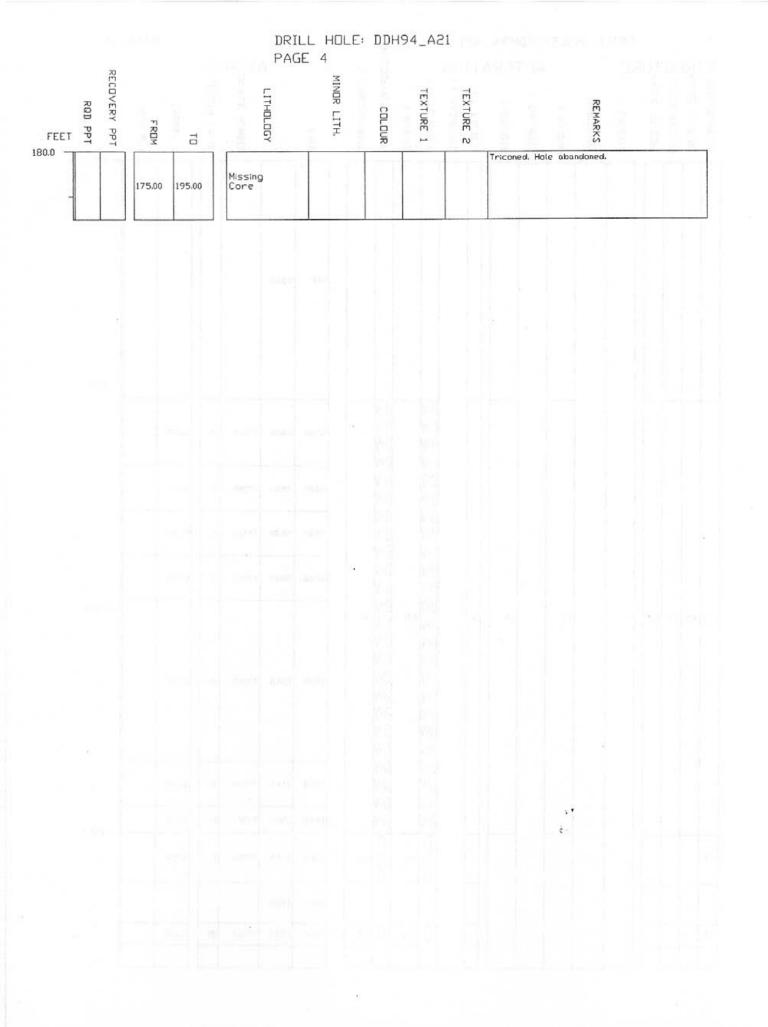
This hole was located to test the Northwest extension of the Alabama zone but was abandoned at 195' when it could not be kept open. Although the rock is highly fractured and gougey the original rock is a moderately well mineralized Lapilli tuff.

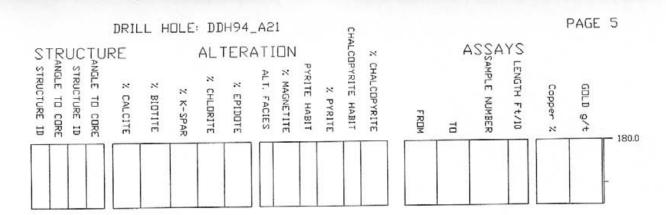

LEGEND

ECON. MINERAL: D = DISSEMINATED MV = MICROVEIN/FRACT.FILL // = VEINS AND PATCHES DOV= DISS. < VEINS/FRACTURE FILL


STRUCTURE ID:

CN = CALCITE VEIN OV = OUAPTZ VEIN
MN = MACHETITE VEIN FL = FAULT
IC = INT= ON F CENTACT


DRILL HOLE SUMMARY



0.6 0.6 0.2 0.0

O STRUCTURE ID	C'ANGLE TO CORE	O STRUCTURE ID	NANGLE TO CORE			TER	N X MAGNETITE		% PYRITE	CHALCOPYRITE HABIT	% CHALCOPYRITE	FROM	6	SSAMPLE NUMBER	S LENGTH Ft/10		AG GDLD 9/t	3
												0.00	53.00					
								D>V D>V D>V		0>V 0>V 0>V		53.00	68.00	77559	15	0.290		— 50.0 —
								D>V D>V D>V D>V D>V D>V D>V		0>V 0>V 0>V 0>V 0>V 0>V 0>V 0>V		78.00 88.00	78.00 88.00 98.00	77561 77562	10	0.300		
EV	40	cv	60		1.0	1.0		D>V D>V D>V D>V D>V		0.V 0.V 0.V 0.V 0.V 0.V 0.V		98.00	134.0	77563	36	0.110		- 100.0
								/<0 /<0 /<0 /<0 /<0 /<0		/<0 /<0 /<0 /<0 /<0 /<0		134.0	1355	77564	10	0.090		
FI								000	2.5	D D D	1.0	150.0	161.0	77566	11	0.050		150.0
F								Ď	2.5	Ď	1.0	161.0		77567	05	0.030		

Princeton Mining Corp. SIMILCO MINES LIMITED HULE LOG DRILL PRIJECT

HOLE / TRAVERSE ID :DDH94_A22

CORE HOLE SIZE :HQ

DATE STARTED

:94/ 5/29

DATE COMPLETED

GEOLOGGED BY PLOT DATE

PROJECT LEADER

LOCATION

:PMH

:SJB

COLLAR AZIMUTH

:355.79

:-45.78 COLLAR DIP COLLAR ELEVATION :3791.05

COLLAR NORTHING

:14406.78 :10774.30

COLLAR EASTING COLLAR OFFSET

COLLAR STATION TOTAL LENGTH

:882.0

MINING DIV .: SIMILKAMEEN HSe :STN

:94/NDV/11

PURPOSE: TEST CONNECTOR ZONE (ADJACENT TO A20)

COMMENTS: THIRD ATTEMPT TO TEST THE SOUTHERN CONNECTOR

KEY INTERSECTIONS: MOD. FROM STRONG MINERALIZATION IN UPPER U.; 0.17 G/T AU

FROM 514 TO 564; 50 FT. OF 0.38% CU, 0.17 G/T AU

SURVEY DATA DEPTH DIP AZIMUTH

-45.78355.79

SUMMARY REMARKS

Highly fractured throughout. Mixed Nicola volcanics and Lost Horse intrusives about 50/50. Some moderate mineralization from 70 to 150' and sparse mag-sulphide veins between 404 and 625' but most intense alteration and mineralization towards bottom of hole.

LEGEND

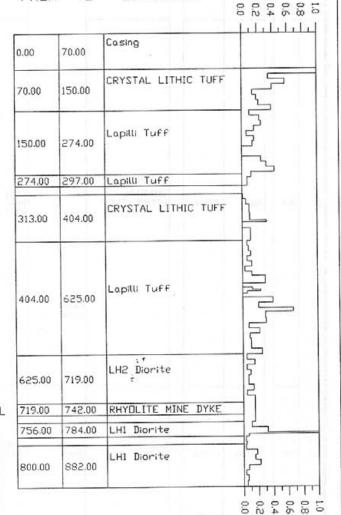
ECON. MINERAL:

D = DISSEMINATED MV = MICROVEIN/FRACT.FILL

// = VEINS AND PATCHES

D<V= DISS. < VEINS/FRACTURE FILL

STRUCTURE ID:


CV = CALCITE VEIN QV = QUARTZ VEIN

MV = MAGNETITE VEIN FL = FAULT

IC = INTRUSIVE CONTACT

DRILL HOLE SUMMARY

FROM TO LITHOLOGY

DRILL HOLE: DDH94_A22
PAGE 4

FEET 180.0 —	ROD PPT	RECOVERY PPT	FROM	TO	PAGE LITHDLOGY	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
230.0 -	100	750	150.00	274.00	Lapilli Tuff	Fault Zone	DARK GREY	FRAGMEN TAL	MOTTLED	Possible Lost Horse 2 dyke, or just coarse grained tuff ??
280.0 -	1000	900	274.00	297.00	Lapilli Tuff		VERY DARK GREY	MEDIUM GRAINED	FRAGMEN TAL	Divious fragmental unit. Strong to weak KF alteration. Moderate pyrite content, trace chalcopyrite. Patchy areas of disseminated magnetite.
	900	1000	297.00	313.00	RHYDLITE MINE DYKE		VHITE	PORPHYR ITIC	FLGW BANDED	Typical Mine Dyke with faulted contacts.
330.0 -	800	1000	313.00	404.00	CRYSTAL LITHIC TUFF '		DARK GREEN	MEDIUM GRAINED	LENSOID BANDED	:f Plain jane, garden variety crystal tuff, Strong thioritic (propylitic ?) alteration with weak patchy KF alteration. Quite pyritic throughout but no Cp observed.

DRILL HOLE: DDH94_A22

		PAG	E 6				
RECOVERY PPT	FROM	רוזאטרטפּא	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
3000			IL LINE				Albitized zone within crystal tuff.
		need.	Basalt		-		Amygdaloidal mafic dyke.
800 1000	313.00 404.00	CRYSTAL LITHIC TUFF		DARK GREEN	MEDIUM GRAINED	LENSOID BANDED	
-							
410.0							
-			Ħ.				
	6						
	98.8	Later 1					
460.0	44	Pak a	LH2 Diorite				A mixed interval of interbedded lapilli
450 900	404.00 625.00	Lapilli Tuff			INTERBE DDED	FRAGMEN TAL	alteration. Upper third of interval is Chi-Fy altered and weakly bleached. Middle third has patchy K-spar veining and is cut by late maric dykes.
-			LH2 Diorite				A mixed interval of interbedded lapilli tuff and crystal tuff with variable alteration. Upper third of interval is Chi-ffy altered and weakly bleached. Middle third has patchy K-spar veining and is cut by late mafic dykes. Magnetite forms veinlets and locally a breccia zone. Lower third of interval is like the upper third with strong Chi-ffy alteration (prop ?). Cp only occurs in association with mag veinlets.
-			Mine Dyke				
-			Magnetite				
510.0	1 1011	lues u	Mine Dyke				c
							N 40 40 10 1
		121					
]				1	

				DRI	LL F	OLE	: DI)H94	_A&	22			단							PAGE	7
S.	TRA	UC S	TU	IRE			AL.	TER	ΑT	ION	٩		ALCOP!	2		Α	AZZ	YS.			
TRUCTURE ID	GLE TO CORE	TRUCTURE ID	GLE TO CORE	IR % CALCITE	% BIOTITE	% K-SPAR	% CHLORITE	% EPIDOTE	ALT. FACIES	% MAGNETITE	YRITE HABIT	% PYRITE	YRITE HABIT	HALCOPYRITE	FROM	10	SSAMPLE NUMBER	NGTH F t/10	Copper %	GOLD 9/t	
			Ĥ								-		Γ		349.0 364.0	364.0	745		0.100		360.0
											00000					368.0		Н	0.320		-
											D				368.0	379.0					_
				2.5		10.0	10.0	2.5		0.0	D	2.5			379.0	389.0			0.110		
										-	DDDDD				389.0	404.0			0.110		
											10				404.0	414.0			0.060		— 410.0
															414.0	424.0			0.080		-
															424.0	434.0			0.110		-
									-						434.0	444.0			0.060		-
															444.0	454.0			0.120		-
															454.0	464.0			0.030		- 460.0
BI	45					10.0	20.0	2,5		2.5		5.0			464.0	472.0			0.120		-
								100							472.0	487.0			0.300		-
															487.0	495.0		12.42			+
															495.0	499.0			0.130		
															499.0 502.0	502.0		+	0.240		+
															506.0	514.0	•		1		- 510.0
															514.0	524.0			0.400		
															524.0	534.0			0.210		-
															534.0	542.0			0.670		

Γ

FEET 540.0 -	ROD PPT	RECOVERY PPT	FROM	01	PAGE	MINDR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	ਕ ਲ ਤ ਤ ਨ ਲ Ø Strongly chloritized zone with patchy
,					95-90 9 1982 1997	Accel Lings Mall Lines Lines Lines				
590.0 -	450	900	404.00	625.00	Lapilli Tuff	Fault		INTERBE DDED	FRAGMEN TAL	
640.0 -				20 S	2 Tab					
	200	900	625.00	719.00	LH2 Diorite	Basalt	MIXED GREY AND	PORPHYR ITIC	:	Highly fractured/faulted interval of patchy, strongly Kf altered Lost Horse 2 Diorite (?). Minor bleaching adjacent to faults. Weakly pyritic throughout but only rare Cp.
690.0 -										ė-

S	ST	RI	JC	ŢU					H94 TER				:*	CHALCE	×		А	AZZ	YS		PAGE	9
STRUCTURE ID	addiction in	ANGLE TO CORE	STRUCTURE ID	ANGLE TO CORE	R % CALCITE	% BIOTITE	% K-SPAR	% CHLORITE	% EPIDOTE	ALT. FACIES [% MAGNETITE	PYRITE HABIT	% PYRITE	PYRITE HABIT	% CHALCOPYRITE	FROM	<u> </u>	OSAMPLE NUMBER	LENGTH Ft/10	Copper ::	COLD 9/t	_Ⅲ — 540.0
																542.0	542.0			0.300		-
																554.0	564.0			0.310		-
																564.0	574.0			0.080		-
B	n	45					10.0	20.0	2.5		2.5		5.0			574.0	584.0			0.220		
	D	10														584.0	594.0			0.090		- 590.0
																594.0	604.0			0.110		-
										1						604.0	614.0			0.110		-
																614.0	625.0			0.250		-
Ī												DDDDD				625.0	635.0			0.050		-
						EE.						D				635.0	645.0			0.150		640.0
												DDDD				645.0	655.0			0.050		-
												DDDD				655.0	665.0			0.100		-
(cv	45	FT	45	5.0		50.0	10.0	5.0			0000	2.5		0.0	665.0	684.0			0.070		-
																684.0	695.0			0.140		- 690.0
																695.0	705.0			0.050		
																705.0	756.0			0.150		

		ALABAMA	ZONE DIAMO	ND DRILLING I	PROGRAM	<u> </u>	
	_		TON	DICTATION	Arriagi evel	DIP	DTH
HOLE-ID				DISTANCE	AZIMUTH	UIF	LENGTH
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	***************************************		ELEV		0.0	-45.0	461
DH94-A23	9650.9	15,662.2	4073.7	0	0.0	-45.0	401
				APAOPSIT			
				PERCENT	nengesit	DRILL	
					PERCENT		
DATE	DATE				CORE	ROD	
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	>0.20 %Ca	RECOVERY	SIZE	
34474	34477	0.21	20			НО	
		***************************************		EQUIVALENT		-	
		ASSAY RESI	JLTS	\$385.00			
				l	US\$/LB		
FROM	70	Cu	Au	Cu equiv.		Notes	
		%	g/t	%			
0	56		ns	ns		ļ	
56	69	0.11	0.05	0.14			
69	79	0.08	0.06	0.11		ļ	
79	89	0.16	0.09	0.21			
89	99	0.21	0.14	0.29			
99	109	0.20	0.14	0.28			
109	119	0.05	0.04	0.07			
119	129	0.10	0.10	0.15			
129	139	0.06	0.09	0.11			
139	149	0.11	0.09	0.16			
149	159	0.08	0.03	0.10			
159	165	0.11	0.06	0.14			
165	265	ns	ns	ns			
265	275	0.05	0.07	0.09			
275	285	0.07	0.03	0.08			
285	295	0.03	0.02	0.04			
295	305	0.08	0.03	0.10			
305	318	0.05	0.05	0.08			
318			0.02	0.12	+		
328		<del></del>	0.15	0.12			
338		<del></del>	0.01	0.04			
348			0.02	0.07			
358			0.13	0.19			
368	<del>+</del>		0.07	0.12		-	
378	<b></b>		0.09	0.13		. •	
388			0.06	0.10		1	
398			0.02	0.04			
408		<u> </u>	0.03	0.10		ļ	
418			0.03	0.08			
			0.03	0.11		4	
428			0.05		-+	-	
438			0.04	0.08			
448	<u> </u>			1			
455	461	0.07	0.03	0.08	EOH		

	<u> </u>	ALABAMA	A ZONE DIAMO	ND DRILLING	PRUGRAM	1	
HOLE-ID	C	OLLAR LOCA	TION	DISTANCE	AZIMUTH	DIP	DTH
	EAST	NORTH	ELEV				LENGTH
DDH94-A24	11091.7	14404.8	3766.0	0	1.3	-46.5	229
				PERCENT			
START	COMP.	GRADE			PERCENT	DRILL	
					CORE	ROD	
UAIL	Drit			>0.20 %Cu		SIZE	
25-May-94	26-May-94	p:::::::::::::::::::::::::::::::::::::	1	,	,	HQ	
				EQUIVALENT	ΓS		
		ASSAY RES	ULTS	\$385.00	US\$/OZ		
				\$1.00	US\$/LB		
FROM	TO	Cu	Au	Cu equiv.		Notes	
		%	g/t	%			
0	148	ns	ns	ns			
148	158	0.33	0.18	0.43			
158	168	0.04	0.01	0.05			
168	178	0.02	0.04	0.04			
178	188	0.02	0.01	0.03			
188	197	0.01	0.02	0.02			
197	. 202	0.77	0.17	0.87			
202	215	0.07	0.04	0.09			
215	226	0.21	0.09	0.26			
226	229	0.46	0.21	0.58			
EOH							
						1	

		ALABAMA	ZONE DIAMO	ND DRILLING	PROGRAM		
						n.	
HOLE-ID		DLLAR LOCA		DISTANCE	AZIMUTH	DIP	DTH
	ç	,	ELEV	_	252.5		LENGTH
DDH94-A25	9675.2	14607.2	3933.6	0	359.5	-44.3	705
				PERCENT	OFOGFALT	DRILL	
START			HOLE		PERCENT	ROD	
DATE	DATE			LENGTH	CORE	SIZE	
	T	>0.20%	>0.20 %Cu	>0.20 %Cu 15	RECOVERS	HQ to 45	1'
26-May-94	30-May-94	0.34	106	15		NQ to EO	
				EQUIVALENT		NG TO LO	
			u ze	\$385.00	,		
		ASSAY RES	ulia		US\$/LB		
	TO		۸	Cu equiv.	OOWILD	Notes	l
FROM	TO	Cu %	Au g/t	%			
0	10	ns	ns ns	ns			
48		0.03	0.01	0.04			
58		0.05	0.03	0.04			
68		0.04	0.03	0.06		<b> </b>	
78		0.07	0.04	0.09			
88		0.05	0.03	0.07			
98		0.01	0.01	0.02			
108		0.05	0.05	0.08			
110		ļ	0.08	0.16			
130		1	0.01	0.03			
140			0.04	0.06			
150		0.05	0.04	0.07			
161		0.03	0.02	0.04			
171		0.03	0.02	0.04			
181		0.01	0.01	0.01			
191	<del></del>	0.01	0.00	0.01		1	
201		1	1	0.10			
211				0.03			
221		·		0.05		1	
231		<u> </u>		0.08			
241				0.04			
251				0.04			
261			ns	ns			
306			0.01	0.01			
316			0.01	0.01			
326				0.09			
336				0.12			
346				0.03	}		
356		<b>_</b>		0.10			
366			<del></del>	0.10		1	
376					1		
386							

### DDH94A25.XLS

		ASSAY RESI	JILTS	DDH94-A25 pag	e 2			
FROM	TO	Си	Au	Cu equiv.		Nates		
		%	g/t	%				
396	406	0.06	0.04	0.08				
406	416	0.17	0.07	0.21				
416	426	0.15	0.06	0.18				
426	436	0.02	0.01	0.03				
436	441	0.14	0.05	0.17				
441	445	0.04	0.02	0.05				
445	451	ns	ns	ns				
451	461	0.05	0.04	0.07				
461	471	0.06	0.04	0.08				
471	481	0.14	0.09	0.19				
481	491	0.21	0.12	0.28				
491	501	0.20	0.13	0.27				
501	511	0.16	0.10	0.22				
511	521	0.19	0.09	0.24				
521	526	1.60	1.32	2.34				
526	535	0.05	0.12	0.11				
535	545	0.24	0.20	0.35				
545	555	0.13	0.08	0.17				
555	565	0.19	0.11	0.25				
565	577	0.02	0.03	0.04				
577	589	0.02	0.01	0.03				
589	599	0.40	0.16	0.49				
599	609	0.30	0.12	0.36				
609	619	0.22	0.11	0.28				
619	629	0.09	0.10	0.14				
629	639	0.14	0.06	0.17				
639	650	0.26	0.08	0.31				
650	663	0.10	0.12	0.17			1	
663	673	0.29	0.07	0.33				
673	683	0.30	0.16	0.39				
683	<del></del>			0.44				
693			0.15	0.23				
703			ns	ns				
EOH								

2 6/28/94

### DDH94A26.XLS

	T	ALABAM	A ZONE DIAMO	OND DRILLING	PROGRAM	1	,	
HOLE-ID		 OLLAR LOCA	TION	DISTANCE	a manakeres			
riger-io			ELEV	DISTANCE	ALMUIN	DIP	DTH	
DDH94-A26	11091.0	p	<b>,</b>	1	252.5	40.0	LENGTH	
DD113+A20	11031.0	14444.0	3700.0	0	359.5	-43.0	229	
				PERCENT	1			
START	COMP.	GRADE	HOLE	HOLE	PERCENT	DRILL		
			LENGTH	LENGTH	CORE	ROD		
			>0.20 %Cu			SIZE		
27-May-94	28-May-94	r	J~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	f~~~~~~~	p~~~~~~	HQ to 75'		
						NQ to EOF	1	
				EQUIVALENT	rs			
		ASSAY RES	ULTS	\$385.00	US\$/OZ			
				\$1.00	US\$/LB			
FROM	TO	Cu	Au	Cu equiv.		Notes	_	
		%	g/t	%				
0	94		ns	ns				
94	104	0.04	0.03	0.06				
104	119	0.61	0.68	0.99				
119	130	0.07	0.09	0.12				
130	142	0.86	0.38	1.07				
142	145	1.24	0.52	1.53				
145	155	0.71	0.27	0.86				
155	165	0.20	0.09	0.25				
165	179	0.18	0.09	0.23				
179	199	1.06	0.17	1.16				
199	213	0.14	0.06	0.18				
213	229	0.10	0.04	0.12				
ЕОН							•	

1

		AL	ABAMA	ZONE DIAMO	ND DRILLING	PROGRAM		
HOLE-ID			R LOCA		DISTANCE	AZIMUTH	DIP	DTH LENGTH
		NOR	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ELEV		252.0	400	T
DDH94-A27	10095.5	1.	4245.7	3778.5	0	358.0	-46.0	554
		 *******			 			
			es e	uaic	PERCENT	PERCENT	DRILL	
	COMP.	GRA			HOLE	CORE	ROD	
DATE	DATE			LENGTH >0.20 %Cu		RECOVERY	SIZE	
04400	24406	possesses	2070 0.15	88	<b>,</b>	1	HQ	
34483	34486	-	0.15		10			
				***	EQUIVALENT	ι ΓS	<del>                                     </del>	
		ASS	AY RES	IIITS	\$385.00			
					<u> </u>	US\$/LB	<u> </u>	
FROM	TO	l 	Cu	Au	Cu equiv.	1	Notes	
	_		%	g/t	%		1	
0	42	ns		ns	ns			
42		<del> </del>	0.07	0.05	0.10			
52	62		0.18	0.12	0.25			
62	72		0.27	0.14	0.35			
72	82		0.16	0.10	0.21			
82	89		0.03	0.02	0.04			
89	99	ns		0.02	0.01			
99	109		0.05	0.02	0.06	<del></del>		
109	119	<u> </u>	0.02		0.02			
119	<del></del>		0.01	0.01	0.01	<del> </del>	ļ	
129	<u> </u>		0.08		0.11			
139		+	0.10		0.13		ļ	
149	<del></del>	+	0.06		0.08	<del></del>	ļ	
159	<u> </u>		0.04	ļ	0.04	<del> </del>	<del> </del>	
168	<u> </u>	+	0.14	·	0.16		<del> </del>	
178			0.05	4	0.05			
188	<del></del>		0.12		0.17			
198	<u> </u>		0.15		0.22		-	
208			0.15	<del></del>	0.21			
218 228			0.12		0.15		<u></u>	
228			0.04		0.03		<del> </del>	
237			0.03		0.05			
251			0.05	·	0.06		+	
261	<del></del>		0.03		0.05			
268	<del></del>		0.41		0.53			i
275		+	0.11		0.19		+	
285			0.14		0.20			
295			0.05	<u> </u>	0.08			
305			0.18		0.25		·	
315			0.25		0.35			
322		-	0.08			erika da eraba araba		

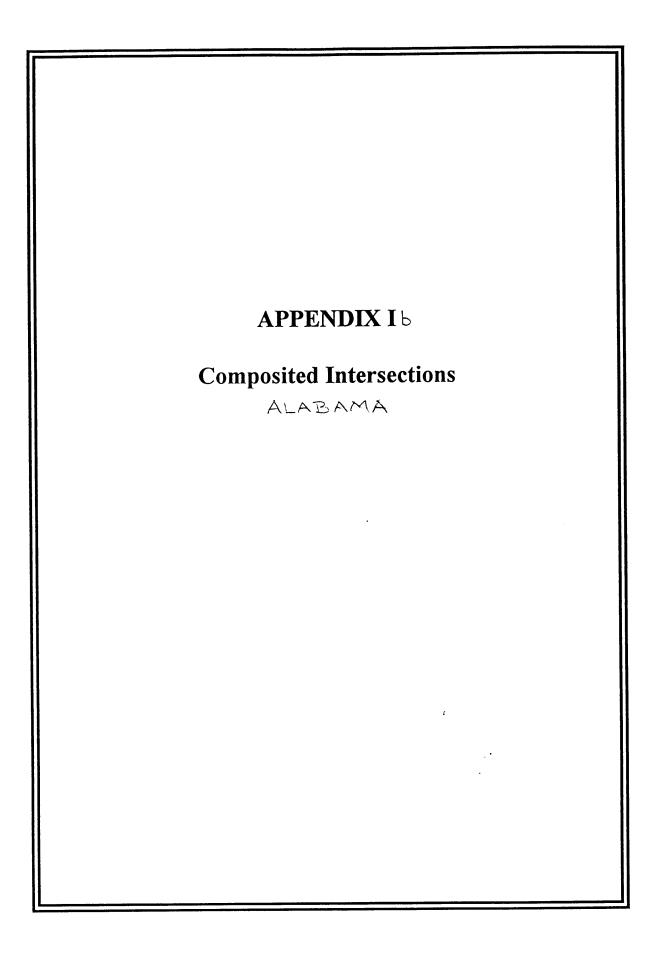
1 6/28/94

### DDH94A27.XLS

		ASSAY RESU	LTS	DDH94-A27 page	e 2
FROM	TO	Cu	Au	Cu aquiv.	Nates
		%	g#t	%	
332	342	0.19	0.16	0.28	
342	352	0.18	0.12	0.25	
352	362	0.07	0.09	0.12	
362	372	0.08	0.06	0.12	
372	382	0.12	0.10	0.17	
382	392	0.10	0.05	0.13	
392	402	0.09	0.06	0.13	
402	412	0.13	0.12	0.20	
412	422	0.14	0.08	0.19	
422	432	0.08	0.15	0.16	
432	442	0.15	0.16	0.24	
442	452	0.03	0.04	0.05	
452	462	0.01	0.06	0.05	
462	472	0.01	0.01	0.02	
472	482	0.19	0.10	0.24	
482	492	0.15	0.11	0.21	
492	499	0.67	0.26	0.82	
499	509	0.12	0.12	0.19	
509	519	0.11	0.06	0.14	
519	529	0.08	0.10	0.13	
529	539	0.11	0.11	0.17	
539	549	0.18	0.10	0.23	
549	554	0.20	0.16	0.29	
eoh					

2 6/28/94

		ALABAMA	ZONE DIAMO	ND DRILLING	PROGRAM	1		
HOLE-ID	C	DLLAR LOCA	TION	DISTANCE	AZIMUTH	DIP	DTH	
	EAST	NORTH	ELEV	1		1	LENGTH	
DDH94-A28	9251.7	14598.8	3898.6	0	0.0	-46.0	732	
				PERCENT				
START	COMP.	GRADE	HOLE	HOLE	PERCENT	DRILL		
DATE	DATE	% Cu	LENGTH	LENGTH	CORE	ROD		
		>0.20%	>0.20 %Cu	>0.20 %Cu	RECOVERY	SIZE		
31-May-94	6-Jun-94	0.28	24	3		но		
				EQUIVALENT	S			
		<b>ASSAY RES</b>	ULTS	\$385.00	US\$/OZ			
				\$1.00	US\$/LB			
FROM	TO	Cu	Au	Cu equiv.		Notes		
		%	g/t	%				
0	73	ns	ns	ns				
73	83	0.04	0.02	0.05				
83	93	0.01	0.01	0.01				
93	128	0.01	0.01	0.02				
128	138	0.09	0.06	0.12				
138	148	0.03	0.26	0.18				
148	158	0.03	0.00	0.03				
158	168	0.02	0.01	0.02				
168	178	0.02	0.01	0.02				
178	188	0.11	0.05	0.14				
188			0.05	0.07				
198	208	0.02	0.02	0.03				
208		ļ	0.00	0.02				
218	ļ	<u> </u>	0.01	0.05				
228			0.03	0.05				
238		<del> </del>	0.16	0.37				
248		1	0.08	0.17		+		
255			ns	ns				1
332		ļ	0.01	0.00			<u>+</u> <del>.</del>	
342		4	0.01	0.01			1	<b>†</b>
349	·		0.02	0.06				
362			0.02	0.04				,
372	·		0.02	0.06			-	-
382		ļ	0.01	0.03		<del></del>	<u>.</u> <u>-</u>	†=
386			0.04	0.09				
396			0.05	0.08		<u> </u>	<u> </u>	<del> </del>
406			0.05	0.07				
			0.00	0.07		-		
416	<del></del>	<del> </del>						
426			0.00	0.01		1		
432	<del></del>		0.02	0.03				1
438			0.00	0.01		<u> </u>		
448	458	0.01	0.00	0.01		1		


### DDH94A28.XLS

	T	ASSAY RES	ULTS	DDH94-A28 pag	e 2
FROM	TO	Сы	Au	Cu equiv.	Notes
		%	g/t	%	
458	468	0.01	0.00	0.01	
468	478	0.00	0.00	0.00	
478	488	0.01	0.00	0.01	
488	498	0.00	0.11	0.06	
498	508	0.01	0.00	0.01	
508	514	0.01	0.00	0.01	
514	528	0.01	0.00	0.01	
528	538	0.01	0.00	0.01	
538	548	0.00	0.00	0.00	
548	558	0.01	0.01	0.01	
558	563	0.01	0.00	0.01	
563	573	0.30	0.14	0.38	
573	583	0.02	0.04	0.04	
583	593	0.02	0.01	0.02	
593	604	0.03	0.01	0.04	
604	608	0.22	0.11	0.28	
608	618	0.02	0.01	0.02	
618	628	0.02	0.01	0.03	
628	638	0.02	0.01	0.02	
638	648	0.01	0.01	0.01	
648	658	0.02	0.14	0.10	
658		0.02	0.00	0.02	
668	678	0.01	0.03	0.03	
678	688	0.02	0.05	0.05	
688		0.00	0.01	0.00	
698	708	0.00	0.00	0.00	
708	718	0.00	0.00	0.00	
718	728	0.00	0.01	0.00	
728	732	ns	ns	ns	
EOH					

2 6/28/94

		ALABAMA	ZONE DIAMO	ND DRILLING	PROGRAM		
HOLE-ID		DLLAR LOCA	TION	DISTANCE	AZIMUTH	DIP	DTH
			ELEV	1			LENGTH
DDH94-A29	10382.8	14276.9	3785.2	0	357.0	-48.0	749
	****************						
				PERCENT			
START	COMP.		HOLE		PERCENT	DRILL	
DATE	DATE	% Cu			CORE	ROD	
	,	>0.20%	>0.20 %Cu	>0.20 %Cu	RECOVERY	SIZE	
1-Jun-94	7-Jun-94	0.49	129	17		HQ to 44	l'
						NQ to eoh	
				EQUIVALENT			
		<b>ASSAY RES</b>	ULTS	\$385.00			
				\$1.00	US\$/LB		
FROM	TO	Cu	Au	Cu equiv.		Notes	
		%	g/t	%			
0	41	ns	ns				
41	45	0.07	0.01	0.07			
45	94	0.65	0.08	0.69			
94	104	0.05	0.10	0.11			
104	117	0.09	0.06	0.13			
117	127	0.04	0.03	0.06			
127	129	1.13	0.88	1.62			
129	139	0.04	0.01	0.05			
139	149	0.03	0.01	0.03			
149	159	0.02	0.02	0.03			
159	169	0.07	0.04	0.09			
169	179	0.01	0.00	0.01			
179	221	0.03	0.02	0.04			
221	229	0.24	0.12	0.30			
229	239	0.30	0.17	0.40			
239	249			0.33			
249				0.41			
259			ļ	0.24			
279		<del></del>		0.12	<del></del>		
289				0.11			
299				0.23			
312				0.34	<del></del>		
315		<del></del>	<u> </u>	0.21			
325				0.16	<del></del>	. •	<del>                                     </del>
338				0.13	4		
349		1		0.11		<del>                                     </del>	
353				0.08	<del>_</del>	<b>†</b>	
363				0.12	4	+	+
373	4	·		0.12	<del></del>		1
			·	0.12		+	
382				0.10	<u> </u>		1
392						ļ	
402	412	0.05	0.03	0.07	<u> </u>		

1		ASSAY RESU	ILTS	DDH94-A29 page	9.2		 
OM	TO	Cu	Au	Cu equiv.	Nate	:S	
		%	g/t	%			
412	423		0.03	0.06			 
423	432		0.02	0.05			
432	441	0.08	0.04	0.10			 
441	451	0.17	0.08	0.21			
451	461	0.09	0.04	0.11			
461	471	0.16	0.09	0.21			
471	480	l	0.11	0.24			 
480	482	3.71	2.15	4.92			 
482	492		0.04	0.10			
492	500	0.03	0.02	0.04			
500	509		0.04	0.07			 
509	518	L	0.05	0.08			 
518	528	0.05	0.04	0.07			 
528	538	0.06	0.06	0.09			 
538	548	0.11	0.04	0.13			
548	558	0.09	0.12	0.15			
558	561	0.10	0.04	0.12			
561	571	0.16	0.03	0.18			
571	581	0.07	0.04	0.09			
581	591	0.04	0.06	0.07			
591	595	0.05	0.11	0.11			
595	600	0.09	0.11	0.15			
600	610	0.21	0.12	0.28			
610	619	0.15	0.13	0.22			
619	629	0.18	0.16	0.27			
629	639	0.13	0.12	0.20			
639	648	0.19	0.18	0.29			
648	655	0.17	0.30	0.34			
655	663		1.68	1.04			
663		1	0.05	0.07			
674	684		0.16	0.12			
684	690		0.65	0.47			
690	696		0.17	0.18			
696	706		0.23	0.25			
706	711		0.21	0.35			
711	721		0.31	0.50			
721	731		0.21	0.47		. •	
731	741		0.11	0.24		-	
741	749		0.08				



### INPUT CONTROL PARAMETRS:

RACE VALUE = .000 SSIGNED VALUE FOR TRACE = .000

MISSING VALUES TREATED AS ZERO

.200 HIGH CUTOFF GRADE = 1000.000 UTOFF GRADE =

GRADE UNITS CONVERSION FACTOR = 1.000

MINIMUM INTERCEPT LENGTH = 20.00

AXIMUM ALLOWABLE INTERNAL WASTE = 20.00

OWNWARD INTERCEPTS CALCULATED (BIASED TOWNARDS CRADE)

INTERCEPT ASSAY DATA WITHIN FILE: AD01

"NTERCEPTS FILED UNDER FLAG: DICU

SSAY DATA WITHIN COLUMN CU1

OF THE ABOVE FILE WILL BE USED

TYNX GEOSYSTEMS INC - RESCAL

INTCPT - PAGE: 1

титн	RSEC	TION		<i>ciradex</i>	INTERSECTION	NID-POIN	
FROM		LENGTH	GRADE	THICKNESS	NORTHING	EASTING	ELEVATION
IROH							
"RILLHOLE:	DDH67 C06						
195.00	215.00	20.00	.280	5.600	14912.01	10579.82	3753.07
DRILLHOLE:	DDH67 C08						
DRILLHOLE:	DDH67_C09						1000 50
18.00	87.00	69.00	.221	15.220	15256.18	9988.21	4032.53
117.00	149.00	32.00	.539	17.250	15296.34	9985.48	3962.82
180.00	245.00	65.00	.387	25.130	15336.00	9982.78	3893.97
275.00	304.50	29.50	.330	9.725	15374.53	9980.15	3827.07
RILLHOLE:	DDH67_C10						2012 10
216.00	236.00	20.00	.330	6.600	15191.23	10268.78	3812.19
450.00	530.00	80.00	.237	19.000	15344.52	10162.24	3625.52
RILLHOLE:	DDH67_C12			•		10000 27	2010 71
60.00	83.00	23.00	.337	7.750	15023.53	10392.37	3919.71
467.00	497.00	30.00	.323	9.700	14814.19	10578.25	3619.49
567.00	647.00	80.00	.690	55.200	14750.43	10634.86	3528.07
RILLHOLE:	DDH88_A10						4044 11
10.00	100.00	90.00	.397	35.700	15307.49	9647.50	4044.11
130.00	194.00	64.00	.355	22.700	15360.99	9701.00	3968.45
RILLHOLE:	DDH88_A11						2070 50
75.00		140.00	.428	59.900	15322.41	10092.35	3970.50
ORILLHOLE:	DDH89_A19						
RILLHOLE:	DDH89_A20					40000 10	2072 20
64.00	138.00	74.00	.291	21.510	15834.34	10302.12	3872.28
306.00	376.00	70.00	.549	38.400	15736,87	10204.65	3675.66
RILLHOLE:	DDH89_A21					0016 05	2020 20
210.00	278.00	68.00	.336	22.820	15675.19	8816.05	3828.38
DRILLHOLE:	DDH89_A22					7000 10	2020 06
359.00	399.00	40.00	.465	18.600	15790.24	7002.49	3829.06

^{390.78.} 

T N T T	ERSEC	ттом		chanz x	INTERSECTION	ON MID-POIN	T LOCATION
FROM	TO	LENGTH	GRADE	THICKNESS	NORTHING	EASTING	ELEVATION
PRILLHOLE:	DDH90 A0		GIGIDE				
100.00	120.00	20.00	.215	4.300	15171.55	9827.36	4007.71
270.00	380.00	110.00		27.000	15322.92	9840.60	3855.72
408.00	525.00	117.00	.291	34.050	15422.54	9849.32	3755.68
DRILLHOLE:	DDH90 A0						
70.00	110.00	40.00	.241	9.640	15611.07	9819.24	3986.50
240.00	312.00	72.00	.269	19.400	15742.13	9821.53	3854.92
DRILLHOLE:	DDH90 A0						
150.00	250.00	100.00	.269	26.900	15571.06	10177.31	3845.01
400.00	425.00	25.00	.448	11.200	15690.61	10156.04	3670.99
_RILLHOLE:	DDH90 A0						
85.00	308.00	223.00	.355	79.200	15195.72	10211.60	3827.85
340.00	400.00	60.00	.480	28.800	15292.46	10189.31	3685.77
430.00	460.00	30.00	.323	9.700	15334.27	10179.68	3624.35
DRILLHOLE:	DDH90 A0						
25.00	360.00	335.00	.264	88.350	15630.46	9671.73	3909.40
RILLHOLE:	DDH90 A0						
112.00	160.00	48.00	.333	15.980	15356.70	10394.79	3866.48
330.00	370.00	40.00	.293	11.700	15478.70	10381.93	3691.21
RILLHOLE:	DDH90 A0						
10.00	120.00	110.00	377	41.480	14825.86	10640.50	3854.72
240.00	460.00	220.00	.369	81.100	14974.47	10709.60	3621.22
RILLHOLE:	DDH90 A0		`				
200.00	230.00	30.00	.477	14.300	14811.92	10914.78	3640.19
290.00	345.00	55.00	.354	19.450	14866.44	10937.23	3556.23
DRILLHOLE:							
100.00	180.00	80.00	.274	21.900 ,	15900.26	9963.39	3906.16
DRILLHOLE:		.1					
50.00	70.00	20.00	.405	8.100	13915.55	10735.12	3533.33
210.00	230.00	20.00	.390	7.800	13980.29	10799.86	3402.28
280.00	360.00	80.00	.235	18.800	14020.76	10840.33	3320.38
DRILLHOLE:		.2					
350.00	400.00	50.00	.452	22.600	14384.36	10885.62	3457.31
RILLHOLE:		.3					
DRILLHOLE:							
190.00	210.00	20.00	.255	5.100	14804.32	10257.23	3735.02
270.00	350.00	80.00	.319	25.500	14843.28	10296.19	3639.75
DRILLHOLE:							
330.00	430.00	100.00	.268	26.800	14824,25	10630.15	3551.26
)RILLHOLE:							
60.00	100.00	40.00	.257	10.300	15423.34	9552.24	3994.66
430.00	460.00	30.00	.320	9.600	15548.21	9552.24	3651.73
ORILLHOLE:					:		
90.00	110.00	20.00	.265	5.300	15574.26	9368.52	3981.02
370.00	400.00	30.00	.240	7.200	15717.04	9368.52	3734.18

T N	RSEC	m T O N		GRADE X	TNTERSECTI	ON MID-POINT	LOCATION
		LENGTH	GRADE	THICKNESS	NORTHING	EASTING	ELEVATION
FROM			GRADE	IIIICIAILDD	MORTHLING		
DRILLHOLE:	DDH94_A01						
DRILLHOLE:	DDH94_A03		215	11.640	15719.97	9300.53	3556.06
690.00	727.00	37.00	.315	10.240	15682.09	9300.53	3516.86
753.00	773.00	20.00	.512	10.240	13002.09	9300.33	3310.00
DRILLHOLE:	DDH94_A04						
"RILLHOLE:	DDH94_A06						
RILLHOLE:	DDH94_A07			4 000	15011 00	10109.31	3945.51
102.00	122.00	20.00	.210	4.200	15011.90	10105.31	3863.60
214.00	234.00	20.00	.310	6.200	15088.25	10103.39	3828.87
261.00	282.00	21.00	.234	4.920	15120.63	-	3806.56
291.00	313.00	22.00	.240	5.280	15141.42	10102.66	3658.47
366.00	643.00	277.00	.396	109.760	15279.45	10095.58	
717.00	763.00	46.00	.259	11.920	15439.97	10087.34	3486.24
.115.00	1161.00	46.00	.243	11.180	15711.27	10073.41	3195.17
DRILLHOLE:	DDH94_A08	3					2722 47
126.00	190.00	64.00	.208	13.280	14535.37	10111.43	3720.47
337.00	360.00	23.00	.224	5.160	14674.25	10116.08	3590.07
794.00	821.00	27.00	.608	16.420	15008.88	10127.27	3275.88
DRILLHOLE:	DDH94 A09	9					
RILLHOLE:	DDH94 A11	L					
60.00	$82.0\overline{0}$	22.00	.272	5.980	15037.35	9693.92	4020.22
112.00	227.00	115.00	.262	30.170	15105.30	9692.97	3948.92
248.00	399.00	151.00	.341	51.480	15211.54	9691.49	3837.44
530.00	747.00	217.00	.455	98.810	15428.85	9688.46	3609.42
845.00	930.00	85.00	.273	23.190	15600.63	9686.06	3429.17
957.00	981.00	24.00	.323	7.760	15656.86	9685.28	3370.18
DRILLHOLE				•			
DRILLHOLE	_						
39.00	99.00	60.00	.320	19.200	15487.14	10366.67	3932.47
242.00	266.00	24.00	.303	7.270	15620.14	10361.95	3803.94
)RILLHOLE:	DDH94 Al						
154.00	184.00	30.00	.473	14.200	15707.21	10319.51	3868.81
ORILLHOLE:	DDH94 A1						
204.00	229.00	25.00	.256	6.410	14430.80	10620.73	3628.18
	DDH94 A1						
DRILLHOLE:	DDH94_A1						
24.00	99.00	75.00	.209	15.650	15011.98	10615.86	3909.17
122.00	260.00	138.00	.313	43.140	15103.22	10614.36	3817.20
304.00	409.00	105.00	.277	29.110	15219 83	10612.44	3699.66
ORILLHOLE:			• 2 , ,				
4.01	-104-00	_ <del>_99.99</del> -	889	88.848	15271.13	8968.42	4020.04
	263.00	89.00	.286	25.450	15396.32	8968.59	3913.11
174.00	360.00	42.00	.288	12.080	15488.03		3834.78
318.00		31.00	.347	10.750	15561.47	8968.81	3772.05
420.00	451.00		. 547	10.750	1330111		
DRILLHOLE:		45.00	.281	12.650	15535.48	8989.42	4010.14
53.00	98.00		.201	12.030	13333.10		
ORILLHOLE:			.374	41.100	14493.93	10768.26	3701.51
70.00	180.00	110.00	.374	10.000	14584.32	10761.54	3608.33
240.00	270.00	30.00		21.160	14788.73	10746.35	3397.62
514.00	584.00	70.00	.302	21.100	14/00.13	10/40.00	
ORILLHOLE:			264	8.450	14551.22	11094.89	3611.39
197.00	229.00	32.00	.264	0.430	14771.66	11074.07	
DRILLHOLE:			500	E 6 700	14551.02	11093.28	3658.86
104.00	199.00 _	95.00	598	56.780	14001.02	11073.20	5555.50
		5438	0,34%				
		•					

.000 RACE VALUE =

.000 ASSIGNED VALUE FOR TRACE =

"ISSING VALUES TREATED AS ZERO

.200 HIGH CUTOFF GRADE = 1000.000 UTOFF GRADE =

GRADE UNITS CONVERSION FACTOR = 1.000

20.00 MINIMUM INTERCEPT LENGTH =

30.00 AXIMUM ALLOWABLE INTERNAL WASTE =

CENTERED" INTERCEPTS CALCULATED (BIASED TOWARDS INTERSECTION LENGTH)
INTERCEPT ASSAY DATA WITHIN FILE: AD01

NTERCEPTS FILED UNDER FLAG: DICO

SSAY DATA WITHIN COLUMN CU1

OF THE ABOVE FILE WILL BE USED

	O- I	RE I	NTÉR	SECTI	ONS	
INTERSI			aladex:		ION MID-POIN	T LOCATION
FROM TO	LENGTH	GRADE	THICKNESS	NORTHING	EASTING	ELEVATION
<b>DD</b>	6B 606					
I ILLHOLE : DDH		.266	9.565	14890.58	10544.17	3797.68
126.00 162			6.000	14911.13	10578.36	3754.90
190.00 215		.240	6.000	14911.13	10370.30	3,3112
CILLHOLE : DDH	67_C08	200	4.000	14803.51	10399.26	3829.63
92.00 112		.200	4.000	14003.31	10377.20	3023100
DRILLHOLE : DDH		001	15 220	15256.18	9988.21	4032.53
	.00 69.00	.221	15.220	15287.62	9986.07	3977.97
87.00 144		.353	20.100	15325.77	9983.47	3911.72
160.00 224		.390	24.980		9981.69	3866.26
234.00 255		.207	4.350	15351.96	9980.15	3827.07
275.00 304		.330	9.725	15374.53	9976.74	3740.25
380.00 400		.220	4.400	15424.54	9976.74	3/40.23
DRILLHOLE : DDH				25225 26	10221 65	3904.83
85.00 105		.215	4.300	15115.16	10321.65	3876.54
125.00 145		.215	4.300,	15138.39	10305.51	
165.00 187	.00 22.00	.210	4.620	15162.19	10288.96	3847.55
216.00 256	.00 40.00	.215	8.600	15197.04	10264.75	3805.12
256.00 296	.00 40.00	.245	9.800	15220.26	10248.61	3776.84
440.00 510	.00 70.00	.236	16.500	15335.82	10168.30	3636.12
DRILLHOLE : DDH	67 C12					
50.00 83	$.0\overline{0}$ 33.00	.265	8.750	15026.08	10390.11	3923.37
	.00 40.00	.205	8.200	14826.93	10566.93	3637.77
	.00 30.00	.230	6.900	14809.09	10582.78	3612.18
	.00 100.00	.582	58.200	14750.43	10634.86	3528.07
	.00 24.00	.209	5.020	14708.61	10671.99	3468.10
DRILLHOLE : DDH					•	
	0.00   120.00	.314	37.700	15309.99	9650.00	4040.57
	.00 74.00	.332	24.600	15358.49	9698.50	3971.99
LRILLHOLE : DDH						
	170.00	.378	64.200	15329.92	10099.86	3959.89
RILLHOLE : DDH					•	
RILLHOLE : DDH						
	65.00	.252	16.350	15844.29	10312.07	3892.35
	37.00	.249	9.200	15823.58	10291.35	3850.57
	5.00 70.00	.443	31.000	15749.05	10216.83	3700.23
		.252	11.850	15725.29	10193.07	3652.31
		. 2.32	11.000	20.20.20		
	189_A21	.334	14.370	15654.80	8816.05	3857.46
	43.00		13.250	15688.68	8816.05	3809.13
	5.00 55.00	.241	13.230	12000.00	0010.00	
	189_A22	250	0.740	15773.28	7002.49	3853.22
_	39.00	.250	9.740	15773.28	7002.49	3816.77
369.00 419	50.00	.284	14.200	13/30.0/	7002.43	3010.

DRILLHOLE:	DDH90_A02						4007 71
100.00	120.00	20.00	.215	4.300	15171.55	9827.36	4007.71
200.00	230.00	30.00	.200	6.000	15245.47	9833.83	3933.48
240.00	260.00	20.00	.220	4.400	15270.12	9835.98	3908.74
270.00	350.00	80.00	.278	22.200	15312.36	9839.68	3866.32
380.00	420.00	40.00	.275	10.980	15375.72	9845.22	3802.69
420.00	480.00	60.00	.354	21.270	15410.92	9848.30	3767.34
DRILLHOLE:	DDH90 A03						
67.00	110.00	43.00	.226	9.700	15610.01	9819.23	3987.56
120.00	148.00	28.00	.203	5.680	15642.07	9819.79	3955.38
190.00	210.00	20.00	.220	4.400	15688.58	9820.59	3908.69
230.00	312.00	82.00	.259	21.200	15738.61	9821.47	3858.46
[ ILLHOLE :	DDH90 A04						
65.00	120.00	55.00	.234	12.870	15510.58	10188.08	3933.05
140.00	160.00	20.00	.200	4.000	15542.93	10182.32	3885.96
160.00	250.00	90.00	.276	24.800	15573.87	10176.81	3840.92
400.00	467.00	67.00	.259	17.324	15702.42	10153.93	3653.79
400.00	407.00	07.00	. 200				

.

