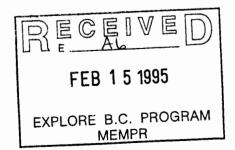
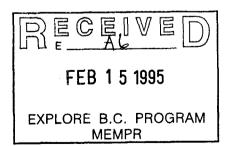
14621

Cominco Ltd.


Snip Operations

1994 Diamond Drilling Report On The Snip, Jim and Skyline Properties, Liard Mining District

> GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT


January 18, 1995

T.W. Hodson, P. Geo.

Table of Contents

Summary	Page 1
Location	Page 1
Ownership	Page 1
Geology Property Intrusive Structure Alternation	Page 2 Page 2 Page 2 Page 3 Page 3
Mineralization	Page 4
Drilling	Page 4
Conclusions	Page 7
Diamond Drill Logs	Appendix I
Figure 1 Figure 2 Figure 3 Figure 4	Location Map Snip Claims and Ground Option Geology and Alteration 1994 Drilling

SUMMARY

The Snip Mine is located within the Liard Mining District in northwest British Columbia. Remaining ore reserves as of December 31, 1993 were 811,000 tonnes grading 26.4 grams gold per tonne. Mineralisation is hosted by a shear structure within a thick foldspathic greywacke sequence.

The objective of the 1994 surface exploration program was to locate additional mineralised structures with the potential to host economic ore reserves. Results from the Twin Zone West and the Bronson Stope are encouraging enough to recommend further drilling to fully evaluate these two areas.

LOCATION

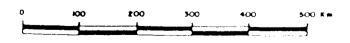
The Snip mine and adjacent mineral claims are located within the Liard Mining District 270 km northwest of Smithers, BC and 80 km east of Wrangell, Alaska. (Figure 1)

Access is by aircraft to Bronson Creek airstrip adjacent to the mine site or by hovercraft via the Stikine and Iskut Rivers.

OWNERSHIP

The Snip mining lease and Jim Claims (Figure 2, Table 1) are owned by Cominco Ltd. (60%) and Prime Resources Group Inc. (40%). Cominco Ltd. is the operator. The Snip Mine has produced from January, 1991 to December, 1993 412,039 ounces of gold from 458,301 tonnes grading 30.6 gm/t gold. Ore reserves as of December 31, 1993 were:


<u>Class</u>	Diluted Tonnes	<u>Grade</u>	<u>Grams</u>	<u>Ounces</u>
Indicated	654,800	27.0	1,7679,000	568,400
Inferred	<u>156,400</u>	<u>23.7</u>	<u>3,712,000</u>	<u>119,400</u>
Total	811,200	26.4	21,391,000	687,800


Ground was optioned from International Skyline Resources in 1993 and has the following cumulative work commitments:

1994	\$750,000
1995	\$1,250,000
1996	\$2,000,000

- estimated cumulative expenditures to the end of 1994 are \$765,000.

FIGURE 1

LOCATION MAP

TABLE 1**TENURE FOR SNIP MINE AND AREA**

-

1.54

الم المحمد ال المحمد المحمد

AREA	CLAIM	RECORD	DUE DATE
SNIP CLAIMS	SNIP 1,2,4,5	MINE LEASE 37	ANNUAL FEE
	SNIP 3	222347	10/20/2002
JIM CLAIMS	JIM 1	300552	07/22/2002
	JIM 2	300553	07/22/2002
SKYLINE OPTION GROUND	REG 1	1247	01/04/2003
	REG 2	1248	01/04/2003
	REG 8	2033	21/08/2003
	SKY 1	2568	13/09/1997
	SKY 2	2569	13/07/1999
	SKY 3	2570	13/09/1997
	BLUE GROUSE	002869	
	BROWN BEAR	002865	
	COPPER QUEEN	002870	
	DISCOVERY	002863	
	EL ORO	002862	
	GOLDEN PHEASANT	002864	
	ISKOOT	002866	
	MARGURITTE	002868	
	SILVER DOLLAR	002867	

C:\WP60\DOCUMENT\DONNER\TENURE.CHT

GEOLOGY

Situated within the Intermontain Belt, the mine site area lies within the western margin of the Stikine Terrain. Three stratigraphic assemblages have been documented in this island arc setting: (1) Upper Palaeozoic sediments and volcanics of the Stikine Assemblage, (2) clastic sediments of the Triassic Stuhini Group, and (3) Lower Jurassic sediments and volcanics of the Hazelton Group.

Four plutonic suites intrude the above; (1) Late Triassic calc-alkaline intrusions coeval with Stuhini Group stratigraphy, (2) Jurassic Copper Mtn, (3) Jurassic Texas Creek and (4) Tertiary Coast Plutonic. Metallogenically, Texas Creek potassium feldspar megacrystic porphyries are of primary interest as they are spatially associated with a number of gold deposits and showings.

PROPERTY

Underlying the property is a lower sequence of fine to coarse grained feldspathic to lithic greywackes with lesser intercalated siltstone, mudstone and conglomerate. This lower sequence is tentatively correlated with the Triassic Stuhini Group (Figure 3). The Snip deposit is hosted within a 200 meter interval of biotite altered, feldspathic to lithic greywacke in this lower sedimentary sequence.

Upper stratigraphy exposed on Johnny Mtn. consists of flat lying felsic to intermediate volcanic flows, pyroclastic and tuffaceous sediments. These units are corrected with the Jurassic Hazelton Group. The Stonehouse deposit is located at the base of this sequence.

These two distinct stratigraphic units are separated by a regional flat lying unconformity located at the break in slope in going from Johnny Mtn to Johnny Flats.

INTRUSIVE

Located on the northern part of the Jim 1, Snip 1 and Snip 4 claims is a diorite stock locally containing xenoliths of clinopyroxene and plagioclase porphyritic andesite. A poorly constrained date of 225 to 197 Ma was obtained from this intrusive (Macdonald el al.). North and adjacent to the diorite is a K-feldspar megacrystic, plagioclase phyric monzodiorite. Rhys has suggested that the northerly intrusion be called the Iskut River Stock and the diorite referred to as the Bronson Stock.

The Red Bluff Porphyry (RBP) is a K-feldspar, megacrystic, plagioclase quartz diorite to tonalite intrusive. It has been dated (Macdonald et al.) at 195 ± 1 Ma and correlated with the Texas Creek plutonic suite. This highly altered intrusive is believed to be the source of the Twin Zone mineralisation.

Lamprophyre dykes are found locally within NE trending, steeply dipping fault structures. One of these lamprophyres, located on 300 Level of the Snip Mine, has been dated at 32.0 ± 1.1 Ma. The Biotite Spotted Unit (BSU) is a biotite porphyritic andesite dyke which has intruded the Twin Zone structure splitting the mineralisation, hence the name Twin Zone.

STRUCTURE

Two major orientations of fault structures are found within the property vicinity. A northwest trending, southwest dipping set (Bronson Creek fault, Sky Creek fault, Twin Shear) is important metallogenically as the Snip deposit, Tailings Pond Shear and Bronson Slope mineralisation are all hosted by structures with this orientation. The second are north to north-northeast trending steeply to westerly dipping faults (Monsoon Lake fault, Lamp fault) which cut and locally offset Twin Zone shear mineralisation. The Lamp fault appears to truncate the Twin Zone structure to the east at line 5000 E and is speculated as a possible host to a north-south mineralised structure.

ALTERATION

The RBP and adjacent country rocks have been affected by hydrothermal alteration associated with the RBP (Figure 3). Potassic alteration of Twin Zone host rocks is typified by veinlet and disseminated brown biotite. This biotite alteration is extensive in the area extending from the RBP south to Sky Creek. The majority of Twin Zone mineralisation is located within a biotite/K-feldspar altered greywacke sequence within this potassic alteration zone.

Phyllic alteration, characterized by the presence of quartz, sericite and pyrite (QSP) is found southeast of the RBP along Bronson Slope, associated with showings on Johnny Flats and within a canyon along Sky Creek.

Prophyllitic alteration (chlorite-calcite \pm epidote \pm magnetite) is primarily found at depth below 180 Level within the Snip mine. Surface holes on the immediate east and west sides of Monsoon Lake Valley also intersected chlorite-calcite-magnetite alteration.

Clay alteration is found on the Jim property in the central area of the Jim 2 claim. This is possibly related to the Bronson Stock but more likely to a buried intrusive. A silicified quartz stockwork to zone of QSP alteration is also located in this area.

MINERALISATION

Several styles of mineralisation have been noted in the Bronson Creek area and are summarised below.

- Shear Zone Layered to massive calcite-quartz-sulphide-chlorite-biotite auriferous shear vein system. Trends northwest (120°) and dips southeast (45 - 55°). Hosted by thick sequence of biotite altered feldspathic greywackes. (Twin Zone, Road Showing).
- Base Metal Shear Southwest dipping northwest trending shear zone and veins. Base metal (Zn, Pb), pyrite, sericite rich and gold poor. Inferred strike extension of Twin Shear to the southeast. (Bonanza, CE, CE Contact).
- Quartz Vein Quartz-sulphide (py, cpy), north dipping auriferous veins. Located within biotite altered volcanics to volcaniclastics of the upper stratigraphic sequence (Stonehouse).
- Lamp/Fault Zone Subvertical, north striking massive sulphide (py) veins Discontinuous mineralisation associated with lamprophyre dyke and/or fault zones. (Lamp, Mike, OSC).
- Porphyry Cu-Au-Mag stockwork within or on margins of the RBP International Skyline reported reserves (Aug, 94) 112 MT grading .14% Cu, 0.010oz/ton Au and 0.10 oz/ton Ag.
- Qtz-Ser Shears Quartz-sericite \pm pyrite \pm chlorite northwest trending, variable dipping shears. Zn \pm Pb enriched, Cu \pm Au poor. Hosted by or closely associated with QSP altered sediments. (SMC, C-3, Boundary, Silver Dollar, Silvertip).

All of the showings referred to above returned Jurassic Pb-isotope ratios and are located on Figure 4.

DRILLING

Drill targets and results for the 1994 program are summarized below for the Jim Claims, Skyline Option and Twin Zone. (Figure 4)

- 4 -

Jim Claims

- a) Previous drilling and surface mapping had outlined an area of QSP alteration in the central portion of the Jim 2 claim. Results returned included 14.1 gm/t Au over 0.6 and 1.8 gm/t Au over 15.9m. J94-27 and 28 were collared to follow up these values and test for an inferred shear structure along Sky Creek. Results were not encouraging as no significant intervals were cored.
- b) Sky Creek Shear

The inferred Sky Creek shear structure was projected west onto the Jim Claims in the area south of Boundary Pond. Drill holes J94-29 and 30 were targeted on this inferred structure which previously had returned 4.15 gm/t Au over 0.3m; 8.80 gm/t Au over 0.80m and 2.70 gm/t Au over 1.2m with visible gold noted in the last interval. Best assay results were from J94-29 which returned 5.15 gm/t Au over 0.4m.

Snip Claims

a) West Twin Zone

West of Monsoon Lake, in a structurally complex area, 1993 drilling intersected up to 20.1 meters of quartz-carbonate-chlorite-biotite-pyrite \pm molybdenite shear. Only two anomalous gold assays were returned from this shear; 3.9 gm/t over 0.8m and 4.35 gm/t over 0.5m. These shear intersections are visually identical to areas of Twin Zone where mining has returned assays of 100's of grams gold over 1-2 meters.

During 1994, drilling to the west of the above location returned 22.0 gm/t Au over 1.1m from S-134 and 8.95 gm/t Au over 0.3m from S-133. The lower intersection from S-134 occurred in a quartz-carbonate-chlorite-biotite shear with 5-10% pyrite + pyrrhotite, <1% chalcopyrite <1% sphalerite and trace magnetite. The up dip intersection in S-133 was associated with a quartz-carbonate-pyrite vein.

b) East Twin Zone

FEB 1 5 1995

EXPLORE B.C. PROGRAM MEMPR

- 5 -

Replacement page requeited.

Jim Claims

- a) Previous drilling and surface mapping had outlined an area of QSP alteration in the central portion of the Jim 2 claim. Results returned included gm/t Au over m and gm/t Au over m. J94-27 and 28 were collared to follow up these values and test for an inferred shear structure along Sky Creek. Results were not encouraging as no significant intervals were cored.
- b) Sky Creek Shear

The inferred Sky Creek shear structure was projected west onto the Jim Claims in the area south of Boundary Pond. Drill holes J94-29 and 30 were targeted on this inferred structure which previously had returned 4.15 gm/t Au over 0.3m; 8.80 gm/t Au over 0.80m and 2.70 gm/t Au over 1.2m with visible gold noted in the last interval. Best assay results were from J94-29 which returned 5.15 gm/t Au over 0.4m.

Snip Claims

a) West Twin Zone

West of Monsoon Lake, in a structurally complex area, 1993 drilling intersected up to 20.1 meters of quartz-carbonate-chlorite-biotite-pyrite \pm molybdenite shear. Only two anomalous gold assays were returned from this shear; 3.9 gm/t over 0.8m and 4.35 gm/t over 0.5m. These shear intersections are visually identical to areas of Twin Zone where mining has returned assays of 100's of grams gold over 1-2 meters.

During 1994, drilling to the west of the above location returned 22.0 gm/t Au over 1.1m from S-134 and 8.95 gm/t Au over 0.3m from S-133. The lower intersection from S-134 occurred in a quartz-carbonate-chlorite-biotite shear with 5-10% pyrite + pyrrhotite, <1% chalcopyrite <1% sphalerite and trace magnetite. The up dip intersection in S-133 was associated with a quartz-carbonate-pyrite vein.

b) East Twin Zone

Holes S125-127, 129-131 targeted the projected extension of the Twin Shear east of mine grid 5000 E. No significant shear structures were intersected. Most holes ended in QSP alteration associated with the RBP. Scattered anomalous gold values were not uncommon within local areas of elevated pyrite in QSP altered sediments.

c) Tailings Pond Shear

This shear structure outcrops west of the south end of the tailings pond. Surface grabs returned up to 28 gm/t gold. Previous drilling intersected narrow shears in the immediate area of the south tailings dam with the best result from S-115 which returned 20.1 gm/t gold over 0.35m. Holes designed to test the down dip and strike extensions of this zone failed to intersect any shear structures.

d) 4000 E Twin Zone

The Twin Zone was known to subcrop in an area south of 180 Portal where previous surface drilling had returned gold values of 125.7 gm/t over 1.0m and 87.2 gm/t over 0.5m. Drilling intersected the Twin Shear in all holes (S-135 to S-150) but assay values were highly erratic indicating a very strong nugget effect. This is supported by reports of visible gold associated with some of the better assay intervals sampled. Further follow up of this zone will be carried out from the underground workings.

Skyline Option

a) Sky Creek Shear

Drill holes CS94-8 to 18 were targeted on the Sky Creek Shear or inferred splays from it. Best result was from CS94-11 which returned 4.85 gm/t Au over 3.0m from a massive sulphide vein. Follow up holes failed to intersect this zone. This mineralisation could be related to the Mike Showing located to immediately to the north.

b) Bronson Slope

Bronson Slope covers the projected strike extension of the Twin Shear structure onto ground optioned from Skyline. Hole CS94-20 completed at the end of the '94 exploration season was located on this trend to test the down dip extension of a surface shear which returned 1-2 gm/t gold and up to 26,000 ppm Zn. Results showed the underlying, locally biotite altered greywackes and siltstones to be highly anomalous in both gold and base metals. Results returned included 2.3 gm/t Au; 43,000 ppm Zn over 6.4m which contained a 1.6m interval grading 4.8 gm/t Au; 103,000 ppm Zn. Previous drilling and trenching by Skyline and Placer Dome in this area located the CE, CE Contact and Bonanza showings which also return anomalous Au and Zn values. Total strike length of this anomalous trend from CS94-20 to the east is now 2.5 km.

CONCLUSIONS

- 1. Diamond drilling of the Sky Creek Shear and its inferred extension through the Tailings Pond Shear west onto the Jim Claims failed to intersect significant mineralised shear structures.
- 2. Twin Zone West drilling locally returned either ore grade shear intercepts (22.0 gm/t Au/1.1m) or thick (20.1m) weakly mineralised sheared stratigraphy. Follow up drilling is required to properly evaluate the potential of this area.
- 3. Results from Twin Zone East drilling indicate the Twin Shear does not extend through a fault bounded area between 5000 E and 6000 E. If it does exist within this block it could only be located south of the area drilled (south of S-132). A southerly offset of this size is not seen in the surface expression of the RBP within this same fault block.
- 4. Drilling on the 4000 E Twin Zone returned elevated gold values associated with occurrences of visible gold which are highly erratic in distribution. The best method of evaluating this area is to drive a subdrift into the shear from the nearest underground workings.
- 5. No significant shear structures were intersected on the Jim Claims.
- 6. Bronson Slope drilling and previous work by Skyline and Placer Dome has outlined a 2.5 km trend parallel to and with the same strike and dip as the Twin Shear. Trenching and drilling have shown this area to be highly anomalous in base metals which locally have associated elevated gold values. Long drill holes are required to test the down dip potential of this shear zone.

T.W. Hodson, P. Geo. Chief Geologist Snip Operations

References

Callan, N. (1994): Bronson Ck. - Snip JV Programme, 1993 Year End Report; unpublished company report; Cominco Ltd., 15 pages.

Hodson, T. W. (1992): Jim Claims, 1992 Assessment Report; unpublished company report; Cominco Ltd., 5 pages.

Holroyd, R. W. (1993): Snip Property, 1991-1992 Report on Geophysical Surveys; unpublished company report; Cominco Ltd., 9 pages.

Macdonald, A.J., van der Hoyden, P., Alldrick, D.J., and Lefebure, D. (1992): Geochronology of the Iskut River Area - an Update; in Geological Fieldwork 1991, Newell, J.M. and Grant, B., Editors, B.C. Ministry Energy, Mines and Petroleum Resources, Paper 1992-1, Pages 495-501.

Metcalfe, P. and Moors, J.G. (1993): Refinement and Local Correlation of the Upper Snippaker Ridge Section, Iskut River Area, B.C., in Geological Fieldwork 1992, Grant, B and Newell, J.M. Editors, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1993-1, Pages 335-339.

Nichols, R.F. (1987): Snip Property, 1986 Year End Report; unpublished company report; Cominco Ltd., 10 pages.

Nichols, R.F. (1989): Snip Property, Project Report, unpublished company report; Cominco Ltd., 22 pages.

Rhys, D.A. and Godwin, C.I. (1992): Preliminary Structural Interpretation of the Snip Mine; in Geological Fieldwork 1991, Newell, J.M. and Grant, B. Editors, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1992-1, pages 549-554.

Rhys, D.A. (1993): Geology of the Snip Mine, and its Relationship to the Magmatic and Deformational History of the Johnny Mountain Area, Northwestern British Columbia, unpublished Masters thesis, University of British Columbia, 268 pages.

Rhys, D.A. and Lewis, P.D. (1992): Geology of the Inel Deposit, Iskut River Area, Northwestern British Columbia; in Geological Fieldwork 1992, Newell, J.M. and Grant, B. Editors, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1993-1, pages 341-347.

Samis, A. N. (1992): Jim Claims, 1991 Geology Report; unpublished company report; Cominco Ltd., 7 pages.

C:\WP60\DOCUMENT\HODSON\EXPL-BC.D31

- 8 -

DRILL LOG SUN 1ARY: DDH S-125

Property: SNIP	District Liard, M.D.	Length: 404.0m
Commenced: July 10, 1994	Corr. Dip: -47*	Core Size: BQTK
Completed: July 14, 1994	True Brg: 030*	% Recov. 98
Coordinates: 2145N 5120 E	Elevation: 775m	Tests: 121-9m -52* @ 26*; 213.4m -55* @ 28*
Target: Twin East Projection	Logged By: JRG	304.8m -56° @ 30°; 403.9m -56° @ 33°

Metres From To	Description		From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn ppm
0.0 - 2.6	Overburden, none recovered.		3.50	3.80		874.	1.4	49.	24.	125.
		(- 14	11.20	11.70		93.	0.1	44.	37.	197.
2.6-404.0	GREYWACKE/FRAGMENTAL:(Withminor situatone).	12.00 16.30	12.30 17.20		289.	0.3 0.1	73.	24.	287.
h an training an training and the second		ey, fine-medium grained, feldspathic wacke with local moderate calcite gash	18.50	17.20		104. 203.	0.1	68. 37.	13. 10.	625. 422.
		nd white/grey-white fragmental with up to 4-5cm subangular, fine grained, lithic	20.80	21.80		203.	0.2	37. 77.	16.	422. 129.
		ts between wacke and fragmental. Locally interbedded. Moderate to locally	26.00	26.30		129.	0.3	77. 89.	10.	279.
		the atteration. Locally biotite is patchy and fracture controlled. Local intense	28.30	28.50		216.	1.3	69. 52.	16.	176.
		r-moderate guartz flooding found within fragmental. Minor local sericite	29.80	30.20		132.	1.3	160.	11.	100.
		tart to see isolated, moderate, fine grained, pervasive chlorite over 1-2m after	35.00	35.50		116.	0.8	128.	10.	105.
		tz-carbonate extension veining @ 50° to core axis. Local carbonate/pyrite shear	40.50	41.10		77.	0.1	40.	10,	86.
3.4 d		gles. 1-1.5% medium-coarse grained, disseminated & stringer pyrite over entire	41.10	42.20		159.	0.5	90.	10.	516.
		over 4-5 cm. Local sphalerite associated with shear veins. Local fracture/fault	45.10	46.10		47.	1.2	38.	12.	69.
alle a secolo a		d limonite along fracture surfaces. Local bleaching.	51.10	51.40		86.	0.8	46.	26.	334.
in the second			51.40	52.20		103.	0.8	111.	271.	1125.
			52.20	52.40		103.	13.6	1759.	13.	54375.
i de la	2.6-39.4 Greywacke		52.40	53.70		101	0.1	191.	20.	286.
			58.50	59.30		133.	1.1	148.	29.	244.
	39.4-49.2 Fragmental		63.30	63.60		135.	2.2	268.	31.	850.
			64.80	65.20		100.	2.0	311.	30.	625.
	49.2-185.8 Greywacke: Mod ga	ash veining.	65.80	66.20		111.	2.5	277.	14.	800.
			67.50	69.00		103.	0.8	188.	24.	497.
	52.25-52.35	Shear veln. Mottled, grey/white calcite with 3-5% Py & 3-4% fine grained	70.50	71.00		135	1.0	233.	21.	1900.
		sphalerite @ 75 degrees to core axis.	71.30	72.10		115.	1.6	155.	38.	650.
	149.0-149.1	Shear vein @ 70° to core axis; White/grey calcite with 2% fine grained Py.	75.30	75.80		104.	0.1	112.	35.	272.
	168.7-168.9	Shear veinn @ 50° to core axis. <1% fine grained sphalerite.	75.80	76.00		120.	1.1	177.	41.	324.
	175.3-175.6	Fault, Highly fractured, Limonite along fracture surfaces.	79.70	80.10		117.	2.1	125.	24.	428.
	185.4-185.7	Fault. Highly fractured.	82.30	82.60		120.	0.1	71.	24.	384.
		to all all and the second and the second and the second and the second second second second second second second	83.10	83.40		69.	1.4	47.	10.	59.
		ly silicified. Sharp upper and lower contacts. Fine grained, purple, biotite	83.40	83.70		20.	0.5	19.	10.	58.
	controlled by	fine fracture pattern.	83.70 87.00	84.90 87.50		66. 60	0.7	42.	10.	51.
	192.9-193.5	Moderate, pervasive & fracture controlled chlorite.	87.90	87.50 88.50		60. 35.	0.1	70.	10.	87.
	192.9-193.5	Bleaching.	87.90	88.50 90.00		35. 509.	0.1 0.7	141.	10. 10.	145. 64.
	190.0-214.9	Cicary In 18.	90.00	90.00		509. 104.	0.7	186. 214.	10.	04. 152.
	220.4-229.6 Greywacke/Fragm	nentol	96.30	96.60		104.	0.5	214. 60.	10. 37.	152. 117.
	ZZU.+-ZZU. GIEYWACKE/Flagi		100.80	101.40		97.	0.4	60. 74.	37. 75.	117. 213.
			100.00	101.40		51.	0.2	14.	13.	213.

Drill Hole

ord

1

DRILL LOG SUN ARY: DDH S - 125

9 December . 34 - Page 3

i 1

Metres From To	Description		 From	То	Length	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn ppm
		_	251.90 252.10	252.10 252.40		332. 42.	12.1 1.3	6805. 2271.	39. 10.	282. 57.	
			252.10	252.40		42. 70.	0.1	643.	10.	37. 34.	
			254.20	254.80		80.	1.2	981.	10.	47.	
			257.40	258.90		29.	0.1	82.	10.	20.	
			258.90 259.10	259.10 260.10		28. 57.	0.9 1.2	897. 645.	10. 10.	36. 34.	
			264.20	265.50		20.	0.6	107.	10.	21.	
		i	266.80	267.10		85.	2.3	639.	0.	75.	1)
		-	267.10	267.50		47.	0.4	361.	10.	47.	
$(1 - 1)^{2} (2 - 1)^{2}$ $(1 - 1)^{2} (2 - 1)^{2}$			267.50	267.90		20.	0,1	181.	10.	37. 51.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
ap 1			267.90 268.60	268.60 269.80		20. 73.	2.3 3.0	395. 634.	10. 10.	171.	
an a			269.80	270.60		511.	11.2	1003.	10.	213.	
			270.60	270.80		409.	23.3	1301.	100.	179.	
			270.80	272.20		21.	3.4	544.	10.	192.	
			272.20 273.10	273.10 273.40		98. 410.	3.3 4.1	841. 655.	10. 23.	196. 144.	
			273.40	273.40		112.	2.7	477.	10.	170.	
			274.20	275.00		94.	1.6	459.	10.	206.	
			275.00	275.60		154.	3.2	507.	10.	175.	
			275.60	276.60		75.	0.9	248.	10.	129.	
			276.60	276.90 277.20		61. 48.	2.3 0.1	269. 101.	10. 10.	128. 92.	
			277.20	277.50		127.	2.9	348.	10.	172.	
			277.50	279.10		52.	1.3	230.	10.	87.	
			279.10	280.10		20.	0.8	145.	10.	147.	
- I			280.10	280.40		166.	4.1	589.	10.	274.	
			280.40 281.20	281.20 281.70		41. 355.	0.7 1.5	468. 791.	10. 10.	226. 220.	
			281.70	282.00		151.	1.5	299.	10.	203.	
			282.00	282.20		126.	2.1	1120.	10.	233.	
I			282.20	283.30		20.	1.2	429.	10.	254.	
			283.30	284.40		72.	2.9	532.	10.	349.	
1			284.40 285.20	285.20 286.70		103. 124.	4.0 5.9	401. 739.	10. 10.	354. 293.	
			286.70	287.60		204	6.3	533.	18.	191.	
			287.60	287.80		126.	3.8	572.	10.	107.	
			287.80	288.30		20.	2.1	87.	10.	118.	
			293.60 294.60	294.60 295.40		84. 80.	4.1 2.6	474. 468.	13. 15.	115. 146.	
1		1 1	296.50	297.30		63.	3.3	273.	11.	182.	
			297.80	298.10		101.	3.4	218.	14.	1400.	
			300.80	301.10		58.	3.1	220.	30.	1625.	
6			301.10	302.10		82.	2.0	128.	14.	184.	
1.10			302.10 302.70	302.70 304.20		113. 148.	3.0 2.3	249. 257.	10. 10.	178. 107.	•
4.216 -			304.20	304.60		154.	23.1	2109.	23.	119.	
			304.60			155.	9.8	1003.	28.	92.	
			306.50			187.	14.2	1324.	51.	125.	
			307.40			311.	6.2	1006.	25.	116.	
			307.50			137. 175.	20.4	2605. 820	37.	86. 89.	
			308.10 308.80			175. 263.	5.0 10.5	820. 1487.	23. 21.	96.	
			309.70			107.	15.0	2009.	29.	47.	
			311.20			59.	1.6	443.	17.	20.	
			311.90	313.40		96.	15.9	3496.	33.	73.	

Metres From To	Description		From	То	Length	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn ppm	4
			313.40 314.20	314.20 314.90		39. 19.	9.4 0.5	2485. 311.	10. 16.	36. 40.		· " .
			314.90 315.70	315.70 316.60		61. 159.	4.8 15.4	862. 1014.	25. 68.	29. 47.		
			316.60 317.60	317.60 318.90		109. 291	9.1 14.1	665. 1098.	74. 112.	67. 1475.		
			321.70	323 20		166	1.3	405.	19.	366.		
			323.20 323.50	323.50 325.00		398. 127	3.7 0.3	1216. 225.	39. 10.	2700. 4850.		
			325.90 327.40	327.40 327.60		221 468	0.5 3.0	87. 757.	17. 25.	316. 447.		
			327.60	328.10		175	2.2	319.	23	4875.		
			328.10 328.60	328.60 329.40		108. 945.	0.7 2.3	55. 158.	17. 497.	7400. 6375.		
			329.40 329.80	329.80 330.70		106. 138.	0.1 0.1	117. 269.	26. 50.	418. 6400.		
			330.70	332.20		316.	0.1	222.	22.	242.		
1			332.80 333.40	333.40 333.80		110. 82 .	0.1 0.1	86. 181.	16. 14.	1250. 3550.		
			333.80 336.60	335.30 338.10		125. 676.	1.0 0.1	371. 422.	18. 30.	4825. 5650.		
	4.,		338.10	338.30	1.90	1297.	6.1	510.	10.	5750.		
			338.30 339.80	339.80 340.30	2.75	1757. 162.	3.0 2.6	214. 91.	10. 10.	4800. 224.		
	1		340.30	341.40		599.	2.4	97.	10.	1500.	a an ta Tanàna amin'ny dia mampika amin'ny dia kaominina dia kaominina dia kaominina dia kaominina dia kaominina dia kao	1.11
un y far as an in thit			341.40 341.70	341.70 342.60		741. 367.	1.7 2.6	242. 195.	10. 10.	438. 327.		ing Second
			342.60 343.30	343.30 343.70		187. 345.	2.5	414.	10.	486.	210	
			343.70	343.90	2.35	1987.	2.9 4.6	411. 424.	10. 55.	381. 2200.		
			343.90 345.40	345.40 347.00		20. 584.	1.0 2.2	193. 190.	10. 10.	2925. 2125.		
18 19 19 19 19 19 19 19 19 19 19 19 19 19			347.00	347.80		55.	2.8	106.	10.	149.		
$(1 + 1 + 1)^{-1} = (1 + 1)^{-1} = $			347.80 348.00	348.00 349.50	4.05	4089. 123.	5.7 1.9	855. 347.	10. 10.	216. 1250.		
			349.50 350.10	350.10		217	2.2	525.	10.	201.		
			350.70	350.70 352.40		79. 56	3.8 1.0	167. 123.	64. 10.	1675. 134.		
			364.60 367.00	367.00 367.20		47. 20	1.4 0.1	101. 63.	10. 33	114. 84.		
			384.20	385.70		213	1.3	206	19.	120.		
			385.70 386.10	386.10 387.60		163 148.	0.4 1.0	236. 184.	9. 6.	138. 115.		
			390.40	390.60		134.	0.7	290	10.	111.		
			390.60 394.00	392.10 395.10		117. 77.	1.1 0.4	156. 122.	7. 6.	94. 95.		
			395.10 398.70	396.60 400.40		51. 75.	1.2 0.4	100. 45.	6. 10.	132. 925.		
			400.40	400.70		61.	0.1	69.	5.	195.		
			400.70 401.00	401.00 401.20		20. 20.	0.1 0.4	49. 115.	6. 10.	152. 213.		
ļ			401.20	402.70		83.	1.5	157.	8.	975.		
I			END									
n an									. 1	i •		

DRILL LOG SUN. ARY: DDH S - 125

9 December 1094 - Page 2

0	Description		From	το	Length	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	5
	·	· ·	<u> </u>								
	229.6-240.2 Greywacke: Highly	/ silicified. Minor sericite.	101.40	102.90		83.	1.7	158.	51.	163.	-
	240.2-244.0 Fragmental		108.00 108.90	108.90 109.90		59. 76.	1.5 1.5	127. 142.	67. 101.	157. 1425.	
	1		114.10	114.50		110.	1.5	278.	412.	14.	
		y silicified, minor sericite. Fine fracture pattern. 2-3% Py stringers & blebs.	117.70 119.30	119.30		262. 77.	2.8	258.	21.	256. 2050.	
	Local minor (о н у.	123.90	120.50 124.20		176.	1.9 2.3	134. 438.	33. 13.	2050. 354.	
	268-287-6 Fragmental/Greywa	cke: 3-5% Py/Po	124.20	129.70		116.	2.2	134.	30.	1175.	
	268.6-287.6	Minor chlorite alteration.	129.70 140.00	135.70 140.20		131. 44.	4.1 0.1	82. 34.	10. 10,	223. 113.	
	277.2-280.1	Bleached.	141.00	141.30		20.	1.5	22.	10.	71.	
			148.30	148.60		47.	0.7	65.	10.	110.	
	287.6-307.5 Greywacke/Fragm	nental de la constante de la co	148.90 154.70	149.20 155.20		194. 39.	2.0 1.0	355. 36.	10. 10.	45. 40.	
	306.5-307.5	Weak shear fabric @ 50° to core axis. 3-5% Py with minor Po.	156.10	157.40		25.	1.2	49.	10.	212.	
			164.00	164.30		21.	1.1	50.	10.	191.	
	307.5-317.6 Greywacke: Highly	y silicified with moderate, fine grained, pervasive magnetite.	164.30 165.20	165.20 165.50		56. 128.	0.1 1.2	19. 265.	10. 10.	113. 5550.	:
	317.6-404.0 Greywacke		168.60	169.10		57.	1.4	157	10.	1375.	
		Mar H. Marke Annal Ala anna	169.10	169.30		190.	3.4	538.	10.	181.	
	333.4-333.8 338.1-338.3	Fault. Highly fractured. No gouge. Qtz/COz velning with minor, fine grained, disseminated chlorite. 1%	170.70 171.60	171.10 172.30		76. 177.	0.1 4.6	30. 2059.	10. 10.	72. 5450.	
		Py/Po.	172.30	172.70		109.	1.2	344.	10.	361.	
	343.7-343.9	Shear vein. Bio/chl/qtz/py laminae @ 50° to core axis. 7-10% Py, 1-1.5%	172.70	173.20		213.	0.1	12.	10.	100.	
	347.8-348.0	Po, <1% Cpy. 3-5% fine-medium grain disseminated Py.	175.20 175.60	175.60 175.70		228. 186.	0.1 2.5	58. 691.	10. 10.	211. 255.	
			176.60	177.10		57	0.5	167.	10.	4175.	
		EOH @ 404.0m	180.80	182.20		121.	0.2	208.	10.	2825.	
			182.50 182.90	182.90 183.70		116. 76.	0.3 1.7	22. 54.	10. 10,	179. 107.	
			183.70	184.60		58	0.3	28.	10.	53.	
			184.60 185.40	185.40		179.	0.1	19. 20	10.	42.	
			187.30	185.70 187.80		84. 55.	0.9 0.2	20. 120.	10. 10.	143. 15.	
			192.90	193.30		111.	0.2	11.	10.	15.	
			194.60 196.30	196.00 196.60		60. 71.	1.3 1.0	18. 10.	10. 10.	29. 21.	
			200.20	201.70		86.	1.3	10.	10.	31.	
			203.80	205.70		28.	1.8	10.	10.	12.	
			207.30 214.90	208.50 216.30		66. 52,	1.6 1.8	10. 10,	10. 10.	23. 29.	
			216.30	217.10		98.	0.6	10.	10.	21.	
			217.40	217.70		58.	1.8	459.	10.	31.	
			217.70 220.40	218.20 220.70		85. 150.	1.4 2.8	110. 1 44 .	10. 10.	34. 8400.	
			220.70	222.00		35.	2.0	419.	10.	95.	
			222.90	223.10		220.	2.5	254.	10.	172.	
d.			223.10 223.70	223.70 224.10		216. 166.	3.5 2.5	238. 550.	10. 10.	97. 137.	
			225.40	226.00		189.	3.1	10.	10.	348.	
		i	228.50	229.20		60.	1.3	10.	10.	72.	
as La La			231.20 235.80	232.10 236.90		95. 91.	0.2 1.5	10. 10.	10. 10.	27. 27.	
á J			236.90	237.10		35.	2.3	10.	10.	26.	
			237.10	238.40)	49.	1.1	10.	10.	23.	
•			240.00 250.30	241.50 251.90		56. 72.	1.0 2.0	149. 446.	10. 10.	97. 50.	
1	1		230.30	201.90		12.	2.0	44D.	10.	50.	

Drill Hole Sord

مەلەرىيى . ئۆرمەرلى

DRILL LOG SU: /ARY: DDH S-126

Property SNIP	Dis	trict Liard, M.D.	Length: 425.3m							
Commenced: Ju	uly 15, 1994 Cor	rr. Dip: -75*	Core Size: BQTK							
Completed: July	y 18, 1994 Tru	e Brg: 030°	% Recov. 98%							
Coordinates: 21	145N 5120 E Ele	vation: 775m	Tests: 121.9m -75* @ 32*							
Target: Twin Ea	ast Projection Log	gged By: JRG	304.8 -78° @ 40°							
Metres From To	Descriptio	on		From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm
0-3.0	OVERBURDEN, None	Recovered.		3.20	4.70		87.	2.7	190.	19.
:				8.80	9.50		78.	6.1	10 8 .	848.
3.0-342.9	GREYWACKE/FRAGM	IENTAL:(with minor siltstone)		12.70	13.20		131.	3.2	72.	94.
				13.20	13.60		747	3.3	106.	166.
	Varying medium and d	lark grey - purple/brown, fine - me	edium - locally coarse grained, feldspathic wacke.	13.60	14.10		88	2.6	202.	35.
	Massive with weak foli	ation. Local Intense silicification.	Mottled cream/purple-grey fragmental with 1-2 cm fine	14.10	15.00		66	2.8	85.	91.
	grained siltstone fragm	nents. Weakly foliated @ 50° to i	core axis. Wacke and fragmental: moderate, fine	15.00	16.50		76	1.9	210.	32.
	grained, pervasive biol	tite alteration increasing to moder	ate - high after 320.5m. Biotite patchy and fracture	17.10	17 20		24	17	85.	18.
	controlled within fragm	nental. Local, moderate sericite a	Iteration after 265.0m. Local silicification and bleaching.	17.20	17.70		20	1.8	52.	10.
	Moderate - locally low	calcite gash veining increasing to	intense after 320,5m. Moderate - locally intense	17.70	18.80		29.	1.5	47.	25.
	guartz/CO, extension	veins with fine grained, dissemind	prated chlorite and fine grained biotite along vein	18.80	19.20		28.	2.4	53.	10.
	•	÷ .	ine grained disseminorated Py locally up to 5-10% Py	19.20	19.50		87.	2.9	343.	44.
			1% disseminorated and bleb Po. Isolated, fine grained	28.20	28.50		446.	12.4	523.	1024
	•	6, trace Cpy. Local faulting.	······································	30.50	31.10		37.	1.6	93.	24.
		o, aloo op). Looli lubaa.g.		32.10	32.30		58.	2.0	34.	7.
	3.0-64.2 Greywacke			32.30	33.10		30.	2.4	146.	12.
	5.0-04.2 Greywacks			34.60	35.40		36.	3.2	140.	72.
	270.283	Moderate intense perverive chio	cite alteration	35,40	36,90		30. 47.	2.5	181.	15.
	37.9-30.3	Moderate-intense pervasive chlo	ine aneration.	36.90	37.90					
							59.	3.0	96.	178.
	64.2-78.2 Fragmental			37.90	38.30		114.	4.7	324.	852.
				38.30	38.90		37.	0.1	43.	33.
	78.2-254.4 Greywack	0		38.90	39.80		66.	0.8	61.	182.
	1			39.80	40.00		37.	0.4	114.	12.
	105.4-105	. 🗸	re axis. Limonitic fracture surfaces.	41.70	42.20		130.	0.1	96.	24.
	114.9-116		flooding-veining with 2-3% patchy Py.	50.50	51.40		43.	0.3	274.	10.
	122.2-120	6.6 Moderate-intense	irregular calcite flooding. Slight bleaching. 2-3% Py,	51.40	51.60		139.	2.0	224.	22.
		local 3-5% fine gr	ained, disseminorated Py.	51.60	52.00		332.	1.2	115.	19.
	155.1-161	1.8 Intense quartz/CC	D ₃ veining.	52.00	52.20		94.	1.4	131.	22.
é a companya da serie de la companya	151.1-150	6.1 Biotite/guartz/CO	laminorated shear with trace Py.	53.00	54.60		60.	0.6	122.	14.
e a dife	159.8-159		re axis. Bleached.	54.60	54.90		294.	2.1	178.	30.
Josef	179.4-25	-	D, veining from 179.3-193.5 Local CO,/chlorite/minor	54.90	55.40		251	1.7	79.	36.
		•	s up to 20 cm @ 50-70° to core axis. With 1% Py.	55,40	55,50		57.	2.8	158.	660.
i i e				56.00	56.10		125.	2.7	244.	32.
				61.90	62.20		20.	0.4	188.	13.
				62.20	63.70		20. 78.	1.3	184.	13.
				63.70						
					64.20		73.	1.0	77.	23.
	1			66.20	66.40		35	1.2	32.	13.

Page 1

Zn ppm

109. 1000. 470. 328. 235. 271. 137 192. 293. 175. 1450. 11650. 18125. 5550. 125. 1450. 5175. 283. 4525. 27500. 550. 223. 387. 3400. 198.

180.

178. 3200. 494.

3600. 4900. 35000. 2075. 107. 376. 167. 136.

Metres From To	Description	n 	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	R ptpm	Zp pm	.i	
											_	
			68.30	68.50		38.	2.1	142.	15.	201.	-	
-			68.50 69.40	69.40 69.50		38. 1 43 .	4.4 2.5	49. 256.	9. 22.	81. 133.		
			69.50 73.90	70.30 74.10		27. 61.	26.0 2.5	24. 37.	9. 14.	63. 131.		
	254.4-258.9 Greywacke: Hig	ghly silicified.	74.10	75.40		43	0.6	28.	7.	72.		
	258.9-297.2 Greywacke		75.40 75.60	75.60 76.20		26. 42.	0.9 1.4	21. 22.	10. 7.	101. 78.		
	·	hhu silicifiad	77.90 82.20	78.20 83.10		329. 72.	1.2 1.3	78. 80.	12. 20.	81. 158.		
	297.2-320.5 Greywacke: Hig		85.30	86.00		85.	2.0	370.	12.	47.		
	306.4-306.5	Fault.	88.90 89.50	89.50 89.90		54. 70.	1.2 1.9	161. 121.	17. 34.	251. 410.		
	320.5-342.9 Greywacke		98.30	99.90		84.	2.3	107.	38.	301.		
	338.6-340.2	Grey/blue-grey calcite flooded with 3-5% fine grained Py.	99.90 100.20	100.20 101.70		211. 94.	3.0 2.8	286. 210.	81. 28.	2525. 381.		
			102.60 104.10	104.10 104.30		283. 290.	0.9 1. 4	129. 234.	25. 44.	252. 274.		
342.9-425.3	SILTSTONE:		104.30	105.30)	210.	1.2	149.	24.	332.		
	Med-light purple/brown/grey	y; Fine - very fine grained, banded (possible relic bedding) and mottled, weakly	105.30 110.30	105.60 111.00		266. 215.	1.1 2.3	154. 18.	30. 49.	351. 185.		
	foliated. QSP (quartz/seric	ite/Py) attered. Moderate-high sericite/quartz atteration. 3-4% disseminorated and	111.00	112.10)	115.	0.4	125.	25.	373.		
1	stringer Py, local 5-7% Py. calcite gash veining. Spars	Minor-locally moderate/high, patchy, fine grained biotite alteration. Sparse-moderate extension velning.	a 112.10 114.90	113.20 116.40		138. 12042	0.1 . 1.6	101. 150.	20. 32.	317. 700.		
		oderate shear @ 70° to core axis. Cream/purple fine laminorae. 2-3% fine grained	120.90 121.90	121.90 122.20		131. 145.	6.5 0.6	42. 52.	30 31.	236. 309.		
an a	di	sseminorated Py.	122.20	123.70)	178.	1.0	133.	62.	158.		Ì
	379.3-379.7 59	ault @ 20° to core axis. % Py, Grey quartz flooding.	123.70 125.00	125.00 126.50		236. 1439	0.1 . 0.8	51. 123.	17. 19.	166. 242.		:
	416.8-425.3 Fa	ault zone. Up to 30 cm gouge. Clay attered 3-4% Py	138.60 138.90	138.90 139.90		105. 150.	0.1 0.6	137. 281.	29. 51.	380. 1375.		
			139.90	140.0	כ	327.	1.5	524.	71.	406.		
		EOH @ 425.3	140.00 141.50	141.5 142.6		96. 96.	0.1 0.9	207. 170.	30. 37.	675. 362.		
		-	142.60 143.10	143.1 143.5		79. 125.	0.1 0.1	255. 193.	28. 24.	252. 246.		
			143.50	144.8	0	156.	0.8	213.	30.	473.		
			144.80 146.30	146.3 146.6		152. 93.	0.1 0.4	202. 306.	18. 16.	2825. 394.		
			146.60	147.1	0	109.	0.1	32.	17.	875.		
			147.10 148.40	148.4 149.0		134. 121.	0.8 1.3	246. 438.	17. 22.	418. 237.		
			149.00 149.40	149.4 149.7		85. 97.	0.6 0.1	178.	16. 17.	455. 186.		
			149.70	150.2	0	205.	3.2	69. 155.	14.	163.		
			150.20 151.00	151.0 152.2		108. 91.	1.0 2.0	313. 411.	21. 13.	176. 186.		
			152.20	153.0	0	190.	2.5	149.	26.	88.		
			153.00 154.40	154.4 155.1		66. 42.	0.6 1.4	213. 204.	7. 13.	173. 206.		
			155.10	156.1	0	57.	1.6	222.	13.	109.		
			156.10 156.60	156.6 158.1	0	60. 61.	1.6 0.4	107. 181.	7. 14.	89. 104 <i>.</i>		
			158.10	159 .7	0	47.	1.2	73.	9.	89.		

DRILL LOG SUN CARY: DDH S - 126

9 December 1994 . age Page 3

Metres From To	Description	F	rom	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pptapm -	Zpmpm
		1	159.70	160.00		50.	1.2	137.	15.	54.
			160.00	160.70		62.	2.2	172.	26.	131.
			160.70	161.80		32.	1.4	60.	13.	775.
			168.70	170.20		171.	0.5	55.	8.	60 .
			170.20	170.40		24.	1.0	133.	8.	116.
1			170.40 174.00	171.00 174.10		51. 12.	0.1 1.9	107.	5.	149.
1			174.10	175.00		26.	0.4	19. 44.	10. 6.	76. 142.
			175.00	175.20		164.	4.8	576.	0. 14.	350.
			175.20	176.90		42.	1.3	144.	6.	166.
			176.90	177.20		35.	0.9	60.	12.	107.
		1	177.20	178.10		50.	1.4	180.	9.	115.
			179.40	180.60		34.	0.2	19.	8.	68 .
4.9			180.60	180.80		32.	1.2	5.	2.	48.
			180.80	182.10		19.	2.7	23.	1.	78.
2.1			182.10	183.60		44.	1.1	27.	1.	62.
			183.60	184.60		37.	1.3	22.	7.	54.
			184.60 184.70	184.70 185.10		29. 20.	1.8	19.	6.	52.
			185.10	185.10		20. 50.	1.1 1.1	7. 50.	8. 3.	69. 61.
			185.30	186.50		21.	1.3	48.	3. 8.	55.
			186.50	187.30		67.	0.5	121.	6.	75.
			187.30	188.00		45.	1.9	79.	13.	69.
			188.00	188.80		20	0.8	102	11.	82.
		· {	188.80	189.00		20	2.7	149	24.	81.
			189.00	189.70		43.	1.8	90.	18.	247.
			189.70	191.00		92.	2.0	155	44.	317.
			191.00	191.20		50.	0.3	42.	48	376.
			191.20	191.60		68.	0.4	95.	21.	675.
			191.60	191.80		88.	2.8	287	12.	1275.
			191.80 192.50	192.50 193.50		24. 74.	0.9	33.	1.	147.
			195.50	196.30		37.	1.2 3.9	40. 761.	9. 20.	92. 202.
			196.30	196.50		55.	1.3	192	20. 6.	202. 99.
			201.70	202.40		35.	0.5	50.	4.	74.
			210.40	211.90		47.	0.9	33.	2.	107.
			211.90	212.20		44.	0.1	33.	5.	108.
			212.20	212.50		51.	0.1	69.	5.	91.
			212.50	213.60		66.	0.8	97.	15.	238.
			217.70	219.30		64.	0.3	67.	9.	98.
			221.00	221.70		25.	0.4	22.	16.	131.
i a			221.70	222.80		50.	0.4	24.	6.	1025.
5. .			222.80 230.80	223.00 231.80		34.	0.5	15.	3.	131.
	1		240.90	231.80		20. 40.	0.1 0.3	48. 75.	3.	159.
			249.00	249.20		40. 47.	1.2	75. 111.	16. 3.	106. 55.
1.0			249.20	249.90		51.	0.1	102.	3. 3.	55. 51.
4.4.			249.90	250.90		61.	0.3	155.	5.	77.
			252.70	254.20		32.	0.1	34.	1.	119.
			254.20	254.40		20.	0.5	147.	1.	184.
			254.40	255.70		20.	0.1	5.	1.	13.
			255.70	257.30		26.	0.1	10.	4.	28.
	1		257.30	257.50		22.	0.1	32.	3.	41.
			257.50	258.10		20.	0.2	11.	2.	26.

Page 3

19. IN

DRILL LOG SUN ARY: DDH S - 126

(4) the first first mean of the second se

The state of the s

9 December 1994 age Page 4

•

etres om To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	R)ttopm	Zpr pm
		258.10	258.60		20.	0.1	17.	1.	86.
		266.60	266.80		30.	0.1	89.	4.	187.
		266.80	267.70		49.	1.0	132.	1.	137.
		267.70	268.30		20.	0.1	120.	5.	84.
		268.30 270.10	268.60		99. 58.	0.4	94.	1.	51.
		270.20	270.20 271.40		38.	0.3 0.1	153. 86.	8. 6.	54. 78.
		271.40	271.70		33.	0.1	40.	4.	67.
		281.40	281.60		39	0.1	126.	6.	74.
		281.60	282.80		33	0.1	61.	5.	53.
		282.80	283.50		49.	0.1	65.	10.	94.
		283.50	284.90		20.	1.5	66. 70	1.	79.
		286.60	288.10		49.	0.1	73.	2.	69. 102
		288.10 289.60	289.60 290.40		65. 167.	0.1 0.1	104. 90.	1. 2.	102. 66.
		297.70	290.40		27	0.1	90. 8.	1.	00. 10.
		299.00	299.80		20.	0.1	43.	3.	13.
		299.80	300.30		38.	0.1	66.	1.	10.
		301.60	301.90		20.	0.1	16.	1.	12.
		303.00	303.60		36.	0.1	27.	2.	15.
		304.50	306.00		20.	1.3	11.	4.	11.
		306.00 306.40	306.40 306.60		20. 31.	0.1 1.5	10. 73.	1. 2.	13. 62.
		306.60	307.10		20.	0.1	53.	2. 2.	o∠. 24.
		307.90	309.30		28.	0.1	46.	1.	18.
		309.30	309.90		28.	0.1	44.	6.	17.
		309.90	311.10		72.	0.1	128.	2.	24.
		314.50	315.50		39.	1.0	263.	9.	333.
		315.50	316.60		28.	0.1	130.	1.	134.
		316.60	317.90		20.	0.1	128.	2.	134.
		317.90 320.00	318.30 320.50		26. 34.	1.3 1.4	430. 198.	3. 5.	110. 4.
		320.50	320.80		87.	3.1	279.	J. 1.	331.
		320.80	321.70		62.	1.0	33.	16.	207.
		324.20	325.20		90.	0.1	26.	8.	103.
		325.20	325.70		135.	0.2	278.	10.	381.
		325.70	326.20		202.	1.4	408.	14.	11750.
		326.60 329.00	327.70		364.	4.5	414.	24.	471.
		334.10	329.70 334.60		332. 480.	1.9 1.7	258. 197.	10. 13.	4850. 105.
		338.60	340.20			44.5	406.	4225.	4675.
		342.20	342.90		191	0.3	208.	48.	186.
		342.90	343.20		51.	0.1	46.	15.	50.
		343.20	344.70			1.8	456.	569.	1850.
		344.70	345.30		202.	0.1	191.	12.	94.
		345.30	346.70		49.	0.1	53.	11.	42.
		346.70	348.10		39.	0.1	27.	7.	32.
		348.10 358.10	348.40 359.90		80 72	0.1 0.1	47. 226.	19. 115.	89. 281.
		359.90	360.40		108.	1.1	327	115.	47.
		360.40	361.80		163	0.7	335	18.	44.
		363.10	363.40		79.	1.2	115.	30.	415.
		363.40	364.70		116.	1.0	206.	18.	84.
		364.70	365.00		101.	1.1	215.	13.	106.

DRILL LOG SUN ARY: DDH S - 126

9 December 1994 age Page 5

etres om To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Ryapm	Zpr pm
		365.00	366.50		121	0.9	429.	6.	50.
		366.50	366.90		108	1.2	204.	6.	40.
		377.80	378.20		162.	1.6	256.	68.	115.
		378.20	379.30		192.	1.7	414.	14.	222.
		379.30	379.70	2.30	2072.	9.4	765.	200.	4375
		380.70	380.80		562.	2.1	645.	133.	126.
1		380.80	382.20		165.	0.1	314.	17.	82.
		382.20	382.80		134.	0.1	227	7.	70.
		382.80	383.10		294.	0.5	218.	99.	123.
		389.50	390.10		251.	1.9	241.	14.	81.
		390.10	391.60		481.	1.7	337.	9.	88.
		395.40	396.10		159.	1.6	46.	46.	254.
		396.10	396.60		152.	0.5	199.	19.	170.
		396.60	396.90		137	0.9	103.	70.	44.
		396.90	398.60		134.	1.2	351.	13.	73.
		406.20	406.80		258.	2.4	247.	168.	93.
		406.80	407.10		101.	1.4	95.	133.	123.
		407.10	407.80		57.	0.5	80.	17.	306.
		407.80	408.80		53.	1.3	91.	34.	340.
	4	408.80	409.00		139.	2.2	135.	97.	146.
		415.90	416.50		312.	2.4	732.	14.	146.
		416.50	416.80		158.	1.7	383.	12.	110.
		416.80	417.10	1.90	2186.	12.6	741.	342.	281
		419.50	421.00		143.	1.6	310.	14.	68 .
		421.00	422.50		130.	1.1	246.	12.	56.
		END							

Page 5

DRILL LOG SUI. JARY: DDH S-127

Property SNIP	District Liard, M.D.	Length: 461.9n	
Commenced: July 19, 1994	Corr. Dip: -67°	Core Size: BQTK	
Completed: July 24, 1994	True Brg: 030*	% Recov. 98%	
Coordinates: 2180 N 5400 E	Elevation: 800m	Tests: No Tests	
Target: Twin East Projection	Logged By: JRG		

Twin East Projection

ord

n To	Description		From	то	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn ppr
.6	OVERBURDEN, None Recove	red.	8.80	9.60		251.	0.8	260.	15.	102.
			9.60	10.10		206.	1.9	380.	16.	107.
81.9	SILTSTONE/GREYWACKE:		10.10	11.20		179.	1.1	262.	28 .	121.
			13.40	14.20		92.	1.6	147.	15.	125.
		d med-light grey/purple. Weakly foliated, massive, med grained wacke. Fine	16.60	18.10		59.	1.4	136.	35.	177.
		.1-1cm bending possible relic bedding) siltstone . Units interbedded with	18.10	18.40		130.	1.9	222.	69.	504.
ं क		cally high, fine grained, pervasive biotite alteration. Local, mod, pervasive chi.	18.40	18.70		171.	5.1	302.	131.	529.
tig a		eration developing @ 144.8m and increasing to intense light tan/pink/purple, QSP	18.70	19.80		99.	2.7	252.	90.	341.
- 1 • 1		.ocal bleaching. Sparse-mod .1-1cm qtz/CO ₃ extension veins. Mod calcite	19.80	20.20		58.	2.6	112.	59.	267.
		mod gash veining within wacke. Local blo/CO ₂ /Py shear veins. 2-3% Py	21.00	21.70		96.	3.4	236.	135.	460.
) 		ted and stringer Py within QSP. Local 10-12% Py. Minor Cpy and Po associated	29.70	31.20		175.	2.1	141.	62.	343.
	with spacerilling chi. Local <1	% Sph within QSP. Local faulting and weathering.	31.20	31.60		265.	8.6	309.	927.	685 0.
			33.80	35.00		226.	3.6	230.	140.	528.
	4.6-144.8 Greywacke:		37.00	38.30		100	3.0	197.	124	444.
	540504	COJbio/chi laminated shear @ 75* to core axis. 1% fine grained Py.	38.30	39.10		151.	3.8	381.	114.	290.
	51.9-53.1		39.10	39.60		58	3.4	323.	69.	452.
	59.2-61.3 61.5-62.3	Mod calcite veining, 5% Py. Local 10-12% Py. 5-7% disseminated Pv.	48.80	49.60		446	5.8	354.	103.	370
	86.8-86.5	5-7% disseminated Py. Bio/cal/Py shear @ 70° to core axis. 3% fine grained Py.	49.60 50.30	50.30 51.90		150	3.6	225.	156.	453.
	112.3-120.7	Chi atteration, bleaching.	50.30	51.90		130 64	3.8 1.8	143.	169.	541
	115.5-117.0	Fault. Bleached, 2-3% Py.	52.50	52.50			0.8	59.	36.	346.
	126.7-127.3	Weak shear fabric @ 70° to core axis.	52.50	52 80		62		48.	21.	281.
	127.3-127.5	Fault.	52.80	53 10 54 10		36 74	1.3	29	32.	259.
	144.6-144.8	CO ₂ /bio/chi laminated shear @ 70° to core axis. 1% Py.	54.10	54.80		129	1.2 2.5	21. 140.	30. 28.	218.
	144.0-144.0		59.20	60.50		950.	2.5	284.	20.	144. 134.
	144 8-192 9 Siltstone/Greywa	acke: Interbedded. Greywacke decreasing downhole.	60.50	61.30	1.25	1362.	3.6	204.	22. 26.	134.
			61.50	62.30	2.05	1853.	5.0 6.9	411.	20. 97.	119
	148.0-148.3	5% med grained disseminated Py.	69.40	69.60	2.00	169.	1.4	269.	47.	393.
	151.7-152.3	Bleached with vuggy calcite veins, 2-3% Py.	70.90	71.60		185.	2.1	115.	47. 54.	192.
	162.5-163.0	COJchl/bio laminated shear @ 60° to core axis. 1% fine grained Py.	71.60	73.10		197.	1.0	80.	73.	351.
			80.80	81.00		147.	3.4	202.	67.	160.
			84.20	84.50		34.	1.4	92.	22.	98.
			84.50	85.50		115.	3.4	173.	41.	295.
			85.50	85.80		577.	4.9	55.	48.	361.
	1		85.80	86.50		214.	4.1	201.	40. 60.	200.
	1		86.50	88.00		214.	4.1	201.	60.	200.
			94.90	96.40		187.	1.6	279.	23.	414.
	4		104.20	105.40		183.	1.2	279. 99.	23.	220.
			104.20	105.40		103.	1.2	83.	41.	220.

