GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORTS

DATE RECEIVED

DEC 13 1996

GEOCHEMICAL

ASSESSMENT REPORT

ON THE

IRON RANGE PROPERTY

BLUES 13-24 MINERAL CLAIMS

CRESTON AREA

FORT STEELE and NELSON MINING DIVISION, B.C.

F

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

NTS: LATITUDE: LONGITUDE: OWNER: OPERATOR: AUTHORS:

DATE:

82F/01W 49° 04' North 116° 21' West Kenneth Linton Daughtry Discovery Consultants T.H. Carpenter, P.Geo. D. Duba, Geologist November 28, 1996

TABLE OF CONTENTS

INTRODUCTION	Page	1
LOCATION and ACCESS	Page	2
тородгарну	Page	3
PROPERTY	Page	4
HISTORY	Page	7
GENERAL GEOLOGY LITHOLOGY STRUCTURE ALTERATION	Page Page Page Page	8 8 9
MINERALIZATION	Page	11
WORK COMPLETED	Page	12
1.0 HEAVY MINERAL STREAM SEDIMENT SAMPLING a) PROGRAM PARAMETERS b) PROGRAM RESULTS	Page	12
2.0 SILT SAMPLING a) PROGRAM PARAMETERS b) PROGRAM RESULTS	Page	13
CONCLUSIONS AND RECOMMENDATIONS	Page	15
REFERENCES	Page	16
STATEMENT OF COSTS	Page	17
STATEMENT OF QUALIFICATIONS	Page	18

FIGURES

FIGURE	1	LOCATION MAP	Following Page 2
FIGURE	2	CLAIM MAP 1:50,000	Following Page 6
FIGURE	3	STREAM SEDIMENT SAMPLE LOCATION MAP 1:10,000	In Pocket
FIGURE	4	STREAM SEDIMENT SAMPLING COPPER VALUES 1:10,000	In Pocket
FIGURE	5	STREAM SEDIMENT SAMPLING LEAD VALUES 1:10,000	In Pocket
FIGURE	6	STREAM SEDIMENT SAMPLING ZINC VALUES 1:10,000	In Pocket
FIGURE	7	STREAM SEDIMENT SAMPLING GOLD VALUES 1:10,000	In Pocket

APPENDICES

- APPENDIX 1 ROCK SAMPLE DESCRIPTION AND ANALYTICAL RESULTS
- APPENDIX 2 SILT AND HEAVY MINERAL SAMPLE ANALYSES
- APPENDIX 3 ANALYTICAL PROCEDURES

.

INTRODUCTION

The Iron Range project area straddles the north-south trending, steeply dipping Iron Range Fault which extends over a distance of some 25 km from Iron Range Mountain to the north to Mount Thompson to the south of Highway #3.

The project area is located 10 km east of Creston, B.C. Historically the area was explored for iron-oxide mineralization, the most recent exploration for Fe-oxide being carried out in the 1950's by Cominco.

Exploration was carried out on the project area in 1995 and 1996 to assess the potential of the area for hosting an Olympic Dam-type iron oxide (copper-uranium-gold-silver-REE) deposit. In 1995 prospecting, combined with lithogeochemical and stream sediment surveys were used to explore for gold and base metal mineralization associated with the Proterozoic middle Aldridge Formation rocks. Areas of interest defined by this program were subsequently staked.

The 1996 program in the northern part of the project area comprised the staking of 20 claims over the area of anomalous gold and base metals in stream sediments, prospecting, and the collection of contour soil samples over anomalous drainages. At the south end of the project area additional stream sediment surveys were carried out over prospective areas.

LOCATION AND ACCESS

The Iron Range project area is located in NTS 82F/01W and 08W and ranges from latitude 49°17'N, longitude 116°25'W to latitude 49°03'N, longitude 116°21'W, 10 km east of Creston, B.C. (Figure 1).

Access can be gained off Highway #3 at McConnel via the Goat River and Hall Creek Forest Service roads to the north end of the area, via the Arrow Creek road at Arrow Creek to the central part of the property and via the Little Moyie River Forest Service Road at Goatfell to the south end of the project area.

TOPOGRAPHY

The project area comprises the ridge of Iron Range Mountain to the north of Highway #3 to the area of Mount Thompson to the south of Highway #3.

The flanks of Iron Range Mountain are steep. Elevations range from 2200' (670 m) on the Goat River to in excess of 7000' (2134 m) on Mount Thompson.

