DIAMOND DRILL REPORT

on the

GREY MINERAL CLAIM GROUP

Cariboo Mining Division 93B/8W & 9W (Latitude 52°33', Longitude 122°18')
Owner/Operator: Gibraltar Mines Limited
McLeese Lake, B.C.

Authors: G.E. Barker / M. Rydman

February 1995

A22.2

24624 PART 3 of 5

DIAMOND DRILL REPORT on the GREY MINERAL CLAIM GROUP

Cariboo Mining Division

93B/8W and 9W

(Latitude 52°33', Longitude 122°18') VEY BRANCH ASSESSMENT REPORT

OWNER and OPERATOR
Gibraltar Mines Limited

P.O. Box 130 McLeese Lake, B.C. V0L 1P0 PART 3 of 5

FILMED

REGEIVED

FEB 2 1 1995

EXPLORE B.C. PROGRAM MEMPR

Authors: G. E. Barker

M. Rydman

Submitted: February 1995

TABLE OF CONTENTS

1. INTRODUCTION	L
2. MINERAL CLAIMS	L
3. TOPOGRAPHY AND GEOLOGY	2
4. DRILL PROGRAM	į
4.1 Objective	1
4.2 Discussion	1
4.3 Results	1
4.4 Interpretation	5
5. STATEMENT OF COSTS	5
6. CONCLUSION	5
7. BIBLIOGRAPHY	7
8. LIST OF FIGURES	3
Figure 1 - Location Map	
Figure 2 - Claim Map	
Figure 3 - Drill Hole Location Map	
APPENDIX A: QUALIFICATION STATEMENTS	
APPENDIX B: DRILL LOGS	

APPENDIX C: ASSAY PROCEDURES

1. INTRODUCTION

The Grey Mineral Claim Group is part of the Gibraltar Mines Limited Mcleese Lake property. It lies along the western side of the property and covers all of the Gibraltar West - Gibraltar North mineralized system as well as part of the Gibraltar East ore body. Main access to the property is via a paved road from McLeese Lake, approximately 20 km to the south. The location of the claim group is shown in Figure 1.

The older claims of the Grey Group have a history in common with other claim groups of the Gibraltar Mines property. Complete details of history are provided in a number of reports listed in the attached bibliography.

This report covers a diamond drill program designed to test for deep ore grade mineralization along the south west side of the Gibraltar West Stage 1 Pit. Eight vertical diamond drill holes totaling 4836 feet (1474 m) were completed during the period July 26 to August 4, 1994, by L.D.S. Diamond Drilling Ltd. of Kamloops, B.C.

2. MINERAL CLAIMS

The mineral claims of the Grey Mineral Claim Group are shown in Figure 2. Information on these claims is tabulated in Table 1. All of these claims belong to Gibraltar Mines Limited.

	RE@ORDED	TENURE		MINING
NAME	DD/MM/YY	NUMBER	UNITS	LEASE
AL #1	02/07/64	207646	1	
AL #2	02/07/64	207647	1 1	
AL #3	02/07/64	207648	1	
AL #4	02/07/64	207649	1	
AL #6	02/07/64	207651	1 1	
EV #17	17/01/66	207694	1	
EV #19	17/01/66	207695	1	
EV 21	14/06/66	207731	1 1	
EV 22	14/06/66	207732	1	
GIB #18 FR	16/12/71	207852	1	
HY 1	01/05/78	204104	4	
HY 3	12/06/80	204317	9	
HY 4	01/05/78	204105	6	
HY 8	10/06/80	204300	3	
HY9	10/06/80	204301	2	
HY 10	10/06/80	204302	12	
HY 20	24/03/81	204444	2	
HY 22	02/01/85	204914	2	
IT 3	06/04/71	207844	1	
IT NO 1	14/02/66	207700	1	
IT NO 4	14/02/66	207701	1	
IT NO 5	14/02/66	207702	1	
IT NO 6	14/02/66	207703	1	
IT NO 8	14/02/66	207704	1	
JAN NO 5	10/04/64	207644	1 1	
JAN NO 6	10/04/64	207645	1	
PINETREE #1	04/07/67	207749	1	
PINETREE #2	04/07/64	207750	1	
PINETREE #3	06/09/67	207754	1	

	RECORDED	TENURE		MINING
NAME	DD/MM/YY	NUMBER	UNITS	LEASE
PINETREE #4	06/09/67	207755	1	
PINETREE #5	06/09/67	207756	l i	
PINETREE #6	06/09/67	207757	l i	
STU#5FR	18/07/69	207790	l i	
SUMMIT NO 7	20/07/64	207658	l î	
SUMMIT NO 8	20/07/64	207659	li	
VAL NO 1	18/03/66	207705	i	
VAL NO 2	18/03/66	207706	l i	
VAL NO 4	18/03/66	207708	ī	
DOT NO 2	03/03/66	207491	i	3596 M59
DOT NO 3	03/03/66	207491	l i	3596 M59
DOT NO 4	03/03/66	207491	l ī	3596 M59
DOT NO 5	03/03/66	207491	li	3596 M59
EST #5 FR	20/05/71	207491	i	3596 M59
PAN NO 4	04/05/62	207491	1	3596 M59
PAN NO 5	04/05/62	207491	1	3596 M59
RUM #79 FR	01/06/70	207491	1 1	3596 M59
ZEPHYR 1	09/01/62	207491	1	3596 M59
ZEPHYR #3	09/01/62	207491	1	3596 M59
ZEPHYR #5	09/01/62	207491	1	3596 M59
GG 81	22/04/65	207492	1	3597 M60
GIB #7	20/05/71	207492	1	3597 M60
ZEPHYR #7	09/01/62	207501	1	3706 M69
IT NO 11	14/02/66	207502	1	3707 M70
BIT #68	21/10/68	207503	1	3708 M71
CREST #1 FR	09/07/69	207503	1	3708 M71
GIB #1 FR	20/05/71	207503	1	3708 M71
GIB #2	20/05/71	207503	1	3708 M71
GIB #3	20/05/71	207503	1	3708 M71
GIB #4	20/05/71	207503	1	3708 M71
GIB #5	20/05/71	207503	1	3708 M71
GIB #6	20/05/71	207503	1	3708 M71
JAN NO 4	10/04/64	207504	1	3709 M72
PAN #7	01/02/66	207505	1	3710 M73
PAN #8	01/02/66	207505	1	3710 M73
EST #6 FR	20/05/71	207520	1	4150 M89
GIB 21 FR	21/06/72	207520	1	4150 M89
JAN #2 FR	22/01/71	207520	1	4150 M89
PAN NO 1	04/05/62	207520	1	4150 M89
TOTAL NUMBE	R OF UNITS		100	

Table 1MINERAL CLAIMS

3. TOPOGRAPHY AND GEOLOGY

The Grey Mineral Claim Group lies along the western flank of Granite Mountain (summit elevation 1398 m) and extends into the Cuisson Creek Valley (see Figure 1). Relief is relatively gentle, ranging from about 900 m to 1050 m above sea level. Much of the area has been logged during the past thirty years and second growth pine-fir forest is common. Drainage in the area is good, except for the low lying areas along the Cuisson Creek Valley between and including Cuisson Lake and Valerie lake.

The claim group is underlain mainly by the Upper Triassic Granite Mountain Batholith. A small portion of the group (southern end) is underlain by rocks of the Permian Cache Creek Group. The Granite Mountain Batholith is a zoned, peraluminous, subalkaline body and can be subdivided into at least four phases. These phases are:

1. Border Phase Diorite

This phase consists of a broad zone of assimilated and recrystallized rock formed between the mafic rich Cache Creek Group and the intrusive batholith. This hybrid zone incorporates a baffling array of intermediate rock types and rapid textural variations which closely reflect the country rock composition at its outer edge and that of the parent magma at its inner edge. Typical Border Phase Diorite consists of saussuritized plagioclase (45-50%), chloritized hornblende (35%) and fine grained quartz (≤15%). Textures are variable, with grain sizes of 1 to 5 mm. Mafic rich quartz diorites are also present and these are most prevalent near contacts with the Mine Phase Tonalite.

2. Mine Phase Tonalite

Mine Phase Tonalite is the major host rock for the Gibraltar ore deposits. It has a relatively uniform mineralogical composition of saussuritized andesine plagioclase (50%), chlorite (20%) and quartz (30%). The chlorite appears to be derived from biotite and minor hornblende. Accessory minerals may include magnetite and rutile. Plagioclase is variously altered to albite-epidote-zoisite and muscovite. The rock is generally equigranular with a grain size of 2 to 4 mm. Rock fabrics range from isotropic to intensely schistose. In most cases the unmineralized rock is only weakly foliated and the degree of penetrative deformation increases proportionally with alteration.

3. Granite Mountain Phase Trondhiemite

The trondhjemite consists of saussuritized plagioclase (45%), chloritized biotite (10%) and quartz (≥45%). Grain size is about 2 to 4 mm near contacts with the Mine Phase Tonalite but reaches 8 to 10 mm away from the contacts. The quartz commonly occurs as large grains or grain aggregates set in a finer grained, inequigranular matrix of quartz, plagioclase and minor chlorite. Foliation throughout the trondhjemite body tends to be weak or absent except along contacts with the Mine Phase or Leucocratic Phase.

4. Leucocratic Phase

Associated with all ore grade mineralization are minor zones of fine grained rock classified as Leucocratic Phase due to a prevailing quartz-plagioclase composition and general lack of mafic minerals. The term is used to describe leucocratic, porphyritic quartz diorite as well as quartz porphyry and quartz plagioclase porphyry. In thin section, the quartz plagioclase porphyry has a fresh appearance with coarse quartz phenocrysts up to 8 mm in diameter and oligoclase phenocrysts up to 5 mm in diameter. The phenocrysts, which make up 50 to 60% of the rock are set in a fine grained quartz-plagioclase-sericite groundmass with a felsophyric texture that shows little sign of recrystallization.

4. DRILL PROGRAM

4.1 Objective

The purpose of the drill program was to test for deep copper mineralization along the western edge of the Gibraltar West Pit.

4.2 Discussion

Geological modeling of the Gibraltar North - Gibraltar West mineralized system strongly suggested that ore grade mineralization existed at depth (70 m to 180 m from surface) along the western edge of the Gibraltar West Pit. Accordingly, eight vertical NQ diamond drill holes totaling 1474 m were drilled to test for the mineralized zone.

4.3 Results

Mine Phase Tonalite (see Section 3) was intersected throughout all of the drill holes. This host rock was variously altered with quartz, chlorite, sericite, epidote and carbonate. Most of the high grade copper mineralization was found to be associated with either chlorite, quartz-chlorite, quartz-sericite, or quartz-chlorite-sericite alteration. This alteration was generally associated with penetrative deformation, and in most cases, the strength of alteration and the amount of mineralization increased with the intensity of deformation.

Chalcopyrite and pyrite were observed in all holes, along with minor amounts of molybdenite. However, only three holes (94-51, 53, & 55) intersected significant amounts of ore grade mineralization (ore-waste cutoff = 0.20% total Cu). A summary of drill hole results is given in Table 2. Detailed data can be found in Appendix B - Drill Logs.

		BEST CONS	ECUTIV	VE 55 m l	NTERSECTION
DDH	DEPTH	FROM - TO	%TCu	%MoS ₂	MINERALIZATION
94-50	185 m	71 m - 126 m	0.133	0.004	py - cp - (Mo)
94-51	185 m	76 m - 131 m	0.271	0.006	py - cp - (Mo)
94-52	185 m	49 m - 111 m	0.119	0.002	ру - ср
94-53	164 m	104 m - 159 m	0.388	0.004	py - cp - (Mo)
94-54	185 m	122 m - 177 m	0.148	0.002	ру - ср
94-55	185 m	79 m - 134 m	0.269	0.002	ру - ср
94-56	185 m	110 m - 165 m	0.182	0.001	ру - ср
94-57	185 m	130 m - 185 m	0.126	0.003	ру - ср

py = pyrite

cp = chalcopyrite

() = minor amount

TCu = total copper

Mo = molybdenite

Table 2
SUMMARY OF DRILL HOLE RESULTS

4.4 Interpretation

All eight drill holes confirmed the presence of a relatively deep mineralized zone, as predicted by the geological model. This zone is thought to be a part of the much larger Gibraltar North - Gibraltar West mineralized system which has been intersected in various places by diamond drilling along a southeast-northwest strike length of about 2.5 km. Drilling results to date suggest that the system increases in size and grade towards the northwest.

Results of holes 94-50 to 57 appear to support this concept as they were drilled near the southeast end of the known system.

5. STATEMENT OF COSTS

1994 Drilling on the Grey Mineral Claim Group

1) Diamond Drilling Costs

L.D.S. Diamond Drilling Ltd. of Kamloops, B.C. Contracted Cost = \$52,415.64

\$52,415.64

2) Supplies

Core Boxes 255 @ \$7.65/box = \$1,950.75 Sample Bags 460 @ \$0.23/bag = 105.80 Misc.(flagging, topo thread, etc.) = 25.00 Total Supplies \$2,081.55

\$2,081.55

3) Vehicle Costs

3/4 ton 4X4 truck rented from

Lake City Ford Ltd. of Williams Lake, B.C.

\$970.00/month x 0.5 months = \$485.00 **\$485.00**

4) Sample Preparation and Assay Costs

Gibraltar Mines Laboratory (5 assays per sample)

457 samples @ \$13.50/sample = \$6169.50 **\$6,169.50**

5) Personnel Costs

Supervision

G. Barker 9 hrs. @ \$33.64/hr = \$302.76

Field Work and Core Logging

G. Grubisa 85 hrs. @ \$29.02/hr = \$2,466.70

Core Logging

D. Poon 145 hrs. @ 20.83/hr = 3.020.35

Total Personnel Costs \$5,789.81 \$5,789.81

Total Cost for 1994

<u>\$66.941.50</u>

6. CONCLUSION

The mineralization intersected in holes 94-50 to 57 was found to be uneconomic. However, the geological model was confirmed and additional drilling should be done northwest of hole 94-57 to further define the Gibraltar North - Gibraltar West mineralized system.

G. E. BARKER

COLUMBIA

CO

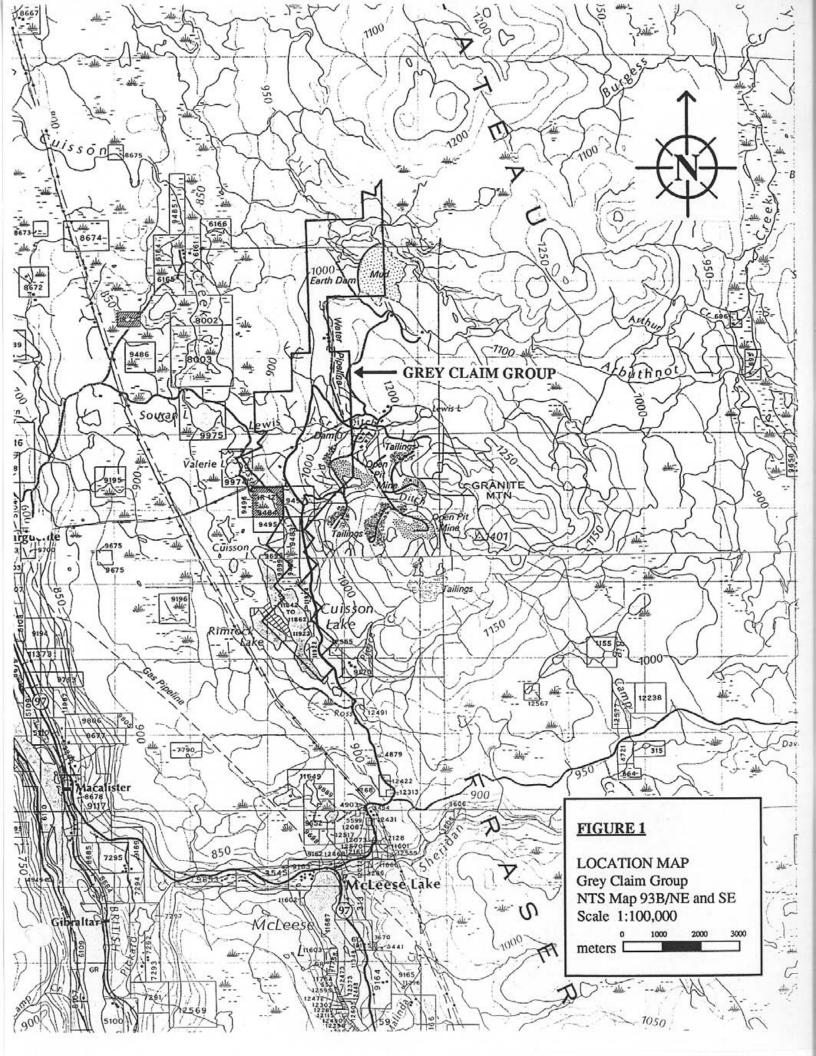
G. E. Barker, P.Geo Senior Geologist

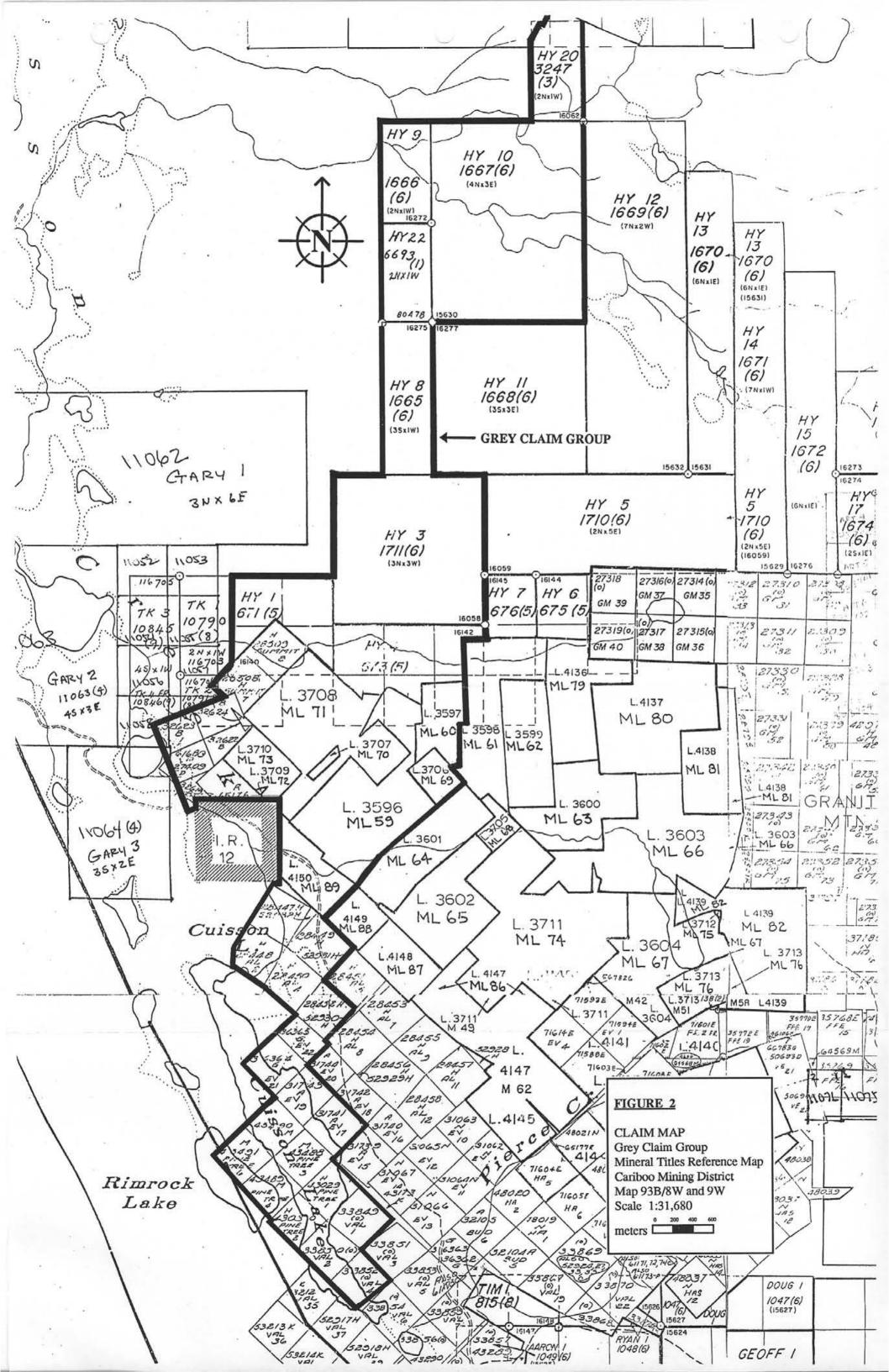
GIBRALTAR MINES LIMITED

M. Rydman
Project Geologist

GIBRALTAR MINES LIMITED

7. BIBLIOGRAPHY


- 1. Bysouth, G. D., Diamond Drill Report on the Grey Group, November, 1983.
- 2. Bysouth, G. D., Diamond Drill Report on the Grey Group, February, 1987.
- 3. Drummond, A. D., et al, The Interrelationship of Regional Metamorphism, Hydrothermal Alteration, and Mineralization at Gibraltar Mines, C.I.M. Bulletin, Vol. 66, No. 730, pp. 48-55.
- 4. Schaumberger, M. R., Diamond Drill Report on the Grey Group, June, 1983.
- 5. Sutherland Brown, A., B.C. Department of Mines and Petroleum Resources, G.E.M., 1973, pp. 299-318.
- 6. Thon, M. R., Diamond Drill Report on the Grey Group, December, 1986.
- 7. Thon, M. R., Diamond Drill Report on the Grey Group, September, 1987.


8. LIST OF FIGURES

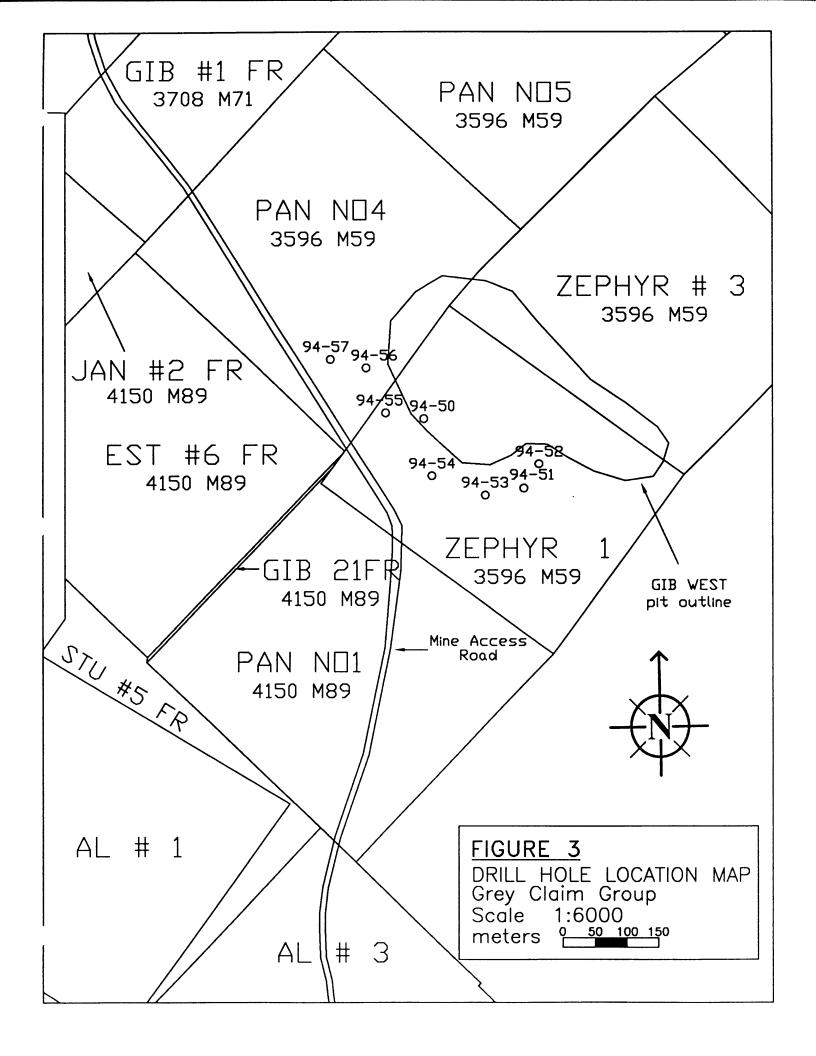

Figure 1 - Location Map

Figure 2 - Claim Map

Figure 3 - Drill Hole Location Map

APPENDIX A: QUALIFICATION STATEMENTS

STATEMENT OF QUALIFICATIONS - George E. Barker

- I, George E. Barker, of Gibraltar Mines Limited, McLeese Lake, British Columbia, do certify that:
- I am a Professional Geoscientist.
- I am a registered member of the Association of Professional Engineers and Geoscientists of the Province of British Columbia, registration number 19697.
- From 1978 to the present I have been engaged in mining and exploration geology in British Columbia.
- I personally supervised the exploration program, interpreted the results, and coauthored the report.

George E. Barker, P.Geo.

STATEMENT OF QUALIFICATIONS - Gerald G. Grubisa

- I, Gerald G. Grubisa, of Gibraltar Mines Limited, McLeese Lake, British Columbia, do certify that:
- I am a geologist.
- I am a graduate of the University of Alberta, with a Bachelor of Science with Specialization in Geology, dated 1992.
- From 1992 to the present I have been engaged in mining and exploration geology in British Columbia.
- I personally participated in the field work and logged the core of two of the diamond drill holes.

Gerald G. Grubisa, B.Sc.

STATEMENT OF QUALIFICATIONS - Dick Poon

- I, Dick Poon, of Gibraltar Mines Limited, McLeese Lake, British Columbia, do certify that:
- I am a geologist.
- I am a graduate of the University of Alberta, with a Bachelor of Science with Honours in Geology, dated 1994.
- From May 1994 to the present I have been engaged in mining and exploration geology in British Columbia.
- I personally logged the core of six of the diamond drill holes.

Dick Poon, B.Sc.

STATEMENT OF QUALIFICATIONS - Murray Rydman

- I, Murray Rydman, of Gibraltar Mines Limited, McLeese Lake, British Columbia, do certify that:
- I am a geologist.
- I am a graduate of the University of Alberta, with a Bachelor of Science with Specialization in Geology, dated 1992.
- From 1992 to the present I have been engaged in mining and exploration geology in British Columbia.
- I personally prepared and assisted in writing the report.

Murray Rydman

Murray Rydman, B.Sc.