Drill Hole

DRILL LOG SU 1ARY: DDH S - 127

10 December 1994 age Page 2

tres om To	Description		From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	iβip m	ζ η ρm
	I									
			105.40	106.20		342.	3.4	100.	46.	194.
			106.20	106.50		190.	1.6	102.	28.	141.
	192.1-461.9 Sittstone: With m	iner erenneke. OSB ellered	110.80 112.30	112.30 112.50		131.	2.1	76.	31.	188.
	152.1-401.9 Sitstone. With m	noi gigywacke. Wor aneleu.	112.50	112.50		30. 38.	1.2 1.5	38. 17.	13. 22.	109. 104.
	216.3-216.7	Med tan with 1% brown/orange fine grained Sph blebs and patches.	113.70	114.30		45.	0.1	95.	20.	202.
	221.5-224.6	Mod-intense qtz veining up to 5-10 cm with min-mod chi. Bleaching, 1-2%	114.30	115.50		89.	0.5	84.	27.	215.
		Py, local 3-5% Py.	115.50	117.00		146	1.0	84.	22.	215.
	236.9-237.2	10% med grained disseminated Py.	117.00	117.60		255.	4.8	139.	174.	539.
	237.2-237.4	CO ₃ /bio/chl finely laminated shear @ 80° to core axis. 2-3% fine grained	117.60	118.60		77.	11	57.	20.	152.
	280.5-281.8	Py. 3-4% disseminated and fracture controlled Py.	118.60	120.70		152	0.8	197	27.	141.
	280.5-281.8	5-4% disseminated and fracture controlled Py. Fracture/Fault zone.	122.90 124.30	124.30 124.60		231 358	2.7	154. 36.	27. 73.	104. 76.
	305.5-305.6	Fault @ 60° to core axis.	124.50	128.20		503	2.6	197	32	169.
	310.4-312.0	Fine grained, pervasive chl alteration.	135.50	135.70		253	2.1	227	26	102
	315.6-315.8	Fault @ 70° to core axis.	144.60	144.80		333.	4.3	273	93	324.
	441.3-451.3	Bleached, siliceous.	146.90	147.60		305.	3.2	309.	18.	84.
			147.60	148.00		863.	60.9	117.	11.	81.
		EOH @ 461.9	148.00	148.30	1.80	1477.	4.8	53.	33.	87.
			151.70 153.80	152.30 154.00	19.25	14744. 353.	6.7 2.3	428.	20.	90. 71
			154.00	155.60		235.	2.3	237. 664.	20. 15.	71. 99.
			155.60	156.60		206.	2.1	237.	20.	71.
			156.60	157.50		443.	3.1	664.	15.	99.
			157.50	158.90		309.	2.1	279.	16.	89.
			161.00	162.50		291.	2.5	398.	16.	103.
	-		162.50	163.00		91.	1.9	55.	6 0.	298.
	:		163.00	164.20		106.	1.1	256.	19.	78.
	1		164.20 172.60	164.60 173.10		567. 276.	17.7	1015. 709,	15. 31.	131. 102.
			173.10	174.10		160.	4.7 3.5	456.	- 19.	156.
			176.20	176.40		76.	0.4	32.	12.	73.
			176.40	177.90		20.	1.0	38.	10.	71.
			178.70	179.00		215.	2.2	10.	21.	87.
			179.00	180.60		607.	1.6	175.	13.	97.
			180.60	181.00		229.	1.5	25.	23.	82.
			181.00 181.70	181.20 183.20		180.	1.7	10.	19.	58.
			183.20	183.40		119. 100.	0.8 1.7	117. 19.	10. 25.	95. 52.
	Į		195.90	196.20		228.	15.9	88.	20.	101.
			196.20	197.70	2.85	1782.	4.5	465.	12.	75.
			200.50	201.70		232	11.5	356.	17.	103.
			201.70	202.40		145	7.4	136	20.	76.
			202.40	203.00		497	7.0	1492	372.	485.
			206.80	207.00		245.	3.9	163.	51.	181.
			207.00 216.30	208.50	3.45	232	1.9	87.	20.	81.
			216.30	216.70 217.30		2270. 447.	15.6 10.9	1193. 702.	6525. 4750.	4500 21250.
			218.70	217.50		447. 871.	10.9	1195.	4750. 707.	21250. 536.
			217.60	218.00		361.	1.9	341.	85.	98.
			221.50	223.00		480.	0.6	96.	23.	85.
	1		223.00	223.40		658.	0.9	32.	17.	79.
			223.40	224.60			1.8	315.	13.	99.

Page 2

		.RY	: DDH S	6 - 127				10 Dece	ember 1	994 -	je Page 3
Metres From To	Description		From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	₽¢ ‡pm	⊉n pm	:
- 											
			235.50 236.90	236.90 237.20	2.45	319. 2013.	2.8 5.0	402. 1547.	56. 23.	93. 145.	
			237.20 237.40 242.50	237.40 238.90 242.90		190 41 529	1.8 5.2 1.8	151. 94. 149.	70. 48. 43.	203. 130. 99.	
			242.90 243.10	243 10 243 80		224 362	18.5 33.1	131 288	62 30	78. 73.	
			256 70	257 80	0 50	954	418	113	16	149	
			257.80 258.10	258 10 259 30		837 90	27 95	76 105	25 18	82 89	
			259.30 262.60	259.50 262.90		713 693	75 50.9	315 1528	19 32	102. 83.	
			262.90 263.80	263.80 264.00		138 59	22.6 1.6	184. 43.	13. 17.	49. 85.	
			265.40 265.80	265.80 266.80		29. 111.	0.3 0.8	50. 290.	18. 12.	60. 126.	
			274.10	275.60	4.00	100.	1.7	155.	57.	86.	
			280.50 285.80	281.80 286.00	4.20	3779. 592.	1.5	904. 783.	72. 11.	156. 111.	
			286.00 294.30	287.30 295.30		166. 57.	1.4 0.1	181. 170.	137. 10.	551. 89.	
			295.30 299.20	295.50 300.50		40. 49.	1.4 0.2	77. 382.	14. 42.	56. 117.	
			300.50 305.10	300.60		20. 61.	0.5	61.	10. 104.	56. 371.	
			309.60	306.10 310.40		20.	1.4	262. 27.	40.	106.	
			310.40 313.90	312.00 315.00		101. 20.	0.4 1.3	74. 173.	40. 29.	152. 197.	
			315.00 315.50	315.50 317.00		20. 20.	0.8 1.5	236. 162.	16. 14.	84. 69.	
			321.30 324.30	321.90 324.70		20. 21.	1.1 1.6	81. 138.	42. 35.	160. 52.	
			324.70	326.20		39	0.6	139.	48.	49.	
			326.20 330.00	326.30 330.10		34. 78.	3.3 2.3	81. 23.	104. 132.	43 . 271.	
			334.10 337.10	335.90 337.40		20 51	1.7 1.6	132. 185	42. 20	84. 5	
			337.40 346.40	338.80 347 80		111 70	21 08	450 41	31 17	49 24	
			347 80 349 20	349 20 349 90)	81 95	0.2	101	10 11	22.	
			355.50	357 00)	84	01 17	250 217	43	34 93	
			357.00 357.30	357 30 359 20)	90. 307	1 1 2.8	399 615	49. 128.	25 292	
			361.80 363.30	363.30 364.20		90. 89.	1.9 1.5	241. 297.	96. 20.	288. 115.	
			373.10 373.40	373.40 374.20)	193. 314.	7.4 1.4	730. 346.	18. 22.	57. 55.	
			374.20	374.60)	523 .	1.3	265.	15.	66.	
			374.60 376.70	374.90 376.90)	349. 228.	1.4 5.5	287. 199.	13. 309.	65. 332.	
			376.90 390.20	378.40 391.80		56. 35.	1.3 2.2	136. 148.	37. 27.	105. 82 .	
•											Page
											Page
1									1		

ii ∦

.

「「「「「「「」」」

: الاستانين . الاستانين .

DRILL LOG SUM RY: DDH S - 127

10 December 1994 - Je Page 4

Metres From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	₽¢ pm	Zmpnr
·····									
		402.70 404.20	404.20 405.70		60. 86.	2.4	85.	28.	52. 44.
		404.20	405.70		61.	1.6 2.6	151. 251.	11. 10.	44. 39.
		410.10	410.30		43.	1.4	161.	24.	48.
		414.40 415.90	415.90 416.10		154. 37.	2.6 2.0	628. 196.	10. 16.	122. 45.
		416.10	417.60		49.	1.7	477.	10.	4 5. 77.
		421.00	421.20	1	249.	1.5	210.	17.	23.
		421.20	422.80 427.40		36.	1.1	441.	10.	43.
		425.90 427.40	427.40		71. 52.	1.7 1.6	342. 405.	11. 11.	66. 158.
		428.10	428.40)	93.	0.9	405.	10.	134.
		431.20	432.90		93.	1.7	506.	11.	65
		443.80 444.10	444.10 445.80		59 52	4.8 0.8	90. 40.	17. 18.	34. 10.
1. S.		445.80	446.60		121	1.8	471.	27.	21.
		448.60	450.20		83	1.3	862	14.	27.
		450.20 450.50	450.50 450.80		71 35	0.6 9.5	282. 204.	20. 12.	30. 44
		454.50	456.00		47.	1.5	359.	12.	46.
		456.00	456.20)	62	13	177	10.	41.
		459.10 460.80	460.8 461.9		103. 100	12 1.5	471	10. 12.	45. 90.
		480,80 END	4019		100	1.5	433	12.	90.
I									
l .	i								
· .									

DRILL LOG SUN. ARY: DDH S-128

Property SNIP	District Liard, M.D.	Length: 249.4 m
Commenced: July 24, 1994	Corr. Dip: -45°	Core Size: BQ
Completed: July 26, 1994	True Brg: 030*	% Recov. 98%
Coordinates: 2340 N 4650 E	Elevation: 500m	Tests: No Tests

Target: Geochem Anomaly Logged By: KD

Metres From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn ppm
0.0 -8.0	Overburden, None Recovered.	20.30	20.50		967 .	49.6	271.	44.	167.
		27.70	28.20		247	2.0	137.	22.	187.
8.0-249.4	GREYWACKE/FRAGMENTAL/SILTSTONE	61.70	62.30		179.	1.8	102.	71.	1925.
		62.30	62.80		160	3.8	275	374	4225
	8.0-12.0 Greywacke: Med-dark grey, fine grained. Weak fabric @ 50-55° to core axis. Local limonitic	62.80	63.00		237	16.7	66.	25.	201
	fractures due to surface groundwater. Tr - 1% Py as disseminated and occasional fracture fillings.	63.00	63.60		101	5.0	69.	23	121
	Few CO, fracture fillings and stringers up to 1cm @ 50-55° to core axis. Locally vuggy due to	63.60	65.00		77	9.4	79.	15	87.
	disolving of CO,	65.00	66 20		172	17	69	17	79.
		66.20	66 50		224	09	67	24	110.
	12 0-37 4 Fragmental: Med-dark grey, fine grained matrix with light grey, <1cm fragments Generally 20-	66.50	67.00		71	11	53	22	351
	30% clasts. However, small (<1m) wacke sections and clast supported sections occur. Weak	67.00	67.40		76	1.0	45	19.	189
	fabric @ 50-55° to core axis. Tr - 1% py, local 1-3% disseminated and lesser fine fracture and	67.40	68.20		118	0.7	88	21	110.
	blebs.	68.20	69.50		740	3.0	648	61	224
		69.50	70.60		190.	2.4	587.	23	121
	18.2-19.7 Fault @ 60° to core axis	70.60	71.10		156	1.0	161.	19	77.
	20.3-20.5 Weak shear @ 65° to core axis 1-3% qtz/CO ₃ /. 1-3% Py.	71.10	72.00		46.	0.3	19.	11.	60.
	25.0-26.0 Fault. Limonitic	107.00	107.80		42.	2.6	96.	49.	8925.
	27.7-28.2 Weak shear @ 50° to core axis 5-7% qtz/CO ₃ : 1-3% Py.	107.80	108.60		267.	28.1	243.	7475.	118.
	30.7-31.2 Bleached with limonitic fractures.	108.60	109.50		65.	1 1	187	58 .	118.
	31.2-32.9 Fault, Local pieces shear'd @ 70-80° to core axis.	122.00	122.90		47.	1.6	58.	13.	79 .
	34.65-36.0 Bleaching.	122.90	123.00		62.	1.6	240.	15.	162.
		123.00	124.50		53.	0.9	276.	21.	81.
	37.4-61.7 Greywacke: As unit 8.0-12.0	124.50	124.90		51.	58.2	154.	15.	50.
		124.90	126.00		63.	1.3	59.	40.	72.
	43.3-46.7 Fault.	126.00	127.50		51.	1.9	134.	13.	57.
	55.6-56.4 Fault @ 55 to core axis.	127.50	129.20		23.	0.6	132.	14.	90.
		129.20	130.10		177.	37.9	249.	32.	387.
	61.7-71.1 Fragmental: As unit 12.0-37.4	130.10	131.50		59.	1.5	59.	17.	176.
		131.50	133.30		97.	0.7	45.	24.	352.
	62.1-62.8 Weak-mod shear @ 40-45° to core axis; weak-mod bio alteration; 3-5% Py.	133.30	133.60		87.	5.2	44.	448.	2000.
	62.8-63.0 Fault.	133.60	134.50		104.	2.5	40.	10.	134.
	63.4-63.6 Mod shear @ 40 to core axis.	134.50	136.50		57.	1.6	42.	18.	156.
ŕ	66.25-66.5 5-7% Py as patchy & crystal aggregates.	136.50	137.80		42.	0.8	48.	40.	142.
	67.0-67.4 Mod-well shear'd @ 50-55* to core axis; 3-5% Py; weak-mod chl atteration. 1-3% Py.	137.80	138.00		129.	25.2	112.	10.	445.
		138.00	138.30		331	3.3	366.	14.	250.
		138.30	139.60		22	1.9	32.	10.	132.
		139.60	139.90		115	17	76.	10	219

Drill Hole i drd

DRILL LOG SUN ARY: DDH S-128

9	Decem	ber	1		Page	2
---	-------	-----	---	--	------	---

es From To	Description		From	To	Au g/t	Au ppb	Ag g/t	Cu ppm	Pbppm	Zn ppr
				<u> </u>						
			139.90	141.00		20.	2.0	87.	10.	1650.
			144.00	145.30		20.	1.6	92.	21.	2925.
	71.1-110.2 Greywacke: As prev	iously described.	145.30	145.40		230 .	2.1	27.	16.	433.
			145.40	146.50		32.	6.2	10.	10.	106.
	80.0-80.6	Fault.	161.50	162.80		24.	1.7	10.	18.	113.
	89.3-90.8	Fault. Bleached, limonitic core.	162.80	163.00		20.	1.2	47.	10.	92.
	107.8-108.6	Fault @ 70° to core axis. Limonitic.	163.00	163.30		64.	10.4	8.	10.	139.
			170.00	171.00		20.	0.6	11.	18.	122.
	110.2-115.4 Siltstone:		171.00	171.10		257.	2.0	44.	63.	292.
			171.10	171.90		20.	1.2	40.	15.	96.
	Mottled brown/grey	light brown. Core bedding angles variable. Generally 30-40° to core axis.	171.90	172.05		20.	1.1	52.	26.	1250.
		o 1cm offsets on fractures. Tr-1% disseminated and fracture filling Py.	172.05	173.50		20.	0.9	59.	23.	65.
			173.50	175.10		20.	0.9	30.	20.	116.
	115-4-120.6 Greywacke: As des	scribed previously.	175.10	175.30		20.	0.8	33.	21.	300.
			175.30	176.50		39.	0.8	215.	22.	1800.
	120.6-133.8 Siltstone: As descr	tibed previously.	179.50	180.60		20.	0.7	181.	17.	259.
			180.60	180.70		397.	4.8	510.	68.	301.
	133.3-133.6	Mod shear @ 60° to Core axis. Bio/qtz/CO ₁ , 3-5% Py.	180.70	181.70		168.	3.2	716.	31.	162.
	100.0-100.0		181.70	181.80		209.	13.3	710.	396.	356
	133.8-188.1 Greywacke: As de	ectived previously	181.80	183.00		209.	0.8	734. 48.	390. 22.	120.
	155.0-100,1 Gleywacke, As Us		186.80	183.00			2.7	40. 59.		
1 A 4	137-8-138.3	Qtz/CO,/bio shear @ 45° to core axis. 3-5% Py.				198.			27.	80.
	161.0-161.2	• •	191.00	192.50		20.	1.4	17.	20.	79.
		Fault.	192.50	193.50		24.	0.8	38.	27.	71.
	162.8-163.3	Well shear'd @ 35° to core axis. 1-3% Py.	193.50	195.10		33.	1.8	114.	29.	105.
	171.0-171.1	Qtz/CO, shear vein @ 80° to Core axis 3-5% Py.	206.00	207.00		22.	0.9	90.	39.	1850.
	171.9-172.05	Qtz/CO ₂ /bio shear @ 70° to Core axis 1-3% Py.	207.00	207.60		24.	1.0	64.	27.	86.
	175.1-175.3	Qtz/CO ₂ /chl/bio shear vein @ 50° to core axis.	207.60	208.90		20.	0.6	92.	27.	· 94.
	180.6-180.7	Py/qtz/CO ₃ vein @ 70° to core axis.	229.00	230.50		20.	1.9	118.	36.	236.
	186.8-188.1	Fault.	230.50	230.65		38.	0.2	102.	39.	411.
			230.65	231.60		20.	2.0	94.	278.	2175.
	188.1-215.2 Siltstone: As desc	ribed previously. Bedding @ 40-50° to core axis.	231.60	231.75		20.	7.2	111.	299.	2025
			231.75	233.00		104.	1.0	118.	16.	240.
	191.2-194.5	Bleaching.								
	199.5-208.9	Bleach/Fault zone.								
	215.2-249.4 Greywacke: As de	scribed previously.								
	216.2-218.2	Weak epidote alteration.								
	227.5-232.1	Pervasive bio alteration.								
	230.5-230.65	Weak-mod shear @ 55° to core axis. Qtz/CO,/bio, 1-3% Py.								
	231.6-231.75	Qtz/CO3 shear vein @ 65° to core axis 1-3% Py.								
	244.1-245.3	Bleaching.								
	247.7-249.2	Fault.	1							
	277.17-270.2									
		EOH @ 249.4m								
	1		I							

े ते ते बन्दे के बन्दि के जन्म

Drill Hole rd

209.75-210.0

247.74-248.2

DRILL LOG SUN ARY: DDH S-129

.

Property SNIP	District Liard, M.D.	Length: 382.6m	
Commenced: July 26, 1994	Corr. Dip: -60*	Core Size: BQTK	
Completed: July 30, 1994	True Brg: 030*	% Recov. 98%	
Coordinates: 2170 N 5700 E	Elevation: 800m	Tests: 189.0m - 63° @ 040°	
Target: Twin East Projection	Logged By: KD	382.5m -62 @ 032°	

Metres From To	Description		From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn ppm
0-141.25	GREYWACKE/FRAGMENTAL/	SILTSTONE:	4.50	4.70		85.	5.3	115.	74.	224.
			4.70	5.50		32.	0.9	65.	20.	119.
		assive wacke with a weak fabric @ 40-50° to core axis. Fragmental contains	5.50	6.30		20.	0.3	62.	26.	154.
		longate (@ 45-50° to core axis) fragments within med-light grey groundmass.	6.30	6.40		115.	2.3	526.	313.	1375.
		ed sittstone. Weak, pervasive biotite alteration of wacke near top of hole.	6.40	7.50		40.	0.7	136.	113.	355.
		uff - white/green due to QSP (qtz/sericite/Py) alteration starting @ 158m and	7.50	9.00		48.	0.4	95.	41.	146.
		ered after 169m. 3-5% qtz/CO ₃ veining occurring as tension gash fracture	9.00	9.90		28.	0.4	140.	36.	79.
		. Local qtz/CO_/bio shear veins with Py. Local 30-40% Py. Py occurs as	9.90	10.30		53.	45.4	289.	109.	498.
	disseminated and fracture filling	g and within the QSP. Also blebs and crystal aggregates. Locally faulted.	10.30	11.50		31.	0.1	130.	48.	139.
			30.00	31.10		67.	0.5	66.	95.	518.
	0.0-141.25 Greywacke: Local v	veak-mod shear fabric @ 45° and 60° to core axis.	31.10	31.20		194.	2.3	131.	406.	13100.
	1		31.20	32.00		52.	0.1	90.	90.	282 .
	42.3-42.8	Patchy Py as blebs of crystal aggregates up to 2 cm across.	41.50	42.30		287.	0.2	26.	45.	84.
	51.1-57.75	Fault. Muddy limonitic fractures.	42.30	42.80	5.35	4832.	1.4	390 .	73.	92.
	88.65-89.6	Mod-strong shear @ 40-50° to core axis. Qtz/CO ₃ with 3-5% Py.	42.80	43.50	1.60	1063.	0.1	231.	76.	122.
	90.0-90.5	Fault. Red limonitic rubble with 20% gouge.	50.00	51.00		86.	1.0	108.	36.	329.
	91.1-92.0	Fault. 10cm gouge.	51.00	52.00		81.	0.1	97.	18.	94.
	103.1-104.2	Bleached.	56.00	57.10		33.	0.3	70.	18.	79.
	104.2-105.2	Fault @ 50° to core axis.	57.10	57.75		114.	2.7	70.	91.	543.
	120.9-121.1	Fault @ 35° to core axis. With chloritic gouge.	57.75	57.90		148.	2.4	169.	195.	3950.
	127.1-132.1	Fault zone. Locally shear'd @ 55-65* to core axis with 1-3% Py.	57.90	59.00		53.	2.1	103.	211.	456.
	1		70.00	71.10		161.	2.1	101.	40.	133.
141.25-141.5	MAFIC DYKE: Dark green/bro	wn. Biotite rich with bio laths (spots) up to 3mm long. Appearance like BSU	71.11	71.60		859.	9.1	432.	85.	232.
	only dyke contains 3	-5% Py as disseminated & blebs of crystal aggrates.	77.50	77.60		177.	2.9	268.	59.	2575.
			85.90	87.00		208.	4.9	179.	218.	176.
			87.00	88.40		278.	3.3	392.	56.	153.
141.5-382.6	GREYWACKE/FRAGMENTAL	SILTSTONE Sedimentary package as previously described.	88.40	88.65		131.	4.9	243.	240.	304.
			88.65	88.85		500.	6.9	353.	309.	55.
	141.5-148.9 Fragmental		88.85	89.60		221.	6.0	181.	233.	410.
	148.9-209.7 Greywacke: QSP	alteration starting @ 169m. Py content 1-3%, locally semi-massive.	89.60	90.00		176.	4.2	435.	127.	521.
			94.20	95.10		394.	2.6	507.	54.	167.
	153.7-154.2	Mod shear'd @ 50° to core axis. Qtz/CO ₂ /chi. 3-5% Py.	99.10	100.80		327.	4.9	283.	66.	181.
	156.1-156.7	Weak-mod shear @ 55° to core axis. Mod bio alteration. 3-5% Py, tr	100.80	102.00		321.	6.2	329.	74.	213.
		CPy.	102.00	103.10		240.	68.1	178.	62.	126.
	197.3-197.6	40-50% disseminated Py.	103.10	103.80		588.	12.0	213.	113.	156.
	203.3-204.2	40-50% disseminated & semi-massive bands up to 15cm wide @ 55° to	103.80	104.00		171.	4.3	292.	64.	183.
		core axis. Tr CPy, Sph.	104.00	105.20		145.	2.2	121.	25.	159.
	209.7-248.2 Fragmental:	Sharp contact @ 75° to core axis Smooth polished surface. Possible relic								
		clasts <1cm. Intensely QSP altered.								

Broken, ground core @ bit change includes 5cm massive Py. Two qtz/CO₃/Py veins: 247.4-247.5 @ 50° to core axis with 5-7% Py; 247.9-248.2 @ 70° to core axis with 10-15% Py. DRILL LOG SU! ARY: DDH S-129

9 De

9 December 1 - Page 2

om To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pbppm	Zn ppm
		110.00							
	248 2 269 1 Groupsky OSD altered	110.00	111.60		123.	2.8	251.	37.	247.
	248.2-368.1 Greywacke: QSP altered.	111.60	112.40		108.	2.9	326.	23.	142.
1	252.8-252.9 10-15% Py	112.40 113.50	113.50 115.20		204. 131.	2.0 2.2	274. 302.	17.	122. 137.
	266.2-266.35 Py/Qtz/CO, band @ 45-50° to core axis. 50-60% Py.	126.00	127.10		213.	2.2 8.0	302. 185.	18. 171.	498.
	284.9-285.1 Mod shear @ 40° to core axis.	120.00	127.10		213.	2.6	22.	50 ,	225.
	316.3-316.55 Fault @ 50° to core axis. Bleached.	127.50	127.60		144.	2.8 9.1	327.	50. 153.	343.
	357.5-357.7 Py/qtz/CO ₃ band.	127.60	127.00		48.	1.6	19.	29.	194.
	366.9-367.3 40-50% Py	128.50	129.40		398.	2.3	96.	2 3 . 32.	236.
. 1		129.40	129.50		183.	9.9	277.	32.	230. 306.
	368.1-382.6 Siltstone: Buff - light grey-green. Aphanitic groundmass. Locally well fractured. 5-7% Py	129.50	130.50		164.	20.5	123.	37. 71.	343.
	disseminated and fracture filling . Vuggy qtz/CO, stringers.	130.50	132.10		152.	2.5	135.	66.	310.
		132.10	133.00		108.	2.3	74.	44.	164.
	EOH @ 382.6	140.00	141.25		146.	3.9	108.	37.	118.
		141.25	141.50		240.	3.2	187.	35.	133.
		141.50	143.00		264	3.1	81.	24.	81.
		150.50	151.80		232	2.5	98.	36.	118.
		151.80	152.80		529.	5.1	203.	58.	118.
		152.80	153.70		568.	3.7	182.	33.	111.
		153.70	154.20		257.	4.3	270.	65.	1750.
		154.20	156.10		331.	4.0	336.	16.	118.
		156.10	156.70	2.85	2496.	16.5	3497.	25.	119.
		164.00	165.50		582.	5.3	179.	121.	222.
		165.50	166.90		699.	2.8	67.	35.	124.
		166.90	167.50		608.	2.1	102.	10.	180.
		167.50	169.00		378	2.9	153.	38.	120.
		173.50	175.10		309.	5.2	301.	29.	100.
		175.10	175.20		376.	2.3	23.	29.	63.
		175.20	176.50		371.	3.2	103.	32.	71.
		176.50	178.50		224.	5.1	71.	49.	85.
		178.50	181.10		185.	1.7	15.	20.	93.
		181.10	181.80		174.	1.9	17.	34.	105.
		181.80	182.80		269.	3.3	124.	79.	222.
		182.80	184.00		177.	3.8	121.	92.	1675.
		184.00 196.00	185.50		190.	3.6	40.	244.	1575.
		196.00	197.30 197.60		209. 7387.	4.1 489.0	447. 2268.	125. 7576.	437. 7675
		197.60	197.00		7387. 779.	489.U 9.4	2200. 765.	430.	2500.
		199.00	200.50		510.	3.5	906.	430. 77.	2300.
		200.50	202.00		421.	3.9	364.	136.	536.
		202.00	203.30		139.	2.5	91.	86.	199.
		203.30	204.20			76.2	2446.	4393.	12425
		204.20	206.00		571.	4.4	489.	68.	119.
		206.00	207.50		502.	3.0	366.	26.	93.
		207.50	209.00		415.	3.3	369.	20.	144.
		209.00	209.70		155.	2.6	69.	28.	179.
		209.70	210.00			2.6	58.	85.	55.
		210.00	211.50		213.	2.0	43.	40.	171.
		211.50	213.00		224.	2.1	188.	28.	73.
		213.00	215.00		400.	2.2	479.	31.	75.
		227.50	229.00		311.	2.4	189.	18.	84.
		229.00	229.15		311.	2.4	189.	18.	84.
		229.15	230.50		322.	1.3	196.	32.	83.
		246.50	247.00		245.	2.0	224.	76.	191.
		247.00	247.90	1.95	1535.	7.8	300.	1133.	5772.
		247.90	248.20		1535.	7.8	300.	1535.	5772.
		248.20	250.00		308.	2.0	138.	57.	159.
		1							

DRILL LOG SUMI RY: DDH S-129

9 December 1: Page 3

			5-125					Decem	
tres From To	Description	From	To	Au g/t	Au ppb	Ag g/t	Cu ppm	Pbppm	Zn ppm
			054.50					<u> </u>	69.
		250.00	251.50		144.	1.9 1.0	202. 388.	25. 30.	69. 74.
		251.50	252.65	2.45	117. 1 407 .	7.0	300. 199.	30. 405.	, 4. 381.
		252.65 252.90	252.90 254.50	2.15	259.	3.0	354.	400. 61.	99.
		260.50	261.90		259. 564.	1.8	78.	61.	89.
		261.90	261.90	1.75	2220.	4.8	274.	360.	1175
		262.00	263.50	1.75	155.	1.8	156.	46.	137.
			265.00		294 .	2.0	108.	40. 23.	146.
		263.50			254. 183.	2.0	99.	23. 91.	92.
1		265.00	266.20 266.55	2.80	2465.	2.7	263.	1216.	92. 780
		266.20		2.00		3.1	205.	204.	433.
		266.55	267.80		182.				
		267.80	268.20		115.	1.2	56.	35.	72.
		268.20	268.60		86. 72	1.6	111.	33. 27	66. 62
		268.60	270.00	4 00	73.	0.9 8.2	147.	37. 805.	62. 5025
		270.00	271.50	1.30	2008.		230.		
		271.50	273.00		116.	1.9	72.	77.	139.
		281.00	282.00		109.	2.6	39.	72.	280.
		282.00	283.50		144.	1.0	59.	57.	161.
		283.50	284.90		95.	1.8	52.	94.	494.
		284.90	285.10		245.	1.5	42.	114.	1275.
		285.10	286.50		95.	2.8	57.	125.	388.
		286.50	288.00		126.	2.0	56.	162.	1075.
1		288.00	289.00		119.	3.6	162.	947.	2400.
		293.40	294.60		318.	2.4	171.	191.	335.
		294.60	296.50		119.	2.1	96. 99	81.	109.
		296.50	298.00		161.	1.8	83.	194.	468.
		298.00	299.00		108.	1.0	85.	37.	79.
		299.00	299.90		89.	2.3	43.	41.	64.
		299.90	301.20		107.	2.4	89.	35.	51.
		301.20	302.50		99.	1.2	84.	16.	65.
		302.50	304.00		48.	1.6	70.	30.	42.
		304.00	304.80		90.	2.1	80.	16.	49.
		304.80	305.30		107.	1.3	70.	29.	75.
		305.30	306.50		185.	4.0	138.	100.	243.
		306.50	308.00		582.	3.7	271.	209.	513.
L		320.50	321.50		271.	4.0	28.	542.	2025.
		321.50	322.50		308.	2.7	28.	69.	89.
		322.50	323.50		64.	1.4	19.	24.	82.
1		323.50	324.50		57.	1.2	17.	24.	62.
		355.00	356.00		85.	1.7	115.	66. 24	105.
1	,	356.00	357.50		46.	0.1	72.	24.	142.
I		357.50	357.70	2.65	2012.	8.7	203.	320.	538
		357.70	359.00		104.	2.0	77.	49.	289.
		364.00	365.00		561.	7.2	589.	1148.	2725.
		365.00	366.00		153.	2.9	90.	396.	1100.
		366.00	366.90		117.	1.4	263.	84.	208.
t		366.90	367.30	1.45	1428.	23.3	211.	1689.	1002
		367.30	368.10		344.	4.2	293.	301.	1525.
		368.10	369.00		118.	0.7	347.	39.	161.
		369.00	370.00		70.	0.9	311.	41.	111.

.

DRILL LOG SUM: RY: DDH S-130

Property SNIP	District Liard, M.D.	Length: 233.2	
Commenced: July 30, 1994	Corr. Dip: -45°	Core Size: BQTK	
Completed: Aug 1, 1994	True Brg: 030°	% Recov. 98%	
Coordinates: 2170 N 5700E	Elevation: 800m	Tests: 0.0m -44 @ 035°	
Target: Twin East Projection	Logged By: KD	233.2m -42 @ 031°	

Metres From To	Description	1	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn ppm
0-233.2	GREYWACKE/SILTSTO	NE:	5.00	5.95		97.	1.3	155.	1148.	170.
			5.95	6.15		456.	2.8	101.	396.	1075.
	0-36.5 Greywacke:	Med-dark grey, fine grained, massive wacke. Local weak fabric @ 50-55° to core as	is 6.15	7.00		67.	0.4	145.	84.	147.
		alignment of bio laths and late stage qtz/CO ₃ stringers. Weak, pervasive bio alteratio		36.40		61.	1.4	56.	1689.	119.
	3-5% qtz/C0	$ m O_3$ as tension gash fillings, fracture fillings and stringers generally <2cm. Tr-1% Py as		36.50		163.	1.3	77.	301 .	189.
	disseminate	ed and less fracture filling and stringers up to 2cm.	36.50	37.00		96 .	0.8	23.	39.	137.
			37.00	37.40		81.	0.7	13.	41.	178.
	6.05-6.15	Well shear'd @ 70° to core axis.	37.40	38.00		104.	0.7	29.	63.	88.
	19.2-19.4	Fault. Limonitic	45.10	45.60		112.	2.5	434.	201.	1200.
	36.4-36.5	Qtz/CO ₃ /bio shear @ 55° to core axis. With 1-3% Py.	45.60	45.75	5.80	4731.	4.6	535.	51.	1775.
			45.95	46.50		156.	1.8	176.	22.	1950.
36.5-37.5	MAFIC DYKE: (BSU?)	Dark grey/black. Massive, homogeneous. No Py noted. Upper contact indistinct.	46.50	48.00		124.	43.1	18.	75.	231.
		Lower contact marked by 1cm Qtz/CO ₃ vein @ 50° to core axis.	48.00	48.80		76.	0.5	73.	34.	249.
			48.80	49.15		70.	0.6	59.	20.	361.
	37.5-48.8 Greywacke: C	Cont	49.15	50.00		42.	0.1	100.	26.	89.
		n na se se se	50.00	51.20		60. 45.	0.6	183. 49.	165. 332.	60. 68.
		ault. Limonitic fractures	51.20	52.50 65.85			0.1 2.6	49. 156.	332. 195.	66. 497.
	45.5-45.75	Qtz/CO ₃ rich shear @ 55° to core axis. 3-5% Py.	65.00 65.85	65.65 66.40		109. 131.	2.0 1.6	122.	195. 41.	497. 1475.
10 0 10 15		a well 26 5 27 5 . I leave and lower contacts marked by 2 cm Otz/CO /Py shear yours	66.40	66.50		647.	10.5	67.	372.	243.
48.8-49.15		s unit 36.5-37.5. Upper and lower contacts marked by 2 cm Qtz/CO ₃ /Py shear veins	66.50	67.60		39.	0.2	35.	24.	1125.
	75° to core axi	S.	67.60	67.70		277.	2.5	312.	70 .	3175.
	49.15-162.1 Greywacke	a cont	67.70	69.10		20.	1.0	89.	21.	428.
	49.15-162.1 Gleywacke	s cont	69.10	69.25	2.50	2016.	5.6	69.	80.	331.
	57.0-57.15	Qtz/CO, shear vein @ 50° to core axis. 3-5% Py.	69.25	70.50	2.00	180.	4.6	184.	39.	424.
	70.5-71.0	Fault with limonitic fractures.	70.50	71.00		269.	7.5	82.	59.	400.
	72.3-72.45		71.00	71.75		857.	7.1	105.	98.	340.
	99.3-99.8	Fault, Limonitic.	71.75	72.30		98.	13.9	3078.	84.	223.
	102.0-103.			72.45	27.20	15324.	160.7	1530.	900.	. 550
		7% Py.	72.45	74.00		243.	4.9	437.	112.	501.
	103.5-104.0	•	74.00	75.50		425.	4.0	102.	47.	269.
	109.6-112.	• •	75.50	76.20		53.	1.1	80.	28.	219.
	113.7-114.	-	ь 76.20	77.70		101.	2.1	118.	48.	170.
		parallel to core axis.	77.70	77.90		20.	0.5	80.	32.	180.
	124.5-125.	2 Qtz/CO ₃ vein @ 55° to core axis. Tr-1% Py.	96.00	97.10		50.	1.9	158.	40.	377.
	133.5-135.		97.10	98.00		68.	1.6	225.	73.	349.
	155.7-158.0	· · ·	98.00	99.30		20.	2.4	182.	148.	296.
	158,6-162,									

162.1-233.2 Siltstone: Bedding @ 35-45* to core axis.

171.3-174.0 Fault. 5% gouge. 210.6-210.8 Qtz/CO₃ vein 3-5% Py. Tr Mo. 215.7-217.5 20-30% qtz/CO₃ veins up to 20cm wide @ 40-45° to core axis. 3-5% Py.

EOH @ 233.5

Drill Hole Reco

DRILL LOG SUMI ______ RY: DDH S - 130

T

Т

Т

т

......

Metres From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn ppm
		99.30	99.80		148.	6.4	223.	94. 70	338.
		99.80	101.00		36.	2.3	106. 202.	79. 72.	95. 1 49 .
		101.00 102.00	102.00 102.20		68. 150.	3.0 2.7	202. 417.	48.	184.
		102.00	102.20		80.	2.4	242.	263.	485.
		103.20	103.60		149.	2.9	90.	511.	1750.
		103.60	104.00		102.	1.5	169.	184.	430.
		111.00	112.50		494.	5.5	12.	115.	476.
		112.50	113.70		191.	4.2	319.	49.	492.
		113.70	113.90		331.	6.2	32.	92.	109.
		113.90	114.70		390.	5.8	120.	72.	74.
		114.70	115.10		184.	2.6	117.	59.	120.
ļ		115.10	116.00		142.	3.8	188.	79.	250.
1		116.00	116.40		369.	5.4	289. 117	76. 127.	349. 1875.
		116.40	117.00 118.00		128. 374.	4.5 4.2	117. 272.	127. 59.	1875. 195.
		122.00	122.90		193.	4.2 11.3	468.	729.	2275.
		122.90	123.20		217.	6.3	13.	190.	55.
		123.20	124.50		287.	4.6	119.	266.	416.
		124.50	125.20		726.	10.8	158.	380.	229.
		125.20	125.50		454.	13.9	872.	268.	4875.
		125.50	126.50		411.	5.9	219.	151.	291.
		126.50	128.00	2.40	1526.	12.2	197.	327.	409.
		128.00	129.40		140.	4.7	306.	314.	1600.
		129.40	129.80		265.	7.7	54.	333.	256.
		129.80	131.00		216.	5.3	291. 491.	761. 2118.	311. 11525.
		131.00 132.50	132.50 133.50		238. 308.	8.7 4.5	378.	151.	1450.
		133.50	135.10		326.	8.2	174.	988.	5950.
		135.10	136.00		171.	3.7	315.	202.	1650.
		136.00	137.60		310.	78.0	160.	416.	1625.
		151.00	152.10		221.	1.4	130.	42.	148.
		152.10	152.80		110.	0.5	29.	45.	102.
		152.80	154.00		113.	2.1	15.	41.	137.
		154.00	155.70		276.	100.5	85.	150.	176.
		155.70	157.00		567.	74.2	95.	12.	110.
		157.00	158.50		630 .	54.9	101.	8.	123.
		158.50	160.00	3.20	919. 2425.	5.4	182. 281.	31. 50.	119. 169.
		160.00 161.50	161.50 162.70	3.20	2423. 535.	4.1 2.5	201. 361.	50. 17.	96.
		161.50	162.70		232.	2.5	5.	11.	48.
		194.00	195.50	1.60	2004.	4.6	343.	105.	272.
		195.50	196.60	3.35	2896.	4.8	250.	913.	3825.
		196.60	197.40		969.	19.1	821.	615.	3250.
		197.40	199.30		665.	2.4	440.	31.	537.
		199.30	201.00		533.	2.7	318.	32.	171.
		201.00	202.50		531.	4.7	938.	14.	87.
		208.00	209.60		157.	1.5	57.	31.	80. 107
		209.60	210.00		977. 407	4.2	733. 274	41. 03	127.
		210.00	210.60		497. 276.	3.5 6.7	274. 1309.	93. 91.	73. 99.
		210.60 210.80	210.80 212.00		276. 198.	2.0	1509.	103.	344.
		210.00	212.00		221.	2.0	137.	84.	82.
		213.50	213.50		592.	1.4	196.	38.	64.
		214.50	215.70		20.	3.3	215.	21.	73.
		215.70	217.50		807.	2.1	263.	18.	76.
		217.50	219.00	2.10			480.	16.	88.
		219.00	220.50		284.	3.3	505.	26.	85.
		220.50	222.00		455.	3.1	185.	39.	89.
	1	•							

DRILL LOG SUM. ARY: DDH S-131

Property SNIP	District Liard, M.D.	Length: 356.1m	
Commenced: Aug 2, 1994	Corr. Dip: -50°	Core Size: BQTK	
Completed: Aug 8, 1994	True Brg: 030°	% Recov. 98%	
Coordinates: 1829N 5535E	Elevation: 900m	Tests: No Tests	

Target: Twin East Projection Logged By: KD

Metres From To	Description		From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn ppm
0.0-1.5	CASING		1.50	2.50		23.	0.2	11.	19.	157.
			2.50	3.60		41.	0.7	10.	18.	132.
1.5-356.1	GREYWACKE/SILTSTONE:		3.60	3.75		199.	2.9	25.	65.	210.
			3.75	5.00		38.	1.5	10.	18.	96.
		e with 1-3mm quartz/feldspar clasts. Grain size decreasing with depth. After	5.00	6.50		90 .	1.1	38.	23.	108.
	1	e-med grained, massive greywacke with a weak fabric @ 40-45° to core axis	12.50	13.50		74.	2.6	184.	60.	519.
	(C.A.). Variable light brown/pin	k/tan, fine grained, banded (relic bedding) siltstone. Bedding @ 30-40° to C.A.	13.50	13.90		216.	2.5	19.	64.	158.
	Locally fractured with micro offs	etting of beds (<1cm).	13.90	15.00		103.	3.8	18.	35.	180.
			15.00	15.15		197.	7.9	32.	311.	1775.
	Sedimentary package weakly al	tered with fine grained, pervasive biotite. 1-3% qtz/CO3 as late stage stringers	15.15	16.50		64.	2.8	20.	41.	548.
	and fracture fillings. Tr-1% Py i	ncreasing down hole to 1-3% Py. With up to 7-10% Py. Locally increased Py	20.00	21.60		845.	15.3	10.	81.	344.
	content associated with increas	ed levels of bio alteration. Local qtz/CO ₃ /chl e bio shear veins. Local faulting.	21.60	21.70	30.30	12941.	229.4	27.	663.	446
	Local minor (Py) Po.		21.70	22.50		423.	7.1	10.	68.	363.
			22.50	24.00		96.	4.7	10.	66.	373.
	1.5-25.1 Greywacke: with lo	cal silty bands @ 15-20° to C.A.	24.00	24.80	8.95	1339.	24.3	10.	29.	117.
		, -	24.80	25.10		424.	10.6	395.	75.	339.
	3.6-3.7	75 Qtz/CO ₁ /chl vein @ 50° to C.A. with 5-7% Py.	25.10	26.00		20.	2.1	10.	36.	492.
	21.6-2	1.7 Qtz/CO,/Py rich band @ 75° to C.A. 10-15% Py.	26.00	27.50		58.	2.2	10.	35.	117.
	248-25	5.1 Chi/Py/qtz/CO, shear vein @ 40° to C.A. 10-15% Py.	27.50	29.00		28.	2.5	10.	48.	193.
			29.00	30.10		46.	2.8	10.	52.	423.
	251-117.4 Siltstone		48.50	50.00		54.	2.4	10.	28.	126.
			50.00	50.90		334.	16.2	22.	58.	235.
	25.1-30.1 Bleact	ning. 3-5% Py.	50.90	51.40		348.	7.3	10.	27.	177.
		/gtz/CO, 5-7cm shear @ 15-20° to C.A.	51.40	53.00		61.	2.8	10.	24.	113.
		disseminated Py & as blebs of crystal aggregates.	57.00	58.50		24.	2.1	10.	14.	92.
		Limonitic fractures.	58.50	59.00		216.	5.2	14.	18.	88.
		O _√ Py shear @ 40° to C.A. 7-10% Py.	59.00	60.00		78.	2.9	10.	25.	71.
		CO, rich fault @ 30° to C.A. Few blebs of CPy.	60.00	60.50		65.	2.3	10.	19.	81.
		,	60.50	62.00		23.	2.5	10.	13.	73.
	117.4-356.1 Greywacke: Med	dark grey, fine grained, becoming silty with depth until 317m where becomes	74.50	75.90		72.	2.9	10.	15.	58.
		ncreased bio alteration. Local magnetite. Possible local weak epidote	75.90	77.20		42.	3.0	11.	19.	77.
		Local Po, Cpy & Sph.	77.20	77.65		92.	7.3	156.	45.	143.
			77.65	78.80		48.	5.4	44.	30.	67.
	133.4-139.7	Weakly shear'd, bio rich zone @ 40-45 degrees to C.A. Local, mod	78.80	79.80	2.00	1744.	22.1	10.	19.	79.
		bio/Py \pm chl shearing.	88.10	89.10	2.00	97.	2.7	10.	47.	219.
	141.7-141.8	Qtz/COJ/Py/bio shear vein @ 35° to C.A. 7-10% Py.	92.65	92.80		839.	11.2	1797.	18.	213.
	146,1-146.35	Qtz/CO, shear @ 45° to C.A. 3-5% Py.	119.50	120.50		111.	160.0	53.	12.	95.

Drill Hole Re d

DRILL LOG SUM RY: DDH S-131

9	Decen	1	994	-	2
		-			

res From To	Description		From	To	Au g/t	Au ppb	Ag g/t	Cu ppm	Pbppm	Zn ppr
			r							
			120.50	120.60		447.	6.1	291.	36.	260.
			120.60	121.30		854.	10.2	571.	33.	188.
			121.30	121.60		766.	25.3	4033.	30.	1275
1			121.60	122.50		147.	2.0	226.	17.	129.
	208.6-208.9	Py/qtz/CO ₃ shear @ 50° to C.A. With 7cm semi-massive Py.	130.50	132.00		176.	2.6	61.	128.	90.
	212.1-212.5	Bleaching.	132.00	133.40		65.	0.8	13.	10.	104.
	212.5-212.8	Fault.	133.40	135.00		71.	1.8	10.	10.	95.
	212.8-215.0	Bleaching. 3-5% Py, tr CPy.	135.00	136.50		78.	7.6	15.	15.	88.
	232.4-232.5	Qtz/CO, shear @ 45° to C.A. 3-5% Py.	136.50	138.00		90.	1.1	18.	11.	92.
	254.2-254.3	Py/qtz/CO ₃ shear @ 80° to C.A. 30-40% Py.	138.00	139.70		69.	14.8	10.	10.	55.
	274.8-215.0	15-20% disseminated Py bands up to 5cm.	139.70	140.50		84.	119.9	10.	10.	58.
	277.4-302.0	Possible epidote with qtz/CO, stringers.	140.50	141.70		83.	64.5	72.	10.	38.
	289.0-293.5	Fragmental. Silicified & rich with disseminated, bleb & fracture filling	141.70	141.80		127.	2.6	16.	23.	140.
		magnetite. 3-5% Py, 1-3% Po, few dots of Cpy.	141.80	142.70		109.	2.4	15.	10.	66.
	291.0-292.3	Bleached mafic dykes @ 40 & 50° to C.A.	142.70	143.30		142.	41.3	10.	10.	112.
ļ	311.0-349.2	Increased bio alteration.	143.30	144.80		85.	22.1	34.	10.	58.
1	316.5-316.6	Py/Sph/qtz/CO3 vein @ 60° to C.A. 30-40% Py, 20-30% Sph.	144.80	144.95		148.	4.4	34.	21.	177.
	349.2-356.1	Major fault. Bleached, broken & ground core 90% <10cm. Local with last	144.95	146.10		250.	25.1	10.	10.	66.
		20cm clay.	146.10	146.40		75.	1.9	31.	10.	94.
			146.40	148.00		80.	0.6	24.	10.	81.
		EOH @ 356.1	148.00	149.50		31.	1.9	72.	10.	71.
			149.50	151.00		53 .	1.9	59.	10.	93.
			165.80	166.00		86.	2.4	157.	14.	134.
			168.00	168.20		68 .	1.1	47.	14.	119.
			174.80	175.00		193.	20.0	3011.	173.	12
			175.00	176.30		64 .	3.2	605.	15.	79.
1			176.30	176.60		102.	9.2	2377.	88.	141
			184.00	185.00		163.	0.1	32.	15.	116.
1			185.00	186.00		20.	0.2	207.	12.	81.
			186.00	187.50		27.	1.7	518.	26.	119.
			187.50	188.20		20.	0.3	817.	13.	72.
			188.20	190.00		42.	1.7	174.	15.	111.
			193.70	194.20		20.	1.1	16.	14.	93.
			207.00	208.60		20.	0.1	196.	9.	82.
			208.60	208.90		48.	1.1	1688.	25.	149
			208.90	210.50		74.	5.1	1656.	18.	111
			210.50	212.10		27.	55.9	3423.	23.	165
			212.10	212.80		69. 07	18.1	622.	97.	1300
			212.80	215.00		37.	4.3	622.	30.	357.
			215.00	216.50		31.	13.5	1221.	60.	132
			216.50	218.00		20.	1.2	439.	20.	108.
			218.00	219.50		20.	3.5	456.	32.	176.
			219.50	221.00		55. 00	2.4	459.	33.	209.
			225.00	226.60		26 .	0.7	450.	24.	205.
		·	226.60	226.90		59. 45	10.3	1240.	18.	264
			226.90	228.00		45.	26.8	611.	15.	128
			228.00	229.50		48.	6.8	923.	16.	127.
I			229.50	231.00		52. 27	7.3	693. 1120	12.	137.
			231.00	232.40		27.	22.2	1130.	15.	150
			232.40	232.60		63. 20	6.0	563.	62. 16	122.
			253.00	254.20		20.	0.1	138.	16. 107	100.
			254.20	254.30		11.	9.2	564. 247	107.	92.
1			254.30	255.50		23.	2.0	217.	11.	86.
			274.80	275.00		273.	49.8	3256.	418.	: 150
			288.00	289.40		32.	21.8	557.	20.	124
			289.40	291.00		68. 05	3.5	774.	33.	86.
			291.00	291.30		85.	1.6	174.	20.	92.

DRILL LOG SUM RY: DDH S-131

es From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pbppm	Zn ppm
		291.30	292.10		387.	4.0	665.	32.	141.
		292.10	292.30		22.	1.2	47.	21.	62.
		292.30	292.70		309.	1.4	69.	31.	83.
		292.70	293.50		862.	3.8	150.	39.	70.
		293.50	295.00		59.	4.8	142.	50.	238.
		300.20	300.90		133.	2.8	62.	37.	3575.
		300.90	302.60		59.	2.8	89.	38.	544.
		302.60	302.70		319.	12.2	580.	170.	96250.
		315.00	316.50		66.	2.7	162.	50.	3325.
		316.50	316.60		192.	100.8	586.	3657.	22062
		316.60	318.00		30.	2.1	111.	43.	3200.
		332.50	333.60		41.	5.7	163.	928.	349.
		333.60	335.00		38.	2.0	229.	74.	148.
		335.00	336.50		65.	2.3	158.	28.	99.
		336.50	337.50		66.	1.9	177.	41.	92.
		END							

. Het

Property SNIP	District Liard, M.D.	Length: 423.0m	
Commenced: Aug 8, 1994	Corr. Dip: -70°	Core Size: BQTK	
Completed: Aug 14, 1994	True Brg: 030°	% Recov. 98%	
Coordinates: 1475N 4650E	Elevation: 500m	Tests:	

Target: Twin West Projection Logged By: JRG

Metres From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn ppm
0.0-4.6	Overburden: None recovered.	5.20	5.70		20.	0.9	22 .	19.	108.
		19.10	20.60		20.	4.2	192.	10.	90.
4.6-423.0	FRAGMENTAL/GREYWACKE/SILTSTONE:	20.60 25.20	21.30 26.10		20. 20.	0.9 1.4	185.	10.	99. 145.
	Variable med-dark grey, grey/black, med-light grey, fine-med grained matrix with light green & light grey 5-5cm	25.20	26.10		20. 20.	1.4	76. 24.	10.	
	subangular-rounded epidote altered & sitistone clasts in a volcanic fragmental. Med-dark grey/black, fine-med	26.10	20.30		20. 20.	1.1 44.4	24. 70.	11. 10.	131. 130.
	grained massive wacke with weak fabric. Med grey/grey-blue/tan, fine grained, banded (@ 45° to core axis	28.20	27.20		20. 20.	44.4 1.4	70. 68.	10.	130. 94.
	(C.A.)) sitistone. Fragmental & sitistone interbedded with wacke - gradational contacts. Mod black-local dark	31.00	28.80 31.20		20. 40.	2.1	316.	10.	
	brown/grey bio alteration as fine grained patchy & fracture controlled. Mod epidote alteration associated with	31.00	31.20		40. 22.	1.6	723.	15.	140. 188.
	fragmental. Local, fine grained, pervasive chl alteration up to 5-10m wide. Mod-sparse 1-3mm COJ/qtz veining	31.90	32.40		22. 60.	2.6	723. 373.	31.	262.
	(2) 70° to C.A. Sparse-mod gash veining associated with greywacke. Local COJ/qtz/± chl extension veins -	35.50	37.00		41.	2.6	56.	10.	202. 92.
	locally ± magnetite. Local shear veins. 1% Py overall, locally 2-2.5% Py. Local minor Po, CPy & Sph. Locally	41.50	42.20		20.	1.2	133.	10.	92. 173.
	bleached & faulted. Local hematite along fracture surfaces.	42.20	42.20		20.	1.2	133.	10.	90.
	biodulieu di raulteu. Local memalite along nacione sunacios.	53.10	53.80		20. 57.	1.4	134.	10.	30. 76.
	4.6-73.4 Fragmental/Greywacke	57.00	57.60		29.	1.4	62.	10.	85.
		78.00	79.30		353.	2.7	220.	14.	509.
	73.4-78.0 Siltstone	79.30	80.00		116.	13.8	922.	664.	337.
		80.00	81.40		80.	4.6	266.	277.	1250.
	78.0-90.2 Greywacke: Local silicification, clay alteration & magnetite.	83.30	84.40		50.	8.5	633.	22.	228.
	role-bolz - Croywarke, Lobal Minimalien, only anotation a magnetice.	84.40	84.70		47.	6.4	764.	34.	172.
79.3-80.0	79.3-80.0 Possible dyke: Mottled, light grey with 15-20% 1mm semi-euhedral magnetite phenos. Minor-mod,	84.70	86.10		49.	1.8	109.	14.	356.
10.0-00.0	fine grained chl. <1% Py, local Po. Sharp contacts @ 65-70° to C.A.	87.80	88.30		37.	1.9	299.	13.	197.
		101.10	101.40		30.	1.4	26.	16.	109.
84.4-84.7	84.4-84.7 Possible dyke: As unit 79.3-80.0. Upper contact @ 30° to C.A.	101.40	102.10		44.	1.2	66.	13.	61.
04.4 04.1		102.10	102.50		112.	3.2	310.	24.	224.
	87.8-88.3 Fault.	102.50	103.80		69.	1.4	89.	10.	71.
		113.70	114.00		60.	1.5	100.	14.	71.
	90.2-139.6 Fragmental/Greywacke	114.00	115.10		26.	1.0	119.	12.	110.
		115.10	115.40		45.	0.5	62.	15.	258.
	101.1-101.4 Possible Fault.	125.10	125.40		51.	41.1	146.	11.	188.
	102.1-102.5 CO,/Bio/chl shear vein @ 45-55° to C.A. 1-1.5% fine grained Py, <1%	128.30	128.70		44.	35.6	94.	10.	145.
	Cpy, <1% Po.	128.70	129.30		60.	3.4	97.	10.	196.
	131.8-135.9 Well shear'd. Variable core axis angles. Approximately 0-20° to C.A.	129.30	129.40		32.	1.6	68.	10.	118.
	CO,/bio laminae. 1-1.5% Py, <1% Cpy & Po.	129.40	130.00		51.	2.3	110.	10.	202.
		130.00	131.30		46.	0.3	136.	11.	260.
	139.6-296.7 Volcanic Fragmental	131.30	131.80		50.	4.7	94.	10.	348.
		131.80	133.00		78.	1.6	204.	14.	1050.
	163.0-163.1 7cm qtz/CO ₃ /chl shear vn @ 55° to C.A. Tr-<1% Py. 170.1-170.4 5-10 cm shear @ 45° to C.A. Chl/bio/CO ₃ . 10% Sph, 3-5% Py, <1% Po.								

Drill Hole Recc

9	December '	1
2)	December '

r 1	-	Page	2
-----	---	------	---

		DRILL LUG SUW .I	חטט וו						0 2000	mber
stres From To	Description		From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pbppm	Zn pp
Т			133.00	133.30		68.	2.4	598.	10.	498.
	182.2-183.0	Fault Zone.	133.30	133.60		184.	6.0	287.	14.	393.
	265.1-265.2	Fault @ 50° to C.A.	133.60	134.40		96.	22.6	207.	14.	282
			134.40	135.30		61.	1.3	255.	12.	346.
	296.7-318.3 Siltstone/Greywad	ke (minor):	135.30	135.90		124. 81.	5.6 16.1	2499. 196.	10. 14.	386 1250
	297.6-298.2	Fault @ 45° to C.A. Gouge.	135.90 136.70	136.70 137.40		35.	0.9	221.	14.	512
	315.2-315.8	Fault @ 45° to C.A. Gouge.	137.40	137.70		45.	4.4	169.	29.	209
	515.2-515.5		144.60	144.80		20,	0.8	72.	25.	173.
	318.3-346.9 Volcanic Fragmen	tal:	144.80	145.80		43.	0.6	73.	22.	197.
			145.80	146.40		29.	26.3	138.	18.	184
	327.3-327.7	Bio/chl/CO ₃ shear @ 45-50° to C.A. 2% med grained Py. Magnetic.	150.30	150.50		46.	1.0	99.	23.	429.
			150.50	152.00		50 .	1.7	88.	20.	209.
			160.70	160.90		54.	0.8	201.	16.	138
	346.9-423.0 Greywacke: Local	QSP(qtz/sericite/Py)atteration.	160.90	161.60		28.	0.1	98.	20.	106.
			161.60	163.00		20.	21.4	38.	14.	126
			163.00	163.10		32.	0.1	23.	30.	85.
			168.80	170.10		27.	1.2	133.	22.	4250
			170.10	170.40		116.	2.5	611. 116	10.	9687 318
		EOH @ 423.0m	170.40 170.60	170.60 172.10		20. 47.	1.4 2.1	116. 170.	20. 20.	486
			177.30	177.50		37.	0.9	138.	16.	105
			186.10	186.40		41.	1.4	126.	20.	127
			186.40	188.10		26.	1.9	111.	28.	122
i i			188.10	188.40		218.	1.4	120.	43.	107
			188.40	189.60		39.	12.4	107.	17.	120
			193.90	195.40		47.	0.7	121.	15.	108
			195.40	195.50		60.	1.4	134.	24.	89.
			222.40	222.60		288.	2.6	69.	15.	88.
			222.60	222.80		111.	1.7	41.	19.	153
			229.10	231.40		35.	0.8	44.	13.	83.
			245.00	245.90		47.	0.2	157.	15.	94.
			245.90	246.00		41.	1.8	249. 129.	10.	84. 67.
			246.00	247.50 247.60		55. 20.	1.1 12.2	129.	13. 14.	87
			258.70	259.00		20. 48.	1.0	120.	30.	118
			266.60	266.70		76.	2.2	126.	39.	221
			266.70	267.30		134.	4.6	136.	22.	114
			267.30	267.70		32.	1.3	110.	18.	138
			267.70			43.	1.2	118.	20.	101
			279.30	279.60		71.	1.5	145.	66.	106
			279.60			62.	0.7	144.	18.	109
			285.80			121.	0.1	93.	17.	142
			294.00	294.30		73.	0.1	127.	9.	111.
			294.30			14.	0.1	149.	3.	102
			300.30			66. 57	0.1	14. 52	1.	87. 76
			300.70			57. 22	0.1	52. 59	4. 5	76. 95
			301.90 309.20	302.20 309.40		22. 11.	0.1 0.4	59. 88.	5. 3.	95. 72.
			309.40	309.60		23.	1.6	2.	J. 1.	69.
			314.00	314.40		9.	0.1	115.	8.	87.
			315.80			22.	0.4	29.	2.	78.
			317.40			2.	0.1	34.	1.	75.
			318.00			5.	0.1	33.	13.	52.
			318.30			55.	0.1	50.	1.	67.
			319.10			42.	0.1	68.	9.	85.
			319.80	320.70		18.	0.1	145.	4.	105.
			320.70			39.	0.1	170.	9.	110.
			325.90			27.	0.1	132.	7.	172.

