GLOLOPOLLAND ALLEND ALDERS ANY ALLEND
DATE PROTE O DEC U 4 1995

ASSESSMENT REPORT

on

1996 ROCK SAMPLING PROGRAM

Attwood Property and Bombini Option

NTS 82E/2 E

Lat: 49° 03' 30" N Long: 118° 40' 00" W

GECLOCICAL SURVEY BRANCH

A grant and and the

Kettle River Resources Ltd. Box 130, 330 Copper St. Greenwood, B.C. V0H 1J0

Linda Caron. P. Eng. October, 1996

T/	A	в	LI	Ε	0	F	С	O	N٦	٦EI	NΤ	S
-	<u> </u>	÷	_	_	-	_		_	_	_	_	_

1.0	SUMMARY	Page 1
2.0	INTRODUCTION 2.1 Location, Access and Terrain 2.2 Property and Ownership 2.3 History 2.4 Summary of Work Done, July, 1996	2 2 2 3 4
3.0	GEOLOGY AND STRUCTURE	5
4.0	ROCK GEOCHEMISTRY	6
5.0	RECOMMENDATIONS	8
6.0	REFERENCES	9

LIST OF FIGURES

	Page
Figure 1 - Location Map	aft p.2
Figure 2 - Claim Map	aft p.2
Figure 3 - Attwood Property Geology Map	in pocket
Figure 4 - Bombini Option Geology Map	in pocket
Figure 5 - Croesus Workings - Detail Geology	in pocket
Figure 6 - Johannesberg and Tanglefoot area - Detail Geology	in pocket
and Rock Sample Locations	•
Figure 7 - Attwood Property Rock Sample Location Map	in pocket
Figure 8 - Bombini Option Rock Sample Location Map	in pocket
Figure 9 - Croesus Workings - Rock Sample Locations	in pocket

LIST OF APPENDICES

APPENDIX 1 - Analytical Results - Rock Samples APPENDIX 2 - Rock Sample Descriptions APPENDIX 3 - Cost Statement APPENDIX 4 - Statement of Qualifications

.

1.0 SUMMARY

The Attwood property is located about 4 kilometres east-southeast of Greenwood, B.C., on the north and west facing slopes of Mt. Attwood. Access to the claims is good, with numerous two and four wheel drive roads. The claims are underlain by Permian Attwood Group rocks, argillite, phyllite, limestone and volcanics, sandwiched between the underlying Mt. Attwood thrust fault and the overlying Lind Creek thrust. Serpentine is common along these thrusts. A number of different probable Cretaceous intrusions cut the older rocks.

Two areas of VMS type mineralization occur on the property. In the west, massive to finely laminated and disseminated pyrite and pyrrhotite occurs in argillite and hornfels, and at the contact of these rocks with overlying limestone, at the Croesus and Johannesberg showings. In the Croesus workings, the sulfide horizon can exceed 2 metres in thickness, and is exposed over a strike length of in excess of 100 metres. Copper, arsenic, bismuth, silver, and to a lesser extent, tungsten and gold, may be anomalous in samples of sulfide mineralization. Approximately 4 kilometres east, and on what may be the same stratigraphic horizon, massive sulfides (sphalerite, galena, pyrrhotite and pyrite) are exposed at the Sunnyside workings. Historical production from these workings was in the order of 50 tons, at an average grade of 0.24 opt Au, 52 opt Au, 9% Pb and 1% Zn. Again, sulfide material is anomalous in As, Bi, Cu, W, Ag and Au, plus Zn and Pb.

Detailed heavy mineral drainage sampling is recommended to test the claim area for the potential of gold enriched zones along the VMS horizon. Follow-up contour soil sampling is recommended in favourable areas, and an airborne mag-EM survey is suggested to identify the VMS horizon and assist in defining positions of thrust faults.

2.0 INTRODUCTION

2.1 Location, Access and Terrain

Work described in this report was done on the Attwood property, located about 4 kilometres eastsoutheast of Greenwood, B.C. (see Figure 1). Access to the property is east from Greenwood on Lind Creek road, then south on various logging, mining and fire access roads. There is good road access to most parts of the claim block.

The claims are situated on the north and west facing slopes of Mount Attwood. Elevation ranges from about 3,000 feet in the Lind Creek valley in the northwest portion of the property, to about 5,000 feet near the summit of Mount Attwood in the southeast. The terrain is moderate to steep and vegetation is highly variable across the property. Much of this area was burned in the Attwood Fire in 1973 and locally, regeneration since the fire has been in the form of thick to virtually impassible alder forest (the Fanny Joe Basin area). To the west and at higher elevations, the forest is more open, consisting of pine, larch and fir, with little underbrush. In the Lind Creek valley, dense cedar forest is common.

The climate is generally quite dry, with hot summers and little rainfall. Snowfall is minimal, generally less than 1 metre. Water is available for drilling from a number of creeks on the property, as well as from a dugout near the "heliport" at the Sunnyside showings.

2.2 Property and Ownership

The Attwood Group consists of 13 mineral claims (a total of 69 units), as shown in Figure 2 and summarized below. The Attwood and Att-1 to Att-6 claims are owned 100% by Kettle River Resources Ltd. while the remaining claims are held under an option agreement to Kettle River Resources Ltd. from Samuel Bombini.

<u>Claim Name</u>	Record #	<u># of units</u>	Expiry Date
Attwood	339008	20	Aug 16, 1998
Att-1	346206	20	May 24, 1998
Att-2	346207	10	May 24, 1998
Att-3	346208	1	May 24, 1998
Att-4	346209	1	May 24, 1998
Att-5	346210	1	May 24, 1998
Att-6	346211	10	May 28, 1998
Croesus	214377	1	Jan 21, 1999
Johannesberg	214378	1	Jan 21, 1999
Tanglefoot	214379	1	Jan 21, 1999
Eholt	214380	1	Jan 21, 1999
Fab 2	346222	1	Jun 02, 1999
Cap 1	342435	1	Nov 30, 1998

* Expiry dates are after acceptance of this report.

2.3 History

The Attwood property includes a number of historical workings on lapsed or reverted crown grants, including the Sunnyside, Rattler and Fanny Joe in the east and the Croesus, Johannesberg, Tanglefoot, Eholt in the west. A number of other lapsed historical claims and crown grants occur on the property and the reader is referred to the historical claim map of the Greenwood Mining District for locations of these properties (which include among others the Evening Star, Morning Star, Lexicon and Lead King). A brief summary of the history of the property is given below.

- 1894: The Lead King and Johannesberg claims were staked. A 9 foot vein of silver bearing rock with 40% lead is reported on the Lead King, exposed for 1000 feet (Ministry of Mines Annual Report).
- 1900-4: Reference made to the Rattler, Johannesberg, Lead King, Sunnyside (Ministry of Mines Annual Reports).
- 1908: Reference is made to the Fanny Joe (Ministry of Mines Annual Report).
- 1911: First reference is made to the Croesus and Lexicon in the Ministry of Mines Annual Reports.
- 1913: Reference is made to the Sunnyside showing, which is said to be similar to the Riverside in the Rock Creek area (Ministry of Mines Annual Report). Production of 30 tons of ore is reported from the Sunnyside. A total production of 50 tons (at an average grade of 0.24 opt Au, 52 opt Ag, 9% Pb and 1% Zn) is reported in the Minfile for the Sunnyside, from the years 1913, 1918-20, and 1934. Note that a second Sunnyside (L1646) occurs in the Jewel Creek area, which has caused some confusion in the historical reports.
- 1933: A 10' deep shaft is reported on the Fanny Joe, on a 4" quartz vein containing pyrite and galena, which strikes northerly and dips steeply east. A considerable amount of manganese is reported. (Ministry of Mines Annual Report). Similar quartz veins are reported in workings on the Rattler.
- 1950: W.E. McArthur shipped 8 tons of lead ore to Trail from the Lead King claims, which returned 22 oz Ag, 1143 lbs Pb and 1250 lbs Zn (Ministry of Mines Annual Report 1950).
- 1968: Ortega Minerals completed a soil sampling program in the Croesus Johannesberg area at 200 foot intervals on 400 foot spaced lines, analysed for copper only. A number of areas of + 100 ppm Cu were detected (Hemsworth, 1968).
- 1969: Ortega Minerals completed IP and mag surveys over in the Croesus Johannesberg area. Eight anomalies were identified and a zone encompassing 5 of these anomalies was defined, approximately 1.5 km in length, striking northwest and open in both directions along strike (Baird, 1969a and 1969b).
- 1973: A soil survey was completed over the Att claims (now lapsed the claims covered a portion of the east side of the current Attwood property), by Granby. Analysis was for Cu and Zn only. Several strong Zn anomalies occurred in the southwest part of the grid (in the vicinity of the Sunnyside claim).
- 1976: Silver Falls Resouces did a very minor program of geological mapping, soil and rock sampling (Cu, Pb, Au analyses) and ground mag over a limited area on the Sunnyside and Fanny Joe claims. Anomalous gold values to 2 g/t were obtained from rock samples collected at old workings and a number of anomalous gold soils (to 120 ppb) occurred (McLeod, 1976).
- 1979: An insignificant program of geological mapping, ground mag and VLF was completed on the Okum property (in the vicinity of the Rattler northcentral part of Attwood claim) (McLeod, 1979).

- 1980: Reconnaissance soil and silt sampling and preliminary geological mapping was done on the Okum and Rattler claims, for March Resources. Several anomalous gold values were detected, with values to + 200 ppb Au. (Madeisky and Symonds, 1980).
- 1983: Ashnola Mining Co. completed minor rock sampling in the Croesus Johannesberg area for precious metal content (Blanchflower, 1983).
- 1995: Kettle River Resources acquired the Attwood claim (including the lapsed Sunnyside, Fanny Joe and Rattler crown grants) by staking.
- 1996: Kettle River Resources staked the Att claims, and optioned the Croesus-Johannesberg property from Samuel Bombini. The geological mapping and rock sampling program described in this report was completed. Following this program, heavy mineral drainage samples were collected, and contour soil sampling done over a portion of the property. This work is not described in this report.

2.4 Summary of Work Done, July, 1996

Geological mapping and rock sampling was done by B. Kyba of Falkland, B.C., under contract to Kettle River Resources Ltd., with assistance from K. Kyba. One hundred and fifty-nine rock samples were collected and sent to Min-En Labs in Vancouver for preparation and analysis. Analysis was for 31 element ICP plus gold by 30 gram Fire Geochem, AA finish. Ore grade assay was done for Cu, Pb, Zn, Ag and Au where required. Field work was completed during the period July 1 - 30,1996, under the supervision of Linda Caron.

3.0 GEOLOGY AND STRUCTURE

The Greenwood area has been mapped on a regional basis by Fyles (1990), and prior to this, by Little (1983) and Church (1986). Fyles' mapping shows the pre-Tertiary rocks form a series of thrust slices, which lie above a basement high grade metamorphic complex. A total of at least five thrust slices are recognised, all dipping gently to the north, and marked in many places by bodies of serpentine. Fyles' interprets these serpentinite bodies as representing part of a disrupted ophiolite suite, belonging to the Knob Hill Group of late Paleozoic age. Commonly, these serpentinite bodies have undergone Fecarbonate alteration to listwanite, as a result of the thrusting event.

The oldest rocks in the camp belong to the late Paleozic Knob Hill Group of dominantly volcanic affinity, and consist mainly of chert, greenstone and related intrusives, and serpentine. Overlying these rocks are sediments and volcanics (largely argillite, siltstone, limestone and andesite) of the late Paleozic Attwood Group. In many cases evidence for thrusting is seen by the older Knob Hill Group rocks resting over the younger Attwood Group rocks. Rocks of the Knob Hill and Attwood Groups are unconformably overlain by the Triassic Brooklyn Formation, represented largely by limestone, clastic sediments and pyroclastics. The historically important skarn deposits in the Greenwood area (i.e. Phoenix, Oro Denoro, Motherlode-Greyhound) area hosted within the Triassic rocks.

Three separate intrusive events are known regionally to cut the above sequence, the probable Jurassic aged Lexington porphyry, the Cretaceous Nelson intrusives, and the Eocene Coryell pulaskite dykes and stocks. Tertiary sediments and volcanics unconformably overly the older rocks with the distribution of these Tertiary rocks largely controlled by series of north-south trending faults which form the Toroda Creek graben in the western portion of the map area, and the Republic graben in the east.

The Attwood property is located on the north and west facing slopes of Mount Attwood, within Fyles' fourth thrust slice. A wedge of Attwood Group rocks is sandwiched between the Mt. Attwood thrust fault below, and the Lind Creek thrust fault above, both which dip gently to the north. Both thrust faults are defined by exposures of serpentine. Fyles' mapping shows a basal volcanic unit, overlain by limestone (locally cherty), which is in turn overlain by a sedimentary package of siltstone, phyllite, and conglomerate. He describes the Attwood rocks as being tightly folded, with axial planes dipping moderately north, and on axes with low plunge to the northwest. The regional geology of the property is shown in Figure 3, with more detail of the western part of the property shown in Figure 4.