:

. • •

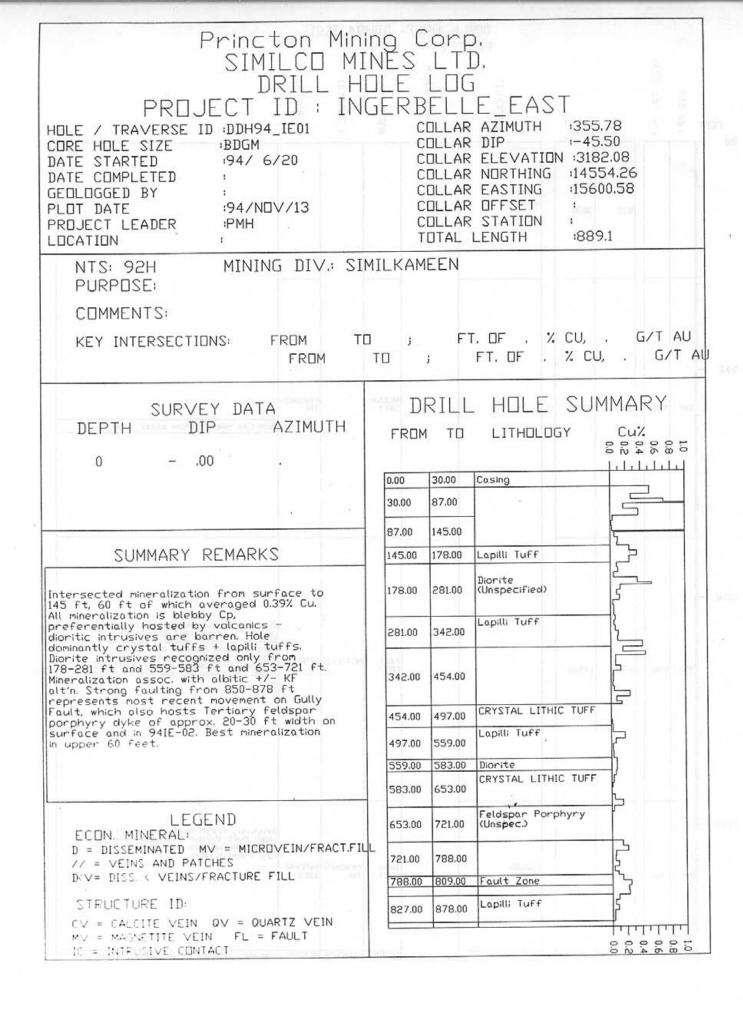
DRILLHOLE: DDH90_A05 INTERSECTION MID POINT LOCATION							
				THICKNESS	NORTHING	EASTING	ELEVATION
FROM	TO	LENGTH	GRADE		15168.39	10217.90	3867.98
85.00	210.00	125.00	.386	48.200	15211.61	10217.94	3804.51
210.00	240.00	30.00	.237	7.100	15241.72	10201.00	3760.29
250.00	308.00	58.00	.402	23.300		10189.18	3684.95
330.00	412.00	82.00	.370	30.300	15293.01	10183.18	3639.91
412.00	440.00	28.00	.205	5.750	15323.68	10179.03	3620.25
140.00	460.00	20.00	.215	4.300	15337.06	101/9.03	3020.23
D. [LLHOLE :						0660 15	4015.91
25.00	100.00	75.00	.221	16.550	15555.94	9669.15	3931.93
100.00	230.00	130.00	.337	43.800	15614.70	9671.18	3862.28
240.00	260.00	20.00	.235	4.700	15663.42	9672.87	
280.00	360.00	80.00	.229	18.300	15703.55	9674.26	3804.93
DRILLHOLE:	DDH90_A						2050 20
112.00	180.00	68.00	.273	18.580	15362.40	10394.18	3858.29
330.00	370.00	40.00	.293	11.700	15478.70	10381.93	3691.21
DRILLHOLE :	DDH90 A	.08					
.00	130.00	130.00	.331	43.080	14825.86	10640.50	3854.72
240.00	410.00	170.00	.418	71.100	14961.43	10703.54	3641.70
420.00	460.00	40.00	.240	9.600	15021.39	10731.42	3547.48
DRILLHOLE :		.09					
200.00	250.00	50.00	.310	15.500	14817.24	10916.97	3632.00
280.00	345.00	65.00	.322	20.950	14863.78	10936.14	3560.32
DRILLHOLE: DDH90 A10							
80.00	110.00	30.00	.207	6.200	15874.39	9963.39	3943.01
110.00	180.00	70.00	.259	18.100	15903.13	9963.39	3902.07
290.00	320.00	30.00	.203	6.100	15995.10	9963.39	3771.05
DRILLHOLE: DDH90 A11							
40.00	80.00	40.00	.262	10.500	13915.55	10735.12	3533.33
100.00	130.00	30.00	.230	6.900	13937.81	10757.38	3488.28
200.00	240.00	40.00	.220	8.800	13980.29	10799.86	3402.28
280.00	360.00	80.00	.235	18.800	14020.76	10840.33	3320.38
D ILLHOLE : DDH90 A12							
320.00	340.00	20.00	.225	4.500	14366.13	10867.39	3494.18
340.00	400.00	60.00	.392	23.500	14382.33	10883.60	3461.41
D ILLHOLE	: DDH90 A		.332	23.300			
DRILLHOLE: DDH90_A13 DRILLHOLE: DDH90 A14							
190.00	210.00	20.00	.255	5.100	14804.32	10257.23	3735.02
	330.00	70.00	.334	23.400	14837.96	10290.88	3652.74
260.00			• 554	23.400	14037.50		
DVITTHOTE			.294	20.600	14817.31	10627.34	3564.25
330.00	400.00	70.00		6.200	14845.06	10638.59	3512.30
410.00	440.00	30.00	.207	0.200	14043.00	10030.33	302210
C ILLHOLE			222	11 100	15414.79	9552.24	4018.15
30.00	80.00	50.00	.222	11.100	10.11	9552.24	3985.27
80.00	100.00	20.00	.205	4.100	13120170	9552.24	3702.47
372.00	410.00	38.00	.201	7.640	15529.74	9552.24	3642.34
430.00	480.00	50.00	.244	12.200	15551.63		3600.06
480.00	520.00	40.00	.208	8.300	15567.03	9552.24	3000.00
C ILLHOLE					15554 00	0260 52	1015 67
50.00	70.00	20.00	.210	4.200	15554.22	9368.52	4015.67
90.00	130.00	40.00	.205	8.200	15579.27	9368.52	3972.36
360.00	400.00	40.00	.213	8.500	15714.54	9368.52	3738.52

•							
				0		$\mathbf{T} \ \mathbf{E} \ \mathbf{R} \ \mathbf{S} \ \mathbf{E} \ \mathbf{C} \ \mathbf{T}$	
INT	ERSE	CTION				TION MID-POINT	
FROM	TO	LENGTH	GRADE	THICKNESS	NORTHING	EASTING	ELEVATION
RILLHOLE :							2604 00
625.00	645.00	20.00	.285	5.700	15842.40	9950.60	3604.80
RILLHOLE :						2222 52	2506 70
635.00	669.00		.276	9.380	15759.24	9300.53	3596.70
690.00		53.00	.271	14.360	15714.41	9300.53	3550.31
743.00	773.00	30.00	.405	12.140	15685.56	9300.53	3520.45
D ILLHOLE:							
DRILLHOLE:						10065 07	3515.00
473.00	510.00	37.00	.209	7.730	15811.91	10865.87	3313.00
	DDH94_A				1.4000 50	10110 02	3976.96
56.00	82.00	26.00	.225	5.840	14982.59	10110.82	3945.51
102.00	122.00	20.00	.210	4.200	15011.90	10109.31	3863.60
204.00	244.00	40.00	.217	8.700	15088.25	10105.39 10103.91	3832.52
251.00	282.00	31.00	.210	6.520	15117.22	10103.91	3804.37
291.00	319.00	28.00	.219	6.120	15143.46	10102.56	3742.57
366.00	413.00	47.00	.297	13.980	15201.06	10095.44	3655.54
433.00	584.00	151.00	.499	75.380	15282.17		3578.75
584.00	643.00	59.00	.283	16.700	15353.75	10091.76	3486.24
717.00	763.00	46.00	.259	11.920	15439.97	10087.34 10073.23	3191.52
	1171.00	56.00	.209	11.680	15714.67	100/3.23	3191.52
C ILLHOLE :			016	6 600	14457 00	10108.81	3794.05
35.00	66.00	31.00	.216	6.690	14457.00	10108.81	3731.42
116.00	168.00	52.00	.220		14523.70	10111.04	3590.07
337.00	360.00	23.00	.224	5.160	14674.25 14777.77	10119.54	3492.87
473.00	508.00	35.00	.233	8.170		10119.54	3277.25
780.00	831.00	51.00	.374	19.080	15007.42	10127.23	3211.23
C ILLHOLE:					•		
	DDH94_A						
DRILLHOLE :			016	6 400	15040.11	9693.88	4017.33
60.00	90.00	30.00	.216		15040.11	9693.12	3959.78
102.00	207.00	105.00	.270		15145.32	9692.42	3906.93
217.00	238.00	21.00	.204	4.290		9691.97	3873.27
238.00	310.00	72.00	.333		15177.39 15250.18	9690.95	3796.90
350.00	409.00	59.00	.417		15397.81	9688.89	3641.99
520.00	667.00	147.00	.518		15481.28	9687.73	3554.40
667.00	762.00	95.00	.274		15600.63	9686.06	3429.17
845.00	930.00	85.00	.273		15660.65	9685.23	3366.20
957.00	992.00	35.00	.256	8.970	13000.03	7003.23	3300.20
	DDH94_A		264	6.610	15290.08	9244.52	3769.34
397.00	422.00	25.00	.264	0.010	15290.00	7244.32	3,03.31
[ :ILLHOLE :			275	22 000	15494.33	10366.41	3925.52
39.00	119.00	80.00	.275		15575.21	10363.54	3847.36
179.00	204.00	25.00	.236		15606.84	10362.42	3816.80
222.00	249.00	27.00	.210		15626.25	10362.42	3798.04
249.00	276.00	27.00	.226	6.090	13020.23	10301.73	3730.04
DRILLHOLE :			202	16 000	15696.44	10319.51	3879.21
124.00	184.00	60.00	.280	16.800	10090.44	TO3T3.3T	JU17 + E.L
LXILLHOLE:	_		000	c 050	14420 42	10620.71	3629.63
200.00	229.00	29.00	.236	6.850	14429.42	10020./1	3027.03
[ :ILLHOLE :	_		202	4 240	15200 05	9239.41	4026.96
60.00	81.00	21.00	.207		15308.85 15351.93	9239.41	3987.22
119.00	139.00	20.00	.205	4.100	10301.93	2632.30	3701.22
PRILLHOLE:			3.65	10 (00	14992.60	10616.17	3928.70
14.00	54.00	40.00	.265	10.600	14772.00	10010.17	3720.70

		160 00 5	70.00	.319	22.330	15063.06	10615.02	3857.68
99.00				.266	22.600	15131.76	10613.89	3788.44
.89.00			35.00		29.110	15219.83	10612.44	3699.66
;04.00			5.00	.277	29.110	13213000		
DICTURE	:	DDH94_A19		000	4 400	15301.57	8968.46	3994.04
84.00			20.00	.220	4.400	15396.32	8968.59	3913.11
L74.00			39.00	.286	25.450		8968.70	3842.90
293.00		360.00	67.00	.242	16.230	15478.52	8968.81	3775.30
410.00		451.00	41.00	.289	11.850	15557.67	8900.01	3773.30
D. [LLHOLE	:	DDH94 A20						3657.96
120.00	•		10.00	.250	27.480	14410.45	10699.96	3637.90
DRILLHOLE		DDH94 A21						
53.00	•		45.00	.281	12.650	15535.48	8989.42	4010.14
			27.00	.234	6.310	15585.54	8988.52	3958.70
134.00	_		27.00	•20:				
DRILLHOLE	:	DDH94_A22	10 00	.374	41.100	14493.93	10768.26	3701.51
70.00			10.00		11.200	14587.79	10761.29	3604.75
240.00			40.00	.280		14737.63	10750.15	3450.30
464.00			23.00	.237	5.460	14785.95	10746.56	3400.49
506.00		584.00	78.00	.271	21.160		10734.67	3235.64
756.00		794.00	38.00	.279	10.620	14945.86	10/34.07	3230101
D ILLHOLE	:	DDH94_A24						
DRILLHOLE	:	DDH94_A26				2.4525.45	11092.93	3674.42
94.00		165.00	71.00	.471	33.460	14535.45		3632.35
165.00		213.00	48.00	.535	25.680	14577.56	11093.88	3032.33

2165 = 0.30

TOTAL INTERSECTION


AVERACE GRADE.

## ALABAMA.ORE

ALABAN						
ORE RESI	ERVE C	ALCU	LATIC	ONS		
SECTION	BLO	CK SIZ	E	TONNAGE	AVE GRADE	TONS x GRADE
	thick	deep	strike		% Cu	
		(feet)				
8900E	50	500	200	434,783	0.336	146,087
	15	175	200	45,652	0.234	10,683
	35	175	200	106,522	0.281	29,93
	75	500	200	652,174	0.286	186,52
	25	300	200	130,435	0.347	45,26
9300E	20	500	200	173,913	0.276	48,000
·	30		200	260,870	0.27	70,43
	20	<del> </del>		173,913	0.309	53,73
	25			108,696	0.205	22,28
	20	ļ	·	173,913	0.264	45,91
9700E	75	300	200	391,304	0.231	90,39
<del></del>	100			521,739	0.34	177,39
	50			243,478	0.221	53,80
	110				0.332	127,02
	50				0.314	54,60
	110				0.265	76,04
	100	<del> </del>	<del></del>		0.27	103,30
	110			573,913	0.52	298,43
	50	<del></del>	<b></b>		0.42	109,56
	50	<del></del>			0.333	144,78
	20	<del> </del>				34,78
	75	4			<del>                                </del>	176,08
	15		1		0.22	17,21
9900E	75	500	200	652,174	0.26	169,56
	20			<del></del>	<del></del>	38,26
	70					133,91
	100		4			253,04
	90			<del> </del>	<u> </u>	191,73
	15		<del>-</del>			28,04
10100E	60	500	200	521,739	0.274	142,95
	200					
	80		+			
	50					
	40					
	25	<del></del>				
	50			<del></del>	1	

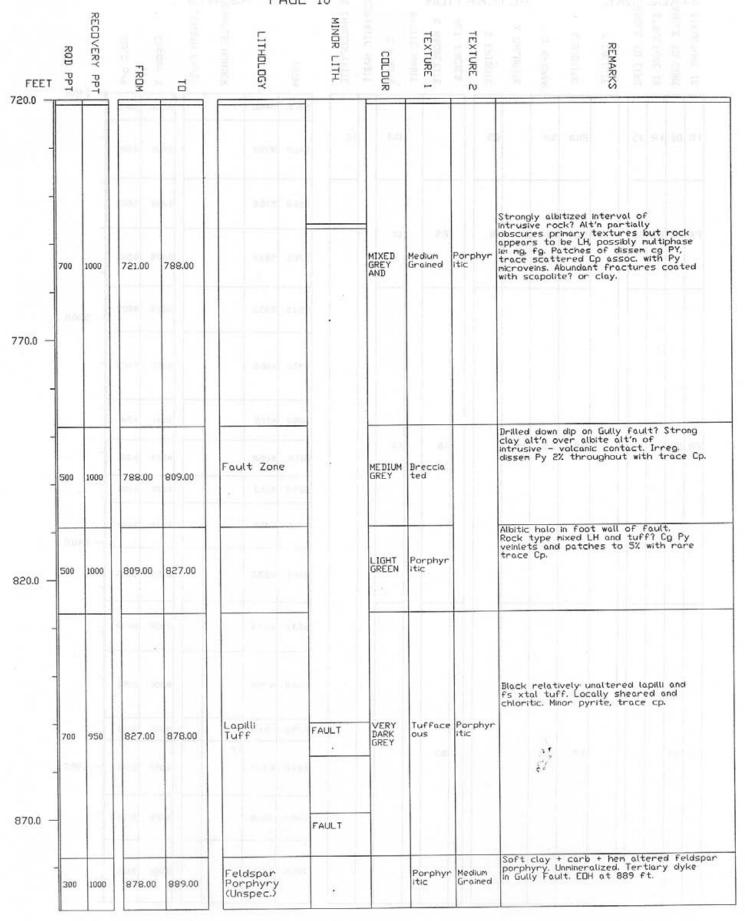
## ALABAMA.ORE

SECTION	BI O	CK SIZ	E	TONNAGE	AVE GRADE	TONS x GRADE
SECTION	thick	deep	strike	TORNAGE	% Cu	TORO X GRADE
	LITTOR	(feet)	Strike		/0 Ou	
		(1661)				
10300E	25	275	200	119,565	0.549	65,641
	25	500	200	217,391	0.461	100,217
	25	200	200	86,957	0.303	26,348
	75	500	200	652,174	0.269	175,435
	25	300	200	130,435	0.293	. 38,217
	30	500	200	260,870	0.328	85,565
	50	200	200	173,913	0.32	55,652
	40	500	200	347,826	0.48	166,957
	150	500	200	1,304,348	0.355	463,043
	15	250	200	65,217	0.205	13,370
	35	450	200	273,913	0.319	87,378
	15	450	200	117,391	0.255	29,935
10600E	30	375	200	195,652	0.28	54,783
	90	350	200	547,826	0.374	204,887
	110	250	200	478,261	0.313	149,696
	90	250	200	391,304	0.209	81,783
	150	200	200		0.369	192,522
	110	225	200		0.377	162,274
	50	200	200		0.268	46,609
	50	200	200	173,913	0.582	101,217
11000E	50	400	200	347,826	0.322	112,000
110002	20	400			0.477	66,365
	75	300		<u> </u>	0.481	188,217
	25	300	200		0.452	58,957
				01 000 100		6 742 061
TOTALS				21,639,130		6,743,061
					AVE ODADE	
				TONNAGE	AVE GRADE	
		-		21,639,130	0.312	



	ROD PPT	RECOVERY PPI	FROM		PAGE LITHOLOGY	T HOLE:	COLONS	TEXTURE	TEXTURE	TODE DARKS
FEE	97	PT	0.00	30.00	Casing		æ	. See	ro Table	TRAVEISE IN ADDRESS.  TE STARTED  TE CLIMPLETED  TH DESERT BY  TH TATE  THEST LEATERS  FMH  THEST LEATERS  FMH  THEST LEATERS  FMH  THEST LEATERS
2.5						AMERN	ALITH	12 0	AQ.	NITS SEE MINING
0 -	JJA I	TV D		616. X C	11 TEST TO		O1	7	MOS IOST I	COMMENTS:
	500	950	30.00	87.00	3_m4 _	DELL	MEDIUM GREY		FRAGMEN TAL	ATAC YEVYUS
	3		153	1/2	ו ביוזאסעס	т мпя		HIE	Z1161	Rich Cpy mineralization assoc. with KF
5					Bulled	SHEEL D	15 15			
					Thit meal	0.011 00	(Br)			SUMMARY REMARKS
.0 -					Solitor Company Feet	Epril 10	151		La Trail	their month northeather and test the collection of the collection
			H		Thur illinos	NOVE US	PALE	MOTTI ED	SPOTTED	Zone of intense albitization obscures primary textures but ghosts of fragments 1/2-2' suggest lapilli tuff. Zone is Albite flooded and veined, bleached, grey with local pink KF patches, and spotty biotite. Spotty Cp blebs scattered throughout, less than
	950	1000	87.00	145.00		13-54 (6)	GREY	HOTTEED	310,120	patches, and spotty biotite. Spotty Up blebs scattered throughout, less than 1%.
	-		d	9101 3	LA JAYSON THE				respella recting	19 your state of the state of t
			F	rus s	Openso (Ulin	COME DO				
.0 -				y mean	9 results3	1135 (3.1	80	17CTON	17-12	Relatively fresh black (biotized?) lapilli tuff. Pyritic fractures and dissem throughout with minor blebs of Cpy, 1-2mm in size.
	500	1000	145.00	178.00	Lapilli Tuff	(2) (A) (A)	DARK GREY	FRAGMEN TAL	INTERBE DDED	Cpy, 1-2mm in size.
					Har Mass	211 01	TR	4	1	
	400	1000	178.00	28100		1	MIXED	EUHEDRA	MEDIUM	Variably altered LH Intrusive. Patchy

S	ſŖĬ	JC	TU		LL F	HOLE		H94 TER		01 [[]N	m		CHALC	×				AZZA	YS		PAGE	3
STRUCTURE ID	ANGLE TO CORE	STRUCTURE ID	ANGLE TO CORE	R % CALCITE	% BIOTITE	% K-SPAR				% MAGNETITE	PYRITE HABIT	% PYRITE	JPYRITE HABIT	% CHALCOPYRITE	Value source	FROM	70	SSAMPLE NUMBER	LENGTH Ft/10	Copper %	GOLD 9/t	
																						0.0
																			.3	Luce		-
		1144		Tarita Maria		2-0-10										30.00	45.00			0.520	0.280	-
							V	13. Jo	154		de	19				45.00	55.00	enni)8		0.270	0.140	<b>—</b> 50.0
FR	30	FR	60	5.0	20.0	10.0		2.5				2.5		1.0		55.00	61.00			0.710	0.460	
																61.00	64.00			1.780	1.210	
						33										64.00	74.00			0.170	0.140	-
																74.00	87.00	-		0.370	0.240	-
																87.00	97.00			0.030	0.031	
-																97.00	107.0			0.010	0.002	- 100.0
											-					107.0	117.0			0.020	0.017	-
FR	45			2.5	2.5	10.0								1.0		117.0	119.0		-	1.180	0.760	
					16											119.0	129.0			0.050	0.051	
											n in		100	100		129.0	139.0	N. S.		0.100	0.080	100
		0.14	20,000	7				175								139.0	145.0			0.090	0.060	
						4										145.0	155.0			0.250	0.160	- 150.0
FR	35				10.0	2.5						1.0		0.3		155.0	165.0			0.350	0.165	
				10 0 1 10 0 1 10 0 1 10 0 1									794	t		165.0	178.0			0.250	0.120	-
L		-		2.5		10.0			4	2.5		1.0		0.3		178.0	187.0		-	0.080	0.057	

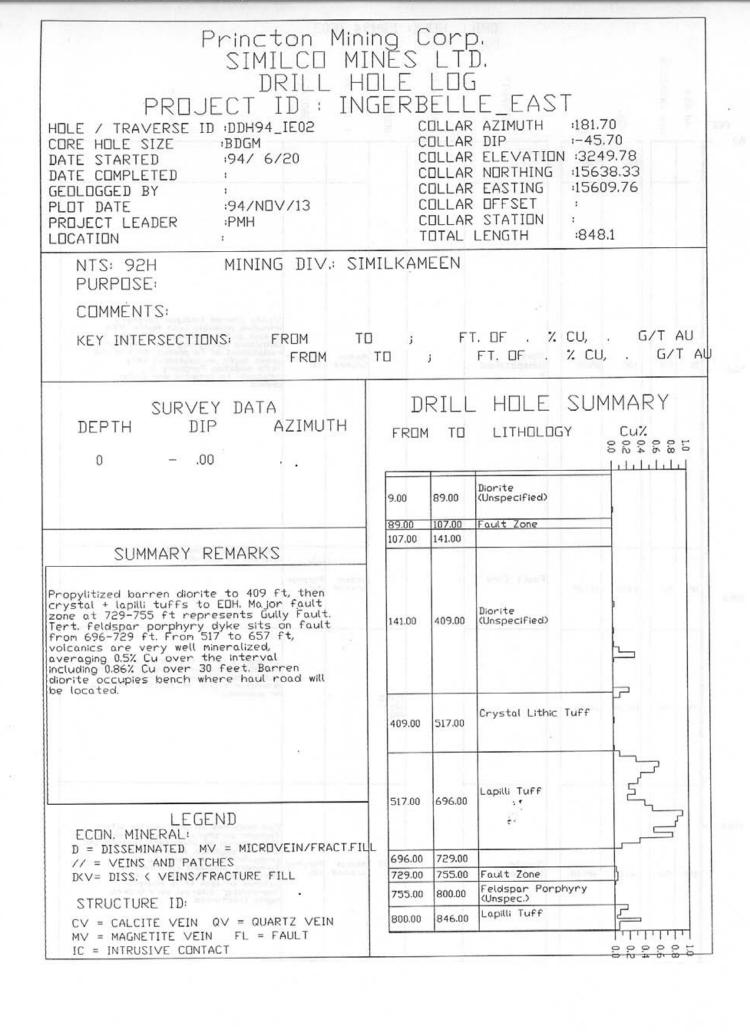

FEET 180.0	ROD PPT	RECOVERY PPT	FROM	10	LITHOLOGY	MINOR LITH.	COLDUR	TEXTURE 1	TEXTURE 2	REMARKS
230.0 —	- 900	1000	178.00	281.00	Diorite (Unspecified )		MIXED GREY AND	Euhedra.	Medium Grained	Variably altered LH Intrusive. Patchy strong albitization overprints primary (?) biotite + magnetite. Local patches of KF(?) pinking seem to represent strongest alt'n. Pyrite occurs mainly as fracture fill, Cp is spotty and irreg. 1/2' bleb of Cp at 220 ft, otherwise poorly mineralized.
280.0 -	900	1000	281.00	342.00	Lapilli Tuff	Diorite (Unspecified)	MIXED GREY AND	Medium Grained	Fragmental	Interval of nixed fs xtal tuff, lapilli tuff and LH dykelets. Variably altered, 60% is pervasive strong albite, 10-20% strong KF, remainder is biotitized. Albitic zones difficult to determine protolith, biotized zones usually obvious volcanics which carry most PY + Cp. Py occurs throughout as micro veins and dissems, Cp more blebby, scattered and irregular, Interval perhaps 20% LH lapilli tuff polynictic with granitic (LH?) and Augite porphyry frags. Also
330.0	956	0 1000	342.00	454.00	1 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		LIGHT	Medium Grained		Intensely albitized interval, very difficult to determine protolith. Relict feldspars suggest equigranular, intervieus in it dimite. Interval is

2.	TR	UC	TU	DRI RF	LL F	HOLE	: DI	)H94 TER	_IE	01 IDN			CHALC	×		<u> </u>	AZZ	YS		PAGE	5
STRUCTURE ID	ANGLE TO CORE	STRUCTURE ID	ANGLE TO CORE	R % CALCITE	% BIOTITE	% K-SPAR	% CHLORITE	% EPIDOTE	ALT. FACIES	% MAGNETITE	PYRITE HABIT	% PYRITE	DPYRITE HABIT	CHALCOPYRITE	FROM	10	SSAMPLE NUMBER	LENGTH Ft/10	Copper %	GOLD 9/t	
															178.0	187.0			0.080	0.057	180.0
															187.0	197.0			0.100	0.045	
			4												197.0	207.0			0.040	0.008	
															207.0	217.0			0.360	0.140	
															217.0	221.0			0.550	0.290	-
	50		20	2.5	10.0	10.0				2.5		1.0	H	0.3	221,0	231.0			0.130	0.090	— 230.0
FK	50	VN	30	2.5	10.0	10.0				2.5		1.0		0.5	231.0	241.0			0.080	0.041	
						34									241.0	251.0			0.120	0.080	
			18	27	18.73	i i	, 03	100							251.0	261.0			0.030	0.021	
															261.0	271.0			0.040	0.015	
		-					-								271.0	281.0			0.040	0.011	
				ofis	di	73.									281.0	291.0			0.060	0.055	— 280.0 —
								j.		-	-	1			291.0	301.0	54		0.040	0.031	
															301.0	311.0			0.060	0.065	
FR	45	VN	60	2.5	5.0	10.0	2.5					2.5		0.3	311.0	321.0	1.0		0.100	0.038	
															321.0	331.0 •			0.090	0.060	
															331.0	342.0	IP 2		0.420	0.195	— 330.0
				1 TE-1	No Yea				1				1	H	342.0	352.0	ust		0.160	0.140	
FR	65	VN	35			5.0	2.5	1.0				2.5		1.0	352.0	359.0			0.460	0.320	
																		_		-	1.

ST	RI	JC	TU		LL F			H94 TER					CHALCE	×		A	SŞA	YS		PAGE	7
AL SALLUIGES	ANGLE TO CORE	STRUCTURE ID	ANGLE TO CORE	% CALCITE	% BIOTITE	% K-SPAR	×	% EPIDOTE	ALT, FACIES		PYRITE HABIT	% PYRITE	PYRITE HABIT	CHALCOPYRITE	FROM	A 10	SAMPLE NUMBER	LENGTH Ft/10	Copper %	60LD 9/t	- 360
I		in the	00			I.				net					359.0	369.0	nese.		0.060	0.140	- 360
					1 100	100									369.0	379.0			0.060	0.056	
			-	L	72	J. P.	H								379.0	389.0			0.130	0.120	-
															389.0	399.0	and y		0.030	0.041	
												25			399.0	409.0			0.030	0.024	-
R	65	VN	35			5.0	2.5	1.0				2.5		1.0	409.0	419.0			0.020	0.023	— 410
															419.0	429.0			0.040	0.058	
													SSU		429.0	439.0	ney-D		0.250	0.140	-
						12				chill	-3111-		100		439.0	449.0	14.		0.070	0.110	-
															449.0	454.0			0.140	0.105	-
															454.0	464.0			0.000	0.002	— 46I
															464.0	474.0			0.000	0.001	-
R	65	cv	50		10.0	2.5				1.0				Б	474.0	484.0			0.000	0.001	
															484.0	494.0			0.010	0.006	
															494.0	509.0			0.020	0.006	
					1770	all years									509.0	521.0			0.180	0.011	<b>—</b> 51
R	80	FR	45		20.0	5.0		2.5				10 0		1.0	521.0	531.0			0.060	0.090	-
															531.0	546.0			0.020	0.008	

FEET	RQD PPT	RECOVERY PPT	FROM	10	LITHOLOGY	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
540.0 —	500	950	497.00	559.00	Lapilli Tuff	trot.		Porphyr itic	Tufface ous	Variably altered lapilli tuff, polymictic 1/8° ang frags buff to black f.g. Alteration is patchy: alternates between strong biotitization with weak mag; and pervasive strong albitization which tends to obscure textures. Biotite zones contain 1-5% pyrite and trace to 1% Cpy.
-	600	1000	559.00	583.00	Diorite (Unspecified )	eve.	MEDIUM GREY	Porphyr itic	Medium Grained	Variably altered mg fs porphyry. Lost Horse Diorite? Upper 1/2 is albitized, lower 1/2 is bio + mg altered. Minor Py concentrated in lower 1/2.
590.0 —	0.0		dino( c	200	(H) (					62 62 96 CE MY CO 9
	300	950	583.00	653.00	Crystal Lithic Tuff		DARK GREY	Fine Grained	Interbe oded	Relatively fresh but variably altered interval of volcanic slitstone or wacke with interbedded lapilli and crystal tuff. Fresh' rock is dark, biotitic and weakly magnetic. Central portion of interval is bleached out by albitic alt'n. Strong KF hornfelsing from 611 to 617 ft. Weak dis. Py in biotitic zones. 2-3% pyrite on chloritic fractures.
640.0 —			Paris 1		1 20E0 1	Diorite (Unspecified)				
			000		S-Ri					64 901   STV1 14 H
690.0 —	500	1000	653.00	721.00	Feldspar Porphyry (Unspec.)		MIXED GREY AND	Porphyr itic	Medium Grained	Variably altered Feldspor Porphyry - 1/2 of Interval is KF pinked - looks like two feldspar LH - latite or nonzonite. Rest of interval is grey-green felted fs porphyry - unknown alt'n syle, naybe same intrusive - different alt'n or 2nd phase of intrusive. Regardless, interval is unnineralized - not even trace Py. KF pinking from 664-684 ft.
690.0 —	500	1000	653.00	721.00	Porphyry		GREY	Porphyritic		1/2 of interval is KF p like two feldspar LH - monzonite. Rest of inte grey-green felted fs; alt'n syle, maybe some different alth or 2nd intrusive. Regardless, in unniveralized - not eve

<b>–</b> 540	60LD 9/t	Copper %	CO LENGTH Ft/10	SSAMPLE NUMBER	70	FROM	% CHALCOPYRITE	CHALCOPYRITE HABIT	% PYRITE	ΠN	ATI	TER % EPIDOTE	A % CHLORITE	% K-SPAR	L % BIOTITE		DANGLE TO CORE	STRUCTURE ID	EXANGLE TO CORE	STRUCTURE ID
- 340	0.008	0.020			546.0	531.0														
	0.004	0.030			559.0	546.0	1.0		10.0			2.5		5.0	20.0		45	FR	80	R
-	0.063	0.070			570.0	559.0							line si	He v	.0150	100-2 (4)	10 10			
glost.	0.010	0.070			583.0	570.0			1.0	2.5		1.0	1.0	5.0	5.0		60	FR	40	R
<b>–</b> 590	0.009	0.060			593.0	583.0									Service					
-	0.023	0.030			608.0	593.0														
-	0.001	0.010			617.0	608.0							politic .	l entr		ritori			-	
-	0.001	0.000			625.0	617.0			1.0	1.0			2.5	2.5	2.5			-2	55	FR
-	0.001	0.000			631.0	625.0														
— 640	0.013	0.040			641.0	631.0													110	
	0.096	0.150			653.0	641.0			(2) liss	-erla			0.000							
-	0.030	0.030			664.0	653.0														
	0.001	0.000			679.0	664.0													1	
-	0.001	0.000	100	t d	684.0	679.0				E CONTRACTOR OF THE PERSON NAMED IN CONT		197.0								
- 69i	0.001	0.000		. 1	696.0	684.0		50		0.3				20.0	2.5				65	FR
-	0.001	0.000			706.0	696.0														
	0.001	0.000			721.0	706.0								1,1						




- 540.	PAGE GDLD 9/t	Copper %	C) LENGTH Ft/10	A COSAMPLE NUMBER	A 10	FROM	% CHALCOPYRITE	CHALCOPYRITE HABIT	% PYRITE	PYRITE HABIT	NAGNETITE	AT]	TER % EPIDOTE	AL.		L % BIOTITE		TUR	STRUCTURE ID	PANGLE TO CORE	STRUCTURE ID
- 540.	0.008	0.020			546.0	531.0															
-	0.004	0.030			559.0	546.0	1.0		10.0				2.5		5.0	20.0		45	FR	80	FR
-	0.063	0.070			570.0	559.0								SHOOM							
<u></u>	0.010	0.070	Q.		583.0	570.0			1.0		2.5		1.0	1.0	5.0	5.0	3	60	FR	40	FR
<b>–</b> 590.	0.009	0.060			593.0	583.0															
-	0.023	0.030			608.0	593.0															
-	0.001	0.010			617.0	608.0						١.									
-	0.001	0.000		uall.	625.0	617.0			1.0		1.0			2.5	2.5	2.5			7	55	FR
-	0.001	0.000	- 191		631.0	625.0			100	100	-										
<b>—</b> 640	0.013	0.040		-	641.0	631.0										i can			10		
oomi	0.096	0.150	DO		653.0	641.0		S	183	F	1100			510#							
-	0.030	0.030			664.0	653.0														Ī	
_	0.001	0.000			679.0	664.0															
-	0.001	0.000	1		684.0	679.0			1												
- 690	0.001	0.000		-	696.0	684.0					0.3				20.0	2.5				65	FR
	0.001	0.000			706.0	696.0															
-	0.001	0.000	-		721.0	706 0															

DRILL HOLE: DDH94_IE01
PAGE 10

FEET 720.0 —	RQD PPT	RECOVERY PPT	FROM	10	LITHOLOGY	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
770.0 —	700	1000	721.00	788.00	one to		MIXED GREY AND	Medium Grained	Porphyr itic	Strongly albitized interval of intrusive rock? Alt'n partially obscures primary textures but rock appears to be LH, possibly multiphase ie mg. fg. Patches of dissen cg PY, trace scattered Cp assoc. with Py microveins. Abundant fractures coated with scapolite? or clay.
2	500	1000	788.00	809.00	Fault Zone		MEDIUM GREY	Breccia ted		Drilled down dip on Gully fault? Strong clay alt'n over albite alt'n of intrusive - volcanic contact. Irreg. dissem Py 2% throughout with trace Cp.
820.0 -	500	1000	809.00	827.00	erne en		LIGHT GREEN	Porphyr itic		Albitic halo in foot wall of fault. Rock type mixed LH and tuff? Cg Py veinlets and patches to 5% with rare trace Cp.
870.0 -	700	950	827.00	878.00	Turr	FAULT .	VERY DARK GREY	Tufface ous	Porphyr itic	Black relatively unaltered lapilli and fs xtal tuff. Locally sheared and chloritic. Minor pyrite, trace cp.
	300	1000	878.00	889.00	Feldspar Porphyry (Unspec.)			Porphyr itic	Medium Grained	Soft clay + carb + hem altered feldspar porphyry. Unmineralized. Tertiory dyke in Gully Fault. EDH at 889 ft.

S1	RAN	UC	TU						)H94 TER	ΑТ	01 IDN	T		CHALCOP	× 0		Δ	SSA	YS		PAGE	11
TRUCTURE ID	IGLE TO CORE	TRUCTURE ID	IGLE TO CORE		% CALCITE	% BIOTITE	%-K-SPAR	% CHLORITE	% EPIDOTE	ALT. FACIES	% MAGNETITE	YRITE HABIT	% PYRITE	YRITE HABIT	% CHALCOPYRITE	FROM	10	SSAMPLE NUMBER	ENGTH Ft/10	Copper %	GOLD 9/t	л— 720.
																721.0	731.0			0.140	0.080	
																731.0	741.0			0.210	0.120	
																741.0	751.0			0.050	0.046	
FR	80						2.5	2.5	0.3				1.0		0.3	751.0	761.0			0.040	0.030	
																761.0	771.0			0.090	0.063	770
																771.0	781.0			0.030	0.009	
																781.0	788.0			0.080	0.047	
													25			788.0	799.0			0.140	0.055	-
FT	5						5.0		1.0				2.5		0.3	799.0	809.0			0.250	0.110	
													F.0		0.3	809.0	819.0			0.220	0.115	-
FR	45												5.0		0.3	819.0	827.0			0.230	0.105	— 820
																827.0	837.0			0.090	0.044	-
																837.0	847.0	*0		0.040	0.012	
FR	25							10.0			1.0		1.0		0.3	847.0	857.0			0.080	0.050	
																857.0	869.0			0.030	0.031	-
																869.0	878.0			0.030	0.013	870
				2	5				5.0	1		-				878.0	889.0			0.000	0.001	-

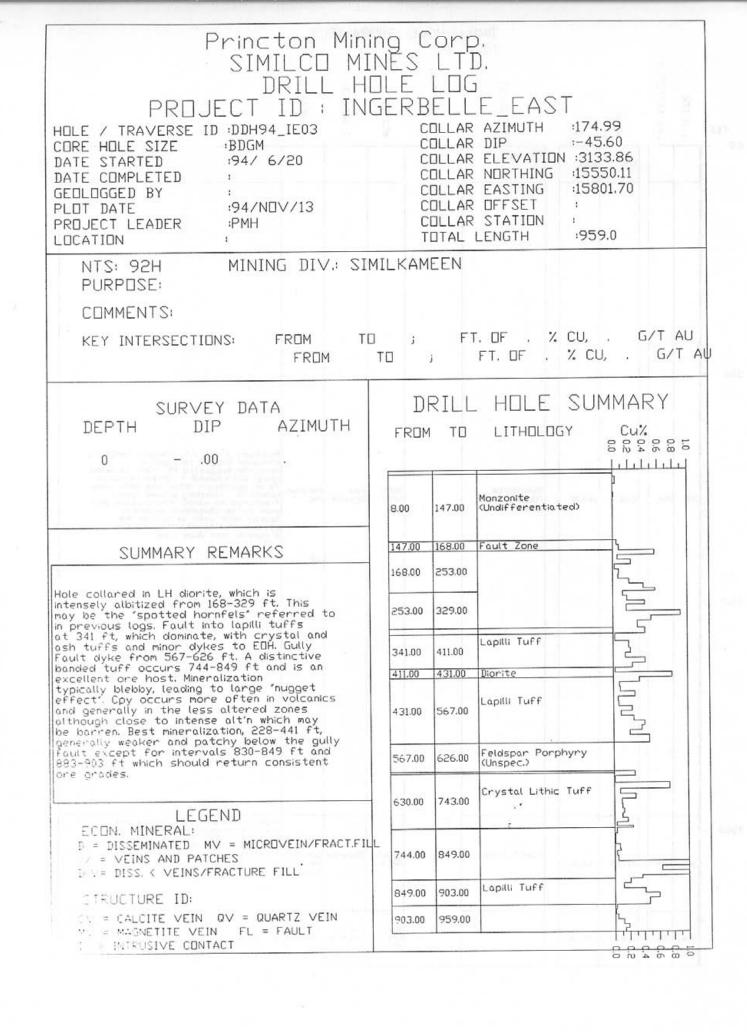


ŒΤ	ROD PPT	RECOVERY PPT	FROM	10	LITHOLOGY	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
			0.00	9.00	Casing	دالانام 1961ع			05	STARIED 1947 SA
			7 (8)		OPTISAS N TERRITOS MILITAIS S NTERRITO	AULUA AUUUA AUUUA AUUUT AUUT			· C/>	MARKE YA GARAD. MARKER ARKER MARKET MARKER MARKET MARKET MARKET M
-						MULINA	34 717	115	WHU	BARMIN HSC CTV
	50	950	9.00	89.00	Diorite (Unspecified )		01	Medium Grained	Porphyr itic	Weakly altered feldspar porphyry intrusive, probably Lost Horse. Alt'n is weak patchy pervasive KF with ubiquitous dissem, mag and total Ep+Cl replacement of Fs phenos. Rock is dull green, (soft, no sulphides), very little oxidation. Porphyry is relatively fg. crowded with 2-4mm phenos.
		7	AM	HIS.		JI Ail				ATMO YEVELS
	i i	8 3			DE TOHT )	от ип			13412	N 916 - NT 1 10
					Afficial Mark Transport	SON IV	mis.			
					Not faul	180,710	541			
	100	900	89.00	107.00	Fault Zone			Medium Grained	Porphyr Itic	Strongly fractured and oxidized interval, no sulphides.
				_	mangarang and	mental to	u pély		Mala	No. atmosphere and at the party of the party
	750	1000	107.00	141.00	and meets	30-1-	MIXED GREY AND		Ilw (Shi	Strongly altered fracture zone. Pink KF or albite is pervasive and strong but patchy and fracture controlled. Alteration typical of spotted hornfels. No sulphides.
-										
	550	950	141.00	409.00	Diorite (Unspecified )	Sana in	LIGHT	Mediun Grained	Porphyr	Pale brick rea to grey, weakly altered feldspar porphyry intrusive as above. Wide interval of consistent texture and alt'n no sulphides. Alt'n classed as propylitic due to green (Ep+Cl7) feldspars, abundant carbonate as hairline calcite fractures. Local patches of weak KF is incipient 'hornfelsing'. Interval very broken, highly fractureed.
					100	Mark (I)			17.0	THE TOUR STEEL STEEL

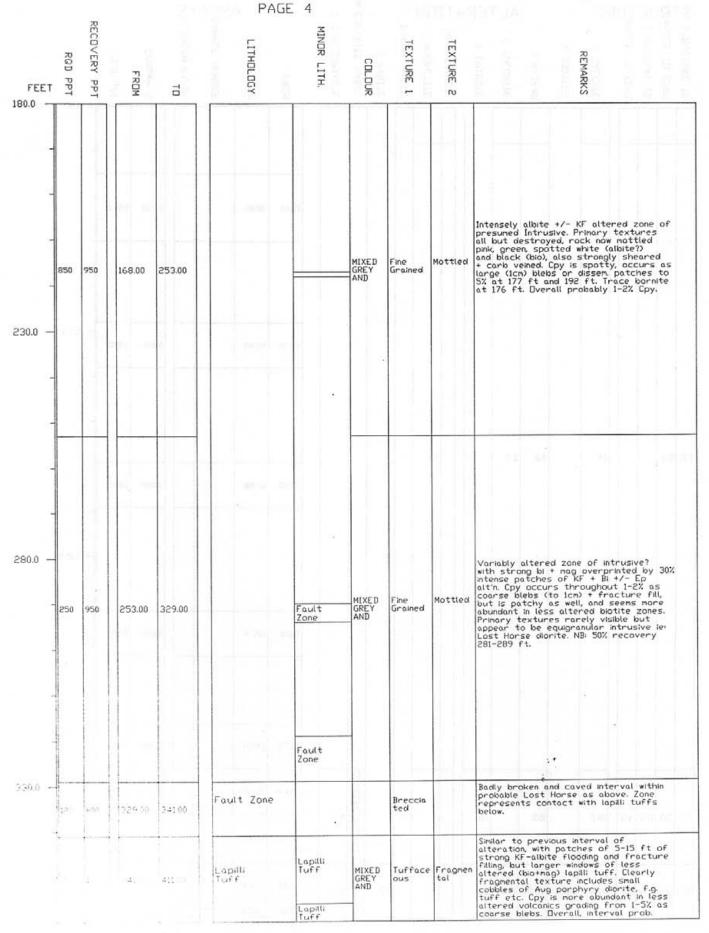
STRUCTURE ID	CANGLE TO CORE	C STRUCTURE ID	NAME TO CORE					TER	4T			CHALCOPYRITE HABIT	% CHALCOPYRITE	FROM	<i>a</i>	SSAMPLE NUMBER	Y LENGTH F+/10	Copper X	AGE GDLD 9/t	0.0
FR	55	cv	5	5.0		10.0	2.5	10.0		2.5		1		23.00	39.00			0.000	0.001	_ _ _ _ 50.0
FR	55	cv	5	5.0		10.0	2.5.	10.0		2.5	10			68.00	78.00			0.010	0.001	- - - - 100.0
FR	50			10.0	5.0	20.0				2.5				120.0	130.0		•	0.000	0.001	-
FR	50	FR	25	2.5	5.0	5.0	5.0	5.0		2.5					ė					- 150.0 - -

57	T.R.	UC	ŢU		LL H			)H94 TER					CHALCO	×		11941 A	AZZA	YS		PAGE	5
STRUCTURE ID	NGLE TO CORE	STRUCTURE ID	NGLE TO CORE	% CALCITE	% BIOTITE	% K-SPAR	% CHLDRITE	% EPIDOTE	ALT. FACIES	% MAGNETITE	PYRITE HABIT	% PYRITE	PYRITE HABIT	CHALCOPYRITE	FRON	8	SSAMPLE NUMBER	LENGTH Ft/10	Copper %	GDLD 9/t	180.0
			OIL NA				Der 1					Eryll 1000		78	189.0	199.0			0.000	0.001	
																					- 230.0
															242.0	252.0			0.020	0.001	
FR	50	FR	25	2.5	5.0	5.0	5.0	5.0	100	2.5											- - 280.
															290.0	300.0			0.010	0.001	
																325.0			0.010	0.001	
																345.0				0.060	330
															345.0	3530			0.010	o en:	

DRILL HOLE: DDH94_IE02


FEET	ROD PPT	RECOVERY PPT	FROM	- i	LITHOLOGY	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
	550	950	141.00	409.00	Diorite (Unspecified )		LIGHT RED	Medium Grained	Porphyr itic	Pale brick red to grey, weakly altered feldspar porphyry intrusive as above. Wide interval of consistent texture and alt'n, no sulphides. Alt'n classed as propylitic due to green (Ep+CI?) feldspars, abundant carbonate as hairline calcite fractures. Local patches of weak KF is incipient 'hornfelsing'. Interval very broken highly fractureed.
	400	950	409.00	517.00	Crystal Lithic Tuff		VERY DARK GREY	Tufface	PTYGMAT IC FOLDED	Relatively unaltered feldspar crystal tuff. White feldspars 1-2mm in fg black matrix, Ubiquitous blotte and magnetite v.f.g. Minor patchy albitization is fracture controlled.
nijn -	The state of the s			- 95.00	Lopilli Tuff		MIXED GREY AND	Tufface	Fragmen	Beautifully mineralized interval of variably altered lapilli tuff. Unit carries 10-20% angular polymictic frags 1-2cm in size in crowded interbeds with cg to fg crystal + ash tuffs. Alt'n is patchy strong albite or KF + Ep or biotite. Magnetite generally absent. 20% unaltered windows of lapilli tuff. Possibly 20% LH dykes may look like xtal tuffs and are generally more strongly altered. Cpy)Py. Min'n occurs as large fg blebs up to Icn as hairline

S.	ΓŖ	UC	ŢU	DR RE	ILL	HOLE	E: DI	DH94 TER	_IE	02 02			CHALCO	×			AZZA	YS		PAGE	7
STRUCTURE ID	NGLE TO CORE	STRUCTURE ID	NGLE TO CORE	% CALCITE	X BIOTITE	% K-SPAR	% CHLORITE	TER " EPIDOTE	ALT. FACIES	% MAGNETITE	PYRITE HABIT	% PYRITE	PYRITE HABIT	% CHALCOPYRITE	FROM	10	ASSAMPLE NUMBER	LENGTH Ft/10	Copper %	GDLD 9/t	<del>-</del> 360.0
-0	50	50	25	2.5	5.0	5.0	5.0	5.0		2.5											
K	30	rĸ	23	2.5	5.0	5.0	3.0	3.0		E.J											-
															390.0	400.0			0,000	0.001	
				_	+			-	_						400.0	409.0		H	0.210	0.011	— 410.0
															409.0	419.0			0.090	0.006	_
								H									inear The P			100	
															455.0	465.0		H	0.010	0.001	— 460
R	45			2.5	2.5			5.0		2.5						403.0			0.010	0.001	400
																					-
																	,				
					i										507.0	517.0			0.010	0.001	<b>—</b> 510.
						•					XXXX		Ø Ø		517.0	527.0			0.080	0.026	-
V	36	١.	100		933			5.00		1:0	8 8 8	1.0	XXXXX	2.5	527.0	537.0			0.300	0.22.0	
										L.	1,3		X		537.0	547.0			0.600	0.195	


DRILL HOLE: DDH94_IE02

FEET 40.0	ROD PPT	RECOVERY PPT	FROM	10	LITHOLOGY	SE 8 MINDR LITH.	COLDUR	TEXTURE 1	TEXTURE 2	REMARKS
90.0 —	4,0		ness	25.57 43.61	n ma				3.5	
	650	950	517.00	696.00	Lapilli Tuff		MIXED GREY AND	Tufface ous	Fragmen tal	
40.0 —	n.u		SSMA.	12.0		11				
90.0 —					T Cha					Unaltered ng feldspar porphyry dyke sitting in Gully Fault. Distinctive white fs phenos 2-4mm.
	500	1000	696.00	729.00	100		DARK GREY	Medium Grained	Porphyr itic	

		70			PAGE					
FEET	ROD PPT	RECOVERY PPT	FROM	01	LITHOLOGY	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARK
720.0 —	500	1000	696.00	729.00	4748	F-124	DARK GREY	Medium Grained	Porphyr Itic	Unaltered ng feldspar porphyry dyke sitting in Gully Fault. Distinctive white fs phenos 2-4mm.
	400	900	729.00	755.00	Fault Zone	5.1 AT	MIXED GREY AND	Sheared	Veined	Strongly fractured and sheared fault within lapilli tuffs. Patchy intense KF alteration. No sulphides. 50% of interval is healed tectonic brx. Albite-carb cenented, 50% gouge. This represents the Gully Fault.
				ISLAL I		art.	180	100		
770.0 —	800	1000	755.00	800.00	Feldspar Porphyry (Unspec.)	0.5.00	MIXED GREY AND	Medium Grained	Porphyr itic	Relatively unaltered feldspar porphyry, but washed out feldspars, felted look, primary textures partially obscured. Local KF pinking brings out phenos, looks intrusive, no sulphides. Pervasive fizz suggests propylitic alt'n.
			753.0	My II	85.00	1,00		100		
			V-1 e	нен	11.554					
			Sec. 1		270		8			Variably altered, lapilli tuff. Angular polymictic frags 2-4cm interbedded with feldspar xtal tuffs. Two 3-5 foot zones of KF + Ep alt'n carry significant Cpy to 3%. Albitized volcanics with blebs of Cp to 3% at 807 ft.
920.0 —	650	950	800.00	846.00	Lopilli Tuff		MIXED GREY AND	Tufface ous	Fragmen tal	to 3%. Albitized volcanics with blebs of Cp to 3% at 807 ft.
			E.V		1 5794		. 8			
			(41.11)	0.00	1500		19	X		