9	Decer	nber	1	-	Pag	e 3
---	-------	------	---	---	-----	-----

Metres From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pbppm	Zn ppm
		· · · · · · · · · · · · · · · · · · ·							
		327.30	327.70		70.	0.1	148.	7.	151.
		327.70	329.20		33.	0.1	112.	7.	123.
		331.30	331.60		68.	0.1	95 .	5.	123.
		334.90	335.00		33.	0.1	203.	1.	87.
		335.00	335.70		58.	0.1	135.	1.	82.
i		341.00	341.10		35.	0.1	176.	4.	180.
		351.00	351.50		48.	0.1	167.	5.	253.
		363.10	363.50		33.	1.1	485.	12.	215.
		364.50	364.80		27.	0.1	119.	3.	104.
		366.20	366.50		18.	0.5	136.	5.	91.
		366.50	366.90		49.	0.2	117.	5.	87.
		366.90	367.20		67.	0.1	244.	6.	71.
		376.00	377.50		9.	0.1	74.	9.	78.
		377.50	377.80		15.	0.1	110.	1.	68.
		377.80	379.50		36.	0.1	166.	1.	69.
		380.00	380.60		105.	0.1	325.	9.	70.
		381.90	382.00		24.	0.1	43.	5.	110.
		392.30	393.80		109.	0.3	88.	51.	129.
		393.80	394.60		76.	1.8	365.	130.	226.
		394.60	394.80		441.	0.9	386.	136.	211.
		394.80	394.90		43.	3.0	474.	639.	950.
		394.90	395.20		411.	0.1	262.	110.	153.
		402.50	403.60		47.	1.2	162.	306.	2225.
		403.60	403.80		260.	0.6	273.	17.	283.
		409.50	411.00		34.	0.1	85.	5.	159.
		411.00	411.10		143.	2.6	114.	36.	74.
		419.70	419.90		71.	0.6	142.	57.	261.
		419.90	420.80		30.	0.1	66.	102.	1000.
		420.80	421.00		40.	0.8	119.	75.	900.
		421.00	421.50		16.	0.7	102.	30.	233.
		421.50	421. 9 0		37.	0.9	274.	67.	379.
		421.90	422.60		51.	0.8	89.	57.	950.
		END							

Property SNIP	District Liard, M.D.	Length: 555.4m	
Commenced: Aug 16, 1994	Corr. Dip: -50°	Core Size: BQTK	
Completed: Aug 22, 1994	True Brg: 030°	% Recov. 98%	
Coordinates: 1550N 3400E	Elevation: 230m	Tests: 4.6m -49° @ 031°	
Target: Twin West Projection	Logged By: JRG	275.9 -42° @ 042° 555.4m -38° @ 55°	

Metres From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn ppm
0-4.6	Overburden: None Recovered.	5.50	7.00		72.	0.9	23.		121.
		7.00	7.50		171.	103.8	80.	38.	203.
4.6-555.4	GREYWACKE/FRAGMENTAL: (minor siltstone)	9.90	11.00		94.	125.7	466.	88.	382.
		11.00	12.50		47.	1.7	149.	154.	355.
	Variable, med-dark grey, blue-grey & brown-grey/cream, fine grained - locally med-coarse grained, massive	13.10	13.60		39.	40.3	169.	36.	93.
	wacke with weak-moderate foliation @ 55° to core axis (C.A.). Local mod-high fabric @ 35-40° to C.A.	17.00	17.50		77.	1.6	10.	24.	182.
	Interbedded with minor, local, fine grained siltstone. Mottled, med-dark grey, tan/grey, fine grained matrix with	17.50	18.90		23.	1.8	10.	27 .	159.
	local, tight packed, subangular siltstone fragments in fragmental. Gradational contacts within sedimentary	18.90	20.10		40.	0.5	22.	17.	201.
	package. Mod-high pervasive, patchy, and fracture controlled biotite alteration. Local pervasive chl alteration.	21.40	22.00		54.	0.8	10.	17.	232.
	Epidote alteration of clasts associated with fragmental. Local intense silicification of wacke up to 20-30m wide.	24.40	24.70		36.	1.7	10.	27.	182.
	Local mod-high sericite alteration up to 1m. Mod clay alteration associated with faulting. Mod CO ₃ gash	24.70	24.90		38.	15.3	2050.	1689.	12150.
	veining & mod-high extension veining sub parallel to foliation decreasing down hole to sparse gash & extension	24.90	25.70		20.	7.3	841.	894.	8175.
	veining. Tr -<1% Py increasing to 1-2% with local 3-5% Py after 288m. Local minor Po, Ga, Sph & Cpy.	25.70	25.90		20.	0.9	70.	37.	1050.
	Local faulting, bleaching & shearing. Sediments cut by mafic dykes. Local minor magnetite associated with	30.00	30.40		20.	3.3	124.	45.	236.
	veining.	33.80	35.30		36.	20.0	115.	34.	124.
		35.30	36.20		20.	1.5	51.	72.	144.
	4.6-37.6 Fragmental	45.90	47.40		26.	1.5	68.	51.	274.
		47.40	48.90		20.	0.2 2.6	13.	21.	55.
	7.4-7.5 Fault. 24.3-24.4 Fault with 7cm gouge.	51.70	53.20		24.	2.6	115.	50. 24	293. 136.
		53.20 57.20	53.40 57.60		20.	0.6	10. 10.	21. 18.	
	24.7-24.9 CO ₂ /qtz/chl veining with 1% fine grained Ga, <1% Py, tr Sph, tr Cpy. Sericite altered				40.				29. 1850.
	& bleached.	64.10	64.50 65.10		38.	3.1	157.	327. 96.	
	and the second	64.50	65.10 66.90		24. 28.	2.0 3.5	106. 306.	90. 372.	537. 7025.
	37.6-161.2 Greywacke: (minor siltstone). Mod-high local bleaching, local magnetite. Local 3-5cm shear veins.	66.60	71.10		28. 43.	3.5 1.8	306. 94.	60.	7025. 309.
		69.80 71.10	71.10		43. 20.	1.8 3.9		60. 59.	309. 1100.
	147.2-148.2 Local bleaching to tan/cream, local minor qtz/CO ₃ veins. <1% Po.	71.60	72.60			3.9 1.1	414. 58.	59. 26.	194.
	158.6-160.6 Mod shearing. Laminae of sericite/bio/chl/CO ₃ 1-1.5% Py, minor Po.	71.60	72.60		20. 20.	1.1 1.1	58. 60.	20. 28.	194.
	161.2-188.6 Greywacke: Highly silicified. Med grey/blue with 3% dark grey/black spots elongate to weak	75.00	75.20		20. 31.	2.2	0 0. 76.	20. 95.	211.
	foliation. Local magnetite/chl veins. Distinct upper contact. Faulted lower contact.	75.20	75.70		20.	2.2 1.7	76. 70.	95. 83.	211. 230.
	foliation. Local magnetite/chi veins. Distinct upper contact. Paulteu lower contact.	76.60	76.80			3.8	70. 419.	os. 163.	230. 950.
	177.0.179.0 Shanda 🔿 409.4a C.A. Black 8 annu Iaminoa -19/ Du passible ta Da	81.50	76.80 81.80		63. 28.	3.8 1.2	419. 50.	32.	950. 91.
	177.9-178.2 Shear'g @ 40° to C.A. Black & grey laminae <1% Py, possible tr Po.		82.90						
	181.9-183.4 Magnetite/chl veining.	81.80			25. 35.	2.8 1.7	154.	42. 39.	104. 168.
		82.90	83.10 89.20				44.		168. 61.
		89.00	89.20 89.70		20. 21.	1.2	44 .	22.	
		89.20				2.0	36. 00	24.	62.
	· · · · · · · · · · · · · · · · · · ·	89.70	90.10		34.	2.3	99.	65.	485.

Drill Hole Recc

I										
Metres From To	Description		From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pbppm	Zn ppm

		90.10	90.40		37.	2.2	146.	81.	43
		91.70	92.00		36.	53.1	124.	25.	3
188.7-288.1 Greywacke		92.00	92.20		21.	164.4	134.	22.	1
		92.20	92.30		33.	3.3	169.	52.	11
189.3-189.45	Fault @ 25° to C.A.	92.30	92.80		53.	4.2	309.	33.	8
191.8-192.1	Strong foliation-possible shear fabric @ 40° to C.A.	92.80	93.30		34.	2.2	155.	20.	5
195.7-195.9	Shear vein @ 40° to C.A. CO,/bio/chl/qtz. 1-2% fine grained Py, possible	93.30	93.90		20.	2.0	180.	26.	7
100.1 100.0	tr Sph.	93.90	94.30		20.	4.4	84.	22.	62
239.8-240.0	Purple/grey/brown laminated shear @ 65° to C.A. 3% fine grained Py.	94.30	94.70		20.	1.7	123.	28.	9
244.2-244.5	Fault @ approximately 40° to C.A.	94.70	96.00		20.	2.5	130.	27.	6
250.0-251.2	Bio/chl/CO, shear @ 70° to C.A.	96.00	96.70		26.	2.1	79.	30.	60
268.8-271.4	Strong shear vein @ 70° to C.A. CO,/bio/chl. 1-2% frg Py, minor Sph.	97.70	99.40		20.	7.1	35.	24.	93
271.6-271.8	Fault.	99.40	99.50		20.	306.1	74.	27.	7
2,1.0 271.0		107.00	107.30		53.	2.0	20.	20.	ε
288.1-306.4 Fragmental		107.30	108.20		25.	1.1	30.	20.	1
		108.20	109.00		25.	1.4	46.	20.	1
296.2-296.4	Mottled/scrambled dark black, fine grained bio. Fine-med gr. 3-5% Py with	109.00	109.90		41.	1.3	28.	21.	į
	spacefilling CO ₃ /qtz & epidote altered spots.	109.90	110.30		29.	0.5	68.	20.	1
	· · · · · · · · · · · · · · · · · · ·	110.30	110.60		58.	5.1	183.	68.	2
306.4-315.2 Greywacke/Siltstone:		110.60	111.20		20.	1.7	35.	20.	3
		111.20	111.50		20.	15.5	54.	20.	-
307.1-307.2	Fault @ 60° to C.A. with gouge.	111.80	112.40		135.	1.8	56.	20.	
307.5-307.8	Strong shear vein @ 70 to C.A. Bio/CO ₃ /minor chl. 2% fine grained Py.	112.40	112.90		100.	40.2	20.	20.	
		112.90	113.80		52.	0.6	17.	16.	
315.2-353.1 Greywacke: Highly silic	ified. 1-2% Py, local Po. Local QSP (qtz/sericite/minor Py).	113.80	114.40		83.	3.8	42.	15.	3
		114.40	114.55		172.	12.9	58.	285.	
353.1-370.5 Fragmental		114.55	114.90		45.	3.2	164.	45.	3
-		114.90	115.90		92.	7.8	136.	57.	1
370.5-374.5 Lamprophyre Dyke: Me	d-dark green, massive, fine grained. 5% Bio/chl ? spots & 5-7% white	115.90	116.10		29.	1.7	213.	28.	1
spots. Weak, fine, white/y	ellow with green CO ₃ veins @ 15° to C.A. Dyke upper contact @ 40° to	117.70	118.10		416.	37.4	100.	51.	
C.A. Lower contact @ 0-10	D° to C.A.	120.30	120.90		48.	3.7	133.	31.	
		120.90	122.40		29.	2.1	196.	49.	3
374.5-381.8 Fragmental: Decrease	in bio alteration. Local hematite veining.	122.40	123.20		22.	3.7	248.	61:	3
		127.20	128.50		26.	2.3	91.	16.	9
375.4-375.8	Fault	128.50	128.70		121.	3.3	106.	33.	
		128.70	130.30		33.	3.0	199.	106.	1
381.8-438.1 Greywacke/Fragmenta	I: Slight to locally high foliation.	133.80	134.10		46.	4.1	432.	30.	1
		134.10	135.30		20.	2.2	114.	14.	1
398.8-399.4	Fault @ 35° to C.A.	135.30	135.60		29.	1.9	131.	28.	1
427.8-428.4	Dark brown/grey/tan white laminated shear @ 75° to C.A. 1-5% Py	143.20	143.40		43.	1.7	152.	37.	1
433.1-433.2	Shear @ 30-40° to C.A. 1-5% Py	143.40	144.30		28.	2.0	42.	23.	1
		144.30	145.90		91.	1.8	101.	39.	1
438.1-467.1 Greywacke: Blue/grey.	Folded foliation. Local 2-3cm Bio/chl/cal shear @ 40° to C.A. 1-15% Py	145.90	147.20		20.	1.3	145.	41.	2
		147.20	147.50	8.95	9139.	53.9	366.	261.	
460.3-460.4	CO ₃ /chl shear. 1-2% Py, fine grained pervasive magnetite.	147.50	148.20		619.	21.8	315.	228.	
461.8-461.9	CO ₃ /chl/magnetite shear vein. <1-1% Py	148.20	148.80		52.	2.6	266.	52.	2
462.1-462.6	Shear @ 25° to C.A. 2% Py.	153.20	153.30		70.	5.5	177.	437.	3
		153.30	154.80		39.	1.8	117.	74.	2
467.5-555.4 Fragmental: Local wea	ık shear fabric.	156.00	157.10		31.	6.6	52.	25.	1
		157.10	158.10		60 .	6.3	268.	35.	4
493.9-494.7	Fault	158.10	158.40		44.	8.9	383.	51.	1
		158.40	158.60		21.	2.1	109.	31.	:
	EOH @ 555.4m	158.60	159.10		28.	1.1	172.	30.	1
		159.10	159.60		99 .	3.1	242.	73.	:
		159.60	160.60		40.	1.9	179.	58.	4
		160.60	161.20		43.	0.2	94.	26 .	1
		165.30	166.80		104.	0.1	10.	18.	:

9 December 1 - Page 2

9	Decem	ber	1	- Page	3
---	-------	-----	---	--------	---

	Description			A				_	_
From To	Description	From	То	Au g/t	Ац ррб	Ag g/t	Cu ppm	Pbppm	Zn pp
		166.80	167.00		07	64.4	40	40	47
		166.80 175.30	167.00 176.80		27.	61.1	10.	10.	47.
					27.	2.2	29. 2044	15.	124.
		176.80	177.00		92.	7.7	3041.	24.	2875.
		177.00	177.30		93 .	3.8	1891.	14.	11525.
		177.30	177.80		20.	1.0	209.	15.	356.
		177.80	178.40		56.	3.1	596.	14.	205.
		178.40	179.80		39.	0.7	411.	10.	3925.
		179.80	180.30		20.	2.1	13.	10.	413.
		180.30	181.50		22.	0.6	78.	19.	181.
		181.50	181.90		54.	0.5	134.	16.	145.
		181.90	182.00		57.	137.2	570.	15.	213
		182.00	182.30		41.	2.0	170.	11.	205.
		182.30	183.10		1 78 .	1.6	14.	16.	285.
		183.10	183.40		38.	0.2	118.	13.	282.
		183.40	184.80		66.	1.2	23.	20.	193.
		188.70	188.90		20.	2.0	664.	17.	175.
		188.90	189.10		33.	1.7	482.	17.	213.
		189.10	189.30		48.	1.5	119.	16.	119.
1		189.30	189.45		28 .	4.7	1645.	16.	1050.
		189.45	189.60		63.	58.9	1514.	38.	2050
		189.60	190.20		44.	2.3	160.	29.	212.
		190.20	190.40		27.	5.1	106.	510.	2000
	•	190.40	191.20		66.	11.7	573.	97.	313.
		191.20	191.80		61.	2.7	397.	173.	2050
		191.80	192.10		29.	1.4	38.	68.	308.
		192.10	193.60		64.	26.6	388.	2284.	3575
		194.80	195.70		70.	1.9	47.	83.	246.
		195.70	195.90		45.	4.6	122.	27.	386.
		196.90	197.30		46.	3.2	89.	15.	260.
		197.30	198.40		41.	9.6	159.	13.	296.
		198.40	198.80		218.	1.2	36.	22.	186.
		201.90	203.30		21.	0.9	95.	10.	102.
		203.30	203.80		49.	1.3	73.	16.	65.
		203.80	204.30		74.	1.5	66.	13.	54.
		204.30	205.80		52.	1.3	64.	10.	60.
		205.80	206.50		31.	0.5	54.	10.	132.
		206.50	206.70		33.	2.1	101.	15.	126.
		206.70	208.40		39.	2.0	72.	30.	173.
		211.40	212.90	,	54.	2.7	151.	36.	331.
		212.90	213.30		39.	1.4	25.	20.	243.
		217.80	219.30		42.	1.1	101.	30.	286.
		219.30	219.40		91.	2.2	357.	22.	331.
		220,60	220.80		464.	2.8	538.	45.	8125.
		220.80	221.00		182.	3.0	181.	42.	1850.
		224.20	224.40		42.	1.5	158.	17.	1950.
		224.40	225.80		48.	1.6	193.	17.	3850.
		227.30	228.00		37.	3.9	60.	14.	126.
		228.00	229.50		35.	1.4	79.	10.	407.
		229.50	229.90		20.	1.7	129.	10.	273.
		229.90	230.70		37.	8.7	100.	10.	1250.
		230.70			61.	2.0	170.	11.	4475.
		234.70			64.	1.9	80.	10.	402.
		236.10			127.	4.9	398.	13.	5450.
		237.90			109.	3.6	161.	12.	1300.
		239.30			48.	135.6	243.	10.	3200
		240.80			85.	22.3	758.	15.	2025.
		241.00	241.40		50.	94.0	528.	10.	2150.

9 December 15 · Page 4

From To	Description	From	To	Au g/t	Au ppb	Ag g/t	Cu ppm	Pbppm	Zn ppm
T		241.40	242.90		56.	3.4	427.	16.	151.
		241.40	242.90		42.	2.6	427. 535.	16.	209.
		243.50	244.20		35.	2.5	290.	15.	168.
L		244.20	244.50		107.	1.8	346.	11.	102.
		244.50	245.50		53.	2.7	233.	16.	47.
		245.50	247.00		34.	2.0	150.	85.	54.
		247.00	247.10		126.	41.8	1382.	30275.	11150
		247.10	248.50		33.	1.9	214.	41.	96.
		248.50	250.00		22.	1.5	125.	18.	87.
		250.00	250.60		20.	1.5	49.	18.	109.
		250.60	251.20		20.	10.7	203.	24.	120.
		251.20	251.90		20.	4.0	669.	47.	154.
		251.90	252.40		31.	3.7	439.	22.	211.
		252.40	253.60		41.	6.6	687.	16.	70.
		253.60	253.70		76.	1.6	262.	43 .	163.
		253.70	254.00		155.	11.0	2660.	-5. 51.	234.
		254.00	255.60		20.	2.5	119.	117.	234. 191.
		254.00	255.60		20. 20.			10.	
						1.3	10.		30. 27
		257.60	257.90		20.	1.7	10.	10.	27.
		257.90	259.00		20.	0.8	15.	13.	31.
		266.80	268.30		20.	1.3	10.	10.	32.
		268.30	268.80		20.	1.2	34.	15.	88.
		268.80	269.00	0.05	125.	0.1	162.	80.	537.
		269.00	269.20	0.05	75.	1.5	106.	284.	524.
		269.20	269.40	8.60	9273.	1.6	95.	420.	445.
		269.40	269.60	0.45	288.	10.4	113.	1195.	2500
		269.60	270.00	0.50	113.	14.7	237.	915.	1450.
		270.00	270.20	0.35	44.	4.1	44.	264.	465.
		270.20	270.60	0.95	158.	4.3	423.	261.	411.
		270.60	270.80	1.65	76.	2.3	129.	277 .	403.
		270.80	271.00	0.05	20.	0.1	42.	66.	302.
		271.00	271.40	0.25	40.	0.1	67.	41.	191.
		271.40	271.60	0.70	73.	0.1	38.	44.	154.
		271.60	271.80	0.10	47.	2.6	33.	28.	124.
		271.80	272.00	2.65	2003.	1.9	20.	25.	110.
		272.00	273.20		34.	1.6	34.	14.	79.
		273.20	273.50		31.	1.3	51.	10.	100.
		273.50	274.40		20.	0.7	37.	18.	133.
		274.40	274.50		173.	3.4	215.	268.	1200.
		274.50	275.70		41.	1.7	241.	196.	2225.
		275.70	275.80		20.	1.4	187.	30.	190.
		275.80	277.10		28.	1.4	91.	15.	88.
		277.10	277.30		23.	2.2	129.	20.	85.
		278.70	278.80		47.	2.0	157.	16.	161.
		278.80	279.50		22.	1.9	36.	10.	111.
		279.50	279.70		20.	2.3	23.	44.	209.
		279.70	279.90		38.	2.0	84.	23.	6725.
		279.90	281.40		27.	2.2	110.	19.	1150.
		281.90	282.00		26.	1.7	31.	10.	120.
		282.00	282.60		37.	1.6	64.	10.	1100.
		282.60	283.10		24.	1.2	28.	12.	211.
		283.10	283.20		20.	1.2	39.	10.	312.
		283.20	284.60		24.	3.8	63.	10.	266.
		287.10	287.50		460.	1.7	154.	12.	125.
		287.50	287.90			1.6	77.	10.	173.
		287.90	288.80		240. 366.	1.0	301.	13.	148.
		288.80	289.20		277.	3.3	629.	15.	146.
		200.00	203.20		4 11.	J.J	023.	13.	110.

From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pbppm	Zn pp
		289.20	289.40		157.	1.0	123.	11.	118.
		290.20	290.70		88.	1.7	51.	11.	160.
		290.70	290.90		688.	1.6	23.	24.	128.
1		290.90	291.10		131.	1.4	20.	10.	162.
		291.10	291.30		185.	2.3	29.	15.	133.
		294.30	294.90		259.	0.5	27.	34.	166.
		294.90	296.20		237.	1.1	76.	10.	157.
		296.20	296.40	3.05	4057.	0.6	62.	15.	13
		296.40	297.10		937.	0.6	35.	10.	156.
		297.10	297.30		84.	1.5	34.	10.	123.
		297.30	297.50		35.	1.1	43.	10.	145.
		301.80	302.00		40.	1.5	89.	15.	142.
		302.00	303.00		20.	0.9	57.	10.	146.
		303.00	303.60		20.	0.5	53.	10.	364.
		303.60	305.10		23.	0.9	97.	10.	405.
		305.10	306.40		20.	1.2	37.	10.	239.
		306.40	307.00		20.	0.8	66.	10.	397.
		307.00	307.00		20. 23.	0.8	31.	10.	229.
		307.00	307.20		23. 42.	0.2	68.	10.	229.
		307.20	307.50		42. 20.	1.2	32.	10.	210.
		307.80	307.80		20. 45.	1.2	52. 143.	10.	143.
		307.80	308.50		45. 20.	0.8	46.	10.	145.
		308.50	308.70		20. 22.	0.8		10.	137. 81.
							25.		
		313.80	314.10		20.	1.5	48.	10.	66. 65
		314.10	314.90		41.	0.7	94. 21	22.	65. 52
		315.20	316.70		72.	0.5	21.	14.	52. 20
		319.80	319.90		56. 20	0.4	11.	14.	29. 25
		319.90	320.50		20.	1.2	11.	30. 12	25.
		320.50	320.70		20.	1.3	18. 729	12.	31.
		325.90	326.50		58.	3.9	738.	20.	47.
		326.50	327.50		20.	1.2	52.	12.	27.
		327.50	327.70		39.	3.9	370.	11.	30.
		333.00	334.50		20.	1.0	24.	88.	33.
		334.50	334.90		34.	2.8	20.	31.	67.
		334.90	336.10		20.	0.9	17.	10.	27.
		336.10	336.40		45.	1.1	57.	10.	33.
		336.40	337.20		50. 20	1.1	45. 07	10.	21.
		337.20	338.30		26.	0.7	27.	10.	10.
		338.30	339.90		54.	0.7	26. 67	10.	35.
		339.90	341.40		151.	0.8	67. 21	10. 15	22. 44.
		341.80 343.70	342.05		132.	2.7	21. 24	15. 12	44. 40.
			345.20		115.	0.9	24.	12.	
		345.20	345.80		130.	0.6	98. 26	11.	54. 27
		345.80	346.20		20.	0.1	36. 46	10. 27.	37. 53.
		346.90	347.90		54. 21	1.0	46. 14		
		347.90	348.00		31.	2.4	14.	33.	51. 32.
		348.00	348.60		37. 49.	0.8 0.9	144. 70.	24. 12.	32. 34.
		348.60	349.60						54. 44.
		349.60	349.80		42.	0.7	22. 756.	21.	44. 152
		349.80	350.20		119. 79	3.0		31. 10	152
		350.20	351.20		79. 86	1.7	264.	10.	
		351.20	351.50		86. 156	1.9	158.	22.	129.
		351.50	353.10		156.	0.7	91. 100	15.	50.
		353.10	353.40		57.	1.7	100.	36. 20	214.
		353.40	353.50		45.	1.3	10.	30.	164.
		353.50 354.00	354.00 354.50		48. 62.	1.2 1.2	119. 86.	21. 24.	103. 205.
		1 554 (1()				12			

9 December 19 · Page 6

.

res From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pbppm	Zn pp
· · · · · · · · · · · · · · · · · · ·					_				
		354.50	354.90		140.	2.2	500.	18.	107.
		354.90	356.30		39.	1.2	222 .	12.	103.
		356.30	356.40		66.	0.9	55.	17.	86.
		356.40	357.00		77.	0.9	132.	10.	88.
		357.00	357.10		124.	2.8	961.	12.	96.
		357.10	357.70		32.	1.5	215.	16.	123.
1		357.70	359.20		40.	0.1	58.	10.	94.
		359.20	359.70		76.	0.3	35.	10.	94.
		359.70	360.80		20.	0.1	62.	10.	159.
		360.80	361.90		20.	0.4	110.	10.	89.
		361.90	362.40		20.	0.1	241.	10.	64.
		362.40	362.60		20.	1.1	75.	10.	139.
		362.60	364.40		20.	0.1	78.	10.	58.
		364.40	365.20		20.	1.0	21.	10.	72.
		365.20	365.50		20.	0.1	16.	10.	56.
		365.50	365.80		20.	1.0	34.	10.	43.
		365.80	367.40		37.	0.5	39.	10.	74.
L		367.40	368.50		44.	0.2	62.	10.	76.
		368.50	369.60		20.	0.6	106.	15.	80.
		373.00	374.50		20.	0.1	16.	24.	156.
		374.50	374.70		20.	0.7	15.	10.	254.
		374.70	374.90		20.	2.4	655.	10.	65.
		374.90	375.40		20.	1.1	255.	13.	95.
		375.40	375.80		20.	2.5	1656.	10.	107.
		375.80	376.60		20.	1.8	1521.	10.	99.
		376.60	377.20		103.	0.8	89.	10.	106.
		377.20	377.40		20.	3.0	1920.	10.	117.
		377.40	377.70		20.	2.0	911.	10.	92.
		377.70	378.10		20.	0.8	106.	10.	89. 77
		378.10	378.30		20.	0.6	203.	10.	149
		381.40	381.80		20.	0.5	288.	10.	148.
		381.80	382.30		20.	0.1	97.	10.	95.
		382.30	382.80		95.	2.3	317.	12.	137.
		382.80	382.90		44.	1.0	154.	10.	175.
		386.80 388.30	388.30 388.60		28. 78.	0.1 0.9	72. 96.	10. 12.	86. 63.
		393.70	394.60		78. 53.	0.9	376.	12.	118.
		397.40	398.80		91.	0.8	128.	10.	108.
		398.80	399.40		46.	0.4	128.	10.	133.
		401.00	402.50		31.	0.2	134.	10.	137.
		402.50	402.70		44.	0.1	154.	10.	2050.
		402.70	403.00		42.	0.6	64.	10.	320.
		404.80	405.90		48.	0.4	147.	10.	3450.
		411.10	411.30		28.	0.8	176.	10.	177.
		411.30	411.80		49.	1.5	196.	10.	238.
		411.80	412.00		57.	0.1	161.	10.	227.
		412.00	412.90		35.	0.6	181.	10.	199.
		423.30	423.50		42.	0.5	131.	10.	205.
		423.50	424.70		27.	0.2	141.	10.	222.
		427.00	427.60		44.	0.7	99 .	10.	142.
		427.60	427.80		34.	0.2	96.	21.	329.
		427.80	428.40		49.	0.1	111.	10.	248.
		428.40	429.00		29.	0.1	110.	10.	250.
		429.00	429.70		61.	0.1	117.	10.	495.
		429.70	431.80		73.	7.3	85.	15.	254.
		431.80	432.20		91.	3.1	83.	15.	1225.
		432.20	433.10		59.	2.3	115.	18.	283.
		433.10	433.20		31.	75.0	52.	17.	363.
		436.40	436.70		43.	7.5	117.	17.	250.

•

9 D	ecem	ber 1	-	Page
-----	------	-------	---	------

From To	Description	From	To	Au g/t	Au ppb	Ag g/t	Cu ppm	Pbppm	Zn pp
T		436.70	437.30	·····	50.	2.9	35.	12.	148.
		437.30	437.70		34.	2.3	41.	20.	127.
		437.70	438.10		131.	3.1	147.	16.	161.
		438.10	438.90		53.	2.6	198.	19.	307.
		438.90	439.20		68.	2.8	72.	24.	166.
		439.20	439.30		70.	1.9	33.	14.	146.
		439.30	440.70		94.	2.4	85.	14.	174.
		440.70	441.70		57.	3.3	235.	22.	112.
		441.70	442.00		67.	3.3	380.	22.	122.
		442.00	443.20		30.	2.4	146.	23.	298.
		443.20	443.20		30. 30.	2.4	148.	23. 39.	290. 169.
		443.40	444.30		40 .	2.4	204.	39.	333.
		444.30	444.50		37.	2.6	248.	28.	1200.
		444.50	444.80		31.	3.2	258.	35.	5550.
		444.80	445.00		84.	6.0	470.	732.	6650.
		445.00	445.20		39.	3.0	52.	79.	340.
		445.20	445.30		20.	3.5	124.	253.	950.
		445.30	445.60		108.	3.1	268.	57.	266.
		445.60	445.80		149.	2.6	382.	26.	207.
		445.80	446.00		318.	35.7	476.	23.	218.
		446.00	446.40		91.	2.2	199.	15.	110.
		446.40	446.50		51.	31.7	174.	26.	94.
		446.50	447.50		53.	3.1	139.	15.	112.
		447.50	448.10		56.	3.0	236.	22.	103.
		448.10	448.30		220.	1.7	158.	10.	120.
		448.30	448.60		106.	3.4	273.	10.	171.
		448.60	449.10		20.	1.6	104.	10.	127.
		449.10	450.20		20.	3.1	20.	10.	114.
		450.20	450.70		20.	1.6	45.	10.	99.
		450.70	451.20		21.	2.6	69.	10.	96 .
		451.20	451.90		20.	2.0	76.	10.	89.
		451.90	453.10		20.	2.3	107.	10.	105.
		453.10	454.40		20.	2.5	116.	10.	88.
		454.40	454.70		20.	1.9	285.	10.	153.
		454.70	456.20		20.	1.8	161.	10.	76.
		456.20	456.70		20.	2.0	213.	10.	97.
		456.70	456.90		20.	3.3	154.	15.	127.
		456.90	457.40		20.	2.1	124.	17.	100.
		457.40	458.10		41.	5.4	271.	23.	165.
		458.10	458.80		58.	2.2	293.	12.	124.
		458.80	459.40		62.	2.3	246.	13.	98.
		459.40	459.90		53.	2.5	188.	19.	133.
		459.90	460.30		55. 56.	2.5	211.	33.	194.
			460.50		56. 29.	2.1	82 .	- 33. 18.	166.
		460.30							
		460.50	461.00		89.	2.2	196.	12.	114.
		461.00	461.40		82.	1.5	149.	11.	155.
		461.40	461.80		74.	1.6	50. 76	20.	130.
		461.80	461.90		80.	2.6	76.	17.	107.
		461.90	462.10		117.	1.6	112.	10.	151.
		462.10	462.60		530.	2.7	308.	10.	135.
		462.60	463.30		88.	2.4	265.	10.	110.
		463.30	464.90		77.	1.2	161.	10.	104.
		466.20	467.60		47.	3.1	164.	21.	97.
	· · ·	467.60	468.00		87.	1.1	386.	10.	70.
		469.60	470.20		74.	2.3	251.	21.	108.
		471.10	471.30		54.	1.4	683.	16.	85.
		471.30			37.	0.7	338.	24.	69.
		474.30	474.60		45.	0.9	85.	10.	134.

9	December	1	- Page 8
			-

.

etres From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pbppm	Zn ppm
T		477.30	477.70		37.	1.5	149.	10	70.
		477.30	477.70		57. 53.	1.5	149. 311.	10. 10.	70. 129.
		484.60	484.80		20.	2.0	204.	10.	129.
		485.90	485.50		42.	1.9	204. 501.	10.	98.
		487.40	488.30		164.	1.3	276.	27.	173.
		490.20	490.20		80.	1.9	102.	16.	126.
		491.50	491.50		20.	1.3	136.	10.	2875.
		491.90	492.80		28.	1.5	137.	10.	181.
		492.80	493.20		20. 86.	1.6	430.	10.	125.
1		493.20	493.90		875.	0.7	430. 201.	10.	112.
		493.90	493.30		20.	0.6	109.	10.	59.
		494.70	496.00		33.	1.5	89.	10.	71.
		496.00	496.70		20.	1.6	64.	10.	71.
1		496.70	496.90		20. 46.	1.0	57.	10.	110.
		496.90	498.00		32.	0.9	127.	10.	54.
1		498.00	498.50		20.	0.4	157.	11.	75.
		503.10	504.00		92.	2.0	126.	11.	69.
		504.00	504.30		96.	0.9	303.	11.	109.
		508.30	510.90		57.	1.0	93.	10.	56.
		510.90	511.10		51.	2.7	33. 37.	10.	78.
		511.10	512.10		122.	1.6	240.	10.	, ö. 59.
		522.90	523.60		108.	2.4	149.	24.	84.
		523.60	525.00		21.	1.4	145.	10.	.64.
		527.90	528.60		93.	1.9	161.	10.	61.
		529.40	530.90		38.	2.0	133.	10.	63.
		530.90	531.10		20.	1.3	81.	10.	107.
		531.10	532.50		39.	1.1	114.	10.	82.
		534.30	534.90		69.	1.7	647.	10.	73.
		534.90	536.30		20.	0.6	49.	10.	58.
		536.30	536.70		20.	0.8	121.	10.	129.
		542.20	543.50		29.	1.1	94.	10.	88.
		543.50	543.80		23. 51.	1.4	5 4 . 52.	10.	123.
		547.40	548.90		41.	2.2	83.	10.	92.
		548.90	549.30		25.	2.3	286.	10.	167.
		554.20	554.40		234.	0.8	200. 52.	10.	107.
		554.40	555.40		204.	1.1	36.	10.	98.
		004.40	000.40		20.	••		10.	

Property SNIP	District Liard, M.D.	Length: 349.1m	
Commenced: Aug 22, 1994	Corr. Dip: -68°	Core Size: BQTK	
Completed: Aug 25, 1994	True Brg: 030°	% Recov. 98%	
Coordinates: 1550N 3400E	Elevation: 230m	Tests: 169.2m -67° @ 035°	

Target: Twin West Projection Logged By: JRG

Metres From To	Descriptio	n	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn ppm
0.0-4.6	Overburden: None Rec	covered.	7.30	7.60		97.	2.9	68.		111.
			7.60	9.10		41.	2.6	199.		153.
4.6-29.0	FRAGMENTAL:		9.10	9.60		2.	2.9	162.		119.
			9.60	10.70		23.	2.4	232.	3.	224.
			12.10	13.40		4.	2.6	85.	4.	179.
		• •	13.40	14.90		36.	2.7	130.	6.	114.
	Overburden: None Recovered. FRAGMENTAL: Highly altered. Med & light grey/cream with 30-40%, .2-2cm, rounded fragments. Fine grained, patchy & fracture controlled bio/chl alteration. Local bleaching & clay/sericite alteration. Mod-strong to local shea @ 55° to core axis (C.A.). Mod gash veining. Mod extension veining, local vuggy qtz/C0, veins. Possil local magnetite. Local fine grained, 1mm hematite spots. Tr-<1% Py. Local faulting and weathering.		16.60	18.20		75.	3.0	97.	2.	98. 1175.
	local magnetite. Local	tine grained, imm nematite spots. If < 1% Py. Local faulting and weathering.	18.20 18.90	18.90 19.20		9. 23.	3.0 2.4	175. 51.	13. 11.	315.
	19 2 10 2	Equilit @ 40 50° to C & Course	19.20	19.20		23. 381.	2.4	270.	8.	315. 1450.
			19.20	20.00		96.	2.7	131.	6.	133.
			20.00	21.20		16.	2.0	106.	8.	340.
		• •	21.20	21.50		21.	2.3	139.	5.	800.
	20.4-20.0		21.50	22.50		0.	0.0	0.	0.	0.
29.0-225.9	GREYWACKE		22.50	23.90		20.	4.0	455.	20.	257.
			25.70	26.60		29.	3.3	185.	8.	452.
	Med-dark grey, brown/	grey, fine-med grained wacke with mod foliation @ 50° to C.A. Mod fine grained	28.20	28.40		52.	2.7	62.	20.	259.
			28.40	29.00		33.	4.4	186.	17.	162.
			36.40	36.70		186.	8.7	162.	202.	157.
			36.70	37.90		58.	4.1	102.	30.	1750.
	disseminated Py. Mind	or local CPy, Po. Local Py/Po/Cpy/Sph semi massive veins up to 5cm. Local bleaching &	39.60	39.70		33.	5.1	154.	76.	4750.
	disseminated Py. Minor lo		39.70	41.20		34.	3.7	194.	19.	2800.
			41.20	42.70		115.	2.8	124.	13.	122.
	36.4-36.7	Shear @ 45° to C.A. Qtz/CO ₃ /chl. <1% Po, tr Py, minor Cpy.	42.70	42.90		93.	0.4	122.	8.	103.
	68.7-69.1	Mod shear'd @ 55° to C.A. Bio laminae with 1.5% Py, <1% Cpy, 1-1.5% Sph.	45.80	45.95		64.	1.1	127.	204.	190.
			45.95	46.80		41.	0.2	67.	20.	119.
			46.80	47.00		67.	3.2	334.	1650.	3050.
	106.6-106.8	Fault.	47.00	47.70		38.	0.3	108.	24.	119.
			47.70	47.80		70.	2.8	288.	139.	414.
			49.00	50.00		36.	0.9	191.	66.	164.
	142.8-143		50.00	50.20		113.	3.0	1044.	94.	162.
			50.20	50.50		37.	0.3	125.	29.	111.
	143.3-143	•	50.50	50.60		193.	4.2	486.	187.	274. 128.
	143.5-143	•	50.60	52.10 52.00		36. 72.	0.9 1.0	147. 250	34. 70.	120. 181.
	162.3-168		52.70	53.00			0.4	359.	70. 30.	101.
	180.4-180	• • • • •	53.00 54.40	54.40 54.70		54. 191.	0.4 2.1	124. 405.	30. 113.	1825.
	181.1-18	altered seds. 1.4 Mod shear fabric - scrambled. 3-5% Py/Po, <1% fine grained Sph, <<1%	54.40	54.70 55.10		40.	1.6	405. 286.	70.	210.
	181.1-181	Cpy. Undulating vein. Patches of grey CO ₃ with .5-1mm magetitie grains	54.70	55.10		40.	1.0	200.	70.	210.
		@ 25° to C.A.								
	181.4-181	1.5 Shear vein @ 45° to C.A. 25% Py/Po, 1% Cpy, <1% Sph. Laminated. Grey CO,/magnetite vein. Contact @ 181.45 (@ 20° to C.A.). In med-								
		dark purple/grey sediments.								

Drill Hole Reco.

10 December	1.	- Page 2
-------------	----	----------

etres From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pbppm	Zn pp
Τ		55.10	55.30		21.	1.1	221.	72.	227.
		57.90	58.30		52.	1.0	161.	76.	483.
		60.90	61.50		49.	3.2	558.	183.	352.
	201,3-203.5 Well shear'd @ 45-50° (local 70°) to C.A. Bio/CO ₃ /qtz/chl. 2-3% Py.	64.00	64.80		31.	1.3	204.	79.	228.
	203.5-203.8 Fault.	67.10	67.50		24.	0.3	125.	22.	50.
	213.4-215.6 Fault zone @ 45 & 69° to C.A.	67.50	68.00		33.	5.4	141.	72.	100.
	221.0-221.4 Fault @ 60 ⁻ to C.A.	68.00	68.50		41.	0.1	81.	27.	209.
	223.0-223.2 Fault @ 60° to C.A.	68.50	68.70		35.	0.7	134.	34.	1925.
		68.70	69.10		31.	4.9	244.	49.	5550.
5.9-284.1	FRAGMENTAL:	69.10	70.40		30.	0.1	87.	17.	136.
		70.40	70.80		54.	2.0	252.	325.	666.
1	Med-dark grey, fine-med grained groundmass with 20-25% sub rounded, 1-2cm, fine grained, epidote altered	70.80	71.30		32.	0.8	147.	131.	244.
	fragments. Sparse CO3/qtz gash & extension veining. 1% Py, local 2-2.5% Py. Local qtz/CO3/magnetite	71.30	72.20		32.	1.3	127.	90.	325.
	veining.	72.20	72.50		58 .	0.2	155.	42.	89.
		72.50	73.30		31.	0.1	81.	17.	85.
	261.4-261.6 CO ₃ /bio/chl/Py shear @ 60° to C.A. Minor Cpy.	73.30	73.50		25.	0.8	74.	67.	91.
		73.50	74.30		33.	0.3	88.	28.	98.
4.1-349.1	GREYWACKE:	75.10	75.40		20.	0.6	205.	29.	109.
		75.40	76.40		20.	0.2	133.	11.	92.
	Typical. Local, minor, epidote alteration. 1% Py, local 2-3% Py, <1% Po.	76.40	76.70		62.	1.8	267.	71.	89.
ļ		76.70	77.00		44.	1.3	179.	19.	109.
	295.2-295.7 Shear'd @ 70° to C.A. 1% Py	77.00	77.60 78.70		33. 38.	2.0 0.5	280. 197.	26. 15.	82. 118.
	312.8-313.4 Shear @ 50° to C.A. Chi/CO ₃ /qtz. <1% Py.	77.60	78.70 79.70		30. 20.	0.5	197.	15. 9.	87.
		79.70	80.00		20. 20.	3.8	239.	9. 46.	188.
	EOH @ 349.1m	80.00	80.00		20. 24.	3.8 1.3	239. 160.	40. 158.	1900.
		81.40	81.40		24. 115.	6.6	216.	700.	808.
		81.70	81.80		72.	7.4	384.	124.	169.
		81.80	82.40		23.	0.9	267.	24.	148.
		82.40	83.00		110.	1.1	191.	47.	291.
		83.00	83.40		68.	1.8	179.	137.	506.
		83.40	84.90		20.	0.5	161.	30.	303.
		84.90	85.20		29.	0.4	226.	29.	128.
		88.80	90.30		35.	0.6	111.	34.	88.
		90.30	90.50		20.	0.4	123.	28.	56.
		90.50	91.50		20.	2.0	84.	37.	267.
		91.50	91.80		38.	2.7	473.	127.	567.
		92.30	92.50		48.	0.9	147.	50.	119.
		92.50	93.00		27.	0.3	101.	22.	104.
		93.00	94 .10		28.	1.0	175.	31.	35.
		94.10	95.20		21.	0.2	102.	18.	58.
		95.20	95.90		29.	19.5	325.	67.	828.
		99.60	99.90		20.	1.2	315.	28.	351.
		99.90	101.40		30.	0.3	93.	26.	114.
		101.40			38.	1.8	227.	161.	848
		101.70			72.	9.7	547.	325.	1700
		101.90			32.	0.3	90.	15.	47.
		103.40			84.	1.2	279.	20.	113.
		109.70			65.	2.3	144.	250.	953
		111.00			111.	4.6	443.	140.	273
		111.60			51.	0.3	97.	40.	332.
		115.70			43.	0.9	110.	87.	293.
		116.70			63.	1.7	163.	110.	555
		118.30			60.	1.1	483.	22.	130
		118.70			94.	0.6	167.	24.	109.
		119.40			53.	0.7	294.	21.	70.
		119.60	120.60		63.	0.9	73.	50.	134.
		120.60	120.80		76.	0.4	68.	27.	36.

9	December	1	- Page 3
---	----------	---	----------

s From To	Description	From	То	Au g/t	Аи ррв	Ag g/t	Cu ppm	Pbppm	Zn ppm
			•						
		120.80	121.30		52.	1.1	117.	27.	118.
		121.30	121.50		65.	0.7	104.	27.	27.
		123.70	124.80		169.	3.6	170.	100.	104 .
		124.80	124.90		284.	13.8	254.	575.	120.
		124.90	125.10		58.	1.8	183.	57.	99.
		125.10	125.40		70.	5.6	303.	218.	217.
		125.40	125.70		59.	4.0	105.	129.	127.
		125.70	125.80		83.	10.8	427.	700.	1800.
		125.80	126.30		42.	2.0	206.	71.	161.
		129.30	130.80		114.	0.1	33.	10.	83.
		130.80	131.20		236.	0.1	38.	14.	76.
		131.20	131.60		73.	0.2	76 .	13.	109.
		134.70	135.70		111.	0.1	19.	4.	17.
		135.70	135.90		49.	0.1	15.	4.	13.
		135.90	137.40		50.	0.1	11.	3.	12.
		141.10	142.60		278.	0.1	43.	2.	74.
		142.60	142.80		261.	1.3	186.	12.	108.
		142.80	143.00	5.60	5506.	8.5	1729.	13.	139
		143.00	143.30		25.	2.6	358.	72.	125.
		143.30	143.50	2.95	1898.	2.1	236.	38.	184.
		143.50	143.80	4.70	3910.	3.5	235.	33.	169.
		143.80	144.00		73.	0.1	29.	44.	112.
		143.00	144.60		147.	0.1	29.	13.	118.
		145.90	146.30		66.	0.1	23.	7.	25.
		143.50	152.80		153.	0.1	24. 3.	15.	23. 22.
		155.50	152.00		37.	0.1	3. 2.	15. 4.	22. 19.
		155.50	157.00		67.	0.1	2. 14.	4. 7.	19. 18.
		157.10	157.10		604.	0.3	29.	7. 7.	40.
		157.30	157.30		20.	0.1	29. 17.	7. 8.	40. 26.
		158.20	159.10		69. 655	0.1	1.	6. 7	16.
		159.10	159.40		655.	0.1	28.	7.	36.
		159.40	160.30		64.	0.1	6.	8.	27.
		160.30	161.10		177.	0.1	9.	8.	21.
		161.10	161.40		42.	0.1	31.	17.	22.
		161.40	162.30		57.	0.1	24.	8.	18.
		162.30	162.80		98 .	0.1	63.	6.	32.
		162.80	163.70		44.	0.3	28.	27.	138.
		167.90	168.60	2.00	1534.	0.6	6.	19.	10.
		168.60	168.90		52.	0.3	66.	8.	25.
		168.90	170.00		49.	0.7	20.	6.	16.
		171.10	172.60		55.	0.1	5.	4.	21.
		172.60	172.90		6 0.	0.1	45.	12.	32.
		178.80	180.40		18.	0.5	124.	15.	221.
		180.40	180.50	189.65	18867		472.	53.	31
		180.50	180.90		915.	0.5	105.	12.	136.
		180.90	181.10		403.	0.5	109.	13.	153.
		181.10	181.40	7.80	8058.	44.9	961.	87.	1434
		181.40	181.50	73.05	45638.	78.5	9025.	66 .	370
		181.50	183.10		258.	0.4	50.	5.	52.
		185.80	186.20		108.	0.7	189.	9.	1311.
		186.20	187.70		27.	0.5	48.	6.	40.
		197.20	198.50		74.	0.4	60.	9.	68.
		198.50	198.90		35.	0.4	44.	6.	39.
		198.90	199.80		126.	0.5	96.	16.	171.
		199.80	200.10		116.	4.8	1071.	92.	231.
		200.10	200.30		69.	6.7	665.	452.	660.
		200.30	200.70		65.	19.8	802.	1273.	2067.
		200.70	201.30		61.	1.6	147.	19.	167.

									IDEI
s From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pbppm	Zn pp
		201.30	201.50		67.	3.2	598.	17.	776.
		201.50	202.20		39.	0.7	235.	6.	196.
		202.20	203.40		29.	0.5	58.	3.	64.
		203.40	203.90		195.	0.3	80.	6.	83.
		203.90	205.00		20.	0.2	49.	3.	95.
		205.00	205.20		29.	1.6	309.	5.	77.
		205.20	205.80		20.	0.4	57.	5.	68.
		205.80 206.80	206.80 207.00		9. 110.	0.6 1.6	283. 701.	8. 13.	238. 731.
•		207.00	207.20		13.	0.3	64.	4.	70.
		211.90	212.50		14.	4.5	813.	5.	772.
		212.50	213.40		37.	2.3	929.	6.	2850.
		214.50	215.40		13.	0.6	128.	9.	316.
		215.40	215.70		18.	0.9	203.	9.	347.
		215.70	216.60		20.	0.4	167.	7.	527.
		220.30	220.60		44.	2.4	298.	81.	9150.
		220.60	221.00		17. 35	1.1	213. 176	34. 32	1482. 336.
		221.00 221.40	221.40 222.40		35. 34.	0.6 1.3	176. 156.	32. 12.	330. 140.
		222.40	222.80		85.	0.9	174.	44.	156.
		224.40			37.	0.6	125.	13.	339.
		225.90			20.	0.3	81.	12.	96.
		226.20			64.	0.3	75.	9.	52.
		228.70			13.	0.4	189.	6.	274.
		228.90			88.	1.5	508.	7.	1911.
		229.10			45.	0.9	200.	7.	192.
		233.50 233.90			20. 70.	0.4 0.7	113. 211.	6. 5.	86. 1677.
1		233.50			15.	0.7	166.	5.	762.
		234.30			22.	0.5	155.	5.	720.
		244.50			132.	1.3	613.	17.	384
		244.60			183.	0.9	309.	10.	170
		245.00			80.	0.5	207.	8.	94.
ļ		245.40			26.	1.2	335.	12.	106.
1		251.80			145. 254.	0.4 10.6	136.	6. 31.	157. 16
		260.20 260.50			23 4 . 27.	2.1	1560. 412.	16.	214.
		261.10			20.	2.5	370.	23.	269.
		261.40			60.	1.4	284.	17.	109.
		261.60			21 .	2.0	276.	44.	497.
		268.60			69.	5.7	174.	19.	272
		271.80			127.	2.6	114.	12.	167
		272.30			39.	4.0	144.	96.	332.
1		278.10 288.60			57. 39.	3.1 2.7	187.	14. 11.	114. 117.
		288.80			39. 97.	2.7	186. 68.	5.	111.
		289.30			41.	2.5	199.	5.	153.
		290.60			2.	2.9	162.	9.	119.
		292.10	292.30		23.	2.4	232.	3.	224.
1		292.30	293.60		4.	2.6	85.	4.	179.
		293.60			36.	2.7	130.	6.	114.
		293.90			75.	3.0	97.	2.	98.
		295.20			9.	3.0	175.	13.	1175.
		295.70			23.	2.4 2.7	51. 270.	11. 8.	315. 1450
1		296.60 305.10			381. 96.	2.7 2.5	270. 131.	а. 6.	1450
1		306.40			50. 16.	2.0	106.	8.	340.
1									

ORILL LOG SUM	.RY: DDH S-134	
---------------	----------------	--

		.RY: DDH	S-134				9	9 Decer	nber 1	-
stres From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pbppm	Zn ppm	_
		307.90	308.20		0.	0.0	0.	0.	0.	
		311.00	311.30		20.	4.0	455.	20.	257.	
		311.30	312.80		29.	3.3	185.	8.	452.	
		312.80	313.10		52.	2.7	62.	20.	259.	
		316.60	317.10		33.	4.4	186.	17.	162.	
		317.10	318.10		186.	8.7	162.	202.	157.	
		318.10	318.30		58.	4.1	162.	30.	1750.	
		318.30	318.60		33.	5.1	154.	76.	4750.	
		318.60	318.80		34.	3.7	194.	19.	2800.	
		323.60	324.90		115.	2.8	124.	13.	122.	
		324.90	325.10		30.	0.1	157.	9.	131.	
		325.10	325.80		76.	0.1	133.	6.	150.	
		327.70	327.90		66.	0.2	435.	9.	174.	
		335.20	336.70	0.45	1355.	0.1	141.	9.	204.	
		336.70	337.60		26.	0.9	23.	9.	96 .	
		337.60	337.90		77.	0.1	58.	21.	116.	
		337.90	338.10		58.	0.1	96.	8.	195.	
		341.40	341.60		5.	0.1	227 .	43.	320.	
		341.60	342.30		53.	0.1	214.	12.	180.	
		342.30	342.60		40.	0.1	136.	11.	222.	
		343.50	343.70		154.	0.1	410.	10.	1625.	
		343.70	343.90		164.	0.1	329.	15.	200.	
		END								

Page 5

Property SNIP	District Liard, M.D.	Length: 194.5	
Commenced: Aug 23, 1994	Corr. Dip: -62°	Core Size: BQ	
Completed: Aug 25, 1994	True Brg: 038°	% Recov.	
Coordinates: 1775 N 4029E	Elevation: 183.5m	Tests: No Tests	

Target: Twin West Extension Logged By: TWH

Metr es From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn ppm
0.0-3.0	Overburden. None Recovered.	24.60	24.90		60.	1.4	286.		
		24.90	25.90		36.	0.6	181.		
3.0-162.0	GREYWACKE/FRAGMENTAL:	25.90	26.40		25.	0.2	119.		
		26.40	28.20		63.	0.3	134.		
	Med-dark grey-grey/green. Med grained (locally fine-med & coarse grained), weakly fractured wacke. Weakly	28.20	29.00		39.	0.1	121.		
	foliated @ 50° to core axis (C.A.). Grey-dark green/grey fragmental. Interbedded units up to 7-10 m with	29.00	30.20		33.	0.1	162.		
	gradational contacts. Epidote/chl/magnetite attered to 79.5m. Chl/magnetite/CO ₃ (CMC) atteration introduced	30.20	30.50		24.	0.8	165.		
	@ 49m until 80m. Minor, local, bio alteration increasing after 79.5m. Local silicification after 95m. Weak-	38.80	40.30		20.	0.4	115.		
	mod, locally mod-high CO ₃ /qtz extension veining. <1-1% Py. Local, minor Sph & Po. Local shear veining.	42.10	43.20		31.	0.5	178.		
	Bleaching & faulting.	44.10	45.20		20.	0.5	171.		
		46.40	48.00		20.	0.5	110.		
	20.4-49.1 Fragmental: Mod-strong extension & gash veining.	49.70	51.20		132.	0.6	211.		
		51.20	52.20		25.	0.5	145.		
	25.1-25.2 Fault. Minor gouge.	52.20	53.30		28.	0.6	297.		
	25.9-26.05 Qtz vein @ 70° to C.A.	54.10	55.20		35.	0.9	300.		
	28.2-29.0 Grey CO ₃ /qtz/magnetite ± chl veins to 10cm. Py <1%.	57.90	59.10	•	20.	0.4	124.		
		66.50	68.00		39.	0.6	142.		
	49.7-55.2 Greywacke: Abundant CMC veins.	71.70	72.30		21.	1.1	109.		
		78.50	80.00		26.	1.4	196.		
	71.0-122.7 Fragmental:	81.80	82.80		20.	0.7	149.		
		85.10	86.40		37.	1.2	195.		
	118.1-118.2 CO ₃ /qtz/bio/chl shear @ 60° to C.A.	88.10	88.40		81.	1.1	224.		
	118.8-119.0 CO ₃ /qtz/bio/chl/Py shear @ 50° to C.A. Tr Py.	89.30	90.20		20.	0.6	134.		
		103.80	105.00		20.	1.3	261.		
	122.7-126.5 Greywacke	105.00	105.50		39.	1.8	302.		
		107.10	108.60		133.	1.5	269.		
	126.1-126.2 10cm, barren qtz vein @ 45° to C.A.	112.80	113.90		171.	1.2	173.		
		113.90	115.30		67.	0.5	148.		
	134.3-136.0 BSU: Dense, dark brown dyke with sharp lower contact @ 50-50° to C.A. Top contact @ 60° to	115.30	116.70		85.	0.5	136.		
	C.A. Cut by 50cm qtz vein @ 45° to C.A. Bio spots @ lower contact.	116.70	118.10		117.	2.5	155.		
		118.10	118.30		95.	1.1	172.		
	140.5-147.3 Fragmental	118.30	118.70		111.	0.5	218.		
		118.70	119.10		0.	0.0	0.		
	140.8-140.95 15cm white qtz vein @ 45° to C.A.	119.10	120.60		0.	0.0	0.		
		120.60	122.10		0.	0.0	0.		
	147.3-162.0 Greywacke	122.10	122.50		0.	0.0	0.		
		125.20	125.50		228.	0.6	283.		
	158.4-159.2 Bio/qtz/CO ₂ /chl/py shear @ 60° to C.A. 5% Py.	131.30	132.50		107.	0.1	208.		
	159.7-159.8 5% Py, tr Sph in weak shear.	1							

Drill Hole R d

9 De	ecember	4 -	Page	2
------	---------	-----	------	---

es From To	Description		From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pbppm	Zn ppn
			132.50	133.50		131.	0.2	262.		
			133.50	134.30		618.	0.5	331.		
			134.30	134.90		51.	0.1	132.		
	162.0-194.5 Greywacke/Siltsto	ne: Grey, coarse grained, weakly fractured wacke. Brown, fine grained, banded	134.90	135.40		20.	0.1	72.		
	(relic	bedding) siltstone. Bedding @ 35-50° to C.A. Interbedded with gradational	135.40	136.00		55.	0.3	178.		
	conta	cts. Biotite altered. Mod gash & extension veining. <1% Py. Local faulting.	136.00	136.80		231.	0.4	280.		
Į			140.50	140.80		53.	0.7	204.		
1	182.1-182.4	Fault.	143.00	143.90		108.	0.2	165.		
	184.5-184.6	Fault.	147.10	147.60		59.	0.9	315.		
	191.3-192.0	Fault. Minor gouge.	157.70	158.40		53.	0.7	243.		
			158,40	159.20		97.	1.3	566.		
		EOH @ 194.5m	159.20	159.80		103.	1.4	545.		
		-	END							

Property SNIP	District Liard, M.D.	Length: 193.3m	
Commenced: Aug. 26, 1994	Corr. Dip: -42°	Core Size: BQ	
Completed: Aug. 29, 1994	True Brg: 030°	% Recov.	
Coordinates: 1775N 4029E	Elevation: 183.5m	Tests: No Tests	

Target: Twin West Extension Logged By: TWH

Metres From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn ppm
0.0-3.0	OVERBURDEN. None recovered.	10.20	11.00		37.	1.4	59.	44.	144.
		14.80	15.30		35.	0.4	151.	13.	142.
3.0-1.93m	GREYWACKE/FRAGMENTAL: (minor siltstone)	15.30	17.00		54.	1.0	89.	15.	195.
		17.00	18.40		20.	0.1	105.	11.	126.
	Dark grey/green, med grained, weakly fractured wacke. Interbedded with dark grey/green fragmental and after	18.40	19.80		21.	0.1	144.	10.	121.
	157m with light brown, fine grained, bedded siltstone. Gradational contacts. Bedding @ 45-50° to core axis	23.60	25.20		27.	2.0	130.	180.	134.
	(C.A.). Chi and epidote alteration throughout with chi/magnetite/CO ₃ (CMC) alteration until 75m. Weak	25.20	26.70		38.	0.5	49.	43.	231.
	development of bio alteration @ 46m increasing downhole to mod bio alteration. Found as pervasive & patchy	26.70	28.20		20.	1.1	147.	120.	306. 327.
	ch/bio. Local silicification. Mod qtz/CO ₃ extension veins. Local mod-strong qtz/CO ₃ gash & extension veining sub parallel to C.A. Qtz/CO ₂ /magnetite extension veining within the CMC alteration. Tr-<1% Py, local minor	28.20 28.80	28.80 29.80		30. 67.	1.4 4.4	134. 899.	187. 127.	527. 6900.
	Cpy & Sph. Local CO./gtz/chl/bio shear veins. Local faulting. Sedimentary package cut by biotite rich dykes.	34.30	29.80 35.80		25.	4.4 0.3	099. 114.	127.	136.
	Cpy & Spri, Edda Coydiziciizbio shear vens. Locar radicing. Sedimentary package cut by blotte nor dykes.	48.00	48.40		25. 36.	0.3	58.	10.	215.
	46.6-69.3 FRAGMENTAL:	48.40	49.40		30. 37.	0.4	172.	319.	10625.
	40.003.3 FRAGMENTAL.	49.40	50.20		21.	1.1	139.	339.	925.
	59.9-60.2 20cm thick Qtz/CO ₃ /magnetite vein.	51.30	52.20		20.	0.1	97.	10.	179.
	63.2-63.4 20cm thick Qtz/COJ/magnetite vein.	52.20	53.40		20.	0.3	142.	52.	153.
		53.40	54.90		20.	0.7	126.	20.	196.
	78.4-84.0 FRAGMENTAL:	59.90	60.50		20.	0.4	98.	10.	171.
	10. TOTO IN TAXABLE TAXE.	63.20	63.60		20.	1.1	319.	10.	126.
	79.6-79.9 Qtz/CO√Chi/bio. Streaky shear. No M₀S₂ seen.	63.60	64.60		28.	0.1	73.	10.	142.
		72.80	73.50		34.	0.4	129.	17.	109.
95.6-98.5	TWIN: Pink & green altered shear. Mottled chl/CO,/bio with local Py concentration 15% over 10 cm. 1-2% Py	73.50	74.30		20.	0.1	53.	10.	160.
	overall. No M _s S, seen.	74.30	75.30		20.	0.1	52.	11.	127.
		75.30	75.80		20.	0.1	39.	15.	89.
98.5-99.9	BSU: (biotite spotted unit) Dark green, dense with local bio spots. Cut by qtz/CO3 vein and contains epid @	79.60	79.90		62.	2.8	92.	248.	2025.
	99.6-99.7	79.90	81.30		51.	0.8	138.	13.	185.
		81.30	82.10		235.	3.9	321.	101.	1250.
	110.3-114.1 GREYWACKE	82.10	83.20		24.	1.1	155.	15.	340.
		83.20	84.00		801.	63.0	198.	60.	245.
	111.4-111.5 Chl/CO ₃ /qtz/Py vein. 1% Py.	94.90	95.60		840.	2.8	151.	14.	90.
	113.95-114.1 Qtz/CO ₃ /Py/bio shear @ 40-45° to C.A. 5-6% Py.	95.60	96.70	2.00	1081.	3.2	360.	19.	118.
		96.70	97.35		500.	2.1	55.	13.	100.
114.1-115.0	BSU: Dense. Fine grained. 10% bio spots.	97.35	98 .10	3.40	2822.	4.1	385.	20.	120.
		98.10	98.50		640.	2.7	247.	16.	30.
	115.0-121.8 GREYWACKE	98.50	99.90		36.	1.7	55.	10.	132.
		105.30	106.10		249.	2.5	504.	10.	82.
	117.0-117.2 10cm qtz/CO ₃ /bio/chl/Py shear @ 50° to C.A. 1% Py.	106.10	107.50		151.	1.6	150.	10.	99 .
		107.50	108.20		122.	0.9	79.	10.	1200.
	121.8-133.7 FRAGMENTAL								
	122.7-122.8 Chl/qtz/CO ₄ /Py/bio vein.								