At the Croesus showings, massive, finely laminated pyrrhotite with pyrite and minor chalcopyrite occurs in a steeply dipping horizon up to 2 metres in width, at the contact of phyllite and limestone. Locally the massive sulfide horizon has well developed fragmental textures and clear glassy quartz eyes, to 4 mm in size. Figure 5 is a detailed geology map of the Croesus area.

To the northwest at the Johannesberg workings, finely lamellar, and locally massive, pyrrhotite, again with good vitreous quartz eyes within, occurs in a fine grained hornfels. A late granodiorite intrusive with minor associated quartz veining along margins, intrudes the older rocks in the area of the Croesus and Johannesberg showings. The intrusive can become quite strongly bleached and altered, with pyrite-pyrrhotite stockworking veinlets. A number of quartz veins, with galena, sphalerite, pyrite and chalcopyrite are known in the western portion of the property (on the Tanglefoot, Johannesberg, etc), which may be related to these intrusives. Figure 6 shows the geology of the Johannesberg and Tanglefoot areas in more detail.

In the eastern portion of the property, stratabound and structurally controlled sphalerite, pyrite, galena and pyrrhotite occur at the contact of siliceous, pyritic tuff and limestone (the Sunnyside showings). A number of quartz veins are known in the eastern portion of the property, in the Rattler and Fanny Joe areas. A further area of interest is a zone of widespread fracturing, with fine crystalline pyrite, in argillite, limestone and conglomerate on Attwood Ridge, about equidistant between the Sunnyside and Croesus showings. Mapping and sampling completed during this program was, with the exception of the Croesus-Johannesberg area, very much of a regional nature. It is expected that other areas of interest will be defined by more detailed work.

4.0 ROCK GEOCHEMISTRY

One hundred and fifty-nine rock samples were collected from old workings and outcrops on the Attwood property, as shown on Figure 7. The majority of the samples were collected from the Bombini Option (Croesus-Johannesberg area), as shown on Figure 8. Detailed sample location maps for the Croesus workings and Johannesberg-Tanglefoot areas are included as Figures 9 and 6 respectively. Samples were shipped to Min-En Labs in Vancouver for preparation and analysis (31 element ICP plus gold by 30 gram Fire Geochem, AA finish). Assay was done for samples returning greater than 1000 ppb Au, 100 ppm Ag, or 5000 ppm Cu, Pb or Zn. Analytical results are included in Appendix 1. Rock sample descriptions are contained in Appendix 2. Detail sample location sketches for the Sunnyside and Rattler areas are also contained in Appendix 2. Results are discussed below, by area.

Attwood Property -excluding Bombini option (Samples 481701-22, 728-33, 737-39, 743-46, 751-66):

Fifty-two rock samples were collected from the Attwood property, excluding the Bombini option and the showing areas detailed below. Sample locations are shown on Figure 7. Samples of serpentine collected along fault traces are anomalous in arsenic and nickel, with weakly elevated gold values. No other rocks collected were significantly anomalous in any elements.

Sunnyside (Samples 481734-36, 481740-42, 481767-69)

Nine samples were collected from outcrop and old workings in the Sunnyside and Sunnyside South areas, where massive pyrrhotite, pyrite, sphalerite + lesser galena occurs at or near the contact of limestone and pyritic tuffaceous rocks. Detailed sample location maps are included in Appendix 2, along with sample descriptions. Figure 7 gives the general locations of the samples. Anomalous values to 7.4% Zn, 1.1% Pb, 54.5 ppm Ag and 73 ppb Au were obtained from massive sulfide material at the Sunnyside showing. Arsenic, tungsten, copper and bismuth values are also elevated in samples collected.

Rattler (Samples 481723-27)

Five samples were collected from the vicinity of the old Rattler crown grant, as shown on Figure 7 and on the sketch map included in Appendix 2. Material sampled was pyritic fault gouge material and altered intrusive and tuff with disseminated pyrite. These samples were not significantly elevated in any elements.

Bombini Option (Samples 481551-634, 651-660):

A total of 93 rock samples were collected from the Bombini Option, as shown in Figure 8. Forty of these samples were collected from the Croesus workings, and 28 from the Johannesberg-Tanglefoot area, as detailed below. The remainder of the samples (25) were taken from outcrops or workings outside these two main areas. Arsenic values are typically higher in samples of marble and limestone, to 188 ppm (Sample 481603). Ba, Zn and Au values may be elevated from samples of pyritic argiilite, to 223 ppm Ba, 209 ppm Zn and 92 ppb Au, respectively.

Croesus Area (Samples 481551-583, 481601, 481621-24, 481653-54)

Figure 9 is a detailed sample location map of the Croesus workings area. Chip samples were collected across exposures of massive sulfide, along the length of the mineralized horizon. Samples were also collected from rocks in the hanging wall and footwall of the sulfide zone, and from late altered intrusives and quartz veins cross-cutting the sulfide horizon. Ag, As, Bi and Cu values are anomalous in samples collected. The maximum silver value is 13.7 ppm Ag (with 1506 ppm Cu) from a shear zone at the portal to the open cut (Sample 481572), while copper values reach a maximum of 0.795% over a 0.5

metre sample across the massive sulfide horizon exposed in the open cut. In this sample (Sample 481577) Ag, As, Zn and Pb values are very low (O.1, 1, 1 and 1 ppm respectively), however Bi is anomalous at 51 ppm. A number of other samples of +0.3% Cu were collected from the area, from massive sulfide and quartz vein material. In samples collected from the Croesus workings, gold values reach a maximum of 72 ppb in altered, mineralized intrusive in the open cut (Sample 481574). Tungsten may also be elevated in vein and massive sulfide material, to 49 ppm W.

Johannesberg-Tanglefoot Area (Samples 481584, 586-600, 625-27, 629-31, 634, 651-52, 658-60)

Figure 6 details the locations of the 28 samples collected from the Johannesberg-Tanglefoot area. Pyrite and pyrrhotite bearing hornfels may be anomalous in As (to 244 ppm in Sample 481625) and in copper (to 1803 ppm in Sample 481629), while banded pyrite and pyrrhotite in argillite returned 145 ppb Au from one sample (Sample 481627).

In summary, a large number of rock samples were collected from the Attwood property. Two areas of VMS type mineralization are known on the property, the Sunnyside in the east, and the Croesus-Johannesberg in the west. Samples of this type of material may be anomalous in Cu, Zn, Pb, As, Bi, W, Ag and Au. Showings in the east are typically zinc rich and copper poor, compared to those in the west. Gold values are sub-economic in all cases.

6.0 RECOMMENDATIONS

Geological mapping has identified a VMS horizon within Permian Attwood Group rocks, with several occurrences of typical VMS type mineralization. No areas of economic or strongly anomalous precious metal content have been identified. Detailed heavy mineral drainage sampling is recommended to determine whether a gold enriched portion of the VMS horizon could exist. Contour soil sampling is also recommended to test projected favourable areas with heavy cover. An airborne geophysical survey (mag/EM) would be useful in identifying areas of mineralization for follow-up.

7.0 REFERENCES

Baird, J., 1969a.

Report on an Induced Polarization Survey, Greenwood Area, on behalf of Ortega Minerals. Assessment Report 1887.

Baird, J., 1969b.

Report on an Induced Polarization Survey, Greenwood Area, on behalf of Ortega Minerals Ltd. Assessment Report 2054.

Blanchflower, J.D., 1983.

Report on the Croesus, Johannesberg, Tanglefoot, and Eholt Reverted Crown Grants, and Fab 1 to 6 Two-Post Located Claims, for Ashnola Mining Co. Ltd.

Fyles, J.T., 1990.

Geology of the Greenwood-Grand Forks Area, British Columbia, NTS 82E/1,2. B.C. Geological Survey Branch Open File 1990-25.

Hardwicke, G.B., 1973.

Geochemical Survey, Attwood Mountain, by Granby Mining Co. Assessment Report 4750.

Hemsworth, F.J., 1968.

Report on the Geochemical Survey of the Or Group, for Ortega Minerals Ltd. Assessment Report 1648.

Madeisky, H. and D. Symonds, 1980.

Geochemical and Preliminary Geological Report on the Okum Claim and Rattler Reverted Crown Grant, for March Resources Ltd. Assessment Report 8255.

McLeod, J., 1976.

Assessment Report on Bev and TW Claims and Leases 729 and 2879, for Silver Falls Resources Ltd. Assessment Report 5872.

McLeod, J., 1979.

Geological Report on the Okum property, on behalf of George O'Brien. Assessment Report 7296.