APPENDIX B: DRILL LOGS

LOCATION Gibralter West	BEA	ARING	-	IMITED (McLEESE L	DE (N)	48,517.	36 N	COF	E SIZI	3	NQ		14-50 LOGO	ED BY	r_ G.	Gruh	isa.	
DATE CONFLETED July 26, 1994 DATE COMPLETED July 27, 1994	0	NGTH	-90	LONGIT		E) 42,918.		_			1"=10"	-	_DATE		1/ 2°	8. 17	14	
DATE COMPLETED July 27, 1994 ROCK TYPE	DIP			ELEVAT	TON_	8/1/0-10		*///	MARKS		mor o	ADDD	FIRAM	TONIO		-		_
NORMAL MINE PHASE TONALITE GOTZ-S CHLOPITE DARKENED MINE PHASE TONALITE QTZ-EP-CHL ALTN PHASE	-			computer depths: ovb-14' leach cap-14.01' leach ox-30.0' supergene-30.01'	●	badly broken rock fault gouge increase decrease minor amount) very minor amount	alm = alteration az = azurite bo = bornite brx = broken re bx = breceia carb = carbonate cc = chalcocite chl = chlorite cp = chalcopyr	di q g g ck gr hc hc	ANEOUSS = diss o = epid g = gou e = garn vp = gyp om = her at = ma at = mat	eminated lote ge et sum natite onite gnetite	MnO2 = p Mo = m mod = m ND = no pied = pie py = pyr qtz = qua rx = roci sauc = sau	pyrolusite olybdeni oderate on directi dmontite ite atz	te se te sp . sti ional St te wi	r = serio h = sph r = stron Wk = sto t = tetral k = wea	alcrite ig ockwork hedrite ak		*	
	GRAPHIC	Structure	Width		P	BOTTOM Leach Cap	DEPTHS			4	- 10		ASS	AY RE	SULTS		_	1
ROCK TYPES and ALTERATION Foliate angle learner	on f .	(veins)	of	Mineralization	Est.	Leachable Ox.	30' 55'	Footage Blocks	Core Recovery	R.Q.D.	Sample	%	%	%	%	%	oz/ton	Estima
Sannet	N Footage of	< to core axis	(veins)		Py	Supergene Rema		Ť			Number	TCu	OxCu	CNsol on Oxfes	SolFe	MoS2	Ag	Grade
CASING TO 14'	14							14					- 6					
30	0	?	3′	brKr×→M102-lim-(mol))	<.5			n	100	1	54051	.08	.06	- / <.0l	1.72	.001		.05
Co VK	A .	;	1%"	brkrx > MnO2-lim-((not)) brkrx > MnO2-lim-mal-serdpy)	4,5			27	95	27	54052	.08	.05	.01	1.86	,001		.08
	30	40	Y/2×2	lia-M102				-64										L
70 mod	*		•		4,5			37_	J00†	87	54053	.02	<.01	.01	.98	.001		.01
	3 40 2	90+50	%,″×2,	hem-carb				*										
6×70	X 2 /	50 90	12° 16°×4	gfz-py lim-py	4,5				100	67	54054	.04	.01	01	1.39	001		.03
mod	> 4	30-90	6" %6"×6	brkrx→lim (tin)-(p)d · · · · ·	.,,			47		01	2001	.01			1.31	,001	680	

		GRAPHIC	Contraction of the Contract				BOTTOM DEPTHS Leach Cap						94-5 ASS		SULTS		
ROCK TYPES and ALTERATION	Polistics angle and intensity	444	Structure (veins) < to core	Width of Structure	Mineralization	Est. % Py	Leschable Ox.	Footage Blocks	Estimated Core Recovery	R.Q.D.	Sample	%	%	%	%	%	oz/ton E
		Z Footage	axis	(veins)		.,	Supergene Remarks				Number	TCu	OxCu	Chirol es Oxfics	SolFe	MoS2	Ag
	76-80 160d.	4 4 4 4	2 60	a	brkex→lim-(oy) brkex→hem prz-chl-(cp))	<.5	55-65-3 ham staining at Core+ in fractures.	57	85	27	54055	F0.	<,0(.01	1.99	,002	
65-65' > fine: gramed chi dikned Aine phase topolite.	70-90 mod	70	?	15"	PrKt×→ysu	4.5	•	57	100	53	54056 -	:05	4.01	4.01	1,90	,001	
'-90' → possials fault very low recoveries same hem staining abundance of history but obsence of fitting;	nD .	40	?	9'	bokr×→hem	<.5	77'-80' → ben staining	77	60	JO	54057	.01	4.01	<.01	1.60	.001	
	00 50 50 50 50 50 50 50 50 50 50 50 50	90 3	2	-10'	brkrx.	<.5		31	15	.0	<i>54</i> 0 <i>5</i> 8	.06	<,0(1.44	.002	
9H' → ØIZ-EP-CHL AKIN PHASE	. 10	\$-(3x)	5-90 80-90		ep stkwk Garse py	4.5		97	70	37	54059	.03	<.ol		2.12	.002	.c
'-112' → QTZ-EP-CHL ALTN PHASE	7 A A A	4:4	50-80		dzch-ry-cp arkrx arionted ep stkwk	4,5		107	90	47	64060	.03	4.01		.98	.004	.0

		GRAPHIC					BOTTOM DEPTHS Leach Cap	T					94-5 ASS	AY RE				
ROCK TYPES and ALTERATION	Foliation angle and intentity		Structure (veins) < to core		Mineralization	Est. % Py	Leachable Ox. Lim. Zone	Footage Blocks	Estimated Core Recovery	R.Q.D.	Sample	%	%	%	%	%	oz/toa	Estin
		E Footage	axis	(veins)			Supergene Remarks	7		-	Number	TCa	OxCa	Chisol on Oxfice	SolFc	MoS2	Ag	Gra
RTZ-EP-CHL ALTN PHASE CONT'D	-	7						1							N G			
	50-70 mod					4,5		117	100	97	54061	.02	4,01		.69	.002		.0
	1	> 120	50	14"	stz-py-chi			-										
	1		50	ky"	gtz-py-chl			1							300			
	50-70	1 -	30	34"	gtz-(cp)-(No)	-			100									
2	mod .		60	3/4"	gtz-ser-sil-(cp)	4.5	li e	127		91	54062	.08	4,0(.81	.002		1.0
	1	130	60		giz-chi-ser-sp			1										
	50-70		70	½" 21"	eg-fied gtz-eg-pied			1	100									
	mod K	140	60	23.	ep-(pied)-gtz	4.5		137		87	54063	.03	١٥.٠		1.03	.009		.0
	1 (1	60	V~4	chl-py	\vdash		1 .			-							-
	60-98	. 1	25	14.	stz-corb-chi-py	1		1 1	100					- 1				
* n	str	150		25	diss ff a str foliation a 90°	4.5		147	-	67	54064	,05	4.01		1.62	.003		.0
	- 50		so .	К ₄ "	chl-py				100									
	wid- 8			.	*	4,5		1 1		83	54065	.02	01		1.29	,002		
	NO X	160	30	3"	ep-6h1)			157	\neg	03.	21092				1,00			.0
	1 . 1																	
	60 K		70	3/6	;g-py	4.5		167	100	97	54066	.19	.01		1.60	002		.10
		170	50	V5" G	ikl-py			15.										3.00

St. II		GRAPHIC			IMITED (McLEESE		BOTTOM DEPTHS Leach Cap	7	1				94-5 ASS		SULTS		- 17	
ROCK TYPES and ALTERATION	Foliation angle and intensity	Ope & Alin.	Structure (veins) < to core	Width of Structure	Mineralization	Est. % Py	Leachable Ox.	Footage Blocks	Com Recovery	R.Q.D.	Sample	96	%	96	96	%	oz/toa	Esti O
		2 Footage	axis	(veins)		.,	Supergene Remarks				Number	TCa	OxCu	Chirol es OrRes	SolFe	MoS2	Ag	Gn
]		70	1/6×6	el-ba-16511			1		וג								
	ON	100	60 70	2" I"	ep-chl-pied conb-ep-(py) Bdiss py	4,5		177	100	90	54067	٧٥.	١٥.٠		1.68	.002		.0
9'-186' > OTZ-EP-CHL ALTN PHASE		€ 180	20-30		gtz-97-(e)				100			2						F
*	NO	4	40-80	Mins Marking	etr-chi-py	.5		187	100	87	54068.	.05	4,01		1.46	.002		
		2 190	60	ц,	gtz-cará-shl-zy			1	100									-
	70 mod		70	1-	shl-fy-pied-shear	4.5		197	100	%O	54069	.02	<.01		1.40	.002		
	an k	. /	30 20		disspy-cop) c str Folin + 90° gtz	4,5		1	95	77	cuaza	.04			1.77	F10.		
	1 2	210	60	3"	sterchl-ez-cz	1,3		207			54070	,07	١٥.٠		1.11	,017		.1
	70-80		90 -	N4"	atz-ehl-ep ehl-ep]	100									í
	MK K	1 /	70	1,	gtz-chl	4,5		207		93	54071	.04	10.		1.31	.002		.0
	7	220	50	Y2"	giz-thi)-gy].]			_="							
	60-30 >		60	3"	372-chl-7y-(cp)				100									
	wog >		80	3.	stz-ckl-}y-ep.	.5		227	-	93	54072	.03	4,01		1.73	.002		.(

	1.	GRAPHIC					BOTTOM DEPTHS Leach Cap	4							SULTS	_of _		
ROCK TYPES and ALTERATION	Foliation angle and intensity		Structure (veins) < to core		Mineralization	Est. % Py	Leachable Ox.	Footage Blocks	Core Recovery	R.Q.D.	Sample	%	%	%	%	%	oz/ton	Estic
		Z Footage	axis	(veins)		. ,	Supergene Remarks	1			Number	то	OxCu	CNsol on Oxfes	SolFe	MoS2	Ag	G
	70 wk-	< · · · · · · · · · · · · · · · · · · ·	50-75	s'	gtz-cki-cp-py	,5		237	100	97	54073	.43	<.01		2.57	.001	1	1
	100-80	0 / 0 / 0	\$0-50 30 70		stz-chl-cp-ey atz-chl-py-cp ftz-chl-yy-cp-ter)	.5	·	247	(00 73"	97	54074°	.40	4.01		2.84	.001		
	10 10 ND-	350	90 90 20	2*	etz-chl-py-cp.	<.5	Υ	257	100	12 9 7	54075	.03	,02		1.59	<.00l		
	70 wk K	265		%*-%**4 %6-%**		,5	262-64'->7 otz content in the normal mine phase tanslite.	1	100	97	54076	,03	۷.0۱		1.30	.001		
	70 K	270	70	".	etzcht-py corb-py-ep etz-cht-cp etx rx	4,5		1	85	60	54077	.18	<.0(1.53	.001		
	- < 70 > mod- (a) str >	280	60+70 50	14,12	tz-chl-py . tz-chl-py-cp.	4.5		287	100	90	54078	.06	4,01		1.71	,001		.1

4	1.	GRAPHIC	1			1	BOTTOM DEPTHS Leach Cup	-					ASS.	ÄY RE	SULTS		75 (1)
ROCK TYPES and ALTERATION	Polission angle and intensity		(veins) < to core	Width of Structure	Mineralization	Est. % Py	Leachable Ox. Lim. Zone	Footage Blocks	Estimated Core Recovery	RQD.	Sample	%	%	%	%	%	oz/ton
		Fromps .	axis	(veins)			Supergene Remarks	7			Number	TO	OxOu	CNsol ea OxRes	SolFe	MoS2	Ag
	60 mod- str	300	90 60 70 CO+90	2°4 後° 15° な2	= solid py-cq-ser a(30%cp?) gtz-chl-py-(cp) ep-gtz-carb chl-py	1.5	292'-304' → Tep stringers but not to a point of being classifies as qtx-ep-chi altn	297	100	87	54079	`13	<.01		2.73	.001	
	60-20 wk- str	310	90 50 50 50 30+70	25" 25" 14" 5"×2	folded Jay) otz. fic-ser-chi-py-cp) mixed JM.R.Q.D. otz.corb-chi-py-cp ptz.corb-chi-py-tp) otz-chi-py-(corb)	.8		357	100	87	54080	.04	4.01		1.77	.008	
	60 K	320	20 90 90 60	3" "" ""	chl-py gtz-chl-py-cep; gtz-chl-py-tep; gtz-chl-py-tep;	.5	•	317	100	%	54081	.11	4.01		2.04	.001	.
"-330.5" QTZ-SER-PY ALTN PHASE entaining some solid py veins 1/2"- 10" in width	60 med	330	90	10"	solid py-(16p))-(152)fer) gtz-ser-py-(16p))	0.0	- hord to tell if any cp is visible.	327	100	73	54082	,13	<.01		11.0	.002	
	70-80 K	340	70 70	KE'×F	gtz-ser-py-cp py-chl by-chl edtled gtz-corb-ch/-py	.7	finely diss throat	337	90	30	54083	.28	.01		2.60	.002	
	80-60 X		90 70	15		.5)	347	100	50	54084	.07	4.01		1.89	.002	

	1.	GRAPHIC	1				BOTTOM DEPTHS	I		Ι.					age		1	
ROCK TYPES and ALTERATION	Foliation angle and intensity	LOG	Structure (veins)	Width	Mineralization	Est.	Leach Cap Leachable Ox.	Footage	Core Recovery	R.Q.D.		%	%	%	%	%	oz/toa	
	intensity	8	< to core	Structure (veins)		Py	Lim. Zone Supergene	Biocks	Rocovery		Sample Number	TCu	00	CNtol	SolFe			Est O G
•	1	Footage &	70	\$\\2	chi- yy	1	Remarks	_				I Ca	OxCu	On Charles	Sone	Mosz	Ag	L
*	70	× × ×	,	i,	93 stoining (4,5	352-56' → SMAKL FAULT gg occurring a 354-55' bounded on both sides by hem stained Normal Mine Phase.	357	100	40	54085	.04	4.01	71:	1.49	.001		
	1	2 360	75	4"	gtz-chi-py.										1			
	60 W	V 110	70 30 90 75 70	15° 1" 3" 5'-4'x5	eg-py-carb gtz-cg-py- <u>tetrohedrite/</u> Mo? eg-gtz gtz-chl-py-cp gtz-chl-py	,5	cheek for silver!!!	367	100	50	54086 ·	.19	٠,٥١		1.95	.032		
	+ 1	370				-												F
	70 wk-	390	\$0-70°	%;-K×15	gtz-chl-py-((cp))	.6		377	95	60	54087	.05	٠.0١		1.88	.002	-	
	70	4	ço-70	ξ-4×6	giz-ohl-py-((cp))	.5	281'-83'→ broken turssy, pitted core w diss py.	•	100	i3	54038	.07	<,01		3.24	002		11/1
-92' → FAULT rk (x G hen staining] mod	1	2	4'	pek ex			387	-1	13	3/000		1,01		3.41	.003		
a govee	1	390			brk rx.		·			*								
	50-60 S		?	- 1	Finely Sisspy	۷,5		397	50	27	54089	.06	<.01		1.63	.003		
	. 8	400																
	20-10	1	7 40 40	5*	tekry > Johns by Str-ser-chi-py-licpil	3,0	check for silver!! →5 = 2*rel solid py*sp) vein	407	100	53	54090	.10	10,3		4.1(.005		
	1	1110	80	2"	olz-py-Moltet?		1	10.7										

		GRAPHIC LOG					BOTTOM DEPTHS		1				ASS	ÁY RE	SULTS		591	
ROCK TYPES and ALTERATION	Foliation angle and intentity	* Altr	(veins)	Width	Mineralization	Est.	Leachable Ox.	Footage	Coro Recovery	R.Q.D.	Sample	96	%	%	%	%	oz/ton	T
	1.	8	< to core axis	Structure (veins)		Py	Lim. Zone Supergene	-	Recovery		Number			Chinal				Ca Grad
		Z Footage &	70	15"x2	812-chl-py-(cp)		Remarks					TCu	OxCu	Oxfles	SolFe	MoS2	Ag	
	weq mk-	420	#0~53		gtz-ser-chi-py	.5		417	95	53	54091	.04	4,01		2.52	.004		.0
5'-55' -> I stikur tyse veining system etarts >> 1-425' standar 5 standilpv than	5=-60 mod	× × ×	50-60 50 20140	19°-16°*10	gtz-chl-ser-py-(cp) gtz-chl-py gtz-ser-py	2.5		927	[00+	63	54092 [.]	:12	١٥,٠		3.21	.004		.10
ading into otz-ser-chi-py-or- Moltet'is ociated to some at the ser-rich stears 2-chi-py vening to 433' -ser-chi-py-oring to 433' -cell-py-oring to 455' (c. stkuk is orientated to 50'-70').	60 mod	21 [7]	50-70 50-70	V ₆ "×8	stz-chl-py ptz-ser-chl-py-cp stkuk.	2.5	possible Mo/tet? Check for silver	437	100	93	54093	.14	٠.٥١		2.63	.008		,31
	60-70 X			Kg"-1"x15		1.5	possible Mottet? Check for silyes	447	100	87	54094	.13	١٥.٠		2.17	.012		.1
'-62' → <u>OTZ-SER-PY ACTN PHASE</u> nor cash alth visible.	1000 No. 100 N	460	50 50-70		hea-clay Iz-chl-py stz-ser-py-(cp)	5.0	459.75'-460.25 → Fel. solid 2 y vein	457	100	63.	54095	.10	٠,٥١		7:55	,005		.2
	50-70 V	-	10.22	14"x5 3 12"x2 9	tz-ser-chl-py-((cp)) tz-chl-py tz-ser-chl-py tx-ser-chl-py-cp	2.5	py vem	467	95	60	54096	.15	<.01		4.50	.009		.1

*		GRAPHIC					BOTTOM DEPTHS Leach Cap						94-50 ASS		SULTS		- //-
ROCK TYPES and ALTERATION	Foliation angle and intensity	# N	Structure (veins) < to core	Width of Structure	Mineralization	Est. % Py	Leachable Ox. Lim. Zone	Footage Blocks	Estimated Core Recovery	R.Q.D.	Sample	%	%	%	%	%	oz/toa
		E Footage	axis	(veins)			Supergene Remarks				Number	TO	OxCu	CNiol on Oxfles	SolFe	MoS2	Ag
	NO NO	2	50	%*x6	giz-chi-py-(carb), hem-clay them in true,	4.5		477	100	70	54097	.06	<,01		2.44	.005	
	du	49.0	40	%" %"×2	gtz-chl-(cpl-(py) gtz-chl-py-conb-(hen) brktx	<.5		487		12	- 54098:	.04	c.01		2.10	,002	
	NA	490	30 30 30 30	3-	Tre-ser-chi-carb-py-cp. chi-py-carb-cp gtz-ser-chi-py-cp gtz-ser-chi-py-((cp))	.6		<i>4</i> 97	100	70	54099	.15	4,01		2.18	,003	
*-	NO K	500 /	2 30	IK	TZ-py-chl-(cp) bokex eTz-fcorb)	4.5		50'7	95	47	<i>54</i> 100	.05	<,01		1.46	.004	
	NO >	510	90 90 60	15.	yta-(chi) giz coré-((cp))	. 4,5		517	100+	60	54101	.05	<,01		1.26	,001	
	N9 X	529 /	20		giz-py brkrx/gg→	.7	5	527	00+	37	54102	.05	<.01		1.74 .	002	

		GRAPHIC		3.1			BOTTOM DEPTHS			.			94-50 ASSA	Y RE	SULTS		1	
*	Foliation	LOG	Structure (veins)	Width	\rac{1}{2}	Est.		ootage	Estimand Core Recovery	RQD.		%	%	%	%	%	oz/toa	
ROCK TYPES and ALTERATION	Foliation angle and intensity	dily at the state of the state	< to core	Structure (veins)	Mineralization	Py	Lim. Zonc Supergene	Blocks	Recovery		Sample Number							Enti O
		Fromps &					Remarks					TCu	OxCu	Chisol on Oxfices	SolFe	MoS2	Ag	L
	1	2. 1	3	14.	Pikix								1					
	ND				1 12	4,5		- 1	100	60	54103	.04	<.01		1.48	,001		
	1				**	1,3	1	537			2 110.2	-						-
	1	> 540				+-			-	-	-			-		-		H
	1	7	?	2'	POKUX				100+		4							
	ON	4	2	2'	Prktx	4.5	1	547		47	54104	.04	4.01		1.24	.002		
	1	3			Con Stor				107"									
	1	> 550	20		gtz-chi-py-carb	1				10		-						r
	1	9 /	60	34"	gt-				100	_	4		,					
	ND		30	ν <u>.</u> "	leucocratic phase	4.5		557		50	54105	.02	<.01		1.00	.004		1
	1 1	560																
	1	1							100									
	ON					4.5	1			50	54106	.05	col		1.43	.001		
	I ON E	1	40	1"x3.	gtz-chi-py-(cp)	1,3]	567	-	30	0 1100	.05	.01		1.13	.001		
	1	570				-			-	-								H
*	1. [64 .	4"	bh-eyl		1		100		1							
	ONE	1				4,5	1	- 1		77	54/07	.04	<,01		1.82	.001		.0
	1 1							577										
	1-1	530				+	-		-									-
		×				-	1		100		-111.00							
	ND					4.5	1.	587		60	54108	.02	<,01		1.15	.001		.0
	1	1 -	90	2"	chl-ep hek ex	1	T			W.7			2		-			

		GRAPHIC LOG					BOTTOM DEPTHS	I		1					SULTS	_of _	-3
ROCK TYPES and ALTERATION	Foliation angle and intensity		Structure (veins) < to core	Width of Structure	Mineralization	Est. % Py	Leachable Ox. Lim. Zone	Footage Blocks	Core Recovery	RQD.	Sample	%	%	%	%	%	oz/son
	- N	Footage &	axis	(veins)		1.7	Supergene Remarks	7			Number	TOs	OxCa	CNaol oa Oxfors	SolFe	MoS2	Ag
	ONE		70 5	6" 4"x2 4"	bokek glz-corb esi-py			-	100+								
= 3		4 600 A	;	15"	brkr×→hem,↑clay.	۲,5		597	1001	40	54173	.01	4,01		.98	.001	1
) L	5130	K ₁ "×2	chl-py			1	100								
	J.ND	607				<.5		607	100	-	54174	.02	4,01		1.15	.001	-
	-		+		607' EOH			1									
					March Bulian												
	1				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 .									
		\Box				\vdash		1		\dashv							\dashv
	1			-						-							
	1							1									
											.					1	
>4																	
					2				-					-		-	+

LOCATION GIBRALTAR WEST		В	EAF	RING	_	LATITUI		PROPERTY) DIAMON	_ 001	E SIZI	NQ				ED BY	D.	Poon		
DATE COLLARED July 27, 199	4		ENC	JTH 65	7 feet	LONGIT	UDE (SCA	LE OF	LOG_	1"=10	'	DATE	Au	tens	3,199	94	
DATE COMPLETED July 28, 199	4	r	IP_	-900	• :	ELEVAT	ION_	3047.12 ft.	_RE	AARKS									
ROCK :	TYPES a	nd ALT	ER/	ATION SY	MBOLS		T												
	E COLLARED July 27, 1994 LENGTH 657 feet E COMPLETED July 28, 1994 DIP -90° ROCK TYPES and ALTERATION SYMBOLS NE PHASE TONALITE PYRITE ALTERATION PHASE LORITE ALTERATION PHASE LORITE ALTERATION PHASE LOCK TYPES and ALTERATION PHASE LOCK TYPES and ALTERATION Foliation angle and the results of structure axis (veins) PHASE TONALITE: PHASE TONALITE: PHASE TONALITE: Tonalite is composed of plast conalite is conalite is						○★★◆●	badly broken rock az = azurite bo = bernite bx = broken r bx = breccia carb = carbonat decrease minor amount chl = chlorite cy = chalcopy	ock gr	ss = diss	ge et sum natite onite gnetite	MnO2 = p Mo = m mod = m ND = no pied = pie py = pyr qtz = qua rx = roci sauc = sau	olybdenii oderate on directi dmontite ite rtz	te sp str onal St	= tetral	alerite g ckwork nedrite			
		GRAPH	IC					BOTTOM DEPTHS				9.		ASS	AY RE	SULTS			
ROCK TYPES and ALTERATION	angle and	d ·	1	(veins)	of	Mineralization	Est.	Leachable Ox. 153 feet? Lim. Zone 172 feet	Footage Blocks	1 Com	R.Q.D.	Sample	%	%	%	%	%	oz/ton	Estimato
	intensity '	900	Structure			Decreasing Order of	Py	Supergenc 1534eet? Remarks				Number	TCa	OxCu	Chisol on OxRes	SolFe	MoS2	Ag	Grade
									MISCELL ration de frite en inte de de la contract d										
MINE PHASE TONALITES	AL.	1	A	90°	r×a	#2-ep-lim stuk	4.5	CASING TO 431 -from 48' to 53' is a brief interval of Guartz Epidote Chlorite Alteration	47	90	70	54111	.01	01	, 01	58	100		-01
atz+ch1, just like Tonalites in other holes. The alog has undersone soussurite		50		50*	1"400"×3	plag-gle-chl	4.5	there are some neteseding entery chunks from 43'to H			,		,	,,,	1.01	ricite phalerite one one stockwork rahedrite weak RESULTS 96 96 A SolFe MoS2			
alteration, which turns the "white" plog into a yellowish-green. Whereas the chi appears as dark green blebs. There is generally a foliation or orientation of the grains in	70°						۷.5	-very little veinining in this barren looking interval.	57	100	83	54112	.01	١٥,٠	١٥,>	1.58	% oz/ MoS2 A		.01
this tonalite, which contrasts the mainly non-directional tonalites of	mod mod	() In		60°	11 11	ep-gle stuk ep-gle stuk				1								% oz/toa loS2 Ag	
the GM Claims. Also, the grain sizes of this tonalite varies throughout the hole.		ě	14	70°40 80°	16"24 2" 44	ep-gez-ch! sluk		-grain size of the tarable is fairly small from 65' to 78'.		99		5.16		onal StWk = stockwork het = tetrahedrite wk = weak ASSAY RESULTS % % % % % OxCu Cheel control contr					
	ND	1	11		古"×1 1吉"×1	ep-gtz-lim			67		50	54113	.02	.01	4,01	187	100,		-01

	1. 1	GRAPHIC					BOTTOM DEPTHS						94-8 ASS	AY RE			241	
ROCK TYPES and ALTERATION	Polistion angle and intensity	LOG	Structure (veins) < so core	Width of Structure	Mineralization	Est.	Leach Cap Leachable Ox. Lim. Zone	Footage Blocks	Estimated One Recovery	RQD.	Sample	%	%	%	96	%	oz/ton	Esti
		Footage of	axis	(veins)		Py	Supergene Remarks				Number	TO	OxOu	CNsol on OrRes	SolFe	MoS2	Ag	G
	ND.		50°	16 16 11 15 15 15 15 15 15 15 15 15 15 15 15	ep-gla ep-gla-lim stut	4.5	- possible red-brown ankerit/lim? throughout orde zone.	77	100	67	54114	.02	.01	4.01	.96	.001	4	
		20		1 11×6	ep-gte-lim sluk							4						
			70900	5"105"x2	ep-gtz-chi ep-gtz-chi shwe chi-lim-Mnog	۷.5		27	100	89	54115 ·	:01	4,01	4.01	.91	.002		
	k	90 €			ergtz.chl			87										
			90° 40°	3"23	opgez-lim glz-corb-chl-py	4.5	-significant amount at py seen for the first time, in this hole.		99	7-7	-							
	K	1 1			ep-str-chi-py	4.5		97			54116	.01	4.01	4,01	1,00	.002		
	K	1 11		L"×1 Shears×2	stz-py-chi chi-lim	184	minor dissip seen mixed- with py in veins		100									
		1 11			stz-chl-py-(cp) ep-pied-stz-chi	4.5		107		80	54117	.05	.01	.01	1.36	100.		
e are 1"104" bands of chl ened Tonolite alternating with- Mine Phase Tonalite.		3	moltied 1	8 × ?	ste (vussy) - Mng-lim-chl ep-gla-chl stuk				100									-
					ep-glz-chi-stwt	<.5	1	117		83	54118	,02	4,01	١٥.>	1.29	.002		
	4 3	180			ste-chi-py		-		L									
	900				17-5(2-ch) M-03-ch)-lim	4.5	veins, which are quite mineralogically diverse. Within these veins may be	- 1	100	70	54119	.05	01					
	wk X				12-chl-py p-gt2-chl-cc?-cp(NHC)		some tet, so perhaps a silver assay could be attempted on this internat	127	-	10	54114	,05	,01	.01	1.34	,002		

	1.	GRAPHIC	1				Leach Cup					ASS	ÄY RE	SULTS			
ROCK TYPES and ALTERATION	Foliation angle and intensity	4	Structure (veins) < to core	1	Mineralization	Est. % Py		Cors Recovery	RQD.	Sample	%	%	%	%	%	oz/ton	Estin Ca
		Footage .	axis	(veins)		1.	Supergene Remarks			Number	TCu	OxOu	CNeal on Oxflox	SolFe	MoS2	Ag	Gna
	90°		90° 40°	1"x2 4"+01"x1	epigte stuk gte-chl-ep-(cp) gte-chl-ep-py-(cp)	1.5		98	60	54120	m5	<.01		107	007		
	wk	140	90"	l"×r	gle-chl-ep		137				,03	5.01	.01	1.47	,002		
) D ×		90° 60° 40°	SHEETSKZ	862-chlep-cp cp-8tz-chi lin-chi moa 8tz-(cp)	4.5	147	100	73	54131 ·	:04	٠.٥١	<.01	1.18	.002		
here was a change of a drill bit in this interval at a cesuit a 6" herval at sond from 157' to 157.5" on be seen. The sand most likely was into the hole when the drill twas pulled out, which explains its resence.			80°+090°	‡"×4	ep-gt2 gt2-chl-py-cp-ce? gt2-ep stwk gt2-chl:py	ረ.5	- some lumpy black as cooting. some coppy grains in a few sheers - last reminance of Mng a- 152	100	57	54182	.13	.03	.01	1.35	.002		.0
	ND.		90°	t6"⊁0 t6"404"×4 tq"⊁1	ep-ste-chi gte-chi-py ep-pied-gte ep-ste sluk	<.5	-the play from 163' to 167' has a slight pintrish test from some hem staining.	99	.62	54193	.09	۷.0۱	<,01	1.76	.001		**
	90° W	170	90" · ·	ib"x1	ep-chl-gla-lim sta-chl-py sta-chl-py-cp-Mo	4.5	- intense him sheary, yet no signs of any foulting lost bit of lim scenar 179'	98	67	5 4124	,02	١٥,>	١٥.>	1.07	,005		.0
	- K 40° Mad	180	30° 5	lear s	jd2-chl-py nom-chl jd2-chl-py jd2-(hend-py)	く.5	187	IØ	77	54125	.01	١٥,٠	<,01	.76	.001		.0

		GRAPHIC LOG					BOTTOM DEPTHS		T	1			ASS	ÄY RE	SULTS			
ROCK TYPES and ALTERATION	Foliation angle and intensity	4	(veins)	Width of Structure	Mineralization	Est.	Leach Cap Leachable Ox. Lim. Zone	Footage Blocks		R.Q.D.	Sample	%	%	%	%	96	oz/ton	
	1.	S. Footage S	axis	(veins)		Py	Supergene Remarks				Number	TCa	OxCu	Chirol on Oxfles	SolFe	MoS2	Ag	G
	90°		90° 90° 40° 90°		Ste-chl-ep-py Ste-chl-py-ep Ste-chl-(py) Ste-chl-cp	4.5		197	100	83	54196	.05	<.01		1.12	.00(
	N	300 = 300 =	70°	古"45"% 古"*1 古"*1	8t2-chl-py-(cp) 8t2-chl-cp-py 8t2-chl-cp-py epst2-(py)sluk	4.5	-significant amount pytop stem for the first time in this h -blobs of py are smear out along chloritized shors	ole.	100	80	54127·	.04	١٥,٠		1.07	.001		
	ND		40° 80° 90°	ोह"×। ोट"×। इं"×।	8tz-chl-cp-py 8tz-chl-cp-py	4.5		317	100	67	54128	.05	۷,0(1.43	,003		
	ND V		50° 40°4050° 40°4090°	16"x2	ep-gtz-chl stwk gtz-chl-cp gtz-chl-cp gtz-chl-corb-py-(p gtz-chl-cp-py	⟨,5		227	100	77	54129	.(1	١٥,>		1.63	.008		
m 2301 to 2331 the chl content- airly high and is approaching Dark Chlorite Alteration Phose.	· P	1	70"	1, ×1 2	stz-cp-py-ch/ stz-cp-ch-mo stz-ch-py-mo-cp stz-ch-py-cp	2.5	-from 230' to 231' m of the cp for the entire interval ca- be seen as large blebs dispersed through the tonalite.	: 1 . 1	100	70	5 मं 13 0	.27	١٥,		2.19	,006		
	70" K		50° 4.	"+o+"×5	tz-chl-py stz-chl-py stz-chl-carb-py tz-chl-py	<.5	-monthly diss by in this interval	247	100	67	54131	.04	<.01		1.7(١٠٥٥.		

