· 1	GEOLOGICAL SURVEY BRANCH ASSESSMENT REFORTS
	DATE REC 1241D NOV 2-9-1996
GEOLOGICAL REPORT ON THE	
YEHINIKO PROPERTY	

YEHINIKO LAKE, TELEGRAPH CREEK AREA

LIARD MINING DIVISION, BRITISH COLUMBIA

PROPERTY:	Yeti 4 through Yeti 14 mineral claims
	45 kilometers south-southwest of Telegraph Creek, northwestern British Columbia
	57 ⁰ 32' North Latitude 131 ⁰ 20' West Longitude
	Liard Mining Division
	N.T.S. 104G/11 W
WRITTEN FOR:	ECON VENTURES LTD. Suite 658, 409 Granville Street Vancouver, B.C. V6C IT2
WRITTEN BY:	Greg B. Mowatt RR #5, S39, C48 Gibsons, B.C. V0N 1V0

DATE:

November 1, 1996

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

TABLE OF CONTENTS

1.0 INTRODUCTION	1
1.1 Location and Access	1
1.2 Climate and Vegetation	3
1.3 Claim Information	5
1.4 Previous Work	5
2.0 SYNOPSIS OF THE 1995 WORK PROGRAM	6
2.1 Soil Sampling: North Ridge	6
2.2 Till Sampling: Methodology	7
2.3 Till Sampling: East Ridge	7
2.4 Till Sampling: Main Zone	7
2.5 Main Zone (I) Vein and (II) Shear Zone	7
2.6 Main Zone: VLF-EM results	11
2.7 Comfort Zone	17
2.8 Blizzard and Eagle Creek Zones	17
3.0 FIELD PRIORITIES	17
4.0 REGIONAL GEOLOGY	17
5.0 PROPERTY GEOLOGY AND MINERALIZATION	18
5.1 The Comfort Zone	18
5.2 The Main Zone	19
5.3 The Wolf Zone	20
5.4 The North Ridge	20
6.0 CONCLUSIONS	20
7.0 RECOMMENDATIONS	21
Statement of Expenses	22
References	23
Statement of Qualifications - Greg Mowatt	24

TABLE OF CONTENTS (Continued)

Figure 1	Property Location Map	2
Figure 2	Claim Location Map	4
Figure 3	Vein Number 1 chip sample	9
Figure 4	Vein Number 2 chip sampling	10
Figure 5	VLF-EM Profile Line 100S	12
Figure 6	VLF-EM Profile Line 101S & 102S	13
Figure 7	VLF-EM Profile Line 103S & 104S	14
Figure 8	VLF-EM Profile Line 105S	15
Figure 9	VLF-EM Profile Line 106S	16
Figure 10	Property Geology and Sample Location Map	Rear Pocket

Appendix I - Rock, Soil & Till Assays Appendix II - Soil Sample Geochemical Analysis Appendix III - Raw VLF-EM Data

SUMMARY

The Yeti 4 through Yeti 14 mineral claim group is located approximately 45 kilometres south-southwest of Telegraph Creek in northwestern British Columbia. The terrain is varied, encompassing; gentle rolling grassy slopes; razorback ridges and pocket glaciers. The most interesting areas, geologically speaking, are generally located in the most rugged and inaccessible localities.

The 1995 exploration project's primary objective was to follow-up the principal areas of interest as outlined by previous exploration of the property. The 1995 program entailed further prospecting (including locating, where possible, old sample sites), geological mapping of the property in order to get an "overall view" of the area, rock and rock chip sampling, VLF-EM surveying and soil and talus slope sampling.

A number of areas of interest were not accessible to exploration within the scope of this project due to time, severe topographical conditions, and weather constraints.

This report discusses the results observed during the 1995 exploration program within the entire Yeti 4 through 14 group. Annual assessment work was only filed on the Yeti 10 through 14.

1.0 INTRODUCTION

This report which was prepared for Econ Ventures Ltd. describes the work performed on the Yeti 4 through Yeti 14 claims during September and early October 1995 by exploration crews of White Wolf Explorations Ltd.

Due to the remoteness and ruggedness of the property it is difficult to strongly recommend a "next stage" project on what was observed, however, as has been indicated, the scope of this exploration project was not all encompassing.

1.1 LOCATION AND ACCESS

The Yeti 4 through Yeti 14 mineral claims are located approximately 45 kilometres south southwest of Telegraph Creek and 75 kilometres west of Tatogga Lake in Northwestern British Columbia. Locally, the property lies partially to the west of west Yehiniko River but primarily between West Yehiniko River and the Yehiniko River. The north end of the property is due west of the southern end of Yehiniko Lake.

The Yeti 4 through Yeti 14 claims have elevations ranging from 900 to 2,075 metres above sea level. The area generally known as "North Ridge" is a comparatively gentle slope and is of moderate interest. The zones of most significant interest are in an area known as Goat Ridge; these zones are: The "Main Zone", the "Comfort Zone", the "Blizzard Zone" (notably including the "Crow Vein"), and the "Eagle Creek Zone".

Access to the property is either by helicopter directly onto the property or by float plane to Yehiniko Lake and then by helicopter from there onto the property. At present there are helicopters based at Dease Lake and Tatogga Lake and float planes based at Telegraph Creek (Sawmill Lake) and Tatogga Lake. There is an old disused airstrip just off the central western portion of Yehiniko Lake which has been described as a "Winter Airstrip" (Ostensoe, 1991). This airstrip appears to be entirely salvageable as a year round strip if the need should arise.

1.2 CLIMATE AND VEGETATION

The weather encountered during the 1995 Exploration program was, to say the least, considering the time of year, latitude, and elevation, incredibly moderate. During the field portion of this program, 26 days spent on the property the following weather conditions were encountered; 7 days of sometimes very heavy rain, 13 days of intense sunshine, 4 days of overcast, and in the final 2 days snow.

The days were generally warm to hot and the nights hovered just above freezing. Further, the areas of interest were all well above tree line and therefore were unprotected from the high winds which would often buffet our camp. It is highly advisable to prepare oneself for extreme wind and/or precipitation if camping on this property. As well, the short draws and glaciers fed streams quickly become engorged with rushing melt water on warmer days.

The Yehiniko Lake area is likely to have a climate similar to Schaft Creek, which enjoys 700 to 800 mm of precipitation annually (40 - 50% as snow), with a mean summer temperature of 6° to 7° centigrade and a mean winter temperature of -8° to -10° centigrade (Sivertz, 1991). The winters in such a locale (i.e. situated above tree line, in northern British Columbia, and in close proximity to numerous large glaciers) are to be expectedly long and severe.

The vegetation encountered during this project were scrubby brush in the lowest elevations (1490 metres), with the alpine area primarily supporting alpine grasses and flowers.

1.3 CLAIM INFORMATION

The Yeti 4 through Yeti 14 inclusive claim group consists of modified grid claims and a number of two post claims totaling 93 units. The claims are located in the Liard Mining Division of British Columbia. The claims are presently under option by Econ Ventures Ltd. The terms of this option is beyond the scope of this report.

CLAIM NAME	TENURE NUMBER	NUMBER CLAIM UNITS	EXPIRY DATE
Yeti 4	225137	18	March 25, 1997
Yeti 5	225138	9	March 25, 1997
Yeti 6	225139	18	March 25, 1997
Yeti 7	225140	18	March 25, 1997
Yeti 8	312500	12	March 25, 1997
Yeti 9	312501	9	March 25, 1997
Yeti 10	312502	1	August 05, 2006
Yeti 11	312503	1	August 05, 2006
Yeti 12	312504	1	August 05, 2006
Yeti 13	312505	1	August 05, 2005
Yeti 14	312515	4	August 13, 2005
Total Claim Units		93	

The expiry date takes into account the herein described work program as being filed or accepted for assessment work.

1.4 PREVIOUS WORK

G.M. Dawson and R. McConnell, (G.Sivertz, 1990), were the first to explore the Stikine River area in 1887.

However, the inimitable Forrest Kerr from 1924 - 1929 was the first to geologically explore, map, and describe in detail the area in which the Yeti claim group falls (Kerr, GSC., 1948). This work was followed-up by J.G. Souther (Souther, 1971), and then D. Brown and C. Grieg (Brown and Grieg 1990) and also D. Brown, C. Grieg, and M. Gunning (Brown, Grieg, and Gunning, 1990).

As previously noted (Blann, 1992) there are indications of work being done on the property, presumably by Phelps Dodge, in the 1970's. The author did not find the "old black powder fuses" mentioned by D. Blann,, however, a fuel drum, kerosene can, a side of a dynamite box (part way up the hillside of the Main Zone), Phelps Dodge claim posts, and a few other artifacts of similar vintage were observed. This work, presumably by Phelps Dodge, was not recorded for assessment.

In 1990 Coast Mountain Geological Ltd. ran a reconnaissance silt, soil, and rock sampling program over the area now principally covered by the Yeti 8 and Yeti 9 claims (at that time called the Yeti 1 - 3) (G. Sivertz, 1990). Later in the same year, Coast Mountain Geological Ltd. and Quest Canada Exploration Services Ltd. explored in much greater detail the Yeti 4 - 7 claim block (E. Ostensoe, 1990). This work included establishing a grid over the North Ridge and then soil sampling and running a Magnetometer/VLF over a portion of the grid. The geochemistry in conjunction with a strongly gossanous carbonate altered zone seemed to suggest the possibility of a north-east trending gold zone (D. Blann, 1992). Further, a grab sample from the Main Zone returned an impressive 515,100 ppb. Gold, 697.2 ppm Silver, and 27,244 ppm Zinc. Other samples taken from this area also returned extremely anomalous multi-element results.

A further program of staking, mapping, and sampling was performed in 1992. This exploration program returned a large number of highly anomalous gold/copper rock (i.e. grab) and rock chip samples and was of great interest to our further exploration of the property.

2.0 SYNOPSIS OF THE 1995 WORK PROGRAM

It was deemed imperative to the efficient operation of the program to locate a base camp on the property itself as close to the work site as possible. Initially, it was planned to have one site near the North Ridge area and then to move half way through the program to an area closer to the Main Zone. However, after flying over the property it was obvious that there was only one viable camp site and that, at best, it would be challenging. The camp was thus placed approximately 300 metres north and downslope from "The Pass" glacier. Four season dome tents were used and were necessary to survive some periods of very high winds. Further, we found the only flat and least rocky ground was at the bottom of a short draw. As mentioned earlier, these draws quickly fill with water; the only way to avoid having ones tent floor full of water is to either camp elsewhere, elevate the tent, or to thoroughly trench around the tents. We chose the latter and it worked adequately.

2.1 SOIL SAMPLING: North Ridge

The North Ridge area was of interest because of an anomalous gold zone delineated in the 1990 soil sampling program (E. Ostensoe, 1990) and noted as warranting further exploration by D. Blann (D. Blann, 1992).

The existing grid lines were revamped and used in order to verify and to follow the apparent mineralized zone. Further, we used a clam digging shovel as a sampling device rather than a mattock (the original method) in the hopes of obtaining a deeper sample which would more closely approximate the geological values of the rock below. The average sample depth would be approximately 50 cm, whereas a mattock would perhaps be 5 - 10 cm.

Regardless of sampling method, the sample results were not encouraging. The highest copper value was 510 ppm on line 92+00N 100+00E (B/L) and was one of only three anomalous samples. Further, there were eight anomalous gold values, the highest of which was located at line 92+00N 101+50 E and returned a value of 105 ppb.

The soil sample quality was erratic due to immature soils and glacially transported material. However, even the glacial material appears to be a locally derived glacial smear and is therefore at the very least indicative of the values to be obtained in the area.

It is the author's opinion that further exploration of this portion of the North Ridge is neither warranted nor necessary.

2.2 TILL SAMPLING: Methodology

Till samples were taken using a clam digging shovel and placing the samples into a gusseted Kraft bag. The bags were filled to approximately 3/4 full unless the sample was unusually course and then more material was added. Sample depth, as with the soil samples, was on average approximately 50 cm. Further, the grain size within each sample varied from approximately that of a dime to a fine dust.

2.3 TILL SAMPLING: East Ridge

A 400 metre contour till line was run at intervals of 25 metres along the north west portion of the East Ridge. Although this outcrop is intrusive and, as has been noted by others (Ostensoe, 1990), the intrusive bodies appear to be almost entirely devoid of mineralization, it was deemed necessary to at least check this portion of the property, since it had apparently been neglected by previous exploration projects.

Although minor malachite staining was observed, the apparent neglect of this area of the property appears entirely warranted as not a single sample returned even a slightly anomalous value.