APPENDIX 1

Analytical Results - Rock Samples

COMP: KETTLE RIVER RESOURCES LTD

PROJ: 026 BONBINI

TEL: (604)327-3436 FAX: (604)327-3423 * rock * (ACT:F31) ATTN: LINDA CARON W . ZN Au-fire NA NI P PR SR SM SR 11 SAMPLE ÅG AL AS BÅ BE 81 CA CD CO CR CU FE GA r 11 MG MN MO T1 51 NUMBER * PPN PPN PPH X PPH PPH PPH PPM PPN X PPH z PPH PPH X PPK РРИ РРИ РРИ РРИ РРИ РРИ X PPH PPH PPH PPH PPB PPN PPH Ľ 2 19 22.6 19 72 481574 34 .36 37 250 3.10 .09 10 .65 225 10 .03 8 610 .01 1.3 1.04 . 1 1 ٨ 25 19 2.55 15.4 481575 .7 .99 31 -61 38 338 .09 0 -62 275 8.03 8 630 18 1.01 8 _ 1 . 1 59.9 10 36 562 .08 16 1.28 488 16 .03 16 610 13 1 .03 1 35 481576 42 .55 1 1 1.0 1.89 -1 -1 -1 - 3 26 7619 >15.00 379 120 1.01 32.8 15 481577 51 1.98 79 . 01 2 .48 45 .01 25 1 1 14 1 1 .1 .43 1 - 1 .1 49 -02 .10 3 1.01 7.4 5 60 10.1 5 31 19 105 1915 5.62 74 144 .01 10 250 t 1 1 481578 .20 .1 . 14 -1 1 - 1 25 33 .37 73 30 5014 >15.00 .07 . 19 372 40 .01 24 380 1 12 .01 43.8 15 481579 .1 10 2 1.26 24 .1 .1 7.5 130 215 1 1 .01 3 .14 231 10 211 -82 23 .02 2 .21 381 5.01 5 6 1 18 481580 .2 14 >15.00 6 10 1 4 .1 .1 79 27 4563 >15.00 .02 .24 199 42 .01 22 40 1 13 1 1.01 19.6 22 11 .22 4.77 1 1 - 1 481581 .1 ٦ .1 4 .1 1 1 .82 2 20 15 481582 .5 26 1.64 5 50 207 2.84 .07 9 .50 147 10 .03 6 560 1 1 .01 1 10.3 16 15 .1 1 1 40 12 10 1 .01 8.8 8 11.53 53 19 3772 >15.00 _01 .11 281 20 1 481583 .1 . 05 2 .1 7 . 1 1 37 .01 1 1 1 - 1 .3 2.74 99 481584 17 52 87 5.29 .30 24 1.87 512 17 .03 27 910 22 1 .07 82.8 1 1 131 -38 4 -1 .11 26 58 481585 56 49 . 88 38 26 2.05 9 .75 422 0 .03 10 340 2 1 1.01 11.2 1 4 .1 5 39 **9**5 35 .03 Ĵ. 10 481586 .35 7 233 4.91 .23 7 .59 355 26 580 1 1.07 254.7 6 1 .1 .96 61 .1 .1 1 7 32 101 18 2080 3 237.0 .53 341 .01 1 11 1 .05 3 481587 1.3 .79 30 .1 . 89 .1 5 188 4.54 .11 R -31 1 74 .6 1.91 3 481588 43 .1 .52 .1 12 111 201 4.61 .17 15 1.40 410 28.03 33 660 3 17 1 .05 1 87.3 2 481589 .4 1.35 1.7 .40 33 2 .58 8 107 310 3.58 .10 10 .85 446 45 .03 58 710 3 17 1.06 191.6 82 ŽΖ .1 .1 3.20 11.84 .09 . 15 332 17 >10000 .01 1 320.5 5 25 39 10 145 798 21 -01 7 481590 13 .1 -1 2 63 ۱ .13 13 1.42 129 204 9.04 2 -01 7800 6 48 1 _01 1 279.9 5 8 51 481591 2.0 .1 7 ĴÛŇ .ū4 167 18 12 1 . 1 7 1.72 Ó 169 334 12.54 .09 .14 242 23 .01 17 7530 33 1 .02 1 456.2 8 Ú 4 î 481592 .41 16 .1 .1 . 1 481593 .33 13 1.24 10 142 295 14.80 .10 .12 329 25 .01 19 8160 9 42 1.01 1 374.9 τ R 31 . 1 1 1 .1 1 7 481594 1.0 .49 23 .23 107 289 4.87 .07 5 .31 209 21 -02 20 1100 3 11 1.02 173.2 28 .1 -1 5 1 6 328.9 .82 144 288 349 18 .01 21 2450 10 24 481595 .1 .64 .1 .1 6 5.46 .11 .44 4 1.04 11 8 481596 .3 1.87 24 20 -56 .1 14 185 386 5.10 .08 14 2.25 504 18.02 47 790 4 12 1.03 1 173.1 5 45 2 .1 6.71 60 614 .50 .29 498 10000 9 1.06 1 386.1 54 12 481597 150 11 14.55 27 .06 18 > .1 1.24 1 -1 1 .1 6 1 1 84 1 48 108 . 12 .34 258 8.03 8 36 1 16 13.1 52 1 481598 -4 .67 43 .1 .38 -1 3 1.57 4 660 1 .01 1 6 .5 481599 .65 18 36 .56 1.27 .12 5 .34 550 39 17 1.01 10.5 2 22 6 .1 3 46 67 255 6 .03 1 .1 481600 35 97 45 47 1.34 -09 5 35 214 5 .03 490 1 .01 13.2 2 18 1 .65 3 7 24 .1 - 1 - 14 1 1 35 9.11 481621 .1 .53 133 -1 10,16 . 1 10 1139 .02 1 .07 3994 16 .01 16 80 18 6 1 1 .01 1 76.7 12 4 481622 1 .07 284 .1 5 >15.00 2 7 19 .32 17 .01 .10 341 3.01 3 100 14 1 .01 7.1 10 2 8 .1 4 1 3 481623 -1 . 10 207 8 8 >15.00 25 216 .29 8 .01 .06 312 2 .01 3 150 11 3 .01 7.5 2 18 . 1 _ 1 1 1 7.2 13 481624 .34 .26 63 101 3545 5.83 .03 .22 112 14 .01 10 170 3 9 1 .01 1 11 2.6 _1 61 .1 3 .5 2.84 .38 201.6 7 481625 244 32 146 267 4.10 18 3.71 436 22 .03 50 90 18 1.11 15B -1 .62 . 1 1 4 1 1 64 ŽŻ 40 >10000 1 97.2 26 481626 .1 .84 57 4.87 17 46 1096 10.66 .13 .74 627 21 .01 6 34 1.02 1 .1 .1 4 1.02 481627 96 910 45 .02 9 27 1 235.7 99 145 .1 1.58 14.42 .02 L .65 909 7530 1 4 .1 3.56 -1 14 61 1 1 10 60 481628 .3 2.05 83 .27 30 62 3,78 -18 14 1.45 312 13 .01 15 900 3 12 1.06 37.9 1 .1 .1 8 1 1 13.74 .03 .25 83 >10000 81 1 270.9 52 29 481629 6.56 104 1803 632 35 .01 B 1.01 1.4 .41 15 .1 1 .1 34 2 1 9 .28 92 983 .02 304 49 .01 30 3250 .02 1 137.3 25 481630 4.05 -12 3 11 2.1 5 .1 1.66 .1 1 1 4 10 99 912 4.57 .05 .54 427 71 .01 70 1000 3 14 .05 226.7 5 44 8 481631 1.3 .82 16 1.11 5 1 .1 _1 4 956 92 3.92 .69 12 41 481632 .92 46 .78 .1 18 32 149 .22 6 15 .01 48 560 2 1 3 1 -01 1 25.6 1 .2 . 1 481633 4.01 45 328 2.27 . 17 252 10 .01 360 11 1.03 9.8 1 50 б .49 43 5 .03 1 49 1 1.1 -1 . 1 1 - 6 1 17 481634 .1 1.54 14 2.75 13 117 811 9.51 .05 6 1.01 830 21 .01 25 5420 45 .01 1 338.0 3 65 .1 _1 1 1 6 1 481651 .7 .69 34 .94 49 81 2.05 .08 -40 231 7 -03 590 12 4 1 23 .01 23.8 1 22 4 4 5 .1 _1 343 35 1.52 47 105 2.03 .07 11 .02 29 3 .01 29.3 28 4 481652 .7 .91 .62 11 560 1 1 .1 .1 4 4 -5 1 - 6 35 583 270 13 0 6 481653 1.7 .29 211 5 6 >15.00 118 .33 -01 . 11 3 -01 5 5 1 13 1 .01 1 7.2 3 .1 .1 5 1 58.01 12 481654 .03 .12 83 18 3762 >15.00 .01 .10 29 28 10 1 1 15 1 .01 1 5.0 1 1 .1 -1 .1 1 481655 6 .1 .98 46 .1 .21 .1 17 19 827 >15.00 .06 8 .79 204 43 .01 22 390 1 11 1 1.02 44.0 9 9 .03 481656 .98 119 . 19 26 36 2.18 .08 268 10 480 7 18 10 .04 1 23.9 1. 47 3 .6 -1 - 5 R . 64 - 5 1 -1 .4 2.23 481657 68 .18 10 67 57 4.36 .12 14 1.7B 331 20 .02 32 620 1 1 3 16 1.06 1 66.3 63 .1 .1 .01 1 194.1 481658 22 20 106 592 7.56 7 1.02 563 71 30 5860 ŝ 30 1.02 5 37 3 -1 1.41 -1 1.73 .1 1 .05 1 1 481659 .1 1.16 ZÛ 1.30 14 97 762 5.96 .05 -86 504 69.01 26 2960 1 4 11 1.01 1 152.9 2 39 1 .1 1 6 1 9 481660 .87 3.84 14 122 383 .05 .41 1233 89.01 1 .02 1 380.4 5 138 .1 1 9 -1 1 .1 10.88 1 1 33 >10000 66 1 7 39

MINHEN

Б

B

Ň

.996

11

Ŋ

604

- 327 3423
- Р.04

FILE NO: 6V-0357-RJ1+2+3

DATE: 96/07/12

MIN-EN LABS - ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

TN: LINDA C	CARON										TEL:	(604)327	-3436	FA	X:(60	4)327	-3423											*	rock *	()
NUMBER	AG PPM	۸L ۲	AS PPM	BA PPN	BE PPM	BI PPM	CA 2	CD PPM	PPN	CR PPM	CU PPH	FE %	GA PPN	К Х	L I PPM	MG %	PPN	MO PPM	NA XP	NI PPN	P PPM	PB PPH	SB PPM	SN PPM	SR <u>PPH</u> P	TH T PM	1 U X PPM	V PPM	PPM P	ZN AU Pm
481551 481552 481553 481554 481555	2.9 2.6 2.6 .1 .1	.83 1.07 1.30 .13 .48	1 105 1 1 1	28 41 32 1 2	1 .1 .1 .1	5 7 4 1 46	.31 .43 1.18 2.78 .20	.1 .1 .1 .1	10 7 15 59 56	37 52 57 27 39	1175 409 683 3217 5871	8.34 3.12 5.64 >15.00 >15.00	1 2 1 1 1	.07 .07 .06 .01 .02	11 13 13 4 6	- 38 - 70 - 83 - 27 - 41	241 266 454 247 187	18 12 15 47 44	.03 .03 .03 .01 .02	12 10 11 24 23	480 580 470 10 210	11 9 1 1	1 1 1 1	5 2 4 14 12	5 19 19 1	1.0 1.0 1.0 1.0	11 1 11 1 11 1 11 1	9.4 12.7 12.9 11.8 19.8	1 2 1 1	38 25 24 1
481556 481557 481558 481559 481559 481560	2.0 2.9 3.1 1.6 2.3	.07 1.00 2.44 1.10 1.19	302 76 145 1	5 48 46 6 20	.1 .1 .1 .1	18 > 5 4 25 10	15.00 3.35 2.24 .26 1.01	.1 .1 .1 .1 .1	4 7 26 81 16	13 59 131 70 35	47 222 445 3759 1343	.35 3.53 6.25 >15.00 8.40	47 4 1 1	.01 .10 .04 .02 .06	6 12 20 9 11	.16 .61 2.60 .90 .84	455 243 860 312 365	6 12 20 40 20	-01 -03 -05 -02 -04	7 10 38 1 27 14	130 610 1950 440 470	26 10 1 1	16 1 1 1	1 3 5 10 5	1 29 87 1 14	1 .0 1 .0 1 .1 1 .0 1 .0	11 1 12 1 12 1 13 1 13 1	7.5 15.8 105.2 38.2 21.9	5 2 1 1	15 20 81 11 15
481561 481562 481563 481564 481565	2.3 3.1 2.5 2.4 1.3	.09 1.09 .74 .07 .48	315 96 1 299	9 23 14 6 8	.1 .1 .1 .1 .1	18 > 17 17 18 > 1	15.00 .94 6.50 15.00 12.74	.1 .1 .1 .1 .1	6 6 24 5 19	14 45 37 15 18	105 853 1924 202 871	.51 3.28 9.57 .51 14.68	47 1 1 48 1	.01 .04 .02 .01 .02	6 10 7 5 6	.19 .73 .32 .11 .35	670 378 1754 578 1710	7 13 21 7 27	.01 .03 .01 .01 .01	7 11 19 7 21	140 600 270 130 180	27 5 1 29 1	17 1 16 1	1 3 6 1 9	1 31 10 1 4	1 .0 1 .0 1 .0 1 .0	1 1 2 1 2 1 1 1 1 1	8.3 12.4 21.7 7.5 42.8	5 2 1 5	16 17 28 16 3
481566 481567 481568 481569 481569 481570	2.9 2.2 3.7 2.7 3.5	1.01 .87 1.13 1.09 .15	126 1 6 1 1	29 11 26 28 13	.1 .1 .1 .1 .1	7 1 13 8 1	.64 .13 .35 .20 .03	.1 .1 .1 .1 .1	5 113 12 13 17	37 65 60 54 32	333 448 662 1056 707	2.66 >15.00 4.23 7.69 >15.00	10 1 3 1 1	- 05 - 04 - 05 - 05 - 03	10 11 11 14 4	.58 .48 .58 .63 .02	291 217 214 223 77	12 27 14 28 44	.04 .02 .06 .03 .01	8 21 10 15 21	610 180 530 460 200	12 1 6 1	1 1 1 1	2 9 3 5 12	36 6 44 15 1	1 .0 1 .0 1 .0 1 .0 1 .0	2 1 3 1 3 1 3 1 3 1 1 1	13.2 40.3 14.5 24.4 40.2	3 27 4 8 1	15 4 13 12 1
481571 481572 481573 481601 481602	7.2 13.7 3.1 .1 .2	1.14 .75 .98 .38 .15	1 54 133 1 1	34 22 36 17 56	.1 .1 .1 .1 .1	1 27 6 1 1	.03 1.48 .51 .90 .15	.1 .1 .1 .1 .1	10 6 9 41 2	40 53 37 36 68	1188 1506 307 2346 51	11.78 3.79 2.79 >15.00 1.03	1 5 9 1 1	-08 -06 -10 -03 -05	13 10 12 6 1	.63 .57 .60 .23 .06	168 308 358 638 138	26 13 11 47 19	.02 .04 .03 .01 .01	16 10 10 25 21	570 650 850 130 350	1 12 12 1 1 13	1 1 1 1	7 3 2 12 1	1 32 25 1 3	1 .0 1 .0 1 .0 1 .0 1 .0	1 1 1 1 1 1 2 1 1 1	36.1 21.0 15.6 39.4 82.1	1 2 4 1 7 6	9 45 22 1 36
481603 481604 481605 481605 481606 481607	1.8 1.2 .1 .1 .7	.68 .94 .45 .30 .09	188 1 1 1 1	10 24 6 223 37	.1 .1 .1 .1	3 > 1 1 1	15_00 2_81 _37 1_61 _05	.1 .1 .1 .1 .1	6 6 72 9 1	26 42 15 108 76	63 151 3227 50 15	1.18 2.21 >15.00 12.38 1.35	1 1 1 3	-01 -10 -02 -19 -04	5 9 4 1 1	.71 .61 .39 .20 .02	698 360 141 749 32	8 9 44 22 6	.01 .04 .01 .01 .01	11 7 26 17 7 4	320 620 10 7090 640	6 4 1 1 26	1 1 1 1	1 2 14 7 1	99 37 1 66 5	1 .0 1 .0 1 .0 1 .0 1 .0	3 1 2 1 1 1 1 1 1 1	21.2 15.6 16.6 234.8 36.5	2 1 44 2 5	44 24 1 25 14
481608 481609 481610 481611 481612	.1 1.3 1.1 .7 .6	.07 1.23 .30 .87 .87	160 14 1 1 70	9 41 61 56 33	.1 .1 .1 .1 .1	7 > 1 1 1	15.00 1.29 .17 .50 .11	.1 .1 .1 .1	26574	15 66 59 58 82	31 167 60 104 30	.21 2.59 1.76 2.84 1.95	23 1 1 1 1	-01 -06 -09 -09 -09	1 11 2 8 8	.06 .88 .11 .75 .66	509 433 148 367 186	3 9 20 11 8	.01 .03 .01 .05 .03	4 13 22 14 10	160 540 320 500 350	17 1 13 1 3	7 1 1 1	1 2 1 2 1	1 27 3 14 13	1 .0 1 .0 1 .0 1 .0 1 .0	$ \begin{array}{c} 1 & 1 \\ 3 & 1 \\ 1 & 1 \\ 5 & 1 \\ 3 & 1 \end{array} $	5.3 21.5 37.8 25.7 53.7	3 3 4 2 1 5	11 26 39 29 23
481613 481614 481615 481615 481616 481617	.7 .7 .5 .8 1.0	1.53 1.38 1.41 1.92 1.82	68 1 1 22 23	30 35 59 69 63	.1 .1 .1 .1	1 1 1 1	-14 1-94 -16 -14 -12	.1 .1 .1 .1	6 7 7 8 8	42 47 49 35 37	12 20 21 41 36	3.28 2.96 3.28 3.92 3.57	1 1 1 1	.09 .08 .10 .23 .13	14 14 11 12 13	1.13 1.02 .82 1.38 1.28	498 721 504 321 365	12 10 10 15 14	.04 .03 .03 .02 .02	11 12 14 15 14	490 480 300 630 580	1 1 1 1	1 1 1 1	33353	12 10 9 26 17	1 .0 1 .0 1 .0 1 .0 1 .0	7 1 3 1 4 1 9 1 9 1	40.7 41.1 31.0 37.1 37.1	1 1 2 1 1	52 52 52 76 74
481618 481619 481620	2.0 1.6 3.3	.85 2.42 _40	. 1	37 30 22	.1 .1	1 1 4	-38 -33 -24	.1	4 13 12	60 167 181	211 115 157	2.35	1 1 1	- 10 - 09	7 20 3	.48	187 543 119	8 18 10	.04 .02	7 35 13	580 190 20	8	1 1 1	1 5 3	17 13	1.0	2 1 3 1 1 1	13.3 82.2	2 3 8	21 31 16

.