Polission surfic and	LOG			1	1	BOTTOM DEPTHS		1	1 .			Aso.	AI KE	SULTS			
	텀	Structure (veins)	Width	Mineralization	Est.	Leach Cap Leachable Ox.	Footage	Coss Recovery	RQD.		%	96	%	96	%	oz/toa	T
angle and intensity	g Footage &	< to core axis	Structure (veins)		Py	Lim. Zonc Supergene	Blocks	Recovery		Sample Number	TO	OxCu	Olsol	SolFe		Ag	Esti Or Gri
	Pootage &	900	t5"x1	Stz-py-chi		Remarks						O.C.	OxRes	Soire	MOSZ	ng	L
DU		100 20,51° 106 106	ラリン1 キュラロ*×2	gte-chl ep-gte-pied-chl słwk	<.5		857	100	70	54132	.15	<.01		2.30	.004		
W.		folled 90°	たいと	ep-chi-cp Stz-ep-chi-py-cp	<.5	- well developed this hears for this interval	267	8	60	54133	,12	4.01		2.36	.003		
NO K	1	70° 90°	41,7×1 5"×1	Stz-chl-py-cp Stz-py-cp-chi	·. <.5	-about half of the Co grade, for this Interv comes are large op nugget in a 5" gtz vein, at 271;	al, -	99	63	54134	.33	<.01		2.90	.009		
	980 F		7	7	\vdash					- 14							
70" WK					4.5		927	100	67	54135	,07	4.01		2.08	.003		
UD to K		20	5"42	gtz-chl-py	4.5	10		100	73	54136	.99	<,01		2.84	002		
V	300				Ш		- 241										100
ND K	N	400	\$1°41	ste-cp-chi	₹,5		1	100	77	54137	.12	10.2		1.88	003		
	NO NO NO WA	ND 370	ND 2 30° 1040° ND 2 10° 10° 10° 10° 10° 10° 10° 10° 10° 10°	ND 2 100 100 100 100 100 100 100 100 100 1	110 100	100 100	100 30 100 1 100 1 100 1 100 1 1	10 30 10 40 10 10 10 10 10 1	ND	ND	NB 30 % 16 40	100 15 15 15 15 15 15 15	100 30 40 4	ND	100 30 40 5 10 100 230 250	100 100	110 100

	1.	GRAPHIC	1					M DEPTHS	T			100	- 4	94 - 5 ASS		SULTS		7	
ROCK TYPES and ALTERATION	Poliation	4	Structure (veins)	Width	Mineralization	Est.	Leach Cap Leachable Ox.		Footage	Estimated Cost Recovery	RQD.		%	%	%	%	%		
MOCK TITES and ALTERATION	angle and intensity	8 1	< to core	Structure (veins)	Mineralization	Py	Lim. Zono		Blocks	Recovery	2	Sample Number	-	~		70	70	oz/toa	Estima: Car
		France .					Supergene Rem	narks	1			Number	TC	OxOa	Chical ca Oxfacs	SolFe	MoS2	Ag	Grado
	1 1	1. 1	300	た"×ス	gtz-chl-py				1	100									
	1104	1 K	4007020s	\$"Lot" x>	Stz-ep-(py)-((cp))	1			1	100	73	54138	_7						
	70 wk	1 K	400	18"+2	gt = ep-cp-py	<.5			317		13	54150	,07	10,2		1.36	.005		.0
	1 1	320	400	16"×2	Stz-ch!														
rom 325' to 326.5' is a lowchl onalite section	-	y I	40	1, "1	Stz-chl-py	1	- some carb	+ hem											
	at OU. E		mottled	ta"=3?	Ste-chi-py		ه ایست ولیمنفز	hears		100	9.15							-	
	40°WK		200	±"×1	Ste-Mo-cp	1.5			397		67	54139	:13	4.01		1.18	.013		.03
	1 k	330 1	10° .	±"+1	ep-pied-gtz-carb-chi				201										
			140°		gtz.chl-cp		- fair grown	+ of ep+mo -		00	\neg								_
	1 . K		70" .	1 hy 1	gtz-chi-py		shears	-		99						8		- 1	
	00	1	500	Sheer	Mo-cp	4.5	- some to " cp u	reins are the core -	727		70	54140	.23	<,01		1.81	.026		.29
		340 /	30°	3"11	stz-chl-py-ep		tonalite sect	the core - chi darkeres	-									- 1	
	K		0.0	16 yr	ep-pied-stz-chl				-	1									_
	K	1. 1	70940900	5"×4	stz-chl-py					100							8		
	70°				gtz-chl-carb-py	4.5			347		80	54141	.04	4.01		1.40	.001		-06
	.k	350		S. m. C	1t2-ch1-py			1	347				E						
	K	1			st-z-chi-py		- hem stained	freements -		.					-	-		-	-
	· K	I N	400	hears x 2 c	chl-carb-(py)		of core from 35% may re	m 3571h 1		98									
1	ND &	H	900	5"x1	stz-chl-cp-py	4.5	fracture or	fault zone -			60	54142	.17	4.01		2.38	100		.08
] .]	K	A A		1				1	357										
om 360' to 365' is a Quarte Sericite		360	500 . 1	"×1 0	st2(vuggy)-chl-cp-py		- minor? amounts	of co are	.	-	5/8		_		_	-	-	-	
lorite Agrite Cholcopyrite Alterations are section, which has a sharp	O VIETNAMIA	H	SOP I		tz-cp-py		well mixed w abundant py	ith the		97									
ase section, which has a sharp what with the surrounding Toralite.	ID K		30.	1	tz-chl-py	3.0	at Cuerade u	vill be difficulty	.,_		67	54143	.38			10			.26
1	K			10			most of the interval re	cp for this t sides in the	367	Side I	-	W. Black	,50	<.01		659	.007		0.0
	KI	370 M	400	"×1 8	ta-chl-py.		Quartz Ser	icite unit		Sec.		UNACTO /	67	del de la	1		SHARE	2016	

		GRAPHIC					BOTTOM DEPTHS Leach Cap		1			72.0	94-5 ASS		SULTS			
ROCK TYPES and ALTERATION	Foliation angle and intensity	48	Structure (veins) < to core	Width of Structure	Mineralization	Est. % Py	Leachable Ox.	Footage Blocks	Estimated Com Recovery	R.Q.D.	Sample	%	%	%	%	%	oz/ton	
	1	Footage o	axis	(veins)			Supergene Remarks				Number	TCu	OxCa	Chief en Oxfor	SolFe	MoS2	Ag	Gas
	1	. K	30°	16"402"x5	\$2=ch!-py \$12-ch!-py-(cp)													
	an E			1 ×2	gt2-ch1-cp-(py)	4.5			100	77	54144	07	4,01		100	202		١.
	1 1		130 10 10			1		377			54174	.07	14.01	a.	1.25	.003		1
	1 1	380	30*		ste-chi-py													
] [400	16"404"41	str-ch)		-very little veining and - poorly developed jointst		100							100		Г
	1		50"	4 141	gtz-chi-cp		shears, in this strongly soussuritized interval			83					0456			
	I ND K	1	/o*	九"y1	ste-chi-py	1.5		387			54145	.05	<.01		.87	.002		
	1	390	∂d .		stz-chl-carb-pv													
] [1	20,430		gtz-chl-py gtz-chl-cp		-light hem staining in -		100									
	I NO	1 1	100		gtz-chl-py	4.5				72	54146	-0						
		1		10		1.7		397		"	541 10	.09	4.01		1.51	100.		1
		400/			Stz-ch!- Py													
rge blebs of cp can be seen in the . Il darkened tonalite					gtz-chl-cp		- most of the cp in this interval are not -		100									
	DU				gliz-chl-py		confined to veinlets but instead as dissible by		.~	_							- 1	
**	\" \\	1	400	九"×2	8(2-ch) - py-(cp)	4.5		407		77	54147	1.33	.01		4.58	100.		
24 (gtz-cp-chl .		, naggers											
	. 2	N			ste-py-chi-cp		- a few to to ty" solid -	ı	100									
	ND+	l i		5"×1	cp-stz stz-py-chl-cp	4.5	the core axis might]										- 1	
	80°4K		50°	1 x1	Stz-cp-Mo-chi.	1	raise the Cu grade of this interval higher	417		70	54148	.45	<.01		2.23	.023		. 5
	<u> </u>	420		-	stz-chl-cp		than it actually is.	.							- 1			
			40"	f"v1 6	epgtz-chi-cp		- extensive and strong hem- staining of shears and -		100			100						
	ND		40 5	hear 1	hen-carb-gtz		joints.											
Andrews Backward		1	400 1	1110 1 x2	9tz-chl-py	4.5	1	427		60	54149	.09	4.01		1.52	.003		• 0
	>	430	40 1	11×1 =	stz-chi-(hem) .		Henri II.		316		144.55	D.N	40	137				

	1.	LOG	1			1	BOTTOM DEPTHS	-					ASS.	AY RE	SULTS			min (L)
ROCK TYPES and ALTERATION	Foliation angle and intensity		(veins) < to core	Width of Structure	Mineralization	Est. % Py	Leachable Ox. Lim. Zone	Footage Blocks	Estimated Costs Recovery	RQD.	Sample	%	96	%	%	%	oz/ton	Beden
		S Footage	axis	(veins)			Supergene Remarks				Number	TCa	OxCu	Chisol on Oxfors	SolFe	MoS2	Ag	Grac
	מע		400	\$400 \$11x1 \$11x1 \$11x2	hem -carb 5(2 - chl-py-(cp) 8(2 - chl-Mo-(cp) 8(2 - py- cp- meg-ch)	4.5	-from 437 to 439' is a fault, with some hem stained gauge visible.	437	99	47	541 <i>5</i> 0	.09	<.01		1.54	,010		
on 447 July 16 a short sterval of the Quartz Sericite hlorite Pyrite Alteration Phase	· ND	<u>₹</u>	40°	16"40"4"x2	8t2-ch-py 8t2-ch-py 8t2-cp-Mo-py	₹.5	- more nem stained gouge from 4415 to 4477, which- represents another small foult.	447	96	57	54151 ·	.07	4,0l		2.75	.012		
		450	20°	1 "≭।	52 -Mo-ch1-cp Py-cp-gt2-ch1 gt2-ch1-cp				98									
here are bands of Chlorite	60° 1070° mad to str	460	90°	3"×1 虚"×1	gtz-chl-cp-Mo 822-chl-py	₹.5		457		47	54152	.29	<.01		2.22	.023		,
orkend Tonalite alternating ith the Mine Phase Tonalite Tuth the Chi dorkened Tonalite that ntains mat of the Cp.	70		90°	shear .	gtz-chi-py-(cp) nem-carb gtz chi-py-cp	4.5		467	99	73	541 <i>5</i> 3	.13	4,01		2.22	.001		
		470	4040 50"	5"ct"x3	\$t = (vuggy)=ch1-cp-py \$t2-ch1-py-(cp) \$t2-ch1-cp-py				98	-								
	40°40 K	480	700 1	("×2	562-ch1-py.	<.5	1	477	_	53	54154	.17	4,01		2.03	.009		
	70° K		70° la	5"×2	5t2-ch1-py 5t2-ch1-py 5t2-cp-ch1-py-ep	4.5	- possible fault/fracture? zone, from 480' to 482', full of broken core.	487	98	40	54155	.19	١٥.>		2.38	.004		

		GRAPHIC					BOTTOM DEPTHS Leach Cap						ASS	ĂY RE	SULTS			
ROCK TYPES and ALTERATION	Foliation angle and intensity	d	(veins)	Width of Structure	Mineralization	Est. % Py	Leachable Ox.	Footage Blocks	Estimated Core Recovery	R.Q.D.	Sample	%	96	%	%	%	oz/toa	
	1. 1	Footage 60	axis	(veins)		l. Fy	Supergene Remarks	1			Number	TCa	OxCu	Chisol es OxRes	SolFe	MoS2	Ag	Ca Grade
	70% 50° WK		50° 50° 80°		\$t2-ch1-py \$t2-ch1-py \$t2-ch1-ep-py \$t2-ch1-Ay-ep	2.5	- fault 20ne from 1999 to 1995, with some her storned gouge Visible.	497	95	૫૩	5415b	.12	<.01		1.88	.006		.0
	ND +0 70 wk		40° 50°	16/10/10	8tz-chl-py-(cp) 8tz-chl-cp-py 8tz-py-cp-chl 8tz(wssy)-chl-cp-(py)	₹,5	- plenty of cp+py intermixed, in this internal's chi dorkened tonalite.	507	100	70	54157.	.23	١٥.>		3,71	.010.		.8
	110 X 1-0 X 76° WK	1	40° 40°.	16" × 6	gtz-chl-py gtz-chl-py gtz-chl-py	4.5	- small foult zone from 102' to 103', with about 3" of gage seen but no hen staining, within the zone y just in a few surrounding Joints	<u> 517</u>	97	33	54158	.10	<.0(2.55	.004		-0
	ND 10 70°W		4040500	t6"+03"×5 5"×3	hem-carb gtz-chl-cp-(py) gtz-chl-py-cp gtz-chl-py-cp	۷.5	301713	527	100	73	54159	.16	<.01		2.54	.003		
rkened tonalite interval which opplies most of cp for the stire loft interval	70° /		80 . 1 70°4080° 1	"vi 6"x5	52-chi-py 52-chi-py 82-cp-py-chi	<.5	- a few Mobering veinlets visible	537	100	67	54160	.42	<.01		2.57	.007		
	LOS >	340	40° . 4	140 3 ×1 9	stz-py-chl-cp stz-chl-py-(cp) stz-ep-chl-cp ep-gtz-chl-py	4. 5		547	180	77	54161	.18	<.01		1.73	.003		-0

		GRAPHIC					BOTTOM DEPTHS	1					94-5 ASS	_	SULTS		-	
ROCK TYPES and ALTERATION	Foliation angle and intentity	LOG	(veins)	Width of Structure	Mineralization	Est.	Leachable Ox. Lini, Zone	Footage Blocks	Estimated Core Recovery	R.Q.D.	Sample	%	%	%	%	%	oz/ton	Estin Ca
		E Footage S	axis	(vcins)		Py	Supergene Remarks				Number	TCa	OxCu	Chied ea Orfker	SolFe	MoS2	Ag	Grad
from 5531 to 5571 is a Transition zone juithin the zone the plos content has dropped severely and the stz+chl content has increased Therefore, the Transition zone is a hybrid between the chl darkened tombiel	ДЦ	560	2	ra xı	\$2-ch1-cp \$2-ch1-py-cp P1-\$2-cp	1.0		557	100	53	54168	.23	ج.٥١		3.46	.010		
and the Leucocrotic phase only the gtz grains have visible grain boundaries, whereas the plagueld are somewhat blended into a dark.	-40° to 70° WK		५०° ॐ	6"×1	#2-py-cp-chl gtz-ch-carb gtz-py-chl	4.5		567	100	50	54163·]17	<.0I		2.51	.011		
	JJD X	580	40°	古"×1 古"×3	8t=-py-chl-ep 8tz-chl-py 8tz-chl-py-(cp)	1.5	* 1	577	98	47	5 4164	.13	٠,٥١٠		2.02	.005		.,
	ND		40"	1"+2"×3	Stz-chl-py-hem Py-gtz-cp gtz-chl-py-cp py-cp-gtz	۷.5	-some hom stained gouge in a few fractures from 580' to 581'. The gauge measures a" at most.	587	99	50	54165	.23	4.01		3.84	,005		
	NO N		ч0°	×	gtz-Py-cp-chl gtz-Py-cp-chl	2.0	-coundant diss pytép) dispersed throughout this interval	597	ıώ	67	54166	.21	١٥.>		4.92	. 006		
	40° +0		200	1,70 f. 189 8	tz-py-chl tz-cp-chl tz-py-chl-cp	4.5		607	100	83	54167	.10	<,0(1.30	.004		

		GRAPHIC	1 0 0 0 0 0 0	1.55			BOTTOM DEPTHS	1					94-5 ASS		SULTS			
ROCK TYPES and ALTERATION	Foliation angle and intensity	ri	Structure (vcins) < to core	Width of Structure	Mineralization	Est. % Py	Leachable Ox. Lim. Zone	Footage Blocks	Estimated Core Recovery	RQD.	Sample	%	%	%	96	%	oz/ton	Es
		E Footage	axis	(veins)		.,	Supergene Remarks				Number	TCa	OxCu	Chied on Oxfice	SolFe	MoS2	Ag	10
	100		A .	1"×1 33"×1	Stz-chl-py Stz-py-(Mol-(cp)	<.5	-there is some evidence of small scale folding and deformation in this interval.	617	98	67	54168	.10	اه,٤		3.32	.006		
	70°WK	620			Stz-chl-cp Stz-pyMo-(cp)			1017										
	40.		10°+090°	16"x2	Stz-chl-Py-cp-Mo 8tz(vussy)-ep-ch/				100	70	54169.	7						
	- 60 wk	630	300	45	\$t2-ch1-py \$t2-ch1-py	4.5		697	77-7	10	3 11.71	.07	<.01		1.33	,002		
	400		400	4" *1	8tz-py-ch1-(cp) gtz-ch1-ep-(py)				100	7-1								-
	wk+6	640	400	t6"+01"×8	gtz-chl-py-cp gtz-chl-py	4.5		637		17	54170	.14	<,01		2.04	.003		
	1 WX		400	10m×1 たれ	stz-chl-ep stz-py-chl stz-chl-py-cp	₹.5	-one 9" section of Quartz Sericite Pyrite Chlorite Cholcopyrite Alteration Phase	647	99	70	54171	.13	١٥.>		2.26	.005		
		550		4"81	gtz-ep-chl-(cp)		supplies most of the copy for this entire											
<u> </u>	400		400	16"40+"x2	\$tz-ch1.py \$tz(vussy)-ch1-py-cp.	4.5		657	100	70	54172	.07	<.01		1.42	.003		
					657' ★ EOH													-
					Duck Pom							7						
						ak.	and Colombia	or in the	5500	244	Salara S	100						

LOCATION GIBRALTAR WEST			ARING		LATTU				E SIZE		JQ			ED BY				_
DATE COLLARED July 28, 199			NGTH 60	7 feet			3059.56 Ft.	- 1000		(1"=101	-	DATE	Aug	ust 9,	1994		-
DATE COMPLETED July 29, 199			-900		ELEVAT	TON_			ARKS						_	_	_	
MINE PHASE TONALITE [] CHLORITE DARKENED MINE PHASE TONALITE [] BQUARTZ SERICITE CHLORITE[] PYRITE ALTERATION PHASE[]	TYPES 8	nd ALIE	RATION ST		computer depths: Ovb- 0.01' leach cap- 0.02' leach ox- 0.03' supergene- 0.04'	(1) → (1)	badiy broken rock altn = alteration az = azzrite bo = bornite broken r bx = brocen carb = carbons decrease decrease minor amount very minor amount cp = chalcopy	ock gr	ANEOU ss = disso = epid = garn = garn p = gyp m = hen a = limo ag = mag dl = male	eminated ote ge et sum natite mite gnetite	MnO2 = p Mo = m mod = m ND = no pied = pie py = pyr qtz = qua rx = roci sauc = sau	pyrolusing olybdeni oderate on directi dmontite ite rtz	te sp strional St ter	r = scric h = sph: r = stron Wk = sto t = tetral k = wes	alerite g ekwork nedrite ak	2		
9.5		GRAPHIC					BOTTOM DEPTHS Leach Cup						ASS	AY RE	SULTS			
ROCK TYPES and ALTERATION	Foliation angle and intensity	ਵੇਂ . ਜ	(veins)	Width of Structure	Mineralization	Est.	Leachable Ox. 134feet? Lim. Zone 143feet	Footage Blocks	Core Recovery	R.Q.D.	Sample	%	%	%	%	%	oz/ton	Cu
		S. Footage	axis	(veins)	Decreasing Order of	Py	Supergene 68 feet?				Number	TCu	OxCu	Chisol on OxRes	SolFe	MoS2	Ag	Grade
							2-51783 → HQ core sample representing 0-12'. Do not enter in computer			NK B CS	51983	.01	٠,٥١		.67	.00(
							CASING TO 12'											
MINE PHASE TONALITE: a'to 607' The Tonalite in this hole is	Ди		40"+050"	t5"+2	ep-gtz-lim-MnOa	4.5	- light brown mineralithat coats most of the gtz grains in this interval might be ankerite!	17	98	8	54201	.01	.01	<.01	.85	.001		.0
quite similar to Tonalifes seen in other holes of Gib West. The :		20	400	these	ep-gtz		but no efferivescence even upon scratching		1	¥								
to no lite is composed of plagt - dz+chl mointy. The plag has generally undergone some degree of soussurite alteration, which	1 1		40°	吉"×1" 言">3 \$1 \$1 \$1 \$1	ep-gtz-chl ep-gtz-onk? slwk lim-Mag-chl	4.5	the grain a few mal bearing Joints in this 20'10 30' interval	a7	99	67	54302	,01	.01	4.01	.77	<,001		.06
explains its yellow areen appearance whereas the ohl blebs are clark- freen and vary in concentration		30	400	shoar	lim - chi- MaOg													
Throughout the unit.			40. Smottled	た"ンロ た"×5つ さりy)	3t=-ch1-ep-(py) ep-gtz-ch1 ep-gtz-ank?	4.5	- ep alteration nos resulted in numerous ep stringers that mottle the appearance of the Tonalite a bit-	37	99	53	54203	.ol	.01	١٥,٠	1.00	,001		.01
			4.040000	shear	chl-lim MnOs		TO STEEL AND LOS		WAY.	288	and a				Allei		1	

	1. 1	GRAPHIC					BOTTOM DEPTHS						ASS	AY RE	SULTS	72		
ROCK TYPES and ALTERATION	Foliation angle and intensity	4 200	Structure (veins) < to core	Width of Structure	Mineralization	Est. % Py	Leachable Ox. Lim. Zone	Footage Blocks	Estimated Com Recovery	R.Q.D.	Sambre	%	%	%	%	%	oz/toa	Fistin Cu
		E Footage	axis	(veins)		. "	Supergene Remarks				Number	TCa	OxCa	CNsol on Oxfics	SolFe	MoS2	Ag	Gen
	ND +0 90%k		40°3.50° 40° 0°4.50° 40°		ep-gt2-ch1-anx1 lim-ch1-Mn0g gt2-ch1-py-cp ch1-gt2-lim	<.5	- first significant appearance of cp+lim so this interval might be a transitional zone between limter.	47	99	60	54204	.20	.01	.01	1.96	.001		
	ND +0		800	# "x1	ep(vussy)-chlim-(mng) ep-gtz-chl chl-mng-py-mal gtz-chl-cp-py ep-gtz-chl-ped	<.5	- there are jode green specks of mal dispersed throughout this interval.	57	Iω	77	54005°	.05	.oi	<.01	1.54	.003		.0
	IND K	-	20° Чо° чо°	方"×1 た"ショ"×2 な"×3	gte-chl-cp-(py) ep-gte-chl-pred stut ep-gte-chl gte-chl-gr-sph	<.5	-at 68' is possibly some dark ac coating a few cpspy grains. Also, at 64' is some notive Cu smeared out along chi shears.	67	100	70	54206	.13	.01	.01	2.11	.004	- 1	-
	Au	20	8.0° 404.50° 40°	"×1 t="×2 "+15"x2	chl-ep-stz-carb-graph ep-pied-chi chl-stz-ep-py-c/3 ep-stz-chi stut	₹.5	from 69' to 71' there is some transparent orange garnets and yellowish sphalerite embedded in the chi.	77	160	87	54207	.03	١٥,٠	١٥.>	2.30	.002		
	10-70 X		40° 5	5"x2 3"x1	epigtz-chl-cp-py gtz-chl-carb gtz-chl-carb	4.5		87	loo	80	54908	.07	<.ol	۷,0۱	1.48	.002		.0
	70" X		40° 50° 4	5"+03"×0 0 1"×1 "+013"×1	ep-gte-chl stwk gte-chl-py-cp gte-py-chl-cp gte-ep-chl-cp-py te-chl-cp	₹.5		97	100	73	54209	.12	١٥.>	.01	1.70	.001		.0

9.49		GRAPHIC					Leach Cap	-	188				ASS	AY RE	SULTS			1000
ROCK TYPES and ALTERATION	Foliation angle and intensity	A Ale	Structure (veins) < to core		Mineralization	Est. % Py	Leachable Ox. Lim. Zone	Footage Blocks	Estimated Cost Recovery	R.Q.D.	Gampie	%	%	%	%	%	oz/ton	Esti
		€ Footage	axis	(veins)			Supergene Remarks				Number	TO	OxCa	CNsol on OxRes	SolFe	MoS2	Ag	G
	ND to Everned		303040		chi-gtz-py-hem gtz-chi-corb-cp-py chi-gtz-ep-py	4.5	of governmish may	107	98	57	54210	.10	.01	.01	1.81	.041		1
	1	110	10°+080°	t "+2	ep- ft2-ch1 gt2-ch1-ep		represent a small full yonefair number of veins.											L
	+0°-70° K		1 1		gcz-chl ep-gcz-chl gcz-chl-ep-py	4.5	in this interval but not much cotpy mineralization seen	117	99	77	54211 -	.01		<,01	.95	.001		
	- wx	120	403	To"+04"x 4	ep-gtz-chl-(p) ep-gtz-pied-chl-py		-mostly, diss py seenin - this interval.		100									-
	70-90 K		400	514021×3	ep-gtz-chi-pied-py.	4.5	-quite a sew intensely limbolized shears seen near the end of this interval	12,7		57	54212	.09	.01	.01	1.53	.003		
	75-96	130	40°1,50°	shear .	ep-gtz-pred lim-(mai)		- reappearance of mal - in one of the shears - for this interval.		100									
	mod-str K	140	400	14"x1	gtz-chl-cp ep-gtz-chlstwk gtz-chl-py-cp	<.5		137		73	54213	.08	.01	<.01	1.15	.002		
	ND				ep-gtz-chl-py	13			99	(0)	-15-11							
	70°LK	150	70°	16"+0 3"xp	ep-gtz-stuk ep-gtz-pied stuk	4.5		147	-	43	54914	.02	10.>	.01	.93	.002		
	10 uk	N	40° 1	5"401"X2 e	19-9tz-ch1 19-9tz-ch1 19-9tz-ch1-(Ay) 19-9tz-ch1	<.5		157	100	83	54815	.01	۲,01	<.01	.99	.001		