		RECE			PAGE					
FEE	RQD PPT	RECOVERY PPT	FROM	TO	LITHOLOGY	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
			0.00	8.00	Casing	13.607 13.607 13.607			115	STATE TO STATE OF THE STATE OF
			01.20	712	METATZ R METATZ R METATZ R	LE-100 LU-100 LU-100 LE-101				THE LANE TO SHARE CONTRACT CON
						MEEN	1.00	Car III		(M)(A)(A)
	UA			150	. 10 1			T	w)16	CTIPMENTO
	-					2			Chi T	
	-		IAMN Juo	UZ,	ILIGH Ometin	11 2 Q		AIT	MISA	ATAL ENDER DESTRUCTION
	-									Relatively fresh f.g. feldspar porphyry intrusive. Poss. 2 feldspar is monzonite suggested by 1-3mm fs laths (clas) and rounded + rimped fs (alkali
	150	950	8.00	147.00	Monzonite (Undifferent lated)	0,517	DARK GREY	Fine Grained	Porphyr itic	Relatively fresh f.g. feldspar porphyry intrusive. Poss. 2 feldspar is monzonite suggested by 1-3mm fs laths (plag) and rounded + rimmed fs (alkali fs or apatites?). Alteration very minor (albite/KF), bleaching around some fractures, no assoc. mineralization not even pyrite. Ubiquitous magnetite. Sparse minor veins of calcite. NB: possible flow banding from 112-126 suggests poss. Ande flow!
	-		H			ALC: U				SEANGE CRANKS
0 -			5			1000 E			z de rel	0.0
	-				White stage	nm- m			Yho	TARREST L
			3		What illegal					L DETAILS EAST WITH A STREET
				(70)	ive seems				1971	10-100 porter on the second
				Stor	Courter 1 a Post	er v				
.0	300	1000	147.00	168.00	Fault Zone	risena fina	LIGHT	Sheared	Convert ed to foult	Highly fractured carb vened and shear a interval without intrusive reach frace En at 152 ft Mod anoteF . Ep aith is cost by late care stringers and none recent interval.
	850	950	168.00	253.00			MIXED GREY AND	Fine Granea	Mater	Enterior, altre of alternations of



СТ	. DI	LIC	TII	DR	ILL	Н	OLE	DI	)H94	_IE	03 03			CHAL	15.2			Δ22.	75		PAGE	5
S STRUCTURE TO	KANGLE TO CORE	STRUCTURE ID	DANGLE TO CORE	RE % CALCITE		% BIOTITE	% K-SPAR	T % CHLORITE	Z EPIDOTE	ALT. FACIES	Z MAGNETITE	PYRITE HABIT	% PYRITE	COPYRITE HABIT	% CHALCOPYRITE	FROM	A 10	OSAMPLE NUMBER	LENGTH Ft/10	Copper %	GOLD 9/t	1900
Ì																178.0	188.0			0.060	0.067	— 180.0
														A A		188.0	198.0			0.240	0.210	
														XX XX		198.0	208.0	1770		050.0	0.021	
														XX XX		208.0	218.0			0.080	0.085	
V	20	CV	60	10.0	10	1.0	20.0	10.0	2.5				0.0	AY AY	1.0	218.0	228.0		Ī	0.070	0.120	
									H					**  **  **  **  **  **  **  **  **  **		228.0	238.0			0.220	0.240	— 230.
					Tie		10 10					-		XX XX		238.0	248.0	Maria		0.410	0.450	
					1									A)		248.0	253.0			0.570	0.460	-
												D		B		253.0	263.0	4		0.130	0.065	-
												000000		B B B		263.0	273.0			0.190	0.160	_
												D		BBB		273.0	281.0			0.430	0.205	<b>–</b> 280
FR	40				10	0.0	20.0		5.0		1.0	D	0.3	B	2.5	281.0	294.0			0.180	0.160	
												D		B		294.0	304.0			0.910	0.740	-
			R									DDD		BBB		304.0	314.0	1135		0.510	0.380	
										.		D		B		314.0	329.0			0.330	0.320	-
												D		В								
FR	15	FF	45		1	0.0	10 0							M/ M/ M/	1.0	329.0	341.0			0.430	0.360	- 330
FE	70	ICV	45	10	0 2	(+ ()	29-0		5.0		10			B		341.0	356.0			0.020	0.014	
													1.0	B		356.0	371.0		-	0.210	0.150	

DRILL HOLE: DDH94_IE03 PAGE 6 RECOVERY PPT MINUR LITHDL DGA TEXTURE TEXTURE REMARKS COLOUR FROM PPT FEET П N 360.0 Biotitic lapilli tuff. 1-2% Cpy. Lapilli Tuff MIXED GREY AND Lapilli Tuff Tufface Fragmen 700 1000 341.00 411.00 410.0 "Barley" feldspar porphyry, with binodal phenos, plag lath to 4mm long plus rounded, phenos to 8mm - possibly alkali Feld ie: monzonite? Well mineralized with evenly dissem. coarse Cpy 1-2%. MIXED GREY AND Porphyr Itic Diorite Coarse (Unspecified 1000 411.00 431.00 900 Fault Zone 460.0 A nixed interval - dominantly dark biotitic lapilli tuffs, with patches of moderate albitization over 5-15 ft. Local windows through alteration show porphyritic textures suggestive of Lost Horse dykes or may represent xtal tuffs or even large clasts in the tuffs. Regardless, these account for less than 30% of interval. Mineralization is weak and sporty, with Py more abundant than Cpy. Cpy occurs as coarse blebs, however up to 1/2' in size, so 'nugget' Lapilli Tuff MEDIUM GREY Fragmen tal Tufface 250 950 431.00 567.00 510.0

STRUCTL	RANGLE TO	STRUCTL	DANGLE TO	DRI RE % CALCITE			AL	TER	ΑТ	103 % MAGNETITE	PYRITE	KEI X P	CHALCOPYRITE HABIT	% CHALCOPYRITE				SSAMPLE NUMBER	Y LENGTH		PAGE B	7
IRE ID	CORE	IRE ID	CORE	TCITE	BILLE	-SPAR	BLIE	BALL	CIES	31113	HABIT	YRITE	ABIT	YRITE		FROM	70	UMBER	Ft/10	Copper %	GDLD 9/t	
								P			D		B		35	56.0	371.0			0.210	0.150	360.0
											0000		B B B		37	71.0	381.0	mari		0.230	0.240	19 45
FR	70	cv	45	10.0	20.0	20.0	2.5	5,0		1.0	D	1.0	BBB	2.5	38	81.0	391.0			0.160	0.180	
													B B B		35	91.0	401.0			0.430	0.380	
						1		leni			D		B B		40	01.0	411.0			0.260	0.175	4100
											D	1	-		41	11.0	421.0	500	100	0.020	0.030	— 410.0
~	50				10.0	10.0		10.0			D	2.5			4	21.0	431.0			0.790	0.560	
											M\ M\		B B B		4:	31.0	441.0	i ca		0.350	0.280	
					-14						M/M		B B B		4	41.0	451.0	LIA.		0.080	0.034	
											M/ M/ M/		B		4	51.0	461.0			0.090	0.065	— 460.0
											M/ M/ M/		B B B		4	61.0	471.0			0.290	0.295	460.0
											MY		B B		4	71.0	481.0			0.060	0.015	
FR	60	FR	40		20.0	5.0	13			1.0	MY MY	2.5	B B	1.0	4	81.0	491.0			0.070	0.041	
					1100						MM	V	B	-5	4	91.0	501.0	13.13		0.250	0.260	
			51								M M M	V	B B		5	01.0	511.0		T	0.100	0.090	5100
											M	V V	B		5	11.0	521.0		Ī	0.270	0.220	510.0
											MMM	V V	B B		5	521.0	531.0			0.420	0.340	
											M	V V	B		5	531.0	541.0			0.380	0.305	

DRILL HOLE: DDH94_IE03

		굕			DRILL HOLE: DDH94_IE03 PAGE 8					
FEET	RQD PPT	RECOVERY PPT	FROM	10	ТІТНОГОСА	MINOR LITH	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
-	250	950	431.00	567.00	Lapilli Tuff		MEDIUM GREY	Fragmen tal	Tufface ous	A mixed interval — dominantly dark biotitic lapilli tuffs, with patches of moderate albitization over 5-15 ft. Local windows through alteration show porphyritic textures suggestive of Lost Horse dykes or may represent xtal tuffs or even large clasts in the tuffs. Regardless, these account for less than 30% of interval. Mineralization is weak and spotty, with Py more abundant than Cpy. Cpy occurs as coarse blebs, however up to 1/2' in size, so 'nugget'
- 0.00					11.000		100 Janes 15	30000		Late tertiary post mineral Gully Fault Fs porphyry dyke.
	200	1000	567.00	626.00	Feldspar Porphyry (Unspec.)		DARK GREY	Medium Grained	Porphyr itic	
-							18		Sheoned	Sheared contact between dyke and
	-	1000	626.00	630.00	Fault Zone		I EL	T Kind	Shearea	Sheared contact between dyke and footwall volcanics.
0.0 -										
	700	1000	630.00	743.00	Crystal Lithic Tuff	Feldspar Porphyry (Unspec.)	MIXED GREY AND	Tufface ous	Porphyr Itic	occur mainly from 650-678 ft. Interval also cut by felted Fs porphyry dykes comprising 20% of total, prescribed below. Pyrite is generally more abundant than Cp, occurs as veinlets. Dark fg but perphyritic dykes Cof
0.0 -						+3				

0	r D I	10	TII		L H	OLE	DD AL1						CHAL	21				Δ22 <i>i</i>	24		PAGE	9
STRUCTURE ID	EANGLE TO CORE	STRUCTURE ID	PANGLE TO CORE	RE . CALCUIE	 % BIOTITE			% EPIDOTE	D		PYRITE HABIT	% PYRITE	CHALCOPYRITE HABIT	% CHALCOPYRITE		FROM		SSAMPLE NUMBER	LENGTH Ft/10	Copper %	GOLD 9/t	— <b>5</b> 40.0
									n s		MV MV		BBB		ta ta	541.0	551.0	indo/		0.220	0.070	
FR	60	FR	40		20.0	5.0				1.0	> Y Y Y Y	2.5	888888	1.0		551.0	567.0			0.480	0.360	-
																	**			<i>a</i> *		-
														ř		8	-					- - 590.0
R	50	FR	10							1.0												
			1289																			-
		hen.	He i											H	21	5		*				-
Т	20							- A	1		MV		B			626.0	636.0			0.280	0.180	-
											MV MV		B B			636.0	640.0			0.010	0.015	640
											MV		B			640.0	650.0			0.010	0.003	
											MV MV MV		B B			650.0	663.0			0.750	0.490	-
											MV MV		B B			663.0	673.0			0.080	0.060	_
R	50	FR	30		10.0	10.0		5.0			MV MV	2.5	B	1.0		673.0	683.0			0.290	0.140	
											MV MV		B B B			683.0	693.0			0.100	0.006	<b>–</b> 690.
						-					M\ M\	1	B			693.0	703.0	8_4		0.110	0.055	
											M/M M/M		BBB			703.0	713.0			0.130	0.065	-
											1-1		B			713.0	723.0			0.110	0.070	

FEET	ROD PPT	RECOVERY PPT	FROM	10	LITHOLDGY	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
720.0 —	700	1000	630.00	743.00	Crystal Lithic Tuff	Feldspar Porphyry (Unspec.)	MIXED GREY AND	Tufface ous	Porphyr Itic	Strongly fractured, locally sheared interval of fg-mg fs xtal tuff with possible Lost Horse intrusive dykes to perhaps 10%. Interval albitized, primary textures almost gone. Coarse blobs of Cp assoc. with albite alt'n occur mainly from 650-678 ft. Interval also cut by felted Fs porphyry dykes comprising 20% of total, prescribed below. Pyrite is generally more abundant than Cp, occurs as veinlets. Bark fg but porphyritic dykes Cof
770.0 -						Feldspar Porphyry (Unspec.)				
	800	1000	744.00	849.00		Diorite (Unspecified)		Aligned Phenocr ysts	Fine Grained	Similar to above interval, volcanics are cut by felted Ep altered feldspar-augite? porphyry dykes. The volcanics are different though - now an aphanitic banded ash tuff, without lithic frags or phenos, Cp scattered, throughout as Cg blebs (3cm ore at 789 ft) and as hairline fracture fill (particularly well mineralized from 830 to 849 ft averaging 2-3%). As above, the volcanics include obvious Lost Horse dyke from 791-816 ft.
820.0 -			ena m		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
	-		STATE OF							е ин ти — ти
870.0 -	700	1000	849.00	903.00	Lapilli Tuff		PALE GREY	Tufface ous	Fragmer tal	Buil grey, noderately albitized crystol + lapilli tuffs with abundant Epy. Possible Lost Horse dionite (or xtal tuff?) 853-861 ft. Epy occurs as f.g. dissens and on hairline fractures and as large 1' blebs at 854 and 879 ft. Best ninz, from 885-903 ft.
	-									

FEET	ROD PPT	RECOVERY PPT	FROM	10	LITHDLOGY	MINDR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
900.0 -	700	1000	849.00	903.00	Lapilli	12 A=1	PALE	Tufface	Fragmen	Dull grey, moderately albitized crystal
9			ana o		4,860	A281		NH.		
			A10.0 IN	4	1,817	445	9			
			0	u 🗀	461	4465	, Q	NI I		Intense but patchy alt'n of xtal'ash tuffs, Unaltered windows (<10%) show black fg volcanic wacke or siltstone.
	800	1000	903.00	959.00	name:		MIXED GREY AND	W		Intense but patchy alt'n of xtal/ash tuffs. Unaltered windows (X10%) show black fg volcanic wacke or siltstone. Alt'n is intense white + pink albite (or KF) plus possible silcification. Both are fracture controlled but pervasive in nature. Remnant patches of biotite locally. Cpy is sportly throughout, occurs as fg disseminations in 2-3' patches. Mm mag veinlet at 912 ft. Possible fault healed by KF-albite at 923 ft. Unaltered windows at 930-931
	-		Cice its	101	1291		M			ft. Possible fault healed by KF-albite at 923 ft. Unaltered windows at 930-931
950.0 -	2000		E 100 101	0	4000	168	W			

						L H	IOLE	DD	H94	_IE	03			오							PAGE	13
STRUCTURE ID	PANGLE TO CORE	O STRUCTURE ID	HANGLE TO CORE	JRE	Z CALCITE	% BIOTITE	% K-SPAR	A % CHLORITE	TER % EPIDOTE	ALT. FACIES		PYRITE HABIT	% PYRITE	CHALCOPYRITE HABIT	% CHALCOPYRITE	FROM	10	SSAMPLE NUMBER	Y LENGTH F+/10	Copper %	GDLD 9/t	<del></del>
			65			5.0			2.5				1.0		2.5	889.0	903.0		$\perp$	0.470	0.410	
												D		DD		903.0	913.0			0.020	0.033	-
												DDDD		DDD		913.0	923.0			0.010	0.005	-
FR	30	RT	60			10.0	10.0				0.3	DDDD	0.3	DDD	1.0	923.0	933.0			0.040	0.054	-
	50											0 0		DOU		933.0	943.0			0.120	0.125	-
												D		DOD		943.0	951.0			0.190	0.160	<b>–</b> 950.0
												Ď		Ď		951.0	959.0			0.140	0.065	

1.

# Princton Mining Corp. SIMILCO MINES LTD. DRILL HOLE LOG

PROJECT ID : INGERBELLE EAST

HOLE / TRAVERSE ID : DDH94_IE04

CORE HOLE SIZE :BDGM

DATE STARTED

DATE COMPLETED GEOLOGGED BY

PLOT DATE

PROJECT LEADER LOCATION

:PMH

:94/NOV/14

:94/ 6/20

COLLAR AZIMUTH

:360.00

:-45.00 COLLAR DIP COLLAR ELEVATION :3175.52

COLLAR NORTHING :14624.92 :15735.59 COLLAR EASTING

COLLAR OFFSET

COLLAR STATION

:135.0 TOTAL LENGTH

NTS: 92H

MINING DIV .: SIMILKAMEEN

PURPOSE:

COMMENTS: HOLE WAS DRILLING OVERBURDEN DOWN A DIP-SLOPE KEY INTERSECTIONS:

## SURVEY DATA

AZIMUTH DIP DEPTH

0 - .00

### SUMMARY REMARKS

Aborted at 135 ft due to occurence of overburden in core, stuck casing, abraided rods, etc. Trace mineralization above 90 ft. Into volcanics at 104 ft.

#### LEGEND

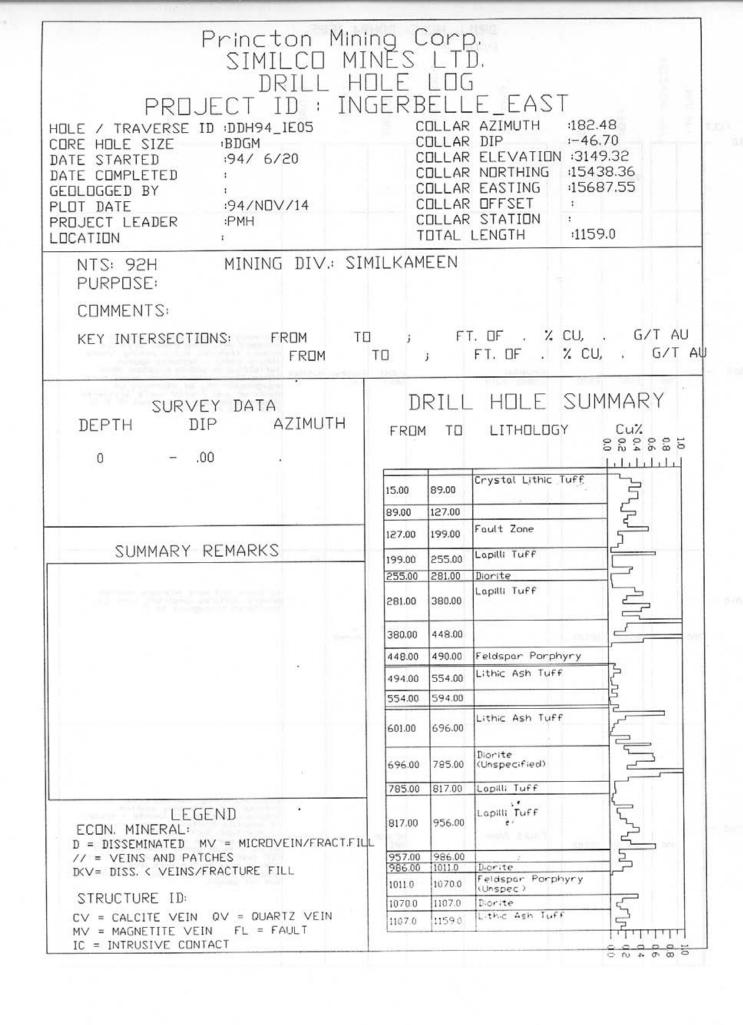
ECON. MINERAL:

D = DISSEMINATED MV = MICROVEIN/FRACT.FILL // = VEINS AND PATCHES

DKV= DISS. < VEINS/FRACTURE FILL

STRUCTURE ID:

CV = CALCITE VEIN QV = QUARTZ VEIN


MV = MAGNETITE VEIN FL = FAULT

IC = INTRUSIVE CONTACT

## DRILL HOLE SUMMARY

FROM TO LITHOLOGY Cu%

0.6 لتلتلتليل Casing 0.00 65.00 65.00 77.00 (Unspecified) □verburden 77.00 88.00 Diorite (Unspecified) 88.00 104.00 Crystal Lithic Tuff 135.00 104.00 ليليليلن



					DRIL PAGE	: 5 T HOTE	DDH	94_IE	05	
FEET	ROD PPT	RECOVERY PPT	FROM	1	LITHOLOGY	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
			0.00	15.00	Casing	ALFUELA DIELLA CIELLA			817	TE TASTELL SA VALUE CONTROL OF THE C
-		-	0	1516	HLDUD'	LETOT IM/				HROW STATES TO SELECT
-						194.31.31993	0.011		V 112	HELDER STATE
0.0	50	V I	b	z cu	Crystal		LIGHT	Porphyr	Mottled	Extremely broken, strongly altered volcanics. Alteration almost destroys primary textures, but is patchy. Where clearly visible - textures appear tuffaceous ie: broken crystals. Minor lithics. Where altered, rock seems more equigranular. May be intermixed LH dykes or just crystal tuffs. Scattered dissem. blebby Cpy throughout 1%, 2-3% from 20-40 ft.
		700	15.00	89.00	Crystal Lithic Tuff	1190	LIGHT GREY	Porphyr itic	DIMES.	lithics. Where altered, rock seems more equigranular. May be intermixed LH dykes or just crystal tuffs. Scattered dissem blebby Cpy throughout 1%, 2-3% from 20-40 ft.
-		1	2 2 3		p Isomits	5:	11			00 0
-				1982	BAON THAT	00-240 01-240				
0.0 —					The Transport		one Elle-			As above, but more intensely altered, primary textures completely gone. Cpy scattered throughout to 1%.
-	500	900	89.00	127.00	Sent worth		LIGHT GREY	Fine Grained		
_					(A) of the second	1191				14.
50.0 —		800	127.00	199.00	Fault Zone		MEDIUM GREY	Breccia ted	Tufface ous	Extremely broken interval, similar to previous but extensively oxidized fractures coated with limonite + traces of malachite. Unaltered windows clearly volcanic-lapill: tuff. Albitized intervals are xtal tuff or possibly LH intrusive. Major pyrite zone at 137 ft (5%) seen on surface on road cut. This interval more pyritic, much less Cp. generally less altered. Rock is softer, but not gougey.
_									111-21	All And Charles  Let English with the color  Let English w

DRILL HOLE: DDH94_IE05

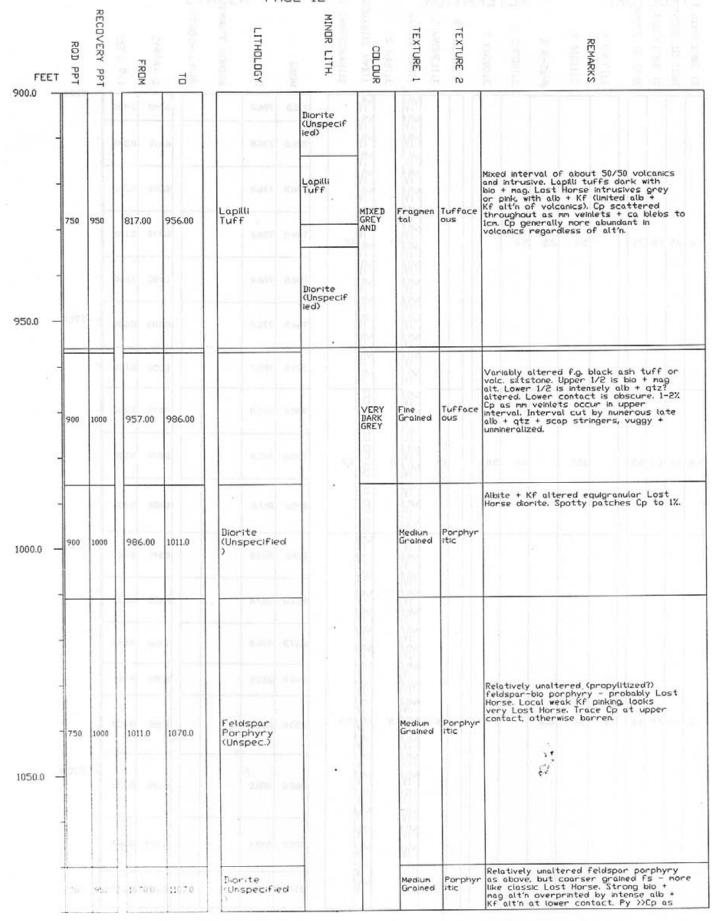
FEET	ROD PPT	RECOVERY PPT	FROM	01	LITHDLOGY	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
80.0		800	127.00	199.00	Fault Zone		MEDIUM GREY	Breccia ted	Tufface ous	Extremely broken interval, similar to previous but extensively oxidized fractures coated with limonite + traces of malachite. Unaltered windows clearly volcanic-lapili tuff. Albitized intervals are xtal tuff or possibly LH intrusive. Major pyrite zone at 137 ft (5%) seen on surface on road cut. This interval more pyritic, nuch less Cp, generally less altered. Rock is softer,
_		П	SIF O	-0	1-1	FAULT	19	19		generally less altered. KOCK is softer,
-	800	950	199.00	255.00	Lapilli Tuff		20 S	Tufface	Fragmen tal	Relatively unaltered interval of locally crowded lapilli tuff with about 30% f.g. wacke. "Unaltered" means dark, biotitic and magnetic. Minor local bleaching (albitization) around some fractures. Minor carb stringers as well. Primary textures very clear, frags include fs porphyry, Aug porphyry, ash tuff and intrusivel Copper mineralization is spotty, occurs as fine blebs + frac. fill irregularly - is concentrated from 212-216 ft at
30.0 —			ALL P		Place of		4 8			porphyry, ash tuff and intrusivel Copper mineralization is spotty, occurs as fine blebs + frac. fill irregularly - is concentrated from 212-216 ft at
			Jean a		er i	A III				
-	300	950	255.00	281.00	Diorite (Unspecified )		PALE GREY	Porphyr	Floe Banded	Classic Lost Horse Intrusive, 20-30%, 2-4mm feldspar laths + 5% biotite, Mild pinking. Extensively fractured - faulted. Trace Cp.
30.0 —	1000				260		4 8	100		on serious merces
					0.016		8			
	800	950	281.00	380.00	Lapilli Tuff	west .		Clastic	Fragner tal	Cpy occurs throughout, overall 1-2% but spotty. Locally to 5% at 335, 354 ft. Abundant Py as well, generally exceeds Cpy. Nice ore zone intersection! Cp
30.0 —		1								occurs as fine blebs mm-cm on fractures, partially replacing some
					2,000					

C-	T D I	LIC	· T I			LL F	HOLE		H94. ГЕР		05 [UN			CHAL				Δ	422	2 Y		PAGE	5
3 STRUCTURE ID	CANGLE TO CORE	STRUCTURE ID	LANGLE TO CORE	אכ	7 CALCITE	% BIOTITE	% K-SPAR	Z CHLORITE	Z EPIDOTE		% MAGNETITE	PYRITE HABIT	% PYRITE	COPYRITE HABIT	% CHALCOPYRITE	H11	FROM	70	OSAMPLE NUMBER	LENGTH F+/10	Copper %	GOLD 9/t	— 180.0
											in the		20	DDDD			169.0	190.0			0.200	0.105	1000
FR	35	FR	20			10.0	5.0		2.5		1		2.5	D	0.0		190.0	199.0			0.140	0.075	- 1112 1113
												Ø Ø		Ø Ø			199.0	212.0			0.040	0.001	-
												AY AY		Ø Ø			212.0	219.0			0.640	0.260	
-	40	CV	40		5.0	10.0	2.5		2.5		1.0	AY AY	10	A A	1.0		219.0	229.0			0.060	0.030	
FR	40	CV	40	10000	5.0	10.0	2.3		2.5	, .	1.0	**************************************	1.0	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX			229.0	239.0			0.060	0.023	— 230.0
												AY AY		A A			239.0	249.0			0.060	0.015	
												Ø		Ø			249.0	255.0			0.330	0.100	-
														D			255.0	265.0			0.290	0.105	-
FB	50	LC	65			5.0	10.0		2.5					DDD	0.0		265.0	275.0			0.040	0.014	
			em			00 1		Lugh						Ď			275.0	281.0			0.040	0.031	- 280.0
												X X X		BBB			281.0	291.0			0.050	0.019	
												XX XX		B B B			291.0	301.0			0.060	0.012	
									7			A A A A A A A A A A A A A A A A A A A		B			301.0	311.0			0.360	0.295	
						1134						XX XX		B B			311.0	321.0	No.		0.470	0.390	
FR	65	FR	2 45	5	5.0	10.0	5.0		5.0		1.0	A A	2.5	B	1.0		321.0	331.0			0.250	0.180	330.0
					64	F	1					8		B B B			331.0		erral Swall		0.200	0.160	330.0
												A A		B			341.0	351.0			0.560	0.410	
											1	8	4	B			351.0	361.0		+	0.450	0.140	

DRILL HOLE: DDH94_IE05

					PAGE	6				
FEET	ROD PPT	RECOVERY PPT	FROM	10	LITHOLOGY	MINDR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
0.0	800	950	281.00	380.00	Lapilli Tuff	2001		Clastic	Fragmen	Variably altered well mineralized lapilli tuff. Frags of Amyg Ande flow, feldspar, porphyry intrusive, xtal tuff, ash tuff, etc. Locally crowded. Alteration is patchy. Strong Albite + qtz flooding, affects 50% of interval. Cpy occurs throughout, overall 1-2% but spotty. Locally to 5% at 335, 354 ft. Abundant Py as well, generally exceeds Cpy. Nice ore zone intersection! Cp occurs as fine blebs mm-cm on
- 0.0 -	400	950	380.00	448.00		Fault Zone Fault Zone	MIXED GREY AND	Tufface ous		Fg volcanics? Variably altered and well mineralized. Primary textures almost destroyed. Rock appears to be f.g. volc. tuff. Alteration is patchy. Alb + Kf overprinted by carb stringers + chl associated with shearing on Gully Fault. Interval overall probably 2-3% Cp.
0.0 —	500	1000	448.00	490.00	Feldspar Porphyry (Unspec.)		DARK GREY	Medium Grained	Porphyr itic	Unaltered feldspar porphyry Gully Fault Dyke.
		1000	490.00	494.00	FAULT		PALE GREY	Sheared	Breccia ted	The Gully Fault. Carb + Chl alteration assoc. with shearing.
0.0 -	250	1000	494.00	554.00	Lithic Ash Tuff		MEDIUM GREY	Tufface ous	e Aligned Phenocr ysts	A moderately chloritized strongly fractured interval of ash tuff on top, grading into lapilli-crystal tuff at bottom. Mod. Py trace Cp. Cpy increases to 1% in bottom S ft.
					kret.		9			

5	ſŖ.	UC	TU		[LL	HOLE		H94 TER		:05 ION	0.31		CHALC	×		_	SŞA	YS		PAGE	7
STRUCTURE ID	ANGLE TO CORE	STRUCTURE ID	ANGLE TO CORE	RE % CALCITE	% BIOTITE	% K-SPAR			ALI. FALIES	% MAGNETITE	PYRITE HABIT	% PYRITE	DPYRITE HABIT	CHALCOPYRITE	FROM	10	SSAMPLE NUMBER	LENGTH Ft/10	Copper %	60LD 9/t	<del>-</del> 360.0
				100	110			5.0		1.0	<b>**</b>	2.5	BBBB	1.0	361.0	371.0	Tho			0.195	360.0
- R	65	FR	45	5.0	10.0	5.0		5.0		1.0	A	2.0	В	1.0	371.0	380.0			0.420	0.305	
											D		D <v< td=""><td></td><td>380.0</td><td>390.0</td><td></td><td></td><td>2.270</td><td>0.780</td><td></td></v<>		380.0	390.0			2.270	0.780	
										PET.	DDD		0 </td <td></td> <td>390.0</td> <td>400.0</td> <td></td> <td></td> <td>0.250</td> <td>0.105</td> <td>- Aurilla</td>		390.0	400.0			0.250	0.105	- Aurilla
											DDD		0 </td <td></td> <td>400.0</td> <td>410.0</td> <td></td> <td></td> <td>0.230</td> <td>0.095</td> <td></td>		400.0	410.0			0.230	0.095	
cv	45	FT	70	10.0	5.0	10.0	2.5	- 10			DDD	1.0	D </td <td>1.0</td> <td>410.0</td> <td>420.0</td> <td>#713#E</td> <td></td> <td>0.080</td> <td>0.047</td> <td>— 410.0</td>	1.0	410.0	420.0	#713#E		0.080	0.047	— 410.0
											D		D </td <td></td> <td>420.0</td> <td>428.0</td> <td></td> <td></td> <td>1.430</td> <td>0.810</td> <td></td>		420.0	428.0			1.430	0.810	
											D		D </td <td></td> <td>428.0</td> <td>438.0</td> <td></td> <td></td> <td>0.470</td> <td>0.220</td> <td></td>		428.0	438.0			0.470	0.220	
											DDDD		D <br D </td <td></td> <td>438.0</td> <td>448.0</td> <td></td> <td></td> <td>0.040</td> <td>0.021</td> <td></td>		438.0	448.0			0.040	0.021	
			G					LIPE SE													— 460.0
FR	15	FR	80		2.5	100				1.0			N.				The				200.0
FT	80	FT	55	10.0			10.0								490.0	494.0			0.090	0.062	
											D		D		494.0	504.0			0.070	0.036	-
											DDDD		DDDD		504.0	514.0			0.160	0.105	— 510.0
FR	50	BI	70	2.5	10.0	1.0	10.0	5.0			D	1.0	D	0.0	514.0	524.0			0.070	0.030	-
											DDD		000		524.0	534.0	to sul		0.030	0.005	1000
			100					1			D		D		534.0	544.0			0.040	0.024	1


DRILL HOLE: DDH94_IE05
PAGE 8

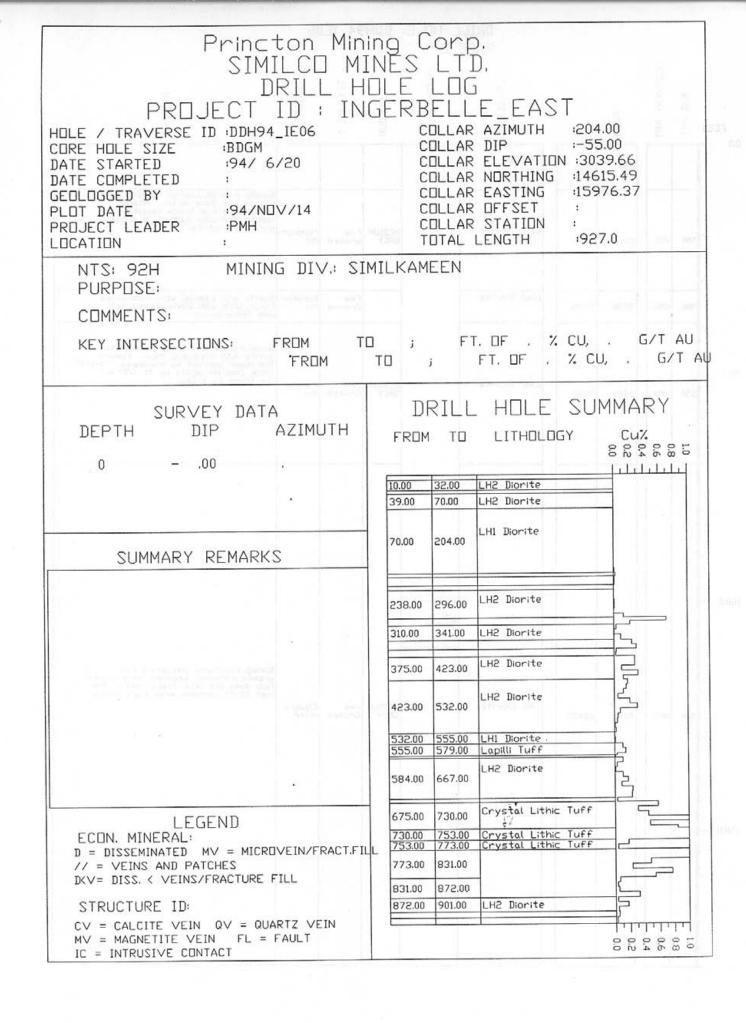
FEET 540.0 —	ROD PPT	RECOVERY PPT	FROM	10	PAGE	MINDR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
-	250	1000	494.00	554.00	Lithic Ash Tuff	See C	ME DIUM GREY	Tufface ous	Aligned Phenocr ysts	A moderately chloritized strongly fractured interval of ash tuff on top, grading into lapilli-crystal tuff at bottom. Mod. Py trace Cp. Cpy increases to 1% in bottom 5 ft.
	800	1000	554.00	594.00	Esse;	STR.	MIXED GREY AND	Tufface ous	Fragmen tal	Spotted grey and pink Alb + Kf 'hornfels' zone. Trace Cp only assoc. with biotitic patches. Primary textuires almost destroyed. Vague fragments suggest lapilli tuff.
90.0 —	200	1000	594.00	601.00	Diorite (Unspecified )	pime .	Edoli Mi	Crowded Porphyr Y		Mod. albitized dioritic intrusive. Trace Cp with bio. in mafic? sites.
			S SE	ecal)	0.000	Date :	100			
				Self (	201	100.0	I NA IVA IVA			
40.0 -	900	1000	601.00	696.00	Lithic Ash Tuff		MIXED GREY AND	Fragmen tal	Tufface ous	Variably altered + well mineralized, interbedded lapilli xtal and ash tuff. Polymictic frags include ash tuff, xtal tuff, feldspar porphyry, augite porphyry and amygdaloidal flow rock. Lapilli tuff comprises 50%, 30% is ash, ash tuff. Alteration is patchy (50%) albite +/- Kf flooding, overprinting strong bio +/- mag alth. Die or two 1 ft feldspar porphyry dykes poss. maybe crowded xtal tuff. Interval is well min'd, 2-3% cp from 614-644 ft,
			11540	(0.1) (0.1)	e Alfa	201	10	g		EAR 02 75 00
590.0 -				AMA	ALL REAL PERSONS	100		0000		3.°.
	750	1000	696.00	785.00	Diorite (Unspecified )	1 - 12: - 12: - 13: - 13	L1GHT GREY	Medium Grained	Porphyr itic	Weakly albitized well mineralized interval of Lost Horse diorite. Primary textures equigranular non-bedded feldspar porphyry. Distinct salt + pepper texture. Weak pervasive albitization, patchy Kf. Cpy occurs mainly as fracture fill, lesser as patchy disseminations. Cp veins on mm-cm scale 1-2/m. Minor patches are 'soaked' with cp. Diverall interval 1%. Cp with patches of 2-3%. Cp veins at 717, 738 ft, 2' at 762 ft. Nice ore

01	гр	LIC	TII			HOLE		DH94 TER					CHAL	i di.			۵22	24		PAGE	9
STRUCTURE ID	LANGLE TO CORE	STRUCTURE ID	ANGLE TO CORE	RE % CALCITE	% BIOTITE	% K-SPAR	×		- ALT. FACIES		-	% PYRITE	CHALCOPYRITE HABIT	% CHALCOPYRITE	FROM		SSAMPLE NUMBER	LENGTH Ft/10	Copper %	GOLD 9/t	— 540.0
FR		BD	(September 1)	2.5	10.0	1.0	10.0	5.0			D	1.0	D	0.0	534.0	544.0			0.040	0.024	— 540.0
	50	БЪ	Ĺ	2.5	10.0	1.0	10.0	5.0			D	1.0	D		544.0	554.0		Ш	0.120	0.078	
7							Jeju				DD		DDD		554.0	564.0	;-;sa		0.040	0.053	
	one.									iron,	0000		000		564.0	574.0			0.110	0.220	-
FR	30	1		2.5	5.0	10.0	2.5	5.0			D	0.0	D	0.0	574.0	584.0			0.010	0.035	-
											D		D		584.0	594.0		П	0.020	0.059	— 590.0
FR	65				2.5			2.5			D	1.0	D	1.0	594.0	601.0			0.130	0.160	
											D		A A		601.0	611.0			0.060	0.035	
											DDD		XX XX		611.0	621.0			0.750	0.610	
										-	D	107	**************************************		621.0	631.0	27911		0.220	0.230	901.
											DDDD		XX XX		631.0	641.0			0.120	0.080	— 640.0
FR	50	BD	55		10.0	10.0	2.5			2.5	D	0.0	Ø Ø	1.0	641.0	651.0			0.070	0.110	040.0
							4,750200				DDDD		A A		651.0	661.0			0.040	0.036	
											D		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		661.0	671.0			0.020	0.013	
								4.4			0000		A A		671.0	681.0	166.3		0.280	0.120	
10000											0000		Ø		681.0	691.0			0.090	0.020	
															691.0	696.0	i i		0.560	0.410	— 690.0
											M/M	Λ	M\ M\	Λ	696.0	706.0			0.200	0.470	-
FR	35	FR	70		5.0	2.5	5.0				MMM	1.0	M M M		706.0	716.0			0.260	0.290	-
											11	1	11		716.0	726.0			0.590	0.400	

FEET	ROD PPT	RECOVERY PPT	FROM	70	PAGE	I 10 MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
	750	1000	696.00	785.00	Diorite (Unspecified )		LIGHT	Medium Grained	Parphyr Itlc	Weakly albitized well mineralized interval of Lost Horse diorite. Primary textures equigranular non-bedded feldspar porphyry. Distinct salt + pepper texture. Weak pervasive albitization, patchy Kf. Cpy occurs mainly as fracture fill, lesser as patchy disseminations. Cp veins on mm-cm scale 1-2/m. Minor patches are 'soaked' with cp. Diverall interval 1% Cp wtih patches of 2-3% Cp veins at 717, 738 ft, 2' at 762 ft. Nice ore
	750	1000	785.00	817.00	Lapilli Tuff		DARK GREY	Fragmental	Tufface	Relatively fresh lapilli tuff. Black f.g. matrix +/- fs xtals, with polymictic, rounded frags of fs porphyry, ash tuff, also intrusve frags. Pyrite is ubiquitous, exceeds chalco by 2-3 tines. Overall poorly mineralized.
20.0			art A	THE STATE OF THE S		Diorite (Unspecified)			es.	DE NO SUL TRACES
70.0 -	750	950	817.00	956.00	Lapilli Tuff	Crystal Lithic Tuff Diorite (Unspecified)	MIXED GREY AND	Fragmen tal	Tufface ous	Mixed interval of about 50/50 volcanics and intrusive. Lapilli tuffs dark with bio + nag. Lost Horse intrusives grey or pink, with alb + Kf (limited alb + Kf attr of volcanics). Cp scattered throughout as nn veinlets + ca blebs to lem. Cp generally more abundant in volcanics regardless of altrin.
			er gen		aarti - cont	Diorite (Unspecified)				

C) STRUC	TRANGLE	RL	JC STRUC	TANGLE	IRE				AL	)H94. TER#	AT	ION		*	CHALCOPYRITE HABIT	×		А	SSAMPLE NUMBER	Y LENGTI		PAGE	11
STRUCTURE ID	TO CORE	1	STRUCTURE ID	TO CORE		CALCITE	BIOTITE	% K-SPAR	% CHLORITE	EPIDOTE	ALT. FACIES	% MAGNETITE	PYRITE HABIT	% PYRITE	HABIT	CHALCOPYRITE	FROM	10	NUMBER	H Ft/10	Copper %	GOLD 9/t	
	m	T	ь	m	Γ	М		70	101		Γ	İ	MV		MV MV		716.0	726.0			0.590	0.400	720.0
													MV		MV		726.0	736.0			0.610	0.540	
			7					Jan J					MV MV		MV MV		736.0	746.0			0.360	0.250	-
FR	35	5	FR	70			5.0	2.5	5.0			let in	MV MV	1.0	MV MV MV		746.0	756.0	1	00	0.240	0.190	F 45
													MV MV		MV MV		756.0	766.0			1.480	1.200	
													XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		MV MV		766.0	776.0			0.680	0.690	<b>— 770.0</b>
							H.L.				4		MV		M\ M\		776.0	785.0			0.250	0.180	
													MV MV		B B		785.0	795.0			0.070	0.031	01
FR	40	0	BD	65			10.0		5.0	5.0		1.0	MV MV MV	1.0	B B B B	0.3	795.0	805.0			0.070	0.001	-
				a			utu	154		131			MV MV		B		805.0	817.0			0.080	0.038	
													MV MV		B M M		817.0	827.0			0.040	0.024	— 820.0
													MV MV		M/ M/		827.0	837.0			0.030	0.029	-
											-		MV MV		N N N	1	837.0	846.0			0.060	0.042	-
							l I		E H				MV MV		MY		846.0	853.0			0.310	0.140	-
FR	4	0	FR	60	1	0	5.0	10.0				1.0	MV MV MV	1.0	N N N	2.5	853.0	866.0			0.100	0.037	
		CONTRACTOR AND AND AND AND AND AND AND AND AND AND											MV MV MV		2333		866.0	880.0			0.140	0.109	— 870.0
													MV MV		MMM	V V	880.0	892.0			0.220	0.160	
	-			1									MV MV	1	M	V V	892.0	902.0			0.310	0.260	




01	TP	21.1	ıc	TI				HOLE		н94. ГЕR					CHALC	×		Α	AZZ	YS		PAGE	13
STRUCTURE ID	ANGLE TO CORE	0 0000000000000000000000000000000000000	STRUCTURE ID	ANGLE TO CORE		% CALCITE	% BIDTITE	% K-SPAR		% EPIDOTE	ALT. FACIES		PYRITE HABIT	% PYRITE	CHALCOPYRITE HABIT	CHALCOPYRITE	FROM	10	SSAMPLE NUMBER	LENGTH Ft/10	Copper %	למרת 1/6	— 900.0
													MV MV MV		<u>₹</u>		902.0	914.0			0.310	0.280	-
													MV MV MV		MV MV		914.0	924.0			0.240	0.140	-
R	40	F	R	60	1.	.0	5.0	10.0				1.0	MV MV	1.0	MV MV	2.5	924.0	934.0			0.150	0.040	
													MV MV		MV MV		934.0	944.0			0.280	0.250	
													MV MV		MV MV		944.0	956.0			0.610	0.420	— 950.0
													MV MV		MV MV		956.0	967.0			0.120	0.046	
FR							10.0		2.5			1.0	MV MV	1.0	MV MV	1.0	967.0	980.0			0.200	0.160	
													MV MV		MV MV		980.0	986.0			0.120	0.085	
							50		25				MV MV MV	1.0	MV MV MV	1.0	986.0	1000.			0.290	0.240	
FR							5.0	10.0	2.5				MV MV MV		MV MV		1000.	1011.			0.170	0.140	— 1000.i
		1													DDD		1011.	1021.			0.030	0.028	
															DDD		1021.	1031.			0.000	0.001	_
FR	4	5	FR	30				10.0		2.5						0.1	1031.	1059. ;			0.000	0.001	- - 1050.
															D		1059.	1070.			0.000	0.004	
FR	3	0	FR	60			5.0	10.0				1.0	M/ M/	2.5	D	1.0	1070.	1090.			0.370	0.300	

Γ

Γ.

Γ

Γ



					DRIL PAGE	r HOFE	DDH	94_IE	06	
FEET	ROD PPT	RECOVERY PPT	FROM	H 0 H	LITHOLOGY	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
			0.00	10.00	Casing		-		037	TR STARTED 947 6
-	500	1000	10.00	32.00	LH2 Diorite	IOTAL COLLA	MEDIUM GREY	Fine Grained	Porphyr	Diorite wtih 2% coarse 'ghost' plag. phenos in a finer natrix. Intense albite alt'n with trace epidote + biotite. The only sulphide is trace pyrite (unoxidized).
						AMEEN	FUH.	2 11	Ma 8	HIMIN HER LINE
	500	1000	32.00	39.00	LH2 Diorite			Fine Grained	Porphyr itic	Diorite with intense, salmon-coloured Kspar alt'n with albite (scapolite?) vns. Trace pyrite.
, –	UA.	TV		2 C	E HITT		10		HON! BRT	Intensely albite altered porphyritic diorite with increasing Kspar toward the lower contact as envelopes 1/4-1/2' thick. Chlorite spots up to 1/2' in dia. Trace Py + Cpy.
	650	1000	39.00	70.00	LH2 Diorite	nen	MEDIUM GREY	Fine Grained	Porphyr itic	oia. Trace Py + Cpy.
			83	76	CENEHITY 1	MID				
					97-304 SAV	Milati (0)				
					CHANGE IN	THIS T	in.			SEMBLEY YEARNOO
0 —					Dept O.	LH1 Diorite				<b>:</b>
	500	1000	70.00	204.00	LH1 Diorite	AND SA	MEDIUM GREY	Fine Grained	Equigra nular	Boring, relatively unaltered, fine grained intrusive, becomes more augite rich down the hole. Trace pyrite. The last 20 ft contains weak Kspar alt'n.
					What here a	See see	e			
.0 —				WAT I				ar as	THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE S	CCON MUNEISAL NO - MESSON
							Y	111		THE TOWNS THE THE THE THE THE THE THE THE THE THE
			N II							1 14 May 2017 (1979)

DRILL HOLE: DDH94_IE06
PAGE 4

FEET	RQD PPT	RECOVERY PPT	FROM	70	LITHOLOGY	MINDR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
80.0 —	500	1000	70.00	204.00	LH1 Diorite		MEDIUM GREY	Fine Grained	Equigra nular	Boring, relatively unaltered, fine grained intrusive, becomes nore augite rich down the hole. Trace pyrite. The last 20 ft contains weak Kspar alt'n.
	600	1000	204.00	211.00	Crystal Lithic Tuff		MEDIUM GREY	Fine Grained	Porphyr itic	Light green fine pyroxenes (4%) in an aphantic matrix with very faint and fine layering (bedding) roughly
-	700	1000	211.00	229.00	LH2 Diorite			Medium Grained	Porphyr itic	Moderate to strong Kspar + albite alt'n within ned graned, porphyritic diorite with traces of Py + Cpy.
230.0 —	600	1000	229.00	238.00	LH2 Diorite		PALE GREY	Medium Grained	Porphyr itic	White to rusty, light grey fault zone with moderate argillic alt'n + trace Py. Approx. 3 different faults, each with 3-6 ° of limonitic clay gouge.
- 280.0	400	1000	238.00	296.00	LH2 Diorite	÷		Mediun Grained	Porphyr itic	Pink and grey porphyritic diorite that commonly loses its textures due to alt'n. Moderate to intense Kspor (salmon coloured) throughout, with trace Cpy + Py. Veakly broken.
	400	1000	296.00	310.00	LH2 Diorite		LIGHT GREY	Medium Grained	Porphyr	Pink-grey interval with moderate potassic alt'n + 1% Py.
330.0 -	350	1000	310.00	341.00	LH2 Diorite			Medium Grained	Porphyr itic	Salmon pink + grey diarite with local white feldspar megacrysts 1/2' long. Trace Py + Cpy. Intense Kspar alt'n. Minor (clft) intervals of bedded tuff (parallel to contacts at 80 deg. TCA).
	700	1000	341.00	360.00	LH2 Diorite		MEDIUM GREY	Medium Grained	Porphyr	Darker coloured + better mineralized diorite than the interval above. 1% Cpy assoc. with black chlorite + pyrite.