Drill Hole Rec.

etres From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pbppm	Zn ppr
		108.20	109.40		216.	2.3	231.	10.	127.
		109.40	110.30		183.	2.3	327.	10.	107.
		110.30	111.40		72.	1.3	123.	10.	119.
		111.40	111.60		102.	1.3	55.	14.	168.
1	133.7-157.5 GREYWACKE	111.60	112.60		58.	1.6	72.	10.	96.
		112.60	113.40		71.	1.3	169.	10.	77.
	134.9-135.1 Fault @ 60° to C.A.	113.40	113.95		134.	3.0	664.	13.	168.
	144.8-145.05 25cm qtz/CO ₃ /chl/Py/Sph shear @ 56-70° to C.A. 3% Py. 145.7-146.6 Fault.	113.95 114.20	114.20 115.00		533. 519.	13.9 1.8	2722. 48.	35.	3350 187.
	145.7-146.6 Fault. 156.8-157.3 Fault. Broken core/gouge.	114.20	115.00		519. 244.	8.6	40. 573.	10. 999.	121.
	100.00137.5 7 aun. Dioken colergouge.	115.30	117.00		166.	2.4	252.	22.	169.
	157.5-186.1 Greywacke/Siltstone	117.00	117.60		155.	2.8	153.	18.	198.
		117.60	118.50		110.	2.0	67.	21.	172.
	158.4-159.1 Fault. 45° to C.A.	118.50	119.10		111.	2.9	252.	10.	107.
	159.8-159.9 Fault. 2-4% Py.	122.70	123.00		115.	8.8	3955.	12.	170
	160.1-160.4 Qtz/CO3/bio/Py shear @ 90° to C.A. 2-4% Py.	123.00	124.20		86.	2.2	161.	10.	96.
	161.7-161.8 10cm qtz/CO ₃ /bio/Chl vein. <1% Py.	124.20	124.70		79.	2.8	188.	19.	115.
	163.0-166.0 Fault. 15-35° to C.A. 1% Py.	124.70	125.60		50.	1.9	87.	11.	150.
	M _o S ₂ along some fract surfaces.	125.60	126.90		87.	2.3	204.	12.	109.
	172.0-172.2 Fault	130.10	131.60		168.	0.4	181.		
	174.1-174.5 Qtz/C0 ₃ /bio/chl/Py shear @ 60° to C.A. 1-2% Py.	139.40	139.60		853.	0.6	125.		
	400 4 402 2 Conversion	143.60	144.80		75.	0.4	108.		
	186.1-193.3 Greywacke	144.80	145.10 150.30		342. 215.	1.6 2.1	356. 127.		
	188.0-188.3 Fault.	148.80	150.80		215.	1.1	273.		
	100.0-100.0 1 Buik.	152.90	154.40		230. 61.	0.2	273. 59.		
	EOH 193.3m	157.50	157.80	1.20	1867.	1.2	535.		
		157.80	159.10		70.	0.5	352.		
		159.10	160.10		111.	0.5	233.		
1		160.10	160.40		124.	0.5	316.		
		160.40	161.70		20.	0.2	136.		
1		161.70	162.10	0.45	1073.	0.3	79.		
		162.10	164.00		23.	0.1	246.		
		164.00	166.00		142.	1.1	418.		
		173.00	174.10		60. 50	0.2	153.		
		174.10 181.70	174.50 183.40		50. 99.	1.3 0.8	259. 464 .		
ļ		181.70	183.40		99. 94.	0.8	464. 291.		
		184.20	185.30		94. 25.	0.8	291. 135.		
		185.30	185.90		25.	1.0	208.		
		END	100.00		20.	1.0	200.		

Property SNIP	District Liard, M.D.	Length: 90.9m	
Commenced: Aug. 30, 1994	Corr. Dip: -45°	Core Size: BQ2	
Completed: Aug. 31, 1994	d: Aug. 31, 1994 True Brg: 030° % Recov.		
Coordinates: 1850N 4125E	Elevation: 228.85m	Tests: 81.7m -43.5 @ 030°	

Target: Twin West Extension Logged By: KD

Metres From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn ppn
0.0-90.9	GREYWACKE/FRAGMENTAL:	32.00	33.00		98.	1.8	170.		
		33.00	33.90		101.	2.6	142.		
	Med-dark grey. Local, light grey/buff, fine grained wacke. Fragmental composed of fine grained, bio rich matrix	33.90	34.60		175.	1.1	226.		
	with 30 - 50% light coloured fragments averaging 1 cm in diameter. Weak fabric developed @ 45-55° to core	34.60	34.90		101.	1.4	323.		
	axis (C.A.). 3-5% qtz/CO ₃ veining. 1-3% Py. Bio alteration until 63m then epidote/chl altered. Local shear	34.90	36.00		127.	1.2	220.		
	veining. Local faulting. First 18m - limonitic fractures.	36.00	37.00		75.	2.3	360.		
		51.10	52.00		66.	5.4	557.		
	0.0 - 30.3 FRAGMENTAL:	52.00	53.00		119.	3.4	965.		
		53.00	53.30		78.	6.9	1678.		
	8.9-11.4 Fault.	53.30	54.40		216.	3.4	618.		
	11.9-12.3 Fault.	54.40	54.70		53.	2.6	382.		
	12.3-18.4 Local bleaching up to 1.5 m.	54.70	56.55		47.	3.2	525.		
	27.8-28.3 Mod shear @ 55° to C.A. 1-3% Py.	56.55	56.65		146.	3.9	425.		
		56.65	58.00		16.	4.9	460.		
	30.3 - 60.5 GREYWACKE	58.00	59.50		66.	2.2	407.		
		59.50	60.50		26.	2.5	372.		
	34.6-34.9 Intense epidote alteration.	60.50	61.50	2.80	3042.	14.2	1142.		
	51.1-60.5 Bio alteration increase with depth.	61.50	62.40		107.	5.6 2.3	23. 50.		
50.5-61.5	TWN: Hanging wall Twin Vein	62.40 62.90	62.90 63.10		45. 602.	2.3 5.3	50. 650.		
50.5-61.5	I WIN: Hanging wai I win Vein	63.10	80.10		602. 57.	5.3 1.6	650. 172.		
	60.5-60.9 Qtz/CO_/Py/Po/Sphvein @ 45-50° to C.A.	80.10	80.70		150.	2.7	191.		
	60.9-61.5 Qtz/COJ/Chi shear vein @ 45° to C.A.	80.70	81.40	0.10	24.	3.5	119.	165.	4250.
	Appearance of P&G (pink and green) but not much pink.	81.40	82.50	0.10	24. 70.	2.5	113.	100.	4200.
	Appearance of PadS (prink and green) but not much prink.	END	02.50		70.	2.5	112.		
62.4-62.9	BSU: Med brown, typical unit. Upper contact @ 50° to C.A. Marked by 2 cm qtz/CO ₃ vein. Lower contact @ 65° to C.A.								
62.9-63.1	TWIN: Footwall twin vein. Qtz/CO3/Chl shear vein @ 50° to C.A. 3-5% Py.								
	63.3 - 90.9 GREYWACKE:								
	67.0-68.0 Transition of bio alteration to chl alteration.								
	68.0-80.5 Epidote altered clasts & fracture fillings.								
	80.7-81.4 Qtz/CO ₃ /bio shear vein @ 40 - 45° to C.A. 1-3% Py.								
	EOH @ 90.9m								

Drill Hole Rec

\$

Property SNIP	District Liard, M.D.	Length: 157.9m	
Commenced: Aug. 31, 1994	Corr. Dip: -68°	Core Size: BQ2	
Completed: Sept. 3, 1994	True Brg: 030°	% Recov.	
Coordinates: 1850N 4125E	Elevation: 228.85m	Tests: 157.9m -70° @ 030°	

Target: Twin West Extension Logged By: KD

Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn ppm
GREYWACKE:	34.50	35.40		21.	2.2	121.	I	
GREENWORL.	35.40	35.90		69.	10.9	205.		
Typical med-dark grey, fine grained, massive wacke with weak fabric @ 45-50° to core axis (C.A.). Weak bio	35.90	37.85		22.	3.5	200. 99.		
afteration increasing with depth. Local weak epidote alteration of clasts & as fracture filling. 3-5% qtz/CO,	37.85	38.20		126.	2.2	119.		
veining, 1-3% Py. Local tr Po, Cpy, M_0S_2 Visible gold associated with shears veins. Local, weak, shear fabric	38.20	39.00		182.	2.1	454.		
@ 45-50° to C.A. Local bleaching & faulting. Sediments cut by late dykes.	45.10	46.50		137.	3.8	309.		
	46.50	48.00		82.	2.4	225.		
MAFIC DYKE: Dark grey, fine grained, weakly magnetic. 3-5% light coloured phenos up to 5mm. Probable	48.00	48.70		46.	2.3	133.		
altered pyroxines. Upper contact @ 45°. 7cm gouge @ lower contact.	48.70	48.90		131.	4.2	221.		
and da pyronineo. Opper contact (2 30 - roin goage (2 forei contact.	48.90	50.00		121.	5.2	296.		
0.0 - 63.2 GREYWACKE	59.00	60.50		99.	3.7	250.		
	60.50	60.60		188.	4.6	723.		
25.5-26.1 Fault.	60.60	62.00		136.	2.8	273.		
35.4-35.9 Qtz/CO _u bio shear vein @ 40° to C.A.	62.00	63.20		143.	2.6	186.		
3-5% Py, 1-3% Sph.	63.20	64.20	69.55	42125.	2.0	138.		
37.85-38.2 Qtz/CO,/bio shear vein @ 45° to C.A. 3-5% Py	64.20	65.30	09.55	42125.	0.7	68.		
48.7-48.9 Qtz/CO ₄ /bio shear vein @ 60° to C A. 1-3% Py	65.30	65.40		193.	21.3	228.		
60.5-60.6 Chl/qtz/CO ₃ shear @ 45° to C A. 1-3% Py	65.40	66.05		193.	0.5	220. 101.		
60.5-60.6 Chi/diz/CO3 shear @ 45 to C A (-5% Fy	66.05	66.15		245.	3.9	809.		
TWIN: Hanging wall. P&G (pink & green) vein @ 55° to C.A. M ₆ S, on fractures. 3-5% Py, tr Po, CPy.	66.15	67.90		245. 183.	3.9 1.7	197.		
Several dots VG (visible gold) noted.	67.90	68.70		57.	0.2	105.		
Several dots VG (Visible gold) hoted.		70.00						
	68.70			64. 110	0.2			
64.2 - 65.4 GREYWACKE	70.00	71.50		116.	0.7		105. 128. 166.	
	71.50	73.00		113.	0.8			
65.3-65.4 Qtz/CO, shear vein @ 50° to C.A. 1-3% Py.	73.00	73.35		217.	1.5	247.		
	73.35	75.00		141.	0.9	153.		
BSU: Dark brown, typical. Upper contact @ 70° to C.A. 1cm qtz/CO ₃ /chl shear vein @ 70° to C.A.	99.60	99.70		90.	0.4	128.		
	114.00	115.00		55.	0.6	80.	ppm	
66.05 - 67.9 GREYWACKE	115.00	115.20		65. 00	0.7	154.		
	115.20	116.20		90.	0.8	245.		
66.05-66.15 P&G shear vein @ 65° to C.A. 1-3% Py.	116.20	116.90		144.	1.2	655.		
	116.90	118.00		99.	0.9	278.		
BSU: Dark brown/green. Upper contact @ 70° to C.A. Lower contact @ 65° to C.A.	119.90	120.10		113.	0.5	169.		
	139.00	140.20		49.	1.3	336.		
68.7 - 157.9 GREYWACKE	140.20	140.50		63.	0.7	401.		
	140.50	142.00		57.	0.7	253.		
73.0-73.35 Qtz/CO ₃ /chl shear vein @ 45° to C.A. 1-3% Py.	END							
99.6-99.7 Qtz/CO ₃ /chi rich shear @ 40° to C.A. 3-5% Py.								
119.9-120.1 Qtz/CO, vein @ 80° to C.A. 3-5% Py.								
140.2-140.5 Qtz/CO ₃ shear vein @ 30° to C.A. 3-5% Py.								
147.9-148.0 Fault @ 25° to C.A.								
EOH @ 157.9m								
140.2-140.5 Qtz/C	⊙, shear vein @ 30° to C.A. 3-5% Py. @ 25° to C.A.	O, shear vein @ 30° to C.A. 3-5% Py. @ 25° to C.A.	O, shear vein @ 30° to C.A. 3-5% Py. @ 25° to C.A.	O, shear vein @ 30° to C.A. 3-5% Py. @ 25° to C.A.	⊙, shear vein @ 30° to C.A. 3-5% Py. @ 25° to C.A. 	O, shear vein @ 30° to C.A. 3-5% Py. @ 25° to C.A.	O, shear vein @ 30° to C.A. 3-5% Py. @ 25° to C.A.	O, shear vein @ 30° to C.A. 3-5% Py. @ 25° to C.A.

Drill Hole Reco

Property SNIP	District Liard, M.D.	Length: 91.1m	
Commenced: Sept 3, 1994	Corr. Dip: -83°	Core Size: BQZ	
Completed: Sept 4, 1994	True Brg: 030°	% Recov.	
Coordinates: 1850 N 4125 E	Elevation: 228.85cm	Tests: 91.1m -80° @ 030°	

Logged By: KD Target: Twin West Extension

Metres From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn ppm
0-91.1	GREYWACKE:	74.00	75.30	7.05	59. 642.	0.7 5.5	194. 372.		
	Typical, med-dark grey, fine grained, massive wacke with a weak fabric developed @ 50-60° to C.A. Weak epidote atteration of larger fragments and as fracture fillings. 3-5% qtz/CO ₃ veining. Locally increasing to 5-7% as tension gashes & fracture fillings. 1-3% Py, minor Sph. Local bleaching with minor sericite. Local faulting. Sediments cut by Twin shear vein, BSU dyke & local mafic dykes. 15.3-17.2 Local Bleaching.	75.30 75.90 77.25 81.80 82.20 82.45 END	75.90 77.25 78.50 82.20 82.45 83.50	7.85 2.50	642. 357. 90. 42. 590. 116.	5.5 17.6 0.3 1.9 4.4 0.5	987. 987. 88. 517. 1230. 230.		
18.5-24.8	MAFIC DYKE: Dark grey-charcoal, fine grained with 5-7%, 1-2mm, olive, soft clay like spots. Possible sericite infilled vesicles. Upper contact @ 40° to C.A. Lower contact 15° to C.A. Possibly drilling down dyke.								
26.8-27.3	MAFIC DYKE: As previously described. 57.0-57.5 Fault. 62.3-63.1 Bleached. 64.3-65.5 Fault. Bleached, 5% gouge. 66.5-70.9 Bleached.								
75.3-77.2	TWIN: Hanging wall. Qtz/CO ₃ /chl shear vein @ 60° to C.A. Appearance like P&G (pink and green) but no pink carb. 3-5% Py, Tr-1% Sph.								
80.5-81.8	BSU: Dark green, fine grained with 5% indistinct bio spots. Upper contact @ 50° to C.A. Marked by 1cm qtz/CO ₃ vein. Lower contact @ 40° to C.A. Bleached.								
	82.2-82.45 Qtz/CO ₃ /Py vein @ 50° to C.A. 10-15% Py. 85.7-86.3 Fault, 5% gouge.								
89.8-90.1	BSU: Upper contact @ 40° to C.A. Lower contact @ 70° to C.A.								
	EOH @ 91.1m								

Drill Hole R d

_

.

Property SNIP	District Liard, M.D.	Length: 93.9m	
Commenced: Sept 5, 1994	Corr. Dip: -50°	Core Size: BQZ	
Completed: Sept 6, 1994	True Brg: 030°	% Recov.	
Coordinates: 1851 N 4173 E	Elevation: 258.5	Tests: 93.9n -50° @ 030°	

Target: Twin West Projection Logged By: KD

Metres From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn ppm
0.0-93.9	GREYWACKE:	38.00	38.80		183.	1.3	126.		
		38.80	39.50		45.	2.4	259.		
	Typical, med-dark grey, fine grained, massive wacke with weak fabric @ 40-45° to core axis (C.A.). Becomes	39.50	41.00		119.	1.9	197.		
	coarser grained with depth. Weak, pervasive bio alteration. Local epidote alteration. 1-3% qtz/CO ₃ veining.	44.60	45.80		55.	1.0	101.		
	Tr-1% Py. Local MoS2 associated with shear veins. Less qtz/CO ₃ & Py than previously seen in wacke. Local	45.80	46.50		202.	1.2	25.		
	weak-mod bio rich shear fabric. Unit cut by Twin shear vein and BSU. Locally faulted & bleached.	72.00	72.80		99 .	1.0	1 80 .		
		72.80	73.60		289.	2.5	367.		
	45.8-46.5 Fault. Bio/qtz/CO ₃ rich.	73.60	74.00	2.10	1846.	2.7	132.		
	51.7-52.8 Fault Bleached.	74.00	76.00		39.	0.1	20.		
	55.6-55.8 Fault.	76.00	77.60		593.	1.0	27.		
	73.6-74.0 P&G (pink & green) shear vein @ 85° to C.A. 1-3% Py, tr MoS2.	77.60	78.20	2.05	3594.	3.4	107.		
		78.20	78.40		363.	1.0	46.		
77.6-78.5	Twin Zone:	78.40	78.50		110.	0.9	57.		
		78.50	80.00		279.	0.2	30.		
	77.6-78.2 Qtz/CO ₃ /bio shear vein @ 80° to C.A. 3-5% Py.	84.30	84.60		26.	0.4	62.		
	78.2-78.4 BSU.	84.60	85.80		28.	0.3	82.		
	78.4-78.5 Qtz/CO ₃ shear vein @ 80° to C.A.	END							
82.6-84.3	BSU: Dark green, 10-15% spots, typical. Upper contact @ 80° to C.A.								
	87.3-87.4 Fault @ 45° to C.A. Gouge.								
	EOH @ 93.9m								

Drill Hole Rud

District Liard, M.D.	Length: 93.9m	
Corr. Dip: -62°	Core Size: BQZ	
True Brg: 030°	% Recov	
Elevation: 258.5m	Tests: 93.9m -61° @ 030°	
	Corr. Dip: -62° True Brg: 030°	Corr. Dip: -62° Core Size: BQZ True Brg: 030° % Recov.

Target: Twin West Extension Logged By: KD

Drill Hole Rc I

Metres From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn ppm
0-93,9	GREYWACKE	50.00	51.35		683.	422.7	72.		•
		51.35	51.70		300.	1.2	79		
	Typical, med-dark grey, fine grained, massive wacke with weak fabric @ 50-55° to C.A. Locally coarser	51.70	53.00		434.	0.8	96.		
	grained. Weak, pervasive bio alteration. Local epidote alteration of clasts and as fracture filling. 3-5% qtz/CO3	53.00	53.90		108.	461.8	65.		
	veining. Local qtz/CO ₃ ± chl, bio shear veins @ 65-70° to C.A. up to 11-20 cm wide with 1-3% Py. 1-3% Py	53.90	54.40		104.	0.9	62.		
	over entire unit increasing to 3-5% Py with depth. Unit cut by Twin shear vein and BSU. Local faulting,	54.40	55.00		115.	1.4	79.		
		55.00	55.25		81.	1.6	72.		
	0-81.1 Greywacke	55.25	56.50		96.	39.7	69.		
		78.50	80.00		340.	0.4	15.		
	6.4-6.8 Fault.	80.00	81.10		96.	1.7	19.		
	51.35-51.7 Qtz/CO ₃ /chl shear @ 70° to C.A. 3-5% Py	81.10	81.50	2.95	2969.	12.8	1678.		
	53.9-54.4 Qtz/CO ₃ /bio shear @ 65° to C.A. 1-3% Py.	81.50	81.95		67.	0.8	63.		
	55.0-55.25 Qtz/CO ₃ /bio shear @ 65° to C.A. 1-3% Py.	81.95	82.25		258.	2.0	243.		
	66.0-66.4 Fault.	82.25	82.60		437.	1.5	216.		
		82.60	84.20		101.	1.2	268.		
73.3-81.1	Dyke: Light grey, felsic zone, possible dyke but possible wacke. Fine-med grained, massive with 10-15%, 1-	84.20	86.70		50.	0.3	41.		
	3mm fragments (phenos?). 1-3% dark bio laths & blebs. Sharp upper contact @ 55° to C.A. Sharp lower	86.70	86.90		171.	1.9	274.		
	contact @ 70° to C.A.	86.90	87.30	1.50	1391.	0.6	76.		
		87.30	88.70	1.80	1977.	1.0	395.		
81.1-82.25	Twin: Twin shear:	88.70	90.00		409.	0.8	251.		
	81.1-81.5 Twin: Semi-massive Py vein grading into qtz/CO ₃ /chl shear vein. 30-40% Py, 7-10%	END							
	Po, Tr CPy, @ 70° to C.A.								
	81.5-81.95 BSU: Dark brown with 10% spots. 1-3% Po.								
	81.95-82.25 Twin: Footwall. Pink & green. 3-5% Py. Tr Mo on slips.								
	82.25-84.2 Greywacke: Med grey/brown with mod bio alteration. Weak-mod shear @ 65 to C.A. 3-5% Py.								
84.2-87.3	BSU: Dark green with 10-15% spots. Upper contact @ 80° to C.A. Lower contact @ 70° to C.A.								
	87.3-93.9 Greywacke								
	87.3-88.7 Mod shear @ 60-70° to C.A. Pink bio alteration 3-5% Py								
	EOH @ 93.9m								

Property SNIP	District Liard, M.D.	Length: 110.7m	
Commenced: Sept 8, 1994	Corr. Dip: -75°	Core Size: BQZ	
Completed: Sept 9, 1994	True Brg: 030°	% Recov.	
Coordinates: 1851 N 4173 E	Elevation: 258.5	Tests: 11.7m -80° @ 030°	

Target: Twin West Extension Logged By: KD

Metres From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn ppm
0.0-3.0	Overburden: None Recovered.	63.00	64.50		132.	0.5	69.		
		64.50	65.40		262.	0.2	58.		
3.0-110.7	GREYWACKE:	65.40 66.00	66.00 67.00		20. 194.	0.2 0.6	22. 24.		
	Typical. Med-dark grey & green/grey, fine grained, massive wacke with weak fabric @ 50-60° to C.A. Locally	87.10	87.40	2.00	2254.	1.7	24. 174.		
	coarser grained. Local chl, bio & weak epidote alteration. 3-5% qtz/CO ₃ veining. Local qtz/CO ₃ /bio shear	87.40	88.50	2.00	261.	0.1	19.		
	veins @ 50-55° to C.A. 1-3% Pv. MoS2 associated with Twin. Local bleached & fault zones. Unit cut by Twin	88.50	90.05		130.	0.1	21.		
	shear vein & BSU.	100.00	100.80		46.	0.1	20.		
		100.80	101.50		0.	0.0	0.		
	24.1-24.3 Fault.	101.50	102.30		135.	0.9	158.		
	56.5-57.3 Fault.	102.30	103.20		257.	0.7	110.		
	60.5-60.6 Qtz/CO ₃ /bio shear @ 55° to C.A. 1-3% Py	103.20	104.50		33.	0.1	33.		
	87.1-87.4 Qtz/CO ₃ /bio shear @ 75° to C.A. 1-3% Py	104.50 104.70	104.70 106.00		118. 20.	0.2 0.2	81. 15.		
93.9-95.3	BSU: Typical. Greenish due to chi alteration. Sharp upper contact @ 75° to C.A. Sharp lower contact @ 70° to C.A.	END	108.00		20.	0.2	15.		
	95.3-100.3 Greywacke: Bleached light grey/buff with 5-7% bio spots. Possible bleached BSU.								
100.8-101.5	Twin: Hanging wall. Twin shear vein. Pink & green shear vein @ 65-70° to C.A. Mod shear with sheared fragments elongate to shear direction. 1-3% Py. Minor MoS2 on slips.								
	101.5-110.7 Greywacke								
	104.5-104.7 Qtz/CO ₃ /Bio shear vein @ 30° to C.A.								
	EOH @ 110.7m								
· · · · · · · · · · · · · · · · · · ·									

Drill Hole Ru J

Property SNIP	Óistrict Liard, M.D.	Length: 133.8m	
Commenced: Sept 9, 1994	Corr. Dip: -87°	Core Size: BQZ	
Completed: Sept 11, 1994	True Brg: 030°	% Recov	
Coordinates: 1851 N 4173 E	Elevation: 258.5m	Tests: No Tests	

Target: Twin West Extension Logged By: KD

Metres From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn ppm
0-133.8	GREYWACKE:	67.85	68.00		280.	0.5	256.		
		68.00	69.70		71.	0.3	155.		
	Med-dark grey, fine grained, locally coarse grained, wacke with weak fabric @ 50-55° to C.A. Green & brown	69.70	69.80		65.	0.3	179.		
	where chl & bio attered. Local, weak epidote atteration. $3-5\%$ qtz/CO ₃ veining. Local qtz/CO ₃ / ± chl, bio shear	69.80	71.00		74.	0.2	156.		
	veins @ 30-50° to C.A. 1-3% Py. Wacke cut by BSU. Locally bleached & faulted.	71.00	72.00		82.	0.2	177.		
		72.00	73.20		121.	0.4	145.		
	19,1-19.9 Fault. Bleached with gouge.	73.20	73.65		57.	0.3	142.		
	32.0-32.1 Qtz/CO ₃ shear @ 40° to C.A. 3-5% Py.	73.65	74.70		47.	0.9	188.		
	34.9-35.3 Fault. Bleached.	74.70	75.50		68.	0.8	182.		
	63.5-63.7 3cm shear with 7-10% Py.	75.50	76.60		92.	2.4	202.		
	67.85-68.0 Qtz/CO ₃ /chl shear vein @ 25° to C.A. 3-5% Py.	76.60	78.00		15.	1.0	135.		
	69.7-69.8 Qtz/CO, shear vein @35° to C.A. 1-3% Py.	108.60	109.30		222.	10.1	1943.		
	73.2-73.65 Qtz/CO ₃ /chl shear vein @ 50° to C.A. 1-3% Py	109.30	109.80		519.	5.3	1145.		
	74.7-76.6 Qtz/CO ₃ /bio shear zone @ 45-50° to C A. 1-3% Py	109.80	110.20		86.	0.3	75.		
	104.0-104.8 Fault. Bleached with gouge.	110.20	110.45		160.	0.5	102.		
		110.45	111.20		231	0.9	77.		
06.5-108.6	BSU: Dark green/brown. Typical. Upper contact @ 45° to C.A. Lower contact - broken.	111.20	112.20		863.	2.7	725.		
		112.20	113.00		118.	0.7	175.		
	108.6-133.8 Greywacke	128.90	130.70		175.	1.6	403.		
		130.70	131.90		74.	1.5	113.		
	109.3-109.8 Qtz/CO ₃ /chl shear vein @ 45° to C.A. 3-5% Py.	131.90	132.50	1.55	1044.	9.0	1084.		
	110.2-110.45 Qtz/CO₃/chi shear vein @ 45° to C.A. 3-5% Py.	132.50	133.80		44.	0.4	145.		
	111.2-112.2 Mod-well shear'd @ 45-50° to C.A. Bio rich. Qtz/CO ₃ /chl banding up to 10cm wide. Poorly developed pink & green.	END							
	131.9-132.5 Qtz/CO, shear @ 40-45° to C.A. 3-5% Py, 1-3% Sph, tr CPy.								
	EOH @ 133.8 m								
·		+			1		-T	T	1
		1					1	1	

Drill Hole Re

Property SNIP	District Liard, M.D.	Length: 84.8 m	
Commenced: Sept 11, 1994	Corr. Dip: -50°	Core Size: BQZ	
Completed: Sept 12, 1994	True Brg: 018°	% Recov.	
Coordinates: 1851 N 4173 E	Elevation: 258.5m	Tests: 84.7m -51° @ 018°	

Target: Twin West Extension Logged By: KD

Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn ppm
Overburden: None Recovered.	70.50	71.00		83.	2.2	543.		
	74.50	75.80		493.	1.5	281.		
GREYWACKE: Typical. Med-dark grey, fine grained, locally coarser grained, massive wacke with weak fabric	75.80	76.30	6.10	4264.	1.3	168.		
@ 35-40° to C.A. Local epidote alteration. Local, minor chl alteration. 3-5% qtz/CO, veining. Local, bull qtz	76.30	77.00		180.	0.3	42.		
veins up to 20cm. Local qtz/CO ₃ /bio shear veins. 1-3% Py. Locally faulted. Upper 10m broken due to	77.00	78.00		75.	0.2	36.		
surface effects. Unit cut by BSU.	78.00	78.50		399.	0.3	81.		
	78.50	80.00		204.	1.3	176.		
54.2-54.5 Mod shear'd @ 70° to C.A.	END							
63.4-64.5 Fault @ 40° to C.A.								
70.5-70.6 Qtz/CO ₃ /bio shear vein @ 65° to C.A.								
70.8-71.0 Well shear'd @ 55° to C.A. Bio rich. 1-3% Py.								
74.5-75.4 Fault.								
75.8-76.3 Weak pink & green with 30 cm qtz/CO ₃ shear vein. Possible Twin.								
76.3-80.0 Fault bleached/sericitic. Possible chl. Mo on slips.								
BSU: Dark green with 10-15% bio spots @ 70° tp C.A. Typical								
EOH @ 84.8m								
	 Overburden: None Recovered. GREYWACKE: Typical. Med-dark grey, fine grained, locally coarser grained, massive wacke with weak fabric @ 35-40° to C.A. Local epidote alteration. Local, minor chl alteration. 3-5% qtz/CO₃ veining. Local, bull qtz veins up to 20cm. Local qtz/CO₃/bio shear veins. 1-3% Py. Locally faulted. Upper 10m broken due to surface effects. Unit cut by BSU. 54.2-54.5 Mod shear'd @ 70° to C.A. 63.4-64.5 Fault @ 40° to C.A. 70.5-70.6 Qtz/CO₃/bio shear vein @ 65° to C.A. 70.8-71.0 Well shear'd @ 55° to C.A. Bio rich. 1-3% Py. 74.5-75.4 Fault. 75.8-76.3 Weak pink & green with 30 cm qtz/CO₃ shear vein. Possible Twin. 76.3-80.0 Fault bleached/sericitic. Possible chl. Mo on slips. BSU: Dark green with 10-15% bio spots @ 70° tp C.A. Typical. 	Overburden: None Recovered. 70.50 GREYWACKE: Typical. Med-dark grey, fine grained, locally coarser grained, massive wacke with weak fabric 74.50 @ 35-40° to C.A. Local epidote alteration. Local, minor chl alteration. 3-5% qtz/CO ₃ veining. Local, bull qtz 76.30 veins up to 20cm. Local qtz/CO ₃ /bio shear veins. 1-3% Py. Locally faulted. Upper 10m broken due to 77.00 surface effects. Unit cut by BSU. 78.00 54.2-54.5 Mod shear'd @ 70° to C.A. 63.4-64.5 Fault @ 40° to C.A. 70.57.0.6 Qtz/CO ₃ /bio shear vein @ 65° to C.A. 70.57.1.0 Weil shear'd @ 55° to C.A. Bio rich. 1-3% Py. 73.8-76.3 Weak pink & green with 30 cm qtz/CO ₃ shear vein. Possible Twin. 76.3-80.0 Fault bleached/sericitic. Possible chl. Mo on slips. BSU: Dark green with 10-15% bio spots @ 70° tp C.A. Typical.	Overburden: None Recovered. 70.50 71.00 GREYWACKE: Typical. Med-dark grey, fine grained, locally coarser grained, massive wacke with weak fabric 76.30 74.50 75.80 @ 35-40° to C.A. Local epidote alteration. Local, minor chl alteration. 3-5% qtz/CO ₃ veining. Local, bull qtz 76.30 77.00 veins up to 20cm. Local qtz/CO ₃ /bio shear veins. 1-3% Py. Locally faulted. Upper 10m broken due to 76.30 77.00 surface effects. Unit cut by BSU. 70.50 to C.A. 78.00 78.00 54.2-54.5 Mod shear'd @ 70° to C.A. 70.50 to C.A. 78.50 63.4-64.5 Fault @ 40° to C.A. 70.50 to C.A. 78.50 70.57.06 Qtz/CO ₃ /bio shear vein @ 65° to C.A. 70.57 to C.A. 80.00 Fault. 75.8-76.3 Weak pink & green with 30 cm qtz/CO ₃ shear vein. Possible Twin. 76.3-80.0 Fault bleached/sericitic. Possible chl. Mo on slips. BSU: Dark green with 10-15% bio spots @ 70° tp C.A. Typical. Sto To C.A. Typical. Sto To C.A. Sto To C.A.	DescriptionFromTog/tOverburden: None Recovered.70.5071.0074.5075.80GREYWACKE: Typical. Med-dark grey, fine grained, locally coarser grained, massive wacke with weak fabric @ 35-40° to C.A. Local epidote alteration. Local, minor chi alteration. 3-5% qtz/CO3 veining. Local, bull qtz76.3076.306.10Weins up to 20cm. Local qtz/CO3/bio shear veins.1-3% Py. Locally faulted. Upper 10m broken due to surface effects. Unit cut by BSU.76.3078.5078.0054.2-54.5Mod shear'd @ 70° to C.A.63.4-64.5Fault @ 40° to C.A.78.5080.0078.5054.2-54.5Mod shear'd @ 70° to C.A.65° to C.A.END78.5080.0078.5070.5-70.6Qtz/CO3/bio shear vein @ 65° to C.A.70.57.4Fault.75.8-76.3Weak pink & green with 30 cm qtz/CO3 shear vein. Possible Twin.76.3-80.0Fault bleached/sericitic. Possible chi. Mo on slips.BSU: Dark green with 10-15% bio spots @ 70° tp C.A. TypicalVein Super Supe	Description To g/t ppb Overburden: None Recovered. 70.50 71.00 83. GREYWACKE: Typical. Med-dark grey, fine grained, locally coarser grained, massive wacke with weak fabric 76.50 71.00 83. @ 35-40° to C.A. Local epidote alteration. Local, minor chl alteration. 3-5% qtz/CO ₃ veining. Local, bull qtz 76.30 77.00 180. veins up to 20cm. Local qtz/CO ₃ /bio shear veins. 1-3% Py. Locally faulted. Upper 10m broken due to 77.00 78.00 75. surface effects. Unit cut by BSU. 54.2-54.5 Mod shear'd @ 70° to C.A. 83. 78.50 80.00 204. END 54.2-54.5 Mod shear'd @ 70° to C.A. 80.00 204. END 54.2-54.5 Mod shear'd @ 70° to C.A. 80 rot. 1-3% Py. 78.50 80.00 204. Fault. 75.8-76.3 Weak pink & green with 30 cm qtz/CO ₃ shear vein. Possible Twin. 76.38.0. Fault. 75.80 76.50 204. BSU: Dark green with 10-15% bio spots @ 70° tp C.A. Typical BSU: Dark green with 10-15% bio spots @ 70° tp C.A. Typical Fault bleached/sericitic. Possible chl. Mo on slips. Fault bleached/sericitic. Fault bleached/seric	Description From To g/t ppb g/t Overburden: None Recovered. 70.50 71.00 83. 2.2 GREYWACKE: Typical. Med-dark grey, fine grained, locally coarser grained, massive wacke with weak fabric @ 35-40° to C.A. Local epidote alteration. Local, minor chl atteration. 3-5% qtz/CO ₃ veining. Local, bull qtz veins up to 20cm. Local qtz/CO ₃ /bio shear veins. 70.50 71.00 83. 2.2 74.50 75.80 493. 1.5 g 35-40° to C.A. Local epidote alteration. Local, minor chl atteration. 3-5% qtz/CO ₃ veining. Local, bull qtz veins up to 20cm. Local qtz/CO ₃ /bio shear veins. 77.00 78.00 75. 0.2 surface effects. Unit cut by BSU. 34-64.5 Fault @ 40° to C.A. 78.50 80.00 204. 1.3 63.4-64.5 Fault @ 40° to C.A. 65° to C.A. 76.50 to C.A. 78.50 80.00 204. 1.3 70.8-71.0 Well sheard @ 55° to C.A. Bio rich. 1-3% Py. Py. Py. 74.57.57.4 Fault. 75.8-76.3 Weak pink & green with 30 cm qtz/CO, shear vein. Possible Twin. 76.3-80.0 Fault bleached/sericitic. Possible chl. Mo on slips SU: Dark green with 10-15% bio spots @ 70° tp C.A. Typi	Description From To g/t ppb g/t ppm Overburden: None Recovered. 70.50 71.00 83. 2.2 543. GREYWACKE: Typical. Med-dark grey, fine grained, locally coarser grained, massive wacke with weak fabric @ 35-40° to C.A. Local epidote alteration. Local, minor chi alteration. 3-5% qtz/CO, veining. Local, bull qtz 76.30 76.30 6.10 4264. 1.3 168. @ 35-40° to C.A. Local epidote alteration. Local, minor chi alteration. 3-5% qtz/CO, veining. Local, bull qtz 76.30 77.00 180. 0.3 42. veins up to 20cm. Local qtz/CO ₃ /bio shear veins. 1-3% Py. Locally faulted. Upper 10m broken due to surface effects. Unit cut by BSU. 78.00 78.50 399. 0.3 81. 54.2-54.5< Mod shear'd @ 70° to C.A.	Description From To g/t ppb g/t ppm ppm Overburden: None Recovered. 70.50 71.00 83. 2.2 543. 540. GREYWACKE: Typical. Med-dark grey, fine grained, locally coarser grained, massive wacke with weak fabric @ 35-40° to C.A. Local epidote alteration. Local. minor chi alteration 3-5% qtz/CO, veining. Local, buil qtz veins up to 20cm. Local qtz/CO,/bio shear veins. 1-3% Py. Locally faulted. Upper 10m broken due to surface effects. Unit cut by BSU 76.30 77.00 180. 0.3 42. 74.57.56 Fault @ 40° to C.A. 63.464.5 Fault @ 40° to C.A. 76.50 76.50 399. 0.3 81. 54.2-54.5 Mod shear'd @ 70° to C.A. 63.464.5 Fault @ 40° to C.A. 76.50 204. 1.3 176. END 74.57.54 Fault. 76.30 77.00 78.00 78.50 399. 0.3 81. 75.57.6 Otz/CO,/bio shear vein @ 65° to C.A. 70.57.06 Ctz/CO,/bio shear vein @ 65° to C.A. 76.30 78.50 399. 0.3 81. 75.8.76.3 Weak pink & green with 30 cm qtz/CO, shear vein. Possible Twin. 76.

Drill Hole Rud

. . . .

Property SNIP	District Liard, M.D.	Length: 91.9m	••••
Commenced: Sept 13, 1994	Corr. Dip: -45°	Core Size: BQZ	
Completed: Sept 15, 1994	True Brg: 030°	% Recov.	
Coordinates: 1825N 4100E	Elevation: 220m	Tests: 90.8m -45° @ 030°	

Target: Twin West Extension Logged By: KD

Metres From To	Description	From	То	, Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn ppm
0.0-91.9	 GREYWACKE/SILTSTONE: Med-dark grey, fine grained, massive wacke with weak fabric @ 50-55° to C.A. Interbedded with mottled, light-med grey & tan, fine grained-aphantic, mod fractured siltstone units up to 5-10m. Local weak-mod bio atteration and local weak epidote alteration of sediments. Locally bleached & siliceous. 3-5% qtz/CO₃ veining & fracture filling. Local shear veins @ 45-55° to C.A. Up to 30-40cm. 1-3% Py, 3-5% Py associated with shears. Locally faulted. 0.0-51.2 Greywacke: 19.3-19.7 Fault. Limonitic fractures. 24.6-25.05 qtz/CO₃ shear vein @ 45· to C.A. Tr-1% Py, 3-5% magnetite. 38.2-39.4 Mod shear vein @ 50-55° to C.A. Qtz/CO₃/bio. 1-3% Py. 49.5-50.9 qtz/CO₃/bio shear @ 45-50° to C.A. 3-5% Py. 51.2-59.8 Siltstone 	37.00 37.70 38.20 48.80 49.00 49.50 50.90 74.00 74.80 75.60 END	37.70 38.20 39.40 48.80 49.00 49.50 50.90 51.90 74.80 75.60 76.30	2.00	26. 86. 62. 73. 102. 62. 70. 85. 242. 1404. 93.	1.0 0.6 0.8 0.4 5.0 0.5 0.4 1.6 0.9 2.9 1.0	143. 94. 134. 125. 168. 157. 153. 159. 167. 108.		
59.8-61.1	51.2-51.9 Bleached, siliceous. MAFIC DYKE: Dark grey-black, fine grained, homogeneous, unaltered dyke. Approx 5%, 1-3mm amygdules infilled with soft, clay-like mineral. Sharp upper & lower contacts @ 35° & 40° to C.A. 61.1-64.0 Siltstone 64.0-77.2 Greywacke								
77.2-78.1	 64.0-77.2 Greywacke 74.8-75.6 Pink & green vein @ 65° to C.A BSU: Dark green; Typical with 7-10% spots. Upper & lower contact @ 80° to C.A. 78.1-90.9 Greywacke 84.8-85.5 Two 4 & 7cm bio and qtz/CO₃ shears. Shear @ 85.5m is 75° to C.A. 								
	EOH @ 91.9m								

Drill Hole Reco

Property SNIP	District Liard, M.D.	Length: 97.0m	
Commenced: Sept 15, 1994	Corr. Dip: -75°	Core Size: BQZ	
Completed: Sept 16, 1994	True Brg: 030°	% Recov	
Coordinates: 1825N 4100E	Elevation: 220m	Tests: 97m -75° @ 030°	

Target: Twin West Extension Logged By: KD

Metres From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn ppm
0.0-3.0	Overburden: None Recovered.	83.50	84.70		113.	2.2	168.		
		84.70	85.00		99.	0.6	100.		
3.0-94.4	GREYWACKE:	85.00	86.50		54.	0.4	105.		
		86.50	88.50		74.	0.7	162.		
	Med-dark grey, fine grained, massive wacke with weak fabric @ 50-55° to C.A. Locally bleached to buff colour	88.50	89.20	3.00	3048.	3.1	536. 696.		
	due to faulting & surface effects. Local limonitic fracture surfaces. 3-5% qtz/CO, veining. Local qtz/CO, shear	89.20 90.50	90.50 91.40		371. 57.	2.8 0.7	193.		
	veins up to 8cm. Local weak-mod shear fabric up to .5-1m @ 60° to C.A. 5-7% qtz/CO ₃ . 1-3% Py over entire	90.50	91.40		57. 101.	0.7	193.		
	unit.	91.80	93.00	0.40	480.	1.5	205.		
	10.2-12.5 Fault, Bleached, limonitic fractures.	93.00	94.40	0.40	400. 359.	1.5	196.		
	21.2-21.5 Fault. 10cm gouge.	END	04.40	0.10	000.	1.0	100.		
	30.1-32.0 Fault. Bleached, limonitic fractures.								
	37.3-40.2 Fault. Bleached, gouge.								
	70.1-70.3 Qtz/CO,/bio shear @ 45-50° to C.A. 1-3% Py.								
	74.7-74.9 Fault. 10cm gouge.								
	76.3-78.3 Fault.								
	84.7-85.0 Fault. Qtz/CO ₃ rich. 3-5% Py.								
	88.5-89.2 Fault. Broken core with chl rich gouge. Qtz/CO ₃ /chl rich, some pieces look like pink & green.								
	91.4-91.8 Qtz/CO ₃ /chi shear @ 45° to C.A.								
	91.8-94.4 Vein. Qtz/CO ₃ /chl shear vein with variable core angles from 45° to sub parallel to C.A. 1-3% Py. Tr								
	Po, few dots Cpy.								
94.4-97.0	BSU: Typical, dark green with 10-15% bio spots.								
	EOH @ 97 0m	1							

Drill Hole Recc

....

Property SNIP	District Liard, M.D.	Length: 401.1m	
Commenced: Sept 17, 1994	Corr. Dip: -45°	Core Size: BQZ	
Completed: Sept 18, 1994	True Brg: 030°	% Recov.	
Coordinates: 1500N 3935E	Elevation: 149m	Tests: No Tests	

Target: Tailings Shear Logged By: KD

Drill Hole R d

Metres From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn ppm
0.0-1.5	Overburden: Non Recovered.	5.10	6.20		24.	0.2	48.		
		6.20	6.60	0.10	152.	5.8	132.		
1.5-37.1	GREYWACKE:	6.60	8.00		39.	0.3	101.		
		8.00	9.60		42.	0.1	67.		
	Typical, med-dark grey, fine grained, massive wacke with weak fabric @ 45-50° to C.A. 3-5% qtz/CO ₃ veining.	9.60	11.00		58.	0.4	130.		
	Local qtz/CO ₂ /Py veins. Local 3-5cm shear veins @ 75° to C.A. 1-3% Py locally up to 10-15% Py. Locally	11.00	13.00		52.	0.8	477.		
	interbedded with sittstone. Local bleaching.	24.20	24.30		853.	1.4	841.		
		41.00	42.30		67.	0.4	157.		
	6.2-6.6 Qtz/CO ₃ /py Vein @ 70° to C.A. 7-10% Py.	42.30	43.50		50.	0.4	120.		
	21.5-21.7 Bleached with 6cm bull qtz vein @ 50° to C.A.	43.50	44.50		29.	0.7	372.		
		44.50	45.60		25.	0.8	349.		
37.1-43.5	SILTSTONE:	45.60	47.00		67.	0.8	444 .		
		47.00	48.90		54.	0.3	149.		
	Dark grey-black, fine grained-aphanitic. Variable bedding angles averaging 10°-20° to C.A. 1-3% Py Generally	52.50	53.00		57.	0.8	321.		
	disseminated and as blebs of crystal aggregates.	69.00	69.50		87.	2.0	997.		
		75.60	77.00		33.	0.5	279.		
	43.3-43.5 Well shear'd @ 55° to C.A. Mottled with buff bleached zones. 1-3% Py.	77.00	77.40		30.	0.5	324.		
	43.4-43.5 Qtz/CO ₃ vein @ 45. to C.A. 1-3% Py.	77.40	78.70		20.	0.6	247.		
		END							
43.5-106.1	FRAGMENTAL	1							
	Dark green/grey, fine grained matrix with epidote rich clasts averaging <1cm in diameter. Pervasive chl/epidote alteration. Local weak bio alteration. 3-5% qtz/CO ₃ veining @ 45° to C.A. Local 2-5cm qtz/CO ₃ ± chl shear veins @ 55-60° & 80° to C.A. with 3-5% Py. 1-3% Py overall.								
	102.2-102.3 Bull qtz vein @ 90° to C.A.								
	EOH @ 106.1m								

Property SNIP	District Liard, M.D.	Length: 66.5m
Commenced: Sept 19, 1994	Corr. Dip: -45°	Core Size: BQ2
Completed: Sept 20, 1994	True Brg: 030°	% Recov.
Coordinates: 1475N 3858E	Elevation: 144m	Tests: No Tests

Target: Tailings Shear Logged By: KD

Metres From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn ppm
0-6.5	Overburden: None Recovered.	27.00	28.00		75.	0.4	73.		
		28.00	29.00	0.70	57.	0.6	83.		
6.5-43.3	GREYWACKE	29.00	30.30		193.	4.1	62.		
	Typical. Med-light grey, fine grained - locally silty, massive wacke with weak fabric @ 70-80° to C.A. 3-5%	30.30 30.70	30.70 32.00		140. 31.	0.7 0.6	77. 61.		
	gtz/CO, veining, 1-3% Py local 3-5% Py, tr Sph & Ga, Local mod-well sheared @ 70-75° to C.A. Locally	37.00	32.00		34.	0.6	216.		
	bleached & silicified. Local faulting.	38.20	39.20		101.	2.8	1811.		
		39.20	40.20		164.	2.0	44.		
	28.0-29.0 Bleached with gouge along fractures. 3-5% Py.	40.20	41.10	0.15	96.	0.3	134.		
	30.3-30.7 3-5% Py.	41,10	42.50	00	27.	1.2	107.		
	38.2-39.2 Mod-well sheard @ 75° to C.A. Bio rich. 3-5% Py.	51.40	51.50		297.	1.8	503.		
	39.2-40.2 Light buff. Qtz flooded. 5-7% Py. Tr Sph & Ga.	64.00	64.10	1.50	2062.	2.1	548.		
	40.2-41.1 Mod shear'd @ 70° to C.A. Bio rich. 3-5% Py. Fault @ 41.0m.	END							
43.3-57.8	FRAGMENTAL:								
	Dark grey, slight green, fine grained matrix with 30-50%, <1cm clasts. Chl/epidote alteration. Pervasive epidote alteration of clasts and as fractured filling. 3-5% qtz/CO ₃ veining. 1-3% Py. 7cm qtz/CO ₃ shear vein @ 40° to C.A. with 5-7% Py at 51.4m.								
57.8-66.5	GREYWACKE: As described previously.								
	60.9-61.0 Late stage Qtz/CO, vein @ 45° to C.A.								
	61.3-61.5 Mod sheard @ 40° to C.A.								
	62.8-63.3 Possible fault. Gougy fragments.								
	64.0-64.1 8 cm Qtz/CO, shear vein @ 45° to C.A. 3-5% Py.								
	EOH @ 66.5m								

, 1

-

Property SNIP	District Liard, M.D.	Length: 60.7m	
Commenced: Sept 20, 1994	Corr. Dip: -77°	Core Size: BQ2	
Completed: Sept 20, 1994	True Brg: 030°	% Recov.	
Coordinates: 1475N 3858E	Elevation: 144m	Tests: No Tests	

Target: Tailings Shear Logged By: KD

Metres From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn ppn
0.0-7.6	Overburden: None Recovered.	19.00	19,50		24.	0.9	62.		
		26.00	26.90		42.	0.3	56.		
7.6-60.7	GREYWACKE:	26.90	27.20		31.	0.4	60.		
		27.20	28.40		34.	0.4	63.		
	Typical, med-light grey, fine grained-locally silty, massive wacke with weak frabric @ 50-55° to C.A. Local	28.40	30.10		36.	1.1	79.		
	weak epidote atteration & silicification. 3-5% qtz/CO, veining. Local qtz/CO, ± Py, bio shear veins @ 40° to	30.10	31.50		25.	0.4	63.		
	C.A. 3-5cm wide, 1-3% Py overall, Locally bleached.	45.00	46.00		55.	0.4	79.		
		46.00	46.50		43.	0.3	85.		
	26.9-27.0 Bull gtz vein @ 35° to C.A.	46.50	46.70		20.	0.4	49.		
	27.0-27.2 Mod sheard @ 45° to C.A. 5-7% Py	46.70	47.75		20.	0.3	68.		
	46.3-46.45 Well shear'd @ 60° to C.A. Bio rich.	47.75	48.50		68.	0.4	99.		
	46.45-46.7 Fault. Bleached & shear'd @ 45° to C.A.	48.50	49.70		54.	0.4	82.		
	47.75-48.3 Mod-well shear'd @ 50-55° to C.A. Bio rich with 5-7% Py.	49.70	51.00		66.	0.5	123.		
		56.00	56.50		91.	0.5	87.		
	EOH @ 60.7m	56.50	58.00		79.	0.8	148.		
	_	58.00	59.20		76.	0.5	112.		
		59.20	59.90		286.	0.8	130.		
		59.90	60.70		60.	0.4	87.		
		END							

Drill Hole Recc

Property SNIP	District Liard, M.D.	Length: 498.5m	
Commenced: Sept 29, 1994	Corr. Dip: -50°	Core Size: BQTK	
Completed: Oct 5, 1994	True Brg: 030°	% Recov. 98%	<u></u>
Coordinates: 1550N, 3680E	Elevation: 140m	Tests: Collar -50° @ 036°	
Target: Twin West Projection	Logged By: JRG	233.2m -55° @ 039° 467.8m -65° @ 045°	

	Description	From	То	g/t	ppb	g/t	ppm	ppm	ppm
.0-3.0	Overburden: None Recovered.	4.90	6.40		80.	0.1	50.	5.	86.
		6.40	6.70		30.	0.2	65.	5.	63.
0-140.6	GREYWACKE/MUDSTONE:	6.70	8.10		13.	0.1	32.	2.	74.
		13.30	14.50		94.	0.1	47.	4.	95.
	Grey, fine-med to locally coarse grained wacke interbedded with med-dark grey, fine grained, banded						119.	9.	219.
	mudstone. Min-mod foliated. Local dark green/grey, fine grained pervasive chl alteration & local, mod-high						41.	4.	170.
	fine grained, pervasive bio alteration. Mod CO ₃ /qtz veining. Local CO ₃ /chl & chl/bio/ magnetite veins. Local					=	64.	46.	253.
	shear veins. 1-1.5% Py, Local 2-3% Py. Sediments cut by mafic dykes.						122.	3.	184.
							495.	23.	237.
	10.4-10.5 Fault @ 25-30 C.A.						418.	37.	251.
	44.1-44.6 Bio/CO ₃ /chl/Py shear @ 85° to C.A. 5% med-coarse grained Py.						307. 270.	160. 79.	248. 241.
	45.4-46.2 Two 5-7cm Bio/CO ₃ /chl shear veins @ 80-85° to C A. 2% Py.						270. 130.	27.	241. 89.
	56.2-56.6 Fault @ 25-30°.						129.	27.	203.
		(209.	29. 52.	203. 858.
59.9-70.1	DYKE: Dark grey/black, very fine grained with 2-3%, 1-2mm black (possible hornelblende) phenos. Locally						209.	148.	641.
	euhedral. No sulphides.						106.	4.	65.
							172.	7.	94.
	111.2-122.8 Local 1-2% magnetite.						104.	6.	69.
40.6-403.1	FRAGMENTAL/GREYWACKE:						155.	9.	136.
140.6-403.1	FRAGMENTADGRETWACKE.						203.	5.	51.
	Med-dark grey, fine-med grained, groundmass with 5-1cm round, fine grained fragments. Fragments become						128.	4.	57.
	epidote altered after 149.0m. Local pervasive chi alteration. Mod CO ₂ /chi extension veining. Sparse-mod gash						209.	5.	63.
	veining. Local stringer veins. <1% Py, <1% Po. Local 3% Po associated with epidote. Minor local Cpy. Local						361.	16.	67.
	. 5mm magnetite grains. Interbedded with typical greywacke & local, minor sittstone. Sedimentary package cut						179.	11.	57.
	by mafic dykes.						471.	399.	714.
	by maile dykes.						510.	1110.	4236.
148.4-148.5	MAFIC DYKE: Grey/brown/black with 2% black phenos.						1145.	147.	227.
150.0-150.1	MAFIC DYKE: As previously described.						917.	128.	198.
169.2-171.7	MAFIC DYKE: As previously described.					0.9	222.	22.	66.
100.2-17 1.7		44.60	45,40		76.	0.6	331.	11.	57.
	205.3-205.6 10-12cm shear vein @ 60° to C.A. Qtz/CO ₃ /chl with 1-2% Py.	45.60	46.00		48.	0.4	99.	10.	45.
					101.	0.7	315.	16.	163.
220.9-221.5	MAFIC DYKE: As previously described. Upper & lower contact @ 10-15° to C.A. with fine grained magnetite.	46.20	46.70		73.	0.4	122.	10.	62.
233.1-237.8	MAFIC DYKE: 3-5% phenos, contact subparallel to C.A.	53.80	54.20		90.	1.1	398.	22.	265.
20011 20110		55.90	56.20		12.	0.3	43.	6.	68.
	279.1-279.4 Fine grained CO ₁ /qtz shear vein @ 15-20° with chl & possible magnetite. <1-1% Py.	56.20	56.60		27.	0.4	77.	6.	91.
	283.3-283.6 Chi/qtz/CO, shear @ 20% to C.A. 1% Py.	6.40 6.70 $30.$ 0.2 6.70 8.10 $13.$ 0.1 13.30 14.50 $94.$ 0.1 14.50 14.80 $3.$ 0.6 14.80 15.10 $21.$ 0.1 15.10 15.30 $70.$ 1.2 15.30 16.50 $24.$ 0.2 16.50 16.80 $54.$ 1.4 16.80 17.40 $58.$ 1.5 17.40 17.90 $14.$ 1.2 17.90 18.50 $20.$ 1.0 27.40 27.60 $429.$ 0.8 27.60 28.30 $74.$ 2.0 28.30 28.50 $313.$ 5.5 28.50 29.40 $74.$ 3.8 30.50 32.10 $55.$ 0.4 32.10 35.90 $116.$ 0.8 35.90 36.20 $59.$ 1.2 36.20 36.40 $78.$ 0.6 31.30 43.50 $44.$ 0.3 34.90 35.90 $116.$ 0.8 35.90 36.20 $59.$ 1.2 36.20 $59.$ 1.2 34.30 43.50 $146.$ 4.9 41.10 42.10 $223.$ 2.3 43.30 43.50 $146.$ 4.9 44.10 44.60 $74.$ 0.9 44.40 44.60 $74.$ 0.9 44.40 44.60 $74.$ 0.9 44.60 45.40 $76.$							
303.7-319.3	Sittstone/Greywacke								
	334.3-334.8 Py/chi shear'g @ 80° to C.A. 1-1.5% Py.								
	347.5-347.9 Fault zone @ 40° to C.A.	1							
	358.6-359.1 Chl/CO ₃ /Py shear @ 65° to C.A. 4-5% Py.								
	397.1-397.2 Bio/CO ₃ shear vein @ 70° to C.A. 1% Py.								

