GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORTS DATE RECEIVED OCT 2 8 1996 **Highland Valley Copper** INDUCED POLARIZATION and **RESISTIVITY REPORT** on the NB 1-10 AND NB 16-17 MINERAL CLAIMS **NORTHWEST GRID KAMLOOPS MINING DIVISION** NTS 921/11E Longitude 121°10' Latitude 50°34' for **HIGHLAND VALLEY COPPER** P.O. BOX 1500 LOGAN LAKE, B.C. **V0K 1W0** FILMED **REPORT BY:** LORNE A. BOND Logan Lake, B.C. October 18, 1996 GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT ENG/LB96073 All athings

Table of Contents

			<u>Page</u>		
1.0	Introduction		1		
2.0	Survey Parameters and Equipment				
3.0	Data Presentation				
4.0	Description of Results and Conclusions				
5.0	Statement of Costs		6		
6.0	Statement of Qualifications		7		
List of Figures					
Figure 1		Location Plan Scale 1:50,000	3		
Figure 2		Claim and Grid Map Scale 1:50,000	4		
In Pocket					
Figure 3		Chargeability Contour Plan Scale 1:10,000			
Figure 4		Resistivity Contour Plan Scale 1:10,000			
Figure 5		Chargeability/Resistivity Pseudosections Lines 0S - 900S			
Figure 6		Chargeability/Resistivity Pseudosections Lines 1200S - 1800S			
Figure 7		Chargeability/Resistivity Pseudosections Lines 2100S - 3300S			

1.0 INTRODUCTION

During the period April 30 to July 2, 1996, a program of induced polarization and resistivity surveys was conducted over a portion of the property holdings of the Highland Valley Copper partnership. The grid was located immediately north of the main Highland Valley tailings impoundment area and straddled the Logan Lake to Ashcroft highway. *Figure 1* shows the general location of the survey grid and *Figure 2* illustrates the position of the grid relative to the mineral claim holdings of Highland Valley Copper.

The objective of the survey was to test for large tonnage porphyry type sulfide mineralization within the grid area. This report describes the procedures used for this survey, presents the data, and discusses the results.

Expenditures on this program have been applied to property mineral claims on Statement of Work 3090753 (Group HVC 96-5) and 3090770 (Group HVC 96-6) filed on July 24, 1996.

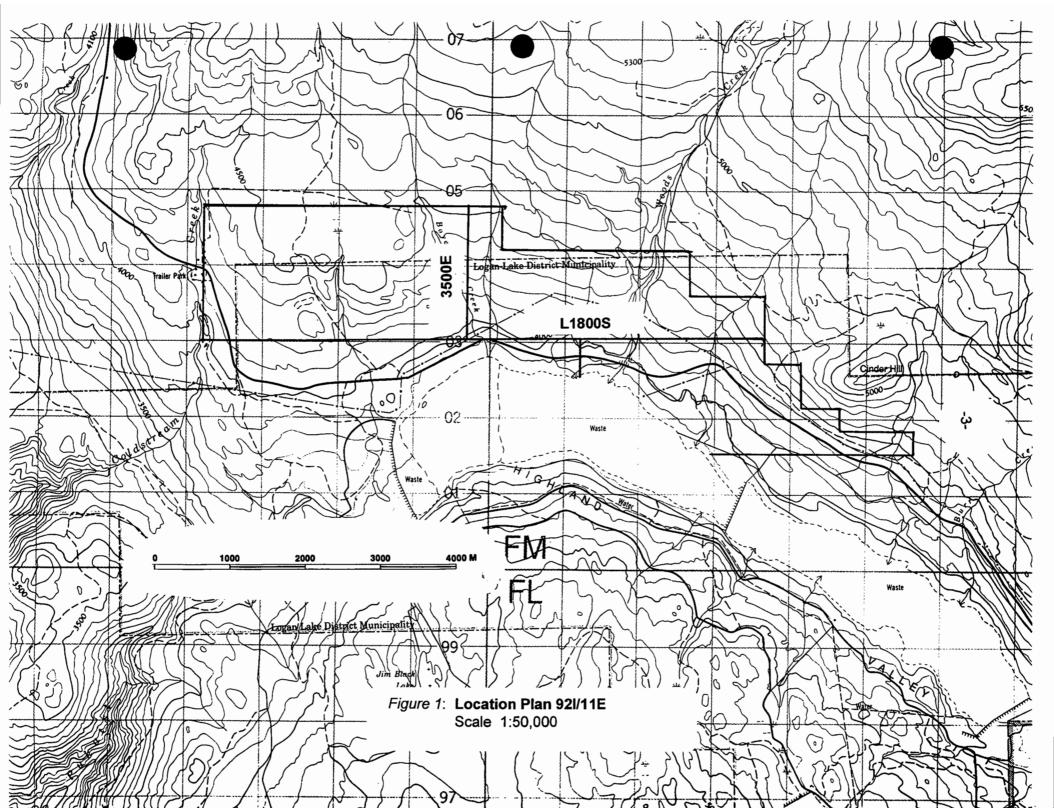
2.0 SURVEY PARAMETERS AND EQUIPMENT

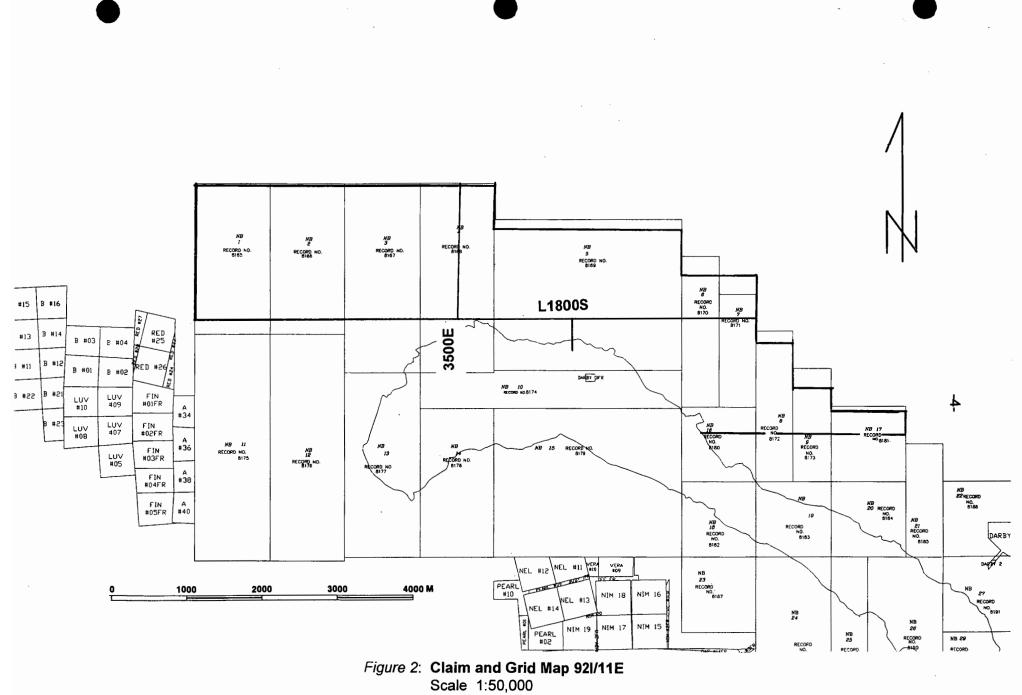
Daryl Calder of Cranbrook was contracted to carry out the geophysical grid preparation program. Line cutting and chaining of this grid commenced on April 30 and was completed on May 27, 1996. Maps of the completed grids with as-cut gridline locations were prepared by the contractor. A total of 65.3 kilometers of gridlines, baselines, and tielines were cut and chained on the Northwest grid.