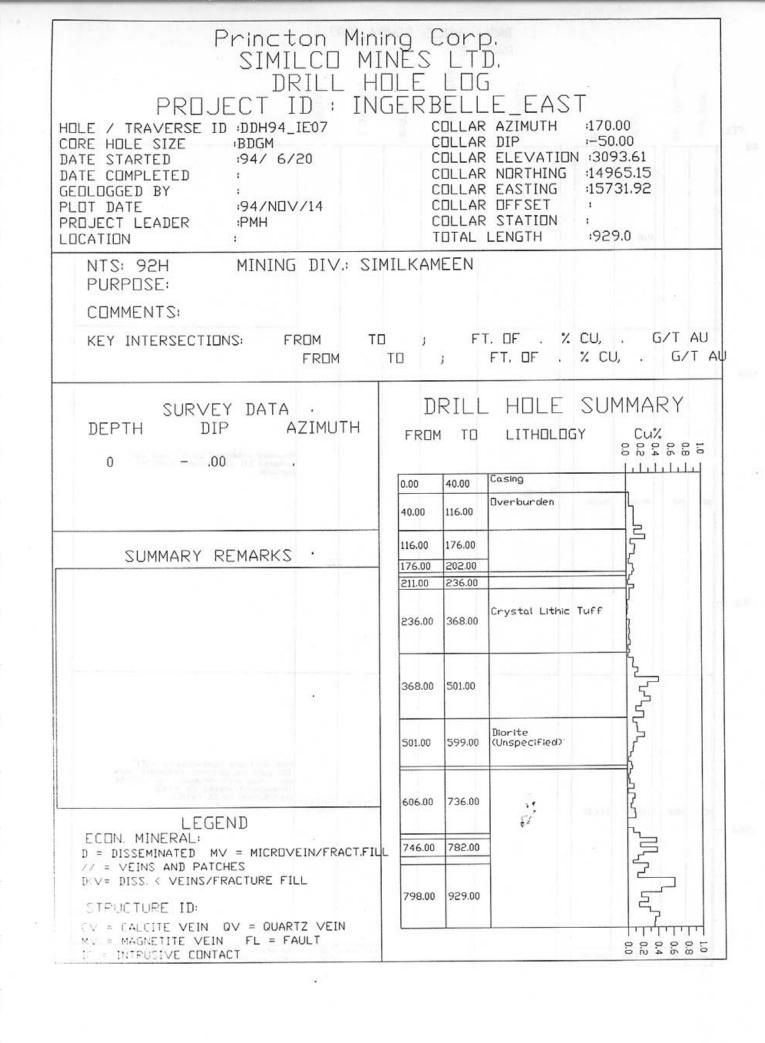
				DRI	LL I	HOLE:	DDI	H94	_IE	06			CHAL					224	VC	F	PAGE S	5
T STRICTIPE IN	RANGLE TO CORE	STRUCTURE ID	DANGLE TO CORE [	R % CALCITE	% BIOTITE	% K-SPAR	ALT % CHURRITE	E " EPIDOTE	A ALT. FACIES	N MAGNETITE		% PYRITE	COPYRITE HABIT		% CHALCOPYRITE	FROM	1 A	SAMPLE NUMBER	2 LENGTH Ft/10	Copper %	GDLD 9/t	- 180.0
											D D D									anes e	118.034	
<b>V</b>	30					0.1					D	0.0				194.0	204.0			0.010	0.001	
D	50	uc	50			10.0		-	1		D	0.0	[	)	0.0	204.0	211.0			0.020	0.007	
					15.8		Tre and				DDD	0.0			0.0	211.0	221.0	i Della II		0.010	0.002	
~	50					10.0					D	0.0		֓֞֞֜֓֓֓֓֓֓֓֓֟֓֓֓֓֓֓֟֓֓֓֓֓֓֟֓֓֓֓֓֡֓֓֓֡֓֡֓֡֓֡	,,0	221.0	229.0			0.010	0.003	- 230.
Т										]	D	0.0				229.0	238.0			0.000	200.0	200
27											D			D		238.0	248.0			0.000	0.001	
											DDDD			D D D		248.0	258.0			0.000	0.003	
											DDDD			D D		258.0	268.0			0.010	0.008	
AV	40					10.0	2.5				0000			D	0.0	268.0	278.0			0.010	0.010	
												'		DDD		278.0	288.0			0.000	0.009	— 280
						VOI V								D		288.0	296.0			0.130	0.089	
	-		t											D	1.0	296.0	303.0			0.710	0.640	
A١	/ 41	0				5.0	2.5							D	Ĺ	303.0	310.0			0.220	0.195	
											[			DDD		310.0	320.0			0.030	0.040	
A	V 6	0				20.0	2.5						.0		0.0	320.0	330.0	٠:		0.000	0.001	- 33
																330.0	0 341.0			0.09	0.093	
			+				+					)=V   =V		0:0:	V V	341.0	0 351.	0		0.24	0 0.420	
A	v:	35				10.0	5.0				I	i-Vie I-V	5		V 1.0	351	0 360	.0		0.30	0 0.660	

DRILL HOLE: DDH94_IE06 PAGE 6

		zı			PAGE					
FEET TOO		RECOVERY PPT	FROM	70	LITHOLOGY	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
700	10	00	360.00	375.00	LH2 Diorite		PALE	Medium Grained	Porphyr itic	Intensely albitized diorite (mostly white) with good mineralization above and below it, but only trace within.
- 400	0 10	00	375.00	423.00	LH2 Diorite	0.00T		Medium Grained	Porphyr itic	Darker coloured diorite with 1% Cpy + 2% Py in patchy mod, to int. Kspar alth. Some of this unit may be a finer grained phase of LH (also darker coloured).
			100 A	0.50		0.625				
35		000	423.00	532.00	LH2 Diorite		MIXED GREY AND	Mediun Grained	Porphyr i*ic	Bright salmon pink and grey with 0.5% Cpy as dissens, and within chlorite/pyrite fractures and spots. Probable intrusive contact at 532 ft. Occasional megacrysts of white feldspar, moderate Kspar alt'n.
0.0 —										
31	50 1	000	532.00	555.00	LH1 Diorite		DAP.	Fire Or carried	Equipro	Very boring fine grained with fine, acicular HB (approx. 1%) and almost no other features. Dark grey-black. This unit may be late and not an LH at all.

S STRUCTURE ID	CHANGLE TO CORE	S STRUCTURE ID	HANGLE TO CORE	R % CALCITE	% BIOTITE	% K-SPAR	A % CHLORITE	TER % EPIDOTE	ALT, FACIES	N MAGNETITE		% PYRITE		% CHALCOPYRITE	FROM	7	SSAMPLE NUMBER	Y LENGTH F+/10	Copper %	60LD 9/t	— 360.0
		FR	11	5.0	10.0	5.0		5.0		1.0	XXX	2.5	B B	1.0	361.0	371.0	Seatt 1		0.190	0.195	
K	63	rk	43	5.0	10.0	5.0		5.0		1.0	Ø		В		371.0	380.0			0.420	0.305	
				prist.	25.1		705	7			DD	513	D <a D<a< td=""><td></td><td>380.0</td><td>390.0</td><td>76</td><td></td><td>2.270</td><td>0.780</td><td></td></a<></a 		380.0	390.0	76		2.270	0.780	
											DOD		D <a D<a< td=""><td></td><td>390.0</td><td>400.0</td><td></td><td></td><td>0.250</td><td>0.105</td><td></td></a<></a 		390.0	400.0			0.250	0.105	
		31		1700				No. III		7-6	D	-27	DDDDDD		400.0	410.0	791 0		0.230	0.095	410
· V	45	FT	70	10.0	5.0	10.0	2.5				DOD	1.0	D <br D </td <td>1.0</td> <td>410.0</td> <td>420.0</td> <td></td> <td></td> <td>0.080</td> <td>0.047</td> <td>— 410,</td>	1.0	410.0	420.0			0.080	0.047	— 410,
											D		D <v< td=""><td></td><td>420.0</td><td>428.0</td><td></td><td></td><td>1.430</td><td>0.810</td><td></td></v<>		420.0	428.0			1.430	0.810	
					125.75			16,729			0000		D <a D<a< td=""><td></td><td>428.0</td><td>438.0</td><td></td><td></td><td>0.470</td><td>0.220</td><td>-</td></a<></a 		428.0	438.0			0.470	0.220	-
										1	DOD	13	0.40 0.40 0.40 0.40 0.40 0.40		438.0	448.0	pat Be		0.040	0.021	nor*
FR	15	FR	80		2.5					1.0											— 460 -
FT	80	FT	55	10.0	ALC:		10.0			50				A-9	490.0	494.0			0.090	0.062	
											D		DDD		494.0	504.0			0.070	0.036	-
			Į.	Trus Vitage	Hij			1			DDDD		0000		504.0	514.0	15		0.160	0.105	<b>—</b> 510
FR	50	BD	70	2.5	10.0	1.0	10.0	5.0			D	1.0	D	0.0	514.0	524.0	Title		0.070	0.030	
											DDD		000		524.0	534.0			0.030	0.005	-
											Ď		Ď		534.0	544.0			0.040	0.024	

Π


FEET	ROD PPT	RECOVERY PPT	FROM	ТО	LITHOLOGY	MINOR LITH.	COLDUR	TEXTURE 1	TEXTURE 2	REMARKS
540.0 <del>-</del>	350	1000	532.00	555.00	LH1 Diorite	8182	DARK GREY	Fine Grained	Equigra nular	Very boring, fine grained with fine, acicular HB (approx. 1%) and almost no other features. Dark grey-black, This unit may be late and not an LH at all. May be a
-	300	1000	555.00	579.00	Lapilli Tuff		MEDIUM GREY	Fragnen	Medium Grained	Medium grained lithic lapilli tuff. Heterolithic angular frags connonly 1/4-1/2' in dia. cut by shallow angle Kspar/albite veins up to 1' thick.
-	350	1000	579.00	584.00	LH1 Diorite	6.00	DARK GREY	Fine Grained	Equigra nular	This unit may not be an LH diorite, but may be an unrelated (or related)
590.0 —			tale	eru	, and	•		*100		na an co en el el el
	400	900	584.00	667.00	LH2 Diorite	anie unck	MEDIUM GREY	Medium Grained	Porphyr itic	Mottled + variable LH porphyritic diorite with 0-2% Cpy with pyrite in veins + dissens. Weak Kspar alt'n, connonly associated with chlorite veins or spots. Less than 5% intervals of alft thick tuffs.
640.0 -									na.	Zar I mate
	250	1000	667.00	675.00	LH2 Diorite	1000 to	PALE GREY	Medium Grained	Porphyi	Intensely carbonate + albite (?) altered fault zone with 20% carbonate often forming a breccia matrix. Fault orientation is unclear. Dnly trace
690.0 -	350	1000	675.00	730.00	Crystol Lithic Tuff	Crystol	VERY DARK GREY			Some of this unit may be an intrusive, but most is a fine grained dark grey tuff (crystal ash). Low angle fault at 702-712 ft (10 deg. TCA). Lorger fault at 690-693 ft. 2% Cpy throughout.
			100		1962	Crystal Lithic Tuff	000			

C-	TE	ו ונ	`TI			HOLE		)H94 TER		.06 TUN	303		CHAL	1 4			Δ22 <i>Δ</i>	75		PAGE	9
) STRUCTURE ID	CANGLE TO CORE	STRUCTURE ID	ANGLE TO CORE	JRE % CALCITE	% BIOTITE	% K-SPAR		Z EPIDOTE		% MAGNETITE	PYRITE HABIT	% PYRITE	COPYRITE HABIT	% CHALCOPYRITE	FROM 532.0	☐ [542.0	SSAMPLE NUMBER	D LENGTH F t/10	Copper %	00LD 9/t N	540.0
						0.1					ŀ				542.0	555.0			0.010	0.003	-
											D </td <td></td> <td>D=V D=V</td> <td>1000</td> <td>555.0</td> <td>565.0</td> <td></td> <td></td> <td>0.110</td> <td>0.046</td> <td>-</td>		D=V D=V	1000	555.0	565.0			0.110	0.046	-
ΚV	10	CV	/ 80		100	5.0		2.5		arth	D </td <td>1.0</td> <td>D=V D=V D=V</td> <td>0.1</td> <td>565.0</td> <td>575.0</td> <td>0</td> <td></td> <td>0.150</td> <td>0.090</td> <td>-</td>	1.0	D=V D=V D=V	0.1	565.0	575.0	0		0.150	0.090	-
L											D<		D=V	)FIG	575.0	579.0			0.030	0.026	
						0.1							0.1		579.0	584.0			0.010	0.001	
											0 </td <td></td> <td>0<v 0<v< td=""><td></td><td>584.0</td><td>594.0</td><td></td><td></td><td>0.110</td><td>0.010</td><td>- 590.0</td></v<></v </td>		0 <v 0<v< td=""><td></td><td>584.0</td><td>594.0</td><td></td><td></td><td>0.110</td><td>0.010</td><td>- 590.0</td></v<></v 		584.0	594.0			0.110	0.010	- 590.0
							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				D </td <td></td> <td>D<v< td=""><td></td><td>594.0</td><td>604.0</td><td></td><td></td><td>0.030</td><td>0.005</td><td>-</td></v<></td>		D <v< td=""><td></td><td>594.0</td><td>604.0</td><td></td><td></td><td>0.030</td><td>0.005</td><td>-</td></v<>		594.0	604.0			0.030	0.005	-
										-	D </td <td></td> <td>0<!--</td--><td></td><td>604.0</td><td>614.0</td><td></td><td></td><td>0.010</td><td>0.004</td><td></td></td>		0 </td <td></td> <td>604.0</td> <td>614.0</td> <td></td> <td></td> <td>0.010</td> <td>0.004</td> <td></td>		604.0	614.0			0.010	0.004	
						9.75.00					D </td <td></td> <td>0&lt;\ 0&lt;\</td> <td></td> <td>614.0</td> <td>624.0</td> <td></td> <td></td> <td>0.110</td> <td>0.120</td> <td>-</td>		0<\ 0<\		614.0	624.0			0.110	0.120	-
AV	35					2.5	2.5				D </td <td>2.5</td> <td>D<!--<br-->O<!--</td--><td>0.1</td><td>624.0</td><td>634.0</td><td></td><td></td><td>0.180</td><td>0.062</td><td>-</td></td>	2.5	D <br O </td <td>0.1</td> <td>624.0</td> <td>634.0</td> <td></td> <td></td> <td>0.180</td> <td>0.062</td> <td>-</td>	0.1	624.0	634.0			0.180	0.062	-
								Ster. I			0 </td <td></td> <td>0&lt;\ 0&lt;\</td> <td></td> <td>634.0</td> <td>644.0</td> <td></td> <td></td> <td>0.090</td> <td>0.080</td> <td>- 640.0</td>		0<\ 0<\		634.0	644.0			0.090	0.080	- 640.0
					MATERIA STATE			Land I		parke	D </td <td></td> <td>D<!--<br-->D<!--</td--><td></td><td>644.0</td><td>654.0</td><td></td><td></td><td>0.240</td><td>0.260</td><td>- N</td></td>		D <br D </td <td></td> <td>644.0</td> <td>654.0</td> <td></td> <td></td> <td>0.240</td> <td>0.260</td> <td>- N</td>		644.0	654.0			0.240	0.260	- N
											D </td <td></td> <td>D<!--</td--><td></td><td>654.0</td><td>667.0</td><td></td><td></td><td>0.230</td><td>0.180</td><td>-</td></td>		D </td <td></td> <td>654.0</td> <td>667.0</td> <td></td> <td></td> <td>0.230</td> <td>0.180</td> <td>-</td>		654.0	667.0			0.230	0.180	-
FT				20.0							D	0.0			667.0	675.0			0.030	0.022	-
				/ mix					10		D>/ O>/		0>V 0>V		675.0	685.0	e qui		0.580	0.260	-
											D>/	1	D>A D>A		685.0	695.0			0.310	0.250	<b>—</b> 690.0
AV	50						1	127			0>/		D>V		695.0	705.0			0.450	0.22.0	- (VC) 100
					-213	T.	10.7				D>/<	1	D>V D>V		705.0	715.0	ii seci		1.140	0.910	
											D>\		D>V		715.0	725.0			0.470	0.320	

FEET	ROD PPT	RECOVERY PPT	FROM	10	רוואםרםפא	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
20.0 —	350	1000	675.00	730.00	Crystal Lithic Tuff		VERY DARK GREY			Some of this unit may be an intrusive, but most is a fine grained dark grey tuff (crystal ash). Low angle fault at 702-712 ft (10 deg. TCA). Larger fault at 690-693 ft. 2% Cpy throughout.
	400	1000	730.00	753.00	Crystal Lithic Tuff	1972	VERY DARK GREY	Breccia ted	Fine Grained	at 690-693 ft. 22. Lpy throughout.  Highly brecciated ash crystal tuff with 1/2-2 clasts of tuff supported by a calcite/cpy/magnetit e matrix. Dne massive band at 733-735 ft contains 50% Cpy. Otherwise, the interval contains 4% Cpy, 2% Py and 0.8% magnetite within the massive Cpy, clasts of round pyritic tuff 1/8-1' in dia. are common. The massive layer has contacts at 70 degrees TCA.
			201H	210	1 628581			11/1/1		Calcite and albite and Kspar stringer stockwork in a texturally variable crystal tuff, 0.8% Cpy occurs as coarse clusters and within calcite vns.
70.0 —	650	1000	753.00	773.00	Crystal Lithic Tuff		MEDIUM GREY	Bedded	Mottled	
	7.50			H2.b	480			ĮA Jo		
				104	-					Sheared albite vns 1/8-1' thick, approx. 30/10 ft at 70 deg. TCA within a bedded (approx. 25 de.) dust tuff.
	750	1000	773.00	831.00	4.21.0		DARK GREY	Sheared	Bedded	Sheared albite vns 1/8-1' thick, approx. 30/10 ft at 70 deg. TCA within a bedded (approx. 25 deg.) dust tuff. 2% Cpy as very fine to fine dissens. + minor veins up to 2' thick. One massive 2' vn at 821 ft contains 1% rust-yellow, botryoidal sphalerite (?) and possible pyrrhotite.
			PERM	A18	7453					
20.0 -			24.5	FE2	1967		lange Voti	al _i		
			n=-	chie.	Winds.					The street is a gestion tipe of
			064	a gar	0.408		MEDIUM	Sheared	Bedded	This interval is a continuation of 773-831 ft, but with only 1/2 as much Cpy (approx. 1%). As well, the rock is somewhat greener and contains more Kspar.
	750	1000	831.00	872.00		late a	GREEN	10 10 10		
70.0 -			Potta	Land I	- Anna -	1 134				
	750	1000	872.00	901.00	LH2 Diorite	1464	MEDIUM GREEN	Medium Grained	Porphyr itic	Greenish diorite with ghost phenocrysts visible through the alt'n. 0.5% Cpy. The albite (sheeted) veins are diminishing down the hole (approx. 5/10 ft in this interval).
	0.00		1000	dear	- Yuena	oceni	Ved.	1/3		ě é
	300	1000	901.00	913.00	8-1	i jilleri	DARK GREY	Fine Grained	Bedded	Moderate to intensely broken dust/ash tuff with 0.5% Cpy throughout.
920.0 -	500	1000	913.00	927.00	LH2 Diorite	l-s	MEDIUM GREY	Medium Grained	Porphyr	Porphyritic LH2D with 0.3% Cpy, Moderate Kspar alt'n.

51	r R I	IIC	TII		LL F	HOLE		H94 TER			ı		CHALC	×		6	SSA	ZY		PAGE	11
STRUCTURE ID	ANGLE TO CORE	STRUCTURE ID	ANGLE TO CORE	RE % CALCITE	% BIOTITE	% K-SPAR	% CHLORITE		ALT. FACIES		PYRITE HABIT	% PYRITE	CHALCOPYRITE HABIT	% CHALCOPYRITE	FROM	10	SSAMPLE NUMBER	LENGTH Ft/10	Copper %	6DLD 9/t	720.0
ΑV											D>V D>V	2.5	D>\ D>\	2.5	715.0 725.0	725.0 730.0			0.470	0.320	— 720.0
													1		730.0	733.0			5.200	0.520	
cv				10.0		1.0				1.0		2.5		5.0	735.0	745.0			4.540	0.180	_
															745.0	753.0			1.350	0.063	-
nn	20	cv	70	10.0		2.5	1.0				V	1.0	V	1.0	753.0	763.0			0.180	0.025	_
ממ	30	LV	/0	10.0		2,5	1.0				V		V		763.0	773.0			0.040	0.010	— 770.0
									.		D>V		D>/	1 1	773.0	783.0			1.370	0.190	-
											D>\ D>\		D>\ D>\	1 1	783.0	793.0			1.780	0.150	-
RD	25	AV	70					2.5			D>V		D>/	2.5	793.0	803.0			0.480	0.510	
											D>\ D>\		D>/ D>/		803.0	813.0			0.230	0.120	
											D>\ D>\		D>/	4 1	813.0	823.0			0.770	0.360	- 820.0
											D>\ D>\		D>/ D>/		823.0	831.0			0.540	0.480	_
											D>\ D>\	1	D>/	4	831.0	841.0			0.060	0.031	_
											D>/ D>/	1	D>,	4 1	841.0	851.0			0.030	200.0	
BD	25	AV	70			5.0		2.5			D>/ D>/	1	D>,	1	851.0	861.0			0.050	0.033	_
											D>/	4	D>	M	861.0	872.0			0.320	0.190	870.0
											D>\ D>\		D>	1	872.0	882.0			0.030	0.008	-
FT	60	AV	65			2.5	2.5				1	1.0	_	0.3	882.0	892.0			0.170	0.090	
											D>'	-	D>	23	892.0	901.0			0.040	0.036	
BD		FT				1.0					D>	0.3	0> 0>	V 0.3	9010	9130			0.050	0.070	
						2.5	2.5					0.3		01	913.0	927.0			0.020	0.009	920.0

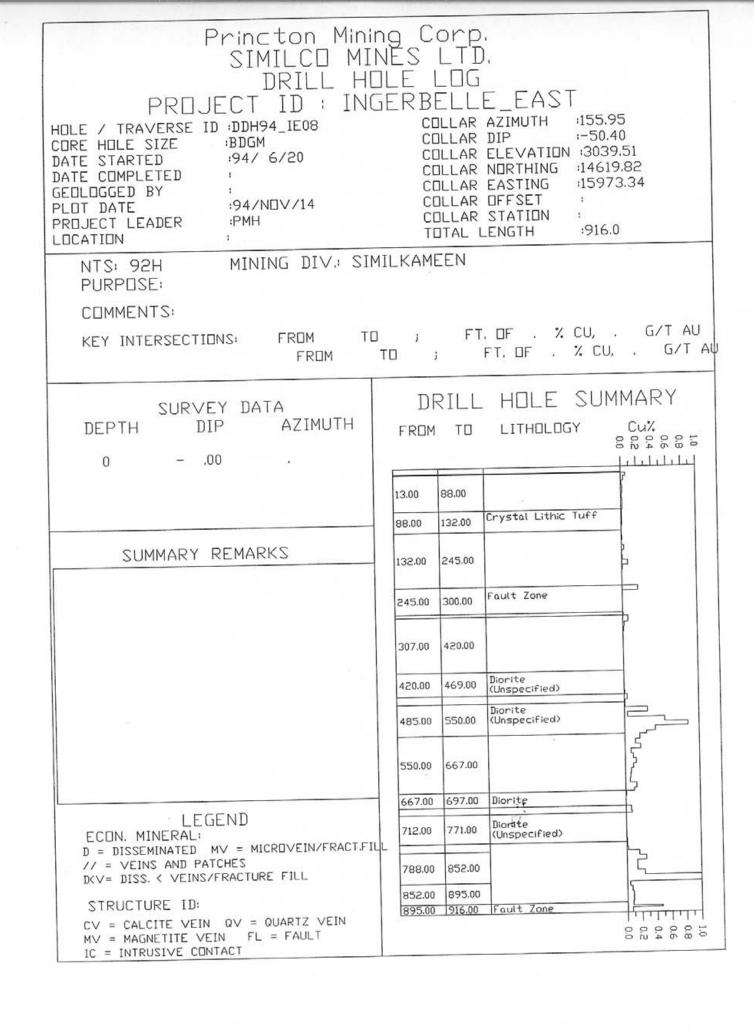
Γ



FEET .0 —	ROD PPT	RECOVERY PPT	FROM	10	ГІТНОГООУ	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
-			0.00	40.00	Casing	AJJ00 AJJ00 AJJ00 AJJ00 AJJ00 TOTAJ			15.00	
Ī						MEEN	7(_11)	112	v IQ	NTS/ 928 PHREASE/ CUMMENTS
50.0 —				o s	10 .1		Œ	II .	MES	a remaining the real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real party and real
				UZ YI	TICH T	ia se Titad	27.	HT		Rounded rubblized core, mixed volc. possible LH, overburden plus 'c' horizon.
	00	200	40.00	116.00	□verburden					
					-	over v				Z MANAGE TENNERS
00.0 -				37661	addin totago-e)	\$ 5 AL TO				
	-				arrodi em	outer o				Mod. albitized lapilli-crystal tuff. 30% pale alb patches, remainder dark
150.0 -	850	1000	116.00	176.00		Barry III	100	tal	Tufface	Mod. albitized lapilli-crystal tuff. 30% pale alb patches, remainder dark bio + nag altin. Abundant py veinlets throughout, blebby Cp irreg. distribution to 1% Py>>Cp.
									N E	ESHIPA DE ATO
	800	1000	176.00	202.00				Fragmen	Tufface	As above only stronger albitization, less py, similar Cp. Cp. Py. Local

DRILL HOLE: DDH94_IE07
PAGE 4

FEET	ROD PPT	RECOVERY PPT	FROM	10	LITHDLOGY	MINDR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
30.0 —	800	1000	176.00	202.00				Fragmen tal	Tufface ous	As above only stronger albitization, less py, similar Cp. Cp Py. Local equigranular textures suggest possible 20% Lost Horse.
	500	800	202.00	211.00	Fault Zone					Strongly fractured, partially healed fault zone - contact between WCF/LH?
30.0 —	800	1000	211.00	236.00			LIGHT GREY	Porphyr itic		Strongly albitized diorite? Could be c.g. xtal tuff within lapilli tuffs but equigranular textures suggest intrusive. Py still abundant, Cp less so.
								800000		
30.0 —	3.00		42 6	0.54	11/102 11103.4					
	850	990	236.00	368.00	Crystal Lithic Tuff		LIGHT GREY	Fragmen tal	Tufface ous	Variably altered crystal tuffs + minor lapilli tuffs. Alb +/- KF is mod-str, overprints strong bio+/-mag alt'n. All bio+/-mag windows (30%) are volcaniclastic. I% Py throughout with sparse Cp as fine blebs + dissens. Dverall weak mineralization, but interval is good example of alt'n 'induced' intrusive textures. Cp is f.g. sparse but ubiquitous - probably at or near cutoff.
			Seight Sc		2.473 11.873					
30.0 -	R				1560) U.84					62
					0.434. 8/20			VM VM VM		
					1.01					


S STRUCTURE	RANGLE TO C	STRUCTURE	HANGLE TO C	DRII RE % CALCITE	Z BIOTITE	1□LE × K-SPAR	AL % CHLORITE	TER × EPIDOTE	ATI ATI ATI FACI	7 N MAGNET	PYRITE HAI	% PYR	CHALCOPYRITE HAI	% CHALCOPYRITE			SSAMPLE NUMBER	Y LENGTH Ft.	Copper %	PAGE GOLD 9/t	5
8	HE I	B	RE	H	IIE	PAR	31	ale I		IIE	-	ITE		IE .	FROM		BER 93	) 			- 180.0
					ASSET.						MV		000		176.0	186.0		$\vdash$	0.030	0.012	
FR	45	FR	15	5.0	5.0	2.5	2.5	2.5		1.0	MV MV	2.5	000	1.0	186.0	196.0			0.090	0.019	
				_		_			Н	4	MV D		D		196.0	202.0		Н	0.100	0.009	-
Т	15			10.0					Ш		D	2.5	100		505'0	209.0		$\mathbb{H}$	0.080	0.041	-
											MV MV		MV MV		209.0	219.0			0.040	0.019	
R	45	FR	60		1.0	2,5		1.0			ľV	1.0	11/1	0.0	219.0	229.0			0.020	0.007	
											MV		MV MV		229.0	236.0			0.100	0.035	— S30.0
						il su	2"3	eus men			MV MV MV		MV MV		236.0	250.0			0.040	0.025	
		28							eser)	32.0	MV MV		MV MV MV		250.0	260.0	14		0.040	0.030	
				1000				17.5	١.		MV MV		MV MV		260.0	270.0			0.010	0.002	
											MV MV		MV MV		270.0	280.0			0.020	0.017	— 280.0
											MV MV MV	1	M\ M\ M\		280.0	290.0			0.010	0.001	
FR	40	FR	20		10.0	10.0				1.0	MV MV	1.0	M\ M\	0.3	290.0	300.0			0.000	0.001	
											M\ M\	1	M\ M\		300.0	310.0			0.040	0.011	
											M\ M\		M M M		310.0	320.0			0.030	0.019	
											M\ M\		M	N	320.0	330.0			0.040	0.025	330.
								San San San San San San San San San San			M/ M/	\ \ \	N N N	V V	330.0	342.0	lali		0.030	0.002	- 550
					1				6.0		M M M	V V	X X X	V V	342.0	352.0			0.050	0.036	
											M	V	M		352.0	362.0			0.020	0.018	

		R			PAGE 6	~				
FEET	RQD PPT	RECOVERY PPT	FROM	10	LITHOLOGY	MINOR LITH	COLDUR	TEXTURE 1	TEXTURE 2	REMARKS
0.0	850	990	236.00	368.00	Crystal Lithic Tuff		LIGHT GREY	Fragmen tal	Tufface ous	Variably altered crystal tuffs + minor lapilli tuffs. Alb +/- KF is mod-str, overprints strong bio+/-mag alt'n. All bio+/-mag windows (30%) are
-			erc.	0.5	2000 1000		ĮĞ		3,1	
_				m.b	2.612 650		JăL	VM		
			140.0		A D 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•				0.01
			190		6.8% ()		W.	W		
								W		
0.0				eth .	1,000 0,000					
-			SAU	-3	200			W		Same lithology as above, but intensely alb + KF altered Primary textures all but destroyed. Remant ohosts of phenos
	600	1000	368.00	501.00	Maria and the		MIXED GREY AND	Fragmen tal	Tufface ous	Same lithology as above, but intensely alb + KF altered. Primary textures all but destroyed. Remnant ghosts of phenos + frags suggest lapilli tuff. Cp is patchy + irregular, occurs as mn veinlets and as v.f.g. dissem patches in cm range. Best Cp (to 3%) in least altered zones, most intense pink zones are generally barren. Cm Cp veinlets at 444ft, lowest 20 ft of interval is intensely albitized and silicified, saturated with both minerals on
-				lue						444ft, lowest 20 ft of interval is intensely abbitized and silicified. saturated with both minerals on
			-		100 015					
0.0 —					E495 0.050					
-			al v		Access did no		Vi-			DOC RELL BUT IN THE
					NAME BYONE		1			
							V	W.		
10.0 —	700	1000	501.00	599.00	Diorite (Unspecified )		MIXED GREY AND	Porphyr itic	Aligned Phenocr ysts	Intensely Alb+KF altered, weakly Cp mineralized Lost Horse Diorite. Homogenous porphyritic texture with altered plag phenos + obvious apatites. Cp + Py occurs irreg, thoughout as f.g. dissem. patches (cn) and my veinlets. Minor late gougey (cm) faults at 273, 284 ft. Rare. Vague fragmental textures locally - xenoliths?

FEET	RQD PPT	RECOVERY PPT	FROM	DI DELT REDICT	LITHOLOGY	1,000	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	1 0/0m	*	REMARKS		THE THE PARTY
, 10.0	25.51.4		MUT DO	10	LILES.			VY.	177						
			100 71		VICE	nde:		8	M		Intensely	Albake	altered	weakly C	
	700	1000	501.00	599.00	Diorite (Unspecified )			MIXED GREY AND	Porphyr itic	Aligned Phenocr ysts	Intensely mineralized Homogenou altered pl Cp + Py o dissem. pa Minor late 284 ft. Re locally -	Lost s porp ag phe ccurs tches gouge are. Vo	Horse Dio hyritic te nos + obv irreg, tho (cm) and r y (cm) fai gue fragi	rite. xture wi rlous apo ughout i m veinle ults at i nental te	th atites. as f.g. ts. 273, extures
			Green ag	.0	a,mr-	110			M						
90.0 —	1101		0.0		Hall				171						
	200	900	599.00	606.00	Fault Zone			8	W		Extremely within L.H.	fract diorite	ured local	lly gougy	zone
						54.64		9	M						
		-						(Q)	W						
40.0 -					nian .										
	-	H	9270 pe	0	0.01		*				Intensely more Cp	than al	oove, maint	y as spo	irse
	850	1000	606.00	736.00	100			MIXED GREY AND	Coarse Grained	Parphyr itic	to obviou	s (poly sugge very s - coul yke 's in xtal	dissem prictic) from tapilli to dissem prictic from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain from the strain	agmental uff, but above oe xtal ? Textur uggests	tuff? or
			10 -00	0	A.HII			8			639 ft. P	ossible	nolybden	um at 73	îft.
200			110 290		7-14				la i						
90.0 -			ela -u		03347	en!									
					Tale)	11cm									

S.	ΓŖ	UC	ŢU		LL F	10LE		H94 TER					CHALCO	*		A	SŞA	YS		PAGE	9
STRUCTURE ID	NGLE TO CORE	STRUCTURE ID	NGLE TO CORE	RE % CALCITE	% BIOTITE	% K-SPAR	% CHLORITE	% EPIDOTE	ALT. FACIES	% MAGNETITE	PYRITE HABIT	% PYRITE		% CHALCOPYRITE	FROM	70	SSAMPLE NUMBER	ENGTH Ft/10	Copper %	GOLD 9/t	л— 540.0
			710							(Aller)	MV		MM		541.0	551.0			0.130	0.095	
							6811				MV MV		X X X		551.0	561.0		П	0.090	0.070	
							77				MV MV MV		M\ M\	1	561.0	571.0			0.080	0.058	
FR	60	FT	45	2.5	5.0	20.0	5.0			ness T	XXXXX	1.0	M/ M/ M/	1.0	571.0	581.0			0.050	0.041	-
											MV MV		M/ M/		581.0	591.0			0.020	0.021	500.0
							h	7			MV MV		M/ M/		591.0	599.0			0.060	0.039	— 590.0
FT	60	FT	40				10.0								599.0	606.0			0.070	0.010	
											MV MV		M/ M/		606.0	616.0			0.040	0.028	-
											MV MV		M		616.0	626.0			0.020	0.013	-
										Ť	MV MV		M		626.0	636.0			0.030	0.023	-
											M/ M/ M/	/	N N	V	636.0	646.0			0.090	0.032	640.0
						, and		and a			M\ M\		MM		646.0	656.0			0.010	0.020	-
FR	35	FR	55	2.5	10.0	20.0	2.5	2.5			M/W	1.0	MM	V V 1.0	656.0	666.0			0.100	0.090	
						-					M M	V V	M	V V	666.0	676.0			0.070	0.055	-
											N N N	V	MMM	M	676.0	686.0			0.050	0.081	-
											MM	V V	M	V V	686.0	696.0			0.100	0.098	690.0
											N N N	V	Y Y Y	M	696.0	706.0			0.110	0.105	-
											7	V V	Y Y Y	M	706.0	716.0			0.000	0.007	
											M	V		Ÿ	716.0	726.0			0.000	0.009	1

FEET	ROD PPT	RECOVERY PPT	FROM	10	PAGE LITHOLOGY	MINDR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
0.0	850	1000	606.00	736.00	9.153	0.17-0	MIXED GREY AND	Coarse Grained	Porphyr itic	Intensely Alb+KF altered rock, slightly nore Cp than above, nainly as sparse nim-on veinlets + dissen patches. Subtle to obvious (polyincitic) fragmental textures suggest lapilli tuff, but natrix is very similar to above porphyry - could above be xtal tuff? or this be dyke 'stockwork'? Textural Veakly KF altered otherwise 'fresh' interval of tuff from above + below intervals. Tuff is c.g. feldspar porphyry - very similar to L.H. diorite but frags suggest lapilli tuff.
	900	1000	736.00	746.00	Aros	aute	MEDIUM RED	Crowded Porphyr Y	Aligned Phenocr ysts	Veakly KF altered otherwise 'fresh' interval of tuff from above + below intervals. Tuff is c.g. feldspar porphyry - very similar to L.H. diorite but frags suggest lapilli tuff.
-				nus	n.e.i	0.20	1			Same as above but 50% strong KF + alb alt'n over strong bio alt'n, and well mineralized with Cp + Py mm veinlets + f.g. patchy dissens. Grain size decreases downsection.
-		1000	746.00	782.00	and	ene	MEDIUM RED	Crowded Porphyr Y	Aligned Phenocr ysts	decreases downsection.
'0.0 — _			Eall	100.0	mure	aus:		l V		
	600	1000	782.00	798.00	eum.	nec Less	MIXED GREY AND	Fine Grained	Aligned Phenocr ysts	Fine grain to aphanitic pale green ash tuff overprinted by patchy strong KF alt'n. Veak Cp nineralization, abundant Py + Chl.
-				2-00	0.318	Line	M			
				150.16	0.000	E-yts				
0.0 —			120	200	- Lare	Levi La	W			
	0.31	H	Zaa -	Na.ol	444.0	Line St.	W			
				47.4	2552		. Vi			F.g. xtal to aphanitic ash tuff. Intensely Alb+KF altered over 60% of
	850	1000	798.00	929.00	- Deci	Diorite (Unspecified)	MIXED GREY AND	Fine Grained	Tufface	disseminations. Overall 2-3% Cp, with
'0.0 —			done o	160		100	VP VP			half of interval is intensely Alb+KF altered and displays equigranular texture - probable Lost Horse Diorite or possibly c.g. xtal tuffs? Degree of
			2200	404		1				
			56-11		Total	4000	l Vis	V		€ 6
			idense.		5.87			Į V		

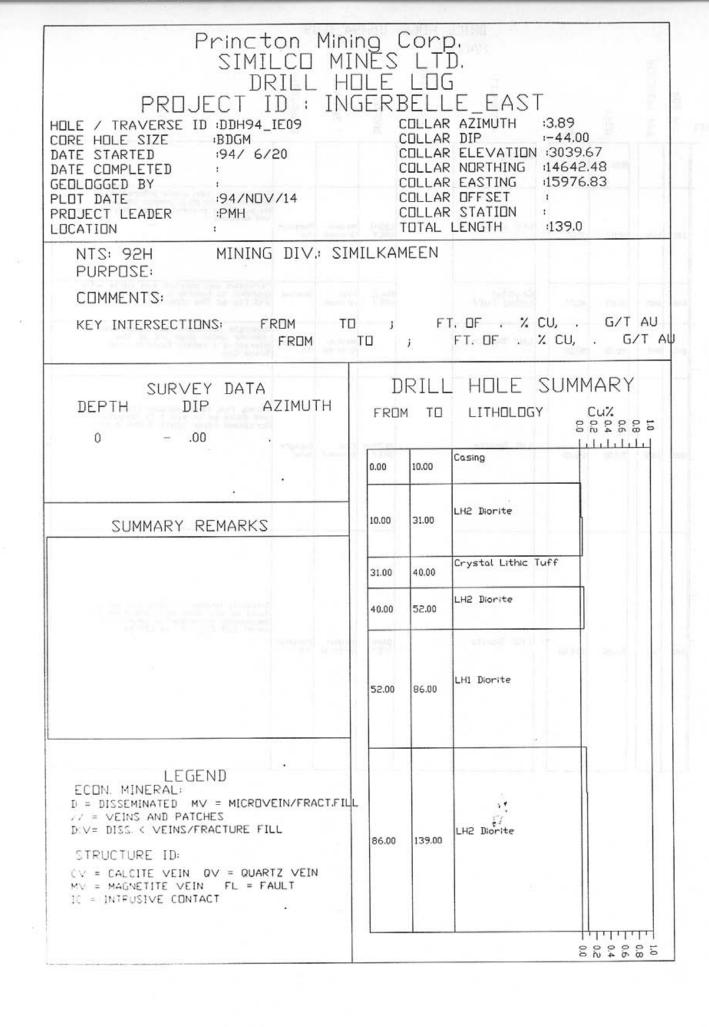


STRUCTURE ID	CANGLE TO CORE	STRUCTURE ID	NANGLE TO CORE				: DD AL . CHURITE	ER	AT:	Section 1		% PYRITE	HALCOPYR	% CHALCOPYRITE	FROM	A	SSAMPLE NUMBER	S LENGTH Ft/10	Copper %	PAGE GDLD 9/t	3
											D		D		13.00	20.00			0.060	0.048	
			Su ul				VIII				DDD		DDDD		20.00	29.00			0.030	0.037	
			10 m						-		DDD	1	D		29.00	39.00			0.010	0.005	1000
							jar I						D								-
FR	35	VN	40	65	5.0		2.5				D	0.0	DDD	0.0	39.00	55.00			0.020	0.012	- 50.0
											D		DOD		55.00	65.00			0.010	0.001	
									ľ		DDD		DOD		65.00	75.00			0.020	0.001	-
											DDDD		0000		75.00	88.00	-4		0.020	0.007	-
									1	2	0000	51	0000		88.00	102.0	House		0.010	0.001	-
											DDD		D							0.007	- 100.0
FR	60	VN	40	á	2.5	5.0	5.0				DDD	0.0	D	0.0	102.0	112.0		-	0.010	0.007	-
											D		DD		112.0	122.0	- 100		0.010	0.001	-
				1					1		D		D		122.0	132.0			0.000	0.001	
											D		DDD		132.0	142.0			0.000	0.001	-
		-					1				DD		DDD		142.0	152.0	•		0.010	0.012	150.0
FR	30	FR	50		2.5	30.0	5.0	A PARTIES		1	DDDDD	0.0		0.0	152.0	162.0			0.000	0.001	MIGHT THE
								har Can			DDD				162.0	172.0			0.030	0.003	
											0000				172.0	182.0			0.000	0.003	

DRILL HOLE: DDH94_IE08 PAGE 4 RECOVERY PPT MINUR LITHOL DGY TEXTURE TEXTURE RQD REMARKS COLOUR PP FEET 10 180.0 Absolutely blitzed lapilli xtal tuffs. Irregular textures and rare fragment ghosts indicate tuffaceous origin. Rock intensely KF altered, brick red, but with abundant clots of chl — which also supports volcanic lithology. Only trace PY, essentially barren of Cp except at 199-200 ft, where Cp occurs as 1-2% disseminations. Lowest 20 ft of interval is alb + qtz? flooded giving silicified appearance. MIXED GREY AND Medium Tufface Grained 800 1000 132.00 245.00 230.0 Extremely broken gougey zone of strongly albitized volcanics. Alteration similar to above. Overprinted by strong clay and local limonite. Trace Malachite in upper Convert ed to fault Fault Zone MIXED Breccia ted 150 950 245.00 300.00 AND 280.0 Pale grey green Fault gouge and intensely clay altered breccia Frags (20%). FAULT PALE 00 950 300.00 307.00 Intensely KF/Alb altered interval - very difficultito determine protolith. 50% of zone completely replaced by fg KF, other 50% is grey Alb altered. Carb + albite + qtz? vns (Cm) are ubiquitous. Chl+/-Py spots + mm vnlts also abundant. Cp is spotty, fracture controlled blebs to 1cm, assoc. With chl+/-py. Where visible, feld phenos usually euhedral, but also rounded or broken, suggesting tuffaceous origin. Abundant chl may also be volc indicator Fault Zone 330.0 -MIXED GREY AND Medium Grained tic 850 1000 307.00 420.00

0	T D	LIC	т.	I	DRII	L F	HOLE	: DD	H94	_IE	80 1ПN			CHALO				A	AZZ	YS		PAGE	5
3 STRUCTURE ID	EANGLE TO CORE	STRUCTURE ID	ANGLE TO CORE	JK.	Z CALCITE	% BIOTITE	% K-SPAR	AL 7 CHLORITE	% EPIDOTE	ALT. FACIES	% MAGNETITE	PYRITE HABIT	% PYRITE		% CHALCOPYRITE	HESSELL .	FROM	10	SSAMPLE NUMBER	LENGTH Ft/10	Copper :	GDLD 9/t	— 180.0
												DOD		D			182.0	192.0			0.000	0.006	_
						Total Control		1.475				DDD		000			192.0	202.0			0.080	0.090	
										ŀ	100	D	10	D			202.0	212.0			0.010	0.008	OUIL DE
FR	30	FR	50			2.5	30.0	5.0		١.		DDDD	0.0	DDD	0.0		212.0	222.0			0.000	0.006	
												D		DDDD			222.0	232.0			0.000	0.003	— 230.0
												0000		D			232.0	245.0			0.000	0.001	-
			-					-		-		D		_ D			245.0	255.0			0.210	0.120	-
												00000		D			255.0	265.0	i i		0.000	0.006	_
							0.5	25					0.0	000		13	265.0	275.0			0.000	0.002	
FT	30	FF	30		2.5		2.5	2.5		.		DDDD	0.0		)		275.0	285.0			0.000	0.003	— 280.0
					ville	10.1		la.	Pris			DODD					285.0	300.0	TAUT		0.000	0.006	
FR	40	-								ŀ				NV UZ		1	300.0	307.0			0.010	0.007	
												M	V V	M	V V		307.0	319.0			0.070	0.024	-
								100				M	V V	Y M M	VI IV IV		319.0	329.0			0.020	0.007	
FR	4	5 C	V 5		5.0		20.0	10.0	2.5			MM	V V 1.0	Y > >	V   V 1.0  V		329.0	339.0	-		0.010	0.005	330.0
												MMM	V V V	> > >	IV IV IV								
												M	V V	\ \	1V 1V								

DRILL HOLE: DDH94_IE08

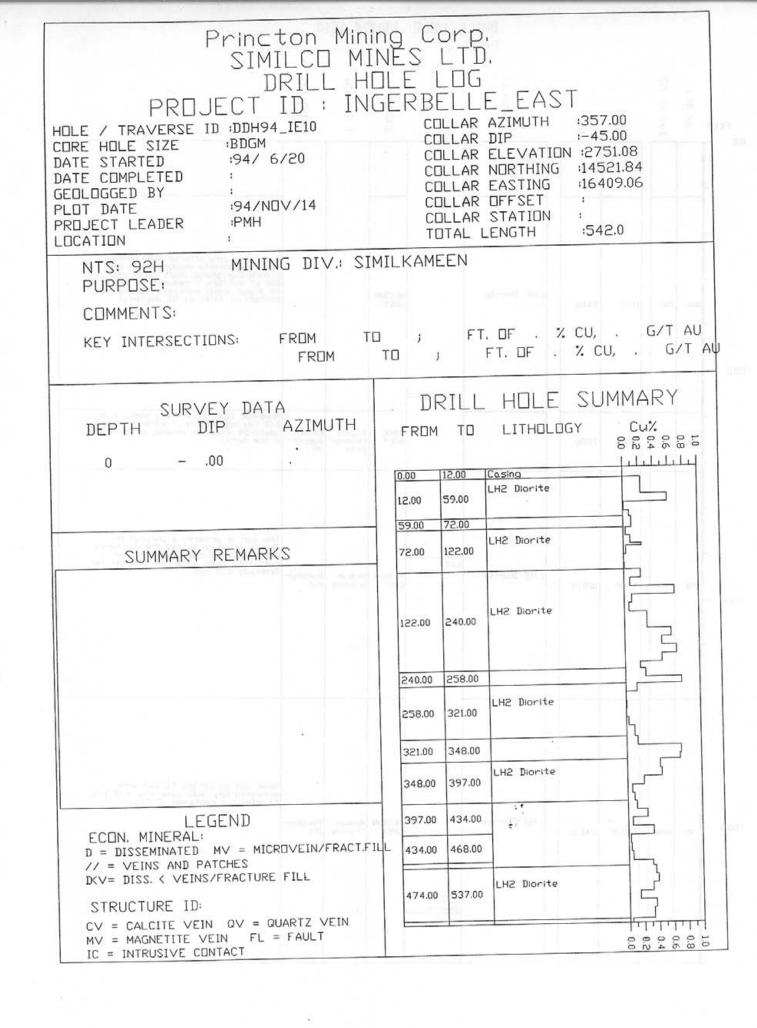

FEET	RQD PPT	RECOVERY PPT	FROM	10	LITHOLOGY	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
	850	1000	307.00	420.00	1.000 1.000 1.000 1.000 1.000		MIXED GREY AND	Porphyr Itic	Medium Grained	Intensely KF/Alb altered Interval - very difficult to determine protolith. 50% of zone completely replaced by fg KF, other 50% is grey Alb altered. Carb + albite + qtz? vns (KCm) are ubiquitous. Chl+/-Py spots + mm vnlts also abundant. Cp is spotty, fracture controlled blebs to 1cm, assoc. with chl+/-py. Where visible, feld phenos usually euhedral, but also rounded or broken, suggesting tuffaceous origin. Abundant chl may also be volc indicator
	950	1000	420.00	469.00	Diorite (Unspecified )	FAULT	MIXED GREY AND	Fine Grained	Porphyr itic	Veak to mod. Alb+KF altered fg diorite. About 30% is KF pinked, remainder is washed out albitized? showing fg textures, almost tuffaceous. Relatively barren - except for related Cp + Py blebs locally - one <cm 461="" at="" ft.<="" td=""></cm>
	500	900	469.00	485.00	Fault Zone		PALE BROWN			Strongly fractured locally gougy oxidized zone within diorite. 2cm gouge at 475 ft.
10.0 —	800	1000	485.00	550.00	Diorite (Unspecified)	FAULT	MIXED GREY AND	Medium Grained	Porphyr itic	Variably altered mg diorite, coarser than above, obvious intrusive textures. Patchy KF alt'n locally intense. Chl + Py alt'n is strongest in lower 1/2. Cp occurs with it is properties of the company of the company of the company of the company of the company of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the coarse of the co

S STRU	RANGLE	UC STRU	7	LANGLE	RE		HOLE	AL	TER	AT:		ס	2.00	CHALCOPYRITE HABIT	% CHALCOPYRITE		A	SSAMPLE NUMBER	Y LENGT		PAGE	7
TURE ID	TO CORE	TURE ID		TO CORE	% CALCITE	% BIOTITE	% K-SPAR	CHLORITE	Z EPIDOTE	ALT. FACIES	% MAGNETITE	PYRITE HABIT	% PYRITE	HABIT	OPYRITE	FROM	10	NUMBER	4 Ft/10	Copper %	GOLD 9/t	— 360.0
					11-4		1 1					5555555		M	ist.		Last 1			sola		-
FR	45	CV	/ 5	5	5.0		20.0	10.0	2.5			555555	1.0	**************************************	1.0							410.0
FR	70	F	т !	5		2.5	10.0	1.0				B B B B B B B B B B B B B B B B B B B	0.0	BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB	0.0			14				
												BBB		B		460.0	469.0			0.010	0.004	— 460.0
			1											-		469.0	479.0			0.040	0.050	-
																479.0	485.0			0.010	0.022	-
												M	V	M\ M\	1	485.0	495.0			0.010	0.006	-
												M	V V	M\ M\		495.0	505.0			0.310	0.440	luni on
				30	1.0		20.0	10.0				Y Y Y	V V V	M\ M\	)     _{1.0}	505.0	515.0	72		0.040	0.021	- 510.0
ris				30		4 3			1000			Y	V V	M		515.0	525.0		İ	0.540	0.640	-
												Y > >	M	<u> </u>	V	525.0	534.0			0.850	0.520	-
				65					1			ľ		M	V	534.0	544.0			0.410	0.290	-

FEE 540.0	-	RECOVERY PPT	FROM	10	LITHOLOGY	MINOR LITH.	COLDUR	TEXTURE 1	TEXTURE 2	REMARKS
340.0	800	1000	485.00	550.00	Diorite (Unspecified )		MIXED GREY AND	Medium Grained	Porphyr Itic	Variably altered mg diorite, coarser than above, obvious intrusive textures. Patchy KF alt'n locally intense. Ch! + Py alt'n is strongest in lower 1/2. Cp occurs with ch! + Py alt'n and in carb
590.0	- 500	1000	550.00	667.00			VERY DARK GREY	Fine Grained	Tufface ous	Dark strongly biotitic fg xtal to ash tuffs with minor lapilli horizons. Abundant pyrite as mm veinlets, lesser Cp, generally spotty but to 1% 576-582 ft. Interval cut by several cn carb veins, some carrying semimassive Py, one at 595 ft carries 5% Cp. Bverall, interval is only weakly mineralized.
640.0		en –	150 II	3110		Diorite (Unspecif	* BB 8 BB 8			
690.0	700	1000	667.00	697.00	Diorite (Unspecified )		LIGHT RED	Fine Grained	Parphyr	Barren weakly KF alt'+ Alb veined LH diarite.
	700	1000	697.00	712.00	Diorite (Unspecified		VERY DARK GREY MIXED GREY AND	Fine Grained Fine Grained	Tufface ous Porphyr itic	Pennas weekly VE alt IH dispits Fo

77	PI	ıc	TII		LL H	HOLE			_IE08 ATIO	N		CHALC			A		ZY		PAGE	9
STRUCTURE ID	ANGLE TO CORE	STRUCTURE ID	ANGLE TO CORE	R " CALCITE	х вютітє	% K-SPAR	% CHLORITE		ALT. FACIES	PYRITE HABIT	% PYRITE	OPYRITE HABIT	CHALCOPYRITE	FROM	10	SAMPLE NUMBER	LENGTH Ft/10	Copper %	60LD 9/t	<b>—</b> 540.0
T	45		30	1.0		20.0	10.0			M	1.0	MV MV	.0	534.0 544.0	544.0 550.0	-11		0.410	0.290	- 540.0
1				1925		34				M	<u></u>	MV		550.0	560.0			0.200	0.095	
										M	V V	MW		560.0	570.0	0100		0.140	0.140	100
										M	VI VI	MV MV		570.0	580.0			0.210	0.100	
				1 31	111 //	la se	into			- M M	ý V	MV		580.0	590.0			0.080	0.095	-
				T S						M M	VI VI	MY MY MY MY		590.0	600.0			0.110	0.095	— 590.0
										M	V V	MV MV		600.0	610.0			0.150	0.120	
R	45	CV	55		10.0		10.0		2.5	× ×	V 2.5 V	MV MV MV	1.0	610.0	620.0			0.110	0.063	
										M	V V	MV MV		620.0	630.0			0.080	0.090	
					1300					\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V V	MV MV MV		630.0	640.0			0.070	0.058	
										\ \ \		MV MV		640.0	650.0			0.060	0.039	— 640.0
										~	V V V	MV MV		650.0	660.0			0.150	0.095	
										V	IV IV	MV		660.0	667.0			0.120	0.025	
			-				are.	H		[	)			667.0	677.0			0.010	550.0	-
FR	50	ΑV	25	5.0		10.0	5.0				0.0			677.0	687.0			0.000	0.020	
	<u>\$</u>													687.0	697.0			0.000	0.015	690.0
cv	40	FT	20	10.0	10.0		5.0	97	1.0	, 1	1V 1V _{2.5}	MV MV	0.0	697.0	707.0			0.070	0.044	
										ľ	IV	MA	01.1	707.0	712.0			0.080	0.058	-
FR	60	cv	60	10.0	10.0	20.0	10.0				1V _{0.0}			712.0	722.0			0.000	6654	

FEET	RQD PPT	RECOVERY PPT	FROM		L LITHOLOGY	MINOR LITH.	CDLDUR	TEXTURE 1	TEXTURE 2	REMARKS
13-	800	1000	712.00	771.00	Diorite (Unspecified )		MIXED GREY AND	Fine Grained	Porphyr Itic	Barren, weakly KF alt LH diorite. Fg variety as above. KF alt commonly banded over several cn at 60-70 degrees. Same as carb veins. No cp. 8° Cal brx vein at 734 ft.
.0 —	800	1000	771.00	788.00	2000		- MIXED GREY AND	Fine Grained	Porphyr	Intensely albitized contact zone. Alb + Ep overprints KF + bio. Pyrite 1-2% trace Cp assoc. with Py. Alt'n zone probably lies in volcanics more than intrusive. Primary textures obliterated Good example of 'Ab Hornfelsing'.
	- 400	1000	788.00	852.00			VERY DARK GREY	Fine Grained	Tufface ous	F.g. well bedded ash tuff with minor xtal/lapilli tuff, locally well banded aphantic. Strongly biotized, weak dissen mag. Strongly fractured, abundant Py 5-10% with 1-2% Cp accompanying. Overall probably 0.3-0.4 Cu.
.0 -	600	1000	852:00	895.00	2100	10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To 10 To	VERY DARK GREY	Fine Grained	Tufface	Same unit as above but almost barren, only 1% pyrite. 6' barren calcite brx vein at 864 ft.
	500	900	69500	\$15.00	Fault Zone		LIGHT GREY	Sheared	d Breccia ted	Bleached albite altered strongly fractured Fault zone. Unnineralized. Fault gouge fron 902-905 ft.