2.4 TILL SAMPLING: Main Zone

An 800 metre contour till line with samples taken every 25 metres was run from the north eastern edge of the main zone near "The Pass" to 100 metres before the beginning of the Comfort Zone to the south west. In contrast to the North Ridge, large sections of the Main Zone were anomalous. Of the 33 samples taken 16 are anomalous for copper; the highest being sample taken at station 2+50m. W. at 619 ppm. This sample was also anomalous for gold at 98 ppb.

Further, 12 samples were anomalous for gold with the highest sample being 4+75m. W. at 487 ppb. This sample was also anomalous with copper at 555 ppm.

It is probable that the large number of anomalous till samples can be explained by the numerous quartz, quartz carbonate, and shear zones up slope from the till line. However, it should be noted that one metre chip samples on either side of two altered quartz/ quartz carbonate veins were still consistently anomalous for copper and to a lesser extent gold.

2.5 MAIN ZONE: (I) Vein and (II) Shear Sampling

I) A brownish orange carbonate altered quartz vein was systematically sampled at 10 metre intervals. There were 3 samples taken at each ten metre interval, a 1 metre sample on the foot wall, then a sample the width of the quartz vein, and finally a one metre sample on the hanging wall. This was done over the entire length of the 95 metre long vein system which dips at its southern end into the scree before coming to an end.

Three of the samples, all from the vein, returned values of >10,000 ppm copper. Numerous samples were also highly anomalous. The highest copper value obtained from the host rock was sample number 95YC1 -04 which returned a value of 1381 ppm.

The most significant gold numbers all came, not surprisingly, from the vein itself. The highest return came from sample 95YC1 - 20 which was 3760 ppb. The highest value from the host rock was sample 95YC1 - 04 which was 216 ppb.

As significant as some of these numbers are, there is a large fluctuation of pinching and swelling of the vein over the length of the vein. The greatest width of this vein is only 117 cm, and mostly it is much closer to 30 - 40 cm. It is also worth noting that the dip of most of these veins including this one is virtually vertical.

II) The North trending quartz carbonate shear zone was more difficult to sample due to the steepness of the terrain and rubble covering much of the sheer. The accessible length was 41 m. but the zone clearly extended above our last sample site.

Three copper samples were strongly anomalous with the highest value being in the quartz/carbonate vein (Sample 95YC2 - 02: >10,000 ppm Cu).

The only anomalous gold value was Sample 95YC2 - 12 which returned a value of 1140 ppb. Au.

2.6 MAIN ZONE: VLF-EM Results

Seven lines of VLF-EM data were collected along the length of the Main Zone in order to check for any hidden shear zones. The lines were spaced at 100 m. intervals and the sample locations were spaced at 12.5m. intervals. Due to the abrupt steepness of the Main Zone, the lines themselves were short and of irregular lengths, in total the lines add up to 1,037.5 metres in length. The instrument readings were collected at each flagged station and recorded in a field notebook. This data was then Fraser filtered (Fraser, 1969) and is presented in this form in Figures 5 - 9.

As stated above the survey lines on which the VLF-EM data was gathered were short, however, three of the lines were successful in delineating two or more conductive zones. These zones correlate with shears as mapped during this program. The lines are as follows:

L100 S single strong conductor located at the eastern end of the survey line;

- L101 S three conductors with one correlating with a downwards deflection in the quadrature;
- L102 S single conductor
- L103 S single conductor
- L104 S two conductors, classified as weak to medium in strength, the stronger conductor is located at the eastern end of the survey line
- L105 S two strong conductors
- L106 S three conductors increasing in strength from west to east.

The strike of the shear zones has been reflected from line to line by the VLF-EM survey. If topographical conditions allow, it is recommended to extend these lines to the east, as it appears that several strong conductors are located on the eastern end (edges) of the survey lines.

2.7 The Comfort Zone

As is discussed later, due to the extreme steepness of the Comfort Zone, this zone was examined to the extent deemed safe and although the two further samples added to the list of impressive Cu results, these came from extremely narrow, well spaced, discontinuous veinlets.

The western side of this zone was not examined and this area may warrant 2 - 3 days of geological sampling and mapping by a geologist and helper with technical climbing ability and the appropriate climbing apparatus.

2.8 The Blizzard Zone and The Eagle Creek Zone

Ideally, the author would have liked to have visited both of these sites, but, although it was attempted, primarily due to the steepness of the terrain neither of these sites was found to be amenable to the crews' ability to explore them.

The Blizzard Zone and more significantly the Crow Vein, which is within the boundaries of the Blizzard Zone, have returned some impressive previously reported results (Blann, 1994). The Crow Vein was followed for approximately 200 metres and returned numerous extremely anomalous samples. Sample 90K - 07 returned values of 14,340 ppm Cu, 74000 ppb Au, 4.9 ppm Ag, and 33 ppm Zn. Sample 92D -05 returned values of 9,887 ppm Cu and 35,000 ppb Au. This, as is noted later, does warrant further exploration. It should be noted that Blann (Blann, 1994) does not suggest the Blizzard Zone in his recommendations for further work.

The Eagle Creek Zone (Blann, 1994) is very similarly geologically to the Main Zone with its quartzcarbonate veins and shears. The anomalous rock samples include sample 92k -32 with 6947 ppm Cu and 262 ppb Au and Sample 92K -51 with 3783 ppm Cu and 4540 ppb Au. Although, once again by the description, it appears that this area much like the Main Zone may return very impressive copper and gold values in highly concentrated and extremely limited areas.

3.0 FIELD PRIORITIES

During the 1995 field program Jim Cuttle, P.Geo. was responsible for directing, implementing, and endorsing various surveys for follow up on the Yeti claims in northwestern B.C. These surveys were carried out by qualified and experienced prospectors. The main objective of the author during his eight days on the property was two fold: 1) To investigate and determine the potential of the known mineral prospects and 2) To develop a general geological model for these occurrences. The results of this is described in the following pages.

4.0 REGIONAL GEOLOGY

Regionally, the Yehiniko Lake property is positioned along the eastern boundary of the rugged Coast Range physiographic province well within the western edge of the Stikine Terrain of the Intermontane Belt. Recent mapping by provincial geologists describes the area to be dominantly underlain (Brown & Greig, 1990) by a wide variety of volcanic and sedimentary rocks of the Paleozoic Stikine Assemblage, the Upper Triassic Stuhini Group and the equivalent Lower - Mid Jurassic age Hazelton Group rocks. Overlying these older rocks to a much lesser degree are non - marine clastic rocks of the Upper Cretaceous - Eocene Sustut Group and conglomerate and felsic to intermediate flows and tuffs of the Eocene Sloko Group.

The older Paleozoic to Triassic volcanic and sedimentary rocks are intruded by a large assortment of Triassic to Eocene felsic and lesser mafic intrusive plugs, dykes and sills. Rock compositions are highly variable but not uncommonly porphyritic in augite, hornblende, feldspar and biotite. Regional hornfelsed rock surrounding these intrusives is widespread. The "Nightout Pluton", a relatively fresh Mid Triassic biotite hornblende granodiorite (Brown & Greig, 1990) occurs as an extensive intrusive body located to the north and

east of the Yeti claims at Yehiniko Lake. Boarder phases of this pluton vary from gabbro, porphyritic augite diorite, tonalite and hornblende granodiorite. Another Triassic intrusive body known as the "Hickman Complex" is located 15 kilometres southeast of the property. This granodiorite is closely associated to the Shaft Creek porphyry copper deposit with an outlined tonnage recently upgraded to 910 million tonnes, 0.3% Cu, 0.03% MoS², 0.11g/t Au and 0.99g/t Ag (George Cross Newsletter, 1993).

Regional structures and faults are found cross cutting the area along a general north northwest pattern. Bedding trends generally have similar attitudes. These areas are commonly associated with orange/brown pervasive to linear zones of carbonate alteration, and in some cases host wide spread but intermittent vein type quartz/carbonate precious and base metal mineralization. These structures are, to a lesser extent, intruded by metre scale, moderately magnetic and relatively fresh basalt and andesite dykes which can ideally be used throughout the area to roughly locate regional fault or shearing movement. These young and fresh andesite dykes are most probably related to wide spread Eocene volcanic activity.

5.0 PROPERTY GEOLOGY AND MINERALIZATION

The Yeti claims are underlain by the Upper Triassic Stuhini Group, comprised locally of a highly variable series of mafic to ultramafic flows and tuffs, their subvolcanic relatives, and to a lesser extent maroon to mauve subaerial equivalents. Outcrop of obvious non-volcanic sediments were not identified during this field program although there is mention of sedimentary rocks from previous field work. Along the east and central portions of the Yeti claims the volcanics have been intruded and are underlain by a boarder phase of the "Nightout Pluton", which compositionally resembles, from field identification, a porphyritic augite diorite. A north to northeast trending series of faults parallel the volcanic - intrusive contact and run through the center of the property. They are located approximately 400 to 500 metres west of the contact well within the volcanic package. Commonly this fault - fracture zone or more specifically these series of paralleling shear zones are visible as linear zones of pervasive carbonate to quartz - carbonate alteration, barren stock work quartz or limited fracture filled propylitic (epidote) alteration. Mineralization observed during this program includes chalcopyrite, malachite, azurite, pyrite, limonite, siderite and calcite. It occurs over a wide spread area as structurally controlled quartz carbonate veins that tend to pinch and swell throughout their limited exposures.

Four distinct showings of alteration and/or mineralization were investigated during the 1995 field season. As well a general appreciation of the local geology along cliff areas was gathered by talus and outcrop prospecting. The above mentioned showings stretch from the southern end of the property known as the "Comfort Zone" and head north through to the "Main Zone", the "Wolf Zone" and to the "North Ridge" area, an approximate distance of 3 kilometres. Both the Blizzard and Eagle Creek Zones on the west side of the claims were not investigated during this time due to the difficulty of accessing these areas without professional climbers and proper mountain gear. The terrain here is extremely rugged and consequently this fact alone reduces the viability of these showings becoming drill targets without substantial expense and risk.

5.1 Comfort Zone

This copper gold showing lies at 1753m (5750') draped over a saddle-like pass approximately 1 kilometre southwest of the "main zone", near the south end of the property boundary. Volcanic rocks in this area include a variety of andesitic to basaltic tuffs, flows, coarser porphyritic subvolcanics and their more mafic to ultramafic counterparts. Stratigraphically capping this sequence or possibly interwoven with the bedded volcanics are prominent maroon to mauve subaerial volcanics seen only in talus debris. Locally, propylitic alteration (epidote) occurs intermittently along fractures and pervasively within coarsely tuffaceous rocks. The approximate contact of the "Nightout Pluton" lies 150 metres to the east and is expressed by the development of a zone of unmineralized quartz stock work, breccia (referred to as diatreme by Blann) and relatively unaltered, northerly trending small scale andesite dykes. This contact dips steeply to the west under the "Comfort Zone" allowing for the possibility of more intense hanging wall alteration. This area resembles in many ways the "Wolf Zone" found to the north. Previous sampling in 1992 shows some of the small quartz

carbonate veins at the Comfort Zone to be anomalous in gold, copper, lead and zinc. Widths are said to vary up to 3.0 metres. During the 1995 field investigation the author located these showings and found local chalcopyrite/malachite mineralization hosted in carbonate altered shear zones. Two to possibly three parallel alteration zones with widths up to 1 metre host quartz +/- carbonate veins along an azimuth of 015 to 025. Dips are steep to the west if not vertical. The mineralization may extend over 5 metres in length but commonly they pinch and swell into unmineralized zones of alteration. Between these northeast trending zones are frequent alteration shears or ladder shears found at 156° or approximately 30 degrees to the northeasterly trend. This is a common phenomenon to parallel shears in rocks and is the direct result of movement or displacement along a regional structural trend. This development of open structures at 30 degrees to any fault movement has been previously documented at the "Main Zone" during other field programs and in some cases are found to be well mineralized (Ostensoe, 1990). At the "Comfort Zone" however, the author did not locate any "mineralized" ladder veins but instead found the copper-gold mineralization to be hosted in small inconsistent (< 2m) quartz alteration zones along a north northeasterly 015 to 025 trend. Other more prominent mineralization may exist on the southwest side of the saddle but the extreme rugged conditions of the terrain did not allow the author to follow up on the sampling conducted in 1992.

