	GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORTS
	DATE RECEIVED JAN 15 1997
NTS 92 J/14 W, J/	11 W
LAT 50 48' N	
LONG 123 16' V	V

GEOLOGICAL, GEOCHEMICAL, AND DIAMOND DRILLING REPORT ON THE SALAL 1-6 CLAIMS, PEMBERTON, B.C.

Lillooet Mining Division

PREPARED FOR: Verdstone Gold Corp./Molycor Gold Corp., 310-1959 152nd St., Surrey, B.C. V4A 9E3

PREPARED BY: GEO-FACTS, Andris Kikauka, P.Geo, 6439 Sooke Rd., Sooke, B.C. V0S 1N0

> GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

Dec. 31, 1996

TABLE OF CONTENTS - LIST OF FIGURES - APPENICIES

		page #
1.0	INTRODUCTION	1
2.0	LOCATION, ACCESS, & PHYSIOGRAPHY	I
3.0	PROPERTY STATUS	2
4.0	AREA HISTORY	2
5.0	PROPERTY HISTORY	3
6.0	REGIONAL GEOLOGY	6
7.0	1996 WORK PROGRAM	7
7.1	METHODS AND PROCEDURES	7
7.2	PROPERTY GEOLOGY	8
7.3	DIAMOND DRILLING	11
7.4	SURFGACE ROCK CHIP SAMPLING	12
7.4B	SOIL GEOCHEMISTRY	12
7.5	PETROGRAPHIC ANALYSIS	13
8.0	DISCUSSION OF RESULTS	13
9.0	CONCLUSION	14
10.0	RECOMMENDATIONS	15
	REFERENCES	16
	STATEMENT OF QUALIFICATIONS	17
	ITEMIZED COST STATEMENT	1 <i>8</i>
FIG.	LOCATION MAP	
FIG.	2 CLAIM MAP SALAL 1-6	
FIG.	2B SOUTH PORTION SALAL 1-6 CLAIM GI	ROUP CONTOUR MAP
FIG.	2C SALAL 1-6 CLAIM LOCATION MAP WI	TH TOPOGRAPHY
FIG.	2D FOREST COVER MAP OF SALAL CREE	K HEADWATERS
FIG.	3 PEMBERTON MAP AREA REGIONAL G	EOLOGY
FIG.	3B REGIONAL GEOLOGY	
FIG.	4 GEOLOGY, GEOCHEMISTRY, & MAGN FLOAT CREFK (in packet)	ETIC SURVEY COMPILATION,
FIG	4B GEOLOGY OF FLOAT CREEK AREA &	OULINE OF SURVEY GRID
FIG.	4C FLOAT CREEK JOINT/FRACTURE ORI	ENTATION AND INTENSITY
	APPENDIX A- PETROGRAPHIC DESCRIPT	IONS
	APPENDIX B- GEOCHEMICAL CERTIFICA	TES

APPENDIX C- DIAMOND DRILL RECORDS

Plug Creek is named for the 700 meter diameter neck or plug of porphyritic (plagioclase, augite, and olivene poorly developed phenocrysts) basalt and trahybasalt which cuts the Salal Creek Pluton half way up the slope in the center of the photo.

Float Creek (center) and Plug Creek (left) mineral zones. A sill of porphyrtic trachybasalt forms a slender ledge (left center). This ledge forms a wide flat spot suitable for larger sized diamond drill which could be located on the ridge line of this steep slope

Float Creek at the 6,000-7,000 ft.(1,830-2,135 m.) elevation. Note drill pad (lower right) and helicopter approaching (upper right). This drill pad was chosen on its merits of safety and abundance of fracture fill and quartz vein related molybdenite mineralization.

Float Creek (left) looking NNE. The lower portion of bedrock is medium grained quartz monzonite. The upper 1/4 is pyrite/magnetite rich mixed coarse and fine grained quartz monzonite to quartz syenite and is poorly mapped due to the rugged terrain.

Staging area near bridge across Salal Creek (lower right). Logging road (upper left), terminates near edge of clear cut. This road is planned to extend up the Salal Creek valley. Note large gravel deposit in right center of photo.

Close up of massive gravel deposit on the east side of lower Salal Creek at an elevation of 3,280 ft. (1,000 m.). Salal Creek Pluton is visible in the upper left of photo.

page 1

1.0 INTRODUCTION

This report was prepared at the request of Verdstone Gold Corp./Molycor Gold Corp. to describe and evaluate the results of geological mapping, rock & soil sampling, and diamond drilling carried out on the Salal 1-6 claim group in the Lillooet Mining Division, 45 km. NW of Pemberton, B.C.

Field work was undertaken for the purpose of evaluating economic mineral potential of the Salal claims.

Field work was carried out from July 15-Oct.2, 1996 by Andris Kikauka (geologist), Marc Bombois, Rob Rogers, Andie Osbourne (geotechnicians), RDF Holdings (drill contractors), & Pemberton Helicopters under the supervision of Larry Reaugh and John Fisher with constructive advice from Dr.Robert H.Pinsent (B.C.govt.Regional Geologist).

This report is based on published and unpublished information and maps, reports and field notes.

2.0 LOCATION, ACCESS & PHYSIOGRAPHY

The claims are located 105 miles (169 km.) NNW of Vancouver, B.C. at the headwaters of Salal Creek, a tributary to the Lillooet River (Fig. 1,2).

The claims are located on Map Sheet NTS 92 J/14W, 92 J/11W at latitude 50 48' N and longitude 123 16' W.

Road access is via Lillooet River valley logging road. Approximately 42 miles (68 km.) NW of Pemberton. The road ends on a logging spur road 1 km. N of the mouth of Salal Creek. The bridge across Salal Creek on the main logging haulage road is a wide flat area suitable for staging helicopter loads into the property. The logging spur road extension up the Salal Creek valley is planned for within 2-4 years to access timber resources.

Alternate access is via 35 minute helicopter ride from Pemberton Meadows, Pemberton Helicopter's base station.

The property is within the rugged Coast Mountain Range where the combined rapid erosion effects of alpine & continental glaciation and Quaternary volcanism have carved out steep slopes with abundant talus. Regional direction of ice movement averaged S.20 degrees W. Extensive icefields still occur at higher elevations. Slopes rise from 4,300 ft.(1,312 m.) to 7,956 ft. (2,427 m.). The entire claim group is above treeline except for the lower elevation portion of Salal Creek valley (Fig.2D).

Since there are heavy snowfall accumulations in winter the recommended field season for the southern Coast Range at higher elevations is June-October. This season may be either shortened or extended depending on elevation.

3.0 PROPERTY STATUS

The property consists of 6 claims owned 100% by Verdstone Gold Corp./Molycor Gold Corp.(Fig.2). Details of the claims are as follows:

CLAIM	RECORD NO.	UNITS	RECORD DATE	EXPIRY DATE
Salal 1	341635	20	Nov. 3, 1995	Nov. 3, 2001
Salal 2	341636	20	Nov. 3, 1995	Nov. 3, 2001
Salal 3	341637	20	Nov. 3, 1995	Nov. 3, 2001
Salal 4	341638	12	Nov. 3, 1995	Nov. 3, 2001
Salal 5	341639	18	Nov. 3, 1995	Nov. 3, 2001
Salal 6	341640	6	Nov. 3, 1995	Nov. 3, 2001

The claims listed above are contiguous and have been grouped together to form the Salal Claim Group. The total area covered by the claims is 2,400 hectares (5,930 acres).

The writer is not aware of any regulatory problem that would adversely affect mineral exploration and development on the property.

4.0 AREA HISTORY

Most mining and exploration activity near Salal Creek is located to the east and north. The Bridge River Camp is located 40 km. east of Salal Creek. This camp is the largest gold producer in British Columbia and includes the Bralorne, Pioneer, Congress, Wayside, Reliance and Minto deposits. Late Cretaceous age, gold bearing, mesothermal quartz veins and related porphyry dykes which occur within the Bralorne fault zone, hosted in Permian to Cretaceous diorite, soda granite, and greenstone. Lode mining has produced over 2.2 million ounces of gold from 4.5 million tonnes of ore.

The Fish Lake deposit located 75 km. NW of Bralorne, occurs within the Late Cretaceous Fish Lake Intrusive Complex. The Fish Creek quartz diorite stock is surrounded by an E-W swarm of quartz-feldspar porphyry dykes. The low-grade dykes dilute the ore reserves and they are spatially related to the ore. Reserves are listed at 1,148,000,000 tonnes of 0.22% Cu and 0.41 g/t Au. The plan view dimensions of the deposit are 1,500 X 800 m.(4,920 X 2,625 ft.) with a depth of 880 m.(2,886 ft).

The Poison Mountain porphyry is located 85 km. NE of Bralorne. The deposit is hosted in hornfelsed arenaceous sediments in contact with Late Cretaceous quartz diorite porphyry. Ore reserves of 412,175,000 tonnes @ 0.24% Cu, 0.14 g/t Au, and 0.007% Mo are contained in near surface zone with 0.35:1 stripping ratio.

Approximately 70 km. north of Salal Creek is the Taseko Empress deposit. Cu-Au-Mo bearing sulphides (and minor oxides) occur within brecciated and altered volcanics near the contact of a Late Cretaceous intermediate stock. Reserves on the Empress are 10,040,000 tonnes @ 0.61% Cu and 0.789 g/t Au. The Buzzer, Rowbottom and Granite Creek zones are not included in the reserve calculation.

The Lill Cu-Pb-Zn-Ag-Au prospect is 10 km. W of the Salal claims, located at the headwaters of an unnamed NNE trending creek. Placer Development Ltd. explored the area in the1980's, and carrried out geological/geochemical mapping and sampling. A strong Zn-Pb-Ag-Au geochemical anomaly refered to as zone "F" appeared to have some economic potential and drilling was recommended, but never carried out.

Britannia Beach, situated 35 km. N of Vancouver, is an Early Cretaceous, Kuroko type, Cu-Pb-Zn-Ag-Au VMS hosted near a volcanic-sediment contact. The mine produced 47,402,534 tonnes @ 1.1% Cu, 0.3% Zn, 0.05% Pb, 3.8 g/t Ag, 0.33 g/t Au. A major regional WNW trending fault system runs through the deposit.

5.0 PROPERTY HISTORY

1960: The first claims staked in the Salal Creek stock covered a prominent stain zone that was discovered by Phelps Dodge during airborne reconnaissance. Phelps Dodge carried out prospecting and sampling on a trail from upper Trail Creek towards upper Float Creek. MoS2 assays were in the .03-.07% range.

1962: The claims lapsed and Pemberton Prospecting and Mining Syndicate acquired new claims before Phelps Dodge could renew them.

1964: Norpax Nickel Mines optioned the property and staked additional claims. Norpax sampled in the Float Creek area and reported continuous mineralization for 250 ft. (76.3 m.). Samples gave results ranging from .03-.22% MoS2 and averaging .13% MoS2 over 87 ft. (26.5 m.). A diamond drill hole was attempted near the Float Creek zone, but was abandon due to rock slides from a side gulley, not the main Float Ck. gulley. A horizontal diamond drill hole stopped at 779 ft.(238 m.) depth, at azimuth 000, on the East Fork of Salal Creek located between Camp Ck. and Moły Every Hit Ck.(Fig.4B). Molybdenite mineralization was observed in some sections of the core, and assay results are not available. It was reported that this drill hole did not penetrate the target depth which was predicted to be in the 3,000 foot (915 m.) range.

1965-66: Southwest Potash Corp. optioned the claim group and additional ground is staked. A program of surveying, geological mapping, reconnaissance geochemistry and diamond drilling is carried out. The option is terminated at the end of 1966, Norpax Nickel Mines and Pemberton Prospecting and Mining Sydicate form Salal Molybdenum Mines Ltd. Results from the sampling program included:

A)	181 surface chip samples averaging	.03% MoS2
B)	16 continuous chip samples averaging	.04% MoS2

C) 5 random chip samples averaging	.04% MoS2
D) 23 grab samples averaging	.56% MoS2
E) 6 bulk samples averaging	.33% MoS2

Southwest Potash Corp. located 8 diamond drill holes totalling 6,995 feet (2,133 m.). Most of these holes, at Glacier Island, Mud Lake and Plug Glacier, were oriented to intersect the fine-coarse grained contact. Assays of 10 foot sections from these holes ranged up to .14% MoS2. Two holes drilled near the bottom of Big Ck. penetrated only the coarse grained phase and assays did not exceed .10% MoS2.

1970: Cerro Mining of Canada Ltd. optioned the property and produced geological and geochemical data summarized as follows:

A) Geological mapping indicated widespread alteration throughout the south portion of the Salal Ck. stock which covers an area of approximately 20,000 X 10,000 ft. (6,100 X 3,050 m.). Mineralogy of these superimposed, elongated and U-shaped zones consist of: (1) hematite-magnetite zones 200-3,000 ft.(60-915 m.) wide.

(2) smaller magnetite zones 100-2,000 ft. (31-610 m.) wide.

(3) and pyrite-magnetite zones 50-1,000 ft. (15-305 m.) wide.

Structural data from the alteration zones indicated dominant fractures/joints trending at 060 to 045 with steep dip to the NW, with minor intersecting fractures/joints at a N trend and steep E dip in the area of Float Ck. and Trail Ck. A 2,000 X 4,000 ft.(610-1,220 m.) area containing an acid dyke swarm and abundant molybdenite mineralization was centered on Float Ck. A 4,000 X 12,000 ft. (1,220 X 3,660 m.) area located 4,500 ft (1,373 m.) NE of the Float Ck.zone and adjacent to "Red Mountain" at Athelney Pass, contains sparse, widespread molybdenite mineralization. Other zones of observed molybdenite mineralization include Trail Ck., West Fork Salal Ck., Red Mountain and Logan Ridge.

B) Geochemical mapping shows first order (>80 ppm Mo) dominate in the southern portion of the Salal Ck.stock. From a total of about 350 samples, 12 first order Mo anomalies came from the Float Ck.zone, 7 from the "Red Mountain" Athelney Pass zone, 3 from the West Fork zone, and 3 from the White Cross Mountain Ck. tribuatry located about 4.5 km.SW of Float Ck. Silt and talus anomalies that have values >120 ppm Cu correlate roughly with first order Mo values.

C) Results of rock chip sampling indicate relatively higher Hg content in vein samples with visible MoS2. The increased Hg content supports the hypothesis that the present system erosion surface is high up in the intrusive system. Trace element analysis of Ca, K, Sr, and Rb indentified trends in fractionation of various intrusive phases, i.e. a marked increase in K/Ca ratio and a corresponding decrease in Ca/Sr fingerprints highly progressed fractionation. Results of this study confirm that fractionation evolved from coarse to medium to fine grained lithologies.

1971: Silver Standard Mines carries out helicopter-borne magnetometer surveys over the Salal Ck.stock. A dominant 3,000 X 6,000 ft. (915 X 1,830 m.), NE trending mag high (500-1,000 gamma relative increase) occurs in the area SW of "Red Mountain" which is about 2 km. NE of Float Ck. This prominent mag high is coincident with widespread, sparse molydenite mineralization in the "Red Mountain" Athelney Pass zone. The strong magnetic relief is interpreted as a possible SW dipping "feeder zone" centered between Float Ck. and Lost Ck.(Red Mountain).

A cluster of irregular shaped and variable intensity mag highs and lows (200-1,200 gamma variation) occur along the length of Float Creek. The mag contours in this area suggest there are no obvious linear trends, but this may in part be due to the extremely rugged terrain. Other anomalies exist, but do not form dominant or obvious patterns as do the "Red Mountain" and Float Ck. mag high zones.

In general, there is an increase in magnetic intensity from SW to NE which may reflect the change in the underlying lithology from a broad area of fine grained granite in the SW to coarse grained quartz monzonite in the NE.

Further interpretation of data shows that Fe rich Quaternary volcanics show strong positive mag readings. The volcanics overlying the intrusive in the Trail Ck. area is an exception. The 1,000-1,500 ft.(305-458 m.) thick basalt was expected to show positive readings. The fact that it does not may be due to major flow sequences may have been reversely polarized (this situation is well documented in kimberlite pipes).

1972: Dr.George C. Stephens published a Ph.D.thesis, at Lehigh University, on the Salal Creek Pluton. Some of his geological descriptions are summarized below:

A) The Salal Creek deposit is best classified as a "plutonic porphyry", i.e. associated with relatively large size plutons and shows a relation between ore distribution and faults. Breccia zones and pipes are not common, but dyke swarms and associated porphyritic phases are common. Mineralization is largely confined to a fairly regular vein/fracture set and alteration tends to be weakly developed and concentrated as envelopes to the veins. Pyrite haloes are widespread and generally sparsely mineralized.

B) Based largely from the study of major porphyry deposits in the SW United States, the 4 hydrothermal alteration assemblages present on the Salal Pluton show the following affinities:

- 1) Outer chlorite zone = Propylitic facies
- 2) Inner chlorite = Non-equilibrium (i.e. transition from propylitic to argillic)
- 3) Outer sericite = Argillic facies
- 4) Inner sericite = Potassic facies

C) Molybdenite mineralization is of 3 major types: 1) Vein and shear fillings-associated with quartz and/or pyrite, 2) Molybdenite joint and vein fillings with no associated gangue minerals (AKA moly paint), 3) Disseminated molybdenite.

D) On a property scale, zonation of Fe bearing minerals show an increasing oxidation state of iron outward from the center. i.e. pyrite rich core zone rimmed by outer magnetite + or - hematite zones. It is possible that the sulpher content of the solution was radically depleted by deposition of Fe, Mo, and Cu sulphides in the inner portion of the pluton and therefore iron oxides became the dominad minerals outwards from this zone. Magnetite-hematite zoning can be explained by decreasing temperature of migrating solutions.

1973: BP Minerals optioned the property from Salal Molybdenum Mines Ltd.

1975-76: BP Minerals entered into joint exploration of the property on a 50/50 basis with Utah Mines Ltd. DDH 75-1,2 were collared at 7,245 ft. (2,210 m.) elevation in a small gulley at the head of Float Ck. Hole # 1 reached a depth of 1,381 feet (421.2 m.) and was abandon. Hole # 2 reached 2,252 ft. (686.9 m.) and a down hole survey indicated the hole began at -56 degrees and ended up steepening to -68 degrees and veered slightly to the west. Molybdenite mineralization is relatively sparse for the first 1,900 feet (579.5 m.), but increases markedly over the last 350 ft (106.8 m.). The trend suggests the possibility of increased molybdenite with depth. Trace amounts of chalcopyrite, sphalerite and fluorite were noted. Abundant gangue minerals include quartz, pyrite, sericite and chlorite. K-feldspar occurs as fracture fillings throughout the hole. The degree of kaolinization of the K-feldspar decreases with depth. Magnetite occurs with quartz-sericite-molybdenite.

1979: A drill hole is located on the West Fork of Salal Creek. Results from this drill hole are not available.

1984: BP Minerals performs a regional geochemical sampling program. The results verify previous work by Cerro and identified 4 main targets:

1) Float Ck. Mo-Cu-Pb-Zn-Ag

2) SW of Red Mountain Mo-Cu-Pb-Zn-Ag-W

3) West Fork Salal Ck. Mo-Cu-Pb-Zn

6.0 REGIONAL GEOLOGY

The Salal Creek Pluton lies within the 50-100 mile wide (80-160 km.) and 4,000 mile long (6,440 km.)Coast Range Plutonic Complex which extends along the west edge of North America. The geology of the Coast Range Belt is generally uniform (i.e. massive quartz diorite, granodiorite, diorite and granite with rare gabbro and quartz monzonite). Regionally metamorphosed, older volcanic and sedimentary form NW trending roof pendants overlying the plutonic rocks.

Quartz monzonites form small stocks with sharp margins. They are generally leucocratic, free of inclusions and appear to have been emplaced at a very high level in the crust. The largest quartz monzonite/granite body is the Salal Creek stock and with a

K/Ar age date of 8.0 m.a., it is the youngest intrusive rock rock dated in the Coast Mountains. The Salał stock is one of a number of granitic bodies emplaced along the eastern margin of the Coast Range in the Late Tertiary. The Salal stock probably represents hypabyssal equivalents of anorgenic granites that were emplaced during an atectonic, westward retreating changeover from subduction to rifting (Bookstrom, 81). Tectonic relaxation and anorogenic magmatism occurred in response to dwindling convergence between subducting plate boundaries with subsequent steepening of subducting slabs and rise of asthenospheric material via partial melting of middle and/or upper crust material which is intruded into the back-arc region (Sillitoe, 80).

The N to NNW trending Garibaldi Group, Pliocene to Recent volcanic belt, forms impressive lava domes at Mount Meager, 12 km. south of the Salal property. Three periods of volcanic activity are recorded (Read, P., 1990):

- 1) 1.9-1.0 Ma- rhyodacitic tephra, andesite
- 2) 1.0-0.5 Ma- andesite, basalt
- 3) 0.1-0.025 Ma- rhyodacite, rhyolite, basalt

It is posible that similar episodes of volcanic activity to that of Mount Meager occurred during the emplacement of the Salal Creek stock and the present level of erosion has exposed the upper level of intrusive rocks and volcanics have been eroded away. Salal Creek stock (10 km wide) is a much larger area than Mount Meager volcanics (4 km. wide). The Salal Creek stock may have generated a massive volcanic dome 8 million years ago, but rapid erosion to a depth of about 1 kilometer has exposed the underlying stock. It's possible that a similar, smaller stock underlies Mount Meager volcanic dome.

7.0 1996 WORK PROGRAM

7.1 METHODS AND PROCEDURES

Diamond drilling, geological mapping, rock & soil geochemical sampling, and petrographic studies were carried out on the claims.

A total of 1,606 ft. (490 m.) of BQ core was drilled from a pad on the Float Creek gulley at 6,050 ft. (1,845 m.) elevation. A Longyear 28 was contracted from RDF Holdings, Courtenay, B.C. and mobilized by Pemberton Helicopters. A total 288 core samples were split and sampled at 5 & 7.5 ft. (1.5-2.3 m.) intervals (Appendix C). A total of 271 samples were assayed for Mo and Cu at International Metallurigical and Environmental, Kelowna, B.C. and 17 samples were sent to Pioneer Labs, New Westminster, B.C. and run for 30 element ICP and Au geochem (Appendix B)

Geological mapping was carried out over a 0.75 X 1.25 km. area centered at Float Ck., at a scale of 1:1,000 (Fig.4). Within the Float Ck. mineral zone, a total of 374 rock chip samples and 47 soil samples were taken. Approximately 2 kg. of rock chips were taken for each sample with hammers and chisels along exposures in gulleys. Each sample was taken across a width of 5 m. (16.4 ft.). Continuous rock chip sample widths range up to

340 m. (i.e. 68 continuous samples). Rock samples were shipped to Chemex Labs, N.Vancouver, B.C. (30 element ICP) and International Metallurigical, Kelowna, B.C. (Mo & Cu assay, see Appendix B).

A grid was established using the mouth of Float Creek as a Hub (Fig.4B). A 030 azimuth baseline follows the Float Ck. canyon for 550 m. and cross line extend from this baseline 500 m. to the west and 50 m. to the east. Using the grid as a reference, a total of 48 soils were taken from a depth of 30 cm. using a grubhoe and placed into marked kraft envelopes. The samples were dried and shipped to Chemex Labs, N.Vancouver, B.C. (30 element ICP) and International Metallurgical, Kelowna, B.C.(Mo & Cu assay, see Appendix B).

Three core samples from the drill holes were sent to Vancouver Petrographics, Langley, B.C. for descriptions (Appendix A).

7.2 PROPERTY GEOLOGY

The Salal Creek property is predominantly underlain by Miocene quartz monzonite with lesser granite and granodiorite. The Salal stock intrudes foliated and regionally metamorphosed Cretaceous-Eocene Coast Range Plutonic Complex. The Salal Ck. stock is oval in plan and covers an area of 25 square miles (56.5 square km., see Fig.3). The Salal 1-6 claim group covers the southern half of the Salal stock.

Massive flows, necks and dykes/sills of Quaternary basalt to rhyolite and related glacio-lacustrine varve clay/silt was deposited at higher elevations (above 6,560 ft. or 2,000 m.), covering about 30% of the southern portion of the Salal stock. This volcanic event probably coincided with the Mount Meager complex. On the Salal stock and at Mount Meager volcanic eruptions occurred during maximum Cordillera glaciation forming vertical spires of columnar jointed basalt and breached lava ring features visible at the head of Float Ck. and most notably on Pylon, Plinth Peaks (Mt.Meager) are attributed to ponding lava against the ice sheets.

Five major intrusive phases (units 2-6) have been identified within the Salal Ck. stock, they are listed in paragenetic sequence and using number designations from geological maps:

1) COAST RANGE PLUTONIC COMPLEX- Cretaceous/Eocene Quartz diorite, granodiorite, granite, gneiss, migmatite, minor metasediments and metavolcanics.

2) COARSE GRAINED QUARTZ MONZONITE- The coarse grained marginal phase displays sharp, discordant contacts with the country rock and occurs generally at the margin of the Salal stock with small masses occurring as skin fragments within the central finer grained phases. The coarse grained phase is a massive, equigranular rock having a mean grain size of 2-3 mm. Quartz comprises roughly 40%, orthoclase 40% and plagioclase 15%. Mafics which occur in the coarse grained phase decrease

systematically from 6% at the margin to .2% at the center and are composed of biotite with local hornblende.

3) MEDIUM GRAINED QUARTZ MONZONITE- The medium grained phase occurs discontinuously between the coarse and fine grained phase or in small plugs or dykes within the other two phases. Its contact relationship with both these phases can either be sharp or gradational. The margins of the medium grained phase are somewhat porphyritic. The medium grained phase contains 1-2% biotite.

4) FINE GRAINED QUARTZ MONZONITE/QUARTZ SYENITE- The central, fine grained phase of the stock is a massive and generally equigranular rock. The mean grain size is 0.5-1.0 mm., but more porphyritic varieties are found with quartz eyes up to 3 mm. (i.e. quartz syenite). The development of micrographic intergrowths between quartz and alkali feldspar is widespread. Biotite is rare or nearly absent in this phase. There are widespread aplite dyke/sill swarms (average width 2 m.) which cut the medium and coarse grained phases and may be genetically related to the emplacement of the fine grained phase.

5) QUARTZ PORPHYRY- The quartz porphyry phase is gradational with quartz-feldpar porphyry (unit 6). The quartz porphyry contains poorly developed feldpar phenocrysts and locallized clots of secondary biotite. The quartz porphyry phase occurs in pods, plugs and lenses which are gradational into the fine grained phase and as dykes/sills which crosscut all other granitic phases.

6) QUARTZ-FELDSPAR PORPHYRY- The quartz-feldspar porphyry has a light blue to light grey groundmass containing euhedral to subhedral phenocrysts of equal size quartz and K-feldspar (minor plagioclase). The quartz-feldspar porphyry occurs as irregular pods and lenses which are gradational to the other phases and as dykes which crosscut all other phases. Lenses and pods range from 10-15 feet (3-4.5 m.) in width and are traced for 10-200 feet (3-61 m.) in length. Quartz-feldspar porphyry dykes commonly display 2-3 inch (6.3-7.5 cm.) wide flow banded chill margins, with phenocryst content increasing towards the cener of the dyke. Alteration of feldspars takes the form of apple green sericite and/or buff kaolin/sericite. An aplitic phase characterized by widespread 1-5 meter wide dykes/sills which are a distinct blue colour, are presumed to be genetically related to the quartz-feldspar porphyry phase.

9) GARIBALDI VOLCANICS- Quaternary olivene basalt to rhyolite occur as massive flows, necks, plugs and dyke/sill complexes that appear to represent separate and distinct volcanic centers, e.g. dacitic to rhyolitic flows outcrop in the area overlying the west portion of the Salal stock and olivene basalt flows cap the Windy Pass area to the NE end of the Salal pluton. The 100-1,000 ft. (30.5-305 m.) thick flows were extruded upon a rugged, pre-volcanic topography. Evidence for this comes from the irregular contact between the Salal pluton and the Garibaldi volcanics. Flow structures and basal contacts of the flows can vary from being horizontal to -60 degree dip. Garibaldi Group basalt

page 10

dykes/sills, which vary in width from 1.5-100 ft. (.5-30.5 m.), sometimes contain columnar joints which are perpendicular to the walls of the dyke or have chill margins. Unit 7 & 8 are also Garibaldi Group volcanics and/or lake sediments related to lava ponding and ice melt.

Structure observed in the Salal stock consists of jointing/fracturing, fault/shears, dyke/sills, and vein/replacement.

1) JOINTING/FRACTURING- High angle joints/fractures have a dominant 060 trend dipping NW towards the center of the stock. The other preferred orientation of high angle joints/fractures is 010 degree azimuth with steep dips to the west. Orientation of low angle joints/fractures is poorly defined. Joint/fracture spacing is 1-24 inches (2.5-60 cm.) with an average spacing of 6 inches (15.2 cm.).

2) FAULTS/SHEARS- Major faults and shear zones are aligned 030 and 060 and are steeply dipping. Faults/shears were active during the emplacement of the Miocene Salal stock and reactivated during the Quaternary Garibaldi Group volcanic eruptions.

Air photo and detailed topographic map (see Fig.2B) examination shows radial drainage patterns in areas of increased mineralization and the dominant drainage orientations are 010, 030 & 060 degrees azimuth. This is also the azimuths of the dominant joints/fractures and faults/shears.

3) DYKES/SILLS- Aplitic dykes (blue and white), quartz-feldspar porphyry and quartz porphyry dykes are comagmatic with the fine grained core phase of the Salal stock. The dykes and sills generally parallel pre-existing jointing and/or fracturing. Basalt dykes/sills generally trend 000 to 060 azimuth with shallow to steep NW dips. This trend is co-linear with the line of volcanic centers which extend through the map area.

4) VEIN/REPLACEMENT- Quartz veins, both mineralized and barren, occur in the same areas suggesting overprinting and multiphase hydrothermal overpressure and relief. Further evidence of episodic build up and release of volatiles is evident from rhythmic layering of quartz veinlets due to successive deposition. Vein orientation is multi directional and appears to be strongest in the NE direction. Width of mineralized veins is 0.1 to 36 inches (0.25-91.4 cm.) and barren veins rarely exceed 2 inches (5.1 cm.).

Alteration zonation occurs chiefly in a broad, horseshoe shaped zone centered on the contact between coarse and fine grained phases. Chlorite alteration is most severe in the area between Waterfall Ck. and Lost Creek (AKA the main mag anomaly SW of Red Mountain) and sericite alteration is most severe in the area of mag anomalies in the area of radial drainage on upper Float Ck. On the basis of field and thin section study, four major alteration zones have been established at Salal Ck. These are an "outer and inner chlorite zone", and an "outer and inner sericite zone". 1) Outer chlorite zone has primary biotite partially altered to chlorite, magnetite, and minor epidote. Plagioclase shows moderate kaolinization or sausseritization, quartz and alkali feldspar are unaffected.

2) Inner chlorite zone- Biotite is partially to completely altered to chlorite, magnetite and minor epidote. Plagioclase is moderately kaolinized and sausseritized, and the alkali feldspars are still relatively unaltered. 3) Outer sericite zone- Biotite is entirely absent. Chlorite grains are partially to completely altered to sericite. Most of the feldspar grains show moderate to severe alteration to sericite or kaolinite. Sericite occurs in thin veinlets. 4) Inner sericite zone- Primary biotite and associated chlorite are absent. Secondary, fibrous, brown biotite is present locally. Accessory minerals include calcite, ankerite, illmenite, leucoxene, garnet and graphite. Silicification (30-45% quartz) is widespread as vein and/or replacement. Secondary muscovite (5-10%) is abundant as large, well developed flakes replacing feldspar. Secondary K-feldspar (40-70%) is the dominant alteration feature.

Based largely from the study of major porphyry deposits in the SW United States, the 4 hydrothermal alteration assemblages present on the Salal Pluton show the following affinities (Stephens, 78):

- 1) Outer chlorite zone = Propylitic facies
- 2) Inner chlorite = Non-equilibrium (i.e. transition from propylitic to argillic)
- 3) Outer sericite = Argillic facies
- 4) Inner sericite = Potassic facies

Molybdenite mineralization is of 3 major types: 1) Vein and shear fillings-associated with quartz and/or pyrite, 2) Molybdenite joint and vein fillings with no associated gangue minerals (AKA moly paint), 3) Disseminated molybdenite. Other minerals present include pyrite, magnetite, chalcopyrite, galena, specular hematite, bornite(?), malachite and azurite. Mineralization is generally periperal to the fine grained core and coeval with at least some silicic dykes.

7.3 DIAMOND DRILLING

A total of 1,606 ft. (490 m.) of BQ core was drilled from a pad on the Float Creek gulley at 6,050 ft. (1,845 m.) elevation. Hole #96-1 was oriented vertical and drilled to a depth of 1,200 ft (366 m.). Hole # 96-2 was stopped at a depth of 406 ft. (123.8 m.), was inclined at -55 degrees and oriented at an azimuth 090 degrees. Significant MoS2 results from the 1996 drill program are summarized as follows:

FROM(FT.)	TO (FT.)	WIDTH(FT)	% MoS2
260	305	45	0.032
462	530	68	0.027
570	650	80	0.024
675	755	80	0.020
65	70	5	0.038
205	225	20	0.023
275	295	20	0.017
330	335	5	0.042
390	406	16	0.032
	FROM(FT.) 260 462 570 675 65 205 275 330 390	FROM(FT.) TO (FT.) 260 305 462 530 570 650 675 755 65 70 205 225 275 295 330 335 390 406	FROM(FT.) TO (FT.) WIDTH(FT) 260 305 45 462 530 68 570 650 80 675 755 80 65 70 5 205 225 20 275 295 20 330 335 5 390 406 16

7.4 SURFACE ROCK CHIP SAMPLING

A total of 374 rock chip samples taken at 5 meter (16.4 m.) intervals were taken to identify molybdenite bearing zones, and yielded the following results:

SAMPLE #(s)	FEET FROM DDH 96-1	AZIMUTH	WIDTH IN FEET	% MoS2
SR 1-6	330	251	98.4	0.135
SR 8-47	0	-	656.0	0.037
SR 101	2132	173	16.4	1.164
SR 103-107	360	237	82.0	0.059
SR 142-143	590	058	32.8	0.062
SR 172-175	310	028	65.6	0.118
SR 193-200	785	235	131.2	0.053
SR 201-202	1310	254	23.0	0.295
SR 243-246	1965	168	65.6	0.041
SR 302-304	1880	164	49.2	0.087
SR 321-331	1250	265	180.4	0.319
SR 332-333	1285	266	32.8	0.167
SR 534-550	1260	269	278.8	0.129

All of the above samples were taken from the middle portion of Float Ck. with the following exceptions: SR 201-202, 321-333, 534-550 were taken from Plug Ck. and SR 101, 243-246, 302-304 were collected from Moly Every Hit Ck.

There may be secondary Cu, W, Pb, Zn, Ag, and/or Sn values within the Salal stock. A portion of samples were analyzed for these elements. Highest values for each element include Cu-615 ppm, W-60 ppm, Pb-2,830, Zn-1,120, Ag-25.4 ppm, Sn-no assays.

7.4 SOIL GEOCHEMISTRY

A total of 47 soil samples were taken along grid lines at 50 m. spacing. From this sample population a total of 18 soils returned geochemical values greater than 1,000 ppm Mo. These above background samples are located in 3 zones:

1) Float Creek- 13 soils returned values greater than 1,000 ppm Mo. The highest value was located 60 m. NNW of the DDH pad, which gave a value of 3,800 ppm Mo (Fig.4) 2) Plug Creek- 4 soils returned values greater than 1,000 ppm Mo. The highest value recorded in the Plug Ck. area was 2,200 ppm Mo which was located near the showings which were rock chip sampled (e.g. SR 534-550, see Fig. 4).

3) Moly Every Hit Ck.- A soil taken near the mouth of M.E.H.Creek returned a value of 1,570 ppm Mo. This soil was 30 m. SE of rock sample SR-101 which assayed 1.17% MoS2 across 5.0 m. (16.4 ft.).

page 13

7.5 PETROGRAPHIC ANALYSIS

Three core samples (DDH 96-1 @ 1,032' & 1,080', 96-2 @ 66'), sent to Vancouver Petrographics were described by Dr.John G. Payne, Ph.D.(Appendix A). Some of the significant results from thin section study include:

1) 50-60% K-spar in each sample indicating strong potassic alteration.

2) K-feldspar has abundant dusty hematite inclusions.

3) Presence of carbonate minerals, i.e. calcite & ankerite.

4) Presence of garnet which is similar to upper level Urad/Henderson alteration zone.

5) Relative abundance of Ti oxide vs. magnetite. Ilmenite is replaced by leucoxene.