Drill Hole Rec

10 December 1	1 /-	Page 2
---------------	------	--------

etres From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pbppm	Zn ppr
		·····							
		56.60	57.10		42.	0.2	75.	3.	81.
03.1-467.9	SILTSTONE:	57.10	57.30		1128.	0.2	13.	4.	25.
		57.30	58.20		76.	0.3	55.	4.	95.
	Med-grey-light grey/brown, blue/grey, fine-very fine grained, locally banded (up to 1cm bands). Mod foliated.	58.20	59.70		53.	0.3	41.	6.	85.
	Variable bio/epidote/chl altered. 1-2% Py stringers, <1% Po. Mod CO ₃ /qtz veining. Local weak shear fabric @	59.70	60.00		86. 55	0.3	75.	4.	105.
	65° to C.A.	65.00 66.10	66.10 66.90		55. 146.	2.4 1.2	152. 189.	80. 12.	119. 119.
7.9-484.2	FRAGMENTAL:	66.90	67.40		55.	1.2	92.	12.	45.
1.5-404.2	PRAGMENTAL.	67.40	68.40		55.	0.7	180.	10.	
	Typical, epidote altered fragmental as described previously.	74.00	74.30		50.	1.1	341.	19.	184.
1		74.30	74.50		60.	2.1	485.	17.	239.
4.2-498.5	SILTSTONE/GREYWACKE:	84.00	85.00		80.	0.7	135.	5.	73.
		85.00	85.40		87.	1.8	473.	8.	92.
	As described preciously. Epidote/Bio/Chl altered.	85.40	86.70		72.	0.7	188.	9.	201.
		88.70	88.90		39.	0.5	56.	9.	93.
		88.90	89.40		35.	1.1	95. 70	32.	197.
	EOH @ 498 5m	89.40	89.90		70.	0.4	79. 247	8. 45	57.
		97.80 102.40	99.20 103.10		30. 40.	1.7 0.3	247. 46.	45. 7.	96. 46.
1		102.40	103.10		40. 20.	0.5	154	10.	40. 48.
		107.50	108.40		29.	0.9	184.	14.	
		108.40	109.20		20.	0.4	190.	25	32
		109.20	109.60		20.	1.1	323.	24	72.
		109.60	110.60		24.	0.6	128.	14.	25.
		111.20	112.50		130.	0.6	130.	10.	46.
		113.50	114.30		20.	0.4	121.	6.	45.
		114.70	114.80		20.	0.5	109.	5.	33.
		119.10	119.50		42.	0.8	96.	5.	50.
		120.60	121.50		0.	0.2	64. To	6.	54.
		121.50	121.80		1.	0.2	73.	3.	42. 37.
		122.40 122.80	122.80 123.70		153. 21.	0.5 0.5	140. 153.	4 . 7.	46.
		122.00	123.70		21. 39.	0.5	133.	4.	40. 35.
		134.40	134.80		20.	1.6	274.	127.	294
		134.80	135.20		40.	1.8	289.	40.	66.
		135.20	135.40		38.	4.0	329.	171.	1093
		135.40	135.80		20.	0.4	113.	23.	68.
		147.80	148.00		296.	0.8	188.	10.	83.
		151.70	152.50		146.	3.0	163.	16.	179
		162.00	162.20		20.	0.5	245.	10.	102.
		165.20	165.80		26.	0.2	178.	15.	110.
		173.20	173.40		29.	0.3	137.	10.	109.
		173.40	174.70		29. 70	0.1	92. 91.	10. 10.	102.
		174.70 180.80	175.30 181.10		79. 57.	0.1 1.3	91. 418.	10.	112. 2748
		180.80	184.80		47.	0.2	416. 144.	10.	366.
		189.50	189.90		20.	0.2	114.	10.	218.
		192.50	192.70		20.	0.1	60.	10.	307.
		200.40	202.00		65.	0.1	119.	11.	478.
		202.00	202.40		170.	3.8	1772.	14.	95
		205.30	205.60		20.	0.2	140.	10.	97.
		205.60	207.10		38.	0.1	64.	10.	102.
		210.00	210.40		20.	0.7	800.	10.	290.
		210.40	210.90		20 .	0.1	68.	10.	79.
		210.90	211.20		29.	0.2	230.	10.	221.
		213.00	213.50		20.	0.1	89.	10.	152.
		213.50	214.00		33 .	0.4	434.	11.	211.
		214.00	214.90		36.	0.4	138.	10.	108.

.

...

			1						
s From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pbppm	Zn ppr
		217.10	218.70		37.	0.3	214.	12.	83.
1		217.10	219.90		20.	0.4	200.	11.	58.
		220.90	221.50		20.	0.2	60.	10.	71.
1		221.50	221.90		20.	0.4	284.	11.	90.
		221.90	222.20		20.	0.3	223.	14.	120.
		222.20	223.40		20.	0.6	227.	20.	76.
		228.40	228.70		20.	0.3	205.	10.	85.
		228.70	229.80		51.	0.3	117.	10.	55.
		229.80	230.30		24.	0.3	120.	10.	59.
		230.30	230.60		46.	0.3	143.	10.	69.
1		230.60	232.30		40.	0.5	153.	10.	87.
		232.30	232.50		27.	0.4	170.	10.	66.
		241.80	242.60		52.	0.4	267 .	10.	62.
		242.60	242.80		58.	1.4	1305.	10.	68.
		244.80	245.00		45.	0.8	512.	10.	58.
1		248.80	248.90		94.	0.3	105.	10.	58.
		248.90	249.40		107.	0.4	124.	10.	58.
		249.40	250.20		152.	0.7	124.	10.	76.
1		250.20	250.50		171.	0.1	71.	10.	71.
		250.50	250.80		52. 56	0.2	113.	10.	93. 64.
		250.80 253.30	251.00 253.90		56. 166.	0.6 1.3	242. 768.	10. 10.	63.
		253.30	258.90		0.	0.0	0.	0.	0.
		262.70	263.00		55.	0.3	123.	10.	68.
		265.60	266.00		33.	0.5	92.	10.	71.
		266.00	266.60		62.	1.0	109.	10.	41.
		266.60	267.00		35.	0.6	85.	10.	51.
		267.00	267.40		43.	0.6	123.	10.	64.
		269.50	270.00		42.	0.7	159.	25.	34.
		272.30	272.60		52.	0.4	229.	13.	44.
		272.60	273.40		88.	0.1	166.	14.	59.
		278.30	278.50		229.	1.6	237.	13.	57.
		278.50	278.60		77.	0.9	161.	8.	21.
		278.60	279.10		67.	0.9	171.	7.	40.
		279.10	279.40		40.	0.8	233.	11.	22.
		279.40	279.60		28.	0.8	96.	3.	64.
		279.60	280.00		93.	0.3	128.	5.	50.
		280.00	280.40		101.	0.5	133.	4.	38.
		280.40	280.55		36.	0.3	82.	2.	31.
		280.55	282.00		32.	0.4	126.	3.	51.
		282.00 282.70	282.70 283.30		8. 41.	0.4 0.7	85. 355.	4. 47.	59. 82.
		282.70	283.50		41. 26.	0.7	355. 187.	47.	42.
		283.60	285.30		20. 9.	0.3	84.	−. 3.	42. 61.
		285.30	285.60		183.	1.0	738.	5.	61.
		285.60	286.10		32.	0.9	255.	3.	52.
		286.10	286.70		9.	0.3	120.	2.	54.
		286.70			129.	0.2	96.	2.	71.
		287.70	288.90		176.	1.5	728.	29.	72.
		291.00			43.	0.9	201.	10.	64.
		291.40			89.	0.5	253.	10.	59.
		296.00			57.	0.3	228.	10.	48.
		296.30			41.	0.2	152.	10.	74 .
		298.00			45.	0.5	303.	10.	48.
		304.50			38.	0.3	181.	10.	56.
		305.40			25.	0.4	244.	10.	64.
		306.60			40.	0.1	122.	10.	29.
		307.00	307.80		104.	0.1	64.	10.	44.

DRILL

LOG SUN	\RY :	DDH	S-150	
---------	--------------	-----	-------	--

s From To	Description	From	то	Au g/t	Au ppb	Ag g/t	Cu ppm	Pbppm	Zn ppr
		307.80	308.00		220.	0.2	192.	10	45.
		309.40	309.60		323.	0.1	81.	10.	66.
		309.60	310.30		47.	0.1	57.	10.	66.
		310.30	310.40		179.	0.4	149.	10.	68 .
		311.80	312.20		83.	1.1	119.	10.	92.
		312.20	313.70		40.	0.1	93.	10.	48.
		313.70	313.90		61.	0.1	71.	10.	45.
		318.40	318.70		39.	0.1	126.	10.	58.
		320.80	321.00		46.	0.3	95. 77	10.	52. 55.
		321.00 321.80	321.80 322.10		60. 210.	0.1 0.1	77. 165.	10. 10.	55. 52.
		327.10	327.30		210. 36.	0.1	105.	10.	31.
		331.10	331.30		110.	0.7	244.	10.	40.
		331.30	332.30		110.	0.7	244.	10.	40.
		334.30	334.80		140.	1.0	153.	20.	48.
		334.80	335.30		53.	0.2	125.	10.	37.
		335.30	336.30		52.	0.4	277.	10.	30.
		338.50	338.80		171.	0.1	204.	10.	33.
		338.80	340.10		139.	0.1	169.	10.	28.
		340.10	340.40		54.	0.5	226.	10.	36.
		343.50	344.30		34.	0.3	106.	10.	35.
		356.80	357.30		20.	0.2	64 .	3.	73.
		357.30	358.60		50.	0.5	65.	3.	85.
		358.60	358.90		102.	2.9	587.	25.	92.
		358.90	359.10		69 .	1.0	92.	6.	56.
		359.10	360.40		88.	0.3	143.	4.	85.
		360.40	360.60		36.	0.4	65.	2.	80.
		361.30	362.10		30.	0.3	62.	2.	71.
		362.10	362.50		20.	0.4	79.	1.	64. 67.
		367.20 368.40	368.40 369.70		24. 21.	0.4 0.4	145. 189.	1. 2.	106.
		371.90	372.20		41.	0.4	147.	5.	94.
		372.20	372.40		37.	0.8	159.	6.	103.
		376.30	376.80		27.	0.4	302.	2.	104.
		378.90	379.10		51.	0.6	233.	1.	99.
		379.10	379.80		57.	0.5	223.	2.	74.
		380.80	381.00		20.	0.7	188.	3.	102.
		382.00	382.30		139.	1.3	350.	142.	373.
		383.60	383.90		115.	0.5	238.	35.	107.
		383.90	384.30		77.	1.0	575.	21.	90.
		384.30	384.70		347.	0.5	307.	23.	106.
		385.80	386.00		61.	1.1	559.	10.	66. 40
		389.80	390.00		93. 22	0.2	358.	10.	49. 59
		390.00	391.30		32. 40.	0.1 0.1	193. 290.	10. 10.	58. 51.
		391.30 391.80	391.80 393.40		40. 69.	0.1	290. 370.	10.	50.
		393.40	394.00		58.	0.3	711.	10.	39.
		396.00	397.10		36.	0.1	205.	10.	51.
		397.10			35.	0.1	265.	10.	60.
		403.00			37.	0.1	183.	10.	50.
		403.10			72.	0.2	126.	10.	35.
		404.00			33.	0.2	234.	10.	40.
		405.70			75.	0.4	360.	10.	44.
		406.10	406.80		41.	0.3	367.	10.	32.
		406.80			153.	0.5	473.	10.	26.
		407.00			40.	0.3	261.	10.	31.
		409.00			49.	0.1	328.	10.	25.
		411.00	411.70		41.	0.3	162.	10.	49.

.....

10 December 1 - Page 5

Metres From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pbppm	Zn ppm
T		r							
1		411.70	412.50		214.	0.1	121.	10.	44.
		414.80	415.70		40.	0.1	152	10.	29.
		418.40	418.80		38.	0.2	158.	10.	39.
		422.50	423.10		39.	0.1	166	10.	36.
		427.50	428.10		46.	0.4	355.	10.	28.
		435.70	436.00		31.	0.1	238.	10.	28.
		437.70	438.50		45.	0.4	270.	10.	63.
		441.40	441.80		60.	0.6	424.	10.	40.
		445.00	445.30		42.	0.4	280.	10.	47.
		445.30	446.50		20.	0.3	145.	10.	45.
		446.50	447.40		37.	0.2	237.	10.	37.
		447.40	447.90		37.	0.4	263.	10.	40.
		453.60	454.20		20.	0.2	139.	10.	46.
		456.60	457.80		20.	0.2	89.	10.	52.
		457.80	458.30		20.	0.2	193.	10.	151.
		462.70	463.00		20.	0.4	166.	10.	83.
		463.00	464.40		30.	0.3	280.	10.	54.
		464.40	465.10		206.	0.1	151.	10.	41.
		469.90	470.50		21.	0.4	305.	10.	41.
		470.50	471.80		20.	0.4	266.	10.	48.
		471.80	472.00		O .	0.0	Ο.	0.	0.
		475.40	476.90		0.	0.0	0.	0.	0.
		491.00	491.30		0.	0.0	Ο.	0.	0.
		491.30	492.30		39.	0.2	95.	10.	40.
l		492.30	493.10		16.	0.4	139.	10.	36.
1		494.90	495.50		13.	0.4	165.	10.	47.
1		495.50	496.60		11.	0.6	132.	10.	29.
		END							

Property SNIP	District Liard, M.D.	Length: 544.2m	
Commenced: Oct 17, 1994	Corr. Dip: -45°	Core Size: BQTK	L.L.W. 1
Completed: Oct 25, 1994	True Brg: 030°	% Recov. 98%	
Coordinates: 1150N 3300E	Elevation: 130m	Tests: No Tests	

Target: Tailings Shear Logged By: JRG

Metres From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn ppm
0-19.8	Overburden: None Recovered	23.40	24.30		146.	0.7	206.	27.	88.
		24.30	24.70		108.	0.8	480.	48.	102.
19.8-358.7	GREYWACKE/SILTSTONE/MUDSTONE:	26.10	26.60		279.	0.2 0.1	167.	25. 20.	133. 96.
	And highly foliated workship allowed and polycond interbadded and monta with productional contents. Manka	26.60	27.00 30.00		105. 75.		162.		96. 206.
	Med-highly foliated, variably altered and coloured, interbedded sediments with gradational contacts. Wacke- fine-med grained with local, dark green/grey, chl/magnetite/CO ₂ alteration and local grey/purple silicification	29.80 43.10	44.40		75. 54.	1.9 0.2	265. 237.	165. 135.	200. 171.
	over 10's of meters. Sittstone - med brown/grey & bleached cream/grey/tan, fine grained, banded (1-2cm	43.10	44.40 44.80		54. 51.	0.2	237.	68.	92.
	bands). Dark brown-black very fine grained-fine grained laminated to banded mudstone. Locally sittstone &	50.60	44.80 50.90		52.	0.1	423.	66.	4820.
	mudstone are folded.	53.90	54.20		52. 50.	0.2	423.	4.	4020. 82.
	Foliation @ 30° to C.A. becoming folded down hole. Mod to locally high, white CO ₃ /qtz veining subparallel to	60.70	62.30		42.	0.1	264.	4.	117.
	foliation. Tr-1% Py locally 2-3%. Local minor Po, CPy, Sph. Local bio & minor epidote alteration. Local shear	62.30	62.50		78.	0.1	260.	11.	25.
	veins @ 60° to C.A. Local faulting. Sediments cut by mafic dykes.	72.50	73.80		40.	0.1	239.	15.	315.
	Verits @ 60 to C.A. Eduar faulting. Sediments cut by main dykes.	73.80	74.50		38.	0.1	288.	9.	87.
	19.8-102.8 Chl/magnetite/CO, alteration.	78.10	78.60		29.	0.1	254.	8.	128.
	30.8-31.2 Fault @ 35-40° to C.A. with gouge.	78.60	78.80		70.	0.1	363.	35.	906.
	74.3-74.35 Fault @ 40° t C.A.	79.00	79.30		95.	1.4	540.	836.	4930.
	80.6-81.6 Fault zone @ 60° to C.A. with bleach envelope.	89.60	90.10		74.	0.3	281.	10.	80.
		94.90	96.00		90.	0.2	238.	14.	143.
	113.8-113.9 Fault @ 45° to C.A.	96.00	96.40		108.	0.1	227.	10.	151.
	149.6-149.9 CO,/bio shear vein @ 65° to C.A. Tr Py.	105.40	106.80		99.	0.4	243.	11.	135.
	165.3-165.5 CO,/bio/chl shear vein @ 70° to C.A. 1% disseminated Py. <1% Cpy. Tr Po.	109.00	109.70		56.	0.2	184.	28.	179.
	177.8-178.1 10cm bio/chl shear vein @ 60° to C.A. 1% Py, <1% CPy, Tr-<1% Po.	111.80	112.40		40.	0.2	258.	16.	151.
	193.9-210.1 Highly silicified, med purple/grey wacke with fine fracture patter. Local bio & sericite alteration.	116.00	116.50		47.	2.1	331.	74.	1111.
	198.1-198.3 Two 5cm CO ₁ /qtz veins @ 65-70° to C.A. 5-7% Po, <1% Py.	116.50	116.70		71.	41.6	1796.	621.	2835.
	209.0-209.4 Two 5cm chl/bio/CO ₃ veins @ 65-70° to C.A. 1-1.5% Py. 1.5% Po, tr Cpy.	124.10	124.40		19.	0.2	284	1805.	69.
	210.5-211.1 CO,/bio laminated shear @ approx 70° to C.A. 1-1% Py.	124.40	125.40		20.	0.4	201.	74.	78.
	211.1-211.3 Grey qtz veining @ 55-65° to C.A. 3-4% Po. 2% fine grained Sph, <1% Cpy.	127.70	128.20		284.	0.1	161.	98.	82.
	212.3-212.6 Bio/CO, laminae @ 65-70° to C.A. 2% magnetite. <1% Py.	133.50	134.00		18.	0.2	150.	10.	68.
		134.00	135.10		20.	0.3	181.	16.	104.
	212.6-225.0 Highly silicified wacke. Local 2% Cpy, 1-2% Sph, <1% Po	139.60	140.10		192.	1.1	173.	10.	406.
	223.4-223.45 Fault @ 25° to C.A.	146.40	146.70		20.	0.5	145.	10.	50.
		149.60	149.90		20.	0.6	145.	16.	241.
	238.4-238.5 Fault @ 35° to C.A.	152.40	152.60		20.	0.6	131.	138.	330.
	240.4-240.5 CO,/chi shear vein @ 30-35° to C.A. <1-1% Py.	152.90	153.10		20.	0.6	131.	138.	330.
		153.50	154.30		87.	0.5	128.	10.	76.
290.0-290.2	DYKE: fine grained, tan/brown with 1-2%, 1-2mm feldspar phenos. @ 70° to C.A.	163.40	163.70		19.	0.5	178.	62.	72.
291.5-292.7	DYKE: Dark green/brown with 3-4% med grained, horneblend(?) phenos. @ 60° to C.A.	163.70	165.30		14.	1.0	361.	61.	608.
297.5-298.0	DYKE: @ 75-80° to C.A.	165.30	165.50		111.	12.8	2899.	31.	6125.
298.2-298.7	DYKE: as described previously.								

Drill Hole Rec

			1						
			1 . .	A					
Metres From To	Description	From	To	Aug/t	Au ppb	Ag g/t	Cuppm	Pbppm	Znppm
			A			1			L

		165.50	166.20		20.	1.4	438.	9.	862.
		172.40	172.90		20.	0.3	114.	19.	120.
	298.7-299.0 Fault @ 80° to C.A. 30cm gouge.	172.90	173.70		20.	0.1	90.	40.	234.
	319.0-358.7 End of intense foliation & alteration.	173.70	173.90		20.	1.6	501.	12.	3100.
	351.8-354.3 Qtz/CO,/Chl/magnetite veins & shear'g with 1% Po, <1% Cpy, <1% Py.	176.60	177.80		29.	0.3	109.	11.	147.
	353.45-354.1 Ch/CO ₃ / ± bio shear @ 40-45° to C.A. with 12% Po.	177.80	178.10		20.	4.1	232.	1051.	1269
	353.45-354.1 Chi/CO3/ ± bio shear @ 40-45 to C.A. with 12% P0.	178.10	179.60		20.	0.3	128.	17.	119.
7 5 4 4 3	FRAGMENTAL/GREYWACKE:	179.60	180.00		23.	4.5	877.	17.	3900.
7-544.2	FRAGMENTALIGRETWACKE.	180.00	180.00		20.	4.5 2.0	313.	47.	3350.
	Dark grey, grey/green, 3-4mm rounded, fine-med grained, epidote altered fragments in fine-med grained	188.20	188.80		20.	1.3	220.	122.	534.
		196.60	198.10		20.	0.1	101.	20.	69.
	ground mass within fragmental. Med-dark grey, fine-med grained, massive wacke Dark brown/black patchy	198.10	198.10	2.90	20. 1978.	2.1	477.	43.	16
	bio atteration, local chl & epidote alteration. Sparse- mod CO ₃ /qtz ± chl veining. <1% Py. Local Sph, Po, Cpy			2.90					
	associated with veining.	198.30	199.10		20.	0.1	81.	15.	67.
		201.30	202.60		20.	0.1	88.	14.	68.
	379.8-380.0 20cm laminated CO ₃ /bio/chl shear vein @ 70° to C.A. <1% Py.	209.00	209.40		185.	2.0	377.	13.	2041
	403.5-403.8 10-15cm qtz vein with chl, bio. 1-1.5% Py, 3-4% Sph, tr-1% Cpy.	210.10	210.50		20.	0.1	151.	14.	252.
	505.4-505.6 Chl/CO ₃ /bio @ 60° to C.A. with 4-5% Po, 1% Py, 1% Cpy.	210.50	211.30		58.	5.2	965.	184.	7600
		211.30	211.60		20.	1.0	185.	17.	783.
	537.0-544.2 Highly slicified wacke as described previously.	211.60	212.30		29.	0.3	213.	132.	150.
		212.30	212.60		20.	0.3	187.	60.	100.
		216.70	216.80		136.	21.3	9300.	27.	1260
	EOH @ 544.2m	216.80	217.40		62.	0.9	608.	25.	5600.
		217.40	217.70		44.	9.5	6075.	18.	265.
		219.90	220.00		17.	0.5	106.	13.	172.
		220.00	221.80		48.	4.7	79.	100.	75.
		221.80	222.00		20.	0.1	1533.	37.	866.
		225.50	225.70		23.	0.1	128.	18.	225.
		225.70	226.80		46.	0.1	112.	20.	150.
		226.80	227.10		55.	0.3	113.	27.	552.
		228.50	229.00		41.	2.4	126.	70.	398.
		229.00	229.30		20.	0.1	124.	75.	338.
		229.30	229.60		41.	0.1	109.	17.	154.
		231.40	232.90		89.	0.6	100.	10.	74.
		240.30	240.50		91.	4.1	605.	63.	170.
		243.80	244.40		89.	0.6	275.	17.	418.
		246.50	247.30		20 .	2.6	284.	157.	830.
		247.30	247.90		58.	1.0	179.	104.	271.
		247.90	248.80		46.	0.1	246.	15.	206.
		248.80	249.30		67.	0.9	90.	10.	504.
		256.10	256.30		44.	2.2	378.	1886.	1334
		256.30	257.10		20.	1.5	201.	171.	286
		257.10	257.50		20.	1.4	181.	232.	486
		257.50	257.70		20.	1.7	137.	316.	748.
		257.70	258.00		20.	5.5	509.	507.	3150
		265.70	266.20		20.	0.1	94.	11.	65.
		266.20	267.60		61.	0.1	105.	10.	39.
		267.60	268.20		20.	0.1	126.	20.	61.
		268.20	268.70		20.	0.1	163.	24.	92.
		280.30	281.30		20.	0.1	176.	14.	98.
		288.20	290.00		20.	0.1	106.	10.	91.
		290.00	290.20		40.	0.1	103.	10.	54.
	1	290.20	291.50		20.	0.1	105.	10.	253.
		292.70	294.00		0.	0.0	0.	0.	0.
		298.00	298.20		20.	0.1	94.	10.	71.
		299.10	300.70		20.	0.1	152.	23.	104.
		311.90	312.20		20.	0.1	151.	17.	43.
		314.90	315.30		20. 20.	0.2	186.	24.	131.
		314.50	317.90		20.	0.2	212.	24. 26.	201.
		317.50	324.00		20. 22.	0.7	212. 114.	20. 10.	201. 96.
		323.00	324.00		££.	v . I	114.	iv.	50.

10 December 1 - Page 2

10 December	1	-	Page	3
	_			

		DRILL LOG SUN	\RY: DDH	3-151				1	0 Decei	nber
res From To	Description		From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pbppm	Zn pp
T		<u></u>	328.40	328.60		20.	0.1	121.	10.	54.
1			341.20	342.60		90.	2.5	33.	134.	1401.
			343.20	343.80		42.	0.3	153.	25.	126.
			346.00	346.50		158.	0.1	132.	10.	132.
			349.20	350.20		48.	0.1	153.	10.	153.
			350.20	351.80		25.	0.1	132.	10.	132.
			351.80	352.30		97.	2.9	1829.	6.	85.
			352.30	353.00		58.	0.1	314.	9.	87.
			353.00	353.20		21.	0.4	431.	8.	181.
			353.20	353.40		38.	0.6	450.	7.	103.
			353.40	353.60		40.	0.3	260.	9.	140.
			353.60	354.10		40 .	0.3	260.	9.	140.
			354.10	354.30		60.	0.2	324.	7.	64.
			354.30	355.40		33	0.2	249	9.	101.
			355.40	355.80		23.	0.3	164.	7.	83.
			355.80	357.50		58.	4.5	316.	55.	996.
			357.50	358.50		20.	1.3	150.	7.	344.
			360.00	360.20		0.	0.0	0. 55	0.	0. 45.
			368.90 370.80	369.00		26.	0.4	55. 154.	5. 6.	45. 333.
			376.30	371.00 376.50		289. 55.	0.4 0.9	134. 54.	7.	134.
			376.50	376.60		20.	1.7	132.	9.	5720.
i			377.50	378.30		25.	0.8	97.	13.	120.
			379.80	380.00		0.	0.0	0.	0.	0.
			380.00	381.70		24.	1.0	127.	11.	184.
			390.10	390.25		25.	0.6	125.	14.	244.
			392.90	393.60		27.	0.1	93.	17.	247.
			393.60	394.00		20.	1.0	198.	10.	283.
			394.00	394.30		184.	3.4	225.	19.	172
			394.30	395.70		22.	0.2	151.	9.	141.
			395.70	395.90		61.	0.8	573.	14.	1152.
			396.60	396.90		31.	0.1	195.	6.	112.
			402.40	403.50		53.	0.6	239.	17.	336.
			403.50	403.80		20.	1.2	487.	12.	47830
			403.80			22.	1.4	495.	11.	4560.
			404.05			55.	0.5	316.	23.	248.
			407.90			106.	0.3	230.	15.	135.
			412.00			76.	2.7	1154.	14.	8760
			421.20			38.	0.1	66. 110	10.	182.
			426.30			42.	0.3	118. 177	10. 10.	79. 99.
			426.80			208. 20.	0.4 0.1	177. 91.	9.	99. 127.
			427.80 429.60			20. 34.	0.1 1.6	401.	9. 8.	66100
			429.80				1.0	401. 376.	o. 7.	2937.
			433.40			49. 28.	4.4	876.	12.	10820
			433.90			860.	0.6	223.	7.	611.
			434.90			55.	0.3	243.	6.	155.
			436.90			20.	0.7	434.	10.	2664
	1		440.50			41.	0.1	111.	3.	118.
	1		444.30			41.	1.2	185.	66.	870.
			444.50			20.	0.2	148.	15.	132.
			446.80			35.	1.9	247.	18.	85.
			449.50			20.	1.5	153.	71.	205.
			449.80			185.	0.6	229.	24.	229
			451.10			78.	0.6	175.	10.	175.
			465.10			67.	0.1	100.	10.	100.
			465.40			74.	0.1	91.	10.	91.
			466.20			70.	0.1	125.	10.	125.
	1									

res From To	Description	From	το	Au g/t	Аи ррь	Ag g/t	Cu ppm	Pbppm	Zn ppn
		162.60	163.10		20.	1,1	249.	43.	57.
		165.70	166.00		20.	1.2	361.	20.	412.
		174.70	175.30		2.	0.3	201.	10.	133.
		181.60	181.90		20.	0.1	153.	10.	117.
		184.90	186.10		20.	0.3	237.	10.	96.
		214.70	215.20		64.	0.2	112.	12.	546.
		215.20	216.30		47.	0.1	41.	48.	263.
		222.40	222.80		20.	1.6	449.	12.	101.
		222.80	223.20		20.	0.3	146.	11.	146.
		223.20	223.60		20.	2.6	798.	49.	314.
1		236.30	237.00		20.	3.2	1038.	10.	1606.
		237.00	238.60		20.	0.4	212.	10.	95.
		239.60	240.80		20.	0.5	248.	10.	82.
		247.30	248.50		20.	0.2	161.	10.	72.
		END							

Coordinates: 1333.1N 3916.5E	Elevation: 150.1m	Tests: No Tests	
Completed: Nov 1, 1994	True Brg: 072°	% Recov. 98%	
Commenced: Oct 29, 1994	Corr. Dip: -65°	Core Size: BQTK	
Property SNIP	District Liard, M.D.	Length: 303.7m	

Target: Tailings Shear Logged By: JRG

Metres From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn ppm
0.0-9.1m	Overburden: 1m recovered, med-dark grey wacke.	16.50	16.80		26.	3.6	1251.	78 .	137.
0 4 054 7-1		18.70	19.80		25.	38.4	277.	34.	219.
9.1-251.7m	FRAGMENTAL/GREYWACKE:	31.10	31.50		56.	2.5	333.	12.	73.
	Deducers first and excited excurdences with first excited, exidete altered from the within former to t	33.30	33.90		20.	0.4	174.	11.	61.
	Dark grey, fine-med grained groundmass with fine grained, epidote altered fragments within fragmental.	41.00	42.00		20.	0.4	173.	16. 70	97.
	Fragment content increasing downhole. Gradational with med-dark grey, fine-med grained wacke with local 5%, 1mm mafic spots elongate to foliation @ 40° to C.A. Sediments variably coloured due to variable bio, chl	42.50	43.40		20.	0.7	197.	72.	187.
	& epidote alteration. Local mod CO, gash veining. Sparse-mod CO,/chl extension veining. Local CO,/chl/Py	44.40 46.60	45.00 48.20		20.	0.4	194.	17.	93.
	shear veins @ 15° to C.A. Tr Py, locally 2-3% Py. Local tr-1% CPy associated with veins. Local Ga/Sph local	46.60	48.40		20. 28.	0.9 1.8	209.	11.	90.
	faulting & bleaching.	53.40	48.40 53.90		∠o. 65.	14.3	188.	24.	102.
	rauting & bleaching.	58.20	53.90 58.40		65. 173.		291.	42.	148.
	9.1-94.2 Greywacke/Fragmental: Interbedded mod altered. Mafic spots within wacke.	58.40	59.80		216:	1.2 0.8	934. 221.	6025. 293.	13625. 240.
	9.1-94.2 Greywackerriagmental, interbedded mod altered, Marc Spots within wacke.	59.80	60.30		210. 64.	3.4	221.	293. 21.	240. 68.
	79.2-81.2 Fault @ 35-40° to C.A. Gouge, bleaching.	61.30	61.70		38.	3.4	217.	21. 1406.	66. 847.
	82.6-82.9 Fault @ 45° to C.A.	68.00	69.40			1.8	200. 189.	396.	507.
	62.6-62.9 Fault @ +5 10 C.A.	69.40	69.70		40. 69.	0.9	145.	396.	307. 380.
	94.2-120.7 Volcanic Fragmental:	69.70	71.10		46.	2.7	156.	171.	474.
		72.20	72.70		40. 177.	0.8	220.	494.	1595.
	94,2-95,0 Fault.	78.70	79.10		17.	0.7	267	17.	75.
	118.8-119.0 COJ/chl shear vein @ 70°. 1% fine grained Py.	94.20	95.00		12.	0.8	213.	10	73. 74.
		105.30	105.90		12.	0.1	266.	10.	140.
	120.7-150.7 Greywacke with 3-4% mafic spots.	112.70	113.00		37.	0.6	226.	10.	140.
		113.00	114.60		48.	0.6	224.	10.	135.
	137.0-137.3 Shear @ 60° to C.A. CO ₃ /bio, Tr Py.	115.80	116.00		44.	1.0	548.	10.	1714.
	140.2-150.7 Med-highly foliated @ 35-50° to C.A.	118.80	119.00		184.	1.4	867.	10.	143.
	149.1-150.7 Fault @ 10-15° to C.A.	119.00	119.70		130.	0.4	265.	10.	81.
		119.70	120.10		44.	0.1	75.	10.	55.
	150.1-169.4 Fragmental: 1-2% Py locally 3-5% Py.	120.10	120.70		72.	0.1	147.	10.	45.
		121.10	121.70		61.	0.7	166.	129.	1419.
	157.1-157.2 Fault @ 45°to C.A.	121.70	123.10		44.	0.3	168.	10.	139.
		125.90	126.10		39.	0.2	142.	10.	59.
	169.4-212.2 Greywacke: Less altered. Local hematite along fracture surfaces.	127.20	127.50		52.	0.3	239.	10.	62.
		127.50	127.90		42.	0.1	135.	10.	62.
	177.5-177.6 Fault @ 45° to C.A.	127.90	128.20		47.	0.2	141.	10.	51.
	204.9-210.4 White, fine grained Qtz/CO, veins @ 70-80° to C.A. 1-2% Py associated with shears.	131.40	132.20		51.	0.3	191.	10.	54.
	210.4-210.5 Faulted.	132.70	133.00		41.	0.3	109.	10.	62.
		133.00	133.70		69.	0.6	276.	10.	62.
		134.20	135.10		63.	0.1	69.	10.	65.

Drill Hole Rec

4 ^	December 2		1 0
10	December '	· · · •	Page 2

.....

ġ,

etres From To	Descrip	tion	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pbppm	Zn pp
			r							
			137.00	137.30		74.	0.1	93.	10.	50.
			140.20	141.50		56	0.1	104.	19.	81.
	212.2-241.7 Fragme	ental: Local 5% Py. Locally siliceous.	141.50	142.00		43.	0.1	109.	10	67.
			142.00	142.50		55.	0.1	108.	10.	64.
		24.2 Fault @ 50° to C.A.	149.10	150.70		69.	0.6	159.	112.	235
	236.5-2	36.7 10 cm qtz/CO ₃ /Py vein @ 25-30° to C.A. 10-15% med-coarse grained Py.	150.70	152.50		100.	0.2	108.	10.	75.
			152.50	153.20		53.	0.3	82.	19.	91.
	241.7-251.7 Greywa	acke: Locally siliceous.	153.20	153.50		120.	1.1	207.	82.	63.
			158.40	159.20		63.	0.5	134.	207.	252
		251.7 Intensity foliated @ 35-40° to C.A. Local chil, 2-2.5% Py.	159.20	159.40		0.	0.0	0.	0.	0.
	246.9-2	248.3 Fault @ 5°to C.A.	166.70	167.30		61.	0.3	208.	10.	254
			167.30	167.80		113.	0.4	315.	10.	5720
.7-303.7	MAFIC GREYWACH	/ Ε ·	173.40	174.50		20.	0.2	107.	10. 10.	137
.1-303.1	WALL GREIWAL		174.50 178.60	174.70 179.10		30. 28.	0.2 0.1	201. 130.	10.	87. 85.
	Not typical Med or	een & med blue/green-grey with 3-4%, med grained, (.5-1mm) black-dark green mafic spots	183.30	184.80		20. 40.	0.1	130. 199.	10.	20.
		tod foliation @ 45-55° to C.A. Patchy, fine grained, lack-dark green chl/bio? alteration.	183.30	184.80		40. 20.	0.1	199.	10.	20. 31.
		xture. Mod-fine CO ₃ veins. Sparse-mod CO ₃ /qtz extension veins @ 55-65°to C.A. up to	186.30	186.70		37.	0.1	87.	10.	46.
	4cm wide. Tr Py.		187.20	187.60		20.	0.1	70.	10.	42.
			190.00	190.80		40.	0.3	150.	10.	55.
	262.8-263.2	10-12cm CO ₃ vein-shear @ 60°to C.A. Tr Py	202.50	203.00		22.	0.3	47.	10.	33.
	266.8-268.6	Fault zone.	204.90	205.30		197.	0.2	151.	10.	130
	280.7-281.5	Fault zone.	205.30	206.00		58.	0.1	184.	18.	19.
			206.00	206.10		43.	0.1	176.	10.	44.
			206.10	206.30		20.	0.1	195.	12.	12.
			206.30	206.60		42.	0.2	117.	10.	67.
		EOH @ 303.7m	206.60	206.90		34.	0.3	189.	13.	16.
			206.90	207.80		40.	0.4	118.	10.	38
			207.80	208.40		77.	0.2	126.	10.	35.
			208.40	208.80		33.	0.3	169.	13.	15.
	1		208.80	209.80		23.	0.2	179.	12.	38.
			209.80	210.10		15.	0.2	182.	12.	19.
			210.10	210.20 210.40		23. 23.	0.3 0.3	143. 143.	11. 11.	18. 18.
	1		210.20	210.40		23. 56.	1.2	143.	49.	44
			213.60	214.50		26.	0.7	111.	13.	46.
			218.70	219.00		31.	0.5	89.	10.	44.
			219.90	220.90		88.	1.4	82.	55.	16.
			227.80	228.30		73.	0.8	290.	17.	52
			234.70	235.00		77.	0.1	72.	19.	22.
			235.00	236.50		81.	0.2	148.	12.	18.
	1		236.50	236.70		545.	0.2	1239.	12.	44
			236.70	238.10		71.	0.1	161.	25.	61.
			240.20	241.70		56.	0.3	78.	16.	25.
			244.10	244.50		88.	0.4	85.	45.	7.
			244.50	244.90		66.	0.5	105.	63.	9.
			244.90	245.10		67.	0.6	128.	81.	19
	1		245.10	246.00		67.	0.4	118.	26.	19
			246.00	246.70		52.	1.0	145.	10.	87.
			246.70	248.30		52.	0.6	173.	29.	148
			248.30	249.50		125.	0.4	261.	41.	123
	l		250.40	251.70		46.	0.7	94.	33.	164
	1		260.50	261.00		31.	0.7	72.	13.	59.
	1		262.80	263.20		38.	0.8	114.	11.	40. 75.
			270.10 271.00	271.00		45. 30.	0.2 0.9	106. 148.	11. 10.	75. 73.
	1		1 271.00	271.40		30.	0.9	140,	10.	13.

		RY: DDH	S-153				10) Decem	ber 1	- Pa
Metres From To	Description	 From	To	Au g/t	Au ppb	Ag g/t	Cu ppm	Pbppm	Zn ppm	_

272.90	273.20	30.	0.7	63.	10.	65.
275.00	275.90	44.	0.5	107.	10.	66.
277.70	279.20	37.	0.6	61.	10.	56.
279.20	279.40	40.	0.2	54.	10.	42.
288.90	289.30	68.	0.3	333.	10.	29.
289.30	290.50	38.	0.5	123.	10.	49.
297.70	298.00	20.	0.7	581.	10.	43.
303.30	303.50	40.	0.8	96.	10.	147.
END						

DRILL LOG SUM' RY: DDH J94-27

•

Property Jim	District Liard, M.D.	Length: 522.3m	
Commenced: Aug 26, 1994	Corr. Dip: -60°	Core Size: BQTK	
Completed: Sept 4, 1994	True Brg: 030°	% Recov.	
Coordinates: 0730N 1500E	Elevation: 95m	Tests: No Tests	

Logged By: JRG

Metres From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn ppm
0-42.4	Casing	42.40	42.60		60.	0.1	119.	89.	300.
		42.60	42.90 45,90		71.	0.3 0.2	115. 120.	42. 13.	79. 73.
42.4-138.8	GREYWACKE/FRAGMENTAL:	44.90 45.90	45,90 47,30		126. 20.	0.2	139.	10.	73. 76.
	Variable, high-intense alteration. Highly foliated to local shear fabric @ 80° to C.A. Med	47.30	48.90		471.	0.4	125.	10.	77.
	brown/green/grey/black. Variable colour due to chl/bio/sericite/clay alteration. Local 3-4%, 1-2mm, mafic spots	48.90	49.10		20.	0.5	162.	10.	99.
	elongate to foliation within wacke. 4-5cm, slightly elongate, fine grained, siltstone & chert fragments within	49.10	49.40		107.	0.3	172	10.	84.
	fragmental. Sparse-locally mod qtz/CO, veining. Tr Py. Local faulting. Rock soft - less competent. Minor,	49.40	50.00		59.	0.5	181.	10.	84.
	local, fine grained, banded, black mudstone/siltstone.	50.00	50.30		586.	0.4	93.	10.	79.
		50.30	50.50		42.	0.6	78.	46.	336.
	44.9-50.3 Shear fabric @ 80° to C.A.	50.50	51.40		37.	0.9	100.	10.	61.
		51.40	52.50		232.	0.6	80.	10.	48.
	50.3-52.7 Mudstone.	52.50	52.70		29.	0.8	93.	11.	116.
	50.3-50.5 Fault.	52.70	53.70		33.	0.6	133.	14.	196.
		53.70	54.20		52.	0.5	128.	91.	385.
	57.7-62.0 Shear fabric @ 70° to C.A.	54.20	55.40		20.	0.6	126.	48.	132.
	75.6-79.3 Shear fabric. Variable core axis angles from 45-70°to C.A.	55.40	56.30		203.	0.4	135.	38.	89.
	117.4-117.7 Fault.	56.30	57.70		57.	0.5	161.	94.	221.
		57.70	59.20		117.	0.5	146.	95.	139.
	118.4-122.9 Mudstone/Siltstone	59.20	60.20		170.	0.4	170.	35.	115.
	122.9-129.7 Shear fabric @ 70° to C.A.	60.20	61.50		20.	0.4	206.	19.	80.
	132.8-133.4 Fault.	61.50	62.00		20.	0.4	190.	11.	73.
		62.00	62.90		556.	0.3	201.	53.	197.
138.3-522.3	GREYWACKE/SILTSTONE:(minor fragmental)	62.90	63.40		146.	0.6	195.	28.	79.
		63.40	64.50		21.	0.4	190.	13.	68. 119.
	Competent, highly silicified, QSP (qtz/sericite/Py) altered sedimentary package. Relic textures of wacke,	64.50	65.20		92.	0.6 0.3	219. 124.	11. 12.	120.
	sittstone & fragmental can still be seen although much of original texture lost due to alteration. Light & med	65.20	66.30		52.	0.3	124.	12.	81.
	grey. Weakly foliated @ 70-80°to C.A. Local stockwork - brxx texture. Mod qtz/CO ₃ (ankerite) veining. Local	66.30 66.60	66.60 67.30		48. 15.	0.5	356.	10.	54.
	fine grained bio & sericite alteration. 1-2% graphite (possible Mo) on fracture surfaces. <1-1% Py stringers &	67.30	67.30		15. 42.	0.8	336.	10.	36.
	disseminated. Local, fine grained Ga, Sph, minor Cpy. Locally cut by feldspar porphyry dyke.	67.70	68.60		42. 31.	0.3	341.	11.	57.
	266.3-266.5 Fault, gouge	68.60	69.10		42.	0.3	321.	11.	66.
	266.3-266.5 Fault, gouge 268.1-308.2 Stockwork increases. 2-4% Py ± Po.	69.10	69.40		38.	0.3	291	10.	64.
	302.2-304.2 Fault.	69.40	69.90		42.	0.2	306.	10.	44.
	327.9-328 5 Fault.	69.90	71.10		23	0.2	374.	10.	55.
	337,2-339,7 Fault.	71.10	71.20		36.	0.2	336.	20.	38.
	385 2-385 7 Fault.	71.20	71.50		29.	1.2	432	10.	53.
	393,5-393.9 4-5% Py, 2-3cm magnetite vein. Mafic grains in qtz/feld alternation.	71.50	72.80		56.	0.5	354	10.	55.
	411.7-412.0 Fault.	1	12.00			0.0	vv-1.		
	425.2 Ga/Sph @ fault contact.								
	425.2 Garophile radii contact.	1							

Drill Hole Rec

Target: Sky Creek

10 December ·	1 - Page 2
---------------	------------

tres From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pbppm	Zn ppr
	Uescription		1.0				ou ppm	,	
		72.80	73.20		39.	0.4	305.	10.	
		73.20	74.20		25.	0.2	271.	10.	:
		74.20	75.60		29.	0.3	277.	27.	
0.407.0		75.60 75.70	75.70 76.30		23. 27.	0.4 0.2	269. 241.	10. 19.	
.2-427.2	MEGACRYSTFELDSPAR PORPHYRY DYKE: Grey-light grey. Min extension veins. Tr Py. Local, possible bleached or feldspar/clay attered. Weak foliation	76.30	76.30		27.	0.2	265.	10.	
	. @ 60 to C.A.	76.70	77.50		20.	0.3	244.	10.	
		77.50	77.90		31.	0.2	217.	10.	
	450.0-450.9 Qtz/CO ₃ vein with 4-6% Ga/Sph, 3-5% Py.	77.90	78.50		48.	0.3	303.	10.	
	459.3-459.9 Fault @ 55-65° to C.A. 477.3-479.0 Fault	78.50 86.50	79.30 88.00		53. 61.	0.2 0.3	339. 295.	10. 19.	
	493.3-493.4 Fault.	88.00	88.40		20.	0.3	359.	13.	
	493.4-52.3 Local Ga/Sph, 2-4% Py	91.10	92.60		20.	0.3	469.	10.	
1	516.7-522.3 Fault	92.60	94.00		41.	0.5	312.	10.	
		98.10	99.80		29.	5.6	329.	17.	
	EOH @ 522.3m	109.10 110.60	110.60 111.30		11. 20.	0.4 0.2	341. 279.	10. 15.	
		111.30	112.80		119.	0.2	338.	. 10.	
		112.80	113.50		65.	0.5	325.	10.	
		113.50	114.90		36.	0.3	321.	10.	
		114.90 116.00	116.00 117.80		30. 20.	0.2 0.2	259. 330.	10. 10.	
		117.80	118.00		20. 20.	0.2	330.	10.	
		118.00	118.40		348.	0.5	378		
		118.40	119.80		20.	0.6	406.	34.	
		122.90	124.30		20.	0.4	363.	10.	
		124.30 125.80	125.80 127.30		20. 20.	0.4 0.4	356. 378.	10. 10.	
		123.80	127.30		20.	0.4	360.	10.	
		128.80	129.70		20.	0.4	355.	10.	
		129.70	130.30		54.	0.5	151.		
		132.40	132.80		34.	0.2	364. 319.	10. 10.	
		132.80 134.20	134.20 135.80		84. 54.	0.3 0.3	153.		
		135.80	136.30		26.	0.7	157.		
		136.30	136.80		53.	1.2	158.	00.	
		136.80	137.10		98.	16.1			
		137.10 137.50	137.50 138.30		69. 57.	1.8 2.1	221. 296.		
		137.50	138.50		109.	4.5			
		139.60	141.30		111.	7.4			
		141.30	141.80		62.	3.7	396.	00.	
		141.80	149.30		60. 24	2.1	191.		
		149.60 150.00	150.00 150.50		34. 55.	2.3 1.7	159. 301.	00.	
		150.50	151.80		90.	3.6	736.		
		152.60	154.00		71.	1.2	254.		
		154.00	154.70		17.	0.9	167.		
		154.70	155.50		59. 56	1.7	343.		
		155.50 155.70	155.70 156.10		56. 39.	2.0 2.5	205. 356.		
		157.30	156.10		66.	1.2			
		157.90	158.70		74.	43.	278	. 00	
		158.70	159.20		99.	9.2			
		159.20	160.00		85.	1.8			
		162.70	163.10 164.50		44. 44.	0.5 0.5			
	1	163.10			44. 146.				

DRILL LOG SUM RY: DDH J94-27

10	December	1	-	Page	3	
				•		

.

,			·····	r					
s From To	Description	From	то	Au g/t	Au ppb	Ag g/t	Cu ppm	Pbppm	Zn ppr
		· · · · · · · · · · · · · · · · · · ·				· · · · · ·			
		165.30	166.00		47.	3.9	382.	00.	1
		166.00	166.30		36.	0.7	541.	00.	1:
		166.30	166.60		88.	2.3	875.	00.	1
		166.60	168.10		61.	2.3	639.	12.	6
		171.60	173.00		43.	1.1	73.	37.	70
		173.00 173.30	173.30 173.90		107. 60.	4.1 2.1	974. 423.	75. 14.	1 5
		173.90	175.30		100.	3.3	423. 352.	62.	e (
		176.30	177.80		88.	3.7	461.	192.	Ì
		177.80	179.50		59.	1.6	326.	12.	2
		179.50	179.80		49.	1.9	486.	14.	3
		179.80	181.20		64.	1.6	397.	14.	3
		181.90	182.20		126.	1.5	613.	12.	
		182.20	183.70		118.	1.1	434.	7.	3
		186.00	187.50		89.	1.0	461	7.	3
		187.50	189.00		93.	1.2	444.	9.	3
		189.00	189.70		31.	1.6	301.	23.	-
		189.70	190.20		66.	1.4	269	12	:
		190.20	190.40		65.	1.9	527.	13.	4
		190.40	191.10		62.	1.6	394.	26.	!
		193.20	193.40		167.	1.8	276.	32.	1
		193.40	195.10		228.	1.0	270.	16.	
		198.40	199.70		132.	1.2	375.	15.	
		199.70	199.90		165.	4.3	1974		
L		199.90	201.50		30.	0.9	336.	21.	4
		205.10	206.60		95.	2.6	580.	111.	
		206.60 206.90	206.90 208.30		104. 136.	7.5	1775		:
		209.00	209.30		61.	2.1 2.2	527. 657.	83. 33.	7 5
		209.30	210.40		38.	0.7	213.	95.	ē
		212.40	213.10		41.	3.0	508.	169.	(
		213.10	214.90		140.	2.2	384.	111.	
		214.90	215.20		334.	3.6	632.	45.	3
		215.20	216.20		41.	2.5	644.	57.	2
		216.20	216.60		36.	1.7	563.	56.	1
		216.60	218.20		89.	1.9	819.	18.	9
		218.20	218.70		292.	5.9	1220		
		218.70	218.90		59.	4.3	1138	. 242.	6
		218.90	219.30		74.	2.2	519.	38.	50
		219.30	220.00		71.	2.3	1112		1
		220.00	220.60		67.	1.2	300.	58.	16
		224.20	225.60		35.	1.2	851.	10.	10
		225.60	225.80		68.	6.1	1025		3
		225.80	227.10		73.	3.4	939. 740	12.	10
1		228.00	229.50		58. 50	1.9	719.	9.	13
1		229.50 229.70	229.70 231.60		59. 52	2.2 2.6	938. 426.	9. 35	10
I		229.70	231.60		52. 106.	∠.o 6.9	426. 597.	35. 124.	10
		231.00	232.00		90.	4.2	637.	124.	16
		233.60	232.40		90. 40.	4.2 3.5	1166		19
		233.00	234.90		40. 50.	2.9	1028		1
		234.90	235.20		99.	6.6	1875		2
ļ		235.20	236.70		66.	3.8	1288		2
		233.20	240.00		53.	2.5	591.	. 16.	2
l		240.00	240.30		117.	3.1	1291		1
		240.30	240.90		33.	2.0	749.	17.	12
		240.90	241.20		40.	1.9	380.	39.	52

DRILL LOG SUM RY: DDH J94-27

.

s From To	Description	From	To	Au g/t	Au ppb	Ag g/t	Cu ppm	Pbppm	Zn pp
		241.20	242.60		33.	3.3	787.	67.	13
		242.60	243.10		43.	2.3	446.	112	
		243.10	244.30		31.	2.9	380.	91.	14
		244.30	245.60		41.	1.4	411.	6.	4
		248.10	248.50		26.	1.6	378.	8.	5
		248.50	248.90	0.5	1715.				
		248.90	250.50		10.	1.2	270.	8.	
		250.50	252.00		16.	0.8	326.	5.	:
		252.00	252.60		22.	0.5	271.	6.	
		252.60	253.90		17.	1.0	336.	17.	
		253.90	254.20		610.	1.8	184.	64 .	
		254.20	255.20		49.	3.7	296.	396	
		255.20 255.50	255.50 256.10		24. 10	1.6	220.	13.	
		255.50	256.10		10. 21.	0.6 0.7	120.	8. 5.	1
		256.10	257.70		21. 76.		401. 435.		
		258.80	259.00		76. 140.	1.7 0.9		6. 18.	
		258.80	259.00		140. 33.	0.9	116. 302.	18. 8.	
		263.90	264.70		55. 65.	2.7	313	o. 44.	
		264.70	265.70		4.	0.8	267	18.	
		265.70	266.20		61.	1.3	365	14.	
		266.20	266.60		147	1.3	408	15.	
		266.60	268.10		27	1.0	237	15.	
		268.10	269.10		128	7.3	189.	192	2.
		269.10	269.40		89.	1.7	134.	80.	
		269.40	270.00		113.	5.6	431.	56.	
		270.00	270.20		155.	7.1	964.	18.	
		270.20	271.70		54.	1.1	140.	37.	
		271.70	273.10		122.	8.1	170.	102	
		273.10	273.80		48.	2.1	164.	23.	
		275.40	276.90		110.	1.6	116.	14.	
		276.90	278.40		111.	1.1	128.	19.	
		278.40	279.90		139.	1.3	137.		
		279.90	281.40		66.	1.0	134.	15.	
		281.40	282.90		90.	1.4	88.	14.	
		282.90	284.40		172.	0.9	95.	23.	
		284.40	286.20		137.	1.2	88.	22.	
		287.70	288.40		91.	1.3	99.	35.	
		289.80	291.10		126.	2.0	66.	21.	
		291.10	292.10		141.	1.0	39.	21.	
		295.70	297.20		63.	0.4	65.	7.	:
		297.20	298.70		52.	0.6	91.	11.	
		298.70	299.10		148.	2.0	129.	40.	
		299.10	300.10		75.	0.4	100.	12.	
		302.20	304.20		104.	0.6	92.	14.	
		304.20	305.00		472.	1.5	192.	10.	
		305.00 306.20	306.20 307.80		108. 264.	1.2 2.2	94. 140.	14. 10.	
		307.80	309.40		204. 146.	2.2 0.6			
		309.40	310.40		322.	1.0	126. 119.		
		310.40	310.40		281.	0.7	183.		
		310.90	312.20		201.	0.7	80.	ъ. 8.	:
		312.20	312.20		235. 212.	0.7	60. 77.	· 9.	
		312.60	315.10		212. 579.	0.6	97.	9. 6.	
		315.10	316.50		203.	0.6	97. 83.	о. 6.	:
		316.50	317.90		203. 65.	0.5	165.	6.	
		317.90	319.40		80.	0.7	100.	4.	:
		319.40	320.70		70.	0.4	123.	9.	:
		320.70	322.20		91.	0.4	63.	5.	2
		020.70			U 1.	Q4		σ.	

DRILL LOG SUM RY: DDH J94-27

es From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pbppm	Zn ppm
	· · · · · · · · · · · · · · · · · · ·	 							
		000.00	000 70		70	0.1	75		20
		322.20	323.70		70. 103	0.1 0.4	75. 86.	6. 8.	32. 35.
1		323.70 325.20	325.20 326.50		103. 118.	2.6	91.	111.	62
		326.50	328.50		100.	1.0	99.	15.	35
		328.50	330.50		73.	0.4	124.	6.	32
		330.50	332.50		55.	0.3	116.	5.	38
		332.50	334.70		77.	0.3	156.	5.	35
1		334.70	336.70		71.	0.5	66.	16.	42
		336.70	338.70		69.	1.7	62.	314.	51
		338.70	339.70		82.	1.3	55.	77.	33
		339.70	341.20		89.	1.1	48.	36.	24
		341.20	342.70		59.	1.3	59.	33.	29
		342.70	344.40		180.	4.7	106.		
		344.40	344.90		118.	1.5	87.	32.	30
		344.90	346.40		163.	1.6	107.		
		346.40	346.90		174.	1.4	51.	43.	75
		346.90 348.40	348.40 350.40		111. 89	1.7 1.0	23. 56.	28. 18.	38 29
		348.40	350.40 351.40		89. 76.	1.4	64.	26.	57
		353.60	354.30		116.	1.1	39.	20.	30
		354.30	356.40		89.	2.9	65.	183.	4
		359.00	360.70		497.	0.9	63.	22.	5
		365.00	365.90		428.	1.2	118	. 13.	3
		365.90	367.40		147.	0.5	26 .	10.	1.
		367.40	368.90		105.	0.6	32.	10.	3
		368.90	370.40		111.	0.5	23	10.	2
		370.40	371.80		225	0.7	34.	16.	2
		371.80	373.80		100.	0.5	33	12.	4
		373.80 376.50	376.50 378.50		155. 134.	0.8 0.6	27. 17.	18. 11.	11
		378.50	380.50		141.	0.9	29.	15.	3
		380.50	382.50		220.	0.6	18.	14.	1
		382.50	383.50		329.	1.2	23.	21.	3
		383.50	385.50		82.	0.8	220.		2
		385.50	387.50		261.	0.6	15.	13.	3
		387.50	389.50		94.	0.4	13.	11.	44
		389.50	391.50		125.	0.9	32.	13.	4
		391.50	393.50		112.	0.9	18.	11.	2
		393.50	393.90	1.30	1317				
		393.90	395.40		124.	0.5	20.	13.	3 2
		395.40	396.50 398.10		310. 586.	0.4 0.7	20. 57.	10. 10.	3
		396.50 398.10	399.60		94.	0.7	49.	10.	1
		401.90	404.00		93.	0.5	70.	10.	2
		404.00	406.00		86.	0.3	46.	10.	3
		406.00	407.30		243.	0.2	43.	10.	3
		407.30	408.40		37.	0.3	35.	10.	3
		408.40	409.60		57.	0.2	33 .	10.	4
		412.70	414.40		129.	0.3	46.	10.	4
		414.40	415.10		123.	0.4	20 .	40.	3
		415.10	416.30		103.	0.3	35.	12.	5
		417.40	418.00		126.	0.7	20.	10.	5
		420.20	422.30		132.	0.6	32.	25.	3
		424.60	425.20		157.	2.2	90.	115	
		447.50	448.50		24.	0.5	35.	20.	74
		450.00	450.90		831.	30.4	l 18 [.] 13.	1 21: 16.	97. 320 51
		451.70	452.60		76.	0.9	13.	10.	31

 DRILL LOG SUM'
 RY: DDH J94-27
 10 December 1
 - Page 6

 Metres From To
 Description
 From
 To
 Au g/t
 Au ppb
 Ag g/t
 Cu ppm
 Pbppm
 Zn ppm

	454.90	455.80		81.	460.0	17	13.	39.
	455.80	456.90		260.	0.4	13.	15.	36.
	457.70	458.60	0.10	1877.	0.4	10.	10.	36.
	464.90	466.30		134.	0.5	15.	10.	32.
	END							

DRILL LOG SUM ,RY: DDH J94-28

....