5.2 Main Zone

This is the most encouraging area of mineralization investigated during the 1995 field program. The brownish orange altered carbonate zones that intermittently play host to copper-gold enriched quartz-carbonate veins stretch for at least 400 metres in a north northeasterly direction along the east slope and face of the "Main Ridge". They occur at elevations between 1830m to 1980m (6000' to 6500') over an estimated horizontal width of 150 metres. The mineralized veins have been well sampled and documented during previous work programs (Ostensoe, 1990, Blann, 1992) and the author concurs with their subsequent conclusions that these altered and mineralized structures represent the possible continuation of the "Comfort Zone found along strike to the south. Geologically, the "Main Zone" is underlain with similar mafic volcanic rocks found elsewhere on the property. Approximately 150 metres to the east of the "Main Zone" in a pass south of the glacier outcrops a clean porphyritic augite? diorite representing a possible finger or dyke of the underlying western fringe of the "Nightout Pluton". This is consistent with similar geology detailed to the south at the "Comfort Zone". Several parallel and lengthy carbonate/limonite altered shear zones host mineralized guartz carbonate veins overlying this area, many of which have been sampled and measured during past work. Observations during this field work identified north northeast trending altered or mineralized structures and the corresponding interior ladder veins or gash veins that are as well mineralized with chalcopyrite/malachite, pyrite and manganese. The veins do widen to four metres but commonly they pinch and swell along strike at lesser widths. One vein outcrops over an approximate distance of 95 metres and is located high along the steeper cliff sections of the "Main Zone" ridge area. This vein does show some encouragement but logistics for drilling this part of the system would be very expensive if not risky considering the location and nature of the vein. The carbonate/limonite alteration halo around these veins do generally remain consistent along strike but they are not always host to quartz and copper-gold vein type or disseminated mineralization. Here, many of the "ladder veins" trend at 140 to 155 but in this case, unlike the "Comfort Zone", they are commonly mineralized when they occur between two or more northerly trending main shear zones. They are fatter (up to 2 metres) when these interior veins occur closer to the main structures. Assays from most chip sampling during previous work programs show these veins to be highly enriched in gold (0.1 oz/t to 1.2 oz/t) and to some extent lesser in copper (0.1% to 1.9% Cu) over widths of 1.0 metre. This year's spot check sampling returned similar assays of the quartz carbonate veins.

5.3 Wolf Zone

This area is located approximately 500 metres north northeast of the "Main Zone". The host rock is a highly variable assemblage of mafic to ultramafic volcanic flows, tuffs, dykes and sills. Most all volcanic rocks here are believed to be part of the Stuhini Group although there are several younger and fresher north northwest trending andesite dykes intruding this area. These dykes are geologically very young, commonly less than two metres wide, strongly magnetic and are believed to occupy a northerly trending regional fault zone that passes

through this area. This is different from the northeast trending shear zones found at the other mineralized locations on the property and may represent a second separate structural trend. The intense but somewhat limited quartz carbonate stock work highlighting the Wolf Zone is generally barren of visible sulphide except for very minor malachite discolouring and lesser disseminated chalcopyrite. This barren quartz stock work occurrence varies from < 1.0 metre to approximately 2.0 metres in width and is believed by the author to be the result of migrating fluids along fault boundaries during regional movement and/or possibly the result of convective fluid processes from underlying intrusive activity.

5.4 North Ridge

This is an area that has received a considerable amount of attention during a previous field program in 1990 (Ostensoe, 1990). The area of interest is located towards the north end of the property, along what is locally called "North Ridge". Currently a flagged grid covers a gentle east facing slope to the east and minor talus debris to the west. During the 1995 program additional soil sampling was conducted to check the quality of this previous work and to better isolate the known gold, zinc, cobalt, chrome and nickel soil anomalies. Geochemical work during this field program will be discussed in another section of this report.

Geologically, most of the area outlined by the flagged grid is underlain by a highly variable series of mafic to ultramafic volcanic tuffs and flows. Feeder dykes for these pyroxene rich flows are seen cutting stratigraphy in several areas while coarse grain subvolcanic textures make up roughly 20% of the rock type. Serpentine and lesser chlorite alteration is a common product in the more mafic varieties. Distinct augite bearing basalt and andesite flows, coarse subvolcanic equivalents, gabbro?, and diabase are common. Intruding these strata is a somewhat variable but relatively fresh, whitish porphyritic augite diorite. It occurs as both a long dyke shape finger pervasively altering neighbouring ultramafic flows and as a concentric plug in the north central portion of the property. This intrusive is believe to be part of the "Nightout Pluton" and could well represent a boarder phase and fingers of the larger intrusive body. Ouartz and quartz carbonate stock work occur over an area of approximately 100 metres well within the central portion of this years flagged grid. The barren stock work system dips steeply to the west and is most likely the direct result of hanging wall alteration by the nearby diorite dyke. Alteration is intense and replacement carbonate is very common within this zone giving the area a brownish orange appearance. Although this environment of lower grade "listwanite" type alteration is ideal for gold mineralization only very minor chalcopyrite is seen in the quartz stock work. Previous soil sampling has indicated areas with slightly anomalous gold but are as well commonly indicative of this typical higher background precious metal geological environment.

6.0 CONCLUSIONS

Twenty six days of field work were conducted on the Yeti Claims during the month of September, 1995. Two prospectors and a geologist mapped and sampled (soil, talus and rock) areas that were not considered dangerous without the aid of professional climbers. As well a small reconnaissance VLF-EM survey was run to identify the continuation of any hidden fault or shear related structure that may host similar mineralization.

From the enclosed geological map (1:5,000) the four sites investigated in the field (Comfort, Main, Wolf, North Ridge Zones) form an obvious north northeast trending linear which stretches for a distance of more than 3 kilometres. The granodioritic "Nightout Pluton", underlies and outcrops within 400 to 500 metres to the east of these prospects. Its wide spread intrusion into the surrounding mafic volcanic country rock on the Yeti claims most probably has caused extensive linear shaped zones of alteration, faulting, fracturing as well as possible melting of the overlying and then deeply buried mafic volcanic rock. The pyroxene rich (augite) diorite which occurs as smaller plugs and dykes in closer proximity to or within these regional fractures may well have been formed from a combination or mixture of both re-melted mafic country rock (ie: augite phenocrysts with hornblende) and a late stage pulse of the main granitic Nightout Pluton (ie: diorite to granodiorite). It is believed the northwestern edge of the Nightout Pluton dips to the west, a factor which would enhance hanging wall alteration within the mafic volcanics west of the main volcanic - intrusive contact. This would correspond to the hanging wall sections of the pluton. Common to each prospect is the

occurrence of paralleling limonitic stained carbonate to quartz carbonate alteration zones, quartz breccia and/or stock work quartz, local intrusive plugs or dykes and host rocks of compositionally diverse basaltic tuffs and flows.

Copper and gold assays are associated with areas of carbonate and quartz alteration. Lesser amounts of chlorite and epidote alteration seem to be lithologically controlled and confined to tuffaceous horizons. The mineralized veins, particularly at the "Main Zone" commonly pinch and swell from centimetre scale to greater than two metres in width. Similar sized ladder veins occur as interior veins at oblique angles to the parallel shear zones at the Main Zone as well. These veins do not occur at regular enough intervals to suggest the potential of having a mineable vein type (or stockwork??) copper gold prospect. Other true stockwork quartz veining within an envelope of intense hanging wall carbonate alteration at the "North Ridge" occurrence is considered encouraging but shows no sign of mineralization. Other quartz breccia and stockwork quartz zones do occur at the "Comfort" and "Wolf" zones but both are mineralized insignificantly if at all.

7.0 **RECOMMENDATIONS**

These suggestions are presented with the understanding that the known showings currently identified on the Yeti Claims are in the preliminary stages of assessment. The next step, if one is willing to try, would be to drill test the "Crow Vein". This is an occurrence previously identified in 1992 (Blann, 1992) and not investigated during 1995. Logistically to work this vein system will be very difficult To justify any further work on the Yeti Claims one must be well aware that the risk factors and costs involved will be extremely high when weighed against the possibility of discovering a mineable prospect. The veins themselves, even though they contain pockets of high grade gold-copper, pinch and swell along strike and most likely down dip as well. This fact alone, as well as the property's remoteness and its rugged topography should be considered inhibiting factors for future work.

There are however areas on the Yeti Claims that warrant ground follow up:

- 1.) Follow-up of previous 1990 field work along the western portion of the claim area, focusing on the possible occurrence of vein type mineralization, previous copper-gold silt geochemical anomalies, and general geology. Regional magnetic highs should be correlated with gossanous zones and copper/gold anomalies (Kushner, 1990).
- 2.) Detail the logistics of drilling the "Crow Vein" by first resampling the 200 metre long vein on 5 to 10 metre centers and confirming previous mineralized samples such as sample 92K-07 which returned values of 14340 ppm Cu and 74000 ppb Au over a one metre width and sample 92D-05 which returned values of 9887 ppm Cu and 35000 ppb Au over a width of 0.25 metre. This should be done with the aid of professional mountain climbers. If rock chip assays are consistently in the range of 0.5 opt Au or greater the next step is to spot 4 initial drill platforms, identify all the possible sources of water for the drill and its hydraulic lift, and a central helipad location. Both the field work and the subsequent drilling should be carried out during mid to late summer over a period of one month.

STATEMENT OF EXPENSES

WAGES & PROFESSIONAL FEES:		
Jim Cuttle, P.Geo Project Geologist	13.5 Days @ \$500.00 P/D	\$ 6,750.00
Greg Mowatt - Manager & Prospector	55 Days @ \$425.00 P/D	23,375.00
Jason Delaney - Prospector	35 Days @ \$360.00 P/D	12,600.00
ASSAYS & ANALYSIS:		
	64 rock samples @ \$10.50	672.00
	198 soil samples @ \$8.25	1,633.50
	262 geochem Au fire assay @ \$8.50	2,227.00
TRANSPORTATION:		
Mobilization Demobilization Vancouver - Telegraph Creek Return		5,000.00
Helicopter		8,500.00
Fixed Wing Float Plane		2,200.00
4x4 Truck Rental	35 Days @ \$100.00 P/D	3,500.00
4x4 Truck Rental:	12 Days @ \$100.00 P/D	1,200.00
Trailer	35 Days @ \$30.00 P/D	1050.00
ROOM AND BOARD:		
Expediter (include communications)		2,250.00
Food		3,125.00
Lodging		875.00
EQUIPMENT RENTAL:		
Extreme Weather Camp	35 Days @ \$150 P/D	5,250.00
EQUIPMENT RENTAL: - (continued))	
General Exploration Equipment	35 Days @ \$50.00 P/D	1,750.00
VLF-EM Rental	5 week @ \$250.00 P/Wk	1,250.00
GPS Rental	35 Days @ \$15.00 P/D	525.00
OFFICE & PRESENTATION:		
Report Preparation		2,825.00
Drafting & Base Map Preparation		1,750.00
15% Project Supervision & Overhead		13,250.00
TOTAL COST OF PROJECT:		\$101,557.50

REFERENCES

Blann, D.E., 1993.	
	Geological Report on the Yehiniko Lake Property. Assessment Report #22773.
Brown, D., Greig, CJ, and	Gunning, M., 1990. Geology and Geochemistry of the Stikine River-Yehiniko Lake Area, Northwestern BC. Open File 1990-1. Dept. of Mines, BC
Brown, D., and Greig, C.J.	., 1990. Geology of the Stikine River-Yehiniko Lake Area, Northwestern BC. Geological Fieldwork, 1989, Paper 1990-1, p141. Dept. of Mines, B.C.
Fraser, D.C., 1969.	Contouring of VLF-EM Data. Geophysics, Vol. 34, pp. 958-967.
Kerr, F.A., 1948.	Geology and Mineral Deposits of the Stikine River Area, BC. Memoir 247, Geological Survey of Canada.
Ostensoe, E., 1990.	Geological, Geophysical and Geochemical Report on the Yeti 4-7 Mineral Claims. Assessment Report 21168.
Sivertz, G., 1990.	Geological Report on the Yeti 1-3 Mineral Claims. Assessment Report 21302.
Souther, J.G., 1972.	Telegraph Creek Map-Area, BC. Paper 71-44, Geological Survey of Canada.

CERTIFICATE

I, Greg Bruce Mowatt, of the town of Gibsons, B.C. do hereby certify:

- 1. THAT I am a prospector with 14 years of geological experience;
- 2. THAT I have a B.A. in Applied Linguistics from the University of Victoria;
- 3. THAT I have no interest nor do I expect to gain any interest in the Yeti claim group, of the Yehiniko Lake Area, Liard Mining Division, of British Columbia;
- 4. THAT this report is based on field information gathered under my direct supervision, during September, 1995 and October 1995 and, in part, on my personal field observations of the geology of the Yehiniko Lake property;
- 5. THAT I am presently working as a private consultant at the home address of 2643 Lower Road, Roberts Creek and that my Mailing Address is RR #5, C48, Gibsons, B.C. V0N IV0

Dated at Gibsons, British Columbia, this 1st day of November, 1996.

mot

Greg Bruce Mowatt

APPENDIX I

Rock, Silt & Till Assays

.