					DRILL PAGE	S HOTE:	DDH	94_IE	09	
FEET	RQD PPT	RECOVERY PPT	FROM	3.6	LITHOLOGY	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
0.0 —			0.00	10.00	Casing				190	MATE STANFOLD GAY GY
	200	1000	10.00	31.00	LH2 Diorite		LIGHT GREY	Medium Grained	Porphyr itic	Pervasive + vein albite alteration of diorite (ghost plag, phenos visible). No sulphides present. Moderately broken and oxidized.
	600	1000	31.00	40.00	Crystal Lithic Tuff		PALE GREY	Fine Grained	Banded	Pervasive and sheeted vein albite alt'n (parallel to banding in the tuffs). 0.9% Cpy as fine dissems.
50.0 —	250	800	40.00	52.00	LH2 Diorite		1	Medium Grained	Porphyr Itic	Moderate pervasive pink Ksapr with chlorite spots. Over 1/2 of the interval is a rubbly fault(?) zone. Trace Cpy.
-	800	1000	52.00	86.00	LH1 Diorite	OT H	MEDIUM GREY	Fine Grained	Equigra nular	Boring, fine, fairly massive LHID. This unit could be an ash tuff (crystal). Dccasional Kspar spots 3-8mm in dia.
					arrend the	es (g	أسما			endaking vekaning
100.0 -	100	500	86.00	139.00	LH2 Diorite	100	DARK	Medium Grained	Porphyr Itic	Intensely broken + rusty. May be a fault or may even be overburden (?) (occasional miscellaneous chunks of core). 0.2% Cpy. EOH at 139 ft.

Language Control

CANGLE TO CO	C STRUCTURE	HANGLE TO CO					TER	AT:	09 ION X MAGNETIT	PYRITE HABI	% PYRIT	CHALCOPYRITE HABI	% CHALCOPYRIT	FRC	A	OSAMPLE NUMBE	C LENGTH F+/1			3
RE	8	R	E E	mi T	AR	m T	m I	5	m m	7	m	T	m 	Ä	- 	73		×	7	0.0
														10.00	20.00			0.010	0.005	-
70														20.00	31.00			0.030	0.011	
60	AV	60								D	0.1	D	0.1	31.00	40.00			0.000	0.004	
					10.0	2.5				D	0.1	D	0.0	40.00	52.00			0.050	0.016	- - 50.0
										D		D		52.00	62.00			0.000	200.0	
60					0.1				1.0	D	0.1	D	0.0	62.00	72.00			0.000	0.005	
										D		D		72.00	79.00			0.000	0.002	
										Ď	_	-		79.00	86.00			0.000	0.013	
												DDD		86.00	99.00			0.070	0.035	
												00000	0.3	99.00	139.0			0.080	0.057	
	60	70 60 AV	70 60 AV 60	C STRUCTURE ID  CRANGLE TO CORE  RANGLE TO CORE  70  60  60  60  60  60  60  60  60  60	X BIOTITE  X CALCITE  CANGLE TO CORE  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO STRUCTURE ID  CO	X K-SPAR	X CHLORITE  X BIOTITE  X BIOTITE  X BIOTITE  X BIOTITE  X BIOTITE  X CALCITE  DANGLE TO CORE  DANGLE TO CORE  O STRUCTURE ID  O AV 60  60  60  60  60  60  60  60  60  60	X   CHLORITE	ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT. FACIES  ALT.	70	70	70	70	X CHALCOPYRITE HABIT	70	70	70	70	ALTERATION PYRITE HABIT TO CORE TO COOPER X SIGNAPLE IN MARCH FELIO ID CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO CORE TO	70

F

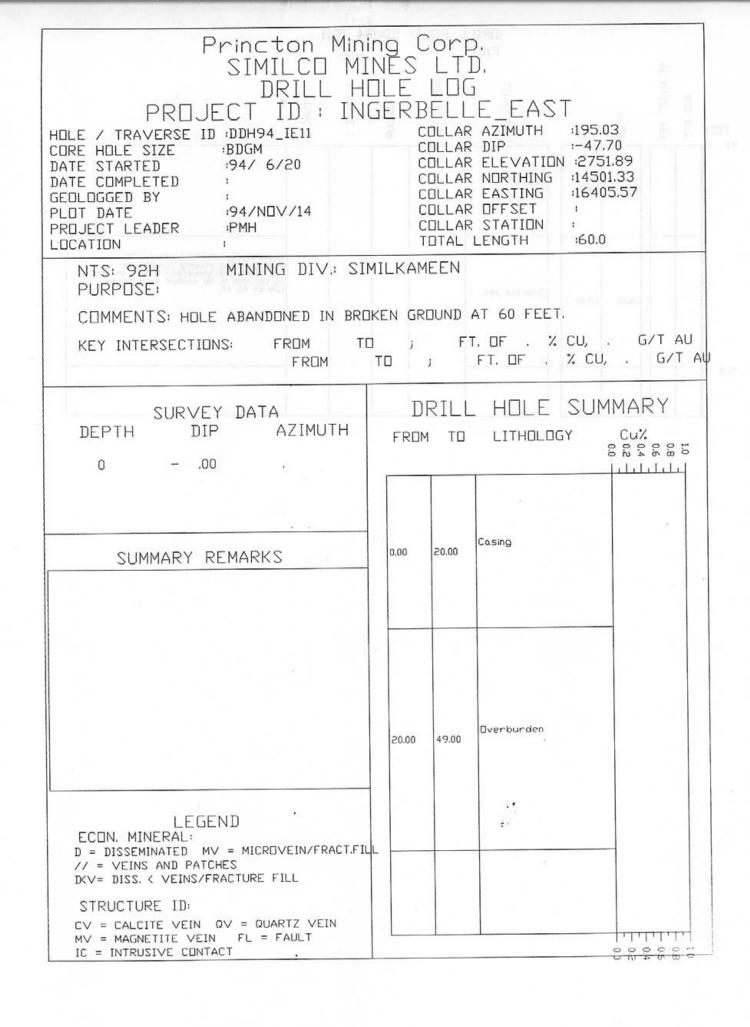


FEET	ROD PPT	RECOVERY PPT	FROM	10	PAGE		COLOUR	94_IE:	TEXTURE 2	REMARKS
) –			0.00	12.00	Casing				0SI NIXX	TALL CONTRACT OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF T
-			0.5	ie.	HIDWAY SA	ATITI				HMME SERVICE PARK
-	200	700	12.00	59.00	LH2 Diorite	ID 3MA.	MEDIUM GREY	2 1	in i	Supergene clay altered with common malachite/azurite dissems + coating around Cpy grains. Dixidation is approx. 80% at surface + reduces to 10% at 59 ft. Kspar (red) increases toward lower contact (+ fault at 55 degrees).
.0 —		9		3 X	10.13		ur		1408 1 RO	2m()[1][2][2][2][Y-1]
		25	MM	12	BUDNELLE	D FIG				Apparitic dust tuff (very hard) with
	350	600	59.00	72.00	Charle 1	F MDS	DARK GREY	Aligned Phenocr ysts	Matrix Support ed	Aphanitic dust tuff (very hard) with 0.5% Cpy as dissems. + within dark grey albite/Sx veins. No banding or bedding in the tuffs.
					Street Stri	loc to				
0.0 —	700	1000	72.00	122.00	LH2 Diorite	LH2	MEDIUM GREY	Medium Grained	Porphyr	This unit is primarily a porphyritic diorite, although locally the textures are lost. Small ((3ft) intervals of dust tuff make up 3% of the interval. Generally 0.5% Cpy.
					S MANUE OFFE					
					April and	en ban				Same unit as 72-122 ft, but with
0.0 –	700	1000	122.00	240.00	LH2 Diorite	97.00 u.3	MEDIUM GREY	Medium Grained	Porphyr	Same unit as 72-122 ft, but with increased Cpy (0.8% generally, with 1-5 ft intervals containing 2% Cpy).
						LH2 Diorite				M VA MAN ALLANDA VIOLEN

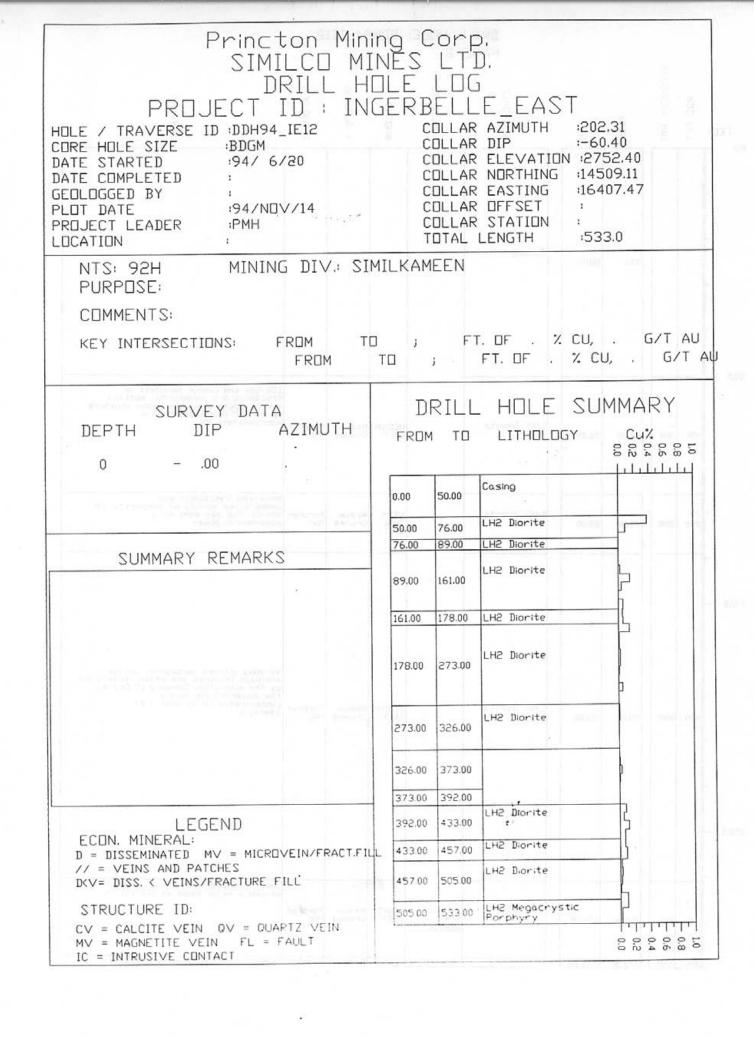
DRILL HOLE: DDH94_IE10 TET _ APPRILE STORY JUNE PAGE 4 RECOVERY MINUR LITHOLOGY EXTURE REMARKS COLOUR PPT FEET T N 180.0 LH2 Diorite Same unit as 72-122 ft, but with increased Cpy (0.8% generally, with 1-5 ft intervals containing 2% Cpy). LH2 Diorite MEDIUM GREY Porphyr Itic Medium 700 1000 122.00 240.00 Grained 230.0 Aphanitic dust tuff with local fine bedding at 10 deg TCA. 1.5% Cpy occurs as spots with pyrrhotite(1) (non-nagnetic) and pyrite up to 4mm in dia. Patchy pervasive Kspar alt/n. Aligned Phenocr ysts MEDIUM GREY Banded 350 1000 240.00 258.00 LH2 Diorite LH2 Porphyritic LH diorite with textures commonly obliterated by albite alt'n. 0.5% Cpy as fine dissens + occasional clusters up to 1/2' in dia. (except 258-265 ft (1.5% Cpy)). 1.5% Cpy. 280.0 -Porphyr LH2 Diorite MEDIUM Fine Grained 1000 258.00 321.00 650 Aphanitic greenish grey dust tuff. No visible bedding. Very hard. 2% Cpy as spots (clusters) + disseminations. Lower contact at 20 degrees TCA. 330.0 -Aligned Phenocr ysts GREY GREEN 321.00 348.00 700 1006

> ME DIUM GREY

LH2 Diorite


397.00

348.00


+56 1000

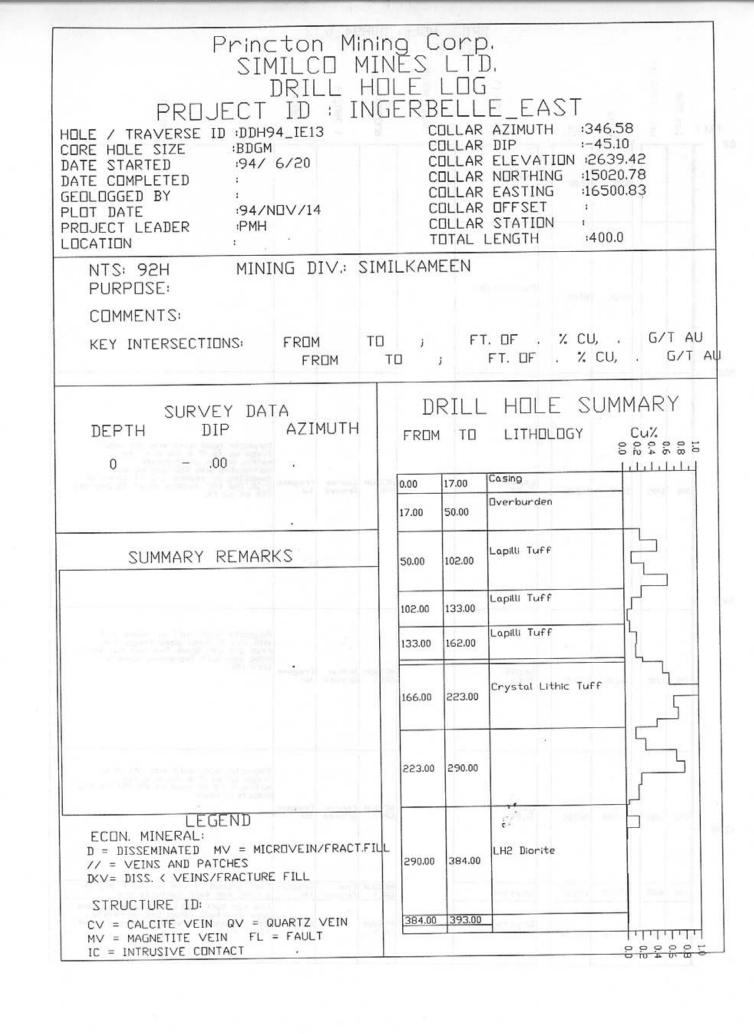
Medium Grained Porphyr Itic Light to dark grey (light corresponds to more albite alt'n + less magnetite). Slightly porphyritic diorite with 1%. Cpy as dissens + local clusters. Lower contact is a fault (2 ft broken, 1' of gouge) at 65 degrees TCA.

		RECOV			FAUL			31	16	
FEE1	RQD PPT	RECOVERY PPT	FROM	ä	LITHDLDGY	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
	600	1000	348.00	397.00	LH2 Diorite	1.70) 1.70)	MEDIUM GREY	Medium Grained	Porphyr Itic	Light to dark grey (light corresponds to more albite alt'n + less magnetite). Slightly porphyritic diorite with 1%. Cpy as dissems + local clusters. Lower contact is a fault (2 ft broken, 1' of gouge) at 65 degrees TCA.
			2023		95,800	10519	w  6	E.0		Aphanitic, siliceous dust tuff with 2%
10.0 -	550	1000	397.00	434.00	uses airs	4390)		Aligned Phenocr ysts	Bedded	Aphanitic, siliceous dust tuff with 2% pyrite + 0.5% Cpy. Cpy commonly is concentrated within certain bands of the dust tuff.
	-		MILLS.	01/58	0.500	460	10.0	-10		
	-		1 v=L0	600	0.84%			Aligned	Bedded	Zone of Kspar/chlorite alt'n within the dust tuff.
60.0 -	450	1000	434.00	468.00	edas mare	N-dept	100	Phěnocr ysts		
	650	1000	-	474.00				Aligned Phenocr ysts	Bedded	Zone of 1.5% Cpy.
			con	ores I						
				1112.00	LH2 Diorite	0.681	MEDIUM		Porphyr	Slightly porphyritic diorite with 1.5% Cpy as veins + fine disseminations and rare coarse clusters. Lower contact is broken and not visible.
510.0 -	700	1000	474.00	537.00	ounce	tydal.	GREY	Grained	Porphyr itic	i i
					Chief.	TINE				
				100	nunct		VC0.	Decided 1	Fine	Page analysis valents (2) and the
	300	1000	537.00	542.00			DARK	Bedded	Fine Grained	Dark grey-black volcanic (?) sandstone (locally sittstone) with beds at 50



RQD PPT	RECOVERY PPT	FROM	T	PAGE	T HOLE:	COLOUR	TEXTURE	TEXTURE	REMARKS
'n	PT	0.00	20.00	Casing	AJJ00 AJJ00 AJJ00 AJJ00 AJJ00	X0		12 Or	COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WAY AND COMPLETED WA
		20.00	49.00	Overburden	AMECN AMECN	1171	172	VIO	Miscellaneous alluvial boulders. The hole is drilling roughly parallel to the slope and therefore it was decided to abandon it. No assays were taken. EDH at 49 ft.
(a)	T NO		10	30.70		GH)	JII	MEL	3 ZROLDSKIANI VSX
	ly	JAN4	NI P	9.104					ATAR VOUGEV
				gare?	96				
				garat					
				garat					
									SAGARIS VRAPMUL
									TUNNARY KEMARYS  LUMMARY KEMARYS  LUMMARY KEMARY  LUMMARY KEMARY  LUMMARY KEMARY  LUMMARY KEMARY  LUMMARY KEMARY  LUMMARY KEMARY  LUMMARY



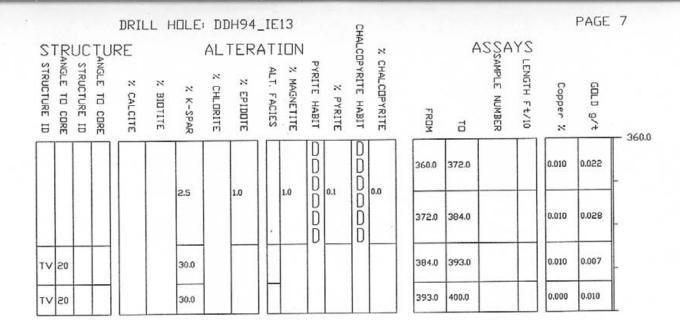

					DRIL PAGE	C HOLE:	DDH	94_IE1	ız	
FEET	ROD PPT	RECOVERY PPT	FROM	5001	LITHOLOGY	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
_			04.Se 11.00 54.Vu	ES- W	R ELEVATER R NORTHING R EASTING R OFFSET R STATION LENGTH				*170	CA NAME TO THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STA
-			0.00	50.00	Casing	MELL			y lut	WINNER HER STA
l.	WA	. To		,05 2 %	X . 30 T		nt.	1	MUH NOS-1	E THEIL STRUCK SAN
-	450	1000	50.00	76.00	LH2 Diorite	DESTE	MEDIUM GREY	Medium Grained	Porphyr itic	1.5% Cpy and common malachite on fractures in a porphyritic, spotted diorite. Spots are white Fspar clusters up to 1/2° in dia. Oxidation is approximately 20%.
	250	1000	76.00	89.00	LH2 Diorite	MAKE OF	VERY DARK GREY	Medium Grained	Porphyr itic	Unaltered (relatively) and unmineralized variety of porphrytic LH diorite. This may even be a post-mineral phase.
.0 —					ab out sto		HIII			LAMAMON YMANINGS
	450	1000	89.00	161.00	LH2 Diorite		MEDIUM GREY	Medium Grained	Porphyr	Variably altered porphyritic diorite, although textures are often obliterated by the alteration. Connonly 1% Cpy as fine disseminations, locally concentrated to 2% over 1 ft. intervals.
3						/ ma				3.5
.0 –								113=	Patto	FILM MINERAL TO THE THINK THE THE WARREST
	300	900	161.00	178.00	LH2 Diorite	LH2 Diorite	LIGHT	Medium Grained	Porphyr	Zone of limonite and argillic alt'n around a major fault at 168-172 ft
	600	1000	178.00	273.00				Medium	Parphyr	Highly altered but poorly mineralized

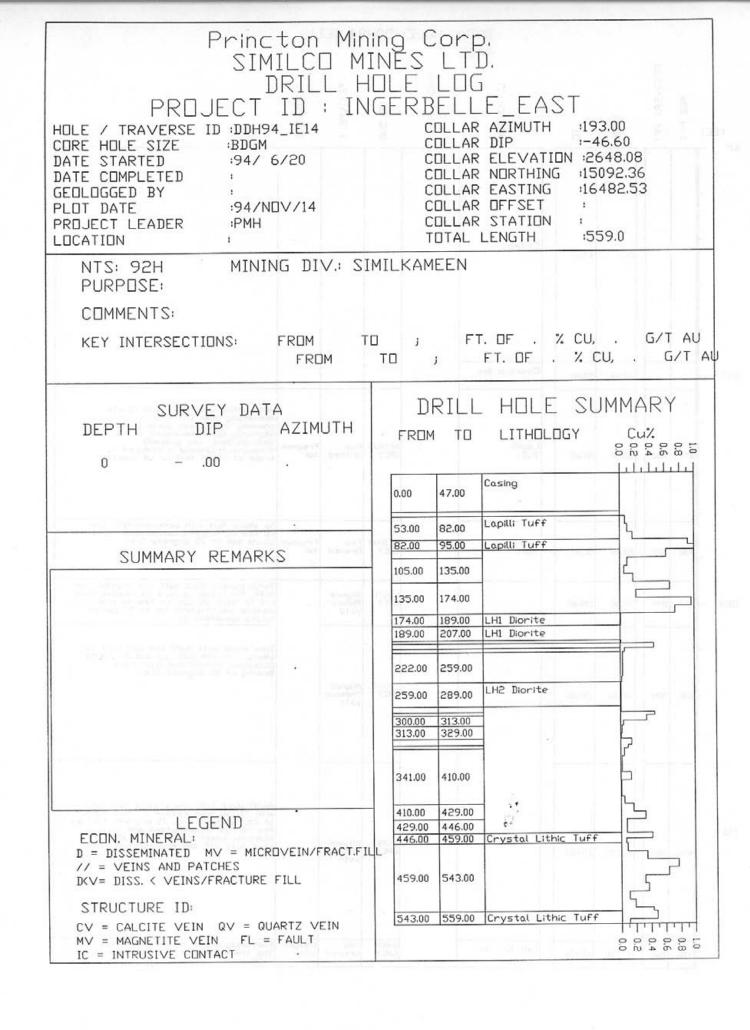
FEET 80.0 —	ROD PPT	RECOVERY PPT	FROM	10	PAGE	4 MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
	600	1000	178.00	273.00	LH2 Diorite			Medium Grained	Porphyr itic	Highly altered but poorly mineralized red + grey diorite, slightly porphyritic. Local minor (S ft thick) intervals of finely banded tuff (at 40 deg. TCA) constitute only 5% of the interval. 0.1% Cpy as fine dissems.
							0.0000			
- 0.00	IIII		2 May - 66		9000 00 00 00 00 00 00 00 00 00 00 00 00					Very similar alt'n and min'n as above interval, but plao, phenocrysts are
	400	1000	273.00	326.00	LH2 Diorite			Coorse Grained	Porphyr itic	Very similar alt'n and min'n as above interval, but plag. phenocrysts are coarse (almost megacrystic) and more numerous (approx. 4%).
80.0 —	7.002				Hantin co					Post-mineral (?) LH (fine felted Fspars, dark grey) chilled at upper, irregular intrusive contact. Common xenoliths up to 2 ft thick (approx. 20% overall) of albitized mg. diorite. Trace Cpy + Py only.
	750	1000	326.00	373.00	491		DARK GFC1	Fine Grained	Equigra nular	Trace Cpy + Py only.

ST	Ŗ	UC	ŢU				DD AL						CHALCO	×		F	AZZA	YS		PAGE	5
STRUCTURE ID	NGLE TO CORE	STRUCTURE ID	NGLE TO CORE	" CALCITE	% BIOTITE	% K-SPAR	% CHLORITE	% EPIDOTE	ALT. FACIES	% MAGNETITE	PYRITE HABIT	% PYRITE	PYRITE HABIT	CHALCOPYRITE	FROM	10	AMPLE NUMBER	LENGTH Ft/10	Copper %	GOLD 9/t	
			0.00								D		1 6		178.0	188.0			0.140	0.140	— 180.0
		a The	Table of the second								D		ممرمم		188.0	198.0			0.010	0.012	
			1000								DDD		DDD		198.0	208.0			0.010	0.003	The second
											0000000		000000		208.0	218.0			0.020	0.047	
						Jessett .	rains				DDD		DDD		218.0	228.0		T	0.020	0.022	
В	40		110			10.0	2.5	Ē,	ŀ		D	0.1	DDD	0.1	228.0	238.0	581		0.010	0.014	— 230.
											D		D		238.0	248.0			0.000	0.010	
													DDD		248.0	258.0			0.050	0.067	-
	21					ir toli ir toli ir toli or erit	13 (A)				D				258.0	268.0			0.000	0.004	-
									rice S		D	il so	DDD		268.0	273.0	594.1	0	0.000	0.004	2011 1
											D		D		273.0	283.0			0.010	0.019	— 280.
											DDD		000		283.0	293.0			0.010	0.011	
av.	30					10.0	2.5	k			DDD	0.1	D	0.1	293.0	303.0			0.000	0.003	
						12.00		8		77	D	YICK	D		303.0	313.0	Tare 2		0.000	0.007	
											DDD		DDDD		313.0	326.0			0.000	0.001	
											D		D		. Orono	02010					
											DDDD		DDD		326.0	336.0			0.000	0.006	— 330.
UC	30	AV	50			6.40		ļ.,	lagra.		D	0.0	DDD		336.0	346.0			0.010	0.018	-
											D		D		346.0	356.0			0.030	0.023	-
											D		D		356.0	366.0			0.010	0.017	1

DRILL HOLE: DDH94_IE12 1 NOME OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OW

		71			PAGE					
FEET	RQD PPT	RECOVERY PPT	FROM	10	LITHOLOGY	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
0.0	750	1000	326.00	373.00	1,465 d.	10	DARK GREY	Fine Grained	Equigra nular	Post-mineral (?) LH (fine felted Fspars, dark grey) chilled at upper, irregular intrusive contact. Common xenoliths up to 2 ft thick (approx. 20% overall) of albitized m.g. diorite. Trace Cpy + Py only.
	250	650	373.00	392.00	sabes au		DARK GREY	Fine Grained		Same as above, but with intense albite alteration + local (10%) tuffaceous xenoliths (?).
			200	10.0 10.0	Ties 4			00000		M.g. Lost Horse diorite wtih dark grey feldspars (albite alt'd?). These feldspars occasionally have white cores rinned by dark grey. More pyrite in this interval than usual (3%) with associated 0.1% Cpy.
0.0 —	600	1000	392.00	433.00	LH2 Diorite		DARK GREY	Medium Grained	Porphyr itic	this interval than usual (3%) with associated 0.1% Cpy.
			66 0	18.0	Oliga 16		20000		4	M.g. Lost Horse diorite as above, but with white, unaltered (relatively) feldspar phenocrysts.
	650	1000	433.00	457.00	LH2 Diorite		MEDIUM GREY	Medium Grained	Porphyr itic	
0.0 —			100	non .	West for			ğ		us to a literal desired with once Econs
	600	1000	457.00	505.00	LH2 Diorite	LH2 Diorite	MEDIUM GREY	Porphyr itic		M.g. Lost Horse diorite with grey Fspar phenos and an intense albite/scapolite (?) stringer stockwork. Trace Cpy except 1 ft at 504-505 ft contains 3% Cpy.
0.0 -	600	1000	505.00	53300	LH2 Megacrystic Porphyry			Coarse Grained		Intense potassic alt'n in a megacrystic diorite. Fspars up to 1/2' in length, along with 3% black/dark green pyroxenes (?) (ned. grained). Locally broken. EDH at 533 ft.





		_			DRIL PAGE	. 5 r HOre:	DDHS	94_IE1	13	
FEET	RQD PPT	RECOVERY PPT	FROM	T2	LITHOLOGY SA	MINDR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
			0.00	17.00	Casing	161 + 160 160 160 160			tsya INVII	NAME OF STARTED AND START OF STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND STARTED AND S
			17.00	50.00	□verburden	IDI Jimaq	[M] S	ŧV	I or	MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATON MOLATO
DA .		vi)	Un	g Y	10 TT		or it	HU	main Ex	QMDITTELSQUEEN = 133
-	Y	94		12 I		9() 2027		LATE (I)	ISA	Polynictic lapilli tuff with 10% lithic frags up to 4° in dia, in a fine
	500	1000	50.00	102.00	Lapilli Tuff	et 01.5	MEDIUM GREY	Coarse Grained	Fragmen tal	Polynictic lapilli tuff with 10% lithic frags up to 4° in dia. in a fine matrix. Uneven chalcopyrite distribution with 1.5% overall, but consisting of several 1-5 ft zones of 2-3%. One 1/2° massive vn at 70 degrees TCA at 63 ft.
					that same by	ii 60.04			2)	SUMMARRY REPARE
0.0 —	700	1000	102.00	133.00	Lapilli Tuff	in boss ;	MEDIUM GREY	Mediun Grained	Fragmen	Polymictic lapilli tuff as above, but with only 1% lapilli sized frags, the rest are ash sized. This unit nay be a lithic ash tuff. Increasing epidote alt'n (3%).
		-							N.	4
0.0 —	650	1000	133.00	162.00	Lapilli Tuff	10223	MEDIUM GREY	Coarse Grained	Fragmen tal	Polymictic lapilli tuff with 10% lithic frags up to 5° in dia. in a fine matrix. 2 ft of sand at 151-153 ft may indicate a fault.
	700	1000	162.00	166.00	Crystal		MEDIUM GREY	Fine Grained	Fragmen	Finer grained version of above. May be a lithic ash tuff. Contacts are
					Crystal	T III SEC	MEDIUM		Foreman	Fine ash tuff with 2% disseminated (and ninor fracture filling) Cpy, associated with increased carbonate stringers and

FEET 80.0 —	ROD PPT	RECOVERY PPT	FROM	0.0	PAGE LITHOLOGY	MINDR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
-	600	1000	166.00	223.00	Crystal Lithic Tuff		MEDIUM GREY		Fragmen tal	
230.0 —			and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of th		MEAN .	MAR.	VO VO	VIII VIII VIII		
	750	1000	223.00	290.00	100 AT 1	gg och	WQ WG WG VG VG	Aligned Phenocr ysts		Aphanitic to fine dust tuff with local intervals (approx. 5%) (1-3ft thick) of diorite. Good Cpy mineralization (approx. 2%) as dissens, clusters and fracture fills (fine to med. grained). Lower contact is a fault/shear.
280.0 -		102 -		PCA KSN	9(0)	1441	VG VG VG			
		-		100 4	111111	cati				Unmineralized, but moderately Kspar
330.0 -	450	1000	290.00	384.00	LH2 Diorite	(SA)	MEDIUM GREY	1 Medium Grained	Porphyr itic	Unmineralized, but moderately Ksparat'd. LH diorite. Upper contact is a fault, as is lower contact. Dccasional epidote veins, with Kspar envelopes.  Minor talc at lower contact.
				9.5		LH2				A4 A4 A4

2.	TF	SL.	JC	TL			Н	IDLE		H94 TER		13 ION	701		CHALC	×			AŞZA	YS		PAGE	5
STRUCTURE ID	ANGLE ID CURE		STRUCTURE ID	ANGLE TO CORE	IRE % CALCITE		% BIOTITE	% K-SPAR	% CHLORITE	% EPIDOTE	ALT. FACIES	% MAGNETITE	PYRITE HABIT	% PYRITE	DPYRITE HABIT	% CHALCOPYRITE	FROM	10	SSAMPLE NUMBER	LENGTH Ft/10	Copper %	GOLD 9/t	
	Γ	T		-		T							In				176.0	186.0			0.600	0.700	180.0
												ile gi	ID O	Series Series	0>V 0>V 0>V		186.0	196.0	m 54		1.120	0.510	
CV	75	5			5.0			2.5		THE !				2.5	D>\ D>\	2.5	196.0	206.0			0.660	0.400	-
													D		D>\ D>\ D>\		206.0	216.0			0.720	0.430	
						1							D	e in	D>/		216.0	223.0			0.430	0.260	-
													D>V D>V				223.0	233.0			0.140	0.110	— 230.0
													D>V D>V D>V	1			233.0	243.0			0.270	0.160	_
													D>V D>V D>V	1			243.0	253.0			0.690	0.460	
cv	50	0			2.5			2.5	2.5	1.0				2.5		2.5	253.0	263.0	=		0.800	0.380	_
													0>1	1			263.0	273.0			0.210	0.300	_
							0						D>V D>V D>V				273.0	286.0			0.170	0.220	— 280.0
	L												D>\				286.0	290.0			0.040	0.038	
													DDD		DDD		290.0	300.0			0.010	0.005	
													DDD		DDDD		300.0	310.0			0.170	0.230	
													D		D		310.0	320.0			0.010	0.023	
								2.5		1.0		1.0	000	0.1	DDDD	0.0	320.0	330.0			0.000	0.008	
													D		D		330.0	340.0			0.000	0.002	330.0
													DDDD		DDD		340.0	350.0			0.000	0.013	
													DDD		D		350.0	360.0			0.010	0.005	+

DRILL HOLE: DDH94_IE13 PAGE 6 RECOVERY MINOR TEXTURE LITHDLDGY TEXTURE REMARKS RQU COLOR PPT PPT FEET T N 360.0 Unmineralized, but noderately Kspar alt'd. LH diorite. Upper contact is a fault, as is lower contact. Iccasional epidote veins, with Kspar envelopes. Minor talc at lower contact. Porphyr itic LH2 Diorite Medium Grained MEDIUM 290.00 384.00 1000 450 Aphanitic dust tuff/siltstone, no bedding visible, unmineralized, but intense Kspar alt'n + local green talc/sericite veining close to upper contact. Aligned Phenocr ysts MEDIUM RED 384.00 393.00 1000 300 As above from 384-393 ft, but no talc veining or Kspar alt'n. EOH at 400 ft. DARK Aligned Phenocr 393.00 300 1000 400.00 ysts

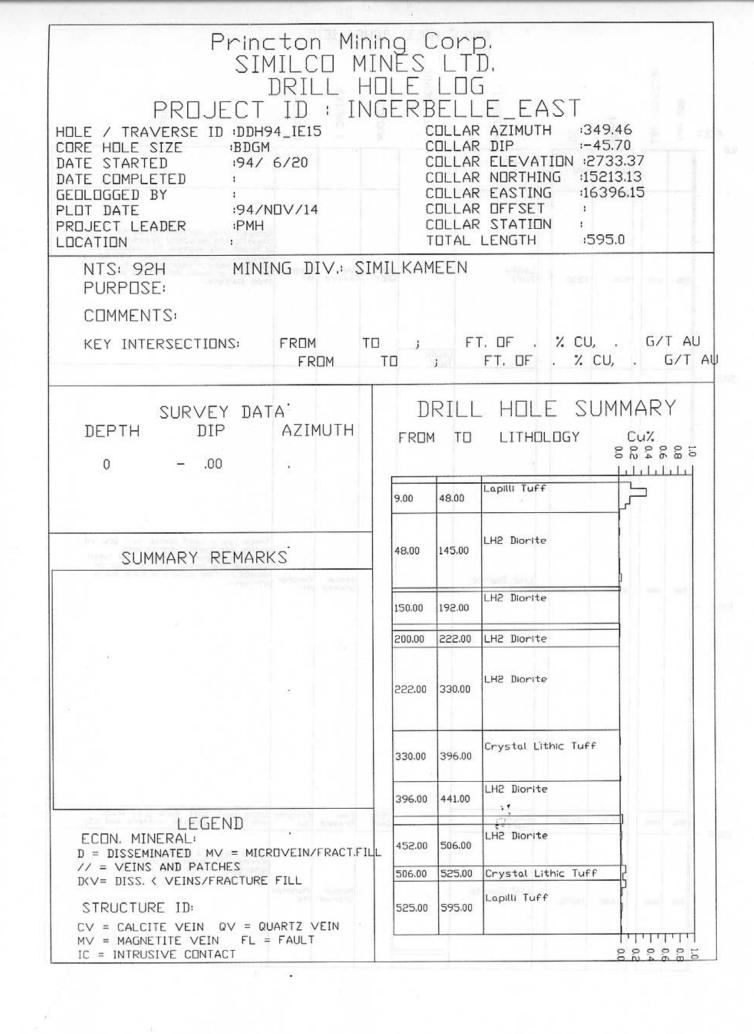




					DRILI PAGE	S HOTE	DDH	94_IE1	14	
FEE1	RQD PPT	RECOVERY PPT	FROM	TZ	LITHOLOGY	MINDR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
0.0 -			0.00	47.00	Casing	1.103 1.403 1.103 1.103 2.103 2.103			95V	E NAP CETANIT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OTTLEMENT DEA  OT
	A			u)a s	m -17	33Mn.	U/Mi		моя	ALMEN TO THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE
50.0 -			47.00	53.00	Overburden		O.L	116	18.4	
	-	19	ANIMI Parimi	15	Lapilli Tuff	180	MEDIUM	Fine	Fragmen	Heterolithic lapilli tuff with clasts decreasing down the hole. 1% Cpy commonly assoc. with albite (?) veins displaying Kspar envelopes, or as disseminations (fine grained) throughout. Limonite is reduced to trace at 59 ft (bottom of oxid.).
	650	1000	53.00	82.00	Tuff	 .xi	GREY	Grained	tal	trace at 59 ft (bottom of oxid.).
	750	1000	82.00	95.00	Lapilli Tuff		MEDIUM GREY	Fine Grained	Fragmen tal	As above, but with increased (2%) Cpy as fine to medium disseminations. LC is sharp and at 75 degrees TCA.
00.0 -	650	1000	95.00	105.00		21 day	LIGHT GREY	Aligned Phenocr ysts		70/30 banded dust tuff and crystal ash tuff. The latter occurs as massive beds 1–3 ft thick. 2% Cpy as fine to med. dissens and clusters. Up to 5% pyrite locally (generally 2%).
	- - 650	1000	105.00	135.00	00 00 00 00 00 00 00	65. VAX	LIGHT GREY	Aligned Phenocr ysts		Same mixed dust tuff and ash tuff as above, but with 0.5% Cpy and 2% pyrite. Occasional heterolithic lapilli beds. Bedding at 60 degrees TCA.
150.0	600	1000	135.00	174.00			DARK GREY	Aligned Phenocr ysts	logav Lif	60/40 dust tyff and crystal ash tuff with 3% Cpy (one massive 2' thick band of Cpy at 163 ft at 75 degrees TCA) as fine to med. disseminations and clusters. Lower contact is a 3' fault that cuts off the mineralization.
	700	1000	174.00	189.00	LHI Diorite	nel mo	DARK GREY	Fine Grained	Equigra nular	

57	RI	IC	TH		LL I	HOLE		)H94 TER					CHALC	×			A	SSA	YS		PAGE	3
STRUCTURE ID	ANGLE TO CORE	STRUCTURE ID	ANGLE TO CORE	R % CALCITE	% BIOTITE	% K-SPAR	×	% EPIDOTE	Þ		PYRITE HABIT	% PYRITE	CHALCOPYRITE HABIT	CHALCOPYRITE		FROM	70	SSAMPLE NUMBER	LENGTH Ft/10	Copper %	QOLD 9/t	
				-270								63	33	Ā			-	ir andi			Logic	0.0
							1.50						-61				631-3				1770	000 FF
					2 1								1989							4 615 4 615		-60 00
			X.=					151			0.1		D.14									- 50.0
											0=V 0=V 0=V		D=V D=V D=V			53.00	63.00			0.070	0.320	
ΚV	35	ΑV	60			2.5	2.5	1.0			D=V D=V D=V	1.0	D=V D=V D=V			63.00	73.00			0.100	0.095	-
									4		0=V		D=V		bes	73.00	82.00			0.170	0.105	
LC	75	ΑV	60			2.5	2.5	1.0			100	2.5	D>V D>V	2.5		89.00	95.00	CRIVI		0.920	0.940	-
BD	70					1.0	200	1.0	1		- 23 0100	2.5	- 1	2.5		95.00				0.620	0.480	- 100.0
		-	-				200			10	DDDD		DOD			105.0	115.0			0.100	0.080	TON ST
BD	60					1.0		1.0			D	2.5	D	0.0		115.0	125.0			0.060	0.020	201 000
							t				D		D			125.0	135.0			0.180	0.190	
											DDD		0000			135.0	145.0		00	0.670	0.520	-:  500   DOI
LC	65	4	180					þ			D	5.0	D	5.0		145.0	155.0°			0.22.0	0.300	- 150.0
						175		Ħ			DDD		DDD			155.0	165.0			0.960	0.980	
										el.	D		D			165.0	1740			0.740	0540	
cv	60			1.0		1.0					D	0.0	D	0.0		1740	:890		L	0:00	0.008	

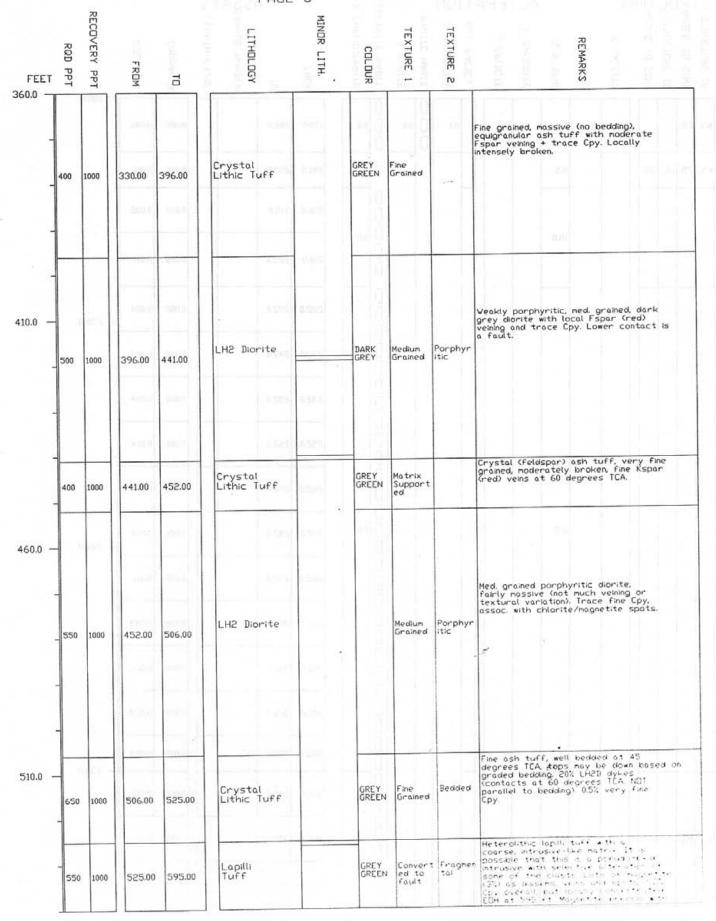
DRILL HOLE: DDH94_IE14
PAGE 4


FEET	RQD PPT	RECOVERY PPT	FROM	01	LITHOLDGY	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
80.0 —	700	1000	174.00	189.00	LH1 Diorite			Fine Grained	Equigra nular	Fine, equigranular diorite with trace Cpy. Lower contact is a qtz-sericite fault zone.
-	700	1000	189.00	207.00	LH1 Diorite	2.72	PALE GREY	Sheared		Quartz(?) sericite alt'd Fault zone with numerous 1-4' gouge zones throughout. Trace Cpy. 0.1% fine, dissem black metallic sulphide.
	800	1000	207,00	211.00	LH2 Diorite		MEDIUM RED	Fine Grained	itic	0.5% Cpy in a red, Kspar alt'd fine porphyritic diorite. Common black
	700	1000	211.00	217.00	LH2 Diorite		MEDIUM RED	Fine Grained	Porphyr Itic	1.5% Cpy in the same unit described above (as disseminations and fracture fills).
_	700	1000	217.00	222.00	LH2 Diorite		ME.DIUM RED	Fine Grained	Porphyr Itic	0.5% Cpy in the same unit described above.
230.0 —	500	1000	222.00	259.00	out to a		Vol Vol Vol Vol	Aligned Phenocr ysts	Bedded	0.3% Cpy in a dust tuff with 15% xtal ash tuff interbeds up to 3 ft thick. Bedding in the ash tuffs at 100 degrees TCA.
280.0 -	400	1000	259.00	289.00	LH2 Diorite		MEDIUM GREY	Fine Grained	Porphyr itic	Fine, porphyritic diorite with patchy red Kspar veins + envelopes at 30 degrees TCA. No sulphides worth mentioning. Upper contact is a fault, lower appears intrusive, but orientation is unclear.
	750	1000	289.00	296.00			LIGHT	Aligned Phenocr ysts	Bedded	Aphanitic dust tuff with intense albitization (stringers and pervasive). Some bedding at 40 degrees TCA is
	750	1000	296.00	300.00	America.		LIGHT GREY	Aligned Phenocr	Bedded	1.5% Cpy in the same dust tuff described abnove. The lower contact is
	750	1000	300.00	313.00	100		MEDIUM GREY			1.5% Cpy in a lithic lapilli and xtal ash tuff. Lapilli are heterolithic. commonly pale green, rounded, approx. 2-8mm thick. This unit is not very comm at ING. EAST.
	800	1000	313.00	329.00	-74		MEDIUM GREY			Same unit as above, but with only trace Cpy.
330.0 -	750	1000	329.00	337.00			DARK GREY			Same unit as above, but with 1.5% Cpy. Lower contact is conformable at 30 degrees TCA.
	700	1000	337.00	341.00	P. Carlo		MEDIUM GREY	Aligned Phenocr	Bedded	1.5% Cpy occurs connonly as stringers and some disseminations.
	600	1000	341.00	410.00				Aligned Phenocr	Bedded	The same unit as above, but with only trace Cpy. About 10% xtal tuff in beds up to 5 ft thick.