6) Muscovite completely replacing biotite

8.0 DISCUSSION OF RESULTS

The Salal Creek stock has numerous features common to Climax, Urad/Henderson, Mt.Emmons (Colorado) type granite porphyry Mo, and to Endako, Kitsault, Quartz Hill (British Columbia, Alaska) type quartz monzonite type porphyry Mo deposits. CHARACTERISTICS CLIMAX TYPE QUARTZ MONZ. SALAL

Cogenetic intrusions Granite porphyry Quartz Monz. porphyry Qtz.M.& Granite

Intrusive type	Multiple granite intrusions	Composite intrusions diorite to qtz.monz.	Multiple qtz.monz. to granite
Dykes/sills	felsic composition radial dyke swarm	intermediate to felsic dyke complex	felsic composition radial dyke swarm
Intrusion type	Stock	Stock or batholith	Stock
Orebody shape	Inverted cup	Inverted cup or tabular	?
Fluorine minerals	Fluorite, topaz	Fluorite	Elevated F geochem
Garnet minerals	Orange spessarite	Rare	Garnet present
Copper minerals	Rare chalcopyrite	Minor chalcopyrite	Rare & minor cpy.
Silicification	High silica core	Lower overall SiO2	Moderate to high ilica 1 X 2 km.core
Alteration	Annular shells, large potassic shell	Shells and sheets, potassic shell restricted	Annular shells, I large potassic shell
Structure Diapir emplacement Regional faults, fracture Combination magmatic pulses controlled fluid migration			
NOTE-	Above comparison i	s modified after White e	t.al., 1981.

Comparing characteristics of known porphyry Mo deposits indicates that the Salal stock is unique in terms of size, i.e. it is a very large size differentiated quartz monzonite (10 X 10 km.) which in turn has evolved a very large inner sericite (500 X 1000 m. area potassic core) which has the potential to host reletively large Quartz/K-spar/molybdenite rich ore zone(s). The relatively huge size of the stock, as well as the overlying Garibaldi Group volcanics and glacial ice (which obscure the central core of the Salal stock) has been a negative factor in the rapid pinpointing of ore zones.

Petrographic analysis of DDH 96-2 @ 66 ft. (20.1 m.) shows garnet is intergrown with quartz (pyrite) and quartz-(graphite-muscovite) host by massive K-Spar. Garnet is an important alteration halo at the Urad/Henderson deposit.

A 5 ft. section of DDH 96-2 @ 65-70 ft. (19.8-21.4 m.) returned .038% MoS2 and 150 ppm Cu. Other drill hole results show numerous 20-80 ft. (6.1-24.4 m.) intervals of .02-.04% MoS2. The widest interval of anomalous MoS2 is located between 462-755 ft. (140.9-230.8 m.) in DDH 96-1 which also coincides with the contact between the gradational medium and fine grained at 660 ft. (201.3 m.), see Appendix C diamond drill records. Type 2) MoS2 fracture filling mineralization is most common in DDH 96-1,2 with lesser type 1) quartz(pyrite) vein/shear MoS2 mineralization. Type 3) disseminated MoS2 is rare, but occurs in unit 4) fine grained qtz.monz./granite.

Several zones in excess of .1% MoS2 over widths in excess of 100 ft. (30.5 m.) have been identified in Float and Plug Ck. These higher grade zones roughly correspond to contact zones between 4)fine grained and 2)&3)coarse & medium grained qtz.monzonite/granite. Unit 6)quartz-feldspar porphyry is sparse in volume when comparing it to the widespread occurrence of units 2),3) & 4). Tracing (to depth), the structures responsible for the deposition of unit 6) are most important since it is likely that late stage diapiric emplacement and related magmatic pulses associated with quartz-feldspar porphyry could give rise to an inverted cup shaped, buried high grade MoS2 core zone (e.g.Urad/Henderson, approx.;450 million tonnes @ .3% MoS2).

9.0 CONCLUSION

The Salal 1-6 claims are underlain by numerous favourable structures (e.g. radial and concentric fractures, intersecting regional faults, extensive jointing) and chemistry (anomalous Mo values within potassic and argillic alteration shells) to host a porphyry Mo deposit(s).

The information gained from the 1996 work program and interpretation of data from previous work suggests that #1) Float Creek Zone (which includes Plug Creek and Moly Every Hit Ck.) and #2) Mag Anomaly Zone (including Cornice and Lost Creek, 1 km. SW of Red Mountain) are worthy of further detailed mapping, sampling, and core drilling.

page 15

10.0 RECOMMENDATIONS

The Float Creek area is considered the primary target for future exploration. Approximately 10,000 feet of core drilling is recommended for the area between Float Creek and Plug Creek. Drill holes can be collared on a unit 9) basalt sill that forms a ledge at 5,950 ft. (1,814 m.) elevation. Proposed pad #1 is approximately 738 ft.(225 m.) SW of DDH 96-1,2. ENE and W orientated drill holes (with -45 dip) are recommended for proposed pad #1 which could cut the depth extensions of the Float Ck. and Plug Ck. zones. A second proposed pad could be located 1,100 feet (335.5 m.) north of proposed pad #1 at an elevation of 6,725 ft (2,050 m.). Two drill holes from proposed pad #2 could be oriented SE (@-50 and -90 dip) to cut the Float Creek Zone. A total of 4 holes, each with a depth of 1,500 feet is recommended to assess the Float Creek zone. The remaining 4,000 feet of core drilling should be based on the results from the first four holes.

The Mag Anomaly Zone located 1.25 km. NE of the Float Ck. Zone is a secondary target where one strategically located drill hole (1,500 ft depth) could test for the presence of high grade molybdenite at depth.

PROPOSED BUDGET:

FIELD CREV	W- Geologist, 2 geotechnicians, 1 cook X	60 days	\$ 34,500.00
FIELD COST	S- Helicopter charters, 40 hours		30,000.00
	Core drilling 10,000 ft. 3,050 m.		305,000.00
	Assays (800)		16,000.00
	Equipment and supplies		5,000.00
	Communications		6,000.00
	Food		8,400.00
REPORT			1,200.00
		TOTAL=	\$406,100,00

REFERENCES

Bookstrom, A.A., 1981, Tectonic Setting and Generation of Rocky Mountain Porphyry Molybdenum Deposits, Relations of Tectonics to Ore Deposits in the Southern Cordillera, Arizona Geological Society Digest, Vol 14, 1981.

Mustard, D.K., P.Eng., 1976 and 1978 Final Report Salal Creek Molybdenum Property, BP Minerals, Utah Mines unplublished report.

Read, P.B., 1990, Mount Meager Complex, Geoscience Canada, Sept., 1990, Vol.17, No.3.

Roberts, R.G., 1988, Ore Deposit Models, G.S.C. Reprint Series #3

Schroeter, T.G., Porphyry Deposits of the NW Cordillera of North America, Special Volume 46, C.I.M.

Sillitoe, R.H., 1980, Types of Porphyry Molybdenum Deposits, Mining Magazine., Vol. 142, p.550-553.

Stephens, G., Ph.D., 1972, Geology and Mineralization of the Salal Creek Area, Ph.D. Thesis, Lehigh University.

White, W.H., 1981, The Character and Origin of Climax-Type Molybdenum Deposits, Econ.Geol. 75th Anniversary Volume.p.270-316.

STATEMENT OF QUALIFICATION

I Andris Kikauka, of 6439 Sooke Rd., Sooke, B.C., hereby certify that:

- 1) I am a graduate of Brock University, St.Catharines, Ontario, with an Honours Bachelor of Science Degree in Geological Sciences, 1980.
- 2) I am a Fellow in good standing with the Geological Association of Canada. Registration # 5,717.
- 3 I am registered in the Province of British Columbia as a Professional Geoscientist Registration # 18,275
- 4) I have practised my profession for fifteen years in precious and base metal exploration in the Cordillera of North, Central and South America, and for three years exploring for uranium within the Canadian Shield.
- 5) The information, opinions and recommendations in this report are based on fieldwork carried out in my presence on the subject properties.
- 6) I have no direct or indirect interest in the holdings of Verdstone Gold Corp. or Molycor Gold Corp. and I consent to the use of this report for the purpose of filing a prospectus or statement of material facts.

Andris Kikauka, P.Geo.,

A. Kihah

Dec. 31, 1996

ITEMIZED COST STATEMENT- SALAL 1-6 CLAIMS, JULY 15-OCT.2, 96

FIELD CREW:	
Geologist, A.Kikauka (28 days @ \$ 175/day)	\$ 4,900.00
Geotechnician, M.Bombois (48 days @ \$ 150/day)	7,200.00
", R.Rogers (45 days @ \$150/day)	6,750.00
", A.Osbourne (45 days @ \$100/day)	4,500.00
FIELD COSTS:	
Helicopter charters, Pemberton Helicopters (55 hrs.)	46,593.00
490 m. Diamond drilling, RDF Holdings	49,000.00
Assays 645 rock and core	12,900.00
47 soil	752.00
Report	525.00
Communication	1,054.00
Food and Accomodations	6,000.00
Total =	\$ 140,174.00

APPENDIX A

Report # 960743 for:

Verdstone Gol@orp, 310 - 1959 152 Street, Surrey, B.C., V4A 9E3

Project: Salal Creek

Samples: 96-1-1032, 96-1, 1080 96-2-66

Summary:

Sample 96-1-1032 a fine to medium grained quartz monzonite dominated by K-feldspar with less abundant quartz and plagioclase and much less biotite. Accessory minerals include magnetite, Ti-oxide/leucoxene, specular hematite, and pyrite. Biotite is replaced moderately by chlorite and ilmenite is replaced strongly to completely by Ti-oxide/leucoxene. Veins and veinlets are of quartz-ankerite-sericite(?), quartz-hematite, and calcite-chlorite-hematite.

Sample 96-1-1080a fine to medium grained quartz monzonite dominated by fine to medium grained K-feldspar with less abundant quartz, much less abundant plagioclase, and minor biotite. Accessory minerals include opaque (probably magnetite and pyrite) and Ti-oxide/ leucoxene. Biotite is replaced completely by muscovite, and ilmenite is replaced strongly to completely by Ti-oxide/leucoxene. Veins are of quartz-ankerite-sericite.

Sample 96-2-66 ontains a few metamorphic patches and lenses dominated by quartz and garnet with much less abundant plagioclase, and pyrite-ilmenite clusters. Much of the sample is a strongly altered assemblage dominated by fine to medium grained quartz and muscovite with minor pyrite. At one end of the sample is a megacryst of K-feldspar which covers the entire width of the section. Veinlets are of quartz-garnet-(pyrite) and quartz-(graphite-muscovite).

John G. Payne, Ph.D., Tel: (604)-986-2928 Fax: (604)-983-3318 email:johnpayn@istar.ca

October 1996

Sample 96-1-1032 Fine/Medium Grained Quartz Monzonite: Biotite altered moderately to Chloite, Plagioclase altered slightly to sericite-hematite; Veins, Veinlets of Quartz-Ankerite-Sericite(?), Quartz-Hematite, Calcite-Chlorite-Hematite

The sample is dominated by fine to medium grained K-feldspar with less abundant quartz and plagioclase and much less biotite. Accessory minerals include magnetite, Ti-oxide/leucoxene, specular hematite, and pyrite. Biotite is replaced moderately by chlorite and ilmenite is replaced strongly to completely by Ti-oxide/leucoxene. Veins and veinlets are of quartz-ankerite-sericite(?), quartz-hematite, and calcite-chlorite-hematite.

K-feldspar	55-60%
quartz	20-25
plagioclase	10-12
biotite	2-3
magnetite	0.5
Ti-oxide/leucoxene	0.5
specular hematite	0.3
pyrite	0.3
chalcopyrite	minor
veins, veinlets	
quartz-ankerite-seri	cite(?) 1-2
quartz-hematite	1-2
calcite-chlorite-hem	atite 0.3

K-feldspar forms anhedral grains averaging 0.3-0.8 mm in size and a few up to 1.8 mm long. Many elongate grains have Carlsbad twins. A few contain exsolution lenses of plagioclase in one crystallographic orientation. Grains contain minor to locally moderately abundant dusty hematite inclusions.

Quartz forms anhedral grains averaging 0.3-0.6 mm in size. A few grains from 1-2 mm long may be early formed phenocrysts. Some patches up to 1 mm across are of intimate, sub-graphic intergrowths of quartz and feldspar in which quartz grains up to 1 mm across contain abundant very fine to fine grained, irregular patches of feldspars.

Plagioclase forms anhedral grains averaging 0.3-0.5 mm in size. Alteration is slight to cryptocrystalline to extremely fine grained sericite and dusty hematite. A few grains are replaced slightly by calcite. Some grains are replaced moderately by patches of K-feldspar.

Biotite forms slender flakes averaging 0.5-0.7 mm long and a few up to 0.9 mm long. Pleochroism is from pale to light/medium brown. Alteration is moderate to complete to pseudomorphic chlorite.

Magnetite forms disseminated grains and clusters of a few grains averaging 0.07-0.1 mm in size. Some are altered slightly to hematite, mainly along grain borders.

A few patches up to 0.2 mm across are dominated by plates of specular hematite averaging 0.05-0.08 mm long.

Ti-oxide/leucoxene forms patches averaging 0.05-0.15 mm across and locally up to 0.5 mm across, and elongate lenses up to 0.4 mm long of extremely fine to cryptocrystalline grains; these probably are secondary after ilmenite.

(continued)

Pyrite forms anhedral grains averaging 0.05-0.08 mm in size, commonly associated with magnetite. One pyrite grain contains several inclusions of magnetite and silicate averaging 0.01-0.02 mm in size. A few pyrite grains up to 0.4 mm across are disseminated in silicates. One pyrite grains contains an inclusion of chalcopyrite 0.02 mm across.

Chalcopyrite forms grains averaging 0.03-0.05 mm in size associated with magnetite.

A vein 0.7-0.8 mm wide is of fine grained quartz with submosaic grain borders. A parallel vein 0.5-0.8 mm wide is of quartz, ankerite, and sericite(?). Ankerite forms subradiating grains up to 1.2 mm long in interstitial patches in the core of the vein among euhedrally terminated quartz grains. Ankerite contains abundant disseminated dusty hematite. Sericite(?) forms patches up to 1.5 mm across (interstitial to euhedrally terminated quartz grains) of flakes ranging from cryptocrystalline to extremely fine grained. The latter commonly occur in unoriented lenses up to 0.05 mm long in which grains 0.01-0.015 mm long are in parallel orientation perpendicular to the length of the lens.

A veinlet averaging 0.03-0.05 mm wide is dominated by hematite plates averaging 0.03-0.05 mm long. It contains lenses up to 0.2 mm wide of extremely fine grained calcite and chlorite.

A subparallel and proximal veinlet 0.3 mm wide is of extremely fine grained quartz with disseminated, slender plates of specular hematite averaging 0.05-0.07 mm long.

Sample 96-1-1080 Fine/Medium Grained Quartz Mnites Biotite altered completely to Muscovite, Plagioclase altered slightly to moderately to sericite-ankeritehematite; Veins of Quartz-Ankerite-Sericite

The sample is dominated by fine to medium grained K-feldspar with less abundant quartz, much less abundant plagioclase, and minor biotite. Accessory minerals include opaque (probably magnetite and pyrite) and Ti-oxide/leucoxene. Biotite is replaced completely by muscovite, and ilmenite is replaced strongly to completely by Ti-oxide/leucoxene. Veins are of quartz-ankerite-sericite.

K-feldspar	45-50%	6
quartz	25-30	
plagioclase	10-12	
biotite	1	
opaque	0.5	(magnetite/pyrite)
Ti-oxide/leucoxene	0.5	
calcite	0.2	
veins, veinlets		
quartz-ankerite-sericit	e	12-15

K-feldspar forms anhedral grains averaging 0.3-0.8 mm in size and a few up to 1.8 mm long. Many elongate grains have Carlsbad twins. A few contain exsolution lenses of plagioclase in one crystallographic orientation. Grains contain minor to locally moderately abundant dusty hematite inclusions.

Quartz forms anhedral grains averaging 0.3-0.6 mm in size and a few grains up to 1.5 mm across. A few patches up to 1.5 mm across are of graphic intergrowths of single quartz and K-feldspar grains.

Plagioclase forms anhedral grains averaging 0.3-0.5 mm in size and one grain 2 mm across. Alteration is slight to moderate to cryptocrystalline to extremely fine grained sericite, extremely fine to very fine grained ankerite, and moderately abundant dusty hematite. Some grains are replaced moderately by patches of K-feldspar. A few grains contain one or two anhedral muscovite flakes up to 0.3 mm long.

Biotite forms slender flakes averaging 0.5-0.7 mm long and a few up to 1 mm long. Pleochroism is from pale to light/medium brown. Alteration is complete to pseudomorphic muscovite with minor lenses of Ti-oxide.

Opaque (magnetite?) forms disseminated grains and clusters of a few to several grains averaging 0.07-0.1 mm in size.

Ti-oxide/leucoxene forms patches averaging 0.05-0.15 mm across and locally up to 0.5 mm across, and elongate lenses up to 0.4 mm long of extremely fine to cryptocrystalline grains; these probably are secondary after ilmenite. Some patches are rimmed by very fine grained muscovite.

Sphene forms an elongate grain 0.3 mm long.

Veins up to 3 mm wide are dominated by fine to coarse grained quartz, with a few grains up to 2.5 mm across. The main vein contains several patches up to 1 mm across of fine to medium grained ankerite and patches up to 2 mm in size of extremely fine grained sericite. In some patches, ankerite and sericite are intergrown moderately.
Sample 96-2-66 Quartz-Garnet-(Plagioclase-Pyrite/Ilmenite) Lenses; Quartz-Muscovite Replacement; K-feldspar Megacryst; Veinlets of Quartz-Garnet-Pyrite/Ilmenite, Quartz-Graphite-Muscovite

A few patches and lenses are dominated by quartz and garnet with much less abundant plagioclase, and pyrite-ilmenite clusters. Much of the sample is a strongly altered assemblage dominated by fine to medium grained quartz and muscovite with minor pyrite. At one end of the sample is a megacryst of K-feldspar which covers the entire width of the section. Veinlets are of quartz-garnet-(pyrite) and quartz-(graphite-muscovite).

metamorphic	c lenses, patches	main alteration	n zone
quartz	12-15%	quartz	35-40%
garnet	7-8	muscovite	17-20
plagioclase	0.3	pyrite	0.3
pyrite	0.3	apatite	minor
ankerite	0.2	ilmenite	minor
ilmenite	0.1	chalcopyrite	trace
muscovite	0.1		
hematite	trace		
megacryst			
K-feldspar	17-20		
veinlets			
quartz-pyrite-g	arnet 1		
quartz-graphite	-muscovite 1-2		

A few lenses and patches up to 2 cm long and several mm across are dominated by very fine to fine grained quartz which is intergrown with very irregular patches of extremely fine to very fine grained garnet and minor to moderately abundant patches of pyrite-ilmenite. Garnet occurs as dense masses and as clusters of equant, subrounded grains averaging 0.02-0.025 mm in size intergrown with quartz. Plagioclase is concentrated in a few lenses up to 2×0.5 mm in size intergrown with garnet; in these lenses, plagioclase is replaced slightly to moderately by extremely fine grained sericite. Ankerite forms a few, commonly very irregular, interstitial grains and patches averaging 0.05-0.1 mm in size. Muscovite forms scattered flakes averaging 0.07-0.1 mm in length. Hematite forms a few clusters of equant to elongate plates up to 0.1 mm long intergrown with quartz.

Quartz forms anhedral grains averaging 0.5-1 mm in size, with a few up to 2 mm across. Some coarse grains are moderately strained. Disseminated in quartz are flakes of muscovite averaging 0.1-0.3 mm in size.

Muscovite is concentrated moderately to strongly in irregular to subradiating clusters of flakes averaging 0.2-0.5 mm in size and moderately abundant patches (mainly near the K-feldspar megacryst) in which grains are up to 1.5 mm long.

Pyrite forms disseminated grains averaging 0.1-0.3 mm in size and a few up to 0.4 mm across. Many grains intergrown with garnet contain abundant subparallel platy inclusions of ilmenite, which occupy up to 50% of the grain. A few patches are dominated by ilmenite with minor to moderately abundant pyrite. In a narrow zone along the margin of the K-feldspar megacryst, pyrite forms abundant grains averaging 0.05-0.08 mm long.

Sample 96-2-66 (page 2) (continued)

Apatite forms two proximal anhedral grains 0.3-0.4 mm in size in quartz. Chalcopyrite forms a few anhedral grains averaging 0.03-0.05 mm across in quartz or associated with pyrite.

The K-feldspar megacryst is over 2 cm in size. It contains abundant extremely fine grained fluid inclusions and moderately abundant dusty to extremely fine grained opaque (hematite?). A few parts of the megacryst contain moderately abundant, irregular, disseminated patches of ankerite averaging 0.02-0.05 mm in size. A few patches up to 2 mm in size were recrystallized to K-feldspar which is relatively free of inclusions. Pyrite forms disseminated, irregular grains averaging 0.02-0.03 mm in size in the K-feldspar megacryst. Bordering the megacryst are abundant patches of medium to locally coarse grained, subradiating muscovite.

Two parallel veinlets 0.1 mm wide mainly cutting the K-feldspar megacryst are of very fine grained quartz, extremely fine grained garnet, and minor very fine grained pyrite.

A veinlet up to 0.3 mm wide are dominated by very fine grained quartz with patches and seams containing abundant, slender graphite flakes averaging 0.03-0.07 mm long intergrown intimately with very fine grained muscovite or quartz.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: VERDSTONE GOLD CORP. WINDSOR SQUARE 1959 152ND ST., SUITE 310 SURREY, BC V4A 9E3

APPENDIX B

Page per 1-A Total 3 2 Certific.... Date: 14-AUG-96 Invoice No. 19626859 P.O. Number : Account : JZL

Project : SALAL Comments:

		_								CE	RTIFI	CATE	OF A	NALY	SIS		49626	859		
SAMPLE	PREP CODE	Ag ppm	A1 %	As ppm	Ba ppm	Ве ррл	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Eg	K %	La ppm	Mg %	Mn ppm	Mo ppm
L10+50N 5+00E L10+50N 5+50E L10+50N 6+00E L10+50N 6+50E L10+50N 7+00E	201 202 201 202 201 202 201 202 201 202 201 202	0.2 < 0.2 0.2 0.2 0.2 0.2	1.83 0.77 1.83 0.97 0.81	< 2 4 2 4	50 60 50 100 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 2 2 2 2 2 2	0.08 0.19 0.05 0.06 0.15	< 0.5 0.5 < 0.5 < 0.5 0.5	6 5 5 5 6	3 4 4 3	69 31 74 33 59	2.21 2.08 2.48 1.95 2.26	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.05 0.05 0.04 0.04 0.05	10 < 10 10 < 10 10	0.12 0.15 0.13 0.13 0.10	1580 587 2210 1820 1425	225 49 263 118 184
L10+50N 7+50E L10+50N 8+00E L10+50N 8+50E L10+50N 9+00E L10+50N 9+50E	201 202 201 202 201 202 201 202 201 202 201 202	0.2 < 0.2 0.6 0.6 0.6	1.43 2.73 0.52 0.68 2.58	4 4 6 2 10	50 110 30 30 100	0.5 0.5 < 0.5 < 0.5 2.0	6 4 6 8 6	0.05 0.09 0.04 0.03 0.15	1.0 1.5 1.0 0.5 5.5	4 6 3 3 5	3 5 1 1 4	188 342 87 99 557	2.76 3.00 2.16 2.04 2.85	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.08 0.13 0.05 0.07 0.17	30 40 10 10 70	0.13 0.25 0.06 0.07 0.31	3170 1510 1685 1375 44 90	532 344 542 724 379
L11+00N 5+00E L11+00N 5+50E L11+00N 6+00E L11+00N 6+50E L11+00N 7+00E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 1.0 0.2 1.0	1.63 0.73 1.40 1.38 1.51	< 2 2 2 < 2 2 2	70 70 40 40 110	0.5 < 0.5 < 0.5 < 0.5 0.5	< 2 2 6 2 2	0.07 0.27 0.02 0.05 0.09	0.5 0.5 0.5 < 0.5 3.0	5 6 5 5 7	3 6 4 5 3	69 28 165 45 303	2.36 2.14 4.31 2.15 2.68	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.07 0.06 0.05 0.04 0.08	60 < 10 10 < 10 40	0.12 0.21 0.11 0.15 0.12	1655 493 2550 1410 6870	289 18 470 147 436
L11+00N 7+50E L11+00N 8+00E L11+00N 8+50E L11+00N 9+00E L11+00N 9+50E	201 202 201 202 201 202 201 202 201 202 201 202	0.6 0.2 0.6 0.6 0.4	1.53 1.28 0.64 0.78 1.97	10 2 4 6 2	60 50 40 30 70	0.5 0.5 < 0.5 0.5 1.0	8 6 8 8	0.07 0.10 0.04 0.03 0.14	4.5 2.0 1.5 1.0 2.0	6 4 4 4 4	3 3 1 1 3	296 146 107 116 334	2.92 2.59 2.45 2.34 2.83	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.08 0.06 0.06 0.07 0.14	60 30 10 10 50	0.14 0.12 0.06 0.08 0.25	5270 2450 2130 1530 2250	63 1 49 8 63 3 87 7 50 8
L11+50N 5+00E L11+50N 5+50E L11+50N 6+00E L11+50N 6+50E L11+50N 7+00E	201 202 201 202 201 202 201 202 201 202 201 202	0.6 0.2 0.2 1.0 0.2	2.73 1.11 2.60 1.87 1.01	6 2 10 6 6	90 60 150 140 30	0.5 < 0.5 0.5 0.5 < 0.5	6 2 2 8 6	0.04 0.06 0.04 0.09 0.06	< 0.5 0.5 0.5 2.0 0.5	9 5 6 8 4	5 3 5 3 1	152 43 56 204 148	3.85 1.88 2.57 3.75 2.67	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.14 0.06 0.05 0.11 0.07	30 10 10 30 30	0.22 0.10 0.11 0.14 0.08	2750 1230 1385 5580 3350	519 98 145 437 1980
L11+50N 7+50E L11+50N 8+00E L11+50N 8+50E L11+50N 9+00E L11+50N 9+50E	201 202 201 202 201 202 201 202 201 202 201 202	1.0 1.0 0.4 0.6 4.0	1.15 0.44 0.87 1.18 1.86	6 6 < 2 2 82	50 30 60 80 80	0.5 < 0.5 0.5 0.5 0.5	6 6 6 26	0.06 0.01 0.12 0.04 0.04	2.5 0.5 4.0 2.0 2.0	3 3 5 4 7	2 1 1 3 4	234 96 172 169 352	2.29 2.56 2.03 2.09 4.13	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.07 0.05 0.08 0.08 0.09	30 10 30 20 50	0.10 0.04 0.13 0.18 0.18	4550 1805 2410 1980 3190	1055 645 599 328 1230
L12+00N 5+00E L12+00N 5+50E L12+00N 6+00E L12+00N 6+50E L12+00N 7+00E	201 202 201 202 201 202 201 202 201 202 201 202	0.2 0.8 0.4 0.2 0.2	1.81 1.52 2.22 0.74 0.42	6 6 8 < 2 6	50 80 80 50 < 10	< 0.5 0.5 0.5 < 0.5 < 0.5	2 2 6 2 16	0.01 0.03 0.05 0.19 0.04	< 0.5 0.5 0.5 < 0.5 0.5	6 9 7 5 1	3 2 6 3 < 1	86 126 91 45 70	3.35 3.12 5.07 2.36 1.97	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 2	0.07 0.07 0.09 0.06 0.06	30 30 30 10 40	0.10 0.09 0.12 0.12 0.02	1495 4980 1165 1025 2490	426 535 368 228 2200
L12+00N 7+50E L12+00N 8+00E L12+00N 8+50E L12+00N 9+00E L12+00N 9+50E	201 202 201 202 201 202 201 202 201 202 201 202	0.6 3.6 0.4 0.4 0.8	0.78 0.70 0.96 1.05 1.04	2 2 < 2 2 8	30 30 30 50 60	< 0.5 0.5 < 0.5 0.5 0.5	4 30 2 6 8	0.06 0.18 0.05 0.04 0.05	0.5 2.5 < 0.5 2.0 2.5	3 3 2 5 5	2 1 3 2 1	125 175 42 154 218	1.82 1.76 1.57 2.03 2.34	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 1	0.05 0.13 0.03 0.07 0.07	20 30 < 10 30 20	0.07 0.05 0.11 0.11 0.10	2430 3060 732 2090 2400	686 1830 225 608 706
L																		n		

CERTIFICATION: Hart Buchler

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 North Vancouver V7J 2C1

To: VERDSTONE GOLD CORP. WINDSOR SQUARE 1959 152ND ST., SUITE 310 SURREY, BC V4A 9E3

Page | Total | эег :1-В 3 :2 Certificate Date: 14-AUG-96 Invoice No. : 19626859 P.O. Number • :JZL Account

Project : SALAL Comments:

										CE	RTIFI	CATE	OF A	NALYSIS	A9626859
SAMPLE	PREP CODE	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U mqq	V mqq	W ppm	Zn ppm	
L10+50N 5+00E L10+50N 5+50E L10+50N 6+00E L10+50N 6+50E L10+50N 7+00E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.01 0.03 < 0.01 0.01 0.03	3 5 5 4 5	280 380 370 510 370	70 26 96 50 72	< 2 < 2 < 2 < 2 < 2 < 2	2 2 3 1 2	13 30 9 14 31	0.02 0.08 0.05 0.07 0.07	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	21 42 29 35 41	< 10 < 10 < 10 < 10 < 10 < 10	96 70 100 68 90	
L10+50N 7+50E L10+50N 8+00E L10+50N 8+50E L10+50N 9+00E L10+50N 9+50E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	3 5 1 1 5	300 350 200 220 300	172 104 186 232 182	< 2 < 2 < 2 < 2 < 2 < 2	3 4 1 2 5	9 21 8 8 27	0.03 0.06 0.01 0.01 0.04	< 10 < 10 < 10 < 10 < 10 < 10	< 10 10 < 10 < 10 30	19 25 11 11 21	< 10 < 10 < 10 < 10 < 10 < 10	174 318 124 140 1075	
L11+00N 5+00E L11+00N 5+50E L11+00N 6+00E L11+00N 6+50E L11+00N 7+00E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.01 0.04 < 0.01 < 0.01 0.01	3 7 3 5 4	220 500 400 290 330	62 22 132 54 100	< 2 < 2 < 2 < 2 < 2 < 2	4 1 4 1 4	17 37 7 10 32	0.02 0.10 0.04 0.07 0.06	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	16 59 23 36 29	< 10 < 10 < 10 < 10 < 10	104 80 120 82 196	
L11+00N 7+50E L11+00N 8+00E L11+00N 8+50E L11+00N 9+00E L11+00N 9+50E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	3 3 1 < 1 4	360 330 200 240 260	150 230 210 322 168	< 2 < 2 < 2 < 2 < 2 < 2 < 2	4 3 2 2 5	19 22 8 8 22	0.03 0.02 0.02 0.01 0.03	< 10 < 10 < 10 < 10 < 10 < 10	10 10 < 10 < 10 30	19 19 12 12 18	< 10 < 10 < 10 < 10 < 10 < 10	328 286 152 166 572	
L11+50N 5+00E L11+50N 5+50E L11+50N 6+00E L11+50N 6+50E L11+50N 7+00E	201 202 201 202 201 202 201 202 201 202 201 202	0.01 0.01 0.01 0.01 < 0.01 < 0.01	5 4 7 4 < 1	480 260 310 300 220	110 48 68 182 324	< 2 < 2 < 2 2 2 < 2	7 2 3 5 4	15 12 14 39 8	0.05 0.06 0.09 0.06 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 10	28 27 40 28 11	< 10 < 10 < 10 < 10 < 10 < 10	208 108 120 236 132	
L11+50N 7+50E L11+50N 8+00E L11+50N 8+50E L11+50N 9+00E L11+50N 9+50E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	1 < 1 1 3 3	270 160 350 260 330	558 264 184 142 200	2 < 2 < 2 < 2 < 2 < 2 < 2	3 1 3 3 5	12 5 18 9 14	0.01 0.01 0.03 0.04	< 10 < 10 < 10 < 10 < 10 < 10	10 < 10 10 10 10	14 8 14 16 22	< 10 < 10 < 10 < 10 < 10 < 10	256 112 256 212 244	
L12+00N 5+00E L12+00N 5+50E L12+00N 6+00E L12+00N 6+50E L12+00N 7+00E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.01 < 0.01 0.01 0.04 < 0.01	3 3 5 5 < 1	330 290 450 340 100	132 116 102 60 1525	< 2 < 2 < 2 < 2 < 2 2	6 4 5 2 2	15 11 37 32 3	0.03 0.03 0.10 0.07 < 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	18 18 48 41 4	< 10 < 10 < 10 < 10 < 10 < 10	96 198 152 78 106	
L12+00N 7+50E L12+00N 8+00E L12+00N 8+50E L12+00N 9+00E L12+00N 9+50E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	1 < 1 3 2 1	230 130 230 240 230	264 2830 88 366 266	2 < 2 < 2 < 2 < 2 < 2 < 2	1 2 1 2 3	9 13 11 12 12	0.01 < 0.01 0.04 0.02 0.02	< 10 < 10 < 10 < 10 < 10 < 10	< 10 10 < 10 10 10	12 7 26 13 12	< 10 < 10 < 10 < 10 < 10 < 10	136 250 110 226 274	

CERTIFICATION:

Jan Bechler

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: VERDSTONE GOLD CORP. WINDSOR SQUARE 1959 152ND ST., SUITE 310 SURREY, BC V4A 9E3 Page per :2-A Total s :2 Certificang Date: 14-AUG-96 Invoice No. : 19626859 P.O. Number : Account : JZL

Project : SALAL Comments:

											CE	RTIFI	CATE	OF A	NALY	'SIS	4	49626	859		
SAMPLE	PREP CODE	p	Ag pm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Со ррш	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm
L12+50N 8+00E 2 L12+50N 8+50E 2 L12+50N 9+00E 2 L12+50N 9+50E 2 L13+00N 8+50E 2	201 20 201 20 201 20 201 20 201 20 201 20	2 0 2 0 2 1 2 4 2 1	.2 .2 .0 .6	0.72 1.14 1.12 2.13 0.91	2 < 2 6 16 6	50 30 50 120 30	< 0.5 < 0.5 0.5 1.0 < 0.5	2 2 10 12 20	0.08 0.04 0.06 0.08 0.09	0.5 < 0.5 2.0 12.0 0.5	2 4 5 10 3	1 4 1 3 1	48 58 179 976 92	1.45 1.74 2.44 4.04 3.67	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 1 2	0.03 0.03 0.08 0.11 0.08	< 10 < 10 30 50 10	0.07 0.13 0.11 0.13 0.07	1365 1255 2660 12090 1905	464 246 861 1495 2440
L13+00N 9+00E 2 L13+00N 9+50E 2 L16+50N 11+40E 2 L16+50N 11+50E 2	201 20 201 20 201 20 201 20 201 20	2 0 2 1 2 1 2 7	.8 .0 .0 .0	1.12 1.49 0.48 0.35	2 18 12 36	40 50 40 40	1.0 1.0 < 0.5 < 0.5	8 12 6 24	0.08 0.05 0.03 0.08	6.0 2.5 0.5 2.0	4 5 7 8	3 2 1 1	325 417 142 259	2.84 3.82 4.20 5.70	< 10 < 10 < 10 < 10	< 1 2 < 1 1	0.06 0.08 0.07 0.04	20 40 30 30	0.09 0.09 0.06 0.03	4480 3350 4290 11070	737 1390 500 1275

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: VERDSTONE GOLD CORP. WINDSOR SQUARE 1959 152ND ST., SUITE 310 SURREY, BC V4A 9E3 *

Page per :2-B Total 3s :2 Certil. J Date: 14-AUG-96 Invoice No. :19626859 P.O. Number : Account :JZL

Hant Buchler

CERTIFICATION:_

Project : SALAL Comments:

										CE	RTIFI	CATE	OF A	NALYSI	S A9626859
SAMPLE	PREP CODE	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	W ppm	Zn ppm	
L12+50N 8+00E L12+50N 8+50E L12+50N 9+00E L12+50N 9+50E L13+00N 8+50E	201 20 201 20 201 20 201 20 201 20 201 20	$\begin{array}{c} 2 < 0.01 \\ 2 < 0.01 \\ 2 < 0.01 \\ 2 < 0.01 \\ 2 < 0.01 \\ 2 < 0.01 \end{array}$	1 4 1 2 < 1	240 280 270 470 240	124 90 278 132 374	< 2 < 2 < 2 < 2 < 2 < 2	1 1 3 5 2	24 8 17 40 14	0.02 0.05 0.02 0.03 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 40 < 10	14 29 12 16 12	< 10 < 10 < 10 10 < 10	112 136 236 856 154	
L13+00N 8+50E L13+00N 9+00E L13+00N 9+50E L16+50N 11+40E L16+50N 11+50E	201 20 201 20 201 20 201 20 201 20	2 < 0.01 2 < 0.01 2 < 0.01 2 < 0.01 2 < 0.01 2 < 0.01	< 1 3 1 < 1	240 390 450 550 800	374 280 316 86 2130	< 2 < 2 2 2	2	14 20 19 12 9	0.01 0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 30 < 10 10	12 18 15 43 23	< 10 < 10 < 10 < 10 < 10	154 446 364 126 186	