	1. 1	GRAPHIC LOG						M DEPTHS		1				94-56 ASS		SULTS			
ROCK TYPES and ALTERATION	Foliation	g LOG	Structure (veins)	Width	Mineralization	Est.	Leach Cap Leachable Ox.		Footage	Estimated Cost Recovery	POD		%	%	%	%	-		T
THE PROPERTY OF THE PROPERTY O	angle and intensity	8 g	< to core	Structure (veins)	Nunctanzation	Py	Lim. Zone		Blocks	Recovery		Sample Number	-	-		70	%	oz/toa	12
		H Footage &		(veins)		1.	Supergene	marks	-			Number	TCa	OxCu	CNsol on Oxfes	SolFe	MoS2	Ag	G
here are cands of thi clarkened Onalite, from 1" to 1", that Hernate with the Mone Phase	+		70%,690%	15"x6	epgtz-chi stük				1					-	1				1
ilternate with the Mine Phase onalite. It is the chi dorkened	100					1			}	98									
onolite that contains most of	10 8				PY-5/2-CH-epcp	14.5			1		57	54216	.19	<.01	8 8	2.20	002		
the cp+py.	10°-90° K			14"×2	3tz-ch1-ep-cp-py				167							0.00			
		170	504070°	4"x2	ep-gtz-pred-chi stuk	-			1										
				F "10 + " 3	ep-gtz-chl stuk gtz-chl-ep-p,-cp				1	100	- 1			1					
	du-	1							1		80								
	to K	I II	40°	3"⊁1	Stz-ch1-ep	<.5			1,77		00	54217.	.07	4,01		1.18	100.		
	90WK	180 N	40' .	1 uxt	gtz-chl-ep-cp-py				-		- 1					***			
	K		800	15 "×4	ep-gt = - chi stwk	-	- VETY 1:1410	veining ing , in this	-					-		-			H
							and band	ing , in this makes the	1 1	100									
	ND	1 1	400	15" X1	Stz-ep-chl		Tonolite o	juite ine	1 1	- 1	83	54218	.02	4.01		.82	.001		
	to K					4.5	borren		187	_		5-10-10	.02	1.01		.02	.001		
	"wk" K		30"		gtz-chi-ep				1 1		- 1								
1	1		40°	1"63"x2	stz-chl-cp-py ep-glz-pied-chl stwk		- within 190	to 1911 are	1 .	100									_
1	. 8	1 11	90°	5"XI .	ep-glz-pied-chl stuk		bonds which	11 chi dorkene ch supply	7 I	100									
1	ND X		30-7-700	14× 6049	ep-gtz-chi-py	4.5	most of 41	Le cortor	1	- 1	50	54219	.13	5,01		1.63	002		1
	K	N.		\$"+03"ra			70.		197					' '	- 1				
	- 2	3.00			stz-chi		•		1		. /								
	. 2	1 1 1							1 1	100	1								
	ND X		1	4. X.	jtz-(c11)-(cp) .				1 1					- 1				- 1	
1	70 WK	٤,	mothled =	"12 4 "x53	epste-chl	4.5			307		80	54220	,21	4.01		1.67	100.	- 1	
1	OWL	210 1	50°4 70° t	1900	stz-cp-py-ch1												- 1	- 1	
	·K)				2P-gtz:chl	-	-increased	chi content.	1	-	-		-	-	-	-	-+	-	_
1	K		40 3	"×1 e	p-stz-cp-chl		and cotty	rinerate -	1 1	100								- 1	
3	NO	1 1			ep-gtz-chl-py	4.5	7, 7, 7,			1	/-	54931	.08			10/			
Lagran Bell of					tz-py-ch1			Luis :	217		67	- 100	.00	10,0		1.36	100	1	1

		GRAPHIC					BOTTOM DEPTHS Leach Cap						94-52 ASS		SULTS		-	
ROCK TYPES and ALTERATION	Foliation angle and intensity	a & Altr	Structure (veins) < to core	Width of Structure	Mineralization	Est. % Py	Leachable Ox. Lim. Zone	Footage Blocks	Estimated Core Recovery	RQD.	Sample	%	%	%	%	%	oz/toa	Estim Cu
		E Footage	axis	(veins)			Supergene Remarks				Number	TCa	OxCa	Chical on Oxfor	SolFe	MoS2	Ag	Gas
	1	7	700	さ"×1	PY-Stz-ch stwk				100									
	ND		50"	15"401"×10"	ep-gle-chi stut	4.5		aa7	100	60	54222	.11	4,01		1.79	.008		-
50 - 32211 2251 :	1	230	90"	76"× 1	Ste-chi-Ay													
rom d33' to 235' is a short terval of Quartz Sericite	1		400	1"×1	gtz-chl Ep-gtz-chl-pystwk		truncated sta veins,		97									Г
olorite Pyrite Chalcopyrite Heration Phase.	110	F	900	1,400,1×1 14,×1	gtz-chi-cp-py py-gtz-cp	4.5	-there are some truncated straveins, which may indicate some deformation toccured within this interval.	237		63	54923	.07	4.01		2.00	,002		
	-	240			ep-gtz-chl-py		-	007										
					ep-ste-chishut				100									
	1 MD K		1 : 1	1	ep-gtz-chl stuk ep-gtz-chl-py	4.5	1			87	54224	.02	401		1.18	.002		
	1 1	350		1	ste-chl-py		1	247										
ere are a few 2" bands of wortz Sericite Pyrile Chlorite					gtz-chl-py			.	100									
alcopyrite Alteration Phase.	ND		40	+"×1 .	stz-py-cp-chi	4.5				57	54995	.20				2		
				3 g " x 1	8tz-py-cp-ch1 ep-gtz-ch1		1	257	-		1000	.20	<.01		2.13	.003		
	1		80°	עי".	ate-chl-py		- mostly diss py and ep		.			-	-	-			-	-
	NA			TO HOLE THE	gtz-chl-py ep-gtz-chl-py	4.5	through this interval.		100		inac	.						
	NP K				ste-chi-py	`.5]-	267	_	73	54996	.10	<.01	1	1.26	.005		
	- (270			ep-gte-chl slwk	-	-		-	-			_		_			_
	ND &	N	400	"402"42	ep-gtz.chlstuk		1		100									
	10	N	50° 8	"×1 9	tz-chl-py	4.5		977		80	54227	.06	<.01		1.09	003		
V 16-10-119-	1	280 -	900	"x1 2	\$2-chl-Py .						1	301			. 1			

2	1.	GRAPHIC					BOTTOM DEPTHS Leach Cap	7					94-5 ASS		SULTS		
ROCK TYPES and ALTERATION	Foliation angle and intensity	4	(veins)	Width	Mineralization	Est.	Leachable Ox.	Footage	Core Recovery	RQD.	Sample	%	%	%	%	%	oz/ton
		all Footage of	axis	Structure (veins)		Py	Lim. Zone Supergene	_			Number	TCa	OxCu	CNsol	SolFe	MoS2	Ag
	NA	490	moltled folded 50°	も"×30? 七" ×1 七"×5?	ep-gtz-chl stuk gtz-chl-py ep-gtz-chl stuk ep-gtz-chl stuk	4.5	Remarks -light hem stoining of the tonalite, from 98812 2881, most of the veins and veinicts have either been offset or folded in this interior	287	l∞	70	54228	,07	10,	OuRes	(.58	.002	
	JID.		400	E4 105 8	Stz-carb-chl ep-gtz-chl stwk ep-gtz-chl	4.5	-fault zone from 298' to 3081, with some short intervals of	7	100	8	 54839·	.07	<.01		1.88	,003	
	ND	4		占"×1	chl-(hem) gt2-chl-cp-py gt2-cp-py-chl	<.5	-drastic drop in the number of ep stringer from the previous Interval to this one. As a result (ptpy is slightly higher.	1 1	70	17	54230	.17	۷,0۱		1.86	.002	
om 210' to 214' is an interval - Quartz Sericite Chlorite grite Alteration Phase. Within this - terval are small "too" bands Tonalite alternating with this - artz sericite unit.	ND /		90° 30°490° 70°	ilka Sika Sika	ste-py-ser-chi-cp ste-py-chi-(cp) ste-py-carb-chi ste-chi-ep-py	4.5		317	97	.60	54931	11.	٠.0١		3,01	.001	
e Small 4" interval of Quartz micile Chlorite Pirite Chelcopyrite tration Phase, within a chl kened Toralite section from 5" to 330t, provides almost all c cp+py for the Entire 10ft derval	NA +0	12	nottled	"404"x5:	stz-py-eni stz-chi-py-cp stz-chi-ep-cp	4.5	-the eptpy are well mixed together, in this interval.	327	000	67	5423Q	.39	١٥.>		3.77	.001	
	ND +0		70° 1:	5"×1 5	3t2-cp-py-ser-chl 5t2-chl-cp-py 5t2-chl-py-ep 5t2(vuggy)-chl-py	۷.5		337	100	73	54933	.08	4.01	15	1.47	002	

		GRAPHIC	1				BOTTOM DEPTHS Leach Cap	1			1			AY RE		_of _	77-1	
ROCK TYPES and ALTERATION	Foliation angle and intensity	4 4	Structure (veins) < to core	Width of Structure	Mineralization	Est. % Py	Leachable Ox. Lini, Zone	Footage Blocks	Core Recovery	R.Q.D.	Sample	%	%	%	%	%	oz/ton	Estic
	1	Footage &	axis	(veins)		. ,	Sepergene Remarks	1			Number	TCa	OxCu	CNsol on Oxfor	SolFe	MoS2	Ag	Estis Ca Gra
	ND to		40°	1"402"51	562-chl-py 562-chl-py-cp 362-chl-py	₹.5	- light hem steining on a few joints + shears.	347	100	67	54234	.03	۲,0۱	7	1,24	.003		
	1 000	350	100	to Ka	5t2-ch1py													
	all le		પ ્	440314	8tz-ep-py-ch1-ser 2tz-py-ch1 3tz-carb-ch1-py	<.5			100	77	54235.	.02	٠,٥(1.40	.003		
		360	400 .	ابر"و	9/2-ch1-py 5/2-ch1-py			357				.02	5,01			.003		
	IND.		400	ts"40}"x8	Stz-chl-Py	. <.5			100	83	54236	.05	.01		2.52			
	505-403 WK	370		t"×1	gtz (mggy)-cario- p,-chl gtz - chl-py- hem-cp			357			3	.03	.01		2.03	.006		- "
	1 L	1. 1		6"x2	gtz-py-chi-cp gtz-chi-py	4.5	-most of the diss cp - can be found between 370' and 371'.		100	53	54237	.08	401		2.50	003		
	70°-90' K	1 II	70° I	">1	gte-ep-chl ep-atz-shuk			377							a.50	.003		٠,٠
	M		400	ا بالح ا * ا	ep-gtz-ch ep-gtz-ch1s+wk gtz-ch1-py-(cp)-(hem)	4.5	-there appears to be atleast two generations of veins, as the privations of the privation of the privation of the privation of the private of	.04	100	67	54938°	.08	4.01		1.93	.002		.0
		390	30° 1	1'81	ep-gtz-chl-py-cp		eptate veins.	387	\dashv	-		.00	.01	ľ	.13	.002		
	J. Cu	N	40 1	6"x4 8	stz-chl-py-(cp) stz-chl-py-corb stz-py-carb-cp-chl	4.5			100	57	54239	.05	4,01		2.45	0/9		
		HW I	100 亩	11 +0111 ×10 9	ista-chl-py .			3917	. 1165		51431		,,,,	1	1,75	010		. (

		GRAPHIC					PROPERTY) DIAMOND D BOTTOM DEPTHS Leach Cap	1	1.				Pag			19	
ROCK TYPES and ALTERATION	Foliation angle and intensity	A Alm	Structure (veins) < to core	Width of Structure	Mineralization	Est. % Py		Estima Cas Est Recove	RQD.	Campac	%	%	%	%	%	oz/ton	
		2 Footage		(veins)		."	Supergene Remarks			Number	TCu	OxCu	Chinal Se Oxfices	olFe I	MoS2	Ag	Gas
	Δu	30	49:1050°	16"×1∂	Stz-chl-py Stz-chl-carb-py Stz-chl-py Stz-chl-py	۲.5	40	100	17	54940	.04	<.01	. 1.	94 .	.003		,0
rom 48 to 420.5 is a Quartz berichte Chlorite Pyrite interval, along with several small bands attending with the Tonolite throughout this 10ft interval.	10 N	120	50° 40°4°50° 30° 50°	"x 6" 1018"x 5 shear 5" x1	gtz-chl-ser-py gtz-chl-py carb-hem-chl gtz-chl-carb 8tz-py-ser-chl	10	417	100	73	54941	.09	10,>	3	.15	004		.0
	70°-90° K	420	70°	す"×1 16"×2 1"×1	ep-gt2-ch1 gt2-ch1-py-ep gt2-py-ch1-(nd) gt2-ch1-py-cp	<.5	чат	100	డ్ర	54942	.05	<.01	1.	56 .0	004		
	₩ 🔻	/ Befine	40°	16"x1 .	ep-gtz-chl gtz-ch/py gtz-carb-chl	4.5	-fault zone from 4351 to 4341, with about 31 of hem stoined gauge visible.	96	27	54943	.06	<.01	2.	23 .0	005		
eral chi darkened tonalite and alternating with the ine Phose tonalite.	70°00°	A / -	70° 1	"×1" "402"¢2	#2-py-chl-ep-earb gee-chl-carb-py-cp gee-chl-(no)-(cp) gle-chl-py-cp	4.5	- mostly diss py, with a minor amount of cp, for this interval.	92	53.	54344	.18	0.01	2.	68 .0	0/3		.0
	70-88 K	1	20° 1	"x1 3 "x1 3 "x0 3 x0 5	tz-ch!-py tz-ch1-py tz-py-carb-cp tz-py-ch1-cp tz-ch1-py	1.5	ч57	100	77	54845	.10	.01	1.6	7 .0	005		.04

	. 1	GRAPHIC					BOTTOM DEPTHS Leach Cup	7					94-56 ASS		SULTS		× -	
ROCK TYPES and ALTERATION	Foliation angle and intensity	# Al	Structure (veins) < to core	Width of Structure	Mineralization	Est. % Py	Leachable Ox. Lim. Zone	Footage Blocks	Estimated Cors Recovery	R.Q.D.	* P. C.	%	%	%	%	%	oz/ton	Estin Ca
		Footage .	axis	(veins)	stz-carb-ch)	1.	Supergene Remarks				Number	TCu	OxCu	Chirol ea Orfics	SolFe	MoS2	Ag	Ga
	ND to 70°-90° wk-mod		50°40 70° 80° 50°	511×3 811×1	8t2-ch1-py-(cp) 8t2-ch1-(py) 8t2-ch1-py-(Mo) 8t2-py-ser-ch1	<.5		467	8	80	54246	.07	١٥,٧		2.76	.010		
fair bit of Mo can be seen . the Quartz Scricite intervals	- ND +0 70%×	480	40°	4"x1 古"x3 辛"x1	Stz-Py-ser-cp-chl-Mo Stz-chl-py Stz-chl-carb Stz-Py-ser-no	<.5		477	100	ь	54247	:12	<.01		2,95	.026		
	50°-76° WK-MODK	490	40°4050°	a11×1 古1×3	gtz-carb-chi-py gtz-chi-py gtz-chi-py gtz-chi-py-cp	4.5	-mostly diss by seen, with next to nil cp in this interval	487	100	63	54248	,05	<,01		1-53	.005		
	an	. (40° 40°	לא"ץ' לא"או	5t 2 -ch/ 5t 2 -ch/ - py 5t 2 - py - ch/ - cp 5t 2 - cp - ch/	4.5	-most of the cp for this interval is within the chi darkened Tonalite.	497	100	73	54249	.25	4,01		2.31	.003		
	of (2)	100	50°4070° 50°	5"+01"x6 (5t2-Ch1-py-ep-(cp) gt2-ch1-cp-py gt2-py-ch1-(cp) st2-py-mo-ch1	4.5		507	100	57	54250	.07	4,01		2.67	.008	41	
	10 to		70° 1.	"+01"xa 9 "+02"xa 9 5" x1	t2-ch1-corb-ep t2-ch1-py-mo t2-ch1-ep-(py) t2-py-ch1 t2-ch1-py-((cp)).	<.5		517	100	87	54251	.04	<.01		1.26	.006		

		GRAPHIC	,				BOTTOM DEPTHS Leach Cap						ASS	AY RE	SULTS		1	
ROCK TYPES and ALTERATION	Foliation angle and intensity	# Alm	(veins) < to core	Width of Structure	Mineralization	Est. % Py	Leachable Ox. F. Lini, Zone F.	Footage Blocks	Estimated Core Recovery	R.Q.D.	Sample	%	%	%	%	%	oz/toa	€ Estima
4		E Footage		(veins)		. ,	Supergene Remarks				Number	TCu	OxCu	CNest es Oxfics	SolFe	MoS2	Ag	Car Grade
	ND to 50°-90° mod-str		50°4670° 50° 50°	1"+3"x2 7"x 1 4"+1"12	\$tz-chl-carb-py \$tz-chl-pp-(cp) \$tz-chl-py-(cp)	<.5		527	100	77	54252	.13	۲,0۱		1,95	,005		
Quartz Sericite Pyrite Chlorite - Heration Phase, from 538 105405	· NID	530	50° 40° 40°4250°	でなった。	stz-chl-carb-cp gtz-py-chl gtz-ep-chl gtz-chl-py-ccp) gtz-chl-py	4.5		537	IOO	70	54253	.06	4.01		243	.001		-0
wite a range of rock types in this interval. For instance, Lere are 2"-5" bands of the Borkened Tonclite and Leucovation that alternate with the line Phase Tonalite.	ND +6 60°-90° wk	540	76° 60°	古(1)×1 3分×1 3″×1	3t2-carb-ep-cp 3t2-py-ch1 3t2-py-ch1-Mo-((cp)) 3t2-ch1-ep-(py) 3t2-garb-ch1-cp-py	<.5	-there are a few short cp veins that run down the core axis, so this may raise the grade of 5 this interval higher than it actually is.	547	98	67	54254	.11	<.01		2.33	.004		.0
	10 to 20°-10°		40° 50° 50°	16"+04"×2 16"*2 16"*2	5tz-ep-ch-(cp) 5tz-ch-(cp) 5tz-ch(py)	ζ.5		57	100	80	54255	.05	١٥.		1.20	.003		•(
I content is fourly high for is entire interval, and is very ose to being the Dark Chlorite teration Phase unfartunately, north, by seen with all this chl.	NA X		10"	ξ"x1 ς 5"x1 ς	sta(vussy)-carb-chl-prep sta-py-chl-carb carb(vussy)-sta-chl-py	4.5	56	67	100	63	54256	.05	١٥.>		2.02	100.		- <
	5	1	90° 4 50° 45 70° 4 30° 8	" * = = = = = = = = = =	St2-Py-carb-(cp) St2-chl-carb-(cp) St2-chl-py-carb St2-carb-chl St2-carb-py-chl-cp	<.5		77	100	57	54257	.05	١٥.>		1.68	.002		.0

		GRAPHIC			IMITED (McLEESE I		BOTTO	M DEPTHS	T					94-5	_	SULTS		4	
ROCK TYPES and ALTERATION	Foliation toric and	FOG	Structure (veins)	Width	Mineralization	Est.	Leach Cap Leachable Ox.		Footage	Core Recovery	RQD.		%	96	96	%	%	oz/toa	
	angle and intensity	c typo &	< to core axis	Structure (veins)		Py	Lim. Zone Supergene		Biocas	Recovery	100	Sample Number	TCu	OxOu	Chied	205	MoS2	Ag	Cu Gra
	+ 1	# Footage #		15"×1	sta-chl-py	1	Re	marks	-					- Once	OxRes	5000	-		-
		1. 1			8tz-ch1-ep-(cp).				1	100									
	1 100		400+0700	ו"ב _א "ב _ס +"ו	gtz-chi-carb	1.5			587		77	54258	,05	<.01		1.41	.002		
2	- 1	190	60°		chl-gtz-carb-(cp)				1 00										
	1	1		#"×1	gt 2 - ep-chl stuk		-heavy hem	Staining on ars in this	1	100									
	a. E		40°	3,×1	Ste-carb-chl Ste-chl-ep		in Cival				67	- HINED							
7			The works of	Execution 10	py-gtz-carb-chl-cp	4.5	veins, for	this interval	597		6/	54259	:13	4.01		2.31	.005		,(
		600	-				Veins cut	rations of this interval he attracts across the across the											
	NO K		1	9	gtz-carb-chi gtz-chi-ep(py)				1	100									
	90°wk	1 k	+10		ep-pied-gtz-chl	4:5				10.310.50	73	54960	.07	<.01		1.24	.003		*(
ΨΨ		1-11		10 08 10	607 ★ E.O.H.				607				_						_
		Н	-		Dick Poon				1										_
					Dieston								1						
								10.	1										
									-		.								
			- 1	- 1	0.49														
		Ш												1					
		\Box																	
				-															
					Land Street			-					7 de 1						

		GIBR.	ΑL	TAR M	INES L	IMITED (McLEESE L	AKE	PROPERTY) DIAMON	D DR	all I	.0G	Hole	No	94-5	3 Pa	ge No	. 1 o	. 9	
LOCATION GIBRALTAR WES				RING	.—	LATITUI		48,114,61	_ 001	E SIZE	I NK	ર		LOGO	ED BY	Dic	t too	1	
DATE COLLARED July 29, 199	4				37 feet	LONGIT	UDE (9 43,239.37				1"= 10					2,199		
DATE COMPLETED July 30, 199	4	r	P.	-900	- :	FLEVAT	ION_	3021.66 Ft.	_REA	MARKS	ROD	S STUC	K, HF	10 TO	AB	ANDON	1 110	LE .	
ROCK	TYPES :	and ALT	ER	ATION SY	YMBOLS		1.					BOLS and							
MINE PHASE TONALITE DA CHLORITE DARKENED DA MINE PHASE TONALITE DE QUARTE SERICITE CHLORITE DE PYRITE (C) ALTERATION PHASE	ARK CI HASE	HLORIT	E	ALTERAT			↑→↑○	badly broken rock at = atteration az = armrite bo = bornite brx = broken ro bx = brocen carb = carbonate carb = carbonate chl = chlorite very minor amount cp = chalcopyr	et ek gr e he i he	ss = diss y = epid g = gou, y = garn yp = gyp em = her m = lime ag = ma, al = mal	ote gc et sum natite mite gnetite	MnO2 = p Mo = m mod = m ND = no pied = pie py = pyr qtz = qua rx = roct sauc = sau	olybdeni oderate on directi dmontite rite urtz k	te sp st onal St	r = serie h = sphr r = stron Wk = ste t = tetral k = wer	alerite g sekwork hedrite			
		GRAPH	пС					BOTTOM DEPTHS						ASS	AY RE	SULTS			
ROCK TYPES and ALTERATION	Foliation angle and intentity	TOG		Structure (veins) < to core	Width of Structure	Mineralization	Est. % Py	Leachable Ox. — Lim. Zone 89 feet	Footage Blocks	Estimated Core Recovery	R.Q.D.	Sample	%	%	%	%	%	oz/ton	Ca
	incitity	Footage	Serocture	axis	(veins)	Decreasing Order of >	. ,	Supergene Remarks				Number	TCu	OxCu	CNsol on OxRes	SolFe	MoS2	Ag	Grado
MINE PHASE TONALITE; 821 to 5371 Mineralogically the Tonalite is made up of plast 42-chlithe plag has undergone soussurite.	20 to 30 K	90	1/11	40°4°50° 50' 70'	4"-6" x 5 >> tear 16" x 1.	gtz-chi-py chi-py-cp gtz-chi-cp-(py) ep(vussy)-gtz-carb-chi	1.5	CASING TO 821 -a few guartzites and meta sedimentary Chunks mixed in with the debris, from 821-83	87	99	80	54961	.05	.01	<.0	1.61	.002		.دې
alteration, which gives it a yellow-green appearance. The chl, represents the major mafic component in a Tonalite, and is found as dark green blebs. These chl blebs are generally criented	ND +0	100	1111	60°	5"x2	ep-gtz-chi stwk gte-chi ep-gtz-py-chi gtz-chi-py-(cp)	۷.5	-some hem stained joints in this interval	97	100	63	54262	.03	<.01	<.01	1.00	,001		-01
to some direction in the holes of Gib West, and can fluctuate in concentration throughout the hole.	10-90° WK	110	第/ / 18	moHTed 40° 70° 80°	ま"×4? も"×3 な"×1	822-ch1-ep 822-ch1-py-cp-ep 822-ch1-ep-py ep-gt2-ch1 stwk	45	-minor sericite seln in- a faw shears.	107	100	70	54963	.08	.01	د, ۱۵	1.46	.001		.02

		GRAPHIC					BOTTOM DEPTHS Leach Cap	T	1				94-5 ASS		SULTS			
ROCK TYPES and ALTERATION	Foliacion	4	Structure (veins)	Width	Mineralization	Est.	Leachable Ox.	Footage	Estimated	RQD.		%	%	%	-	-		Г
MOGETITES and ALTERATION	angle and intensity	48 1	< to core	Structure	Muneralization	Py	Lim. Zone	Blocks	Recovery	EQD.	Sample	70	70		%	%	oz/toa	G
2.		Z Forage		(veins)			Supergene Remarks	-			Number	TCa	OxCa	CNsol on OxRes	SolFe	MoS2	Ag	Grac
	1	1		41404173	ep-gtz-chl stak		the Tonalite from 116	1				-	-	Cherics			_	-
	1 1	1.	700	10 ra	ep-gtz-chl stuk		to 120' is a purple-red color from intense	1	99									
	DU F			L-111 13		15	hem staining. from 119' to 120' are	1	' '	50	54264	.09	<.01		1.31	.002		١.
	1 40 na)	1 Y	50°	16 TOY XI	ste-carb-chl-hem-(A)		a few chunks of a broken getz vein	1117						(45)	1,51	.002		
	1000	120 -	900	9".x1 .	gtz-chi-cp			3										
	3 F				gtz-carb-chl ep-gtz-chl-pied stuk		that supplies the interval with most	1	98									
	1 1	.1		76"×6	eb-25-5- cui-bieg 2406		of the cp.	1	70	~								
	IND K		800	1"x1	gtz-chl-cp-ep-py	₹.5		127		33	54265.	.09	4.01		1.64	.003		21
	1 k	130 -	900 .		ep-gtz-chl-stwk													
	- 1		80° 70°	2"×1	ep-stz-ch1-py-hem stz-py-cp-ch1	_	-major fault zone	-			-		-	-				_
	3 k	1	2	±1, ₹1	gtz-pr-cp-chi		from 132 to 816 with	1	60									
	J UD E		2			4.5	large sections of hem stained gouge an	d l		3	54266	.09			. , ,			
	1 1			- 1	38	1.5	pebble to cobble sized	137			2 1000	.01	<,0(1.68	.002	1	-
		140			ep-glzchi stwk		pieces of care	1 1		1	- 1						- 1	
	1 6		900	+ "(xo	ep-gte-chi stuk			7 1	1									
		1 .	400		ep-gtz-cil start ep-gtz-pied-chl start			1	85									
	AN A		700	15"x1	epigtz-pied-chl stut	1.5	*],,,, [13	54267	.07	<.01		1.55	001	- 1	-
	90 mod	117	600	5"x2 6	stz-chl-py			1147	_							,,,,,		
	1	150			ep-gtz-chl-(px) stuk	_		1 1		-								
	· R	A					- heavy hem staining in nearly all the	1 1	90									
	100	1				, _	voints + shears.	1 1	.									
	50°-90° 20	to shear hem-carb <.5		10	54268	.01	<,01		.93	,005		.0						
		90 157 150 x molled t."x3 ep-gtz-chl-(px) shwk																
	·K	\$	1 .				-only about a foot	1 1	ŀ				-		-		-	_
	K	8	7				of intact tonalite, in this interval, the rest is busted up debris	1	45									
	ND	2	·			4.5	is busted up debris	1.,_		3	54969	.01	10.2		1.00	100.		.0
	1	A	900	P11×1 6	P-8tz			167	-		2.		10.		1,00	100		16

		GRAPHIC LOG	Structure	Width			PROPERTY) DIAMON BOTTOM DEPTHS Leach Cup			·			94-5 ASS	ÄY RE			-	
ROCK TYPES and ALTERATION	Foliation angle and intensity	TO SE AUTO	(veins) < to core axis	of Structure (veins)	Mineralization	Est. % Py	Leachable Ox. Lim. Zone	Footage Blocks	Coss Recovery	R.Q.D.		%	%	%	%	%	oz/too	T.
	-	Footage &		(veins)	ep-gta-ch/stwk	1	Supergene Remarks				Number	TCa	OxCu	Chiesi es Onfes	SolFe	MoS2	Ag	6
	100 to 80° 90° wk	NI	10° 70° 70° 80°		ep-gtz-chl stut ep-gtz-chl stuk gtz-ep-chl-hem	4.5		177	60	10	54 3 70	.03	<.01		.80	.001		
	1. ND to 50°-90°		70° 40°4070°	ţ"40\$"ya ţ"×3	epigtz-chi-hem gtz-cp-chi-hem shuk ep-chi-gtz shuk	4.5	-very little aporpy mineralization seen In this fault zone.	187	90	30	54271 ·	,10	·.ol		.93	.001		
	10° 20° 20°	4/44/	50° s	hoar	stz-carb-chl-ep-(hem) stz-chl-ep-hem chl-carb-lem ep-gtz-chl-(hem)	٠,5		19-7	88	43	54272	.01	١٥,٠		.68	.002		
indant ep atteration in this erval	UL to the stack	8 2	10° 1	z"xə e "bţ"x 3" e "xı q	8tz-chl-py 1P-8tz-chl-(hein) stuk stz-chl-ep-(py) stuk 1P-8tz-chl-hem stuk	4.5		307	97	-13	54273	10.	4.01		70	.001		
	\$ D	A A WAW	o" li	× 6 8	tz-chl-py-(hem) bl-py	₹.5		217	65	97 E		04 4	-10.	1	.07	.001		. (
	10 to 10° 10° 10° 10° 10° 10° 10° 10° 10° 10°		\$ 10 90° 13"	*1 8t *3 5t *2 8t	-2-chl-(py) -2-chl-py -2-chl-ep-py-(cp) -8tz-chl	4.5	four bit of Mo smeared out along chi shears and dispersed throughout the Chi darkened fonalite sections of this 10ft interval.	227	80	60 5	4975	09 <	.01	1.	17 .0	072		,0