The contract for the Induced Polarization/Resistivity survey was awarded to Scott Geophysics Ltd. of Vancouver. Surveying of the grid was executed between June 12 and July 2, 1996. A total of 57.5 line kilometers were surveyed on twelve (12) east-west gridlines. The exploration target was a large tonnage, low grade, porphyry copper system.

For this reconnaissance type program, the gridlines were positioned 300 metres apart. A pole-dipole array was used for the IP/Resistivity surveys, with an electrode spacing of a=100 metres and separations of n=1-6. The online current electrode was to the east of the receiving electrodes on all survey lines (array heading west).

A Scintrex IPR-12 receiver and Scintrex TSQ4 (10.0 kw) transmitter were used on the survey. Readings were taken in the time domain using a two (2) second current pulse (0.125 Hz). Chargeabilities measured were for the interval 120 to 1,020 milliseconds after current interruption.


3.0 DATA PRESENTATION


The chargeability and resistivity results are presented in standard pseudosection format and as contour plans for the triangular filtered values. The results for each survey line are displayed in standard pseudosection form for chargeability expressed in mV/V (Ma for 120 - 1,020 msecs) and apparent resistivities in ohm-m. Horizontal scale is 1:10,000 and contours are at 2.5 mV/V and 250 ohm-m increments for chargeability and apparent resistivity respectively. The results are also presented in contour plan for the averaged values of chargeability and resistivity. The average values were obtained using a moving triangular filter comprising one n=1 to six n=6 values. The weighting factor for each data point is one (1). The average value is therefore emphasizing the effects of deeper n-separations, thereby minimizing the effects of overburden and/or near surface weathering effects.

4.0 DESCRIPTIONS OF RESULTS AND CONCLUSIONS

On the Northwest grid, background levels are in the 3 - 5 mV/V range for chargeability (Ma) and 50 - 200 ohm-m for resistivity. These values would appear to reflect generally thick overburden. Other areas where low chargeability values combined with high resistivity values occur most likely reflect barren phases of the Guichon Batholith with the highest resistivity values (>1000 ohm-m) indicating areas of very thin overburden.

-2-

A zone of elevated chargeability can be traced from Line 300S to 1800S and from 4500E to 5600E. The chargeability values are up to 7 mV/V including 9.9 mV/V at 5550E on L900S. This zone of elevated chargeability, while not considered anomalous, appears to occur along the contact of two intrusive phases of the batholith. Sharp contrasts including negative chargeability legs were noted at 3800E on L900S, 2200E on L1200S, and 2400E on L1800S. These are considered to be cultural effects due to surface infrastructure.

5.0 STATEMENT OF COSTS Northwest Grid

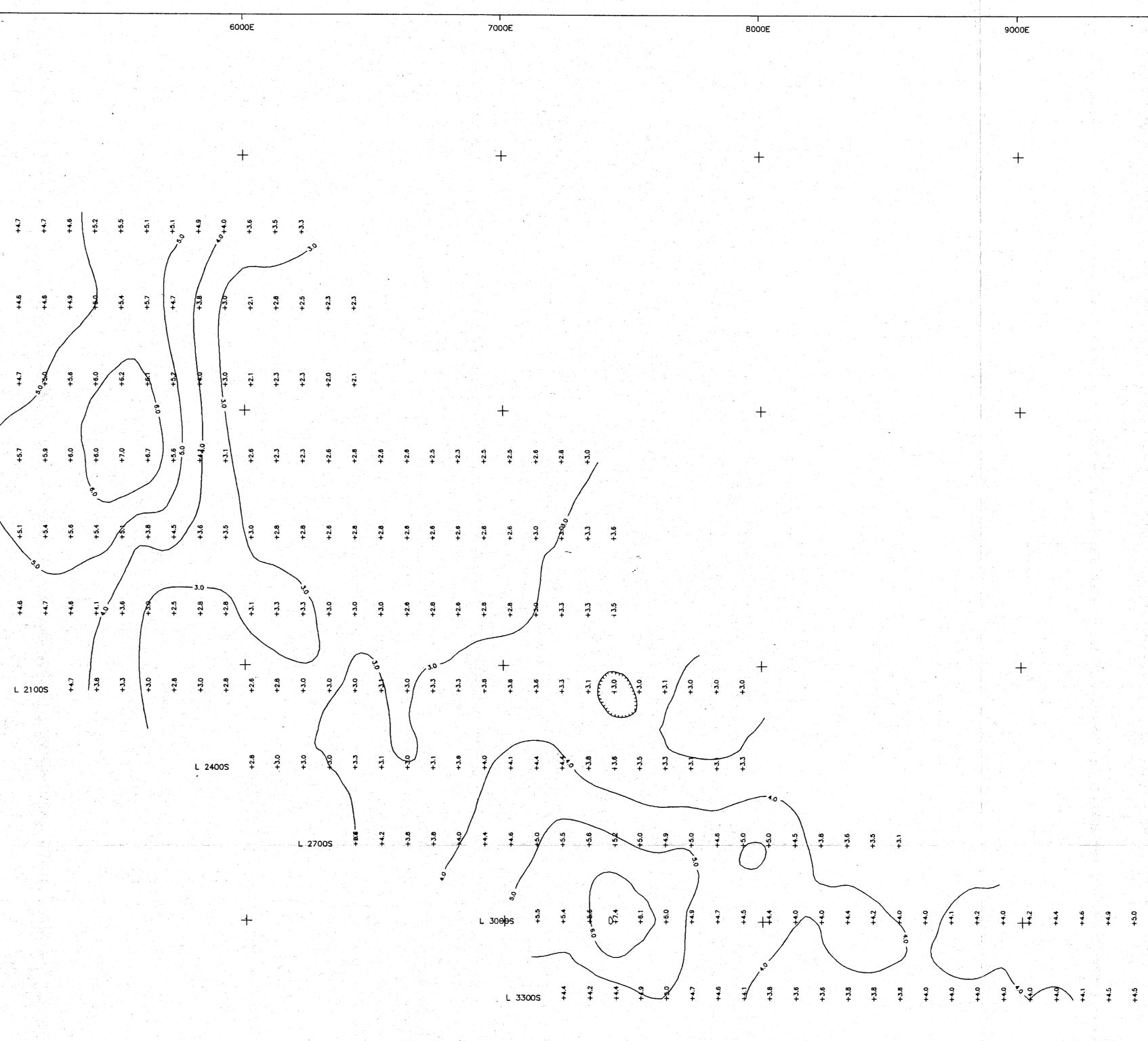
Linecutting - grid preparation - 65.3 kilometres Daryl Calder and associates	\$34,282
Geophysics - IP/Res Survey - 57.5 kilometres conducted by Scott Geophysics Ltd.	\$40,792
Project management, planning, supervision, report preparation Lorne Bond, Senior Mine Geologist Highland Valley Copper 10 days @ \$300/day	<u>\$ 3,000</u>
ΤΟΤΑΙ	\$78.074