ST	RI	JC	ŢU	RE			AL-	ΓER	AT.	IΠN		Poly	HALCOR	×		Α	SŞA	YS			
STRUCTURE IN	NGLE TO CORE	STRUCTURE ID	NGLE TO CORE	RE % CALCITE	% BIOTITE	% K-SPAR	% CHLORITE	% EPIDOTE	ALT. FACIES	% MAGNETITE	YRITE HABIT	% PYRITE	YRITE HABIT	CHALCOPYRITE	FROM	10	OSAMPLE NUMBER	ENGTH Ft/10	Copper %	GOLD 9/t	— 180.C
· V				1.0		1.0					m	0.0	D	0.0	174.0	189.0			0.010	0.008	- 100.0
Z	45			-		tvori	10.0	10			D	0.0	DDD	0.0	189.0	199.0			0.000	0.005	
-	63						10.0				D	0.0	DDD	0.0	199.0	207.0			0.000	0.012	
V	20			2.5		20.0	2.5				D	0.0	0	1.0	207.0	211.0			0.010	0.020	-
V	20			2.5		20.0	2.5				D	0.0	D	1.0	211.0	217.0			0.450	0.490	
V	20			2.5		20.0	2.5				D	0.0	D	1.0	217.0	222.0			0.060	0.058	-
					H			AL V			DDD		DDD	Out me	222.0	232.0			0.030	0.013	— 530
D	40					5.0	1.0				DDD	1.0	DDD	0.3	232.0	242.0			0.030	0.004	
-	10										D		DDD	MIL	242.0	252.0			0.030	0.031	
											D		D		252.0	259.0			0.020	0.019	
										-				125	259.0	269.0	19134		0.010	0.013	
(V	30					2.5									269.0	279.0			0.010	0.010	
	20000														279.0	289.0			0.010	0.031	- 28
V	60	BD	40			2.5					D	0.0	D	0.0	289.0	296.0			0.010	0.007	
V	60	BD	40		100	2.5		1 160	201		D	1.0	D	1.0	296.0	300.0			0.460	0.580	
				1		111					D		٦D		300.0	307.0			0.350	0.190	
						1.0		0.1			D	1.0	D	1.0	307.0	313.0			0.040	0.021	
						1.0		0.1			DDD	0.1	DDD	0.0	313.0	323.0			0.020	0.120	-
											D		DDD		323.0	329.0			0.010	0.016	
c	30					1.0		0.1				1.0	]D	1.0	329.0	337.0			0.150	0.121	<del> </del> 33
3D	30	sv	60		5.0				1		DK.	1.0	DK	1.0	337.0	341.0			0.100	0.091	-
							-				0		000		3410	3510			0.050	0.055	
BD	30	SV	60		5.0						10	0.0	1	G.0	351.0	361.0	117		0.020	0.074	

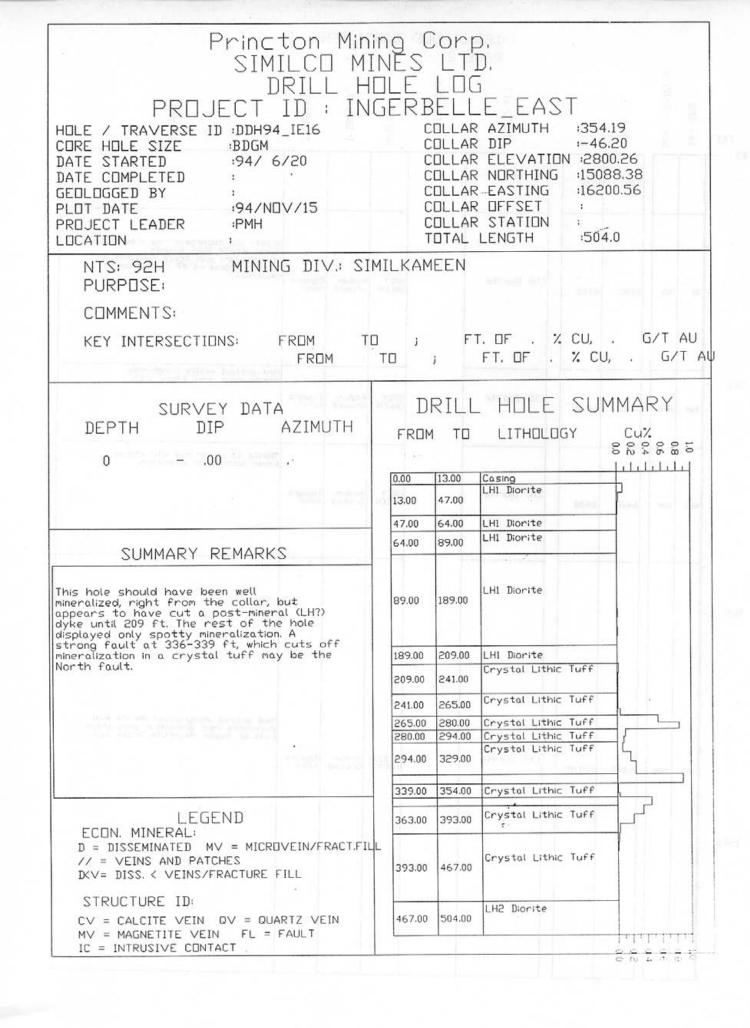
PAGE 6 RECOVERY MINDR **LITHOLOGY** TEXTURE EXTURE REMARKS ROD COLOUR FROM PPT PPT FEET H N 360.0 The same unit as above, but with only trace Cpy. About 10% xtal tuff in beds up to 5 ft thick. Aligned Phenocr ysts MEDIUM GREY Bedded 600 1000 341.00 410.00 1% Cpy as fine dissems, within a fine lithic lapilli and ned crystal ash tuff. Lapilli generally 2-8mm in size. Lower contact is parallel to bedding at 40 degrees TCA. 410.0 MEDIUM GREY Fine Grained Fragmen tal 1000 429.00 600 410.00 0.5% Cpy in an aphanitic pale green dust tuff. Commonly highly broken. Lower contact is a 2° fault gouge at 55 degrees TCA. Aligned Phenocr ysts LIGHT GREEN 600 900 429.00 446.00 1.5% Cpy as stringers 1-3nm wide and fine dissems, that decrease away from upper contact. The tuff is dark grey to black, fine grained equigranular with 3% lithic lapilli to 8mm in dia. Crystal Lithic Tuff DARK Equigra nular Fine Grained 459.00 446.00 750 1000 460.0 1.5% Cpy and 3% pyrite as fine to med. dissens. + common sulphide stringers 2-6nn thick at 65 degrees TCA perpendicular to the bedding. The unit is a dust tuff with 20% crystal ash tuff beds 1-3 ft thick. MEDIUM Aligned 600 1000 459.00 543.00 ysts 510.0 Fine dark grey to black, biotitic ash tuff with 15% Cpy as common sulphide (Cp. + Py) stringers at 60 degrees TCA (Edma tack) + fine disseminations. FDH at 559 ft. The hole was stopped we cause being close to the river, many at these depths is not feasible. VEFY LAFY GPEY Crystal Lithic Tuff Erre Granea 543.00 559.00 1000 800

					LL H	HOLE	: DI	H94	_IE	14			오							PAGE	7
ST	RI	UC S	ŢU	RE				TER	25				LCOP	7. 0.		Α	SŠV	YS E			
TRUCTURE ID	GLE TO CORE	TRUCTURE ID	GLE TO CORE	E % CALCITE	% BIDTITE	X K-SPAR	% CHLORITE	% EPIDOTE	ALT. FACIES	% MAGNETITE	PYRITE HABIT	% PYRITE	CHALCOPYRITE HABIT	% CHALCOPYRITE	FROM	10	SSAMPLE NUMBER	NGTH Ft/10	Copper %	GOLD 9/t	— 360.i
											D		D		361.0	371.0			0.020	0.008	_ 360.
											0000000				371.0	381.0			0.140	0.120	
BD	30	sv	60		5.0						D	0.0	DDD	0.0	381.0	391.0			0.010	0.012	
											D		0000		391.0	401.0			0.010	0.019	-
											D D D		D		401.0	410.0			0.050	0.030	
											D		D	+1	410.0	420.0			0.170	0.060	— 410.i
AV	75	cv	75	2.5							DDDDD	1.0	DDD	1.0	420.0	429.0			0.330	0.135	
											D		D		429.0	439.0		~	0.080	0.065	
BD	40	AV	50			1.0	1.0				DDDD	1.0	DDD	1.0	439.0	446.0	- 47		0.080	0.073	-
											04	2.5	04		446.0	453.0			0.420	0.320	-
CV	5	SV	65								04	1	04	1	453.0	459.0			0.070	0.028	
											D=/	Λ	D=\ D=\		459.0	469.0			0.090	0.260	— 460 —
											0=\ 0=\ 0=\		D=\ D=\ D=\ D=\		469.0	479.0			0.350	0.018	
											0=/	V	D=\ D=\	ΛI	479.0	489.0			0.770	0.600	
											D=1	V V	D=/		489.0	499.0			0.640	0.620	-
BD	35	AV	40	0.3		0.1	0.3	0.1			D='	2.5	0=\ 0=\ U=\	1.0	499.0	509.0			0.320	0.210	
											0=	V	0=1	1	509.0	519.0			0.370	0.190	- 510
											0=	V V	0=1 D=1	V	519.0	529.0	;		0.110	0.023	-
											D= D=	V	0= 0=	V	529.0	539.0			0.190	0.320	1
											0=		0=	V	539.0	543.0			0.430	0.340	1
40	40	21	60		10.0						0<	1/25	D<	VI.0	543.0	553.0			0.480	0.032	-
	1	100	30		- 10.0						D<	V	0<	V	553.0	559.0		$\top$	0.110	0.056	1


F



FEET	ROD PPT	RECOVERY PPT	FROM	T2	LITHOLOGY SIA	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
			0.00	9.00	Casing	J03			05/3	MATE STARTED 1987 MATE COMPLETED
1			8.29		BETTE SAL METATE SAL METATE SAL	000 000 100 100			NIX PE	Dxidized from surface to 39 ft (linonitic and malachite fractures), although only approx. 5% oxidation at
	250	1000	9.00	48.00	Lapilli Tuff	BBMAG	DARK GREY	Fine Grained	Fragmen tal	Dxidized from surface to 39 ft (limonitic and nalachite fractures), although only approx. 5% oxidation at surface. Moderately broken. 1.5% Cpy as dissens, veins + clusters up to 1cm in dia. (fine grained), decreasing away from surface.
UA.	A Thi	λā	(35)	,5 E	. 15 .F1 56 .T1	Lapilli Tuff	in the	M	MD97	LEVELT LINE RESERVED.
0 -	9	SI N	HHI.	2 1		ESIQ.		НТµя	TA STYA	DEELH DIE DVI
		1			Part mark	84 10				00.
	700	1000	48.00	145.00	LH2 Diorite	AT 1940		Medium Grained	Porphyr	Trace Cpy in Lost Horse, med. grained, weakly porphyritic diorite with moderate Kspar alt'n as a red 'wash' through the matrix and as veins or envelopes. Cpy occurs in rare albite stringers.
						DE INIII				
				1007 100	na interest un	972 38.19	16			
	800	1000	145.00	150.00	Lapilli Tuff	J DK - 735-9	VERY	Fine Grained	Fragmer tal	Lithic lapilli tuff, dark grey-black with local magnetite clusters and 0.5%
0.0 -	700	1000	150.00	192.00	LH2 Diorite			Medium Grained	Porphy	Trace Cpy in a weakly porphyritic diarite with moderate potassic alteration. Trace MDS2 in a FLT at 176-177 ft.


СТ	DI	uc	T1.10	DRIL	L F	IOLE	DD	H94.	_IE	15 I II N			CHALO			A	A22	24		PAGE	3
) STRUCTURE ID	ZANGLE TO CORE	STRUCTURE ID	DANGLE TO CORE	% CALCITE	% BIOTITE	% K-SPAR	% CHLORITE	% EPIDOTE	ALT. FACIES	% MAGNETITE	PYRITE HABIT	% PYRITE	DPYRITE HABIT	CHALCOPYRITE	FROM	10	SSAMPLE NUMBER	LENGTH Ft/10	Copper %	GOLD 9/t	- 0.0
					AT THE		137			bi	(2)					- GMT	Sera		02	et s	
											0=V 0=V		D=V D=V		9.00	17.00			0.160	0.057	197
											D=V D=V		D=V D=V D=V D=V D=V D=V		17.00	27.00	~		0.370	0.140	+
						1.0			W 700 1		D=V D=V	0.1	0=V 0=V	1.0	27.00	37.00	KU.	1000	0.150	0.095	1
											D=V D=V D=V		D=V					H	0.090	0.090	_
											D=V		D=V		37.00	44.00			0.010	0.006	
									H		D		0>V 0>V		48.00	58.00			0.010	0.003	— 50.0
											DDD		0>/		58.00	68.00			0.000	0.012	-
											00000		D>\ U<0								-
								- 19					/<0 /<0		68.00	78.00			0.010	0.008	
											DDDD		D>/	1	78.00	88.00			0.000	0.010	
								1			0000		D>/		88.00	98.00	93.5		0.000	0.005	
<b>4</b> V	55					2.5				1.0	D	0.0	D>/		98.00	108.0			0.000	0.006	— 100
											0000		0×/ 0×/		108.0	118.0			0.010	0.021	_
											D		D>/ D>/	1	118.0	128.0			0.010	0.013	-
											Ď		D>,	4	110.0	120.0		-			
											Ď		D>'	4	128.0	138.0			0.030	0.059	
											D		D>		138.0	C 12/1/4/2000			0.000	0.033	
ΚV	50					2.5				1.0	D	1.0	D	-	145.0	150.0			0.020	0.036	- 15
			i on		E A		10				DDD				150.0	160.0			0.000	0.018	
ΚV	20			1.0		2.5				0.1	DOD			0.0	160.0	170.0	13		0.000	0.005	
											DDD				170.0	180.0			0 000	0.009	

ST	ΓR	UC	TU			HOLE	DD AL7			15 ION	ha		CHALCE	×		4	Agga	YS		PAGE	5
STRUCTURE ID	ANGLE TO CORE	STRUCTURE ID	ANGLE TO CORE	RE % CALCITE	% BIOTITE	% K-SPAR	% CHLORITE	% EPIDOTE	ALT. FACIES	% MAGNETITE	PYRITE HABIT	% PYRITE	PYRITE HABIT	CHALCOPYRITE	FROM	10	SSAMPLE NUMBER	LENGTH Ft/10	Copper %	GOLD 9/t	— 180.0
	20		14	1.0		2.5	100			0.1	000	0.0	DOD	0.0	180.0	192.0			0.000	0.006	•
۲V	75	uc	40			2.5								10	192.0	200.0	101		0.010	0.016	-
1000													DDD		200.0	210.0			0.010	0.006	
						10.0							DDD	0.0	210.0	222.0			0.000	0.011	
					La Til	13							D		222.0	232.0			0.000	0.004	— 230.0
								·E		15			DOD	AG SNO	232.0	242.0	ad Sh		0.000	0.005	2011
													000		242.0	252.0			0.000	0.004	
													lu In		252.0	262.0			0.000	0.014	
					100	175	lo le U					H	DD		262.0	272.0	ed aya		0.000	0.016	
						2.5							DDD	0.0	272.0	282.0			0.000	0.012	<b>—</b> 280.0
					3614	I THE SECOND							DDD		282.0	292.0			0.000	0.011	_
				47						-		125	DDD		292.0	302.0	-0 51		0.000	0.003	- 200
													D		302.0	312.0			0.000	0.026	-
													DDD		312.0	322.0			0.000	0.024	-
	-				the sales	-							D		322.0	330.0			0.000	0.009	— 330.0
												7	DDD		330.0	340.0	Ugg:		0.000	0.010	am e
ΚV	50					2.5							0	0.0	340.0	350.0			0.010	0.003	
													D		350.0	360.0	750		00.0	n ng 3	



T	RA	2U	C.	ŢUI					H94_ ER/	4T]	[DN	_		CHALCOF	× 0		Α	SSA	ZYS		PAGE	
STRUCTURE ID	NGLE TO CORE	O TROC TORE	STELLCTLIEF IN	NGLE TO CORE	% CALCITE	% BIOTITE	% K-SPAR	% CHLORITE	% EPIDOTE	ALT. FACIES	% MAGNETITE	YRITE HABIT	% PYRITE	YRITE HABIT	HALCOPYRITE	FROM	To	OSAMPLE NUMBER	ENGTH Ft/10	Copper %	GOLD 9/t	- 360.0
		T												DD		360.0	370.0			0.000	0.005	30010
	50				23		2.5		No. of the					000	0.0	370.0	380.0			0.000	0.003	
v	50	1								-		TH		D		380.0	390.0	781		0.000	0.001	
			a i		27			SI					10.5	D		390.0	396.0			0.010	0.005	
														000		396.0	406.0	= 1		0.000	0.028	
														000								— 410.0
V	20	0					1.0	1.0			1.0			D	0.0							-
																430.0	440.0			0.000	0.017	
· V	6	0					1.0							U		440.0	452.0			0.030	0.029	-
														0000		452.0	462.0			0.010	0.006	<b>–</b> 460
																462.0	472.0			0.020	0.012	_
۲V	16	50					1.0	1.0	1.0		2.5			10	0.0	472.0	482.0			0.010	0.011	-
															)	482.0	492.0			0.010	0.011	-
																492.0	506.0			0.020	0.019	_
	-									1				0	V V	506.0	516.0			0.070	0.034	- 510
BI	D	45	M	70							2.5				=V 1.0 =V	516.0	525.0			0.030	0.017	
		40		0							5.0				0.1	525.0	535.0			0.070	0.059	
1		19.60		*	100											535.	0 545.0			0.020	0.045	1

9	PAGE		VC	004				CHAL						IOLE	L H	DRIL				
"— <b>540.</b> 0	GDLD 9/t	Copper %	O LENGTH F+/10	SSAMPLE NUMBER	13	FROM	% CHALCOPYRITE	CHALCOPYRITE HABIT	* TIXLE		₽	TER/	ν Ω	% K-SPAR	% BIOTITE	RE % CALCITE	DANGLE TO CORE	STRUCTURE ID	YANGLE TO CORE	STRUCTURE ID
340.0	0.045	0.020			545.0	535.0		D			П									
-	0.190	0.000			555.0	545.0		D												
-	0.045	0.020			565.0	555.0		D												
-	0.023	0.010			575.0	565.0	0.1	000		0				2.5		1.0	70	cv	40	<v< td=""></v<>
-	0.013	0.000			585.0	575.0		D												
- 590.0	0.030	0.010			595.0	585.0		D												



FEET	RQD PPT	RECOVERY PPT	FROM	10	LITHOLDGY	MINDR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
80.0 —	600	1000	89.00	189.00	LH1 Diorite		MEDIUM GREY	Medium Grained	Equigra nular	Med. grained, equigranular diorite with pyroxenes (med. grained) in good shape. Lots of dissem. magnetite, trace Cpy.
	650	1000	189.00	209.00	LH1 Diorite		MEDIUM GREY	Medium Grained	Equigra nular	As above, but with increased Kspar, magnetite and chlorite (intense Fspar alt'n that occasionally forms velns which appear to cut magnetite/chlorite zones).
	450	1000	209.00	241.00	Crystal Lithic Tuff			Fine Grained	Equigra	Fine to aphanitic xtal ash tuff that may be the same intrusive as above, but with the textures obliterated by potassic + magnetite alt'n. As with the above unit, Kspar veins cut magnetite spots/clusters.
	350	1000	241.00	265.00	Crystal Lithic Tuff			Medium Grained	Fragmen tal	Fine to med. grained crystal ash tuff with local lapilli (coarser version of the unit above). Locally this unit resembles an intrusive or ash-lapilli tuff.
	450	1000	265.00	280.00	Crystal Lithic Tuff		To the second	Fine Grained	Equigra nular	As with the above unit, this is probably a crystal tuff, but could be an intrusive, but with 2% disseminated and fracture posted, mg. Cpy. Less Kspar alt'n than the above intervals.
280.0 -	650	1000	280.00	294.00	Crystal Lithic Tuff		DARK GREEN	Fine Grained	Porphyr itic	Dark green xtal (and lithic lapilli?) tuff with white feldspar (?) spots (approx. 5%, 3-10mm in dia.) often with thin faint Kspar rims. 0.5% Cpy as spotty clusters and fine disseminations. Lower contact is sharp and 10 degrees TCA.
	400	1000	294.00	329.00	Crystal Lithic Tuff			Fine Grained	Porphyr Itic	Same unit as above, but without the albite spot alteration (only local minor amounts). Increased, moderate patchy Kspar altrn. Gives a red colour. 0.5% Cpy.
330.0	700	1000	329.00	339.00	Crystal Lithic Tuff	Crystal	DARK GREEN	Fine Grained	Porphyr	better mineralized than the red, potassic altered tuff, but both pre heavily mineralized.
	800	1000	339.00	354.00	Crystal Lithic Tuff		DARK GREEN		Porphy:	Same unit as above the fault but not mineralized. Moderate potassic althoughout
	650	1000	354.00	363.00	Crystal Lithic Tuff			Fine Graines		r 15% Cpy in a meable potass of cities a interval of crystal assistant

		120			PAGE	. 6									
FEET	ROD PPT	RECOVERY PPT	FROM	70	LITHOLOGY	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS					
.0 —	650	1000	354.00	363.00	Crystal		Tim	Fine	Porphyr	1.5% Cpy in a weakly potassic altered					
	550	1000	363.00	393.00	Crystal Lithic Tuff			Fine Grained	Porphyr itic	0.5% Cpy in a weakly altered (potassically) interval of crystal ash tuff. Local coarser sections may be intrusive (<4° thick).					
			Les II	Na/Ltd	OWELL										
0 -				10.0	sistem.	ung 1		so (1)	ti i	64 May					
					8,452	754				Albite stringer stockwork, common orientation is 40 degrees TCA, trace Cpy only. Very weak Kspar alt'n, although local 1-3 ft intervals are intense.					
3	700	1000	393.00	467.00	Crystal Lithic Tuff	ins.	MEDIUM GREY	Fine Grained		intense.					
			i entre		mana	lon.									
•					(A.655)			1 8							
.0 -					1000		12								
	-		1000		LH2 Diorite			Medium	Porphyr	Veakly porphyritic red and grey diorite with local zones of albite stringer stockwork. Mafics are in relatively good shape. Trace Cpy. Common epidote spots.					
	600	1000	467.00	504.00	257			Grained							
			de la												

				LL H	HOLE	: DD	H94.	_IE1	6			CHA							PAGE	7
STRUCTURE ID	CANGLE TO CORE	C STRUCTURE ID	JRE % CALCITE	% BIOTITE	% K-SPAR	A " CHLORITE				PYRITE HABIT	% PYRITE	CHALCOPYRITE HABIT	% CHALCOPYRITE	FROM	A 13	SSAMPLE NUMBER	Y LENGTH Ft/10		GOLD 9/t	"— 360.0
		KV 20			2.5			H		n	0.1	D	1.0	354.0	363.0			0.460	0.600	
										000				363.0	373.0			0.350	0.380	-
LC	10				1.0					D	0.1	DDD	1.0	373.0	383.0			0.220	0.260	-
										D		D		383.0	393.0			0.030	0.043	-
										D		D		393.0	403.0			0.020	0.035	-
										D		D		403.0	413.0			0.010	0.027	410.0
										D		D		413.0	423.0			0.000	0.005	-
AV	40				1.0						0.1	000000	0.0	423.0	433.0			0.000	0.001	}
										DO		D		433.0	443.0			0.000	0.001	-
										D		DDD		443.0	453.0			0.000	0.001	-
								-		0000000		DDD		453.0	467.0			0.000	0.002	- 460.0
F		Ħ								D		DDD		467.0	477.0			0.000	200.0	-
					2.5		2.5			DDDD		000	0.0	477.0	487.0			0.000	0.001	-
					2.3					D		D		487.0	497.0			0.000	0.015	-
										D		D		497.0	504.0			0.000	0.014	

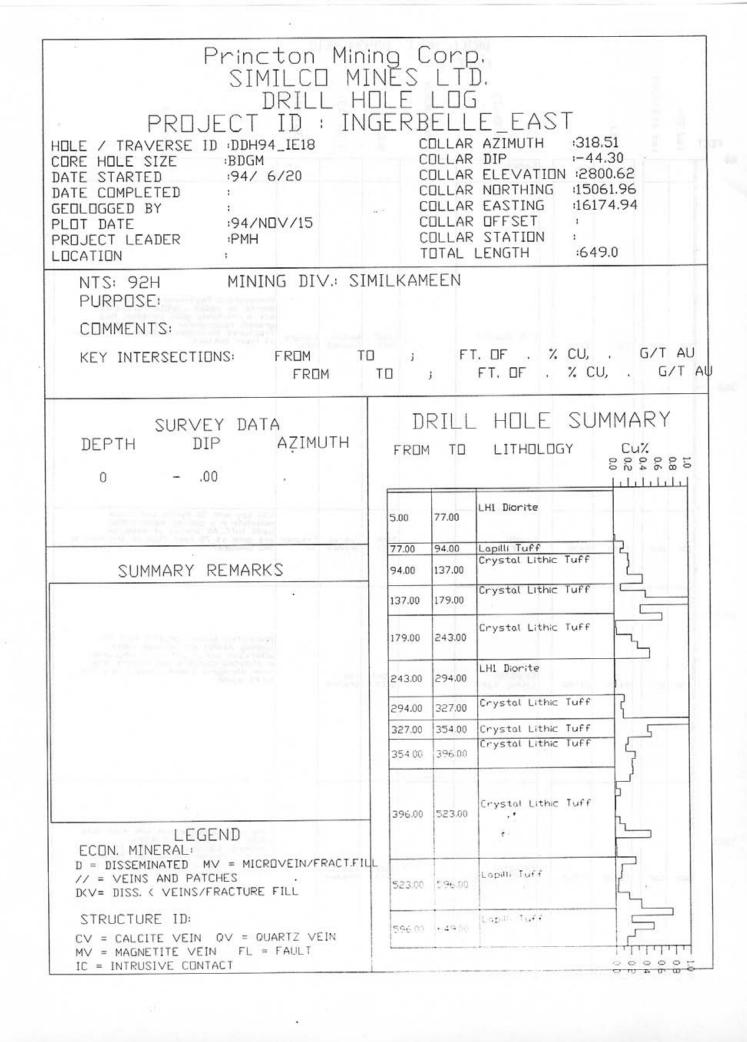
1.ª

## Princton Mining Corp. SIMILCO MINES LTD. PROJECT ID : INGERBELLE_EAST COLLAR AZIMUTH HOLE / TRAVERSE ID :DDH94_IE17 :157.82 COLLAR DIP :-46.60 CORE HOLE SIZE :BDGM COLLAR ELEVATION :2797.24 :94/ 6/20 DATE STARTED :15032.99 COLLAR NORTHING DATE COMPLETED COLLAR EASTING :16175.44 GEOLOGGED BY COLLAR OFFSET :94/NOV/15 PLOT DATE COLLAR STATION PROJECT LEADER :PMH :735.0 TOTAL LENGTH LOCATION MINING DIV .: SIMILKAMEEN NTS: 92H PURPOSE: COMMENTS: FT. DF . % CU, . G/T AU FROM TO ; KEY INTERSECTIONS: . % CU, . G/T ΑΨ FT. OF TO FROM HOLE SUMMARY DRILL SURVEY DATA DIP DEPTH AZIMUTH FROM TO LITHOLOGY Cu% 0.8 0.6 0.4 0.2 0 .00 Casing 0.00 43.00 Lapilli Tuff 54.00 203.00 SUMMARY REMARKS Well mineralized hole overall. Drilled to the south (approx. 160 degrees) from the Gully fault. The first 355 ft were >0.3% (visually), within WCF volcanics. Following a brief interval of only minor Cpy, the interval from 563 ft to the EDH was well mineralized. In particular, 563-641 ft will have grades approx. 1% and the narrow massive veins are very similar to those intersected in 94-IE06. (050-060 degrees Lapilli Tuff 263.00 203.00 Crystal Lithic Tuff 325.00 263.00 Crystal Lithic Tuff 351.00 325.00 structure?). 351.00 381.00 Crystal Lithic Tuff 406.00 LH2 Diorite 381.00 406.00 426.00 LH2 Diorite 426.00 455.00 LH2 Diorite 510.00 455.00 Crystal Lithic Tuff 524.00 541.00 563.00 LH2 Diorite 541.00 LEGEND 594.00 LH2 Diorite 563.00 ECON. MINERAL: D = DISSEMINATED MV = MICROVEIN/FRACT.FILL 628.00 LH2 Diorite // = VEINS AND PATCHES D(V= DISS. < VEINS/FRACTURE FILL Crystal Lithic Tuff 649.00 705.00 STRUCTURE ID: 735.00 LH1 Diorite 705.00 CV = CALCITE VEIN QV = QUARTZ VEIN

0.6

MV = MAGNETITE VEIN FL = FAULT

IC = INTRUSIVE CONTACT


STRUCTURE ID	CANGLE TO CORE	C STRUCTURE ID	DANGLE TO CORE		Z SIDTITE	HOLE % K-SPAR	AL	TER		IDN	PYRITE HABIT	% PYRITE	CHALCOPYRITE HABIT	% CHALCOPYRITE	FROM	10	SSAMPLE NUMBER	Y LENGTH F+/10	Copper %	PAGE GDLD 9/t	3
				- Vicini			ar -														-
			12	War not		5	2.5	1.0	ev e		D=V D=V	1.0	D=V D=V	1.0	43.00	54.00	BOT		0.470	0.310	- - 50.0
											D=V D=V		D=\ D=\		54.00	64.00	8		0.110	0.085	-
											D=V D=V D=V D=V D=V D=V D=V D=V D=V		D=\ D=\ D=\ D=\ D=\ D=\ D=\		64.00	74.00			0.270	0.280	-
											D=V		D=\		74.00	84.00			0.310	0.260	
						+					D=V D=V N=V		D=\ D=\		84.00	94.00			0.030	0.025	-
											0=V		D=/		94.00	104.0			0.090	0.105	100.0
				1							D=\ D=\ D=\		D=\ D=\ D=\	1	104.0	114.0	nie vi		0.050	0.031	-
ΑV	25							2.5			D=\ D=\	1.0	D=/	1.0	114.0	124.0			0.070	0.073	-
											()=\ ()=\ ()=\	A	0=1	V	124.0	134.0			0.170	0.120	-
											[]=\ []=\		D=	VÍ	134.0	144.0			0.220	0.180	-
							Ev.				(D=1	1		V	144.0	154.0 _f			0.210	0.190	- 150.
		l i										1		V	15.4.0	1640			0.090	0.057	
												V.	1 1 1 1 1 1		ie 4 0	1740			0.340	0.260	-
						-						:			: 4	194 ti	-		0.100	0.050	

FEET	RQD PPT	RECOVERY PPT	FROM	10	LITHOLOGY	MINOR LITH	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
180.0 -	550	1000	54.00	203.00	Lapilli Tuff		MEDIUM GREY	Fine Grained	Fragmen	0.8% Cpy as fine to med. dissems. Fracture filling 1-3mm thick (rare 10-15 m/s thick) and clusters 3-8mm in dia. in a med. grey, weakly pervosively albite altered lithic lapilli tuff, Common albite veins as well. Local broken zones, but no obvious faults. Dccasional short (<4ft) intervals appear to be intrusive.
230.0 -	750	1000	203.00	263.00	Lapilli Tuff		MEDIUM GREY	Fine Grained	Fragmen	1.5% Cpy and 2% Py in a lapilli or crystal ash tuff. Sulphides occur as dissems (fine to med) or veins at 10-40 degrees TCA (most commonly approx. 25 degrees TCA).
280.0	750	1000	263.00	325.00	Crystal Lithic Tuff		LIGHT GREY	Bedded		2% Cpy and 1.5% Py in a bedded ash tuff. Graded bedding at 316 ft indicates tops up. Sulphides as fine to ned. dissems and clusters and occasional veins 3-8mm thick, commonly at 40 degrees TCA.
330.0	700	1000	325.00	351.00	Crystal Lithic Tuff		£1GH₹	Matri. Supper		Fine crystal ash tuff with no bedding or banding contains sporadic zones of 2% Cpy as stringers at 40 degrees TCA with pyrite. Lower contact is based on sulphide content and is gradational over approx. 5 ft.
	756	1000	351.00	381.00	Crystal Lithic Tuff			W		the sety climitized crystal ash tuff to all 32, fine, dissen Cpy. This and locally appears intrusive and charments the distribute below. Albite at many have disguised the intrusive

FEET	ROD PPT	RECOVERY PPT	FROM	10	PAGE	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
60.0 —	750	1000	351.00	381.00	Crystal Lithic Tuff		GREY	Matrix Support ed		Intensely albitized crystal ash tuff (?) with 0.3% fine, dissem Cpy. This unit locally appears intrusive and grades into the diorite below. Albite alt'n may have disguised the intrusive textures.
-	700	1000	381.00	406.00	LH2 Diorite			Medium Grained	Porphyr itic	Mottled and albite altered diorite (weakly porphyritic) textures locally obliterated. Trace Cpy. 0.2% fine black-brown, disseminated sphalerite(?) (nay be fine biotite).
10,0 —	400	1000	406.00	426.00	LH2 Diorite	100	LIGHT GREY	2 2 0 1 2 2 0 1 3 0 1	Porphyr Itic	6' gouges, every 1-2 ft, throughout the interval, otherwise as above.
	350	1000	426.00	455.00	100 man		GREY GREEN	Aligned Phenocr ysts	Bedded	1% Cpy in an aphanitic, pale grey-green dust tuff with bedding at 40 degrees TCA. Moderately broken.
60.0 -	650	1000	455.00	510.00	LH2 Diorite		MEDIUM GREY	Medium Grained	Porphyr	Highly altered mildly porphyritic diarite with local xenoliths (?) of black lapilli tuff (up to 2 ft thick). 11% Cpy as fine dissens and clusters and minor stringers (up to 3% Cpy over 1 ft intervals). Neither contact is a fault.
510.0 -	600	1000	510.00	524 (0)	Lapil.		DARK GREY	Fragmen	Medium Grained	Heterolithic lapilli tuff with 0.8% Cpy as very fine dissens and local clusters up to 8mm in dia. Intrusive (?) upper contact at 35 degrees TCA.
	7.700	1000	524100	1.41.10	V: 10 (1)		ME DIUM GPEY	Fine Grained	Matrix Suppor	1% Cpy as fine dissens with pyrite in a fine, crystal ash (?) tuff. Sharp upper contact at 40 degrees TCA. Lower contact is a 1' fault gouge at 60 degrees TCA.

FEET	RQD PPT	RECOVERY PPT	FROM	10	ГІТНОГОВА	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
40.0 -	700	1000	541.00	563.00	LH2 Diorite	men.	MEDIUM GREY	Medium Grained	Porphyr itic	1% Cpy and fine dissems, with pyrite within albite altered diorite. Some of this unit may be crystal tuff.
-	650	1000	563.00	594.00	LH2 Diorite	Nove Nove	DARK GREY	Medium Grained	Porphyr itic	4% Cpy within a highly altered diorite (?) (euhedral, med. grained feldspars are still visible). Cpy occurs as med. grained clusters and stringers and one 3' banded (pyrite + Cpy) vein at 573 ft at 30 degrees TCA. The massive vein also contains 0,3% MDS2. The upper contact is based on grade and is gradotional. The lower contact marks the beginning of a major fault zone.
90.0 —	50	1000	594.00	604.00	LH2 Diorite	1566%	MEDIUM GREY		Porphyr itic	Major fault that cores this highly mineralized section (oriented at 60 degrees TCA).
	650	1000	604.00	628.00	LH2 Diorite	Kali-	MEDIUM GREY	Medium Grained	Porphyr	Continued highly mineralized diorite on this side of the fault.
40.0 -	700	1000	628.00	641.00	Crystal Lithic Tuff	LH2	DARK GREY	VIII		Highly albite altered crystal tuff with 4% Cpy and 4% pyrite as large (1°) clusters and one 6° massive vein at 634-635 ft (pyrite, Cpy and trace MDS2). Lower contact is gradational and based on grade.
40.0 -	800	1000	641.00	649.00	Crystal Lithic Tuff	25	LIGHT	1/1		0.5% Cpy in the same unit (although lighter coloured) as described above (greater albite alt'n?).
690.0 -	550	1000	649.00	705.00	Crystal Lithic Tuff		DARK GREY	W W		Barker version of the above XLTF (more massive as well), becomes gradually lighter coloured with depth. Commonly broken. 1.5%. Cpy as fine dissens and occasional 2-5mm stringers at 30-60 degrees TCA. Minor bedding in the tuff at 60 degrees TCA. Lower contact observed by alteration.
	- 0				400		180	60		67
	-600	1000	705.00	735.00	LH1 Diorite	inte	MEDIUM GREY	Medium Grained	Equigra nular	Pyroxenes are altered, but still euhedral in the L.H. diorite with common albite veins and 0.8% very fine, dissem. Cpy.

				DRIL		IOLE							CHAL			٨	CC 1	VC	1	PAGE	9
STRUCTURE ID	PLANGLE TO CORE	STRUCTURE ID	DANGLE TO CORE	CALCITE	% BIOTITE	% K-SPAR	×	TER % EPIDOTE	A ALT. FACIES [	0725	PYRITE HABIT	% PYRITE	CHALCOPYRITE HABIT	% CHALCOPYRITE	FROM	10	OSAMPLE NUMBER	2 LENGTH F t/10	Copper %	GDLD 9/t	<b>—</b> 540
											D>V D>V		D>V D>V		541.0	551.0			0.070	0.250	
V	50					1.0					D>V D>V		D>V D>V	1.0	551.0	563.0			0.050	0.049	
											D=\ D=\ D=\	A	0=V 0=V 0=V		563.0	574.0			1.420	1.720	_
v	30					1.0					D=\	5.0	D=V	5.0	574.0	584.0			2.040	1.460	-
											D=\ D=\	1	D=V D=V		584.0	594.0			0.960	0.480	- 59
z	60		П			1.0					D>/ D>/	1.0	D>V	1.0	594.0	604.0			0.970	0.560	
			П								D>/ D>/	V	D>\ D>\		604.0	614.0			1.890	1.420	
\ \	50					1.0					D>/ D>/	1.0	D>\ D>\	1.0	614.0	621.0			0.670	0.380	
											D>\		D>\		621.0	628.0			1.380	0.980	
21/	50										D=,	V 5.0	D=\ N=\	5.0	628.0	635.0			2.280	1.480	
_											D=	VI	D=/		635.0	641.0		-	1.680	1.090	- 64
sv	50	0							1			5.0	-	1.0	641.0	649.0			0.140	0.095	
											D= D= D=	M	D=\ D=\ D=\	4	649.0	659.0			0.860	0.420	
											D= D=	V	D=1	1	659.0	669.0			0.880	0.600	
DD	61								1		D= D= D=		D=' D=' D='	V V 1.0	669.0	679.0			0.720	0.460	
вы	0										Ď= D=	V	D= D=	V I	679.0	689.0			0.490	0.340	
											0:	V	D= D=	V V	689.0	699.0			0.520	0.500	- 6
											D:	=V  =V	D= D=	V V	699.0	705.0		1	0.680	0.490	1
		1									]		0		705.0	715.0			0.080	0.052	
A١	V 6	00									]	0.1		1.0	715.0	725.0			0.610	0.520	
											1				725.	735.0			0.000	0.490	

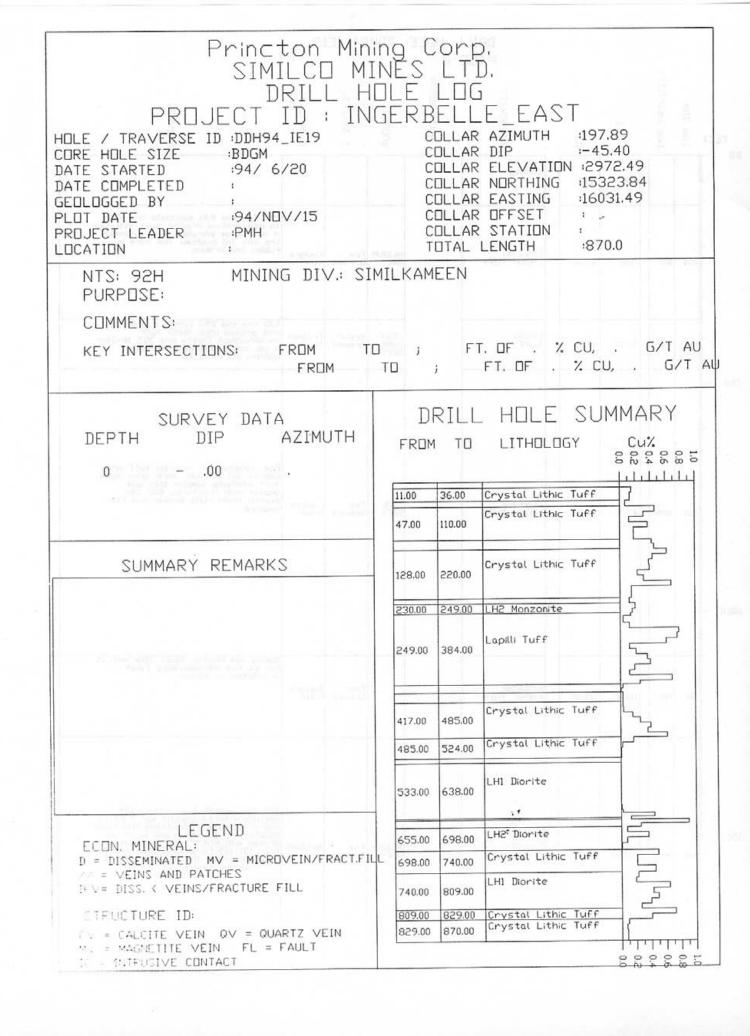


					DRILI PAGE	L HOLE:	DDH	94_IE1	.8	
FEET	ROD PPT	RECOVERY PPT	FROM	10	רוזאטרטפא	MINDR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
0.0			0.00	5.00	Casing	1 1			_ gsv	A VEGE BATCHES STA
-			00.180	90	MILLAR SE TIZ TO TA MITATZ SE MITATZ				2000	ANTE COMPLETELL  AUGUSTASSIS BY  TO CASE  ARGUST LEAGES  OCNIES
						EED A	LIPA	2 4	16 6	ALMAN HER COLUMN
50.0 —	500	1000	5.00	77.00	LH1 Diorite		LIGHT GREY	Medium Grained	Equigra nular	Unmineralized Post-mineral (?) LH (?) diorite, no visible apatite. Pyroxenes are in relatively good condition. Med. grained, equigranular. Rusty, limonitic fractures throughout. Moderately broken at lower contact.
			A MIN			USG.		HIL	MESA	TAB TOVAUS HISAI
-										III U -
	600	1000	77.00	94.00	Lapilli Tuff	TAPE OF	DARK	Coarse Grained	Fragmen tal	0.5% Cpy with 5% pyrite and trace nalachite in a coarse, heterolithic lapilit tuff. All traces of oxidation are gone at 79 feet (top of the hole is 50% oxidized).
100.0 -				Visi						Moderately broken crystal tuff (no bedding visible) with intense albite alteration and 1% patchy chalcopyrite in islolated clusters and dissems, and minor stringers. Lower contact is a 1cm
	250	1000	94.00	137.00	Crystal Lithic Tuff		LIGHT	Fine Grained		fault gouge.
	_									
150.0 -	400	1000	137.00	179.00	Crystal Lithic Tuff		DARK GREY	Fine Grained	CGII 74	Same unit as above, but with much less allate altin (therefore dorker coloured), 15% Cpy and 1% Pyrite as sporadic clusters up to 1/2" in dial and occasional vens 1-4nm thick and fine to ned dissens.
	-									

			DDH94_			CHAL	04 J J J J J J J J J J J J J J J J J J J	PAGE	3
CO STRUCTURE ID  CRANGLE TO CORE  CRANGLE TO CORE  CO STRUCTURE ID	E % CALCITE		ALTERA Z EPIDOTE	PYRITE HABIT  Z MAGNETITE  ALT. FACIES	% PYRITE	% CHALCOPYRITE	C LENGTH F+/10 A C)SAMPLE NUMBER C) A TO FROM	Copper %	- 0.0
CV 35		2.5		1.0 D	0.0				- - - - 50.0
			1.0	2.5		D=V D=V D=V 1.0 D=V	67.00 77.00 77.00 87.00 87.00 94.00	0.020 0.029 0.130 0.095 0.090 0.038	
AV 25		1.0	1.0			D=V D=V D=V D=V D=V D=V D=V	94.00 104.0 104.0 114.0 114.0 124.0	0.190 0.135 0.200 0.140 0.180 0.320 0.380 0.200	- 100.0
A V III		1.0	1.0		D      =V    =V    =V    =V   1.0  =V    =V    =V	D=V D=V D=V D=V D=V D=V D=V D=V	137.0 147.0 147.0 157.0 157.0 167.0	0.090 0.070 0.420 0.280 1.060 0.820 0.350 0.300	- 150

FEET 180.0 —	ROD PPT	RECOVERY PPT	FROM	10	LITHDLOGY	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
- 0.002	500	1000	179.00	243.00	Crystal Lithic Tuff			Fine Grained	16.2	
- 0.082	700	1000	243.00	294.00	LH1 Diorite		LIGHT	Fine Grained	Equigra nular	Indistinct upper contact (obscured by altin?). Lower contact is sharp and 20 degrees TCA. This unit looks like a fine diorite (nagnetite, int. equigranular texture), but could be a massive crystal ash tuff, only trace Cpy.
	- 550	1000	294.00	327.00	Crystal Lithic Tuff		MEDIUM GREY	Fine Grained		Crystal ash tuff with local lapilli up to 1' in dia. Abundant pyrite with epidote, 0.3% Cpy as fine dissens. with the pyrite.
330.0 -	- 650	1000	327.00	354.00	Crystal Lithic Tuff			Ecoco		Same unit as above, locally banded (bedded), but with increased Cpy (2%) and kspar alteration (with chlorite spots and patches).
	700	1000	354.00	396.00	Crystal Lithic Tuff		LAT.		Lawara Nasar	for crystal ash tuff (locally massive and atrusive textures) with less export colorite and only 0.3% Cpy.

ST	ΓŖΙ	UC	ŢU		LL I	HOLE		H94 TER					CHALCE	1.II			Aga	YS		PAGE	5
STRUCTURE ID	ANGLE TO CORE	STRUCTURE ID	ANGLE TO CORE	R % CALCITE	% BIOTITE	% K-SPAR	% CHLORITE	Z EPIDOTE	ALT. FACIES	% MAGNETITE	PYRITE HABIT	% PYRITE	CHALCOPYRITE HABIT	CHALCOPYRITE	FROM	10	SSAMPLE NUMBER	LENGTH Ft/10	Copper %	GOLD 9/t	190.0
											D		D=V D=V D=V		179.0	189.0			0.640	0.420	180.0
			est i			7.20		100			D	140	D=V		189.0	199.0		100	0.020	0.029	
											DOD		D=V D=V D=V D=V D=V		199.0	209.0			0.030	0.042	-
AV	25				1.0	5.0		1.0			D	1.0	IJ=V		209.0	219.0			0.230	0.190	-
											DDn		D=\ D=\ D=\	1 1	219.0	229.0			0.310	0.400	-
											DDDD		D=\ D=\ D=\	1	229.0	243.0			0.470	0.260	- 230.0
								H			DD		D		243.0	253.0			0.010	0.017	
									H		DDD		DOD		253.0	263.0			0.010	0.047	
cv		KV	30	5.0		2.5		2.5		2.5	00000	0.1	D	0.0	263.0	273.0			0.010	0.013	
		i i i	100		Political		H				0000		000		273.0	283.0		-	0.020	0.030	- 280.0
											D		Ď		283.0	294.0			0.000	0.046	
				-							D		D		294.0	304.0			0.130	0.120	-
cv	80			2.5	0.1	1.0		0.1			D D D D	2.5	DDDD		304.0	314.0			0.090	0.056	-
											D		D		314.0	327.0			0.120	0.085	
-									1		DDD		_ D D D		327.0	337.0			1.000	0.460	- 330.0
BD	45			2.5	0.1	5.0	2.5	1.0			DDD	1.0	D	2.5	337.0	347.0			0.440	0.340	-
											D		D		347.0	354.0			0.490	0.380	-
CV	80			2.5	0.1	2.5	1.0	0.1			D	0.1	D	0.1	354.0	364.0			0.180	0.160	


DRILL HOLE: DDH94_IE18 PAGE 6

FEET	RQD PPT	RECOVERY PPT	FROM	10	PAGE 1	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
-	700	1000	354.00	396.00	Crystal Lithic Tuff		MEDIUM GREY	Fine Grained	Equigra nular	Fine crystal ash tuff (locally massive and intrusive textures) with less Kspar/chlorite and only 0.3% Cpy.
-			e ud och		2 (224) 8 (2					A. GE GA
0.0 —			1.3 ->		acre vers	-14		1000		
-					Cr	rystal			20	Intensely Kspar, chlorite altered (Kspar and chlorite sheeted veins) with
0.0 —	. 550	1000	396.00	523.00	Crystal Lithic Tuff			Foliate d	Stockwo rk Veined	Intensely Kspar, chlorite altered (Kspar and chlorite sheeted veins) with numerous later calcite veins. 0.3% Cpy overall with several 1-5 ft intervals containing 1% Cpy (commonly in less altered sections).
					0.00 p.10					m) 10 10 11 M
0.0 —					2 (5x 3x 5x 5x 5x 5x 5x 5x 5x 5x 5x 5x 5x 5x 5x	,				i. e
	500	1000	523.00	596.00	Lapilli Tuff		DARK GREY	Medium Grained	Fragmental	0.5% Cpy and 1.5% pyrite in a dark grey to black lithic lapilli tuff that grades upwards into the crystal tuff above. Less Kspar and chlorite altered than above. Locally broken.

DRILL HOLE: DDH94_IE18
PAGE 8

FEET	ROD PPT	RECOVERY PPT	FROM	10		LITHOLOGY	Ē	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
										18		
						A solid						-10 (10 (10 (10 (10 (10 (10 (10 (10 (10 (
-	500	1000	523.00	596.00	Lapilli Tuff		a suc	Ī	DARK GREY	Medium Grained	Fragmen tal	
-			REAL EX	a l			11.000			18		
0.0 —	/L1179		10				0.2 (4)					
			dan K				1.194					Same as unit above, but with 1% Cpy and 1% pyrite as fine disseminations and sporadic clusters 1/4-3/4' in dia.
	500	1000	596.00	649.00	Lapilli Tuff		4.44	•	DARK GREY	Medium Grained	Fragmen tal	1.21
							h-lin			i		
0.0			19-01 90						181			

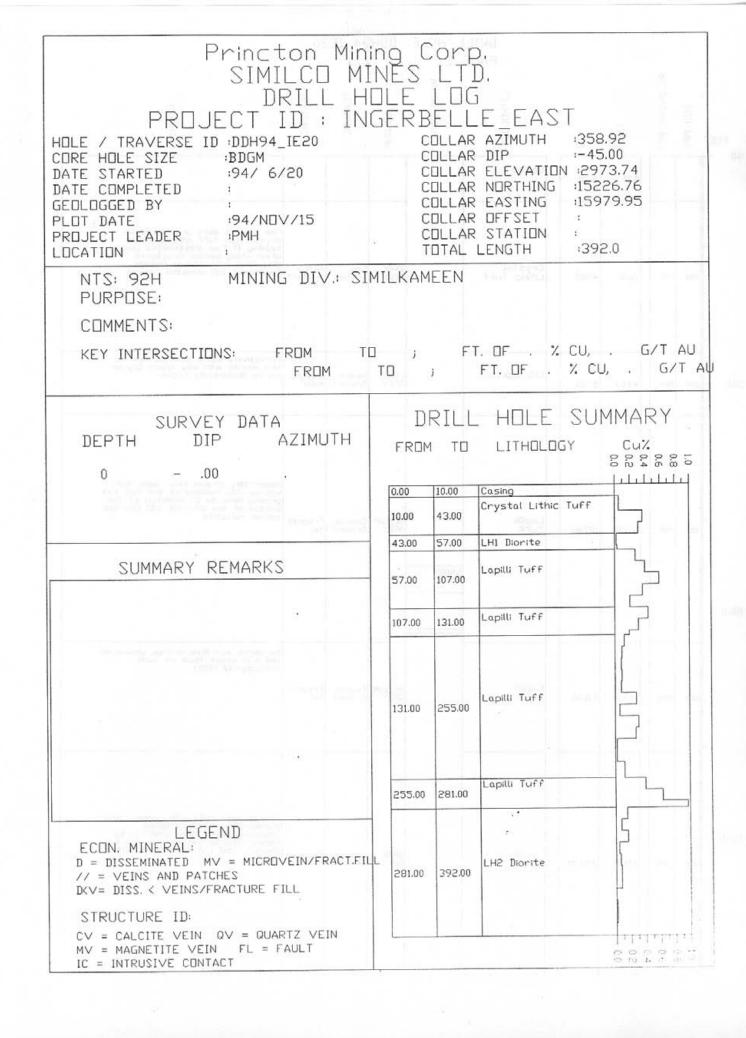
					LL F	IOLE	: DD	H94	_IE	18			9							PAGE	9
STRUCTURE ID	CXANGLE TO CORE	O STRUCTURE ID	MANGLE TO CORE	E % CALCITE	% BIOTITE		×	LE % ENIDOLE	Þ		PYRITE HABIT	% PYRITE	CHALCOPYRITE HABIT	% CHALCOPYRITE	FROM	10	SSAMPLE NUMBER	Y LENGTH F+/10	Copper %	60LD 9/t	<del>" –</del> 540.0
											D		D		533.0	543.0			0.090	0.090	340.0
											D		D		543.0	553.0			0.080	0.063	-
											DOD				553.0	563.0			0.040	0.033	-
κ∨	70	AV	70			2.5					D	1.0	ΙD	1	563.0	573.0			0.030	0.032	-
											D		000		573.0	583.0			0.180	0.120	
											D D D D				583.0	596.0			0.340	0.200	— 590.0
											D				596.0	606.0			0.760	0.340	
											000000				606.0	616.0			0.210	0.120	-
κv	70	AV	70			2.5						1.0		1.0	616.0	626.0			0.500	0.190	-
					1						D			)	626.0	636.0			0.250	0.130	
											DDDDDDD				636.0	649.0			0.150	0.140	640.0



FEE ⁻ 180.0 -	RQD PPT	RECOVERY PPT	FROM	10	PAGE LITHOLOGY	MINDR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
	- 400	900	128.00	220.00	Crystal Lithic Tuff	011	ME DIUM GREY	Fine Grained	Mottled	0.8% Cpy overall in a mottled and variably altered crystal ash tuff (?). Cpy is fine and disseminated with local clusters up to 5mm in dia. Intensely broken with mod (?) (30%) oxidation from 132-169 ft. Less broken and 20% oxidation after this, up until 195 ft (all oxidation gone at 195 ft).
	600	1000	220.00	230.00	60 43 4		VERY DARK GREY	Fine Grained	Porphyr	Dark grey to black, called felted feldspar porph, by P. Thiersch, probably a fine black diorite (may be Lost Horse?). Others have been called post-mineral, but this one contains
230.0	_ 600	1000	230.00	249.00	LH2 Monzonite		LIGHT GREY	Medium Grained	Porphyr itic	1% Cpy as fine dissens within a two feldspar (nonzonite) intrusive (slightly porphyritic, ned. grained).
					30 N S	Lapilli Tuff	9	a do da		ILII .
280.0		H	SANS IN							
	700	1000	249.00	384.00	Lapilli Tuff		MEDIUM GREY	Coarse   Grained	Fragmen	1.5% Cpy in an ash and lapilli tuff (approx. 20/80). Local fine ash beds display bedding (these are chaotic and may thenselves be lithic frags. Cpy occurs as med dissens and stringers and clusters up to 4 inches in dia. (only one 4° in dia. at 283 ft).
					The same					
330.0					0.50 to					
					4,011					

STRUCTURE ID	RANGLE TO CORE	STRUCTURE ID	PANGLE TO CORE [	RE.	7 CALCITE	% BIOTITE	% K-SPAR	AL % CHLORITE	H94.		ION	PYRITE HABIT	% PYRITE		% CHALCOPYRITE	FROM	10	SSAMPLE NUMBER	Y LENGTH F+/10	Copper %	GDLD 9/t	— 180.0
					2							DD		DD		178.0	188.0			0.310	0.260	
						71		75	105			DDD		DDD		188.0	198.0	es t		0.680	0.480	
·V	75	127	5.7			2.5	2.5					DDD	1.0	0	1.0	198.0	208.0			0.150	0.045	
			-6						10.0		đ	D	3	D		208.0	550'0	TO THE O		0.150	0.120	0001
JC	10			r Ino			i i					D	0.0	D	1.0	220.0	230.0			0.120	0.090	
												D		D		230.0	240.0			0.200	0.100	— 230.I
<b>V</b>	60					1.0	2.5		1.0			D	0.1 -		1.0	240.0	249.0			0.160	0.240	
												D		D=\		249.0	254.0			0.140	0.085	
		y No.	12			I be						00000		0=\ 0=\ 0=\		254.0	267.0			0.040	0.048	-
									51	n Gr		DON		0=\ 0=\ 0=\	<b>M</b>	267.0	277.0	BY T		0.120	0.040	
								-				DDDD		D=/	V V	277.0	287.0			0.780	0.320	<u> </u>
												DDDD		D='	VI I	287.0	297.0			0.760	0.460	-
AV							1.0		1.0			D	0.1	0=1 0=1	V V _{1.0}	297.0	307.0			0.610	0.490	-
												DDD		0=' 0=' 0='	V	307.0	317.0			0.120	0.070	_
			1000									D		D= D=	V V	317.0	327.0			0.210	0.150	-
														0= 0= 0=	V	327.0	337.0			0.360	0.160	330
														D= D=	V V	337.0	3470			0.400	0.220	
								E					1	D= D= D=	V	347.0	357.0			01:0	la:	
												1		U-	Y	357.0	367.0	1	i	0.228	1018	

PAGE 6 RECUVERY MINUR TEXTURE LITHOLOGY **TEXTURE** REMARKS COLOUR FROM PPT PPT FEET d N 360.0 1.5% Cpy in an ash and lapilli tuff (approx. 20/80). Local fine ash beds display bedding (these are chaotic and may themselves be lithic frags. Cpy occurs as ned. dissems and stringers and clusters up to 4 inches in dia. (only one 4° in dia. at 283 ft). MEDIUM GREY Coarse Fragmen tal 700 1000 249.00 384.00 Tuff Post-mineral (?) diorite, reddish grey in colour, equigranular with pyroxenes in reasonable condition. Trace Cpy and pyrite only. Lower contact is indistinct. Upper contact is broken. LHI Diorite Medium Equigra nular 800 1000 384.00 399.00 Grained Heterolithic lapilli tuff (70% of the clasts are black, aphanitic and intensely magnetic (40% magnetite). 0.5% Cpy + 2% Py as med. disseninations. VERY Lapilli Coorse Fragmen DARK Grained tal 399.00 417.00 Tuff 600 1000 410.0 1% Cpy as fine to med. dissens, and occasional veins/stringers within a nottled, variably altered crystal tuff (?) with approx. 2% scattered lapilli. This may be an altered flow or even intrusive. Equigra nular Crystal MEDIUM Fine Grained Lithic Tuff 485.00 417.00 750 1000 460.0 -0.3% Cpy as fine dissems, within the same crystal tuff described above, although it is slightly coarser grained and locally appears intrusive. Gradational and interbedded contact MEDIUM GREY Fine Grained Equigra nular Crystal with fine volcanic seds. below. Lithic Tuff 1000 485.00 524.00 510.0 Aphanitic to fine, finely interbedded dust tuff with beds at 80 degrees TCA, tops up (?) (graded bedding). Dnly trace sulphides, Kspar alteration of select, very fine beds gives a pink LIGHT Aligned Phenocr Bedded 1000 524.00 533.00 700 ysts Med. grained, equigran, diorite, with pyroxenes often fairly fresh. Generally uninteresting, although increased Espar MEDIUM GREY LH1 Diorite Equigra nular Medium 750 1000 533.00 638.00


		-			PAGE	8				
FEET	RQD PPT	RECOVERY PPT	FROM	DI Mires Arbaia	LITHOLOGY	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
40.0			-12 3	20	8,630 -	91	MU			
			150-76	(0.0)	PHY 6		M			na na
-			en in The	BII	mage: N		la (			
			cm n	50.0	100					
			um e	50	March 16					
90.0 —	750	1000	533.00	638.00	LH1 Diorite		MEDIUM GREY	Medium Grained	Equigra nular	Med. grained, equigran. diorite, with pyroxenes often fairly fresh. Generally uninteresting, although increased Fspar alt'n. toward the upper contact, increasing albite toward the lower contact. Only trace Cpy.
					stra a					
-			17.		LTCK III					
-			111 2		9113 93	1.1-				
-			100		9129 91					U 0- 20 (94)
40.0 —	650	1000	638.00	641.00	LH1 Diorite		MEDIUM		Equigna	The same diorite as above, but with 1%
	700	1000	641.00	655.00	Lapilli Tuff		DARK GREY	Coarse Grained	Fragnen tal	Lithic lapilli tuff with 20% aphanitic, dark grey massive dust tuff. Minor biotitic patches, 0.8% Cpy as fine dissens and fracture fillings.
					130-1 27					
	750	1000	655.00	698.00	LH2 Diorite		L IGHT GREY	Medium Graineo	Panshyr	The first two feet of this unit are mineralized with 1% Cpy, otherwise there are traces only. The unit is a med. grained diorite with euhedral pyroxenes (locally well preserved). The unit becomes finer grained and biotitic and albitic) near the lower contact imay be a tuff here).
90.0 —	004									
		1000	698.00	740.00	Crystal Lithic Tuff		ME DIUM	Fine United	Edvers	when turfaceous unit with 1 ft of dust turf at upper contact (bedding at 65 ang 16A followed by 5 ft of lithic split tuff and then crystal tuff. 1% it, overall as fine dissens and tracture fills and minor coorse, rosted counters to 1/2° in dia.