Property SNIP	District Liard, M.D.	Length: 291.2m	
Commenced: Sept 5, 1994	Corr. Dip: -50°	Core Size: BQTK	
Completed: Sept 8, 1994	True Brg: 030°	% Recov	
Coordinates: 780N 1850E	Elevation: 175m	Tests: No Tests	

Target: Sky Creek Logged By: JRG

Metres From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn ppm
0.0-5.2	CASING	6.80	7.10		108.	0.9	80.	13.	72.
5.2-233.0	GREYWACKE: (Very minor mudstone & fragmental)	7.10	8.50		126.	1.7	79.	12.	146.
5.2-233.0	GRETWACKE: (Very minor mudstone & tragmental)	16.20 17.60	17.60 18.00		59. 55.	0.9 0.6	64. 47.	27. 13.	171. 48.
	Variable, mod-intense alteration. Med-light grey, fine-med grained with local feldspar grains elongate to mod	23.80	24.30		27.	0.6	47.	13.	46. 75.
	foliation @ 50° to C.A. Local bleaching, sericite & clay alteration. As depth increases, dark green chi & brown	28.60	29.80		160.	2.3	40. 54.	18.	164.
	bio alteration with local high foliation - shear fabric. Sparse qtz/CO, veining. Tr-<1% Py. Local Sph/Ga. Minor	29.80	31.20		47.	0.3	67.	10.	111.
	Cpy. Locally faulted. Local minor mudstone & fragmental.	34.10	35.10		56.	0.6	49.	10.	95.
		35.10	35.40		31.	0.3	48.	10.	74.
	42.8-56.5 Fault zone.	47.30	48.00		43.	0.2	44.	16.	64.
	79.8-94.2 Highly foliated - shear'd @ 40° to C.A. Chl/bio attered.	48.00	49.00		79.	2.9	57.	19.	60.
	112.3-112.6 Fault.	50.00	53.80		224.	2.0	59.	84.	105.
	163.1-174.4 Highly foliated @ 40° to C.A. Chl attered with mod-high, 1mm CO ₃ veining subparallel	53.80	55.80		209.	9.7	87.	107.	340.
	to foliation.	57.00	58.50		55.	2.5	345.	33.	54.
	179.2-181.0 Mottled, siliceous. 3-5% fine grained Sph. 2-3% fine grained Ga, 1-2% Py, <1% Cpy.	58.50	60.40		35.	0.4	112.	10.	29.
	185.5-185.8 Qtz veining/flooding with grey CO ₃ 1% Sph. <1% Py, tr-<1% Ga.	60.40	61.20		27.	0.2	140.	10.	48.
	186.7-227.7 Mod-high, pervasive chl. Local qtz/Sph/Ga veining. Local 1-3% Py. Weak shear'g.	61.20	62.50		26.	0.3	154.	10.	30.
	Start to see elongate mafic spot @ 194m.	68.40	70.20		26.	0.1	153.	10.	25.
		79.80	81.20		22.	0.3	137.	11.	33.
		81.20	82.70		26.	0.4	151.	15.	31.
233.0-291.2	SILTSTONE/GREYWACKE:	84.20	85.70		27.	0.2	117.	10.	44.
		85.70	87.10		52 .	0.2	214.	15.	40.
	Grey/cream/purple/brown, fine grained, banded - laminated (@ 50° to C.A.) siltstone. Gradational with grey-	87.10	88.10		34.	0.2	157.	13.	47.
	brown, fine-med-locally coarse grained wacke. Variably clay/sericite/bio attered. Locally silicified. Sparse-mod	88.10	88.90		57.	0.3	156.	11.	37.
	qtz/CO ₃ veining within siltstone. Mod-high qtz/CO ₃ associated with wacke. 1-2% Py, local Sph/Ga, minor Cpy.	88.90	90.40		36.	0.1	135.	10.	35.
		90.40	91.90		72.	0.4	138.	10.	34.
	233.0-251.5 Siltstone	91.90	93.30		37.	0.4	128.	10.	34.
		93.30	94.20		36.	0.4	139.	10.	35.
	251.5-266.8 Greywacke: increased bio-alteration.	94.20	95.50		112.	0.8	123.	15.	32.
		95.50	96.80		546.	1.2	137.	173.	445.
	266.8-288.7 Sittstone	96.80	98.00		144.	0.7	102.	10.	83.
		99.30	100.50		492.	1.5	90.	96.	08.
	788.7-291.2 Greywacke: possible Mo along fracture surfaces. QSP (qtz/sericite/Py) altered.	100.50	101.20		217.	1.3	111.	13.	76.
		101.20	101.70		482.	2.0	238.	564.	273.
	EOH @ 291.2m	101.70	102.50		154.	2.0	111.	206.	105. 44.
	1	102.50 107.90	102.90		157.	2.2	93. 255	20. 85.	
	1	107.90	108.60		568.	4.1	255.	85. 61.	53. 81.
	1	108.60	109.30		237.	2.3	223.	01.	01.

Drill Hole Rec

DRILL LOG SUM RY: DDH J94-28

10 December 2 - Page 2

			004-20						
res From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pbppm	Zn ppm
	I		-	•					
T									
		109.30	111.10		101.	2.0	77. 97.	12. 23.	50. 150.
		122.70 124.20	124.20 125.40		341. 399.	1.0 1.2	109.	139.	109
		124.20	129.60		56.	0.6	67.	10.	66.
		129.60	129.90		108.	1.5	106.	18.	64.
		129.90	132.00		135.	1.6	62.	190.	106
		132.00	132.30		207.	1.4	59.	176.	227
		134.50	134.90		108.	1.2	524.	17.	52
		138.50	139.60		94.	1.0	60.	17.	52.
		139.60	139.90		267.	3.4	151.		191
		139.90	141.40		145.	1.2	63.	13.	52.
		145.30	145.70		50.	0.2	76.	10.	67.
		145.70	146.90		139.	0.7	114.		56
		158.50	159.00		206.	6.5	509. 131		. 5175 40
		159.00 163.10	160.30 164.60		158. 42.	1.5 0.3	131. 79.	. 241 . 10.	40 99.
		164.60	165.10		42. 114.	0.5	79. 99.	10.	82
1		165.10	166.50		47.	0.3	75.	10.	105
		166.50	167.40		55.	0.6	98.	11.	123
		167.40	168.90		27.	1.3	153.	13.	19
		168.90	170.40		58.	1.2	160.	163.	71
		170.40	171.30		41.	0.4	150.	16.	218
		171.30	172.30		4.	0.1	86.	10.	143.
1		172.30	173.50		93.	0.5	120. 167.		102 84
		173.50 174.40	174.40 176.00		146. 71.	0.3 0.1	97.	. 55. 28.	129
		176.00	176.30		174.	0.1	70.	17.	12
		176.30	177.80		53.	0.2	177.		20
		177.80	179.20		112.	1.6	846		23
		179.20	179.90		328.	26.5			5. 5717
		179.90	180.30		596.	18.3). 6122
		180.30	180.70		193.	10.8			5482 182
		180.70	181.00		123.	2.6	169 136.		158
		181.00	181.70 183.30		73. 113.	0.2 0.1	102		11
		183.30	184.80		28.	0.1	95.	26.	105
		184.80	185.50		199.	0.6	123		
		185.50	185.80	1.95				21. 92	
		185.80	186.20		240.	0.1	148		102
		186.20	186.70		43.	0.1	95.	15.	92.
		186.70	187.50		111.	0.1	95.	12.	127
		187.50	188.10		262.	1.1	113		I. 192 80.
		188.10	189.20		23.	0.2 0.4	88. 143	15. 5. 18.	80. 79
		189.20 189.80	189.80 190.70		448. 251.	0.4	265		4
		190.70	190.70		101.	0.7	191		102
		191.00	191.70		135.	0.3	139		144
		191.70	192.10		88.	0.4	172.	. 901.	
		192.10	192.40		184.	422			8. 656
		192.40	192.70		105.	67.7			6. 1960
		192.70	193.30		83.	22.9			3. 549
		193.30	193.60		184.	23.6			1750
		193.60	194.00		78.	7.7	280		
		194.00	194.60		91. 76	2.8 3.7	226 359		
		194.60 195.50	195.50 196.80		76. 62.	3.7 1.7	135		179
									125.
							182		. 145
		196.80 198.20	198.20 199.00		91. 59.	1.3 2.5	92. 182		32. 1442

DRILL LOG SUM RY: DDH J94-28

res From To	Description	From	To	Au g/t	Au ppb	Ag g/t	Cu ppm	Pbppm	Zn ppr
		199.00	200.20		61.	1.7	80.	43.	15
		200.20	200.50		61.	1.7	287.	297	. 3
		200.50	202.10		63.	1.7	209.	870	
		202.10	203.00		74.	1.1	233.	470	
		203.00	204.50		58. 77	0.4	104.	21. 177	18
		204.50 204.80	204.80 206.20		77. 68.	6.0 0.7	989. 160.	35.	9. 368 2
		204.80	206.40		64.	0.3	100.	18.	1:
		206.40	207.10		53.	0.6	169.	11.	1
		207.10	208.50		64 .	1.0	182.	590	. е
		208.50	209.70		66.	1.2	252.	346	
		209.70	210.80		69.	1.1	221.	263	
		210.80	211.90		118.	0.5	98.	13. 58.	1
		211.90 212.30	212.30 213.50		125. 65.	0.9 0.6	226. 140.	50. 24.	3
		212.50	214.20		71.	1.3	238.	269	
		214.20	214.60		109.	1.7	306.	647	
		214.60	214.90		124.	1.8	221.	168	3. 4
		214.90	215.20		114.	1.2	217 .		
		215.20	215.50		262.	0.6	140.		
		215.50	216.20		81. 149.	16.9 0.6	982. 100.		
		216.20 216.70	216.70 217.00		77.	0.8	173.	208	
		217.00	217.20		195.	2.6	201.		
		217.20	218.00		125.	0.8	307.		
		218.00	219.80		166.	1.2	286.	208	B . '
		219.80	220.60		79.	0.9	136.	168	
		220.60	221.20		99 .	0.8	319.	38.	1
		221.20	222.50		98.	1.6	384.	741 17.	
1		222.50 224.00	224.00 224.60		91. 127.	0.2 0.8	88. 167.		8. 9
		224.60	225.70		156.	0.5	99.	. 20.	
ł		225.70	226.00		233.	6.0	665.		
		226.00	226.80		82.	0.2	78.	30.	10
1		226.80	227.10		226.	5.4	96 .	841	
		227.10	227.70		90.	0.6	97.	47.	19
		227.70 228.80	228.80 229.20		92. 223.	0,5 81.3	171. 497		
1		229.20	230.00		953.	1.4	544		
		230.00	231.50		563.	2.0	25.	222	
		231.50	233.00		117.	1.3	150	. 51	
		233.00	234.50		114.	0.9	265		
		234.50	234.80		119.	0.7	194		
		234.80	235.90		105.	1.0	313		
		235.90	236.30		202.	7.6	924 432.		
		236.30 237.50	237.50 237.80		66. 66.	3.5 5.8	432.	197	
		237.80	239.30		21.	0.9	312.		
		239.30	239.50		64.	0.9	338.		
		239.50	240.10		43.	0.5	348.	126	5.
		240.10	241.20		104.	16.5			75. 8
		241.20	241.70		27.	1.1	410.		
		241.70	242.40		43.	7.9	799.		
		242.40	243.20		28.	1.7	524. 745		
		243.20 244.10	244.10 244.80		50. 62.	1.2 1.6	745. 401.		
		244.10	244.80 246.00		62. 26.	1.0	373.		
		244.80	240.00		33.	0.9	566.		
1		247.30	249.00		33.	0.6	352.		

age 3

DRILL LOG SUM RY: DDH J94-28 10 December ' - Page 4 From То Au g/t Au ppb Ag g/t Cu ppm Pbppm Zn ppm Metres From To Description т Т

	249.00	250.50	86.	0.6	148.	18.	29 .
	250.50	251.50	24.	0.6	150.	24.	42.
	251.50	252.80	36.	0.9	158.	155.	163.
	252.80	253.30	50.	0.9	300.	103.	127.
	253.30	253.90	26.	1.1	394.	43.	330.
	253.90	254.40	39.	0.9	254.	31.	114.
	54.40	254.90	21.	0.2	71.		141.
	54.90	255.60	300.	2.2	682.	95.	196.
	5.60	256.00	300.	2.2	682.	95.	196.
255.00		256.50	300. 314.	0.7	144.	103.	167.
256.50		256.90	631.	0.6	135.	46.	126.
256.90		257.40	276.	1.2	104.	21.	117.
257.		258.20	276.	1.2	104.	21.	117.
258.2		258.50	42.	0.8	219.	10.	119.
258.5		259.30	170.	1.0	175.	12.	151.
259.30		260.00	179.	0.5	129.	17.	215.
260.00		260.20	168.	0.7	126.	12.	106.
260.20	1	260.90	68.	0.7	201.	12.	143.
260.90	٥	262.40	52.	3.1	355.	1051.	361.
262.40	,	263.00	108.	0.7	212.	37.	235.
263.00		264.00	43.	0.7	223.	13.	123.
264.00		265.00	51.	0.8	225.	30.	114.
265		265.80	91.	8.9	486.	555.	8050.
	5.80	266.00	109.	9.8	329.		16000.
266.00		266.80	44.	2.6	47.	727.	208.
266.80		268.30	64.	0.9	248	52.	59.
268.30		269.40	74.	1.6	282	27.	44.
269.40		270.90	53.	1.0	202.	20.	35.
270.90		271.20	86.	1.4	176.	18.	195.
271.20		272.20	67.	0.9	227.	15.	29.
272.2		272.40	122.	2.5	1237.	18.	59.
272.20		272.40 273.90	59.	1.8	368.	332.	262.
		275.90	59. 113.	7.2	539.		33400.
275.70						1914. 99.	
275.9		277.40	59. 45	1.7	287.		237.
		278.90	45.	0.7	218.	21.	45.
278.90		280.30	60.	1.7	427.	500.	2241.
280.		280.70	74.	1.3	613.	1876.	2027.
287.20		288.70	42.	1.8	363.	76.	538.
288.70		290.20	165.	1.3	80.	390.	370.
290.20	0	291.20	51.	0.5	62.	17.	30.
29							

DRILL LOG SUMN RY: DDH J94-29

т

Т

Т

.....

Property JIM	District Liard, M.D.	Length: 547.3m	
Commenced: Sept. 9, 1994	Corr. Dip: -70°	Core Size: BQRK	
Completed: Sept. 20, 1994	True Brg: 030°	% Recov. 98%	
Coordinates: 1050N 2430E	Elevation: 150m	Tests: 70.0m -72° @ 20°	
Target: Sky Creek	Logged By: JRG	274.6m -74° @ 052° 516.6m -74° @ 065°	
1			

Metres From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn ppm
4		00.00	65.50		202.	1.9	75.	20.	139.
0.0-65.5	CASING	66.90	67.20		412.	0.9	184.	70.	226.
		68.70	69.10		125.	1.2	202.	81.	265.
65.5-521.3	GREYWACKE/MUDSTONE:(with minor fragmental & siltstone)	69.10	70.00		63.	1.0	157.	73.	60.
	Variably grey/pink/tan/dark green coloured, highly altered & foliated (@ 75° to C.A.) wacke. Becoming med	70.00	70.20		110.	2.2	514.	62.	103.
	grey, fine-med grained, massive (weak - mod foliation @ 50° to C.A.) at depth. Gradational with dark grey-	70.20	71.30		98.	1.2	209.	38.	67.
	black, fine grained, laminated, mod-highly foliated, locally graphitic mudstone. Locally mod-highly folded.	71.30	71.60		118.	2.3	820.	32.	54.
	Sparse-mod qtz/C0 ₃ veining increasing with depth to mod-high. Local chl/CO ₃ /bio extension veins. <1-1% Py.	71.60	71.80		55.	0.4	109.	13.	33.
	Py content decreases and is replaced by 1% Po after 335.2m. Local faulting & bleaching. Variably	71.80	72.10		107.	1.6	742.	22.	58.
	chl/sericite/clay/bio altered. Locally cut by mafic dykes.	72.10	73.60		70.	0.4	83.	47.	257
		73.60	74.00		156.	1.8	256.	103.	325.
	65-228.4 GREYWACKE	74.00	74.70		58.	0.8	104.	94.	285.
	71.3-71.6 Two 10cm Py bands @ 45° to C A. 5-7% Py.	74.70	75.00		64 .	1.1	135.	48.	54.
	98.3-109.8 Chl/CO ₃ strong shear fabric	75.00	75.90		48.	0.4	69.	24.	52.
	@ 85-90° to C.A. Tr Py. Soft.	75.90	76.10		71.	1.1	142.	63.	74.
	104.8-105.6 Fault	76.10	76.90		74.	0.3	129. 108.	41. 39.	58. 90.
	148.25-148.35 Chl/CO ₃ shear @ 60° to C.A. 1-1.5% Py.	76.90	77.50		147.	0.8			90. 112.
	150.0-150.6 Fault @ 45° to C.A.	79.20	79.60		75.	1.4 0.7	264.	39. 31.	55.
		79.60	80.10		66.	•	121. 323.	31. 32.	55. 84.
	228.4-249.0 MUDSTONE: Fine laminae of CO ₃ veining subparallel to foliation. Graphitic.	80.10	80.50		104.	1.4	323. 125.	32. 31.	64. 58.
	262.2-262.3 Fault @ 85° to C.A.	80.50	81.20		88. 227.	0.5 2.1	469.	104.	153.
		81.20	81.50 82.50		93.	1.2	330.	77.	266.
	305.4 - 335.2 GREYWACKE: Mod-high, .35cm, subparallel CO ₃ veining. 'Zebra' appearance. Local	81.50 82.50	82.50 83.40		93. 75.	0.2	330. 143.	34.	285.
	magnatite. Local, 3-5cm, CO ₃ /chl/bio shear veins.	82.50	83.40		75. 74.	0.2	217.	73.	130.
	335.2-402.5 MUDSTONE: 1-2% Po. Minor local Sph.	87.30	87.60		100.	2.4	140.	600.	20430.
	335.2-402.5 MODSTONE: 1-2% PC. Minor local Spn. 374.6-375 Mod-high, white/gry/cream CO ₃ veining.	87.60	89.10		70.	0.1	72.	25.	1048.
	375.2-375.6 2-3cm massive Po vein @ 40° to C.A. 5-10cm talc alteration @ lower contact.	90.10	90.30		70. 79.	1.5	823.	15.	88.
	375.2-375.6 2-30m massive P0 vein @ 40 10 0.A. 3-100m taic alleration @ lower contact.	90.30	91.70		49.	0.2	246.	9.	40.
	402.4-521.3 GREYWACKE (minor sittstone). Locally highly foliated-shear'd @ 70-75° to C.A.	94.60	95.00		78.	1.1	417.	7.	40.
	412.3-412.5 10cm shear @ 50° to C.A. CO ₃ /sericite.	95.00	96.00		40.	0.2	197.	8.	34.
		96.00	96.40		75.	0.6	296.	9.	37.
468.6-468.7	DYKE: Med brown, fine grained, massive, with .5cm chill margins @ 55° to C.A.	96.40	96.80		55.	0.1	167.	8.	26.
400.0-400.7	DTKE. Med brown, the grained, massive, with John chill margins (200-10-0.A.	96.80	97.50		37.	0.1	194.	9.	43.
	488 6-498.7 Fault zone.	97.50	98.30		72.	0.1	117.	39.	64.
	509.2-509.3 Fault @ 70° to C.A.	98.30	99.80		32.	0.1	158.	8.	36.
		99.80	100.20		42.	0.1	148.	10.	38.
		100.20	101.70		26.	0.1	45.	3.	33.
521.3-547.3	FRAGMENTAL								
	Provide the stand of the stand of the stand first stand ship the stand ship the stand sta								

Dark grey-grey/green. Highly altered. Local, mod, fine grained chl alteration. Mod-locally intensely foliated. Local minor epidote alteration of fragments. Local Po/Py/Sph up to 10%.

530.6-530.9 Po/Py/Sph interstitial to qtz veining/spacefilling. 5-7% Po. 2-3% Py. 1-2% Sph. Pervasive chl.

EOH @ 547.3m

Drill Hole Reco

١

 DRILL LOG SUMI
 RY: DDH J94-29
 11 December 1'

 From
 To
 Au a/t
 Au a/t
 Cu ppm
 Zn ppm

11	December 1'	- Page 3

s From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pbppm	Zn ppm
		101.70	102.90		26.	0.1	33.	1.	33.
		104.80	105.60		51.	0.1	22.	2.	23
		105.60	107.10		42.	0.1	312.	14.	50
		107.10	108.20		26.	0.1	94.	10.	39
		108.20	109.00		45.	0.1	62.	9.	80
		109.00	109.80		16.	0.1	75.	9.	58
		114.90	115.10		30.	0.1	77.	30 .	14
		115.10	116.50		5.	0.2	200.	10. 5.	7.
Ŀ		116.50 117.70	117.70 118.30		7. 3.	0.2 0.1	201. 109.	з. З.	49 55
		118.30	119.30		91.	0.9	151.	28.	1
		119.30	120.30		32.	0.4	183.	9.	12
		130.10	131.60		15.	1.2	101.	2.	3
		131.60	132.80		18.	0.4	89.	1.	3
		138.50	139.60		79.	1.0	171.	2.	5
		147.60	148.20		10.	0.3	89.	3.	4
		148.20	148.40		16.	0.1	77.	6.	3
		149.40	150.00		14.	0.1	70.	5.	4
		150.00	150.60		10.	0.6	117.	8.	7
		150.60	150.90		18.	0.6	213.	11.	(
		150.90	151.30		17.	0.4	176.	11.	8
		151.30	152.80		43.	0.7	240.	14.	9
		152.80	154.50		23.	0.6	337.	5.	4
		154.50	155.30		24.	0.7 0.8	302.	4. 6.	4
		156.70 157.00	157.00 157.60		33. 52.	0.8	427. 59.	ь. 5.	5.
		164.40	164.90		18.	0.4	221.	7.	5
		174.20	175.50		23.	0.2	113.		
		175.50	177.00		24.	4.4	111.		6
		177.00	178.40		55.	4.6	207.		4
		178.40	178.80		30.	1.2	398.		3
		184.80	186.30		23.	0.7	187.	7.	6
		186.30	186.80		31.	1.9	506.	61.	54
		186.80	188.20		35.	0.5	134.		6
		194.00	195.50		19.	0.2	187.		4
		195.50	196.00		5.	0.2	107.	13.	5
		196.00	197.50		7.	0.1	129.	7.	50 51
		197.50	198.10		6. 11.	0.7 0.7	180. 172.	9. 21.	5
		198.10 201.50	198.30 202.00		153.	0.7	172.		
		201.50	202.00		79.	1.2	171.		7
		202.80	203.90		80.	0.9	212.		4
		203.90	205.30		47.	0.9	178.		4
		205.30	206.40		36.	0.8	198.		3
		206.40	208.00		244.	1.0	203		
		208.00	208.30		83.	25.1	195		
		208.30	208.90		33.	0.8	171.		7
		212.10	213.60		41.	1.0	134.		4
		213.60	213.90		68.	1.7	160.		6
		213.90	215.70		40.	0.2	132.		3
		218.10	218.40		46. 27	0.1	134.		3 43
		222.80	223.30		27.	0.1	194. 168.		4
		223.30 223.60	223.60 223.80		33. 100.	0.6 0.1	168.		6
		223.80	223.80		63.	0.1	195		2
		223.90	223.90		59.	0.1	136.		13
		225.90	227.40		104.	0.8	240		

age 2

Metres From To Description From То Au g/t Au ppb Ag g/t Cu ppm Pbppm Zn ppm 94. 227.40 228.00 43, 0.6 166 38. 228.00 228.40 34. 0.2 148. 28. 125. 228,40 229.90 32. 21. 208. 0.6 166. 238.30 238.60 22. 0.1 128. 27. 121. 243.30 244.10 16. 131. 32. 193. 0.6 244.10 244.50 17. 116. 30. 133. 0.9 248.00 143. 249.00 35. 0.6 108. 105. 249.00 70. 249.70 18. 0.5 77. 36. 265.70 267.30 26. 28. 36. 1.3 80. 267.30 36. 30. 267.50 40. 2.0 138. 277.20 277.90 47. 0.8 90. 12. 48. 104. 283.30 283,70 43. 0.7 169. 11. 30. 288.30 288.40 45. 0.9 138. 10. 288.40 290.40 20. 0.7 113. 12. 31. 290.40 291.70 20. 0.9 94. 15. 35. 291.70 292.00 20. 1.8 214. 19. 44 292.00 292.70 20. 0.9 147. 9. 46. 292.70 293.70 107. 0.9 136. 11. 55. 293.70 294.20 30. 0.7 80. 11. 42. 301.00 301.30 27. 1.3 104. 13. 16. 301.30 301.60 55. 2.2 63. 25. 11. 301.60 302.50 35. 2.0 128 21. 16. 302.50 302.90 25. 2.0 137. 19. 221. 311.40 311.60 26. 0.6 139. 28. 40. 318.40 318.60 55. 0.5 218. 16. 32. 318.60 318.80 43. 0.3 87 15. 17. 319.50 320.20 55. 0.8 173. 12. 47. 320.20 322.00 94. 3.8 156. 12. 57. 322.00 322.40 79. 2.0 65. 11. 27. 323.20 324,50 54. 1.7 117. 9. 51. 324.50 324.70 56. 2.0 169. 10. 57. 324.70 55. 1.7 189. 7. 44. 324.90 324.90 326.20 69. 2.6 169. 9. 49. 326.20 50 1.9 119. 6. 82. 327.50 327.50 103. 182. 9. 70. 327.70 1.5 27. 2.0 121. 16. 53. 328,40 328.70 19. 62. 333.60 335.20 71. 2.6 70. 335.20 336.90 60. 2.5 110. 43. 311. 27. 346.20 346.50 64. 1.6 63. 111. 359.50 83. 1.4 104. 29. 40. 360.20 360.20 71. 1.5 124. 13. 111. 360.80 360.80 1.5 134. 14. 70. 361.30 31. 364.50 100. 1.0 151. 14. 128. 365.90 365.90 1.2 182. 10. 77. 367.40 81. 146. 12. 60. 367.40 368.30 71. 1.4 368.30 77. 1.3 174. 14. 84. 368.90 73. 145. 24. 152. 368.90 369.20 1.0 185. 1434 369.20 369.80 81. 3.3 221. 1013. 369.80 370.80 73. 1.5 152. 51. 370.80 371.00 78. 1.3 179. 19. 66. 371.00 5.0 773. 23. 75. 371.30 84.

371.30

371.70

372.60

373.60

371.70

372.60

373.60

374.20

80.

127.

67.

85.

0.7

1.2

1.1

1.1

145.

223.

161.

177.

14.

12.

12.

21

181.

68.

43.

74.

DRILL LOG SUM RY: DDH J94-29

11 December 1

1 - Page 3

11 December - Page 4

									er
res From To	Description	From	то	Au g/t	Au ppb	Ag g/t	Cu ppm	Pbppm	Zn ppm
		374.20	374.60	5.15	5352.	26.8	8 89		5. 124
		380.90	381.30		84.	0.9	163.	30.	14
		384.30	385.00		76.	1.5	138.	31.	1
		402.60	402.90		74.	0.7	125.	2.	8
		402.90	403.60 403.90		70. 72.	0.3	140. 149.	3.	1
		403.60 405.20	403.90		64.	1.7 0.4	145.	171. 10.	9
		406.20	407.10		60.	0.5	163.	21.	1
		407.10	407.70		64.	0.7	168.	10.	1
		407.70	407.90		61.	0.5	127.	11.	
		407.90	408.10		68.	0.5	171.	9.	1
		408.10	408.50		71.	0.5	147.	13.	1
		412.10	412.30		61.	0.3	132.	6.	1
1		412.30	412.50		63.	0.8	173.	20.	1
		412.50	413.50		77.	1.7	240.	389.	5
		420.80	421.50		57.	1.0	165.	10.	
		421.50	422.20		62.	1.3	290.	10.	
		422.20	423.00		35.	0.9	212.	10.	
		433.80 434.90	434.90 436.20		87. 39.	1.1 1.1	211. 186.	10. 12.	1
1		440.00	430.20		41.	0.5	185.	6.	
		441.50	441.90		202.	0.4	266.	14.	
		441.90	443.30		51.	0.5	187.	5.	
		448.70	449.10		51.	0.7	202	7.	
1		454.10	454.50		73.	0.6	187.	11.	
1		466.00	466.50		33.	0.1	158	5.	
1		466.50	467.80		81.	0.2	175	4.	
		469.90	470.40		87.	0.3	179.	7.	
		470.40	472.00		69.	0.1	220.	7.	
		479.40	480.10		357.	0.3	155.	9.	
		480.10	480.30		101.	0.3	228.	9.	
		480.30 481.70	481.70 481.90		56.	0.3	176. 177.	5. 7.	
1		481.70	490.10		88. 56.	0.2 0.3	171.	6.	
		492.90	493.60		210.	0.2	108.	6.	
		498.80	499.10		177.	1.0	271.		. :
		500.00	500.30		295.	0.8	237.		
		500.30	501.30		62.	0.5	174.	9.	
		503.70	504.50		63.	0.2	216.	7.	
		504.50	505.00		31.	0.8	219.	3.	
		505.00	506.50		90.	0.4	209.	3.	
		506.50	507.80		233.	0.4	197.		
1		509.30	509.80		73.	0.5	259.	11.	
		521.90	522.30		211.	2.3	154.	2.	
		522.30 523.50	523.50 524.20		59. 70	0.7	419.	24.	1
		523.50	524.20 528.30		79. 57.	0.2 0.4	338. 175.	3. 4.	13
		528.30	528.30 529.10		56.	0.4	175.	4. 5.	
		529.10	529.50		53.	2.2	457.	186.	4
		529.50	530.00		51.	0.4	184.	9.	
		530.00	530.30		50.	0.3	200.	17.	
		530.30	530.60		41.	1.4	221.		:
		530.60	530.90		93.	8.3	5000		17:
		530.90	531.10		98.	0.5	314.	16.	28
		531.10	532.50		40.	0.4	189.	3.	ç

. .

		RY: DDH		11 December							
Metres From To	Description		From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pbppm	Zn ppm	-
			r		•····						_
			535.50	535.60		54	1.1	271.	2.	77.	
			535.60	537.00		87.	2.7	254.	3.	90 .	
			537.00	537.40		52.	0.1	191.	6.	75.	
			537.40	537.90		80.	0.1	170.	7.	72.	
			538.70	538.90		38.	0.5	263.	4.	60.	
			540.70	542.00		72.	0.1	185.	9.	74.	
			544.20	544.50		44.	0.1	63.	3.	38.	
			END								

.

Drill Hole Rec

DRILL LOG SUM .RY: DDH J94-30

Commenced: Sept. 23, 1994 Corr. Dip: -60° Completed: Sept. 28, 1994 True Brg: 030°	District Liard, M.D.	Length: 492.7m	
Commenced: Sept. 23, 1994	Corr. Dip: -60°	Core Size: BQTK	
Completed: Sept. 28, 1994	True Brg: 030°	% Recov.	
Coordinates: 880N 2850E	Elevation: 150m	Tests: 10 7m -58 @ 037°	
Target: J93-20 shr	Logged By: JRG	245 7m -66° @ ? 492.6 -66 @ 038°	

Metres From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn ppm
0.0-6.1	CASING	6.70	7.10		443.	1.0	220.	58.	1320.
		13.80	15.50		29.	1.5	49.	170.	78.
		18.90	19.40		38.	0.5	96.	18.	55.
5.1-18.5	SILTSTONE: (minor greywacke)	21.80	22.00		3.	0.2	82.	38.	441.
	Med-dark brown-black & grey. 5-1cm banding @45° to C.A. Locally offset by micro fractures. Minor biotite	23.10	23.60		28.	0.3	103.	36.	787
	alteration. Local, intense CO, gash veining. Mod extension veining @ 50-55° to C.A. 1-1.5% Py.	24.50	25.50		18	0.1	103.	17.	43.
		25.50	25,80		20.	0.3	114.	12.	60.
		26.20	27.00		14.	0.2	91.	10.	70.
8.5-57.5	FRAGMENTAL:	29.20	30.90		22.	0.4	112.	46.	447
	Intensely attered & foliated @ 45° C.A. beginning @ 26.2m. Med-light brown biotite alteration. Local, minor	30.90	32.40		51.	0.7	121.	15.	61.
	green/grey chlorite & yellow/green/grey, pervasive sericite/clay atteration. Mod-high 1-5cm qtz/CO, veining	32.40	33.40		14.	0.2	115.	24.	158
	subparallel to foliation. <1-1% Py, locally 2-3% Py. Local, minor faulting.	33.40	33,90		14.	0.4	87.	15.	133
		33.90	34.10		27.	0.7	354.	15.	49
	18.5 - 26.2 Med-light brown biotite attered groundmass with 30%, .5-7cm, fine grained fragments.	34.10	34.40		40.	0.1	123.	14.	41
	26.2-39.6 Intensely foliated to sheard @ 45° to C.A.	34.40	35.00		24.	0.4	117.	9.	66
		35.00	35.20		10.	0.3	110.	12.	29
		35.20	35.50		8.	0.3	88.	11.	41.
7.5-213.7	GREYWACKE/SILTSTONE	35.50	36.00		26.	0.3	76.	7.	100
	Med grained, massive, variably altered & coloured wacke interbedded with fine grained, locally banded, variably	36.00	36.60		13.	0.1	75.	13.	59
	attered sittstone. Mod foliated to locally intensely foliated @ 55° to C.A. Pervasive & fracture controlled biotite.	36.60	37.60		15.	0.4	105.	15.	74
	Min-mod chlorite & local, pervasive sericite alteration. Locally silicified. Mod-high qtz/CO, veining. Local 2%	37.60	38.50		9.	0.1	94.	13.	66.
	Py, local 5% Py/Po & minor Cpy, local 1-2% Ga with <1% Sph.	38.50	39.00		240.	0.1	80.	11.	66
		39.00	39.60		20.	0.3	105.	13.	65
	91.5-93.8 4-5% Py in med purple biotite altered sediments. Local cream/purple with 5-7% Po, 1% Py, <1%	42.40	42.90		14.	0.1	91.	15.	54
	Cpy.	42.90	44.40		41.	0.1	93.	11.	70
	92 9-93 8 5-7% Po. 1% Pv. <1% CPv.	44.40	45.10		25	0.1	90.	12.	67
		45.10	45.40		21.	0.1	115.	5.	83
	99.9-100.3 Mod shear fabric. Biotite/sericite. 2-3% Ga. 1% Po. <1-1% Sph. <1% Py. tr Cpy within qtz/CO.	45.40	45.70		25.	0.1	90.	9.	62
	veining.	45.70	47,30		82.	0.1	154.	6.	89
	139.9-140.2 20cm shear vein @ 50° to C.A. Qtz/CO√biotite/chlorite with 2-2.5% fine grained Py.	47.30	47.60		67.	0.3	200.	77.	54
	145.9-146.8 7-10% Py, <1% Cpy stockwork.	47.60	48.30		30.	1.4	143	107	79
	148.3-154.9 Local, mod, fine grained, pervasive magnetite.	48.30	48.60		42.	42.7	148	21.	5
	171.7-174.1 2-2.5% Py, 2% Ga, <1-1% Sph, fracture controlled.	52.20	52.50		31.	0.1	113	9.	10
		55.00	55.20		40.	0.1	129.	10.	58
		55.70	56.20		38.	0.1	112.	13.	89
		56.20	56.80		35.	0.4	126.	51.	74

11 December	4 - Page 2
-------------	------------

Metres From To	Description	From	To	Au g/t	Au ppb	Ag g/t	Cu ppm	Pbppm	Zn ppm
		56.80	57.50		43.	0.3	144.	21.	84
		57.50	58.30		62.	2.9	340.	113.	5
13.7-492.7	GREYWACKE/MUDSTONE	58.30	58.50		118.	3.5	311.	92.	6
	Dark grey/black, fine grained, laminated-banded, soft mudstone interbedded with med grey, med-fine grained	59.90	60.30		50.	37.3	166.	21.	6
	massive wacke. Sharp contacts. Mod foliated @ 45-50° to C.A. Mod-locally intense CO3/qtz veining. Local,	60.30	60.50		33.	0.5	44.	14.	5
	fine grained, pervasive biotite & chlorite alteration. Tr - <1% Py, local 1% Py. Locally folded. Locally faulted.	60.50	60.80		70.	14.7	452.	88.	
	Locally bleached. Locally cut by mafic dykes.	66.20	66.40		35.	0.2	109.	114.	20
		70.10	71.80		55.	1.1	177.	54.	4
	255.5-492.7 Tightly folded.	71.80	72.20		343.	6.9	213.	261.	2
		72.20	73.60		44.	0.8	134.	51.	2
87.0-287.1	DYKE: Brown/grey. Fine grained, banded. 2mm chill margins @ 30° to C.A	75.60	76.60		31.	0.1	55.	3. 23.	7.
90.2-290.3	DYKE: @ 25° to C A	78.80	79.10		54. 30.	0.5 0.1	232. 28.	23. 19.	1
		83.10 85.10	83.80 85.90		30. 49.	0.1	31.	19. 20.	1
	354.7-354.8 Fault, 10cm gouge 367.6-374.3 Highly foliated to locally shear'd.	85.90	86.20		49. 40.	0.2	11.	15.	1
	2-3% fine grained Sph, tr - <1% Py.	86.20	86.50		38.	0.1	48.	15.	2
	2-3% line grained spin, $u = -1%$ ry. 379.9-492.1 Chlorite/magnetite/CO ₃ alteration. Local epidote.	86.50	86.90		58.	0.2	40. 30.	11.	1
	393.95-394.05 5-10 cm shear vein @ 55-60° to C.A. Chlorite/CO ₃	90.80	91.50		34.	0.1	41.	24.	5
	456.6-456.7 Fault.	91.50	92.90		67.	1.5	264.	17.	
		92.90	93.30	1.25	407.	0.5	115.	24.	
		93.30	93.80	0.45	52.	3.5	535.	56.	
	EHO @ 492.7	93.80	94.20	0.10	17.	1.5	259.	28.	
		94.20	95.90	0.10	43.	4.2	669.	20.	
		99.40	99.90		39.	0.5	39.	55.	1
		99.90	100.30	0.75	63.	8.6	399	00.	54
		100.30	101.20		29.	0.7	35.	159.	
		101.20	102.40		37.	1.2	30.	321.	
		105.50	106.50		133.	0.2	38.	30.	1
		106.50	106.80		33.	0.3	54.	23.	
		106.80	107.40		24.	0.1	36.	8.	3
		118.50	118.90		30.	0.4	178.	15.	6
		118.90	120.10		37.	0.1	49.	15. 15.	
		120.80	121.40		67. 39.	1.5 0.2	306. 73.	15. 6.	
		122.60	122.80		39. 44.	0.2 1.7	73. 101.	6. 492.	3
		124.80	125.30 129.60		44. 60.	1.0	381.	452.	
		129.40 129.60	130.30		35.	0.3	159.	6.	
		130.30	130.50		86.	1.8	529.	20.	
		130.50	132.00		29.	0.4	129.	7.	
		134.20	135.60		101.	1.7	145.	194	
		136.90	137.20		50.	1.0	124.	33.	21
		137.20	137.50		82.	1.8	335.	22.	
		139.90	140.20	0.10		4.3			
		140.20	140.40	0.15					3.
		140.80	141.20		135.	0.9	193.	20.	
		141.20	141.40		49.	0.5	181.	10.	
		142.50	142.80		69.	0.6	155.	30.	:
		142.80	143.00		113.	1.0			4
		143.00	144.50		277.	1.0			4
		145.10	145.90		265.	1.3			
		145.90	146.50	0.55	5 430	. 1.	1 13		
		146.50	146.80	0.8		. 0.			
		146.80	147.60		914.	1.8			:
		147.60	148.10		859.	1.1			
	1	148.10	148.30		312.	0.6	106	10.	

. .

DRILL LOG SUM RY: DDH J94-30

11 December · · · Page 3

			1						
res From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pbppm	Zn ppm
		440.00	440.70		207	4.0	40.4	40	
		148.30	148.70		387.	1.9	494. 198.	18. 15.	23 6
[151.10	151.70 151.90		34.	0.6	198.	9.	3
		151.70	153.50		12.	0.2 0.3	93.	9. 4.	37
		151.90 153.50	153.80		13. 62.	0.3	128.		4
		153.80	154.20		128.	1.0	145.	10.	4
		154.20	154.60		322.	0.9	183.	8.	4
		154.60	154.90		197.	0.4	93.	5.	6
		154.90	155.20		79.	0.7	141.	9.	5
		155.20	155.50		29.	0.8	147.	22.	3
		155.50	157.00		26.	0.5	146.	16.	e
		157.60	158.10		23.	0.2	65.	13.	7
		158.10	158.90		15.	3.1	49.	6.	56
		160.70	161.95		27.	0.3	65.	13.	14
		161.95	162.10		13.	0.5	106.	32.	32
i i		166.50	167.70		10.	0.8	75.	205.	29
		170.80	171.00		54.	17.9	51.	26.	ŧ
]		171.00	171.70		22.	0.7	29.	13.	1
		171.70	172.10	0.70	173.	112			0. 2250
1		173.60	174.10		153.	4.2	152.	129	
		174.10	175.40		42.	1.1	52.	172.	53
ļ		175.40	175.80		40.	24.3	31.	31.	1
		175.80	176.40		151.	0.5	43.	17.	9
		186.20	186.60		24.	0.4	29.	11.	9
		186.60	186.90		22.	0.3	67.	7.	8
		186.90	187.40		26.	0.1	44.	5.	9
		187.40	188.60		11.	0.3	92.	12.	9
		192.20	192.60		14.	0.1	49.	57.	13
		192.60	193.20		14.	0.1	78.	29.	9
		201.80	202.50		16. 27	0.1	85.	9. 14	10 1
		202.50 202.60	202.60 203.60		27. 22.	0.1	125. 167.	14. 14.	10
		202.60	203.80		22.	0.3 0.1	93.	14.	12
		203.00	203.80		34.	35.1	102.		23
		207.50	209.80		20.	0.3	102.	11.	20
		209.80	210.70		20. 96.	0.3	100.	12.	10
		210.70	211.10		34.	0.2	136.	20.	13
		220.10	221.30		42.	0.4	91.	15.	5
		221.30	222.80		97.	0.6	0 18		
1		222.80	224.30		35.	0.3	103.	11.	
		224.30	225.00		33.	0.6	96.	11.	3
		226.80	227.20		29.	1.2	207.	11.	
ļ		227.20	228.10		17.	0.3	100.	8.	5
		231.60	232.20		11.	0.6	139.	6.	5
		233.90	234.30		13.	0.4	206.	5.	7
ł		236.10	236.60		10.	0.1	102.	5.	8
		244.90	245.50		14.	0.7	59	9.	6
		247.00	247.40		10.	0.7	53.	8.	3
ļ		253.70	255.00		68.	0.5	225.	12.	9
		255.00	255.30		33.	0.7	106.	32.	:
		262.10	262.40		18.	1.3	107.	18.	4
		262.40	263.80		29.	1.7	119.	25.	3
		279.80	280.80		45.	0.1	116.	81.	14
1		280.80	281.10		106.	0.7	276.		ş
		281.10	282.40		24.	0.4	95.	25.	8
		290.00	290.30		5.	0.1	68.	15.	88
		296.10	296.50		7.	0.1	99 .	13.	63

.....

10 December 1 - Page 4

From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pbppm	Zn pp
		468.00	468.20		40.	0.1	173.	10.	173.
		476.60	477.10		89.	0.1	214.	10.	161.
		491.50	491.80		32.	9.6	418.	556.	4850.
		491.80	492.40		95.	5.8	1966.	716.	4130.
		492.40	492.80		77.	2.7	953.	427.	251.
		492.80	493.80		27.	0.1	99.	10.	98.
		493.80	494.10		81.	0.2	104.	16.	88.
		496.70	497.00		87.	0.9	587.	7.	99.
		498.60	500.10		32.	0.1	225.	10.	115.
		500.10	500.40		33.	0.1	168.	11.	104.
		504.20	505.40		26.	0.1	160.	10.	81.
		505.40	505.60		148.	3.2	1525.	29.	97.
1		505.60	506.90	1.00	51.	0.1	178.	10.	88.
1		506.90	507.30	1.02	1019.	0.1	323.	10.	48
		507.30 510.80	507.80 511.00		156. 88.	0.7 0.1	545. 316.	7. 6.	49. 58.
		511.00	511.90		28.	0.1	316.	10.	41.
		514.00	515.50		31.	0.1	342.	10.	35.
		515.50	515.80		50.	0.2	476.	10.	42.
		515.80	516.60		34.	0.6	376.	10.	44.
		516.60	517.60		39.	0.2	280	10.	41.
		517.60	518.90		106.	0.5	700.	9.	46.
		518.90	519.30		35.	0.5	619.	10.	35.
		519.30	520.10		25.	0.7	489.	10.	66.
		520.10	520.30		128.	2.5	1907.	61.	149.
		520.30	521.80		25.	0.1	84.	10.	25.
		521.80	522.90		20.	0.1	92.	18.	129.
		522.90	523.50		20.	0.1	72.	12.	128.
		523.50	524.30		153.	0.3	462.	27.	262.
		524.30	525.10		144.	0.2	396.	13.	278.
		525.10	525.60		142.	0.8	697 .	27 .	355.
		525.60	526.10		146.	5.7	503.	758.	1007
		526.10	526.70		161.	52.1	3141.	810.	231
		526.70	527.00		41.	8.2	754.	113.	119.
		527.80	528.20		20.	2.6	624.	55.	102.
		528.20	529.20		20.	1.6	350.	85.	586.
		529.20	529.60		110.	0.4	398.	25.	205.
		529.60	530.20		183.	12.2	533.	812.	1500
		531.90	532.20		27.	0.5	337.	19. 10	112. 61
		535.30	536.30 537.00		20.	0.2	280.	10. 10	61. 53
		536.30 541.80	537.00 542.70		20. 20.	0.1 0.1	264. 181.	10. 10.	53. 26.
		541.80	542.70 544.00		20. 20.	0.1	193.	10. 10.	20. 34.
1		544.00	544.00		20. 95.	0.1	256.	10.	34. 31.
		END	544.20		55.	0.1	200.	TU.	J1.

: .

.

Property SNIP	District Liard, M.D.	Length: 254.6m	
Commenced: Oct 26, 1994	Corr. Dip: -45°	Core Size: BQTK	
Completed: Oct 29, 1994	True Brg: 045°	% Recov. 98%	
Coordinates: 1050N 3900E	Elevation: 175m	Tests: 10.7m -44° @ 042°	
Target: Tailings Shear	Logged By: JRG	121.9 -49° @ 045° 243.8 -48° @ 052°	

Metres From To	Description		From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn ppm
0.0-4.7	Overburden: None Recovered.		7.80	9.20		96.	0.5	199.	10.	199.
			18.60	19.10		72.	1.6	316.	10.	84.
4.7-254.6	GREYWACKE/FRAGMENTAL:		23.10 31.30	23.40 32.20		27. 31.	0.4 0.3	384.	10.	613. 163.
	Med grey lessily derive grey/gree	n, fine-med grained with mafic spots elongate to foliation fabric @ 30-45° to	32.20	32.20		28.	0.3	210. 431.	11. 29.	212.
		//white/brown, highly silicified, med-coarse grained, feldspathic wacke with CO ₃	32.20	32.40		20. 23.	2.1	431. 714.	29. 22.	212. 154.
		with dark grey/green, chi altered groundmass with 20-25%, .3-1.5cm, rounded	32.40	33.20		23. 22.	0.6	407.	22. 15.	223.
		n a volcanic fragmental. Min-mod chl & bio alteration. Epidote altered	41.50	41.70		22. 24.	0.8	277.	18.	223. 193.
		, gash veining. Mod $qtz/CO_3/chl extension veins locally up to 20cm. Local CO_3$	41.70	42.70		24. 19.	0.8	273	10.	85.
	shear veins. Locally faulted. T		42.70	43.00	0.35	77.	1.5	359.	33.	109.
	shear venis. Locary laured.	1 Y, 100any 1-170 Y y.	46.70	47.50	0.00	22.	0.8	295.	10.	107.
	4.7-160.4 Greywacke		47.50	48.20	0.45	20.	1.0	168.	37.	144.
			48.20	49.70	0.10	19.	0.4	237.	10.	93.
	32.2-32.4	5-7cm CO, shear vein @ 45-50° to C.A. CO, /minor bio/chl. Tr-<1%, fine	49.70	49.90		24.	0.3	289.	10.	104.
	02.2 02.1	grained Py	52.20	53,10		18.	0.6	314.	10.	124.
	34.3-34.4	Fault @ 50°. 5-10cm gouge	53,10	53.50		20	0.3	217.	10	100.
	42.7-43.0	CO,/chl/minor bio shear vein @ 50° to C.A. 2% fine grained Py, Faulted	53,50	53.70		191.	1.9	758.	10.	70.
		@ lower contact.	53.70	54.00		19.	0.3	191.	10.	82.
	47.5-48.2	CO ₃ /chl shear vein @ 50° to C.A. 1% fine grained Py.	64.90	65.40		20.	0.9	470.	12.	94.
	55.2-60.7	Fault zone @ 30° to C.A.	68.50	68.60		20.	0.2	233.	10.	70.
	106.3-106.4	Fault @ 50° to C.A.	68.60	69.50		20.	0.2	233.	10.	70.
	124.05-124.15	7-10cm, CO,/bio shear vein @ 50° to C.A. 3% fine grained Py.	75.50	76.20		20.	0.3	212.	10.	74.
			87.90	88.90		21.	0.9	394.	10.	58 .
	160.4-184.9 Volcanic Fragment	tal: Altered by fault zone.	88.90	89.10		202.	2.1	692.	32.	85 .
		•	93.60	93.80		34.	1.1	594.	10.	119.
	167.0-177.7	Fault zone @ 50-55° to C.A.	97.70	99.20		20.	0.2	242.	10.	47.
		-	109.70	110.90		20.	1.0	344.	10.	43.
	184.9-225.6 Greywacke: Local	sericite alteration. Highly silicified with CO ₃ stockwork. Med-coarse grained.	113.10	113.40		20.	0.8	394.	10.	3687.
			118.50	118.90		20.	0.2	230.	10.	218.
	201.5-201.6	Fault.	119.40	120.30		20.	0.9	384.	10.	2468.
	222.4-223.6	Local Chl/CO ₃ shear'g @ 70° to C.A. 3% fine grained Py, <1% Cpy.	121.60	121.80		20.	0.7	379.	20.	100.
			124.00	124.20		35.	0.9	611.	21.	396.
	225.6-254.6 Volcanic Fragmen	tal:	127.70	128.50		139.	0.4	59 .	10.	103.
	1		138.90	139.70		32.	0.5	302.	73.	48.
	236.3-237.0	7-10cm CO ₃ /bio/chl/py shear vein @ 50° to C.A. 3-5% fine grained Py,	148.00	148.50		20.	0.3	159.	2081.	91.
		<1% Cpy.	151.20	151.40		43.	9.4	558.	19.	1237.
	249.5-254.6	Fault @ 70° to C.A. 10cm gouge.	154.70	155.70		20.	0.6	226 .	2007.	94.
			155.70	155.90		143.	22.8	379.	15.	2050.
	NB Hole stopped because of fa	ault.								

EOH @ 254.6m

Drill Hole Recc

11 December 1 - Page 4

~

DRILL LOG SUM RY: DDH J94-30

es From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pbppm	Zn ppm
T	······································	296.50	298.10		17.	0.2	113.	8.	10
		310.30	310.60		14.	0.5	76.	15.	99
		318.10	318.90		28.	0.8	102.	55.	19
		318.90	320.00		20.	5.5	94.	714.	1001
		322.20	322.50		7.	0.4	112.	20.	11
		331.80	332.30		21.	0.5	104.	13.	10
		332.30	333.40		20.	0.7	101.	28.	11
		342.30	343.30		23.	0.3	91.	17.	78
		343.30	344.60		13.	0.4	103.	18.	6
		352.60	353.90		18.	0.4	111.	9.	5
		355.80	357.00		14.	0.6	123.	9.	6
		357.00	358.90		8.	0.6	109.	9.	19
		367.60	368.50		5.	1.2	153.	501.	110
		368.50	368.80		11.	0.5	244.	36.	31 24
		368.80	369.30		12. 714.	0.1 7.3	186. 1306	18. 5. 23.	190
		369.30	369.70		714. 60.	1.7	368.	23. 26.	432
		369.70 369.90	369.90 370.20		60. 41.	1.7	300.	28. 48.	432
		370.20	370.20		41. 53.	0.1	180.	40. 18.	26
		370.20	370.50		61.	3.2	426.	803.	382
		370.50	372.20		20.	3.z 1.1	326.	147.	131
		372.20	372.20		38.	2.9	332	163.	560
		372.70	373.20		35.	6.2	750.	335.	839
		373.20	373.20		38.	0.7	189.	67.	14
		373.70	374.30		20.	0.1	136.	24.	1
		377.60	378.20		20.	0.1	167.	22.	9
		380.20	381.00		20.	0.1	267.	11.	ę
		381.00	381.70		20.	0.1	270.	6.	11
		381.70	382.90		20.	0.1	237.	4.	g
		392.40	393.80		25.	0.1	180.	4.	g
		393.80	394.10		20.	0.1	178.	5.	8
		396.00	396.40		20.	0.1	185.	7.	7
		405.30	406.40		23.	0.1	263.	7.	8
		406.40	406.90		20.	0.1	287.	4.	7
		406.90	407.40		20.	0.1	223.	4.	8
		409.80	410.20		20.	0.1	122.	2.	6
		418.80	420.20		20.	0.1	226.	3.	9
		420.20	420.70		20.	0.1	238.	5. 3.	8
		444.00	445.80		20.	0.1	152.	3. 17.	1' 1'
		449.80	451.20		20. 20.	0.2 0.1	214. 177.	17.	10
		451.20	451.60 455.80		20. 20.	0.1	213.	16.	
		454.20	455.80		20. 20.	0.1	190.	18.	1
		459.40	459.70		20.	0.1	212	6.	ģ
		459.70	460.70		20.	0.1	179.	4.	10
		460.70	460.90		20.	1.0	202	3.	10
		463.80	464.50		20.	0.1	181.	7.	9
		464.50	465.90		20.	0.1	215	6.	11
		481.30	482.60		20.	0.1	208	6.	9
		482.60	484.00		20.	0.1	187.	6.	10
		484.00	485.50		20.	0.1	215		10
		490.90	492.10		20.	0.1	179.	6.	9
		END							

: .

DRILL LOG SUM' RY: DDH SC94-8

Drill Hole Rec

Property SNIP	District Liard, M.D.	Length: 504.6								
Commenced:	Corr. Dip: -50°	Core Size: BQTK								
Completed:	True Brg: 000°	% Recov.								
Coordinates: 615	N 5137 E Elevation: 640.0m	Tests:								
Target:	Logged By: MGW									
Metres From To	Description		From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn ppm
0.0 3.0	OVERBURDEN/CASING		18.50	19.50		212.	3.6	91.	22.	129.
3.0 42.8	INTERBEDDED WACKE, SILTSTONE AN	D LESSER MUDSTONE: med (wacke) to dk (mudstone)	23.00 35.50	24.00 35.70		78. 118.	2.3 5.7	80. 283.	42. 117.	194. 475.
		str shear foliation; wk - mod biot altn; 1-2% Py, tr Po, Cpy,	36.50 41.90	36.90 42.80		49. 20.	3.7 1.8	97. 59.	8. 27.	161. 232.
42.8 45.5	FELDSPAR (PLAG.) MEGACRYSTIC TO F	INE-MEDIUM GRAINED DYKE: med - dk green grey; fine	42.80 43.80	43.80 44.80		62. 422.	1.1 1.9	22. 17.	2. 1.	171. 123.
	grained along dyke margins, porphyritic c		44.80 45.60	45.60 46.50		37. 45.	1.8 1.6	20. 29.	3. 7.	140. 90 <i>.</i>
45.5 59.0	INTERMIXED WACKE (70%), SILTSTON wk QSP altn; tr-2% Py, tr sph locally.	E (20%), AND MUDSTONE (10%): wk - mod biot altn, local	51.80 53.10 56.90	53.10 54.10 57.90		232. 129. 64.	2.4 2.1 1.9	36. 76. 49.	18. 94. 35.	96. 298. 277.
59.0 61.2	FELDSPAR (PLAG.) MEGACRYSTIC TO F and str clay altered core; dk green - grey	INE-MEDIUM GRAINED DYKE: variably altered, chl margins to light tan color; no mineralization.	57.90 59.90	58.70 60.90		23. 370.	2.4 1.7	45. 17.	15. 1.	82. 149.
61.2 271.2		SILTSTONE AND FRAGMENTAL (matrix supported debris nod. pervasive biot altn; wk - mod shear foliation and Po. Cov. and Sob locally.	61.20 68.60 69.60 80.40	62.00 69.60 70.60 81.60		20. 98. 51. 62.	2.6 3.9 2.6 3.0	53. 84. 68. 51.	13. 25. 65. 18.	101. 170. 179. 152.
271.2 271.5		: It yellow green-grey; clay altered; 20% 3-8 mm equant	103.80 109.90 113.60	104.80 110.90 114.60		49. 171 <i>.</i> 79.	4.6 2.2 2.4	76. 70. 75.	35. 33. 9.	178. 176. 94.
271.5 271.7	MUDSTONE + SILTSTONE:		114.60 115.00	115.00 116.00		181. 112. 106.	2.6 1.8	67. 60. 83.	31. 18. 25.	131. 228. 284.
271.7 272.4	FELDSPAR (PLAG.) PORPHYRITIC DYK	: str clay altered; 4-5% Py, 1-2% Mag.	135.70 158.90 161.80	136.20 159.10 162.00		292. 78.	2.6 5.0 2.5	486. 178.	25. 15. 10.	376. 112.
272.4 295.2	FRAGMENTAL AND COURSE WACKE: It altn; mod -str shear foliation; 2-3% Py.	greenish grey; markedly altered, mod-str QSP and wk Chl	172.80 184.20	173.80 184.70		43. 25.	1.9 2.4	29. 97.	10. 30.	95. 180.
295.2 295.4	FELDSPAR PORPHYRITIC DYKE: med g attered.	eenish grey, fine grained with 3-4 mm plag. phenos; QSP	185.20 192.60 195.80	186.20 193.60 196.10		111. 52. 20.	3.0 2.1 3.0	47. 76. 91.	61. 10. 27.	3925. 180. 131.
	295.35-295.40 FAULT: 5 cm	fault gouge @ 80 deg. to CA.	197.50 209.00	198.50 209.20		56. 76.	2.4 1.6	57. 106.	9. 21.	139. 150.
295.4 298.5	FRAGMENTAL: light green-grey; str QSP	altn; 3-4% Py.	209.20 222.00 226.10	209.90 223.00 227.10		20. 20. 85.	2.8 1.2 4.3	64. 73. 63.	8. 8. 47.	145. 156. 449.
298.5 318.6		en grey; fine - med grained; clasts dominantly volcanic; msv oliation; mod biot altn; wk - mod chl altn; 1-2% Py, tr Cpy,	241.00 255.50 271.70	241.30 255.70 272.40		20. 75. 184.	1.3 1.1 3.1	61. 25. 18.	16. 12. 4.	167. 120. 182.
318.6 319.9	COARSE GRAINED FELDSPAR, BIOTITE porphyritic texture; mod chl altn; 2% Py.	, QUARTZ DYKE: It bluish green-grey; crowded plag. fsp	292.00 292.90 293.00 293.80	292.90 293.00 293.80 295.20		161. 28. 20. 122.	2.0 2.0 2.4 2.1	102. 61. 68. 75.	13. 21. 72. 6.	176. 232. 1575. 147.
319.9 343.8	VOLCANICLASTIC WACKE: med-crs grai altn.	ned, fsp + biot phyric; med - dk green grey; mod chl + carb.		200.20		•==.		, .		

DRILL LOG SUM' .RY: DDH CS94-9

Drill Hole Rec

÷ .

Property SNIP	District Liard, M.D.	Length: 224.1m								
Commenced:	Corr. Dip: -50°	Core Size: BQTK								
Completed:	True Brg: 000°	% Recov.		_						
Coordinates: 663 N	4823 E Elevation: 449.0m	Tests:								
Target:	Logged By: MGW									
Metres From To	Description		From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn ppm
00.07	04000		143.80	144.30		11.		271.		104.
0.0 3.7	CASING		145.80	144.30		67.	0.1 0.3	271. 124.	4. 6.	104.
3.7 181.7	VOI CANICI ASTIC WACKE: med-dk ore	y and variably purplish to greenish grey; equant 0.5-2mm,	148.80	150.00		30.	0.0	117.	7.	126.
0.7 101.7		edral to euhedral fsp grains; pervsive wk - mod biot, local chl.	151.50	152.40		45.	0.1	162.	10.	136.
	and bleaching.		152.40	152.70		34.	0.1	173.	11.	137.
	·		152.70	154.00		60.	0.1	66.	8.	143.
181.7 193.8		ID FRAGMENTAL: dk grey to brown and green grey;	157.50	157.80		62.	0.1	122.	8.	106.
	epidotized volcanic fragments and siltsto	ne fragments comprise 10-20% of interval; tr-1 Py, tr Po + Cpy;	164.40	165.90		39.	0.3	202.	6.	182.
			165.90	166.60		34.	0.6	252.	7.	225.
193.8 211.9		AGMENTAL: med grey to cream, purple and light green;	166.60	167.40		43.	0.6	127.	6.	244.
	banded texture; wk epid altn locally, tr-1	% Py, tr sph.	167.40	168.50		58.	1.0	269.	7.	311.
			168.50	170.20		39.	1.3	180.	10.	339.
211.9 224.1		.: dk green-grey wacke with 5-10% frags; selective epid altn of	172.40 173.50	173.50 175.00		74. 81.	1.1 1.0	199. 170.	9. 8.	383. 499.
	some frags; tr Py, tr Po.		176.10	175.00		74.	1.0	170.	6. 16.	499. 1475.
N.B. Hole abandon	due to loss of 2 bit-shell-core barrell assembl	ies down hole	181.00	181.70		15.	0.5	132.	11.	281.
N.D. HOIC ADAINON			181.70	183.20		62.	1.3	105.	342.	2025.
			193.60	193.80		78.	6.6	84.	6.	217.
			195.60	196.70		38.	0.4	195.	6.	391.
			202.90	203.60		20.	2.2	169.	6.	4000.
			203.60	206.70		65.	0.1	87.	8.	492.
			207.50	208.10		33.	2.1	98 .	14.	3750.
			209.60	210.20		20.	1.2	133.	12.	4925.
			210.20	210.70		25.	1.5	186.	15.	460.
			210.70	211.60		25.	1.1	83.	16.	2650.
			215.20	215.60		35.	1.3	322.	15.	165.
			218.50	219.60		44.	0.1	38.	9.	219.