-6-

6.0 STATEMENT OF QUALIFICATIONS

I, Lorne Allan Bond, of the city of Kamloops, British Columbia do hereby certify that:

1. I am a qualified, practicing Geologist.

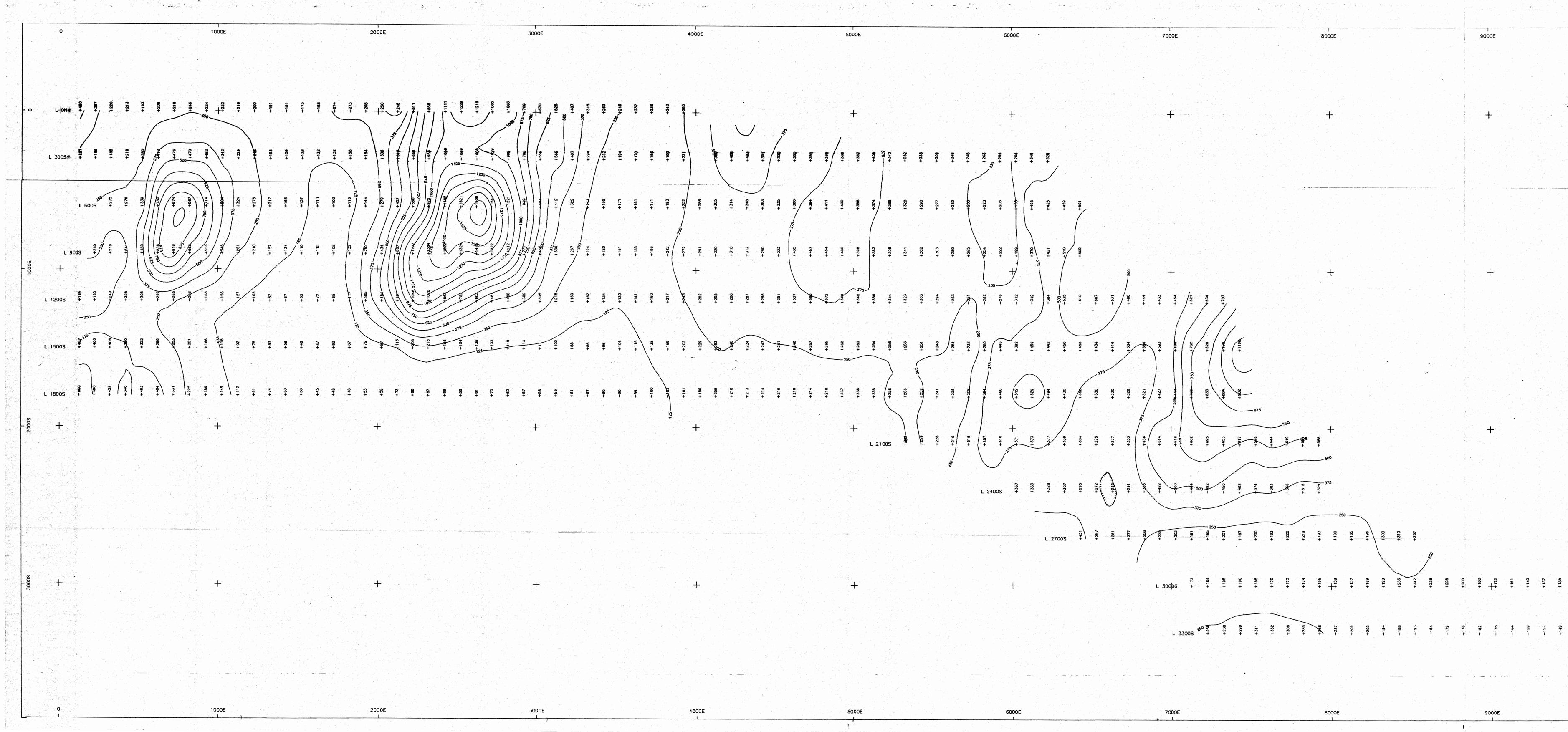

2. I am a graduate of Loyola College (Concordia University), with a B.Sc. (1967) in Geotechnical Sciences.

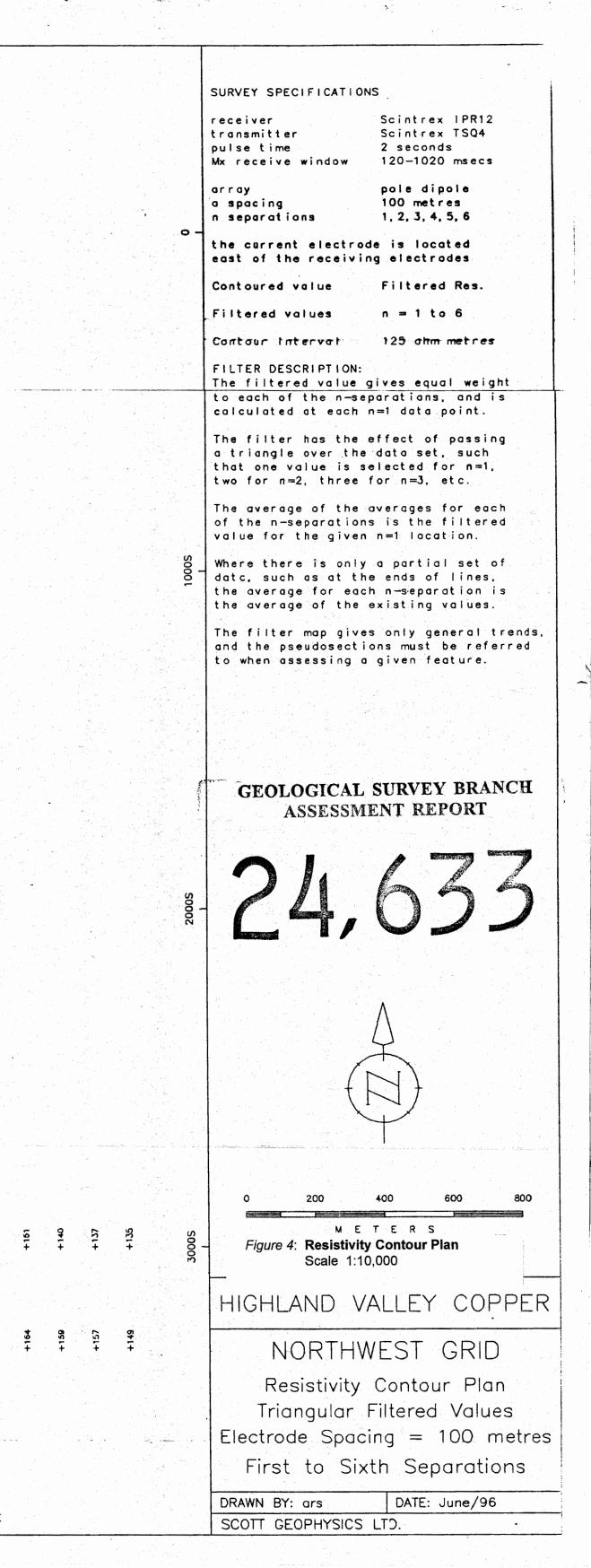