••••

الجاد باللاط للأخلا بيطالها تستشفاك

فورج ووجبو الجفوف الأوجا والألا أستترجبو

. .

~13

JUL-10-1996 13:32

JUL-12-1996 11:22

MIN-EN LABS

MINERAL • ENVIRONMENTS LABORATORIES IDIVISION OF ASSAYERS CORP.I SPECIALISTS IN MARKED

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS - ASSAYERS - ANALYSTS - GEOCHEMISTS

Assay Certificate

6V-0357-RA1

Date: JUL-12-96

Company:	KETTLE RIVER RESOURCES LTD
Project:	026 BOMBINI
Attn:	LINDA CARON

We hereby certify the following Assay of 2 ROCK samples submitted JUL-08-96 by L. Caron.

Sample	Cu			
Number	*****	 	 	
481574				
481575				
481575				
4815/7	,795			
4010/5		 	 	
481579	, 522			
481580				
481581				
481582				
401303		 	 	
481584				
481585				
481586				
481587				
401302		 	 	
481589				
481590				
481591				
481592				
401323		 	 . 	
481594				
481595				
481595				
407331				

Certified by

MIN-EN LABORATORIES

604 327 3423 P.03

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C., CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C., CANADA VOJ 2:NO TELEPHONE (504) 847-3004 FAX (604) 847-3005

MIN-EN LABS - ICP REPORT B282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

FILE NO: 6V-0377-RJ1+2+3

ATTN: LINDA CARON

 ϕ^*

DATE: 96/07/19 * rock * (ACT:F31)

ATTN: LIND	DA CARON	1	TEL: (604)327-3436 FAX:	(604)327-3423		* rock * (ACT:F3
SAMPLE	AG AL AS BA BE BI CA PPM X PPM PPM PPM X	CB CO CR CU PPH PPH PPN PPH	FE GA K LI MG X PPM X PPM X	MN MO NA NI P PPH PPM % PPH PPM	PB SB SN SR TH TI PPN PPN PPN PPN X	U V W ZN AU-Fire PPN PPN PPN PPN PPE
481701 481702 481703 481704 481704 481705	.8 .10 770 10 .1 1 .02 1.5 .08 1160 7 .4 1 .03 1.0 .10 834 7 .1 1 .01 .3 3.38 132 11 .1 1 .56 .3 .61 .38 32 .1 1 .33	-1 57 453 4 -1 80 220 3 -1 62 536 4 -1 27 188 50 -1 3 75 14	3.55 1.01 1 8.62 2.69 1.01 11 >15.00 3.87 1.01 1 10.68 5.05 1.02 25 3.97 1.25 1.05 5 .46	512 2 .01 885 10 462 1 .01 1199 10 533 1 .01 1224 10 1126 16 .02 72 40 167 6 .02 12 190	1 1 4 7 1.01 1 1 4 16 1.01 1 1 4 8 1.01 1 4 8 1.01 1 5 12 1.06 1 1 1 4 .01	1 16.5 1 7 4 1 16.3 1 9 25 1 15.3 1 8 17 1 162.5 1 62 1 9.9 4 21
481706 481707 481708 481709 481709 481710	.5 .84 21 53 .1 1 .55 .1 1.80 1 26 .1 1 .20 .4 2.01 1 139 .1 1 .19 .7 2.61 1 179 .1 1 .34 2.2 .27 255 9 .2 5 >15.00	.1 4 39 15 .1 10 248 67 4 .1 9 23 19 3 .1 16 47 135 4 .1 3 17 17	1.64 1.07 8 .58 4.16 1.05 15 1.22 3.52 1.06 15 1.50 4.85 1.25 18 2.13 .40 15 .02 2 .33	312 7 .03 9 370 302 14 .01 40 390 945 13 .02 22 420 910 18 .02 20 610 449 5 .01 5 200	1 1 1 22 1 .01 1 1 3 8 1 .01 1 2 13 1 .05 1 4 13 1 .11 8 5 1 68 1 .02	1 13.0 2 38 1 53.3 10 39 1 49.8 1 76 1 118.6 1 60 1 8.7 2 19
481711 481712 481713 481713 481714 481715	.5 1.37 70 83 .1 1 .29 .6 1.87 1 55 .1 1 .36 .9 .18 253 20 .1 6 >15.00 .5 .48 1 48 .1 1 .38 .6 1.81 1 73 .1 1 .25	.1 8 60 37 2 .1 11 30 46 4 .1 3 10 8 .1 2 28 40 1 .1 11 37 38 3	2.63 1 .20 12 1.07 4.22 1 .14 13 1.02 .57 21 .05 2 .20 1.60 1 .07 1 .18 3.73 1 .28 11 1.34	535 10 .02 16 370 354 16 .02 22 1130 555 6 .01 6 210 78 6 .01 11 210 352 14 .02 22 710	1 1 2 8 1.04 1 1 3 19 1.04 17 8 1 1 1.01 2 1 1 7 1.01 1 3 19 1.07	1 46.1 1 48 1 38.9 1 55 1 5.9 1 31 1 15.2 2 43 1 41.9 1 62
481716 481717 481718 481718 481719 481720	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.1 14 196 26 3 .1 21 81 292 14 .1 7 161 30 4 .1 6 42 70 2 .1 63 707 5 3	3.63 1 .07 16 1.82 4.78 1 .06 1 .12 4.28 1 .08 13 i.46 2.84 1 .10 7 .64 3.58 1 .01 i 10.35	550 14 .02 47 510 104 28 .01 26 430 455 15 .02 21 519 123 15 .01 17 280 556 1 .01 665 10	1 1 3 17 1 .01 1 8 1 1 .01 3 3 11 1 .04 1 2 10 1 .06 1 1 4 8 1 .01	1 67.8 6 75 1 55.1 1 50 1 1 144.6 6 49 1 62.3 2 45 1 14.7 1 11
481721 481722 481723 481724 481725	.7 .36 49 155 .1 1 .06 2.4 .25 212 10 .1 5 >15.00 .7 2.69 1 239 .1 1 .33 .4 3.06 1 60 .1 1 .45 .5 2.35 1 62 .1 1 .35	.1 2 30 11 .1 3 17 9 .1 16 25 102 6 .1 18 33 27 5 .1 15 32 35 6	.88 1.08 1 .21 .72 20 .03 2 .23 5.39 1 .32 17 2.05 5.92 1 .06 17 2.57 6.73 1 .05 14 1.96	40 5 .01 5 430 293 5 .01 7 200 1181 21 .02 18 660 1462 20 .02 22 780 1244 16 .03 16 740	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 12.8 1 16 1 9.5 1 22 1 121.4 1 71 1 149.4 1 77 1 103.2 1 68
481726 481727 481728 481729 481730	.6 2.49 59 52 .1 1 .87 1.0 2.00 27 64 .1 1 .36 .5 1.72 39 231 .1 1 .21 .5 1.29 26 86 .1 1 .29 .4 2.14 1 221 .1 1 .26	-1 18 88 55 4 -1 12 37 54 4 -1 8 39 17 3 -1 8 50 28 3 -1 14 39 70 4	4.12 1.08 17 2.44 4.00 1.13 13 1.55 3.44 1.32 12 1.18 3.07 1.47 8 .92 4.43 1.27 13 1.60	876 14 .03 24 810 472 14 .01 19 970 788 13 .03 12 500 543 11 .02 20 350 1362 15 .02 20 350	1 1 3 30 1 .06 1 1 3 10 1 .07 1 1 2 16 1 .08 2 1 2 13 1 .05 1 1 3 8 1 .10	1 103.8 1 74 1 50.4 1 54 1 50.4 1 81 1 50.4 1 81 1 41.0 1 83 1 138.1 1 65
481731 481732 481733 481734 481735	.3 .09 117 4 .1 1 .05 .1 .01 404 90 .1 9 >15.00 .1 5.56 1 62 .1 1 2.74 2.4 .21 265 11 .1 8 >15.00 1.7 1.17 103 82 .5 1 6.83	.1 2 122 2 .9 3 10 3 .1 61 357 72 8 .1 3 19 7 10.8 6 51 33 1	.31 1 .01 1 .08 .15 36 .01 2 .17 8.70 1 .01 59 6.32 .22 24 .01 2 .09 1.80 1 .19 10 .87	77 2 .01 7 130 175 4 .01 4 550 3124 21 .01 228 2110 285 4 .01 7 170 787 10 .01 17 200	1 1 1 1 1 .01 18 10 1 1 1 .01 1 1 7 143 1 .01 16 8 1 277 1 .02 29 2 1 185 1 .02	1 5.6 8 5 7 7.1 2 6 1 175.2 1 117 1 7.2 2 15 1 19.7 7 2392
481736 481737 481738 481751 481752	54.5 .60 267 34 .1 23 14.70 > 2.3 .35 188 24 .1 6 >15.00 .3 1.54 37 33 .1 1 .20 .9 .05 638 15 .1 1 .10 1.0 .26 767 13 .1 1 .07	100.0 9 33 1172 5 .1 4 31 30 .1 10 31 25 3 .1 74 447 4 5 .1 63 556 14 3	5.35 1 .01 5 2.21 .50 14 .03 2 .14 3.85 1 .05 12 1.34 5.49 1 .01 1 9.75 5.69 1 .01 1 8.63	>10000 36 .01 52 380 > 256 4 .01 7 250 793 13 .02 14 420 639 2 .01 1261 10 578 3 .01 871 10	>10000 21 7 252 1 .01 59 5 1 35 1 .03 1 1 2 8 1 .01 1 5 4 1 .01 1 1 4 8 1 .01	1 20.5 166 >10000 73 1 7.4 4 349 1 51.9 1 98 1 15.6 1 18 10 1 29.8 1 13
481753 481754 481755 481756 481756 481757	.4 1.80 1 22 .1 1 .07 1.0 .13 743 10 .1 1 .05 .1 3.19 1 16 .1 1 1.07 .4 .96 1 87 .1 1 .07 .3 .39 1 65 .1 1 .03	.1 9 33 48 5 .1 59 515 4 3 .1 26 18 19 6 .1 4 41 46 2 .1 3 29 51 3	5.28 1 .02 10 1.40 5.81 1 .01 1 8.71 5.63 1 .02 13 3.16 5.63 1 .10 5 .54 5.34 1 .08 2 .10	1004 16 .03 20 500 560 2 .01 915 10 1306 19 .02 32 130 84 12 .01 18 460 51 11 .01 11 510	1 1 4 4 1 .09 1 1 4 8 1 .01 1 5 14 1 .03 1 1 5 14 1 .03 1 1 1 9 1.01 4 1 2 3 1 .01	1 103.8 1 85 1 17.1 1 14 1 266.9 1 64 1 36.1 2 79 1 28.5 1 95
481758 481759 481760 481761 481761 481762	1.0 1.25 36 66 .1 1 .64 1.3 1.71 48 64 .1 1 .38 1.5 .91 639 42 .1 1 3.57 2.2 .85 209 48 .1 4 >15.00 .9 3.10 1 109 .1 1 1.00	.1 18 36 41 3 .1 16 30 45 4 .1 38 539 44 2 .1 4 34 7 1 .1 24 107 57 6	1.61 1.12 0 1.31 1.32 1.08 11 1.74 2.69 1.03 5 4.92 1.20 1.15 9 .74 5.80 1.18 23 2.79	354 14 .02 15 820 350 15 .02 15 810 1011 9 .01 664 170 164 8 .02 13 130 769 23 .02 61 2540	1 1 2 19 1 .09 1 1 3 26 1 .11 1 3 3 157 1 .01 1 2 1 115 1 .04 1 1 5 27 1 .13	1 37.5 1 31 1 64.0 1 32 1 30.2 11 28 1 17.8 2 43 1 89.2 1 129
481763 481764	1.3 .37 127 22 .1 5 6.34 1.0 .20 112 25 .1 1 .05	.1 3 51 10 .1 4 67 11	.41 3 .04 1 .09 .48 1 .07 1 .09	104 3 .01 7 270 48 2 .01 6 20	8 4 1 3 1.03 2 1 1 3 1.01	1 9.5 4 29 1 5.1 5 41 4
			4000			

MIN-EN LABS

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS + ASSAYERS + ANALYSTS + GEOCHEMISTS 604 327 3423 P.03

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C., CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C., CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

Date: JUL-19-96

6V-0377-RA2

Company:	
Project:	
Attn:	

KETTLE RIVER RESOURCES LTD MTATTWOOD#06 LINDA CARON

MINERAL • ENVIRONMENTS LABORATORIES (DMISION OF ASSAYERS CORP.)