MIN-EN LABS — ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423 FILE NO: 5V-0439-RJ1+2

DATE: 95/10/23 • rock * (ACT: #31)

																,														IOCK		(101.15
SAMPLE NUMBER	AG PPM	AL %	AS PPM	BA PPM	BE PPM	BI PPM	CA %	CD PPM	CO PPM	CR PPM	CU PPM	FE %	GA PPM	K %	LI PPM	MG %	MN PPM	MO	NA %	NI PPM	P PPM	PB PPM	SB PPM	SN PPm	SR PPM	TH	T1 %	U	PPN	/ W 1 PPM	ZN PPM	Au-fire PPB
95YC1-01 95YC1-02 95YC1-03 95YC1-04 95YC1-05	.3 3.8 .1 .4 2.1	2.72 .42 2.59 .93 .19	1 40 1 1 84	59 58 37 37 22	3.4 3.2 3.2 2.1 .9	3 1 3 1 1	2.94 .96 4.87 4.25 .36	.1 .1 .1 .1	27 26 26 17 6	8 20 33 19 81	675 >10000 714 1381 2627	6.00 6.45 5.59 3.97 1.65	1 1 1 1	.08 .12 .07 .15 .09	9 4 10 4 1	2.13 .11 2.20 .59 .07	1070 855 1745 1319 166	1 3 1 2 2	.01 .01 .01 .01 .01	20 24 28 15 9	1090 1040 970 1050 200	52 88 51 53 26	9 14 10 5 4	4 2 5 1	1 1 2 1	1 1 1 1	.01 .01 .01 .01 .01	1 1 1 1	110.9 67.3 147.3 36.5 13.1	1 2 4 2 4 2 4	138 145 196 108 22	2 39 3 216 99
95YC1-06 95YC1-07 95YC1-08 95YC1-09 95YC1-09	.1 .2 .1 .3	1.50 2.51 .28 1.41 1.38	1 1 1 1	65 50 85 39 44	3.0 3.4 2.2 2.3 2.5	2 8 3 1 1	3.61 4.21 .44 3.73 1.39	.1 .1 .1 .1	28 25 24 19 18	24 10 32 13 25	986 248 625 852 1049	5.57 6.06 3.96 3.90 4.25	1 1 1 1	.12 .12 .12 .14 .16	8 7 1 5 5	1.04 2.13 .11 .94 .97	1601 1282 846 1754 1100	1 1 2 3	.01 .01 .01 .01 .01	27 20 16 21 16	910 1140 520 850 780	65 54 51 50 49	5 7 1 7 5	2 5 1 2 2	1 1 6 1	1 1 1 1	.01 .01 .01 .01 .01	1 1 1 1	95.3 112.0 30.8 64.7 52.7	3 1 2 2 2	195 109 108 136 210	49 5 1420 15 102
95YC1-11 95YC1-12 95YC1-13 95YC1-14 95YC1-15	.1 .1 .1 .1	.49 1.72 2.10 .65 1.04	1 1 1 1	37 42 32 60 67	1.2 2.6 2.9 1.9 2.4	1 7 5 6	5.95 4.03 4.50 3.69 1.19	.1 .1 .1 .1	10 18 23 14 19	26 12 7 15 9	1381 267 223 217 214	2.09 4.20 5.10 3.27 3.98	1 1 1 1	.12 .14 .20 .17 .22	24635	.35 1.28 1.74 .55 .62	2641 1433 2065 1276 1517	2 1 2 1 2	.01 .01 .01 .01 .01	14 18 19 14 20	450 970 1120 830 1110	38 49 57 43 45	6 7 6 3 2	2 2 5 2 2	90 1 1 1	1 1 1 1	.01 .01 .01 .01 .01	1 1 1 1	24.5 55.0 75.0 37.4 49.4	3 2 1 1 1	43 148 182 104 154	25 6 7 10 10
95YC1-16 95YC1-17 95YC1-18 95YC1-19 95YC1-20	.1 .1 .1 2.0	2.61 .57 .88 2.54 1.51	1 1 1 1	46 101 123 70 41	3.5 1.7 2.5 3.6 2.5	7 7 8 1	4.12 5.87 1.89 2.67 1.11	.1 .1 .1 .1	28 13 21 30 18	18 41 12 21 47	334 350 322 284 3539	5.98 3.19 4.53 6.49 4.44	1 1 1 1	.13 .09 .14 .19 .19	9 2 3 10 6	2.12 .48 .48 1.96 .97	1880 3596 2956 1954 1329	12112	.01 .01 .01 .01 .01	27 22 26 31 24	990 350 820 1040 690	57 59 89 67 62	85488	6 1 5 2	1 13 1 1 1	1 1 1 1	.01 .01 .01 .01 .01	1 1 1 1	113.0 40.4 66.2 116.4 70.5	24224	199 94 551 210 204	5 952 310 12 3760
95YC1-21 95YC1-22 95YC1-23 95YC1-24 95YC1-25	.3 1.1 9.0 1.8 1.9	2.86 2.54 .39 2.70 2.64	1 1 115 1 1	56 41 15 33 22	3.7 3.5 1.8 3.6 3.4	9 11 15 16	4.03 3.69 1.39 3.56 5.48	.1 .1 .1 .1	27 30 11 31 27	24 22 66 21 25	305 476 >10000 300 242	6.51 6.44 3.42 6.84 7.09	1 1 1 1	.15 .11 .06 .05 .06	10 11 2 9	2.14 1.93 .26 2.19 2.07	1363 1246 354 1116 1154	1 1 3 1 1	.02 .02 .01 .03 .02	25 27 14 24 22	1050 920 450 970 790	59 65 55 59 61	9 8 12 7 5	6 5 2 3 3	1 1 1 1	1 1 1 1	.01 .07 .01 .15 .19	1 1 1 1	168.0 168.0 25.0 213.1 230.4	3 3 4 3 4 3 4	178 103 27 115 457	11 35 935 14 33
95YC1-26 95YC1-27 95YC1-28 95YC1-29 95YC1-29 95YC1-30	2.6 1.9 1.1 10.5 1.3	1.13 2.51 2.66 1.68 2.65	185 1 1 1	31 27 32 29 44	3.6 3.2 3.3 3.4 3.2	1 17 10 1 14	.37 5.30 3.83 1.55 2.98	.1 .1 .1 .1	26 28 28 26 28	49 24 26 38 14	2704 227 330 >10000 316	7.70 6.28 6.57 7.04 6.48	1 1 1 1	.08 .06 .06 .06 .05	487 57	.75 1.90 2.17 1.32 1.98	454 1149 1188 707 1075	1 1 1 1	.01 .03 .02 .02 .02	24 24 22 25 20	380 850 990 1000 790	98 58 58 96 48	2 6 6 23 2	1 3 3 3 3 3	1 1 1 1	1 1 1 1	.01 .16 .08 .03 .22	1 1 1 1	87.4 190.8 192.5 114.9 198.3	23242	74 114 125 95 99	2030 11 10 52 12
95YC1-31 95YC1-32 95YC1-33 95YC1-34 95YC1-35	1.4 2.6 .9 .8 1.9	2.64 .77 2.51 2.77 .21	1 1 1 1	27 13 26 27 20	3.3 1.3 3.0 3.3 .5	14 1 3 10	3.40 1.05 2.03 2.15 4.15	.1 .1 .1 .1	29 9 27 29 3	20 51 23 20 116	321 8592 693 227 3875	6.59 2.52 5.86 6.83 1.01	1 1 1 1	.04 .04 .03 .03 .01	9 3 9 10 1	2.16 .58 2.14 2.24 .17	1131 446 988 1047 318	1 1 1 2	.03 .02 .03 .03 .01	23 11 19 26 5	870 430 910 700 140	49 36 42 54 10	36213	32541	1 1 1 21	1 1 1 1	.19 .01 .14 .15 .01	1 1 1 1	214.6 52.0 164.5 211.8 16.8	33226	110 42 106 102 13	6 12 6 15 84
95YC1-36 95YC2-01 95YC2-02 95YC2-03 95YC2-04	1.4 .4 7.0 .1 .1	2.92 1.99 .27 2.23 .63	1 1 5 1 1	53 195 33 130 71	3.7 2.4 .9 2.6 1.7	15 5 1 4 3	3.54 3.68 11.04 3.79 4.14	.1 .1 .1 .1 .1	31 18 6 19 12	28 12 69 19 49	249 57 >10000 93 45	7.25 4.02 1.95 4.29 2.76	1 1 1 1	.04 .14 .04 .14 .09	10 8 1 9 2	2.40 1.83 .18 2.15 .95	1265 848 848 1001 815	1 2 1 1	.03 .02 .01 .02 .02	25 14 10 23 15	880 1100 440 1000 600	58 33 42 33 30	5 6 15 4 1	3 3 1 5 2	1 89 1 22	1 1 1 1	.18 .01 .01 .01 .01	1 1 1 1	240.8 52.4 13.1 66.4 39.8	3 1 5 1 3	122 82 24 94 57	12 9 17 8 11
95YC2-05 95YC2-06 95YC2-07 95YC2-08 95YC2-09	.1 .1 .1 3.0	.83 .54 .52 2.38 .38	1 1 1 1	33 33 69 37 18	1.6 1.3 1.1 2.8 .9	3 2 2 3 1	3.91 3.79 3.43 3.31 5.31	.1 .1 .1 .1	10 6 5 24 6	19 11 4 12 74	11 7 5 132 6147	2.43 2.12 1.88 5.19 1.57	1 1 1 1	.12 .16 .17 .04 .04	4 2 7 1	.67 .36 .27 2.04 .35	692 695 881 806 487	1 1 1 2	.02 .02 .03 .02 .01	13 9 7 16 9	650 760 770 970 280	25 24 21 37 24	2 1 2 7	2 2 1 6 1	1 7 10 1 37	1 1 1 1	.01 .01 .01 .02 .01	1 1 1 1	34.5 18.6 11.4 138.2 12.8	1 1 1 4	56 63 67 82 26	1 6 8 6 5
95YC2-10 95YC2-11 95YC2-12	.1 .1 1.4	.55 1.87 .83	18 1 1	82 43 98	2.0 2.4 1.9	4 6 1	5.43 3.05 5.77	.1 .1 .1	11 13 18	7 10 39	21 70 2486	3.11 4.09 3.44	1 1 1	.12 .09 .05	2 5 3	1.29 1.54 .87	1054 910 1011	1 1 1	.02 .03 .02	12 14 13	1010 1540 770	36 38 44	1 5 6	2 3 2	92 1 20	1 1 1	.01 .01 .01	1 1 1	36.2 57.4 34.0	1 1 2	57 98 70	2 4 1140

PROJ: JEHINIKO

MIN-EN LABS - ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL . (604)327-3436 EAX. (604)327-3423

FILE NO: 5V-0439-RJ3 DATE: 95/10/23

.

ATTN: GREG MOWAT	т									TE	EL:(604)	327-34	436	FAX:	(604)327-	3423												* r	ock	•	(ACT:F31
SAMPLE NUMBER	AG PPM	AL %	AS PPM	BA PPM	BE PPM	BI PPM	CA %	CD PPM	CO PPM	CR PPM	CU PP m	FE %	GA PPM	K %	LI	MG %	MN PPM	MO PPM	NA %	N I PPM	P PPM	PB PPM	SB PPM F	SN PPM	SR PPM I	TH PPM	TI %	U PPM	V PPM	W PPM	ZN . PPM	Au-fire PPB
95YGF-01 95YJR-01 95YJR-02 95YGR-02 95YGR-03	1.2 .1 .4 1.1 3.7	.23 1.75 1.46 2.93 .47	468 1 1 1 1	58 75 18 33 29	.8 1.5 1.6 1.3 1.4	1 8 9 1	2.42 2.76 8.32 3.11 1.37	.1 .1 .1 .1 .1	5 9 14 9 8	131 17 18 24 66	3409 37 19 93 >10000	1.32 2.58 2.95 2.56 2.64	2 1 1 1	.01 .07 .03 .07 .25	6 5 7 6 4	.40 .82 1.27 .38 .22	395 1041 1420 399 517	2 1 1 1	.01 .08 .02 .28 .01	14 10 12 9 11	280 900 1060 1000 640	28 28 39 18 40	8 7 8 14 11	1 1 2 1	6 64 127 139 1	1 1 1 1	.01 .04 .02 .08 .01	1 1 1 1	42.6 29.8 44.1 41.4 7.6	82224	39 75 67 45 34	487 1 1 3 478
95YGR-04 95YGR-05 95YGR-06 95YGR-07 95YGR-08	1.4 11.2 46.4 1.0 .3	.28 .52 .18 .33 1.14	9 471 1042 1 1	28 47 21 25 103	1.5 3.3 4.7 .9 2.2	1 1 1 5	1.25 .15 .03 1.11 .53	.1 .1 .1 .1	14 18 21 8 22	76 95 61 164 119	3562 >10000 >10000 3401 337	2.97 6.68 10.46 1.55 3.92	1 1 1 1	.13 .04 .05 .06 .06	2 3 1 3 5	.04 .42 .08 .17 .89	538 253 49 381 576	1 2 1 2 2	.01 .01 .01 .01 .01	15 25 29 10 23	530 1340 1890 260 420	37 121 217 22 45	4 48 60 5 4	1 2 2 1	1 1 1 1	1 1 1 1	.01 .01 .01 .01 .01	1 1 1 1	28.7 25.3 9.7 15.7 72.8	4 8 6 7	64 45 351 25 70	708 49 >10000 46 80
95YGR-09 95YGR-10 95YGR-11 95YGR-12 95YGR-13	1.5 .1 5.9 4.2 34.4	2.59 2.72 .21 .71 .08	1 166 1 1035	61 100 28 134 27	3.5 3.7 1.1 1.4 4.5	14 9 1 1 191	3.56 3.29 15.00 2.94 1.09	.1 .1 .1 .1	31 31 11 17 14	58 53 71 86 57	241 166 9896 9735 >10000	6.49 6.91 2.39 2.64 10.14	1 1 2 1 1	.05 .11 .03 .08 .04	6 9 2 3 1	2.25 1.93 .16 .58 .02	1210 1500 1170 616 360	1 1 3 2 6	.03 .02 .01 .01 .01	31 35 13 13 32	990 1060 300 450 3130	56 63 50 44 217	9 7 13 12 97	1 3 1 4	27 1 77 1 1	1 1 1 1	.14 .01 .01 .01 .01	1 1 1 1	188.3 199.2 16.9 14.0 3.5	5 4 5 5 9	106 125 56 54 20	15 21 1455 19 40
95YGR-14	.3	1.26	1	33	2.3	1	4.47	.1	12	6	954	3.89	1	.14	8	.89	1151	1	.02	13	1400	48	6	2	17	1	.01	1	32.0	1	99	3
																													·			
									· · · · · · · · · · · · · · · · · · ·																							
																	<u>.</u>															
																		_														