3. I have practiced my profession since 1967 while employed with Sherritt-Gordon Mines Ltd., Cominco, Afton Operating Corporation, and Highland Valley Copper.

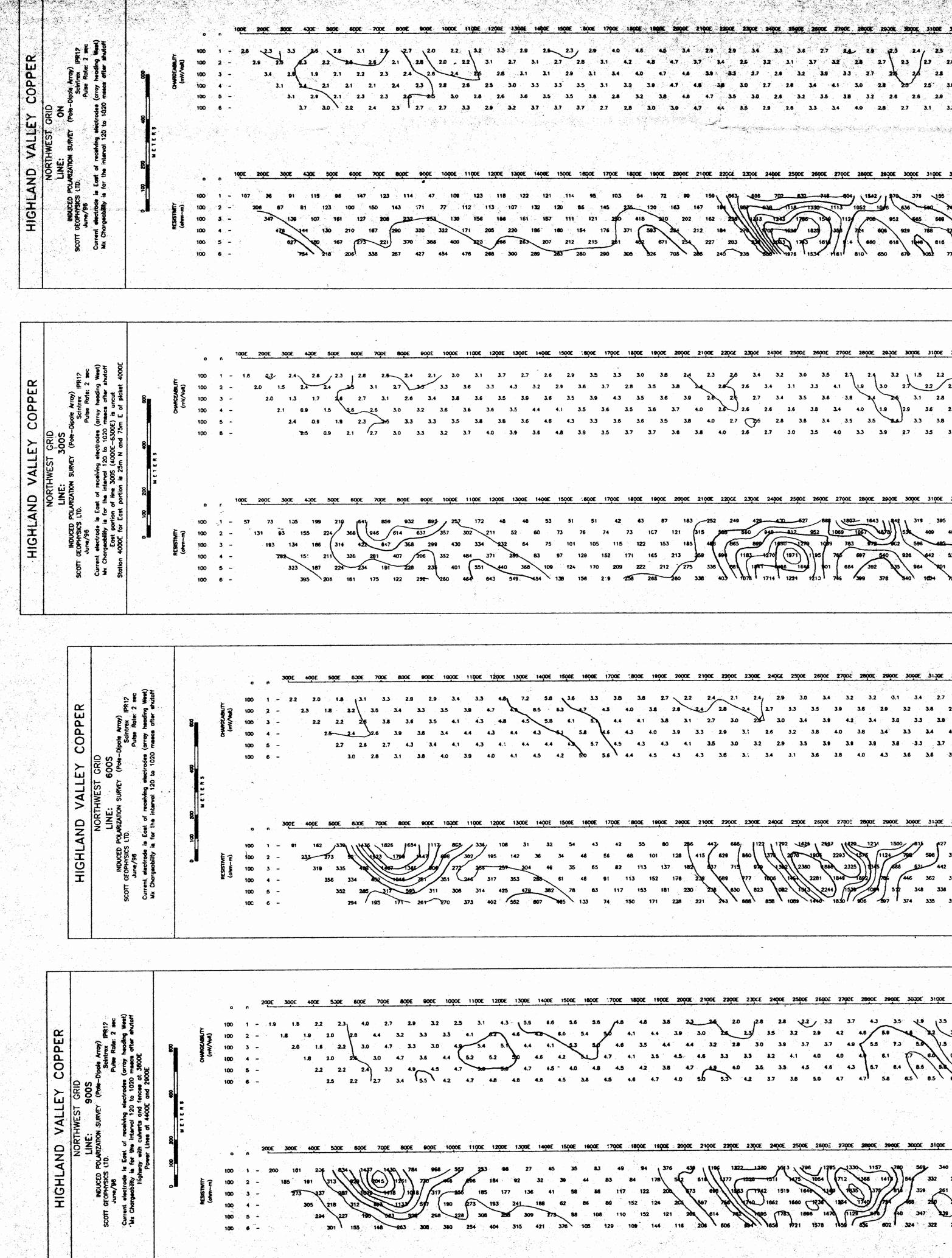
4. This report describes geophysical exploration performed under my direction during the period April 30 to July 2, 1996.