We hereby certify the following Assay of 1 ROCK samples submitted JUL-12-96 by L Caron.

Sample	ರೆ	Zn ¥		
481725			 	
481727				
481729	·		 	
481731				
481733 481734			 	
481735 481736	1.12	7.43		
481737 481738 481751				
481752			 	
481754			н. С. С. С	•
481756 481757		• • • • • • • • • • • • • • • • • • • •	 	•
481758 481759				:
481760				 .

Certified by

MIN-EN LABORATORIES

					• •						•																							
COMP: KETTLE RI PROJ: MT ATTWOOD ATTN: LINDA CAR	VER Ri D#06 ON	Esour	CES L	TD .						M : 828	IN- 12 SH IEL:	EN 1 ERBROO (604)3	LA: DKE 527-	BS \$1., 3436	VAN F	IC COUVE AX:(6	Р R r, b. 04)32	EP .c. 1 27-3	ORT v5x 41 423	EB											FILE * RO	NO: ÓV DATE: CK *	9675 (ACT:F31	1×
SAKPLE NUMBER	AG PPH	AL X	AS PPM	BA PPH	BE PPH	B1 PPN	CA X	CO PPF	CO PPH	CR PPM	CU PPM	FE 2	G PP	A I	K L X PP	I K M	G H Z PF	IN 1 M PI	HO NA	A N K PP	AI PM	Р РР Н	PB PPN	SB PPM	SN PPK	SR PPM	TH PPH	11 X	U PPM	V PPM	N PPH	ZN PPM	Au-fire PPB	
481739 481740 481741 481742 481745	.6 1.8 .1 .3	.55 .48 .02 1.16 .62	1 156 1 1	129 43 25 58 42		- 1 5 1 1	.45 13.71 .06 .09 .03		5 92 6 3	86 32 37 36 63	51 16 961 31 81	2.07 .39 >15.00 2.89 2.21	7 7 1	1 .1 1 .0 1 .0 1 .0 1 .0	1 6 1 5 1 6	3 .2 .0 .7 .7	1 10 5 16 5 7 66 8 6	07 50 1 55 50	9.0 4.0 36.0 11.0 9.0	1 1 1 2 3 1 1 1	19 5 23 11	1120 130 10 290 170	1 8 1 5 1	1511	1 10 2 1	20 22 1 8 1	1 1 1 1 1	.01 .02 .01 .01 .02	1 1 1 1 1 1	36.0 7.3 .1 31.2 44.8	53114	62 25 1 61 26	3 1 7 1 1	996 15
481766 481767 481768 481769	.8 7.2 1.0 2.1	.31 .18 .33 .33	47 370 211 415	137 11 46 13	.2 .1 .2 .1	3 1 1 1	13.79 10.49 11.41 >15.00	.1 >100.0 .1 .1	2445	63 10 31 18	32 147 20 59	.59 2.70 1.84 4.29)))	1 .1 1 .0 1 .0! 1 .0	1 3 5 3 1 4	2 .1 4 3.6 2 1.8 2 6.1	7 16 5 115 4 57 4 161	54 13 12	10 .0' 17 .0' 10 .01 9 .0		18 >1 16 15 19	10000 170 190 10	3 3393 63 467	1 1 1 1	1 3 2 5	401 425 593 597	1	.01 .01 .01 .01	1	86.6 10.0 16.5 18.1	6 55 1 1	170 >10000 756 1045	2 18 3 2	: 23
																							-											
																																		MIN-E
																											<u>.</u>							EN LABS
																							·											
																																		604 32
																																		7 3423
																																		P.0:
																																		, w

TOTAL P.03

JUL-19-1996 15:22

MIN-EN LABS

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C., CANADA V5X 4EB TÉLEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB; 3176 TATLOW ROAD SMITHERS, B.C., CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

MINERAL • ENVIRO LABOR IDIVISION OF ASSAYER

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS + ASSAYERS + ANALYSTS + GEOCHEMISTS

Geochemical Analysis Certificate

ENVIRONMENTS LABORATORIES

6V-0384-RG1

Date: JUL-19-96

Company: KETTLE RIVER RESOURCES LTD Project: MT ATTWOOD #06 Attn: LINDA CARON

We hereby certify the following Geochemical Analysis of 9 ROCK samples submitted JUL-15-96 by L. Caron.

Sample Number	Zn ¥	
481733 481740 481741 481742 481765		
481766 481767 481768 481769	4.68	

Certified by	Certified	bу	AM
--------------	-----------	----	----

MIN-EN LABORATORIES

	((l			
COMP: KETTLE PROJ: MT ATT ATTN: LINDA	RIVER F WOOD CARON	ESOUR	CES L	TD						M 82	IIN 82 SI TEL	- EN Herbro : (604)	LAP DOKE 9 327-3	35 - ST., V 8436	ANCOL	ECP JVER, (604)	REF B.C. 327-3	ORT v5x 4 423	E8									F *	ILE roc	NO: 6 DATE k *	V-0402- : 96/07 (ACT:F	RJ1 725
SAMPLE	AG	AL %	AS	BA	BE	BI	CA	CD	CO PDM	CR	CU	FE	GA	K %		MG	MN	MO	NA %		Р	PB	SB	SN	SR	TH	TI % D		V	W ZN	Au-fir	e
481743 481744 481745 481746	1.5 2.2 2.0 3.4	.36 .47 .61 1.12	16 109 82 453	35 12 27 34	.1 .2 .1 .2	5 5 5 1	1.05 9.22 3.80 14.43	.1 .1 .1 .1	4 4 6	47 37 51 31	18 18 9 13	.65 .51 .64 1.96	12 14 9 1	.04 .03 .05 .10	2 3 4 16	.07 .22 .26 1.08	67 111 114 944	3 5 4 11	.02 .01 .01 .01	8 12 6 19	540 340 170 280	9 7 5 9	5 6 6 1	1 1 1 1	17 38 119 190	3 1 2 1	.04 .04 .05 .01	1 6. 1 11. 1 7. 1 27.	6 2 8 0	4 32 4 29 4 19 1 90	1	B 7 4 5
		18 - P																									-					
														<u>.</u>																		
							•																									

APPENDIX 2

Rock Sample Descriptions

481551	02.07	main trench	0.5 m chip across o/c, sample of heavy iron stained, dark and light gray, medium crystalline syenomonzonite dyke, ghost light green chlorite altered mm scale homblende phenocrysts to 5%, 10% light grey - green feldspar phenos, very rare irregular quartz phenos, fracture and disseminated very fine grained pyrite to 2%, sheared ipt, highly fractured rock, goethite common on fractures
481552	02.07	main trench	2.0 m chip of dark and light gray, medium crystalline syenomonzonite, disseminated and fracture very fine grained pyrite to 2%, weak fracture stockwork at 5 / 10 cm, minor broken white quartz - pyrite veins to 5 cm across at 340 / 70 W
481553	02.07	main trench	1.5 m chip of dark green chlorite - quartz eye massive pyrite - chalcopyrite - arsenopyrite VMS horizon?, anhedral glassy quartz eyes to 5%, very fine grained pyrite to 15%, chalcopyrite to 2%
481554	02.07	main trench	0.5 m chip across massive very fine grained pyrrhotite to 80%, very fine grained and framboidal pyrite to 5%, 5% glassy quartz eyes in dark green chlorite matrix, massive sulphide lenses are irregular over 1 - 2 m up to 0.5 m wide
481555	02.07	main trench	2.0 m chip across massive sulphide horizon with 10% glassy quartz eyes in dark green chlorite matrix, very fine grained pyrihotite to 70%, mm scale blebs of chalcopyrite to 5%, very fine grained pyrite to 5%, fine grained dark brown sphalerite? to 5%, white hydrozincite common on weathered surface
481556	02.07	main trench	1.0 m chip of white and black banded fine crystalline marble, structural footwall to massive sulphide horizon (stratigraphic HW?), no visible sulphides, massive bedded
481557	02.07	main trench	2.0 m chip of light and dark gray, fine grained chloritized hornblende syenomonzonite, disseminated, fracture and irregular mm scale blebs of pyrrhotite and pyrite to 2%, blocky jointed
481558	92.07	main trench	2.0 m chip of light and dark gray, fine grained chloritized hornblende syenomonzonite, includes fault breccia of dark green basalt dyke and pyrite rich fault gouge, fault zone at 045 / 30 N
481559	03.07	main trench	0.5 m chip of dark green very fine grained basalt dyke, post mineral and pre-faulting, brecciated in part, trace disseminated very fine grained pyrite along dyke margins, dyke up to 50 cm wide
481560	03.07	main trench	2.0 m chip of VMS horizon, massive very fine grained pyrrhotite, pyrite, chalcopyrite and sphalerite to 80%, in dark green very fine grained chlorite matrix
481561	03.07	main trench	0.8 m chip of light and dark gray and white banded fine crystalline marble and quartz pebble limestone conglomerate, very fine crystalline barite in marble? - hefty rocks
481562	03.07	main trench	1.0 m chip of light and dark gray fine grained chloritized hornblende syenomonzonite, highly sheared in fault zone at 045 / 30N, disseminated and fracture pyrrhotite to 2%
481563	03.07	main trench	0.3 m chip of pyritized brecciated massive sulphide lense in fault zone at 045 / 30 N, very fine grained pyrite as fracture coatings and mm scale veinlets
481564	03.07	main trench	0.3 m chip across FW of fault zone, sample of white and black banded on cm scale fine crystalline marble, marble is dragged into fault, banding at 315 / 70 E
481565	03.07	main trench	0.3 m chip across fault zone at 045 / 30 N, sample of pyritized brecciated fine grained chloritized hornblende syenomonzonite, fracture and mm scale veins of very fine grained pyrite to 3%
481566	03.07	main trench	1.5 m chip across light and dark gray, fine grained chloritized homblende syenomonzonite, disseminated, fracture and mm scale blebs of pyrrhotite to 2%, includes broken 5 cm scale fragments of white quartz - pyrite veins
481567	03.07	main trench	0.2 m chip across white quartz - pyrite vein, drusy in part, bullish in part, disseminated and cm scale blebs of dull yellow pyrite to 5%
481568	03.07	main trench	0.5 m chip of silicified light and dark gray, fine grained chloritized hornblende syenomonzonite, adjacent to quartz vein of # 567, disseminated, fracture and mm scale blebs of pyrrhotite to 2%
481569	03.07	main trench	0.5 m chip of light and dark gray, fine grained chloritized hornblende syenomonzonite, disseminated, fracture and mm scale blebs of pyrrhotite to 2%
481570	03.07	main trench	0.5 m chip across bleached light gray, fine grained chloritized hornblende syenomonzonite, highly fractured with weak pyrrhotite - pyrite fracture stockwork at 5 / 10 cm