APPENDIX II

Soil Sample Geochemical Analysis

•

MIN-EN LABS - ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL: (604)327-3436 FAX: (604)327-3423 FILE NO: 5V-0439-SJ1+2 DATE: 95/10/23

4

* soil • (ACT:F31)

ATTN. GREG HOWATT									04/JET J-		1 77.		JJLI	3463													SUIL		(ACT.131
SAMPLE NUMBER	AG AL PPM %	AS PPM	BA PPM	BE PPM	BI CA PPM %	CD PPM	CO PPM	CR PPM	CU FE	GA GPPM	K %	LI	MG %	MN PPM	MO PPM	NA %	NI PPM	P PPM	PB PPM	SB PPM	SN PPM	SR PPM	TH	TI %	U	V PP M	W PPM	ZN PPM	Au-fire PPB
89N 98+00E 89N 98+25E 89N 98+50E 89N 98+75E 89N 98+75E 89N 99+00E	1.6 2.64 1.5 2.64 1.2 2.64 .3 2.51 .1 1.37	190 1 1 1 1	203 165 230 131 237	3.1 3.0 3.6 3.3 2.4	1 1.52 1 1.08 8 .98 9 .95 7 1.31	.1 .1 .1 .1	51 39 41 34 7	509 472 330 273 1	107 4.85 97 4.27 314 5.32 65 4.67 30 2.97	5 1 2 1 1 1 1 1	.36 .09 .17 .04 .14	26 19 24 18 3	9.05 6.49 4.72 3.14 .55	454 523 1271 1217 2692	1 1 1 2	.02 .04 .03 .03 .01	428 339 246 180 19	160 380 990 1080 520	1 16 34 42	1 1 3 8	9 5 4 5 2	68 7 1 1	1 1 1 1	.05 .07 .12 .09 .01	1 1 1 1	113.3 88.7 132.7 87.7 14.8	12 15 13 12	55 62 80 74 132	1 3 7 2 147
89N 99+25E 89N 99+50E 89N 99+75E 89N 100+00E 89+50N 98+25E	.1 1.72 .7 2.26 .4 2.67 .9 2.74 1.6 2.95	1 1 1 1	237 73 93 39 256	2.8 3.0 3.6 3.4 2.9	10 2.60 1 .52 7 .68 8 .34 1 2.34	.1 .1 .1 .1 .1	25 62 43 43 76	67 297 343 437 431	90 3.24 133 4.23 107 5.16 74 5.18 111 4.09	1 5 1 5 1 5 1	.04 .04 .07 .04 .18	9 32 27 15 16	1.23 6.63 4.80 4.30 9.63	2058 902 1274 758 564	2 1 1 1	.03 .03 .04 .03 .01	96 455 236 258 648	1770 430 680 420 60	40 1 25 23 1	6 1 2 1	3 6 7 5 7	50 1 1 76	1 1 1 1	.08 .06 .08 .10 .03	1 1 1 1	50.7 82.0 115.2 110.1 81.3	4 7 13 19 7	82 64 110 82 57	6 4 3 1
89+50N 98+50E 89+50N 98+75E 89+50N 99+00E 89+50N 99+25E 89+50N 99+50E	1.5 2.48 1.5 2.52 .1 2.38 1.3 3.63 .3 2.70	126 1 1 1	117 324 303 328 53	3.2 3.0 3.9 4.2 3.9	1 1.39 2 2.14 1 1.51 1 4.67 7 .49	.1 .1 .1 .1	52 44 45 89 42	482 488 409 918 319	105 4.69 78 4.24 66 5.40 130 6.62 147 5.90	2 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1	. 10 . 15 . 09 . 03 . 09	20 17 16 41 17	8.09 6.87 6.42 9.46 3.87	550 768 1762 1198 1232	1 1 1 1	.02 .02 .01 .01 .01	455 331 402 840 239	270 350 720 170 330	1 1 1 51	1 1 1 3	66696	56 46 37 174 1	1 1 1 1	.05 .08 .01 .01 .06	1 1 1 1	103.1 84.8 88.8 149.8 104.1	13 16 13 31 14	58 54 118 81 181	1 2 132 2 24
89+50N 99+75E 89+50N 100+00E 90N 98+50E 90N 98+75E 90N 99+00E	.1 2.36 .6 2.08 1.3 2.37 .8 2.23 .6 2.44	1 94 178 51	168 114 251 192 162	3.8 3.0 3.0 3.6 3.0	11 1.42 5 .71 1 1.18 1 1.31 1 2.01	.1 .1 .1 .1	49 40 49 47 74	262 383 399 518 395	76 5.31 61 4.47 97 4.56 78 5.17 108 4.44		.05 .04 .15 .07 .03	18 12 19 13 11	3.36 4.25 7.17 6.76 9.01	1775 898 639 988 1164	1 1 1 1	.03 .03 .04 .01 .01	237 238 412 375 614	1230 880 520 520 300	42 18 1 1 1	3 1 1 1	45767	18 1 35 31 48	1 1 1 1	.10 .06 .04 .03 .01	1 1 1 1	101.7 99.8 97.8 109.3 85.5	12 16 11 17 7	103 63 67 61 51	4 4 34 25 3
90N 99+25E 90N 99+50E 90N 99+75E 90N 100+00E 91N 98+00E	.9 2.57 .7 2.02 .2 2.85 1.0 2.61 1.8 2.68	6 74 1 1	110 190 164 114 277	2.8 4.4 3.9 3.4 2.8	1 1.64 11 .61 1 1.37 5 .74 1 1.20	.1 .1 .1 .1	51 55 45 42	462 469 666 463 463	85 4.12 97 7.24 88 5.97 111 5.12 114 4.30		.16 .08 .05 .04 .17	24 16 14 15 13	8.32 4.21 8.59 5.33 6.97	792 1290 1625 902 439	1 1 1 1	.01 .02 .01 .03 .01	408 363 427 335 326	190 740 340 220 290	1 48 1 17 1	1 1 1 1	76856	54 1 56 1 9	1 1 1 1	.01 .09 .04 .08 .08	1 1 1 1	77.6 122.4 120.4 111.8 97.2	11 19 21 18 15	52 97 69 89 60	2 9 4 6 1
91N 98+25E 91N 98+50E 91N 98+75E 91N 99+00E 91N 99+25E	1.6 2.83 2.0 3.04 1.2 2.54 1.1 2.14 1.7 3.22	1 1 482 1	332 364 110 155 133	2.8 2.9 3.5 3.9 3.8	1 1.64 1 1.61 3 .59 6 .41 6 .59	.1 .1 .1 .1	47 50 51 51 50	516 517 437 523 403	113 4.28 91 4.30 90 5.25 81 6.32 95 5.27	1 1 1 1	.26 .38 .06 .05 .05	14 16 13 11 16	7.77 8.66 6.80 6.01 6.64	419 376 719 693 721	1 1 1 1	.01 .01 .02 .01 .01	351 432 426 405 387	220 260 280 250 750	1 1 13 1	1 1 1 1	6 6 7 5 6	39 118 1 1 1	1 1 1 1	.06 .07 .07 .07 .12	1 1 1 1	93.9 89.4 109.4 135.0 107.9	16 14 14 20 13	64 57 62 63 85	5 5 2 4 6
91N 99+50E 91N 99+75E 91N 100+00E 91N 100+25E 91N 100+50E	1.6 2.49 1.8 2.51 1.0 2.17 .5 2.27 1.3 1.94	71 173 3 1 150	65 91 74 104 131	3.4 3.5 3.6 3.4 2.7	1 .60 1 .73 6 .66 4 .64 4 .81	.1 .1 .1 .1	61 59 50 46 38	377 361 455 415 408	95 5.21 122 5.41 79 5.68 99 5.06 86 4.15	1	.08 .07 .06 .07 .06	9 7 11 14 10	8.31 8.33 5.59 5.64 5.05	440 326 875 1056 600	1 1 1 1	.01 .01 .01 .02 .02	523 552 350 365 306	200 210 530 500 560	1 17 7 4	1 1 1 1	6 6 5 5 5	3 18 1 1	1 1 1 1	.04 .03 .07 .07 .07	1 1 1 1	116.5 119.4 118.6 105.6 88.7	9 8 18 15 16	55 53 80 67 56	5 3 9 6 5
91N 100+75E 91N 101+00E 91N 101+25E 91N 101+50E 91N 101+75E	1.0 1.90 1.0 2.15 .9 1.90 1.7 3.12 1.4 2.17	77 1 154 1 1	79 110 94 75 62	3.2 3.1 3.1 3.5 3.0	7 .50 5 .57 5 .58 15 .50 10 .46	.1 .1 .1 .1	38 40 36 42 37	447 437 404 379 356	87 4.72 87 4.73 81 4.56 99 5.57 72 4.50		-04 -06 -04 -04 -03	8 14 12 13 9	4.33 5.13 4.51 4.02 3.85	625 780 658 722 549	1 1 1 1	.01 .02 .02 .02 .02	300 320 292 267 250	570 510 560 930 710	19 11 13 25 26	1 1 1 1	5 5 5 4 4	1 1 1 1	1 1 1 1	.08 .07 .07 .21 .13	1 1 1 1	103.9 104.6 97.9 101.7 95.0	19 17 17 17 16	63 64 61 87 66	4 7 42 9 6
91N 102+00E 92N 96+00E 92N 96+25E 92N 96+50E 92N 96+75E	1.4 2.31 1.6 2.72 1.1 2.63 .6 2.86 1.4 2.40	1 1 1 1	72 55 65 99 137	2.9 3.0 3.2 2.9 2.9	10 .45 9 .81 11 1.13 4 .90 3 1.02	.1 .1 .1 .1	36 50 41 41 40	304 302 144 333 426	84 4.12 226 4.61 362 5.07 212 4.57 116 4.31	2 1 1 7 1 7 1	.05 .07 .05 .16 .07	12 20 14 18 10	4.07 4.50 2.41 4.95 5.82	557 823 1295 1275 598	1 1 2 1	.02 .02 .02 .01 .01	271 301 136 244 285	780 1000 1170 510 390	14 16 94 4 1	1 1 6 1 1	45365	1 1 1 1	1 1 1 1	.13 .15 .11 .09 .07	1 1 1 1	84.7 88.1 84.7 92.6 97.3	12 12 13 16	73 79 147 78 61	7 5 11 6 21
92N 97+00E 92N 97+25E 92N 97+50E	1.0 2.72 1.2 2.59 1.2 2.10	1 1 1	82 100 89	2.9 2.7 2.7	3 2.02 3 1.12 5 .80	.1 .1 .1	45 38 36	403 408 408	179 4.55 151 4.30 112 3.86	1 1 1	.06 .09 .05	12 13 9	5.34 5.66 4.82	1112 708 661	1 1 1	.01 .01 .01	285 285 243	490 430 400	2 1 5	1 1 1	5 6 4	1 1 1	1 1 1	.08 .08 .07	1 1 1	99.5 90.8 82.6	15 14 17	75 68 59	29 7 135

COMP: WHITE WOLF EXPL.