Lorne A. Bond Senior Mine Geologist Highland Valley Copper October 18, 1996

1000E 2000E 3000E 4000E 5000E +3.6 +3.1 +3.0 +3.6 +3.6 +3.1 +3.0 +3.0 +3.1 +3.0 +3.1 +3.0 +3.1 L-ION + + 3 9 1 + 3.3 + 3.0 + + -3.6 + 3.0 + 3.0 L 300S + 7 باسحاب الاستنسانيي يعاصب بتناكيتك والشاد +4.6 +4.0 +4.0 +4.0 +2.0 +2.3 +2.3 +3.5 +4,0 +4,0 +4,0 $+ \frac{1}{3}, \frac{1}{3},$ +5.6 L 900S L 1200S + 5.6-4.0 --5.0 -+5.7 +5.7 +6.4 L 1500S المعادية **الح**رية الم + + + + L 1800S 1.64, 5 1000E 2000E 3000E 4000E 5000E ·····




6000E


7000E

30008

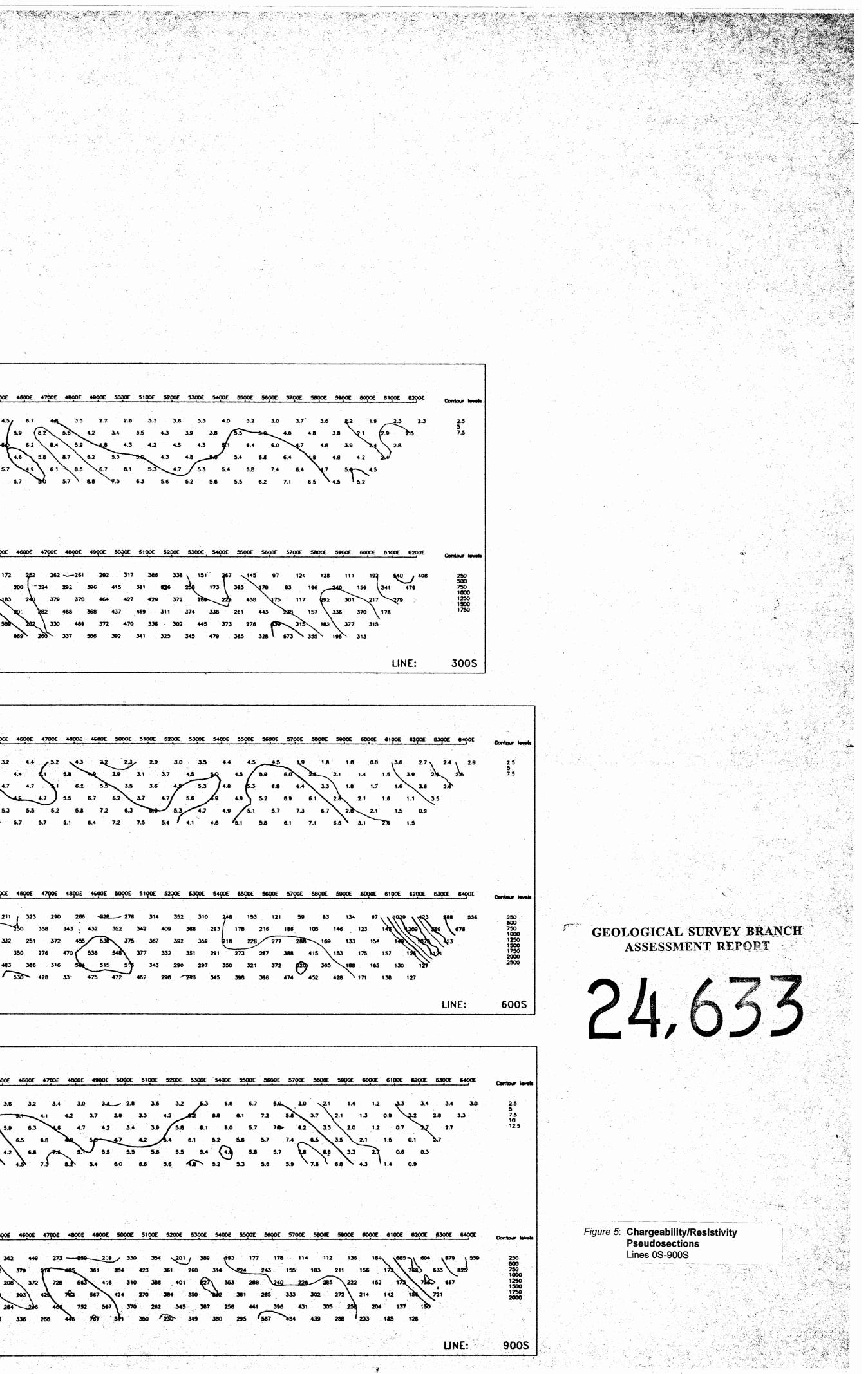
SURVEY SPECIFICATIONS Scintrex IPR12 receiver Scintrex TSQ4 transmitter 2 seconds pulse time 120-1020 msecs Mx receive window pole dipole array 100 metres a spacing 1, 2, 3, 4, 5, 6 n separations the current electrode is located east of the receiving electrodes Contoured value Filtered Mx Filtered values n = 1 to 6Contour Interval 1.0 mV/V FILTER DESCRIPTION: The filtered value gives equal weight to each of the n-separations, and is calculated at each n=1 data point. The filter has the effect of passing a triangle over the data set, such that one value is selected for n=1, two for n=2, three for n=3, etc. The average of the averages for each of the n-separations is the filtered value for the given n=1 location. Where there is only a partial set of data, such as at the ends of lines, the average for each n-separation is the average of the existing values. The filter map gives only general trends, and the pseudosections must be referred to when assessing a given feature. NOTE: Power lines, culverts, roads, steel pipelines, and pumping stations exist in the survey area. IP highs that are obviously due to such features are noted in the title block orea of the pseudosection for each survey line. GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT 200 METERS Figure 3: Chargeability Contour Plan Scale 1:10,000 HIGHLAND VALLEY COPPER NORTHWEST GRID Chargeability Contour Plan Triangular Filtered Values Electrode Spacing = 100 metres First to Sixth Separations DATE: June/96 DRAWN BY: ars 9000E SCOTT GEOPHYSICS LTD.