Mt. At	twood	Project:	Bombini Option
481571	03.07	main trench	0.5 m chip across bleached light gray, fine grained chloritized homblende syenomonzonite, highly fractured with weak pyrrhotite - pyrite fracture stockwork at 5 / 10 cm
481572	03.07	open cut	1.0 m chip, breast of portal, sample of heavy iron stained fine grained chloritized homblende syenomonzonite, disseminated, fracture and mm scale blebs of pyrrhotite to 2%, includes cm scale narrow pyritized shears at 315/90
481573	03.07	open cut	2.5 m chip at breast, sample of heavy iron stained fine grained chloritized hornblende syenomonzonite, disseminated, fracture and mm scale blebs of pyrrhotite to 2%, includes 5 cm scale lenses / fragments? of pyrrhotite massive sulphide
481574	04.07	open cut	2.5 m chip at breast, sample of heavy iron stained fine grained chloritized hornblende syenomonzonite, disseminated, fracture and mm scale blebs of pyrrhotite to 2%
481575	04.07	open cut	2.0 m chip at breast, sample of heavy iron stained fine grained chloritized homblende syenomonzonite, disseminated, fracture and mm scale blebs of pyrrhotite to 2%
481576	04.07	open cut	1.0 m chip in immediate HW to VMS of # 577, sample of heavy iron stained fine grained chloritized homblende syenomonzonite, disseminated, fracture and mm scale blebs of pyrrhotite to 2%
481577	04.07	open cut	0.5 m chip across lower part of open cut wall, sample of dark green, chlorite - quartz eye VMS horizon, massive very fine grained pyrrhotite to 30%, very fine grained pyrite to 10%, mm stringers of chalcopyrite to 0.5%, trace dark brown, very fine grained sphalerite?
481578	04.07	open cut	0.3 m chip at face of open cut, sample of white quartz - pyrite vein, broken in narrow fault zone and discontinuous over 2 m, disseminated and mm scale blebs of fine crystalline pyrite to 5%
481579	04.07	open cut	1.0 m chip at face of open cut, sample of dark green chlorite - quartz eye massive sulphide, very fine grained pyrrhotite to 40%, very fine grained pyrite to 10%, rare cm scale stringers of chalcopyrite to 0.5%, trace dark brown very fine grained sphalerite
481580	04.07	open cut	1.5 m chip at breast, sample of massive bedded, light gray and buff, fine crystalline marble, mm scale laminae of argillaceous partings common, minor silty bands, includes "remobilized" cm scale lenses of massive very fine grained pyrrhotite along fractures from structurally overlying massive sulphide horizon - result of syenomonzonite intrusion?
481581	04.07	open cut	0.5 m chip on high wall of open cut, sample of dark and light gray banded fine crystalline marble with 10 cm scale lenses of dark green chlorite - pyrrhotite - pyrite lenses conformable to bedding - replacements?
481582	04.07	open cut	1.0 m chip on high wall of open cut, sample of heavy iron stained fine grained chloritized homblende syenomonzonite, disseminated, fracture and mm scale blebs of pyrrhotite to 2%
481583	04.07	open cut	0.3 m chip on high wall of open cut, sample of dark green chlorite - quartz eye massive sulphide, very fine grained pyrrhotite to 40%, very fine grained pyrite to 10%, cm scale stringers of chalcopyrite to 0.5%, trace dark brown very fine grained sphalerite?
481584	05.07	access road	1.0 m chip across fracturing in black very fine grained argillite and silty argillite, minor iron stain on fractures, bedding at 080 / 40 N
481585	05.07.	access road	1.0 m chip across intensely fractured light and dark gray silty, sandy argillite, grades to very fine grained argillaceous quartzite, minor iron stain on fractures
481586	05.07	Johannesberg	1.0 m chip across wall of open cut and water filled 4 m deep decline, across bedding in sheared and highly fractured light and dark gray very fine grained hornfels, disseminated and fracture very fine grained pyrrhotite to 5%, minor fine grained pyrite, fault at 285 / 40S
481587	05.07	Johannesberg	1.0 m chip across fault zone in same cut as #586, sample of very fine pyrite - hornfels gouge, pyrite to 5%
481 <i>5</i> 88	05.07	Johannesberg	1.0 m chip across HW to fault of #587, sample of light and dark gray very fine grained hornfels, trace disseminated very fine grained pyrite
481589	05.07	Johannesberg	select grab from dump of open cut of #588, sample of intensely iron stained and fractured light and dark gray argillite, disseminated and fracture pyrite to 1%
481590	05.07	Johannesberg open cut	1.0 m chip across cat cut o/c below old workings, sample of bleached and highly fractured, light buff very fine grained hornfels, disseminated and fracture very fine grained pyrite to 3%, rare 10 cm "lenses" of massive very fine grained pyrrhotite

1 At A+	wood	Draiaati	Dombini Ontion
MI. AU	wood	Project:	Boindim Option
481591	05.07	open cut	1.5 m chip across cat cut o/c below old workings, sample of bleached and highly fractured, light buff very fine grained homfels, disseminated and fracture very fine grained pyrite to 3%, rare 10 cm "lenses" of massive very fine grained pyritetie
481 592	05.07	Johannesberg	1.5 m chip across cat cut o/c below old workings, sample of bleached and highly fractured, light buff very fine grained hornfels, locally
		open cut	quartzitic over 5 - 10 cm bands, trace disseminated very fine grained pyrite
481593	05.07	Johannesberg	1.5 m chip across cat cut o/c below old workings, sample of bleached and highly fractured light buff very fine grained hornfels
		open cut	disseminated and fracture very fine grained pyrite to 3%, rare 10 cm "lenses" of massive very fine grained pyritotite
481594	05.07	Johannesberg	1.5 m chip across cat cut o/c below old workings, sample of bleached and highly fractured, light buff very fine grained hornfels.
		opencor	disseminated and fracture very fine grained pyrite to 3%, rare 10 - 30 cm "lenses" of massive very fine grained pyrrhotite
481595	05.07	Johannesberg	2.0 m chip across cat cut o/c below old workings, sample of bleached and highly fractured, light buff very fine grained hornfels,
			disseminated and fracture very fine grained pyrite to 1%, rare 10 cm "lenses" of massive very fine grained pyrrhotite
481596	05.07	Johannesberg	0.5 m chip across cat cut below old workings, sample of broken and fractured white quartz - pyrite vein, disseminated and irregular cm
			scale blebs of dull yellow pyrite to 2%
481597	05.07	Johannesberg open cut	0.5 m chip across cat scrape, sample of heavy iron stained, intensely fractured, bleached, light buff and black, argillite and phyllite,
L			disseminated very fine grained pyrite to 1%, irregular cm scale stringers of very fine grained pyrrhotite to 2%
481598	05.07	Johannesberg	0.0 - 1.0 m (1.0 m) from portal of open cut to adit, sample of iron stained, fine grained, chloritized homblende syenomonzonite,
L			disseminated and fracture very fine grained pyrite to 1%, blocky jointed
481599	05.07	Johannesberg tunnel	1.0 - 2.0 m (1.0 m) from portal of open cut to adit, sample of iron stained, fine grained, chloritized hornblende syenomonzonite,
L			disseminated and fracture very fine grained pyrite to 1%, blocky jointed
481600	05.07	Johannesberg tunnel	2.0 - 3.0 m (1.0 m) from portal of open cut to adit, sample of iron stained, fine grained, chloritized hornblende syenomonzonite,
L		ļ	disseminated and fracture very fine grained pyrite to 1%, blocky jointed
481601	02.07	main trench	0.30 m chip across black, dark green chlorite - pyrite - pyrihotite - chalcopyrite VMS horizon, very fine grained massive pyrite to 10%,
			fine grained pyrrhotite to 5%, chalcopyrite to 2%, trace arsenopyrite and sphalerite?, horizon is conformable to limestone bedding at 115 / 40 N
481602	02.07	S/2 main	1.0 m composite across bedding in black, carbonaceous, graphitic, argillite, thin partings at 080 / 40 N, disseminated very fine grained
		trench	pyrite to 15, locally well iron stained
481603	02.07	N/2 main	2.0 m composite chip from o/c, sample of dark and light green, calc - silicate skarn and banded marble, locally intensely sheared at
		Tench	080 / 40 N and parallel to bedding
481604	02.03	N/2 main	select grab from dump of caved open cut (adit?), sample of pyritic light gray chloritized homblende syenomonzonite (<5% visible
		urench	quartz, 70% light gray mm scale subhedral feldspar phenos, 5% mm scale subhedral chloritic hornblende laths, in very fine grained
			feldspar rich matrix, disseminated and irregular run scale blebs of pyrite to 1% give rock a "leopard spot" appearance, weak foliation
481605	02.07	N/2 main	select grab form dump of caved adit?, sample of massive fine grained pyrrhotite in quartz eye - chlorite VMS horizon, pyrrhotite to
		u enen	40%, dark brown, very fine crystalline sphalerite 2%, trace chalcopyrite and arsenopyrite, glassy and light gray subhedral mm scale
	02.07		quartz eyes scattered through dark green chlorite groundmass to 5%
481606	02.07	5/2 main trench	3.0 m composite across o/c, sample of heavy iron stained black argillite, disseminated and fracture very line grained pyrite to 2%, rare
			mm scale white quartz veinlets, bedding at 080 / 35 N, thin partings very common interbedded with minor light brown silty argillite
101 (07	03.07	lower road	beds on 10 cm scale
481607	-5.01	access	1.5 m chip across interbedded black carbonaceous arguille and black carbonaceous sandy arguille, limy ipt, disseminated and fracture
			very line grained pyrite to 0.5%, bedding at 0807 40 N, gradational very line interbedded laminae over 0.5 m at contact to overlying?
401.000	03.07	tower road	while and black banded line crystalline marble
481608	-2.21	BCCESS	2.0 m composite chip over road o/c, sample of white and black banded, line crystalline marble noted in #00/, trace disseminated very
101 (00	03.07	9 lourer	une grained pyrite (diagenetic?)
481609	02.07	road access	grab from dump of 2 m deep pit, no access, sample of pyrrhoute - pyrite chloritized homblende syenomonzonite, disseminated and
			fracture suprides to 2%, pit opens 315 / 40 N shear zone near limestone contact - broken quartz - pyrite vein?

į.

101610	03.07	Slower	caleat grap from dump of 2 m deep water filled decline, cample of black carbonaceous, graphitic purific argillite, this partings year
481010		road access	common, minor mm scale white quartz - pyrite veinlets perpendicular to bedding at 105 / 60 N - tension gash filling
481611	03.07	S lower road access	select grab from North end of same dump as #610, sample of light brown, gray, and buff, very fine grained hornfels, disseminated and fracture very fine grained pyrite and pyrrhotite to 2%
481612	03.07	N lower road access	2.0 m composite of black graphitic argillite, disseminated very fine grained pyrite to 1% (diagenetic), mm scale white quartz - pyrite veinlets common perpendicular to bedding, bedding at 040 / 70 N
481613	03.07	N lower road access	1.0 m chip from o/c, sample of light gray and green, fine grained chloritized hornblende syenomonzonite, sheared to weak foliation, disseminated and fracture very fine grained pyrite to 0.5%, near fault? contact to hornfels
481614	03.07	N lower road access	3.0 m composite chip across well bedded light brown and buff very fine grained homfels / bleached argillite, trace disseminated very fine grained pyrite, minor mm scale white guartz - pyrite veinlets perpendicular to bedding, bedding at 040 / 70 N
481615	03.07	N lower road access	1.0 m chip from o/c, sample of bleached light and dark gray argillite / homfels, silty ipt, massive beds, highly fractured, trace disseminated very fine grained pyrite
481616	03.07	E/2 Croesus	1.0 m chip from road scrape, sample of black argillite, trace disseminated very fine grained pyrite, minor iron staining along fractures, rare mm scale white quartz veinlets perpendicular to bedding, bedding at 310 / 50 N
481617	03.07	E/2 Croesus	2.0 m chip from road scrape, sample of black carbonaceous argillite and interbedded light brown silty, sandy argillite, trace disseminated and fracture very fine grained pyrite, locally well iron strained along fractures
481618	03.07	E/2 Croesus	1.5 m chip from 2 m deep pit, sample of pyritic chloritized hornblende syenomonzonite in HW of fault zone, syenomonzonite is sill? along fault contact to hornfels of #619, 1% disseminated and irregular mm scale blebs of pyrrhotite and fine grained pyrite, weak fracture stockwork, includes 5 cm scale fragments of broken white quartz - pyrite vein and 30 cm scale fragments of argillite, fault at 115/30 N
481619	03.07	E/2 Croesus	1.0 m chip from pit wall, sample of FW light and dark gray very fine grained hornfels / argillite, disseminated and fracture very fine grained pyrite to 1%
481620	03.07	E/2 Croesus	0.1 m chip from fault zone, sample of broken and fractured white quartz - pyrite vein, pyrite is very fine and medium crystalline to 5%, vein is discontinuous over 2 m
481621	04.07	main trench	0.3 m chip across o/c, sample of dark green epidote - garnet - chlorite skarn with 10% very fine grained pyrrhotite and pyrite, trace fin grained dark brown sphalerite and chalcopyrite, hydrozincite very common on oxidized surface, skarn is conformable to limestone bedding at 300 / 35 N
481622	04.07	main trench	5.0 m composite chip across subcrop and o/c, sample of massive bedded white, dark gray and black banded fine crystalline linestone marble, clean
481623	04.07	main trench	1.0 m composite chip across o/c, sample of light gray, white fine to medium quartz pebble limestone conglomerate, rounded mm scal pebbles to 20%, light gray and light green calcareous matrix, matrix supported, minor limonite and ankerite fracture coatings and mm scale veinlets
481624	04.07	main trench	very select grab from subcrop, sample of pyrite - white quartz vein up to 10 cm wide, discontinuous over 1 m, veins is broken in pyrrhotite - pyrite chloritized hornblende syenomonzonite
481625	05.07	Johannesberg N	select grab from dump of 3+ m deep caved decline, sample of dark and light gray and light brown, very fine grained homfels, trace disseminated pyrite
481626	05.07	Johannesberg N	select grab from same dump as #625, sample of dark green chlorite - epidote - red garnet skarn with bands of very fine crystalline pyrrhotite to 10%, skarned VMS horizon?, 1% of dump material
481627	05.07	Johannesberg N	composite grab from dump of 5+ m deep water filled shaft, sample of cm scale banded pyrrhotite, pyrite and chalcopyrite massive sulphide "banded" VMS is part of interbedded black argillite and light and dark gray silty and sandy (quartzose) argillite series -

.