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: VERDSTONE GOLD CORP. WINDSOR SQUARE 1959 152ND ST., SUITE 310 SURREY, BC V4A 9E3

SALAL Comments: ATTN:MARC BAMBOIS Page ber :1-A Total Fuges :1 Certificate Date: 20-AUG-96 Invoice No. : 19627517 P.O. Number : Account :JZL

											CE	RTIFI	CATE	OF A	NALY	SIS	A	9627	517		
SAMPLE	PRE COD	P E	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K	La ppm	Mg %	Mn ppm	Mo pp m
L12+50N 5+00E L12+50N 6+00E L12+50N 10+50E L12+25N 10+25E L12+25N 10+25E L13+00N 6+00E	201 201 201 201 201 201	202 202 202 202 202 202	1.0 0.2 0.6 0.4 0.4	3.14 0.48 2.36 2.09 1.91	2 < 2 10 2 < 2	50 30 70 80 60	0.5 < 0.5 0.5 1.5 0.5	6 2 6 8 4	0.07 0.03 0.06 0.10 0.05	< 0.5 < 0.5 2.0 6.0 < 0.5	7 4 8 8 7	4 < 1 5 5 2	128 67 179 326 104	4.31 1.12 2.86 2.72 3.55	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 1 < 1</pre>	0.08 0.02 0.05 0.06 0.06	20 10 30 50 40	0.16 0.04 0.17 0.19 0.14	1280 2290 3370 5270 2110	561 120 551 510 475

Project :

1.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

To: VERDSTONE GOLD CORP. WINDSOR SQUARE 1959 152ND ST., SUITE 310 SURREY, BC V4A 9E3

Project : SALAL Comments: ATTN:MARC BAMBOIS Pag mber :1-B Total rages :1 Certificate Date: 20-AUG-96 Invoice No. :19627517 P.O. Number : Account :JZL

CERTIFICATION:

											CE	RTIFI	CATE	OF A	NALYSIS	S A9627517
SAMPLE	PREI CODI	P E	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	U ppm	V ppm	W ppm	Zn ppm	
L12+50N 5+00E L12+50N 6+00E L12+50N 10+50E L12+25N 10+25E L12+25N 10+25E L13+00N 6+00E	201 201 201 201 201 201	202 202 202 202 202 202	0.01 0.01 0.01 < 0.01 < 0.01	5 2 8 10 3	430 60 500 380 300	150 56 182 136 102	<pre>< 2 < 2</pre>	7 1 5 5 5	24 3 (16 33 12	0.06 0.01 0.07 0.09 0.03	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 10 30 < 10	31 3 40 42 22	< 10 < 10 < 10 < 10 < 10 < 10	162 72 274 670 214	
																2

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 io: VERDSTONE GOLD CORP. WINDSOR SQUARE 1959 152ND ST., SUITE 310 SURREY, BC V4A 9E3

Page Total ber :1-A .∌s :1 Certificate Date: 02-AUG-96 Invoice No. : 19625598 P.O. Number : Account : JZL

tant Bichler

Project : SALAL Comments: ATTN:A.KIKANKA

											CEI	RTIFIC	CATE	OF A	NALY	SIS	A	9625	598		
SAMPLE	PRE COI	EP DE	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Мо ррт
L10+00N 5+00E L10+00N 5+50E L10+00N 6+00E L10+00N 7+00E L10+00N 7+50E	201 201 201 201 201 201	202 202 202 202 202 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.51 0.69 1.79 0.72 0.90	4 2 < 2 2 < 2	50 40 50 60 40	< 0.5 < 0.5 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 2 < 2 < 2 < 2	0.15 0.11 0.03 0.13 0.14	< 0.5 < 0.5 < 0.5 0.5 < 0.5 < 0.5	6 5 4 5 5	4 4 3 1 4	31 38 86 106 41	1.96 1.77 2.53 1.97 1.93	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.05 0.04 0.04 0.07 0.05	< 10 < 10 < 10 20 < 10	0.13 0.14 0.12 0.09 0.13	485 595 1570 1975 825	37 40 183 155 94
L10+00N 8+00E L10+00N 8+50E L10+00N 9+00E L10+00N 9+50E L10+00N10+50E	201 201 201 201 201	202 202 202 202 202 202	0.4 0.6 0.4 0.8 < 0.2	1.72 0.68 0.66 1.07 0.80	< 2 < 2 14 6 < 2	60 40 30 50 130	0.5 0.5 < 0.5 0.5 < 0.5	2 2 2 6 < 2	0.12 0.05 0.08 0.05 0.23	2.0 1.5 < 0.5 1.0 0.5	7 4 5 5 5	3 < 1 3 1 5	212 120 87 178 41	2.67 2.33 1.86 2.40 1.67	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.11 0.06 0.06 0.09 0.03	40 10 10 10 < 10	0.21 0.06 0.15 0.11 0.12	3480 2050 1160 2380 1545	287 564 437 665 103
L10+00N11+00E L10+00N11+50E L10+00N12+00E L10+00N12+50E L10+00N13+00E	201 201 201 201 201	202 202 202 202 202 202	0.8 1.6 0.8 0.6 0.8	1.13 0.82 1.14 1.50 0.62	< 2 10 6 2 8	60 40 40 50 30	1.0 0.5 0.5 < 0.5 < 0.5	6 6 4 2 < 2	0.15 0.03 0.04 0.07 0.03	2.0 3.0 < 0.5 < 0.5 0.5	9 5 4 5	12 < 1 1 3 1	178 322 173 138 146	2.61 1.84 2.77 2.42 2.70	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.05 0.07 0.06 0.07 0.06	10 20 10 10 10	0.38 0.08 0.10 0.17 0.10	3040 5640 2650 2160 3180	178 327 238 217 242
L10+00N13+50E L10+00N14+00E L10+00N14+50E L10+00N15+00E L10+00N15+50E	201 201 201 201 201	202 202 202 202 202 202	1.4 < 0.2 0.4 1.2 0.2	0.85 1.69 1.69 1.08 0.78	2 4 6 10 2	40 50 60 50 30	0.5 1.5 1.0 0.5 < 0.5	6 2 2 6 < 2	0.07 0.14 0.07 0.09 0.26	0.5 3.0 1.0 0.5 < 0.5	7 7 10 6 7	1 2 3 2 10	298 317 279 181 48	4.11 2.50 2.91 3.36 1.95	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.08 0.06 0.10 0.12 0.05	30 40 30 10 < 10	0.13 0.22 0.27 0.20 0.47	4160 5240 3640 3880 855	329 284 335 1570 25
L10+00N16+00E 10+00E L13+50N 10+00E L14+00N 10+00E L14+50N 10+00E L15+00N	201 201 201 201 201 201	202 202 202 202 202 202	2.2 25.4 1.8 1.8 1.2	0.59 0.75 0.73 0.71 1.08	8 8 2 6 18	60 50 70 60 50	< 0.5 0.5 0.5 0.5 1.5	4 64 12 10 36	0.12 0.18 0.09 0.07 0.10	< 0.5 < 0.5 2.0 1.5 2.0	7 7 8 6 5	8 6 < 1 < 1 < 1 < 1	84 155 226 224 393	4.83 2.34 3.20 3.17 4.09	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.14 0.10 0.09 0.08 0.07	< 10 < 10 30 30 40	0.29 0.14 0.06 0.06 0.06	865 1445 3130 3130 2490	105 420 1105 1060 1410
10+00E L15+50N 10+50E L14+00N 10+50E L14+50N 10+50E L15+00N 10+50E L15+50N	201 201 201 201 201 201	202 202 202 202 202 202	< 0.2 0.6 0.8 0.4 1.2	1.63 1.70 0.80 1.90 2.32	32 20 8 2 10	40 80 40 160 170	4.0 0.5 < 0.5 1.5 2.5	10 8 6 < 2 6	0.17 0.04 0.09 0.32 0.24	2.5 2.0 < 0.5 3.0 10.0	4 8 6 7 10	1 < 1 3 5 2	615 361 127 187 564	7.91 4.46 2.99 2.45 3.37	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.11 0.05 0.05 0.08 0.08	70 40 10 20 30	0.09 0.09 0.10 0.20 0.20	1065 9630 2570 1970 7560	3800 1335 1060 260 482

CERTIFICATION:_

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: VERDSTONE GOLD CORP. WINDSOR SQUARE 1959 152ND ST., SUITE 310 SURREY, BC V4A 9E3 Page .ber :1-B Total ruges :1 Certificate Date: 02-AUG-96 Invoice No. :19625598 P.O. Number : Account :JZL

Project : SALAL Comments: ATTN:A.KIKANKA

CERTIFICATE OF ANALYSIS

A9625598

SAMPLE	PREP CODE	Na %	Ni ppm	P mqq	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	W ppm	Zn ppm			
L10+00N 5+00E L10+00N 5+50E L10+00N 6+00E L10+00N 7+00E L10+00N 7+50E	201 202 201 202 201 202 201 202 201 202 201 202	0.02 0.01 < 0.01 0.02 0.03	4 4 4 5	370 400 330 240 440	22 30 66 72 50	< 2 < 2 < 2 < 2 < 2	1 1 2 2 1	21 17 10 27 23	0.08 0.07 0.05 0.04 0.08	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	41 37 28 27 43	< 10 < 10 < 10 < 10 < 10	98 70 112 146 78			
L10+00N 8+00E L10+00N 8+50E L10+00N 9+00E L10+00N 9+50E L10+00N10+50E	201 202 201 202 201 202 201 202 201 202 201 202	0.01 < 0.01 0.01 0.01 0.03	5 1 3 3 5	400 180 270 230 310	106 194 190 320 44	< 2 < 2 < 2 < 2 < 2 < 2 < 2	4 2 1 3 1	18 10 12 12 42	0.06 0.02 0.04 0.03 0.08	< 10 < 10 < 10 < 10 < 10 < 10	10 < 10 < 10 10 < 10	24 14 21 15 40	< 10 < 10 < 10 < 10 < 10 < 10	298 164 106 232 130			
L10+00N11+00E L10+00N11+50E L10+00N12+00E L10+00N12+50E L10+00N13+00E	201 202 201 202 201 202 201 202 201 202 201 202	0.01 < 0.01 0.01 < 0.01 < 0.01	14 3 3 4 1	450 140 240 270 200	48 130 132 222 122	< 2 < 2 2 < 2 < 2 < 2 < 2	4 3 3 3 2	19 9 8 8 6	0.09 0.01 0.01 0.04 0.02	< 10 < 10 < 10 < 10 < 10 < 10	< 10 10 < 10 < 10 < 10 < 10	41 9 15 22 13	< 10 < 10 < 10 < 10 < 10 < 10	250 234 116 148 84			
L10+00N13+50E L10+00N14+00E L10+00N14+50E L10+00N15+00E L10+00N15+50E	201 202 201 202 201 202 201 202 201 202 201 202	0.01 < 0.01 < 0.01 0.01 0.01	3 7 6 4 5	210 350 370 260 480	258 108 158 234 66	< 2 < 2 < 2 < 2 < 2 < 2 2	4 4 4 1	7 13 9 8 14	0.01 0.02 0.03 0.03 0.05	< 10 < 10 < 10 < 10 < 10 < 10	< 10 40 30 10 < 10	16 20 21 20 36	< 10 < 10 < 10 < 10 < 10 < 10	128 370 248 232 134			
L10+00N16+00E 10+00E L13+50N 10+00E L14+00N 10+00E L14+50N 10+00E L15+00N	201 202 201 202 201 202 201 202 201 202 201 202	0.01 0.04 0.01 0.01 < 0.01	4 8 2 2 1	630 370 260 240 440	262 1500 290 260 466	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1 2 3 3 3	10 30 16 15 17	0.04 0.06 0.02 0.02 0.03	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 20	35 40 17 18 30	< 10 < 10 < 10 < 10 < 10 < 10	196 138 270 254 424	/ / / / / / / / / / / /	-	
10+00E L15+50N 10+50E L14+00N 10+50E L14+50N 10+50E L15+00N 10+50E L15+50N	201 202 201 202 201 202 201 202 201 202 201 202	< 0.01 < 0.01 0.02 0.05 0.03	1 3 4 8 10	660 400 280 450 550	284 186 676 98 178	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	5 7 3 4 4	32 17 19 82 83	0.04 0.04 0.05 0.13 0.11	< 10 < 10 < 10 < 10 < 10 < 10	20 10 < 10 < 10 30	24 31 36 50 59	< 10 < 10 < 10 < 10 < 10 < 10	746 262 128 474 1120			
						<u> </u>							(CERTIFIC		ABi	chler

Analytical Chomists * Geochomists * Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

To: VERDSTONE GOLD CORP. WINDSOR SQUARE 1959 152ND ST., SUITE 310 SURREY, BC V4A 9E3 Page .ber : 1-A Total Fages :2 Certificate Date: 27-OCT-96 Invoice No. : 19636079 P.O. Number : Account : JZL

Project : SALAL Comments:

										CE	RTIFI	CATE	OF A	NAL	YSIS		19636	079		
SAMPLE	PRE P CODE	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Hg ppm	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm
SR 304 SR 305 SR 306 SR 307 SR 308	205 226 205 226 205 226 205 226 205 226 205 226	3 < 1 < 1 < 1 < 1	0.42 0.63 0.33 0.25 0.35	10 10 < 10 < 10 20	< 20 < 20 < 20 < 20 < 20 < 20	< 5 < 5 < 5 < 5 < 5 < 5	< 10 < 10 < 10 < 10 < 10 < 10	0.05 0.45 0.09 0.04 0.07	< 5 < 5 < 5 < 5 < 5 < 5	< 5 < 5 < 5 < 5 < 5 < 5	90 50 90 80 90	25 10 5 5 10	4.04 1.51 0.50 0.44 0.53	< 10 < 10 < 10 < 10 < 10 < 10	0.44 0.37 0.19 0.15 0.23	0.01 0.04 0.03 0.04 0.04	110 200 210 140 190	625 705 95 5 130	< 0.01 0.04 0.05 0.04 0.05	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>
SR 309 SR 310 SR 311 SR 312 SR 313	205 226 205 226 205 226 205 226 205 226 205 226 205 226	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.26 0.30 0.22 0.34 0.26	10 < 10 < 10 30 20	< 20 < 20 < 20 < 20 < 20 < 20	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	< 10 < 10 < 10 < 10 < 10 < 10	0.07 0.07 0.05 0.07 0.04	< 5 < 5 < 5 < 5 < 5 < 5	< 5 < 5 < 5 < 5 < 5 < 5	80 100 60 100 90	15 15 5 5	0.47 0.57 0.82 0.58 0.53	< 10 < 10 < 10 < 10 < 10 10	0.17 0.19 0.15 0.24 0.17	0.03 0.03 0.03 0.03 0.03 0.03	150 170 130 170 90	205 35 145 25 30	0.04 0.05 0.02 0.05 0.03	< 5 5 < 5 < 5 < 5 < 5
SR 314 SR 315 SR 316 SR 317 SR 318	205 226 205 226 205 226 205 226 205 226 205 226	< 1 < 1 < 1 < 1 < 1 < 1	0.43 0.37 0.33 0.25 0.27	< 10 < 10 < 10 10 < 10	< 20 < 20 < 20 < 20 < 20 < 20	< 5 < 5 < 5 < 5 < 5 < 5	< 10 < 10 < 10 < 10 < 10 < 10	0.12 0.12 0.03 0.02 0.03	< 5 < 5 < 5 < 5 < 5 < 5	< 5 < 5 < 5 < 5 < 5 < 5	80 80 90 60 80	15 10 20 20 10	0.73 1.49 0.51 0.43 0.43	< 10 < 10 < 10 < 10 < 10 < 10	0.26 0.25 0.22 0.14 0.17	0.03 0.03 0.01 0.01 0.01	250 70 250 390 180	25 195 160 85 1440	0.03 0.02 0.08 0.03 0.04	< 5 < 5 < 5 < 5 < 5 < 5
SR 319 SR 320 SR 321 SR 322 SR 323	205 226 205 226 205 226 205 226 205 226 205 226	< 1 < 1 < 1 < 1 < 1 < 1	0.23 0.28 0.26 0.31 0.27	< 10 10 10 < 10 < 10	< 20 < 20 < 20 < 20 < 20 < 20	< 5 < 5 < 5 < 5 < 5 < 5	< 10 < 10 < 10 < 10 < 10 < 10	0.02 0.03 0.03 0.03 0.03 0.03	< 5 < 5 < 5 < 5 < 5 < 5	< 5 < 5 < 5 < 5 < 5 < 5	60 60 80 100 80	10 15 15 15 15	0.62 0.48 0.54 0.49 0.58	< 10 < 10 < 10 < 10 < 10 < 10	0.17 0.19 0.17 0.20 0.18	0.01 0.02 0.02 0.02 0.02 0.01	120 100 320 380 220	130 110 75 85 1155	0.02 0.05 0.04 0.07 0.04	< 5 < 5 < 5 < 5 < 5 < 5
SR 324 SR 325 SR 326 SR 327 SR 328	205 226 205 226 205 226 205 226 205 226 205 226 205 226	< 1 < 1 < 1 < 1 < 1 < 1	0.35 0.32 0.39 0.29 0.37	< 10 < 10 10 30 10	< 20 < 20 < 20 < 20 < 20 < 20	< 5 < 5 < 5 < 5 < 5 < 5	< 10 < 10 < 10 < 10 < 10 < 10	0.03 0.06 0.05 0.03 0.03	< 5 < 5 < 5 < 5 < 5 < 5	< 5 < 5 < 5 < 5 < 5 < 5	110 70 90 120 110	20 15 15 5 10	0.58 0.67 0.54 0.45 0.47	< 10 < 10 < 10 20 < 10	0.21 0.19 0.22 0.16 0.21	0.03 0.06 0.04 0.01 0.02	330 610 940 160 230	90 165 340 18870 70	0.07 0.04 0.07 0.03 0.08	< 5 < 5 < 5 < 5 < 5 < 5
SR 329 SR 330 SR 331 SR 332 SR 333	205 226 205 226 205 226 205 226 205 226 205 226 205 226	< 1 < 1 < 1 < 1 < 1 1	0.26 0.36 0.27 0.48 0.42	< 10 < 10 < 10 10 20	< 20 < 20 < 20 < 20 < 20 < 20	< 5 < 5 < 5 < 5 < 5 < 5	< 10 < 10 < 10 < 10 < 10 < 10	0.03 0.03 0.03 0.04 0.03	< 5 < 5 < 5 < 5 < 5 < 5	< 5 < 5 < 5 < 5 < 5 < 5	60 110 70 80 60	15 15 20 15 25	0.53 0.48 0.41 0.74 0.75	< 10 < 10 < 10 < 10 < 10 < 10	0.14 0.23 0.17 0.34 0.39	0.03 0.02 0.01 0.01 0.03	390 310 270 1200 800	40 55 115 405 635	0.04 0.07 0.04 0.02 < 0.01	< 5 < 5 < 5 < 5 < 5 < 5
SR 334 SR 335 SR 336 SR 337 SR 338	205 226 205 226 205 226 205 226 205 226 205 226	< 1 < 1 < 1 < 1 < 1 3	0.30 0.37 0.28 0.28 0.47	10 10 < 10 10 30	< 20 < 20 < 20 < 20 < 20 < 20	< 5 < 5 < 5 < 5 < 5 < 5	< 10 < 10 < 10 < 10 < 10 < 10	0.07 0.02 0.03 0.02 0.03	< 5 < 5 < 5 < 5 5 5	< 5 < 5 < 5 < 5 < 5 < 5	90 120 100 100 100	5 5 10 5 55	0.54 0.53 0.47 0.43 1.80	< 10 < 10 < 10 < 10 < 10 < 10	0.19 0.23 0.16 0.18 0.30	0.01 0.01 0.01 0.01 0.01	110 50 80 160 460	55 135 30 90 115	0.04 0.05 0.05 0.05 0.05	< 5 < 5 < 5 < 5 < 5 < 5
SR 339 SR 340 SR 341 SR 342 SR 343	205 226 205 226 205 226 205 226 205 226 205 226	5 < 1 < 1 < 1 < 1 < 1	0.64 0.28 0.24 0.28 0.27	< 10 10 10 < 10 10	< 20 < 20 < 20 < 20 < 20 < 20	< 5 < 5 < 5 < 5 < 5 < 5	10 < 10 < 10 < 10 < 10 < 10	0.03 0.01 0.02 0.01 0.02	< 5 < 5 < 5 < 5 < 5 < 5	< 5 < 5 < 5 < 5 < 5 < 5	120 80 80 60 90	105 20 15 10 5	2.32 0.96 0.43 1.29 0.62	< 10 < 10 < 10 < 10 < 10 < 10	0.42 0.19 0.14 0.22 0.21	0.02 < 0.01 0.01 0.01 0.01	300 80 200 110 50	130 80 25 250 45	< 0.01 0.03 0.04 0.02 0.03	< 5 < 5 < 5 < 5 < 5

CERTIFICATION:

13- A Produce

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: VERDSTONE GOLD CORP. WINDSOR SQUARE 1959 152ND ST., SUITE 310 SURREY, BC V4A 9E3

CEDTICICATE OF ANALVEIS

Pag. umber :1-B Total Pages :2 Certificate Date: 27-OCT-96 Invoice No. : I P.O. Number : :19636079 JZL Account

10636070

Project : Comments: SALAL

											ninn		ANALISIS	A3030073	
SAMPLE	PREP CODE	ppm p	Pb mqq	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U mqq	V ppm	W ppm	Zn ppm			
SR 304 SR 305 SR 306 SR 307 SR 308	205 226 205 226 205 226 205 226 205 226 205 226	< 100 < 100 < 100 < 100 < 100	25 < 5 < 5 < 5 5	< 10 10 20 20 10	< 5 < 5 < 5 < 5 < 5	< 5 < < 5 < < 5 < < 5 < < 5 <	0.01 0.01 0.01 0.01 0.01	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	60 < 20 < 20 < 20 < 20	20 35 25 15 15			
SR 309 SR 310 SR 311 SR 312 SR 313	205 226 205 226 205 226 205 226 205 226 205 226	< 100 < 100 < 100 < 100 < 100 < 100	< 5 < 5 < 5 < 5 < 5	10 20 < 10 < 10 10	< 5 < 5 < 5 < 5 < 5	<pre>< 5 < < 5 <</pre>	0.01 0.01 0.01 0.01 0.01	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	15 20 20 10 15			
SR 314 SR 315 SR 316 SR 317 SR 318	205 226 205 226 205 226 205 226 205 226 205 226	< 100 < 100 < 100 < 100 < 100	< 5 < 5 < 5 5 < 5	< 10 10 20 < 10 10	< 5 < 5 < 5 < 5 < 5 < 5 < 5	<pre>< 5 < < 5 < <</pre>	0.01 0.01 0.01 0.01 0.01	< 20 20 20 < 20 20 20	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	15 10 15 15 15			
SR 319 SR 320 SR 321 SR 322 SR 323	205 226 205 226 205 226 205 226 205 226 205 226	< 100 < 100 < 100 < 100 < 100 < 100	< 5 < 5 10 < 5 45	20 < 10 < 10 < 10 < 10 < 10	< 5 < 5 < 5 < 5 < 5 < 5	< 5 < < 5 < < 5 < 5 < 5 < 5 <	0.01 0.01 0.01 0.01 0.01	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	15 15 25 30 25			
SR 324 SR 325 SR 326 SR 327 SR 328	205 226 205 226 205 226 205 226 205 226 205 226	< 100 < 100 < 100 < 100 < 100 < 100	< 5 5 45 20 5	10 < 10 10 10 < 10	< 5 < 5 < 5 < 5 < 5 < 5	< 5 < 5 < 5 < < 5 < < 5 <	0.01 0.01 0.01 0.01 0.01	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	25 30 35 20 35			
SR 329 SR 330 SR 331 SR 332 SR 333	205 226 205 226 205 226 205 226 205 226 205 226	< 100 < 100 < 100 < 100 < 100 < 100	<pre>< 5 < 5 < 5 45 90</pre>	< 10 20 < 10 < 10 < 10 < 10	< 5 < 5 < 5 < 5 < 5 < 5	< 5 < 5 < < 5 < < 5 < < 5 <	0.01 0.01 0.01 0.01 0.01	20 < 20 < 20 < 20 < 20 20	< 20 < 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	35 30 25 10 20			
SR 334 SR 335 SR 336 SR 337 SR 338	205 226 205 226 205 226 205 226 205 226 205 226	< 100 < 100 < 100 < 100 < 100 < 100	<pre>< 5 < 5 < 5 < 5 < 5 25</pre>	10 10 10 10	< 5 < 5 < 5 < 5 < 5 < 5	< 5 < < 5 < < 5 < < 5 < < 5 <	0.01 0.01 0.01 0.01 0.01	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	15 15 20 10 865			
SR 339 SR 340 SR 341 SR 342 SR 343	205 226 205 226 205 226 205 226 205 226 205 226	< 100 < 100 < 100 < 100 < 100 < 100	15 5 < 5 < 5 < 5	10 10 10 < 10 20	< 5 < 5 < 5 < 5 < 5 < 5	< 5 < < 5 < < 5 < < 5 < < 5 <	0.01 0.01 0.01 0.01 0.01	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	170 20 35 20 15			
	I	L											CERTIFICATION	Hant Bud	ler

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver

British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: VERDSTONE GOLD CORP. WINDSOR SQUARE 1959 152ND ST., SUITE 310 SURREY, BC V4A 9E3

Page oer :1-A Total Jes :2 Certificate Date: 04-AUG-96 Invoice No. : 19625602 P.O. Number : Account :JZL

Project : SALAL Comments: ATTN: A.KIKANKA

										CE	RTIFI	CATE	OF A	NALY	SIS	4	49625	602		
SAMPLE	PREP CODE	Ag	I Al	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm
SR-01 SR-02 SR-03 SR-04 SR-05	205 22 205 22 205 22 205 22 205 22 205 22	6 0.2 6 < 0.2 6 < 0.2 6 < 0.2 6 3.0	2 0.40 2 0.24 2 0.27 2 0.22 5 1.10	2 < 2 < 2 < 2 < 2 6	<pre>< 10 < 10</pre>	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 0.5	<pre>< 2 < 2 < 2 < 2 < 2 < 2 < 10</pre>	0.11 0.01 0.02 < 0.01 0.60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 4.0	<pre>< 1 1 < 1 < 1 < 1 < 1 < 1</pre>	174 153 151 131 162	37 17 9 8 82	1.05 1.62 0.62 0.51 1.70	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 1 < 1</pre>	0.26 0.17 0.20 0.11 0.36	< 10 < 10 < 10 < 10 < 10 < 10	0.01 0.01 0.01 0.01 0.02	80 185 40 75 7940	436 638 122 385 2320
SR-06 SR-07 SR-08 SR-09 SR-10	205 22 205 22 205 22 205 22 205 22 205 22	26 0.1 26 0.1 26 < 0.1	0.43 0.53 0.24 0.24 0.24 0.24 0.24	<pre></pre>	<pre>< 10 < 10 < 10 < 10 10 < 10 < 10</pre>	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 < 2 < 2 < 2 10	0.11 0.13 0.01 0.01 0.01	0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>< 1 < 1</pre>	156 179 165 158 136	13 11 4 8 13	1.00 0.86 0.53 0.51 0.51	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 1 < 1</pre>	0.23 0.32 0.15 0.15 0.15	< 10 < 10 < 10 < 10 < 10 < 10	0.01 0.01 0.01 0.01 0.03	1145 105 90 55 160	932 110 596 431 428
SR-11 SR-12 SR-13 SR-14 SR-15	205 22 205 22 205 22 205 22 205 22 205 22	26 < 0.1	2 0.23 2 0.43 2 0.22 2 0.22 2 0.25 2 0.32	<pre>< 2 < 2</pre>	<pre>< 10 < 10</pre>	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>< 2 2 < 2</pre>	0.01 0.05 < 0.01 < 0.01 0.01	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>< 1 < 1</pre>	128 157 131 124 137	4 8 6 11	0.49 1.14 0.56 0.69 1.04	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 1 < 1</pre>	0.12 0.23 0.12 0.14 0.20	< 10 < 10 < 10 < 10 < 10 < 10	0.02 0.02 0.01 0.01 0.01	55 45 235 75 120	406 83 293 341 103
SR-16 SR-17 SR-18 SR-19 SR-20	205 22 205 22 205 22 205 22 205 22 205 22	26 < 0.	2 0.34 2 0.25 2 0.23 2 0.28 2 0.34	<pre>< 2 < 2</pre>	<pre>< 10 < 10</pre>	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>< 2 < 2</pre>	0.03 < 0.01 < 0.01 < 0.01 < 0.01	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>< 1 < 1</pre>	132 159 140 169 142	7 8 8 7 11	1.13 0.66 1.29 0.70 0.68	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 1 < 1</pre>	0.21 0.15 0.15 0.15 0.15 0.17	< 10 < 10 < 10 < 10 < 10 < 10 10	0.01 0.02 0.01 0.02 0.01	115 140 195 125 625	354 74 300 211 56
SR-21 SR-22 SR-23 SR-24 SR-25	205 22 205 22 205 22 205 22 205 22 205 22	26 1. 26 < 0.	0.29 0.27 0.37 2 0.31 2 0.31	2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 <	< 10 < 10 < 10 < 10 < 10 < 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>4 < 2 2 < 2 < 2 < 2 < 2</pre>	<pre>< 0.01 < 0.01 0.05 0.01 < 0.01</pre>	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>< 1 1 (1 (1 (1 1 1</pre>	139 129 163 141 191	30 7 7 6 11	0.85 0.77 0.72 0.86 1.02	<pre>< 10 < 10</pre>	<pre>< 1 < 1</pre>	0.18 0.16 0.18 0.18 0.23	<pre>< 10 < 10 < 10 < 10 10 < 10 < 10</pre>	0.01 0.01 0.01 0.02 0.01	255 205 1505 240 280	326 112 514 247 113
SR-26 SR-27 SR-28 SR-29 SR-30	205 22 205 22 205 22 205 22 205 22 205 22	26 < 0.	2 0.23 2 0.21 4 0.32 2 0.21 2 0.22	<pre></pre>	<pre>< 10 < 10</pre>	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>< 2 < 2</pre>	< 0.01 < 0.01 0.06 < 0.01 < 0.01	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	1 < 1 < 1 < 1 < 1 < 1	139 143 113 129 115	10 4 22 5 19	0.98 0.60 0.62 0.53 0.61	<pre>< 10 < 10</pre>	<pre>< 1 < 1</pre>	0.17 0.13 0.18 0.12 0.14	<pre>< 10 < 10</pre>	0.01 0.01 0.02 0.01 0.01	115 65 110 220 95	134 45 342 47 139
SR-31 SR-32 SR-33 SR-34 SR-35	205 22 205 22 205 22 205 22 205 22 205 22	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 0.60 2 0.21 2 0.21 2 0.21 2 0.21	<pre></pre>	10 < 10 < 10 < 10 < 10 < 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre></pre>	0.13 < 0.01 < 0.01 < 0.01 < 0.01 0.07	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 0.5	3 < 1 1 < 1 < 1	152 132 149 136 129	36 13 6 4 20	1.44 1.28 0.60 0.43 0.79	<pre>< 10 < 10</pre>	<pre>< 1 < 1</pre>	0.35 0.14 0.13 0.11 0.13	<pre>< 10 < 10 < 10 10 10 < 10 < 10</pre>	0.01 0.01 0.03 0.01 0.01	915 110 170 50 425	478 321 34 209 229
SR-36 SR-37 SR-38 SR-39 SR-40	205 22 205 22 205 22 205 22 205 22 205 22	26 < 0.	2 0.27 2 0.29 2 0.29 2 0.29 2 0.29 2 0.29	<pre></pre>	10 10 < 10 < 10 < 10 < 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>< 2 < 2</pre>	0.03 0.01 0.03 < 0.01 0.01	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>< 1 < 1</pre>	117 125 140 153 126	3 4 5 3 5	0.49 0.62 0.67 0.71 0.99	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	<pre>< 1 < 1</pre>	0.15 0.17 0.17 0.16 0.15	<pre>< 10 < 10</pre>	0.03 0.01 0.01 0.01 0.01	1970 170 65 55 55	40 290 92 205 227
·				14	-									CEBTIER		14	ait	Bi	chle	~

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: VERDSTONE GOLD CORP. WINDSOR SQUARE 1959 152ND ST., SUITE 310 SURREY, BC V4A 9E3

Page ber :1-B Totai Jes :2 Certificate Date: 04-AUG-96 Invoice No. : 19625602 P.O. Number : Account :JZL

Project : SALAL Comments: ATTN: A.KIKANKA

										CE	RTIFI	CATE	OF A	NALYSIS	A9625602
SAMPLE	PREP CODE	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	U ppm	V ppm	W ppm	Zn ppm	
SR-01 SR-02 SR-03 SR-04 SR-05	205 220 205 220 205 220 205 220 205 220	6 0.02 6 0.05 6 0.05 6 0.06 6 0.01	2 1 1 (10 30 20 10 30	22 4 < 2 10 150	<pre>< 2 < 2 </pre>	<pre>< 1 < 1 < 1 < 1 1 < 1 1 </pre>	<pre>< 1 < < 1 <</pre>	0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	1 8 1 1 1	< 10 < 10 < 10 < 10 < 10 < 10	24 18 14 22 694	
SR-06 SR-07 SR-08 SR-09 SR-10	205 220 205 220 205 220 205 220 205 220	6 0.05 6 0.05 6 0.08 6 0.06 6 0.06	1 2 1 1	10 10 20 20 20	32 6 10 24 82	<pre>< 2 < 2</pre>	1 1 1 1 1	<pre>< 1 < 1 <</pre>	0.01 0.01 0.01 0.01 0.01	<pre>< 10 < 10</pre>	< 10 < 10 < 10 < 10 < 10 < 10	1 1 1 1	< 10 < 10 < 10 < 10 < 10 < 10	64 14 6 6 20	
SR-11 SR-12 SR-13 SR-14 SR-15	205 220 205 220 205 220 205 220 205 220 205 220	6 0.06 6 0.05 6 0.06 6 0.05 6 0.05 6 0.04	1 1 1 1	10 20 10 10 10	36 < 2 10 8 4	<pre>< 2 < 2</pre>	<pre>< 1 1 < 1 < 1 < 1 < 1 < 1 </pre>	1 < < 1 < 1 < 1 < 1 <	0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 10 < 10</pre>	1 1 1 く 1	< 10 < 10 < 10 < 10 < 40	8 10 10 10 14	
SR-16 SR-17 SR-18 SR-19 SR-20	205 22 205 22 205 22 205 22 205 22 205 22	6 0.05 6 0.06 6 0.06 6 0.06 6 0.05	1 1 1 1 1	10 20 10 20 10	12 6 2 10 8	<pre>< 2 < 2</pre>	1 1 1 1 1	1 < 1 < < 1 < 1 < 1 <	0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 10 < 10</pre>	2 1 5 1 1	< 10 < 10 < 10 < 10 < 10 < 10	10 12 16 12 10	
SR-21 SR-22 SR-23 SR-24 SR-25	205 22 205 22 205 22 205 22 205 22 205 22	6 0.03 6 0.05 6 0.05 6 0.06 6 0.06	1 1 1 1 2	20 20 20 10 20	64 6 28 10 6	<pre>< 2 < 2</pre>	< 1 < 1 1 1 < 1	1 < 1 < 1 < 1 < 1 <	0.01 0.01 0.01 0.01 0.01	<pre>< 10 < 10</pre>	<pre>< 10 < 10</pre>	1 1 1 1 1	<pre>< 10 < 10 < 10 < 10 10 < 10 < 10</pre>	10 14 10 14 12	
SR-26 SR-27 SR-28 SR-29 SR-30	205 22 205 22 205 22 205 22 205 22 205 22	6 0.05 6 0.07 6 0.05 6 0.06 6 0.05	1 1 1 1 1	20 10 20 10 10	10 6 22 18 14	<pre></pre>	<pre>< 1 < 1</pre>	<pre>< 1 < < 1 <</pre>	0.01 0.01 0.01 0.01 0.01	<pre>< 10 < 10</pre>	<pre>< 10 < 10</pre>	2 1 1 1 1	110 < 10 < 10 < 10 < 10 < 10	18 6 36 6 30	
SR-31 SR-32 SR-33 SR-34 SR-35	205 22 205 22 205 22 205 22 205 22 205 22 205 22	6 0.04 6 0.05 6 0.06 6 0.06 6 0.04	1 1 1 1 1	20 20 10 10 10	72 6 6 6 34	<pre>< 2 < 2</pre>	1 1 1 1	1 < 1 < < 1 2 < 3 <	0.01 0.01 0.01 0.01 0.01	<pre>< 10 < 10</pre>	<pre>< 10 < 10</pre>	1 6 1 < 1 1	< 10 < 10 < 10 < 10 < 10 < 10	38 18 10 2 166	
SR-36 SR-37 SR-38 SR-39 SR-40	205 22 205 22 205 22 205 22 205 22 205 22 205 22	6 0.04 6 0.04 6 0.05 6 0.06 6 0.05	1 1 1 1	10 20 10 10 10	6 6 8 4	<pre>< 2 < 2</pre>	<pre>< 1 < 1</pre>	3 < 2 < 1 < < 1 < < 1 <	0.01 0.01 0.01 0.01 0.01	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	1 1 1 1	< 10 < 10 < 10 < 10 < 10 < 10	20 6 2 4	
									<u> </u>						Having Sichler