Property SNIP	District Liard, M.D.	Length: 513.4m								
Commenced:	Согт. Dip: -45°	Core Size: BQTK		_						
Completed:	True Brg: 000°	% Recov.		_						
Coordinates: 760	N 4600 E Elevation: 350.0m	Tests:								
Target:	Logged By: MGW									
Metres From To	Description		From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn ppm
				44.00			4.0	74	•	400
0.0 6.1	OVERBURDEN/CASING		11.40 12.40	11.60 13.40		164. 120.	1.8 0.1	74. 26.	9. 3.	122. 107.
6.1 53.6	INTERMIXED VOLCANICLASTIC FRAGMEN	ITAL AND VOLCANICLASTIC WACKE: med dk. greenish	15.80	16.80		60.	0.1	148.	8.	158.
	to brownis grey; mod str. biot altn; wk n	od. chl altn; wk patchy epid. altn.	16.80	17.10		50.	1.0	161.	132.	3675.
		1-11 (1 2) orb (Tr 1): 40 dec 40 CA	17.10	18.10		20.	1.3	172.	3.	134.
		+py (1-2), sph (Tr-1); 40 deg. to CA. +biot +py (2-3%), sph (Tr); 30 deg to CA.	26.40 27.40	27.40 27.70		20. 50.	0.5 1.9	140. 758.	3. 7.	266. 3325.
	51.9-52. F 511 VII. CC + 412 + CI	+bot +py (2-5%), spin (11), 50 deg to CA.	27.40	28.70		67.	0.2	730.	4.	171.
53.6 104.4	MIXED VOLCANICLASTIC WACKE AND LIT	HIC WACKE: dk green and brown-grey; mod - str biot	29.30	29.60		39.	1.6	287.	2.	454.
	altn;wk - mod chl altn.		30.90	31.90		70.	0.1	58.	5.	196.
			31.90	32.10		20.	1.2	444.	22.	5500.
	•	+ biot + py (2-3), po (Tr): 30 deg. to CA.	32.10	32.60		41.	0.1	73.	12.	406.
	•	+ biot + po (1-2), cpy (1); 50 deg to CA.	35.10	36.10		20.	0.1	179.	3.	3725.
	94.6-94.9 Shr Vn: cc + qtz + py	(5-6), cpy (1), Po (Tr), sph (1); 70 deg to CA.	36.70	37.20		79. 22	1.5 1.3	189. 331.	5. 5.	189. 264.
104.4 135.2	VOLCANICI ASTICERAGMENTAL MITH LE	SSER INTERSPERSED INTERVALS OF COARSE	49.30 53.70	50.30 54.70		23. 20.	0.1	331. 59.	э. 4.	264. 132.
104.4 155.2		-grey; wk to mod shear foliation; Tr - 1% py; wk - mod chl	56.30	57.30		20. 441.	0.1	81.	4. 2.	124.
	altn, mod biot altn; wk - mod patchy epid alt		57.30	57.60		43.	0.5	70.	11.	98.
			57.60	58.10		20.	1.0	172.	9.	205.
	120.7-121.1 Vn: cc + qtz + chl ·	+ biot + py (tr).	60.00	60.20		32.	0.1	151.	2.	171.
			65.20	65.60		20.	0.1	31.	8.	123.
135.2 160.4		THIC WACKE COMPONENT: med. greenish to brownish	65.60	65.70		20.	0.4	147.	13.	8275.
	grey; mod biot altn;patchy chl altn;local inter	val of epid alth.	65.70	66.40		20.	0.6	77.	6.	153.
161.4 186.0		SSER INTERMIXED VOLCANICLASTIC WACKE: med - dk	69.30 70.10	69.60 70.30		260. 49.	1.9 2.0	387. 427.	13. 20.	307. 8075.
101.4 100.0		nod biot altn; wk - mod chl altn; patchy epid.	71.60	71.80		95.	1.6	47.	3.	166.
	groot to promiter groy, interior instance, i		75.00	75.20		24.	0.3	15.	1.	139.
186.0 195.4	VOLCANICLASTIC WACKE AND LESSER V	OLCANICLASTIC FRAGMENTAL: dk greenish grey;mod	78.70	79.30		59.	1.4	152.	1.	130.
	biot altn; mod chl altn; v. wk epid altn.		81.30	81.70		14.	1.6	136.	2.	177.
			83.90	84.90		32.	1.5	136.	3.	141.
195.4 212.3		NACKE, VOLCANICLASTIC WACKE AND SILTSTONE:	87.60	88.10		20.	2.1	254.	1. E	194. 274
	med - dk variably green grey; mod blot + chi	altn; local 203.7-210.0 intense qtz, sericite, py altn.	88.10 88.30	88.30 88.80		22. 19.	1.0 1.8	279. 167.	5. 1.	374. 136.
212.3 275.5	INTERMIXED LITHIC WACKE AND VOLCA	NCLASTIC WACKE: med - dk greenish and brown grey;wk	91.30	92.30		19. 20.	2.9	174.	3.	145.
212.0 210.0	- mod shear foliation;wk - mod biot + chl alt		92.30	92.50		43.	2.5	426.	9.	138.
			94.10	94.60		64.	0.1	134.	9.	188.
	241.9-242.0 Shr Vn: cc + qtz +	chl + biot + py (3-4), cpy (tr-1), po (1), sph (1); 80 deg. to	94.60	94.90		47.	1.1	510.	20 .	4000.
	CA.		94.90	95.40		50.	0.1	87.	7.	329.
			99.00	100.00		58.	0.1	85.	4.	164.
	250.00-250.05 FAULT @ 80 d	eg. to CA; 5cm muddy gouge.	100.00	100.10		67. 60	0.3	144.	7.	165.
	253.9-254.2 FAULT; 10 cm mu	ldy gouge, 20 cm FLT BRXX.	100.10 101.50	101.50 101.70		69. 52.	0.1 0.1	177. 226.	4. 6.	159. 120.
	271.5-272.0 FAULT BRXX : mir	or gouge								
		• •	1							

Drill Hole Reco

: .

DRILL LOG SUM/ RY: DDH CS94-10

15 January	5 - Page 2
------------	------------

Metres From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pbppm	Zn ppm
		1							
274.5 283.8	QUARTZ CLAST FRAGMENTAL: subangular to subrounded qtz frags in silt and wacke matrix; med - dk	101.70	102.70		81.	0.1	217.	5.	157.
	brown grey;mod - str chl altn; mod sil and QSP altn locally.	108.10	108.20		57.	0.1	46.	3.	142.
		109.20	109.30		93.	0.1	102.	5.	130.
283.8 296.3	LITHIC WACKE: med - dk green brown and grey; wk - mod chl altn; local sil + sericite altn.	119.20	120.70		45.	0.1	151.	7.	177.
		120.70	121.10		20.	0.1	8.	4.	78.
296.3 316.6	QUARTZ CLAST FRAGMENTAL WITH A FEW NARROW (< 1m) SILTSTONE BEDS: mod biot altn; wk	121.10	122.10		101.	0.1	90.	6.	135.
	- mod chi altn; local sil altn and bleached.	130.60	130.80		27.	0.1	109.	4.	228.
		134.90	135.40		34.	0.1	198.	3.	403.
	305.9-307.3 Shr Vn @ 80-90 to CA; cc + qtz + chl + biot. py (10-15), sph (3-4), cpy (tr), gal	135.40	135.60		67.	1.2	612.	19.	6062
	(tr), po (tr).	135.60	136.10		65.	0.1	156.	4.	3025
	313.8-314.0 Shr Vn @ 80 deg. to CA (vein as above)	138.50	139.20		38.	0.2	147.	21.	1675
	314.55-315.00 Shr Vn @ 80 deg to CA (vein as above)	139.20	140.20		40.	1.5	158.	9.	369.
		140.20	141.20		77.	2.5	289.	7.	490.
316.6 383.8	MIXED WACKE AND SILTSTONE: dk green grey, altering to lighter grey; mod biot altn; local QSP altn	143.60	143.80		51.	1.9	140.	2.	182.
	and bleaching.	147.80	148.10		232.	2.5	637.	3.	3775
		148.10	149.10		69. 42	0.7	147.	3.	242.
383.8 390.3	SILTSTONE INTERBEDDED AND INTERMIXED WIH LESSER FMED. GRAINED LITHIC WACKE: dk	149.10	150.10		43.	2.1	370.	11. E	442
	green to brown grey; biot altn mod; chl altn mod.	151.80	152.00		65. 50	1.6	229. 99.	5.	180.
		154.20	154.70		56. 67	1.9	99. 203.	4.	140.
390.3 393.2	FRAGMENTAL: comprises qtz and volc. frags in dk green-grey wacke matrix; wk - mod biot altn; wk chl.	159.50	161.10 163.00		67. 60.	1.3 2.0	203. 284.	4. 9.	247. 2000.
	INTERBEDDED AND INTERMIXED SILTSTONE AND WACKE WITH OCCASIONAL FRAGMENTAL:	162.80	174.30		80. 39.	2.0 4.7	204. 306.	9. 178.	330
393.2 418.8		173.30 174.30	174.50		39. 20.	4.7 0.1	56.	170.	98.
	,med - dk green - grey;wk - mod biot. altn; wk - mod chl.	174.60	175.20		20.	0.1	45.	6.	118.
	405.9 - 406.1 FAULT; brxx and gouge.	176.20	176.60		44.	0.1	48.	5.	116.
	40.3 - 400.1 1 AOL 1, DIXX and godge.	180.50	180.80		118.	4.1	503.	28.	327
418.8 419.9	FELDSPAR MEGACRYSTIC GABBROIC DYKE: dk green; mod chl altn; strongly magnetic.	186.20	186.30		92.	2.1	522.	14.	8975
410.0 415.5		195.40	196.00		652.	1.2	96.	5.	279.
419.9 422.4	GREYWACKE& FRAGMENTAL;	197.60	197.70		133.	2.8	722.	9.	227
10.0 422.4		202.70	203.70		108.	0.9	94.	5.	160.
422.4 424.5	FELDSPAR MEGACRYSTIC GABBROIC DYKE; as above	203.70	205.20		22.	1.8	32.	9.	38.
		205.20	206.70		57.	2.3	26.	16.	32.
424.5 427.9	SILTSTONE \$ LESSER WACKE	206.70	207.90		114.	6.8	45.	171.	301
		207.90	208.40		32.	2.9	18.	8.	33.
427.9 431.4	FELDSPAR MEGACRYSTIC GABBROIC DYKE; as above	208.40	209.70		71.	2.1	33.	4.	32.
		211.80	212.30		59.	0.9	58.	7.	138.
431.4 436.8	SILTSTONE; med dk brown grey; mod biot + chl altn.	222.30	222.80		62.	2.3	152.	10.	2300
		222.80	223.00		349.	33.0	3175.	121.	1152
436.8 446.7	INTERMIXED GREYWACKEAND FRAGMENTAL: med brown grey; mod - str biot altn, mod str chl altn.	227.70	228.20		92.	3.2	253.	24.	394.
		228.20	228.50		139.	33.5	2493.	3610	
446.7 480.8	SILTSTONE WITH SUBORDINATE INTERMIXED GREYWACKE AND OCCASIONAL FRAGMENTAL:	228.50	229.00		8.	2.7	188.	8550.	1850
	dk brownish to greenish grey; mod biot altn; wk to locally very str chl altn.	234.30	235.40		91.	2.2	148.	31.	149.
		235.40	236.50		486.	3.3	91.	142.	264
481.8 505.8	INTERMIXED TO INTERBEDDED WACKE AND LESSER SILTSTONE; dk brownish green grey; wk -	236.50	237.50		44.	3.9	240.	1390.	462
	mod biot altn; mod - str chl altn	237.50	238.70		66. 205	1.7	113.	59. 15	195.
		241.90	242.00	0.50	265.	5.2	1006.	15. 15	620
	489.9-490.4 VEIN @ 45 deg to CA; cc + qtz + py (4-5), sph (2-3), gal (1-2), cpy (1), chl (tr).	243.20	243.70	0.50		2.6	201. 229.	20.	
		248.00	248.70		69. 25	3.6		20. 15.	106 168
505.8 511.1	GREYWACKE:med - crs grained; med - dk grey; mod biot altn; wk chl altn; local QSP altn;	248.70	250.20		35.	2.9	204.		247
		250.20 251.20	251.20 252.70		42. 84.	6.0 2.9	115. 220.	10. 27.	385
	FEI DODAD MICDODODDUVDITIODVICE light groom ton solar mod at also alter 2 2% diagon av							27. 67.	312
511.1 513.4	FELDSPAR MICROPORPHYRITIC DYKE: light cream- tan color; mod - str clay altn; 2-3% dissem. py.	252.70	254.20		81. 60	3.7	213. 25		
EOH		254.20	255.70		60. 20	1.9	25. 75	5. 11	80. 344
		257.40	258.60		20.	0.4	75. 75	11.	344.
		261.50	262.00		25. 52	0.1	75. 52	9. 7	101.
		264.50	266.00		52. 24	0.1	53. 40	7. 14	104. 73
		269.00	269.30		24.	0.1	40. 142	14. 11	73.
	ι. I	270.60	271.50		49. 50	2.1	142. 165.	11. 10.	82. 184.
		271.50	272.00		50.	1.6	105.	10.	104

. .

										<u> </u>
From To	Description		From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pbppm	Zn ppm
			272.00	273.60		41.	0.5	36.	13.	115.
			281.80	283.30		25.	1.1	62.	18.	276.
			286.10	287.60		28.	1.9	47.	60.	247.
			287.60	288.60		55.	1.2	102.	18.	414.
			288.60	289.60		44.	2.5	245.	4 1.	1400.
			289.60	290.60		20.	1.3	56.	13.	120.
			292.70	293.70		20.	1.7	50.	11.	295.
			293.70	294.60		336.	1.9	569.	145.	38750.
			294.60	295.60		20.	2.1	60.	16.	416.
			297.30	298.30		20.	2.4	137.	13.	170.
			298.30	299.80		20.	2.4	249.	13.	1400.
			302.70	304.20		20.	1.5	57.	11.	141.
			304.20	305.70		20.	2.5	39.	10.	232.
			305.70	307.10	0.25	113.	8.9	1418.	74.	54375.
			307.10	309.10		20.	2.1	49.	12.	64.
			312.80	313.80		253.	1.6	86.	12.	269.
			313.80	314.00		139.	2.9	841.	35.	95000.
			314.00	314.55	• • •	46.	2.8	659.	24.	2100.
			314.55	315.00	0.40	116.	11.0	2084.	35.	
			315.00	316.00		122.	2.3	153.	24. 45	3250. 1600.
			316.60	318.10		71. 56	2.0	163. 57.	45. 81	1500.
			324.50 328.90	326.00 330.40		56. 124.	2.0 2.3	57. 63.	81. 134.	150. 1200.
			328.90	330.40 331.90		124. 117.	2.3 3.2	63. 97.	134.	337.
		•	330.40	333.40	-	87.	3.2 13.9	97. 94.	205.	280.
			338.30	338.80		40.	0.1	54. 89.	20 <u>5</u> . 6.	351.
			349.50	350.80		40. 48.	1.2	33.	22.	71.
			352.00	353.50		53.	1.4	62.	4.	145.
			353.80	354.10		92.	2.3	153.	6.	1825.
			356.60	356.70		40.	1.1	149.	3.	8175.
			359.30	360.20		74.	1.3	55.	11.	1300.
			374.00	374.80		76.	2.2	232.	5.	7725.
			375.60	375.80		35.	0.1	73.	5.	975.
			379.60	380.30		81.	0.1	167.	1.	91.
			389.80	390.30		18.	0.4	70.	1.	486.
			390.70	390.90		44.	0.6	77.	1.	8725.
			392.50	393.40		44.	1.3	202.	1.	2775.
			415.20	416.70		44.	0.4	44.	5.	234.
			420.00	420.20		88.	1.4	199.	7.	149.
			445.00	445.30		112.	0.8	243.	1.	58.
			455.50	455.90		202.	1.1	368.	4.	76.
			457.10	457.30		112.	0.1	71.	1.	73.
			460.50	460.60		132.	1.9	1680.	4.	68.
			460.60	461.80		82.	0.9	102.	1.	68.
			471.30	472.80		109.	0.4	40.	1.	45.
			475.30	475.40		126.	0.4	74.	5.	112.
			477.00	478.00		115.	1.3	220.	36.	476.
			478.00	479.00		97.	0.1	17.	42.	108.
			488.90	489.90		34.	0.1	21.	8.	163.
			489.90	490.40		265.	23.5	2055.	15225.	625.
			490.40	492.10		182.	3.1	514.	1423.	3075.
			492.10	493.10		67.	1.4	103.	680.	1200.
			509.00	510.00		105. 73.	0.1 0.5	30. 85.	7. 63.	22. 189.

2 x

DRILL LOG SUMI RY: DDH CS94-10

15 January 5 - Page 3

.....

9 9

and the second

5

DRILL LOG SUMI RY: DDH CS94-11

Property SNIP	District Liard, M.D.	Length: 501.5m	
Commenced:	Corr. Dip: -45°	Core Size: BQTK	
Completed:	True Brg: 000°	% Recov.	
Coordinates: 1305 N 5515 E	Elevation: 840.0m	Tests:	

Drill Hole Rec

.

Target:	Logged By: MGW								
Metres From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn ppm
0.0 1.5	CASING	1.50	3.00		229.	5.7	15.	8.	35.
		6.30	6.50		302.	3.2	27.	13.	115.
		8.30	8.80		65.	3.6	157.	16.	36.
1.5 6.3	FELDSPAR CRYSTAL/ASH DACITIC TUFF?: It. green-blue grey, extreme QSP alteration makes	8.80	9.60		91.	2.9	896.	11.	89.
	definatively classifying the rock type most difficult; str bleaching.	12.20	13.70		20.	1.6	14.	10.	42.
		13.70	15.20		69.	1.0	6.	7.	30.
6.3 6.5	VEIN	21.40	22.90		35.	2.7	7.	5.	32.
		22.90	24.10		29.	1.1	6.	2.	38.
	20 cm , vuggy qtz + chl + Py 1-2%, @ 80 deg. to CA	24.10	25.60		12.	1.2	10.	12.	44.
		25.60	27.10		164.	2.5	8.	7.	34.
6.5 8.3	FINE GRAINED GREYWACKE TO SILTSTONE: meddk green-brown grey; 3-4 % dissem Py; str biot	32.70	34.20		24.	2.0	13.	2.	37.
	altn, wk - mod chl, wk sil.	34.20	35.70		33.	3.9	6.	1.	35.
02 00	FELDSPAR CRYSTAL/ASH DACITIC TUFF?: It. blue grey, str QSP, 2-4% Py.	35.70 37.20	37.20 38.70		30. 18.	2.1	16.	1.	34.
8.3 8.8	FELDSPAR GRTSTALASH DAGITIC TUFF?. IL Dide giey, su QSF, 2-4% Fy.	38.70	40.40		31.	1.1 1.6	179. 9.	4.	42.
8.8 9.6	MEDIUM-COARSE GRAINED GREYWACKE: med. brown grey, mod foliated @ 70 deg to CA, 3-4% Py;	40.40	40.40		28.	2.5	9. 12.	23. 79.	146. 350.
0.0 9.0	witch and bleaching, mod sil.	40.40	43.50		20. 19.	2.5	12.	79. 15.	47.
	WK cin and beaching, not sit.	41.50	45.00		37.	1.7	52.	15. 14.	47.
9.6 43.5	FELDSPAR CRYSTAL/ASHDACITIC TUFF?: It. bluish grey, washed out texture, abundant 1-4 mm	45.00	46.50		20.	2.8	31.	14.	116.
3.0 43.3	subhedral to euhedral fsp crystals; QSP altn, v. str sil, mod seric + Py (3-5% as fine dissem.)	46.50	48.00		20. 51.	3.7	14.	8.	98.
		48.00	49.00		51.	2.3	17.	0. 11.	109.
43.5 53.2	MIXED GREYWACKEAND LESSER FRAGMENTAL: med - dk greenish and brownish grey; str biot altn;	49.00	50.50		20.	1.9	18.	12.	127.
10.0 00.2	patchy wk-mod chi altn.	53.20	54.40		79.	2.5	21.	10.	82.
		56.40	57.90		54.	1.7	66.	14.	86.
53.2 58.4	FRAGMENTAL WITH LESSER INTERMIXED MEDIUM-COARSE GRAINED FELDSPATHIC WACKE:	62.50	64.00		60.	2.9	12.	1.	60.
	mottled med. to dk green and brown grey; volc and lithic frags; 5-6% crs shotty Py; mod biot altn, wk chl	64.00	65.50		87.	1.8	12.	1.	66.
	altn, wk pervasive sil.	65.50	67.00		427.	1.2	8.	9.	51.
		67.00	68.50		519.	2.5	25.	13.	58.
58.4 68.5	INTENSELY ALTERED, MEDIUM-COARSE GRAINED DACITIC TUFF?: (same as interval 9.6 -43.5); It	68.50	69.20		272.	7.3	80.	26.	126.
	bluish -green grey; str pervasive QSP altn, with wk-mod sericite content; str chl; str bleaching; 3-4% Py.	69.20	70.60	0.20	274.	3.9	1542.	18.	91.
		74.40	75.90		252.	46.7	24.	13.	139.
68.5 72.0	GREYWACKE: med greenish brown; crs-med grained; feldspathic; wk-mod shear foliation; 4-5% Py, Tr-	75.90	77.30		43.	2.1	149.	8.	102.
	1% Cpy, 2-3% fine mag; mod-str biot altn, mod chl altn.	78.90	80.40		330.	1.1	44.	24.	102.
		80.40	81.90		100.	0.5	346.	11.	64.
72.0 82.6	LITHIC FRAGMENTAL: med brown grey and dk green; mod-str biot + chl altn; wk-mod mag; 4-5% Py,	85.60	87.10		129.	1.1	173.	18.	97.
	including local 20-40 cm intervals with 20-30% coarse shotty Py, Tr Cpy; wk-mod foliation and Sx	87.10	88.60		348.	2.3	915.	16.	130.
	banding @ 60 deg. to CA.	88.60	90.10	5.60	2928.	7.7	1221.	43.	123.
		90.10	91.60	4.10	3000.	6.5	66.	37.	32.
		91.60	92.60		293.	1.1	171.	15.	119.
88.6 91.6	SULPHIDE VEIN: Py 70-80%, Tr Cpy + Po, 20-25 % fine white-grey quartz, 2-3 % local chl patches; Py	92.60	93.70		772.	4.3	434.	50.	127.
	is coarse and shotty to fine dissem.; no foliation evident; vein to CA 70-80.	93.70	95.30		97.	1.1	467.	12.	99.
		95.30	96.80		501.	2.2	123.	21.	110.
	3.0 m wide Sulphide Vein (as described).	96.80	98.30		100.	1.0	484.	39.	174.
916 99 1	CREXWACKE: fine - med, grained; med grey - green and brown grey; strichlight overprints stribiot								

91.6 99.1 GREYWACKE: fine - med. grained; med grey - green and brown grey; str chl altn overprints str biot altn; wk - mod foliation; 8-10% sulphide (Py 6-8, Cpy 1-2, Po tr), 1-2 mag; Sx as 1-3 cm veinlets, and with irregular patches of qtz-chl + biot.

DRILL LOG SUMI RY: DDH CS94-11

TO January D - Fage Z	15	January	5 -	Page 2	2
-----------------------	----	---------	-----	--------	---

Hatas Fac		From	То	Au -4	Aurah	An c#	Cu	Bharm	7
Netres From To	Description	From	¹⁰	Au g/t	Au ppb	Ag g/t	Cu ppm	Pbppm	Zn ppm
07.2 100.6	GREYWACKE WITH MINOR FRAGMENTAL: med. blue-grey; wk biot altn; 1-2% Py.	98.30	99.80		140.	3.5	4200.	42.	164.
07.3 109.6	GRETWACKEWITH MINOR FRAGMENTAL. Hed. bide-grey, we bid allin, 1-270 Fy.	99.80	101.40		128.	1.5	4200.	- <u>+</u> 2. 57.	251,
09.6 112.0	VEIN: 40-50 cm vein margins comprise 15-20% shotty Py, 30% Chl, 20-25% qtz, 30-40% biot + chl	101.40	102.90	0.45	578.	4.5	3850.	251	
00.0 112.0	altered GW; central 1.3 m comprises 40% shotty Py, 60 % qtz, minor chi.	102.90	104.40		215.	3.8	2712.	58.	339
		104.40	105.90		204.	0.8	611.	45.	235
	109.6 - 112.0 VEIN: Sx, Chl, Qtz	105.90	107.40		21.	0.5	437.	23.	201.
		109.60	110.20	0.15	405.	1.9	763.	92.	37
12.0 116.0	MIXED FRAGMENTAL + GREYWACKE: dk green + brown grey; str chl altn, mod biot altn; 10-15%	110.20	111.50		574.	9.7	6580.	190.	49
12.0 110.0	shotty Py.	111.50	112.00		302.	8.3	2811.	51.	410
		112.00	113.50		169.	1.6	1595.	33.	31
16.0 131.1	GREYWACKE: blue grey, mod biot altn, wk chl altn.	113.50	115.00		130.	3.1	264.	50.	241
		115.00	115.90		135.	2.2	788.	30.	185
31.1 138.4	SILTSTONE: med- dk brown grey, mod-str biot altn; 2-3% Py, tr Cpy.	117.00	118.10		20.	2.5	518.	25.	159
01.1 100.1		118.10	119.60		90.	1.5	870.	20.	129
38.4 219.5	HIGHLY ALTERED, FELDSPAR CRYSTAL, MED - CRS GRAINED TUFF/WACKE?: pervasive str QSP	122.80	124.30		65.	3.2	1784.	30.	271
210.0	altn, wk - mod chl altn, str bleached; rock is 90 % + silica; 2-3% Py, tr Cpy.	127.20	127.90		50.	1.7	498.	32.	178
	and, the they on white a measure, reacted to be to a sinear a start J. a opp	137.10	138.60		182.	2.4	2677.	26.	216
19.5 226.1	MIXED DK GREY ARGILLACEOUS SILTSTONE AND WACKE INTERFOLIATED WITH YELLOW-TAN	138.60	140.10		94.	0.5	172.	16.	64.
10.0 220.1	TUFF: mod QSP altn, wk chi; 2-3% Py, tr Cpy, Po, sph.	140.10	141.60		52.	0.5	11.	15.	48.
		141.60	143.10		20.	3.3	10.	8.	34.
26.1 229.3	FELSIC TUFF?: str qtz + sericite altered, no Py, light yellow-green grey.	143.10	144.60		104.	4.2	10.	15.	43.
20.1 225.5		147.60	149.10		147.	2.9	37.	15.	32.
29.3 231.7	GREYWACKE: med - dk grey.	149.10	150.30		135.	4.1	88.	31.	61.
29.5 251.7		153.20	154.70		126.	3.1	163.	6.	53.
31.7 257.6	TUFF/WACKE?: light green-grey, fine-med grained; v. str sil altn, mod sericite altn, tr - 1% Py; wk chl	154.70	156.20		115.	3.7	108.	27.	68.
51.7 257.0	aith locally.	159.00	160.40		65.	5.3	15.	4.	41.
	autiocally.	160.40	161.90		162.	5.4	14.	 22.	66.
57.6 317.1	VOLCANIC + LITHIC FRAGMENTAL: med brown-grey to dk green; mod - str shear foliation @ 10-30	164.80	166.30		105.	3.8	9.	2.	46.
57.6 317.1	deg to CA; mod - str chi altr.	166.30	167.80		83.	4.7	5. 6.	3.	40. 39.
		170.60	172.10		45.	2.9	4.	J. 1.	32.
17.1 501.5	INTERMIXED GREYWACKE, FRAGMENTAL AND LESSER SILTSTONE: mod - str biot altn, patchy chi	172.10	173.60		43.	5.8		5.	61.
17.1 301.5	+ sil attn; mod calcareous; 1-2% Py, local patches and narrow (1-10 cm) veins with 2-5% Py, tr -1%	176.40	177.90		198.	5.6	26.	25.	59.
	· · · · · · · · · · · · · · · · · · ·	177.90	179.40		79.	7.2	10.	12.	74.
	Cpy, Po, Sph.	182.10	183.60		75. 36.	9.0	10.	12.	120.
		183.60	185.10		113.	4.5	9.	13.	81.
	325.2-326.0 FAULT; brxx + minor gouge, QSP altn.	183.00	189.30		113.	4.5	9. 6.	3.	41.
	283.0.283.9 EALILT: we mad box \pm agos	189.30	190.80		75.	3.6	8.	3. 3.	40.
	383.2-383.8 FAULT; wk - mod brxx + gouge.	190.80	190.00		120.	5.9	26.	3. 1.	-40. 32.
		190.80	192.30			5.3	20. 14.		32. 38.
		192.30	195.80		153.	6.9	14.	13.	65.
		195.80	195.30		77. 163.	5.4	159.	38. 7.	36.
									35.
		199.50	201.00		94.	5.4	6. 12	3.	35. 38.
		201.00	202.50		106.	6.2	12.	6.	
		202.50	204.00		123.	4.5	18.	14.	77.
		204.00	205.50		88.	6.7	296.	7.	42.
		205.50	207.00		173.	5.7	13.	7.	26.
		207.00	208.50		147.	5.1	32.	15.	39.
		214.10	215.60		202.	12.5	5730.	11.	87
		215.60	217.10		200.	5.3	33.	11.	42.
		221.80	222.80		225.	10.4	2920.	194.	37
		222.80	224.30		288.	8.4	2970.	87.	526
		224.30	225.80		208.	6.6	1054.	33.	132
		241.20	242.70		123.	6.0	11.	1.	21.
		247.30	248.00		145.	4.3	218.	2.	32.
		255.00	256.50		246.	2.8	12.	1.	25.
		260.90	262.40		286.	4.3	221.	6.	136.
		276.90	278.40		174.	2.9	177.	3.	109.
									404
		289.90 292.70	291.40 294.20		185. 177.	6.9 4.5	2826. 420.	14. 34.	132 239.

: .

Description		From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pbppm	Zn ppm
	<u> </u>	294.20	295.70		271.	7.6	1779.	37.	99.
		295.70	297.20		214.	4.6	639.	8.	99.
		302.60	303.60		348.	6.1	2810.	14.	130.
		305.90	307.40		247.	2.4	184.	9.	59.
		307.40	308.90		203.	5.0	8040.	6.	77.
		308.90	310.40		178.	4.4	1961.	4.	92.
		313.10	314.60		202.	4.9	1269.	4.	85.
		318.60	319.10		211.	1.8	161.	16.	68.
		324.80	326.80		201.	3.4	721.	25.	54.
		334.80	336.30		132.	6.1	2850.	33.	227.
		341.60	342.40		209.	8.1	5480.	16.	183.
		342.40	343.60		98.	7.7	7080.	56.	210.
		356.10	356.50		76.	4.4	2823.	3.	98.
		366.40	367.40		341.	6.6	8380.	2.	97.
		371.20	372.70		47.	1.5	193.	5.	101.
		377.00	378.50		72.	2.8	874.	4 .	140.
		382.70	384.10		26.	1.4	134.	1.	105.
		387.00	388.50		312.	1.2	83.	17.	80.
		389.80	391.30		39.	0.8	27.	71.	307.
		391.30	392.70		101.	4.4	2126.	21.	186.
		392.70	394.20		120.	3.8	1627.	166.	1475.
		397.50	399.00		85.	2.0	899.	14.	147.
		400.00	401.40		49.	1.4	260.	7.	176.
		403.00	404.40		35.	1.7	424.	1.	185.
		410.30	411.80		65.	1.8	64.	6.	224.
		417.50	419.00		95.	0.8	82.	23.	429.
		417.30	421.90		66.	3.3	281.	702.	4125.
		432.10	433.60		16.	1.1	183.	35.	246.
		439.40	440.40		93.	1.0	129.	11.	240. 74.
		446.70	448.20		53. 78.	2.5	54.	19.	3750.
		451.00	452.50		46.	2.0	7.	29.	1375.
		459.20	460.80		143.	1.4	164.	23. 9.	3525.
		469.00	470.00		1177.	2.7	249.	13.	383.
		478.60	480.10		41.	2.1	177.	10.	1550.
		487.20	488.70		89.	1.9	112.	4.	474.
		493.30	494.40		43.	1.9	128.	9.	348.
		496.80	498.40		279.	3.4	636.	18.	487.
		498.40	498.70		432.	3.7	499.	31.	441.
		498.70	499.70	0.70	3350.	0.1	266.		
				0.70	0000.	v . 1	200.	- · · ·	

÷ .

4

DRILL LOG SUMI RY: DDH CS94-12

Property SNIP	District Liard, M.D.	Length: 251.5m		_						
Commenced:	Corr. Dip: -45°	Core Size: BQTK		_						
Completed:	True Brg: 000°	% Recov.		_						
Coordinates: 1305	N 5515 E Elevation: 840.0m	Tests:								
Target:	Logged By: MGW						_			
Metres From To	Description		From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn ppm
00.33			6.90	7.80	0.90	0.	0.0	0.	0.	0.
0.0 3.2	OVERBURDEN/CASING		7.80	8.20	0.90	0. 70.	0.0	0. 173.	0. 14.	0. 63.
3.2 7.8	FELDSPAR CRYSTAL/ASH DACITIC TUF	?:it. green-blue grey;str sil, mod sericite altn; med - fine	11.50	12.60		273.	2.2	1122.	21.	112.
	grained; 1-2% fine biot specs; tr - 1% Py		12.60	14.10		71.	0.1	54.	17.	96.
			14.10	15.60		94.	1.8	23.	28.	80.
7.8 90.2		CKE INTERMIXED WITH LESSER SILTSTONE AND	16.40	17.00		100.	1.0	51.	8.	166.
	-	wnish grey; variably wk to mod chl altn; minor patchy sil; mod	17.40	18.40		130. 98.	1.4	247.	22.	93.
	- str biot altn, wk - mod chl altn.		23.10 27.30	24.60 28.80		98. 102.	1.9 0.6	342. 32.	16. 25.	113. 85.
90.2 95.4	LITHIC ERAGMENTAL med - dk grev: mo	d - str biot altn, wk chl altn, 1-2% Py, tr Cpy; wk - mod	29.90	31.50		90.	0.6	354.	12.	71.
00.2 00.4	foliation.		37.55	37.70		83.	1.2	54.	9.	95.
			42.90	43.90		56.	0.5	10.	7.	79.
95.4 108.6	GREYWACKEWITH MINOR INTERMIXED	FRAGMENTAL: med brown to green grey and light grey	49.70	50.90		97.	0.3	14.	7.	58.
	where QSP altered; fine - med greined; m	od shear foliation; 100.0-108.6 mod str chl, patchy sil, mod -	50.90	52.40		74.	2.6	18.	14.	51.
	str biot altn.		52.40	53.90		108.	0.8	35.	13.	40 .
			56.10	56.60		134.	0.6	57.	15.	55.
108.6 110.7		ue-green grey; mod - str foliation; mod - str sil altn, wk - mod	57.50	58.20		68. 50	0.5	81.	7.	74.
	sericite; wk chl altn; fine biot specs; 2-3%	Py.	58.50	58.60		50. 07	0.7	828.	21.	138.
110 7 112 0	CREVA/ACKE: mod _ dk groop grev: med	ore grained; mod chi + biot alta; mod foliation; 2,3% dissem	68.60 69.60	68.80 71.10		37. 82.	1.5 0.6	3650. 1448.	2. 6.	124.
110.7 112.0	Py.	crs grained; mod chl + biot altn; mod foliation; 2-3% dissem	71.10	72.70		62. 43.	0.8	484.	б. 3.	64. 78.
	Fy.		72.70	73.10		108.	2.4	3600.	J. 11.	105.
112.0 120.2	DACITIC TUFE?: med grained: it - med bl	ue-green grey; mod - str sil + sericite altn, mod chl altn; 1-2%	73.10	74.80		40.	1.9	63.	24.	47.
112.0 120.2	Py.		74.80	76.30		25.	0.2	179.	8.	44.
			76.30	77.90		34.	0.4	19.	5.	51.
120.2 133.0	INTERMIXED GREYWACKE > FRAGMEN	TAL: med brown grey; fine - med grained GW with minor	77.90	79.40		41.	0.5	43.	8.	52.
	FRAG; mod - str foliation;mod-str biot altn	, wk chl altn, patchy sil.	80.80	80.90		24 9 .	3.9	144.	39.	160.
			86.00	86.90		114.	0.1	191.	12.	93.
133.0 179.4		ED FINE-MED. GRAINED GREYWACKEAND ASH TUFF: It -	89.60	89.80		53.	4.1	4850.	7.	133.
		argillaceous, quartz and volcanic fragments; mod v. str shear	94.00 97.80	94.60		105.	1.6	1884.	25.	114.
		72.1 is a zone of mod -str altn with local intervals of abundant ally str sil altn; 5-6% crs shotty Py, tr - 1% Cpy, tr - 1% Po, 1-	97.80	98.80 100.30		6. 21.	1.8 1.8	1545. 211.	25. 10.	118. 108.
	2 % Mag.	any su sh ann, 5-0% cis shony Fy, u - 1% Cpy, u - 1% F0, 1-	100.30	103.00		56.	1.0	862.	8.	180.
	2 % Wag.		103.00	104.30		69.	3.7	968.	9.	79.
	135.7-138.2: MINERALIZED/	VEINEDZONE: comprises str sheared FRAG (70-80%) with	104.30	105.20		25.	2.5	593.	6.	29.
		I pervasive sil bands/patches, 5-10% chl seams along	107.90	108.40		68.	2.3	3147.	7.	55.
		Py (4-5%), Cpy (1-2%), Mag 1-2 %; foliation @ 30-35 deg. to	108.40	108.60		828.	3.1	72700.	12.	308.
	CA.		108.60	109.30		14.	1.5	328.	9 .	40.
			111.30	111.80		83.	2.3	107.	23.	310.
		55%), Py + Tr Cpy (35-40%), Chi 5%, Mag 1-2%, wallrock	111.80	112.00		8.	2.8	85.	62.	2125.
	(5%); Py has fine dissem. to	crs shotty texture; subtle shear foliation @ 30-35 deg. to CA.	112.00	113.50		30.	2.4	55.	19.	99.
			120.80	122.30		39. 70	3.7	144.	84.	5675.
			122.30	123.80		76.	5.4	423.	219.	8850.

1

Drill Hole Rec.

DRILL LOG SUM RY: DDH CS94-12

15 January	5 - Page 2
------------	------------

letres From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pbppm	Zn ppm
79.4 207.1	INTERMIXED GREYWACKEAND SILTSTONE: fine - med grained med - dk grey wacke; dk grey	123.80	125.10		51.	2.9	411.	62.	10125.
	sittstone;wk biot attn; local mod chl altn; wk - mod foliation; 1-2% dissem Py, tr Cpy.	125.10	126.70		544.	4.9	361.	232.	20000
		126.70	128.10		104.	2.0	162.	285.	3700
07.1 212.1	LITHIC FRAGMENTAL: med - dk grey; frags are siltstone and wacke; mod - locally str chl altn; wk sil	128.50	129.10		42.	3.2	148.	1240.	2950
	attn locally; 1-2% Py; wk - mod foliation.	131.00	133.00		74.	1.1	139.	66 .	443.
		133.00	133.90		121.	1.3	836.	125.	355
2.1 251.5	INTERMIXED GREYWACKEAND SILTSTONE: fine - med grained; med - dk grey; patchy chl altn,	133.90	135.70		128.	2.4	2400.	11.	90
	patchy epid altn; local wk - mod sil altn; 1-2% dissem. Py.	135.70	136.90		96 .	7.0	6425.	10.	104
		136.90	138.20		86.	6.6	8900.	5.	91.
		138.20	138.80		38.	1.6	625.	7.	65.
		138.80	140.47		67.	1.3	698.	5.	68.
		140.47	141.00		253.	2.7	1019.	31.	77
		141.00	142.50		182.	2.4	236.	87.	182
		145.50	147.00		98.	2.2	73.	11.	94.
		149.80	151.20		42.	1.1	562.	9.	112.
		151.20	152.50		75.	0.1	82. 60.	9.	79. 56.
		157.00 162.00	158.50 162.20		70. 146.	0.1 4.9	9800.	7. 15.	50. 118
		162.00	162.20		146. 91.	4.9 2.0	9800. 1008.	15. 9,	43.
		162.20	165.20		91. 73.	0.1	752.	9. 15.	43. 92.
		165.20	165.20		73. 30.	1.2	679.	6.	39.
		166.70	167.50		112.	0.7	1963.	0. 12.	65.
		167.50	169.10		79.	6.8	4850.	16.	135
		169.10	170.60		32.	1.4	2446.	8.	157.
		170.60	172.10		36.	1.5	2652.	9.	133.
		175.30	176.80		69.	1.1	1589.	19.	104
		190.70	191.70		52.	2.3	673.	9.	153.
		193.10	193.30		87.	0.1	2381.	17.	138
		193.70	194.40		53.	2.5	1954.	11.	104
		209.50	211.00		68.	1.3	350.	8.	116.
		216.80	217.80		36.	0.8	23.	22.	0.
		222.80	224.10		188.	0.5	113.	8.	0.
		224.10	224.80		715.	0.1	270.	10.	0.
		225.70	226.70		57.	0.1	209.	14.	0.
		240.00	241.50		44.	0.5	97.	12.	0.
		244.50	246.00		49 .	0.1	47.	9.	0.
		250.00	251.50		41.	0.1	67.	6.	0.

з.,

DRILL LOG SUMM/ ': DDH CS94-13

Property SNIP	District Liard	1, M.D.	Length: 482.0m								
Commenced:	Corr. Dip: -4	15°	Core Size: BQTK								
Completed:	True Brg: 00	00°	% Recov.								
Coordinates: 915 N	4350 E Elevation: 3	15.0m	Tests:		_						
Target:	Logged By:	MGW									
Metres						Au	Au	Ag	Cu	Pb	Zn
From To	Description			From	То	g/t	ppb	g/t	ppm	ppm	ppm
2.1	CASING			7.70	8.00		31.	3.7	523.	2.	100.
				12.20	13.80		21.	0.1	102.	1.	101.
2.1 192.7			R VOLCANICLASTIC WACKE: med-dk green grey; light	15.20	15.90		72.	1.1	191.	2.	116.
	• • • • •	-	ed texture; 0.2 - 4.0 cm epidote altered volcanic fragments	15.90	16.50		58.	1.6	116.	14.	74.
		-	ained and comprised both volcanic and lithic wacke; epidote	16.50	17.90		35.	0.1	77.	4.	154.
	-		teration of select volcanic frags, not pervasive altn; wk to	18.30	19.20		23.	1.6	336.	3.	86.
	mod chl + biot altn; wk t	o locally mod sheal	foliation; Py tr-1%, Po tr, Cpy tr.	19.80	20.40		44.	0.1	131.	2.	106.
				21.20	22.30		51.	0.1	208.	5.	70.
	15.9-16.4: \$	Shear; cc, biot, Py,	seric; 3cm gouge at 16.4	22.30	23.30		35.	0.7	59.	4.	100.
				28.00	28.60		20.	0.7	159.	5.	106.
	115.1-115.7	': Shear; laminated	cc, brown biot, tr Py, minor chl, @ 70 deg to CA.	29.20	30.40		20.	0.1	228.	1.	91.
				32.10	32.60		20.	0.1	144.	2.	112.
	116.1-117.2	2: Shear; laminated	cc, brown biot, chl, Py 1%, generally @ 65 deg to CA.	36.10	37.10		20.	0.3	245.	1.	118.
				38.30	38.90		50.	0.6	86.	1.	89.
92.7 482.2			AND VOLCANIC + LITHIC WACKE: similar to above interval	45.50	45.90		35.	0.1	159.	1.	132.
	except somewhat higher	r lithic component; v	vacke is dk grey to green- grey, med grained and quite	54.10	54.70		20.	0.1	59.	2.	103.
	massive; volcanic frags a	are selectively epide	otized through out; wk to mod pervasive biot + chl altn	62.50	63.60		20.	1.1	209.	2.	145.
	common over much of ir	nterval; 1% Py, tr S	ph, Po, Cpy locally.	67.10	67.80		20.	0.1	179.	5.	128.
				69.30	69.80		20.	0.1	244.	1.	94.
	201.4-201.6	3: Fault; highly fract	ured to gouged, bleached; 1% Py;	69.80	70.50		63.	1.4	315.	6.	120.
				71.90	71.90		20.	0.7	164.	2.	113.
	208.6-208.8	3: Fault; highly fract	+ gouge; @ 20 deg to CA.	72.30	72.60		204.	2.9	45.	14.	90.
				73.00	73.60		55.	0.5	161.	10.	138.
	227.1-234.1	I: Fault Zone (likely	Sky Creek Fault): highly fractured with several narrow (up to	82.70	83.10		74.	1.9	366.	16.	140.
	20 cm) inter	rvals of muddy gou	e; wk- mod bleached; light green grey; main fault to CA 85	85.00	85.50		68 .	1.5	361.	47.	159.
	deg; 1% Py	' .		85.50	86.90		56.	0.3	189.	21.	124.
				88.60	88.90	0.45	1432.	0.9	229.	11.	12
	269.3-269.6	3: Shear Vein: irregi	lar veining of qtz, cc, and minor brown biot, and chl @ 50-	91.00	92.00		96.	1.2	241.	487.	457.
	60 deg to C	XA.		92.00	93.10		26.	4.5	146.	139.	357.
	•			96.40	97.50		26.	0.2	134.	10.	80.
	274.0-274.4	1: Fault; highly fract	ured + rusty gouge; tr Py.	100.70	101.10		28.	0.1	181.	34.	136
				106.60	106.80		20.	1.1	198.	79.	292
	321.2-321.6	: Shear; laminated	brown biot, cc, minor chl and tr Py; @ 65-75 deg to CA.	109.80	110.80		27.	0.1	191.	26.	179
				110.80	112.30		45.	1.3	158.	171.	345
	333.5-333 7	7: Shear: irredular s	hear laminations of cc, and minor chl + biot; tr Py.	112.30	113.30		21.	4.2	204.	959.	182
				113.30	114.60		38.	2.3	153.	561.	825
	426 9-427 3	B: Shear Vein: cc. o	z, chl; irregular swirled texture; locally shear laminated @ 75	114.60	115.10		215.	1.4	67.	29.	186
	deg to CA.			115.10	115.70		36.	6.9	316.	2393.	415
	ucy to UA.			115.70	116.10		43.	1.3	165.	478.	775
	120 8 421 4	I: Fault: clay + chi a	itered aquae	116.10	116.60		43. 21.	4.3	250.	1178.	427
	430.0-431.1	i. i auli. Ciay + Cilla	ineren gonge.	116.60	117.20		45.	4.5	250. 461.	1570.	325
										542.	825
				117.20	118.70		41. 59	1.4	179.		
				118.70	119.10		58.	0.4	115.	57.	141
				119.10	120.50		60.	1.7	268.	7.	104.
				127.80	128.00		32.	1.9	229.	13.	143.
				139.50	141.20		96.	2.7	188.	18.	371.
				143.30	143.90		64.	1.7	114.	6.	466.

Drill Hole Record

. .

From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pbppm	Zn ppm
								_	
		148.60	148.80		645.	0.6	70.	5.	133.
		152.00	152.40		35.	2.0	77.	7.	144.
		165.00	166.00		50. 74	3.9	268.	93. 202	186.
		166.00	166.50		71. 65	4.1	182.	293.	425.
		166.50	166.70		65. 60	5.0	551. 275	301. 888.	491. 4250.
		166.70	167.20		60.	9.5	275.	000. 1667.	4250. 3250.
		167.20	167.80		55. 67	9.3	443.		
		167.80	169.20		67. 26.	2.8 3.1	144. 114.	12. 10.	101. 104.
		178.50 180.10	179.10 180.40		20. 41.	3.4	523.	5.	126.
		180.10	180.40		23.	3.6	200.	8.	129.
		180.40	181.10		157.	2.7	170.	J.	192.
		184.50	185.50		103.	3.9	231.	7.	216.
		185.50	185.50		51.	3.6	143.	10.	193.
		193.10	193.40		41.	3.9	255.	20.	315.
		195.10	195.70		38.	2.1	35.	13.	220.
		195.70	196.30		18.	3.2	156.	231.	377.
		198.40	198.80		62.	5.5	259.	429.	2250
		198.80	199.30		11.	3.3	98.	16.	216.
		199.90	200.10		27.	3.3	263.	29.	411.
		201.20	202.30		40.	3.0	235.	9.	235.
		203.40	204.20		48.	3.4	298.	7.	312.
		208.50	209.60		31.	1.5	81.	11.	139.
		209.60	211.10		33.	2.7	147.	12.	346.
		212.00	212.40		71.	2.2	90.	11.	115.
		214.00	214.30		10.	3.1	184.	6.	93.
		230.70	232.20		12.	3.6	282.	З.	203.
		232.20	232.40		46.	3.1	40.	4.	208.
		232.40	233.20		186.	3.9	183.	8.	323.
		233.20	234.10		142.	2.2	179.	8.	351.
		234.10	235.10		32.	2.4	250.	4.	158.
		237.20	237.60		41.	0.8	205.	4.	112.
		243.00	243.60		42.	1.3	174.	4.	158.
		243.60	244.50		25.	0.7	77.	5.	119.
		251.20	251.50		79. 28	12.8	4475.	7. 7.	7925.
		259.20	259.60		28.	1.7	110.	7. 9.	221. 187.
		264.00	264.60		51. 27	2.4	236. 201.	э. 7.	1800.
		268.10 269.30	269.30 269.60		27. 28.	1.1 1.1	113.	7.	337.
		269.30	269.60 270.90		20. 38.	1.1	231.	4.	409.
		269.80 274.60	270.90		36. 34.	1.0	231.	4. 10.	409. 237.
		274.80 276.20	274.90		63.	1.0	91.	10.	194.
		280.00	281.80		26.	2.4	179.	10.	725.
		293.40	293.70		53.	0.1	295.	10.	1375.
		293.70	293.70		54.	0.4	155.	10.	214.
		295.80	297.20		68.	2.2	171.	10.	303.
		300.40	301.10		32.	2.0	178.	10.	211.
		304.40	305.10		22.	0.1	135.	10.	138.
		306.50	307.70		34.	0.7	154.	10.	164.
		307.70	308.40		39.	0.1	363.	10.	149.
		308.40	308.90		62.	1.3	92.	10.	155.
		308.90	309.20		47.	1.0	222.	10.	153.
		314.20	314.80		20.	1.7	124.	10.	185.
		314.80	315.40		55.	1.4	182.	10.	170.
		315.40	315.80		20.	0.1	140.	10.	331.
		315.80	316.20		34.	2.6	292.	10.	185.
		319.70	321.20		20.	0.1	32.	10.	214.
		321.20	321.60		20.	4.8	1014.	10.	6175.
									224.

÷.,

DRILL LOG SUMM

': DDH CS94-13

-

Page 2

15 January 19

		DRILL LOG SUMM	: DDH C	S94-13	8				15 Janu	ary 19
etres From To	Description		From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pbppm	Zn ppm
			330.80	331.20		20.	0.1	386.	10.	343.
			332.70	333.50		20.	2.3	154.	10.	183.
			333.50	333.70		71.	0.3	365.	10.	228.
			333.70	334.50		20.	0.1	143.	10.	331.
			334.50	335.60		20.	1.6	168.	10.	182.
			339.00	339.90		20.	3.0	148.	10.	299.
			339.90	340.10		20.	2.7	15.	10.	251.
			340.10	341.30		20.	1.5	263.	10.	305.
			345.80	346.60		20.	1.0	119.	19.	385.
			347.00	348.00		20.	1.1	387.	10.	140.
			350.90	351.60		20.	2.5	148.	10.	218.
			365.70	366.50		20.	1.3	84.	10.	150.
			369.10	369.20		20.	2.9	1574.	10.	198.
			372.90	373.60		20.	2.8	289.	10.	156.
			373.60	375.10		20.	1.4	127.	10.	183.
			375.10	376.60		20.	0.8	294.	10.	243.
			378.90	379.10		20.	5.0	378.	10.	180.
			388.10	388.40		53.	0.5	115.	7.	181.
			394.10	395.10		20.	2.2	138.	13.	139.
			399.10	399.60		35.	2.8	167.	32. 18.	144.
			404.30	405.20 406.10		48. 23.	0.1	125.		112. 108.
			405.20	406.10		23. 20.	0.1	104.	4.	110.
			406.10 408.70	408.80			0.7	44.	14. 12.	223.
		•	408.70	409.70 416.90		40. 20.	1.2	452.	12. 8.	223. 181.
			416.60	416.90		20. 22.	0.1	226.	o. 4.	152.
				426.90			1.3	209.		152.
			426.90 427.30	427.30		20. 62.	0.7 0.1	804.	14. 11.	159.
			427.30	429.10		22.		180. 142.	10.	103.
			429.10	429.30		22.	0.1 1.3	614.	10.	103.
			429.30	430.30		20.	0.1	208.	14.	153.
			430.30	430.80		20. 20.	0.1	208. 384.	10.	155.
			432.90	434.30		20.	0.2	80.	9.	139.
			437.40	437.70		20.	1.1	357.	J. 4.	149.
			437.40	437.70		20.	0.5	101.	4. 5.	128.
			453.20	454.60		20. 50.	3.8	348.	5. 15.	102.
			453.20	454.60 469.50		49.	3.8 0.9	348. 300.	15. 8.	74.
			468.20	469.50		49. 699.	0.9 13.2	6650.	o. 10.	74. 141.
			469.50	469.90 474.80		699. 20.	0.1	24.	9.	141.
				474.80 476.40		20. 83.	0.1	24. 315.	9. 4.	
			475.60						4. 9.	74. 73.
			481.50	482.00		40.	0.1	19.	Э.	13.

. . .

DRILL LOG SUMMA ': DDH CS94-14

.

Property SNIP	District Liard, M.D.	Length: 304.3m								
Commenced:	Corr. Dip: -45°	Core Size: BQTK								
Completed:	True Brg: 000°	% Recov.								
Coordinates: 1355 I	N 5190 E Elevation: 685.0m	Tests:		_						
Target:	Logged By: MGW									
Metres From To	Description		From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn ppm
,,										
0.0 7.6	CASING		13.70	14.00		136.	2.2	543.	44.	4725.
7.6 145.6		ED FRAGMENTAL: med brown-grey; primarly fine-med grained;	16.60 20.90	18.10 22.40		62. 22.	0.1 0.8	104. 104.	24. 11.	100. 89.
1.0 145.0		pathic grains (.28 cm) abundant;wk to mod shear foliation;	27.90	28.90		22.	0.8	87.	29.	293.
		and bleaching locally; 1% Py, tr Cpy + Po.	28.90	29.90		24.	0.1	122.	27.	434.
			31.80	33.30		134.	0.1	85.	28.	188.
	45.2-45.4 VEIN; cc + qtz +	chl + biot + Po 4-5%, Cpy tr-1%, Py 1-2%. Not a good shear	33.30	34.30		124.	0.1	86.	51.	294.
	type vein.		39.00	40.50		52 .	0.5	99 .	23.	451.
			40.50	40.90		106.	1.1	94.	97 .	2850.
	92.6-92.8 Shear "Vein" str	shear foliation w cc flooding/veining @ 75 deg. to CA; 4-5%	40.90	42.40		50.	0.1	110.	22.	362.
	Po, tr-1% Cpy.		45.20	45.40		89.	2.6	582.	12.	126.
			45.40	46.40		28.	1.8	197.	13.	167.
145.6 237.7		HIC WACKE AND LESSER FRAGMENTAL: similar to above	53.20	54.20		83.	0.9	70.	10.	112.
		and locally dk grey; wk pervasive biot altn; local intervals of	54.20	54.70		218.	0.7	119.	32. 29.	1825.
	mod bleaching and wk-mod QSP altn; n	od-str snear rollation, 1-2% Py.	54.70 70.30	56.20 71.80		26. 33.	0.1 0.1	107. 105.	29.	264. 93.
237.7 244.2		NE (50%) AND WACKE (50%): med brown grey, altering to light	74.30	74.70		35. 16.	0.1	73.	13.	115.
231.1 244.2		ell foliated; mod QSP altn and bleaching; 1-2% Py.	81.80	83.30		94.	0.1	73. 94.	6.	93.
	greensi-tait where gor altered, mod-w	en tonarea, moa ger ann ana bicaennig, r-276 r y.	90.80	92.40		568.	1.4	301.	36.	213.
244.2 252.0	MIXED MED-CRS GRAINED GREYWAG	KEAND FRAGMENTAL: It-med beige and grey; minor thin	92.40	92.80	1.55	1865.	1.7	265.	32.	244.
		local wk sil and chi altn; 1-2% Py, tr Po, tr Cpy.	92.80	94.30	1.60	1460.	4.0	179.	53.	184.
	--- - ------------------		94.30	95.80		76.	0.7	105.	164.	1675.
252.0 304.3	INTERBEDDED/INTERMIXEDSILTSTO	NE AND GREYWACKE: med-dk grey siltstone, med grey	103.40	104.90		106.	1.1	59 .	65.	321.
	wacke; wk-mod shear foliation; wk perva	asive biot, local wk chl altn; local patches of 3-4% Py + Sph +	107.70	109.20		103.	0.1	206.	83.	515.
	Сру.		109.20	110.70		141.	1.8	137.	48.	164.
			121.10	121.30		105.	0.1	85.	38.	1425.
E.O.H.			125.50	125.70		74.	0.1	78.	66.	410.
			128.10	128.50		56.	0.2	137.	107.	1300.
			138.20	139.70		37.	2.1	90.	11.	100.
			144.20	145.60		57.	2.3	106.	22.	215.
			145.60 157.00	147.00 158.50		23. 20.	1.0 3.3	74. 80.	24. 61.	129. 134.
			173.20	174.20		100.	0.1	85.	52.	271.
			176.00	177.50		32.	1.9	168.	151.	1250.
			191.30	192.30		55.	0.1	57.	6.	91.
			193.10	193.60		105.	0.1	109.	26.	78.
			196.30	196.90		119.	0.1	79 .	21.	129.
			208.40	209.90		386.	1.2	76.	56.	115.
			212.80	213.30		80.	0.1	43.	46.	77.
			217.30	218.80		20.	0.1	44.	41.	141.
			218.80	220.30		31.	1.6	38.	32.	117.
			225.30	226.40		62.	3.4	26.	32.	136.
			230.70	231.40		55.	2.0	40.	32.	9 5.
			236.20	237.60		28.	2.9	38.	20.	62.
			239.80	241.20		49.	3.0	47.	20.	126.
			247.50 260.10	248.50 260.80		99. 39.	4.9 2.3	131. 97.	189. 10.	276. 80.
										80

Iteres From To Description From To Au g/t Au ppb Ag g/t Cu ppm Zn ppm 268.80 269.80 62. 2.4 66. 10. 73. 271.20 273.70 216. 0.7 192. 10. 80. 273.70 275.20 2.05 5.2 295. 12. 91. 275.20 275.60 430. 5.1 354. 23. 145. 277.60 278.80 252. 3.0 372. 10. 77. 281.70 282.90 114. 2.8 177. 10. 68. 289.90 290.40 56. 3.7 106. 15. 94. 296.90 298.40 403. 3.8 157. 82. 194. 300.60 301.40 563. 4.8 137. 133. 736.			DRILL LOG SUMMA	': DDH C	S94-14	ŀ				15 Janu	ary 19(Page
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	etres From To	Description		From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pbppm	Zn ppm	_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$				268.80	269.80		62.	2.4	66.	10.	73.	-
275.20275.60430.5.1354.23.145.277.60278.80252.3.0372.10.77.281.70282.90114.2.8177.10.68.289.90290.4056.3.7106.15.94.295.10295.6064.3.6167.10.144.296.90298.40403.3.8157.82.194.							216.					
277.60278.80252.3.0372.10.77.281.70282.90114.2.8177.10.68.289.90290.4056.3.7106.15.94.295.10295.6064.3.6167.10.144.296.90298.40403.3.8157.82.194.						2.05						
281.70282.90114.2.8177.10.68.289.90290.4056.3.7106.15.94.295.10295.6064.3.6167.10.144.296.90298.40403.3.8157.82.194.												
289.90290.4056.3.7106.15.94.295.10295.6064.3.6167.10.144.296.90298.40403.3.8157.82.194.							252.					
295.10295.6064.3.6167.10.144.296.90298.40403.3.8157.82.194.				281.70	282.90		114.	2.8	177.	10.	68.	
296.90 298.40 403 . 3.8 157 . 82 . 194 .				289.90	290.40		56.	3.7	106.	15.	94.	
				295.10	295.60		64.	3.6	167.	10.	144.	
300.60 301.40 563. 4.8 137. 133. 736.				296.90	298.40		403.	3.8	157.	82.	194.	
				300.60	301.40		563.	4.8	137.	133.	736.	