Mt. Au	wood	Project: 1	Bombini Option
481628	05.07	Johannesberg N	1.0 m chip from cat scrape across bedding at 070 / 70 N, sample of heavy iron stained light gray phyllite and black argillite, trace
			disseminated and fracture pyrite
481629	05.07	Johannesberg	0.0 - 1.0 m chip in HW of fault contact, sample of massive, very fine grained pyrthotite (70%), in dark green chlorite - red brown
			garnet skarned VMS, mm scale chalcopyrite stringers to 1% and as rims around garnets, 5% rounded glassy quartz eyes in matrix
481630	05.07	Johannesberg tunnel	1.0 - 2.0 m chip across tunnel back, sample of dark gray - green, silicified? hornfels or skarned argillaceous quartzite?, with mm scale
			stringers of dark green chlorite and pyrrhotite to 30%, quartzite is brecciated in part with very fine grained pyrrhotite matrix, mm scale
			stringers of chalcopyrite to 0.5%, rare mm scale red brown garnet stringers and bright green epidote "knots"
481631	05.07	Johannesberg tunnel	2.0 - 3.0 m chip across breast of tunnel, sample of interbedded dark gray quartzite and dark and light gray silty argillite / hornfels /
			skarn, rare red brown garnets in matrix, disseminated and fracture pyrrhotite to 5%, trace mm scale chalcopyrite stringers
481632	05.07	Johannesberg N/2	grab from dump of caved adit in heavy forest area, sample of black very fine grained argillite and phyllite, mm scale interbeds and
			laminae of siliceous bands, minor min scale limonite and ankerite veinlets, trace disseminated very fine grained pyrite
481633	06.07	Croesus	0.5 m chip across shear zone contact exposed in 2 m deep pit, sample of highly fractured, red brown and gray fine grained chloritized
		central	hornblende syenomonzonite and sheared, dark gray fine crystalline argillaceous marble, 1% disseminated and fracture pyrite in fault
			zone at 340 / 40 W
481634	06.07	Johannesberg N/2	1.0 m chip across o/c in shallow 1 m deep pit, sample of heavy iron stained black argillite and fractured gray fine grained chloritized
			homblende syenomonzonite, mm stringers of very fine grained pyrrhotite and pyrite to 3%, irregular mm scale blebs of chalcopyrite to
			0.5%, fault contact at 290 / 90

481651	05.07	Johannesberg tupnel	3.0 - 4.0 m (1.0 m) from portal of open cut to adit, sample of iron stained, fine grained, chloritized homblende syenomonzonite, disseminated and fracture very fine grained pyrite to 1%, blocky jointed
481652	05.07	Johannesberg junnel	4.0 - 5.0 m (1.0 m) from portal of open cut to adit, sample of iron stained, fine grained, chloritized homblende syenomonzonite, disseminated and fracture very fine grained pyrite to 1%, blocky jointed, minor gouge at fault contact to homfels at adit
481653	06.07	Croesus main trench	2.0 m chip across o/c, sample of buff and dark gray, very fine grained, silty, argillaceous limestone and fine crystalline marble, no visible sulphides
481654	06.07	Croesus main trench	0.5 m chip from western end of cat scrape, sample of dark green - gray, massive very fine grained pyrrhotite in chlorite matrix, VMS horizon?, pyrrhotite to 40%, trace chalcopyrite stringers
481655	06.07	Croesus main trench	2.0 m chip across large fault zone in main trench, sample of dark green and light and dark brown, iron stained, brecciated homblende syenomonzonite, massive pyrrhotite and minor fragments of dark green basalt dyke, fault at 050 / 30 N
481656	06.07	Croesus E/2	2.0 m chip from o/c, sample of light and dark gray banded silty argillite and argillite, minor quartzose bands on 5 cm scale, larger o/c below in 10 m deep draw of argillaceous quartzite and silty quartzite, massive bedded, minor iron staining
481657	06.07	Tangle foot E/2	grab sample from cat scrape and subcrop, sample of heavy iron stained, highly fractured light gray argillite, silty in part, trace disseminated very fine grained pyrite
481658	06.07	Johannesberg N/2	1.5 m chip from shallow small pit, sample of heavy iron stained, intensely fractured, and sheared black argillite, disseminated and cm scale stringers of very fine grained pyrite to 3%, fault at 280 / 90
481659	06.07	Johannesberg N/2	select grab from small dump of #658, sample of white quartz - pyrite vein up to 30 cm wide, disseminated and irregular cm scale blebs of dull yellow pyrite to 2%
481660	06.07	Johannesberg N/2	1.0 m chip of heavy iron stained, intensely fractured, and sheared black argillite, disseminated and cm scale stringers of very fine grained pyrite to 3%, fault at 280 / 90

Mt. Attwood Project: Mt. Attwood area Rock Sample Descriptions

sample	collt'd	location	description
481701	07.07	Attwood	2.0 m chip across road cut of black, dark green and red brown weathering, fine grained serpentinite, moderately well developed
		W/2	foliation, disseminated fine grained magnetite to 0.5%
481702	07.07	Attwood	0.5 m chip across road cut of apple green, fibrous, fine to medium grained serpentinite, very fine grained black and dark green chloritic
		W/2	matrix, disseminated fine grained magnetite to 0.5%
481703	07.07	Attwood	2.0 m chip across road cut of apple green, red brown weathering, fibrous, fine to medium grained serpentinite, very fine grained black
		W/2	and dark green chloritic matrix, disseminated fine grained magnetite to 0.5%
481704	07.07	Attwood	3.0 m composite chip across road cut, sample of dark and light green, very fine grained andesite, siliceous greenstone, trace
		W/2	disseminated very fine grained pyrite
481705	07.07	Attwood	select grab from dump of shallow pit, sample of white quartz - pyrite vein up to 30 cm wide, disseminated and fracture fine to very fine
		W/2	grained pyrite to 2%
481706	07.07	Attwood	select grab from same dump as #705, sample of iron stained dark gray and black argillite, locally intensely fractured along fault zone at
		W/2	070 / 65S, trace disseminated very fine grained pyrite
481707	07.07	Attwood	select grab from same area as #705, 706, sample of iron stained black and dark gray argillite with cm scale interbeds of white and iron
		YV/2	stained quartz pebble conglomerate, trace disseminated very fine grained pyrite in argillite, bedding in pit wall at 320 / 30E
481708	08.07	Attwood	3.0 m composite chip from road cut, light and dark gray, black, argillite, silty argillite and siliceous tuffaceous argillite?, cm scale
		YV/2	interbeds at 110 / 40N
481709	08.07	Attwood	1.5 m chip from road cut, sample of light and dark gray, black, argillite, silty argillite and siliceous tuffaceous argillite?, trace
		¥¥/2	disseminated very fine grained pyrite in argillite, minor iron stain, cm scale interbeds at 110 / 40N
481710	08.07	Attwood	1.5 m chip from road cut, sample of light gray and black banded, fine crystalline marble / limestone, and argillaceous limestone, no
		YV/2	visible sulphides
481711	08.07	Attwood	2.5 m chip from road cut, black, very fine grained argillite, footwall to limestone, iron stain common throughout, disseminated very
		11/2	fine grained pyrite to 0.5%
481712	08.07	Attwood	2.0 m composite chip over cat scrape, sample of iron stained, bleached white and light brown, very fine grained tuffaceous argillite,
		CELLU M	disseminated and fracture pyrite to 0.5%
481713	08.07	Attwood	1.0 m composite chip over road cut, sample of white, light gray and black banded, fine crystalline marble / limestone, minor
	00.07		argillaceous partings, cm scale banding at 110 / 40N - overturned here?
481714	08.07	Attwood	2.0 m composite chip from ridge o/c, sample of light and dark gray, light green, quartz and limestone pebble conglomerate, mm to cm
			scale rounded pebbles to 40% in very fine grained limy tuffaceous? matrix, no visible sulphides
481715	07.07	Attwood N/2	1.5 m chip across cat scrape, sample of iron stained, pyritic black and light gray argulite and tuffaceous argulite, disseminated very fine
	00 07		grained pyrite to 0.5%, rare cm scale white quartz - pyrite ventiets at 1 / m
481716	09.07	Affwood N/2	1.5 m composite chip across wall of shallow pit, sample of light and dark gray - green, suiceous tuttaceous argillite, disseminated very
	09.07		tine grained pyrite to 0.5%, HW to fault zone filled with broken discontinuous white quartz vein at 345/90
481717	07.07	N/2	select grad from dump of shallow pit, sample of bleached, white and light brown, iron stained, very line tuff, disseminated and open
	00.07		fracture very fine grained pyrite to 0.5%
481718	05.07	N/2	1.0 m chip from o/c, near shallow pit on same rock type, sample of iron stained, highly fractured, chert and argulite pebble
			congiomerate, mm - cm scale rounded peobles to 70% in suiceous argulaceous matrix, clast supported, trace disseminated very line
	-00.07	Aurorad	grained pyrite
481719	09,07	N/2	3.0 m composite chip across cat scrape, sample of iron stained, light and dark gray, very line grained siliceous argillite and argillite,
	09.07	A 44-1-1	disseminated pyrite to 1%, mm scale open fractures lined with line grained pyrite
481720	09.07	central	2.0 m composite chip from road cut, sample of black and dark green, fine grained serpentinite, minor mm scale ankente veinlets,
			disseminated very fine grained magnetite to 0.5%, area of Au in soils geochem (assessment report 8255)

		D' ()	
Mt. Att	wood	Project:	Mt. Attwood area
481721	09.07	Attwood central	2.0 m composite chip across subcrop, sample of black argillite, moderately iron stained, trace disseminated and fracture very fine grained pyrite, HW to serpentenite filled thrust fault?
481722	09.07	Attwood central	2.0 m composite chip across overgrown road, road cut, sample of light and dark gray and white banded, medium to coarse crystalline marble / limestone, banding at 110 / 30 N, no visible sulphides
481723	09.07	Rattler pit	2.0 m chip across wall of 8 m long open cut, sample of iron stained, dark and light gray, very fine grained tuffaceous argillite and interbedded silty argillite, trace disseminated very fine grained pyrite. HW to "Rattler Fault"
481724	09.07	Rattler pit	0.3 m chip across "Rattler Fault" in wall of pit sample of red - brown fine grained pyrite - clay gouge fault zone at 355/70 E
481725	09.07	Rattler pit	2.0 m chip across FW of "Rattler Fault", sample of dark and light gray banded argillite, disseminated and fracture very fine grained
481726	09.07	Rattler N/2	select grab from dump of shallow trench, sample of bleached, light brown and white, very fine grained tuffaceous argillite / argillaceous tuff? interbedded with minor light gray argillite, disseminated and open fracture coating very fine grained pyrite to 1%
481727	09.07	Rattler N/2	select grab from dump of shallow trench, sample of iron stained, light gray, fine grained chloritized hornblende granodiorite, disseminated very fine gained pyrite to 0.5% dyke? in fault zone at 320 / 90
481728	09.07	Rattler S/2	1.0 m chip from road cut / cat scrape, sample of light and dark green, light and dark gray, very fine grained siliceous tuff, trace fracture fine grained pyrite, mm scale laminae "welded, in part, at 295 / 40 N
481729	09.07	Sunnyside N/2	1.0 m chip from road cut, sample of interbedded black argillite and siliceous argillaceous tuff, minor iron staining, cm to 5 cm scale beds at 285 / 70 N
481730	10.07	Sunnyside S/2	1.0 m chip from old trench, sample of iron stained, dark gray - brown, very fine grained argillite / hornfels, disseminated and fracture pyrite to 1%
481731	10.07	Sunnyside S/2	1.0 m composite chip across massive o/c, sample of white, very fine grained to microcrystalline quartz, silicified zone along Mt. Attwood Thrust?, guartz is up to 10 m thick and 40 m long with slickensides at 330/25 S
481732	10.07	Attwood Central	2.0 m composite chip across road cut, sample of black and white banded, fine crystalline marble, banding on cm scale at 100 / 80 N, no visible sulphides
481733	10.07	Attwood Central	select chip from subcrop along road and FW to limestone of #732, sample of heavy iron stained, pyritic black argillite, fractures lined with fine grained pyrite to 1%
481734	10.07	Sunnyside showing	1.5 m chip across wall of shallow open cut, sample of partially silicified, light gray, fine - medium crystalline marble, trace disseminated very fine grained pyrite, blocky jointed and 20 - 50 cm thick, massive beds at 280 / 45 N.
481735	10.07	Sunnyside showing	1.0 m chip across wall of shallow open cut, sample of light gray, fine crystalline, partially silicified limestone with disseminated and cm scale blebs of galena and sphalerite, minor ankerite veinlets, replacement and silicification along fault zone at 310 / 20 N?
481736	10.07	Sunnyside showing	very select grab from dump of shallow open cut, sample of "high grade" galena, sphalerite and pyrite in light gray, fine crystalline, partially silicified limestone, galena to 5%, sphalerite to 2%, pyrite to 2%
481737	10.07	Fanny Joe	select grab from creek float, sample of light and dark gray, very fine grained, silicified and weakly skarned marble, mm scale euhedral red - brown garnets "shot" through rock to 0.5%, trace disseminated and fracture very fine grained pyrite
481738	10.07	Fanny Joe	2.0 m composite chip from overgrown road cut, sample of iron stained, black argillite, disseminated and open fracture coating very fine grained pyrite to 1%, FW to silicified limestone?
. 481739	11.07	Mt. Attwood W/2	select grab from shallow, water filled decline, sample of red - brown, iron stained black argillite / phyllite, highly deformed Knob Hill rocks, hematite stain common on fractures, cm scale white quartz "sweats" common, trace disseminated very fine grained pyrite
481740	11.07	Mt. Attwood	2.5 m chip across wall of shallow open cut, sample of light gray, fine crystalline marble, massive bedded on 30 - 50 cm scale, minor argillaceous partings. HW to massive sulphide lenses of #741
481741	11.07	Mt. Attwood	select grab from dump of #740 sample of massive very fine grained pyrthotite in dark oreen chlorite matrix pyrthotite to 80% very
			fine grained pyrite to 2%, trace chalcopyrite and dark brown sphalerite?
481742	11.07	Mt. Attwood	2.0 m composite chip across o/c, sample of iron stained, light green - gray, very fine grained argillaceous tuff / tuffaceous argillite, trace disseminated and fracture pyrite, FW to massive sulfide of #741