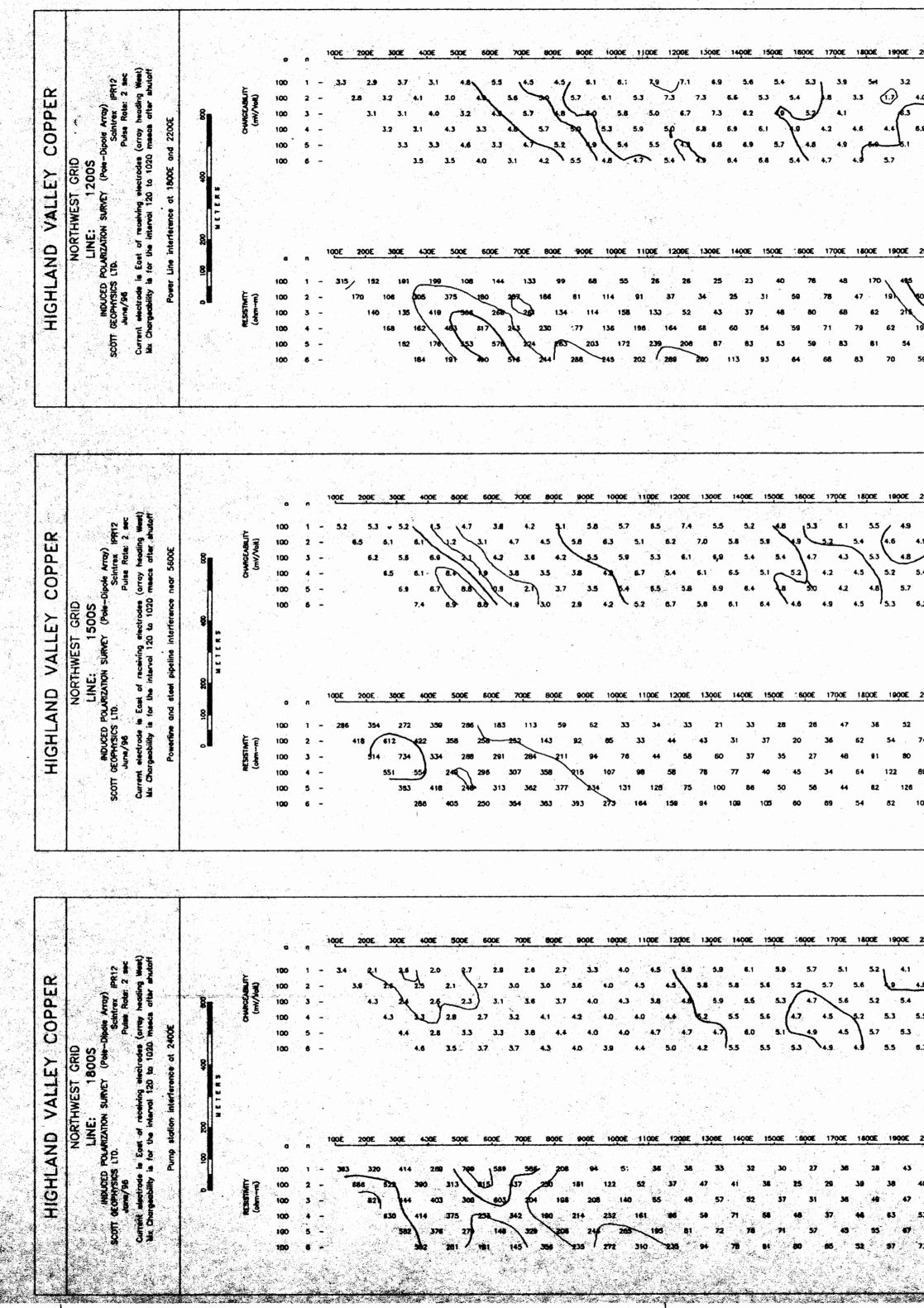
 4.8
 4.7
 3.7
 3.4
 2.5
 3.2
 3.1
 3.7
 3.2
 2.8
 2.7
 2.8
 2.8
 2.8
 2.8
 2.8
 2.8
 2.8
 2.8
 2.8
 2.8
 2.8
 2.8
 2.8
 2.8
 2.8
 2.8
 2.8
 2.8
 2.8
 2.8
 2.8
 2.8
 2.8
 2.8
 2.8
 2.8
 2.8
 3.1
 3.0
 2.8
 3.8
 3.0
 2.8
 3.8
 3.3
 2.7
 2.8
 2.8
 2.7
 3.2
 3.1
 3.4
 2.8
 3.9
 3.8

 3.0
 4.7
 4.8
 3.8
 3.0
 2.7
 2.8
 3.4
 4.1
 3.0
 2.8
 2.5'
 3.0
 3.2
 3.1
 3.1
 2.6
 3.1
 4.5

 3.0
 4.7
 4.8
 3.8
 3.0
 2.7
 2.8
 2.5'
 3.0
 3.2'
 3.1
 3.1
 2.6
 3.1
 4.5

35 38 32 26 26 29 34 33 32 33 29 36 500 750 1900 1250 1600 1750 2500 212 184 LINE: CN 42 5.3 5.3 8.2 5.6 4.2 3.4 2.5 2.6 3.4 3.1 3.3 4.1 3.5 3.8 be 4.5 2.6 2.9 3.1 3.1 2.9 2.7 3.1 6.3 5.3 3.1 2.8 2.9 1.4 2.4 6.2 8.4 5.9 2.7 3.4 3.5 3.6 3.8 5.2 5.8 5.6 30 3.2 3.6 3.6 3.6 3.5 4.4 4.1 3.5 3.6 3.5 3.6 3.7 4.0 2.6 2.6 2.6 3.6 3.8 3.4 4.0 1.9 2.9 3.6 2.9 3.1 1.9 2.62.7 3.2 2.8 3.1 3.5 505 560 949 912 952 1069 1067 643 665 899 1950 1279 109 743 409 490 83 102 198 224 121 665 899 1150 1270 699 1181 1270 1971) 1 95 136 88 1841 1270 1971) 1 95 765 697 540 926 642 5 01 664 392 335 964 901 112 160 178 197 200 3.3 2.7 2.2 2293 157 1124 708 629 860