χ.

PROPERTY

The property comprises one hundred crown granted and two post claims as listed below. Claims pertinent to this report are shown on Figure 2.

<u>Claim Name</u>	Record No.	Owner of Record	Anniversary Date
Agnes	L. 5790	C.P. Rall System	N/A
American Flag	L 5767	C.P. Rail System	N/A
American Flag Fr.	L. 5770	C.P. Rail System	N/A
Atlantic	L 5785	C.P. Rail System	N/A
Blues #13	341191	K.L. Daughtry	October 8, 1997
Blues #14	341192	K.L. Daughtry	October 8, 1997
Blues #15	341193	K.L. Daughtry	October 18, 1997
Blues #16	341194	K.L. Daughtry	October 18, 1997
Blues 17	341195	K.L. Daughtry	October 18, 1997
Blues 18	341196	K.L. Daughtry	October 18, 1997
Blues 19	341173	K.L. Daughtry	October 18, 1997
Blues 20	341174	K.L. Daughtry	October 18, 1997
Blues 21	341175	K.L. Daughtry	October 18, 1997
Blues 22	341176	K.L. Daughtry	October 18, 1997
Blues 23	341177	K.L. Daughtry	October 18, 1997
Blues 24	341178	K.L. Daughtry	October 18, 1997
Bob Cat	L 9719	K.L. Daughtry	N/A
Bon Ton	L. 9720	K.L. Daughtry	N/A
Canada	L 5791	C.P. Rail System	N/A
Cracker Jack	L. 5778	C.P. Rail System	N/A
Cracker Jack Fr.	L. 5781	C.P. Rail System	N/A
Creston	L 5766	C.P. Rail System	N/A
Creston Fraction	L 5839	C.P. Rail System	N/A
Cymric	L. 5780	C.P. Rail System	N/A
Cynic	L 5779	C.P. Rail System	N/A
Cynic Fraction	L. 5782	C.P. Rail System	N/A
Czar Fr.	L 5833	K.L. Daughtry	N/A
Dakota	L 5783	C.P. Rali System	N/A
Golden Cap	L. 5544	K.L. Daughtry	N/A
Golden Crown	L. 5543	K.L. Daughtry	N/A
Idaho	L. 5784	K.L. Daughtry	N/A
Jazz #1	341244	K.L. Daughtry	October 10, 1998
Jazz #2	341245	K.L. Daughtry	October 10, 1998
Jazz 3	341246	K.L. Daughtry	October 10, 1998
Jazz 4	341247	K.L. Daughtry	October 12, 1998
Jazz 5	341248	K.L. Daughtry	October 12, 1998
Jazz 6	341249	K.L. Daughtry	October 12, 1998
Jazz 7	341250	KL Daughtry	October 12, 1998
Jazz 8	341251	K.L. Daughtry	October 12, 1998