PROJ: JEHINIKO

ATTN: GREG MOWATT

MIN-EN LABS — ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423 FILE NO: 5V-0439-SJ3+4

DATE: 95/10/23 * soil * (ACT:F31)

SAMPLE	AG A		S BA	BE	BI C	A CI				FE %	GA	K ¥	LI	MG	MN	MO	NA Z		P	PB	SB S			H TI	U	V	W DDM	ZN	Au-fire
92N 97+75E 92N 98+00E 92N 98+25E 92N 98+50E 92N 98+50E 92N 98+75E	.9 2.6 1.5 2.2 1.4 2.1 1.2 1.9 1.2 1.9	3 9 13 9 6 16 1 15	106 112 97 70 98	2.7 2.8 3.6 3.1 3.2	2 1.0 2 .8 15 .4 4 .5 5 .6	2 9 8 8 3	4 4 3 3	2 424 1 523 7 260 8 375 5 341	152 97 57 75 70	4.45 4.40 5.56 4.81 5.00	1 1 1 1	.08 .05 .04 .03 .03	17 12 10 12 11	5.77 6.12 2.64 4.65 5.07	886 470 723 438 608	1 1 1 1	.02 .01 .02 .02 .03	276 308 181 294 345	420 310 620 440 590	1 1 47 14 9	1 1 1 1 1	6 5 4 6 5		1 .08 1 .07 1 .16 1 .06 1 .09	1 1 1 1 1	96.0 102.8 116.5 107.4 100.3	14 19 12 14 12	72 57 73 55 63	43 20 5 9
92N 99+00E 92N 99+25E 92N 99+50E 92N 99+75E 92N 100+00E	1.7 2.4 1.0 1.8 1.7 2.3 1.9 3.2 1.6 3.2	8 20 3 7 6 20 7 7	86 65 124 251 167	3.0 3.0 2.7 2.7 3.2	3 .6 3 .5 1 .7 1 .8 1 1.0	8.2.4	4 4 4 6	4 343 1 298 7 427 8 550 6 348	133 120 105 129 510	4.59 4.39 3.85 3.86 4.99	1 1 1 1 1	.04 .05 .07 .13 .03	14 12 18 22 31	5.97 4.89 6.00 7.24 5.82	455 569 404 514 869	1 1 1 1	.02 .03 .02 .01 .03	393 307 361 388 266	340 450 320 260 540	1 7 1 1	1 1 1 2	5 5 4 4 5	1 1 1 1 1 1 1 1	1 .08 1 .06 1 .08 1 .10 1 .09	1 1 1 1	98.4 85.9 76.6 58.2 137.2	11 10 14 18 12	63 59 57 79 139	7 11 64 18 29
92N 100+25E 92N 100+50E 92N 100+75E 92N 101+00E 92N 101+25E	.4 2.6 .4 2.4 1.1 2.5 1.8 2.4 1.3 2.4	446 B	186 577 89 90 135	3.6 3.4 3.5 3.8 3.6	5.8 1.5 8.4 11.4 10.6	3 .1 1 .1 1 .1 5 .1	40 75 51 41	6 445 8 401 5 381 0 329 5 403	69 159 93 118 99	5.38 5.24 5.13 5.48 5.26	1 1 1 1	.04 .04 .05 .05 .05	10 16 15 14 14	5.37 6.60 5.31 4.76 4.42	1447 1401 1019 907 1113	1 1 1 1	.01 .02 .02 .03 .03	308 577 407 422 322	610 210 840 920 600	18 6 12 24 26	1 1 1 1	5 6 5 4 5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	05 05 1.05 1.11 1.18 1.13	1 1 1 1	105.7 107.1 104.9 103.8 102.8	17 12 14 12 17	81 94 90 97 83	8 18 13 6
92N 101+50E 92N 101+75E 92N 102+00E 92N 102+25E 92N 102+50E	.6 2.3 1.3 2.3 1.6 2.0 .9 3.5 1.5 2.7	5 5 100 9 29 5 1 1	111 133 167 108 73	3.6 3.2 3.0 3.9 3.2	1 .4 2 .5 6 .6 1 .7 1 .7	20.1	6 4 3 6	1 469 6 431 9 379 4 335 1 388	152 112 110 137 127	5.50 4.65 4.56 6.14 4.78	1 1 1 1	.03 .03 .04 .06 .03	15 14 13 45 12	6.26 6.55 4.77 8.08 7.97	1212 658 568 1228 626	1 1 1 1	.02 .02 .03 .03 .01	461 464 367 435 521	470 420 530 340 160	7 1 12 1 1	1 1 1 1	6 6 4 6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.04 .07 .09 .06 .05	1 1 1 1	107.6 89.7 91.9 129.8 109.8	16 14 15 7 9	71 73 75 128 67	105 28 46 3 6
93N 98+50E 93N 98+75E 93N 99+00E 93N 99+25E 93N 99+50E	1.8 2.1 1.7 2.0 1.6 1.9 1.9 2.20 1.5 2.70	5 73 7 22 9 302 9	239 257 204 160 255	2.9 2.9 3.1 3.3 2.8	2 .7 2 .8 3 .7 7 .7 4 .8	5 .1 1 .1 5 .1 8 .1	4	5 330 5 365 9 392 7 358 6 325	99 97 94 106 127	4.15 4.40 4.88 5.35 4.34	1 1 1 1	.07 .08 .05 .05 .13	18 17 15 20	6.26 6.18 6.37 6.71 5.83	390 383 489 687 701	1 1 1 1	.04 .03 .03 .03 .03	392 388 400 448 406	360 370 330 520 530	1 1 1 1	1 1 1 1	4 5 5 5 5	$ \begin{array}{cccc} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{array} $.07 .07 .08 .13 .12	1 1 1 1	89.1 96.9 99.7 101.4 85.4	9 11 12 10 11	53 53 59 72 117	2 8 3 7 3
93N 99+75E 93N 100+25E 93N 100+50E 94N 100+00E 94N 100+25E	1.4 2.44 1.7 2.49 1.6 2.1 .9 1.64 1.9 1.7	3 7 188 4 556 2 422	59 241 605 86 107	3.9 3.1 2.9 3.1 3.7	4 .5 1 1.2 1 .9 1 .7 7 .6	9 .1 B .1 D .1 7 .1	7(44 8(5'	0 313 6 348 4 355 0 265 1 239	126 86 77 155 92	5.83 4.49 4.43 4.39 5.42	1 1 1 1	.03 .09 .07 .02 .03	10 12 16 10 6	6.66 7.25 6.62 9.11 6.24	924 309 339 1002 672	1 1 1 1	.02 .01 .02 .01 .02	507 418 419 564 474	540 280 320 120 440	2 1 1 9	1 1 1 1	6 7 4 5 1 6 6	$ \begin{array}{cccc} 1 & 1 \\ 3 & 1 \\ 1 & 1 \\ $.11 .05 .06 .04 .13	1 1 1 1	115.3 101.3 98.5 81.3 96.6	8 8 10 1 5	91 74 107 84 78	5 2 2 1 4
94N 100+50E 94N 100+75E 94N 101+00E 94N 101+25E 94N 101+50E	1.3 1.80 1.3 1.93 1.6 2.09 .9 1.79 1.1 2.80	0 355 3 169 9 135 9 1	74 59 327 37 74	3.9 3.6 3.0 2.6 3.4	8 .3 7 .4 3 .6 7 .2 5 .4	7 .1 9 .1 5 .1 5 .1 8 .1	7' 64 38 28 57	1 291 4 310 3 341 3 266 2 472	96 78 83 59 99	6.38 5.56 4.43 3.97 5.01	1 1 1 1	.04 .03 .02 .02 .03	13 10 16 7 16	5.80 5.80 6.00 2.66 5.63	1014 868 358 399 804	1 1 1 1	.02 .02 .02 .01 .01	546 473 460 211 383	660 840 340 370 350	20 10 35 4	1 1 1 1	6 5 5 3 5	1 1 1 1 1 1 1 1 1 1	.12 .10 .07 .07 .08	1 1 1 1	96.7 95.5 88.2 70.0 104.5	8 9 10 12 18	150 84 77 54 76	1 3 6 4 9
94N 101+75E 94N 102+00E 94N 102+25E 94N 102+50E 94N 102+75E	.5 1.94 1.1 2.1 .1 1.59 1.4 2.25 1.1 2.3	4 1 1 1 5 1 5 1	74 82 99 52 35	3.3 3.2 2.6 2.7 3.3	7 .4 10 .4 9 .4 13 .3 7 .3	0 .1 4 .1 2 .1 5 .1 0 .1	48	3 400 5 248 5 249 2 161 5 438	59 58 35 64 72	5.21 4.79 3.94 3.99 5.07	1 1 1 1	.03 .03 .03 .03 .03	13 13 7 18 11	3.94 2.81 2.22 2.78 4.22	943 884 1537 657 438	1 1 1 1	.01 .02 .01 .02 .02	281 172 149 160 292	530 550 750 350 390	37 39 42 32 23	1 2 5 1	4 3 3 5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.06 .12 .05 .17 .08	1 1 1 1	100.3 87.8 80.8 66.5 99.4	17 11 13 7 18	73 88 80 84 182	9 6 3 4 5
94N 103+00E 94N 103+25E 94N 103+50E 95N 102+00E 95N 102+25E	.8 1.92 .3 1.6 .1 1.50 .5 1.80 .5 1.83	2 124 1 1 5 1 5 1 5 1	84 47 84 94 85	3.2 2.7 2.5 2.8 3.1	6 .5 11 .2 10 .3 7 .4 10 .4	1 .1 4 .1 2 .1 5 .1 4 .1	44 33 39 39	421 5 196 5 184 9 225 5 269	61 25 35 48 50	4.85 4.08 4.02 3.96 4.49	1 1 1 1	.03 .02 .02 .02 .03	11 5 8 11 11	4.39 1.49 1.75 2.75 2.44	800 782 1144 763 912	1 2 1 1	.01 .01 .01 .01 .02	276 104 127 199 169	550 1710 690 470 680	22 45 40 31 45	1 2 1 1 1	4 3 2 3 3	1 1 1 1 1 1 1 1 1 1	.06 .09 .10 .08 .09	1 1 1 1	100.9 83.9 74.4 70.8 88.6	17 11 9 10 13	71 78 135 117 79	3 3 6 4 3
95N 102+50E 95N 102+75E 95N 103+00E	.2 1.98 1.0 2.27 .8 2.02	3 1 7 2 2 1	87 54 33	3.0 3.2 2.4	15 .3 5 .4 9 .2	3.1 3.1 5.1	30 47 30) 97 7 528 5 366	35 83 74	4.57 4.81 3.76	1 1 1	.03 .02 .02	7 10 10	.85 4.70 2.93	1332 666 704	3 1 1	.02 .02 .02	64 327 228	510 240 570	50 16 25	3 1 1	2 4 3	1 1 1 1 1 1	.19 .07 .10	1 1 1	80.7 103.1 80.1	6 23 17	81 85 66	7 3 8

COMP: WHITE WOLF EXPL. PROJ: JEHINIKO ATTN: GREG MOWATT

DATE: 95/10/23

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

* soil * (ACT:F31)