GIBRALTAR MINES LIMITED (McLEESE LAKE PROPERTY) DIAMOND DRILL LOG Hole No. 94-53 Page 4 BOTTOM DEPTHS GRAPHIC ASSAY RESULTS LOG Leach Cap Structure Width Est. Leachable Ox. (veins) ROCK TYPES and ALTERATION angle and intensity Mineralization % Core R.Q.D. % % % % oz/ton Blocks Sample < to core Lim. Zone Structure Py axis (veins) Number Chical Supergene TCu OxCu on Oxfors SolFe MoS2 Ag Remarks pied-ep-glz-chl quite a sharp increase 40 to 50° 11×2 700 t"+of"x3 ep-pied-gtz-chi-carb in the amount of 100 diss cpipy present 700 15 xa 322-cp-ch1 70 54276 15 11. 4,01 1.71 1.002 to . 16 500 sta chi-py 237 900 the sheets + joints are filled with lots of 15"×3 ste-chl-py 40 99 ep-gtz-ch1-(py)-(hem) du carb 400 54277. 04 KOL <.5 1.78 .002 .02 3"+0+"x2 stz-chi-ep-py 3640400 247 40:500 wk Stz-chl-A the 1" to 6" bands of chi dorkened gtz-chi-fy-cp Tonalite supply this interval with plenty of dissop 100 400 ep- gtz-cp-ch1 60 54278 .41 50-90 stz-chl-py-cp 1.5 256 .004 70 .33 10.> 257 stz.chl-cp-py 70°4690° lots of diss CP+Py mixed together in T6"×5 4004090 100 this interval. 70 54279 .21 4.01 60-98 70°40 80° 4.5 2.19 .005 . 21 267 800 Stz.chl-Py-cp 16"+01"x3 gtz-ch1-carb-py 40 4050 97 ep-gtz-(chi) stak 100 DU 10 47 54280 1.06 4.01 1.54 .003 . 05 4.5 277 50-90 900 15"04" 20 Stz-Py-Ch -from 280' to 2811 is a 1' interval of-80 ep-Py-gtz-ser-(chi) -a few cp veins are Quartz Sericite Culorite Pyrite 500 98 41×6 running down the Stz-chi-py-cp this brief unit, is most of the core axis for a 200 short period, which 53 54281 to gtz-chl-py 1.5 .32 2.53 .004 .24 10.2 interval's cp. 287 50-90 may prop the la grade higher than it actually is Stz-chl-py

		GRAPHIC					BOTTOM DEPTHS Leach Cap	-					ASS	AY RESU	ULTS		*	
ROCK TYPES and ALTERATION	Foliation angle and intensity	d	(veins) < to core	Width of Structure	Mineralization	Est. % Py	Leachable Ox. Lim. Zone	Footage Blocks	0	RQD.	Sample	%	%	%	%	%	oz/ton	Esti Ca
200.511.000	1 1	Footage &	axis	(veins)		1."	Supergene Remarks				Number	TCa	OxCu	CNisol S OrdRes	olFe	MoS2	Ag	G
rom 2925' to 293.5' is an alerval of the Bark Chlorite Alteration Phase	10 to eo:96°		70°	16"+03"×3	stz-chl-py-cp stz-py-chl-cp ep-gtz stz-chl-(cp)-(py)	0.7		297	IOO	70	54289	.20	<.0l		.90	.007		-
	50-90° wk-med		70°+20°	3"×1 2"×3 25"×1	8tz-ch1-py-cp 8tz-ch1-py 8tz-mo-ch1-cp.(py) 8tz-ch1-py-cp	<.5	-Minor hem staining - In Shears + joints - a few sericite + chi shears, in this interval.	307	99	60	54283.	ja	<.0l	I.	.58	.068		
	ND to 70°-90°		40° ଅଟ	11"×1	562-chl-py 8+2-py-Mo-cp-chl 962-chl-py 862-chl-py-cp	1.0		3!7	99	73	54384	.(1	<,01	l,	72 .	.006		
	ND to		70°	प्"×। ।दे"×।	\$tz-ch1-py \$tz-ch1-Mo-py \$tz-ch1-(cp)-(mo) \$tz-ch1-py-cp	0.9	-mostly pyblebs seen, - In this interval. -some Motch! shears, - in this interval	327	99	67	ฮ4985	.23	4,01	2.	.17	700		
326 is a 4" band of Quarte - ricite Chlorite Pyrite Chalcopyric cration Phase. There is a distinct Fransition zone separating the interest from the tonalite. Transition zone has characteristics both units and has a sharp	NO		10° . 1 10° . 1 10° . 1 10° 1 . 50° 1	t"x0 4"405"x0 4"405"x0	gtz-py-chl gtz-chl-cp-(carb) gtz-chl-py-cp	<.5	- abundant clays seen in joints.	337	100	70.	54386	.16	<.01	1.	97	010		
tact with the Ionaliten	OK	1	Do 100	5"x3 9	itz-chi-py-cp-Mo stz-chi-py stz-chi-pied-chi stz-chi-Mo-cp stz-chi-py-cp	0.7	-most at the pay-cp bless ore found in veinlets	347	99	53	54287	.12	.01	2.	04.	008		*

*	. 1	GRAPHIC	1			1	BOTTOM DEPTHS Leach Cap	1					94-5 ASS.	AY RE			+	
ROCK TYPES and ALTERATION	Foliation angle and intensity	d	(veins) < to core	Width of Structure	Mineralization	Est. % Py	Leachable Ox. Lim. Zone	Footage Blocks	Estimated Core Recovery	R.Q.D.	Sambie	%	%	%	%	%	oz/ton	Estina Cu
		Footage &		(veins)		.,	Supergene Remarks				Number	TOI	OxCu	Chied de Oxfor	SolFe	MoS2	Ag	Gnd
	ND	360	30° 30° 20° 30°	100	gtz-chl-py gtz-chl-py gtz-carb-chl gtz-chl-py	4.5	- some Mo smeared out in chil shears.	357	100	80	54288	,06	<.01	+	2.08	.002		,0
rom 361 to 364' the Chi darkand onalite has been intensely eformed and altered by ep.	ND K		40°4070° 60° 80° 30°4040°	6"x1	gtz-chl-py ep-gtz-pied-chl-cp ep-gtz-chl	1.0	-most of the diss epipy essides in the chi darkered ronalite.	367	100	77	54389.	.17	<,01		1.81	.006		.,
	NA	370	40°2090°	Shearexa l"to t'x1 j"x1	gtz-chl-py-(cp) chl-clay-carb ep-gtz-chl-(py)-(cp) gtz-chl-py-(mo)-(ep) gtz-chl-py	₹.5	- noticeatie reduction in the number of	377	ΙΦ	73	54290	.03	<.0(1.15	.002		.0
merous Childerkened torclife and athroughout the interval ras 11 a section from 380' 1682'.	ND K		20° +030° 40° 1250° 50°	shearax3. 15"+04"x3 15"+2	epgtz-pied-chl clay-carb-chl gtz-chl-py-cp-Mo stz-Py-cp-chl	<.5	-trom 389,5' to 390.5'. Is I of high grade Tomalite and supplies most of the Cu grade for this internal and the nort one.	387	99	77	54291	.20	.01		1.79	.005		,
	10-50°		40° 3	"+0 = "+6 " *!	cp-stz-py-chl stz-Mo-chl-cp-py stz-chl-py-cp s(z-chl-ep-(py)	<.5	-fair bit of Mo seen in a few stz veins the colcareaus-clay persists throughout this interval.	397	iŵ	83.	54a9a	.25	.01		1.38	.006		.6
	ND XX	1	10°40°20° 3	"+03"×6 6	stz-chi-py-cp	0.7	- cp+py well mixed in +Lis intenal	407	100	73	54293	.13	١٥.>		1.53	.003		.6

	1. 1	GRAPHIC LOG					BOTTOM DEPTHS Leach Cap						ASS	AY RE	SULTS		(10)	
ROCK TYPES and ALTERATION	Foliation angle and intensity	d	(veins) < to core	Width of Structure	Mineralization	Est. % Py	Leachable Ox.	Footage Blocks	Estimated Cose Recovery	R.Q.D.	Sample	%	%	%	%	%	az/ton	E LES COLLE
		E Footage &	axis	(veins)		.,	Supergene Remarks				Number	TO	OxCu	Chied ea Oxfice	SolFe	MoS2	Ag	Grad
	U)	420	30° 60° 40° 15°1,030°	16"×2 3"×1	gtz-carb-chl-hem gtz-cp-py-chl gtz-chl-py-cp gtz-py-chl	0.7	-possible tault zone from 412' to 414', with no sign of any gouge but- hem stained fragments of tonalite are visible.	417	96	53	54894	.26	.01		1.74	.002		.1
	ND		10° Stwk		Stz-chl-py Stz-ep-py	1.0	-next to nil cp seen in this interval.	427	99	80	54295.	.04	4.01		1.37	.004		.0
he Chl dorkened Tonalite lands and sections, within this 10 ft interval, supply a large quantity. If cp. In fact, solid blebs/veins of cp set as large as 1" but for his interval most of cp is diss. losely associated with the chi	ND <		40°	30"×1	stz-carlo-cp-chl stz-cp-ser-chl-(py) stz-chl-ser-cp-py	1.0	-the cp oppose rother pure, in this interval, with little py mixed in.	437	100	73	54296	1.37	.01		3.24	.003		1.5
arkened Tonalite is sericite enerally, in which the sericite ontent fluctuates throughout this ish grade zone	ND C	450	30° 30° 80°	18" X1 18" X1 18" X1 18" X1	stz-chl-cp-py glz-chl-ser-py-cp-(mo) gtz-chl-ser-cp-py glz-chl-ser-cp-py glz-chl-ser-cp-py	1.5	the cp is more dispersel- throughout this interval rather than in the previous interval where the cp can be seen in concentrated. "pockets".	447	ιω	83	54297	.49	.01		3.08	.o.14		- 6
	. W		70° 1	2"1010"72 0"×1 5"×1 6"104"×3	gtz-chl-ser-cp-py gtz-chl-ser-cp-py gtz-ser-chl-py-cp gtz-ser-chl-cp-py	2.5	-abundant diss cp+py throughout this entire interval. -at 450.5' is a 3" solid cp vein	457	100	80	54298	.99	.01		3.41	.002		.9
	10-9° ND		40°4060° 1	"to5"x4	ste-chl-ser-cp-py ste-chl-ser-cp-py ste-ser-chl-py-cp ste-ser-chl-cp-py-load	1.5	- shiors remain well chard-red roughly half the cp comes from one 12,11 cpt gtz vein, which is nearly pure cp, at 468.51.	467	100	83	54299	1.12	.01		3.71	002		1.2

		GRAPHIC	A PROPERTY COL	Controlled 1			BOTTOM DEPTHS	T				CALL TO	ASS.	ÄY RE	SULTS		19	
ROCK TYPES and ALTERATION	Foliation	LOG	Structure (veins)	Width	No	Est.	Leach Cap Leachable Ox.	Footage	Estimated	RQD.		%	%	-	_	-		
ROCK TIPES and ALIERATION	angle and intensity	4 E	< to core	Structure	Mineralization	Py	Lim, Zone	Blocks	Core	RQL.	Sample Number	70	70	%	%	%	oz/ton	Cr
		Z Footage		(veins)			Supergene Remarks	-	-		Number	TCu	OxCu	CNtrol ea Oxfors	SolFe	MoS2	Ag	Grade
the op occurs a lorge blebs or clusters in the ChI darkened: Tonalite but in the Quartz Sericite Chimite Balanta	au		40"	3"x1	gtz-chl-ser-cp-(py) gtz-chl-ser-cp-(py)	2.0	the contacts between the Quartz bericite bands and the chi darkened tonclife are not very	-	100		54300				u au			
Sericite Chlorite Pyrite Cholopyile Alteration Phase the CP+ Py 1s finely dispersed and diss.	to 80:90° str	480 2	50° 70°4080°		gtz-carb-ch-(cp) py-gtz-ser-&p)		sharp live they were in the previous 40ft.	477		77	51300	.68	,01		4.34	.004		
	. ND		40°470°		gtz-py-chi gtz-ser-py-chl-cp				100	20	54301							
	to 70°-90° mal-sin	H90			gtz-ser-chl-py-(cp) gtz-ser-cp-chl-py	1.0		487		80	01301	:47	<,01		2.51	.004		. 6
	A		500		gtz-chi-ep-py gtz-chi-ser-py-cp		- drostic drop in amount of cp and quarta sericite bands, in this		100									
	10°-90° K	500			gtz-py-chl gtz-ser-chl-py	0.7	interval	497		77	5430a	.12	<.01		1.90	.003		- <
	ND		50°	1"x1	8tz-ch1-p. 8tz-ch1-py-(cp)				100									
	to	510			Stz-Py-chl Stz-Py-chl-cp	4.5		507		73	54303	.07	<.01		1.42	.005		٠.
he 3' of Quartz Sericite Chlorite yrite Choloopyrite Alteration hase, from 513' 10514', supplies host of the Pytop for the intere 10ff interval.	* (S)	H	10°	Ln x/ 4	itz-py-carb-chi gtzchi-ser-py-cp-carb gz-py-cp-ser	3.D) rai	-	160	67	54304	41	.0(5.12	004		.10
ntre 10++ Interval.	76-80° X	500		8"x"	stz-chl-ser-py-(cp)			517					.01		0,10			
	700 (И	30 1	"60"x2	SLZ-chl				100		54 <i>3</i> 05	10			270	205		
<u></u>	nod-str				tz-chl-py-ser-cp tz-chl-ser-py-cp.	1.5		527		63	3 1305	.13	10.>		2.70	,005		-1

		GRAPHIC					PROPERTY) DIAMO						94-5 ASS		SULTS		1	100
ROCK TYPES and ALTERATION	Foliation angle and intensity	TOG	Structure (veins) < to core	Width of Structure	Mineralization	Est.	Leachable Ox. Lim. Zone	Footage Blocks	Estimated Coss Recovery	R.Q.D.	Sample	%	%	%	96		oz/too	a Esti
	1 1	E Footage &	axis	(veins)		Py	Supergene Remarks				Number	TCa	OxCu	CNsol en Oxfes	SolFe	MoS2	Ag	000
	NO +0		40° 60°+°70° 40°	5"+00"x3 5"+1	stz-chl-ser-py-cp stz-(chi)	۷.5		537	100	73	54 <i>3</i> 06	.09	<,01		1.77	,003		
	1				537' ★ E.O.H.			1										+
					Dick Poon													
								1										-
																		T
								1.										
* # * * * * * * * * * * * * * * * * * *																		
							(40)											
												-						-

LOCATION GIBRALTAR WES		BI	EARING_		IMITED (McLEESE L		48,21	6.19	_ 001	E SIZE	3_ N/C				ED BY				
DATE COLLARED			NGTH 6	07 feet	LONGIT	UDE (SC	LE OF	LOG_	1"=10	1	DATE	Aug	sust 1	17,199	14	
DATE COMPLETED		D	P - 90°	:		ION_	2996.15	ft .	RE	MARKS									
ROCK	TYPES :	and ALT	ERATION S	YMBOLS	4	T	•					BOLS and							
MINE PHASE TONALITE			27 44			₹	badly broken rock fault gouge increase decrease minor amount	alm = alteration az = azurite bo = bornite brx = broken ru bx = breccia carb = carbonate cc = chalococia chl = chlorite	cç ga pock gr ga ga he he	25 = disp 25 = cpid 25 = gought 26 = garn 27 = gyp 28 = ber 29 = limo 20 = ma	lote ge et sum natite mite	Mo = m mod = m ND = no pied = pied py = pyr qtz = qua	olybdeni oderate on directi dmontite rite artz	te sp st ional St te	r = serio h = spha r = stron Wk = sto t = tetral k = wea	derite g ekwork aedrite			
PYRITE CHALCOPYRITE ALTERATION PHASE				Ш		1,	very minor amou	nt cp = chalcopy		al = mal		sauc = sau							
		GRAPHI	c				BOTTO Leach Cap	M DEPTHS						ASS	AY RE	SULTS	,		
ROCK TYPES and ALTERATION	Foliation	TOG	(veins)	Width	Mineralization	Est.	Leachable Ox.	71 feet	Footage Blocks	Core Recovery	R.Q.D.	Sample	%	%	96	%	%	oz/ton	Estimated
ROCK TIPES and ALTERATION	angle and	48	< to core	Structure (veins)		Py	Lim. Zone Supergene	96 fret		,		Number	TO	OxCu	CNsol	Callie	MoS2	Ag	Cu Grade
		Z Footage	E .			-		marks					100	U.C.	OxRes	Sout	111002		
	-																		
				4	hem-(chi)		CASING				-		_						
MINE PHASE TONALITES 62' to 607' The Tonalite in this hole is similar	100		40°	to"x1	ep-gtt-ch1-(lim)	1.5	- Shears ar Stained by there is o	, hem and inly an	67	100	60	<i>5</i> 4311	.01	4,01	<01	.98	002		.01
to Toralites seen, in other hules of Gib West. Again the Tonalite's	1 - 0	170	800	1"× 1	ep-stz-chl-((px))-((1im))		of lim+M	appearance							,	1			
mineral agy consists of plant 9/2+ chl. Out of the three minerals the. Plas is generally the dominant one, that has undergone some degree soussurite alteration to appear as a yellow-green. As for the chl. it appears as small altern bless, that			50° 50° 40°	+ "101" x D	ep-gtz-chl stak ep-gtz-chl-(hem)) stak ep-gtz-chl hem-chl	1.5	- from 731 grain siz the Tona significa	to 75' the ses within	<u>-7</u> 7.	100	50	54312	.01	۷,0۱	١٥.	.89	.003		,oi
1+ appears as small areen blobs, that depending on the amount of deformation	1	08 K	140°	16 1 3"v1	gtz ochl-cp	-								1		1			
are often oriented. The chi also fluctuates in content throughout	1	1	600	4"41	ste-chl-ep		de la confi			100		E11012							
the hole.	70-90	(40°	1000 C 10	chl-(ep)	4.5	Av. Want to		87	Per	60	54313	.03	4,01	<.01	.76	.002		.04
	wk-str	6.	80°	411 × 1	gtz-pied-ep-carb-chl.	100			de fi	Prince	43								- 68
TE GENOROUS STERNIE IN	1	10		15 POWER	The state of the s	SHAP.	All the second second		SVACIO	Harris Land	29/10/	V = N/=	1000						

	GRAPHIC					BOTTOM DEPTHS		1			94-	AY RE	SULTS		*	
Foliation angle and	LOG	Structure (veins) < to core	Width of Structure	Mineralization	Est.	Leachable Ox. Foots	Estimas Com Recover	R.Q.D.	Sample	%	%	%	%	%	oz/ton	Estim
	Footage of	axis	(veins)		Py	Supergene Remarks			Number	TCu	OxCu	Chisol ea OrRes	SolFe	MoS2	Ag	Grad
ЫО 40, 70°.40°		40° 70° 50° 20°-90°	15"×: 4"×1	gt: chl-py-(cp) chl-gtz-carb-cp-(py)	۷,5	most of the corresides in a children voin, at 95%.	99	57	54314	.07	4.01	<,01	1.07	,005		
talk-image	100	70°	7044	gtz-chl-ep		-there are signs of deformation and mid-	100	-								
60°-90° mad-str	110	40°	½"×1	gtz-carb-chl	4.5	leaving a few relict +	7	73	54315.	;o2	<,01	اه.>	.93	.002		
Ди	120	40° . 70°	古"×1 元"45"×1	gtz-chl-py-cp ep-stz-chl-pied-py	₹.5	-the bonalite in this interval, has a vegsy appearance.	99	40	54316	.06	۷.0۱	<.01	1.54	,002		
ALI X		50°+060° 40°	t "×3 5"+α2"×1	ep-gtz-pied-chlstut gtz-ep-chl-py-(cp)	<i>2.5</i>	127	98	77	54317	.03	۷,0۱		1.30	,003		
. AN	N	40°. 40°4070°;	す"×1 \$"+0な"×2	gtz-chl-((cp)) gtz-chl-(cp)	4.5	-there are a few examples of offset ep veins, which may imply some determation	99	60	54318	.02	<.01		1,62	.008		-0
20	140	90"	5"+0 1"x3	ep-gte: chi stut ep-gte-chi-py	₹,5	- it is evident that there is a dual generation of veining, in this interval, as atzay	100	77	54319					.001		.0
	110 40 70 90 0 110 110 110 110 110 110 110 110 1	Foliation made and innomination and a second	LOG Structure (veins) 100 10	LOG Structure (veins) Width of Structure (veins) Structure	DOG Structure (veins) Width of Structure Structure (veins) Structure (veins)	Foliation Foliation First Firs	Local Cap Food Remarks Remar	Document Color Structure Color C	Local Cop Recognism Structure (velos) Mineralization Est. Sec. Leach Cop Declarable Ox. Recognism Blocks Blocks Structure (velos) Velos Structure Sec. September Sep	Structure Stru	DOG Structure (veins) Mineralization Est. Structure (veins) Structure axis Structure S	Dod Color Color	100 Structure (velta) Velta Ve	Document Document	LOO Structure (veinor) S	Local Structure World Color Co

		GRAPHIC			IMITED (McLEESE		BOTTOM DEPTHS	T					94-	AY RES				
ROCK TYPES and ALTERATION	Polistics angle and intensity	FOG	Structure (veins) < to core	Width of Structure	Mineralization	Est.	Leachable Ox. Lim. Zone	Footage Blocks		RQD.	Sample	%	%	%	%		oz/ton	3 Esto
		Footage .	axis	(veins)		Py	Supergene Remarks				Number	TO	OxCa	Chirol on OxRes	SolFe	MoS2	Ag	G
	ND.		= 80%,90° - 90° - 90°	ま"+037×5 た"×3 16"×3	epgtz-chlstat gtz-chl-py-cp ep-gtz-chl	<.5	- dispersed diss coppy throughout this interval trakes Cu grade estimation somewhat difficult	157	100	83	54320	.20	اه,٠		2.41	.002		
	1	160	700	15"x1	stz-cp-py-chl													
	JN.		90° 50°	方"×"	ep-gtz-chi gtz-ch/-py				100		54301.							
-	ME				ep-stz-chi	₹.5		167		83	54201.	.07	<,01		1.04	100.		
		170	504070:	16"x2	8tz-ch1-cp-Py													
			70°4090°		ep-gtz-chi słwk Stz-chi-ep				99									
	ND		1	22.0	stz-chl-py-cp	4.5	The Paris	177		73	54322	.05	.01		1.23	100.		
		180	504660	∂"408"YƏ	gtz-ch1-((cp))													
om 188' to 190' the chl content is increased and is approaching to Dark Chlorite Alteration ase.	ND &		1	13.00	ep-gtz-chi	<.5	-from 180.5 to 1871 is a fault 20ne, with some sousy intervals but no sign of day hem. However there is the	187	c _{IO}	13	543B	.08	4,01		1.85	,001		
	L K	190		루"×1	gtz-chl-carb		reappearance of lim - in the fault zone.											
	. M		1 1	shears x Y	chl-(py) gtz-chl	4.5			99	E)	54304	.07	.01		.78	.001		•
	K	200	200	3"×1	ep-gtz-chi			197	\dashv	~		.01	,01	ľ	.10	.001		
	1	1000	40°	2"×1	5#2-ch1.	1	-from 206' to 208' most .		- 1				-	-	-	-	-	
	ND K		40	5"x2	Ste-chi-py		of the cp can be seen spread out along. Chl shears. Also, some		100		-113.75	211						
h da l	to 70-98		400	tc "x 2	gtz-chl-py-cp	4.5	bo altering tock within this interval passibly.	207	B.	73	54325	.24	<.01	ó	2.06	100		
· ·	WK D	210	700	3"×1	gtz-ch1-PY-CP .		This thier out passibly.		100	1500	111 000-		-125	00		242	1	

		GRAPHIC					BOTTOM DEPTHS	I					ASSA	Y RE	SULTS			
ROCK TYPES and ALTERATION	Foliation angle and intensity	LOG	Structure (veins) < to core	Width of Structure	Mineralization	Est.	Leach Cap Leachable Ox. Lim. Zone	Footage Blocks	Estimated Core Recovery	R.Q.D.	Sample	%	%	%	96	%	oz/ton	
		E Footage	axis	(vcins)		Py	Supergene Remarks				Number	TCu	OxCu	CNsol on OxRes	SolFe	MoS2	Ag	G
	ND +0		500	16"xa	8t2-ch1-py-ep ep-gf2-ch1-cp	₹.5		2) 7	99	70	543a6	.06	.01		1.50	,00[
	70°-90° WK-Wod	320	700	16"×3	5/2-chl-cppy ep-pid-att-chi		La Las du la	217										
ere are bands and interval (2081 - 2311) where the Tonalite's ystal size is significantly smaller an normally seen in a Tonalite is grain size may be attributed some localized crystalization	· ND		70° 10° 30°	16"×1	ep-stz-chl-py stz-chl-py stz-chl-py	<.5	-some microscopic specks - of cp can be seen - intermixed with the py.	227	100	73	54327.	:01	<,01		1:31	.001		
some localized crystalization - ature or possibly some deformation - ent.		230	90%30		3te-chi-py-ep-((cp))				-									-
	ND to 70°04		40°	\$"×	ep-gtz-pied-chl-(py) gtz-chl-py	<.5		, 237	95	67	54328	اه.	١٥.>		1.15	.002		
	-	240	30° to 40°	15"×2	ep-gtz-ch1-((py))		-very little pyorcp visible in this interval-											-
	du				ep-gtz-pied-chi pied-ep-gtz-chi	<.5	- most of the py seen is smeared out along well developed chi shears	247	100	80	54329	.02	<.01		1.57	.001		
		250		+11 X1	Stz-py-chl-ep													
	ND K		400	97x	gtz-chl-carb-py ep-gtz-pied-chi gtz-chl-pied-ep-cp	4.5		257	100	60	54330	.09	<.01		2.16	.002		
	Š	260		1"×1	ep-gtz-chl-py-cp		1											
appearance of the Quartz ite Chlorite Aprile Chalcopyrite ation Phase, in this hote. The tz Sericite unit appears as small y bands that alternate with the te. Within the Quartz Sericite unit ist of the coppy, for the loft internal	AN .	F	604° 40° 1	\$"405"x3	pled: op-5tz-chl gtz-chl-ser-Mol-Py-cp gtz-chl-ser-py-cp gtz-ser-chl-py-cp	1.5	-at 262.5' is some not tel? possibly.	267	97	70	54331	.19	.01		3.18	.032		CO-0-1000 CO-0-1000

		GRAPHIC					BOTTOM DEPTHS						ASS	AY RE	SULTS		*	
	Polistica	LOG	Structure (veins)	Width		Est.	Leach Cap Leachable Ox.	Footage	Estimated Coro Recovery	R.Q.D.		%	%	%	%	%		Γ
ROCK TYPES and ALTERATION	angle and intensity	4 6	< to core	Structure	Mineralization	Py	Lim. Zone	Blocks	Recovery	EQ.	Sample Number		-		70	70	oz/toa	40:
		E Footage &	axis	(veins)			Supergene Remarks	-			Numoer	TCa	OxCa	Chies ea Oxfors	SolFe	MoS2	Ag	Gra
			70"	3"x2	gtz-chl-ser-py-cp			-									-	
	1 1		80°4090°	3" to 3 x2	gtz-chl-cp-py	-1		1	100		-11000							
	INP				Sta chi ser-eppied py	0.7		377	10000	73	54332	.12	4.01		2.26	100.		1
1	-1 1	800						1										
	1	4		6" × 1	epgtz-chi-py gtz-ser-chi-py-cp		-some signs of minor	-]				_			-			\vdash
	1	1 14	0010100		Stz-py-chl		-some signs of minor deformation, in this interval.	1	100									
	J. ND		700	2"×1	gtz-chi-ep-py	1.0		100-		83	54333	:04	10.5		2.41	.001		
	. i	1 H	Section 1					287	-				"					
	1) OPGK	B16-07-06		ep-piad-gtz-py gtz-ep-ch1-(py)		- poorly developed shears											L
] [50	3 71	D-z eb cui-cha)		ioints.	1	100									
	1 ND					<.5	- this barren interval	1		80	54334	02			1.16	.001		١.
	1 to K	,	5°	Lat.	ola III s		is a prototypical Mine Phase Tonalite.	297		00	5 1554	.00	1,01		1.16	.001		1
	-		ab°	信"X1	stz-chi-py atz-chi-ep			1										
	4 1	II k	50°	龙"×1	gtz-chi		-very little veining seen	7	100					Partie No.	TEANE			
	au E							1	100	-12	-1122							١.
	1 to K		200	大"×1	stz.chl-py	<.5		307		13	54335	.04	10.5		1.72	,001		
	Jwk-modk	310		16	90201179			1		.								
	1		30" .	16″×∂	gtz-ch/- Py		-some hem stained	7	Ima									
	ND K	1 11	70°	class ca	chl-hem-py		Joints +shears, in this interval	1	100									
	7 to K	1 11				<:5		317		73	54336	,03	10.>		1.17	,001		
	40°uK	220	-10	4 * '	StZ-ch1-Py-cp	- 1											- 4	
	 .	130	300	5"×1	gtz-chi-ep-py	-		1	-			-		-	-			-
	1	1 H		L"×1	gtz-chi-cp			1	100									
	IN S	1 [1		3"×1	ep-gt z-carb-pied-chi	4.5		1		43	54337	.02	<.01		1.51	100		
	402-70%		10°1090°		gt=(wggy)-carb-ch1			1327		0							100	