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: VERDSTONE GOLD CORP. WINDSOR SQUARE 1959 152ND ST., SUITE 310 SURREY, BC V4A 9E3 Page Number 1-A Total Pages 3 Certificate Date13-AUG-96 Invoice No. H9626858 P.O. Number : Account :

Project :	SALAL
Comments:	

										CE	RTIF	CATE	OF A	NAL	/SIS		A9626	858		
SAMPLE DESCRIPTION	PREP CODE	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppn	Cu ppm	Fe %	Ga ppm	Hg ppm	К З	La pp m	Mg %	Mn ppm	Mo ppm
SR-041 SR-042 SR-043 SR-044 SR-045	205 226 205 226 205 226 205 226 205 226 205 226	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.15 0.19 0.16 0.15 0.15	<pre>< 2 < 2</pre>	<pre>< 10 < 10</pre>	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>< 2 < 2</pre>	0.01 0.03 0.01 0.01 0.01	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>< 1 < 1</pre>	82 90 113 101 127	7 6 4 7 3	0.61 0.77 0.50 0.44 0.49	<pre>< 10 < 10</pre>	<pre>< 1 < 1</pre>	0.09 0.11 0.09 0.08 0.09	<pre>< 10 < 10 < 10 < 10 10 10</pre>	0.01 0.02 < 0.01 0.01 0.01 0.01	80 110 20 100 55	161 70 162 5 11
SR-046 SR-047 SR-048 SR-049 SR-050	205 226 205 226 205 226 205 226 205 226 205 226	0.6 < 0.2 0.4 0.2 < 0.2	0.19 0.23 0.29 0.16 0.15	<pre>< 2 < 2</pre>	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 20 8 6 < 2	<pre> 0.01 0.04 0.10 0.04 0.04 0.01 </pre>	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	1 < 1 < 1 < 1 < 1 < 1	101 128 121 94 87	11 16 8 32 8	1.80 0.78 0.87 0.55 0.44	<pre>< 10 < 10</pre>	<pre>< 1 < 1</pre>	0.13 0.14 0.18 0.10 0.09	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	< 0.01 < 0.01 0.01 0.01 0.01	60 40 30 40 105	139 561 59 131 9
SR-051 SR-052 SR-053 SR-054 SR-055	205 226 205 226 205 226 205 226 205 226 205 226	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.19 0.15 0.13 0.23 0.14	<pre> < 2 < 2</pre>	<pre>< 10 < 10</pre>	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre> < 2 < 2</pre>	0.17 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>< 1 < 1</pre>	88 114 101 162 114	12 5 5 6 6	0.48 0.45 0.43 0.49 0.48	<pre>< 10 < 10</pre>	<pre>< 1 < 1</pre>	0.10 0.09 0.07 0.14 0.08	10 < 10 < 10 < 10 < 10 < 10	0.03 0.01 0.01 0.01 0.01 0.01	2540 120 70 150 175	36 137 60 54 57
SR-056 SR-057 SR-058 SR-059 SR-060	205 226 205 226 205 226 205 226 205 226 205 226	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.15 0.17 0.30 0.15 0.18	<pre> < 2 < 2 < 2 < 2 2 2 </pre>	<pre>< 10 < 10</pre>	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>< 2 < 2</pre>	<pre>< 0.01 0.01 0.10 < 0.01 < 0.01 0.07</pre>	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>< 1 < 1</pre>	114 115 141 102 93	5 6 5 4 9	0.61 0.50 0.57 0.46 0.56	<pre>< 10 < 10</pre>	<pre>< 1 < 1</pre>	0.10 0.10 0.19 0.08 0.10	<pre>< 10 10 < 10 < 10 10 < 10 < 10</pre>	0.01 0.01 0.01 0.01 0.01	55 100 65 50 100	98 150 38 60 87
SR-061 SR-062 SR-063 SR-064 SR-065	205 226 205 226 205 226 205 226 205 226 205 226	< 0.2 0.6 < 0.2 < 0.2 < 0.2 < 0.2	0.19 0.48 0.18 0.11 0.20	<pre> < 2 2 < 2 <</pre>	10 < 10 < 10 < 10 < 10 < 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>< 2 8 < 2 < 2 < 2 < 2 < 2 </pre>	0.05 0.30 0.05 0.01 0.05	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>< 1 < 1</pre>	136 116 104 80 121	9 91 10 4 8	0.58 0.90 0.54 0.49 0.88	<pre>< 10 < 10</pre>	<pre>< 1 < 1</pre>	0.11 0.23 0.10 0.08 0.11	<pre>< 10 < 10</pre>	0.01 0.01 0.01 0.01 0.01 0.01	55 105 45 55 65	7 42 26 61 58
SR-066 SR-067 SR-068 SR-069 SR-069 SR-070	205 226 205 226 205 226 205 226 205 226 205 226	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.16 0.13 0.28 0.15 0.27	<pre> < 2 < 2</pre>	<pre>< 10 < 10</pre>	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 < 2 < 2 < 2 < 2 < 2	0.03 0.01 0.01 0.01 0.11	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>< 1 < 1</pre>	97 103 179 115 110	24 8 9 6 41	0.75 0.47 0.53 0.48 0.61	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	<pre>< 1 < 1</pre>	0.10 0.08 0.16 0.09 0.16	<pre>< 10 < 10 < 10 10 10 < 10 < 10</pre>	< 0.01 0.02 0.01 0.01 0.01	135 105 70 75 155	65 9 29 58 56
SR-071 SR-072 SR-073 SR-074 SR-075	205 226 205 226 205 226 205 226 205 226 205 226	0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.24 0.23 0.29 0.16 0.21	< 2 < 2 < 2 2 6	<pre>< 10 < 10</pre>	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>< 2 < 2</pre>	0.11 0.01 0.02 0.02 0.01	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	1 < 1 < 1 < 1 < 1 < 1	85 165 198 110 117	10 7 6 16 14	2.88 0.45 0.51 0.47 0.56	<pre>< 10 < 10</pre>	<pre>< 1 < 1</pre>	0.14 0.14 0.14 0.09 0.09	< 10 10 20 10 10	< 0.01 0.01 0.04 0.03 0.02	240 105 90 385 170	168 29 8 15 56
SR-076 SR-077 SR-078 SR-079 SR-080	205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 0.2 < 0.2</pre>	0.16 0.14 0.13 0.14 0.18	< 2 < 2 < 2 < 2 < 2 < 2 < 2	< 10 < 10 < 10 < 10 < 10 < 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>< 2 < < 3 < < 3 < < 3 < < 5 < <</pre>	<pre>< 0.01 < 0.01 0.01 0.01 0.03</pre>	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>< 1 < 1</pre>	118 121 107 100 120	4 5 6 6 6	0.51 0.58 0.51 0.61 0.64	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.09 0.09 0.09 0.09 0.09 0.12	<pre>< 10 < 10</pre>	0.01 0.01 0.01 0.01 0.01	60 110 160 110 85	89 20 65 100 39

Analytical Chemists * Geochemists * Registered Assayers 212 Brocksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: VERDSTONE GOLD CORP. WINDSOR SQUARE 1959 152ND ST., SUITE 310 SURREY, BC V4A 9E3 Page Number 1-B Total Pages 3 Certificate Date13-AUG-96 Invoice No. I-9626858 P.O. Number : Account :

Project :	SALAL
Comments:	

										CE	RTIFI	CATE	OF A	NALYS	18	A962	6858	
SAMPLE DESCRIPTION	PEEP CODE	Na %	Ni PPM	bbør B	Pb Ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl PPm	D D	v ppm	W PPm	Zn ppm				
GR-041 GR-042 GR-043 GR-044 GR-045	205 226 205 226 205 226 205 226 205 226 205 226	0.03 0.03 0.03 0.03 0.03 0.03	1 1 1 1 1	10 10 10 10 10	2 2 2 4 2	< 2 < 2 < 2 < 2 < 2 < 2	<pre>< 1 < 1</pre>	<pre>< 1 < 1 < </pre>	0.01 0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	1 1 1 1 1	< 10 < 10 < 10 < 10 < 10 < 10	2 8 2 8 6				
SR-046 SR-047 SR-048 SR-049 SR-050	205 226 205 226 205 226 205 226 205 226 205 226	0.01 0.03 0.02 0.03 0.03	1 1 2 1 1	10 10 10 10 10	10 12 8 2 2	<pre> < 2 < 2</pre>	<pre>< 1 < 1</pre>	1 < < 1 < < 1 < < 1 < 1 < 1 <	0.01 0.01 0.01 0.01 0.01 0.01	<pre>< 10 < 10</pre>	< 10 < 10 < 10 < 10 < 10 < 10	1 1 < 1 < 1 < 1 < 1	10 < 10 < 10 20 < 10	16 8 6 14				
SR-051 SR-052 SR-053 SR-054 SR-055	205 226 205 226 205 226 205 226 205 226 205 226	0.01 0.03 0.03 0.06 0.03	1 1 1 2 1	10 10 10 10 10	6 6 2 4 4	<pre>< 2 < 2</pre>	<pre>< 1 < 1</pre>	1 < < 1 < < 1 < < 1 < 1 < 1 <	0.01 0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 10 < 10</pre>	1 1 (1 1 1 1	<pre>< 10 < 10</pre>	50 8 6 8 8				
SR-056 SR-057 SR-058 SR-059 SR-060	205 226 205 226 205 226 205 226 205 226 205 226	0.03 0.03 0.03 0.03 0.03 0.03	1 1 1 1 1	10 10 20 20 10	2 4 2 6 6	<pre>< 2 < 2</pre>	<pre>< 1 < 1</pre>	<pre>< 1 < < 1 < <</pre>	0.01 0.01 0.01 0.01 0.01 0.01	<pre>< 10 < 10</pre>	< 10 < 10 < 10 < 10 < 10 < 10	1 1 1 1 1	<pre>< 10 < 10</pre>	6 6 6 4 16				
SR-061 SR-062 SR-063 SR-064 SR-065	205 226 205 226 205 226 205 226 205 226 205 226	0.03 0.02 0.03 0.03 0.03	1 1 1 1 1	10 10 10 10 10	2 6 2 2 6	<pre>< 2 < 2</pre>	<pre>< 1 < 1</pre>	1 < 2 < 1 < 1 < < 1 <	0.01 0.01 0.01 0.01 0.01 0.01	<pre>< 10 < 10</pre>	<pre>< 10 < 10</pre>	1 1 1 1 1	< 10 10 < 10 < 10 10	10 112 12 8 14				
SR-066 SR-067 SR-068 SR-069 SR-070	205 226 205 226 205 226 205 226 205 226 205 226	0.02 0.03 0.07 0.03 0.03	1 1 2 1 1	10 20 20 20 20	2 2 2 2 2 2	<pre> < 2 < 2</pre>	<pre>< 1 < 1</pre>	<pre>< 1 < 0 </pre>	0.01 0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	1 2 2 2 1	< 10 < 10 < 10 < 10 < 10 < 10	76 18 20 10 54				
SR-071 SR-072 SR-073 SR-074 SR-075	205 226 205 226 205 226 205 226 205 226 205 226	0.01 0.07 0.06 0.03 0.03	1 2 3 1 1	10 30 30 30 30	6 2 2 2 4	<pre>< 2 < 2</pre>	<pre>< 1 < 1 1 < 1 < 1 < 1 < 1 < 1</pre>	1 < 1 1 < 1 2 < 1 2 < 1 1 < 1	0.01 0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	3 2 3 2 1	<pre>< 10 < 10</pre>	16 14 24 44 14				
SR ~ 076 SR - 077 SR - 078 SR - 079 SR - 080	205 226 205 226 205 226 205 226 205 226 205 226	0.04 0.04 0.03 0.03 0.04	1 1 1 1 1	10 10 10 10 10	2 6 2 6	<pre> < 2 < 2</pre>	<pre>< 1 < 1</pre>	<pre>< 1 < 0 1 < 0 2 < 0 1 < 0 1 < 0 1 < 0 1 < 0 </pre>	0.01 0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 10 < 10</pre>	1 1 1 2 1	<pre>< 10 < 10</pre>	6 6 8 8 8				

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: VERDSTONE GOLD CORP. WINDSOR SQUARE 1959 152ND ST., SUITE 310 SURREY, BC V4A 9E3 Page Number 2-A Total Pages 3 Certificate Date13-AUG-96 Invoice No. I-9626858 P.O. Number : Account :

Project : SALAL Comments:

										CE	RTIFI	CATE	OFA	/SIS		49626	858			
SAMPLE DESCRIPTION	P R B P COD B	Ag ppn	A	l As % ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K 8	La ppm	Mg %	Mn ppm	Мо ррш
SR-081 SR-082 SR-083 SR-084 SR-085	205 22 205 22 205 22 205 22 205 22 205 22	6 < 0.2 6 < 0.2 6 < 0.2 6 < 0.2 6 < 0.2 6 < 0.2	0.1 0.1 0.1 0.2 0.1	4 < 2 5 < 2 4 < 2 8 < 2 5 < 2	< 10 < 10 < 10 < 10 < 10 < 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>< 2 < 2</pre>	0.01 0.04 0.02 0.05 < 0.01	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>< 1 < 1</pre>	112 84 58 151 104	6 10 8 9 5	0.57 0.51 0.73 0.59 0.56	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 1 < 1</pre>	0.09 0.09 0.08 0.15 0.08	< 10 < 10 10 10 < 10	0.01 0.01 0.07 0.03 0.01	65 30 145 135 50	30 9 6 18 38
SR-086 SR-087 SR-088 SR-089 SR-090	205 22 205 22 205 22 205 22 205 22 205 22	6 < 0.2 6 < 0.2 6 < 0.2 6 < 0.2 6 < 0.2	0.2 0.2 0.3 0.1 0.2	4 < 2 3 < 2 1 < 2 7 < 2 3 < 2	10 10 < 10 < 10 < 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre> < 2 < 2</pre>	0.01 0.03 0.01 < 0.01 < 0.01	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	1 (1 (1 (1 (1	149 93 180 115 115	7 10 5 7 7	0.89 0.68 0.48 0.57 0.57	<pre>< 10 < 10</pre>	<pre>< 1 < 1</pre>	0.15 0.12 0.19 0.12 0.12	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	0.01 0.01 0.01 0.01 0.01	85 35 40 40 50	45 39 11 76 23
SR-091 SR-092 SR-093 SR-094 SR-095	205 22 205 22 205 22 205 22 205 22 205 22	6 < 0.2 6 < 0.2 6 < 0.2 6 < 0.2 6 < 0.2	2 0.1 2 0.2 2 0.1 2 0.2 2 0.1	7 < 2 4 < 2 5 < 2 6 < 2 8 < 2	< 10 < 10 10 20 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>< 2 < 2</pre>	0.01 0.01 < 0.01 0.01 0.01 0.01	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 0.5	<pre>< 1 < 1</pre>	105 131 85 138 128	11 10 11 11 17	0.44 0.43 0.63 0.50 0.47	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.11 0.17 0.10 0.15 0.10	< 10 < 10 < 10 < 10 < 10 < 10	0.01 0.01 0.01 0.03 0.01	40 30 30 40 35	7 60 8 37 61
SR-096 SR-097 SR-098 SR-099 SR-100	205 22 205 22 205 22 205 22 205 22 205 22	6 < 0.2 6 < 0.2 6 < 0.2 6 < 0.2 6 < 0.2	2 0.1 2 0.2 2 0.3 2 0.2 2 0.5	4 < 2 1 < 2 2 < 2 8 < 2 4 < 2	10 10 10 < 10 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>< 2 < 2</pre>	0.03 0.03 0.02 0.05 0.11	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>< 1 < 1 < 1 < 1 1 1</pre>	53 116 175 111 162	20 19 20 22 16	0.44 0.63 0.61 0.91 1.14	<pre>< 10 < 10</pre>	<pre>< 1 < 1</pre>	0.07 0.12 0.21 0.16 0.31	< 10 < 10 10 10 10	0.03 0.02 0.01 0.02 0.03	90 85 70 50 65	16 70 8 174 133
SR-124 SR-125 SR-126 SR-127 SR-128	205 22 205 22 205 22 205 22 205 22 205 22	6 2.4 6 < 0.2 6 < 0.2 6 0.2 6 < 0.2	0.4 0.2 0.1 0.3 0.1	6 < 2 9 < 2 5 < 2 5 < 2 6 < 2	< 10 10 < 10 10 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 < 2 < 2 < 2 < 2 < 2	0.20 0.01 0.02 0.09 0.03	1.5 < 0.5 < 0.5 1.5 < 0.5	<pre>< 1 1 < 1 < 1 < 1 < 1 < 1 </pre>	106 115 77 148 92	51 12 10 19 22	1.04 0.79 0.48 0.67 0.49	<pre>< 10 < 10</pre>	<pre>< 1 < 1</pre>	0.26 0.19 0.10 0.23 0.11	<pre>< 10 < 10</pre>	0.02 0.03 0.01 0.02 0.03	135 55 40 90 65	66 98 50 162 7
SR-129 SR-130 SR-131 SR-132 SR-133	205 22 205 22 205 22 205 22 205 22 205 22	6 < 0.2 6 < 0.2 6 < 0.2 6 < 0.2 6 < 0.2	2 0.2 2 0.1 2 0.3 2 0.2 2 0.2	6 < 2 9 < 2 1 < 2 2 < 2 9 < 2	10 < 10 10 < 10 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>< 2 < 2</pre>	0.02 0.03 0.02 0.02 0.02	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>< 1 < 1</pre>	148 131 149 135 186	19 29 15 22 18	0.52 0.51 0.63 0.54 0.45	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 1 < 1</pre>	0.18 0.13 0.19 0.14 0.18	< 10 < 10 10 10 10	0.02 0.02 0.03 0.03 0.03	60 100 160 85 65	16 28 27 5 60
SR-134 SR-135 SR-136 SR-137 SR-138	205 22 205 22 205 22 205 22 205 22 205 22	6 < 0.2 6 < 0.2 6 < 0.2 6 < 0.2 6 < 0.2	2 0.2 2 0.2 2 0.1 5 0.4 2 0.2	8 < 2 9 < 2 9 < 2 3 < 2 7 < 2	< 10 < 10 10 10 < 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>< 2 < 2</pre>	0.11 0.02 0.02 0.11 0.04	< 0.5 < 0.5 < 0.5 1.5 < 0.5	<pre>< 1 < 1</pre>	101 167 127 143 136	29 18 17 72 23	0.47 0.49 0.46 0.52 0.64	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	<pre>< 1 < 1</pre>	0.14 0.20 0.13 0.26 0.17	10 < 10 < 10 10 10	0.04 0.01 0.02 0.03 0.03	1615 160 80 145 505	44 12 32 7 106
SR-139 SR-140 SR-141 SR-142 SR-143	205 22 205 22 205 22 205 22 205 22 205 22	6 0.2 6 1.4 6 < 0.2 6 < 0.2 6 < 0.2	2 0.4 0.3 2 0.4 2 0.3 2 0.4	4 < 2 7 2 3 < 2 9 < 2 8 4	10 < 10 10 < 10 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre> < 2 2 < 2 <</pre>	0.04 0.11 0.12 0.15 0.10	0.5 2.5 < 0.5 < 0.5 < 0.5	<pre>< 1 < 1</pre>	191 88 138 116 116	61 115 21 49 31	0.58 0.75 0.60 0.50 0.68	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	< 1 < 1 < 1 < 1 1	0.26 0.21 0.26 0.22 0.33	10 10 10 10 10	0.02 0.02 0.04 0.03 0.02	360 195 210 1165 570	114 45 33 186 551

PAGE 004

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: VERDSTONE GOLD CORP. WINDSOR SQUARE 1959 152ND ST., SUITE 310 SURREY, BC V4A 9E3 Page Number 2-B Total Pages 3 Certificate Date13-AUG-96 Invoice No. 1-9626858 P.O. Number : Account :

Project : SALAL Comments:

										CE	RTIFI	CATE	OF A	NALYS	is Is	A9626858	
SAMPLE DESCRIPTION	PREP CODE	Na %	Ni ppm	P PPm	Pb ppm	Sb PPm	Sc ppm	Sr ppm	Ti %	Tl ppm	0 ppm	v ppm	W PPm	Zn ppm			
SR-081 SR-082 SR-083 SR-084 SR-085	205 226 205 226 205 226 205 226 205 226 205 226	0.03 0.03 0.02 0.06 0.03	1 1 < 1 2 1	20 10 30 30 10	2 < 2 < 2 < 2 < 2 < 2 < 2	<pre> < 2 < 2</pre>	< 1 < 1 1 < 1 < 1 < 1	1 < 0 1 < 0 1 < 0 1 < 0 1 < 0	.01 .01 .01 .01 .01	<pre>< 10 < 10</pre>	<pre>< 10 < 10</pre>	1 < 1 3 2 1	< 10 < 10 < 10 < 10 < 10 < 10	8 6 10 14 6			
SR-086 SR-087 SR-088 SR-089 SR-089 SR-090	205 226 205 226 205 226 205 226 205 226 205 226	0.06 0.04 0.10 0.04 0.07	1 1 3 1 2	30 40 10 10 20	<pre> < 2 2 < 2 < 2 2 < 2 < 2 < 2 < 2 < 2 < 2</pre>	<pre>< 2 < 2</pre>	<pre>< 1 < 1</pre>	1 < 0 3 < 0 1 < 0 < 1 < 0 1 < 0	.01 .01 .01 .01	<pre>< 10 < 10</pre>	<pre>< 10 < 10</pre>	1 3 1 1 2	< 10 < 10 < 10 < 10 < 10 < 10	6 10 4 6 8	<u> </u>		
SR-091 SR-092 SR-093 SR-094 SR-095	205 226 205 226 205 226 205 226 205 226 205 226	0.05 0.08 0.04 0.08 0.05	1 1 1 1	10 10 10 30 10	2 < 2 2 < 2 4	<pre>< 2 < 2</pre>	<pre>< 1 < 1</pre>	1 < 0 1 < 0 1 < 0 5 < 0 2 < 0	.01 .01 .01 .01 .01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	1 1 3 1	<pre>< 10 < 10</pre>	10 10 10 14 150			
SR-096 SR-097 SR-098 SR-099 SR-100	205 226 205 226 205 226 205 226 205 226 205 226	0.03 0.05 0.08 0.04 0.06	1 1 2 1 2	20 10 30 10 20	< 2 2 6 4 2	<pre>< 2 < 2</pre>	<pre>< 1 < 1</pre>	2 < 0 1 < 0 2 < 0 1 < 0 1 < 0	0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 10 < 10</pre>	1 1 2 1 2	<pre>< 10 < 10</pre>	24 16 18 16 16	é <u></u>		
SR-124 SR-125 SR-126 SR-127 SR-128	205 226 205 226 205 226 205 226 205 226 205 226	0.03 0.07 0.05 0.06 0.05	1 3 1 2 1	20 10 10 10 10	8 2 4 2 6 2	<pre>< 2 < 2</pre>	<pre>< 1 < 1</pre>	<pre>< 1 < 0 1 < 0 3 < 0 2 < 0 1 < 0</pre>	.01 .01 .01 .01 .01	<pre>< 10 < 10</pre>	<pre>< 10 < 10</pre>	1 1 1 1 1	< 10 < 10 < 10 < 10 < 10 < 10	298 10 10 244 16			
SR-129 SR-130 SR-131 SR-132 SR-133	205 226 205 226 205 226 205 226 205 226 205 226	0.09 0.06 0.08 0.07 0.10	2 1 2 2 2	10 10 10 10 10	2 6 4 4 4	<pre>< 2 < 2</pre>	<pre>< 1 < 1</pre>	1 < 0 1 < 0 2 < 0 1 < 0 1 < 0	.01 .01 .01 .01 .01	<pre>< 10 < 10</pre>	< 10 < 10 < 10 < 10 < 10 < 10	1 1 1 1	< 10 < 10 < 10 < 10 < 10 < 10	18 20 26 56 20			
SR-134 SR-135 SR-136 SR-137 SR-138	205 226 205 226 205 226 205 226 205 226 205 226	0.04 0.10 0.06 0.08 0.06	2 2 1 2 1	20 10 10 10 10	8 6 2 16 8	<pre>< 2 < 2</pre>	<pre>< 1 < 1 < 1 < 1 < 1 1 1</pre>	1 < 0 1 < 0 1 < 0 1 < 0 1 < 0 1 < 0	.01 .01 .01 .01 .01	<pre>< 10 < 10</pre>	<pre>< 10 < 10</pre>	2 2 1 1 1	< 10 < 10 50 < 10 < 10	56 16 14 320 86			
SR-139 SR-140 SR-141 SR-142 SR-143	205 226 205 226 205 226 205 226 205 226 205 226	0.06 0.03 0.07 0.03 0.03	3 1 2 1 1	30 30 20 20 10	12 14 2 4 8	<pre>< 2 < 2</pre>	<pre>< 1 < 1 1 < 1 < 1 < 1 < 1 < 1 < 1</pre>	1 < 0 1 < 0 2 < 0 1 < 0 2 < 0	.01 .01 .01 .01 .01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	1 1 1 1 < 1	< 10 10 < 10 < 10 < 10 < 10	114 416 26 82 52			

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

fo: VERDSTONE GOLD CORP. WINDSOR SQUARE 1959 152ND ST., SUITE 310 SURREY, BC V4A 9E3 Page ber :2-A Total es :2 Certificate Date: 04-AUG-96 Invoice No. : 19625602 P.O. Number : Account :JZL

Project : SALAL Comments: ATTN: A.KIKANKA

											CEI	RTIFI	CATE	OF A	NALY	SIS		9625	602		
SAMPLE	PREP CODE		Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm
SR-101 SR-102 SR-103 SR-104 SR-105	205 2 205 2 205 2 205 2 205 2 205 2	26 26 26 26 26	0.8 0.4 < 0.2 < 0.2 < 0.2 < 0.2	0.29 0.78 0.20 0.23 0.22	<pre>< 2 < 2</pre>	10 50 < 10 < 10 < 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 < 2 < 2 < < 2 < 2 < 2	0.08 0.53 0.01 0.01 0.01	0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	3 4 < 1 < 1 < 1 < 1	75 107 106 150 124	8 28 6 6 14	3.32 2.06 0.56 0.49 0.54	<pre>< 10 < 10</pre>	6 < 1 < 1 < 1 < 1 < 1	0.26 0.34 0.10 0.09 0.09	< 10 < 10 < 10 < 10 < 10 10	0.01 0.28 0.01 0.03 0.03	105 420 40 70 155	6970 392 445 735 125
SR-106 SR-107 SR-108 SR-109 SR-110	205 2 205 2 205 2 205 2 205 2 205 2	26 26 26 26 26 26	< 0.2 1.8 < 0.2 < 0.2 < 0.2 < 0.2	0.21 0.22 0.19 0.20 0.22	<pre> < 2 < 2</pre>	<pre>< 10 < 10</pre>	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre> < 2 2 < 2 <</pre>	0.01 0.01 0.01 0.01 0.01	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>< 1 < 1</pre>	137 153 125 111 163	13 26 9 19 14	0.54 0.99 0.50 0.55 0.53	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 1 < 1</pre>	0.10 0.13 0.11 0.11 0.13	10 < 10 < 10 < 10 10 10	0.03 0.01 0.01 0.01 0.01	260 455 130 135 140	91 374 165 103 81
SR-111 SR-112 SR-113 SR-114 SR-115	205 2 205 2 205 2 205 2 205 2 205 2	26 26 26 26 26 26	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.20 0.23 0.29 0.23 0.23	< 2 < 2 2 < 2 < 2 < 2 < 2	<pre>< 10 < 10</pre>	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>< 2 < 2</pre>	0.01 0.04 0.04 0.03 0.03	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>< 1 < 1</pre>	116 146 117 139 145	12 13 23 13 12	0.60 0.47 0.58 0.62 0.54	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 1 < 1</pre>	0.11 0.11 0.09 0.13 0.11	< 10 10 10 < 10 < 10	0.02 0.02 0.04 0.01 0.03	140 345 325 50 55	90 48 47 325 28
SR-116 SR-117 SR-118 SR-119 SR-120	205 2 205 2 205 2 205 2 205 2 205 2	26 26 26 26 26 26	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.22 0.18 0.23 0.20 0.28	<pre> < 2 < 2</pre>	< 10 < 10 < 10 < 10 < 10 < 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre> < 2 < 2</pre>	0.04 0.03 0.03 0.03 0.03 0.04	< 0.5 < 0.5 0.5 < 0.5 < 0.5 < 0.5	<pre>< 1 < 1</pre>	130 102 169 104 163	19 10 7 8 9	0.59 0.59 0.50 0.55 0.55	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.12 0.10 0.12 0.10 0.13	<pre>< 10 < 10 < 10 < 10 < 10 10 < 10 < 10</pre>	0.01 0.02 0.02 0.03 0.03	190 165 200 85 195	134 36 46 11 20
SR-121 SR-122 SR-123	205 2 205 2 205 2	26	< 0.2 < 0.2 < 0.2 < 0.2	0.19 0.22 0.21	< 2 < 2 < 2	< 10 < 10 < 10	< 0.5 < 0.5 < 0.5	< 2 < 2 < 2	0.01 0.04 0.01	< 0.5 < 0.5 < 0.5	< 1 < 1 < 1	127 129 130	5 6 8	0.55 0.52 0.55	< 10 < 10 < 10	<pre>< 1 < 1 < 1 < 1</pre>	0.12 0.11 0.12	< 10 < 10 < 10	0.01 0.03 0.01	115 100 110	6 4 63 345

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

To: VERDSTONE GOLD CORP. WINDSOR SQUARE 1959 152ND ST., SUITE 310 SURREY, BC V4A 9E3

Project : SALAL Comments: ATTN: A.KIKANKA Page ber :2-B Total 3 :2 Certific Date: 04-AUG-96 Invoice No. : 19625602 P.O. Number : Account : JZL

											CE	RTIFI	CATE	OF A	NALYSIS	A9625602
SAMPLE	PRE COD	CP DE	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	U ppm	V ppm	W ppm	Zn ppm	
SR-101 SR-102 SR-103 SR-104 SR-105	205 205 205 205 205 205	226 226 226 226 226 226	< 0.01 0.03 0.04 0.06 0.05	< 1 5 1 1 1	20 520 10 10 10	50 36 2 2 4	<pre>< 2 < 2</pre>	1 1 < 1 1 1	1 < 0 7 0 < 1 < 0 1 < 0 2 < 0	0.01 0.03 0.01 0.01 0.01	<pre>< 10 < 10</pre>	<pre>< 10 < 10</pre>	< 1 17 1 1 1	<pre>< 10 < 10</pre>	10 88 8 14 20	
SR-106 SR-107 SR-108 SR-109 SR-110	205 205 205 205 205 205	226 226 226 226 226 226	0.06 0.06 0.05 0.06 0.07	1 1 1 2	10 10 20 30	8 102 72 6 6	<pre>< 2 < 2</pre>	1 1 1 < 1 1	2 < 0 1 < 0 1 < 0 1 < 0 1 < 0	0.01 0.01 0.01 0.01 0.01	<pre>< 10 < 10</pre>	<pre>< 10 < 10</pre>	1 1 1 1 1	< 10 < 10 < 10 < 10 < 10 < 10	22 22 14 24 20	
SR-111 SR-112 SR-113 SR-114 SR-115	205 205 205 205 205 205	226 226 226 226 226 226	0.06 0.06 0.05 0.06 0.06	1 1 1 3	20 10 10 10 10	8 6 12 8 2	<pre>< 2 < 2</pre>	1 < 1 1 < 1 < 1 < 1	1 < 0 3 < 0 4 < 0 1 < 0 3 < 0	0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	2 1 1 1 1	< 10 < 10 < 10 < 10 < 10 < 10	26 70 64 50 24	
SR-116 SR-117 SR-118 SR-119 SR-120	205 205 205 205 205 205	226 226 226 226 226 226	0.05 0.05 0.08 0.05 0.07	1 1 2 1 2	20 20 20 20 20 20	8 2 2 2 12	<pre>< 2 < 2</pre>	< 1 < 1 1 1 1	3 < 0 3 < 0 4 < 0 2 < 0 5 < 0	0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 10 < 10</pre>	1 2 1 1 3	<pre>< 10 < 10</pre>	30 28 32 16 24	
SR-121 SR-122 SR-123	205 205 205	226 226 226	0.06 0.05 0.06	2 1 1	10 20 20	2 2 4	<pre>< 2 < 2 < 2 < 2</pre>	1 1 1	1 < (4 < (2 <)	0.01 0.01 0.01	< 10 < 10 < 10	< 10 < 10 < 10	1 2 1	< 10 < 10 < 10	20 24 18	

tart Buchler

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To:	VERDSTONE GOLD CORP.
	WINDSOR SQUARE
	1959 152ND ST., SUITE 310
	SURREY, BC
	V4A 9E3

Page Number	3-A
Total Pages	3
Certificate Date	913-AUG-96
Invoice No.	I-9626858
P.O. Number	:
Account	:

Project : SALAL Comments:

											CERTIFICATE OF ANALYS							49626	858		
SAMPLE DESCRIPTION	P R E COD	P B	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca १	Cđ ppm	Со ррт	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K Z	La ppm	Mg %	Mn ppm	Mo p pu
SR-144 SR-145 SR-146 SR-147 SR-148	205 205 205 205 205 205	226 226 226 226 226 226	0.2 0.6 5.0 0.6 < 0.2	0.39 0.63 0.70 0.58 0.30	<pre>< 2 < 2</pre>	< 10 10 20 < 10 < 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre> < 2 < 2 10 < 2 < 2 < 2 < 2 < 2 </pre>	0.24 0.11 0.39 0.20 0.04	1.5 7.0 6.0 < 0.5 < 0.5	<pre>< 1 < 1</pre>	125 190 125 195 141	67 142 323 45 22	0.49 0.77 0.68 0.72 0.77	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 1 < 1</pre>	0.22 0.31 0.35 0.36 0.20	< 10 < 10 < 10 < 10 < 10 < 10	0.02 0.04 0.03 0.02 0.01	765 455 575 220 60	361 204 5 3 45
SR-149 SR-150 SR-151 SR-301 SR-302	205 205 205 205 205 205	226 226 226 226 226 226	1.6 0.6 0.2 < 0.2 < 0.2 < 0.2	0.35 0.30 0.50 0.22 0.35	4 < 2 < 2 < 2 2 2	< 10 < 10 10 < 10 < 10 < 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	8 2 < 2 < 2 10	0.15 0.06 0.11 < 0.01 < 0.01	4.0 1.5 0.5 < 0.5 < 0.5 < 0.5	<pre>< 1 < 1 1 < 1 < 1 1 < 1 1</pre>	61 140 198 115 179	169 100 45 17 17	1.96 0.93 0.77 0.74 0.97	< 10 < 10 < 10 < 10 < 10 < 10	1 < 1 < 1 < 1 < 1	0.19 0.17 0.31 0.18 0.24	< 10 < 10 10 < 10 < 10	0.01 0.03 0.03 < 0.01 < 0.01	200 210 505 75 100	321 45 43 109 166
SR-303 SR-304	205	226	< 0.2 < 0.2	0.25 0.52	8 < 2	< 10 < 10	< 0.5 < 0.5	< 2 · < 2 · · < 2 · · · · · · · · · · ·	< 0.01 0.16	< 0.5 < 0.5		93 106	19 21	1.94 0.92	< 10 < 10		0.21 0.30		< 0.01 0.01	50 345	964 428

PAGE 006

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: VERDSTONE GOLD CORP. WINDSOR SQUARE 1959 152ND ST., SUITE 310 SURREY, BC V4A 9E3

Page Number	3-B
Total Pages	3
Certificate Date	913-AUG-96
Invoice No.	I-D626858
P.O. Number	:
Account	:

Project :	SALAL
Comments:	

									CI	ERTIFI	CATE	OF	NALY	SIS	A9626858	
SAMPLE DESCRIPTION	P R E P COD E	Na 8	Ni ppm	P PPm	Pb ppm	Sb ppm	Sc ppm	Sr T ppm	i Tl 8 ppm	D D	V ppm	M B b ur	Zn ppm			
SR-144 SR-145 SR-146 SR-147 SR-148	205 226 205 226 205 226 205 226 205 226 205 226 205 226	0.03 0.05 0.03 0.06 0.04	1 2 2 2 1	10 20 30 30 50	8 58 4 8	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1 < 1 < 1 < 1 < 1 < 1	1 < 0.0 2 < 0.0 3 < 0.0 < 1 < 0.0 1 < 0.0	1 < 10 1 < 10 1 < 10 1 < 10 1 < 10 1 < 10	< 10 < 10 < 10 < 10 < 10 < 10	1 1 1 1 1	< 10 < 10 < 10 < 10 < 10 < 10	316 1275 1130 38 38			
SR-149 SR-150 SR-151 SR-301 SR-302	205 226 205 226 205 226 205 226 205 226 205 226 205 226	0.01 0.05 0.06 0.04 0.06	< 1 1 2 2 2 2	30 40 40 10 10	16 10 4 2 6	<pre>< 2 < 2</pre>	<pre>< 1 < 1</pre>	<pre>< 1 < 0.0 < 1 < 0.0 1 < 0.0 < 1 < 0.0 < 1 < 0.0 < 1 < 0.0 < 1 < 0.0</pre>	1 < 10 1 < 10 1 < 10 1 < 10 1 < 10 1 < 10	< 10 < 10 < 10 < 10 < 10 < 10	16 2 2 1 1	40 20 < 10 < 10 10	714 264 182 12 18			- <u> </u>
SR-303 SR-304	205 226	0.02		10 10	28	< 2 < 2		< 1 < 0.0 < 1 < 0.0	1 < 10 1 < 10	< 10 < 10	5 1	< 10 < 10	16 34			