Claim Name	Record No.	Owner of Record	Anniversary Date
Jazz 9	341252	K.L. Daughtry	October 13, 1998
Jazz 10	341253	K.L. Daughtry	October 13, 1998
Jazz 11	341254	K.L. Daughtry	October 13, 1998
Jazz 12	341255	K.L. Daughtry	October 14, 1998
Jazz 13	341256	K.L. Daughtry	October 14, 1998
Jazz 14	341257	K.L. Daughtry	October 14, 1998
Jazz 15	341258	K.L. Daughtry	October 14, 1998
Jazz 16	341259	K.L. Daughtry	October 14, 1998
Jazz 17	341260	K.L. Daughtry	October 14, 1998
Jazz 18	341261	K.L. Daughtry	October 14, 1998
Jazz 20	341263	K.L. Daughtry	October 14, 1998
Jazz 21	341264	K.L. Daughtry	October 15, 1998
Jazz 22	341265	K.L. Daughtry	October 15, 1998
Jazz 23	341266	K.L. Daughtry	October 15, 1998
Jazz 24	341267	K.L. Daughtry	October 15, 1998
Jazz 25	341268	K.L. Daughtry	October 15, 1998
Jazz 26	341269	K.L. Daughtry	October 15, 1998
Jolly Boy	L. 9718	K.L. Daughtry	N/A
Keepsake	L. 5774	C.P. Rail System	N/A
La Grande	L 5776	C.P. Rail System	N/A
Maple Leaf	L. 5772	C.P. Rail System	N/A
Montreal	L 5793	C.P. Rail System	N/A
Montreal Fraction	L. 5835	C.P. Rail System	N/A
Niagara	L. 12535	K.L. Daughtry	N/A
O Ray	L. 5768	C.P. Rail System	N/A
Old Glory	L 5787	C.P. Rail System	N/A
Osborne	L. 5795	C.P. Rail System	N/A
Pacific	L 5786	C.P. Rail System	N/A
Rambler	L. 5838	K.L. Daughtry	N/A
Rattier	L. 5837	K.L. Daughtry	N/A
Hhodesia Oceations I	L 5775	C.P. Rail System	N/A
Scotland	L 5794	C.P. Rall System	N/A
Scotland Fraction	L. 5840	C.P. Rail System	N/A
Snow Cap	L 5777	C.P. Rail System	N/A
loronto	L 5792	C.P. Rail System	N/A
Union Jack	L. 5765	C.P. Rall System	N/A
Union Jack Fraction	L. 5769	C.P. Rail System	N/A
Vermillion	L. 9723	K.L. Daughtry	N/A
X Ray	L 5771	C.P. Rail System	N/A
X Ray Fraction	L. 5773	C.P. Rail System	N/A
HOCK 1	351445	K.L. Daughtry	September 30, 1997
HOCK 2	351465	K.L. Daughtry	September 30, 1997
NOCK 3	354466		September 30, 1997
NOCK 4	351467		September 30, 1997
HOCK 5	351468	K.L. Daughtry	September 30, 1997
	351469		September 30, 1997
ROCK /	3514/0		September 30, 1997
NUCK 8	3014/1	R.L. Daugntry	September 30, 1997

<u>Claim Name</u>	Record No.	Owner of Record	Anniversary Date
Rock 9	351472	K.L. Daughtry	October 1, 1997
Rock 10	351473	K.L. Daughtry	October 1, 1997
Folk 1	351474	K.L. Daughtry	October 1, 1997
Folk 2	351475	K.L. Daughtry	October 1, 1997
Folk 3	351476	K.L. Daughtry	October 1, 1997
Folk 4	351477	K.L. Daughtry	October 1, 1997
Folk 5	351478	K.L. Daughtry	October 1, 1997
Folk 6	351479	K.L. Daughtry	October 3, 1997
Folk 7	351480	K.L. Daughtry	October 3, 1997
Folk 8	351481	K.L. Daughtry	October 3, 1997
Folk 9	351482	K.L. Daughtry	October 3, 1997
Folk 10	351483	K.L. Daughtry	October 3, 1997

•

HISTORY

Earliest reported work on the Iron Range area was carried out in 1897 and comprised staking of quartz-hematite-magnetite mineralization. Over the next five years several shafts, adits and trenches were completed.

Between 1919 and 1925 only sporadic work was carried out in the area.

In 1957 Consolidated Mining and Smelting (Cominco) re-opened an access road to the summit of Iron Range Mountain and exposed the main mineralized zone over a 6 km length along the north part of Iron Range Mountain.

REGIONAL GEOLOGY

<u>Litholoay</u>

The Iron Range area is underlain predominantly by sedimentary rocks of the middle Aldridge Formation which form part of the Proterozoic Purcell Supergroup. Rocks of the Purcell Supergroup have been folded into a large anticlinorium which is a broad north plunging structure covered by rocks of the Purcell Supergroup and flanked by late Proterozoic Windermere rocks and lower Paleozoic platformal sediments.

In the Iron Range area, the middle Aldridge Formation forms the cover of the Goat River anticline which dips gently north to northwest. The middle Aldridge Formation comprises interbedded grey quartz-wacke and laminated siltstone intruded by regionally extensive meta-gabbro sills known as the Moyie sills. Rare, dark green mafic dykes with abundant xenoliths/phenocrysts? intrude older rocks in the northern part of the project area.

<u>Structure</u>

The dominant structural feature in the area is the steeply dipping, north-south trending Iron Range Fault. It extends over a distance of 25 kms and is marked by a prominent strong aeromagnetic anomaly along Iron Range Mountain. Several parallel faults occur to the east and northeast of the Iron Range Fault.

The Iron Range iron-oxide deposit is contained within the widest segment of the fault zone.

The main deformation event produced brittle effects in

sedimentary rocks and ductile deformation/shearing parallel to the strike of the iron oxide deposit in gabbroic sills.