		GRAPHIC					BOTTOM DEPTHS						94-E		SULTS			
ROCK TYPES and ALTERATION	Polistion angle and intensity	LOG	Structure (veins) < to core	Width of Structure	Mineralization	Est.	Leach Cap Leachable Ox. Limi, Zone	Footage Blocks	Estimated Core Recovery	R.Q.D.	Sample	%	%	%	%	%	oz/ton	- E-season
	1	Footage es	axis	(veins)		Py	Supergene Remarks				Number	TCu	OxCu	Chical ea Oxflor	SolFe	MoS2	Ag	G
	M to gowk	444	70°	1 "x 1 1 1 1 1 1 1 1 1 1	8tz-chl-py-ep 8tz-chl-py chl-elay-py	₹.5		337	96	37	54338	.03	١٥.٠		[.99	۵۰۰,		
•	17000	340	60° 40°	"x1 "x1 t"ya	ef-atz-chi gtz-chi				99									
	NO.	350	30°	27.630	gtz-chl-py gtz-carb-chl-py	₹.5		347		50	54339	.02	<.01		1.23	100,		
here is a noticeable transition rom weak to moderate saussurite teration, in the mine Phase and the Chi darkened analite.	ND &			Σ _{tt} × i	chl chl-gtz-carb	٠. ٢.5	1	357	98	37	54340	,ο⊋	۷,0۱		2.57	.007		
	aD.		70°480°	· 5"+2	ep-gt 2-pled-corb-hem gt 2-chl-py gt2-chl-corb-py	₹.5	-the large 2.5' epty £2 shows the cross cofting relationship, between the ep voins and gtz voins, very well. As i lis the gtz voin swhich came in later to run through the ep voin	367	95	50	54341	.02	١٥,>		1.65	.010		
thin the fault zone the Chl rkened Tonalite has been tensively altered and there is increased this content, which opproaching the Dark Chlorite erotion Phose.	. UN	▲44 ₹			gtz-chl-ep-cp-py		to 380.5', with some them stained gauge.	377	87	3	54342	F0.	١٥,>		2.56	.010		
	UD +0		lo l	3"×1	5tz-chl-py-cp	<.5		387	93	43	54343	.05	<.0l		2.51	.006		

ROCK TYPES and ALTERATION at 409' is a 2" section of heavily hem stained fault gouge.		GRAPHIC	1000				BOTTOM DEPTHS					No.	ASS		SULTS			
	Polission angle and intensity	1.OG	Structure (veins)	Width	Mineralization	Est.	Leach Cap Leachable Ox.	Footage	Estimated Core Recovery	R.Q.D.	Sample	%	96	%	%	%	oz/ton	
	intensity	Footage	< to core axis	Structure (veins)		Py	Lim. Zone Supergene		- Lunuy		Number	TCu	OxCu	Chisal ea Ordres	SolFe	MoS2	Ag	Cu Cu Grade
	-	KI L	400	±"x1	stz-chl-ep	-	Remarks - heavy her staining of		-			-		OxRes			-	_
	1	1	30°	DOMEST OF THE PARTY OF	stz-chi-py		the sheart joints continues through out this internal.		100									
	I NO		30*	1 XI	Stz-chi-py	0.6	Through out this merion.		100	47	54344	,06			. 9.0			.04
	502-70		5	shear	hem-(chi)			397		7.7		,06	<.01		1.80	,002		
	- mad	400	500	In xI	gtz-chl-ser-py-cp													
at 4091 is a 2" section of	1		600	4"×1	gtz-ch1-cp		resides within the -		100									_
y hem stained tault gouge.	1		900	3"41	Stz-ep-py-Ma		Chi darkened Toralite 7		100		1/2							
	ND		400	4"×1	Stz-carb-chl-cp	1.5	interval. There are 3" bands of nearly	11		43	54345	.45	.01		3.05	.003	-	,80
	50.800	1					solid op otherwise most	407										
	wk-mod	7 410 /			ep-gtz-(of the cp is seen diss											
4	1 1		400		stz-chl-cp-hem		-fault zone from 413' -		95									
	40°-80°				gtz-chi-py		cp chunks mixed in		'		-110111						-	
	wk-mod	(7	300	‡"×1	8tz-chi-py	₹.5	with the debris.	417		47	54346	.06	1.01		1.63	.001		.04
	1	1	40° to 70°	±"×2	gft-py-chl			7										
there are a few small bands .		7 450K	3.09					- 1	- 1	_							_	_
(1"to 4") of Quarte sericite Worlde					gtz-chi-py				100									
Epidote Chalcopyrite Alteration Phase.	lun [X Y		1 1 × 1 € 1	gtz-ep-chi		1				54347				17.0			
that contain most of the internal's	to		500	4"×1	gtz-ser-chl-ep-cp-(A)	<.5		427		83	5 15	.06	4.01		1.76	.001		-03
	160-90° K	430 V	203	8 1	Sta-chl-py-(cp)]											
	K				gtt-carb-chl		- the co+py are						-	-			-	
		7 -	85°		gtz-chl-py		well mixed in this]		100					- 1				
1	ND 1				gtz-carb-chl-py		interval.			80	54348	,02			.,,,	/		
	to K					0.7	1	437	_	°C.		,02	<.01	1	1.41	.001		.02
N. H. A. L. S.	50°-90° K	440	1271		hem-chl-carb-(py)		1	.			- 1				- 1			
	·K	1 1	400+0500		gtz-chi-py		- the glz content -	- 1										
	k	1 1		0.000000	ep-gtz-chi		is noticeably lower]		99			- 1						
	10°	3tz-chi-py	4.5	in this intervals Tonalite.			57	54349	.08	4.01		1.91	100		08			
	k	1 11						447	-	"	Late Control							
V 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5187	450	70° +680° 1	6"tot x3	gtz-chl-py-(cp).	005	24M2 22 SVIII I E 11 E		-			0.5				34		

Hole No. 94-54 Page 8 of 10 GIBRALTAR MINES LIMITED (McLEESE LAKE PROPERTY) DIAMOND DRILL LOG ASSAY RESULTS BOTTOM DEPTHS GRAPHIC Leach Cap LOG Structure Width Est Leachable Ox. R.Q.D. 02/100 (veins) of % angle and intensity Mineralization Blocks Sample ROCK TYPES and ALTERATION Lim. Zooc < to core Structure Py Chief Number axis (veins) Supergene TCa OxCu SolFe MoS2 Remarks gtz-cp-py-chl 30° to 90° 800 5tz-chi-py 100 53 54350 411 1.27 .001 .03 .04 02 16"×1 gtz-chl-py 4.5 300 457 ep-stz-chi 400 4"x2 Ste-PY-CP 100 16"×1 gtz-chl-ep-cp .10 50 54351. 10. 2.18 .001 DIN 0.7 467 glz-chl-py-ep-cp the high level of deformation, in this interval, has destrated most of the structures from 474' to 482' the chi shears x darkened Tonalite has been severely deformed and altered. Also, 98 carb- gtz-chl 30 54352 ND 2.34 .002 .23 the amount of foliation and chi hast 26 4.01 there are some nottled 477 increased in this deformed zone . 10 There also is some minor carb bicks of cp that can be seen from 471.460 70375 alteration visible. -numerous bonds and intervals of gtz-carb-cp-py-ch! 97 Quartz Sericite Chlorite Pyrite du Chalcopyrite Alteration Phase , that 54353 1.82 .002 101 .07 40 alternate with the Tonalite, 1.5 487 70-80 from 480' to 530'. 600 850. H"+07"xa gtz-ser-py-chi-cp 100 Stz-chl-ser-cp-py 500 W 54354 .16 2.18 1.001 87 10.01 1.0 497 40 gtz-py-chl 50 mad hem-carb 9,2-ch1-py gtz-chi-py Du 54355 .04 1.01 1.04 1.002 4.5 10 hem-carb 507 40°mad

66 .13 0.17

Hole No. 94-54 Page 9 GIBRALTAR MINES LIMITED (McLEESE LAKE PROPERTY) DIAMOND DRILL LOG ASSÄY RESULTS BOTTOM DEPTHS GRAPHIC Leach Cup LOG Structure Width Est. Leachable Ox. Com OZ/tog RQD. Polistion angle and intensity % (veins) of Sample Mineralization Blocks ROCK TYPES and ALTERATION Lim. Zonc < to core Structure Py Chief ea Oufkes Number axis (veins) TCu OxCu SolFe MoS2 Remarks -practically all of this Interval's op is found in the Quarte Sericite unit from 515.5'to517! 400 gtz-chi-ep-py-cp 4"x1 9tz- ep 100 83 54356 .17 15 401 1.87 .001 40 1.0 100 Stz-chl-ser-py-cp 1.5'×1 50-70 Stz-chi-Py 50° gtz-py-cp-chl 100 gtz-chl-ser-cp-py 40° 54357. 10.5 80: 1.002 .08 1.00 ND 4.5 527 stz-ch1-ep-py 50° 8" 54 x2 gtz-chl-cp 16"+0 2"x4 gtz-ch1-py-cp 4001060 100 M 77 54358 .11 gtz-chl-ser-py-ep-cp 0.6 1.01 1.60 .002 .09 537 to 50°wk Stz-ch1-(Ay) 30° Stz-chl-py 100 pied-gtz-ep-carb 1.48 .004 .05 4.5 54359 .06 4.01 W Ste-chl-ser-py-cp 547 40 TOWK 550 40010500 Stz-chl-Py 50° 9tz-chl-ep-((Ay)) 100 404.70° 16143 922-chl-py-(cp) UL .07 4.01 54360 1.36 .009 4.5 .02 557 10 Stz-chl-py-cp 58 WK 40010500 sharp increase in the amount of cp seen in gtz-chl-Py 100 this interval versus the previous interval, with most of the cp blebs between 565' to 567'. 400 gtz-carb-chl-py 2.14 .004 .31 54361 4.01 43 73 33"+05 x glz-chl-ser-cp-py 1.0 800 567 90° 25" 71 gtz-ser-ch-py-cp

0.30

Hole No. 94-54 Page 10 of 10 GIBRALTAR MINES LIMITED (McLEESE LAKE PROPERTY) DIAMOND DRILL LOG ASSAY RESULTS BOTTOM DEPTHS GRAPHIC Leach Cap LOG Est. Width Structure Leachable Ox. Core R.Q.D. (veins) of % Mineralization Blocks Sample ROCK TYPES and ALTERATION angle and intensity Lim. Zonc Structure < to core Chlool est Oxfics Number SolFe MoS2 axis (veins) Supergene TCa OxCu Remarks gradational boundaries between the chi darkened Tonalite 9000 gtz-ser-chl-py-cp 100 and the Quartz Sericite 3.61 .004 0.62 2.0 67 54362 .37 .01 ND 800 Chlorite Prite Chalcopyrite Alteration Phose. gtz:carb-(cp) 577 gtz-ch1 580 atz-ch-ser-cp-py gtz-chl-py 100 30° stz-chl-ep .15 54363 1.52 ,008 1.5 :16 900 10) gtz-chl-py-cp MD 587 9tz-Py-cp-chl gtz-chl-py-cp 400 99 400 16"+0+"x4 gt 2-ch1-py 2.02 .004 54364 .12 .12 60 4.01 ND 14 4×1 gtz-cp-carb-chi 1.0 90. 597 atz-chl-ser-py-cp 6001 -this entire interval is composed of the Quartz sericite Chlorite -a+ 600' is a 3"wide. 3"x1 99 gtz-Py-cp band of Py. .157 Pyrite Chalcopyrite Alteration Phase, with a couple 6" sections of childerkened Tonalite that are visible -some cp may be finely mixed with the py in this 6.91 .004 54365 .19 300 8tz-py-(cp)? 4.01 607 interval 607 女 E.O.H. Dick Poor

G.G 0.5

Hole No. 94-55 Page No. 1 of 11 GIBRALTAR MINES LIMITED (McLEESE LAKE PROPERTY) DIAMOND DRILL LOG LOGGED BY G. Grubisa LOCATION Gibraltar West 48.547.66 LATTTUDE (N) BEARING DATE August 22, 1994 42.718.63 1"= 10" Avaust 1, 1994 607 SCALE OF LOG DATE COLLARED LENGTH LONGITUDE (E) August 1, 1994 -90' 2956.75 ft DATE COMPLETED DIP ELEVATION REMARKS ROCK TYPES and ALTERATION SYMBOLS MISCELLANEOUS SYMBOLS and ABBREVIATIONS ser = sericite MnO2 = pyrolusite badly broken rock STZ-CARB-CHL ALTN PHASE QTZ-EP-CHL ALTN PHASE az = azmite cp = cpidote sph = sphalcrite Mo = molybdenite bo = bornite str = strong gg = gouge mod = moderate bex = broken rock StWk = stockwork gr = garnet ND = non direction CHL DARKENED GTZ-SER-CHL-PY ALTN PHASE tet = tetrahedrite gyp = gypsum MINE PHASE TONALITE carb = carbonate wk = wcak py = pyrite decrease ank = ankerite. qtz = quartz NORMAL MINE PHASE TONALITE QTZ-SER-PY ALTN AHASE chl = chlorite mag = magnetite zx = rock cp = chalcopyrite mal = malachite sauc = saucerite BOTTOM DEPTHS ASSAY RESULTS GRAPHIC Leach Cap LOG Structure Width Est. Leachable Ox. 50 Core (veins) of R.Q.D. oz/ton % Mineralization Sample Blocks ROCK TYPES and ALTERATION angle an 75' Lim. Zooc < to core Structure Py Number CNsol axis (vcins) Supergene OxCu TCu SolFe MoS2 Remarks CASING TO 24 24 (24-607) 24'-28' -> QTZ-CARB-CHL ALTN. 75 70-80 otz-carb-chi alta w lim-MnO2 -intense corb-lim alta. 4.5 54401 .05 01 Normal and chi darkened mine phase tonalite-.03 <.01 1.53 - core is locally vujby in some w subsequent alth phases. Qtz-carb-chl alth possibly more of an oxidation brktx -> MnO2 - (mal) is prominent a the beginning of hole. feotore than an alln feature. 30 Dre grade op mineralization occurs from 280-4500 some weaker zones inside of the <.5 54402 .07 03 .06 001 larger zone. Most of the mineralization occurs 37 brkrx-> lip-MnO2-ank as gtz-ser-chl-py shears, ranging from My to 18 in width, hosted by both the 38'-62' -> RTZ-CARB-CHL ALTN - Intense ourb (ankerise) alto normal t chil darkened owne phase tonalite. mal-lim-Ma02-ank numerous glz veins have A possible new mineral to Embroltor 80 inundated this zone as opposed 40-90 10' gtz-carb-chlatta w lim-MnOz .08 has been identified. Bournarite (PbCuSbSg) to absense of glz veins in upper 54403 .12 .07 2.66 .003 10. corb zone - very strong faliation w ofz tp) teles ares never desert na

Foliation angle and intensity ROCK TYPES and ALTERATION Lim. Zone < to core Structure Number axis Supergeac (vcins) TCu OxCu SolFe MoS2 Remarks QTZ-CARB-CHL ALTN PHASE CONT'D - some areas are folded 2" <4 gtz-ank-((cpl) 70-90 2,17 ,002 <.5 54404 .02 .01 .04 .04 gtz-carb-cal alta willia) 70-90 str etz-carb-chl altn 100 54405 :05 .01 1.98 .002 10. 03 4.5 67 ND 93->1im 68-85 -> minor ep alta but not to a point of gtz-ep-chlatto phase. lin-clays. 100 4.5 54406 .04 4.01 4.01 1.36 .01 77 39 brkrx 1/6×3 100 chl-py-cp 60 70 54407 4.5 .04 4.01 4.01 1.90 .05 V 2 chi-py 50 ptz-carb. 30 otz 100+ 54408 (.01 | (.01 | 1.88 | .001 gtz-chl .08 1.5 10,

4.5

GIBRALTAR MINES LIMITED (McLEESE LAKE PROPERTY) DIAMOND DRILL LOG

Mineralization

Est.

GRAPHIC LOG

NO

ND

50

gtz-chi-py-sp

Structure

(veins)

Width

BOTTOM DEPTHS

Leach Cap

Leachable Ox.

Hole No. 94-55 Page 2 of

R.Q.D.

Sample

Blocks R

97

107

95

54409

03 4,01

ASSÄY RESULTS

oz/ton

.05

1.66 .001

Hole No. 94-55 Page 3 of GIBRALTAR MINES LIMITED (McLEESE LAKE PROPERTY) DIAMOND DRILL LOG ASSAY RESULTS BOTTOM DEPTHS GRAPHIC Leach Cup LOG Est. Structure Width Blocks Recovery Leachable Ox. % Py RQD. oz/ton (veins) Foliation angle and intentity Sample Mineralization ROCK TYPES and ALTERATION < to core Structure Number axis (veins) OxCu Solfe MoS2 Remarks bokox/gg -> hela-corb 100+ vussy glz-carb 4.5 43 54410 1.80 .01 .02 4.01 1.001 hem in trac. 1001 chl-gtz-fpy)-(cp) gfz-carb-chl-fy-cp. 60-70 4.5 30 1.49 54411 ,001 .05 05 4.01 127 ND 100 chl-py 1.54 4.001 4.5 54412 1.04 4.01 ND .03. 157 100 145.5-146.5' > possible fine
grained introsion of border
phase diorite. Tplas, chl - Uglz 54413 .05 1.01 1.48 .001 .04 MK 2" chi-py-cp. NO ISI'- 54' -> DARK CHL ALTN PHASE 100 20-60 chl-gtz-py-cp-carb folded+ mottled .30-10 gtz-Ghll-cp str 54414 80 2.47 .001 .30 .33 4.01 .5 157 NA brkrx > (hem) 80 brkex/gg. 54415 .03 1.67 .001 4,5 10.> 10 90 1/2" 14"x2

Hole No. 94-55 Page 4 GIBRALTAR MINES LIMITED (McLEESE LAKE PROPERTY) DIAMOND DRILL LOG ASSAY RESULTS BOTTOM DEPTHS GRAPHIC Leach Cap LOG Est. Structure Width Leachable Ox. Cos R.Q.D. OZ/too (vcins) of % Mineralization Blocks g Sample ROCK TYPES and ALTERATION Lim. Zone < to core Structure Py Chied Number axis (veins) SolFe MoS2 Supergene TCu OxCu Remarks N 173-77' → moderate ep-10.80 mil K-15 ep- pied pied alta & orientedez-pied . 100 60-70 1.75 .002 54416 .02 4.01 .01 veias. 35" 177'- 211' > lesser ep alto 15" 80 chi-gtz-py wahrenge of sied. co vaining continues atils organized orientation. 80 otz-corb-ep. 100 16-8×8 70 ep-612) 1.40 .001 80 54417 ND :02 101 10 4.5 187 10 12" giz-chi 70 ep-chi-(py) 100 50-70 50 2" chl- otz-py ,003 1.5 73 54418 .03 4.01 1.66 .03 WK-197 chi-py-qtz .90 2" 60 3' 54419 01 4.01 1.37 .002 .01 4.5 ND 207 PIKIX 2 hek-rx 211'-20' -> QTZ-EP-CHL ALTN PHASE 100+ Ep stkuk density has increased substantially 54420 1.28 .008 classifying this unitar of z-ey-chlatta phase. ,02 4,01 1.5 .01 ep-pied struk 217 Pied occurs o The ep & the beginning of 40-30 218'-29' > FAULT. 2' 99/6x -characterized by gouge + poorly consolidated. 2. 99/6x 55 core. Hem staining occurring towards bottom part of fault. Slickensides evident on many 54421 1.58 .001 10. 4,5 .03 4.01 fracture surfaces ND 133 228'-43'-> hem staining of core + frac

Hole No. 94-55 Page 5 of 11 GIBRALTAR MINES LIMITED (McLEESE LAKE PROPERTY) DIAMOND DRILL LOG ASSAY RESULTS BOTTOM DEPTHS GRAPHIC LOG Leach Cap Est. Structure Width Footage | Blocks | Leachable Ox. Com R.Q.D. 02/100 (veins) % of Sample Mineralization ROCK TYPES and ALTERATION Lim. Zonc < to core Structure Chiest est Oxfice Number axis SolFe MoS2 (veins) Supergene TCa OxCu Remarks hem staining of core + frac 50-60 37 54422 1.25 :001 4.5 .04 10.> 01 mod brkrx . hem. PIKIX > paw 100 otz-chl 1.15 1.001 37 54423 ,04 10,01 4.5 .01 wKmod 100 70 54124 1.02 (.001 .02 <.5 .01 .01 50 mod 257 Puktx 5'x2 chl-Py 80 6tz-ch1-by 37 54425 .12 4.01 .05 2.14 .001 ND .5 12 x 3 90,60 +30 chi-glz-py-((cp))
glz=chi-py. 11x2 14x2 30 20 py-chl ptz-chl-py-cp 100+ 70 70 54426 .08 4.01 1.38 .001 .09 wK-15 mod ep-chl-py-cp 3/3" 100 70 54427 .15 4.01 1.69 .001 wk-4,5 .18 mod gtz-ser-chl-py-cp 70 5" etz-ser-chl-py-cf

Hole No. 94-55 Page 6 of 1 GIBRALTAR MINES LIMITED (McLEESE LAKE PROPERTY) DIAMOND DRILL LOG ASSÄY RESULTS BOTTOM DEPTHS GRAPHIC Leach Cap LOG Est. Width Structure Leachable Ox. Core R.Q.D. oz/toa (veins) % of Mineralization Blocks Sample ROCK TYPES and ALTERATION angle and intensity Lim. Zono Py Structure < to core CHeek es Oxfor Number axis Supergene (veins) TCu OxCu SolFe MoS2 Remarks ta-ser-shi-py-cp 80 2" ota-ser-chl-cp-py 70 100 2.57 .002 70 gtz-ser-chi-cp-py 54428 .53 10, .63 mod otz-ser-chl-py-cp ofz-chl-sp nex/35 - ham 70 297 297-99 -> SMALL FAULT characterized by hem stained bektx + 99. Hem chl-grz-py staining occurs in fractures until 315. Beker common 100 50-60 boktx + when-earbin frac. 1.55 .002 54429 22 4,01 to this interval. Hem rich .13 modslickensides visible 30 str 12 gtz-chi-cp-(ty) 100 brkrx/gg > hem 310 ez-gtz-hem gtz-chi-py-cz 60 60-10 95 60 gtz-ser-chl-py-cp. 54430 .84 1.01 3.57 .002 .72 1.3 3/3×3 mod 30 ofz-chlogy) 317 otz-ser-chi-co-py .70 gtz-ser-chl-cp-ty 100+ D.P. 50-80 3"x 2 atz ser-chl-py-ca 54431 WK-73 .32 4.01 27 2.70 .004 .28 30 74 × 4 gtz-corb .5 327 mod 15" bekex 165" 70 gtz=ch1-27-cp-Mo 2* lark rx. 331'-344' -> 100 The lithology is still chi dorkened mine 70-80 slight carb alta 54432 03 .04 <01 2.66 .001 phase but carb altn has invoded some areas resulting in the core having a lighter 12 chl-gtz-py-((cp)) all of py comes from the 12 shears towards endofinitions color. Plag content may also be kinher as well. Foliation is strong a 70-80°. atz-ser-chl-py 80 12-ser-ch1-14-69 100 80str 2"x2,1" etz-sor-chi-py-cp 70,70,130 346.5'-55' > mod-str hem 54433 17 4.01 2.38 .001 14 53 stainings of core w ham in Fractures as well. 347 ND PLK LX > pew

Hole No. 94-55 Page 7 of 11 GIBRALTAR MINES LIMITED (McLEESE LAKE PROPERTY) DIAMOND DRILL LOG ASSAY RESULTS BOTTOM DEPTHS GRAPHIC LOG Leach Cap Structure Width Est. Leachable Ox. (vcins) RQD. OZ/ton of Mineralization Blocks Sample ROCK TYPES and ALTERATION engle and di Lim. Zonc < to core Structure Py Chisol ea OuRes Number axis (veins) Supergene TCu OxCa SolFe MoS2 Ag Remarks hea-clay-carb. hem staining in fractures W-1 x8 5-20 3 chl-fy-gtz-(carb) 5 100 .20 .5 2.57,002 54434 .10 10.5 ND 357 4-4-x7 1/2-chl-py-(1cp)) 20-70 2"x2 312.52r-74-c7 60 100 ND otz-ser-shi-py-cp. 60 77 | 54435 | :15 24 5 .001 101 1.80 367 40 368-98' > oftz-ser-chl-py-cp- tornished cp gtz-ser-cht-py-cp & tangenesich affects tin fractures. Double Crush. D. P. 100 40-70 40 ptz-ser-cht-py-cp 75 .68 :5 54436 71 10,5 2.50 .001 50 377 367-69 → stz-cp vein . w abundant coarse cp. otz-co-lehill \$12-chl-14-cp 2' 95 gg w Tser-py-cp-carb-hem 40-70 37 54437 .26 .29 3.23 .001 1.0 4.01 8" gtz-ser-chl-py-cp-(pied) 387 WK 5 hem-carb 60 %"x 6 gtz-ep-py-(cp) 100 40-60 70 1" gtz-py-(cp) ND 4.5 54438 .03 67 10,01 .06 1.85 .001 397 ? brkrx > Them 100 50 mossive up in this shear 7" otz-ser-chl-cp-py-(carb) 54439 .40 .56 80 2.65 .002 10, 407

Hole No. 94-55 Page 8 of GIBRALTAR MINES LIMITED (McLEESE LAKE PROPERTY) DIAMOND DRILL LOG ASSAY RESULTS BOTTOM DEPTHS GRAPHIC Leach Cap LOG Structure Width Est. Leachable Ox. % R.Q.D. oz/ton (veins) % Mineralization Blocks Sample ROCK TYPES and ALTERATION angle an Lim. Zone < to core Structure Py Olisol on Oafkes Number axis (veins) Supergene TCu OxCu SolFe MoS2 Remarks slight hem staining 100 1.60 .005 .14 54440 .10 10,3 WK-417 34x2 otz-chi-cp-tet get silver assay mad brkrx/gg -> hem 421'-54' -> This zone appears to be a 100 16- 1/3 x 35 | chl-py- 9/z-((cp)) distinct mineralized zone that is bounded on . 57 54441 .15 :15 2.73 .002 both sides by a otz-chi-py stank. The "gots" ND of the zone (429-43") consist of of <.01 1.5 427 mineralized chi darkened Mine Phase and the -3"x3 gTz-chl-py-cp 70 430 stz-ser-chl-py alto phase. Co mineralization : giz-chi-py-cp 40-70 242 occurs mainly as fine disseminations but 100 also in small veinlets as well. 67 54442 .80 mod-29 1.5 .01 3.37 .001 etz-ser-chl-py-cp 437 str fiz-chi-py-ser-(lep)) 70-80 tpy mineralization gtz-ser-gy. 100 70 54443 6.42 ,004 07 <.01 .13 str-4.0 447 mod 70 K-4 x10 gtz-py-chl 100 50 15×5 ofz-py-chl 70-58 54444 .04 4.01 4.5 1.44 1.004 mad-03 457 4"x2 gtz-chl-gy 16-16 ×4 etz-chl-py . 100 93 54445 4.5 .04 NO .02 101 1.30 1001 467