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

To: VERDSTONE GOLD CORP. WINDSOR SQUARE 1959 152ND ST., SUITE 310 SURREY, BC V4A 9E3 Page 1500nber :1-A Total Pages :3 Certificate Date: 19-AUG-96 Invoice No. :19627484 P.O. Number : Account :JZL

Project : SALAL Comments: ATTN:MARC BAMBOIS

										CE	RTIFI	CATE	OFA	NAL	SIS	4	49627	484		
SAMPLE	PREP CODE	Ag ppm	A1 、%	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Со ррш	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm
SR-152 SR-153 SR-154 SR-155 SR-156	208 226 208 226 208 226 208 226 208 226 208 226	< 0.2 0.2 < 0.2 0.4 < 0.2	0.29 0.45 0.46 0.30 0.36	< 2 4 < 2 2 < 2	10 10 < 10 < 10 < 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.04 0.10 0.04 0.05 0.03	0.5 1.5 0.5 < 0.5 < 0.5	2 < 1 < 1 < 1 < 1 < 1	127 144 164 128 173	17 32 18 11 5	0.76 0.65 0.66 0.48 0.60	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.17 0.20 0.25 0.15 0.19	< 10 < 10 < 10 < 10 < 10 < 10	0.01 0.03 0.02 0.01 0.03	490 1610 220 845 160	120 48 43 219 37
SR-157 SR-158 SR-159 SR-160 SR-161	208 226 208 226 208 226 208 226 208 226 208 226	< 0.2 < 0.2 0.4 < 0.2 < 0.2	0.27 0.57 0.28 0.40 0.26	6 6 2 < 2 < 2	< 10 10 20 20	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.06 0.21 0.05 0.05 0.03	< 0.5 0.5 0.5 < 0.5 < 0.5	< 1 < 1 < 1 1 < 1	119 169 114 169 145	8 17 15 14 6	0.58 0.74 0.85 0.67 0.57	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.15 0.28 0.16 0.21 0.14	10 10 < 10 < 10 < 10	0.02 0.04 0.01 0.03 0.01	545 1125 90 190 55	40 22 34 25 97
SR-162 SR-163 SR-164 SR-165 SR-166	208 226 208 226 208 226 208 226 208 226 208 226	< 0.2 < 0.2 < 0.2 < 0.2 0.2 < 0.2	0.40 0.27 0.57 0.28 0.42	< 2 < 2 4 < 2 2 2	10 10 10 20 20	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.03 0.03 0.11 0.04 0.04	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 < 1 < 1 < 1 < 1 < 1	180 144 165 136 202	9 10 10 13 8	0.56 0.48 0.71 0.56 0.68	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.22 0.14 0.28 0.15 0.23	10 10 10 10 10	0.02 0.01 0.03 0.01 0.04	60 400 915 70 190	21 95 78 37 195
SR-167 SR-168 SR-169 SR-170 SR-171	208 226 208 226 208 226 208 226 208 226 208 226	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.35 0.41 0.30 0.36 0.32	< 2 < 2 2 4 4	10 10 < 10 20 < 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.03 0.01 0.05 0.03 0.05	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 < 1 < 1 < 1 < 1 < 1	127 196 146 175 120	8 8 7 8	1.65 0.95 0.54 0.54 0.88	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.20 0.26 0.16 0.22 0.18	< 10 10 10 < 10 < 10	0.02 0.01 0.02 0.02 0.01	75 40 210 120 85	398 138 44 52 181
SR-172 SR-173 SR-174 SR-175 SR-176	208 226 208 226 208 226 208 226 208 226 208 226	3.2 0.4 2.0 0.2 0.8	0.51 0.27 0.66 0.33 0.74	6 2 4 2 2	< 10 10 10 10 < 10	< 0.5 < 0.5 1.0 < 0.5 < 0.5	6 < 2 12 < 2 4	0.06 0.03 0.28 0.15 0.22	1.5 1.0 16.0 < 0.5 < 0.5	1 < 1 1 1 < 1	222 134 189 125 180	18 30 106 13 26	1.25 0.50 1.09 0.60 1.47	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.26 0.14 0.19 0.14 0.40	< 10 < 10 10 < 10 < 10 < 10	0.02 0.02 0.05 0.02 0.02	900 410 3650 525 140	544 194 1130 959 69
SR-177 SR-178 SR-179 SR-180 SR-181	208 226 208 226 208 226 208 226 208 226 208 226	2.4 0.2 < 0.2 0.2 < 0.2 < 0.2	0.30 0.59 0.21 0.45 0.20	2 2 < 2 < 2 < 2 < 2 < 2	< 10 < 10 < 10 < 10 < 10 < 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 < 2 < 2 < 2 < 2 < 2 < 2	0.03 0.08 0.01 0.11 < 0.01	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 < 1 < 1 < 1 < 1 < 1	146 183 122 158 131	37 23 8 155 11	0.78 0.94 0.44 0.70 0.57	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.18 0.36 0.12 0.25 0.11	10 < 10 < 10 < 10 < 10 < 10	0.01 0.01 0.01 0.01 0.01	270 110 80 100 120	130 76 32 47 82
SR-182 SR-183 SR-184 SR-185 SR-186	208 226 208 226 208 226 208 226 208 226 208 226 208 226	0.4 < 0.2 0.2 0.2 0.2	0.41 0.23 0.35 0.25 0.40	2 < 2 < 2 < 2 < 2 < 2 < 2	< 10 < 10 < 10 < 10 < 10 < 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.01 0.01 0.01 0.01 0.01	< 0.5 < 0.5 < 0.5 0.5 < 0.5	< 1 < 1 < 1 < 1 < 1 < 1	198 118 169 141 184	13 11 43 36 33	0.91 0.44 0.49 0.52 0.52	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.25 0.11 0.18 0.13 0.23	< 10 < 10 10 10 10	0.01 0.01 0.02 0.01 0.01	90 70 370 295 330	457 66 34 77 89
SR-187 SR-188 SR-189 SR-190 SR-191	208 226 208 226 208 226 208 226 208 226 208 226	0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.24 0.32 0.23 0.48 0.22	< 2 < 2 < 2 2 2 < 2	< 10 < 10 < 10 < 10 < 10 < 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.01 0.01 0.01 0.06 0.01	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 < 1 < 1 < 1 < 1 < 1	137 167 122 171 122	17 15 6 18 14	0.69 0.50 0.43 0.76 0.46	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.13 0.18 0.11 0.24 0.11	< 10 < 10 < 10 < 10 < 10 10	0.01 0.01 0.02 0.02 0.01	205 135 60 140 155	71 48 10 21 16

CERTIFICATION: Hand Bullo

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: VERDSTONE GOLD CORP. WINDSOR SQUARE 1959 152ND ST., SUITE 310 SURREY, BC V4A 9E3

Project : SALAL Comments: ATTN:MARC BAMBOIS Page wumber :1-B Total Pages :3 Certificate Date: 19-AUG-96 Invoice No. : 19627484 P.O. Number Account : JZL

CERTIFICATE OF ANALYSIS

A9627484

SAMPLE	PREP CODE	N	a 1 % p)	Ni pm	P ppm	Sb ppm	Pb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U mqq	V ppm	W ppm	Zn ppm	
SR-152 SR-153 SR-154 SR-155 SR-156	208 22 208 22 208 22 208 22 208 22 208 22	6 0.0 6 0.0 6 0.0 6 0.0 6 0.0	7 4 8 5 9	2 2 3 1 3	10 50 30 10 10	< 2 < 2 < 2 < 2 < 2 < 2	2 26 10 114 2	< 1 1 < 1 1	2 < 8 < 4 < 3 < 3 <	0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	1 4 3 < 1 2	< 10 < 10 < 10 < 10 < 10	44 198 106 66 16	
SR-157 SR-158 SR-159 SR-160 SR-161	208 22 208 22 208 22 208 22 208 22 208 22 208 22	6 0.0 6 0.0 6 0.0 6 0.1 6 0.0	4 5 5 0 6	1 3 1 3 1	20 20 10 30 10	< 2 < 2 < 2 < 2 < 2 < 2	8 18 20 10 2	1 1 < 1 < 1 < 1	3 < 5 < 3 < 8 < 3 <	0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	1 2 1 4 1	< 10 < 10 < 10 < 10 < 10 < 10	28 194 160 70 8	
SR-162 SR-163 SR-164 SR-165 SR-166	208222082220822208222082220822	6 0.0 6 0.0 6 0.0 6 0.0 6 0.0	9 6 8 6 9	3 1 2 1 3	20 20 30 30 20	< 2 < 2 < 2 < 2 < 2 < 2	2 8 4 2 6	< 1 < 1 1 < 1 1	3 < 3 < 4 < 4 < 3 <	0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	2 1 3 3 3	< 10 < 10 < 10 < 10 < 10 < 10	8 18 22 24 24	
SR-167 SR-168 SR-169 SR-170 SR-171	208 22 208 22 208 22 208 22 208 22 208 22 208 22	6 0.0 6 0.0 6 0.0 6 0.0 6 0.0	4 8 6 9 4	1 3 1 2 1	10 10 20 10 10	< 2 < 2 < 2 < 2 < 2 < 2	2 4 10 6 2	< 1 < 1 1 < 1 < 1	1 < 1 < 2 < 1 < < 1 <	0.01 0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	3 3 1 1 < 1	< 10 < 10 < 10 < 10 < 10 < 10	10 8 16 12 10	
SR-172 SR-173 SR-174 SR-175 SR-176	208 22 208 22 208 22 208 22 208 22 208 22	6 0.0 6 0.0 6 0.0 6 0.0	6 5 6 5 5	3 1 3 1 3	10 20 20 20 10	< 2 < 2 < 2 < 2 < 2 < 2 < 2	46 12 82 52 20	< 1 < 1 1 < 1 1	1 < 3 < 4 < 2 < < 1 <	0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	3 1 1 < 1 1	< 10 < 10 < 10 < 10 < 10 < 10	320 252 3040 94 42	
SR-177 SR-178 SR-179 SR-180 SR-181	208 220 208 220 208 220 208 220 208 220 208 220	6 0.0 6 0.0 6 0.0 6 0.0 6 0.0	5 7 5 9 5	1 3 1 2 1	10 20 10 10 10	< 2 < 2 < 2 < 2 < 2 < 2 < 2	30 14 2 6 4	1 1 < 1 1 < 1	1 < 1 < < 1 < < 1 < 1 < 1 <	0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	1 1 1 1 1	< 10 30 < 10 < 10 < 10	24 30 16 20 18	
SR-182 SR-183 SR-184 SR-185 SR-186	208 220 208 220 208 220 208 220 208 220 208 220	6 0.0 6 0.0 5 0.0 5 0.0 5 0.0	7 5 9 5 9	3 1 2 1 3	20 10 20 10 20	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	490 8 12 10 176	< 1 1 1 < 1 1	1 < 1 < 2 < 1 < 2 <	0.01 0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	1 1 1 1	< 10 < 10 < 10 < 10 < 10 < 10	26 32 38 36 48	
SR-187 SR-188 SR-189 SR-190 SR-191	208 226 208 226 208 226 208 226 208 226 208 226	5 0.0 5 0.0 5 0.0 5 0.10 5 0.10	5	1 2 1 3 1	10 10 10 20 10	< 2 < 2 < 2 < 2 < 2 < 2 < 2	10 6 2 < 2 < 2 < 2	< 1 1 1 1	1 < 1 < 1 < 1 < 1 <	0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	1 1 1 1	< 10 < 10 < 10 70 < 10	40 22 20 18 18	
		<u>_</u>								<u> </u>						TION:

CERTIFICATION:

SR-229

SR-230

SR-231

208 226

208 226

208 226

1.0

0.6

< 0.2

0.31

0.44

0.36

6

2

< 2

< 10

10

< 10 < 0.5

< 0.5

< 0.5

2

< 2

< 2

0.05

0.08

0.06 < 0.5

1.5

2.0

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

To: VERDSTONE GOLD CORP. WINDSOR SQUARE 1959 152ND ST., SUITE 310 SURREY, BC V4A 9E3

Project : SALAL Comments: ATTN:MARC BAMBOIS

115

201

132

1

< 1

< 1

54

10

19

0.91

0.54

0.58

Page _mber :2-A Total Pages :3 Certificate Date: 19-AUG-96 Invoice No. :19627484 P.O. Number : Account :JZL

> Mo ppm

244

100

179

						.				CE	RTIFI	CAT	E OF A	ANALY	YSIS		49627	484	
SAMPLE	PREP CODE	Ag ppm	g Al As Ba Be Bi Ca Cd Co Cr Cu Fe Ga m % ppm ppm ppm % ppm ppm ppm ppm % ppm ;										Hg ppm	K %	La ppm	Mg %	Mn ppm		
SR-192	208 22	6 < 0.2	0.34	2	< 10	< 0.5	< 2	0.01	< 0.5	< 1	161	3	0.47	< 10	< 1	0.17	10	0.01	45
SR-193	208 22	6 0.8	0.65	< 2	< 10	< 0.5	< 2	0.18	< 0.5	< 1	150	38	0.97	< 10	< 1	0.34	< 10	0.01	210
SR-194	208 22	6 < 0.2	0.37	2	< 10	< 0.5	< 2	0.02	< 0.5	< 1	179	15	0.68	< 10	< 1	0.20	10	0.02	165
SR-195	208 22	6 < 0.2	0.22	2	< 10	< 0.5	< 2	< 0.01	< 0.5	< 1	129		0.44	< 10	< 1	0.12	< 10	0.01	45
SR-196	208 22	6 3.6	0.43	10	< 10	< 0.5	8	0.02	< 0.5	< 1	196	25	0.93	< 10	< 1	0.24	< 10	0.01	765
SR-197	208 22	6 < 0.2	0.25	2	< 10	< 0.5	< 2	< 0.01	< 0.5	< 1	141	11	0.49	< 10	< 1	0.11	10	0.01	55
SR-198	208 22	6 < 0.2	0.37	< 2	< 10	< 0.5	< 2	0.01	< 0.5	< 1	186	14	0.52	< 10	< 1	0.18	10	0.03	115
SR-199	208 22	6 0.2	0.27	2	< 10	< 0.5	< 2	< 0.01	< 0.5	< 1	139	23	1.06	< 10	< 1	0.18	< 10	0.01	125
SR-200	208 22	6 < 0.2	0.49	< 2	< 10	< 0.5	< 2	0.06	< 0.5	< 1	184	15	1.08	< 10	< 1	0.26	10	0.01	130
SR-201	208 22	6 < 0.2	0.30	4	< 10	< 0.5	< 2	< 0.01	< 0.5	< 1	148	7	3.22	< 10	1	0.20	< 10	< 0.01	120
SR-202	208 22	6 66.6	0.62	6	< 10	< 0.5	94	0.03	< 0.5	2	117	31	11.20	< 10	< 1	0.32	< 10	0.02	1735
SR-203	208 22	6 < 0.2	0.22	< 2	< 10	< 0.5	< 2	< 0.01	< 0.5	< 1	129	6	0.63	< 10	< 1	0.11	< 10	0.01	65
SR-204	208 22	6 0.2	0.36	< 2	< 10	< 0.5	< 2	0.01	< 0.5	< 1	204	7	0.68	< 10	< 1	0.18	10	0.03	235
SR-205	208 22	6 < 0.2	0.25	2	< 10	< 0.5	< 2	0.01	< 0.5	< 1	148	7	0.51	< 10	< 1	0.12	10	0.02	205
SR-206	208 22	6 < 0.2	0.39	2	< 10	< 0.5	< 2	0.01	< 0.5	1	201	9	0.57	< 10	< 1	0.22	10	0.01	170
SR-207	208 22	6 < 0.2	0.22	< 2	< 10	< 0.5	< 2	0.01	< 0.5	< 1	144	8	0.47	< 10	< 1	0.12	10	0.01	255
SR-208	208 22	6 < 0.2	0.33	2	< 10	< 0.5	< 2	0.01	< 0.5	< 1	184	1	0.49	< 10	< 1	0.18	10	0.02	190
SR-209	208 22	6 < 0.2	0.21	2	< 10	< 0.5	< 2	0.01	< 0.5	< 1	127	9	0.54	< 10	< 1	0.11	< 10	0.01	235
SR-210	208 22	6 < 0.2	0.29	< 2	10	< 0.5	< 2	0.01	< 0.5	< 1	1/8	17	0.57	< 10	< 1	0.17	10	0.01	3 3 3 3
SR-211	208 22	6 < 0.2	0.22	< 2	< 10	< 0.5	< 2	< 0.01	< 0.5	< 1	143	10	0.5/	< 10	< 1	0.12	< 10	0.01	145
SR-212	208 22	6 < 0.2	0.32	2	< 10	< 0.5	< 2	0.01	< 0.5	< 1	165	8	0.50	< 10	< 1	0.18	< 10	0.01	165
SR-213	208 22	6 < 0.2	0.23	< 2	< 10	< 0.5	< 2	0.01	< 0.5	< 1	142	6	0.47	< 10	< 1	0.13	10	0.01	105
SR-214	208 22	6 < 0.2	0.34	< 2	< 10	< 0.5	< 2	0.01	< 0.5	< 1	158	5	0.52	< 10	< 1	0.19	< 10	0.02	190
SR-215	208 22	6 < 0.2	0.26	2	< 10	< 0.5	< 2	< 0.01	< 0.5	< 1	89	4	1.29	< 10	< 1	0.17	< 10	< 0.01	35
SR-216	208 22	6 0.6	0.53	8	< 10	< 0.5	2	< 0.01	< 0.5	1	189	14	1.33	< 10	< 1	0.34	< 10	< 0.01	90
SR-217	208 22	6 < 0.2	0.29	2	10	< 0.5	< 2	< 0.01	< 0.5	< 1	118	8	0.88	< 10	< 1	0.19	10	0.01	80
SR-218	208 22	6 0.4	0.61	< 2	< 10	< 0.5	< 2	< 0.01	< 0.5	1	203	8	2.40	< 10	< 1	0.33	< 10	< 0.01	165
SR-219	208 22	6 0.2	0.43	2	< 10	< 0.5	< 2	0.17	< 0.5	1	125	7	0.99	< 10	< 1	0.20	10	0.03	185
SR-220	208 22	6 < 0.2	0.42	< 2	10	< 0.5	< 2	0.13	< 0.5	< 1	163	10	0.54	< 10	< 1	0.21	10	0.05	325
SR-221	208 22	6 < 0.2	0.26	< 2	< 10	< 0.5	< 2	0,06	< 0.5	< 1	119	8	0.51	< 10	< 1	0.12	10	0.02	245
SR-222	208 22	6 < 0.2	0.43	< 2	10	< 0.5	< 2	0.06	< 0.5	1	171	7	0.52	< 10	< 1	0.21	10	0.05	270
SR-223	208 22	6 < 0.2	0.40	< 2	< 10	< 0.5	< 2	0.07	< 0.5	< 1	127	10	0.66	< 10	< 1	0.22	10	0.01	105
SR-224	208 22	6 < 0.2	0.41	< 2	10	< 0.5	< 2	0.07	< 0.5	1	168	8	0.52	< 10	< 1	0.19	10	0.05	375
SR-225	208 22	6 < 0.2	0.37	2	< 10	< 0.5	< 2	0.07	< 0.5	< 1	124	6	0.48	< 10	< 1	0.19	10	0.02	205
SR-226	208 22	● < 0.2	0.47	2	10	< 0.5	< 2	0.11	< 0.5	< 1	181	15	0.55	< 10	< 1	0.24	10	0.01	495
SR-227	208 22	6 < 0.2	0.27	< 2	< 10	< 0.5	< 2	0.04	< 0.5	< 1	137	8	0.60	< 10	< 1	0.14	10	0.03	110
SR-228	208 22	6 < 0.2	0.44	< 2	10	< 0.5	< 2	0.12	< 0.5	< 1	173	10	0.62	< 10	< 1	0.22	10	0.01	285

CERTIFICATION:_

< 1

< 1

< 1

0.19

0.21

0.14

< 10

್ಷನಾ

10

10

0.01

0.01

0.02

2

-

..

. .

190

175

1135

della.

< 10

< 10

< 10

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: VERDSTONE GOLD CORP. WINDSOR SQUARE 1959 152ND ST., SUITE 310 SURREY, BC V4A 9E3

Project : SALAL Comments: ATTN:MARC BAMBOIS

Page Number :2-B Total Pages :3 Certificate Date: 19-AUG-96 Invoice No. P.O. Number :19627484 : Account JZL

HartBichler

CERTIFICATION:_

					_						CE	RTIFI	CATE	OF A	NALYSIS	A9627484
SAMPLE	PRI COI	EP DE	Na %	Ni ppm	P ppm	Sb ppm	Pb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	W ppm	Zn ppm	
SR-192 SR-193 SR-194 SR-195 SR-196 SR-197	208 208 208 208 208 208	226 226 226 226 226 226	0.09 0.03 0.09 0.05 0.04	2 1 3 1 2	10 10 10 10 10	< 2 < 2 < 2 < 2 < 2 < 2 < 2	2 12 2 < 2 90	1 < 1 < 1 < 1 < 1 < 1	1 < (< 1 < (1 < (1 < (1 < (0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	1 1 2 1 1	< 10 < 10 < 10 < 10 < 10 < 10	10 30 28 8 46	
SR-198 SR-199 SR-200 SR-201	208 208 208 208 208	226 226 226 226 226	0.09 0.04 0.07 0.02	3 1 3 < 1	10 10 10 10	< 2 < 2 < 2 < 2 < 2	6 38 6 14	1 < 1 < 1 < 1	1 < (1 < (1 < (< 1 < (0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	2 1 1 5	< 10 < 10 < 10 < 10 30	28 30 14 6	
SR-202 SR-203 SR-204 SR-205 SR-206	208 208 208 208 208 208	226 226 226 226 226 226	< 0.01 0.05 0.10 0.06 0.09	2 1 3 1 3	10 10 10 10 10	< 2 < 2 < 2 < 2 < 2 < 2	258 2 2 2 2	1 < 1 1 1 1	< 1 < (1 < (1 < (1 < (1 < (1 < (0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	30 1 3 1 1	100 < 10 < 10 < 10 < 10 < 10	10 10 22 20 14	
SR-207 SR-208 SR-209 SR-210 SR-211	208 208 208 208 208 208	226 226 226 226 226 226	0.06 0.10 0.06 0.10 0.06	1 3 1 3 1	10 10 10 20 20	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	2 2 < 2 < 2 2 2	1 1 1 1 1	1 < 0 1 < 0 1 < 0 1 < 0 1 < 0	0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	1 1 1 2 1	< 10 < 10 < 10 < 10 < 10 < 10	18 16 16 20 14	
SR-212 SR-213 SR-214 SR-215 SR-216	208 208 208 208 208 208	226 226 226 226 226 226	0.10 0.07 0.10 0.03 0.03	3 1 2 1 3	10 10 10 < 10 < 10	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	4 < 2 < 2 < 2 < 2 10	1 1 < 1 < 1 < 1	1 < 0 1 < 0 1 < 0 < 1 < 0 < 1 < 0	0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	1 1 1 < 1 1	< 10 < 10 < 10 < 10 < 10 40	14 14 14 6 6	
SR-217 SR-218 SR-219 SR-220 SR-221	208 208 208 208 208 208	226 226 226 226 226 226	0.04 0.04 0.05 0.09 0.05	1 3 2 3 1	20 10 30 40 30	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	2 4 2 2 4	< 1 < 1 2 1 1	1 < 0 < 1 < 0 1 < 0 3 < 0 1 < 0	0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	1 1 3 3 1	10 < 10 < 10 < 10 < 10 < 10	6 4 20 20 18	
SR-222 SR-223 SR-224 SR-225 SR-226	208 208 208 208 208 208	226 226 226 226 226 226	0.10 0.04 0.09 0.05 0.08	3 1 3 1 3	40 30 40 30 30	< 2 < 2 < 2 < 2 < 2 < 2 < 2	2 6 2 6 4	1 < 1 1 < 1 1	3 < 0 1 < 0 3 < 0 1 < 0 3 < 0 3 < 0	0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	3 1 3 1 2	< 10 < 10 < 10 < 10 < 10 < 10	24 10 34 12 34	
SR-227 SR-228 SR-229 SR-230 SR-231	208 208 208 208 208 208	226 226 226 226 226 226	0.05 0.07 0.03 0.07 0.04	1 3 1 3 1	30 30 30 40 30	< 2 < 2 < 2 < 2 < 2 < 2 < 2	10 6 60 8 40	< 1 1 < 1 < 1 1 1	1 < 0 3 < 0 1 < 0 3 < 0 1 < 0).01).01).01).01).01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	1 2 1 2 1	< 10 < 10 < 10 < 10 < 10 < 10	20 22 280 28 342	

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 VERDSTONE GOLD CORP. WINDSOR SQUARE 1959 152ND ST., SUITE 310 SURREY, BC V4A 9E3 Page I er :3-A Total Pages :3 Certificate Date: 19-AUG-96 Invoice No. :19627484 P.O. Number : Account :JZL

Project : SALAL Comments: ATTN:MARC BAMBOIS

										CE	RTIF	CATE	OFA	NALY	SIS	<u>م</u>	9627	484		
SAMPLE	PREP CODE	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Мо ррп
5R-232 5R-233 5R-234 5R-235 5R-236	208 226 208 226 208 226 208 226 208 226 208 226	< 0.2 < 0.2 2.0 0.8 < 0.2	0.35 0.27 0.44 0.31 0.42	< 2 < 2 < 2 2 < 2 < 2	10 < 10 10 < 10 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 2 2 < 2	0.04 0.05 0.03 0.06 0.03	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 < 1 1 < 1 < 1 1	168 128 213 137 197	10 85 23 13	0.56 0.38 0.73 0.44 0.53	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.16 0.12 0.23 0.15 0.20	10 10 < 10 10 10	0.01 0.01 0.01 0.01 0.01	135 65 150 195 95	21 120 41 489 15
5R-237 5R-238 5R-239 5R-240 5R-241	208 226 208 226 208 226 208 226 208 226 208 226	0.4 < 0.2 0.2 < 0.2 < 0.2	0.48 0.43 0.21 0.38 0.22	< 2 < 2 < 2 < 2 < 2 < 2 < 2	< 10 10 10 10 10 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.21 0.03 0.02 0.07 0.06	< 0.5 < 0.5 0.5 < 0.5 < 0.5	< 1 1 < 1 < 1 < 1 < 1 < 1	121 203 142 158 139	15 11 25 11 31	0.60 0.47 0.37 0.56 0.45	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.18 0.20 0.11 0.20 0.10	10 10 10 10 10	0.02 0.02 < 0.01 0.01 < 0.01	85 75 70 170 30	30 47 147 182 47
SR-242 SR-243 SR-244 SR-245 SR-246	208 226 208 226 208 226 208 226 208 226 208 226	< 0.2 3.0 < 0.2 < 0.2 < 0.2	0.46 0.42 0.42 0.31 0.38	2 2 < 2 2 2	10 < 10 10 < 10 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 4 < 2 < 2 < 2	0.08 0.13 0.17 0.08 0.14	< 0.5 2.0 < 0.5 < 0.5 < 0.5	1 1 1 < 1 1	198 144 170 127 202	18 323 37 5 11	0.63 0.76 0.69 0.45 0.62	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.22 0.24 0.19 0.14 0.18	10 10 10 10 10	0.03 0.01 0.04 0.04 0.05	230 445 440 150 505	29 307 443 76 143

Harres-aller

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 io: VERDSTONE GOLD CORP. WINDSOR SQUARE 1959 152ND ST., SUITE 310 SURREY, BC V4A 9E3 Page I er :3-B Total Pages :3 Certificate Date: 19-AUG-96 Invoice No. : 19627484 P.O. Number : Account :JZL

Project : SALAL Comments: ATTN:MARC BAMBOIS

CERTIFICATE OF ANALYSIS A9627484

SAMPLE SR-232 SR-233 SR-234 SR-235 SR-236	PREP CODE 208 226 208 226 208 226 208 226 208 226 208 226	Na % 0.08 0.05 0.07 0.05 0.08	Ni ppm 3 1 4 1 3	P ppm 30 30 40 40 30	Sb ppm < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	Pb ppm 2 12 136 2	Sc ppm < 1 < 1 < 1 1 1	Sr Ti ppm % 3 < 0.01 2 2 < 0.01 2 2 < 0.01 3 3 < 0.01 3	T1 ppm < 10 < 10 < 10 < 10 < 10	U ppm < 10 < 10 < 10 < 10 < 10 < 10	V ppm 3 1 2 1 2	W ppm < 10 < 10 < 10 < 10 < 10	Zn ppm 32 18 30 46 26	
SR-237 SR-238 SR-239 SR-240 SR-241	208 226 208 226 208 226 208 226 208 226 208 226	0.03 0.10 0.05 0.06 0.04	1 3 1 3 2	30 30 30 30 30 30	< 2 < 2 < 2 < 2 < 2 < 2 < 2	20 2 8 10 6	1 1 < 1 < 1 < 1 < 1	1 < 0.01 2 < 0.01 1 < 0.01 1 < 0.01 2 < 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	2 3 1 1 < 1	< 10 < 10 < 10 < 10 < 10 < 10	60 20 122 36 20	
SR-242 SR-243 SR-244 SR-245 SR-245 SR-246	208 226 208 226 208 226 208 226 208 226 208 226 208 226	0.09 0.01 0.08 0.04 0.08	4 2 3 2 3	30 40 40 30 40	< 2 < 2 < 2 < 2 < 2 < 2 < 2	10 52 18 6 4	1 < 1 1 1 1	3 < 0.01 1 < 0.01 3 < 0.01 1 < 0.01 3 < 0.01 3 < 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	3 1 2 2 3	< 10 < 10 < 10 < 10 < 10 < 10	44 362 36 30 28	

CERTIFICATION: Gant Broklen

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: VERDSTONE GOLD CORP. WINDSOR SQUARE 1959 152ND ST., SUITE 310 SURREY, BC V4A 9E3 Project : SALAL Comments:

											CEI	RTIFIC	CATE	OF A	NALY	SIS	A	96360)79		
SAMPLE	PRE COE	P)E	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Hg ppm	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm
SR 344 SR 345 SR 346 SR 347 SR 348	205 205 205 205 205 205	226 226 226 226 226 226	< 1 < 1 < 1 1 3	0.19 0.21 0.19 0.39 0.37	40 30 30 20 10	< 20 < 20 < 20 < 20 < 20 < 20	< 5 < 5 < 5 < 5 < 5 < 5	< 10 < 10 < 10 < 10 < 10 10	0.02 0.02 0.02 0.11 0.13	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5<</pre>	60 80 70 70 70 70	20 15 5 40 120	0.47 0.48 0.44 0.83 0.90	< 10 < 10 < 10 < 10 < 10 < 10	0.14 0.14 0.12 0.32 0.29	0.01 0.01 0.01 0.01 0.01 0.02	60 90 70 100 240	25 25 45 120 35	0.04 0.04 0.04 0.01 0.01	< 5 < 5 < 5 < 5 < 5 < 5
SR 349 SR 350 SR 351 SR 352 SR 353	205 205 205 205 205 205	226 226 226 226 226 226	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.28 0.24 0.20 0.35 0.23	< 10 10 10 30 < 10	< 20 < 20 < 20 < 20 < 20 < 20	< 5 < 5 < 5 < 5 < 5 < 5	< 10 < 10 < 10 < 10 < 10 < 10	0.08 0.01 0.01 0.27 0.03	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	70 70 70 70 90	15 10 5 25 10	0.54 0.50 0.54 1.01 0.43	< 10 < 10 < 10 < 10 < 10 < 10	0.18 0.16 0.14 0.19 0.15	0.01 < 0.01 0.01 0.03 0.01	320 50 60 250 60	145 25 45 260 20	0.03 0.03 0.02 0.02 0.02	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5<</pre>
SR 354 SR 355 SR 356 SR 357 SR 358	205 205 205 205 205 205	226 226 226 226 226 226	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.23 0.23 0.27 0.35 0.26	10 < 10 30 20 < 10	< 20 < 20 < 20 < 20 < 20 < 20	< 5 < 5 < 5 < 5 < 5 < 5	< 10 < 10 < 10 < 10 < 10 < 10	0.03 0.02 0.02 0.08 0.08	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	< 5 < 5 < 5 < 5 < 5 < 5	80 80 80 80 80	5 10 30 10 10	0.41 0.45 0.78 1.10 0.90	< 10 < 10 < 10 < 10 < 10 < 10	0.15 0.15 0.24 0.27 0.25	0.01 0.01 0.01 0.01 0.01	70 150 140 90 80	105 30 15 20 25	0.03 0.04 0.02 < 0.01 < 0.01	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>
SR 359 SR 360 SR 361 SR 362 SR 363	205 205 205 205 205 205	226 226 226 226 226 226	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.23 0.21 0.23 0.30 0.23	10 10 < 10 < 10 < 10 < 10	< 20 < 20 < 20 < 20 < 20 < 20	< 5 < 5 < 5 < 5 < 5 < 5	< 10 < 10 < 10 < 10 < 10 < 10	0.03 0.06 0.03 0.02 0.02	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	< 5 < 5 < 5 < 5 < 5 < 5	80 70 80 80 80	10 5 25 10	0.67 0.67 0.41 0.86 0.52	< 10 < 10 < 10 < 10 < 10 < 10	0.18 0.20 0.14 0.26 0.17	< 0.01 < 0.01 0.02 0.01 0.01	110 70 160 140 190	25 10 < 5 45 15	0.03 0.03 0.06 0.01 0.04	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>
SR 364 SR 365 SR 366 SR 367 SR 368	205 205 205 205 205 205	226 226 226 226 226 226	< 1 < 1 < 1 < 1 < 1 < 1	0.26 0.21 0.24 0.25 0.22	20 10 < 10 10 20	< 20 < 20 < 20 < 20 < 20 < 20	< 5 < 5 < 5 < 5 < 5 < 5	< 10 < 10 < 10 < 10 < 10 < 10	0.03 0.02 0.03 0.02 0.02 0.02	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	70 70 80 90 80	15 10 10 10 5	0.53 0.46 0.42 0.46 0.46	< 10 < 10 < 10 < 10 < 10 10	0.21 0.17 0.16 0.17 0.14	0.02 < 0.01 0.01 0.01 0.02	620 50 60 100 110	140 5 25 10 5	0.03 0.04 0.04 0.05 0.05	<pre>< 5 < 5</pre>
SR 369 SR 370 SR 371 SR 372 SR 373	205 205 205 205 205 205	226 226 226 226 226 226	< 1 < 1 < 1 < 1 < 1 < 1	0.24 0.27 0.42 0.32 0.28	< 10 < 10 < 10 10 < 10	< 20 < 20 20 < 20 < 20 < 20	< 5 < 5 < 5 < 5 < 5 < 5 < 5	< 10 < 10 < 10 < 10 < 10 < 10	0.02 0.03 0.04 0.05 0.06	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	80 80 80 90 80	5 15 35 15 20	0.44 0.56 1.07 0.85 0.69	< 10 < 10 < 10 < 10 < 10 < 10	0.14 0.16 0.23 0.16 0.15	0.03 0.05 0.15 0.09 0.07	120 320 590 340 340	25 5 < 5 5 5 5	0.05 0.05 0.05 0.05 0.05 0.04	< 5 < 5 < 5 < 5 < 5 < 5
SR 374 SR 375 SR 376 SR 377 SR 378	205 205 205 205 205 205	226 226 226 226 226 226	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.22 0.27 0.33 0.26 0.26	< 10 < 10 10 < 10 10	< 20 < 20 < 20 < 20 < 20 < 20	< 5 < 5 < 5 < 5 < 5 < 5	< 10 < 10 < 10 < 10 < 10 < 10	0.04 0.05 0.15 0.04 0.03	< 5 < 5 < 5 < 5 < 5 < 5	<pre>< 5 < 5 < 5 < 5 < 5 < 5</pre>	70 90 90 90 90	20 30 25 20 10	0.60 0.46 0.72 0.51 0.48	< 10 < 10 < 10 < 10 < 10 < 10	0.14 0.18 0.23 0.16 0.15	0.01 0.02 0.01 0.03 0.03	120 180 90 300 190	10 10 75 25 5	0.04 0.04 0.03 0.04 0.05	< 5 < 5 < 5 < 5 < 5 < 5
					_							!									