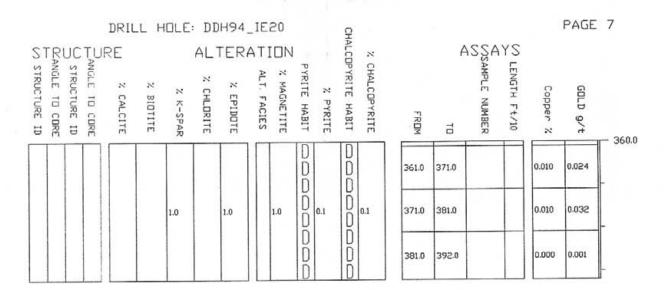
10	STRUCTURE ID	Que la com	C STRUCTURE ID	DANGLE TO CORE	CALCITE	% BIOTITE	% K-SPAR	A % CHLORITE	ER % EPIDOTE	ALT. FACIES	PYRITE HABIT	% PYRITE	CHALCOPYRITE HABIT	% CHALCOPYRITE		7	SSAMPLE NUMBER	Y LENGTH F1/10	Copper %	GOLD 9/t	_{II} — 540.0
10			18		70 7	12					000		DOD		533.0 543.0	543.0 - 553.0	EC		0.000	0.001	-
10 0.1											D		DDD		553.0	563.0			0.000	0.021	
1.0 0.1											ID		D		563.0	573.0			0.000	0.032	-
10 0.1											D		D		573.0	583.0			0.000	0.009	-
D D D D D D D D D D D D D D D D D D D			) E				1.0		0.1		D	0.0	DOD	0.0	583.0	593.0	a ma		0.000	0.017	<b>–</b> 590.0
D D D D C C C C C C C C C C C C C C C C											000		D		593.0	603.0			0.000	0.002	
D D D D C C C C C C C C C C C C C C C C											D		D		603.0	613.0			0.000	0.004	-
1.0   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.2   0.1   0.2   0.1   0.2   0.1   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2											DDD		D		613.0	623.0			0.010	0.005	-
1.0   1.0   1.0   1.0   1.0   1.0   635.0   641.0   0.130   0.110   -640   0.900   0.380   0.110   -640   0.900   0.380   0.260   0.140   -640   0.900   0.380   0.260   0.140   -640   0.900   0.380   0.260   0.140   -640   0.900   0.380   0.260   0.140   -640   0.900   0.380   0.260   0.140   -640   0.900   0.380   0.260   0.140   -640   0.900   0.260   0.140   -640   0.900   0.260   0.140   -640   0.900   0.260   0.140   -640   0.900   0.260   0.140   -640   0.900   0.260   0.160   -640   0.900   0.260   0.160   -640   0.900   0.260   0.160   -640   0.900   0.260   0.160   -640   0.900   0.260   0.160   -640   0.900   0.260   0.160   -640   0.900   0.260   0.160   -640   0.900   0.260   0.160   -640   0.900   0.260   0.160   -640   0.900   0.260   0.160   -640   0.900   0.260   0.160   -640   0.900   0.260   0.160   -640   0.900   0.260   0.160   -640   0.900   0.260   0.160   -640   0.900   0.260   0.160   -640   0.900   0.260   0.160   -640   0.900   0.260   0.160   -640   0.900   0.260   0.160   -640   0.900   0.260   0.160   -640   0.900   0.260   0.160   -640   0.900   0.260   0.160   -640   0.900   0.260   0.160   -640   0.900   0.260   0.160   -640   0.900   0.260   -640   0.900   0.260   0.160   -640   0.900   0.260   -640   0.900   0.260   -640   0.900   -640   0.900   0.260   -640   0.900   0.260   -640   0.900   -640   0.900   -640   0.900   -640   0.900   -640   0.900   -640   0.900   -640   0.900   -640   0.900   -640   0.900   -640   0.900   -640   0.900   -640   0.900   -640   0.900   -640   0.900   -640   0.900   -640   0.900   -640   0.900   -640   0.900   -640   0.900   -640   0.900   -640   0.900   -640   0.900   -640   0.900   -640   0.900   -640   0.900   -640   0.900   -640   0.900   -640   0.900   -640   0.900   -640   0.900   -640   0.900   -640   0.900   -640   0.900   -640   0.900   -640   0.900   -640   0.900   -640   0.900   -640   0.900   -640   0.900   -640   0.900   -640   0.900   -640   0.900   -640   0.900   -640   0.900   -640   0.900   -640   0.900   -640   0.900   -640   0.9				7-6		1	1	17.2	1.5		D		D		623.0	628.0			0.020	0.009	
1.0			ij								D		D		628.0	635.0	353		0.440	0.320	
AV 50  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0		+					1.0		0.1	H		1.0	-		635.0	641.0			0.130	0.110	640
D D D O O O O O O O O O O O O O O O O O															641.0	648.0			0.900	0.380	
D D D D D D D D D D D D D D D D D D D	AV 5	5				0.1		Lan				0.1	D=\	1.0	648.0	655.0			0.260	0.140	
D D D D O.1 D O.1 D O.1 D O.1 D O.1 D O.1 D O.1 D O.1 D O.1 D D D D D D D D D D D D D D D D D D D							100		0=-		D		D		655.0	665.0			0.080	0.062	
0.1											D		D		665.0	675.0			0.360	0.320	-
D D D 685.0 698.0 0.010 0.013 - 69  D D D 0=V 698.0 708.0 0.490 0.200 - 0.210 0.150	AV 5	50				0.1					D	1000	D		675.0	685.0			0.080	0.105	
D D=V 0.490 0.200 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V 1.0 D=V											D		D		685.0				0.010	0.013	- 690
D 1.0 D=V 1.0 D=V 0.210 0.150											10		D=	V	698.0	708.0			0.490	0.200	1
	·	4	٠,	55			1.0				10	1.0	D= D=	1.0	708.0	718.0			0.210	0.150	-

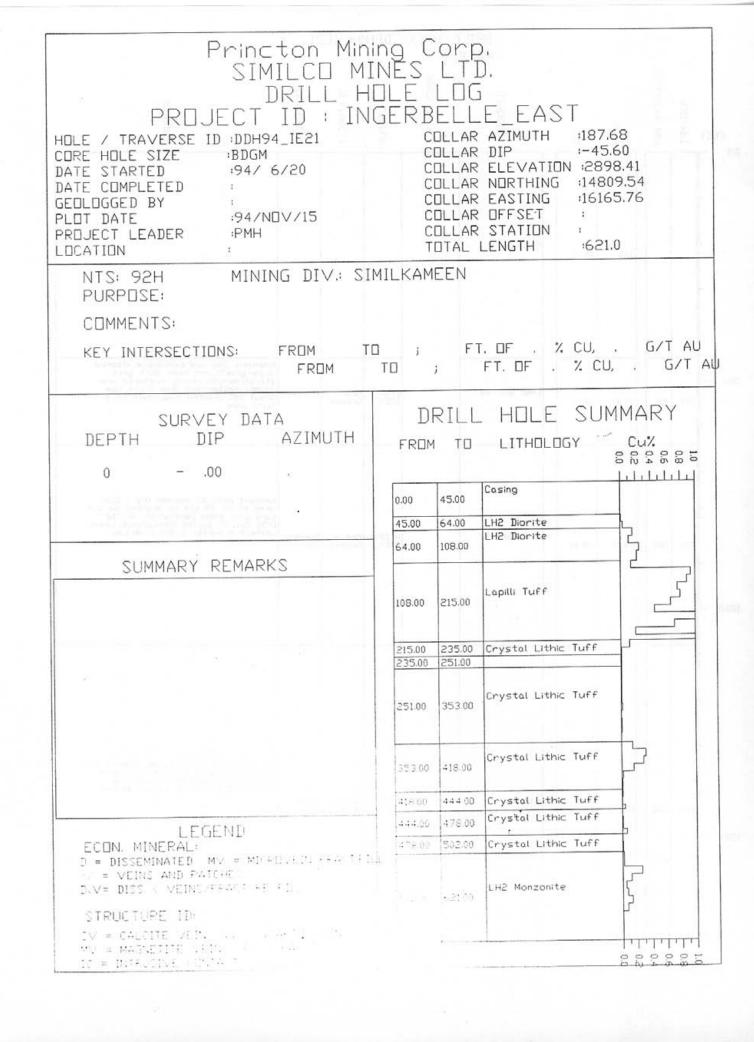
PAGE 10

FEET	ROD PPT	RECOVERY PPT	FROM	10	LITHOLOGY	MINUR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	RE MARKS
720.0 —		1000	698.00	740.00	Crystal Lithic Tuff		MEDIUM GREY	Fine Grained	Equigra nular	Mixed tuffaceous unit with 1 ft of dust tuff at upper contact (bedding at 65 deg. TCA), followed by 5 ft of lithic lapill tuff and then crystal tuff. 1% Cpy overall as fine dissens and fracture fills and minor coarse, isolated clusters to 1/2' in dia.
- - 770.0 —	800	1000	740.00	809.00	LH1 Diorite		MEDIUM GREY	Medium Grained	Equigra nular	1.5% Cpy and 1.5% Pyrite as fine disseminations, frequent fracture fillings and rare clusters within a Fspar and albite altered fine to med. equigranular biorite. Lower contact is a moderate fault.
			DD at		Min s					
820.0 —	800	1000	809.00	829.00	Crystal Lithic Tuff		MEDIUM GREY	Banded	Fine Grained	1.5% Cpy and 1.5% Py as fine dissens, occasional fracture fillings and occasional clusters up to 1/4' in dia. One 3' band of massive pyrite/pyrrhotite contains 4% Cpy at 815 ft. Moderate albite laminations along bedding planes (?).
	700	1000	829.00	870.00	Crystal Lithic Tuff		MEDIUM GREY	Banded	Fine Grained	As above, but with only 0.3% Cpy and Py, and less albite alteration. As well, approx. 20% of the unit is fine grained diorite.
870.0 -				9	Total a					

- 870.0

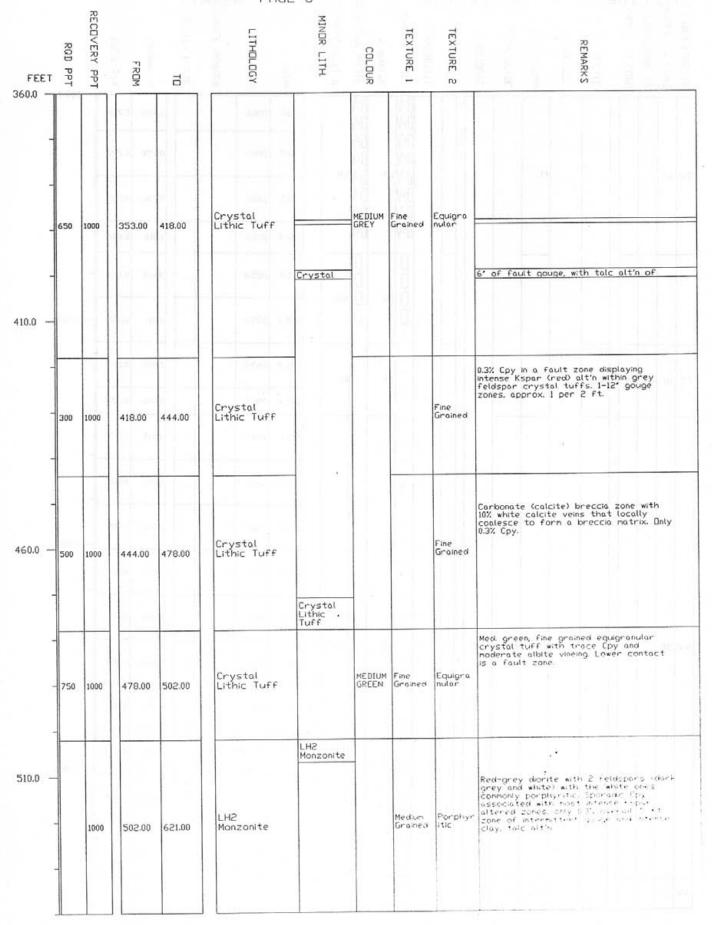



DRILL HOLE: DDH94_IE20
PAGE 2


FEET	ROD PPT	RECOVERY PPT	FROM	TO	LITHOLOGY	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
0.0 —			0.00	10.00	Casing	Lian CLIEN			75)	13 TARI 03 TARIT 15 TARI
-	200	900	10.00	43.00	Crystal Lithic Tuff	MI IDS MI	DARK GREY	Fine Grained	Matrix Support	Fine grained, dark grey to black crystal ash tuff with no visible bedding. I% fine, disseminated Cpy, often along hairline fractures. Ubiquitous malachite on limonitic fractures. 20% oxidation overall.
50.0 —	250	1000	43.00	57.00	LH1 Diorite		LIGHT GREY	Medium Grained	Equigra nular	Pervasively albite altered, fine to ned. diorite with only trace Cpy or pyrite. Moderately broken.
					CONCL.	) 10     (10)		H	0.715.	ATAM CANADA
	200	900	57.00	107.00	Lapilli Tuff	100 L	MEDIUM GREY	Coarse Grained	Fragmen tal	Moderately broken lithic lapilli tuff, approx. 20% oxidized at the top, and grading down to 0% oxidation at the bottom of the interval. 0.8% Cpy and common malachite.
100.0 —						Lapilli Tuff				TENANTA YRANNIG
	800	1000	107.00	131.00	Lapilli Tuff	Lang (K	MEDIUM GREY	Coarse Grained	Fragmental	As above, but less broken, unoxidized, and with about twice as much chalcopyrite (1.5%).
150.0 -	600	1000	131.00	255.00	Lapilli Tuff		DARK GREY	Coarse Grained	Fragmental	Coarse lapilli tuff with common Fspar phenocrysts, locally altered (especially near lower contact) by Kspar, chlorite and epidote. 0.3% Cpy overall, local 1-2 ft sections with 1% Cpy.
									la Ti	Can are filled a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a constant and a cons

FEET 180.0	ROD PPT	RECOVERY PPT	FROM	10	LITHOLOGY	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
230.0 —	600	1000	131.00	255.00	Lapilli Tuff		DARK	Coarse Grained	Fragmen	Coarse lapilli tuff with common Fspar phenocrysts, locally altered (especially near lawer contact) by Kspar, chlorite and epidote. 0.3% Cpy overall local 1-2 ft sections with 1% Cpy.
9 <b>-</b>	600	1000	255.00	281.00	Lapilli Tuff		DARK GREY	Coarse Grained	Fragnen	As above, but with increased Kspar alt'n (intense) and 2% Cpy as large clusters up to 2° in dia, and fine dissens. Lower boundary is a 6° fault gouge. Some of this unit is massive and may be an intrusive.
440.B (4	756	1090	E4:00	392.00	LH2 Diorite		DARK GREY	Medium Grained	Parphyr itic	Med to coarse diorite with locally moderate to intense potassic altin and occasional magnetite veining, 0.3% Cpy overall, with local stretches <10 ft thick of 0.8% Cpy as rounded spots and fine dissens. EDH at 392 ft.

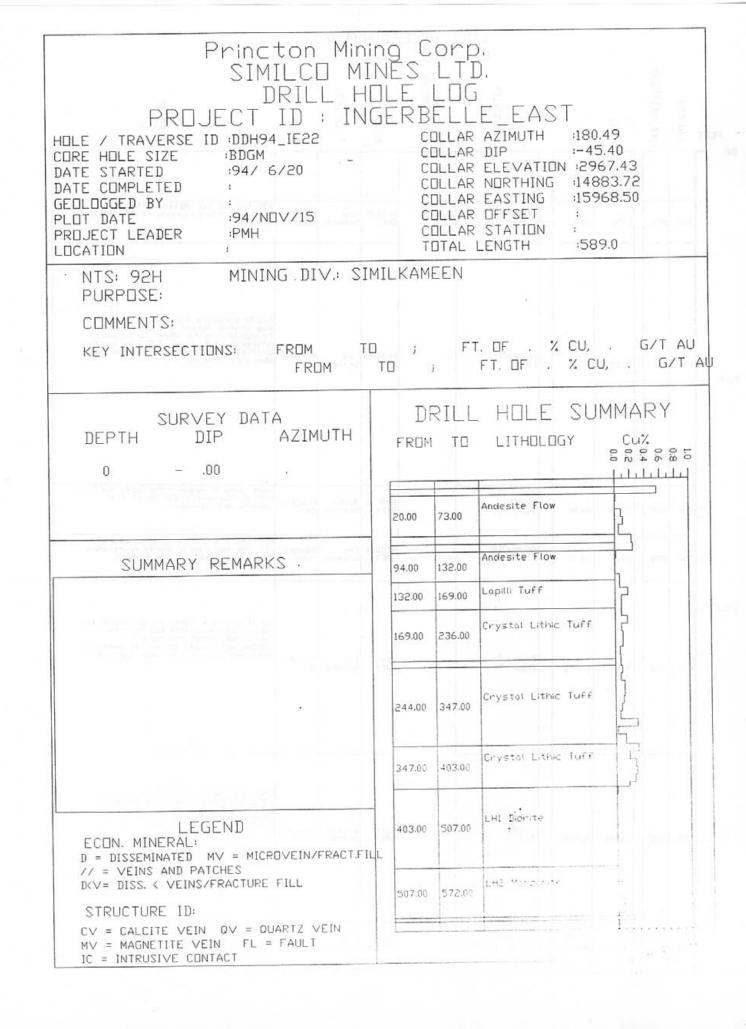
			220			L H			)H94		20			CHAL			10011	004	V.C.		PAGE	5
STRUCTURE	CKANGLE TO CORE	J STRUCTURE	ANGLE TO CO	JR	T % CALCITE	% BIOTITE	% K-SPAR	×	TER % EPIDOTE	ALT. FACIES	MAGNETITE	PYRITE HABI	% PYRI	COPYRITE HABI	% CHALCOPYRII	FROM		SSAMPLE NUMBER	2 LENGTH F+/1	Copper %	GOLD 9/t	
ID	R	ID	R		퓨	m	Ř	H H	m T	S	Ē	T	M	TE	m 	3	1	120	= =			180.0
		larin.	9	10.00								000		DDD		181.0	191.0	9		0.280	0.120	-
												00000000		0000000		191.0	201.0			0.060	0.041	
														DDD		201.0	211.0			0.310	0.220	_
							1.0	1.0	1.0			1.0	D	0.1	211.0	221.0			0.270	0.160		
												D		D		221.0	231.0			0.020	0.061	220
												DDD		000		231.0	241.0			0.020	0.007	— 530.0
														0000		241.0	255.0			0.120	0.160	_
	$\dagger$											D=\ D=\	V V V V V V			255.0	265.0			0.400	0.380	-
							10.0	1.0	1.0			D=\ D=\			2.5	265.0	275.0			0.630	0.520	_
												D=/				275.0	281.0			0.970	0.980	<u> </u>
												D		DD		281.0	291.0			0.150	0.130	
												DDDD		D		291.0	301.0			0.070	0.105	
												DDD		000		301.0	311.0			0.160	0.160	
												D				311.0	321.0			0.040	0.044	-
							10		1.0		1.0	000			0.1	321.0	331.0 *			0.060	0.080	-
	1														)	331.0	341.0			0.070	0.059	330.
															)	2410	351.0			0.070	0.068	
																341.0						
														I	Ì	351.0	361.0			0.000	0.044	


DRILL HOLE: DDH94_IE20 A MEMBER OF THE LENSE PAGE 6 RECOVERY PPT MINOR LITH. LITHOLDGY TEXTURE TEXTURE REMARKS ROD PPT COLOUR FROM FEET ď N 360.0 Med. to coarse diorite with locally noderate to intense potassic alt'n and occasional magnetite veining. 0.3% Cpy overall, with local stretches <10 ft thick of 0.8% Cpy as rounded spots and fine dissens. EOH at 392 ft. LH2 Diorite DARK GREY Medium Grained Porphyr itic 392.00 750 1000 281.00





STRUCTURE ID	CRANGLE TO CORE	J STRUCTURE ID	DANGLE TO CORE	DRIU	H % BIOTITE		AL 7 CHLORITE		PYRITE HABIT	% PYRITE	CHALCOPYRITE HABIT	% CHALCOPYRITE	FROM	7	SSAMPLE NUMBER	C) LENGTH F+710	Copper %	PAGE GOLD 9/t	3
		1													net i				-
		1	1100			dw.	11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS 11 PS	du											-
									DDD		DDD		45.00	55.00			0.010	0.005	- 50.0
۵V	25			5.0					D	0.1	D	0.0	55.00	64.00			0.030	0.024	
					1		100		D<\		D </td <td></td> <td>64.00</td> <td>74.00</td> <td></td> <td></td> <td>0.160</td> <td>0.075</td> <td></td>		64.00	74.00			0.160	0.075	
									D </td <td></td> <td>D<!--</td--><td></td><td>74.00</td><td>84.00</td><td></td><td>П</td><td>0.110</td><td>0.059</td><td></td></td>		D </td <td></td> <td>74.00</td> <td>84.00</td> <td></td> <td>П</td> <td>0.110</td> <td>0.059</td> <td></td>		74.00	84.00		П	0.110	0.059	
V2	45	AV	20	5.0					04 04 04	2.5	D </td <td>1.0</td> <td>84.00</td> <td>94.00</td> <td></td> <td></td> <td>0.250</td> <td>0.180</td> <td></td>	1.0	84.00	94.00			0.250	0.180	
									04 04 04		0000		94.00	108.0			0.220	0.160	100.
		1		Di sale					D=\ D=\		D=\ D=\	1	108.0	118.0			0.140	0.060	
									D=/		D=/	1	118.0	128.0	mi		0.940	1.120	
									D=/ D=/		D=\ D=\ D=\	1	128.0	138.0			0.890	1.100	
									D=/	1	[]=\	1	138.0	148.0			0.750	0.640	-
SV	60					1.0			0=1	V	D=	1.0		:580			0.800	6.500	- 150
									D=	V)	0-	V						-	
										VI VI		VI VI	1000	1.00					
											j.		27				4		


FEET 180.0 —	ROD PPT	RECOVERY PPT	FROM	10	PAGE	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
	650	1000	108.00	215.00	Lopilli Tuff		DARK GREY	Coarse Grained	Fragmen tal	1.5% Cpy as fine to coarse dissens and local veins up to 1° thick. Traces of nalachite, and 0.5% linonite coating fractures to 195 ft. Locally broken.
230.0 -	550	1000	215.00	235.00	Crystal Lithic Tuff		MEDJUM GREY	Fine Grained	Equigra nular	Fine to med grained locally aphanitic tuff with some sections that appear intrusive. Gradational upper contact. Moderate albite alt'n and only trace Cpy.
	500	1000	235.00	251.00	Carry Ser		VERY DARK GREY	Banded	Breccia	White and rusty calcite/qtz breccia vem at 10 degrees TCA, associated with a 10' fault gouge and talc altered crystal tuff. Coarse, euhedral pyrite clusters up to 3cm in dia. Rare Cpy clusters up to 1cm in dia.
280.0 -					10 m	8	V 0 V 0 V 0 V 0 V 0 V 0 V 0 V 0 V 0 V 0	7/1		
280.0	550	1000	251.00	353.00	Crystal Lithic Tuff				Fine Grained	0.3% Cpy in an intensely albitic crystal tuff (?) with occasional pyrite clusters + red Fspar envelopes around fractures. The entire unit is an albite stringer stockwork zone.
330.0 -										
	650	1600	353.00	418.00	Crystol Litin					



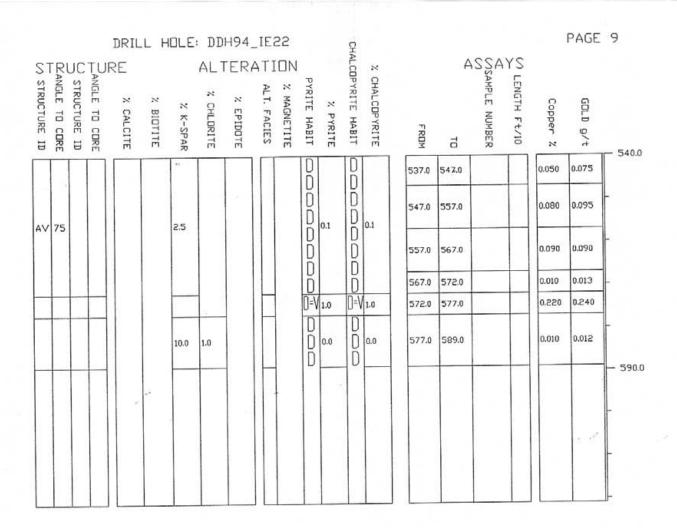
DRILL HOLE: DDH94_IE21

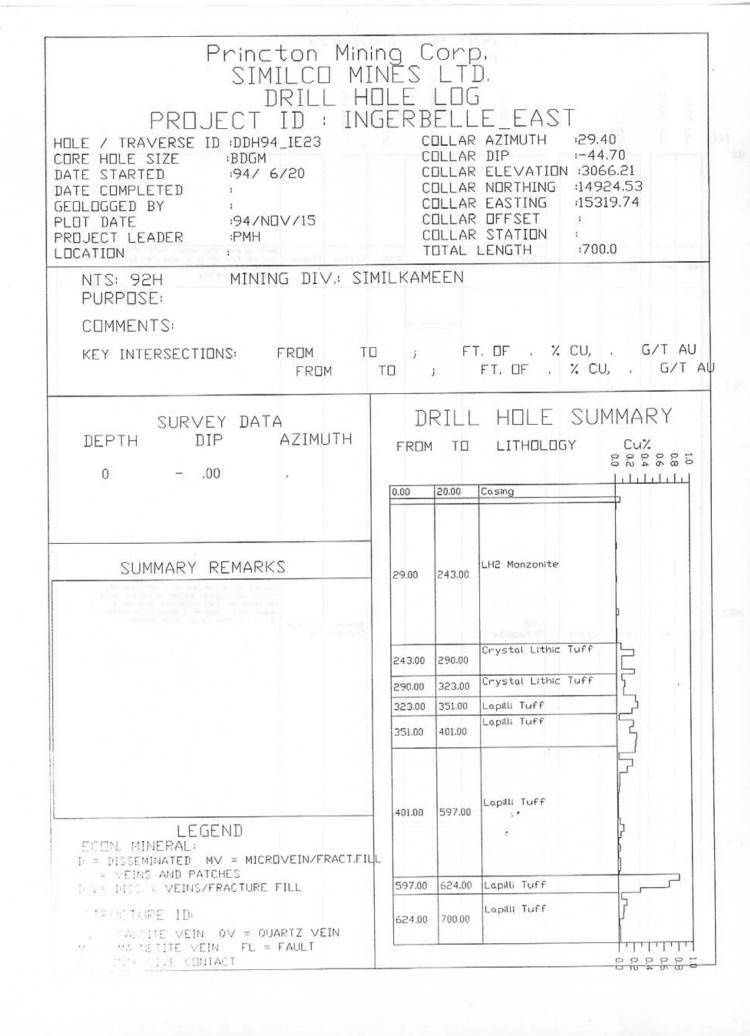
	-			PAGE	8				
ROD PPT	RECOVERY PPT	FROM	10	LITHOLOGY	MINDR LITH	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
		19 14		1 1 1 1 1 1		17-01	1/41		
			ipo il	0.116					
						1	1 1/1		
		725		-(-)	611	110			
							1 (3)		2011
						111	-14		Red-grey diorite with 2 feldspars (dark grey and white) with the white ones commonly porphyritic. Sporadic Cpy
	1000	502.00	621.00	LH2 Monzonite	le-		Medium Grained	Porphyr	Red-grey diorite with 2 feldspars (dark grey and white) with the white ones commonly porphyritic. Sporadic Cpy associated with most intense Kspar altered zones, only 0.3% overall. 5 ft zone of intermittent gouge and intense clay, talc alt'n.
				l and	La I		1 63		
				Total Sant		114			
1						107			
				1	100.01	ΗŪ			
				Ver.		1			
	ROD PPT	PPT 1000	1000 502.00	1000 502.00 621.00	RECOVERY PPT  RECOVERY PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT	1000 502.00 621.00 LH2 Monzonite	RECOVERY PPT ROD PPT ROD PPT ROD PPT ROD PPT ROD PPT ROD PPT ROD PPT ROD PPT ROD PPT ROD PPT ROD PPT ROD PPT ROD PPT	RECOVERY PPT  RECOVERY PPT  ROD PPT  RECOVERY PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PT  ROD PPT   RECOVERY PPT  RECOVERY PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  ROD PPT  RO	

6.	TRI	IIC	TII		LL F		н94 ГЕR				CHALC	×		4	AZZA	YS		PAGE	9
) STRUCTURE ID	ANGLE TO CORE	STRUCTURE ID	ANGLE TO CORE	R % CALCITE	% BIOTITE	% K-SPAR	% EPIDOTE		PYRITE HABIT	% PYRITE	CHALCOPYRITE HABIT	% CHALCOPYRITE	FROM		SSAMPLE NUMBER	LENGTH Ft/10	Copper %	GDLD 9/t	<del></del>
	9								DDD		DDD		542.0	542.0 552.0			0.050	0.120	540.0
									000			٠	552.0	562.0			0.070	0.080	
											000000000000000000000000000000000000000		562.0	572.0			0.130	0.130	
	35					10.0			000	0.1	DOD	0.1	572.0	582.0			0.070	0.160	
AV	35					10.0			D		D		582.0	592.0			0.000	0.052	<b>–</b> 590.0
									DDD		D		592.0	602.0			0.000	0.017	
											DOD		602.0	612.0			0.000	0.006	_
									DDDD		DDD		612.0	621.0			0.000	0.034	



					DRIL PAGE	L HOLE:	DDH	94_IE	22	
FEE	RQD PPT	RECOVERY PPT	FROM	10	LITHOLOGY	MINDR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
0 -			0.00	11.00	Casing				US N	Andrew Transfer of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of the Paris of
	400	850	11.00	20.00	Crystal Lithic Tuff		MEDIUM GREY	Fine Grained	Equigra nular	1.5% Cpy as fine dissens, within a rusty fractured crystal tuff. About 5% oxidation.
				44,25	WIGHEST I	211/5	JIMI	E D.	10 0	HEALTH HER STA
0.0	650	1000	20.00	73.00	Andesite Flow		MEDIUM GREY	Fine Grained	Porphyr itic	Augite porphyry flow (?) with 1-4nm aug. phenos (black) in a grey-green, feldspathic natrix. Minor tuffaceous interbeds (3 ft thick, 0.3% Cpy, nostly confined to tuffaceous interbeds. Only about 2% oxidation.
			MINI E		ELIGH I	38		P17.L	чтъй	TARE YEVRUS
	700	1000	73,00	84.00	Lapilli Tuff		DARK GREY	Medium Grained	Fragmen tal	Dark grey to black, lithic lapilli tuff with 1% Cpy and 3% pyrite as fine dissens, and stringers.
	750	1000	84.00	94.00	Andesite Flow	w 14:	MEDIUM GREY	Fine Grained	Equigra nular	0.5% Cpy in a biotite altered andesite (?). This could be a diorite (pyroxenes are fairly small, not porphyritic).
0.0	650	1000	94.00	132.00	Andesite Flow	5.0	LIGHT GREY	Fine Grained	Porphyritic	0.3% Cpy in the same unit as above, but lighter coloured, less biotite alt'n (essentially none), and nore porphyritic (augite phenos to 3mm). Cpy increases toward the lower contact.
50.0	750	1000	132.00	169.00	Lopilli Tuff	1117	DARK GREY	Coarse Grained		0.5% Cpy and 2% pyrite in a coarse lithic lapilli tuff with local bedding of crystal ash layers at 25 degrees T.A. Local patchy regnetite concentrations.
	800	1000	169.00	236.00	Crystal Lithic Tuff		GREY GREEN	Fine Grained	Equigna nular	Fine fairty hipsey. Introduct for the sections of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of t


FEET 180.0 —	ROD PPT	RECOVERY PPT	FROM	10	LITHOLOGY	MINOR LITH.	COLDUR	TEXTURE 1	TEXTURE 2	REMARKS
	800	1000	169.00	236.00	Crystal Lithic Tuff		GREY (	Fine Grained	Equigra nular	Fine, fairly massive equigranular (porphyritic only in minor 1-2 ft sections) ash tuff, may be intrusive in places. 0.5% Cpy as fine dissems, with 1% Py. Veak albite (+ minor Kspar rims) veining.
230.0 -	- 200	1000	236.00	244.00	Crystal Lithic Tuff		GREY GREEN		Equigra nular	Broken crystal tuff. May be a fault zone, but no significant gouge present.
280.0 -	-				HEAT OF STREET					
280.0 -	650	1000	244.00	347.00	Crystal Lithic Tuff		LIGHT GREY	Fine Grained	Equigra nular	Fine, fairly massive equigranular ash tuff with minor interbedded lithic lapill + dust tuffs. One contact at 35 degrees TCA. 0.5% Cpy. as sporadic zones 1-5 ft thick containing 0.8-1.5% Cpy.
330.0										
	650	0 1000	347.00	403.00	Crystal Lithic Tuff		MEDIUM GREY	Fine Grained	Aligned Phenoc- ysts	0.8% Cpy as fine dissers - occupator clusters and name strongers with a crystal tuff with 20 country tuff intervals Discount 10 country visible at 55 degrees in 2 with contact is sharp and first a fine contact.


DRILL HOLE: DDH94_IE22

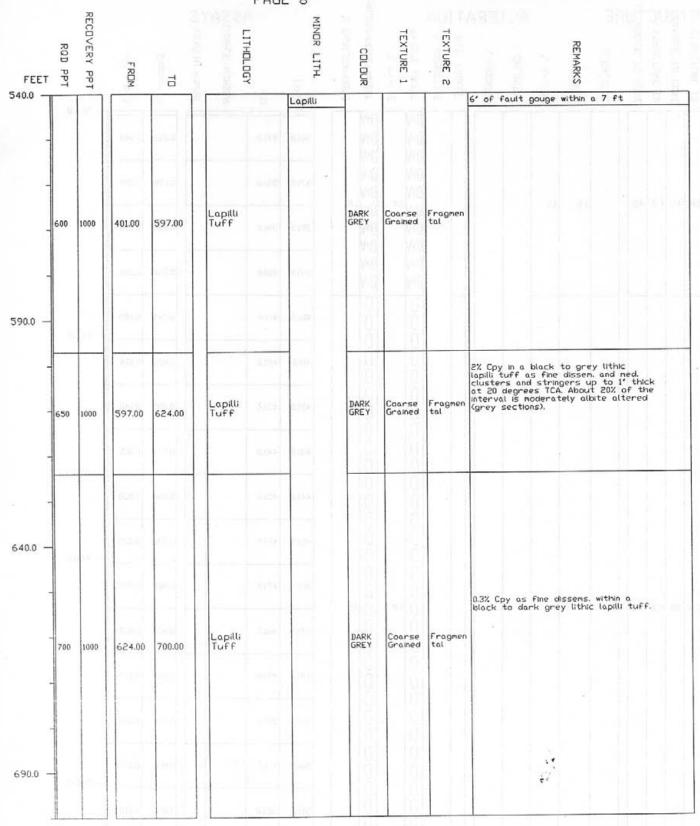
FEET 360.0 -	ROD PPT	RECOVERY PPT	FROM	10	LITHDLOGY	MINDR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
	650	1000	347.00	403.00	Crystal Lithic Tuff	rystal	MEDIUM GREY	Fine Grained	Aligned Phenocr ysts	Intense potassic alt'n (red Fspar) in a
410.0 -					2 MES 1.7					
460.0 -	400	1000	403.00	507.00	LHI Diorite		DARK GREY	Fine Grained	Equigra nular	Fine, equigranular diorite with euhedral pyroxenes and 2% Fine, dissem. nagnetite and almost no alteration except white carbonate veining. May be post-mineral. Moderately broken throughout.
510.0	750	1000	507.00	572.00	LH2 Monzonite		ME DIUM GREY	Coarse Grained	Porphyr	The upper contact is gradational and obscured by moderate albite and potassic alt'n. Coarse grey Fspar phenocrysts (25%) are nixed with 10% white Fspar crystal. 0.3% Cpy as sporadic fine disseminations.

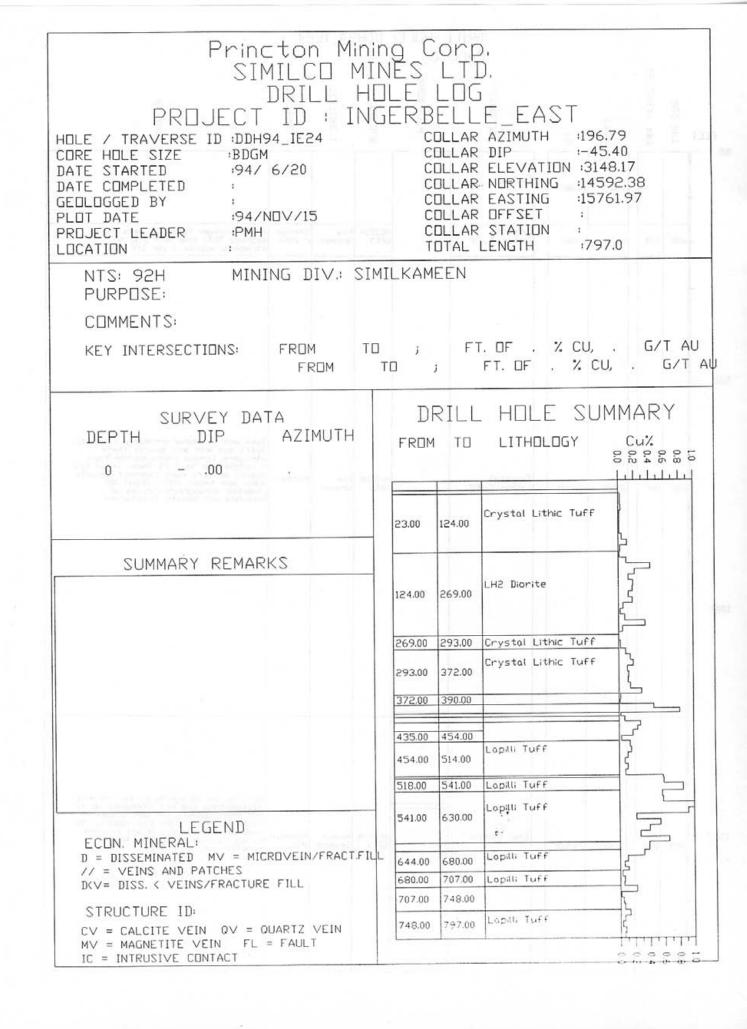
DRILL HOLE: DDH94_IE22 DAMES DE PAGE 8

							-	N	REMARK S
75	50	1000	507.00	572.00	LH2 Monzonite	MEDIUM GREY	Coarse Grained	Porphyr Itic	The upper contact is gradational and obscured by moderate albite and potassic alt'n. Coarse grey Fspar phenocrysts (25%) are mixed with 10% white Fspar crystal. 0.3% Cpy as sporadic fine disseminations.
			o in pa		-	10			
75	50	1000	572.00	577.00	Crystal Lithic Tuff	MEDIUM GREY	Fine Grained	Equigra nular	Fine crystal tuff (?) with 0.8% fine, dissen, and stringers of Cpy and
- 30	00	1000	577.00	589.00	Crystal Lithic Tuff	MEDIUM GREY	Fine Grained	Equigra nular	As above, but with intense, pervasive Kspar alt'n and only trace Cpy. EDH at 589 ft.