SAMPLE NUMBER	AG AL PPM %	AS PPM	BA PPM	BE PPM	B I PPM	CA %	CD PP M	CO PPM	CR PPM	CU PPM	FE %	GA PPM	K %	L1 PPM	MG %	MN PPM	MO PPM	NA %	N I PPM	P PPM	PB PPM	SB PPM	SN PPM	SR PPm i	TH PPM	TI %	U PPM	V PPM	W PPM	ZN PPM	Au-fire PPB
95N 103+25E 95N 103+50E 95N 103+75E 95N 104+00E 95N 104+25E	.3 2.55 1.2 2.46 1.3 2.78 .9 2.54 1.6 2.04	1 1 1 1	31 46 48 54 173	2.7 3.1 2.9 2.9 2.0	11 5 16 8 7	.26 .40 .39 .41 .63	.1 .1 .1 .1	29 55 25 36 33	206 510 158 394 276	91 112 79 86 55	4.33 4.67 4.86 4.30 3.05	1 1 1 1	.03 .03 .05 .04 .14	9 15 10 13 19	1.65 5.35 1.40 3.44 3.83	962 760 654 815 284	2 1 3 1 1	.01 .02 .02 .03 .03	123 309 88 209 143	990 630 1450 1170 10	43 5 51 27 4	6 1 8 3 1	3 5 2 4 3	1 1 1 1	1 1 1 1	.12 .11 .17 .11 .12	1 1 1 1	69.6 102.0 83.4 86.3 50.1	11 20 9 17 10	72 113 101 90 53	68 7 5 1
95N 104+50E 96N 103+00E 96N 103+25E 96N 103+50E 96N 103+75E	1.3 2.39 1.3 2.43 1.3 2.24 1.5 2.11 1.1 1.88	1 1 186 1 1	26 115 159 245 127	3.1 2.7 2.8 2.5 2.2	8 4 1 7 6	.39 .61 .60 .50 .49	.1 .1 .1 .1	35 49 44 37 32	493 465 542 369 331	84 125 109 124 112	4.43 4.06 4.29 3.80 3.22	1 1 1 1	.03 .08 .08 .22 .12	12 22 9 15 14	4.09 5.18 6.03 3.96 3.69	462 573 327 481 380	1 1 1 1	.02 .02 .01 .02 .02	256 300 338 206 183	540 380 280 270 150	19 1 1 11 7	1 1 1 1	45544	1 1 1 1	1 1 1 1	.09 .09 .05 .12 .09	1 1 1 1	92.9 84.6 103.0 70.6 60.2	21 18 20 15 13	72 71 57 63 55	11 1 3 2 1
96N 104+00E 96N 104+25E 96N 104+50E 96N 104+75E 96N 105+00E	1.2 1.94 .1 2.36 1.3 2.50 1.5 2.74 .8 2.35	22 1 31 1	77 67 64 70 39	2.3 2.8 3.1 2.8 3.1	6 14 3 6 10	.52 .25 .46 .61 .20	.1 .1 .1 .1	35 24 43 41 28	410 145 592 351 271	95 50 72 66 49	3.75 4.25 4.31 4.12 4.63	1 1 1 1	.05 .03 .03 .06 .04	11 6 18 18 14	4.09 .98 5.74 4.98 2.22	508 1309 453 435 558	1 3 1 3 3	.03 .02 .02 .03 .02	242 81 337 267 142	300 730 180 330 520	12 47 1 38	1 6 1 5	43654	1 1 1 1	1 1 1 1	.09 .13 .06 .09 .09	1 1 1 1	78.3 69.4 85.4 87.8 79.0	17 8 22 13 13	78 74 70 74 62	1 1 2 7
96N 105+25E 96N 105+50E 97N 106+00E 97N 106+25E 97N 106+50E	.1 1.71 1.0 2.02 1.4 1.94 1.1 1.19 1.0 2.04	1 153 177 62 89	60 95 38 70 61	2.9 2.8 2.9 2.7 3.1	11 3 6 11 7	.20 .58 .30 .38 .30	.1 .1 .1 .1	32 35 28 22 37	200 501 459 238 463	30 76 39 25 30	4.34 4.11 4.36 4.16 4.73	1 1 1 1	.03 .04 .02 .03 .02	8 15 10 8 12	1.61 4.43 4.38 1.39 4.20	1244 385 268 435 597	6 1 4 1	.01 .02 .02 .01 .02	103 310 230 96 242	610 380 620 780 610	44 11 14 44 21	2 1 1 1	3 5 4 3 5	1 1 1 1	1 1 1 1	.11 .05 .07 .13 .08	1 1 1 1	83.3 88.0 80.2 80.5 82.0	10 21 19 12 19	61 60 64 65 76	3 4 2 1
97N 106+75E 97N 107+00E 97N 107+25E 97N 107+50E 97N 108+00E	1.1 1.97 .5 2.30 1.3 1.63 1.0 1.62 1.5 1.70	112 1 301 1	80 73 116 37 48	3.1 3.2 2.7 2.8 2.6	8 12 9 5 12	.48 .25 1.08 .44 .26	.1 .1 .1 .1	36 44 34 26 27	487 193 245 507 351	53 4 107 4 72 3 34 4 34 4	4.87 4.43 3.84 4.16 4.07	1 1 1 1	.03 .04 .07 .02 .03	14 10 12 15 12	3.84 1.61 2.37 3.71 2.86	614 1040 514 268 392	1 7 8 1 1	.02 .01 .02 .02 .02	258 286 229 210 171	600 730 580 620 820	26 42 30 21 35	1 3 1 2	4 3 5 2	1 57 1 1	1 1 1 1	.09 .11 .10 .05 .11	1 1 1 1	87.0 90.7 128.9 80.7 79.4	21 11 12 22 17	155 80 78 78 78 79	2 3 3 10 2
97N 108+25E 97N 108+50E 98N 106+00E 98N 106+25E 98N 106+50E	1.8 1.55 1.3 1.05 1.0 1.93 1.0 1.60 1.4 1.59	1 20 1 1 1	41 30 321 41 120	2.6 2.0 2.8 2.8 2.7	16 12 10 9 11	.23 .17 .60 .27 .32	.1 .1 .1 .1 .1	22 17 68 21 30	367 257 287 371 278	26 4 21 3 377 3 39 4 35 3	4.23 5.19 5.96 4.08 5.98	1 3 1 1	.03 .02 .04 .04 .04	12 6 16 10 12	2.41 1.50 1.99 2.40 3.96	312 359 888 336 608	1 3 2 1	.02 .02 .02 .02 .02	143 93 378 155 175	1130 730 1290 570 500	40 35 42 34 22	2 2 5 3 1	32224	1 27 1 1	1 1 1 1	.16 .10 .08 .07 .12	1 1 1 1	84.6 70.7 168.2 73.3 72.7	18 13 15 17 11	64 49 57 57 64	1 1 6 3 2
98N 106+75E 98N 107+00E 98N 107+25E 98N 107+50E 98N 107+75E	1.4 1.61 .8 1.61 1.9 1.41 .1 1.48 1.4 2.02	1 150 1 1 1	105 70 91 159 77	3.0 2.8 2.5 2.9 2.7	25 7 17 13 6	.22 .36 .30 .35 .28	.1 .1 .1 .1 .1	30 46 25 59 36	168 509 283 315 382	31 5 59 4 36 4 25 4 54 3	5.48 4.28 4.30 4.74 5.70	1 1 1 1	.04 .04 .03 .05 .09	10 14 11 10 17	1.47 3.95 2.05 3.86 4.27	1432 794 480 1917 401	2 1 1 1	.02 .03 .02 .02 .02	98 259 131 202 223	930 970 600 1210 390	66 26 44 34 10	2 1 3 1 1	1 4 1 3 4	1 1 1 1	1 1 1 1	.25 .06 .16 .15 .09	1 1 1 1	89.1 81.7 84.0 76.5 68.5	10 22 14 13 16	82 63 66 86 61	3 2 1 1 2
98N 108+00E 98N 108+25E 98N 108+50E 100N 99+25E 100N 99+50E	1.0 1.55 1.3 1.38 1.1 1.58 .1 1.25 .1 1.30	126 1 329 1 1	119 108 60 193 192	2.4 2.9 2.7 2.4 2.7	7 18 6 8 11	.30 .45 .43 .69 .52	.1 .1 .1 .1 .1	34 35 34 11 14	368 190 516 4 3	42 3 33 4 46 4 5 3 21 4	3.25 4.82 4.04 5.76 4.14	1 1 1 1	.04 .05 .03 .06 .07	13 10 14 5 6	3.60 1.68 4.23 .54 .60	622 802 393 2085 2255	1 3 1 2 2	.03 .02 .02 .01 .02	205 132 252 23 24	510 530 560 900 1510	17 52 16 47 51	1 2 1 6 5	4 1 5 1 1	1 1 1 1	1 1 1 1	.07 .17 .06 .01 .06	1 1 1 1	66.1 93.9 82.5 17.9 29.4	16 10 21 1 1	58 64 62 60 70	3 2 1 5 2
100N 100+25E 100N 100+50E 100N 107+50E 100N 108+00E 100N 108+25E	.1 1.59 .1 1.74 1.3 2.00 1.0 1.84 .5 1.47	1 96 1	160 159 152 46 70	2.6 2.6 3.0 2.8 2.7	10 9 3 8 10	.53 .47 .45 .27 .28	.1 .1 .1 .1 .1	17 14 39 26 26	11 8 529 326 238	72 3 41 4 324 4 45 4 30 4	5.95 4.16 4.40 4.10 4.04	1 1 1 1	.09 .12 .06 .05 .04	9 14 28 17 11	.62 .67 4.47 2.38 1.71	1937 2006 484 411 591	3 3 1 1 3	.02 .02 .02 .02 .01	29 27 501 182 130	1150 750 770 660 670	46 49 19 34 42	671 32	1 1 4 3 2	1 1 1 1	1 1 1 1	.04 .01 .05 .06 .06	1 1 1 1	31.0 22.0 116.5 62.2 62.4	2 1 22 16 12	60 74 59 56 63	5 24 3 5 2
100N 108+50E 100N 108+75E 100N 109+00E	.3 1.41 1.1 1.58 1.3 1.85	1 345 1	149 80 52	3.0 2.8 3.0	9 7 9	.40 .45 .36	.1 .1 .1	48 33 29	226 551 394	55 4 46 4 64 4	.05 .05 .17	1 1 1	.05 .04 .04	11 15 13	2.43 3.92 3.32	980 446 298	2 1 3	.01 .02 .02	213 235 237	810 750 690	43 21 30	1 1 2	3 4 3	1 1 1	1 1 1	.06 .05 .07	1 1 1	75.7 78.6 85.8	11 24 18	75 75 78	1 2 2

COMP: WHITE WOLF EXPL.

PROJ: JEHINIKO

ATTN: GREG MOWATT

MIN-EN LABS --- ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423 FILE NO: 5V-0439-SJ7+8

DATE: 95/10/23 * soil * (ACT:F31)