CERTIFICATION:

- State of the

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: VERDSTONE GOLD CORP. WINDSOR SQUARE 1959 152ND ST., SUITE 310 SURREY, BC V4A 9E3 . :JZL Account

Project : SALAL Comments:

CERTIFICATE OF ANALYSIS

CERTIFICATION:

A9636079

SAMPLE	PREP CODE	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr T: ppm S	T1 ppm	U mqq	V ppm	W ppm	Zn ppm	
SR 344 SR 345 SR 346 SR 347 SR 348	205 226 205 226 205 226 205 226 205 226 205 226	< 100 < 100 < 100 < 100 < 100	<pre>< 5 < 5 < 5 1060 480</pre>	20 10 10 10 10	< 5 < 5 < 5 < 5 < 5	<pre>< 5 < 0.0 < 5 < 0.0</pre>	20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20	15 10 15 435 385	
SR 349 SR 350 SR 351 SR 352 SR 353	205 226 205 226 205 226 205 226 205 226 205 226	< 100 < 100 < 100 < 100 < 100 < 100	25 10 < 5 < 5 < 5	10 < 10 10 10 10	< 5 < 5 < 5 < 5 < 5 < 5	<pre>< 5 < 0.0 < 5 < 0.0</pre>	20 < 20 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	15 5 5 45 10	
SR 354 SR 355 SR 356 SR 357 SR 358	205 226 205 226 205 226 205 226 205 226 205 226	< 100 < 100 < 100 < 100 < 100 < 100	10 < 5 5 10 50	< 10 20 30 10 30	< 5 < 5 < 5 < 5 < 5 < 5	<pre>< 5 < 0.0 < 5 < 0.0</pre>	L < 20 20 L < 20 L < 20 L < 20 L < 20 L < 20	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	10 10 5 5 5	
SR 359 SR 360 SR 361 SR 362 SR 363	205 226 205 226 205 226 205 226 205 226 205 226	< 100 < 100 < 100 < 100 < 100 < 100	20 < 5 < 5 30 < 5	10 10 10 10 < 10	< 5 < 5 < 5 < 5 < 5 < 5	<pre>< 5 < 0.0 < 5 < 0.0 < 5 0.0 < 5 0.0 < 5 0.0 < 5 0.0</pre>	L < 20 L < 20 L < 20 L < 20 L < 20 L < 20 L 20	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	10 15 5 15 5	
SR 364 SR 365 SR 366 SR 367 SR 368	205 226 205 226 205 226 205 226 205 226 205 226	< 100 < 100 < 100 < 100 < 100 < 100	5 < 5 < 5 < 5 < 5 < 5	10 10 20 10 10	< 5 < 5 < 5 < 5 < 5 < 5	<pre>< 5 0.0 < 5 < 0.0 < 5 < 0.0 < 5 < 0.0 < 5 < 0.0 < 5 0.0</pre>	2 < 20 L < 20 L 20 L 20 L 20 L 20 L 20 L < 20	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	10 15 5 5 5	
SR 369 SR 370 SR 371 SR 372 SR 373	205 226 205 226 205 226 205 226 205 226 205 226	< 100 < 100 < 100 < 100 < 100 < 100	< 5 < 5 < 5 < 5 < 5 < 5	10 < 10 10 10 10	< 5 < 5 < 5 < 5 < 5 < 5	<pre>< 5 0.0 < 5 < 0.0</pre>	1 < 20 L < 20 3 < 20 1 < 20 L < 20 L < 20	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	5 15 30 35 45	
SR 374 SR 375 SR 376 SR 377 SR 377 SR 378	205 226 205 226 205 226 205 226 205 226 205 226	< 100 < 100 < 100 < 100 < 100 < 100	< 5 < 5 15 < 5 < 5	10 10 10 20 20	< 5 < 5 < 5 < 5 < 5 < 5	< 5 < 0.0 < 5 < 0.0	L < 20 L < 20 L < 20 L < 20 L < 20 L < 20 L < 20	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	15 15 20 25 10	

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: VERDSTONE GOLD CORP. WINDSOR SQUARE 1959 152ND ST., SUITE 310 SURREY, BC V4A 9E3

Page ber :1-A Total, .s :2 Certificate Date: 27-OCT-96 Invoice No. : 19636079 P.O. Number Account JZL

Project : SALAL Comments:

											CE	RTIFI	CATE	OF A	NAL	/SIS	A	9636	079		
	SAMPLE	PREP CODE	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Hg ppm	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm
Mol	SR 304 SR 305 SR 306 SR 306 SR 307 SR 308	205 226 205 226 205 226 205 226 205 226 205 226	3 < 1 < 1 < 1 < 1 < 1	0.42 0.63 0.33 0.25 0.35	10 10 < 10 < 10 20	< 20 < 20 < 20 < 20 < 20 < 20	< 5 < 5 < 5 < 5 < 5 < 5	< 10 < 10 < 10 < 10 < 10 < 10	0.05 0.45 0.09 0.04 0.07	< 5 < 5 < 5 < 5 < 5 < 5	< 5 < 5 < 5 < 5 < 5 < 5	90 50 90 80 90	25 10 5 5 10	4.04 1.51 0.50 0.44 0.53	< 10 < 10 < 10 < 10 < 10 < 10	0.44 0.37 0.19 0.15 0.23	0.01 0.04 0.03 0.04 0.04	110 200 210 140 190	625 705 95 5 130	< 0.01 0.04 0.05 0.04 0.05	< 5 < 5 < 5 < 5 < 5 < 5
every hit ck.	SR 309 SR 310 SR 311 SR 311 SR 312 SR 313	205 226 205 226 205 226 205 226 205 226 205 226	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.26 0.30 0.22 0.34 0.26	10 < 10 < 10 30 20	< 20 < 20 < 20 < 20 < 20 < 20	< 5 < 5 < 5 < 5 < 5 < 5	< 10 < 10 < 10 < 10 < 10 < 10	0.07 0.07 0.05 0.07 0.04	< 5 < 5 < 5 < 5 < 5 < 5 < 5	< 5 < 5 < 5 < 5 < 5 < 5 < 5	80 100 60 100 90	15 15 5 5 10	0.47 0.57 0.82 0.58 0.53	< 10 < 10 < 10 < 10 < 10 10	0.17 0.19 0.15 0.24 0.17	0.03 0.03 0.03 0.03 0.03 0.03	150 170 130 170 90	205 35 145 25 30	0.04 0.05 0.02 0.05 0.03	< 5 5 < 5 < 5 < 5 < 5
Plug	SR 314 SR 315 SR 316 SR 317 SR 318	205 226 205 226 205 226 205 226 205 226 205 226	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.43 0.37 0.33 0.25 0.27	< 10 < 10 < 10 10 < 10	< 20 < 20 < 20 < 20 < 20 < 20	< 5 < 5 < 5 < 5 < 5 < 5	< 10 < 10 < 10 < 10 < 10 < 10	0.12 0.12 0.03 0.02 0.03	< 5 < 5 < 5 < 5 < 5 < 5	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	80 80 90 60 80	15 10 20 20 10	0.73 1.49 0.51 0.43 0.43	< 10 < 10 < 10 < 10 < 10 < 10	0.26 0.25 0.22 0.14 0.17	0.03 0.03 0.01 0.01 0.01	250 70 250 390 180	25 195 160 85 1440	0.03 0.02 0.08 0.03 0.04	< 5 < 5 < 5 < 5 < 5 < 5
	SR 319 SR 320 SR 321 SR 322 SR 322 SR 323	205 226 205 226 205 226 205 226 205 226 205 226	< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1	0.23 0.28 0.26 0.31 0.27	< 10 10 10 < 10 < 10	< 20 < 20 < 20 < 20 < 20 < 20	< 5 < 5 < 5 < 5 < 5 < 5	< 10 < 10 < 10 < 10 < 10 < 10	0.02 0.03 0.03 0.03 0.03 0.03	< 5 < 5 < 5 < 5 < 5 < 5	< 5 < 5 < 5 < 5 < 5 < 5	60 60 80 100 80	10 15 15 15 15	0.62 0.48 0.54 0.49 0.58	< 10 < 10 < 10 < 10 < 10 < 10	0.17 0.19 0.17 0.20 0.18	0.01 0.02 0.02 0.02 0.02 0.01	120 100 320 380 220	130 110 75 85 1155	0.02 0.05 0.04 0.07 0.04	< 5 < 5 < 5 < 5 < 5 < 5
Plug CK.	SR 324 SR 325 SR 326 SR 327 SR 328	205 226 205 226 205 226 205 226 205 226 205 226	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.35 0.32 0.39 0.29 0.37	< 10 < 10 10 30 10	< 20 < 20 < 20 < 20 < 20 < 20	< 5 < 5 < 5 < 5 < 5 < 5	< 10 < 10 < 10 < 10 < 10 < 10	0.03 0.06 0.05 0.03 0.03	< 5 < 5 < 5 < 5 < 5 < 5	< 5 < 5 < 5 < 5 < 5 < 5	110 70 90 120 110	20 15 15 5 10	0.58 0.67 0.54 0.45 0.47	< 10 < 10 < 10 20 < 10	0.21 0.19 0.22 0.16 0.21	0.03 0.06 0.04 0.01 0.02	330 610 940 160 230	90 165 340 18870 70	0.07 0.04 0.07 0.03 0.08	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>
P. 22 [SR 329 SR 330 SR 331 SR 332 SR 333	205 226 205 226 205 226 205 226 205 226 205 226	< 1 < 1 < 1 < 1 < 1 1	0.26 0.36 0.27 0.48 0.42	< 10 < 10 < 10 10 20	< 20 < 20 < 20 < 20 < 20 < 20	< 5 < 5 < 5 < 5 < 5 < 5	< 10 < 10 < 10 < 10 < 10 < 10	0.03 0.03 0.03 0.04 0.03	< 5 < 5 < 5 < 5 < 5 < 5	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5<</pre>	60 110 70 80 60	15 15 20 15 25	0.53 0.48 0.41 0.74 0.75	< 10 < 10 < 10 < 10 < 10 < 10	0.14 0.23 0.17 0.34 0.39	0.03 0.02 0.01 0.01 0.03	390 310 270 1200 800	40 55 115 405 635	0.04 0.07 0.04 0.02 < 0.01	< 5 < 5 < 5 < 5 < 5 < 5
Floot	SR 334 SR 335 SR 336 SR 337 SR 338	205 226 205 226 205 226 205 226 205 226 205 226	< 1 < 1 < 1 < 1 < 1 3	0.30 0.37 0.28 0.28 0.47	10 10 < 10 10 30	< 20 < 20 < 20 < 20 < 20 < 20	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	< 10 < 10 < 10 < 10 < 10 < 10	0.07 0.02 0.03 0.02 0.03	< 5 < 5 < 5 < 5 < 5 5	< 5 < 5 < 5 < 5 < 5 < 5	90 120 100 100 100	5 5 10 5 55	0.54 0.53 0.47 0.43 1.80	< 10 < 10 < 10 < 10 < 10 < 10	0.19 0.23 0.16 0.18 0.30	0.01 0.01 0.01 0.01 0.01	110 50 80 160 460	55 135 30 90 115	0.04 0.05 0.05 0.05 0.05	< 5 < 5 < 5 < 5 < 5 < 5
CK E. 5500	SR 339 SR 340 SR 341 SR 342 SR 343	205 226 205 226 205 226 205 226 205 226 205 226	5 < 1 < 1 < 1 < 1 < 1	0.64 0.28 0.24 0.28 0.27	< 10 10 10 < 10 10	< 20 < 20 < 20 < 20 < 20 < 20	< 5 < 5 < 5 < 5 < 5 < 5	10 < 10 < 10 < 10 < 10 < 10	0.03 0.01 0.02 0.01 0.02	< 5 < 5 < 5 < 5 < 5 < 5	< 5 < 5 < 5 < 5 < 5 < 5	120 80 80 60 90	105 20 15 10 5	2.32 0.96 0.43 1.29 0.62	< 10 < 10 < 10 < 10 < 10 < 10	0.42 0.19 0.14 0.22 0.21	0.02 < 0.01 0.01 0.01 0.01	300 80 200 110 50	130 80 25 250 45	< 0.01 0.03 0.04 0.02 0.03	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>
	1																				

CERTIFICATION:

H. S. Paulain

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: VERDSTONE GOLD CORP. WINDSOR SQUARE 1959 152ND ST., SUITE 310 SURREY, BC V4A 9E3

Page nber :1-B Totai jes :2 Certificate Date: 27-OCT-96 Invoice No. :19636079 P.O. Number : Account :JZL

Project : Comments: SALAL

	 			·						CE	RTIFI	CATE O	F ANALYSIS	A9636079	
SAMPLE	PREP CODE	ppm P	ppm mqq	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U mqq	V ppm	W mqq	Zn ppm			
SR 304 SR 305 SR 306 SR 307 SR 308	205 226 205 226 205 226 205 226 205 226 205 226	< 100 < 100 < 100 < 100 < 100 < 100	25 < 5 < 5 < 5 5	< 10 10 20 20 10	< 5 < 5 < 5 < 5 < 5 < 5	< 5 < < 5 < < 5 < < 5 < < 5 <	(0.01 0.01 0.01 0.01 0.01 0.01	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	60 < 20 < 20 < 20 < 20 < 20	20 35 25 15 15			
SR 309 SR 310 SR 311 SR 312 SR 313	205226205226205226205226205226	< 100 < 100 < 100 < 100 < 100 < 100	< 5 < 5 < 5 < 5 < 5 < 5	10 20 < 10 < 10 10	< 5 < 5 < 5 < 5 < 5 < 5	< 5 < < 5 < < 5 < < 5 < < 5 <	<pre> 0.01 0.01 0.01 0.01 0.01 0.01 0.01 </pre>	< 20 < 20 < 20 < 20 < 20 < 20	15 20 20 10 15						
SR 314 SR 315 SR 316 SR 317 SR 318	205 226 205 226 205 226 205 226 205 226 205 226	< 100 < 100 < 100 < 100 < 100 < 100	< 5 < 5 < 5 5 < 5	< 10 10 20 < 10 10	< 5 < 5 < 5 < 5 < 5 < 5	< 5 < < 5 < < 5 < < 5 <	<pre>< 0.01 < 0.01 0.01 0.01 < 0.01 < 0.01 < 0.01</pre>	< 20 20 20 < 20 20 20	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	15 10 15 15 15			
SR 319 SR 320 SR 321 SR 322 SR 323	205 226 205 226 205 226 205 226 205 226 205 226	< 100 < 100 < 100 < 100 < 100	< 5 < 5 10 < 5 45	20 < 10 < 10 < 10 < 10 < 10	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	< 5 < < 5 < < 5 < < 5 < < 5 <	<pre> 0.01 0.01 0.01 0.01 0.01 c.01 c.01</pre>	< 20 < 20 < 20 < 20 < 20 < 20	15 15 25 30 25						
SR 324 SR 325 SR 326 SR 327 SR 328	205 226 205 226 205 226 205 226 205 226 205 226	< 100 < 100 < 100 < 100 < 100	< 5 5 45 20 5	10 < 10 10 10 < 10	< 5 < 5 < 5 < 5 < 5 < 5	<pre>< 5 < 5 << 5 <</pre>	0.01 0.01 < 0.01 < 0.01 < 0.01	< 20 < 20 < 20 < 20 < 20 < 20	25 30 35 20 35						
SR 329 SR 330 SR 331 SR 332 SR 333	205 226 205 226 205 226 205 226 205 226 205 226	< 100 < 100 < 100 < 100 < 100 < 100	< 5 < 5 < 5 45 90	< 10 20 < 10 < 10 < 10 < 10	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	< 5 < 5 < < 5 < < 5 < < 5 <	0.01 0.01 0.01 0.01 0.01 0.01	20 < 20 < 20 < 20 < 20 20	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	35 30 25 10 20			
SR 334 SR 335 SR 336 SR 337 SR 338	205 226 205 226 205 226 205 226 205 226 205 226	< 100 < 100 < 100 < 100 < 100	< 5 < 5 < 5 < 5 25	10 10 10 10 10	< 5 < 5 < 5 < 5 < 5 < 5	< 5 · < 5 · < 5 · < 5 · < 5 ·	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 20 < 20 < 20 < 20 < 20 < 20	15 15 20 10 865						
SR 339 SR 340 SR 341 SR 342 SR 343	205 226 205 226 205 226 205 226 205 226 205 226	< 100 < 100 < 100 < 100 < 100 < 100	15 5 < 5 < 5 < 5 < 5	10 10 10 < 10 20	< 5 < 5 < 5 < 5 < 5 < 5	< 5 · < 5 · < 5 · < 5 · < 5 ·	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 20 < 20 < 20 < 20 < 20 < 20	170 20 35 20 15						
L								<u> </u>						N. Harres	chlen

CERTIFICATION:_

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: VERDSTONE GOLD CORP. WINDSOR SQUARE 1959 152ND ST., SUITE 310 SURREY, BC V4A 9E3

. .

- - - -

Pagi nber :2-A Total Fages :2 Certificate Date: 27-OCT-96 Invoice No. : 19636079 P.O. Number : Account : JZL

CERTIFICATION:_

Project : SALAL Comments:

											CE		JATE		INAL	1515	P	19030	11.8		
	SAMPLE	PREP CODE	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Hg ppm	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm
t.	SR 344 SR 345 SR 346 SR 347 SR 348	205 226 205 226 205 226 205 226 205 226 205 226	< 1 < 1 < 1 1 3	0.19 0.21 0.19 0.39 0.37	40 30 30 20 10	< 20 < 20 < 20 < 20 < 20 < 20	< 5 < 5 < 5 < 5 < 5	< 10 < 10 < 10 < 10 < 10 10	0.02 0.02 0.02 0.11 0.13	< 5 < 5 < 5 < 5 < 5	< 5 < 5 < 5 < 5 < 5	60 80 70 70 70	20 15 5 40 120	0.47 0.48 0.44 0.83 0.90	< 10 < 10 < 10 < 10 < 10	0.14 0.14 0.12 0.32 0.29	0.01 0.01 0.01 0.01 0.02	60 90 70 100 240	25 25 45 120 35	0.04 0.04 0.04 0.01 0.01	< 5 < 5 < 5 < 5 < 5
1 5-5	SR 349 SR 350 SR 351 SR 352 SR 353	205 226 205 226 205 226 205 226 205 226 205 226	< 1 < 1 < 1 < 1 < 1 < 1	0.28 0.24 0.20 0.35 0.23	< 10 10 10 30 < 10	< 20 < 20 < 20 < 20 < 20 < 20	< 5 < 5 < 5 < 5 < 5 < 5	< 10 < 10 < 10 < 10 < 10 < 10	0.08 0.01 0.01 0.27 0.03	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	< 5 < 5 < 5 < 5 < 5 < 5	70 70 70 70 90	15 10 5 25 10	0.54 0.50 0.54 1.01 0.43	< 10 < 10 < 10 < 10 < 10 < 10	0.18 0.16 0.14 0.19 0.15	0.01 < 0.01 0.01 0.03 0.01	320 50 60 250 60	145 25 45 260 20	0.03 0.03 0.02 0.02 0.04	< 5 < 5 < 5 < 5 < 5 < 5 < 5
	SR 354 SR 355 SR 356 SR 356 SR 357 SR 358	205 226 205 226 205 226 205 226 205 226 205 226	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.23 0.23 0.27 0.35 0.26	10 < 10 30 20 < 10	< 20 < 20 < 20 < 20 < 20 < 20	< 5 < 5 < 5 < 5 < 5 < 5	< 10 < 10 < 10 < 10 < 10 < 10	0.03 0.02 0.02 0.08 0.02	< 5 < 5 < 5 < 5 < 5 < 5	< 5 < 5 < 5 < 5 < 5 < 5	80 80 80 80 80	5 10 30 10 10	0.41 0.45 0.78 1.10 0.90	< 10 < 10 < 10 < 10 < 10 < 10	0.15 0.15 0.24 0.27 0.25	0.01 0.01 0.01 0.01 0.01	70 150 140 90 80	105 30 15 20 25	0.03 0.04 0.02 < 0.01 < 0.01	< 5 < 5 < 5 < 5 < 5 < 5
	SR 359 SR 360 SR 361 SR 362 SR 363	205 226 205 226 205 226 205 226 205 226 205 226	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.23 0.21 0.23 0.30 0.23	10 10 < 10 < 10 < 10 < 10	< 20 < 20 < 20 < 20 < 20 < 20	< 5 < 5 < 5 < 5 < 5 < 5	< 10 < 10 < 10 < 10 < 10 < 10	0.03 0.06 0.03 0.02 0.02	< 5 < 5 < 5 < 5 < 5 < 5	< 5 < 5 < 5 < 5 < 5 < 5	80 70 80 80 80	10 5 5 25 10	0.67 0.67 0.41 0.86 0.52	< 10 < 10 < 10 < 10 < 10 < 10	0.18 0.20 0.14 0.26 0.17	< 0.01 < 0.01 0.02 0.01 0.01	110 70 160 140 190	25 10 < 5 45 15	0.03 0.03 0.06 0.01 0.04	< 5 < 5 < 5 < 5 < 5 < 5
	SR 364 SR 365 SR 366 SR 366 SR 367 SR 368	205 226 205 226 205 226 205 226 205 226 205 226	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.26 0.21 0.24 0.25 0.22	20 10 < 10 10 20	< 20 < 20 < 20 < 20 < 20 < 20	< 5 < 5 < 5 < 5 < 5 < 5	< 10 < 10 < 10 < 10 < 10 < 10	0.03 0.02 0.03 0.02 0.02	< 5 < 5 < 5 < 5 < 5 < 5	< 5 < 5 < 5 < 5 < 5 < 5	70 70 80 90 80	15 10 10 10 5	0.53 0.46 0.42 0.46 0.46	< 10 < 10 < 10 < 10 < 10 10	0.21 0.17 0.16 0.17 0.14	0.02 < 0.01 0.01 0.01 0.02	620 50 60 100 110	140 5 25 10 5	0.03 0.04 0.04 0.05 0.05	< 5 < 5 < 5 < 5 < 5
	SR 369 SR 370 SR 371 SR 372 SR 373	205 226 205 226 205 226 205 226 205 226 205 226	< 1 < 1 < 1 < 1 < 1 < 1	0.24 0.27 0.42 0.32 0.28	< 10 < 10 < 10 10 < 10	< 20 < 20 20 < 20 < 20 < 20	< 5 < 5 < 5 < 5 < 5 < 5	< 10 < 10 < 10 < 10 < 10 < 10	0.02 0.03 0.04 0.05 0.06	< 5 < 5 < 5 < 5 < 5 < 5	< 5 < 5 < 5 < 5 < 5 < 5	80 80 80 90 80	5 15 35 15 20	0.44 0.56 1.07 0.85 0.69	< 10 < 10 < 10 < 10 < 10 < 10	0.14 0.16 0.23 0.16 0.15	0.03 0.05 0.15 0.09 0.07	120 320 590 340 340	25 5 < 5 5 5	0.05 0.05 0.05 0.05 0.05 0.04	< 5 < 5 < 5 < 5 < 5 < 5
	SR 374 SR 375 SR 376 SR 377 SR 378	205 226 205 226 205 226 205 226 205 226 205 226	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.22 0.27 0.33 0.26 0.26	< 10 < 10 10 < 10 10	< 20 < 20 < 20 < 20 < 20 < 20	< 5 < 5 < 5 < 5 < 5 < 5	< 10 < 10 < 10 < 10 < 10 < 10	0.04 0.05 0.15 0.04 0.03	< 5 < 5 < 5 < 5 < 5 < 5	< 5 < 5 < 5 < 5 < 5 < 5	70 90 90 90 90	20 30 25 20 10	0.60 0.46 0.72 0.51 0.48	< 10 < 10 < 10 < 10 < 10 < 10	0.14 0.18 0.23 0.16 0.15	0.01 0.02 0.01 0.03 0.03	120 180 90 300 190	10 10 75 25 5	0.04 0.04 0.03 0.04 0.05	< 5 < 5 < 5 < 5 < 5 < 5
												,									

55

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1

PHONE: 604-984-0221 FAX: 604-984-0218

To: VERDSTONE GOLD CORP. WINDSOR SQUARE 1959 152ND ST., SUITE 310 SURREY, BC V4A 9E3

Page nber :2-B Total es :2 Certificate Date: 27-OCT-96 Invoice No. :19636079 P.O. Number Account :JZL

Project : SALAL Comments:

SAMPLE PREP P Pb Sb Sc Sr Ti Ti </th <th>FANALYSIS A9636079</th> <th>CATE</th> <th>RTIFI</th> <th>CE</th> <th>_</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	FANALYSIS A9636079	CATE	RTIFI	CE	_									
SR 344 205 226 < 100		Zn ppm	M M	V mqq	n T	T1 ppm	Ti %	Sr ppm	Sc ppm	Sb ppm	Pb ppm	P ppm	PREP CODE	SAMPLE
SR 349 205 226 <100 25 10 <5 <5 <0.01 20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <th< td=""><td></td><td>15 10 15 435 385</td><td>< 20 < 20 < 20 < 20 < 20 < 20 < 20</td><td>< 20 < 20 < 20 < 20 < 20 < 20</td><td>< 20 < 20 < 20 < 20 < 20 < 20</td><td>20 < 20 < 20 < 20 < 20 < 20</td><td>: 0.01 : 0.01 : 0.01 : 0.01 : 0.01 : 0.01</td><td>< 5 < < 5 < < 5 < < 5 < < 5 < < 5 <</td><td>< 5 < 5 < 5 < 5 < 5 < 5 < 5</td><td>20 10 10 10 10</td><td><pre>< 5 < 5 < 5 1060 480</pre></td><td>< 100 < 100 < 100 < 100 < 100</td><td>205 226 205 226 205 226 205 226 205 226 205 226</td><td>SR 344 SR 345 SR 346 SR 347 SR 348</td></th<>		15 10 15 435 385	< 20 < 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	20 < 20 < 20 < 20 < 20 < 20	: 0.01 : 0.01 : 0.01 : 0.01 : 0.01 : 0.01	< 5 < < 5 < < 5 < < 5 < < 5 < < 5 <	< 5 < 5 < 5 < 5 < 5 < 5 < 5	20 10 10 10 10	<pre>< 5 < 5 < 5 1060 480</pre>	< 100 < 100 < 100 < 100 < 100	205 226 205 226 205 226 205 226 205 226 205 226	SR 344 SR 345 SR 346 SR 347 SR 348
SR 354 205 226 < 100		15 5 5 45 10	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	20 < 20 20 < 20 < 20 < 20	: 0.01 : 0.01 : 0.01 : 0.01 : 0.01 : 0.01	<pre>< 5 < < 5 <</pre>	< 5 < 5 < 5 < 5 < 5 < 5	10 < 10 10 10 10	25 10 < 5 < 5 < 5 < 5	< 100 < 100 < 100 < 100 < 100 < 100	205 226 205 226 205 226 205 226 205 226 205 226	SR 349 SR 350 SR 351 SR 352 SR 353
SR 359 205 226 < 100		10 10 5 5 5	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	< 20 20 < 20 < 20 < 20 < 20	<pre>< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01</pre>	<pre>< 5 < < 5 <</pre>	< 5 < 5 < 5 < 5 < 5 < 5	< 10 20 30 10 30	10 < 5 5 10 50	< 100 < 100 < 100 < 100 < 100 < 100	205 226 205 226 205 226 205 226 205 226 205 226 205 226	SR 354 SR 355 SR 356 SR 357 SR 358
SR 364 205 226 < 100		10 15 5 15 5	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 20	<pre>c 0.01 c 0.01 c 0.01 0.01 0.01 0.01</pre>	<pre>< 5 < < 5 < < 5 < < 5 < 5 < 5 < 5 < 5 <</pre>	< 5 < 5 < 5 < 5 < 5 < 5	10 10 10 10 < 10	20 < 5 < 5 30 < 5	< 100 < 100 < 100 < 100 < 100 < 100	205 226 205 226 205 226 205 226 205 226 205 226	SR 359 SR 360 SR 361 SR 362 SR 363
SR 369 205 226 < 100		10 15 5 5 5	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 20 20 < 20	0.02 < 0.01 < 0.01 < 0.01 < 0.01 0.01	< 5 < 5 < < 5 < < 5 < < 5 <	< 5 < 5 < 5 < 5 < 5 < 5	10 10 20 10 10	5 < 5 < 5 < 5 < 5 < 5	< 100 < 100 < 100 < 100 < 100	205 226 205 226 205 226 205 226 205 226 205 226	SR 364 SR 365 SR 366 SR 367 SR 368
SR 374 205 226 < 100		5 15 30 35 45	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	0.01 0.01 0.03 0.01 < 0.01	< 5 < 5 < 5 < 5 < 5 < 5	< 5 < 5 < 5 < 5 < 5 < 5	10 < 10 10 10 10	< 5 < 5 < 5 < 5 < 5 < 5	< 100 < 100 < 100 < 100 < 100	205 226 205 226 205 226 205 226 205 226 205 226	SR 369 SR 370 SR 371 SR 372 SR 373
SR 378 205 226 < 100 < 5 20 < 5 < 5 < 0.01 < 20 < 20 < 20 < 20 10		15 15 20 25 10	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	<pre>< 5 < < 5 <</pre>	< 5 < 5 < 5 < 5 < 5 < 5	10 10 10 20 20	< 5 < 5 15 < 5 < 5	< 100 < 100 < 100 < 100 < 100 < 100	205 226 205 226 205 226 205 226 205 226 205 226	SR 374 SR 375 SR 376 SR 376 SR 377 SR 378

CERTIFICATION:

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers North Vancouver 212 Brooksbank Ave., British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

.o: VERDSTONE GOLD CORP. WINDSOR SQUARE 1959 152ND ST., SUITE 310 SURREY, BC V4A 9E3

Comments: ATTN:A.KIKANKA

	S	ROCEDURES	ANALYTICAL P			CATE A9625598	RTIFICATE	CE		
CTION UPPER AIT LIMIT	DETECTION LIMIT	METHOD	DESCRIPTION	NUMBER SAMPLES	CHEMEX CODE	GOLD CORP.	RDSTONE GOLD CO SALAL	(L) - VEI oject: D. # :		
2 200 15.00 2 10000 3 10000 5 100.0 2 10000 1 15.00 5 100.0 1 10000	0.2 0.01 2 10 0.5 2 0.01 0.5 1	ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	Ag ppm: 32 element, soil & rock Al %: 32 element, soil & rock As ppm: 32 element, soil & rock Ba ppm: 32 element, soil & rock Be ppm: 32 element, soil & rock Bi ppm: 32 element, soil & rock Ca %: 32 element, soil & rock	30 30 30 30 30 30 30 30 30 30 30 30 30 3	2118 2119 2120 2121 2122 2123 2124 2124 2125 2126	Samples submitted to our lab in Vancouver, BC. This report was printed on 2-AUG-96.				
10000 10000 10000 15.00 10000	1 1 0.01 10 10 0.01 10 0.01 1 10 2 2 1 1 0.01 10 10 10 10 10 2 2 1 10 10 2 2 1 10 10 2 2 1 10 10 2 2 1 10 10 10 10 10 10 10 10 10	ICP-AES ICP-AES	Cr ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Ga ppm: 32 element, soil & rock Fe %: 32 element, soil & rock Hg ppm: 32 element, soil & rock La ppm: 32 element, soil & rock Mg %: 32 element, soil & rock Mg %: 32 element, soil & rock Mn ppm: 32 element, soil & rock Na %: 32 element, soil & rock Ni ppm: 32 element, soil & rock Ni ppm: 32 element, soil & rock Ppm: 32 element, soil & rock Sb ppm: 32 element, soil & rock Sc ppm: 32 element, soil & rock Ti %: 32 element, soil & rock Ti ppm: 32 element, soil & rock M ppm: 32 element, soil & rock Sc ppm: 32 element, soil & rock Ti %: 32 element, soil & rock Ti ppm: 32 element, soil & rock		2126 2127 2128 2150 2130 2131 2132 2151 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2144 2145 2146 2147 2148 2149	SAMPLE PREPARATION EX NUMBER SAMPLES DESCRIPTION 11 30 Dry, sieve to -80 mesh 12 30 save reject 19 30 ICP - AQ Digestion charge 11 ICP - AQ Digestion charge 12 30 ICP - AQ Digestion charge 13 ICP - AQ Digestion charge 14 ICP - AQ Digestion charge 15 ICP - AQ Digestion charge 16 ICP - AQ Digestion charge 17 ICP - AQ Digestion charge 18 ICP - AQ Digestion charge 19 ICP - AQ Digestion charge 10 ICP - AQ Digestion charge 11 ICP - AQ Digestion charge 12 ICP - AQ Digestion charge 13 ICP - AQ Digestion charge 14 ICP - AQ Digestion charge 15 ICP - AQ Digestion charge 16 ICP - AQ Digestion charge		EMEX ODE 201 202 229 NOTE a 32 eD ace me sents yestion , Be, C		
						JA, K, LA, MG, NA, SF, T1,	a, CI, Ga, K, Ha	, Be, (

A9625598

International Metallurgical and Environmental Inc. Analytical Laboratory Report

Project: Verdstone Gold Corp-Salal Project number: 9616 Purchase order number:1515 Date:October 22, 1996

	Sample				% Mo	% Çu
	Rock Samples					
	SR 381				0.023	0.001
	382		ĺ		0,060	0.003
	383				0,020	0.026
	384				0.76	0.001
	385				0.051	0.001
	386				0.056	0.021
	387				0,006	<.001
	388				0.001	0.001
	389			1	0.001	0.001
	390				0.001	0.002
	391				0.002	0.001
	392				0.001	0.001
	393				0.022	0.001
	394				0.020	0.002
	395				0.010	0.001
	396				0.043	0.002
	397				0.005	0.001
	SR / 510				0.045	0.003
	511				0.012	0.003
	512				0.146	0.004
5 F)	513			1 .	0.22	0.003
Fren	514			ļ	0,115	0.004
	515			}	0.075	0.003
	516				0.040	0.003
					0.020	0.003
	Heligan 518				0.035	0.004
	FORC 519				0.015	0.004
	520				0.009	0.003
	521				0.025	0.004
	522				0.033	0.004
	523		Í	[0.087	0.012
	524				0.062	0.005
	525				0.025	0.002
	526				0.025	0.002
	527		1		0,128	0.009
	528				0.019	0.022
	529	} .	ļ	1	0.033	0.011
	530				0.027	0.016
Project: Verdstone Gold Corp-Salal Project number: 9616 Purchase order number:1515 Date:October 1996

Sample	start ft	end ft	Length (ft)	% Mo	% Cu
Rock Samples					
SR 1 531				0.034	0,002
7 532				0.036	0.005
(t 533				0.017	0.002
(534				0.051	0.002
535				0.174	0.002
536				0.029	0.027
537	ļ .			0.145	0.002
2 538				0.070	0.002
539				0.20	0.001
CZ 540	{			0.108	0.001
541				0.073	0.001
542				0.078	0.028
543			}	0.063	0.009
544				0.014	0.002
545				0.036	0.003
546	ļ			0,058	0.003
547			}	0.038	0.002
548				0.113	0,003
649				0.048	0.002
550				0.016	0.002
SS18				0.026	0.004
\$\$19	{	ļ		0.014	0.005
SS20				0.071	0.003
			[i		

Project: Verdstone Gold Corp-Salal Project number: 9616 Purchase order number:1516 Date: October 28, 1996

Sample				PPM Mo	PPM Cu
Trail CK. silt higher	1			70 64	70 62
elev	3			45	77
	4			780	264
lower	5			965	190
L13+50N	8+50	E		2675	175
	9+00	E		1050	160
	9+50	E		1310	190
L8+00E	14+00	N		1785	255
	14+50	N		1330	234
	15+00	N		970	175
	15+50	N	}	630	182
	16+00	N		385	117
	16+50	N		330	96
L0+00	5+50	E		202	270
	6+00	E		159	72
	6+50	E		145	149
	7+00	E		100	271
LO+50N	5+50	E		171	136
	7+00	E		145	156
L1+00N	6+00	Е		150	124
	7+00	E		66	80
11+50N	7+50	E		109	132
	8+00	E		23	51
L0+50S	6+00	E		153	470

Project: Verdstone Gold Corp- Salal Project number: 9616 Purchase order number: 1469 Date:September 20, 1996 85-GO - less for, good hours 40- 93. your maler in Fr.