<u>Alteration</u>

Several alteration types are associated with the Iron Range iron oxide deposit. These are as follows:

- Sericitization. Is widespread, especially in sedimentary rocks and extends outwards from the fault zone for about 500 to 1000 metres (Stinson and Brown, 1994).
- 2. Albitization. Affects both sedimentary and gabbroic rocks in the fault zone. These are typically strongly brecciated and bleached due primarily to the presence of abundant albite. Locally original textures of host rocks are completely obliterated and replaced by albite (i.e. albitite).
- 3. Silicification. Is typically localized and commonly occurs in the form of discrete quartz veining (hematite-quartz ± magnetite breccia). Some pervasive silicification of sedimentary and gabbroic rocks is also observed.
- 4. Chloritization. Gabbro bodies are strongly foliated and extensively chloritized.
- 5. Hematization. Pervasive hematization occurs throughout the mineralized zone.

In the southern part of the project area in the vicinity of Mount Thompson, outcrops are fairly scarce in the vicinity of the

projected Iron Range Fault. The rare rock exposures and angular float reveal similar types of alteration as observed in the northern part of Iron Range Mountain. Middle Aldridge sediments have undergone various degrees of brecciation with associated silicification and/or albitization near the Iron Range fault.

MINERALIZATION

The mineralized zone consists of discontinuous lenses of massive hematite, and lesser magnetite, from 0.5 to 5 metres wide separated by a wider zone of brecciated, silicified and/or albitized or chloritized host rocks with fragments supported by a matrix of granular hematite ± white quartz. The abundance of hematite matrix in the breccia varies from 30 to 80%. Two phases of quartz veining recognized by Stinson and Brown (1994) are: early, grey quartz with up to 10% granular hematite and younger white quartz which locally contains minor, coarsely crystalline hematite. Early grey quartz-hematite veins have locally well developed cataclastic textures which have been interpreted to represent the emplacement of mineralization synchronous with movement across the Iron Range Fault (Stinson and Brown, 1994).

A style of mineralization observed in angular float only in the Mount Thompson area shows a similarity to mineralization from Iron Range Mountain. It consists of hematite-quartz ± magnetite breccia. Rare chalcopyrite is associated with hematite-quartz breccia.

WORK COMPLETED

The 1996 work program on the Iron Range project area comprised soil sampling along contour lines and compass lines and limited rock and stream sediment sampling.

The soil sampling was carried out in the northern part of the property, largely in the vicinity of the Jazz claims and is covered in a separate report.

Stream sediment sampling, comprising the collection of 11 silt and 2 heavy mineral samples, was carried out at the south end of the property, on and in the vicinity of the Blues claims, at the headwaters of the Little Moyie River. One rock sample was also collected in the area.

1.0 Heavy Mineral Stream Sediment Sampling

a) Program Parameters

Heavy mineral drainage sampling entails the sampling of gravels, sands and silts from creek beds. The material is sieved in the field until approximately 10 kg of -20 mesh material is obtained. The sample is then shipped to C.F. Minerals Ltd. of Kelowna for heavy mineral separation. Fractions are produced according to grain size, specific gravity and magnetic susceptibilities.

Based on the results of previous analysis of the various fractions it was determined that the best results are contained in the -35+60 IP/HP fractions for base metal and silver values

and in the -100 HN fraction for gold values.

The -35+60 IP/HP fractions comprise the <35 mesh, >60 mesh intermediate (specific gravity of 2.7 to 3.27 g/cc) to heavy (specific gravity >3.27 g/cc) paramagnetic minerals. Paramagnetic (P) minerals include garnets, hornblende and epidote. The IP + HP fractions commonly contain secondary zinc and lead minerals.

The -100 HN fraction (<100 mesh, >3.2 specific gravity, nonmagnetic) includes native gold, pyrite and many base metal sulphides as well as accessory minerals such as zircon.

Two heavy mineral samples were collected near the south end of the Blues claims.

The -100 HN fractions from these samples were sent to Becquerel Laboratories Inc. in Mississauga, Ontario for nondestructive analysis by neutron activation of copper, lead and zinc, followed by ICP analysis upon "cooling".

Analytical results are listed in Appendix 1.

b) Program Results

Maximum values of 560 ppm copper, 207 ppm lead and 354 zinc were obtained in the heavy mineral sampling. These results are shown on Figures 4, 5 and 6 and are not significantly anomalous.