: .

DRILL LOG SUMMA ': DDH CS94-15

Property SNIP	District Liard, M.D.	Length: 206.7m		_						
Commenced:	Corr. Dip: -45°	Core Size: BQTK								
Completed:	True Brg: 000°	% Recov.								
Coordinates: 1360 N	5000 E Elevation: 612.0m	Tests:								
Target:	Logged By: MGW									
Metres From To	Description		From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn ppm
0.0 4.6	CASING		4.60	5.10		32.	0.1	53.	44.	775.
			5.10	5.30	1.30		14.9	658.	149.	41875.
4.6 66.6	GREYWACKEAND MINOR SILTSTONE	E: med greenish-brownish grey, fine-med grained; mod	5.30	6.70		44.	1.9	280.	21.	4200.
	pervasive biot altn; local chl altered and	bleached patches; wk foliation; few local patches (10-20 cm) of	7.50	9.00		38.	1.8	410.	25.	6225.
	5-10% Py + Cpy +Sph.		9.00	10.50		86.	2.5	587.	13.	5750.
	• •• •		10.50	12.20		86.	1.2	241.	13.	3200.
	12.2-12.6 Patchy Sx in It gr	ey, mod biot altered, wk chl altered GW; Sx occur primarly	12.20	12.60	14.10		6.3	6175.	68.	11600.
	within 30 cm interval, as im	egular patches, dissem. and few irregular (2-4 mm) veinlets; Sx	12.60	14.10		132.	1.3	224.	15.	1250.
	include Py 5-8%, Cpy 2%, \$	Sph (brown) 2%, Sph (silver-grey metallic) 1-2%; no apparent	14.10	15.10		48.	4.2	224.	12.	1525.
		ame wk foliation @ 50 deg. to CA within min. interval in adjacent	26.40	27.40		58.	5.8	1040.	22.	2400.
	intervals. Sample assayed		44.10	44.60		20.	2.5	105.	10.	207.
		0	53.90	54.60		89.	3.3	74.	15.	199.
	57.1-57.6 FAULT: 60% whi	te muddy gouge, 40% bleached, QSP altered, highly fractured	57.10	58.70		47.	2.5	87.	53.	454.
	GW.		58.70	60.40		21.	0.5	124.	52.	775.
	й. С		62.90	63.40		102.	0.1	335.	36.	5675.
66.6 156.5	THIN BEDDED TO LAMINATED SILTST	ONE AND MINOR MUDSTONE: bedding to CA generally 60-	75.20	76.20		58.	0.1	213.	10.	2950.
	80 deg; mod-str biot altn, wk perv. chl a	atn; wk foliation @ 50-60 deg to CA; lode + flame structures; tr-	108.10	109.60		262.	0.1	65.	10.	108.
	1% Py.		113.70	115.20		20.	0.1	85.	10.	108.
			129.30	130.80		42.	0.1	59.	10.	95.
	111.1-111.4 FAULT: highly	broken, 10% gouge.	146.30	146.70		42.	1.8	156.	612.	1123.
			156.80	157.70		219.	1.9	56.	10.	84.
			161.10	161.40		21.	0.1	21.	53.	371.
156.5 203.4	INTERMIXED/INTERBEDDEDGREYWA	ACKE (65%), SILTSTONE (30%), FRAGMENTAL (5%): med	166.80	167.60		70.	0.1	32.	10.	40.
		nerally 50-70 deg.; wk foliation; wk-mod perv biot altn, patchy chl	189.40	189.90		24.	0.1	16.	10.	165.
	and epid altn; tr-1% Py.		195.70	197.50		348.	3.5	227.	25.	2650.
	· · ·		201.90	203.40		69.	0.8	41.	10.	61.
	157.4-157.6 FAULT: It gree	en-grey, QSP altered + muddy gouge.	205.00	205.90		20.	0.1	55.	24.	220.
203.4 204.1	LAMPROPHYREDYKE: dk green, fine g	gr, 20% 1-3mm biot books, mod-str mag, non-foliated.								

×

204.1 206.7 GREYWACKEWITH MINOR SILTSTONE: (as 156.5-203.4 above).

E.O.H.

. .

DRILL LOG SUMMA ': DDH CS94-16

......

Property SNIP	District Liard, M.D.	Length: 301.2m		_						
Commenced:	Corr. Dip: -45°	Core Size: BQTK								
Completed:	True Brg: 000°	% Recov.		_						
Coordinates: 950 N	V 4800 E Elevation: 475.0m	Tests:								
Target:	Logged By: MGW									
Metres From To	Description		From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn ppm
0.0 5.0	CASING		15.50	16.20		57.	2.3	191. 768.	10.	485. 223.
		ID VOLCANICI ACTICIA/ACKEr med. dk groenieh grow urk	23.00 25.60	24.00 26.00		48. 214.	2.3 7.6	766. 2354.	18. 41.	223.
5.0 41.8		ND VOLCANICLASTIC WACKE: med. dk greenish grey; wk- c-mod perv chl altn, minor selective epid altn, wk-mod biot altn	25.60	29.40		104.	4.2	716.	41.	233. 541.
	locally; 1-2% dissem Py.	-mod pervicin and, minor selective epid and, withhou blot and	37.00	37.90		20.	0.6	96.	16.	271.
	locally, 1-270 dissent Fy.		48.20	49.70		40.	0.1	146.	10.	344.
41.8 52.3	VOLCANICLASTIC FRAGMENTAL AND C	RS VOLCANICLASTIC + LITHIC WACKE: med-dk green-	54.10	54.50		47.	4.3	217.	194.	3125.
11.0 02.0		rv chl altn; irregular epid patches and selective epidote altn of	55.30	56.30		60.	2.7	342.	10.	1500.
	frags; tr-1% Py; wk mag.		57.10	58.00		20.	2.8	458.	46.	2100.
			58.00	59.40		53.	8.8	450.	19.	950.
52.3 68.2	LITHIC WACKE: med-dk brown-grey; mod	-str shear foliation @ 35-50 deg to CA; mod perv biot altn,	60.30	60.80		20.	0.1	202.	10.	1575.
	wk-mod chi altn locally; few narrow (<10 c	m) cc + qtz + chl + biot shear veins; 2-3% Py, tr Sph.	62.40	63.60		46.	0.1	408.	18.	2025.
			63.80	64.50		119.	4.8	182.	29.	2200.
68.2 108.5		OLCANICLASTIC FRAGMENTAL (20%): med-dk green grey;	65.50	66.00		20.	1.0	155.	10.	1375.
	•	+ pxn? grains; wk to locally str shear foliation @ 50-60 deg	77.00	77.20		38.	0.9	156.	10.	530.
	to CA; mod-str perv chl altn, patchy epid,	mod biot locally; tr Py.	80.50	80.70		20.	0.4	124. 545.	10.	2775. 6250.
			81.50 83.00	81.70 83.35		32. 20.	0.7 1.4	545. 241.	10. 10.	6250. 450.
108.5 120.8		ND LESSER VOLCANICLASTIC WACKE: med-dk brown grey	83.35	83.50 83.50		20. 31.	1.4	241. 80.	10.	450. 192.
	CA.	chl altn locally, cc + sil altn locally; wk foliation @ 60 deg to	90.60	91.90		47.	0.9	249.	10.	308.
	04.		95.40	95.80		46.	0.1	190.	10.	572.
120.8 174.0	MIXED VOLCANICI ASITO WACKE (60%)	, FRAGMENTAL (25%) AND LITHIC WACKE (15%): med-dk	100.80	101.30		28.	0.1	323.	10.	1050.
120.0 114.0		acke; selective/patchy epid altn, mod-locally str chi altn; mod-	107.10	108.30		30.	0.1	228.	10.	2925.
	str biot alth locally; wk-mod foliation; tr-19		111.90	112.10		20.	6.0	332.	21.	6450.
		•	113.10	114.50		20.	0.4	199.	180.	2625.
	165.9-166.3 FAULT; highly b	roken, chloritic, minor gouge.	114.50	115.30		155.	7.6	578.	1736.	15000.
			115.30	116.30		174.	12.1	591.	3373.	17500.
	170.8-171.6 FAULT; 50% gr	een muddy gouge, FW contact @ 80 deg to CA.	119.40	119.50		20.	0.1	348.	67.	10900.
			129.60	130.00		102.	4.3	430.	12.	2625.
174.0 204.7	· · · · ·	h grey; med grained; wk -locally mod foliation; mod perv biot	136.10	137.10		88.	2.6	190.	6.	297.
	altn, local mod chi altn; minor Volcaniclas	tic wacke; 1-2% Py, tr-1% Cpy locally.	146.00	147.50		78.	2.4	195.	11.	3850.
			147.50	149.00		46.	1.6	241.	16.	4125. 9125.
		n: mod-well foliated, pervasive cc flooded, abundant cc + qtz +	150.50	151.00		1 46 . 73.	1.7 3.1	311. 179.	26. 4.	9125. 488.
	cni + diot veiniets; veins @ 6	5 deg to CA; 2-3% Py, tr-1% brown Sph.	169.60 170.80	170.80 171.70		73. 38.	2.0	179.	4. 9.	400. 1625.
	100 6 400 9 EALILT bish	broken, chi GW/withi minor muddy course	170.80	171.70		38. 50.	2.0	374.	9. 12.	23750.
	190.0-190.0 FAULT: highly	broken, chl GW withi minor muddy gouge.	182.20	182.60		50. 77.	1.7	460.	8.	11225.
	195 1-105 7 EALIT - broken	str chl + QSP altered + bleached; 10 cm grey muddy gouge	182.60	182.00		48.	0.6	268.	8.	2175.
			102.00	104.10		-70.	0.0	200.	υ.	2119.
	at bottom of interval; fault to	CA 70 deg.								

÷.

	DRILL LOG SUMMA ':	DDH C	S94-16	5				15 Janua	ary 19:	Page 2
Aetres From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pbppm	Zn ppm	
04.7 301.2	INTERMIXED VOLCANICLASTIC WACKE (55%), FRAGMENTAL (30%) AND LITHIC	187.70	187.90		48.	0.9	188.	17.	490.	•
	WACKE (15%): dk green and brown; med-crs grained; wk to locally mod foliation at various	188.40	189.90		46.	1.1	235.	13.	1150.	
	angles to CA; perv mod-str chl attn, local mod biot atln where not altered to chl; patchy epid	189.90	190.90		79.	2.2	395.	21.	10975.	
	altn from 204.7-227.0 and 260.0-301.2; tr-1% Py, v. local Po and/or Cpy. LAMPROPHYRE	194.50	195.80		36.	0.7	201.	5.	236.	
	DYKE @ 246.1-247.0.	196.30	197.10		51.	1.2	167.	10.	271.	
		200.10	200.40		44.	1.4	392.	7.	154.	
	253.8-254.15 SHEAR VEIN: (20 cm true width); mod to well foliated Sx 20-	200.70	201.60		62.	0.9	142.	5.	182.	
	25%, chl 10-15%, blk biot 5-6%, cc + qtz vein 10-15%, and wallrock GW 30%;	203.70	204.10		60.	1.7	222.	5.	187.	
	Sx are fine to med grained and include Py 10-15%, Cpy 3-4%, Po 4-5%; HW	215.30	215.90		63.	0.9	496.	4.	170.	
	and FW contacts @ 30 deg to CA; vein has internal fold.	218.20	218.90		113.	4.0	1250.	10.	331.	
		231.10	232.00		45.	0.1	184.	3.	168.	
		238.80	240.10		533.	11.9	1314.	218.	1225.	
		243.30	244.80		74.	3.4	343.	34.	349.	
		252.40	253.80		139.	1.5	455.	7.	212.	
		253.80	254.15	0.50		54.1	12675.		875.	
		254.15	255.70		61.	0.1	165.	9.	221.	
		255.70	257.00		70.	1.7	90.	1.	169.	
		257.00	258.50		40.	0.1	24.	3.	192.	
		258.50	258.70		56.	0.1	95.	5.	191.	
		266.50	267.40		24.	0.1	131.	4.	178.	
		268.50	268.90		20.	1.1	269.	3.	186.	
		273.80	275.20		29.	1.8	379.	6.	237.	
		284.50	284.80		31.	0.8	146.	5.	189.	
		288.50	289.40		28.	0.8	225.	· 6.	500. 459	
		298.10	298.30		20.	0.1	26.	2.	158.	

: .

.....

1.111.111

Ń

DRILL LOG SUMM/ ': DDH CS94-17

. .

Property SNIP	District Liard, M.D.	Length: 169.2m	
Commenced:	Corr. Dip: -45°	Core Size: BQTK	
Completed:	True Brg: 030°	% Recov.	
Coordinates: 1305 N 5515 E	Elevation: 840.0m	Tests:	

Coordinates: 1305 N 5515 E Elevation: 840.0m

Logged By: MGW Target:

. . .

Metres From To	Description	From	то	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn ppm
0.0 2.2	CASING	5.10	6.70		56.	0.1	6.	28.	115.
		6.70	8.20		51.	0.4	585.	16.	119.
.2 6.7	"DACITIC" TUFF: light grey; highly QSP altered and bleached; wk foliation @ 65 deg. to CA; 1-2 %	8.20	8.70		74.	0.1	102.	14.	87.
	dissem Py.	8.70	10.20		60.	0.1	10.	6.	26.
		12.30	13.60		39 .	0.1	4.	2.	18.
6.7 8.7	MIXED SILTSTONE AND GREYWACKE: med-dk brown grey; locally bleached; mod biot alteration; wk	13.60	15.00		48.	0.1	3.	1.	17.
	foliation; 3-4% dissem. Py.	16.50	17.90		20.	0.1	2.	16.	35.
		17.90	19.40		42.	0.1	6.	12.	23.
.7 57.3	"DACITIC" TUFF: light grey to green grey; highly QSP altered; mod-str bleaching; wk-locally mod	20.70	21.20		48.	0.1	6.	5.	29.
	foliation @ 40-70 deg to CA; 1-3% fine dissem + stringer Py; tr Cpy; wk-mod chl altn from 19.0-57.3 m.	28.20	29.70		35.	0.1	12.	1.	33.
		29.70	31.00		37.	0.1	11.	1.	36.
7.3 60.3	LITHIC GREYWACKEAND LESSER FRAGMENTAL: med brownish grey; fine-med grained; wk foliation	32.80	34.30		31.	0.1	4.	4.	29.
	@ 65 deg to CA; mod-str perv. sil attn, patchy chl.	34.30	35.80		33.	0.1	30.	4.	40.
		35.80	36.90		60.	0.1	536.	6.	47.
0.3 61.6	"DACITIC" TUFF: light grey; med-crs grained; mod QSP altn; 2-3 % Py.	38.30	39.70		27.	0.1	11.	5.	26.
		39.70	41.10		58.	0.1	45.	16.	31.
1.6 78.6	LITHIC FRAGMENTAL: med brown-grey; frags include some lapilli size dacitic frags; mod-str Biot; mod	41.10	42.50		38.	0.1	12.	23.	34.
	patchy chl; 4-5% med-crs grained Py.	45.70	47.20		29.	0.1	2.	2.	18.
		50.00	51.50		23.	0.1	3.	5.	21.
8.6 117.3	"DACITIC" CRYSTAL-LAPILLITUFF: med-lt grey to yellow grey; quite massive; mod-str QSP altn;	51.50	53.00		58.	0.1	13.	5.	31.
0.0 11110	occasional 0.5-2.0 cm gtz veins; 2-4% Py, tr Cpy locally.	53.00	54.50		44.	0.1	3.	9.	21.
		54.50	55.90		40.	0.1	3.	5.	18.
17.3 169.2	LITHIC FRAGMENTAL + MINOR GREYWACKE: med-dk brown; 10-15% frags; mod foliation @ 30-45	55,90	57.30		87.	0.1	3.	1.	18.
	deg to CA; interval 124.2 - 141.0 m has elevated Sx content (5-6% Py, tr Cpy), mod-str patchy chi altn,	57.30	58.80		70.	0.8	26.	30.	67.
	mod foliation.	60.30	61.60		43.	0.1	3.	9.	23.
		61,60	63.10		109.	0.9	22.	14.	62.
	126.5 - 127.0 VEIN: Qtz + cc + 60% crs Py; vein @ 75 deg to CA.	63,10	63.60		72.	0.5	118.	17.	79.
		64.60	66.10		64.	0.1	33.	10.	73.
		66,70	67.50		153.	0.3	35.	15.	79.
	131.9 - 132.5 VEIN: Qtz + minor cc + 7-8% Py; vein at 65 deg to CA.	67.50	68.90		178.	0.9	123.	13.	69.
		68.90	70.30		123.	0.1	16.	9.	60.
		70.30	71.80		47.	0.2	8.	9.	56.
	132.5 - 132.95 VEIN: 45 cm Py 70%, Cpy 1-2% in a fine cc + qtz matrix; not a discrete	72.40	73.90		42.	0.9	64.	13.	70.
	vein, HW contact is sharp and @ 70 deg to CA, FW contact grades into host fragmental;	73.90	75.10		20.	0.4	14.	16.	68.
	foliation in adjacent rock is @ 45 deg. to CAvein appears to be oblique to foliation.	75.10	76.60		51.	1.1	51.	10.	78.
		76.60	76.90		100.	4.8	875.	28.	199.
		76.90	77.90		20.	4.6	393.	20. 17.	117.
		79.50	80.90		20. 96.	0.1	393. 9.	14.	28.
		80.90	80.90					14. 7.	20. 35.
		80.90			48.	0.1	18.	7. 6.	
			86.30		20.	0.1	4.		15.
		88.10	88.40		25.	0.1	6.	39.	22.
		89.10	90.60		48.	0.1	7.	9.	22.
		93.50	95.00		71.	0.1	4.	11.	18.

		': DDH C	S94-17	7				15 Janua	ry 19 [,]
tres From To	Description	 From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pbppm	Zn ppm
_			.	.	.	1			
<u></u>		 97.90	99.30		89.	0.4	15.	9.	25.
		99.30	99.80		173.	5.2	1016.	7.	45.
		99.80	100.70		30.	0.6	21.	5.	15.
		104.30	105.80		41.	0.1	13.	2.	16.
		106.60	108.10		29.	0.1	12.	5.	13.
		109.50	111.00		57.	1.1	35.	6.	21.
		115.40	116.90		79.	0.1	11.	7.	22.
		124.20	125.50		160.	2.6	2191.	7.	126.
		125.50	126.00		92.	1.3	1480.	6.	116.
		126.00	126.20		640.	6.6	1744.	49.	145.
		126.20	127.60		118.	0.7	487.	З.	84.
		127.60	129.10		151.	1.8	941.	21.	117.
		129.10	130.50		126.	2.1	1734.	18.	156.
		130.50	131.70		86.	1.3	668.	12.	139.
		131.70	131.90		367.	6.6	567.	106.	302.
		131.90	132.50		173.	2.0	883.	21.	216.
		132.50	132.95	2.00	1902 .	39.8	3828		
		132.95	134.05		276.	2.4	346.	46.	209.
		134.05	135.40		52.	1.1	38.	8.	67.
		137.30	138.20		55.	1.2	68.	12.	78.
		138.20	139.80		147.	0.7	164.	23.	74.
		139.80	141.20		65.	3.2	76.	10.	95.
		143.80	144.00		396.	13.6	3774.	9.	285.
		150.30	151.80		84.	0.5	244.	10.	131.
		151.80	152.30		121.	0.4	255.	9.	123.
		154.00	155.40		109.	2.9	1041.	16.	136.
		155.40	155.80		99.	2.1	128.	25.	95.
		155.80	156.00		79.	1.2	454.	16.	79.
		156.00	158.10		43.	1.6	249.	15.	100.
		158.10	159.60		44.	0.5	255.	14.	104.
		159.60	161.20		56.	0.7	307.	13.	137.
		161.20	162.70		53.	0.7	365.	27.	141.
		162.70	164.30		74.	0.6	316.	18.	97.
		166.20 167.70	167.70		20.	0.7	224.	26.	120. 180.
			169.20		24.	0.1	131.		

÷ .

1

DRILL LOG SUMMA : DDH CS94-18

.

Property SNIP	District Liard, M.D.	Length: 161.0°								
Commenced:	Corr. Dip: -45°	Core Size: BQTK		_						
Completed:	True Brg: 331°	% Recov.		_						
Coordinates:	Elevation: 840.0m	Tests:								
Target: 1305 N	5515 E Logged By: MGW									
Metres From To	Description		From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn
			_			1				
0.0 1.5	OVERBURDEN/CASING		5.10 6.70	6.70 8.20		56. 51.	0.1 0.4	6. 585.	28. 16.	115. 119.
1.5 15.1	"DACITIC" TUFF: It greenish-grey; str QS deg. to CA; 1-2 % fine dissem. Py.	P attered; str bleached; wk chl altn locally; str foliation @ 60	8.20 8.70	8.70 10.20		74. 60.	0.1 0.1	102. 10.	14. 6.	87. 26.
15.1 37.3		ned-crs grained; med-dk brown green; mod foliation @ 70	12.30 13.60	13.60 15.00		39. 48.	0.1 0.1	4. 3.	2. 1.	18. 17.
	deg. to CA; wk-mod chl altn locally; str bi		16.50 17.90	17.90 19.40		20. 42.	0.1 0.1	2. 6.	16. 12.	35. 23.
37.3 50.6	"DACITIC" TUFF: It green to yellow-grey; tr Cpy locally; wk foliation @ 65 deg. to (crystal to ash and locally lapilli; mod-str QSP altn; 1-2 % Py + A.	20.70 28.20	21.20 29.70		48. 35.	0.1 0.1	6. 12.	5. 1.	29. 33.
50.6 80.9		k brown and green; mod-str biot altn; patchy mod-str chl altn; CA: 3-4% Py, tr Cpy + Po; minor intermixed fragmental. (this	29.70 32.80 34.30	31.00 34.30 35.80		37. 31. 33.	0.1 0.1 0.1	11. 4. 30.	1. 4. 4.	36. 29. 40.
	interval may correlate with broad "zone o	tion are only present locally, and total Sx content (4-5%) is	35.80 38.30	36.90 39.70		60. 27.	0.1 0.1 0.1	536. 11.	 6. 5.	47. 26.
	about half that of DDH94-11).		39.70 41.10	41.10 42.50		58. 38.	0.1 0.1	45. 12.	16. 23.	31. 34.
	72.2 - 72.6 Abundant Sx: wk 1% Cpy; wk-mod Chl altn.	-mod sil altered greywacke with 35-40% fine-med gr. Py and tr-	45.70 50.00	47.20 51.50		29. 23.	0.1 0.1	2. 3.	2. 5.	18. 21.
80.9 115.8	• • •	ey; mod-str QSP altn; mod bleaching; crystal, ash and locally	51.50 53.00	53.00 54.50		58. 44.	0.1 0.1	13. 3.	5. 9.	31. 21.
115.8 128.7		s less intense, wk-mod chi altn occurs; 2-3% Py, tr Cpy. ONE/WAKCE(70%) AND LT GREEN-GREYTUFF? (30%):	54.50 55.90 57.30	55.90 57.30 58.80		40. 87. 70.	0.1 0.1 0.8	3. 3. 26.	5. 1. 30.	18. 18. 67.
115.6 126.7	minor frags; It and dk banded texture; m	od-str foliation @ 30-40 deg to CA; selective wk-mod QSP few narrow (1-2 cm gouge) faults within intervals of v. str	60.30 61.60	61.60 63.10		43. 109.	0.1 0.9	3. 22.	9. 14.	23. 62.
	shear foliation; 1-2% Py.		63.10 64.60	63.60 66.10		72. 64.	0.5 0.1	118. 33.	17. 10.	79. 73.
128.7 161.0		ACKE (60%), SILTSTONE (30%), AND FRAGMENTAL (10%): general upper half of interval is light green-grey and mod-str	66.70 67.50	67.50 68.90		153. 178.	0.3 0.9	35. 123.	15. 13.	79. 69.
	QSP altered, lower half is med-dk green- deg. to CA.	grey and mod chl attered; 1-2 % Py; mod foliation @ 30-45	68.90 70.30	70.30 71.80		123. 47.	0.1 0.2	16. 8.	9. 9.	60. 56.
			72.40 73.90	73.90 75.10		42. 20.	0.9 0.4	64. 14.	13. 16.	70. 68. 70
			75.10 76.60 76.90	76.60 76.90 77.90		51. 100. 20.	1.1 4.8 1.6	51. 875. 393.	17. 28. 17.	78. 199. 117.
			79.50 80.90	80.90 82.40		96. 48.	0.1 0.1	9. 18.	17. 14. 7	28. 35.
			84.80 88.10	86.30 88.40		20. 25.	0.1 0.1	4. 6.	6. 39.	15. 22.
			89.10 93.50	90.60 95.00		48. 71.	0.1 0.1	7. 4.	9. 11.	22. 18.
			97.90 99.30	99.30 99.80		89. 173.	0.4 5.2	15. 1016.	9. 7.	25. 45.
			99.80 104.30	100.70 105 <i>.</i> 80		30. 41.	0.6 0.1	21. 13.	5. 2.	15. 16.

. .

		DRILL LOG SOMM							15 Janua	
s From To	Description		From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pbppm	Zn ppm
			106.60	108.10		29.	0.1	12.	5.	13.
			109.50	111.00		57.	1.1	35.	6.	21.
			115.40	116.90		79.	0.1	11.	7.	22.
			124.20	125.50		160.	2.6	2191.	7.	126.
			125.50	126.00		92.	1.3	1480.	6.	116.
			126.00	126.20		640.	6.6	1744.	49.	145.
			126.20	127.60		118.	0.7	487.	3.	84.
			127.60	129.10		151.	1.8	941.	21.	117.
			129.10	130.50		126.	2.1	1734.	18.	156.
			130.50	131.70		86.	1.3	668.	12.	139.
			131.70	131.90		367.	6.6	567.	106.	302.
			131.90	132.50		173.	2.0	883.	21.	216.
			132.50	132.95	2.00	1902.	39.8	3828	. 446.	324.
			132.95	134.05		276.	2.4	346.	46.	209.
			134.05	135.40		52.	1.1	38.	8.	67.
			137.30	138.20		55.	1.2	68.	12.	78.
			138.20	139.80		147.	0.7	164.	23.	74.
			139.80	141.20		65.	3.2	76.	10.	95.
			143.80	144.00		396.	13.6	3774.	9.	285.
			150.30	151.80		84.	0.5	244.	10.	131.
			151.80	152.30		121.	0.4	255.	9.	123.
			154.00	155.40		109.	2.9	1041.	16.	136.
			155.40	155.80		99.	2.1	128.	25.	95.
		1	155.80	156.00		79.	1.2	454.	16.	79.
			156.00	158.10		43.	1.6	249.	15.	100.
			158.10	159.60		44.	0.5	255.	14.	104.
			159.60	161.20		56.	0.7	307.	13.	137.
			161.20	162.70		53.	0.7	365.	27.	141.
			162.70	164.30		74.	0.6	316.	18.	97.
			166.20	167.70		20.	0.7	224.	26.	120.
			167.70	169.20		24.	0.1	131.		180.

DRILL LOG SUMMA ': DDH CS94-18

: .

Page 2 15 January 19

.....

1

Drill Hole Rec

. .

DRILL LOG SUMN XY: DDH CS94-19

Property:Cominco/Skyline Option	District Liard, M.D.	Length: 86m	
Commenced: Oct 7, 1994	Corr. Dip: -70°	Core Size: BQTK	
Completed: Oct 10, 1994	True Brg: 030°	% Recov. Poor	
Coordinates: 2110 N 6100 E	Elevation: 813.8m	Tests: None	

Target: Zinc rich shear Logged By: JRG

Metres From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn ppr
0.0-6.1	Casing	12.00	12.30		35.	2.4	245.	93.	106.
	-	12.30	14.30		67.	0.7	149.	121.	27.
		16.70	17.20		20.	2.7	179.	1454.	432.
.1-86.0	SILTSTONE/GREYWACKE	32.70	32.90	0.9		16.0	278.	18350.	1819.
		35.40	35.80		746.	4.5	198.	1926.	281.
	Entire length highly fractured and faulted. Limonitic fracture surfaces. Locally banded @ 75°to C.A. Locally	35.80	35.95		327.	1.0	260.	107.	44.
	massive. Mod qtz/calcite veining. 1-2% Py stringers and bands. Locally up to 1% Sph associated with Py.	37.50	37.80		49.	0.3	131.	35.	16.
		37.80	38.10	0.85	3328.	0.9	184.	35.	28.
	32.7-32.9 2-3cm band of 'rotton' sulphide. Fine grained Sph/Py/minor Ga.	39.10	40.30		20.	0.8	107.	866.	11.
		46.30	46.60		20.	0.7	123.	272.	10.
	60.8-61.0 5-7cm, med-coarse grained Py band @ 65° to C.A. With 1-1.5% Sph blebs.	46.80	47.00		20.	0.7	115.	89.	20.
		60.10	60.80		20.	0.5	75.	335.	15.
		60.80	61.00	1.6		19.6	570.	26600.	1730.
	EOH @ 86.0m	61.00	62.50		20.	0.5	132.	403.	15.
		74.00	74.30		71.	2.1	288.	782.	107.
	NB: Hole stopped because of bad ground. Drilling down fault.	END							

Drill Hole Reco

DRILL LOG SUMN XY: DDH CS94-20

---.

Property:Cominco/Skyline Option	District Liard, M.D.	Length: 422.9m	
Commenced: Oct 10 1994	Corr. Dip: -70°	Core Size: BQTK	
Completed: Oct 15 1994	True Brg: 120°	% Recov. good	
Coordinates: 2110 N 6100 E	Elevation: 813.8m	Tests: none	

Target: Zinc rich shear Logged By: JRG

Metres From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn ppm
0.0-6.8	Casing	9.80	10.50		228.	2.5	152.	274.	42.
		13.30	14.10		24.	2.7	343.	66.	18.
		20.60	21.30		38.	1.6	258.	1654.	52.
	SILTSTONE/MUDSTONE	48.00	49.70		50.	15.7	144.	472.	1227.
	Med grey, fine grained, massive. Locally banded @ 40-45° to C.A. Mod foliated. Mod calcite gash veins.	51.40	52.00		4.	1.1	155.	337.	41.
	Sparse extension veins. 1-2% Py as stringers and crystal aggregates. Local Po. Locally fractured with limonitic	54.00	54.20		28.	1.3	117.	943.	50.
	fracture surfaces. Locally bleached. Minor fine grained sericite alteration and possible, minor fine grained	54.20	55.70		30.	0.6	104.	75.	13.
	biotite.	57.70	58.80		54.	3.6	272.	680.	160.
		58.90	59.00	1.25		13.6	174.	13450.	1379.
	58.8-59.0 Three 1-2cm Py veins @ 65° to C.A. 1% fine grained brown Sph, minor Ga and Cpy.	59.00	59.50		37.	1.9	112.	544.	171.
		59.50	59.80		44.	1.0	109.	283.	61.
		62.10	62.60		18.	1.5	171.	85.	68.
53.7 -422.9	GREYWACKE/SILTSTONE	66.60	67.00		2.	0.4	69.	216.	23.
	Med grey/brown/purple. Med grained-locally coarse grained wacke. Fine grained siltstone banded @ 40° to	71.10	71.60		35.	0.8	95.	74.	46.
	C.A. Interbedded. Sittstone content increasing with depth. Minor, fine grained biotite alteration increasing to	78.20	79.20		1714.	0.2	80.	38.	14.
	mod-high after 366m. Local silicification and minor sericite & chlorite alteration. Local bleaching. Sparse-	79.20	79.40	0.15		0.8	83.	139.	31.
	locally mod calcite/quartz as gash and extension veining. <1-1.5% Py/Po increasing with depth to 2-3% Py.	79.90	80.60		8.	0.9	152.	149.	15.
	Local Sph, minor Ga, trace Cpy and AsPy. Increase in sulphide content between 285.4-366.8m: 3-5% Py, local	80.60	82.10		85.	0.5	109.	89.	11.
	15-20% Py; 1% Sph. Associated with shears: up to 7% Sph, 10-12% Py, <1% Ga and trace Cpy. Local	84.50	85.70		32.	2.7	222.	589.	781.
	faulting and shear veins. Local shear fabric.	85.70	86.40		19.	2.7	574.	477.	536.
	1	89.80	90.40		128.	3.0	142.	3300.	343.
	90.4-104.5 Mod-locally strong shear fabric @ 35-40° to C.A. 2-2.5% Py patches and stringers. Up to 2-3%	90.40	90.70	0.8		31.2	722.	29550.	412.
	Sph and minor Cpy and Ga.	90.70	91.70		83.	4.6	190.	4275.	929.
		91.70	92.30		75.	2.3	177.	420.	260.
	94,7-95,0 5% Py with 1-2% Sph as 1-4cm patches.	92.30	92.60	0.1		6.2	387.	1025.	641.
		92.60	93.80		67.	3.2	380.	384.	226.
	107.9-108.2 5-7% med grained patch and vein Py. 1-1.5% fine grained Sph, minor Cpy. Minor cream calcite	93.80	94.70		37.	2.6	301.	2079.	193.
	veining.	94.70	95.00	1.0		1.6	151.	3950.	159.
		95.00	96.10		41.	1.3	129.	888.	175.
	111.9-112.3 Weathered with 10-12cm Py/Sph vein. Minor Ga.	96.10	97.60		77.	0.2	88.	921.	23.
		97.60	98.80		75.	3.5	161.	3300.	862.
	138.2-138.4 2-3cm Py/Po vein @ 50-60° to C.A. 0.5-1.5mm milled Py fragments. Fine grained Po. Minor Aspy.	98.80	99.90	0.05		2.9	79.	3700.	842.
		99.90	100.50	0.15		19.6	238.	15225.	278.
	150.8-151.1 Shear vein @ 40° to C.A. Scrambled-laminated. 3-5% Po, <1% Py. Fault at 151.2m @10° to C.A.	100.50	101.10	0.20		2.2	92.	3200.	264.
		101.10	101.60	0.10		0.4	113.	250.	41.
	1	101.60	102.70	0.60		0.6	121.	216.	14.
		102.70	102.90	0.40		1.2	177.	254.	27.
		102.90	103.60	0.25		0.7	141.	142.	15.

DRILL LOG SUMM. CY: DDH CS94-20

12 December 1 Page 2	12	Dece	mber	1、	. -	Page	2
----------------------	----	------	------	----	------------	------	---

短行 約4년 小長注 小長注

Metres From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn ppm
		103.60	103.70	0.15		0.6	123.	116.	13.
	152.0-152.2 3% subparallel Po stringers @ 45-50° to C.A.	103.70 104.30 104.50	104.20 104.50 106.00	0.2	86. 80.	1.3 0.9 1.1	142. 115. 87.	294. 160. 567.	33. 20. 17.
	155.9-156.1 Scrambled shear vein @ 30-35* to C.A. Cream calcite/quartz. 3-4% Po.	107.30	107.70 108.00	1.25	49.	1.5 11.1	209. 223.	2216. 10200.	133. 1930.
	260.7-261.0 Mod, irregular 0.5cm calcite veining with fine grained biotite envelopes in chlorite altered sediments.	110.60 110.90	110.90 111.10	0.5	70.	1.6 4.9	352. 854.	1152. 12625.	54. 130.
	285.4-288.5 2-3% Py in med-coarse grained, biotite alterd wacke.	111.90 112.30	112.30 113.90	2.5	115.	77.9 1.8	165. 150.	63750. 1165.	1. 176.
	309.5-311.9 7% patchy and stringer Py. 1-2% Sph at 309.5-310.9m.	114.70 116.40 120.70	115.00 116.80 120.90	0.9	192. 86.	2.9 2.2 3.4	307. 163. 341.	5500. 341. 1091.	111. 77. 74.
	311.9-314.6 3-5% fine-med grained disseminated Py.	120.90	121.10 125.90	0.0	00. 51.	0.0 1.5	00. 226.	00. 1101.	00. 24.
	314.6-315.3 5% disseminated and patchy Py.	130.50 130.70	130.70 131.00		39. 51.	1. 4 0.3	221. 132.	354. 98.	25. 21.
	316.1-316.4 3-4cm Py/calcite vein @ 50° to C.A. 10% Py. 325.4-328.3 Py/Sph/calcite/quartz shear vein @ 35-40° to C.A. Local, massive Py/Sph over 20-30cm. 10-12%	131.00 132.30 132.40	132.30 132.40 132.90		55. 234. 80.	0.5 32.9 1.4	100. 275. 264.	508. 25250. 125.	42. 407. 58.
	Py, 7% Sph, 1-2% Ga, trace Cpy.	134.60 134.80	134.80 135.90		49. 42.	0.8 0.8	78. 89.	66. 93.	44. 24.
	343.4-343.9 10-15% fine and coarse grained Py. Locally massive with 2% fine grained Sph and <1% Cpy. Weak fabric @ 30-35° to C.A.	135.90 137.60	136.10 138.20		302. 46.	2.3 0.5	207. 201.	213. 335.	47. 16.
	351.5-358.8 5%-locally 7-10%, fine-med grained, disseminated Py.	138.20 138.40	138.40 139.00	1.0	42.	7.0 1.4	355. 235.	799. 181.	632. 94.
	361.2-361.6 7-10%, fine grained, disseminated and bleb Py. 2%, fine grained Sph. <1-1% Cpy. Weak fabric @ 35° to C.A.	140.40 145.40 148.00	140.80 145.80 148.20	ь.	114. 55. 246.	2.2 1.4 9.1	191. 131. 106.	178. 941. 27475.	138. 195. 1619
	383.5-383.6 Fault @ 30° to C.A.	149.30 150.80	150.80 151.10		48. 00.	1.7 0.0	81. 00.	960. 00.	324. 00.
	388.8-390.4 Up to 5-7%, med-coarse grained, disseminated and stringer Py in fine grained, biotite altered sediments. Local <1% fine grained Sph.	151.10 152.00	152.00 152.20	1.00 1.25		8.9 28.2	180. 276.	10375. 52825.	1786 483.
	403.5-403.8 Cream calcite and red Sph vein @ 45° to C.A. 7% Sph, 3-5% coarse grained Py. Faulted @ lower contact.	152.20 154.50 155.90	152.50 155.90 156.10	5.05	120. 69. 3808.	5.1 1.4 23.3	92. 86. 257.	5175. 1906. 9825.	1106. 192. 999
	EOH @ 422.9m	156.10 156.90	156.90 157.60	0.00	60. 30.	3.4 1.7	64. 120.	3423. 1817.	459. 413.
		160.80 167.80	161.60 168.50	0.7	39. 1438.	0.9 1.3	220. 202.	198. 159.	28. 35.
		173.00 183.00 185.60	173.70 183.20 185.80		121. 51. 104.	0.9 3.9 5.4	230. 688. 162.	319. 4325. 19625.	21. 279. 1787
		187.40	187.80 188.70		27. 110.	4.8 2.8	99. 107.	13575. 6225.	200. 1249
		188.70 190.30	189.10 190.50		132. 345.	5.7 4.3	195. 165.	22950. 78400.	1945 1981
		193.50 194.20	193.70 195.70		60. 45.	6.3 2.0	131. 81.	12400. 3675.	340. 717.
		195.70 196.00 200.50	196.00 197.20 200.70		00. 52. 81.	0.0 0.9 0.8	00. 87. 125.	00. 246. 4240.	00. 15. 39.
		200.50 203.80 204.00	200.70 204.00 204.40		35. 38.	0.8 0.7 0.7	167. 364.	92. 144.	20. 10.
		215.00 216.40	216.40 217.00		27. 20.	0.9 3.2	133. 123.	229. 4925.	119. 1649.
		217.00	218.30		32.	1.0	90 .	930.	369.

DRILL LOG SUMM. Y: DDH CS94-20

12 December 1 - Page 3

.....

etres om To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn ppm
				·					
		223.10	223.60		30.	0.7	98.	362.	128.
		236.50	236.90		39.	1.1	124.	68 0.	270.
1		240.70	240.90		35.	0.7	220.	93.	19.
		246.40	247.20		183.	4.4	173.	2770.	779. 79
		250.50 254.20	250.80 254.80		284. 135.	0.8	196. 172.	374. 58.	78. 24.
		254.20	254.80		102.	0.1 0.1	172.	56. 136.	24. 18.
		256.10	256.60		80.	2.4	197.	2135.	234.
		260.70	261.00	1.55	1323.	2.7	144.	424.	290.
		261.00	262.60		85.	1.3	143.	695.	86.
		278.50	279.00		167.	1.6	370.	2960.	118.
		279.00	279.40		98.	0.3	202.	913.	42.
		280.40	281.10		434.	42.7	603.	28670.	3567
		281.10	281.50		98 .	0.6	177.	1385.	107.
		281.50	281.70		345.	4.4	95.	7130.	1299.
		281.70	282.30		98 .	0.1	65.	146.	60.
		282.30	282.70		239.	0.6	143.	264.	60.
		282.70	284.20		458.	3.7	90.	484.	308.
		285.40	285.80	1.45	1495.	6.0	74.	4700.	330.
		285.80	287.30		855.	6.7	115.	6900.	638.
		287.30	288.50		293.	4.1	91.	3430.	430.
		288.50	288.70		568. 070	5.3	146.	2270.	345.
		288.70	289.10		. 272.	5.0	156.	5660.	357.
		291.80 293.30	293.30 294.80		906. 761.	13.3 11.4	152. 154.	13320. 3350.	1472 1338.
		294.80	296.00		536.	6.9	160.	13460.	494.
		296.00	296.50		817.	7.0	192.	12800.	462.
		296.50	297.70		292.	4.6	131.	7610.	734.
		297.70	299.10		277.	4.1	98.	1776.	730.
		299.50	299.90		989.	6.8	1082.	3400.	1080.
		301.20	301.50		416.	4.7	135.	1729.	720.
		301.50	303.00		123.	1.4	110.	932.	259.
		303.00	303.70		425.	4.7	180.	2217.	714.
		303.70	304.70		968.	8.7	307.	17210.	1312.
		304.70	305.30		476.	3.9	141.	4060.	608.
		305.30	305.70		312.	3.7	183.	1820.	328.
		305.70	307.30		225.	2.7	111.	1958.	372.
		307.30	307.50		226.	0.3	93.	298.	52.
		307.50 308.80	308.80 309.00		386. 219.	18.6 0.7	99. 130.	432. 349.	3031. 65.
		309.00	309.50		836.	1.8	103.	583.	05. 116.
		309.50	310.50	1.85	1305.		238.	10350	
		310.50	310.90	1.70	1477.		506.	28900	
		310.90	311.50	•	842.	8.6	133.	6680.	272.
		311.50	311.90	2.80	221.	40.6	687.	18310.	1002
		311.90	313.00	1.50	1423.		132.	9800.	706
		313.00	314.60		983.	9.0	151.	15930.	643.
		314.60	315.30	1.80	1160.		242.	7580.	438.
		315.30	316.10		310.	2.6	187.	10230.	168.
		316.10	316.40	1.75	1012.		78.	1675.	395.
		316.40	317.90	1.70	1123.		146.	8310.	808.
		317.90	318.90	2.10	1305.		151.	3770.	604.
		318.90	319.40	3.85	2400.		167.	2420.	1089
		319.40	321.00	3.40	4269.		196.	6210.	1755
		321.00	322.20		526. 255	10.6	110.	3810.	1631.
		322.20	323.50		255. 202	1.4	126.	459. 1520	162. 221
		323.50	324.70		303.	2.1	87.	1529.	221.

DRILL LOG SUMM. CY: DDH CS94-20

12 December 1 - Page 4

٠.

tres om To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn ppm
		324.70	325.40	1.45		4.2	88.	1127.	625.
		325.40	326.10	3.45		41.6	1410.	92500.	384.
		326.10	326.40	1.80		11.3	311.	10175.	1753
		326.40	326.70	12.20		125.3	543.	172500	
		326.70	327.00	3.35		79.8	559.	148750.	1.
		327.00	327.30	1.96		40.2	324.	90000.	22.
		327.30	328.00	1.40		20.0	857.	63125. 63500	824.
		328.00	328.30	1.50		40.4	283. 270	62500. 17375	85. 1905
		328.30 328.80	328.80 329.40	1.25 1.00		9.6 3.5	370. 160.	17375. 1682.	614.
		329.40	330.60	2.05		4.3	499.	7200.	499.
		330.60	331.10	1.30		4 .3 2.7	495. 282.	1757.	282.
		334.70	335.80	1.00		1.8	110.		149.
		335.80	336.70			2.2	229.		103.
		338.10	338.40	0.60		9.7	571.	5675.	571.
		339.60	339.90		157.	0.9	202.	367.	42.
		341.60	342.10		640.	43.9	573.	4250.	984.
		342.10	343.10		386.	4.4	99.	1550.	428.
		343.10	343.40		915.	23.4	590 .	2066.	885.
		343.40	343.90	2.9	2602.	153.3	1700.	65000	
		343.90	344.30		648.	32.7	953.	5075.	1498.
		344.30	345.20		133.	4.9	245.	3800.	204.
		345.20	346.10		146.	4.4	165.	2900.	276.
		346.10	347.10		128.	1.6	108.	771.	65.
		350.60	351.20		114.	2.1	204.	144.	44.
		351.20	351.50		135.	4.9	165.	653.	170.
		351.50	352.10		105.	2.4	135.	1534.	82.
		352.10	353.60		415.	11.6	73.	936.	484.
		353.60	354.30		107.	3.1	75.	1384.	144.
		354.30	355.40		334.	7.1	143.	1447.	314.
		355.40 357.00	357.00	2.60	192. 2129.	5.1 77.5	273. 806.	1771. 1737.	145. 1349
		357.30	357.30 358.80	2.60	152.	6.8	182.	1944.	146.
		361.20	361.60	1.55	1428.	84.4	3213.	25190	
		361.60	362.50	1.00	651.	16.7	184.	2175.	948.
		364.00	364.70		673.	2.6	213.	2793.	232.
		365.80	366.00		112.	2.0	214.	12440.	272.
		367.70	367.90		246.	4.0	151.	3760.	613.
		367.90	369.50		193.	5.3	158.	5710.	93.
		369.50	369.90		323.	7.6	219.	16540.	1374.
		369.90	371.30		225.	16.4	267.	12790.	2283
		371.30	372.50		272.	19.6	402.	21150.	2673
		372.50	373.90		123.	4.8	148.	2384.	503.
		373.90	374.20		251.	3.0	167.	2977.	483.
		383.10	383.90		262.	13.6	202.	5700.	1440
		383.90	384.20		330.	12.6	264.	13780.	1121
		384.20	385.20		171.	12.6	148.	2577.	1396.
		385.20	385.70	3 45	135.	8.4	178.	6550. 424	952.
		388.80	389.10 389.70	3.45	3471. 177	135.7	140. 103	424. 3800	2874
		389.10 389.70	389.70	2.35	177. 2211.	8.2 19.5	193. 394.	3800. 3770.	172. 955
		395.00	390.40 395.80	2.33	171.	6.3	375.	1830.	699.
		395.80	395.80		53.	1.1	225.	267.	118.
		396.90	397.10		284.	6.2	288.	720.	499.
		401.90	403.10		49.	0.9	141.	159.	91.
		403.10	403.50		43. 137.	8.1	207.	5080.	1126.
		403.50	403.80	1.10	1127.		831.	51500	
						• • • • •		0.000	

DRILL LOG SUMM. Y: DDH CS94-20

Metres From To	Description	From	То	Au g/t	Au ppb	Ag g/t	Cu ppm	Pb ppm	Zn ppm
				L		<u> </u>	L		

405.80	406.20	156.	2.5	187.	281.	234.	
407.50	407.60	250.	4.7	260.	5675.	616.	
409.00	410.00	351.	13.4	305.	11325.	493.	
410.00	410.70	85.	1.2	214.	374.	190.	
413.30	413.50	266.	7.2	381.	4500.	772.	
420.90	421.20	232.	7.7	268.	5500 .	794.	
422.70	422.90	122.	6.5	329.	2246.	813.	
END							

12 December 1. - Page 5

Let a second second

FIGURE 2

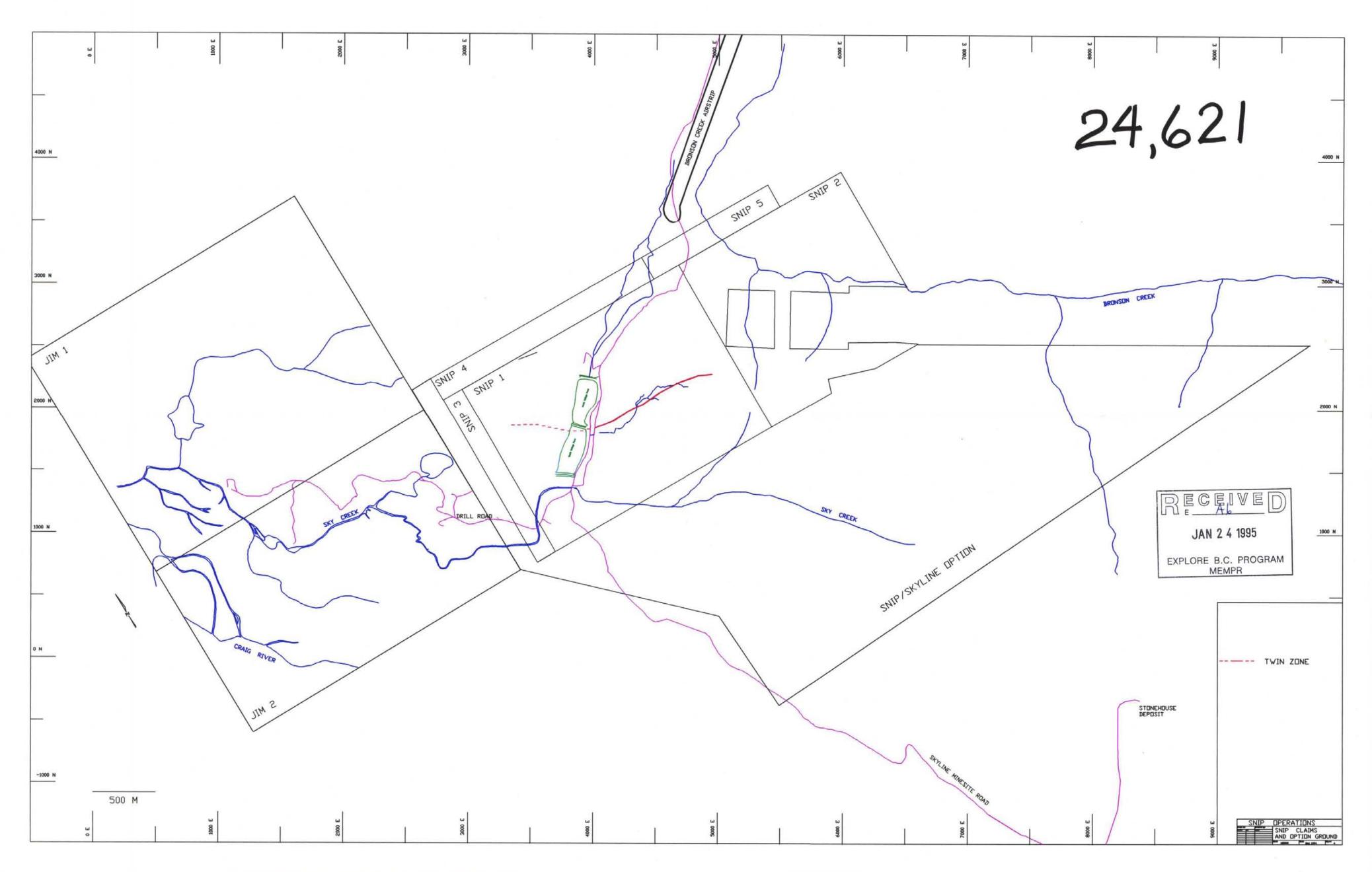
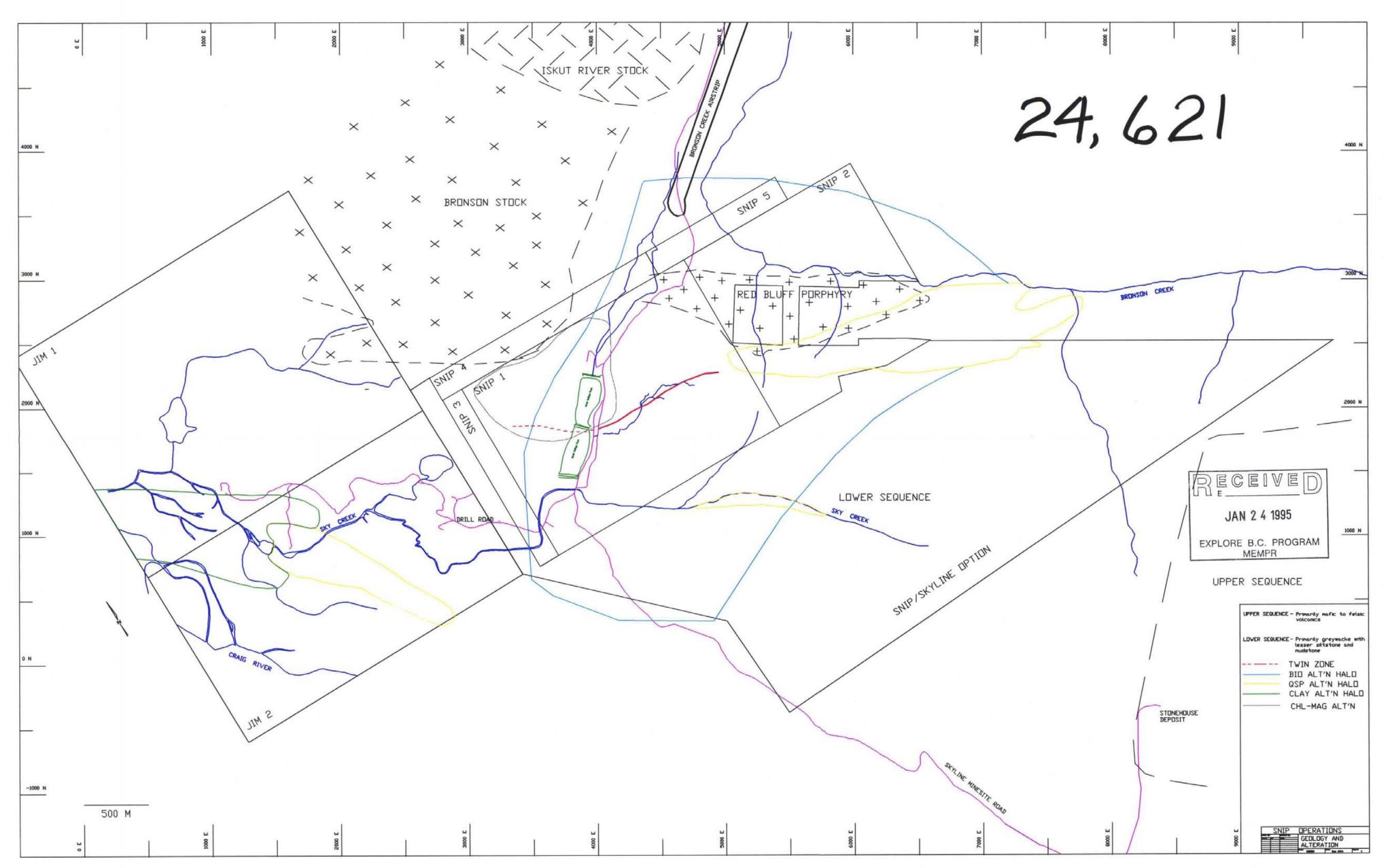
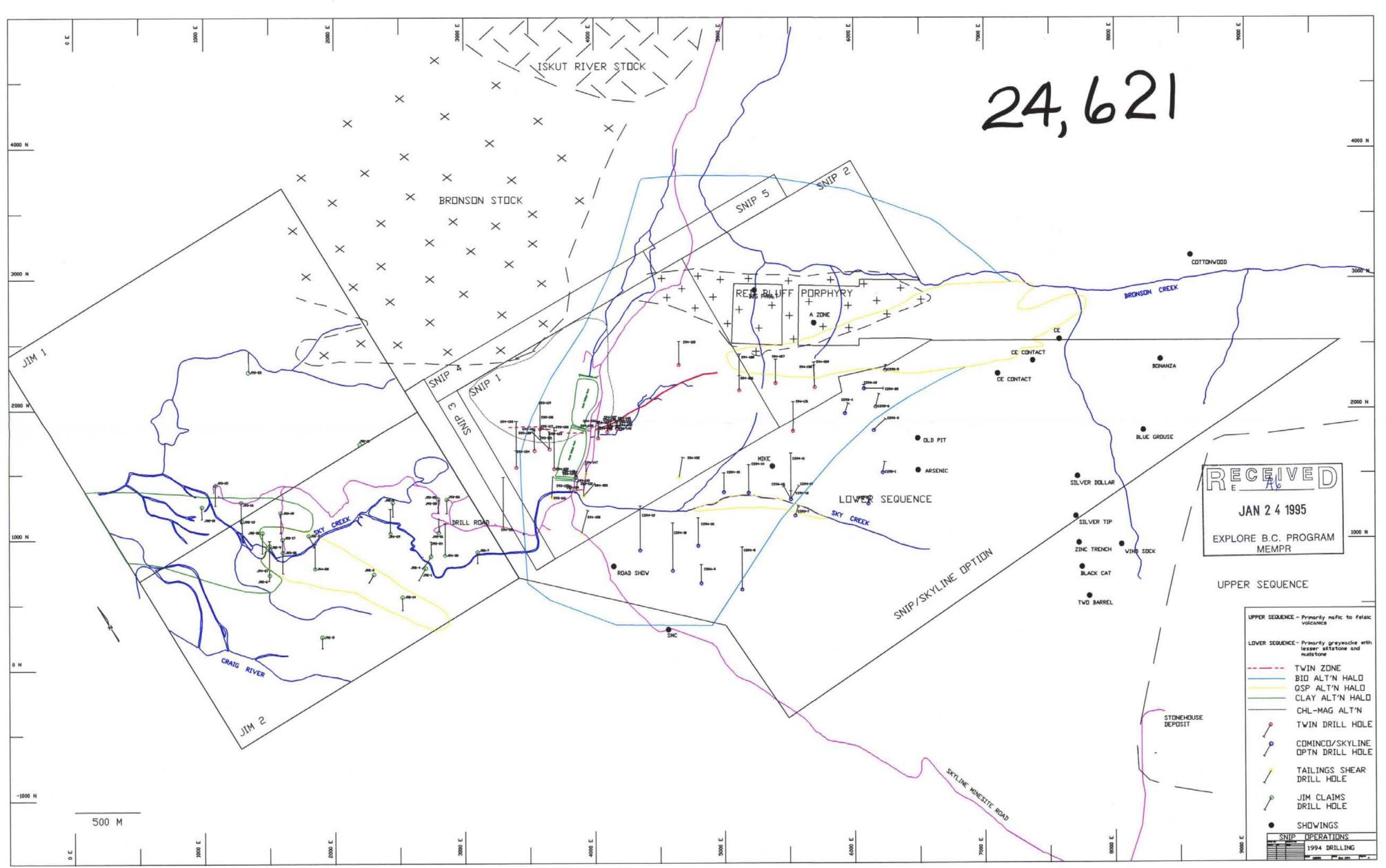




FIGURE 3

FIGURE 4