Sample	start ft	end ft	Length (ft)	%Mo	%Cu
DDH 96-1(Core)					
1001	7.5			0.005	0,007
1002	7.5		ł	0.014	0.005
1003	7,5			<.001	0,005
1004	27.5	35.0	7.5	0.024	0,006
1005	35,0	42.5	7.5	0.002	0.003
1006	42.5	50.0	7.5	0.001	0.002
1007	50 .0	57.5	7.5	<.001	0.002
1008	57.5	72.5	***	0.003	0.004
1009	65.0	72.5	7.5	0.002	0.002
1010	72.5	80.0	7.5	0.001	0.002
1011	0.08	87.5	7.5	0.002	0,003
1012	87.5	95.0	7.5	0.001	0.002
1013	95,0	102.5	7.5	0.001	0.003
1014	102.5	110.0	7.5	0.002	0.002
1015	110.0	117.5	7.5	0.001	0.002
1016	117.5	125.0	7.5	0.002	0.002
1017	125.0	132.5	7.5	0.006	0.002
1018	132.5	14 0.0	7,5	0.001	0.003
1019	140.0	147.5	7.5	0.004	0.002
1020	147.5	155,0	7.5	0,006	0.004
1021	155.0	162,5	7.5	0.012	0.002
1022	162.5	170.0	7.5	0.008	0.002
1023	170,0	177.5	7.5	0.003	0.002
1024	177.5	185.0	7.5	0.004	0.002
1025	185.0	192.5	7,5	0.005	0.002
1026	192.5	200.0	7.5	0.003	0.002
1027	200.0	207.5	7,5	0.002	0.002
1028	207.5	215.0	7,5	0.007	0.003
1029	215.0	222.5	7,5	0.001	0.002

25- 82.03 2401.454 F.G.

••••

International Metallurgical and Environmental Inc. Analytical Laboratory Report

Project: Verdstone Gold Corp - Salal Project number: 9616 Purchase order number: 1489 Date:September 20, 1996

Sample	start ft	end ft	Length (ft)	%Mo	%Cu
DDH 96-1(Core)					
1030	222,5	230.0	7.5	0.005	0.002
1031	230.0	237.5	7.5	0.001	0.002
1032	237.5	245.0	7.5	0.001	0.003
1033	245.0	252.5	7.5	0.001	0.003
1034	257,5	260.0	2.5	0.002	0.004
1035	260.0	267.5	7.5	<u>0.037</u>	0.004
1036	267.5	275.0	7.5	<u>0.028</u>	0.003
1037	275,0	282.5	7.5	0.004	0.003
1038	282.5	290.0	7.5	0.001	0.002
1039	290.0	297,5	7.5	0.003	0.003
1040	297.5	305.0	7.5	0.041	0.003
1041	305.0	312.5	7.5	0.005	0.002
1042	312.5	320.0	7.5	0.007	0.003
1043	320.0	327.5	7.5	0.005	0.004
1044	327.5	335.0	7.5	0.004	0.004
1045	335.0	342.5	7.5	0.001	0.004
1046	342.5	350.0	7.5	0.004	D.003
1047	350.0	357.5	7.5	0.012	0.005
1048	357.5	365.0	7.5	0.003	0.004
1049	365.0	372.5	7.5	0.013	0.002
1050	372.5	380.0	7.5	0.004	0.004
1051	380.0	387,5	7,5	0.003	0.002
1052	387.5	395.0	7.5	0.006	0.002
1053	395.0	402.5	7.5	0.003	0.003
1054	402.5	410.0	7.5	0.002	0.004
1055	410.0	417.5	7.5	0.003	0.003
1056	417.5	425.0	7.5	0.008	0.002
1057	425.0	432.5	7,5	0.004	0.002
1058	432,5	440.0	7.5	0.005	0.002
1059	440.0	447.5	7.5	0.004	0.002
1060	447.5	455.0	7.5	0.006	0.002
1061	455.0	462.5	7.5	0.002	0.002
1062	462.5	470.0	7.5	0.007	0.002
1063	470.0	477.5	7.5	0.011	0.002
1064	477.5	485.0	7.5	0.002	0.002
1065	485.0	490.0	5.0	0,011_	0.005
1066	490.0	495.0	5.0	0.033	0.020
1067	495.0	500.0	5.0	0.002	0.002
1068	500.0	505.0	5.0	0.020	0.002

.....

International Metallurgical and Environmental Inc. Analytical Laboratory Report

Project: Verdstone Gold Corp - Salal Project number: 9616 Purchase order number: 1469 Date: September 20, 1996

Sample	start ft	end ft	Length (ft)	%Mo	%Cu
DDH 96-1(Core)					
1069	505	510	5.0	Q.043	0.002
1070	510	515	5.0	0.005	0.002
1071	515	520	5.0	0.001	0.002
1072	520	525	5.0	0.006	0.002
1073	525	530	5.0	0.021	0.018
1074	530	535	5.0	0.005	0.002
1075	535	540	5.0	0.002	0.002
1076	540	545	5.0	0.001	0.002
1077	545	550	5.0	0.003	0.002
1078	550	555	5.0	0.005	0.002
1079	555	560	5.0	0.001	0.002
1080	560	565	5.0	0.005	0.002
1081	56 5	570	5.0	0.006	0.004
1082	570	575	5.0	0.007	0.002
1083	575	580	5.0	<u>0.016</u>	0.003
1084	580	585	5.0	0,028	0.002
1085	585	590	5.0	0.006	0.003
1086	590	595	5.0	0.022	0.006
1087	595	600	5.0	0.011	0.003
1088	600	605	5.0	<u>0.014</u>	0,004
1089	605	610	5.0	<u>0.012</u>	0.003
1090	610	615	5.0	0.019	0.003
1091	615	620	5.0	0.003	0.007
1092	620	625	5,0	0,023	0.007
1093	625	630	5.0	0.013	0.002
1094	630	635	5.0	0.008	0.001
1095	635	640	5.0	0.018	0.002
1096	640	645	5.0	0.022	0.005
1097	645	650	5.0	0.009	0.001
1098	650	655	5.0	0.003	0.002
1099	655	660	5 .0	0.004	0.003
1100	660	665	5.0	0.005	0.002
1101	665	670	5.0	0.001	0.001
1102	670	675	5.0	0.004	0.002
1103	675	680	5.0	0.013	0.002
1104	680	685	5.0	0.007	0.002
1105	685	690	5.0	0.007	0.002
1106	690	695	5.0	0.009	0.001

SALAL

International Metallurgical and Environmental Inc. Analytical Laboratory Report

Project: Verdstone Gold Corp-Salai Project number: 9616 Purchase order number:1497 Date:October 10, 1996

	Sample				% Mo	% Cu
Ro	ck Samples					
	\$\$1				0.003	0.005
	SS2				0.004	0.004
	SS3				0.002	0.004
	\$ \$4				0,001	0.003
	SS5				0.001	0.002
	\$\$6				0.001	0.004
	SS7				<.001	0.005
soils	SS9				0.003	0.004
1. 1.00	S\$10				0.002	0.002
TAN	SS11]	0.006	0.002
1 Km	SS12				0.002	0,003
in st	SS13				0.001	0.002
Sinat	SS14				0.001	0.002
it.	SS15				0.001	0.006
	SS16				0.003	0.003
	SS17		ł		0.022	0.004
	5520				<.001	0.015
	SS21				0.002	0.007
	SR501				0.002	0.002
	SR502				0.018	0.002
	SR503				0.016	0.002
	\$R504		1		0.011	0.001
ł	SR505	}		}	0.009	0.002
	SR506		}	Í	0.008	0.001
j	SR507				0.006	0.002
	SR508	ļ			0.044	0.001
1	SR509				0.006	0.005
	SR379		1		0.002	0.002
	SR380				0.003	0.002

Project: Verdstone Gold Corp -Salal Project number: 9616 Purchase order number:1469 Date:September 20, 1996

Sample	start ft	end ft	Length (ft)	%Ma	%Cu
DDH 96-1(Core)					
1107	695	700	5.0	0.010	0.002
1108	700	705	5.0	0.031	0.002
1109	705	710	5,0	0.007	0.002
1110	710	715	5.0	0.005	0.002
1111	715	720	5.0	0.004	0.006

Project: Verdstone Gold Corp-Salai Project number: 9616 Purchase order number: 1505 Date: October 10, 1996

Sample	start ft	end ft	Length (ft)	% Mo	% Cu	l fatter
DDH 96-1(Core)	8	215	<u> </u>	1 1 N 1		
1129	805	810	5,0	0.001	0.001	
1130	810	815	5.0	0,004	0.002	4
1131	815	820	5,0	0.002	0.002	2.1.3
1132	820	825	5,0	0.001	0.005	1.17
1133	825	830	5,0	0.004	0.002	2º/ NWS
1134	830	835	5.0	0.002	0.001	(0.0076
1135	835	840	5.0	0.002	0.003	Sector No.
1136	840	845	5.0	0.003	0.002	
1137	845	850	5.0	0.002	0.001	1 (CA 1)
1138	850	855	5.0	0.006	0.002	1.5.12
1139	855	860	5.0	0.001	0.004	6×1
1140	860	865	5,0	0.010	0.001	5 () () ()
1141	865	870	5.0	0.004	0.001	h tha the
1142	870	875	5.0	0.014	0.001	4.15
1143	875	880	5.0	0.002	0.001	- 4.2%
1144	880	885	5.0	0.003	0,003	1072 S
1145	885	890	5,0	0.007	0.001	12.12
1146	890	895	5.0	0.002	0,001	6773
1147	895	900	5.0	0.006	0.001	1010
1148	900	905	5.0	0.005	0.002	
1149	905	910	5,0	0.006	0.001	- C - C
1150	910	915	5.0	0.009	0.002	1005
1151	915	920	5.0	0.009	0.002	1.c/S
1152	920	925	5.0	0.005	0.011	(m 0,70/ 100)
1153	925	930	5.0	0.004	0.002	1. Sel (0:00110
1154	930	935	5.0	0.008	0.001	64.5
1155	935	940	5.0	0.002	0.001	et N
1156	940	945	5.0	0.002	0.001	~~ S
1157	945	950	5.0	0.005	0.002	. 61.8

Project: Verdstone Gold Corp-Sala) Project number: 9616 Purchase order number: 1505 Date: October 10, 1996

Sample	start ft	end ft	Length (ft)	% Mo	% Cu	The start
DDH 96-1(Core)	1				}	
1158	950	955	5.0	0.007	0.002	1011
1159	955	960	5.0	800.0	0.001	· · · · · · ·
1160	960	965	5.0	0.003	0.001	
1161	965	970	5.0	0.003	0.002	
1162	975	980	5.0	0.005	0.002	
1163	980	985	5.0	0.001	0.002	and the second sec
1164	985	990	5.0	0.001	0.003	
1165	990	995	5.0	0.002	0.002	Constant States
1166	995	1000	5.0	0.003	0.001	- 12 2 3
1167	1000	1005	5.0	0.003	0.001	. 653
1168	1005	1010	5.0	0.003	0.001	
1169	1010	1015	5.0	0.005	0.003	1.25
1170	1015	1020	5.0	0.003	0.006	- 6 K S
1171	1020	1025	5.0	0.007	0.002	1632
1172	1025	1030	5.0	0,002	0.001	
1173	1030	1035	5.0	0.014	0.006	
1174	1035	1040	5.0	0.004	0.003	Ser Jus
) 1175	1040	1045	5.0	0.013	0.002	(1) (- 9°() m
1176	1045	1050	5.0	0.004	0.001	0.0000
1177	1050	1055	5,0	0.013	0.002	1.17
1178	1055	1060	5.0	0.006	0.002	1.0010
1179	1060	1065	5.0	0.010	0.001	
1180	1065	1070	5.0	0.004	0.001	1. 1. 1. T
1181	1070	1075	5.0	0.003	0.001	1115
1182	1075	1080	5.0	0.003	0.002	.0.5
1183	1080	1085	5.0	0.002	0.003	- C Y 3
1184	1085	1090	5.0	0.006	0.006	
1185	1090	1095	5.0	0.002	0.006	- CV 3
1186	1095	1100	5.0	<.001	0.005	
1187	1100	1105	5.0	<.001	0.002	
1188	1105	1110	5.0	0.002	0.001	1 C C S
1189	1110	1115	5,0	<.001	0.001	
1190	1115	1120	5.0	<.001	0.003	
1191	1120	1125	5.0	0.002	0.002	C - 5 S
1192	1125	1130	5.0	0,005	0.002	
1193	1130	1135	5.0	0.003	0.003	
1194	1135	1140	5.0	0.007	0.004	· C 12
1195	1140	1145	5.0	0.001	0.001	- C e 1
1196	1145	1150	5.0	0.002	0.002	5666

Project: Verdstone Gold Corp-Salal Project number: 9616 Purchase order number: 1505 Date:October 10, 1996

10,10

Sample	start ft	end ft	Length (ft)	% Mo	% Cu]
DDH 96-1(Core)]
1197	1150	1155	5.0	0.001	0.001	1
1198	1155	1160	5.0	0.001	0.002	11.1
1199	1160	1165	5.0	0.007	0.001	
1200	1165	1170	5.0	0.017	0.002	
1201	1170	1175	5.0	0.002	0.001	1.1.1
1202	1175	1180	5.0	0.001	E00.0	1 1
1203	1180	1185	50	0.007	0.001	1012
1204	1185	1190	5.0	0.001	0.002	. Caf
1205	1190	1195	5.0	0.002	0.002	1.005
1205	1195	1200	5.0	0.002	0.003	S

Project: Verdstone Gold Corp-Salal Project number: 9616 Purchase order number: 1515 Date: October 22, 1996

Sample	start ft	end ft	Length (ft)	% Mo	% Cu
DDH 96-2(Core)					
1501	5	10	5.0	0.004	0.001
1502	10	15	5.0	0.005	0.001
1503	15	20	5.0	0.001	0.001
1504	20	25	5.0	0.005	0.001
1505	25	30	5.0	0.001	0.001
1506	30	35	5.0	0.001	0.002
1507	35	40	5.0	0.006	0.001
1508	40	45	5.0	0.002	0.001
1509	45	50	5.0	0.004	0.002
1510	50	55	5.0	0.001	0.001
1511	55	60	5.0	0.002	0.001
1512	60	65	5.0	0.007	0.002
1513	65	70	5.0	0.023	0.015
1514	70	75	5.0	0.002	0.002
1515	75	80	5.0	0.004	0.002
1516	80	85	5.0	0.002	0.002
1517	85	90	5.0	0.002	0.001
1518	90	95	5.0	0.001	0.001
1519	95	100	5.0	0.003	0.001
1520	100	105	5.0	0.001	0.001
1521	105	110	5.0	0.003	0.001
1522	110	115	5.0	0.002	0.001
1523	115	120	5.0	0.003	0.001
1524	120	125	5.0	0,001	0.003
1525	125	130	5.0	0.007	0.001
1526	130	135	5.0	0.001	0.001
1527	135	140	5.0	0.001	0.001
152B	140	145	5.0	0.002	0.001
1529	145	150	5.0	0.001	0.001
1530	150	155	5.0	0.004	0.005
1531	155	160	5.0	0.004	0.001
1532	160	165	5.0	0.002	<.001
1533	165	170	5.0	0.004	0.001
1534	170	175	5.0	0.007	0.001
1535	175	180	5.0	0.008	0.001
1536	180	185	5.0	0.003	0.001
1537	185	190	5.0	0.004	<.001
1538	190	195	5.0	0.002	<.001
1539	195	200	5.0	0.004	<.001

Project: Verdstone Gold Corp-Saial Project number: 9616 Purchase order number: 1515 Date: October 22, 1996

Sample	start ft	end ft	Length (ft)	% Mo	% Cu
DDH 96-2(Core)					
1540	200	205	5.0	0.005	0.001
1541	205	210	5.0	0.020	0.001
1542	210	215	5.0	0.003	0.001
1543	215	220	5.0	0.005	0.001
1544	220	225	5.0	0.027	0.001
1545	225	230	5.0	0.006	0.001
1546	230	235	5.0	0.004	0.001
1547	235	240	5,0	0.003	<.001
1548	240	245	5,0	0.004	<_001
1549	245	250	5.0	0.002	<.001
1550	250	255	5.0	0.003	0.004
1551	255	260	5.0	0.001	0.002
1552	260	265	5,0	0.002	0.001
1553	265	270	5,0	0.003	0.001
1554	270	275	5.0	0.005	0.001
1555	275	280	5.0	0.008	0.001
1556	280	285	5.0	0.005	0.002
1557	285	290	5.0	0.022	0.002
1558	290	295	5.0	0.006	0.003
1559	295	300	5,0	0.002	0.001
1560	300	305	5.0	0.002	0.002
1561	305	310	5.0	0.003	0.001
1562	310	315	5.0	0.002	0.001
1563	315	320	5.0	0.002	0.001
1564	320	325	5.0	0.001	0.001
1565	325	330	5.0	0.002	0.001
1566	330	335	5.0	0.025	0.001
1567	335	340	5.0	0.005	0.001
1568	340	345	5.0	0.006	0.002
1569	345	350	5.0	0.003	0.002
1570	350	355	5.0	0.002	0.002
1571	355	360	5.0	0.006	0.002
1572	360	365	5.0	0.004	0.002
1573	365	370	5.0	0.007	0.002
1574	370	375	5.0	0.003	0.001
1575	375	380	5.0	0.002	0.001
1576	380	385	5.0	0.003	0.001
1577	385	390	5.0	0.004	0.001
1578	390	395	5.0	0.008	0.002

Project: Verdstone Gold Corp-Salal Project number: 9616 Purchase order number: 1515 Date:October 22, 1996

Sample	start ft	end ft	Length (ft)	% Mo	% Cu
DDH 96-2(Core)					
1579	395	400	5.0	0.016	0.001
1580	400	406	6,0	0.031	0.001

STER, BC V3M 6J9 PIONEER LABC ORIES INC. 5-730 EATON WAY NEW WESTI CANADA TELEPHONE GEOCHEMICAL ANALYSIS CERTIFICATE VERDSTONE GOLD CORP. Multi-element ICP Analysis - ,500 gram sample is digested with 3 ml of aqua regia, Analyst Project: diluted to 10 ml with Water. This leach is partial for Mn, Fe, Ca, P. La, Cr, Mg, Report No. 9681933 Ba. Ti, B. W and limited for Na, K and Al. Detection Limit for Au is 3 ppm. Date: October 7, 1996 Sample Type: Cores *Au Analysis- 10 gram sample is digested with aqua regia, MIBK extracted, graphite

furnace AA finished to 1 ppb detection.

ELEMENT ΡЬ Th Sb Bi V P La Cr Ba Ti B AL Na Mo Cu Zn Ag Ni Co Fe As U Au Sг Cd Са Mg ĸ W. Mn Au* % % pom % % % SAMPLE DOUI ppm pom ppm ПÖQ pon pon ppm % nog nog nog pom ppm הסק הסק הסק % % ppm ppm pon ppm ppb 96-1 1112 720-7254 ... / 39 7 .02 .25 .05 58 13 23 .3 Ζ 414 .83 3 5 ND 6 3 .2 2 2 4 .18 ,002 6 63 .04 - 3 .17 30 2 1 2 2 .02 .20 96-1 1113 725-7307 101 : 41 6 9 19 .3 2 600 .53 3 5 ND 8 3 .2 3 .14 .002 7 67 .04 6 3 .05 .12 2 1 1 .2 96-1 1114 730-7351 151 90 16 32 .6 1 1 596 .66 3 5 ND 8 2 4 2 2 .19 .002 13 82 .03 4 .01 3 ,27 .04 .14 2 1 84 2 3 .7 12 2 .01 3 .42 2 96-1 1115 735-7401 . 2 72 887 31 4.9 3 1 597 1.02 5 ND 9 6 .39 .002 14 78 .02 6 .05 .25 1 96-1 1116 740-7454 .:. 30 462 2.8 2 .34 .002 15 85 5.01 3 .38 556 23 4.2 2 1 642 .80 2 5 9 3 5 11 .03 .05 .21 2 1 ND ,002 .01 2 96-1 1117 745-7501 ... 20 9 9 48 .3 3 1 447 .58 2 5 ND 8 2 ,3 3 2 2 .14 14 99 .03 4 3 .20 ,06 .12 1 5 .2 2 2 .002 3 .01 3 96-1 1118 750-7557 . 638 5 11 .3 1 1 291 .55 2 5 ٨D 10 2 2 .13 12 79 .03 .17 .05 .11 2 12 .2 2 2 ,002 4 .01 3 96-1 1119 755-7607 C 19 57 16 4 15 .3 2 1 339 .56 2 5 ND 7 2 4 .16 9 79 .03 ,20 ,05 .11 2 1 3 .3 7 .2 3 2 2 .11 .002 76 .01 3 .17 96-1 1120 760-765/ 71 11 2 1 238 .53 2 5 ND 9 .03 .04 2 1 10 1 4 .10 5 11 .3 314 5 ND .2 2 2 .002 11 73 3,01 3 2 1 96-1 1121 765-7701 2. 6 5 2 1 .61 2 7 1 3 .10 .04 .18 ,05 .10 96-1 1122 770-7751 ---- 8 4 0 .3 287 .61 5 .2 2 2 2 .13 .002 10 76 .03 3 .01 3 .17 .04 2 1 11 1 1 2 ND 8 1 . 10 2 3 96-1 1123 775-7801.4 19 10 4 16 .3 3 1 301 .60 2 5 NO 8 1 .2 2 2 .13 .002 11 82 .03 3 .01 .18 .04 .10 2 4 2 2 2 ,01 3 96-1 1124 780-7851 ... 13 27 8 58 .3 1 1 375 3 5 ND 7 2 .3 1 .12 .001 10 84 .03 .19 .04 .10 2 1 .61 2 5 8 2 .9 5 2 2 .14 .002 12 88 3 .01 3 .21 .05 2 1 96-1 1125 785-7904 - 93 10 7 169 .3 463 .56 2 ND .03 .12 1 3 96-1 1126 790-7951 42 8 8 22 .3 1 1 372 , 69 2 5 ND 7 2 .2 4 2 2 .15 ,002 11 99 .03 4 .01 .22 .05 .13 2 3 96-1 1127 795-8001 46 3 2 1 42 16 26 .5 2 1 296 ,65 Ζ 8 ND 8 1 .2 4 2 2 .12 .002 8 82 .03 4 .01 .18 .05 .12 96-1 1128 800-8051 - 43 15 17 25 .3 1 1 308 .62 2 5 ND 7 1 .2 2 2 2 .15 ,002 8 94 .04 4 .01 3 .20 .05 .11 2 4

PAGE 1

14)522-3830

2.Sam

]	Dian	nond	l Drill	Record	1	APPENDI Hole No.	× C 96-1 P	age !	of	3	·			۷	iore s	ize	BQ	
Colla	TE #	ord. /0	5+20N 0+62E	Dip	-90	Logged by A.	Kikauka N	Сощра	any nam	ie Ve	rdston	e Mol	ycor		Project	Sal	al C	.k.
Eleva	ation	6150.	0 Ft.	Azimuth		Date logged	Sept. 28,96	Drill	l contr	actor	RDF			Date	commenc	ed A.	19.23	.96
								Final	depth	12	00 ft.			Date	finishe	d Se	pt. 27	7,96
												GRAPH	IC LC	4				
FROM	то	RECOVY	,		f	DESCRIPTION		Ft.	FH. SA	MPLE		FRACTURE	FAULT		ASSAYS	>		
<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	F+ .					,		FHOM			No.	DENSITY	FRACTUR	ALTERATIO	U SULPHICE	70M052	ppm Mo	ppm Ci
0.0	5.0	0%	Lasina	3						<u> </u>					+			
15.0	97:6	987.	2 Medi	um grain q	uartz monz	onite, 17. matics,	0.1-0.3% mag., 0.1-1.0%	<u>еу</u>										·
		<u> </u>						5.0	12.5	7.5	1001	1	/				50	70
								12.5	20.0	7.5	1002	4	11		1.1		140	50
								20.0	27.5	7.5	1003	2	11		` .		10	50
		30%	fault	28.0-33.5	ft. incre	ased Fracture f	illing at = py.	27.5	35.0	7.5	1004		555 595	qtz	1. J.		240	60
						<u>, , , , , , , , , , , , , , , , , , , </u>		35.0	42.5	7.5	1005	1	1				20	30
			increas	ed atzP	y. @ 42.5	- 43.2 Ft.		42.5	50.0	7.5	1006	2	1-	2+2.	1		10	20
					/			50.0	57.5	7.5	1007	2	7	9+2.	· ·		10	20
58.0	60.0	60%	fault	58.0-60.	0 Ft .			57.5	65.0	7.5	1008	2	11/11				30	40
			gtzpy.	vein @ 61	<u>1.5Ft. 3 cm</u>	, hematite fractu	we filling @ 71.5 ft.	65.0	72.5	7.5	1009	5	Til	qtz	1:		20	20
								72.5	80.0	7.5	1010	1	1				10	20
								80.0	87.5	7.5	1011	2	1	9+2	22		20	30
								87.5	95.0	7.5	1012	1	-1	9+2.	37		10	20
97.6	99.5	99%	9 Basa	lt, fine q	rain black	dyke, minor e	epidote	95.0	102.5	7.5	1013			ep	· .		10	30
99.5	172.0	99%	3 Media	un arain an	artz monza	nite		102.5	110.0	7.5	1014						20	zo

]	Dian	nond	l Drill	Rec	ord		·	lole No.	96-1		page	2 of	13					core	size	BQ	
Coll	17E 4	1 /4 ord. //	5+20N 0+62E	Dip	_ (10	I	ogged by	A. Kikaut		Compa	any nam	ne Ver	dstone	/Molya	or		Project	= Sala	al Ck	
Eleva	tion	6150.0	o ft	Azimut	h —		I	ate logge	d	-N	Drill	contr	actor	RDF			Date	commenc	ed A	ug. 23	, '96
										V	Final	. depth	l	200 -	F †.		Date	finishe	ed S	ept. 2	7,96
															GRAP	HIC L	06	I			
FROM	то	RECOVY	/				DESCR	IPTION			£7.		MPLEAT		FRACTUR	FAULT \$	ļ	LASSAYS	~>		
<u>++.</u>	+ 1 . • • • <u>-</u>	1	 								110 0		ш.с	1015	PENSITY	/FRACTUR	EM-TERATI	SULPHIDE	90Ho Sz	ppm Mo	pom Cu
	 	<u>}</u>						·			113.5	125.0	1.5	1016	8		,	+		 	20
						stackusse	1. 60 17	3.0-133	o ft.		125.0	132.5	7.5	1017	10			4.*		60	20
			pyrik,	<u>oncile</u>	weak	3000000			<u> </u>		132.5	140.0	7.5	1018	8		1	· .		10	30
<u> </u>										···	140.0	147.5	7.5	1019	10			· ·		40	20
											147.5	155.0	7.5	1020						60	40
		80%	fault @	156.0-1	60.0 f	't .					155.0	162.5	7.5	1021		\$5 1 44 5 7 55 4 5 7 55 4 5 7 55 4				120	20
			gtz., py.	sericite	vein o	.s-1.0 cm (@ 168.5	5-168-8ft.			162.5	170.0	7.5	1022	7	1/11/	etz. ser.	13. 24		80	20
172.0	178.0	99%	Squart.	e feldspo	ar biol	ite granit	te pork	shyry. fan	1+@ 173.0-17	4.0 ft.	170.0	177.5	7.5	102.3	1	1 15				30	20
178.0	195,0	99%	3 mediu	n grain	quartz	monzouit	re. fau	11@183.0	-183.5 ft.	······································	177.5	185.0	7,5	1024	2	1/ 39			-	40	zo
											185.0	192.5	7.5	1025	3	1/1				50	20
195.0	197.8	997.	5 quantz	feldspa	r bioti	te granite	porph	yry . 20%	biotite, 27. n	nagnetite	192.5	200-0	7.5	1026	5	11/1/	qtz mag.	19. 635		30	20
197.8	218.1	997.	³ medius	n grain	quart	z monzon	ite			_	200.0	207.5	7.5	1027	8	111	qtz	17		20	20
			chalco p	prite, quo	wtz, p	y., sericite					207.5	215.0	7.5	1028	٩	11/11	qtz			70	30
218-1	219.6	997.	5 quart	e feldspa	- biot	ite granit	re porp	hyry, 20%	biotite, 22	magnetite	215.0	222.5	7.5	1029	5	1/1	mag	· .		10	zo
219.6	298.0	997.	3 mediu	m grain	quartz	monzonit	te				222.5	230.0	7.5	10 30	5	1/1/		· .		50	20

I	Jian	nond	Dril	Record		- pa	1.3	of	3									
د					Hole No.	96-1		• 							Cor	e size E	3Q	
Coll:		ord. 10	+62 E	Dip - 90	Logged by	A. Kikauka		mpan	ny nam	e V	rdston	e/Moly	1 cor		Project	t Sala	1 CK	
Eleva	tion	6150.1	<u>, ft.</u>	Azimuth	Date logge	d		:i11	contr	actor	RDI	F		Date	comment	ced Aug	.23,'	96
							F:	nal	depth		1200	f †.		Date	finishe	ed Sep	t. 27	,96
												GRAPI	412 L	04]	· · · · ·		**************************************
FROM	то	RECOVY	,		DESCRIPTION			f <u>†</u> .	ft ^{SA}	MPLEAT.		FRALTUR	FALLTE		ASSAYS	-7		
<u></u>	<u> f†.</u> 	<u> </u>						MOR	то	WIDTH	No.	DENSITY	FRACTUR	E ALTERA TIO	SALPHIDE	%HoSZ P	pmMo	ppenCu
		 					23	0.0	237.5	7.5	1031	2	1/	ļ	· ·		10	20
L .		}					23	7.5	245.0	7.5	1032	3	14		• .		10	30
							24	5.0	252.5	7.5	1033	4	1/1	1	. ';		10	30
							2.5	2.5	260.0	7.5	1034	6	11/1		.;		20	40
							2.6	0.0	267.5	7.5	1035	2	4		. ~		370	40
			increas	ed gtz., tr 1% sphal	erite, tr. galen	~	26	1 .5	275.0	7.5	1036	2	11				280	30
							27	5.0	282.5	7.5	1037						40	30
			increa	sed gtzserpy.			28	z.5	290.0	7.5	1038	1	1	972. ser.			10	20
						·······	29	0.0	291.5	7.5	1039	1	1				30	3 ð
218.0	298.3	992	@ quart	iz feldspor and quartz porp	hyry, tr. Mo	Sz	29	7.5	305.0	7.5	1040	2	11		· - ~		<i>410</i>	30
248.3	377.0	997,	3 mediu	m grain quartz monzoni	٩		30	s.o	312.5	7.5	1041						50	20
						· ·····	317	1.5	320.0	7.5	1042						70	30
L			incred	sed gtzserpy.			32	0.0	327.5	7.5	1043	ц	4.1	gtz ser.	1		50	40
			<i>) i</i>	(i j) ^{j)}			32	1.5	335.0	7.5	। ७ ५५	ч	41	gtz: ser.			40	40
ļ							33	.0	342.5	7.5	1045						10	40
						······································	347	.5	350.0	7.5	1046				. `		40	30

I	Dian	ond	Dri	ll Record	Hole No. 96-1		page 4	of	3					core si	ze BQ	
Colla	r co-o	15 rd. 10	+20 N +62 E	Dip -90	Logged by A. Kikaw	ka	Compa	ny nam	ie Ver	dstone,	/Moly	cor		Project	Salal	r v
Eleva	tion	6150.0	ft.	Azimuth	Date logged		Dril1	contr	actor	RD	F		Date	commenc	ed Aug. 23	<u>′</u> 96
							Final	depth	2	200 Ft	-,		Date	Einishe	d Sept. 2	7.96
				· · · · · · · · · · · · · · · · · · ·							GRAPH	IC LC) G			
FROM	то	RECOVY			DESCRIPTION		<u></u> F †.	Ft.SA	MPLE	r	FRACTUR	EFAMLTÉ		ASSAYS	7	
- - 1.	++ ,		ļ				FROM	TO	WIDTH	No.	DENSITY	FRACTUR	ALTERATIO	SULPHIDE	MoHoszppmt	o pom Cer
							350.0	357.5	7.5	1047		<u> </u>			120	50
. <u></u>						·····	357,5	365.0	7.5	1048	3	1	÷		30	40
_			<u> </u>				365.0	372.5	7.5	1049	3	11			130	20
377.0	380.0	99%	(H) fi	ne grain quartz monzoni	te, 27. sericite, 17. dissem	inated magnetit	372.5	380.0	7.5	1050	2	1	Ser. mag	. '	40	40
380.0	567.5	997.	(3) med	ium grain quartz monzon	ite, tr 1% magnetite, 2%,	y., minor hem.	380.0	387.5	7.5	(051	3	1/,	mag. hem.		30	20
							387.5	395.0	7.5	1052	4	11/1			60	zo
							395.0	402.5	7.5	1053	1	1			30	30
 		907.	Fault	402.6-403.8, increas	sed sericite		402.5	410.0	7.5	1054	8	1334/	ser	بتر.	20	40
							410.0	417.5	7.5	1055	3	1.1			30	30
							417.5	425.0	7.5	1056	3	11			80	20
							425.0	432.5	7.5	1057	10	14HX	hem	1.	40	20
							432.5	440.0	7.5	1058	6	11/		. •	50	20
							440.0	447.5	7.5	1059	2	//		۰.	40	20
			incr	eased atz py ser.			447.5	455.0	7.5	1060	4	IV,	gitz seri	14	60	20
				γ 17			455.0	462.5	7.5	1061	2	4			20	20
							462.5	470.0	7.5	(062	2	4		• •	70	20

Ī	Dian	nond	Drill	Rec	ord		На	ole No.	96-1			page s	5 of	13					Core	size BQ	
Colla	TE #1	ord.	5+20N 0+62E	Dip	- 90		La	ogged by	A.Kik	anka		Compa	iny nam	ne Ve	rdston	e/Moli	ycor		Project	Salal	CL.
Eleva	tion	6150.0	. F1 .	Azimu	th —	-	Da	ate logg	eđ			Drill	contr	actor	RO	F		Date	commence	ed Aug. 23	.'96
												Final	depth	 L	1200	ft:		Date	finished	1 Sept. 7.	796
																GRAPH	<u></u> אוכ נ	06	7		<u>.,,,,</u>
5 POM		BECOVY	<u> </u>				DESCRI					ft.	ft.SA	MPLEA		FRACTURE	FAULT		ASSAYS -	-7	
f+.	ft.											FROM	то	WIDTH	No.	DENSITY	FRACTUR	RITHLAT	WA SHLPHIDE	To Hosz ppm Mo	PAMCA
												470.0	477.5	7.5	1063	3	//			// 0	20
[_					477.5	485.0	7.5	1064	2,	4		· .	20	20
[485.0	490.0	5.0	1065					110	50
												490.0	495.0	5.0	1066	10	W		. ?	330	200
												445.0	500.0	5.0	1067	1	1			20	20
												500.0	505.0	5.0	1068	2	4		• •	200	20
												505.0	510.0	5.0	1069					430	20
										<u>.</u>		510.0	E 15.0	5.0	1070	1	1			50	20
		_										515.0	520.0	5.0	1071	ય	IN		· · ·	10	2.0
				<u> </u>		<u> </u>						520.0	525.0	5.0	1072					60	20
												525.0	530.0	5.0	1073	10	MAN.			210	180
												530.0	535.0	5.0	1074					50	20
							· · · · · ·					535.0	540.0	5.0	1075				• .	20	20
								<u> </u>				540.0	545.0	5.0	1076					10	20
			<u>-</u>									545.0	550.0	5.0	1077	3	//			30	20
			<u></u>								<u></u>	550.0	555.0	5.0	1078					50	20

I	Dian	ond	Drill	Record		Hole No.	96-1	P	age 6	of 13						Core	e size Be	3	
Colla	TE # 1	ord.	5 + 20 N 0 + 62 E	Dip -9	0	Logged by	A. Kikauka		Compa	iny nam	e Ve	rdston	e/Mol	(cor		Project	= Salal	(r	
Eleva	tion	6150.1	<u>o ft.</u>	Azimuth -		Date logge	đ		Dri11	contr	actor	RDF	,	' T	Date	comment	ed Aug	. 23	'96
									Final	depth	1	200 f	+,		Date	finishe	ed Sep	t. 27	96
					·····								GRAP	41< L	04				
FROM	то	RECOVY			DES	CRIPTION			<u></u>	ft. ^{SA}	MPLE Ct.		FRACTURE	FAULT		ASSAYS			
<u> </u>	<u>ft.</u>			······································	······································				FROM	то	HTOW	No.	DENSITY	FAALTURE	ALTERATIO	NSULPHIDE	%H052 P	Mo	ppm (y
					<u></u>				555.0	560.0	5.0	1079		 				10	20
' 									560.0	565.0	5.0	1080	ļ	<u> </u>	ļ	<u> </u>		50	20
567.5	573.2		(4b) fine	grain quart	2 monzonite	.3% magnet	ite		565.0	570.0	5.0	1081	7	Ville		1.	[[60	40
573.2	660.0		(3 mediu	m grain qua	rtz monzonite	, vuggy 9	tz. py. hem. ve	ining	570.0	575.0	5.0	1082	2	11		, 7		70	20
									575.0	580.0	5.0	1083	2	11		• ,	1	60	30
			increa:	sed atz: se	er-py.				580.0	585.0	5.0	1084	10	1/3/1	gtz. Ser.	14.	2	280	20
					1/				585.0	590.0	5.0	1085	3	11	-	, ·		60	30
							· · · · · ·		590.0	595.0	5.0	1086	10	1/1	9tz ser	·171	2	.20	60
									595.0	600.0	5.0	(087	10	MY.		-:1	I	10	30
									600.0	605.0	5.0	1088	8	IAY		· 4	1-	40	40
									605.0	610.0	5.0	1089	1	1		· .	1:	20	30
			<u></u>						610.0	615.0	5.0	1090	8	NV/	qtz ser	۲,/	1	10	30
									615.0	620.0	5.0	1091	15	MAR	972. 4em	. Ar		30	70
									620.0	625.0	5.0	1092	6	14		11	2	30	70
									625.0	630.0	5.0	1043	1	1		1	1	30	Z.0
									630.0	635.0	5.0	1094	3	14				80	10