SAMPLE NUMBER	AG AL PPM %	AS PPM	BA PPM	BE PPM	BI CA	CD PPM	CO PP M	CR PPM	CU PP m	FE % F	GA PPM	К % Р	LI	MG %	MN PPM	MO PPM	NA %	N I PPM	P PP M	PB PPM	SB PPM P	SN Pm	SR PPM I	TH T PPM	I % PP	U M	V PP M	W PPM	ZN PPM	Au-fire PPB
100N 109+25E 100N 109+50E 100N 109+75E 100N 110+00E ESL 95 00+00E	1.1 1.42 .7 2.22 .9 1.68 1.6 1.67 1.1 2.02	451 1 40 15 321	142 187 141 66 118	2.4 2.8 2.8 2.4 2.6	4 .65 6 .73 8 .53 10 .38 1 1.17	.1 .1 .1 .1	35 59 32 24 49	524 495 402 386 623	126 3 203 4 40 4 31 3 87 3	.50 .30 .10 .89 .76	1 . 1 . 1 . 1 .	07 07 05 03 10	26 3 24 3 11 3 15 3 17 6	3.67 3.82 3.12 2.54 6.42	293 967 600 236 685	1 1 1 1	.02 .02 .02 .02 .02	548 744 222 161 408	370 720 680 510 340	13 21 28 32 1	1 1 1 1	5 5 4 3 6	1 1 1 12	1 .0 1 .0 1 .0 1 .1	5 9 8 3 6	1 8 1 10 1 8 1 8 1 8	85.4 06.6 84.6 88.6 68.6	23 22 18 18 22	55 82 73 69 67	1 3 3 1 4
ESL 95 00+25E ESL 95 00+50E ESL 95 00+75E ESL 95 100+00E ESL 95 100+25E	1.2 1.71 1.4 2.11 1.1 1.63 .7 1.93 .9 1.84	560 188 474 228 274	158 213 143 187 175	2.8 2.7 2.8 2.7 2.7	1 3.55 2 1.08 1 3.89 1 2.48 1 3.55	.1 .1 .1 .1	47 45 43 44 42	592 491 541 572 569	74 3 95 3 76 3 90 3 80 3	.57 .73 .47 .85 .79	1 . 1 . 1 . 1 .	13 17 08 08 08	18 7 18 6 21 6 25 6 24 5	7.00 6.24 6.09 6.00 5.83	809 717 825 990 946	1 1 1 1	.01 .02 .01 .01 .01	333 362 295 281 276	370 460 400 560 530	1 1 1 1	1 1 1 1	5 5 5 6 5	112 14 126 85 109	1 .0 1 .0 1 .0 1 .0 1 .0	4 9 3 4 4	1 0	66.7 69.5 65.7 73.4 72.1	19 17 19 21 21	67 69 65 75 70	2 5 4 5 1
ESL 95 100+50E ESL 95 100+75E ESL 95 101+00E ESL 95 101+25E ESL 95 101+50E	.1 1.31 .3 .83 .1 .97 .1 .95 .1 .95	434 40 1 1	236 235 326 240 250	2.9 2.1 3.1 2.4 2.2	3 1.30 4 3.54 7 .81 6 1.24 6 1.55	.1 .1 .1 .1	37 15 25 18 15	496 99 158 89 47	77 3 41 2 51 4 35 3 26 3	.88 .72 .31 .39 .25	1 . 1 . 1 . 1 .	06 05 08 06 07	13 4 11 1 11 1 11 1 9 1	4.41 1.64 1.58 1.41 1.12	1080 787 1464 1002 1033	1 2 1 1	.01 .01 .02 .02 .02	257 63 112 68 43	820 570 1020 1040 1120	17 29 36 34	1 1 2 2	53333	54 65 1 24 18	1 .0 1 .0 1 .0 1 .0 1 .0	2 1 1 1 1	1 1 1 1 1 1 1	58.8 32.6 48.3 39.4 42.5	20 4 7 4 2	81 78 104 88 84	1 7 4 1 4
ESL 95 101+75E ESL 95 102+00E ESL 95 102+25E ESL 95 102+50E ESL 95 102+75E	.1 1.13 .1 .97 .1 .99 .1 1.07 .1 1.02	1 1 1 1	281 402 292 405 324	2.5 3.4 2.5 2.9 3.0	6 3.66 8 .69 6 1.65 7 1.17 7 .81	.1 .1 .1 .1	14 23 16 20 20	17 19 38 80 87	27 3 33 4 25 3 39 4 35 4	.48 .97 .52 .08 .21	1 . 1 . 1 . 1 .	08 07 08 09 09	11 8 10 1 12 1 11 1	.97 .81 .02 .17 .22	1149 1934 1064 1366 1410	2 3 1 2 2	.02 .01 .01 .02 .02	24 37 36 60 67	990 1010 1040 1080 1130	40 63 40 48 49	42322	22233	40 1 10 1	1 .0 1 .0 1 .0 1 .0 1 .0	1 1 1 1 1	1 4 1 4	37.2 46.4 37.6 43.2 44.0	1 1 2 4 5	86 103 85 104 101	5 9 6 4 3
ESL 95 103+00E MSL 95 400+25 MSL 95 400+50 MSL 95 400+75 MSL 95 500+00	.1 .93 .1 2.73 .1 2.80 .1 2.85 .1 2.03	1 1 1 1	344 72 61 114 92	3.1 3.5 4.1 2.8	6 .84 9 .97 6 1.01 7 .94 7 .70	.1 .1 .1 .1	22 33 34 35 18	119 69 62 56 16	70 4 208 5 353 5 555 6 69 4	.18 .60 .80 .28 .19	1 . 1 . 1 . 1 .	08 04 05 06 05	11 1 15 3 18 3 15 3 11 1	.33 3.77 5.81 5.48 1.90	1369 2354 1982 2523 2600	3 1 1 2	.02 .01 .01 .01 .01	91 55 48 50 30	1040 1010 930 940 940	52 37 45 61 48	1 5 7 6	44533	1 1 1 1	1 .0 1 .0 1 .0 1 .0 1 .0	1 9 9 9	1 4 1 12 1 14 1 14 1 5	4.1 25.3 41.7 41.5 53.5	6 2 2 3 1	102 153 198 328 133	2 13 132 487 14
MSL 95 500+25 MSL 95 500+50 MSL 95 500+75 MSL 95 600+00 MSL 95 600+25	.1 2.38 .1 2.79 .1 2.87 .1 2.72 .1 2.55	1 1 1 1	166 99 132 226 64	3.7 3.8 4.4 4.1 3.7	6 .73 6 .80 8 .68 7 .75 8 .64	.1 .1 .1 .1	27 37 35 31 32	17 93 57 27 70	263 5 300 5 433 6 359 6 270 5	.67 .68 .51 .12 .43	1 . 1 . 1 . 1 .	08 04 06 08 06	14 2 18 4 15 2 14 3	2.28 .01 2.96 2.29 3.24	3161 2472 2661 3669 1736	2 1 1 2 1	.01 .01 .01 .01 .02	36 61 54 51 58	1070 910 1120 1370 1110	62 41 59 75 51	6 4 8 8 6	44544	1 1 1 1	1 .0 1 .0 1 .0 1 .0 1 .0	27633	1 9 1 14 1 12 1 10 1 11	25.0 41.4 29.7 06.6	24323	160 155 156 154 145	22 26 22 32 43
MSL 95 600+50 MSL 95 600+75 MSL 95 700+00 MSL 95 700+25 MSL 95 700+50	1.0 2.51 1.2 2.31 .8 2.59 .1 3.00 .1 2.43	1 1 1 1	57 36 50 65 53	3.6 3.3 4.0 4.1 3.5	9.70 11.88 11.71 8.87 5.86	.1 .1 .1 .1	37 36 39 44 38	92 98 121 136 120	406 5. 250 4. 328 5. 454 5. 341 4.	.40 .98 .49 .76 .57	1 . 1 . 1 . 1 .	05 03 04 03 02	17 3 21 3 21 3 24 4 20 4	.45 .84 .87 .72 .20	1676 1456 1800 2679 2087	1 1 1 1 1	.01 .02 .02 .01 .01	65 59 77 78 67	1460 970 1430 1180 980	41 32 39 36 25	43564	44344	1 1 1 1	1 .1 1 .1 1 .1 1 .1 1 .1	B 7 8 7	1 12 1 13 1 13 1 15 1 12	27.1 56.7 51.6 54.2 23.3	44555	142 119 130 143 124	55 3 7 10 10
MSL 95 700+75 MSL 95 800+00 MSL 00+00 MSL 00+25 MSL 00+50	.1 2.62 .5 2.67 .1 2.06 .1 1.80 .1 1.58	1 1 1 1	57 76 109 59 164	3.7 4.1 3.1 3.2 3.3	7 .80 12 .62 8 .77 4 .60 6 .86	.1 .1 .1 .1	39 35 17 31 20	113 90 23 90 16	378 4. 386 5. 150 4. 137 4. 301 5.	.73 .42 .03 .80 .32	1 . 1 . 1 . 1 .	03 06 05 05 05	20 4 16 3 7 12 3 7 1	.17 .06 .84 .30 .21	2011 1837 1893 1232 2505	1 1 3 1 2	.01 .02 .01 .02 .02	79 98 34 194 49	1130 2010 1820 890 1360	32 49 38 70	5 6 7 1 5	43253	1 1 1 1	1 .1 1 .1 1 .0 1 .0	1 7 5 2	1 11 1 11 1 5 1 6 1 6	9.6 7.8 9.9 6.5 1.0	45222	132 130 87 102 132	10 5 14 80 2
MSL 00+75 MSL 100+00 MSL 100+25 MSL 100+50 MSL 100+75	.1 1.53 .1 1.48 .1 1.97 .1 1.27 .1 1.07	1 1 1 1	164 161 495 210 228	3.6 3.6 4.5 3.7 4.0	8 .88 6 .87 9 1.31 9 .86 8 .85	.1 .1 .1 .1	21 25 36 23 22	13 43 33 16 1	280 5. 213 5. 468 7. 304 6. 287 7.	.85 .92 .64 .35 .29	1 . 1 . 1 . 1 .	08 07 10 10 12	7 6 1 11 1 6 4	.94 .51 .23 .67 .44	2744 2891 4592 3361 3556	33222	.01 .01 .01 .01 .01	46 96 59 62 35	1420 1390 810 1020 1060	84 75 93 80 110	42532	33433	1 1 1 1	1 .0 1 .0 1 .0 1 .0		1 6 1 6 1 11 1 6 1 7	1.1 4.9 5.1 7.8 4.2	23321	90 44 23 29 60	260 7 6 16 25
MSL 200M MSL 225M MSL 250M	.1 1.85 .1 2.22 .1 2.17	1 1 1	266 208 183	3.9 4.1 4.6	7 .94 8 .74 7 .62	.1 .1 .1	23 28 36	7 17 8	284 5. 417 6. 619 7.	.84 .34 .37	1 .0 1 .0 1 .0	09 08 08	9 12 1 10 1	.85 3 .74 4 .53 4	3303 4002 4481	323	.01 .01 .01	40 45 46	1220 1250 1340	80 75 133	9 7 8	344	1 1 1	1 .0 1 .0 1 .0		1 7 1 9 1 12	0.6	2 1 2 1 3 3	78 79 73	85 28 98

COMP: WHITE WOL PROJ: JEHINIKO ATTN: GREG MOWA	F EXPL	•								M 828	IN- 2 SH8 TEL:	EN ERBRO	LAB OKE ST 327-34	S — 1., V/ 436	- I ANCOU FAX:	CP VER, (604)	REP B.C. V 327-34	ORT /5x 48 23	8										FI *	LE N soil	D: 5V DATE:	-0439-SJ 95/10/2 (ACT:F31
SAMPLE	AG	AL %	AS	BA	BE	B1 PPM	CA %	CD PPM	CO	CR	CU	FE ۲	GA	K		MG	MN	MO	NA Z		P	PB	SB	SN	SR	TH	TI %	U	V		ZN	Au-fire
MSL 275M MSL 300M MSL 325M MSL 350M MSL 375M	.1 .1 .1 .1 .1	2.38 2.64 2.65 2.65 2.46	1 1 1 1	124 123 196 199 139	4.2 3.9 4.2 4.6 3.8	7 8 9 8 8	.68 .88 .72 .60 .66	.1 .1 .1 .1 .1	31 32 29 31 22	29 42 19 24 11	335 339 390 571 282	6.50 5.76 6.38 7.35 5.71	1 1 1 1	.08 .09 .11 .15 .15	15 22 16 16 18	2.42 3.41 2.08 1.64	2588 2709 3369 3559 2810	2 1 3 2	.01 .02 .01 .02 .02	40 44 40 49 31	1060 1240 1350 1490 1230	69 60 74 91 65	6 6 6 7 7	5 6 5 5 5	1 1 1 1	1 1 1 1	.03 .05 .02 .03 .01	1 1 1 1	128.3 118.9 104.4 134.1 67.2	22231	154 213 171 136 125	40 47 43 25 47
MSL 400M	.1	2.52	1	145	4.1	10	. 88	.1	27	12	251	6.04	1	.11	18	2.31	3138	2	.01	34	1260	76	7	5	1	1	.01	1	89.8	1	137	15
	_																															
															·							<u>.</u>	-									
	-																															
		<u>.,</u>																	. <u>.</u>	*							· · ·					
						·																										
																									-							
																											<u></u>					

APPENDIX III

Raw VLF-EM Data

	L 100	S *	L 101S *	ł	L 102S	*	L 103S	*	L 104S	**
Station Number (weşt)	%	Quad	%	Quad	%	Quad	%	Quad	%	Quad
0+00	+15	+10	-01	+05	+11	+09	+03	+07	+35	+30
0+12.5	+15	+10	+06	+06	+09	+08	+03	+06	+40	+30
0+25	+19	+10	+06	+06	+05	+06	+02	+06	+40	+31
0+37.5	+18	+10	+14	+09	+08	+06	+05	+08	+45	+30
0+50	+22	+08	+16	+10	+02	+05	+03	+07	+44	+30
0+62.5	+24	+08	+23	+10	-01	+04	+05	+09	+45	+32
0+75	+28	+12	+24	+12			+09	+10	+46	+34
0+87.5	+32	+14	+22	+14			+10	+11	+46	+28
1+00	+32	+16	+12	+07					+43	+30
1+12.5	+34	+17	+10	+06					+45	+31
1+25	+32	+19	+08	+06					+44	+31
1+37.5	+34	+16	+04	+06					+44	+31
1+50	+33	+11	+04	+06						
1+62.5	+29	+12								
1+75	+18	+12								
1+87.5	+19	+14								
2+00	+21	+11								

The transmitting station for Lines 100S, 101S, 102S & 103S was Seattle, Washington The transmitting stationi for Line 104S, 105S & 106S was Hawaii

**

	L 1	05S **	L 1	06S **
Station Number (west	%	Quad	%	Quad
0+00	+38	+31	+30	+26
0+12.5	+36	+27	+31	+30
0+25	+37	+30	+32	+26
0+37.5	+38	+30	+30	+27
0+50	+40	+32	+28	+28
0+62.5	+42	+33	+32	+31
0+75	+39	+32	+32	+31
0+87.5	+39	+34	+33	+31
1+00	+45	+34	+33	+31
1+12,5	+40	+34	+34	+32
1+25	+42	+32	+32	+30
1+37.5	+37	+30	+31	+32
1+50	+39	+30	+33	+30
1+62.5			+34	+35
1+75			+30	+32
1+87.5			+33	+29
2+00			+25	+26
2+12,5			+21	+26
2+25			+18	+22
2+37.5			+18	. +24
2+50			+15	+24

The transmitting station for Lines 100S, 101S, 102S & 103S was Seattle, Washington The transmitting stationi for Line 104S, 105S & 106S was Hawaii *

**