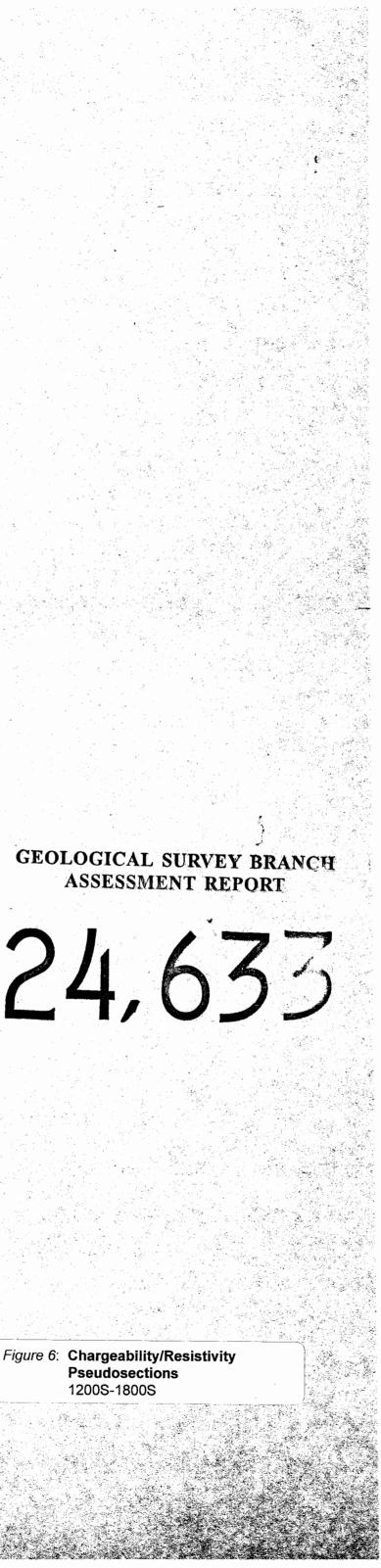

 5.8
 4.8
 3.8
 2.2
 2.0
 2.8
 2.8
 2.2


 5.0
 4.1
 4.4
 3.0
 2.5
 2.3
 3.5
 3.2
 2.9

 5.0
 4.6
 3.5
 4.4
 4.4
 3.2
 2.8
 3.0
 3.9
 3.7

 4.7
 4.1
 3.5
 4.5
 4.6
 3.3
 3.3
 3.2
 4.1
 4.0

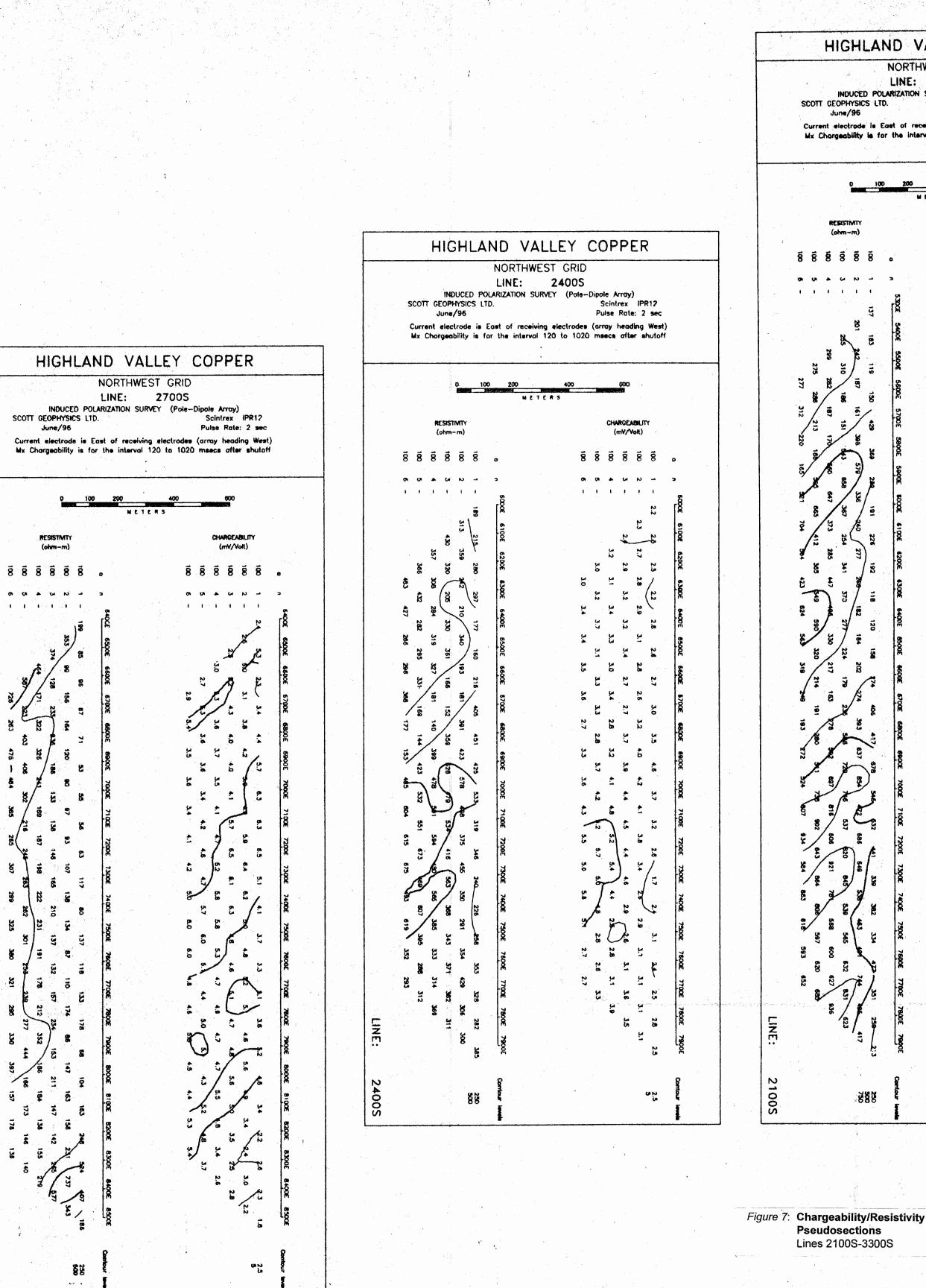
2.9 (71 3:1 274 235 251 (71 316 311 203 286 212 379 974 485 361 284 423 361 27 353 288 240 285 208 372 728 563 4;8 310 388 401 27 353 288 240 258 203 429 753 567 424 270 384 350 342 381 285 3 440 345 367 258 441 398 319 285 376