I	Dian	nond	Drill	Record	Hole No.	96-1	page	7 of	13					Core	size BQ	
Colla	TE #1	ord.	5+20N <u>0+62E</u>	Dip - 90	Logged b	y A. Kikayka	Соп	p any na	^{ime} Ve	endstone	Moly	Lor		Project	Salal	Cr
Eleva	tion	6150.	s ft .	Azimuth	Date log	ged	Dri	11 cont	ractor	RD	2		Date	commenc	ed Aug. 2	3, '96
							Fin	al dept	h 12	00 ft			Date	finishe	d Sept.	27.96
											GRAP	HIC L	04	1	1	
FROM	то	RECOVY			DESCRIPTION		f	. ++.	AMPLE	t.	FRAKTUR	E FAULT &	T	ASSAYS		
<u>-ft.</u>	- [+,	}	}	<u></u>	<u></u>		FAC	то	אדמוש	No.	DENSITY	YFRACTUR	ALTARATI	IN SULPHIDE	% Mossper	MoppinCy
							63	0 640.0	5.0	1095	6	1/1	<u> </u>		18	<u> </u>
1							640	0 645.0	5.0	1096	4	11/		· ·	22	0 50
							645	0 450.	0 5.0	1097	5	M		•	9	0 10
				、 			650	0 655.	5.0	1098	1	1		/ .	31) 20
							655.	0 660.	0 5.0	1094	3	1			40	30
660.0	668.0	90%	(4b) fine	grain quartz mo	nzonite, Fault @ 66	6.8-668.0	660	0 665.	5.0	1100	13	1 K		$\langle \cdot \rangle$	50	20
668.0	671.6		3 medi	un grain quartz n	nonzonite, trace	nagnetite	665	0 670.	0 5.0	1101	5	11			10	10
671.6	672.0		@ quart:	z feldspar and quar	rtz porphyry, mino	rep., ser.	670.	0 675.	5.0	(102	<u> </u>	1	ser. ep.	•	4c	2.0
672.0	675.0		3 mediu	m grain quartz mi	onzonite		675.	0 680.4	5.0	1103	4	H		:	130	20
675.0			@ Fine	grain quartz mi	onzonite, 0.2% to	tracemagnetite	680.	685.	5.0	1104	3	1		;	70) 2.0
				,		J	685.	640.0	5.0	1105	12	97X		-7.	70	20
						<u> </u>	690.	645.	5.0	1106	2	11			90	10
							695.	700.0	5.0	(107					100) ZO
							700-	705.0	5.0	1108	1	(3/0	, 20
							705	0 710.0	5.0	1109					70	20
							710	715.6	5.0	1110	8	IN!		1.	50	2.0

Ι	Dian	nond	Dril	l Record	Hole No.	96-1		page ?	Bofl	3					Lore	size E	Q	
Colla	7E 4 1 r co-c)5 ord.](5+20 N)+62 E	Dip -90	Logged by	A. Kikauka	N	Compa	ny nam	e Ve	urdstone	e/Moly	cor		Projec	t Sal	al Ch	
Eleva	tion	6150.0	5 f t.	Azimuth —	Date logg	;ed		Drill	contr	actor	RDI	2		Date	commen	ced Au	9.23	, 96
								Final	depth	120	po ft			Date	finish	ed Se	pt. 27	, 96
							<u> </u>		·	<u></u>		GRAP	HIC	-04				- -
FROM	то	RECOVY			ESCRIPTION			ft.	ft ^{ŞA}	MPLECT.	r	FRACTUR	E FAULT		ASSAYS			
[[[].	<u>++</u> .		ar:	· · · · · · · · · · · · · · · · · · ·	(++)		··· ··· ······························	FHOM	10	WIDTH	No	DENSITY	FRACTUR	E ALTERATIO	SULPHOE	70Mosz	ppm Mo	ppm Cu
	<u> </u>		4 Fin	e grained giz monzonile	(con[.]			715.0	720.0	5.0	- 111	4	TIAT	ser			40	60
								720.0	725.0	5.0	1112	27	1 M		<u>"</u>	· ·	39	58
					÷	······		725.0	730.0	5.0	1113	10	711	SET	·, ·	<u> </u>	41	6
	·							730.0	735.0	5.0	1114	16	A.	972	1		151	90
						·		735-0	740.0	5.0	1115	6	KI				72	887
					<u> </u>	·		740.0	745.0	5.0	1116	8	XY/	ser			30	55 6
								745.0	750.0	5.0	1117	8	WH/	ser	·.		20	9
					<u></u>			750.0	755.0	5.0	1118	10	NI	ser	. 		638	5
						····		755.0	760.0	5.0	1119	15	$\mathbb{W}/\mathbb{V}/\mathbb{V}$	Ser	. 		57	16
						<u> </u>	<u> . . </u>	760.0	765.0	5.0	1120	14	1X/1	ser	<u>.</u>		71	10
								765.0	770.0	5.0	1121	11	N	ļ	<u> </u>		6	5
<u> </u>								770.0	775.0	5.0	1122	20	XIA	Ser	ļ		8	11
						·····		775.0	780.0	5.0	1123	22	SMK.	gtz ser			19	10
								780.0	785.0	5.0	1124						13	27
								785.0	790.0	5.0	1125	8	XV	Ser			93	10
								790.0	795.0	5.0	1126	22	XANI	gtz ser			42	8

Ι	Dian	nond	Drill	Reco	rd	Hole No.	96-1	J k	sage 9	of 13	3					Core	size l	BQ	
Sr Colla	TE #1	ord. 19	720N)+62E	Dip -	. 90	Logged by	A. Kikanka		Compa	ny nam	e Ver	dstone	/Moly	cor		Project	: <_	lal C	
Eleva	tion	6150.0) f t.	Azimuth		Date logge	d		Drill	contr	actor	RDF			Date	commence	ed A	19. 23.	<u></u> 96
									Final	depth	12	00 ft.			Date :	Einishe	d S	ept. 27	7,96
											····		GRAP	HICLO	6			1	
FROM	то	RECOVY			t	DESCRIPTION			ft.	ft ^{SA}			FRACTURE	FAULTE		ASSAYS	7		
<u>++.</u>	+++-		(4) Fin	e arained	atz monzout	te (cmt.)	····		795.0	800.0	5.0	1127	DENSITY	FRACTURE	ALTERATION 2tz	SULPHIOE	<u>%HoS2</u>	Ppm Mo 46	<u>ppm Cu</u> 47
				<u>- </u>	1				800.0	805.0	5.0	1128	(6	11A	gtz ser	- ⁻ 1		43	15
			minor g	hartz eye	eorohuru				805.0	810.0	5.0	1129	10					10	10
									8(0.0	815.0	5.0	1130						40	20
									815.0	820.0	5.0	[13]	10	1/2	Ser	泛.		20	20
									820.0	815.0	5.0	1132						10	50
								<u> </u>	815.0	830.0	5.0	1133				1 <i>,</i>		40	20
									830.0	835.0	5.0	1134						20	10
									835.0	840.0	5.0	1135	3	1				20	36
						·····			840.0	845.0	5.0	1136	1	1				30	20
									845.0	850.0	5.0	1137						zo	10
									850.0	855.0	5.0	1138				;		60	20
			minor	gtz.eye	porphyry				855.0	860.0	5.0	(139				•		10	40
									860.0	865.0	5.0	1140						100	10
						·····	······		865.0	870.0	5.0	1141				• •		40	10
							······································		870.0	875.0	5.0	1142	10	XXX/	Ser.			140	10

Diam	ond	Drill	Record	I	Hole No. 96-1	page	10 of	13					(ore	size	BQ	
Site#1 Collar co-o	rd. 15	1+20N	Dip - 90	0	Logged by A. Kikauka	Comp	any nar	ne Ve	rdstone	Moly	cor		Project	t Sa	alc	r
Elevation @	6150.0	<u>ft.</u>	Azimuth -		Date logged	Dril	l conti	ractor	RDF			Date	comment	ced Au	9.23	.'96
						Fina	l depth	<u>1</u> 2	.00 ft.			Date	finishe	ed Se	ot. 27	7.96
						. <u></u>				GRAP	HIC	LOG	<u></u>		1	
FROM TO	RECOVY			DESC	RIPTION	<u>+t.</u>	f+ ^{\$4}	AMPLECT.		FRACTURE	FAULT	ţ	ASSAYS			
-f +. -F +. -						FROM	to	HTOW	No.	DENSITY	FRACTUR	ALTERATIO	N SALPHIDE	%MoSz	ppm Mo	ppmCu
	99%	(1) Fine	e grained g	tz. monzonite	(cont.)	875.0	880.0	0 5.0	1143	18	XXI	ser.	· :	L	20	10
			.			880.0	885.0	5.0	1144	1	1				30	30
						885.	890.0	5.0	1145	((1184	Ser.	. · . ·		70	10
						890-0	895.0	5.0	1146	1	1	hem			20	lo
						895.0	900.0	5.0	1147	2	/		~ -		60	10
	80%	fault a	0 902.0-904	1.8		900.0	905.0	5.0	1148	6	55/59 5555	hem ep sei			50	20
	70%					905.0	910.0	5.0	1149	12	133/1/	hem			60	10
				<u></u>		910.0	915.0	5.0	1150	4	XV/				90	20
				<u></u>		915.0	920.0	5.0	1151	14	the	ser Kaol			90	20
				•		920.0	925.0	5.0	1152	16	N/X	ser kaol			50	110
		_v.fine	e grain aphi	anitic phase	2	925.0	930.0	5.0	1153	13	ANY	mag ep			40	20
		4 n		u u		930.0	935.0	5.0	1154	15	XA.AV	hem			80	10
						935.0	940.0	5.0	1155	20	X/AV	hem			20	10
						940.0	945.0	5.0	1156	15	A.M.	ер			20	10
		·	· · · · · · · · · · · · · · · · · · ·			945.0	950.0	5.0	1157	20	YAV/				50	20
		minor	quartz po	orphyny 1-4	mm. gtz. eyes. f. gr. gr	ound mass 950.0	955,0	5.0	1158	18	XXX IX	gtz			70	20

•

Ι	Dian	nond	Dril	Reco	rd	Hole N	. 9	6-1	N Pr	ye 11	of	3							
Colla	r co-0	rd. 14	5+20N	Dip	-90	Logged	by A	Kikanka	Compa	iny nar	ne Ver	rdstone	, / M	alucar	E	roject	t Sala	.1	
Eleva	tion	6150	 f t.	Azimuth		Date 1	logged		Drill	contr	actor	RDF		-17-07	Date o	onmen	ced Au		3.96
•						·····			Final	depth	120	00 ft.	······································		Date f	inishe	ad Sept	: 27	, 96
													GRAPI		(1)				
FROM	TO	RECOVY			<u></u> 	DESCRIPTION			ft.	Ft. SA	MPLE	1	FRACTURE	FAULT		ASSAYS			
<u> f†∙</u>			(1) Fine	grained	atz. monzor	ite (cont.))		955.0	960.0	5.0	1159	4	1//	BALIEKATION	SALPHIA	76M052 P	<u>m Mo</u>	ppm Cu 10
			mi	nor qtz	. porphyr	y 1-5 m	m. q.tz.	eyes	960.0	965.0	5.0	1160	3	X	atz	·		30	10
			ł	h	······································	н	11 14	11	965.0	970.0	5.0	1161	4	1/2	gtz.			30	10
			4	11	11	11	ц <i>и</i>	1	970.0	975.0	5.0	N.S.	5	KA	972			50	20
			1	۴۲	ţſ	د.	y1 - 55	st.	975.0	980.0	5.0	1162	5	14%	etz,	•		10	2.0
									980.0	985.0	5.0	1163	5	Ŧ		· . ·		10	30
								· · · · · · · · · · · · · · · · · · ·	985.0	990.0	5.0	1164	4	¥4		. * ['] .		20	30
									990.0	995.0	5.0	1165	8	[11]	ser		2	20	20
				<u> </u>					995.0	1000.0	5.0	1166	ଟ	XV1	ser Kaol		-	30	10
						······			1000.0	1005.0	5.0	1167	20	St AX	ser Kaol			30	10
					<u> </u>				1005.0	1010.0	5.0	1168	6	NY		- 1		30	10
					<u> </u>				1010.0	1015.0	5.0	1169	10	VA	12+z	; <u>,</u>		50	30
									1015.0	1020.0	5.0	1170	8	MIN.	m99 272			30	60
									1020.0	1025.0	5.0	1171	5	14	Ser			70	20
			Fault	1026	.0 -1026.	75% r	<u>x.</u>		1025.0	1030.0	5.0	1172	6	1/X/	ser	· · ·	:	20	10
					····				1030.0	1035.0	5.0	1173	8	YY?	272	- '		40	60

:

the second se

Ι	Diamond Drill Record				9/1		page 1	z of	13								
	ŢE #1	rd	5+20N	Din -90	Hole No. 76-		Compa	iny nam	e Verre	store	/ Make			Project	5.1		
Eleva	tion	6150	<u>5+628</u> Ft:	Azimuth	Date logged		Drill	. contr	actor	RDF		200	Date	commence	$-\frac{-291a}{A_{1}}$	<u>1/</u>	z 91
L				A		$-\sqrt{-1}$	Final	. depth	120	20 ft.			Date :	finished	d Sent	<u>1</u> t. 27	<u>, 76</u> 96
											GRA	PHIC L	06	•	- <u>-</u>		/ /0
FROM	то	RECOVY			DESCRIPTION		ft:	ft. SA	MPLEFT.		FRACTURE	FAULT	ś	ASSAYS	2 <u>0</u>		
<u>++</u> ,	<u>+</u> <u>+</u> .						FROM	то	WIDTH	No.	PENSITY	PRACTURI	ALTORATIO	SULPHINE	7. M.S. PP.	m Mo	ppmCu
			(C) Fi	ne grained qua	rtz monzonite (cont.)		1035.0	1040.0	5.0	1174	12	W/V/	ser	<u> </u>	i	40	30
							1040.0	1045,0	5.0	1175	12	W.MI	1 272	1.	1	30	20
							1045.0	1050.0	5.0	1176	6	111	ser	:		40	10
							1050.0	1055.0	5.0	1177	17	R/X	hem	5	1.	30	20
							1055.0	1060.0	5.0	1178	20	(AXX)	ser			60	20
							1060.0	1065.0	5.0	1179	22	XXXX/	2+z hem	1	1	00	20
							1065.0	1070.0	5.0	1180	01	N/X	ser	· · · · · .	4	40	10
							1070.0	1075.0	5.0	1181	2.0	Ary	Ser	¥7.4.4. 1997		30	10
1077,5	1085.0	99%	5B:07:	te Porphyry	, secondary biotite		1075.0	1080.0	5.0	1182	14	WAX	hem	1	3	30	20
	. ,			· / /			1080.0	1085.0	5.0	1183	12	XMI	ser	int.		20	36
			gtz.	veinlets pervasi	Ne, 0.1-0.3 cm. wide, moderate-stron	ig stockwor	< 1085.0	1090.0	5.0	1184	18	MAG	2tz ser	it in	4	60	60
			vuggi	1 gtz, trac	e calcite	- <u></u>	1090.0	1095.0	5.0	1185	24	KAN/	$ q_{z} $	14 - A	2	20	60
			quartz	stockwork (co	nt.)		1095.0	6.0011	5.0	1186	30		gtz	N. 41 1977 - 19	1	0	50
							1100.0	1105.0	5.0	1187	14	MAX	mag Ser	:S.		10	2.0
							1105,0	1110.0	5.0	1188	15	SAL	9tz hem		:	20	01
							1110.0	1115.0	5.0	1189	14	XXXX	qtz			10	10

I	Dian	nond	Dril	l Record		Hole No. 96-1	$\overline{\mathbf{N}}$	page	13 of	13								
Colla	ir co-0	co-ord. Dip Logged by A. Kikauka Company name Verds. on Azimuth Date logged Drill contractor								dstone	/ Molyc	-0 r		Project	S	alal		
Eleva	tion			Azimuth		Date logged		Dril1	contr	actor				Date	commenc	ed A.		, 96
_								Final	depth	120	00.0 +	t		Date	finishe	d Sep	7. 27	, 96
						······································						GRA	PHIC LU	<u>с</u>]			
FROM	TO	RECOVY			DES	CRIPTION		<u>f</u> †	F+ SA	MPLE F	<u>+</u>	FRACTUR	E FAULT	Ę	ASSAYS			
I ft.				^		-) ()	·	FROM	TO		No.	DENSITY	FRAKTU	A DERATIN	Su <i>LPHIPE</i>	70M052	ppm Mo	ppm Cy
ļ			(4) Fi	ne grained	gTz.mo	nzonite (cont.)		1115.0	1120.0	3.0	1190	8	11/	ser			10	30
								1120,0	1125.0	5.0	1/41	6	X /				20	20
			_				_	1125.0	1130.0	5.0	.1192	8	T.C.	gt2			50	20
								1130.0	1135.0	5.0	1193	10	TA	, mag hem			30	30
								1135.0	1140.0	5.0	1194	20	(ISA)	gtz ser			70	40
			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				1140.0	ji45.0	5.0	1195	16	XXX	utz ser			10	10
				<u> </u>				1145.0	1150.0	5.0	1196	16	KAY	hem mag			20	20
								1150.0	1155,0	5.0	1197	16	18AH	qtz ser			10	10
								1155.0	1160.0	5.0	1198	Zo	XX	etz ser			10	20
				<u></u>				1160.0	1165.0	5.0	1199	20	12xt	2tz hem			70	10
				. <u> </u>				1165.0	1170.0	5,0	1200	20		hem			170	20
 							<u> </u>	1170.0	1175.0	5.0	1201	22	XXX	hem			20	10
 					<u> </u>			1175.0	1180.0	5.0	1202	30	XXXXX	([10	20
			Fault					1180.0	1185.0	5, ₀	1203	30	33535	1 dtz hem			70	10
								1185.0	1190.0	5,0	1204	25	5155				10	20
								1190.0	1195.0	5.0	1205	22	5555	Ser 9+2.			2.0	20
								1195.0	12.00.0	5.0	12.06	10		hem			20	30

Diamond Drill	Record	Hole No. 96-2	Page 1 of 5	core size BQ
SITE # 15720N Collar co-ord. 10+62E	Dip - 55	Logged by A. Kikauka	Company name Verdstone / Moly	Cor Project Salal
Elevation 6150.0 ft	Azimuth 090	Date logged Oct. 10 96	Drill contractor RDF	Date commenced Sept. 30,96
			Final depth 406.0 ft.	Date finished Oct. 8,96

				GRAPHIC LOG													
FROM	то	RECOVY	DESCRIPTION	F †	Ft.SA	MPLE	-	FRACTURE	FAULTE		ASSAYS						
<u></u>	Ft.	ļ		FROM	то	WIDTH	No.	DENSITY	FRACTUR	ALTERATION	SULPHIN	70 M.Sz	ppm Mo	ppm Cu			
0.0	6.0	0%	Lasing					L		ļ				<u> </u>			
6.0	29.7	98%	3 Medium grained quartz monzonite 0.1-0.3% mag.,	6.0	10.0	5.0	1201	3	+1	Kaol	·/·,		40	10			
			1-270 disseminated and Fracture filling pyrite	10.0	15.0	5.0	1502	5	4	hem	K		50	10			
			5 17	15.0	20.0	5.0	1503	4	1/		1.		10	10			
[20.0	25.0	5.0	1504	6	14	Kaol	1		50	10			
				25.0	30.0	5.0	1505	4	H	ser lim			10	10			
29.7	33.0	9973	1 Basalt	30.0	35.0	5.0	1506	12	H	ser hen	-		10	20			
37.0	39.8	992.	9 Basalt, 1-2 mm olivine Fragments	35.0	40.0	5.0	1507	14		hem ser	Ē,		60	10			
39.8	142.0	9 9 70	3 Medium grained quartz monzonite, 0.1-0.370 mag.	40.0	45.0	5.0	1508	12		Ser	· · ·		20	10			
			1-370 disseminated and Fracture filling purite	45.o	50.0	5.0	1509	14	A H				40	20			
			abundant apple green sericite	50.0	55.0	5.0	1510	14	THE W	chl	; 9.		10	(0			
				55.0	60.0	5.0	1511	12	the	qtz Ser	Zr		20	10			
				60.0	65.0	5.0	1512	16	A	9tz hem	· · · ·		70	20			
			minor Fluorite @ 66.0-66.1, Mosz Frae. fill.	65.0	70.0	5.0	1513	16	E.	stz	·/:	0.038	230	150			
				70.0	75.0	5.0	1514	10	Au	9tz Ser	N.		20	20			
				75.0	80.0	5.0	1515	17	14	atz	·		40	20			

4

Diamond Drill Record

core size BQ page 2 of 5 96-Z Hole No. SITE # | 15+20 N Collar co-ord. 10+62 E A. Kikauka Company name Verdstone / Molycor Project Salal - 55 Logged by Dip RDF Drill contractor Oct. 10,96 Sept. 30,96 6150.0 ft Date commenced Azimuth 090 Date logged Elevation 406.0 ft. Final depth Date finished 8.96 Oct.

- -

								GRAPHIC LOG						
EBOM	τo	BECOVY	DESCRIPTION		SA	MPLE		FRACTURE	FAULTE		ASSAYS			
ft.	F¥.			FROM	то	WIDTH	No.	DENSITY	FRACTURE	ALTERATION	SULPHIDE	% Mos	Apm Mo	ppm Cu
			3 Medium grained quartz monzonite (cont.)	80.0	85.0	5.0	1516	20	E.	hem	. 1.		20	20
				85.0	90.0	5.0	1517	16	1	Ser	• ~ •		20	10
				90.0	95.0	5.0	1518	20	The	gtz Kaol	in.		10	10
			fult 97.0-98.0 85% recovery	95.0	100.0	5.0	1519	13	1585	ser	; . 1		30	10
			0	100.0	105.0	5.0	1520	15	F	gtz ser	3		10	10
			fault 105.0-107.3 90% recovery	105.0	110.0	5.0	152 I	18		Kaol	. 1.		30	10
				110.0	115.0	5.0	1522	8	4	ser	•		20	10
				115.0	120.0	5.0	1523	18	The second	9tz ser	1.		30	10
				120.0	125.0	5.0	1524	15	EA/	hem			10	30
				125.0	130.0	5.0	1525	12	AL.	mag			70	10
				130.0	135.0	5.0	1526	10	TH)	\$tz	• .		10	10
				135.0	140.0	5.0	1527	12	1/10	ser	· . _ `		10	10
14.2.0	406.0	»	@ Fine grained quartz monzonite > 0.1% mag.	140.0	145.0	5.0	1528	12	El.	Kaol			ZO	10
			1-370 pyrite (dissem. & frature fill) 1-32 sericite	145.0	150.0	570	1529	15	ALL .	gtz ser	۰.		10	10
			0.1-1.0% hematite	150.0	155.0	5.0	1530	12	They want	ser hem			40	50
				155.0	160.0	5.0	1531	14	The second	Ser	•		40	10

Ι	Dian	ond	Dril	Reco	ord		Hole No. 96-2	f	page 3	s of	5	,			ć	lore s	size l	βQ	
Colla	: 	rd. 10	162 E	Dip	-55		Logged by A. Kikan	Ica V	Compa	any nam	ne Ver	dstone	1 Mol	ycor	I	rojec	t Sal	al	
Eleva	tion	615	io ft	Azimuth	090		Date logged Oct. 10	9,96	Dri11	contr	actor	RDF		/	Date o	ommen	ed S,	ept. 30	0,96
									Final	depth	4	06.0 f	†		Date f	inish	ad OC	t. 8,	96
													GR	AAC LU	<u> </u>				
FROM							RIPTION		ft.	<u>_ft</u> , sa	MPLE		FRACTURE	FAULT	;) 	ASSAYS			· · · · · ·
[[]]	+ 1 .		(A) Fin	a arain	al anto	144 5	$\frac{1}{1}$		160.0	165.0	5.0	1532	ZI	TRACTIN	272,	SULPHIDE	7. M.S.	20	ppm Cu 10
			<u> </u>	12 Judin	eg quari-	W(0)	zoni z (coni-)		165.0	170.0	5.0	1533	27		972			40	10
									170.0	175.0	5.0	1534	36		gtz ser	:55		70	10
									175.0	180,0	5.0	1535	20	El)	hen	, .		80	10
								<u> </u>	180.0	185.0	5.0	1536	15	Fe	272	; .		30	10
			Fault	187.0-	190.9 85 %	7º rec	overy		185.0	190.0	5.0	1537	15	(D)	s lim. gtz			40	10
									190.0	195.0	5.0	1538	15	Petr,	s-er her			20	10
						····			195.0	200,0	5.0	1539	15	AH	ser-	·		40	10
						<u> </u>			200.0	205.0	5.0	1540	15	TA	hem			50	10
			<u></u>						205.0	210.0	5.0	1541	20	H	qtz ser	· · · · ·	0.033	200	10
			Fault	Zone ?	35% recove	ry t	los, frac. fill		210.0	215.0	5.0	1542	20	A A	Kaol.		0.005	30	10
				11	<u>11 11</u>		u 4 n		215.0	220.0	5.0	1543	ZO	343	hem	/	0.008	50	10
			۰۰	14	fl 3,		44 - 44 - 44		220.0	225.0	5.0	1544	20	15 m	gtz Ser		0.045	270	10
									225.0	230.0	5.0	1545	10	THE	hem	·:. :.		60	10
			<u></u>						230.0	235.0	5.0	1546	12		gtz ser			40	10
									235.0	240.0	5.0	1547	15	10	gtz ser	5.7.		30	10

Ι	Dian	iond	Drill	Record		Hole No.	96-Z	page 4	of s	>	•			C	ore s	ize B	Q	
Colla	TE #	rd. /	5+20 N 0+62 E	Dip -5	5	Logged by A.	Kikanka	Compa	iny nam	e ver	dstone	1 Mo	ycor		Project	: Sala	.(
Eleva	tion	61	50 ft.	Azimuth	090	Date logged	Oct. 10,96	Drill	contr	actor	RDF			Date	commenc	ed Sa	pt. 31	0,96
								Final	depth	40	6.0 +	7.		Date :	Einishe	ed Oc	1. 8	,96
FROM	το	RECOVY			DE	SCRIPTION		Lft.	flsa	MPLE		FRACTURE	FAULT		ASSAYS			
<u> ++.</u>	<u>+</u> +		6 F			· · · · ·		FROM	TO		NO.	DENSIT	FRACTUR	ALTERATIO	<u>154194112</u> 9,72.	12 MoS2	Ppm Mo	ppm C
			(4) F1	he grained	quartz.	Monzonite	(Cont.)	270.0	245.0	5.0	1540		Vier 1		ser	ļ	70	10
 								245.0	250.0	5.0	1549	-1	A CAL		he	<u> </u>	20	10
						<u> </u>	<u></u>	250.0	255.0	5.0	1550	20	797 A		musc		30	40
								255.0	260.0	5.0	1551	25		7.2.	Raol gtz		10	2.0
								260.0	265.0	5.0	1552	ZO	SHAT .	1.	ser	2	20	10
								265.0	270,0	5.0	1553	18	14/11	- '4	hen		30	10
								270.0	275.0	5.0	1554	17	THEY!		hem Mnox		50	10
								275.0	280.0	5.0	1555	20	12	· · ·	ser Mn Ox	0.013	80	10
				<u> </u>	·····			280.0	285.0	5.0	1556	20	1 star	ŕ,	ser hem	0.008	50	20
			Fault	Q 287.0-28	7.2 90% re	ecovery MoSz	frac. til	Z 8 5.0	290.0	5.0	1557	20	and the second second	(1	ser 212	0.037	220	20
								290.0	95, o	5.0	1558	2.8	A C	1/1	gtz	0.010	60	30
				· · ·				295.0	300.0	5.0	1559	32	A star		972 ser		20	10
			fault	299.0-302.	0 8570re	ecovery		300.0	305.0	5.0	1560	33			9tz ser		20	20
			Fault	303.0 - 307.	0 "	" Vugay_	atz. veins @ Za	0 to (.a. 305.0	310.0	5.0	1561	26		• • •	gtz ser		30	10
312.0	315.8		3 Bio	tite porphy	ry, 1270 5	econdary biotit	e 5% pink K	- Spar 310,0	315.0	5.0	1562	12			biot K-spar		20	10
			(4) Fin	2 grained	quartz m	onzonite (co	nt.)	315.0	320.0	5.0	1563	21	HA A	• .• :	Mnox		20	10

Diamond Drill Record

N page 5 of 5

core size BQ

Diamond Drill	Record	Hole No. 96-2
SITE #1 15+20N Collar co-ord. 10+62E	Dip -55	Logged by A. Kikanka
Elevation 6150 ft.	Azimuth D90	Date logged Oct. 10 91

1	Company name Verdstone / Mola cor	Project Solal
	Drill contractor RDF	Date commenced Sept. 30,96
	Final depth 406.0 Ft.	Date finished Oct. 8,96

								GR,	APHIC	LOG				
FROM	то	RECOVY	DESCRIPTION	- <u>f</u> +.	ff. SA	MPLE	L	RACTURE	FAULTS	i(ASSAYS			
		ļ		FROM	то	WIDTH	No.	DENSITY	FRANTLA	ALTERATIN	SULPHIPE "	20 Mo S.	ppm Mo	ppm Cy
				320.0	325.0	5.0	1564	12	141	ser Ox			10	10
				325.0	330.0	5. o	1565	14	44	Kao!			Zo	10
				330.0	335.0	5.0	1566	12	1	Mn Ox 2tz	o	0.042	250	10
			Fault, 90% recovery broken around MoSa frac. fill	335.0	340.0	5.0	1567	20	E A	MnOx ser	0	0.008	50	10
			Furt 90% recovery ""	340.0	345.0	5.0	1568	17	Hage -	Mndx ser	0).010	60	20
			fuilt 85% recovery 346.0-346.2	345.0	350.0	5,0	1569	12	E.	ser gtz	0.	.005	30	26
				350.0	355.0	5.0	1570	16	100	ser musc	o.	.003	20	20
				355.0	360.0	5.0	1571	16	AL)	ser musc	0.	.010	60	20
				360.0	365.0	5.0	1572	22		ser gtz	<i>o</i> .	007	40	20
				365.0	370.0	5.0	1573	20	E.	Ser atz	0	.012	70	20
			Fault 372.0-372.5 80% recovery	370.0	375.0	5,0	1574	2.3	FER	gtz ser	о.	.005	30	10
				375,0	380.0	5.0	1575	22,	H.	ser musc	p.(003	20	/0
				380.0	385.0	5.0	1576	26	Sty	ser gt2	Ø.0	005	30	10
				385.0	390.0	5.0	1577	22	ATT.	ser 2t2	þ.	007	40	2.0
393.0	396.0	987.	3 Biotite porphyry, 120 magnetite, Moss Frac.fill.	390.0	395.0	5.0	1578	18	41	biot Ser	0.0	013	80	ZO
				395.0	400.0	5.0	1579	16	4H	biot ser.	0.	.0Z7	160	10
			41 1 ⁴ 1 ³	400.0	406.0	5.0	1580	24	Ger.	Ser Kaol	0.	05Z ·	310	10

Det. 10,96

SALAL 1-6 CLAIMS ROCK CHIP SAMPLES SALAL 1-6 CLAIMS ROCK CHIP SAMPLES July-Sept., 1996, Lillooet M.D. July-Sept., 1996, Lillooet M.D. SAMPLE # WIDTH DESCRIPTION PPM Mo SAMPLE # WIDTH DESCRIPTION PPM Mo SR-369 5.0 m.Med.& coarse, 25 SR-318 5.0 m.F.grained qm, 1440 SR-370 5.0 m. " ", 5 SR-319 5.0 m. " , 130 SR-371 5.0 m. " ", 5 ", 110 SR-372 5.0 m. ", 5 " , 75 SR-373 5.0 m. ", 5 ", 85 SR-374 5.0 m. ", 10 " , 1155 ", 10 SR-375 5.0 m. ", 90 ", 75 SR-376 5.0 m. ", 165 ", 25 SR-377 5.0 m. "**.** 340 SR-378 5.0 m. ", 5 " **,**18870 SR-501 5.0 m. *, 20 ", 70 ", 180 SR-502 5.0 m. ", 40 ", 160 SR-503 5.0 m. ", 55 SR-504 5.0 m. **.** , 110 ", 115 н <mark>,</mark> ЭО SR-505 5.0 m. SR-332 3.0 m. " , 405 SR-506 5.0 m. "**.** aŭ SR-333 0.0 m.Med.& coarse, 635 ", 60 SR-507 5.0 m. ", 55 " . 440 SR-508 5.0 m. ", 135 SK-509 5.0 m. " ", 60 ", 30 SR-510 5.0 m.F.grained gm. 450 "**,** 90 SR-511 5.0 m. " , 120 ", 115 SR-512 5.0 m. " **,**1460 **" , 13**0 **,2200** SR-513 5.0 m. •, 80 SR-514 5.0 m. ,1150 *** ,** 25 ", 750 SR-515 5.0 m. *** ,** 250 " , 400 SR-516 5.0 m. ", 45 SR-517 5.0 m. ", 200 ", 25 , 350 SR-518 5.0 m. ", 25 SR-519 5.0 m. * , 150 *. 45 SR-520 5.0 m. ", 90 ". 120 SR-521 5.0 m. . 250 ", 35 SR-522 5.0 m. ", 330 ". 145 ", 870 SR-523 5.0 m. - , 25 ", 620 SR-524 5.0 m. ", 45 ", 250 SR-525 5.0 m. ", 260 SR-526 5.0 m. ", 20 SR-527 5.0 m. ,1280 **" ,** 105 SR-528 5.0 m. . 140 "**.** 30 SR-529 5.0 m. ".330 ", 15 " , 270 SR-530 5.0 m. " **,** 20 ", 340 SR-531 5.0 m. ", 25 SR-532 5.0 m. " <u>.</u> ან0 "**,**25 . 170 SR-533 5.0 m. " ", 10 . 510 SR-53≤ 5.0 m. " , ວັ 1740 CO-----ل به و SR-536 5.0 m. "**, 290** iirm ", 15 " ,1450 SR-537 5.0 m. " **"** , 140 ", 700 SR-538 5.0 m. " SR-539 5.0 m. " ,2000 ", 5 SR-540 5.0 m. " ,1080 **",** 25 SR-367 ti.0 m. " , 10 SR-368 5.0 m. " , 5 SALAL 1-6 CLAIMS RUCK CHIP SAMPLES July-Sept., 1996, Lillooet M.D. SAMPLE # WIDTH DESCRIPTION PPM Mo SR-541 5.0 m.F.grained gm, 739 SR-542 5.0 m. " , 780 SR-543 5.0 m. " . 630 SR-544 5.0 m. " , 140 SR-545 5.0 m.Med.& coarse, 360 SR-546 5.0 m. " , 580 SR-547 5.0 m. " , 380 SR-548 5.0 m. ",1130 SR-549 5.0 m. ", 480 SR-550 5.0 m. ", 160 242 418 • 298 VERDSTONE / MOLYCOR SALAL PROJECT, PEMBERTON, B.C GEOLOGY, GEOCHEMISTRY, & MAGNETIC SURVEY COMPILATION, FLOAT CREEK ALTERATION MINERALS QUATERNARY BASALT- RHYOLITE, LAVA qtz. — quartz DYKE-SILL-NECK ser.- sericite MIOCENE mag.-magnetite hem.- hematite QUARTZ ± FELDSPAR biotite - biot. PORPHYRY, 65 APLITE PHASE, BLUE COLOUR musc.- muscovite k-spar - potassium feldspar QUARTZ-FELDSPAR. BIOTITE PORPHYRY chl.- chlorite cal- calcite FINE GRAINED QUART2 ep.- epidote MnOx-manganese oxide MONZONITE, 46 APLITE PHASE, WHITE COLOUR SULPHIDE MINERALS MEDIUM GRAINED MoS₂ molybdenite QUARTZ MONZONITE Py pyrite COARSE GRAINED QUARTZ MONZONITE Cp chalcopyrite Sp sphalerite CREEK Gn galena STEEP DIPPING FRACTURE / JOINT FIG. 4 ROCK CHIP SAMPLE 3800 ppm Mo SOIL SAMPLE 3800 - PPM MO AIRBORNE MAG A. KIKAUKA M POSITIVE ANOMALY COLUMBIA M AIRBORNE MAG M NEGATIVE ANOMALY (H) HELIPAD SCALE 1:1,000 OCT., 96

7 5 6 95 5 705 4 625 3 064 5 76 5 76 5 307 1 47 57 30 55 429 33 120

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

ł.

ł

j

1

4

1

·