.53 p.P. sl.oist

Hole No. 94-55 Page 9 of GIBRALTAR MINES LIMITED (McLEESE LAKE PROPERTY) DIAMOND DRILL LOG ASSAY RESULTS BOTTOM DEPTHS GRAPHIC Leach Cap LOG Est. Structure Width Blocks Recovery R.Q.D. Leachable Ox. oz/ton (veins) of % Mineralization Sample ROCK TYPES and ALTERATION angle and intensity Lim. Zonc < to core Structure Py Chiral on Oxfics Number SolFe MoS2 axis (veins) TCu OxCa Remarks py-chl-jtz r slight hem staining 100 20-70 14.5 ate-corb 73 54446 1.70 4.001 .03 NO 4,5 ,02 4.01 477 gtz-py-chi 90+40 gtz-carb-cp 12:45 100 08 M. 54447 <,5 1,30 .10 101 1.002 487 atz-chi-py ofz-caro-cal chl-py-carb 100 20 60 54448 .06 .004 x.5 .06 1.10 4,01 497 31z-cp-py 500 chl-py-gtz 100 503-04' > well content 80 leading to levereration phase mixed in normal mine phase a thingy venexue the unit - 17 gtz-corb-chi 93 54449 1.21 .004 .08 44 .05 <.01 gtz-chl-py-cp -(carb) 30 507 50 9tz-c9-PY 100 54450 4.5 10,0 .15 gtz-chl-cp-py .10 1.25 .001 50 ND 517 gtz-chl-ep-py 50×2,30 gtz-chl-py-op 100 chl-py-(cp)-gtz 10 4.5 54451 02 (01 1.26 4,001 .05 ND 527

Hole No. 94-55 Page 10 of 11 GIBRALTAR MINES LIMITED (McLEESE LAKE PROPERTY) DIAMOND DRILL LOG ASSAY RESULTS BOTTOM DEPTHS GRAPHIC Leach Cap LOG Est. Structure Width Blocks Recover Oz/too Leschable Ox. R.Q.D. (veins) of % Sample Mineralization ROCK TYPES and ALTERATION Cu Grade Lim. Zone < to core Structure Py Number OxCu SolFe MoS2 axis Supergene (veins) TCu Remarks 95 2.25 <.001 UN ! 11 101 .23 54452 atz-ser-chi-py-cp 1.0 537 otz-ser-chl-py-cp etz-ser-chi-py-cp. 100 08 33 54453 :09 2.30 4.001 <.01 brk rx > hem-(corb) <.5 ND 547 ofz-chl-py-(cp) 30 100 .08 stz-chl-py-cp 54454 N. 5.4 .04 1.18 .002 4,01 ND 20 4.5 100 557 otz-(Ma)) 54" 100 43×7 giz-chl-py-(cp) 40-50 1.04 1.001 .06 54455 .03 14.01 4.5 ND 567 14"x2 gtz-chl 100 54456 .05 4.01 576' -> possible new mineral identifies -> bournanite, (PBCUSBS-), stubby, prismatic xtals as well as discounted grains. Associated wishologyute-.08 Y.," 1,20 4.00 50 py-cp-chl ND 577 2" 60 gtz-chl-py-cp-bournonite? 30 chl-(py) . 100 .01 54457 1.15 .03 1001 4.5 10. ND 70190 14x2 587 gtz

ROCK TYPES and ALTERATION	T	GRAPHIC					PROPERTY) DIAMON BOTTOM DEPTHS				Hole		ASS	AY RE	SULTS		1	
	Foliation	LOG	Structure (veins)	Width	Mineralization	Est. % Py	Leach Cup Leachable Ox.	Footage Blocks	Core Recovery	RQD.	Sample	%	%	%	96	96	oz/toa	
	Foliation angle and intensity	Footge a	< to core	Structure (veins)		Py	Lim, Zooc Supergene Remarks				Number	TOa	OxCu	Chied da Oxfice	SolFe	MoS2	Ag	Ca Grade
	44		60	3"	gtz.	4.5		597	100	97	54458	.02	١٥.		1.35	100,×		.01
	ND- .40 .str	607	ήο	3'	ptz-ser-chl-py-cp	5.0	<u>606′</u> →5"rel solid py-cp vein	607	85	-	54459	.27	4.01		6.53	<.00(.47
	-				Good Awlie													
· · ·																		-
14.	1				н .													
	1 1		i															-

DATE COLLARED August 2, 199		BE	ARING_	_							3 NC	1"=10	, .			· Dic			
DATE COMPLETED Avgust 2, 199	DI		LONGITUDE (E) 42,616.57 SCALE OF LOG '' = 10' DATE August 23,1994 ELEVATION 2973.14 REMARKS																
ROCK	TYPES a		RATION SY			T		M	SCELL	ANEOU	JS SYM	BOLS and	ABBR	EVIAT					
CHLORITE BARKENED AND MINE PHASE TONALITE						誾	badly broken roci fault gouge	bo = bornite brx = broken	eq gg rock gr	= cpid = goo = garo	ge et	MnO2 = 1 Mo = m mod = m ND = no	olybdeni oderate on directi	te sp str ional St	r = serie h = sph r = stron Wk = ste	alcrite g ockwork			
QUARTZ CARBONATE SERICITE DE CHLORITE ALTERATION PHASE DE CARBONALITE	RITE C	HALCOA TION P	RITE HASE			O	increase decrease minor amount very minor amo	bx = breccia carb = carbona cc = chalcoci chl = chlorite unt cp = chalcopy	te lir m	p = gyp m = ber n = lime ng = ma nl = mal	natite mite gnetite	pied = pie py = pyr qtz = qua rx = roci sauc = sau	rite urtz k		t = tetral k = wes	3100 T 1100			
•		GRAPHIC					BOTTO Leach Cap	OM DEPTHS	1					ASS	ÄY RE	SULTS			
ROCK TYPES and ALTERATION	Polintion angle and intensity	i roc	Structure (veins)	Width	Mineralization	Est.	Leachable Ox.	56 feet?	Footage Blocks	Estimated One Recovery	R.Q.D.	Sample	%	%	%	96	%	oz/ton	Estimas:
		g E Z Footage	< to core axis	Structure (veins)	Decreasing Order of	Py	Supergene	marks				Number	TCu	OxCu	Chisol ea Oxfles	SolFe	MoS2	Ag	Grade
		T						anna.											
	1								1										
	1 1								1										
	1-1	+	-			-			1										
MOOTE MANGELES MANG	1		900	÷"×1	lim-chl		CASING	animary structure]				_	<u></u>					_
HLORITE DARKENED MINE.	AN E		170	8 11	1,20, (2)	4.5	have surviv	red the limeuns are very	17	90	3	54461	.07	.05	<.01	341	.002		,0
This unit is comprised of	1 100	20	900		chl-lim-Mno		striated	eloped and .	1			- 1,01	,0,	.05	,.,	3.01			_
Darkened tonalites (CDT). But the CDT, in this hole, has undergone	1		90"	shears x 3	chi-lim-Mno		of cp mi	ce amounts ,xed with bebs	1	45									
some major changes to its appearance. For instance, the CDT , at the start	do to					· <.5	of Py.]		7	54462	10	06	.01	4.70	.005		.0
of this hole is quite vuocy looking	90200		90"	16"x2	Im-gtz-py-chi				2.7	_		6		1.00		1""			
This may be due to the extensive and pervasive lim alteration, that		30			V				1		-								
resulted in creating a more "fregit" CDT and led to the poor core			MI CONTRACTOR	a"x1	lim MnOg-ser-chl gtz (vuggy)-lim-chl-MnQ		-some serici		1	10									
recoveries. Bosides the lim alteration is the chi alteration, which approaches	au	1. K			J 33, ""	4.5			1		0	54463	.13	09	201	4.06	.005		.0
the Dark Chlorite Alfention Phase, in a few spots. A third and		1 1	900	Shears x 5	lim-ser-MnO-chl		0418 Tak		37					100		1,00		000	Ness
minor alteration to the CDT is		H 40	10	J. Jellin									1825		\$5-10	OTHE.	1000	14.6	Tune 199

Hole No. 94-56 Page 2 of 11 GIBRALTAR MINES LIMITED (McLEESE LAKE PROPERTY) DIAMOND DRILL LOG ASSAY RESULTS BOTTOM DEPTHS GRAPHIC Leach Cap LOG Width Est. Structure Core Leachable Ox. % oz/toa R.Q.D. (veins) % Sample Mineralization Blocks ROCK TYPES and ALTERATION angle and intensity Lim. Zonc Ca Grade < to core Structure Py Number axis (veins) Supergene SolFe MoS2 Ag TCu OxCu Oxfes Remarks some mal blebs in the slight carb alteration. 50 the shears. it appears the lim sta-carb/lim 70" may be closely associated ND 40 54464 ,02 <.01 2.53 .003 05 .03 70°+080° 3"+02"12 gtz-castellim-chl with the carb. to 47 gtz-carb/lim-chl 900 1.5'×1 909 50 from 58.5' to 60 QUARTZ CARBONATE SERICITE giz-casb/lim-chl is a chil darkened Torolly 24 "x1 700 94 CHLORITE ALTERATION PHASES ser-lim-MnOg-mal section that contains Sheersx 4 43' to 66' 800 most of the cp+py in this 10ft Interval .08 27 54465 M .01 4.01 3.05 .002 .08 gtz - carblin-chl-(a) This unit is mostly composed of 5.5'x1 Krewioted 57 =final occurance of gtz, with ser+ chi+ carb as. a shear. a at 56', in Shearsky. 10 +0800 the other main constituents. ser- (1,m). (chl) Therefore, due to the high gtz content the unit Tooks the carb content has very resistant and competent. As 88 decreased drastically, while the chi has for the chl+ser+ carb , they normall 31 x1 gtz-chl-carb increased, but the crenulated 37 54466 05 (01 (01 2.62 ,020 .03 are seen crenulated throughout this unit. The carb, in this unit, has the same orange-brown appearance as lim but may crenulation continue. Stz-carb-chl until the Chi darkened tonalite unit is readed: shearsya chi-lim be distinguished by a simple acid test. Both the chitsert there are some hear 61-11m garnetiferous bands 100 40°580° gt 2-carb-chl of chl, running through carb fluctuate in content 57 54467 .02 4.01 4.01 2.04 .006 ,00 this interval. throughout this unit. ND -last occurance of 77 Im , in a shear, at 80° 15"x1 ep-pied-gtz-chi 71'. atz-carb-ch1-(hem) 16'x1 gtz-chl-carb 850 100 EP-Stz-chl stwk 600 54468 att-chl-py-cp 60 13 4.01 4.01 2.72 1.001 .07 600 4.5 to 87 70°-90° wk-mod } 700 9tz-PY-CLI-CP most of the cp blebs 吉"×1 cp-stz-chi 900 have been smeared 100 1x 11 900 chl-gtz-cp out and display a 900 ND 73 54469 .15 1.01 1.01 2.53 .001 foliation, .15 10 ep- pied-chi-gtz-(p)-(p) <.5 97 900 900

Hole No. 94-56 Page 3 of 11 GIBRALTAR MINES LIMITED (McLEESE LAKE PROPERTY) DIAMOND DRILL LOG ASSAY RESULTS BOTTOM DEPTHS GRAPHIC Leach Cap LOG Structure Width Leachable Ox. Core Oz/too R.Q.D. (veins) Mineralization Blocks Sample ROCK TYPES and ALTERATION angle and intensity Lim. Zone < so core Structure Py Chied ea Oakea (veins) SolFe MoS2 TCu OxCu Remarks ep-gtz-cn1-pied-(py) 98 ep-pied-Stz-CW 54470 04 (01 1.95 .001 53 4.5 .01 als 107 pied gtz-ep-chl-(py) gtz-chl-cp-py ep-gtz-chl sluk 100 54471- :05 4.01 1.62 4,001 Du -01 ep-gtz-chl-py 4.5 117 there is quite a variance in the grain sizes of the minerals. ep-gtz-chi 97 ep-822-chi 73 54472 ND In the Tonalite, which may be related to the 1.01 101 1.10 100 101 ep-chi-gtz Crystalization of the 7004080 ep-gtz-chistwk 100 300 stz-chl-py 54473 4.5 .02 1.01 1.22 gtz -chl-py 93 1001 -01 SU 300 137 16 to 3 ya 18p-gtz-ch1-(py) stuk extensive epopied alth throughouthis interval. xthere is some soft, 99 hem-chi-carb brown sph? associated with a few py blabs and gtz-carb-chl-py-sph? 54474 10" 1.54 .001 the ep stringers. Therefore a Zn assay should be .02 4.01 .01 30 DN done from 140' to 190'. Strep-chi-(py) -from 163' to 158' the ep alto has increased enough to make the protolith indistinguishable. Therefore this 5ft interval is a Quartz 98 ep-gtz-chi gtz-carb-chl ND 54475 1.5 1.49 .02 4.01 40 .001 .01 157 Epidote Chlorite Alteration Phase. ep-gt=-ch1-(sph)?

Hole No. 94-56 Page 4 GIBRALTAR MINES LIMITED (McLEESE LAKE PROPERTY) DIAMOND DRILL LOG ASSAY RESULTS BOTTOM DEPTHS GRAPHIC Leach Cap LOG Structure Width Est. Leachable Ox. % Core OZ/too RQD. (veins) of % Mineralization Blocks Sample ROCK TYPES and ALTERATION angle and Oz Grade Lim. Zone < to core Structure Py Number (vcins) axis Supergene TCa OxCu SolFe MoS2 Oxfes Ag Remarks next to nil cptpy seen in this interval 99 800 ep-pied-gtz-chi stwk 54476 02 1.08 1001 14.01 .01 ND 4.5 167 gtz pied - chi gtz-ch1 170 10010200 t2-ep-chl 100 70"+0 80" 늘"누나 나 > 3 ep-chl-gtz 700 gtz-chi-sph? 83 54477 :03 4.01 .001 -01 1.60 4.5 40 177 90mids Stz-ep-chl 400 500 -there are 3"toll" ep-gtz-(pied) bands of nearly solid 100 900 ep-gla-chi-pied ep, in this interval. dis 1.04 .001 101 87 54478 10. .01 <.5 187 ep (chi) gtz-chl-py some of the glittchi veins cut across and 100 displace the ep M gtz-CLI-((cp)) stringers, which may give insight about the Tonalite's history. 400 1.03 1.001 54479 10. .01 10,01 to Stz-carb-chi 197 88-90 20040408 mod atz-carb-chl-spl?-py-cp significant increase in chi alth for this interval over the previous ste-ch!-Py possible fault gouge 85 from 209' to 210, with about a foot of nearly, all gouge. But no signs of any hem in the 10.11 interval. 99 700 gtz-chl-py 41'x1 interval. Stz-chl-carb-cp-sph? 54480 400 \$"104"XI .03 .06 4.01 1.75 .001 40 207 11 ×3 stz-chl-py-carb 50° 10°00 Str - some minor discop 95 visible in this interval 50° gtz-chl-ep-cp ND 54481 ep-glz-ch I stuk 70 1.36 .017 06 4.01 .03 4.5 80 to 217 +"×1 70-98 ep-gtz-pied

Hole No. 94-56 Page 5 of 11 GIBRALTAR MINES LIMITED (McLEESE LAKE PROPERTY) DIAMOND DRILL LOG ASSAY RESULTS BOTTOM DEPTHS GRAPHIC Leach Cap LOG Est. Width Footage Estimate
Core
Blocks Recover Structure OZ/ton Leachable Ox. R.Q.D. % Sample (vcins) Mineralization angle and intentity Lim. Zone ROCK TYPES and ALTERATION Py < to core Structure Number SolFe MoS2 TCs OxCu Supergene axis (veins) Remarks gtz-chl-carb 100 63 54482 .01 1.47 .001 10. gtz-carb-chi-ep. 10.5 4.5 to 297 ep-glz-chi 70-90 wK stz-carb 230 ep-gtz-chl 600 100 40° gtz-carb-py 93 54483 :01 4.01 1.58 4.001 .01 700 gtz-chl-ep-(py) 4.5 237 10 gtz-ep-chl 40 70°-80° 4 41 ep-gt2-ch1-py 30" 100 Stz-chl-Py 54484 .05 4.01 2.13 4.001 10. ND 4.5 gtz-chi-ep 200 247 800 8tz-chr pied-ep - cp+ py are well mixed in this interval gtz-chi-pied-ep 70 100 800 chl-gtz-carb-pied-ep gtz-chl-py-(cp) 3"×1 - a few sph stringers alternating with the chl stringers. 54485 .03 4.01 1.46 100 ,02 to 257 chi-gtz-(carb)-(py) 4"×1 50° 68-80 ep-gtz-ch1-(py) stwk 700 古"×a Stz-chl-py 77 54486 .07 <01 199 (001 60° 11×3 gtz-chl-py .01 267 Stz-hem-carb-chl 500 60-90 wag most of the cp comes from a str vein from 277 to 277.5! gtz-chi 100 900 ep-gtz-chl \$"x2 54487 1.88 K,001 10,3 70. .10 80 4.5 to stz-chl-cp co° 60.

ASSAY RESULTS BOTTOM DEPTHS GRAPHIC Leach Cap LOG Width Est. Structure Leachable Ox. Conc R.Q.D. (veins) % Sample Blocks Mineralization ROCK TYPES and ALTERATION angle so intensity Lim. Zooc Chied ea Oxfors < to core Structure Py Number TCu SolFc MoS2 Ag Supergene (veins) axis Remarks some of the gtz veins have xenoliths of the Tonalite, within them. ep-glz-chi 95"×1 gta-chi-((py)) 100 54488 2.80 .001 .25 .38 .01 287 to gtz-chl-carb-cp 14"41 90 W 5tz-chl-ep ep-gtz-chi stuk 80%690 t6"x 3 99 Stz-(cp) る 1.80 4.00 .00 54489 1.02 10,1 1.5 297 3tz-carb-chl-py 80 mod gtz-chl-py once again the ep alteration is quite prevalent, especially in the child darkened tonalite. 99 ep-gtz-chi stuk 800 54490 .01 ep-glz-chistuk 10.> 10. 1.60 70" 4.001 1,5 307 10 to "to t"x3 ep-st2-ch1 stuk 80°UK there is a few lolelos of cp associated with the ep, which is a bit unusual. ep-gtz-pied-cht-cp 99 7090900 ep-gtz-chlstuk to"+05"x? 77 54491 M 01 101 1.31 100 · 02 400 sta (vuggy)-carb-ch 317 ep-gtz-chi stut 80°wk ep-stz-chi the degree of soussurite alth has 100 decreased, while the chi content gtz-carb-ch1 80 54492 has increased in its place, from .01 1.22 .001 10. 4.01 4.5 DW 800 320' to 340'. 327 epatz-ch1 stwk 1 x Cot ep-gtz-(chi) 8t2-ch1-(cp) 00 99

4.5

ND

to

50°

70°

16"+0 5"x4 ep-8t2-ch1 stwk

ep-gtz-chi

GIBRALTAR MINES LIMITED (McLEESE LAKE PROPERTY) DIAMOND DRILL LOG

Hole No. 94-56 Page 6 of 11

67 54493

337

.02

40

1.53 ,001

-01

		GRAPHIC					BOTTOM DEPTHS				ALLY		ASSA	YRE	SULTS			
	Polision	LOG	Structure (veins)	Width	Mineralization	Est.	Leach Cup Leachable Ox.	Footage Blocks	Cost Recovery	R.Q.D.	Sample	%	%	%	%	%	oz/toa	Establish:
ROCK TYPES and ALTERATION	angle and inscasity	Cope &	< to core axis	Structure (veins)		Py	Lim. Zone Supergene Remarks				Number	TCa	OxCu	Chied es Oxfor	SolFe	MoS2	Ag	Ca Grad
	JAN !	2 Footge 4	900	古"如言"x3 好文"x1 古"x1 古"x1	stz-ch1-carb-ep stz-ch1 stz-py-ch1 stz-ep-tet?	₹.5	- possible dark grey tet? seen, in a few gtz veins, so a silver assay should be done on this interval. The Tet? is associated with small blebs of cp.	347	97	50	54494	.05	۷,٥(1.77	,005		
	. ND				gtz-hem-carb-chl hem-carb gtz-chl-carb	4.5	-there is a fault zone- from 358' to 375' with several feet of hem stained gouse visible	357	99	43	54495	:09	١٥.>		2.21	,001		
	× ×	360	? 30° ·	to "40 \$" 12	gtz-chl-hem gtz-carb-py-chl gtz-sec-chl-py	0.7	there are some chunks. of up mived in with the gauge, which makes grade Estimation difficult most of this interval has been fractured or broken to some extent.	1	90	3	54496	.71	<.01		3.60	.∞۱		
rom 375' to 377' is a Quarte cricite Chlorite Chalcopyrite crite Alteration Phase.	- 1	380	40° 30°45°40°	16"to 3"x1 11"x1 2"x1	stz-chlearb-cp stz-cp-chl-carb stz-ser-chl-cp-py stz-carb-chl-cp	0.7	- par core recoveries, in the high grade sections of this interal has lowered the Cu grade a bit in reality. - more tet? seen in some gtz+cp veins	1	95	40	54497	.97	<,01		3.31	<,001		١
he hem staining throughout the interval and the Grantz sericite chlorite unit has darkened the Whole interval.	ND	390	90°	Shearsxa I"xl	gtz-chl-py hem-carb-chl gtz-ser-chl-py gtz-ser-chl-cp-(py)	4.5	this interval, can be seen in a 2" band at	387	100	47	<i>5</i> 44 98	.45	:,01		2.86	,001		
	- ND +0 - 90° - wk-med		90° '	3", a 1="x1	gtz-ser-ch1-cp-(px) gtz-ser-ch1-py-cp gtz-ch1-py-hem gtz-(ch1)-(py)-(carb)	4,5		397	99	37	54499	.20	4,01		271	,001		

0.77 Vislushy

Hole No. 94-56 Page 8 of 11 GIBRALTAR MINES LIMITED (McLEESE LAKE PROPERTY) DIAMOND DRILL LOG ASSÄY RESULTS BOTTOM DEPTHS GRAPHIC Leach Cap LOG Structure Width Est. Leachable Ox. Core R.Q.D. % % (veins) Mineralization Blocks Sample ROCK TYPES and ALTERATION angle and intensity Lim. Zonc < to core Structure Number (veins) Supergene axis TCa OxCu SolFc MoS2 Remarks at 406' Is a 2" section 80-to90" 16"×3 Stz-chi-ep of hem gouge, which may or may not be 16"×1 gtz-chl-carb-fy 54500 00 33 03 significant. 1,70 10,> 001 gtz-chi-py-carb 4.5 10"x 3 407 16 ×1 carb-hem 410 possible fracture zone 400 16" x1 ep-gtz-chl stock 96 from 413' to 432', Shears x 3 hem-carb which may be interpreted as a tault zone but no 1.37 .001 37 54501. .03 ,01 10,0 417 12" 1 chi-ep-gtz 900 gauge is visible, just a bunch of froctured ep-pied-gtz-chi 800 Tonalite. well developed striations in chi chears support the fault theory, on 95 gtz-Ay-carb-chi 41/21 ,05 2.06 .001 10. 54500 10.> DU the zone from 413' to 432', the slickensides indicate some kind of Shearsya chil-carb-(hem) 500 43) there are some offset. 97 gtz veins, which may 41×1 link a deformation gtz-py-carb event with the footing! 54503 10,2 40. 2.03 .001 .03 ND fracturing . This may explain the near absore 15"41 20° ep-gtz-chi stak Shear 400 of veios. most cptpy, in this interval, is found-finely diss and associated together. 16×5 gtz-chi-py *significant increase in 400 100 the stetchl+py stuk carb-hem-chi 400 shears a (reminiscent of 421 to .07 .06 1001 1.86 .001 54504 454' in Lote 94-55, where] gt=(vuggy)-carb-cp-py the increased stuk is 400 a precursor to a Quartz-scricite unit). 50° Thys gtz-ch! there is a gradational contact between the Chi darkened Tonalite -abundant diss py+cp 十.1.1 50° gt z-carb-py throughout this internal and the Quarte Sericite Chlorite there are large blebs 16"x 2 Stz-chl-Py 30? 50 54505 27 4.01 5,07 .008 Pyrite Chalcopyrite Alteration Phase. 400 3.0 of py in the Quartz 2.5'×1 15tz-ser-chl-py-(cp) 340° sericite, which may contain some op.

	1.	GRAPHIC LOG	1				BOTTOM DEPTHS Leach Cap				ASSÄY RESULTS							
ROCK TYPES and ALTERATION	Foliation angle and intensity	4 A A A	(veins) < to core		Mineralization	Est. % Py	Leachable Ox. Lim. Zone		Estimated Cost Recovery	RQD.	Campic	%	%	%	%	%	oz/ton	Estima Ou
		E Footge	axis	(veins)		,	Supergene Remarks				Number	TO	OxCu	Chisol es OscRes	SolFe	MoS2	Ag	Grad
	Au		70°	1"×1	8tz-ser-py-cp?	1.5	- possible fault zone from - 1163' to 464', with some gauge visible.	467	97	67	54506	.04	<.ol		2.13	,001		
	. 10		40° 40° 3∞°	shear	st2-chl-carb chl-hem-corb-(py) st2-chl-py gt2-chl-py-(arb gt2-arb-chl	0.7	-most of the Tonalite, in this interval, has a pinkish tint due to the slight hem staining	477	100	යු	54507.	,04	<,01		1.66	,00(,0
rom 484' to 578' is a chil darkened on alite, with a significant ser omponent but enough of the onalite protolith remains to not lossify as a Quarte Serice unit overtore, this is a Ser rich childorkened ornalite.	ND K	460	20°	た"×1	St2-carb-chl-hem St2-chl-py St2-p,-chl	0.6	- the gtz+carb veins cut across and displace the gtz+chl+py veins, which points to a dual generation of veins.	487	100	67	5450g	.05	٠,0١		1.58	.00(, ,	4.
	411		70° 50° s	1"xa 2"x1 .	stzlvugsyl-carb gtz-ser-chl-(py) gtz-ser-chl-carb-py gtz-carb-py-cp gtz-carb-cp-chl	1.0	-shorp increase in amount of diss op visible, especial as you go down towards the end of the interval	497	99	67	54509	.10	٠.0١		2.30	.001	•	
	. ND X		o" 1	g"×I	hem-carb gt2-ch1-carb st2-carb-py	<.5		507	100	50	54510	.03	<.0(1.66	,002		
	ND V		40° 1	61x2 9	stz-carb-py-chl stz-carb-chl stz-chl-py-carb stz-chl-py	0.6		517	99	70	54511	.03	<.01		1.72	<,001		-0

Hole No. 94-56 Page 10 of 11 GIBRALTAR MINES LIMITED (McLEESE LAKE PROPERTY) DIAMOND DRILL LOG ASSAY RESULTS BOTTOM DEPTHS GRAPHIC Leach Cup LOG Est. Footage Cose R.Q.D. Structure Width Leachable Ox. (veins) of % Sample Mineralization ROCK TYPES and ALTERATION Lim. Zonc Structure Py < to core Number SolFe MoS2 TCa OxCu (veins) axis Remarks gtz-carb-hen-chl 8=2-chi-ser-py 4"xd 100 54512 1.76 .001 03 1001 .oa 0.6 Stz-chi-Py M 1 × 5 30° 527 16 1/x 3 gtz-chi-py - degree of sericitization has increased for this inferval and so gtz-carb-py-cp-(ser) 100 gtz-cp-py-ser has the pytop content. 2.41 .001 .86 57 54513 12 4,01 1.0 ND gtz - carb-chl 537 gt + -chl-py 40°4050° 100 400+050 gtz-chl-ser-carb-(py) 43 54514 1.58 002 .03 4.01 10. 40° to 70° shears x3 hem - carb-(ser)(ch) 1.5 547 mothled 16"+01"x17 5t2 (vussy)-carb-chl-py filled fractures, in gtz-carb-chl 97 this interval. carbbruggy)-gtz-chl-ep 1.62 ,002 54515 ,05 4,01 .03 minor specks of cp+p1 ND <.5 76 ME1 gtz-carb-chl-py 557 seen. 8tz-chi-carb-ep it appears the intense sertchl altn 80° t090 gtz-carb-chl 100 has removed most of the veins, leaving a few deform 9tz+carb veins, from 560 to 580. Ste-carb-ch 54516 .01 04 4.01 1.26 4.001 1611×3 gtz-chl-carb WD 1.5 567 gtz-ser-ch! 204090 \$ "+0 t "x2 gtz-carb-ch 100 10040200 4"×1 gtz-ser-ep-cp-Ay 1.75 ,003 54517 17 601 .05 77 300 #11×3 ep-pied-gtz-chi-py-son? 0.7 M 577 900 stz-chl-carb-py