2.2 24 2 25 27 3.0 4.8 (5.) 3.5 3.2 2.7 3.4 3.6 4.8 3.7 3.2 2.9 2.9 3.8 4.3 51 55 4.7 3 45 5.1 5.1 5.5 3.7. 4.4 3.8 4.3 4.4 4.2 4.3 4.5 5.1 X) 51 5.3 5.2 5.2 5.4 5 3.8 4.1 4.2 204 258 307 356 612 913 398 418 120 (100) 000 000 100 (100) 1000 000 100 (100) 1000 000 1000 1000 000 1000 1000 000 1000 000 1000 000 1000 000 1000 000 1000 000 250 500 750 1000 1250 1900 1750 167 259 225 284 228 198 235 243 382 309 452 396 418 524 377 298 402 292 279 265 204 193 242 292 319 328 274 323 298 255 270 396 379 490 534 639 937 875 690 LINE: 12005 2 R.2 3.5 3.6 25 5.3 4.9 3.4 2.7 4.0 4.9 3.3 24 3.1 3.3 3.8 3.3 2.8 2.7 3.5 4.6 4.0 3.0 2.8 3.8 2.9 4.7 4.8 4.6 3.3 3.5 2.6 2.6 3.5 4.4 3.3 3.0 3.9 3.0 3.3 3.1 850 428 250 500 750 1000 1250 1500 1750 180 173 8 92 150 189 227 247 248 180 173 195 185 200 235 180 27 240 281 283 293 256 225 227 257 231 240 240 240 236 307 570 119 116 162 221 266 258 258 202 194 247 240 281 283 293 256 225 227 257 231 240 240 240 236 307 570 28 150 120 180 282 266 268 265 234 257 284 274 294 310 291 234 247 279 322 309 264 219 281 192 253 438 148 145 139 196 242 269 289 309 292 264 330 316 298 301 25 242 285 325 396 395 257 283 237 176 218 2414 550) 945 (20) 960 460 91 637 537 568 571 609 91 136 286 242 LINE: 15005 3.0 3.5 4.0 2.6 24 24 23 25 3.4 27 25 3.0 24 28 3.8 2.9 2.9 3.8 3.4 4.1 3.1 2.0 1.4 3.3 5.2 5.4 5.4 6.2 10.0 65 3.7 4.0 3.4 2.7 22 2.9 3.0 27 28 24 30 3.0 3.6 2.0 3.4 3.5 6.3 7.1 8.4 8.5 8.3 (8.1) 4.5 4.4 6.1 5.9 8.0 250 500 750 1000 1250

LINE: 1800S

Figure 6: Chargeability/Resistivity Pseudosections 1200S-1800S



HIGHLAND VALLEY COPPER	HIGHLAND VALLEY COPPER NORTHWEST GRID
NORTHWEST GRID LINE: 3300S	LINE: 3000S INDUCED POLARIZATION SURVEY (Pole-Dipole Arroy) SCOTT GEOPHYSICS LTD. Scintrex IPR12 June/96 Pulse Rote: 2 sec
INDUCED POLARIZATION SURVEY (Pole-Dipole Arroy) SCOTT GEOPHYSICS LTD. Scintrex IPR12 June/96 Putse Rote; 2 sec Current electrode is East of receiving electrodes (arroy heading West) Mx Chargeability is for the interval 120 to 1020 maccs after shutoff	Current electrode is East of receiving electrodes (array heading West) Mx Chargeability is for the interval 120 to 1020 mascs after shutoff
	0 100 200 400 500 METERS
N E T E R S	RESISTINTY (ohm-m) (ntV/Volt)
(ohm-m) (mV/Volt) 8 8 8 8 8 8 a 8 8 8 8 8 a	а 8 8 8 8 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	B 100E 7200E
2.7 3000 7400 2.7 3000 2.7 30000 2.7 30000 2.7 3000 2.7 3000 2.7 30000 2.7 3000 2.7 3000	114 108 140 140
	400E 7500E 100E 7500E 100E 7500E 100E 7500E 100E 7500E 100E 7500E
	5.4 5.4 5. 5.4 5.4 5. 5.4 5.4 5. 5.4 5. 5.
	17700E 7800E
Mode Mode Mode Mode 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <	
KE BOODE BIODE BI	E BOODE BIQDE BIQDE 4.4 4.6 4.6 5.0 4.4 4.6 4.4 3.4 4.4 4.6 4.4 3.4 4.6 4.1 3.7 3.5 4.6 4.1 3.7 3.5 4.6 161 3.9 308 280 198 20 308 280 243
NOE NODE NOD NODE NODE N	E E200E 8300E 4.4 4.1 3.5 4.1 3.5 3.7 3.5 3.7 3.5 3.7 3.6 80 114 17 134 177 159 114 17 134 177 159 117 159 117
1300E 8400E 3.9 4.1 3.9 4.1 3.9 4.1 3.1 3.9 3.1 3.9	E 8300E 8400E 8500E 4.1 4.0 13 4.1 4.0 4.1 4.0 13 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1
I BOORE BEOORE 1 4.0 3.7 4.0 4.0 3.7 9 4.0 3.9 3.4 3.9 3.4 9 3.6 3.9 1111 1.25 186 51 155 186 51 155 186 3.4 200 2.0	1 1
275 229 14: 77 25 26 14: 77 26 27 26 14: 77 26 26 27 26 26 26 27 26 26 26 26 26 26 26 26 26 26 26 26 26	E BROOF B700E 3.9 3.7 3.9 3.9 3.7 4 4.1 3.1 4.0 4.1 3.1 4.0 3.9 4.6 3 3.9 4.6 3 3.9 4.6 3 3.9 159 159 1 169 159 159 1 169 159 159 1 169 159 159 1 169 369 2778 2
7700E 8800E 89 3.4 3.2 3.5 3.7 3.4 3.5 3.7 3.4 3.6 3.7 3.4 3.8 4.4 1.7 1.62 1.7 1.62 1.7 1.62 1.9 1.7 1.62 1.9 1.1.4 1.36 1.1.4 1.1.	1700E 8800E 89 1700E 8800E 89 1700E 8800E 89 172 108 172 108
200 E	200 F 9000F 152 150 110 195 150 150 195 150 110
9100E 92 249 235 249 245 249 245 24	1900E 226 191 200E 22 191 200E 20 191 200E
1 51 1 50 F 500F 500F 500F 500F 500F 500	10 23 20 23 20 23 20 23 20 23 20 23 20 23 20 23 20 23 24 24 24 24 24 24 24 24 24 24 24 24 24
3300S	30000S

المرقد المتعا ويحض القاد وهماري

LINE

700

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

24,633

HIGHLAND VALLEY COPPER NORTHWEST GRID NUKTINVEUT LINE: 21005 INDUCED POLARIZATION SURVEY (Pole-Dipole Arroy) Scintrex IPR12 Scintrex IPR12 Pulse Rate: 2 sec Current electrode is East of receiving electrodes (orray heading West) Mx Chargeability is for the interval 120 to 1020 mascs after shutoff CHARGEABILITY (mv/Voll) 888888 0 U A U N - 3 4 4 4 4 4 2 3.0 2/ Ľ 3 5 ų, 2.7 2 2.7 (5 5 2 . بو 0 2.0 **.** 1 26 5 3.6 2 5 2 aN