2.0 Silt Sampling

a) Program Parameters

A total of eleven silt samples was collected at the headwaters of the Little Moyie River on and in the vicinity of

the south end of the Blues claims.

These samples, comprising silt and mud, were collected from active drainages on the property, placed in kraft sample bags and shipped to Inchcape Testing Services in North Vancouver, B.C. for analysis. At Inchcape the samples were dried, sieved to -80 mesh and analyzed for Au (30 g - F.A. and A.A) and 34 other elements by ICP analysis.

Analytical results are listed in Appendix 1.

b) <u>Program Results</u>

No significant base metal anomalies were noted in the silt analyses. Maximum values of 120 ppm, 33 ppm and 26 ppm were obtained for Zn, Pb and Cu respectively (Figures 4, 5, 6). These values are similar to those obtained in previous silt samples collected at the north end of the project area.

No anomalous values in gold were obtained in the silt samples (Figure 7).

The single rock sample analyzed, 399TC-16 was collected at the IRM 028 sample site. Maximum values obtained in the sample were 88 ppm Zn and 35 ppm Cu.

A sample description is contained in Appendix 1.

CONCLUSIONS and RECOMMENDATIONS

Silt and heavy mineral stream sediment sampling at the south end of the Iron Range project area have failed to detect base and precious metal values associated with Olympic Dam style mineralization.

Given the lack of encouragement in the latest phase of exploration, no further work is warranted at this time.

> Respectfully submitted, DISCOVERY CONSULTANTS

T.H. Carpenter, P.Geo.

D. Duba, Geologist

Vernon, B.C.

November 28, 1996

REFERENCES

- Brown, D.A. and Stinson, P., 1995, Geologic Mapping of the Yahk Map Area, Southeastern British Columbia (82F/1): An update; <u>in</u> Geological Fieldwork 1994, Grant, B. and Newell, J.M., Editors; B.C. Ministry of Energy, Mines, and Petroleum Resources, Paper 1995-1.
- Duba, D., 1996, Progress Report on the Iron Range Project, Creston Area, B.C. for Dia Met Minerals Ltd.
- Reeve, J.S., Cross, K.C., Smith, R.N, and Oreskes, N. 1990, The Olympic Dam Copper-Uranium-Gold-Silver Deposit, South Australia; <u>in</u> Geology of Mineral Deposits of Australia and Papua New Guinea, Hughes, F., Editor; Australian Institute of Mining and Metallurgy, Monograph 14, pages 1009-1035.
- Stinson, P. and Brown, D.A., 1995, Iron Range Deposits, southeastern British Columbia (82F/1); <u>in</u> Geological Fieldwork 1994, Grant, B. and Newell, J.M. Editors, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1995-1, p. 127-134.

STATEMENT OF COSTS

1.	Professional Services			
	T. Carpenter Field - 1 days @ \$450/day Report Writing - 1 day @ \$450/day	\$450.00 <u>450.00</u>	\$	900.00
2.	Field Personnel Silt Sampling			
	0.5 day @ \$171.20/day	85.60		
	J. Kenner 0.5 day \$171.20/day	85.60		171.20
3.	Geochem a) Preparation 6 silt @ \$3.70/sample	22.20		
	1 heavy mineral @ \$129.00	129.00		
	<pre>b) Analyses 30 g gold + 34 element geochem ICP 6 silt @ \$16/sample</pre>	96.00		
	34 element geochem ICP 1 HM @ \$8.15	8.15		255.35
4.	Drafting			75.00
5.	Data compilation, secretarial			50.00
6.	Field supplies, equipment			18.29
7.	Printing, Data processing etc.			40.00
8.	Lodging and Meals			123,45
				1633.29
9.	Transport (4x4 truck) \$175			175.00
			\$	1808.29
	gst			126.58
	Tota	1	<u>s</u>	1934.87

.

STATEMENT OF QUALIFICATIONS

I, THOMAS H. CARPENTER of 3902 14th Street, Vernon, B.C., V1T 3V2, DO HEREBY CERTIFY that:

- 1. I am a consulting geologist in mineral exploration associated with Discovery Consultants, Vernon, B.C.
- 2. I have been practising my profession for 23 years.
- 3. I am a graduate of the Memorial University of Newfoundland with a Bachelor of Science degree in geology.
- 4. I am a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of British Columbia.
- 5. This report is based upon knowledge of the Iron Range property gained from field work and supervision.
- 6. I hold no interest either directly or indirectly in the Iron Range property.