*

100

Hole No. 94-56 Page 11 of 11 GIBRALTAR MINES LIMITED (McLEESE LAKE PROPERTY) DIAMOND DRILL LOG ASSAY RESULTS BOTTOM DEPTHS GRAPHIC Leach Cap LOG Structure Width Leachable Ox. Core Oz/ton R.Q.D. (veins) % Sample Mineralization Blocks ROCK TYPES and ALTERATION angle and intensity Lim. Zone < to core Structure Py Crisol ea Oxfres Number SolFe MoS2 axis (vcins) TCu OxCu - a small (less than to)

cp vein running down
the core axis from

558' +0588' might be
enough to raise the
grade of this internal - the rock has returned to a prototypical tonalite for the rest of the hole, and is fully out of the sericitized zone. 1418 gtz-carbhem-chi gtz-carb-py- ((cp)) 100 97 54518 1.11 1,004 .04 4.01 ,03 1000 Ste-chi-Py-CP W 587 16"x2 Stz-chl-py 100 54519. 1:02 4:01 hem-chl-py-carb 1.06 | .001 .01 4.5 597 Stz-chl-py 30 16", gtz-chi-py 99 400 sheers yo hem-carb-chl 1.05 .001 54520 .02 4.01 1:5 -02 gtz-chl-cp 607 607 \$ E.O.H. Duck Poor

2		GIBRA	LTAR N	ONES L	IMITED (McLEESE L	AKE			D DR	ILLI	.0G	Hole	No	94-5				_	
LOCATION GIBRALTAR WES			EARING		LATITU						E NO						k Boo		
DATE COLLARED August 3, 199			ENGTH 6	07 feet	LONGIT		3 42,427,1	16	-		100	1"=10'		DATE	Aug	ust a	26,19	94	
DATE COMPLETED August 3, 19			1P - 90°		ELEVAT	ION_	2941:84 FT		_ REA	ARKS			_	_					_
	TYPES	and ALT	ERATION S	YMBOLS		-	•	MIS alm = alteration			JS SYM	BOLS and			IONS r = serie	dea	The second	-	
MINE PHASE TONALITE M		4	ONALITE				badly broken rock a	az = azurite bo = bornite brx = broken ro	ep 88	= cpid = gou	loto' ·	Mo = m mod = m	olybdeni oderate	te sp	h = sph	alcrite g		+3	
田QUARTZ CARBONATE SERICITE CHLORITE ALTERATION A							increase 6	bx = breccia carb = carbonate	gy	= gam p = gyp m = bc	sum natite	ND = no pied = pie py = pyr	dmontite itc	ter w/	Wk = sto t = tetral k = wer	hedrite uk			
DARK CHLORITE ALTERATION BO	WARTZ YRITE LIE RA	SERICIT CHALCO TION PH	E CHLORITI			Ö	minor amount c	ce = chalcocite chl = chlorite cp = chalcopyr	m	a = limo ag = ma al = mal	gnetite	qtz = qua rx = roci sauc = sau	k	Cre	v = cle	enulate	d .		
		GRAPHI	THE RESERVE OF THE PARTY OF THE	T			BOTTOM D	EPTHS						ASS	AY RE	SULTS			
ROCK TYPES and ALTERATION	Foliation angle and inscarity	FOC	Structure (veins)	Width of Structure	Mineralization	Est.	Leach Cap Leachable Ox. Lim. Zone	88 feet 95 feet	Footage Blocks	Estimated Core Recovery	RQD.	Sample	%	%	%	%	%	oz/ton	Estimated Ca
	intentity	2 Footage	axis	(veins)	Decreasing Order of) Abundance	Py	Supergeoc Remarks	_	5			Number	TCu	OxCa	CNsol on OxRes	SolFc	MoS2	Ag	Grade
	1																		
	1							1											
	1																		
CHLORITE DARKENED MINE	}		_	-	ļ	-	CASING TO 1							-		-		-	-
PHASE TONALITES 14'+0 27'	111		80°	shearska	lim-chi	4.5	has a vucky a	appearance	17	95	0	54521	.07	.05	01	2 20	.004		.01
The Chlorite Darkened Tonalite (CDT) in this hole has the main mineralgy .	1 NV	20	60"	15 x1	lim - MnOa	1.5	- extensive mno. helped darken unit.	ed the .				31381	.07	.05	.01	3.28	,004		
of stetchitples, just like other Tonalites seen. But has undergone			A	- "			-first appearan	nce of -		90									iar)
chi+ lim+carb alteration which has	1	K	70"	\$"×1	chi- lim		Corbonate unit	1											
Changed the applarance of the CDT. Of the 3 alterations the chlone is	an :	1	70"+090"	shears x 10	lim-chl-MnOg	1.5	-gradational con between the tw		27		0	54522	.09	.07	<.01	3.63	.003		:03
most dominant and the early the least. While the lim has made the COT incompetant and a bit officer.	1	30	-850	∳*×1	322+ carb - ch1-(cp)		J. J	1											
QUARTY CARBONATE SERICITE		2	A				- there is some n		- 3						100				
CHLORITE ALTERATION PHASES	46-78	2	3 709-090	J _H × I	stz-carb-chl-lim-malica		stringers of ca			75	- 3								
This unit's most distinctive features are	Str	2	70°	Shearsk 15	ser-chl-lim-Mag-carb	4.5	San Para	1	37		3	54523	.06	.04	1.01	2.85	.005		.05
its crenulated appearance and orange- brown carbonate. As for the ser, most	1 1	22	S	. 61 .	4		3 3 3 3 3	1	31			-inta	SUE	N. K.	100	lext.		2	al.
of it can be seen only in the shears. It		140	\$ 40° +090°	1.5 x1	gtz-carb-chl-lim-mioz						1 - 1	1 1000000			0.00		100		June 1994

Hole No. 94-57 Page 2 GIBRALTAR MINES LIMITED (McLEESE LAKE PROPERTY) DIAMOND DRILL LOG ASSAY RESULTS BOTTOM DEPTHS GRAPHIC Leach Cap LOG Structure Width Est. Leachable Ox. Core R.Q.D. 02/100 (veins) of Mineralization Blocks Sample ROCK TYPES and ALTERATION Lim. Zone < to core Structure Py Chiel Number (vcins) axis Supergene TCu OxCu Oxfles SolFe MoS2 Ag Remarks there are some perfect appears that some of the lim is mixed with corbonate, so only anacid test can distinguish the toub. sta-carb-chi-lim-ser 4004050 rhomboledral calcite crystals in a few 95 shears of this interval. 0'-90" 27 54524 gtz(vuggy) - carb - Mnoj - lin .07 03 4.22 .004 ,01 .02 1.5 Str 47 cren 0°+0 90° stz-carb-chl-lim-ser-Mg 50 some steel gray, with metallic luster, Tet? seen in a a" gt2 vein just under 60! Therefore, gtz-carb-chl-lim-Mnog-ser 65 shears + 3 ser-Mng-carb-lim 70010 800 . 20? NB 10 54585 :03 02 4.01 3.10 .006 a silver assay should be performed on this interval 40 57 1" x1 Stz-(corb)-(im)-(mal)-lep) 500 20-90 Str Stz-tet?-carb-ser gte-carb-lim-Mag-cc? 60 6'x1 507 Ms 17 54526 .04 .01 4.01 2.02 1.003 .05 40 4.5 67 gtz-carb-chl. lim-ser. Ma 0,10800 0,-80, sta gtz-cp-ch1 MINE PHASE TONALITES rock, in this interval, lim-chl-Mag-carb charsya 98 can be best described 68' to 607' as a gtz-rich Tonalle au Mineralogically this unit is a 40" shear lim - Mnos - chil 54527 02 .01 14,01 2.16 1,001 .01 Tonalite, with plast at 2 tch as its main assemblage. The plag normally is the dominate mineral and has been 4.5 10 77 70-900 lim-py-Mady mod Saussurite altered to some degree, so that the plas appears a yellow green. The chi blebs are dark green and are cenerally oriented, in the holes of Gib West from 80' to 83' there is Lears x 5 chi-lim-Mag 50°680° 99 a steel grey, metallic luster mineral that is 1100 9tz-ch1-py-(0) M 37 54588 .02 3.07 .002 closely associated with the 03 .10 stear lim- (mel) 40 Chil blebs. This mineral may 50° 16" x2 Ste-Py-cp-chi. be some portially altered biotite? or blebs of tet?! 500-90 JK-mad atz-Ay-cp-chl minor hem stain in this 800 chl-gtz-cp-py interval, from 95'to97' 95 70°+090° shears x 3 chl-lim DIN 25° gtz-chi 13"×1 53 54529 .05 1.5 .04 10.> 10.> 2.11 .002 to 97 900 chl-(py)

Hole No. 94-57 Page 3 of 11 GIBRALTAR MINES LIMITED (McLEESE LAKE PROPERTY) DIAMOND DRILL LOG ASSAY RESULTS BOTTOM DEPTHS GRAPHIC Leach Cap LOG Structure Width Est. Leachable Ox. % Core Oz/ton R.Q.D. (veins) % Sample Mineralization Blocks ROCK TYPES and ALTERATION angle and intensity Lim. Zonc < so core Structure Py Number Chies axis (veins) SolFe MoS2 TCu OxCu competant core has resulted in very little veining and poorly developed joints + shears. 99 73 54530 .01 <.01 <.01 1.94 .001 10. 107 carb-gtz-chl chl-gtz-carb 90 wk mest of cp for this interval . is in a 14" gtz vein, just under 180°. from 113' to 116' is a Dark Chlorite -Alteration Phase. gtz-chl-carb-py 900 15"×1 100 3020400 4142 Stz-chl-py-carb-(cp) 54531 1.0 10,0 2.79 .003 .08 to 68-98 117 Stz-chl-carb-Py stz-chl-py-carb-cp from 124' to 126' the ch! darkened tonalite has been intensely sheared and deformed. 100 ND 2.30 .002 83 54532 10,> 70. gt-t-chl-carb .02 folded 10 0.6 This shear zone has a gradational contact with the rest of the interval. 127 50°670° 13" +014"10 gtz-carb-ch1 70-90 ep-gtz-carb-chl-cp wkstr ep-chl-ste-(hem) 100 3+2-Py-ep-ch1 15'X! 54533 .94 01 ND 10.01 .002 .01 hem-carb 1.5 shear 137 90°WK 50 to 600 sta-chl-py-(cp) Str- ep-chi 100 ep-gtz-chi stuk 54534 ,02 4.01 .03 96 ND 100. 400+0700 ep-stz-chi stuk 4.5 147 40 1 ×1 carb-hem from 152' to 166' the Tonalite contains shear ep-gtz-chl "squat" hornblende, which appears as a block and subhedral to enhedral 54535 01 W .01 01 Stz-chl-PY 1.5 1.16 .001 157

Hole No. 94-57 Page 4 of 11 GIBRALTAR MINES LIMITED (McLEESE LAKE PROPERTY) DIAMOND DRILL LOG ASSÄY RESULTS BOTTOM DEPTHS GRAPHIC LOG Structure Width Leachable Ox. % Core Oz/too R.Q.D. (veins) Mineralization Sample angle and Blocks ROCK TYPES and ALTERATION Lini. Zooc < to core Structure Py Chiesi ea Outkes Number axis (veins) TCu OxCa SolFe MoS2 Remarks there is quite a range, in the grain sizes, of the Tonalite, in this interval. The hem-carb-chl 100 97 54536 .99 002 .02 ND 10.> 10. stz-chl-py-(cp) Smaller grains share a gradational boundary with their larger counterparts, so that the to"xa ep-gte-chi 10° to 200 170 ep-atz-chi size of the crystals may only reflect the crystallization history of the Tonalite ep-gtz-chl 100 30° 4"×1 Stalvigsy) - carb -chl-hem 93 54537 ,01 ND 10. 10,01 1,02 <,001 50° 16">1 Stz-chl-Py from 184.5' to 185' is shoor clay-carb- (hem) 100 about 6" of hem Stained gouge, so this small section may represent a fault zone? gtz-carb-ch1 700 63 54538 ,04 4,01 1.81 100 .02 1.5 to Stz-ch1- PY-(EP) 187 30 440 ep-stz-chi -small jump in amount of cp+py seen. Stz-chi- Py 100 M gtz-py-chl-cp 60 54539 .02 4.01 2.05 .001 包 .03 0.6 cost (vugsy)-stz-hem 197 70-90 wK Stz-CLI-PY 8tz-chl-py 100 ep-gtz-pied stuk 93 54540 01 96 4,001 -01 4.01 4.5 Stz-Py-chl 207 40 90°WK next to nil pyorcp gtz-chi , Py in this barren Mine 100 t6"x3 ep-gtz-chl stwk 400 Phase Tonalite Of OH .01 4.5 54541 77 ,001 10,> 10, 1.00 217 90°wk to to the epstz-chi stuk

Hole No. 94-57 Page 5 GIBRALTAR MINES LIMITED (McLEESE LAKE PROPERTY) DIAMOND DRILL LOG ASSÄY RESULTS BOTTOM DEPTHS GRAPHIC Leach Cap LOG Structure Width Blocks Recovery R.Q.D. Leachable Ox. oz/toa (veins) of Mineralization Sample ROCK TYPES and ALTERATION angle and intensity Lim. Zonc < to core Structure Py Chied ea Oxfles Number (veins) axis Supergene SolFe MoS2 Remarks ttz-py-chl-(cp) 100 77 54542 16"×2 ep-gtz-chl ,03 4,01 1.28 .001 .01 NA 4.5 shear hem-clay-carb 227 16 04 52 ep-gtz-ch1 Small amounts of sph? Ste-chl-sph?-py 100 can be seen as orange translacent crystals associated with blebs of py at 231. Therefore, a 2n ep-pled-stz-py-chi 54543 :01 4.01 .01 ND 1.23 |.001 ep-pied-chl 237 40 900 gtz-carb-chl.py assay can be done from nat-str 230' +0 240'. ep-gtz-chl stuk 809-900 100 1010 81 × 43 8+5-cm1- Py-eb mottled 93 54544 .02 4.01 .96 .01 4,001 4.5 40 ep-gtz-chistok 80°-90° Stz-CN-(P4) 18"×1 100 73 54545 .02 98 .01 100 10.01 Sta-chi-Py 4.5 257 4 hem-carb-(chl) 80°-90° ep-gtz-chl shuk str ep alteration has increased sharply ep-gtz-chi-(A) stak · 1·1·2/x in this interval. 100 80, ep-ste-chi 77 | 54546 | 400 ep-gtz-carb-(chi) stuk .92 10.1 10. ,001 M 4.5 10 267 epgtz-chlstwk 70°4080" ep-gle-chi stuk -small fault zone from 4045700 276' to 278', with some 97 50° to 60° ep-gtz-chl-(py) stut layers of hem stained 37 54547 03 4.01 folded .01 M ep-ch1 1.87 ,002 gouge visible. 277 Py-ep-gtz-carb

20 200

Hole No. 94-57 Page 6 of 11 GIBRALTAR MINES LIMITED (McLEESE LAKE PROPERTY) DIAMOND DRILL LOG ASSAY RESULTS **BOTTOM DEPTHS** GRAPHIC Leach Cap LOG Structure Width Leachable Ox. Blocks Recover οπ/τοα R.Q.D. (veins) Sample angle and Mineralization ROCK TYPES and ALTERATION Lim. Zone < to core Structure Py Number Chied axis (veins) TCa Outker SolFc MoS2 OxCu Remarks 70°4090° to"+old" = 4 ep-gtz-chl stwk *"x1 95 PY-gtz 47 54548 .98 100 UN .01 4.01 .01 4.5 80° 1090° is "of"x6 ep-stz-chi stwk 287 80°+090° ep-gtz-chi stuk from 297.5' to 298.5' the ep minor increase in amount of diss pytop 8+2-Py-Ch1-CP alteration has become dominant enough to obscure the chi darkard-Tonalite protolith, so this is a l'interval of the Quartz 99 70° to80° 5"+01"x3 ep-gtz-chistuk seen. The py+cp are 54549 03 1.75 .002 well mixed together. .06 101 00. 700+0900 10"+0 ="xsep-stz-ch1 stwk 0.7 297 gtz-chl-cp-py Epidole Chlorite Alteration Phose .: the epatheration has decreased 1"tols" 10 ep-gt 2 -chl stut 99 and the core has returned to a near barren mine Phase Tonalite. 54550 .03 10 1.37 ,002 4.5 4.01 ep-stz-chl-carb stuk 307 70-20 Ste-chl-py ep-gtz-chi 100 ep-gtz-chi stuk 1.65 33 54551 1.02 4.01 ,00(.01 1.5 40 317 40°-50° shears x 15 ch! wk there are 3" to 4" sections 60° 3"x1 ep-gtz-carb-chl-py of box and gouge, seen of 324 and 3251 97 54552 01 .01 respectively. 43 14.01 1.86 .001 40 327 1"x1 ep-gtz-chl 4100 DO-80 suk-mod e couple of CP blebs can only be seen in the interval from pied-gtz-ep-chi 800 99 0040300 顺 anx1 Stz-cW 54553 .03 4.01 339 to 340'. · Oa <.5 1.86 .001 40 337 chl-(cp) shear

Hole No. 94-57 Page 7 of 11 GIBRALTAR MINES LIMITED (McLEESE LAKE PROPERTY) DIAMOND DRILL LOG ASSAY RESULTS BOTTOM DEPTHS GRAPHIC Leach Cap LOG Structure Width Leachable Ox. Core 07/100 R.Q.D. (veins) angle and intensity Mineralization Sample Blocks ROCK TYPES and ALTERATION Lim. Zooc < to core Structure Py Number CHies axis (veins) es Orker TCa OxCa SolFe MoS2 Remarks brief Bark Chlorite Alteration Phase most of the op , in this 95 interval, can be found in the Chi darkened from 349 to 350. 343 7040800 gt. z-chl-cp 27 54554 2,92 ,002 ,15 90 .18 400 Tunglife, from 341'to 10,5 ep-gtz.chl to 347 90 mad possible fault zone from Stz-chl. 343 to 350', with about 3" of gauge seen of 350". 97 Stz-chl-py 0' 1020' gtz-chi-(pylep) 方"ット 54555 07 4.01 M 1,70 ,002 16 ×1 ep-gfz-chl-cp 1.5 ,03 6 357 ep-gle-chi-Py 85 mal mostly diss by seen, in this gtz-chi-py 100 interval 00+0100 pied-ep-gliz-chi stwk 1.67 .002 54556 .02 4.01 16"×1 .01 4.5 op-pied-gtz-chi stuk 10 367 90%× Stz-Py-ep Stz-Py-ep 100 16"×1 5/2-chl-py MD 54557 1.32 ,001 02 101 0.6 .01 Stz-chl to 377 900 400 40 500 shears x2 | chl-py-(nem) -od-str near the end of the interval is a 311 section 100 40° 15"×1 chl-ep-gtz-py-cp of core, which contains. DU 54558,08 4.01 00+0100 1.86 .006 Stz-ep-pied-chl abundant Mo. 67 03 40 60°-90° 200 8tz-Mo?-Py-(cp) there are bands of childarkened fair size increase in Stz-chi-Py Toralite, rousing from 1 to 6" that supply the interval with most of the cp. There is a bit of ser mixed in with these bands. 98 amount cp+py seen. 60° Stz-chi-cp-py 4"×1 NA .05 54559 .13 4.01 2.65 .003 1.0 40°-90° WK-stc K 397 4" to 6"x3 gtz-ch1-py-ser-cp 50° to 80°

Hole No. 94-57 Page 8 of 11 GIBRALTAR MINES LIMITED (McLEESE LAKE PROPERTY) DIAMOND DRILL LOG ASSAY RESULTS BOTTOM DEPTHS GRAPHIC Leach Cap LOG Structure Width Leachable Ox. Core oz/too R.Q.D. engle and (veins) of Mineralization Blocks Sample ROCK TYPES and ALTERATION Lim. Zooc < to core Structure Py Chiest Number axis (veins) on Oxfort SolFe MoS2 TCu OxCu Remarks from 400.5' to 401.5' is a chl gtz-chl-py-cp dark Tonalite section, which 96 contains some large blebs of cp. 16"10="x8 3t2-ch1-py .20 1.97 .002 70 54560 UN 14 <,01 6.7 40 407 y"x! Ste-chl-Py 15"×1 540 Stz-chl-ep-Py most of the cp, in this Interval, is not seen
freely diss but instead
much of the cp is
restricted to veinlets. 417 +"x1 Stz-chi-py 97 8/2-CHI-PY-CP 4"x6 700 du 47 .15 54561 10,2 100 1.87 .002 10 stz-ch1-py-(cp) 600+0700 4"x8 80-90 Stz-PY-Chi ep-pied-gtz-chl stuk 98 St. E Chi - Py 4040500 t"x2 ID -03 54562 1.68 .003 103 40. ep-gtz-chi 1.5 427 80.00 gt= -(ep) the Tonalite has a pink. gtz-PI-CW 99 tint, from 435' to 445', due to the hem staining. W gtz-ep-chl-cp 37 54563 ,06 <.01 1,72 -there is some signs of ,002 .04 ŧ0 tolding, which coincides: with the 3" of near gouse seen at 436.5' that 90'str Stz-chl-ep-cp 440 could have be created the bands of Quartz Sericite Chlorite-96 b"×1 gt t-chl-cp from intense shearing Privite Chalcopyrite Alteration Phose 00 or deformation. contain most of the cptpy for the interval. gtz-chl-ep-pied-ser-py-cp <.5 UD 5"x1 700 54564 .10 4.01 27 .12 1.61 .001 10 447 gtz-chl-ser-py-cp 78-90 25° wk 99 400 gtz-ser-chi-cp-(py) gtz-ch1-py 54565 .19 4.01 .19 0.6 67 1.53 .002 78-80 457 gtz-chl-ser-py-cp gtz-ep-chl-py-(cp)

Hole No. 94-57 Page 9 of 11 GIBRALTAR MINES LIMITED (McLEESE LAKE PROPERTY) DIAMOND DRILL LOG ASSAY RESULTS BOTTOM DEPTHS GRAPHIC Leach Cap LOG Structure Width Leachable Ox. Oz/too Core R.Q.D. (veins) Mineralization Blocks Sample ROCK TYPES and ALTERATION angle and intensity Lim. Zone < to core Structure Py Chiest (voins) SolFe MoS2 TCu OxCu Remarks gtt-chl-py stz-chl-ser-py-cp 99 1.50 ,003 <.5 07 54566 10.>1 .08 \$== ch1-ep-cp-by) -10 467 8/2-chl-py from 476.5' to 496' 99 ch - carb Lear is a fault zone, with large sections of hem stained gtz-chl-py 800 1.64 54567 3 100 100. .03 40 debris. gtz-carb-chl-ep-py someser chears visible on a few fragments with the fault Zene. 40-70 WK 80 gtz-chl-py 76° +080° 54568 2.23 .003 gtz-chi-ser-cp-py 4.5 .06 M .10 10.3 487 bex there are a couple of 4" nyssels of cp in the broken interval, from 491' to 492'. The nussels are probably 497 reminant frasments of some relict gle van 6"tob"x3 ep-ste-carb 85 M ? }brx .59 4,01 54569 3.00 1.003 . 30? 1.0 40 Stz-ser-chl-cp-py most the cp in this gtz-chl-py 99 interval, is found gtz-chl-((py))-((cp)) 1"x1 finely diss from 508'to 2.22 .002 ND 54570 .06 4,01 5101. .07 to 507 carb- gt2 0040200 90°wk 30° 1011 X1 gtz-ser-chi-py-cp ser content for the entire interval SAIIII A has increased dramatically, with the appearance of several Quartz Sericite Chlorite, Pyrite Cholcopyrite 100 8tz-ser-chl-py-cp 3'x1 P to 54571 19 1001 ,17 3.09 ,004 4.0 67 gtz-ser-chl-py ち"×1 517 sections. estz ser-chi-py-cp.

Hole No. 94-57 Page 10 of 1 GIBRALTAR MINES LIMITED (McLEESE LAKE PROPERTY) DIAMOND DRILL LOG ASSÄY RESULTS BOTTOM DEPTHS GRAPHIC LOG Structure Width Leachable Ox. Cose oz/too R.Q.D. (veins) engic and intentity Mineralization Blocks Sample ROCK TYPES and ALTERATION Lini. Zooc < to core Structure Py CNeol Number axis (veins) TCa Oxfice SolFe MoS2 OxCu Remarks from 523' to 541' is gtz-ch1-(py)-(cp) a fault, which unlike 00 92 41402141 carb(vugsy)-gtz the previous fault, has long sections of gouse. 54572 235 .003 11. 10.5 4.5 .00 to 85 st. 527 1 box throughout the interval 90 bry 2.71 .003 Stz-chl- Py 15 +2? M mottled 54573-1.10 101 .00 1.5 537 -most of the cp is in 95 shears x5 chl-carb 30°+040° the Quartz Epidote Chlorite Alteration gtz-chl-py-cp 200 -09 54574 10,0 .14 2.03 .006 1.5 Phase. UN 547 \$7-ep-cp-(py) -both hem staining and epaltn has helped to darken this entire interval a bit. gtz-py-chl-(hem) 100 862- Py-ch1-(cp) 100000 .03 54575 .04 4.01 2.07 .004 4.5 Stz-chi-cp-py 557 gtz-carb-chl-hen-(py) 16"+0 \$"x 5 gtz-chl-py -more hem staining from 99 568'to 573. gtz-py-chl-carb-cp 54576 .04 4.01 .02 1.55 .003 ND 1.0 50 567 stz-hem-chl-carb 0 1000 gtz-ch1. Py 20° Chears x2 clay-carb-chl-(nem) 100 o° gtz-hem-carb-chi .01 DIM 10° to 30° 1.0 54577 .04 4.01 1.62 100. 1"+05"x3 gtz-chl-py-carb 577

Hole No. 94-57 Page | of | GIBRALTAR MINES LIMITED (McLEESE LAKE PROPERTY) DIAMOND DRILL LOG ASSAY RESULTS BOTTOM DEPTHS GRAPHIC LOG Leach Cap Est. Structure Width Leachable Ox. Costs Recovery % Py RQD. (veins) Mineralization Blocks Sample angle and ROCK TYPES and ALTERATION < to core Structure Chisol ea Oufkes Number axis Supergene TCa SolFe MoS2 Ag (veins) OxCu Remarks gtz-chl-py-(carb) 100 to "40 2"x2 gtz-chl-py-carb 0°.40 10° 54578 1.37 .002 <.5 05 4.01 .01 ep-gtz-chi 587 16"+08"x3 8t=-chl-carb-py-((cp)) 590 98 stz. Py-chi gtz-cp-chl 2.33 .002 .11 54579:15 4.01 0.6 DIN 597 -the Quartz sericite bands contain most of the cp and run at low angles (nearly down the core axis). gtt-chl-ser-py-ser 99 stz-ser-cp-chi-py 20° 3"×1 2.77 .011 54580 .21 <.01 23 M to 40% x 13 8tz -chl-py-(cp) 607 607' ★ E.O.H. Dick Poor

APPENDIX C: ASSAY PROCEDURES

All core was bucked and assayed at the Gibraltar Mines Limited laboratory facilities. The core was sampled in 3.05 m (10 feet) sections (core was not split). Each sample was crushed and passed through a Jones Splitter to produce a small representative sample for pulverizing to 100 mesh. The pulverized material was used for assaying then stored as a "pulp" sample for an indefinite period of time. The splitter reject material was bagged and stored until assaying was completed then the "waste" rejects were discarded and the "high grade" rejects were stored at the mine for approximately one year.

The following assay procedures were applied to the samples:

Acid Soluble Copper

Acid soluble copper analysis (oxide copper minerals) is carried out on 1 g samples dissolved in 50 ml of 30% H_2SO_4 for 90 minutes at room temperature, agitating regularly. The remaining solution was then bulked to 200 ml with H_2O . A portion of filtered solution was then assayed using standard atomic adsorption techniques.

Total Copper

Total copper analysis was carried out on 2 g samples dissolved in 15 ml of HNO_3 and digested until fumes were expelled. 20 ml of HCl was then added, with the sample digesting for a further five minutes. This solution was then bulked to 200 ml with H_2O . A portion of filtered solution was then assayed using standard atomic adsorption techniques.

Cyanide Soluble Copper Analysis on the Acid Soluble Residue

Cyanide soluble copper analysis on the acid soluble residue is done by washing the residue with H_2O , then leaching in 50 ml of 0.5% NaCN solution for 30 minutes at room temperature, agitating regularly. The remaining solution was then bulked to 200 ml with H_2O . A portion of filtered solution was then assayed using standard atomic adsorption techniques.

Acid Soluble Iron

Acid soluble iron analysis was done on 1 g samples dissolved in 15 ml of HNO₃. The sample was then boiled until furning was finished, with an additional 20 ml of HCl being added and boiled until furning was complete. The remaining solution was then bulked to 200 ml with H₂O. A portion of filtered solution was then assayed using standard atomic adsorption techniques.

Molybdenum Sulfide

MoS₂ analysis was carried out on 2 g samples dissolved in 15 ml of a KCLO₃ saturated HNO₃ and boiled until fuming was complete. 20 ml of HCl was then added, with digesting occurring for a further five minutes. AlCl₃ was added to bring the solution to excess of 1000 ppm Al. The remaining solution was then bulked to 200 ml with H₂O. A portion of filtered solution was then assayed using standard atomic adsorption techniques.