Mt. Atı	wood	Project: 1	Mt. Attwood area
sample	collr d	location	description
481743	17.07	Fanny Joe	0.5 m chip from o/c, sample of light and dark gray, very fine crystalline, partially silicified, calc silicate banded marble, trace
			disseminated, very fine grained pyrite, rare mm scale "scattered" red brown euhedral garnets
481744	17.07	Fanny Joe	select grab from cat scrape, sample of buff, light gray and pink, very fine grained, calc-silicate banded skarn and hornfels, trace
			disseminated very fine grained pyrite
481745	17.07	Fanny Joe	1.0 m chip from o/c, sample of light and dark gray, black banded, fine to medium crystalline marble, light green calc-silicate bands on
			cm scale to 5% of o/c, no visible sulphides
481746	17.07	Fanny Joe	1.0 m chip from o/c, sample of black and light and dark gray banded, fine crystalline, carbonaceous marble / limestone, no visible
			sulphides

.

Mt. Att	wood	Project: I	Mt. Attwood area
481751	07.07	Attwood W/2	1.0 m chip across glaciated o/c, sample of dark green, black, very fine grained serpentinite, disseminated, very fine grained magnetite to 0.5%
481752	08.07	Attwood W/2	2.0 m composite chip from road cut, sample of dark green, black, and apple green, sheared, fine grained, serpentinite, minor iron staining along slickensides and along foliation
481753	08.07	Attwood W/2	2.0 m composite chip across o/c, sample of bleached, light gray, white, fine to medium grained tuff fragmental, trace disseminated very fine grained pyrite, weak open fracture stockwork with fine crystalline quartz lining fractures, iron stain common
481754	08.07	At tw ood W/2	1.0 m chip across ridge forming o/c, sample of dark green and black, and bright apple green, fine grained serpentinite, disseminated very fine grained magnetite to 0.5%
481755	08.07	Attwood Central	2.0 m composite chip across o/c, sample of iron stained, dark green, very fine grained greenstone / andesite?, minor mm scale calcite veining, trace fracture pyrite
481756	08.07	Attwood Central	3.0 m composite sample across o/c, sample of black argillite, iron stained throughout, bedding at 300 / 40 N, overturned shown by good graded bed sequences, fining upwards, on cm and mm scale
481757	08.07	Attwood Central	2.0 m composite across subcrop, sample of iron stained, intensely fractured, black argillite and argillite chip conglomerate, mm scale open fractures lined with fine crystalline quartz and jarosite?, fractures common at 5 / 10 cm
481758	10.07	Attwood S/2	1.0 m chip across cat scrape / trench, sample of heavy iron stained, light gray - brown, very fine grained, argillaceous tuff, fragmental tuff, medium - fine grained pyrite disseminated and on open fractures to 2%, minor dark green crystalline chlorite on mm scale open fractures
481759	10.07	Attwood S/2	1.0 m chip across cat trench, sample of heavy iron stained, pyritic, very fine grained tuff, argillite and hornfels, mm scale pyrite filled fractures common, pyrite to 3%
481760	10.07	Attwood Pass	1.0 m composite chip across subcrop, sample of limonite / goethite stained, black and dark green, bright apple green, fine grained serpentinite, intensely sheared in "splay" of Mt. Attwood Thrust, disseminated very fine grained magnetite to 0.5%, trace disseminated very fine grained pyrite
481761	10.07	Sunnyside S/2	2.0 m composite chip across o/c, sample of light and dark gray, black and white, fine crystalline marble, argillaceous limestone and interbedded siliceous tuff, minor iron stain, minor cm scale calcite veining
481762	10.07	Attwood Central	2.0 m chip across road cut. sample of iron stained, highly fractured, light and dark gray, black argillite, disseminated and fracture very fine grained pyrite to 1%, minor mm scale drusy quartz veins parallel to bedding at 100 / 80 N
481763	10.07	Fanny Joe	1.0 m chip from overgrown road cut, sample of silicified, light gray - green, calc-silicate banded, very fine crystalline, limestone / marble, irregular, mm scale clear quartz stringers with very fine grained pyrite common, disseminated very fine grained pyrite to 0.5%, trace galena blebs?
481764	10.07	Fanny Joe	3.0 m composite chip across road cut, sample of pervasively silicified, cryptocrystalline limestone, trace disseminated very fine grained pyrite, rare open fractures with pyrite linings, iron stain common
481765	11.07	Attwood N/2	2.0 m composite chip across cat scrape, sample of bleached, light brown. white, very fine grained and intensely fractured, argillaceous tuff, iron stained throughout, trace disseminated very fine grained pyrite
481766	11.07	Attwood Central	2.0 m chip across o/c, sample of intensely sheared and fractured, black graphitic argillite and argillaceous limestone, cm scale open fractures lined with fine crystalline quartz, no visible sulphides, minor iron stain, fault zone at 305 / 80 N
481767	11.07	Mt. Attwood	select grab from dump of large shallow pit, sample of light and dark gray, very fine crystalline, marble limestone, partially silicified, trace disseminated and fracture very fine grained pyrite and dark brown sphalerite?, cm scale ankerite veining common
481768	11.07	Mt. Attwood	2.0 m chip across wall of shallow open cut, sample of highly fractured and sheared, partially silicified, fine crystalline marble, fault zone at 110 / 25 N and parallel top bedding
481769	11.07	Mt. Attwood	0.5 m chip across resistant ledge o/c, sample of orange - brown, light gray and white, fine crystalline limestone, highly sheared and fractured, cm scale coarse crystalline calcite veining common, mm scale ankerite veining common, trace disseminated galena?

t .

i.

KEITLE RIVER RESOURCES LTD. MT ATTWOOD PROJECT

SUNNYSIDE CG. detail geology/rock samples 1:200 July 1996

481723 (2.0m) 481724 (0.3m) 481725 (2.0m) ക് dork and light gray banded argillite, dependentiated + fracture pyrife to 1%. darki lightgray 75 argillite /silly argillite trace disseminated pyrite pyrite fault guise KETTLE RIVER RESOURCES LTD. MT ATTWOUD PROJECT Battler C.G. detail geology (rock samples 1:100 July 1996 ... and a start way to a start of مر با موجد در مرد. در ایک

APPENDIX 3

Cost Statement

اللم

COST STATEMENT

Labour:	B. Kyba K. Kyba L. Caron	10 days @ \$500/day 10 days @ \$100/day 3 days @ \$250/day	\$ 5 1 \$ 6	6,000.00 ,000.00 <u>750.00</u> 6,750.00
Geoche 31 elen	emical Analyses hent ICP, plus Au 159 rock sample 5 assays @ \$8.	u Min-En Labs, Vancouver. es @ \$20.50 (including shipping) 00	3 \$3	3,259.50 <u>40.00</u> 3,299.50
Supplie	s General Field S	upplies	<u>\$</u>	<u>130.00</u> 130.00
Transpo	ortation Vehicle rental Fuel	8 days @ \$50/day	\$	400.00 <u>120.00</u> 520.00
Office I	Expenses Phone, fax Copying maps a Drafting and off	and report ïce supplies	\$	10.00 75.00 <u>125.00</u> 210.00
			==	

TOTAL: \$10,909.50

APPENDIX 4

s.jpr

Statement of Qualifications

STATEMENT OF QUALIFICATIONS

I, Linda J. Caron, certify that:

- 1. I am an exploration geologist residing at Bubar Road (RR #2), Rock Creek, B.C.
- 2. I obtained a B.A.Sc. in Geological Engineering (Honours) in the Mineral Exploration Option, from the University of British Columbia (1985).
- 3. I graduated with an M.Sc. in Geology and Geophysics from the University of Calgary (1988).
- 4. I have practised my profession since 1987 and have worked in the mineral exploration industry since 1980.
- 5. I am a member in good standing with the Association of Professional Engineers and Geoscientists of B.C. with professional engineer status.
- 6. I am employed by Kettle River Resources Ltd. as an exploration geologist.

h- Can Oct 28/96

Linda Caron, P. Eng.

•			
	· · ·		
· · ·	•		
n maa na saa ah a	a an		
		CHOLOCICAT OFFICE	* *> *> * NT ~ * *
		GEOLOGICAL SURVEY ASSESSMENT RE	BRANCH
· · · ·		GEOLOGICAL SURVEY ASSESSMENT RE	BRANCH BORT
		GEOLOGICAL SURVEY ASSESSMENT RE Pigure 9 KETTLE RIVER RESOU MT ATTWOOP PROJEC	RCES LTD
		GEOLOGICAL SURVEY ASSESSMENT RE P Figure 9 KETTLE RIVER RESOU MT ATTWOOD PROJEC BOMBINI OPTION ROCK SAMPLE LOCATI MAIN TRENCH and C	A BRANCH FORT SACES LTD T ONS PEN WT Areas
		GEOLOGICAL SURVEY ASSESSMENT RE Figure 9 KETTLE RIVER RESOUR MT ATTWOOD PROJEC BOMBINI OPTION ROCK SAMPLE LOCATE MAIN TRENCH and C 1:200 BNI KXbc Plage	A DRANCH FORT S 5 S 5 NS PEN WT Areas S 10 M
		GEOLOGICAL SURVEY ASSESSMENT RE Pigure 9 KETTLE RIVER RESOU MT ATTWOOD PROJEC BOMBINI OPTION ROCK SAMPLE LOCATH MAIN TRENCH and C 1:200 BN KYDG, P. GEO. KJ KYDG, GEO ASST.	RCES LTD T ONS PEN WT Areas
		GEOLOGICAL SURVEY ASSESSMENT RE Figure 9 KETTLE RIVER RESOLU MT ATTWOOD PROJEC BOMBINI OPTION ROCK SAMPLE LOCATH MAIN TRENCH and C 1:200 BN KYDC, P.600 KJ KYDA, GEO ASST.	REANCH FORT S S S CES LTD T ONS PEN WT Areas S ID M July 1996
		GEOLOGICAL SURVEY ASSESSMENT RE P Rettle River Resour MT ATTWOOP PROJECT BOMBINI OPTION ROCK SAMPLE LOCATI MAIN TRENCH and C 1:200 BN KYDC, P-6000 KJ KyDA, Geo Asst	CES LTD T DNJS PEN WT Areas July 1996

stratigraphic Legend : M+ Attwood Area

- 11 greenstone / silicerus greenstone
- 10 tuffacenes argillite / blecched tuff 14 basalt dykes
- 9 argillite / silty argillite / sandy argillite / limy argillite
- 8 tuffaceous argillite / horn fels
- 7 limestone/marble/skarn
- 6 calcareous chert pebble conglomerate
- 5 black argillite
- 4 phyllite
- 3 quartzite
- z quartz sericite /chlarite gneiss
- 1 black argillite

13 serpentinite

- 12 homblende quartz dionite
 - massive pyrrhotile, pyrite, minor chalcopyrite, sphalerile and galena

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

Figure 5

KETTLE RIVER RESOURCES LTD MT ATTWOOD PROJECT BOMBINI OPTION

MAIN TRENCH and OPEN WT DETAIL GEOLOGY

1:200	-			
•	0	.5	nol	•

BW Kyba, P. heo KJ Kyba, Geo Asst. July 1996