T.H. Carpenter; P.Geo.

Vernon, B.C. November 28, 1996

STATEMENT OF QUALIFICATIONS

I, DARIA DUBA, OF R.R. #1, S.4, C.1, Naramata, B.C. VOH 1NO, DO HEREBY CERTIFY that:

- 1. I am a consulting geologist in mineral exploration associated with Discovery Consultants, Vernon, B.C.
- 2. I am a 1978 graduate of Concordia University with a Bachelor of Science degree in geology.
- 3. I am a 1982 graduate of McGill University with a Master of Science degree in geology.
- 4. I have been practising my profession since graduation.
- 5. This report is based upon knowledge of the Iron Range property gained from research and field work.
- 6. I hold no interest either directly or indirectly in the Iron Range property.

D. Duba, M.Sc.

Vernon, B.C. November 28, 1996

APPENDIX 1

ROCK SAMPLE DESCRIPTION AND ANALYTICAL RESULTS

Blues Claims - Rock Sample Description

399-TC-016 Rusty weathering rock at IRM-028 sample site. Fine grained and dark grey in fresh surface with black 1 mm phenos. Sulphides occur as bands to 2-3mm thick. Rock of indeterminate composition. Date of Report: 96-12-16

Project 399

file: 399\Rock_96

Iron Range

Rock Sample Analyses (ICP) 1996

Reference : v96-01824.0

			====		****						=====#		======			*===
Sample ID	Au30 ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm	Cd ppm	Mo ppm	As ppm	Sb ppm	Bi ppm	Ni ppm	Co ppm	Cr ppm	Fe %	Fe %	Mn ppm
399TC 16	<5	<0.2	35	10	88	0.3	2	<5	<5	<5	19	8	35	3.36		404

Iron Range

Rock Sample Analyses (part 2)

******	*******		t a se a se a	neneeæ		S Egezia ini		, se						======	zzzóżź	*====:
Sample (D	Ba ppm	V ppm	Sr ppm	Y ppm	La ppm	Te ppm	Sn ppm	W ppm	AI %	Mg %	Ca %	Na %	K %	Ga ppm	Li ppm	Ti %
399TC 16	116	20	8	14	21	<10	<20	<20	1.85	1.12	0.15	0.03	1.13	5	18	0.16

Iron Range

Rock Sample Analyses (part 3)

FEEEEEEEEEEE		ERREES	eresti:	
Sample ID	Ta ppm	Sc ppm	Nb ppm	Zr ppm
399TC 16	<10	<5	<1	4

APPENDIX 2

SILT AND HEAVY MINERAL SAMPLE ANALYSES

Date of Report: 96-12-16

Project 399

file: 399\Sit_96.wk1

Iron Range

Silt Sample Analyses (ICP)

Blues Claims

1996

Sample ID	Au30 ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm	Cd ppm	Mo ppm	As ppm	Sb ppm	Bi ppm	Ni ppm	Co ppm	Cr ppm	Fe %	Ми ррат
399IRM-065	ls	<0.2	26	31	98	0.8	2	6	<5	<5	15	10	17	2.72	1091
399IRM-066	<5	1.1	24	33	82	0.8	12	10	<5	<5	13	8	34	2.08	600
399IRM-067	<5	<0.2	16	19	76	0.4	2	<5	<5	<5	12	10	17	2.00	766
399IRM-068	<5	<0.2	15	17	72	<0.2	<1	<5	<5	<5	12	9	15	1.92	637
399IRM-069	<5	<0.2	14	14	75	0.4	1	<5	<5	<5	11	8	15	1.95	642
399IRM-070	<5	<0.2	15	19	72	0.2	1	<5	<5	<5	11	7	12	1.72	347
399IRM-071	<5	<0.2	15	13	67	<0.2	<1	<5	<5	<5	11	6	12	1.69	279
399IRM-072	<5	<0.2	16	15	87	0.4	2	<5	<5	7	11	8	14	1.65	644
399IRM-073	<5	<0.2	18	21	120	0.4	2	<5	<5	<5	13	10	16	1.95	1073
399IRM-074	<5	<0.2	16	17	89	0.5	<1	<5	<5	<5	11	6	13	1.52	365
399IRM-075	<5	<0.2	15	17	82	0.5	1	<5	<5	<5	10	7	13	1.61	520

Duplicates:

399IRM-067

Iron Range

Silt Sample Analyses (part 2)