STRUCTURE ID	CKANGLE TO CORE	STRUCTURE ID	PANGLE TO CORE	RE % CALCITE	H % BIOTITE		AL	TER		ION	PYRITE HABIT	% PYRITE	CHALCOPYRITE HABIT	% CHALCOPYRITE	FROM	10	ASSAMPLE NUMBER	C LENGTH Ft/10	Copper %	PAGE GILD 9/t	0.0
																	7				_
		J. P.					ine di		-	2.5	D=V D=V	1.0	D=V D=V	1.0	20.00	29.00			0.060	0.043	_
											D		DDDD		29.00	40.00	rimile		0.010	0.008	
											000000		0000000								— 50.0 -
		979						end)			000000		DDDD								-
			-								DDDD		DDDD		90.00	100.0	953		0.010	0.002	-
				1.0		10.0	1.0	0.0			00000	0.0	00000	0.0	90.00	100.0					100
											DDDDD		00000								-
					2 100						0000		DDDD		140.0	150.0			0.010	0.004	150
											DDDD		DDDD								-
											DDD		DDDD								


FEET 80.0 —	ROD PPT	RECOVERY PPT	FROM	10	LITHOLOGY	MINOR LITH.	CBLBUR	TEXTURE 1	TEXTURE 2	REMARKS
30.0	700	1000	29.00	243.00	LH2 Monzonite			Medium Grained	Porphyr itic	Almost no sulphides in a pervasively (local envelopes) Kspar altered, weakly porphyritic two feldspar intrusive (monzonite). Becomes clay rich within 10 ft of the fault zone below.
	200	1000	243.00	290.00	Crystal Lithic Tuff		MEDIUM GREY		Sheared	Intense fault zone (Gully fault) over the entire interval. Protolith unrecognizable. 0.5% very fine dark black crushed Cpy with pyrite occasionally forming mylonitic bands at 25 degrees TCA. 60% clay gouge.
	500	1000	290.00	323.00	Crystal Lithic Tuff	Crystal Lithic	MEDIUM GREY	Fine Grained	Stockwo rk Veined	About 50% of this interval is a carbonate stringer stockwork/breccia zone with grey carbonate stringers I' thick, supporting XLTF clasts. 0.5% Cpy and 0.5% Py as fine dissens.
30.0 -	250	950	323.00	351.00	Lapilli Tuff		DARK GREY	Coarse Grained	Fragmental	1% Cpy in a sheared/faulted lithic lapilli tuff. Common mylonitic shears 1-8' thick at 45 degrees TCA. Very broken and gougy. Cpy occurs as fine to med. dissens and local clusters/stringers.
	i i i	tos.		3) [ =1	Logati		LIGHT GREY	Coarse Grained	Fragner	Light buff-grey lithic lapilli tuff with minor (< 4 ft) intervals of unineralized diorite and 2 ft of bedded (70 degrees TCA) dust tuff at 391 ft 1% Cpy as fine dissems and

T	PΙ	IC.			LH			H94. ГЕR			31,		CHALC	×		AS	AZZ	YS	F	PAGE	5
ייייסבר ייי כמייר	ANGLE TO CORE	STRUCTURE ID	LANGLE TO CORE	% CALCITE	% BIOTITE	% K-SPAR			ALT. FACIES		PYRITE HABIT	% PYRITE	CHALCOPYRITE HABIT	% CHALCOPYRITE	FROM	AS	SAMPLE NUMBER	LENGTH Ft/10	Copper %	GDLD 9/t	- 180.0
		r.	22							e d	00000		00000		190.0	200.0			0.030	0.004	
				1.0		10.0	1.0	0.0			D	0.0	10	0.0							
											0000		0000		220.0	230.0			0.010	0.009	- 230.0
											DDDD		DDD		230.0	243.0			0.010	0.009	-
1											DDD		D		243.0	253.0			0.060	0.043	-
													DDDD		253.0	263.0			0.230	0.210	
т	25			2.5		5.0					DDD	1.0	D	1.0	263.0	273.0			0.070	0.057	
											0		D		273.0	283.0			0.070	0.046	<b>–</b> 280
											100				283.0	290.0	// ₁		0.240	0.160	_
											D				290.0	300.0			0.070	0.039	
cv				5.0		1.0					000	1.0		1.0	300.0	310.0			0.110	0.032	
												)		)	310.0	323.0			0.090	0.066	-
											D=	V V	D: 0:	=V =V	323.0	333.0	•		0.250	0.160	- 330
SH	45	FZ	45								D= D= D=	1.0	D	=V =V 1.0	333.0	343.0			0.280	0.150	-
											Ď:	٠V	Ď	=V	343.0	351.0			0.200	0.120	
SH	45	F2	2 45		10	10					0	V 1.0	D	>V >V 1.0	351.0	361.0			0.030	0.028	

Lapilli Tuff

S STRUCTURE ID	PLANGLE TO CORE	STRUCTURE ID	HANGLE TO CORE	E % CALCITE					ION	PYRITE HABIT			% CHALCOPYRITE	FROM	- 1	ASSAMPLE NUMBER	Y LENGTH F+/10	Copper %	GDLD 9/t	
										D>V D>V		D>V D>V		361.0	371.0			0.220	0.140	
		-								D>V		D>V D>V D>V		371.0	381,0			0.170	0.120	
H2	45	FZ	45		1.0	1.0			100	D>V D>V	1.0	D>V D>V D>V	1.0	381.0	391.0	130		0.260	0.150	
										D>V D>V		D>V D>V D>V D>V		391.0	401.0			0.250	0.180	
										DDD		D		401.0	411.0			0.240	0.185	
					3.2					0		DDn		411.0	421.0			0.020	0.014	
			50 H					-	-15	D	1000	000	8	421.0	431.0	1160		0.200	0.140	
										000		000		431.0	441.0			0.130	0.105	
										D		0000		441.0	451.0			0.030	0.020	
										DDD				451.0	461.0			0.030	0.025	
										DD		D		461.0	471.0			0.020	0.026	
CV	30	FZ	45	1.0	2411		SIL			DOD	1.0	DDD	1.0	471.0	481.0	Allegar 1970		0.010	0.013	
										DOD		D		481.0	491.0			0.010	0.017	
										D		DDDD		491.0	501.0			0.010	0.022	
										D		D		501.0	511.0			0.010	0.029	
										DDD		DDD		511.0	521.0			0.030	0.018	
										D		D		521.0	531.0			0.080	0.049	
												D		531.0	541.0			0.040	0.059	



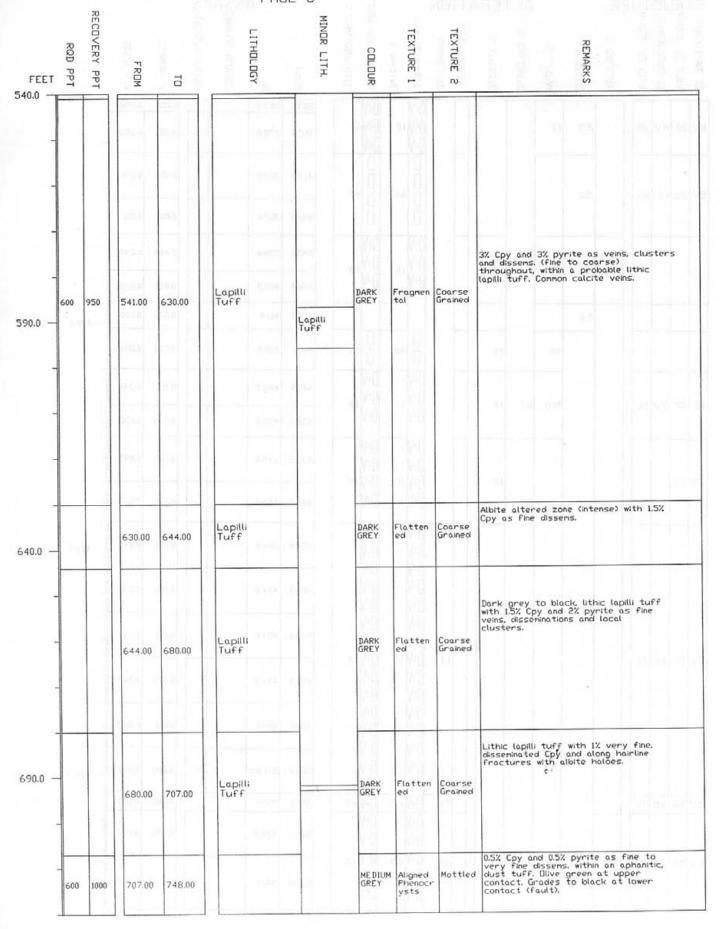


					DRILI PAGE	S HOTE:	DDH	94_IE8	24	
FEET	ROD PPT	RECOVERY PPT	FROM	T 24	LITHOLOGY	MINOR LITH.	COLDUR	TEXTURE 1	TEXTURE 2	REMARKS
0.0 —		8	0.00	16.00	Casing				0830	THE STATE OF SHARE
	650	1000	16.00	23.00	Crystal Lithic Tuff		MEDIUM GREY	Fine Grained	Stringe r Zone	Albite stringer (sheeted veins at 65 degrees TCA) zone with 5-10 mm stringers, approx: 1 per 1/2 inch,
					p)	Emez.	IMIS	100		NTS SZM MÜNN PURPUSI CZMMENTS
50.0 —		10	277	3 X	, 30 T3 30 T3		BT J	ME	12571	SMIIJOBERDINI YDV
Π.		14	4ML	7	IDH JJ	53(1				AB YEVRUS
	650	1000	23.00	124.00	Crystal Lithic Tuff	11(857)	MEDIUM GREY	Fine Grained	Mottled	Same unit as above (probably a crystal tuff), but with only sparse albite stringers. Common albitic/blotite/Kspa r patches up to 5 ft thick. Trace Cpy overall as very rare clusters (usually within pink Kspar alt'n). About 10% oxidation throughout (traces of nalachite and linonitic fractures).
					HILL					
100.0 -	-				2 x 10 10 1	a mes				BYNDS AUVINIS
					March and	ALTO-				
						- Z(-				
150.0 -	550	1000	124.00	269.00	LH2 Diorite	MITA MITA	MEDIUM GREY	Medium Grained	Porphyr itic	0.8% Cpy and 2% pyrite as fine to med. disseminations and med. stringers up to 1/2" thick. Dvefall, the unit is quite rusty, but only trace Cpy (approx. 10% oxidation overall), Cpy is not related to any type of alteration. All oxidation gone at 269 ft.
								prince	STIIA	

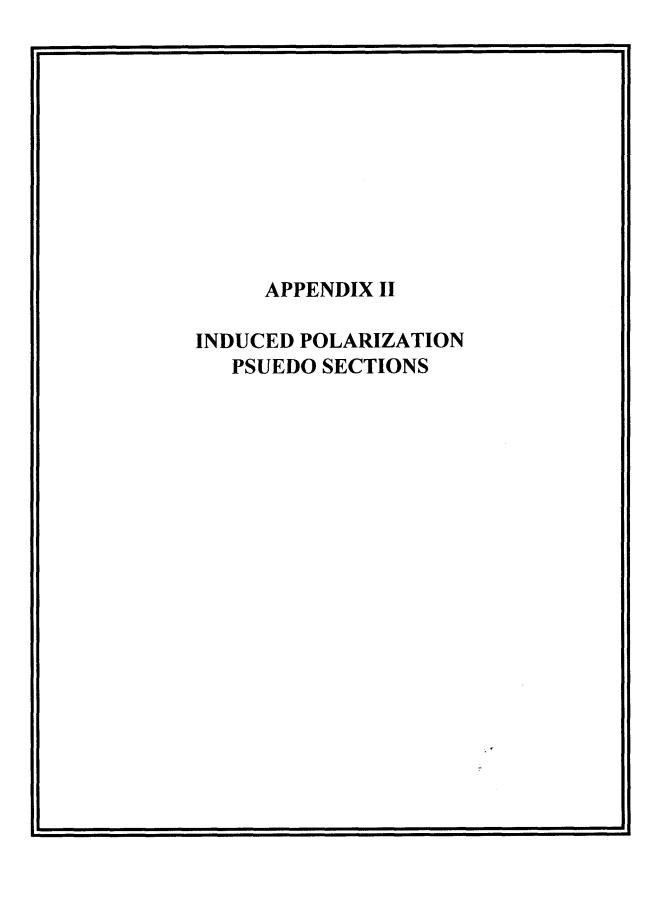
						L H	DLE:							CHAL			Α:	Δ22	24		PAGE	5
S STRUCTURE ID	RANGLE TO CORE	C STRUCTURE ID	PANGLE TO CORE	RI	Z CALCITE	% BIOTITE	% K-SPAR	ALT :: CHLIRITE	T % EPIDOTE	ALT. FACIES		TO	% PYRITE	CHALCOPYRITE HABIT	% CHALCOPYRITE	FROM		SSAMPLE NUMBER	LENGTH Ft/10	Copper %	GOLD 9/t	<b>—</b> 180.0
1		Tri						13	100 M			D <a< td=""><td></td><td>D=V D=V D=V D=V</td><td>7</td><td>174.0</td><td>184.0</td><td></td><td></td><td>0.190</td><td>0.090</td><td></td></a<>		D=V D=V D=V D=V	7	174.0	184.0			0.190	0.090	
-	-		10					10 20				DV		D=V		184.0	194.0			0.180	0.115	-
												D </td <td></td> <td>D=V D=V</td> <td></td> <td>194.0</td> <td>204.0</td> <td></td> <td></td> <td>0.130</td> <td>0.180</td> <td></td>		D=V D=V		194.0	204.0			0.130	0.180	
					1 104 170	-						0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40		D=V D=V D=V D=V		204.0	214.0			0.180	0.160	-
	14						21 2					D </td <td></td> <td>D=V</td> <td></td> <td>214.0</td> <td>224.0</td> <td>Traff</td> <td></td> <td>0.060</td> <td>0.075</td> <td>goor . um</td>		D=V		214.0	224.0	Traff		0.060	0.075	goor . um
v	40	ke	and the second				1.0				200	D </td <td>2.5</td> <td>D=V D=V D=V</td> <td>1.0</td> <td>224.0</td> <td>234.0</td> <td></td> <td></td> <td>0.020</td> <td>0.030</td> <td>— 230.i</td>	2.5	D=V D=V D=V	1.0	224.0	234.0			0.020	0.030	— 230.i
									io de		loil I	D </td <td></td> <td>0=\ 0=\ n-\</td> <td></td> <td>234.0</td> <td>244.0</td> <td></td> <td></td> <td>0.080</td> <td>0.016</td> <td></td>		0=\ 0=\ n-\		234.0	244.0			0.080	0.016	
			C			1.17			107			D </td <td></td> <td>D=V D=V D=V D=V D=V D=V</td> <td></td> <td>244.0</td> <td>254.0</td> <td></td> <td></td> <td>0.350</td> <td>0.160</td> <td></td>		D=V D=V D=V D=V D=V D=V		244.0	254.0			0.350	0.160	
												04 04		D=\ D=\	<b>V</b>	254.0	264.0			0.050	0.042	
												1.0	1	D=/	1	264.0	269.0		0	0.000	0.002	
												D		D		269.0	279.0			0.000	0.006	
						2.5	1.0					DDDD	0.0	D	0.0	279.0	293.0			0.020	0.004	- 580
													V	D O V	V	293.0	303.0			0.090	0.064	
											1	0< 0<	V	0<	M	303.0	313.0	107		0.150	0.095	
												0<	\ \ \	0<	W W	313.0	323.0			0.190	0.130	
ΚV	20	) A	V 31	0		2.5	1.0					0 0 0	V 1.0	D.	V 1.0	323.0	333.0			0.110	0.039	- 33
									101			0.	(V	0	<v <v< td=""><td>333.</td><td>343.0</td><td>MU</td><td></td><td>0.130</td><td>0.072</td><td></td></v<></v 	333.	343.0	MU		0.130	0.072	
												D	\\ \\ \\	D	<\ <\ <\	343.	0 353.0			0.120	0.063	_
													Ň.		<v< td=""><td>353.</td><td>0 363.0</td><td></td><td></td><td>0.150</td><td>0.080</td><td></td></v<>	353.	0 363.0			0.150	0.080	

FEET	ROD PPT	RECOVERY PPT	FROM	10	LITHOLOGY	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
60.0	700	1000	293.00	372.00	Crystal Lithic Tuff		LIGHT GREY	Fine Grained	Matrix Support ed	Massive crystal tuff with rare Kspar and albite stringers, no bedding, although grain size and proportion of lithic frags increases down the hole. 0.5% Cpy and 1/0% pyrite as fine dissens. and 1-5mm stringers.
-	600	1000	372.00	390.00	sum a		DARK GREY	Medium Grained	Equigra nular	Post-mineral lamprophyre (?) dyke with 8% ned, to coarse biotite crystals. Contacts at approx. 20 degrees TCA. Traces of Cpy near the margins (probably remobilized).
-	750	1000	390.00	405.00	Crystal Lithic Tuff		MEDIUM GREY	Fine Grained		Fine crystal ash tuff with 3% lapilli sized clasts, weak potassic (Kspar) and epidote alt'n. 1.5% Cpy and 1% pyrite as fine dissens and occasional stringers at all angles TCA.
	600	1000	405.00	411.00	9971 84		DARK GREY	Medium Grained	Equigra nular	Dark lamprophyre with 8% biotite, becomes bleached toward the lower contact. Irregular contacts at roughly
10.0 —	650	1000	411.00	420.00	Crystal Lithic Tuff		PALE GREY	Fine Grained	Equigra nular	0.3% Cpy within a grey crystal tuff (possibly a fine intrusive). No bedding, massive.
	800	1000	420.00	435.00	0/21 //			Bedded		0.8% Cpy as fine dissems, and several stringers 1-20 nn thick within an intensely Kspar altered dust tuff with bedding at 80 degrees TCA.
-	800	1000	435.00	454.00	\$10E 0.6		DARK GREY	POU POU POU VOU		70% lamp dyke intruding 30% crystal tuff with 1% Cpy confined to the tuff only (0.5% Cpy overall). Lamp contacts are irregular but approx. 60 degrees TCA.
60.0 —	- 9				1205 000					
	700	1000	454.00	514.00	Lapilli Tuff		DARK GREY	Flatten ed	Coarse Grained	Coarse lithic lapilli tuff with variable Cpy, but approx. 1% overall. Serveral I ft sections contain 2% Cpy. Cpy occurs as fine dissens and within albite/epidote stringers 1-8mm thick. Bedding at 70 degrees TCA.
					5186-100			V-0 V-0		
510.0 -					Term se			7-1 7-0 1-0		** *** **** **** ****
	700	1000	514.00	518.00	Lapilli		DARK GREY	Flatten	Coarse Grained	2% Cpy and 2% pyrite as coarse clusters
	450	1000	518.00	541.00	Lapilli Tuff	Lapilli	DARK GREY	Breccia ted	Coarse Grained	and as fine disseminations. LLT clasts are supported by the matrix and are angular 5-20mm in dia.

T	RAN	UC UC	TUI	RE			ALT	ER					% CH		Α	AŽS	ZY ZY			
ATPLICTURE IN	GLE TO CORE	TRUCTURE ID	DANGLE TO CORE	% CALCITE	3111018 %	% K-SPAR	% CHLORITE	% EPIDOTE	ALT. FACIES	% MAGNETITE	PYRITE HABIT	Z PYRITE	% CHALCOPYRITE HABIT	FROM	10	SSAMPLE NUMBER	NGTH Ft/10	Copper %	GDLD 9/t	
1	Ü		Ü	Della Control							D <v< td=""><td></td><td>[D=V]</td><td>174.0</td><td>184.0</td><td>tenil</td><td></td><td>0.190</td><td>0.090</td><td>180.</td></v<>		[D=V]	174.0	184.0	tenil		0.190	0.090	180.
		Page									D </td <td></td> <td>D=V D=V</td> <td>184.0</td> <td>194.0</td> <td></td> <td></td> <td>0.180</td> <td>0.115</td> <td>-</td>		D=V D=V	184.0	194.0			0.180	0.115	-
			130				117.39				D <a N<a< td=""><td></td><td>D=V D=V</td><td>194.0</td><td>204.0</td><td></td><td></td><td>0.130</td><td>0.180</td><td>-</td></a<></a 		D=V D=V	194.0	204.0			0.130	0.180	-
			5.	117:00	15-6		1505				D </td <td></td> <td>D=V D=V</td> <td>204.0</td> <td>214.0</td> <td></td> <td></td> <td>0.180</td> <td>0.160</td> <td>_</td>		D=V D=V	204.0	214.0			0.180	0.160	_
				25			1.5				D </td <td></td> <td>D=V D=V D=V D=V D=V D=V D=V D=V D=V D=V</td> <td>214.0</td> <td>224.0</td> <td></td> <td></td> <td>0.060</td> <td>0.075</td> <td></td>		D=V D=V D=V D=V D=V D=V D=V D=V D=V D=V	214.0	224.0			0.060	0.075	
V	40	4	321 131 131	19		1.0		** !!!		9	04) 04) 04) 04) 04) 04) 04) 04) 04) 04)	2.5	D=V 1.0 D=V	224.0	234.0			0.020	0.030	— 230
		lare		LAUF-1			150				D </td <td></td> <td>D=V D=V D=v</td> <td>234.0</td> <td>244.0</td> <td></td> <td></td> <td>0.080</td> <td>0.016</td> <td>101</td>		D=V D=V D=v	234.0	244.0			0.080	0.016	101
		-		70	100	H				1	D <a D<a< td=""><td></td><td>D=V D=V D=V</td><td>244.0</td><td>254.0</td><td></td><td>×</td><td>0.350</td><td>0.160</td><td></td></a<></a 		D=V D=V D=V	244.0	254.0		×	0.350	0.160	
		75									D </td <td></td> <td>D=V D=V D=V</td> <td>254.0</td> <td>264.0</td> <td></td> <td></td> <td>0.050</td> <td>0.042</td> <td>-</td>		D=V D=V D=V	254.0	264.0			0.050	0.042	-
											D <v< td=""><td></td><td>D=V</td><td>264.0</td><td>269.0</td><td></td><td>1</td><td>0.000</td><td>200.0</td><td></td></v<>		D=V	264.0	269.0		1	0.000	200.0	
											D		D	269.0	279.0			0.000	0.006	-
					2.5	1.0					Ď	0.0	D	279.0	293.0			0.020	0.004	- 280
									-		DDD		D <a D<a< td=""><td>293.0</td><td>303.0</td><td></td><td></td><td>0.090</td><td>0.064</td><td></td></a<></a 	293.0	303.0			0.090	0.064	
											0 <v 0<v< td=""><td></td><td>D<v D<v< td=""><td>303.0</td><td>313.0</td><td></td><td></td><td>0.150</td><td>0.095</td><td></td></v<></v </td></v<></v 		D <v D<v< td=""><td>303.0</td><td>313.0</td><td></td><td></td><td>0.150</td><td>0.095</td><td></td></v<></v 	303.0	313.0			0.150	0.095	
											D </td <td></td> <td>D<v< td=""><td>313.0</td><td>323.0</td><td></td><td></td><td>0.190</td><td>0.130</td><td></td></v<></td>		D <v< td=""><td>313.0</td><td>323.0</td><td></td><td></td><td>0.190</td><td>0.130</td><td></td></v<>	313.0	323.0			0.190	0.130	
· V	20	A۱	/ 30		2.5	1.0					D <v D<v< td=""><td>1.0</td><td>D<v D<v D<v< td=""><td>323.0</td><td>333.0</td><td>•</td><td></td><td>0.110</td><td>0.039</td><td>- 33</td></v<></v </v </td></v<></v 	1.0	D <v D<v D<v< td=""><td>323.0</td><td>333.0</td><td>•</td><td></td><td>0.110</td><td>0.039</td><td>- 33</td></v<></v </v 	323.0	333.0	•		0.110	0.039	- 33
	Š.										D </td <td></td> <td>D<a< td=""><td>333.0</td><td>343.0</td><td></td><td></td><td>0.130</td><td>0.072</td><td></td></a<></td>		D <a< td=""><td>333.0</td><td>343.0</td><td></td><td></td><td>0.130</td><td>0.072</td><td></td></a<>	333.0	343.0			0.130	0.072	
						F					0 <v 0<v< td=""><td></td><td>D<a D<a D<a< td=""><td>343.0</td><td>353.0</td><td></td><td></td><td>0.120</td><td>0.063</td><td>-</td></a<></a </a </td></v<></v 		D <a D<a D<a< td=""><td>343.0</td><td>353.0</td><td></td><td></td><td>0.120</td><td>0.063</td><td>-</td></a<></a </a 	343.0	353.0			0.120	0.063	-
											D <v< td=""><td></td><td>D.V</td><td>353.0</td><td>363.0</td><td></td><td></td><td>0.150</td><td>0.080</td><td></td></v<>		D.V	353.0	363.0			0.150	0.080	


DRILL HOLE: DDH94_IE24 PAGE 6

FEET	RQD PPT	RECOVERY PPT	FROM	70	ГІТНОГОСУ	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
60.0 —	700	1000	293.00	372.00	Crystal Lithic Tuff		LIGHT GREY	Fine Grained	Matrix Support ed	Massive crystal tuff with rare Kspar and albite stringers, no bedding, although grain size and proportion of lithic frags increases down the hole. 0.5% Cpy and 1/0% pyrite as fine dissens. and 1-5mm stringers.
-	600	1000	372.00	390.00	0,000 (00)		DARK GREY	Medium Grained	Equigra nular	Post-mineral lamprophyre (?) dyke with 8% ned. to coarse biotite crystals. Contacts at approx. 20 degrees TCA. Traces of Cpy near the margins (probably renobilized).
	750	1000	390.00	405.00	Crystal Lithic Tuff		MEDIUM GREY	Fine Grained		Fine crystal ash tuff with 3% lapilli sized clasts, weak potassic (Kspar) and epidote alt'n. 1.5% Cpy and 1% pyrite as fine dissens and occasional stringers at all angles TCA.
	600	1000	405.00	411.00			DARK GREY	Medium Grained	Equigra nular	Dark lamprophyre with 8% biotite, becomes bleached toward the lower
0.0 —	650	1000	411.00	420.00	Crystal Lithic Tuff		PALE GREY	Fine Grained	Equigra nular	contact. Irregular contacts at roughly 0.3% Cpy within a grey crystal tuff (possibly a fine intrusive). No bedding, massive.
	800	1000	420.00	435.00	1.174 1.1			Bedded		0.8% Cpy as fine dissems, and several stringers 1-20 nn thick within an intensely Kspar altered dust tuff with bedding at 80 degrees TCA.
	800	1000	435.00	454.00	0.000 0.0		DARK GREY	140 140 140 160		70% lamp dyke intruding 30% crystal tuff with 1% Cpy confined to the tuff only (0.5% Cpy overall). Lamp contacts are irregular but approx. 60 degrees TCA.
50.0 —					200 200					Coarse lithic lapilli tuff with
	700	1000	454.00	514.00	Lapilli Tuff		DARK GREY	Flatten ed	Coarse Grained	variable Cpy, but approx. 1% overall. Serveral 1 ft sections contain 2% Cpy. Cpy occurs as fine disserts and within albite/epidote stringers 1-8mm thick. Bedding at 70 degrees TCA.
			SA SH							
0.0 -			uga e		11					10 PS 11 PA 15
	700	1000	514.00	518.00	Lapilli		DARK GREY	Flatten	Coarse Grained	
					Lopilli	Lapilli	DARK	Breccia		2% Cpy and 2% pyrite as coarse cluster: within calcite veins/breccia matrix, and as fine disseminations. LLTF clasts are supported by the matrix and are angular 5-20mm in dia.
	450	1000	518.00	541.00	Tuff	cupiti	GREY	ted	Grained	


77	· RI	ıc	TUI		_L		DD: AL7						CHALC	×		A	SSA	YS		PAGE	5
STRUCTURE ID	ANGLE TO CORE,	STRUCTURE ID	DANGLE TO CORE	% CALCITE	% BIOTITE	% K-SPAR	% CHLORITE	% EPIDOTE	ALT. FACIES	1222	PYRITE HABIT	% PYRITE	CHALCOPYRITE HABIT	% CHALCOPYRITE	FROM	П	SSAMPLE NUMBER	LENGTH Ft/10	Copper %	4/6 (T)	— 180.0
		7111		100		1	-		g		0<\ 0<\		D=V		174.0	184.0			0.190	0.090	180.0
					No.			310			D <v< td=""><td></td><td>D=V D=V D=V</td><td></td><td>184.0</td><td>194.0</td><td></td><td></td><td>0.180</td><td>0.115</td><td>-</td></v<>		D=V D=V D=V		184.0	194.0			0.180	0.115	-
		43		0.9%	100				- 100		D <v D<v D<v D<v D<v< td=""><td></td><td>U=V D=V D=V</td><td></td><td>194.0</td><td>204.0</td><td></td><td></td><td>0.130</td><td>0.180</td><td>Pink in</td></v<></v </v </v </v 		U=V D=V D=V		194.0	204.0			0.130	0.180	Pink in
		- 11	Lan I	-Cross	Kind	n = 0	Decit	-			D <v< td=""><td></td><td>D=V</td><td></td><td>204.0</td><td>214.0</td><td></td><td></td><td>0.180</td><td>0.160</td><td></td></v<>		D=V		204.0	214.0			0.180	0.160	
				2 Feb		bi	1.5				D <br D <br D </td <td></td> <td>D=V D=V D=V D=V D=V</td> <td></td> <td>214.0</td> <td>224.0</td> <td>eye-21</td> <td></td> <td>0.060</td> <td>0.075</td> <td>ore or</td>		D=V D=V D=V D=V D=V		214.0	224.0	eye-21		0.060	0.075	ore or
AV	40	-				1.0				83	D <a D<a< td=""><td>2.5</td><td>D=V</td><td>1.0</td><td>224.0</td><td>234.0</td><td></td><td></td><td>0.020</td><td>0.030</td><td>— 230.0</td></a<></a 	2.5	D=V	1.0	224.0	234.0			0.020	0.030	— 230.0
		Tim				-		10000			D <a D<a< td=""><td></td><td>0=V D=V 0=V 0=V</td><td></td><td>234.0</td><td>244.0</td><td>(b)</td><td></td><td>0.080</td><td>0.016</td><td>1000 000</td></a<></a 		0=V D=V 0=V 0=V		234.0	244.0	(b)		0.080	0.016	1000 000
											D <v D<v D<v D<v D<v D<v D<v< td=""><td></td><td>0=1</td><td></td><td>244.0</td><td>254.0</td><td></td><td>100</td><td>0.350</td><td>0.160</td><td></td></v<></v </v </v </v </v </v 		0=1		244.0	254.0		100	0.350	0.160	
		-									D <a N<a< td=""><td></td><td>D=V D=V D=V</td><td></td><td>254.0</td><td>264.0</td><td></td><td></td><td>0.050</td><td>0.042</td><td>-</td></a<></a 		D=V D=V D=V		254.0	264.0			0.050	0.042	-
											D </td <td></td> <td>D=/</td> <td></td> <td>264.0</td> <td>269.0</td> <td></td> <td>1</td> <td>0.000</td> <td>200.0</td> <td></td>		D=/		264.0	269.0		1	0.000	200.0	
											DDC		DDD		269.0	279.0			0.000	0.006	-
					2.5	1.0					D	0.0	DDDD	0.0	279.0	293.0			0.020	0.004	280.0
											D <a D<a D</a </a 		D()	1	293.0	303.0			0.090	0.064	-
				All							0 <a 0<a 0<a< td=""><td></td><td>DKI DKI</td><td>4</td><td>303.0</td><td>313.0</td><td>14.1</td><td></td><td>0.150</td><td>0.095</td><td></td></a<></a </a 		DKI DKI	4	303.0	313.0	14.1		0.150	0.095	
											0 <v< td=""><td></td><td>D<!--</td--><td>Å</td><td>313.0</td><td>323.0</td><td></td><td></td><td>0.190</td><td>0.130</td><td>-</td></td></v<>		D </td <td>Å</td> <td>313.0</td> <td>323.0</td> <td></td> <td></td> <td>0.190</td> <td>0.130</td> <td>-</td>	Å	313.0	323.0			0.190	0.130	-
ΚV	20	A	/ 30		2.5	1.0					0 <v 0<v< td=""><td>1.0</td><td>DK</td><td>1.0</td><td>323.0</td><td>333.0</td><td></td><td></td><td>0.110</td><td>0.039</td><td>330.</td></v<></v 	1.0	DK	1.0	323.0	333.0			0.110	0.039	330.
					10						0 </td <td></td> <td>DK!</td> <td>V V</td> <td>333.0</td> <td>343.0</td> <td>dell</td> <td></td> <td>0.130</td> <td>0.072</td> <td></td>		DK!	V V	333.0	343.0	dell		0.130	0.072	
							on i				0 </td <td></td> <td>                                     </td> <td>VÍ</td> <td>343.0</td> <td>353.0</td> <td>2 1</td> <td></td> <td>0.120</td> <td>0.063</td> <td>da =0</td>			VÍ	343.0	353.0	2 1		0.120	0.063	da =0
											D </td <td></td> <td>Ď</td> <td>V</td> <td>353 (</td> <td>3620</td> <td></td> <td></td> <td>0.150</td> <td>0.080</td> <td></td>		Ď	V	353 (	3620			0.150	0.080	

DRILL HOLE: DDH94_IE24 1 A FINE LINE PAGE 6

FEET	RQD PPT	RECOVERY PPT	FROM	10	LITHOLOGY	MINOR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
60.0 —	700	1000	293.00	372.00	Crystal Lithic Tuff		LIGHT GREY	Fine Grained	Matrix Support ed	Massive crystal tuff with rare Kspar and albite stringers, no bedding, although grain size and proportion of lithic frags increases down the hole. 0.5% Cpy and 1/0% pyrite as fine dissens. and 1-5mm stringers.
_	600	1000	372.00	390.00	486.0		DARK GREY	Medium Grained	Equigra nular	Post-mineral lamprophyre (?) dyke with 8% med. to coarse biotite crystals. Contacts at approx. 20 degrees TCA. Traces of Cpy near the margins (probably remobilized).
-	750	1000	390.00	405.00	Crystal Lithic Tuff		MEDIUM GREY	Fine Grained		Fine crystal ash tuff with 3% lapilli sized clasts, weak potassic (Kspar) and epidote alt'n. 1.5% Cpy and 1% pyrite as fine dissens and occasional stringers at all angles TCA.
	600	1000	405.00	411.00			DARK GREY	Medium Grained	Equigra nular	Dark lamprophyre with 8% biotite, becomes bleached toward the lower contact, Irregular contacts at roughly
10.0 —	650	1000	411.00	420.00	Crystal Lithic Tuff		PALE	Fine Grained	Equigra nular	0.3% Cpy within a grey crystal tuff (possibly a fine intrusive). No bedding, massive.
	800	1000	420.00	435.00	(1845) A4			Bedded		0.8% Cpy as fine dissems, and several stringers 1-20 nm thick within an intensely Kspar altered dust tuff with bedding at 80 degrees TCA.
	800	1000	435.00	454.00	0.845 0.6		DARK GREY			70% lamp dyke intruding 30% crystal tuff with 1% Cpy confined to the tuff only (0.5% Cpy overall). Lamp contacts are irregular but approx. 60 degrees TCA.
60.0 —					1077 - 1.5					
	700	1000	454.00	514.00	Lapilli Tuff		DARK GREY	Flatten ed	Coarse Grained	Coarse lithic lapilli tuff with variable Cpy, but approx. 1% overall. Serveral 1 ft sections contain 2% Cpy. Cpy occurs as fine dissems and within albite/epidote stringers 1-8nn thick. Bedding at 70 degrees TCA.
2.5										
510.0 -	2.05							16		÷-
	700	1000	514.00	518.00	Lapilli		DARK GREY	Flatten	Coarse Grained	2% Cpy as veins and dissens, in a lithic lapilli tuff. 2% Cpy and 2% pyrite as coarse clusters
	450	1000	518.00	541.00	Lapilli Tuff	Lapilli	DARK GREY	Breccia ted	Coarse Grained	within calcite veins/breccia matrix, and as fine disseminations. LLTF clasts are supported by the matrix and are angular 5–20mm in dia.



						DRIL PAGE			: DDH	94_IE	24	
FEET	ROD PPT	RECOVERY PPT	FROM	10		LITHOLOGY		MINDR LITH.	COLOUR	TEXTURE 1	TEXTURE 2	REMARKS
720.0 —	600	1000	707.00	748.00		0.00			MEDIUM GREY	Aligned Phenocr ysts	Mottled	0.5% Cpy and 0.5% pyrite as fine to very fine dissens, within an aphanitic, dust tuff. Dlive green at upper contact. Grades to black at lower contact (fault).
770.0 —	600	1000	748.00	797.00	Lapilli Tuff	LIAC II			DARK GREY	Coarse Grained	Fragmen tal	0.5% Cpy and 2% pyrite within a lithic lapilli tuff containing numerous narrow, 1-3mm thick, pink Kspar veins that decrease away from the upper contact.
14						E. B. C. C. C. C. C. C. C. C. C. C. C. C. C.	s			100 100 100 100		



Deep High-Resolution Waveform Induced Polarization Services.

May 31, 1994

# **Technical Summary**

Induced Polarization / Resistivity Survey, Similco Mines, Princeton, B.C.

## The Survey

Between May 18 and May 25, an induced polarization - resistivity survey was carried out covering twelve lines for a total of approximately 8 ½ line miles (13.6km); see figure 1. Specifications for this geophysical survey are summarized as follows:

• Survey type: Pole-dipole.

• Survey method: Time domain, digital waveform.

Electrode spacing: a = 100ft.
 No. separations at each station: n = 12.

Line lengths: 36 - 40 stations each, except line 4800W.

• Transmitter: Huntec Mk IV, 2.5kW.

• Receiver: PCIP digital waveform receiver, 150 samples per

second over the complete transmitted waveform.

• Survey productivity per day: 1.75 lines, 6300 feet, 63 stations, or 750 recordings.

Results presented: Standard Hallof pseudo-sections, including apparent

resistivity, chargeability, and metal factor.

Technical specifications of the MIDAAS PC-IP receiver are included as an Appendix.

Lines surveyed were cut by a third party. Only on line 10400W were measurement stations surveyed accurately, by a third party survey team. Geophysical measurement locations are at intervals of 100 linear feet, and were not corrected for slope. There may be some discrepancy between grid labels and measurement locations because the geophysical equipment used are designed to operate at intervals of 25 metres rather than 100 feet.

In addition, lines were neither cut nor labelled south of approximately 500N. Geophysical stations were chained and flagged as required, but were not formally surveyed in. When finding positions based on geophysical results, locations should be measured linearly, referenced to 1500N.

As a result of these points, MIDAAS Corp. can not assume responsibility for exact positioning of results.

## **Depth and Resolution**

The "a" spacing of 100ft determines lateral resolution: structures smaller than 100 feet are likely to be poorly resolved.

The array type, the "a" spacing, and the number of separations ("n"=12) determine the penetration depth of the survey. In the simplest case of uniform, homogeneous ground, a pole-dipole configuration will provide information from depths to approximately a × n / 3, or 400 feet in our case. This rule of thumb becomes less and less applicable as the true geological situation departs further from the uniform half-space approximation. If overburden conductivity is higher than that of deeper material, penetration depth will be less than 400ft. With overburden conductivity lower than at depth, penetration may be slightly greater.

It should be re-iterated that measurements do not always represent material properties vertically below the measurement station. Electrical current flows in three dimensions, and there may be significant "side look" in the presence of latterly varying structures. In our case, this is particularly important on lines 10800W and 10400W, which are on the side of a deep canyon.

Finally, users of Hallof pseudo-sections must be reminded that data presented this way **do not** represent geo-electric cross sections. Many assumptions are involved in plotting results as pseudo-sections. Reliable interpretations in terms of geo-electrical properties and their probable positions depend on a thorough understanding of all the relevant physics and mathematics.

## Survey diary

- May 18, 1994: MIDAAS Corp. mobilized one operator (geophysicist) and one crew chief to Princeton, and began deploying equipment. First instrument location next to the crusher.
- May 19: Client provided three helpers. Line 10800W and start of line 10400W surveyed.
- May 20: Lines 10400W and 10000W surveyed. Third party surveyors located all stations of line 10400W only.
- May 21: Lines 9400W and 7600W surveyed. Instrument location moved.
- May 22: Lines 8200W and 7000N surveyed.
- May 23: Line 1500N surveyed, and instrument location moved.
- May 24: Lines 6200W and 5800W surveyed.
- May 25: Instrument moved, and lines 5400W and 4800W surveyed. Crew packed up all equipment and de-mobilized to Vancouver by midnight.
- May 26, 27, 30, 31: All data reduced and plotted, and report written.

### **Comments on Data**

General: This is a difficult site upon which to perform ip / resistivity surveys for three reasons:

- i) Severe topography affects the western portion of the survey area, introducing significant "3-D" effects which make interpretation more difficult.
- ii) Much of the southern portion of the area is covered in constructed material such as waste rock, road works, or tailings piles. This makes electrical contact with host rock difficult, and may result in noisy data along some segments of survey lines.
- iii) There are many instances of "cultural noise" such as power lines, buildings, concrete and other constructed materials, and large metal structures.

Under most of these conditions, chargeability is affected more severely than resistivity. Comments on data along specific lines follow. Results are presented in sections as noted for each line.

Please refer to figure 1 to correlate results with local features on the site.

Line 10800W, section 1: Topographic effects are extreme, particularly around station 1800N where the line goes over a ridge. The effects of sounding around man-made objects is severe in the vicinity of the conveyor plant (stations 400 through 800). The line is not straight; rather it followed the road, staying as far east of the conveyor and power line as possible.

Line 10400W, section 2: This line follows the road that runs north of the crusher. Stations were surveyed in by surveyors for this line only. Some stations (mainly the first 4) involved placing electrodes in road material, or on rock exposed by road cut.

Line 10000W, section 3: The first three stations are in the boulder field adjacent to the crusher. There is a 40ft cliff before station 0. The remainder of the line is in natural material.

Line 9400W, section 4: This line experienced problems related to an outcrop and topographic high near station 1900N, and deep organic material north of that. Thick layers of dead fall and loose organics prevent good electrical contact with true mineral soil and host rock. The effect is aggravated by the local topographic high which tends to force electrical current away from the area.

Line 8200W, section 5: Stations 0N - 400N and 700N are on waste rock pads or piles.

Line 7600W, section 6: Stations 200S - 700N on road, rubble slope or rubbish dump material.

Line 7000W, section 7: Stations 100S - 500N on road or waste rock piles.

Line 6200W, section 8: Stations 200S - 0, and 400N - 600N suffer from roads or steep rubble slopes. Very abrupt topography between 0 and 400N severely affects current flow in the ground, resulting in possible distortion of results.

Line 5800W, section 9: Stations 1800S - 1600S and 100S - 200N suffer as per line 6200W.

Line 5400W, section 10: Chargeability was virtually unusable from stations 1300S - 1100S, and from 400S - 1000N due to the effects of very abrupt topography, and road, rubble slope and other non-natural materials.

Line 4800W, section 11: This line was short due to the open pit at the north end.

Line 1500N, section 12: Few problems were encountered with this line. It runs west to east along the crest of the topographic high.

## Summary

Twelve lines each approximately 3800 feet long were surveyed for induced polarization and resistivity, at 100ft spacing, with n=12. Raw data are complete digitized time-domain waveforms, reduced to standard apparent resistivity and chargeability using MIDAAS Corp. processing facilities. Figure 1 is a sketch of the area and the lines surveyed. Results have been provided as standard Hallof pseudo-sections, in figures labelled sections 1 through 12.

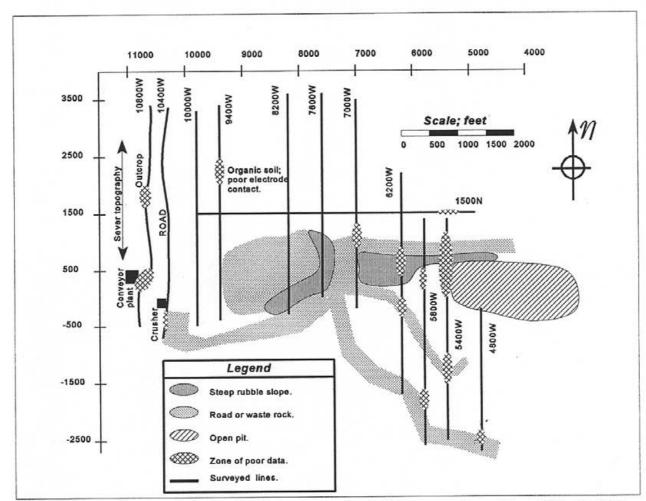



Figure 1 Location sketch, induced polarization and resistivity survey lines, May 1994. Position of roads and rubble slopes is approximate.

# **Appendix**

## PC IP MIDAAS INDUCED POLARIZATION RECEIVER: FEATURES

- Complete, unprocessed waveforms are recorded. All processing during and after surveying is performed on raw data.
- Primary voltage is calculated as an average over the latter part of the primary signal waveform.

  Averaging limits are user selectable.
- Chargeability is calculated by digitally integrating the secondary signal waveform. Integration limits are user selectable.
- Spontaneous potentials are recorded at each station before the data gathering cycle begins and is automatically cancelled during active data acquisition.
- Synchronizing: transmitted current is monitored directly (outside transmitter), and separate pulses coincident with positive and negative "off" times are optically coupled to the receiver for precise synchronization.
- Final results can be output in a variety of formats simplifying further processing or plotted with third-party software.
- Field quality assurance facilities:
  - Clipped, reversed or low level signals are detected and can be accepted or rejected.
  - Apparent resistivity and chargeability pseudo-sections are built on screen as data gathering proceeds.
  - Waveforms of all data at one station can be plotted on one screen, including listings of apparent resistivity and chargeability. Plotting characteristics are interactively adjustable.
  - Signal features such as spikes, EM coupling etc. can be recognized on these plots. Individual waveforms can then be interactively deselected if necessary.
  - Complete or partial signals (potential waveforms) can be plotted on screen.
  - Pseudo-sections or waveforms from other surveys can be compared to data currently being acquired.
  - Listings of all results gathered so far can be generated without halting data acquisition.
  - A user-defined minimum number of stacks will always be gathered at each station. Further stacking is then possible, with extra stacks interactively kept or discarded.
  - A log of data acquisition activity is kept as a separate text file, including optional comments (automatically keyed to the station and time).
  - Data are always stored to disk immediately upon being gathered so that any system failure does not force re-gathering of the entire data set.

## PC IP MIDAAS INDUCED POLARIZATION RECEIVER SPECIFICATIONS: SURVEYS • TECHNICAL • PROCESSING

NOTES: All parameters are selectable at survey time. All specifications subject to change without notice.

#### **SURVEY SPECIFICATIONS**

• Survey type:

Total waveform, time domain pole-dipole.

• Results:

- ASCII list files of all data and collection statistics in several formats, suitable for input to many third party plotting, inversion

and processing facilities.

- Colour (or black and white) graphs of waveforms; plotted individually or as groups; as complete or partial signals; and raw or stacked data.

- Colour contour pseudo-sections and plan maps.

• Productivity:

Three to four kilometres per day at n=12 with minimum two stacks (over 1500 records) over average terrain with a crew of six.

Pseudo-sections are generated as surveying progresses.

• Electrode ("a") spacing:

2ft - 200ft or 1m - 60m.

• Maximum line length:

11,000ft (200ft spacings), or 2.9km (50m spacings).

• "n" values available:

1 through 12 recorded as 1-4, 1-8, or 1-12.

• Stacking:

Interactive on-site. Automatic and visual quality control ensures stacking is appropriate at each station, while keeping gathering time

to a minimum.

- Processing software is available separately for manipulating raw data. Features include:
  - Visually compare waveforms at different stacks, positions and stations.
  - Select and de-select individual waveforms for inclusion in stacking.
  - Concatenate lines or extract segments of lines.
  - Select time windows for calculation of primary voltages and chargeability.
  - Rapidly generate ASCII format or coloured pseudo-sections.
  - Generate direct listings of results (apparent resistivity, SP, chargeability, etc) for third-party inversion, signal-processing or plotting packages.
  - Re-calculate, re-stack, and/or filter all results.
  - Convert raw waveform data into ASCII readable format.
  - Perform digital signal-processing such as noise filtering.
  - Custom requirements can be accommodated.

## TECHNICAL SPECIFICATIONS

● Data format:

Measured potentials are recorded as complete, digitized waveforms.

Storage format is proprietary to minimize file size, but processing software is available, and conversion of raw data to ASCII format is possible.

• System inputs:

Up to 48 pre-placed field electrodes are available for measurement at either end of the 2.4km 50-conductor cable. Instrument simultaneously digitizes 4 differential potentials.

• Resolution: Programmable gain gives an equivalent dynamic range of 126dB (21 bits). Every measurement can have gain individually set.

Gain	Max.Input Swing: mV	Resolution: LSB in mV
1	±5000	2.44
10	±500	0.244
100	±50	0.024
1000	±5	0.0024

• Transmitter:

Any commercially available IP transmitter.

• Synchronizing:

Optically coupled direct monitoring of the transmitter output current requires our proprietary synchronizing unit.

• Transmitter Cycles:

2, 4, or 8 seconds.

• Receiver Components:

IBM PC-386 or better; Burr-Brown IBM-PC compatible data acquisition hardware installed inside computer (two full length slots required); Proprietary multiplexing, amplifying and SP cancellation front-end; Proprietary 50-conductor cabling.

• Sampling Rate:

10 - 300 samples per second.

• Receiver power source:

Portable 120V, 60Hz, 600W generator.

## **PROCESSING SPECIFICATIONS**

#### · Hardware Required

- IBM AT compatible computer running DOS version 3.x.
- Graphics: CGA, EGA, VGA, or Hercules mono.
- Recommended: 386-class computer and co-processor, 2Mb memory, disk-caching software, VGA colour monitor, hard drive.

#### · User Interface

Menus and prompted form-filling in a custom text and graphics windowing environment with some context sensitive help.

#### · Input data

MIDAAS format; raw field-data files (*.RAW) contain data for one survey line, with global parameters in a file header, and local parameters in headers preceding each record.

#### · Outputs

Output files are in ASCII (text file) columnar format. Data listed and format of columns depends on option selected. Results available for listing include power stake and potential electrode locations, Edwards effective depth, apparent resistivity, chargeability (in milliseconds), metal factor, primary voltage values, current, S.P., processing statistics, etc.

#### · Data Plots

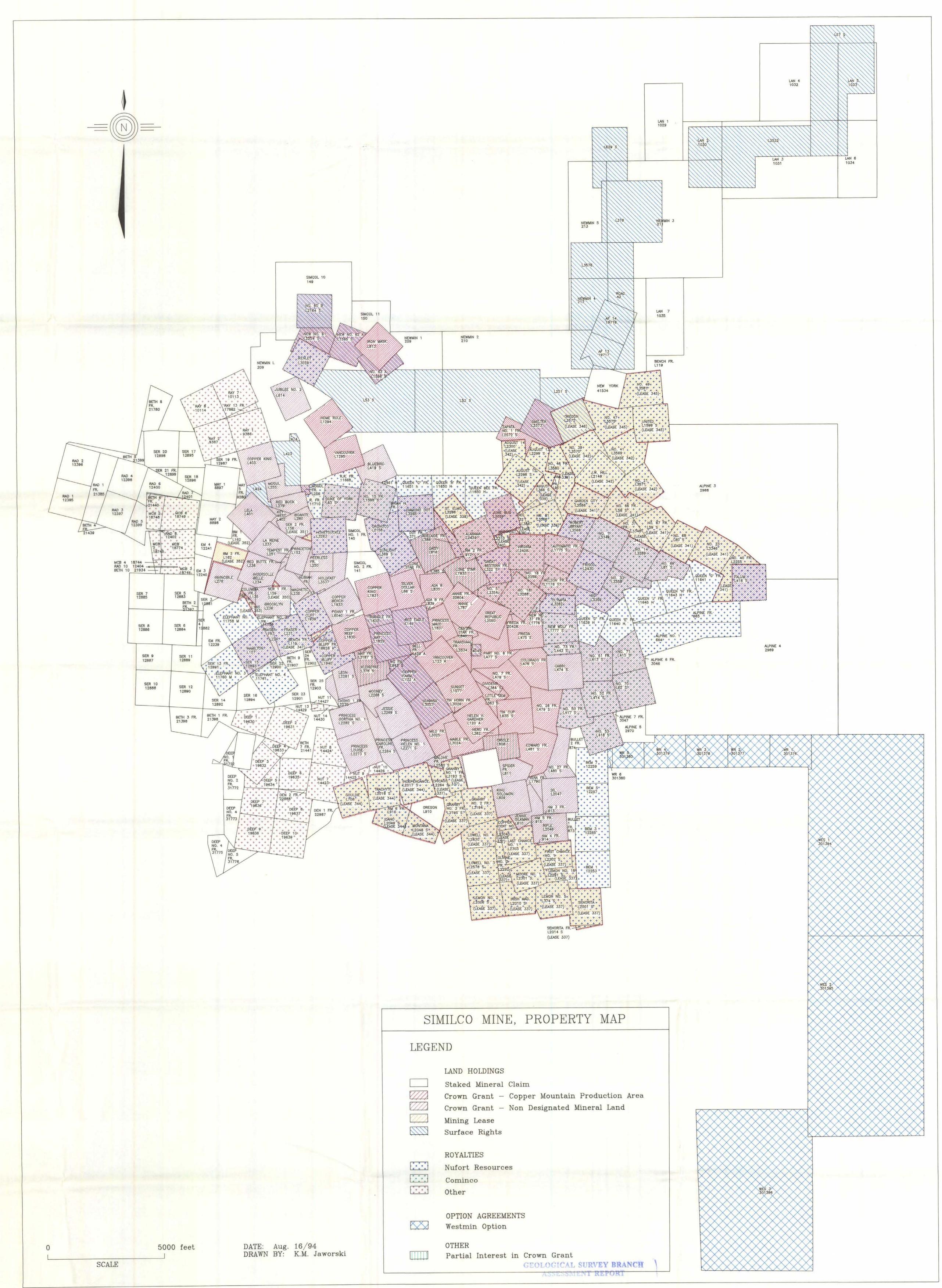
Colour contour pseudo-sections and plan maps provide high resolution visual display of results.

### · Stacking

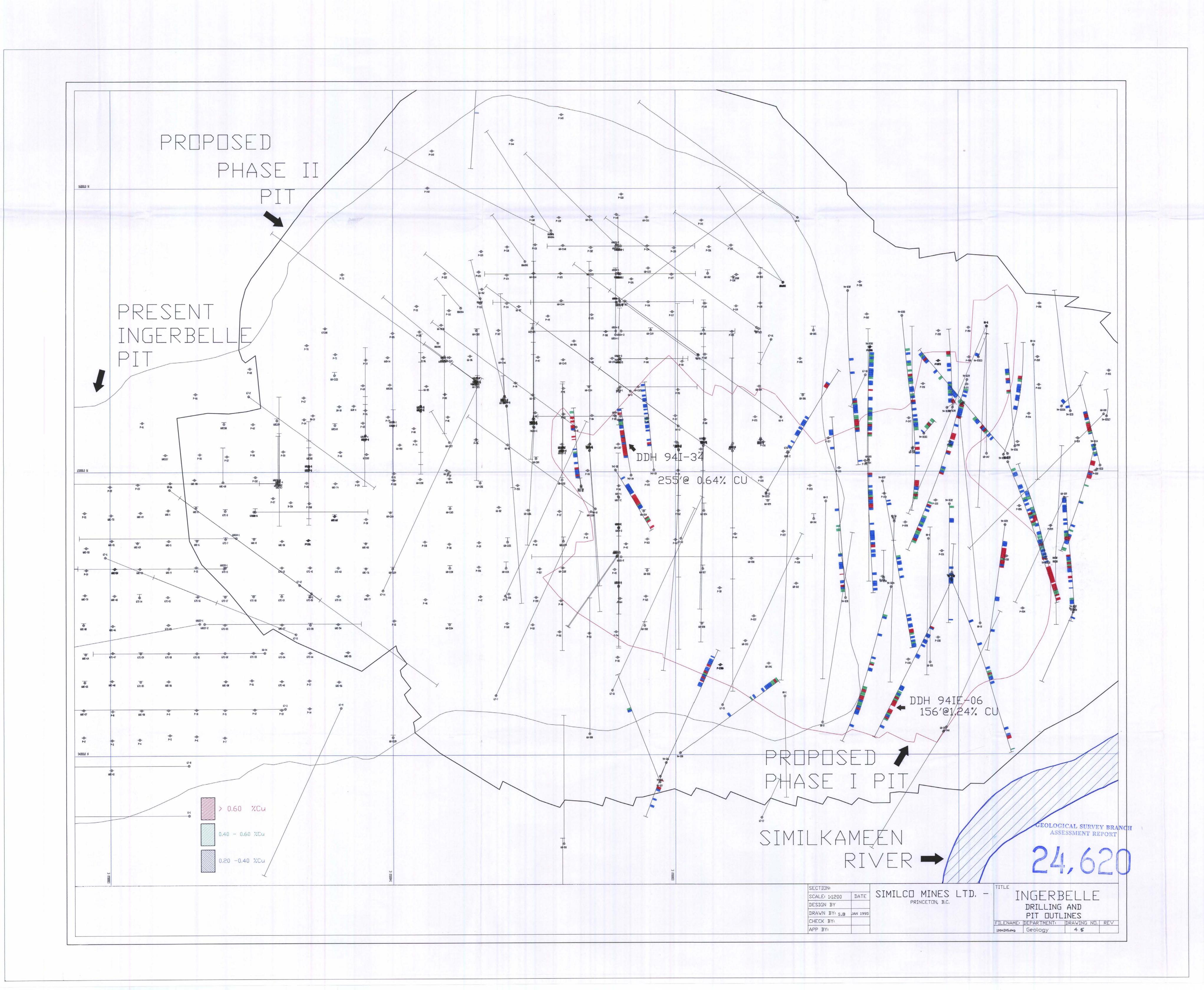
Number of stacks gathered in the field is interactively determined by the operator at each position. During or after gathering, all waveforms can be visually reviewed, and individual records flagged to be include or excluded from subsequent stacking operations.

#### · Primary Voltages

Primary Voltage is calculated as an average over a window of both +Vp and -Vp waveforms. Window start and stop times are user selectable.


#### · Chargeability

+Vs and -Vs waveforms are numerically integrated. Limits of integration are user selectable.


#### · S.P.

Cumulative and local S.P. can be calculated across a section.

- · Plotting: Four styles of screen plots are available.
  - i) All data at one station can be graphed including complete waveforms, expanded secondary voltages, and listings of apparent resistivity (ar) and chargeability (m). Different stacks are distinguished using colour, and many interactive options are available with each screen of plots.
  - ii) Up to 20 complete or partial waveforms from a survey line can be plotted on the screen. Adjustable scales and formats facilitate inspection and comparison of stacks, n's, stations or lines.
  - iii) Pseudo-sections of ar and m can be output and viewed in ASCII readable format.
  - iv) Coloured pseudo-sections of ar and m can be displayed on screen.



24,620