***********	ezzzäääs		*****	azere			=====z			2222 2 8	======	*====		SSR:===	äästeit	*****
Sample ID	Ba ppm	V ppm	Sr ppm	Y ppm	La ppm	Te ppm	Sn ppm	W ppm	AI %	Mg %	Ca %	Na %	K %	Ga ppm	Lì ppm	Ti %
399IRM-065	82	25	44	35	51	<10	<20	<20	2.02	0.52	0.49	0.02	0.12	8	13	0.05
399IRM-066	63	22	54	47	61	<10	<20	<20	1,75	0.66	0.53	0.02	0.19	5	13	0.06
399IRM-067	55	21	23	18	28	<10	<20	<20	1.55	0.59	0.23	0.01	0.17	5	10	0.06
399IRM-068	56	19	17	15	24	<10	<20	<20	1.43	0.61	0.16	0.01	0.17	5	10	0.06
3991RM-069	62	18	22	15	24	<10	<20	<20	1.40	0.60	0.20	0.01	0.19	5	11	0.06
399IRM-070	53	12	19	15	27	<10	<20	<20	1.36	0.39	0.18	0.01	0.24	5	10	0.06
399IRM-071	47	15	12	12	24	<10	<20	<20	1.28	0.41	0.13	<0.01	0.21	4	9	0.06
399IRM-072	65	14	28	19	31	<10	<20	<20	1.38	0.40	0.36	0.01	0.18	8	11	0.04
399IRM-073	75	22	19	17	29	<10	<20	<20	1.70	0.45	0.37	0.01	0.17	10	11	0.05
399IRM-074	65	18	19	16	28	<10	<20	<20	1.56	0.41	0.25	0.01	0.18	5	10	0.05
399IRM-075	58	19	15	14	25	<10	<20	<20	1.56	0.42	0.18	0.01	0.17	6	10	0.05

Duplicates:

3991RM-067

Iron Range

Silt Sample Analyses (part 3)

Sample ID	Ta ppm	Sc ppm	Nb ppm	Zr ppm
399IRM-065	<10	<5	1	2
399IRM-066	<10	<5	1	<1
399IRM-067	<10	<5	1	<1
399IRM-068	<10	<5	1	1
399IRM-069	<10	<5	2	1
399IRM-070	<10	<5	2	2
399IRM-071	<10	<5	1	1
399IRM-072	<10	<5	1	1
399IRM-073	<10	<5	1	2
399IRM-074	<10	<5	2	1
399IRM-075	<10	<5	1	2

Duplicates:

399IRM-067

Date of Report: 12/18/96

Project 399

Ba: 300484_08.wk1

Iron Range

Heavy Mineral Stream Sediment Sample Analyses (ICP) 1996

Reference : v962162.0

			_													
Sample ID	Ag	Cu	Pb	Zn	Cd	Mo	As	Sb	BI	Ni	Co	Cr	Fe	Mn	Ba	V
	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm							
IRM028	0.6	205	207	354	2.1	<1	376	21	22	124	97	36 >	10.00	1196	65	57
IRM029	1.3	560	204	325	1.5	9	429	58	44	337	230	160 >	10.00	1023	23	95

Iron Range

Heavy Mineral Stream Sediment Sample Analyses (part 2)

Sample ID	Sr	Y	La	Te	Sn	W	AI	Mg	Ca	Na	К	Ga	Li	11	Ta	Sc
	ppm	ppm	ppm	ppm	ppm	ppm	%	%	%	%	%	ppm	ppm	%	ppm	ppm
IRM028	13	64	96	30	<20	<20	0.78	0.07	0.07	⊲0.01	0.04	15	4	0.03	<10	<5
IRM029	15	76	56	27	31	<20	0.93	0.16	0.14	0.02	0.05	~2		0.08	<10	6

Iron Range

Heavy Mineral Stream Sediment Sample Analyses (part 3)

Sample ID	Nb ppm	Zr ppm				
IRM028	<1	3				

pege: 1

APPENDIX 3

ANALYTICAL PROCEDURES

ANALYTICAL PROCEDURES

Geochemical Analysis

by Bondar-Clegg :

		LOWER		
ELEME	NT	DETECTION LIMIT	EXTRACTION	METHOD
Au	Gold	б ррb	fire-assay	atomic absorption
Ag	Silver	0.2 ppm	HNO3-HCI hot extr	ind. coupled plasma
Al*	Auminum	0.01 %	HNO3-HCI hot extr	ind, coupled plasma
As	Arsenic	5 ppm	HNO3-HCI hot extr	ind, coupled plasma
Ba*	Barium	Б ррт	HNO3-HCI hot extr	ind. coupled plasma
Bi	Bismuth	6 ppm	HNO3-HCI hot extr	ind. coupled plasma
Ca*	Calcium	0.01 %	HNO ₃ -HCI hot extr	ind. coupled plasma
Cď	Cadmium	1 ppm	HNO3-HCI hot extr	ind. coupled plasma
Co*	Cobalt	1 ppm	HNO ₃ -HCI hot extr	ind, coupled plasma
Cr*	Chromium	1 ppm	HNO3-HCI hot extr	ind, coupled plasma
Cu	Copper	1 ppm	HNO3-HCI hot extr	ind, coupled plasma
Fe*	Iron	0.01 %	HNO ₃ -HCI hot extr	ind. coupled plasma
Ga	Gallium	2 ppm	HNO3-HCI hot extr	ind, coupled plasma
Hge	Mercury	10 ppb	HNO ₃ -HCI leach	cold vapour atomic absorption
K*	Potassium	0.01 %	HNO3-HCI hot extr	ind, coupled plasma
La*	Lanthanum	1 ppm	HNO3-HC! hot extr	ind. coupled plasma
Li	Lithium	1 ppm	HNO3-HCI hot extr	ind, coupled plasma
Mg*	Magnesium	0.01 %	HNO3-HCI hot extr	ind, coupled plasma
Mn*	Manganese	0.01 %	HNO3-HCI hot extr	ind, coupled plasma
Mo*	Molybdenum	1 ppm	HNO ₃ -HCI hot extr	ind, coupled plasma
Na*	Sodium	0.01 %	HNO ₃ -HCI hot extr	ind, coupled plasma
Nb	Niobium	1 ppm	HNO3-HCI hot extr	ind, coupled plasma
Ni*	Nickel	1 ppm	HNO ₃ -HCI hot extr	ind, coupled plasma
Pb	Lead	2 ppm	HNO3-HCI hot extr	ind, coupled plasma
Sb*	Antimony	5 ppm	HNO3-HCI hot extr	ind, coupled plasma
Sc	Scandium	5 ppm	HNO ₃ -HCI hot extr	ind, coupled plasma
Sn*	Tin	20 ppm	HNO ₃ -HCI hot extr	ind, coupled plasma
Sr*	Strontium	1 ppm	HNO3-HCI hot extr	ind, coupled plasma
Ta	Tantalum	10 ppm	HNO3-HCI hot extr	ind, coupled plasma
Te*	Tellurium	10 ppm	HNO3-HCI hot extr	ind. coupled plasma
Ті	Titanium	0.01 %	HNO3-HCI hot extr	ind, coupled plasma
V*	Vanadium	1 ppm	HNO3-HCI hot extr	ind. coupled plasma
W*	Tungsten	20 ppm	HNO3-HCI hot extr	ind, coupled plasma
Y	Yttrium	1 ppm	HNO3-HCI hot extr	ind, coupled plasma
Zn	Zinc	1 ppm	HNO3-HCI hot extr	ind, coupled plasma
Zr	Zirconium	1 ppm	HNO3-HCI hot extr	ind. coupled plasma

 Please note: certain mineral forms of those elements above marked with an asterisk will not be soluble in the HNO₃/HCI extraction. The ICP data will be low blased.

· Please note: Hg will only be analysed upon request.

\bigcirc	Historical heavy mineral sample
25 5 -	Historical ppb gold in heavy mineral sa Historical ppb gold in silt sample Indicates <5 ppb Au
\bigtriangleup	Silt sample location
65	Values shown in ppm copper
\bigcirc	Heavy mineral sample location
125	Values shown in ppm copper

\bigcirc	Historical heavy mineral sample
25 5 -	Historical ppb gold in heavy mineral sample Historical ppb gold in silt sample Indicates <5 ppb Au
\bigtriangleup	Silt sample location
85	Values shown in ppm lead
\bigcirc	Heavy mineral sample location
256	Values shown in ppm lead
Х	Rock sample location

LEGI	END

\bigcirc	Historical heavy mineral sample
25 5 -	Historical ppb gold in heavy mineral Historical ppb gold in silt sample Indicates <5 ppb Au
\bigtriangleup	Silt sample location
20	Values shown in ppb gold